import gradio as gr title="Your App for Huggingface NLP models" my_examples = [['What is Ayurveda? '], ['Dolo is prescribed for common cold and cough '], ['Covid 19 vaccines are regarded as an effective way to'],] j_demo = gr.Interface.load( "huggingface/EleutherAI/gpt-j-6B", title="GPT-J 6B", examples=my_examples, inputs=gr.inputs.Textbox(lines=5,label="INPUT"), outputs="textarea", ) neo27_demo = gr.Interface.load( "huggingface/EleutherAI/gpt-neo-2.7B", title="GPT-Neo 2.7B", examples=my_examples, inputs=gr.inputs.Textbox(lines=5,label="INPUT"), outputs="textarea", ) neo125_demo = gr.Interface.load( "huggingface/EleutherAI/gpt-neo-125M", title="GPT-Neo 125M", examples=my_examples, inputs=gr.inputs.Textbox(lines=5,label="INPUT"), outputs="textarea", ) demo = gr.TabbedInterface([j_demo, neo27_demo,neo125_demo], ["GPT-J 6B", "GPT-Neo 2.7B","GPT-Neo 125M"]) if __name__ == "__main__": demo.launch()