import gradio as gr import gc import os import time os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" os.environ["CUDA_VISIBLE_DEVICES"] = "" # Force CPU only import uuid import threading import pandas as pd import torch from langchain.document_loaders import CSVLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.llms import HuggingFacePipeline from langchain.chains import LLMChain from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, BitsAndBytesConfig, pipeline from langchain.prompts import PromptTemplate from llama_cpp import Llama import re import datetime import warnings warnings.filterwarnings('ignore') # Global model cache MODEL_CACHE = { "model": None, "tokenizer": None, "init_lock": threading.Lock(), "model_name": None } # Create directories for user data os.makedirs("user_data", exist_ok=True) os.makedirs("performance_metrics", exist_ok=True) # Model configuration dictionary MODEL_CONFIG = { "Llama 2 Chat": { "name": "TheBloke/Llama-2-7B-Chat-GGUF", "description": "Llama 2 7B Chat model with good general performance", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "TinyLlama Chat": { "name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF", "description": "Lightweight model with 1.1B parameters, fast and efficient", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "Mistral Instruct": { "name": "TheBloke/Mistral-7B-Instruct-v0.2-GGUF", "description": "7B instruction-tuned model with excellent reasoning", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "Phi-4 Mini Instruct": { "name": "microsoft/Phi-4-mini-instruct", "description": "Lightweight model from Microsoft suitable for instructional tasks", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "DeepSeek Coder Instruct": { "name": "deepseek-ai/deepseek-coder-1.3b-instruct", "description": "1.3B model for code and data analysis", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "DeepSeek Lite Chat": { "name": "deepseek-ai/DeepSeek-V2-Lite-Chat", "description": "Light but powerful chat model from DeepSeek", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "Qwen2.5 Coder Instruct": { "name": "Qwen/Qwen2.5-Coder-3B-Instruct-GGUF", "description": "3B model specialized for code and technical applications", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "DeepSeek Distill Qwen": { "name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "description": "1.5B distilled model with good balance of speed and quality", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "Flan T5 Small": { "name": "google/flan-t5-small", "description": "Lightweight T5 model optimized for instruction following", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32, "is_t5": True } } # Performance metrics tracking class PerformanceTracker: def __init__(self): self.metrics_file = "performance_metrics/model_performance.csv" # Create metrics file if it doesn't exist if not os.path.exists(self.metrics_file): with open(self.metrics_file, "w") as f: f.write("timestamp,model,question,processing_time,response_length\n") def log_performance(self, model_name, question, processing_time, response): timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") response_length = len(response) with open(self.metrics_file, "a") as f: f.write(f'"{timestamp}","{model_name}","{question}",{processing_time},{response_length}\n') print(f"Logged performance for {model_name}: {processing_time:.2f}s") # Initialize performance tracker performance_tracker = PerformanceTracker() def initialize_model_once(model_key): with MODEL_CACHE["init_lock"]: current_model = MODEL_CACHE["model_name"] if MODEL_CACHE["model"] is None or current_model != model_key: # Clear previous model if MODEL_CACHE["model"] is not None: del MODEL_CACHE["model"] if MODEL_CACHE["tokenizer"] is not None: del MODEL_CACHE["tokenizer"] torch.cuda.empty_cache() if torch.cuda.is_available() else None model_info = MODEL_CONFIG[model_key] model_name = model_info["name"] MODEL_CACHE["model_name"] = model_key try: print(f"Loading model: {model_name}") # Check if this is a GGUF model if "GGUF" in model_name: # Download the model file first if it doesn't exist from huggingface_hub import hf_hub_download try: # Try to find the GGUF file in the repo repo_id = model_name model_path = hf_hub_download( repo_id=repo_id, filename="model.gguf" # File name may differ ) except Exception as e: print(f"Couldn't find model.gguf, trying other filenames: {str(e)}") # Try to find GGUF file with other names import requests from huggingface_hub import list_repo_files files = list_repo_files(repo_id) gguf_files = [f for f in files if f.endswith('.gguf')] if not gguf_files: raise ValueError(f"No GGUF files found in {repo_id}") # Use first GGUF file found model_path = hf_hub_download(repo_id=repo_id, filename=gguf_files[0]) # Load GGUF model with llama-cpp-python MODEL_CACHE["model"] = Llama( model_path=model_path, n_ctx=2048, # Smaller context for memory savings n_batch=512, n_threads=2 # Adjust for 2 vCPU ) MODEL_CACHE["tokenizer"] = None # GGUF doesn't need separate tokenizer MODEL_CACHE["is_gguf"] = True # Handle T5 models elif model_info.get("is_t5", False): MODEL_CACHE["tokenizer"] = T5Tokenizer.from_pretrained(model_name) MODEL_CACHE["model"] = T5ForConditionalGeneration.from_pretrained( model_name, torch_dtype=model_info["dtype"], device_map="auto" if torch.cuda.is_available() else None, low_cpu_mem_usage=True ) MODEL_CACHE["is_gguf"] = False # Handle standard HF models else: # Only use quantization if CUDA is available if torch.cuda.is_available(): quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True ) MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=quantization_config, torch_dtype=model_info["dtype"], device_map="auto", low_cpu_mem_usage=True, trust_remote_code=True ) else: # For CPU-only environments, load without quantization MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float32, # Use float32 for CPU device_map=None, low_cpu_mem_usage=True, trust_remote_code=True ) MODEL_CACHE["is_gguf"] = False print(f"Model {model_name} loaded successfully") except Exception as e: import traceback print(f"Error loading model {model_name}: {str(e)}") print(traceback.format_exc()) raise RuntimeError(f"Failed to load model {model_name}: {str(e)}") return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], MODEL_CACHE.get("is_gguf", False) def create_llm_pipeline(model_key): """Create a new pipeline using the specified model""" try: print(f"Creating pipeline for model: {model_key}") tokenizer, model, is_gguf = initialize_model_once(model_key) # Get the model info for reference model_info = MODEL_CONFIG[model_key] if model is None: raise ValueError(f"Model is None for {model_key}") # For GGUF models from llama-cpp-python if is_gguf: # Create adapter to use GGUF model like HF pipeline from langchain.llms import LlamaCpp llm = LlamaCpp( model_path=model.model_path, temperature=0.3, max_tokens=256, # Increased for more comprehensive answers top_p=0.9, n_ctx=2048, streaming=False ) return llm # Create appropriate pipeline for HF models elif model_info.get("is_t5", False): print("Creating T5 pipeline") pipe = pipeline( "text2text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256, # Increased for more comprehensive answers temperature=0.3, top_p=0.9, return_full_text=False, ) else: print("Creating causal LM pipeline") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256, # Increased for more comprehensive answers temperature=0.3, top_p=0.9, top_k=30, repetition_penalty=1.2, return_full_text=False, ) print("Pipeline created successfully") return HuggingFacePipeline(pipeline=pipe) except Exception as e: import traceback print(f"Error creating pipeline: {str(e)}") print(traceback.format_exc()) raise RuntimeError(f"Failed to create pipeline: {str(e)}") def handle_model_loading_error(model_key, session_id): """Handle model loading errors by providing alternative model suggestions""" suggested_models = [ "DeepSeek Coder Instruct", # 1.3B model "Phi-4 Mini Instruct", # Light model "TinyLlama Chat", # 1.1B model "Flan T5 Small" # Lightweight T5 ] # Remove the current model from suggestions if it's in the list if model_key in suggested_models: suggested_models.remove(model_key) suggestions = ", ".join(suggested_models[:3]) # Only show top 3 suggestions return None, f"Unable to load model {model_key}. Please try another model such as: {suggestions}" def create_conversational_chain(db, file_path, model_key): llm = create_llm_pipeline(model_key) # Load the file into pandas to get metadata about the CSV df = pd.read_csv(file_path) # Create improved prompt template that focuses on pure LLM analysis template = """ You are an expert data analyst tasked with answering questions about a CSV file. The file has been analyzed, and its structure is provided below. CSV File Structure: - Total rows: {row_count} - Total columns: {column_count} - Columns: {columns_list} Sample data (first few rows): {sample_data} Additional context from the document: {context} User Question: {question} IMPORTANT INSTRUCTIONS: 1. Answer the question directly about the CSV data with accurate information. 