import numpy as np import os import re import pickle import cv2 from einops import rearrange from scipy.ndimage.filters import gaussian_filter import skimage.measure import skimage.color from skimage.morphology import skeletonize from fil_finder import FilFinder2D import astropy.units as u # ################################################################################################################ # POSTPROCESSING PUTS THE PATCHES TOGETHER, SUBSTRACTS THE PADDING # AND CHOOSES THE CLASS WITH HIGHEST PROBABILITY AS PREDICTION. # SECONDLY, THE FRONT LINE IS EXTRACTED FROM THE PREDICTION # ################################################################################################################ def is_subarray(subarray, arr): """ Test whether subarray is a subset of arr :param subarray: list of numbers :param arr: list of numbers :return: boolean """ count = 0 for element in subarray: if element in arr: count += 1 if count == len(subarray): return True return False def reconstruct_from_patches_and_binarize(src_directory, dst_directory, modality, threshold_front_prob): """ Reconstruct the image from patches in src_directory and store them in dst_directory. The src_directory contains masks (patches = number_of_classes x height x width). The class with maximum probability will be chosen as prediction after averaging the probabilities across patches (if there is an overlap) and the image in dst_directory will only show the prediction (image = height x width) :param src_directory: source directory which contains pickled patches (class x height x width) :param dst_directory: destination directory :param modality: Either "fronts" or "zones" :return: prediction (image = height x width) """ assert modality == "fronts" or modality == "zones", "Modality must either be 'fronts' or 'zones'." patches = os.listdir(src_directory) list_of_names = [] for patch_name in patches: list_of_names.append(os.path.split(patch_name)[1].split("__")[0]) image_names = set(list_of_names) for name in image_names: print(f"File: {name}") # ##################################################################################################### # Search all patches that belong to the image with the name "name" # ##################################################################################################### pattern = re.compile(name) patches_for_image_names = [a for a in patches if pattern.match(a)] assert len(patches_for_image_names) > 0, "No patches found for image " + name patches_for_image = [] # Will be Number_Of_Patches x Number_Of_Classes x Height x Width irow = [] icol = [] padded_bottom = int(patches_for_image_names[0][:-4].split("_")[-5]) padded_right = int(patches_for_image_names[0][:-4].split("_")[-4]) for file_name in patches_for_image_names: # ##################################################################################################### # Get the origin of the patches out of their names # ##################################################################################################### # naming convention: nameOfTheOriginalImage__PaddedBottom_PaddedRight_NumberOfPatch_irow_icol.png # Mask patches are 3D arrays with class probabilities with open(os.path.join(src_directory, file_name), "rb") as fp: class_probabilities_array = pickle.load(fp) assert class_probabilities_array.ndim == 3, "Patch " + file_name + " has not enough dimensions (3 needed). Found: " + str(class_probabilities_array.ndim) if modality == "fronts": assert len(class_probabilities_array) <= 2, "Patch " + file_name + " has too many classes (<2 needed). Found: " + str(len(class_probabilities_array)) else: assert len(class_probabilities_array) <= 4, "Patch " + file_name + " has too many classes (<4 needed). Found: " + str(len(class_probabilities_array)) patches_for_image.append(class_probabilities_array) irow.append(int(os.path.split(file_name)[1][:-4].split("_")[-2])) icol.append(int(os.path.split(file_name)[1][:-4].split("_")[-1])) # Images are masks and store the probabilities for each class (patch = number_class x height x width) class_patches_for_image = [] patches_for_image = [np.array(x) for x in patches_for_image] patches_for_image = np.array(patches_for_image) for class_layer in range(len(patches_for_image[0])): class_patches_for_image.append(patches_for_image[:, class_layer, :, :]) class_probabilities_complete_image = [] # ##################################################################################################### # Reconstruct image (with number of channels = classes) from patches # ##################################################################################################### for class_number in range(len(class_patches_for_image)): class_probability_complete_image, _ = reconstruct_from_grayscale_patches_with_origin(class_patches_for_image[class_number], origin=(irow, icol), use_gaussian=True) class_probabilities_complete_image.append(class_probability_complete_image) ###################################################################################################### # Cut Padding ###################################################################################################### if modality == "zones": class_probabilities_complete_image = np.array(class_probabilities_complete_image) class_probabilities_complete_image = class_probabilities_complete_image[:, :-padded_bottom, :-padded_right] else: class_probabilities_complete_image = rearrange(class_probabilities_complete_image, '1 h w -> h w') class_probabilities_complete_image = np.array(class_probabilities_complete_image) class_probabilities_complete_image = class_probabilities_complete_image[:-padded_bottom, :-padded_right] # ##################################################################################################### # Get prediction from probabilities # ##################################################################################################### if modality == "zones": # Choose class with highest probability as prediction prediction = np.argmax(class_probabilities_complete_image, axis=0) else: # Take a threshold to get the class prediction = class_probabilities_complete_image prediction[prediction > threshold_front_prob] = 1 prediction[prediction <= threshold_front_prob] = 0 # ##################################################################################################### # Convert [0, 1] to [0, 255] range # ##################################################################################################### if modality == "fronts": prediction[prediction == 0] = 0 prediction[prediction == 1] = 255 assert (is_subarray(np.unique(prediction), [0, 255])), "Unique front values are not correct" else: prediction[prediction == 0] = 0 prediction[prediction == 1] = 64 prediction[prediction == 2] = 127 prediction[prediction == 3] = 254 assert (is_subarray(np.unique(prediction), [0, 64, 127, 254])), "Unique zone values are not correct" cv2.imwrite(os.path.join(dst_directory, name + '.png'), prediction) def get_gaussian(patch_size, sigma_scale=1. / 8) -> np.ndarray: """ Returns Gaussian map with size of patch and sig :param patch_size: The size of the image patches -> gaussian importance map will have the same size :param sigma_scale: A scaling factor :return: Gaussian importance map """ tmp = np.zeros(patch_size) center_coords = [i // 2 for i in patch_size] sigmas = [i * sigma_scale for i in patch_size] tmp[tuple(center_coords)] = 1 gaussian_importance_map = gaussian_filter(tmp, sigmas, 0, mode='constant', cval=0) gaussian_importance_map = gaussian_importance_map / np.max(gaussian_importance_map) * 1 gaussian_importance_map = gaussian_importance_map.astype(np.float32) # gaussian_importance_map cannot be 0, otherwise we may end up with nans! gaussian_importance_map[gaussian_importance_map == 0] = np.min( gaussian_importance_map[gaussian_importance_map != 0]) return gaussian_importance_map def reconstruct_from_grayscale_patches_with_origin(patches, origin, use_gaussian, epsilon=1e-12): """Rebuild an image from a set of patches by averaging. The reconstructed image will have different dimensions than the original image if the strides and offsets of the patches were changed from the defaults! Adopted from: http://jamesgregson.ca/extract-image-patches-in-python.html :param patches: (ndarray) input patches as (N,patch_height,patch_width) array :param origin: (2-tuple) = row index and column index coordinates of each patch :param use_gaussian: Boolean to turn on Gaussian Importance Weighting :param epsilon: (scalar) regularization term for averaging when patches some image pixels are not covered by any patch :return image, weight image (ndarray): output image reconstructed from patches of size (max(origin[0])+patches.shape[1], max(origin[1])+patches.shape[2]) weight (ndarray): output weight matrix consisting of the count of patches covering each pixel """ patches = np.array(patches) origin = np.array(origin) patch_height = len(patches[0]) patch_width = len(patches[0][0]) img_height = np.max(origin[0]) + patch_height img_width = np.max(origin[1]) + patch_width out = np.zeros((img_height, img_width)) wgt = np.zeros((img_height, img_width)) if use_gaussian: scale_wgt = get_gaussian((patch_height, patch_width)) else: scale_wgt = np.ones((patch_height, patch_width)) for i in range(patch_height): for j in range(patch_width): out[origin[0]+i, origin[1]+j] += patches[:, i, j] * scale_wgt[i, j] wgt[origin[0] + i, origin[1] + j] += scale_wgt[i, j] return out / np.maximum(wgt, epsilon), wgt def postprocess_zone_segmenation(mask): """ Post-process zone segmentation by filling gaps in ocean region and creating cluster of ocean mask and removing clusters except for the largest -> left with one big ocean. :param mask: a numpy array representing the segmentation