diff --git "a/gpt_langchain.py" "b/gpt_langchain.py"
deleted file mode 100644--- "a/gpt_langchain.py"
+++ /dev/null
@@ -1,2559 +0,0 @@
-import ast
-import glob
-import inspect
-import os
-import pathlib
-import pickle
-import shutil
-import subprocess
-import tempfile
-import time
-import traceback
-import types
-import uuid
-import zipfile
-from collections import defaultdict
-from datetime import datetime
-from functools import reduce
-from operator import concat
-import filelock
-
-from joblib import delayed
-from langchain.callbacks import streaming_stdout
-from langchain.embeddings import HuggingFaceInstructEmbeddings
-from langchain.schema import LLMResult
-from tqdm import tqdm
-
-from enums import DocumentSubset, no_lora_str, model_token_mapping, source_prefix, source_postfix, non_query_commands, \
- LangChainAction, LangChainMode, DocumentChoice
-from evaluate_params import gen_hyper
-from gen import get_model, SEED
-from prompter import non_hf_types, PromptType, Prompter
-from utils import wrapped_partial, EThread, import_matplotlib, sanitize_filename, makedirs, get_url, flatten_list, \
- get_device, ProgressParallel, remove, hash_file, clear_torch_cache, NullContext, get_hf_server, FakeTokenizer, \
- have_libreoffice, have_arxiv, have_playwright, have_selenium, have_tesseract, have_pymupdf, set_openai
-from utils_langchain import StreamingGradioCallbackHandler
-
-import_matplotlib()
-
-import numpy as np
-import pandas as pd
-import requests
-from langchain.chains.qa_with_sources import load_qa_with_sources_chain
-# , GCSDirectoryLoader, GCSFileLoader
-# , OutlookMessageLoader # GPL3
-# ImageCaptionLoader, # use our own wrapper
-# ReadTheDocsLoader, # no special file, some path, so have to give as special option
-from langchain.document_loaders import PyPDFLoader, TextLoader, CSVLoader, PythonLoader, TomlLoader, \
- UnstructuredURLLoader, UnstructuredHTMLLoader, UnstructuredWordDocumentLoader, UnstructuredMarkdownLoader, \
- EverNoteLoader, UnstructuredEmailLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, \
- UnstructuredEPubLoader, UnstructuredImageLoader, UnstructuredRTFLoader, ArxivLoader, UnstructuredPDFLoader, \
- UnstructuredExcelLoader
-from langchain.text_splitter import RecursiveCharacterTextSplitter, Language
-from langchain.chains.question_answering import load_qa_chain
-from langchain.docstore.document import Document
-from langchain import PromptTemplate, HuggingFaceTextGenInference
-from langchain.vectorstores import Chroma
-
-
-def get_db(sources, use_openai_embedding=False, db_type='faiss',
- persist_directory="db_dir", load_db_if_exists=True,
- langchain_mode='notset',
- collection_name=None,
- hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2"):
- if not sources:
- return None
-
- # get embedding model
- embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
- assert collection_name is not None or langchain_mode != 'notset'
- if collection_name is None:
- collection_name = langchain_mode.replace(' ', '_')
-
- # Create vector database
- if db_type == 'faiss':
- from langchain.vectorstores import FAISS
- db = FAISS.from_documents(sources, embedding)
- elif db_type == 'weaviate':
- import weaviate
- from weaviate.embedded import EmbeddedOptions
- from langchain.vectorstores import Weaviate
-
- if os.getenv('WEAVIATE_URL', None):
- client = _create_local_weaviate_client()
- else:
- client = weaviate.Client(
- embedded_options=EmbeddedOptions()
- )
- index_name = collection_name.capitalize()
- db = Weaviate.from_documents(documents=sources, embedding=embedding, client=client, by_text=False,
- index_name=index_name)
- elif db_type == 'chroma':
- assert persist_directory is not None
- os.makedirs(persist_directory, exist_ok=True)
-
- # see if already actually have persistent db, and deal with possible changes in embedding
- db = get_existing_db(None, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
- hf_embedding_model, verbose=False)
- if db is None:
- from chromadb.config import Settings
- client_settings = Settings(anonymized_telemetry=False,
- chroma_db_impl="duckdb+parquet",
- persist_directory=persist_directory)
- db = Chroma.from_documents(documents=sources,
- embedding=embedding,
- persist_directory=persist_directory,
- collection_name=collection_name,
- client_settings=client_settings)
- db.persist()
- clear_embedding(db)
- save_embed(db, use_openai_embedding, hf_embedding_model)
- else:
- # then just add
- db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type,
- use_openai_embedding=use_openai_embedding,
- hf_embedding_model=hf_embedding_model)
- else:
- raise RuntimeError("No such db_type=%s" % db_type)
-
- return db
-
-
-def _get_unique_sources_in_weaviate(db):
- batch_size = 100
- id_source_list = []
- result = db._client.data_object.get(class_name=db._index_name, limit=batch_size)
-
- while result['objects']:
- id_source_list += [(obj['id'], obj['properties']['source']) for obj in result['objects']]
- last_id = id_source_list[-1][0]
- result = db._client.data_object.get(class_name=db._index_name, limit=batch_size, after=last_id)
-
- unique_sources = {source for _, source in id_source_list}
- return unique_sources
-
-
-def add_to_db(db, sources, db_type='faiss',
- avoid_dup_by_file=False,
- avoid_dup_by_content=True,
- use_openai_embedding=False,
- hf_embedding_model=None):
- assert hf_embedding_model is not None
- num_new_sources = len(sources)
- if not sources:
- return db, num_new_sources, []
- if db_type == 'faiss':
- db.add_documents(sources)
- elif db_type == 'weaviate':
- # FIXME: only control by file name, not hash yet
- if avoid_dup_by_file or avoid_dup_by_content:
- unique_sources = _get_unique_sources_in_weaviate(db)
- sources = [x for x in sources if x.metadata['source'] not in unique_sources]
- num_new_sources = len(sources)
- if num_new_sources == 0:
- return db, num_new_sources, []
- db.add_documents(documents=sources)
- elif db_type == 'chroma':
- collection = get_documents(db)
- # files we already have:
- metadata_files = set([x['source'] for x in collection['metadatas']])
- if avoid_dup_by_file:
- # Too weak in case file changed content, assume parent shouldn't pass true for this for now
- raise RuntimeError("Not desired code path")
- sources = [x for x in sources if x.metadata['source'] not in metadata_files]
- if avoid_dup_by_content:
- # look at hash, instead of page_content
- # migration: If no hash previously, avoid updating,
- # since don't know if need to update and may be expensive to redo all unhashed files
- metadata_hash_ids = set(
- [x['hashid'] for x in collection['metadatas'] if 'hashid' in x and x['hashid'] not in ["None", None]])
- # avoid sources with same hash
- sources = [x for x in sources if x.metadata.get('hashid') not in metadata_hash_ids]
- num_nohash = len([x for x in sources if not x.metadata.get('hashid')])
- print("Found %s new sources (%d have no hash in original source,"
- " so have to reprocess for migration to sources with hash)" % (len(sources), num_nohash), flush=True)
- # get new file names that match existing file names. delete existing files we are overridding
- dup_metadata_files = set([x.metadata['source'] for x in sources if x.metadata['source'] in metadata_files])
- print("Removing %s duplicate files from db because ingesting those as new documents" % len(
- dup_metadata_files), flush=True)
- client_collection = db._client.get_collection(name=db._collection.name,
- embedding_function=db._collection._embedding_function)
- for dup_file in dup_metadata_files:
- dup_file_meta = dict(source=dup_file)
- try:
- client_collection.delete(where=dup_file_meta)
- except KeyError:
- pass
- num_new_sources = len(sources)
- if num_new_sources == 0:
- return db, num_new_sources, []
- db.add_documents(documents=sources)
- db.persist()
- clear_embedding(db)
- save_embed(db, use_openai_embedding, hf_embedding_model)
- else:
- raise RuntimeError("No such db_type=%s" % db_type)
-
- new_sources_metadata = [x.metadata for x in sources]
-
- return db, num_new_sources, new_sources_metadata
-
-
-def create_or_update_db(db_type, persist_directory, collection_name,
- sources, use_openai_embedding, add_if_exists, verbose, hf_embedding_model):
- if db_type == 'weaviate':
- import weaviate
- from weaviate.embedded import EmbeddedOptions
-
- if os.getenv('WEAVIATE_URL', None):
- client = _create_local_weaviate_client()
- else:
- client = weaviate.Client(
- embedded_options=EmbeddedOptions()
- )
-
- index_name = collection_name.replace(' ', '_').capitalize()
- if client.schema.exists(index_name) and not add_if_exists:
- client.schema.delete_class(index_name)
- if verbose:
- print("Removing %s" % index_name, flush=True)
- elif db_type == 'chroma':
- if not os.path.isdir(persist_directory) or not add_if_exists:
- if os.path.isdir(persist_directory):
- if verbose:
- print("Removing %s" % persist_directory, flush=True)
- remove(persist_directory)
- if verbose:
- print("Generating db", flush=True)
-
- if not add_if_exists:
- if verbose:
- print("Generating db", flush=True)
- else:
- if verbose:
- print("Loading and updating db", flush=True)
-
- db = get_db(sources,
- use_openai_embedding=use_openai_embedding,
- db_type=db_type,
- persist_directory=persist_directory,
- langchain_mode=collection_name,
- hf_embedding_model=hf_embedding_model)
-
- return db
-
-
-def get_embedding(use_openai_embedding, hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2"):
- # Get embedding model
- if use_openai_embedding:
- assert os.getenv("OPENAI_API_KEY") is not None, "Set ENV OPENAI_API_KEY"
- from langchain.embeddings import OpenAIEmbeddings
- embedding = OpenAIEmbeddings(disallowed_special=())
- else:
- # to ensure can fork without deadlock
- from langchain.embeddings import HuggingFaceEmbeddings
-
- device, torch_dtype, context_class = get_device_dtype()
- model_kwargs = dict(device=device)
- if 'instructor' in hf_embedding_model:
- encode_kwargs = {'normalize_embeddings': True}
- embedding = HuggingFaceInstructEmbeddings(model_name=hf_embedding_model,
- model_kwargs=model_kwargs,
- encode_kwargs=encode_kwargs)
- else:
- embedding = HuggingFaceEmbeddings(model_name=hf_embedding_model, model_kwargs=model_kwargs)
- return embedding
-
-
-def get_answer_from_sources(chain, sources, question):
- return chain(
- {
- "input_documents": sources,
- "question": question,
- },
- return_only_outputs=True,
- )["output_text"]
-
-
-"""Wrapper around Huggingface text generation inference API."""
-from functools import partial
-from typing import Any, Dict, List, Optional, Set
-
-from pydantic import Extra, Field, root_validator
-
-from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks
-from langchain.llms.base import LLM
-
-
-class GradioInference(LLM):
- """
- Gradio generation inference API.
- """
- inference_server_url: str = ""
-
- temperature: float = 0.8
- top_p: Optional[float] = 0.95
- top_k: Optional[int] = None
- num_beams: Optional[int] = 1
- max_new_tokens: int = 512
- min_new_tokens: int = 1
- early_stopping: bool = False
- max_time: int = 180
- repetition_penalty: Optional[float] = None
- num_return_sequences: Optional[int] = 1
- do_sample: bool = False
- chat_client: bool = False
-
- return_full_text: bool = True
- stream: bool = False
- sanitize_bot_response: bool = False
-
- prompter: Any = None
- context: Any = ''
- iinput: Any = ''
- client: Any = None
-
- class Config:
- """Configuration for this pydantic object."""
