diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..2cdd646edc3f89cf92a2327b3310629d68c977f9 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +data/boxer-punching-towards-camera.mp4 filter=lfs diff=lfs merge=lfs -text +src/ebsynth/deps/ebsynth/bin/ebsynth filter=lfs diff=lfs merge=lfs -text diff --git a/LICENSE.md b/LICENSE.md new file mode 100644 index 0000000000000000000000000000000000000000..c2a49cbfe7909c14e53dfd5a94aa6694dc3f91f3 --- /dev/null +++ b/LICENSE.md @@ -0,0 +1,14 @@ +# S-Lab License 1.0 + +Copyright 2024 S-Lab + +Redistribution and use for non-commercial purpose in source and binary forms, with or without modification, are permitted provided that the following conditions are met: +1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. +2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. +3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.\ +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +4. In the event that redistribution and/or use for commercial purpose in source or binary forms, with or without modification is required, please contact the contributor(s) of the work. + + +--- +For the commercial use of the code, please consult Prof. Chen Change Loy (ccloy@ntu.edu.sg) diff --git a/README.md b/README.md index b90e8f720eef1444017ce4804eabf76ea392de01..eca8c86e32c76e924cb68ce1491b8b581be0b913 100644 --- a/README.md +++ b/README.md @@ -1,12 +1,207 @@ --- -title: Fresco -emoji: 💻 -colorFrom: gray -colorTo: purple +title: fresco +app_file: webUI.py sdk: gradio -sdk_version: 4.23.0 -app_file: app.py -pinned: false +sdk_version: 3.50.2 --- +# FRESCO - Official PyTorch Implementation + + +**FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation**
+[Shuai Yang](https://williamyang1991.github.io/), [Yifan Zhou](https://zhouyifan.net/), [Ziwei Liu](https://liuziwei7.github.io/) and [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/)
+in CVPR 2024
+[**Project Page**](https://www.mmlab-ntu.com/project/fresco/) | [**Paper**](https://arxiv.org/abs/2403.12962) | [**Supplementary Video**](https://youtu.be/jLnGx5H-wLw) | [**Input Data and Video Results**](https://drive.google.com/file/d/12BFx3hp8_jp9m0EmKpw-cus2SABPQx2Q/view?usp=sharing)
+ +**Abstract:** *The remarkable efficacy of text-to-image diffusion models has motivated extensive exploration of their potential application in video domains. +Zero-shot methods seek to extend image diffusion models to videos without necessitating model training. +Recent methods mainly focus on incorporating inter-frame correspondence into attention mechanisms. However, the soft constraint imposed on determining where to attend to valid features can sometimes be insufficient, resulting in temporal inconsistency. +In this paper, we introduce FRESCO, intra-frame correspondence alongside inter-frame correspondence to establish a more robust spatial-temporal constraint. This enhancement ensures a more consistent transformation of semantically similar content across frames. Beyond mere attention guidance, our approach involves an explicit update of features to achieve high spatial-temporal consistency with the input video, significantly improving the visual coherence of the resulting translated videos. +Extensive experiments demonstrate the effectiveness of our proposed framework in producing high-quality, coherent videos, marking a notable improvement over existing zero-shot methods.* + +**Features**:
+- **Temporal consistency**: use intra-and inter-frame constraint with better consistency and coverage than optical flow alone. + - Compared with our previous work [Rerender-A-Video](https://github.com/williamyang1991/Rerender_A_Video), FRESCO is more robust to large and quick motion. +- **Zero-shot**: no training or fine-tuning required. +- **Flexibility**: compatible with off-the-shelf models (e.g., [ControlNet](https://github.com/lllyasviel/ControlNet), [LoRA](https://civitai.com/)) for customized translation. + +https://github.com/williamyang1991/FRESCO/assets/18130694/aad358af-4d27-4f18-b069-89a1abd94d38 + + +## Updates +- [03/2023] Paper is released. +- [03/2023] Code is released. +- [03/2024] This website is created. + +### TODO +- [x] Integrate into Diffusers +- [x] Add Huggingface web demo +- [x] ~~Add webUI.~~ +- [x] ~~Update readme~~ +- [x] ~~Upload paper to arXiv, release related material~~ + +## Installation + +1. Clone the repository. + +```shell +git clone https://github.com/williamyang1991/FRESCO.git +cd FRESCO +``` + +2. You can simply set up the environment with pip based on [requirements.txt](https://github.com/williamyang1991/FRESCO/blob/main/requirements.txt) + - We have tested on torch 2.0.0/2.1.0 and diffusers 0.19.3 + - If you use new versions of diffusers, you need to modify [my_forward()](https://github.com/williamyang1991/FRESCO/blob/fb991262615665de88f7a8f2cc903d9539e1b234/src/diffusion_hacked.py#L496) + +3. Run the installation script. The required models will be downloaded in `./model`, `./src/ControlNet/annotator` and `./src/ebsynth/deps/ebsynth/bin`. + - Requires access to huggingface.co + +```shell +python install.py +``` + +4. You can run the demo with `run_fresco.py` + +```shell +python run_fresco.py ./config/config_music.yaml +``` + +5. For issues with Ebsynth, please refer to [issues](https://github.com/williamyang1991/Rerender_A_Video#issues) + + +## (1) Inference + +### WebUI (recommended) + +``` +python webUI.py +``` +The Gradio app also allows you to flexibly change the inference options. Just try it for more details. + +Upload your video, input the prompt, select the model and seed, and hit: +- **Run Key Frames**: detect keyframes, translate all keyframes. +- **Run Propagation**: propagate the keyframes to other frames for full video translation +- **Run All**: **Run Key Frames** and **Run Propagation** + +Select the model: +- **Base model**: base Stable Diffusion model (SD 1.5) + - Stable Diffusion 1.5: official model + - [rev-Animated](https://huggingface.co/stablediffusionapi/rev-animated): a semi-realistic (2.5D) model + - [realistic-Vision](https://huggingface.co/SG161222/Realistic_Vision_V2.0): a photo-realistic model + - [flat2d-animerge](https://huggingface.co/stablediffusionapi/flat-2d-animerge): a cartoon model + - You can add other models on huggingface.co by modifying this [line](https://github.com/williamyang1991/FRESCO/blob/1afcca9c7b1bc1ac68254f900be9bd768fbb6988/webUI.py#L362) + +![overview](https://github.com/williamyang1991/FRESCO/assets/18130694/6ce5d54e-b020-4e43-95e7-72ab1783f482) + +We provide abundant advanced options to play with + + + +
+ Advanced options for single frame processing + +1. **Frame resolution**: resize the short side of the video to 512. +2. ControlNet related: + - **ControlNet strength**: how well the output matches the input control edges + - **Control type**: HED edge, Canny edge, Depth map + - **Canny low/high threshold**: low values for more edge details +3. SDEdit related: + - **Denoising strength**: repaint degree (low value to make the output look more like the original video) + - **Preserve color**: preserve the color of the original video +4. SD related: + - **Steps**: denoising step + - **CFG scale**: how well the output matches the prompt + - **Added prompt/Negative prompt**: supplementary prompts +5. FreeU related: + - **FreeU first/second-stage backbone factor**: =1 do nothing; >1 enhance output color and details + - **FreeU first/second-stage skip factor**: =1 do nothing; <1 enhance output color and details + +
+ +
+ Advanced options for FRESCO constraints + +1. Keyframe related + - **Number of frames**: Total frames to be translated + - **Number of frames in a batch**: To avoid out-of-memory, use small batch size + - **Min keyframe interval (s_min)**: The keyframes will be detected at least every s_min frames + - **Max keyframe interval (s_max)**: The keyframes will be detected at most every s_max frames +2. FRESCO constraints + - FRESCO-guided Attention: + - **spatial-guided attention**: Check to enable spatial-guided attention + - **cross-frame attention**: Check to enable efficient cross-frame attention + - **temporal-guided attention**: Check to enable temporal-guided attention + - FRESCO-guided optimization: + - **spatial-guided optimization**: Check to enable spatial-guided optimization + - **temporal-guided optimization**: Check to enable temporal-guided optimization +3. **Background smoothing**: Check to enable background smoothing (best for static background) + +
+ +
+ Advanced options for the full video translation + +1. **Gradient blending**: apply Poisson Blending to reduce ghosting artifacts. May slow the process and increase flickers. +2. **Number of parallel processes**: multiprocessing to speed up the process. Large value (4) is recommended. +
+ +![option](https://github.com/williamyang1991/FRESCO/assets/18130694/72600758-1dff-4b7c-8f3f-65ee3909f8f6) + +### Command Line + +We provide a flexible script `run_fresco.py` to run our method. + +Set the options via a config file. For example, +```shell +python run_fresco.py ./config/config_music.yaml +``` +We provide some examples of the config in `config` directory. +Most options in the config is the same as those in WebUI. +Please check the explanations in the WebUI section. + +We provide a separate Ebsynth python script `video_blend.py` with the temporal blending algorithm introduced in +[Stylizing Video by Example](https://dcgi.fel.cvut.cz/home/sykorad/ebsynth.html) for interpolating style between key frames. +It can work on your own stylized key frames independently of our FRESCO algorithm. +For the details, please refer to our previous work [Rerender-A-Video](https://github.com/williamyang1991/Rerender_A_Video/tree/main?tab=readme-ov-file#our-ebsynth-implementation) + +## (2) Results + +### Key frame translation + + + + + + + + + + + + + + +
a red car turns in the winteran African American boxer wearing black boxing gloves punches towards the camera, cartoon stylea cartoon spiderman in black suit, black shoes and white gloves is dancinga beautiful woman holding her glasses in CG style
+ + +### Full video translation + +https://github.com/williamyang1991/FRESCO/assets/18130694/bf8bfb82-5cb7-4b2f-8169-cf8dbf408b54 + +## Citation + +If you find this work useful for your research, please consider citing our paper: + +```bibtex +@inproceedings{yang2024fresco, + title = {FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation}, + author = {Yang, Shuai and Zhou, Yifan and Liu, Ziwei and and Loy, Chen Change}, + booktitle = {CVPR}, + year = {2024}, +} +``` + +## Acknowledgments + +The code is mainly developed based on [Rerender-A-Video](https://github.com/williamyang1991/Rerender_A_Video), [ControlNet](https://github.com/lllyasviel/ControlNet), [Stable Diffusion](https://github.com/Stability-AI/stablediffusion), [GMFlow](https://github.com/haofeixu/gmflow) and [Ebsynth](https://github.com/jamriska/ebsynth). + -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/config/config_boxer.yaml b/config/config_boxer.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3e1c91b8e2c3f9f16048d8482686d7365b3b76a4 --- /dev/null +++ b/config/config_boxer.yaml @@ -0,0 +1,27 @@ +# data +file_path: './data/boxer-punching-towards-camera.mp4' +save_path: './output/boxer-punching-towards-camera/' +mininterv: 2 # for keyframe selection +maxinterv: 2 # for keyframe selection + +# diffusion +seed: 0 +prompt: 'An African American boxer wearing black boxing gloves punches towards the camera, cartoon style' +sd_path: 'stablediffusionapi/flat-2d-animerge' +use_controlnet: True +controlnet_type: 'depth' # 'hed', 'canny' +cond_scale: 0.7 +use_freeu: False + +# video-to-video translation +batch_size: 8 +num_inference_steps: 20 +num_warmup_steps: 5 +end_opt_step: 15 +run_ebsynth: False +max_process: 4 + +# supporting model +gmflow_path: './model/gmflow_sintel-0c07dcb3.pth' +sod_path: './model/epoch_resnet.pth' +use_salinecy: True \ No newline at end of file diff --git a/config/config_carturn.yaml b/config/config_carturn.yaml new file mode 100644 index 0000000000000000000000000000000000000000..dec20551e41d2e9ffd91edc76fd8c84252559e77 --- /dev/null +++ b/config/config_carturn.yaml @@ -0,0 +1,30 @@ +# data +file_path: './data/car-turn.mp4' +save_path: './output/car-turn/' +mininterv: 5 # for keyframe selection +maxinterv: 5 # for keyframe selection + +# diffusion +seed: 0 +prompt: 'a red car turns in the winter' +# sd_path: 'runwayml/stable-diffusion-v1-5' +# sd_path: 'stablediffusionapi/rev-animated' +# sd_path: 'stablediffusionapi/flat-2d-animerge' +sd_path: 'SG161222/Realistic_Vision_V2.0' +use_controlnet: True +controlnet_type: 'hed' # 'depth', 'canny' +cond_scale: 0.7 +use_freeu: False + +# video-to-video translation +batch_size: 8 +num_inference_steps: 20 +num_warmup_steps: 5 +end_opt_step: 15 +run_ebsynth: False +max_process: 4 + +# supporting model +gmflow_path: './model/gmflow_sintel-0c07dcb3.pth' +sod_path: './model/epoch_resnet.pth' +use_salinecy: True \ No newline at end of file diff --git a/config/config_dog.yaml b/config/config_dog.yaml new file mode 100644 index 0000000000000000000000000000000000000000..036c132e58a192d3a6fbb68e4dae06b1dc5f9028 --- /dev/null +++ b/config/config_dog.yaml @@ -0,0 +1,27 @@ +# data +file_path: './data/dog.mp4' +save_path: './output/dog/' +mininterv: 10 # for keyframe selection +maxinterv: 30 # for keyframe selection + +# diffusion +seed: 0 +prompt: 'greetings from a fox by shaking front paws' +sd_path: 'SG161222/Realistic_Vision_V2.0' +use_controlnet: True +controlnet_type: 'hed' # 'depth', 'canny' +cond_scale: 1.0 +use_freeu: False + +# video-to-video translation +batch_size: 8 +num_inference_steps: 20 +num_warmup_steps: 8 +end_opt_step: 15 +run_ebsynth: False +max_process: 4 + +# supporting model +gmflow_path: './model/gmflow_sintel-0c07dcb3.pth' +sod_path: './model/epoch_resnet.pth' +use_salinecy: True \ No newline at end of file diff --git a/config/config_music.yaml b/config/config_music.yaml new file mode 100644 index 0000000000000000000000000000000000000000..7b8abcacefbc1a7e5c1e3d97bdda0e8aee490b95 --- /dev/null +++ b/config/config_music.yaml @@ -0,0 +1,27 @@ +# data +file_path: './data/music.mp4' +save_path: './output/music/' +mininterv: 10 # for keyframe selection +maxinterv: 30 # for keyframe selection + +# diffusion +seed: 0 +prompt: 'A beautiful woman with headphones listening to music in CG cyberpunk style, neon, closed eyes, colorful' +sd_path: 'stablediffusionapi/rev-animated' +use_controlnet: True +controlnet_type: 'hed' # 'depth', 'canny' +cond_scale: 1.0 +use_freeu: False + +# video-to-video translation +batch_size: 8 +num_inference_steps: 20 +num_warmup_steps: 3 +end_opt_step: 15 +run_ebsynth: False +max_process: 4 + +# supporting model +gmflow_path: './model/gmflow_sintel-0c07dcb3.pth' +sod_path: './model/epoch_resnet.pth' +use_salinecy: True \ No newline at end of file diff --git a/data/boxer-punching-towards-camera.mp4 b/data/boxer-punching-towards-camera.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..940bce6b16665a62db071852f381e371ff885ac5 --- /dev/null +++ b/data/boxer-punching-towards-camera.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:265fc4d5e53bfdc1b8fb8b7792815bd86d8d5bd14b1463f41e5df7d9fc500525 +size 1467723 diff --git a/data/car-turn.mp4 b/data/car-turn.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..0275a79e6fc817d605139b2ad816fa7d8c5749c9 Binary files /dev/null and b/data/car-turn.mp4 differ diff --git a/data/dog.mp4 b/data/dog.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..e395f4ec153e73e7c0c86facb818a1f3ccbdce6b Binary files /dev/null and b/data/dog.mp4 differ diff --git a/data/music.mp4 b/data/music.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..e3831b7788e0521ed505ad97cc729fbf2b0e4f80 Binary files /dev/null and b/data/music.mp4 differ diff --git a/install.py b/install.py new file mode 100644 index 0000000000000000000000000000000000000000..5c0e5e4f8e20f3abd52adc8c86c88de7f14cc1aa --- /dev/null +++ b/install.py @@ -0,0 +1,95 @@ +import os +import platform + +import requests + + +def build_ebsynth(): + if os.path.exists('src/ebsynth/deps/ebsynth/bin/ebsynth'): + print('Ebsynth has been built.') + return + + os_str = platform.system() + + if os_str == 'Windows': + print('Build Ebsynth Windows 64 bit.', + 'If you want to build for 32 bit, please modify install.py.') + cmd = '.\\build-win64-cpu+cuda.bat' + exe_file = 'src/ebsynth/deps/ebsynth/bin/ebsynth.exe' + elif os_str == 'Linux': + cmd = 'bash build-linux-cpu+cuda.sh' + exe_file = 'src/ebsynth/deps/ebsynth/bin/ebsynth' + elif os_str == 'Darwin': + cmd = 'sh build-macos-cpu_only.sh' + exe_file = 'src/ebsynth/deps/ebsynth/bin/ebsynth.app' + else: + print('Cannot recognize OS. Ebsynth installation stopped.') + return + + os.chdir('src/ebsynth/deps/ebsynth') + print(cmd) + os.system(cmd) + os.chdir('../../../..') + if os.path.exists(exe_file): + print('Ebsynth installed successfully.') + else: + print('Failed to install Ebsynth.') + + +def download(url, dir, name=None): + os.makedirs(dir, exist_ok=True) + if name is None: + name = url.split('/')[-1] + path = os.path.join(dir, name) + if not os.path.exists(path): + print(f'Install {name} ...') + open(path, 'wb').write(requests.get(url).content) + print('Install successfully.') + + +def download_gmflow_ckpt(): + url = ('https://huggingface.co/PKUWilliamYang/Rerender/' + 'resolve/main/models/gmflow_sintel-0c07dcb3.pth') + download(url, 'model') + + +def download_egnet_ckpt(): + url = ('https://huggingface.co/PKUWilliamYang/Rerender/' + 'resolve/main/models/epoch_resnet.pth') + download(url, 'model') + +def download_hed_ckpt(): + url = ('https://huggingface.co/lllyasviel/Annotators/' + 'resolve/main/ControlNetHED.pth') + download(url, 'src/ControlNet/annotator/ckpts') + +def download_depth_ckpt(): + url = ('https://huggingface.co/lllyasviel/ControlNet/' + 'resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt') + download(url, 'src/ControlNet/annotator/ckpts') + +def download_ebsynth_ckpt(): + os_str = platform.system() + if os_str == 'Linux': + url = ('https://huggingface.co/PKUWilliamYang/Rerender/' + 'resolve/main/models/ebsynth') + download(url, 'src/ebsynth/deps/ebsynth/bin') + elif os_str == 'Windows': + url = ('https://huggingface.co/PKUWilliamYang/Rerender/' + 'resolve/main/models/ebsynth.exe') + download(url, 'src/ebsynth/deps/ebsynth/bin') + url = ('https://huggingface.co/PKUWilliamYang/Rerender/' + 'resolve/main/models/ebsynth_cpu.dll') + download(url, 'src/ebsynth/deps/ebsynth/bin') + url = ('https://huggingface.co/PKUWilliamYang/Rerender/' + 'resolve/main/models/ebsynth_cpu.exe') + download(url, 'src/ebsynth/deps/ebsynth/bin') + else: + print('No available compiled Ebsynth.') + +#build_ebsynth() +download_ebsynth_ckpt() +download_gmflow_ckpt() +download_egnet_ckpt() +download_hed_ckpt() +download_depth_ckpt() diff --git a/model/README.md b/model/README.md new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/model/epoch_resnet.pth b/model/epoch_resnet.pth new file mode 100644 index 0000000000000000000000000000000000000000..67e6279a9a51ceb088e894ddf6e7ff264cc4beab --- /dev/null +++ b/model/epoch_resnet.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:38e000887ec6445f91faac7dac9539daae33ab05eb98ce6c80ba82fff0f836b7 +size 447062559 diff --git a/model/gmflow_sintel-0c07dcb3.pth b/model/gmflow_sintel-0c07dcb3.pth new file mode 100644 index 0000000000000000000000000000000000000000..206c914272a1e515b0881350eab262ba36ce07ef --- /dev/null +++ b/model/gmflow_sintel-0c07dcb3.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0c07dcb35770464f38a5ff4de18c04177b242dc5de8cd2068adf46f3d4fe193a +size 18768907 diff --git a/output/1/video/0000.png b/output/1/video/0000.png new file mode 100644 index 0000000000000000000000000000000000000000..23dc9f87249c8ace3187fb55edfeb286b10f3426 Binary files /dev/null and b/output/1/video/0000.png differ diff --git a/output/1/video/0001.png b/output/1/video/0001.png new file mode 100644 index 0000000000000000000000000000000000000000..170d85bff35243db7b9e3783df69d37131b02e19 Binary files /dev/null and b/output/1/video/0001.png differ diff --git a/output/1/video/0002.png b/output/1/video/0002.png new file mode 100644 index 0000000000000000000000000000000000000000..a8d6cb71669f556e18533672f151b0b767a52131 Binary files /dev/null and b/output/1/video/0002.png differ diff --git a/output/1/video/0003.png b/output/1/video/0003.png new file mode 100644 index 0000000000000000000000000000000000000000..6ba47a88012aa302f338cfd8beb32536f20554bf Binary files /dev/null and b/output/1/video/0003.png differ diff --git a/output/1/video/0004.png b/output/1/video/0004.png new file mode 100644 index 0000000000000000000000000000000000000000..776d1b956dfe02f5d4d5735ef2aa436cb838348c Binary files /dev/null and b/output/1/video/0004.png differ diff --git a/output/1/video/0005.png b/output/1/video/0005.png new file mode 100644 index 0000000000000000000000000000000000000000..d80d227685d5d689598b26e9a1a6b47d5c1665fa Binary files /dev/null and b/output/1/video/0005.png differ diff --git a/output/1/video/0006.png b/output/1/video/0006.png new file mode 100644 index 0000000000000000000000000000000000000000..8ff8a8c9caebe454e9d4979d7f10aea5fcefde89 Binary files /dev/null and b/output/1/video/0006.png differ diff --git a/output/1/video/0007.png b/output/1/video/0007.png new file mode 100644 index 0000000000000000000000000000000000000000..2cc8d6dfd0029df69af50c15345500325e975a29 Binary files /dev/null and b/output/1/video/0007.png differ diff --git a/output/1/video/0008.png b/output/1/video/0008.png new file mode 100644 index 0000000000000000000000000000000000000000..b8096d0487fa2046493bc7e3715ea76e46196e9c Binary files /dev/null and b/output/1/video/0008.png differ diff --git a/output/1/video/0009.png b/output/1/video/0009.png new file mode 100644 index 0000000000000000000000000000000000000000..eaf1dfe338871cdffa0a3189e0e701577870a14c Binary files /dev/null and b/output/1/video/0009.png differ diff --git a/output/1/video/0010.png b/output/1/video/0010.png new file mode 100644 index 0000000000000000000000000000000000000000..23aa13ed5d435ea2a470ba78ee76b6b27b728aef Binary files /dev/null and b/output/1/video/0010.png differ diff --git a/output/1/video/0011.png b/output/1/video/0011.png new file mode 100644 index 0000000000000000000000000000000000000000..f1691a958bbe92ccb35b0ad491d751807a2ce603 Binary files /dev/null and b/output/1/video/0011.png differ diff --git a/output/1/video/0012.png b/output/1/video/0012.png new file mode 100644 index 0000000000000000000000000000000000000000..387cf672bb57cd8cadaf7a1b743fbd6cb3a35c81 Binary files /dev/null and b/output/1/video/0012.png differ diff --git a/output/1/video/0013.png b/output/1/video/0013.png new file mode 100644 index 0000000000000000000000000000000000000000..7c2e70c15b53083cd6d036fb6ac456fafdb8a57e Binary files /dev/null and b/output/1/video/0013.png differ diff --git a/output/1/video/0014.png b/output/1/video/0014.png new file mode 100644 index 0000000000000000000000000000000000000000..ad71eab3e2cfe598534d49bef19075753b05388f Binary files /dev/null and b/output/1/video/0014.png differ diff --git a/output/1/video/0015.png b/output/1/video/0015.png new file mode 100644 index 0000000000000000000000000000000000000000..dd6228a3354592c5cd18e0e6b1c6c974889ac2da Binary files /dev/null and b/output/1/video/0015.png differ diff --git a/output/1/video/0016.png b/output/1/video/0016.png new file mode 100644 index 0000000000000000000000000000000000000000..6b25e9c4ae0eeda09ce1d9e66d0263a2e907b44a Binary files /dev/null and b/output/1/video/0016.png differ diff --git a/output/1/video/0017.png b/output/1/video/0017.png new file mode 100644 index 0000000000000000000000000000000000000000..ce8f8f5fc3387862cd2239635c29ea5bcffffee0 Binary files /dev/null and b/output/1/video/0017.png differ diff --git a/output/1/video/0018.png b/output/1/video/0018.png new file mode 100644 index 0000000000000000000000000000000000000000..19eef639ad3fe777dbab78d81fb84d05335e4ae0 Binary files /dev/null and b/output/1/video/0018.png differ diff --git a/output/1/video/0019.png b/output/1/video/0019.png new file mode 100644 index 0000000000000000000000000000000000000000..0c4680bd01e76b2c4a7f66a44d25f1e973b2d7a4 Binary files /dev/null and b/output/1/video/0019.png differ diff --git a/output/1/video/0020.png b/output/1/video/0020.png new file mode 100644 index 0000000000000000000000000000000000000000..fc85110ac2601874fd012937118d3525b675b72c Binary files /dev/null and b/output/1/video/0020.png differ diff --git a/output/1/video/0021.png b/output/1/video/0021.png new file mode 100644 index 0000000000000000000000000000000000000000..71da5fa27d42f8ab12bde313b47e3d2f93e7aaeb Binary files /dev/null and b/output/1/video/0021.png differ diff --git a/output/1/video/0022.png b/output/1/video/0022.png new file mode 100644 index 0000000000000000000000000000000000000000..14974f54db51f595e22b4066937f0ab9b97e7b70 Binary files /dev/null and b/output/1/video/0022.png differ diff --git a/output/1/video/0023.png b/output/1/video/0023.png new file mode 100644 index 0000000000000000000000000000000000000000..08bc7a54583f88d4caf2013b5b71e1c0fc426665 Binary files /dev/null and b/output/1/video/0023.png differ diff --git a/output/1/video/0024.png b/output/1/video/0024.png new file mode 100644 index 0000000000000000000000000000000000000000..e7fbddeb968d3899dd16c068a31e776b7aa194f0 Binary files /dev/null and b/output/1/video/0024.png differ diff --git a/output/1/video/0025.png b/output/1/video/0025.png new file mode 100644 index 0000000000000000000000000000000000000000..a44595c5051b5227f328efb0d0c5d9146490e23e Binary files /dev/null and b/output/1/video/0025.png differ diff --git a/output/1/video/0026.png b/output/1/video/0026.png new file mode 100644 index 0000000000000000000000000000000000000000..225b2562b4ca0b78e4ac9ab4f5e8558bd1a125c5 Binary files /dev/null and b/output/1/video/0026.png differ diff --git a/output/1/video/0027.png b/output/1/video/0027.png new file mode 100644 index 0000000000000000000000000000000000000000..1f5eb2be61449b48947a92559c822c33f943a2fc Binary files /dev/null and b/output/1/video/0027.png differ diff --git a/output/1/video/0028.png b/output/1/video/0028.png new file mode 100644 index 0000000000000000000000000000000000000000..0b2d64a3f294b142963c0df0cad653532d5aec8f Binary files /dev/null and b/output/1/video/0028.png differ diff --git a/output/1/video/0029.png b/output/1/video/0029.png new file mode 100644 index 0000000000000000000000000000000000000000..53e3bb5435dbb61deefdf16f23d183b47389a106 Binary files /dev/null and b/output/1/video/0029.png differ diff --git a/output/1/video/0030.png b/output/1/video/0030.png new file mode 100644 index 0000000000000000000000000000000000000000..6ca7d6ada07f7151374e781b60d8233a30cbacde Binary files /dev/null and b/output/1/video/0030.png differ diff --git a/output/1/video/0031.png b/output/1/video/0031.png new file mode 100644 index 0000000000000000000000000000000000000000..fcf2bc0595cc065a09879a1f29b3e4c911a7f0a9 Binary files /dev/null and b/output/1/video/0031.png differ diff --git a/output/1/video/0032.png b/output/1/video/0032.png new file mode 100644 index 0000000000000000000000000000000000000000..c1fd59333588b8c9cfad4b47ff6358e058ccbefc Binary files /dev/null and b/output/1/video/0032.png differ diff --git a/output/1/video/0033.png b/output/1/video/0033.png new file mode 100644 index 0000000000000000000000000000000000000000..83d6dd342de2344628e6933379203df12abe19bb Binary files /dev/null and b/output/1/video/0033.png differ diff --git a/output/1/video/0034.png b/output/1/video/0034.png new file mode 100644 index 0000000000000000000000000000000000000000..80766225a8e374f42d9e790a545960e96d9e89e8 Binary files /dev/null and b/output/1/video/0034.png differ diff --git a/output/1/video/0035.png b/output/1/video/0035.png new file mode 100644 index 0000000000000000000000000000000000000000..70a9932d70eccfd1c8a67df1c0bc28bd2d64394b Binary files /dev/null and b/output/1/video/0035.png differ diff --git a/output/1/video/0036.png b/output/1/video/0036.png new file mode 100644 index 0000000000000000000000000000000000000000..6162b4fbf9038240e30911dedf29afc048eb7900 Binary files /dev/null and b/output/1/video/0036.png differ diff --git a/output/1/video/0037.png b/output/1/video/0037.png new file mode 100644 index 0000000000000000000000000000000000000000..e08f7a27b22ebac3ac91ce1cf4d7b8ccc61d6131 Binary files /dev/null and b/output/1/video/0037.png differ diff --git a/output/1/video/0038.png b/output/1/video/0038.png new file mode 100644 index 0000000000000000000000000000000000000000..b5af398912fecd5ae081a747a94c6be7bd085a6a Binary files /dev/null and b/output/1/video/0038.png differ diff --git a/output/1/video/0039.png b/output/1/video/0039.png new file mode 100644 index 0000000000000000000000000000000000000000..9e357d8091c2276d6c688cfc8d8588db9e7770f1 Binary files /dev/null and b/output/1/video/0039.png differ diff --git a/output/1/video/0040.png b/output/1/video/0040.png new file mode 100644 index 0000000000000000000000000000000000000000..c96911975db95fec3125bc85821b95c0d7369cbc Binary files /dev/null and b/output/1/video/0040.png differ diff --git a/output/1/video/0041.png b/output/1/video/0041.png new file mode 100644 index 0000000000000000000000000000000000000000..591a19e175f1e3327377a3b45bf07ea13932217e Binary files /dev/null and b/output/1/video/0041.png differ diff --git a/output/1/video/0042.png b/output/1/video/0042.png new file mode 100644 index 0000000000000000000000000000000000000000..dff7e2a0639267a4f6459e7ae8f9958d267769c4 Binary files /dev/null and b/output/1/video/0042.png differ diff --git a/output/1/video/0043.png b/output/1/video/0043.png new file mode 100644 index 0000000000000000000000000000000000000000..6344c8315435ddeba26e043be3f9182dddca2fc5 Binary files /dev/null and b/output/1/video/0043.png differ diff --git a/output/1/video/0044.png b/output/1/video/0044.png new file mode 100644 index 0000000000000000000000000000000000000000..eca39978049310a883635b24b7541d1c3ef9f446 Binary files /dev/null and b/output/1/video/0044.png differ diff --git a/output/1/video/0045.png b/output/1/video/0045.png new file mode 100644 index 0000000000000000000000000000000000000000..7fb250681daf764e8c62d1f719da5e44cbee0ea2 Binary files /dev/null and b/output/1/video/0045.png differ diff --git a/output/1/video/0046.png b/output/1/video/0046.png new file mode 100644 index 0000000000000000000000000000000000000000..f4784668a0d8f040edd76acca129d36174aec42c Binary files /dev/null and b/output/1/video/0046.png differ diff --git a/output/1/video/0047.png b/output/1/video/0047.png new file mode 100644 index 0000000000000000000000000000000000000000..00003aa94bd09aa5e6b38eb0eb5341434d76b673 Binary files /dev/null and b/output/1/video/0047.png differ diff --git a/output/1/video/0048.png b/output/1/video/0048.png new file mode 100644 index 0000000000000000000000000000000000000000..9e77b48f97852267206a2731c036fe6d10939b11 Binary files /dev/null and b/output/1/video/0048.png differ diff --git a/output/1/video/0049.png b/output/1/video/0049.png new file mode 100644 index 0000000000000000000000000000000000000000..25f9535730d3e7e0af671b9aa89679ac7c9c5f08 Binary files /dev/null and b/output/1/video/0049.png differ diff --git a/output/1/video/0050.png b/output/1/video/0050.png new file mode 100644 index 0000000000000000000000000000000000000000..6a791bf9f823d835fd6fe326e3d07a5de4c7d46f Binary files /dev/null and b/output/1/video/0050.png differ diff --git a/output/1/video/0051.png b/output/1/video/0051.png new file mode 100644 index 0000000000000000000000000000000000000000..bfe6164aad1f0f1ff8034a890a5991e073574709 Binary files /dev/null and b/output/1/video/0051.png differ diff --git a/output/1/video/0052.png b/output/1/video/0052.png new file mode 100644 index 0000000000000000000000000000000000000000..ccc732bad8e9d8e30827991481282de6cc42c95f Binary files /dev/null and b/output/1/video/0052.png differ diff --git a/output/1/video/0053.png b/output/1/video/0053.png new file mode 100644 index 0000000000000000000000000000000000000000..20dcfc7d3a36608a34d5c7141bd448040475da07 Binary files /dev/null and b/output/1/video/0053.png differ diff --git a/output/1/video/0054.png b/output/1/video/0054.png new file mode 100644 index 0000000000000000000000000000000000000000..8f6e24ee1de7191f93e641a4c39fd22f94a270c5 Binary files /dev/null and b/output/1/video/0054.png differ diff --git a/output/1/video/0055.png b/output/1/video/0055.png new file mode 100644 index 0000000000000000000000000000000000000000..c3ec4778afc1722d541d88effd1f9a91042df309 Binary files /dev/null and b/output/1/video/0055.png differ diff --git a/output/1/video/0056.png b/output/1/video/0056.png new file mode 100644 index 0000000000000000000000000000000000000000..b1d5d7fef04d11699203598e95d6ad2a40659846 Binary files /dev/null and b/output/1/video/0056.png differ diff --git a/output/1/video/0057.png b/output/1/video/0057.png new file mode 100644 index 0000000000000000000000000000000000000000..7136eb8c31e76260696a429666cbd81bbb312b72 Binary files /dev/null and b/output/1/video/0057.png differ diff --git a/output/1/video/0058.png b/output/1/video/0058.png new file mode 100644 index 0000000000000000000000000000000000000000..be379c8320ce49ae569abcc5004fd13a3ca70f4b Binary files /dev/null and b/output/1/video/0058.png differ diff --git a/output/README.md b/output/README.md new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..24c5e2c57774c9964ab7e720d1f410be58da8a14 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,11 @@ +diffusers[torch]==0.19.3 +transformers +opencv-python +einops +matplotlib +timm +av +basicsr==1.4.2 +numba==0.57.0 +imageio-ffmpeg +gradio==3.50.2 diff --git a/run_fresco.ipynb b/run_fresco.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..8a3e7c3c3549849781e2d67004a5fff848bc51da --- /dev/null +++ b/run_fresco.ipynb @@ -0,0 +1,943 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation (CVPR 24)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 0) preperation\n", + "\n", + "- download the full repository\n", + "- prepare environment based on `requirements.txt`\n", + "- run `python install.py` to download the supporting models\n", + " - check `./model/gmflow_sintel-0c07dcb3.pth` and `epoch_resnet.pth` are downloaded\n", + " - check `./src/ControlNet/annotator/ckpts/ControlNetHED.pth` is downloaded\n", + " - check `./src/ControlNet/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt` is downloaded\n", + " - check `./src/ebsynth/deps/ebsynth/bin/ebsynth (or ebsynth.exe)` is downloaded" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/yangs/miniconda3/envs/diffuser/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import os\n", + "#os.environ['CUDA_VISIBLE_DEVICES'] = \"6\"\n", + "\n", + "# uncomment the next line to use huggingface model in China\n", + "#os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'\n", + "\n", + "import cv2\n", + "import io\n", + "import gc\n", + "import yaml\n", + "import argparse\n", + "import torch\n", + "import torchvision\n", + "import diffusers\n", + "from diffusers import StableDiffusionPipeline, AutoencoderKL, DDPMScheduler, ControlNetModel\n", + "\n", + "from src.utils import *\n", + "from src.keyframe_selection import get_keyframe_ind\n", + "from src.diffusion_hacked import apply_FRESCO_attn, apply_FRESCO_opt, disable_FRESCO_opt\n", + "from src.diffusion_hacked import get_flow_and_interframe_paras, get_intraframe_paras\n", + "from src.pipe_FRESCO import inference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1) define supporting functions: load models" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def get_models(config):\n", + " print('\\n' + '=' * 100)\n", + " print('creating models...')\n", + " import sys\n", + " sys.path.append(\"./src/ebsynth/deps/gmflow/\")\n", + " sys.path.append(\"./src/EGNet/\")\n", + " sys.path.append(\"./src/ControlNet/\")\n", + " \n", + " from gmflow.gmflow import GMFlow\n", + " from model import build_model\n", + " from annotator.hed import HEDdetector\n", + " from annotator.canny import CannyDetector\n", + " from annotator.midas import MidasDetector\n", + "\n", + " # optical flow\n", + " flow_model = GMFlow(feature_channels=128,\n", + " num_scales=1,\n", + " upsample_factor=8,\n", + " num_head=1,\n", + " attention_type='swin',\n", + " ffn_dim_expansion=4,\n", + " num_transformer_layers=6,\n", + " ).to('cuda')\n", + " \n", + " checkpoint = torch.load(config['gmflow_path'], map_location=lambda storage, loc: storage)\n", + " weights = checkpoint['model'] if 'model' in checkpoint else checkpoint\n", + " flow_model.load_state_dict(weights, strict=False)\n", + " flow_model.eval() \n", + " print('create optical flow estimation model successfully!')\n", + " \n", + " # saliency detection\n", + " sod_model = build_model('resnet')\n", + " sod_model.load_state_dict(torch.load(config['sod_path']))\n", + " sod_model.to(\"cuda\").eval()\n", + " print('create saliency detection model successfully!')\n", + " \n", + " # controlnet\n", + " if config['controlnet_type'] not in ['hed', 'depth', 'canny']:\n", + " print('unsupported control type, set to hed')\n", + " config['controlnet_type'] = 'hed'\n", + " controlnet = ControlNetModel.from_pretrained(\"lllyasviel/sd-controlnet-\"+config['controlnet_type'], \n", + " torch_dtype=torch.float16)\n", + " controlnet.to(\"cuda\") \n", + " if config['controlnet_type'] == 'depth':\n", + " detector = MidasDetector()\n", + " elif config['controlnet_type'] == 'canny':\n", + " detector = CannyDetector()\n", + " else:\n", + " detector = HEDdetector()\n", + " print('create controlnet model-' + config['controlnet_type'] + ' successfully!')\n", + " \n", + " # diffusion model\n", + " vae = AutoencoderKL.from_pretrained(\"stabilityai/sd-vae-ft-mse\", torch_dtype=torch.float16)\n", + " pipe = StableDiffusionPipeline.from_pretrained(config['sd_path'], vae=vae, torch_dtype=torch.float16)\n", + " pipe.scheduler = DDPMScheduler.from_config(pipe.scheduler.config)\n", + " pipe.to(\"cuda\")\n", + " pipe.scheduler.set_timesteps(config['num_inference_steps'], device=pipe._execution_device)\n", + " \n", + " if config['use_freeu']:\n", + " from src.free_lunch_utils import apply_freeu\n", + " apply_freeu(pipe, b1=1.2, b2=1.5, s1=1.0, s2=1.0)\n", + "\n", + " frescoProc = apply_FRESCO_attn(pipe)\n", + " frescoProc.controller.disable_controller()\n", + " apply_FRESCO_opt(pipe)\n", + " print('create diffusion model ' + config['sd_path'] + ' successfully!')\n", + " \n", + " for param in flow_model.parameters():\n", + " param.requires_grad = False \n", + " for param in sod_model.parameters():\n", + " param.requires_grad = False\n", + " for param in controlnet.parameters():\n", + " param.requires_grad = False\n", + " for param in pipe.unet.parameters():\n", + " param.requires_grad = False\n", + " \n", + " return pipe, frescoProc, controlnet, detector, flow_model, sod_model\n", + "\n", + "def apply_control(x, detector, config):\n", + " if config['controlnet_type'] == 'depth':\n", + " detected_map, _ = detector(x)\n", + " elif config['controlnet_type'] == 'canny':\n", + " detected_map = detector(x, 50, 100)\n", + " else:\n", + " detected_map = detector(x)\n", + " return detected_map" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2) set configurations\n", + "- batch_size: how many frames in a batch (set lower to prevent OOM)\n", + "- cond_scale: ControlNet strength\n", + "- controlnet_type: ControlNet type (hed, depth, canny)\n", + "- end_opt_step: feature optimization steps from num_warmup_steps to end_opt_step\n", + "- file_path: path to the video\n", + "- gmflow_path: path to the optical flow estimation model\n", + "- maxinterv: max keyframe interval \n", + "- mininterv: min keyframe interval \n", + "- num_inference_steps: total step\n", + "- num_warmup_steps: SDEdit begin step\n", + "- prompt: prompt for the video translation\n", + "- run_ebsynth: whether run ebsynth for full video translation\n", + "- save_path: path to save the results \n", + "- sd_path: path to the stable diffusion model on huggingface\n", + "- seed: seed\n", + "- sod_path: path to the saliency detection model\n", + "- use_controlnet: whether using ControlNet\n", + "- use_freeu: whether using FreeU to enhance output details\n", + "- use_salinecy: whether using background smoothing" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "batch_size: 8\n", + "cond_scale: 0.7\n", + "controlnet_type: hed\n", + "end_opt_step: 15\n", + "file_path: ./data/car-turn.mp4\n", + "gmflow_path: ./model/gmflow_sintel-0c07dcb3.pth\n", + "max_process: 4\n", + "maxinterv: 5\n", + "mininterv: 5\n", + "num_inference_steps: 20\n", + "num_warmup_steps: 5\n", + "prompt: a red car turns in the winter\n", + "run_ebsynth: True\n", + "save_path: ./output/example/\n", + "sd_path: SG161222/Realistic_Vision_V2.0\n", + "seed: 0\n", + "sod_path: ./model/epoch_resnet.pth\n", + "use_controlnet: True\n", + "use_freeu: False\n", + "use_salinecy: True\n" + ] + } + ], + "source": [ + "config_path = 'config/config_carturn.yaml'\n", + "with open(config_path, \"r\") as f:\n", + " config = yaml.safe_load(f)\n", + "\n", + "# modify configuration here\n", + "#config['run_ebsynth'] = True\n", + "\n", + "for name, value in sorted(config.items()):\n", + " print('%s: %s' % (str(name), str(value)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3) load model and prepare input\n", + "- load model\n", + "- select and visualize keyframes\n", + "- divide keyframes into batches" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================================\n", + "creating models...\n", + "create optical flow estimation model successfully!\n", + "create saliency detection model successfully!\n", + "create controlnet model-hed successfully!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "unet/diffusion_pytorch_model.safetensors not found\n", + "Loading pipeline components...: 0%| | 0/7 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Keyframes are divided into 3 batches:\n", + "keyframe indexes [[0, 5, 10, 15, 20, 25, 30, 35], [40, 45, 50, 55, 60], [65, 70, 75]]\n" + ] + } + ], + "source": [ + "pipe, frescoProc, controlnet, detector, flow_model, sod_model = get_models(config)\n", + "device = pipe._execution_device\n", + "guidance_scale = 7.5\n", + "do_classifier_free_guidance = guidance_scale > 1\n", + "assert(do_classifier_free_guidance)\n", + "timesteps = pipe.scheduler.timesteps\n", + "cond_scale = [config['cond_scale']] * config['num_inference_steps']\n", + "dilate = Dilate(device=device)\n", + "\n", + "base_prompt = config['prompt']\n", + "if 'Realistic' in config['sd_path'] or 'realistic' in config['sd_path']:\n", + " a_prompt = ', RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3, '\n", + " n_prompt = '(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation'\n", + "else:\n", + " a_prompt = ', best quality, extremely detailed, '\n", + " n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing finger, extra digit, fewer digits, cropped, worst quality, low quality' \n", + "\n", + "video_cap = cv2.VideoCapture(config['file_path'])\n", + "frame_num = int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT))\n", + "\n", + "# you can set extra_prompts for individual keyframe\n", + "# for example, extra_prompts[38] = ', closed eyes' to specify the person frame38 closes the eyes\n", + "extra_prompts = [''] * frame_num\n", + "\n", + "keys = get_keyframe_ind(config['file_path'], frame_num, config['mininterv'], config['maxinterv'])\n", + "\n", + "os.makedirs(config['save_path'], exist_ok=True)\n", + "os.makedirs(config['save_path']+'keys', exist_ok=True)\n", + "os.makedirs(config['save_path']+'video', exist_ok=True)\n", + "\n", + "sublists = [keys[i:i+config['batch_size']-2] for i in range(2, len(keys), config['batch_size']-2)]\n", + "sublists[0].insert(0, keys[0])\n", + "sublists[0].insert(1, keys[1])\n", + "if len(sublists) > 1 and len(sublists[-1]) < 3:\n", + " add_num = 3 - len(sublists[-1])\n", + " sublists[-1] = sublists[-2][-add_num:] + sublists[-1]\n", + " sublists[-2] = sublists[-2][:-add_num]\n", + "\n", + "imgs = []\n", + "for i in range(frame_num):\n", + " success, frame = video_cap.read()\n", + " if i in keys:\n", + " frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n", + " img = resize_image(frame[:,:], 512)\n", + " imgs += [cv2.putText(img.copy(), str(i), (32,92), cv2.FONT_HERSHEY_SIMPLEX, 3, (255,255,255), 6)]\n", + "img_ = torch.cat([numpy2tensor(img) for img in imgs], dim=0)\n", + "print('Select %d key frames'%(len(img_))) \n", + "viz = torchvision.utils.make_grid(img_, int(len(img_)**0.7), 1)\n", + "visualize(viz.cpu(), 120)\n", + "print('Keyframes are divided into %d batches:\\nkeyframe indexes'%(len(sublists)), sublists) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4) run keyframe translation \n", + "- run without FRESCO\n", + "- run with FRESCO" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "processing batch [1/3] with 8 frames\n", + "input of current batch:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAAC7CAYAAAD4xCBLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOz9x49u67bmCf1eM+3nImK5bY7LazKrbiZZWS4FHVpICAESqkbhGnSgyd9BkxZ/CaKJaBQlFRRQRaW559x79jnbLhPus9O/hsZ454y1q0CCOg10pG9IW9vFivhizteM8YzneYaKMUaucY1rXOMa17jGNa5xjWtc4xrXuMY1rnGNa/xZhv7/9we4xjWucY1rXOMa17jGNa5xjWtc4xrXuMY1rvFfP64A3zWucY1rXOMa17jGNa5xjWtc4xrXuMY1rvFnHFeA7xrXuMY1rnGNa1zjGte4xjWucY1rXOMa1/gzjivAd41rXOMa17jGNa5xjWtc4xrXuMY1rnGNa/wZxxXgu8Y1rnGNa1zjGte4xjWucY1rXOMa17jGNf6M4wrwXeMa17jGNa5xjWtc4xrXuMY1rnGNa1zjGn/GcQX4rnGNa1zjGte4xjWucY1rXOMa17jGNa5xjT/juAJ817jGNa5xjWtc4xrXuMY1rnGNa1zjGte4xp9xXAG+a1zjGte4xjWucY1rXOMa17jGNa5xjWtc4884rgDfNa5xjWtc4xrXuMY1rnGNa1zjGte4xjWu8WccV4DvGte4xjWucY1rXOMa17jGNa5xjWtc4xrX+DOOK8B3jWtc4xrXuMY1rnGNa1zjGte4xjWucY1r/BnHFeC7xjWucY1rXOMa17jGNa5xjWtc4xrXuMY1/ozjCvBd4xrXuMY1rnGNa1zjGte4xjWucY1rXOMaf8ZxBfiucY1rXOMa17jGNa5xjWtc4xrXuMY1rnGNP+Owf+o3+D/87/+PvH79jhgjURWQV+Q4KutQ3jOMPYHIOExUVU0IAa01XdcxjCMmy6mqitVqxTiO9F2Hm0ZiCIQQsNaiADc5VuuSGOW/T2MkqoCxBmMMbdsy9D15lqO1pixLbm5usNby8PiI9xFjDEVR0HUdq/WKaRrw3lPkFV3XcTweKcsS7z1ZluGcwxiD9375Z601bdtyOJ/I8xzvPUopbm9vqetavvdqxTRNnE4njqcDUUX2+z1t3zOOI1ZbNusN682Gj/efGJ1DaU2IAQCllLyczDKOPVpp1nXNqqqZxhGlFcM4sl6vscbyvH+mH0fe3L3iV199zXa15ng8kmcF1mY0XctPnz5y//DA7W7LX/7mNxAj0zTx9PTEdnfD7uaWp+dn3n/8wLlpeP36NQ+f7tlstrx+90t+9Zt/SJ5XRKVBPt7yOWNQxBiBiNFgrcFqjVUB5QeiH5imlrY5EYInz3LGydE7x//5P/lPiNpwPJ3ohxEXIjFGvB+BiFLpe8fI/+R/8B/w7vVbIgEXNdiKIjPURcSPI13fgYK+GynLn6817z3W6p+ttXGcGIYR7z0AWmuUUgTnqeoCpSIxwtA7YvSyFpViGAaGYVi+frVasbvZYK3ldDoRQvj5Wlut6PueaZrIi4q2bTkej1RVxTRNWGvx3qO1JsYoayT9rPlr588cQuDVq1esVivatmW9XuOc4+npiafnZ2yecTgdaYaecZywWlNXFau6Zn880g0DxhpCCD/bx1pr+QwoqqriZrdj6HsCgX7oWa83WGs4Ho80Xcu716/56u0XvLq5Zb/fU+YV1ljavuPj4wOf7j9xu93y61/+gsxmy++RZTmvXr+hHwY+PT7w/sMHdrsdx/MZazJ2d2/463/0T1mvb0FpUApQy1ojRCKyHqyOZFmG0QqjAqS1No4tzeVIjJ6yKOmHiSkG/k//0X+EshnPhwPOB0IE7x3eT8QoZ42s58D/9H/4H/Dq9haI+ABRldRVSZFFrIocDwdsntP3PUobrJE/O00TPngCnrzIqasapRTjODL0E865ZV0qpYg+YDNNUeTEGJkmj3fy/40xTJP8GedGjNWUZUVdyxruuo5pclhrMcaglEIpMEbOKKUN4zRxPB4pimL5Xlpr+QzRMLkJYy1T8PR9T3tpKIuCpmnIsoyqqtjebtMaWKO15uOHD3z6+ImiKtFa85zWGz5S5iVFluFC4NxcUFqjjSLGsOzlECLBR5RWWGN4dfsKYmScJoZxxDnHbrdjHAfOzZlVVXG73fJX/+AvaM4XQohs6g3jOLI/H/njd9/y+tVr7nZbtpsN5/MZ5xzPz8+8ffsFZVVxvJz5/v1Py3OZxomsqPjFr/6Cv/qrfxNjC6IyKD5bbzFChEjAqECRF1it0CoQXU+Yeqap43TeE4NnvV7Rtj3NMPD//Jf/kufTiUvT4KOcI857pmkg4imKgjzP0cD/6L/z32e33WGNBqXxQbHdbVHRYQhcThfZB0bT9QNFXhCCPE/vAyF4jDGUZYkxhr7v5Y6cpp+tNe89WimqqnhZqy6gtUnbLDCNnhDicibUdcXuZov3jmEYMUbOjrIsiTGS5xl93zFNnmEc6IcRazK89wzDIPspRoIPECPaGrqhZxhH2vOFPM/pug5rLVpr7l7dMfqRuq7J85wPHz7w4cMHtNbcvrrj8fmJZhgY+p4qL7DpTr60LVGxfD7QxPSzvffEKOtts9pQlSXTODG6ieZyYbPbybPyDkXk1W7HP/j1b1ARmkvLdrtFK03bd/zdN7+nLAq+evcldV3Stg3eex4+PbBeb7m9u2UYR+6fn/j2h++weYGL8nnW6xv+yX/jn3Gze4XWOUoZtLbpbIsQAzFGtIoUudyhhkgMI37smMaepjkyjgPbzRoXAj99+Mjp0vCf/4t/gVfgg8eHSIgR7x3OT2SZoapqcpvx3/vv/i/YlhY1HXDTyHq9IgJKa+7ubmkuJ4LztE1LWdboTHM+N2it5S8UEXBezpEsy1BK0fc9xhjGcUQptZwzMQSsNeR5hrWWYRgIXt6L1hqlI9PoUErWqNaKvMjZbjeElAPOd22e5xRFjtaKvh9o246ma7E2I88KhmHAOYf3Hu89k5soy5IQ4XA8cDwcmYaBm5sbnvd7Nus1IQbW2zXOO16/fk3XDXz33Xdczhe2u53cp8cjo5vou56yzMltLmfVNKGNkr+0xjlPiMjn9p6Y7qw8y8jznBA8wXu6oSfPS5zzKBSZ0WzrFf/kb/5NLucT0+C42d1gteHUNfzrv/sdN7sdv/jiS6xRnC8XYow8Pz5T1ytub29ph577p0fef/pI0JoYARR5UfJXf/Vv8MW7r8nzGm1ysqyAKEdKjJ4YArkx5JnGaI3GE6YON/YMQ0vTnvFuYrtd40Lk7775A5Nz/Gf/xb8gKAgxEpWScz14nBtYr1b8B//h/5q62kF0ZHqi3X+kNIHMgHOePM9QQF1V2NwSQqBpOrQ2tN2Q8iJHSDlhURSAouva5UxTCpTSOD8xjQ7nHHmey7lDlN+tyCkKWadu8gQfcG6iLAtihBA8m80GkHyiLEu6vufT/Sd5Vum8W63WODcxjhMAwziRL/f2iNaavu9xTr7+dLnwzR++oek6ttstYz/w5vXr5Wxer1Y8Pj+ijOyX86nBZhmvbm/JbMYwDJzbhrbvmJzkFOtqhQ+Btu9QWuO9oyoL6tUaow37/Z7RTQQgEFPt4tEKtDZSV8UIKIgarSEzll99/TVdc+FmveGLd1+gFZybC3/8/luapuUXX/+CdbWiHwbyLKOua9qu4/7hkefTkX4cSD8EDfgYQMu7IWoImjyv+cf/+J9SZEV6P577+3u0UpRFzmH/yKu7Hcf9A9tVRV2WfPnFFzjnOV3O/Pabb3jaH9gfjoQYcTHgQ2Czqvmf/Yf/K7abG/gsx4hEUEZq07HDd0eqIqKVJy8KydNCoKqqdGbIP5dFhbaG0+nE5dxyPneEIHWetZbJOdByDnrnCN6TG0te5PRtJ7mbtRhraXrJwx8eH8nynLou0UqR2wxrFL/4xVfUZcUwDDw8PKR7VzFNI9MkdWiML7Vr0zRYazDWEoBp9HT9gPMeHwJd24HSaK2oq4rjUe6L29tbDscDHz99Is9zvvzyC5rmIme4tbjJ8bx/JkRPZi13t6+pq4oYIm3bYI3kmO3QczifGL1n8o5+6BmnEecDX7x5i0bRdx2T97gQCARCyv1C8IQoeffkIlGSA7SS+yfGgNEKpSX3kjyftFblTiPtd4Ve/lv0AVRcagWAECLOB2IIKCRPCTGiIqnei8Qo+RMqEgJYm0ldYS1DP+DChNLg/XwvK3brFf/z//H/UrAMKUNQBPkdFBBARUVEEYighUWlUCmd1PgwosKAYcT7HiIUZUFVVrRtR5ZlZFm2nH8QORyOcg8qhdEZbSO4SlEU9H1PluUorTlfLigNeZannDtSFCXByZkzeYcPAa0M1mZ8erin6QeMMbx59Yoiy5iGDqUUv/7VL3HTyOPD83KXam3oh37BPgQTUVij8SEwOselafHek+cl0zRJbWJMWos91maczyeUgiIvyKwlxsj5fKYoZb3v9wcym7NarSiKQnK8y5k3b19TFgWn44lxHDldzuigmbwDpZjchPeeoBSTc0zjSFCBV7e33O52NG3Px4d7WjeglYEQU96hMSajH0aGYSTEGeQIKD0z4RSRiFaGEDxaS97mvdRgMSq01Tg34X1cnk+MkejjkuPMtf40TcS03sZxAiV7QGu5p1ZVzv/uf/u/+f+AvP1/F38ywDf2Z3AbitwSQ09ZBKzOcdPEmP6q65oYWAAKa2UBK60hXdTDMDCOAxHQShGUWh7O/EBCiBij0UozMWKsWR5illm0rlGAVvI6+l6K0t12J8WVc2R5xnq9kheCgCTnUwPA69evlz83F0ZzwlqWJV3XcblcOB6P2EIKE+ccJl0Gp/OJ9WpN3/fcPzzw4f17tFHsbnfyGa1lmiZQMDrH8+HA5ARcIkpyEXwAJYfQ0A+4tEkP5wvD6IhElDJcmpZTNxJ8kCSHSNt1nC8XsizneD5zd2PJTZG+r2OzXvHLr38hCfkw4KaJGOF0OsmlYA1FXfF4OvLdTz+ilKZ9fuTxdOTYnvj1r/6S1XoHGMqylqIpLXp5r4oi11ijUWEiTD1u6BiHjrY9E6Nns1kzes/vvvmGyQc+PT7iAVKxCqSCLJBllrqq04Xt6dozQ7+mqgp0HCmLjLLKaNsLbpwYh5HVZo3CMAwDMQrYWJYCbigliWXbtmktxvTo4wJwxXQJTONEntvlYjJGkre6rrDWAEUqemSTdymJq+s6reWRLMvYbrcCeFrLOI4cTxe898tam/cEkNaGYrvdcjqdeHp64ng6sqpXXC4XplQ0PT4+8vT0xM3NDU3T8P7DBx7u77FZxmqzxmojALX3M0ZB2/cMbkIb2RtlWRJCSMmpAAE+RoKKnLqGdugB0MbQDwOHS7sA7ho4XxqGm5HRO/bHI2/uJDHOY07wnqoo+MXXX5PZjK4TcFNpzeQcp8uFqODYXhgJfHx+JKJgHDh/7Dh1F37x9W+4u3uLzUq2mxtimJMA+bxlackzgzVAmHBjx9S3jENH119QBNbrNaNz/Pb3v8dHeHh+xhPTQSpJbvAe7x1FkbPZbKUwiwE39VwuJ7abDdZAlgW2u5zT8cjgHKNzaJuzWm24XC4MTi5JY4wUFjHgJkcbWrTRdG1HUVQ/O9yNMcTg0V4OeEnmPBEYxwFjLHkuF7UxBTaTi1CKjGEpUE6nE0VRUBQFdV0RgiSGXTdwOB7SGrTLWnPO4SZH8HCzu2FwEz999y1PT0+UeUHcbmnbFmMM5/OZx/0jeSnr/aeffuL5+UmaB5NjSqBEkef0/UAkkpUFl8MRnZ4HKcmYpikl0hMx4WeDc/zw6T0qylpDG8Zx4Ng1gMIqTQgt62qFzQu++/F3vLl7RV3UZEWOvijyLMcaw3azYxxGnJMEpigrRu8J08T3Hz9yaC5pj8vFOg4Nv//j3/K4v+fNmy9Zr2559+4rjLbEaORMbSWhLtcVCgcx0nUXhu4C3jGMHTEGVqsVl67jjz/8wP5w4tPTM8fLGZRGaTBKY4zC+Uhd1by6vWOanCRhBLrmzGq1Ssmdos4V/SDJeyASg6IqC7yXBoDSegG3nJPf53IRwKxtO6qqTGvFLQWCNOFgGEgFbyREjxsFdN5s13gfiXiyTM4+bTTD0Kfi1vPwcE+ZCpKbm5sEMo/EqGQdlhV5nqfzVsm54j0+Oqq6QmnNTx8/cH9/j9WG7XaDmxxN02Cs4dxeGN3Ir3/1K/74xz/y/PyMzTLW6zWX05ngA8ZojDU479ntdjRtSyCSZwXOOVarFd4FApG+k3MsKAHun44H3LMns5k8O+8Z9nu575XCABrNPywr/vD7b4g+UNYVVVWChtVKkvCiKkFrIhqbWdY3N5IjTBM/fHjPx8cHglJ474gKlIqc2mf+r//3/5jt+oa7mzd89dWvuL19zdhLM2Ace47HPW9evcJPHhR0Y0N7OaKJxChJZVVXtMPAdz/9xLc//IhznnPfLbmUNprMWJSKGAOvXr9GBQE7Yn9GaU1uFVPvcdOE1orCZkQ/ARHnPVle4rwUXHMDKsZI1HMBLc0Rl5oRL3+X9TY3ZEI6r7UW8E4pCMElADJS1RVee0LwFEWZcq0cpSJlWfD+/Xua5sJ2e5NAbXBOGnMhRPp+YLct8T4sifocxmrKuuLpec+P739iGkeKLOfcNEQiz4cD6/WKn97/hDKaQOSH739ico7Nak2R50zeoaIATGjF6Bw3N3f0hz1RRbTNcG5kU1VY6wHN5SKAfJASlXPf4S9nMmvRSsmamxrm0s8m8KWbJr774SdWdc1qtSZa2Z91XXK+nNHZL6RI0IbcZuxu77DWcu57vvvpB/bHI1EpdAKMA57Rd/z27/4F3/zh79msb/gHv/lrvvrqFzRNT13X9H3D/aePfPH2LZpInmn69kzXHCmzDGM1eZ4RM8vhcuGP3//A9z/+RAiRdhzSHohk1kqhhiazirubWzSgNeAdmRpYrwzRST5f1SXBe7SS/WOsZew7Ju+IzjGOIz548iyjqkppzCiVQNGUMicgW2kpukAKrbbtpPGfZcSomCZpXmV5hlECaBhTCMCJrLPNZs35fGYcR8nDUNze3NEPPQSz3NsKi9YRHwKn00WaHVWBMQqtDcMwCdAZe3744QeMsbx+8watNEWWc3d3xw8//MDd3R1d13F7e8unh09M40RZlShtqFcr+raTxvTkKLKccWxAKy6t3IugUv4GTdszTl72jZZcOgQ5/0ICSgKKGKTWkMaHAElocMHzw/ufyI0heM/kPau65P2nD7KmiPzw4f3SpMmMxWY5/TThpglHwBOXJmfkpXkcgRAmNIa2O/Gf/qf/MXmeSb7rJvmeRNnX3vHHHyKZ1tzd7rBKofOc8/HMp6cHvv3xR4Zpoh9GiGCLHJtlVHWFVrL2FICSszJEAd8hEoPj9nZNWWgmJyCl5CYKo6UZ5L1jHCdc8DD6JV/KrMV5aZwCuODQaEIUkLcuCmKUPZCn3ElrtdwpWWYhSvNJaUtR5NIgVorD/kjxNhdgdhzTPW0YR5fAYvez87cocuq6wkc4tw0BhChjLf0wpHXhUdrSDQMouLm54enpiYfHR4w1VFXJ8Xhgs9lwPB7RZUWMkbKqJKckstluGPoBqw2resXkplSjeaqyJLQtIUKZFxiVgO1xZFXV6KLg0nZ4YJxGjNGEAMYogo+p+RCkTlcvzdR5P5KILjHKHo9xBvIT3hciUcVU98ox6kNALlotoGuIOOcpslzuqclJUyOBpyEEiqLEGAHjvJvwjqU5NNdGCkVR5EyTp+s6ijyXnxMFyFY6ooDcKpRKxAMj5/roHD7I2WS1IsTAOI2M45ntumRdbyGucS7gvGe/P6YawhID+CkmoMihlTTTog9oDUUpJJmmaTBGwLqh77FaydelvTeD2DMRyXmPtRnWWKZxZLvd0A4Dl65FPyvevr4jLwuU0vzu7/+eX/7iF1Srmtg0xBAT6BmXBnMIQfCFECjyjCzPyKyl70dQmpB+7vl4pG0b8tzy+PxICIF1XeO843Q8JkDT0DYtVVVJHpGOkX7o6YeBvu84nY/c3t5SZDkf3n+kXtUJ/5Wcw6cGRtd1YDQmsxAcj/tnxmmi66UJXdc1zntcmAgxYrWBKOtIG4MK0qhbLhsl54pWCmsN3gtpYRpeyDgheMZB6lxjbGokBYJ3EBUxuoXkMJN55npWwO5AiB4VJa/XM6nlT4g/GeAjRNw4kRkDKLIoHcmh8YDCKEMMYHVG76QQiFFQeO8niGHpfs0vSUNCpbPlx0xuQI1ywIEc3OMoQFye2/TQPUZLQiIbRWGtxnl4vH9Aa81qtUJrGMZ+YdM47wg+pGI6fsaGkQWclwXGWn788J6PHz9ijCEPLhXRHWVZMh4PnM9n3r59S9/3PD09obXm1e0dfnJpQ50FSAoBZbSAjF2UzlqU66larQheQKgYpRsQonTEuqMcACSwc+ym5fmoGAne89UXX/Pdjz9x3O/Zbnd0Y4cPHjR0Q0c39pSVXBDK5qy2O4jQDyMfnx759PSYzklNIICOxDjx4/s/8PH+R+rqhq+//BV/+Rf/kMulZ71aM0w9Hz6+583rOxoNViumoaG9HCitJc8sVV3gfOBhv+eb77/nw6d7XIgMzi2dbq0UubHoLMMrz263JU7SiddlQZZbXBiZvEYTMUQIHu8EyMpsRpjCz5KGdCWgFHgfl+LghekBwzAkBD4mxuaEc8JgsdaSZZZh6KTTE4UJGKJHqUiW51irKUv5+zA4np4eEhtMukPjqBjHaQFnQngBFOeYGVt5VTI6x/tPH3l+fpauXd9RVRVt37Gqa7ph4HQ+0Y0CJJ6OR7I85+bmhuA9ZVFwbJt04Hmcd5R5LSC5QMRM08R2u12AgXEapSSIclh245AuVZO63PJMp9GjohSB7Tjx+2+/ozmeef3qNW3fpG6+px97TpcL2d0rJh/QWc62rOiHkf3pxP3+mcP5RFQk0FEufq0Cx/MTp98dyGzF61fv+Cf/+J/RtT11LSzGH3/8nrevX2GNXMwKx+W8Z10WrOqSuq5w3vHp+YnfffMHHp6epaMYWRJdDeQ2o6pznMrYrNcoH+idp6xKbGaXgtVqhdHgxh5tDcM4UlaVJIAJNAkxEoOXr7WGMAW8C5JUTx6lhN3ivV9YmzF1JPuhp1QFWWaw1hCCQxuFDxPa5BirmaaRLBOQrShyyirHu8DDwyeUUhgjfw2DJGF9P6CUMP6MNilpeQG0AcqqpB8Hfv/HP/C0f2a73eLGCWU01XqF9566rnk+PuP7wLfff8fhcCDPMnY3O3IjoGE/jUzTmJiKwsLTVuMmj48BPwlboq4FrD8cDrKGYpAkJLGNdAygJkICDUHhI/ig2V8u/Mu//Vv6caSoKkY/gIfD5UgzNMRjYL1ZS1PEOe7u7qiM4nl/5PGw59icCWmfKY10iFXEx4mn/T3P+yeMzvnHf/NPqesNMUCIAmgZrSiyjMP+mdvbDafjEzfrNZu64s2bOybneP/wwG9///fsTxeapsV5j7ZZShCki71brdDbGu8cRinObYPNLEpBXkhi7ZyjzCxTKkgvlxabFXTdIEB5cHgiKkpCm9kM44VtnmUZfT9SFCV93/+X1hqAYpocCiWNMi2sHack8YwxSrETA0WRJYC5SOxSz/PzI1lmpRMfYBz7VHQHrMlYrdYYk6d7UzqTfd8vLJp+GPi7b37P8Xzi9uYmsSgLbu7uOBwO3N7e8rx/xuSG7374XtixRvPq9SsyI/slCxlDL40ONzmOF7lTldHCXPGRrh/ZrNdy908TbgoLuJk4BUzeoaOW/5YK3xACQSsuQ8ff/v3f0TctX7/7kkhknEYenx/5+HiPd4EfP36AGAXovL3BFgXPpxMfPt3TDlLcoIURJYlbAAzj1PH41HN//5HT6cAXX35N27Ss1itOpyPHw4GfNmsO+yequqJvz2xXNZu64je/+iWKyKlp+C/+9m95Phw5nE5EFLYoCKnIHKcBbSx3mxumsUd7n57DRHR7lLohoKi3FTYxzzJr8U6aDE3TCUug67DOEuNLA6ooipS7yR1KnDvV0gz9nIEuxWmG94FxcEunO8ulSy9r1JEXwpwQgFkYWMZYAcqA29s72rZJQHpNluWEIDnDZg3T5LF2XnPCKHXeU69qvvnmD7z/8J6iLHn3xRfsn5758qsvOZ1OS0PGFNIQ/OGHH1DaUtc1r9+8xk+OSyPsRaPkXfrgeNo/o7RCaS2MxOA5X1rqqqKuS7qhw08+NXrkjI9KgBSt05qLc24ScSiavuO3f//3xMnxxWbD6Aaizvj+px+4f3xEW8Pf//Eb/ORxk+P1q1doY3k8Hvn0+MDgJjAC8DITWVJzzwWH6y80TcPlcub9h+8JPmAzy+Vy5nK58O23JZfLmTzP8G7kbrthVRb81V/8BdFHzk3Df/6v/hWH85nT+UKIYPOCkACyaepRKrJbr0WB4x2ZmrChQYeWIgO7rnHDhE8NCZC732YZk5tYr9dkNud8aYhBp/PLY4zkd9M0pea9YkprzGZ2acYbkyWA29P2Pa7tKcsSG6QNnSGNgTdv3who4ibatqXvB87nC+M40ffSEFBoKWz9S242jhN9N9ANA8M4CjAQ4dL2eDcxjSNZnqO14eOPP3Fzc0eWZzw8PRFU5N3bN/zx228XJpP3ntP5RNu11GVFbnOKshLlhHO8efWKYZqY3ETTtkSlE9ACk5dzvcgLaSKESHPpUIlZppVewI+52lfMbGbQSa2Q2TwxoYR9sz+fOTUNeZHTdi3BaBQKN59hEQFIhgEfI9qYxFaSOsW5aWFqxxBRRp6m0go/CCDcJHZmCJ4YfTpPPDFEpuCZUEyPzxil+PHjJ6KPjMHTjQPDOKGVwjuHzTPqqmJITTCX8iYCoAxGQYwTuIHceMZxoml7YvTc3d5JLpyIFZIXaIqyxE+B5/0zANZYxiiNuJmRNLOXpF7QS9HunF+AQ+c9IUa00WhjeP36NfvjQQAWs2O12uDHgcNBVGO7xCIfhgmtI9udkAVm5dgwyH2+XksT0PUj3jkOh4vU3Ua/AGAI+NA0Ld47urblfD6TZxm3dzcCrMbAMHR4P9K0AWss63pFUeSsNwLu5VmGRtilRVkxTiOr1QoXBAQrioJ+GBI7LTL0Pbv1hsJYYeEOI8MkoGMMnoAwy6ZJWKWRKCSfdBaQjkQBPlSqVOQw04mVrIjLGTczexdVSAgQhQ1utMbkov4T0JSFVa61BXzKWV9wh7n5HbyXZnO685zzjJNjGB2T+/m5rlJxGYI08ayV/FIRsVahnDSuYwSiJ/gOPw5cThN9e6GsCghK6ptS1rKOsueOxwMxRNabNdbkAniqwO52x/55j/IxgbmKprlQFQVa5+k5CPCYWWkKT5PDZDYB+2apBeSONsROFDQfPz3wxbu3WKPRJuebP37LP/zrvyIvhNWYWYOxUsu0bS+M1nGStaKVrBcF1mghASjN/niQ30tpPny6l8aDD9i56RxJLFrH3d0rPn76KAz2pPwax5FXr14tzMtpHDEIUH2z29J2A4ZIXuSgIpPzjE4aq3meMzmNG3qe98L8NdZSVTXeO85O6ngfw8u5YjKmpT2XKExpnWmtGIcBY7Mlp8yLjLIoGYYBHwJ9Pyz1bAj+s9rrRYmW+KtyRmhpMigluUz4LGf4U+NPBvhmGZd0TiWRtinxmwGU8+mMsVbYDEoth6QxhskLk2U+yATRnA+1IUkbwsJ6UaQOdZahrabvu6W7lucZZZ6kTwmciTFyPB6p63qRkgjQt16AlqqsmCYH8DNa5fx9x2nid//yX9L3PXd3d/J5jObLL78SKeLt7cKi2e/3SQ5qefPmDXme0TYXpmkkLwqGcSREz/lyEcprkgDPVG9B4y2r1YrT+ZzooIKWK23wQbpT8fNDETlcxuD59qcfCN7zenuDDx4dFJ8e7nn/6SM+BL7/8J4fP35iGkeR3+129F3Px0/39ONAUCk50AqldEKxVerEj+z7T5xPRx4ePxKjXAz9NNA0F/7wbS4UcqMhenarmk1Z8td/+Rd0vefUtvwXv/1bHo8H2kaoydpaQoys6pqx7zFGi3QmOLQLlFXNh/uP5BQordlst0QfMEoAQWskkRA5T+R0OmGzTKi0iYE5y8lm6ewM7M5rcV5rRVEkQMcsxUrf9xRFQVlViakSYZELFUk2EtP6dLStMPmUUolOb9lsdvIeYyAikuGZQWg+u0i01vRdz9/+9m9xzvP27dtlr7x7945Pnz6x2+0Slbng6elJNnGW8ebNGzJraS8N5/OFPMsYnDDzumFA4Lm4/CwVhRJtraUsS0lIgrBcRLIl3XKdGBufrzetYPSO79//iIqKu82Wtmspi5yHpyd+/PABFzzff/iJHz9+ZJqkcLy9vaXtOx6e9gzBEVRcZLHqs4Jk7riOY8OPP33L09OntB7lEh76ke9+yBiHIV3GsK5L1mXJX/7614xu5Ny2/Ivf/lbko11P9C8/pK5qAQajMHIUQqHebXd8vP/EMPSEGNjuZK2pGJYkQSUaeIzQdwOZdajUNRvHESB1bmQvSwdLLzIFYOnayLuTzvM4eYbhLGeX0su6eJF7ixSraRqU0gz9iHOe3e42SX4G+l6YVkoZylIKn9O5pW0OlJXIN7XShCBAo/Oe3/7ud4xu4vVrKXpcNvHmzRt++uknbm5uljPv6emRPjUz8lxsFcaup0mdPaMEKApEkZAxd0uliXM+ndHGUNe1FGlaQZIfQCp4QxBG22dJF1rhVeR4OdF2HWWe8+OH9+zWIhf66eMHunGgd47z736bkgDF6ukBFwJtPzB5jycuFgvyMyVhFPaxR6tIcIH/x3/2f1lkMT5dziBsh3EcMT8ZMqM473asipKgIsfzmR8+fOT9/SeGSbrFMUZslmG0oawq2uaMzSy7zZq+7chtxq9/9Su+++5bJucoioIss7hpIi/krJNmkE+NCSeNDitSXOcEqPNO7CN+dob0HXmeL6Bf1/VoI11FlGZ0Ad/2iXUgTJayKJY1nmnN7e0tXSdNsGlyaK3Y7W6Wc3FuVFhjMdpijOV8bhmGA2VVJ0mPSM7dNBGV5g9//BZQvH79OsnKLa9eveL9+/dsNhvatqWuaw6nPX2y2/DeSVEwSNc9OGEHH88jIPd5TJ35WR45DAMuMbDnZuLC+kFYL4FISL/XvCelyFM4H3j/4QOZzfj2xx/Y7bZkmeH9xw80fQ9K8+1PP+AnKRg+Pj9Jd9t7lDG4xEaQ5xlSA0ulOltBlHzmh5++5cOnH6VAJKSCN3L/lFgIDwEFdOOWh2eYYmDsey5dy/cfPsiZMY5Lc9LmmdxHylMUGevVimK347A/8Fd/8dd898N33Oy2FGXBOA7kCfi3VkCWOaG0mTAItNELa3u1qjmfzy/PSsnaM0aKqWmasJllmjxlWQkwpjQ+Sh4RQ2AaAtYLiFxVJa9evQIiw9BLcV3kXC4T5/M53Y2WVb2m63tWq610zCeHm1IhRuT5+SDAZl7I53Uig0drjh8/0XUDX3719ZJXfvX115zPZ56ennj37h3n8xmTaVFlWEtIgE7wnr7rWVU1wyiARDf0KCU5hU/FOwgY5CbHxV9o2zZJIBHaaCq25evE/kPAN2GOGCNMXOcDz4c9Vht++83vpeGk4OH5iSl4tAt8fHwkJFnv/nxe2ArGWnziL2klsk2pi18kayDMj+PpmUtzWKxnxJ4CLo0UG6EJqAjOTxgF7TgwjSJH/un+njE1XL0TlnhZV6lRkJMZw2a9ZlVWPD89gR8xLlBkHuUDNquIRqNVtoAXIEVYVVcoQ8oVLH03fpajucXmYAqTyHbnAlsr3OjRWorrLMtxwaOs5tOnByKRqiyEFdT3eCe2FTbLmCbP8XhO61xshCYnwIV3nq7pl3s9WFl7AdkXwv4Qtv3pdKEoC0xeYrNMbG8Sa/7Dh4+czkdev37D89MT9ape8qmmaeiGnrKQO/XNqzdYbcUeo7SoxPpr2oZVXaON4XQ5S+4xOPJMGpPT2C+MlQCQ8hWRqWq0kf0Zoqh/lEIA/RASUCqSM2H2BaYAgxcWo3R5tUiwlQCBAiIKmhRQ+CjrcEqFrdZKCAchQhSZnDFWZLtJ7hidnJHWSn3n3bh838kHJj+iECbO4iajNEqJqsGZEe9CsmrIMCpgTcQoAVZi1LKe/YDNAlZrvFeU5QqbWQE9UqNfYcgyeV7TNEoDUol9itC0IrPNinOOvCgJJuL7LlkGaAiKyY/Y1DTwIQFBSdpbFsJEfT4cGaeRN69eizXE2PPp4YGvvviCm5tb7u8f8cHTtt1SQ4s0OEs1RUvXtYuaJc+zReqfZxnFWlQin+7vWa9r2rZhmCZRkaWG0zgMC6hgjeV8ulBVddqTnuenZ0II/PIXv6BrW5qmYbic6VLTEKUYEgvOpZxtzlXbpuHdm7dkeU7TPwrpIuVPpByryHKiUoyp5p5jzvmi8NUXcoHS6jOGtkIj+aNzYzpDlICv4wQ63U0hikIh5YNzDicgn1rwBGv10ijVZpZISrNgHGWNKU1iHiq8i7gQmGKyHFECQUp5IfYqAQ9xrp8jyjlRJboeP3YUNuW3aNqmpV6tuL27xU2ey7mlbZ/Z3dwQQiTLM85tS9d1ZFZUID54rLFkNrJaq2RLEUAlUEpQx8XmLLMWp7UwX5kBKkMgLjmf0RZrcrybeHzes9tuWa1XjOPAb3/7O/7df+efcXdnhbCQMJWhH0XxFIBcp6ZvJ8/HTQzDwHF/pB8n1tsNh+OR3XbH/nTEJsm5857R9SgFq1VN27W8fnVHWVUEHxjHkaIs2G62XC4XHh8fKYuCfFVwd3dLWVWYLEtncWS7WdF10uR3QVRUTd9Jrq814zCifCAeTtjcUtUl/TAkOxOHRvY5nykB5gJ1rsucn5I1juR2Tdsx9BN5njGNab3FmPZFwsMys9SvMy4240gxfa2K0jQMIWBsvtTGf0r8yd/BWJ2kso6qKjHWEon4KA988o6IsPayzKYOcbMALsSISyBLSEVxNHpB0c+Xi3SNY3rgkycMA0VZEvGsVmvKUjor4yggWmYtXdfRNG1ivIiEQ3ThwjBwKVG01nJpzlwuIhHKMyuF6TjhvBRIP314T71asdluZMNqxetXr/nhh+8py4rm0qCAtmvph466rHBuQivkElGGMiuxNjBNs/4/0HRtQnDld4sEmlb8VbQxybsKVJxZN+mvRF2WPzMXroYIHM4njDYM4wOPxz2bzYbHx0dG54kKno9HQBLu/fnMj58+ynvUNslvBNBzCS2Xz/Yit0Ep+rHj/cfvl+LIOZcKev0CnsXIOA6crOXYNPjgcCHy6eGRdhjToeTIrFDsY4wYKzLmzWZNlWccj0devb7j0l2EUUZMh5aXxDIBuHJgZ7ipx6TukTY6ydXaBT3/nF2wbIDkC5TlGZe2IbMZLl0kuNSlsx5CZHezI8syfJL5zr5Ec5dh/n4gQPFqvUYbkW10/YDRmsNRLkqFIsstMUSGUYptazM+fPzA3d2rxUsrz3Nub2/59ttvKYqCtm0BkWVO00RdVpL0R+i7HmsMt7sdjsDz4YDHCajY9/gEnmil0Ur23eIlqKVrZJSWRCyyXF4xdYPkWZskOYi0rfgufXp+4um4Z7sW78cxBEBx6buXdTr0PJ+OS9d3YRjEmKTZIUkgEpAXxTtjciPTeZBOaFqXIQSGKXWzgdgLC/jStOzPZ4KX3/lx/0SffMZmlsl6vRafIWPJjGG7XlMUOafTmdVmTd1c6PpOPl4Qr56ikOJ5THKJ9WolFPQiHcap4TB7KqAUCsU4iDzBWk10L+Bylgk7xocAbsKaDBMjRilciFgT2W23VFUFIdL1HX0/MAziy3I5NwLea73IJbNcgJpxmsTrb3L04yjgbghMiaY/jaN4ZljLdz/+ge3tDWVZ8bx/xjnH2zdv+O6773DOsd1u8d5zbs60bUuVl1hjqcuaoRsgwJvXbxndxKXvhGmiNc7L5YqCTIt8IHqRIZxOJ7QRsNtqI4WbUpgkuQhRANKoXpgTmbGEVFC1w0D78Imnc0n0gd4HMJagNEMQeXUIge5wkDMpMZ7xKrFAXphEwMIcJzVyQioujLHpe8n50o+TMOwmxzjC5MTP7psffyCGQD9NDM6lNQBuGtmWBWVZ0HctRV5QFiVN02KUMAUeH58oyoqqLDFauocQyZOlQJFZAVm7AdCJfZeeT/IYMkonFpUjRgQotFa+Ty4NiyzPaboW58WrpShygpciT2nF7e2NeLFFAcdOpxOXi3jL9d0oHjREkakyJ8EWpQz9MNK2HZM743wAreiGHu+l+LLWUBQlP377LavNhnq14uHhgb4feffmLZ8+fmLoezYb8Vy7NBexmdCGzUo8ZsMkLO3tast6tWFwE03TSZGQgB7nPJm2bFYrvBOvyWEUWVGMHqNNkmJoMGbuy74AuNaInMpkRJ2kE8Ez9i2tG7BG03uPStLeCESjhYU6juK3EyUJjKkhFnzATZNYOiiSNw8Ya3GTJ6rI6MZ0f8dFauK8wwdh5cQA++MZrTSP/+pfM43jUhyJvYfBeYeNkbIoRAaTWXKbM/QDzXBhtar58PETwyDgSZGL/xMqEjQQFTax6sq6RilNc24xxi6eY0r1hAhjAjVdEKAnI6O00jkHKArJr4qy5NI0XI5HqrqmKguMEiWHNobbV3fCFktg+DiOHA5HnHOMg0/NECcMLJOJXCy3+BCZEvOqG0aUNagg9iTOe8ZxYLMWEH2/f+aLL76gH3o+fvpAVa3QRnN8PqGtSaBw5PnhEaWkyLu5u0n7VKT5mZUG9vFyIs8ylDY0XfL6HUbWdc26FtbV5CXHASCxOST3MOiomL0hQ/J9spk0kokvYLALARc84+kouRURZQxKm1lXKWtrBmQSeygiwLTzIeVVVtZT8AnrS3L54BcG66wGYWHA+NRAjpxaOaeeDn9knCS/k6ZQRGk5X3yQM3wcejIrsvCua3l+fGKzWqF94G63xlppCBR5zqquU75pAGFbOOdQRhFdYByFEWms5Fazz14Y5U73XqSTdb0SeWxekptcPOnUXMAbbLq/5xy1rCoO+z3WGKrTibzIOZyOIsH2ijxT6X6dku3Ni1dSVVWUlUjiTk3DOE6LD1uf1B9z7XFuGvKypMgzfvzxR9pOJGchBBwRq6SZbLWhqmtsllHWBXmWU1U1bdOwWq1S7uGYgifLclZKcWkaygSOOO9QQaCQqihQIdJPjsvQQWqGxtRomNlNi8d0lHcnbMe5gSuM9ZA8qURynOT4Udarsgrl5XlObiJigLCcoXNT3QcHHkKSVg7TiI2BLBOFFEHkuCIZDCkPZAEjvILLpSUkQJ8oHl9aC2gTSXYA48jpNJDd7KhyxbbKcG7CKHnvXS+epZs6T37BK6bRMfZu2d/5qoCoGDqx+MkKy3q1Fkm40azqikiAMYptiZb8P/hAlpi98uwE+PRRFGFojZ8cxlhRYfmJqirJ2pa27zkcD1ijEvPJ8He//4Zffv01292WrmmJhASAWozRwuwJkbywAsxlGTbLyeyQWK6SIwXveHx8RKnI/vBE07RkNiPLJMclRlYr8Yonyr1JUvQ8PT0RUz03juIzvl6JPVDbtWx3Oy6XRrzvtUmewtLsMFr8g89tQ3y8F0/JpqWqa/FKnBzSZJAmawwiZY0hvDCVYqIgKpUIOtniqRpT7U4EHxzBCXsyRmGgj+NI8LL+QqothDQ0nwlWQOkkAx5HuZe1VgSE5ZyZjCw1Ric3Sn6e2KXDKHldnltCVAl0Vvg4cyZlzzkl+ADpbAaFCY4QJzKj8BoB1U1O8JEsy7FaJLNt06OtJVOKj/f35EXB8f6B5/2e1WrFr3/5FVWVUxYFhSn4dP+YJLyzndiE0uaFEKk04+Rwk6euapxvxMYjgU5juqvWqxXDIBYqbSNWZt0wsLvZYrOMS9Pw6fGJ3/zqFxDlvhAroJiIUWJBlBeW0cm/a6U5nk+MbqJe10JWMpq+HSBILrmqa4a+59XNDcTINAysqxVVLWBtsaowSvPw9Mzjw8PiJb7bCVg9joGZD1dk4vtMiBQ2E2/484lTc0GhWG3WnM5nfAxEnyzFnCVP3qx5XuBdEK9TFdAkJdYM5CL3rk/KmRiEAY9X+NT46Tph8AHiy5lnhBBT/gyzhcgsmZ799z73iM6zPFlxJTb0nxh/MsCnZmQ+hmSoLl3w27tb2rYn0onk0XtikqjNyYYCYgLeNMLG8kGAPZslL5gi53g+MfnAZrNhwlFkFu8D292Gu7u7pbuy3+8ZhoE+MaS8j4nFJywun1gZMtzA0fcD43RhGCdMWiDHy1lQ1hip65qfPn4kL3I2mw339/d0XceXX37J/rDHO2HeFbl4c12aC8Ya6rri1as7MSU9t+SZGDO7OLOpFNFPxBDkQphG3r5+wzSKV5mPYQFjlBK7cDFDT52MRFyOzBeASWhwksykImGKnvZ5TB1NmzTdaim+576y+HSEBXQNcVo6R3MHWiSlAaXkHQFEF5OXokEhB6qw1OQ5t0NPP2keTyeRNMwDNFxIhRcLUOGDJ7eWsiq4XM7cn0/Udc33P3zH0/6ZPM/Fn8oaxjADb4Ysz7i7u+V8vuCyjGkahKHm9QLszezMeWPN7M4ZbCmKQnhEWqdhKB3bzVa6DFnO5Dzrdc12t0MrzdD3Imsdx8Unw02SiPXTQF2v5F13A/XK4sO0JI+jc2gj7KrD6cxssF5VJR8+fmK93lBVFZ8+faLrOr766iuenp6Wd2yM4fn5mS5J2NerFW/fvMEYk6S6hVw00VPkubC9nGNyERcECPjy7TvcONJ14rM2d+GUAqMU0SsBfIMTb7QogNtsXi0+WAZ0AmRiwBEYT8ckBxfAMCqFj0mGrBQhAcsuhMScigt92VpDTEXQzIY02kpXRSmm8QWUka66HKoqMWP6cWKYHMdLk6jSPnX+pBOozQwayucvbEZZ5Lhp5NP9J8qy5MeffuLTp0+sVrX4rhU5LnVYjLWsk1RfTNQjQzelzk9c1pdzbgEoQwwQIFPiDaGSX4Ux0j1r+56n5z1ZUbBZ1xiUeIWhxRi8zHHjRNNcEjv1LACV83Ih+WmRzXVdh800XQfOCeOr63rhqhnD+fJilJ+XJR8/faSsS+pVzcePHzkej7x5/ZZDukRn9nPTiMn3zFh9dSPg86VpsJkAJZnJwLesqhqM5txcMEA79Kx3N6yqgr7rUGNkSnR4UGJMnBKjGfxUSovsRasEhEy4yFJs+Cj3Rzv0cp4kv1WRSYgkWO4kOSDFhNkllqNYREhNG5fzThJAJwzWVHCHOC2fiyjrCC2f18dA0w+JSdGnM+WFoZUXuRQnzqESMzi3VgD6psFozcdP9zzvn5f9v16vpBOc1v9ut0NbI0DZMBCik6LeR2HpuOTlGJ2wv+LM8pZus0ss+LIsYIBdvuXTp0e6fuDW3jB4R+Y9mXfU48jGrAkudWaHfmGZzvtQ2MWJ5Tx5lIFLcyFh+YzjlAY8hOS/orCFrJmnx0eqqqIq5Vx73j+z2+44HY/k1mKTVcAwDIvPjdGazWojhUQq2o02aODUntlUK6IyHM9n0DC0I3mRUeQ5XknSZZRmSpJckzqwISqsMgKwpQQrImzL4AW0ssamnCbdH14kRaT7WM6yQJiNvVUU8C4kNktaU3PMd9ysCuj6HmvzBMxA8A4bZz8b2ctKJQYDQZ6tDwzjmAZoJEYx0sQy1uDdSNd2GGWo8pK6WjH2A8oYmq5Paw3yzCb/RfFycs4vigObmptaK5R50Ye8DMcJaCtJ/DgPHbNm8eCZgXNj5F3tdjdcmjadUbnYOux7qjynXtXc3d5wuTQcDmI9kuc5TdOlgWwVAG3bLlYtCmguF3wIZHnOuWmlOHOefhgw1lInCVk/DLx7947L5cLHT58I0bFarXl4eBCPRi/A0jSOUgCn5sVmtWYaJ+qqElmjUrRpQNZ2tWb0TixlEus/eLGsyIxmmmQzuCjNUZMahSG8nG+knG1mOJNkVrMCJqRzKaYzZWYzz2DNUgMbJcwJJWDzyzkmgMM8BAXEbF5yneJnTPi5uWZtxjgOoIRR6H2QwtA5plEMw+e9Is2hLEmzJA/SKlIXa2xijdk8Q2eG3Ab6/sI4CviW3b3CO/cz7y2dpGDTNHE87RGRl7CnQoB6VQurL8/w6TNba5NvmpxRxs5epC6BAwpjc7744h3Ph/1CINist3g/cTqeKHMpFJ1zDN3ApDw3NzcpT5XMePbjW2/WgPgyj8NA08ogEGsSGy7LsFjZn97h3MT5KLXOZr3h5nbHpWmWYRfTOHGaJL+tqor1aiUFfttSFiXjMGCzDELAKJvqFcl9nBOpal2KZUvfdby5u6PIcqrJ4Q5+yY9jEC/aLM+Wxvtcn/1XQ866hWwQSWCfFrJ9qlUUJPZKJAQBfk3y3tPGpntIy5pJ67rICwGRU24kzWO9WDOJt2ECkEGY40mePY6T+Pe6gA5ezl+Bb4kxcnNzS1HmoNLn8krsEcLA0J8wyqchUNJsKvOaaZy42d1xOp7o25G6rjgeZsm+ZRxduis8RZlzbo5oI37exMg0DqzqGhd08mxOEs8EKo2Tg2RZJQ1ryV/8KOdC8DJY6P37T3z55RdYEymrFX/87nv++q/+ktvXN8KySqq00+nEzIx0k8fklrkRrmJER/EQ08DxeMIaIa2c2wYZNjEkdmRcfHuFod/hppavvvqKw+EgDcKyEP+9xILv+4Ess9zkO1artQDQmy3D0GMTODy4aTm/L+2ZQ3vCDQ6TZdjckKucixMpsdICjvkkDfXzeadiKkhF4hpjxI3ibx9DIGjDer2RfNBN9EO/NFNRpHxrWtZTTPiCDNOTwVVKyd0/TmIhIzWw1LA+sc6cE+9DnXzwiAhTXWvGaUwelzE19GZNVLqdUrM6T+duRNQ/Wk3EMLFeb3GZErm1i+RFSZYLaeN8bpfBf4eTDJBoup5z09ENHh8uHM9nvvzqryms5jK20ohAoZWo2IjJTzLGZFsV6Rphr1kjmInSShrsfh4uYdDKoVRMoJKjKItEKBio6prJee4fnliv1ry626FUEMZ/Iid17ZBszQSUDSHI4J2hp1rVHE4n+nHifDkn1YehyPNlMEnfd/R9x2a9oV7VWK1RWUwEhlJAf+9Z1TXv3r0jyzKen56TpZEQdIzVZLkw8F2ceHV3m/xjLW03cWouTMMgbDodxS+5bZmIRK0R/9acvMhR3ixEIjc5eaYmvWWt0Nrigkt5uQx5WXyug2Bac/NwtkRQWjGOAzLQTqXm+yhnaBrwKOvWi/WU98T/t+f0/2/xJwN82812ka3OE4lmVLLreow2KDWhUiE2Jxbz18/JpQzKyBiaAau1eJvFWfo4MZwukrhETxhkEllMRvrGGA6HA5emoSrEU0KkbPJW5g6TSsyatm2TFONFSjxOUqyPyYemTEzDqiopy4IPHz4sU3bP5zMaxXotF//cZairCm1kquoMyKzWK0kUUVxOB6qySoMHOtmIU790QjJrCU6mmk0+EPCLH6AkbpJAxjijwWqR8n0uo5z/7l0QeUfq3MlDEKadXP5qAVznd/L5s/pcljlPRSyKakkC5nc5G8EKk0+kKzZNZhrGAeel2NUxkmXyefMsXyYwns9n0aBXJSFk0q0pxVPocDxIt8UYbm9uFi3+PC0tS8CssB7lYLXGJhP/l87l7Eclk4A0dV0vE2/nhHsKjs1mIxPBFEtHuLmc8X5is11R5DlPT090fUeRiyfa+XxG8eJrcLlcBIzMM2IMaUpg6qoG8TqYB1vYLCPLLJemYbPdUGQ579+/53w+U9d1ktFqkY2k7vXsJWn07Ckpv99qtV669c1ZWEMqAbN5UaGmgX4I9L0UWSHLlyLlha4tnQQV5PvgQ6LF2+XnzGtMqZfOq0wj4rMEUZ7FvA8EvEvScvXzc0Cpn5uzO+eSPP9lfauUsPqEKHx+dtgsY+xH+l6kyJPzEF2a0ieXjjaKvhMvEq0UalWjVZLsp6RnfzykfeO5u73l7u5OEphxeAF7SKBiklfPDY55P8yTb4dhWCZhzXYE87ub91dVVSh1SMClRlstAJu11FVJnlmen58Ty9IIY6ofGPqBokhdnuRZJXLxDOcCvUsAjZtAiyRc65fmyaW5UNc1ZSlrbR7OID44ftlTs7zdWEtRZZRZQVmK4fl6tUosJY9LrNiqkgnRlc3xieEhfnMVdSkFs59GkUhpSarm5sC8ZgS4kAtx/vd5AtnLmSOGxtZa5vavMKtN6qhL0RyCNJ2C90sRbI0VH5VkeDtPv4Sw2EF8PgV0NjInSmKeZxkxItNTY/LVQtK5uXiZz5S+7xn6HlcUdAqa84Vx7LnZ3cg5ZS2rquLu7pbtdiu/R5RpZz4E6Q56KbStMUSrmY2+5/PeuWnxPywKma672+04Ho9LIW+tlYmfWmExTJNjs1nTXM6cz2cyY1mta8ahT+CSMNhFzjGh9TwtTZ5tWZas1rWwOy+NTIgeBkxm6XpZez74VHR5tNEUZcGHjx/EmqIoFx+Xuiw4HY+sNmtpWKzXrGrxjdxutlzOZ2ElJsBRKajqGjONnM8NVTI496WcQUYLO9IqTTf2i3eqPC9hM83rVqWJ8D+ThMeXs+tzj58sSSyWe1apxHATidDkxHg9zs1LpZb71SdjcSl8Q2JcxKWr6xIDWywh2pRTePLkA9q2Hc5HAYwT4ByiJPTOOTIrTZqmacizjGkYuJwbhqGnKku22zV5nlGVBTa3bLablOxr8kIAznEYUEEzDQNd16bzTROjTUOlZA9+PhnZmkyUENZR13WS0yVZUCYSwCyT4nsYRu7u7ricTjRtx/FwYlVXy90t542jLCpimNkXL/Ykq9WKzWZF1/ecTudUkMZkcTKikLNcBrb1iy/Rp0/3KAWb9UYaI4WASZfLhaosF5uN9aqirlbMnc/F4sPJ8ANt5dycnGO73ohsuKqBSJZZyiwjsxn96Ng3p6RqCXOJL1MukwXL7M1FWnOLiDZIi0CaUhGlXtLzmFhOcx7tvWOavHhYqRfj7llePDPy5AyY/3z42Tm65OBp0FvwAZty5r6TvG0YRykCeWF6TdO4eF4HL/YCh/2BNssYpoHMWIx+RZbJvsmLDXmWJbm/gAGFKkS+F0Wivd8/Y5NFQZbkiKiYJPgyxMkFyfuKqkjNDM3oBgpTLmvFJ/9WFUT6WxYlz4cDwyBF33q9wTvHw+MT7968Zrfb8dA/SJ7XNkkdEzDp3gZRS8i1Lc2YosgZR7FIKIuCIhe2at+3bHcbDvsONLx++0oaQk5YI3mWiY+jcwzpftlut7RNy+Vy4d27d5RViZsmDvs957ZZ9trsexaiNB6cl8JTpphObDZr2qc9xMSmCqK2CEGk22VRMk6JaZze/1zgk7KaOb8z5mXgnXjlCVtclBACUhdFxTCMKecD58WPitQgE5Xg3LCVf56b6zGqpKRKTBpjcNEtKhhhkcqtqpXYnNhMvIkVEecGnAvstjv6vmezqunGgDJSY2gi0Q8y3EWLN2cM0ozTxnL36o6+FYnp6XSShklqcDw8PqRcuiQqAYfW6x2n05k8t0mBBZMTueMMyIcQ0JnIqvO8oB+Hl71ihHlstCG3OWUBVb2i71qe9ntub25YrVd0Xcvf/vZ3/Pv//r/D7e0tMczsZmHpzbJOyVEF5HJe2LjdsePh/oFitSK3GWWoGbyn7VvKLKOuSoZukAmreUYMjsxovvryHXkCYE+nk3jXasNz0zCNI6/uxOs6s6K+u7u7IS8K6komcbtPn5ISD86Xi0wz1ZoJYQOfmwu5sdS1ANKTd9IshUU9FOIL600ptYBHs9+oD7Luj8ejDOWxMgprVrXJWaHI0jBDkQ7HpYGmQcDlxOBbrDMQxlTwktv5IIzRLMuZJsc0yT0GmjwzTNPsS66XXGi2NJpzApsmGMfg0CHgp47BdagQOR/SIMqyYrPecWlavv3hJ+q64nI6M4wjp/OZ7XYjiiAvU9lVkjk/PO55/eqJN6/uJM9CGNlzbQlSilhjUVHUPFUaoDKrixRqUaXMuU6MgbubHUVRcDFmsUdoLwNZZshswcPDPc2l5Z//e/+MusrJ8pz1esXpdMZmhrKo8NHRXjp++vAeay118sT2QfwZgxcm4c3uBkUgz3Ka5kJR1FizZrvakuyxUcok4szEbbKG6bqOdb3idDpJA07FZchIUcjAwclPSSlqudnt2Gy3nC4dPKol3zdGCXPSaHyI9OMIyFkKwo622ixEqqU21RFjMqZhEouhGFFBWOdaaWyqKWclpEKaApObuLt7zeV05tK0GJMlgFVYyTKA1eDdy1kSvMfP5IU/If5kgM8mZgJIx2v26BmGIY0bDi8S0qUokUtCihPxGBvHkfV6LUlu0vfPv2yeF0Qa2n5gt92QGc3T4xMxBFarw9KN0ErJ6Po8Jy/K1H2UA3kYBuq6Zr1eS1e2HTgcT0LVTp9/lv99/jtkmeXTp0+yqOp6KaLyvOB0Oi1JwGq1oqhy8RMpimVCrUzUkgt1u9uJLv10oiwKfAhUITCEiEVT5gWFsSIVay+MSd/uvEcrg9ZWEN8EPn0Own0O9M0ab6J4T8x+DXFud8wdp88ZR59R+F9CM38r6RjppfCdf/bLZMx5GjApQYauHxmdgKfWWmFuTZJYDONEmUZiyzoSKrD3jr7rKXPLplqR5SVf3b3mN7/45QIEW2sXEFnMPlsBWZMvDCp1KUJIJqnu5fOldbparRYvK58AAIV4qSk0wzBhKtHoD9NI07Y8Pz/z9s0beTKJ/pznOevNjqHrl2cyg4+b9QYUdHHg6VnYpVlRYIJZ0H8B+vwyrXn/9EzTNGy324UZMU/mmz0F67qmSD5oVou0PbcyNXf2W9nubuiHnnC+sN1skm+QDCCJXnwwCm0YbMapa+nHYTnM5il9Lk18DpCKvURHVy+gyrzWZNLry4GkEkNz7gILICcXckxsX6XEgzEmrxgpRGbPkRewZQ7/GbU5RvG/CN6LVLMfGNM0KmF7aYYxTd8eR6qqWL5PUZa0rQDsTdsKUBQgUxnb11v++i//EpVYdkor8gSu+hA4ny/LhGatxZOjKPIF3JvPDvkd7GIdMAO0L1NNLZrIZrPh0rbEELi9uZFBIn3H8XiiKkuqqkpeaJ4QHbubG4Y0GVQGuAzCFNispaj2PcEHjqcjWttkFqwWwEtYCfJnzuejXJrrFdvtjqaRwT4m7ZvT6bQwDNbrFQbN0At7YJxGkS3HgC1yVplBt23qdMqgjToPS2JRlRWZseRuxB0PQnkP8u7yPGNKDIMQw2JwvDQYfta4mD30EquOmf3CkjjKGZik30maHZUmTxKhxWMvFcIzA2H2sANSsTOlc9EkppVnjDHdazA5J0BMngmorBCAyYhlhUlMvL7rxM+k7ynrCh8cOkJhLf/kb/4GlGJKdgWgkl8tPD494r0MQHDDILKAtNbm82/eH/NU7Pl8m///zGrJjOHt27fcPz6laXtQVzXWSLPp/tM9X335JX0tIF8/jGx3O4qyomtbMdRO0+XlrhGzY+8cl4sw+XIjcmytIyaBfPP6PBxEDrder3l1dyeTb8dxyQUuyYqjLErqsibPcg7HI6taGDzSmFJpypnGRikaRucZp4kyl8/XNBe+ePOW3Aoze/SOKYjfpvdi6p1nOdGnxt/SPHs52z5vbM3/TdbWDAob8T9L4K8k+goXhW1sjF3uk/lKlPXmktdc8SINTmxywsQ0yeRshYA/42JlEQhR7swsJ3lbOgFPrE7DeDSrlD9ZrSjygqg825sNY9djteb13R0hikfmfIfOjTljZajF8XgURpst6LoR6S6Xi41FpnLxA8oNJtMyqVQFfPQvIMtc9ABfvHvL/eMj/TDw+LRnt9mwqtf0fcunT498/dVX6bw647zkgPMUvVn6KL5MkfPlzNAPtAmEJsZk2j6xWq+ZnGO/31MU4p/UDh31qhKv4c2Op6cn/CSsfa1EVlRVFXVVkdlcrFa0Zr1a0TYyMKpLa35M55jRMgk+y6xIaceBpm348s1bSh/QbU8z9vI8UMtdUCZm/TS9TLIXFcvn6+/l60V54JeiZH5Pn99/SimCn43j9cJm1lok4QtrK8ndZh8rYNnDziWpGhrvAn0vzQVhigpzvigMUcOYmDpFpnFeWJl5lktjOpfhJMfTkTevX4GXaZt1LWbmfT/QtX1Ss4jlTt8NTJNMAN2sN7RdR5blVFWZmMATXSdKBefcMlVXno4wlbVRyfNWzjnxvrXLnVfVFfp8oRsGzpc0Eb2QwUHf/OFbfvmLr9nubhgSkKgUWCNNnHkQQJ7lzANZsiIT8LMMaCOex33XcjjsiTHw008/4rxMlKSNtE1LWVSJZd+Ikig1Jvu+o+u7xef0eJLhQ6uq4uHhgdtXd6L88NNiz+KcY0yTucuqYup7nvZ7ng8H+mEkKwuqPF8G1Mz58uiEka5RSd3wwiiez6F5TYjdQ1w+q/OizMmyDKVYGpg+xJeGSZKtCSF9eUOopZmbGsWJ6TazfcdxlAFPn9noiI2GeIEaDUaDNoosK8msNFA365JVvaI1hnFy+KgJGHR0hDiyqnO6Vjyt86wkArvVDdbm9J2wMJUyWJvz4/sPKK05nk5cLhfWqxV/+Re/5u7mhrqqyG3B+dQSgrD8dVIFGWuF7ZnuhObSpsbUBsYxgUEydXO2PLKJkaa1vAc8dEPPdrsmyzP6YeB5f2S1WknzM8qAqjrdV8GTpkSrRWbtved5v6darwgIIB2U1LwqIDY0WU6VFZSrkmkY0Saj3GyWXOpmtyF4z36/Xzw2b29v2azWHI97VFpLRVGIgiDIAKXtakNRFDw8PxEjrFZrmr6TRvs4imedEiUAycpGKQFF/HI2mUXaODfF5jzOWIuxGrc0JDxjOxIRZrx4wBoBwmSqigDcxjKOE2iSJYnY7cw13txAEkl+Yrylpus0ebwLjEOPUmWqfTy73UYmQMcoDbmUm873vEqfOfoI0RP9QHQdVkWy3JJZuR/HYeK+e+S3f/cNtqh4Pp5pmwuKkOwAKqZhInrxoGzHUdZiXXP/+MSr29vkBZcGgmhNDCzKlXEc037XaT9PWFuSaSPy5hgILiz1W1VUaQiYwnsYJtmbx9OZqipompbRBdTo+OaP3/E3/8ZfY42iXq/I8ozj8czkJvaHA3/3+78nyzNevXrF8XSkbcWuxXvHbr1mvdpgjKYsyjR5PUsNvLXcKUZy8xBlQu16veHx6WlpOMwN6IjgM2VRyMAiJw2u7c2OaRpp2oYPHz9wulzY7m45HQ8obeiHTmTbaWJ2CCKTFsUVuDTIqcwLxmlkQmrfVJKIjU5iHr65u+N0OIiXe11jjcZuCvbHI/0wUWUCro6T43JuCIGU4wsxwxiZ6C6DYzTO9amOSXf8C2TxXzv+ZIBv/jAgh1mWZQvrZPa+k6LgJZmc5V8zWCGURWETGWOwQaR5c8enrgtub+FwPPH4+MTrV3fsbm+wwPPzM1VV8ebNG56fnxdvtPV6nYwps2Xc+QxETdNE348Lo2YZQU1klYv5736/XxgpM6V5t9sRo0yBnKVxbdsKoJj8AawxPD4+8eb1a+nUDT0xdZfHRCE2qVMmHiI5Pog31Wb1BWVVM40jwzThgphPq7S4Z6mK+F+wAHM/B+VeQjwuPCrMIKtewMYZCPy8UJyNl5dugDJLkahS4TK/8zlxUEolhpD4pzk3LYNMfKIcizThBRScf9YMfMwMp8yaJFVTvHl9RxjEt2V3c4tLQMl/mWn4+ChFcJ4XGAt9L2bfIIdtURYEHxYD9xl4Wd79Z+9iln+8ffOW58Oe/X5PDJ7Nao0xitPpRJbJ4fX8/MzpfEEmlZaEPEs06Jex5MPQJ08hly4USTznISo2y+iHnsNhn7oh8v1fv369TBw9Ho/EGMnzXIZrJDA6hkhwnqfzga+//EoKmuTp2LYtQ1przrllopfRBqsNfdfhVzU3my2272nHYWFKGW0kYVGKoigJ3jH5lymTM1Ngfo/zO52fo/d+Waez1FYuZpaLVaViPSQm6syigReQZV6DczI8ny3zlLv5cu66Tny6gnTrnHPkmUh4QjL/nddanmfYxBS2WrNK8p83X7wjjg6LSgy1ThLYtM7nz/T4+CgAtzLiCxWmJMEKy7lWFAWXy2UZWvA58L544ASZrhti5ObmBhfCIvl+ffeKV7evGMee+/snfvmLr7i5ueXx8elFPqCUeHtlZpn8fblcEqNSJd/AgmmSTlRZFJR1Tdf3UjjcvjC83r59uzDVSMXMvG7m86HMC4a253w+88W7d5RFKRf6fi8/V+s0GUvO1ggLYKe1prk0bFaSwF6eumXCn07sk1nynfHizTMXH/P5vDQnUsRUJOS5Xd5xCG4pgud9kpq7cu4R0xqe/Z3iAijP63t+FsIOfnn33keGflgYsWJrEDFpYpqxBqJIMtw0EoNnvV4vA2byPGccOkxm2azXGMTz6XA6/mytyVrynI7H1J3V6ezQwuKaRCI4Dzvpkr/fvNbm33/+XiG++DBpk7FerXk+7Ll/fOTtmzfsVmuMEv+Q+/tH3rx+xTQ+4KaePrHM3eSWM1sn1sgwdsnLU/bMOE5y/2lNUVcM08j9wwO73VaGJsQgdhqJQT+NI0WWLQDG6SJ2BVUlnrb37QOb7Wbxr3p6fubSisx8nn4oZ0tk8p7Ry7kyjhNN07LbbTk9PixFkNIKi2YKwlzP0s+e/X9mFoL57Gwzxi7DcEIqymS/+4XdN45jer8Z3rFIduZ72YeQmnMvbNDF10ULkKeNwdoiNSZ4AaeR5uDMFMmMRiOsb538t2StBTbrNeOQ8qlkt0A6nze7LX3X048DbdMsE4nNLCOLIoVt25aqqgkpZxMD9ympIeTdjNOUEl6ZUEicPYXs8ty892hr0vRuaWJ8un+gbU8Q4PXtLVW1Zpoc3337A1999aXkY25k6DthskWRDM2y0HEciMkmYqNWaVq3DIvKbQYhJlBD6EPny4XMarZp/XVtvwyeEQmTnKWSd1ienp5o2pab3U6eD/DxwwdiYny41CCZhxWI1UrEZjJd8HSWoWn70zGdbeINODPoZoP7aK0cSMsaeblXQRqdc1NkBtNlnU3MZvbzmhNWN8tznxUEwSfzCvUy+C6ks2QGRpVOVghKGLDBxc8YYsnaAGEgaBXIcmEdGCMSU6PF29pNAnbGKM9CG0039NysN6I+SHn/PMSqSYxfY8wy2KQyFu+SnyhzA66V+y1kwoILjroWax0/ySAQo9N5Gb34k5rZL1ote96PHqMVMYpv5fuPn/j6yy/xHur1mm+//4F/9A//IXVdJgBAZOxPz3uUjsS0F422n90/AUJAG+jbhm4YqauK/eF5kWkqJUCDtYYst1ir+eKLd3z8+In1es1ms2a/PxCBr3/xiyWHaC4Nk3O8evWK9XpNn/UCJuUWa8Rn63i5gNYiZtaayYtXcQR0CBRaPNp8ap7MjXg1A8tRJOAxBJkOPQPz3qcmoZxjNikQiqKg6dq0Bue8LaazwKBELpPOAE9MeWRMz8slv7RZZmqNsFomL2vOJcZ6TOxJrUSpRYR6VS4M/FVVsVpXNG2Lm2RS8rlpWZUFmoBmIoaOGCaMXrPd7NhutsSgsFnO8XSkac7SmPMC2rdth7bCsENbohYW7qfHR77+xRfJG+28nN06ee5pI2oBY19ybIIwK7uuS00TIWXMQyOVVpRFYKoc1grTy2hD1w5MzlOWK0JQfPv9jxhj+eqLN+ncrRkHl5rFk9QGiJdm23aczyfKskRZw2G/p+m6ZANhxd9XiT/mNI60lwY3Trx985bPh6sYI3mic9KYXN+tl+GRip83EGV4mCi07m5ucEFy0aYbOFzOSV4s/nZVUTOkYV0EzTx8LsuzBZCLISagStjNhASqWKnJh3GUdT5KXhu0AHAhpnZvFCKMUmqxJgkhSF7iRpybFiDMmCxZ90i+MBNDQlKNxahw07gQQ1bGYKyWafQ62WnoiDUQoiYo9cLiQ2TpnogfLhRZoF7nMp04LzkcDknhETlfOobJ8XR+pu+F0PLrX37F8XBIIKdLE7OlYTcOAxcFRq9o217sd2IkS9ZGLjiMlrqL5N+mtTRBvc+Sr6L4SIuaRUAlYwzGZqjouVwaUMJkJPjFSikrMirics+1fc92XUmNWFbstOGbP/yRn96/R2tD14/c3z8SkIEu1mjqqmC73bIqa8ZhxE9uaTp2bYt3U5LHT0tucjweef3mNbd3t/RdT4w1PoiHtncyaES8FDO6biBGaej03cCPP/1EVmRL8zwq8bovigwNTNNABIqiRFlLl4a1Bu+pVyUuyEA7GzNi8vaelToRwXm2G/HLdC5Q5Dk2s5wuZ4a+T+eEEpJNqve0NRQ6l/wRaYCbqGWoVcpvZpuqz2vHPyX+ZIBvpvjP01hOx1NiUiXATs9sK0fXCchibc4wpILbvrAn5iIe9SIHmGW1RZ4nBPse9ntut1vqVY33lvfvP/Dq9SvqVb1ISC5NQ0geeWoG8FIhPHsTRaDvh+QDIGDb6Ef2+2dWqxVt29EPPZu1SG73z3uUEqAihrjov2dgyHkpeqdpYlWlqb1dL92VqmJwKXHznuA8Lgahhya/qef9ntevXnG6XOj7QQ5ghHrskwQS5rHbP2ccfM46mA3/5f1IojwPGRF5iF28d4SCPNPz58RQKPoxSoIwGxXPkg/595gK7CKxGv3yM+af41NXrioKYggUmRQMZW5S4SsTJmcmTUiF+UUrLk3LOpkO73/6ER8D//4//bdSF1p+r7ZtF3boDAQVhZhU9sMg8kJtkmdZvgAs87ORTkDyr/FOpJpKfGE2mw2n84n98QgRdtstdbXlsD/Rtz13r+7k4lEiCYpBfOgWDzEFfbpk67rG2EwK+ZSsa2Po+47D/kBRyfTlcRxZJ+nt4+OjmADn817JRcqlxPB8oOfx8THtMb2MrJ8nuHnnmaJ0rPDy+43eJWmZ4flweAEDx2EpfuSZJLA3BDwsNHqhnqdD7jOAeF4b8u/ZZyDslAZqqMV42adOrhTI88TUsHRwRY45TxpSi0T9RfqVLWtMJFCSNExOutJ1VRAmR24NLkTKQqaMZdaKNCHtiXEYubu9oSjLBK6vubQdH/dPmMzwz//tfyqF0tzJDxN5ljNL1bLMUpRC5e+6DpskDEMy3bZGL8/Jp5HwM2No8h5jhe3kQ2C72dD10lU2hxPZ6zvxhLKGv/3d3/OrX/6K1Xoj8j0ZB0yWySAZ8cOcwRcBJWTNTEleJUy5oe94fn4iywwf7z8y9APlLFc7n8WWoKrp2oa8KFKCYOg6Kfy994xpAMPdzS1ZkfPw6Z67V68Ss0v2nxsnSd6dFFxZatzcp8lsTWKzhRjo2pYYFSZNMBtnMC0lkrNkEvUif54tG2ZAVZKC5LuptEyUjMICjzO4s4DFArJ755NnidTas9+GNVrkPSrixgFlJeGc0sTrEEXqMTmHjzIZT6UzMSpYVeLdKGzxDTbLOZ8uMv23yNnd3vL4+EiRlxAij89PPB0P/Lf/+X9LAEsn0/PKomC1WtF1HZOTYT1u8kQ62q4HRBoypf1q8ywBvi/X+TiOCUQPEObmjMgJq6ri0vSczx06am62a1arNfv9kcul5etffMXxKIwUozVlnskAJe8IwckEt8RqyaN8z2GUyZRtI0N6nh+fsNbw4eOHhQkP0HVi+l3XNVPfE4wME5Ip5ROfPn1amoaH05HL6cxqteJ4OLww/MeRoszF3Dh6nJN1npclwziwPx/Zn46M40i1rilKYQPOA60kN2kSi+VzW4qf5zYvEm6ZlL1aC/NMhpwIs1Mk30469sud/HNwJhDRgeTrJMmz3KHyfH2a+uoWhq9iGXrgA5OXhLdaV3g/oVRkVVes0gQ4qw2r1ZrzpaFpO6xWbLdbzm3Dpe2oysi5adifjhCUGJRnFoLidDgyTTJQx2i7dMhvbm/Y7w9pYIkU8n3fobRMfY3xBZTK7CzpT6wWlcCl+MLCzfKcrm8Yxon98cjt7Q6bF5wOz3z7/ff85je/4nw5ihzPGLLEzBkn8XbMdE5ZrdB6toGYPXoqjqcz56bBTxND33P/+EnOaGsWHzmZLi5DaMbkBT1Pin56fl7usaZtGYZRfM/Gkbdv33I8HjFKU5Y5F+9wowBBWinquqZpGvanM9PjM0HB9mZHluwViAL2GWOYOiliXHjx7VpYIJ8xqowxTM7J1O3tjqZpErjoU35hRQoX1eK1pz+7jyMBhUmStHm4hzQiCD75yHqmEBfZ7MwsiCGKN5AXRsxuJ0NrUJFqVbFZ1wKse896s+F8acXIXydgTRuapiNPMqS+76mqkpubW7pWmOhdL/LfPC8JBD7cf0KhqMtSmi4hUtdr/KUhszNrH6ZR/IpiKkKFFWZSk6GiGwakyeyWxrVW4ncUgqauavq+5Wl/4PbmhvV6TXNp+Jf/6l/z3/zn/y67mx2S4IQEhncCgAjejJsm+qFbvEYv+zOny4nNdkfb9+xudvT391ijpWbQhoEBm2mKIuNyOXN3t8PabLGDOJ8vaGQ66v6wZ7VaU9c1BE9eZPLc65KITANukqdlNwxpqMyEzjKxi/ATUUE/TWw3awakmTC4SaYNJ3B7Pui0MQKUGvE99OOEGyeilrOvaRtUVAkwUZDkodrIWqnKNAHaOWZPPtmXwhQS+aRIeGfVk1KK6IXx/MLO1Skn14kAoRZQWeSklq4fiCi6diB4GarT9jJYocozdPTEsSP6nugd7UXqlizPWG+2/PDjB/bHI5vNlv3znrZrccmKRYgQjnH0+KgoTM44eX744T2//uXXjGngok/N3TlniOl+mHOMWR4653lzSaZS81smzzpWtSgzjscjXS95yvl4SaCo5nA487u/+z2b9YrNusJm2TL53KTBEMPkeP/xI/uDKNiMzXh62qO1Zhh6cmOo6xW77RajIpm1tE3DerNiXa2xJpM8IjWcQggYK6DF6SQeldGL7cXsgxljpKoqsiynbTryIieqgA6Kt3evaccJF0SdM04TeZFY4mlQRT+NaCXN9hAT6UDJIIPgA94FjI1pvYFPmABe/v849KlRYvBKABfnndhy4anLErvJeHx8gsRU9SGAjuRlLudhgGmYEmNZ7letgMQMVSimaWS73SYJusDU4psux4MikGkZsBFCACNnuA8BoyNxGgiup1qvyTNhcMbUBI4xcjieGAcZRpHZnEk7brY31FXNNAzpc4lFx81uy+PTkW4Yha0WZNq35LDSEJqbLF3XUtWl7Lk0NEwa5hqlLefzXgaJFqXUDj4wdIOw59yENoq713d07yUHkyFeMt3eE7g0DcfTiW/+8Af+2b/1T1CIn//7T5/45ts/CKaRBsD1w8jkZGiOkGZe4Sa/+OE3TQMKbFYnsDFgMkNdrTme9sSoE3vTkueWcVQUeck0jqjEmrTWJja9WBT1Y7+QAXY3O6KCH95/QGU5LgTqVY3WcHuzxXnP/eOT1KNBfI6zzCaPSmEyzpZSIVm/GKPT4DOp6T58+oR3sq5vkz1NP4zoNO9gGAWLsrNNVfDL55uSStVole7cSZokVs7yEBJp4E+MP30Ob1QQFU+Pz5RlSVlUaG3T9Kiaosg57I+pOBBJA5ASbbtIdGfEcu6uiH9eoi7O9ObMoDNLNw7o03mhepq84A9//JZf/uoX3L16RZeAH6Pk5/T9ICyyJHXI81yQ6dyAysTwOgSatuXx+UieZ3y8/7RcQCR2CjGy3chkyaIseXp6YrPZ4L2naRrGaWS92RBxPB4OFHkhkpBk3tw/P0niOIy4CP0gXTVB0S1d2/L9Tx9wwVNWJbe3NxxPB8bRiRwlT2bI8cWbcH6WL9IOFhktUbxcNpstMYqH3pCQ4hmomCb/8vXMgKFOSc3LFN155PP8PGa235gGg8zg0LyBx2lKskvPzUaSxOA963XBdl0Roxb/jM2aw/FE23YUixlw5HS5MCagrmkaijxfmA3Pz8/JQ0zMh7uupShKyjJnHA/E6cXofGbQzM9rXmdKKcZpTJ07hUqsnhCkO+ydx+Y5Q5qcFlFsN2tsVvD0vCfEyLt3bzlfzmmtSSJ0uVzSpSmTG4WBANaAM5ApS10WHI8n2uZCnlse7u/T/gjEKOvUBce6lIlzm82Wh4cHdrubJYEY3cjN7Q1d1zF6z9g2iy/kbieJ5mq1wk8OFSOTF/8qYzQ2z2nahvvnp8WXcL2WyWEivZDi1A/9IokTb8gkX/NqSWpmqrt0t6XgyjKT1tqID56YpkfOBeznDD1jPkuEpGrixVtDf7YGWXwL50R1Gmf/KzlUp2liW9WoIsN5x7qqWNclRlvOzYXVasWlaWgT668bJ3yINM2Z0cnk2Usj3kwEOdsO+yMhyIAfYyw2MWA3uw2T3zMmyXkIIXl2VoltlSb8EqXL6yfGaUoTEVNiCOmykO6lj4rBOT58+sS7t2/xQJYX/OHbb/lH/+ivKCuZOmm0psgyjuczyT5JWAYmS+8lEsKEQgat9F2guZwoiozD4UA/DEkaOTcFxIvEasWbN6+5f7hnta4FWDme0Mos3pfee7q2RQfLq1evxO9NIZNwtSY3lmbocG2bfG0ymXo6JDlW8tjLi4x+SECviikZ8wso8rkMTYVZMpuG62iNT+uvKIr0vN0iu/GpIAuCyCXG+Mt7mgsPIRgoAj7JG5Scx1rjnLyvmcnoXPJ2guSj5FFRsV7JxPQpSAG2WtccjycmJwBr07Vopbi0LSHC+Sxm6yElQXVZLh5Np8s5eaplMlTGZHgn07qUUtDJZE7vPeOUPB6VdOGNNUlukCUPv+T9Bmm4Ukxnelj88ZybeN7vUchkvaKqOB72vP/4kX/wm1/StjIQxBpN28iE+CzLl2bKvH5mqcgUhFG2P5xY1TX7k7CPQxQ/yCxkkrSoiDGK1d2tSCqrkru7Ox6fnsjznLu7O7JMpMOX84XBTbx+/XphZZ6bC9YaiszKGX48CqiUuqtTkE6sdG3TwA8jnjYRtTS35PJ8keSGEJfhEiKtGBP7aJ4g6qXYKjSX80Um2sYX1tA0jYtlh+xDmD0rZAoqqPByts0dWpGtBeaJhvKzEkDo/cIgWK3WlKqiHwaR7+cFhc3YH4+M44FuEKnbFAL7w4lLI4zH4/nMPMVU1odjmk5sNlv6fiAv8p9NghdJsVgu5Hku4G7aB7nNCEES4HmPeh+xCdQbJpG9yF4X031JRQLaaqKKHE4HlImsVyvq9Zr98xPf//ADf/XXf0kMTlgS1vD0+Lwwz6S7/uLXKr+DsBKeHh5QxlAWAvAWebmoCubGbgie9UqaruMw8ub1G4qyIMYDxIIvv3jHOE0cDjNzVvHu3TtpzhnDFDxKQ1UWtF3L017W3NgNMjRMaxzStLqczxijklRYfMOGcVgY5lEhxaEXT0hrDFYrQnr/kAZXjZ6maZe8VYC1l+EvSit0VImJE5b7MgqdRb5GpcmjiSmaZVlqXL006YwxDOOIcx5rssRi03RDh1nJdNem7ShKOWvzYsXj4yPNwz3jKOfiGCLh6UjXN/LOE1twu90Ki7vr6LoBtCHg+eGn9yil2Z+OtE3DzW7LX/3FP+D2ZkdZFlhjOZ9E1iQqyGSbYj4fOmI4nxustWw3W1ECIPvOaoVLDUObJHbaqNScCbR9z2a7pijFguX5eOaruloKMJEjluR5ZByliSeYdURrS3c5cjge2Gw3NF1L07ZSu0zCbqzLCoViu1qhjWEcRm5vduSZKIqs0dxsN3Rtx8PDA23bstnI0EA/TYxjT17kQFxUSFYb6qLA3t7xuH+m6Tp5n+leGycBWIw17A+HRWUzs0JRL83AEGMaRKCSWX9qaBiDNUo8/5xDYZj61IBwck9mmSW4NEwvAdIQFhmdMdK8CCEuZ5w0aMVuwE0ehV68j+d8JETEq1dFqkqIA3FW1hi9MIzEPklADp8axYQRP01URUa1WTH7gU+T58cf3/PNH7/DZCU/frjHTyPb7RqbWYqypE/eof0oOavI6Q2nc8M4yZ0RfCBxJoXQklQlk5vSJOVskTgbI80NFzxhSoqeRNCoKsnpm+bCMI4MU6AqK84X8U9tUp4wusAfv/uev/k3RQ652W4oy5LD8cQwCEPp48M9292WQOTT/b2wEhMzfrvZUJU1Ron/aN/34levVCJBjKnhHZm9Qquy4vFRatTLZzYOMpws+UuPDqIQILRRnE5HaVQ+PbPabDkfj8sgqME5Qp6l4TNerG6CBzWrAgx5mac7WgZ0yoA1YZmiZK3tNmuOxyO3mx1aa6q6pBtGng97GcKQcp6uH1C82JNMTpphUv+JKmkcR5HXhjSMLUSqVY0Pgaa9kBnL3e2OGMHWZWruaZxXuCmSiP64IJgEYQIvg84MWoa5qMDNVp69Vgbv4XDYczqdePf2HVU10LVHtus1oxMm/npVE4MotWYrKhA5eFVXtH2f7E4KgvdkNseYgT7Z9azWNc6L573N5oZsEJb/0NOPjrwoiVFUNibaBbcQFZrYipk0uMIPE+Mgaoj1ppbnZqCoSvb7E99+9wNlWfDbv/877h8eUEKcT5YOwgStq4I8y6gqsU9Z12uOz0d22y3ZdkNApNrNpWW73UCQPDEvCoa+5+bmBpPIRGVZMA6Sn+R5TlkbyZe0sAQhcmkuIq1NAz3PrdhTTcNInmW8ffWa5+dHmvNF8vy5VoqeuioYxlFA9ugJITUro+bStVRVyd2rNxyOB5T3jLPtl1FUq5rz5SKN36iYrapEkTqfGimndMOSG8rQHiEe7HYbLuczZW4xWprCSr2Qtv7rxp8M8E3O0fV96iaNiyyI9AtlmWjoK1NhtF2kK/MmnBOw2V9slvHBf1USGENApY3vvefh4ZHXr1+R5xmr9YpvvvkD//hv/oY3b98k6q8kMm3b/YzpFsI8xdPj3MTQi9fN49MT682K8+VCkQu7hRjJrUXlOX3X/8xMvq5rbm9vuFwuNJeGu1ev2N3s2O/3Yl6eZdSrmlUtxfKQpHNqjUwPfnqgHUTOOvR9ovrKZ+yGHvf4RJG6IPiwmFj7IBT75R0kj7sZdJllti4xGJtGWIt5niffKEeMLyDLnAh/Ln2d46Ugfil8imRsPsfMWpqnohprUcGTZTB1DqUcdS0T8qqyEuaDlaLi/tM9wyQXf991TLOPo1K03cAs74xR5Alt2zFP6jmfzwvCPk3is2aMoa4tJrEKZm+RuSidP7f3nizPmPpeKNozQyxNuEW9SJG1kum6SinW6xXrzYYPHz5is4xf/vJrZkZNTCDP54BpjKlLnpgQ3snv9/z8zHp3w+lyZrfb8rzfY7SmKktmqcL8ztpWDrvVasWQWFQ3N7fc3t4sz2Gz3lBXVQI+S3Y7MU2dgWn/+IDvpehp2zaNgJdCoh96Hp8eKQuR/Y3JY2WW/Mj49TR9zwdiuixnBuvn66ZtG4wRRuEMBr8AeGq5vF480JL0QX++1ljW28wOnd/bLK0Ofu66iHE1Wkacax2oyoJL6zBWGDraCOX94eGecXJEhFkrn106icN4TueDJkbN6Sws2hhFMnQ6yyRoMYcWGWyWZYT8peicz6vPpcvzeSNDVySZmaV9JpkvKxQqKjFHLkqGvuXx+Zmb3ZbVZk039Pzr3/6Wf+/f+bepygISs3B0E+N0ZvauiVHWbN93QmP3juPxyP3DA6vthmESD7RxmghKifdUlsmkZKUpspy2a7m5uVkGhAQf6buBPMs4dR2HwyGtsYIyTdutqxqbS+Go6xUc5OwZnTBqpkno7lMQKWUgorsooHKa9Dv7YPbpLJnXC0hCNRdG8z6d7QfOZ/GmnKW9UlyKdClqhcL8TD4+Mwzms02mh+mfScFlPYfPvDtf2A9WG4wGa8RA3mYKY3KmVu7A8+mCcwIUD8OIT3KTrm1pzi3aZHT9LEOwRDTH44m7mzu8D1RVzX6/53g6vbALnEwSFK/Hl7t1lhTPDJPFexVJ1ts04XeRACa2bJnn5NZKc2oaOZ5ORAWv7m6pVzU//vQjq03Nb371S2GmJba6AJ5+eUbOkfaIgA5D3/H09ES1WuOigIbDNKCVYlVVVGWZilvxXhn6nu1mI51Ta3n7+g375z34SNNfeHp+oiwrtusN88Rz7z277Q5UJHhHPklyf+lafCqwbZHTpol4HpGS7bZb4jgtbAqlVCosWN67TuDefE+EKSTPNJMYbJJMxzAPK1AYazCIH1iRZPnzeTjbEbwUSTGxu18MnxdLhxCWu8w5yUtAwOwQAvWqxKYCSI8iRToOMiW376UwnZwwuMTOQhJ9YdEHIiadN5BbyzAOAt4bmbD98PCAtZZ3b9/I8wDubm65v39cGPaghDGUus7zOlRKrBiqqsZ3bdpbMvFyZsiv6wrnA6t1TUPg0rZoY3j76o6syPn48MCbL97y9s0dKjUTt1tpqgiTQsvfRykC5jvl6fmJoMRn6XxpqeqKS9uQWcvdzQ0xRPE2noexOCcecUTyvMAqw9PTM+fTmcPxgHOem9sbysT0m9UZmc4J0RONvK/bnWJ/OiYJeGKPnsX7yMeI9Yp1vpIGnzI4H4CBITU59Gf34AKuKL3kHLP1gvOOOM3WFXLmZakwDz5gkuJFgOGw5DzzZNx5Qt+LjFcAfufdIl93ziewdIQc8fWNgd12I011I2fYNE4MXYex8k76YRCWRiaD0caTgAYgV9Tt7R1N0y/g+JT8MruuwyQje5Qlakvbj/z04QNv374RWeTULntiXmfSnE3NvuSvbbWFKGqJ2U5Bp+LWGANaUXg5N7P0zLW1otyZBHSo/Ya/+/tvCMHzy6/eAQi7LzZcmpYY5a7yQWZyPz3v6YeB9WbDME20Xcu5uRBcoCxKisyi0pAaGVY0pQELBQr5HDMTtq5qIRtYyxdffAHAsesWxcmcQ9T1Cj8Ja+dmd0NVFZyaC6dzy+Fyka9ZrRbrgbYVWf0wDCjlRBqr5PwkRtz40mwLQZg28+Twvu9FaZAm2DI37lNO65xbhoyF4Bf2vNRu40sjLpEX5nx4vr+nSf7dJkXP4lsMZLll6DtsZvFu9vcWZYgoZuTeNCajMhlTlAa0YeLu7o5VLXuubRratqPresbR4Xzk6bjHecd2VfH27TueHh8Tez/5lGlFbg2jG7lcInlm6dqeru0QgonkQ6IoSCzslOc5P1GWBVnMmSafGEoRk6WGjxYmr+S9DqWhXtf0+xPOO1ywFEaz2q7QmaG5NJzOZ86XM69u5RzL8pxqveL3f/wDz6cDKMNhf+J8blFKGGhFnrGqazarNQpN1zUyUKiqKMuSvmsYx4mykGntM5B0uVz41a9/ne7ygJsEXJUJpSYx10QOejweBeQNivtPDzgl3sCDmzB5xiUNQTAm1bUqyqAiY5j6KXndR1Z1wTwF25LJ3IIQliFHEQFzVith2s4KLYUApH5y6FIGgU2jQ2WihMvyDO0UeC9M0ijMu34aIIQ0HTegtQxjkHojpjUpDc2uE/ag0uDcmHwnRzbrEhcUU4gEJx57YRoS+Baoy4Lb2xsiPqmiAl3fcn//sOTUq3rF+dRSBBinjlWVk1mNG3pssilou1aGn4CcJ5SMQ0fftygrHnH781EmKqchOEVVisRXpwnACZju+4HJhzRIL/33dK5mWb7YF5VlyfnSLAMNg5b7fugH7nY3NFlGc5HhXff/twch7SjIrBXP3yB2JHmWsV2vZQ1YLT7ibUfXNBSZJc8M2uaYzHI6nXj79s1Sk49O7rznw4Ev3r5jnKRxPwwjbdMt6g+fvP9jlJrwp59+YhhHHu8fZE1bOJ5PZDZn7IX5OfYtX3/xBfcP96yrmhjheP5/MfdfXZZk+ZUnto8yeYWr8IjMRGUVRDdaTE/PrOH3f+EDuRbXkEM0MGiUykoRwuVVJo/kwz5mHkU+cfJlAgtAiYwI9+tm5/zF3r99gTQ6L/WAuq4yukPn9VAkBkgkXC7nlbkpFrQGqAz01iG6AGJ66HgrlplMSmsNHVNEiB6mkFw6TxYiBsTg0GxqGKkhtcAwDYAw+LW/fvWAz/qA46VDWzc4n094fHzE3d0t6rrM03ONzWaD4/G8NvX/32mcwFvSbYiRh0/mowCLeoOJLlVRQBclRG6Sj+cL3t3doqpbpMMRf/rhL/i//C//M4qcUhZCRLthmsvSFC1+dJ8ShNRwYcTTyzPquoILlKpy8gqURYndlgybzc3tysFoqhJNew3vHe5urmGk5vYlBDw9PaFpGuw2W7jVJhexadps4bIwZYlNQ+vvue+RIuXPwzRyMGdjZohlZoExWX3ADbcPYVULfK16WRlfKfGgU+TuBetyw8lGWkqsNgHgrZlePh8WiSzcU1qSjt8SKpni5teLjg3NWwiCVoyZv9q2K9eoLAy8s5gnj5QIzHQuwOZY6RQ9ur5HURYcQGW1DgA4H2F9wMvxhHbT4vHLA16eX/DNN++xywmMdc3h2PPzcW3oF4ba8qwtz8DyfS8cxaXJQ4bflkajrao15VOnEueuR1XXqMsKQht8enjAN3/zDeqSDKAYI+qmhpodFl4PmwpuAYXUmF2P4/GAdrvBMPUQImWum4DRZn3Wbq+vsSQDbpsm849mNPstlBA4nY5w84zz+YS23eB6v1+Tmb33qKuKA7gQYIoCu5af0evpiBQjrUVjTxaA93mjy6JNmwLI8m4feOHrnOi3pP8tf8/y7hZFgZBiHpZSqRRZFQAQa0rrMvj6esjHZ1gjJb8qCkRmGCwFo3M+KxAFYuBWnT/XhKLQSAi42m2gshWlyNL18zRBiHENqnAZxq2kwDiPeUvMAYlWOfl55nbx0+cHKKPRfenw+vKCtmnw29/+BptNm5+3Fp8/fl4HQUsRy1cp5gtC5kvSod1u/kptq5SEj2Qr1VXBplxLTEiYrcMwztjv92Q1jhNejyf8zbcfqCRICcoYNE27Dp9or8tNt1SwnpbtdtvCeod+6NchoFEam7pFQsL2hslr4zhgv92hLAvM84SyLKD3ezyMT3j88oC+7xmScH2zhoesCehKwwZuwNq6QVEUeHh+QgwedVnCRkKMl9RmoyX5LpIMkGUQ/zV4Pn5lnVyag5TS27O2DEcC1X8hP4tNVf/VIGq5Q74+6xaVqFILa42DEGtdxhPE3Cwa9P24DnCrlul/i+3KzjMgCMs9n8+riib4hLRqyliwCp3P4phQl1VO046o6gafvjwgJoa+nM9HICYUZYHvvv0ORaHR1C36y4CUJkBIxKz4JeuJ8HQIqiyGYcTNzdWqolmGSfy7Y2a9BQgRMc4Egw/jgKu0gy4MirKkUsA5lJpJsykPqozhnbEkL6esRrNuwsvrC+qmhgsWx8sFPrwxI6uizImTJYutjCOo6yrbToHCVBj7Aq+vL2so1u3tLVLk8sfkwa/JyA8hJWRR4OaKg9BzP6A0BVxGEhCgHWC0weFw4FAlP2ta56T1GNfBSgKg9Nt9sS4i8wAzeP+V3SLBh4BS52I6T7Pehq4JKS1KlrC+73QtsPm1lnyW4Hm/SsNnbXm3qqqCFNzwlqXJNib+s13Xreeu9xFSaGjNe1QbtSJTnA8rd9S5iGmeUZgKs3U4nc+IoFp+niYYrbHd7fD3f/ctjJKw1ucFK9lai+pXQGeVK5unbqQqdXk2vh5kLirPlBKCo71mnicUFe3FPgY0TYvZeTw8PhOFURnE5NdlpzEG88TUStp6NLyPOJ7PCDGiLEucLmfa9sYBMSRUZQlEoC7J8LIzVSh3NzfQRtF2LAHV1jidJDmRIeLd3R12u92a0rtwo41SXIoqAwmJtmkRgsPsHMbZ43K5MHglLxhijGTMKQMhOFw1Rq/hXwAyPoYexpDVfGR1SVpwhVhZQ6yNU/5M4lsyeK6fl8HW4rbw3q7D5TcFMzDP4/ocmZLIicWF4ZxD27a0+yagKDRZhS5BCrkuL6nQCFDSQBg6IFReyoWUECKxFj9//ASpNLbbDV5eXjBMHPbd3d5mtQPvuZgEIDSsi/j06Qu+++4DFRLRIQS/DkaQElJYzmVy9YSk8tZnFXwuY9elkcuLn7quqIA6Sthcnx1PFwL+Q0Lfj/jTn/+Cq90O220JbQxMaWCsBsA6ZxhH/PjzjxjnGbd3dwgp4nQ60wbtmQC9aVts2gZloXPQ4Iztdou6aqnkEIJ3l/MQCGibCsMwQUJAS4VxHFFVVNoQbZBxBl+5T3wkJsJo1rz9OHHZVnAwL5SiU2g9xwDr+P4sVnCkBGcdCrMEkkTa37KzIHifa3wmcSq1ICGQU4Ttqp4/Hc98PhOHMyrjQ3jOz1gwJSE4xBBRVxVt2t4i+IiyNKiqmqmqgn2Jz88HlfMLM4wIJ56NNWbrsOiny1JDKSBG1m90UzS4dD3GYURZlLi9anC+nLHb7qCVwqZt89/hUBYlrq8kHp8PYJr3EsywhJAoqmdj5DLh0nHprZAXfVS0C6EgJVPDlZYIyUIpgxh5F15dXQFZNbfb7XC+0HI9C0EVl2Biso8BXT/ghx9+wm67hZJcOv/Lv/4Lvnx5WJdBKQ9f2aMpbLcbNHVDhRx/4pimae31rHMoDM+KpmnW4Ky6rqGVhCkUnI1oG/48ikLDmHL9GdZ1k98xAa0N2s0GutT4tz/8AUIbuODRtg0KZbDbbaC0wpfHB4TgkLLjxxjDITdLFqSMtwgx5SUW8TohBQzjCO8oIipBu/rpfMoOvByOkJ+NlCLdPILPHgIdMs47KMH0apnAn0eiGq8oyL61M2vvlBgOmYX2iCn3DIhAHtJ6n+BdgLczop/hpgHTxMyBqqwx5rtUaYPT6YCHxyckBLRtm5e/PaqqRNcPmKYe2+0W1s7YtQ1Som3/dDzh+vYGRWFQ1iXm2WJEwNAPeH58wt3dLUIgx66sSrrnQwLDCenoSQBituvWRcFnOPf353MHpRXKqlrr99nN/LolUNcFrPcoq4LClKAxjQMu3Tm7sogXaatyZbJCCFR1QwVp7sWC97jZ7fHnl1fYmYxxbXR2M9EhsCSWmMIQ73I4MNugLPDTzz+jGxg6KMBF1/39PbabBpu2xfF4wqUjm/729hY+eDR1A1VoVGWNoqrw8eMn7Ha7fCvknkBQzZ2EoO0eHPIurs0Y37i3ZcnvcRpHfp3GZGVlha6/cNmWAhKYQB4jE9O1VLlHUlw+W4sUeK9Jo+Dz/aVN/ueMRhJEY82zBVfHv+7Xrx7wMeGElsy+78kLSQn/6T/+IzYbKj2GgUX+103cwskA3oDUr6+v2O/3kOYtQXNNNcybO4GEkBVr1jskKTBZh/12g/3+Gv0w4PH5Fd/e30EK5PhtNoVL+tPS9BjNodzr4YCmaeC9wzCTOTVOM5RQKE0BBTIAESntb5oGu/0WnAelrBprKNXve7Rtiw8fPrCAmWZsNxsAC2iZMFMAuL26weyoEpq8wzCNuIw9m15JMOqYZfhCekAsjYmA9ItKz6/fz9fN7BvUm4Dd0rwN81YAeG6Ql4Hr8vu+hrXTTolcCNEusyQjLvZqbgr52TrnsN1uobWE94BWEt6z4FRSYnLjX6WKSqmghUTKNiYpVA4CAZDy7w8WiMDj8zMSJB6enzFbh/PlAqU1bm9vcPfuFkpJxMuAhROY0ttnsAyYloHS8XjEZrtBIaq/etaW5mSxAvoQqBhMLDTHaUbT1Li6usG5O+Onnz/i7377GxjNwvzrzw9AfsYFpNQ4X864XC5oNxsM44jJUo23gNjrooRMgFEKc1aY7XY7bLdbPvuStqm6qjH03Nrud3u8f/9+tSNvNpuvvg+FqqqBlDiU8Q5aKXR2wnkc0E9jthHzmRyz0nWaRiBbyIwBgc7yjZki8+DiLXkNbxBy76hyUgrRLyojsQ5IVvh//swXJpJzFiLbR5TKPzeI3JilVTEHIA/o7frsGmNgZwKjXT6UlWJjNs8TTE5PVUoTqJwiBBJKrRBChPOLDURnG1XAqesgdhrBWlyGEVNM8P2A1+MR3377DcqSysrlawDelhVSyHXYF+Kb2sCURX4uFq4Ng0+gBYyJMFpBZ2ah0gY2W9HadosYEv7yw8/QUuHD+zskJDRNnbkW/POXQAIIMki7jrbkECP6vqMFe7IwpkBT1hApQS/PWuI2tywKpkhlBWZVVWga/rlaa7x/T4XDmFUGXw/Qm6Yht6WqcFVXqJsax+6CY3fB3F2ABLRNi7osEHIgRgwR1o357HmzzwfLZkDqN/XtokQJ+VmP2QqyJJvz+l5i7dnYVFWFoefgc2GFxZiHyhlyHYNfnyveTQTpa7OwxRZUA++h4KnkdLNlcS2WAXYEvd1ko0AI6Dzg0FrlwTQTzFKYYAqq2J9eXnF9dQ0hFXwCki7g5xmPT8+4v7/Hzc0V5pFsFt6BtEOu95ghQHvZaPIdnrIlFfl94iBusU/stlsUxqAs8uIoBEzThNIU2O32OBzO+Kd/+hf81//yn2A0g4TChiBm59xqvXPe43Lpcek6NG0LISXOr0c4x3TzqqxRFSWWsJRh5BAuWIfmpgY5dAoJMfNK69Wee3d3B2NoK6+qCgsPL4SQE9AtvPO4vbnBdrPBYC2ej0ccLmeM04TNFZtqrTX6vodUer3/10kABBeBC380pXUAuLgR7ESsyGznHH6EfHcJLKE7KQHb7Rb9pYezDEUREAgpgDbJzGLJd+5yD/usOqQaJK3BDzqfqxw6MqRgmsgYoxqNwyA2YSVtVku4Rv55W+sRQuJ2OSbUZYFLP+B0pv2qaho47yG1RVIRLgZ8/PQJd7c3uMn4h5gXest9sijNTOYJWRdQV/Wq/FmYoBzGiRXfoLXH9fUVyqpEUZaICRinGXNmEVVlg18+fsE0Tvif/6f/DKOB7W4HJIHz+QJjNKqqgfMO/djj0xcq6JtNi0u2II/jAAFg225WBUnKn7EpDArNIKwUyMKBICB9u91QsdX3uL29XWsu4l2m9d2nOpI/76ou8dvvv8c4z3g5nCEvBGzvd0ymlAKY5gkpIjO8CF+PebmTYmQTLt/qYpWV6cjDFj5zFpt289d1m2eCpQ8eNzc3RAJYx/TXPACUuYbhM+eRYkTIA9OYFZIx/6ysnbPiPitoJIfVwQdMs0VKeFOT5Pt6eeZ8Vj5I5IWdj/A+YRYeHz9/xnZ3jZ8/fUYMHvv9DmVJNeWQlXHOWljn0FY1lDQ4nS/48OF+vU+V5HvkQshDAb5z4zzlcDs6gCAEhwLhTe2/hBNVdYsYA86XC4dunudH1zMgr+97JAAuBPz488/4j//xH1ZbZNM2OBzP6PsBP/7yE059l5XnA06n0xpO0lQNrna04Eogn08+c/3oIEhSQAm+Q845DonzcKJpmpwAXWa+KlVxMTJIQUrJ5e884fOXzzhdzplF2uB8OVFBlRXGujAYxwnVsuR1+W6IvKNjivBKQSlkCxyXCFIz0Oab+3s8PTxQ+Zr/t59G9ENPBVVOM1/uxZXD55lqKqXgADouSmT+ewkO/hh+wHN80zb5TgaqooAQgLOBg7UkOXBcGm+JFa9irc1JlHzulJAQiWrUl5cX2Nlis91hv9thnh12aYPJBgRfYtPUSCFCS/VXZ733PrtkLLy1tEPGiKpisAHrg4CqLtG0NaZpgik5LBqHCVVVoh86uBBR5wVAyvd0yIEi5/MZbdsAKWEaBkgh4RNrjNfDAdc3VyiMhsuq9ueXV/zTf/sXzHbGp8+f4TIbGYmDz0V52TYcpmkpIEWCNBpDx7ApMgGX5WpE0RgqgSUDhoL3uL65WQeoIUQmlUPw92eVY3fpMI49hmFA13Urf9RemKgdkgBCxO3NDRZUQVFwmEcba7ZaOvYhuTSisjw4DvF2O1zfXOP19RWLeyFGhbIqIbXG6XLOjGZBIUjw8D5w0Jv7Pu88oLmUUnnQHLwno3+pW7Vi+EIKSGHhny4cdUX0R4hrJoCPTPSNicPv7nxEcAOG/oyyLHF9+w4//PADPn36iP/lv/6PaNstAI2X4wkPT4/48OEeQio8PD0jZJX+MA10LgWHCGCyZPqeuzNu724ZXhcCw8hKg6a+wfl8wucvX3B//w5K8dnVBcMmrGUtOo4jfIowusAcbO7TBVXLIUAJge2mQUxk4V1fXWEaevbJpsB+t8MwWwhrcbocYLTC8+tj7vGoAC6LIoekJTS77Tr4UlLg6moHbydUVYPttsXxeEQMkb2pJp/TeaaDS6mIS9huKfIJfNfv3t1hmifs9nu02y20VnDOo+8HDlALDakV/vLzj2iaDb59/wFNU0MIgcPphHkYc38mmAOhFNpNi6eXJ2w2Gy46eHFBaolSavS9A9QSksQwNa11rnWIzCiLchWujOOAsirQdWeoPJuBWGptwEePJNjHRlCEMFkLU+i8CBEoygra8M+fphnDPOb3ulh761/z61cP+KqqgikKco+Ehi4aDJPDjz/+jP/6P/0PmC35CiG+FbbLMGUpGBclz5Icuki2l/98SToLMWLTtmAyEdNTUhTouxG7zTYX2gL/r//tvwH/5T/j22/uIQRwc3uLw8sBMcU3poojJ+81B2pIKXE6n2C9zWlyLZq6gREcOHRdh3bTQgWJzaYFC6SUm04ASLi5uUE/DNBKMVHtcEDTNkAu9gpTwBQmJ39SKWUKjd1+j+P5hMeXZ9bGkts8rRWUEplhMkFIheRpMSSgMRewMeaLVa1NUMzMmhACYY/ZohADwwgW2yCQ0LYtkBIOx+O6HUUeiLBYfYPH/hULKzf3tGoSplzmQVpR6LwxAGbLRj4pASH42TjnYYpqVTCwbWU7zCIROV3JQirylTabzaow64YZpmwwuYAffvgZ1zfXcNbl9M6Qi2E+o9zs5mYjcdu72WwghVxVdgDw9ZDTOYYqtC2tJMMwIiSB07nLHEZu637/+z9DQuLv//Y3EBK4vr7G6+sB1lnURZ2t6BMeHx9wOp+x2+/WIZp1HFSUZYWr/RV0VgItLLempr17tX5myTUQcXN9s9owqsyDXN6faZrWlM2hf1MnCinw7TffopsGpC9fQDWGYMqWMYTAx8gULE1IaFgstiKn/XxlB/+aAwmAHC47IwiJtmlW6xESlbzLMMboAi/Pz5CKfyYSLSJSksPhHJmZ+GpoTf4kt9jOW7Rtna0SHBBwqBpzIbUw3AjY9p5D2gTywvLMHyllW5PPoS1xgjEKAulNNetoZ0d+Ng/HC5P4vvtAq3OWXGfKQv4kyDtSWiH5mJuQJR1RZJUdIdAxhvz8J2y3G1SZxzLPDnNy6Lohg18Nng+v+O//9kcC9jcVtNEoSgPrZiwQXz95fM7w5avrK2htcHh+AgTgJotCG2zbDXab7TqItpYpgHVd54RbbqFYAHFoPE1TbuyK1fIRs4XDGMr7nWdyHORiBYtoaiaqjtMIIWum9ApAJV5eNm+aU0oIls2k0hpRSqocIq2TMSel+axIkiAMPks4UBclXKTSk6mOtNHUVbUO4pZwBCqauEGm3ShmnAMQ/TI8ImdDCYGmYsDTbC1Zm/mZSpGBNDGQ9cOzZkmK+0q9lyLILaNKNkFkO7lAUTBpsaqqnIwmME0epSkhlMFPP3/Edttinh1cdPl9E2vz9/Uih9xVrA2kzCEuCwtpsY0CtGk2NbfN546cr6eXI+5urmFdwDQ7DOOIj58f8P1vvoFU4DY3eFhvkQQwzhN++OEvOF863NzeQkmBl9cXSAjYaUKpDdq6wdVuB6Fo6+/yoHibAzOUJG+UX6dDURosLKdFJbwsg5bvt67rVZ1EtUfA8XLBOHNz7meLpiqQYoDI6a7LQlBKfnZMe+ZQn5t6+nhM5kf5QJW6kgplvt8KpQEfsalr+BgwjlMOCjMYM2LDGJ2b27jekYUx65Z6nu2qRIqB6Wt1VWf0hERbl6iqer1jpZSYrYPPliIfyKVN/EHnMCueQTwPkdXvIvOpeNZ4F5CKiKenR+x3VwxiyguvebKYZ4v9doumbfHp8wPT7DPawOdQqJSyElWSH0yeEs8wZy2KbNmPWcmWwptavjAFlAo5bVrSHp0Snp5f0NYNofch4HTp8OnzA77//hsIAbTbFlILnE4dXHR4ePqCv/z0M8q6xlVZ4nQ+ZyeAg4RA2zTYNBsUhUGTUSpS0tJUVRVC4PngPBlDixWy69jgLKFpxhiGT+Xl0HLnbXcbWGcxziM+fv6UVXUSfXeG0VQ5FGWRAexcOZiC72GwDhCSicsiAoLKVT6T5JB671GVFTZ1hWEcsW1bKCGw2+/IIx4G2t2khB9Zlyxp1usgVqtVIRNjYMOLiBSIhimLAio7TpRiyI7SBrGquFQRwBQiZhugFBUc0zSvw7XVgh7I8kyRSdYAB/7BA8loWB/w+PxKlXjb4v7dPZ6env5KeW2MRkhYrViF0RjHGdM0rZ97DGld3BhjAIk1NGJxsRDXcGZ9qA0Wtf/SqC2Cgs22xXw4kQlqDGolsdtvMcwK3fmCw/GIvu9xdbVD8oBSBbQx+PNffkA/0gr5+noCxOI6iNi05B4XigubcRzgg8uqEaxLhaIsMY7DCocPIeDqekfHUFYpTtPEgBVd5O+vghAC/This2lxuZzRDz3Zf49PTIbPAKyqKBiullUjxrylQy5W7UVRTGh85j7mebyPHnVBR4MUXJCWWSU1TrSprssj7/NwUOSUYAFrs5LSL64biwRyqZZFk86LASq2OZxKa9Izz13rZlgXIISmWtd6+OBRlGSLhZQQUoIyvIdn62AKWmPPlyOOxxN7OiHWYbaSEvN8xmbDuyN6x6U8gOPphM2mhTYyMwglhuGCYRj4c9YSAWSIFrqEUILLv36AQU7VlVzYslTm0s1a4oXGYVjv7IU/3TQ1TucOhWENtmBI5mnMij2Bw4FhIA8vj1zGat41RU5IVtmqebVjaMD+agclBU7nMy7nM26ub6CkQFlVqx1/v9/Bzrz7ZmfRdR0ulwtu3t3h6eUF3TDicrlApISb61uM07zWtTFFfPr8CfM0czEhJDbbDfpLDyEUkndQieEY11dXmIcJheG7+HR8hTAcLHKQVK7LrBgTJMg3DdHjdDwgRgbkCCTQbQDUdYlhoIMNKSEG/j4tFQd8ke+kMHRhCQUYRbyVjzwDy7pkrxEE3OTWgVVKAkiLMlhinjmQiUsdEvj8Bh8R/YxhOON4eMHQd/j+++/x9PCEebLYbVsorVHVFf7tj3/CDz/9jKo02O2v8fJ64MCorPD5yxfsNi2utltiPpTGMI0Y5xn7HVmDIUbMfoabZ1RNjZhY+87C4XQ6YbvZ5IDHkN8DCx8iETgqhyTmIEypJJQhAkxJCQXgeDxlBIhHUZiMWxsxzjarJ3vM84gpMZSrNAXcRFUn1a90Suz3e3z+9Hk9c04n4Ltv3uPm5hqn4xkvma1MQYBE3w/o+h7GFPlMLzAOPPN9cLi5vsmoB6K3UkzYbzZwOfBIGwaSHs9HhjiVFaybkKaI0/mM0/kMJfW65N/vtti0LQfTlwuEFNjst0gx5mRhQAaRnSEUTNR1jbJkmBdDUBViEvCJiw2pJExGQJVFyXmQI6N0qSPKsshKass7S0m+N3nuxT7DYZrY11rrVvckMQT/JxjwSRIxEUNkkZuAotzAR+Djp8/48P4dfMj8sfA1M+hNQfZ1o+Kcg8oJfYviZ9naL5DnJdTg5XQGpIZzA+rDGXaaME0OIQr8+adfsN1tsNkUTAO73gGnhGmycMHjj3/8E859j9u7O/jgcT6SZTX1EypTY9tsUOaCtaorXLozUgq4vrligIIwq4ScAFGD0+mSm5v5Ta0EvmRSSQgjEEVEs6GMtR8HvB5e8fz6gu1uh9P5CChBG402iEnDR8Bbm+XIHHiGbI0TkgegBA86JRjjjWzD3bYtIZplgbqsUBiDCKbOKa1QlgbD4JjOGSMKzZ9BcFkxoxZFg8A8cJMdXEQKkfaFwuB86hF8wPXVDinSzrMw+SbrEB0PzxBBiL4EEgjHpXV1Ec4uyq4E5xO3QUlAggtlxTx0qsdiwjhNAASudjvoosQvHz/j+998h5ACXHh71mIElOKGcin0ZAZpOu9RVPWaILs8a8tQqWlqLCmkLm8ZFYDD8YjgPe1ASeDT5wfcXu9xc7OBUJJbuCzjt97h337/bxhni+ubG4zTjPPlTIbaNKGtaux2Ow5rMoOt0AO0pM0i+JDDYGhTdtaibTZ4fnkhq2YcV5bG0hB/3cy3GzJJur7H8+EVTy/P2O526C4XbmS+Uiq6zK1ig8IG1DteEFppePEWkLEoQJPgGXB7fYXL8QgtBeqmoUU2BhxOZwgpURRsKKYpwWLOzEdueBeVKBP0Arxbtr5pTXmrmxrOXZBixPV+t1owuW1hYTVZNkwxBcw25hQp2nEMsKrbuDggZyKEhADqriQINjUlm/KUm+d55uWz3+5Q1S1eDyfc3t2QOxcDUh6ap7jYhyRmSy6HVJo2hBhpacLy93t4vzTjCU1VrxYKnwHyWhscjxc0dZWHiVTM/OWnX/Cf/9M/QCqJ3Z5p4scj4cs/ffwFzy+vaDcbuBDx+MxErOg86qLGZrNBVVUAyBaMw4DtdgMhAUiqO6ioElk9uME4sNmq6xqHw2HldS7vuXOOidFGo24aDMOATw9fcDqfOAAQCX3fQxe0jC/pjgu3y2VF3vJurme/VhzuZ8VLBDe0+/0WMgGvr69rE6W1xsvhmJPuqPhwzuHSXThcSkxyFnIB6/qMcHBZyfPGTmTYDwd+RckkP4Zf0BDEbSkLQz5vCX622ZozQymTOTNYB8/eBQ494nLeIaMgxF8NsNaEYKVZdAqJ55dX3N3e8VmHyPZIpsgZSf7g5BgwopVG21I9EvEWTvI1I7LO7MVpnjCME2bLM4M2vAmzneG8hTEaP/38Eff3t2iaEkVdwZQliqrEy8sBn798wfl8gTQsDg/HA+asuC20wXazWa2MbcWz7N3N7Wr1csEhCZXvNVq4NpsNxmHG9fU1i9jtdr3/l+JnAd5fXe0xzzM+ffmMcZowThPqtsU8cxkmpaLiQfFZaOoaPoSsaGG6nCpYRHFQENeF4xJUYAqN+5tbfP78mQBspVFVFZ5eD7mxpJLKOgs5MTBDG7kOYpc/axniA+uFx39Wkce1rAY2m/YrlwG47HAe1sfcHJMPKYREChwY+ax2XriUznK5R0weh4Ba8L3a7Xbr4NDmdGjwaoW1FuPIjXU/9KtFiYtAkbmhy1JWZPuJQVkWDLhylsuGROofk9LzkLMwUFHhfOlgrSXP1Bj4uKi82RzM84wvXx7x4cM7tHWJJCSU2gPS4C8//Ygvz4+IQOY+v2SVNq1Fm5apkYV+C5qpqmpl11o7EydiOYxfPuftdpffSKx3qXUWAsv7rLICVKCqCzhn8cvHj5BKYZoH6KLE7CwMqKiZh4nFvJArdsV5qvjKIqMupEBRGDKlwSFZSlQIF6XB1XaLhy8PVGEpJvuNY5/fYwMXmFYuncxLzzxYTgu7mo0IRISQDPSQUkFpAa2zDTN4GFPBGIl5oppCKuSALAcfEqqyQopZqSrzokWIrDyjCtK6Gd4yBTVEcOkCoK4qlNUGl0uHbXYWtG2T1XIeZVViLwT86zlbxzWTGK1n8rfU8J7PclWVHDxkxYXWiur3ZYkSAe9jdpNMqy15GEZcXV2zNnIOu90W50uP2QfM84RtWyNkBVVEwjjN+MMff8D/+F/+M5SQeHh6wD/9t3/CpevW5fPiDkD0KIxh4ICUGKeRSg7FwVGMkU1rVoSUKFZ7q1YKTVNDa74bMSRiWozJ1k8NHfOyvCzRNBz0tW2Lb/Q3eH59YapqUcIUBW6ub3A6HnD//h7DMODlcODQLNfBTUOIf4ysi5KSq32sKku+h9Zimi0en14QPRNIZ5uTg0NYhwaLDX1xVnhQxcdBItV9aTmToGiJdy6LehW8s0CMEIWCdTP5aYKLHS6FJaRkYx0CMLtckwuPEDkMi1FAG8B5h7bYQKkC3aXDL798xHa75XJ7HDEMI7bbLc6XL/COSrN+uKC9vUWMEQ9PT5jtDGMNF5xSYhotlGgx9h1++uln/O6332fBg0RVmjUFW2mzqqISEkKionVxC3nvkUKEny2h/kbzLI05wEkppMj6PnjWB855HI6vOJxP2T7LhXRZVSh1ATfP0FWdA5a44NrtWlg3ozTEKJ2PB9R1TYt9ZHhJynW0zYEgQglMk81IrTt0XYfnl8PqQksp4fH5BR8+cFAjlMTDyzPKssT++hpKMjygqmuYiumup/MZdU3ElswhmVprzN4hQeSaWgAprnX/16ifJSxjdqztpWYCb1WWxF/FgBQ9VW/gzqypm1UQpLLgIMRI5bxkvy2RqMLKmBjArL1D8AkiyfW5RsC6IChzyM0S2jbPrHO/PHzENI1QQqz4AK0lNm2Fq90WdV3hcDzix59+RkrA1fU1fvrlF3Rdh++++w6HwwHb7Q6FUnQACmQnRcLxdEJZVgwkdFQnztOMoippga0aBBdxPJ3x7v07BG8Rs/tiGMdVbR49E4GDc3BCZPsunXJTduA1G/LwY0qYrMWl79Fl9yIXKO7t5+IdrLNQGQExzQwyLcoSD1++wFkHkYBt0yD4gH4YGbQZqHx07i3Jux8HTNaibhiw6fwJRrGXur65JtLHWkRJNZ4WEsfTEZvtDjEGPL2cGHKSEm7v7smT3m1x7s4oqwLXao+uGyCUzD3ShsrRwO8rBKaxj9MEO1vUVZ15kxYyDylDdu6ltCwfAqSSRDjZKTNVayr6YqRLAinbl1O+K/mc++CyApl3uzYKiFyupMCzdOGSLosOId542r/m169P0QWDNjhRD4DgxVEVGqfzGe/f3a5g/JVPFENWh2G1QJVlyWI+5GHKX0HO+c8t4H4GCxzzFtChzsw+k+HE1jtMk2VoxuYbHkZG4u7uDo+Pz/j5l59pn0iJ7BTvYd3bw7zdbgnVDQsnMOL+/p6y8FW++bahf3l5wb/7d/9uTRm9ZCvAYuNZod7zjHEccX11RWvW4xOGiS+lnfnwjSNl35wCW0QI1HXNAcY8/dVhuG408RZIsqZOaY2b2xsWGXZGWZUw2uB4PK08D79algEtyQdaODsheqiI9RJflIFKGm65MpOP1jeFsiwwDhNCtrvNEy9ua8OqqPHewQtAqmxnTAlICkpyWx58tm5KWpR88kBOQdJKrtL8N5YbLyktBbqeKWbTNGOJ0F6eG1oo09pAl6VcG8fZ54s4vdk7FksvQDXMOI75OXcZDu1gMiw1RHJknp6fcXW9IZATAfs9Y9b/8Mc/wmWlxOvr66p6E2BTud1u0bYtGTjewXuD6+vrv7JIL6xDpRTO5zPevXuH23QD5/wK416ar+V7FkIwfCMXn0/PT2RqVdX69feXAXXDVC83z0hisXAwoTYuUviiWN/hZfiyKoZiYuNTlpiLkkNTQzvU5dCtCpzl3dGaW7ai0AhBvBVCWU23WFgX+/bSHOb+C1rprHgAL+wUMc8e1pK9UpYGKQFLmrPWkgqwCABk+1k7Z1ZgAgSfNRezeizb41ZYfj7byqKED4QnS9lgGKZ1i6gNVUBf24OWwzpkRRibxoC+WyzkX7H4Fv4j2HQVxqCfHSHBOf21bbkZPJ9POJ8uuJw63N5ek1uSwbN//vOfcT5fkCBwPJ0gzuc8YHKoqwq7zZZnSUorT4nPh8Bsp/U8m6ZpDTTw3uH65gqXc7d+zQvQfPlnyAxK6LseVVnhfL7QIrPZ8II2tK+WIrPAZosQCc7WSmEYx8zbS6u1iT87JlAv/36R5PJzy0y9RFj+pe/ggseSNulySMFSZIo82J3nGT4FGKnX1NBF5aGUXq1qSgmYtAwz2Jjw5xuopvNUUEsp4FzMagcDKRk2lKKA0AUma7kUyUOMuikxDP3SlrLRzpbhmCKQIhVfIAOk7weMY4tpnPis6SWAJLOJcjEhpYR35M0t7LjThbgMndWxX9vjl3d7024xuiNcjDCJFsKqrFBUBi8vr5BixsdfPuI//Pt/QJIcFilT4PPDF7y8vgC5sR3GYR2OVWWF2/3VV8D3AS8vr7i+vuZQxzMpnUP7eb2/aNnaIGTb2/27d28JfPkMWtSi58sJMWZbaH6Oj+czTFEhRT47ZcZHuOAg83LC5+CRJYhgKfSXd3Y5O4VkUQwA/Tis6pKmbtD1PaxztGvHiJCVgVk+yWFptndGHxHkW0jL8r0uaAFaT2g/LAqTky0lFg7kbF1WJTNZ1geq57RWecFHNtuCRJhnl78MiSZzuJZkdCl579nZrQNlJWUeznk4zyAE5zzs7NY6x6i35ORlM70A9JcGTSp+fpcLU+XLullRF8siIAQqEO7e3eLTwxO5utYhVhXqugIU8Pr6guPpjJ9/+gX/4d//O6REm/TxdMJPP/9CZReIPZhnPjtKKbRti+v91V8NyueZg+I35wgHbrOd1nNEa426YfiLkgqo+ExFqWCyaryu6/y90yppM4bEOoeu77HJQQ91VcNIgd12i2mecen7ddDGxUHxhhnI7CiVzyUpJSIvNThraSfNi9yyLHA+n6k0yLb4mOiwWBZtMiM1+PkkSEH21IKpWRqHBXUwT/nnqAW84zAmBJ4LLqelIiwBZgHWUvmIjM/wjimDAgLekgEJAFVL/mlMEdtNC6kKeM8BFdXTGkoswWd8J9qmxjQJeOcY/hECqrrOTGuerU1To21bdH2HQhRZNcpl5DiMsJ4OoKX+ZPIyf+7n85m2LCGYAJ8l9Etq8v5mh6qs4WwAhMbzywH/j//1/4l5mvD88gIIwUVdjGwapUS72a6c4xipQoleIDqHq6s9clweyGwrMyKINVSKxHHUNRt5pRWmacjJohLb/Q7jPEHEiNlajKcBT09P+Ob9e7y8vFA9PE+omwbd5QSjNepCQ+y2uByPKOs6OyY8TKFgnc8IALkGkWghMXouJjfbPc7nM23fnuouqRWqos6BNlmJqjVcDu9S2T64hF+5GCGNoDI/L0avrq/QDxcmW+ZgnoXdJQB4x0VFiLSdM12dCj2moks4H+FXFYDm0C8LA2ZHBmiICeeux88/f8T5csHu6gbOR/z88RPqusHLlwdaousKhVYwVbkOUiAE7u9pCbczHQrtpgZQI2XGYgLxHkKC7ifHelMoRY5qohXeL8rUfFcAxDJtNg2mecYwdGjrW1g78/3VGrvdHjYQb3U8v0AAsIGLSIgAKYBNU0MJAS0Fbu7fo+8ZZCeUwNXVFnYacHd/BzsHfP78BXXdZpU7l5HIibUxskc3WbVsrcV+v0dd1wCA9+/fo+t7nIoTEoB+IEd7GAc8PD/h9fiKv//d32GzaWAKg8v5gi+PXzDNNgdjEKm02Wzw9PyIqqmQBNW5Md+NptCIIxdLX2O6lGLoyoKUKooCMd+Z49RDG43z5QSjFYxWZOqFiJA8ZmdRlgY+8Nl1ziGJRG54SiiqAkIU0JqLmmEa1+WrQMampKX35ACrLIlWmqY5p47nMxSJSe8pQiaJumowjTOurrYYx9wjaok//eufqRjebHE8Eo9TViV++OFnQADff/ttVm1NEFLAeQufGXhGa/TjiBQZvDfHhMfHJ9RNjd12j6puMM4W0zhTqABabVMUSPkdKkxJXE4h8/eFzJcOmX1ncugp8STTbHG8nDHkwNRM+iADNGMwYkzwMUKDOQLb3RZDPzDApWBfOfZj5gMmGCPxpx/+hNla3N3eousu+N3vfgf74qGKAqfuDBsc3t2/g5YK/aVD8AEvzy8wOfTj7/7u7/D45Quu1Q2k0lCmwOvphMnys3Leo7uc0bQVmg3dpI+Pz9kZJAExQhcSIXqcz2eYogAc65qiKFD4iK7rURkD52doyWUmFeN57uF4NknJWnuzaYH0xmtOKbNxBRXNHAJamCDfnm/Nfx3i4i6jWGOt/WPKjs2l90xLu/Orfv3qAV+i1y2/FAUmG+BjQtcPaOoC02SZPAS5SqYXpsIysFuKlDVZzlKCujAklv9+aSoXBhBMgafXA6Ycg1yWBUqtMGVL2E8//YK76x2ur64RRcI0z/j88AUPT09rkTTkeHshuGF4d3eb1XFAypPoFHgQLsySJZHomC2txpicmFuj73vcv39HiKx1KKoCPrAQbrNMVGsNkdhE3N7d4Y9/+uM6HKhyEbjb7TkEfH1FwnJpsLBP2YIIUAmZ0tu09+vEyC8PD+SVZLhr17EJZvBGWgtIWjPDKkef7QQkwFk2nSJbgqWkf95ohcJozNZCCkIip3nOYNw8qAkJPiaCzEVihHs+0GPI1qGs5KBVLjeqmTHkQ4BPYbULKqOy3J7S/k1T4zLMmJ2DngSauiQ8ObD5F+KtWVsSj/+KGffVoPb19RXb7XZtzJa0YtrmRjRtC1VU+PT4hMk5GKdRVSVE4s9+6C/45eNn3Fzt8M033wAQuFw6/OFPf6SqxTL1L+QCVgiJsjC4f/+OsHZvkZAwjj2QIva7PayboSRlum22ZgAcChpjUJRFfg+2mGZLeL1+C65ommZVH2hN1cl2v8fv//D7dVi7a8ki2O1oG/789CVfkkAIDtoomMwHAPBX7+nKYwK3ul8eH6CEwDhP2Atazl1gUx2REP0bK9KHABF9blZs/prfUkAXi5TPTBetNeX8UuTn02KBH/tsdYspIWUln8tcPQCZ5xi5CZXLwGixn3uUmQeDxLAChitQlSMgURiN/XaDl+MFk7UojEbwEfO0DFQFJKiiMpoptGwIlsRgszZXANP+ljNjGep1XYerKyYixxBxc3uN0TqMs8NsPULDw5+pgsDp0uHPP/yFPzfJoe8//+//gofHRxZxWQ60DE8XdUtZFZjnMbMiqcaIKWCeHGXkIHJhgcoy/bTh+15mq1SS2eJFns4y7DXGrM9a2zYwpcHHz5/IBRICbVVjv2UQzDcfPuD1dEQ/9PDBASJCaQlTNliGcov9f7YcYld1xWIrBjLZyhIueFjvMc4zFzSCVqDZzlh4LFQajivcPiUuob4euGhlIHIhpHROiLUWQimqCz3twcRFaCQpAMkL3SfOgXxIQLbpek9eqtAcrmrFhkZKFqsxLXgFAKCt1jl+3rc314gvB/QDbUplkRA9rT6CRGp459b0s3meYCqTnzWxDmJyNmceLjCBtKpKnM/nVeEwjR3a7RaDszgcL7Dew3qHTdvicqaiPYSET58ecH93i+1+j+fXF/zzP/8zXo9HKglnKjsEqEIyWqOtKygtYd2cFSgFpKLVZpxG9H2Htt3A50J+miYICOw226xo0bAuZUakxHa7AQTVlHNWNVRlCe/5++/u3uFwOlKx6xnq8u7dOzw8PODdu3cY5gmz5e8TkkN/QOYh8bIAAoaRtpH9/grTPMNamwt8FsU+BhwvZypNpMzK5xyUAKpfgw90dSjelfqroepy9xSFyem8DDtxednoHB0B3ueAKM1QBp/Ix4rIduaUuBnHm1JwcUAwoIbqhnHoyHwD+X8hs0aXuopnEROOnSVfeM7sKe/4c9PKYM6OhLZtsYD3NTgoWs5h2tQdiqLKCyePhWfbdR0Wztg8d6iaDR0MdsJsHWbroAyTL5HIpfny5Qn73R5CS/zhD7/Hzx8/rsrX6HnexJwMWBQGdVWBaA6P6AKausqW5UD7rwvY7XYrUsRai6rk0kNIgaouYWcLJGQ+YbU6L6Z5RC0qzHZek9eNMTh3F7RNA+9mXO13uLm+wsPnT6jrElIwyMkHj6LQ8IFsJ7FgJYQE1Fuows3tLY6nE8+rPAjShYGLAYfzKSuiAGVo0142Xm/hdBziJBBBsCjzRR68liWHlUIQsxE8uYzWJaRIdQoHnhmx4BOEUgjL+ZYSovNQScM6PuPwrONEEpCayuih5zO32zSQUmCaB7RtRatd8CgUCb6n4xGb7RZKAlVlYLTC0F1WiHupqJ5RWqAoGlrMkspKVTLIhGDYDYSgPawwmCaqIrqBz9zCraaKrcbpdIYxipZiAVR1iXkYsb+6gkjA4XTAOPR4enmCUQyTEUKi0AUVYFWBuqpwc7XHOM64u72FkAk//fwTgnf45v4DEsioGqeJ6vh837B3mfH0/IRCG2y2O3z6/BnDNGGaZmit8OHDB1z6bl3GdF2Hw+GAuqrw9PSEzXaDJATSRaCsK4zThN1mw/tKvDFEiZ3Aes+x2c3IFNCW19QVIhJeDy95+M6QDqMXOHwFb3mmLRbwQmtA82uTAFJk2IKPVAwpLREcB1390KEoNYxRCFFgmCcIKIhEdwY4C+RCwXoUpkCMDjEAIQBJREwzwxmMKbhk8x4xiqzS4qAxxIh/+dd/xThO+O7bb1DVNT5++oTbu1sqE5NA27Qo83lqjEGhNbqux6ZpIPLQ3lqqobbFJtdCJYbg8fT4iPv3dxiHATFQDNIPQ0aRsO6MMa7BSCsuxQckyUEW7f4mW8M1GeLnM/FFCBiGHs7NVHRlnIwSElVl0GSFnAQXJufzGWVZYL/b4PX1gL/72+9RNxX6/hXOcaG+oB2mjF+o6wbn8wVt0+J1PuJ8OWG337LuTFQv9f0RWmnstzucLmfyuvse556MXSU4EPPO4XQ543g4EM8VA/bbPZ+dkgPvrr8gpYTNbguhWPMTFcXvy2c3lTFmFSmkxH5RaQpNxnFcOcFCsu+OGcG0KMxSimhaomUsZiCR27xwOflZ0BVHkQmXSlpTGMMllcuKTLnWkG+Cj9xjJA6oZe6BECLPZ+fgPHEnhb5DXVc4X6hIrusa0+RxPPVMTJ4dolAoNPuGZck6zy7XaA79OCEk4rZMYchjdXy3UkJWMrJ+fPjygN/85jt8/PiJywFtGKhiDLybUK8ONCp5p3ni4lsSEQOpIEB13OKiAWK+uySqHKJ2PB7Zx0OsmBwlEsZxYpWZsTAiAe1mA2NKXC4dfvn0Gd0wIiHCZHtuu9sgPT/heD5h6Afcv3sHIOLSjfCWvECiNIBhmiCPR/jI2cHLwwMg+LOtywrWOnT9gKoymOyM559fafedJ/iQMM8jWtQorMHzyzNO5wt0WSAh4tL3iFnV6hyXYUWpuQRcw2fSV2q8HBBLCyJCCJimcRU9FEUJCaDrh7x0CBAhq1mVykpAIKUAv8xrUqJ9PAS6qVLEEo5mrYfV/v9n3vb/769fPeBbCoy2bWC9RwR5HUVb5YKS9ksBNrfcSJbo+z4zOAy+Djnw/o3vlhKTIeuvNtEctMW8VclS+EQeUNtWGPsxc+Y0ktD48w8/4z/8Y43n52f82+//DcfTiQdzLriklCjygK7MD7TKCY+btsVeL8mcLm8C3yxDdV1jHEfc3Nzk4RDTuqydkULEbrtFEgmFMOi6bm3uX15ecbXbrdaPsixXi877u3c4Xy4Y+yF786k+k5IXDptMs37uRVHQuiCA+/t32YrCF8U6C20M6qbG6XKGd5SRLvD4RUmQgGwHsrlRzwl4iQqt5YGv6grzNK6NfcxsDxc8kAQ3NVk9Qbga1Ukp/4xStpkuDQ7TBRMSPASoZtJGYrZ8SbTC+v37nBr5FgQiURYl7DwjGrM2wUoZeE/148JrWi5fcgHfAkWosoyrqmnhiYUseV4aP6q9QuZFAcM0oq4KKmginyNTVPjTn3+CVAYPjw/48w9/5hZWSkQfoSQH1aUpVj6etUxY48Ciws31NQCyS/q+x3azB0AQdZlj7ZdnjfBocixSBJq6hlAyW+XHVWV1OZ9pDR5GnLvLOliarcXt9TVVaZcLTFlQaSlYuxNgG3JICgexWptVNXF/fw8fODxe3gehFTbbLbq+5zAK4LMWwzoYZKMr10ZrSeUF+Fnudjv0fY+qqpiqJiWHTykhBg+XnyvrludX5OeL1pmYOJTg0F5C6xIpeXjvIIRHFJ7NgUzcbtuBKjjDZw/AapFczqYEXijI71aoKCdvmw1G2cNmte5ms0EDYHYzFJiaSQg+hxjjZPPl9ZYmvPx9ix0xBCY+AsjvlMP5fMHNzRUAbpB1UeHlcMF/++d/RUgBP/38E2H5isPUlJtUDvY2OeCI/2sKDkn2+/06MPferTyz5ecCMEG8rgnQN8agn3t4xyXHZrPBNE+rwnUcR7y8vODdu3d4fn5GSAnjzLP7dLmgqWu0dQ3vHLpLh6ooMNmRVrWygLdutfsug+BFXVVWFeq6yRwoFmE+BGy2WyCDeWPC+r4u98mqjEki//zJ0hB5oLY2/Mog4S31OsW0qrOSWBK18vkTaCeNKbExsLRUpwRIad7UcQKIjlw0qjIVmqpE1/coS5Ot53ptQJf7bp4msokaBWcnxEjO0IKLsDn1LsaApiFjzM4zk8lmDp1nazGOE6QuUJYiD5Tlqlg6n8/Y7/e0TlgHN9v8WQdcLhcYpdBUNRABZ6ly/l//t/8GbTQenx6o6ioKqs2EQKmpYLq+ugaQoAzZJHVd4XK5oCoLqKbKS4wZbbshfiB4CM/i0DuH9vaWqhsBeGcxDmNOq65XW1SIAS+vL3h+fsZ2u2VyuEBm32r0eZgkYsL7+3vyItsWnTGZm8Xz3xQs8K1dEAHZCg5kC1h8U1vl97XNSxO/qPzyefb180a+loX3EUVZQEDAZXX1kqInFaHLAFEBWivM4wgtmHo/D+OqzuRyIEFJAztb2MzgFXJJTCXKwseUZz4JiAnbbYtpHFebLm2eCna2aBrzV+9JWNSngnePy4mbbdvifLqsSjwgZXbUBcn7fDeLXJBaDNOIqqYaHdm6tAwUmeTI82TKit20DOCGDkqBS8hLj2my6P2M/+v/7f8OMkodtDGQStOLKWmFbfdM/66bGiFRVWFHi7ooUdcVh6PBowgGu+0eC3IhgTZU72hNH8YR8zzjdDwhhYTNdkuEQlhS4j1++MsPGMcRDw8PGTsAdH0HbQwH1k0DhYT7+3cYxxHbzRbd0K/LsRQDyrrKdddbCNhSHw15qSiy7WtxWSz34Ow9054jVU/I5zywWNts5pTxmbPzDFMo6ELnhfKbSjYl2l+tt1xq5fdgWUTFGOBDglYF5tnCuUDmmTaIUSBGqqtSrukEyG/j0ItsYaPJf4tJQIoK4zhg29wihoCHx8fVubMMm+3sIDctpnHAL798xN/+7W/zO8jhZAjkYUmt0eUmVwgykVzgUMM51r0pkIEplMp1i2YN5zlEmqwjBzFx6KCkwMPjA06XM5ydEVNEoekGUoK9QmkK7NoNlBJoqgpKC+z3DYpCoe8HhDxAFkrC2hESOg/pqPpmMA4tu8Mw4P53v8Ol66BNAd8PcCFgmCZc/vQnfPhwj5vbWzw8PaEbBrz/8IFBfdndkhIHYAwwMNi0GyqqLhfUTbWqabUpIRebc17EvQUX0PZsrSXrVpCRKgV/oFoTbxCShza0XksI1FWFaZ64fBCgWmWeEJHrr+BQFgZFWZOXFy2se1twznaGzDzjGLKCuCzW+ti5DEtJAdbxrEspIkGRd5z7NuSlsdYJWlJptd3ukSDwv//rfyfr93jG5dLh9uaGeKLooZBDKFhGZE4h3UZK5jAmLbMK3kAbg0vf47fN9xj6Hj4EjMNIhwj9xEwcRuaZzjOE5vslctgIhMTt7d2ayDrNFi+nI4ZxwjTPuf4lkqRpaozDBOvpRPJKYhgnVGUFAbrFWAso9rCFxMvrEfVY4XQ8YXaWijDn0DQ17xdTwPu86PAeKte2VLyy16lrsumPxyN7v1z/HM9MB99sNig1ByBSS0gFvHt3h3GcYK3DZGfcXF+hqkqcLifUWYELCfTnjoPHqoKQAtPAhaterZA6Dz8ipGKNuyRdex9QlQX/2RgR85B6re1CQFQUv9i8GJFSQMg3N5P3DLNjT6gQ41tAn1RyrfPJ06ZCb54ZAhciz2lgCUfiYOtqt8U//uO/x//7n/4Zl65f652b62t8/vwFUjJ9+PmlQ4hAP5DRCyHQ1mRJjtMEY6jc74cJXT9i9h5JTG9DzxiYPo8ExJhr7Qm73QaXoYeLAS/HA6bZQWVuthCCiImZid1ICcYUUFrj1J0wzPm5UwZlUVNFn4MjpJAotAFROOS+2ox3iSlCS4mqMBAiQglyJQvDACapiBgoqwKHM4UibbtB3ZRcohU1Hp+e8XI4YMq9tp1mXFwHAYmmrNaZD6RAWZc4HI84Ho8YpxHeB+z217CeCbyzc7mPcHh8fqVdf7PBMM3wkcrv2EcorTFMMyAFhOLgHYKLBX79BtZO2LW7vJT2eRHngVwbLinBQjB92Tmqa5d+wXuGnMwTg9gqWUIpojiWTISyLNg/RS7FvSUXsjAaUnFJ6oOHc4tQapkK/R//9esturmxmkb6kutCwEsqB4KnrbCuuTlTOQl3+c8WWHuI3AgqpXA6HYHMuVlklMvAz3u/DgmFlHg9vTKFKAZ4l3B4PeD65gbaGIzDgGGacTod8Ocff4JzE4TA+ucyvZWH8O31DWII2O/36Md+VdMVpsjwf7JZrq+vs4x9SXGMOJ1O+PDhw8rpGscRXdejbVoAgNAEfkop8fL6guOBSoNPEKjbBufLhd7tQB/3NI54f3+Ph8dHlGWJJkUM08iFaWYQVWWFrut4oa6fUVjZCctnTA+4R9M0mceSbUQAFhsXbYTkSy2230U1udg0hVh4dArB6DXBEnmrQYg7m92YE4Ig8uAQIm/oyGgx2gCJ6pUUJZDtsxBMJ7q9uyILaGLTKfBmeVzsGkIyjAIpwUiR03srqMwaGceR1pTchFUVG01aNeP6GQ3jCEi1MrCWg35RDy0qU6UNzi8vkEIi5Zd+GHpst3sOpJTC8dLB2xE/f/rIGGzJ+HIhBIIIKHQBrRRur29hrcPNzTWGiYlUMfJykDnsous6vLu7AzetYbWtvLy84P37D+j7HofjAX1ORW2aFpt2g5jTVAHg+fkZp9MJSik8v7xgd3WFvh++UnqwONtfXWEcBx7MsUQ39CzMchPLkIohD0YjiqJEjBwEACzwlVT5GWYUPBPOsl1V8GJck04Xu0cepK6pqZmzYq1dGWFvg9YMeE9Yhy8up1zxGRZwLkEp5EOWzxq/1oQlVTUJDh4EWJTdXd/Aem6BIMh5S+It/Kfve3K3pEJVcjg0jkO2bAuUJQHU2ryx4owpME4jpNIIIfGdCfldSeR6zPMMASYkCknAbu6fsW3ZGCohyZ0UZGd0/QX7/TWtl+cTpqnH08szmEJKe73RBbzwUDnIZr/bIvqIq6srKCXx9PSIru9w/+4dpABMwQK/bdt1uGYMh7gvLy8cEG63eHh8wDDNmMYRhS5wf3+PYRzWQf+l73B4fUVd1fjy8AVXV1dUvQkBbRQufb8GwCgl102VdxFSZj5dxgHwXRdrA0cOpcfhhbB2pTQgmRIZQ0RZlSurhoU/UJdVTlrL2AjJJL6UaPFOkcOVceyhlSYTA1y2LA91DJTd04Ye4ZyFVmQlEcWgYGcH58gEqmsqhMd+YGADRFbacdlRFVR+xEALJIeDEwrDLevydyulUFcKSgYomTAMHazbvr23QqzAYuTTUUqdreIGFLQkSK1RlgbzzAJvmseVW6m1gVIadSFhfYACUBoN720eKEy4utpDKY2X1xe8ni6InsWI0RpaGShKg6ArhbqssN1uUCgDaST211f49Okjnp6ecP/uHRPzJM+JokioSp7RRUlL2OvrK+w84927d/jx558wjhPOlwuqssRutyW/KKtwxmnE6+GAdrNBTBG7/R6mLKGPRzR1jU+fv2C72RIDojWZYWC6J4QAHRFyVeMv9mwuehp479BdzhxiagMlBExRrmENIXjEFPKAI2XlWMxLRazNMhXxkswwRf7jMDI8iUFKZNEpoYk5yAOxRSGhtMkLJACJ2/3ZMm3PlBx69pdhVRYwWZkM0bLQLMKBfBcKeG8RAz9HKmUi4fJti6IwKAoJ7wv0fcLQ91w47Fr44CBB9dMysFiwAi4rVRM4eGk3m7xgY6DN6XTKdqACWjOdW4jElHUhUJcGzlvUbc1QqqaGjx6n/gTvLEQCjBaoMpOoXJAATYGqLHF7zWCtqq5R1hV+//vfQ2uF7XaTG2usykEkgeAjtNEYxwEPDw94/+4eh+MBn7880nZtLaSQ2M5soDZbsvtO3QWQAu/fv0eIEe2WPLnXwxEmLyuvdnsAXJIiNwcUkch8RuusOFkcCxy6EBBuOfSMiTiKyHd8gfz7rHJP4DvEwcycn1/AzjMWVlAIkUr3HEzkXICUCUYVmR1qCSDPSMiYeY4CtAzyF3lVk3X8OiGgdYGqoT09CZFZomQ/CyQUWmU1XsGzGDx3tk2LotAwssT5eEJZVZBS4e7dOwgpMY8TJASaukKqWceeLmfY4KELTQazErA+wi4Lk2xrWpRxAGh5Tgw3EpJNZj+MmGeLtmlpwQMArVC3G0jvcOnPOJ5PEClmCyHPzkJptE2DFD20lrh6d4fj4cSzV2rowsAYidubKxwPF7y8vGS2bb0qcYbxuNaVUkhoxaAd5xy++5vvkBJxKFXVQEimYdv87Fy6DhHAz7/8jLquV+UvpMRffvoLAIlpnLNqyORwlxHTNEIXBjIl2ODgHe8vKknjmjq7iBGEEDmB05KTlxt5Z2corTDPIxWMCVAF0RfzzLu2zvfEGiyR37WqKKCNWpev8+Dh4Nc+0WiT1b0RSUQI5AC4VQXnqFTO4hDk+jIEspnt7GAKIIWA2/0WV9sG7+92aNoWZVXh88MzpFSYQ0L/8AKjNLRkgJwNEc7RUcCQJQ4dQ4yQinLCpmlwPp3RbjZo2x1iTHB2wuvLkap55+jwoSQBSjJ4AykhKsNz1ie4yKA4rSQgJMaZP9tu6DGMIy59B+tmCiKEhFJUWTvrASHo/IjkqDrnYTS5Z7c3NxiHAc46BJ1QlTV8SHh8PuCnX36CFALv7v8e3fmE+/fv0A0DlDZ4fHxAu9vg9vYWUz9hHAa8vhyzKKVGUVSoqgZIYBiVVuinkXW8FMRejSOcm/F3f/+3qOsWzjIYZ5otQkyY7IjJDng9HJGkRBTEd1VNjTkmdN2AsqSKtdJ1tunHvHyViKCVlC4amYMQM4s2M84AgSSILZqtY5Bk7tkWXJWUaf25eh/IZV7wIoohKiZzWqHezmrvGS4WI/m4gFyV0yL/zyLqeHd3i93CFW0oENluma49TRzIdsPIoDrkkKsUYQqqEy+XC63GEDheOOByIeFwuuBGkfsvEu+D4voKMSVYH+CHCbvdHvM8ImlFVBBoFxVCYLPZsqbfbPOwbEBKEUVV4XA44dL3mYkoIWLC5XymB0nxc1aCAzz2KeNbXSoFFBSM1HzZk4BQEk1Vo6lrTPMMrThEfHh6xDiNKItyDazwwaEoSvz33/8eRckgn2bTojIljClRVhUttzNFSSFRhX3uOyo/Aeyur3Bzc4vHl2dIpXIYDznn200LmAKHM12K1nIoqtsWr6cj7wZtaOsHLbgKFEQIKaGrJg90GRillILOd/UyZ0FWb6aUQ00Fl7BCSMQc/scrRq1hPcFSfYlI16q1M0xZIgbWIm8sU0/0T8iW8Sigxf8JFHzTPMG6gNvbW0jpURjAOYFp9Dh158x/8UgIOW3JIIKyf5lB/Mum2sUAU1XrVtNZRxB43s4XxqxqhxgjjNSoC8B6Mgu2bYtxoP3ndJrQDR15ESmhyMw4byPqqkJKEW1doaoq7LYbjL3F1Y7qwI8fP+Lm5gp1VayJpPx7uQ1bFC6vr6+Ex2uNH3/8Eeeux/l8gTEanx+/4MOHD9htd6jqCk/Pz5gyE2YZXtzc3KBuKAc/HA4oqxKFyY1bijBKQuTPRmmFGCgPne0IIRN84BCVHJAFmh1XlZZRmpbLGMAItbjaEJuKXKyQ2W7Oury9TblZWRQ/iuwQJVEoiRAThnF+G7qAyUICLBxETtbyIYdrBI/ZMmFNSoJm53mm0oi+Loi8udluGsiUYKTEDA5iUrYlRi/Q9R3GYcL9/T2kEKgqCTtb9NHjeD7hcum4MU9MM2SkdVqVFT5ERMEBg08JRVXngS0HDNNEKK8ycuWmiSzHLXQBqxZCfkJTVRiHDlVd4Xg5MGUsRWghUGqmFgVLdWBRCTQln7XNpsU8zWjbBvM8oTt12F/tUBYm27cZSMFLTuRDg8Ph2ToUZYVPnx8wjAPOZ9p2vzw84u7uFne3d2g3G/zwww9ISHj//j2VeJEJxE3LNNRpYohH09SQOdnMaAllmXBodAkkbsdsBpHHnFBaFAViZDjB8rkCPNRiVrQs7EkqP4CqrnmRJwdlzBoiESIPxUW9u0CO47J9yfJ0IA/oUoadSoGqMLSEQyJ4QAgGI3CzmqH1WsDNjvailCBThEgcBK4pntlKFVO+1PPzfzqd4B2tzk3ToCzLnPxoYOcJv/zyC9pNi5AY6lC3VR5AAhASzieyjEQeWOXPgRtEFg3jMEFqBW24iU8xwTsLKRTByoYw9UWSfzy94tJd1iWElgpVUdD64RxUVkcXWqGuKrR15h5piZhA2Pluky0iM2SiwgGgom1Jg5qmCV3f4bfff49Ld6FCZyaAu+sHHC9nvH9/j+ubKzw9P2OcR3z47gODQhaLUBJIL68whUFpjuS26ALWkTWa8vBdmQLM9gt/xTBcAjcKYxjckG27SCkPMgBtJMaxX5u6GNJ69oXZZe5XIq/LEi6dfIA2HFgs4TrWUsm78DGJlBAr/5ApyECICzdIIzmX1eZsbJynvY+DI7namgrFBVJdmZVj6T1tCFmMtD5rWmtcXV2h1BpGB2AMcCLi05fPeP/Ne4QUmHRYMyRlGXr7lPL2OjeCKWW7rsc4Djn9bIIpS1jvueQKAW62SFKiriqEPJQe5gGbusaXx8+YnUM/dOvz11YVjF4G/XpdgG3qBsYoIAU0bQNnZ3SXAZvNNqtKA0QS5BYJgUt3wn67g8/K3q7rcH9/j27o0bYtYgLMzES4Xz59wf39PW5ur3A4HPD0+opvvvmATbOBECziY2Aqn4CEzOy5sipx7s5o2xpKSibtSQ1ICSUVrOdGd+FkLUqfGKi6WBLmgUiAeWXQ9WdAUDHFy4vs2mHmxj1kNs88zpnvswypK/LzvIf3drV2vOE0IsOKkoRWkgE5PlCVnvh5u5wqLsHFWwo9h82BXyNiRFkaXF+12G1bzHZGigpDopJJIVuTQ4AE8Pj0RERKxnUUhsO3/X6LcdT4+PETbm9vsPAITcEFgAsRUEz19JG2PinEykecZzY4pSlQlQZKa3RDj/1uDzdPHDJrg81ui3EcIA1wOp9QGIMffvpLrmGYbF2VBcpCMx234NnZ1DWkAG5vrjGPA/a7DUxZ4en5FVpobFvauWc3oxDI6nIOvxYO29J0mLJAAnB//x7l5UyEiXPohg66VDCVwZ/+8hcIIfCbb7/l/aQVDscjYCWmwUIJBS0N6rKBUOQ1FmXBIZhMEFqikIa22KwGZ6PgMw9PIUZa+cuyWhnK0zygKDS6yzkHb2gIZOtZYsJzWZYI3kEgYLZcfCMRn1GWJbRRq0JrHm1WLPGeXL4WkXh31zUTdGdrkbLjJkSPKBKEUAgxoO8vOdFWIKSAGALatsF+u8F+12KaRwiirCFEQlM32G9ory1MCW/oNmnqivwy5+gqCQFlVQJg4qf3Hs/Pz/jumw8Y+w7Be3jnGXQhlhU1B4yLCjAELk0gaP3zjmdlURZkcEoJGz1Opx6TtVR7OosYXFb0ZwueBKrSQCsgSgWlDS6XDpf+grIoUJRE3dz8zTeQUq0W9eVdHscJ00QFbwjA6XhCVZYI8YhxHvE3f/Md1dpI+PLlC1JkzdQ0DS6XCyZLhXDXjairFpUxqIoCdp7RjT2avEDdmi32uz1i9GjaGsPAZXHqI67vbgFQlUnVSObRCqKUWPNyMLcMR5zz6LoeRhtst+3K2GRYE88Y3odAWZVvw2sZoKSCyuEgUvEOZC/BMIyFD11VJYSImfVIrmFMtEDO1nMIGUVG/QABKdeRHPDFRbwggOvbLe5urlArRcV52+B87slizCFTCfy6Uopwbgm9MgghYRhmXPoBpadirCyYTNtfmHgbQsTj4xOAiKau8Pj0iH/8d/+A3//hj5ishTIF+mFAW9e0vrZtVvgoDuZiwDRzaD/OM6Q0EErjeD7wewk+D365yN02DUJKGEYy/dhmSCCwjvbOr+fsoizd7XbQRYHn12ccTydIpVGVBR10ZQUXmHT95ekRpSlQFgbHwwF2fONpa21w6TrYbO0d7YwvT48cnEuGaPi8aNdaQZcF/vDHP2cFHVV1LnjMbsbdu2t8+fIFl2GAKUsoo9GPA3ziSEUK8hObltzvoqSlNB+JQLYxxsz1TjHSOprV6coYCCGRYmAQhBDwMaDW5TpUWXqHtzpIAlFyaZYHKmT9EW/FEBmHmOgCcZ73cWG4HBSLQwiJX6cCtpsa26ZGoRW2TYGyLLHbtqiqEv/9v/8b6rqFLkp0z4fsLuKyWBsyJPtxQlkYlHWF4/mC4/GI7WaHYZyhVFYqRlplYxZsmMLAhYjZzijrBs4FzNOEy6Wj3VgQKYVEUcack66bdoO+7/D54QuGcQSz4xSk5nAVkgGLGnyPdFa9J0ucSooCVd1gu+HSLDi6oQCB7W5HhI8xxCNFsjv7YczOSyr8lNYYLwPG4Rnv795hGCc0+wZVWUGCi7eXlxcs7HtleMee+441Yoorq9s9PlC9Zxk8Ms8zJjch9jzXponKQG0MmqaEtw5KKghBt4ydx9wXeIgkVhGaKsjY1VJCCQFvLZTSFASAKn6l9OpaMUbD5eCMmBgaBbDWk1pCSuSFCmc2Qmv4xPdRZtQPaxP+PikkfACcS5gmh5gESvPr9Xe/+k8YpwnXV7x0SkN4J1KA2W5wuVzw008/4bvvvltVeFppTM6vh1j3lXIhZFuhUIrbS2BVBbnZZtkx7aJCsBD2lw61NhimHl3fwTqLp+dHOO/hFxVI00LlBlFncH9ZFqjLguo21+H9h1t4b3E8HNG2bZbUIzNX4qqyqPMDvaiN7u7uMM8zbq5vULcbLODj8+VIlUJRoJsG/PTxF/zuN7/BzfXNqpZ5fX3NLyon1Fpp7K/2eHk9oGkaToZjfnGkXK1+ALB4w5OiSgZJZI6HXockzlkUZYFh6CnZ1woLfw2CA8I3izTyRSwhhMqWvbc/a5omphVB5pSouPI9ZFYnMeAkwFsy+AgHf1NKLBYFDoH4swECbq62uNttsd21OJ1PmGcCr5eIe8bDU8797v5+VZcZpQCjUd5c4Xw+48cf/4J/+Id/4GGqZVZUvNlDh5FKSGMMxnHCEu6wfKZCEEI+2XxAXV9j6keqE9oNFWAAFUunE1IMeHh6oNUoJ4vVTQMRA8qizINX+vDrssJms4FzHe4/3GEcLC7Z8r1Abpc0qCVYoygKlGWVU7AS3r27p1rg6grb/R66oBLD9D0gJS5dh8vQ49PjF3z3zbfYbDYwZQHnPT5++ogQUraMGipBqwovry8srrPVgDw7KnXmhUGRVZ2LzVMps/Kblnd0CVsgAJhhFiZvchduE5uLxQqUOT7gYfk1k24YhvWzWIbhy9ZX5Y2HUgouh7IQkptB9qAMGynk4oEWS37twO3VDldtjaurPV4Oz3COdi8fIlK27hnNYeuH99+sak5yjIrMOulxuVxoISwMUm7WZusx5/NrytyqhVNFKwKj0BduxaZtEVJCN/QodvxZ+hCgTIHtfo/ZWkzTgEt3We1zSb59/03dQAkWve/evUPf9VgCZaiYs7h7d42h93h8fEa7JOgKFv/zbPNQIwKCqliRh1zv378HhMhJiBW0KdFOI9mlMeLSXxBFxM8ffyHgHiD0PwE//fwTBBTGacqDNL6/BMfPeRiSVksLhKAqMyuji8zroMpArgU+gGzhTRC5ieB7Sw6iMionZWbbRYoZFcACkwxHhbou1oCNhVMIyLXAGMcZwXskgZWFFnPh6X2AzertlLAOP0LwuXFJ0FqgMBrvbq+wbyrc3t7g05dPuUhXBLJnFeEyOLm5vkVV1ZimcX3ur6+uME4jLqcT0+5ub9CHkIMqsg1dSrhpXjfLyy8paL1umhrBMp3WOp7XPngo3WCeI5Q2MGWBVgmMdkTXXzBPQ95SstFXUmLTtjCKqsT7+3ucz2c47xG8w7ZtIRXw4d0dLv2IT59pI2qy+mSaxvVZW1S3Y+bODcOA+/v7r5Zois+iKTBbi00OLHg5vOKnX36h/SQXRiFGfPr0iVZ261CXFZqmgTIK00wVoCkM6pJA/9k7aPMWaLPYILVZ7KRvnLwF9i0Ek02Bt+Cc5V9P08RFXD67GJCRVtWelGLFangfkGLCNC3YAQ55+25c1VkLoD0mctFCJIMqBoAaIz7XIRIZQUUmOaG31xvcbjfYbRtMbsb5ckIIyF8bciiIyFxBAvq5SE1rbbWkaztr4aXC4XDEfr/HNA4AWIfM1jI1OjLlGylRYWLMOrRsmgbReew2W7wcD9BSEchfVUgApsUBIRKVR8OAIQEyJ4raiUya7aZBDLyTrq6v8PDlMZ8PCqfjCX/z7T2udi0eno+4nM5ommZ1JUzTjK7rUZZ8pxbHyMJAvru7W8+O4D2qokR5XeD1dKSzouvQTSPOXYe2qTHnIcXp+YzD4QCtCgBEyux3O5RVgaeXZ3R9DykFms2W9fE4QeWmIeVBfFmWKErzlpwrJZQyDAdyDlpLKC2RkGCKNxzLEtRmCs3QipQQ5aKSx3pmLgiUlDgAHse3Z65pWlg7rPUOgNWFYb1HisBkJzCkMAFCZsxBXJ85KTXqssDVvsX1psV+U8NHh9PpFc7H/PUr6NykL3ZOwppYJw7zjGmyMKZAd7mwgdccOJRVhculQ/HbEv2FIQf9MHDZJ954kyEvWKy1kEZmyxTfV60ktplj7bzH5DxeDwf005jtyKzXjFbYbHboLxf4xNrHeaaftm0LOzMQoK4YtDKNE6qrPU7nDvPs8PD8jMulw367xTj2uLm5xThNaDdbnC/nVcEkhcD1/hrBe4zDAAGBu7s79N1IpEXgMnG0DGeBAG6vrhEd7xUhBXa7LcZxJvtKCJy7E673+/VMJV+uzEoRiwiJwrA5JWiftkuteN/yuaI1NASGgUjxhlFZnjkOlbEOx4UAEAHr5qyAfwsMW+o08pqX8BXiMbzjXcozlupSBjAIzJ6LMZeXnzEHCC2IBCTW9G3VIgQLNw+4nCJS3SAl2uPGmQrnru/ZH+R6JqWEbhzIfQ0efTdjnGb0s4U0BZdKMUBJgbap4EJcB1LTTDZuKjW6aUQ3DBSfuKXms1DG5MThGTEFbNoW3nqcLheMOeAIUkNCZvUpJ1opJTRFASk5NGVQwhufy6gcvJR4b2tj1kRwoakmX5AKbcP//O7uBkaxxvjD7/+I0+UMpTSkUJiHGZOz2LYbKhrzXWDKEi4GnF6e8Ho8QkiJqmmgtMLpcoH3jnd9DHg5HqG1gfMeStH2G2NEChEvxxO6cQIkg1J84JI25UVQULTlN02dk+cdZFZtJdCZo6REFLSzBMScwspzVgQylK11QEwwpQFbQKYQL8FBEmLFK6TsVjJGQ2r2lCGSoZ2SJBs+M9gSBIaJvadAWGcUckFfIFIdGANSdEjRQauEeeogJcN8+n5E3Wzx+PyKbpiQIOjgKIuVGTt6j8s44+H1NZ9hCbqw+WdNS24MAXMMkCmhyUNWlT+frjvDeYuy0Dgej/lcGHM9zYWH0hp1Xq49H15gnaWSMCQ4H2GEyHVEyk4/in9kUSAiUtgBgev9Hlf7a0zziKJq0V069H3P0A7noGXmXSuFkBhu5zwDaJq2wTxb/PjTj5BC4MP7D1lEIHE+nRnE6RwXjZJn9ma7QZIJ7oUJwlCSCbUhwdouz2vmbJ/XKMoSpzPV1T4vvdhLT/COwzkhs2ZPEIfi88JHCgnIHI6YZxVLrUJErlhrM4oSqDZVSsHnZb21LjsUiDTgWeizIMABOdxGKQMRxPoMIquVQ3aXKWngXETfTXThSJV1hr/u168e8G02Lfb7PVIkK8wYg81mA+/J4jsez/juu79ZU0npWY5YEhoBYGHZCCFgCjY/VVVini2aplmLFfIDVG64EoZpgjL01s/zhP4yrxumEPkQ11XF2OV5Qtu2EBA4HY/wzkHkgv53v/0WMXj85S9PEFKgaVuQ0Ub47Ti9JZRCzDidybPb7/frA8VUXuDm+jqrFgmzfHx+znyVtPIqxing8fEJUmpY69C0DZVMeWBy7i5ISNhtWgApM23446ZVNWU7h14/U4AFXoxhbV4XdsnX9sg3zkrMD2ZOkxSJgQog2NgYci5sBtYvhVIICdvtFl3XrxZYpbl1CJET6BDTmhTFZ3SR4bPRWlKwNm2F26st3u03aEyBqAlDnWcLIblHdmFRVygOrAxTbsZxWIdUC1diGMbV4omUN805JXd5hkQuDmOMKIsSCWm1TZZluaYfp/z7y6qCDZ7FWv5sh7FHsBZS0qZpvaflqKrQVCXsxCGGEALn85mH5ZYfxd/97QcoLfH542dwY10iJaaazrPFNFHKnxIQQsLLywE+xFX5GWPkEC2rtGKIDIoJHv0wcEMgqDz0wWG60NKmdUHr3fUexmgIcEvWDz1CZFEi88ZWetqfl0EcE33kXyU2a63yxpoJw0tzyMH4WyLx16zItxRPjze7vlgbiMXe5p1bg28WhiI5WYoQ5xDzxeyRFoVL4DB4sU0opeHcBO/ZdNeVwc31Hnf7LSrJP8f5QPguuLkn84Cfy3a7YdjLkuQ1jtjud7mR4mb/4fERv/nuGwz9Zd3KjuOIFBIv5FWhwyTpRc0nlF7PyvORVh7vmAaOEHDuz7iMYx5cTJjdRKuSpHxBSYnSGFSFAVLEwtO8dOSnXe13OB4O+N1vv0VTlricZzifLz/BpnMcJzjnUdUVTqcz6qrB8XjGOHb45ptv1kb58fFxVSaW2eo+e4bFdMOIuqozV5Jn7KXvsNlsMAwj9vsdNtsNYuJ5fjhxK1dMCpvdlgWHJ7g2+TdLXYwZor+khWSr7DzPmOcJdV3BmDcwMwe75JWsZ5JSQGBapZTgmVZoLEwzkbfhcR26ZHm91izwNM81HxOsDZimHD4TE0MO1i8t0bovBEJkemVhBDZNif2mQq0LzNOYhyIhJ56yCFCKyISqKlFV1TrU7vse19fXHB6aAsaUOB5P+HB/j6oq8jCRyWnOWXJWxBt/EMjDVoF1uFMWBfpxWLk7IdBCfTyfcOo62pb8jLCkD+eBVxIJhTF8T/PnOs8z01IFn7Xz+Yy/+e59Vu7yLkDerofJoe/JOGs3W7y8vNIiLBW67oLvvvtmPcPHccTl0nELXZaYxwnd0MMFj2MX0dQtG/eGDdkw9Njv95inGVJJbHdbGKNR1zWenp/hPJWbZcHi2oXAPzczo5bhtszQeDL4mAjrnWOwj1LY7TfrkHlJAF6U74uKeRnOIS+XyrJYB74pKztDYCjAZKe1cS6KIltdqfK1LmCcXF44RES2GsgXab6XwLNQRCgj0dQKdalQlRrOWRb72d4lcnNiCp4/5AC6bOMkB8iHAJfDHpRSqJsWKSQcjid89+23CN6yrvCEyy8N/JI8uzy3QnDxEDyB3rMlG7KuakzThHmeMUwTzkOPYZpot/QcGKi8ePR5gI+szpLgO/D0+LTa6upmC+cc+mGEQMI0Ej/iggdsgrVLyAfPl9PpgvOlZ7BNSvj22w+r0vxyuSCEhMv5grppqN7uGKgUYsD11Q0KQ9vvNA4oCoN37+5wOl2glEZZFWjaGlopVE2Fw/kVhSxY/44TrfJNs54BXPjQ/p1k1oZktT4V6Nzeb6v2TbmU3+mFV8VajncLh16gDdZokA/E5nZRwYvczC/3L++bgASBkBKsjxjGOVvNuSwLIH90OedEvltLYyCVQFEkGJVQaIFpHjHOY1Ze5YVKtnv5EOCGAXVV8++MQILI9WsBkVIevvZo2gZtuwOSwDj0eHx8xqblszOMEyJAnrEiqkFphaRjVikGzJ7qN60MkSF9jxAiuqFHP43ZbUS+pJISOtvSLpcLj89EO2r0AV7wXkgx4eb6Gt2FyfC73RZKGnT9hI+fH/D6ymXG1fUV5nnC/nqPl8MBXXfBMI64ub1BVdcY+yEvOiY6dQoOiBfV9qXv4KzFNFPhLqRCNwwIzqEbeqqnTIHj8UKFYPDYbFqcuzOc83g9nxCRMHuLShOB1I8zUT6C73pVkYu+1GQQuUbODW1ZlRCJFsnlnV4cGsM0I/iQ8TweVVmhbVqqPDOOwDkPAZEXWZkvmVi7L+dCAhMmg48IEJhmz59rTBmnsB51ucHlvS5BG3hZSvQ9a9w5s8YjNtnWLNaAsSUMYbYWh9MJV/stXIi4XDooqTHNAf04o6prLHw1oyTMhsFz0+zwejxhu71C17OGH4YpDzLYOxSmhMs8wxgikmSY1uw9nl5fMc4WEUTDUNE3ZwVZVktJibIgSqPrLlyCZQGKzggi1tQ1yqJEVZZrfV3oChASXx6+5DqaadspL1+eH16zqp9IjbbdoCwK1FnMgQQUoIW2GzpchgHjNDEcAAq//e5bfPz4C2ZnYZ2F9wzr0rHApixgZw87DmsNVhqDl8ORDg6l4APvrBSzACRGFEqjaEwWimQkQB5cyjy4DyHwGYwJItIun0TKohKmu2qlYGE5zJMGIoc5mszaDCE/Rzk52hTsa8kMpy16tjz/nKNAILB4gtIGSEBIdKKRTRlRlrSRKxnQNBs472FKg++//z7fIRw82hwYM01UgC2JtBxWRwxdD1MWGGYLl0BHAYD9foeqNBi6br0nhmHGpqnJC04Jl6lDaTQu44imrtE0NQRifoaB19cj69gkqNYXAv3IEFEozklcoLCiEDovbzkIL4xGWVTwLg9bhYaWwKZpMU8jg/a0Rgx+rW+a8q3nW5K0D8cTNpsWp9MJDw+PMMagqmr+PabAz798XAPx2qZBcBYPr8/5Li1xGQf46NCNA4RRTEMuiBwahwEh+pwVkO9BRLR5RhRChNRACDELHChCUsucLANj3+o2Be8TgEVBX0IJAesthOLiSEiVkTaKWKJ8J5JtSlutMRUFVEpBGdZgHAryXOGA2WCaJ2ht2L+6AO9idjomJBUxTQ7UQ7HPc1kd/mt+/eoBn8kFRwxpbfbruoQQBtvNFv3ljPP5jNvbG/R9z4HEOPCw/Iq1tAwDyrKkJFPrbAtM2dNORdQ0z/Ax4NzxUFoGCYygp0pntixatZQI3sGKtwP/cr4QKp1DBJASXp8PqJsWPkYewlojJpkvZYftfofT6URwuWQjdXO9z0EJVCZcLhcEHzEM4wrSPxxOCAkwpsC723eoqgp1U+F4PODu3S2sDbR7CKDeNGjqCn3XoWwqDHkLNY0DNxMZSm6thdEFpFBI2Y6xWhcVO7rk8jTa0HqxFF3LZ6VzShGAbBviRpPTZz5fPjd6bKBZWDL0QK8WlyVC3PkIO/tVas9GSSzdBYC3xkRCoMqDBoEIbydYq2nrmgeMmeuRKw0UJRlWCdwwsDBPawGyNCWbdoPufML5fMGHD/foOx66tHhPWBJPl/Rc57gFEhm0CiCz/Kh2iflZSDHi0F3QDyNsZujEwOacMeczXAzQgly4MUUYxc9oGAYsrMM5s84eH55RNy2sc0xclUBRMB3MuYDNdofT6YhxmjBoKgt3uz2UUqsiFADGYcTpRJit0hovh1c4T+Xg7e3tag07no+4f/8OfTcxfGOeUFZbtE2Lru/Q5MNYKoWhP1E5WIm1yFNFkRlxi/WScnMuP+SqCF0YhkswwqKS+frfr6qYrHBB4p8TI1UaAGBnj6IsGRqR/2wO0WmJdDZgzjbKELMCI5ITJIRcz5EYmaZXV7SOaJkwjx06mWCNwXSyGKcBzoe8ocPaBAPZEh8DpslCa/LZqpox7FoblEWJviNTi4qnhHGaqC5OwAJKX4bj/PywnmsABy9X+6t1yD7OM06XM049G8yFySUELcXD2BOem4AgOeQu85D+9fU1b+CXUAeN06mDtQ7PhwOGiZa6cYzY7/cAKL23jkWJKQISIra7HZYk6RACrq6uMI0znp9fYLPKZzxbXPoBCQnX+6s8cGJC6dX1PquSmHLXDx12ux28588VQmT2H7dXSECpadcSahlSLVBugRDcqhRNSSOlcv1Ml7MPwAqgX1RZPO88QuRSyEgagQEqnfnu2pVHpzJ8dzkPpFQYrcU8L40wWPiFhQ20Vg1w1gEpoCxUZlY6eDfh6fkZVVFCa4nBcnFBVgqL4IUFyOEvlyL8/QHn8xnNpkUIS5r3QEtkQfbflBM9U2JjEfMztrCPADYSdmZ6X4hvSwJrLWY7oxsGvJwOsM7n943Wuqv9nrydYBFTQIgC0zyhNkzwPh6P2G63cJYg6rIuMY60lv/y6RNOlw5FWWK0I7778B42A8x9IMR6kwvSjSAn5nQ6AQCur6+x2Wzw8IXDnLpp4GLA+eUZLgZc7a/gnMPheMT7+1tANvCOC48kEs7dGdf7q5VnpU3mGGXGkoi08IfAZ1NC0SIXqBpZ1BO0pVKJxucoJ3Iv/z3I81nOvXUBAUAZBZU4SEFKsLMjnylx0EL49hJOxmJRK41+nOD8onrnQN2HgIVyhvx/Y4xIMcJoiWpbIUa+e8fTEePYw2QY+YIqWOzsIvNHydCTqOqaxb9j8ICdZzw/P6MsS9R1i7KsME0jm748EOi6nu9sHh4v4QVaLWVkDqRxliwwJVFpLqVMUcA6i+Plgm4krD7GCCVoc97u97hcmKDq87B0nh22TYt5yqq3/G7N04zd7S28TxhGjx9+/AnWB3z33bfoLif8/d/9PT7+8hmmLPD49ARTlri7u6OFMfLdWmrN9+8/YBwmKkxiQFGV6OYJU+aQ+RQxnDo0VYmrqx02RYGnxxd+nSF77MGB9jRxAMC+jQOVcbYcoloLqVRuwPDV+cY6jLUruVMQcV1Cvg3MmBzK5phDQQBZgUokwILSWJ7TRYklhPwq3EnmRQgV1tZlLEsilSimzJwSYn3uQvBsrGVCVdPymYJHdzljHnuq2EGlfkiAVABEoppdE8vjY0I38cypsdgiC6Tg0V8uq1bh8fEBDLBq8fzyjPv7f8TPHz9hmmcoXdBZUVU4nS/EbIB9fIq0Es92Qu9HjPOMJCWKosLxfFiZwDIrEpXkEs97T+taTkqXKUFqk7mscU3mruoaZYrYbjdo2wafPn3ENFvUdYu2qdD3A8qywOXSY7IzzucOdb5fT6cTjDYrjmSeHfphwuwcfB4yH0/HlX3dtC36foQXHH68HE8YhoH2XOcQYmAa5jhCSDL7rPeomxrWzrgMDO2gUyhkizfvzcWmG1PK4Rkxq+T5+TOk5O0OoavAY55GaFNACGReNOuu5TkJnmpADpQUA2y0ArICerZZ4T7RLut9REiAdTG7LnLqRX6XVErQWdUTA5l/C7+trQsYzZAU7xxCcJhmC6GKRW4FZTSUAGbrsGlqPB9PuHS0Md9c3cD7AKP02/md0ppuaQz5pSlPC2Pgmfv6ckBd1TCBPK9pmKDz8CXkQfXz6zPOF6Zhh5TgI9NW/cyaIwYqT7UQ0EZT8ZRZYlpqXO2usMkqPR+4xJqnCZu2QVkWDJasS7gsMPAuwrkZu/0VpOTSj+zwCmVRwdq382UYB/jIZOa6qqjOdhbH0wmjswiJC1GlBP70w59ZQwtAGw1TasyzxTAzPdhZy+ABiOxM4qIBklx1P1tIufR9WRUqFUxpEGYq+1a1qJQQeEub11IiRAYgLOKfkCg0QK6Z2k0FpbjSj2BYIwc2vIvHaULVUBww5IRpqrU53Jsm1o/jzNChlHinpVybQyqeByJBSY/9RkPICCkcTuczrnZ0LX748B5tU8POlnbZosDL8bzafpVSKAuDplm4+XzOpaBKEIgMyTEFpnGEkBJtxXODvTgxOuSjCtaqkoFds7W0v84OSi0heUxs1oKL4Et3ocspYxmwzEK8R4q8+6UQaCvikewcsro0Ynt1BWsdA62aDbquwzjO+T0VqwJcAJkbTC6e8xb92KNtN/jmm2/QXc44Xy74/PSA0U0MvEgCARQ9GWPw/W9/i8fnJxyOB0gj4ZKHSBJSCOyudkiRKm4fA5TREDmo0XsGfHKeIRDnuDpBQuTsJSEjpFJEDI5qvJQ4S8pookIbzjoyY89bLoq8d0QnRZ8HoQUD99JXARpZ/as0RVHIzh8uPHkvjeOMEFnr0/0YMC9KcqkwTBOxLDFmrn2RF52/7tevHvDFlOWcefNwuVxWZhsfXIPT8YR3797lH8ii+lmsc/KvGjamzKmVVyQEix5GjHP7M9oZx8sZzvOAX0CcddNAJEqlRb7EFoVHmxkXV/s9zuczD+3ELUISJX785Qs+PzyiMBXaTQslFW5urvH6ekYIEdPEBN/NZoPT6cQD//UVSzre999/j8eHJ2hDpVKygD+8wqUEoTWGacQ49thdbVE3DaRSeHn9QrtRTtJ1M9WBKvu+fQyo6hpzSLhcLiiLHIKhzDr8YFPGKbGQEimmVVUo1RIlvhRsPHAXu+0SUU5bcVz/uSVEYxnMLIMTY8wqOQUIdLazgwvAPDtA5GS1rJRDlvbnvzgf5gJlUSCkAESL2U74/DxASw1lVN52pJXlh3xILsEq82zXw2yaJjw+PqIoC+w2O5RlidPphPv7d0wA8zHL9RV85MG1bIIWC5/EouRhYVE3NZWQMmKcZkzzROhzDoFQuWkqqxqcUZERsDTXzjkUhhbWm5sbnM9nNsGGce2QJf7yyyc8Pj6jqeoMURaotjt4/5qVDhbXV9frszbPE8ZxWIeZH96/x9PTMxuQEJEcbVMBLFL6YcDFO1zfcAittEY/DGzkg0fTVHh5eUY/DIRTg9bdqq5hfULXXZgyFwK04CHpHNVOIjMcpWQAiik0itKsm2Bu0NVqCVqGpkt6NoMpcrGtOICIeEvjVplR9zYsZDNiLQMNYhIYJwchFGJ8KwjzuZrfBRZRSgBFkVOYrUMQwMvpwELDELysZebviASRqFLSWmX1XVzfmbIs8fz8jKqusd9fo8rD+IfHJ1Ql2Uf9MOamTEAiropHlS0EMSbY2cI5Kk6FpA1rchy4TNOEU3fBMA3cEglaPSGQ2XA59TqwEPIpcZtpLa72V7DzjGkeabcpakzW43zp8dPHj5BK4x8+fEB3OePDh29wOffrIGm/22G332MYekzDgNeXA7Thz0tKBVMUuLq+wiWnI7usvJaZi5ECt+FSAiYYXLqBgPZxxH63w/F4hM/KGCEFZjujqitUdYVhmnkfZFVoXTf5nmDBsFh/+P+Rt9RhfdeWy5yA5BHeeXgvIGQJUxQoxKLO0nnLx0YuZnsruUESUhkkHzHbgNlm2HcSsI4NiVqUM/muAcAUMXBoopVAUxloLdD7AAGeL93EwBRuDgW0ktkGPa+qbZW3elQRCrRtw2JqnvDu3T2STrBuxsePn/Db77+FjsB8uOQBEBCz5WAJpArBZ9UyF0JaaiQhgBAx5sFgP/ToxylbLjNrUJusQp0yX4TDrBRzGS2p4NhutxAQmMOMpDSqskbXjTgcz/j85QkhBvztu3eIIeD29g7H4xnWO7wejri+vkaT02inEHA6ndeE4HGc1uTmw/mIbuyZjmsMUpQYphEiMgn16eUAAaDvB27M5xl15mS+vL7icGbAA+1ZTDPn4Hqg1UUrlFl1bJcGQAqIuFjgGbQCsTClAhZrPGTCNExrbaE1h8JKFzxrluVE9EAeyMUEFCWHbFoViMljnkNWu1kqRT2HWktwkJBqbXCMJnYAoFqhrSuYQmAcfeauScyWzf+6TFAKkBrWzmsQz5J0j8ynLMsKSvBOHieqeptGIGZ76C8fP+Fvf/c9jocDJmtXpQ5AJWxdV2+WyRAxT9PKRE4p5cWLwKW7YMhqgpAHT1qQpQoA5/Mpv18JKkOrpWSqtBACWvCsDJHJfEaX6LoBh+MRs3UZas203KqsEFPCp8+fIaXE1X7PofY8I3qqx6uygnN8/lJiHfvw9IQIYM6MzBAChmFEqRV8jPjxl49MYZ1mOE/FBn9GwOVyxmUcYEoNFwJcT14cw4TYiC3PnHOeoS/ImJW0KEJzKnNY7NditT0H/6aWD9GjqkxeNsuscyITT0rk843hMtIYSJUXvDEhTB7OelgbEBIwu0SbkeG7T1RBRIqALhgAA5BrvN22MEZiEgyZEYLsoWjjyrGrMj8bKaEbBjSbLax3sHbEbD3OwwCpyUqM3kNLgW1bY3ZvtWaMfJ8LLdGNI4ZpRIgJ0WcFrrUoqxoRwDRN8MFjv93CjqzVKAJITNxEhwguwJV4C7rShkETzluEuMDMyW7mu+8hkkZTN9i0LYMVYkSwDid3gs9DJ+csNtuWS5SQ8Ps//iHjVcq1tynKEpuGisxxGGC0hhHAue8IvZ8nKGPw/ttv8PnTZ4b1TcOqKq9TBSiF88AFn82N7S6rtew8A0qhnyYuj6SCigJSRkRJe2YIKTOPNaATEByUUBBqGeLS7oxIO6NzVOciL0pTIpesLA3VtpacQTa1WW2XBFKItO1qjZgbeOsDzzjP5Z1zcV1ehMwyRQBSbmgVErQSUIIuCK01EgJZ3onfX4zko1VNBWUMbAiQyDzkps5KYPYqz4czZjvlP5938NWOYWYMWEiwzkEhYbNtkGKEFEBhNA6HF6REDt8w9Li7u8M4jVy4hQANTaxLYfB8OOB4PsFlfITPTivWpxysihycBsEzJwW+70YXeHd9h02zweVywm6zxfPrK9E2WiGFCDfPMMsiKSN5GAJIVtvQzxiGDk3b4MOHa7w+k/fXZWyO846OgKIgVggJIi8xhJZADJjHCUYUq8jDOrJBC2Mo2pDseYqygMqYCrIsI1R2fckkUZQG80xBzILFsNZidjO89zBGw7s3KzgWAYgScMHlgLJiXZI7z0C16HMS+ipa8VnpyM9YKsXgAyURIxXc82wRQkBhCngfMQ2eaulg8+kpmT6rAC0YqhkBSMXhXlk6xHhBDDN222/gPMNF7OzILo0M8pgnixiBfiS7LkX2v/Vmg91mA6SIp5cXJDAgDiQgoChK1tYZofJ6fMoCiIjz+YL3724hE5EsPkT+2dB4Pj5nFXqP9/e3WXjB0NH+dIL1Mxn8SFmBzc/YKIXoHdq2ZbhRjCgLja6n1RiZeddUDYzmOXm+nPH8+sLhcVFit93jfL6gKAo0VZMxKlykWOtYe5cFhmnEZRjQjyPiMHBQKSTDRkLIIRcCXx6+4HA6IMQEbwMgIhACtC6QosA4TvzXYCp0TKxPhOQcqaprzPO8Pk8hOqKVcvAeUTpcCojc03IhJ9fenQNi1tR0eJKNl4JfbdoUjyWe4VUFBnBQVCK1xDSP+VkU+RlM60AV8W0OI7Jj0hhibI7HE8pCwbsZRhcM2RNvyJ3/o79+PcUv8kMojIFKEQoJ/TBgd3UFHyOkKTDODq9Hsk1enmk5lFJjnEZoxeKYzQmbNj97Du8yN2JhYMUYcTifYD03X/mcJBhREV4+z1MeLnEDE7yH1BpD36MwBVKgwgoxoW22iAH49OUBz8/PcMFjt91BKYndbpetjw7PDw+4vblFoRlF771H9Nwq+xiYeinZxPfziJfjAQqCSrtE63KUtJj+9OkLUzaz1daGgDDNuL2ReHp+xGXoIQsDaTTOPSfWbLTYODRNAwEOKIahB6f6arU/cGsfcwMc1gJSa0LDmXyVh5sr5+pNcrpsf6WQkIkWi6Jkqo3SBpNlIm6KwGypwHEBmB1fEIADMJm3wUoBSuagARex32/JZZo7SEE+kI8RERFhpvpmST8N0UIKWk+8ZypV3WoURQlruaEehhF13WCYZyTJQvzp+Rnv7m7w8eNnuJxWMw4DTFFgnGbUTQWp+L15aymt9h5SSdiLy3aNhNfjES74VWYtc7JpWRZADLmgIncMMQIhQmROC336DkUe5Gy3W0hp8OXxCYfDMTPdSjjnsdtQdTLNM54Pr7i7uUUC8PD0uP69ZUEbsbWE+Vs74did8Xo6QisFrQW0KTFOLPbqpsaPnz5hnMacouxgU4AfLW4ScDid0U8DdFGgrCv0EzeGPnLj64JHsyE4WCkJ69iQKMHPOCX5tg3Klr8lQEIpbnenaVw3Z0W5bMUTFraAz7Zp2inJvtEl5fSQguBlHzDOlEKnhKwmilBa5oF2hNQaMivxtJL8+33CfreFUoC1M0pD23aCzIBtqjbquqZKKSspiqKADzN5lqpAVZEHN479qjiepgHTNKOqSjw9P+M//eO/x+fPXzD0E6Q23G4aieE0YrdjAiqkQAopP2sOYZ6wpE6bsuAg11m+7+DnqqVAky3cs5vgk8MiHqNygRZDkQA7zUz8Lmvsd3vUdYuXDF8uygrGaAwDFwnTNHHgcnxFWzVIiPjy8JlMIkXWoo8BYz5rpaCV8+V4yEBfoG5rDMMMh4BCazy/HDDNI7abLca8fSbs2UJJWgVs8CgqLjLOfc9nTbJwoRKRkPSUfN7+vr13tB1k2423q9V+Gf4tajZTaABpxRN479dlANWgS4OdlR+5yhrGCSEAYZrZ/EZm7I0T7ZMi8/eUkpBaMOFMy5UxU5VFfu4c6qqkHVAkwswThzxNU2eWH4M+lBJQRqDvByDlsJXi/8Pcf/VKtqVZe9gzzbIRsU2aY8p0N8GPlMRb/f97CQJ4IZGSiG5W8+uqOudk5jZhlpteF+9ckYcCJBAqXXzZaKC6+pi9I9aaZrxjPKPhNl3lcq7tnRt2PB7FCZSL7KeXS50i1rb0ehDfuZcacR6klFm2Cec8PkT6YWReZzZX4zhKY7UI26dB2uBW58QlGgsajcVgMVLKgiJ74YqehgPD2DMeBi5nz/V2FbxFZZdopZimmWmZudxu2NrU++XlhkbTN7Xso7bx9f3Aahyvb2/clglVRcucE3iZelqteb8I2+ruZq57mp883dAzrQsJiQ3FEGvcUniMuhZrdG1/dwzsl5m9WGN3gColh9W7c7leKkIItRWuBUzFLCRC5auBNJ+qe1uvRGFQhVKjfyFUfpiLgrZIRVoBC6j0vfhDG2lE1QY0RoYPSiI4KXqsqRfgkkAZUIXkPf0womv7ZN/JNF9rxbSuxJjJShiBrbVQMusqXDZrDe/vb6ybiPNh9aSSeL9d5KJoG1IpNFaaPI2pzcIp0zYdTdszbe9sTjAAscAwDOKWzkHOBPd4pOL0IC6q2zQRkcuaRtF1vewSKt8vBAqJwTQ1IvT2/oo2MB4GDscj6ExnO/76t7/zdn4TQcNabtOEc66WJfUE77nVqNRtnuVycn4jRuGgdaaTaJoPWGNZfeC3b6/ElBj6xOYFeeBrs+MYB7YYwGgSiqTU/SxmbCFGsMqgjRRc5HoflWdO1lvD7o4XJ5w21fmdM6WYKsQnurbFFGFUxig/4zAM4mhPUaDgSbAEVoszuJQqIodCKZrgEzELi2mPqvna8ii3ToUx4l7RjeAuBDUvZ1mt1N0RobQ43YL3tF2HtroOUA3DOBILXKYZrS2bi/gohTGFIq4HrRmHkXFUuBiZp3fG4wPLMgmbcV4x2tI0CtsIkzhW7IqYASxGKeZt5eX9rTpnqiOsyKAGFMZWPqEx9YJnuV7P5Mpd6vteBjFZ+GuNtRwOJ7qmoWvaOjyUveLL12/kEtFK1nRQ+BB4fX3ncDiwzCtdLVXbsSrLtlTeVMu6Sfpocdudi9oaLW2lKbL6jaLBJxk8x1WEzd3hg1bi7s5Zvjct+5C0kYrnN1e0yNDKBd7XEi4XXX2HRFgvFVexD0i7riXmIAJqEqi+otDYhq6K8UrJ5dpYcRmnKGfkpmmkoTkXyBKJ3DZHyOBjIWVxUPkgQ+VS9ghavfQWued0Tebj80AMns1LWZ+IFwaj5OfVSCS/UeZ3v49GC5sGlUsVX09M81L52ZnOWh5OJ0pJNEbRjlLKs6wLH54e2RmW83RmZ04fj4+0bYNShbaeB5d5qSUIwuIrCpZllnOZbcQBnxNS6CqFS9oaGmMlydW1XG8XFDJYoppZLtcLj0+CvIpJmNBt10oxRRK28jzPd3df03Vc3m8opfn06ROmkZK+y+3Cl7dvwlxsO0xrmNcJd7tKOYtLvE+3+3BZNwZtFJ8rUz7n9N2lVzJbRQwM7cAyz5hO0kt95apKokbW7qzy/yoppoDoA7qIkDx0vUTocyLVVA+FenaJhODoKqN0bz33Xop4tK7JsHrukcEc1YEn8fBUkrBcK7stBHHFSzO0J6TKvC2ZFAsKU5uUdY1aaorOKALjqHh8sCzzlRg3tPpcUTd7IlA46tNt5v1yxd3vNBZt9d0B+/72zvl2reiMjEb2arTi9e3tzpvfE4LiZFQc+46cCuPQkdEsfiNkGVqumwwmr/NCPw0MbUP0MhCZ1/V3A++EaRt0FkSIKjD0PQZF8oFh6FjmuYrnMpTQSjMvMpx+eDjy7eUbKUaOh5HDQcqqul6cvNd5Yl43Qb0ge8PpdGRdV1bvmOcZXRuDfYxglDCFqw4RfSSVWFEBcobux0FwDqWaG4p8jihJXOQkKSttDG1v5Q6uZC8tWf0OHSDfdXSeEGWdNNrImbzkyjVURAqZLOxkDOPjkyA2qgC4F+ekXFC1gDKGULUKcb376OuwVWQ1tZuS63dbigyZJPG0u04lddp3onucDh3GSnx66Jr/DQLc//c//7DA573n8UE+2FyZXDsM+Fqt98fDgbe3N/75X/7My+sbm/M0rfDOcmOJa2QY9gMGGCUOoGWeWb1jrSyctm1xUXLkorvLRt1Z4f5NyyyW3Zzu7WBN02CVvkcAuq67O332Qop13Tg+CNfl8enxbvH95bffmJcZWxuWbs4RUuR0OlGS1KXLZNby7fzG5XpjriUSpw8feHt7A6NZnaPrO96vl9o054Q7Uqe8sV7YbutCMVLdnJMsOCUnWXRqjG8cR1Is94vrui33SJE1Ansv7C2U4l7KeQckx9puM2Ir0Hqvpt8/i91JlYu4hYa2AW0ITpwfm5eIbMxFDhdZwJ1oiZBQco0FabTOtLZU94rF2Iac/HfrcxWCdkag33yNBkiT6e5IkUtBwTnP48neL1s7VybEiF9XfHVZXm43Pnx+5ny7sW6OJotVnv1Q6CROW0qhb3tpj5wmZicMP4PY9F0U27kcwKFrGxojQu11mqqjIEOWy2RjpfFP1QPwoRbCiPtI35kgp8cHfG1UlnYgx1//9ldWLy66GAVWGlPi4XRCF1hmEShta3m7vHOdr6zegYLnjx/48uUL6My6raSuY70KzHYLkbysTMt8/1nfLmdu6wxKDpTZp3sM12otz2QQh5OIJL46POT5vDeVplgXynR/1vYYWM4JHxzjeLwzDPayjb3wZReT9/hv33egJM6x+SDuFKWICTafK7+nkOszQnVByOA3Yg3VnWPpmoacxF5dcsI0urastqDAu1WW9JwkmtWa6tYJWIMA/g/qfrm3tvIpjcRX1wrYbxvLFjzXaRa2RMqYGmPf3yfvPd5JRNvYhul65bbOhOqIMTUqUpDpkqrrWmutCLveE3duThVE26aVKvLqrH04nUgx4uuByXuH2zz9MBBi4MOHpxoXaPkf/h//dxmutA3KfHfHHY8HTB2GNLV8YdlWbtMk7ilr+PzTD3z98pXNOdZNLhwbivEwkrXhbb6x1Qavkgvd1lFyIuQAWt8dOaaRQzFVZBM3amRvGwtBOKJNtc4XRT0Q5Mr2+e7s2/9Iu1Vzt87vjKrdIS4lL/KsW9tSlLRGepdwLhGiCMA+ipi3x9FB3V1LAt/OtE3GmAxIM3hOMi3UFXpPnb6NozgCQvDCA2kEMD72Xf0dBQVwPD7egeDCnfWoOnQxppG9xmiWZWOaxH1ZlMD4Yy2w2Mt55mXmOIxorblOM9NyI6REKoqplkaJfCl7qFyyh3sMMMcok+39WbONHKpypmtbjocjRmvW6ha73W7cpqtMSDM8PAji4Hg48n/7H/8Hif5QOPTSrNcqgdb3TU/04kZp+o5pXbi93QQirjU//fwzl8uF8+Um8fwgAmvXdbR9x+yklMsHYTE9Hk+8ns/46NFWS5wdXZm91bFSX7A9UrSnBCQeJyIARVUYujiw/t+fM2saKILK6Fpxre9FOn53thh7dzXoIk4ZFxzeR4JP+CButJRkkJGKuD2KUr8bKImQ3HWFtsnEWNehLFDompBCK8hFM/SduA8aKWywnSYmX1uTqwOuOquU1nx4fhZxoWn4/OmTOBnrfjocRkFS5MSybWxuo20lajn0Pdu2CLdVKbYQxAXWSznFuZbp5FzAaN4vZ/ncq5Nsj7OMQ49PgWWRtdgaXQcbpiIgZP0VAWjEu4BtDMZofv31V7awCVcz5joEjKxu4eu31/rdadqupW1a+r6vjB2NqxytLXjeLleWebljYf78T3/mX//139iCrNlb2cQpNAzCTF3nu4OqlELILefpRlGZpmsqA1dEGFJGoel7iaTvRR27M69t2/vQKFfnLexxLOp3/T02GEKQS1UdbuyXWnnmYsU/FJoax8wl49xGiJngM87n6rSEEDNxTx5Ub4cqIrhpnTmMGmtLLccRIf57nI7f7VMtxsAwCOPXGEVMAdO0vF6u+NcLbtt4PD3KmVxrYvSUIsOHPWLbtE09O4lbMUVx5n/99iLFIEFcmuu80PZ9hfELs/v8+sJ1OgOCUggx0fYtubr/d3epvP9yoVvnWdp7m5aPzx/l861Jjsvlgt/kvcEalBa3xZ0FHgKpJJ6fRZx+eZkoJfP502dCTDS2Y90EiXK9XcUt4heGYeD4cCJeztyWiViQBEXOhG3lP/76V3wSflNX0xrTPBFzREWRWI2WRlWjNEklqKgUVZ3GxihijrL+OY+lCgcKKT0ppb5n4ugsJaONJdbhekpyf9qbK5USl9R46GRPK1TuXKoFGnL3yHWf9d6LgJtln/YhM2+elBW5aEKoUXKUiHEFEJ+vRBFV5NAnSr5Jy3QegLbG6xIpFRprhLdZMjE6Sm6ru7NhHDqOxyPzsrAsS8VCVW4piufnZ4mQhkjbjeRScD7dm0mHrqmYD43JuwZjOF+n2qiqxD3dNIQoXHKfFkpJTLVxfquChNwDNDF4rP7uVm4bKZ6q40V0gY/PH1i3jdPhgFKa98sby7ailWIcD8zTSmssKSS2dSOkyLptzOtKiImPH594+vjE1y+O9+tFGnSL4Gx0jhQlb/kPnz7z8dNH/qd/+9fqOjKUel7qqyMphLk61bVEkLPsO855lmWRz2xz8uG0sqYLT7P6iZUiRs8+LAshkKJwqBvd3COMmUJy7s5TDs4DMsSwpsE5YcW2rZzbqKVp1hpWV4tbojgcm7YVN3xt+5X25q263ajDxUSI31n0e8nCLvS0bcPQS5vqYeg4HFoKN7w/47Yz2hRyWrEGcVNrYaz3w8Avv31hmld8hqKkOHDoB9Z1EQa6sYQswyrbCI+SIufMoe9pTHMvN1zWFQW01vL54yf8trBphW4azldhYIeS7mfnmBKvr+/84acf5YztHc67+hzbmghUWJXpD1L4o1XGbyuqbZgn0QxSlqbsthWX5/v5wqHrBSVF4dOHj/fhx7YJs3E3KLxc3jCdZdvc3b0dQpB7d8WECCpF3RNAqhorQiz31EEpkafHB9lj6/l72RZxbebC0HZsQe5DXdNIJDyLE9aoQogOsHeBtOsavI8oJTpNTAnnXT0TZhpj6FqDqT8DSniQlExTW9RTSjS9BaO53SYxjBZFUXiA8gABAABJREFUuOsm9W7rNpqmp+tbMcvUtuEQQxWhM5BFKzD2d3dLTft8oqRISIJfySVj7X8BEV1d69RB3VvMcimElMiN8AmmecGYI9Ntrl+yvjNKUoqMw0BBJtsA4+HI2/nMbZ5+12yVuC0zTduyNxyB8ImskQjstm1oJZudRonFvMjUvOs6xn7gMA6kKAcl55w0sNSN73Q6sW0bj4+P/Ou//RtN2xJi4unhRGMbet2jaxNtKRbdWEKMnG9XrvOEDwKw/PTxI8NhZP31F4qSSZO7SSTWtg1FwfvlXK3hnsMwcp6uZM092rJfSoF7fPlwONT4LJhS7f+1zAFksct5XwSF9aUU1Xoav0cGKrcLlSlBrM+xNrjtbadKaXQj04QQIsu8ETOsqwct+fYYKyuriOAiMcfdVVkYR83hoJnnyF4QUIpk5UFEr5wk+iWtxgLrbDtLIWAbBdjKbfseVwEpX+iqAOgrV+l4OrEsC8PQ3dsJbZ2Qj+NQ40ejCA5BFrWmhZfzmwCNK38mkJmn27051miDhnvT47U6AoxSsgg09ecqYBtD1/WMfV8bFMU15IPn/f0dbXWNuYlD9PHxkb/85S+0fUdxRaKLtY1a1e8rB2li25zj/f3KtC4VFi0A6LbrxMGoZDIy763JjbQkXm7X+/PUti3XCtXHiCi3b7hQG3ONpWs7uQTLEYSYvjcl7jFAWRDL/WKxu0mFh2nuorzRBpRcLPq+q5f1+L1BqcbjUhLI+ro5QlSEKDJEilkchFWI2kVrVeplUWWOR8vpZJkmR6nG+5xFZDO2Rn9KoCAxldPDEe88bSfxX5TUrHtfpPa8xj9zFhHv6enpPkF6P184HI8i+t9mllmKWZq2IRc4jAMhaJQAmiSqp6Qh7ny5SP17ScL5ULC47X6IMloOGk0FZS9uk0mSUrRNU2vb5WC8c6mOw8jQdWxKnlFtDF++fBVmW2P/V5Hp9/d3YdI1sgYM40jbNHS1cr6EgNKaxa0Sj3IbLnhKbQAz1uJjxDkvxRLVvZPrVH9Zl3uk3lrLFiUGUdgbGysHip2zx53hItFvKy5s9V3cE3eorocAVS+vVJ6cu2+cbdvU4iEBdhtr5WBXnzUp3xAAe6mcRu8iLmSWLSCw3VgLg/KO7JMDhJJILinSt/DxgzgmlkWityLQRAHr8p27GJTEGI1piSmgTK6bfazuGml/u/9+Ssl+2PegFW/vZ+HHKcPteuH97SKQ474jxMRhHGpDW6pCAeJSKpnb+SIXySzuBw3EJPEUa6XRvjMWo6mu6upc1Yq+64VLgnz+phX+3vPjI1aLCPRwOqGN5vXtzFLbuUuW5/I2Tby+vTLUJrVWt/T9QGMNtpFCpPm2VDFHcb7JuhaiRA2ttWz1ArMXlNyblmNkQIoc5AxieD6eiDEQckRV7pj3G8Y0lJzkO60sLYDNL3fRZBe59qm87JPiWNpjG7uoIuJEYRgamkbVoUDEWIVtemJFOYQQGPuBVDKhCnLStJgELJ8NPnzfh0Q/FEFvF09KSlhT+HAyaBNZFrmsYBQ5R8jfi5BSlnKOwzjIBSJFcvH0g6UUKadQyrAs8nt/Z1cqyPtz1xOziOL9KLFEt628vLzSNB2lBLp6MO0a4WoKH3kAY/n69sI03Yi1qMHUGA5KxHujtSQbTCvzmZTYailR37Y8Pj6wMwZdbfEbx5HHhwda2+4vozyr3rO6lUJP24prcl1XQgh8+PCBZVkwVtN3nTAXU+LLly8Ir/fA5h1vlzNLFSJzdVb89e9/l4hdydiurc/KxrwutKll21aapqnw8J4UI8ZqMtxbwCW2I8iTGKQMIVWBXRohgziSTYOq66BgBmqhmDG1sEXVYa3sw4fDINypnMTdrMWxnJN8lzt7a286l2cDNpdY10BBmGz7JXdf3tTv9tWSoWsyTycDBJlTqAKNJcZQIfzyX0niwzOMIlRaowBpOS6l8Hq+om1b0yyGp4cT8zxLkU8VxY2C4SjDBR8CXWM5X95BCXc2+MDz0zNKb0y3qZ43JZXRtJZvr29cbleygpSTlKvkgkm6OgzF7aWowpap4n4ptLbhh4+faNuOZVk5nU68vr7IpbVtUEUTQ4aeu0vj/XzmcDzi3MrlckWh8MHz+PRA2/d8+Y+/sRfuNG3Lsm2UZcE0mjTP5CKNrkWp6tLM1XlpKLqwbitNdSbvA6tG2eoOFqH194U/Wonol3KkaUwVepvaqivlKrqAtRpFpqSIaiwuSCxUG40P0v5K4n5HENb3iDJaEA/VOCE/V7ljBKw2eC84EmFLiVs0p0Tfa1IC7/filrI/ccJSU0qER9tUQSzycDAM/ca6fKUbTvIdZHvn/XWtrB22xt1VHablnAk+0BwP9wb5ZV0pGHZ7hzQPz0zzcjc97OUeRkk0+A8/fOQ4DrJfpCyuoKbj9vJGCMJZ+/MffyTVO1oI8u9xQc6AVAE1I8P0HenzcDzWe5ekTlz5zhBu6jDo+fER2xi+vXzl7f0NhWI4HEWwnCaKNizrxuo8L29voMBFz6cfPuKc45cvv90RWZnqfO4kTeCDsKTfbxfO0xnnNygKv60SV1eyz8UkrtyUC9Y0lFTq6U3E9MOhI9c9UGkZfErEPd4HZFZZmr0FvOKKlBHsQ46Rpm2IKdxd6qUWVqW6/u2FjiULvqRpWx4qxqQgg7QYhK1sTVPvqIHdCZpLgSralToEOxwP3K4L42BZceKw07q27Wp8SAyDpmtqkY/2NEaBCizLhLWZUiLWiHHheDxQSmFeV1IGbduKAhAHtPObsJWr49DHiK3GCJ+CcE2V8HfH8cDQ9mzrTPDCwKRAY8SRqhW0XcNtdeQcabXl0PeUGgUHQ06Syio5SnNz5a3mIs76zTm6tquFY4L7eXh6lGSbscQUJVKfEtk7NuchFXL99zdtS0aJCGsMbd9zW8T9HteJkBM5iQYg/yN8WpUzmUCuxXBFy89kSIRwqwVpvQwrSpAED0bY6NrW96cOm1uLpjD0La4ylnOSckNtxG2bEmirKn6ko21kcBRCRpCHha7pSDny/HCk7ywpelQWriY0UnSZC0Zr+qajOTSEFLnNt7oWIk27UM1RItQb0wAJ5zeUsrgt0HdybtnRD9ooso+CctO1WCwFKTVVkEKomBgI8b8AgY9qu22qq6LrOnRtZ7tOE6fTI8t64fX9UiHfFl1gHCUORC53YanrBzbv+fL+yrTM+OgpqBoRkFhJirleWM3dAlyAeZ4wKB7GI2Pfy2YfquBF4en5gVZbCpmHx5McxnLCJ3/f2HYG4MvLC8/Pz/gqdjW19S+mhLstOOdo+4Z+6LlON87TTRoDY8Y2La+Xd+x0Q1WX0ngYK1djrZlxsZtaazmeTiK+lO8MphDc3XF4P4hrfXf/WfsdPrq3XO1NWOKg27+cxO/+D2KUw6bUP+f7lEUV7lPl3RmYUmStHAutDCFl1i3i0x59ls2M+gwqqkJd7fNWFw7DSqNXxu6E8wZjmvsFKWdp0ZK1OFHyhrISl/Q+0nVyqRUWTW2+rJ+KVjIdN0pXl2Phfdt4eHgipoXrbWJZVtq2Qedy5+m0tq3PWmI8HLncbvz92xdp40pRnjVrpPnJytSosUbckdbU6WRkdRsGxfPxgXEYCVEivt45Yop8OA10pkFpOJ4OUihQEiEFSLVptroUf/31V3748ccK/22FGwV3uLlzjsMoDob1duV8u1YIuUSKv9V3Req3YTjIZeJ6uaI3ETlTyVht6SovqezfWKYKA/tU9TsPc3+udG2aM7XxTZ4jXxdTce/tEF2lDDufL6XA8TiiNShd7gy/7yKtlJoAd7EvFzlUhJBZt0RIiqx29xS731megjoh1UBrNUPnULzRty3OW4xpavtkqRPc2gicgCbVpU/artrW1Gc/fI+6Fdjjw3k/uDWalPdnXiGIPsXf//4L49gDCm1FUOqqdXtdN/p+wC8zf/vyixxckMW7aYxsTnUCJNFKhUamUusy42ok6jQe+PjxA9M0oY3mcrkIp6hrJe5pNW2dXKEafJK2qT3WcD6f8d5zPB7vgN5QW+jmymjZto1u6Hl+euZyu3J7fZF1LYlAEraVv/79byJYKEXbt1gj7A4fI6U6onYxUQS6TDHCBlEFXBA+R4xJGjij/w66ri5Qaafu5HNOgBHujvcSCQwxoqpLUhppRezbo5V726Z8f81dbNxZV96nO74gpsK6BVYXJLZfIyWgQFVnQW3D0krRWOg7T/Av2KahbR7IRQSynJOsHUa+16Y1NBZyXkEbohOQtoh5cjjQrZaoSr24hRBRRcTKlKVtc5o3rLW0Xc+XL7/xz//yzwyDwL53p6Mw7GTNc4vny7evxCINhTGL6yHn7+/R3tLaDw1Wa0KN/7fWchxGPn/6yO16wzYNb+d3mVgruYw2Rt/3IKV0bUVMtMcDWhl++eUXUkqcTic+fvjIPEtMd10XrlU4TzHRNR0Pj4+EEFi/fZW4mhKuV6Lw5fVFJtQ50fbSnOy9l/bgKAd8XTlAIQaJ61cMwL4x5RxBGWwrjtGYUy0SkL9GKb4/a+X7EMl7V91VkVIhzvtgTA7Pqg5GIrnIsEMhZwhjvpckCAMoCHdOG9wmQhxauEL3eJr6XuCxYzMaA33ryekGBLr2EedkfRLEx+5KjVhraFqJuAMiBJXvDejO+e8OxlLuLjSo+4PRdL24MNqmYa5tfm3b8fryyh/+8Ae02oSntW73cp+2FbD9+8uZy3yr5xKIUUTx7wNAOX9QhzlGFfwqhUQPxxPPz0+oeo6JMTLdJgC6tsVvG3aUWG9M1KIBcUmO48i6bvztb3/DWsuf/vgnnJPY6vl8xm3uHmNtmgbbNIyHg/DbvLTvZjI+BQyGeV1wdVDatsLxTCXJBajIQHlHAuyttKgiQ2ula4Iio608C0rDFrbKY6rRrJxp+p4c6iXIQEZE2v0yrpQmxkzfNYIS+F1EPGb53qTNWN+f2VJdoDuvttQIrXMJ5+K96buUfYWr3Cst+4eIXoWu86R4IZWNvv/AugbQVqL3ifsz17YNTavQuvyu5T0L3gWF0haUoGoeHx6ry1nRHyUWOa0LHx4eAXHpXK+TPPdNw3gY5dlSInKKi2muokqirWv9XFM71ISEnHfk7SbJM7KXzQ1Dz/n9VS7WSsudBcW6bDw/PVenvQhkTdNwPBzJOdG2HWEVrmSInpgFWdH3Az/88AO32xWAX7/8xrwtcmbVUrayOTEdfP75D/z65TeurzO+Dim0tXStuGe/fv0i6YcqTKQURHirrnVpF5X1e6it40YbDObOdspFLvUxxHuErOt64Vmq74UuznkpjVI1+hajuEwLlQUrZouhH+SMrTX5d8Uv0v4uTudQI8bGWNZlk3RPFPzA5iMuJOTIpOR8KDszIOefvjpvD4eWxmgOh4gqnilNlKxomyOlRsuNha63uM3LWhGDoFqUYABAHDa365W1tiVba8lRHLIo5A6mpOjKGENS1HOn5fnx8c7ssm3HersxO0d8P7OFgEIRUuLl/cLz4wMxbMzLxOYDyyrmFR+ilADsgrKGvhYWKTKqiOC1l9lYazFNRXFMM8fjyPv5ncM4chgP9L2wxVCKkBNuunGdJ3Ex5UTTNdyWWdYjb1mdo2lNHTIWqPgjciKkTEwVb1OLvg7NAEbu1aXkO8rE6N3c4SsrWKNLliF5yaCr+9AodCmULPeZrCDXRtKSMll/F6K1UqALKXm6RpBcfdux1DZeYzS1v7sytOW785WJqutasMwzXTfev8dUjSylyL3INm1d3cTl3HUNWhW6VtGYjuPY1jNoqI6yxO0WGXpN1xmO4wMle7Ry2DYz3Tb5p5WICzPL+saH5yeU1szzyv/p//LfS6FdrEKPkihoroOqnV247xe7Y1sj7cKX9zNpPJGip20bRiPIM1XS/Sz0+v4OWktssyj+8OMnXt8Uy+pZnKz319uNlBzOrRREhD8cjizzLPcajMTIaynE7XojZ/DIvqONoeusCFRFWrWLDqSy8XD6gFsdLnnczTN/2+rtSsqUcnVeajSlJHxcCF7MPNP8RoyeD88/EWMhJUf2M9fLF0qOPD58pm1g8zd82DANaNVhq7PUVA4gRZi+MUiZJDnXe1MAFSt301JSkg6GGHC5YV0i2jTshrCdyZqj5+be6Yzm7fWFzz/+gbbt2FwmpIA1rTiFo7jwdNVpfI2uG2Nw3kF91+0uGued8yeinTyjUe6qxhCtcNVTTuQcq1mnqWZEcaqa36VO/5E//7DAtzt5vPeQxSGkKnNNVfcaCA/odrtxGEdciPc4S19htF0nEZ1vry/4JAf9wg7Z1xSVK2eiTvCqyJdzIiziBHg+PvD50yfO57NUuN9uLMsil57NoVvuB7T9YrBPydq25eXlBeck5vnTTz/x9etXYhIQvTTwCFy0aRqGcaTvO17P75UlpXE54rcVYw2HYcSFUC8FDcdDZVMg+fbDKC08ucKUd+fjDpVNteBih8i7GpH9LsB9nwDdQcxJ4MyQq6tPGh53iPn37+x7pFKmgfk+Fdz5dzFmia0FJ7yiKJX2RRkRTkpB/+4ipbXUYMsFsND3EdSVeX3lMHZsThOjZo+rdl2P915aqVpNwVPw9N13aKU4uuRg1TYNzrv7c6NLZhgGsVdrVeNryx3gerlcOR4PbC5UISPSt+L2bE8tb+czb+d3fK6R5izV1S1VlKgW7n0Svk+Wkve0xvLp6QNPtUDgeDjwdn4X8bW18qw15fv3Ywzb9SbThPpdnd/PrPPM58+fOR6P0iCYMpt398ZiW8HcBQHiZoo8I9YQnJeFxjb0WrEFT9/2KASWfzgckOVX0Q/ijMwhQl3Ic90ADLsopzGmqZwKh/dyuDT1QruL6fulWqZsgZyjxF4Rwa7ruvtfIwfGCNj6LOv6jPVs2ybPcUzEIJfgEGKd+io2H8nFkNUOKr3Lkhita9lCRhXP4QjGzMzz3zmd/sDmOwToLM91V8Hc4zjStIaCIxcv7oc6LfFeWowphXaUA7SUMkTIib7vxFmRAm3bcL5OdxfAPM88Pz2ilGFeFnEw1nd3HA+4EHh5fWUNm6xpQaZZ7K6JIuUiSlTFu3ifU8Rqw9PDA89PD6zryul45HqTZiyjDGSJUTWmuTt5b9OtFmSoe1zXB+GlPD098duX3yRa4vy9EEZat8U1db5ehCWClBAJLDtIFFUJ86wxDbtHcbg7aQNd35H2uFhlz0mkS6DDTW02bRppV9xdBnvj436RjXHnerXoYipg/vuww+/Oq8po25/JfVCxs1ubpmFbt/ulNHqBLjsvE9Vc6nQPLReRIt/J7qKyWtG1nUzesuc4wulYuF1f0WaEYklBQNXaCMMoxULbdbSdRakgruWS6Pq2toP6+/DCDKa2HQYRPINj6LvayDjR2Aa3nfFa01hNU4XjoR+4XK81oiKO63EcSTnz+vYm76aich6R9doYtJLDnarfnbBIIyVLOc5xPPD8+Mi2Oo7Hk1yg6wWuMc3dmSQimBQXtJ2US4h7IMmBWmuenp/58vVLBdQX4TvFKK2STcNmAot3pJRxKaJrC1mywiPMCD4i5UwnCzAaeDgeWdeFpmsltjEM9UKTyQoRTer7J3udTE5N2fknOy+WGt9LeCfgfmP0PUmwC/yyF7oaqfw+oJBYfbkf3I22cj5B0djmXv7ha6Mt1uJCJMYCukLtC9/dglrX98JAibRN5vmpZV1+w/tVBIlsiElig10vFxmjNU3bYK04Q/e2NmF6CpMsRRF/Pnz4QIq5rukNMQgmoB86Wmt5ny70bcf5cqNpG8F5VEfkOB5YX9+qg6w2xQ49l9uNaRZmYsoC1FdZoY3E5YUnKQO+oe+AjA8eo4SpNwwDfgsYozgcj7y8vKC1pW2Fkaq1uOJddSacrxcOh5Hz5Z1v377SdVJW1XUdmcIvv/1CzoW2aWvkbGGaJhlwGcNlurG6TeDyWiL2x76TgXARTnHbdpRcRFw0Bmu0XKKbhpwLx+OxFieJgFlSlkibsfWAr+paJv+OooRjJvuhrKfeB/peHOzrukoBQil1//c45+namqaojZQpiVgjwwi5FHu3pzM0MSS8C/fSCm2NnLcz1V2hqrgt+481wmHUtdSg6+SZm2+/Ef2MajtK0nWYlRirkFKKRM2sFRE8lSifUQhy/iyylhsUDw8P1TxRsH1PTJngPLbtqvNXGn3rzLG6UuB8lWHmtm08Pz1UkUFcyG4SvMGyLeJk2sRdSFF0tiH7iNkZtrnQWstc2aalQKLw+PRMyZlhHAgh8FrZk9ponh6feDu/07Ytw2FkXldu88RWh2JFKfpxxLQWnyLv01UQHUoislZltlRQVnM6PbK6jds8y7NS++dSiOi2ZV0WtJLWzrbtRAhREntctlXwAXUQbo29D2VN5SBaY9DWsDm5hO5ROW3EZW4rc0owApmcA7bt7kNFQTAkQQAYQ2M7Hk8PUIfD+vdrYs5kq6trxdwxOTIIiVW0krVinrf7BVfi11DqIKOowjhYZB6TOPTQdYoUZ9b1Da0iqjj6fkOpjpA6CtB2llDPpjFlqJ/b0HfElLldFxSaUhs+U0mSLKq35ecPz3RNJ0NtlBToOYkUj33HdDnTNI+oRvicLsS705AqoN9uM0M/UKpTc9uxF6WIY7hIKdLhcBDRP3hAC/88JSmBUIoQIyjh6K7TymkcOV+utG3H4+Mz27LhlMd2lvk2iTPVGOHTNobipNSuQQQDHz2mEf6YeC+q4FQKGuHGxqAAg20KJXnadmRaN7SygoOikILD9r2weaup5HQ64b0TN19rcH4VlmjRGG3oB2GkrqujaSQR5oPH5Iwu0HcNQ99WF7AMGXLW5BSwytB2HTF6xuFIzJnbrX6Pu3iYd+NAqRzjXOOXcg4sqtShTCPtsF1HSpauHe4mn9OjcCWd20ArmhZ8WNGlcDp02NZgmyT8yJyIyRHXRe72MUmBRfI4NzHPE29vZ76+vHGdHSlL0LyteCCQdSrVgprd7RmrM1tpVc99C4rM4gqqGD7/+Inr7cayrhitmG4XUHIPGceBP/3hjyzTiqZwOpzQamVzF5rWsm5LdVXXpMuuC+Rci05k6Le7yPeW4lIApaQQrXJJD8NI21lynrlc/oOYPHC8YxWKlnfYh3iP9UIhq0jOK9PtTN+NUnQ5vTIvN07HR3LpySny+voLy/SVw9DinKHtHvHuTIie3PVirEFjdCInJzSiZOjbQRz7qrCsC23T0lpDzhNue2cYjmjVEJInKUUKLZvPHB96rBI0gfNeUnzec718RSnP6/sZ0xs+fzLkvLH5jRQXjsdHQk4oJamMnIoMYzVYNLlYusbStg3btooQaLWssRpKFj0ChENZiiHnUEdrkuDprCHHSARa295di1r94xLfPy7w5YKxDcE72sYyjH2NTdXF6HqjqWBTt3l++PQRtUj7mTYy0dGNsMuml0k2ySoyxCg5885IzEIraNumXroacS+UjCkyCRnr1PZwOEisJ0kN9GEYGfsRchHb/LLgKrenaaQ4I+XEh+cPABwOB758feH1/RXQ9P1IKYXLfIMJjqcj568TaMU03UDLQWoYe9p6MfPRk3NE6xbvNxQwjj3LutYLqqvgVlWt0TvMG7GjVjfh7qzZI0Jd190jaTIt+x6dFJC2WEXlsmtYJyni6Lvhu/MA7sKgTIXVHVxsTVMbr6TYgALOZxZXAeBaCTJ2jxQpRWs1XY1ljJ2laRKPDwXvFlJaSPEMfECrAZ88x2NfBQVTbf+GkjWpSBRFIjMBqS8Xi7AxEsXSRte4QkvbimNpXVYa0zDNC13X8/BwIpfA2I9oHF9vErdVSGxIKWk6ikkOxmutyy6A1i0lCfOrafaXt2XbFuEGKilyaBvD5Xrh4elRhIMsUeexHzgdTuQK9J/nqVbeSw7/fHlHa82nj5+E7dK3/P23X3m7vFGKRI9DTlyXGYDHx0dulzPp8sayLHJR0JphHBmGnvfzuxw4s1xkvXPsDMBtE37Q5nfhXaIX+0GB2ii0t5BanVln4V1qJZZ8EdFkcVIKSsoo8z3Ka7uuPqca5251mioiurGWEiMpyaRsF2h2odoYg3fiJPFeorUhFlzIcghA3ACo6t1U0LeGtpEpUd83GJV5OEW8u5HzSo4LVg2gB3xJtJ0wz0RcjDRFV0eOREJyTnKrQMpStJbSgbbvaIeB+TbRdw22sbRNw3S9oYpCZZkGjeMBY0TMfDyeWOYZxb5pytR5mRZ8CsK6STKVyxlaJTDVouQQPXY9p+ORy3SlkGiqkNC2LdfLjeEw0nY9/u0dYxq6puHheAKgH3rWdSGXxLJNKKW5The01nz+/Jl1lcvny9sLbxcByjdNB1oA5Tlnfnz+ifPlynl5Ya+g142wOj9+eOb19U2aFnPCtB0pe1zFEuyTSbeJWNz1fWVPiJhUEncBUmJn0vB6j9FndV+H9gbv3zMalVF07XB3t0CQAcEgTag72DZXd2tTByXeBbyPlcsi/KBQi2q00izb7iAEVXJty5I/TWM49A05C4i4sS2NXcnphvc3rC103aNI7wmMLXJZTeKqiyFLw10W0WAXwlUVdXaeVd8NjOOB2/VK14qjzmgpWVmXlb5r6lBpqPuB46cff2RdF4L3sjdauezP8yQDMq2F61UkdiEN5cIxMUox9D0fHh95P7/J1LsOfIbDwDRN0rB2PPL19QURkRRDP2JVQ9v2xBTqpSLg/MZtEkbRTz/+TC7STvry/sZlurE5h0bcryFKE/bnH3/m9f2N18tFXHtZLlKttXz89IF5mu/CY2sr4yTlCk+u8SlBkDIejoQYsI1gJ5TS9ymtDOZihW0Haf9TAnkX94nCOXEke+9E2FW7cJzrIE3KMkpJ7KVBe7FQqk5NY4Txs21bfRaVxFdi5Uoaw+K2+6CG6r7a/SyttRyGVqbrNnM6DNWNd8W5K1onGuuhL/igySUxDC3r6sSF4D0UiQSt6yY8WKMk+m8MOYnwIsUYlnE8gjLM68rT6UQpquJWdG0H7Oi6QdwQCpZt48PTEyh517z3AoY38HZ5Ay3Pws7ZyZRaMuNlso1i7HuO48jb+4u4faktvsZQYmYYjqRUWJZNhlrV+ROivJ+xxplX56pgcuPx4cSPP/3A5XplnhZuy4LPghBYneNwGAk5cXg48ac//5n/57/+T9Lyuw9RihTGHIYBt20UVQXT6q6WqEyQQTPgkqOxDRpN1plGN1Q/U02jeExjpTSqOsqMVndHx+5WFnyEkgsqMsgQwbUC521D8GGfONwF9VIKIXra1t6Zac5JWUfOWYagWc6BTdNyWxyl1C2uIgCKFuGxbQ2Hoa3NwvD0OJDzjeivbNsVYxKNcdAfiEkTS6HrDa6KsSkGQKN1YV19ZZsKc8u05s4jvlyvzPMsgkh1QuaUZQhGoeTPnA4DucjeoLRFm47bcsZ5z1IdzHaPu3nP4lZpNKzPXGM1Klbnj5a1/Xg60FgrEPXKfdr5wRrhhJ8OB7qu5e+//J3r7UZjG46HkbZr7liA2yyN42/nC5Io0vz4h594f39n/brJ71YKRdcBbCPlcT6KW/n18nY/5xcUyYtRQM5VCQGBqep0MkQXJWWD4jgexBFvKyMvlirgpHonUoLBiHJW7vqeVKRNeb8fJuQzT3XIRHWtlVyFkSLCaEoiioZUBCW0D9tSrPxiizLSylxKqg7hWjJRsvxzsxRmNVYu58+PPd5ZOWuoIo7WzeFdYewNtlH0HWjlaW0mq4DfAl1ryXnDNhu2OTAvhhA1MTiEnRxrVL66ZJ24B9GamLNgAxRsXgq/9r7pddnQg2aeblJsoCQtMHZSZqEfH8BolnUlRk/ftvz46SMv76/S1q1FDH19O2M1UrpYo+CmllV5H8X5W0Wue6Gel2ELCHamZHFAeh/omhZ0wigZDobopeU1K9zscCHUe0QmqwxRGsdLibidT50Tzk00fYNWck9MMaGN43z+ikIzjB9QJDZ/FSRNrM5zBdTW9q7r6Lset0liYjyMxJzwMaBUpm2gtXK+9U7O8aY66UqB4IWhezweauze8HDqcW4iBUfbj6CkdCfFvehAc3x84lZbsMUNXdtyszhKbXVyNba978HiFpUyx/2sXGrBgtL12VbchUVrxSyUchB8B5IwaqxG4iLgwwY50bWyPqcYcNvGeGjRSrO5hWme+Nd/+59lb6oCGSWTYmAJsrY/Pj3RtR2Fus6XzDTfMBacmytr/8K0nHk8/YxWj3x7fcE5aSXWOuPdlWn6RogLjTX0HTwcP5NzYlkmQoi0tZBzN7uoxlA0ZDJTXZvk/CLPQ07i/EwxU1D3e7hzjmVasMoQvKexBe+uvF++4GPm9PDPgiFD3WPcso9IwpKcUdrjtnfW5RtGnfj27ZVtWQS3Mr0zjD+SYmDbFqZlxlpQJrO5Ce835vlGYzuOo0brhjWstTV9pO8fydGjta1lJeLatLbUAcMq3EZjMY1GYTiNB06PB17fbmQjGKwQPUplYpo5v/9G04nYe5tesFZKWYxpoViWdaYoSTfI2U3uaqhMLkncsjrj3FyHphp0ITovBpa6X0vKTcxJCiVpsL2gJxVpKq/pH2p6TO8P9T/w5x8W+Lq+Z902gtvoHk/1C2+53iTe02Z4enwUPkHd8K2VSXXKAiRtuhYfAtO6kiikGsGgig8pC2DVaIPRAvFOMeJDlpiBEmD0uq5yMRlHvn79egfdaxTBhfuEN9TJ1bKtwo3IiY8fPvD0/My0zMJmqXbU4MVdYI0Bq/nTn/6Ec47XX36RaW61vqeSOZ1O92lBKfl+6DI1+rWtW3WnVKGtFcaRro1yO/8iVvDuXkSwO5F2Z5T3coGUSbO45kKQi/UeRdsdDEM/oJW+/3e/P2QKPFiar5Z5lp8zCcsC5LMfhpF59SijIGRI+7RYXq62sRzHDnIgRsfjwwPGeGK4Mk8XlMootXI4JrxzNNpgG+Eu+Soaeu+wjTjflLIMQyMMM6WJBInI6VydWIGUcuXTSZxI2Fry+ZyOR+H3GCXNczkxtMJ929xGq3t8CFyXiQT4ynEy1tRDWIRU7caqMAwdsVqQKWCV4sPHZ7Zt5XB8wFjL69ubNFEpcWcu0yJOnhTvYtY0Cz8mlcSHDx94eH7k9frO17dvOB/xRZ61gLjlVFOftc3x5f1VYLi1lKREL3yaGhsQTpyIB3tr2y4KhxTqtMGiipJJzu7e2Z/dlGrhys7boF7AkEtKFluyRGYyoT4DIiqLo6dtGymfqS6DHYC7X0qUlkuztD9v92cxxO9FE4fjic15bFMwbm/tVRQjom/TGI6HDoW0sx36jsYakn9jmd8xGpRyHI9BrNPKYBuxy6/LhtYG57f75A8Uh0MHSQQ5RXW/khiGg0TolEKaqSX20LYtcQtVBJVSg8WJI+XHtrmz8nwI0qKmFe/v75SSxUlRsjDVDMIuyZmh7eo/2xKCNJihMzEXnp8+SOSpadHaME0z8yzFOmPfs6xzdQQPggFwG/MijBkfIx+enxmPB1zYeLuc5bCuBDCfQNy41vD08IRuDNd5kgOLlk8jxUDbiFBWraTVMSbPSGdb1m3FNIYSssCclRLnELJml0Rtejas24JthYMXvRx+U0zVbSXTTlnzZGgTU7yLKi54do5k3w/YuyNGSqxdFbRBokZG7yysst+T67ooDY+gcG6FVtdNXd+jlCkmDr1hHC3zvGC15jAYUnKsy1Wa2Euk6zzGepxvCQmMlQZK4fgVDPa+sTdNU53U8sMYrURM6jqcC+Jay4WUpJUy133HGC2sj7bl69ubHPSGHl+b3EOIteFU8365sDOg1s2LS6eRg2yIgWM/imvdaqbpKgc/BSEnnk5PMiwqgip4e39lnoXX+fT4SAhRDv3WkMm8vZ/roETYS49PT7JXA9O2cF5uKA2xRIy2+BxBQ1Obbs/XizhKQBJfOZOyOHrFib4XYcnlte9b1k1c5r9fZ0L83pK7O+HatsG5VNlBPW7z8r0Gcb6gEvdCqSzsR+ohbEdV7M5lrbUMjargvDOq9j2biikpZXcNV/ef1eKOa1ratiO+nzmODZosbveY0LVAZegsh0OD2yLGFNrGY1TEuVsVNgptl2j7iNksIchwVCbHMtSR11ZX3mRh7HpKkTiWtRptCiEmjO24TjOZCZUyX19eeX444pyRdStl2QWU5nZbuM5T3WelpECMw+Kkg8y2OSnOqoOTu7M2JVrbcDocxCEzdMzTTdxKCnIuDMOBru1pR8u6bby9veHchjaGz58/M00TVovDa3EbL2/SjutcoO8PaNtyvk3c5lku5Vma+FQtW9qSR7WaNXr+9S//M9Mijq9UB5wKEYCDF1Zozpm266DuhXKpbDke2urcKqgMKYV7GUqpnN6mMaSk6BpLzMJcNEqTgri+QxZBWAqtuIt+YuQuFfGRK2Reczqe2FlN4jAP9d2VlIGc4/T9mbyXQZXEYTjIvretdIeW4AUfE4I4bKb5xtBqDgeJPFpVUCoxtIl1negacau0baQfAs5lNl/d/I04uqQwpFSnuLyvXdew4xaUEqefc4Fokryb9UxbjEIbw8fHZxHkq7v7PK/M60YosIUoQ7+ceXm78MPnDxSVmFZBV2w1ihZzEpcpIloaI5HfZb4xDMJN9tV5t5+Lu1EGGduy0vcd0zzz8PDAUNtvVyexfx882hjOtwtFy5myVQ1fv32TtWpLMlzdy3hiJmYRyijCw8pFhofWKhSG7ngU1xcSBQublBD0Xc+6rZQUAWn29cFjrEKbXB2CRuKyJKwyIubtTdo5450DrYjB1+fI4KKj7zpa28i66DdUElNCRjA3KWW88/Icek9bXdgojZs3bKNpa7OpXJBlrdWm1CKfjpTMvcRQq8TT44hSGdfI+pNrhNKg6WzL0FuMSRjd4X0Up05aRTDePKjEtk30XY/VGtWMaKNpjLjGchGuc9Hi3hLsgDitxGRSz8s5C++YwrYtGKUxtuXp8YjzwjdOMfLb168YVViWicPxxM8/f2KZVp4ejmiVWF3kfJuIUZJRc3CkKK2txgrX+Xq5oZS0boZaQpeSONHlDCnn7r7raTXMy0TTWA7HjpJXvJ8Zj5+Z5ivBJ2YnRoS9qMqlCFox9BZVMhRPjAs5SVz25e3vDEPPh+c/kkOhpMDl8oVp+iKc86EBZXDulZQ7hr6ha8RplbMIz845eScLtdGzCAKDgtWZGCdxJumB1mh8mMhqZJ4zGRkI7983lZUbwhuNTfz662/88NOfeXj8iAmFLQUpawmRVCoXN4Y7z7SxjeCRquPMGnN3B5MzViE8S1Fwq+AsmKWoIikJ7so7J38NDTlFlBIc1t72G2rUsqBpW0PbKHJcgYQ1Dcu8Mo5dZaZtpBSZlw20iI65JEI4U7TG6o6EJiRHDFmSFcXj3Uwub7j1xtv7bygVAEGBzJPidBxE4Gp6bAMxLrj4xsv7f5DzzPFw4Levg+x7uiHniPMbKYNSMuRou55pvlHIlY24Jx0jTQNdZyjVsJFSuesHzm38ti4MXcdPP/4o74WNvLxccM4DNw6Hre41VrjqCRrbIlzElZwDxI15eiGGiet1ZV0nnPNcrlc2N/H4/JmQEsFtWN3inZTC5RoPl3fRkdJNTBhEcnZ4N9N3ilx6FKMI830jjL/sgUjbKpblim0ahnZkXResbTEWht6QYhCHYVnpW0ssG6enAaX2FlzHsryjiuEwPGK6kS8vM20/CtKmSJLOGn1nphclyCpxVYvQaBsjn3WrCEmxbUmSc1qKr5rWgiqVN133SqQvROuCyuL2LPq/AIHvdpuxVi5L7+cL6umxqsVy2BWINby8vpEpuOA5jAIQV2i24KUu3vnqqJIJyP4Bai1q8th1EtdQEgddqspfcsa2wlYZug6jDa+vr5wvF2KKHMYDbd9Jw64CHYzwpW6TiFkh8PDwwLQ58vnC4jxxWYVnYcB2jUAbizRxfvn2G+u6EVJi8/4e/9m5cruoCFSHnFxWtZYI1d4qJEy3ygjcp7RGiKAyvZOJmfcippSa24edxyKtRLu4tfPMfl9ZTxE2xS7qgThn9ovJDuM2Rt8vUUarO+vvMA70fUcIjuGhZ21KtceKQ2yaJlBwGOXAWrJCE+hbxe3msY1FAOSJppfG4W0d8dVRVhARt2lblKJerhQ526rMS4uNFHNkXt7eCVFq26fpxuePH9BKXCEpy0uqjOH16wWXArdp5odPH2QDaCyb98zv76y1QVdXG2yqbrI9pnw6Hhn6HrWLXEEEnVLFBaUUT0/PgObl5YXL5SIC7/FI23dstWFJu43rPHGbJnIFoj9/+MhtWvAxs/og34suoKEdOpSCVKRt82+//JUYquMreHHbWV3LDUT03h2ZcikVQUUupA9yEY1OGtVqW2VNGmCUqm4V0LV9Nud4j4dQKiy1btKHw1jjboYUYo0r5LuDdG8p/f0zdo/hJpl0yDMok6RSuWXGSMyj71u61hKD4/nUM1h1h9IabaQNLWeOo7hUxuGAVoGugzUF2nbncQbabkObjrKayl+SSvqcfY217REXEYBSkN+h68TlVcj89vLCMEskocTIh6cHHg4DKUV8TGAspmlZ1o23y6U2Q4oIV7II6Ou2EmMQJ1J93nJW94bonCKnw5GxH6AUusZWHp5Ga1uZOiK2HMaR17c33t/f5e/vOk6nE9N0o2uttI17z28vr2QZ0fPDjz9JG/iXr2zbTEzSjoeCthM0gk/ybL+d39FXaSvNQPRRYtDIsxZVvMdgjTH3whGgrmv6zsTLmeq+EvFG5VI5ZLa2+Wlc8Oj6qH0vFiqoUng4HqoAK1Gqqs2RojA9cmUCiogu69pWRUZZ2yo7je+CYVud27KuQNtIwc/DUfAFKYOqDEooXK8Tfa8ZBkPfnig5oLSnNZF18SgjB4IQr+L2iBCTrc62jK6uTCnSkDil1optW2iaVn72rFAafvv6DWMF2K5K5vEw8MOnp/uwJxXQtiPEzGWSRjNtLA/HkZxEyN28Y7tIKcruvOhai/dBmDAFhvHAoRPHY2OlcEFYtoZY9y3nHB8en3h/f+fbywtKKfq+r82EszQc58SyLrzVCB2l8PThAyh4OZ8JKZAQx3XMUVwf2hCzNKx7H/C1JRy4x+d31uPuestJ4izxd44rQQBIxMTaVoZAqQjSwshU34VICE64MtaSY6TUtc2YCmwnY+9R/8r5LML5LUWy2jkmchWgzb1cq9QLkDi8xbUiDcqlJHEdG03wsT6H0DXSrnw4WIZ+xB87WSeKrLvv7yIKHkYjawEBmOn6VCODchhctwvD0GI0RNUhDZKFxorbx1pVzwXiGFnXta6VI7bRWG14Pb+jtYi2qf6evRFo99B1NJ3Cl0ByCZ8U0+pYfCSkwpfXdx5PB0pKzOvC5hzLOuODl7hcKTQ1eUDOtNbSNvK59F2Hr1E22XNkyOG9533b+OHjZ15fX9m2TaDjo5Sh7GiR1TvmdeO2rDWWaOnGkWmbMT7UYimDrsgRlAwrpZlc1b1R3PsoVc85EhkvpdRhYBaGUBbu074/WSslUdqUWo5gUPXsWCikXIglkLNl58+WDKVyfbu2IURfo9eaw0EagUOQZxC182xr+U91prRde3dHbdv2XXThu7hdahMh2CqqJSnQ0ZJ6eHro6bqeVB3UuTTVPeyxVjP0cBh6SkzkMtO0kXmRxEHMkWl553RsZG8LHaVIrK6xipSDJB4KtK2l7zvWGmmzVhiRVlueHp8Yh15cpFrxdnmXxETOtI0Rl3zb0nQNyzwTQsRYi1F7XFfKBa63ha41la8tZ7iUM13b3cX4vegvBM/heJASl4p80Fr4dKUUKfvwnuMw4txG17UcDgeWaRbh+Thym2uiSGu2KANDlLC9bNuQnLiExPad73unMQpNwgcpnInZ0BiLqgOvHAWmrptG3BxGs3iPItM3lmzlrKSNwWSD1hLDDcGhVSGXzOHQMrQd3guzWlXMSFPPQQ+HA+PYQYmYLYhDqTFsm0dDXUctGEl9pJTo2w6QuHmKCWxhb83bByr7HadpamJnHEW8QgSmrrE1UilCi1KKQEKrIC7u5DFa0Y89WitsU5jXGZUjymS83xliibaxKJ3ROnE4WNatDuEM+C1iKic76kSs5zlVOeZKKYJP1QVTsLbg3URMC0VtaD3wYE6ElFjmmb5tWZcr3k9A4La88t/+p/895tRLZFVXl1upgnaStb7UPWVvaU1ZBHBx8iWMrftJrocdBJHz888/89uvv0jBEZCiI4Qz317/g9nNDMMnQkWGZFUEtxEjyuo7/kQXh3NnlvnKOBy4TRPz7YXgOk6HZ6DF+Ylvr1+Y5698/vyBlBZU1qSwELzw0SXOqVjdhrsLQhZt2spoFBfk2PdQNrb1HW0yVod6t02CAKDB1IEcVRRMSVx/58tXortwmxfMu6LpNT5kYZqviXF8wgQtw9G6BhoDaFmTWy17idEQQ7q/h4UdL7WX4slZoBQqo1bubWMvZ8XkpUTO1LNZU59RYw2pBIkJjy2qOEKciHGr+9eANdLIvm43Mh5V9vSIpjGFt8tXrI60TV/xFPL3nM8v1QV743r5Cz5e8H5mmic0mcfHR3Q3k+MrhR6tHwhxYdu+cjn/xvn8Nz5+OuLDmffbr/wh/AvbGnl9e+V4fGDbZrbN8fj4JIMFaimQcM4kYm4tOTtK2WRfKh3WdCLeho3z+RtPj4+cjo8EP+PdgokRH1Yu55lhLDw8vGHNgXm+8vz8iVyES4iKrOsrbrtwGFuiX5muE103si3iWOvajsvljecPnwhhZp5vRO/onh5lOKQL3klpFxn6rkXpQiFgjDiFv337z3TNR54//BO5CIYnhQDaM08Xcom0negewUWWeaGxo2C/Uv3OdeB6faPRHd7dcG6h6wRX0BqDWyTxaLXGZkmKpeo4N3LYo9EavReZpVSRHBL/3ZFEKcy4PNN0BzmfFXVnjxaVa9mgpJsUwqZIMYiLtogpbdd7/pE//7DAd5ln5lCwStNbzXE40HUN1rQQPSiDj9JSmEshhCs/NVYKD7YN771UKsdQWU+Rzlq2tBG9iAZj10krT5J2t9vtBgiLqyiZ1t5uN4Y6Kf/27ZuIHMeTsFJSwtZK5ZfXd27LxuQdpCRwVqOYbxPOb/cLr1HCRbI1VrfHCoSFQc22J/pe4kr3ivjKhtpdADvj7/flA6ZOwK015CAbdi4ZqZAHY3rkEBfJOzy8FXaVuOY0RktEY12lgbMxqnJaNH7zFGUJKtQpv7i79sNs3/fCxyqVXVXLBWTy3qBioa8tgYrIw6nHGs3Qa5pWIJfCWLTEkOk6iZtpWuEA5I2ivcDjc+Jyu/BopPrcmgFlW4qSaatE8qQ9Zxg7jG6EkUChaToROWq75eo96XbFoBnbhlKgaXtSCcxhJaK4rRuLD2TgMm0Mw8JhGFjXlXlZWDZpBc0p1QmRhqwocgJm6DpKini3MXQd8zwDIjwYa9HWcr1ecWal70fe3t5omobH6hwNFSSeSuZ8uTFtjjUEyImhH1i2lXVb2YIjRC8xViAGaaHLWl7+PR6U90lBkUtbTPJ8bdtWn4dyv5iXDM1Q3VUlkWqrZ9yZi1ks5HsLqTQqd4QoE6kUYhW+xDGScqBrhaOkUGyxFgBYA1paAK+bp2hhnaQc6fv+Hi8HqmvJ3MWqnUGUc6LvW2I0HGvz2f6slVKwJtP1coAr9ZBfiqVtCsaCwopFPTpS3mrTZmRebhjb0tgerQ3GjuQSsTLqk2cNaVUWZ1SFpFpxleoivFAXI6lOlI79IJMg06CNZUuOLWzEsrIsjpg1BcW3t3c+PT9ijGVazrjgWdZFhLUoJTiNUcQibIah60jes+XM0PcsyyKOx3pA2pu+l9vE50+feH97w1grToNhqGUTimWT6Pb5diWULLEHbThfz/dK+hC9FByxfzc1RlcKoXLQtBE3sVaK8XCSS1QWgTvFSIxRXLS1TEbV6ImUkxRpKIwerVs5mRaJ4RMLSklDcM4Z7zZZq6JY740R8PfY90StaqMdQI0NWovRVtrvUob8vaIekPUzJ5rW1mbUvQRGfs+9rXZv2dXIIXIcOvpOSjtskRIV4eRkTkdL0xiMjpgG3JYIYaUUgbrHFKt7YcPmhabrSAq6TuIKKYpAvl88pcO2sLdbqwqmN1qLiFlkjXk+PTCOHTmrGj8qzOuNgrScpSJC5OU6YY3m8Xji/XJmWVdWt9VDV66uBXErNkYYbTkmpiAc3HX1tXlOiieOxyM+eG6XCyVl3l5f6bqOY23/i7Xl+DqdQRfer++kIk7BnDO3eSIXiZ7HEirnUyKWJRcSGYVwk3xtGtUWKJmnxyMh1HKoktncIi15do8ryN83jBU4TsJYahlVbfpT4oprqI5QIwcw78S5F2NgPEiLr3NS9BJCwCh5VLU1aNOQkei6d4EpzBgMa1jFCXl/3iS2q62qXF1xdJWiahw20vcNPsDp0Av+wCja2ryXdKTrm3pecBxGUzEbAWPBOxF4pnST6bp3aFtwYaHtJsbhICJXL+Ug27Kizd5erivG4/sAMNcBmda2grT7Wp4TMcrw048/o7wjhEjTtazbzHWasG3AVUZfKnC+3Ggby2Hocd6x+e0ed9WV7eqco++7e+lN8CuxZNaUKFkE2FyFxYeHB263Gwb4EsUl/qEKxTuX0kcn6w+Jl/OrtNC7SCawulVQItmjaiSplNrgVw/TSkn5mY8ZaxK22feeI+vqKjdQIo8xefqmr0B+hY+Bw+mIq6VaTatYNlfdE6nGC0cRgnPlLMWNkoROLPy5I1rDsniGsWfdZGBklKLpWjIy0ddKnMIua7mAp51LWgUCVepworm7R8X9p+i6tjp1NUpZ+vZQQeBwHGU/jcHR1v3Eh42xb2jaHqsLSkV8iZQkg9OUorjQjCZnTy4bfSf8K9M2lKwFi9LI/qyrUJ7z9wFoyvF+gdmWlUYplmUi1T2h7XvGrmccB8Ze/t5t2whBGMc///CJt/Mby+pQSgSvy/WKNYrbbZIyCqtpa1wvxEhrpRVbYvLiPitKyRpQ1xJVRXq/bTSNpuhALpHD4YT3m7jyUuTL16+CHwgyiChKhiLSkJrYtkX2F5W53l7pup6uO1FSIfqNXFbe3v9G23ScHj5RyCzLK23TYcqT3I/qul8KImYpjQ/bvaE5xgqOD56kg7R6lloclCIxwOaCiK4lcxhHmUjnxNgZ3HomZSmZ6R6eMcYyz4LNiPXZSkmavFGKGB1aW4zVOL/Rqpa9nV7xnbe+R1FjZWULc6zU4hMR1X1YycWK0JsTOVWXVR1qpORk2FkAEuNBOFTWSOvMfFtonk/E4PFqZRzl/LK6RaLFfG+fhsLxcMAYibnPy0qIK96vkAPz/E7TZHK8sbgzR/Un2uYnvnz9QkFVDNGKC1de3/+GD1f6xvLwpeWPP/0nUBnntsqI7rhcb2I0aUTMislX1rG/D0GLog505Wf0FWNjrSHEwF/+l38nhyjlbErcwus6saxnkjIocyBkkC8UUhI0gryTEt0veWWZvxLCzKZm3t9eWecr003x4fknxuMzioBzUiySE/i4Eio7N2cI/oZuZLi3rm/0w4jWLV3b4vyKblqEq2gpJLoWUlSs20KOUiCnNCjT8Kc//sjr24QLq7jEopdzHgG33aA4np4PbNuV8/kXcjQ0zcjj44l5loRN04gTFSVi7j74bWrywd/TZRJxVNUNH6PDu60muxQ5CTIJxNGpqEWWgDIapbkLgdrIuVRXbFEKHq09MayE4IhR0hfeB1qbWLcrOQdxD1aUkI8z3p1x5ULqGm63lb6xkB64TDPj4YRzZ5w7My3vgKZvO0qRd3zb3nDbTM4tf/j5v2ZxZ+bpV1KeJYKaROSapndu8wsltfxf/8f/M/+H/+6/Y103clEcjx/59vUdmeHL+xa9F95gk8npivO/EePGw+Gf0KrBbQsxL9xuv2LNxtPJcrnMDEPHvMzE5GoTMFwurzw+FG7Xdx4fe3zYqq6RmKbfyDnQDyd82O6cSaUU18tVDAB+Zl3eJR0Rhd1eimAVbCvYkG31zPPGy8sbj08Hut6ybCt7yV5wb5yOzyjTARZUxPmFeZ5oGrnPDcOBkmC6LVi7YLXcB5f1SimOHGe2dWNZJrqhk3NA5e2v60aOgtz58Gnk+fnI6hIle0wrjuO2L+S0YLRiDg6jG4waKRRMq4hxYdsuKFX4MHT13qNwdV9qreAfVBERNqWIFJ5mcVUnwccY3fz/pMn9/s8/3qJbbUBt3/P5w0diFBeHsYbpfcGFiD+/ycVEGWIuvLy+89MPogCvzuGDrxbgetBG6te7obu/9G5d0F33vfCiMnCktdfw/v4OD49cr1fatr3HBXON/UzzzOYdPkaWTThjLgaprF4lq795aSaVCb78eil7tBbmQ4pygdFKo1SUyvB6wblDNOv0YS/H2C9RMl0ttJ0cMJ2LaNWASvSDpWl7pnmtZQaV01Jt8MfDga43pOTr5XwHygtzYHdJ9X3P7TbXUo2GaZloKkvjfiCsn90Oqt/LPYZxqJdmTdtKxCnHgFLSWCawU48qrcDg/UZjYOxHOSiVgFtXjEqU5IhBIg7WyiWdEmk7UeRTaTC6YVrXunD62samKl9GoqC+XtT3tjiqoNt2HZ8+fmJdZxRgmoZpnllDwKUoLgykMe71/Sxg7zp129mL1CglJWO1oR/7GjlR+HUhlcJcLy/iEpLLeS6F+Xrj8XBkWVa66qTam6BRitsy352V67ahrbDm1uDojRaQdJILbC5Sia41oCKkQE6eELLUr1fOUWPFkr2Lxvv/hrCzSJraWrQ7QTNWy2XUO49WDUplDseetu2Zp+UuxMkzLM/aw8OJplGkJOKOUoZQnTb7wTMjjpbpttC2rfyeTt7f+LvPbG9TvTe0VqafuEJDrTbPVUjhu11ZQfAJssYqg0sb1hTapkNp4SAuy4Q1GVUCIWw45yS+UZ9FaxPDCCFlrG1xNZqRkgDL1f1Za6Sowm/3C7zRAvnX1Yr94fmZbZlptOJ4PDDP78yLOLFCTKBl2jLPsqk/Pj6Qi7hAdtSArZdt7z2nw7GWTRTIkVzZXSKS6btoAjBPE13bcj6fUVrz+PiI9551XRnHAb+zWXJmWpcKdJfLrrYGVR0exioytcq+ZJSSsqIUNuECRrCmQSEcOlWEsaS0vqMSdjRA0zTilKkDAhH7E9bu37+UORzGlq7pCS7eWx1DCNhWWFNPTyeJWAeHQaJVWjVSQqG1RHMa+ffM0yqOWyuR172hTMTjgtLixNVK2Eq6gsyNkcIZrXcnrq5TzoL3S41gCt9LYVGloBCnGMhlJviFkj39oFjXUDfkSGcl6hnTSt8/UIBU2avyPNq7EzPnVMucunpZUOLQTlKmg9KUGOnahhQTa0mM4zPL25V1E35fLDXOpyCmxPl6YzwcCCniUxTmXtqjcvKOjYcDXSclO7Ztic6xVg7s9yKAwrquUn6iFfMyoY3hWDEAwXsOpyPKyHMuhTFepvt7HM+AzppUqnOtCN9OANiyV6W4irtZWcgNSkUEwC6ON2WsTNd/V+xDjdDsLCOJjQljyoqhhoisIW3XiJge5PtJOdE2LSVlnp9PtK0Az1UrQ4K26ZnnBZShsQ1d35FJ3K7zPTJYqli6r2v7Xi7Ob/leQ3C1ICEzjL1ENWKg0UqcXzpXx6Gtooe89zVVRNNVZ1mRKW6MK0NviEEGPCEGWqNl4JUCtI5h7HBBLsnOO5Q2GNPWc4G4bkxt53bzRj+IoDkOA10/cr5dxT2iCrpkYokU6tBwWUgpMNqBlGQQYJRgDN7PV6Ce2+p6sBd27CVh+5DHe8fD6QHnpEV2//yS2D04n8+QEsdxICEsQwH6bxQFbdcTl8TmHLdpuXMaa4CYVLmCpUhLvaJQsjjicvZYU5inV1LKNO0RsiWlFWs0Kcrea1QjiAj9vWxNUTEEWt0j/jEGTEm0jQD3XYp0TYPR1UdS12ujDU3b4jbHx89PlLQRwkbXKhSBcegFIK8sTdtyGA44v9Vz7Xf0CdUpahtTfx7Ljr2QYpRSXQO2rlUyvJMy3IDWsj42jTj7KAlVEhqNUcIYVCqRY6EQKcUzDAbvwKHkfeyoQvhG0yyyHm0buQjTKsQoQP34PbWyn3lzkgFyLhHnPUaLs/Xp6VHKX4K4df/2y99prMa7ja7r+ad/+hOX84Xj0GF4Yhk8b5epco4Dy+bujniUtMtP860K9bW4Bil8qo8n4q8rHMYRS2G63Ri6lqFvaJrM+fxG24H3hhQ1i9ukbZs6uCwijhutUaYQU2DzS007RN7f/0bXDnz69C+EKBGzy/tfmZevnI4HhiAOZucvlDJwOBxobFP5gYFiLL6Wosh9RhyIChmaKSLBv9NYg9Ej1shdJAXPsiTG45O4tI1m21ZKydymM9P8lZQ2VucwjebxqMnZ4bYEypNH6loNMQVySYIDsVJI1Bh1H+ilihoqqdwTRW1r670goREXVbqfL+RzSrnuAfW6qI1BVyE2RY8FxtGi1ExMk7iVvTxXbdujlSXnwLpeAI13wpaUYpi696uC8ysxrTSNwTmP9yJmrNsbt+lM9NJiOx563PZGZ5+IHrpuIGaHixeW9Stfvv2FfigY0/P127/z8fkHSobNL/iQWF0gFxHYD4cjl+sZtLgeBZMg+HylpHRLnGwOEIdPTI7bdKGzLU+nB/70x594fftG28Hff72yLI5UJo6HCaVaSta07UBWCqp7NsUrW1gwyOfi3My6rHe+agieEGaa5rG6vCMpJNwW7gV62yalXus6Y2v821qP907OKFsmc8Aig06tFAqPDzcy4swrShGjRO61ysz2hVLkPKh1YXNXDn1PcDPDaFGqr67PhuhXclK01mDopVCoP96TLjHlyk0XjSGXKFHlmCgpE32h7zu0jTTaE3QhZapY1IDVtK1l3TzRS5mcNZpYC8+MaigKtuAh1H29iJs254BKwsFUKoEqNE1fPyvP6aTwfqEbP9O2vSCytkBOjphWtEooFfj67d/IsWdZNePhv8GHq4ifWbGujlIyXd+yxAVtFV2buFy/MfQi2Me0UIpwiMk1tWUdmz+zrYnz7W/8578VYeWajv/l3yO2eUBpaX8tCinQKZFSNmI8s2zfyDmi6DkODcs6obWXZ2rNLGtHiI7tWpjnK/N8YxgbKIkYVpblTAgTIVxxm0SBrYXr9ZVhHHg/v5NLomulwCuGwOn0SIyeFAPz9EqIud5XA9frlWH8TPTC2e27sRZaSQeAMkWMMYtjWx1um3h6euJweCIF4SYu0wUfRJsRjUOzbZ5t9aztwsPhgZBnQpjYlonr9SwoscroXteNsT8QS0IhAwmlIfiF8Sh3kJIjSgUUgRg35uWVrm1JqdB0z5BlcKnJ+HDDGEGS5SLvZMmJtgGlhF1ashgVBFeSGYeWXAIhOMCKAF3y/1YV7v/jn///CHxFDomazOo2DoeeZXOstXmpa1q0ph4UNdsm8ckQPc6thGq3zxRpdVw3aXAbhwruzBwfTqzLQtd2dyfaHpdxzlV+nLQIaSVsOx882up7U+CyLsQim7aqVmuphU81VlWIccWYrkb1fJ0Ab1wuL/T9AWsPMj2KV7R6wntbI7qglaFrFKpt71wMiXjIopsTlBQwttBZS0oFjEx2UoiVdSZsk77tyAVsazgeW5b5jNtmDqdHUJZ1lYNv2/YoDUN34Hw+i0W5JFLItcFJokfCbrH1wpLuEShlxWmjapREIZtzyXtc2pOSrpeTvYG3RmgbTSkR7xBxSkXaPlNSpG065vmGi4F+tHi/obXYdufJkVS+c2farpVJgeRngEwIvkY3u7roG/k9cqFR0GgoWtO1LfPm8E64IMdB6tljlr8nxsjL6zuowrzM92hLLrLI7JE52zS1WUhxPJ1YFhHAcmUrSVN0qI4QXWGbqk4hakGJtRJvTAIsTaWQVaEEiQwVwAdX3WyFdb3S9wcKllLksJeT4/z2hbbr6fsnSsms24X2+IwLHVIOJp/TfiAU+LKI3abR9RIQMVbszUPTkhJkJS1r0ZvK3JDL+WEUpqVpDH2v2dYzyzxzevjAvUUyRJrqbjDWssxrPbgJWHx/NvYoUNPsz5oAgLWq49uSKSUKJFwVrFaoIu4OgdyreyOTxEH32JnFB1eZnAlrM22bCbWsZp7lIrwfjjdzox9G4hLxm3C5vI90Q3+PAEAtZYjyfXW10TDWQ4TW0LcNrVH0xwNai5C0zAvkxNNpxPnEbVnRyqJL4XydSCVznSbh59SGza5tWasgpVSF/tbYQyx8b56t7DalYJpnVBZOVyxySc8VIKy15jpNLNtGjJHrNJPqZX1vtdu2mR2EvbkFpQp9dxKBKG4o5bmcfwOVeHz4kULGbVeZumvQ1Jr3+jmJGGZEMLaGoeul/clHtPKQPa2Rw0DJTurlCyyrR2n5vQ+nQ436eCiBZT4T/IoxLU37gNUt8+zlEhBDdeV832p2d0ZjDTF6jG7Fer+3hOWI1VQhSATugoiXAl/fUQqekCKdkvUlpogt4tTW1tTq+oJKhbaFvi/kvGIqoFLEfeF9ts0IyCRvXWQSbK0R2H6BEEWQykl4TdEHtJEGS7nLS5HQYZRhyfPjA/PtVkucJontngb6fuTL6wupRuy9D3z5+o3rbcJ5d2/pbpqG1UnrcM6ZeZ7kQty0wgxJmUaJWBazHGq892gy/aEn5oXh0JOKI9U4/bfXb/gUqrDqSSWjjOJQXXXibhT3S8qOy/Wdzx//SCqaFCMuL0zXL4S48Pjwia49sm43UnJondFGIlupJLKYqUVcqcJJ3/fkLOus0ZmUNyCi9YAhyXOoEusWKRiU1gx9D/XyGvzCus40Ft7ezvz40x/pmgMTAqsvQN7Kfc8GEd21FZSFDKtEwGisFjGpRIxCona6umuiF7GrumNylHXMB09BsAiyLtSW0bo+yN4D/aA5HBWUBWrsaJoWPnWPFXzdkcuGoif6DNrS9y0pyX7sfajRYCnh8s5XB02haRTLPONc5DAOxBg59AO5JA6nkel2q+7hRKMVnz9IfOZ8mwh727l3fH11zOsqjEhrhYmIMDB33tl9jboKe5bqZGkaKQfy3onTsWswbWZdb3z6+BG3zffB6+v7OynHWs4SQBWssRwPAzE6QlwqpiJzPX+llMKH5z8SkzgebvMLl8svtK2lbUud4r8SjaVtNY09VPRJRllbmbFyZpDGZJmuy9qXSVFEOEyP1ZHgJ4oZWdZI045oxV1Mp0Sm6yvOnSklsG6BH374mb6XArBSIDtHvAv/Ld7LAd9YuVT7GDBaXD8xikiXs8TKKBIXRskQurMNRan7OxJjJMRUI2z2d9H3LE7VAt6toAqHsaHrIiUvKJMwWjPPM+PhAylGWgs5rRjdk4IBLa2BO7Tee9mvJM5XiD5UXEcipokYFpQeUXrgUA6klJnmhdYYfJjZtjNaJ8o5MvSGh9ORHJMMbJBLEyoTsyeTUEbX4jUZdKcYZVhouA/UxemkqtgiwumHj5/48uW3uiZHTMyEtPLy/nem9czDwx9IyZKSukfYM/mOCiolQV7Z1leutzfGceByeWO+vRHbkYfjZ7QZCH7hdrswLVcOh56CE1Zc8kzbSt+NmCagKczbjVYNtO0AqhVXGwEXNjSKw9CgSKxpoqDQShiSprE0tqUbnrhNDmUbliUQUkCTWLcbL6+/0Lay/0zLF1KaSFmTs7gbl3WVz7IOKLXVYCp7stFoVfC1+RUURSVCDPc7WIoyVKpxkBppl0lFQRBGOUVsZRMLwkD+f6iMaTRaJ7RKaAIhrMLjtgZUg3eBcbBoXeg6Uzl9kmZSFrxfGIdBEiXMWHPker2SSyTFC7ebuPFKyTi3oHWhCYquvbIu/xkYaexPhDhzvf6dbbuQ443GjNKUat64za8sauMv//4X/vTnf2JzE8u68vOPf8L57c7eoqJMipLPjrwS0o0UAk17wjZHFCJE3q7fMA+PGDPwyy9/oe0s87xRcmKePLksrNs7ffvI7bby4ePnytvWgOd2+4WcHafDSCmJdfP0XYPzUdzcSvPy9VdOxxNuvbHMVYxGs27CpAs+M7sVXXl+pUSaRrOsG95nzsuNx8c/YIcHVBFufdNE5ukdsqtOu0LJMN1Wuhbi4LG6R6lCLhvR33BqZXMTm1tkzYhypvfRE0NG6GNN5R9HQihSamcUthHXv+xlgjswtgElwltKK/P0RhoGmuZIoxtCFH6x7Zp7jF+KmuTeS017GKWJ3mFQ9VwuKTfdGIxOBCeplNPDkdt15nJZuF5mKR1SER9mbKP48PyMcxspX7HWsCweMszzTAyZbc2keIDyswg/FvAKisG7hLUK50VcLRli8pwv33h6ehYRlVLLDiUFk3Lk/fwLy+rQJpDzyjRNlKy46jOn4088PH4khhnnVxhOrKvj9GCIcbobl67XLwzdyLq9kLKnFMftuvHSFCmoUIp1veHcxjAIVkvKhDKpOOblLAYbrUhJV75xQFtD8HL/P18nlDJM04JzC6eHkWmeUEYwAtvmOIy93K8p+CDvkk+SxHp8PhJjprGKxjRYbclWzuGXy0bJsg9IE7E4XLU2XC4TWlmMqUzrHNm2BedWbtOtFtcN2MYIO/P0wOX9Qtf3kkCJiWVZATgeh5oI6ShklE4yEPAzWgu6pNMnKXTJiVy8lHFqxXjo8dvEOB7F8atkEHqbrjgXGQ+PEuuPkb5tiV4ckTkHcjYo1f3D8tw/LPBprXl8fKDTRaCHasClwLwtUOSC/Oc//MyvX7+xeombpqB4u1wIUXgLIAfnQz+wrKu0AylhM+xOoG1bBZwZ450zthdOKOTDzGyUAv3Q4sLM4gNLbWEpQMrCM0NnjuNIcJqCx/u1Hkjh73//N3788c9YeyT4QimOdf6NdX2FPPLh6U/4sLFtv9E0Ba0/0NiOzYdqyfb4AP041ljYXkcvsVaUZ9uuNPaA0Q0hzuQcWeaNkBT90EmDYnU9xbTy8voCeePr12/8qP6Z56cfUSrjo1xS29TQxIJtWtZ1pWLLMVaRojh15IIkB7BCgpJoraakSNdYqPEWayzBC/wx53JnCu6CaqrtPnLJFvddjIG2NwyjIZWZkKREYZ4Xnp5GjKmiQwrEsBJ9BFoaa2Qab4q0aNZDG3UquAOcSxZBxGrLx+cnTIkylVCF1/d3UFrESQV/+uEHvuo3ZudxPuBT5rrOpBTunEJjNMfDyLwsNchTWGuTKICr/1l5T1svfNq0bOuKNYbDoQccPqyMh89s28bmA4vbcJXNkRUClSdzGAaZlBdHiNs9Bvvlt3/n48cfGMfPpAAxbNymX9m2d1LuGIeWED3efSO0YM0ntB1wXiJJhcS2BrQ6oRRyEa2TWNOAwuHcjdbIs5bLTI6BdXWEZDgcBoySiHIMkZxW3t5eyWnh65evxOL5/PFnQIT4zXnathfH4O8m0DlltJWmxEJmGAbhtoWINeK0aAyokqUSvOQaiW6qsGnuz9fu8trdHkohTCErTU8+bHSdphsUKc6kLHHPbd04PfS0bUPTCN9u21bipqugCm2nEVNQuYs+wmqpLM0aIS0FHk4ntG449h3T7cI4DFzeLwzLyuPTI2aa+Pj4JO4QY9m8RINijry8v4o4VQXUrhU3mETizX2gQSlcr9VmUOMuTdMwjiPLstao7Eg/Gi6Xr4zHDyzrjZg0ad2EzVhdC6H+jmBoG2HkOX9FK5kG3qYX1nXmz3/8b4hRoOZvb39jWV7oh4bet7RNj3dvpKRpm4G+eyDGLHHURn5uEFFbG0VwrsaOpaE1uHfatsOogYy0NfvocQ4OD0/yLtfBS8mZaXpjun1l2xaUbvn55z/RtwdS3lhuC2070rZdhYB/L0XQRqHRoKTZ2BjF5kK97ArPoyhxDJl6SY9ZkYq4n1UVVrTV9XcCW8G32mpZq4q0ZO0xY6U83t0kepQzfdeLU7oK2d4tQE/whabtMLqgaswNI5Nh27Ssi8No6FoRQimKx8dHgi88nA68vb+xbQsxBL68vvD5h8+s68JhHCSClT6wxcj7+UoucL1dKxZgd1JZjDWU7TubBri79JTSqFrkYWzL4+nEt5dvWGPou45+MFyvryR3xcYTubSEKEVUuQoMPnuJTiuJzVhbuE7f6PuOGD2bu/Ht639wOhwxWmJrb29fmG6/0nawbdC2GefOxCjuRGM1GinYylpVJ0gnzFdUFcSjMHOKx/t3lI7oxiOjwUhOAb9COzxgTYNWgi7IJRP9wuXyd3JaWddANxienz7Ls7ZGKJbj8eGO2Ai1CU8pUKZgUQJ3N9XVxR4TS/fGP1sjJzGmGi0uaC1RrXGUCHSKocZxFTu2oxTh+YW4obXFmihxlu1GKYW+69FaM4z9/VzQdZHgEqYTYVGRMSrSNvIzN31H8JHkFV3f0RhhomUyP37+iNaa19dXYkx8+foVrSLawMv7N/7ln/4rlmlhaBp6Y2mM5e1yZYmJWIoUBJRUizIyTTNI6YL+zincL7zcnXvivDsejxQFyzLTtVaEBJOYt6+klytN8xFUQwyxPnNSWpByomlbcU7mILGi6wunw5FlvXG7/UbwicPwCHokhI1vL79ym7/y+HhijD1aB4K/EVB03Yg14jr0fkVpiXrGZKpzs7paS2HoWyiO1b/Sdy05ibgpAmCCImKW0rbGKiU6trmZ19e/kaIjZsV4aIlJ0CXLsmD0wDAMNXZWywt0QVsRTBol74S4vB3KGrkAJGGy5Zyxran4BEXJsmfubZNd37GsGzkEuoppERFd7nm2bYj7v1NHUtqY56ugSoYRgKGWdTi3Mo4PpCSOW6XAqIIiyflRFdqmJ6ZMCp7WGlz4jZQmNvdOKp8Zun/m5dsL2jRyIcyBGGcut99Y/Vc6o2h+yfzv/tP/EXRtBC5SrrUGacc12gDiEkwpsiyyp+YSyaGW4NS7SYhSaGI1+BT4n//yFxSFTx8/VFRO4uXl79xu78QUaPtHYKAUg6Z+vsbUAddKIZPSzHz7Qo4L27Ky3M4E57hdJj59+CMPzyObEyG8aweWZaXvJnGKbAJ9j3GGsqF1IcYLuI7GHujaQiot0NE0FqMUKW30faZpYN1mjLH0fU/wjs722DbSNsIBTSWSyoZpgbQyHhvhzWbLtp4paUPTcTp+ZnNwmxbG44G6gLDzZ5WS0rmUxaEsTL0arW5UjQxK8dk++Ct1nxTgfKipEktWqiY1dF1bYxVbZG1UiOnBx5mcPM7NgjRoGmkIV4rxaMjFSeIJiRZLaimQcyLlwNv7v6PVide3jR9/+ol5fcfHhdu1CqPaklMg+MBmbkS7sS6RcSz4bcG5V3J2WAMlJbRRzOsVH24oPP/6l/+eYm4i9GZFSk8sqyR2zA4TLiCdN4Fcbqzb3/F+46T/RN+1LKsj58C2vrNYTykDm19YtsS83Fi2iW6QuP31ciEfFNfzO6dTK8VDSJx+nl4xBhaTuS1TTdFVhrmRgVpK4uKLwd1F7pQKRkkJBkfDOWamaUEDj08jtjU1HVGkgKsYhv6AMi2kQFERt6zkLNiErh1oDwe2xbPOnrY90A8aHxzOzWzLREkNITkZOi5O3tVcqvjlICvG8cTHp2e2IMYLbSLKJJSOOHehtcI2buwjJVecoUo4d2FzE9ZK2aec2aLE3Ftpn04l0VopWPEx1qRUIidxaoESPqZS98E72UlzrltoOk3JmujBuUTJ8Ntvv2H0gdY+cBg75nkipjf6TrEYWxt/W47HI1o5fv31hXV7JUZhHg/9wMuXL9xuC8uy8uNPH2hb4W97n5jyXN+XeE/fKa0oEUKIfHuRaLm1hmm60vWd8GV1JOeJXBqm+TfhQZeFbY0cDiPT7ZVhbJjnlZQz0/Qb63YhRDnrxhiZlitNK23oD49HYcnrhlYJw7rpOpRWzNNNvpPWcrk4ts3RdS2mFJZlxZtSnYoLSomrf5lX2rZB68T1fOHh4YnGNtyuC93QErysNZTC6fiI3yLaWJbVEULhOi313jCRS+F2mTgdjtJIGyOumk/abuB8vjEcjpwvZ56eT8Qo939rWsbhgcP4gA8bznnc5ompoH2WYXDMbJeJAoSwVZa8l4K4RhH9hFaZGFe6rsfYQAobxlrctnK7XQQ30DQcj5oU5Y7adRofPamWtBQG2k4MQtPtnZR9bd9OaNWja6vzP/LnHxb4TGUKLfPEf/7bX2ukKTCOA//1v/yZ6XqjbyyfH5+Y1o2366VC1l3l+nyPbuwOlv2AFVOs/BxhluiakzZaGtbe3t/IZA6DQN6dn7lN30h8oqQnAZSnfGdNxSINkm2zR2cNm3u5W6hTylxur7Q9fHz+rygYrtcz18sXQrhhGwjpig8b3i0s9o1D32JRmLKwbU44QPZwFyZjCLjN0bSGrlesy4V1e6U9ZUKUyKqAJDuK6iXWlBEHWBI78fn8G347E0Lk9f2vtL1i3ZKwULZEKQ94N98/P60USguoUZrg7J2fUUrCVGeeMdIcqBXEnAk+Vns9lftWaNuxxk+/N6fu3Le9MVgb0DqjdEaVxLJcyTkyji2FiNZNZVNIKYJEKSJdL5ydEjN9K3EoU12GOSq6RlwdMUUOQ3ePFavkuV6vgBwUmqbhz3/8M8s8Y1E8H4801vHNv8vGsk33iy5wj7fmnO6xqfv3VafGEqUSAfvnn3/mt69fyMilOOVEzDfe3v8m9eXNR0KRqIM0nEHIYpFuGkuMGVUKy/aC8wvGWGLw3OYv2Aba9kDKhmWdeH//hnMXfvr5R0rZSHkjxo1pfuHx1GFUxpSVdd3o+5G+7ytAXsSKeV3o+5Z20GzrzLa9YcdATgYQl2XfHTBJ7MVyaHX1olp4f/+Cd+/EHDmff6HvNd4lwNYIsBzUpCQgoZVB11bkosrdrVpKrnFPER2NsdV1ANSLcYzcHTNShNBUx2iFluo9ii7fjwjQEnuDiLGZ7TpRSmI8dKQcSFHYgKhE2yq2OUBpaHthiqSAgKCLRMJB2DptY4VJA7RNLURYN1RMxLjx+vYNbRWv56/885//hR8+PmPrwephHCT+aZUItTHeI2l7wcM0T+ysqh0dsB+otdYiUpTCx4+fcEGe766Rg83mVs7XX7jNv3F6+Cdy7u/P2s55U1qi8HIwcPh04e39bzw9feD17ZXr5Z2cI/P6TtM84v3C7XbmdnvlU/MRlCelTMqe9eYYugeapmBUYd6ulNJhbIcxLblASSKMKgXj2KGVOAbFqStwf2MtQzdyOJ04X1esaXHbRowOozKbu/L29oXDsSOEjXl5YVsvQCMuqJxY161GgeTy1uxOPYpw5Uomhyr8qULRhRTFWSIlDuIcFeaplaFCijRKCkZUdfrubp2Uwz0mZ3ZXVvJoI5u49ysxiSC8rit9GWhbTdfJARoyfS+A4NttwtqethHmSymBppXG3/o6SGMnsG6rtHylyPXbrygim1vJeeHPf/oXVNEEt9Faw7KsGIW0rRe5jJDk2WrbVkDFd4FJVyh6Uy++CpQI3OM4ghLWq9FVRIuZ2/SVdbvy/PzPoE7kUmPf9bk1jb0XFAmA+8a8fEGbI6+vb3IoWi9cLi88PXbEHNi2G8syobS0moW4kJJjWxea5so4Sn93DBshFBoz0PeNcIBUex+StY2itTLp3vyNUnx1Ldr/F3N/0mNZkqXZYkua095GG2vco6nMysF7xeQDOCH4/yeccEQ+PD4QxcqsbCI83NxMVW9zOjnScrBFNZIECJCMCX2QSAc83M1M7z1HZO/vW4vG9Pzxj3/gx+udFD1+z5WPG4lp4T69Mg6aplNM83eUCoQ6zFaqY54XmkYs7yBD4KIlAdC0Uul5r86pUqTGkepnLcePNIetFfCmaSquQ38s1STBK1vlWOVOuSZ2tVbEsNPoSAw7cd8IKdF1ku4qJMZBVyyCfNas1nR9yzLLc/BdQiaVkoxtRLYAGaNlcHa/37HWsq4bJUFInmX+AUrONYqVv/9P/yNKFZZ1Fbd4rSMLa7Cyr4rURH2QuqaIBvLH861tO1nW5oxtGknjlcx0nyTRkzIlK4LfuN1/Y7aax8eGjJyDKMI4zKXQdi1Kldou8Dj3xrr9wJiNH99/Y9sWnAvMD28cHyQR7/1W2x4ZVMLtEyEKk+xwXLC15r3vr6AHjOpprKppzb5+fyTR2HYZHyRNr5Wl6ztKLhzPJ56bL3z7fpVabZQEq9WFEFa8XzgcO2LK3O+/4eMCpeUwnIhJyaWna9BGLpjGSNJf8c58FM6l1sKQM0rqf23T4HZPiurjgl90wWojFbMqftAK3k3UklaPKFtFJFDxBDutTvLnFVwdjEliquTC4TjSD1Y+cyViTU/fd9ynSVJF6r3qGSrYXip637//r5TsGA8DYbccup+JvtANJ3IK7P4Nt73wl1//74yHTHPoeLv9O9f773k4/Z5puWBtw7rJO6OUwun0wO1+4x0voKDyzjQlS3qi5EyKGoURMHqJTPc3mtby/PDE4+ORlx/f0RacW1mWlZjgdBL+3batnE+PktZEhlL7fmPf7vSdxrmJeZ1oTCcG62KwujDNF06PJ/ZtFq5tdLT2jA+JkBLb5lEq0jaWx4cT3u809t1K6tk3x+H0la7pSNmSkwzs7/cXCjUFniXxsS4bRi8MNBWbo7A2MF1ehCHqbxQCSllZ5jct27pgTKBpxrrUbAnBV35ixphM08iCPaf4UVN+55WZUkjJUYrDmA5Ng86GWMMRRSkyIipKID+HFImxSNMly31s92JypiDYh9ryGIYeZRLrGpinytVqLWW5Y05is5YGQ8AH4bKlKDy6X3/771L7To98+XomppmcQ63hZXYfGMee+zRVScmBZbvx/ft/r4sdSbO1TYPVDT7uGLNznX4l+sLuL/z48a903YAxDf/831fGwxea7kSMsvCwuiFnhVaBGO84P6FUZlq+0zQdy3KFEgnxzrbtvLwq0O8JI0eIjuNxYF0dft9YSgYdyGll3+TebK3Gu422a1mXRd7rjWa5zVCKpJiQ5dHl8l2quHXo1GwbQy/1aL8nxnEg58i0LJyfjrjdcT6f+fHjjZwyMWzs4Y2WA7tbybbUlLYWyZ1ucM4LXbeGb3ISq+8yX1m3mZg6+lHuChkZnoYE7x+spm2Z5xufPw8cOkMsSqqQSiQ12/aCGntyKtCMqCIsQHnvR9pWEl0UwXlpnRkPyHdhmrFNhw/C2G5bRdNIgzAmGciEWOCd9ZcKQumpfM/Sil23aIyxPD4+cjqf2feEDwvz9gv/8u8vuH2i6SSt7PyE2yLn0wPX25uEePYZt93QwLrtbFtgmsWWa3RTBUqDWKyx3O8TbdsyHEQAJBIQS0yF6+XG89NDRYlBroIwl3ZKXmWAOa3M0w+0bUjJM/YD27azbTNtc5R3s21Y17u0Ao9n9m3/kEbFGNi2hX6Qe8a6rpwOZ7RRrOuC0ZLGVYDfxVOQEzSNpNyapq+oDBFQeb/z9auYoY1pUWj6fsQ5TwiJvhc/wrZtPJwf8btnmmacW3lIB56eH9jWSUIyGVIo2FbQFN3Qsy4rbddVDJEgQBQat0kjbHf+rzONDNvmuE8Te5VABp+lEuwS/SBoAErmOJ7F5k0hZWkUpqzRunAYW+HtFkfOKykVrD0AMjTe94pzO58kQewdXd+IKLBEILGvdx4fP9H0DVc/o5D3rdHQtoW+0//fD+T+X/76mwd8IQRu10m6x/vKtr+R0kYzWQ5jxzCM7H7H+42SA1oVNr/XocQ7m06htQgjFHLR0kYOKLEaJ0uWhELTNuSUWdZFzIka/O5obc/uL1zv/04iyg8gZVDyQxW+l6HRYnyVrdzEuv1amSGKZV1Yl1euNnM6/oxSLUrvolY38hDb/czmHPseUWrlNC6kvGB0ZF7uUEaGMRLziFI9uUhFWALSnqErMqWff2CspWt7gl/4+vUz86y43XaSUcQUMCqjVYIMSmvOD0c2N3O7/ErBYO3A09MDr6+LmGg1KF0Npboml6yWjUfOdWNRKFlUz+8W5neosm4MRRVMvVBLRVIGYNbqjwGfbE8TOb9XnIXXVUwipRVKxLut9s0L6+xpzi1tJ1t0rTtSKrSdRpuG3Ym9SCoX0tsXGZYMEI2lMh0cqAWrCsGvzMtvxLSgKAx94fnhZ1IKLKtUiqw1bItU3IwWGYukCzLbtsiBI//1kvVeBX0fJjVNQ0yZb99/w20rbbUCg8W5K/fpB6lkzueOkHTdJGtC/TMR9k2uX9wN536w7wtKGe73O9sykULk4fyVph1lY1VZcCEEVnfHOYffI5SdfJgJYQaV8O6OKgPD8EgpB3LpQVnZoigoydHZQrCJZX2lsQ3DcMC5K18+P7I7w20KZAUh7sJOVJIytY3lcJLt8zT9hsLStWeOj8/8eN0w1mCEMFsP94ZIxDS6MgUrkyjJsNNasWNJXa5+1kwjn7U63EspopQM+94HE2JmfedO/jURk1OgpETKO4rMti6SirSGaVrR2jIeLUptdehmKnOol5q1F+5ZyqmmBWUIJMsGqQNN94lcDFarGu3+zh6utRZ243/6x/8D2oCb14/KJFmq7UZrbPdXZt08z1LP1JkQ94+KuNWWohUxJ7q2JafMtx/fiDEyDj2aQtMa/H5nWS+gwXSPUg9UFRxcB6CNbUgpoHICHNvynZwnltkz399YlpllXnh6/MrnL2dSU2oacpDB8DJTcmavFqsQFoytadR0JYQGYzqUzaTcYsyAaRus1uTkabpI0xmWeUJry+Ew1uemxmhNawypHsqU2rGNwqbM49MRpeVi4Z0cAIzuOB4/cbvvpGRpWl2HUpKIRINSBd6ZgvXzk6o1zTRIyiDL+yMDqiipHhjhtMRcTY1ZvvvG1oVFFIENiO23bYxs51SSlJkqGKMwpmWeJ9lODi3gUQifKpeI1Za2a2rNglrxynUQ/P68keHs5XJBKeH1LeuC2691u3rFuWd++ulZ0pROKvBin7TsYaO1FmV0TW4Xlk0g5CgROill0UYGlilXoHsrU8bffnynlMzxcGTsW2xjWNcf3G5vxOxohxvD0JOyRmn5nqr3IUJK5OQwOjFPv5HjzP224LeVZZPayHR/5fOnn1FW4cOOtpYQkwgc7M46z+SMcPFwMphgp+RMyDNtzJTcopozCkPXNpQcQAW0ETmTc5F+6PFBsARaNXRNS0wZ3WR2f+VwbClu4/n5CCpIcDJHtu2OwjKcOvbg8b7Qdgd5KVYxi62yEMhSV6Z8SBWaVmNMwRipFackBzTegf5GSSU7Cwi868ROb6q5LyXYvciRZDhrKdmTkqQHu64h1+XKsqzEqDgcBR2Ss4CnU9jJrca29qPWaJsGFPh9R1AOpi7jhCe0LCtt0zEOgyRqwpVp+cbqvtPYwreXlZ9++onGtiJ1UjLEUbpgDDSmJVWbJkjlWCklk4AqPwAx0PkQhU+ohPX2l9/+TKs7/vj734tQoVP89v0Hy7LQdi0+OrRuyMnQNi2pZNpWvuspOHLxoALL9J0UFu7XDbctpJhY5pl9n3luvrJXa3xrO/ZNRG4pZtZFgPO7W2htlou8XolhBdMRvAd1AGRx1dkGxUYIEyjhLWqdaJIkLOb5Qms1re0oJJousE9XhkNPTBuPj0dQUZJgGrb1jjUdw3nE7Sspt5QiNlUFFYheuZ1JnlMlF0p6t4FrUIF3bmDMwvNJShY8ymiyl4GspKhMHSS1NckD27ZSipJ6ddOQc6iLTcVh7Fm2FaVa5lnA5YfjQEwOxUIpihgs0b5/XoswlJsGlRW7lzO81uD9QikO6wtd23Gf/gnNgab9AzHu3O//hvczOa1AV2vbF27TN5Sy/Nf/9n/mP/393+ND5D7d+cMf/wHvVkQgJkmPmISx3XUGrXZ2/0aMgb5/omsfUGR2v7Cub7TRoB56/vTv/5Wua3F7kqFklrbBdHvjfFZM1yunscWHQCkBlGeaf6OkwDA+8C7cE5Ni5na90TQt0+2V/dOjWCidq4Mz8D5gjaFre+Z55XqbhFU5GNquY7vdsFYzL69o29A0PVr1hLQTjGNzK0q9C9AspWjmaUPTYE1H28oSO0dHjjPb6tm2haHvWJcNayxbivK/0R5rBg6Hz3S0rE44u43JWBvFdlsyIcs5rmtGclaY3pJLYN1uKAqPD19QSKAg7Ct936GytDRI8eNs9b7AhPJx1moaSZNKN0+W9CEEQpwxjSH4xHTf6wBbZGy7XzifTxwOFqUybnNY+1cIfd9ZprCx+yulzLhtrqnSlmVaubxNxCjiNpSR5y6ZbZtrQr/UM0Qk5+bj/Hm/v7Dvnr7XNTU2I8iQjVTgy9iyrD8IwdE2B9bN8/jU4/yNrm3Y941tfWPsO/x+Z/OOUnbu94WuU2irquBNbLVayZDRB7kDFx+43l4FRdNY5tnLmSdJS2G6z/TdIMP4AtM0E32gcxbTGBSGdV0RNp5l3wP9IDXaeV4JwXM+Hyl1/ReCfJdTRYcs84U537heLjw/P5JjJGEISrNtK9b0xCBSqJgCu1+Z7tfK+guy5KlDqK7reHt5YzwcEalB4HK90vctjw9nQkoY20p6uVUEdvy+YUwWC6oqZF1QORODY9/Xej/Utclj6VpVK7kLu7+T6WmbUXikVjNNWw1dREppAFkS9+0gi1g8IUSpC8fIuiwM45kQPcdjT06Red54fFopemJPFxb3RtmDpN7OPVrvaJNYt4WuOzAeWu7Tq7SIbMuG8DZD8BwOA20rY5jj6cx0XzmdzxRUbdxFUsq0rXAK5Y4sLRiUJqfMtG2EEBj6lqbNuP0msi7vsKMlxJUYE8sizGnbCMc6lkzbW9rW0LRiNbZW0tlKtcx3wXl8//HCMkgN9ng6ELII6nYvaKzD4YzSmmlePs4BW8VmpSym5LfLpUoVI8u8opDUXdvIMp8Mx8MZisx5Hh+f8d7hXKhCuHc+XiFF+WeW2QkDNmXK7hlM9yFZmidphj4+PlQvQiSEzHRfaNuOrunxe2CaVqn+1wF0rwZA3o3X6x3bPKFtoVFyD7S2Q6RZCz6saGNQuqHRFr9fyUk42iUKC3yZVw6nTlo5SRP2LAlxVVjXO+M4QJb23uEo2JSiZI5SOPz/MpL7f/rrb6/oGiPg2bDjw8Tb27+wx1eOhyPfvvf88ed/lKFJjnLQaDTaFZSRl9uyrh/DJKV0tVyljz9krXR9WYh1RaDWHve6MXQdP//8k5hiSuBPv1wFXqnu9KM8wDUt2kiVSOsKlo87uXj8fmNbJkLYKUUYMkYZlnkm5YXjYeD1da/JjFK/YCvrtrHvAa0t23qnaYyw7nDCcdll4tu1j1jV0/adbNQJwj0pwoAyZiSGgPeO+/07ORywTYNShRgmlIVSPMYmTNOQU+AwdMS4ESOYQZGT8ALlZfvXOhZ1KCcq5whZmHuULJKERhTXxnSQxTSp60uu0Q2pVhXfLYHv3MP/mHj7ONgB2koCpBA5PwwYA27TTNOdlAPHo3BojJUER4yJFFpKlhec1I7eGWgy2LNWUmNKK8Iug6+m0cSw4MOd17d/I3HjMPb8eD1wGE8iB8mx1gGSVJeMmAXneQXeQZxy6X5P7knKQX5fMYq4IqWI2zbcrjgMA3/4w8/M00RjC3/5dse5AGZhPHmUsqQsm385SWcokRg3QnDktLFMl79+1ratGvEcu79xPB95eV0pGUIu7M7TtjvOObZ1JyfqA6EjBC9bwhDYScDOOH7GmIZG9+ToUSWy+wnhoUVK0exuI0TPPP+gpAeUElNy8BOlimRycbSdJYbA0HUE7ypiRexmKRVsO5CSJGdyrTN0xhBSZV5k+dzkFCV1YESY0rUDutR6JVU9bhpyHeC9Vz5yvTy2bfvx9/u+VzaforXyYosxSs3YFKbJcbtOxCgA+jTtHI8a2zQ4l9h3Oey8G4ffJSi5DuXECCifC1fZocPQEeIqevrrn9n8C10P1znz+vZ7vnz+O3x0gMUHR8pyoB3HoSZkTR2EZ5RWKCXPNmMVumjZksf35HISk9u+cTye+enrJ+b5RttpbveJaVrQ1jAeV/q2x++RoT/IIkQVKB5Yud9f6TpY1wvzfMMZIykp29A0Het2Q6riG94HoncYOwq8uFT2RIK2vdK2T8TosbYQ9pmkd9zqOB2/0vcjIRuBx1rFPF3IpSY14ePCbbSh6xqoKYOcHM69onXPtl3JJWDRwvHrjPye24GmaUmpATXinKPvpc4tJjmIOchWF12HZ0qeWYjlrO9GrB1ASzI7Jk9r3msAwnUNPlUGhiwD3j8X7/ZdEQuoysCS9NLxOHK9LdyuK7fbKvXxBlIvAP221VLJq8IdkKSwwsil9D1NHgLGNJSsKKnQDQ3z+krKNy6Xf+Ny+wvnx5YtJH759b/xD3/3v+U2z6Badu9wwZOy5zieiDWJ/D4I/yvLFJRO6BLrpRga21Fywu8b03zj06dnnh6PBO8k+elXlnXFuY2mX2hbh9sSfT/S6EaeazkS48R0/844WFKamecJYwzLslHQNHZg31em+YWuH5nnGe9XDoeOFGVgE0KWw57S9IMVVIMWy7LC8vrjL4yHTxyHEz7J8krrzLLcasXO1EoHTPeJvhvpGnm/CoNrJ/hX9r3DuTu73+iapnITO6bpKvWTtiXnAWOkCtX3LUoJRqFrMikFSejlgtYNqkqMFIl1u7Hvmr47YW2LSpKIssbWepswML2XdJvY+qgXSXlX5yTPnZKhbYXNu64L3WBxQeHmwOVt5XhqWNcVaxXn08Awjuw+En2QFGA9k5UCOUmaQ56l8nnuW0OKEypHSV2QWNxf8OHKj+//jO0SbTewuh+8vP2Jrul5vfzGMIhR221VvnJ64nq7fZwLBC4vzN9S+ZslR1Ai07JWquK36Q1F5unLmVw8u7sTM+xeqkr3aWMcJw6HgdvtO18+/YwqCbJIgZy7sG0XjsceVGSeJ4ZuxO+REBLGtFyuP3h4fGBbF+Z5oSTP0/OZ3Qn2IYYsn21r6FoFRPrOMK8rOURmv/H49Dtae0RnS0w7XRO536+gYjU2ymLhepl4OFv6c8KaQMxBsBFxYt1WluUqj4D6M7atWPqM8XTtAaV6rJEhgDZdXXQorNkpObHHUNlCjVQdi6YQWdYrKfX03RltLLuHUhdkKcSPQfMWZRFWSibrv6b23p8NOSWyKnSdMPqWdWU8GnCKbfVc3lbGg+X04NAB7LHneDyy74ngvbBi62Ay13OiLJrkvC5SK6mVbdtM2wWW6Re6QZ673l9IWczR0QfapsPtK5kNHy98+/FP7PmVx8cnfIgs05GYDKWI3IFSre9GkdkpeSbEF/Zd0B3H0bD7BCoSw40UCymegMTb9TspR94uv8nQh8LuJ/bdsLsLzo2VJ+oxpnC/XWhby+WahHOnTU1CeU7nsxix086yXAjeVTmFo2msLOiNwtp3iYviPs9oe8SURD8MTNPC/XaHohnHA0ZHqa66rUpqIgURV4WQWRYHGIbxTNPIeXjbZq7XCw+PT2htWFaH2zzHsSWkQEHeZzFLorkfrADky44xoJRjWV6rWdmi9VDPj4BO7O5OyZLw1OqB9/ZO2yYaI7Izo4Sjak0DRkzwMUpiSmtVn4HvVWu5eJM8yihU0oIHigWtLefz6ePZUUjc7i8o9YBzM8HX1peRpUKuEpCX77+w/PEnWqPwWRiz87wAivt95kt3xlrLNN0ouXDbpJJegQvCv2wbNpe5zTPRp49l8LLMDMOAUkaaV2VlXX/jcvszWilCkOV9ToHp9srpPMq7oNFM8w+WZUabTpLvwLRMjOPAvjseHk6C1kCe22HdUKowjL20Iih12Z0oRaGUFc62tsRQQBmm6Y41DU9fn5gn+Swt60qMmfNJcCvL4tj3QIyJcTzwzqF/+XFhPFm6VgvT13kohfP5wLTMoCUpSw3jgOJ8esB7CTgI22ylbWVBPwwjKULfDWxOhi3TtqJ1y7YFopdnWy6J4/HA7ncJNzRyV09Rk4pnGOTc1w8DsJOTMIaDE3HbMs8cT5m2NRV/Icuz4B2UQArQDiNGWfy+4ve53nmTsExVZrAdhYAPnqYpiJn1r+xJ6hkwhIAaZcgUkwcCKe8yTAsREIt032qGwdJ1Z+63jT2sbK7j+flZ7lGL4+n5CWvEyn29vPH74XeCEssK7yPDONZUZCaEVBd8MuDX1hJ2L6x3L6iCx4cHWTRrCSgoJen369sbX758oSDW+pwz6yoL7K7tiSBs+hw4HAZO5wN+lyGn30U41rcHwi7vlePxJKEVJWGZpm0JPjBPM7a1fP36lXV1KGQ4/+XLF9zusY1hvt9oGyMDvZrcTVlM0k3TsbvAdJ/ZthW3iXhztJ0sT4P8OeRcJJVqZcHWdyMpFkLY6VKHMQ2n40hje263iRADTdZsiyOlQkoi6bneJDxzPB4YR82PlxfGQ611B0+So7SkKTuD1h1D30qrKvsaSqlM0RxRdmd3jhR1vQ8G1nVjGGSQ6JzH2IHD+cR8XzgcBrECe0dOIomTpkGpsw9FjO7//eDt/8O//nbJRkq49UpKd27Tn/nt+7/w9HzA+zs/3v6Zz89/JGXP2/WCtT2r3wlxp+86uq5nWTeppZYK1S5i21Ilokok5gzFYHUjtaQYeHv7lafnJ4bxyLZcCCFR2MmlcLsuhNhyPNwY+pHb9QdPj5/rQRFinrjPL6gS6Np32GOgsS3eJfY90XWKl+9/5vifj8zTnXVx2EYxDEW+yAXmaSb4QGs1jw8nxLQjZpjb9gqsjF8GjG5By5Y7pU22pyga28qG1hfmZaLvjrJF0AnvJ1K4kVPGhw3nVtq2IwYotuDjQgzScTe64zgeazwauqah6Mw4KqJfMSqw54xWI6aRNCMktu2OcwufP/0OrRrZ8tVBQJ3QCIevDrykGi2RUec2sWGZmnyiHhmLWCatkUOB3xPz5NEmVzA/rNuVw6GlFNn2CrOq5a/2YIGJag377mtNuJODSIo4dyHGV+7Tr7xe/sTzpxMxOV5vf+LrT/+ZmAPfvn/jdPqE2xbCvnM8nWlsi1a7QNxrfTIlSX2BoyThMKIHGtNjlCZEx+X6jcenR9ruwMvLn9HKsPtAIXOfZkJSnI43+u7E7XLh0+efyDFJelE5pukHJXkO40Aphb2C0oPPzPNG1zX8+P4Lx+ORZZLofttoYixsm3zBvfdSV7eKKtyk7zvctrMsMyktDMNIKQ0aXatQK+s6CedEaXlxxMj9PtG3J9om1LrJjZxkK7m5CdF1N4Q9Y6wMnWJIxFB4emokQh2y1BxNi7aFrhE5iFaJLSasOcgv0hjIO87NbG6me/4dWlmsUSyL/N51zqgivMdUAeHvJi2l/sqAfE/2UYeHBfl8KNxHGmadPWgZ/BlrcW7mdDwQo1TTgne0vUhJYgjEIDR/Y3RlSSZJ2rQdKewkk7ne/o2cZ663P2PbjFIDq3vl7fYLp/Mj//7Lf+Xx8SspF+blwun4SGMN6yoA6r+KSGK1ZSZKvBPjhtId1ohJVlKCr/jgeH4+8+Pl3+VwTU9Kuzyn1p3xcKN9PHC/vdHVZBZIPX6av+G2ibY/o+ufQ2PFxDZNMyllrpcXHh8eBJi/yUW3JMW+e5rG0ncDt+tdQLVGczj2dJ3wN6zRLOuVxnb0/QFFT0w7UXlWt6AQ05kxDblo7pNcXLV2WAvrvpLjTvALS97Y95W+Hyqbo2X3gWlZMFug6wZOx2dK1jifMMpiGkXXRlJe6ExhCwGtT1CUWBptIfiFdblhFNihwSA4CK0UDZaEQHytETu0rgNXSZcr2RRK5A0QWH8sUt3dNkfftVBUHQ7KgFEpxbrNKN3Q9WdSisyzZxgOcsmNiVyr6YIgAO9FDtCeekraKCkyT38mF6m7wg7F4vaJt+svfP3ye3759u8EH/ny9Wdu03fO50e6VrFcNmEP1uGhD6EaFws5XgnhTsbSt1/QumXfN+b1yvX2nYeHjsv1F7xfOZ1PrO4uVfVccOuM7+6ss4PsGIcDIThJgW2vuP1G151IORCCx9oRrSVFG/aA2xaW6RWjkxgTdQOl8uqs4XA4yDNsXvmuCk9PJ/peFitiUnPkrDgezhh9IIRMMZ5tn/D7TC5ibG6bgXXzuC1hm5Guq8/MuOK2GaUj27ZKgmYSUVeIidU5KJ6m6Xh87BnHFucKRqdaeUvEeEPhURl06aQipEDZQgwLwS+gFMfxIAsSVUhho7cjqtQlGgWU2JmtKZQSBKmQgtyalJx/hP8jiaEYI2wJTYv3rg4yFRSN9zv36ZXDaNBRsW4JpQxd20llPwZKUeQiKa51FTaxNS336b9hdMPn578nF8U0/ytKR4raKVnjnScXx+vbX3g8f+af/uV/5vzwwPl85na/8A//8F/Y3VKH4PU7khMxJWxjsSbg/Q+8v9I2Z4b+D8S0s/sVt72xrQtfno9cr1f5/ueOaX6VlLfVXK8/aJuObfnOfmjQuiF6h1KBeXkhxR0fMstyJ8aAGqTauu87CjFexzijspdLXNMhsgVJxnA8EWPmdpsoJXI6D/QV/l6UYponUJa2HVB6lDZCXFk2aSbs+844HEiNYll2cr7TtAeapse5iRg35unC4TjK+UILZHwcR7yP7CGiQqF3C+fzgFLgfaExGaUS1kT2/VoFPBmjTyhlpXKrEutyJ4aVoDOH8UCoZw1ZzA7kAqnEWtFVJNRH1VQEKOkjsS6DuVCB8mJ13FYPWRO8JKveh+gxB27TK8eDAVWEW4liHEZirAl8tLDsOlmk+BgZxoF5mYgp8WA1m5/47ce/8OnpU01AKLrOYI2YskMIXK6/Ms0X9nDlet0pbIDmn/9l4nj4yunhq5ijVUEVU1PJmZwWQlhk+Lv8YOiPuH0Tbm2cKSnz7du/MIwdrqJAcgn0fY/bPMs8yRKq7KS0sru1/n4aVMmkEAhKzh9t23G9TBjTsKyOUhJtttxuN0qVeHifSKmQM7jKehKe4c667jx/esDtM8fDCVUDDU2jmacX2mZkmWf6wVJSkgqaMWybF65e21OKrgvpGb87pvvEOjuGbqdphf1rbcP9eq9McE1Mmev1Sts2DLqnxILGSDoqyyLap4jRTV1KDnIdIKCJWKMY+oHdz2K5NwrVygB+3SZs26J1TVBrCN7J8jghghYlrOzGKqyxNFaRE3WRW8R42nUMfebhacCHSZaYWpYIRst/q+uPlS8Mfddyvf3KMPScjpZ5fiVnYW65PTLPC0Y3HE+HasaW90YpmRg967ry/Pm5GogFydC2Hdu2QdGUDNa2FBSrE25Xzpn295Z53Qh+RmkRMZ1PR7ZtZVtnSYQVDRi5E2jBmexuYt83DseaWs2JGEe0Mry+vfFwkpbGPE/IZV8wVbkUunbA+4WmKxX10bJtglcJUVpVKI1tm7r0sBhjWdeFYexRCoZhIEZXF+cB53aGQ0PTacahESZolUC4TdLph/HEtgr24n0gnlLi7fXC7oXx+W4wluRZ5nq7EUICheBGUmFzUgX99OkTXdtiNJJI85Gm69CqsKwTxrTYRtLnm9twLtbEeSanHkFOWFJEcA6AyOQ2ucvvDl0ybpvpGkvXDZQSaFsjqAxT0NrL3ytHSglMpu0M2SoKDW7zYqhthDGpdVNbOZmXl+98+jRUrl6htZp1vtM0PefzA0Yb3OQAqUK/NxXneeblxwtPj88cDwN+dxzGQw1EZNy2idCktRxPwj9NObNuG1prxvqsEBakpPTfrdZuXbFGntv/9N/+mT/+8e8YDz0heWLw5BzR2nA6yXA+eOHc3+6TLGoaLdVha5nnhd0lUkicHx6l5r27ypeFbRWzdtd3RC8hj/P5xP1+IyVBjhxPR/R7A2qSZp5Rmr4fZPgWPD8//0ROmTU6Yii12qqqaErTGqn2T9NNGi7LyngYsY2haaR6nrMM7rwPUmt2gW2TM7HSBr9HcpF3k9GWfXPyfFIN2+Zr40zMxqrI86FtZVHlNs+6eqw58fg0gsqEWO/j5j3sFIhxpeDRpiPs8m7tu451W1CmIjiqgCiVhE+egnCt389/bvdSDW/fxa3/f2DR1Tri/Avz+md2f8daSQzte8ToF+7rXzC65f/yf/0/8Y//+L9n3W4ED7/7+b/w4+Uql3UJnFUGUpQpPAve/YYPK8fDH1HqmeA3YvTcp1+x1nMeetbwSmt7NrcQwoptBMQ83X9APrHMF54ee9y2AhFtN9b1h3yg1ci6LkAhJmEHkhXeecK+4fc3yK7+AMQ+pZSh6QxPD88sy8LLywUUnE69/F5yIXjHfbpwPBw4nXStBwfm5ca8TnIgDZFPz59Yl4XLdWEYHG2zEUPAbTecq73uRqNrMkI25UA2hH3Hqx1OO+fDyB4a4e4pSTkE/519u1WeYY82PSlljIZ9nyjZkeMOxWMMlKwkIWEy5Lr5rdUiCphOoKQpiz02lUhCwP4GRaypssa0eD/XxIpsn4dRklcg4GqjbxRG1lV6m23fkqPIAiQ5J+Dk9zRfCBGtMkY5/H7hPv+FEFYaCzlFfCmkeOE2/0bfnvif/9f/I//4j/87YvLse+J3v3/i8nqTgYsqqArtLzpjdAG14PZfhJcz/gFrvog9rETW5RWtHM8PB/b9IjVG71m3ia7W2q63H5zPgWV94ykPhH0DlUB51uUVo8UWtm7yWXtPpFrTfICH/X6vFTXZ2lBUNQEpjkex+k7TjFKF88Oh2qfk4Xm53umHI5+eG0rMULykIpyYhb33PD99YveO63Wm72c+feoI4c663VnXjZSKsBCAeVoBRacrnLgaGWPyHA+xWhNlqCL69InNXSWBWTq0GmQgrAohbZS8keNOKTvaCKC5bQqaWJkEUpkTC3GkG0TVHkKisXJQAaAOy0RJLvFu/24rjnLoHg8C8NYKYvCs6wXFGbdrSlG0pcVUaK0xklRVWmL+3gvMVUIXEyFE1vXXWisPyAyl4PzMffnBtt/406//xLfXf+PLl8/clzeenv837LukIQsFZQUPoEwh54jRnt19x+1v2ObAw/kfpDYcHD5OzPMbKT6jTOF+f2PwA99f/kLTihl0W270TcPurmy7sDR8WDFWsyyvxBC53ATyHVMhRLGetk1HNoUcA2G/k7OuDJvM7jynY49CWCNt14NSlWGioBWw9zJv9QWuGMcDTRPI0eFzZN+FTacUNWUQq1BiYRyOoArRzyzLwnSbOT8caZuG3e3suyTzfNxRqsGYRqyw3UrX6ZrclGdATjPz8iLVsqIwVNNUyagcKHn/AOAaBjQwNPKOKWnDbRvaNGJnz5lx6OU54Re0HmiMIaRc67OBvrOUykvs+15EPUVhrOHnn79wOEjKp20bdu8Y+wPbuop1KxWw0LWtWKSVYBNiqviAzRFCYF7+jG0H3P4bBV8rmBmFwgfHtt/xcWbZfvCv//6vqOZ/ZHMT4wGmSQzUJQt/pJCxVskmVwe8e8PtL5RiaK1A/tdtobDhw5XNHWm7I/flO4k73378AjrTdpqUdhmq5FxBwxHnZppO47Y7u1u5VQyDpFVzrcJY2lNbn78T6wKNUcRYuF8njsehSn0KXdfWpHYQk6/KnE4n7reJdV3IxfHw+MAwZBnQt5p1naQW3jRY0xATxFCIccd7SfrGuHK/30QsohVDN0r6IYt4yscdhamJi0QIC/3QMSqDUklq8Djc9gYkSecpjaavTDQZrDTNe+p4w2hhB489aLUzzRNt1xNzRhcrl4ci301FizFGqnBKPr/WKkzlI/bjgXWe0FpkVJ8/P/PwNOL2G4eT/BpSceSkUPSVu5fpuram7hVoWytXcn4IwWNsYZr/gtIbfX+SC7SWZYpwQzUpepQJLO4H8/qN19u/8sc//gEfI9++WSgnbHOQaq6uG2etoeykPLP7H/hwq+nfIylqnLuS00wId67XP3MYB+7TG3voud1fBbIdA7nszPN3cnLENKOywu8rbdcwTzesNdzuV9BwOB7YdscePMPYSzqoRK63F2LI2Mbg90Aukb4XtMt7bcwYkYCdzgdWt/H4+MTLyxsxeLZtIoQ7TRPk0tQUgg9YK8Z5rS3ex4/aujCcxex8u12EkWkNfd/Je9A2hCjLDzAfQ9oYZ8aDLDMVUQZ1sXJzGyO1Olq0EmMt2SP2eOF8pTTRmEaq5BpgZZkn2u5IypLi7FtLSoE9eKBFqxaV5NliNLTGyCA7wXDoWaYbRhustXz5+omn55F5feVwHCrE3lOyxRqLMlJvGwZBrigMbSeXYGstP35MuN0wDBatRZogz4iNdZ3kgpPB+x3dCVOv63pu0wXhNFnhXgc5C5N3FiyPz4+4/TdQkRSkRfD0MLK6V2yr2bZIDIFp/hXvo0Dwg5gxjS3E3GGMpu9a/C7LnL4bcGXDWkmcz/Md7zeatuF+XWWwO/ZiZ57uGCWfp32XQWeMmbfXS63Qwf02cTyeAc08rQxjLxfyIJKV0/kB53wVzqyEkFg3RylXbGO5XW+s88KXr5+JQWQSTduhlWVbd/pu5Hq78vT0gJjSF5S29MNIPxyI0Uu1zXtZkm2hXkQTcQ3y/nUaHxMGRddZctmhBECSKX1XSMmjtLCjlmXF7w7bGE6nnmCEP9q0ht3tlLyRYmQ4tMSYiSGwbRPdIIglozsKYiU3OlJK/GtzwS84t5JzousGfPB4L8sg7z3j6QgkstppuzNuC2BbdrdjlGboLGFfUSR5XrQt59OZUmbO5yPOeZrW4NzGeOjou57ZzxxPZ45HqXA6t7PvnoeHhtvtyr47jNH1PSzvm3XbsY2lHVpMk9n9St83zLOj6w3BO8EkAdM8i1U77FjTYBtDLgGlM/3QcDj0KCWJrWlamWfHMjvCfiF4z9efPgsyxxpCjgQX0EqS4beb4DNAoQq4bePx4QHvA+uyClolZ6ZpoWs7pnmm7Sx935FSou8lOWityFA2N2NbRYxXclK1xdQRQ2aeVty28/z8CZd2ghfBkE+pSrBkAd+2EjpIUYYt43Dk4fzI9XqhMS1Fg1IWp4SnKUs3aelMZsY6xeHQQYloZUkxMU1XQnR0fU9KE12rmedZUukF+mFgnha0hmHUzPOdxydZsjdauLkxetrGEryjH/qaOqc2rFZ0I+KmxjaoHElxY1sFqyPcf2GzuW2n5J1Pz8+8vv2F6X6h62QA7L1nnmfGseCcCOtiTHR9wzCeeX25sqwty7KSkjyTcgpQEsejcO6NsUzTnf/0d38vw6n6uXPOoY2lsw3zspJSoGlalFbYpiHHjHM7m5sw9hkQHl6MoSbzRtpmIMSddXEitpgmQWzFzL7tQOF4PKCVYug7zHPLr395ocBHyMf7QHfsUAjWSRvhMicyX79+oe07Xl/f6jCxQDG8TiLy6ruOZAR59eu337CmBTR7SPhVBuQpKkGy9R2H45EYHcu2se3SXjodz/LfS4GU3qv+Ep44nR5QKrMtUrlNQX7fRklDZneevu+Ytpl927G24etPPxFT4tdfv3E+PvHb9++obKQhQGLoB4a+5+X1W218qSoNdIiQ5R2bIX/W0nyTbMvhKMGFjGC/ur5jXieWZZH7gzE8fXoWP4Np8S5gmwZTeewKQXX8rX/9zf+GlF9x/ju7nyVxUlLlmml88GQ2drfw8vYn/vlfxSSmVcef/lxAHdFGarcahbUKlSVN4fyVfftBKjvTYjkeLes2Sb2lzLhdsboBv9/ZtRJo4r5yOAhTanczxgr4MqY7e7hLoMgFlnljHAfmea7Gz8j9Lsm6rnKTQnC8vHwjRtG2L8vCeOgx7h10mzkcjux+Y102uk5U0U3TME0zIXh8WNj3F0qWg73bFkAiom03sO9ipVRKE6McRP2+4r1AJnNSPDwdhN/SG+Z5IcaAUYacZDM0TTeOxyM2F6yhXrIjYV9ZtxsneyATUfqEyoaUIsaAKTAeW3yY6LoRjWJsC+jANK+8QylTEjNTLp5CJKZCjhZ0Q1Mr1LbCeUsGklQPC2ICPp1OnM5y+BpMUy9Ksq3sOhlKBu9rPVfLw6DvRf1dxK4co3B8XPhOiHd8kG26UnULLbd3Yl65LxvT+p1/+bf/hdP5gFKWf/onT9c+o5uRkIQXZKwc0FQJhHDD+Qsl7yzbrxwPDatz5ByJeWbbd94uEhWnCBB3DyvH48jmAn7PLJOwz1Ka2d0dbSSt41bHMPSs20rXdZSSud8WuSzqjMYQouf19Ts5C2NhXR3ed3R9I0DYGBnHA9u2sCwbh2Mvl8C+536fZZtDZJq/o0v9/GYB7bdtR98N7HtAYWhaAaHmEnHbgvc7t+sdUDTNGWOEI3G7T2ybw5qWGCUhN013jseDWNJsSykRrTMqO5y70bRnUvJ0/UhJtb5bB86nU0+MM30z0iAXWVRmmmZKUZK0SJKmEs6gDBVLEgaVrp+ZxhSszX/d2oQgnxMr3LfjqWd1b2hthedRCkoruq5D14NqYy1N2xJDout65vX+kRT1XviSr5d/4eFROEo6i7kN9AcvJmXH6/XfWd0P1stG0TJ8/e//8r8wdJ85HD/hq4kzFxE5kKCUhRBvxLQSkqfrT5Tccrt9J+WdECb+8us/8/h4Yt2uxNTjNqlyeJPZ1pnGalJyKA5iK3Mr41Hq/jEllJfaxel04vJ2lYR0TjjnOJ1G7tMdrZo6TI5oLRus6PY6eLaEGFiWhc9fntn2hcNwZF0Ejt00wgtqm5lpmujHrg7DxPYpsoKhpgwgl8y6SvR+nmaJro891tafizLc7jeOpzN+F+7Gvr8yjB02KchOuGW6QBJ4edC5cjw9KZqa6pSUpjWaxipS3rDaMFhDQaoJITiG5kQpplYnBdot3NCIooOiaFvhU2ntiTkJOzJG1mVl6E8oVWhai3MbKLnkDcPAuor9N+cOiiHGjLFyULOVQeecYxhHtJaD3evl3zDdEyhP8DvWashNXRYFYnT89v2/c73/yrx85/trjwhIZprmgaenn0lZEg7eO/r+yL5Hhk7SjjE5SlZMyzcO4ydut79IBSDM/Pb9X4npsQoJhGHWti3H48jrywWj5PB6PJ1Z1gvbOjGqQcDiH4wYSb7O81oTeonr9Y3T6ci6bVJtNZptmkUikGQY+bE4iJJEfnp+4N2UbGyLMQ1GKbxf2PeF6T5zOI7kFP7DRnylsemjIphykmrwdGNdN9bV0XU9yUo7YBgHXr6/cn44CZclRl7f3uj6hhBnks80TSfIhuyheEKUd1/bNhgdSRFyjKzLRC7vKAGH0ZG+lSWJ2zdSXkhJoNPe75VFtKKNxu+Bki1at2irq+RH0svB+zqIXTkdWmKKtG3LssyE6FAmM4wH5nlh7E7VANvgth2bZZFgrYEsEod+GHh4OJNCIUSBub++/cbPPwsHSZ6/Bo1IpkII3KcXESGEGyll7rcXdr9zu74xDj/z00//AyHc0MYTQ8LoHlTBNgsFhzGFeXrD2I7G9lyvvwAF7yZefhTC40lqWXGmFE9OIo643yb6tiVEgYLnEknRE7MMk2IUuP66bHRtx7o4FAbndqZpYhhbuq6laTpCiJWfdSIlOUsYI+ypGCXNobSGQl08NhQkEThNb4Di8nbl4ekkcoq6VlvXRQb4GdZ147lk1m1mnu8EL9UxWxdTuTJZb/eJh8cnGSJ4L4KeviJH6u+pbTU5eyhRZC5a03ZBhi5F2MfLPFEIwmfMsqDtOxks7/tGyhspa4wRXpT3ToDyxkrTJUuVWRtNY/VHujYEj48r67YyDseallKsq9T1lFYcjg9M95nj4QGUpCvd5hAre8YaK2eezTH0B6ztmKeZpjlgTcO6zJJs2+8ooOlE8tDYhrbrK8/7hmulOuXDXpPJGWtbfNpo1cY0/cL1+hdMY4ixpmdL4T69cj71UvdtLdt2Y9u8gO5LqUkhT9833O8Tnz9/oiAcv66VIcXmNoyWAaxCsD2oOmytFteu7YixoI0hBGkgffnyhdv9TZJeWVLsMSQ26vOc+ll5fuZ6vfL2cmPbLM+fT+i24T69QbayqEmFXDIPj4+y3NaWtibHbdPhd+HbNdayrivjOKCU/Pp3N32kY/q+J+yZZd1QWjMeeg6HXnicRQZLxmr8viFM70LfNZWb5QhhQhWFZsDohCqJ4IPUzR9P8r4JO61uiGnnXRTSNYauHckhoFSow18wptB2RsQSwZOLJJWU0RRlKbRELxLF99p3QclgIQQa03A8HtnWRPCCE9p9wpjIp+eeeQ4oU3DecTgd8EEaAYfjyO9+9xMx7Ly9Lais8bsskO/Td2J64nyWYWwpcLvdsbbhcDgxjkNtLEm6VynDcTzTdpacPKrAjx8vHA9n5vud9tMzpZ7XRQYmQiLbWHbnmaapnhX6/2C8Tfg9M91mnh8/EUIU/mgq9eymcM4zjiMlC9urG8TAvcwbu3OM48jxdOLt7VqNtQs5F0nrBRFX9n3P8XTE2obr5c50X0g5ijTj2HIYD2hluPiptgxERKmU5tOnL4jN1TJNwowPlXm71s9XyoUQEvMkbShJJF7kHmFlUXu7vXI8nRj6Hr+7j8bOtu3ovdC2mnGscsWcERFHJ2xvFYjpzravGDVKa2ddarIdnPNoYwX1pZLc9cgs842utSglHPe2kefO0MsiWQNKZRprMVrRtQ2Cayq4uGFt5HK54F3i6fHAPM8cDpKuc9tOP3RY2/L4+MztdqsDrYMwAbuOaVowVmztMhBva6pUuPqmMczbna7tORyPuH2naWQYbY2h7wa0FiHmtm1QhXzbtnK73TiOZ7RGErUVkaCNoQBD39O2LT9+fK9tKMP37y/ymbQNwzDQdT2FTIyBw9gRg7TMxrHHmFBZzoYcCz++/6DvO2La6YeGfugpxQqqqxSeHk6srcUtnh8/LnTdgbgnok8yWB4Gvnw+4X3g7fLGNK+cTiPGGnYX6qI4crm8gSocjwM5i9XdNraGEmSp/OnTJ6ZJhCTT/U7bNlVmJ/XZU9OglLx7j8cTOWfudzmTHY8Ny7ryd3/3D7y93gSdog3rKognqzXTfBdxoTH4sOO8FpdEKSIsKyLziBGKTizLhNEDlF7aoD7w9HQGEt5Htk1mCl++fJUAVEq1maYZhzPLKjO0rjWS4lPmbx3P/e0Dvtv0G7aVA4k1hWHoaqTYk3Pi5fVP8sEyCefuOC/8hcvbjePxJ56evxL8REbsXLtLHE8tpSwUs1NS5D59o+s7tu2GjxsKz+32gtWJthXw+eZW9uDpulEqintCW9mYvV1e8V5sjCEExByYMFqzLGI1TTU1dZ+u8gHJbZ0QKwHQF7k0h1Bf8H7jdrsTgmf83RfQYkFtm4FSDBTZnr++fZcorFYfh6ycPBnQWow5Ssnw7uF04n6/4/ZNLobaorSu0Hcx3za2ly17Cry9vTIeGh6fTnifaZtOWHpGUbJILna/0LSi645lAAr3+4WYvLTQjiKxUAq6ocXtO6Ws5CT68uhlGr9uE31vKTGjGdHY+ntSGJWlprU73D7jdgFZGyuA130XtkZKkdNDx3RfOJ+OaCQm67wnxA1jLWKYCXJwaKQeGEIi+MTt/p3jSRh7WhXaTqLiYu1LvF3+QowJrRM5O6a7XKpUmRgGx9ef/0jYbmK5Mz1+z5xOLTHeMTbjgwDju+7AvjuW9UYprh5SC02rJYmSEzHKoNCayh5UHSFGrtc3QpChsF+mmgSKqGK43+TyHIIMqLbNse8bbm+xxhJjYZok5p0zuC3Q9R0pZW63OylGvvz8GZSo6GOClGs9tW5X10VqvcOhqxcMV0UHLdfrHaMt99ud0+nIvEwf6SmFwZpWwN/J43cv1tPoSTFyeXtjPHQ8P691wNVgjMai2PeF1hq8nxmGI1oFSukwWnO93QlBEoKn80DbSYqp6zo2t5HLRk6K46ElJerW907bW0hFTLWAthatpd6WcsTvO86v1eQqh4BputEnSX5O08rDYysMmhMkLdDo4IWb03St8LFKFBOUbWjaBjCkUNjcjW4PoITrhhIxTYgeaxuWVSzO4OlaqcNLMmdlWzz90JGCI6rAtjr69kgpcgHWRurW0zyh778w9k/M829oLRWz+wTaekqO6AhNa1ido+8HSYMajdaK+3yTaqmmppXW+h1q6yHVkrPUhUScEXh9vYAqdN3A7XanbUcRRkwb/dCisDgnlYXT6ZFlczRWsWwrPiSWxRFiph86Ltc3tnXji/lMSnJI67qOrhvZ1p1xHLlc3jg/nADZxHfdgKKh70a8X9mdk8MdLbfrTEyhvmwF+JxrrF4FAWmH6GgaTc6bDFxUIBUrlrpVwM7LspBOqf5zVdJUMimt5BxI0dJ1B4xWtQYT5TJtFIqEbVpQCecXus6gVK4IBEny6Wqo9N7RDw3Lstaqd6CxHY01LFsiF4VzO63ViDnVVXZJJqciQwCfSNlzu71WClDBeUkl+LBLatBvvF2/4cPCOLaksOH2HcVGYyPH4wGlq0V+ukP5zLqtMrBJK9Zq1s2xbt9orGZzl4pXSNynK92oyTFg7cjxNLI7T07CxlFKcTgcxO57n7FGs64Lc5WptLSsy4aIrBTOSR10HIWdmEvCPDW8vr7Rtwf6oWeeN2y1NQrjRnM6PbCujvFgiTmxbZH7tKC14eExsq4Lt9uNbmjkgorApg/jiZQK46hZ15VlXj8qTX03UE6GYTjg/UYuhW2V4fN0l0tIQQaKpcC2imgmxndzc0BrsXErE9Fa6oJGD4Qoh8hlXmm7RNfaOpx8B2E7SvaEIFZl2xsBM+8LTWvRGJpG07SgdMHts6Q8ERttCJIYC1Gq8/vuGA8twgreadserQz90PH2KrzPEAs+eUkmRYc1BVSSz22teu1bZnfQ2MztfiVEGZZ67zkejsQU6bue+/2Od2IM1orKidO1jjuT8o2YXgn7nW1LjP2ZrrPcpzeMlSaGsZpp+kbXHtjcjNYWbTT3+Y7thZn0+HgmpWoFz5m+60kpyUAyBbZ1oe0s8zxJiq6x2AwxRErSGN1wX+4APD4+49wi54WwMd0nnp6+AIp52mhaj98DwzCgq6Ti9eXC8dSCNdymmW0Ta+XxeOR2v5HLX7mW0iowPDw84fdA34+8vb3hNieDCqXph5FSDArN5gR5sm0bbTNwu0hqTTb4ko6fl7ugXTaB+6fsaRstTQNdoCzy+1QjsUQUhem+wGlgHDoycq5S1Wid007wheHc0RgjQ+GwopTgO2yjaPsGpRLzepOUXJtIpUBNwUud2+K92DpBBtJdKwbWrutYF0nxhJjJMdG2jZwpkcFNyokYZOnTNi1KCa+7QbG7nWVZ+d2jpM9ykap623RVBiIpR2sblDLsu4Dt183RDx3TspOToxRLKoqUDcu2S1qXxDiMFd8hDZFxaMmpsEwLWnf4IPxg5zxg+P79B2M/ynnfC2i+aSwxZZZl5vHxGYVmnoV/CZrgN2ERhlAHRRNd27M7z7JsNLaRi/7QSgpMGcbxgHM7XdfT9z2bm3AuCf+OBkoghkwMWVimgyQ9JDUn77B9X7he73WBd6QUxTzLMOd+n7G2ZRyO3PyN+20mR6lyCquu8q1L4XZbhC1XUk1mCsrF+51lvaF1wdiGxuzkKp7q2obcj2y7Y5rEDr2sd8aanm3ahrg5fGUQun2RqluWpk/Oe63vFVLxNG0LJhN3R4hSM5VhA4zHXhJTRI6HM27bMNpiNIJ0iQiOwkX6ttTa88LpdKzV6MQ8r9zuE4/nM9s2oxUcDgfeJW7O7RwOp/q9Fuvytu0oLLlVtK3YR7WWJDBVFrGuG9fbxpevTzLEennD2o7xMNQapAzhcoan54fKaoykmJln4Ww/PbVs2yrP3CBL43EciVFkFDHKucd7j/cTXS9DfOccw9Dx/Pkzb29vpLoYkSXMXRKRTsQMzgkX7J31qrXmerkIiywAGKzVHI8DSifWeSWESIyBrhv58eOFh4cTKSVutyvGNPWcbKuszpMSsiRBSZJs8/T9QMnC13Wb4/HpWQR488Tp+Mjtdif6iLVKmiloSArnNvbRCCuuRHwIoCAmqWWHEIhKEFopZWzbcDiMdXiy0nRwOg04t9I0XeWeGYbDQEiSuAY+FmaSvmqAJOenXZhpIWViKizrhjGKUgI//fQT6yLCw7JnNrdxPFkaW5NcSdptMmDLPD49crvepfGhMm1n69AWnp+fcF3gepWzeN83NSlYeHx84nK5SsLr+ZHghb+nt53HpyfGYWSrVfKUhA85jB1D333cSWOUGm3wgdAY7vcbxtgalGmkRl08h4Nid/J53veN//TH/4m2sdyuV7pe8fR0xPvM6+sdrSy7W/nDH/8TWheutxdpv8RM8JHjcEJpRYwLYfeCKqiIB6XkXDgeDnIfqfbcw3jG+5153TgcxyqX9Dw/P7GsK+uyQJGliw87MQj33zm5W4QQeXh4rFxbYX0Gv2OblsfHEaU087Kx+0wXUg3KHKuEDj59/spPP/+BzTn+6Z/+b5wfBpbFsazS9rRWBsgh7fTDAzEG5kUG9MfjiWXZ8F6+X+M40rXCAExRYw8DFM+2Op4/nwlR2plSb0+s64rWhugVqjT89PUPvPz4r+x6x9kIeqRt+r91PPe3D/iWZaaJiZwTPgVSyuj4LskwvF2+S/S+tUS/YdsGMarteH+l5IHNfScmh9Uju8v03ZFpeqEfLVvtS9+uv7GsS730SW9/dTMhCajyfD5xvd9rxHRgWRZJmI0H3CaVyRhlUxu8xHFjEHB2igIoXtc7w9DLBsStKGW53S7kXDidTrKd9YHN7lAK43DEacc0beQSGAdLjJnLZUIryzyvkurYZs7ns0Apmw79fkk3kvIopUiNoFZTj8cTMYptbZklKYFSlCxchJJ3jFGVY3TCbY5UCkVFyJmYFEYXDuNAzGJtSmUhl0LbmDqtL3gfeKj8wJS9pPPyLmkWn/CuoW3li1RKkGi2gsZqYRdo2N1MIDGMWoCvWdMkWw8MAjGNMXwMJWMMAkPvO5Zpp0SxEwcf6EeLQmo6qIQPRg6Guqn2opmCkaEOmRQTbdOJvZTC69t3SR4ahXcrTdtirEXpSCozIVyYl+8UPIqWkjTDeOJ6lcGhRM8L19s3tlWSXErJRuA+3zkeB3yBh9OJ3cshUV4Modb9Bpzb0Uog+sFX4HWRCrIxRrgYuuE2X+i6loeHnz/4Aut6R9cUqK8WQAHies7nB6b7xNvrjd03PJwPFBT3m9Rpt23ndDqQcuJ4PEosvZWDtTEGhaXvR7kg7muF/BuGocHvM6DrRi9XFllhdztaQ9s1NE3D6XSUg7MqZDz7FmitpTFKDiNpE9AwArHVjVySc5ZBx9PTWZ4TYauMOIGJSz1lqtKIDEoSsvJrd/S9oShHjFUU0Bq0aUB3KOSZo4xGzH27xMoLAlEdH+jahmV2AtmuqT9tG0B+VtoUYhROUdP07Jtn33fe3oR7QQ7klEQuUiQF8fb2gt+dVGBKYZ7v9H1PjB7TBdz+xrLOxLR+WJD7ruE+vWCaACXTNJZ5uUrNOG9oLYyUdZsZDy2xbq2N1hSjKanQNC1u2+i6jpwCKYi966/Ac7EpNk1bh0hieN33nS9fvrCuC00jDExr33lyUpVJSQ7Kj4+Pcoi9TCzbzOfPJ47Ho9SqsianIs95bTg/POCDr/UqYaRoLUncdd2lzrZ74RhVZs71dqNQxPJlWknArgu2MRyOQ622JfY9cjr2NI1mmWdA+I1to3FBpE1aWxlg6ERBqhcy2FYoNCE4CgEKFZycud8vfP7cSiIoiZ1OKoo73WAprBQSxmaaViqPAy1uk4pH07U1DSTSA2OMmHlj4DhaUoxsW6Tojj1EUlJ0TaHro4zwSmH3hrbp6iF+Z90uPH/69CEussaKdXPbuF1vKBQhyAZwmm/yXlm2Otj8ISnJ7S61kE7TNvK/dU5STe/Cm+vlOymuNM2hVjiiXAJSRBVoOuHTGdXQtQPbJma0nDOqLivI8kxOIdHYlraRNCxa0umXyxufP38h5144eRjG4SiyoFJq+kgSlDII3HHTxrpqnvOJ50+P3C4XKIacCm4T6c3DgwwEvA8cDkdA2B63241tdfXPzQhqo0jJ9vJ2IQbhxaUU8b6wLitKw9OTgKnFIr3R9Y+0vcJ7x+b2ukkVQ+XuN8ZBYbQhFRlKGK1BWWLIpKTQKuP2la5rqqkU1nXG2oauH/Bxq4OgAiqIrENlqWQoj2lGtJKCho2KnGTJaPZYWXobbWtRpeBWx/lhIMUoAGwjvw4fPQroukhhBwW737AmMfZH1nUnhspXDJ6fvn5lXpY6BBfhz+1+I8XET1/kfVEA7+VSNM13Hp8aLtd/ZXMTqeyEoBgGA1i25UrXa4pKlCTp6dvtha4VGdhtnTkeDqQURJIxSHJ/XYSR2DRdrXJWEztIMrFtAGFaGWVqKr3yeoxlXUVO1LZy9jTaMgwjy7zQ9S3GSOUlJQGEb5swcPposI3h+XkgxmtNyHipT5bC4XhkWaQ6KDy/jN8DLy8Xgo8fldRcktRPnefydsNay+4iS9jZfWBZNsZh4HgaGIYRt23cbzOfvjxiTGH1G/seaRpFIeH9RsqRYdToaiul7FgtNswQKreqKczLXJlhsghe1hnbtDWpstVaXgSV0caTSoRSsDZibIc2ER3FDl6MFWOjTxQa7veFti45/O7ouyMpyGdOG0UIcvHWKGyzk4uk1lOUy3U/NCzrwjC28mtcN/p+4HQ6E3zGbUGWcIezsMs2JziIbWXdHE3Ts67yZ/fw8EDbGUmPjF1NCkHuW5LWdG1fU0cbm3M1+aJq8jPQDx0PDydZeKw73iem+wpZ/j6EiU/Pz6A0Wssismnl57ssM0rBl6+SsPImsO8LX79+xQfhMc3TxDjKAl7CBCsxRo6nR5q2ZZ1XWT7FyNqumEYxVKFaTKnyyxp2F3HbznE80XcjoX5+jscDTaN5enpmmpc6+BBB3b57YpQB2f0+yffhcED3mt++f+d0PmOMpLGFG5WZppWmUxyPHdrIeav+H0q9EzTWse9i07R6wO0b27IxDC17hfGD4CvWaaXvWtZlpm9F5pSTomlbtm2p7FMn7ZsiUh5dxGAbQmDfA95nStFc3q4EnxmPHduWmOeNGBOHww1jH2jbFlOfiRQ5j3z9+pndw+Zu3G7CAkspcr/deXp+oKTI09PjR6jDOcfzp0/kLHchWUxJis1ow9vrhZQCx9OBtu3ku9SN8mwgEby0ocbxWNPsoZ6RZZGXs/wcQwyApu16tJpJZLZt5dQIt3UYem63hWVd+fzpC+u24dwuoY+HM7nIwNBaqfqdTg8UkIFrLgQiOXl8CJLsNPZjsIJSjOPINAlyJufC4XBkmTZJVHUdUPC7oLG0tnz58kUYjApAmiDH44nbTWzRRiu8l9T8PC0Y0/Dp+ZnbrQYGaspvvi8SnkmF88OZy+VG27Vo3TDNK7/73VdhjVJ4OD/y44cjp0IMsbZZfL17Un+twhfNWbG7FWtOcqe2lvHYYRsJmlwuF07Hk6QWx8PHkDaEiHP+4/1zGAaKksF42wpCwwfP69uVy+XOtm60reLr18+0bcsw9Lz+ECb5YTywrp6vXx84nY8EH1iXmeu8cn54qAPbgRAT58r41NpAzry9fEfTc73cGcexzgl6QJo+MkiVxGfYJb09DiNd29SloIiZRHBpWOZF5I+t4nQeZR6QEq9vLzw+/QNNK++PphH2u3MSCui6nut6J8XCTz/9jDWGt7cL99vE734vdl+3ryKMmDfW2fHtL7+hm4LWsoQDyFrx9cvvMFrx51//nb4fMXYFMsZYDscjl8sVhUgzUym8vLzRtg1fvn6i7Q3HcZSQFaWmUFveWX6nk3CeYwgMQ1dDMoH7fSJnkX0pBYfDSNcfcW7ner1xPj/SNh0Le5XtFcGzBEc/WOb5inMz83Tjp58/VUTTzuEoktDjYcS5RZpgiNRp6AdUPfMZ06B1qp/PCDVclWL9Z8e+MuyjpIDRWC2ClJIFyXAYnzgfnmnbnpQKt+uNxydpQuWc/tbxHPpv/Rfcq42ksfJh09p8VLN+fH9h2zYZVPi91pxCPVBfSGXmNv3C2+VPbO6VafmGbXd8uDDdr6RYJF5sNLubSGmSbVwM7Osm2/YQuV9nAErObOuGVnJ52t0um976z0nfWS4mpjLeZHKe68VB4NZ932ONcCWG/oBSRiD1VQJhbUOpFhU51EWWxaFUKxdLZQlR/nsI7QSjLfO0VrClJpfC5fXCt1+/8/LyhlKGdZFDx7ruLLMTKK9qmeed69vMPDteXi5YI0bMYTgy3TdiVDRWDsoheEqRpIkAhucKRl+wdsHtr7Sdout6FMLZCruAZpdlZts2SZLkzLxIVXLd5gp+BK0LKe/EPJHKhaLvNG2sYPCVFOWB3Hc9xhi6bpSXMNC28vLP1epIKTUhKNH/uO9AYA9XjPaUFJhmORClnJgm6bAfj0e0NhLHrtu36+X2H7a2UtUKUaowb2/fienOdfqFefmO268s2ytN59n9q1RHvGwFJTobSHGj7+ViLF9OCN6zLsJLUVixtgaJ6y6LcFpySuz7LrF03RB2kaGIgVFiuSHI8PBdIiLGNS+bLHRlPZQ6EJaHvXMOY62YHl0mRupnTWxCoX523w8q+y4H53e1+P028fLyxvVyE5vq6tn3jFs927qjlaZpBtzmud0WMShNi0TD6zDo8nbDbSJzyUnYFqhMUZl5m1m3BR8dqayYZmVzr3RdjW8jFjPnPPvuKwNCYPvWapwTa9jmZOsrXKhMLjt7uBHznVTuaLtTcIS4SiUpJWwjdcauHVmWnRQlzercTvoPn7VUZTExlJr8C3h/QWupOs2zLBBK3bBcr1fhUhgr1ZgYMVY4Etvq5AFvDLlkQhQ9++vbG3tYmKZv7O6Nfb9L9S9PFGa2dWKd1/rrEKW62xfGoaVtxHirFKQoSUPvQ03YrdxvCxTNtjl8VdSXUrjd7jIETIp9Cx8/T+8D67p+vGCWRWQ9fvcf9lJfB5TaiGFYAMzyHX54eJJE3xZlSImmoGSo4BPLsuGcl4GB87U2LabIddlYF7lkgcGtnpxqsvL8xGE81e2cByStYbQsO943pfPkWBfPurqatipV8LAwzXd5n6SVpvU4fyHGFWM0Yz8w32dutzs5F66XKygZVA/jgNGKFKXqa42qA6cIKhHigg8TKc9o7UhpIyXPfbrinCNW3onC1md0RKuO6MFV2LpWGUNGl0LYPUYprEkEfyf4G+OoydHh3FZtYPJzUkqJ5AhZGljb1sGLJECUkkphSoVpXpnmiWm54fwNH26ktFGKZ9uvFDbW9c48z+RUUEXRWCsV5aFl6DtKiagioGWlhFMYfcKtnl//8p3pvjBPkib3fkdbw3SfoGgUmpThdp3qIkM4fQINz9xuV7yXSsg8Lx/POjGG2co0HJAkXubz56+0bY+rCI0kX1mp8IbEtu1c3m6EaqOVoTRsq6t/NhZjmvq+2clZs66ew+FU+SyGnDXWtgzjQQbguXC/zZKAnnem+8r9KjIaEdcU1m1hWidSisTkUGYnl5ltu0nqvbW4bWO+y+VmnidSSgxjT9839F1LToGShbfTd229eGVKCexeng8ZR04rBbHDbttWUxKREER+sC2BGBUxSiKtpIxWmcYKQy/GiBCjAinNOPfGYQRr5GxTAGOkfm4bK5O7mlyJMWObFmvbKqSycoGPCTBse+Byu7OsKzl79nChsJOjfN5DWNn2Cecdr5cr1rbEnKRiWVMKbWdoGoOxirY1HI8HnAtsa+R2Wfj26wtvr7eaQpeka9NalvcaFoqlsmhTFjv5ui51EaSZprs8uzJMk5gzRdyVZSFS4HiUepBSmvP5gRASfk9cLjcourKDJLG2zCuXtxuNbYn1LCo1z8DQj3RdL2Z4ZfFO3ot+j3z69IWShTlpm5bj4cxhPGKMgaIqEkNQHLerGNKpiT1jNDFFtn2rQrAAyhHClXW7kbMIYJZpZnfCDVuWDa004zjQ9Q1j35HjTooiF7LGYLSccwsRH2ZyWUFJEo6SKkJhY/eB1W04t7GuO26LxAAxKO73hRgCYjOX838IAa0MSkVKWdj3C4eDou81f/zj73k4j1AKOWZIsDvPy+srr29vUk1uernwT2IgHYYjx+MJaxr6dmCeJqiX+PeUitWGP/3bnygpU1Ik7A6/7x9LJqU14zjSdh0oWBZBkTSNISb/cS5cl43bbeIwnnh6/MTjwzMpZaJPhCiLhPdnFRSGoa/v3iDcp+MDTdPg3MY8TSLyCpFhGNhr8+V0OiMDlEDO1Peo1MAba2gbqZy5dauYA0ktN1aeT+u6ArIws9bW51CsySAlZ0nZ69PaFr8H1lUWZ7uPrM6jTcv9NuE2X6H8ihQT98ud++VGCjuN0XXhk+SxoGQgEpMHHWvzwtNYSz+OLOsmqb5OLr+5yPs55oRpDKlEtNUUpXD7Tte3aI3IrozF2oZc2wfWWsAQotiVS0k8PT9yOAysi+N6mT7OCCKJyIyHhNb+I2EFwveelztta2g7YSl+/foZreXM1LQNmUzMkaLg6fmZeZrlzFxTbn4PkqqPIijqehFhzPPM9Xplcytay9CsaWz9mSTB/hgRd6zrxjQttXkzCTPOe6AyTlPk+dMzj+cHWRxbxcPjkZ9++izLu77HaMuhyhPXdUWr+s6NWZarSnM+HXmXcby+vsoXsojZPEW5455PUvM2xnK73jG2qe+CzOPTAyi432dK0ewuMk0Tzm1477ndJt7eLnWZaTidzlIn9pFlXj7uyu9sYsFhSOUzhExRlraXdPbPP/+Rh8dP7E7QBIXM2+XCvKxcLxfeLm+1wZAJKbBsK/se6NqhpgpFCJJSZp7vwicrkpgT3qNUgt0mjR5tFOOhZ1kmckoss+Px4Wcac2SatpqMdCgkPDPNc0V7uRoukKH150+fGYaB19dXXn5cavgGctKsy05KcL8vrKu8r98tzG+XC1vlVUpCsPDjxzeW5YrWqUoTG5quEYGObQgx8Xa5Mt0XvA/suyTzrTF1cVF4eXnl5ccrpehqhPfSltNWxB3HM84F2m7gfHrkcrl+fO7cJmdqpSxdPzLNM6Zp2EPgdr/jQ+RwONL2gmhKOdC0DX0/YG0HyD3ofD5ira0J0ljvKpLK9t5jjCUnkWd677lPE64+91POtF3LTz9/5uHxxDRdCPXeLCnhAbdF/vLLD9ZVZhGHwwFjtDxDjOJ6ffv4Tso95VHOGzGhteBGUkq8/HiFUng4SzL2crvStA3nh5HD0XI6NWgVuVxfuVxeSWnnp6+PQGI8jIKXITMc5Ky8bSvBx4rQioQaONmdr2eclqYR5EdT2bd912GNoaQiz/lNXApd19F3LV1j8H7BbTdaq3h+fqLvW2J8l5j9bX/9zQO+xhq2RbYzoCUOblsa29O2wgyQaaetSbWFt7erPHBtwe3fUSrJQ5ZISBOru+P9zv06MfSjcAhKqf/Ohq6zaCNcLNtq2qGtzLDC6+vE999euV7k4hGjr8BiidvHmFGq4XqZcJurB//Ctq4cDmdSyvVLASFEbreJ1nTEPcrvq5EKwzCONRoqA4x9j0x34QSJ4SYTY2J3getV7Kh9P9aKbiHsgb7teHx4Fjaa7dh9kuSczxQ0/TjKC19ZzudH+m6UuhRSjVhWhw+Jy2Xhdpsgi5Sj7RQh7VJVjlTQ7g5MLIvEur2Xw+G2OUKSNEzKgcNxQKnM4SDcoBh2SpHakG0MKQeMUex7tUnVGpNGEWIgJofbPfOyMt1X3n4s3K4bfg9sS+H6EphuMyksWJNrBY56EPVofSeGK8dD4eEBxr6nEOkHy/EkNccCpAIhZrq+lwecEabetm3CdwKmeeE23clkmlbj9gta5/qwTOxhwe0rMSfeLhdsK/yRlCPKSo2maXXd0nUcxo6ub5mXlXly3G8LP3688PZ2IdcLqW0sphHTro+RmKW+IawzGeBt28rT0xNd17LvOzFJWm/bHG3bEGKgKGi6hkypSaEd5zzBy7BlXR3T/S5ptZzxXhJP6yo69bbp5fLiEyUXxsOBT89fQGvEviaHTe+l7qa1qdUPOJ+fMFoSPO8Q3W1zlKK535Z6eEmSpLOJVAJFFQqaECOFQGZhWq7ECt53+86+R1Is7C4AimEUmUbft2yb8KUEoCpckFISxui6yfOgIsZEjJaBRC6Z1e0sq2OeN15ebizTzu5gXTPXa+DHyxvbvtC2hX4wlYcj0pvCSkx3xjFyPsPpOACRw6FlGORFJsO7xLKu9MOAUiLj0VoSuu8czW3dpXpojJjByoY2iZLERh2yx3l5YdznmVwEH/BeQ2g6kRK0neV8OnA49mLAion7bWVddm63ie/fv7NVKyYalNEordhDZNt35mVFFakTt1ZkPOfziZ9//plhGOT7UeVMxhiMhc0JH7LpWgowTTP3+523t0u9qOS63RJGXIyiqnebmCuHYUQryzKvNdHV8fj4TNt31Tqu2DYvW/iQCDHy4+WNeZUtpLaGdZN6TaMtRmlyLAQXmaeN3YmZUdtCUSIlaNpWpDlkMgube5P6bQjs+yaJtaw+AMXGSAVD6rZidhbBS2Z3UsUwFgSW74WhqRNGCxOjaywxieXLbY55mVhXVy++Mui8Xq7M8x1jI12XGQdNawwp7RR2NndFa88wwPE40HUtSkni6MuXn7Cmwe8Bt8qfa0mwTJvAl2dJtOSs2JzH+8jheOBwkG2jrsMB7+W7EnOUGq42LNvGsq2EFEFD27XCEbOap6cHHk8Hhl42+fO0EvZUnwe3+vmmXnKh6wcZsNVamm0M4yjb593v9H3Hz7/7HQ9PT2hjSDHXaqalHQZClEPw+fERbSQhNE0L3759k89TfZbH+FcD5e4F0TAMBzET14GANQ3GGA7jQRhHIZBKIUS4TwvrJqa3H68XbvdVmD5acbldGMaRpmmkqpOkZjPdFpbVobWm7S1FZbKS9562WmoWeWb3FyCQU6hpcogxEWr6UmtFKYmYBAeyLBMpRmGaLUtNr8j7JaWEMmBNwdhM22razsqWOJaa4A54L0noeZKh8rY6LlcZ5I6HTN8p+t6SoqexEefehIWnd8bRMPStGC9rIj3nLOedWAgh41ysSyoZqLddRyoRHzy7d9LUaFo+ffpE2zWVgSjiom3dWDfhMA3DwDgcmWcZEhnpH5JyqBczw8PDUZ7DSt6Z18uNxnYMvdStlNIEv39wnIXzU+rQaeFwGBl6sdRSMp+enjifT5wfTrKwjZmu6T4A8u+Li8enR2IqXC83pvvEj++voAxdf6DrBoKPlKLxIVOQROLz82e0buT5tqz03SjMuKYhBOFnlaLwPtdla8ZtjlsdqAQfpNI4zwyjVN7l8C+X0uvlJikYrWg6SyypLpKEuZRSoJQNt19QRHKOxBDRSphFwce6RFHVnlxIOcpSF3lWrttGrJVpKDXRKk2Hxkgjo+saUIq9XiwFRyPDo/m+4/fCtu7c7le02TgcJFEz9G3F80TcdiWXGdRM04hVdd9XDmOPrilgtzmG4UDbiiCgZIXbBP4efKFtBxkkVrlaY0Xytq4r3779ilvlLJlC4n670XUNpWSslWHLNM00tpMF37YTA0z3lXlePv7Zvm95enrAWlOr+GJTDTEI68l2TPeZnAWj48PO8/MzX778BEi1sxQZHn///pvU6Y2k9rz3/PrrrzKoQgagl9cLyzwz3WfA1ATjiZwLy7ww3SfO5wPn84G+73mXlBhjah3twLkiDLZtqwn+lnEYSLmwbsLG9T6wrRs5ZJ4en3k4PeKWnaeHZ+43ea6PwwlVNI/nJ54ePxF2acFoqPU3Yaa6WqOTbkyUimT09ENLITMMvdTSup7r7Sr4gSjsu36USmTMSRoD1lTrpBiTt2WFkmsNc+ftcuHtcme6r4TgORxGfv75C6eHUVoeJP7wx5/46efPHI8tq7vSDYmidoZecz521TINbWPkfag01hg08PT0xOVyY1423t6q5TgEDuOREBLTfZHnrM+1Ii0inr4XtqFcyHseHh7oqs14XcXSOc8TTWu532+ynFwXjNG0NbF8v0/sLtD3A9sq1Wbvg6QZQ2S6TcQYOJ8GhrGjazve3u6yzK2BmaZpGMYDJUP0mefHz5xPz5XPKGI02zQcDsc6zBS80b5HfvvtB/fbjDEtygj243g6MIwd+75zOp4Y+iM5iZm570ZAwiHjOHA8nj5YpoJuke9aPwz0vTyXlZKFJPUOuKwLwzDUn3tAW8354YG//7u/5+HxzDh2nE4HmkZ4tefzGaUhpv0DCwIiGVTKoOuweVmk3jweRmnd1AFK0zayvLIt2+7R1rLtO9Myy9lOGzo78unh72jNE7fLyvVtZtsd277i9l18ATkSc0CpzDgOtK2cD7ZN5Hvfvr3y4/sbu3sX7skI5nQ68vT0XKvcO+s6E+KO2wWXdJ8WYog0DXz5+cT/8F/+QMo7D49nHh6PAMzLxv22oopm3x3ee7QxxJw/KrnTNNH1fU36JrZ9xpiCq7bvdVu5XC7c7xN/+eXX+lmTUMrr6yuvLze801xeV5Zl4+Hpkc2JMGI8HLnfF377/gJoHh+feXu9ymfMGHbveX19rW08kX2WnCW5bTTLMrHvjnle2baddZWAjLGwh50vP32h7TpCCihdKDkQ/MIwtIxjL4uFIg2l4+EBiq7D+8iv336pzRyPbQ3Pn54YxoHf/f73PH/6JOGK3ZFylMV/DpXD27JuK/Myo3Th8fFEzIFSEs+fzmiTGQ8HSlGIkdoSc2RbJVTk407XNXz68szp4cD58czheOLh4RGtLaUItqPr5H3jQ+DtekObBr8ntLYftWOlNX03sm2eaVrRmI/EYtPIM0Z+zhlQxJBkcPg3/vU3D/iGceTx8bFOxCWSvO/y/8smXA6/3ns2twl34DTw6dOD1KoKtDWBM013cl3dH4/Hj+2bc64+DFRNUQSOxyOH4wFrTWWBJKZpFuV0KZRSTYi59uNT4nA4gIJ5lvTQ+eGMUlQQc8/z8yPDIC/f91/78XiUi0CdxD4+PnA6nVgWxzSt3K53Ac13Yn4x1sphP0BOwhIZhoG+F7NoqNs/SSlpYk0BGiNGtt37aszVXK/X+me5s227DINiqg9UqS2VChd9/XFlmRcBNZckkdb4V9ZAyh4fVkrxCDRTanwxRrZV/nvG6JpkKeQSsBYyAiyWuqiwNd4ZYNY2AvMmok2SxFtWxKBq3UTz8DQw9CPTDdY5yIdZg9KRhycwjWMYTB3cBbb1VuHIV5QOKMQydDqOKKjGGql1vhue5GelJCmm5NK0rMJEOx4PPD4+gMqyxa7br+v1ghhsC8fjmX4QZlSIsZqD1UciZTwMjOMg1fKSiSlzvd55eHikbbtq+SwfwPltE96AMLZkwNH1IrfYneN4PHE6ndHaCK8pyvbpcDjK96EV29U4yoHPucC2eXYnF7227TifhHkgFVGN9wljGonQ189SqvYja4Xf4etWWdUKZa5qcWtFDCOXFWEDvgOpt83JJqXINsH7yOXtzryIYbUo2Yh+AEOzVDtC3DBGOBGNbei7Tvh6ztVtpyUG2eCGuNP1Ur2xVn98vru+RalSU34GYxQ5B5SWw2KMqQ6wE/1g+fl3nxiGkXlyTPeVplGcTgdskxmOEWM3mg5AbIDrcmGaXpmmF3Jx+H3l4eHIOPaEKBcdv8tG6p2TKYkQOB7PH5+3d/uaVK6lCmNqckk+p0F4Esi2+tOnz3XTJS8HgOAj87LWQ3Nb64T7x8LB2obPnz/VZIJE1EsSg1Tbdbyz4YyRS5xsWoWBJJWE/DH8TSnTtn39jGSenp7kIF9B5LuTjbbWmrZpJf2SM/M8fVyigI/P2TzPyGVUoMiSJPXVHi4w75wURje0bcfuPHv9HOdSKm+s5cf3C8viZCinBXI8T3s97BZhkYWdd0NcKfKdC8HRduqDnTQMI23T4pwkPIe+r3XAHu8dx9NQq7JySstZ6knv/FKR4UBOgZw9YmeVg5L3MrT5z//wd3z+/MS2btxvE1D4+fdfOD/0aLNxOgNsNLagVWTf79xvL9yur7jtTk4Oa+D8cAYUr6+vLMtaKzAN3ktqzRo5uA/D+MFReQdTd12P1gCS4vz+/QeNbXCbpNu9j/V9KO+x98RcToX7farvhlRrGDvrutbUY+Lx8ZGHhwep0G67bMljgsoiM8bQ1cvxPM/14N/UBGhgmu5y6fNBJEjAMi+cTicocvHxPhKD8Aj7fhQmE1JHut/FmDrPy0dSdXMbt9sNkIT+u5BDzMalckzFbNm2I30/CMpjdQyD/H3wgePhkd++vXK7Lqyrq4l3Q8mG6b7WZLGtVlc5O/jgq8FNTLRdL+++cRxrNV/SL0M/MM1zxWB4uraRRUbwpCQp7lyEe1tKksNtks+h92vFJ0jCWRILkd/97it//5//QMqxGgQ9X3/6xO9+9xmld7ohoO2GVoG+16S4ssxXrpcX5umCUZGcHA9PB5q2rfWvmZeXF7FL2rZW/+XcNo5H2rZDaysX021D0nCSUJJmAvzyy6+8vl4YhoGSE7vba4K8oLXl8fHhYwjo3M79NomwbJ1rSj7U1JhwC/u+rwNrSanO81qN6zJEUqrw9euX+vmYsMaKvXp3xOBZ5qnC8+X5s8wL+74z9CJU+/brN5ZpoRQBZx+PR6y2rMvC2+sbm1s/eH/SPBFO0jQJP3AYxLbpg/CnrNYf7CTnAuN4pOsG9rr8eH7+xDgeibFwPD1KKnba5PNMqqnljnV1HykZkbHkmgaTyl2Mnq6zdL3BWsX5dK7PTjk3tm3L9XpFG6mujWOPqgzTECT5obXGWBnwjuMoTYsccfvC7iSNdb/N7PtOSpGff/eVv//7P1ZB0kbwOz///IXf/f4zaEfb7+jGoVTkMFhS3FiWK7frG/P9glYyRNz9zul8qIw1aS+8n+FikO/WOMqA1RjDPC3crvd6LrGV/SfNgsa28i7Jfx3oeb9zOknS6X6/14vw+lHzPp8eaOqwV95/wnW0tR6vanLyPXH3pz//wu12r+/+/SNtMQwDpUQOB3mfjsPA7nZsTdqFKMkmYwyfPn1m6HuxBS8b4+FA38tyWM4WnpeXV1LMBC/PhLaTiqAxmm3bOBwOlWfbMM9TvQcILznlVKVjDfO8cTiesaZlnjd2JwNy5zw///xHGfzte73s7sRUiDFxvV6F41rTbW6XgYTI30xtaQg6Z1kX5uWOtWJ1L6XU1N07a06edc+fHgixyuli4nh4pGkOzPNGjsJR05r/B3P/0WRLkqVbYkuJcXKYk8siImnVq3qvBYIBWiCC/z/E8DXQRTMzyL3XyaHGzVQVg23u1ePOHiBESkqKRGRc93PMVPf+vrVQWnG9XlEKhnFgGCbcWi+uqgqtNb/88gsheH783Wf++Kcv1HXM0F+YlxuEAe9bVFgHfBv5vBurqOuCqpRa8ziOPD195+nplebWye9pXt6fSZIqV6tRVhhfwse0YhQHYequy/JhmLheGm63BoV8j3x4w/HId1reCxHei9k9iYXt2HVSdVwWx4cPH7FGBA1t19P13bqwXuRz6MAvYmKWVpCnvcnQIY4T8rQiXofYVraSFEWxfrfkvtcP8syuqkqW1LNIY+Su7aWlFll++fkr18uw1o0NaSrcLwVorTidjszzzPPz8/sZoGlElmWt1MNFlBcoCkk16hWbYSPDPDfkmeJ2feVf/+VfIIhIoyoz4shSVaXcsVdJ3rJMDP2AXwJKCetvXtwaxJEqpDGKLE+JIksU23U5a6R9FqC5tVgbrbXqmXke14Fgx7enXwjevTej3qrVcWxWu7PwZpdZ2h390EOAJC5QRDgH8yhc8u1mi9GWoRdR4dBPRHHCZruhrqu1NdO+o1BsJCgLo0ceHwoI8g4pspy+nUAZxmkkLwvQUq/WRlMUBXEiHF5jDFFs2O9L/vt//wN//PMntrtslX1ZkiTmw4dH/vCH3634C4+NNPv9hjRN6NqethkIXszL+/2eqqpXfpy0Ke7vHljmwPF45XyWFsg09kSx5no9SyNjGEBpnPfkuZxNsyzHLVL3jpNUFn55xm674XI9oY0EM/I8IS9SyjLlsN+QxEYWelZaRE9Pz3i/8Od/+AMPjweSxAJBzu0hYCLB1/jgOZ6OXG83AsJklIFtT1nloKQBYKyVVJ+X5ldQIp+axpHgFc4pjE243WYu55llVtwuLVWWU1cZkfUQ5H2pVVilVBJ4SNMEG2mu1yttM0CImUYRWWVZAci8yXlZ3EVxQtv2+LAO8caJeXKCeGhu4l+YlzUYt/yfH8ytf/3dA76npydeX49rrDxBKakugVkPitla203eZREK+SD3vdTE/v3f/iIa4yRdk0z9OsBSpElGVVZrWFFxvbT0vRwiu17qGX3f0XatbCg1FGVOvl5q/cIKx10HaotMd+/u9pxOR8Z16y5GvnY9WLZMk/DPuq6TC+wKoX1+euH56YV2PXymWSLGr2nidrvy+vKCMR6lPafzC+MkVaymkctEUVQoJSy9aRZ2W5okeCcpLKU0ZVkRgtTZsizn4eFBfoaRVJ+/ff8OSuFZJ97lBrAEAnFsVn7V9J6YnKZ5PUzNFGUCysuBI5EKWBTJh7HvRwGgzhNJElFW8sD1q4HTaIHcK+VIkpiub6XW5SQ1czpdOJ2udJ0wa4oy4/OXRzEV+xkTLXz+YcvDY41nZJiO5KVnWTp2u4IkDuthfeZ2ORGWEY0jzxKJ2J7OXK83QhDGjlQYhK2W5xVaS71NZCayUVoWx/V6pe9bAoq//vUXLpcrdVWzrBeBcb0UpGlOXVXroC7QND23a4fWsqEwRlJl0yjmJOcWMSitNQ63OM7nG0bLZ63rxLz88HhH27RrrdOItOJ0WrfkUjVr247j8fheaffO8/L8zMvzywqxV6RZSl1XzNPE+XTheDyR5TFpJjWRcd0ATJPUi6pySxJntK3UM4URJsbkaZTLWhTFjONM2wxEUcz9/Z2Q3JQiilKenl6JohhrLXGcsNveoVS0phX1+0BzWSuqwyAHknmeSFKDWHXlgJ2mmQycSuHtvB5f8X4mSS1VJTwSpcL7IGmcBoyVamXXtSuPY1lB02fO5wu32w3nxIy329dUG4GGl6Xh97+/Z7eL0Wqi71/I8wU3Nxz2BXkqNU0VAn3b4OaRPLVEVq/PoHGtBkjCSmtD28rFIc+r1XYnm0bho4iZ73Q6rQOPhdPpwvfvT2LcWi/IwuuT6vNms1kTV47m1nI6Ck9icRNaQ15k6+BOEhbzImm/PMsxOuJ8lmq5MRHjOBLFEZ8+f0RpRdsIM8h7z+urfK7eDjXL4nl+fl7TfOuh7Xrjcjqvg0iJw9d1hQrQNj3n85Wyytnta7I8XQeUeq2XC3C+rrcM/VsyuBM2SpZLbXcYEdbWSNNI1bWqKoq8YhgmNtWW86khBENRCvh6tz1Q5NVa9dTrZXeWz9t64J7nmcVJsmUcO5yXn7GxVpZAeSmm1NfXdRBoxYZu9Mq6lO/6NI8CoI+lxnW5nNGiUuV6u71XbaZxIEmk6lrVOftDycPjlj/+6TNZZrDW0Q9nnLuhmcgSzaePewizDCOGkev5jNWOsogYehkaiwhCIMghwO16Y5m98Ee9WqsnZq0hiD3xer3x8vJK13W4xXO9yEGb4AWTkCb0vQhuiqJkWI22bSt22WF4G6IrNpua3W6L1krERsskPxNrSZKUcZBnhNFiOYsiw4ePH8iydBUzCXfkdL5wvlyxNiaJU0DT3Fput9tqf3bCwR1HlukNrC4XX4WkY5tbS1kW3N/vORz2aK2I45jddisLChRZVrwvKN4u7rvtVmoQw7gOnqXW7hYZCNTVjnEUfs48B8bJURQ11kbkeUFV1Xi34jzGkXma1mYBkjwe5eA1TRNd3wjT0YvkoK7r9T3naduWtm3I8oQokQTGG7NRhqWOELyA0/G0TUMIUtVq2obrtaVteuZ5JIoNw9jjg+PubsOHj3v+8KfPbLYpIQwsS8swnohjD8x8+XyHtfL7cctC1zYMXceurpnX5HTf9yRJJsDpIOeqaRR0QvBiC72cmzW1DXGUkSYFXdtzuzbvlZvIJuu7UhiecRy/iwSUkjr07XZbeVfCoVpWFi0Ktju5dLwtxha/0HTtmnY379VhsWl67u/v1mRFvC4kxGLX9QLGNiYS4+LK1IpjERy8YTOyJJWb61q31Fqg+cEDQVhLh8OWh4d7rDFsNhsOhztE+iNCj2UJ67mqk89UXdM08v0LAS6XG5drCysioSq3LLMnSyRRA4a8qNekqhXW0PIGD5fqmFscoNd0pfxsuq6hWwej04phybMcYyKmcaLvZUi/2RZEsSJJo3X4lzJPbmUKrp+54Gi7dv2dGbq243q5vZ/bkiSibRumeeThYceHTzv+8KfP1JsE7zq86ximE1G0QJj5+HGLtU4kVJMss9rmKtVqFcSu6RY8gd3+QNf2kjRbl5B9P9B3Hc45tNaUVbFiTjpuzZWuF3FOXuQYI7bYgMcHv7IH+/dlgdYyFHh9PeHcsvITPc3txm635/7ufm0wLFRVzoePD7LwsgneBR4fPnB/fy+J9jhGKy2MyyVgbboiTxyXy3XFW8i9oG3blXtmcE5sorvtgaZtabpuZRuHlaEni+G3hLLYvntut9v73edtYZKmYku1VpBBSkGeycL5er2+J4eneSZPC/IsRxnDbrfn06cv/OlPf2Je5HOBDvSDLNACnn5oUVo+E+M0rmZvjdYySH1DcCRJLCIAI0v0qqxEHrUOk5ZlXpcg43tlflkC2/oHEnPP7TpzPF5p2o5+6BiGaQ2CDGv6Ud7VxsqAaZ4dbTPx289HXp/PhCD3zDi2a1ppYByvRNYxTw3D0EoNP00Yx4Fh7LneTmiz8MOPj6RpQl1vqMpKmN0Yhn5eERQiKJH0rixm5ZwmIYGvX7/hFpFsxVG81oT1uoyC0/FI3y+kScnL8wvzNMnzv+npO6m3K2XIy2IdFOd8//7E6+ur/O8Lueu1XUeWJtzf36OVZeiEb5vlKUEJW9pYzbKMImcZW/qhw4cgmKV5phs6TpcLaZbRdj3TPOODZ7ut31P+kbWybLne1kVoQdMMDONA17XEiSzVkzQiTmTo9ibayvOMqipEbmaEVbvZVgx9/y4MJHjavifLxXr6+OFAWUVkuRhXb40sh8tSeLNaa67NjX7s2O0rqjrDRoY0y9bfhSdNc7SRgXKciCV9ngQZ88YmjG0k0qlYsAnPz694L2w/qzVxpNBqocwT7u4O1FXJPMkyo6xy0kwaDPJML9nuKuLErsKOmDzLqcqSIs9J0pyHx0+8vLxKqiyS+rP3mt32HrdIoyeOkvfvbtteSbOYrhNp4+5QYLTj6dt3qirnT3/8gaKImaaB+7uDiLKmnuAd09SRpnIWffr2G/tNTd/diGNFXlju7jY83O9QOLyfiKznen4huAmlPHGkyRLDTz8+8uGx5m5fQHBE1jAODYSZoWsosow0yvjLf/6N1+OJYT0TDH1HWaT88Q8/kOcJWoFzM8PQgvbMbuL703fGaVlFn3Jea5qWb1+/o42mLHPKMiPLIi7nV0KYRa6kFgILNjKMY0/bNlgDccwqtlT84Y+/I0kjFJ6uk3anD57r9SoBkigijtP1+ym/M+dHyiqm669EcSCKA48f9nz58UCS8X4+Cl445V3b8+//9jN/+Y9nrhfHOHiiKCZNYjFSO4d3kkiWsFjOpt4Qx3KnckvA6oRIpywznI5nLtcrUZyweL++AwJZVr7X9NM8pRs6ojTh1lwJwQnDL8gQ/S3E9ff89XcP+O4Od+thTK8xWuHtLLOHYHh9Pa2VMLVC2MVG9fz0ulp+JoxJRXixmm1lk1uKnSyKhDkxCIBzHBfGwa1MAmF43d0d1iRNj7FKXjR9+54MAbEghRCI44jHD/dEsSGyAuWW9JWwo2SIoN5tYrJhzPBe0lBGa/JMto1RJNDLaRgIixwEqmrL/rDlcNixqXcAfPz4ichGRFYulMErQmDdMt+oqwprLG3TS8JlHHl9OeEW9c7gSuJcYqQ6Ypo9aOFYyAR43ZaOE13Xvx9qZFMlG2Y59E6czycZUs3DCuqM5QO3CCB6GAaqunz//Up0uyCKCtp2YpmXdVsG4LleGxSKcRJD3dsmrq5L5mXgl19+I8stX3488Ps/fiTLE7qukWTP3KMY8W5mU0VYOxHcwtiPay2p5/G+RgVhEe33BwGVhv/680iiSkQBLy9H5lmm4UkiwG7hIgkjoW9HkqSAILVlo9W6JU0EzA7rwG+QyO3kCcGsyaQABDabjaRJuhYbaYZpoB86zpcLStn175vxToao9/cHtIY0i0lTeTn5sFa6Vujt29Y0TdNVkCHb+3h9scjnzBKC43K+4J1inh1VuaEsc4oiEwOXc9zdPazJhvR9UA1ScZ/niSRJ3y9cb2nX66WVzdTssCalKncQzDpE1Yyzxwe5qF+vNxm2TJNw1tZLgQgbhBMim76Z0+ko38dpZFnTNvO84LxnXJMKZSWwfB88bgnEUUmZH7hdx3UovaC0RxvhRXq/2rTmBYUcPPaHHRD45eff8D7w8Ljnx58esUYx9K2AUP1AoIcwUxSWKJKBd9+LeMGowMfHHXEEyzJTrcndZZYkslxCPVoJKPb5+ZWu61dOWkYSZxLbR9N3w8olleF5PwjUX3hqshn23jOOE23byaFciwRlHOf3IW+SSB3GeeGWgtSdf/tN4veS9JKfRZIkbLebdehmqepCqrN63Xyulae3SkVdbdhsNrj18hvHCWVZrYlUqTK9vDzT97JR1jqSeopVq328eU9evCVA5VArqYe3waTWhrbpKVfo8TDIdjYyMcsCDw9f1jqJbC5vTUffCxP0+9M34V9q9V/PtqZbMQkyUJfvkKfrGpT2KA1pGq8bfKlb9m9VYK2JIrMOYMXU+nj/E127MPRS1ZmXCYIwy8Y3ePm8rGmtgscPDxRFwfl85bdfv6ON5XC3Y55kWTMOHYqFee6JrIYwo9TMsqwH6MhSVTlfvtxz2OfURbIOEMz7M1w26TnCIdO8vpxl6+dAoQkejJa02xs/9o079VZptNYKaHwRntDpJJfBLM1IUzF0GS3/P8uyEJxjnqUiPi9vyR/Fy8srT08v75fQZfarxMW+H/T3+3r9zIjN+y0ZPi9i98yzgseHR5xz3G7X92ddAJIkIk5iXl+PtG2PW2AY5O+bl2l9jpx5MyxqpVcOT0vTCA/VWE0cx/I7Hcb1UpyviWSpHi0zPD78SFXuaduWelMyThPnizDQXl9fuFzPGCtp8mmcVjyGXplsy7r0W1YWrwzRJFkcrQZPGZQFLynxOI5o189a04zst5/wTsRZt5s8O52TAVnf9/Rr4lR+Phnb7Y79fsc8Lfz6y1eGYaIoc7yXVNc4rjy8sUGpCfyA8yKV6bpmTbMmfPi44cPHmrLQq0VWlozz5N6HmUVRiKXbyAXwjSnknOd6k2HfMIxkWQbrRRgkkeyDp66Fz/Ttm9QT26YXtjCaNM7WGikkSSxMGh/eHCk8PNytz7aBNEnlWdJK3ai9ye/AGAGgR3GEjQx1LcPJ0/ksy41VTPXGm6qqmjSWc+Xx+CppjmUGPHUtzyKpYUrb4HZr6fuOYew4n488PT29P8PKslyfNTPXyw2B/UuF601wIM9aGXBFUUISp+TZhk8ff89+d8/tJqD/pm05ni4yKL1e5UJjDaBkmdyu3Nu1rTKunwmzSqTkOZS+D7KyLGMYRwTI7UF5acJ4MZ7fH35kngxdN3O5NP+VKHHzyl1umRfBz+R5wWazYbvdsCyOr789CQA+T1kWAZDPy4DzI+Nw/a/PnBtAzbTdjTRNKIqM/SHncr7QteP67JG0dRQnK5ezWd8FDhUkRf2W4knTVOqzScxmsxF2m5GUs/eBZl1edd1Nkklrej3LC+ZJFh3jMMlnFbF55kWBMYrb7crpeCQET10XgJg0X49nXl8uvL5eeHl9FVtpKnVF5wKfPv7Ix8cfyLJc0tRrgi1JUza1JFVZmbZd2/H89Mz5dGZTb8jSlKLIKauKgED9CWZdsEpzI1otudttjdaacZx4enrmfJYUzThObLY1UWS5Nbf33z3r+9w7OU8Mo/w+bs2Ry+XIy/MT9/c7ijIhjjVFkbDbbbi/v8MaTVVImtM7T5YWGBOzzB6lrKTYvQyXbGTI0gS7MsZksSdntDeu+DJLqr7tWtJU0kPn6ytDPxCcJA7lDDgTJ9GaFhMxkfPS7mmaG8EHtIrWc33gehk4Hzuck3ZOHBuKIsYax3ZTMqw8wLbtuN06vPPEseLuvmC/j1H05FlMWZXEScLz0wvjKJgVpRSX8xlr7ftSHuB0Pq0JPU8UG6o6J0kNw3hlnmWh/TbMDMHRr+w2ab94bteWy6nlb3/5zu0iDPIQAm3T8fDwgTSVM0SWFZRFzel05fX1xMvLC+M4cr6c6NZEmndvlmOFMTAvA/P8xjwTlMFmU5NnmSTorEgcF7ew228RjLZjf9j9H55pBZGN6fsJYwK//8MnksTw/dtvsjjRMozOCwmwVFVB34vJ3nvBzgi2QZGtwzjWQndZZWtltAcktCHSCFn8aBXTtyIfu91E8FRtcuptTmBe+bXp+v2F8/mMUmCtZpmlQXS9tkRRyps8EAX9eud/ky+2TU/X9GsS3r2LNb9//8r1esWamLYdBDHRtfIOV/LvXxQZu92WNM25Xm98+/aVpr0yzSNpIneU5upom3k9X8ZM48LPf/vK199emGfeLcwg7FdttASK4oQ0NfzpH34kzyPcPNK3N7LYcNhVxJEnMgt+6clSxX6fU9cRm9qy2VgiO4IfuF1O+HnEzR37TY6fOwwzQ3fmxx/u+eHLHZEOLONAe7sSXEuRe7abiIe7krG/kFjPYZfycFexLCILbW4XbpcTCoe1HvwAYWSebpSZpi4j8lSRpaAYmKYLh32J8jPH568M3RWtZoKfyLMIrSZ224yy0CTJwm6X4ZYOY500Cv1AmsDD/QZCw24P948R0K+Cw4GqjNltSvbbCqM9fXdj6BuM8ng/4cPI5SqDw7JMSDPNfp+zP2TcP5SYaCZKPLttymaTAg6UCB2H4cbj44E8yynLHX6RmrsY3j3ewfPTUdiGcUoUx2vg6Ij3jrquJUE6zMwzXC8t8zTjF6l7l2UBSIDseDxzuzaM48BuL8/ht8bq/cPhHc1UlBlV+V9zmP+zf/3dFl0fgKBo1wqavJANURRzPL4wz5L0WObA8fXKZrOh70byIgfkofdWT9BaU1UVp9PrWiFKeHk5SgTXWNI0JYqGdbBn36tqcSw8AKNjulZSb97P3G4N07ywLCN1LQcwtyZyFJrtvhSm2NXx8nJit9vj3LxemhxZlrLb7bmcG0mCXa5stvUa81Yc7u7o+zPj6MmzaK3+KoolwS0Lx+MF5z1FUZBlGWI/W9aax0AcC9NG0og9PojAw7lGLilphVaBD48/MG4cf3X/yvV6pSw2XC8taRrh1z+PW3riaM84LmusWJHlOdN4IyCxZvn5CSNxQWxc58uRqj6syaiJJJHaXdcLqHcYPNvqHuVnfv7lX+iNALCTVACay7wwzRHLMhNQkoLwjiS1tG3D5dQwzw37u4w01VynnrKKGYZWaohzi1YpXX9h8RNdf6WqC4w27PYl232K95a2kU1G8IphkGGt/Exl0Hq5NGsKcmQcZ15ejtRVzbxM7HablTdm1sqnxVpDWZVcr1eu1ytxHHE+XQn4NQkQr3VCMT0WhVRMo8SQF8LnOJ0u5HnJzLImoxaGviPPE4zWYrWaFpI0kWrGPHO9NtxuHWW5QallTeTIxb3IK5pGXlzn85nNRmq8IQS2my2LXzXtQSoY09RQlmLfuV7PhFBTFiV5nq+bZP+eNkjTROpxyP88TzM+SwghCDDYpmgFHz98QSmL8zMvL89sdxtJ/rgZhRwu+qFhe9jxJgPwTj7jcuAYQHnKsqQspT4/Oc9+t+N0OlFvcuG5TAJuXhYxxMVRinOKMr8jNvD0XZ4B3AWytTYsFeM3CYTAV8VS7On7ketlZOhn9vcpaWzp+iv1JqXvGknhuAFrNEN/YfEdTXsVBob3FFVEvRW759AtnDrPNM+kaYEAumOCZ60FTe9sBecXLueL1KDx7A87prklSRKUatBaKsZJIhdQqXuJTfZ6bTDarINVYTrtdhn39xumacAvnji2fPnygePxKinTRKDuu92O8+mIRpPECcM44ubA4XBgGHqsNRxfzzS3EaMtxkZ0nRgKhSuj139eQdf1eL+sAzmNijSbjfy+pnHCexj6DmPV+9ZdkosLea4o8uI9Zde0A3EarazUbK01LwzDgFKSJJsnh/Oe7ebAl08/Mc0j//5v/xvbbb4Ostw6jLPMy0iRGOLI0PVyeddKbG/O9evhypLnGQrDNCxERtJJxkj9aZ6X1eQ3Mk0yqEmTkiKr2W7u+Pnn33h5/sZunwlct1tTtF5YWG+MpzRVeL9wvvRMo+fl5UYUiaSja8/sDvJOM1ahzYJRC4SF21XkC3Eco42mH27ASBrFGCKMtnTtQF3XK+dGYOPLsmCMJstSSSa65f3nmWXpCnOXNLWkTee1ZvGW4JZnuTGW20WGzN63ECKxfWvFH//0I8syMPQTcRTz8HBg6BfO51YWCzbhxx9/5HQUCHESx0zziMNw2G/4/vwbYjG9rck5eYddLhcxjiFJJlmOxWgduF4vVFVFlhXcrg277YY8K3h5ecZUFpx7xwmEIBva4BHmrbWAQM1RYb1gKXlXjZKoG3r572mSgdMrjNtQVVv+8Ic/8Je//n+YlxHUvJ4tlPCs3IxWnjSNmBcZJEt6VxK8y1qxspGRhYsTXENRlExzh16T49bGzIuj66R+mqUxRV6w2ez59vWZ52/fyQtNXRdSyXALMciQapxRCrI8WytSr4yj43Ju14vXnr712Ghhty8Zxl4GDtoRxzD2kkpZFs9mU3FrzjjfY/REGkm6rSiKdcB0k9Shc+8DXKUgiixlmTPNglNY5ok4iqjqAm00SktNUGkIi4cQuF6uMryz8cp/nemHjs2mev9nX6836rrk0+dHrmfh4OVFSRQL/+Z2Gei6kTjJeXh45PkpkKYWayzdtaMoN9TFnqf+KyGsCa4oIYoTAnA5X6irjaSPmn5FoUi1su87NpsNUZTSNA3b7QZrYq7XK3lRoPWKoBgn0iwjjlKGfsSYSIbk6zNJ0r9SJc3TYn1OyAIozFI37fuBaR7QSpOmOYfDAdSwSoGE6xOZZJU2dMRxRGRFAlPkNVop9PpnW5ZpXTBCmlrmyeGdnElCmNfviQy/hdMog/rIxlRVSVVuCMFyPl6p6pj9vn6vzseRwkYJ4yQ19TRN0BqOx1fmifUzFzAG+s5hreNwXzIMPUWRY/RCEiumoeN6EQFIltZcrifuDpLkTrPyv/AdQa9pw4E8L+m6jmitMypY3+VyFo4i+44IWeaFspK6026343g8AprIxgzDwGZbv4cI+m5E64iqqjlfzsSRCC/yPCMgyW5rY07nM9oa4R5eZClhjTAB49iidcLx9Ui9KSXpOU0YbRhGqZIp5Hw9z9OaTBtlaVrkpFnOY5ISgufWnNmYeh2kS1vo+enI2HvyUkR/VVVwvZ7J8oS2XRdBccw0zdzf3698pobCJCxOnvHPzyfKqiIvJHxwvlyIk4RNXoLq2W4T4kjYhYvvKMqUDw93cv7IUs7Xi7DGCmn0vOEOZKGKyBjaQVBGtSTq+24CMpZFqmmCIrFENuZyFrP7pq7Xz5YH1RNbxcP9nigOTGOPXU2fRgeCFyh+VUp4QZo0I5vNHdutgmCp6pzb7UjTjDS3jiiZCViSOKUsYg7bB749XXi9PJGkBq0D49gLPgbHPPX88OWef/3XXzi9Htntt7jDnlsjaaHNdiOV5/VuWNUVIiyShNDd4Q5r4IcfHrCx4vl7wc9//ZU40kRG8/hwT9dNq8RDkWYRdZWQJznP329kiQyZl3mhKAru7+8Y+4EiS9HKrBVBkVUVpSzZvV/49Pke52YulwvT2BEnEbfmRlmW9P3AdndYlyFyrrjdGowVLMLr6ytZnuAWx+vrE1FkyIuYOJEQitwdFGMvWKvdvmC7K1lcQr2Rd5IsnQZJEw5vqdL1GZjnjJNUIdVN+G1N070v/dCBehsxz2vLZ1mwykKQ5eTf/vqVaZRh5XZXQg51WbDMPVGk6PuWaXIsLmCsoqxy4sTiZhF/pGmJNRnNrcfoFIxjHNq1ci7JVxcc4zRRF/UqUrny+ZPi5fWFzS4DLcnZaZyIIkMUKxFuBEff9SwOirwWiUwYeXjco1SEmzWb8hP7/YE///kfuDTf2WzkrOnDDRDszRvf+enpic2mllRbqtfF65U0SbFm4W6fEpDlcGwD27qi3qREcc3iFpLI4oMDHfj86QPWfiGydr0zChYn/PiBEDx/+uMDcRyh1B9gfdY1tw8y6LGaLBPsBkEEVk3XYo3lemlkcdINHPb3VEXE6Xzkp9/9mbLKwHuxv04zSZoQRZau38qd160Io5BS5Rus+RM2Vtg4JqAIXoj4Icg5VaFlgTovDOPIf/7nf7IsC58/P6CV4rArsbYkybO1DTYTmNjUuQjrdEJdRTy9nBiHgcXNZHHKMPakWUwUQxprssSTpmBMzDDdSBPLskhabr+rCV6hSSjLiLrSVFXMZlPw8tygtCPLS8oyYl7WM4DTzJMIgkwUEdlAlmTodeEe2ZiyLBk6wZtleYIxnjS1oFK+P88M04hdHEMnzNm+F2ZhbDyjhdfXI7tDzOIEkSNei7/vr797wHe7tqt2OGea+tVeFt4rK8YalmVkGIVBE0KgqgqBmFtDwGGsY5wGsjzm9fVVNrY6QauEaewlYr7ZyIF5mGmajk9fHsjSmNPxBAF2++Ld8DkNC7dLw6cvn0mTmOvlKBH8OTCOI5vqgDGG8+3NmCeH2jRN6Xo5iJVlyTg5Xo/PuElRr8DXZVnY7/bMi6fre8pqQz++Mq2K9HmWAxcKdvsarQzNrWOKhZ3kvKcsCpJUrzyDG3W9RaHwzjFNAhrXOhJjbBEz9lLRrKsUrWb6cWQYHFWRkudSRe47R5xEWDsLNFfLwTSKLdPk31NINtIksWWZAlEsnDd8EG6TE3aODFA8XXtjUx9IYsPT12eGbiROJ5SppHYxzxgLUaRWFtpICCKlaNvbWtlWOLcwDjPHl8A8t2yqwwpfLohjja6l/vntacIFxTg7jFo4XZ65v3sgS0p++FLwP//nd9ruurKVHG0r/L39XrZISiuck222WGEtRZmtl9yYeR4wVg4ARZFwPp8wWi6xWmlJPjrP/UNF38uBomt7GQhqy7W5gtdst8JgLItSzIvXjrv7O5IkZZkmUZ4HmIaZhy8fieOUl+MvmHXwbcwkevSbWADrWmqILy9XpnGh3pRkaS4A+UIszu1a9zXW4paZsk6IYyvsMO3Y7baAom17+l622suyUFUl282GaRYGUlWJ+S0ggxS3uHVAf6PaZJzOTygibCTfqXFc6PuZqsqF3eMcSi1ExogBTEXYNBLGChpjonXrO/1XtXT0K6MhJXiBpbvZoxK7JhgVTXNju3kgsPB6PK2pMuEnSLrPEccaY4OIO4aOgEFpT9fdKMsNeT6wLKBCxOnU0XUtu33FNLcC9TURkcpI4opfv75IvasdiWPN8fjE4+GRJK54PGRczpbj8SL1gDUFJrUs2TxLkrBHGyM1xjQmzzOGoRdexjTgkSreOI4YbdAaokjAxM21Z54nDocdxkQcbyepGS0T2miaRriY+7s9bTtQb2q+f32lbW7yuS5KhmHg7m4rqaY5cHc4cLd/JOA5n19JkoSulQpBXW/4+vWrVI4mxxQcLy+vJHHC4X6zHgAEfN51PcfXE1pbfBiAsPIhZehUFCILmqeZl+cX3viMWZZSVQVKw+V0YVk8WZYzjcs7ZH0cBGYeJ4a+u3A8fuP7b7+w321WZMFMkkZkuUTuL+dXstxKWsktGKXBK5ZJGJJKiyDBWkkuEiyREYZdFJkVSOzFonbYkmUpXfeMSgumeeDWnOi6G2kmTBe32gCzLBFWqBKI8TzL0qfrZzabHZEtmcaAsRq3aM6njrxIiGIJxedFhHLwhz9+4dv3rzJ46nryTL5jz8+/8Puf/swyi2nxr3/7D4wx5HnGOE7vn/+iqGSYMS1ojVR2vPznns9HrGVNLzQYYzgej/zwwxd5NmtD8KyVXGHflmXB96+vBMJ6ePVczteVDVQwLQ49W7p+ZDr38s/59Svz2LHdykFVYdjUBw7bR7TSvJ6+yrvz//BZ67oOVhC91obbKhq6v9+v9ekCrWXJ8vwkdSXnBfdQFKk8I/y8cnwGxnF4T7eB8BazXNKmTdNCmNelWMo8LugAXSM1yn5oyLItzfWVf/vX/y9xApERDpB3gaIqsNbStbNYrfuWxQ9rtTdmXua1whXWtFi+PteUvFdGSJJUDvYucGvk4hgnUmV3TvAU49hxu53Z1MX7sFipQJpExLEsoN64a94HYJF62f2OvpPhYpGVPD39RpIqdvuS4B1JYrEq8MOnB6ZZ8euvYlCXIfHErz//hcP2QBRFkkLWrFxWSYBopQguSJXJCkMqjixdLyKgoiwR2Urgejnz8Hi3gsB7MbiawOfPX1hWSUHXigXerxVEG2lut5bD4Y7dbkvbtDw9PVFVtTQg5h7nPbemX7lmml9//QW/jMS2ZB4HImu5Pzyyqfd0XUs7KEJoiOKYEBRZnnG7NXLJU5qiLPn+9MS0LDJQWBl/zjmqquS3X78BCVqLQEyScB0C+jacz69stzv65xfKUuRr09RSVjlRJDW+8/VKUZTUdYVbPMMog8QsS1n8QJSOdOMzf/vrX4migI0Dh33FsniKVRiGCmRpzDislTovvxsRGU2E4JinhSyLiZMItygiG9N1koJ6a2f0fUdeplR1xbwswo4MvfA1x5HtdkOWKkmC60BRZCSJvJP8IuBxtywENFmasdnsGHpJB5dlxdevfyNNA7tDifeLyO104McfPjDPll+/OcZBpAnTPPD1668URUlRFGudWq2p6lnq+pEM++VzDotzLMuMNoavX7/z+fNH+n7AGqneCUtYEAWn05nT8UpV1/hWUt3jMNPcZoI3qyiq4+PnA30vA1XnPcfjFWs0ziu2tUgrtLaUZUXftJyOr9w9bBEZmpxhjBYp1609oqM9bXMjEGjaRrhVVhbd9w/33K4ti/NEweGcyI6yLF3PC2/vyIyy3NE2L8SJldTo0JMkcllOkpjtLqIqC/K8XNO/jZzHu4ZpHmTI0wm3s+86kjRhf9hxvXS07cDHTxUhONJMPu/aGIyOmWfPOM2kTloBHz7uyAqN0YEk3RC8nIEv1zMuOJI0xa6A/a4dyNODtJuiSKR6Q4+bZpRXWGW5XRp5/k4L8SZBreeCp6cnyipis8kY+pGgAoSJQEIcSbMJpRmHhKbpOL6c+PbtBe/ARvIMujvsyYuMrhu5XS+kUcHuTmOjAeda8rxEBgmeae6pNxV93+GXWVLMH/a0TU+kd+x3m1WkcqMoMqZpoOsa8jRjmQcO93u6tuX792d2ux1D29GYgSjR4Ed++vEjx9cjOlTMY8fQdlhjmMcJ5TdMg+BJttuY5+9HirTELzPN0OP9SJnlWBtAeXk2rGK9ZRF5TBxpqlLukmWdcbuNzHNPXd8hDPCZaZw4HU8S3IhjzucLPkC9qfj04Z62a1Eqek/WLYswprU2bDYFfTuuwg2DjRzOjWRZSpIYksQw9C0qaOF/Dz1GW5IkwTm/LpChXDnjdV0SkHNTnIoc4e7+jpfnJ4wOaxVWZH8iFpxZxgSbpytiRpMlMdfmTBQpjLUksSGzMX0vtW6jY9J1OWywhEUzDjN93/L48YGyqpgmaeAtq3xpHAb2my0PH+4ZOkFIbHY1cbIQxSIInWY5S0xjT57XJHGKD5q57deEYoS1GdO0cL1cKYodx8t3Pn3ZEcyNoG50vaaua4r6HlC8PB/Ji4hNnfFw/2eGTt6zWRKT5RmbImZTlWsoSRay8+JXNumMjYWjrVZL9jB4CIo4MVilSDPhDg79SPCT3PujCB/euNQD2ijSxLIpd3gXGKYOYz1KiWVYzqiFDNHLGKMN4zwDEbtNTNvlErQxkhy1RmNN8X7+2mxr4ijGe0FcKBLqakNdB4KaUdrjgixulEw3CMHJc3BlYM5zQV1a+qHl8fEOgsO7kmtzJRBobxd+//s/SOvNOdwixnYXAv/833/33pgCwbWdTq/k+XoHX1sq4xRxuQXiJJXB9jDTtR1oTZEbkhju7zKu1yfSdOHuXvPweKAsLM5fqMuK2+XG119+pawq7h8fmJob3gW6VhoHwtC1xFaz/bChyMXoGycxyixYq/jpd19QGK6XGz//7W9cbw3lppDvhQZj5NzVjz2Puz3d0LEszd87nvu/IMHnZdsucOOZEDxRFK1sFStg9OlGkhi2u5pxbHHe4sNCVhyYpobFDdxOMuioqoy+H0gzgT5LEkEYKOMw0vUdHz8+kiSW6+XK6XTiw8dHosjQdyPTNDC0C9PoePr+SpIaIhNwLsLahDhO2G53oBT9dGZZ4IJAuBfnKMqS0+nINM5obajriuPLGb9urOM4ZnELeS48gf/4j7+hlSiXozgG5XjTpg9Dv8JL5UW+3e5Y+p62a9hsyvea6cvLC/v9garWhADXS0NZ7Gm6E/u7DE9D33teX5/RWpFnqYBG1+27cwtZbtBaHr4+ePpeFNdiNhb9e1EWUmVaZLjqnMcau7JDlNSEW4kbF3nOqDusDWLji2buHypsVODWqkuRZ9g4oLRowLPMikl1lgd6XZVsNp4kmag3Kc9PT8xzxzAW9MMNG4kN8/5hSxxt+Mvf/oXTqSFLD6A9T0+/cn934OHwkcv5DewqG6VlkRTRW8XWOU9pI8ZJklpVVXK9XUjnDOcm6jpjnCTa3rVyANhuN3StiEO6rpeEiXozaQkb5sPHD+R5SnNruFxuaG3IVi7F0Lcskyc4w+XUrA87AaGLLCEhTQqssbzZdkLoKIpiFUzolRHYrHy7LdfrTf7Z4yBbOLcQRaId/+tffpVLcZkQRwVKS0XIGsPtemGZPdutZVlmHh4e6NbqQr0psEHg7s/Pz+z3d8IadI7LtaEudySpYbtLMNFCcIrT6QVjNUVRYa1636g7P1OWEVEkLCqlZGuOCsJonKUmVVXFysqYVzmAW5lIZk02ZLStpNnqTY0xUq9X2hFFgf1dTZoolqVF24iizDHGyYYuMmy2JT6IuXMcp/fUcJ4LcPh0Eijw0A/0442AY1ul7DYZWVbzt18WTqcbHz4cCH7hePzO88uWTx9/5Hi6oNR/gYu1VngfeLNuslaDx/G/JCXNChru+4Yff/oshi0f6LpeapyHO0nIxinn8wVr1wr5tKC11D3yPGW73TBPE8MwrekZMQoLHD6ggmGexICcJpL0LAphMalVgPBWHYZAmqaIEfXMPM+8Hl/J0oI8z7m72yEDvZYsk23ROA5rmrWl665EUWC3K6mqgqZpSFKBCnfdjSgScPn9/Z2wkAZhJTm/kOUZx9fTWsta/x1ersRxwmZbY+OFsrJkuSQXh3GgLAsOhz2X6w1QnM5HyiKiqhOUWvBBQxCzoLURcZDDuTURaRLJYsJHDLNsFbUW63eapoyT5unphZ9+/EJRlCgdhMtipIKTFSlKTeuCRZNmKSDfvd1ug9KGcRy5XC7Mk6O59iyLDBHFfp2yzI5pFPaiVrCrKrbbhNeTvCfNKhgoy5zz5Ym229M1irYb1zSqf69FiqhAr6gFJYepsKa/x4k8Lxinkc9fHkmSlOBv75dIYYSmKBLa9oJ3UBY1Ckfb3HBe0n5RLHb5OJJFWtN05GW2yhoy3DSyEIiihDyNaZsb3kt1fBhaGeRerqi1QhmCcBW/ffsqgqJREgxlVbLfb+S9NLSrjMnJ9jJKSJOSX375irGeqorQJlk5j+NqL22IY7H55bkklNu2WQ/HC3Vd8e3rM96z8u4sTdsRxwKp3+4zyjqiKOXy0nZnYcKkBS8vryiluV4vpJnmcF8Tx4G2k0XZPIuAoyhq2lZaBVEkogq/JBBmvDdEcYxbRCBQFjWvr6f1eSGMuSjSKIJs3nWQCtU8iTk7ipjnnoyY7aaiqmCaF66XC8ErTqdGOMKRsItFfhHhnOP55VWWiXXMZhtzvY1yEbCWtmnZ72tm13G5fiNPHeptgH98pSxLeVdlxfpZC2tq1PDt+3fyIicERbdKv1RssJHl7n7L7Sb8m7qumeeBrr+tLBoYOsfiFjbbLd45QiRw98vlQp5H3N8d2O/u5P3UDyRxhM+hqiumXupfVVkSQkpzORPHG+GeXV8pq4Lb7UpQy1ofvrHd7vj27SvGCGhdDKSaw92OZZ6Z5oE8rxnHkbZtKYqSzWbHX//yRJrBMESkqdR2wWNNYCnz9RybSvorCOvZGsM4rguXb68YMwJhrYhLSkcbz91OUktlmQqaZe7WJYLh9XgC4HI58fCwYbvJMNbT9wqlondLepqWuEXeGcZomltPZCWhaFdb8zQJO5cA5/ORPC/QSqqQ1hqUDii8cBKD1CjHaSCKNMMwkKY1m01FtZHB4OVyZXH/xRBKk0T+3DaiKEQ+9vpyBhR325iqNjS3hTQxa5J3kOdlCERxRFnLkOrnn38hsRliNM55fX3l06ePctaZxAp7axvKsiLPc7RWfPh4xzgMvLy+rk0dYV1nWYrai2G0H0Q6kxcl1/OZ263jdu3Z7Ut2B0k6woksk9/568szd4dH0iTh199+IRCYZ+g6GZzcrheqjWJZRpRWLCsjNEkEe9D341oZ1sRZsjK7Ktr2Jg0cY9lsasaxZ5oUu22NNB2Ev+xd4OXpSJRo/vyPv2Oa2rWtZNDGMPTCYRLshFSotVYkqcX5Zf2dpVRVwrJ4kvUZN44DqIk4jXHOM0+OsCi8V1gT8fx0AQSK37cj9aYmTaTm6sMiDEsdsbgRYxRJnGE09ENH6CGyGePoMUqEcd5PXK5nMX5rhV0DCdt6uy7uThx2v1vr8cLvm6aFaZ5RRtha8zxhtaIfRsCQ5QWmNwx+4MsPH1f+5oKNSyI7Mk0iXJTveYtSC6fzb7y+Htke7miaE3EsSyMbGbHIB0OUKrm76JZl7umHibGf+N2PDxjrSCKxSW8qi/cZSTqTxJrN5p5NXePDvMoKIso8wShNXZlVgqf48x8+o43l69evJLHUpXe7Eq0jfvxhR8DTDR1xXNI2hshYghrYbVPcIqz0arOlrkvaa4vBMo4tZZmy3cYkUUJR7EQEN83sDhWRhSKHLJMhf1XupSbtp/WutmfoesBwu12pq3z9Hiekifwex3Hm8X/cowzM8wXnpFW1KUvc5NGpLLb7biKOEoIfURr6fqIopPIdxxarZz4+VozLhIne5AE3Hj/s8YtnnjxpptF2oCgjDvua09HJADbMaJUxLwNFUfD6+vrO/VVeGJduXgjOk5YpWjdYk9B0I0PviOMEFRbSRKr9Ly8vsuRBEUUKAKU8bXsTo3nbk2RWEntqYX+34en7d9pWBu27/VaQHNOCcxNxHIhj+35X32wseZrw4cOB41UWNVVZkyTZytCcaLozjw8/8vnDTpY3Y86y4k4Mh4AAAQAASURBVEqcc/hlIbaO4Du0TTBaoZQjODkbLU5aUVEUE5yjzDOmWQZcb4iEPM9Z5pmhHyANRIkVtvo0YaxGo3CzIzhpUFqjMdrgg5e7iQo4P0NwggEKC4QJbRaqGooilUCMMYxDT17VZNmKOlNaZIpO6sdDPxJZJNG7+gecc7hxXBswYK2S9lxsCOg1dKP4/HFPYCccbechiinLD7ycjry+PvPTT19YJo9WUOQxCsUwTDS3E9pYklgWRWXqsftcEB4mJzIxCsviIpalJY40h81Bav/zhDKeOC4pC/j9H+54fnH80z9/Wi3O0HctyzKRZyX7OsMvA4sPWO3o5pEkydblwLze0TVGeWKzcH+Q1Hg/jpJMHnqUtjSNvPe77iZC1yTCR4YkStAq0HY3qniVxroZtwx/73ju7x/whcD7hv4NJg2wuNVk1rXkecQyzzTXQRhOVpPEMbvtjr/97YZWKbttwel0piikgtYNI81NPkCb7ZY3g6vRhpeX75S1IklyqmqzWnMsaZKw3dYclwbVTGIbrTOmoeVyvbLf71nm+R1i269K+L7vVgB2T9O1KKW5rDWigGO7qyRZo3m3XC3es9lsaW7TCpLuuFwWDocN1+uFLM/IZ48qZNiZZRvMauZTQN8LWyqKLMsSaNqWYRyoqg11vWMYBva7DcXKWAtODrQBJYf3rqPr5DLu/MgPP92JyTZUsrlPRLCxzMIjMEaMb2JLjcmTO8ZBqmvTNK6MLwied7FE3/crC8pjdML373+h3lo221J+hn5hmAcICVleENkIpRXDENM2I0/fL3z/fkJrj40mAgsPj3usNfTdAqEjT7dkmWYcbyRJ4P5+x/nc8OmTqKjb7sjRQDc4hkHYXl0ncXBrLW+m2HlZeH56Yn/YvnOc4igTc2ckW9rX1xPBRez3NS/Pr+RZth6kZoZeDLLVO5fFkmUZz8/fSVJPsULY59nJ1jROubs/8G2+0D3J4T1LM6bJ0/ctRSkP4L5viJOUrpe0YdvdsCYRa3RzoyyLd8aEUoE0l4tCkkRrDVSSn2W5pSxGzqcTPrecL1fqTcHiFtJU6jjBK+q6WodQrLVLQ9u0GAtZGhO8WqsQM1VVsdvuZMiZafIiI8tS5lFA0W8xcBFyeIoiY15mPnz8gPMdWV6uKS3F5XKVWrcVNbr3AhwPLqLI75lHSSa4ZVpFKstqmpWLeNM0q0TGY23G8/e/UFaW3T5n6BamZSAwkTupY+ZFQlAQjzHB9zw/XTi+XkBBkoo1en8oiZOI42mS1FHhyAoY+hdg4PHhwPl05fFxTxR5+vHG8fSNfpx4eZlI0miFSb/9LkQkUhQF//Zv/7ZWr5T8DNIChSZLC7Is5XK5cDlLFXvoB07HV/K85HbtWWazMoISsiwiiuWw2DQt377/xm63IY4lTSfJIc92u2WZLK9Pv60mU421Ce3pSlWVgKPrG/q+FUaRRmDKt4YPjx95fX2V4eG80HcD3kdSYZlnrFUURY73Aec8WRqz3Rw4n/4qyYJl5tu3b5RVsX42LdvdhjzPePzwwLIstO1tZdD0DGO/pnOF7zmOI2kq7J/L5SZsqHInyyAbsSwOpQ3eK9p2lLpoMmEM3N1vsHZCG0MUy2fce8/r8ZU4iUnTZMUeTMxToC5r2YbFCc53AqZfL0ZGR1yvDd5NIiUIEfudGDaHCXa7HOU1XdthRoAJbSCOI6Z5WQ2xwhdr2gGtxRiNRkzNhZVLSC9pqzQ1tN0Tx9efiWPD0/crdreh7yfqKuPl9RtG11zOjVi+jeHNemmtDBQFyv1dgL+p8JGyrBRmVfRmsW2F2eoVVZVzPJ24M3ccX65Mk0IpsXPWm4SqLrlcWyIrSAmtPMviieNYEpOnK0lakaYp33490nY9h7sdSSwpGDmYaaZ5oO8bLtcTyixrhX7m7r7geDqSZymH3Z6X5xeMUYSwMAw9KE+9KWWhZO3KkZLNbp5Y6k3Jb7/9ym63RalAUFBvSqwxPD4+0g8DbSsw+jguadobdbWRbbiR7fLiFuq65Hy+0PcDSVqt1T0j7E5lAUtzm3BOc7u2ZFlMXSXEsQJmiiLDe4X3I03Tg1br73/hernhnCKNc6yJyIqCaRpouitay3cgTTIu1xt1VTBPM5oec4gZB8cSWqzNSJKUrr1iI83ipFaWJSnjvBBFEXme0bZyDkpT+b6Cx9pAnOhVBLKwTAuRBR8avn37C8NwXoH5ild34+OnHafzC65chUqt1LybpqGuN7xZr50T9msUxYJ1yMUUGoKXGnnXYSNPPzScjheen85ENqGqM7pOFk2nY8cyWULQ/PbrM7/7/SNRZGUwkWRkWcHr65lpXHh4fMAtI9frGaUTgofXVxkCCr/RMXuHC7JY7fqGYei4Nlfi2DD0ssirqorz+UwcJ3KOG3o2W6mizm6iLHPyIoOgSNOcoqg4vT5BUHz6fEdZW75+/ZXtbos1Cm0URZmRxglJktF2wtTRRrE4Q9u2bDZ7aQ2gUEYLAy5LOB5fiWLLvMiC2i+KaZ7knObUirRQ3K6NsK3KfGURycBdoRi0p7lK5TFJYtquQ/WK4C0hkvdjFKXMSyeLllgGm0mcSe06yRmHBbcMfLxLabsebReSNAbEYh6CxS0DbavJ0pRpGLFRvMobWtpmYlMX+ODQBkG7RMLdmueAmz3GKrxv+PrtF4b+zDyK1d5NN378acdtGnj+/pWPnz7xw5fPvL5c6Ds5x2drsm+eZ8qyxAdJrZ7PRw77HeAoy5yHDxWHh5J//9f/xFowJlAUwuiTRXhGnGiKwvK73z9yPo28Pl9QRp5TwUOapUxTj1smNpsdT08v7Pd7unbEK3kHzcvIP/3z73h5fhZMT3BiR11G0izi6fsTRbGRZcpa+R96qZ5X1UaGjigZtJ6eV2j/QlAORcBG5l0Ip1QgjgxKOYoioSikajkMHeM4obCMjIQg781plmqvNpJkn6aR7e6Op6cjkTUYG9gVFYe7kufnZ4wV2UQIgTiyDGPPb7++YE1GUSREZubz5w8sy8DihhUjYuEde6MZppGyyPF+Wc9qMX4x3NqWW9Px8dM9SZrSdTcWJwKpZXHMbmJ3qJknv7L6IjwL2oC24MaZLI7xbibflCRRRECtFeeBLBP539DPTOMCSlLI9/c1t+aVoqgYhk6sv0NPmlYrusDTNBfKIsdosCZFW8utacmzjDSz/PDTDrcsOJcRRzt88BSFvFedd6ggi7jZzSSxxRpDmklt3Xtpu2gjDHCpgyriaI+bZ+Ik58cvB0nO+mVlZmpJMGn1njYax5ng5b6ndEqZW74/PfHHP/3IdldiFBgtn6O3ZbjzHzDGsKwDFUJClh14fNBrzX7lJcqhX3jhQVJf2kQ4F7hcrvzrv/47cRzx3/7b7wl+oRuEO5pkKc47oigmMhblHd5VLC7wRx5pmoFxnFcMwFsyNRajsnNUpdzDplvL2C9EUQY4lnEUFj+aODI83JV0440k0fTDC2lm+fhpS1FH9MOV4OFyalfjfYlS4OZJjLrImTlJU6qyIIoXlLmRJJYo8WS5ZeNzpuWePC/55a8/r8zAK/myCj69wi+BsRuwBqLYMgwLTSuG5aKsieKMeV3aax3Wd9KRNM24u9uRxJY40hjtyTLL7CHNDcs8Mo6Othv58YffURaZCNN8kMGo8gQvchFpjMm5LARFIBChpR1hBDky9iJbCgH84um7Hm0URknCelkrrkmarovjFo8neLHOT4vjej6iMJRVznZXCdvZpszzwuymtV0hTTcfFlIbo7XUdwlW6qUEiqxCAcvKOxUevVuFVZKeNzpGIZx3lPDsrY3QSuEQjBjrsBajmZd1ke3lP0+kjlZSdoukvO8f75mXEas9HoU2MvCU5PeKtyKIAEghS343y3DN9Yg93XB/2P3XEM7EhBCt3yVFkVk+f9zy8CApazcvdH1PbBeyJCLPI9JY8c///DvWuhyna8f53HC9dlgbUxYZeSZYkywxK+9RWqBKGeoiZV48SST3HKN/JElidjvhNu6qirab+fLDlqY/cr0dUcasIaa/76+/e8DXdR2BGa1lqPBWzev7FmtiXp5f+fLlM13bEycx4yisPqUUt9uNy7njeGzYbAqyPKLrO5pbS3MN4C3OT8zzK3/88yduN4FoHu62hCBRWK0ND48HAfqbmGGQgcjT03fiNKLe5LgV4osCrS3Xa0OSplzON/mF49et20Q/9CRp+g4t3m53XK83XJi5O9yBksFEsr4Ib1eRLfz5H3/Hy+tvPL8+UVXCcYgTMVZKtLxdpRACpB7GG9Ya6k3B+dQQRxZUgrHgfM80dyyuoulubDd7mW6jiWzE6dSsEdeBKNbs9iVKe0C2DgIGFni31pBlcki4XK5oY1Fo+n4izzbAzOl0kSiulpfKMA4c7A6F4XS6sN9+4XQSGLRWYrOcxlEsvrGw5qJoXHXvmiyr6LsepSZ+/8cPTOOANmJwslFH18kHV5KFE/PYrsy1E2PruZ0C/94+8fmHmqZtiGyCC8Lgck7q2jLoa4Uv1dzIs3wVJiD8G+3FLDfFJImhaW40Tcv5JFW1NLO03Y158lzOM9PgmZeBru340z9+YZommqbh/u5Anpccj2eSOFkZMK9o1dH3M8vsOZ/PJLlhHyoW5/GI9c9EmnESwP/1cltBymGFbmrGaWRxM1Fs0UZx93DgcrkyTo793XY190h9KITA6XghySL+/A8/cr4eubVX2TiEsDLeFoyVuu08T/gARZIwjA3aKdI0YxyXtTobYwwsrseHAW1ymralrmRAqldmxrdvsnUwRhHHEfv9dgUiG6Z5YJrd+hIXmH2aRiyLWH6zLAfEqp2lKQHH5XJBr9IMgqHveoyxWCOg/TK/4/n5GaWFjTUOszCClBPj55pIvd1uoDRlsSFJJTn8x3/4xNCPa8o1Jskm+r5dpQzQtTeG/sbr643mdmUeA7fLTHP9ypcf9+TZSJaK6dtGEd+/f+fh4UE2On3/PuATq2cmqb44YKwY5JberWlQqQcPg5i2TcRqBLYM48DptUPMcN/50z/8QFllDH1PHMd8/PBpNUUHDoc7mubK9dqgVcPYC4h+cQtt1xLHCmUUs1vkomgUxspFwkZGtr27LVEUsd/vxHQ2CEOoKAtQ0HUtaSYvc2FwGWwU8fT9K0rBP/y3PxLFjueXZ5QJFFlK2w6IodcxDD1te0MpESe88fbiOFr/XHJwtFZLWimVy4TzM/Oi3u3k3sEvf3sWnloEWTaz3ZVCS9WaEBZu1ytg1kH8ZrU4jyvLKSaOpB6ogDRVOC/LHJQnTVKmRQZveZZKhdSL+XjoB/ZlhXML1+uAWyT1F8WFpBTbjnFcKPJy5VQZttutHJTmaZWybJjd9R3w3zQNbXshz+HW3IhtgiHlr//5ncNdIUPVvEAF4VX+8uvfVplO+s5pFQbbkf3+wOVykSRuHBiHifNZ3h/eSz05K2IIBrGeK0nmpTGX85VxcHTdjST9iPeeNM0YuoX7exmwLPPMfi+ftZeXE0kyMfRifZwnAX6HUOCCDFvUmuIwq8yn7a8M/URd75jGmf12xziOnE4vFGWOc1I1VUajTSArEm7nDuc0Smuenr4yzzN/+vOfqGqDto8sfia20cqHAa0M/dAJa0gLukBSVbLlLMuC260nSQxRbLEmUFUJPnhspHBe0uoKg5s1//nvX1lmjbFw/7AhqhLSJMW5Aa2h7RqCF3ZwWVYoAz5I0pYASVIxT55+6YmspyxF6OC88DlNJFKIOIoR83OHdzOXy4n9vfxMmuYmfLtYIPxZlgrwux+J44w4iVAaiiKDYJhm2RaX5R1xKnDo/f6wvqsuVEUtlWplydOaX355oigsxsAPPzwyTfOallEURcX1ehXu5srkzPKMZZlpmquwgb3nx58+onTg+Hrk6em4MnwM231FmmW4RdN1Z5Sa2e13uEVxu0ycXluSzNIPA3mRc3d/x7hafL0L5FlBlhT88vJK17doM9PcoKpTxqnjcjlhDO9MxWSzCoAisSQuTtIdxojxdb/fMQw9wzCSZxnn0wkTGbI8oawzaTf0ImgzOuLl5YKxhg8f9yg1Ef/uB1n0asXlcgNEGCWQ7QVt9IqomFZL8IW6rrhcGmIbEcUKa2OieC9iNGtXNmSCJqZpLjw/veK9CAL2h4i7Q7n+PDxBBbq2kf9cpTjs93gcCphuI9oY0jjDL3C+3cgKR1EI+3iae2EvGc009Ww3Ff1a0Z6mcWXmprgw07TjytPVFOvg080L0zLjARtZNpuSspKhxDI7FjeTJBuKUhLq+8OWcR643a5UxVaq5hjyrOSXX15IUqiqhs+ffxBenp/J0wS2O37tfiPLEmxkuV2ugu0IM5sqQxvFz7/8wtBBHBtOLx19LyKE+30tEp6pZx5a3Lyw20gqyU8TzeWMMQnWBLTuxZI5tBBb0lix21ZEEVyvLV3Xcbs2KAPWQnAzKkzM05W6smzrnH5s6BlI48A0XCmrHUYrXp9fJCGrA307kcWS4q3KBPDM40xZFpL2jSD4EZQhTTLSpKS7dnz6nMm5ebhi8px5lj9/nhis7jmebiIGyUsZsOogTNTYkKRauK+x4sPHLdZoPA4fZqzVPDxuUEEzW42NEID8h3sx1PucYeiIE8GLFKnBecPpdCTPs7XJI8lB5x3GlOR5xvHlShpFvLyeiaNCzvEGiiLn1lx4fT2vz7mJ6TBRVQXDynlUWpFEEVkB4Li733E6njhfjvT9jcNhj/eSyiEs74K8xYlAy1gZ+iotLYNffxb5zZcve9ruRt+PGGN4uK/5xz//P7hcL++fqyIvuNsV1FVBlr0tvZ0gbDDrWcfg/US2Snq8D1gvjO7FTSyLDGOb243m1lCUhRhlC1nEL8uAtRqtF6xJUMrQD6NUEtc7pwqyALA2Wc/SFm3Wc8TmkU+fK7QCHVrhZ2Y5SZoQgkMpj/Yeo2W+IGnwlE0Vo1SKVoKBkYaZhvB2M5cwRAgLwSrS+5K7/f8ig0zceg5IcXXML7/8yul84n/8j/+B0Zbg1DqgNPTjxLbeYv8P4Z3b9cr1euGHz494F7CRnMsfpprL7UaWFSLAmmTYGUcpRW74/GXPz79e+Pwl58//8E/sDjXOTVyvR/a7O4bW8frtmaFpaBND07fvyIihn3HeE8KCcz3bTcGmlmetCxN9d8QtC/ttscqgYprb5X3oHltpqkmY4Im7hw8EZk6n0ypwG5inhf1+uy5CDHGcMQ0zZVmvjbmYrunI4hpFoLlemJYL23rP+dLwL//yM0Wx4+XlZwwLf/jpE//tH36HVjLUj5IIowVlJIEOOUsBqzjSv4unpLUgrHeAelNDCBgV0Gi0sZS5Fm7vPDHL3yp4M2WI04T8g1Soo8jK4GvseWMETvPE+XyFoKjqkiSxOOdRkWWZ3zwEgSxPMWtiT2SNCucDfnE0Xcs4T2gMsc0p8g1Ka7xHhG1xLPe49Z3mQxCJ4DSAkmGgtRFJnCFmWblHDeMoC5Zl4uX4xIf7ByJj+eXXX5gGWdJI4yUQvPAtx2kQbEQcY1JLcNKGHMZOxCllueJlPNO8gPfr0NWtkqEJpQxxFOG949/+/S8opfjD73+PtYbgHYtzKBUzDg1GK4q8WsVYN4xK2VQpSSJL+OA1s5fQUJGJrKfKt6ACh13CmzjKLyn3+xptItKiox83zM7xeryxmP8/YPBF1nK+9uvhxyO1SYHfloUlzwSi/Id/eMT7wNO3hdttIooyjFUc7kt2+40wd9wMLDw+HnDLheY6CQT0UNP3PXVdsdsF2bKu3fXD4QGC4fh6IUkyptHTdSN39wf6vudyOePdhLUyjNxuNivYdUNkcwHf2ljqgiZit99zOh1JU6l9Ho+vJElMWWXEKbhloesd07KwOGHy3D3sKMpAmj/Qdx1KScXBLW8H0FYMcWlCZBV5ntEPV263C5uNpqwymqYnThKSRFF+2tE2Cc4LH8YHGRlZE/P1t1eOx540NRzuavyiqMo9ze2ZPJeB4rKKN/K8YnEjUQQBseMlScIyW4Z+5nz6jR9+/ECeF1wurzgvwhIQBlRVSV1QKY9SDhsplJbtkHPzavlcyLKcJI4lwdMtDP1AXqSkWULbDPgw4WZ5id89brhcT8LmmsTk67yY/cZxJk1ziYoPwn7r+5GymEnTkqLwXC4jxsjGKEkS4iTBLSPTNLHd7EhSy58ev6BN4On7C0/fbzLJjwyPH/c8PN6/19RspNnta6ztuJwGrhc5LAzDSFmUfPjwAedmlllSl3GcYk3M5SIQ5HlytF3Hjz89MIwj5/MZ70e08bRdx25l36VpTpFvGcaeyK4mUS+DvqaRTf6yOL5//06SJESxEjZQCMxToG17CDIM3OYJNgkc7mrqJWcYB9prw7KIYbnr2tXqJxzANEtYnFSojNHrQFnYI8Z6Pv9wR9/2NN1NxAvTxLIYIpvw/dsLr68NRZGx2RQsGWzqA5frb+SFWQU7SExeRahpwBgZos+TRiuL95Zp9Jxef+N3f/hMXZUcTyLfiRKpizdNs14OpS5ZVjmLuxLHWtIQLmCMZRx7srwU61ZZ0zQDbdORJDFxFHE+Nwy9DKn6ruWHzYbrbeUlTD1lnoi0oZBhsNYFBI3zDueEeTTNM1FcEUdivjJG0oxS9xMgdd/37Pc7nJt4eNzy4+8eaJqWn//6G9MkVr56U0hN/Cr8nCgWaUySCHD/6duJNKtXTlXgcHdH07RcbzIYPZ1uEDRtM9I2PXluaNobP/z4geP5tBo0JeU1DGJm7bqWZXFUxQYXlnUwFvj69VfyvJSLldWA4XI+k2QJPkiK1wXh/zRNz/V6xYcZYwPGeOJY88MPnzmdXoWnOfYra9OuJkDhfSqtyJKEeYlwbma7PTBNJ7QR/lSVFdw/1Dw/PRNFwg9y7o0VpzgdW9KkIC8sQzez+WnHOF5Z3IT3M0maY7QRPtX5IhfDjaTZlgm0tXS94CLULlDVMf0Q0XXCcfV+YR4H9rsvwtdqJT1y/3hPkgWSRBGCZZ41fdfQ9Z4svSPLCggj5/OFoihWY9rM09M34jhejZCazTbhdGzph577O0l1RXGK0Yrj6YbShjiOKaocayPabmC33TPPMx8/fiKEsDLALEWRSYpvGnBOU5Y51sIPPz4QguOXXxSXU4MxCqU9d/dbWQCkidjvckuWWeqy5Nefj1RVxpsR0hpLFFuutwuP93tu12een19XsPZIFMtz6fHjHUWVoYxHa8809kSRJoq39H0nyWMssU2xVgbj379/I0mi1UK3wXs5kDrvCCzYSGp1WZ4yDtA2DUo54iTgw4g2GR8/PQiOArPW46WyfLlcVuGGw3tHFAv/BxzVRg5RIseKsRHc3e85vp4ISgbjs3urt8Q8P4FbNNZY+nbi/mGzPj8vLEtPUcqhU6WW0+nCvEw8fthjNFyvHXjD7dahSVjMwmabUhQZl8ssJlSjWJaJw27Dhw+P3K49JtJ8/vIRZQbSDLQOJJmh6xqB3us9aZqRBi3ppLKCdcD9y8/fyPOcrr/iloHPP9xxvfRcLje224ylnun6G0pJWsOHnCRJqaqYvCjo2oGqUNRVzbfvvxLHMT/88ANd1xJUWC+0A0kScbtdSZKCLE+Ypo56k/PwYcviJtwC4CAsLHPP9TpQljKkgZH7+4K6LPGLGBXjKBbkQN+tjsWF3WHHX/7jZ25NJ8iMoWO7KxiGIz/94SOvL6+kmSUyhuOpQZkcEymulzOPD462FQZUliXM88T1cqGqShEcJCIqiZMUbRRNdwFi5iWQ5SVae+ZpJsvESutcR5bHpFlJHKl3VvEwzGta5S25uzBNkkDd7kqMFgGAD7NIGawnjhSbzYaXlxe0lmFiCLIE2G23vDxfia3w+sZhIY5inBND+jh1AubWBufg5fUFpQMfPz5AgObW443ifLqgdYqbR7QygpQ5nrherhijQS1wH3h8fOB8aomTmA8fH7HJRJqK8TP4iOv1yvF04+HxQJGVWBsLY2o1/hlt+frb1zVZfmGaW35M7rheRs6nG/tDid96+l7A8ufzFRAsyWYTUVUVdZ2hQokKM+Mw0jYtnz/usbHIzpIoocwzUH5NShuq8gubukYrj2ciTkQ2oYJfz3zyu7DGign5tg6SlKauK9IkI4QfCciC1xOYRpGfabMQ24RtXfD16zc+fnygrGJU8BAMISxoBXVd0vflymBlXaRE3O1j/pd//oksl+enwjAvDpRDq0CSRlgT4RySlO97/uM//hNjLL/76TOEwDKnKOtIs2SVEnm0ismzmL4LVEXEbpPx9HLGe78miSfmxbPbVXg/EkWaIl9wHs7XE8pIUsw7S5qkBKeIbUxVpRzuSuLYk+aa56cjUey5e3wgLbykfnxgGgNpKggZ8OsQH7HjakVZVWw3FddbCywkqcXaQL3JuXU5WVHQ3lqOr6+r/C/l1txYJsfYLXTqRlCKJFUsC9yaBpQlzzdoHa/iELGgz7PjdnslTRM2O3mHfvn8CaXHtVViWJx7Z6WnSUIgUJc5ceTY1Qm7zQNulf9oBVrJ4j5Oc6yxZGkEaxNqnhapE6IITirPbdczjAPWCj/Ue0UcJ1S1wVqNsTLo8t4JkmR2NM0FhSXNLFkWr6wyETwFvFRNnZP3NQLfl5HJQm3tGihRuMUQRxBHimmaCUGhtCxyjdLMi4hQAAh+FWcFwdQYBQhK5o19Ztb7hoRbhFemtcaYBOeFAaq0koSoCgxdQ5LG6/dukudzdyGJU9IklpqldtS1pGIjGxMkEYBiIdKe2Ho+f9gDiJBrCdSl4cunDbv9T7J0s2LX9T5wf/hAZGOm0lHm/x2UYpxnrm1P1/ecThes1cTWUhQFRZFS5SkiDPSgpQVntVhqQ+hIEkcce7ZVirGBiIw48hgzkhjD5fJKXspCOklSvDMcj1cCCE5kxetYE+FHR5rGWCtpuzKPUSEw9B1Nd2XoBvIk5X/57//E09Mr0+R4uH9ks81RZiGLpQUnnxm/8rsXoihGKbE3S6NBo61Urh8e7zHaytnHK5xHEm9KEZSkQuM4Xrm3KVVdSrLOg3cKozMRAs5rm6fppSmwpsKSJOLDh3u8k0Fw28uyUSup9EdRTJbZVdr29vldIMhSNssy4jh7T/1rlcpCzDlMpFEqEm5oPxCQNKlSkCQZOrIEHE0n9eCub+XPGjzTIpJQG1m2WwlyXa8TLy/fGPqe15cn/umf/pGH+2QVGcr59//zL/+Tf/zHfyCJE1lKrQivLJVFqdYalAwYx2mU8NNaUx/7mTgVpJEIp8KKT5LkapYZiiJfK/CKunJ8+3ri6fuRosxJE5FopmlEHMl7JMIwtRPjtLDMI/vtToJPfcvEuGILDN4prBV55/2hwIeIthv5j//4K4S/ezz39w/4Dnd3BDWusF+/Ch7AAM8vzxzuxAYU2Yg0NyTJPb/88oQxctmQxIlE06PYvv8ivvy443wcME+aEBzWpPS9HJYCAW0ysiLn3/79rxRlRjdMLC6gSdA68OWHR86r2W2eHP1w4+HhnqAcXX8jaWtutw4bQZzENDeBGm52Wx4/3IkVOEiyyIUR1MgwdkQmZbutaVrh/W22EUkq3fqqFDuUMQrWB0TfL5xOJ/K8YJ4XbGS53o6yhUtL8jwhjnJsZCjrmHEYiGNDvJNtvvNqTSVZQpi4O9T0jSKNFddTS5FFGJzUY04nlIYszdBW03cT1+uV/aEWO9Iw4Rdorz3OxURWo5hIc2g6y/NvV+JkYhw7yjxjt9mgYB0MxmBS8kK6+/cPYtk8vrzStQ2Hw3413I6SCtBGuIarZc57z6058fo64p3nl59f2O1LimLg1py5XHrmeaC5zlhrOdzLRfV66anLkSSG7XYrB/R5QoGwGZVDWTieXrjb3eOXBbcYjNXs9nJBEvOsAxau1xPzLDy4EBzLNLDZxFij5WcfGYx++0y2AjCPNGke8/PPv/ItfmaeJUYc2xSUZ39f0jSKqsoYJ0/TnimKO9nAexjGmefnF5JE7MNt06/JG8Xd3ZZ+6PBOE0UJwzQQmBnnHqMs292evh3p+oHDfUpZGeZxoKxKtFJkaURiLU3Tcbt2tG1HWdRM04gxmvP5hcBCWaYkicSI4wTyPGWcBpSaqeqIOCllA2QVMTHOTXz4cEfXSjz+fGmoNjGLE8vg9XYk4KXmjHAg21vDZpez3ZQM3YAKhvY24pdo5W5NJDnYRvP96UpkBbBalgVGKyYntTHnZgKOKLHMXiqCz89PnM8X5mVgWTaAls3VtDBN81oll1i40opx6jkeZYP66y9nttucaXaMYycpLe84Hq+gIh4eJKHzcjyTpCm7rWzsPjw+crmcsdF6oAuOusr5/v2JeRrZbCqa64UQEqxVbLb5yngYIDjatlllCbEwecYOowJpKnUnpYB1+ND3N7I8Ik0tSnv6ruN//s//jTiOGKeeoswZx5btrmS7ieVlksQMz2eyXOPDiDJSZXt5eUJpqe1NQ4fCo40nSSKy3DKNA1GZ0w2jXAhZWBZFEkccDmIdu3tIsDZmWW7MS0yYoa5yfAiEsHA+X7lceuK4YFk0SsN4EdtbFCmiSGpdnz7vUCqspr4JhebxcSObwEytFeCBh4cDry8FyyKXzyTPcL4nTi3TPHG9tuRFJknnIJwbowX+myUJszLgNWPfkCQFWjvywjK5jO9PL3JY9o7IGtwi3MiX1wtV+YHXl2cePpTvDDmU59ffzlRVzu3WoJRBYdaL5IBSwgLN83wFqDuWRTbWbTvRNjP7nWaaR0zforTmfO7oO0VaRJR1zuV6pe97okh+FpvNltPpxDxN68vfs7/b8PI8cLm8sNvtuN1OON+SZBFGOz59OnA+nyirnKFrKfIIHwLz3DNNPfM0E4IhLwLjuJDEEdMoSbK6ismylGkZcMHx8y+/UtcVgYBSDk/P4q5E0UJRZDJ0HRx54RimJ+bFU9V/4OefG27Ni0C2vSbPDFkeodVCUhgiaxjHhWlZmJeJyGZ4N+EC7PZbTsczu4Pm8w8PxMlI04z0fURsI+IoYsgihnGiuTVoJQdaazXD1DItktRL84QQRh4/1HJZ1CIYGscbd/fVKr8oKYqYKArUdUx7X/D0feHWXjCxIUnu8EwkaUbzekObmTiJsUYQJBrhYWZpxjwqkjjnNL9iE2ERZakGnfLt6Rv9KCnSeRoZB6l0v76cuN/P/Pb1K/s7izKGODWYSPN6PEldqJ/XCp8wV99YbFGUiAE2jjDW09wWpnFmGj196ylLIxKzMOFZGKeF0+mM0rDZl3RDx/XmiOIdSfSBqiwI3hMZTfALJlLEkcVEBfWmYhw7FCMGRd8OgFjE00gTDMzDyDI70ijm8Q93tF3D7Aaa621NSiTcHRKyPAPtgJF6Y7Fak6UwTley1HK+nKg3BbmJsXqmyAPjcCJPYVtmcojUGdUmYl6upLmlLCO868BCHC1E1pBne7QKGLOQ1wlRVND3E/00sakTCBMET2QT8m1Me2v4h3+sSdKIoFqpnS6e3bZmGmeyTDGPC9dOWijey7u06wfKSgb2SZpj7cjjh5Jh7DDrQHeeFx4edyhlWGZPnqdUtWa3T9lsci5nx7g0HOIaE01oE/DBMC+BaIFghGUbRyngmcaZaBXXGJXifIO1HphF5GMLnp5fUMauS/KJcVi4qYbT6cKHw8TXX75z+CAXqCxLCFpzPF8oiwznoBsGafQFGIYJtwSsdVRVRRInaO1pW8cyy3NkGBbmOTAOAy5I3WucF45HadTU2w2LX8hzy357IISAWxzp7++FLZWI0ZEQ8EEGqouTIVmWpsRpRGQ1PizMs8gktJJUCEGhkNZNHMc83FcopWWpo1aDuX6rv23l97B4kUI4x+yhayeytGe3l3qs0QFrQSup1UnyKcaat+tRQKuUqqgosh9BjXJpVRK3Ue+pKS/iJ6UJZAxDQpH/HucWHh7KlXvW0Q4dbdsQloGffvqJOEpxbsQtkor2SvM/9A8EJF3r3MLleqJtb2w2H3DLQpHXOAf7XcY4Cy/8cm6YZ5HMZWlJHHk+fdzw9duvfPmh4qffbbm72+DCgNKSOr+cGv7z2zfmsScvRSag1npo3wmiQqmANgu/+92BaZb0V1AibtpvKxEEWM3x5ZllFhtvEkcYoymKkpfTC0m0IYkV58uZrn8TowwcDttVPGeJbMLkl5VtF68J9ovch2JD28hienED85o8v44tTaOE05Ubgp+YRmlLlEW1okyidcAgiXdt9bpMe2u8zPId1xKQAEiTBB8ckY6ZZgmaJGnGNC9cbt/XYUogSRLytEArg9EitZDPj/zfCDI0uN0aFGodjBhU0CgrHNY3lpk1kiAiSLrJaBEKDFO/DvuQlHAin4s3tMI8z1KTNAq/GoGDF/60C/2Ka+mJ4wRrEqlSz4ssv0NgXmbSPOH1+MT9nYg8xqlb70kWrcs1Hb2sllbW/70sZpd5xs/yfTgcauHx4glBzpTdPEIIJJEhYPBrojE4x7dv31iWhY+fPohcI5O6ZlHnjMvAvBgOhzvhLmtDYi11kZGnclfOIoNTgTLL0Mausp6KJI7o+y/EiQya8CmfPxX8r//rn3g5/kbbXYnSmOMxrFKzWQQx80xdl6RJjPOeOE45vVyYp0BgpCo2PH7cEieaoe8A0Kvl+rDf8Kc//okkSSEElFokeRmkdquUpDdDCCwuyL8X7t1SnCQJUQCltfyckWZLQJhwfT8SWVlw5qUsU974+T44tDIoIqrske3mC9N849/+8/9NXhjyQoaMIUgAKHjQGvKsYJoWirSALEMrzTTNq0BT01679f6fC9NVObQPOIT3rZWwYK1OMFa4l8Lik5mIQTOOi0gSo0QQabPgvRSK6/VCWZSkWcT11rw9RZmGETd7fv3lO2VR0/cDjx8eeHx4IE2i1eJt5d+xveK95/nplehjQpEXRBZhlht5lrGK6ZQyJEnG88sL292O/f4O7yemucX5ca3iK+4OnzlfjpxON/nc24gkSUnTCjdpvBezbpaVfP5wILKePEsJbiaJLHkay6IzhPU7qTDKkSYRWVoT9BrVDJo59CzDQGzAB8OoDVmcMI1/73Tu/4IBX5JYAVe3LVmerxuwBOcVXXtlGltspDi+dhRzinML212+bpkzuu5KWZYcDlua5ooPC5frUYw+uWW7T+Sh7nuiKGV/JzWpEBwosdi1bS8MtCxi7GfSXNEPL1R1xKaOuDU92/0ebWemZWK3ecBGGm08NpINxj6piOMI7yeMcdzd3TH0IxDRdQtJWnO7nbFGkeQTGEeae376w2e0CUzTifNJRBBpkqH1wGYTMc8DQy+21KJM6fuVh5Yb0syi7UiaZURxzDg1JIllnjvKslgZZ7CpSpyD6mSIIsPPf5tomom8tNx/TBjmEyHAMku0WilDEkfM09sgK6yXr5y6vmPojzA50cqbmaosabuBza4kjizfvzXcrg1V1YidLd3LsHK6gZGE0jT1XK8ngociq9DKMvtFtlvrtP/7968SZ89rhmHgw8d74tjTtj15Xol1bVyQrZPGO8PtNuMWONznpGnOPAR++/WJ2G6wtsJGnnFsKIuCNLVkuQyFp1ERmUWskt0VrVKCX9jUMZdLj9Ezfhn58LijLCtOpxMa0auLadaQp/fCEvEDkU2IbYY2YPVEHMF2U9I0UoGJE4nDZ2mJ4sZ2o9jvI7re8vHTJ6yBZZlIk5oiizlsc7JCAYZwX6O1AkR//lP1AQg4pxgmYR59//6NJNPstooysywuJi8eiRNN13VMw4w1EUUWw7JQZjmJ8ZwvPcvUkJc5zvco5djWBVp7kiRQpJ7Iaq7NK3GcMC8DUZ6SRxEhKMoyJTYV1ZMhijWBiX4IVJuYu8eccT7hnKPrxGoXUiuXeGZ5YKEZR0eWFWyqPcE3tI1wbIxxlHXGMOZ84oHIxPz888/crg3X602G/KZaN1wTTSfsqX5ouTVi+jRGBk/zLEuDyMaM48TT0zfKsmKzrbler3z8+IixM13Xs91K2q7vJQVprYgq2nZinh27Q0QUZUQm5fv3V5J0Q5ZVoGdstBAZR15k+OCpa8U4WIq0XNktI7GRl8d+k+JXnoRzhjLfst3umKaJ4/GIm1qyNOHubsvdoZDkmhYpyW6zp20b0kResD9+fuTXX4UpaaMNeR6zrz/JRm0RJl9QgbvDZ7LcggLvDHkGv/vhjjiR6qYxkWz81v9KErseZALzEphnxy+//MztduPLpw8kicUvCT4MFFXCMI4sTurURSZSizqv+fxhy+vrhWkKxEmC95IouNtXzLNA+as8sITA+XICJWnmxSniOMVNjihKKYuYx/sCTEuaO16fG7Jc8+FThdIDTdMz9BNtMxJFmQw8B2G7aG3pe0cIwpEqcqkxhAB5obFRIC9ifvr9J9Ik56//+Tf6tud0upJlwkcxJiZNM7qu4e5+Q9833G4N3nluVxE/RZFlnlcO4mpxjOOYw+HA7XZdt7sRITjKsqTIS7q2X7lYKbdrxzJBwJEmGbdrg1ExbdNxvV7Ybj9izURdaYJ31FXEuHjyzHF3l/HD5wN5lqHUjI0U2hjuNyL6+fShXOtRTnh2KF5eXtY6o6Xe1GhtV76i8NeSJOX19ZU0Sbi1Pb//6SNZ/EqSRGw299SbHP/nlfszC4tJaU//Y06WRyuQ2VJmgf/+T58Zp5KiTIhsvB5oFrlka7mwOxdAW+bF8Z//+Rf+9re/8ad//ie2VYFbKpruwmZTiSAhjnFekacJbnZ8uEtxIdC0E20zYfUqWpp7SUrgmOaJuhLr8eUm4oYsK5immWXRDP2EMTGRgU8ft5xvr8SJJ4SW/SHi05cadMs0a8Zh4fTa4mbNdi8232mU7+g8eWYckY3YbipUkIVWvclBz2iz8NPvPhBFKV9//c7T99f3KrUkJ97kPFeqTYFzM9drx7Is3G4NWZaulm3YbHYsi1vZXBN3d3dM00jbzmy3G7SGOEn48DFnGK/v8pXbtaXr1mpIEdMPPc4F/CJClF2Vs6slYZlmEfd3d1gjXGQXZtI0cDh8Ic+Kd+aZc5IuUeogJjttV6mPnJ2CNwy9wPmjyBInIlNSeOZFBo4EJSkzKxvqx8OOf/nf/50PH2sePuzIslQuxwRQTs4DPhDCx/XCDN4r9tuI/9f/85+xsSOJI7SRyzoEQpDLrdWSrgrKMAwT//v//i+cLmf+7/+33xFbqbGezq/UG7k4lBtJUhujCU6qSS4oxmF5v9SKAKdHW0fwC94H6lKM8Re8iNeylHGYGfqWeZa/L47gsEu5Nk+kWWAaR/Z3NQ+PJUr3eK9ompbffv3O4W5PWeVijR7eLOAelMMoRVUnfPlhz7IE0ixB6QWlHb///ReMMXz99StP31+4Xrq1TudJkpSy2DD2R/b7knkeuTUD07jw7SaL9qou8Z6Vx+hpp45xHMUgOojtfbupCUHOkx8/3tOPDd3/j7U/+7Esydb8sJ9Ne95n9CHmHCqz5uo7NCWKJEDxQf+vHiQ9StADBYIkIDbZ3bp9q25VZkZGZkT4eMY9mxkf1navKwkESF46kKjMqAiP4+fYNrO11vf9vkbRdx2n45mundA6slhKQ+R0bHl5tSBJPEpFmqYjxmm2t1umSe7s4yjPhQtyj/NhENt9ljIOIw/3j1hrWa4W87k1zKo3UcDChDUJk/Ho2e4Wwl8Dioyx85rSKEYIE5t1Rp5tmaYBo3vGocfqjLKu5waVqGRinABRUvnJs6jlnooSRU3fDRgr4WXOWUDh7JONLVCVlkX9ArQ0+0MIWFdQL0ve//iBjx/v+OqrLxj6FqMjVZXOd6uGU9tjbUKWOhmkZorESvKxq3I0YgGPXhTrq+WWi/WS4COTH9DKsawTvvryiotLS5onOKcZxwHvnTSfgmFdpawXf0BpTTeOHE4Nfgo0544YBPNQVilZpskSCeZrmg5rA94KCqLpjmLhiwN1lZDYgK0y8kwRQoPRkaY9YZww3FKXYGpBshBhuZIhjDT5ElGZW42xUXAdZSp89HPLclGyWGYM45kYA4+Pj0x+xfff/8ivf/2aLE3IM/uM9QA1n0f2eQ+eJklEt9YSApJenGSSimwsSlvCrP5TKpKmNUVWyR5DYLmshLOnNNYkxAhZLmsuTRxt1zJNw1whS7PPaEOMgNJ0/TCHxlhpjhgreCRrpBEZFCgj76mCLM1QUQKW2qahbwObxWu0Nhjj5vAW4RAbq2cVacA4RxxF7T5OEkTXd+OcYK3Ji4zH3SNFmdG0LU3b8fgoluuH+3sikd/89nc4K6zjPBNW9uPugbfv3qBQ9O04N1E12igUYK0mRGiadm4mBsLk2T3usamfhY0BawynRmrMy6sL8jolcTkhwuQVzkoDaX844xJhQU+jxmppIDmricHQn88MXY9LM5aLmhg17fmIVgNZYmQYlRsS13G1zVitXhC55k9//hENpElKDJoQPEVhCL4nT6XOSLMCPWlubg4wQVUsSV3E6kiRF+zP0qwPPnA8SphonHrquhSMVNui0MJVBIpcuNTWZPgQUUqjdUqSiOpT0DeR6EUZbASEznJVU1XVPMhQ5EUmQV1ewj8VCj9GDI5l/QprMr774d/JfT54+n6aA/QEq/KExokBnHVzkIhw/otCmqKT9xwPZz7f3PHFu29Ik3ROmh+JsSHPCxQijDFmJMkydodbQugpC+HDR605Ng3BB4oAwQfSzM136h7vR/q+oSwzFsuSfvDcP+wYx4nLiwvKrKQqa+wc4qY0oCLD0OF9EAQPgS+/+JKm6QTjNojwZAqeoRmfg8PkHqto257g5Xs87u7QJsFGBd7irGVZr2jbEzefb8XpZwq6tmPrSvyk2O8a9o9n2kZS4bu+JXXuGbvSdy3GyF0vL3OMhRimGWOnUBgEsxkI0cudg9meHRR5krOqV3xunydH/6u//sUNPqN7ri4zxpWiKHOUihgdSJOK13MzRelJWAJaLotaCyPOWos2L4lBGlNd1+G94ikh1jmDUiLnHHr5/57UF9PkQaVcLhZ8992f+NWvv2a1KXDGYo2dG3VqXkgXqNmuppUmBsuiXrNZfkuSyaRFKy1TBzxGq3miaVDKQYTH3Z4//bEjz3N++au3gOd03jOFgXGaSJIL6qLGWcM49rx7WctF41eOaULk5UZSz7quQZuI94NMlYuUYQg8HjrStKBrAsP8QGo06zJS5BV5Zjk1D7x4mVLVl2y2BT4eqauKvg883h8ZR8/1iwvu/V4YQhMkzhL8KKlUvuPtuyVDP6K0FTvp+cSizimLlKEfub2Vi3GIAosNQbFYrLn/8T31SuSoh8OBYRjY7xr6YeTqaisdfgzWunkSspwTt0Q1meeWfpg4nTry3DGMkcl7+uHM466jOQeci7z9YkOaKn78/oYY4PXbCmUmqhw26xUhVORpQohyeXSJ5at3V+RZJpNYLWmAAFor+uFKgkbsV2LD0JpxuCTKjGRmLgR58DT46JkmsU52XY8fpfnWrgN//OOf+ObLF1xcLnFOJMwxClNOrBwCpZb1owneslmtWS1/iXWiTlQomQAjhclTgqFSAss9nRrqfMJaxxdfXKOItO2ZpjtKOEZRst1sZ4VVD6oSO/i3rwFDFKc8fd9xPh+ICBdKKUtZlAxjRpELR67tRrp+pG9bjFYkOkhyaW15PNzy299tqaua5SrneHpgs7pgGCZuPt6w63rwkX6UcA2CpW8jwYti0vuGq6ucsBWmijIjx0NDlhrspmQcZFo6DgGtLEkin0hRVPz8saVcZGR5wmEvTMG26/j5p8/0nVjJQNJ4jbFsNtvnJss4tmhtGLuJ3eNBbNxh/rumgeNpwAdNlmm+/OoSl2o+/nwLIfLi1RKlAtttymKRYMwahReguJeEuy/fXZC5dL7UCCj8iachKazC8JPrTpDPNbwS7oOWCbLSCqNlzwleJnxDvyWi6NoBoiP6A4uF4eWrS5LEzPbaONsy1dMOLIqrAFo5yrxgVX1LiDJIALEVQIA5jTzMa1Npwzh4FuUbzucTV9dLEidNpv1RkrXO+3u++Vak795PhDDL4pXml9+8FJ6Ilsnx4Xhg93jH5eULpjGQZRUhwtW2oO0GrEs4Ho6MYyDJNFlmydLIy1cLPvz8Hb/5zQXl3y9ZrUrO7aMMXlYbdo8ndvd3tEdN154IEYyVo+t8aklSi9U91oy8fFHNaa0dfesZ+oE00TTnR5zT3J6OvM2uZ46Rw2orRU/ssHbNOIqi0rmE06nh/Q8/s1hWM6A/xxgnDFBkItt2pzlEAu7uHgherPfjKBfdc9OQpBlVHVmuC7I85dOnGzQDi1VGWeW8uVqy2QpDUUDGkdFPs0XrUi5gzqAN+GmcC1yxrso+JwUEiNrr9fVqDh8aMU7P4VCGEAz6qiBGw8urBQpF2/eApc5lIHH9QhSXMu2MJEkpqzgOECVpVC5MCakruNws6HqL1tLsUUCcUzwhzn9WCmbvFb/51Vu++uKSNHUkRhOCZrlYMk4T3/35Pd98+w3L5QKtELi7MaBgmsQ2oZSSiXnfcnPzic16JeoJm6KV43JbsTscKcuK87llHAN1keBcQlVqXr1aMry/of6i5A+/f0VdZ/PecqasFrTNyOnwgFETbXOi61sSl+KU43RqZHJsAyGcudhmKF1wOOyIPqVrTyhteXz4jLFwPDxyebXGOCnendUoFTg1R7Yxk895DrWYRsWH95/YbJezQiKbU8ErvJcEvq5rQHmUMTw+SmLodrOdLVZG3A1Rs17XWGdYrEo+fRZVzaJOWa0rfv/rF6SpNACTVMDYYrOZiNHOjYlKim2nUbPVURAhczL15CVcBnBOlDfbVTnzQUeMHdFa0se19pRFyjQG1osrseGME0olbFa/RGnIMscwNdKw08J6VeJuE7uRccKpi1DlBvtyhY+N2E2RZyEi03BQaPy8+gLOwt/9zbdMUcIOwuRJnKMoL9nt9nz//T/x93/3d7jUzn/WYIxhmDxTZjC2ekbCNK1ld3hke3GJChpnMrkbLXP2hz2LekXfT0xjECubM6wWKV99fcWHn8/84utrqjInTR3n5oRSoI1lWSX4/kyaaaapE/tW4p5T2LNcXCKJC1xd5PgQOTctfvKMfYdShse9YBUOx0fevXuBs5FFJUw6H3rGvmUYMpRWDP1IUUhx9uOHT2zWC4yVzzFNMxnAzDbArm/RZl5zD3uOxxOXlxfYSYLy5DMPrNYLrDXUy5LPn2/QZUHfnaR556RRRRROoZ8Co5/oml4UqjahDwNNI7ykeh5eWONYrbeyjozCR1m3cudS3N7eS/GeSTJ7kibPCcKTH+czTxpFMQpU36VWmEylJSIhRbFwMA9AlBbLWghx3uNlPZIkGKMYJ4HIy3Do6f4n600p4UsqjaBdpgH457ZISbiPsxVsc7mh7Y8k1qCNBWWJCJZHowSPE+eC2FicEzRN37UQBoR3nVBVF4ITUBCdBlKa84CziuUipSilORtjZOoGzocDU5qwXC7JspHESULwFDUffhoZRiWcOAV1lVPXKXVdEsNI1zbUhUVpw2Z5wTRFtpsSYwzf/uIF0QsreRg8r1/U8Hdf8enWcjjdUZQJ9w+efujZ7yVBvesHvlyvJMRptmDffn6gO4+YRJTt24sFDw8PHI9n7h/2TL7gch6SV1VGURR8881LiiJitWV6srAiKp7z+UyWFvNQQhpuT/gSYzQXFxuMcfhJBhFN29CcOxLnntN4nXOMYy+fRepIlJuTSh15thGl4sMPwvHzIoKQu5asjaoWlV+Ika4fkIG+p+9lnRZlxuSDBHlgpCH0/FrFPp2mOTF6jM6fv7cxUeoNNCZqhn6g9R3WutmiOUrDVxu6oSVLZp73bscUPKfmJKpRr9gfe07HwH5/IMuq5yFLUeSSxq0Uh+Oeh8d7Xr68JksLqjojeBlwWGclPAIE/eLsbJVWOJeyWm2YQkNkoB860JG3b79gtz9yOJwZR0+WZaQuJUkyqmrF3f0tu92Rly8uefPqmrpy1GWCsZHEKopCBEA+Csc0dQqwZMlCrP9aPXNjT80tSRYxXiy9fg7cVFpqSXQkSR3r9YKvvnyDBINFfvr+nnGY2NYrilyUcEVR8Ld/8/fc7n7i9vM9v/rlL3FOkzpDmljMbLtdVAtilNawRsIpQvhrWKZSwoqTtSp7iDJzARflPScanDFYG4UlqeRGTwSnzOwwma27RG4e/oTWkOYdEQdIXZnnhdSqWhp7ICgB2bukmRxCFKuuEcfCuRmYJiUsSQvdvn3mWj88PlIWpajCieyPn7m9+0jft3z5xZdkecapaXl4eCT4wClp0CjKIqdpD7x+84qyzPn55w8MY8ur12+lab8/4afIxTby8tWWcRhksII0wKdpoutbvBcRg4SIGvphYLffYc2R7WbLuW04n1vysiD6wP3jA3VVcdif6McedESb8OyYsNYS48TxdIfW8O6L10yj58svv+Z8bpjGgWkMvHp1weQVu8MR5wxJanCp5fHxUdZgXpA4yxRmlawf0cqQpSWb9QuC97TDgajiP+MwzjWd0jitJczv/DQk+F//9S9u8L15s6JelIQgC7drW2IIpImbNyWLMoowp+pqZUBJfDuIrfdJ8rus12id0jQHtBbLhTbSkMmSBKUc0xi42BRMk8cHTYiKq6tfkaSWxBn81JLNCaSiZlNMTopZGcvJxW9ZO4gVUQ0oHSSdZS6CAND6+dCEwIurBRebv0Nkrp5pCmyWNVEZ/uEf/8w4PvD73/0KhRe7ixXpbHNuSBKFs3ZOHUvoOgGjZvkCaxKMThkGT4wdWhsuNjVEKyk6TNRVSZoWjGFD01rW/3ojU5IwMU0VaZLR9SPOvqZtepTWHFuPVo7zqWWcRrQRrlNROKo8JVSOcyMBBKdTj9KO8+k0T9ICWWbIc0VwjrrKubs9o1SgbU9kuabrZpVOveLm8yP4hIvrCj+NxCjBEsMwzE0XAZ0nqeNwaOn6gYttRb1MCeFE15+4vd9TVhmXl7J5f3j/SFnlbC8KeR0BXr2sKUthAD7J0+WiZURFYySOe5omxqFFEoJk+hRCwPtGLmwuIU8d1ia0zRmtRqQ+FquDiZosEb5YVVSMo0w27FXKxeVviASsnRiHBlekJFkiD6nyBC+w24gU4NpMpA6WdQazJXOaxnmTlUYJyPqPEXwIbNYl281v8X5iGHqZctYly0XBn7//gYf7O64vrwjTgJ0DH7yTpKXJe7SR+PqiiFibEIKZ09EcWiUkk6frTmjtefViiVZStHvvqaoldVUw+Wu6vmJZ1yiiXGx5KXbTYaAqvqDvBlCK/ckyBdg/CGcMNMtlyaJKBK4dhUloraNpPSFqpqGHECgLQ5I4ilwTQ8JqUYlNq3S0rai5hqEjRpGB73aSQnx1LSmzh8NJVF39wHKxwlhIMoGrPz6eGX2gThzLZU4IDUPf8fn2HuM01y9qtJl4/90d9aLm+sUSl3i8H5/XmtYaPwlnws/BUVkq1nZrJNmya/ZM3lOVJVUhYH/vBdjsrMMY5uehZ/IiTVdz8UHUOCsXoTwTC0nwnjzP+Ff/6t38DI0Mw5EYNUWRS5HkPU+BI9Ls8fTDyKIIZJkjRCkWxvFJ5y3FigISJzbmED3WKN682QIbJj8SpojGkV1c8rg/sD8cxTLSdygNRZ7jJ0/f95wOB0Dgw9pA6uDyYoNRGpe5eY+KTDoQQ0+RZWxXL/FeCqAYFKtFxhdfbHnxUlJQNdB3HXVVk6YpMQaWleHViz+AUrT9yOP+yOncie0rz6nKlLpMKfMMraBpz1RFTkBTFAmTDxjlSV1Naic2K0nXWhSORWm5vKhph4HD6UFsQsPA6TjQnAem1LFcajbbNafjiagU3SCBR8YayjIjzSzeD0QCSjtijCwW8wS3OXNqjmSlxiWRH3/4gPfwy199hbYdMXq224LEDVhnIZW0ZhvlQmN1YOhPxGBJE8v+8ZGmbVivV+R5PlsDJVzJuQylA0p7REgdZgXWU8GjCVGDkkmx0mreqxNevV7Qdz1EYcgO/chyucA5Ja9nHkKAXEqa8xlXLwTibA3K+PkZmeZLtZn/V2G1kXAOIss6ZVEnsk8CioQQc2HnaLFeRz/RDcOsLIoM/cj51OD9QTiSRhFiYLtaicpBRwQNO6FVFNC+mri+XImyfOoY+pEyt7y83rBa/4Y4N3y6tiV1is1S2GBdDqv/6JcorZmi4u7+keOp5XzuKIuSskypq4KqyNEg0PptgTGWskoIAfJE7GB5Is3KssroW89qUfDiRc2p7Tiddqw2G/qu53Rs2e8bYVl6ePXqBV3XEWPATyNdN5C4lCR1FOWCJDHs9juMscJ63dQ4p+j7jsNpBwbyoubnD5/Y71q++vo11UIh4UYDkZ4sL5jGjiRJZR+yFjOn0g9DT4wyRHHGcD41TJNnuayxmcMrD3iUmlOLp0nWvok48wR3j3PBAiGMc1GiUCqgGHFWs1g4xmlEMZCYQAwdZSXWw+ClOWy0QivwMTAO0/z3SpM3RvV834khzEweZosmEhwxW3MIUjRlST4XWJGdOpLlBREJk1FKUdeVhKENA/vDSVhEWYJ1BhUDi6pg7DrBBGhQyuA0VEVKYiNlUQq/bOwZR0+eWV69XHF59ctnoHfTNhSpMJRcasnTyOX2W1CGwcOnz3c07Tg34iqqKqMqU/IsQcdI057J04KIZr2sGEZPVUrz4mpbslzWJJll6iLrleOrL1fsTgNde6JeLKXBsuvo2nFuRFhev3pF3w2EKI2t5iR2sDS1LJYrWXO7x5nVd2ZzUeESaTK0fQs6UJQLbm/uOOxarrYFRV6SppIe+TRgfxoyARwOBwlmGieUMeSFFKAqGmHzHs9Y50AZ9g87In62WjvKsmK5XEFUM2NJAv6c07OtuuPxYcc0RdIsZbEo5TxOLN4LXzEET5KmJC4hBhnoiiBgeuaRtm07M7IyquJSlDIzeztJ50GGinMtExm6nn7on5t4aZKQJBmRiA8TIUwcz0eUDvTtmZu7kZfX15z2B/bvD6Lef/eVsJNHP7sNpKCtlxVp8nSeSQN4HDvgKY1cONfT5CGAChLconQvCnqtydKUP37+SJonrNcLyiLFT5M4gNqR1DnaZhDVL57jYUeRr9HkGKeJ3tB3PUPb44eBIi8klKQ9M8WGokjRjKSFo8wnXlxlVPUVSl/y/sNHrJZmWV3XDP1IVab4qaNYZjiTYF3G1C25uz2RpRlFojnujnTNieurJX0zcD4FsqwlzwrOzZkYMopCgxqYggw+Y4i4uckmbpk4JyPPqcDGkqbp3CQQttzToC5NLTEmTMNE1w2UVSnBTU4GNN6LHTJGy9X2t6zqL/jp0z+wezySFxqXmOdBb5pm8noiwj+fJowpkeE+8yB8RCnF7cMd93c7Li9ekFiP0lLbyHBRmHPDMEitQE9kIkQJzBnGcRZSNDOfUpSFMnRT+MFz/3DP5eaCxWLFQlUEZWj78bmJfX+z5/KipnpVUZQZCrGYSlCB8ONc4qjrBZ8+3nB1+YIkSUR5ZDR9PxBjJE8zUpfhjZcwx6IgzQxLs+Z8doxTQxcmXFJQ5/DxwwMxjoyjYr/vWK9WlEXGzecD59OEVinWOMZR7mSJheZhhzYypM3ynMwlhDiBihhlGXvQxoGJs8J7pBsFnaGNwSnDi+uX/OWHG8HGXF3RdOI2LIpCGkoRToeWJMmoq5w0S+YhWz3XASmvX77g3atXz/0GrSLB+7mFoAH93FznqZ+ggRDR2j7Xf3Hu8kmTx8yK9Tgr7aSWJIIPQrIV5uHcqwgwTl6GDaEF1aOjQhtRvUudGWfBgdzjpLcgC1O0D3F+VkSNiQqMo+fzzT2HY4PLv+Pb8h3bi4oYFrRdx7/9t/8DRVHy29/+Fk0UC/zk+fMfvyNLM968ezPX3znnU8tqtSFLHDc3H7m9+8z2Yi1hhH3L4WDI8z1JVoudWWsmL0i2tm1oG3k/ghfhitJgneNis0HryDAOXF1tpWeDhEPVtiQrCowVkdaTNT2gWdRLYggMQ0+aau7ubzmfTwzjSJokbLdrirxAE7n5/GGu2IKggYynqhR1aVlWjrJwWKefg77athX1r1FontAAgrTY7R6Fp+2MoCnCxNDLmZElOcHDOClOp4Y8K//ntuH+J7/+N1DwBabhTJZJwEWWJjOaQpp9fdeT56Lo2h8Okq5YFbPNc0ChhDMxBaISi6WzouKTpyHO3A1QMaAIc8dzQulAniSz9WvEmDhPTLQkrU1BlC3YOcnI0nXCUCJIASUgy4FhGGSSEaKkvyh5XSglXAoNRjPL/iVYIIbI4APWaawT23Df95RlSZIY+n4g+EDbCIcry+Qi4qxMDoduoPU9zo4Y40RiH8AmAuuVFJgOoyfqIuHtywtCFABo23ace/GM29RQ55BeVCi1wDrHw+nMze0ercWiW9c5RZGwXtUkWtO2DdV8MVpcrYlorjYyOf3lL67ph46qLOm7iauLiiK1rC+OPO4/U9UZx8MR7yVBNktz2m6gKuvZPi1KkpvPd5yPE8YGtps1q00JaqJpej78+Ik371asNzVKwXa7pis90cP+scNPko6zWBQUlcBwlfJMU0cyv9fpfLh47zkf5TKe5ck8hQBUIEmFBziO4zyxE9XSGCPWTrMNSfMcDy4r7J/JgaVIlon8SFVbKUKR6Z/SMkUIHoKX9FmtFMaJdVRpYSkQ5WDxs+rGWov30gBSSniCKCXqCDWglGxS2ii5sE6eKUzCgVvXTJNYPlLrMFYO8BA9XdsLMBcBBDvrCEHPNrMWa1KMdVxu18CclmUUkDAOI4SBMrdcbmpCzFBRGIzdMHBuTqxWC/LEoisDc+BAnhvudwfsRS2criIhLxzLRYmzmr7tKObJ+eJiidKWYaiIEX797UspWPKUaYxs1guuLku2FyMP+xuSJKVt+tle0JGlBW3bk2c5VZmjtCZNcz5/vOe4b0kyzXK5ZLUuiExMY+TDhzvevL2QUJroubjYUNURgubu7oTRCV3bkSRbVusFbROxVuF9RwxmVlcKsLXvhDX1dHFzzpK4AqWGuamhJU3TB6w1c6CKTMiyPJGBh9LzoOFJgi2MOqU0RkNVCRfIOSl6vJ/IVE6M06ziC88FrlYKZxOUmrBGY6xmnIRt9HSJfFKIyiaqhH8RNcFP+OAJ4akBJHD1rpNm1fF84OJ6S9MdKGdAtTSQAsZKIS/WNYGhP9lNhOsyMAxi50sTx6vrC7QxxJkXSrQ0J7G55IklsdLMU0DfeT59/ERZZlxebkmsxxDR1mKM5XgM1JVwtvw4oqL8HVkqCtrEyqVJKVjUJX4KrGuxNAxvVwLCDYosXXB5UePjlxzOS8Ywcf8g6i8/9cQgwS4heJxVXF+sycuScYCff7pl/3Bgtc4pMss4BS4vV3z+eGT3eGa53EhzHlguSupFzc3n/awI93z6+JFf/eYLpsGIQmi29MvHJo2I4+lI6zvSJEWsPoo8r4SHYp6Kllmd4hLatqM570BF6rpisSjR2pBl0pQNwROR5LEnDlFV5fN5KkEy8hUAKXq8H5/3RtkfpWDKi+wZNj5OE8pPoJibsk+NQPlzw9DPe6qnafZStEeNM47mfKIfB9pOwhza/kg+GPIsx4eJGCJKR5LEMgxyGVJJMuM5RBUTI/MAQhSzm9WCNEkIRIgTaaKZBsCDM4ZgJAnOGoMfDT9++BnwvH37GmcVhBGlDTqIBS6xjpgburbF2UgsEhI7X+YnNQ9mBuqigAh1uSaEwHadYLVBK4NbLbjcJvztH77kcKqZwsjD/sihqvCTIwbL6XRiHAa08izrjLpeEILh00937B+OrDY5iVMYE1gvSxKT8vnzA8tlOXMgJSF6e1FzPHR4H8mynI8fP/K7iy9FdZkklKWc0XjoGlE7Kwx+CpxOZ7TWVHVJkjh5PdqyXC4Js33yaS2kacLDwyPDIKnq6/WSoijQypEkOf1wnl0XshbMbF/Mi3ze8yJqVjZpLUXOOD5ZgGWKPQ4DMMyqaPOsXOnHHj9NKKWfBwFq3sPGaRIuFKIkGYaONM+l2TtGdrs9AUmWzkvH3cNHXlxdyXpsTsJKto7lsqZv+7nh6WQg4iwuEXX2NIgLw3tPVeQkSSKDbkRdMvUBHRUqBFTwqOhJ0oTgJ/7xj/9IWWZ88eVbMqdmR0qg6yYIE844vFGcz2eMnqhyS2YNqED0MgTwQYIpEqupK0lcrcsoa98H8mXN1YXhd799TdPWBAI/f75nWS8hpDg70DQnpnEghoGqcFT1gugNcdSc9idWmwKjIn4aWSxyEpfx04cb4c1GsWtmacJqVdK1Hj9F8qxgv9/Pd3eN0Xpm7Y1o64hBBjxSB8j9HSX6FgVoFdBGCqanvWRRv5S9K0pojyjXZbBlnWIchX+o1YCfBrTRLFfC6gWYgtwRjRG+1VOyu5rD+mRY5uf0coNzyZxuLezsGCzCwWZWVCUIP7dlmAZUFKWpc47cFvI8hhGPF4i8cfi5AdPMKIJayc93c3vg5vMtXT8RpomLbc9mLe+NtZqffv6Zm9vP/M3lv5ptoSC8ewnA0PP+/cS7nqYRPxpCAGcztNWAn+/Aijdvv+TcntjvT6RpSpbYeYCQsD8JTmh3OPLVFy+5vKypqpSycMQ4kRhFMTcfFcIvd1aTuQofMmlKaQNR0w8HrA0UuRGVcN9xOh3RKieEEW0jaWZZr5d89eUbgh84nyc+nO8haKqiIkvh3E1U1UK4wqnlsBvoWmHn5XnBbifAfAn2kfqKZ2UMszInzAN/gyoEZcHMgAxRlHtGa1TUZLkoWWVIEWY1+5PLZuYxewmTm6aB+90P7I8/slwXxCCDcqUM1tr571Gzu2OYBxCgsAyjBH8Zo8VhEi1dO1HmK7HPPtzStf3Mk+3RRhOiZxg7fBz54f1fMAauLq+JRIZh4nG3n3mAR2KExapG60hR5gxDwcPulixLSNKc3aGd2eCOr7/+mjcvrzFGzTZmj1IwTj1d1zJNszLROa4vL3l42HF7d0ORS5jT/eMj2hhRAhsjw0oUd7f3rNdL/um7/56ikFA7Y/QcsihN8evrKx4f7/nmF7+i6weMCihtWa8W7B472qah60qKYsmySun7hoiW+j4OdMMgDZN530yTkqpY03ZnFHLn0UbLENDPycYolDa0bc/N3R1VVWEsjFPL1Ddcbv5jNqucq8uMqav56cOei82CxaokyzRKSyqv1XpW60WIft4f1Lz2nliPMhSVEZeVc0pFwDwr8Z7u30Q1W7nV/PsgxHlnfFL6EVFR4aMMwfDgpyCYCSt3oIjCexHGyB2KeV3KcxHnPePJuh58JPjAMHQYq6WuScRB8Olmz08f7njz+gW2VEQ/8fBwR5IkLBZLxnEkS5JZHOR4++4d4zhy2O8xLpXgURRFlqF1ZLvZsF5VGK2pqiVfzi6sslhw7jx+HNluJbX8/Q8/cjwe+Oqrr8U9oY0MsFI3OxsC6IixCC9Uy88bh0Ca5pggDhKtDD70PDzek9qEvuuJXtMZuSeNo4QMlrXUrBA5n85zv0gUtnkuyK7CORaD5dWLmkVtGceWJM3kvqkC49RybvbSEHeOq8tLadxGxdCf2B86XGq4vftM151nK3sgTXLSpOT2dsdPP37mD7//L/7/+m3/S7/+5TEdUaat/ZwMao2l7USporWSRCwDcRipygXOmTk5TDqqTxe7u7t7vA+URcFqvcDYBGMyjLb0Q0vwA5EZVmjAmCepqp9tmRJtnqcWCIxTh9Fzs8d78YNH5EHXCVFFQhjxoX+eijgnYE3mhks3DKJ+w9D1e5LUCRA3KPqx53g8zXLwHhh5ePzI1dUVfX/m3OwY/UiVLzGmkgvINM1FfSRNHWkmD0UMin7o0QrKsuIpaGQaPCpGjFJEHxn6AaXke2RJyn5/4Pv3f+Hbb79is1pjtWMaR8Azdj1GO7QyTFPPcbdDU6EXspFliaH1at68B/K8YFGWtF1DN3SUmSK1gSR3LErI0oSivgK2fLq955O6xWjLoq7pupGySoixo8hSnBM2xNAsubs5UhclTk083t0zDj2XlxWnXcv9bSe2zEpzOgxEZZnGSNcHiqJkGM7s92e6LmO1uERFQ5gi515Sd9CInz5IA04sGppmVhdmuWwuvYbJh9n+ozjsT3gfJY2pLqQI06k0k9qzJJRGYUTYGcxpMICk4kWYYbPSnJMiWCT7w9A/T7KMdhgjfLIQA9Mgh6VL3QxHDXJhB4ZhnHkCin44Y51IesHSDz3n04lu6AhxZBhbbu9/5sWLa07nPbf3n5n8yOX2isoUUswTaDt5HUWeiiUuCbNtWxqBMqmSC0vX9YzDQJamjH1P157RmtliIxPJn37+kSR9R1lekLhKLA1KE6aIIeHc9RA1Y9fRmwm1rNGKeRqm5+CSVvh8ixVt19L1J7IMUhcwKlLknjzTGLPh9cuaz7ePfPeX97NaKyOGOKc29izqhRywxnBIUtrjRJnlFEnCw9090zCwWZfs7htub45YN3GxKTnuD0xeMYww9JE0y+j78zO/YbV8g4oag+F0POGSFKKin3rGMaCtkQmStZzPDV3XUdc1TXPieDrMFgVPUYjSeBgnsjmlKc6y+ywr6PuetpNDRGtR2MoUzYpKeBSuSpJIYR6CfWbVoCDMvJ6+H0QtpRyJE+h4DEGUBFEsTMoIUyZGAZp3bSv2CRXoh5a6XmJ0go8BHz1t1+CZGMYTu91EcnlFP8D3P/5A2za8ffOWNMthBiaHEDicDqw3SxJjnxWqWsvl3vuJJLWAnhtzk7DZiPN7HGdld8Q6x+G0Z/QNF1dbiqJEK2StHQfyrObnTzumyVMWFj+Nz4EbUQdiammblmEcGcaOzXqLtfJsKxtnpaTCmhHnWjbLlLpc0/QDf/7TdxwPZ7wXhtXrV1dYM3GxqUkTS5pmfPp4YOojaVqwXmxo+gOTDxRFQpoZ9rsz73/4yC9/dYWJ0DQ7Tk3LfjfNBa1YuD9/euTl9bfS/FCG4/Eg1qg5KVAZQ2KFIWWtcG67pqWqK87nhuGxk4ugiuR5TpZJcpoUsKLGkjCSvyaE7R4fMcayXNXPE1utNcPQz0MuIwncsyJFz9ZfUV1O7PcHUV9GTVVori5eSxrhOD5fIJ/O6UjAT5FxGBingagiTXOUIJMojW6XOKYooTqokX6Ew1nR9R0fP31mv9/z5s1rLrdXZHMT2RjDzx8/cnV9iXYyHGRWOwjkPIoDQMlam6aRoW9RCo6HA8pIWvo4TmijGceRYewZpomqLCnyDKU0bT9R1ws+fDhwPPasVzmJFb6tcxqtJH2z60amqWc69qxWWxl2Dh39MJGlDq2l8azUgUVlSFzO6B0fPvzI4/0dqIzJD1y/2JLnitWyYLteYI3j8bFl6D1WpSzLDYGeU/tIWRWiSB5GfvjuI99+u6Ve5Nz7B+7uHjkeh7m5qzA2Z/d4xqqtOChikAaVnyS1OxP7mrGOeg5a0UoRg1jGsjTFGc2xGwgxEGflUwiR7eYC1NN5GOm6DmcDkw8oNXE47Ol7jzWW1XrBMA4kLpmdETwXQMY4xLYWZ4SLn88fzbk5i2J/nHB2Kw4JbcA8hTTMbFVnn10asj9OdEMjA4xeoaIUZVmRcjwdSHNHP2kmH3h8PHA6nrm9v+N0PvP73/2ORbWYEyUdwzjy04cf+eabr2cQ+URUCpc4CifDHtmjoO9EySppfpIe6zIBrHddS4iihOlmuHuSJBRJgtEJ2niaNvL9DzcMo+diW1IVOUWekSQWokfNSJEwDExTw3KxnJX1Han180BAQ1R4f2JRScN1GEcOuwceHu6IMWEYO7YXS7IMtpslm9UCayx3t2e6psPplFW9xoeWU9fNidXC1frw4y2J27Bcltw/7Li7e+B8FsWIdVFs13PjNxDm9T8jK7RiuazQc0KjQgJMjqczRpk5GTWQ5xnTNEoqqDJoJXcxQkrmtmwvLvjxwz/SNntcosmyDGvle47jiDHC69Ra048DZVkKgsVPtO1Z9mKt2R2OwpNSMiBTc0DA07qU/TmFecDmQ8QlBh8iOoo1su96jLE8pUqOXlSrh8OBqpShzLn1uDSDfqQfJobO8/6Hn1ivNvhgefP61RzqZubGj52HKqKu+fjzJ64ur2bFGfPvC/w11E6e993jjjJfzZzekabZM0495/6AdQVl5jjsz+weTyTJSOIMy6UwuB7uG8JkKbIarbQMlvuOnom2PcrzkDiyKp8VbwExyCuUtqCfuhCBbjiLUEKDUo4XVy/5p+8+0o2K66trScu0ok5zVhMVHKeeLC1IXIK1ME0dzljOh5G7h8+8evWCuj7zuLvn9r7j9ZsrXr+WxNE8X+Bn76FSEINY+CMKY+dk2xjn0APAiGhDesh6nn8alJ75d1HN93P59ydGmjDVZHi1O36PsYa0CIKiiBaLnPF+DrwQBEuQgZWPKKNQys+DDSX12uD58OMnzs3AT58+8PbtS6yTJlGa5fzlu79QViXv3r1FI4nzQ9/z8dNH6qpmtVo+fQp03cBiIZb1j58+Qhz59pff0PZndvtbYvS8efs1xhnavsellmHscBbOx9Msu1azQCFitJb9x6VAZAqe9XYFMUooCIp6Uc57vmHsB3yIeA8RaV56OkK0nM8tp9NRhCvGsVwuWCxTlss3xNDhjNwJ/dRQFrDd5jzuUxarHOsUQYlaPCpFiBISIcEIUuuMYcIoPyuzEsbQzefYrLzUMh6IMXI6nYgxcnmxxSWOxaKgLDKMDhz2Z9b1ijTRaDVS5jl1mVHkCVqLMCNLMyLj8zn21Dx7+kfqUhF2oJD9C/NsyRVDxHxexXkgOouKjHraN58ETcLiE/HzjHZ6UrNbg0vk+wdEmSfNarm7RSUBKKIsDIQY8UPAh8gURoZuFCFCFLFKOtcqfoK26UizHB9HPn66I15vaM8nyrKmrpcopeW8Gzw+eF6/fsmbd68JfiIQiVHx+uUL9o97zqc9ZSFBeXp2ulRFQduKIk/Un46XLy7wfiSZ2cVVVRLChLOy/lyiGX3P7nHHOEooXVHmlE74hr0fGIPn5x8/oIwTdnKIpC6jKheEcZgFEHJmZ5nlxctL/LyeFZFxGOmagaIsZsWsDE6UFr5qURrevN2irQxG23MDJpBlCdvLtTgv2m4O5hm5ubkhBM/lxWuGseN06ri/e2CanUwKPXPFA8vVmr/7uyt+8fVv/he34/5/v/7FDT5rjNgOzpICE7zHJZbMpLI5Kk+IcpmUi0cUxhSiVioqAY1eXV08T8YkzaslTTVejQQ/zAmacugLbHISoCUeZiCqdNLlR5KutYLg0Va4YF3fiZ3EWxblG7QSgK1z8iC2XfM8UQ4hoq3CINDTyXuMV5xHsQiiFWmW0B7OLJY5XSuNxM+fb/n86YGHxz1JavnD7/5AnhYo7cjznO+//35mhrwAxAMfUWI9sna2NUHXdUwTDH2DsxVDL8WEsQofRqbJ42zCZrPheDpSpAXWOPI8Q2nDemXZHe74/OmO9brg5fWW7XZJUWQkVuEdkv5XiNRfFIYJaaYJUawHibH4EBmnE1pDZiGiiNPI+XTE2Iy27dDGU9aW9brmyy/eQJzY7xuO+wPWWBb1gqgaAiNVCTGOpLkhTIbmFMnTlDTR3D+0WOfwsSPJHEWdM/QDm/UL1stLYeP0PcMwkudS9BdFMTdEn1JJpdiwM6PLe7EIa6Up8gQUXF4+cYukqBBGhzQ6lIq0XcM4SOKcNoq+77HWYYwUlzLlMjzxExRBLgRAkgo/SBRzEpM9+mG+oDrSVLr8bdsSo39WoDjnyPOUAIyhIUTP8XQkscLNwcAUJqq6ZBgsUWs+fr7l5tMDu8MOZy1FvqSuK7RRZFnCX/7yHURYf/0lz6DyKHbgNBX5r1JRrDlepteJVSgszomKbPJeGu9VzavXb2i6nuPxTJqkJM5hbMZmfcn9w0fub4+stxWvXlywWlYUhRyGKpfGVFVL40ApCUConKOsamBOOgJ8aKQwTRQhyqj6qYETbGQaR6x1vLy+4N2blwQvU8u+73A2YVHVxDiQmBxvB1CBepFKgEkTOCeeNM043B+wNqcfT+SJoygLuq5nu37JZn31fFlv2xZjJHlJGzMHWkQ0UnyWZUFR5qKkcwtijEyTJ0ktkmomKjul5TM+nY4YE/BzwxkiT0lYSinOZ0nmcs7gnKMs5/X9bLHVBC9jAusMi0VF38t+IGmhE24uOBMnbJFxHGmH9rk5opWmrsV63naNJHh2rSRS6znEZZCk6vVqQwiKh13L/f0Dfd9xOh5Yry64vlxitBRQ+/2O9z/8wHb7NzgnKYjei6ogz0U9B8z8OM0QhEqitaGq1qAFuDsOE0YnfPXVt+yPj9zfH0hdSpZa0qygKFZMn3r85Bj6kS/eblmvc6rCSWKZVhRFQl3nz2eUNKki2lhR0MEs5VccT7dYGzDW4IOlrmoeH1vKShiw49Tz8tU1r15eY1TkeDjhp2lmyiykEAyKvh1oujPLZTlP6OHDj3e8evWCalGy251xiSGMPYtFQYyKqlhL4NMMEA4hkOeOJElRxshlDylIjBZl6nKxIBIoqwKFTGWN1fPPKOsjIuy681n27difREXmLNvtFtBYpzmdjrOa2MzT2qe1JkVPjGHmSwqTKc9LElfggycGReoWz/xFY+y8xwT6oWMKwh3R2pKlkmw/TNKsHgZBCzRjw/F4JIRAP/aUxZK+GzkePbvdR4iRyUsDTy7Uwg/q+56ff/5AvahJs5QsT2d11ijNUztzSKMobOWS7EjTnNXyBYN/kMS0UZQbr15/xeH4yG53pm0mSUErCoyt8NOAijnT2LOol1xcFKQJaCUpjGWVUVQCT4ZIDFKwpYkhzSoZ4syF1+l8C2iSRKG9Y1UvMOYzxlmurrf4aaKqCl6+fEFdJDSnhqnvMdpQLZZobWmbIwThj6VJyhdfXjH2gU8f9yilWa9X3NyecM7R+568EJRBmpRcXryUvddKoSrrYSMNAzHZMIaAirK3KTRlXhKDqMMvL7aCW5l5pjFosrQWVIjvCVEURMIHlcTTxWIx76WRqAJd3zH0/bzHiUrAOSe22XnvlKaANJ7TLJ0tjqJwrvKKvu/kGdbgtJGhm5o4Hs84K1N+rSVlPUaxNE3TRJYktF3H6XSiH0cJi8Gw3/U0Fu7v71gsluS58CnzNJtDFAKn3QOPjw+0zUuqsqLIckKcbada+D0E0CiqquJwOJOkGfViwXZ4xzA94v2AUtIgvb76gv3xnpubR9I0I88cVVmjVMr5NGJNzTSdWdYLFnVKMjd9YpzIi5QsF14h2s+qD0nJTpwo5Z+e4f3xBlAkTgbbm82GDx8fSNKMspbB83JZc3V1RZVZmnPDOPazgnEt9r9enpPPn29JkpSvf/GKrp349PMjWq+4uFzz8eN+HlgO5IUlL8wcPBHmYAzB0hgjjTSln1IlZf/Icoc2laRDjx1ZnpFkCTbY54I8RoWKhkX1ijcvfs/n2x84nc4oMwhPdhRmkSSVJs/Ke60VWeKIiSMGUSdrXc4hNmfef/+BFy9fs1mv5+GsrG9rLWmS0XctSg0Y4zieHjmcHlguFrI3aEPT97RdR4jSEMtysdMPc2Ba1zcs6oq6LDj3I037wDgNvH31movNBWWeYZyWAJuncBrfczqf6PuBNEl4/fo1zbnlcXcgdQl5XnB3f09AFHNZmpImKeMY2O/31DX86S//HWmaSS1jDPVizTRCzBRZmtE0LV99+RXn05EsLRknSJOM0/GBYRq4vChY1hK20w8N3kfO54ZxtPN9xgg3La3JkhoN+CB8rieb/FMDFyIuTZgm+PDjJ4ryKIn2YSD6gZdXG5Z1ztVlwthU3NyeeHG1JC/gp48/kyYZQw9d2+GcZrNZEGKPMVJPGOOerZAxirVfzWfiU/NEqflgflI+SUtvHkqJwsYHRJ4X1axUFtXek7uHGOm7drZkKhk6ej2ffWpWg0b8PLjQMTwnVOtZjeX7acYxTM9DDNC03cTHz/coa3j95orFoiRGuLm943Q6PVvCrTGEKMrorun58ccfJeBCO4ZRAoBWqzVKR4a+5nja0TSNCDIWK4pc6qq+81ijyefB+edPnwD5s9YasYNPozQn/YTJM2IIGJjvMGHmhPbUi0rq86zE+8jt7T1t22CUwQfP7nBAK8P+uKNrZdhGDPSdsBiPh0fAkxfZ7I4JWOtJM89ioakrg9IjyqRUdUlzPvP4eKRpToQYSJxlu13OCu+Jw/GOqi6ZwsT9wy3jOPL48EheFGRJQfCGP/7xn7jYXEG07Pc77j/d4dc1aZLwD//2LxzuG66uLzgeJkIUTIOsB2H6aWOIyorTLz5ZgXmmq+vZfsvceo0oYvzr3SQ+rcEoDeSo5B4XoySrKyw6hmeOY4zxnwmQIkLXlvRxoiIaGY7F+IS48ASeQjhEoazm4Z2zBjVBPw54P5IXUmdaJ6EcXT/QNiN5nuMfdqzXCx7udxS5BJmMgww1tVYUeSUBeErO2t3+INiYIKzSLM25vt7K8NpozOyoa9oGkBTmKYy0XUMMkGeGoliwqEvW68Uc7PXkRJLQKe/7mWtZE6OnKGZWdBBlsbOGJLV8/nxHP8qAWviQnroQ0U2epWjtSRKFcQYVhU/rvdihjRG0zFPicYwjx+NxrlctSZKTJRWL7SX3Dx8IDIQpyGDJpHMNojj1HVW1JEwTr198S9+fadtbqmrJ8XggcSlFUeKjl5TyqOk7M4tC/mVf/3IFH9JVXq+XoiyZF/I0CQtMKZHkLldLnlZ2vSj4azEii8C6dH5j43wBDER64V4pxWa7QikJKBjGnn5oGac4F6362V7k/ThLryN4+SCMNrPCQRoMxAxrDZMfMDbwlDhmtGEYB9qZF5amwgcZBynyReknQMfHnSj0jucGbQzNyXNzPmNdQdvAi+t3YsfD4tycdBQCXddyOh9ZLGtJWcnz2c4n793ThaQoCkJQ3Lcdq8Ulq+UL7h4mxukIGPqppyxWnJuBtum4i0e0DpRFTlVecD5NjL0mTWrpmieWrm0oMsdudxQwpDPUefpse9FqwFjFOImiRMIjAqM/o4LBOoFzXl5ckmfvOZ46Li5rujbix4jWTmK8o9heF4sFMUiTIUSxvTTHhpvbG959teDupmO/a7Am8uadhF785S/3cuiUFmsz3r7+knfvvoFYYu2IswXLpZsnIWq29Twl8YqFIstS6bYrxXqzkEUapRkXAtTVkq5vmKZhVt8p4TAGEVEL5N09d+1DkCSoYYizzN/N66Gf7bXSRNDKzoo3N08bgGhInKFtp9mCbuaBjZnt28JeUojVbRh7UJGulyTIJE3YPe6IxNk6Cedzz/3dI0W5ZBzg3btvSJ1YwSQGXGzZIUTac8PDw57Vcik8PjVzPebLjdGaskwIQdE0A9vtFdvNyxkGfCT4gbbvyLMNu92Jrhl59C1an6mrkrrOub870DURRUqaZEx+pGlOOFdxbk5iN00seebmAyTMBbLGe2ZQtRxWo29RXlKGCHBxcUlR1DQPR8qypDm1dN3EfnckvokkzpKnKYuqYkjkfUwSOXhHn/P9D9/x5u0l93d7Toczzgbevn3F5D3ffX+HVo6iSLEm4Yt33/D61Vf4KcGYkSTJeZVnEsATxY7adp1YZtNUmuzO4L1njCNlWcw/i0zq/KilSFKex90NQxRYvigS9AzYt2RZhlJmDh6SZpT3/rm5UhQFXdfNIS4Rax1aidQ/KkWapiSJXBdcYkRZxHyJnPkciXPChkgExisKt0GUnm2H1or1sqIfRlkf2tA1wj788MPPFMWC4AOXV9e8ff1mDu7xPIHIvQ/kRclPP33i+vqaLM3EIuSSuXiXfTZJEhJnBOdQFmR5xnbzktP5noGRZjiRFxXDqGjPd4xdR6s9aWq5uKw4Nw0PdyfOp5E8T2jODVVpGEzEB1l3xirKYm78zM095sAba+VCH6JMgsPkIYLSmsQ5FvWSafpM0x7R2jB0HUTPxXrBV1+8pK5LXr3I2D/+TJ5lrBYO5wbSbMvuu4bgR5arjMf7veznOpJnipuhJwbD5cUaFRXv3v6Sd2++xXuH0g1ZmnD94go9v5dTgNPxyDiM5Jk0K7MsQSFW3qLMsE7UHooUYspycYE18P7DH3FJnPcpUVgOg5+nyZokyZmmnizL5mmyNPKGQXg5p9NpPtf1PNiwz40q4cbIwEEbCTTSOmKsYZrmwBkNYzeQpTmKSD/0Yj9GUs/6vudie0VindiHIzR9j4mah/sdftQUZc5iUZDnL565qo2XwqBpGq6urrm5uQUUdS02JGO07KHDiFFmThUOdN0gSkHfslxVnM4TXdcx+J7M1SQWPn/6zDAN1KWhY8TZimlSPNye2O/OSHrkGT8leK3o4sTxuEdpT55lMjhLnDDftCFiUTHOHJxRVAdBMCNoudNUVU2MhtubB7KsoGtamuZImSf867/9HVVV8PpVxu5B7LDLRUFVwf4IXb/i9u6Gl6+uuLu9mxmugSSFEDqCh+2mJksS1suX/PLb35OlK7z/Ce/V83rSWhRPMapZ4bWHKDiC4D11VSMsR/X8M2hlAcdy8Zbt5hXvP/wD+9099SKVAaMCmNVZs1KvKAq6vmW5XD43bJ4sheM48enTJ/I8n+HwZh6kGVEgpwVdN2FMIIQObSLTMJCljmEcmKZhViV3JAtpaD6xaIPS7O8PJElCmZcUeU6aptzvjpzOj1TFisPDHXlq+PLdO0kn1KI67/oW1StGLxzo16/f8PnmFi7NDPZ2TN4z+hFFJHEpWZo9YwuyrOBx91HunX3BEGW4sl6uOZ2P3Nx8ZPKRxC1oziNVYRkGOB0iu4czSk+cz62EGGhN13eczgeIYsVOs4Q0kXRqZzNimAcZVprzSs2K8RgJswI6SzOCV/z88w0uSZnGif3ukcwZ/nd//3vquuLt64L9QyB1CZt1yWJpuH/0tO2Su7s7Xr66pOse5bMGtJnwvkWphO1mRZFZ2Yusw9oRayUc5wlJEWdli4RTqGfcQ5FI6NATp08pYXLKnVhA6KAYxhMfPv47DqfPlLUBlRNjeFbrPf1ZPavJJuG1PK/1aRrmcxqapkPplBgMLs3oTz37w+F5WKG1YlHXaB04tw/cP36SlHKnWSxq2m7k/v6Bth9p0l44d0PKuTnxxRfvmKaBDx/eM/Qtb95+jdaG/eE495kCy1VO357Q0c0qm6fXLHbuPM+wxkgi5CTDYmtl8DT5CaUNU4jcPzzirJtTR08YZ8gy4dJ1ndjMz60EBpVVwes3lxgjSevWlnKWK8+LFxV3DynjlFCUItIYx3F2GYh1Oc0T/CSOE62MiC2cwSUWFSSAJ8Yw218Ddk6QbdqWfpREcJdYlsuKIsuwJnJ/90iVvyJNErQeKTNRU+WlMIWbj2disPz4/pG8yEhSWCxqtKpYra6f77MyKOW5iRyjme2QzByzJ+ujDE3l7P9nZbACxaz0k41KLJHzcFURMcV8Bs5cURTomW9rtZ7396cme2SK01ybSvPRe2GZQxBXWGJJk5Tlcs1uP/Dhx09cXyy5ulzJHhkDX339NUVRSK0TLMMwcv3iisurLSF6fIgYJQoiPwoD2iJM0curLVop0iSjaZpZDJDTdUeyxGBRTMPATz99oCgKqqLCpNKwTFOHTRxNc+Zw2KFQz4MZafx5jLUcjyfGCR4eTiglKJWqqgnTMCOthGG4WtX0ZUaRFeRZRt/37B9lOFWWlZwxcZL16yxXVzVpZjBGXAZKe4b57Lq8XtO2rQxvsoJ+GDkeDjObryAcPI/7xzkpVTBP03RmLEDhqOsVX7z7Lff3B8qyJE3g9atLlqslp6MMck/Hlu3FGx4fGmkaR41WWhrx6qkGFZzXMwon8tcG3gyijTOXljgr7ebQKPW8DgMRTZzXr4/xORVc8H1xXouz/TfKmQ1mDmtQwhFljo4M4s7xMzplmiZxpGk9K1LlDB2HXpjdITJOI4ejoBWyNOV8PuGnnldXG8qqoKwy8iInTTOcEWyG0eLO0lpzf3/Hbr9jGMbn+1BVVJRliXWCQgC4u39kGqeZJ27J84wxSDhpVmYzM09LUFIUV+g0jez3e2lpehG6lOU85A5e3uPZUg9iVX71Yst2syKgaZpW7sLzQCRMAWsdZZXT9x1hCqi5XzX0A4fDWRSQSvimEblzby9ezB9sEJEPDqIV9Z2FIstne7Wd9xxwThw40WucLdg93uHjRNTQjx3jNJGVMgTvjmd8NExTwnN/+F/w9S9n8BnIi5IkSQk+ME4TXdtyOJ5mJZXAf8uyxE8jLpFocq0hEkntC6riirKs+OM//XcEJE0MEpFFz5wNCDibzIlBgdVKLCFyQRSZbNu23Nx8ZrGo58Q9g9YjxkoSkrUC49dqQtsRYz0hjvPmMeCnQN8PcyJQwjjK4+Jmnt7Dwz2bzVYshsslg5/YH3uMSyXNjz2bzRqXKLSKsxpPFAfjKKEQ2+0lbdvy+HDAT5BlAsc9nU9yUVSKqigwWhK3Rj/xsP/A6BtpFtoSfEpZrLA25XRqOR52mPKSLF1g9ITWKVa3jN3E/mFPnkmi1XpZMY4dIXgO+wbn9PyPlQtpWpHYmjQp8fE0RzdHFIbgZQqAMvPDCj//fE+R9yRJxjC0EOCL16+p6oTtZk17yri7O/Lq1ZY0W/P+/Q8SHNEbmiZQ1QVZmpC4ka5r8b7j6qqgLjOZZocF/9Hf/ueMI3z+fAfIpFcSrwQOOvQjh8MO5xL6QWO0papKJM3XEMM0b4iaPHnJxfoLXKL4d//wX+HjmaJ0fy3MjCjNQFIMlQoMOpIki+f1/qReOJ8bfvrwM+vNhjwrQEmDVBs5ANI0p+0aYe2FnkBH1x5J05Rh6AgRsXH1PcYt6AdJYnWppe9HTqejXHrzktVqSTeM3Nztsc7w8sU1i3LBYrHAOjVPcaQx3HUtfSdw0uVixaJacj5JVHuaZmhtOJ0e5xAZKLIM5xzHY8M4Tny8+Z5zu8PM1j/rHFUlDahFvZp5eUuxlfgOYxOKvETT0JzOdI2lfLNmvaxo+2YuHD0xjvRdR5I6pnEiTSuyZEGe5QzjERjn510OPB8CSosKYBwmPn26Y7GYyNOMdmj5/Ome8GtFUiSslyvay4xPn468frmlKCPfv3/P/X1L9An7XUdRFaSpIU2kcLNO8fLlijRJWdUrCAV/+4f/hGmEjz/fCiNmbhqAxs98l+AHYgi0rUx5F8sFxlmclsb2NEnTy+qKL17/jrwo+A9/+m85HhqqRYIxlrZtSZJ0TtGSS1+aZGKTmFWlT1ZeafRN/PDDB/K0ZLXeYMwIDLIXxkhZVnMQiReblzY87G4oigLvvVwsNewOO1bLtbAfjRW1bBhnlcGADwNlkWGN5WF34nBsePf6Jdu/2ZBnuTRavLBgVIyESRolzdykfvP6Defzmf3uQOM6qqrm8+dbUBFjJd08cZKmeP/wyHK14M/f/xsSKxYsYyxFnTHOyITLizUhKH7x9W84HncyidSBq+sV9w97xkGRZgvKImcaW7pe0pydkxTM8XieLaqOLK1Zr66kaR0l3VBsRep5Su8SS1SR/fGI1Sl1XVAVsg8o5TA6waSOZa2psgPruuL6uuR4Vvz3//7fMg6e8yngo8MmCVXpCMGzXKx4cS1T3DIvSMyKV9df8PL6Cx4ejnj/SIjjrHJUEALOWYo8YbTmmeVX6AxjNTb5axOYaDDa8fbVb8jSij/+07+RZp6OAnLvxeqVuHRmbcoEVTnhRcV5Qpxl2cxv8tzePXA+d7x9+w5jHV03EmMPMVCUYs2f/IjVnhBGfvzpu/lCJxN+tGK3P1IU8v2sMZRVhtaKNBVQddseWS8viEXOpxuxlb559Yp/9YffYq2cMcGPz02BoZ/oxoG+E1bu5nLL6dSxOxzp+oHlYsl+v6cfB9IsxSCqwyxJ+fjpM8tlxU+f/wN5mkFMZD2m0HWPKKV5++6arhv54t1v6NsWPw1MYeDV6zXHc4dvRHGWpY4Qevb7o/x3LpiDYRw4n48SYuQU28013o9MoUOrMA/L9LOzQM8hLefzGeaiaf3qem5olcQoAVFlCVUusOiryyU+Jtze/yRp1L3m48+PpKmlXCSiwsxKri4V08qjgUV1QZGtefv6a86nET8zzYSr6GclMcQoqu/Lyy3jNNF3rSjrc/vPlCxiwZwiVPmGy+2X7I/3HE/yGsY5sVHOz2RWJksR46cRa8Rh8cTaS1MJvxqGieO+IXjLq1cXRDznszB+gw9MpWf0AzFOTEGaxJ8+v2e7vcBqC0rRtD27/YHRQ9t2LOoKl8iwa71ecXd3w+GYsN1c0naRh4cdp/OZzVeX/M3f/hLwErQVhUs0TZM0dL2MrJ0xZKs1t3cP3NzdU2Q5Vbng9v4O7cQaTjhg5zTa29tbNtsF2k4kNiFGcYZMcWR/arDG8cWXr1FkXF99yfn0QIwT2k588eWG3eGAS3LyPMUoCbVpexk8F0U9MztH2qZFG0twGcvqmqh6fNjj41+VkDHMAPWoCCpyOjckSUpdV8KxVWHGSYykZUZZCi+pKkouNhVj0Hy6+cDhcKJtIz/+eE+aahaLQiz9Wc7V9ZLgDRrDqnyF0iUojbXpXL/OVS9xZsLJuSe4KTWr2dXsxrGzEnYeKKCemWcxBvrxnsnvsYknRkUIci/VxhBD4CkM6KnYk6Rxni2RSSLMxmGYuH/Y8/nukW4KZJVjVRdkmUVpxZ/+6c/sHh/5+7//e9wc2GeN4/0PPxH8xK9//UusTSnymrbdUddLqjLncXfPw/09FxdbmqaV0KbzmYf7O1y2kJPHSMHbti1jL/gehSIGnnEHLk14cX0lATAErl9s598TaE4tm+0KHyFNc4KPHA9nToeGoqggwvF4pKpq9vsDbXtmnHpc4jAmUBZLHh7vsE4G4go9N8Uji4Wm7z1loVHak2UJWe54fHzkeDhxOIprZbGoBLsRI+f2jmRKME6zPz7SdQ27/Q4FlHmNVil//NOPZElGXZacjmc+/3zLalWzrGr+/I8/cXzo2F6uOZ0Co0+wVoaeIQSWyzV1/ZbzKfLhw3tO/Zm6KLjafoMzM5gfM6vh5kCBqJ7XmRwj0tB7gvgrpVFGrOw6SuPDwKymEjyN2Bo9KFH9CeLg6dvNGiwjOBetAj4g5+x8rj6pup6UhU3TzoNb2SOleRE4d0dRtsXI1eUlt3f3ZJkEgQgbfrZR+oQwz+c3my3d0M8s5YkY4GK7nX/GgEtScptI/ekD1jicSSFGmuaM1Yp3b16TphlFmbNa/WuIkgBsjRalPoHT+SCqe2PI84IilyGKF/McDw8P7PZnhlHhvSBmhBMdSK3CR+F3KuXJ85zcpSiEL0+ExWLBOPnZXq3ohuG5cWedON+KfIlBc2530uSbRNmeZhl6mLA2YffY0naitP3q3a84Hj+xWUFZlBIMWFYzs1hUeJcXr1mvvqQq94xTjTWTqB6nM6tNSde0wqRzmrJO6PqOBEOMjmTuL8Qozes427Bh5ts9O9XjfMd8WkuK8Ow2VLLXxShujSi30qckYknUdcQ4KwRVxCP4H/0UGgqzkjQ+D2sjwpUM3jOOPd7L/c7MCj2Y7cJKwsqGvkfNd7Mkcwx9P/PxZOAyDL1YVV1C34/cfLohTaQxl1blrOw9Eom8evXymRPedd18nkoT0Bh5UzbrFWKFl2altYYkWowtZ1dc5HA80fUDqUtIEkX0kCT5M7bAWsc0aqaxFxa0lr8TlcxOAgVYnM2wiaIoDARPDB5ICF5BtCidoY0jSQu5v4wtzmmWy4I8q4ghkXrHCIszYsBL70rrkaHvhD1pNMPYcWxE/a4Q9v40RfphwjqDS3P6MHK/f0QQ7pExyNDk3Abqqma92RKCA1WQpav/yb7b/9yvf3GDTxbbX6fU1irqRU6aWVGIeEhTgct7p57/XIyR4BXV4iUXm3d8//7fywXHaMaxfQ69SNNs5rMwK7CCpF4xq/UIsxxfwgt2j2cW1UsW5TWn8yPN6UTUHdpK6s04ThAHHtQnPn/6nqY9cXV1gQAvLff7PeMwkZ5HhiGw2ZRYPVEUGcNYcXv3UYqvsuK0G3jYncmygV//csP1dYFSwh+SBabpu+k5ics5O0s7E3a7Rx4eHlguVqAU+/0el2V473m827FYLDgejkx+wjmwySTFmI8Mo2caA84lbC4y1tsvybMNxIxxbPF+oKwtL1+vuN8dZCJj1KxwOcP8gNRVgQ+jpNIQGYaexJXzFMuiZmm2UoFpkglp8BLwMfmJq6sNWjs2m4KyesHYBb7/7iPffvuOPC0gjOR5RVGkpOmESyzjMKJJ+Pl9h1KKukowdcrl5gsUO9p2wupAmS1I7JblYksM8Ld/+M/4p+//L0BDjCNKa7SCvHTYZC1Ky1Em20lqCV4ObI2ZE9LETpQkGe8//ANJqogkTNPAOA7PUwNjzawuGGHmZMhh5pmm8VmJGUKk6yY0BcvFNafzgdNxT4gCzU1S4Z91nazzm9sPnE5Hrq+vxZIU4e7hga4bODUjwWsWy5Rp6tls1yymns83P6GIXGyvOJ0nHncn8iLh5cstq+UWH0asVbNFwDw3kZ1LSDP5zIP3DH3P8XSU59M42rYhyXKmaWL/eGBRLzmdzgKpTTWDhFHRdQPDONAPI1mWUi1Kvlm8xdkahROAeugpKnj5uubuIaeuK5xV+CDKCmmIarKsIPhxtutE2qYVRuQgzXcf9Py+ipIocSkheHYHWWuvX12jlGG5rKjLF7RNx7/5N/+B3//uW9brFWPfkqcFeZbg3IicY4HEldx9HvGxochhudB8/eVXGPOItXtSaynSmtSt2Sw3jKPib//wn/KPf/k/A8J3jNGLfF1rVutawnXGEWuc2CZUnPljcpATFNoKt+HT5x+Y/EnsFkrk386JJU6mzsyc0Q6lnoIJeL4EKqVmO37ONGkWiy1+6rl7uCHObMdzcyZNnhqDO7qu4ccfv+fi4pL1Zo3Vmk83dzw87ul7mSTXdUHbHHjx4orlcslfvvsTfdvy5Re/wFrHuelpziPTNHF5sRBkQJBJop/CzDWRxt16s5RmeowzbzKijTBO09QyerHXtV03D1gc4+SZ/Mg4tTirOB73nBsBkDsn4O3NViywx+M9wlUdCXFitbYsV9LILIsEa+OsqBGWZIjzlM5HYoj46On7lsPhkTSzMO9r4zhyOp1Ik0Sen0lzf3vP5XaDMSlaiRIwcSn/5v/9/2H/sOPXv/olQydDD+tEERhDIM8yyjJQl2t+/PATMUSmTeTFb16wWb3j/ua/ocgrsqRktbySFNws51/94Vt++PkjKGniBR/QRmzgkmSnZovpbN+YuSxGzYgAL9af4+mex91nQjyzWGaiUIwea8U+qo17vjSOYw/qr+tVwqhE4TcMozRxRkicBKvsd3tROivF3b1As5MkATVxON5wf3/D4WD56quvsFnK/cOOw6nl3A6CHsgy7n54z3a7ZrVa8vPHH9nt7lEoFost0+Rp23HeXwN939F24/NUehyF7eNcInxeoxmmEXROjDmJMRgLdV2SjCnaCJdxnAKxn9A6QWlNP3TkaU7Tnnh4eKAfJIF1uaxZLFZYY9jvPsgEffKEGMhyz3qTEMJIXWVi5zAZSSJT4b4bCMHOTWD5fMap4+HxhrLMYeYBjePIbr+TBpCzhGD4/of3LJcVxuQMgyQWVsWC7/78I4+3j/zN3/yWLC0YxkhpLNZqpsHPzZkF69WaP/7xex6njs0qoS6WfPv1f8R//V//v0hMJLGW5WLFdnMtKl+3pOlKjOmlsTI3+kAsfCFCmjlSEqpSlHgyYJ2bLc8WIsUwHfjux/+BEFuyQq6SokbI521t5jdGYcyO0/h0Y4R5HT5N9I/HkzgR+h2b7UYsgX2L1mLt/dOf/sjX33yJdQlaTwzjmU+fbhnHiW9+8QuU0hyOLf0QoOkoy5x+HPnzX/6J3/zm1yglCIHjcY81lixfyoDQM59HA0175ImvNQ6iwDPOkqXC6Q1eGEOvXl/hY8QiKoCrqy3D5LFOkqGDjzTNQJZVGGPo+47EOh539+z3O4ZxwFrLxcWGslrQd0fuH/9BIOBe9maXTixX4kYoS0uSaUpbUU0Z+8Nhvk9KQWmN3G/GqWF/fk+eSwBZ18sder/bkcxNgslrfvj+PZv1Eudy+n5kHAYWdc2f//gz9592/P73vyRxBdOQompJBxw7UV8v6iWX22/40x+/57g7EXrNq9crfvnlf8J/89/+V+gYKQpDXW2oqo2srVmFoLRYypgL2LntIcVxlAYeUZbO9M+aMSEGNIq+H+dkVIPWhhBlkCZ7JoB/Hs4yK0t8kARmNzc5pNknDRtrJQShyCu6/meOHz7x6uUFdSmq1tP5xOl0ZLVe0/c9WV0TgpzzX3z5Dms1u/2ePC/nO7WnzHOsNayWC6oqJ00sWlc496Ukx1YLDscOP/VsVxdM48gP3/9A9BNfffU1+WzJKoqcsioZx5G+a0WFQ0RHaYIEL8nAkw+Mg+ydYBgGj7YSnmWdwTmNMYoscyTpkqoqSVLH+dxwd3dHnmdio44R45BBZQpv324Y+gmtJoaxZfIy3FiuSpLGMPyzBtXhcJidDDktHVFN/PzpAyHKWSZrU5GlkSRN+c0vv2IaE/b7O5Ik8vLlNavVgq5pGIeBtu25vnrDbtdgjdhs+8Hz+HhkWW8JY0vmHAHL7vGe0+6RF9cbVJx5hWGuLf/a1ZP7f5Rf1+j53JyxFl49N1bmduCsLJ0ZafpZhCVKISaeknn1jKUIPuDxsp+pQJgQ4IEGqw0qQt/3dG2H1prlomaam3JNc0ZpzfHYYBRUpWO5qrFOVEB5VjCMco4mSYKzKVmScTgcuLm5Y7ffw6ywdtaxqBcslgvZu7Wmac60bScqfAQ3NE0jPkxkWU6SGLJMxDLp7IAZx0Fej0FU7XXFarUUtwM84xQUEWcNr1++YFE37I8tp3NHDGCsY7UoiV6Y5YuloINi9OAj0cDQCdorRmlWCZN+IM0c1iRYk/LEpLYqIXEF5/NpRuZI0JExKRSRKQTW24TVZoXTBYldoNQdaZYTYmR/OLBcLkitoW072jk4pKpaQuwZp4ZhagEj4VLeEZVluX7BevmC1UrxuPuJGPK5aSuM6Rj0fEfzs3BJo+JTnyNIQ3j+PeLSkz1Pz/xKCHPjWPoFEh7E3LBTs4L5qdciG6TWEsY3jdO8i87Nkfn3BD/belV85unJnhuYwsT53EgwVQBjLameLe1Gg1Y4qzmfzhRFgrEGY2umcWK329M0Hc7K4CzL0tlmbjBWk6WONHVMU0c3nPF+pCiWFKWImMapn5WtUvvEIK8VJZi3u/tbqqqkrhdUVY21hsf7jnEI+EkzDBJg0TYt4zTiJ0PwHdoaYpgbpQQilr6LHA5n0iTn8sryH/8ffoXVoIxH6YSBHKVKSWm2Kcejkhpn7BFhueZ8DoyDQms3f1/hcU7jQN81pKlmuTYsloFzP9APHjtZskzcn9bmlOWCS1eBEbXldvWaLHlJkhicMWjjKMsFRV6LjTdIgIu1CR9+/My/9Ot/A4vuPCWc/x0FxhpyayhU9nSkS8c4qOeObgwiW9wdPnA6f6QdduTV/ODEnCwrEJaCnRewXGimcZynffKLT0lJSilu7x5pe8/97oaytoQ44EOPtYbDfs9N2/Lll1+htcP7jnEa+fDhI1mecX19zTRpNJpp9KQJrJdLHh9uOB4e+P3vf0vbNjzu7ohEXr96g3NicdB5QXue0GVC17fSqY+Kdra4GWMpq5yqzp7tAvXySor3MTCOgavrLUpLOMU4yEOojWVRLmi7niwbUcDt7R19PzIMI2VVcH19TQyB29N78ixHzUoiaMkyT5lr6irFGYHQX2w3NKcju8Oem/aE0tKArapSOEZTQz+cyYuM0/nM6SScg65vKIsKrXO++/4TTHC1veDudsfHH+9ZLj3b9QU3H/f48QcWi5LzKZO0Qvtkj1UsFld88e4LvvvzLZ9v30tDyi5Yr19z+3lgd3PHdrNg+/KazWZDjB3r9Ru++vLX/PmH/+tsA3/iaqlny6wcOPMUWAkb40lmL5M9xeH0M4fzz0Q6XOplMkJGluXPDReJM5fp7zSNz0wqrTVJks2FcOT27oHDqSX89J6iErC7SyLGZtw/PHD/4x2//91vZ0XahAJ++P4DSmm++OotCifWo3YS28Sy5OHxlpubj9R1RdO0HI8HmDlS1laiOFKaofMYPF3fE7w0IYdOAmFQirKM1Isl4zSgTeT120tQShqAnefy+ur5fRsHz8PDHrShyDK6tpc0Vm15eHjAeym48zwlne2Wh+4DSZKS5YmAdbUnSSYWC0ddOWnAKstyUdO2LbvdI59OOwDyPGO9XkLUhNhxPJ8oy4rDYc/+sKfvW9ruTFlUWFvx3V8+M/WB6+01nz595sfvf2K7XfPF27f4ceK7v3zg5+yWaVgQohQUk/dMIVLVS16/+gU/vt/z8dN3TOOZNNmQp5fYOHHePVBsa64uLliv14TQsly84s3rr/inH0QRoOd0v+f1NieDJmki620uVpQycwNFCuApHPnw+b9HqUCSCdhWkeCcfIZPjBcQK7WfKxylPE/JkHJp8JzOZ376dIPRjmqVs13XLBaZFCLNmX/37/8df/jd71jUi5kHknJ3d+Dufs+//td/Q56X1PVyZjs5Li/W9EPLzedbsenXJX3f4b3n/uGWut7OahvZ0/t+kMabFdu+UXNC+JzOdXGxEVvmOLC5ELWrWBp76kVNiPGZBXR398Bhf3q2qhwOR4KP7HY7sfRFiD4w9CMKw+GwRyvFclWDEstjmgY2GyeqVdXJ1NiJ1aVpjhwfG0LwOJdwfXX5fE4dTnfkIWMcez7ffEYpxfEonNCirGnOkc+f7vjqq1/z4ccbHh/2+FXgV7+65s3rS7ruzA8/vqdtDavtK0bfE3GMfiKgqMoN1xe/5+FuBDUwjR1NE9gsLBfra6wRRcZyVZCkctnZrLZ8+Jw829iMmdcYojKI4clSzyxwmc/SOJ+7CkLs2R1/kmloKkluKhqUsmhlntUDT8qWMKdxPxUBZg4TCiHQ9w0//XwjTaWfP/D116/Ybiu0VhyPZ/70l/8A6g3v3r6b17ujaTpub2+p6prtxSVpkuJMgtaWl9fXTH7k8f6O29s7UQr6gHWOrm8wTTa/BtlzmqZjt79nuVpiZsWMVjBNksabzkn0xjylTcvktj13JGmGyxySwlqz35+4/XyPM5ZpksCDxKQcj2ciEkxirMZaRdeMguZwkbxw83uuyTPDZp3hTMDZkWFsSJXDOYWxkf7ccj6LLfliu5GzLkSG8cSwO2Gs5cPPH0ApecYm/3yOfvzpnjcvf8Fh33J8+Am8582rV3zz9Vc05xMP9wdOp3tevvol++PN3PiHYTSEUPLl17/n5w8nlBnw056+6xn6juurS/w4cbFds7lYY7TDDz1Xl2/56c6hjZ8h8TwrhVEKNUuqnqxDMQSCBubkyGkKEMUyOakWzYgyUhw/XbDVzKwIQUKA5Nfic3q8VhrzzBqWaX3XjXy6fSBJUy52j3zx9ooivyBEzT/+8Z/YHXcMw0BZivoptRntaeLTcCeQ9sUKhWLoJ1bLlPViSde1rJZLHh8fqKqCqlrMtjIJfYlRrNXGWO7vHzgc9rx8+VKA8otUQm5mhcNTQcUkqIk4c7U678nyHDX4WWVjub/f0ZxbCJFhECVPo08SLpXlLBbLOdhKs7sXDu/gBoo8F6eJ1tTG8eplhZ88Rg/yfZBmgks0x+NxBvgbLi+2xODxIdB1R7wfGYaOnz/9iDaGsZdwubwsmEbNYXfil1//Kz58uOHc3pMvCt69fsPyN7+ha4+cTw0fj0dev/kDu8OPxJjO8HyHipo3L7/hw/sbytwwDAcJ0Bl6Xr64JEyR9bpkvdqCykD984T2OYE06hkqPuNoeEo5/CuvSs9cT3R8VrQURhrIanb+qHkPlCGAQOSfbLUg+AsiDHMR3HQSSqCVcJLzPMUYTYhRlMdR89NPn8hSOfdihG9+8UtRmSANmBA8y9WKi6urGQUkg96Xr67YPe5p2iOVzufGmgzc8rzgKUl4GieyxPLlu9eEEFlUBfHFC5yz1HVJNqNVlFI87h44Hk8oBYtKGobaSFNZBod3NM2ID4ZxkpRIZy0xDCRWcXd3oK5ytI4UVTLz6KTR7hIZyj2d34HIuW3ph26+41jqqqIs1pxOO7SR58UHsQ0Le0wQIudzQ9uNfPP1l7My98Cb11/StkeyrERpK4qaCNuLF+TJNUM/cTwbjJb7zzgeqZYFXRMFUWMi2gWO5zPeDzzcP9CcHnn34m/4+P4TZWZYbC5ATWzXG+qqICKJ68xDK7HjPu1j09wKnm22URHnEBphwan5GVeCE3qy16KeVXohhllUoP7acJkHFNJWCPMQQJK9jdY4ZeYmmIUQiV4aY33XghL+WYwBpxOMgbJMyHJRxK7Wa5xztO0ZGVQ7siQleDgcDvNwqWNZV2S5rBvnErI0n+8PkuY7+ZGyLAWXoRVFmT8HGD0FQZzOZ07nkSzNSOewnmHocE4CpbTW+Gki+DA7TOSdDFG49c458sKwWm1QxhKCNNLHsUfFjBChXixpmpboHS6xTN7jkgTVRrKkJHppMiVJSl5kWKMIs/tqmlnO2srnNkw9kQGURmu5Ww9j4HySNNPUWUzTcb8fSbLAFCIqSTm2I4sqw6UZyiiGQZPna1K3IfgtqAnvxamUZRVFvsTZGmszEpfhnGG3f+DHn/+f0pSLFhsl8CZouadoxfNaC1EkJkpJk/cJS6C1KHXV0xrjyQLuhO+vnhoeMPkR7ztJiGVmvs9KPREDSGNZuLqaZ7wBWoLN4hMfmbl24bnRqI04pUIMDN2ISxwucbMoQzjxzgk3/nw6kyYJiXNzqJpg1IZhnJn4BUoZhqGl68+cTnuMUaxWSyZ/RvFXZr0IwuRzC0j/YxhHtptrGSAGx37X8G//zSN//uMdV9dXvP3iLUVZUtYFL19X0vB2GVVVSFM+gDVu3ucM2qScjmdBtJmR1E7zQBMe9w/8l//lvyfNRK26uVxRFJVkGBSyjyolA0+jzZzLIO/hNE3cfP7E/+P//n/j+nrDejtwdf0Vv/7V/wlCYLFYsaiXpGlBltY4k6NnTvk0TWgt52iEWW3O7JCAMInqOPoo97x+loH+C77+xQ0+lziMe+rs8zzdeOryzzMRmdvGJ0j8E8Q0EjgS0GgT/79ULWpu0IQgIPGn7+19ZIzCrvprHDXzRjXy8fOOKUQuL1esVwvqRUbbtbx/fztHSXtJvwmK4C373cT7Hz+RZAlpUjONDePQsXnzap60VwQvEnttEl68+IIsy9A6oTl5CW8ohFfz5z//GeM0r168xCgBVEvTzhCYYFY4iiJDHlBUmPk5Mt3wY2QYPMdTK8qesSUvHFPwmDl1sCpLiRxXcDwcGYaBuq6ZpgGXSPFkXYpzkV//+gLnFNPYMfTgx0iaGtarirbvGKeBvMjo+5bz+UTiirlY7/nxpw8yybZyYZqms0xoywXbb7+izDd8Kj7iUuEh1FUhYGF62r7j7fYr7m/vsYK04HTy/PRTg46O+/szZbGi7R+5uT1yOnm++fpb/vZ3f0ue5RxPZ6KP9L08+JLOljw3+OIsv3/67GW4IStNPRXISjFME0RpyinOsrb0UyHyBMlWc/H7JLOe4czK0HW9HNCW+XObVTBT5PPtnqb1vHnbcbmtKXLHue25u7sBYBwk6fWJh2esY7ffUz8WFFlN254Z+o66lqSeFUtcopgm2TC/ePcNLnFkacnpNED01FWFHz1/fP9HtDO8e/MGoxX5qsKYBJckz42hJwZPVLLpoyDNE2KAYRzouo7RQz96zAw6L0phTDprxHaXOsryFUTFbidS/cWiRuzxkzwjUbHaWH71qxfzgTvSdQpthIe3vVzQtT3j5CmqnMPpkfPpROIyEidKwp8/fmCYBojgQ6RpR4o88OL6Ja9f/Yb1+gUfr37COcVqXZFlkgIY/EDXTVTVG07Hbub5TBxPPd9/f8PL6ws+ff5ImqcM48DHz/d8883Et7/4Fb/91e/x48Q4nciznHHwbF5dEKeIdQkuSZ+ZGk9DhmmW2cthLdOnEOXCIyrPQWxF2gICh0XPXAw/H27zhFjWm5zYT0xHkCbPMAzzJQyUthxPkji82S652CyoipzBBz59/kyWZQyjBCtYI7a/ul6Aitze3bLdimKyb8+sV0uK3KHVxK9+9S3OiYLyi3e/EEVcXhKC5nw8zKmJiu+//4Hd/oGvvvyKuqrQSpLv0lx4i8M4PCt1wtMzCSRJKmmBw8Tjo6SzKWWpFkuR1htNmjqyNGGzWRNCIMtS0jSlaRpOp4ayKEhTmaBJMiskKbx7t5ED0o8Mc/GWZSmr9YLFsuLcnEnSlK7v+Pz5Ewq4vnpH1/QczyfGcZqn2AXCdrVcbJf8F//5Gy633/Ly8haXQJKNaDvvAVxxOp0ZR8eivqY53+CjZbdv+PHHB5y5YOw/0fUDm23F/tATfEUM8PbVL3n79rUodJwjT1dslm9JXY1SBmPTZ0ZQiDLdVP7JdiHwYG2NWCxjJE6Rvh+wTsDFimH+PsKLjJMUb9PMfVRPDBgkhTlO8ZkJ9HSZt1aTZTlZVnF3f8OHnz7x6uWGIrP4KXB3f0dVL8jzfH72E7E5bjbUiwVt19I0B4JX+GmgrHNRBQyBd1+8wTnBZLx79xXTFMiyjMRm/PDDR/I8ARW5ufnMTx9/5NXr17y6fkEIMyulqPBegPVdO81hKtKAnyb5mc5NQz/42VKMJMMvl4RpADxZKumGF5drxkkuvmmWMI4953NLUaZkWUoI41yoiRJktbISbuKlOTSNPXmRUJYpZZlyblop/rTmw4efGMeRl9dvCSgGLxPivh9w6YIkE0h6lhX8p//Z/57t9mse7s4ofo8xkyhCY+Biu6TrGpKsY3tdM8UdPgYeTyfe//yJoSu4vTvRDZGrqw2nw1GsuoXjb/7we1K3wE8GayzO5awWb1ktX/Dx3jw7IrR6avoqcbcoxNo582pjkGbMFAQBET2EaUIZJXZj5dHRzBfsWTGjnizAMhB5soAb44hB4X1kaIQzm6YWawX8XpULPt3c8/79z6yWGc7A5CVt+ssvv5T0usnLezr2/P4Pv2EKYqmSQVwkTTSJM3MRFXnz5oWk+2qDtTIEzLNyVl1MEqARPPf39/R9z/ncsFrV+DDOARGatum5uz3JnpenpImbk3tFmfnweCQEQ9ePRBRlUZEXOWEahCmUZliruH6xxQc1FxyacRxwiUeTzKzBicmL+jkEz2rpsEbuj5K8O5CmlqxIyYuE87nFuYRxGPj06SPTFPni3S+ZxoFp8s+8rqyuZX+zkeW64v949ZrL7a94cXWHtd2skvJERlarNafTAWUDq4uMzms8nsP5kffv/8LYr9mvH2iaT7x7/YJuTCjylKoy/Hb1G6riArGsBSIZk/phVlI9XdX0zCm2oppSSpJoFWLJnZeimgvl+HSizMPbJyXWUwfOmSd3Rpj3wLnu4Cm4QL6aphEGWZqQpk/WT8/5dBIOrlU4mzFOAze3d7x8cUWMirZtkSZdSZGWgCjWH3c7pkmcLzGKg2i1WpClKdZqlFFMw0jTtBAn+q5/VuHNZTr1siIvUsrqlYTYeE/XdVIrRGFuLhavZpWLnwtfSb92JuH16xc8Phy5uz9y7iUccJoUF5sF0Y9olVDXpSTtxgkV5P2Xe1jAT5C4p3M1PpVdKCVMZOE1rmjOPQSPmYt7osKUFvAMY0+a5/yPzP3Xs2VZnt+HfdZa2x97/U1bWbbLtJme7kEPxhAiBuAAIiEwBIEhinqQFKG/SPZVEVLIhBikQAGEBzhDYGYw3VNtq7q6qrLSu2uP3W4ZPfzWPlkjvbH1wBuRUVFVmTfvOWfttdbva72Dvb0TlotrgupIcsNyfUkSHKOiwFrNelPTNDWM1ujE09otQ51tkVeY3qN0wXxvxv7+Xfb2PZvtBalSfPvDfbwLvHH3+/zOb/8HFKkhSaRoqsqnXC1XPH3x38SI9yBzZhCyPyCDv7zzopJSGHQIu4ZYFWIQRLzbD3ZdpaP1kfh9474ms4MgOd718bOV1m6Qvc5ouXd7DybRci/Sir5tybKUvMgZhYre2pghl0lpgBbFad10XF1est2umc4mVFUZZxeQYkjN/sEJPvS0rbSpW6vIp/Oo8pfG2NlsKgCzSWWeDrL3NE0ttk2TkOUpJpFn0iSag4M9vJ8RgmdbrxmeRBWJHiGADEWeoYwBHCo4QpACS+sKFostba1oug1ZWvDg4XO0ygg+wfYt221LCJqu9ayXKybjhA+/eYc8heWyp6iKCMAGvDcolaKTGdumRusU74TA9EGy8NrG4XtY14ouy+iblFcvFwRqjm/s8+H7d9ib7jMZzSjLCcaUZGlFmpQkKsM7GwFPJXd6L9CbgF0BMPgQWC47EpXG8k1izr+Q+06QjF3MkFEGrbNoWRbHoQ9OVH0EKdD1AXSIdu4hJ1QAOx88htdrTZsEg7gEnGuQCDJpKe66bjeTaDPkxCu8CwKWOhcV6ookkUgy2b+kp6AoSpwPEWiVPMSh4K9tO8bjMUOG6bBPdZ2NwpcsCmIsr16d8+jxYylVLQKL1RV3bt9hOjlAkUWQz8e31GMSz6ZpeXG2YTodMxsfU5Z32Z/O+f3fm/EH//6IalyS5CZacaU6JDVpJBtFteujRX+w9QcVmB9I4YhG4ayl7zq22zWff/mMdaNxOhASw82b9yhLsQdLHn/EoWJ/BErOLYnd9BwenvLW29+g7zucrZlNRrx59wYHe3OU9zhrxQqsFN4prJPzKoQEh2TjErSQoMP9Sw1KY7/bi4c4sF/n69cG+AYfdYgHdvBg/dA4pAVwAXmxHvCvw5WlgTGG7sfhLSDgjfLwOjD1NWuSpildF+g7R287kkSTZcK4Hx4d8fjJBY8fveJgXpFE4UNd10wn+0wmk9g0KbXkZVnwWz/4DTnklCKEnrxI6K3BuhptMrJccefuKRICOmKzkTai1JSkScN4kgMdIaQ0zZZxOoIgIJtIiKFuNqxWK0LoGY0KxpPJDtF1znN2do6zit6B7WN2UJEKS+g9m41kcEwnIw6P9sCzC9yfzsa7wZAInjbtlq6LDTdVSlUVqKBpGimF6CMYUJYlxgozulqt2WzWHO7POJjfoK633LzxJk23wBhDkUvrWPCKo4MM/Jg8PSAve4L2oGq2bc2oPGG1Tnn+4hx1a41Ox6y3GSF0lPk73LutuHv7bUbVHmWV4awlzzMO9o4kjFrBct3wqy83tE3Hf/L3fpNRdcKrVy/lAEd/TSLtiRQk8BqEQX890FmGDKV8ZN9iuYsLu8HEx4yaIS9IALIhRDOhbR12I7lteS4Mxt7eHpPplIuzK766/4A0uYMi0LSO09NblEUBytC0koFQjUZ87/vfxTqLSeRyMZ3JpbFt1hhTkZjA4cEcpWA8HrNebwUwVwl5Fjg6mgEdaV6S5SlFWcamtyRm8GkW11esViuUFsvaaDyS7B/r8M7z8sUZbRtwThqChlbg4ZDuehhVJbPZlPl8EpU+DudhPC5xLo/KD1F0rDcLuq4nSQ1ZnpLnI7KkYLNZoLWsNQH6CpI0gBdpfvCKPJtxcnSHTX3JG3ffZVMvUEoxqiY4h2SJkdK1GWWVMZlIC/L1Ykm4UiyXG45PbmKdp+k0Opmx2SqMGTGbfpOPPvgmR4e3GI+eCHBUlCQmZTqbYbKMTz79JUolLBdb/uf/2d/h5vEdEpVG5WLA+Hi47gbgwcYRQ5UH3XK8qEopwWClFKXeTkzqJRNNVCt+R4IMv2y0ffddH4sKgjRrpwlFWTCeTumvNjx6+ITJOGVcFWybjpOjm9y+lUQ7RiN5HwS++e0PJb8mSH7pfD6BoHCuoWlWpGkqjJeCJM3RarCeywX/zu1T2l6KLA4P9zk42GM8HjOuKrG6GLHVDq1SVVUymU5JdELX9wQXuLpacH29pm2VXNJimY8xjiQJrFeO8WQEwUYGMCHgqOtBYSWqv67r0UYC0eumhtjgl6cjjg/e4OLyAmNkQE4QS8d0si8Nb92W/b0jjM64c+sbXC/OqEYz9uw+q9U1+3tHBAJt09O0Ftv2XFws2axrnj1/zp17p8z2xnhvSE2FMXtxVp3TdI7VqqCqKj764G3G40M0KXduf0g1Lnj46KuY8zTl4YP7vP/+3+KdN98m0YiCwBuWixrvYxMfJu5hancZG8xsxCwqrcOgU45sbwBNLNh5rYryuLinhdh0K1m1YjPr6XtL00hzMSowGhWEkO2UlVU1pmtbnj97weHhnO22YT4/ZDrbJ8tS6lrsVH1veePePZyTC77zVrJ+0oK6rtlsloxGFVnIYoO9J88qjJbMIGt7Tk+P6G1PVVXs7485PjkkTVOqstwpGOu6pqlFdV+WOePRmCSV7+mdMMkXZ5ds6qh4UpoQrkkM5KmCYJlMxigVGOlRvLg5tlspFEkSQ7CDRVka4NbrNShRbSVJwcH8NLZcy+AePCiVMJ8e47zk1h0d3gA0t2++zWqzYtttKUdTaUtNxwQcL1+8JIQlR0dHdB2EIFmIzkFvY26dqbAhIR+NCbqitSNenSXg3uD2jSl17bF2zPvf+G0ePfyEb370+/zBX/s9puMZiUkp8n2ybCoX1gAow2KxxjtFcDqCJsT3KSoKtEJLChVaa3y0cSuj4iAcQ8aNDBVyJ4uKp0FFpQflhabv5Rx1zoP1rNfrmIcWJHQ9ETBus17T9X0s5fK8ennGfD7FedibH8RBRLHZdmgFeSFuiL7vcV4iNkajkjwTOxLBMp2M8d7GvNOC1KS42BRPUNw8PcYkhul0yv7+jOBE1Tgo9OTeuAXlKYtcgulHZSTros0YJG962dC0niTJuDy/oioNRgcSo8lSUd2pqIR0LtA2EchzikQbrO1QSoDKbb0lIHk/PlWcHt/i/OKMJOnljEZjVMr+fI7zlqbecuP0LpBxtH+X5eqKkoLp3oSXL16xtyeRIOt6JfcYu6XptjTtBm1rlPZYZ8myHBtyXJhhUk3dGi6vCq6XG8pqxttv/hZpssfbb77HG7fvsD87pJqkTMd7zKcHKBLK8oA8H6EVXF5d8NlXD2SAUQaF3Ff94EQL4IfZALUbbHaahQjw+eB3qhSt1E5V74Osq4CoBG1sSdTxvAVRWG3Wa0xiSI00gjaNWJclC7ljubhgPisoioKyKqhGFUlWoHdrNEUFsQWvVksur65YrVeMRxV5nlGOJkxGIwG8Y6nE4nJB3/VU5Zgsy9jby3ARCMoyiUxw3tF1DQrIM2lU3WzWUV2lmO/vyfAagXAA5wRkb/otJtHM5yWnJ/sEFL2TfCnbtZG41szn+6zXG1F8ayETk0QKExKTY3uNTgqSVFGONArJO+57R90EHj89Y71e0bQLPJ6bN/bI8gTd20jYd2LrzwqaTvHqYklWaEyakOQHeMZ0XYXRY7IEtm1P246lYDtMuLh4zv7+iLfe+oj5ZJ88nZCYijybxDKueK9VYl2ERJwQcSYOTpjXbZPErN2ogAk63mkFIEbJn5Gz1UcgT85bH4UBSgmwEpD82hDE7ihZtsOiHOy7kg3pvMPFiKqBpGWYWePv32w3pGlGkiRkeUKaVhEAkL0yTRPqeoNJZP6Uc3O7uzefnBxFta60w3ofKIqM3oB1HV23pWk2KK3Yn+9hEgENZI4ZiH0td0HHTmzgIzCeZXq3HxdZEUGuIWYK8qKg6yxZmjKZSlSLxHGJGlTF9wIMLigefRn46c8+J01T7t69i0nneFuwvzfn+PQGaVpR5jO2dQde09SB6+uGqjIcHGSYVAh+pXNs26KwBOS8+aM/+lOcM+R5ydHhMVlaiIAmSSlHOZOJuGrm8xnjUc5f/MUTXrxY8UG7x3/4N/4247KU4yHEDSh4sIE+KLyLmXZKnk2lBrdDiO+ZqNGdcxidSmZ8JEm1EntrnuSiBoUIqsqzblIhhSQzOyGIe5akSKnbGu871puFiDImM7mDheFcDcOPhQ+Bvm/x3pJlOoqFelQi684MzYRBFKcgFndn5WfXEM8aRZYYkmSE1prlcsn1ZhvJZ7Fsz2YznBPXYFKN5EmKs0oIgTzP4nwj+anOWZzL+fjjT3j+4oosz5knJU+fvwIN33h3Qp5maDRta3EOTO5pm0BZ3uPo+ISyuoG3GVfLDGuFuNV6BZsNNgSCUvTW4q3DaIVRgTyP0WdK7NxplkRST1FkOWjNq5cvJdbBWZ4/e8r3fvADPvzWt2i7lsSIYm831MYSniRJqKoKrQ2t7RkcDSGIWjAvMrI8wdqEuu754ovH9HcsB/OZHF9B8v89clYpBjFH3G8G2Ztid6cIPuIRQbCJITv21/n6tQG+4MX/DHJJFHxFRhAVbSCDIgrlUIZd+LK0r0S5aARY/NfCOES66OPwQFTIWLbbLdYKw15WeZQkO2lZUTDfP2C52nJxcUWei+prNtuPwJ5iE7YoZTg4OsBaGy+KLd57puMJs6k8ZIlRjMopve1pm44k1RilCd6xXq9ou47ToznVuGJUFBwcfgtnBTyTpjC57BodYmC8bNppkgpyHzRpYphPprx4ec5i2dD1VuT2mWE6G9G3NaNxhTFKWF7rSeIG03VOsp6soyxHNG1LnhtcZ1FB412QYMugKcsj6uY5QTnKQpB5pSUotLctJ0cV7sAxLo+kpc41mGxE28hQNa4MSaJi0HJDkaWMRp7eLfGhw3vLaHzEg0eXjGbv8N773+Hk5JTUlAQkiPTOnURYDZPwbrz4i6RWNnAbPCZNyEYbbtQjVAh8+fCS+f4pPnSy1ly6A5QH2k2pEENDh/aggFHC+po0tmiFKJWOG5IoC7y0QSodWzVDBF3lmtn3LavVGu8dWZagdYZk7zUsrheE4Nnbm9N1Pa9enbG3t4dWiiyVMheGzyAxTGd7EjqKwfYtnW9JdMrpyYmwdmlKmlb0fUvTtATfE7wXO3bTYq1lXKWMpyOqqmI2excXMzHidEbXNeR5ynh8vHvuEi1rTQVFlmQcHx/x8vk515sNdSsbV5Yn7O+JMjBPc2kn0iGuV0PX9Wy3DZLN5ZhMpmy3G4oyRStDWaTxmdXxon/Iar3GIPXlAEangLRhJvsybFXlkRx4UTYubIdlNJIWJFs3sal4hEmkKezFq5r9g7e4c+8tvNfszY9JsyIyIjIEpGnGnbuyUSql+Oa3clDCmLjINF1fX1JOW7T3HB28waMHCw7ndwkmiOrTJ+Bf2xF2DLCKB7pKYviPlAoMYEzYscGKocFVKfAIoyMtqYNadGBpRJ2y3YqFL0nMLq+zay3XV2t0kOGlqkpevHjBnTu3yLIM58XmmucpZTHCoKnGE9q2o6k7ul7UA0ZrRlXFaFTKAR9Zt/V6je2ttOp23V/a20dVynicM50Ie+ydp262km/UWrRWnJ5K1EDfW9kbgxdrZao5PT1kVBVcXm2ot720F6aG+d4MpRxaSROeSTTOi/JRK01dt2w20gRaVkUcjCSDrShKAZ2NZNQEKrruApNaqlIYabkRGYIOpImNh3NC3wU2mzU6CVFlpmjamixP6G3O/S97Do/ucOedDzk8SXjnGwmTyQyTSIsXQZPmFUkiMQqnJ540SUQJFLwoxKOK5NXLl9y/v2B/b8Z8b8rJ6Vs8eXbJjdM3GZUFzvZAT+9bNCk6nnn4gZoYiInYRA/xkiatmMPAJmoZFVn1Qc3uIykm1siIP8fLvsL2XSR5NGlakqQCTDdNx2rZUBQ5V9dL9ucTLq+uqeLg2zQ11jlCyCmLEVmakhdCHC0Wi2gn6UmNoapGHB3u7yzAzqkInjmc66jrJiofFEmSkRgoS8kCGo9KnJUgeR9Vh1pr5ntTklg6olVUTARPmmjyaUWZpyxXNdu6o7NC6EwnJYmR52s6ncp74nqC8+gkpesc11fLGOwfYjGNEHGHB0fy/BoiYJ/jXIMPljyXfGBrIzgWRKFrrSXQ0rWexRWcX3rWzYosH5OmB1TlHKP3ODq8weHhKaPRnIO5oeuayBSnX2N1xQblgXfe+RDrHA8ePuTsvGFvf5/D42OyVHF8csKkSqiqexwdnGK7nra3GDOK4IcoGDvb4X2K9+o12aVkGDADARvD5KXkIF48VRAVX1AoPM7L3c46RxKBM4KXZ9KLagDlpXgikYO6rhuyTKyRsg5FZbLd1Gy2G8YTUaWNRhVNKyU4RZlLe6eR/KIil7bP3vY8f/5KyqrifbGqSqaTsRRsKTln6rqRRmUjrZN938fm8pQ8z9CJFhVPEHW9957l8np39ss5O5EcQidAE0FUGkE5xuOcqjrBOaibXu5maVQResBr5vM5bSd5T9pIi3XXO9bLLSGIwlKhKMuUshoxnc7wQUJwvdc4n9Bb8KEnzTSEhLpWONdT1y1NLWB9cPDf/ut/Q1rAd773JqPxEZPJEWk2J8sqJromTbd4Z5hO3yaEm6zXC1wIZEGakfvGsN7UeA/btWc+e48/+uN/wbe//Rb/6X/6nzAb75PoFEHpBBDGy35jO0vbWyCP2aqB4KTh0ehE7nkhtpgObD2yDuMkG8/EAErteDXtRSWfaLHTBu/lmfAxTN5bnJXiJ51k0UYpd64kgm5NvaXrW7IiQ5tcMpC9NJjevn0Daa9PmEzmdNaxuFqg8ZSVxJIorWmbLdb2HB0ecOPGEdogd+PeiZJG6TjvOPbmcxSiYJW9Lw60RpoRnQvUqy1tZ2MuOKJmjsU0db0FpLDLW4fKZDZKkoQkydGJASVZgiFsMclQOOgwykh+WTKm7wPz6U1CSPGhZ715SVGm5Pk+3ml6m9K1Kfe/fBQVywlpInm0SVoyGU3J8wMeP3nGeDSBcMLe/AitJVJkfy+Pwg4NKuPw8A5JmtJ1LU8efYnRBYRAmpakqWTHFVlFWY0p0i1/+m8ecuPGmD/4977HrdObaCTfl2H/CQI2ueAlPoA+qmIcIWZ5JVHxmJqczIDECQyKGLdTwxAVPoNKTymx+MkQMRARLV2//dp9L5YbOIvogDydtbs4CxDFW2Ik285HC/OwtkFRRUJUwOVG4imSRO7KQdw64hSTSBFr5X6aJEZAdys5810nQoG+tzH7zLFcbiVLtq1JUrlQ7u8fxry919nhku2cYBLN2aszNtsN8/kU76GuW2znSAohy4wZZqNod/dgVEKz7emaa4yBJGbp985iTI61OT6Msf2U+d4h/8O//R8zm02kvEVrlDYobeitkzWW5pQTcL0lBM3pnYREgzHybGtt6HpLtpfQ1B1tW3P/wZcs14kQ02nGyc27FFm5y1uWPMREFHQamrbnP/wP/0dY22Ldhq++esadG6eMqjKKjsLurHsNeA73cr/7BWYH6gzKzaoq6e2WopAs7aKU1yn7U8BZG9ebi9jBCuslY1dUn/Kcui4Rd2KwpJkAmwEB1VQU7AwlcAOhppRDGyE2ZH4WsQAxnmDI2tMKVCKqTRXPcaV0dAg42q6LIiQYlaVkE8em2SKPz20ia9kTAfEgDbaqVLGwaCADwSRQ1x1llXF4MCfJU8aTEusSrq9rPv3sl7x55x7HB2+wN3mfxeqCdXvJZrPHz3/hePjkKUG/QmMxRkoiR1XFjdNjDk6OeP7yjKBSvvzqAW3b0NdbUqPFjm1EUOG9xSTEgkiN0ilFPqYsE/7X/6v/Bc56xlWFDjAdj9B6vFP2eS+z0GazYVNvuffmWzti/NnzZ3zxxRf0rRDi3rlYpAG9lc91NqlQfI+96VTiT5TDBxWzP4XMksUlcIRiWG8hOlRd3OtkDcln/t8DgE+FDBWGJN1hWxvUUSoyGoPt0eyQ0p1yPwQG69DQ1hbnYkG0lVzuQiDWvYtcdGh1C8HFwa0hBE1ZVrFJUZraJpNJZJPlEM+yhLIoadqW1WrF+fk51kqGTpYlzCZTRkUZc4kSCeSsGwDSRA60vhMQKEtzdKLIs0SUC1pR5BlNI3aPwdI5m41J08gWReBySG91rqWsFG+9dYKOF1GlpY3MxgEozyuyLGe9udpdgOTSKkOw7SFNFH3nGY9GjA+nQlDgQENTe7Qq4oJ1dH0n759potV4S1PXlKOMLu2ol2vafkFWVATlUNrT9VvKsmQymRB8RpEecnJ0j1E1pahynIdNk3J51eKTE15dB56eneH6Fk1PmhlGZcV2s+H6+prZTEJbdSIWT+8cAWLbD2zrFd/4xrv88he/4ObNAw4PxygljXJSN/4aFQ9EaxtEUHUIOJDfMzANg01NDnMBx5RSkp/hQ8xjkkeirhtpop1NGeyuXd9iraZrpQiiLHPyrGRUxEasJI3S5Z48L0mTlKKoWK83vLy64PLyAm2UsCRlRjEpKYoCaQUyLJdLmqaRkow8oQB6LeHzk/E4SpQD3vWAJktlAFqtljtJ/t7enDS2HA92ZmGtAs7VpKni7r0D3k5v0lsbgTEvzA4zsnREURZstkuMSggEkiRDqQ6CwuiM4BKMzhlVsq5lM3Iobai3DkIioIgTG7BY6UVSvt12dG1HWYkV7nq9pW4XFGWOi03GbesYj6bs703QZoxhxo3TdzH6mnRkqaa32VhFU7ecXdeEsIBgSY2h2W5ZrdZMZzO01tTNFh/Ezjg0MM1mM7LMcOvWLUZ5xs8+/pj18opbp0fcunlDJNohlcwBkPXlpcGKCKSEIK2LPuYxDfjMoKJSUUn1OmdPrOI+rkFRTpo4gDTSKpnlmNLs2P2uE1BpvdqQFymHyZy9WUE1kktOUYiKpapyksSgVY6zjufPXnF5eUmSGPJCwnDH4ylFXqAjMLTZbFiv16RpFi3i2a54wpiENM1w3uKcpbXSXhyCj+yyNI/PZpP4/YiMnlz8nPO7YqGi1NybH2C0qFdESdaJitYbprN9ttslWTqS4g4nCi3vA0U+JQRNCJaySuLFUvZ1k0iouDEJ48mI1UZs/tI6J3bJvlM4q+OAUdF3ivWqZzTJqOuOLB1j1JhRcUSwp3z0G6dM927igychw7eei1Ut7diR4e8vF4Sh3d05PAKAEM+xohLV4dVyzR/+4X/E44f3uV5e0ISeX/3yU4o04Qe/9X1MaqJN2BGsIeihrTSuF0IEleSME8uZi5dNyUgxRtaZ0Wb33z3CphI8wQ5N7gbJzAl0bUvbtqRpylC4sV7LQJmmWcz9tJwc7zGfjhmNcspRGa3cKq5bAVGd9VxcXXJ9dU2SGqqyoKhGzCYzUdUnKmZ4tqxWS/I8p6oqjNFMJqMdyKh1gnWWumnw3lPkHs3XSoOyhNEojyqnTl6TEeAToGnE7mW05uiwJEmmki0TL9tiaxZw2NqeNJE8q22zIi808/lIoinIMTpDKYdJRJEoyqKY16pgMp1wcXlBv+6w1pNGttj2oHVBkefklceYCRfnay6up3zw7X+f2f4+RTHBqIJ7b6ZoUgEoVaDIJRZhGDJCEMvxEEkShA1ltVlinl3xxr33OLlxFAd6S8gN2/Ulf/Knf8rf+g/+EBXkrMrcVs67EAkWpQlO4Xtp+lPx+2okt0rWiEPckj5eUWTQGGBnHZUNCmI2YheHJAGZnHdkSRoboT2EgO16jFKxQK2njsVWSZJgtGG7XQqZMEqZz2ZMJzOS2ExclmUcJqDtarpG1uu23spZl4hFa1SJKnNQW0hJkWI22yNNE0ajEIliaUYXoq5lubwmTVLymK87qPeKQtTx1nZAIDXyvBiTYm2gtx3KQJIoijxhOq3E4RDi/mRyCAVgSMyIqijoXUvTLhmNcoo8IzEVwcmgJNEW9e751xq8E4KqKEqWy2u26wlX547F9Zq7926TpTc4PJBBOktH3LiZUk7HjKYJkKBVyRDabpSH0GOt5EKNJ5bRWJoyf/7zn/PVV19xdHTMvXtvURY5xgiR8B//3f8pSlkePbjkmx+c4H1CiApXoqJda0PnetquJiviZxACRqckOg5bqLgmJJ9MRzJsOGEHxZPSGh8HVJQmxMgfpRQh2szAR9A6oPAkaWxk1LHQxVtaK4N/UB6dGrJc7iQq5nfXtZRaScmN5ENtNzVX1wuUhqLMqUo587SWu2GaGdJMIkCaZkPXd+TZiKLISNKMvm8ALRhTEDDAOS9xQB4ur84piozpdMZoXDFC8u6S+PeDAJdFUQggYFJm0wO6psEHt5uZjE4JWqOCKPOkBMeI9U8H2tZxcf4cpTJGt04YFSc0/Zrl+oJme40KGmdHPHtmefp4xeHRXd57/y3yQogbbXJCyMiSGWla8BvfkzPN+g7rRD0jOWJhRxR4ryhHCd7Bs+cv+OUvf0aatnzw/nvcvX0HnYh9TvY1RVVO+Z/9p/9LQuh4+viSNFTsH4xl6PVypxrIHRgiTYacxfj+4vFaxAOZyclTg9JptHFLCYsIhuVy5oLEJHVdi/cNCseQQ6iUloIrJZZTsfUKge1p0MZBiOKNIPuECxbtFF6Jisg5eR4EVItWwSCiga7vSRIDicH2geVixWgsTpw8qyKQJ1fOqqoYSiP7Xu32qyRJKUsi8QePHr3gqwdPCQFmexmXV+e89dYb3Ll9NypKhZSVfUQG9Nl8Fs/+1xEd+JTgDSohEnAurkeFc4p627HdiC3TJCFaiTX4GZ29AfoEzBRvMlRhuK4dr67PCUqEG72T2Tg4T5bnMb5GnimjNXnMzUN58jyXcyHJuFysePHiOTdOj2m6nv/gD/8WtmsFUIqN9FJYLIroJA1SPBOzaHvbRACn4fL8FcurK77zrQ/JsiSSBC7u+SDZ2exmQiHjRbhEQM7gSDqsN2eYxJEmCa7raXoBcpSR58LbwY6PnJtK4YKjszGPMYLTnRj0CEAIEs/R2xpNIiqvaBVVu7xEEUh512O9QylPEh1su1bdQVwVgW1ljNhztYl7tbQfD8QrIYhzDkVVFfEPyd83ZGQrbXZukL7r5H6ciK1XCAxRtl5fX1OUOffmt5lMxyyWCy4ue5ptYDYbsdrUjMot9fqK88sXBDPn418EVm3O5DBhPCqYjnNS7anyjJPjQyaTMdY5bpwc8OpyQ1GUfPXgPn5c8sadm0wmI5S2orINQq51TU3XO764/5znF5eMUkWmoXGWcVXwyS9+xma1oGlq0ixlNKqYzaZYK1mXv/rVQz771S/5u3/372G05vryikQp3nnvHUajiqrMyfOSLM24Xi75+OOPefjwIW/cvcXt0xP29/YI8a4+mFmHLE+ISr0gRKiPGYohDASiEGdaK8yOCPvv/vXrt+hahe/Fivt6UfudHFoZsalaawVNVhJc+Je/BsRSmGDnLSGILQQtiGZv3W4wcc7RW0vXCoObZwXaKNp6yd48J0tyDvdHjEayYK21VFUVgULLZlOzrTfUTU2SaA4OjvFBlDOjsoqb24B6IxajTMI0y0rYliHwMqBYrFa0bct4VO1krGmSkqQpQ5iptXIpylJh8YxJGXLktB5QcEWWZlgX1WdOvofRBX2vGZcnjEYjzs9fAIq9vSn4BGdz0jRjNBph/TZK/yXXUBM31iyna4XNaI2R2utEVEpVdcx8nhPomI5uUJUe57fk6QQOpOlwPNpnOtknTSS7QOsSRSKqKK9o+sD/7b/8x/zrP/kYXTyk3myZz2b84d/8A24cTxlXOTjL4vqKtmmoyozpeIJJMv7sh3/Bg2fPefe99zg+POLw+JDNZsnz509J04QXz1+yt5cT+riy1Ou1JkpPtUPIpaKeOATzWkUaAh77lwBlH5zIblFSIBDhdmG8PGkqyp3hl7TQJjHrzHO0N8KYlIP9KVVVSftj3cTGqwSlAuvNis12i1KBo+MDxuNKmnpCoCjKeCkT9qWqKqpqRBJDyENIsDaN8n1hkZbrFU3TMirHO1ZpPB6TZaIKGlpXfQT4lJJ/amXolUJKHAKojjzXUb5NXK8Zmgzbw970DkU25sXZI6BjMpkSvKZvDXleUJQZbbemt0TgLMT30JNnGU3d0HVblE4Zjyth8yiZTSYURyNCcIxHe3iX4IME/CZpyqicM6rmlOUUnaQkyQh8zvnVhv/XP/ov+OlnD8hG9+mtZ7VYszef8Qd//fe5dWOPUZGzur7m7Owlb9y9Q5GJ4rJzjp998inb9Yb3vvE+s+mEcpTz5f3PSdKMZ8+fcXw45auvHnB0uEdva7FwW9mbhpiAEMRKNOQKiQpeySn9tb3YeYeKG3zcJXExB0wrRWIyCXT2cqCINDuGBXcyuGilsd6SGM14lJOl8qzNZxOKSoC9xfUqKttEudY2Nc22Ic8S3rh7i7zI6bqGvutJdIrRqQxBwVOWJVUlwbjGqGgNCnHdyiXaOh/tPIkAkHnOXgx/bmoBVZxzOBuzWLXkhMjwKqoBURr0oDxDq5wx0oCbJhV9F9if34MgTaWrzUsCHeOxwdtA7xxlVdD1KzbbhizLAVEH2b5HK4ftLV0LfevxY8NoLPvT3uyA8eiAPJd8kYP9W9x54zuUZYbWUnKTpCN+9ov7/ON/+qecrR5g8cxnE5bLlvW6RivHhx+8xTc/ep/rywtevnjBRx9+k3FZ0Wy3NF3Htm04v7wGFOORhP5macri+pr5fM7PfvEXtO2aVCs+//ILvvnN98nyJBIULfgAblhnekeU7TJsIyistdoNK1qbONw5xDYUFeNW1ppzUt4jA6SGIACekYRjul6sGsKIiyouMYbZfMx0NsZax3g0IkkyKcq5uhRSosjJUolW6PqOMk/Yf+suWnu6vqFtOvpe2tMVPtqxE4rikEHRMpR+GDOo8wJmdxZK+3FRZRzkojbt+hbv+3gmy2uXS7kmTXJMlWJdC0oGOO97aXw1QkigDGma07UwGR1h9JS8KPAXD+jsgjxXksXZWSYTRddvWaxWO7A4TRXe9qjERmAzpW08ShWkMcdnNj5kMjmhLMdYv+HsVeD49k1O3zzFknB+bem7FX23pOssvrd41xLoMXF/kcHWxWw4yUvyQUopkkRzcX3B97/3HWzf8urFE9bLS5bLKxIDn//y56Qm8J1vf5tbN27JUOFkyA0uKp36tQDR3qNjbhAE0ALAqBDivcbjVcyiUURbUgRadsyyj4OmAN2ub3HBURQVmiB7gdZiNfWObb2lazqxNVaTSLq0hOBFBawVaZJQFBWbdcvF4oq+b9jbm5FHVZ6Ldsy9vSknJ/tYJ0Bh23QUeUmRV3HP0eR5Fgc2Abj7Xhwfdb3eqWMGFV9wApaPRhWTyVhIl0YAILGGSk4pMQw7SXK00fJ34aLazpJEQk0yDg2EBNv37M1vocIIbeBicZ/ergnB0TU1IUBZVTTdhrpek2d5zJfM8K5H4dEmJeg9NosJWXKb3/zuPQ5PKpJ0TJaNMCbBesXsBCwu2kCHfLoIyCglysN4vwlK8u/OL84x6YiPvvVd9vdmFIO6OHQ4a2m6hquLl9z/8lPGZcbdO/dE3R88Q8mUNgLeqGjVEuVT/P8MLh6iwiYRUlH5qIixQlgO/05UqmhR6IZYqhGCqCPFBuvIstfZj1op+Fppi3cOaz0qVQKqBCnnc86RZGkcfoVECyGIarRpcQ4m44okFeJtKCNYLC4oy5KyFBJsvVnTtBusramqBPQ2/t6o7Ir1q2Jng7br2Ww2TCf7GCOt5c7KM6jNQAS6ncpGxc8Kr2mboX1a7h5dV4tCBHHu2B6qkeRvN01sgAyKuvb0/YbDfY/rLdfrK54+fxVtxVPGk49474M7fO+v3CTP0ziDidNAm4wQRIXqtezLKgngIM8MRmuyJCUoKbYBGUbrpuH5ixes12v+4G/+DdJEUeaZuBas27W39n3LdrNhu12xWS/pmi3Pnjzir//7v0eeZbv1QtTRvY7l4Wv/PijxZF/K0hKNk4HZe1By18drNIo0z2l7IWzaXkpvsvwgrlUVG0rlvQ9Kyqua2LSa54pcK0Jcp8YQnWevSVwXvl7EFttUEcDW5Dl5URC8ZxFLxZyzLK6vKYqcZG+2m4klSxKIpR9KsXNzyJmpJPe4dWw2NXlWkhYJeaHwoeHVqwvyvODk+AapnqB1SudqApblcoFSmvF4vFMySxnenL7vaZo1vZX73BBT5ENAm4SDw0MCFp1EoY6a8+rFPh//9Iy6OQMdKEaSRb+tazoLq02/sycWmaYsMsosZ1xV9LYnKzIuLq65vJJsdIwoIkd5gjY5Gvjed7/Jb33/N8gTjeu7SNpvWDXSDrxZ1zx78Yxvfus7HBzs8+TJE374w39HiGqu6Xga85xX3Do95vTmMTeOjuKz+XXMQu32M7S4HlQUHImgRKgwHyzLzQvKEpyXO5yQVDXayD0j/nZQcX/SEoOlFVjX7mY5pWIsmWe3VmWSjRnwiNWaqFIUoRQYHQFHL7iC0uKcGvZLrYfZhDjfxoDdAEqFKEZJ4rkPQziadQEXHMHJZ2ytpcgL2r4XMBCPSRJSLaIrIfLbnUAlSTLu3rkTZ29HbVJODk8pskmcqaC3NXBBNp7w6acWa484OEi4cWNOVSYoPGWSsDebkiUpnbWkWUbQmlFZkt+seOPubVy75fr6kvOrS65XC4IPJDpjNDLcvX1MpRPS9IwQPLdv3mFSFdSbFfe//IwiN9w4vRejaCpms5nEY2y3ZFnOt779Ef+7//3/Aec6sqzgxukxH773Drdunuzu2iE+7/v7M148f8Ljxw948uQJt2+dRlEZu7Xlg9+tJbHiesJgl3d+9xnvPonh49rtg//dv359BZ8YhKJFMg4ZkfEdFtcQHqlCbIuJL97HC4jfqVykpS5LUpIkJ0YaoBMJWHTOUjctAb524HYEL21Z9964gYuAX5qUrFdbrhcX5EXKdCq5TUoZAjVKeU6PRWpvbUPb9XSNZVRMSZIMH1q0lhyoQZkyhExaa1kuL6iqirKqmE7HWFvgnYsqBbNjT6wTibVSijybfk12qcjTMVY3BNVFlYBsNEYPF0UJA16srsmSGYfHb5PnE9qxZrU+x7kVXbcmURXOTbC+ZrU+Iy8KjM5INIyqitRoVID59A7bumE6PWY6m1FVI8ajY2bTY/K0wpgCo8VyJotMGnlliB/k7iKZl8wCdkj0s/MFf/KzX0E+3eXGnZ9f8Y/+8T8nMY733rrNO/fuoCOrr1WgLEq2jePHP/+MVWN59OqH4B3f+uYH/LXf+z5N23B665Tnr54xm7YC0OnBfmZ2608TJJg+vM4VkrUom90AIKthTYaYQ2Ub0jQhy8poFZGLvvYam2i22xqFYlRVkonkeryXhs8bN6SdM8tyCIaryzWr9YKiTHYNbXIJsSQJVNWEJIGm3WJdjbRhzkjTHOcbtE536wyG4d7gveX8xRnj8ZjRaMxkPGM08gQnACFEjMkFrJLXaExCXlVYZyNYHmTQTZQMwfHyI9mDZgc0t23DanVNnk/Zm90jz/apqprF8jEEK/ZRkxG8prVbNptrirJCK0+WSP4emUKFhJsnH9G2lr2DE6bTOUVeMa72qMo5aToS244amhzF5uGsiyUWQymPo++EGf3hjz/j8cslnde8++Y9vvjyK6wKrOuaf/vv/py9ackHb7+Bjizt0ycPOdibcXh0k8cPX/Fv/+zHdL3ll/efkqcJ77xzmzu3T7laXDHbn2Ndw7Pnj3jwOKVuryRYerfJ6cimBfSghoy7r9aaENdYJM/AB4wWK66wuJ4QRFWV5IVs3tFaJtmfMnwGK5adtJCiFGttVCxLWcFAClxeXrPdbklSxWQ8JzUJwTlpP04Uqc4py1wubH2NUglJGi2Frt2pBb5u6ZSXY7i8vEAp2N8/kDIhY0i0qJkH4iMQyLKU4MW6Mt+b09sO56Utzwcnwwsy6Ijlg79kG+m6nrPlM5xLuH1zj/3ZKdvmgs22xfZrYUdtiABTT9tu4kGoIRgO926RJ4EiO+Tte2+iVUZVzZnvH0X1dU5iBHwZ2hWHDBUJxvYEnXB13fDP/uWPufXm2zz5+BNGo5Lf/sFv8Uf/9kdcr7cYpWldIMky9vbn7M3GJMqSKMutm/s4pfnJL37FX/z8lxhj+OC995hMxmQ64cHDR3z3ux9x585NPvvlzzm9fZuHz5/w6PkDqtxTJDlPXvwSrbwADSHsGF8TlVIy2MV1qCFoGXB2TfJKsoekJdbvFCdKi5pDcqwcbSfkmLVWYgm8EuVSkcbPUy6peZ6SpkkkNzyXF5fUdSMFFHnGqCwFNDBi61UqoI2j72u6bktQirLKdrYjtXs2ZM0552IuqoTYO2eZzWbRNpmTJCl5mr9mrBVkSgLkvfeMRzOUMvS95LL1UflgTArKELyTEyGonSKu6xq222s22y23Tr/BjaN3cLZmuVzT92uKPKNrLElSUDfbmMun0fmYYBOOT+7gnSbJxownh7z7VkmZz5nO99E6leKEuH9bp/npzz7nH/7D/4rGKy5WH7NpWm6eHHBwsMf1quHLr56C9+zNRrz71m0O9qd84713UAH6Toqv6rbnetXyi0+/oOta3n//PWbzKT/9+U/4/b/6A149fYCyPT/50Y/43d/9HapyzGZzxY9/8jNunNwgMYpEW9brK66unpLohOevHhMigKIHFU6Qu0pQokQdcmFQw34WhCjU4fVnkgjAY72AOUprslLy77R+zUwvFwuKqgIdyIuUoogqOC0DtABpNWVZYIwAcU1Ts95sJLpkfrBTbznnohKvEpWJb+n7mrreMJnuU41ylA7o3ec+7G+iqAtB4iUGy7u8NlFwjEajmPMVCx2UuDl6K8U1VTXFulYGKBRtV0cSLsV7g7WBNEklR9U5+ljAsd1c0FtHnk+Zjk5ZLi85P7tCqa0MTnVLkuYsl6ImyPOSLDkgyybcOL5N18JoesysNWzqxxy+e4y3E/pOcf9pg9IdbfsC5wO9C3R9j/c9IUj8QZZl0S4W4j1IYg60kZ/duR5tAr/7u3+VF8+eYvuGZnPNi+fPSLIErQK/+ORnXJy9wuA5Otzjxo2b0bpl4nsl9lSjIU81RnVstwsWy8coLWfWcN83KsfoQlSvSgCErt9GklgKqUIs2hNHh5LQ8qiYsk7AFKWDkAxO1mFiDDpJosXQoLUAe01Ty2fvPXleQCRKQghkWVS9G7k7DXuPtTY2gNrYehhixrfYKRfLDb/87AvazgItF5eXnJ4suHXzDYyWBkwfBvBbslG1Vmy3GwiQFzkEWCxWVKOK2SyRMPwYqxBitmDfOTabbRwkHZPpWBw4rid4iTWwLWy2ApC2bSulIErTtq3sR4yZjG+xWjnWm57NtqTMv89XX7UE07Ja/wLrP6WpxQrsbUOeS2mgNgmXF1eyv0ZFk/VCAlZZQpHl0SFiMGlBnpd0Xc13v/ttvvMb3+LVi6fYvqatl9SbLZeX15xfnPPt736bx48e8POf/5T5bMp6s+T81Rlv3XuDj775Pm/cuS1Ay24YljuEPK+RBDKyjrMsBTz+csumvSBNHDb09N6ilRJLZAgYZeiadHevznJIs5yABR/tYgo8GpQAp9o4dBJIjQft6fpAkiiMQtqMv5bTprQRJVX8uYMScHsArNfrNUVZkkbgQgxIohwcWmlBgGAf1fohuidCzM4dsvQGV1vbtRwd77F/sMdoMsK6jsXVJYvFGmMu0ZS8dfcOVXnC/Yc/pesXEfhxrJYLJlMBIWzfs14vZQ0GS9v2GF3x8sXlzjpaFBnFKCPgsCHQtSUvX0z59JcLqsmM4xsjplPJoXTBc35+wWLruPrqOUYrDmZTbt864ZsfvMt4NALv2bY1XdfSB81/8Q/+ZXy2Azo4vvvN9/nww+/x1RdfcHX5nMTIXHN9dYkKntEoZ29WkWaSHf1P//k5P/7Jj/iDP/gbJInhr3z/N7l795ZkHpqErx484t/+23/Dk2dPePrkGYf7Eh0SGO6o0XOo/I6AHLI/Y/AOr788TV+zrleSTZ8Vu3uNtY69/QNR2EYluA8Ob8ViC0ScRMXZNTrL4l1OyfITcC825IpTKObxKcm+HgDEoBVGpSgVreoGGNalen3+KSXlbIMIcXABDiCuioCiiz/zcEamaYZOFUlsUg7BxxKyEK3hPdZKruhoNGI2nZEkCW3bSARSUcZm55w0G1OOKnRiaLoD7j8oqZ1mNtPcvj0jyyExliLN2Z/tURYF3nqKLOP8uubTLx6zXHcxBkJxOB+z2Wz42Sdf0sb3NzGaInHs741J05y+a0gIfOvD9wjeSqmk7Ui0fI4vXz5judqIi8Z70tTwV3/7d3jjjdscHB5weXHB6clN9qYz2nqDVnKfdkGKTPBCfL755ht8+tkvefT4Ed947x1W6y2TyYhBlReCw0oApszcgyo0gsYEaYoOKqqiNfF+/98DBZ82BlF6ht1BrhBgT+mwkyZGm/ju0ui9Q5shaH4ILpV2RjMwKT7Qu57eWrJM5KBVJQe1jqxklkl2S5KoqAwR5qxu1tTNltl8QhaDF4fDvSgkB8b5jt53dF1N2zbs752S5WJp0F9jjYaHteukFMM5z3g8jewgsfFSMx6NeR3I6eMDSRxUE4piStdvo+fa0/ZLEiMZdLaXB1GUdh3eQdttsa5nuVqQF2uOD9/FtgUvXryibl6RpkjuVdLT9Uu29RZjSvamb1AWBxzs32Q2O8SogvH4gNSM0TrHZNIibGPAuhw4ICZER9/7OJRHxVv0hIvFYmA0JJ/BOo/tPZ/86jOuFgtIhB1CG0yasdo2oAJ/8bMvuHF6wrc/fIdEyyDmYwlAkeXUPTg06+2Wl+eXXFxeslytuH3nBs+ebDg7t8zHIQ4lA7o9MDDRbjuU3wzBukoRIqunlRSQ+IiUm8SQ5RWDgpIgORl1XUe1p5GH1IeoPtJkRiymKAnjLYocazu61hPoOTiYxZIFWTvCkiUYU+JcT9N21M2Kpl1zeHBMliOs2M7OOaw32Qic83SdZX//SNYawthoo6OsesisjIeClqwgEf6YCKh7nHc03VIuE8HT9xC8KPHaTjLabC8ZTXXdstlecLwX6GvLsyev2LYXJCYl0YGiEMXmet2Q5wfcOn2X6fiU+eyE8XhOYkrKYooxueRJKYN1/jXz4UVaL8DXa6BxAGAGMGCAN4IPLLY1P/zkV6iyoneXYvOqawJQdx2PnrzgmYF6s+Xv/d0/JNNiWTeIKtg6sA6CLlhsHV0rTYE3bxyyWC6599ZbPPjiE5QJPH31K3SyZZZVMdvz9ecxrDfZ21TMvhiAPhUv9nIgeydFQjraJwUACPGzlu+yWCx2a82YYrcvDCUcWgf6XvItnQelA9ttS5Jq5vMJaSYsW57nUXEi+SBd17Kt17TtluXqir29PZLM4Xwd1xe7dTb8u3Oeq6trRqMJeZ7hvYqXEgkxHpQfQwh4vDoASFugkv/vA3SdNOQqJXlDm3VNWcre2HWtMNg+0LTQNi1N7VmGjqvlgocPnjIeF6Sm35UnOQdFdsK9u+9zdHiP6fSEajTDmJxEp2iV4FzA+hC/t+TueRfovI22QrWz6MlzA8FrfvqzzzBZhU4zut5yPBZ2ebFYYEPAWs8vPv2czWbLm7ePeOPmEVmiKAtRxgU0j5+9ou41yio+/sXnuK7nzo0jfL/hBz/4TfI8Zb1ZkmYp27rmV198xpt3C/R0Qts/p0znSMaPvKveO1G4IOenGrJYInOIGhQ0IWbmOFByQXFuyLsd1A0Cl4sFSKzhmTbyWVqLtWKdE2uOZJRBAipls64pypSiTKJNSNZ0XddYaxmNRgS8qOHbLYvFJVVRMJ/NcX4bF5lcVF4PsLLuzl6dY4xiNB7hnJALShtRfnq/e06G80ZHi/dyuZXcMu13+6FSAZyCoFgut+RZRZomNG1D3wlQUDce2yds1p7tSMoMHj54xnic0maiuCzLihAy5tMj7t5+j1s332U6PSEvRiglbXjOyu3a2rhvRcLKWVlj51cr/tE//ld88ME32T+9yX/xT/4FdC3f/ub73Lxxwp99/Ak2WE5Pb/DND97jYFYyLjTr5QWnx0eYUYmnwmH4+B//MQ+evATtsZ99TpEZlG8wv/c7zKZjRoXm6OgA5x3T+R6r1RWff/k5v734iK55SV1f0LYrjDYc7N3A+msSkwq5ImhxLEZzeN/J2akHlVdcVzGvaLgHJEnMGlJKBuwgn4FYMoW81THgXlR0Pj73XcwsVWR5vrOmOOewrqM00jTcdT3jcRE/b4eU/hhWqxVaa0ajEueG5tuG7VZUJ4nR0oi9o2XU7lkXu77lyZOnjCcjRqMKcDRNS5plkmUUf+YwtG8GsUK2Tc92c4nWnjxPUFrjImkL4J2Qe6ORDMxN08idyHq6TopTuqZi1cPlZc/jB0sODgr6VLJsi3KKtZrjg33eeesjjo/vUVVHaF3ivOH8csH/6f/y/+Qnn3zKeDLHBsOzl+doDfduHXP3zi2qyYjFtuHf/Mmfsz+f0zYbPvzgXX7z7Y/oth3eWbpITtaN5eeffMKrV2e8/fY9ur7me9/7CGNgcXnFqErouw0f/+QT/uAP/oDf//3f48d/8SOePX7I/fv3ubq+5nD/EFH/igrSaE/dXvDy1S/ZbC+wtqHrA2layXMaHL3dsu02jEdTbPO6RMjHrGGZHYS8MSYluI401WglFnnnRSkpd1S5fxqjImGvdkBm33d4J3m3otRM6XvLei1No2kiivX9/T0hBKQ2kiyTc1DOLRvL1NI4l8hz7hw8fnTGs6fXlNWYssxZLGra9hGz2R6T8YwkKehaT99b0kxykW0fODw8pG16gociH/Heu3dROnC9OJf9PkbGSCGCxwdFVY4BT5JpUSwGAZDTNGex2LJa1WRFxXK9EGtxPPNs56JiqmBUHqBUT5pP6Jqb/ORnL0irEVWluHPrmNt33+Knn97nz/7dj8i15+/8rb/Ohx98g947Pvn0c64Xa37ys0+4Wq7xSlGU8Fd/8O9x98YNyblsHS/PFnz51QPA88vPPuGj99/B257V9QWjUcrkeMZsNuJP/vSPODies7c/42/+jb/O/v4eX311n3/xr/4V18sFjx4/4uaNUxKTROCBmG0WBRIx4iH4QF1v+eLLf4fSlmfPv8SHS6zrCUqKqnwkyIXgkpb5IWNtKNXrujoKBVQkEsSyaIzCeYmPsM7FDGPZ87VWuzxcIfHd7i4lIuwByPHRSpoxT1M5j0UGtvunG9xqCLm9WW9w4XVZW9dKaVqWZdH+H+fKAFdXC4zRjMclk8mY589fkZiCGycHlFWGtYGLq2e8ePUMF/qdUmu+J1n0w11fa8O2FidI024haK4XK569uBKBS6F4+9072NCQGEMIM9bbW/zyV0tm8xlv3D1iPptAzEVerTekakrz7ArrAqenh3zvNz7C4NluNrRNw2K14c9/8lOC1hwcHmPD7pRBoeh6y3/5D/7fXJ2d87f/B9+X2cxZetsTbEPTXJOmhv39A2azPd5//z3+8T/9Z1jrmE6maOVjIZK0y5ZVwXa7pW4aHj95xBt37rC/v88As8n8hABtIeBtjOYIr0nw4XdqrZjMxlgLLipx8zzHOom+auqG8TjbiSZMnO9DjAwYugZ2ZyJy9xZATfJB00QKOl3waCViGJQnqKEgRgi3gfiV/+/w1rJaLcUlqCSz0xjzNYvvoKqWtTcQ9q9LUVV8NhRt11DmBQ5pjNd6mEt0zIhMoptGxz1zcI7JeT/f35O7hpIiKbRCJSmWhJdPStZNitcd997apyoCxkCeFlT5iHFVkaUZZLBYrri6XvDTn3/K+aIGZSizhOl3PuSzL+/T9uAwOC9RBVpp6sbJ7KBSUqX55gfvs607NpsNV1dXKCzL5RVX19c0bRdzpR1Gmzi7GA4O9nn58jmH+4ckScKiaWJ7sIolPMM90FEWBbbvWK03nJ1f8OrsXObz4CC6Bp17rQbVEdRzXnyHg9Ldu0HoFmMP3K8v4fu1AT5BKCXAVGTmImPeVR0hYd8SUySgl1IygHvvUUYzlB44H8Mh43CCEoxdKqotSgds29FbS5qkZJmJ4exS5eyc5FdstxtAM5lWDLlG1kq21Hq9oihyTGJomoZXl6+o656u2WIdHB1Z8qyILFL0ChCk+CLNaJoVT5++4OBgn6oqaVvLZiMqm763EXkdpLUx08DD6nLNleowBqpKJPHOiZoKNNutp617RuOEum7p2o5AYLOpyfIS103QYZ/r5ZKLsw1t33J0eMxoOmFUVZTVIUU55/DgFrdO36UsDghoeudQQVRCwUseiLOeoWFzaDcLwQuQpYg2HQVfqwofrKw2gpc+XhidD2w7+MVnn6OARIP1MZhzVzOvsF7z6PkrDg/m3Dw+kr/HpOwdzPn93/8d/ut/+ccEJ9lSZ2evuP/VAzbbNdttS1nu09kAdChk6Le2x4du914LmCfSYAXR8ujiASnqT51oTAQzvJeCEhMz95QOJMowGpUx/yKG4oYQM/EyetfJ3+2s5KagaJsOrQ2jcfH6M41KmrpuxAakoWkbHj97TtO2eFtT1w1HRy3z+T6aFCkBkawNpRQmSWjbDc+fv2A+m1ONKgCWi5rxZIRRNg7dfqcsDRGQuLpaAGuMgclMQMwQPH3fgjJsN46+85RFYFt3tJ3UpW+3LXmekaUjsvSQ6+sN242j7VOmh6cc7M3J8pTp9JTR+Iijg1scHtxCqxEhaHonahoVQW7rQixH8RFIFrtY8BH8j6CGxuN9tDREC6wLwtxb6/jywVMWqzWrVY1JjeRbRtsYxDIf4Grd0PSetBD7hI/K2ZPTI05PjrhabbFB0zRbnr+84MmzV3TNhu98830efvUpXis6qyjzksRU0tRkjKjTQhdtHICU18dBQsgM28swnKTSnoSCJJUA9bbtUIRYbMFuj5hMxngvao+mqfFBbJR8LW+tKHJQoqpq6g4TMxyBmDMFbduIjc5orGvpXc+DR8+4ul7RtTV78yUn6zW3bt0mS3KCl8KZgbgAiQfo+47FwonlO824vFhgkpSDwwnGyP/XWslhGgLWBtarGmdFET2eFmRxqJecvITt1tE0ck60Xcd2u5VL5bYlSVK0qjjcf4v1yqNVzmR8yuHBEYeHR2Rpxnx2zMHhXWazI8ajOcGnOBt2LYq9FShYnne/I1cGMinYgBvaqpCLVYhKnc225ueffsmde2/y2f3H9J0F71lcraS5F2JmouH+g6eMyoLf/52/Sqo8wVpZ30qJAi3R6DQTMKmzPHl5xjgTffHLVy9Zrc5p2w0HhwesN0vy/Jhgc7zNyaoxRWbQWnJVnW8JXi5/EaKQfTvud6J6F/uY0l7OVyUZeb21qBBIs5wB5NBaMhKloKoRsE8psqzAOo+OA9QA2Bmj6bue6XTCkMVSN7XEYHQNkq1Y4HyP7S0PHj7n2fNzemuZTgxn5+e89947zKYHKNLdey4XFrH0VaOCetvQtaICq7cWrTSpUZiESAA4Bmu8s7BcNFirMEYJ8FhkAtoil+zVqsY5hbWaum5Yb9YoNOtNTZoUEHJu3fgGweckJufG6Zsc7B9wuH9KlhWU5ZwbN99mNNqnzKQ5WcgJv7sEhl3mZojr7XUQcgiaH//8FyRFzumtGzy/vOJ6tcakCbPZBELg2bOX6Gh/efjoMQ9tzd2bB3zwjXuo2HysYwPt1XKFi0DK1WpLu11zMCsIAdIkQasUozXnFxccHhzw+PF9Lq8u+fgnP+T0UDEe5YyrKdIQCbb35GlOalK5nKteSpSaLQRD7xqGhnqjJDohhF6eHS+Xd9t3eORcTZIIFsbByEQrv9bD4Bt2mZ1aC3nprKfteooiI8syyduMn3OaeiaTJJaxeLpOhmhrbVT5iUWqaVo+/fQRi+UGrQPXixUvXr3gW9/8kKqYopQ05sl9Mir7teb45GintNA6ITElmalQO6LJRgW2gMtN49hubAQaPEmaYBS7UGxjcq6ulpikwDnF9fW1DG1KScZnUmD0iNPjD1hcOebTIz764AecnpwwnY0BzXx+wsHhLYp8Sppk9F20Snk5N/7Zv/hXXF9f85/8nb/LZLbPy8WK/+t/+Q9QwfHbv/19To8P+eLhYxwt3/3+9zmYT1Desj+fcOPkmBQtIFocCP/0h7/g0ZMXuOB59uqcMlc0dcN6vcYA41HFvXt3+cWnn8idSeccHx/z8vljrq4vefr0CW+/9Q7GGJaLc549/5y6WXN2/mOChaoYU0RHhEk0xkDXtwQs2/qKspS4EILCD4S/IZ7jBm8d27oRG6SJaqjdkBtHijB0EArwH9Mjh5MMF8vWlIlt0M4zHlX0maVptlSl5L0K6W92Q5YCnH+d1yx5zJIhLoSKR2nHrVsHaJ0wGmX40NB2a+5/9RUnxye8cetD3rz1Hc6vv+T86j7OxrtBUIwnFUaneA/b7QqdQGI027olTXPOzy/pe8n+zPOMw4MDgTyUlyKFJBUVdu/RSkiXrtsyGo3oXUHbdKRlQaIS9uenzKc3mIxLptOKLx9c8MtfPuPO3Zv85m9+j3ffeYvNdsVy2/Mv/9s/w3lLORrxxt3bXF5dcLlYkZUVJ5Mpv7O3xx/98Z9wuVxh0oy9+Zyjgz200VwuNvyTf/Hf8vLsAq09ow/fIYTAq1fPeXj/E+bzivff/4CiyHnr7Td58eI5t2/dxPYtSimOj0/IYvbr/a/u885bb3J0eCznVlQ3ZWlGWZbs7+/z8uVLIXVw9G7F8voLetdFgKMH/XooHkDT4GMeY2SNgwKNuLkGENEFMHF97TJtg4sEmtgj9ddIeBeBPx2bSwdSWoje4TyIVst4GZHiRXldPs5Wzg+RQIrJdEJv+10OuLjHiBm2a5qmBWA8nnDjxg3u3L5LXW9ZLBbszacYk4rgA8f+/pyyyKMqS/IU5eySmdb4QFWllEXFdrtBaUuhElCKidfcOJ1RVhUacZ7UdUeeHqDNPX7+yRVZWXHr1h6nJ3MpucpKri6vsdFCfr1Yo1BcX6/41edfcno04+rqmuevLlltOy4XNSrJeXH+WLLGIl4QnGa77lgvl4xHJbdu36JpLF999Zg//qN/Am6DDz1Zavjgw2/xu7/7+0ynFW1bs1wumIwmLK4v2NufEoLEt2RJTlmNWK2uefDoIe+9+w2m05kAlsQ9KF62dlbtwO6eOBDiWssdpu8sZVmSjFKC8/S2Y5pNmUwm5HmJVkkktERtGpAiFolMek3ihhBiWYPcL+q6Zr2Su0qSaiaTAqWHGdzR1jVaQ5LJXOF8JNyVTFF9J9nUdbslSzPqpmZbb6nKgrIo5L4dC0A7ayMIKPuRrGmZ0cqsIA0KFwK2s0ie3NCFIJ9TVY3jeo7zs4oiBp0QQkfv489qFCooXFB4X3J1Pebiakxdr7hzZ0pRONI0pcgL8jQnM6Kink/npGlK7zw6XbHeNiidEqI4Z+9gHxcALdmjvbV4bymQPOe2s/R94Phon9s3Tzh7ecnV1ULUes5yeXHBgwcPRHUfJJrIaMN6vWa9XnN1dYmzge986zdiqQ88e/6Mo4N9tAGTyLljnePq+lIa2ZcLnjx9yq3TmzSHR5GgAgZXBHJ2uajg9TEnegD+BhJcZjmJFfl1v35tgC9PZ5S5+LPbbhsHqYH5VTtZccDFoHUJFnfORbuqIcsEBPFBEHytkwhcDGAZbLcipTTGUOQ5tg9Yy04CWpYeEIXdfL4fQb82MvxEdsUxGo0F/cZzeX3Nz37+FW0XqLKUettyvbjkgw/eI0uKaFP1whzEFs4sS7lx45TgpdQiTVNOj07xocezZpDVDrcR5wNNE/A+R2sjdhcT1WTeY1TGcrGhbRRFPmG12nJ1dRULPqRhsanh3hu3yfIphVPcvfMuh8cVxwfvkaYZZVVxeHiXvJjumIVta6NUx+0+q4H9wQ+qvZg9IZzXjqUfmkDF5iSAjHWOYGOFcxAgy0Qf/2Kz4cmzlwQ8k0nB4mojFzAFeaRGbd/zk198yYuLBb/zW9/lycMHbNZrxtWI6WxONR6Teclzc7blxasr9vemnL26ZG9+yHZ7QZ7NqAodbXbb+DB0UeWSoEhBbYEuKjkFMGqbBud6lBosKirmFsCQlaJ1bEAMQdRhIcScAkPXOkLoyfKULBuaPHsIsL8vSrqus5G9yxjKPCaTCUrHvI1lzaefPMOHjFHpaZpzrhdrvv2dgiofi1UgKGkaNQpnG5T23LhxA2d9PFQq7t29LUNOtxCQ0zt8tLwBtJ0nSSuMTkhSt7MKgzT/XF2taJpAkY+4Xi64uromy1K2mwZCQt85bt48ICvG7O2PSZIPmc5zTo7EHl6WI2bzE7TOxcriJDcq+D4+93FGGlSeKmZKRADTBYuKpSav12XYrbWBMfUIeNJazSe/+pIsz9lsz5jP55FZ11/LeZKso8Vqy//5//EPuHm8z9/523+TerPl4vISpROOjg653jwhMwlFUeC6hq6D6XSf0WjC3sERJIHT03uYxJM0l6QJUd0UdmB3iK1VSiXyLNBKZgfJTgXFriLBi+Vwp2Rht4lb2zPk/HjvyYuC3nr63lHXK2nwy3OKwkgMAbKeQIA9F9vYsixDgrlVVMz1dF3g/hfPaDpFnhuypOPz5ReUVc7hwSGJrvAWISTMoAzcMptNRdlrHT4J3L79BtPpnIvLZ7JvO480AEdA2Sfk+RhTZSjlyQuihSAAKdu65epqSZ6V1G3NyxdncZDPqLcto9GMNC3J8xlFXjK3Ofv7M27efJvJ5IT5/JCinACZZMS0srf6rylCZf1A8DbuvQJmD/ZMrY2AylH9NigkvQ/cf/iAprOYIufFqzNUgNunp7x8eY51QjSl2sifUYrnZ1f81//ij8lN4De/9RF78wleKe68cZeff/4FvQ94EkyaSDZYD+t1x8nJKe+8+wZt13Dzxm20umaz2ZKN052KybnYmhg8QwM70f6oEBvGELysdsoES8DyOhdErGbyGl8rmLqu3ykMsiylKHI225r1ekPfCtiSFymTiWQ5oQJlKYSCrFdHkecURbbLGRrWsE0Dz578hPXWU5QFisDV1RXPnj+hKHKqYgbexKwmAWzOzs/Js5LpbCLDqk44OJixv3fM5eULrJVQ+UHZ3zY9WVpSlgKCOG9j2L283kCg6xwXFwvSNMN7ODs7j+rWir6z5Kkhy0YU2YyqOsS7KUWhOTy8wd7ePY6PbpNmJd5J29+m6SN5Oaw1WWiiKh5cB7GRN8g+tFitePjoOXffeRurPS/Pz2nbnkkldsi2ywTs14rLywsuzs8wSvaT3/6d38YpKaMg2g7n8xnn1xux7KNRfUbbSb5qNapQSNbr+asz7t15gzzNCNS0TcPJ0TfoujWbzTWBnmK/xPmG6+UaszfDkyOZPirKWcPueZLnW0iWLEsiY60hETWCUsP9QGAWIWi/rvyLl1WtY86nqPwur65xvTyfy6Vlb2+PqiplENIGE1VUeS4tkSBRLEPrLpEEXq8si8sNRTkiSQMEx+J6wcuXLzk8gL3ZMT4UKDzOrehdx3q1oarGO5eH0QlZVTGqxizXl1jbiQrYWnxsl8zzkvlsX4BmLfZEbRRlWeI9XF9vWK23pIklSVvOL88hIHbQoKhGI0bFAXlacPv2lO22oO0zJqMjbt95l4P9E9ApXRfo+o62EzDVR3Xo/a8e8OrsOX/lB99lPCoJ9Dx9/pS6bZmOC6bTMc47fvSjn5JPD6mqiufPnoGz2HrKu3du7BS+wUHvPA8fPcFjyIqCurN0bU9wsN1suP/5J/ze0Q8oipI0y+LdIKcajVBGUTcbvvj8V3z7m98hS1NWqzOevvwLtKpJU8fh4W3aBjb1C+rGoxNLkkjjY8AxnVV43xGIBTkRvFcKrHckKWKTS6TYzXsv2XpKYYZ4CPF2S1vuDvGTu6qOa1LrQNt1YkVWijxLBWQBwmwUVTVyU1mvV7gYdJ+lCU0jRScBadRO03Q36K/XW7x3HBxOmc/3gMDTp09RocLZAmcNy+WCzeonXCweonVHcIbZbI68FEXb1lgr+6Axgbard8rkly+XbJuGIg/cu3cDVBcLOJCQfBXwVvbLyXjMbDpDGVGflkXK5cU1RqdS0NdvCa7H2Z6mM/zoRw85PNrj2x+9zbe++S7nF5ds2oazyxUPHz8hoNg/nJPmKQ8ePeKXXzykc1B3LW3Xsq430Q6doIJHY/E2cPbyOVfX16R5jlKOPC8IIfDFF1/yT//JP2Q+Kzg6PmB//wY3b97iRx9/LIOxFaA9TXPGkwnXVw1Pnjzi1dkZ+3uHDHGzYt3XO+vkcOf55Oc/Q+sZ8+mbdO1Ten+2c/AMe4eOIgullRRhKRgKX4yRc1SrJDaVSoyKMQa0w6iwazDdrVMSUqMZChibZisg4U6U8loNxu7PDQr015ZIHTNPpURTxeISUVOb+HkP+e/WOq6urtBaYjPyvNiB1jb0KB2YTCumjMnTnCLNRDRjDIoYyIaOwhkhp9q+R2u5Q6dmxPToNovlJcv2BVmuODkuOTlGIj88pHmCJ2OUf8Sff7zF2oxbt+a88cYpmRE7Vd1sOb88p+ksjpTL1QYUbGvHarPl3p1jHr94yXJjsV6T5gV2uOeoAUST9+vlq0vSJEGFnhsnJ7S15cXzl2zXW5Ta0vcN3lseP35E02wJSL791cUFk0ocZJcXl4zGJd7KWtjfO+Thg694/vIlZxfnnB6eMh6PQEXbrBGQKsQ87aFc6uszinNyZ/7yiy8ZjVNu3bxJkeckJkVrEx19mq5rIdpsB7FIXlQxmzXQ9y3eSw52lghJ2bQti3pFU3f0/RVpZqhGt8Wyq2W9ZnkiM1WMvJGfy4qyPs0IieAtZSFlNUkiOfxZltK2DU3bUo0mkbwQwNu5AH5Yi6KW79oaa9udml8wlFhuQ4giFMFeUpOTGMO23uwcGEKOZ5hEY21NcBqvRqw3M168HHO57Dg4mDEeiwOyTMud1TlJxFZ9fb0QhZ11vDq/oHcejzwjzjkW1yuJP1AeFwKpMXRWon/Wm5okrQjA+9+4J/EZ1vPgwVd8ef9XdO2WxOid66l3jrapIQQ+//xzFosFq9WCs7NL0sSwbmrKquDxk0eMKinjGozbAbi4OCfPU+q64fnzF7S99DxMpyOIri14LaYgulhEIOV3qsfXs7AoT9u24df9+rUBvt5u6fuo+EIULRIyKsowUSL1ZJmJA28ml0Ij9jkBJ2QzVV5/DU7/mtxZa0YxaLmuaxaL62hpVegEjg5PYuaPj8oUebPyPAck50DaPocg3mhbrJ/St4rJeEyeSk361VXHi5ePOdg/ZlyckJopWm3p+jVNIzL/UTUjBEWWikQ1y6Sqve2EwQ6IOlCyPHqyvGQ+38dZh04szvXCwGvJFqq30Hctzqr432T4z/OELC2YTk65dfMe0+ke0+mcPANUhzFj3nvv+6AUbWdp2yBsVvBy4fZ+13onD/PXgv/jhioqRQH//NeDIEPAO3YHlHODHVbx+PFjnr94yUcffQvn4cHDx5RFwb/3+9+i7eD+l485uzhjKA/JkxSVpTglaop//Uf/huA11nrmU8fFcotDo4ymmkxQfiyZdoslh/v7vPvWN7jSAWsfUDdD75rIX6VJUtQJPjiCUhSFXOCMURiEefAh2w29cva+VjANa0IeRBiPx2itWa/XLJbL3fugdODg4ICiyCCYnbRWKSgKs1NwDq3Pw4PtnKOtn5IlKWU5Is1astTR1j2PHjzh6OiQ08O3GZc32DYLVptXdJ3kqohlUrIRQ4CuX+8aJLsWjClYLlf01tH3LUWesbc3xVkfVVk9SSLApOvB25TgGrpuI61ppQBEs9mYLC2Zzw+4eeNN5pMZiow866XZSU94443v7GzDto8qUBzSxBs3veEQcPJ5ENVBKM1OMKbEJiFDfMzijBkc27rmxYuXHJ2cYNKcVd3x6Mkz8nyEBmazGb216JhPKTkYGW2QDJPFqqXrL/jP/6t/zuXZK5LUMJvPWK435NUIrVNMltNuN9x/8IzjgwkffuMbzOfHHB1Nef+97/Hq1XOu1o9JjAOr44XfgR4stnJIO2fJCsll8V4Uxmkin40Mu3r3LMnjpnZrzMRGwSTuA33fs92uCF7RdS3WtvjxmCQZoXUSLyIxd1IZhmiD4c/H+yTOpaxWDZNRQVUllJWhLAKbTcejh8/Zbja8eed9bp58A+cCT198hrVbnPUE1VGNJlQxQLrrN1wvOkyiaFtLCIbNpmGzbfDWkiSGw8PDXfxCbzuwksfovSJLRkzHirav2ZtPKPOU9XpLmuX0Y8t0usdscpNxWVGVM67XC7QpcdZw6/Z7hKhiCaHHuX6n9JFimK+1aIcY/L/LEImKZHRUWELf+x3jqVA0neXjn35KXhYsr1cslhuyvGQ2n3N+tRDQAomM6NoG6wJX1yt+eP0pWaqZzI9Rj17w+f2vWK43tH1PXsr60gG6JgHXsd7UnJ7epOtuM53c4KMPfgvbrdHqgr5fYUOPDw29hSGDiWgJG6y2YvPqyQowSoA9FAy5aAGxXPqvPWBaDU2poFXKoJAfAJjEaExZsA2SBZQkcn4mSQaDpkVJjlFiRNUnrXfxXDdiN2maNUdHe0waR1mmZLljvfFcnq/x9ivevvc+d258i7yY8tXDn1K3S4xOcFFRP56MI6jccnX1TPYsG7C9ous1Z+eXsZhlw/7+HJMYNAK6OefjuQ9VUXFyeErvW8ajgv39CcvlGjD0raWqJkxGB4xHJaOqYrFcxky4nDt33iOElLaVMg9n7a60SdphXVSxDQDfAC5HoizIMPTFl49J8pxqVNFay4tX5/R9z8nxDbq25XrVs66b+PwbMRsqzbOzC/7v//k/ROM4Pdrjr/+130Ubw717d3n68gyMxgVDlhUE19JbR1mNsP2ab3/7I/7lv/xvADg8PMS6BZ1t+fLhZ8AZfWspyznz+RFtu0UpRyBnZ/Me2M+oLEiMEWVs36O0xbmo5FdyZ1ORDBwypoIsxNeDrPl6W5+l7TrSVJSGh3sCdNRNTVEW0UKUxLui352ZPrY4Dk3PMjgrAXuCpu873n33Lt579g+nLFdXrJYr7n/5nLb25Mmct+/+Jq/OX/Ls6iVaWfI0p21qymoklrfeYW3DetOhlNirCCmLheN6uSTPNNY6RlVOEi1Ive3kjgooDIcHx0zH+1jfMqoqTo4PRT0foO8d41HFdDwlSxVp1uG252jTs3ewz8nJXZqmx7ZiHfTWigWLgHWOpu74ix//lLtvvctoMqHrpXH58dNnMIBZ3tP3gU3d8eD55/L8aiE7bt885be+/308jsxIJIrWhiyV0piizKTMpZPYkqocsVxdQ4D1ekvbNLx8+ZLT01PSJMW7QNM2PH32hMvLS05PT9muPYd7b3F1/SuatubB05+zXXt8WKDNHtUoBWV3pVRGK3ov9wWURqF3dkydiNJQ1k6IyqNAsF6uqHF/MkbyvVUQCu21Cj1IGgAhWrkrhhZygiT7BeJQ5QZlcCwIU/LftdEkqTR8ytrT1HWLtX1UmyfcufNGJGQkzuD46IQ8LWnbhuC0NDqaaw4O9yQYn0CWSvzGtq7pektZjGiaGh1Vij5a4VGO2XSE0ZbgHcvVEqNK8qxCJ0Fa5BXU9ZYqzyirMZvthoSEPAnMJ2B0znS6R98HqkJK4H7+y0ds2sCHH97lnbffJDEJ9XZLCJqXZ1dsty1aKSbjiQzc1YhPPvsVrQX0oHISa74OGusDQSe4vuN6cQ1BIpTyvGA+Hce5UMputtuGi4tLJpNDLi7OOTs7FyVaUGy3W8pyxMnxKWcvX3Bxecmz5y94486bVEUu4AICLqyXK7q2ZTqdoRTsHezxox9+TlOvmc4mqDyQZKJG8uo1UCBW3E7KwpJkl1Vb5CVZVoE2Uja4i5KKcUyuRwUVLXny8YSY7SkkbEvTdjvQcdin8jwlz/KdDRhUJH6loCB4cRAZk9D1PVle0LRbdJ7Q9S5mUepo5ZR97+joCGvjfQa5B4qZREqy0kyTGlFm63jXHJqhh0xrhtxlrXY5cFqVVOUJp4ff4Btvzbm6fsXV4hnL7VN6d4nGM5ke0TnH5arlwf3nfPWoZ7Y/543bR4yLEttvaa3l2YsX1F2L97Cqu6g2zLDOs9k0KAzT+QEXq1f4YOLdX/Ls02TIUxdxz97eIcvrSzJlOD465Ozlgpcvn3F29grClqatsbYjTUuWixWf/PKXJInh+Yvn3L3zBkVRCjmRJjLXukDXNnRdz2ZTc3kh9swkkfdIHFMKkya7aK6Io+3OtbjDEDy89dY7TKYZfefwTpHnmaiUQ+wi0KJc985G8DCBtsNZIffqeiU5x4mh12KTJgT2plP8WJTHJtGgeoIP2KAwaJTyMa9PbLUyc/mYHxtIU43SCc5atts1zjnqeiP50fMDkqTYnbWKCCwpsbcur1eMRmMpaPPSP5BEdX6ayhn9unlXMBofhsgsKXKSKAgwumQ2EhXupr/CKSAc8vArx7KT93p/npEbxaSqKPIC4vzX+gZTpnTWcblcsKpbPv/qIUElqChIajvPg0fPMEmOVnI+GCXZsgSL9QnOgsby3d/4FtumZdvWPHz0gO1mjXc9Ly8u6PqOuqlZrUVtqrTiow8/4H/y9//H7B/M+N/8b/+PbLYbmk5ixrZNw4tXr9ifzSNeEuh6cSKJq9BydX3Jtt5yfnlBNRKSUXrtvl7YImePj66BIZ9RONYQz7D/7+zH/25f/3+w6A4KAuJQEqW2yAWvbrbSQucUQ8DzEAJJlGET7VND5oUc8joyGZJxFwAT2ZuDg30kPLujqspd2PfApgxffWx/GQKaZdMTNsY6AdDef+8NkjRjOvO8eP6CzTrw+MESbzOqW7eZzd7hq4c/o+3lQzYmY7NZMZ3OQEnleqCLf09P31p8yHn2QhpGyyxwWGi02eyGot4OrZWaxKTcuXkPHxq0EcvMbJazWW9lg7aBJN2gQk/XbPBs6N1zimKPt9/5NtokNI3UgQeRqAhC7CUkGF6rhuKHJEqEEF5fniOi7KzbBW3a3u6aXlBSGDIcDueXVzx6+oTOwWi8x6PHz7j3xk3ef++ITz5dYkxJkUr+SZZlUg0eApumkZwd52JrpOasbSjLgrIqY+5JQtf2qFSsO8tNDTpwfvaKvaKFONwOrJv3Hh00KAehxWg5TEXtIgCjPEDxANd6J8PGD4kEMBQ+1HWNUirah0qKoojrxZIX+Y5h63u/Ez5oLcyO2MrkdQ2gIUh2R5oa3n33lKqqyAvNi+cv2axars5bqryjqToy7Th78YrOLVFK6svbumY0TqRBre1xicUkAnT3nce6jlevrmjbjiw3jG6UKN1JS6cyKOfiQCwWquOjQ1FuaLFNFblhudjIsxc8tl+Bs3RtTe9est48YDK5wb0335OfoW9FzemG/ClhkWxvd+vqa5sDQxaFUn5nPx5AZGvdjsH0Xtbpy5fn/PDjH/P2O+9x6/ZdHjw7w9mOv/k3focPPniP5xcd9x98wXhcydATpAAhyXKm2mC0bBrL9YZgMtJqROsVWTkhIE1/iUlJ0hm2qTm7uObyesN8dkiiDY8fv+D66orEdzsgxTOA4O71gKc8SSqWcgnjFjBEwKWYm0ZuUoNKAAEAAElEQVRAGbnk7TZ3JU2UWif0tqXtesqiwCQJ+3tzQMXmMr1TGlhraeoG0KRJSh9bnZ3rKctiZ/0lDjDbZsPJ6T6jseRNPX/+nDRV1BuNOR5LXg+Pub5cYv0a71vKshC1gre4EGhaGbbSVGN9JypYazi7aLi8WlDkmpune6BadCq2K4MwmD426yamYm9vD5NMUFrKILabNcF2FHmO62u6doXRgdX2MS/Pf0KWTvjgw9/H6JRts5WMGh8EVAkSpisqm68xYsPpEy9kJgYRE8AjVt4Xr8745We/4q2336YaTTi7WPDw0TM++NZHLGrPaLJH03TU1uNRZHkWmVhHUeY722BQCZ7AP/+jP42tnwVZkTEtK9IklzY9QAdH6D3n52e8dWefzMz5rd/8PcbVAVeXFyyXgZ4VukjwrhOVoR6MZrIny9BpUCag8TtVi1hzhdUVwFL2N63lwmoMMgAPv5TYAoZAZK0Vk5EQZtPJaDcQDGttuVyjlBGwxztR9RFIU3m9Q56LtZKFlqaKvf05k8mYly+eo0OOImNUHbDerHj+6gtW6w7vWnzoKIucUVXhgqfrGpraxot2kDO1bwje8PzFmlfn11RFwsnxFFRP7+QOkWQaHUTB3fcSklxWJdN0hDKWrrXYTsCToqhQocf2NYkxLFdPOLv+OUYnvPfeDzAmZ7ttcL6PbOrAknussztVOwx8mNr9N2kahG1juf/oOdVoTAiOVd1xdnmFMZrZdMRoXPCTH/48Zi7J+hxU5HXTc//hcxSBzdZy68sXvDp7xS8++5zOOqpU8v98L0OnddJIWVUZb771Jt8+W7F3cEhWpbx49jloTVkdkJqKrd5QVRNQiqxMo4XV42zLQE4F1O6clyHGoYzfRXqgnQwXEUgOISrq4nka4oXU2kHBreL3FXI1SRLwHpWIciUvkggoyq/NZkvXdaJqKCqatoZ4l/Reyg9UJFEkEmVNmkkJR5YnnJ9fMJ2ckCRi215vVvzq/p/SdqKActZRjUvSNKXrO1arhbwGQEjpnq7r6TvN02cb6qYlNZY337xB3azi36/IciFyvXM0dROzOMfkEUC3fY9ta4xJmY7Hsp6DI01SLi6/4Hr1OZPxLU5v3I6gcC8kt/N/SVnsnOPzL+/TWMONyR7O9ngPra15fnaBdYrToyMuLq84OLop8SVBCALrxL5pMfzo55+xWVyhgbJI+O53vsmb9+7y4MkLstSQZBlNX+NCIElGrLc1m6Yhz3L+yvd+wMcff4z5jqhv0yRnGzyrzZIXZ8+4fecGXz28z2p5xcnJDQ733sUoz3nymLpZEMhx/gU62p/jgkdhRNWgRIHrYwvxcC+Vu50AcgQkhiNu5vL6xDYJoEKMY4nns/NObJZx/kDxWn2i4l1vsANGiVhWZKRhuANKY2kIUoywWq2xVsDmyWRKnueM05QQBHzzrmdvPpUzID0gy3PSVO4gPmgSHaM8fEBrR6UMeQGpKaiKGXUr+ZFpqqgOSvb29uIeLneqPK8o0mNGxQlPXn6M1j0azXQypm16rq+u8SHFW4NRObNxFe9XWsB1W/PioufHP3vO7Tducni8z2gyZbOpRY0fPF/efwgqwdqOttlyeX2NC1JAoIymi2ROAEyQEJyHz89oul5mtyRnOptiSdDaU+apxCrFeKPeWdbrFRfnr9ifzRgVOVeXV+zv77FYrMiyYkBSaNqOl2evuLpeUBweEfDSCh+tsF3XUW9riqLg1q27nBzf5PzsjM+//ITWGfAWo40UBUaAyznJC6uq0a7wxTnPYrHi/PyaxOQo7bl9+1TskJGcJcY6KQx4KUzzwaGRgpY0NaT5eDdXyLm5wvuMzXpNmmZU1UhAZdd/bf6S+2DTdoB8X5MY+r6Le4JkcqepiY22ss+maSGWf5NIYVZSkCQZbbfE+jZmg7rdGeX7VqJ7fGR+o1LWe49YRgv2Zje5vqr59LO/4HD/Lof7t9ifvY3WGZfLDp12bOue1ie03T0+++qcrCp5894ps9EE7xXbuuX52Uu2tdxljUnY1h0EI6R+cNRNz/nVilE1IdGX2BCFJSE2xaKiQ1fmhZevzqhyw/7ejFFV8cKec3b2gm29wvZbvO/RWrFZbzk/v+Ttt9/BecVXDx5Li6wRccZ8PiVNNF3fURSZCEGs5ezinMVyyWg0QkHMOATV9bEJXX3tfJJS7BAJKOfDrtxTa8nu7fo6/l7JKYZAkSX0FiEZlWY80jinSFRCXTdcXKzQSrNeramqivl8znQ63u13UjhoSZNEughs3LoQ95nQ2x7vpHSibmoRejhPVVTR/VNhjKHte7peCoP6vpP7U7SZrhZbnj+/EKKqDWybmh//9Iec3jhgb28ujp9UHDRVVcb5Ru0Kibq+kfuuVgRFfN4KtHa0fcHF5SkffPi7/NkPf0xdb7la19y6vY/RPWU6pspKVGCnYjOJJqjA1eKK1XZF5xRXiw3OS9YqSAb88xdnoKXtYRA3GAWahK5RtGlLVSa8+85bLC63XC+ueHX2Eq0co6Lk6OiI7XZL3pSkac5ytaR3HTpRnJ295Ic/+iFd37FpNru77sHRCX/+o7/g3t073L17R5SBLpAXYqXHQGs7zi/PKYuCpjskNRocOyxA3GB+l9/pYgFH8MPrEEvzIKb6db9+bYDPho7Od69/lHhWJ6SILVATsPTW78IYX2+ixCwuGB4Qrf5yo9SQhaF2svoB/FMURb4DDECxWq0YJKWj0YjNZrNT3Aj6PCClgevra/q+J89S9vb2aNsaFeacHE1IMw0uZVNf89WTf00Yctx8YDqdorUALNvtCmNS2lYYv76t8T6wWC45O3+FMQW+yNnfK1kuFiSpoNtJKrmCbdtSb9dMRilFMaa3K7H6xry7shhR5GNAkZgCT8Ozsz9Hmw23b79Lnlc7G/Jg9RJlz1/+9XX5OHGz+kugX3xPvPc7gE9CRiMwEf3iwcn7OJlMGE+nWO8lG2295PGTV3z6yedYKrSCvcJQjQtG1YiyLEWhGQdS5yx5mopVNn6+RV6gtbSEEoYA0UBVFWw316wWz2lPPWluIwQsvwTn1vFSKDZtP2TveBmiBrXirvVKiQ5BCbS+e/0glqDh/RqYXqUUCcnu/XLOs15vASWKztGIut4ixQj6a5+D/F3r1YbEZExGcuhb68jMlP3bE8BLK22/5nL5K8qxpvBTfHDCQgfY1FuaZkuaFLumy65r8N6x2XhWmzWJyRhCUheLhbQom5w087v3fbvdUhUJk/Gc1faKNNVkac54JPbwyWhC33mqYor3Dc9efkyS1rxz/F1SU7Bt2h24Yvv+tdLTD5vXa6kxsHs2v/5rCIJ23sb8CDlQg5fLetf1bOuGLx8+ZN1anr64ou/hL/7iRzx+tuDllWO5uCBLDUVZMp6M8UFUIet6S7CWvusgSBnE4jplPJkwGom92CRiVbJB8vJ8MFxcXTOvUj5/+Dm3bh7RNFv2pjXGdpG9TmV3MmrXWIryDHmjgSB5qgNIMQy4UUUW4nsx2DNAgnHzLCfL8l1OFF/7fS68BhAEXJLyCgp2hQlpmu7WW9+/Liwp8oLjkyNRXgRPnlfsz08JKPquhpGid5eMZ4bEzCMLLW2I26amaVuMzuNA1YDqUaZHeYd3HXuzKVpbkjRlu63RKqMsxgTVk8bco9b2cphODtg0C7TxFNmIw/2EJMmZTfdo2w6jxvjgefj4F3guODm6x3RyiHV211pteyuqqrhvfX2/+voh+PoQRYAJ5EANKC4ur7n/6DFdULxx7x2+ePCMcjLio2/d4uFTx9KW/OIXn/DLL+7T1BtGo5Isj3Zu6+P+pKN6VtH10pguOS4x59TJYJolCbqoCEaz2W4Zjd6m3SZcX225vqzZrJfUzRKSnsW1p5g1aGPBq9guLfuTNgYfpF0SZeWyHiTs3SRSkuCHPQ4PPqpdlIrB9bFkIyi0SUmiIoogVyWlVGQhLUPmo4tN8NY6yRnxKhYHia2j76XZeSi+2N8/4ODgSIC6tmY+m3Own6KUwfYtVVFhkp7pTJOYqGpRARUUne1ouo6yLOUc7WKBhrI4FygLuHv7kCzRVFWOswFnPQf7N9i2VxgjlipnFeiMIp0L+N3VjMoJJ0elWAyrMV3b460or5+/+pK2f8HdW99lf++25Or0nRQ/WMkV/Ppe5v1wbujdufj8xUuurxfcuXOHzsGzlxcs65bj2ZzOetbbjnXdyrClYNu0mEQYcRNUtOsICSmZYnJDfHW55h/9sz8mL3NMVjKf5Cgdc1usJ2Dp2hZbb/jzP/sh3/rmd/j7f/8/IyjFYnXJTwxcnj+gbXJMNuPmyR6Tacl6fU6zyUjTDrWLLRkC5g0E/7q5T0WAxUTAz722Sw+ZvTpamvD+tRJwt/ELoJMO4fJKzv5BYRsCr4O9eQ0CBu9Js4w0k2ZLY2So32w2tK0oAfMs59133sX7wGq9pGlrbt24SZLkeGfJi5T5dEqSJJSjlMQIoE1wwpoDRdCUxQjnPW27BqUwSSDPU06OFUV+LMNbJgproyacHt/l7PJLtOlAJZRFAb7AqIpNLfloZZYzvj3FJClVOWa7adFMaJqeJ08/Iytqjg/foMhn9H3//7O/Dfv3tu759NMHHB0fg3MQnS6X1wsWmw0+KKbzOW1n+dWXX7F/cMxq85io+xXgWCf8yb/7MevlCpQALzfv3OPo+JTRZIwNKto+5dmuqhHnFxf8/Be/4IP3PmA+n8vZ03a7e5C0zirOzl+hteZv/eF/xIvnL/nqqy/44rMnONezf7DP8cE9goaz6xdoHT9zL6olUaEbjI451N7GIHhZDyaWAg3P3UD2G61JkpT1eoWPwJ9S0SURz9pB8TRkZg6Euo15wGLZ9ChtaBsZdNPYvivn8msCEsTJoVSMSdBD7m1HCI6yLJhO5bOWxnONjtEhQxOmtFtK+ZbrAkql0khvJrxx+zskuuDy+iXL9Qt6t8CFJW1To1VOlk+p65oXT7+krn/BeKbQpiA1KU3d4hwC5PYabz1lrmm2W0yqcMrjvMa2Yz754j4qUdy8eURve3Sa0MUimKazPHr6jKDkfbpz+xYf//jHvP/hdxlN/j/M/dmzb+l534d93mFNv2n/9nTGPj13o9GYSJAEVRYHSbRoXcSMRMqSI1tKKiVV/oQ4yb0rt5YVy66SbCdx2SnbtKVKYjllRXEiSpTFEQABdAM9nD7z2eNvXtM75OJ5128f0HdCLrIBogHufc7ee613eJ7v8x0OWO8asn0wnQzBwfLPfve77Lbb/VDzYDbfew9PxyVDErAkRmp+93e/zQfvt9y58xoHswNevHjO6ekJXdtzeXlBvdvi+h7f9bx8+ZLr62tOkgQ6xojyg/LhxptqtdklZdeMt99+h+99/A8JwdF3LUUhntAxyPsCYdllVqdgBEeWWWazcWLRCCteR7FUssaQZSbZlwyDtkjsZcjYd61Yt8SQgMeGGCJVZckzm2wiErsgerLcpjZDnl/fOVAi/e57UWuYxGSV/kKCo0QKrOV8Rqf1G9NZ0dD1LQpDnt2GAN6taF1DNSqSJDiF2QFRD35g4rlZFCXPX3wBGGyuuVp9zGL9kKLMyTJFW2sID7h95z02zvO73/0IrzNODmccTsYQPT4onr54Qd00RAT8QsPl1ZbohWAQtaccjfn80TNu37lDVRbUTUdIgY2vtv9KdLL0XYfTltu37qOi1L1KeYoqpywtRZ4nCN/yz/+H32Fb79g1LRG5v1xwlKMRn3/xiDdff426aTk6OSJGSRo/Pz+ncy55+RvqereXXceg9uSiPcCXagHvPd55+r4hywK73Y7WZhKUZyzG5HjXEUIvI9eYPLTRKfDHst22QJSApaJgkiSzu6ahaRvKIt1XKnIwF0atTkB513ZkeSHnkQJCZLvdUZZl8pXVKBc4e3nObDZnMpEhh9EFZXaIiiXLxVPGk0zCKOodXe84mE/pmoa8yNBa8aX3v8zl1RnXV0sODo7IC0PXbTBWUxYlSgvpyqQ06TiAoVFGK+v1ku2m53wJ51cnrPpPuN51vP+V98ker8lzj7Udo2qCZggklPWe5QW991wsr2mdZ1NHnNcy4EznavCixhlVFXRdSszWFCkh3rvIbrvlzQf3mU2mnD1fcHFxwWq15CsffsBf+Ff/PLdv36YoS4JSfPzxR/ztv/23ePr0Eb/9T3+b3/2d3+Xs4oxqNGG1WiZmY0Arw5tvvcNv/ePf4vZnn/PVDz9gOp0mm6TIfH5IkefstjXOO5p6hxmN9njLqww95zoBjhNgNszA5L8Pd+b/HzD4et/R+0botXu6qyXQoywoH2BgzTlhgWU2hQnoKH4OyesgIqbmxJiaFmmUjcnlczHuvRhiehDDhA5gNBolQ+YKa+2eOg2Sbrbb7WjbjqoqmUwmfHj0ZZyLLJdXxJhz/959rFX40EmwQVUIC0zlieGQAkUUlKUisxVVNaZuNkleYKUQMQWzyesURYULnrww5HbEZPwaeZZxdvVDjBUJ6Ww2oa0lUbZtc2azMaOi4mheIYydiu1mh9YVl1cvWSxecHpyyq3jD1BKpH193++Bl7BfTIlxkA6m4UPBMHTagy7is0eSTAdeBU2J7KW73gfwnvv37nHv/j16r3lxvuXkzrust7U0ZlFjYocOPg1lI8+ePZMLZzC7jyLVuH3nHvNDKSSDF5Tc2gwVI4aIMQJgPHn0Xe7enRM4w/lO1ljyghIkXBoWtHgEaiW6erhh5klqMxgT94W+Hqa6pAlEvAGP9x583DyrodAFGI9HhBD3HkN5PtuDM5vNhrbt6HvHqJpQVWPeffcI73sWywW7bcudO8eYlOgmh734UCplsaaQ6aWXAJZRpSjyEUU+lvCPTijeYKiqnOOjefpZhRmWZyMmo3uUZcGzl99DKUlznU5mdG1kudzhXIkKOVZlHB0WhKCIwQr7KmguL8/ZrBccHx8zn70FSoJN+r7HO0l92196++eSmC3cgFWvMvZiapSH4k/YRYNMV6SUx8fH/MzP/Awuata7DqUzqnLKcgUnx3c5OgQVboOK5HnJdDYVAM1ojGKfyJdlKaUoeWkoZZLxtxGvT62F2RkC90+PuHj+CavFC6aTHq0jLnY4ekDkUEYP6WziK0iKrJd37tOkVKS3rndooxjCgxgAG30jZR6ez6vg3rDOhiTwgWWb5xlZnonpslbEINPIGAPLxSKtNfG/GY0qTk9O0FpT77YslguOD2cUZUWRF5TlaWqoDSpqrMn3k11Zz4Ys77CmxOiCullRtxGF4+BgyvzgdnrXAeciVTVGxSlHh3d59PS7dGFHkeeJDahYLC8JsZBC1EJmRiitWCyXEDVlPkkT/uccHGoOJvextqBp3b7xHbwxxSBfznvJsnv12cX93vTBCRAxrLvEJnDec3ZxRTG64IvHz1ivW/6r3/xveXYWuN4G6nrF5bOa2XTGeDqlzC1ds6WpGyk6u54+TVa1tjLomEyYjkeMKpkGuxhoeydSCm2p2w40rFYrvnj4Kdbm9F1NCC2jUcaseBPUQ6L2KGXwsccoe8OoCj4VPzLVG7yEQgjJ0zakiaASkEZLYSDpgz75m8mdehPGk4Y+sggZEo/lbvtxi4EhBTUEz+XlRQKSFXku8v5RJfLL1ojRfW6tmKKPKjKbYa3cnVFJkablApBppbVom6FVRp5NqMoZm8013jdUo4x33z1K788TgyLPJnhXUOV3ub5eokzDqBql39Gx3pwRw5gQc3DC7G5Dz2ZzlgI85jRtzdnLJ0xmilF5QmZLAQD6XoYOr9yjN2vtxsc0JqboDz/5lOcvXhK0ZX50i08ePmZ+MuWNN+/ywy9WnC1qnDconfPJ5y949vwKH8UzUCsrwIoVjzDikJjeMxqNhFlgEpsz1c46sYtCMPRdw6ia0LVwfHyH9XbHerNhu1ninUapkm3tqYoR3/3u5xRFxmxaYvUdlHqC0iFNiwcGnxfATwfpQUM633RKGUWJRAaVzqZ+f35BwAx0KzXYqgxWKLI3vXP7PaoHwE/dNE/W6lSYmHQ2CjjSNDVXV5dIUp/ZKzxi8BilqarEpDES4JFnGSax7bQgkMQoQxkSuxkl3mdaZYyrE2KlWCzPUGZLNbEcHULbim+QMYU03m7CyxdLrtdXjCaaKq/o2hajFXUNvi/xPeQ20gdHVB3r1Q5FRpmPWa6uWK7OOcnnVMVRGgq3+/Nts9nS9T1FUdL1gc8fPqMNEsLkupYQHCHCi/MrAeO1Ifqeu3dv8du/8z2iUmR5Jsz69F5evjyXe9kYiAYXFf/gH/2WMKejJCtqY9CJSSAJ3IofffI5P/vNn+crX32Tt995l77v+eTTjqOjI+ZHJSfHJ/jgefzsGUfzU6azI37uW38Souf8/JJPP/0h3//+ZygD1XxLESSkpGk68rwkzyuMytCFRhtFbmT9BeSM6TpHlkkyo0lnWfARomW5XMhAIgEsOoEBaM1kMhbwLHlLSZp7I0nPiC+1hBAFsqzC6JyIAF1977F2kFTKALcoCgEookq9iJjI5yYnxJ7ONTfgtZZNKkw9AfvEg5IU0iN9S/Awqk7wfc7Dzx/z2r33mE/e52j2Di8uPuJ68xFlpamKQ4K3rNdbbBY4nlTJJ9elsJvIaDSGqGkax3hU4UOH8wUmO2E+O6YLgbMLxecPv+DLX/0yVZVT5LlYcaRQvW3dsN7siMkPcbvbMRpP+KMffMT8cE7TnKVh4s1BtFitZayuMqmhtSYr5Aw2SnMwl+G00YaiGHHraM7d2/cIwXB1tSTPC66urhJLLePs5RllKSzAyWyCNpa6bdg1DbnN0jkVGeYHIUDoeoIW5leNYrVe0XXN3s8wBE3wNcZY1utrQnQUmXidTSZTtNZURYY3DmUUWuc4v0MHYRh7nySkMez7TVLAEklp4mMEbciMpU/s/u12jdIwmRxwMD0my3K6TiwAjIYQNMvrNXXtGI9n+OB4/vILDuYjRqOK8XiyP1fz3CaCgFi+uEG+q4TdF5NvXZkfcHL4vpBWlg/Z7s5k8OdjAivt4MJE17b7M3S326K1wbkdXR/IckvXtqxrh9Y562XJ4rrh6PZrnJ2/ILQZb792zMnxKcZUgHiVN22Hj6nvMjIw324DSuVoArnR9F1LMPDFF4/EAzUR5Iq8ShJUT54XFHnBqKjIraavV7z71utib9R1xKi4f/91/spf+su88fqbTCYVzkf+6Pvf59/79/5ddvWOyXQqYXUhkBcFbhE4O78Uy4yux9iMg9mUrvd0ztO0DUU+QSubBunpXZkbX8Wbe07uf5SE8yjVkhcW17esVhIsUhQjtNJpsABlUUhdqDJizBmVJ4xyT5G/wMddsj8xoAyT2ZS2qaXnUzAejcmzIq0/CdopiwkhCjnIe0cferkzlaEaFxwcHhF9pKl7vI8czo+pmy1RacpyQlUcAT0+bui7TmoopTicH+FHkaapmcxKDo9v89rrd4RBbYTJe3h8IqCqkjNZJKRCYFCk9ZZ+drF5QcLtjOXRs6f8yV/4WWLMGF9nvDh7TPSB2diDVagAWuforMLHjMvlNYt1y8Xllk3dcnJrzrQ11HVH23V418ugJQROj48pEugZUx8ffEfXrvjpn/pFmqaj6zueP3/G4eERv/gLv8R4JFkHfR8weYbWltund+j7jmdPnqZ0657M5lxcnDGfzyUBPUYODg752te/wW/91j/m6ZOnvP3Wm4zGI16cnYkNW98TImhtWW82VGWBigP3UHpj8TBOeQd7slLcfwXpczeWO//iHz+5RDfJbokM0uyEQA689xsDTZMlryitEi3TY6zaN7LDQ7gxPR1oi2Jy/qqOWb1SKA4NsdaGohhkuDfTOElGkYlTnhdYmycmkUeryGw6ZTySP5/nWWLGyMROKPPm5hVElcI+RHJGLLl7+g5Ns2O1OsNmHZOxR+nIdttQqJwsK+j7wPn5kuXykny0YTwS5pJ3HkWJC1u0mlNvW5TuWa/7pJdfMyTcLVYvIDqsqsiyClSkH0CXV9h7r7KqhsNp/9y4eTU3n0+NclBpwipTLRdeYc2kRgQguORj1YOxFXk+ZTw7JEaHSxIqudA6YoiMDgSAyq1N5rXikaFSUy4TXCVm74Ultxk6wHLT8ulnD6nbHcbeSILkV7hZX0oNwjZpIGJKM4WBdWXpe4niHuRERt1srBCGyHD2a04YC+k7SdX8Y89SgMBhjbF/hpvNJsVpW8bjMVmSvvZdDcB0PGY6noiUwxiMkcZXUnSH7yGXurI5fe+T0TAYNeHevffoXcv14gVdv8DmHudbmrpFPPPG7Oodjy4/ZbFaMpsFJpMcawxd20Ms09of0TfiYVnvtmhj6fyQstyx2S3QSmH1BG0rmdA5h+tumHsDuDc0wtK4qgS+x3RJ8so+1gk4MITg9v87RknE895jM8Nr9+6xayNlo7l15wM+/LDDuUZkoypiUnJt13U8eviYoixZr5aMxhXbbZ2i5se8/+57tJ0noujalhh68cjTKq1pQ57lXJ89RuuGe/cP6f1ODH7Tz66T350PUbxCVESbKCyVdBjLetIYJSyDPZCn5MLZrxv27mZ7pvLwbIY9B3I+Dlt08Bkc0oV1FEaAClI4yZSwYjTSeymZ73s84rN26+RUWCgJTFB6WG8CXQ7rXoqSiO9l4keouHfna0xGxyzXlyzWT+n6K5zv6Lot0eccTI7Z1tdcXDzkR5/+kLJ0HByURK/wvaSN2awk+jHOSzPXuzolo9+w8HxoKSsjcrd8ilKWEDoBXdIae3W9DXv9VYYoibkiARUp3TgkoBTF/ft3+dU/+2fZtYGrxS4V2JDnlqOjMS5EUD3e1RRVRVlW2H3CeyIfpcJeJwBOQqSGC1uKFLkiNGh5D7dODrg4f07fN7x8+YTZwYQQHEYH6tZydXXJ22/JwEIb8SX1MaV064DVg9dZkHtQNhJWC7BhraFpd/tzHMJeUhXSHtw/o3DDchFvHrVvnJTStG2T5N4COEnIldwR3nuqStaZWGGk1G+fJEjGMJ0dUuSZ/MxEUBatJVl4H8CjBlAcYtSomEMYcevWhxzOXyeGyPXyBcvNQ7b1S1xsiKFkfnSHy8vnXFw85POHP6QaRWaznNC3EKBtHdZURAxdqyhsSoENDmvTOySS5ZrpdMR0mjOqDkEpQvQ434lFRVprA8CXduv+vpRBpKKuG5brNd/76Ic8eLNnXW+4d3yb5xdX/OizM15ebDmYzSW5XUmBXlgja9uHVEfI3ZrnYqA+Ho+E0avl3iI13sPPVJYFXezwzmFHI/re8/TpU6rxirZv6bsGbTTlaELvA1/64Cv83M/+Aoura54/f875Jx9RTgdVhKQ2y8BF/DSNFkm7NrK/iG6/XmKakisFvuupm3Y/VLJW2A9h/36H+zOBcTpx611IX3MT1tX3HXme07X9vg4YjPCtzTg5ORG8Mf0cIucSm40sk8CrIs8waRIugHW2B3leZXXJrMVgVEYMOfPJ29w+fZcQ4Hr5iBfnH9H0MoysymPK4pjzq895+fJjACZTjVUW13lCH/CxJc8z+k7A+SJL9h9ahofBi5zPZnB8NOdgekqeTSEpWFwKS/rdP/hDFssVP/+tP8Fi1fDRp19wfOuQLFMsag1eoXC8OF/KHYvm8ycvsXnF1XLNk2dnZFlGlWVSJ/sgpuGAsRlVVTGejMkLqXtHpcFHsRRRRqOj+LvNZod861vf4u13v4TRhtmB5vLqnBDh9t3XePrsE3Z1y2a34/zinLIc07Udeh0xGqqy4Gd+5lv89Dd/jkdPHvLF0x9RljL8K8sxm82WZ0+fkecl2+2ad955i7yQe0mn5R51TMNyGS5IYnjAmozptKJuO6qReEgSArUOOC+sqnXdMJ5OhTmKDNtkeChrqndyfjqX0udTIrhzTqxw9n62Me0RjVYZZVmy2a4lbdxovIuANIZ9L5YzymjyTIMG8Qd1iWUng/y2aYmxpG5qgm/xvuOTh5ccHtyjKCrGk5xtW7BrttS7M7o2MJvJ8HtXb/Z3jNEZxmravkMRcU78JJVqWW8155fw5aN3uX/3Pr/9z/5vPHj9De7du0fnAxbxleyaRqSKez88AUs//+IpH374AR9/5w9Q2mAUlFlOv2fxKZQylKPRvk8qipwyL+h3NdqLcioG2ZuTyYy/+lf/F3zja99gOp0RYuC73/sev/mb/zk6+W8WRcn3f/AFWZFxdHhIs5M9Vbe1KBD2/cwwVJD+UhKUpWZu6halFdv1Fm0yqkq+LiTfQ+87WtOxWa959uw5JyfHHB4cYDOpV53ryNKQK3ixAnBBNJE+ppTSBOxpoG5blssV622DRnN0eMR0NuPoqKLvG6pyQtd6zs6ecjAfy7AzRtarLReXy6SQ8bRtx+XlgrOzl8wPp7z22n2m0ymLxTWz2ZQ8L1J9JrWN804knEP9GAN1u+Dx829LTeKcDOL7yGDuH3zAR49PbFwaR5aXKXhBmKtt16J9pO+b1IdH1ruWq/WK73/yIz7++BP+zJ/6WU5Pb3F+ZVhvl2S0bLYLej9YHkko3nbniTpjPs9xfYdVmqgjRZHTNC0KzbgsZdhVVuLvZgzGWkw698vMsnMbHrz2gKZxyS8S/tQv/2neeutdFJqui/gYyYsRWlvauqGocrbbTVJJOY6Ojvjkk0+o6y2bjXgsz2ZzXOcoipLNeitWJUNFGYU9KZZgkcxmezuAoXYJPrDdbvBhxV5grCKh72mbFq0zsjxnPBqnuiHD6Anj8gFvPvgmoHj09PdZbB6C2mK1xjlAa6bTSbo3k+WKyZLlgiFEcL2XPlAnBqPKGI9vlHAxStjGNBvJgNcH8lLCK3q3pmlXMsyxOUZr7t65t99ToBhPRsSoGIhmStl92nTv2lRT+2RHFhKBqRdWISrZN3UYDc57yvyQxWILdsbv/8F3ef70mtW2xCtHWd5mtenxhSI3Bm0My+sdi+WSpy/OuFrVbOo29SWCG1gNWVUSKPZS5gGAhORQGSNFZiFYvvylD1iu1nR9x8uzl7z99tscHByw2YkFjQsB1Ro5E52nd0HWZJGzWa8harbbHUVesgrbfR197/5dPvjgA/7Jb/0TPv38c5SS8Lrj42OOD4+5d+81tLEsFiuODw9g6OteJbsQ0yGVVEapB5QyXaxhfLghZv2LfvzEAJ+xVpKyokyFxLhSFqhK5u8kNoIajEy1FLXL5TYh0tIIDzHSryLne7DqFTbQIPUbfOzaVvwGrDWS4JJMSuXvlSQ38VIT/fiA0A/JJuJLZPY+RDfAYZIFp6ZKIQW3VqAo0Loi00fk6i5vvf0l2nbFavOEZ2d/SNudk9mKw/lr1E3HavU518sn5EVBWYzoWime+76jKioUms22Yz4r0NrjfUuMN/LSspySFxnWjphNTjEmZ6Cw932/f05//P/2gNjAdBka01c+5PdMjJF4I6d89e8BbphaUeE9LBc1qpqRZZHJbMJ4lHE0K6UxiiJxybObZypgB/u1kcp1xB9CJrp13XB9ec31csOuCRwdHvLirKL3W6w1ZBkSppHWmtY3QQ571iJx8JRFKZEQ1c1WWHx6kJtZbmLL4VVgdAAdxZBZmAzee5Q2uF6Sq7Q29P2PG+IqpRiNRoxGo+QDqPa+hRqVWFcxrVWb5HNpTwj6mNa2FFP7xC1vyewIHWdsVoH7dz/kaPoBnb/i6Yvv0PQvybMx08kpXRvouhWdWzKfZ+S5oa07WhVwfWA8KokRdjvHwbREKUfv+32DpHVGXpZkDQQy5gd3MDoXdoaPKbp7CF4Z0rBDWld/HHR5dfo17CthEe39Qv7Yeosx4oOibnpsJhKYrMjQWkDGGHwq/B0xBA7nhwy+a2KqK74YKk0tmQpzT6QTiszKvo7AdtvzxRdPWC4uKQpHNJAljzIZFsjk3jkB84X5kczpGUDmgFUQohPpT9vTtt0+oWmQbWdZhkmSWq1EckcCUgYpkfdOLnMvl01ZjmjdRppqH1IxoVLRJwVINpvJWlPSbBsjvp4qIgBHugQHo/gQZDok63tgPA5m5RqjM6waYfSMFy8uOD0ekZk7vHH3HhfXn/Hy/BOsjWRlgbUVfr0gLzRVNUIp8YxZ7Gp0NFTVBIyh2XbkWYXWKZHcSdOtdY62lqbbSjplOaeq5sNqoesl4EDWhN8zfYeE5htwPa2zPVN5GMeIx2OMAY2iKirqtufk9ITDo9dpmo1IeFRGiBB8B7rn5YvntE2L223Jy5yu7chtSd87bt25x717r9F3HX3b0nWtMAZN+r7D+kczKgvWyxdcLl7w+hu3kbS3lqbeMZtNefPNt/m5n/15Pv/s72NMj7Uao32a8gnTziWjZm1Ehqt13DOq66ZNa61OTCi7B4yLsqAoKxQkac5wfhuMFfYjAXwU5vR4MkWp7hUwVZgogwxDwqQktMqYAqJCG8htgVaathdZguIVtiDif2q0IUSVEupSGnWUQjUvZlTFEc+eP+HqsmY6us/xyQMUJX0HqJdgI9v1mhg1s9mU8cQJZOg8m6ZDa0tmK4zJabYO7yxaRwl9CYEQFFpnKGNZbRbSKKsRZXmwryWcC/vwlv8REz7eAHxpsXH37h3q3oEtePz0JX/4hz/g//Xf/w6brqX3FqnNHEWRM5uMGI1KQq9FXtt72qZP519IQI+jKkuqkbA5RqOKvCzQyuCUDEC0UgQUTdPR5DXL5YrvfvfbvP7W63R9m4JmJIyh6zwvX57RtwGjNG+8/haHR4f80Q9/gFIOYyxZHsSmIRdgWNJCZXCSZwajTALiBARVRs43UQt46qbBWsNmKwbm48kEm1nyLMNqsQfou54syyGBwYrEsNU2Nb4hsYTE+sAYizFi0i9MU6nrimKE9z3EyKic0XUtvW8Gvl8aqMjac85hbYZPgycf01kAxGgZV7eJwfLw0Q+5vLjm8OAB8/kJd2+9x9OzHb2PdK5ltzunLA44PQHnRXrVNgEdhQGYFSUxCHCZ5xnON3haTLQJTMyo25bAJd5HMjsVNUoY1pyn7z2Xl9dcXi/47g8+phhNwWreee8u3a7j4QK26w33ZhmtM0ymc4KPbLeeH/zwMUrDbDZJNVVihmrFdCJNrjGWsqqkCRxA1STRzmxGNIaqzCDA7dt3eOutt7m+uiaESNs11PUGrS2T0Zy33vwyZWlRKnBxecnJ0S0MVoYRgKInLFeJrSbvzqQaJ/geay2np8fCUJnkoOQ8Csj9qpU0zFqb9LMOB1ckBkfvZL0ZQwqxc7RtLeEYtuLo+BCljQwQo/gDh0AKlegTe09quBAdWW5RKiY1BPt7WlpF2RMqihx4MOzvXYPRGbPxXUbVEdfLZ/TuWrB4rehah9WJGIAS9qUX9ZL3rSSTchOQdXZ9zhAeoo0A403juLpYcXm55GA+QSuD0hLsJQyzuJcpW5uhjCfgaTrP+WJN9sUznl00NM7xq7/4LWw54aMfnvH87IzT49dwDq5XPU9fLsiyAps82da14w+++5GwYFFkY5GWRoTUkOUFWVmRZTK0kX9L3TgaVXTbRgZngu3zy7/0S7z3pQ8IKM4vLmnalr4TpmqW5YCiqka89eZ7PPziM/recffefTbbHVW5Y1RUie2dbFCi8IUGokL0wvz0wUOEw8M5SmeijFEFdd0yn88BT2YlebgoShaLa84vzoXIYQxZbjkwE0yevO/6HucCNstR2L0H8OXFJdPZDKUt88NjZgewWm7ZblqqErq+pShyqvwW8+nrGPNDPAtC8FxfL3B94O79Y+ptR9utyIuMb37zG2y3W0J0zGZzbGY5Oj5mGBzD0IOIZzhJCRejqARE2u5wXiUiiU9KGfEIF893j/M9KPESj12DUo6qHNG1bVLU+T27z4eADxablTx5+oTDoyMWqzVPnl6waQ6IxjEyLavNUkL7VEbXO+quZ9c4Zgcz6rpBBQnRQcu9kidlgM00xmagNFmep2AbJf2HEl/dMrfcvXuXi/MV6+2aPLe8/sYDlisB1oZgObk3JTHVmpy+d2RZzm6zJYbA6w8e8E/+6W9xfn7BqBzRdZ43HryONRl1vaXvE3s91dZiSyJgatO1eOcTYUB8Y/s+EFxJnu4udMA58bA2Kme32+GcT7iGwuiczM7JzAGul3d0ePAmPu7Y7B6lPuimvshsSYyaiHgfh+ATU0/jXJsQ7i6lSZdYIx6D8r4jXqK7iO6ml1Vap1C81O8mhu2rGErXi+2KSazZAVjMsynWloRwTe/Xkthr5azyQfzjXLtLv6uhc9JD9K7g6jLw8LNn9F58NZtWAkhVplm8/CG3Tw+5e+uU0WjMo8dPuLi4YLvd0jloe/HkNNZSlhXT2ZzxZEqIjryQflQrDSqmwDZhfSvAtT2v377D8dExH//wczabLVdXl2TZKZtdLQQiY+kTE1EyGnKqaowwIqUPnk6n3L1zn9wWqe8IaVAY+MbXvs43vvY1UaQWOeNxRWZsGtw5VosFoW/pe5cGvOoVJeWNmmDg9v1x4tWQAP6TfvzkHnyuARWSF5Hag3vee1znkrTCiEnlXuKiWW8kKrpuBz8Y2O0ajMkYj0dyeaWLNybj4SzPGfwdvAfvPHlWYHWOjxu6Trx75IUlar6/iSbP85zcznC+IeIp8rF4IIQtcsCIPxARgguQItrdELuepicyyakYl8c0jePTx7/NxfUX3Dl9D2un3D79Os/O/we6vuXl+WOCMxwe3EpFncN1cvgO3kYQ6HpH07a4EAl+yx6DiwalNecXz1mtr8kzjbVz2q6mmhwSPGmiKObP3g8JuJLGRvTpIh4G3D8O70WG5KgfZ0jCKwyb1PTFGFPhqnF94Or6ij/6vT/Ed3B6esTJ8Yg//Qs/T1UVcmDoEVfLBmtkqr7arMmrjKIoWC5WFFWGipbtasvJ6Smff/6Ybb1jcX3FxcU1282K26cnjMsRId6hqZ9RZI6ySl5SSsA9n0zHBx+F4EVCqpBCq+scUclkZGCnrFZLYhRZtxQa1Z4JOqwf+X3F4NRFJ8mTpsD5XZICiB+arLUbnb3WRg6MYkbTbYgxMKlOaJotni06gVzimzDImaSRl2Il+QUqhXdAzDAmp2u3rC4vuLx+zJ1b71CWFbeO36N/0dH211xcPKfvNYeHxyglUpa+CwQv4Lm1MsX2vqNpDeNRD+xAS9KdUTlRwcvzlyyWZ5Slp+ugaXeMZydENM6LrF78Q1KTmhhuMZklE5NcX574fkKUViCDmbgS+h5DNuOQUtZ2jqb1lCWMJxVlmTEZZ0xHFfVuizFSiOnBX1ElGZYKez8GowfmhoDKRT40nB1t17Pb9uTGczlekJcFnd8ACu8UNi9om451FKmgUPIjMTpc8PSdyMSHNeJ9l4p2g9YZWsNoXBK8yIKapmF5cS0hLdqQFwVFmQugGwaQVy4B50UCqrTZg6kyURTprwDT0nDHxGwRD8sZ3nu6fouxxX6wMoDqXdsTiRib70F25xw+CsNGpQKr6yOZzendEu88n31xxuH8DuVuRFFoptM5V4vH4rm2u2YymeHDmO1uwxBMkNmSEKFxgdh3dK3CkNO0W7QNKQVO2NTrzZbr6zUuNmw2HZvtlmPv0TrDOaHhKDzBpd83Kkj09b03EBrB1yRQYpCB+hj3jYHzsNt1KFtibI62iiw3wtBTJgUM9QKQhJS07jopfvueLCsIEbI8I880ZTFCT0fUux1lmZFlAuaHGOldpGsDjx99xnqVfKgSWxUFk+mUoqiodz2bdcNiseR6sWQyKTk4mO7vhBgdGi8MOQxo6L34LwalKfKKEDQ2E1auUsnse7lG91A3W5RSTKYTAQlTcricKUOBLOE7Xdu/Amrp5OuqMUYCFoZmwVqLNVXya1xJQm+IOB8xpiAEg/M1MXbkRSlNa0yJ2yEmto7szbbbYo1iu1ujNWzaFdv2CZfrnFE1wWawXnZEevpuSwwGsLRtSwzCksnzDO8iEU/oGvpOoZSl67co48QI2ZFk/g3N00esNyuMLlgsV9y669GmTHUD6JgSTSMCDoch6SwmKYmw2R689jpHp69xvW7YNYHJ5DZKgc0yfFAEZYjREUOHTkW3sUb8kwIobBoW6iRDTPd0YsB5L7VSTB5gWmus1pRFxijXXJw/5d69U8ajAnxHDI718prxuEKrSEQSr2djhwPatmGzXaG14fz8OUopttstr79xj+l0jPicCTEqM1ak31o6dec7KWyjoihzVB8T+4/0ewlDw9rh3URUKcyOvMiTxDIxXwOJpRfpuobetUlqnhr56AnBpOcg+5OosbrAtX0a1u1S6FdOZkt6V+P7ft+s62RdMtg+DMxDsZeILLszSQrMcnZ9w+78KU/OYDwu6buWputQyrFeLQhBwPK6blEEvOul2SPSh0iIls5pkYT5hqzwEA1aCZu+bjxX108JsSbPpFk9DQJkOi9nlDKGbd1wcX3N7uULynLC7/3eD/jk0Ut+9KIji5GPY43KSmbTqbDxu46m3uHbjt61wkJ1Dq0UWV4wmUwZVSVKazIb04BHTMV6LzW6McLWMdrgY0cMcH52LsM6JcB+1zYYwGvxVJTggUjX9LS7ljJD7FBeaUa8lj+3WW9YLzcStJZlFEUmDaUxFLlIXfsugbBO7qoQIj6x4zUC4jgvbP+ub2naXnySicJQyUs2mwXBe4pihFFydquk6FEazl5e0tSBqpoSveZHn3zEdrfkjTfuMRpXHB8f0TTNfljrXKAsKwlBcY623crwMnk5oixNU0Oo8Z2ibT1ZrpPKwu6HM4EofnkhCDPXWPreAyK3VN7Tdts0+LUYLE3Tsd3sGI1LjM1SPRDQAcqsousbQoz4aGgah8LRbGps1uEZ0/Q1ddvwyWff4fad2zw/e8rnjy95dhZot0sefvYQZQwhaOqu57W7d2naht519K7DeWE3CgAgDPU8LwQ4NQZtM6LcsMDAEA9EFcms5uBgztXlgt71+Kh5/vIFmckwyuJjoO17qvGU0WjMlboGNHfu3OfNN98kyyyud2w2O8psw9FsLpVh8vQMMez9vpRif//HGKiqkqIocV6T2xmnh+/TtA0X1z/C+TVKeZEoe7h//z5iqyK9YVkUZPlw5si5kxcjubODDFPbbsvhyWli2hvyPEdFzcH0CK1lmNl1jQRS6Y7F+gugw6gs1UQFVWmpRjmjqhC6agJ2yipPIK4ERPig5QwPA5M8pCGdxijLaFSw262l51aetm1lv0YlQLDrUTFiM0vTtXvCgtyXNq3xnrpd7aWpAuQaUAWRkqw4YGaO+We/832cC/zT316Dymk7iw+ewsJsPk6yYkXTtKxWK5quk6FGiHStWBAYaxmNxxzM5hRlSV4U5LlJpB058w3iNZhZg+s6juYHTCcTnjw5Y7NdU7cNy+UarQ3WWGxiYLV1LX6hvM7R8QnHRyfkaQA5gPu/8qd/hbIsZaARI8FL2qlKNaKouVLf78P+KDPaoqym6xxtCuDonaepFUaXhODo+i02MzRNZDqtMFa8i40u0pAp8PL6EVl2xaZ+iUJxvbjE5i2onuAR3zgfGFXHzGcPmB/cputbzi+fsN49R5sdiog1pTAlA6nWdjT9QDyRIZY2w1D7hmxhM2HG+0RwGZQBso8GOwFhxO0HZQzhLhbnA3W9QZmetulp20BEzvKsKNG6IMsOUfaYUTYiy2eokHN4XPDmu27vobferNjtNoQo99FANOi7nqPj27jeU+921G3DZrOjaXvavmOz3so+943IZ9uWzGT0ztO5nhAFmLVa7hUVA9/4+p/k6nrF9fWC3W7Lbrtjs95wfnZOWchaEKsBWK1XzGYHjMdjyqJkNBozm045mB/w7jtvy/A09tLLhph6C4/NMgEbiaxWC3znxeIl4SUqStCbSljUgLcobjIo9hdnHHpk9tjL/w/wvZ8c4Nusey7OH/H22w/IcvnrhgZSJ6mGc0LtBEckYLSlrHIxTs7LvaRNmGRSWOx2W0ajUYqrT95Zwe///oG140ObUlJToZBSZQbmCvBjMebWGna1QylP8CtiNFg7JbMVbbvB9Q1FkZPlmTR9r3jJeS+ssbquUQhVV2lNUeZs6mf86NEXQukvKpquk8I4BK4uNyyXOVk+oO03wCPas9luMWaMUqNEy5RDInjFwfSY5brGx56XFy+5fTLherFLZBWNMVaagcRs8t4T/DA1vQnT2HsXym9DTPKVSBQ2ET/OporEvYfVj5nbe/GOPb8857NPv8Pqesfrb7yF9yueP7/kjz6e8/EPPuHTzz7mb/z1v8Hf/tv/Pt/4xtf40vsf8tu//fvcuXefr3z4If/2v/2/53/2b/xrtHXHP/gH/zX/1v/6f8Ojx8+EjUjP9eKC3fqa4GtmB4fcunWLl89anj75mC9/+B5FMgQVtB0BkYn40Kfhq8dHR4xWEjH7iLaJqYhhkiRmKE3fCSthCC0Ykpdv/PtUes7tvjhWmD0iL6a4pAIxsWOiHKDD12x2l+I1ZQ/JszF1s8L7moEp6pwTeVTyEhiYL23bEGJP3dTEAMZKYfzo+W+LFCIvCaGTYtl1nJ0tuLrKmUxKadIQ1l2GxJkH35HnM6wt07ru0SoQvGY2nbNc7RiNMlbrFVlestm6BAgoKTidJwYnTa/3wmoNNx5uAnBqAkPC3Y9/DEzfQTJIFGPwqFSKplecn1/xg08f8ez8gpOTEyajgm9+40O+/P7bjHKNUj6F4Ek8u0pTyqgdUUPfRjFstzlt48htxmrpeP78JW3XcXZ+wcXlNa5z3L/3gKooycIBkoLdk9sRy8WC59un3L5zzK3bJ+kcSXK7PBUKUSQOGgFmne+xqB+zHYgxkueWw6O5mIynJsYoTSCSFYPERi68vgtomxN8j/fbdK7Z/WU4sAKlkbjxI9XaiIm2MnRuh1EZuT1gNj1hu13Tmw0+tOIB1/cE7/ahRySgte972s7RO5kqur6nLMdcLj4SeYgRj9GIo+0alusdL1++5PD4MDHXZL/0XsC43okRcp5NURrZm8HjvGc0PsQ5xWg8Y7lc4hz0TlO3Ygo9nFfeOVSUs3KPH4ch0SzJ9tVA4wsEFVFpehpSU6CUZlv3bGpPNs3Jypw8t5TZkCK9QmHFL85qXrt9hMiohWk+RCAoLZNeH0ROrTUcHb4h7Aslg48QFattz8cffUHfb9OEPYoEvtmRZRbvO6ydQzBsVlt61+D8BuiYziqCjxgtErGQPJ0GNlOuLb2ThOe226HTVByCBEWEQFFalIaDyQHClJRGwiYgRSlJO96sW7JCQI2oaiC9Y6NRKnvFQkDumoFBaXO5i7Msw8cOomYyOuXWyTvstlu29TPqZonWYmCvYjKuNnI0uzQYEKbECvFba8nzAu8d26ZnuTVkNifiqXc16/WOtvXM5jNhB4ZAlnyVYoz4riM4Q24O8AGcb9EIgFBVM5q2YzI5pHfyPPug2bW9+BQlRqPrHSo48V/yiUWd7lQfxKQ/+EjQml0b2daRPD+iGhXMD07pvUz8Q5Tms+8bfvjRd8lyy2q1ZDaV4K8yFynMyfEt3n73PbrOCRPUe+pdI8xukp+asckvFqrMslld8uzlBV1fc3AwkkTXppZBHWKgrrViXEqwSN+7fdkonk6Bk9NDtFIcHU0TyC1nqVLiCRuUxqSzReoySa9GaXxw0uBmGW1Ti1F319H3PXmeM58fYWyV7k6X1A4y1G1qx3bdMZ6N6fodXb9lPMmJRIoyl7VlM4yxe/ZWCF4YhKEXX1M0IB6YB5PXOT56i4urZ2x3j4k0KMzecNxaK3epczjXIjJNh9Yt4HCuIctymq4mhJ6ms2S5MLWWyzVNI8C+8ckyA4XU6jIcCS4BW1HTdg1KC6PQ9ZrxWLFcLTk9eY/edWy2hrYP7Jo2DX4yQhAbg2989evcuf+A88WaH337B7TNBeeXV+z6FqVzWq/ZxUBRtiKBL0sscDDOcX2k7+Qu7eVhy92xXVG3NUVVooNFaU1VVDggV4OkSVNNJ6zXO7brDV3X8Xu/+7t84xtfZTqdyX3YdcIkwRF9GEZx9K2k/0YbiT7uGXMDU8E5AWpcv2a73TCZjDk+PKQsS4gqNUgKtDxvGWT1xCjSWhAPyiEkKYZA2/VcXy84v7hAR83JyS3yPGc8nkuKuxpzdXlJCB1HxwciGesD3st79K4j4rh16xarZcHZ2RWnt+YcHMwwxtAk2blOddcN2D70FOnn9B3adNTtFZktsJlN91NKftYR73vavk9+vIa6qVOAW3pGXY/SIbHhBMzpOgdRUZQSrmbzjHpXU9c1ZVHQIdI3m+VATtRjQsgFhMpyxvkB88ag0Hz+8Au+ePSY3/5nnsvlhs4ZYh/Ic0NeFqm3ykXGuttS1zuc63F9tw+eiDFSFBWz+QHVaEw1HkOvMSZPe1SG0HmZoYLY4mhl2Gw2BO9ZXC84OzujzAthUCto2oaf/umfTueSMDsUKjHR23TXKrbbmq5PSb2kXiUOvd/g5T2st4hzEpIzKo+psgfcPv4ptNFU1ZSL64/wYYlWEe9V6guHHkf2c9gPWwPO96mmF6BeCCJWEk1TX9V1HdYU+/t3vV0kD3rouo30CEmV5nzk8OgUl34f6VNElTbczSEq6A3BWQKtWFNEAbCNiYxHE+q6keTcvicrSpqmxlgZKnWtQ+k+pa92Ur9YLeCOkvMJSPJ0tVcnOQeRkhhzsuyAanSHPL/N8dGUzpU8eOOrtG2f5uhyT9d1k9j4oK3ZJ/3G4Om6lrquk1eap3c9TSOMSOeckE60RikJOgnO4VwnA0IsKrPo6HjrjXd5/vyC5WKB68X/+OOPP+ZwfkCR5YzKirISm6pf+qVfJMsyxpMphwdzVsvVnvFOYlRt+s2+/1CJiaWVpm2Fra4SMcC9QmYRe55B7SI/f987Nrua9W7LdFZB9PhOwoLq9lJ6H7elLtqkMDNEreh9zdnVhTDNrKFzwko1asa9k69zNH+NO3ff5WB2F4UEELXtmufn3+P3v/MPcO4CoxwuDjJtDT4NbQNkpiIETwg9MbqEVdh0hybLtGQDFY0MIRRqj5EQYrpr5euVMbTdlierJaDo/Y48z2lqyPM5k/FrjMd3KMsDbDYDMyNQYrJcADDXcPbyudQiueQhTMeHhDAXBUmU3rtI4Zok1mDXtrRts1eGhUFRkYp/P+zNRIiIQfaSUuLzrJQweU8ODzg7O6d3LU2zBQJPnz7FtS0PHjzg9PSU+fyIyXTC/PAB77zztii/EujpnZN3WtdcXl/uVTMxekiDw6Z1NG3NQO5RUaHTmST+sCL3tlb6gr3f3j79feDvvYK9vNIrv0rE+hf9+IkBvjy3VNUBKGEcxCjyS5NSciSFSAIO5HD0+AAEYTkZY9ntNjRtI7KVaJiMK46PT/YT3BBuUu2UMiwXW7yzFHlF269At4xS+mlVjYkxJUwqQa2HRQsKF8S4lmScnZmKk/n7jEenvDj7EU08R+Q/MrEe/NpCkq50nciBu67GaElu23Vb8rygbbeAp/OGzJT0vRctt9ZoK2ixoNcyvffeE/0gY+kJ9NRtjVIt1pcoDKvNNT4UVNWU0ahkW3dsty1tkxphK5I+2dwikYvchJYM4GR0SaLCgBzzCkswhZbsP5cmR+EV5t7AltGapuu5XFxRlpFZEXj29AvGkwO0yfji2QsePb/gs4ePefz4MU+fvuD46Jijw9uE6Fksrnj+4hltt+Ps7DkhwGq75eHjxzx8+JCmbYmxZ3444+XTLzg9OZVIeaWZTHMOj17HWpF5D022NinEQKUUwChs0RCEFYGX1LYiz9lsV3RtTb3raFvHZDLl+PhYwga0ou8bQGjIrg+slg3eWarxmOV6RdevOD4+QOtIVVU45ymKXJqgJJUcmHxtt2XvwRY9WhdMqrtMJ7e5uHzEpn8BQXzPEn0jsXwUbdPjXI01kiwsxRR03RZrJXES5XHtBqMtXdexXm+oRuW+aHTOiWQqz+l6Yf7EYNjVNc4VrDY9NuvIsgKN5nr1EqiwWUE5qlgs1oyLmt1OJnJ5LvIi1ztCFJZL8G5ffO2DM+LNMfXHPSBhWGJpYhZTiAsRFTRd1/P5Zx9zcXaOtTmjSrPbLfi9P/w9bKb5v/xn/xn/0p/4Fscnp/y9v/f3+Et/6S9zfbXiO9/9AR98+D7vv/82/8G//3f5M3/qF3nw4DX+j//xf8yv//qvM50e8vDxY1DiwXNx/gKCo202mMxy587rLBbXKLcltxXVyZQ7dx9I869Cuki8hLoQUviODBRClIt1SNkMwVDkRSp2NngfJEk5MxwfnzAeTROo2+1ZdsK8qulazWRywGqz4eXZI27fmZMXGQezOc55ssxirUnefMICdM7TtMIU1QZhRuJTNVyilafrNumR+xt6O2nQkBKW8yxPMk8pGozRNO1GisbQ4aMmsxl979hudhhrODw5ZGDRkhhufd/hgseaQlgGoSO2DVlRk2fiIbVYXmKzgpPxbZSBbutYrTe0bUvX9eRFhdGGPgRIQRPB30ztJaVM9lm4WVVpMJkYyTEmMDBydrng8ctLVrtPmE1nnJ4e8PUP3+f20Qm3DysB1DIjk/LUdCgdicrJHo5Dg5GKqziwCkTyttluWFwvWa62KFUwHhWcnB7z8uWW6D1tV9P3EtBS2JzRSED2i8szDuYV1h6mEIUu7VNpOgRQFAnXwFobzjUfoe28eJpqQ98J66tpWtpuQ/CK+fw4AcEOlPw9TdNz9vKKzMwYR8Vy0/DRR9/l9PaM6XTE6ekp1mZ0XcdoNNoz7/KsoostTbfbMyu0ikQVaLuas/PnBO+omw2oxFAWVJQYhV0YYqDe7YRRnEnyd9+L/1XTbDDG0PVtCp/xdF1PkxJoDyfT1CQ4CDGxKn3aFxkuRLxv6Hvowo7xqCAGxfXykrIaUVSHxN6BVuy2W7zzNE1DUU7IrKUOklgaY8AFbkyO1eCDKBLZrgu0LsOWI1A5qEiZl5TqJhG7d47dzvLmm+9T5DnO9xgllhyZzYRtCjjvKKqCvMjoupa8KBiNKrTycs4oTcCw2W558fgztpvL4VZPq17AyIiw0cUawHLr1j1Ai3E40lR2XY81kcwKWK2tDEu6VgzXg0/+x4lVPCSL+uDSXgtsdzXL5Vakn4V44YzHB9T1Fh96nPMoPH1fk+Vapm9K8fLlczYrz/zgNn0bePrsJZ9++gPu3j9hfjjjzp07KMTz5uDgMN03JURN7zo6ahTsm/PgA4vVE9a7K6IPtP2OLFP7xk1YpZ7euzTQ6MXzq6ySPYqWvdJu01aORCWS2baVIexoNMLYTGRSfYfRmrKw1HUN2mJsjusVUQc2TUtuI4oSTcHl1TnlqExAbQ8q0rUdwUda11OWJUrndH2DUwadTzk5OeLX/idfZbVaJBuSiPOAEs9acHjfMSheNKIEsFpqBKU1fe9SzSv1ngt9YmfImTj4rVkjCeG5he16ycX5S9588x6z6ZiD6Zi2ren7nrrecnb+kjv37spzT4yXrhPPKTuEmaSWZagBOueZHx6gouXe3btsdzsWqxVZXRNCpKpKRqOczEp4ijCLk0eoylBoQujYbTf4ECgrCSGYTA/o2o7lYoPReQok8xT5hMPZG0zHt7m4ekiMUO9qrq6vODg4wigrsm/g9t05t+8cSt0YfWLoK0ajZBkDadCevCKDwqgM5zvAY62WYRUBH9KgKd5YIfRdl/68SomX4qHctDth7iYGWts2DH6MMUSstjgX6F1kudoBgaqU9PO6bpDwgIy261FGE1WHdxalRszmpxwfvcnxYYmPE/7KX/4ydV2LlC562k78HmMYhsjJ9ykN8X3vkifoQAxIzEkjcsVIEvGncxcf8cnXkihkjju3D3n2/Bmr1RJjFM+fvOCLzz/j7bfepqrEi9qoiOsbnj9d4pzHp4Z5AI6HqXDXd8nLevBCv7HBkTryxtvd+4jNhIXdR4UODZvtBcbkuDajKucs19d0gwVKcCkIoEBF8VvuXYvztQyPjaTTy3qWwb/4OQ59lvSPjh5SgFCMkT6kwKAQ937IMUKe5fvBd4yBfrCySDJa5wNWW06PHpDnU55ffEzXi4dml97bbnuWiAfLtF+g63tCLWdVDKA6sFbWViQm78ZkN5TWmHeRohxRlhM2647J5B6z2RtUxX2yYooxo8TiM6AtPgR2uw3Pnj4iyzRkmoPJQQK+rKSeZzmjkQSkaC1svuVyedOTxmEgqvaEE+f7FD6g9mxRbXIimrLMqcqMZ8+estksQUVGowoVA4cHM05PTqnKKr23ntlkRNt1dH3P06ePRT1G0gWpfYs7ILj4lKguvYAjzzK8d0mJdBNs4KNnHywA+/XXOYfzLe66pyxKnO+ZTKdyvCJ2S23nUqio3wOEWWZEZm2kfut6eP3+W7z//p9kuwnUNVizY7nYsN3WTKZjqvIus+kDnjx+RlQ7jFVpICnknqiEsDIal2gU22YloSoq7PdORM4akwZzLvg9B1cY1Tp9zU2as0++sjEx1ZSZMx69yf07H1BUr4GZALmwJLMSH8TzTweDNZHzqxf8P/7b/47XHzzgO9/5Nu+++xaPHz+hHI2oqopqNOE3/uK/hkLhXBRmc98TvCIiykZl4h6TGMhIKkqgnDGGqigobSbYSox0fcAnQHC9XtI0OzabFc53/Ok/88tUZcn9u/eS5DpHa0sInta3bLYr+qb7scDSpqlZb1aMpxPyQuxpBqBP+vUbwgpDDQH7ILGI3PVFLOXzfwxfIQ2QbtInSPuU1PP/5BDfT+7Bl3VMJhbvRQIGqXjUkhqVzKZQKkBMGz442k3NbuuoRnOMDVhTUUwn7HYbet8l9oYH5dEmppcRePjwIUZNGI/m9K7n0x894fLqgrv3ZxwdHXN6eouu7VCqYTqb4JzfF74iO5JpnNYk+W3Ni4sfYvRDfKiJvkcnzx1rDc5FaW69SxNGR56XFEUlfiwpXdQYMVaPUcml75q9ybzSEnHeOwmhMFa+d921lGUFSGJSCJq268kLhVEz2q6mdguK/Ji22VFWGW0jwE5d14QYyMtCFs8gr4L9BA558umf8jEUs/DKwoo3nyNdBDdff+ONNnxcb3as65bFOrDedUQlbMpdveWzT7/g3ffe4d6dQ+q65c/+y3+O6XSEtZb5fMp4OgHl+Mv/+l9kNK7I85x/89/8qzgfuFxcoVBU4xFPX55TVlO8h1u3b8vvoSTtzLlm792oVES59HvG4UC/AZN617Fbb1lcbymKQoI88pyjoxlNU+/NSLfNloijLDMGb4LPPn+I1TOmkzl91/H86Rkvz55xcjrh5PSI09NTYpRY8MPDQ2HP5EWaBnqCloNiMOt3fsfF4lOulo9QCkmaDjqZ4cs+8cHTOye0ew0RTZELUGKNoXUCQBpjiKlwFzlSpKxGRLSYMNeNNHda/LtcSoYjZjinRaYRPdqMKLI529010W3Jc03f1dIshQylA03biJQzMz82VRCT2ZBYQdLwK7U/wxhoyMO7EBma7L04gIHp1AhphHpxfcl2t2Y6KXj8/IzgO2azA9q+5fGzl/zhd77HfH7A2285vvud7/Gtbz2i3va8/fa77LY9n336jE8/+Zy33ngT7wKffPIJT548ZTqrWS7WtH2NDz27ektuIMtmRGWoihFd2dHWDW3bMRpJKAtKkv201mLK2svhHiFJKYcDWYq37XbN5eV678s0m0yZTKZUZZUYdpbdrmG1vuJwfrD3wru6umaz7iiLA1zf0XUdy+WO9WbB4eEUomI8nnB5ec7h4dHe50jCEDTet/sm3Whpbp27omnWcmmrRBv30vxFrXAx0vuOtmsBqNuOUTmh7yJlNWG7vSZG8bMSXxcvRaWDvChlUKPEE6auW4osp1fSKGhtUSojKwyht4SosTpnVE3Z1QvabokErAf6boMxknzcdS298xQj8d7aDx9iZEjClX2fYA6Vzqxh+hWH9M+Qwkigrls++uiP+PTJc8rxAcHf5sXzz1hdveDD99/jkx/9kNffeMB0OuPjjz/inXfeoixH/OhHn1JNCr785Q/45JPPcV3H1776IV88fMRyueTrX/8Gnz96zGazQ6nIZrNjtVoSnGc6mYMOWF1wfHrI1aVI3yRdVoKeQvR8/PEP+cpXPVlpCL6HxGAJREJ/E3AUQvJQHJhlyaR7sVizq3cEHzk9OWE6mTCZFJR9R1GM6Jqe84svmB/OqCphB242O0KEznUUvkPhuXv3Hqv1JX0v+60oKpqm3ft4xShSc2vN3s9HPOukEdba07sN1uSY3NB3StioicEoU+CerpOGpO06UIYYFKPRhO12SZoFYLOMEHrxZouaIi9pnaN3DmIQYMFY2q7FB5GoxKglhKKxGJthzJiyOKRpVzj/gu2u5vBAsdku8L6lLEYJdO0Tsz/b42Zydya7hhgS60LumLZ3LNYtpizJrJZhkzJMRgWb9YrgA0YZqkwzOppx62iWfFjFu5cotZA2ikBi8iYK/Xx+m3GVgxoGCIaI4cXLFX909pKur0XZFRUhCrBQ141MsPfBPJqToyPm82M2yyXbXZP8giJd37NerymrnjwvEkjeM67KfY3gekl/t1akLgphMDnXY22WCuCeum44P7vg5OgWwWey162myOb0nWa1uuZgPgI62rbHZobpvKRp1kRlOD4+4GD+syyX0ojLnrCJuSvnR/ApYMEavO8wWkDnoSbJckkztSZHG0XXB7RKIV9G0acpfN/3KYymJSI2DGU5oXfNvhCPGoIKqKDQSlLGd02Dci75OErDuN4IGGqS+b22Od5prB2T5QfMD485P3sJSlPXPRHPZnOJCw2UgbZrCUHhomXTBK42HU0oyKoDprmsqTzPCIidRNcHXrx4zkcf/RGz2YTF9RXHJ4dcX11y++QOy+War33jp7h774H4YO1qkZU2Lb3vyVOomaxhC1GR6UCVZ9T1ksuzC5pmiws9BwcTYnBcXJ6TWQmyCDEwHo8J3uNCTwyRKhd1QN22ybNWBkIhDVxABuRZplNSJhyVh5ycHALQOZFLaiP+dz4EtLKURnzZYjQYbWm7mtE4pf1qaeqMlsH+wexYztAQiEFAluvVF8krTpgc4/GU8XiyV1WIrJMUWCD3hIqSAu69F59JYEgbz2wmab1WkoizoqBu1sk/OtI2PXlu0/Cip20bxmNJiS+LKlmYxDQQ1OCFWez6nhilJvOhk2FfH7BGlB/r5Zb1puHg4ACTFex2KzJrsRiiFy/k7a5ldnDE3TvvcXL6AeODB2hGqKhxnr09RQgd2+2a588fU2WGtvXpjJFy2WhDUY44Pj4BDE3dsVqtiAhDa5DtaisejuJ/K/2M0Yoiy7B5iSLQtluePxdQ5v6DO7z91msixQ6e9XopDEEnd8D3v/993njjTarJKAXxkIanco51fU/XO8z+vld7kI/h3gdUlOGoi8IE67vHaP2C1fYLtDFsN1tM5jGmh2gxpkDFjMODN3n9/jc4OrxL71qePv+cF+ffY9c+hShDmD1rqG8JXoBYIWfIOah9MsuPyTdSkdayWK0orbFaJdac9AA+2Tw4J5ZBElglxILHTz8hAJ1bYS2sVivKqkppwhEfEgjQR1yy+AFZ+845rBGwU9tkjxM0g186iKWMsjmZeY3Dg69w+/g1TH5I1JqATjJsS9f1uBCwmdRe5+cX/OEffJtbt0750Y9+yL37d3j6+AllVWEz8dL7y//6X8EYGVKBYlSN6XoBui3SyxtjBlwEpUqsFcDJJpa3c0oksG3NxUrOpbarqUY5v/qv/MsUWYbre5arFcuFAIhd3+5B6m1d88knP+L+a68xPzzaWwChUq0eZBgcUto4PtL2HePRSJigiQSUGt8EEv64p7j3nkePntG2W6aTOUZ3rNYLqtE577z3OrPpCNfVdF3HZDwV648YxHdWRbyClEePd/Do0Q9kSOQt2+0Oaw3j0ZS29lTjAxkq6J6oxc8veIdXCu968lzTeYcLkbb1qYEXwE4bUZpoLQnMQ3pxJEi9oQ1918nw0Q3rSdjOMUbG4ym98+TKotSc+finmIy+TNQTWp+hkle40RrX1kkeLjhGHzxHhyf8lX/jrxGC52d/9udRSgK1QvqnNrkozJJUWGuxucgLuXdikAFnjJLOvPeuNxJu6bqOrq3Z1Ttc6OmdDJxiiHS93H3eObmzomM2HVMWBefnZ2IjEpUQzLQBIz5+anjHqTf9zne+zcNHX/AzP/cz3L13F2uzfUjiqx8SwiojkCECFCCoSNu7hAdEoroxN3Dhx8+1QfEl9eeP4y0/ycdPDPCJJKLH2jA4IRFDoOkauQhSqEEMUiyGyJ7Cv9ttWSw3EDNOj2+RF0NwgsaaMYvNBV23YT4/oOnEsHA2O6BrFG2/IlPwxlt3uH3nlOXqDGsKrMmwo2wvGTTJr2Qo4mUBB2FTADFobBbow5LMjvFB0fd9+nPSPIus9obB1rYtrleS2hchy2TKKwCGLAGNTo2CYrer9y9QKUXXdeKXohVd57AmZ4hED2HCuDrBdTnb+hG2yFGqpOku2WyEBt7125QOFRMtPFE/0609/O6vfrx6SA1yW7hhWA1fw56FJb4awwK88eEL7JqaW3cecPe1t1hcL+jaBm0gswWzyZw33ngDayNGa959+4MkbYN33nsXtEoU4/T9h6AJZbl79x6uF4BLbAIE1Npuar744nPGZaCuO4pSEidlEhmSybwwzLQRBkLfC5irTbqYrdDLr68XnB7fpmvW2FxjMEzGp2y2K5arl2S5oW12dJ3j5OSYrlU4v8WryFvv3OH1N2+x2a6ZTseU5QitkcY5eb74ICbnxuoUNiKTEa0kOttoT4g9RhUo5GLWZhCzShMWk1RXGHsd3iEgTYwJrHN7QAwC1pR436c9tZNJb2aTt1ZH78ULs20cRudCyw8aT0lVHuK8p+kv0NqQZ2OaZs1qeUWWWepmTdM0hMh+rQ1BK4M8dGBSDR36jTn9K8Ene9DZE8MrrD4Zz0CMtJ3jYrGkc1Jctk3DZDrH2pzHjx/z4MGOL3/5Q+bzQ5SyfPjh1/ZnzB/8/u9y97V7jMY5X/nql5lORxij+NbP/wlsVvDw0Re8eHnOfD5jMh2xa1r64HH+gpPTO3TOsdltOTu/4PT0iLZ1QI8PbTIxV/umo+t6irwEa+Udesd6vWZUVQDMDqZ0bc9isSZ6g1YFPkg63HR8SpFPkhEvuK5lvd6iVOTkZE5T99TdFQfzkp89+TpN26B0ZDabYIzm9PTWK+yaZAeuIgQZLgQfU9qWXIYClIi8LoQAUfwKvQ8CmOggJuOp4ZDpp6Zt18TocE4m+UM6oNF5msxGrhcrIhJgYo1lVzepIbeAJ7iA0iUqBiAn2BLnStr+Gh8VoVO0XcO2XgIdTVvTdY0MdqK6acwYZCyv+oNKkT80+wzNByRpOglMUVwuLlguXlJvLlAGLi89k/GY6+U1j5+/4D/4O/8Rv/4X/lUOD4/4O3/n7/DX//r/ktnsiB/96BGjyZj7997j//x/+k3a3Zb/7f/u3+I//y/+HhfnL3n9jXf54osXIjGPsm8XiyW7zTXL8oLj0ztMRgfMJkds11vURH4sozLqXYvWiu/94Pvcu5/vvZnmhzNAGDZd39J1knoXMQlkjVxcnDOZTjDWcnR8xDwcsFnXbNY142pOW+8kOXN0xPHhA2HeuTV957m+vsaHwPxwjnfQdleMZxXHp68T4+upkZYCcX6Q7SeSgtWrPbNIYbDG0LR1et/yuaatxZ9IDZYa8k4EFEwNvQ+YJNmKyrPZXtO7Du96SJ5zwngTuUffOy4vrySYwVjyPGO7q0Gxl6G0TYM1E6wt0OR4b2n6SN3VuBBRwdL2rQB+oRWGkutEZhgHZtgwENM3k9o4MPmExX95ueDx2TW79gXz+ZyTkxlv3H+N08MRpzNJKdXG7Bmhw8Rda4VWN8nL0vhruQuDFN7oiO8FxKybhq6t0SZjMs45OBjRtFN2a5HS93VH14o3o1EG5z1ZUZBlGdPpHJsXXF8vubo4560335L94yPbXUPb1YSwpqgKRlVBiIo8eXMGL4lwSguLyvsO17c0bcdonDGdHXBwcIh3gXrXElzGfHqftl9gbaTMj5mNS5RpgZa261gsFuIJN85RU7kj82IMaO6/djuxkYUtOBi9qwi9d/s7RnxdM7Q1NO1WvBeDnGEy6ZZ7oO9EGpVINgDi5RyFcS8KE8d2d72XXSmtUEYk40ZZXBfoe8ezFy8Zj2dUxUgYHlHkznmuaZqGut1QlHOMzimLKaA5v1rj0tpRWK4XL+lcTYx98jIUpv/LF2dcLzaYbIQlB5URlZxlRVmlmqUgc56T49v8zE9LgInrWvHWqneUZUHbt2A0u6bB2ozxZELXtGRZTl5WxNTcqjgMQ4Iw9s6eUO8WeNcndiCJ5ymMTR30/p65e/cui+UC5wJVOeatt95jdbXAB+iDDFGIKoEdMmjxMVKVI4pCvP2GxGalFdYPAUkieYsgYUcMgVYiO9VGCSCDPLMQHE5FrMnw0eNaSTY0Ws4arToG5rZRwgx8tdZ1Xu5BiyEEqasyXVKWt+hVQ9NeERFmnvhJdrKmescQwudcTOm7Q3DGFpG3K/JS0ibVYLPiB3m/RyuLNSN8kLCWEGX/W1OkkDydQCBLVhbMTM5kekCej1hvakLnIEiSeZXNuf/al7hz52coR4dEPcKT0zuxlNDKEcNgNaPZbM/59LMvODk55tHDL7h7+zaXlxfiHa0UbdfzP/3zf4E8r7BZyWQ6Y71ei2WBkWCGQEATQQnwaY0w8nxXs14v2NYrmma3P8et1YTgWC63KGUoiird1QLEHR3NKcuc6KXej4n+mNscF3x634E8y/c15dDHaT2EHYq1iyewWq9RuhHfNN/Su7WkexcZ3ge61jEZ3eNrH/wq08ldDg5uUxQzXA9ZFvjyl97l9dc/5L//x/8J680naDPYSaUUzyjnug+BsphRFYZduyBGn2xAZAcRoetlPxljRMIexT5B7Vs0ATmszRKrXerpumn3rFLvFOPRCLEHymjqndQ3yqCUPB8fJIlbG+lBxWIoyUl9l7AtTZWNWa02+N6hdM7B9GvE+CW6kOFbj84E1G67DmulDkGnOkrBvft3+bU//xtA5Od//l9K4KH4N4v6RuG8KPjyIhc8wGgmU0lz9b0TYE+bveVW8LIOmqYWBV9T07Zdkhj3Yg+QrEgUga6taXcbkSkbS1VW+2AFo6XXapJlhNGK6B0xURAgBXwxgItiP+ODS0PKV2rK4euUJhBQDMrBwY838uLFGeIhq8izgiwvubg859adY8bjEQGFsoagEAasa/Guk3Ay5Awqy0wG7WHDsxd/kBjLYT9cy/MSv1B03iP5HjL06vvk3+qCECq0hDU6H+nblrrZMZ1MKaqCzW7HbrNls9pxfHzMwXwivtbEG19dxJtVK0uWlUkFJzVXIBBCjlK3WW4O2XVbstIxKmfMqjm120nNBqClPvV4Bpm9NhKkVI4k/KlKrMlhD7je7YeIKkaMskmNF1HJmkYZgzIyQGrals12Q9+1QrhqhazRuZ6+74giDd3XbsEHVJTQGZVqxBDEm14NvWwWUI7EJk31uRG84/T0hHffe5dbd26x2e4E34puf5/ceIAP3p1qb0E0WAs4LwzWPV4XB8KbSkSquLfxSgWo/IeSwdBP+vETA3zL5YpRXzMeVxgj/imQXpq2ySNLEWLHZrsSM8nRmMmkYjad07vIZtVTFhOhN+uCoiiZjO5SZAcsVk+IMdC2HVdXV5yenlKW4iWkjSLPJRX0tddvEQIYKw/WKpkFDT4yg+8HaPIsp0+MgCzPRXIYkElgFNx+u6upqlIuFSsvVoIDCowJRA9tvxZNePBpmiKLo3ct1uQ471lvGhbLDaPxiFGVfBOM+MXluWW329J3HbPJbTI7Icsy8S4JS3Te44OibR2de44PPT7KxWaMyFEGP4UYRX4RGQ6skAAW9gyXMAB3e37eDcC3Z/GFoflgz76K8ebQi1HRNw3Pzp5Qt5Lq9dpr95lMkuFqUPzf/5v/K6v1dUoBUkQfaJpmL/UJyUxbistIiJqvfeUb/PIv/2m0MlgFH33v+/zeH/4ePji+9MEHZFbTNSumUwHtxDjUoomUhU0bViZErasJiDG6tob5fMLxsaVrHW3rKfMpWZbT9+JtosgYVQd43wjzLkS22w1HR0eMRhITHpVMwLwPHJ8cyaFh5CFZI0CPFO/io4JSKKx45HlH1zeYJG/se0dmb4yCtxtZayF4bG5lYqo0KmpMLu/ZudSQBpJPBBgrAKDVkegDq9WG1XrHbHYIlJKAZ8Q0mGiom562XnB0eB+TiwfLer0i6h0mc7g+ijSie0FQjqaVUIcil5S9gcotlg46SYESUD5MyxLgd+OZFm9A5HS4hYEqs2eOynprupasHPHeh1/n6uoKh8VYSwyBO7fuMh/P+PW/8OtkRr7/g7/0hrAjjebLX/kgmWBH/vxf+DUBVJXi1t17xAjlZExRVYAiqMjd1x5wMpty+/Y90IblckXb9qxWG+7cucV6syXERtIvkzRVK0VZWEZVMjRGjL9jFAmRMpZRWVAUBb4P3Dq5TYyG6WRKXe+S12ikriV6HeWGpUI5KilLy2RapuJCLATKkSRpSnEoHhCKdDlE8amwNkNhyO0IlWnqerOfhre9Q+HRxoKC7W5LnucSVJKLv1ffdWkdi8eWsEfCTZCMdygtcgajHQTDrhYT9cl4TlUc0HY7lDZYlaVJqBSMo9GE2XgOsaTrV6y2K4pSsdl5xqMDnr74gravAU+ZeUajyb6wHEDyIQlTfGuGhp+bNZWSgeVsE8AzJu+m3gfOL684Pjlh13VcLBeIcXjG9dIznixxEdbbLcZkeAfn55f0fUpqDIFnz56J11jT8OLlC64X1yzXa16cnfH8xQuMtUm+FdiulhRWcXR0SNd2TMYCUAen6dqAtQrvOryLdF6CAUQCERlVI7TJku+dptA5ZTkk0WcMps7HJ7dEemNTEmkIzCaHaG0p8tF+qh2j4/ziC/GjM+LNNJsdYKw0fwqNsWMGPNSHZK6eHq2ENEmZIY1HpEzJe3lWEaOSAZ/vxW832SMI8y6w24nnYJZl2MyAHoorkSc5J2et9y41wpq+75KthyQGW5VTtw1t55iMp0ynpzjfYrywhSVgSmFNRpFXjKcHdI0hqpb15hmjsaF1gcmo4uzyGZt6hTEKqzzT6YGEZygB4XoxG03ejeBT4m8azuJ6x0cffcy3f/AjVFZycnxM3zV88xtf4ytfep+m3jKejJhOpqxWK7LcUJblvlEZjSrxyuw78jynzEuaukUrTVHlPH95Rl03TKczNusN14tFshnRVNWYvumIQXH3zn1evHxOVeUsF+IDlpclWS4suKqo6LuOj374EVcXF9y9f59MyxT87v3bZJmoGSSR1IiRtpNAkqwoExJk0KpE0RFzyItKmFSpwda5pSjGCYxxFDZDK0/Tn7GtPVpLUI4xlukb8+RpMxQdeaolJDFdqcRMIhKD+BaLX6lNzVBF2zQoLYmtzqezyOYQO2EEKCMNr+9RWrw0B/BXJDcRlMP1Ip30vpfaBE1dN1JPhQhGmF27ekNVTRhVBxwf3eXq+gXeN/i+p20jWmeMqwlleYDJprSNo3c7YnSUlaFp4WA24/zqpYTdEBmXkclozmq55aNPnoAdkakMbcHqKBYi67Wo/tLMzyjFyeEB+mguQGS6f5US1nxE2NgiSXaUueb+rWMyo8SfK7fYTBi4y3XLw8+fsLi6pO1rGZAoI/X6XsI7hJG4PZNtsQzJq7Lg9OQO49EU1/RJhpoGfMn3eX+fe7F4IcogO9IlVmiOiiXWFnRdLcnDscFoQ4xgrbBCYhrcSYqo31uCGBNTjXozTPRaZMektWmSN/MQQNX3vchJo4jVXbI5kHvVkGcjNpstu2aHMQl8yYSNZK0kyWqt8Y0AyjLIj1ITaS2gV2YJSUkhj0GLh2iE6DUmO2A6usNieYHWEdfXVNVYwjoQyTMY+r4WH1ljWG3WEDfkdpQ8WRVdD0Vxh8P51wjxkLo10sUph+t7ur4WP+oIzoms9Pj0lD/zK3+OGDxf++pPyQhjqOtVBC0eeF039DgRqyLFWAbmIWZpQCF9S4yR7WbLerWg3q3o+yYxEzuik4Rzg7CMY5QwnVfltUpp3n33PXa7nShViPgQOTm4xb2791hcX3N5cS7nMJHBYnfw5R38Dp00JQLgdUkeawACxmp6LxJgpRQuKEw2JcvnLJZbLq9/yPzggK71XF+tKYoRRaW4ffo214tPCekeyjJF6EXeqL0AfOLjl6c6J+5rs2HwDQJoW2txzqc1KAw7lEoKnZ4YhwTPCh8io7EQBtpW+hCtLYoM35XE2KG0WAApZdjVW0LUGFWQGZuY4BmZqWRP9V7OhhBY9Vu0scIviic07QhvGkzeoI3mIJtSFhV10yQ1kd3vZUmRVpCsadA6ZUzn7L3ZFfiuJ6iOUTFmnCxPjDUYm6YsESKW9bZludrQto0EP63X9F2N831SoUUGHzmjIjoqPGnIaDVZphO2oFJvAy6IauT4+JgPPvg12rbh8vJCQGLUHgzOsoLReILre66vr+hDl3zeYjovIuhhkJzq7H1gTiIr6MA7792mGuX0Scaa5wXzJmO32/DyzFEWGVlmxJc1gYx5PgDVHtf0MoRXBiI4Vye/Y0ugp+0bOreRP6k0vo9YDd4LkNdtuvQzSXiZzXIyY8RqJC8Zjw9wwbNYXOJ6T15OaLvI1fWOspCgpGpcCcOtd0QcbbtCIcnqZSUhecYY6rriyZOa1e57HJ0c884771JkI7p6hwpBgrmUBIGmR421GVZrlJFBqUhW5b0N2Ifs+8B8OmI8yilyS5bZFIglgyCtDatNx8PHL1itNzR1nYoxOX+VEeBcMhYkdNV7j0pBQQPorrUWNUDqO7VN6ozQYYMMOYbeUdoJ2cvvvvse4/GYTb2FqPfEKZWIKQOppRqNOTo6JrOa7XrN1fVVUotGXOfS3Sh3pXjx3ShziCqtszj4Dt3coX+MpPUv8vETA3yTyZjDwzzJK4a0kIguRLahlQRcNH7LqNJpEiY8XaMtWaaYTg4wqsCHIcGm53r1uRR6ViGRxTMODuZ7dpBK0xuRpQ1ottqzhORliCGlVpY8G+0pt13XURQVXb+S4lBbAWFcm5pFCHh6L0w+bRTOy8UmUdVOtPSA810yXZcF5pLkQxtF1FLcTyaHzGZzRqMxL84eE3XA95Gu0+TZAaNqLH5V9ZLeG6LakReKkAxRy5Hl2fMLlBa/nbKcopX4C1krybFd1yTUOgF0wwLZg3SDjE0OhlfBFdkE5se+Tj7n95cyJPAvSkplvdvwT377nzKfz2maHR988AFKKZ4+fcp//fd/k129RemI0VZk2iHuw3uKIkcZSYZyLhKD5vL8gvfff4/D+QkQuV5ccXl+wemdU1arJaenxxwfHTGdtvJOkjxyODSIlogUsjLtCIzGApZIGiLkeUFZ2rThHZkyRDo29dMEDqfCfWyYTmfCwANQMpMYvD8kwSim76UIUaar2misEbDFGAmk6NpeJu1du58Ixxhpu1YmOES0FU8KrbU0ycgFI2tTQRTg0vuwbz5jiPg2CLOHgM4ytMmYz4+YTkS+UneNpP/0UOQlk/GE6Vh8l9abS7mEswabB0mWjpq80rx8eUXEEVygyCuZLrmAzTJsZql3UpRGr4aegIHtMtCMB6BviGGHIRnyxqMABhN1IBU2F+cXjGcHTGcHnJ6eUpQZeVZS5BJD3nVNYpMKO9I7martQz0iuARwm/Tuy2rC22++zVuvv0OIkkq72Sxpuy3nl+d4H1ksFlJsOJEVnJweMxo1SRak9tMUOQM8MTFniBkx9GR2tH+3fddjtcXkkl7VdiuUEVCj6RbynHSSCGnFyfGJTHHSLxD3/YsU4TKYsilgpSWEHoW8D2EBZfTBUzfibYZS7OoWraUZFIlIR4hemj3l8TEI6y+9Lp+6Sq0yVDQonDTBUYpV53pikDM3yzOs8xweHZFnU6pqzmZXy3OPjlE1wRhLVUmDeHn9BEWFsQ1RddSdsGuLvAEliYLi0yqG0H0vU7ciz+W5iy4xQcNxv97UH2eIOidg1L6mVCzXG3atZ7nu6J0CrziczcltzqNHT3n7zff4tV/7Ne7dPiG3Ob/xG3+Rk1snjMoxV5cLilFJ02z5pV/4EwTv6dqaX/rFX2RX16zWK56/eEYIkaPjOZPxmPV6Sygsjx4/4/ad17BZxmqz5bvf+z6KwJc/fG/f0NR1TTUeczCfMB4LuDSknfkQcL1PzbxGqyCTQT2cfeD6QPBdCsYQb7Jds0TYTBHv6nR+BRQGpc2+wNVqCJDoQZl9MER0kUxNyPIRhC2928h5mkIBNustwppuJRUVkVUPPpWvMscldCuKv1FA2CBOzpUQNGUxTaDqlhCE1V6WEwkW8sKWCkYMn+dHRygKlDHyM4SA1ZrxaIpS4knZ9y0vzx/JWjMdSjfsGpcYczLYE98dTzbKUdj0DMWzV+lhgKqE/eXTNDmdK9t6w8uXT9Cq47XXHrDd7pgdjLm8uuD8+pS/9Tf/Jj/3s9/kz/zKn+Lf+Xf+Jh9++QN+/Td+g7/7d/4jDg4P+KVf/iW6ruM//Lv/IX/uV/8VvvWtb/F/+Fv/Lm+++QZ/7X/+1/id3/k21Xi8H8StV0vanaR7v/76W+x2Dbdu3ebgYM52t+Xq8iWz6RytjYAnSe67vF5ACDx7/pzry3O6pkEXJd578ionzwWQGNaASJ9l8DCkNhpdEEOPUjH5uBphDqZwHq0NKJHABp9UCwqIIof1waehUErkRaG0gEcDG8qHgPMbDBNuH7+HD57r5UMCIiHXUQaDgx2JVmJaLgqQHlSQBiUOYM5w3taoXoagaG7CxrxlUt2maR0uLuTeRjGdzNjuNmL8r8SXJysLdC6yo4vrc+q6xhpFWY4pyzIxRhrq9oJmtUArOd9Qgfq6S+xiRURYUAQJLADDJ5885OnzK7weMZ2OOD6aMzs8ZDquOCiFpaiMJA1nGqyCIhfvVZtJ6I02CrTUYzEFgAgTEnIr93VyTUvpiRZrNM8yzXRaYe2ErrW0TUfXeAaf674XL6rWCZNE3rOWBHiTc3J6h8zk7HZbXrx8xgcfvE9u88EI9eYs9h6fNHHG5CiVU5T3eeuNn+LWrbfJsozF8pwnz77H87PvE8ICpVyyl/F7KZpJZ53VuQC4rkcluwmtJDE5JPAuKiXSQm1QKqJ1SLWi3INDcJr3bs8S3qzPWW7O2dUbRlXJZlsTAozHyeOr75KVhLBEfRhM36X+yK0MWNw+iEN6kFE1pmvEC8xoy67ecr34VH4mKyCzeHpL2rP3ge22IaKJSogLWktI2GK5oe8aRiNLVd2mqu7S9GN6OiyWUZ4znYzRSksAYGpYZYijcCTZemJwahAAeJDWKJGMtl1HbjV3bh+jtcjclR56NYMP8OjJBY+fvGC7FXKDsTrVoAZNjkvvz6d7YAg+lNASICVIXl5esW9CFJTViAdvvEWmMyYTqX0FIJDkyhBTQ5w8QofUz947+q7j4OCQzeaCtu2IBPKYoTVkmQAnWjmuF5/yu9/+L2TY1nU411MUFdZUlOWMpuswtgYVKYuxqGuUldAyneF6jyey8zVdu8SFnvF4hDUGfMB1jtVqw3Q6pSiT7y3Q1J3Ud4V4TSptKYoKhYI0YAGfWEnJv1FJH2r1EW++9k1+9PlvY2xL2/Q0zY4sz7HZiNFoioqR1eoapTxNvSbPBXCxRvyCY1CEqOn6kmdPW54+/39STSfcuXPK17/yNWJV4fuO3OgEoptX1lAK3UoAjtGKzGpUYvcabSAG8Y/NNUcnM/JMpST3sK/DFdA6zfd/+Ji22aZgiIz57ADnKnzoiVESgZtmS3BS2yeeuwDzIYjM2fXU7RbrbLoXdPI/1zx//lyGjGk/DiDzuBrz3ntfoigqNqsV1ljOz19KHRU8gr1KjLyKkehvmH8KYfGHVJ/du3eCtYG2cwgo31ONRmkfu9TzQNdJ6m9uLVlMQ7TM0HUepQJlXiTbE5uYwj1N2yCxgxJC0fY91agkJHavc562lV6xdz2ZLShGI4y2ONeJ72QfcNEznc4IAbq2ZzQas1ytaNqA0pH1binDYR/QVoYREloaaFu5B7XK+PyzK37/Dx8zmh3z6MlDmu2Wb3ztp6Hr0cmWzBhhS5PUCyF6vDEiR43I0DpZoplEyMiswZjAZJJRWjBavHtjIH3OYjKLQpLhizxD6/RuYoTg8YVJd7/cAa7v6NpWmMRtmwZDMhCQ01sREju76WpiDOigyIxNntcDy1PUHLtdI4q4VAUO/rIJDEFjuHXrNvdfex1rc7zrqcoxylguLs9RvZXwSGLCi+L+X/JXiET/x+/NcEOI2Y/a/8U/fmKAbzSqyJN9jQ8+TeJbvOuJ0WBNhnMhTYsFxfbeo7RMIBWSkOajaPdhaEiFwSFNg02TtD1tQ15aSnJyXmQtmR1zNHuXuluw2T2RDQtEPNeLy4Sq12RZRtPLRvNeJpXis6Ww2qANaCMhCaD30wLZvJHMjJiO7rHZXqEV9L6lqibJv6ZPXns9Xd9QjizOaZo2sFw/J0ZFno2YHpTit9Z58R/SS4KvZEqmdzSdSwBQYEhpVSoyHlf0TiafXVejdSUsp6HR5eZijek5DcmdwuIL+ykc3ISPvNqYvUpZvlHwxgRyiUeStYY7d+4QY+Tg4IDRaMTBwQHL5ZJf/qVfxnlNVIar6yWZdmRa5NLaysRju+146403ODiogEBRlLz++gPG4ynXV9fcv3+Xx49v4aLn5OSEGANFnpNnIaHv4uXo+k7kPH0EpAHI8owiHzNIAhIWK4y5IElqIBtZfB7lUBmYkJKYO0ywpZAjAaDOeQEp7ZTbtz5gvbniavUQhRRprm9E6qONMPWynKbbitTRiTw8+JAmNtL0SBN8A5BpY9I0C4yaMpvcY7k6xxqo252sNScJPa5PQJevMZnGB8VyLXIaYxVlMSMfi89C09R0fZOAqBFicL8RnyEV8Q7cZQ8ppbYalzTdlt7V9K4lS/tQTEUFdBnWGggwMQDCctnJeSBrUO///wLC6FT8vSqh6dmsl/x3/+gfklnLG2++wTe/+U3KoqXRW37zv/yv+MEPvkdEpH8KAY4H2EcnsCoomdRrFMHD3Xuv8zf++v+Kw8NjlFJstxv+0//0P6HtWlxw/Nlf/VUA1ts1GNju1hwdWoqsFCmQFzmCdx0a6Hs5e4g1mc0pyjI1A+JRJMOYNB1P0+aYUqNiCMkkVwBQYwwxGXLL2vCJ8aCSKbY0N7dvvY/38PLiozQBcnR9v2dzaj2AXYq+DwlMTaYjShKARVbU7iWHNzJYeZVa5Uwmd1Pq2RUR+VmyzCTGi5wXTbsVEEJZ1ts1u1rYGXlWCTvBdezWyzSIgRgLcpvT+x3Ob0UaRGS5ugSkkSiKHO9bur7GuWGCbdLZFPY0djWsuihFlxrOsPiK916aKoNmu2u499ob3H/wFqvVgt1ul1ab5vXX3uKdt97mS2+/jdjDKN586x0B6rXh7bffkq9Ukbunp0QiWZ5x+/YdkXc7zy/84i+wWq3lYtZw69YtRmXB7Vt3MDbjxcszlIInT54wmVTpvhMA0wVPURZALkwoUhJuAldt+n3Ei4R0h8q0UiaEIrEYBlrDmgohvMJiGZgwyScIWSsCkockvQ7Jx04YeZPRCUqXrDcLQuxxrkM1khA6yCnFUkLMpH2SRig1rCNZayGKn8vwziSFeUisy8ntIa6H4IU5YJJX6RBSVDft0J4SMPRdg/NrinwiXmtR0py7rktDPkAX5NkYHzrabkNR5ARgu1uw9kGm60WO8y1tuxE/13ATFORTUNVQO6SlRlRwtbzm6GTGrtvyyY++x8HhEXlhuFz0PHn+nIurBdeLBS+ev+DFixecnBzx9MkzTm/d4cOvfoXlcsuzZ8/54uEznj0/45NPP+ezh1+Q5TmPnzzn7PKaaR/QGsajit2uZnl1zmv3H7DdronAwfwIpSC3BWVRYa3eh38NakRjDMvlkqjAJPZInoU9gOuVQesqSbc7nKvxoQalJElag9IGhUlDvgHokPNIknUD0Kf1LN/X2gE0jIkdpSCKzM2nIDB5zkEafi1AYd/1LBZXNN2WurtGac9u2zCdThMgmBxuAghrumegVUp9KGvPeWkgJJFc4bysea20DC4Y09SlMI6CgDVFkYsFRfK0cq4lRk0QTI6u6yjLMePxEfVujesDG7emT8ztqAKoKVk+wvmOvhOJuguexeqMGDyT6YjMWDbbBWfnz/n9b3/B737nh2TVAZPxiMzAr/ypX+bu7dvC2jFixaEV5JnGak3XCriXZTaBe5KyLRYNwvZXRmTYn3/2grbpOT45wlrNdrMVK5i8YlKN2K5XrLse1zlmkwmr4KlrR1UVEsygLKOq2BvnhxjJi5I8L7Da0LQ7/vnv/HP+6I/+iOlkwt07d0WCiEosDlkDu66mLEo+eP9XuHXyPlk+Z1zNiQhTd1SO+OY33ua7fzTmO9//b4hxgdIia1ck8MDK0Edpw/H8mOX6Ch/a5JcnNA2FSjLXlKytpAHUQdH3Akj7RAzouk68wtoOhTSjSimKMt/Xa8ZYiMKmEwDMEoKw7KISL9LcWhlUk5EXOTEEet8JU9UHNn4LIflFqUBULeNplTwYoe89dS3yZTmEM/KiTCmpLcvlFq12rHdrfOc4PjpmMinRHPH9HzzlfPGUyWzM0eGMn/r615kUOVleYqsCVJJlJxZM1DE1zQprIDcGa6TXMcYk9ko6221iziergBBkcGqAsiwoMkVmFAfTMSHIXmrqHZttoEvm9NInDX6M7OtoAQJUGkZIgCEJuLh95y5VMaLverbbDZvNhtGowOgCPTD2X+1F0l9urcVYw9V6CUoGmM51+zuy61pGI0kl9r5hsXqUCAHQ+Z7QZ2SxZHXl8FFhjUKrQNP4xLoD5yXoMVHH0r0qfnBtAzG3nF+eUW93eB/ZbB2nJ8fkecY+KClEfC3AjPNybhptJJm0GZLb+/TskjzYZlilGY1OaNqI7ltihDzPCUTqZsdut6MoSzwBC4TYyyBThX29qdBom1OvMj755AWYA9545wEvXz7lkzwjOkdwkaIoUEn2mtmMLBuIO5L8mllDtAa8JjNCYhDvRCgySznKWa0uefr0CX3bMZmNqcqSwmZUZcVkfkxVii1E3w0ySsizAufFE64JW7zr8b3spSjmnoCcbVppWu8lwTxPAXVBhj+yLsT/P0v1sA9gs4J33n5PrBaCDPMmkwl934p6gpueV46wpDr0g+dkBKP3Xyd3WUdmxW89yyVEQaT4RaqxNDHVP03T4IwQcbbbrdgn5CXGZuQFaWAgtlLaZuKNngaymRok2g15LiFfo8mYkIYdJstBybCgqXdUo4rdbgkEghJrA2PFu9oYkXEvl9c415NlkvA9ycY0Tc/goT7SFqMCm01NswuMyjG/9Iu/wHa7pSokOfgf/b//Ie+//z6HR3M+/fRT5gdzjo5PqHcNPvSMRpUk5CJM+szKOWmtAHcSbBT4nX/+bc5ePMcA4/GIW7dOeePBA6azGXfu3SHPM8qyIBDJvVgxiNdmR/B+H4rRth1d28iweUi6TcFgJPuzoRBVkDIROnRQ6Ix9/TfI6G9YnWpfAw7DiaF/ODk85d2338fFSNvIneRj2K8vTWQ0Hu/7lGGeQTr7pG9JmM1AjlHgYwoBG6jLP8HHTwzwxWhBFWKgGjt8aMlMLgiwkcMwywZ6tt9fACFG8kwOv5iebAw33lKCnstmFRnqjRxA/hnxSb4FMtFs246rxUvWm0s8a8DTNC3TyRjnW3wQClnbd3gfafuYfHEQyqxRBKPlbFTyvb0LZCbD9UEMSrOMEAoW14GAyEIUYrDfdC0xRjb1Dt2JSav82AXReMriGOd61utrmmaNzSJuSFCNGqOnwpDqBioq7Nqay8UFk/GY+WxGCI7l6hLvkuY8pOS7OBhBq/06kgv6xqNmH3rA/zg448ekltyw/vbeRHtW1mAQqfjaV75C8IGDyRTXdlyenROd5ytf/jLL1YJdH1mo1/lzf/IrnM4c27qW2YTJ+Pv/+BmPFhecbJ+htWZ2cMBv/db/h9dee8CoGuF8z7d+/luE4NhsNklSMaPI59TNlt6t8PH/y9p/fVmapeed2G/v/dljwkdkZFb6zOqyXdXeoGEaJGEIgJghCXIgckkkZ2atWbrR0tJoSfpHpBtphiPdcEiJxLBphiAJRxBotDfVXdXl02f4iOM+u40u3n1OJsArTev06lVVmZGZkefsb+/9vu/z/B5JV1ReUSRSxILwIawNq0JREpzcc51xUUho7chMsmo0LVUw0txTceIbGy3BxWJHrrLT2ZRF9SPqpkKZCus62rZlPByLCkLJBKnpG4LXtJ2VSXK0h7jgMSGKkyCGLcg0wfVSPIsKUHFwcApaJPdyWbAxSlwSMxViMXchkGYlaS7T9rqumE0uKHJNXhhpVgLC+BPLcdWK6iCEwKKqWSwqRsMBW1ubON+ymM9Xljtp1izt29GmsmxMBYeLKsTlWnt+La3UkKv19mwNPp+MBgLn3t3dWX2tcw7b9Tx5+oi26zBpJsnFKtC1TVTvRkagMbGQjDYUo7i4OOOjj9/nk8MBIaiodoWiKNCJXD7TNKVp6qia1GTpJdbGYqmf1ac4N5WUMAK5yYSzE9VxoRcrjLAbwPYtLlla6E2cAIIxKYkxccJnVn83E7ln1krjzXm58IGoJ+p2xof3voO1AecrtPHM52IHTJNkNamSqbaWtR8Cwdtn77NKUT4OVZTGO0iTAq0SSRLNC6wLPD04QmmPTtq4JwTaTtIl+8jHdE4KA5MYBsMhtvecnk5wvifLYDjKJYE2TsUSrUiTFNdLunXXeRZVxWIxxyQJV/Yvy0GNHNj6uUP1P1EVxzWxTGhbNSiVKEOXTUiC9DYnF2ecXDwAYxgOBmxurJNmCWUxIDM5Tx7ep20WrPqcWorLhGfnkUmSqO6KNwClyLOc7d19bt28JRw3J9auyfScrm85ODrEOc+TJ0/Z3t4Svpq3kuTofUynq1hbW+eFS5/i+rW9+OsecDZ9gNYT8E4sQsGi0Fjb45yK6hSD0Zk0BHVcL3E4sdyvjRGVgw9LHIAkuS6fUe8R9WRkNyqtafsF9yc/IihD31fkmWE2m5MXOWVREIKTxpvWUiD7mFQf2aMEKIry2ZQSj/PCr8zSkouLCXmeEeiozh6JwsXI3uKcpWkcIQjfylqxp2ZZLr9+kNN2joePnpAYxbDQDEdZxFXI/SJRmiSmBiotl+tFVdHEfeLS7i62duhM9ukkTSJCZGn9kn1oNWkNopJqesvRyQXTRUPddoxGQzSKvZ09Hjx8RNv1XNq/TJbnLBYLtrd2ybKC6XzCBx+8x/sfvsdXfvYr9H3D/uU9lA7U9ZzRaIBODEfHx3zwwYdsbG4xGBTs7W0zm804P5tw5fJVZrMZQWcSFlFXfHT/Hm/98Lt85We+hHfCCEtTs3pO6roCDcPh6NlAL0CaXOflF9/g8qVPUJRDqnrGo8c/4v7j79G0T8UiS6DvWrTqY8HEKvRDLd0CcY8KQUnIhdar4U0XGcZKRSi2c/GcJp6v8TPuhPVk+5aj6j1625PlBt9JM6BpGtIso2ubqMTQKJXgYqOGYDFGkWXpit23tI1ZC4NyhAqGxXxOlie4cE5wC0LoSTNRJM1mi7ifBLxToBKUymJ4gsY5xcnJMScnJ+xubxCKlMEgx/mo6FoOr1VK5xxKW+qmpW5qur4Xy7RNaaqOvY0rXFzMOHj6lCI3fOXnv8T7772Htz2T2TlVPed3fud3+JVf+Svs7u7xta/9C9745Kv8zBe/yNe+9i+p24qf/4WfZXt7j3/1L/8Nly9f4hd/8Rf4j3/8x5yeHPNrv/6ruAB/+qff4oWrN/jROx8R8MznE3Ij1r5r125wePiUuq64efMWo+EYZZ7SNA1t21OWI3TkIqephAGlaYoyBttbJufCy/zw3j0ODg959PAR169cxTtp2i4VHd7L3TeQ4nxK3bQ8PXiXzU3Bm9RVw3S6YLw2Ii/WKIsNLqbnaG3xQVwGlh7jpZGidUJdtQTl4xkG2vhoKRULmIl3ORBQugsBSY1NI5M5iG3KthiTUpaD2OSN4XVGmidtrbh86UWePPkYkkXkcUfMj1eMhrsURcl8NqHIS5qqk7rA9gQUWZ5JM0LLeaS0Wtk1vdNUC2Gk6lRCRbrO4ump5gvq5pgkS+laGY4WWUJSFIAE61XTCQ8feNZ299nb2+Ds9JifvPMjcI7pxZQ8zxmvr1FVlXBUx+soYZqQJKKESZIkBmQYcThpUdSISFHxk3ffJQTN7s4ueS53lsRoUIY8G5JnKd2sZjabUtcLktRQFgVdXUfLaYbRjqquUUqT5wXGyD6uIo99OfhN04TBUCxuzjnquuKP/sMf8fDBfX72577MKy+9RBbxKM+0L2olPFgqczrbolRLiAMta5/xOxeLOq7J5b1fmiZ939E0FVrNMSYjKOh6TxI5j7Z3NFERqROpVfNBKTWACYzGWwwHa/igKMueJBlKCEyeM69qdC17ZJqkcfgV65EgOBRCIEk6tEklCLLqSJOMJM+F5R3/glK/ZGILjlxSeQ8CaB+5xT2N9aRpLs1dDHgtjS+l6Nqe+cwACZ/97KcohiXVYsrO7hYuWP6H/+f/wC/+4i/w+uuv8//+p/+Yy/tX+MVf+EW+953v8OFHH3DnxVt88vXX+fDDj5hOzrn74h2GoyGHB4dkScLVFy7jguMb3/omm1tbjIdjthpLmi7Ae4bDEcXZgsFok4CibRuauqFtREmV5xngcH2P6/rVgDrPMqr5AtSyHpPPV4E0HXUqA/54R5ThQsRUxWTx7e1dNja3RVHrLRcXZzx69IDhcIDWiq7vyCLOQS0HFbC6z3gCwT1j9cnZ1LFY1NRNw/raOiEEsjwX1ZmScyjPC1FCxp6H1hIoFoLch1b2YG2iMyOsrMAqJhT3laWpJYjHeWEtWidDSFFXB+pmAV6hV0IfqQtZ9jC8IzhFWQxIs4wsywg42raJ+QlJPD9l2K6NoW962ran7UApw599/c94/Y03yIuCj+59wB/9h9/n+o3LTCaOf/bP/gl/7Td+k7t3bvPf/3/+KYtmwd/823+TS5f2+Ef/6H9kNCj5a7/5mzx8fJ9vf/vbvPrqK9y5e4eHDx7y1ltv8ak3PxXvBI553fOT9++xvj7m6eERr77yOm1dMb2YUNc1bdvQ98JAHY5GlOUQpaCuKiZdFxFbosgcjYZIoq70D1aEEGSAH2KzHqViPRcdKComqMf7v7Amlz0s6bOU5ZCbN26jkxRXNfRdx2x6wenZMU1TU5Y5ly9fwsSBUJHmzzX45IIu6+S5HgzSZ1AB6Tc8z+b7X/j6qRt8r738m9y4vs/p6TEPn/yAk8nbeN9iYnSxd9KE67ouyr4NxhQop7CuAWxkO0kowFKJsITbCndB1FTL/y+90D56mUOQB7OqW+Yc07Ytg0FB03QxFl3exK5r44eqsE5ShjrbooKXjdUkMYJcClvvJL45MwN629O3LSYNBBoS1eOsyFSDl8SjoCQFCBIIJXmSE1JJNuo6x+HRI7quYmdrSF6I3zz4GEHvJQlPlBbIZcQLQyFNU5x1zGY1OuS8dP0qxuSk6bI55Z4D0Idnk674z+WPr5ozPPvxZTjE8r+XE4rn/3v5Zyjkgj2fz1ksFjiXk5iEo6MjFosF3//+93n69Gks0ht6m7N99+eZTC9hbEtrJfGnd4FufsGHD35Ee/YuOiyj5D03btzg1VdfpWma1brx3lMUOX/t1/5z7ty6ymR6weOnb/Pxw2/SNEeo0D+nwhCLgIphHlqnGJ3hfMOziHth/CzVn8Eu/44ij101jWOzefl1YvMQa0jbtQQ1xVpLZsTWUxQSuiKT4n4ls3ZePp9FVZNouUQmiUxTQrTJ2T5ge4/ORPHqvUcnDqU60qKMibjgOs/FxRRJMQKFqBWTpKDrLYuqovYLJpNDrO25tLfFoEiJ1RVK+ShIFMXOMoTEey+FtElw1jKfNWhybr9wOa41uYzaOFX7iw2X5UuetWiJis2EZSNP1D9m9Tkt/1x5s59ZA+7evsPBwQF3b9+hzAv29/dRAf7L//K/lkZEkvPR41POTs65vFuidU/QotxwIeHeo1O+8KnX2B6JfTlNU7a3d9jc3KLvLe+9+y4/+3Nf5r333mNtfZ08pkymxtChee/dD/jrv/HfcPvWDaztOD6+x3sff4OnBz9EMUcpS+88Jm7QSoWoMFbk2UhYjkGSaV1MIdVKraxPssbkvVgCmpfBM8s1T0znBkkr7W0XlQxy0RiPR3GtqRWoXCbxHrcENgdhzRV5jjbS0O16AdQ6G3C2k+awcyjd0veOYjjA2U4k71YUq84KUy8ETZkPYhEcuLiYMulFEbeo52xvbzIaFphE7NbSJO/jNF0+ZxOBuaPRkMFwyGKxoKpaVMjZvbzDsNxaTf562wvn5rkGH+HPjfLjGhLmk6iWn01Z0Ya2bXn//Xf5+P49RqMRX/3qV9ne3gbnObh4zH//3/0/mE4vANkzBESvxRbkYzEZh0xBywDF9R6TZPzmf/Y3+Mt/+a/E6bHiwf17/LPf+ackmaGzll/6pb+C0tB2FV1fs7W9RtPWuN7JZ9F2rK9vcOfOz3Fl/xIhBG5drzg8+YA/+cY/xtrD2JiL0N5odUmzFB8CZT4gywrabi5KKhdTx6Jatq5FrZtlWRwuCEvGGDlnQoCutaDFmtNHW4vDYbQhSUW1Ph6P8F7Rd/FMigMjtKipeitg5SJOaINXwk3rmjhscXSupWtsZKU5rOvIYgJf39loy9Zxj9EoVVAWGdbKfjWb1lTVhQCbE8twMGBtNBAuVdeJGloZUQd1dhXmpIC1tTFrao3pdErfe3QoGazvMii3VlYpa4XTtVprq//LmpstKvYuXyUfjNAm4+johDRJuffRPbrWMi6G/G/+7t9BRQbu3/t7/0CSx43ir/+Nv05vZcCzt73Nrb//96L1X/Nf/YP/ChvE8ry7u411kr5d1zVt17G9s8d8XnPz9l1MVIY1fce3vv1t3n/3bV577TW2N9exNjLl4ue/qGu2t7exjSAt5I4Ar7/861zafYEsy5nPFni3xst3/wppssE3vv1PcP4UpWXCqZSKiBKNCWJ13Bht0qYJTbMg0Qk+qNX6d66n7yWhNz6dwtCMz2QfC7S27eI9C7yV4UdWpGQkdG0rgxRlIGRUiyY2tBO0Fpt413msE8B5lqZyx7OKPE9prAxpFIaqrtCAThC1v7NkqezZVdXI0FZFe3twJGmONilN3dJVHYtFR99Z8lKzsTGgKFNGwyHWRkaulsK77y0hWuW1SsQynQnwfjqZ4KzCqCEb69doas/aeMT5bMp3v/OnoAxFnnN4ckTTdPz47R/z6c+8Qd00fPvb32ZQ5ly/eo3ziylf+PKXqBvPhx/d49/++9/ljTc+ySfffJM/+IM/5uTkkM9/8cscnZwTSPnx2++zs7NJmiW0jWVWn0EIbG5u0Pcdw+GIvb1LtFVLnmSMhmPqRkIrskzKgiQOj+ZzsYkrJampJ2enDMZDilHJ6enp6gwvioI2JsA732MMtO0J7334b1HkUVku3KfRcF32kANR0bXtJELexS3T95187kFJU9cp+q6jrmUYMx6voXzAdhXn51N8gL3dHbJM6oUAdK2wLl3doeI6TuMg2DonqfY60NYLFtUcYxJ62xHcgEu7r3B8MqO1DTYyU5XWpDqN4QiiGJ5XFa4TxnKWG0l1dTKckx6DxsSAmNb2Yvc1KZPZgrbrybNcrHtZAtqRF0m8u8pZU5YZiUlpW7n/WStn0q/+8lf57g++R54n0thXjn/4//rvuHPnNn/n7/xd/uE//Ed0tuf/8L/73/PNb3+bb3zjm1y9cYX/1W//Nr/3B3/Ed7/1LX7rt/46+3v7/OP/8R+zsb7Gb/+d/4JHj5/y0b0nvPrK67z14w9wrmM+n1FkKXmWc/v2i8xnMw4OD2iahv39fXb3dunajiTJOTp8ineSuD0oxf1krYuWWHFy5JmEBqVpxnA4oqlbmqqGIvD+h+/zzW9/m75t+OY3DTdv3hALXaxDtFyS/pPhX13XGN3hE0MaazitFX0MHEvTjLatVzVk3/exYSSDua4XJNNwOMAB3lqC1mjJ58HZQJIaBuWQEBCWulJUdS1MRkQZVleNNFUcqCShbVsuLmbkuRT4RVms1p9WkGRyt6gWHSEUJGnJdHZGmsUaJAQUKc4mOCu4FGHBKRSR/egdeZrTVG3cVyXEcrFoY5hLQOkhg3Kf4UDx9a//R15/8w0JrOw6Pnj6Ho8e32dRTfn43gf84PvfJfmMYjGf8M5P3mYwLOS59Y5/9T//a548esj/6f/yf+b45IL/6//t/84nXrzD//G//W/50ds/5mJS88t/9Wd5/PgpDx4/YnJxznRywaXdXYajNT755mc4PjlicnZB3/YMh0Nu3rxJluV0fUPbrAvy4viI4DyDckBbt1FdnuKcJUtyml6eyaBs5CLK5621KMbyPCPPc4rBiMuXrkaFds/Dh/f5V//qX3D//sfcvXObL//Ml2TfGK0TlF/ZNCPpb9mLYYnqEPeBoShKikIzGEhgXllmKyGD3EcMo2FOCEQLNoDc+7RK6Lt+hWOJ+Lco6OgxJsMkCV3XSdq985hE+LPynWlMRBq1bRvDVWRoa50ThaeXFGcdw4YSU0jTVxGDWYwoCNMcQogqyhjOGRJGgzWy3HLz5hqPn95nczhmb2cPBZyfnmBiUNi9+x/jvCVNNA8f3GNja50X918EAm/9+C1+8MPvc/fObWbzKd/+9nf4/d/7A+7cvYs2hnv3HzCdLnjw8AmXr7xAVTccnZwxvTjj8v4u62tjrl27ycXkjLOzU5qmxlrH2toal69cocgLtDKCdskHlOWI2eSM4+PDVciMMJ4dzyYC0dmCoNu8l9CyJEljei7RcSV/PxluCt4lyzLSLKUoCna2dinLAV3T09QVjx895Otf/xO++71vA4E333yDL37x86KUVoZscyf+uay+j6VeYClIQC85nuE/Laz/F75+6gZfmqyTpzvsbm9y7cor/Mk3/jkfPfhDAguSREc9WXzwlBamKznra9ssmjOcq8lSSeFbpcz2DQThUEgBHZssq3RbKYC7rsfEJCKxYgjcUiv5GrGMyAXMOrn0iSIwwbWdgNstJCZD6QRI8E6UU11fS8HkJXBDKU2SaELo5HtKZeo2n0pKlDYZRqWoxKPosD6wqCdoEi7OZ2RZwbBIKNKCsixQytO2MT59+fduO7LMY2KSsHYqAnOliEmTnNHgEmtrL5BlpYCJfYgpp341sYJlQ0UuIVKrRKsXz2oXKfKeWaKWhyiwmkIsGzVLGxxA23b88Ic/YDwekaUZs9kMgCdPn7CYV5KGhEUHxdHpP+f97/1LUjqC0uQxyc75RCYWXUuSZhweHQGB07NTrLOMRyOOjo5pW2HwjMcj/vbf+HXOz2qsTfnErV+gazXff+trWHtOkkoBIpNcg8ZElWjKsByyqJaBBMnq7yfNFFFz5XkRlZARtOk9BpFNgySNaW0IXqESjTEZWW7o+gbrZApC0CgGtM0EnUiKkKRMdxFinpOaLDIpDH0rqgtnJYFK+EEyrdGJwJt9CCtF13yyIDEpaTJE6wRnPL5rmFcNbTtFG0NdtShlKPIMCoMPPW0Xovx6qfaUZN80k7hzlBwbuVFok9C2PVlSMiovsbNzUxqIxuD6Xtbac+rPle02Wr1Xr7C0g0d1qOK5ZmLcvZZ6aCWXtLYVYPr+/j5XLkss+eTigoMnB3z44Uf0fc9iPqEncGHX+dynf44337wKfk7dNOgkZd4k/Pj+e/yrf/d1ku4JWaLY3t4iSVKuXbvO3bt3aVoJNXnzzTfoupbFfBZ5NYEP3n+f4+NDmvq/5vHDY9q2Y2fnGjdfgKdPHnA+eYrSliRNxUJEtDxGNVmaFGKL61pAIwgj+bqletkkaUwTlaaS7S1eL5vwEqpjEkkUHAxGNL5lMBjjg43Fq+z/RbojCd20JElGiCDYpulI9IAiL6Xh562oX0jxVlgVaSpMI6Nlwuv9sqDr6S00jUORkGUD8kxR15UwLrqp2AyyFO8Ntg9Az9q4ACTFOUlEDm9tG9MIW9Kki4Eikk4WEHWR1ilZkqPCkGvXXiUxJYOixDlHtahwKwbKclmJdX25toj/dDEt69k+pqMCTzEYFGxurlOWg9VeFkLg/OyUEDxFMRTsmhHYrXMe1/coL7bbPFtiEDwaT9/2gObtt3/EF77weYaDNbGI4VlUcy6tXSKJVps0SVfJnm1TU9di4VvUFRfnZ9y+c4v5/IJ79xbMZnNGwxFZMWR3+y4f3nuE8xJUsbzAGWOwjUj4nQuRvSLJd3ppTwxyKZHhmLznNjZXbCeMNKVkffVWlLjeB8rBAGuF4yUMUI+OyqhhuUcIKbPFQ9LMCOelk5CMLB0yGIzBW9quIjEp1cJFO5LsucHEiXpMi0uTDK0TeouoY0hIUkmTd21N71pCWzOfz4RdFkRJ0tY166MBWilmc7HgaqPorYDx27Yl0TnKRDC2krVS5gPW1xISk4EveeGFT2D0kEExwFlLVYn6RK3ORqLdXjg+s+mUqpNgjjff+AxLQL1WKVlSsLsjzQVtFMSGF9EdoONnYuJN3nknybpGr/h0bddx5erV+Cx6ut6iVWA0KFgbrdM7x8OHjzg+OgJELRUITKcXbG6M43m/VNxpFos5a+M1fNE/p6iyPHz0I7ruhCwb0LeW05NzhuMBad6xtr7L0fGBKHhNtNb1jlzlLOoKbQxNfQA+xH1NLsoiGhXVZZLmK5WNFDoJtu/JYlPaeWGKusgRWlvfYDqdorWE2ojaKaVrLTevfpKDw6c0/WOMNtR1F+8jmvW1TYblmPl8CgTqqqaPQzAdm3ZSlD3jv2ZpKed3VLfkeUbX9bRdT9vWuOCEL9zUFEVBajReS9L5xvoYay3T+ZyikGLI9RZtEnobCMbGwawMh4OCLE2FL21KEtbZ3LrBhx+csLW7zQcPPmZ3fcjZ2YSdqy9gnTQdtUnou45qPgdkr57N5zRtw6OHD9m7tBfDCSzWwvnZmbgl6prpbMbh4RFv/eht8qKgKA1DBlGNCTdv3ZRQLefZ2doGH+hiCurR0QF7ezvyrDqxPM1rSSIlLJEa4o44OT0GApubW9ioQtHRApWlovir6j66VzyL6jSqOVOaThRRVbcQbqbr0SYl1RC8o4l7K0BQjsSCJIkm0vAarEV77ZDZbMbBwQFKGdIk5/BowubG+uoulSQZTSP7UG9rbC8q+zKGbUlyr5wFRS7FOFrTWw9BnCau8c/qreBw1tF1TVRQyxmzVFl1rfz+SZJi0lwS7a1nNl+gdSvNIAK9FQW3tWJrVSHQ9TL0cl6JOseIyqzrAm1YkGYGrXK2t/Zou55vffPrNH3P5tY2RydHDAaiKLS248mThxwcPibPC07Pjjl4/IQvffELFIOCo6Njvvvd7/KDt37IV7/6VWbTiu985/tcu36N6bTiR+/8hL4PfPjxAx48fMT6+gjbWtqmJksNhweP8ErTNBXD4YgXXngBhaGtRaQxGg6ZTi/oexcbnYL0GY5yRqMheZYJq9xb5tWCqm7o256NOJz68MP32bu0y9PHD7n38cdMzs9ZK4fPhsJOzrnlXVOI4IYszfC+p++6OFSVvVVUqCneQ5oWLFNfe2tlSB4CSZqhdYqyYp9uu44szwFFkglDVKNI0pTJZIJWhrZtKMsi8uQ8GEXf2Ti0F+WUNGMNg8EwYqdEzbhsRikFyhhWISGm4OD4Ams7CZMIniKTlPo8XcMr+Qy6rsMGcX5MpxO6XhLVl4NkZaT5J844TWd7vDWUmYbguXvnDteu3QQvQ7nZZILRkKSGyXQiqsM0YbGYE3BcfuEy4/UxZ2dnLBZzdCL4ocePn9DFNOCTkxPuP3zAk4MD/t3v/QFnZxeUZc7J8SGGwHg4hBCo5lP6uqJtK8piwJ07dyiKUvbNoKNlt2A8GjOfTTg5vUCGR8+QP847XFBkWtJ0s9h0SdOMLE3FZhwH/rN5xWI2Q6+Nmc4m/OF/+CPefucd6mpO1zaMRgN+4Rd+Xs7z54QwDmnALPX8zjqMksDIum5A9ZTlMKpbY5BQVGgqpSMrr5Vfb9LInFV4X5DnY4yCqlnQWy+2cJPgXGRm9x2L2YKiLEiLTMQBAbq4vnzEN/W9J8sMXWdXvMg0LbDa4oLGIKgB36fkhaSwV3VDYkYMhjnONfRdI4FKytC3LYtqQZ4X1HWD9QkHhw1Gw/b2Nq+9+gofffghfdeSZYLZWSwkQCpJNYt6wbyaMayH9LZnNp/QdTWjkQzyLy7OI9ItYTGf8+TgMQ8ePqTtHdlgSJpqHj95wvHhExIjd6dq0VAtqoiX6lhfW+funRdF7KD0KkBLxz5KkueMx+tMp+dMZ2L3DvGzXGIafPASwGOlsZbnCTrNyExKmeWR1Z+TpRlJvHsrpcjznNl8Lk3BztI2DV3bcXx8yL//9/+Ob337G/RdS9s1NPWCtlnwxS9+gWE5xBNW90AVgmQ9LF0uUXQTIlpIRSQJ+rl6+n/h66du8J2eHOO6BbNZxfrGmK2NF3jweMCiPsNGuTZB4XtPrjLm1RxtGuZ1g0JSGQXoaVZKMu997KgKv0XsE8K3yrLoWXfi3+9asXGU5QjnFki8uvB+ksRgO83NG2/y4cc/QaUNwUO96AhRjba5fok8H3Jy+gQyQ72oGAwypL2qJRHTRdaLk48kS3N65wlamAVay4EHLV3bojTUbS2TXA1FntH1HcNhxnCUUVUTsiwnTVO5WMYOvXMOgljZiCBhUTUqymJIlhXk+QithwwGAwjQdu1K5bbsPrNMMY1LaGk38mHZyHvW2X7eJvn863k138r24CQAQik4PT3h4cN7capaxx+XeHajM/H75zkmaTk/PyNPS159/Q1eevmllVx+ydiy1vGtb32TqlpQLeZ4HDduXuP45JD7Dz6iKErKMuPk5AHenTK5mFMUQ7JcU+RDZjaGVARpinV9HzepiixrmE4WgARvLK1Dy0RT55xc9K3FhJjsF62SaUZUrEhCr3PCesiLgt4t6PqedplAmmTYXvHKK1/ix+9+D/QE5xxNvcCYhDTJGI82MKbk4uKIQKBazGQCmwnzQS4xKnKOFN6LSqHvPUrnYiuylvlsIfaPIE2lputAgzJLq2egLAuyXNE0FcakaKXpbEXfC4jVu4yU7FmyIQJItdaRmAKtC5JkjHWa0WiN4D2dFQulW/K+YtG4tAwsL13Lht+K90hYWSflDP0La03ig6jrmvPzc9peFLsEeV/v3bvHBx98iLeOQFTrFfscHXzIj9MzEsR+Zz10NmV+ep8nDz9E1U9QOD7+UP5ub//4bU4//7nIhHEsrf/eOxkWGEOWSUP2/Y++wZX9XU5PJ9x/WJJmMB6vczGNiU1OvnPnLHmeUzctAUddtwQncPU8F4WS0bLOmqYRHoxz+FZUMq4LsfiUQAIw0RIqSt5AwCQpXd/R99JcRYlsfn/7FuMRPD7+NsEruXgAaZJRFGskJse6ShggraRPZ5mWRkrw0SYABE1vXeTgBUlKSwxt23F+ckKRpQTXxYmjJ8kUSWZoapmA52VGWWb0VmTlJskkIdF2kTtZCOdRK0m+MvI8VVVF8BqnNZnJqWtHng+inakXuL5fqoyj3TQC85dxTD4WmCuF8tIG42U8lpiUS5cu0bQNiU4YFiWXdvfY2txia3OL69duYQNYpXj7/UfUdcv2egpIYrXY/jSPDiZ84vYNru4NCT4GBSSG27dvUhYDDg+Pmc0LvvCFz/Po0SPG4w2G5YC2banqamVDNsbwx3/8x5ydnXHz5k0uX7rEt777NbY2RzSNwJCdsygzRylNUYzo+36lohZ1QGQwth7Xe5zrGAxLGWwoKVAmkxnra2sUZU7bCrOs7RuC9+RBzjelNElarIonCY+Btq2xVhSdy0TfjfEGW1s3+NFPDgg4+k64sGmaxqFAg0mQQI2+iwWVjsxOuSl7vxwcabKsoO8djXVgUuaLBdXijLIoCUEg1aAoypwkMRIE4ES5l6TR2p4akixZNWe6uiMxa9JwIAFlUHjytIjBHUrUhdmQpvaUpQyobG/FAhuZO0rp5xLNZIo/nVzww3feZVHVbG5tcufObfI8I0szuq7lP/7O77OYT6I6OkEnkjibJcIdNMZIKnqSoBJ5H7RJyIxha2uHuy++LOqOqHjWHg6PD3nyWBohg3LI2dmZWAjbFud6di/t0PXdao9tmgbnPMOhND/W1kZ4FZl4SHP8o/t/wscPhBM7Hm0QQiA5LWi7Du/nSPpjDpH9672jQxRJ3snz31Q1XdeyubWF1jCvaqaTGVVVs3dpj9GolDVAoGoWmCUnyYjtVdAAMhSp6gUhONqmp60rtEliomhCmqwxGsLFwSOM6QBhidoAbVOzmC9IU42zbWy09dFaKxxSY1JBI+gEjUeFhLbraLqGvnd0dkpVNaLaiYFqJtEMTCGqzr7HECgiQN2YmD4t2U1Y5wm2x+giNrByQO5CWmsWswWJKWl7TzYccHy2oCPh8OgpOsk5OTple3uP+WTBbF7xiRdf4j/79d9ke2ObJEn41V/+VbZ3twgBtre2uHf/Hhub6xRlzle+8iWu7F/G9h1vvPFJqrrCOsvTp485Oz9he3uLqp5z6dIOP/7hDyhSw2QyY2d3P1oKB8xmM46Oj/jd3/03vPPOW/zGr/8aL7xwleBcbGqwUhME70GLgn86nXL58mXqumY0Hq0Uw89E1vIvfe8QDtXys8vp+5be9vFsTwg6gG1ovQxjA7BYVKKqVGLfz9KSrBjGtOSEshyQZiMKr9jZIQ5yc/q+52JSySDGLBnekkQcVEyyVFDVLYlJKfIRbVdhnTR5lBIVfw+yBoPcFUFh1PI+3GOtJ88SURahKPIBSSoW17oW3qF1FYF4l4vpjr3rV4Oium4jEyuhbRqyLKG3ToZ90Ro2KMeU5ZiT08dSyDJg0fScnZ9xe2+X8foGa+N1dFB0bUNmDHmaUi1m4CWFtK4XzGcXHD7xDNfGXNrdpa0b0iTDWkffzqgbSdWeLRZMp1MePX7C4dGRKJpx5ElKYuDunducnZ2BFoXc5f198ixnNpnTNw2zyQVNUwl7Lii2h0OyPBeb3HzGdDaLd8x+pZBZqu2U1pyfn3N48BSj4PLlSzy8/4CmrgjeEZRgkBRisyY6sZYvOYcG6BBWbh6lFIqEJJV9oHed7OeR87hMcU9SacAoJ03BJJX04ywOnFQUC1jvSE0SVcoZKmjyNGNRLTAkFMVAkElBszYcMRqtMaskzKdp6lizBnSQ+scYTd+JkwwUVVOTFSUbgx2Ckz1ehUQ42L2l6qYE3+K9o+07vLOrJoBJNFkqTcUQm5Zt5wQBpUvS5DJdl2KSlIuLCfPJlNFozNnJBePRmLu37jDIS5y3bG1sMhiU1G3F0dFTnjx5yOe+8HmuXtWSLG0SXN9RL+bYriFJNHVXcXj0lEePHnL77l20hqqqmU0X+L7lqz/3M7RNQ1tXdE2NBq5evSpNbRfo21asmJMLmmaBViE25sXpkuYFozyjLEuU1sLD1poyL8B7+r6nazsWi4rWSmBHkoga229CXhR8+NFHHB4+4dbtm8xnU548fshPfvIOX/7SF+F5RJVWsHQgKY1RSnoYkbFmTEZvO87Pz6NDIiXL0ti4ldwBTBCXFJLya51w21+88RVevPMFsiRn1hzy1jv/kacH72ESg+0dqdb0vhcBgA00jWU4HNE2Db31NHUlQ/GsYFCWZLkWNJKSBvFgOJQz0lqs7clMju0dJ+fHKLOs9Q1NF1DB0nXSQHb1nK63eDwWS2Z22d97meBrenfCdDrhD/7gD2mbhhvXbyPoIcWlvUt84sWXopoucHT4lMn0nLsv3sI5S5IYyiLH9S31YobGkxrN9OKM48MjxqMhv/Ebf5UkSfn43r0YEhT47Gc/zWwyY7FYRFtuT5HnfOITn6AshiIico6ubZnPpnL3sRIkaBJDlufMZrOVC1QZTTEYRBWeqPG0UqgAeZ6T5cJOxIPtJSil73qqRSUNdW/Ji5zJZIp3gbW1DUaDIYtqzg9+8D0ODh7z4ot38N5xdHDI+cUZb731Q65cucxLL760cjEsB8iBIPva8n9BrODPK/eWdfZP8/qpG3w/evffMx6lpKni/oEwSLq+Ik2GIGHpWCeXnqUaamnZaesKhZNLgoGubzg7FSvB3t4ORanogkyl27oRObuPoRFBicQ0EytXXdfCGAueuqpWypFEj9nZeJmHySnT6kOMEnui9xrrPdPZBaaaY1KBNyYJdH1NlmZiSVKiuFEr4KKWYIxmgQvEVKNuNQUEsUINBpKq2XcOH3qyHJTu6DpFUZYk8aAQ2XETF4CnyMc41dO0s1VynffCGrEdkCeAZn1dfP8XFxexwRcBo88desuFtGziLS9hS5XL86/n7bh/kcP37N/BWreyfflQijKla1fTFbkIwtWr18lSsREPigGD4Rree95++8eIrFCvYP86Sp7zLGVrY53FbM7Xv/6nnJ6ekueFWFrThB++87tsbOQYowle40OHtVPSrMQ7h9GJgJGR6UaS5CtpdlPVuODZWN8AkBTC8wsIgf39XYajMipDRVGVJCk2qhZ9cCTGkKYZ1jkW1RxrOwiBPqoUWttAKCnyDRI9ZNYcY5QiTSVOvu8t5+fnKDXBJNIYKgaJhIS4RJLBlDT0go6peDja1jFfzOgjt6hr4wUw0RgDOEc5zEU9YD194smNoe9bnJfk4CXwdSlhX37tcLAOxjCZHqOUiimC0b7nU7QqyLIBm5ub+BA4Pzuj67qVak+vVELx0oU0XKyNvqulQA9JWAxRfuyfW3syZZTLnneBt956i6CE49V33XMNm5bT81MIjqbr0eaI3330NloHlBM5+mA0krRrJ8phoz1pYqgWFdY7Dg6PuJhccPPmTbRWzGYzuq6lbcVO+9nPfpbxeIxW8JMPf4/Ds3jxU4ausSgTbSJaprCegLUSEqR1IqoqD30n3MjxeJ08TzmZTZnP5zR1x9raiN3dLUwiOjwf1HOScOj7Nlp+RVrfNAJWdraXNRJUVADJdC7LBnQdBB0ify3Qe8t8fiG260ITgqMoU5qmw1oIvSj30rLAOyf2iPmCuupZ1AuaXi7Cwity2L5F0pwd5aAkywcxFMEhHCqYzURpJnbAXi6CMRjJewmneOHqZZ4cfCAg3GhlTNMUQkqWbpBlQy7t7xOA2WwmTZfnVcVRCb60UIa4lkIILKl9S57r0q5LCGileO2VV6P6u+Xw4Cnf+sY3mc8lze1idoZVmpNuj1df/Qyf+8we2DltY9FphvU5T//4Y350/5DTo3sY5VgbjynyjLOzM27fvo33Ytt57bXXeOWVl/HeM52Kuuj8/JzxeMzDhw/5p//0n3F4eEBRFFy9epUkSTg+e59FZynygpOJFI3aKJQOWAvWgrAVPX7FuYxpusrQdlFpmCccnxyzWFR4D1Xl2N7eoChyXLDSULbLYCVp5Ckln0Ge51gnqfN4MCrBZBnO26hcBqMLnNVoYmgOMtDxffwsvah8tBJeYN+r1Rk3GAxERYjm4nzCYtFgXWDR1DEFvsdZz2wxl9Tq4BkMS/Iil/3OeLI8xTlFN+8QYWGgbUWNLAmqEqJVFkOuXbvOweGHNG0Vz9BAlpVohgzKbUbjLS7vX5Yp/2waPyuerbV4jC6HEn3f8eDBPSazGYPDAVeu7EvzUymePrnPv/7XX6NbJeDFpPNowQhRqSv26BQf9zuDwXU9m5vb/Df/zf+Wuy++iI9qqXfe+Qn/0z//HfIyp+kavvKVr7C9tU2SFjx5ckRiFCFNQSuquqJtpIlSFiXOO6aTC65euUxT188NYECZGttfoAw0vex781Yau2LdDlRVG3+NQPbTTCbPiZE9bjBcwyQ9eb5O3TY8eXqA94GiGDGZtlLMpAm9bSnKkq4Xi3nXd7RtJ/yvaOfW/ZI/21MOxqt7S98v2VM5Sido5ei9jZZ1i/eWgKa3WgY/Tgo670TpKgorGVg1dct8PpM9jUBvhUtctz3eQqUkzds4S5oN0FFlqpWnKAq8TXC+w6Qhqreg66VJZJ2j6yo21tfY3Nrk+GSCs5a+c2idok3GKN9ic/0FymLMiy/u8cK169w4OWY2n4mKtXNcf+EGt2/e4qXbNyKvyXD9+m28EqXO5f0rYvG0PYrAb/7GX1upMn/+Z3+BoARZ8/KrL5EVwlPSRvHg4SO2dndJFexfuszN23clYTMRHM7JyQk/fvtHTC8ueP/997l8eX9VjHhhgLAKw3JgE0vT1ly+cpnJxYTtrW25zkWJ9YqhHfEcfS93HxkeSYiAqKssbdvSxQFZkeV0vaBM8kERBwIeHxRJWjAoR1x057RdS1kmXFyc4pECiehIMDohywc0TcVkMkUnYmcblKLymc9rlIY0SVgfF9TNAmcVw9ElzqfHhNCIpVtltF1P8CVVZcjTpRJfsTZeF7uiEzdD8IrZ/JSyLCL/yRIIdNEGl5h0tRF4PEbJc6R1L3eqyUSGp504ObY2t+n6Huc6vO85vzgGZTDJBlf3v8TkHKYLePcn73L12g2qWcPjR0/41Jtv8tf/xt8iSTRGp/zaX/11Ac9by527t3nw4CFZKQ3W1155mY21NVJjUMbw+uuvsrW9xXQ24cMPP6C3jrt373B6dsbNm9d4/933mE/OKAtBBRWDMVmas762Ttd0LBYLPvjgPf7N7/5LvGv5xV/8Ki+8cF0CM7qWruvpuo6279BpIsrmINWhivtMCJanB09ou46NjQ3Oz08ZjUZxUPdcnfJ8cQPPQnbQ2N5RZFmsVXqUEm5dXTUE5bFeUkeF0SzDMJOIuqfre4q8kDPQJKKwk7EIznnqqpZ08EyUpEqpmGKaUpQlCrNK9x0MxqSm4OjwDBt6iiIlS0pUCok2FMVQhluN1CpFntL2LaG3TGcLLs4PGZSpYK58hg89aZahncGpgPM9SaYwqohJ5D4qaKW2diFgTIH3gq26fetlXrzxl5lMFWn+LqenZ9y/d4+m7rm8f4Xbt25y8/otSR9X8Pf+13+f3gmK5zf/2m9ydnHOYDjAGM1v/sZv0DQtRhuu7F/iL/3iV9m9tEtVV5yencZUYVjb3uCFF67y7b7h7R/9iA8/+EiwLSajbVrW1tbZv7QPXtG3DRfnp7z73jt87/vfwbuWl196ictXrrB/+9aqXl2KYJqmoW87pjNJw1Wwqn9RGq/EWrnk2SVJwmwx57333o3numdjc535/IKz0zNRS+/uxZ8Tp4HYwJcs6+WWpla1pbAOzWoAamICsfSt5c9ERUxIYvA20PY1P3znP7KoK6qqYzI9xrPAe4VtPFkyjMxqz2h9GPcZR56XaJViuhYzSMjTQcR2edq+IngbXR5wfnGCC72sXA+967F9J44BDdY5EpPEgBSDdZaubzFpFge2CWky4BO3f4ly8AIqPEbrMYvFgrquuX7tBhvjdfb296nqOVubO1y7co2qrUmTlP/ib/82ddsQQuDa1Wv89t/+bYosR6H58pe+xM0bNyiKjOlkgtGCgPmzP/2PfPrTn+LmjRc4fHKf2fkhp8fHnJ6dsbd/hbauIHhefPFFtre2WMxbVID5dMLTp4+4d+8ejx8/JHjLtWsvsHtpD6UUly9fYjwaS3iJ1uRFsRKfOO9om1Y49dMpYVm7dnKXfb4mA/Aq0HlLY1s0Eo5jnePJ06e8+95PyIuMopC958atG7Tv1hwdHXHv44956cUXZegUniG/pK6NDb6/IK76/+frp27wWX9O3dfMGumaw1JtoaQTb+SyrlH0rbDP0AbvoRyMaVqLMTvMFqc8PTjGaEnvOTyu2dgwcZqvyJKSupHUl6qqYuEHg8EApQOJEVVf8J6iKEUOqTxdKw+J8Dcy4XbYXibtatkkasFFbppS5FlGwEhKmdKYNKFuauqqoWnbaCMW0HjXOerGRnWCwXtLmhmSIE2b4D3aaIpshNEZVXMBOCpbxyhvuRRVzTzagSQddsmLE0++NJd2Nj7BtSuf5M6dT5AkGVXdcnx8ylIWHFa2tWdsimfW3ecbetFE8+eagX/+a4SfyEoaraINwQeZlmVZRtPKAWWMYW1tje3tHS7OJ3Rdy/mZKDhDlKJeXMxYhjFIebM0byuMMjF1T5JfB6VYsKztpePtQrTD9PRuQe9CZJJBYozYW+oWTbeSvSbWgtexgSBAXOcUw8EmZxcnnF9UJMmALMuZzHqsF76DUooiz2k6WXd1vRDrb0zHMSaJ60OSxopsJBbN4GnrJdcljXagnr6TgnzJngre0vXCyDBpRlkM5XCOFk3rA027kMtZJ0WbtTKFsNazqIUrWRi5hKaZKGSWfButHXlWkpoB88UFXd9Rt3N625GmMf67acAHprML0AIZfz7lMM8yrl1+hWuXX+fll18jzXOm0xnHJ6fEfBVpoHhJKXpm8eZZQ0avFO9x84wK2L8w5Zf/ULHAlO9vOp1wcPiEphbF2qfefJO7L97i9/7dv6XrO6yzDDJNWaScX5yRpSW3rt/h2o0bEnzR9zFB0pDohMODA06Oj7mYnHN2dsqlS3tsbW3yox9/THCSZLq7s8v1G9dZBpEYA12/IAkmBm8YgpWpa9f20RYpzbMslSlalmYo5UmzlI2NPba29qiait7OSLMBg8EWaZZyMW0xMZU7z4XJUiNMGO8cSapQdKRJT2IM5WBANW8lyj6BzBDTS3tMkpHoAUrX+GgJSYym7juUUrS1xfU9rXEMR2PhDLYt3nvm87kUVfOZhCRZhyQMCQ9kMhNFT5Gm9E6CVoogXBv59BxlMWJtvM3Fxbmw5rC40Iqlu+tjKmmPc+fcuzdBGVG8eh9VIipw9fJtbl//PHfvvMZwNKaqap4+ORQmpTx8sYlsVwfvKjiAZbiGJGDLPhj/G5jNpVFYVVW8hAkU/8++8U3mi0p4utrT6UCy8yl61zKZXICbi3VeJ9QNtM0FH378AfdnH6F8g1EIz0kbvvzln+Hy5csxDEj2y+X7ORwO+eCD93nppZfI8yw2GuRVVRVPnz4hK6FfpgeHyBLsw0r91lkrnMJYnKogDXBholrG4x1Gow2ss5TDjiQrUSQrJVfVVixDYGQ4IvuK0rKXN52jdy2JUZg0E4t3koPyUTUcaLuOJbNziXZQ2qDRNBGH0fcBHxUEg+GIxBiaqqKqxGoblsO1IEU/SpNlorCY1zVKJaIO8Ja+60X94VgljZdFwfraNmfn5zTtXC5pXYvWAdd7JGAqYb445969BegGFYONhPGXcf3KNV66+yVu3niF4XiNum54+vQwJueqOGxgpV6T91galru7OyijIqs0Bs0YKR6GwxF5VkSmpoCqu65ZqZNDcKBTSZDUgAsoF7BJj7U97773E65cuSLp3EoSkxf1gqzMGI1HWNdHNXmgaxpu3bzJBx++H5Pk7Oqz/u73vst8PifLMm7dvMmTJ0/kWY1nfdu0ON/HoYaoDJLUCPA78n610lR1LQ6KOCzKspJBPpZEcedIsgIfBFWxtb0bAwRgUA5YLGZUoUObwKK6kL0zrpcsTUWtsMTiBI3tFd4NCEbjQkuaxqK7FTcAQQYFaVLgvAMveJbBoJQi2xQ47UmyDAXUiwXOy1mstDACTaqjjUmRZoYQJGE7yQagpUHkrAyv0iRBAj4ltXY43OTk9IS2ERVz0y3IslwK6fiMTqYn1O0JxvRxCERM9Eu5e/Mlbl7/DN/6zk+Y1ceMxmPyLOPKlSskJqHIh+RpzmCQopSk1mqTyO/tHUZrjBZVd2oSAp4Q1WbL51FrTddZ9vev8Morr6zujGkmCa9FKsrM6WzBxx9/xGQyZWdnmwcPH3Dt+jUe68DJyTF914qqKg6Gl0yqFSo3SSIz27C/v89oNJJB6PLmFb9QISq4JMtiCrYUwNZLsF1AuGhJLvebKjKX01T+7OiqIi8LOttyfHIg90WladuaalGhjIoKnyTu/dJ8GQzGorBSnjoqyoqiJElSUfYZUQZ1raXrAlVzinWBvBgRgsV6Rd1WbG/vUXcP6DvhOjZ9jZvI8MrF0L80zUArQYQoJWcR4sCwzmGVokgLdKKwdU3bSEG/WFScnZ+T5gm7u5fY2dzBWUvT9DRNTZ5LmE3dNhiTc+XKJ9jbvcPubsbO/iWqekHXCnpj//I1bly/jlF+xXu+fGWpxHRc2tnj1VdeX+1pn//c5/nC54m4D8Vv/dbfFDeLcrz22is8PTjk9PSYra1Njo8OWcwmpEnK0ycH3Lx1m8FwzHh9Aw/U9ZyDo6d87V9+jXd+8hYGR15k/JW/PIzuI2kqSKMkiPXBCPZAhcjoDLJ2jk+O2N7a4saNa7z7no0BAGm8Vy4Z0s8ECM8PY7quBeXindmjVcHG8A6Dcos0TVk0Uw5O3ieEOjbi5M7bdT1t00joidYkSYZzHhubAlITJPHuL6qlxaJB4yjLIRJWFUjTjNFgSJoU0hxWiu2dHdmz8bT1FOc76rZmNp8yny0IylMOSrpJj/M9Xd+Q57k0k43cia3z9NZy8+aLvP3efY5PTtBGAgZ6C721UeFvyFKZqHetjeFzBq0K2vkaDx6ckA3WuXv3RV56aZlyr9lYlzupd32U2OuVatdGdtnlF66tVL1725ekTukto+GYvUuX8XiSLOFTb36Ke/c/5vT0CLexwcf3appmwc0b1zg+PiHPC7reUY6GXL78Am3TUdUN5+dnfOdb3+Rr/+J/4uT0ABU877zzI371V/+qWLpdoO36yNoTi673jq7tsNrG0Ai50CiWrDwt/P9YaxwdH3F4dLBCDczmMza3tng0vS8OtLAMWAhxQBdT5+OWJvdJqXOW9lSC7F1pmtJ1Dts7CbJIM9IkF7u/6zBak2YKXUjQ0dHZ+4AB08uwNBhGww2ydETwgcnsdDXYb3sJbFLKoZRH9YpmsYiDkkQSx42ndxbbC08ySbUwwnVCksgepZA1VSYinPBegk5NmmJIxQ3Z96jogHvrrfcZb80YDgZcu36VIi8JQYstOYnjdL+7egZXqrTACldDCOxu7uIjU/7O7TVu3r6D0rC+scGrr77C6dkZxsCTpw9FvT2fsrGxwU/efY+iGHA+uaD3jq2tHdbGa5yenjOb1cxmEz766H3+6A9/n+9//7ssFjMUnu3tDb785Z/hs5/9POPREGfl+a6qGm0MbdfF+7ncY+xKlBTDVYKKwU1Rn7L8+6llYKlHaUOSShbBO+++LUFDiWYyEddeXuS8cPUFzs9POT87f9bQ4xl7niBneCRkoogtgGVtrJagip/u9VM3+NpuQefOILBS83gfItNMihiBoyoSnUBqKIcjUQIpRZ6PUSYjzXN2d/fwXlRB3jlm8xaxikjXOQSx7CqtYpy9ou1FBpolCV3fE8jQQdMHsWtorei7HkKO7RVZosjzgraTpNXgU/J8gHMdWdpjEknhs9ZSL2b4EOhsbNJovZK/Kq3kIqjT+BAn2OComxrTaVwpCUAgUu8iHxB8IpaNxmJSA6GSB1RBWQ6wneJicoBKKmGzuRg7bwOZGXD96uu8dPczbGxs0fU9T548Wdm3nqmqokoq2tieKfOISij/3D//vELv+dcyMeb5IAQf+TlKKYqi4PxcAMtLGHeRDxgMRJW3qGYrRaV1PW3XAEsgN/jYSFhOE3xI0AFSU0QmoTRg67aiazthRcwv6GxcT6tgEHmflQosFnWU5UtqZ54NKIo1+l4UCVqnVK00RdbXN1iCx5MkZ75o0VrTtg3z5+xAckmRS7/1kcvixAabJusyMfMNWktzpW0tUNLUgTRBLgzWiS2ANHJ/GtJUoPa97em8pWslrKDtO5QRXk2S6hWYWNiBgTRZSqx7qrrCaM14oCkHAotPoh3Y9halCkn5y1JRliix8OZ5Qdco6uYCnfRkmUapJUtPM8iG7G3f4qVPvMnaeJO6bnj06BHWSqPXeWnQaP1s3S2VWqtX7Ph5wurnlg3Av7jWlmtLay32TS2cHB834qquyLKcjc1tjo4PMSZlOBgxGo6irbagaRreffvH8XhfpocGtDKrP3NtvAYEjg8PODx4grM9g7KMajkjaY2uZ3tri7pe0NvFaq2JXd7ESZjsDwJwVrhekWclZbEOSmzMKkmYzKSpLYBlmaameU7fQ0DTtoHpTJLvQhCLrNjGJQE0SVKU0lSLjiRZQ5mE2eKCNJXJddt2kQOjMSaQpaIsNGnBaDgkSRJBB6TRIjOdil2ul/Xd2Z6AKP/SNI1FfjxylCIvcmzvqRuxbMpnqFkbjQXuHEOeqmpG11nyTEDFjovIvzOUaUnbOPq+wToF0X4QAnin0cmAMt/h1s1X2N66RNt2PHz4kKZtRBHpPD5I01XxLJhlubctl9qywbf6+YhTmFxc8PWv/ynDYUmeZ1TVAq3g6ZOnJGlOmmRMz6c0tsEfTTh+/9v8btIRfIcKopBTpqDrU2zXYkKNDlae91gE/9vZjGvXrsua9V4unEHWQdu2TCYT/tJf+sVYuEnKat/3nJ+fc3R0xObODPSMZRpk3/eUkVW6bJL7ENBBYztPkmQU2ViaDe0clJLmYhDYtzEJbdNTN8KBNCajaWY0rTR+gg+MRiNcJ1+jFQyHQ4JJqCpLorfROmEyOyTNLHhHphsSPaRvSpxxZGkBIZBnKWUpavSqWmB7S93WLCpJV/TWxX3Ar5ACciEPeOfoeksWlZyzqajwre3I84KmsYyGQ8qyZDGfYV3HdHZG23SsjXfRiabtT+l6YeSKfdXR+V6GZ8GS6iSeOzl5ssZwsMvNGy+ztblL23Y8ePCAtmminc7HNOKlMVfed4JDG2loNG3D3t4l8jRlb2eH9c1N1jbWeeWlV1FBEUzGj995QNdZ1seiJPHOyRrFcHJesbG+ziduXcHbRn4Oz/bWNi9+4i7KJNy/f5/ReMCnP/NpgY0DW5vbsud0TUxpK9nc2GRjbZ3NjQ0eP37C1772NSaTCYPBgFdffZXDoyMGRflMAKOEVehcizGs0viaVth3ZTmg74XnuLTWKRR4hdEpZTliOpvSdS1FkTCdXhCUDDGNEkWnNAkLIDCZneO9FMppmjIalHE4IveUJEnp+4DtYDTe5nx6Fov6QHCBeTVnNLiFtwN02pCYlEDPqMxok46mlSRuZx1Bhch8Bjwx8KxnmTidRPdFG4dmShmSNGU2mzGvJhRFzvraBkoJN8+6nmYxx7me07NDQjDsbF8lKEvVHNNFDpExKQtbo42kSLvI4w1BkyQFZbHOxvpVbt18id/7g2/zr//t7zEaj3njjU9y7do10iSlTRve+fGP+da3vynD8MiPWjZfU20k+dQYjJIAD7TcT/K8JMtyNtc3+Oznvsh4PEYZhVeWtmo4PjplNp+ump1bmzs8PXiMUoqmLbn/8GPqdsEL165wcX5G0zURXyL3E+ssbdOS5wXjtTF1XTE5v6D8REa5s7PiFq+O/bghi00wwbpGbO9B3nMZgjuMEcB72zWxQRfTTXWCimxpZWKTMDHRivgs+CXNEmwc5iulpaBGzrEkVSwW0pwcDscEB94GwUF44TKmpmR9bch8MY9qHXE5LPEHbTfD2YzZ/DyGATqatkEj4VppIRbXJJHwg7btRSntPIuqoSzWaBYdw+EGw9GYyfwQH6Drhf2W5xmfePGOFOe9o6oWJCanrXu2t64zHo1QpufBow/orOfx42POTn5IXowZDAcURcH6WkGelWRZSZJK3VLqDGUMiUpIlTSF0WIbNVoT4rAExTM1fGwQt33P1uY2k+k5y6TrJEl5+cWXGA0KLu3vo5OU84sLJhMZnBmj+eDD93BYrl+/xuHTxzx4cJ/z8zO2t3fiMJ/V+U285/kQubrO4Z2na1vOzs9iTWW4desOrhfmqRTEiqDVciqARq2+R1l+Ud2PNBLTpGR7+xp3b32RPCs4nz4lzVIOjn8Cy68xGpUZhsM1nHO0rSVNh3jXysDcO4blOkUxkPtfgpxN6QZZOpREU9/SdY18//UJdVWtcDnOWUkOVhoDNO2CNE9QWpMPU5JE0zuLC40kuUaebGISuk5+X3xB33VcXCyYXJwxGIjKi6Dl/mlyikI488IALMiSMbu7d1HKsFjMefL4hA+qU7b3L7O+vkGR5xRFSZrmnJ+dYxIJnynyDG1SslS4yGmWkaQZ43KIUUl8BgM6qtZkECzvuXWO8XjMrds3ZaBrLSi4ce06RVpw/dp11tY2mC7mwnezgqgpipzDo6f8yTf+mN63FGVBW1ecnp7w3e9+h73dS2RZISnetscu2WUrkYGLVkex4auYdooBZx2Jlr3l8PCA3vZsb27wwgsv8ODhA87PTsiKAh9rBUKITRgR16hlQKCX+7YLInBxVvbiNBkwGg7p+pq6XrA2XmNQjhkWa5TFuqQy25q2FZyTid9L13WC/ZJRAN55mnbK+cUJF5NTEiN/t+FwIA1uQrS7ZrHPokhJY00b6G1P0zWkaUaeC86nrutYP0ioo9HJqiHpvCd4hw2CIRgUa9R1hXOiTA8+4eOPvsvVGy+yt7tLnuUUWUHXWaq6ZjAoKIuCoixjYGRGHu/SSZKSlhlKSXK4CkH2nSAYssFQ7sh91/KlL3yRi8kFXdvS9g3WeV57/XXyNOXq1Wtcu34T54k2eY1JMoZpgXPw4Yfv8S/+1T/nw4/eJyjBtfjecXZ2wh/+4e+RJIbPfPpzKCUq/iwvaBsRaK3wUSE825uWwk2tVqKUZXMYiE7AGEioEhSBs4sz7j+4D4jN98aNG7Rty5Mnj1FGs7mxEfszmqCIw8n4h+nl7//nG6SxypG75H9SJf///vqpG3zOW5xr4iTWkuXib+5tj3f+WXfdy6UhTXOKYkjT9HhnRa45PY7R1jI5d9FumaUlbduwmM9XKZNlWVIUOdWiFvCsEYjrfFHjnWY42ubk9BSte3Ql0fZ105GZdVQQZZh3ApAfjwvqqma+mLCoZhgjjKc0S/BOOutBaTrbgRJehFYyta/bJiraNH3fcjY7oe1axqM1dnf3yAyMRiMmF1OcdyyaY7rOkaVjrly5wWxxRtsp2ramKDOxttkeZXqR0tqoXMwyNEMuX7rLnVuvcunSPm1T8/jRIxZz4TQBPEuIVSv5Os81VJbNl2UU9GpDi8Wxjqye5aTMWfdsahuZZctJ2mI2IzWGxWwuX+89ruuZnJ/jXMBbiwqQmpjGplNSXUQod/yelID9jVmyFzVaSRqSixH3NjZWQ9yYjNZiG4k26SQ1cXoilpuyHMT3Qp6hJKoR2rbDeUdZKKYXi5ggK00ME3lLWZLTti3eWjmgvGc4GFAWhfy4Aq2F7di2HbbX6EHCyfkErR1aeTSifFgf7VI1T0iMjcqjBqU1VT3nYnpK17aYJI28AA2IwjWQ0PWB0HckJmASg9Epdd3S9ZbgFU3bcnY2wYWere1tdrYvoYIoIxZzseFW9Yyu68mzdXZ2rzCbn6FUj3Vx0pflWNvK9611BOsbimJAote4df2TvPzSm6yvS3Pv4YMHwkZAgRZunaT/im1zyUELcc0tp7Wyafl4oDxrKi9fPvj4dc/s4cPBkMl0wjIspe97mqZlcjHn8uVrFOWQuhIuwtmpFJCL2YKlpUjUrLEY4HmVqloVlV0iBYKODSSFBNycHB+zvrbOr/zKr2CKb8cGn6g9hOmRxARI4WyN8iLakUWZ5HwQK0rbUBaKup4LL8Q7vBMLv3dO1MUegvNkiaHvmsgEKoSzFpVEJjH01tI1jjTLmJyfRwUaGO2YLqZcv77BaLCBx6BVoOsXtPWCruuom0qwAybBJAbfiVUw0QYfVOQverq+xjlpsljnaNuOpra0nePk5AxwrK+P2NneJzVygRALEyQGpvMLgjMMhrv01tJ0c3zohXuXGpKUCO2PFygUeV5SZkNeuPwan/v0z7Ozs0fbdjx+/JjZbLayUiwP4mWZIEOGZXjLM+yAtyFOWMOKl+qChMpU1YKz8xP6rqWpq9Xv9eUvf4XhaIMffP87zI8m+NBi1ZkkayPsrr29fS7t74hawpYExiRGk2QJp0fH1NWCJ48fcXTwlI3NLfYuXeLw8GlMjdesra1x69ZtiqJ4tvZDIDjHYjbn8OCA3csJQQn43xiZ8iptqKqaLBP4+7J5GDykWca8mkEIdL3AvptGLi5BsVK1+Bis4S2kSU6WJljXg0aayW7JepSi2fYdXeMgGNq+J8lSrE1QeFrryLIB6+NLNNbS2wZrW5rpBdZ1MrUNbsUotVFZkESG7PJcaZoO7w1lOaBpG6x11PUMgmJyfoY2mrX1AVubW2RpTl0taJsOb2F9fcxsPsG6IHD+oOl6OfPquhJFdyLKe6UCLnKzs2xIkq9z5dJLfPmLf5nNjW2apuXRo0eSELrakkRpF2KDL/gQG8mawXBIejHhU298EpS4Ex49esAf/tEf0XY9tu1ZLKbYJOO03uHNz3yJz316H23nwsnzYLIx/+H7R7x7/wHWfkyR9ORFzvraiJOzE777/e+xs7MrCbpty5e++IWVgqptWi4mF7Rtx8XFBVtbW+zs7KyS9nZ2duj7Xs5u56TQDIG2bRkNhnhEHeyCp3OWNElAJSRJRpIKn7FpRNWXZflq4CKNmhQUwo7TBgix2djGoapCa7F8dl1HlhakmWAjtPGiFgxKAtC0qEfk+wz0naPvAt3FBSEkjIa7+NCjABdk8Km1oWkr6srRuY62q3CRp0VQpFkem4X9qrDo+wBB2Fl11bOxvkGWJzT9OW3b0zYVPkC1mLO2XjJeWyNLhygPR0cnaJUyLEeMRiOOTp7ig2a+mIrVHRmEXFxcMB6PKMoUYxQ+WJxVgKHINkmTbV66+2k+9caXSBJBdXR9g7UZ8/lcnBFAajQ//OH3uP/xR9HhIMFCCQYbLD6OrSQMJ7o1op1aeYXBkKYFSZLy2c9+jjQXq1DXdvyTf/w/8vDRQ9a3Nui6jt/6W7+F95aiKDk+OqSuK/I8Y7GYsb6xjguepm9p6pbeWrI8ZWt7Cx/D3E5OTqgWldjsxuMV/1lcOzwbCodA09Q4FhidgpJEe60TtEnxztF2nTApVQzeSRNUVPq5GCRjrV0NvpIkReFXigujktX57L1me2uH+bxiMW1IszW0kQIYH0iMDLBmswtZQ76nNnOqdoEP0mAriozhMAcNVTNnf/dlTqd7HJ9+TNvMV2idpmlEzak0YEX90vV4F793Z8izLTbXtuV9PnvMomolbCbPGAwk5EMrxWRyhg+K4WBAmpbs712myAZRsSiKrqatqBYtf/j7/4aiHPK5L3yeK5ev0DUtWVrz43fe5p133oYQSLUiSTOKvCBL84gNkr9/sSzKi5Qsl0TIshwwHo25tHeJPC8ZljmjoQScGZUQiPWSCszmMph6+Ogx5+fnbG1tY4zm/fffxWjF3qVd1sYl9z7+iLPzE3Z2dsSCG3xcv+CjU6SPjT0VAkU5oO1a2qqm3Nggz3OMVmxvbTMcDbEhRDC9DO8VSNKtk/Xm/TKYULAV1lpqO+ft9/+Ek/MDqkXNvLpA6Z7eVqRJzniwjVeQJL0MWKNSO89TumxB0yxQSjAozknzLGBBWUDuWfP5HJV48CJckPt8TKk3ijRPsH0r7FdjyApJTDaoFedLxZpiUMp7XS9qikKaDFrLj1XNjLqZi+Irga7uY31mKAdDFos5RVYyHA44PDxkfbzHaLBJUZQYk/D+T+7z3e/9mBt37vIzP/OVlVPko/vv8c//+e9gvcMg2IQ0zUkTSQsuhxLUNiyHDAZDyrIgzVPyMqcsZN1sbKyzubnNYDhgUBSU+5dJk0QEOEv2rNaooKmbhpPjY548eUrfO27dvEXfd3zn29/CO8e1q1cp8ozJxTn3733IkyePOT07Zv/SC2j06v60dNIaYwguro1lPRHPcqWRcLNCkrEPnjwhTzNAMxqNuHLlMvO5qJjLwWBVIy8HfM+7TBRSG8uISLO1cY2ykCYWITAP5+ihcLdnswnVoqbvDkmznKabC0pJafpW9na5o4iIpe9lj226Duct5UBjtAynPC1oFWcbSgbjLrCYz8nzIqIO5HtME8kcAE2hEwgq2oflbJbHMOBCHwf4Yhf3XrOopI+gtY6ODMtbP/ghOh1waW8PjSJNDL/3e/+OH731Q7Qx5ElCURSUgyFlUcb1MWAwGDAcjxgMB5RlyaCUnxsUJYOB/HxRFGR5yt7uDleu7JMYwY7lRU6SJpRFIYIL67l//7G4g5qWzc0tdnf3ePz4EX/4R7/PbDbl2tWrZJnYtCfnZzx5/IDpdMr3v/89bt+6w9rahggXgsMHj/sLjT29bOxJcyQ2eYn1xaqNgjIRbRP5qN57Dg+eUi9kaL67u8ve3h4bGxskieHBw/usra9HxJOKSdt6WZUuf9e41OS/pbksa1irZ263n+b1Uzf4fFRGJSaTAIzQ07StyEeXxYoSyWuWDWj7jur4qSitlKauqhjSIA9RkqR46zCpRgXDaLBFmqQkSaCqKsoyi+BtjckSgvc4H2h7h+098+YwWi830Kol0FE1c4bDIYengYv5JF5EW+xpJ2+8ke5qkpVkJo2XjQxrAxLYq+ltQ9cr1tfHhGAJAabTGWCo2hqTwOXtLbKskEPGtTx9eoBRAy7t7eJDy1l7Qdu3HJw8kIJHOXrraadzRqOSYmAI3sVETtkki2yTtdENfuYLv8GVyzdo24anT54yn81lmUTbDkgDallIeZasM+FIyF4kS3fZCCEWMUtVnTSvxW6xmpAsN1W1hP7DxnjEV77wJV66fRdre7ood11C4JcFwLKBs3rFDVE2fSXKuCxDEnFkGqR0oCxK8iwT1l9MwcrzjE79KQFNlkrqknUtTdOgldhRYFn0e7K8pO0bUcQpSNIkNo8b+g6CFmVW1zWU5ZgsLdhY32I2OyfNFHVdC1tBQ7FKMlLS3LNeph3TCaPRJlleoJSkjDZdTSBnsZjSObG/tm1D8AIW1kamS0lm0Fq4aGkiCYNtY1FG03U9vdZsDjbp+znOe7rOxkM9sLW5xWgthUTjQgdWsZjPKPIxWxu7aGN5enCfpptxcNygiGutd9SV2KrTVCbpvZXJkjE5RbbN/s4rfPFzv8bu7hUW84onjx6zWCzixhd5FMGLki9e1qQR/Gz6EFejbKrLhrL/82EuIuf2q5+T30Ozu7vL4yePBTAcrZdaay4uzpnP59jeRS5cL4obv/x9ZP1JIw+W35FW5pl0P8KVk9RE1VrA9w4fNNOLGR9/dI83PvkGa6Mx855oeyjF6trVEQArNg2lRQ0jU7SEoBTzShreysgzYIyWvS3GrLetBJyMhusMh0MWiwlBSTKutwHfi0LZeWnMNLVYytAZbWcZjTYoyzHOV/T9DBtaelszm1/Qh1N8VI31tkNDPFzitDFNaZrY9lSJ8PicXDaqyrFx5RK9q+g6SYlqW2kc7F/aoRxl9LaNz5LBWhiWG4yGm2xujvjo3js0ruXo7DGogDbCipovFigNg7KAYKWgM5IGaNQ616++zmc/9YtcuXyTuqp59Oghi8U8HiwInzCqCV1M5Fs2i5erbKkMXTLPQpBL07LZlcd0tYDH6EDX1qthx81btxkO17DWsX34hPv3P5a0cieWxTzLwPUcPnqAMWkcOggHbGn3k2l3SpIYvLUcHx/Q9S15nsmEusxJkoSzszOapiFNUvZ2d1kbj9nd3eX69eso/RO816RpLu+vE0VAkqQQiInHLjbPwQdhTjonSvCAJ8sSQVdoQ1kWOBtQKqHIR4xHa9TtlL4XHEXwAd+DIqG3ooD3TpOl65iBp+8gK+WSZV1L2zY0bU1vK+aLExp7jqcTi4zrMVrHIlwuw8Youi4QvEKnKV3v6DtFlq3Rtx1XLt9mvjij7RY4J89oVmRcvbJPOUyZTE9YzC/Qo20UGRtrlxgNNygHKe7JByzmUybTE3ET0WEM1LUoTDc2xnR9S9eJIjvPchK1xt1bn+Mzb/4cO1tXWCwqHjx4SF3LXqiWF3qCNFGCpGjKpV8udk0jHLemEWugUYpFVfGd735/lcbmvKUJhvUX1igGmfCcXEdwwr6sm3P6ruHk7JyHP/ozCt0AgSJL0VqztbXNL/3SL6GUYjqdYiMrpus6uq6hKErOTk949Ogh169fYzweMp1OV5zeLMtWdqPFouLk6Jgyz9nZ3HruCDYxwCxENWUeg5eSeCcjFgXpahjR9ZY0Veh4ZiyTt8VO+SwgLU1TUSkgg6lea7RCGEJodJAi2gVpxBqdMd4aUFULul6UTPNqgjYuWpUOubx3R9YJYsGzriVNNXlaAGJFSuLArut6Ua+HQN30JElBokeMBjnbOzscnnxM0/V47xiMSrRWXNrfpOlrLibnDAvNsFijKHZ4Yf9GbDLWlOWE6WzC+fQYozXON4Jq6CxN07K2llLXc8FzqISyGDMY7PG5T/8lXnrxM6TJgEePnuKcsM1OjoUvlhhDHlP7jBGrZtt1oEQVo72nty0Oj1LLIZgRZo/WuL4nOB9LBs0777zNa6+9Fu1lfpUmbL0nzwqCIiqjJTH9yePHXL28jzGGew8/RhvDoqnJjGU0GsXhgufexw94//33WSwWGGNi8Jxjf3+fx48fSw3gl9a4qLLTCfvbrzJrHjFfHIlCL7pCutYzm81IjGEwGpClBUanko4bm30hyPcoTRs50OezjrIckecD8E5cDiajKAq6vmMyOZeE+kz26qZqcK5hyTqyztN1DVmW0vetMPi82NvH44IQXLSv90ynM