import streamlit as st from llama_index.core.memory.chat_memory_buffer import ChatMemoryBuffer from retrievers import PARetriever from utils_code import create_chat_engine from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings import os from llama_index.llms.azure_openai import AzureOpenAI from dotenv import load_dotenv, find_dotenv from retrievers import HyPARetriever, PARetriever from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core import VectorStoreIndex from llama_index.graph_stores.neo4j import Neo4jPropertyGraphStore from llama_index.core import PropertyGraphIndex from llama_index.core.vector_stores import MetadataFilter, MetadataFilters, FilterOperator from llama_index.retrievers.bm25 import BM25Retriever # Load environment variables from the .env file dotenv_path = find_dotenv() #print(f"Dotenv Path: {dotenv_path}") load_dotenv(dotenv_path) embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5") Settings.embed_model = embed_model # Set Azure OpenAI keys for Giskard if needed #os.environ["AZURE_OPENAI_API_KEY"] = os.getenv("GSK_AZURE_OPENAI_API_KEY") #os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv("GSK_AZURE_OPENAI_ENDPOINT") os.environ["GSK_LLM_MODEL"] = "gpt-4o-mini" # Pinecone and Neo4j credentials pinecone_api_key = os.getenv("PINECONE_API_KEY") ll144_index_name = 'll144' euaiact_index_name = 'euaiact' # Initialize Pinecone from pinecone import Pinecone pc = Pinecone(api_key=pinecone_api_key) def metadata_filter(corpus_name): if corpus_name == "EUAIACT": # Filter for 'EUAIACT.pdf' filter = MetadataFilters(filters=[MetadataFilter(key="filepath", value="'EUAIACT.pdf'", operator=FilterOperator.CONTAINS)]) elif corpus_name == "LL144": # Filter for 'LLL144.pdf' or 'LL144_Definitions.pdf' filter = MetadataFilters(filters=[ MetadataFilter(key="filepath", value="'LL144.pdf'", operator=FilterOperator.CONTAINS), MetadataFilter(key="filepath", value="'LL144_Definitions.pdf'", operator=FilterOperator.CONTAINS) ]) return filter # Load vector index #@st.cache_data(ttl=None, persist=None) def load_vector_index(corpus_name): if corpus_name == "LL144": pinecone_index = pc.Index(ll144_index_name) elif corpus_name == "EUAIACT": pinecone_index = pc.Index(euaiact_index_name) vector_store = PineconeVectorStore(pinecone_index=pinecone_index) vector_index = VectorStoreIndex.from_vector_store(vector_store) return vector_index # Load property graph index #@st.cache_data(ttl=None, persist=None) def load_pg_index(): neo4j_username = os.getenv("NEO4J_USERNAME") neo4j_password = os.getenv("NEO4J_PASSWORD") neo4j_url = os.getenv("NEO4J_URI") graph_store = Neo4jPropertyGraphStore(username=neo4j_username, password=neo4j_password, url=neo4j_url) pg_index = PropertyGraphIndex.from_existing(property_graph_store=graph_store) return pg_index # Initialize the retriever (HyPA or PA) def init_retriever(retriever_type, corpus_name, use_reranker, use_rewriter, classifier_model): # Check if vector index is cached, if not, load it if "vector_index" not in st.session_state: st.session_state.vector_index = load_vector_index(corpus_name) # Check if property graph index is cached, if not, load it if "pg_index" not in st.session_state: st.session_state.pg_index = load_pg_index() vector_index = st.session_state.vector_index graph_index = st.session_state.pg_index llm = st.session_state.llm filter = metadata_filter(corpus_name=corpus_name) # Set the reranker model if selected reranker_model_name = "BAAI/bge-reranker-large" if use_reranker else None # Choose the appropriate retriever based on user selection if retriever_type == "HyPA": retriever = HyPARetriever( llm=llm, vector_retriever=vector_index.as_retriever(similarity_top_k=10), bm25_retriever=None,#BM25Retriever.from_defaults(index=vector_index, similarity_top_k=10), kg_index=graph_index, # Include KG for HyPA rewriter=use_rewriter, # Set rewriter option classifier_model=classifier_model, # Use the selected classifier model verbose=False, property_index=True, # Use property graph index reranker_model_name=reranker_model_name, # Use reranker if selected pg_filters=filter ) else: retriever = PARetriever( llm=llm, vector_retriever=vector_index.as_retriever(similarity_top_k=10), bm25_retriever=None,#BM25Retriever.from_defaults(index=vector_index, similarity_top_k=10), rewriter=use_rewriter, # Set rewriter option classifier_model=classifier_model, # Use the selected classifier model verbose=False, reranker_model_name=reranker_model_name # Use reranker if selected ) memory = ChatMemoryBuffer.from_defaults(token_limit=8192) chat_engine = create_chat_engine(retriever=retriever, memory=memory, llm=llm) st.session_state.chat_engine = chat_engine #return chat_engine def process_query(query): """Processes the input query and displays it along with the response in the main chat area.""" # Append the user query to the message history and display it st.session_state.messages.append({"role": "user", "content": query}) with st.chat_message("user"): st.write(query) # Ensure the chat engine is initialized chat_engine = st.session_state.get('chat_engine', None) if chat_engine: # Process the query through the chat engine with st.chat_message("assistant"): with st.spinner("Retrieving Knowledge..."): response = chat_engine.stream_chat(query) response_str = "" response_container = st.empty() for token in response.response_gen: response_str += token response_container.write(response_str) # Append the assistant's response to the message history st.session_state.messages.append({"role": "assistant", "content": response_str}) # Expander for additional info with st.expander("Source Nodes"): # Display source nodes if hasattr(response, 'source_nodes') and response.source_nodes: for idx, node in enumerate(response.source_nodes): st.markdown(f"#### Source Node {idx + 1}") st.write(f"**Node ID:** {node.node_id}") st.write(f"**Node Score:** {node.score}") st.write("**Metadata:**") for key, value in node.metadata.items(): st.write(f"- **{key}:** {value}") st.write("**Content:**") st.write(node.node.get_content()) # Add a horizontal line to separate nodes st.markdown("---") else: st.write("No additional source nodes available.") st.session_state.messages.append({"role": "assistant", "content": str(response)}) # Streamlit App def main(): # Sidebar for retriever options with st.sidebar: st.image('holisticai.svg', use_column_width=True) st.title("Retriever Settings") # Azure OpenAI credentials input fields (start with blank fields) azure_api_key = st.text_input("Azure OpenAI API Key", value="", type="password") azure_endpoint = st.text_input("Azure OpenAI Endpoint", value="", type="password") llm_model_choice = st.selectbox("Select LLM Model", ["gpt-4o-mini", "gpt35"]) # Let the user make selections without updating session state yet retriever_type = st.selectbox("Select Retriever Method", ["PA", "HyPA"]) corpus_name = st.selectbox("Select Corpus", ["LL144", "EUAIACT"]) temperature = st.slider("Set LLM Temperature", min_value=0.0, max_value=1.0, value=0.0, step=0.1) # Display a red warning about non-zero temperature if temperature > 0: st.markdown( "