2. If asked for basic statistics (mean, sum, max, min, count, etc.), perform the calculation mentally and provide the result. Include up to 2 decimal places for non-integer values. 3. If asked about patterns or trends, analyze the data thoughtfully. 4. Keep answers concise but informative. Respond in the same language as the question. 5. If you are not certain of a precise answer, explain what you can determine from the available data. 6. You can perform simple calculations including: counts, sums, averages, minimums, maximums, and basic filtering. 7. For questions about specific values in the data, reference the sample data and available context. 8. Do not mention any programming language or how you would code the solution. Your analysis: """ PROMPT = PromptTemplate( template=template, input_variables=["row_count", "column_count", "columns_list", "sample_data", "context", "question"] ) # Create retriever retriever = db.as_retriever(search_kwargs={"k": 5}) # Increase k for better context # Process query with better error handling def process_query(query, chat_history): try: start_time = time.time() # Get information from dataframe for context columns_list = ", ".join(df.columns.tolist()) sample_data = df.head(5).to_string() # Show 5 rows for better context row_count = len(df) column_count = len(df.columns) # Get context from vector database docs = retriever.get_relevant_documents(query) context = "\n\n".join([doc.page_content for doc in docs]) # Run the chain chain = LLMChain(llm=llm, prompt=PROMPT) raw_result = chain.run( row_count=row_count, column_count=column_count, columns_list=columns_list, sample_data=sample_data, context=context, question=query ) # Clean the result cleaned_result = raw_result.strip() # If result is empty after cleaning, use a fallback if not cleaned_result: cleaned_result = "I couldn't process a complete answer to your question. Please try asking in a different way or provide more specific details about what you'd like to know about the data." processing_time = time.time() - start_time # Log performance metrics performance_tracker.log_performance( model_key, query, processing_time, cleaned_result ) # Add processing time to the response for comparison purposes result_with_metrics = f"{cleaned_result}\n\n[Processing time: {processing_time:.2f} seconds]" return {"answer": result_with_metrics} except Exception as e: import traceback print(f"Error in process_query: {str(e)}") print(traceback.format_exc()) return {"answer": f"An error occurred while processing your question: {str(e)}"} return process_query class ChatBot: def __init__(self, session_id, model_key="DeepSeek Coder Instruct"): self.session_id = session_id self.chat_history = [] self.chain = None self.user_dir = f"user_data/{session_id}" self.csv_file_path = None self.model_key = model_key os.makedirs(self.user_dir, exist_ok=True) def process_file(self, file, model_key=None): if model_key: self.model_key = model_key if file is None: return "Please upload a CSV file first." try: start_time = time.time() print(f"Processing file using model: {self.model_key}") # Handle file from Gradio file_path = file.name if hasattr(file, 'name') else str(file) self.csv_file_path = file_path print(f"CSV file path: {file_path}") # Copy to user directory user_file_path = f"{self.user_dir}/uploaded.csv" # Verify the CSV can be loaded try: df = pd.read_csv(file_path) print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns") # Save a copy in user directory df.to_csv(user_file_path, index=False) self.csv_file_path = user_file_path print(f"CSV saved to {user_file_path}") except Exception as e: print(f"Error reading CSV: {str(e)}") return