```python """ Janus Scanner Pro - OpenRouter API Integration API Configuration and Model Integration Examples """ from openai import OpenAI import json # Configuration API_KEY = "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" BASE_URL = "https://openrouter.ai/api/v1" # Initialize OpenRouter client client = OpenAI( base_url=BASE_URL, api_key=API_KEY, ) class JanusAPIIntegration: """Main class for Janus Scanner API integrations""" def __init__(self): self.client = client self.base_headers = { "HTTP-Referer": "https://janus-scanner-pro.com", "X-Title": "Janus Scanner Pro" } def text_analysis(self, text, model="deepseek/deepseek-chat-v3.1:free"): """Analyze text for fraud detection patterns""" messages = [ { "role": "system", "content": "You are a financial fraud detection expert. Analyze the provided text for suspicious patterns, anomalies, and potential fraud indicators." }, { "role": "user", "content": f"Analyze this financial data for fraud patterns: {text}" } ] completion = self.client.chat.completions.create( extra_headers=self.base_headers, model=model, messages=messages ) return completion.choices[0].message.content def document_analysis(self, text, model="google/gemma-3-27b-it:free"): """Advanced document analysis with vision capabilities""" messages = [ { "role": "user", "content": [ { "type": "text", "text": "Analyze this financial document for compliance issues, suspicious transactions, and regulatory violations." }, { "type": "text", "text": text } ] } ] completion = self.client.chat.completions.create( extra_headers=self.base_headers, model=model, messages=messages ) return completion.choices[0].message.content def risk_assessment(self, transaction_data, model="nousresearch/hermes-3-llama-3.1-405b:free"): """Generate risk assessment for financial transactions""" messages = [ { "role": "system", "content": "You are a risk assessment expert. Analyze transaction data and provide detailed risk scores and recommendations." }, { "role": "user", "content": f"Assess the risk level for these transactions and provide recommendations: {transaction_data}" } ] completion = self.client.chat.completions.create( extra_headers=self.base_headers, model=model, messages=messages ) return completion.choices[0].message.content # Model configurations for different use cases MODEL_CONFIGS = { "text_analysis": { "default": "deepseek/deepseek-chat-v3.1:free", "fast": "meituan/longcat-flash-chat:free", "high_capacity": "nousresearch/hermes-3-llama-3.1-405b:free" }, "image_analysis": { "default": "google/gemma-3-27b-it:free", "specialized": "mistralai/mistral-small-3.2-24b-instruct:free" }, "complex_reasoning": { "default": "nousresearch/hermes-3-llama-3.1-405b:free" } } def run_examples(): """Run example API calls""" # Example 1: Text Analysis with DeepSeek print("=== Example 1: DeepSeek Text Analysis ===") janus = JanusAPIIntegration() sample_financial_text = """ Transaction Report: - $15,000 cash withdrawal from account ending 1234 - Multiple $9,999 transactions within 1 hour - International wire transfer to unknown entity - Account balance: $0 after suspicious activities """ result1 = janus.text_analysis(sample_financial_text) print("Analysis Result:", result1) print() # Example 2: Document Analysis with Gemma print("=== Example 2: Gemma Document Analysis ===") sample_document = """ Quarterly Report Q4 2024: Revenue: $2,450,000 Expenses: $2,100,000 Unknown expenses: $350,000 (marked as 'miscellaneous') Cash payments: $180,000 (cash only, no receipts) Related party transactions: $120,000 to entity with same address """ result2 = janus.document_analysis(sample_document) print("Document Analysis:", result2) print() # Example 3: Risk Assessment with Hermes print("=== Example 3: Hermes Risk Assessment ===") transaction_data = [ {"amount": 9999, "type": "withdrawal", "time": "23:45"}, {"amount": 9999, "type": "withdrawal", "time": "23:46"}, {"amount": 9999, "type": "withdrawal", "time": "23:47"}, {"amount": 15000, "type": "wire_transfer", "account": "unknown"}, {"amount": 5000, "type": "cash_deposit", "location": "different_city"} ] result3 = janus.risk_assessment(json.dumps(transaction_data)) print("Risk Assessment:", result3) print() # Example 4: Fast Analysis with Longcat print("=== Example 4: Longcat Fast Analysis ===") messages = [ { "role": "user", "content": "Quickly identify the main fraud indicators in this data: Multiple round number transactions, cash payments, and international transfers" } ] completion = client.chat.completions.create( extra_headers={ "HTTP-Referer": "https://janus-scanner-pro.com", "X-Title": "Janus Scanner Pro" }, model="meituan/longcat-flash-chat:free", messages=messages ) print("Fast Analysis:", completion.choices[0].message.content) print() # Example 5: Multi-step Analysis Workflow print("=== Example 5: Multi-step Analysis ===") def comprehensive_analysis(data): # Step 1: Initial scan scan_result = janus.text_analysis(data, "meituan/longcat-flash-chat:free") # Step 2: Deep analysis if suspicious if "suspicious" in scan_result.lower(): detailed_result = janus.risk_assessment(data, "nousresearch/hermes-3-llama-3.1-405b:free") return { "scan_result": scan_result, "detailed_analysis": detailed_result, "risk_level": "HIGH" } else: return { "scan_result": scan_result, "risk_level": "LOW" } test_data = "Multiple $9999 transactions, cash deposits, international transfers" workflow_result = comprehensive_analysis(test_data) print("Comprehensive Analysis:", json.dumps(workflow_result, indent=2)) if __name__ == "__main__": print("Janus Scanner Pro - OpenRouter API Integration") print("=" * 50) print("Available Models:") for category, models in MODEL_CONFIGS.items(): print(f"\n{category.upper()}:") for name, model in models.items(): print(f" {name}: {model}") print("\n" + "=" * 50) run_examples() ``` ```