import sys sys.path.insert(0, './petals/') import transformers import streamlit as st # Import a Petals model from src.client.remote_model import DistributedBloomForCausalLM MODEL_NAME = "bigscience/test-bloomd-6b3" # select model you like INITIAL_PEERS = ["/ip4/193.106.95.184/tcp/31000/p2p/QmSg7izCDtowVTACbUmWvEiQZNY4wgCQ9T9Doo66K59X6q"] tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME) model = DistributedBloomForCausalLM.from_pretrained( MODEL_NAME, initial_peers=INITIAL_PEERS, ).to("cpu") text = st.text_input('Enter some text') max_new_tokens = st.slider('Select a value', min_value=1, max_value=100) if text: model = DistributedBloomForCausalLM(MODEL_NAME, INITIAL_PEERS) input_ids = tokenizer([text], return_tensors="pt").input_ids output = model.generate(input_ids, max_new_tokens=max_new_tokens) output_text = tokenizer.batch_decode(output) st.write(output_text)