-
- extra = Extra.forbid
-
- @root_validator()
- def validate_environment(cls, values: Dict) -> Dict:
- """Validate that python package exists in environment."""
-
- try:
- if values['client'] is None:
- import gradio_client
- values["client"] = gradio_client.Client(
- values["inference_server_url"]
- )
- except ImportError:
- raise ImportError(
- "Could not import gradio_client python package. "
- "Please install it with `pip install gradio_client`."
- )
- return values
-
- @property
- def _llm_type(self) -> str:
- """Return type of llm."""
- return "gradio_inference"
-
- def _call(
- self,
- prompt: str,
- stop: Optional[List[str]] = None,
- run_manager: Optional[CallbackManagerForLLMRun] = None,
- **kwargs: Any,
- ) -> str:
- # NOTE: prompt here has no prompt_type (e.g. human: bot:) prompt injection,
- # so server should get prompt_type or '', not plain
- # This is good, so gradio server can also handle stopping.py conditions
- # this is different than TGI server that uses prompter to inject prompt_type prompting
- stream_output = self.stream
- gr_client = self.client
- client_langchain_mode = 'Disabled'
- client_add_chat_history_to_context = True
- client_langchain_action = LangChainAction.QUERY.value
- client_langchain_agents = []
- top_k_docs = 1
- chunk = True
- chunk_size = 512
- client_kwargs = dict(instruction=prompt if self.chat_client else '', # only for chat=True
- iinput=self.iinput if self.chat_client else '', # only for chat=True
- context=self.context,
- # streaming output is supported, loops over and outputs each generation in streaming mode
- # but leave stream_output=False for simple input/output mode
- stream_output=stream_output,
- prompt_type=self.prompter.prompt_type,
- prompt_dict='',
-
- temperature=self.temperature,
- top_p=self.top_p,
- top_k=self.top_k,
- num_beams=self.num_beams,
- max_new_tokens=self.max_new_tokens,
- min_new_tokens=self.min_new_tokens,
- early_stopping=self.early_stopping,
- max_time=self.max_time,
- repetition_penalty=self.repetition_penalty,
- num_return_sequences=self.num_return_sequences,
- do_sample=self.do_sample,
- chat=self.chat_client,
-
- instruction_nochat=prompt if not self.chat_client else '',
- iinput_nochat=self.iinput if not self.chat_client else '',
- langchain_mode=client_langchain_mode,
- add_chat_history_to_context=client_add_chat_history_to_context,
- langchain_action=client_langchain_action,
- langchain_agents=client_langchain_agents,
- top_k_docs=top_k_docs,
- chunk=chunk,
- chunk_size=chunk_size,
- document_subset=DocumentSubset.Relevant.name,
- document_choice=[DocumentChoice.ALL.value],
- )
- api_name = '/submit_nochat_api' # NOTE: like submit_nochat but stable API for string dict passing
- if not stream_output:
- res = gr_client.predict(str(dict(client_kwargs)), api_name=api_name)
- res_dict = ast.literal_eval(res)
- text = res_dict['response']
- return self.prompter.get_response(prompt + text, prompt=prompt,
- sanitize_bot_response=self.sanitize_bot_response)
- else:
- text_callback = None
- if run_manager:
- text_callback = partial(
- run_manager.on_llm_new_token, verbose=self.verbose
- )
-
- job = gr_client.submit(str(dict(client_kwargs)), api_name=api_name)
- text0 = ''
- while not job.done():
- outputs_list = job.communicator.job.outputs
- if outputs_list:
- res = job.communicator.job.outputs[-1]
- res_dict = ast.literal_eval(res)
- text = res_dict['response']
- text = self.prompter.get_response(prompt + text, prompt=prompt,
- sanitize_bot_response=self.sanitize_bot_response)
- # FIXME: derive chunk from full for now
- text_chunk = text[len(text0):]
- # save old
- text0 = text
-
- if text_callback:
- text_callback(text_chunk)
-
- time.sleep(0.01)
-
- # ensure get last output to avoid race
- res_all = job.outputs()
- if len(res_all) > 0:
- res = res_all[-1]
- res_dict = ast.literal_eval(res)
- text = res_dict['response']
- # FIXME: derive chunk from full for now
- else:
- # go with old if failure
- text = text0
- text_chunk = text[len(text0):]
- if text_callback:
- text_callback(text_chunk)
- return self.prompter.get_response(prompt + text, prompt=prompt,
- sanitize_bot_response=self.sanitize_bot_response)
-
-
-class H2OHuggingFaceTextGenInference(HuggingFaceTextGenInference):
- max_new_tokens: int = 512
- do_sample: bool = False
- top_k: Optional[int] = None
- top_p: Optional[float] = 0.95
- typical_p: Optional[float] = 0.95
- temperature: float = 0.8
- repetition_penalty: Optional[float] = None
- return_full_text: bool = False
- stop_sequences: List[str] = Field(default_factory=list)
- seed: Optional[int] = None
- inference_server_url: str = ""
- timeout: int = 300
- headers: dict = None
- stream: bool = False
- sanitize_bot_response: bool = False
- prompter: Any = None
- context: Any = ''
- iinput: Any = ''
- tokenizer: Any = None
- client: Any = None
-
- @root_validator()
- def validate_environment(cls, values: Dict) -> Dict:
- """Validate that python package exists in environment."""
-
- try:
- if values['client'] is None:
- import text_generation
-
- values["client"] = text_generation.Client(
- values["inference_server_url"],
- timeout=values["timeout"],
- headers=values["headers"],
- )
- except ImportError:
- raise ImportError(
- "Could not import text_generation python package. "
- "Please install it with `pip install text_generation`."
- )
- return values
-
- def _call(
- self,
- prompt: str,
- stop: Optional[List[str]] = None,
- run_manager: Optional[CallbackManagerForLLMRun] = None,
- **kwargs: Any,
- ) -> str:
- if stop is None:
- stop = self.stop_sequences
- else:
- stop += self.stop_sequences
-
- # HF inference server needs control over input tokens
- assert self.tokenizer is not None
- from h2oai_pipeline import H2OTextGenerationPipeline
- prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
-
- # NOTE: TGI server does not add prompting, so must do here
- data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
- prompt = self.prompter.generate_prompt(data_point)
-
- gen_server_kwargs = dict(do_sample=self.do_sample,
- stop_sequences=stop,
- max_new_tokens=self.max_new_tokens,
- top_k=self.top_k,
- top_p=self.top_p,
- typical_p=self.typical_p,
- temperature=self.temperature,
- repetition_penalty=self.repetition_penalty,
- return_full_text=self.return_full_text,
- seed=self.seed,
- )
- gen_server_kwargs.update(kwargs)
-
- # lower bound because client is re-used if multi-threading
- self.client.timeout = max(300, self.timeout)
-
- if not self.stream:
- res = self.client.generate(
- prompt,
- **gen_server_kwargs,
- )
- if self.return_full_text:
- gen_text = res.generated_text[len(prompt):]
- else:
- gen_text = res.generated_text
- # remove stop sequences from the end of the generated text
- for stop_seq in stop:
- if stop_seq in gen_text:
- gen_text = gen_text[:gen_text.index(stop_seq)]
- text = prompt + gen_text
- text = self.prompter.get_response(text, prompt=prompt,
- sanitize_bot_response=self.sanitize_bot_response)
- else:
- text_callback = None
- if run_manager:
- text_callback = partial(
- run_manager.on_llm_new_token, verbose=self.verbose
- )
- # parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
- if text_callback:
- text_callback(prompt)
- text = ""
- # Note: Streaming ignores return_full_text=True
- for response in self.client.generate_stream(prompt, **gen_server_kwargs):
- text_chunk = response.token.text
- text += text_chunk
- text = self.prompter.get_response(prompt + text, prompt=prompt,
- sanitize_bot_response=self.sanitize_bot_response)
- # stream part
- is_stop = False
- for stop_seq in stop:
- if stop_seq in response.token.text:
- is_stop = True
- break
- if is_stop:
- break
- if not response.token.special:
- if text_callback:
- text_callback(response.token.text)
- return text
-
-
-from langchain.chat_models import ChatOpenAI
-from langchain.llms import OpenAI
-from langchain.llms.openai import _streaming_response_template, completion_with_retry, _update_response, \
- update_token_usage
-
-
-class H2OOpenAI(OpenAI):
- """
- New class to handle vLLM's use of OpenAI, no vllm_chat supported, so only need here
- Handles prompting that OpenAI doesn't need, stopping as well
- """
- stop_sequences: Any = None
- sanitize_bot_response: bool = False
- prompter: Any = None
- context: Any = ''
- iinput: Any = ''
- tokenizer: Any = None
-
- @classmethod
- def all_required_field_names(cls) -> Set:
- all_required_field_names = super(OpenAI, cls).all_required_field_names()
- all_required_field_names.update(
- {'top_p', 'frequency_penalty', 'presence_penalty', 'stop_sequences', 'sanitize_bot_response', 'prompter',
- 'tokenizer'})
- return all_required_field_names
-
- def _generate(
- self,
- prompts: List[str],
- stop: Optional[List[str]] = None,
- run_manager: Optional[CallbackManagerForLLMRun] = None,
- **kwargs: Any,
- ) -> LLMResult:
- stop = self.stop_sequences if not stop else self.stop_sequences + stop
-
- # HF inference server needs control over input tokens
- assert self.tokenizer is not None
- from h2oai_pipeline import H2OTextGenerationPipeline
- for prompti, prompt in enumerate(prompts):
- prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
- # NOTE: OpenAI/vLLM server does not add prompting, so must do here
- data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
- prompt = self.prompter.generate_prompt(data_point)
- prompts[prompti] = prompt
-
- params = self._invocation_params
- params = {**params, **kwargs}
- sub_prompts = self.get_sub_prompts(params, prompts, stop)
- choices = []
- token_usage: Dict[str, int] = {}
- # Get the token usage from the response.
- # Includes prompt, completion, and total tokens used.
- _keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
- text = ''
- for _prompts in sub_prompts:
- if self.streaming:
- text_with_prompt = ""
- prompt = _prompts[0]
- if len(_prompts) > 1:
- raise ValueError("Cannot stream results with multiple prompts.")
