import shutil from batchgenerators.utilities.file_and_folder_operations import * import SimpleITK as sitk from nnunet.paths import nnUNet_raw_data if __name__ == '__main__': #data is available at http://medicalsegmentation.com/covid19/ download_dir = '/home/fabian/Downloads' task_id = 69 task_name = "CovidSeg" foldername = "Task%03.0d_%s" % (task_id, task_name) out_base = join(nnUNet_raw_data, foldername) imagestr = join(out_base, "imagesTr") imagests = join(out_base, "imagesTs") labelstr = join(out_base, "labelsTr") maybe_mkdir_p(imagestr) maybe_mkdir_p(imagests) maybe_mkdir_p(labelstr) train_patient_names = [] test_patient_names = [] # the niftis are 3d, but they are just stacks of 2d slices from different patients. So no 3d U-Net, please # the training stack has 100 slices, so we split it into 5 equally sized parts (20 slices each) for cross-validation training_data = sitk.GetArrayFromImage(sitk.ReadImage(join(download_dir, 'tr_im.nii.gz'))) training_labels = sitk.GetArrayFromImage(sitk.ReadImage(join(download_dir, 'tr_mask.nii.gz'))) for f in range(5): this_name = 'part_%d' % f data = training_data[f::5] labels = training_labels[f::5] sitk.WriteImage(sitk.GetImageFromArray(data), join(imagestr, this_name + '_0000.nii.gz')) sitk.WriteImage(sitk.GetImageFromArray(labels), join(labelstr, this_name + '.nii.gz')) train_patient_names.append(this_name) shutil.copy(join(download_dir, 'val_im.nii.gz'), join(imagests, 'val_im.nii.gz')) test_patient_names.append('val_im') json_dict = {} json_dict['name'] = task_name json_dict['description'] = "" json_dict['tensorImageSize'] = "4D" json_dict['reference'] = "" json_dict['licence'] = "" json_dict['release'] = "0.0" json_dict['modality'] = { "0": "nonct", } json_dict['labels'] = { "0": "background", "1": "stuff1", "2": "stuff2", "3": "stuff3", } json_dict['numTraining'] = len(train_patient_names) json_dict['numTest'] = len(test_patient_names) json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i.split("/")[-1], "label": "./labelsTr/%s.nii.gz" % i.split("/")[-1]} for i in train_patient_names] json_dict['test'] = ["./imagesTs/%s.nii.gz" % i.split("/")[-1] for i in test_patient_names] save_json(json_dict, os.path.join(out_base, "dataset.json"))