Warning: A non-zero temperature may lead to hallucinations in the generated responses.

", unsafe_allow_html=True ) # Checkboxes for reranker and rewriter options use_reranker = st.checkbox("Use Reranker") use_rewriter = st.checkbox("Use Rewriter") # Radio buttons for classifier model classifier_type = st.radio("Select Classifier Type", ["2-Class", "3-Class"]) classifier_model = "rk68/distilbert-q-classifier-2" if classifier_type == "2-Class" else "rk68/distilbert-q-classifier-3" # When the user clicks "Initialize", store everything in session state if st.button("Initialize"): st.session_state.retriever_type = retriever_type st.session_state.corpus_name = corpus_name st.session_state.temperature = temperature st.session_state.use_reranker = use_reranker st.session_state.use_rewriter = use_rewriter st.session_state.classifier_type = classifier_type st.session_state.classifier_model = classifier_model # Store the user inputs in session state st.session_state.azure_api_key = azure_api_key st.session_state.azure_endpoint = azure_endpoint # Set the environment variables from user inputs os.environ["AZURE_OPENAI_API_KEY"] = azure_api_key os.environ["AZURE_OPENAI_ENDPOINT"] = azure_endpoint llm = AzureOpenAI( deployment_name=llm_model_choice, temperature=temperature, api_key=azure_api_key, azure_endpoint=azure_endpoint, api_version=os.getenv("AZURE_API_VERSION") ) Settings.llm = llm st.session_state.llm = llm # Initialize retriever after storing the settings init_retriever(retriever_type, corpus_name, use_reranker, use_rewriter, classifier_model) st.success("Retriever Initialized") # Example questions based on selected corpus st.markdown("### Example Queries") # Example questions with unique button handling example_questions = { "LL144": [ "What is a bias audit?", "When does it come into effect?", "Summarise Local Law 144" ], "EUAIACT": [ "What is an AI system?", "What are the key takeaways?", "Explain the key provisions of EUAIACT." ] } # Display buttons for the example queries for idx, question in enumerate(example_questions.get(corpus_name, [])): if st.button(f"{question} [{idx}]"): process_query(question) # Add a disclaimer at the bottom st.markdown("---") # Horizontal line for separation st.markdown( """

Disclaimer: This system is an academic prototype demonstration of our hybrid parameter-adaptive retrieval-augmented generation system. It is NOT a production-ready application. All outputs should be considered experimental and may not be fully accurate. This system should not be used for making important legal decisions. For complete, specific, and tailored legal advice, please consult a licensed legal professional.

""", unsafe_allow_html=True ) # Check if the retriever is initialized if "chat_engine" in st.session_state: chat_engine = st.session_state.chat_engine else: st.warning("Please initialize the retriever from the sidebar.") # Initialize session state for chat messages if "messages" not in st.session_state: st.session_state.messages = [{"role": "assistant", "content": "How may I assist you?"}] # Display chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) # User-provided prompt if prompt := st.chat_input(): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.write(prompt) # Generate a response if the last message is from the user if st.session_state.messages[-1]["role"] == "user": with st.chat_message("assistant"): with st.spinner("Retrieving Knowledge..."): response = chat_engine.stream_chat(prompt) response_str = "" response_container = st.empty() for token in response.response_gen: response_str += token response_container.write(response_str) # Expander for additional info with st.expander("Source Nodes"): # Display source nodes if hasattr(response, 'source_nodes') and response.source_nodes: for idx, node in enumerate(response.source_nodes): st.markdown(f"#### Source Node {idx + 1}") st.write(f"**Node ID:** {node.node_id}") st.write(f"**Node Score:** {node.score}") st.write("**Metadata:**") for key, value in node.metadata.items(): st.write(f"- **{key}:** {value}") st.write("**Content:**") st.write(node.node.get_content()) # Add a horizontal line to separate nodes st.markdown("---") else: st.write("No additional source nodes available.") st.session_state.messages.append({"role": "assistant", "content": str(response)}) if __name__ == "__main__": main()