- params["stream"] = True
- response = _streaming_response_template()
- first = True
- for stream_resp in completion_with_retry(
- self, prompt=_prompts, **params
- ):
- if first:
- stream_resp["choices"][0]["text"] = prompt + stream_resp["choices"][0]["text"]
- first = False
- text_chunk = stream_resp["choices"][0]["text"]
- text_with_prompt += text_chunk
- text = self.prompter.get_response(text_with_prompt, prompt=prompt,
- sanitize_bot_response=self.sanitize_bot_response)
- if run_manager:
- run_manager.on_llm_new_token(
- text_chunk,
- verbose=self.verbose,
- logprobs=stream_resp["choices"][0]["logprobs"],
- )
- _update_response(response, stream_resp)
- choices.extend(response["choices"])
- else:
- response = completion_with_retry(self, prompt=_prompts, **params)
- choices.extend(response["choices"])
- if not self.streaming:
- # Can't update token usage if streaming
- update_token_usage(_keys, response, token_usage)
- choices[0]['text'] = text
- return self.create_llm_result(choices, prompts, token_usage)
-
-
-class H2OChatOpenAI(ChatOpenAI):
- @classmethod
- def all_required_field_names(cls) -> Set:
- all_required_field_names = super(ChatOpenAI, cls).all_required_field_names()
- all_required_field_names.update({'top_p', 'frequency_penalty', 'presence_penalty'})
- return all_required_field_names
-
-
-def get_llm(use_openai_model=False,
- model_name=None,
- model=None,
- tokenizer=None,
- inference_server=None,
- stream_output=False,
- do_sample=False,
- temperature=0.1,
- top_k=40,
- top_p=0.7,
- num_beams=1,
- max_new_tokens=256,
- min_new_tokens=1,
- early_stopping=False,
- max_time=180,
- repetition_penalty=1.0,
- num_return_sequences=1,
- prompt_type=None,
- prompt_dict=None,
- prompter=None,
- context=None,
- iinput=None,
- sanitize_bot_response=False,
- verbose=False,
- ):
- if inference_server is None:
- inference_server = ''
- if use_openai_model or inference_server.startswith('openai') or inference_server.startswith('vllm'):
- if use_openai_model and model_name is None:
- model_name = "gpt-3.5-turbo"
- # FIXME: Will later import be ignored? I think so, so should be fine
- openai, inf_type = set_openai(inference_server)
- kwargs_extra = {}
- if inference_server == 'openai_chat' or inf_type == 'vllm_chat':
- cls = H2OChatOpenAI
- # FIXME: Support context, iinput
- else:
- cls = H2OOpenAI
- if inf_type == 'vllm':
- terminate_response = prompter.terminate_response or []
- stop_sequences = list(set(terminate_response + [prompter.PreResponse]))
- stop_sequences = [x for x in stop_sequences if x]
- kwargs_extra = dict(stop_sequences=stop_sequences,
- sanitize_bot_response=sanitize_bot_response,
- prompter=prompter,
- context=context,
- iinput=iinput,
- tokenizer=tokenizer,
- client=None)
-
- callbacks = [StreamingGradioCallbackHandler()]
- llm = cls(model_name=model_name,
- temperature=temperature if do_sample else 0,
- # FIXME: Need to count tokens and reduce max_new_tokens to fit like in generate.py
- max_tokens=max_new_tokens,
- top_p=top_p if do_sample else 1,
- frequency_penalty=0,
- presence_penalty=1.07 - repetition_penalty + 0.6, # so good default
- callbacks=callbacks if stream_output else None,
- openai_api_key=openai.api_key,
- openai_api_base=openai.api_base,
- logit_bias=None if inf_type == 'vllm' else {},
- max_retries=2,
- streaming=stream_output,
- **kwargs_extra
- )
- streamer = callbacks[0] if stream_output else None
- if inference_server in ['openai', 'openai_chat']:
- prompt_type = inference_server
- else:
- # vllm goes here
- prompt_type = prompt_type or 'plain'
- elif inference_server:
- assert inference_server.startswith(
- 'http'), "Malformed inference_server=%s. Did you add http:// in front?" % inference_server
-
- from gradio_utils.grclient import GradioClient
- from text_generation import Client as HFClient
- if isinstance(model, GradioClient):
- gr_client = model
- hf_client = None
- else:
- gr_client = None
- hf_client = model
- assert isinstance(hf_client, HFClient)
-
- inference_server, headers = get_hf_server(inference_server)
-
- # quick sanity check to avoid long timeouts, just see if can reach server
- requests.get(inference_server, timeout=int(os.getenv('REQUEST_TIMEOUT_FAST', '10')))
-
- callbacks = [StreamingGradioCallbackHandler()]
- assert prompter is not None
- terminate_response = prompter.terminate_response or []
- stop_sequences = list(set(terminate_response + [prompter.PreResponse]))
- stop_sequences = [x for x in stop_sequences if x]
-
- if gr_client:
- chat_client = False
- llm = GradioInference(
- inference_server_url=inference_server,
- return_full_text=True,
-
- temperature=temperature,
- top_p=top_p,
- top_k=top_k,
- num_beams=num_beams,
- max_new_tokens=max_new_tokens,
- min_new_tokens=min_new_tokens,
- early_stopping=early_stopping,
- max_time=max_time,
- repetition_penalty=repetition_penalty,
- num_return_sequences=num_return_sequences,
- do_sample=do_sample,
- chat_client=chat_client,
-
- callbacks=callbacks if stream_output else None,
- stream=stream_output,
- prompter=prompter,
- context=context,
- iinput=iinput,
- client=gr_client,
- sanitize_bot_response=sanitize_bot_response,
- )
- elif hf_client:
- llm = H2OHuggingFaceTextGenInference(
- inference_server_url=inference_server,
- do_sample=do_sample,
- max_new_tokens=max_new_tokens,
- repetition_penalty=repetition_penalty,
- return_full_text=True,
- seed=SEED,
-
- stop_sequences=stop_sequences,
- temperature=temperature,
- top_k=top_k,
- top_p=top_p,
- # typical_p=top_p,
- callbacks=callbacks if stream_output else None,
- stream=stream_output,
- prompter=prompter,
- context=context,
- iinput=iinput,
- tokenizer=tokenizer,
- client=hf_client,
- timeout=max_time,
- sanitize_bot_response=sanitize_bot_response,
- )
- else:
- raise RuntimeError("No defined client")
- streamer = callbacks[0] if stream_output else None
- elif model_name in non_hf_types:
- if model_name == 'llama':
- callbacks = [StreamingGradioCallbackHandler()]
- streamer = callbacks[0] if stream_output else None
- else:
- # stream_output = False
- # doesn't stream properly as generator, but at least
- callbacks = [streaming_stdout.StreamingStdOutCallbackHandler()]
- streamer = None
- if prompter:
- prompt_type = prompter.prompt_type
- else:
- prompter = Prompter(prompt_type, prompt_dict, debug=False, chat=False, stream_output=stream_output)
- pass # assume inputted prompt_type is correct
- from gpt4all_llm import get_llm_gpt4all
- llm = get_llm_gpt4all(model_name, model=model, max_new_tokens=max_new_tokens,
- temperature=temperature,
- repetition_penalty=repetition_penalty,
- top_k=top_k,
- top_p=top_p,
- callbacks=callbacks,
- verbose=verbose,
- streaming=stream_output,
- prompter=prompter,
- context=context,
- iinput=iinput,
- )
- else:
- if model is None:
- # only used if didn't pass model in
- assert tokenizer is None
- prompt_type = 'human_bot'
- if model_name is None:
- model_name = 'h2oai/h2ogpt-oasst1-512-12b'
- # model_name = 'h2oai/h2ogpt-oig-oasst1-512-6_9b'
- # model_name = 'h2oai/h2ogpt-oasst1-512-20b'
- inference_server = ''
- model, tokenizer, device = get_model(load_8bit=True, base_model=model_name,
- inference_server=inference_server, gpu_id=0)
-
- max_max_tokens = tokenizer.model_max_length
- gen_kwargs = dict(do_sample=do_sample,
- temperature=temperature,
- top_k=top_k,
- top_p=top_p,
- num_beams=num_beams,
- max_new_tokens=max_new_tokens,
- min_new_tokens=min_new_tokens,
- early_stopping=early_stopping,
- max_time=max_time,
- repetition_penalty=repetition_penalty,
- num_return_sequences=num_return_sequences,
- return_full_text=True,
- handle_long_generation=None)
- assert len(set(gen_hyper).difference(gen_kwargs.keys())) == 0
-
- if stream_output:
- skip_prompt = False
- from gen import H2OTextIteratorStreamer
- decoder_kwargs = {}
- streamer = H2OTextIteratorStreamer(tokenizer, skip_prompt=skip_prompt, block=False, **decoder_kwargs)
- gen_kwargs.update(dict(streamer=streamer))
- else:
- streamer = None
-
- from h2oai_pipeline import H2OTextGenerationPipeline
- pipe = H2OTextGenerationPipeline(model=model, use_prompter=True,
- prompter=prompter,
- context=context,
- iinput=iinput,
- prompt_type=prompt_type,
- prompt_dict=prompt_dict,
- sanitize_bot_response=sanitize_bot_response,
- chat=False, stream_output=stream_output,
- tokenizer=tokenizer,
- # leave some room for 1 paragraph, even if min_new_tokens=0
- max_input_tokens=max_max_tokens - max(min_new_tokens, 256),
- **gen_kwargs)
- # pipe.task = "text-generation"
- # below makes it listen only to our prompt removal,
- # not built in prompt removal that is less general and not specific for our model
- pipe.task = "text2text-generation"
-
- from langchain.llms import HuggingFacePipeline
- llm = HuggingFacePipeline(pipeline=pipe)
- return llm, model_name, streamer, prompt_type
-
-
-def get_device_dtype():
- # torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently
- import torch
- n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
- device = 'cpu' if n_gpus == 0 else 'cuda'
- # from utils import NullContext
- # context_class = NullContext if n_gpus > 1 or n_gpus == 0 else context_class
- context_class = torch.device
- torch_dtype = torch.float16 if device == 'cuda' else torch.float32
- return device, torch_dtype, context_class
-
-
-def get_wiki_data(title, first_paragraph_only, text_limit=None, take_head=True):
- """
- Get wikipedia data from online
- :param title:
- :param first_paragraph_only:
- :param text_limit:
- :param take_head:
- :return:
- """
- filename = 'wiki_%s_%s_%s_%s.data' % (first_paragraph_only, title, text_limit, take_head)
- url = f"https://en.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&explaintext=1&titles={title}"
- if first_paragraph_only:
- url += "&exintro=1"
- import json
- if not os.path.isfile(filename):
- data = requests.get(url).json()
- json.dump(data, open(filename, 'wt'))
- else:
- data = json.load(open(filename, "rt"))
- page_content = list(data["query"]["pages"].values())[0]["extract"]
- if take_head is not None and text_limit is not None:
- page_content = page_content[:text_limit] if take_head else page_content[-text_limit:]
- title_url = str(title).replace(' ', '_')
- return Document(
- page_content=page_content,
- metadata={"source": f"https://en.wikipedia.org/wiki/{title_url}"},
- )
-
-
-def get_wiki_sources(first_para=True, text_limit=None):
- """
- Get specific named sources from wikipedia
- :param first_para:
- :param text_limit:
- :return:
- """
- default_wiki_sources = ['Unix', 'Microsoft_Windows', 'Linux']
- wiki_sources = list(os.getenv('WIKI_SOURCES', default_wiki_sources))
- return [get_wiki_data(x, first_para, text_limit=text_limit) for x in wiki_sources]
-
-
-def get_github_docs(repo_owner, repo_name):
- """
- Access github from specific repo
- :param repo_owner:
- :param repo_name:
- :return:
- """
- with tempfile.TemporaryDirectory() as d:
- subprocess.check_call(
- f"git clone --depth 1 https://github.com/{repo_owner}/{repo_name}.git .",
- cwd=d,
- shell=True,
- )
- git_sha = (
- subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d)
- .decode("utf-8")
- .strip()
- )
- repo_path = pathlib.Path(d)
- markdown_files = list(repo_path.glob("*/*.md")) + list(
- repo_path.glob("*/*.mdx")
- )
- for markdown_file in markdown_files:
- with open(markdown_file, "r") as f:
- relative_path = markdown_file.relative_to(repo_path)
- github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}"
- yield Document(page_content=f.read(), metadata={"source": github_url})
-
-
-def get_dai_pickle(dest="."):
- from huggingface_hub import hf_hub_download
- # True for case when locally already logged in with correct token, so don't have to set key
- token = os.getenv('HUGGINGFACE_API_TOKEN', True)
- path_to_zip_file = hf_hub_download('h2oai/dai_docs', 'dai_docs.pickle', token=token, repo_type='dataset')
