import contextlib import os import gc import random import shutil import time import traceback import zipfile import filelock import numpy as np import pandas as pd import torch def set_seed(seed: int): """ Sets the seed of the entire notebook so results are the same every time we run. This is for REPRODUCIBILITY. """ np.random.seed(seed) random_state = np.random.RandomState(seed) random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False os.environ['PYTHONHASHSEED'] = str(seed) return random_state def flatten_list(lis): """Given a list, possibly nested to any level, return it flattened.""" new_lis = [] for item in lis: if type(item) == type([]): new_lis.extend(flatten_list(item)) else: new_lis.append(item) return new_lis def clear_torch_cache(): if torch.cuda.is_available: torch.cuda.empty_cache() torch.cuda.ipc_collect() gc.collect() def system_info(): import psutil system = {} # https://stackoverflow.com/questions/48951136/plot-multiple-graphs-in-one-plot-using-tensorboard # https://arshren.medium.com/monitoring-your-devices-in-python-5191d672f749 temps = psutil.sensors_temperatures(fahrenheit=False) if 'coretemp' in temps: coretemp = temps['coretemp'] temp_dict = {k.label: k.current for k in coretemp} for k, v in temp_dict.items(): system['CPU_C/%s' % k] = v # https://github.com/gpuopenanalytics/pynvml/blob/master/help_query_gpu.txt from pynvml.smi import nvidia_smi nvsmi = nvidia_smi.getInstance() gpu_power_dict = {'W_gpu%d' % i: x['power_readings']['power_draw'] for i, x in enumerate(nvsmi.DeviceQuery('power.draw')['gpu'])} for k, v in gpu_power_dict.items(): system['GPU_W/%s' % k] = v gpu_temp_dict = {'C_gpu%d' % i: x['temperature']['gpu_temp'] for i, x in enumerate(nvsmi.DeviceQuery('temperature.gpu')['gpu'])} for k, v in gpu_temp_dict.items(): system['GPU_C/%s' % k] = v gpu_memory_free_dict = {'MiB_gpu%d' % i: x['fb_memory_usage']['free'] for i, x in enumerate(nvsmi.DeviceQuery('memory.free')['gpu'])} gpu_memory_total_dict = {'MiB_gpu%d' % i: x['fb_memory_usage']['total'] for i, x in enumerate(nvsmi.DeviceQuery('memory.total')['gpu'])} gpu_memory_frac_dict = {k: gpu_memory_free_dict[k] / gpu_memory_total_dict[k] for k in gpu_memory_total_dict} for k, v in gpu_memory_frac_dict.items(): system[f'GPU_M/%s' % k] = v return system def system_info_print(): try: df = pd.DataFrame.from_dict(system_info(), orient='index') # avoid slamming GPUs time.sleep(1) return df.to_markdown() except Exception as e: return "Error: %s" % str(e) def zip_data(root_dirs=None, zip_path='data.zip', base_dir='./'): try: return _zip_data(zip_path=zip_path, base_dir=base_dir, root_dirs=root_dirs) except Exception as e: traceback.print_exc() print('Exception in zipping: %s' % str(e)) def _zip_data(root_dirs=None, zip_path='data.zip', base_dir='./'): assert root_dirs is not None with zipfile.ZipFile(zip_path, "w") as expt_zip: for root_dir in root_dirs: if root_dir is None: continue for root, d, files in os.walk(root_dir): for file in files: file_to_archive = os.path.join(root, file) assert os.path.exists(file_to_archive) path_to_archive = os.path.relpath(file_to_archive, base_dir) expt_zip.write(filename=file_to_archive, arcname=path_to_archive) return "data.zip" def save_generate_output(output=None, base_model=None, json_file_path=None): try: return _save_generate_output(output=output, base_model=base_model, json_file_path=json_file_path) except Exception as e: traceback.print_exc() print('Exception in saving: %s' % str(e)) def _save_generate_output(output=None, base_model=None, json_file_path=None): """ Save conversation to .json, row by row Appends if file exists """ assert isinstance(json_file_path, str), "must provide save_path" as_file = os.path.normpath(json_file_path) if os.path.isfile(as_file): # protection if had file there before os.remove(as_file) os.makedirs(json_file_path, exist_ok=True) json_file_file = os.path.join(json_file_path, 'save.json') import json if output[-10:] == '\n\n:': # remove trailing : output = output[:-10] with filelock.FileLock("save_path.lock"): # lock logging in case have concurrency with open(json_file_file, "a") as f: # just add [ at start, and ] at end, and have proper JSON dataset f.write( " " + json.dumps( dict(text=output, time=time.ctime(), base_model=base_model) ) + ",\n" )