from setuptools import setup, find_namespace_packages setup(name='nnunet', packages=find_namespace_packages(include=["nnunet", "nnunet.*"]), version='1.7.0', description='nnU-Net. Framework for out-of-the box biomedical image segmentation.', url='https://github.com/MIC-DKFZ/nnUNet', author='Division of Medical Image Computing, German Cancer Research Center', author_email='f.isensee@dkfz-heidelberg.de', license='Apache License Version 2.0, January 2004', install_requires=[ "torch>=1.6.0a", "tqdm", "dicom2nifti", "scikit-image>=0.14", "medpy", "scipy", "batchgenerators>=0.23", "numpy", "SimpleITK", "opencv-python~=4.7.0.72", "pandas", "requests", "nibabel", 'tifffile', "plotly~=5.14.1", "scikit-learn~=1.2.2", "astropy~=5.2.2", "einops~=0.6.0", "matplotlib~=3.7.1", "h5py~=3.8.0", "fil-finder~=1.7.2", "psutil~=5.9.4", "image~=1.5.33" ], entry_points={ 'console_scripts': [ 'nnUNet_convert_decathlon_task = nnunet.experiment_planning.nnUNet_convert_decathlon_task:main', 'nnUNet_plan_and_preprocess = nnunet.experiment_planning.nnUNet_plan_and_preprocess:main', 'nnUNet_train = nnunet.run.run_training:main', 'nnUNet_train_DP = nnunet.run.run_training_DP:main', 'nnUNet_train_DDP = nnunet.run.run_training_DDP:main', 'nnUNet_predict = nnunet.inference.predict_simple:main', 'nnUNet_ensemble = nnunet.inference.ensemble_predictions:main', 'nnUNet_find_best_configuration = nnunet.evaluation.model_selection.figure_out_what_to_submit:main', 'nnUNet_print_available_pretrained_models = nnunet.inference.pretrained_models.download_pretrained_model:print_available_pretrained_models', 'nnUNet_print_pretrained_model_info = nnunet.inference.pretrained_models.download_pretrained_model:print_pretrained_model_requirements', 'nnUNet_download_pretrained_model = nnunet.inference.pretrained_models.download_pretrained_model:download_by_name', 'nnUNet_download_pretrained_model_by_url = nnunet.inference.pretrained_models.download_pretrained_model:download_by_url', 'nnUNet_determine_postprocessing = nnunet.postprocessing.consolidate_postprocessing_simple:main', 'nnUNet_export_model_to_zip = nnunet.inference.pretrained_models.collect_pretrained_models:export_entry_point', 'nnUNet_install_pretrained_model_from_zip = nnunet.inference.pretrained_models.download_pretrained_model:install_from_zip_entry_point', 'nnUNet_change_trainer_class = nnunet.inference.change_trainer:main', 'nnUNet_evaluate_folder = nnunet.evaluation.evaluator:nnunet_evaluate_folder', 'nnUNet_plot_task_pngs = nnunet.utilities.overlay_plots:entry_point_generate_overlay', ], }, keywords=['deep learning', 'image segmentation', 'medical image analysis', 'medical image segmentation', 'nnU-Net', 'nnunet'] )