# python3.7 """Contains the implementation of discriminator described in PGGAN. Paper: https://arxiv.org/pdf/1710.10196.pdf Official TensorFlow implementation: https://github.com/tkarras/progressive_growing_of_gans """ import numpy as np import torch import torch.nn as nn import torch.nn.functional as F __all__ = ['PGGANDiscriminator'] # Resolutions allowed. _RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024] # Initial resolution. _INIT_RES = 4 # Default gain factor for weight scaling. _WSCALE_GAIN = np.sqrt(2.0) class PGGANDiscriminator(nn.Module): """Defines the discriminator network in PGGAN. NOTE: The discriminator takes images with `RGB` channel order and pixel range [-1, 1] as inputs. Settings for the network: (1) resolution: The resolution of the input image. (2) image_channels: Number of channels of the input image. (default: 3) (3) label_size: Size of the additional label for conditional generation. (default: 0) (4) fused_scale: Whether to fused `conv2d` and `downsample` together, resulting in `conv2d` with strides. (default: False) (5) use_wscale: Whether to use weight scaling. (default: True) (6) minibatch_std_group_size: Group size for the minibatch standard deviation layer. 0 means disable. (default: 16) (7) fmaps_base: Factor to control number of feature maps for each layer. (default: 16 << 10) (8) fmaps_max: Maximum number of feature maps in each layer. (default: 512) """ def __init__(self, resolution, image_channels=3, label_size=0, fused_scale=False, use_wscale=True, minibatch_std_group_size=16, fmaps_base=16 << 10, fmaps_max=512): """Initializes with basic settings. Raises: ValueError: If the `resolution` is not supported. """ super().__init__() if resolution not in _RESOLUTIONS_ALLOWED: raise ValueError(f'Invalid resolution: `{resolution}`!\n' f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.') self.init_res = _INIT_RES self.init_res_log2 = int(np.log2(self.init_res)) self.resolution = resolution self.final_res_log2 = int(np.log2(self.resolution)) self.image_channels = image_channels self.label_size = label_size self.fused_scale = fused_scale self.use_wscale = use_wscale self.minibatch_std_group_size = minibatch_std_group_size self.fmaps_base = fmaps_base self.fmaps_max = fmaps_max # Level of detail (used for progressive training). self.register_buffer('lod', torch.zeros(())) self.pth_to_tf_var_mapping = {'lod': 'lod'} for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1): res = 2 ** res_log2 block_idx = self.final_res_log2 - res_log2 # Input convolution layer for each resolution. self.add_module( f'input{block_idx}', ConvBlock(in_channels=self.image_channels, out_channels=self.get_nf(res), kernel_size=1, padding=0, use_wscale=self.use_wscale)) self.pth_to_tf_var_mapping[f'input{block_idx}.weight'] = ( f'FromRGB_lod{block_idx}/weight') self.pth_to_tf_var_mapping[f'input{block_idx}.bias'] = ( f'FromRGB_lod{block_idx}/bias') # Convolution block for each resolution (except the last one). if res != self.init_res: self.add_module( f'layer{2 * block_idx}', ConvBlock(in_channels=self.get_nf(res), out_channels=self.get_nf(res), use_wscale=self.use_wscale)) tf_layer0_name = 'Conv0' self.add_module( f'layer{2 * block_idx + 1}', ConvBlock(in_channels=self.get_nf(res), out_channels=self.get_nf(res // 2), downsample=True, fused_scale=self.fused_scale, use_wscale=self.use_wscale)) tf_layer1_name = 'Conv1_down' if self.fused_scale else 'Conv1' # Convolution block for last resolution. else: self.add_module( f'layer{2 * block_idx}', ConvBlock( in_channels=self.get_nf(res), out_channels=self.get_nf(res), use_wscale=self.use_wscale, minibatch_std_group_size=self.minibatch_std_group_size)) tf_layer0_name = 'Conv' self.add_module( f'layer{2 * block_idx + 1}', DenseBlock(in_channels=self.get_nf(res) * res * res, out_channels=self.get_nf(res // 2), use_wscale=self.use_wscale)) tf_layer1_name = 