import os import requests import streamlit as st from dotenv import find_dotenv, load_dotenv from transformers import pipeline from langchain import PromptTemplate, LLMChain from langchain.llms import GooglePalm load_dotenv(find_dotenv()) #llm = GooglePalm(temperature=0.9, google_api_key=os.getenv("GOOGLE_API_KEY")) # Iamge to Text def image_to_text(url): #load a transformer image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") text = image_to_text(url)[0]['generated_text'] print (text) return text # llm # # text to speech def text_to_speech(message): API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_TOKEN')}"} payload = {"inputs": message} response = requests.post(API_URL, headers=headers, json=payload) print(response.content) with open('audio.mp3', 'wb') as audio_file: audio_file.write(response.content) def main(): st.set_page_config(page_title="Image to Story", page_icon="📚", layout="wide") st.title("Image to Story") uploaded_file = st.file_uploader("Choose an image...", type=["jpg","png","jpeg"]) if uploaded_file is not None: bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption='Uploaded Image.', use_column_width=True) scenario = image_to_text(uploaded_file.name) with st.expander("scenerio"): st.write(scenario) if __name__ == '__main__': main()