from PIL import Image from PIL import ImageFilter import cv2 import numpy as np import scipy import scipy.signal from scipy.spatial import cKDTree import os from perlin2d import * patch_match_compiled = True from PyPatchMatch import patch_match def edge_pad(img, mask, mode=1): if mode == 0: nmask = mask.copy() nmask[nmask > 0] = 1 res0 = 1 - nmask res1 = nmask p0 = np.stack(res0.nonzero(), axis=0).transpose() p1 = np.stack(res1.nonzero(), axis=0).transpose() min_dists, min_dist_idx = cKDTree(p1).query(p0, 1) loc = p1[min_dist_idx] for (a, b), (c, d) in zip(p0, loc): img[a, b] = img[c, d] elif mode == 1: record = {} kernel = [[1] * 3 for _ in range(3)] nmask = mask.copy() nmask[nmask > 0] = 1 res = scipy.signal.convolve2d( nmask, kernel, mode="same", boundary="fill", fillvalue=1 ) res[nmask < 1] = 0 res[res == 9] = 0 res[res > 0] = 1 ylst, xlst = res.nonzero() queue = [(y, x) for y, x in zip(ylst, xlst)] # bfs here cnt = res.astype(np.float32) acc = img.astype(np.float32) step = 1 h = acc.shape[0] w = acc.shape[1] offset = [(1, 0), (-1, 0), (0, 1), (0, -1)] while queue: target = [] for y, x in queue: val = acc[y][x] for yo, xo in offset: yn = y + yo xn = x + xo if 0 <= yn < h and 0 <= xn < w and nmask[yn][xn] < 1: if record.get((yn, xn), step) == step: acc[yn][xn] = acc[yn][xn] * cnt[yn][xn] + val cnt[yn][xn] += 1 acc[yn][xn] /= cnt[yn][xn] if (yn, xn) not in record: record[(yn, xn)] = step target.append((yn, xn)) step += 1 queue = target img = acc.astype(np.uint8) else: nmask = mask.copy() ylst, xlst = nmask.nonzero() yt, xt = ylst.min(), xlst.min() yb, xb = ylst.max(), xlst.max() content = img[yt : yb + 1, xt : xb + 1] img = np.pad( content, ((yt, mask.shape[0] - yb - 1), (xt, mask.shape[1] - xb - 1), (0, 0)), mode="edge", ) return img, mask def perlin_noise(img, mask): lin = np.linspace(0, 5, mask.shape[0], endpoint=False) x, y = np.meshgrid(lin, lin) avg = img.mean(axis=0).mean(axis=0) # noise=[((perlin(x, y)+1)*128+avg[i]).astype(np.uint8) for i in range(3)] noise = [((perlin(x, y) + 1) * 0.5 * 255).astype(np.uint8) for i in range(3)] noise = np.stack(noise, axis=-1) # mask=skimage.measure.block_reduce(mask,(8,8),np.min) # mask=mask.repeat(8, axis=0).repeat(8, axis=1) # mask_image=Image.fromarray(mask) # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 4)) # mask=np.array(mask_image) nmask = mask.copy() # nmask=nmask/255.0 nmask[mask > 0] = 1 img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise # img=img.astype(np.uint8) return img, mask def gaussian_noise(img, mask): noise = np.random.randn(mask.shape[0], mask.shape[1], 3) noise = (noise + 1) / 2 * 255 noise = noise.astype(np.uint8) nmask = mask.copy() nmask[mask > 0] = 1 img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise return img, mask def cv2_telea(img, mask): ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_TELEA) return ret, mask def cv2_ns(img, mask): ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_NS) return ret, mask def patch_match_func(img, mask): ret = patch_match.inpaint(img, mask=255 - mask, patch_size=3) return ret, mask def mean_fill(img, mask): avg = img.mean(axis=0).mean(axis=0) img[mask < 1] = avg return img, mask functbl = { "gaussian": gaussian_noise, "perlin": perlin_noise, "edge_pad": edge_pad, "patchmatch": patch_match_func if (os.name != "nt" and patch_match_compiled) else edge_pad, "cv2_ns": cv2_ns, "cv2_telea": cv2_telea, "mean_fill": mean_fill, }