import torch from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN from datasets import load_dataset from PIL import Image import numpy as np import paddlehub as hub import random from PIL import ImageDraw,ImageFont import streamlit as st @st.experimental_singleton def load_bg_model(): bg_model = hub.Module(name='U2NetP', directory='assets/models/') return bg_model bg_model = load_bg_model() def remove_bg(img): result = bg_model.Segmentation( images=[np.array(img)[:,:,::-1]], paths=None, batch_size=1, input_size=320, output_dir=None, visualization=False) output = result[0] mask=Image.fromarray(output['mask']) front=Image.fromarray(output['front'][:,:,::-1]).convert("RGBA") front.putalpha(mask) return front meme_template=Image.open("./assets/pigeon_meme.jpg").convert("RGBA") def make_meme(pigeon,text="Is this a pigeon?",show_text=True,remove_background=True): meme=meme_template.copy() approx_butterfly_center=(850,30) if remove_background: pigeon=remove_bg(pigeon) meme=meme.convert("RGBA") random_rotate=random.randint(-30,30) random_size=random.randint(150,200) pigeon=pigeon.resize((random_size,random_size)).rotate(random_rotate,expand=True) meme.alpha_composite(pigeon, approx_butterfly_center) #ref: https://blog.lipsumarium.com/caption-memes-in-python/ def drawTextWithOutline(text, x, y): draw.text((x-2, y-2), text,(0,0,0),font=font) draw.text((x+2, y-2), text,(0,0,0),font=font) draw.text((x+2, y+2), text,(0,0,0),font=font) draw.text((x-2, y+2), text,(0,0,0),font=font) draw.text((x, y), text, (255,255,255), font=font) if show_text: draw = ImageDraw.Draw(meme) font_size=52 font = ImageFont.truetype("assets/impact.ttf", font_size) w, h = draw.textsize(text, font) # measure the size the text will take drawTextWithOutline(text, meme.width/2 - w/2, meme.height - font_size*2) meme = meme.convert("RGB") return meme def get_train_data(dataset_name="huggan/smithsonian_butterflies_subset"): dataset=load_dataset(dataset_name) dataset=dataset.sort("sim_score") return dataset["train"] from transformers import BeitFeatureExtractor, BeitForImageClassification emb_feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224') emb_model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224') def embed(images): inputs = emb_feature_extractor(images=images, return_tensors="pt") outputs = emb_model(**inputs,output_hidden_states= True) last_hidden=outputs.hidden_states[-1] pooler=emb_model.base_model.pooler final_emb=pooler(last_hidden).detach().numpy() return final_emb def build_index(): dataset=get_train_data() ds_with_embeddings = dataset.map(lambda x: {"beit_embeddings":embed(x["image"])},batched=True,batch_size=20) ds_with_embeddings.add_faiss_index(column='beit_embeddings') ds_with_embeddings.save_faiss_index('beit_embeddings', 'beit_index.faiss') def get_dataset(): dataset=get_train_data() dataset.load_faiss_index('beit_embeddings', 'beit_index.faiss') return dataset def load_model(model_name='ceyda/butterfly_cropped_uniq1K_512',model_version="95a9596a1e47e2419c9bd5252d809eecb14fdcf4"): gan = LightweightGAN.from_pretrained(model_name,version=model_version) gan.eval() return gan def generate(gan,batch_size=1): with torch.no_grad(): ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0., 1.)*255 ims = ims.permute(0,2,3,1).detach().cpu().numpy().astype(np.uint8) return ims def interpolate(): pass