Spaces:
Running
Running
Commit
·
dac45ce
1
Parent(s):
f924923
fix: remove language suffix
Browse files- src/populate.py +0 -27
src/populate.py
CHANGED
|
@@ -6,30 +6,6 @@ from src.display.utils import auto_eval_column_attrs
|
|
| 6 |
from src.leaderboard.read_evals import get_raw_assessment_results
|
| 7 |
|
| 8 |
|
| 9 |
-
def expand_multi_language_entries(df):
|
| 10 |
-
"""Keep multi-language entries as single rows but create individual language columns for filtering"""
|
| 11 |
-
if df.empty or auto_eval_column_attrs.language.name not in df.columns:
|
| 12 |
-
return df
|
| 13 |
-
|
| 14 |
-
# Get all unique individual languages
|
| 15 |
-
all_languages = set()
|
| 16 |
-
for value in df[auto_eval_column_attrs.language.name].unique():
|
| 17 |
-
if isinstance(value, str):
|
| 18 |
-
languages = [lang.strip() for lang in value.split("/")]
|
| 19 |
-
all_languages.update(languages)
|
| 20 |
-
|
| 21 |
-
# Create individual language columns for filtering
|
| 22 |
-
for lang in sorted(all_languages):
|
| 23 |
-
if lang: # Skip empty strings
|
| 24 |
-
safe_lang = lang.replace("+", "plus").replace("#", "sharp").replace(" ", "_").lower()
|
| 25 |
-
col_name = f"_lang_{safe_lang}"
|
| 26 |
-
df[col_name] = df[auto_eval_column_attrs.language.name].apply(
|
| 27 |
-
lambda x: lang in str(x) if x is not None else False
|
| 28 |
-
)
|
| 29 |
-
|
| 30 |
-
return df
|
| 31 |
-
|
| 32 |
-
|
| 33 |
def get_leaderboard_df(eval_results_path, eval_requests_path, cols, benchmark_cols):
|
| 34 |
"""Read all the runs in the folder and return a dataframe
|
| 35 |
|
|
@@ -50,9 +26,6 @@ def get_leaderboard_df(eval_results_path, eval_requests_path, cols, benchmark_co
|
|
| 50 |
# Create dataframe from assessment results
|
| 51 |
all_df = pd.DataFrame.from_records([r.to_dict() for r in assessment_results])
|
| 52 |
|
| 53 |
-
# Expand multi-language entries for OR filtering
|
| 54 |
-
all_df = expand_multi_language_entries(all_df)
|
| 55 |
-
|
| 56 |
# Ensure we have all the needed display columns
|
| 57 |
all_columns = set(all_df.columns)
|
| 58 |
for col in benchmark_cols:
|
|
|
|
| 6 |
from src.leaderboard.read_evals import get_raw_assessment_results
|
| 7 |
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
def get_leaderboard_df(eval_results_path, eval_requests_path, cols, benchmark_cols):
|
| 10 |
"""Read all the runs in the folder and return a dataframe
|
| 11 |
|
|
|
|
| 26 |
# Create dataframe from assessment results
|
| 27 |
all_df = pd.DataFrame.from_records([r.to_dict() for r in assessment_results])
|
| 28 |
|
|
|
|
|
|
|
|
|
|
| 29 |
# Ensure we have all the needed display columns
|
| 30 |
all_columns = set(all_df.columns)
|
| 31 |
for col in benchmark_cols:
|