'Dense0' self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.weight'] = ( f'{res}x{res}/{tf_layer0_name}/weight') self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.bias'] = ( f'{res}x{res}/{tf_layer0_name}/bias') self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.weight'] = ( f'{res}x{res}/{tf_layer1_name}/weight') self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.bias'] = ( f'{res}x{res}/{tf_layer1_name}/bias') # Final dense block. self.add_module( f'layer{2 * block_idx + 2}', DenseBlock(in_channels=self.get_nf(res // 2), out_channels=1 + self.label_size, use_wscale=self.use_wscale, wscale_gain=1.0, activation_type='linear')) self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 2}.weight'] = ( f'{res}x{res}/Dense1/weight') self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 2}.bias'] = ( f'{res}x{res}/Dense1/bias') self.downsample = DownsamplingLayer() def get_nf(self, res): """Gets number of feature maps according to current resolution.""" return min(self.fmaps_base // res, self.fmaps_max) def forward(self, image, lod=None, **_unused_kwargs): expected_shape = (self.image_channels, self.resolution, self.resolution) if image.ndim != 4 or image.shape[1:] != expected_shape: raise ValueError(f'The input tensor should be with shape ' f'[batch_size, channel, height, width], where ' f'`channel` equals to {self.image_channels}, ' f'`height`, `width` equal to {self.resolution}!\n' f'But `{image.shape}` is received!') lod = self.lod.cpu().tolist() if lod is None else lod if lod + self.init_res_log2 > self.final_res_log2: raise ValueError(f'Maximum level-of-detail (lod) is ' f'{self.final_res_log2 - self.init_res_log2}, ' f'but `{lod}` is received!') lod = self.lod.cpu().tolist() for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1): block_idx = current_lod = self.final_res_log2 - res_log2 if current_lod <= lod < current_lod + 1: x = self.__getattr__(f'input{block_idx}')(image) elif current_lod - 1 < lod < current_lod: alpha = lod - np.floor(lod) x = (self.__getattr__(f'input{block_idx}')(image) * alpha + x * (1 - alpha)) if lod < current_lod + 1: x = self.__getattr__(f'layer{2 * block_idx}')(x) x = self.__getattr__(f'layer{2 * block_idx + 1}')(x) if lod > current_lod: image = self.downsample(image) x = self.__getattr__(f'layer{2 * block_idx + 2}')(x) return x class MiniBatchSTDLayer(nn.Module): """Implements the minibatch standard deviation layer.""" def __init__(self, group_size=16, epsilon=1e-8): super().__init__() self.group_size = group_size self.epsilon = epsilon def forward(self, x): if self.group_size <= 1: return x group_size = min(self.group_size, x.shape[0]) # [NCHW] y = x.view(group_size, -1, x.shape[1], x.shape[2], x.shape[3]) # [GMCHW] y = y - torch.mean(y, dim=0, keepdim=True) # [GMCHW] y = torch.mean(y ** 2, dim=0) # [MCHW] y = torch.sqrt(y + self.epsilon) # [MCHW] y = torch.mean(y, dim=[1, 2, 3], keepdim=True) # [M111] y = y.repeat(group_size, 1, x.shape[2], x.shape[3]) # [N1HW] return torch.cat([x, y], dim=1) class DownsamplingLayer(nn.Module): """Implements the downsampling layer. Basically, this layer can be used to downsample feature maps with average pooling. """ def __init__(self, scale_factor=2): super().__init__() self.scale_factor = scale_factor def forward(self, x): if self.scale_factor <= 1: return x return F.avg_pool2d(x, kernel_size=self.scale_factor, stride=self.scale_factor, padding=0) class ConvBlock(nn.Module): """Implements the convolutional block. Basically, this block executes minibatch standard deviation layer (if needed), convolutional layer, activation layer, and downsampling layer ( if needed) in sequence. """ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, add_bias=True, downsample=False, fused_scale=False, use_wscale=True, wscale_gain=_WSCALE_GAIN, activation_type='lrelu', minibatch_std_group_size=0): """Initializes with block settings. Args: in_channels: Number of channels of the input tensor. out_channels: Number of channels of the output tensor. kernel_size: Size of the convolutional kernels. (default: 3) stride: Stride parameter for convolution operation. (default: 1) padding: Padding parameter for convolution operation. (default: 1) add_bias: Whether to add bias onto the convolutional result. (default: True) downsample: Whether to downsample the result after convolution. (default: False) fused_scale: Whether to fused `conv2d` and `downsample` together, resulting in `conv2d` with strides. (default: False) use_wscale: Whether to use weight scaling. (default: True) wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN) activation_type: Type of activation. Support `linear` and `lrelu`. (default: `lrelu`) minibatch_std_group_size: Group size for the minibatch standard deviation layer. 0 means disable. (default: 0) Raises: NotImplementedError: If the `activation_type` is not supported. """ super().__init__() if minibatch_std_group_size > 1: in_channels = in_channels + 1 self.mbstd = MiniBatchSTDLayer(group_size=minibatch_std_group_size) else: self.mbstd = nn.Identity() if downsample and not fused_scale: self.downsample = DownsamplingLayer() else: self.downsample = nn.Identity() if downsample and fused_scale: self.use_stride = True self.stride = 2 self.padding = 1 else: self.use_stride = False self.stride = stride self.padding = padding weight_shape = (out_channels, in_channels, kernel_size, kernel_size) fan_in = kernel_size * kernel_size * in_channels wscale = wscale_gain / np.sqrt(fan_in) if use_wscale: self.weight = nn.Parameter(torch.randn(*weight_shape)) self.wscale = wscale else: self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale) self.wscale = 1.0 if add_bias: self.bias = nn.Parameter(torch.zeros(out_channels)) else: self.bias = None if activation_type == 'linear': self.activate = nn.Identity() elif activation_type == 'lrelu': self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) else: raise NotImplementedError(f'Not implemented activation function: ' f'`{activation_type}`!') def forward(self, x): x = self.mbstd(x) weight = self.weight * self.wscale if self.use_stride: weight = F.pad(weight, (1, 1, 1, 1, 0, 0, 0, 0), 'constant', 0.0) weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] + weight[:, :, 1:, :-1] + weight[:, :, :-1, :-1]) * 0.25 x = F.conv2d(x, weight=weight, bias=self.bias, stride=self.stride, padding=self.padding) x = self.activate(x) x = self.downsample(x) return x class DenseBlock(nn.Module): """Implements the dense block. Basically, this block executes fully-connected layer, and activation layer. """ def __init__(self, in_channels, out_channels, add_bias=True, use_wscale=True, wscale_gain=_WSCALE_GAIN, activation_type='lrelu'): """Initializes with block settings. Args: in_channels: Number of channels of the input tensor. out_channels: Number of channels of the output tensor. add_bias: Whether to add bias onto the fully-connected result. (default: True) use_wscale: Whether to use weight scaling. (default: True) wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN) activation_type: Type of activation. Support `linear` and `lrelu`. (default: `lrelu`) Raises: NotImplementedError: If the `activation_type` is not supported. """ super().__init__() weight_shape = (out_channels, in_channels) wscale = wscale_gain / np.sqrt(in_channels) if use_wscale: self.weight = nn.Parameter(torch.randn(*weight_shape)) self.wscale = wscale else: self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale) self.wscale = 1.0 if add_bias: self.bias = nn.Parameter(torch.zeros(out_channels)) else: self.bias = None if activation_type == 'linear': self.activate = nn.Identity() elif activation_type == 'lrelu': self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) else: raise NotImplementedError(f'Not implemented activation function: ' f'`{activation_type}`!') def forward(self, x): if x.ndim != 2: x = x.view(x.shape[0], -1) x = F.linear(x, weight=self.weight * self.wscale, bias=self.bias) x = self.activate(x) return x