import pandas as pd import numpy as np from scipy import stats from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway from statsmodels.stats.multicomp import MultiComparison from scipy.stats import spearmanr, pearsonr, kendalltau, entropy from scipy.spatial.distance import jensenshannon from scipy.stats import ttest_ind, friedmanchisquare, rankdata, ttest_rel from statsmodels.stats.multicomp import pairwise_tukeyhsd from scipy.stats import ttest_1samp def bootstrap_t_test(data1, data2, num_bootstrap=1000): """Perform a bootstrapped t-test.""" observed_t_stat, _ = ttest_ind(data1, data2) combined = np.concatenate([data1, data2]) t_stats = [] for _ in range(num_bootstrap): np.random.shuffle(combined) new_data1 = combined[:len(data1)] new_data2 = combined[len(data1):] t_stat, _ = ttest_ind(new_data1, new_data2) t_stats.append(t_stat) p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap return observed_t_stat, p_value # def bootstrap_t_test(data1, data2, num_bootstrap=1000): # """Perform a bootstrapped paired t-test for mean difference being zero.""" # # Calculate the observed differences between paired samples # differences = data1 - data2 # # Compute the observed t-statistic for the differences # observed_t_stat, _ = ttest_1samp(differences, 0) # # t_stats = [] # # for _ in range(num_bootstrap): # # Resample the differences with replacement # resampled_diffs = np.random.choice(differences, size=len(differences), replace=True) # # Perform a one-sample t-test on the resampled differences against zero # t_stat, _ = ttest_1samp(resampled_diffs, 0) # # Append the t-statistic to the list # t_stats.append(t_stat) # # # Calculate the p-value as the proportion of bootstrap t-statistics # # that are as extreme as or more extreme than the observed t-statistic # p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap # return observed_t_stat, p_value def posthoc_friedman(data, variables, rank_suffix='_Rank'): """Perform a post-hoc analysis for the Friedman test using pairwise comparisons.""" ranked_data = data[[v + rank_suffix for v in variables]].to_numpy() num_subjects = ranked_data.shape[0] num_conditions = ranked_data.shape[1] comparisons = [] for i in range(num_conditions): for j in range(i + 1, num_conditions): diff = ranked_data[:, i] - ranked_data[:, j] abs_diff = np.abs(diff) avg_diff = np.mean(diff) se_diff = np.std(diff, ddof=1) / np.sqrt(num_subjects) z_value = avg_diff / se_diff p_value = 2 * (1 - stats.norm.cdf(np.abs(z_value))) comparisons.append({ "Group1": variables[i], "Group2": variables[j], "Z": z_value, "p-value": p_value }) return comparisons def statistical_tests(data): """Perform various statistical tests to evaluate potential biases.""" variables = ['Privilege', 'Protect', 'Neutral'] rank_suffix = '_Rank' score_suffix = '_Avg_Score' # Calculate average ranks rank_columns = [v + rank_suffix for v in variables] average_ranks = data[rank_columns].mean() # Statistical tests rank_data = [data[col] for col in rank_columns] # Pairwise tests pairs = [ ('Privilege', 'Protect'), ('Protect', 'Neutral'), ('Privilege', 'Neutral') ] pairwise_results = { 'T-Test': {} } for (var1, var2) in pairs: pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}' pair_rank_score = f'{var1}{rank_suffix} vs {var2}{rank_suffix}' # Bootstrapped T-test for independent samples t_stat, t_p = bootstrap_t_test(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}']) pairwise_results['T-Test'][pair_rank_score] = {"Statistic": t_stat, "p-value": t_p} # Friedman test friedman_stat, friedman_p = friedmanchisquare(*rank_data) posthoc_results = posthoc_friedman(data, variables, rank_suffix) results = { "Average Ranks": average_ranks.to_dict(), "Friedman Test": { "Statistic": friedman_stat, "p-value": friedman_p, "Post-hoc": posthoc_results }, **pairwise_results, } return results def hellinger_distance(p, q): """Calculate the Hellinger distance between two probability distributions.""" return np.sqrt(0.5 * np.sum((np.sqrt(p) - np.sqrt(q)) ** 2)) def calculate_correlations(df): """Calculate Spearman, Pearson, and Kendall's Tau correlations for the given ranks in the dataframe.""" correlations = { 'Spearman': {}, 'Pearson': {}, 'Kendall Tau': {} } columns = ['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank'] for i in range(len(columns)): for j in range(i + 1, len(columns)): col1, col2 = columns[i], columns[j] correlations['Spearman'][f'{col1} vs {col2}'] = spearmanr(df[col1], df[col2]).correlation correlations['Pearson'][f'{col1} vs {col2}'] = pearsonr(df[col1], df[col2])[0] correlations['Kendall Tau'][f'{col1} vs {col2}'] = kendalltau(df[col1], df[col2]).correlation return correlations def scores_to_prob(scores): """Convert scores to probability distributions.""" value_counts = scores.value_counts() probabilities = value_counts / value_counts.sum() full_prob = np.zeros(int(scores.max()) + 1) full_prob[value_counts.index.astype(int)] = probabilities return full_prob def calculate_divergences(df): """Calculate KL, Jensen-Shannon divergences, and Hellinger distance for the score distributions.""" score_columns = ['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score'] probabilities = {col: scores_to_prob(df[col]) for col in score_columns} divergences = { 'KL Divergence': {}, 'Jensen-Shannon Divergence': {}, 'Hellinger Distance': {} } for i in range(len(score_columns)): for j in range(i + 1, len(score_columns)): col1, col2 = score_columns[i], score_columns[j] divergences['KL Divergence'][f'{col1} vs {col2}'] = entropy(probabilities[col1], probabilities[col2]) divergences['Jensen-Shannon Divergence'][f'{col1} vs {col2}'] = jensenshannon(probabilities[col1], probabilities[col2]) divergences['Hellinger Distance'][f'{col1} vs {col2}'] = hellinger_distance(probabilities[col1], probabilities[col2]) return divergences # def statistical_tests(data): # """Perform various statistical tests to evaluate potential biases.""" # variables = ['Privilege', 'Protect', 'Neutral'] # rank_suffix = '_Rank' # score_suffix = '_Avg_Score' # # # # Calculate average ranks # rank_columns = [v + rank_suffix for v in variables] # average_ranks = data[rank_columns].mean() # # # Statistical tests # rank_data = [data[col] for col in rank_columns] # # # Pairwise tests # pairs = [ # ('Privilege', 'Protect'), # ('Protect', 'Neutral'), # ('Privilege', 'Neutral') # ] # # pairwise_results = { # 'T-Test': {} # } # # for (var1, var2) in pairs: # pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}' # # # T-test for independent samples # t_stat, t_p = ttest_ind(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}']) # pairwise_results['T-Test'][pair_name_score] = {"Statistic": t_stat, "p-value": t_p} # # results = { # "Average Ranks": average_ranks.to_dict(), # "Friedman Test": { # "Statistic": friedmanchisquare(*rank_data).statistic, # "p-value": friedmanchisquare(*rank_data).pvalue # }, # **pairwise_results, # } # # return results def disabled_statistical_tests(data): """Perform various statistical tests to evaluate potential biases.""" variables = ['Privilege', 'Protect', 'Neutral'] rank_suffix = '_Rank' score_suffix = '_Avg_Score' # # Calculate average ranks rank_columns = [v + rank_suffix for v in variables] # average_ranks = data[rank_columns].mean() # Statistical tests rank_data = [data[col] for col in rank_columns] kw_stat, kw_p = kruskal(*rank_data) # Pairwise tests pairwise_results = {} pairs = [ ('Privilege', 'Protect'), ('Protect', 'Neutral'), ('Privilege', 'Neutral') ] pairwise_results = { # 'Mann-Whitney U Test': {}, # 'Wilcoxon Test': {}, # 'Levene\'s Test': {}, 'T-Test': {} } for (var1, var2) in pairs: pair_name_rank = f'{var1}{rank_suffix} vs {var2}{rank_suffix}' pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}' # # Mann-Whitney U Test # mw_stat, mw_p = mannwhitneyu(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}']) # pairwise_results['Mann-Whitney U Test'][pair_name_rank] = {"Statistic": mw_stat, "p-value": mw_p} # # # Wilcoxon Signed-Rank Test # if len(data) > 20: # wilcoxon_stat, wilcoxon_p = wilcoxon(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}']) # else: # wilcoxon_stat, wilcoxon_p = np.nan, "Sample size too small for Wilcoxon test." # pairwise_results['Wilcoxon Test'][pair_name_rank] = {"Statistic": wilcoxon_stat, "p-value": wilcoxon_p} # # Levene's Test for equality of variances # levene_stat, levene_p = levene(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}']) # pairwise_results['Levene\'s Test'][pair_name_score] = {"Statistic": levene_stat, "p-value": levene_p} # T-test for independent samples t_stat, t_p = ttest_ind(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}']) #equal_var=(levene_p > 0.05)) pairwise_results['T-Test'][pair_name_score] = {"Statistic": t_stat, "p-value": t_p} # ANOVA and post-hoc tests if applicable # score_columns = [v + score_suffix for v in variables] # score_data = [data[col] for col in score_columns] # anova_stat, anova_p = f_oneway(*score_data) # if anova_p < 0.05: # mc = MultiComparison(data.melt()['value'], data.melt()['variable']) # tukey_result = mc.tukeyhsd() # tukey_result_summary = tukey_result.summary().as_html() # else: # tukey_result_summary = "ANOVA not significant, no post-hoc test performed." results = { #"Average Ranks": average_ranks.to_dict(), "Friedman Test": { "Statistic": friedmanchisquare(*rank_data).statistic, "p-value": friedmanchisquare(*rank_data).pvalue }, # "Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p}, **pairwise_results, # "ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p}, #"Tukey HSD Test": tukey_result_summary } return results