Update app.py
Browse files
app.py
CHANGED
|
@@ -8,13 +8,15 @@ import gradio as gr
|
|
| 8 |
# Log in using the secret token
|
| 9 |
login(os.environ["HF_TOKEN"])
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
-
#
|
|
|
|
| 15 |
adapter_model = "hin123123/theralingua-mistral-7b-word"
|
| 16 |
|
| 17 |
-
# Quantization config
|
| 18 |
quantization_config = BitsAndBytesConfig(
|
| 19 |
load_in_4bit=True,
|
| 20 |
bnb_4bit_compute_dtype=torch.float16,
|
|
@@ -22,22 +24,22 @@ quantization_config = BitsAndBytesConfig(
|
|
| 22 |
bnb_4bit_quant_type="nf4"
|
| 23 |
)
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
model
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
model = PeftModel.from_pretrained(model, adapter_model)
|
| 38 |
|
| 39 |
def generate_text(input_text, max_new_tokens=200, temperature=0.7):
|
| 40 |
-
#
|
|
|
|
| 41 |
formatted_prompt = f"### Instruction:\n{input_text}\n\n### Response:\n"
|
| 42 |
|
| 43 |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -53,7 +55,6 @@ def generate_text(input_text, max_new_tokens=200, temperature=0.7):
|
|
| 53 |
|
| 54 |
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 55 |
|
| 56 |
-
# Trim to just the response part (removes prompt echo)
|
| 57 |
if "### Response:" in generated:
|
| 58 |
generated = generated.split("### Response:")[1].strip()
|
| 59 |
|
|
@@ -68,13 +69,14 @@ demo = gr.Interface(
|
|
| 68 |
],
|
| 69 |
outputs=gr.Textbox(label="Generated Output"),
|
| 70 |
title="Theralingua-Mistral-7B-Word Demo",
|
| 71 |
-
description="Enter an instruction like 'start training' to generate pronunciation exercises. The model draws from a dataset of ~80 word entries focused on sounds like 'd', 'k', 's', etc., with IPA, feedbacks, and tips.",
|
| 72 |
examples=[
|
| 73 |
["start training"],
|
| 74 |
["begin practice"],
|
| 75 |
["start speech"]
|
| 76 |
-
]
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
-
# Launch the demo
|
| 80 |
demo.launch()
|
|
|
|
| 8 |
# Log in using the secret token
|
| 9 |
login(os.environ["HF_TOKEN"])
|
| 10 |
|
| 11 |
+
# Globals for lazy loading
|
| 12 |
+
model = None
|
| 13 |
+
tokenizer = None
|
| 14 |
|
| 15 |
+
# Base model and adapter
|
| 16 |
+
base_model = "mistralai/Mistral-7B-v0.3"
|
| 17 |
adapter_model = "hin123123/theralingua-mistral-7b-word"
|
| 18 |
|
| 19 |
+
# Quantization config
|
| 20 |
quantization_config = BitsAndBytesConfig(
|
| 21 |
load_in_4bit=True,
|
| 22 |
bnb_4bit_compute_dtype=torch.float16,
|
|
|
|
| 24 |
bnb_4bit_quant_type="nf4"
|
| 25 |
)
|
| 26 |
|
| 27 |
+
def load_model_and_tokenizer():
|
| 28 |
+
global model, tokenizer
|
| 29 |
+
if tokenizer is None:
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 31 |
+
if model is None:
|
| 32 |
+
base = AutoModelForCausalLM.from_pretrained(
|
| 33 |
+
base_model,
|
| 34 |
+
quantization_config=quantization_config,
|
| 35 |
+
device_map="auto",
|
| 36 |
+
low_cpu_mem_usage=True
|
| 37 |
+
)
|
| 38 |
+
model = PeftModel.from_pretrained(base, adapter_model)
|
|
|
|
| 39 |
|
| 40 |
def generate_text(input_text, max_new_tokens=200, temperature=0.7):
|
| 41 |
+
load_model_and_tokenizer() # Load only if not already loaded
|
| 42 |
+
|
| 43 |
formatted_prompt = f"### Instruction:\n{input_text}\n\n### Response:\n"
|
| 44 |
|
| 45 |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 55 |
|
| 56 |
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 57 |
|
|
|
|
| 58 |
if "### Response:" in generated:
|
| 59 |
generated = generated.split("### Response:")[1].strip()
|
| 60 |
|
|
|
|
| 69 |
],
|
| 70 |
outputs=gr.Textbox(label="Generated Output"),
|
| 71 |
title="Theralingua-Mistral-7B-Word Demo",
|
| 72 |
+
description="Enter an instruction like 'start training' to generate pronunciation exercises. The model draws from a dataset of ~80 word entries focused on sounds like 'd', 'k', 's', etc., with IPA, feedbacks, and tips. Note: First generation may take 10-20 minutes on CPU as the model loads.",
|
| 73 |
examples=[
|
| 74 |
["start training"],
|
| 75 |
["begin practice"],
|
| 76 |
["start speech"]
|
| 77 |
+
],
|
| 78 |
+
cache_examples=False # Disable caching to avoid the TypeError during startup
|
| 79 |
)
|
| 80 |
|
| 81 |
+
# Launch the demo
|
| 82 |
demo.launch()
|