import torch from diffusers import CogVideoXPipeline from diffusers.utils import export_to_video prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance." pipe = CogVideoXPipeline.from_pretrained( "THUDM/CogVideoX-2b", torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() pipe.enable_sequential_cpu_offload() pipe.vae.enable_slicing() pipe.vae.enable_tiling() video = pipe( prompt=prompt, num_videos_per_prompt=1, num_inference_steps=50, num_frames=49, guidance_scale=6, generator=torch.Generator(device="cuda").manual_seed(42), ).frames[0] export_to_video(video, "output.mp4", fps=8)