f"Error reading CSV: {str(e)}" # Load document with reduced chunk size for better memory usage try: loader = CSVLoader(file_path=user_file_path, encoding="utf-8", csv_args={ 'delimiter': ','}) data = loader.load() print(f"Documents loaded: {len(data)}") except Exception as e: print(f"Error loading documents: {str(e)}") return f"Error loading documents: {str(e)}" # Create vector database with optimized settings try: db_path = f"{self.user_dir}/db_faiss" # Use CPU-friendly embeddings with smaller dimensions embeddings = HuggingFaceEmbeddings( model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cpu'} ) db = FAISS.from_documents(data, embeddings) db.save_local(db_path) print(f"Vector database created at {db_path}") except Exception as e: print(f"Error creating vector database: {str(e)}") return f"Error creating vector database: {str(e)}" # Create custom chain try: print(f"Creating conversation chain with model: {self.model_key}") self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key) print("Chain created successfully") except Exception as e: import traceback print(f"Error creating chain: {str(e)}") print(traceback.format_exc()) return f"Error creating chain: {str(e)}" # Add basic file info to chat history for context file_processing_time = time.time() - start_time file_info = f"CSV successfully loaded with {df.shape[0]} rows and {len(df.columns)} columns using model {self.model_key}. Columns: {', '.join(df.columns.tolist())}" self.chat_history.append(("System", file_info)) return f"CSV file successfully processed with model {self.model_key}! You can now chat with the model to analyze the data.\n\n[Processing time: {file_processing_time:.2f} seconds]" except Exception as e: import traceback print(traceback.format_exc()) return f"File processing error: {str(e)}" def change_model(self, model_key): """Change the model being used and recreate the chain if necessary""" try: if model_key == self.model_key: return f"Model {model_key} is already in use." print(f"Changing model from {self.model_key} to {model_key}") self.model_key = model_key # If we have an active session with a file already loaded, recreate the chain if self.csv_file_path and os.path.exists(self.csv_file_path): try: # Load existing database db_path = f"{self.user_dir}/db_faiss" if not os.path.exists(db_path): return f"Error: Database not found. Please upload the CSV file again." print(f"Loading embeddings from {db_path}") embeddings = HuggingFaceEmbeddings( model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cpu'} ) # Add allow_dangerous_deserialization=True flag db = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True) print(f"FAISS database loaded successfully") # Create new chain with the selected model print(f"Creating new conversation chain with {model_key}") self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key) print(f"Chain created successfully") # Add notification to chat history self.chat_history.append(("System", f"Model successfully changed to {model_key}.")) return f"Model successfully changed to {model_key}." except Exception as e: import traceback error_trace = traceback.format_exc() print(f"Detailed error in change_model: {error_trace}") return f"Error changing model: {str(e)}" else: # Just update the model key if no file is loaded yet print(f"No CSV file loaded yet, just updating model preference to {model_key}") return f"Model changed to {model_key}. Please upload a CSV file to begin." except Exception as e: import traceback error_trace = traceback.format_exc() print(f"Unexpected error in change_model: {error_trace}") return f"Unexpected error while changing model: {str(e)}" def chat(self, message, history): if self.chain is None: return "Please upload a CSV file first." try: # Process the question with the chain result = self.chain(message, self.chat_history) # Get the answer with fallback answer = result.get("answer", "Sorry, I couldn't generate an answer. Please try asking a different question.") # Ensure we never return empty if not answer or answer.strip() == "": answer = "Sorry, I couldn't generate an appropriate answer. Please try asking the question differently." # Update internal chat history self.chat_history.append((message, answer)) # Return just the answer for Gradio return answer except Exception as e: import traceback print(traceback.format_exc()) return f"Error: {str(e)}" # UI Code def create_gradio_interface(): with gr.Blocks(title="Chat with CSV using AI Models") as interface: session_id = gr.State(lambda: str(uuid.uuid4())) chatbot_state = gr.State(lambda: None) model_selected = gr.State(lambda: False) # Track if model is already in use # Get model choices model_choices = list(MODEL_CONFIG.keys()) default_model = "DeepSeek Coder Instruct" # Default model gr.HTML("