- shutil.copy(path_to_zip_file, dest)
-
-
-def get_dai_docs(from_hf=False, get_pickle=True):
- """
- Consume DAI documentation, or consume from public pickle
- :param from_hf: get DAI docs from HF, then generate pickle for later use by LangChain
- :param get_pickle: Avoid raw DAI docs, just get pickle directly from HF
- :return:
- """
- import pickle
-
- if get_pickle:
- get_dai_pickle()
-
- dai_store = 'dai_docs.pickle'
- dst = "working_dir_docs"
- if not os.path.isfile(dai_store):
- from create_data import setup_dai_docs
- dst = setup_dai_docs(dst=dst, from_hf=from_hf)
-
- import glob
- files = list(glob.glob(os.path.join(dst, '*rst'), recursive=True))
-
- basedir = os.path.abspath(os.getcwd())
- from create_data import rst_to_outputs
- new_outputs = rst_to_outputs(files)
- os.chdir(basedir)
-
- pickle.dump(new_outputs, open(dai_store, 'wb'))
- else:
- new_outputs = pickle.load(open(dai_store, 'rb'))
-
- sources = []
- for line, file in new_outputs:
- # gradio requires any linked file to be with app.py
- sym_src = os.path.abspath(os.path.join(dst, file))
- sym_dst = os.path.abspath(os.path.join(os.getcwd(), file))
- if os.path.lexists(sym_dst):
- os.remove(sym_dst)
- os.symlink(sym_src, sym_dst)
- itm = Document(page_content=line, metadata={"source": file})
- # NOTE: yield has issues when going into db, loses metadata
- # yield itm
- sources.append(itm)
- return sources
-
-
-image_types = ["png", "jpg", "jpeg"]
-non_image_types = ["pdf", "txt", "csv", "toml", "py", "rst", "rtf",
- "md",
- "html", "mhtml",
- "enex", "eml", "epub", "odt", "pptx", "ppt",
- "zip", "urls",
-
- ]
-# "msg", GPL3
-
-if have_libreoffice or True:
- # or True so it tries to load, e.g. on MAC/Windows, even if don't have libreoffice since works without that
- non_image_types.extend(["docx", "doc", "xls", "xlsx"])
-
-file_types = non_image_types + image_types
-
-
-def add_meta(docs1, file):
- file_extension = pathlib.Path(file).suffix
- hashid = hash_file(file)
- doc_hash = str(uuid.uuid4())[:10]
- if not isinstance(docs1, (list, tuple, types.GeneratorType)):
- docs1 = [docs1]
- [x.metadata.update(dict(input_type=file_extension, date=str(datetime.now()), hashid=hashid, doc_hash=doc_hash)) for
- x in docs1]
-
-
-def file_to_doc(file, base_path=None, verbose=False, fail_any_exception=False,
- chunk=True, chunk_size=512, n_jobs=-1,
- is_url=False, is_txt=False,
- enable_captions=True,
- captions_model=None,
- enable_ocr=False, enable_pdf_ocr='auto', caption_loader=None,
- headsize=50):
- if file is None:
- if fail_any_exception:
- raise RuntimeError("Unexpected None file")
- else:
- return []
- doc1 = [] # in case no support, or disabled support
- if base_path is None and not is_txt and not is_url:
- # then assume want to persist but don't care which path used
- # can't be in base_path
- dir_name = os.path.dirname(file)
- base_name = os.path.basename(file)
- # if from gradio, will have its own temp uuid too, but that's ok
- base_name = sanitize_filename(base_name) + "_" + str(uuid.uuid4())[:10]
- base_path = os.path.join(dir_name, base_name)
- if is_url:
- file = file.strip() # in case accidental spaces in front or at end
- if file.lower().startswith('arxiv:'):
- query = file.lower().split('arxiv:')
- if len(query) == 2 and have_arxiv:
- query = query[1]
- docs1 = ArxivLoader(query=query, load_max_docs=20, load_all_available_meta=True).load()
- # ensure string, sometimes None
- [[x.metadata.update({k: str(v)}) for k, v in x.metadata.items()] for x in docs1]
- query_url = f"https://arxiv.org/abs/{query}"
- [x.metadata.update(
- dict(source=x.metadata.get('entry_id', query_url), query=query_url,
- input_type='arxiv', head=x.metadata.get('Title', ''), date=str(datetime.now))) for x in
- docs1]
- else:
- docs1 = []
- else:
- if not (file.startswith("http://") or file.startswith("file://") or file.startswith("https://")):
- file = 'http://' + file
- docs1 = UnstructuredURLLoader(urls=[file]).load()
- if len(docs1) == 0 and have_playwright:
- # then something went wrong, try another loader:
- from langchain.document_loaders import PlaywrightURLLoader
- docs1 = PlaywrightURLLoader(urls=[file]).load()
- if len(docs1) == 0 and have_selenium:
- # then something went wrong, try another loader:
- # but requires Chrome binary, else get: selenium.common.exceptions.WebDriverException: Message: unknown error: cannot find Chrome binary
- from langchain.document_loaders import SeleniumURLLoader
- from selenium.common.exceptions import WebDriverException
- try:
- docs1 = SeleniumURLLoader(urls=[file]).load()
- except WebDriverException as e:
- print("No web driver: %s" % str(e), flush=True)
- [x.metadata.update(dict(input_type='url', date=str(datetime.now))) for x in docs1]
- docs1 = clean_doc(docs1)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- elif is_txt:
- base_path = "user_paste"
- source_file = os.path.join(base_path, "_%s" % str(uuid.uuid4())[:10])
- makedirs(os.path.dirname(source_file), exist_ok=True)
- with open(source_file, "wt") as f:
- f.write(file)
- metadata = dict(source=source_file, date=str(datetime.now()), input_type='pasted txt')
- doc1 = Document(page_content=file, metadata=metadata)
- doc1 = clean_doc(doc1)
- elif file.lower().endswith('.html') or file.lower().endswith('.mhtml'):
- docs1 = UnstructuredHTMLLoader(file_path=file).load()
- add_meta(docs1, file)
- docs1 = clean_doc(docs1)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size, language=Language.HTML)
- elif (file.lower().endswith('.docx') or file.lower().endswith('.doc')) and (have_libreoffice or True):
- docs1 = UnstructuredWordDocumentLoader(file_path=file).load()
- add_meta(docs1, file)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- elif (file.lower().endswith('.xlsx') or file.lower().endswith('.xls')) and (have_libreoffice or True):
- docs1 = UnstructuredExcelLoader(file_path=file).load()
- add_meta(docs1, file)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- elif file.lower().endswith('.odt'):
- docs1 = UnstructuredODTLoader(file_path=file).load()
- add_meta(docs1, file)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- elif file.lower().endswith('pptx') or file.lower().endswith('ppt'):
- docs1 = UnstructuredPowerPointLoader(file_path=file).load()
- add_meta(docs1, file)
- docs1 = clean_doc(docs1)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- elif file.lower().endswith('.txt'):
- # use UnstructuredFileLoader ?
- docs1 = TextLoader(file, encoding="utf8", autodetect_encoding=True).load()
- # makes just one, but big one
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- doc1 = clean_doc(doc1)
- add_meta(doc1, file)
- elif file.lower().endswith('.rtf'):
- docs1 = UnstructuredRTFLoader(file).load()
- add_meta(docs1, file)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- elif file.lower().endswith('.md'):
- docs1 = UnstructuredMarkdownLoader(file).load()
- add_meta(docs1, file)
- docs1 = clean_doc(docs1)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size, language=Language.MARKDOWN)
- elif file.lower().endswith('.enex'):
- docs1 = EverNoteLoader(file).load()
- add_meta(doc1, file)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- elif file.lower().endswith('.epub'):
- docs1 = UnstructuredEPubLoader(file).load()
- add_meta(docs1, file)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- elif file.lower().endswith('.jpeg') or file.lower().endswith('.jpg') or file.lower().endswith('.png'):
- docs1 = []
- if have_tesseract and enable_ocr:
- # OCR, somewhat works, but not great
- docs1.extend(UnstructuredImageLoader(file).load())
- add_meta(docs1, file)
- if enable_captions:
- # BLIP
- if caption_loader is not None and not isinstance(caption_loader, (str, bool)):
- # assumes didn't fork into this process with joblib, else can deadlock
- caption_loader.set_image_paths([file])
- docs1c = caption_loader.load()
- add_meta(docs1c, file)
- [x.metadata.update(dict(head=x.page_content[:headsize].strip())) for x in docs1c]
- docs1.extend(docs1c)
- else:
- from image_captions import H2OImageCaptionLoader
- caption_loader = H2OImageCaptionLoader(caption_gpu=caption_loader == 'gpu',
- blip_model=captions_model,
- blip_processor=captions_model)
- caption_loader.set_image_paths([file])
- docs1c = caption_loader.load()
- add_meta(docs1c, file)
- [x.metadata.update(dict(head=x.page_content[:headsize].strip())) for x in docs1c]
- docs1.extend(docs1c)
- for doci in docs1:
- doci.metadata['source'] = doci.metadata['image_path']
- doci.metadata['hash'] = hash_file(doci.metadata['source'])
- if docs1:
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- elif file.lower().endswith('.msg'):
- raise RuntimeError("Not supported, GPL3 license")
- # docs1 = OutlookMessageLoader(file).load()
- # docs1[0].metadata['source'] = file
- elif file.lower().endswith('.eml'):
- try:
- docs1 = UnstructuredEmailLoader(file).load()
- add_meta(docs1, file)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- except ValueError as e:
- if 'text/html content not found in email' in str(e):
- # e.g. plain/text dict key exists, but not
- # doc1 = TextLoader(file, encoding="utf8").load()
- docs1 = UnstructuredEmailLoader(file, content_source="text/plain").load()
- add_meta(docs1, file)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- else:
- raise
- # elif file.lower().endswith('.gcsdir'):
- # doc1 = GCSDirectoryLoader(project_name, bucket, prefix).load()
- # elif file.lower().endswith('.gcsfile'):
- # doc1 = GCSFileLoader(project_name, bucket, blob).load()
- elif file.lower().endswith('.rst'):
- with open(file, "r") as f:
- doc1 = Document(page_content=f.read(), metadata={"source": file})
- add_meta(doc1, file)
- doc1 = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size, language=Language.RST)
- elif file.lower().endswith('.pdf'):
- env_gpt4all_file = ".env_gpt4all"
- from dotenv import dotenv_values
- env_kwargs = dotenv_values(env_gpt4all_file)
- pdf_class_name = env_kwargs.get('PDF_CLASS_NAME', 'PyMuPDFParser')
- doc1 = []
- handled = False
- if have_pymupdf and pdf_class_name == 'PyMuPDFParser':
- # GPL, only use if installed
- from langchain.document_loaders import PyMuPDFLoader
- # load() still chunks by pages, but every page has title at start to help
- doc1 = PyMuPDFLoader(file).load()
- # remove empty documents
- handled |= len(doc1) > 0
- doc1 = [x for x in doc1 if x.page_content]
- doc1 = clean_doc(doc1)
- if len(doc1) == 0:
- doc1 = UnstructuredPDFLoader(file).load()
- handled |= len(doc1) > 0
- # remove empty documents
- doc1 = [x for x in doc1 if x.page_content]
- # seems to not need cleaning in most cases
- if len(doc1) == 0:
- # open-source fallback
- # load() still chunks by pages, but every page has title at start to help
- doc1 = PyPDFLoader(file).load()
- handled |= len(doc1) > 0
- # remove empty documents
- doc1 = [x for x in doc1 if x.page_content]
- doc1 = clean_doc(doc1)
- if have_pymupdf and len(doc1) == 0:
- # GPL, only use if installed
- from langchain.document_loaders import PyMuPDFLoader
- # load() still chunks by pages, but every page has title at start to help
- doc1 = PyMuPDFLoader(file).load()
- handled |= len(doc1) > 0
- # remove empty documents
- doc1 = [x for x in doc1 if x.page_content]
- doc1 = clean_doc(doc1)
- if len(doc1) == 0 and enable_pdf_ocr == 'auto' or enable_pdf_ocr == 'on':
- # try OCR in end since slowest, but works on pure image pages well
- doc1 = UnstructuredPDFLoader(file, strategy='ocr_only').load()
- handled |= len(doc1) > 0
- # remove empty documents
- doc1 = [x for x in doc1 if x.page_content]
- # seems to not need cleaning in most cases
- # Some PDFs return nothing or junk from PDFMinerLoader
- if len(doc1) == 0:
- # if literally nothing, show failed to parse so user knows, since unlikely nothing in PDF at all.
