import spaces from pathlib import Path import yaml import time import uuid import numpy as np import audiotools as at import argbind import shutil import torch from datetime import datetime import gradio as gr from vampnet.interface import Interface, signal_concat from vampnet import mask as pmask device = "cuda" if torch.cuda.is_available() else "cpu" interface = Interface.default() init_model_choice = open("DEFAULT_MODEL").read().strip() # load the init model interface.load_finetuned(init_model_choice) def to_output(sig): return sig.sample_rate, sig.cpu().detach().numpy()[0][0] MAX_DURATION_S = 10 def load_audio(file): print(file) if isinstance(file, str): filepath = file elif isinstance(file, tuple): # not a file sr, samples = file samples = samples / np.iinfo(samples.dtype).max return sr, samples else: filepath = file.name sig = at.AudioSignal.salient_excerpt( filepath, duration=MAX_DURATION_S ) sig = at.AudioSignal(filepath) return to_output(sig) def load_example_audio(): return load_audio("./assets/example.wav") from torch_pitch_shift import pitch_shift, get_fast_shifts def shift_pitch(signal, interval: int): signal.samples = pitch_shift( signal.samples, shift=interval, sample_rate=signal.sample_rate ) return signal @spaces.GPU def _vamp( seed, input_audio, model_choice, pitch_shift_amt, periodic_p, n_mask_codebooks, periodic_w, onset_mask_width, dropout, sampletemp, typical_filtering, typical_mass, typical_min_tokens, top_p, sample_cutoff, stretch_factor, api=False ): t0 = time.time() interface.to("cuda" if torch.cuda.is_available() else "cpu") print(f"using device {interface.device}") _seed = seed if seed > 0 else None if _seed is None: _seed = int(torch.randint(0, 2**32, (1,)).item()) at.util.seed(_seed) sr, input_audio = input_audio input_audio = input_audio / np.iinfo(input_audio.dtype).max sig = at.AudioSignal(input_audio, sr) # reload the model if necessary interface.load_finetuned(model_choice) if pitch_shift_amt != 0: sig = shift_pitch(sig, pitch_shift_amt) codes = interface.encode(sig) mask = interface.build_mask( codes, sig, rand_mask_intensity=1.0, prefix_s=0.0, suffix_s=0.0, periodic_prompt=int(periodic_p), periodic_prompt_width=periodic_w, onset_mask_width=onset_mask_width, _dropout=dropout, upper_codebook_mask=int(n_mask_codebooks), ) # save the mask as a txt file interface.set_chunk_size(10.0) codes, mask = interface.vamp( codes, mask, batch_size=1 if api else 1, feedback_steps=1, _sampling_steps=12 if sig.duration <6.0 else 24, time_stretch_factor=stretch_factor, return_mask=True, temperature=sampletemp, typical_filtering=typical_filtering, typical_mass=typical_mass, typical_min_tokens=typical_min_tokens, top_p=None, seed=_seed, sample_cutoff=1.0, ) print(f"vamp took {time.time() - t0} seconds") sig = interface.decode(codes) return to_output(sig) def vamp(data): return _vamp( seed=data[seed], input_audio=data[input_audio], model_choice=data[model_choice], pitch_shift_amt=data[pitch_shift_amt], periodic_p=data[periodic_p], n_mask_codebooks=data[n_mask_codebooks], periodic_w=data[periodic_w], onset_mask_width=data[onset_mask_width], dropout=data[dropout], sampletemp=data[sampletemp], typical_filtering=data[typical_filtering], typical_mass=data[typical_mass], typical_min_tokens=data[typical_min_tokens], top_p=data[top_p], sample_cutoff=data[sample_cutoff], stretch_factor=data[stretch_factor], api=False, ) def api_vamp(data): return _vamp( seed=data[seed], input_audio=data[input_audio], model_choice=data[model_choice], pitch_shift_amt=data[pitch_shift_amt], periodic_p=data[periodic_p], n_mask_codebooks=data[n_mask_codebooks], periodic_w=data[periodic_w], onset_mask_width=data[onset_mask_width], dropout=data[dropout], sampletemp=data[sampletemp], typical_filtering=data[typical_filtering], typical_mass=data[typical_mass], typical_min_tokens=data[typical_min_tokens], top_p=data[top_p], sample_cutoff=data[sample_cutoff], stretch_factor=data[stretch_factor], api=True, ) OUT_DIR = Path("gradio-outputs") OUT_DIR.mkdir(exist_ok=True) def harp_vamp(input_audio_file, periodic_p, n_mask_codebooks): sig = at.AudioSignal(input_audio_file) sr, samples = sig.sample_rate, sig.samples[0][0].detach().cpu().numpy() # convert to int32 samples = (samples * np.iinfo(np.int32).max).astype(np.int32) sr, samples = _vamp( seed=0, input_audio=(sr, samples), model_choice=init_model_choice, pitch_shift_amt=0, periodic_p=periodic_p, n_mask_codebooks=n_mask_codebooks, periodic_w=1, onset_mask_width=0, dropout=0.0, sampletemp=1.0, typical_filtering=True, typical_mass=0.15, typical_min_tokens=64, top_p=0.0, sample_cutoff=1.0, stretch_factor=1, ) sig = at.AudioSignal(samples, sr) # write to file # clear the outdir for p in OUT_DIR.glob("*"): p.unlink() OUT_DIR.mkdir(exist_ok=True) outpath = OUT_DIR / f"{uuid.uuid4()}.wav" sig.write(outpath) from pyharp import AudioLabel, LabelList output_labels = LabelList() output_labels.append(AudioLabel(label='~', t=0.0, amplitude=0.5, description='generated audio')) return outpath, output_labels with gr.Blocks() as demo: with gr.Row(): with gr.Column(): manual_audio_upload = gr.File( label=f"upload some audio (will be randomly trimmed to max of 100s)", file_types=["audio"] ) load_example_audio_button = gr.Button("or load example audio") input_audio = gr.Audio( label="input audio", interactive=False, type="numpy", ) audio_mask = gr.Audio( label="audio mask (listen to this to hear the mask hints)", interactive=False, type="numpy", ) # connect widgets load_example_audio_button.click( fn=load_example_audio, inputs=[], outputs=[ input_audio] ) manual_audio_upload.change( fn=load_audio, inputs=[manual_audio_upload], outputs=[ input_audio] ) # mask settings with gr.Column(): with gr.Accordion("manual controls", open=True): periodic_p = gr.Slider( label="periodic prompt", minimum=0, maximum=13, step=1, value=7, ) onset_mask_width = gr.Slider( label="onset mask width (multiplies with the periodic mask, 1 step ~= 10milliseconds) ", minimum=0, maximum=100, step=1, value=0, visible=False ) n_mask_codebooks = gr.Slider( label="compression prompt ", value=3, minimum=1, maximum=14, step=1, ) maskimg = gr.Image( label="mask image", interactive=False, type="filepath" ) with gr.Accordion("extras ", open=False): pitch_shift_amt = gr.Slider( label="pitch shift amount (semitones)", minimum=-12, maximum=12, step=1, value=0, ) stretch_factor = gr.Slider( label="time stretch factor", minimum=0, maximum=8, step=1, value=1, ) periodic_w = gr.Slider( label="periodic prompt width (steps, 1 step ~= 10milliseconds)", minimum=1, maximum=20, step=1, value=1, ) with gr.Accordion("sampling settings", open=False): sampletemp = gr.Slider( label="sample temperature", minimum=0.1, maximum=10.0, value=1.0, step=0.001 ) top_p = gr.Slider( label="top p (0.0 = off)", minimum=0.0, maximum=1.0, value=0.0 ) typical_filtering = gr.Checkbox( label="typical filtering ", value=True ) typical_mass = gr.Slider( label="typical mass (should probably stay between 0.1 and 0.5)", minimum=0.01, maximum=0.99, value=0.15 ) typical_min_tokens = gr.Slider( label="typical min tokens (should probably stay between 1 and 256)", minimum=1, maximum=256, step=1, value=64 ) sample_cutoff = gr.Slider( label="sample cutoff", minimum=0.0, maximum=0.9, value=1.0, step=0.01 ) dropout = gr.Slider( label="mask dropout", minimum=0.0, maximum=1.0, step=0.01, value=0.0 ) seed = gr.Number( label="seed (0 for random)", value=0, precision=0, ) # mask settings with gr.Column(): model_choice = gr.Dropdown( label="model choice", choices=list(interface.available_models()), value=init_model_choice, visible=True ) vamp_button = gr.Button("generate (vamp)!!!") audio_outs = [] use_as_input_btns = [] for i in range(1): with gr.Column(): audio_outs.append(gr.Audio( label=f"output audio {i+1}", interactive=False, type="numpy" )) use_as_input_btns.append( gr.Button(f"use as input (feedback)") ) thank_you = gr.Markdown("") # download all the outputs # download = gr.File(type="filepath", label="download outputs") _inputs = { input_audio, sampletemp, top_p, periodic_p, periodic_w, dropout, stretch_factor, onset_mask_width, typical_filtering, typical_mass, typical_min_tokens, seed, model_choice, n_mask_codebooks, pitch_shift_amt, sample_cutoff, } # connect widgets vamp_button.click( fn=vamp, inputs=_inputs, outputs=[audio_outs[0]], ) api_vamp_button = gr.Button("api vamp", visible=True) api_vamp_button.click( fn=api_vamp, inputs=_inputs, outputs=[audio_outs[0]], api_name="vamp" ) from pyharp import ModelCard, build_endpoint card = ModelCard( name="vampnet", description="vampnet! is a model for generating audio from audio", author="hugo flores garcĂ­a", tags=["music generation"], midi_in=False, midi_out=False ) # Build a HARP-compatible endpoint app = build_endpoint(model_card=card, components=[ periodic_p, n_mask_codebooks, ], process_fn=harp_vamp) try: demo.queue() demo.launch(share=True) except KeyboardInterrupt: shutil.rmtree("gradio-outputs", ignore_errors=True) raise