Chat with CSV using AI Models

") gr.HTML("

Asisten analisis CSV untuk berbagai kebutuhan

") with gr.Row(): with gr.Column(scale=1): with gr.Group(): gr.Markdown("### Step 1: Choose AI Model") model_dropdown = gr.Dropdown( label="Model", choices=model_choices, value=default_model, interactive=True ) model_info = gr.Markdown( value=f"**{default_model}**: {MODEL_CONFIG[default_model]['description']}" ) with gr.Group(): gr.Markdown("### Step 2: Upload and Process CSV") file_input = gr.File( label="Upload CSV Anda", file_types=[".csv"] ) process_button = gr.Button("Process CSV") reset_button = gr.Button("Reset Session (To Change Model)") with gr.Column(scale=2): chatbot_interface = gr.Chatbot( label="Chat History", # type="messages", height=400 ) message_input = gr.Textbox( label="Type your message", placeholder="Ask questions about your CSV data...", lines=2 ) submit_button = gr.Button("Send") clear_button = gr.Button("Clear Chat") # Update model info when selection changes def update_model_info(model_key): return f"**{model_key}**: {MODEL_CONFIG[model_key]['description']}" model_dropdown.change( fn=update_model_info, inputs=[model_dropdown], outputs=[model_info] ) # Process file handler - disables model selection after file is processed def handle_process_file(file, model_key, sess_id): if file is None: return None, None, False, "Please upload a CSV file first." try: chatbot = ChatBot(sess_id, model_key) result = chatbot.process_file(file) return chatbot, True, [(None, result)] except Exception as e: import traceback print(f"Error processing file with {model_key}: {str(e)}") print(traceback.format_exc()) error_msg = f"Error with model {model_key}: {str(e)}\n\nPlease try another model." return None, False, [(None, error_msg)] process_button.click( fn=handle_process_file, inputs=[file_input, model_dropdown, session_id], outputs=[chatbot_state, model_selected, chatbot_interface] ).then( # Disable model dropdown after processing file fn=lambda selected: gr.update(interactive=not selected), inputs=[model_selected], outputs=[model_dropdown] ) # Reset handler - enables model selection again def reset_session(): return None, False, [], gr.update(interactive=True) reset_button.click( fn=reset_session, inputs=[], outputs=[chatbot_state, model_selected, chatbot_interface, model_dropdown] ) # Chat handlers def user_message_submitted(message, history, chatbot, sess_id): history = history + [(message, None)] return history, "", chatbot, sess_id def bot_response(history, chatbot, sess_id): if chatbot is None: chatbot = ChatBot(sess_id) history[-1] = (history[-1][0], "Please upload a CSV file first.") return chatbot, history user_message = history[-1][0] response = chatbot.chat(user_message, history[:-1]) history[-1] = (user_message, response) return chatbot, history submit_button.click( fn=user_message_submitted, inputs=[message_input, chatbot_interface, chatbot_state, session_id], outputs=[chatbot_interface, message_input, chatbot_state, session_id] ).then( fn=bot_response, inputs=[chatbot_interface, chatbot_state, session_id], outputs=[chatbot_state, chatbot_interface] ) message_input.submit( fn=user_message_submitted, inputs=[message_input, chatbot_interface, chatbot_state, session_id], outputs=[chatbot_interface, message_input, chatbot_state, session_id] ).then( fn=bot_response, inputs=[chatbot_interface, chatbot_state, session_id], outputs=[chatbot_state, chatbot_interface] ) # Clear chat handler def handle_clear_chat(chatbot): if chatbot is not None: chatbot.chat_history = [] return chatbot, [] clear_button.click( fn=handle_clear_chat, inputs=[chatbot_state], outputs=[chatbot_state, chatbot_interface] ) return interface # Launch the interface demo = create_gradio_interface() demo.launch(share=True)