import logging from typing import Any, Mapping import torch from torch import nn from mmaudio.ext.synchformer.motionformer import MotionFormer class Synchformer(nn.Module): def __init__(self): super().__init__() self.vfeat_extractor = MotionFormer(extract_features=True, factorize_space_time=True, agg_space_module='TransformerEncoderLayer', agg_time_module='torch.nn.Identity', add_global_repr=False) # self.vfeat_extractor = instantiate_from_config(vfeat_extractor) # self.afeat_extractor = instantiate_from_config(afeat_extractor) # # bridging the s3d latent dim (1024) into what is specified in the config # # to match e.g. the transformer dim # self.vproj = instantiate_from_config(vproj) # self.aproj = instantiate_from_config(aproj) # self.transformer = instantiate_from_config(transformer) def forward(self, vis): B, S, Tv, C, H, W = vis.shape vis = vis.permute(0, 1, 3, 2, 4, 5) # (B, S, C, Tv, H, W) # feat extractors return a tuple of segment-level and global features (ignored for sync) # (B, S, tv, D), e.g. (B, 7, 8, 768) vis = self.vfeat_extractor(vis) return vis def load_state_dict(self, sd: Mapping[str, Any], strict: bool = True): # discard all entries except vfeat_extractor sd = {k: v for k, v in sd.items() if k.startswith('vfeat_extractor')} return super().load_state_dict(sd, strict) if __name__ == "__main__": model = Synchformer().cuda().eval() sd = torch.load('./ext_weights/synchformer_state_dict.pth', weights_only=True) model.load_state_dict(sd) vid = torch.randn(2, 7, 16, 3, 224, 224).cuda() features = model.extract_vfeats(vid, for_loop=False).detach().cpu() print(features.shape) # extract and save the state dict only # sd = torch.load('./ext_weights/sync_model_audioset.pt')['model'] # torch.save(sd, './ext_weights/synchformer_state_dict.pth')