import gradio as gr import pandas as pd import plotly.graph_objects as go from pymatgen.core import Structure from pymatgen.analysis.diffraction.xrd import XRDCalculator import tempfile # To create temporary files for download import os import traceback # For detailed error logging # Define the core processing function def generate_xrd_pattern(cif_file): """ Processes an uploaded CIF file, calculates the XRD pattern, and returns a Plotly figure, a Pandas DataFrame, and the path to a CSV file. Args: cif_file: A file object from Gradio's gr.File component. Returns: tuple: (plotly_fig, dataframe, csv_filepath) or (None, None, None) if processing fails. plotly_fig: A Plotly figure object. dataframe: A Pandas DataFrame containing the peak data. csv_filepath: Path to the generated temporary CSV file. """ if cif_file is None: # Return None for all outputs if no file is uploaded return None, None, None try: # Get the temporary path of the uploaded file cif_filepath = cif_file.name # 1. Load structure from CIF structure = Structure.from_file(cif_filepath) # 2. Calculate XRD pattern calculator = XRDCalculator() pattern = calculator.get_pattern(structure, two_theta_range=(10, 90)) # Adjust range if needed # 3. Prepare data for DataFrame and Plot miller_indices = [] for hkl_list in pattern.hkls: if hkl_list: # Format Miller indices: take the first set if multiple exist for a peak #h, k, l = hkl_list[0]['hkl'] # Use standard tuple representation for display miller_indices.append(str(tuple(hkl_list[0]['hkl']))) # Alternative concise string: miller_indices.append(f"({h}{k}{l})") else: miller_indices.append("N/A") # Round data for cleaner display two_theta_rounded = [round(x, 3) for x in pattern.x] intensity_rounded = [round(y, 3) for y in pattern.y] data = pd.DataFrame({ "2θ (°)": two_theta_rounded, "Intensity (norm)": intensity_rounded, # Assuming normalized intensity from pymatgen "Miller Indices (hkl)": miller_indices }) # --- Create Plotly Figure --- fig = go.Figure() fig.add_trace(go.Bar( x=data["2θ (°)"], y=data["Intensity (norm)"], hovertext=[f"2θ: {t:.3f}
Intensity: {i:.1f}
hkl: {m}" for t, i, m in zip(data["2θ (°)"], data["Intensity (norm)"], data["Miller Indices (hkl)"])], hoverinfo="text", # Show only the custom hover text width=0.1, # Slightly wider bars might look better marker_color="#4682B4", # SteelBlue color marker_line_width=0, name='Peaks' )) # Customize Layout max_intensity = data["Intensity (norm)"].max() if not data.empty else 100 min_2theta = data["2θ (°)"].min() if not data.empty else 10 max_2theta = data["2θ (°)"].max() if not data.empty else 90 fig.update_layout( title=dict(text=f"Simulated XRD Pattern: {structure.formula}", x=0.5, xanchor='center'), # Centered title xaxis_title="2θ (°)", yaxis_title="Intensity (Arb. Unit)", xaxis_title_font_size=16, yaxis_title_font_size=16, xaxis=dict( range=[min_2theta - 2, max_2theta + 2], # Slightly tighter range showline=True, linewidth=1.5, linecolor='black', mirror=True, ticks='outside', tickwidth=1.5, tickcolor='black', tickfont_size=12 ), yaxis=dict( range=[0, max_intensity * 1.05], showline=True, linewidth=1.5, linecolor='black', mirror=True, ticks='outside', tickwidth=1.5, tickcolor='black', tickfont_size=12 ), plot_bgcolor='white', paper_bgcolor='white', # Ensure background outside plot is also white bargap=0.9, # Adjust gap based on new width font=dict(family="Arial, sans-serif", size=12, color="black"), margin=dict(l=70, r=30, t=60, b=70), # Adjust height/width as needed, None allows more flexibility height=450, # width=None # Let Gradio manage width for responsiveness ) fig.update_xaxes(showgrid=False, zeroline=False) fig.update_yaxes(showgrid=False, zeroline=False) # --- Create CSV File --- with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv', newline='', encoding='utf-8') as temp_csv: data.to_csv(temp_csv.name, index=False) csv_filepath_out = temp_csv.name # Return figure, dataframe, and csv path return fig, data, csv_filepath_out except Exception as e: print(f"Error processing file: {e}") # Log error to console traceback.print_exc() # Print detailed traceback # Raise a Gradio error to display it in the UI raise gr.Error(f"Failed to process CIF file. Please ensure it's a valid CIF. Error: {str(e)}") # return None, None, None # Alternative: clear outputs # --- Build Gradio Interface --- # Use a theme for better aesthetics theme = gr.themes.Soft( primary_hue="sky", # Adjust colors if desired secondary_hue="blue", neutral_hue="slate" ) with gr.Blocks(theme=theme, title="XRD Pattern Generator") as demo: gr.Markdown( """ # XRD Pattern Simulator from CIF Upload a Crystallographic Information File (.cif) to generate its simulated X-ray Diffraction (XRD) pattern using [pymatgen](https://github.com/materialsproject/pymatgen). """ ) with gr.Row(): with gr.Column(scale=1): # Column for input cif_input = gr.File( label="Upload CIF File", file_types=[".cif"], type="filepath" # Use filepath directly ) gr.Markdown("*(Example source: [Crystallography Open Database](http://crystallography.net/cod/))*") with gr.Column(scale=3): # Column for outputs, make it wider with gr.Tabs(): with gr.TabItem("📊 XRD Plot"): # Wrap plot in a column/row to help with centering if needed, # but Plotly's layout(title_x=0.5) is the primary centering method for the title. # The plot component itself usually fills container width. plot_output = gr.Plot(label="XRD Pattern") # Label might be redundant with Tab title with gr.TabItem("📄 Peak Data Table"): dataframe_output = gr.DataFrame( label="Calculated Peak Data", headers=["2θ (°)", "Intensity (norm)", "Miller Indices (hkl)"], wrap=True, # Allow text wrapping for long indices #max_rows=15, # Limit initial display height #overflow_row_behaviour='paginate' # Add pagination if many rows ) with gr.TabItem("⬇️ Download Data"): csv_output = gr.File(label="Download Peak Data as CSV") gr.Markdown("Click the link above to download the full data.") # Clear outputs when input is cleared cif_input.clear( lambda: (None, None, None), inputs=[], outputs=[plot_output, dataframe_output, csv_output] ) # Connect the input changes to the processing function cif_input.change( fn=generate_xrd_pattern, inputs=cif_input, outputs=[plot_output, dataframe_output, csv_output], # show_progress="full" # Show progress indicator during calculation ) examples = gr.Examples( examples=[ ["example_cif/NaCl_1000041.cif"], ["example_cif/Al2O3_1000017.cif"], ], inputs=[cif_input], ) # --- Launch the App --- if __name__ == "__main__": demo.launch() # Add share=True for a public link: demo.launch(share=True)