168tcVi1sX0+A6TJjgngwMVi+a2tZTFQIpwP6AoRhjTUVcVi7mEkHT9lK6vKAupXbJM07Xg7ZCdzV3G4xFn52eURcHJyePIfNY43xFw4hrqPPNqhk41dSXKUosm0ZrvfuPrfHzvI1y8B2mtRAESpLBcuo8C8sz74KRxoDUaQ55mfPWrv8hf/bVfoxxI0rzSEsry+7/3+zHlWlGUBT/3cz9H3/V421NkKQ8e3Of0+Iiub+iaGeO1NYbjMfOqwgUfudySnm37Pt5Peqy10nAscobDkvliHpvNOfP5gv1Lu5wcH68GxT4e8PqZHnnlLAohkGdDQPawPEvQKkVrQ++mZEXCZjHA+Q5nU5KkRJNS1VN6t6BuROVeNy3eWQl2yUQNqgM0fYfRIibxwdJ0LQSD0tKgdN7hI7fTZFlMwfTiOvMGbUTZ63rNcDhiPq/orTgTdBQtCH4EymJInmZYL0MzH0ShNRgNYhCgIs1HUlvZnkV1jvdQtwHrWkwS8Mw4n7xPdVDT9QGTZozW1sSqqaR5aLTmwf2PqRZTeTYi/1JHVRyIWm3pgNFaVEghIriMTshMxuUrV/gH/+AfsHfpEiYx8fk3HB4c88EHH8hdJTrUXnnlNarFnGo+oyiGFHnKO2+/xUcfvI+3PSFV2D5w5colFJYH9+5xdHjIpb1LKAwECZ8Kq3ufNEW8l88gKOElWutIemFkjoZj2rZmPp+wtjbmypUrck9Y32R7a4dRMWB9fV3WUlBRVsrqjqlip2fZRMQ7zib3sGeyF2ZpJlZgLfuV/BpLkmlC6BgPC+ySa+Q9IWJ9tE5ou0aCMHJZ1SbRBExUgZvoxGjJ8jzii6R5PxzEwJkoOpFnGoJDEpU7GxWUS3eOtCZDsEipv7SJBrLU0CNOKYIgXJRSjIYD4Vk6T0gCfdfy+OF9SY1GsYh3PaWQswlprIdlna8E55KZhCIrSNKcqy+8wG/91m+xsbEpwqVEo3WCwnBxMYnnkqj9B8MRSmuePnkalcIJ+/v7LBYzvv/97/Lxxx+SJYYik4GJ0Yr9vR32L+3ywx98n6PDIz6+J/XcEqLonUN5ef9VlOktnwdkJcmdLyrFXZBnwntPpjO6Wu7OSinatuHw4Cnee/I8YzZbkOfnWGu5desWFxfn1IuK0ZoIApa7Vli+X3EI5oM0DZXSq7UszjgI7qfv8P3UDT4V02hNktE0VbQ1xoZQVLs5J6mDAjB9dmAvN4o0phypeBAVwxKQgIDgDaiEEFyEriI/BjSVJy8KsqRguFmwmDUEJfyMtp+h6PGhoW4mFNkava2xvpXmgpKUS+8l6SakMuWynaVtO0bDdUmIbTqG5SZlMmA42sYkcHT2Nk1bk+eFWBfMiOFwwPnZEbPZOWvjhMwM2Nu5wd72VarqjLY/pygM59M5oZUCUkvvDWLKZpYYUTU4iyYw2Njj9vUv8/nP/hLra1tMJhOePHlC27SEaI1dxcfHFbQshFdqvvgS25r7cz+23Liff2mlVw0G1LOvWX5dEhLy7ZytzS3u3rkjf2Z4Zuv7iwEdz1syn2f+SREVO+UolnJjYSCoZ0q/AHiF85ajCy3AbZ3gXMsyvjoxGQI8leRZ72X6K/J4+b2d9xLKkmfxQZKNcTRaIzGlWBHrGqVF+p7nJcErkmSAUhrbizouTVPSUcZ0OscHmEzP0caT5xCCYz4/Z3frtnA0kAaYSQNZIpY7URnIe9F3TriUusD2jr73lGaLzfEGg8E6vW+YNucxHTAnH2Vi7ygKzs6f0iws66Nd8mTI1v4tNtd3uLg4prML8sIwmc7pG1FyJInYfCXURdhKbVSh9kEzKrf49Gu/zBuf/Ap5NuD46ISDgwMJuoib2jMruGxMy7W2/Lyf//mlYm/5/+Xz/ufWRWzuLadQi/mcLElwXScAYq0w2tC1HafdGc46SVTq2rieZNoFmqANiYmNaZ7Jm5cyaBX5ODJh9wTfCSMnhpY45zg7OROOjjH0lY8XothIMQLUlWao2MqtFeuotQIMT9N0ZSHqbOQjKpkOSzDOiMSUaJVxcTHFuVY4n6TkRU6W5GRZsVIVJNFOPZ3OcKFjdjHh+OQhw1FBkiqs1SSpYVCuM28v6LsabWCUDwjex8JfnuW26elaSafUyhNI8c6wt/sJ7FgxGq7x0YPvEIL8uo2NdUnyco6qnVNVFePBgMQUrG1tsj7eYj6f8OTJI5LUoG3gYnIOKlAUCUVRsraWrmxz8l4pXG8o03U+88Zf5jOf+nmyZMTp6TkHBwd0XcuS3aFjkbts4LmY1iz3ErUaWMi+9mytLX9MLKCB0XC4spIvz55l0/jxk6ck2QVV0wKGra09mrqiaxrariUEx3Ry/kx5R4gK0TjdC8twD4V3UFcVupM/I9GSyBkPLLa3tnjv3Xd5/fXXePH2HTbW10nSFKUDp/O35d+VkXMgz/FOk5iExGSrotc5H1lhUb2uxc7edh1FnpMWKUTYd5LmDMtNsnTI2dkpva0py4LEaNI8ITU5aZpRty2Lao4EQll619J2DVW9wLmO9Y2RKKK8J0kSNjcvcXxxynR+gVKawUCUhV3bycU6Fr7OSiHftQqTiIpvd/sm40EgMWMOjz4gzUX9OxoNZYDTtsxnc3CaLB+QJiXr400G+TqLxYSz8wkggSLzmFg7HotFLU0LtJZ9XpoDGUYNGOT7fOGzv8ybr/8MSmUcHBxydHQSFYd+VeyEWKgtbaZEjqP3go2aTC74sz/7OqPRgLzIZJ10PWfHRxLoZBKyPGe+qJnO/gO/c++7/EGpUUEYPLH9wcKWTBYLfHWEQBfkZq5U4ODpYxaLGbu7ezLoJETsiWd5dD569IjTs1NOT0+4fPkyjx494uTkZKUmEOGrp1rMefudt/nspz8jjXmtsbFxaXRGYmQf7PoWhaIsy9W5oOLe6rXwRuvIQg1BzkylPGlUIKB1bAYqbEgYbewSvKaq5uTZFkWeYF0r1UcI9NazmC/o+oY0TZhMPZ1t4sBOms2DYYlJDU27YGtzjyuXb3P/0bc4PT9kNBqRmoK+7SRIKoDVThTxHhbzDqVTUApFxub6PpAym1Ucn5xRFqLiLopCwl3ajsW8Z1zuUBZjRoMN8mxNgq36GufrOLTy1DGJe3NzjTRNGY88ARmcKS1s3tSscWX/ZX72y7/Olf27LBYND+5/xPmFQMV3t3fI05zN9TWGg4LtrR2KouTv/f1/gHeivj2Zt3znrQ+5fmmNNDR4XOQaBUIwTBaW7a0tdjdLbFvTdcJbLYuc69evxXW44MGDh3z+859ntpBBY5qISrxuaozRnJ4eS3Mkz7l7+0XuPbjP5sYWa+MxddVQV6Ige/vtt3nnJ+9gtOHy5cu88MILfPELX6AsCg6fHkhRrGVjXCJbtDG89NLPUrdP+N4P/4A8DzStsEuVMexs7+K9MMS8l4awtcKhLbIBo/EmWiUSqBJanAtsrg0JQRG0p1rMsLai787o25beisXRRo6wOF8Sgg9Y22JSafgUg0yGNEaRZhmFEVttCBalAm3XoNBY22Bdx6I6RxsYDIer4ZFWKUma0Hcd45E0bLTOuLJ/l53t63T9gqcHH3By9oi2r2m7KVkmrETbWVKTsz7a5fLeK5SDkqPjRyTJBednRywWE0wqbNKiKKThpA0mT3njjVc5ODhlUA5YBk6BpBUPh2v03uKCJBTrICERfQxOCn45tNeoRM6U4ERJ3tuet976IV/80hfZzzKCEtHGfDbnW9/6NotqwSsvv8z9Rw949bVXKYpiVUe89/57aK15+eVPMJ/PePr0KZubmwSk2VBXbRyK94CoeEcjUYRJg7RmNp9xcnLCMpgqSRLG4zWyPBd3iTLPCmSe1RPPFPGwMbyCdVM6V8c9W9G6Ducqsfgph4qc666vcM5zdnGMMcg9YbTOcFSyDLMyJqJMVo1maQz0tid4F3nWwge0tonq5HS11ysVqJtGhnLei6AhwHQ6J6AxJqWtO7JUM5suCAjWyivNomkJvscYUWE17Zzd3RskZp1qVrG5eYXeNSzqJ+S5qBclTMKQpBlVdQ4sMCrFdrCzs8XNG9coB2OyqJAaDAaREbyOdZY+7aNCKTbivcfFhp8LfiXCUNpENaWgl548ecy9ex9L0wZBbyRG8/bbP+Hf/Jv/mUU159atG3Rdx8bGegyBsgwGBW1T89Zbb7Go5qSphuCYzuZU1Zz19Q3ycsB8IQIHE5vXIdZ3y1Tq4D2tF05hb0VNbEwS9/icLEuZzaZ0XcNgMOTw8JA8z/jc5z7L5OKcfrxGUQzimS9rYdl0/Yt1DcRkU+1QwUcUg1htRdASn700EYSJQhScKgY4uIjG6Xogp+vaWKt2gp9YCRU8fS93jyzLn4kZrGQNrK+v0zQ1bVvLoFlrwckQ1eN5DkVsIjnPeLTGeLzG06ePUAgjHOVx1tH1rTgt0wzSjL53JOmIl19ZZzgshbefpqu6OM3E0izYNVbKXACTOKyPOB1tVrbWha3QuuH99+d89NEHvPnmp+l7hSHBGMXB0wP+yT/5J0ynE5JUs7G+zquvvs4vfPUX4kDaMRyPGZYFb//kHb77nW/ibAvB02nhgAbvKMuSrc11bt++w/vvvc+Txw955eVXWHIlg3Pg5bMLatnP9c8GvNGNJqplHzl9PdZ7kiah7/rVUKJpK87OzwDB3ZRlyfHxEWtrY9bXN9jfv0xT1bz5yU8yGo6lJlXPwgCX9YtamXqicjAEgnv2Yz/t66du8CVJTsBg+548EzB3YqQwF7WLFCFN29B3HVmW4r0lSXKUAq9D5BnFh8gr+h52di5TLVqqak6WjeOGGqsrFCF0zBZndK5lXklaYW87CTFoG/IiZTQcg/csqik3rnyW47N7PHj6Q+bzKRsbmxBVSNb2EDROBZHH9o6L8zYqfwyKjCLbIjUZRydPWdRzyqLA6IS8kIv49KLGWc3u1lXwBZvr2xijeHLwDknq6fsqquMcTSvQ6o2NDQnxSDR9X0mBZFKydMDmxg0+/6lf5pWXvoR3iocPHnJ+fiFNlecSy5634D6bbMBSBrrykEcb5bLzIYo8vfq55w9N75593fMF8fN/3vMNH0msfMbHWr5WzcfnFuryxzQ6FjfEwkT+XQCXarXwl6qKgNi7rdMCEk0SlE4JPqzUB9HgTt95us4RQh+ZPmL98OnysNXI4Sw2xdFoCIWmqitG2SbCfWzjZMhT1RWz6QUmVZLwiDQD9RLarwxKD8EH5osJr754le3NF/jo4RGz+YT19U1pJlmL92Jdd1YSi3xwzGctSqfCngnCZOj7mnl9wWIxZzwUqX2epzgXqKuWRG9wZXcD28P6cJMQLA8fv0OagvNtfLdF3VakJRub63EK5Gk7KajSVBo2L1x+mS985le4cfV1FouGhw8+Yj6fx+fx2WcndmP3TOb8/OYk0r5nVu7nEr6X6+wvMh/Dn1uLitRobt+4QZ4kTKZT+sigBBXBxzG0IVoMlgmq/LnfM6oEY6PtmepQNlVthAGWGCONT5NQlAV5UXDlhRe4fOUKKE+eF1i7oG3bOM0tItxXrGU6smycC9R1SxGt3H3XE9AUeSFTWu9Ik4wsKdAqJU1KsrQkMQXGKJR2tM0c76QpPZ3PmC4mhNBRlNmzpo63FEWOSWUP7PtA5wOpKdnauMzZww+ZTCLPLxdmREAOMNcKrNoYQ9eASos4/fNMZ8LPC7qnbhYMBpq1tQ3yPIufY0qRjLlyfYe+b+L6rXn85F3EgS/PgyJQFjkoxcbGOnkuaXV934udXq2htOH6jVf40ud/mSv7L1Etej5+8iHzuezfMgdUcc+Raaxb7m3P7y0hDgViU08KtOfSwgkr1cDa2hplWdI0FQFRNTrnMEnCYr7Ah4rpfEFVLWiahq6uZZ1ZsaE/swj7eO74iCzwETkgqgiUhhha4ZfN1aBoas3BwSHvv/8+49GIvUuX2ByvkZokNl16UQ/UE/p+zng8lIJOxc/etqRZJoFDyLRT1M+wWCzwTgqDECw+QJGX5MWANJPLmnMNa2trGLMBwGJ+Tt91LOwc5wJVs8B7S1GmtK0AnQme0XhICDHwomkJVgqARK9RVx19JxNisfhLAaCNPBs+BNK0oGsd4+ElAopGzTk8FI5n79dIUmlqjccjSVQ1CbZL2dm+wfbmFotqzsXFMVW44Pz8CURry5LVNVqTcKJhtIKImtjTNj0q5KSm5BN3P83PfOlXWBte4vx8weHB/cgEJjZq5Z6yDJJyS9yAf26vCgLNTxJD23YcnxzibEdT18+ddZrdnT3u3LnL2+/8iNPzhyxC4Fw9m9w652KhKEzAJEnwcT1qo+htSwiKH/zge2KTimEUg0FJ17YCPAf29y/xuZj2fenSJWazGY8fP47nuHANe++pKoH42yBZo+IS0nLcxudEUqotg3JIoQYYnURr+fJeJHtXUYjCLHioqo4sE6aw0YokBBKTMygHNF3FbHa8ama6Xs6q4Duc66Qp4hwOh8kCvatYzGdiTSqHDAaFNFE6S20rsiTDWnj65DgqGCVd1VqL9WDSnERB3wlz06iMNF9jb+8WXV+zqE45OH5f9iI8eS6qgjzNSJMUQsKw2OPFW3cYDId89PFbzGZnXLhjUPL8Z2mKD5YszVgfS8hWWQzJ8ozeCsOwrTuMXmNtvMPnPvPzvP7Kl7C94eOPHnF2drZiKadpwubGRnR0eC7Oz/nxj37M8ekpqUlpmwZlNBd9gdt6g1/61KfYShd0XSVKbgzWF/zLP3nAw/Mp4zXhTI9HI0ajIZnWPH76lI2NdUBCFK5cuczf+Jt/nd52cR9ssH1HXVdUVYVGs79/mfl8Rp5kuN4xOZ+ytrbG5sYmSik2NzflnhrZ1PP5nJPjY7wTHh3eY0PkNcbzvu9a/vBP/ikhzAm+pWkCRT6mzDMBluPJ0gE+CDuT6FpxrgeWQXpyN09ScSB0/Swqzzu0kvWemASTQpbnIg4wMsDtWgtaMBeJykBpnPf0bRcHwUsniaZvW4wODAYF2guepu0qPB1NX2HSXu6PTvaEtrckIafvewal4HHSVKMTG1PiK9p2irNylhgjzDScDEKUD/TNsSB2tGMRMQRFUUQlkAyu61rCBMtyHbxiNCjZ3brE5voWl3b32draIoTAb//dv0td1yyaipPJgtPzBQPVYbuGpm2kGdL3WOdpusi/NArfd3TRBh1C4Pz8jK2tHXRi6PuGwbBke3sbbTRtVPl6hEmepIa2rXn06AFFkZGlGbdu3aapW6qqIs9yTk/PCD4wKEu2tzdXys+27Tg9PeOjjz7i+PiQEMT+PRqNuH79Op/85Bvs7e7wk3feWRW9PPfP5Z1xdSf1nsODBwQq0sJgbcD2Uc1oxK2igK5uGQzKiI+wjMejZzgkgwQa6qW7IyMrcgncipeOpUI9S6RZHFC0bb/CU4jFt4h7sSWowDK0TCstyIvOP7e3JngLg3Idkwqzr2k7GTK5BuekcXwxPWFn9xZd6wjI0KVtG1zv6JD1laYa6z1dY8mzMr5JPTkBHQJFnnL58j7r4zH7+5cpipJf+dW/ype+/LNUTcPh2YzjoxOUr+jbChv5wZ3tpXnWiTjB2xbXdyuUlnOOhw8f8Oqrr+GJSqlUsb6+hvee4XDEtes3+Ojjj2TtOLlHDAYlTw+e8tHHHzIcDnj9tZfIi4zT01M+/PAj6rphb29P3Et9jzYJs/l8NYx31glKJZ7TSZKsLKKSgixhGM71TCYXVFXFYDCkqir29nYZDodsbmxyenIqz7Z9rv59rh5erbvY6AyKGOTiIBO1Wd95IN5NlKKPCdpGpzIYTVOWiAVjDMNsKPZ0JYO1tfEGIQTqWgKBylLWkFYa4j4FsfHoOupGUl+VCSRKE5SKaKuw4uApJZbrppHn/+zsjDRLUUqGhW3bREt2Kldbr9A6I0kCXRswieXK/h7XXrgizP+u42/8zb/F+cWEyaJiOp3TLCZUiyltU9O2HW3X0XcddllvJRLCqFgixAJPnz7h9dffEEyW7Vlys6fTKU+ePOHV115hfWODo5MjUfo6ByowHo/pupYfvfVDjo4O8L6nLHI2N9bI8ozpdMJ0MkXh2djcYDQeMZ/PadqKJM3jnc/JPdlLbeS8rCFnnXDlg1ut6eD8ShmalwVZkjEaDVhbWydJDGdnZ9T1HGMMV69e5fHjx2xvb7O+vs5isWBzY4Pj4YgX734iWqSfr1WX4ZSx0RcFKc9jw57vz/w0r5+6wdd3HdP5KXmeMxgM5LAO0HcOrZdFmSIxBp3LFMB7AWpn6YjRqASVUmQliR5TDBLqpuFicorRKVmexjS2c5yTKSZKS/cb4SHYvmexqADFsCwZj0dY21NVsYgpJigdODx8RAgu8pB8tN8okkQmUrZ36AB5VjIo99lYv0LbNMya+5zN3mLg1uh9RZqFmJQjkGUd/r+s/dmPZVmW3on99t5nuqPNZj6Ge4THkDHkWFmVWUmyi6zqptgU1JIeCPU/0NAL/yMBgp4ahNB6ESBAaBFUU2yyqrpYlfMQo7uHj+Y23+lMe9DD2ufca5ZRAsTkrQqku7nZvdfuWWfttb71re/Lefv+t7hzeJe6mfHpZ7/g8vKYqr6UdYGaKM4vZghZocizIXkUYFUKgh/TNC3TyS5vP/iYP/nhXzAZ3eLN8Rlv3rwRl6iIuhklgrqbjBVZ3bo+bdhMVJt09o7utwnGbTJgNhl7mwYbm4fq5rolHaPlxuMmAv1NYF/PhulaoY0/CzcLmQwrTdM0LJaizyZajAWdexwErGtQJGiVkBc5nZtz2wRGgylFPiQqcJOYIWmmWFUrTs+Oe0S9qhXOtngfNaUSjXWWtAgoJa7GVRSvT+OkCALL5VxAMzXDh4YXL79GqcB4PMIYKbaD1xgzwCgvAE3jSUzB7t477O++Td0suZg94/LqBZaUsppTDCIbITJi02zEw7sfcHjwFvPFGZ9/8QvOL19QVjOSVKMbTZ5JPOd5gUkCo8GYLJVYCyGQmhRnFbu7t/n4wx/y8Yd/An7A46+ec3FxITpdMdY0ApRtsvHCBnuqA4BD2ADpN6/nRhzcnIZ1Saxzz82yjO3tbR6986gHpF1Yx203uQtxLTf40DNZYa3pB8R1AmF7yeGo+tfTWov2Ygj9/SeIl3yP7SaDdU3TNORFTlHkDIqCyrYEB1W1AAJGZ+T5iDzPsa2FkJNno97Qo25qlMpIlGJVL1ksXwBy/UVzyKOC7xnBjkAxUKBymR65Bh8NOASU01T1KoItAgycX57StrUIrKtOx1R019LEEKIdvaww3uHBve8SguFy8ZKXrz5Fa8fZxWuKQfz9rSNNPEU+5fb+Q27desR8fs6LV5+zWJxFfRoBv6aTbby3aCUGJCZNyXJZq68qUCFlkA/Y3b7Dd779xzx6+2OcTXj81QvOzy9ifpHJujYao4WB1gE2Lvw9RZdXfTzGFIEU4Z1jn8e6gElSbt26xfHxa5mKa0MIkGXCjCzrmrKqqUvRK7SNjVP3m6xjE/8uedGY9XBDKREv10bymTGGuqpJsgTvamDGF59/zieffMJ0MlnfC4imi7CPhcHXNA7vG8ajMW3T4KxjtVqQmDxOU3PSLAE8RTYiy0T7xFrRfnQusFwuWZ68BETjp7WOPCtIjLiDVmWJTkWvJc0UxhSSOzVRNFlcSvM8E8e1ICyKulmwWs1xrmEwLPpGxblAkY+kmc1EU2uxWLEzvcvdOx9RFGOu5sc8ffZr0CvKqiRJIqPTWpwxZMmI+3cfsrNzxGx+StOs8KHm6krW0bRRTMaTqKXiBFxKDcWgY2I5vMuYjg+5c/sR3/nkT7h19JDlvOHTTx8zn8eBRRdrcQDpXdTa6QYHN5pJcYFXomkV3TidFUa3DDMkh3z3e9/nT370p9x/8IDHzx7z7Otn5ImwfC7OL7pxmwx3nMNbiwcxgMKijWZvssfF5RXlqqVCoxPNarkgzVKSJCHLMobDIdOtKT/5yU9YRk2sztX08PCA9x49Ymd7m+2dbe7cucPu7t56OBc1rDqDqu2trciccsIGzjNs2wKeRA/ZmRzEAW6D8zW2tUzGBVqJJMFyOYsO2XNOTkradiUOtfHkyAsxYtEomraibiHJ8n4gFEIgLwb9mbBcVlH/zyFFcEvbNjRthTKOPMmpqzZq8yYUxYj5fMHO9g7z+RLnPIeHdxgP7mAmHqNTZrNLkqTCU5MmcjBUZY1RKdPJlPFwn7K65OT0C6pqRgiy6pnlCVoHsmxMG5kWSZKQZyl5nkYQCYwa8/DeA771wfd499FHGD3g5Yszzs7OI1MD4piSLMs5Pb+iSjTKKJpqxa9//QsuLi8xOhHjAG9ZJFt89PAf0DYNSWFoopV0ay1VG6jalE8//5qf/uW/pTAabVKmoxFZkrA13eKf/bN/Fhk6llnUgW1tK67pTY33lvl8JuvcznNyIo6paZry5RdfMh6POT8/J0nW7qEEAY/rquLi/JynT57ivef20S3aaDqnY2NCkHX3yTQHPM7mpGlOkg4pV0uW5ZymrUmTihCgqkq09hgjOrWJ7gzmHFmaELA0TU1rPZBg4nnWNC1WW5RSDAcDYVqYRNb+taF1Ak4UeY5tLBbPqqzIsgznLGUpBhuj4YSiEFOv1orGIkq04QaDXZrWE1xCmuSU9ookFS22JNVY1zAaFTSt5cXLz1AYQnDUteQvbRIBGFEkSqO0aLGmiWE0znn95pVsdWgxtTKJDKolPxGHGoZyuWJ//wG3jrZwDl69esWXX34R1+PFTHA03ubZZYbefsQ/+Qdvk7or0fKyAgwta8vPfvWKW0d7/NF33iahQSuF9RYVPEeHhxwcHGCShCdPn/L69Rv+6//6f8Vf/vVfU5Yluzu7DIsBy3JFMRpzenaKAvZ2d9ja2kahuH3rNk+ePKHICu7evsNoOKSuG5bLJWfzc4igxtHREX/7t3/Lb37zG4wx7O/vs7+/z5/92X/B69ev0UqGZSrGXZ+PVUcCiHdWzCVp5snzIa23EcAtMYlolHUrda1tSFtZdTTG0LQVYvhihLnXWEghSVJh8eHY3zvoTca0VigvYAoqRMMUTVEMIkgK1gZhybYtSaoi+UBAxOAtosGW9Gcs2qCi1qZzomFqEshyAYhkMCt1VpKkBF/iuSBJLHujCcvVlQwd8pyyqhgUexwd3sM7i04CKiTMzse8dXeASlNOTk949uw5ISDbASbBFCMuKo/eOuLPf/SAhDnOtlRlRdO2rGzLF88WHO3u8PGjQ3A1rrXMF3PKsmQ6mfDo0SOUkV7gxfOXPHjwFo8evUNV1zx79lyGASahbS0mSUhSw+MnXzGfX/H2wweMRiNOTt6ws73L2w8CL14+Y1AMmEwmLFcrLi4uZdieZmR5znAq+qiSn2RotjY1u2Q2E7Z/UQx49uwZIDrG5+cXbG9v8/r1a/JigDZG5AzCWl7gWp1JiL21aH8GH+LwWvoO37mqxnU8Y7SAuxia1scNIFmTz7JMftZ5rHKYZBj7V3HMFeMShfeWprGkRpOlqRgRaVnZJ3haJ4x8bWRg5yyRHJQxnUyoqlqYcythdmepDCOMVlF/XUBgbUSHL7iATnISM6GxDmsr7t07wAfL06dPePbsOUUxZP/giKM7b/Hp03OWfslPfrhPEpY0dSmffVXROMWsdIwHQ2jn1OWC5XLBbDaLTHMt5lSpaPbatmU4HDIeT9jb32dre4vRZIx1rjd50lozGg95+fIFv/3tr3HOsrM15dbtIxaLOdtbW3z729/mV7/8JScnxzRNw9GtW0KEcA60pW5qZou5aMY6J8M515FSLCZNsc4zHA4ZDIaMhyOyLCPNchn8WjEM1VpRlksuLs6itImiaSqWyznGKF69esXbD98m2d7tjYRcZzTX9SqaniHamZmiui0PpOeNZJo/9PEHA3yiHbOLdyEaQziyJKNuBX1NTcFwNOmZat6JIcLOVkaSiO7FqlzQ2ppZeUF9IroYWSYHtdKaLDV0u9JN2/SAh0mSmMANg8EoCoW3VFUj+kFWhJjbVpqUpq1JMtHhqqoSgiExQ4w2lOWKg4NDzk/fYEzO7s4+mdkiz0a0/oyrq9cElhhToUIRV5BWjJVhMjykqZZ89fRvqKol1le07YzFYsFgMCRJ5QCuqpqgo5mByeLN5rCtYntymw9/8H3ef/c7jIeHXF3N+c2T31GWVWwiQAAFE4X7BQDpDr/QMxs3ALQeGfaRsSBfvzmd2ATerqPG15mCXVL7JvZe91x9ggysAR9uPKXagH+Uiu9zk12I4HBs/C4RnNndPYBg4o0aD8dWJqxZus/WdB+CsIqqeoHKLVlaYFuPtTWrUpxNnbO0VlaHRLOli2eDVgYV16a97T4TjQ/RAa0YYLShrltsK5N5mQhrPEIVr+sKU2g0itVSBL3TZIAxKatyycHBLc7OTjBG3AnrRlbcnLU0dUmathgt+nCuddi6RQUo8hHHx884Of+KsppF8wtNXVu0ztBKY20T13oHTCaydqBNIsxMP+DurQd8/OEf8eD+BygKTk/OefPm6ziJXMdJ50jc6X+JM2WAuBq9ec0JWsC0/pJdj6vu+TbzxjcBwF1sdZoxZvNnsZ4lpAABAABJREFUgzTIN1l7G6+Id34NdCsi4BfjUQsYo/p4Zf1+Fb1VuqzsKYpizM72WKZgrcWnGQSNQjMsJkzGO9HBV+5571aMxwOCh8vZKdbWMUlLvDkrgs4oYTU3bS1aeTpOAtsWnYjOT+d6rHXCYJCJWHxZMRoN0SoFHRlL9ZKqKhGNOU1Zilt18JClwpwej8aEoFkua4aDMVezC6xtuJwf41yN9RVJKsWrClq0JH3AW2jrL3hz+hmtXbBYNAwHY7wTTctEQ93UWNswGAwZTSaix2k9wQUSPeXh2x/x4fvf5/7dd7BW8ebVOaenZ9IU9vGg+vwuh64ULN45iOzOLgbCtYtGX2R5d5195aPT8/HrYwZ5TpakIuEQIE0y0iTj8uICpY244yowaUoap20gZ1Pv4LsRu+uAUzG0pAgMBNrW9m+vqS3eQJF56qpmWAwwHbjcOQ75gHeaNBkxHk4jIKxIdE6WNoTEMR5nJFpc7ep6RWulMVEKyuqKk7PnqC6nxnUQhWiT6SQhy1PaVopGow15kdN6169wtbaJILes73prsdaTZTqu9Cu8C5T1kibmltSAHMUa7xxVJWucWgnbSQFprrhavOb1Sc1qdYV3NdaJS6dW6/V77xy2cTT1ijenv6ZpS64ulwyKcVyrFuZV27ZxvWdEmubUkR3qWs2g2OfD9/+E99/9Dvu7t1nMK55+dczV5VW/ttfd87LyTK9fK8xqvzmT6HNLQPQfJ+OxGFME0QlO0/WKPoge329+9ynzxYIsGXD3zn0W8zneLRiOxjRxldJGBoOkrW6aKyyUV6+OEXMhOSQVAlQT1jmiqirOz845Pj7mzckxeZFRFPvsbm/z8OHb7O3uYrSJ61rCHNABdBBGrA6DKDOgCDgG+ZigUpkyI7WU9y1KpZTlEh+u8N7GeitQt1dY19I0dTRyQfSp0sAoLyR/R/3lum6Eyxedzl0QYfy6rePkWkxwgtI0dYPo+GWEYKlrcZh3oSYATSNO9lol6ETFYd8S6y2zxQxnhZXb+hmvTn9JUy/j+xaZDJTrB6Otd7R1yUX7EtvOKesFi8WCxbzh1q27jIZjUB4TXydNE8aTASGIPu5q1WL0kLfufosffv/PuHP0AHzC8etTzi9eRU3pzQ0GudLPnz3n737+c4bjgcg3+MDp6RvKshRGSitC4Hqw4Nf/5l9x+dMB46EWoEBH18pkxJuLgvria+xijkN0jJYXl+IObgwEx/233qJjvnc6Qs7ZXvfu6yePaeuK89MzJuMhd27fYjKZcHx8zNnZ2bU6cLkUN3nvHFVZslqu+M3vfsutoyNu3bol8KUPeC3uf1oJ82FRXaG0aJ7qdoFSF1xentPaiuA9aZazvbVNkimC19jWbzDXYDgUJosMPTypUbH2SONQJInuwioO8jSNFS0zOcflFiurEm99NF0zuNbhvMJaxWCY44OitsKkhxptFJdXpzRtQ9sqbKOploF7d4+4uprjqciLDGedDEC1aGebqLXUti1JCpPpFkkqdddqtaCYTLGtxSSyRue9Z2trJzKIfS/fAiKn0jStOP86T1EMaRsBA5x3lKXjr/7qr6ibBq00ZVXSWIff+RYf/fCfkxdjRgauLs7IiwKtM0yeYzP4Dz//jP/4t/8Tk6RlNJ6yf7DPeDRkKzLoJtMJ3ouY/8HhAf+7//3/FmctClgsl7RNg5ooXr58QZZnTKdTvvryK955+yFv3b/P61evINYrX3z+JZ7A4eER48mEPJdBVdc3CqNZzvS6qXj18gWj4YhqtcTWdTQGcD2LSqaccbgbc7QLwqavmwpPx5Br0DqJBnI6gguycSEDa5FoUEoY6Fq5WMcL889ohbUVtYo/3zq8s6RZhrZOttKjgUFiYDLJaZqW8WjMcDji9etGcohRUVNNzpzESF430eHUOctsNsckRligyjAa5ZKLoxla06wgwHAwwOUrmnrF1mSbxKRopWhcg9E5RZbz8K0f8O7b32O5WmASRV05XqoTmnZF1bYsFw1/+7d/J7GFYjGfUzmD2vs2f/IP/xmD6ZSxNswuzxhsTcnzETOf8qvXz/n5ly8o5y/ZnRQMiyHj8YjD6ZRhUXB5ecF4MmZQDKS/U4F/8S/+BZ9+/imL2YydnR2GRcHZxTl5LoaGX375hay4z2csF0t+/etf85Mf/4Tvfvc7XM0uqSoZWo9HI4rdPYmdJBFdwralrCqurma9hESSpFxdXfGrX/2SN2+OY9/rmUwm7O3tMRgMeO+99/jyiy/48z//J1xeXpGl+bXzvj/3ux4iMgatdxA8zrY0dY3SjhBEgztLUobDgWgcR0BZKUOWp3T4Q7f5IWeRwiSaqpKVXTEkEYBHdLMhyxQhMhTTLKdp254J2vVBbZS9kTgXJtpJLa+VpkmURxMgq6lbTLLWkNaJDMjLRiQ6JsMJb91/l1VV8uTJFxjt0Srw5Vef8/TJc0yaMp8tab0mjN7lwft/yp0Hj9jKV9i6jAxzzazV/D/+/W/JsgE/+t4HjFKDSdL1tRiPuX37tuQkk/DkyVOuLhf8xV/8Bf/x7/6Gqiw5fv2aH/7xD2nrBttaRsMhCnj8+DFnZ6cMBwXf/d53+fLLz/jVr37Ff/t/+G/Z3trigw8+oKoqyrKkyAcUUT5muVxxeXEl/VWsoyaTMaPhmDTLyDLRqiXW5c5abGupqoqLiythRy9mNHVFkibkec5XXz3ujeROTk64uLjs65dPvv1tHj9+IjgCwhxUbG5A+o3aIHTBJ0abIfSbaR3J4A95/MEAX5oUJAkk+YTgA6NxgXM1ijlKGYwa0OlYLRcrArU02c2Cuilxvo2riVIQJZlhYCTp6yLDO7CtRRtJzIlJ0VoErNuqFjQ0BFCyutG0jjTR5KkIU1ZVSdVUuBCw3kPtyLJcHGdCoG1LrBN0/OrqRNxdcSxWb1itXtK2S7S2KDS2rWNjokSvr21p64pFeMF4fMXl1RtWq5qmgv2DXbaN/F4mSQi0jKdjElPQ2kDTOhQtw8Euf/L9P+Pjb/0pmRGK8qfPvuhR+A7s6Bo6aWbjwRbBPa3jWqtaa6B0TD0BgyPDyXVg34bZwTcAJZtsmc3v2wT4bjIDVQjiSNOBLx2LKwJ98hyCmHeabvLeVWy2roOMa2bOGgTI0y20yWT6MM5IEkXdrFAsY4NruLw8BSUrtkkqBUFVz6nrJc63aJNFjEqRFVHjKrIaZAJnEZ9PEYpOjKGNN7s45cl6SQhWpnVFIcK6FppGtLvQGkwirsnJQNaBlO8nTB7PbHGOTuTmP796HDUXJEl3UwVh3GSSjF0bDVgWDCeak5NXVGWDs5qdnR3MzhZaEx1YPcORFHVN7cWSPsDB3lv88Ad/zttvfYKzgdevXnN+/rQ3JfARVOocnJXSkXuwwWjSawBwc32bjZjYXKe8ydj7+0C9m+vdfSx0MRCnIV00bD7L+nkVGB3FbPuw6b8/hIAKbr320U3tokZfH2lBMxzs4Lwmz0YU2W4Esh3Bz/Gqxfmas4tXsqqpBNxNEkNZzXG2oY629V2OVlqRFRnaGGnik5S2EaakB5wNFMWIVVnRtBYf5Bo4L47Ozgcm4wlJltLWpayp65TKloy3tjmde4JPGBaH1M2SoKQJVxoaW8uqSp5wPnuKVi/FcTN4qmrOYGBItFjdJsZgcjGsSVPDYKC5Wiyj+6nHGM14MkZ87JSwRnUGGGwb8G1Cko64feshf/T9f8SD+59gm8DL5684OzuXZiYWOd2ESq5ff5Xo3GK7Qc5NNp0U+wGlOwDEx2FAZ7Bi+jx162CfQZ7xzoOHzK9msqIW2VqttcISdVaA4cgQleFCB8KsXbdCCKhEwKkAaIwAdlHbL81S8jynyIVZnOYZiU6YTMZMJhPyNIsiuz2CTlAwHkzF0ThoimxMVVYsmhXON2gTsLYhhAXtZYtJuteDpq7xvsWHFqNMdEUWICdJNBiF8540yVBadIisa7GNZTSeMpstcUBZyRp6J4BOEF0RZRKcbWjahixJKOs5t+7e4eVZQlU6xoPblNUcrUqEFSeME2VgOC64nL9GLU5lYt0Ka2i6JcxrwW4D462JgK6ZNH5VXeKdYjQckxeDeJ92K8AakDX5unJYlzAe7XLvziN+8L1/yO2jd1nOK7784hmXF1eEEDVp9c1YW+eaTnuHKN8eIlCrEFCTCLINBgP29w+4ml/iXRsFtdePVVXy6s1rmrphtRSX77JcUa4W1NWKNq41hY7tHNFYxVo2QlaOJOZAXJy7OCYEvG1xbcP52Rmvj1/x6tVLptMJt2/d5u6dO8JoR+qFRGvRfFEBr5wAlTjGk31ae0lZzqhqYbASVJQBaEhSTVHkpIkwqmw0exFdsoaqWUQXQOTvZRMZFDAYFGhlImOvAwtFlN4ogzaisxa8omoqsjTlajFHaVltGxZFdOcWVmOSGBwVu/uHVMfPWcw9e3t3uZofy2cfxOFXGcUgG2Cd5+ziGYnJ8F40Ma1rGI3HpGkuALfRjIYTvAsMhxOSJMEFy3SaMBoJM3c4KkCJ0L6Nq+lV2ULIMCbjaP9dPvrWj/jg3e+TpmNevzzm5M0JVVnRSZVY5/oBperYv1pxfnHO18/neGup6qofVHWTz+FoxMPbR/zudz/j5IkwMCRYHCGIE1+WDkXcv4+XjqUurKef/t3f8MUXnzIohlHKRMvWCjJoqFYlIXgOj24zGg750R//MfcfPODzL77g9PT0WoPbMebTJOkZ7VVV8uzrryly0Zny0fU3+E4zMsRTzVJVC6nZE5EAyPOMvJD63mhD09aib6sT8jxjkA/RaOq6RqmEtpX4TBKp01Casqp7/SoVV/ESI8209bIK763cQ1mWozRYfL+CKUOelJ3tIU27YrUqUboUgwLXgvWYwpEYw3S8zes3L8gGGWfnz1Cqpchy8IHRYBRNcFrybNhr8I7GAxQJi+WcupKmsihG+KAYDMc0Tc1itaJpHVme9dfRWTFPCh5s40nMlKPDh3zw/veYTG/xf/o//18xJsckAvRVlUiIyMqiRykDzRWmfM3laYFNW7xraIMlhIqgt/DeMpvPqE6fMtTSeyVfpiRKUeQZP/7xn/LRh99CK2EX13WJdU5qEOtY1RWKQNtUfP31U5qm4fPPvhAHya0ddne2GY/HHL855dXxCWVdMRwNma1WQvLQmjSafnUNN95RrUqW8wV/+Zd/yT/+x3/GyyfPGQwGIsOhVX+/S15ee1FKvdadkQ066uV1Z7IwqhzGKAbDAePRNiEEymoVVzh9P3AK3pHnsjFD1Jg2IaC0Js01kAkTT4nD7fZ4srFFJbp8VV2xXC5JMyF1hOBoXC0yBzpBBQ3BYB2ERDMcJAyHKa2VOlIbjbNtzAZyxti2YjRIyZOcsg6MhkOWy5LEeLwSg6zlqiZJCrSCl29e8/LV15ycPBcnVlXj67eAbZrWEoKnqlbynhNQSYI3NcNkCW2Jyj1FKvI2VbOkCWNsA2/enPPV3/170iDg6d7+LoMiZ1QM+OSTT/jkk0/I8xwN1NWKNM348FvvA3K+1HVN0zYMR0NOTo559uwZg0FBlmjm8zk//tFP+PCjj1gsZ+zv7fP8xQsSI6zp8WjM6ekZ5+fnzGYzLi7OqaqaO3fu8PDtd9je2eldZD/++GP+1b/67/nyyy9I0ySuCzvOzk75kx/+Me88+id8/PEn/A//w/+N0XjUD2m7A73fGIm1lJBpOjMj1QM1RiuSJMdaWZnue2MvMldb0ynL5TJKurSIcSBR1sTF3lc0XJ1KMUkWZQBUHJwl+ACZyUhJaG3Vk1+SxKCkSI7DjkEckEcDTRVwro6bIZDlKcFbsiwT4xMTUNGURgcl6/YvHjNfLCmrOZPJDqPBiM9+t6Rta6qmEjMrZShtzXRrgFICblbzKxlA6ZTlylH7CX/5Nz/l53/5FTujgslkyp1799kayYrr+fk5o9GIg8MjwWCaio8++hZ3793m5OQYrTX7+/siTRLNeOaLOU+efEVTV9x76z47O9scHd2iKApu3Tri+OQEZx3vv/8+v/71b2S7aGuLJEkYjwbR6XcoWEwAZy1tI0Y2y/mSslwxny9YLJfM53Oc94zHE27dusXWdMqrF8/55S9/znK5wHtPMRhw7/59rLW8//77fPLxJzjn+eSTT/jwww95/PiZmG9qkfEKdL1t3OW4ga90WEn3UErqhT/08Ycz+BhgmxYSK+sFb86xtiZJiPoHy8hqUBiToRCwz7oyugFKkFdVEyciBlNk8dkdnQFN21qstWTpgKbROKepKlndCcGzKBdobSiKMVk2pCpbvC9jUDryYc5wtEVZ1iyuDDs7dzi/+ookCYAhMTlKieOM95aL2VO0zmldQ720pJkjz6aiJ1i15HlKlurIsBmRJCmDYguRoVJ9Ea+NTMd9kJWetmkwZshoMOWjb/0Rn3z8Q6bjWyyuGp68+pr5fN5rUAnYYtdFPpGhgu9Bss112s21yXXTvJ5IbK7h3tzx3mSorEFFf+1nO1AR6F9j8+c2EenNxhw6ILBjIq5fR/Sz1j/fJc+bum1SSFlae0WVLvE+xITnUTpEnaAUnch7TDNxC2ubWkBkJXosUqDWcRUtRZH2jV33XsQURqOVCGt2TAVnLYHAbHGFSTKGwwlKJZLEEecj51uSPGE03mIxX3J14bhz+x2OTz8DJZT+TsMry1KatqFqT1EkWBeoyorRuGAwKCJDqyUzBSSyojsej1EKptNttqZyjaxrUB4Sk6KUiJpbC661pOmYw4PbfP+7P+Hddz5GqxFvji84eXNMVVXX4sTa9lpcdMYGm19bA7zX46azqN+Ml+7fN6/n9ee4Hh+bMbc54eheQysFG6vp19bEJVrk/zvQ+xte4xqjMJp4dABfx+Lx3jOfX1I3J6RpSpKIBhqqaxrEVTnLDM6FPhFbWwmwl4jOn7UhAsNJBABTOsFlG2n53rkO12K5XBGCEkfBqsEYzXy+QBlDmuV4D4vFChVsZLV5ynLBaDTFmIzL04Z7d44I5oSLq5exWJUVqPFkhKfF+Qq0rI00rWUyyRkMc7QyLJcVrfcMRmPqpiZNs5jfxuTZCKW0rFMZKXyKXNZvRMfMMCh2uH/7Ad/9zo+4f+89vDU8//oNFxei+9aDtkqYYxCdx3qGiVvnFHWdzXn92l2ftHYyEGvcbF2EJUnCaDQEbvcDkQ6wQ60BHQF/43PFte4uZtbAswIdvx9paDdd/brvEexG98ZHXeRrrXr3wr4xCJ6Xr58QkFWb4XAseUlLs5moFB+6JjGNzM4QASNhBigjBgO2kZjJc3GZdy6AlmYZiO54wm6+vLxA67T7rXA2UFWNANFphkLiAd+AammpZUo/vkPwhuW8YlKMyDM4OT9jMJBCsmmWTCYT2rZCR1BRwCHL3v6UwUBcQ2czYVKngxFlVZHGgZRSCcPhCK07EyABYweFSFhonaApGA13uX//Xb77yY/Z37/Lamn58otnXF1eRjbnGmywcR3iptRAn5/iVVtPU+mnqN2ZZ63lvffe5Xef/Rbbympbl1+yPKdtLbPjNzRNG6f8FXVZCqvEC4sshG5C0XGIJXq01vh1WMsANAI7KtY3YrLgmc3mWKf47NNPKYqcjz/8kOlkSmqEvZ0oDVokUTD0ea27l+arl8yXL1itxK1alwk7O9sMxpoQNE3t4mBUWMuDwZBu4GRdE42GDCqCzArTAxvyvhPa6Ai5yfK3zhIaKytRXla+nQ0YxJBHXPi8rGbbFYGWutLMZpeiqWUVbetRSDNcNUuGgwHBBrxVkAWcdWRZAsFFF8ICbYbCZk0yFsuKcToEEkKQoZ3SBjAYA1qHGHM+5g5DVXrybMR4sMXhwUM++taPefvhBzgLb15fcHr6hLZpZJjKOm90AC5hPQQdj8dxvSvgrLhT+77mkWu/u7PLP//n/2v+wT/6R7x4+YKf/uynELWd3py8YZCP2dvZl1XXxUKcGFsr+rAhkBQZSaJ5/NWXvfSF7hmdiZjBpDlbW1uMBkN+9I9/xMXFBWnUa7q6msU6fG1FnyaGg/0DJuMxw+GQnZ0d7ty5w+07d8iynA5c7Fa/u5rUWhuZJb6ve6xtadtagAwtwKGzHoxHKVmVHw5GTMZTlst5fx0aKytmXSwPBkNCkJVGgmY83qJtLK5axCGDrGJaK4OuNM2iMYbrGbSi5ZxSBI/HkefyM9po8iSnbSqKfMBwmAKWPEk5Gt1mPp8xX84lxrwhHYz4+Ft/ynh4gPMNPsgG0VdPfsPr4y8pqxV5PmAwHGOMZrZYUNfC3vFBhOuNztia7rJaVrQNvPvuJ3z80R9z+9Y7KDK++OIxn/3uC07OThFMzNI0jYAPkaWjlEbPl/zV66/5+b8OgJhsZYWshJpkwspOWCxnKHtO7Zzk3ETOLKM1y/mci/NTBkWO1matSUXU9yYwnU55ennJy+jmfXL8GttuszWdUtU1g8GAr5+/EAMeY7iazWE+77cjunVI2wqjtI2/S7kqOTs745e//CViTHVA1TaSX6RwkJ9dp8pY/ykCcs27VXqTmAjmCmspTTUqrtf5aO5mjNx3dWTwZ5EhHYi1Jp7WVjKwVyrmNBONVoTl7qwQL0wiDuHGpLJWGBxFkeOcYjgcSv73Iic1KIbcvf0I61vevPkcrT3aqPgaAaKrfbBSj6o44E9MTpYMUSqIG6oWl/jReMj5+Sk+BM4uXnHx9RfM5udU9ZI00SSZ4ad/81esFil5UbBYLKPbeiuxg8HPZ/zb//tjfv0/DSjSwHg0ZDAckA4GmOE+J09L6stXqCCs1VQrZucXLI3mwmiquKpbRGmkVVlirevPV+scbWtl/XBryrNnz1gtl7z/3ru0TcXl5SV7e7s8/foJSsHe7h6vXr6mqVo+/fQLqrrBWsvTr7+mqWvG4zF37twmLQpevj7m+M1Jz1pLUzGo6Ub21kp+PD8/IxBYLZd8+eVXvHz+nIdvvXWNEHBd9irIQFZDohLwgSYE0lSTRhd3hSKLZ6TuBolGcn9ZloD0wSHIuS4DbCeatkHAQ600ymiytODi4kT61zRDEUizFBPZelontI1s/XglWp34QKIUDtm0ypJMMIumJMsylqsFeSZO5VeLBU1rGY0G2NaJFI61FFkGBIo8YWv7AScnr7i8POf5018wGQ97Lb+6WuK9geyUk6//lifjB6y2c4osocgzXLBk6URW0RtLUzecr1acnZxx/PqYRIv28A9/+EM+/vjbnJ2cylBSwXx2hdaBw8MDOhPHVVWCkn7r7OyUp0++Ik0zppMpL168JMtyDg4O+Lu/+zuO37zho48+Ynd3l+FgxHw5l145QJ7KavTZ2QXzhRgGLpdLZldX1JHxt1ytqKuao6NDHr7zDm+99YCtra3+bL5//z5JmvI//o//T4xWjEYjAVG9ZW9vjyIvmF3Nubqc8ezpS85PzhgWA/RG/bWuC67jLX0vy42tthtkmP+Uxx8M8M2WLykr2dGeTrfJjCfxAWc9WmUidqsUedRWEU0pKwUBskJkrWMwKGR9jSA74UrjvKVDX9JUDpu6WeGc0FJNZMh5H0i06NP4YKgrS9NUBL+KxeopZbmQhOwtPuiY+B1VVTIcyo0nq0jiXpRlsjufJinZJCcvXF/E1E2LwqB1hvNN1BCJDXsQycRuYp/gSbSmbWFQHLA9vc0H73+Xd97+iPHogLOzSz773VNZxfUWdJwTqDVQsaZ2rgtmMXj4fUrxJjAi+kLX2QrX6Mc3AJKbX+tBD9agzCbw1jGrrLPXnkNea90gr9kTwuLrfp9187EWleyasO7RAT8hBJblKXXzCpNotrd2STIAQ9PI6uxqtSJ4Jc6OwWJtBXiMVpESLwyQJBF3pc5FUZyzOiC10z0J0RUpug8Hj1YG7wPDYkIxGOBsiLpXDa5doZQIwa9WS4LXURw2Y1XOJKEq22tygKcqVxAUaZoAhrQQhyvvm+igJcWEMSlGJzhnWSyWfVw4bwnBRb0a1cceIWM6PuLuO+/xwfvf4e6dR4SQcvz6lIuLV3H1w9H5Fau4LrV2Ge3owaoXeN28ti4KxF4HgNdN8s0YW89av/lx82e6xvybvm9Tl2Ada2v2lYsgnY0x1D1XB6psxrbQ4WU1dTOmQwisynM8V1RNYDqZUgwLglfYNpAmKa1tKZdL8ryILBwZcHQNMDoRMqELJKm4gAvAHUGGqC2oY3HYTZWs9bStJTUyaRoPpyRZStO2LBaifQcNztYY3TBfXDEY7GCtpxhqYR5XF7G3lOKhKAqaSjQg82wiqwCpZjCgHzrkuYm/i8LonEGRCdNgsSTJM9rWRpH8Fq2kESqrBqOGjEeHvPfoO3z4wffZ379LXTmePX3N1dUMZz0+OmgKS7IDa2UF21oZ/qBE+2aTvt5dk80YkT93/10/DDt9vJv6oV3jeTPWJBB+P8Y2//xNTFTbOUjrqKOn1sOOHuRmLV3QGQap+Dtvvr5WWhpLnWBbi/dVH6NpGgXokdWoLBWZCxt1okzUddUqoYkai0p1IIXkFHwPR0oO05o0TdDaimtlC6lJpEkeTFCJoqkq5vM5JlFobWnrisQ42rZme3uXECAfwLJ6Td2sKIosMn6DyA1UNYSEQTFFK9HQnYwUIWiWqyvadimrmB48KcNRRt2sWK4uSbOMpq3JiwLnfe8uXJYtWbrN4f4DPvzgB7z77scMBxPm85ovP3/FfD6X8y5II9Ux47prsAb1NnXoupyD/HnjzNoE9qy1XFxe0tQN29NtXr96KSuGJsd6R5EPOD89o4k5KDjR1ZQpf+f0bqSe6aA96dB6qM+FNTwU3w6eQGsDzrZoBc4meKvQKuXJV1/x6NE7jEcjsjTFoMFIk6lVx6i+rqsLxIFDymSyRTdwWw/tTGTv5SQ6YeWXaG2wccXIaENQKoKvokUr51NNmiZinIaszJlEGg4ViJsXcTXSWdLE4JQAilvbAxrbUi1XVGWJSePPWgGHIbC3d8izl468CCzL1yTasT2ZUtcVWSbrfrZxDPI9drbuAx6dRFfUuuHs4hmz2YxBMYSQkGUjKr+ksS11vWIwHMTcnYpWXJKyWtWUK83+7nu88/ATPv7oh+xsH7JaOl48P+X87Jy2dXRSAMIGl/pGmB8xdygZIrW2ZX9vX5hwWqGztD+bkiSuWHnP0a1bIhvgxcDuww8/oSxXNHXDaLxHXVqqekXTNvHMaXG+jfVKoG4aPC6eQ7FGjPkmS7O+YRqPxzjn2NnZ4fVvX3NwdCQMuyInz2RlLMtStra2uHvnNrdv32E4GJKlOSaCdcooVD8AXA/ypPaU4aQMbSCEjkUbGf9BxSG1Rhupu9NU431L2coANigvQzWlRAw+CChktOhRomBnZ4/lcklRDGmaq/79Na0QBrJMzMmC9agkI03lfqrqGh1c1I6Vz8QYCAgQZG1D0y7Y2Z5yeWVwriE4x+X5FVmeUxQjmrolywoSM2I8vIVtE169Psb5BYvVKbPFa6wTBopSAbBRK7JFa2Elgsa2CamZMM7f4sN3H/HgrXfZ3TmiLB2vXlxwfnbB2fkFWS7ut3VVUddikgIyJJPzxaDdjJCs+Ml/8U/52c9/xvHJG84vy7hy6gnBUOQFh4cHUSNSRYF5T7Va8uL5guVqxmg0JM9zTJKSGNE6NTqJjX5NU9VRM3zK4eEBzlp+/rOf8uMf/5gkSZhdzajqBm0kVnyQcyiNOrCSpxRFllNXJW3TslwuMcbw+WefsT2ZcOvwlvy8uj4Y+abaUBjVUoP194PW8cz1NK3IUBiToJWRgWsqck2qDehYdwyHE7m3sBhE40xpE92ehR2amCTWkxalZXujl1qI21W2tVRE2Z54xjRx60LqywVVU1I1LUa3JJnoTtrWxbpDy2A40bStpXXSt5SNMPysF8BHabm3B4MBAc3l1RtUqsiHAa9SMlPgvWg4n76pOD+/pK5LMQnUAW0UYhp3hVsc8+Zp2cfT2jwsxQWDVgkmWColg/TubEMpLs7PWS7nvP32Q7I8YzgcUdd17CvSOEiFyWTCm1cv+fzT35GlhqPDA549+5rlcsmbN284OXnDP/2n/5Q2DoNeH78BHc2hFOwfHvQgbtk0lMev43kZV5+1QfQr41ZOCNRViW2HBC/GUuPxkMePv2K5WFBkGXVdo42RmjnWS1KDBVBrsy0de4ZBUaB0g7UyoAAhIHWtSZfXXaeVp+Xe7BxvJXwlhrM8p6pqFqsrFsslVb2S8zwkaKWo6poqatdNJmO8EYKUcl6c65sGYzJa5yUnaqiqGmWMaIJ7T9NUXM1muNaz8KJHF0JgOpngHFSNpchTLq4u4VLMIwfDAZ998WueP5/TWh0HNRbQmPSYy+PP+d1fCSieGqlTk2KAHmyzaBKa+QW1vRL8wxiaukIrRZIYfvbTnzEZTyjynMFggAfm81kfS7JV46nbhsl0QtPWfP30CWdn50ymY+ZXV5y+EYKYmOiJm/t/+ed/wTgaTs2jadRstuDJk2fYuKGD0d1BzavjYy6vLhkNR4yGQz786CNG4wmgefnqmNfHJ3TyQGkatfC1aDa2sTYMIfD48WPu3L7D2ekZe3sHPH78FV9//YTd7S1SbQist0e6vuL3c9h1wO8/1+MPX9FNNUkyARJs6+JhLwl0OBxQriqssyhNDBBPt/6njaGqBSBzLlDXtYBrRhBxHyxJons9hTRNEbcicdfK0oS29ZgkZTgsqKqK5WqF0oa8EAfcEDzGQJIodnf3+fr5U3TiWJYvKApZ9y3LFaPRMBZqmq3xbSaTXTmUlSMxI84vXjNbvML5kjwXi/fhYIer+Ss5/IMISIvbnGZQjFHKM1/OSbMx33r/e7z/6Dvcv/ceioLT0wtefP2E1WrZa5x1rJVN7blugtYxkjaZSd2fe8HPDRZMB/BtNsK/z3i6zlDZ/Pfu69/EturexyYjpvt697Md8LoWIu/Awpvgz/Vg7mj7N4NcoSiKlKwYo5XolxktbleDwaB3Z25bibVgvWgyWhF3VRgR06+FSVRXNUmiSUwWGRu2X1NTSkc3TEsw4naT54am8b27lqyrtHgsWa4iiyGQZQLgTad7XFx+RZo5WnfBZDogkLFczhmN5LBRIefe7Q/Z3b2Fcy0mEXDizcnXvDl9grUteS56f6PhlLOLY2GSIWspykQ2y2iEbT3LRcn+3lt88O4f8d6732Zn+4iqtDx/dsrV5SwKusdGNqIOHXuFQG8N3unbyDX95vv+GhsqAnzBrxmkm3G6CTr3oEkQBl0/LduItW9ihnZN6N8HwKynIKyfG67dG5vx2012tdbooH8vJgeDgqBGiGupsOCyNBe3PmMoEtFd7CjYSpnYkAKI5ottPdY5mraNOkGy6uaCxSTRkdlvGNgoF4vOCKgZEaS3zmK0pmkqssJgTIbOUxJTgHKMx1uAJs1rdDJnZzhA6zEXF+doLS7TwRluHb3Lo4ffoVxVFMME7xuadskXX/2Mq/kpiSkYDsYUxZDFcsZyKWscKulyT8721i7eKaqqZTo+4Hvf+Yc8eudjxsMdrq5WfPa7ZywWS2F/snaK6ia5dLlCqzj9VqgoMUDo9HH8teu/yd6T67w24YDIJt5gwWzGQ/fvm8/ZD0k2WKXd997MhR0LpvuadY7ghVFD4NrzdMBjx+LTEXBEbQCLXAcNUaJn6LysKYo5SRlZeCLObpKEyXgqZkKBqM8kLnYaRWMF3BNdOHGn9R7yrKBqSpQOYtISY955izjZJ5gkiwMS0Ypy3jMoBiyXM7JEtDuLfCJAj6vRSnSvklSjqZluTUlMwunpiUy6dUJIEu7e+pD33/ljVquGYmhomiVNU/O7z/+Gi6tnpKms4Q5HQ8pyyXK1FN1FQGmN94at6Z2ozaXYu3WPP/r+n3Hv7rtolXF2es6TLx/3+juyPg/ENSe5lqG/Rv29LTvSAgjrTR0UOXU7EwygL+CUEoH8rcmEH37/B5zff0BVVWuX78hQa62PZh22B7SFFd2x1W2sR+JgMmiCi6xKJY2B6mIxSLPi4+AlNbLWn6cZe/v73L93l6PDgzgURX6n2AT7IGzUzbNWbfzOysv5CTLMMlrHfKPQWmI80ZrDgyOWyyVOCzOwblpZ+43N7HA4IAQVXQWlOc6zAWfnJxij5SwM9NIUqUlkUItCK08ImsVyQZJlbG2NKcsFg+EAYboXJKZgtVqQGlmxgRqF59bREW1bMwuXpJmwk7w3fOfDf8TB9rcpqzkmaWnsjOcvPmdVnbJcigbXaDJA60BjZYVaKSOmL2kKNmF7epvVynJrf5dPPv4B77/7PbJ0wmJe8vmnz5nNZvHcCddMnfqzrLv/lY4MobX75vbWFtPJlOWqRKvAYDBkNrtanz0IM+Onv/g5dd1SliVVVbFarWgaWW9r6pq2WtE2VT9Edr3GpKZuGupGNmNccCg6LSl5L1mSYggE67i8vOT09IRPvvMxr16/Zrmcs7u7TZFnTMZj7ty5w+HhIaPRKDLd5WwTnb3IPuW6NEw/9IsjjjRNGY4mjEdj5vM5RM3O7izQChKtwGRoBbYtpbb1DkwgM4k0e3VLluQMh2O2tna4vLrsAdwkSSijO3aeZ/EMCYCYdBitCYlCqRwfDM5UDAc5rWv788FakaCIZumgFXW1IDMJiUoZjlJaq6mbitC25FnBqrQslkvybIfnLz7j6dePuZwdg67Jc2FNymci9ft8scC2jsQUpPkQrQfs7t7j/Xe/w93b7zIZH2Abz+zqit/++nOquo1nnSfNEg73D8SZNgRQvtc9XTM1ha19/8F9/tF/8Y/405/8hOOTN7x584YsTXl9fMzZ2RXjyYQ0S6mrmjYODhfzOTOtUcGhgC+++CzmQYnrNBPdUaMT8jRnOt1iOByRZxl/8sM/Zjab8b3vfpeHDx/yP/+H/0BVCojku/M5xrfRGqNVLPsFGJ6MRpKLtGFUDLm1f8i77z7i6OBAwLNYI6x/Rvf5VSmFCYadyR6Xl6K7Jufbuhdq27Zf1Q1BDE5MlFja3FLxXozJUIayXOBintOJDG2zNJNzMvE466NWahDpH530zqhFXlDVbRzOSa3trax0aqVwtiZJFHYVaCpZpcxyHd2TpY5OjPTHTWPJspzFXAgqTW2j2UKIYKbG+YCLxnPeOQajgmbZUORT2lqjSRkPM/L8tI/HTucySzOcEdkLa9u49SSr2++++z6vX71hvphLfYOwjNI0591H7/Luu++T57k4B6vA+fkZv/v0tywWc4rBAFDkRcF0Mokr2Q7bWtq6EYDRaJ5//TVnZ2ecnZ1x984dHrz1gG9//B1+/ZtfEwIcH79BGQHdfegAPB31tGWQb7RBy3KFgJ6xzsuyjLapIjt0RZoV/OZ3v+VqdsHsakbd1JxdXrC/t4eK5/LmkHZdyXW0KznHxXxkLr93jEmIvZMxJCrpQV/p1yROszwTSRnWoHfTNhidMJ0MMMYwckPyNI9nqmyuoYVU4J3cm2maicSOCtggsVKkGVoLIcQHUJY4aHIEJ+66aSr3TZKmpCbFOzGgdFrWwLWuybIWV8Ni1WJSeS3voXHijp0kCYkX7bk0SanUesswEFmKSkBxk2QQfPxsNalJ0Uozn80pVwveeus+w9GYre0tkYdp2/g8wnpM85QsMbx49pTPP/0dITjyTJiNDx8+5PHjL1ksFhweHvC/+W/+G46OjkjTlGKQY7Tm9PQMH87ioMGAEmKUR2RXJltThuNRnz/fnJ6izi8IARQ6sniRIQOBtq0p8pymqbBNS12JNM1XX33F7u4en3zyCePxhF/96tcsFnPee/TORgz9PllhEzfpfAg6ljQ3CQz/iY8/GOCzLkRkO+kTaveBOWcpBuK61tomNkImCjSbXtx6OBxhrRMhVDTT6Q5NbVmsqrjaNkSorp66acjSPE7Euz12sZhO04TxeIDzjqJI0CSgwCQiTp4lQ4aDEd5bsjRhONzt1xSNMeSZIUum/OC7/5Q826KpW6x11O05VXVJ3QwpqxVKJUy3JjT1JSFI8ZGkKdoF2saSmimD4gitUh49fJuPPvojDvbfom0dr1+dcnHxJJpEQECmwAowiXxuAlRIUkiS5FoB1T2kYXDxc3b9VOAm2Lap09eBch2A1v1b97gJxnRfuwkMduDI5vNurv9uAnybK3Y9nb4HemQypzZYO0pdD+we7FNiT+5DHcWVRbuka5ba1jIopmxNM8pySZeU17+PvMZoNJYiwIpGzq2ju9R1w8Xlm7gGV6CUTNPks0oiiq9Q2kcWnTieDoqMEBTFIEFW52RiWDcLBvmE4WCIdbKuPplsU5ZLEWJWQaaITHnv0Z+Qp1Nmi3OgZbG8oKkdSdJpBSbkRYb1S0DAXln1BO8UiR6QJwfsTXd5548+4dE7HzMotpnN5nz5+ddSVNq2Bz9Czxy7Dm4orUjSJP59k0J8fU1bru0m+BIBnJ6L8vvgyiYY2IMhEWi8GV83k9pmnG7G2maS7P7rDmjnHJ7rMXsTCOyfv4vBG/dW07ZYVwqrI0niVN8SQsfszbh1dJvZXMRXhZUsTpVdzGZ5So5M3a1r2Jpss729y7OXz0Q3LTFoTPz9fGQVKRHxNwbnPFdXM0yaojUMioTBMCMEF9dPNFW1oMgKxsOpWL67FqNzfNBsbe1QVSsUijTJOdx7wHh4RF2eUi5rqnrF6flTqromTQpZPdaeQE3TCFuwGAwEvA0pdWmYDA45OLzD++99hzu3H5CaEWdnlzx7+iXL5TIW0ddjrV85jFdeIYWuMFdVPFC7A64rzNlgksrPXYvXDdBGGug1q29zINHF26ZRUDeh3syVm3F4Mx438xpAEsHvoPyN97N+vT6/QQ/w9HGm1zEZQqBpa5yr5dpbJ8WwbWV9T7UYlzGZTNFaUdUlzooGnBS2CuV8HCwo0lTyYpbm7Gzv8er4VZQo0FEIXgBrEwFRk+QkRsDq2Uz00HyQWEszgzFRJzUE6nrFZDRiWExobSkM5qrBas94vCVmM86iyJiO9wk+ZT4/5/XxBWV1xtXiFXUzI8+HpKnBh5rWwtX8HEAGH0ERSPF2yDC/x8O3vsW773zE9nSfuva8fH7K1dUsrr5GQ5Pumum1Q2zXbIk+7ZpZJGvAWph+4YbmZ4wfHV1DTWJ6XbH9vT12d3b6XOScw3bGLhuxaZ3oqHa1kA++X/2+qSvbGXjIF2UtTMfY6pjAXc7TqBi3QhVTdIZQ8vu44CIrWPVgk+pAw5gTpXAUxplCJCysdaKhHA3LkiQQfENjAworzWloUUGR5XmvxaVUQpYVeGfZ2tpiuSzJ0oy6LslzEX8PTlYu09RQ5CNC1BfKjBHTIucJw5QkzfDesTUdo1SImszymZXljNtHt8iSVDQpMZycnDMYFKRZER1uA0anGJ3x+vhrnr/6HWV9jrULWjcH1TIcjoBA066o41A5SVLyfIRzisyMmI7v8uDet3n0zkfs7RzStC0nx3Nms1cCJAfbg3UohUaDWZ8pN2u0zaFBdz598K0PeP7yBbUVPWetxTymi/8kTTk7OxMpmeWCtq6xbUvTVDFPWGzTSNyETvaky4WbsiwiERMi+ynoNSBZtw3zxYLBEH7+y19y/+qcV69ekWYpe/t73Ll9m/29vShjEuNRaYktNDrEplf3mHL/e/fDX68pBjkBS/CWy6tzYe1FJ0JhhDQUWYZDciAKTGSet77ulRIU4na9bJZoXTObz4FO9zZF6l5iPaijiYOs+9e1rNNrZTg6vM/B4Vs8fvJrVqsT0qjRHLw0fEYnAop6IIgR387uHuppFllgYsAxGBakaYLzLWmW0doVT579CusbktzibCDPRWLFR0dfpXOCM0yGWxwd3Ofevbe5d+ddJpMjmtpzcT7n9YunNHXVD8a89wQVNQ4V3H/rLr/53W8FLEgz0jQVzWclq6/OOVwIvPXgIW9OzglK4ZzCJAXnlxc4pxiNRabo8lJcLavVkrKqaOuSaiU9VPDxPUftdELAW4/JjThgaiObTWnGy5cvAfj444/57g++zxeff85ytZJBrzEYpXonZq3lzM/znNFwxN7uLgf7+7K6XuRkacYgL4TBFFesu5hSWveNr4mrjpu59OryEh/X1DelPvrzXq3JDk0r21iXVzNCsCRJKkCzSWjac5wPDIos6nFHsCFJaKtW5EniSmdqEuqmxLoWaLDWk+cjmmbB5eU5ENjd3QEgT8RQMc8MJtWcnp0ymRywvXUL6+bUlZgyCkCd0LQNrm4wWkgtq/IC8XiSnicvUi4ur1hUS9HaNKJ/atuGaqnYmz7kcP8dDvbuc+fOQ/7mr37B/+Xxf49SwrrSSpPlKX/yoz/hF7/4BYvFAu9DXCmEB/cf8N/9d/9HlouSV69e4+PWwuXlFQcHt7h9+zYoxWpVMZtdUVY1g+GE8XSbsm45OTlntVxQNzVJKgzuJElJk4xBUbC9tYPWiovLCz759id868Nvsbe3x8MHD7hz5w6//s2vwHvOz07lukfgpzsThWUnkKMx4mKrImOzy0FFnlNXsno5n8+ZTg0vnz9ntZgRfODo8DbD4TDqYq+3S/pcFntwdKetJ8M8550Y6SQpTSMs9w7EH0aX2qZpNvqVyDC1HYmBOIiF4DwETYhmSMFDSBTjyZSqXKKDbEaEKOWjAiivSHUWwc0Q5c0EhzDGoJUmzXKMUmiT4YMnTYqeRKUiE9o5Syeqbq2jKDJaW1I3LUlSMJnkGNOQJik2bTFa5CC6+9hoE8/3FII8d7eptL2zxXK5QIrdQF2Lc+/3v/cDPvn2twkBVsslT58+4Ze//LmY1xjNYDCgKMS3oWktX3z2OXVdcXVxTp6lFFnGO++8w8HBAT/72c8IIbD7R3u89/77rJZLWEm/453nq6++khVok/Ta553zcDeA3ySTCNvYoFTnirweDusIKE8mE07eiKby7OqK0WjMYrHg8eOvWCzm4D2np+e0TYuzjtliTl5k8QzaqA2uMUXlvPa9D8HGgPoPfPzBAF8Igu4qZylycdCpamG7WNuitSPPRGzUxfXXNDrXWGsxypCahCwp2Ns9YD6fMygGNPUFw8EQbYg3i3zY49FIKMUqodC5OK05iw8mimxKQ2mMJtCiVI61DXW1ZHtyyMlpileSrE5PF2JNn+aUdUWeWFKtaerA8fGXPHvxFGcbWneK8xVJEgWavWe1WrAsr+TGGA4jSyxne3KHve1HfPDeD7l9+y6JSbmaLXj8+WMWqyW219wKchmVJulIIv31vF4sdawouL4+tAbhJEmATEdlXUKeJ0mS32tQbzKm5DnCtb93r3+zKbm55ru5Qnu9Saant/Zfk063B4QictAR76817VqvgTmQSa82OoKiPgJlXWKNYrbtAlQRKfryda1zWUNsHakR3T2hIBfMZwvKckVVV2KWEU1ZtA4kiSbPZY3FmIy6tqSpwBBZlsSpJISQIOsX0rxY19JUc7anW7zQOiY/zdnpBXmWozDCVFWO8SBlubzkqze/4cXrpzhXi9izEf3KPBeR+aoqKasl3nmKoiBNCowZc+vwfY723+PR2x8z3dqhLhtOj8+ZzV5Qt3XPmJT/BFi8OaHqQy6AUt06q8SOxEynTej7mCIW+N3KWxevxqwBuO66XzOC2Si6NhuCriDrfmadW9ag4E0AZvPv3/Q1gxz4Ok6UvJPVqY4d0zUlKrItrjdpwuxUSnRosiyXYtc3KO2iI1rN1exU3qi2GKTB8iqIA2maYxKZ5KV5Jms1bc3r45fRFVw+axEeTzFKDkylDK0LOG0ZaEVRJETeK0qJw5uYSMi9sFpeMhoMUchKVpHnLBc1qCQyCBKWyxVFpmnsnN9+9pc8f/k1VTUnST3aWNK0m3oGmqamLFe4EMgHY7J0SJJsc//ehzy49yG3jt4mTXJWq4qvn56wXDzGRpCjW0Xt7vsoRnL9mna/C2vQXe4jsY6X3LRm/enYWPpYOAiIGiParIv2zeu3mTu719+My818thlrmz+7GcM382PHUJHf9bpmaPc5hrCWWeheal2Yru8dgyLPMnwo4vqP6XW5QBxKraspq5kAOib003CZ7iaMxxOMFk0XjwBd1rUcn7zCGMjznBCgalvyPIqQRzA6YHBKkWjPoJjiOsCbsNadDGBCwNkVRjm5t0xCOsiYL2oaK01HmuXM5lcUmWE2v+TNyb/l+PQ5ZTknTSDNda9b6b18PldXc1KTkxY5WTpmMr7Du4++x707H7A1OcS2gaurKz579aXoBsVY6T7PNZhrrl2nTsLCheu5RtiUjs5sag3yaoKO8gDeE5QnVSnBroG/zSGHC57Mr/VjI9LYzfrF+Cs2pDfz2Tc9eiBZ/hIbmtDXCpuxpTdXcbv4jnlMIWwyJfZEEKLMhdcor0WHLRXGhbMin5IacQHNcilEnWvxvpVY1ZqsSMBDVTUEFFlWsLW9w2K+gCSVBsPItoTSopmWZWlkmMng0igdAaGEQbFNY2ucW5FYaTCMSSODvI2/t4AWtq3Ikxy8Y5hnBFLqxtPaluFogDEJ5xenTCcDnr34lOM3r1isLhCH4ETWzJWwDJMkoW083iUMij3ydMjW9IiHD7/Do7c/YWt6C9vA+fkFX335VAS1Q4igtzSUxnRnnzT6m5P2zTNssz7qhhZ107C/v890MuH4tZznqcmoI5g1Gk04eXMmzC0vv6NtamzTCLs16lH2q+cKumFbIA4QuqyiTOwGY1xog3Wy9myCYlGucErz8tVLOjbYndu3efToEWmSRKdvheka5ugwaJReu/0JF0KcZONwsxMe1UHJkMI3pInvm29polSsexO0htSkZNmAsikxBJROCPG+bqN7pABmIYJOUe5CC+Ah9X4igH93/3kvQJ+KdaaCs7MTLq6WzGZnEBqSNKC03GNaxXW3NEOpQJEPWaxK0qQFlbIqZ1GzLxcALv7usrJlGY0HNK0ilAqrAvgBOE1qMram+xzs3+H+vfe4d+cdsnTIYlFxdT7nxfMn/VaJsCJlOOmsXw+CYg57+OBhlC5Y4YMhzTKqppH1USWSQ3mes7Wzw28/+4yqamhbS10Li6lpmp61Z6PAvG1rYYW2NW3bsFg4wOFx/eCsG3CDFiB9Q/akc7LOBwW/+OUv+PTTz1iUS9I8ZTAcRPfvhCxLGQwGbG/vcHh4wP7+PsPhQJzetTCXO51Gpbp6R1/P3X2eXNeL9ECPQ2mRQ1Iq/caeSWtNVdU0TcWiLHG2psgz0ixFEfptKaPFqVsFATh9a2mamrZuKIqBaN/lBT6adInxjcHbmrJaYV1gONrCO0dTS69CouNKf4MPCh9mtM6SmIzlakXwgaYJeCxae1onMWGdZ+zhl7/5fwuI7R1VWeNcwLaQFSOCm3B4+A737jxkkE/Z3jpgONzBe8N8UXJ5umJQTBkOh7RXM9IOHC5rfvoffwZAqlNc8NRe2LUff/JdrIW6tgxHU6nHtCbNBswXS1797OfUjY3mGbKl1zYNrvEMB1OMSpgMx8wWl6xWwgDs5BTSJGE8GVLXFaNRzve+/21++5vf8vTp46hX+GvOzi9onWWxXMj11lrc37vhLN0wNcpgbJx7KiZC7xx5KvrZbd1SrUoSbSiXK966d58P3nvEZDSIgDH9kBgtqbMDgIKKmrz0sDJpmsX7wXQHuGAhdRcTKgJe8oRdf+m9Z3d3h5OTUyE6JQkEcEHWvwmacrWKjq1GjIGMSK34eM6YJInEE0/wijTR0TQoo2m6jb8EvCPLCwGL3Wbfn6KU/CxamJvD4SCy+kN3mnCwt8tjPYPUoNSA1WIRtbQT/sE/+AknJyd8+eVXsVwRzWlrLUdH+/zLf/kvsW2gaVqapmWxWLC/v8/R0S3QMth3ztP6wN7BAcfHxzx+8oSqrilXJc65OEyQTYCdnW2Gg4wk1dy9exuU5vvf/z7ee168eMFXX33J++99wIMHb0UWnOL169c0rZgdGpPKeMok/YCUCNx1EiIq4hPdcEGwXR0/b4mFwWAgjG/XMp/PRV6jdXz99Anilqs4PztjMp7y6vglu+02hweHGKOEHB6HTXFyg1ci8bnZm6BCx/n7plLx/6/HHwzw5XmOTiYR4ZYGKFVrzTC0JagErQODgVjDt60cynk+YHtrj1ncv26ahizLWZVzlPGkHVofgrDuMqGhpqkDEopkj9ZeEWjJh4lQm5NUmF7eETAQ5NAoy6UYaSAosbXQWjFUGA7HWKspyytGRcNXX/9HXr95RlnJJGo4yHpWhfMyFa+bgDEjEpUxGe1y59Z7vP/uD7h99AhjhsxnM16+eE1ZVrStsN2C7tYPQXMdFLvJOOmYdt2jY8VtNiZ9M6NNrGHWTe1mQ9s7m21MlOF607rJ7Ov+rXuezZ+72QR/0+/Q/ftNECbeMf3zd0wJ3afONfupO5D71Uwgz3IyNeybqo55qbQSMVx8XHMV7RXvPVUlQsrj0ZDt7V3Ozy8geJbLpQDCypMYhFJsEgaDISJeb3qgwuicW4cPWK3OcW6JSZE1PaOxjRTR3ltCUCRGUddLRoMDkiQjy7IoDi/N/WAwRqmM1fIKRg1fPP4brubn/SRwOhnFCbcIJ6dpKge52SbNx+zuHPLWvQ95993vMp0cUpWOi4sLXr36XFYObFyJ1p2c4xrA6hqT7s/fxHSSqcF15kGIh9e6qFqDepuPa0mK9fRjE1C+yY7ajI9NVmoIUZ+N6+DyZmzebKw2X1Niad3093FFB+51v7cwQLtYM8ZgnbhmNm1Ox8TS2tO7lzZlXJ9uMdGhlAC2lWuWpRnb27ssV6U40UVR/jxLIwvQk2VF/3odI6+pG/J8xOHBXSBwcvY1iYlaVloAvU7DzznRDwrEiW42JNBcA1TzXHRNr2xDmhmev/xMtEIo8UoE5vNc1kja1kZmaIrRY7YnB9y+/YD7d9/l3r33ydIJ83nJ8evzuLq7HhooJc24fLSqB4M7gP4mmLbOD9evqfdrrU75GmvAI6jIbPDRGXwdc30c6HWcdAX+NzFq1q+/zll/HxB9Paau//mbYr3XWQtrwE+GU9LYCvMmst4TEftPEnHVq+sSa5K1GYuiX8OzrkEpYWy1AYKXAkncIhXO1YgmkBSAaWIic9eRJANAXE6ddwKk1JY8H3H/zrdAJzz9+lcoXZIaQJm4SmYIaHH2DrKKbhIYj6asyrmsswZ5niQVl7ZxEJOQN2dfiAyBLklzYTvkeYpcPIdWwmgZ5mMO9t7irfuPuHvnETs7d6irwOXFjC+Pn4oYffCIi2hkueoOA+vOuDjQCh3ocT0vKDozJ8nVhLj68nuPNetyM8dsMo27r5sICPbxG1mp/TT4Rm67KYWx+R6v5cF4A4SuQe1B4rUshuj3rWNfSUccC1jVN+TiAkzUBAXru/VIJ8MyL06ZKheWelmu6DRZfXDC/ETjQlevKOpWzK6WyxUBEfqWdSRN6cT0QI71de3RNhaLNE27u3vcu/Mtzi6OeXX8KUnSmaFAUzVobXBBgLTgoW4WjEZbpMkQWMmakhFdM60VnsDe3r4M0S6ekeYwIKWuIcsHkosiwy/RQ4wecefgLR69/TF3br/FZLJP0yguLxe8fvFEGA54OidjrXWvA7Y2korsULXWBOvA2M3c0LZtv+nQti1nJydcnV/w6OHbqACL2QzrLBM9JRAwSrOcL9DKRP1C+ZpKpTH2VhHSFJQnRF1TGdyZWO8S44C+4ZRV3bVJmdzXmjSBgGi4VdWKg7199nZ2GeQ5WmmBh7uVNdmbp9PY7RrN7vftQDsZOnVJW4mAv7fxvk3IsoEAGW2NDx6jxOXbaMVkMGVZVmgj5mA+1nZJIrqIYtQjLsJJomhtDUFWBuu6YTLZ7j9vkUvRWOvxzpIaLVqQieLW0V2MNlxdHtM2S5JU2ChtKwZDzrXglaxkNcKUrusarQPT6YTFomQRteKyLMfZENn+S7wz5Nkue1v77O0ecff2Qw72bjEe79G2geWy5Nmzc+rqtazuy8fU9wTBx8FDHEQ4a+M6maTA6XSb7373O/y7//nf0zQVOrJ1rLXC1ARu3bnNmzcnNI24+zZ1S93WONvimjauwtUCClph/HfSAeuztBuEQlBB7v9IivDeE7RmtSoZDicE1WBdy/nFKfPFgs+//IyqKRmNh+Rpxng0YjwecXB4yOHhAaPhiDRJ+sGr5C4tNVTMPeu8LQ22Dz7ee6GPb6lxu2G11N8dU73rC4DeAMg6WSss8oIiF7Ao+CHD4YimqcT4JbJ0EiMmaEop8jSnbgRk1qnB4dFBM5vNY53uRVO0Fd1NlCLRKYlOcEGAoEQb2tYTom57WTWkeYLzKxbLy37N3ySRIe0dVd3IhpoyzP2MLGlJkxGKAXvbt9nZOWIyOmBv9zb7+7cZFltUVctyWTO7rDk/fYN1MogKLjAejblz9w4XVzOU1gwGQ9qmYT6fx/gLfW+wtbXD3XsPefzkOctlyWw2oyxX8hlHyZmqaQTgqxqJU29xbStGFE1NU5dYW0d3Y+mXjBFgSmmFMYok1ZhEkWXirr5YzLHOMV/MefnqFfPFUmoZI1swiUniNo30Ulki6/cdaJhmKXmWM57I2udoMIomeUmsh3NGw0IknVJx3RYNY9OzugB8HGqGKMPAJmmBgElSTCqa3IkWaRMBvhMZ7mcJbVOJjuhGr+W9DLAE3BOn5M5NV2paQ1M2JNFJWQUxuStXdSRCaZIko2k8g8JQZAPaVnASoxJW81pW2bVIUwXrqRtHWa36jQOlFFVVkeeFnAVJSpoWVCuFNmPJ0Q62tg751tvvcXX+7/jVb77Ae0U+ELDQti3/y1/9NWmWyfZHkAGRjQPDH/34J+ztH0IQULssS/JiwHyxYL58jNIJTdOyLCtOzy/QWjEYbfP+B9+mqYW5fn5xSrlcoBCm9ng8JksT6rrq4yNNc95++JB//f/61+zu7PJf/vmfc3J6xmpV0rYtq9UymjqtTTPXjLy1fqSJceS7IYsk4/77up+TAaWc+23j8E5kLqaTbc5OzwRjShK2JlPGgwFHhwfs7mxH4BackhVr5cXIz3sPWhizXa0Bgv2pG7XEf+rjPwODL/RIdZYVKAJN7db0RyduKqpDLZG6xFoRjlwul0Cc8pqEEBQWEbk1SbeWIgLsAgxK8XXr8B639t7jxetfcDV/Q2I0KulYR9Iwi0+AIlGGqlpy5+gO5quM4B1NU6OUiMfqRJGmiuFgh0Dg4uolSQp5GESdLtEHSRKhTxudURQHPHjrE9558An7e4doBqyWJc+fnfR0528CuTbBsm8CKDYb0w7U69d4NhuDOLXoGmln1xooSqkeHOmu0ebjJujSPfq1ohtMl8332j3fTfbf77+GNGCbrx82vrcH8ZTqDQfURjPTAZk9wGtlatu2Ld4LQyoAZSXW4d00Z7VcAt1KsPzsarWk0jWXV5dorUWXJTFY57CNjevj3VRGAMK6bvrfb/fggO3pPtbNubxaiVZGIocWkbatkMMqeInpg/0HaJXhnFD3k0QzGEhTorRje3uKDy3WSQwqIzpIihwx9EjI0hF5PmZn6zbvPvoe9+++x6AYUZWOy8sZL59/GZ2a4u9/LdbW4IjfmP50n9MmONNPyiMAqNi8pl1TvAZjvF8DvzfB5ptx0L1O9+dNTbMu3r+JTdXF3ubzflMsxp+QQ5JOuPv3waPN1+sYrsbo/ucl1rp1USIAEOgcMMUVt8W6OhYqonfRNDYy0jSJSXHOUdoVdVML2JeJGZB3gbLsHPyk+E5jkaEUrKKTm9ISQ3VTYtsWpWopgLwI5non2lVZlqGUERdF35ClQ5blJT4OObSRorltG5mkJwajA1kxwC8cKmrpOCvDlmGxy2i4x+2jRzx659vcvvUAhWE+W/HqxRXL5eteT6QTMV6DwxFYC9066wYLF3XtGkje6Va21/d7F1fXmZwhNj0SgwK2uP77bgLG3q1BlO7c2Hxs6oHejKGb8dzF3++x/iJLRkCY6zlemDUxl23+TP+VjfVJ1qC26AwZlCIWYR6lksiAhzQzUnAGT9MKAzzPB4jZjayFhhCIw8l4vq0Nlsqy7FfZRBqjJTUiEn52/obGWsp6gVE2uo+LiZRo8ujoYihrD5JfDc5pWlfLunJ09ZOmS5wETSpT67OzhkwPyNNChLOVYTLa4vDgHvduv8/9+++xNTmgKmvOz6/49PXTKMXQgSgCaoawoSMXAT3nfA/IdQOULsa6YcFNQLjPGGF9lbpY84T+dcVF14NbN5Td9dxc975WLPbPvY6hzdj4pjx3M4b7vxvT/30z723KXdx8nQ7o6xjWSoVovLSONW0U4horjBwVhdoTk5Bn0vQ53/YmP6AJ0UQrzwtMIueqdVKHybETaxaESaXUppGWsDa9tRgDi/kVT558wcX8hLpeCrMz1fgQB5W2FUMsoexjbUNZLjBmQN3MqBuLTkSzEi+DuappyNOMNJeVzbJqyLMtgiswKmU4Eif5hw+/xeH+A8ajXZpa1s1ePX9GE0G4eFvHz3kdH1J7sI65GC9aaQHalLCXA/T33GYeEjZCxp3bdzg8OKR+9z1++IM/YjGfU9UVjbW0thW2VVPT1I2w96I7bgiii9g2dV8v+bjZIK+ncFYcKjuDmS6eOuMsASH7iBfWXJ5zdOuIo8MDDg8OGORFbGS6fO7Xfw/091cH7PU1YIggjdLCKgnyHrTRhMhUdz4AKYvlFdaVhODJ81x0QZ1iNl+JRlWAoLrVSgPOU69WeGSIXWSFrMC1bXQadwLkhSvm8wVNXTEaj0mTjDzJKXIR0e9MOZ58/TlFPmYwnOKdYbG8YrlYMBoPhHFIwFnIQs1i8YbjNxatHWVVsqpElqB10gsoRkxGuwy2p4xGWxwe3OXo4CFb0wO8V5TLmtlswcnJS2xrewA2RGvOTZC2v5eDx/vNgb7k97a2nF9dsr+/x61bt3jy+LGYcSUZvq0JOlDkOQrFs2fP8Z5+SOxsg7fiqNuZBnkvqGGI/8W31p9VKpIyuq8J0CasVeUdrbPMVzO01jx7/oymbQjAYrFgkBfcOjjkzi1Z9R4MByJhtNlcBy0r7irOZcTjgGuyFqg+Brsc2rOqunMAydNVVeF8iThGp9dys40GGcQ7IHgHidQLZbmiKAqS1MiGBkFWcVMj4IsRFmbrLFolIjOgIU0FCDda9M0So0lzF4fBUgdWVYXU1BFoThIa2whjUEfTjUyRpQPKsiLVA9rW0baiVzbIRhT5hK3JHvfuvs2dWw/Zmh6JBIuHxaJisaw4OS4hlChl+tU/7yMoGnOEAv70x3/K46dfc3VxAUqRZbkMdTR0UjxaG+7eu8/nn38h7uWtrKO2VhieHYjTdKzG1kqesgL0df8F3+JCK/EFUZtUk2cZznmqqgblOT095Wc//ztu3T7ko48+IslyfvrTn3J5eUlrWwbDYXQAN2RJRpokJKmAfHkm+uvT8YT9vT2mW1uMx0OKvMCkJvYs0G3pyBiu07uWIOu0HfuaMDYAgRAHiZ0EmYm66UoMRI3Gti1Be4xOgRTbatIsizW1icONWJt4FfX5HWhZBUUJU1pwhZS28Uwnw36Y5KwjzwYU6ZirqytWdcPe7ha+bvDesJiXeKfwJNgWtM7F+KdI8dYRrMIrcG2O1hmpkc2SIk9ROmH/cI/JeIvJZJfJeIf9/VtMxtvk+RDvFKtVy3ym+d1nT3DOUeQFdVbR1BWLxSL2GJHN7hwhKO7cuce3v/19jo8vKFfiTrtcLqnrmnK1isC1MFObpqG1wmx3Tnob27ZS9yph/oYg+qN5nos5UlXx6tUrHj9+zK3btzm6fchf/Fd/wU9+/BNu3b7Ff/jr/4WqaWRb0ruIK61NV7TSsUYV5rDRwoQRGRRPalJhqRsZaCVxGKG1Qhk567Ym4x5jCcEzGo0ZjUfsbG+xt7fHnVu32dnZJTGdfITckzp0MgMb+t6xZFuToK4VqH/w4w8G+Iwx6CSjc8jKsoI08bE5FScw74m6NILGShG4aRBBBGkkAIMXrb5OvF4o2TquxsnNdX5+Trn4lLOLVwREuy/LRVw3jQ4yJsv6oqBzDgJDVVU0tScbFIAkemMUjW3JjBQeVevxrSfJRqTJiNTkTKd7vHX/He7efsTO3j20SpnNlzx9+oZqVbFeiQQVeWndBQshgOtMJtbA3CZQtrnO0QncEjZBjg3QbKNpuQmwbTbTm03FzcZEAIbfB0Buvp9vAvQ2G99val5AVtM6i3DiJ9MBTZsFtVbXmxYIqDX2QjcBMcaQkEjSNaJDkmUiehmCFxdOrzY+W2mEhfHZsdd8r6WndYrWUgwkqSKPbqFaa7Isviftubx8g7ea4+MzrG1IjDQlSoGOWmnGJJF5IEL3ddX2TrrWuv7rSTTSaKKZh85SbG3xaLJ8SmpGkmx3b/Pgwfsc7N+lyMeUZcvF+ZKvZ29oaxE779b9uiDbLLo71glEkCWEHlgRnQ3XX8f++oXr5iZdzPVC4v0qq702dfgm0O0mE7P7bzNWN9e7N91x/z7W6N8bawpQoRew7eJr8/W732cTYIzYbD9Jh279kkjZNsg6uBwGaTbAuVLclWUxqQcSQJo5Y1LwQQ4X41FKJrJSBOioVSqrHgKod4ePBuWoWyl8FosV5UoKJVs4lBHNJ63k0Pbe4axnOMxp6hrvEppaVuSUimCWj3nIK3Fiw2FaR2uVrKglY3aPjrhz+yG3bt1jZ+sI7xXLRcmTx6+oqlrYWwrA9swgaQrWMWcj+K4R/Tb6axfBDdZOk85HvTyu55ybpiw9I67Tkoou1kGLePE3xUoXY5vg3+Z/3YrEZv76/wVU3wReUCq+9nVWax+rPVsxQK/JuQbKQ5CcIYVmh8DHj0sJGyjPMwiaPBuRpY66WSByAwYVVD+N7vRCg/O4CP55bzGJjve6J88LqsqRZXnf6Fi71mlzTth3RZEyn19Rri7xzpFEoyBjDMFKzqwbxyCf0jQNqclo6oasyElUYFmWtE4cwk2a0dqG2lratgEyxqMjtieH3L39NrdvPWBruofROWVZc3G+5Pmzz4RF0hsWCKawzi1rEEmapche3YhB+T5xbPZOVvJkxUxdywnd93e57BqwhuvXD41K4jX21wdrN87TTiP3JqDX/flm/rqZJ2+ynrtH9zqbGqY3QcCbLNX1+R5X3LVCh25gI8/rrAAvomEYtS6dwqGYjHe4rC4IwWFtQLYfwOiUNA4UgpJCXJzmoWnLyHKqYu2XslotEJfQJK6WitC25MvAZLrDzt4hL158xWp1FutCWY02SUobmVo940OVeGexPjAcj3EeLq6uop5XQZYNcLalrhrSFLYmd9nffYs7t97m/r13GAymeAeLecXpmxUvmi9xdmMdWj7Ua2fnJtDQnaPClpPKrmugfeDaUMxvnJXdDZ4kSZ9/0jSlKAqm0yn+4KA/b/q6R2ms74Dp9RnvnevNKUJ3lncDBqXWbK8+L8nL69jMdA+jpNEkhGhMtD6fe82pGJdiVLUBoEcA8RrIcmPAIXVb6IEbHbW2q7Kkqi1NI46u3cqac47WN+gkAeVJspSybPrBBCFgW89ovEWeR5OqRnKrRlh51lY0TUlRFAyHQxSQGHGArZq2H5pYN0NccsVpvK3F3M+haKyX5jMEnHXUTUvVVJycPRFtbGVQZBidMx7usL93iw+/9T3u3H6b4A1tE2gax2pecXl23A9Mu8+jh1fjWRbiPbquzQTYI0hzf43x6wPlasXl2TnL2YK7t2/jrWV2dUXTNPHZPUYLm1Hh8LEO9s6hvO8wWtEwS4UV17Er1wX6mpEaj6n+nQcEZF5VZTSpMMwWM4aDguPj11EDXTas7t6+zQfvfcAgH0RQr09qco8h2zFaCbOyc81U8TPq7znVAXLymQgwuAFT93mWuIYo2zrGiNQFCra3dzg+PqZuatIk3QByZHvDNi2LpibJDB6L6vSvHGiVEYIMDYpiyKqUVdoiLzBJKiZ7AYxam5y0bUVdlzLs7OrPuJ4bPV0ITtG4gHAwDLiM6eiIQbHNZLzN7s4B08kO21sH5PmYYBVlVVOVNSevG5pm0bsSXx+U2v7v3vk4sBL9RNs2FHnGj/74j/n//Lt/x+VFJZ9TKtqm3b26vb0LKF6+eiUAn/PCJov6395ZrHVY5wVA9la0Vq2NZ6+LRjUuDjsjgA29TALBs1yt2NoaY4zhs88+Yz6fc35xxdVswZs3b1isFqRpSp5nJIlsv4xHE0ajEVvbW0y3ttiaThkMBiIpELd1unXbTspDhuZRroIQ/7zRK3f/5yVnrw2qWMdcrC9iO05Vt0BNnmY0TcNwmPU1h1aGqnNsTnJCB7SHgE8C4/GWkIuSlDRLI8tegNWiyMETsRNxmW8qORMSM0SpwNnZgsRkNJVDym5DoyKTNBWWdFMrEpOR5BmTyRZbj/aZTvcZDEYMhxNGwzFZVkRQ0dLUjrpuqKuGV7MFbXOJteKAvru3x49+/GP+zb/5N1jrBMCMxk4uaiCH2KNnWcFbD97hF7/8rfTAtQB3bdPS2ibiGhbnvGgVe49t14Y4bduCtxFIbjGpZjgYoZTpWXjWtpyfn3P79i2mW1Occ+zsbhMU/NVf/zW/++x3NE3DfDYXprBWJKnkBG0Skrip17E+TaLj9p6OILIQH4aDEcPhkO3tLSaTiTCSBwWJSUh00uMwXU9pjJZY62pLT5+nlAoQFDFNoLRZh+C6DVjXjuH3MZ3/1Md/Fg2+blIbAjirmIx2uajO0MbGAi9EO/quQTF94SdFYIu44HnaxjMabhOC75kJUthH10uj8LZFG8Xe7l3ydMj55dfUzQrbOtIsjSCOEc2DOJ3yQTRmRNxSs7O9w6ppuby8JEk0w9GAVOXYxuFsi9YDDnfvcOvwHd66+5Dbh++gVMpqWbNcrnj81ct+EtatpGk213RUbFiuF0HymXVFeEfblQn59XW16Lb3e5/37xf63Z9vslo2m9TN7+2AvU2mwxpsvV6wbb7uzb9vNhprUdzrAJ5Mzq4zHDZBmq7A7b4uCVX3TJj+tUN3oIiDpbWyajKd7HCyeiVruo3YeHcFa5KkETwWcM8YiQnrWpJEs1zN2d7apwmB1apERjabzsUKpQMmVSRJztv3v82b068JfknTlvhgUakAlCKKD2k6iEw8WdEJyjMajmit5fLqgsQYhsMRSTLEtmAbxXh0i8ODh9y5/Ta3j96KdHvHfFby6vmctj2Ln0GQqWs/BSBOMaMW4jUAdkMDKKw/AxddHeGmu+wNBsmNmIU1k/Qm2NvHVyzs9Ubyuwki34yxa81BfM5NIfvusRm/N78WItW5K0y7tb3+dcP132vz59eg1XpFAZBJanQs9s6isoRRPmEx71zaLEoJ8LIJYHovCj3GaJwLQocvUhaLGWlaMBiMubqas1yumEwmIgyuZf0/y2RSdHU552DvHonOgQVlecV8MWdQ5CRpgm1bWXEyBYTAbHaKwhGCI3hLludcXFyyKpcMihFZOiRLhxAMo9GUT+68y9HhQ/Z375CaActlzXy+5PHpa6yLK6ZdoY3EHF3RHTqNPE23K9mNNOwGGBOIzUV/3WJ8RdHddePM78Xa9WGF6COhVG+ccDO3rdlC6vfiqctN61y9Bn27GPsmcK97X5sPKfLW+hg3QaLgN5hsGwK+154ndOCSPIc0sjVNu5RVsaYlywqIq2cBMfwJkRmTRRFnE9krIQQSk9I0wjIxSXQN1DIpv7y4IBDY3trGRdCvMzdK05zzyzcMiz0G+Q6T0ZCynHFxecFoNJBVEd/SVBaNIfiWV68+p20XQGA2uyQrcsrViqANxWBMlozYGu2SZ2P2dg+5ffQOe7sPyLMhTe1YLFa8eH4hjJZrJhfxM1KdSUs3Ie1WxDbZu7LaJ1or3LjeThrJII1kfFKuFfU3zrLua0FHUEzpyI68vqq9CULflM+4qT26GcObshvXYztce97ud9jMrZ3T983HZgxvxtlNsE900STWJD/KQKyslrS2YTgYErwlNYHX5SsUiixPRIcvOJSWZrwsl/ho4mCSBI2hqksCUpiLq7OnXDU0VYVKlIAtSjGZbNHUNS44hkPNqzdfiQO4VgyGU+pqyflsxng8xPs6mgM4VHAYdcYvfv3vaN2M1tYsz1cEBU3tCE6RJTm7W/fY3T5gMtnlcP8u21tHKAaUq5Kri5LjV6/6gVQHaqJABQFcfPAC7PqA68xXggBZsibXraZ25mEb2xfy0UaNvg0wA3XtWm3+txkXN/NWCIEkrn/r5PpQ7Ob5t/m1/lwF0ZAMHcpHn6ND8NfYnF3t1xkqhGjS0p+foQOouvcX6w35Q3Sy3GCHbsYcijzLccHiXWA8GolOo49NUiIGBYRuuK/Ecbm2ZElOINBaG8F1qf0WC9lW6F4vz3OWqzlJmveAv9Ka4ISRaq2YLqRpQescqdYo46nqOc55SEApQ6oMq6rG2s4dNUORkeghW5N9drZvsTU94OjwPtPJAVoVNI2nri2vns8j+yTEWmDzusvXu6FP18h2zA1/Iy6ci3pyvXlKN6QIjMYjHj16m7ecoyxrlp98m7IsRVevbajKJa21lGUp50ndRCBG8qzIFnX63TYOgKMucbeKiKZ3cdyQJRBncI/1axZgCEHYNlFfzzvP0Z0jHj58yN7uHkWSCwu3C9k1xoLq+oHQMfZUr9/b568u/uIPJSbpgUxFEAPFEMERpaIbrEVrMQmxQfqq09MzMQaIUhNZYgCNDimr1TIafXlUEFPG1aoUwoFJKAoxJtBpircB33qGoxEKTbmspd7PM+qqEfZREEagdwEdHZTrqhRDPZ0xHE5Ik4IkGbC3d8je7m2mk112dw8Zj3YwOse1ntWqYrUsOT0uaduFxEVfj8nnFnwQGS8fonQLBOX7fO8R1pxznrZuePbsKSenZywXC95+8ICvrGO5nGPMEFQRmd4aYzJOTy9kyhY6przUhMFbQrA9uNcRJmKGoOt1BSNda+EF5P0sqxJlNKnRzOYz0jzBtC1tJLOcnV3iA1xEGaXDg11Z797fZ393j8lkQpbn/dq1JD7isEL6DxVjJsTXFiZ4HPIF2bDogNF+JRIBYHqyUTwLpOaJQ4uIc2ilo2ayj+u/kjfFXMxgnQxb6toSUNjWMRqNuLy8EpmvRj7LYjCgKn1koWtxWTaBthZjF2sDWqUoknh2jUizguAd0+k+o+EE24rvwe7uAVtbewyHI4qioBiMpPdFo3VC2zrqRpiWTWM5O6lo2znOrq9j92F254cLa93YDz54n/OLC37xs5/TtpYsL6jq6tqZmCYZt+/cpWksz549i5t2QqJwkT3sIuOttRbrOj3Zbpglg1upO4Rxm0StSKUC8/mc7e1tWmuZLeYMRkPu3r2L92K8+rc/+1t+8+tfc3U14+LiEucd48kUpcVNOUtTTCIAXxLXvLM0Iy8yRkOREdjemrK9tcN4NGYYmaM6OjSHwNrELMpVrPOV3Jua9fCmOzNVNLmKt0fMt77Pi93wpPumri/YxEX+kMcfDPCtVhWtXVIUAwIOrVIuLk6jULXCRqZQnidxf9/1iUPWFyxVVdO5frWtaOfNZwuWq4U4LKUZJk0YjUa0TYsxOTqHJ89/wyDbwyRjikQxX8y4ms/Y3p5QVpU0/R5C0FxcfU3bLFDasVwtmS/mMn11UhCofMCto3fYHt9hd3eP3d1bTMZ7NHVgPl/w/Pkpbdv0N0NfWAMqrKcCfYPZa/5IwugKRSCKM0e6e0cMQeGjMDs9yEU8BK8Lxm6y6rrHzSbiZnN6DVALa2fI7ns7J7dNVtXNpvcmyLJuJtaOV2EDTFmDm/R/J4jmXhfASpseEOpAKTomUPd+AesDi+WKphULdu9kgjFfLEiNTBQ74MUY0T6o65JOiyXPxXq8bRtQwlBwznF1dUm5EqHY1bIiS1KUMUynU8qyJMtTwPLm9ClFvhsnZ5rWBqq6ktWOpsFHpk7TzNE845e/PgZd0dQlq3JFax0qZASVMR7c5sFbH7M9OWR374DRcAtnNctFycnrJc7FApQNAJ0uEcRQ62Mp4J2NB/RmrOl1sc8anOj1HvrRQRSolatyDYDrCtIQOp2kNWNwExzprtNNBtVmjG02I12sdc/3TSvgN2P3m0DtdUzquJoUm5S+n48OoKprnNeJed0Yd41NQIyAPM61LJZLqmbGoChkRcY6lkvJU6NRTmC9Rh6CsA2UqnHWk5iELM1pqlpccls5yOu6ZrEo8ZGeLk2BZjzZwllH5T2DQULdzDh+05Kk4gLogsF7ReM8rXOyrguU1RJNxs9++W+QVTFZ/V2tGmyTMhxO2Zne4cNv/RGH+/cZFlOSNKepHLPZkudfn8WBx5rR1K1qyOe6BkYUAhB3jCofbCyEfHeR2NTeU4Te6KArxFH9sUjHXOhyhIuOm3LN1syS4CHo607M3dTsZqzcjF2QfNg0zbXY6YCTbwLzukZ1vY5+w6QhXvduaLH572maRFH+7re8HrNr4yDVg3POOa5mMwIlRShQKtDaFWXVoFCMRgO8N7EYEimGuqmjQH3SsyZEjFk0akIItI2IqRfFAELANhYtYqOyWmM9A3SczIvr4+XVFcIWTKiahixLqWppZJytcD7w2y/+vayiE9Amo6oURu2wNTnk/v13+PD9H8QVNYNtPMtlyembOU172k81u3XadQmj1kgJG4C7i3nDB2yf+NY5oo81HfuREJvFDXBF/uE6sLuZt7prqLWWjig2NIG43qp0v+LxTTlqM542Y3Tzunf6tmtw2vV1gdYqggA6/t5rBovEYsJNQBxi7RS1OQProco6t3W/2xqQcs4xX15Q1Wf4YEUywhi8gjZYFF70o7ICW8nAoGpqUIGyXDGZbJEmGUYntI2s9gcfRINKWZp6RWoy8vEUtLCgTZpRVSJTkamMVVlHMEbypki0iK5R64QF0jRtLzliXc3l1UlsbgKjwRRtRgz3drl7+23ef+977Gzfoq4EAGrqlhfPLgnhsr/Hu3uxi7fuY+xqkhDotc58rN0AHMKSc1209h9/rOsiSHH9TKGP30hliff9xnqiWg9Vu+u8qTd73TyGPg9txtv14dxG/pK/9DWDjs2tPNfaYbJ7nk7/kOjUuvlc3WZFd9uJ7I2sLYIYWXWfR0Do8FoR2WOepm3wvo7rw6J1pFDUVrQ0x6MJdb0C5Wnr6FBqPWhDmmZ4NK1v4+8lbA5hwEfnRu/Zmu7hlcd7AYSqqsLoJJIKooSBbSmKXITsdUJb14xGY8qyjszFhGG+RT4dMhpsszU95NbhfQ72bjOd7kHIWS0bloslZ29KGlv2TVzPjlRyJnon93eUmIvvK/T39eZ1u1kbbX7+XR0tsSO/hw8abQxZkjKdjOI1Xkvc9DVZB84RZH0yNpbO2Vg3W4JbM9mtd+BFP1a0SsVlXbQ7o9ZkBMU1qpcH0sbIamqWkSWZMB0RJj+x94m2yD0w3NWl3bBOzLm6oVnHt47xGcOr18WKt16IgGlXy6JVXAHXEEzM+Uje92LgY2J+z/MCrVK8N+ztThBjFkdV10zGE4b5NpeXFzSNI8u0rGS34joafM5yJoSOJMqbeA/B53gXhCGYT8jyCYnOyYshuzsHDIoxR4e3GI22GQ7HZGkBytA2YphRLmquzi8k9vshwhrsVXoTWJfYQBE1LuP9qWSjJISYt1SsgYLHJJpbt28zGo84OT1nMpmwt7NDVVeU1Yq6qqK2mqNpPU23wg0463FOCxATFCGkGGdJk475ttHLEUHjEOWhgpy11ntUXMFcLpdkqTCZLy+uGAyGLBcrbOtFh7ppMVqzvbPDW/fvc//eWwyLgUhKdCUjSnQylQzjPB0LtaszxQhIQGXdVwMhqL53CjGneOe7dI7uevEgEHLXi6qY+1ys9bII8DnnsG2DVgm29Yj9trDpTNwAUiQEr9ne3pEtmtZjTEpTCZhelQ1ZmpOnOUEnqFBASDAYdrcPGA7GTLf32NnZZ2tbjKGyrIgO5ynWdWvUjrqqaaqa5aLCuWXUe2aD7dn1WaKV6n1kLgZEazNiCz545ssFL1++5PJyxmwhTsEPHjzkxfPnzJezuA0jrHFjUhJTUJU1r18fo4gDg9Cdp+L4Li7uPupMdq6xUSIgfl8g6ssSaNomauLCYrFkMBhEbb0V8/mc3/72Nzx9+hStNYvViqqsmM2vWK1WbE2nJImYiuV5RpEX8r/FgOl0yng8YjrdYjwaM8gLTGJIjYnvXYxb1lgPsc9RkSwTSJQYS0nYddVsjKveZ8D3oKCOwxpC6OtgIcSEvn670fb+Z3n8wQCfTHO6otizWs17G/U0zfG1TFJKLyYITV0zGk3FMTAxlKWNVH1hljknSSfLM9J8F6M1iRYBzbpuohFHRiiXKKWp3DmtrcRhz4NJc+rWixNlLfT8JKmpqiXn6hVplmISGA53yJMtxsPbvHXvPR7cf5/BYJu6tqyWK2aXFecnr6TA89fX/NaF4fUrsskaCf56Aea9x/cFfjdNV3QGVcKq0JKwu6ZaqY3ktGarbBZoHcup+99NtsE36Z11/7vZjHR/32yOu+dWOrIhNorR7r1170ue8yaYtwnArN+D6YRxdaffAh042DXA3Zc3p9IiOK7Ji+hYrMAH2dXXxpBlGWUp7I/VaoVSiqZtmIynDIc5oGhbt27elYJgaVuxcc/zbZQK5GmGMklkz2i806xWNcok+Poca+tothIwaU5rA9YrmqbGeYvRFc5VJDpHRR293e09tqa32Jre5c7tB+zt3sFZw2pZMr+sOHtzsvE5bq4qd9c+Jo74mXdgHqh+erzJ/vA+4MK6ueniQYSMJZmrcB2A0/r32UtKqWsraOt4kcTcxdOmxkH/Hjeee3MtcjNmv6lR2YytmyD1JnDT/U7d56FvxiVR7y8WkZvPHTbu567RXAPjsQgPnuFwKEzQzMTPxWGUgCoh1AQUbSPCtk1jGQ5yhpMRBEVb1z0o5uJBikKAmTQh4MmSlDTPZJoVApnJqCpLkiqMrqjKWuj62mDSvAfAqqpBQlgxX5yTqIKiGJMlE472b3F4+BbbW3fZ2T5ikE+oK1gtK2YXC4Kfr3XGuusSPLpfJfU4JzqFaxq6rBl0AEpnWLAZF5ufve7u7Q6Y6MCJWKB6F80SVMdyliGB6IPRAybWyspMx6zczGmboPM3xdpmPrwJJG/mp+uP3weuN59j82HM2t18DRbHg5w12L55L0lcXn9PxiSMhhOSNCMEh0lUPEslVlT8/MU51yJrkwZjUvK8oGla2nZF28o5WlVtzz4zOu3BlMQkpHkhTpo6Icty6rqlKFJsaCjnczxOiuMkIwTLaiUaO96ryLhpKbIho+Ehg8E2Rwdvcefu24wGeyRmRNN4ylXLi6uZ6NB0QOcG4C73WgeKroEO+RzpwY7gOwDv+hXq7v91rEXLO0L/92vX3Dk2CXCbw7LN59tkJ3exps2GS+2Nodfm+9g8g2/KC/z++4b+UEdW06Tgk8K7y69rEEiTJJ1b/HXGqNZ67cy2AWp2ZyYbca61iJSPRgNGo11CCGIA1Vb4jRysjaGqW5RORF/RacCJKLf1tE1NXS/oDIyKPMc2NanJCVqR6BxtDHVTY5JMMNMgbNEAWOspigyPp2lr8kEueqRxbdjaNpoKFKTpiDwp2N894tbRu+zv3WNn64CimGJdwmK+ZHZRc3FyDCqsY0npnl22rrV0n9e9k/XTboAgK5EOhfl9ZiffDPKvY24NSN+siYhFvcZcq8W+Kf9sDse6f+ues/u9NmPtJsD89z1iyr12lt4cEm/GXNdAmzicMTqefR0gbRIxdOjnOhv3OEEcQr18nnVZ42l6TbTgJY/VTcNyuaBuhLFubU1q0jgDEuf34DXj0RZNW4v2oDbRwVYRQksICo2YtLWtbAo1TYP1os9MaEhT2dgwJqVpxOTAqCG+zXDNFveO7nGwf5fdnVtsb+8zKEZolVLXjnJZsVosuTg97z+TECQvG22i3uG6flDoeJ51Oqxr5l6fnTbOp83H79c53efZR0d8jfi9Jg6WYh7rgNYQAlmaXstTFPTriqp78t+LkUDH1lT9kKHb/ohSQd2Pxl4lIDWX2qj313IUUa8KtX7tjdsqgIjLx3rLXMtrXR0ZYm6T99T3Cl0P9f9l7c+WJFmSbTFsmZlHZGZlzVV7ON197r3AJfgA4oEiJAGIUCjkOyeh8JUfTyFwh9PTHqsyI9zNlA+qy2yZZWxAcHZ7y+7KjAx3t0FNh6UTkndazv5ZSR6Zfrl4FNDd3RmPj+/87KDiVAoABxXK5g1SvIayZ7RYO+HXX7x2Wk6PSAX48ktFTmfsl4Rj93qlD3evPf0xnfDx01uc7u7x6uE1Hu5f49Onb/H23Sfc3T3ivD0gl1OkJx748usXfPnlip/+/gtq/ZGb4ZAAnatGUNj6SrXm2SmppyuPjLHaZYoDmnQSWGpI0fimNddV7u/vcHf3Ge8/fIAlB+6sGY5Ih9z3HV++fMXzdcflesXT09de7/xyueLr0xccu7s6juPwsxZA4HHUTmCNdW/DUVyPEfV8HDuuh6drwoCnJ6+D/3D/gOul4u2bR/ybP/07/OGPUbvx7gGpeUmJNJuyqNHdHjmi+80c9CteC9bpH4CRX7odS8cdopEhzJgJ7jwuIhddj6iDJjF0uKP6WXx+uuL+fEZGwXb2Wnrb6QxrpT/nVE5odQNaxttH17lKPiPjjFQKHh43vHv3Ht99+wevf3f/Ch8/fsbjq7e4v3tEKd7d+HrZ8Xy54unrM7788oz98AZN1nJ3vOeSYG30P+gOeSBq5aGDrv5flDAxi/WN0g8w3N3d4fvvv0dK3n3dmuHdu7c4n/9LXC5fsV+ese9X7NUdxDX0tR7YhIjeq14H72jJa9ClBktHSE7P7rPInGs5oVmFWZSZAfD8/IwEwJrhxx9/xP39Hb5+/YIffsiodY9sFQeGf/rpR1wvz/j06T0+vn+PD+/f482bN3j//h1ePTzifHeK0ksjnNh1bNXTDej2ao0SIUR+M06bp9eyEgWo+1P/Cn7YrPZuuYF19pIaSBgltPIICCg9I6gEf32ZufG/9PrdAN+bN29gdg0P0RVmrecoMy1y2zZcr1cPnz77ZC/PV3xt3nll207YNgfwcnHF8tgPbKc7WK3RivgIwjt3AzOnDZerd/c5n8+oR0Wzgq9fv6I1r92R8glo97h/9R7ffvoe33z+L/Dh/ff4/OmPeLh7h31P+PmnX/DXv1zR2r8gJ8NRjxGVlhK8NiCV+vCwtxFYmYLBULFxXjc2Z1X8ZoFu3cgFlppQLVIqoltfkppDwMvUIEa20BBeI6zU0NVnqAG6joO1B/j81bB3hTPLs7zOlI9tBvdYkwoCkubIR++GVdKmGxK5lTPePL4DsjdoOazBUusp0dfrHrnwBbWyflLCvjd8/foFniqcovvZPa7XZ5xOD+HtBXJ0fc5pc0M6wTthtYqSE7ZScN29ocf5fOqG7/PzxWmhnbHlRzzcvfaiuP/07/GnP/1XePvmW9zfvcZRk6dC/vwF/7//71/98Kcma8bD7cg/0yYckBrRB2RMLjQHramBoTQyGQyVnhxPmVeAhArjCtrwGUonBFd4v14KIvO9q9E9gMhRCPl/ylBZwZv1PCm49+KMdc0WKAiPX9JILwfNdBy1HXh8eMT9q7N3nNsvrjQho+SM6zWaTaSM0+ne92MDLpcd16s7MU7lBIMbwDlnlO2AJW/EYebt43PZ3EPaWo86ALxO6XFEtODrRzw/P2MrG647UGvClh+R8j0eX73Hp/ff49/+8/8af/rjv8fbt994cdynK375+Qt++OsVf97/gpy3MNiorOcuiKg41yPWP/FcAynSJQfvs27Yr+u9fkYldaTdD9o083o+ubhR5DwkIrGSRFQB4YGftTs1fPmOW7Sz0spN+ujf5dhHOhqt2PW7Kx9UwIg+X19XBekDsIrUeNblyjnhfDrh1aN73y+Xr8jbFlEOXgPHmvf13MrZ65Vlr+d5HE/wFOQTtnL29JXtJN1z79GOA/v12muFtuYRpq0dPX3eG14lPDy8iuZC96i74VQMD3d3uD+/w4f3f8D33/wJf/zDv8X7d9/gtD3iy69P+OmXXyLl4zkUmIyyZRi88y7AKLIBiJihK5d0XtRDHVSUVTN4uu7huvdON7bwlOalb3NCyQ4uK2ACvKzjqCCy0poazitNKM2utK48b9xPw5p8bET4KI9VPk5a62tgUasQ81gAjMhaDFpLOeHYrzBcnA62jMfoImlg7d8rSvIO3+fzGcU2eHmhEkZOwbu3r8MJ4CmJ2/2r0Fd87JfrFYgmZz29CU7rp3wC4Ebj+XyPVhNyOuFU7nB/Knh4eIW3b77Bpw//jO+++Wd8fP8Z5/MrXC+GL79e8ctPX/GXP/8d1oEkr8lMgAnw9G3UUbdrpJoNg61VTzH0u8JYxBxVx/1bG5vM4O4R+4Rpf/3m5FFv4UBVPqiyU8G9CZxZaIjfXWXprUudboOfDd3BdbYBavO5dOx0IBOYxs1IkJzKMGoIZPX3wJ2wSEgNaNfqe92A67NHkZWSkFqK7vAJX58vyLni9eO7qKOccexutCdseLh/hedn75KbNzecnp8vMBieLs+9C3xKGddLQzsycP+Ix1fv8fj4Dm/ffMTbt5/wxz/8O7x58wEP96+R0xmXy4HnL8/45e9X/H3/IRoLcX0L6DgoOaPW5FF6u8tRM0OySG9uKc4yQr9tfc09xZEOr7Enur+znt7/MstpucZ+LbIVA3zl95AACzAOYfBbf7xF3VHArHYts7+z+Xd6smyziOhLHeDjm5uNKND+KQPMZM7UQUl7/Puqv6bVeI75hF096Zo//vAzanvC/f0Dvnz5iqenC1pzoPp0coCX/Kvuh5eyuFaPTqtAKSekfEZKd3i4u8PDwxsAGz5++A5vXr/tEafv3n7Aq8d3uLt7cMM8FezXHZeLN8V5+nLBzz/+jOP4Aayj3vUhoz1k3UHg67I7wNGsz7XLCHgNvdRRKJvPfnw8ykH579SNcimw2rpMY/Q8SuzH/bnbce/ffXCwMaHrxa4PNbDUEuCp80zxJti37x7BnlPYvqF3H/Xw5oXJLeLavDYgx38+ebOf8+nsWEEuw5mQE9g0SMt5kF8pveTo0uLgik3ft4QoszCi9TzYLnd6pd5JR3yD2721VZSCABA9yizD08XvTgVo7mxtBhzXDc9fElL+hPuHe5xPD3j/7ju8fvUBOZ9wf/eA129e4+OHzzifH5DzCSWfHIir3izp69MTnp89y9Dar1FmoEpaZ+AB4SgFWscavM61oaJ5hC6Et7TUMQtGH7uDy/q6AS43mjUUAI+Pr/Dv/u2/xZ/+8Ccc1feZzTKevn7B1y9fHQy+XKJhxoHnp3DShY5/3T19vTYDm541q/1nGCMHj54a7MCwA5D74RF7182z7169esDd3Rk//fRjpNifUA8HQE+nDZ8+f8bnT5/wpz/8EX/4J++YnvIsKw0jYs7xA6Zqj4CV1qrXqk0OGKeIdDeznvNmcSZ7AEmzXteW5Q64zu1g6RlPFMm5OJhvbPBlaJFh12xufvR7rt8N8LXa8PjotVaen78ghwGco4h3a8D57oRSAgxqG6yeYDii4cYJp+2MXHLUHoL7Nc7mqVWb12PLAeHX40A5ZdR2QdmA43rg1atHXK5PzszzK9yd3+Dh/hHv3vwR33z6N/j2m3+Dd28+4+7uHpdLw5dfv+LHv3/Bn6//wTetOcKfc/boJiqLlqaIOv/uDJT1dRCF2oWWdeDK7x1RKDxMrMfhndkaitQW6N8J4YqUsF/3TqhrcW1gFpI8QAqk3PqXF+9do6u0G+XtiISR3jeEOGubMSqPjFjSmnlvzK2DODwF7OTG9yDherng/iHh3Zv3+PL1F6TUcL0+A+FVShm4v7tHi1ohHNvD/Stspw37vntUAoC78z1c+fKGAdfr1RthNK+fZjWK1p9yGIk79uuOh4dXqNVwKvc437/G5/ev8e7dB3z68E/4/Omf8f7ttziVe9TD8PXrM3782xdc97/5YU/0qhgse1MaVcBrFIMeAEnqQr813NivoYAqjen+vYxaCsWzzNF2KbtgD1MTNbyBatxQoVRAYzU49P38d+1eukai3KLjNdV8VXLXZ/CzYcTJ8/r3XqbH6Bo5hfpn+35F/fVXvHr1KgC3K4AcJQJ8ze7vH7Bt7LiccTq5sH/39gOuu0eibJGCfj4Bhx1g589O5lxfOL3d3z3g8vyMWh103i8Fd6fPuHt8wJvXn/Dxw7f49PF7rz96fg3Ugq9fn/D1ywU//PVvfu7NPPWuJiDSlyu89kcO71DrhatTKJ7B58JIYVQj15kNKlZA5Rad3VpXBXVpOB6RQmBURpe9dborg0blGfrvrfGstKi0ttLdOB9zemS3020G8dbrBQAY/1LB0jG4DJnLIBx1jxotZ5zPG64RjddapEGj4VzusJU77HtDSq5AnU5n3J1f9eYZVOLPpw11v+K47Nir1zs5RdMDT0G/IuWCrSTUAzh2T2065df49O4T3rz+iE8f/4BPH7/Du7cf8XD/DsdheP7q9Wf/w//4E+rxg59tiyY0KeEwjYYzpEhZoTFGh8+gi7npyUv+cJunKU9Z93F1RHiU20gtx0KfM629jEjtcmmhtfV7+rf/OT5FWhvfmaNmBo8daXv8/gpA5RfPjXXKHu2hc6TRlZPrNU9PX/H09NXrGrcDp9MWUR8NJUezl7s7wAzX/AwYcHd+BUPGFQdGExlEFAjrfnkUwH5ccf9w9pTy0x02nHHZG+7v3iDZK+T2Gv/03b/BH//pv8S7t9/iw4dPOJ8evJ7k0wVPX5/wn//TFxz7T7BwqMDcSTXqe6UOVPRDl8jDxrqMkhcvI8hX2bTKTKWtOeJ08B2lg1s6mOpX6lhTPYw0z8hNNzJmJ9rKczt13JCTOhY2XuGjfL4z3xqp6MAAHxY5beZGuM3ZGvp9/nfaTjDzzrz394/YrzW6v1svyG+W8N2nb/DTzz/gl19+QT1cNp22M56fdnhEecLfv37F+fyA1jL23bxQeXsEkPDu9XfYtld48/oT7u4e8M3nf8Lr1+/x7t0HPL56h62cI8LvwL7v+PnHZ/z1+le06nRxCyD3NK2IVrPWuxn7WlYwCmTIxChVY9adZICBTd8S0KNKuY9KZ4M/pOBRQxeDJRBJu8VnVv5I+uS5sKhviKiN6/ZJ6vLJgQ1PjTMDWJbAmpyzQYIBuECA8eCHWHmk/7mZebQdzBsYkJ5IOTZ0gk7bpKuaorFWjDWCO6rNOu7d/RnX64Hz+R5bNH30KK8CawnPXw6gJe8EXs6ww51ij69e4/XrD/jw/hPevvmAT5++x5u373AX0Zw5b72j6fV64HK54qefrrhev0RNseA83LMEjEhG8gbaVbR8IngjEfQdDrB2WJx9NqyBp0/WCkYhd1jBRqBEGJv9mdmcT1UzoGSkJu80AMjQsMpSijvADKzEFkNNSGnrzzWzntWzpSi1IQEqqmdzbFqPuBlr547xDp4BIOQeYp4WAfq0/607KDol9jPT6XDiceYgddRCS2GTp/wyWro79sDyHMkB0lgfpIbTdsYfvvlvkVLG/fkOjw+voyHDa9zfP+Lu/OiBIyX07JoiitHxDG8AUXEcP/d0eAA9UszlVJLpMcAm5AUYxemYBfXDCKWdZAnpj6U01uh0Xq3VDhryxS7f3K23pYLWNjzeP8RaOfjkYJ25bRrju169mca+77hcLr1Ezr57B9zL5eId4ferN5oM90E9DtRosOGdmZ1+j8MbD16vF9R69FI0j4+vcHe+x/3DA96+eYvPHz7jm2++wYf373F3vnOdNMB1ZAa2JMDYeG3wv0FNqYOdKZURoGTCc8mniAmJ3IuFj3/Rwb4adX9Jc4n0D0StzuCVDT0N/IZI+lddvxvguzw/4zh+xvl8Qs7uVXMU8nADdzsjIeHh/rWj0ScnxrvzK5h5IfGRDuDNCq77Ba05kZzvTrgcO+62e1wuV2yn4p1nUoYdr9D2Cjve45+/+9/i86c/4tPH7/Hh/Wfc3T3AasHXrzu+fn3Cn//lV9T6o3R5NGdcmd1V4cZwoLgumBM8PL52oU1ZpIrMbQV+fEcPnXqdeA9rxXiU42CG/J6nqo3IkFU5XA1M3qdjUUbavTuipOo9t4zpMc9Bw2OOYwwKPFJZ9F/JTNuLe5Uhg1+VcVMZanbgl19/wtPzF0+/OJ4lMikjp4J6AK8e3gWT8Tb15/O9R8FMXvIcxcH33u7a/9ZwPp1w7B4Vaq2gHhvuTp/xeL/h7ZuP+Oc//Ht8++0/4+2bT3i4e4PWGr5+veDXX77iL//5K479555+4II/9XQK0PKwADajdogZkNOG2q7T3lNJU6NkjShYU7ZnMGUWYEx35PcY8WnmQu04DpQ0QtJplCjdqUG00vhq7PYoC6E1vY+Xvke/s54npWU9J/z7rXPIcXDp9T793c93KObwZho///wTTufN55ASWJCcDVvu717hzeMjnp6+IAG4O99hPxpgBF89EqG2iqfrc3QbczDt6ekJdw9n7JcD9/ePKNs9jusZrx6+x9vX3+H14zv88Q//Bb779k94uH+NlE54fr7i119/wd/+/Ix9/3N4OOkF57FxQNiVTzcQCKjXNpRyT3+NrrZmIejH2q9GrO5jwlw3yuJsr/uo9zm95fCwhiGLAfYzLWJyJNTWFUilNYKPNIAV9FEa0rOiNPLynAxwb9C3j2Gkj+LmtT5/pfEJVETqtQn7uHevyXa9uGMi54yvX5967aCSN1yeK/JdxsPdA56+OCiTkfH11+dIx3F+5k7chsvzV7RWUc2N0et1j+5dGQ8Pb3F3eo277QEfPvwB33z+Z3z88C0+vP8WryJy4fJc8eXLE/725y+4Xv+jR2fI2aMHEubRd1NtWgzez3ojQJ74yHEcXlfnxj4p6Mf1ZNr4yjNWp5Oud++aDPcSZ3gkDu/VveO4lM92udO8EYGCLWqgKzC38rBJ+QOiDo3T0uCpc7TiuHekTq60tuof61wIfpUyy4Z69SjH65NHcG4n7wq3N+DrV0+FPG/3QC44Dt/LnBLakfDm9VuPVDl2GBK2c8bT0zOyOVj/5dlTrtjcpLWMZ7vD46vPeP34EZ8+/AEf3n+L7779t3j//jNO2wOAguvlwNevz/jLvzxhv/6C2vZxdmSfE2tYthbNMFwPRBr0xrNM3cIdpLe6KKcXawew5MxLkLd3Jr5xn/IR0hyV9OHOHLxgRNfkDljo8wgMKhDIS+lr1dFW/uPfIXiQbzzD9R0tV6F0qzTXdQywRmHqKaoeed1PpesULeN8ug8DyGs+Obiy4fn5azc8awV+/OEJtRWcT6/x5cuBjDOuAForMMu4v3uNu+2Mx/t3uHt4hfcfPuDu7gGvH9/h7duPePfuA7bTK28sFEDM8/Mzvv7yhL//5a9Ry7MFnVC2Dccqgc4OsnSjekQBv9T3HbAZRjnmJlACOiQM3YJGcREgmWveeclkPM6OpSFHPFCPe59z7sB9p40A5/yYBFBIGrOhx7fWgDYaDMAwaquFfrQanBnxHaHtjrfwOwEYkedy3IHfBD3F771kTwyshKyE2Cgx6WarLWU4bQ84lQdY24BqeHV3j3oA2/aA8+ke71/d47zd47vv/gmfPn2Hx1dv8fj6NR4f32Hb7p13VOtRSr/8/Auu12jy1I6wG4PHWIuIMJcLZgE8AlM9xJTQaxyP/c19vVRW5cQGJ5EFBgDNxnIapJFPCjC1jCgsDB0vJY/6542tedRRi7X1p0YzquSdiZtZOKS9w7Kx5l17qWOXCJJI1JcL6QShPwJbpIrDDOpIyPAMmojju6mvswmZwQSD1KwI65heSv1X/x2pjyGl1NMead8AbIYzByb0cwAC0ug8eNilCafTHf4P/7v/B06bO76OY+8NbZ6+XvHrLzuaXaQ29Tj//LkHDZH+kdAiypflOixAYNLXqDGsGQ4FjAQlP13lABAOVwWpMh36TkclonxZzqXB7dMWEe255ElGhFYQPM3PH8nt/v4+5smjzLPrwC7H4bLdx17jOZwXU4u3UlBy8VRk0rI1bJvXcOx6OYDUpL5t2BApl2i+Et/JHo0Hc32QYHEizLjwOB+7YhkKfEDmOWwqfreXj4o9Tzbkbspp2FzEQ2zEKY81+/0o3+8G+AAf+HH4pC6XC0rZULYN93evcBwNgNfRg3kB1ruztxi/XJ97OtLz5YqUMy7P3mYcKWE7ZTw/XdHqCW3LuD97dMHrx4/48OED/vD9f42P77/Hq1dvgAALv359wg9/u+B6+Sv2uoPt6DuDwIgMaAZYZTcgAJa7R7y1A/SqGyjw0ME9ABNzUsOElxqkqpTdAmRaEImF9k9EnAHqOUAXVQb13fo8H/9gXvmGMrFG3PCRs8KhDDDy/HORnzNSeulhZvTBUAxDCYCv+Wg2wkLzraPnFGBJGUochBbdpNzNZGh78zTsVDxyr2aUfMaxe1g7WsGbN29web7ierkgFSCVDc/PF8BK1HQ8vCtgPsEsoe4Z+fQGH9+/x7t3n/HN53/Cp0/f4+OHP+Lh/i2AguenZ3z9+oy//eUJx/FrhCCzsGysV7IO8rUwdGkUIkCXHLTVWg2jL02GRG/bDi+qrop+3+sEn6tcqxGse756/WlQuBDJKFGUls9gnY1b9YHUKFK65nvWd6sxPAtVFzjDUJ4jvcZ02Mxm0HuWSE8y/GFYz+9h9KSuC8CacQNgqNVwXAznuxNSNmRjrZ8dtV1xOiW8evUa9WhoNXm03pHw+Oa1p31cK6o1nO/PuDxd4U0VgOszkPMDci7YyoZyd4fT6R6fv/8OH95/h0+f/4AP777BmzfvcdoecRwNz08X/PTDF/x1/6t3Z04peBPpzP9r7XAnns8Ore4dIEbOHSjw+lNFapwF2hB6tUXjjxSto1pEL6DziRZKinvuguIiYoDKeOrgIfUxNp9gtEApJ6e1JMZ4FDz2VJ/sETtpnBvlYdy/tbHBeg60EzO/ozzS54rOewddBIg1GfQpQJeXZQ14FshrFaRS3g8AGg3pPP6E+7s3nn6GhFM5I53OeL48Aa3h9etHWKtIacPTF4/uLOWMugNbym5EnDe0I5wJaYNZijSQDff3r/D61Xu8ev0ef/juj3j79jPevf2Mu/M9UjpHGYMn/PTDFf/yn/4jPHKd9bdYhylOXpwTaztGlPHgK97tlmviEaOMRiCv51p4LcahPBL8WIGYbkBLLUbSrsorBRC1REXOBVs3lIejgvumfIr3zPJzeNf9dYOHjpT12WDj86dO4NkBhhTADufoQOc4C0OGvgRbuN5cBwIGBuVtrvACEUlvLmurGUq+w8PDHe7vOC7DflR8fPsNni9f8cNPf0fNCTgM21ZwvVb3OFvBTz88o2xnwApq88LewD32w/Dq4TVeP97jzevPuL9/xMePn/Hu3We8ffsJrx8/IOGEWhsuzxccR8Xf/vKE5+cffGyR7tsCZDAq/hHtxn2aHaVML/WxsXETEGmxpI1q3dha9SF97rzGapzMQNkKsKrsYyp0p98O7kH+FYCtzXJ5yLRxJgZ/C57T66Rh+j7nos83M+SSgr8Nuipl1FYFyk2aI20iHB/dgRdAEc9ia60b4R1EKggHKyN5AY/E25FSw34F9mvDtt0jpw0tnXHaznh8eIXT5mm133zzPUopeHz1Bh/ef8arxze4Oz8AKeOoFcdecblc8Py8429/fcL1+lOPDuoRGmEsdrBD0iJZU9bMgK57cY15xnaMyEc5W11XoJ4dukcgDS1kKn/vssntWxi8yysBNeUbZtazVxJGnTqrotO5ooycMdGy8WwYY7CGft8bVZhFnTTyc3hqGdJozGa3ZZzz2xSgCufW+s+9E4dcKYAaynJR5qZ5E6RJUT+TjyHA2Sz4XMrIEa1EnbTZCR/f/a/w+eN3eP/uO+S04fXrN3j79j0eHh5dt48sLW9U5bT5668X/PTTD52HdhpHAGSBRhoAZzfDyK+phpNx8I/hKAzwu+tFkPkQSB52W2sWgFfQp0QnczWbGbZTifrRCR6ZyPqtEaEbYF9vdhYRmL0FZBR8LymPiFRfdH9T0FN/a4yVzetIRzBGfSFU8uR1FCGRxQl9DjnowiRyyavGhuwO3TQRLKZTq1EPnB1aQTwzLcV4VddqtaFl1ks2FFDndRCrwXqJJ9Ufc0qekinnh2eitgP/w//wP0Z0cqjOfa8yWvPyTnou+3MzG/oBZkM3GfpIirWuobYPmrKw08ZlyDnOX6x7PY5Yg2H/N2uOMsm5TCJPcg49OOX+fTOmNHsdRwY98DxAbI9mhlScxjJTnjP5rkV9dD/DOfgAs8UQ42hA6GxRTqP5vLINzMZyYDXVRm3kTkvJ/54sIjVTxxO4h/6r9c+i95qvYUCWXnpiOBTG3pK4AtAmjoQEpOyRr7FPqiPwIbVVZLjji/XISZ/qCCIQ3u3aRSf511y/vwbf67eodvXuMPke7968x75f8eXrF9ydTkhoKPmEp6eLeyQMqLt3f0tWvIutZSQ8oB2GV/dv8HAueHz1CaftHp8/f4v3777Fx4/f4O3rjzidXiGlgv3qLZ9/+fmCv/31P2Pf966QdUPNNOXBjXhV3nMuk8EBIOprAe6JHkoUALlveNtVUVRFaWUM+g41Srdtm7zGKXldgmZRW4dKaRqdJQFMzx3FTo++Lwq4aDe5dSwD3Es9AkE/JxNTVNq/W/pzlKkOcEX/Fu/ie/m9SGlgZKILhmD7y5rXo+Lx4S2AKJKNjG8+fYMvX7/gh59+wPkU4bC1eYpQgKN//9uvKPmM1k6w6l2iYPfI6YyP7/4Jp9NbvH//PR7uH/HtN9/j7duPePP6LUo+wwIEfH6+4Me/X/Dn63/q3RJ1fVVAjNTgOb0LKXvh+X5ocyjADD9P05p3hf6GYbCmGPHnsW+i/CyGg44p59zrcJnRY6QMbkTxHcfR6WMFLiyY3SyAArg0TOvz2xEubkCXkoXWhiGi3/Uxod/n78hg/Udn8LPxT0OagKCegWE4jki/d28+Auln5Fzw/HzBx/cfsR8X/O3Hv3i6z8XLD6BV1N3n+cPfvsKaF2NOOePLzxU5v4JZwYd3n/Fv/vkj3r//Hu/efMa79x/w5vHdqE10aXh6esbz12f88tNPaO2HZe/mqEganjyLLkwHYKFgWAFm4MTCqxpym6k1fJ4ZsEfn2XXPUih3SnO6ls6CGVGY/fuR7ns6ueFa4Z5PYET80qhlt1hYxSG8Wt+hfPf2Ps5nYf3+PPZh9K1GPujhk88JlCootfJ7zgvQtLcxjmZq0ANvXr/H9fp3vH58i69fnnF3eo3zqWI/fN1+/eUCYMNx3b0jswHXp4rWvIvh/cMb7E8VD/der+z77/6IDx+/wft33+L14wdPs4Q7Wr5+/Yqnrzv+9ucL9uPXYLMma+YOOe47UzG4Pts2+FSrjDiQdc95dEhsbrYgJWRq4N0IcKVK5Rb5DNfvluz0PWDq+NgprWE2gD1Xsvf92r8z5Cf6HDn2WyALHVh6BgZtDDrjuAYfn404M/MaumE3Egwa9DgDUNRllOb9bwnepXTQWYKnyHjfGl2nMIotohcS8OrVG5y2Hc+XZ+z7BefzHZIBX369oDXgdHqD49qwtxoOqAyrwGm7x6m8wrk8YtvO+PjpG2zbGe/ff8Kbxw/48OEbPLx6jZzPMAMuz4fzsy8X/PDXP6Mehlp9TqeTdyTMooDXfehRiO6RXFsaQaQ7nyIBGTcmtJxAq1ybmdfzGeq0Uhpbz/HKEzRNn8+7VcJEU3N1n/uZEDqbDMsF6ObzGMlXrdK+6nRGOlRdQPWSMI8W2p+dui4byzSOW3pdp3ewu+tcJ5JrYCFf9mvB9eoZEZ5hcUJKJ2zlDq9ev8bHD9/h/fvP+PTxO7z/+BmvH9/ifH6F5OFb2I8rrpcDT08X/PWvX7HvPzl/GEQQ+1dFPg45OGSHg75+hjmf1vkQyAMBpOa1rhsMZuy0vgCAAtrl0DsIlFg4hrzrqI30xRsyidetSE2lM0YlcU+UJypAzbrICTkwpTRS+KN+mN+XiSEi5+R1r9DC+T5nWnReJHNm1J6DDLE+YeyaDYPe50lcgOu8zK1/Ad2ZzeeZGQyVgYfoxr7NAMppO+O/+9//v/Fw9xrX69Hrwn350vDzzz+FbTjskJG+jP5vwLHuoAL3YtiSFvVkfQQugx1cjEigvs/DEeD8xwLImKP7WmtTRDhin6mW8V1jr4feVRuQHNHo60GgmfKDdNrMsyRYz5tneS0dobynOx+NwIi/yjx0EowazApEZv+7pTTqkJH2xqT6vynokOcTfSxjzRiRttpY/ewVBpKsTrCg3UJweACLPWJKom3JG2knJ9qgfaSzPK+19qhU6zZy7kEetIW4zmq3qa7q+ztsJj/HHmHvdJSE3/P9fG/rQLE7DgjqsiZt0EHznEQLsDQkBnKAvCQui7kkRw2dR/Rsg9B3E8+/NxnKyZCKYzG1VqTNicWjk6/eNK+5rCgdT8EANV1rQe5zD/pD686v7hjI1nkC+T26rhpdvZM760PNcse0IaKDR5AH6cP5C+RcjHeushlh47IhRi456seGjsVU8pKnXgn9+bGDBNZTNIAkb0g5967h1gBLUqbgd1y/v4tuBVI64XzK2K+G8yvvZlQK8OXLrwCy19IwD9Mv5QxrGaftDue7V3jz5hucTie8fvwG795+xjfffIs3b97h7vy6Nzy4Xnc8PX3Fn//lCfX4FUf12kRlS5Hqc6tOCY0VEtWIvhgKzssmFPTYtXaA3XRWpnjL+9vaXLOKiqSCJCtTV6WBipJ7CW4rigC8a4x4tWl88Hkcp66FGtEK8OhFocRrVu7UyJYi375yXQGalEAZBxXyDCpOM8McxuM23a9eeyQalEBOJxz7Fb/+8oSjeQHnp69XAJt3A/WMA9yfX2HbXuHh/i3u7x7w6dNnPLx6jTevP+DNay+6fD6/QmsZx+GFv5+fnvGf/9PPAeAMQZ1SIPHCoEOf7OvTPXDBCGYlvk6MhB7wobCNgq/AWofsJVB3HHOXXDVSGCHEdVRaU0X/Fv0qeEFQj89Qo2MC2zB7wfiM4xjeb6X19d3+X+60xi6bfd0X4HA965w3/0Zmqt+lIsH1W+mVIHsfmyXs1wOnU0JCwY8//OyCxzYk2/DlF49AwHaHy/OOu/MD3jx+wOPje68D9M33ePPmHR5