import torch import gradio as gr from huggingface_hub import hf_hub_download from PIL import Image REPO_ID = "hiraltalsaniya/YOLOv7" FILENAME = "best.pt" yolov7_custom_weights = hf_hub_download(repo_id=REPO_ID, filename=FILENAME,repo_type='space') model = torch.hub.load('WongKinYiu/yolov7:main',model='custom', path_or_model=yolov7_custom_weights, force_reload=True) def object_detection(im, size=416): results = model(im) results.render() return Image.fromarray(results.imgs[0]) title = "Yolov7 Custom" image = gr.inputs.Image(shape=(416, 416), image_mode="RGB", source="upload", label="Upload Image", optional=False) outputs = gr.outputs.Image(type="pil", label="Output Image") Custom_description="Custom Training Performed on colab style='text-decoration: underline' target='_blank'>Link
Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

1st class is for Person Detected
2nd class is for Car Detected" Footer = ( "MOdel train on our custome dataset") examples1=[["Image1.jpeg"],["Image2.jpeg"],["Image3.jpeg"],["Image4.jpeg"],["Image5.jpeg"],["Image6.jpeg"],["horses.jpeg"],["horses.jpeg"]] Top_Title="
Yolov7 🚀 Custom Trained style='text-decoration: underline' target='_blank'>
Face with mask and face without mask Detection" css = ".output-image, .input-image {height: 50rem !important; width: 100% !important;}" css = ".image-preview {height: auto !important;}" gr.Interface( fn=object_detection, inputs=image, outputs=outputs, title=Top_Title, description=Custom_description, article=Footer, examples=[["mask-person-2.jpg"], ["mask-person-2.jpg"]]).launch()