import pandas as pd import numpy as np from scikit_posthocs import posthoc_nemenyi from scipy import stats from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway from statsmodels.stats.multicomp import MultiComparison from scipy.stats import spearmanr, pearsonr, kendalltau, entropy from scipy.spatial.distance import jensenshannon from scipy.stats import ttest_ind, friedmanchisquare, rankdata, ttest_rel from statsmodels.stats.multicomp import pairwise_tukeyhsd from scipy.stats import ttest_1samp def calculate_impact_ratio(selection_rates): """Calculate the impact ratio for each category.""" most_selected_rate = max(selection_rates.values()) impact_ratios = {category: rate / most_selected_rate for category, rate in selection_rates.items()} return impact_ratios def statistical_parity_difference(selection_rates): """Calculate statistical parity difference.""" most_selected_rate = max(selection_rates.values()) spd = {category: rate - most_selected_rate for category, rate in selection_rates.items()} return spd def calculate_four_fifths_rule(impact_ratios): """Calculate whether each category meets the four-fifths rule.""" adverse_impact = {category: (ratio < 0.8) for category, ratio in impact_ratios.items()} return adverse_impact def statistical_tests(data): """Perform various statistical tests to evaluate potential biases.""" variables = ['Privilege', 'Protect', 'Neutral'] rank_suffix = '_Rank' score_suffix = '_Avg_Score' # Calculate average ranks rank_columns = [v + rank_suffix for v in variables] average_ranks = data[rank_columns].mean() average_scores = data[[v + score_suffix for v in variables]].mean() # Statistical tests rank_data = [data[col] for col in rank_columns] # Pairwise tests pairs = [ ('Privilege', 'Protect'), ('Protect', 'Neutral'), ('Privilege', 'Neutral') ] pairwise_results = { 'Wilcoxon Test': {} } for (var1, var2) in pairs: pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}' pair_rank_score = f'{var1}{rank_suffix} vs {var2}{rank_suffix}' # Wilcoxon Signed-Rank Test if len(data) > 20: wilcoxon_stat, wilcoxon_p = wilcoxon(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}']) else: wilcoxon_stat, wilcoxon_p = np.nan, "Sample size too small for Wilcoxon test." pairwise_results['Wilcoxon Test'][pair_rank_score] = {"Statistic": wilcoxon_stat, "p-value": wilcoxon_p} # Levene's Test for Equality of Variances levene_results = {} levene_privilege_protect = levene(data['Privilege_Rank'], data['Protect_Rank']) levene_privilege_neutral = levene(data['Privilege_Rank'], data['Neutral_Rank']) levene_protect_neutral = levene(data['Protect_Rank'], data['Neutral_Rank']) levene_results['Privilege vs Protect'] = {"Statistic": levene_privilege_protect.statistic, "p-value": levene_privilege_protect.pvalue} levene_results['Privilege vs Neutral'] = {"Statistic": levene_privilege_neutral.statistic, "p-value": levene_privilege_neutral.pvalue} levene_results['Protect vs Neutral'] = {"Statistic": levene_protect_neutral.statistic, "p-value": levene_protect_neutral.pvalue} # Calculate variances for ranks variances = {col: data[col].var() for col in rank_columns} pairwise_variances = { 'Privilege_Rank vs Protect_Rank': variances['Privilege_Rank'] > variances['Protect_Rank'], 'Privilege_Rank vs Neutral_Rank': variances['Privilege_Rank'] > variances['Neutral_Rank'], 'Protect_Rank vs Neutral_Rank': variances['Protect_Rank'] > variances['Neutral_Rank'] } selection_rates = { 'Privilege': data['Privilege_Rank'].mean(), 'Protect': data['Protect_Rank'].mean(), 'Neutral': data['Neutral_Rank'].mean() } impact_ratios = calculate_impact_ratio(selection_rates) spd_result = statistical_parity_difference(selection_rates) adverse_impact = calculate_four_fifths_rule(impact_ratios) # Friedman test friedman_stat, friedman_p = friedmanchisquare(*rank_data) rank_matrix = data[rank_columns].values rank_matrix_transposed = np.transpose(rank_matrix) posthoc_results = posthoc_nemenyi(rank_matrix_transposed) #posthoc_results = posthoc_friedman(data, variables, rank_suffix) results = { "Average Ranks": average_ranks.to_dict(), "Average Scores": average_scores.to_dict(), "Friedman Test": { "Statistic": friedman_stat, "p-value": friedman_p, "Post-hoc": posthoc_results }, **pairwise_results, "Levene's Test for Equality of Variances": levene_results, "Pairwise Comparisons of Variances": pairwise_variances, "Statistical Parity Difference": spd_result, "Impact Ratios": impact_ratios, "Four-Fifths Rule": adverse_impact, } return results def hellinger_distance(p, q): """Calculate the Hellinger distance between two probability distributions.""" return np.sqrt(0.5 * np.sum((np.sqrt(p) - np.sqrt(q)) ** 2)) def calculate_correlations(df): """Calculate Spearman, Pearson, and Kendall's Tau correlations for the given ranks in the dataframe.""" correlations = { 'Spearman': {}, 'Pearson': {}, 'Kendall Tau': {} } columns = ['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank'] for i in range(len(columns)): for j in range(i + 1, len(columns)): col1, col2 = columns[i], columns[j] correlations['Spearman'][f'{col1} vs {col2}'] = spearmanr(df[col1], df[col2]).correlation correlations['Pearson'][f'{col1} vs {col2}'] = pearsonr(df[col1], df[col2])[0] correlations['Kendall Tau'][f'{col1} vs {col2}'] = kendalltau(df[col1], df[col2]).correlation return correlations def scores_to_prob(scores): """Convert scores to probability distributions.""" value_counts = scores.value_counts() probabilities = value_counts / value_counts.sum() full_prob = np.zeros(int(scores.max()) + 1) full_prob[value_counts.index.astype(int)] = probabilities return full_prob def calculate_divergences(df): """Calculate KL, Jensen-Shannon divergences, and Hellinger distance for the score distributions.""" score_columns = ['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score'] probabilities = {col: scores_to_prob(df[col]) for col in score_columns} divergences = { 'KL Divergence': {}, 'Jensen-Shannon Divergence': {}, 'Hellinger Distance': {} } for i in range(len(score_columns)): for j in range(i + 1, len(score_columns)): col1, col2 = score_columns[i], score_columns[j] divergences['KL Divergence'][f'{col1} vs {col2}'] = entropy(probabilities[col1], probabilities[col2]) divergences['Jensen-Shannon Divergence'][f'{col1} vs {col2}'] = jensenshannon(probabilities[col1], probabilities[col2]) divergences['Hellinger Distance'][f'{col1} vs {col2}'] = hellinger_distance(probabilities[col1], probabilities[col2]) return divergences