# import sys # sys.path.insert(0, './petals/') # import torch # import transformers import gradio as gr # from src.client.remote_model import DistributedBloomForCausalLM # MODEL_NAME = "bigscience/test-bloomd-6b3" # select model you like # INITIAL_PEERS = ["/ip4/193.106.95.184/tcp/31000/p2p/QmSg7izCDtowVTACbUmWvEiQZNY4wgCQ9T9Doo66K59X6q"] # tokenizer = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3") # model = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3", initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32) def inference(text, seq_length=1): return text # input_ids = tokenizer([text], return_tensors="pt").input_ids # output = model.generate(input_ids, max_new_tokens=seq_length) # return tokenizer.batch_decode(output)[0] iface = gr.Interface( fn=inference, inputs=[ gr.Textbox(lines=10, label="Input text"), gr.inputs.Slider( minimum=0, maximum=1000, step=1, default=42, label="Sequence length for generation" ) ], outputs="text" ) iface.launch()