import torch from torch import nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data.dataloader import DataLoader from torchvision import transforms from torchvision import utils as vutils from models import Generator from utils import copy_G_params, load_params def get_early_features(net, noise): with torch.no_grad(): feat_4 = net._init(noise) feat_8 = net._upsample_8(feat_4) feat_16 = net._upsample_16(feat_8) feat_32 = net._upsample_32(feat_16) feat_64 = net._upsample_64(feat_32) return feat_8, feat_16, feat_32, feat_64 def get_late_features(net, feat_64, feat_8, feat_16, feat_32): with torch.no_grad(): feat_128 = net._upsample_128(feat_64) feat_128 = net._sle_128(feat_8, feat_128) feat_256 = net._upsample_256(feat_128) feat_256 = net._sle_256(feat_16, feat_256) feat_512 = net._upsample_512(feat_256) feat_512 = net._sle_512(feat_32, feat_512) feat_1024 = net._upsample_1024(feat_512) return net._out_1024(feat_1024) def style_mix(model_name_or_path, bs, device): _in_channels = 256 im_size = 1024 netG = Generator(in_channels=_in_channels, out_channels=3) netG = netG.from_pretrained(model_name_or_path, in_channels=256, out_channels=3) _ = netG.to(device) _ = netG.eval() avg_param_G = copy_G_params(netG) load_params(netG, avg_param_G) noise_a = torch.randn(bs, 256, 1, 1, device=device).to(device) noise_b = torch.randn(bs, 256, 1, 1, device=device).to(device) feat_8_a, feat_16_a, feat_32_a, feat_64_a = get_early_features(netG, noise_a) feat_8_b, feat_16_b, feat_32_b, feat_64_b = get_early_features(netG, noise_b) images_b = get_late_features(netG, feat_64_b, feat_8_b, feat_16_b, feat_32_b) images_a = get_late_features(netG, feat_64_a, feat_8_a, feat_16_a, feat_32_a) imgs = [ torch.ones(1, 3, im_size, im_size) ] imgs.append(images_b.cpu()) for i in range(bs): imgs.append(images_a[i].unsqueeze(0).cpu()) gimgs = get_late_features(netG, feat_64_a[i].unsqueeze(0).repeat(bs, 1, 1, 1), feat_8_b, feat_16_b, feat_32_b) imgs.append(gimgs.cpu()) imgs = torch.cat(imgs) # vutils.save_image(imgs.add(1).mul(0.5), 'style_mix/style_mix_2.jpg', nrow=bs+1) return imgs