# python3.7 """Contains the implementation of generator described in PGGAN. Paper: https://arxiv.org/pdf/1710.10196.pdf Official TensorFlow implementation: https://github.com/tkarras/progressive_growing_of_gans """ import numpy as np import torch import torch.nn as nn import torch.nn.functional as F __all__ = ['PGGANGenerator'] # Resolutions allowed. _RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024] # Initial resolution. _INIT_RES = 4 # Default gain factor for weight scaling. _WSCALE_GAIN = np.sqrt(2.0) class PGGANGenerator(nn.Module): """Defines the generator network in PGGAN. NOTE: The synthesized images are with `RGB` channel order and pixel range [-1, 1]. Settings for the network: (1) resolution: The resolution of the output image. (2) z_space_dim: The dimension of the latent space, Z. (default: 512) (3) image_channels: Number of channels of the output image. (default: 3) (4) final_tanh: Whether to use `tanh` to control the final pixel range. (default: False) (5) label_size: Size of the additional label for conditional generation. (default: 0) (6) fused_scale: Whether to fused `upsample` and `conv2d` together, resulting in `conv2d_transpose`. (default: False) (7) use_wscale: Whether to use weight scaling. (default: True) (8) fmaps_base: Factor to control number of feature maps for each layer. (default: 16 << 10) (9) fmaps_max: Maximum number of feature maps in each layer. (default: 512) """ def __init__(self, resolution, z_space_dim=512, image_channels=3, final_tanh=False, label_size=0, fused_scale=False, use_wscale=True, fmaps_base=16 << 10, fmaps_max=512): """Initializes with basic settings. Raises: ValueError: If the `resolution` is not supported. """ super().__init__() if resolution not in _RESOLUTIONS_ALLOWED: raise ValueError(f'Invalid resolution: `{resolution}`!\n' f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.') self.init_res = _INIT_RES self.init_res_log2 = int(np.log2(self.init_res)) self.resolution = resolution self.final_res_log2 = int(np.log2(self.resolution)) self.z_space_dim = z_space_dim self.image_channels = image_channels self.final_tanh = final_tanh self.label_size = label_size self.fused_scale = fused_scale self.use_wscale = use_wscale self.fmaps_base = fmaps_base self.fmaps_max = fmaps_max # Number of convolutional layers. self.num_layers = (self.final_res_log2 - self.init_res_log2 + 1) * 2 # Level of detail (used for progressive training). self.register_buffer('lod', torch.zeros(())) self.pth_to_tf_var_mapping = {'lod': 'lod'} for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1): res = 2 ** res_log2 block_idx = res_log2 - self.init_res_log2 # First convolution layer for each resolution. if res == self.init_res: self.add_module( f'layer{2 * block_idx}', ConvBlock(in_channels=self.z_space_dim + self.label_size, out_channels=self.get_nf(res), kernel_size=self.init_res, padding=self.init_res - 1, use_wscale=self.use_wscale)) tf_layer_name = 'Dense' else: self.add_module( f'layer{2 * block_idx}', ConvBlock(in_channels=self.get_nf(res // 2), out_channels=self.get_nf(res), upsample=True, fused_scale=self.fused_scale, use_wscale=self.use_wscale)) tf_layer_name = 'Conv0_up' if self.fused_scale else 'Conv0' self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.weight'] = ( f'{res}x{res}/{tf_layer_name}/weight') self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.bias'] = ( f'{res}x{res}/{tf_layer_name}/bias') # Second convolution layer for each resolution. self.add_module( f'layer{2 * block_idx + 1}', ConvBlock(in_channels=self.get_nf(res), out_channels=self.get_nf(res), use_wscale=self.use_wscale)) tf_layer_name = 'Conv' if res == self.init_res else 'Conv1' self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.weight'] = ( f'{res}x{res}/{tf_layer_name}/weight') self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.bias'] = ( f'{res}x{res}/{tf_layer_name}/bias') # Output convolution layer for each resolution. self.add_module( f'output{block_idx}', ConvBlock(in_channels=self.get_nf(res), out_channels=self.image_channels, kernel_size=1, padding=0, use_wscale=self.use_wscale, wscale_gain=1.0, activation_type='linear')) self.pth_to_tf_var_mapping[f'output{block_idx}.weight'] = ( f'ToRGB_lod{self.final_res_log2 - res_log2}/weight') self.pth_to_tf_var_mapping[f'output{block_idx}.bias'] = ( f'ToRGB_lod{self.final_res_log2 - res_log2}/bias') self.upsample = UpsamplingLayer() self.final_activate = nn.Tanh() if self.final_tanh else nn.Identity() def get_nf(self, res): """Gets number of feature maps according to current resolution.""" return min(self.fmaps_base // res, self.fmaps_max) def forward(self, z, label=None, lod=None, **_unused_kwargs): if z.ndim != 2 or z.shape[1] != self.z_space_dim: raise ValueError(f'Input latent code should be with shape ' f'[batch_size, latent_dim], where ' f'`latent_dim` equals to {self.z_space_dim}!