import gradio as gr import re import requests import json import os title = "BLOOM" description = "Gradio Demo for BLOOM. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." API_URL = "https://hfbloom.ngrok.io/generate" HF_API_TOKEN = os.getenv("HF_API_TOKEN") hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "huggingface/bloom_internal_prompts", organization="huggingface") examples = [ ['A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is: We were traveling in Africa and we saw these very cute whatpus. To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:', 8, 0.1, 0, 0.9, False] ] def safe_text(text): text = text.replace('%', '\\%25') text = text.replace('#', '\\%23') text = text.replace('+', '\\%2B') text = text.replace('*', '\\%2A') text = text.replace('&', '\\%26') text = re.sub(r"([$_*\[\]()~`>\#\+\-=|\.!{}])", r"\\\1", text) return f"
{text}" def query(payload): print(payload) response = requests.request("POST", API_URL, json=payload) print(response) return json.loads(response.content.decode("utf-8")) def inference(input_sentence, max_length, temperature, greedy_decoding, top_k, top_p, seed=42): top_k = None if top_k == 0 else top_k payload = {"inputs": input_sentence, "parameters": {"max_new_tokens": max_length, "top_k": top_k, "top_p": top_p, "temperature": temperature, "do_sample": not greedy_decoding, "seed": seed}} data = query( payload ) return data[0]['generated_text'][len(input_sentence):] gr.Interface( inference, [ gr.inputs.Textbox(label="Input"), gr.inputs.Slider(1, 64, default=8, label="Tokens to generate"), gr.inputs.Slider(0.0, 1.0, default=0.1, step=0.05, label="Temperature"), gr.inputs.Slider(0, 64, default=0, label="Top K"), gr.inputs.Slider(0.0, 10, default=0.9, step=0.05, label="Top P"), gr.inputs.Checkbox(False, label="Greedy decoding"), ], gr.outputs.Textbox(label="Output"), examples=examples, # article=article, title=title, description=description, flagging_options=["save"], flagging_callback=hf_writer ).launch()