- if handled:
- raise ValueError("%s had no valid text, but meta data was parsed" % file)
- else:
- raise ValueError("%s had no valid text and no meta data was parsed" % file)
- doc1 = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size)
- add_meta(doc1, file)
- elif file.lower().endswith('.csv'):
- doc1 = CSVLoader(file).load()
- add_meta(doc1, file)
- elif file.lower().endswith('.py'):
- doc1 = PythonLoader(file).load()
- add_meta(doc1, file)
- doc1 = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size, language=Language.PYTHON)
- elif file.lower().endswith('.toml'):
- doc1 = TomlLoader(file).load()
- add_meta(doc1, file)
- elif file.lower().endswith('.urls'):
- with open(file, "r") as f:
- docs1 = UnstructuredURLLoader(urls=f.readlines()).load()
- add_meta(docs1, file)
- doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
- elif file.lower().endswith('.zip'):
- with zipfile.ZipFile(file, 'r') as zip_ref:
- # don't put into temporary path, since want to keep references to docs inside zip
- # so just extract in path where
- zip_ref.extractall(base_path)
- # recurse
- doc1 = path_to_docs(base_path, verbose=verbose, fail_any_exception=fail_any_exception, n_jobs=n_jobs)
- else:
- raise RuntimeError("No file handler for %s" % os.path.basename(file))
-
- # allow doc1 to be list or not. If not list, did not chunk yet, so chunk now
- # if list of length one, don't trust and chunk it
- if not isinstance(doc1, list):
- if chunk:
- docs = chunk_sources([doc1], chunk=chunk, chunk_size=chunk_size)
- else:
- docs = [doc1]
- elif isinstance(doc1, list) and len(doc1) == 1:
- if chunk:
- docs = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size)
- else:
- docs = doc1
- else:
- docs = doc1
-
- assert isinstance(docs, list)
- return docs
-
-
-def path_to_doc1(file, verbose=False, fail_any_exception=False, return_file=True,
- chunk=True, chunk_size=512,
- n_jobs=-1,
- is_url=False, is_txt=False,
- enable_captions=True,
- captions_model=None,
- enable_ocr=False, enable_pdf_ocr='auto', caption_loader=None):
- if verbose:
- if is_url:
- print("Ingesting URL: %s" % file, flush=True)
- elif is_txt:
- print("Ingesting Text: %s" % file, flush=True)
- else:
- print("Ingesting file: %s" % file, flush=True)
- res = None
- try:
- # don't pass base_path=path, would infinitely recurse
- res = file_to_doc(file, base_path=None, verbose=verbose, fail_any_exception=fail_any_exception,
- chunk=chunk, chunk_size=chunk_size,
- n_jobs=n_jobs,
- is_url=is_url, is_txt=is_txt,
- enable_captions=enable_captions,
- captions_model=captions_model,
- enable_ocr=enable_ocr,
- enable_pdf_ocr=enable_pdf_ocr,
- caption_loader=caption_loader)
- except BaseException as e:
- print("Failed to ingest %s due to %s" % (file, traceback.format_exc()))
- if fail_any_exception:
- raise
- else:
- exception_doc = Document(
- page_content='',
- metadata={"source": file, "exception": '%s Exception: %s' % (file, str(e)),
- "traceback": traceback.format_exc()})
- res = [exception_doc]
- if return_file:
- base_tmp = "temp_path_to_doc1"
- if not os.path.isdir(base_tmp):
- os.makedirs(base_tmp, exist_ok=True)
- filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.pickle")
- with open(filename, 'wb') as f:
- pickle.dump(res, f)
- return filename
- return res
-
-
-def path_to_docs(path_or_paths, verbose=False, fail_any_exception=False, n_jobs=-1,
- chunk=True, chunk_size=512,
- url=None, text=None,
- enable_captions=True,
- captions_model=None,
- caption_loader=None,
- enable_ocr=False,
- enable_pdf_ocr='auto',
- existing_files=[],
- existing_hash_ids={},
- ):
- # path_or_paths could be str, list, tuple, generator
- globs_image_types = []
- globs_non_image_types = []
- if not path_or_paths and not url and not text:
- return []
- elif url:
- globs_non_image_types = url if isinstance(url, (list, tuple, types.GeneratorType)) else [url]
- elif text:
- globs_non_image_types = text if isinstance(text, (list, tuple, types.GeneratorType)) else [text]
- elif isinstance(path_or_paths, str) and os.path.isdir(path_or_paths):
- # single path, only consume allowed files
- path = path_or_paths
- # Below globs should match patterns in file_to_doc()
- [globs_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True))
- for ftype in image_types]
- [globs_non_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True))
- for ftype in non_image_types]
- else:
- if isinstance(path_or_paths, str):
- if os.path.isfile(path_or_paths) or os.path.isdir(path_or_paths):
- path_or_paths = [path_or_paths]
- else:
- # path was deleted etc.
- return []
- # list/tuple of files (consume what can, and exception those that selected but cannot consume so user knows)
- assert isinstance(path_or_paths, (list, tuple, types.GeneratorType)), \
- "Wrong type for path_or_paths: %s %s" % (path_or_paths, type(path_or_paths))
- # reform out of allowed types
- globs_image_types.extend(flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in image_types]))
- # could do below:
- # globs_non_image_types = flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in non_image_types])
- # But instead, allow fail so can collect unsupported too
- set_globs_image_types = set(globs_image_types)
- globs_non_image_types.extend([x for x in path_or_paths if x not in set_globs_image_types])
-
- # filter out any files to skip (e.g. if already processed them)
- # this is easy, but too aggressive in case a file changed, so parent probably passed existing_files=[]
- assert not existing_files, "DEV: assume not using this approach"
- if existing_files:
- set_skip_files = set(existing_files)
- globs_image_types = [x for x in globs_image_types if x not in set_skip_files]
- globs_non_image_types = [x for x in globs_non_image_types if x not in set_skip_files]
- if existing_hash_ids:
- # assume consistent with add_meta() use of hash_file(file)
- # also assume consistent with get_existing_hash_ids for dict creation
- # assume hashable values
- existing_hash_ids_set = set(existing_hash_ids.items())
- hash_ids_all_image = set({x: hash_file(x) for x in globs_image_types}.items())
- hash_ids_all_non_image = set({x: hash_file(x) for x in globs_non_image_types}.items())
- # don't use symmetric diff. If file is gone, ignore and don't remove or something
- # just consider existing files (key) having new hash or not (value)
- new_files_image = set(dict(hash_ids_all_image - existing_hash_ids_set).keys())
- new_files_non_image = set(dict(hash_ids_all_non_image - existing_hash_ids_set).keys())
- globs_image_types = [x for x in globs_image_types if x in new_files_image]
- globs_non_image_types = [x for x in globs_non_image_types if x in new_files_non_image]
-
- # could use generator, but messes up metadata handling in recursive case
- if caption_loader and not isinstance(caption_loader, (bool, str)) and \
- caption_loader.device != 'cpu' or \
- get_device() == 'cuda':
- # to avoid deadlocks, presume was preloaded and so can't fork due to cuda context
- n_jobs_image = 1
- else:
- n_jobs_image = n_jobs
-
- return_file = True # local choice
- is_url = url is not None
- is_txt = text is not None
- kwargs = dict(verbose=verbose, fail_any_exception=fail_any_exception,
- return_file=return_file,
- chunk=chunk, chunk_size=chunk_size,
- n_jobs=n_jobs,
- is_url=is_url,
- is_txt=is_txt,
- enable_captions=enable_captions,
- captions_model=captions_model,
- caption_loader=caption_loader,
- enable_ocr=enable_ocr,
- enable_pdf_ocr=enable_pdf_ocr,
- )
-
- if n_jobs != 1 and len(globs_non_image_types) > 1:
- # avoid nesting, e.g. upload 1 zip and then inside many files
- # harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib
- documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')(
- delayed(path_to_doc1)(file, **kwargs) for file in globs_non_image_types
- )
- else:
- documents = [path_to_doc1(file, **kwargs) for file in tqdm(globs_non_image_types)]
-
- # do images separately since can't fork after cuda in parent, so can't be parallel
- if n_jobs_image != 1 and len(globs_image_types) > 1:
- # avoid nesting, e.g. upload 1 zip and then inside many files
- # harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib
- image_documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')(
- delayed(path_to_doc1)(file, **kwargs) for file in globs_image_types
- )
- else:
- image_documents = [path_to_doc1(file, **kwargs) for file in tqdm(globs_image_types)]
-
- # add image docs in
- documents += image_documents
-
- if return_file:
- # then documents really are files
- files = documents.copy()
- documents = []
- for fil in files:
- with open(fil, 'rb') as f:
- documents.extend(pickle.load(f))
- # remove temp pickle
- remove(fil)
- else:
- documents = reduce(concat, documents)
- return documents
-
-
-def prep_langchain(persist_directory,
- load_db_if_exists,
- db_type, use_openai_embedding, langchain_mode, langchain_mode_paths,
- hf_embedding_model, n_jobs=-1, kwargs_make_db={}):
- """
- do prep first time, involving downloads
- # FIXME: Add github caching then add here
- :return:
- """
- assert langchain_mode not in ['MyData'], "Should not prep scratch data"
-
- db_dir_exists = os.path.isdir(persist_directory)
- user_path = langchain_mode_paths.get(langchain_mode)
-
- if db_dir_exists and user_path is None:
- print("Prep: persist_directory=%s exists, using" % persist_directory, flush=True)
- db = get_existing_db(None, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
- hf_embedding_model)
- else:
- if db_dir_exists and user_path is not None:
- print("Prep: persist_directory=%s exists, user_path=%s passed, adding any changed or new documents" % (
- persist_directory, user_path), flush=True)
- elif not db_dir_exists:
- print("Prep: persist_directory=%s does not exist, regenerating" % persist_directory, flush=True)
- db = None
- if langchain_mode in ['All', 'DriverlessAI docs']:
- # FIXME: Could also just use dai_docs.pickle directly and upload that
- get_dai_docs(from_hf=True)
-
- if langchain_mode in ['All', 'wiki']:
- get_wiki_sources(first_para=kwargs_make_db['first_para'], text_limit=kwargs_make_db['text_limit'])
-
- langchain_kwargs = kwargs_make_db.copy()
- langchain_kwargs.update(locals())
- db, num_new_sources, new_sources_metadata = make_db(**langchain_kwargs)
-
- return db
-
-
-import posthog
-
-posthog.disabled = True
-
-
-class FakeConsumer(object):
- def __init__(self, *args, **kwargs):
- pass
-
- def run(self):
- pass
-
- def pause(self):
- pass
-
- def upload(self):
- pass
-
- def next(self):
- pass
-
- def request(self, batch):
- pass
-
-
-posthog.Consumer = FakeConsumer
-
-
-def check_update_chroma_embedding(db, use_openai_embedding, hf_embedding_model, langchain_mode):
- changed_db = False
- if load_embed(db) != (use_openai_embedding, hf_embedding_model):
- print("Detected new embedding, updating db: %s" % langchain_mode, flush=True)
- # handle embedding changes
- db_get = get_documents(db)
- sources = [Document(page_content=result[0], metadata=result[1] or {})
- for result in zip(db_get['documents'], db_get['metadatas'])]
- # delete index, has to be redone
- persist_directory = db._persist_directory
- shutil.move(persist_directory, persist_directory + "_" + str(uuid.uuid4()) + ".bak")
- db_type = 'chroma'
- load_db_if_exists = False
- db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type,
- persist_directory=persist_directory, load_db_if_exists=load_db_if_exists,
- langchain_mode=langchain_mode,
- collection_name=None,
- hf_embedding_model=hf_embedding_model)
- if False:
- # below doesn't work if db already in memory, so have to switch to new db as above
- # upsert does new embedding, but if index already in memory, complains about size mismatch etc.
