import json import os import uuid import pandas as pd import streamlit as st import argparse import traceback from typing import Dict import requests from utils.utils import load_data_split from nsql.database import NeuralDB from nsql.nsql_exec import NSQLExecutor from nsql.nsql_exec_python import NPythonExecutor from generation.generator import Generator import time st.set_page_config( page_title="Binder Demo", page_icon="🔗", layout="wide", initial_sidebar_state="expanded", menu_items={ 'About': "Check out our [website](https://lm-code-binder.github.io/) for more details!" } ) ROOT_DIR = os.path.join(os.path.dirname(__file__), "./") # todo: Add more binder questions, need careful cherry-picks EXAMPLE_TABLES = { "Estonia men's national volleyball team": (558, "what are the total number of players from france?"), # 'how old is kert toobal' "Highest mountain peaks of California": (5, "which is the lowest mountain?"), # 'which mountain is in the most north place?' "2010–11 UAB Blazers men's basketball team": (1, "how many players come from alabama?"), # 'how many players are born after 1996?' "Nissan SR20DET": (438, "which car has power more than 170 kw?"), # '' } @st.cache def load_data(): return load_data_split("missing_squall", "validation") @st.cache def get_key(): # print the public IP of the demo machine ip = requests.get('https://checkip.amazonaws.com').text.strip() print(ip) URL = "http://54.242.37.195:8080/api/predict" # The springboard machine we built to protect the key, 20217 is the birthday of Tianbao's girlfriend # we will only let the demo machine have the access to the keys one_key = requests.post(url=URL, json={"data": "Hi, binder server. Give me a key!"}).json()['data'][0] return one_key def read_markdown(path): with open(path, "r") as f: output = f.read() st.markdown(output, unsafe_allow_html=True) def generate_binder_program(_args, _generator, _data_item): n_shots = _args.n_shots few_shot_prompt = _generator.build_few_shot_prompt_from_file( file_path=_args.prompt_file, n_shots=n_shots ) generate_prompt = _generator.build_generate_prompt( data_item=_data_item, generate_type=(_args.generate_type,) ) prompt = few_shot_prompt + "\n\n" + generate_prompt # Ensure the input length fit Codex max input tokens by shrinking the n_shots max_prompt_tokens = _args.max_api_total_tokens - _args.max_generation_tokens from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=os.path.join(ROOT_DIR, "utils", "gpt2")) while len(tokenizer.tokenize(prompt)) >= max_prompt_tokens: n_shots -= 1 assert n_shots >= 0 few_shot_prompt = _generator.build_few_shot_prompt_from_file( file_path=_args.prompt_file, n_shots=n_shots ) prompt = few_shot_prompt + "\n\n" + generate_prompt response_dict = _generator.generate_one_pass( prompts=[("0", prompt)], # the "0" is the place taker, take effect only when there are multi threads verbose=_args.verbose ) print(response_dict) return response_dict["0"][0][0] def remove_row_id(table): new_table = {"header": [], "rows": []} header: list = table['header'] rows = table['rows'] if not 'row_id' in header: return table new_table['header'] = header[1:] new_table['rows'] = [row[1:] for row in rows] return new_table # Set up import nltk nltk.download('punkt') parser = argparse.ArgumentParser() parser.add_argument('--prompt_file', type=str, default='templates/prompts/prompt_wikitq_v3.txt') # Binder program generation options parser.add_argument('--prompt_style', type=str, default='create_table_select_3_full_table', choices=['create_table_select_3_full_table', 'create_table_select_full_table', 'create_table_select_3', 'create_table', 'create_table_select_3_full_table_w_all_passage_image', 'create_table_select_3_full_table_w_gold_passage_image', 'no_table']) parser.add_argument('--generate_type', type=str, default='nsql', choices=['nsql', 'sql', 'answer', 'npython', 'python']) parser.add_argument('--n_shots', type=int, default=14) parser.add_argument('--seed', type=int, default=42) # Codex options # todo: Allow adjusting Codex parameters parser.add_argument('--engine', type=str, default="code-davinci-002") parser.add_argument('--max_generation_tokens', type=int, default=512) parser.add_argument('--max_api_total_tokens', type=int, default=8001) parser.add_argument('--temperature', type=float, default=0.) parser.add_argument('--sampling_n', type=int, default=1) parser.add_argument('--top_p', type=float, default=1.0) parser.add_argument('--stop_tokens', type=str, default='\n\n', help='Split stop tokens by ||') parser.add_argument('--qa_retrieve_pool_file', type=str, default='templates/qa_retrieve_pool.json') # debug options parser.add_argument('-v', '--verbose', action='store_false') args = parser.parse_args() keys = [get_key()] # The title st.markdown("# Binder Playground") # Demo description read_markdown('resources/demo_description.md') # Upload tables/Switch tables st.markdown('### Try Binder!') col1, _ = st.columns(2) with col1: selected_table_title = st.selectbox( "Select an example table", ( "Estonia men's national volleyball team", "Highest mountain peaks of California", "2010–11 UAB Blazers men's basketball team", "Nissan SR20DET", ) ) # Here we just use ourselves' data_items = load_data() data_item = data_items[EXAMPLE_TABLES[selected_table_title][0]] table = data_item['table'] header, rows, title = table['header'], table['rows'], table['page_title'] db = NeuralDB( [{"title": title, "table": table}]) # todo: try to cache this db instead of re-creating it again and again. df = db.get_table_df() st.markdown("Title: {}".format(title)) st.dataframe(df) # Let user input the question with col1: selected_language = st.selectbox( "Select a programming language", ("SQL", "Python"), ) if selected_language == 'SQL': args.prompt_file = 'templates/prompts/prompt_wikitq_v3.txt' args.generate_type = 'nsql' elif selected_language == 'Python': args.prompt_file = 'templates/prompts/prompt_wikitq_python_simplified_v4.txt' args.generate_type = 'npython' else: raise ValueError(f'{selected_language} language is not supported.') question = st.text_input( "Ask a question about the table:(Please press enter at last!!)", placeholder=EXAMPLE_TABLES[selected_table_title][1], ) if not question: st.stop() # Generate Binder Program generator = Generator(args, keys=keys) with st.spinner("Generating Binder program to solve the question..."): binder_program = generate_binder_program(args, generator, {"question": question, "table": db.get_table_df(), "title": title}) # Do execution st.subheader("Binder program") if selected_language == 'SQL': st.markdown('```sql\n' + binder_program + '\n```') # st.markdown('```' + binder_program + '```') # with st.container(): # st.write(binder_program) executor = NSQLExecutor(args, keys=keys) elif selected_language == 'Python': st.code(binder_program, language='python') executor = NPythonExecutor(args, keys=keys) db = db.get_table_df() else: raise ValueError(f'{selected_language} language is not supported.') try: stamp = '{}'.format(uuid.uuid4()) os.makedirs('tmp_for_vis/', exist_ok=True) with st.spinner("Executing program ..."): exec_answer = executor.nsql_exec(stamp, binder_program, db) if selected_language == 'SQL': with open("tmp_for_vis/{}_tmp_for_vis_steps.txt".format(stamp), "r") as f: steps = json.load(f) for i, step in enumerate(steps): col1, _, _ = st.columns([7, 1, 2]) with col1: st.markdown(f'**Step#{i + 1}**') if i == len(steps) - 1: col1, col1_25, col1_5, col2, col3 = st.columns([5, 0.3, 1.7, 1, 2]) else: col1, col1_25, col1_5, col2, col3 = st.columns([3, 0.3, 2.7, 1, 2]) with col1: st.markdown('```sql\n' + step + '\n```') with col1_25: st.markdown("on") with col1_5: if i == len(steps) - 1: st.metric(label="whole", value="Table", delta = None) else: with open("tmp_for_vis/{}_result_step_{}_input.txt".format(stamp, i), "r") as f: sub_tables_input = json.load(f) for sub_table in sub_tables_input: sub_table_to_print = remove_row_id(sub_table) st.dataframe(pd.DataFrame(sub_table_to_print['rows'], columns=sub_table_to_print['header'])) with col2: st.markdown('$\\rightarrow$') if i == len(steps) - 1: # The final step st.metric(label="↑", value="{}".format(selected_language), delta="Interpreter") else: st.metric(label="↑", value="Codex", delta="10+ examples") with st.spinner('...'): time.sleep(1) with open("tmp_for_vis/{}_result_step_{}.txt".format(stamp, i), "r") as f: result_in_this_step = json.load(f) with col3: if isinstance(result_in_this_step, Dict): rows = remove_row_id(result_in_this_step)["rows"] header = remove_row_id(result_in_this_step)["header"] if isinstance(header, list): for idx in range(len(header)): if header[idx].startswith('col_'): header[idx] = step st.dataframe(pd.DataFrame(rows, columns=header)) else: st.markdown(result_in_this_step) with st.spinner('...'): time.sleep(1) elif selected_language == 'Python': pass if isinstance(exec_answer, list) and len(exec_answer) == 1: exec_answer = exec_answer[0] # st.subheader(f'Execution answer') st.text('') st.markdown(f"Execution answer: {exec_answer}") # todo: Remove tmp files except Exception as e: traceback.print_exc()