""" Utility functions that call RPC forward or backward on a single remote server """ import asyncio from typing import Iterable, List, Sequence, Tuple import torch from hivemind import nested_compare, nested_flatten, nested_pack, serialize_torch_tensor from hivemind.compression.serialization import deserialize_tensor_stream, deserialize_torch_tensor from hivemind.p2p import StubBase from hivemind.p2p.p2p_daemon_bindings.control import DEFAULT_MAX_MSG_SIZE, MAX_UNARY_PAYLOAD_SIZE from hivemind.proto import runtime_pb2 from hivemind.utils.asyncio import amap_in_executor, iter_as_aiter from hivemind.utils.streaming import split_for_streaming from src.data_structures import ModuleUID, RPCInfo async def run_remote_forward( uid: ModuleUID, stub: StubBase, rpc_info: RPCInfo, *inputs: torch.Tensor, metadata: bytes = b"", **kwargs ) -> Tuple[torch.Tensor, ...]: """ Serializes input tensors and calls "rpc_forward" on a remote server. Mostly adapted from https://github.com/learning-at-home/hivemind/blob/7a7c93aefffc9494c39e7b170c07cb06d8c09c4c/hivemind/moe/client/expert.py#L198 but without RemoteExpertWorker.run_coroutine() call that leads to deadlock here. """ # Note: *inputs are flattened input tensors that follow the expert's info['input_schema'] # detach to avoid pickling the computation graph assert len(kwargs) == len(rpc_info["keyword_names"]), f"Keyword args should be {rpc_info['keyword_names']}" kwargs = {key: kwargs[key] for key in rpc_info["keyword_names"]} # Note: we put keyword arguments in the same order as on a server to prevent f(a=1, b=2) != f(b=2, a=1) errors forward_inputs = (inputs, kwargs) # Modify forward_schema to support prompts args_schema, kwargs_schema = rpc_info["forward_schema"] # TODO: rm this assert when support arbitrary number of input tensors assert len(args_schema) == 1 and len(inputs) == 2 forward_schema_with_prompts = (tuple(args_schema * len(inputs)), kwargs_schema) if not nested_compare(forward_inputs, forward_schema_with_prompts): raise TypeError(f"Inputs do not match expert input schema. Did you pass the right number of parameters?") forward_inputs = nested_flatten(forward_inputs) inputs = tuple(tensor.cpu().detach() for tensor in forward_inputs) # Asynchronous serialization loop = asyncio.get_running_loop() serialized_tensors = await asyncio.gather( *( loop.run_in_executor(None, serialize_torch_tensor, tensor.to(proto.dtype), proto.compression) for tensor, proto in zip(inputs, nested_flatten(forward_schema_with_prompts)) ) ) # call RPC on remote server size = sum(t.element_size() * t.nelement() for t in inputs) if size > MAX_UNARY_PAYLOAD_SIZE: deserialized_outputs = await _forward_stream(uid, serialized_tensors, stub, **kwargs) else: deserialized_outputs = await _forward_unary(uid, serialized_tensors, stub, **kwargs) return nested_pack(deserialized_outputs, structure=rpc_info["outputs_schema"]) async def _forward_stream( uid: str, serialized_tensors: Iterable[runtime_pb2.Tensor], stub, **kwargs ) -> List[torch.Tensor]: split = (p for t in serialized_tensors for p in split_for_streaming(t, DEFAULT_MAX_MSG_SIZE)) outputs = await stub.rpc_forward_stream( amap_in_executor( lambda tensor: runtime_pb2.ExpertRequest(uid=uid, tensors=[tensor], **kwargs), iter_as_aiter(split), ), ) tensors_stream = amap_in_executor(lambda msg: msg.tensors, outputs) return await deserialize_tensor_stream(tensors_stream) async def _forward_unary( uid: str, serialized_tensors: Iterable[runtime_pb2.Tensor], stub, **kwargs ) -> List[torch.Tensor]: outputs: runtime_pb2.ExpertResponse = await stub.rpc_forward( runtime_pb2.ExpertRequest(uid=uid, tensors=list(serialized_tensors), **kwargs) ) return [deserialize_torch_tensor(t) for t in outputs.tensors] async def _backward_stream( uid: str, serialized_tensors: Iterable[runtime_pb2.Tensor], stub, **kwargs ) -> List[torch.Tensor]: split = (part for tensor in serialized_tensors for part in split_for_streaming(tensor, DEFAULT_MAX_MSG_SIZE)) grad_inputs = await stub.rpc_backward_stream( amap_in_executor( lambda tensor: runtime_pb2.ExpertRequest(uid=uid, tensors=[tensor], **kwargs), iter_as_aiter(split), ), ) tensors_stream = amap_in_executor(lambda msg: msg.tensors, grad_inputs) return await deserialize_tensor_stream(tensors_stream) async def run_remote_backward( uid: ModuleUID, stub: StubBase, rpc_info: RPCInfo, inputs: torch.Tensor, grad_outputs: List[torch.Tensor], *extra_tensors: torch.Tensor, **kwargs, ) -> Sequence[torch.Tensor]: """ Serializes grad outputs and calls "rpc_backward" on a remote server. Mostly adapted from https://github.com/learning-at-home/hivemind/blob/7a7c93aefffc9494c39e7b170c07cb06d8c09c4c/hivemind/moe/client/expert.py#L221 but without RemoteExpertWorker.run_coroutine() call that leads to deadlock here. """ grad_outputs_cpu = tuple(tensor.cpu() for tensor in grad_outputs) inputs_and_grad_outputs = tuple(nested_flatten((inputs, grad_outputs_cpu, *extra_tensors))) # Modify forward_schema to support prompts args_schema, kwargs_schema = rpc_info["forward_schema"] assert len(args_schema) == 1 and isinstance(inputs, torch.Tensor) # TODO generalize this prompts_schema = next(iter(args_schema)) backward_schema = tuple(nested_flatten((rpc_info["forward_schema"], rpc_info["outputs_schema"], prompts_schema))) # Asynchronous serialization loop = asyncio.get_running_loop() serialized_tensors = await asyncio.gather( *( loop.run_in_executor(None, serialize_torch_tensor, tensor.to(proto.dtype), proto.compression) for tensor, proto in zip(inputs_and_grad_outputs, backward_schema) ) ) size = sum(t.element_size() * t.nelement() for t in inputs_and_grad_outputs) if size > MAX_UNARY_PAYLOAD_SIZE: deserialized_grad_inputs = await _backward_stream(uid, serialized_tensors, stub, **kwargs) else: deserialized_grad_inputs = await _backward_unary(uid, serialized_tensors, stub, **kwargs) return deserialized_grad_inputs async def _backward_unary( uid: str, serialized_tensors: Iterable[runtime_pb2.Tensor], stub, **kwargs ) -> List[torch.Tensor]: grad_inputs: runtime_pb2.ExpertResponse = await stub.rpc_backward( runtime_pb2.ExpertRequest(uid=uid, tensors=list(serialized_tensors), **kwargs) ) return [deserialize_torch_tensor(t) for t in grad_inputs.tensors]