- client_collection = db._client.get_collection(name=db._collection.name,
- embedding_function=db._collection._embedding_function)
- client_collection.upsert(ids=db_get['ids'], metadatas=db_get['metadatas'], documents=db_get['documents'])
- changed_db = True
- print("Done updating db for new embedding: %s" % langchain_mode, flush=True)
-
- return db, changed_db
-
-
-def get_existing_db(db, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
- hf_embedding_model, verbose=False, check_embedding=True):
- if load_db_if_exists and db_type == 'chroma' and os.path.isdir(persist_directory) and os.path.isdir(
- os.path.join(persist_directory, 'index')):
- if db is None:
- if verbose:
- print("DO Loading db: %s" % langchain_mode, flush=True)
- embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
- from chromadb.config import Settings
- client_settings = Settings(anonymized_telemetry=False,
- chroma_db_impl="duckdb+parquet",
- persist_directory=persist_directory)
- db = Chroma(persist_directory=persist_directory, embedding_function=embedding,
- collection_name=langchain_mode.replace(' ', '_'),
- client_settings=client_settings)
- if verbose:
- print("DONE Loading db: %s" % langchain_mode, flush=True)
- else:
- if verbose:
- print("USING already-loaded db: %s" % langchain_mode, flush=True)
- if check_embedding:
- db_trial, changed_db = check_update_chroma_embedding(db, use_openai_embedding, hf_embedding_model,
- langchain_mode)
- if changed_db:
- db = db_trial
- # only call persist if really changed db, else takes too long for large db
- if db is not None:
- db.persist()
- clear_embedding(db)
- save_embed(db, use_openai_embedding, hf_embedding_model)
- return db
- return None
-
-
-def clear_embedding(db):
- if db is None:
- return
- # don't keep on GPU, wastes memory, push back onto CPU and only put back on GPU once again embed
- db._embedding_function.client.cpu()
- clear_torch_cache()
-
-
-def make_db(**langchain_kwargs):
- func_names = list(inspect.signature(_make_db).parameters)
- missing_kwargs = [x for x in func_names if x not in langchain_kwargs]
- defaults_db = {k: v.default for k, v in dict(inspect.signature(run_qa_db).parameters).items()}
- for k in missing_kwargs:
- if k in defaults_db:
- langchain_kwargs[k] = defaults_db[k]
- # final check for missing
- missing_kwargs = [x for x in func_names if x not in langchain_kwargs]
- assert not missing_kwargs, "Missing kwargs for make_db: %s" % missing_kwargs
- # only keep actual used
- langchain_kwargs = {k: v for k, v in langchain_kwargs.items() if k in func_names}
- return _make_db(**langchain_kwargs)
-
-
-def save_embed(db, use_openai_embedding, hf_embedding_model):
- if db is not None:
- embed_info_file = os.path.join(db._persist_directory, 'embed_info')
- with open(embed_info_file, 'wb') as f:
- pickle.dump((use_openai_embedding, hf_embedding_model), f)
- return use_openai_embedding, hf_embedding_model
-
-
-def load_embed(db):
- embed_info_file = os.path.join(db._persist_directory, 'embed_info')
- if os.path.isfile(embed_info_file):
- with open(embed_info_file, 'rb') as f:
- use_openai_embedding, hf_embedding_model = pickle.load(f)
- else:
- # migration, assume defaults
- use_openai_embedding, hf_embedding_model = False, "sentence-transformers/all-MiniLM-L6-v2"
- return use_openai_embedding, hf_embedding_model
-
-
-def get_persist_directory(langchain_mode):
- return 'db_dir_%s' % langchain_mode # single place, no special names for each case
-
-
-def _make_db(use_openai_embedding=False,
- hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
- first_para=False, text_limit=None,
- chunk=True, chunk_size=512,
- langchain_mode=None,
- langchain_mode_paths=None,
- db_type='faiss',
- load_db_if_exists=True,
- db=None,
- n_jobs=-1,
- verbose=False):
- persist_directory = get_persist_directory(langchain_mode)
- user_path = langchain_mode_paths.get(langchain_mode)
- # see if can get persistent chroma db
- db_trial = get_existing_db(db, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
- hf_embedding_model, verbose=verbose)
- if db_trial is not None:
- db = db_trial
-
- sources = []
- if not db:
- if langchain_mode in ['wiki_full']:
- from read_wiki_full import get_all_documents
- small_test = None
- print("Generating new wiki", flush=True)
- sources1 = get_all_documents(small_test=small_test, n_jobs=os.cpu_count() // 2)
- print("Got new wiki", flush=True)
- if chunk:
- sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
- print("Chunked new wiki", flush=True)
- sources.extend(sources1)
- elif langchain_mode in ['wiki']:
- sources1 = get_wiki_sources(first_para=first_para, text_limit=text_limit)
- if chunk:
- sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
- sources.extend(sources1)
- elif langchain_mode in ['github h2oGPT']:
- # sources = get_github_docs("dagster-io", "dagster")
- sources1 = get_github_docs("h2oai", "h2ogpt")
- # FIXME: always chunk for now
- sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
- sources.extend(sources1)
- elif langchain_mode in ['DriverlessAI docs']:
- sources1 = get_dai_docs(from_hf=True)
- if chunk and False: # FIXME: DAI docs are already chunked well, should only chunk more if over limit
- sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
- sources.extend(sources1)
- if user_path:
- # UserData or custom, which has to be from user's disk
- if db is not None:
- # NOTE: Ignore file names for now, only go by hash ids
- # existing_files = get_existing_files(db)
- existing_files = []
- existing_hash_ids = get_existing_hash_ids(db)
- else:
- # pretend no existing files so won't filter
- existing_files = []
- existing_hash_ids = []
- # chunk internally for speed over multiple docs
- # FIXME: If first had old Hash=None and switch embeddings,
- # then re-embed, and then hit here and reload so have hash, and then re-embed.
- sources1 = path_to_docs(user_path, n_jobs=n_jobs, chunk=chunk, chunk_size=chunk_size,
- existing_files=existing_files, existing_hash_ids=existing_hash_ids)
- new_metadata_sources = set([x.metadata['source'] for x in sources1])
- if new_metadata_sources:
- print("Loaded %s new files as sources to add to %s" % (len(new_metadata_sources), langchain_mode),
- flush=True)
- if verbose:
- print("Files added: %s" % '\n'.join(new_metadata_sources), flush=True)
- sources.extend(sources1)
- print("Loaded %s sources for potentially adding to %s" % (len(sources), langchain_mode), flush=True)
-
- # see if got sources
- if not sources:
- if verbose:
- if db is not None:
- print("langchain_mode %s has no new sources, nothing to add to db" % langchain_mode, flush=True)
- else:
- print("langchain_mode %s has no sources, not making new db" % langchain_mode, flush=True)
- return db, 0, []
- if verbose:
- if db is not None:
- print("Generating db", flush=True)
- else:
- print("Adding to db", flush=True)
- if not db:
- if sources:
- db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type,
- persist_directory=persist_directory, langchain_mode=langchain_mode,
- hf_embedding_model=hf_embedding_model)
- if verbose:
- print("Generated db", flush=True)
- else:
- print("Did not generate db since no sources", flush=True)
- new_sources_metadata = [x.metadata for x in sources]
- elif user_path is not None:
- print("Existing db, potentially adding %s sources from user_path=%s" % (len(sources), user_path), flush=True)
- db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type,
- use_openai_embedding=use_openai_embedding,
- hf_embedding_model=hf_embedding_model)
- print("Existing db, added %s new sources from user_path=%s" % (num_new_sources, user_path), flush=True)
- else:
- new_sources_metadata = [x.metadata for x in sources]
-
- return db, len(new_sources_metadata), new_sources_metadata
-
-
-def get_metadatas(db):
- from langchain.vectorstores import FAISS
- if isinstance(db, FAISS):
- metadatas = [v.metadata for k, v in db.docstore._dict.items()]
- elif isinstance(db, Chroma):
- metadatas = get_documents(db)['metadatas']
- else:
- # FIXME: Hack due to https://github.com/weaviate/weaviate/issues/1947
- # seems no way to get all metadata, so need to avoid this approach for weaviate
- metadatas = [x.metadata for x in db.similarity_search("", k=10000)]
- return metadatas
-
-
-def get_documents(db):
- if hasattr(db, '_persist_directory'):
- name_path = os.path.basename(db._persist_directory)
- base_path = 'locks'
- makedirs(base_path)
- with filelock.FileLock(os.path.join(base_path, "getdb_%s.lock" % name_path)):
- # get segfaults and other errors when multiple threads access this
- return _get_documents(db)
- else:
- return _get_documents(db)
-
-
-def _get_documents(db):
- from langchain.vectorstores import FAISS
- if isinstance(db, FAISS):
- documents = [v for k, v in db.docstore._dict.items()]
- elif isinstance(db, Chroma):
- documents = db.get()
- else:
- # FIXME: Hack due to https://github.com/weaviate/weaviate/issues/1947
- # seems no way to get all metadata, so need to avoid this approach for weaviate
- documents = [x for x in db.similarity_search("", k=10000)]
- return documents
-
-
-def get_docs_and_meta(db, top_k_docs, filter_kwargs={}):
- if hasattr(db, '_persist_directory'):
- name_path = os.path.basename(db._persist_directory)
- base_path = 'locks'
- makedirs(base_path)
- with filelock.FileLock(os.path.join(base_path, "getdb_%s.lock" % name_path)):
- return _get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs)
- else:
- return _get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs)
-
-
-def _get_docs_and_meta(db, top_k_docs, filter_kwargs={}):
- from langchain.vectorstores import FAISS
- if isinstance(db, Chroma):
- db_get = db._collection.get(where=filter_kwargs.get('filter'))
- db_metadatas = db_get['metadatas']
- db_documents = db_get['documents']
- elif isinstance(db, FAISS):
- import itertools
- db_metadatas = get_metadatas(db)
- # FIXME: FAISS has no filter
- # slice dict first
- db_documents = list(dict(itertools.islice(db.docstore._dict.items(), top_k_docs)).values())
- else:
- db_metadatas = get_metadatas(db)
- db_documents = get_documents(db)
- return db_documents, db_metadatas
-
-
-def get_existing_files(db):
- metadatas = get_metadatas(db)
- metadata_sources = set([x['source'] for x in metadatas])
- return metadata_sources
-
-
-def get_existing_hash_ids(db):
- metadatas = get_metadatas(db)
- # assume consistency, that any prior hashed source was single hashed file at the time among all source chunks
- metadata_hash_ids = {x['source']: x.get('hashid') for x in metadatas}
- return metadata_hash_ids
-
-
-def run_qa_db(**kwargs):
- func_names = list(inspect.signature(_run_qa_db).parameters)
- # hard-coded defaults
- kwargs['answer_with_sources'] = True
- kwargs['show_rank'] = False
- missing_kwargs = [x for x in func_names if x not in kwargs]
- assert not missing_kwargs, "Missing kwargs for run_qa_db: %s" % missing_kwargs
- # only keep actual used
- kwargs = {k: v for k, v in kwargs.items() if k in func_names}
- try:
- return _run_qa_db(**kwargs)
- finally:
- clear_torch_cache()
-
-
-def _run_qa_db(query=None,
- iinput=None,
- context=None,
- use_openai_model=False, use_openai_embedding=False,
- first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512,
- langchain_mode_paths={},
