from transformers import pipeline, Conversation import gradio as gr from datetime import datetime from transformers.utils import logging logging.set_verbosity_error() # Info about ['google/gemma-2b-it'](https://huggingface.co/google/gemma-2b-it) chatbot = pipeline(task="conversational", model="./models/google/gemma-2b-it") def get_job_description(company_name, sector, job_position): start_time = datetime.now() messages = [ { "role": "user", "content": f""" You are the Talent Acquisition Manager at { company_name }, a company of the { sector } sector. Your goal is to hire people in different departments of the company. I want to generate a Job Description that describes the job role '{ job_position }' in a creative, modern, formal and attractive way. """ }, { "role": "assistant", "content": "Description:" } ] conversation = Conversation(messages) conversation = chatbot(conversation, do_sample=True, max_new_tokens=600, temperature=1) response = conversation.messages[-1]["content"] delta_time = datetime.now() - start_time return response, delta_time with gr.Blocks() as demo: gr.Markdown( """ # Job Description generator ### This SLM demo uses ['google/gemma-2b-it'](https://huggingface.co/google/gemma-2b-it) """) interface = gr.Interface( fn = get_job_description, inputs = [gr.Textbox(placeholder="Enter the company name", label="Company name"), gr.Textbox(placeholder="Enter the company sector", label="Company sector"), gr.Textbox(placeholder="Enter the job position", label="Job position")], outputs = [gr.Markdown(), gr.Textbox(label="Elapsed time")] ) demo.launch(server_port=7860) # demo.launch(share=True, server_port=7860)