import numpy as np import onnxruntime as ort from text import cantonese, english, cleaned_text_to_sequence language_module_map = {"EN": english, "YUE": cantonese} def clean_text(text, language): language_module = language_module_map[language] norm_text = language_module.text_normalize(text) phones, tones, word2ph = language_module.g2p(norm_text) return norm_text, phones, tones, word2ph def convert_pad_shape(pad_shape): layer = pad_shape[::-1] pad_shape = [item for sublist in layer for item in sublist] return pad_shape def sequence_mask(length, max_length=None): if max_length is None: max_length = length.max() x = np.arange(max_length, dtype=length.dtype) return np.expand_dims(x, 0) < np.expand_dims(length, 1) def generate_path(duration, mask): """ duration: [b, 1, t_x] mask: [b, 1, t_y, t_x] """ b, _, t_y, t_x = mask.shape cum_duration = np.cumsum(duration, -1) cum_duration_flat = cum_duration.reshape(b * t_x) path = sequence_mask(cum_duration_flat, t_y) path = path.reshape(b, t_x, t_y) path = path ^ np.pad(path, ((0, 0), (1, 0), (0, 0)))[:, :-1] path = np.expand_dims(path, 1).transpose(0, 1, 3, 2) return path class OnnxInferenceSession: def __init__(self, path, Providers=["CPUExecutionProvider"]): self.enc = ort.InferenceSession(path["enc"], providers=Providers) self.emb_g = ort.InferenceSession(path["emb_g"], providers=Providers) self.dp = ort.InferenceSession(path["dp"], providers=Providers) self.sdp = ort.InferenceSession(path["sdp"], providers=Providers) self.flow = ort.InferenceSession(path["flow"], providers=Providers) self.dec = ort.InferenceSession(path["dec"], providers=Providers) def __call__( self, seq, tone, language, bert_en, bert_yue, sid, seed=114514, seq_noise_scale=0.8, sdp_noise_scale=0.6, length_scale=1.0, sdp_ratio=0.0, ): if seq.ndim == 1: seq = np.expand_dims(seq, 0) if tone.ndim == 1: tone = np.expand_dims(tone, 0) if language.ndim == 1: language = np.expand_dims(language, 0) assert (seq.ndim == 2, tone.ndim == 2, language.ndim == 2) g = self.emb_g.run( None, { "sid": sid.astype(np.int64), }, )[0] g = np.expand_dims(g, -1) enc_rtn = self.enc.run( None, { "x": seq.astype(np.int64), "t": tone.astype(np.int64), "language": language.astype(np.int64), "bert_0": bert_en.astype(np.float32), "bert_1": bert_yue.astype(np.float32), "g": g.astype(np.float32), }, ) x, m_p, logs_p, x_mask = enc_rtn[0], enc_rtn[1], enc_rtn[2], enc_rtn[3] np.random.seed(seed) zinput = np.random.randn(x.shape[0], 2, x.shape[2]) * sdp_noise_scale logw = self.sdp.run( None, {"x": x, "x_mask": x_mask, "zin": zinput.astype(np.float32), "g": g} )[0] * (sdp_ratio) + self.dp.run(None, {"x": x, "x_mask": x_mask, "g": g})[ 0 ] * ( 1 - sdp_ratio ) w = np.exp(logw) * x_mask * length_scale w_ceil = np.ceil(w) y_lengths = np.clip(np.sum(w_ceil, (1, 2)), a_min=1.0, a_max=100000).astype( np.int64 ) y_mask = np.expand_dims(sequence_mask(y_lengths, None), 1) attn_mask = np.expand_dims(x_mask, 2) * np.expand_dims(y_mask, -1) attn = generate_path(w_ceil, attn_mask) m_p = np.matmul(attn.squeeze(1), m_p.transpose(0, 2, 1)).transpose( 0, 2, 1 ) # [b, t', t], [b, t, d] -> [b, d, t'] logs_p = np.matmul(attn.squeeze(1), logs_p.transpose(0, 2, 1)).transpose( 0, 2, 1 ) # [b, t', t], [b, t, d] -> [b, d, t'] z_p = ( m_p + np.random.randn(m_p.shape[0], m_p.shape[1], m_p.shape[2]) * np.exp(logs_p) * seq_noise_scale ) z = self.flow.run( None, { "z_p": z_p.astype(np.float32), "y_mask": y_mask.astype(np.float32), "g": g, }, )[0] return self.dec.run(None, {"z_in": z.astype(np.float32), "g": g})[0]