- detect_user_path_changes_every_query=False,
- db_type='faiss',
- model_name=None, model=None, tokenizer=None, inference_server=None,
- hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
- stream_output=False,
- prompter=None,
- prompt_type=None,
- prompt_dict=None,
- answer_with_sources=True,
- cut_distance=1.64,
- add_chat_history_to_context=True,
- sanitize_bot_response=False,
- show_rank=False,
- use_llm_if_no_docs=False,
- load_db_if_exists=False,
- db=None,
- do_sample=False,
- temperature=0.1,
- top_k=40,
- top_p=0.7,
- num_beams=1,
- max_new_tokens=256,
- min_new_tokens=1,
- early_stopping=False,
- max_time=180,
- repetition_penalty=1.0,
- num_return_sequences=1,
- langchain_mode=None,
- langchain_action=None,
- langchain_agents=None,
- document_subset=DocumentSubset.Relevant.name,
- document_choice=[DocumentChoice.ALL.value],
- n_jobs=-1,
- verbose=False,
- cli=False,
- reverse_docs=True,
- lora_weights='',
- auto_reduce_chunks=True,
- max_chunks=100,
- ):
- """
-
- :param query:
- :param use_openai_model:
- :param use_openai_embedding:
- :param first_para:
- :param text_limit:
- :param top_k_docs:
- :param chunk:
- :param chunk_size:
- :param langchain_mode_paths: dict of langchain_mode -> user path to glob recursively from
- :param db_type: 'faiss' for in-memory db or 'chroma' or 'weaviate' for persistent db
- :param model_name: model name, used to switch behaviors
- :param model: pre-initialized model, else will make new one
- :param tokenizer: pre-initialized tokenizer, else will make new one. Required not None if model is not None
- :param answer_with_sources
- :return:
- """
- assert langchain_mode_paths is not None
- if model is not None:
- assert model_name is not None # require so can make decisions
- assert query is not None
- assert prompter is not None or prompt_type is not None or model is None # if model is None, then will generate
- if prompter is not None:
- prompt_type = prompter.prompt_type
- prompt_dict = prompter.prompt_dict
- if model is not None:
- assert prompt_type is not None
- if prompt_type == PromptType.custom.name:
- assert prompt_dict is not None # should at least be {} or ''
- else:
- prompt_dict = ''
- assert len(set(gen_hyper).difference(inspect.signature(get_llm).parameters)) == 0
- # pass in context to LLM directly, since already has prompt_type structure
- # can't pass through langchain in get_chain() to LLM: https://github.com/hwchase17/langchain/issues/6638
- llm, model_name, streamer, prompt_type_out = get_llm(use_openai_model=use_openai_model, model_name=model_name,
- model=model,
- tokenizer=tokenizer,
- inference_server=inference_server,
- stream_output=stream_output,
- do_sample=do_sample,
- temperature=temperature,
- top_k=top_k,
- top_p=top_p,
- num_beams=num_beams,
- max_new_tokens=max_new_tokens,
- min_new_tokens=min_new_tokens,
- early_stopping=early_stopping,
- max_time=max_time,
- repetition_penalty=repetition_penalty,
- num_return_sequences=num_return_sequences,
- prompt_type=prompt_type,
- prompt_dict=prompt_dict,
- prompter=prompter,
- context=context if add_chat_history_to_context else '',
- iinput=iinput if add_chat_history_to_context else '',
- sanitize_bot_response=sanitize_bot_response,
- verbose=verbose,
- )
-
- use_docs_planned = False
- scores = []
- chain = None
-
- if isinstance(document_choice, str):
- # support string as well
- document_choice = [document_choice]
-
- func_names = list(inspect.signature(get_chain).parameters)
- sim_kwargs = {k: v for k, v in locals().items() if k in func_names}
- missing_kwargs = [x for x in func_names if x not in sim_kwargs]
- assert not missing_kwargs, "Missing: %s" % missing_kwargs
- docs, chain, scores, use_docs_planned, have_any_docs = get_chain(**sim_kwargs)
- if document_subset in non_query_commands:
- formatted_doc_chunks = '\n\n'.join([get_url(x) + '\n\n' + x.page_content for x in docs])
- if not formatted_doc_chunks and not use_llm_if_no_docs:
- yield "No sources", ''
- return
- # if no souces, outside gpt_langchain, LLM will be used with '' input
- yield formatted_doc_chunks, ''
- return
- if not use_llm_if_no_docs:
- if not docs and langchain_action in [LangChainAction.SUMMARIZE_MAP.value,
- LangChainAction.SUMMARIZE_ALL.value,
- LangChainAction.SUMMARIZE_REFINE.value]:
- ret = 'No relevant documents to summarize.' if have_any_docs else 'No documents to summarize.'
- extra = ''
- yield ret, extra
- return
- if not docs and langchain_mode not in [LangChainMode.DISABLED.value,
- LangChainMode.LLM.value]:
- ret = 'No relevant documents to query.' if have_any_docs else 'No documents to query.'
- extra = ''
- yield ret, extra
- return
-
- if chain is None and model_name not in non_hf_types:
- # here if no docs at all and not HF type
- # can only return if HF type
- return
-
- # context stuff similar to used in evaluate()
- import torch
- device, torch_dtype, context_class = get_device_dtype()
- with torch.no_grad():
- have_lora_weights = lora_weights not in [no_lora_str, '', None]
- context_class_cast = NullContext if device == 'cpu' or have_lora_weights else torch.autocast
- with context_class_cast(device):
- if stream_output and streamer:
- answer = None
- import queue
- bucket = queue.Queue()
- thread = EThread(target=chain, streamer=streamer, bucket=bucket)
- thread.start()
- outputs = ""
- prompt = None # FIXME
- try:
- for new_text in streamer:
- # print("new_text: %s" % new_text, flush=True)
- if bucket.qsize() > 0 or thread.exc:
- thread.join()
- outputs += new_text
- if prompter: # and False: # FIXME: pipeline can already use prompter
- output1 = prompter.get_response(outputs, prompt=prompt,
- sanitize_bot_response=sanitize_bot_response)
- yield output1, ''
- else:
- yield outputs, ''
- except BaseException:
- # if any exception, raise that exception if was from thread, first
- if thread.exc:
- raise thread.exc
- raise
- finally:
- # in case no exception and didn't join with thread yet, then join
- if not thread.exc:
- answer = thread.join()
- # in case raise StopIteration or broke queue loop in streamer, but still have exception
- if thread.exc:
- raise thread.exc
- # FIXME: answer is not string outputs from streamer. How to get actual final output?
- # answer = outputs
- else:
- answer = chain()
-
- if not use_docs_planned:
- ret = answer['output_text']
- extra = ''
- yield ret, extra
- elif answer is not None:
- ret, extra = get_sources_answer(query, answer, scores, show_rank, answer_with_sources, verbose=verbose)
- yield ret, extra
- return
-
-
-def get_chain(query=None,
- iinput=None,
- context=None, # FIXME: https://github.com/hwchase17/langchain/issues/6638
- use_openai_model=False, use_openai_embedding=False,
- first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512,
- langchain_mode_paths=None,
- detect_user_path_changes_every_query=False,
- db_type='faiss',
- model_name=None,
- inference_server='',
- hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
- prompt_type=None,
- prompt_dict=None,
- cut_distance=1.1,
- add_chat_history_to_context=True, # FIXME: https://github.com/hwchase17/langchain/issues/6638
- load_db_if_exists=False,
- db=None,
- langchain_mode=None,
- langchain_action=None,
- langchain_agents=None,
- document_subset=DocumentSubset.Relevant.name,
- document_choice=[DocumentChoice.ALL.value],
- n_jobs=-1,
- # beyond run_db_query:
- llm=None,
- tokenizer=None,
- verbose=False,
- reverse_docs=True,
-
- # local
- auto_reduce_chunks=True,
- max_chunks=100,
- ):
- assert langchain_agents is not None # should be at least []
- # determine whether use of context out of docs is planned
- if not use_openai_model and prompt_type not in ['plain'] or model_name in non_hf_types:
- if langchain_mode in ['Disabled', 'LLM']:
- use_docs_planned = False
- else:
- use_docs_planned = True
- else:
- use_docs_planned = True
-
- # https://github.com/hwchase17/langchain/issues/1946
- # FIXME: Seems to way to get size of chroma db to limit top_k_docs to avoid
- # Chroma collection MyData contains fewer than 4 elements.
- # type logger error
- if top_k_docs == -1:
- k_db = 1000 if db_type == 'chroma' else 100
- else:
- # top_k_docs=100 works ok too
- k_db = 1000 if db_type == 'chroma' else top_k_docs
-
- # FIXME: For All just go over all dbs instead of a separate db for All
- if not detect_user_path_changes_every_query and db is not None:
- # avoid looking at user_path during similarity search db handling,
- # if already have db and not updating from user_path every query
- # but if db is None, no db yet loaded (e.g. from prep), so allow user_path to be whatever it was
- if langchain_mode_paths is None:
- langchain_mode_paths = {}
- langchain_mode_paths = langchain_mode_paths.copy()
- langchain_mode_paths[langchain_mode] = None
- db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=use_openai_embedding,
- hf_embedding_model=hf_embedding_model,
- first_para=first_para, text_limit=text_limit,
- chunk=chunk,
- chunk_size=chunk_size,
- langchain_mode=langchain_mode,
- langchain_mode_paths=langchain_mode_paths,
- db_type=db_type,
- load_db_if_exists=load_db_if_exists,
- db=db,
- n_jobs=n_jobs,
- verbose=verbose)
- have_any_docs = db is not None
- if langchain_action == LangChainAction.QUERY.value:
- if iinput:
- query = "%s\n%s" % (query, iinput)
-
- if 'falcon' in model_name:
- extra = "According to only the information in the document sources provided within the context above, "
- prefix = "Pay attention and remember information below, which will help to answer the question or imperative after the context ends."
- elif inference_server in ['openai', 'openai_chat']:
- extra = "According to (primarily) the information in the document sources provided within context above, "
- prefix = "Pay attention and remember information below, which will help to answer the question or imperative after the context ends. If the answer cannot be primarily obtained from information within the context, then respond that the answer does not appear in the context of the documents."
- else:
- extra = ""
- prefix = ""
- if langchain_mode in ['Disabled', 'LLM'] or not use_docs_planned:
- template_if_no_docs = template = """%s{context}{question}""" % prefix
- else:
- template = """%s
- \"\"\"
- {context}
- \"\"\"
- %s{question}""" % (prefix, extra)
- template_if_no_docs = """%s{context}%s{question}""" % (prefix, extra)
- elif langchain_action in [LangChainAction.SUMMARIZE_ALL.value, LangChainAction.SUMMARIZE_MAP.value]:
- none = ['', '\n', None]
- if query in none and iinput in none:
- prompt_summary = "Using only the text above, write a condensed and concise summary:\n"
- elif query not in none:
- prompt_summary = "Focusing on %s, write a condensed and concise Summary:\n" % query
- elif iinput not in None:
- prompt_summary = iinput
- else:
- prompt_summary = "Focusing on %s, %s:\n" % (query, iinput)
- # don't auto reduce
- auto_reduce_chunks = False
- if langchain_action == LangChainAction.SUMMARIZE_MAP.value:
- fstring = '{text}'
- else:
- fstring = '{input_documents}'
- template = """In order to write a concise single-paragraph or bulleted list summary, pay attention to the following text:
-\"\"\"
-%s
-\"\"\"\n%s""" % (fstring, prompt_summary)
- template_if_no_docs = "Exactly only say: There are no documents to summarize."
