# -*- coding: utf-8 -*- """orca_mini_3b_T4_GPU.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/#fileId=https%3A//huggingface.co/psmathur/orca_mini_3b/blob/main/orca_mini_3b_T4_GPU.ipynb """ !pip -q install transformers !pip -q install sentencepiece !pip -q install accelerate !pip -q install gradio import torch from transformers import LlamaForCausalLM, LlamaTokenizer # Hugging Face model_path model_path = 'psmathur/orca_mini_3b' tokenizer = LlamaTokenizer.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map='auto', ) #generate text function def predict(system, instruction, input=None): if input: prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" else: prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:\n" tokens = tokenizer.encode(prompt) tokens = torch.LongTensor(tokens).unsqueeze(0) tokens = tokens.to('cuda') instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024, 'top_k': 50} length = len(tokens[0]) with torch.no_grad(): rest = model.generate( input_ids=tokens, max_length=length+instance['generate_len'], use_cache=True, do_sample=True, top_p=instance['top_p'], temperature=instance['temperature'], top_k=instance['top_k'] ) output = rest[0][length:] string = tokenizer.decode(output, skip_special_tokens=True) return f'[!] Response: {string}' import gradio as gr # Define input components prompt_input = gr.inputs.Textbox(label="System") instruction_input = gr.inputs.Textbox(label="Instruction") context_input = gr.inputs.Textbox(label="Context") # Define output component output_text = gr.outputs.Textbox(label="Output") # Create the interface interface = gr.Interface(fn=predict, inputs=[prompt_input, instruction_input, context_input], outputs=output_text) interface.queue() interface.launch(share=True)