import os
import shutil
import json
import numpy as np
from scipy.spatial import distance_matrix
from sklearn import neighbors
from pygco import cut_from_graph
import open3d as o3d
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import streamlit as st
from streamlit import session_state as session
from stpyvista import stpyvista
from stqdm import stqdm
from PIL import Image
# Configure Streamlit page
class TeethApp:
"""
Base class for Streamlit app
"""
def __init__(self):
# Font
with open("utils/style.css") as css:
st.markdown(f"", unsafe_allow_html=True)
# Logo
self.image_path = "utils/teeth-295404_1280.png"
self.image = Image.open(self.image_path)
width, height = self.image.size
scale = 12
new_width, new_height = width / scale, height / scale
self.image = self.image.resize((int(new_width), int(new_height)))
# Streamlit side navigation bar
st.sidebar.markdown("# AI ToothSeg")
st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
st.sidebar.markdown(" ")
st.sidebar.image(self.image, use_column_width=False)
st.markdown(
"""