|
import os |
|
from threading import Thread |
|
from typing import Iterator |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
MAX_MAX_NEW_TOKENS = 4096 |
|
DEFAULT_MAX_NEW_TOKENS = 2048 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
|
|
DESCRIPTION = """\ |
|
# hon9kon9ize/Cantonese-Llama-2-7B-preview20240903 |
|
|
|
Please join our [Discord server](https://discord.gg/gG6GPp8XxQ) and give me your feedback |
|
""" |
|
|
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
model_id = "hon9kon9ize/Cantonese-Llama-2-7B-preview20240903" |
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") |
|
model = torch.compile(model) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.use_default_system_prompt = False |
|
|
|
|
|
@spaces.GPU(queue=False) |
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
system_prompt: str, |
|
max_new_tokens: int = 2048, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.2, |
|
) -> str: |
|
conversation = [] |
|
conversation.append({"role": "system", "content": system_prompt if system_prompt else "你係由 hon9kon9ize 開發嘅 CantoneseLLM,你係一個好幫得手嘅助理" }) |
|
for user, assistant in chat_history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
print(chat_history) |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors='pt') |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
output_ids = model.generate( |
|
input_ids, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty |
|
) |
|
|
|
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
|
|
chat_interface = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
gr.Textbox(label="System prompt", lines=6), |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=4.0, |
|
step=0.1, |
|
value=0.6, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.2, |
|
), |
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["Hello there! How are you doing?"], |
|
["咩嘢係氣候變化?"], |
|
["香港最高嘅山係?"], |
|
["邊個係香港特首?"], |
|
["香港行政长官是谁?"] |
|
], |
|
) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(DESCRIPTION) |
|
chat_interface.render() |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|