- elif langchain_action in [LangChainAction.SUMMARIZE_REFINE]:
- template = '' # unused
- template_if_no_docs = '' # unused
- else:
- raise RuntimeError("No such langchain_action=%s" % langchain_action)
-
- if not use_openai_model and prompt_type not in ['plain'] or model_name in non_hf_types:
- use_template = True
- else:
- use_template = False
-
- if db and use_docs_planned:
- base_path = 'locks'
- makedirs(base_path)
- if hasattr(db, '_persist_directory'):
- name_path = "sim_%s.lock" % os.path.basename(db._persist_directory)
- else:
- name_path = "sim.lock"
- lock_file = os.path.join(base_path, name_path)
-
- if not isinstance(db, Chroma):
- # only chroma supports filtering
- filter_kwargs = {}
- else:
- assert document_choice is not None, "Document choice was None"
- if len(document_choice) >= 1 and document_choice[0] == DocumentChoice.ALL.value:
- filter_kwargs = {}
- elif len(document_choice) >= 2:
- if document_choice[0] == DocumentChoice.ALL.value:
- # remove 'All'
- document_choice = document_choice[1:]
- or_filter = [{"source": {"$eq": x}} for x in document_choice]
- filter_kwargs = dict(filter={"$or": or_filter})
- elif len(document_choice) == 1:
- # degenerate UX bug in chroma
- one_filter = [{"source": {"$eq": x}} for x in document_choice][0]
- filter_kwargs = dict(filter=one_filter)
- else:
- # shouldn't reach
- filter_kwargs = {}
- if langchain_mode in [LangChainMode.LLM.value]:
- docs = []
- scores = []
- elif document_subset == DocumentSubset.TopKSources.name or query in [None, '', '\n']:
- db_documents, db_metadatas = get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs)
- # similar to langchain's chroma's _results_to_docs_and_scores
- docs_with_score = [(Document(page_content=result[0], metadata=result[1] or {}), 0)
- for result in zip(db_documents, db_metadatas)]
-
- # order documents
- doc_hashes = [x.get('doc_hash', 'None') for x in db_metadatas]
- doc_chunk_ids = [x.get('chunk_id', 0) for x in db_metadatas]
- docs_with_score = [x for _, _, x in
- sorted(zip(doc_hashes, doc_chunk_ids, docs_with_score), key=lambda x: (x[0], x[1]))
- ]
-
- docs_with_score = docs_with_score[:top_k_docs]
- docs = [x[0] for x in docs_with_score]
- scores = [x[1] for x in docs_with_score]
- have_any_docs |= len(docs) > 0
- else:
- # FIXME: if langchain_action == LangChainAction.SUMMARIZE_MAP.value
- # if map_reduce, then no need to auto reduce chunks
- if top_k_docs == -1 or auto_reduce_chunks:
- # docs_with_score = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)[:top_k_docs]
- top_k_docs_tokenize = 100
- with filelock.FileLock(lock_file):
- docs_with_score = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)[
- :top_k_docs_tokenize]
- if hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'tokenizer'):
- # more accurate
- tokens = [len(llm.pipeline.tokenizer(x[0].page_content)['input_ids']) for x in docs_with_score]
- template_tokens = len(llm.pipeline.tokenizer(template)['input_ids'])
- elif inference_server in ['openai', 'openai_chat'] or use_openai_model or db_type in ['faiss',
- 'weaviate']:
- # use ticktoken for faiss since embedding called differently
- tokens = [llm.get_num_tokens(x[0].page_content) for x in docs_with_score]
- template_tokens = llm.get_num_tokens(template)
- elif isinstance(tokenizer, FakeTokenizer):
- tokens = [tokenizer.num_tokens_from_string(x[0].page_content) for x in docs_with_score]
- template_tokens = tokenizer.num_tokens_from_string(template)
- else:
- # in case model is not our pipeline with HF tokenizer
- tokens = [db._embedding_function.client.tokenize([x[0].page_content])['input_ids'].shape[1] for x in
- docs_with_score]
- template_tokens = db._embedding_function.client.tokenize([template])['input_ids'].shape[1]
- tokens_cumsum = np.cumsum(tokens)
- if hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'max_input_tokens'):
- max_input_tokens = llm.pipeline.max_input_tokens
- elif inference_server in ['openai']:
- max_tokens = llm.modelname_to_contextsize(model_name)
- # leave some room for 1 paragraph, even if min_new_tokens=0
- max_input_tokens = max_tokens - 256
- elif inference_server in ['openai_chat']:
- max_tokens = model_token_mapping[model_name]
- # leave some room for 1 paragraph, even if min_new_tokens=0
- max_input_tokens = max_tokens - 256
- elif isinstance(tokenizer, FakeTokenizer):
- max_input_tokens = tokenizer.model_max_length - 256
- else:
- # leave some room for 1 paragraph, even if min_new_tokens=0
- max_input_tokens = 2048 - 256
- max_input_tokens -= template_tokens
- # FIXME: Doesn't account for query, == context, or new lines between contexts
- where_res = np.where(tokens_cumsum < max_input_tokens)[0]
- if where_res.shape[0] == 0:
- # then no chunk can fit, still do first one
- top_k_docs_trial = 1
- else:
- top_k_docs_trial = 1 + where_res[-1]
- if 0 < top_k_docs_trial < max_chunks:
- # avoid craziness
- if top_k_docs == -1:
- top_k_docs = top_k_docs_trial
- else:
- top_k_docs = min(top_k_docs, top_k_docs_trial)
- if top_k_docs == -1:
- # if here, means 0 and just do best with 1 doc
- print("Unexpected large chunks and can't add to context, will add 1 anyways", flush=True)
- top_k_docs = 1
- docs_with_score = docs_with_score[:top_k_docs]
- else:
- with filelock.FileLock(lock_file):
- docs_with_score = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)[:top_k_docs]
- # put most relevant chunks closest to question,
- # esp. if truncation occurs will be "oldest" or "farthest from response" text that is truncated
- # BUT: for small models, e.g. 6_9 pythia, if sees some stuff related to h2oGPT first, it can connect that and not listen to rest
- if reverse_docs:
- docs_with_score.reverse()
- # cut off so no high distance docs/sources considered
- have_any_docs |= len(docs_with_score) > 0 # before cut
- docs = [x[0] for x in docs_with_score if x[1] < cut_distance]
- scores = [x[1] for x in docs_with_score if x[1] < cut_distance]
- if len(scores) > 0 and verbose:
- print("Distance: min: %s max: %s mean: %s median: %s" %
- (scores[0], scores[-1], np.mean(scores), np.median(scores)), flush=True)
- else:
- docs = []
- scores = []
-
- if not docs and use_docs_planned and model_name not in non_hf_types:
- # if HF type and have no docs, can bail out
- return docs, None, [], False, have_any_docs
-
- if document_subset in non_query_commands:
- # no LLM use
- return docs, None, [], False, have_any_docs
-
- common_words_file = "data/NGSL_1.2_stats.csv.zip"
- if os.path.isfile(common_words_file) and langchain_mode == LangChainAction.QUERY.value:
- df = pd.read_csv("data/NGSL_1.2_stats.csv.zip")
- import string
- reduced_query = query.translate(str.maketrans(string.punctuation, ' ' * len(string.punctuation))).strip()
- reduced_query_words = reduced_query.split(' ')
- set_common = set(df['Lemma'].values.tolist())
- num_common = len([x.lower() in set_common for x in reduced_query_words])
- frac_common = num_common / len(reduced_query) if reduced_query else 0
- # FIXME: report to user bad query that uses too many common words
- if verbose:
- print("frac_common: %s" % frac_common, flush=True)
-
- if len(docs) == 0:
- # avoid context == in prompt then
- use_docs_planned = False
- template = template_if_no_docs
-
- if langchain_action == LangChainAction.QUERY.value:
- if use_template:
- # instruct-like, rather than few-shot prompt_type='plain' as default
- # but then sources confuse the model with how inserted among rest of text, so avoid
- prompt = PromptTemplate(
- # input_variables=["summaries", "question"],
- input_variables=["context", "question"],
- template=template,
- )
- chain = load_qa_chain(llm, prompt=prompt)
- else:
- # only if use_openai_model = True, unused normally except in testing
- chain = load_qa_with_sources_chain(llm)
- if not use_docs_planned:
- chain_kwargs = dict(input_documents=[], question=query)
- else:
- chain_kwargs = dict(input_documents=docs, question=query)
- target = wrapped_partial(chain, chain_kwargs)
- elif langchain_action in [LangChainAction.SUMMARIZE_MAP.value,
- LangChainAction.SUMMARIZE_REFINE,
- LangChainAction.SUMMARIZE_ALL.value]:
- from langchain.chains.summarize import load_summarize_chain
- if langchain_action == LangChainAction.SUMMARIZE_MAP.value:
- prompt = PromptTemplate(input_variables=["text"], template=template)
- chain = load_summarize_chain(llm, chain_type="map_reduce",
- map_prompt=prompt, combine_prompt=prompt, return_intermediate_steps=True)
- target = wrapped_partial(chain, {"input_documents": docs}) # , return_only_outputs=True)
- elif langchain_action == LangChainAction.SUMMARIZE_ALL.value:
- assert use_template
- prompt = PromptTemplate(input_variables=["text"], template=template)
- chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt, return_intermediate_steps=True)
- target = wrapped_partial(chain)
- elif langchain_action == LangChainAction.SUMMARIZE_REFINE.value:
- chain = load_summarize_chain(llm, chain_type="refine", return_intermediate_steps=True)
- target = wrapped_partial(chain)
- else:
- raise RuntimeError("No such langchain_action=%s" % langchain_action)
- else:
- raise RuntimeError("No such langchain_action=%s" % langchain_action)
-
- return docs, target, scores, use_docs_planned, have_any_docs
-
-
-def get_sources_answer(query, answer, scores, show_rank, answer_with_sources, verbose=False):
- if verbose:
- print("query: %s" % query, flush=True)
- print("answer: %s" % answer['output_text'], flush=True)
-
- if len(answer['input_documents']) == 0:
- extra = ''
- ret = answer['output_text'] + extra
- return ret, extra
-
- # link
- answer_sources = [(max(0.0, 1.5 - score) / 1.5, get_url(doc)) for score, doc in
- zip(scores, answer['input_documents'])]
- answer_sources_dict = defaultdict(list)
- [answer_sources_dict[url].append(score) for score, url in answer_sources]
- answers_dict = {}
- for url, scores_url in answer_sources_dict.items():
- answers_dict[url] = np.max(scores_url)
- answer_sources = [(score, url) for url, score in answers_dict.items()]
- answer_sources.sort(key=lambda x: x[0], reverse=True)
- if show_rank:
- # answer_sources = ['%d | %s' % (1 + rank, url) for rank, (score, url) in enumerate(answer_sources)]
- # sorted_sources_urls = "Sources [Rank | Link]:
" + "
".join(answer_sources)
- answer_sources = ['%s' % url for rank, (score, url) in enumerate(answer_sources)]
- sorted_sources_urls = "Ranked Sources:
" + "
".join(answer_sources)
- else:
- answer_sources = ['
".join(answer_sources) - sorted_sources_urls += f"