mask with 1 channel :return mask: a numpy array representing the filtered mask with 1 channel """ # ############################################################################################# # Fill Gaps in Ocean # ############################################################################################# # get inverted ocean mask ocean_mask = mask == 254 ocean_mask = np.invert(ocean_mask) labeled_image, num_cluster = skimage.measure.label(ocean_mask, connectivity=2, return_num=True) # extract largest cluster cluster_size = np.zeros(num_cluster + 1) for cluster_label in range(1, num_cluster + 1): cluster = labeled_image == cluster_label cluster_size[cluster_label] = cluster.sum() final_cluster = cluster_size.argmax() # create map of the gaps in ocean area gaps_mask = np.zeros_like(labeled_image) gaps_mask[labeled_image >= 1] = 1 gaps_mask[labeled_image == final_cluster] = 0 # fill gaps mask[gaps_mask == 1] = 254 # ############################################################################################# # Take largest connected component of ocean as ocean # ############################################################################################# # Connected Component Analysis ocean_mask = mask >= 254 # Ocean (254) labeled_image, num_cluster = skimage.measure.label(ocean_mask, connectivity=2, return_num=True) if num_cluster == 0: return mask # extract largest cluster cluster_size = np.zeros(num_cluster + 1) # +1 for background for cluster_label in range(1, num_cluster + 1): # +1 as range(x, y) is exclusive for y cluster = labeled_image == cluster_label cluster_size[cluster_label] = cluster.sum() final_cluster = cluster_size.argmax() final_mask = labeled_image == final_cluster # overwrite small ocean cluster (254) with glacier value (127) (it is not important with what value these are # filled, as these pixels are not at the boundary between ocean and glacier anymore and hence do not contribute to # the front delineation) mask[mask == 254] = 127 mask[final_mask] = 254 return mask def extract_front_from_zones(zone_mask, front_length_threshold): """ Extract front prediction from zone segmentation by choosing the boundary between glacier and ocean as front and deleting to short fronts. :param zone_mask: zone segmentation prediction :param front_length_threshold: Threshold for deletion of too short front predictions :return: the front prediction """ # detect edge between ocean and glacier mask_mi = np.pad(zone_mask, ((1, 1), (1, 1)), mode='constant') mask_le = np.pad(zone_mask, ((1, 1), (0, 2)), mode='constant') mask_ri = np.pad(zone_mask, ((1, 1), (2, 0)), mode='constant') mask_do = np.pad(zone_mask, ((0, 2), (1, 1)), mode='constant') mask_up = np.pad(zone_mask, ((2, 0), (1, 1)), mode='constant') front = np.logical_and(mask_mi == 254, np.logical_or.reduce((mask_do == 127, mask_up == 127, mask_ri == 127, mask_le == 127))) front = front[1:-1, 1:-1].astype(float) # delete too short fronts labeled_front, num_cluster = skimage.measure.label(front, connectivity=2, return_num=True) if num_cluster == 0: return front * 255 for cluster_label in range(1, num_cluster + 1): # +1 as range(x, y) is exclusive for y cluster = labeled_front == cluster_label cluster_size = cluster.sum() if cluster_size <= front_length_threshold: front[labeled_front == cluster_label] = 0 else: front[labeled_front == cluster_label] = 1 front *= 255 return front def postprocess_front_segmenation(complete_predicted_mask, threshold_front_length): """ Post-process the front segmentation by skeletonization, filament extraction, and deletion of too short fronts :param complete_predicted_mask: front segmentation prediction :param threshold_front_length: Threshold for deletion of too short front predictions :return: the post-processed front prediction """ if len(np.unique(complete_predicted_mask)) == 1: print(f"No front predicted {np.unique(complete_predicted_mask)}") return complete_predicted_mask skeleton = skeletonize(complete_predicted_mask) fil = FilFinder2D(skeleton, distance=None, mask=skeleton) fil.preprocess_image(skip_flatten=True) fil.create_mask(use_existing_mask=True) fil.medskel(verbose=False) fil.analyze_skeletons(skel_thresh=5 * u.pix) # find longest path through the skeleton and delete all other branches skeleton_longpaths = fil.skeleton_longpath # delete fronts that are too short labeled_skeleton_longpaths, num_cluster = skimage.measure.label(skeleton_longpaths, connectivity=2, return_num=True) if num_cluster == 0: return skeleton_longpaths for cluster_label in range(1, num_cluster + 1): # +1 as range(x, y) is exclusive for y cluster = labeled_skeleton_longpaths == cluster_label cluster_size = cluster.sum() if cluster_size <= threshold_front_length: skeleton_longpaths[labeled_skeleton_longpaths == cluster_label] = 0 else: skeleton_longpaths[labeled_skeleton_longpaths == cluster_label] = 1 return skeleton_longpaths