\n' f'But `{z.shape}` is received!') z = self.layer0.pixel_norm(z) if self.label_size: if label is None: raise ValueError(f'Model requires an additional label ' f'(with size {self.label_size}) as input, ' f'but no label is received!') if label.ndim != 2 or label.shape != (z.shape[0], self.label_size): raise ValueError(f'Input label should be with shape ' f'[batch_size, label_size], where ' f'`batch_size` equals to that of ' f'latent codes ({z.shape[0]}) and ' f'`label_size` equals to {self.label_size}!\n' f'But `{label.shape}` is received!') z = torch.cat((z, label), dim=1) lod = self.lod.cpu().tolist() if lod is None else lod if lod + self.init_res_log2 > self.final_res_log2: raise ValueError(f'Maximum level-of-detail (lod) is ' f'{self.final_res_log2 - self.init_res_log2}, ' f'but `{lod}` is received!') x = z.view(z.shape[0], self.z_space_dim + self.label_size, 1, 1) for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1): current_lod = self.final_res_log2 - res_log2 if lod < current_lod + 1: block_idx = res_log2 - self.init_res_log2 x = self.__getattr__(f'layer{2 * block_idx}')(x) x = self.__getattr__(f'layer{2 * block_idx + 1}')(x) if current_lod - 1 < lod <= current_lod: image = self.__getattr__(f'output{block_idx}')(x) elif current_lod < lod < current_lod + 1: alpha = np.ceil(lod) - lod image = (self.__getattr__(f'output{block_idx}')(x) * alpha + self.upsample(image) * (1 - alpha)) elif lod >= current_lod + 1: image = self.upsample(image) image = self.final_activate(image) results = { 'z': z, 'label': label, 'image': image, } return results class PixelNormLayer(nn.Module): """Implements pixel-wise feature vector normalization layer.""" def __init__(self, epsilon=1e-8): super().__init__() self.eps = epsilon def forward(self, x): norm = torch.sqrt(torch.mean(x ** 2, dim=1, keepdim=True) + self.eps) return x / norm class UpsamplingLayer(nn.Module): """Implements the upsampling layer. Basically, this layer can be used to upsample feature maps with nearest neighbor interpolation. """ def __init__(self, scale_factor=2): super().__init__() self.scale_factor = scale_factor def forward(self, x): if self.scale_factor <= 1: return x return F.interpolate(x, scale_factor=self.scale_factor, mode='nearest') class ConvBlock(nn.Module): """Implements the convolutional block. Basically, this block executes pixel-wise normalization layer, upsampling layer (if needed), convolutional layer, and activation layer in sequence. """ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, add_bias=True, upsample=False, fused_scale=False, use_wscale=True, wscale_gain=_WSCALE_GAIN, activation_type='lrelu'): """Initializes with block settings. Args: in_channels: Number of channels of the input tensor. out_channels: Number of channels of the output tensor. kernel_size: Size of the convolutional kernels. (default: 3) stride: Stride parameter for convolution operation. (default: 1) padding: Padding parameter for convolution operation. (default: 1) add_bias: Whether to add bias onto the convolutional result. (default: True) upsample: Whether to upsample the input tensor before convolution. (default: False) fused_scale: Whether to fused `upsample` and `conv2d` together, resulting in `conv2d_transpose`. (default: False) use_wscale: Whether to use weight scaling. (default: True) wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN) activation_type: Type of activation. Support `linear` and `lrelu`. (default: `lrelu`) Raises: NotImplementedError: If the `activation_type` is not supported. """ super().__init__() self.pixel_norm = PixelNormLayer() if upsample and not fused_scale: self.upsample = UpsamplingLayer() else: self.upsample = nn.Identity() if upsample and fused_scale: self.use_conv2d_transpose = True weight_shape = (in_channels, out_channels, kernel_size, kernel_size) self.stride = 2 self.padding = 1 else: self.use_conv2d_transpose = False weight_shape = (out_channels, in_channels, kernel_size, kernel_size) self.stride = stride self.padding = padding fan_in = kernel_size * kernel_size * in_channels wscale = wscale_gain / np.sqrt(fan_in) if use_wscale: self.weight = nn.Parameter(torch.randn(*weight_shape)) self.wscale = wscale else: self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale) self.wscale = 1.0 if add_bias: self.bias = nn.Parameter(torch.zeros(out_channels)) else: self.bias = None if activation_type == 'linear': self.activate = nn.Identity() elif activation_type == 'lrelu': self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) else: raise NotImplementedError(f'Not implemented activation function: ' f'`{activation_type}`!') def forward(self, x): x = self.pixel_norm(x) x = self.upsample(x) weight = self.weight * self.wscale if self.use_conv2d_transpose: weight = F.pad(weight, (1, 1, 1, 1, 0, 0, 0, 0), 'constant', 0.0) weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] + weight[:, :, 1:, :-1] + weight[:, :, :-1, :-1]) x = F.conv_transpose2d(x, weight=weight, bias=self.bias, stride=self.stride, padding=self.padding) else: x = F.conv2d(x, weight=weight, bias=self.bias, stride=self.stride, padding=self.padding) x = self.activate(x) return x