import { searchWeb } from "$lib/server/websearch/searchWeb"; import type { Message } from "$lib/types/Message"; import type { WebSearch, WebSearchSource } from "$lib/types/WebSearch"; import { generateQuery } from "$lib/server/websearch/generateQuery"; import { parseWeb } from "$lib/server/websearch/parseWeb"; import { chunk } from "$lib/utils/chunk"; import { findSimilarSentences } from "$lib/server/sentenceSimilarity"; import type { Conversation } from "$lib/types/Conversation"; import type { MessageUpdate } from "$lib/types/MessageUpdate"; import { getWebSearchProvider } from "./searchWeb"; import { defaultEmbeddingModel, embeddingModels } from "$lib/server/embeddingModels"; const MAX_N_PAGES_SCRAPE = 10 as const; const MAX_N_PAGES_EMBED = 5 as const; const DOMAIN_BLOCKLIST = ["youtube.com", "twitter.com"]; export async function runWebSearch( conv: Conversation, prompt: string, updatePad: (upd: MessageUpdate) => void ) { const messages = (() => { return [...conv.messages, { content: prompt, from: "user", id: crypto.randomUUID() }]; })() satisfies Message[]; const webSearch: WebSearch = { prompt: prompt, searchQuery: "", results: [], context: "", contextSources: [], createdAt: new Date(), updatedAt: new Date(), }; function appendUpdate(message: string, args?: string[], type?: "error" | "update") { updatePad({ type: "webSearch", messageType: type ?? "update", message: message, args: args }); } try { webSearch.searchQuery = await generateQuery(messages); const searchProvider = getWebSearchProvider(); appendUpdate(`Searching ${searchProvider}`, [webSearch.searchQuery]); const results = await searchWeb(webSearch.searchQuery); webSearch.results = (results.organic_results && results.organic_results.map((el: { title?: string; link: string; text?: string }) => { try { const { title, link, text } = el; const { hostname } = new URL(link); return { title, link, hostname, text }; } catch (e) { // Ignore Errors return null; } })) ?? []; webSearch.results = webSearch.results.filter((value) => value !== null); webSearch.results = webSearch.results .filter(({ link }) => !DOMAIN_BLOCKLIST.some((el) => link.includes(el))) // filter out blocklist links .slice(0, MAX_N_PAGES_SCRAPE); // limit to first 10 links only // fetch the model const embeddingModel = embeddingModels.find((m) => m.id === conv.embeddingModel) ?? defaultEmbeddingModel; if (!embeddingModel) { throw new Error(`Embedding model ${conv.embeddingModel} not available anymore`); } let paragraphChunks: { source: WebSearchSource; text: string }[] = []; if (webSearch.results.length > 0) { appendUpdate("Browsing results"); const promises = webSearch.results.map(async (result) => { const { link } = result; let text = result.text ?? ""; if (!text) { try { text = await parseWeb(link); appendUpdate("Browsing webpage", [link]); } catch (e) { // ignore errors } } const MAX_N_CHUNKS = 100; const texts = chunk(text, embeddingModel.chunkCharLength).slice(0, MAX_N_CHUNKS); return texts.map((t) => ({ source: result, text: t })); }); const nestedParagraphChunks = (await Promise.all(promises)).slice(0, MAX_N_PAGES_EMBED); paragraphChunks = nestedParagraphChunks.flat(); if (!paragraphChunks.length) { throw new Error("No text found on the first 5 results"); } } else { throw new Error("No results found for this search query"); } appendUpdate("Extracting relevant information"); const topKClosestParagraphs = 8; const texts = paragraphChunks.map(({ text }) => text); const indices = await findSimilarSentences(embeddingModel, prompt, texts, { topK: topKClosestParagraphs, }); webSearch.context = indices.map((idx) => texts[idx]).join(""); const usedSources = new Set(); for (const idx of indices) { const { source } = paragraphChunks[idx]; if (!usedSources.has(source.link)) { usedSources.add(source.link); webSearch.contextSources.push(source); } } updatePad({ type: "webSearch", messageType: "sources", message: "sources", sources: webSearch.contextSources, }); } catch (searchError) { if (searchError instanceof Error) { appendUpdate( "An error occurred with the web search", [JSON.stringify(searchError.message)], "error" ); } } return webSearch; }