import argparse import json import shutil from pathlib import Path import yaml from huggingface_hub import hf_hub_download from style_bert_vits2.logging import logger def download_bert_models(): with open("bert/bert_models.json", encoding="utf-8") as fp: models = json.load(fp) for k, v in models.items(): local_path = Path("bert").joinpath(k) for file in v["files"]: if not Path(local_path).joinpath(file).exists(): logger.info(f"Downloading {k} {file}") hf_hub_download(v["repo_id"], file, local_dir=local_path) def download_slm_model(): local_path = Path("slm/wavlm-base-plus/") file = "pytorch_model.bin" if not Path(local_path).joinpath(file).exists(): logger.info(f"Downloading wavlm-base-plus {file}") hf_hub_download("microsoft/wavlm-base-plus", file, local_dir=local_path) def download_pretrained_models(): files = ["G_0.safetensors", "D_0.safetensors", "DUR_0.safetensors"] local_path = Path("pretrained") for file in files: if not Path(local_path).joinpath(file).exists(): logger.info(f"Downloading pretrained {file}") hf_hub_download( "litagin/Style-Bert-VITS2-1.0-base", file, local_dir=local_path ) def download_jp_extra_pretrained_models(): files = ["G_0.safetensors", "D_0.safetensors", "WD_0.safetensors"] local_path = Path("pretrained_jp_extra") for file in files: if not Path(local_path).joinpath(file).exists(): logger.info(f"Downloading JP-Extra pretrained {file}") hf_hub_download( "litagin/Style-Bert-VITS2-2.0-base-JP-Extra", file, local_dir=local_path ) def download_default_models(): files = [ "jvnv-F1-jp/config.json", "jvnv-F1-jp/jvnv-F1-jp_e160_s14000.safetensors", "jvnv-F1-jp/style_vectors.npy", "jvnv-F2-jp/config.json", "jvnv-F2-jp/jvnv-F2_e166_s20000.safetensors", "jvnv-F2-jp/style_vectors.npy", "jvnv-M1-jp/config.json", "jvnv-M1-jp/jvnv-M1-jp_e158_s14000.safetensors", "jvnv-M1-jp/style_vectors.npy", "jvnv-M2-jp/config.json", "jvnv-M2-jp/jvnv-M2-jp_e159_s17000.safetensors", "jvnv-M2-jp/style_vectors.npy", ] for file in files: if not Path(f"model_assets/{file}").exists(): logger.info(f"Downloading {file}") hf_hub_download( "litagin/style_bert_vits2_jvnv", file, local_dir="model_assets", ) additional_files = { "litagin/sbv2_koharune_ami": [ "koharune-ami/config.json", "koharune-ami/style_vectors.npy", "koharune-ami/koharune-ami.safetensors", ], "litagin/sbv2_amitaro": [ "amitaro/config.json", "amitaro/style_vectors.npy", "amitaro/amitaro.safetensors", ], } for repo_id, files in additional_files.items(): for file in files: if not Path(f"model_assets/{file}").exists(): logger.info(f"Downloading {file}") hf_hub_download( repo_id, file, local_dir="model_assets", ) def main(): parser = argparse.ArgumentParser() parser.add_argument("--skip_default_models", action="store_true") parser.add_argument("--only_infer", action="store_true") parser.add_argument( "--dataset_root", type=str, help="Dataset root path (default: Data)", default=None, ) parser.add_argument( "--assets_root", type=str, help="Assets root path (default: model_assets)", default=None, ) args = parser.parse_args() download_bert_models() if not args.skip_default_models: download_default_models() if not args.only_infer: download_slm_model() download_pretrained_models() download_jp_extra_pretrained_models() # If configs/paths.yml not exists, create it default_paths_yml = Path("configs/default_paths.yml") paths_yml = Path("configs/paths.yml") if not paths_yml.exists(): shutil.copy(default_paths_yml, paths_yml) if args.dataset_root is None and args.assets_root is None: return # Change default paths if necessary with open(paths_yml, encoding="utf-8") as f: yml_data = yaml.safe_load(f) if args.assets_root is not None: yml_data["assets_root"] = args.assets_root if args.dataset_root is not None: yml_data["dataset_root"] = args.dataset_root with open(paths_yml, "w", encoding="utf-8") as f: yaml.dump(yml_data, f, allow_unicode=True) if __name__ == "__main__": main()