fvXX6u38FJF+Ty3XH9bLjr392o+W6XzGi38TTlwa4STBYU9pDjCElGnoIgTbWytdvdMb1zxBaQ+qKj+7Pmg7OaCilNwUj+Pt6psnv1lRfPRe3aEO/CwwDaDWGb0WdrHSiz1yV2f7MZc2GQgmhpP7Xrgh0Wmlz7SFde1VO+d/sRGm4Xg7se0NrHln8y89PqM1w1BNSeoX9WvD68SMeHjwi/tXDI7795k94++YD3rx+i7fvPkatSJet9Wh4vlxxue74+9++er2Xww2R1hrADtqIkjdBE37e06zoTnLPYO0QOUHAPLo8phzRzIxO8dw9a8NLO9YGPWVN126Vj7p22vyCdLSOkzJY6Yd/VyfcpGiL0ay0pvQ1A28aeTzzl5UWV7nLotakq0GXA3AZ75jTRpx2bKL91trUHEnnstJaa+a0dr1i3yuOo6Ee3liqHQlmD7i/+4hyvsf59ArffP4e9/ev8OrVa3x4/w3evfuE+/t7nE93MCuelvT0jOtlx9dfr/j73/8eNUZHQWkavBaGIIAeiVzBFBUDA4HI09jasDWg1RpRxBjpLaB+n6JMAdN13Eh0EB0vLuU/qnvpfunfVp4HzGCyrvctGdwzNOS9+jy+X2nzVnMVGh49fdTGeHXsvAbNhS6chyyZDeaX+tstnv4/9Y5VltZaHQCwb/Fw/gYfP3zC99//Ae/efsLr1+/w/sMnPL56h5xPMLic3a9X/PzjE56e/6VnRHh5gSjJg3FuekRPRAS5nlZ7xGdrq45QewoYphIU/BkR5WI9WjkJgLSCIZPNwHPMiHgkGA6YzZHjup+b8APymwk8zuM9ZlHUPc9ZOHwW9WYFCT3lTuoY81RwDHmOYvVnDVBt1R/HM5gOH0a0AHlIXINxRvS6SUeJAGB+8b0uY2XdfovujlrxH//j33F3/hLyKM6wjQZqXBunhzbe2evb+Zmr5pFpQ0bYxIet72fuuu9+7P2Mtzp0By/NE/rFjD9NDnilK43s1rmvPAsWBfkpo4IWHcQZGVHOfx30sf5uL9VTstf8mssmwceQMDKQyKfTkL15omFG1INM/KXu04acc9oQx9eiOylPBRw0sTafoc5v0gAG1dYF+GxMYFtK7LQ705XqOX6uPYth6IFum7RwQLdGfMHlFJug1Np6tKzBo9FGcxXN1LPe/KPbNwYcHega+zEA+4g4I64BDF5oDnB5Qx8/46MWcgKiJ4KDswlHq7DkATXZci+lkpKsAzwdm86TzhtTAhrreZKWfXwlF+SMXqeRUWkZ1kFGgHLJAWHXwWON0sgEcUw+bInqjp3BB+RAJd5vcUB9vin0AIKkKqNeyLrGPaau4jzNoYuVB7lje+okb7cxk0FPPHtzAM30XM51VMH83dfvB/iOitZ2Z3gAfvzxr7BWkPNbWDvh7vQO33z+HjlvuLt7xMcP3+Hzp+/w+vVbvHr1BqWcIzXXiys+PT/h73996kUoqZTAUveImXl4bb34glzrAfSInSXkNojC079G2mSKiAYNl65hrFHhU0azGr63CjUDs/DpxgGGp4BCevWYAEuUjQhvFU4pjSgHJVYqivoMXrcIm88aQqNMY+Hl4y5gfRIylzFnJ2Z+Z9QMoQHF90Z0XprHQMBJhZeZ9YhMEr93owP2aw3g54Trc0a1VzifPuP8+BoP92/x/Xd/xLad8PDwiE8fHWS5u3vAabtzg6Y2PH19wuVyxZ//8y/Yjx+7QUJgRTuA+l4LvUNSM9qIdhGN25W+uijHRmFORdtBSE/Pmr3CpAXdr9Xo4H6vdKdruyqofN5qbPBZ+j3ep9GmSts9qkAMmFsAnl5qgFPYDvCOAri8iKqZlQWtQTQD3TrnWUgSCHDFonsoW5vm2GmtFBy7Yb8mtAPI6YyUNmSc8eb+FV6//oS782t8++33ePv2Pc7ne7x98wGPr96gbCfAEo694XJ1wPjnny7421+/4qhH98r0s1ddEVQQfQIvQqATUHDaiz1PYVDQkxdqwHGoYwPezTINEJV/oxLUWnsR5bsCxDRaNSVN111BvVvgCb+r3ZcVNFw/GzQ3K3UTsJGGUqe0r2dEaU9pSt855rkaIb5G/m+e5qVnciiVvG+WQQqMr9/JVlCPguulYDvucD4/oOQzPrz9iI+fv8X799/g1YN3gXx8fI3T3Rlb9oi8fa+4PDvA8tdfn7Dvv4yoOwujK6ZEYM+jqEIxTSPVjuNhMfC43Ru0tAqEfD+mCFwHUbpBE/RX8rbQBGlN6WoYdkprpC3lDUoP9D4ryKXru+7vGh3DsfM+NWaV3vkz5YHyrq6sd35O/j3v7zoWKrzKe+NNQV983uhiuhra6/M7rWHwDl033YeSM469wFqBoSDjNd68+ox3bz/h3dtP+OabP+Djp2/w+Oq9p9AXj+6+7juenq748uUZP/z9B9f56qwH+N54pHo3hpoDdxxPKUOX4XEZaUijlAcjeXxdFn2mueHZjcSm6zXGk02aZUSq2irzYOiddnnfuna3+InqSfz7qjeu8lJpivd605vbzdBWHbHWeG6jMUmTT3Wxl8/384lOG9PV9wCgM3ultVtA5y3+tp6bsm34v//f/j94/+6903wDajU8Xy74+ecLfvjhz5Emy9pMruN3GQcCtNHJvTF9G6g8Q/E72jg3Wrhezwh4liXVtVbSQu414Mxe8qGxJ86zWqRyeW22UZvUbYsCOue4FmqMqmxfgWWlwZnWzOuk6V74Ur1w2rMZg0H1t9ajqhGUo8yq9GiSIQ9If+TDKlvHXKxHzhjQ10zneOu+/rMNYErpd5xHAgtL93BZx66jt4r92Cfd0umd7/dIy66nBvDRjDKAQJynWeo5ouxKSP3U1XYgpZdAJmUnx5iTgoUzXWrkugZurOdt0OsS8JHQmyNYABKW0BtF+ryjJAjG7xZzJQBFsKp04Mt1SpbQaMaaZkEmLaH3k0kFtQ6QbZV7Zp59RUCNTvvQLjCirOf5cl1zdkCO3VVXcDdFow+nYwUOB9+jDtDXNA2Q7aV9EbQojoBxr99/7BUlU4bpuCXKzBkJNa1+/vrZKjlSrL0eHAEil1dRey+QKUbVGeIsttGJuIZ8NBhK8sAPph0j+ARtBmuRmtyOsFPn0Q8eNPT6fb8iZY+A9tmkODuIcQFbBlLa+p62iJQONLyviS9J7YB5b74jMtnCDu/PQJQTEFuWZ8t/H7p7MyA3j5620HNX2bjqRJ6pSVxoOL1SlpUR8G7IxgQC3uvlY4uanP4yDwwKomQErBkjlkPZpsJupKXff/1+gO9ScLmc8PbNRzzcP+LNp2/w6dP3eP/+M96/+wb3d494fHz0g5gS9qvher3gcrngL3/5sbfXXr3tg5EzkgvdkC2lAIZApL0mXPd6tWEA+zWEFi83sl2R07opKhzUmFUBp8JflTt+BrxEh3lpJN0K4KgSuRrLawSTGmMqDFTRIti3MsR1jVOK7nQ3/q5rSGaW0qzY8l1mkUPfjbYZdOhzxS0javFOyb5wDWs9cOxnWH2Pd2+/w9s3H/Hh/Tf45ts/4s3bj3h89Q4lF2wn7xR53Q88P+/4+eevuFx+eVGsv4+RAsJGqrMqKLci6cpGD0cYCU1TWy0Aw9Xj1MSYnMFbBWbXMG6nGxcu2uWp5KEc0kjRfVF6VDrgeFaa1TkozZNuVbhynPp3Rvvx+SsdDVrJEz1oUfL1u6tBy3d1r+Xyt/nd8177vAwaqTqUiHHuAQCHIdlrPN4/4t3bb/DN5+/x/t1nL878+j3u718708+umD09PeP5suOnn/4ejQ6q4L0CCqFPfYCMdaTAqmLa9zF2nFc9hDdi8B9dT31vra177HUtzBDGkHq4XeHSKE+tg7UqWKwLqUo5x6PP4L/6faeF0mntllG7goi8Z93z1Yi4ZZCuihz34JYiPXjwaPrBVKTf4u0qv2js85zo2vDaNk/LTxl48/hH/Ls//Tf4/Ol7fP78Hd6/+4RXj69xOt/hevXI4svlii+/XvD8t6849vAiWwO7gumZ8dqcwduCJ7mDSwycFGl2aC/m7EqmYZ+Ar2OK+ljlnf6ra9L/hlGrqhvL0YFVDUl9pvIdpXPdf11fAChbQaozbep+cTyrg45gi17+XAfe5rMzop5Segmk6XNWvnz7Ysoj6ZPKcLs59smAbq2nRLVae+1aPXs8ZzkD/+W/++/w+tU9Pn3+NorNv8N2ugPM65I9Pz3jx79/xeX6k8vceoR8LKEExzq0oZwaQgFPTAlzwJFFtTn24xh184bjj15+RkQu6TpBr6fTaeL7urcqp1fdAkCvqfZi/cMIUb6w8peJhkVXUV2Ol0bi3dK1+AwFKzRiVJ91CzQbNEYgYpbZOg7VWXSdpvWCwcJ4X9OSxvPGOuja30orndYxFfz5zz/gxx++uNm78OvxrwGjSlh8gVFWqTekGH7UOXLSSCdBdwQbUgA7tb0EVzgH0obPu0YjyqH/6GVm8W63OSr1YBAsMeRwbHDb+jybhSXKNXTCIx9h1HSnHTEuW4AApdNaACNsyhC8lKRTSkHV9TGbopVS8nM+jO7Bn1PYStu2CT+039zrnAI9sAFkKp1ZgCyrXqh07WD+sBHGuGlz4MW7u4zrv8+8cThV8lQHkg1WKN8cPErBl0ZN2NDsO0V6LdkUNe4isTCXiJZaHDAp9Wgz1bkGX0AHS27xAc3kmvSUPDIpqGu/0MsIuviG+jxSwrEfHgEa65jlbBMERURAQ/Zm0CjPK/qej0j0sWccq+5T5zdsnGHW5dotnV/pw3VI1irziNveOAYAbDjdNEqv02ee+Uqnu+S6U8C/SBy3jDcFqJuT00ivvZYSgIxWCZx5dLk2s3La872hw7TkOVDH8diojY3c55XRYDnjqEePxN2jyaayyIaKTAeBC2LknLqcHH9IPerQgdtIb0VGlTJGXebG2pHGciEdj0y21lp/9zgbEiwEi+ZRES26BC/0sd3Q8RMS2uHBMyZ0ofrzTGOdUm/qiKv8lQWLewc4Tprr0d79/S+fwbmqXJzPrfLChuHYHXhDkrOAlGGpTrDeqk//a67fDfD9V//+v8U///FP+Pjhe7x98x7nc0TkXa54ftrx/PyEX3/9O67XK44wMrQ991i8OPwtGgcs3kZrs4Lli0mF03oTA3ph1hom+75PRvQaJbAWdOb3J2N7MRBXBY2ADf9VpqWCR+u49Y0QA0MZn3qGtf7ZZNTcSPvV50wCdVF4qKAHx4l7MLwGk6K4piy9XA8KBS+umbqRyToIZvP8/D6uMXno7En09GTDf//f/l/xb/74z3h49Qbn0x1aAHlPT0/4+99+xXW/xL7XOFD+bKRQcmxWyDwUfa7fM+YxK/f8PCVve86IxpT8HfteAxx56bWk4aD7r8r8mgqr+8tnHOGd7Gtfxs+rYcz/lLb53dUYWmlN6WRVzFaanY3X4T0b72JR2TjfXPteD8QFMOs5rsWHZ2OfNDZolEz4tjE1jCb+3dPH5v1Uo4X7VHLB/+n/+P/En/74J9ydH2AA9uuBy9WjWP7613/Bse9BOy28+Hkoq32JrHdXWxWlRMUlFHw/ZzUUmXH26h5nIztfm4RIGkL1FF3LVg8X4F1OUTJ6dzZgip6aPce518dTelnXV+lnVfBWRWc9V0qnOh/lr6vz4tZ9v733ixHRFCwqUA/lTK98P9+lUWH8/KUBqGvN99Ra+3degqBeEsDXPeH/8n/+f+Hjh49o1XC5XPDl6Ql///Fv3tQlOkB2WQRJPYAoEI1GcXhGAaSkKfjmNVOSAnMYvB8qo3yMpeSeLp9CiUMLmQfyvxn0O44d2vnRadc9k+SZ3jEslM82eJOCUgru/JZytfItvV/Xnv925VR4gv5tvfy9c03VYSyyoLKAXubzUcNC6VT1HI3e6ZsBBT14KYA/DKR+NoIWez2d1oBmEcUxAEffM+B/81//93h89Yh9372xyo9/xREykxF3QAAfXHt/MLy+bCjhoo/1keaI1FLanHj07RIAzgNHxIbSz0oXKuuGbDwmfUjXfPAmp7eUMPGWWzXk9F4+T3kUv7fW11R5u8rVVXfc9/2F7FmdH4MWVpAldd409JCZpgdZkQ59f5JRRxn0ZWaw1DoQpOvAn5VPco5DNya9D75x1B21NtQyR9T5mBqYOuygmEeVzOt9gBH61p2mvn85Z+yH19W0qDFVmVmCjIIRkbGe9WltElc36tOl1JuMqWNX975krw/Y9Jh2nS8i99LQPZq1SCtPyIXGt6eVUvZznp0GqvWIK2P0sNHR67M8avOi8qFnH3TWlQwLPafr4CX18XqzvpHG6Pqr/9EBlSI2jUdtsbvmiIRCOJes1/hk9B87o+dUQgaN86+21IgUb71xzJA9nOdIK+12SN+8YSvklLrzXvfKs8som2YAylrCcbhemTJ6ai0S0BZ7AIjUyYiCQsyrtgOtxftDpyMozdJRDkI3IGyDbOR3o1khgLBFaPe0zjd5rkKE4nw+T3wEmEsGNK+Z1e0bdijtUVvNcKB2QETXs1XKTV/cXrvsaCjssFpdJhZpFOUAZIB4kTbfHbyhp5OOqRyrbe6/j3qXmVGJVnFURGMPA3qTtgBKOxgaToUtGmM0gNGWCHCFNMQT77q0USoEwJK8YQJTu3l+SFuH4wscO/m8z2HIW17jb5x1mvCCvvRih/UU6+j+iq7bjECklIBcNiQDtghE4tpyL6iz1mP3JhhSwxtBowbrqbykl9RGls3L0jy+7s0Mdsz7zOxH6kONujYYiODv3TZmA6ZoyBbAateRC9j0yJujhOwJPaGZ8z2CvJkOD/LGxM/hNCxyN1ieAIc2vwMk/dTPR+frIkK4XujP4T76v0cbEasQHTY2MvRuC4dSnINN6i5HJF/6Dbn1v+T63QDfv/s3/w2+/eY7PD8/489/+dEjWAQgGwoRrYkG62kXKQ7MQvBSr2wQ2Evvj5lN6aqttQDXBvPg9zVKR0ERZZYaMr0as8AAAVWBW1MOea0RArxW8IaCU40ZVQ75jkmRlntXT7auEZ+twup0Or1o6pFKIQ+L9SehzQTMMHcyGX1P657EGHtKaIJ8m5yQGYGfa0C0xjEPsPU4DtRWcT69w9evCT/8+DccQWeu/Kkyjm4U8/mIiIGEOX0gdqqv8a0IAaUX/Z37QCWJig0/XwG72eM46FaFs9LLoDF0pVZpTGlyjRhRw4ZCkPdpFA7vn5nUS8N3Hd9qBPEsl7JNdOl7OO7tBVMhymxX/oEEdwAMBgxZQ+lG2c/mfL7m9CoWpB/v0LO8KkhqsNRWcb0m/Mu//Ija/oZaj1Bo00I7YWA0V3pcOgjokCC1Q1I3nqmIUd9ZeQUjXRhRl/JQyFvQM9JQYvyeo/+r4PFK2zQ89H2cN1PoVDHhXLhGg98yGhMvaFd57pqequ9X4bvyxZUH6/N5L50iuqcrLetnBHh7cegkIIPwp9qiMHVTEJspYyMSV88U10mjvtdzx3UboE3DURv+w3/8F/z446/9PTCTM6AAEQ365kqg7N1sxIYzw+CAS6uuyFmdaNDnX6d98He6ol4hTgBEBHQYNlQgcyrTnvsYR1TdMJTd+KajTmlgBYHJH/U8a0Sk0hf3gT+PdNA5Mphr5XQwp8Dxfn32rHSP6FNV1hhZzXkz+pURama6rqOTtdaJmptJRH0a0JAYjcAGyAWYDRC5j5X0YpK2F8NjrcN6VPyP/+E/4NXDK9CY4ODd+RbnDqmnVfVyAF1O0Wu9dZrvOh5Tuo74LDvPPI7a7+2Gn+w1/6Z0rJ59nieVwdTDRq2fl4DcLMsqStk6bfD9Si/Ui8iLlH9Rt+R1S7YrPerfOZ5Vd1C9YtXhyN+OugNoYCfEtXzMzCMwnu0j6nwCEnHmUW7D8cFoFQPQqs7DBRSNYZ4dnf8YrxvXfHOL1DOOacx/GDWMDCn55EXF2xzh6zWyEfSjDkDh9QlI5k5Xp39Dy/N513WdnN8tGGRy4G5ENg3aJN/xerxnWDZYckCtRKdDM0MupRvLXP/jOJBLgSWvX1WbAL/mIEZJsyPDAYyIfKlMA3Rh1R0kQPDu0FcMEfHifBbNIzJ7VFF10OOotTdJAoDtVGSuo5xQ54Hx+ypXR1mWMNQDyHEeMWTYcPCOizotIrKHpZ1Ssk4/BP2rtcmR5bQKRAdCcJDJhgNcz55Gd5P+WPYpwXNMW/Uy/35OIj0X1gGLlJLXfM+LPAkX6bBsHDznHjq9BlCUXe9NKSODHWx98DnnbivXo8JKQykb6uQEB/bjwBZjGA6k8T5AInet9fFzfzsIBaDCo2ItIZqmuQ0WGiYIMpAvu+oZUY0RuZ0Mfb4ZGWjwtFOzTqJmvleUbepEV/7e7UUzDAcZQXTDNdKha9MmeSofPNLtiL2T3hE9lqhWr0OIzmeHvpOCF6EU1LoDmTb5bP/3pnGtotYDjLQnXfucR+oum0qlNOx71WtTTy+N84wGh6yKr28KkNVaB/0SQfEYt9LkLJMOuI7ufIkALe1l7pHT09AbcvYI02QaOMJeB3FWLc51lNSoOFDhJc5yzki5IOfhlCRmwMCFBDq5o9azJWxpA3Kst+zNtnlDruYKVi/JgRhH6vWfra+pr9FsX7CTsmHEyPHvs8yJgIXqTcv8DOXOF7ttFE1Neu2/oDczEl7szzE7nwHACN76L6FfC2+nPofff/1ugO/Pf/lLF66rUjURXR1AjLeBZreSl8AdQlHd92OE5JpNXk9grj8BoCtgqlTx98Hgh7GrkVOrEnbL00+jYTV+adjlnCdFkWPU7/Hn9VqNi3UNVwVRDTKNWFjHS0VVgVAaK93wbfRwc/lDaQMm5qFCnp7IeZ/HdxlFos/Ta33urPQDFOqdrlrDDz/+2GlN56m0x581aqHVOnUhXsG2lEYNDFUO1Nuyel7Uw7vORf9VWtR1VyOXNEXAkjWm+F7+nYYv771VnHs1gnUsfJcaMarwTiAzlrDrNMDosf+DzrRGma6XGvIq0NVAoBGNaKF+G8wf0Re8j4ayzmEFVvs7gN4lWIWsjoXvbK3h1y+/Luc/1N2Fz5kN7y89j0q365mZDA8+QPaJtMW90bV/CXK2vu7cdz6ftEF6173RtVmjSPxrL6MX1gY4/t/L+nqkB402Vhpcx6lA2CQDMEAP5Z3c4/VzPbs6Rk9XRTc8e6flPNYRwNQ90IuJDyM4vtkj2vQsK810+gMclJW5qDFP54V3cHe5pvyZRlApHhE2ABTS4DhPyjfHPuZJJtOY5X2dHmymNY5zTWN3BXwY/gNomXkUn600pWdofD7ALN1HvpOdvVeAZZUX+u51D/R5HAvHo8Y+x8RxK80PUG0G1NaaPmo8+jMR3wtDzLXNbpworavDjKBgTnBgwF6WEVEjfwXyVa7UMEJyRFe513mshT+PRfhZn+p2JLvThBurrD/G9bh1BjiGBDUulW/YRCvKD3R9OUfSnDq5VPdbdSJe+l53dBGAbvM5kD3heNTho3xI6UL1CNUtb/FYfkajhus3NUdYxtuaF3XPJXtKlLDHW/Lbz3dBiZSygF8WHYA8ns9xfYvpVybnRHXzW+DsWOvU6ccN39RpTiNpKSNTGs80S6jHVcYUUUMRhQNzg/M4rqM7J2b9w2zwb/I11uwCHJTo6aSQMhb9XM5Nt7iXevGenAssASU6Vmd4dJa15sBpzqjBy12fA/Y62xlmhtzySA9u5iBSCjBVMmNySmiHeRRYn28YqslejJs6UQr63LYNkRQV7+LespkZeUjqafa9NEByw/Y49mBh6cX7enS2Db5Ue31OSRFOs8GdAaS8uTEbkY9M46SxTfDwRcmbnKYOkwSGat0BzPJs5fFurGdf1yjPs9cDecs4zM+bYbaBGoATxGm0bTHWoLHAiQGJrDXfn24nhAwlUHAc3sxj3/dOX2WL+dpLuZ5e8L3Wz5q/M/U5tjRo1tPDAxhCyHFLDrxhRLo6qFGj2dg497XS0dO6zWFyz+ArDmJ3nmC+T+W0eSMncaCt/L6vIZazzZqccAB5ta0m3lwr9ignkdPoYl1AAD70V3t5ZhI8Is5lv6cCw8KJtGsgRvYOxskcOUwjM0t1beo1vI5jR07bJDuCckF+xOjqZKmnWU84QYu02AQ0eAOQjHEmSy6w5hF9tQGlnJwmk9osHsHLQIsCdz5QF3Y6Db29jr2xoO9DzlJKBTkn1ObgNBLp3/o9vH+ylQPLabVi24p/L9JWOy0lp3dPgXe+nUtBr7Xb9fKQZwE0ap3NGSeis8T1ei19suo6/vfUwdecSwfx6Hggn6M+sdKjQfQcYEqbHrr0OEerHhPxG3MdwH/l9bsBPkZ1qDIIzAonjY7edYnAUDxjNfxV8cohHMysA3gKRvBSBXw1XpMcRIZOAwMAY/0LvTgfreVzy6CiMrAyrZTmuhpUcF4U/MQMQKohqPet49KUYzXo1fDjfWtkojKjMRY/MJouMMLmZ+aawkIeLeS1WCrEeBShs4ArvBwMOKbi/VqMXQ/AcRy9+YYeYB2brhdByC7cwhPBddX1XQXOCvyuabSHCC1da86J9/DZGmmgz1WlWQ1jKvnD+HsZdbcCeUo3qgzw2XrGeI8qQkrT5hK3v4+f6xlQQ3Wk0N4QoMt5Zcep7omhkpLbKLAeyvcq1AmyEQTRMeuacL45515rI28FVgev8fUdHmIqlzQoJ6A+udE8isKj38M6U7UamJ6jdOLf9ygDHWvGSOlb+QH30z28V2xl6wbhoNWeiPAiuoXXChxpSpoa19yDHk2dZqNd94//8tkKjij/X50O/3NprUqP65nkOdFnrXT4UpkHkKI2qAGAR5QiBHC15vLFPCpjumw4T3RP9Ox2pUDmgITR4KK1qJU05jp4rStcrE+izy9li7opddqfxDo5COUCM0A6zn9Fm+3TONMNJW8LrXl6HOflRuFZxsr9MzBdt6+vNY9qEVrX91Fer/SREul1MVptdkLc+m8FDVXJ78pVnQuYr7xI9+9WlIca/FyTUcduduzw7zSKHNQbBldKaXQQNgSt2bSP/m+Jn4cC6sbGTBvKZ/1G/7+W4LxAaCklp3+/wSMPjuOAnedz1pph6x3Ljz726T38HQ2HVTDFf9VNFAyN6XaQSb+vWRAqr1Tu8uLaXy6Xnjr0Ql7ZSBdSoFGBsM7XJF1BaZM6Bmnwlk6gupquj+qtSjscn9Kc6i9qOK+6WafXHKlvUsJCZWnZSi+Wj4he8ML7AU8YpMmC9f3NmdG3nlUD/lX2pUeRL/wxBRDhk/DvkE/4uGb9gj8fx3A09PpT/oGvS0NP/7Qwno5aicz29Dkff8j4NEDSPnYYLPv3SnZw1KVlneTSqoMpLerenc8nTAZspFTCA6P6u5lZ0vcWI/qVzyulwA4W17eub2zb1h1Rnb/EHs5RvKG7C5Aw+GeaaMz5tM9nOOmcRnIuPVtgzL3GUo/MKdKN8uF+vmroN8a0/eBDweeRQkexsbYpJUDGjYh6yiV3HSnnDASNqc1gLbq09zUdtLA6mvV8droV2uN+wCQyFS9LHm2bp0N2egOiRm2UBjCPjmwVzkcDQHRDP0aY4PVM+5lw0FnrcA/bZJzRvt4AWpg85EFDFjawIRL3nWC4pWHHmTnAWzKjqVPUa8yeih36aClb54MlHAukRZ4Nr+3MPfVx1Vpx2s7ozUzguQYoHmFX8uZrckhkdgv9tKks5Fmhk2HMswVtWex9A7ysl8G7UwMB5jnY7dlc5AEz7+7nO9anwbCVkP0RPe+BnuKcyE6nq84wZFDp35/5tERK9tJErr0f1pBqeDUMSKKr11qlAVDIdsBBOcu9aZCnizfkLXNVOg31+Vqk6mPop41GXrelGhuKD0DLAgcx2hzjYi1KT292YPXYj5gfS7kor3b92DPeLJrCxNo0yXYIwM47xwcgnoaz2nl8ZDQAwc8Gfaqcpk5jrEOIcY5uXSkBOW3oWF7oWPwbf1jLPZkBBAd5sWM6MZqEhOFqFRpMg+/TOcpAgN9z/W6AL2FNjRtpC7Oi44zcv0ih37rytypivHdNjeRC+f2i3EfRcf6NgApkfGSml8sFp9NpOph9PkEgWjNNDYE1nY61RPgZ589rFTCD6EZah36PgMAK+qxEoAoDx6dRU6siqfPQyyy8S52JtK5Y9b0w9PSF2aglUDo/j4qe2Qy2rkqij2cAn0o3NGToYY4bpj3p74NNbEe/kxI7XuWuTN4CaRXAUCNeQUmusTKP1aul655zxuVy6UWLV4+7RiMoXfC9LvDHPFbQk3PVd+v41UDVyAG+93q99rmtgKYaIOsZIUg+j+ElGKfK4KAZidiDnhX3wjpHCPBLAIDfitzg/PRfnScwQJScZtCzF5IV42SliQEcYHpHX+um59FgGPtBGuh8TdaYAmFdKwWo9Hu1tW5kDOV68M1t2/D8/Dy9W9dJU7uUl/1W5NIq/FSpVONWaUXpZQasyhTtQ8eKPuMW3Q4FiXxcI7LmlD1e6+/9GUG+VQzdxjpQaTgrVgA7JaY/u8I5e2Dn6BwW829sbCJRJYOvzfx4XTdVGiePODzV1hVhAvCtez55Pnr0ZLNlPeGe7QBeKEebjcioPp/WuvxUeVfr0YGIAQC0if/p+dP9Ubn2W7S26g/6TH2XrhnPiu4HRYHSggJzurcrjxrNH6yvm0dLvKQ1lcnjTLgSTyMtJcqoiOLOczpySjNIRuOvz0VoZTgkNKqwwRLnnRxgbhEJXrQL5njOmrkAM8+WSG7QD7JU8G1Drbsr1ZJuvILXUwQnowDwsrMvozR5v0bEcpykE9KXOniVn+m7V5rg/fr7eobJq5ghMhlXaY7S0Ht4n+qaqn8p31Mgb+WtQy+bjQhGg7A8xGqwpZSA5PvJ6F5NV7L4vZBfdF7AaAcBEQIsKrlMZ6IUpufOfKjZoH/qJqpbHHVeI5UbI4IX3sU0D7puNuRMi8WYIsqaTZFvTvMDAKu1Qu0ip285z3mmFeq8rb2MHFVdzAiX8p7Wov6cAG4iw7n/KbuxqrynHhWpOahJ3aTrh3WOnM95BlYCAfAoTcxRpRbm9EkyRToNddBxODOrROkMWiSNzLUpVTdSva9Ft4GXhfbR6xUquKc077IrnBsgv+zKPnolDeHVHumXOn0z7Y7r2NOWJeJX5UiP1KdsRMj/TH3Oo4vUEZpAGtGo+AGY0kl73k4+fqbtJY/qtjg+GVJmJzIECOy5juF89TgOpDKXK2m1odGhF+vsPDTqQIudVc2QO//EAOiSA6slZzSLuoJxflnGwcJmWzM2eI58/owwrqLjAPkU0ZFdpg/7jk4uT4sf609HUQ7AByJT2aWZpRUq9UTCRjYi2nMCcvLPWAuTuIynnDovUeyg6wZI3jgFst8OsQQOPZfQqtV5lnZBd1CGUZ08RwH4pOBzG/UkBjI1tnjocjjBeiSfA7WhP8KiKYNFdoinxJbk47TkYNlhNXS9AWW5PuUyxIHf4dQ0M6Clzq+OowLJay4CftaqOVDcAnys1nqTGks+/nZUlDRANtopSfQ18keELsTGNYyszaHHtAD8S3Z91WlgZCSpTptSxl7dRnDalaj6PLIIvGEKHfzo/852Bvch9TNrFDFhMyivHPrSACYBwMIpS1CZ9SeHXToikPvzKAuCljtq+Tuv3w3wWfcGBUFTuUwUiikMnlGnoUYh0ZzLvLDyryqKK7Cm93RGnIDT5krjqkQpCNJam1KA9D81Rvj36/Xa3zsIVFMO5k4+ClLxP40SIIPgPNXw6QcOLwlvNWJWpZPj1vu5VirsfOwDYAEiDcDoHUjTPCkMjdFW4hkYyj/fRUIfOP8WabIJiJostszTFUgXUi/rQbkX5phC8nVP+/UCMIrmKkekKRk9arMBp3u5/q7vSCn1Rga6P9wbXW8qbGaGu7u7Ph4qf5ruq1F4BNyU1jjFUvKLMa6KjNKi0s4wBueUotW41rOlZ0bHS+Vm1DlMwQTHfauhr0BZjfbl/h41ul15MyTksnnReKGFcabQlRAFX9ml2OdCYDgYqwmBYAWVBjiZEn+37k1yD3h8jlAmcum8zml+ToNnt7UqqSWkVOUHrlTVUGqoMPs7tu3kwjWMc7/P17wrQL2mXO4Kn9Ilz4DuP/dE+ZrShZ4p9Sorreozb50nNWqVZm/x8RVsZx1ANUqcrmaByO/MRu9LsLAeFV7zFQC8BgjtQoPhVLYohD5oZnIy9JoqfmUx/HPOfY/8pU5npeRufFqnHf8CUxyRknfwq63TzbEffgYauhJfCExFfRaEZ5PgSc7Fa+LF+uzm/I71j46jxj42aMRcp+0Ohg1gzUsrHp33+D6FoRkS4LSdIm1wNpZXuWVmPQ1pPsdzlNO2bVN0tYLByldvGZm638qflbepPsHnsWC58gPys/Euk3Ubz3757gDbOp9gdG84Z5BwKky/Sp0PUqJm8epyfUpJ3QjvdYsoE8IoI937eDyyKAUvpZKZ4aBnRcKxV1xxoNcPTB6NV6vrRUc9PM0nACfniRVITg8pRv1bzhSzASDWMPSBuasxdRXVhy6Xy7Rvq16mvJ7f0ah/5Ueq83CflN7UobbS1S3a4byUxjqostyr+zfKfrzMrBi0Rb5DuT/TGqKg+BrZ5XyE8sH1tpyirpk/OWgod2PKjZ8BRGsNyZSox0ttpL7WY+4eYT8ix8k3+Il3vU1SL2rW152XYeoSeezXjmryHguD28HJjAa3F1IJPSqlqOfp6bg9sp7RsSFzjWOzcCAetdPi6XQKvkmeWtGjj9rIoiDwZubgnO+BLx1tGKVR6gQwd8LVABx651FD8GjAQibl7GM6asUWtYxb82i17bRFvbPBrN1hbag213/09R2ggUeNZOEjQwbrGeb9fmYGLRLYca4iein5fS6uv4R+WgC05uAXAiwT1avvMYWLwxODdlIuHUitrfYC/f0cIgOIiE7zCMkj5OtRK2o1nLYTtu0E6gceqRSRU+xWMUjfn0vbBc7gPBJ7BvbMGsq2BUg1ZFDOGRml87oedYXcAQ+zJQgh9Mzr9RoNCRyM8PqYnlrrqciMYLZ+pr0zacV+HJ1fpKjRRmCFF0s0EO3KOeMaDWqG7A+gOhX0DrMi22CDn9TG5ihztDZg2E6uSx37yAjgPtOODMTFx1YcqKJtR1nDdH+ywNaqR3lxrl2uplijAIuMtvHWde/S0zOFX4PnJ9aolAkIGuZCC/7rKaIaWQlgwgmoI1Fm+nxmB9hq6/vzU9dFfRcDXLPWazUm5G6Xe53PEaFfDfDO3hkopDHD9ThwKrmXe2rWT56DlynOM6yvz3Ecjt/k3OuF+uZlmNCKn1MgFQm6QolsSxu4jhn26+jF0KwhRz07By8DWA06MHg0erYhH/NpC36fUYp1PZp0beZRizk54JlsODE0hZn07zaX60Mdo0pAjnIBqHR2Bb+R6PU2AXV58P/aRpMzmAPnwTvG2Yku1taQbOhKvelfa4JhGLLNmM+/9vrdAN9xVNSj4boo0GpoGhLQ4qAawy3T6NImihMXkEaDKvSqyAGzMlhr7QqVAhf8mUDg6m1lUxAqhBohwL/dqgnDZ3VjfTE+VBFV76Ve/J56SxTgIVNa00gUINRn6TN1PDpfem5VKXVZGYqYAElTodd+2E2UuxbMGLJ3YViEkHIlycHdajaBr2MO7lUAmBqgNZRC0bQ5HVwVUI2s07Xoz8hSh0gEk9a1U0OSY5u9BcM4Jb3wvtWw5O+3UsrVyFEBOXtthzEzAOMBaqnBq+uoYCEvXRM9n+sZXc+KeqRXejWjkfwyAmXe1xkIHTQKV1a9EAvKNt638awloEt4uQjAlZK7Up8znzmfxV7nwPhSeGHhzrCPmOvcPTQl4HLZcT7NKaj0cLnh7YpOzl6jptYakRboxh1pQNdgjtAkPbrALfk0aO0IQVt93NfrFSVvo64KHBzfNhfMjADQtdaoI3UIqNIxg6TWjbvV8NUIHOXPpDHeo+eFvHg1JNRwUrpojUCeYYrcFcNinPuZJ5sBvdBumkGbhOLKSLxvC2XmVIaHjTV05jNhPUWI72gA8hZrGWpZg6HQAZIT2uEd6xrg9ZmMHksX8nvdY9yeBnDsDc9PV3dI7LvvJaIg+JaFPrmfoyYS4HWv1FBPaa7P5UZKnda/7xcSjt2N3VZr1Fo5kMNDPYC7jG3Tjm3usabSzXeRFsm3uqK/0Btpjfz8er32v83lGuaIFs7xFg+jPNbzqrSm93B8HLs+f/APlhV5KZ9HpAmE1uIZ4kzjWTnnQjRE7tcGI+TnjNSh02LwW7/HOg9LqaBFAwIqmN5MpXkEQE04rocDiFE4m2eqitGzH9fYswPWqteiaoxEIA0e6IBfM2QW5U+jLk0TJZdGV+vGMvpaaxSFRhPSGF71La07SxrT560yC5jrJKrOtpYs0IuyfJV9qhPqpc9urU0g5nCoGpq5YaVp80yjIitedRrOjZ0szUYkF8AoSil9kzOQMk7x/a6btDZ0N8w8mHvmY916B0zOt7J2HPieNGRuGHrgeQo+cNSKvQL7cUVtFZsNHSh+QEpANnaddymvGSIpR7faNtJMS/L0pqO6EyTDO5ETTPHoKUjU8wAX3InmkU1l86i6UgqO1rDlETHf66rFOnReEbRgNUCzzfNyPaVx1hfdGCUoGvOOM5A3Ta1NAfo1eNS/n+PTtmEqSg8/g0gWRnAQTE/zWxpTtaiFVgoOOhjb0Eu4xjmn7hDkRT0q0Rg2B1paA1pqoUcFbJZpNGvUDpD5ncMjb1abcKJzDAApyt567VAz5I0gj/M71oZETh6xHOm8DjggQGC3TKrBa1cCER2aepOMZofTrJEWQ9+2FE2CCpAy2mHd8YeEDvA2OzrAB28A7WfbDniWe0RHttFpkzysoAQwQbDKkKL+GlKKeROkD/5QKxB7foSNRmeQ+aaGnikRly1FMwxPkaytYdsctGmH01uJOmxegw8OT8bmW0p9nCpzW2Vt882PlmlUva9XNQKNQWdlto0AA0oCLOOoLWpjhjwyhEMTsGgqZJ1XJiBSib3ZRTzXzJs+wCJCK5bA4LXZzPq8uk6boqRQyMLr9erOStApFjwh+EZPTc250x9y6uV+aL/XAOf7GS/hhMBwEmvkeY5yKUervhaMTE4BGIlNQjpq1X9v1aM8cxm2peUEqxUlHM+WUjRUKdjY1CJnFDiNka+t+ISfTaagBphGh1DXtWN/2miYahjOlG43Vji/zOgOjlHnMXhc4A+blt5IdFL4dx18dv7e5UYfe6RmZ8cRSi5RJsdBdh9Pi7mgO6MsxhEsKybv8s76OgwepnYTwkPACGJ/t+tMJW0+jnLC3g5YG/Kx802jLgl4WQEDevo2Bp39zuv3A3xRIJwK8+qpXQEw/rdFUcvabjczUFCOBEjjVp8PzAq6KueqJAKjcQI3SiPv+B4FkICXiqIavDo/NeB5jxrF/Jy/818d7/Aajk7A/J4CP2pQz1EEaXr2C2MupX5guG7KfLdti0yQ6OBGozClkfLVAEZLDcBmBrf6f8HcGW3SDx5mT3EX8tAInjF3jneXmobAnNazpqGu66TP5Pf0HQqucXxKr/z+vu+dzvmuVYnhz/qMW901B3iXxvrLmq7G7Wx4zlEpOqfhiZ1TvHWf1Ahe0+FI92oYKWDCOif6bF63Qql1Lpxna85Ee3qZP8k700ltA53Lb9Gafj7ofI4u0fWn4UUAdsw9tLkQUnQYqAG50prXFJpBiRWIXcfJ7+v51POsvxPwKVlSRmS9130jLay0q7xiBa45znUNOQ+l75zzlMqm71fDfd2v1tqUlrfy+5wzrtfRoVfpVfdbf1+dPfHGHkkFYDpTTb43eHbGtqQR6PN0jgCV+dZ/doNupHH3e21EbXKevNQoq9X56ep8IK2R38yAnU1nb9tGEd9bMvFW9Dsv/v709CR72G7S8br2lJe3zpxGOeoYdO9VPuv4FVjkOdF95D0rb16fufKetQuqBTDF9yp96fr21IvOf9co6+FQiJu6gtj3JLkBm5cUZ+Vt85kEHMSeo5/8OQL6hTGVI3LE4Ck8jGjwVHGP+jjqPu0ReZZ2o17PrkdSjfUsJcDyJoZfm888wUks71E+xD0eOp47TChbSUNcI36f9KZyQWvykV8pvWqNZeW5+n2lcf6dUaX63ZW+Vgey6nFmEVWNwHZljUeh79L53crXt23UMILNa6z6SpfRsvbOgwAEMM97Oj3i5VlDTl4jqeuhA4QbNDt2eUQvp97EIp84/22iNR3z1ESCsqW1cCoUKfyvOlUazTJ8gZAA3N/dwZI7WDxTqKC1I6JEYp4lAanglKPsQWGNsABxwlBrdkS0jIMIJXvDjCTRXAgDkZEZVRrTjIgLd86QLj2LZdYFDKPm1KTXY5bHzjtiD2JcHpm9gzqM6pJBKj14gr9rGrSeL816OGrtIMmIyvYZlSTNHzodAbDUo3I63YQzIyU3Uh2Ezb0yaZexPIukzRyR7Sl1oFnn5URkUY5pfFS2Da1G/bRckbKDBcms00lrDj7RsHZ8tEZBewcPCFS2DqL6ejNCrZTiNevKMNgNFmmSiHVznQ1UJeHlCHL2qP5R2y5zMdxJGPTvazXOoPJLntthf5AfjcAPp5nS0wIJWFFulbyhmXWaJIhfCITEnpI/KN9GEn0qDac497LkhBRglo/9pU0aXRYc0MvuJMjwSOOccu/qS+eaz27wYvRUbOepdOKbjYg/TzMddp3K2H7174bdZDPQNfSGqCXb/Cbux1ErLKKBV6f9kCNBRObo9Qt+3f+OaKYTXaOLQ05hiotcCN2q1c4Hp+ybALu8fnTp86xH2DzJnTaG5HUEFxlIOUy5tAldc94NDay36Xysdl4J+Bz3Y4/0YUmHxqjJ7OsQKdfxipQivtXMy5ig9dIGroc0twvzOM9dLojOTocjo2UN3sCITpl6VOR0AvI4H17TM/S8HPyA72hOgXz+kFuqAzrfRiPw6K6Gelwj3do/L8X5zNHUPh5lFDBYxgt94F97/f4UXZsjoNRDqsAZ8FLhzSXfFvaiEOjv6rkF0I3ffd+7N0oFo3pXgdmwpbLIi9+fiovKGPi+1ShRhXHN7+d31xptHpY813rifV742AXLOhdVQtVoUyVVlQUd61ACIi2Iwl/uAai8WP/PGfuoS+MlE3Kfx2ysapfBlykp9Bjoew2xHmjORKeCzjYEbHx2HEcHCjQlWcHUboikYcyrIch9XelsXSs1MoHRDUfr6XHev2WAr2nbSmtTql9+mb7I9btVD0ONRP5+S5CZcR3HWqxz1VpBegbVONaxsyYGn7Gesc44ZT6qLPS04pRGFADnbLnXymvWkLfSAT8WUYYwfl13BYsoaFeDbNRWogZmKOUUik6JvXZDmnM4n8/97K/74IbYNr2b+75GhPA+/XcFRDTsnwDstm046h6K0e1GFaqIqWGs71jPg+6v8qpb50HPzgqUKG0oT9SxkYb53RU4ZiryCkApMKbf1/FRQA6aSGht/q6nKlExdA9+O+amJR2UWeTRWGsjycw8vUqX1/DGt9Z61MDMn0faZYtSFVwTjX5T+rp1zrVZlBpqKtNWXsufOSbSUs6587bz6YTrce3rtu7TSkMq28kb9X2kJ5WH/Fe7w/IZY60JcmzTvfp+AitrY4TfojU1mvz5A5hZ+SoV8JWOx3l5GUHdaTIFDYQRWFKG1dbBvZ4aLbJK3+H8dD6/+n4tdQF4qn5CYjaRG9hIKPBoTp4rpSXdP02xXmVlSsm971XqXDVDO4aTb9/ZOTBkSavwoQ+63Y8d59N54iVrhKjWUePFvVp1P/IgldOqx+i+61w0unSla+V1Spd6rZH+o47r7WjTfd/hNeIqUhr8oKTNdRrDQnOqN4fxDvQC4atOhYjwYNo/5WlJM/B4HIc705IAtctZ6jRnpDl3uLXWpJ6iD7vWEXGJ5NEoIH8zTwfXtZ1khPCBLnuaIWU39ll0PdOIT6mnH7Y4t76XOQCciLLz1Yj0TD377hz2iVmX5W6gujOmZDfUnbdnARkzmJpX8mjIl1PuqcikC87P9ZvQ6XPCEQ6cHNFN5LVKq8OQtVhHdZC2mDM63ymRpqk8fAKdMc54LiUc83OmkdowTkdpoolt8z1tUedTM5Zaa2AjKj0PGSmizuIMgjo2s7ZmkJoiNW/RTCU5wHfUihrng3S/ykOu9+gMPCJba92Rgp5zFO1nJ2ry35IZqcQz68nCujfHcXgQSvZyGgT4eCYTEvbjwDnKQ23ssJst0inrkLk2eOt1vwaA7zzb5xS/hHqjMpQ00vlMBXLxMg7HMRwf5/MZsIyKsDeS2Fl9vx1Ape7vUx28KIN05qARMOsYk1Mq6tN5lBe63pzSS75GnuK0WXAwuKFkj3LNpb9v6NMBvrfDZQrBJXrM4rz42hnYFMjID0QvJr10+0I+4/iamY8hnuUdiDvnAx0tx3Fgy0O3YfZFTosTMei/5OEQ5f2dJ0ZNtmbh1DELBwI64O6NJxIsA1YzcjgpWPeZfNiqAXmkOLM5xmE1MJeC2hr2Y4+mGGMNaq1h3zsQRmcDa8gfjY0lG5JFmQSjc2Mf6ayxHiUX5FNBSRnVqnfsNdrEwWeKj5WRdn1MyTqdIjnk5mP3hh5WlHeNq1bHEXLQNXlDRzeKj+doc31VAF7exIbcyDmPzIiFlvlfxx2QOu0SLKxHRS7ZsxlFhx/BUUqHCQTqhyz4/dfvb7KRXka78FBplFcppSvjwwgfUS+MigHmsG7+rsaoRm5RWdHFX41Efq+19gKkWw3j1fsLzN5SKl+qKKqRqM/le9Rgc6XCprWhgKHgp0Kua6Apy2QMK6ighrUqpwq6+r9j3VbjgQcBbRw2XSMzHpjhYdV3jucN47tHNApD0j3h81MpYBSEz0vnHXUW0oiW0ntXIEINOj5P1/t69ZS40+n0AtTQ6EwCx3y+0h7Hol57pcGV1rhPSmvKKFZ6UgGvUXZq7HBc6kVWmuB3dG5k2kCkEkTdgYm52Gy8E2wi0EHv4QperaC5/rwCTjlnLxwbtJYw9qB7oEsYEH1fIuUGM1/gGpHmVkVQGazSCOdBIJmKVsLceXsFNm4BX1yPdV+1++OsuL+MRtbnKlCawzO1RiHruxlZB8wG8BpJvPLIFZDTKEwFBpSGdexdORKDknSqn62G9cyrBj9RWlMa5Hw4Zk0TXumTJP+SNw15pMCGq4o2RVAoMFSCN9U6Inr62IKfNipm8XOeFILhtNF5IJReBcYVZFFa4H2UrWqIKP+gA+IWv9F7VGEnj75EqqxhyHQ9v9xzptSSl3C8KzijdK40rnvD5+terpfuhfJdfl95J7/PfdOflb6VD3EN17my2PxKi6Vs0/xmIwYuZJlKr6AvaYd6S5tT6TsAVHKUMpnp2CMThgzv74cbETXW2uuxjeiQW3rBMPCGbqN0QV2lNQcQc8ruDU9FwOXW+drpVDpI1OwIo96/d3e+e0Ereg44D6U5fv96vU73rfKJe6g8RecIDOecpoK/2DPMERHAAMR0rLxX+Q8wHI7Kn/0sBZjdVF44uFBbfTF+js8jMkOXKmXiH2MNhuGMMHLjNyRgkoWIouiwYWCuvF3rILfWovh9RK9xnrV1Y8aNoEGDLYzj3gnarI/JzEGGJIag05ZP0prhWq8AUxab66EEiWBAyo4I9X1u5NqjOHs7hgwG0EszcA8515yzP/+F3PIO5qR7NjewLHpmjPlWNK/vTwCRYbyXMCwJks08RnQSzGBba603NAmUroM0SseDJo+oYzfGkZGQIp2UfMPrbo3uzV3vDMrheI796Nk8PuXcM4xqHZkCXUZpd9qgQTMHnFNKaKge3bNEzbdI36u19n7OZu6xUN7lYG+JunVB5a1GAwZvEKAyk+85BWjb6yJHTW7kUbs8RbzYdBbTiITmWUwIgMwi1TOicH2+g4/lMssxlekuo6l3QErHuI7S7RcMJ4LyiZz9vFz2az+HvFJKUmeeGz/07i7/QP5We929XIqPJefe4ED5bp8HEJldc6RhOpFuvXGC0kKnlZyRcsYWdSrZJTsBvdEF9ZgWEYEteEoy6lsOcPoYcy+RUnI0i2hzVpKPf/CN42gAGsrmdHnZPXUbKRqx1Nr3fPByykP/2VOf3ZnW5bm13hiD0XB+/5CpYz1CJwveej6ffe7NAxt6aSHSBBtFpIgstAGyE6g1RMZciJnO5xOA5mW3KFeOdkx7WopE3oJ176I0wnGMyFUzsCQ0I/PMzEFEDFnL53otzeqp45jlrbEUTzR+Qj8DzmtIu615tKml1vs5AKmfBWIEALCdAlzbMvLGqFivi27NPKAy5qgOkqMdHVBl1Kvq10rL1KcHn7bgA4P/5S1FIxuAngzDsD3Yt4Jyl+sFobnfe/1ugA+YiXb1OisjpyCttXZjVJUkNThWhsLvEGBR5R4YhMz7GN2nAACZ0KoE/lY0nKZAkuFqqojOS9eC77hlyOgGqiChkFXiX8FGVfxUOVDlYlUUfVDh8UDwC0j0F4KhCEE7gp66d20yZuN3dkOicZyA/nOtFT2NwUyA2/DSyVqtez3AlNEdyvfRx3SL1kgXeiBV6VCQkXtzd3c3AQ+qlLMOG4XkLeNCaYbRNMM4Ky/okfeokaDMQEFkFcTHcfTmG3qpgXQLDFhpTsehCnxKaSqIrc9fgfNBHwbg6OvE21ZQwY09gNGcg+6HsGUdR6X9Abp0jRT74QxRl0Hp0sGk0bVLwQbORQGAlZEqMJoxe+b1XKxG6gpMKL/hu+/v7/varKm867ldI7gG0PYSeOX4FDhTAbSCYxxDV8YB4l39XVQmVzpSkOMWeLwaObo+3J91PSceBc/8mWlzjE3HwWd63ZkNjITrnRhbTwaaxq68QQGiTvehZNdlP7meKQoMHUfUBuJ4JofMKIqdkLqiDD0/sTdbKUAYvBznvB5zNzuOVUG+W7TDdd73vT9T5ZjyOtJON+jzXFNs5QmrfHeD+GWaLvkg+a/um75XjTCdI/9V0HPleeSpq7zjZ2yKtAKmXB+l29kQGE4Z0hEjaX1thrNtTkP67YYNM0CLKLLvCrPKJ+UzKc1AOhV17SZdcoEFDfJ5fA9La7TmQMOI1ngJmCo9jHnGfEIpP51OKE2iYACcThtY/N9MjaENKWq36TuUJ6kRwDXUdeC+Dcfn4NmqmFOOK3C7Ro/XervrttIXx6W0zXGujhHVFfm707tH6I5IVjf+PKpnRAytNDvTHDqNlu2E49jBRglD1o7oXWDQiK/Z7DSisWbZjddqw/Gie8Fl4TybNTfKPG+vv3srBQqDMlrNnzE7fjQtMgaM3MYZzAEc1zQchf5dj7IokWLe9YMkZxZDNuz7NeaU0WyUUPHICm/u5WDloP9aq8t60+wJRmqrkw0oG3rR9lKisHptaMeBXGbe4T/Dx5oM2ykikyKSrHeWTB6h0xqQSkZJ1flJAGxH6NE5eTdN6gE5nyY9xzAcSzyInReYpzimSB9jlOx2OqM1b+I0jFUHL1j3E0nsrRRNvlpDtav/PXhUr+vNMWU2jKie9s3oy0itJajRdA6NEcIIfRRgYzzSCsxglfxjRMBbyFMvY1J6undKfG9ElFlyDNCi+VYGsAmvzkFb8WzOuzs/gv8aoq5d2rwhluV+Nq4WwQcgYJh6TTfSxrZtMDRU0IlYUPfjBX/mvuqZzK5QBzjReqQpO6Y7zUPOv9th2bvTOHBRW9RpYwOePNURdnpzxZ4Rl2qLjv0CrAFlO6FFbUz+nbJTbYNaKzJtI/i8zUbNynpUj84Snt2soWLU1fXzDLZqgKH1dNVO8zn1SCxeXY6BtofXIkzV04NPJYBQeJ1PM3QnP+/vz2qGhNxTjFlWSHmA8uMZCBq6TK3OV3PKo96ayP2+1mZe6y74K893OQ1b4TgOd4REBGivHSljQdjsZoZ8GuWJvPRB7hgB+Y+fkYYadU2TM6x+trju3uDimLrieoBB7Kk57+3NUFLqMsr5Ten8xOApxUiIJkpBf8aUbY9eVZ2dNGRIDjqmjJRdFngfhbDHUkLKWw9mQdelho7E1Ha1UTp/CDp1Z2ZEYcd5HLYKx9Y3FKBXNj6tApyboctstVt4jn/v9bsBvtWLpErQrUiQlBLO5/MUFaOIL+9bDWEaC+ppXpXfW8CaKnOrMa5AnQIrzPfX2jSqOFLZUK8f38f36Ds1DWgdu64jP6fSqiCgPlOBKTV6ZuN3bK0a/SRAf13sW0vdUFFlux57V7j7egYAYilqduTsHXZTxF/Ro2qzcALwIrVoem5KkwJe6wGGWwMNzeZOn6vA0cOoRhujWRR4UWNRBad/zxWc1fAB5pRgNUL4br5nvVffz/vWlA41SvTzVfHXuev50L1fDd11TZTmdMyr8a6X3pvzMDDcABshyKN+F8G9IfAHeODpMj40v+clQ40UIIQyYx7Wve6d/wsgWtoPQGYGdFZQXNdGeUjOGTVq+Oh4dG/Ig9YzrMrAarzO4535hI5N/8buo0oTOofJ8LcBNK/G8xoRqsZ8N4KEzm4B313REP6gXmV25VVa4/PW7+rY9MqS1kfByM/YDdLXbOZVZow6Ie27gu/7Pup26pnTsYY1EWkm8xj1Yg2tjYpGa11Qc56tNdTr6J7ZC4WH0CefLUiuUJt1sEd5hNKOyg39fI3M1EufoXSlgJjSyTpf8v2V/rmX6sDgPit/7QZ+nT2TeqYImqniqzKP992KNNd9VJrUM7KCi9O+L1ENKqf1Pr9IYxksho/eIXHQnomRrUDNSxnthgbaGsUqtLYASR1QtNnR12uArco8gIP0kwynckJtIx33t0B8YE6HpTFX2xxhflu2jTpf3lTNo2r4999yDihv0AhfpbmURtTmSpu39MBp/PFdgm4a5an0ekuWrvs56xmUoQNoSckcTFE5m6J+lqR1r/Pmuq+06/bqFs8mnyBwOkoTjOfNfMCfFYYkPIqh2RGRZTUixvjdOeqFnUH9M5+ntRadmkPna5ShkSYfzQFq8/ra2V52XM8Y8goAWlojMSMKDwEoBQ0bPB3dS3tEmmxK2HJByXS6wQ3bGjQBN+aTAfVo8Ci4mK95ymXJm4MgodsiOSgz9joiEGGAUV8iXwdcTi1R1xHZl4sXtCcA47RJvh40WnwvQllyhztCX4r9dX3aw2a84YPBGiLCyQEeX78RnVUw3ocU8zpFJkCLaJZFFpdtgG9VUuf8Swmn84bjYJTtzH8PsOtnLHEHftHp1PlskgZU6ECm2VymaZUHOd7ZWvPOuTz3EOAiOo625gAaeWwx34eS/AyUzVO8PZrJGBDkYHjkhqeSI7rOx5aC/lPIbguwlOnQKSW06lFdpzhT+77jOPaICrNel6yap0OaAcUaTrlEaYVwmgHeUIDNJ5I3nkkx0GoVZcvIFnSPhNO2DRAoofNiM4Ol1OUDdSgkj2ZCYj0211esWfBvQ8kn1Hb0rqqqO+eckUrxDtcnnx/f546iE1qb+VMczyBH501HNP5IaehHPRunNVhK2Mo5PufcvFtp0cZGwvN6zT6lpaiVVq1FrXkM3Yxge61+9k5RL62O4A0+J29bpDtX5OJnyxCODMxlI3gpXVPuDLnroLM7EJyCDezG7ADafjhIXVFRigNC1yOcXAjZD5b4SsjFm6Yllu/IGSiDN8MM2+kENHTe5Pzbwadm5g1/ijflyDnjul9HlG8ECTarODo/Gk7v6/UC1lW0BE/p7fpW89p2yXlfjnPDtdg6+DzkLR2XMC954vX9KyqB1WCPHn1qOG8brBq2tKEVytzUn5HzhqMe4WBxYI0NZ+rhYCWzroat5XTKLum+5y4fcskAbctmMHjU4ClvMbcRnKJ2V21tOGXN95/PXFTCf9X1D6jBNyuzCroAwxhWRXqPxhxaoHIFaFajUg1YfodXjo5Aqqyq4aIeRVU0uYHKgFprPfLht9INmbY50lTmCDEClACwAmQapaggw2qA8N51rvx9NW4UFOQYNGWR46XA13Xycc9jWAGfbigte5zSqJ2hAmCLWoLdSIULtyxErjQzxjHAtlJmgJfPV2VRx8dnaVSTCiMNq1WDYE214bqqAaKK/7pPOnbdY36ma6mAmj5TQR6d1wi1nyMzKcBooKyAn76TtLDSi+7DKoB0nrcElaY46t8G/RHkG8apf79C646pEsd39f1tNjyUeUTAKaDi670NZbl/Njporo1zlOekNBd/9c9zrzelBiO/TzBL6ZH0tvIxXRN9lp771kaNI66J1jWd+GCj97ZOe8mxKG9bgUBdl5WGyR/W0HOlNaVdAD0V4HK5dCCdz9CxrPu6vlsNIx8zQOeDnn3Sq9KmAjis1+Ln6YCJF1drua1Ag5mFxxpd2GoUk45fz8SspC1RHEjhhdT6hgIGdBpxJ9NWtun88z2kNaV3AD0CfuUXvEiPeimwofTJPaeM1TkqX+MZ5LMUKDJzgKDW+sI5tzoONC1M+QD5nUbOK/DHs6fA4MpvdX7K2/QM8DNGh6xGJb8zzgL672MeaVo/Ko+kC75zzQIwC3NS+IvqQfq99WdXriVyNM3Ars7vhe4QxisNZH6uGRF6trl/1IVY63ic0ZdA63HsU2Qsn8+9UKNHeavyOv5N0xg5V+pdysfYiXmd8wq46L7yWmUyn6HroHxT1xlI3Ymkct8IpvQ5zmCxngHVSVea47j6uiGBDRZSAmrd0R20N+TjOm+DAQHgjcjaWe7wUl7nz5B9TikiOnKvpce1UgfKZm6InrbN0yJbQ8qld1JcO9UCQIrxs/abhWOn63AloiUCYCGYZfDzpynSXMuh6xhOOYP1pAF0x3S3C6zConYrGvp9lgIcPny+Xf77QewgAW2Gu7u7wXNy8tpr7FCcnUbSOJY9qq5sBa3S+R5yv1mvnejv8bu2coIDMofQ7+y46XSUCMr4GjdrDl61kRXTeeZV6X7wDO6rAywzYEt62cppksdDR3FQ0d8ToETZ0JsSdV7qf5+dBtbB7VarrPk4w4Yc0XcV+z5Ht/teWwBI/p1eQ9sa0rahJBraoa8dO3LeHNiLKEGCSpOcr5EOmVMvx5NzxrEfaG33tEDhEWgOZucAMFKkfNoetFMPEJTLW0aCl2pgLcExX1auGdFQADqQuOqrPq4C1PpCD3Ld4wQ2zXB9a0NKL2WPzr83qGsWzgIHKkpPVx5ZOiovJh2p88IcTWMCBC2jlAZrxuVCPurpk+Acjf8NgIZnX3XnlFJ32ufOu5zGa9/fGZRbm0nyyolRkg0wdvl2XS+Xgoy5nIraAefzeeJRDW7jnE4OyNVjD6Aw+zMPd0IAQG2GvBUvkXAcuLu/8/E2Y2l8mEQoOk9VWRO8eTujYtTy7D1lkkRxnuCRcrHOR62wGg6cBCS8DJ5yruVZBXTCDFnM+r2hM0Zku9dyHXJ/1sEGby7hKGnN05SzI58w83PGDIa91nAEybOaOXAbtWoNozkS39vtsNZw2jaPLF/0Vh+SBhWQ/ccYGZGaNzDLo0XAk89ndGh2/tiCt/m+5Vy6jHPbaraT/jXXPwDgG17dNRJJAQgqh6o8rYWTgaEIqqf4Vk0hNUY9bHMYY2NsNhkbqgiNg+8RH2bWUyFVyeN3ea1pUavBqgYLFVUqXjoOPgPAi3VTY1bfvxos/K4aQcq4ValcQVYzE8PdU0t0Lj63YajrGFYFksVGJ+O/td72uo/TaFItQA4GM9S0LlX0rTXU40Dd6gRurRGWrNnDn9d6faSdldbUcFU60zmtiseq9Cs9rIZrbXWKCKWBrsYFaWKlD10r/VkNKTXU13Oggoa0sqYQK0CoRouuCzDO7ArQqlI91sSFBu9n6DbDkWdh+jLytgsFoUum3ekYnEecXjQYUMWVnyn4qYqo0vN+7C5s6+jouJ5B7os2YNEIz1vXcRzTu4ABPLE2DJ/L7/OzyehbwEDyJC1JQPpkFCD/vu69GsKtjTqgSkurQa9G461IR/V4Kt+5xTPVKNVoGq7tSst6KYjl93FNixvfOSGnlw6cW/SRLL84JxrtuzpjlHfp9ZKHzvxAeVHOGZAuuvqdaWxpjmhauz9zLVbgUulGx6rnnYCMRqbfeobyu3UuK/iofIyXRrErra2KuPIoPee33kPdQNdmpVH9TMF+XVfur9Msva0v6XqWA6S1lxFpv7VG/b1hjPC542xqUx6WMpizE3q0idDXuqe3aC0lGsUzHYx5z7TcWpsAvZXv8TPuI+mG/EPPtY5RIwgHODqeq3xOIyzXvaRutxoFSne3ynaonrrKh5U/DP1wjoxcZazXIcxRVN8N5FZnZ4CeU547/Vf5np4DLZnArqtFCoxrbTzV6XQffQyj1tNxVGwbUMqGnDR7YtgUq67Yx9Vm+rml7/j6OkDhXQQTMjLa7t+vZZRT6PwWhoKMCnRjLCFNNRlhkWqI1KNFYMDewsEcoFVLQDavaUX68hQtwLJhP7yOJKNS2eW0tYa0RXSKeTSm77mnAGcbTsMWoMPp5Guo+sxUsxcFptHPxdc/5fxCf6xR25DReF6zGj0bZqw3o3Q25KlGHdOlF76LHB2GU6TPJml+0W7u87CThh1D+tjKhut+9f0VGtd/9dzxDPmv7jBpzYExBZUIqPDsdl0iwCNrDSUMbwKlei5TTkg2nJv8DnXDnL22mgIIADovnmWYp4cmCydIgKddDhike/CoKd8aIx+tR/SozZj6O1t0QzdZL4TBH3xk82gpb0osTofWkLYiezeADMvDcQMM+aJOFNXtBoA19C+C7Ck5KJZzQbOXwS5mhrIN8Eh5GNd2lbXKN/Q95/PZAZJqvaHccewO4gQAkiT1lp3tfe1L35P+zoTp/Z1fJzio35yeXIO1UWs1OSBcj8MbpUCcgxhloywbTtsJSINXwwy1ptjzDTm3Xv5IMQ+VO2b+7mM/vMvyXiN92rozorWDmnafY8rFI5LhUak5UlA9is+B+O2UkYw6CTNcHJXK2Dp9RxNpVKndl1KC1/oz1KNNMsj3PRoRRcpup2FktN3PQNmc/7cGBz5Dn4ERCwgdqyH2UCLIc475jauUEvww5CUattOp207c9yYOV09dDkeFb20QBnqjU+U1nQc2687ksVfqOLa4z2VZQoqSElqey1OFzdCdB9YbwJif4Xp0odu7GgePYz3K33P9Q7roDgEwH2Ye+DW1cVVEeYBogALDIOA9qwKvB0THoYY7masqc6sSBczGlSqY/J6CiXqp4q6G8FrAWCMklFGrUKTgUCNXayCRIauh0JWSxRhUI3WNDOC4FdigJ0MvMmldO52Drn2KfVMDMWPx9ItHSOmEz1Zlh6dwMsDa8Dau0Wj6nsvl0j9TcEONZK4t15dRctznFTT8LVBADb6XaP/sTXV5P9Mav6f30ghdDXP93iQcJrB6jm7QOfNejUzqQjzNNeG4DgqgasSOzp8/rwCFfx7h2DIuXTNepWzQlNr13KvR1ulhAiNmoILryLGrsnnrDK8GlnuZZ3rR73OMSl/X63Vaez3rVLbovdM1WgFIpWfSwkrjuk46xhVg0EhDpUnyxLXWFuen3+F6qqGp51iNcl5TCkeaAVS9Z+1AScOU41WeQKWXkQ1riqiv40h12zYv+K/rxDHd2nOdj/6Nz1Pa0edwf1daS8k9xbq3Zp7K9hJ8Sn3dVDaukWzkk7pO3H/lKZQhKjNWnqb0tjo39DuqmKtTRXmemfWzsK4pv7fKDuWjtyILlT8p/awR9wrw5px7EwXlBXrWOA4FFjkepWPVFVZ68d/n6H2ntRn8WKNlO51hBn18zbkmNJa8jiOvznfzqNei6zDOyJwRsRpyugeUR0qzK00QAFG+p2ujNEaeqDSnc+Q7CKhgWYeVn5l5ag5pjqVduM+rvNCzu66vznk9+6pTEHTW59pSz2mAHaTtJQqqeYmAFTC/dUZUfpO2dFyzXsSz4aDFGqGrZ4bX+nNKbtACbgiNxh3U9dyQUVrXn5mWiJxQ0gAZuq4bqXxHPXpksu+pRwuWsgVw66BPT+HylfEMkdqQCxxEycO50MwmI5djKyXBwnojL973Y5Jt3flV4kwHgMIsnilCvRfzt7EHKQGeET262pOvsG4fht3Sz5PQ27qPpHXl+c3MgZ+wtc3csHcj0iO6qI6YzU4Z7uOLc4oymiY4c+mNTlZA+3Q6QzuEDzpN8V6LM+xNYzxifgagVPeKkcq7nH49bW+A8t5QaOiIzifNo94CyKPB21pDQ3UALGWYeb2vUkqABT6u/ThwOm04jhqyl9kewx7h6TiCR7IDcGstIgOzBxYErWam5uWEAo+m2+hITf7uXE5wm2o4Ocu2IbXUy3EkpEjRHc91GjijtgNA6+NrdTjuavX6ZPu+d8dKa64Lnc6noJWoZ9jE+ZGHzJ/3NbqXCw/iGQISzqfNgfFjBHuoXFM5pGdSaWvUI52jxNUBk3OO9PvQFRK7mHLuTjs5FyQUsDlOb74Q7mZrUUIjpUh5togyDHkDA5J5evbRwGJ1Xk+O+sqGdlQ87Re05OuQA2hkmravMcBI/Ow/Oq0DSCkirQ+PKGOwjGbZ+ZlKSLn1NE5XB5NHytWG7RRdmRFAWPFzk0rCFg6Nkrzba6sBcibnpDlKZoysFM+qq9VinGo3At6wI5O5BEB+TKUthkwoPRoVQI8GbodnQOVkaAedJL7yKa8gsKfd22Gdpw+dcsaIwOhkIKK6vcwTO1UneJRzsqhNuA/MacvF62an1B2kKeomqq0DBXDrsHW7bQx42nn1VN1AiwF4gIanSnuJr9oc9GP68an42ndHQHV+l8wj04/a0GDYipTFwO+//iEAHzB72VcAT1NryRDU6FDCJ/CirexXJgLMyhwQCK0g+CvTWSMCFeRSg2YFmzSiiwiwGotqAGlaIN+l3rxV2Zi8ixgK4G+BdWrErIY2L1Wq1aCfDSxX5LQYLo2LMScyHDUiUidS3YfKwyPGm/4bG+SMJs1eHd3D4W2iIlDRw/hFIVJDWt+jtKcGzQoskfZ4sOl5U8CF9630NtZiBg5UcN0CD1Z6n5iXeBZuCUgVjny/CttbipqOe72XigG/r98jzWq0l4LePC+3aJS0ze9SqRq/G5hixDn5GERQyN6mlLFtLz1/fC/XSp+vBtsatap7p8r/Ok+9+JxbQCrfs9YQ5aXv4trq85RmyTNmoTYavegarGCFNldQQE73VemGz9LIOTUu+T31sKqwWwGBFWhYo5Wp8HP8eu61rtbELzA7dvxvMxijY/drKAM+3qMbQyt4MHvmZn40v3esmco1nTP5h9KZofUoDZWRela7RxPzfqz8QYEq3r/KhVXe6js5N63LqsCbgoe3QAO9R/nGbznG9D2rIbuCbyut8Rm3eOoKHHsaxBz5e39/P9Xe0XWbHFA3DO6VP/O9GoEx6wfDgUEFlPco8LEavOu58TWfHXo0hrWBgY+zvaC1IfNmWlVeoeNZdQTdpzVdOOd8sxboelYVvOKlepDuve4FgN4ll+uq+7nyCuVRSm98Jj/TOXONeJ8+X9fc7KWjhvdp9MvQV206VzknXK47Tqety3N1YmgU66oDrjxfdUzlb4NfWKc5vZd6s4/vZVMRM4vIJ4+kKIV0QKNq5o1On06LRz2wRW1Tpm4RcOr80QLUEocmaeG0eZdIk7EghREUNe22nFFpJNMYU7kLBzyUlk32HAlRW85gaXZAMoovpQRLhv3Yg74vsQee9psS62GFnCG/NweIrvvVI3fTiCRceYPSt8oA5WG695xfzln8BMM5zmh5swFWsGad6kytOoChOodnKA1ZskWUXy4JZXNaO44jaiPO4N7MDw1m3mUYsKip7Z+nJLrX4XXtaF9Ql3MD2p0XbFbBs5RaxdEartWjhpEiwga0RaxHvTXzSDXWDj/qjtbuRmNFNGyngmLUdzOu+94bRzBysO7V60wmGvut05YDEhnX5x3blh08C9raTuehN9YKQ0XZfE2HDDWpL2ui4/o8PNVygMpHdCTu2RkJOOB61HbasNejdzVt1nC/nX1vDR7VxohW+Pruka7Lkl5WG1pSUO8QuVY6SNjBBZWBeGlzqCNH9ZF+ruU5g38SmDxD6wPu+94dAZ7mm9HMU0SZyl2rN0uo7cBWAHZrzikhlYSj13ALgLB5xpfa+rl4DcMWPDBHN2aziJa1iPIPcMjpJXhNkoCLlEYAC/Gwxnmcuxpa6zhLKXvdS+IPlOte080BxJQScjp7Q4o2GpAVFDQGHLTqPNtiYxH1NIGphmOK6NLa/Oeh68/9ELqco71PDp0SkHKP+FV7x3mU80PtxJtSilstaqYO57VHDs5BUaUUh8myg5cllw7YEeStQltdlkeTjRSImtPQgXPYtd7EZegz1jzqOKXk0d6Y7c+xHu6ABwx3d/e4Xq8TnkDwz/lyCoDYT8i2lV6ju9bqqbYJ8C7gzfkygCb6Ozv1QuS8y2enUUYW/57rH9JFV5VXVaRUaCkD0HtWL/cK7KmCtyp8FEzuufGFXT2YwGy4KUhBYaz/qmLPcaoBtBo8qjSqMqHrwPt1jryfa1ZKcWM+oacbq1Gj7+d9qjyrEchrjYKMiSExQiu5BwoZsOZdSmvdu5BKaSgSw3h2kI9GfK1+mH0+BEzNmUMUgh6Eax2o89o0jIyZ6zv4fABGSXD8BCOnz24a5XOU3y2Pke7Tuq8rOMjnaCTmSmtqNJAeVkNLjcsJMELqwOdKN3oPx8jxppSm86IdWPU8dsURc5QM147GNe/jd1aaG4bDnF6rQKOecQoUX2enr22ba7SNMRpGSlp4mGJ8mt6/ghm+J+6p07mrEUE+sfKFnHMUpwWQM1oyAA0WbejVMNU103VUA3gFIfgZz6euk86f6b1KEyuvJEivUX1Kdyt/VKNhCKiXhj3nx/Gdz+fp2fqsW8DuCnqZWY/QocK9AhJ870pr+h6eLQIOY7/bNB89c/oMCnd2HFXDhe/TufD7Uwp6Tki9AYx7SV2BoacVUZDa0FLthdX9ftYcpYIvXsvM+bsyVGuFbTNIqjJQlTEFrfWcKWiiing3umrtslJpTaM8laZXAEzBEuVhuq9Kb+s4VW6T5m51CNa90TGoXB73OD8hrfEckTfzfpWhCiqvfJy0pn8DZgNd10P3yusIUaGdgReVLTR2xzl2XuOe7gqC08fhKWIt5K4FrbHmUKa338yLnG8ZzVKndz1rGfBoJPJBzA021Pm68v71Wete83tKm1wvGoGrTqg8o5SC8/mMbcs46iH0M3i5Ogr4PJZ6MDTUuoOd2lVOcO/0X91b5Wn8/RY4rSDbC9mdhiGX0oactqj/M6+lGsP8mTpfNy4sypDUlxFfBAqI/nCs+/4ytdbfWbsRlBL6nvv+u0GvRkXJG+pReyM0p7moVWQetZQQEXrhrM0loxmbPsQYzMK09AianOeSEmaGaKLrRnaKqIoAccwYExGRQmkAhQdlfZtB5mrezRZyRkvxtLUk+9VrOFFvZwRm2jyKYh9NqqD1FWHRoABoCUgl41qPMBoBCgPlfaQVBgQ4GJBc/xaeoLoma4ilbB1AMDYT2bxzb7OGYt2+7iCFfxDU0SyajiBqXqdIG03YzhvUGQGzqIuVAJvPeWu1NzNJkMY25tGfPd3M2GzC02LzqWDfD2zZIyuTwaOsjDpe6wSbBQT0wY86ul6Pyovqt9bQLOR/9vRvaynudWCWzlCeOa+Bb/1npyrAGnAc3gX5VDxlODPlNQHNGGWHAHkSqkTxq6PrtG04WkUWWXY+n71TbYApHkV4REqjz4mRrgB6WjibAoz1b0OnSAl5C3neKAuCJ6SEfT9Qsq8FwXsDelp/irpofg4iHRHhZBQbIQGd9rLnBvdxTLaFAafsUcSnfArwf/PmITQ1LaFsBUetqOYRs6ctGgZZROxZDoASHhFs4RgNRwEMqPsOoHmUHAzWvF4fz9Ypec1O1kcDons3nE69Qy7PMmIfw+aMoJM99rdeDWiRLZYTtkSH1xFNXgyoDTiFDA6d0Gmg9FTuHDZdyu5UyMWb3iABx35EYwv0lOOeIgzrbKxjJJG+2pohbbQZm8/Xb+7NW/oexRwQnWG3k5ZGcu5LOUFQFL4N2CMiDuRtFoDmUYHmoJ4Dds53ut6OiIaLtGTAaXqkVQ8eSQdZDvDwqH4+Mgr21pBbC5A/oiMtwMOIwMw5AznqZiLjHDZHhZcGI16AGEkP4OhNsIJ+msFS2BFIKIioT5PGrimPVN/dS5qV8+Zp3AQMWwPg9Hs0oGQvE9HqsNW6LsPoaaeWkLlhP7aGUk59/X7v9Q+L4ANmI1MNkxX8UKWfl0a1kAhoAKhCzmeot12jQBSAWMEO9aIS0WadDjUuVyAAmGvv6Tg1hU4N1hXg4fcVqFFDmoofFWb9ngKHqthoHTd9px/w2Qs3FMbUPY7dcLYoQilj9nWcI8pU2Z6eXXIvWsm12I89FBAZW1OAoQUT0hoBM/jkc3fQpRsT55E+uhpdOj7ddxrkuo46rpRGcfeVZlb6Jn0w4uC30mlhg96ooKpn/ta+rsCtArStjXo8t+iaz9Gx3jLAdd3UIO9Kphiuaoip0qqdiZ1m7cV667i6stgGzXA/uUYcPz19ujeqlPPino0i60OI9O+mAbitxuI4s5725vMdgNEacaPrwc81wlPnqt9do/8UCOV7yIuU96iBp4WRCXby0j0kQKGA4Ar+qLF9i6Y5N53/+u8KiOueKB1p9J+uk9LKSo8c3wpqKs9WetS1UGNpRHGRr0eB5gWM6Mbesh6su0ODLGev9XocR0/RoPDPJXv9KKE1N+5SdMaagZ6uwImM1LNG3nxrnDpnPfe3gGiVaSvYoOdQv8t/GS2l67N+X/ebYyTYpnSl39No/nrU2WO7nAHywJmPD55HGqjV0zd5rwJTSo/qTCSNKUjFM6Ag4C15vdLtAIsAOhrokdez4venblxwf7ftBMq4wbcbjv2YakP2VC4E/ZtHYqWgNSqJeo46r6seVXM6nXB3vpvOKOehDjDSieobXPf1LGoksNbF4zuUl6zgMWusPV92jCgXr53ZDWChIa79cbiR5EZpwvU6mrbR0NcobjoaSDPq2FD6Vn2HgP+6Dvy3lDkNWWmX81cHha4pn6NrYc36nCB8g+MrJU1r6o4lOrqHnOk6cE7IEWxBA3KAunM071aKG6r7jhaNJlI0OSupwJo7ZFsNoy5HHUoGHAUQ5800ItW2RRH15KmT2ByASBg8vOvzrXWwz8cY+yfR/SVHNF2Gd8+sFS14SCmD97UwbhWk7rSbhaaMPC9qBcbZTe5t7VF81hwMTAVRtD4jN3fGJ/OxDHkuPK8xCsMNbdZhSikjtVnfMrMAM6t3riy+ZqcWXXizp3pZ60se7xN5E3tA8N9p+Dwi22Is6nBiF8fTqXSAj1GM7D58HA4eTbSYttD5E4Ayorqis2cy8yYUyXX9Hq0SVw0boZSC6mzT141fSOJEDcg3JyBvW6/lbdG5lAK1Hh5Rxfu2XFzGJDfzI9syHHVeF5LypyXVV5wOSy6eWpvgnU2F3ysfSGWu09taw11E2LXaUI+5oH9zRXjI9DbLFp++6AKonSbZ/Tgb9Shfu5K3F3yFPBlAdNFt/dm5uD5jcXa77DX0qDY/z6mDjLRB+pk9Bi9llJc1lzFdB6gj1TY1KR/RPLDhfHfujiDnV8FTEbwipQ7W5Tj7Zogap9TXfCbX0I07v0ipP6NFc59WG6q1XteyHQcOaa5Rm9fAI3hIgJRy18yQNqDa4WmcKYBUoxz2yMBup8GiVIu//ziOXrcwRXPQBNeFWmvBK31T3Tb3v28EoLPUEo6zBcsBto0ziqCXxgekFEzadYYc9ThzDjB+O0UEWsM5gjBaPRANmb3BR9h+5nGHk7xnx112au66eEd70ws5aOaOJ/KRHI0ZvRtuQkkJFoCxBx1znhJRvRXU6+xMZpdbrynoTtEcqdhbSt5du6+/RyVPesymWYyIdFrEOY0st+tzyJB4J/EMFF9Lq14P8bT5WbZ4AJx23dHQhn6RvXGIy482gdG/5/qHAXwKAKkippu6KoqGuT6Yeje1jp0aJPyPCrmCYznnXoNtBQtVQVPP/Bq9pIo3FSU1QBUY0zlzHjpnZbj6HD5LgQZlymo0qcKpgBCVR85jBi2st75em21Q4ZiF1cvouBZI8mpYqkLLq9bamfNq+I9DN1KZZvA3TZF8KjwJwHhR4UiJsAFSqdGpyvotQ1T3netCOlxT2lbFXxs76H5pMesXYEEa60iGNzXWgAsPzoVpngp+rEAG6UBpTQ2tNa3oFiC1zkPXTA3d9Ryua64Xw835XDWildb1vlvAsYLzq8HF56yGUxdmQmsKGKwG6qDf+T59b61RM0XmTYPvFhih79A5Kchn7svuygxAZYJ75p40GqdKs3ynGgO6Rvo+HZ/u3QDt2wugudOsrB2/Tz6oxqbuSUppomv9nrJUGMEAAEfGSURBVNIvx6M0yufynVwbrkGL4rUr+MX3rrSmdDzTotOo1hzk+/q75J6RtmA9zUMNfd0fC2ODETNjToxICRBGaGRabxAsKC/+fgs8WCPele5VZqaUcLlcpu+ugL9+V+WTgnNcKz33t8Br7rOmi3NeypN0z83c+8r5KnitOgHXbnWoKL9YZdetZ/SaNyLHKPt1zCsP0nf1PZf/Bj26wVVK6Qq5OmVUjq/6kpl1Q7zz9GW/eB74/Q5A9hQ2MUjkLCa4XpyaR3vx0n1e14Dz0i64ZtYjPm/RySq/OD49s6ordccqhi5T6wFGOK48SvWGUkovrk3jVtdKHcDK23TdFYzWvfBoo9KdeKpraSSsju+WnrZGD6rc5lrqc3KJGJXmdYxUxqkep+fIzANOct6wbaVHsHb+di4vIoZ0PRjBOtKRMrRubuPPzeXltuXR4AJhYN7gYSl76lyOJjQe7Rd1wY7QT9kR/qioR0NLDiZ4N8kDDw/3XpOIXVuBaA6R0OxASnBjrGxAHU6X8/mMlBm1QX6a+vxoeHM8qOKEYR0rLz3mc9qiLlIDCgqOa+jMyR1ILVmAAg5e0gD1PY01KZhkYU6z7CrFO2SDdCbdZNvh9ffM3MDkWVJ5pFHZJY+SACqXeUZ5kU5O5QSzOhmYfg4CIA11SWXFVgqOOjsDVB50nTlltGNOlXZ7Yegog894dpCfp+q0Y643df3TElJr2G130BCGhIxjr6jJkIucRSO4Ajh/jHTuEhGAyF13LaV43bIt4xCH9QTAS1Qu+UFKKYCWYTe21rDvR+fVXYbl3M9hTrk7Cq1kbAGeoPJdEUEehJdSwn7sEVmVsMP3C2nwYQf6RiRXH7uYa7VWNKvYIlrOjNFHfjmQxT3Q9SNgHM79ZthO0qnd5uAezfxpHI8NWaedZldd0j9Lobdl5Ox14/q+IsNLCQS/jijT0+kM6lz+vZhzaxHlWz1VGUDZArjBCO7o9n7zdTdIxkHKSLmA9cJzFkAvJSCihb3+3FiX/p/onSozSXtb1Ir0+2ebafBlPwvHvjv/NXhn8gBlW2tARPkDrFeIbjcjIqYB14dbRDpaii65AXwmIDJPIh01mdfbS8kbFJ1KBwOd50cgjs022IgiBCwZ8in3TMsSNr2h9YjAu3SOtFseuBSRyNabVPq6hG1hjFR0HbvWisoowihL4PIpGpGwm3cPJrLOc9RWbLXhwOGlCIKHUOKpHcyAENJrbJwDnYchn6KjciPm0NxJ5lQ66ZmuI6iD9x8B7/0DAD5VoFbjajUSVPGj8gDMwB6ZvgrDW1EXapSoYccFWtNF+uaJIspx0ou8Gs18Py++VxW8dTPG5rdp7GpUqCBQg0jnsxoUaqh3QR6/U1FU0IpjogFLo6GaedgwBsNuwfQ18oGKLH/Xuem6lOJeMqYVjz0uoZDMaaH0TKjhN54/kP9hvHlYfrM6eb10jqtHTY22FaBdDSwFXDgfXd/VAFb6Pp1OHbjjvUpXazTDSsMssrsa2Kvxzv3QehJUABTg5n7qHBU40X2bDdN5TTgX0rmCKWoQcU56rnmeFIRW40uBAdKS1kBUUL0bsGLYkSa1BsgKdKnhr2vpzw9vmosxD3/HDFqwIHW+e1mgfqU3BTjIu3SuXBeCfB2IsDkFVtO9bykANFzINxSI5b9cG9KKrp3WN1v5Cn/msxREUYN5/S6bhrCmI9deu28qrenPCnqcz+fOgzX6ptURgbGCLis/X2lqXOQVM9/i+HVew8APwS1FspXvcq5dkeS/QmspMRXGjYhahzed71QQYj2Dutb8Xc8d90Dv17Pz0jh56RhbaUDnuHZT1kvHyIgp5bk9asAGMKHv0O9RsdbvKU/ktYLHSpsa4a+0tfIoswFArkD8rWuNVOWY1qjcQTstjJLZ2UY5P/ZhPlf+2ajf0nlfylEuoE3rSoWQCrgbr2Hgl4JW546IfE9Lc9Mx7ofuBeepvFp5oP6dY+A7dN/VoKexr4AX168bPGHwJXgEw2HH9K4VQPaznhAFFiYgco16VfnIZ96S8eOclend2tyDn69ZJZyrFiTnWmhkIcej0adK1w7wNsBmXVX3X3VL8k3lB3zu3Z0X7O/pSIv8oqzSun1ehyqiHc0bGZjUuYR5upnXfaoBloz6zV33DgObQBURweM4vKYUGweY9cg23/8R6VZbhVUgF6YZZuREkDgiu8wpQMFkMwNSw/k8l75Amvmd674vnXStNaQtRRpy7GM46GolEBYgQIAvDbNO2uVhLjjaAbTZwUIgXvlKSwNs6bRouevXBNuUlrnep5OnSQKz3FUZwX9HEwXyVfT7eDaGjRP3Q50iXqfM6Zj6xWjsBPNOwQZDRUU2Q23zGFKkFXY+T7kWVJAJHJj5GGo4xDePnKRjiFnrOWfc3d0H8EuUcERTd57pj+81sbhfx3F4yaJkOOpIW/Tx+j0pe9Tf6vTYRR50uRrNR5Q3EXFS/SEehMMcIGFKaOdfbXRVhlmASMG/8ojSSy0BFdNeew1D34+GYW9z7K0R4PB9HuAeHYyhj/Tf55IoFsCFn6ExV9Vj/CzOEdiUcXRuqz6kzyBvGqm3vNcjMMvmzXy27RTge4LBn0VHVDZP4d+DnrdSUCJ6TS/Vi1l7z4Eij3qDAaieJsxoYaeJqK8q+mznIdFhN0XqtNoKTH82r7fhusn5FGvh8Kc6B9s1zib8u7RhrDXskj2XMsHjsHBy9u6uKTmI13kcz5Y7/bwr7swLz+czYHEeSgDZBUBJUf8yeJK5LO4RoslBs726XHc9oaIdhwPQBtBdUzEyFvc9nHs5shQOCWjICXvb+55Svz6ag/48XB1UN/SU9Fy2CGCKaNoOwPo+qK7IuR+VQWBbTxWf8Krs5wXRFK1VdDvocuxIyfl2rQdGdkVgIXnWG/2/4tHUdXbC/N7rH1KDDxgGRDdmxdBWY0IBBh56BexU+QJmY1eFODAUsPXn1RDic/QQK5C0AgKq2KqxwGi/qXBnnr3g63iU8ZdSeoMMNab5Pp2DAi38fY3yUDBBwZHV+PUb0BmEd6SFpyVQkMhzyfxzfpnSpoeByj1zyW+v/1AiGDrL7oArEOKCZo7IYbQhvQFUPlYjUI1QjXpa36P7yfVVw5u0otGROqdbYI/+vO4f912VKzWA1MhMyx7cOkMKXut66708IywYznlolAsvNXb1HGqHXTVIeI+CwfxM/1NBN5TeiFBY1kvXRvdU53krylILldNoVhrV9eDfvM4VpHgsJsXH6cvCGzjWW2laz7jyCX62GpIKlGuk5kprfIYascBLQwyY0/NVWddz8MJo6cbRy5QR3f9h6L6MoqJxoOAMmyLpeyeFSZSzlUeQXjSKms/Vuel7FTjvhlTnkwC9cnyXNl0wG7WXBo0AwNx8YN8PoKzAl9bbIoDgUSD8jhmjcevwgobRvMq/UjJqw8QfVrBF57hLCko3YuJajTjlByndShUVRd3sxXldz57Slp4nBZpXEEXfuRql+izdX/2MZ0V5oCuCo+YlaeeWnqHruX7OeR/H0T34tSt1LxuwqIz3/SLdqENtdGHrfDCNvWJnNV1f/qz2xjizNepypfl8tBEBdzqdI4WEMjM6lS507zR1QGvi6vu4FjpHAgfcY8pKXRPOf3U4EPxXpyPv4bNVlmst2XXf/PlbNxRYW9NreVnoNi/B97WBzyr7eel5csPBa4mtdVGVllcdcAXt9Vyuv7fWenkJ0m0pJZoFRASZ0NIAriKySegceNmddyuRRhUpoimyBXSv17OakhvyZg1HGFZ8Do2blNygPG2n0CHDUOlyYW5SlpBwzk4HbY+oud3rRaaUegR1zhktALScEwo2JESEDoZjz2pFS7M88v1s3gXVRmqcAj2qT1myroe40Z087bWNbui+vn7Aaz9DiDTJSBfLAUwK3el56raDRR01iFPjiOiuRXcdPBxdX+fZ59+ZypYSUPIJNbpvkm7MGizliOIbgRLKW1VW8QwOWh5Ai/OwGo0agg6L18qk3E9GkDPke/DFox1elyx7embJpdd6S9mzcchAGbWZcsZWTnGGGgoKSh61OS0ZrnUPkDf0g+ge2shTs0dQ1Vq9FmTsNaN8vRaeA+h9YxFBAbUil9IbyZTiwHWtFSijo+ve6hTppvabgpw9LZR6vOqOSNgC8O9NE2M+pHn+V2W9YcB22oCccBFbstYKtNGogJF33RmVPfKrmeHuLrqYW8NxuAwxhI1WK3KM2RmRTc/Z9yuAhGoVW5KSLpLBUDK7IgevqUNe9LNi2tzxZRR558OlwMBMo+DViDR3AKfiqY0HWoyh4XodWXzHUbGdTih3pdey22tFwZBfwHA61ergoU/d+WE/G8miXuUoK0RwOols4JVLRspj7nTwuOzwaMmjjoCJ49g7nfP8mzmf2U5np3NE2q0ZSvJu1pFxGmfbo/K2ckI7KgoafKs9TZ7AIBBNHhrcrkZCzl6f0/mwz8+BLu8YnVPpjUpSxyJS6OVrPeWG1BBdf/nGFNHfhPH9fz6i3Pmz6wPeI4ByPm90oOYQj8yc8ejpWg0JnjlhZsibA4QpImWpe5U8ePzoID90YUAyJTjOOLPbMkfXExI2eJfe1hqOengNQ+ow5Al8RpQYyGXOcHPda0Qbr/r9v/b6hwB86oEHlmiYlCYvoxrCt/5dlZfRCnwGsNTIpFBkqqcqMBrZsQITOkbdaBWoeq1GyQAuZqCSf1MDU6MrFARZDS/OazV2ua6cDz8vpeD5+fmF4cyrgxDWsBUvDMlOZxbrchwHDEM5PZ02JKso4cnY98Mj/5K0jbbWw92LhHGzmC7AlCgPqSXCrmvmUX6a9nSgFA9VVkPC53/qXr4VzFMhsRolNLhXMAmYI/2oSKlyxu9qpJyCFev+k74oXHQManjMRv6oEaPrswKLuqdrlCP/RuNXPfqkGwUa9exo18RhvA6DSxXCUgoul8s0Vo04WZmSCm4A3rnuuncj18yFHr3ykyJubuBw74AwIsywbfHuSDHwNKDYp+7tdC9Rw6g7guyChO/IoaTreevGbRsKMfdPATaC9QT8dW9UQda1UaBCvcCkoXEObNobYIB83Ic1knIFR/X9Sqe8lM7VccBzoTTOs1FrfRENymcoHaw03g3PbSjZ+j5dJz57BXxISxptrX/3cYYc8uJJvXhtd51jpOKQvg7WzrChVJuFIE6zMLcQ6KftDvt+9BR7Fv1VYBoJQHEvLcKLDKRetNusRQc+RIHsGVBvdXaakNa0kLjKssG752gplR9cazVIf4tGlP+Qn+nfhnH90pG26gEq85Uu+CzlVUoHCuSqI4Lrw1o2a2SBjlvpXQEnPYtcDyr5K61Rv9HnpDAikRCyMXkdFQwHVim5F5g+jgM1wBLTOl020pA47hqd6XLJOJXzxIuHh7qhpYa9XoEElBIpcYuRtM6bvH3VF1TmqZy4BeyugOnqwOJ3W2u4u7ub+MhKA6ssG4bZKJ2i/Mn3ZdQ9HueuvqDVVR9TQHKlOT1DKaWpUyv/Rt1CQWYa3gpc8j4FkZXWld5Ic17b06LW0ahpNs4Zz2QYOGGEk+YgNRxTAmAehdDgII0dcw1K1a8ARH1kwHJC6SCLNwpClvPTPBom5YStsNRDguN9pUe31NAPtR4n5d62OViyndwgG2doOJ8cA3AHcT0ONwJzDp10tiNyNHMwq7juTdLLMMkc0kOXpSfXXVucvQmYLxgIvhMJLCek4lFejD5CDUNV9LuUUkSHu9FWW3WANYdMBcAuoH4PQKOutYYte0H8Hk9l3vBgnB3/97JfJ/pGTp76WxuigqDLtTw3PSJNavZQj7JphwO3GI4QlptI0ZI15WiecLgzYd8dXHEwwHDsO0qktzs/8DHTfqGxz9RwANg66NdQktf8anTqRqRUSglIcIAxIl4IxtKAtma4Hu7Yvj+dw0hPEZXntRoLiugOAQIGgOtAY+qRW1YrUqhUW9o6QHG0wz9PAPLs9DqOA6d8iqYqDoa4vUSe6jpIPTw6L28FOWo0elulhL3uANKo8VYr7qLOLGlm7M/IButRk2VEmfq6NOTNoybrUWGJZQAKANdtLGpvVuo9KWrNmUXzCMpfp6vD6BB1UKqcHMQ9rGFvu/OxlIFKXpi88UYqaKmhoeFyXB2wAzw9NC2AX0BaKUWznpSwnRxQOY7g3+0ZtRkQwPekO25b6AnOTzzt+8Bed0/bzCMFnfeklD3983C6KlkbL7mT9+H+3AMDjn3vkb7kM6fTydc8Sh5Y1Fg7okt0RvK12dz+8TqiEQWeR1mI0aiudmD8vJ0cjI5nb2mLRpdic8cWHkdFLkMWdng5+Mmx753NeXp3lMwS/TrxxE78R8sRBf9povMVTzUmEJ6QkCJj1xvJpGjKkbAf1QG62IrWHMS25hGo5MJOuxHwZaxXuyGnjIZojnd4t+zrNYI+4gxtcU6O0PVz2aRj9ihx0vVVE+d+8PDeVOZ0csdC2AQI500zl6Gns8ucehwO9EMyFFIA+Yvt4um+UYaH+rm9DMj5X3r9Q2rwaRQaMANeZOpUZHipgNbICTUe1HuqhrYqitY3xTmtKjArYLYaOjxEWktNFVsFAWkI68aokaPjnAuUAyQAVfjUYNY5rUYJ/107UqohraAS0yM1AovjrWQKAFLeYCxwLoYiI5zcmIiaM61ib14MnEW9u93cDZ5ZcXfBwSiCBNYYQ/RCGsq8C7fhafQ21Uypo/BqrYZhvU/Als6PypkanOqpVCNc11v3mkbyqvzrPUrHSpNqTCutcc81ckHpcI2GUwBZPfhqyOr4OD/Skp4nPp/3pJSmumNqVOl5m8AKGasqhZNBtKy7Rr3lEEy1NZzO5zB6E8hY9f6RLrRhK5sLYAzB4owYXaiklJCKgyZoI62y75XNgFMp3k2s1hopLSRk9NIAtR44bQO0Aubu3mtk0kugKU38Qtefe6sAq4K0vFYAlpfyydXwXsEW0oeC/j0qA3Mk1RrRofdxjuuZ0vOuRqvyHf5Lnqh8WdOIV/mx0rcCOWqscOz+XXrRE66HR4cwrYtNNurhzgqYd06rzRs0FKmp0/cjSM4jAyKKI7qSwcz5Y8i+1VnjZ2sttTCvcW0O8p3rMa3tcRxd6Vz3W/dW5eTqxOBak5fp/nJ8+k4FczR675Zc4h6sZ55jUj650rY2HSCNvYh6avNZ0H0mKMJ3cd31e7+li/AZk5EvMmHeu8HjVkAaGNFxOQF7PXq9trxl1PDKX68XB/TCq95C3zifT9NzUhoeeG8eIbQt0cXK11UOqUwzm6MIqB9wHrW2rjhqVCzvVwDYu9vOgB11kVtRcXyWdjPmvSt/UtBnHSv/znvWCDXnN3OKNMfCcajThfPhvlLn0znxeysd6TO0Purd3d3El1aa0/fybK2NawBMQCJrEPM/vVIC2CEZcJDjdLoDmgXYch10GREgh7nRcTqdsJW7wVdTg4d9cF3YCdAcwBL5r52NVYdaIwJdHr8ERXMZxir3zcHAkcqZcsIR9SGdXx6906DBgbWN9aTgwGY7Irq1uJFbSu4RcWuqWWteM64KH0yJ6W0NKXnaGBAgbKSP0cCmXCunrT+jz12K23cZ0yrafri8SAmX/UBOGXdhILpzYk7bZKSfI0LWgSwHbRqOSFH1cxHF6OngzJIiF7rVcURHiTDPKYeUN6yR8OyUmuB7WVsDekoqZYAho+DY/VlfL1+RUuhdMZdyOvXADCDWo6mt5rXjJt0X1Cdbr0+Ys0eeNTmTZm2yLWqkpXpwpUcudZ6Sxtz3urueGO+vUfJnEzA7IUWH0y1kr8V6urwnOFtKQUkFeYua5sW6HUS6aAEkACP7qLWGZAlb9q6vpRRvVhCNPNCqpxCWrWeQpAQcdgTwEbUYW+q1/Dwie3ZwqZ3gBeeGzVA2XxPvHtoYqObvOXZs2YEP1nBnx2wHP6x3zB7OF9bW9FTQXv+t2zo+CUZv6r6ye27nf0Fj2vDQ+VWsVZSruF6vqFV12ARkfz+QJt04pSRNQ2qUIChIyXqTHUYo1+q03x0B9RA5F2W1zBwsOg6qaF3Gix859hpg2anjOCI6kjq7g9mnQhlusIQeVZdSwbFXd/zmBDqwzAx1d+AoFepJzExJkro+1qeILPUo5NSj6fxcO5dgo4+UEpDJC0dEcYv1rfWIxithv+WElhpqighY4eFeq4/ycACCDMBg6j7Pb0LGloR2OI+oQepbHaB29TNaMfRH7/oNnE4bbwVa6yUBcuAKrVaP7ty2cCyg8xfEGpGW1L52ed86b3c8JIIXkADWL20O1KfCsyplY9ooI6L8GD1a3npWxu+9/iEAHxm1MhdVvhQMW72/VNBVWeJnuqh8JjBHT1HhWCOh1BvNca1F3vk+fb4CPgpM6ty4KSO6aFyrEcWxrMY/lR5VqtdotFUR5udqsNHgoVLIOet3OS5GQpE4gTxFT/l6H36Am3mxWRhSKTifz8HkZsBIFSZVltWTPYxARvMN+qi1YeoEJmNNSaLABBScPfdj3WnoqkddjVA1HPRzepbVKFnBYKWp1aDVSFI+WyOs1nfpmulaEvBQA4CC7izeOz17XEetEbS+g59R0CjYpGuqe6BnezXkVClUgFznyP3vAGXMNacMq55qcr3GettIO1MDvlZDhnUPeMoJJnNi4dl6zIYFf74VJafRK6SzWvcZZE3oNXJWutHfNVJUaUXBZzXCuR53d3cdNNN947MV1OV+rxFHQ+EdqfJ6rrjn65gJgJLmlS+Thyj/0PfwIq0rmKcgjBqCWltNgSTOfwV6lJfrGJQOdZ3G+11JytmRuFPZsOXN62A097QxdYPz2U4bTuk0GeEcV84ZyPMZpYLbbJ/WuNONXCmFl3upT+a/z+cMwjPJB3Rt1LjW8auzQOmIa7fve6c15WF63ielO81p2MrLdSxM/VfZpLxGn8vftVGR8sW1Tql/4aUcfSkbZqBL9015m9I1x6Lf13OnP3Pf9dzq/ZxHLgmnBJy2E1od3YcZVe+Ga8P57tz3kIDVetb5Ts7raA3tGOnI+n7+rnOdeYWn/Cjo4g/yf1YAjDSun/NvZnOq7doISHnA6izVS0Hk3rGulIm3KbC6zk/pXemN3+O+cSzapELXgGPks9dmWevYKTf12Suf59qQNkkHul9aZoLvB9DrGSlYzb/Pcpn00ZCTR34c1rDv15Alu0fuNHc+nM4nILnhUffQLaPouDvOHFT0tfEUz3q40cZL11vXUHVLM/TnEKSxZHhVHvq5d97mdcmof3b9P2XpLAlos7UuVwJk0ZR3OoqBAMJNIoByRIRlN8LClu2RY3SEE2w6mtsGBNXaMSIAV3pQHTyn7JF5qChnj4KzCJxiIXtGhHlNM4+2nObWvNafwZ951DlCHsAALyedN4ONBgx0jkdDEHEOjXWfHWJ6fglIjU7WwLadUA+P0CwlYd+vHaij05U1Zg3FAZ7ljJh5OloqbrxmY2MgRq1wJz2oMbHbMM9ui2hlyoA0gGSA5XgaSvHoPLVFs4kjK40amTybm0S0tuYRdsheDoBgHiMZy5ZRMLJDkEYWleW5HrbLpBTdl0ejQqYflpQ7mEp+THrfyslpxOa/b9sJqaHbXxnRxTb5mjrwNMqUWIBVkLltpURHXwd1LDqIMsoxRTOBkot3OM7F66aVze3EVFBt7zwz54z92GMfM/ImafMNHbCzNngoEE6tLWyH3UGvFvxn2KnhBECC4RhZcMEjSgBTPl+Pdu3y2sMxff24hHF83VYQPd/YzCR1W1jPOXnesPOtR4Vx/1MpHmfYZvtyi7R0yjnVLRjk08/fccAiAtfrk1LWhy2btz7XkkuAY0c/E/2Z2fmn1xlMGOnNUbO11t6hvtaIpmVn8QBLqaOwC+1p29BAG9NBaQYKtTgnOcW5OVwenU5bd1S3iP49nUKvtO5jdLmDUYLCzHmdwdD9Hciud7c5gGfVMR3M9KjwCzt01wo0d0hNPBwMbhi295BfBqYMq642dA7yt2hkIrpxQukgo9OKAVFTuESXYNVnVQfs80gOch+XUfboX3v9Q5pscCGYrrYuPtMaqCRNhW/jWpWj1UBXY1kVPQVWCOyokqjj4LN17MAcNcix6Bw0akkvVUJ1k/kMBZn4861uaEMBGhEu/JsqOsokdD6rEa5GsO4Pa46M7wCAeyMOMWSc4AtgnltfTlsXFA0V+zEbi6qIMHWJBUa5Pv5d1pGROgvNBb2Z16JQQqfhDki79TpqXXBt13QT/v2WEXHLMFDjTUFKYBjOagjou3XNSBMcu/6sQNB5CrWfo+VY+F/3me8m3SutqcGptHY6nXo6rRrEq2Gia6iG8LpOFGb6LGVOHBv3kWs+wBF3TO/Xa6cB7r/XqkCvf0JFvVrFZb8gIeG0BRAT3kQFQhgZtZ5BjdJRhVM/D20NXj8oFNc2G2W9TpDQhp5BVUoATF1qlcdwXzVtaTbKx7la90j3e91Dpf0u6MTzxO+v4JDer7RGOhl06+syfzZHrZJ/UiBq+juf3TuwqVItPEKBvcEfXho2q5HJe7dNSidYwuX5Gd27KWuigBmvshUv4hve6VwKqs0gkK+feo5nmdUVfrMO2pHejkhrQ6TqtFoByxFFMEBtgq4KdujeKcClQKqOkd9dgbr1WaRxpQWuqT5X95mX8mDeczqdJgD9t0AV7vuasu004x7UFcSb6SFSnBfHgvJhHZfSGvdsjapVgJnP0zOszzAznE6UxRUw4PnpufMhgmAejVc6PXH+uWQckfpUchTyRsiOZJFuM5wMnA/XiWDXcIQMPYTfYQMKB3x2eGqnAyQ8h1zTW/JO5Qrfr3uhNEfepk6JlcZUf1vPrxogOi/VvTieNSJV0/xWfvH8/NyfxTpXWhuQ43VAIHUDTfXTVbarMr6eT9UT17lyLivwp2eEafiqN1L/AYDz2YEpOmmO54vL1cSolbMXVFdnQDirvDuoR35s1DGbOLzCkEpmPcKb4+X4btHcONts1hAGbD3QakPNkv3SXAdNGGMGIuoip57qrucs+wTje4YanUTNPEqIAEhOrsd2oPp08i6RfBYYvTJ0vE4LNtL9HRzwLBUCeCml+F35gaeSGVx/sWa47jtKGZF0BLIcHMkRHcY0TtomI6IYBT5fGSP3x+ApdENvTx3AJ32lVDzFOzlY488g/Y2zrjyR8v98PuOo+6SbMXrNjX1MNOsXz4c3xdhOp4jYccO3teD5vcPx6B6NkKXs+pqQkLLYEbF3quP2853I7+dyOzlvsIzRvKExis4zF6rNjkn+TaPjWXOPa0WZP+m4vaN01LoUQLbXg0UCwqFNwHC1R80G6Df2MGRtZuR06QAnmqf7wdCbriSiubX2tVce5eNmLbsKQ/LUYxiKpJEG2hW/F5zSyc9UZC4Y5lIY3Kft5CBzTgX7cXXQNOcgHXfOM/JY95INdAAHmLJFQnpTMI2yBlPpHY88Dt6puhE8hd+Cp7Q4C71Ui/lZZR1Tb+bj6bJeq+88nQut7dvaEbUkZzuDuIeBsjGNcfd6vFIjull0jS0xJsDgAN7RDqQtIxV2fB2ZX9xLg6GlkaaNKCVwtNpr62fzNP+cMi5XOvlE5iTDfuyydhE96VgUSmJZEq9vd716x+ohlyF8FbAG2OGTaa2hwMtosLRAM8NxvfayR9YMBcVpH9bBzNacRzd4J/vWVO/OXU+a6G+pX+6BI1dYGrVpGYXK77lc06aVBBdHcJQ2u6B+ohlHHtzlznqgOb0dMb8ASY9WkSIwJQPRIXi2Y/jOfj5a2Lf1kAyzf/31uwE+1lpQQxQYnhNVCPSAq5LE+1TBI4qsyudq8OrnPAzAAAv5NwAvCsGvEVG3orA4PgJPapxrl8FSyqTcqVHA8d5SGvV3FWIDQZ9T89R4UUNp9bKudU/4r4/Lv+u1tMJ4aw0BOQ8FM89RAm1ZJ9joJqR7O/bfD7yCtK6QrHWX5r3TPXCBKvV9Yp1VOeQ9eqlRpL/rd1djQsE/Vc7XOn0rrd0CXxjZyb3R7qercaAe6dYaLpdLfyaNEkbhKENQI0fHRQNF11PHznnp2qx0q+dGFbpbxp8anRwDuw7qWhnCq5fnduCueLjh2Y29GG+O+jxMB2qtRRj+AB38HW7067oo8LOC6mqw6FzYVj0X1ibBlGpCga57zusWyErFfQWWViBCwTjyrhVY0DPMsSi9kq7P53N/r9KK7vsKEuSccblc4MDFaRqn/1v7OVUAiM9UXqTAI7+n4PZUT0zkge6Lng/OVQF1/Z6uH+mR5QBW3sizzN/5rD5OeL0pMy+uXjHXfovRgCDfaiwNYNa94wSiqfBZdNzqzqnWQjEc+6dAOWlHZZ7ShdKN2VyvVcenvEHLD9wCu9b1X9+h9EN6JZ9ao+0VqFEASEFGpdFuYBum8XGvVgNJn73utfIAPac6Px2DRsCuvEJ5Ie9VMJD3aUc2nisdZ/9+QtRNmz+vtXZnGsESTf1RvrUC97xfaa0Z1zLAWguQJs8yS9dN+bsaMuv3b62dXuooUh68yohVpyFf5z7wDNzd3XWepuOhM0n5Pe9T/UrrilJWKG9sImNUJupclLaUDrkXt/SglafpWNeIRMp5vtOM+pjLOE9NG+tKGcXndcdEWyKDLCKnwD2Ns1HHmFJGpG21DvCtslL5tP/HtNQwkILmctQZ9fxIeERuTjjlDa2OVDzSkjdKiLp2jLQwOJCTgHrsfi6Yfsc9CCBBzyB5wfV6jegrpvCGkZwGmMPvw0OHHECLBhVmNTquJpilqX6W86mGdhw4nc4oyGhWuxOcY1FaNTMge0pxY2MMa72Lb9kKqjkAM9IZHZhq0cSi6/sle8ME0f9IBwSUuK+17pPc4PlQPjyDdi6PWqswHMjZy6Sow77TIIaj2+cSKd0NPW2u5By1kq2fsQQvj1ECsGAaruqynrLsGRwtGqPk7M1YkJIDI8bmaozOc5vuqNeYl9c5q631CDQzeK3CkpHaiKyEOQCZkwFl7N9xHL43Ap4hIrhScho/9qNHUZEfJISDJo/AAMoFPjfnHACPCd8tAAYY6FFa3N/q4E/J3tXUUq9bR8AKAE7nc+zTgSP4vUepNdEj6FgJR1CAxylnr5MtPNQtuUVXos1rR0RyOS8/UL3jsQ0nm9qAXZ9ggwPpFs5mDOpc5HrSTup6QNCpn6fa14fRa3vsCfWrQeeD5zLiszXDaTs5bWCcA93zlH3NGJG3ykx0rpnCzslIsGhsgd5xGKoXhWpIm/xUTs6brQERnctOxgSIj7bDEnpqqZlnOpWyAafm4K2Zn0NkgOULTPUmB6UQAJuXO3Bgz1LCcY0mQGbYm0fHGgz1IE3W3j04JQf3j7rHGcoRjOH0f73uyDnhfL4LkM2Qsu+Vtda7bDt4l72Op0VTugmP6dsyrX2tdcqkJG7S0rDxz9upO4VKKYED5b5j///2rm03klw5Bslq7fH/f6nhPTtSV5Hph8wgg5T84jFgDJABaFfT6q6uIpN5v1S2aLDwOW36PrZ2HMT7/eVO8kY5VqYde9PZCosMcsp06iiraujUUfswdk+d035/B7/t4OPhUkfCT4LjFCh8bQnZPeqpRiIFEzdHs97okNIJg6dji4djn0a1FGQ61E5DyWxvSK0Cch58+U69bzUe+btmZq2I0Z4tocbyaeTrfZzfuyJ2yzlBY5T3fDoNmd7v/8dUCuczclLd8KiIK17ONWtlU94waIXp+Rq7w4QZeus7lwLuz+Nlujpww+miToOp9wcWKcIFi2ZUuVGHB9dRaUxf173Qz2uGHB1letBVOKvhokZR76vskplcqvTtz773i1EDgYLxPB9qlJCW1TmwK+DLKcvP87lOp95UHkWJV4VF6V2NbS29IwPlOmtZ09U+Jq2QNkspYQcUdE4QnGdnwN5jKkFP935ptdTJgOe9WwnjYilGxQpezXuwlciaWs/FiUx0lOzZZhyA0OrKLCFNnJlW55n+iS7VEaDrquBnTwfBbEItmSzbs4/Vg03/zn1fPQ3btz2cjqYjC4/PoFmHjM6dvOukRQ3eqHNc6eN0Ak6KkHXTNVEj/eSr6hTg2X29Pg6B7IqQK9ItosdOS717f46n9zk9y+0HYx/0jQ+znMUj/e+NN3AKuDupXWlp5QKKT6Zbk8BdoWD/JuePr42GWmuzFFKdAuT55D3n2v8kO3kedZ247/zbDNzIeaf80/3RyZe6p3oWfgrq8b38/X/qxefG2hPf9XivKltGvK4BaVRphXtDRZ30xfNzZgZ+//5Fa+qQOWU7+YF+zq8ZOsTgNZ+YvOdls6WUmdFC+QeEYtfciRFWidNhROvf9ztKrhANrLX8HhhWgOJZVLXQ8fJTn75FL1w35RdmK6iljlO9zpmFpvKP9MH1VXmlzimVDWfAVs8693vxbYBlhKUUlIolF8oqfVInKPeOkXvAFfLncceJlvxxHXSNVK/VbJ/aPPNDnYTMAGptb4+g5/CkWXU4qWN1dxp6doI6KpfO4w6ZPkaUOHYYdaqxSsImzUfiOmmUwxNQmMnnz6o0t+6t4n6eKadL9BOjA6gUuP7ZbQbvSi3Rh23M0iiVC2PE1MfjnLlcu9Anz9t7LD79AYQuS3Ndocba+j0OwPbBesrvvKgqMtIR/L0vvuYyOIK5aOGQ83PeyhWOnJBFbGgv0xaZkWfWcTWvTmAfLpQSzkRf8wuUNUvWj+IGvJ4NFO+7eMWwiNqY3UK5tLLJ/cysXr5K53x/rRxcQ73dANQoc/YWKNx737MaPMbChnX66ePx8tMW0+bhPOkKuWnmmfI2npCV0f/LPNj18brw+Xx6CSR5HbxB/ugx3KUx22yyznnP7M/3PKH3hqxH8AgvOfbEhhrXLJFpqTqlZ5t2WDVcH5fLI9BBg3nWGAy9ZsVGtOYpBTbXqrk7Zfg+jciqZmZeqRXP+wF6OCFRMLoPPaT9M4M28R93qPk+t5AhYwy014V3TMptVwM1q959oEWrNXSaghEZe/3podN4n8ir7r3bqQNcHx/hfKOMaOjPHY6fZzo1xzMm3bXmpb4qMyfluZIV/C+ygCPjTnVrdyKGDRi0W6pX93gTNqy+27XGUCF4RVB1ecEMQncAlug1WubAhukABVArbTYfejBlSHeHnNPYPriHdgtCT25zunAQd/zeu/dyDgE/S4KXHu02jGcW+/M+3TPhgAhex6SKlcBhHiwsMYTCwl8RQ5ZmcA+8Re81SHnCu/H7sCVLwd6VHQV1OufWZOPgkYUTYv38v14vPP0N6ytohoHI3uaAFLfnB4BiFePxoAVgKBZJI+2awc3Xdbmc76vEnrRJeaA2TGsNhfd28Rmj/HnYDD7RFlY9QacBa9su1Zemfe0WRUyqj0zlkH+uAzp9tuZyA1bwqi+XSzH9F4bIml1zJKqtZ/td/L6Db4xNSdHI9em44Gu8cSqKFOZ8Xw1BrQoqv2sp8ruSqv+m8sDyOnWCsIyIRK8OJ2AZpWe56BnFPZVVvS+9Z35ejVF+ThVbNR7UeD2NWs3koDLonn566FzhixXb1uOMvE8nlmRU3TFBx6Pls1B+EXZIjWE9MviocC2l/jTS6UxhiYMqdv5e/+E9MKqynG0II2Y5rPg8vC8qMHyd3306YdY92Uaf2g9BjWPdd35eJ1mqM1BpQ6+ja6H0oIYU03/1u3me9NpnxtzpwDwZw+acMNscPrwOf+gk+unM/pSFps93OhW4RqdxQ6HbWsPTO+rVIrMzmLXSdsQySGsFHl36+PiY08X8/tyQuK42p6mx3HY8az1oCOm+0Sjz/XE6tJgyTVo7AxVq7PJeeU3yHd1zrv/pDNDsMw2Q6NnQstafaF8btxPquOEeqHBUIaU86KfvIW/X7LBz7wHMiN/pfOR7lW5OI1f5E9dR6V/fp8JW/6+843QMUCkdNnD3jjE6rsI+WV4u4L2S4vu9PRUQjc2V53qfEWajufLv9+COqSnP5PlrcdOxRTZOMeebV214bEyvC59V90TPuq6l7u1Jmz/xHqUjze5U2a09GUkveu6VL5FOVUE6/z4VofiZZauqJH3j3SFbKjOsQsEcPzvVSJdrEMPi437tD3imx+7QVt6mz686hgZmlKdqoGV3ujuP4UREtr1o83pc41Bmy8rU83i/ZGwNlrnFWW8FbGVRJu2yLxV5P6bB51k8BhrRTlte1qjZ2/p8qscoXZVS8PX55aUmdTnvufZTjxAep3xHndKn8qwlt9R3NIiqa8tSN6oXbmh70K++VqmO0rTqAvpZvzbCiFi6FWlK71f1CNJ8a5G56ulpcy9bu+DDyJ7tGmdwRvVlvn72+1myG7GP3zNy/VyE88UGxuPOtlqAEfxNS7LNzDMDCl0PNNqHOKV7yJ42ne0MsPZwSgCePfc8D141HMtXw2p1gW80RCKdax0OtVb39imLtsqcbKhBtrmn4Uxvtc1BAuwntYIMFpl8e6BhBQpsOot0oA2dWWOMadSOMbyM9vLeWhgxpbKyXDF0nrE7o0vlvbJqo8zsQmcxIxzPi1cr/TutrynE5HfMhGHpG4Pf/vzMAOo/Xm8PClPusvxXZHD07yMd1Giu3wdp8JrnB2MArUS/w+JVQGRM8d3vz2hVEXT99I7WXjD4VGCU2PMBWPdpzLU1tIo4a2VmvHFC+R1OMGZGlnA6PEPOMRCZrV6GDvNJnegrcKUJINd14bHQ45jlRgezeTUKP9vqC8P6TD7xZ/JAzB36wbCBYo+caY/ElB6ZWxgo8NYdrbY5WGSz24Lu319vMAHCHaHOy57bpzaj1Bl4KOaOnyeG0kzd1cwnZ0d/SDM/J09/PLlL5CKr3S7JlHrebw8kCA/zQQM1zoRU/GDxALchB+7OtiqLx75e7jDXwN+ypdbnSwSypk5EOiMGpqPG3+sHfJ7/wuvW+foKDnrZJa+vvfJQDP32s0A7hmfOXJhEKw5mhAZ/mVOJB2q9fH/NZbz6Efrw5JDRLRzOQStRVdKuGlOc92B5Kw0jJjKTV/D/KkNfHxdYNj8DSTBcHx/AMNwWw93qqi5pr6i+6QPMNlx9W30v+7AYiAgA3qe61roGfozhOhgM78cnbGMYGhi4YiDC0NrAq/3ldlnBDIZYtHFQvZf/f5479i56mdrANXVMBj+LBwiw+KPyQLWf1Xb4Kflh2u5wHY8JBP6roVAvHMPldi1OEu7jw3SiGGYGrjsI+wyA9b7sgt/B/0kPPlUY1RhQZZELpcqfKmBmttLRUWbTfVWG1FA9jVxV3nkvPhhCejdgMZ2zbE+NTmA3dnk9Ktb8jBrVqpQRrnAtxVF/yDz0nghVcDXT7Lz+MpJWtMJsOXF4KJQZ8FnUGNbfdU3Oda91Xx8aKe7M2ftGnc4xZaja/0bvh85CNq70e/HDg3iPluhyDVUp5/NTCdLv0TU4M+FOpwhpRh2sNEr4fco8KQTOqYNqcKhjhHus71U6UnrT/dPPnAorXz8N/HMv1ODi+3mmKND28qU9S0uVzlNx/InW1DmgdF1LNJeNSI3Sm/++aJdZFh9/fcwyHlVW1xrQ0UDHHLNn9v5xY0i2X9ES9x4R0OXc4Jqpc2I/f4sO1XnH5zjPlwpedZDw/sjj9AxqNo3S0EkDXN8zmKAO5HNfeD7USD8NM71HpdH53rJ4xjIQl2Gh55z3wexE0uGeMbg7tJWe9axoto1mpyk/ZTZTQQH6g2v2IfXSIyruStdzP649S/d+7jBWdqdBaxcAnRap5f4ebXe+dMme+qTFeqw590Idi3rONMNy0e1eVrnJocPRquujfEj3SnkAaU35oQZFtBzylFX8nXt7ZpI6Xa1ss1INH+1j0xMKm4LbCgzqWaKsnz00Zb1I3yzl5L2oI4rX0In28/q2GjSrXKZsUVnkxkLwnuBtnulCI22dJ+4RnXbet6V51qLINvK9ZjXKbta+z/spQDWWBRX0maHNJvzLUXG1az4Leefp/DgDFIAPbDh5hWY3qqPq3HteZyrGhxJN2lV6Vvnh7VU6xuAkek40x1KOx8rM57Uo9xgk0/vye3YDrNZdnirPJm3sDhHPkPHSHcxMEDpIyBM0wHwG1Pg9qoee+ij32P9m3/QZf2aAgdxigD19lsQ6be7lRipLPK141595tsYYQLnms9XWUIr3dmLZUSkFH68LrRTJ9F2OoVoLPl4vD5JcodONMh16w1jud82edKpjszr95CNqaBFKa6ecmM9f3Onzul543zdKGJA0IheNDLQrnLrPyhKinLjvG68r+p+VEk3kC4rIPrPYH7gO7ntPnkXHYOjbIs9792EpvX/vg8o9uu9beKCvOfX8c5q67jmvr/qH6vxFZDh1waXDMHi56wVjPF7Uwz5jjc/3wB2X3ocU5lkuV7vmNFSnoRVMYRaoP2cEzm9v71Kk9NiTP4YPYOuRyQUPuNGA53MDgI2wIZpXc7zaa2a50kGjtojBEzw6tOVFGN2Iio+6dAWze6PRTV8pGpjxs/Zq3ivRirdqqOEsN4Rj3haPUJ5E3j/MHWi1wJ2P5llJrfgwBNenw0H/dHQ8QF08kujD0GawxAf5FfOMwlOPJA1N2hKa1LP3PEsH43U1KO26opdOn7qNV1bsSSy8h+3zsXZcH5U/vXfvP1frNgHcz5NnbrV2RaBhT/xhph+X6LRlSB/DloOQ7RNofzMxhueQTj4ddjVGlPPbOotqN9TiTmL2lNZWLVV0EN7P3W/nt6gYc/LvruPzOute42zAM8gKMB2ElHfKP5gJ3COL9ukdNjpes+oggtphCzzPExmP/kxXDAZZ9g9mlqCZBrE7apTkM/FIHXDKu9yh57phre7gfx6bvGrae+ZtyFrzypmzldspO1Q/OXWGSQNiX/G9H68XAJt8rdUKtOA9FbPfppmxSCMymlegrfelw/y+e+//ogefKFL6fzVkFbpwqngAcCO/1G1BeWiB75kdG/Mru9G7DvbywFKhUkNUjXDge7adOg45NfM0tAm9hj9OiXHSImhH37JddC24dko8XDMqxmog7R7ovVHkem0ZdqfRsw66lxCw7KD3jmKGESnJhDMpKmE36ODzvwEeCdwFgzNnL8O9rhIMBlOYt0i5X3vh1369/joEzKKbnxSYM1qhQoa0ow6AnXntpVpcFz7bWRajtK/0oIo7aY3/1uzOXUHf90Pv8zwfJ5PR15ZitDs+qKjROcrv0uxZpeGT5tQ5qevG5zkH0JzCXR2J/JzZOrPWzSOXYtQAq3H3Oqeh8IZTxBmpbftH5ZlZKyvS1oNWPU+GpeVUulsjfYRCYNiEyxnhUX7Edachp8qQKh26N6Qv3WPdw9O41Pfq3iotbIqb0JruF3mf9qLj59faj0jZb7C+Z8EqX9f91H3nGrDvpF77NG71ettEMaFLNfh0wqfSmRrEugc8XzQYZskA2DrAy5L602GF5bdOW9PIGXToC08vbCgPAM5jSWvA6jc0sx366vupvHtTsmx3klM50V6WXB/NNFC5B2A6AfjeyVdqmb3XSJP8Dg1W6D6TbtVpqjxLM4t1L9Q5d2aC6n2jDHfaXFcog7Ym6kEy/LHkyrm/pZSZGehBnX2aNN+vPFyd5+pgpyMQWFnamsFJGtbflWaXEbLKYPz5bcrL3uEZK1O+uHH+2HDFHytYRfk6+UXhWrJXE+XuiKl+I3q/7DyBvV/MDO/3F/7113/8KCdVH9E1OZ2zpI/lqN6zkpUetPex8rLe3XGi0+3OveW1vOLCvMQuaNVLgZ7IvDJ3ptY14Vf3ZgZlozBoZln2ldnILE/N3lP+pLzkunyq5H17Js0yalfpU2sN//rXvzaex8/TkUyHEtdHW3rsTt6l556vLXlAg6fiioqOYX7d5/ahEzZ2nu/X8HvufRmh3Edmojn99AhieBmeG2duOD1z/8OYifUvAFqpGGV4K5/4zq+vr6237XL0tY1P6HR7YPVX0sAkzzRliDrrVV8uJVw/pURWWOhnBVEwJzoyVFatDCe1HZ47aE90F1aY2DNm/ySnq70PE0ydF/vk2XX+1j6RF6vTbZ2xXR7wufUsc0/VUUB61oAN5Ln5WS2JI/2pDDeL4Gxzg/YdDj3/jj6zFSv5MXZZ7bpZnWtBR6XvSXwHvgcl/R4juaDC+/mpblZX4GX0RQcWEy1HlC3XsnTh57nB4if2JVee5Gt+Dv5psBH7WnbZRzokbZM2/Qeib0ggq2KW1bd2+fso67DutXd3VGNgDiCczx/3iRb251i6w8bvK8LeWlVBTDY79REzD26ycuYKJ+We3bQHylT+n3qwrtH8GxbN7mu1O5zG6Khid6g+WoLe3vfbz27xAD91fVgMuWCm56GHYgbQWIrv/3a9wKYeRZ2SfKP3Hplau36uP87XffgL16L3lSG4nrlC+zDqeSO/owzkWXi9Xp5CVp1fmzhEfX29j+DHawWgXV40IHijlgyffEftq1HMeWIpvg+9Twd+GVKNQ52kd88+tGWzIPimVxxX9PvtQaBaAVs0edoX3GOnqx7ZvGVlpxbpdcy1Kl4R6pN/dzuZ+6KDEUmzM9AkdMZsVn5e5ZP3PJ7SxB2a8P62c2hHoXO6zKxiOrWB6BsoLVB+F7/t4ANEYY/ftZG3OsrUeNXP0JBRA58MWbM7tIk333Mqj7wHCkt1dPBv6tzTqaWng02vqQ4bfWY1osks3u/3dg8qICwmGPGeScRcAxIfM6n4DGqwUvBqSQdrxZk1w9eVWPWelxGxO065Dx6NA3rfhxGwYalH1FbaKg0bbiHXUyfP+Lri26RYrtFZOkaQsfC6ijPjaVeS9qwY0p9eG8Dm8KDBqGurDgc1dk+657op7asDjM+t79fvV8euZi6dwpb3cF3XnJR7Ojh/2l/SwfksAL45qHhNNfb0ddIsr7/2aX0H71HP9rrWCKMiovv4HlFeDNhmX8mne3Nmj4rua+PKRkUpiybVgTGG9yji/vpaarmzOirGtu8ahVTaIr1qRgsF0OkYPZVu0pqeBX0eVXD479PQUPpQmtwUHlGuyB/03lQJNayyfN4315b7TvrU59depdxz5Tnnj2a66VnQ5z2FnDoOlBbPteC11DHDR3JlD9P5RgW6VJb4YCp2Sx5gGmz96aLgaar/ujdO5OTaqKNuDdRwmn7fbghzTXiutI2E8lA1BJXWyF+pLJ5ZS7XsvE8dgkpf7HlTQylSh56ecXXk6B4rXSmtqYzdHH21zGg64M3Xuf6Tth43ps2WQcq95Vnuvcez7BmJVNY141D57Bls4T0rHzwjyPpZPwN7EIPffZ5HGvMnDQPRv4VBiLKMNQ6y4jUZYGPWsUWGYYffA52dvE9G7VvzMp6PaMCu+pXqPfzczFRre+a46mynM0BpUpXm8zuUV+o1qdOoLDz1On7X19cXPv76wJrQuNaa96TVFv687jR1hx6kLHLn/coz+ayqu1LH6+PxzAWpbPD3lo1Hq8Gna0n++TGb4veNHs8113vTfZj6Z6vRTyoysadBE7Qmxrs7GsNxM2lu9WM99SzqfaR79nnjeaHOC2DqooalU7PX6VUvlEt5ZUV0Y9qet5SCYVxz5w/3fU8dyte5ebPzSPW773tmqC76Z5ZM6DvVpxtWlpvT6SmZtmr09e5G8DOWvHu9Xl4KNjg5ty0DcVAOS0/kPrz/HsqkuaW3uoFtXdqw9GcOIVD5rjz2PA+E6hunXkwaU/pj4I//Vj5HcD1U5+GZ4ntbZB2pbVOr95NaZd0ugwtK9KGjLsjzv/rQGh0D1R1J1D1oQzjvCUfurNpYWZA2LIJ2+/mZmT6RUa8ZfHQQ+DqslkCqkwBLX+K69Gc5bzltdHTnM7ASjjnvIdmat4/po0dmoz/L6+PlK2fLAcxrUhdt4bD76xUDh2AotvOqshbZe3mRj8aU6jN5gOtNO4VDXygDSDO1lTgzoYN2l9O8htNCB6zi9ZKBeWKPbPQD2+jqer1gUZbIbHsNwKmMQAG62EFq1/G7vOfihW4jsgVpH7hTxddz7y3OYMZpI+4OaamOMHd6stqByQvUJVRG6pnnNfeztlpysIqRDHuu2zCn1+G8vZrYt90TGyz+Rh677C6vRgmFd9I1qGuNMXXWM5FFdbrX6+V9pc3w7gP9Xtn0A6xK8vp6HSZRuk0nXInAHlBiYqwP4iDt6sArTUpRnZ/370Ep/9z1cWHNBVjfdTPzNh5JbRnqC5xgr2dC9RbKnHNttupLOYeThkYPR2aJ/rjKY/tsKTVlh+h7qk/+b/HbDr5fX78A7ALh6/6cv7fW5rhziJDiZ1SoAAhjv+D5tZdx1vBsTmUPmM1tSy2bQDwFGMfYnwqEmeHX+9cs8SilwL6WA00NJF4PJUpCbE3I0SynedDj/vi5U0EE4FPAaDSXElH45Zi4+/ubY4TXmwJzrmFkjY2Bd7do5P29J92pNMw9mgzNI7GlAwNLSWJ25eqNB3x+rXJnXxdGcZ2Bt9rwfL1deerBxFrF+/6aB4v8xvdwTc3rPRxmV4vx7wO/Pv8B092JqZB+SS8012i/GWUqCE/H4+Y0u1fmltL26XDha6Rj3osKx1JKKIMDf//zXzMCoExIac17M4hy5Rs+le737cwQhtlousw1XzSnzjdljHoG2By0tYbP96/tPKoTgb8jBAGvb2b4/OfX3IfTsXQqk+dZ9+yVhq+nR9bOKmeg8sMMl69fjzPDYXjD5oAEZ6QurPH4+z1L1o2Su3/NNRxjYIQxRwNnRnYNPg0vSnd/fRXc05k4UN57lpw6IOA+1m9OlTHcaG/Np/OhFIwZufOMYPv0E6cKhdLR6VDYMr9EiehjzL1UhYpGvtLuqcDN61C5hEfoONFq7lnwKN1P0tDJd4etqP23cxPrwN4pShfTyC1l7hkdNV//fG5ZP1NBwfes15PeuMeUI2tIUCiekycXjJuvh3MDYQcaG3evcrQ1GKigv/c1n88efH6MgdquGd17PwN9PPh8v2AFGJ97+4r4imkEqALCPat1NfllUEKjigSdh1xjNfy4N3OyoXmJOic16plWeUSchvE6U7sRqM4uf45QxoDVyF10GjrFaln3jje2ff77n37sc8H18gbNvmbe47PWCvu0WS620dqx5tNY0H2r3zOv/6d/U0+oZfWu7P1Z0xxrmxkqbB5eLwbxloLrxgjWe8eI/j3VZW/0JXWeuTu63HnNfjkD9+NGz7//+RvX6wPl/fMzK98ZY6B8Ll1JjSzu85w6h0Wj1AeaXJNrYsIv1AicOs/zbHrikt3qjHVa+PuXH8pavV/r+36j1bbRutISAJ92ahbnmTzJtvf03nG9XrjZh7kUXK1FBktdRliJz9hy5rKslH0k9QycjpJJO5/CzyMj4jwr1KHJL/V8Uc74OpTJu7wnaPDZunqWqRFCXj16OAUKcMfSLTnSUK3i11ePAS+UKes8Lset95gc6Pj7339vgcNhUeJ7VHlQLFRpdq97r/rb59dX8DwPQrApPDH1nZATpbg+wJqoHtmuiF2vWDKNtDqmI9jPU2s+4XZEP7rPr0+MR/qPxf44LQDFlvNC6Y8yaMQ9uDzwqZNnRcUWBAld7XWtwUS1NTxx9ngtXQPVWU/HnOrCPHfkwyP0EgDT0UIhdF6X9wfKdvP+dDPTcwyvBDLDlzEI2WYGpZlF4AZgpREiyIGhAWXvKfqe/ZSZ7RcZbTbw169/x3P431prqKF39dFnqXWdjpOVFbeew+V4KS6fp92KZSOp/OP+s4x9jBEyw4I3U9TQuRHl36Tb1nzi7DDUX8yG9PUc0bCrVK9AoU5M3kk+1O+9VRBlo9vdtJe1ksxttMH+e+Kko6OWgYBNlvc9MDGrw5T2gW09lUfRaT2vB8xyYsoqhO0z9cWQv4rPe9FcfGHoqIhBMbE2GHjfnzP7c+mxEcwdA+V5x72OuTZjGO6nztdqDGBrtcEwYKPjP//rP0MXK/O6PE++T76uDIqMOLNFAr9mUkljUdlXaKc30cMx5SbM0K4XYLu9cJ59tRPWcLGBdi23ITPgSq1iNwYfHH2TWSxvvpo7Vy0SMwYMxdQhyKqIHrQvfp22KjOc30aGW/E2CO1iQoTt+n3YVjzru27JagmX11/3ewa3SJfP86BEAK7FuqpNRDsDAMpd5msqEwiTZ/V9rtG3NmwH28t/AXiQwcaiv4LlwLSBq7aZGjCos8X1PQv191BMrdZEIpFIJBKJRCKRSCQSiUQi8Ufh93MAE4lEIpFIJBKJRCKRSCQSicT/G9LBl0gkEolEIpFIJBKJRCKRSPzBSAdfIpFIJBKJRCKRSCQSiUQi8QcjHXyJRCKRSCQSiUQikUgkEonEH4x08CUSiUQikUgkEolEIpFIJBJ/MNLBl0gkEolEIpFIJBKJRCKRSPzBSAdfIpFIJBKJRCKRSCQSiUQi8QcjHXyJRCKRSCQSiUQikUgkEonEH4x08CUSiUQikUgkEolEIpFIJBJ/MNLBl0gkEolEIpFIJBKJRCKRSPzBSAdfIpFIJBKJRCKRSCQSiUQi8QcjHXyJRCKRSCQSiUQikUgkEonEH4x08CUSiUQikUgkEolEIpFIJBJ/MNLBl0gkEolEIpFIJBKJRCKRSPzBSAdfIpFIJBKJRCKRSCQSiUQi8QfjvwH8daHK38fM2AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 15/15 [00:03<00:00, 4.69it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "results of current batch:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAAC7CAYAAAD4xCBLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOz9OayuWbauCT2z+5q/Wc1uIiIj82TmOXnObShKwsIEAw8PEywkLFwMCgls8EuYSEhYWHhl0ogClW5X997TZHOij9jtav/u62aLMeZaEedchKhKA1L6XykzIjN27L3W+r9vzjHe8b7vUKWUwhlnnHHGGWecccYZZ5xxxhlnnHHGGWec8ScJ/f/rL+CMM84444wzzjjjjDPOOOOMM84444wzzvivjzPBd8YZZ5xxxhlnnHHGGWecccYZZ5xxxhl/wjgTfGecccYZZ5xxxhlnnHHGGWecccYZZ5zxJ4wzwXfGGWecccYZZ5xxxhlnnHHGGWecccYZf8I4E3xnnHHGGWecccYZZ5xxxhlnnHHGGWec8SeMM8F3xhlnnHHGGWecccYZZ5xxxhlnnHHGGX/COBN8Z5xxxhlnnHHGGWecccYZZ5xxxhlnnPEnjDPBd8YZZ5xxxhlnnHHGGWecccYZZ5xxxhl/wjgTfGecccYZZ5xxxhlnnHHGGWecccYZZ5zxJ4wzwXfGGWecccYZZ5xxxhlnnHHGGWecccYZf8I4E3xnnHHGGWecccYZZ5xxxhlnnHHGGWec8SeMM8F3xhlnnHHGGWecccYZZ5xxxhlnnHHGGX/COBN8Z5xxxhlnnHHGGWecccYZZ5xxxhlnnPEnjDPBd8YZZ5xxxhlnnHHGGWecccYZZ5xxxhl/wjgTfGecccYZZ5xxxhlnnHHGGWecccYZZ5zxJwz7x/4G/7f//F/w61/9ir41FBQP+4n9aeZ4GIgx0lhorcYaRU6Ji+2KyQdyKuhS0BpevboipoxfIn3f4pxhmT25KFAKYw1aFdarHucMUEipYIwm5czhMAAKkD9DG4XWCgr0fYuikAsopSkUQkwsPkIBraBxBusM47QQYkYrjXMWraCUjDEWozXWGgqFcY6chgVIWGOBgtWKi4sVMUaOJ880LfiQ2B1O5Jy4WPesWi1fp4KmcQQfyQXMT75ebSwlJ7QxTLMnpUzTONrWopXCNY5V32GspmRYfCDFRM6ZEAJaG7TWUApQQCkAcsoYrSglE3MG5GdntEIZTY7y99oalDJst2u6tgGtcW2DUgpKhlI/eCV/hPoPngj1/EueUIr8azFlxtmDKny82fF42PPV9zf8F//2DxxOJ2KKzN4TYiTGgNWamApocFrzP/7v/3f5xeev0QqOx4VSP+/VumfdOcZlYRhmALq+wWoFSgOFnAuLj5RSsNbw4tU1wzAxTR5tNFobcgZn5HP0PhNS5sXlBmvAOc3Dw4nNdk3JUb6vXLD1eVwWL0+gUmgtz0nXdfR9R4yB4TShlCLlglKa6+sLIJNzJmd5JkspNM5gjJbfRyke7h9JKWGtpeRMyglrHVqB1prD8cSyeJq2ZbPu6bqWUjIAD/c7Ysy0jSHnTCmw2awZZ8/d7SOrdcdq1ZEz9KuOnDLzNDOOI33f4ZyhazuUVsyLZ1k82lhizGgNaEPjWnxWLCmRY6QU8D7SOY3SsD+MpAjWQtNZrLU4p7Gu4ThpTstCYxVd25GK4i9/vuXzlxf1weEfPEuKp/9dfvLPfnwCSymAYvGeUgohRkKK/PbvvuBf/Rf/gi///rfkMINKvLq8JuWCpmCsY1kmpmlhyYVcCv+d/8H/hM9+9jkXnUZrOSNUyZyGET/NxOBx1nFxsUIpGKe5PhOZlDLWOS6uL7kf4DgmXlys5DOg0LUOZxSWTN8axnGibR2t0+RSSDHjrKbvLDEElJLn3GoDRZ4TbQylyBlojbzzOWestfJ7pIQxBgCtFQqIuWCMeT5rUsq4xlIKhJCYlsDt48jD44HttqMxitl7huNMNpbjMNF1HZ++foG1ihQTXeswRqONwWgtzzEw+8TjYWF3XIDC5bpn3VtygcfDxONpIcQIOfHJVc921dI4Q9toGqvpGsuqdbjGEmNkmhZikndH/jxFybm+UwofEylnKAqtCkoVrNEUtJw7S2Z/GPEpkWImZuhazV/96jOuNp3cHf/omSv1mSqlnmul/OQ8U/LXUvAxcvt45N3tIw+7I53WaJv49ocbvvzmB/b7A37xaK25uFjz+ee/QBXP23cf8eOO/+R/+j/k9etPeHN74Lu397jGcTqd8D7T9y3bVQM5kLKiUPAhkXMh50TbWC42PddXWx4ejoQYudp0XG9anJXPvZRC0zic1TStQ1nHw8OBYfSsVz19ZzEacoGCIfjAqm/puoZxnPA+0jYOYxS5FIw2KFWIMVJSppREKRlr5CzUxqKNwftASgXXWKzRhCD3VFGajw8jxyWjKDSNZR4XfCrk6EloFp9QufDqky33D0fu9wsXHVxdrvHLQlsy1ytNznIExCh3cYpRngut63kk76NWWu5wp7GNk3d+mOV7KJBywbWW7dWaF69f4H1Ca8N60zMtnhgycUms1i3Xrzbc3U8cx4S1mlUrn8s8R/k6rKWxipQTyhhQluNxwhjF55+9pOsclFKfr6eSQD2fZOWn/10gZznPUy6EVPhwe8/t/QPDceBwGPjdb7/g+zff83h/hyKz+IUcY617MouPDPNM3zX8L/8X/3Osa4kps2odq3XLMntiBucM1sj7lWJ+viut1SgFIRb5uaaMtQ4fE03j6FqL0XIe9X2H1oqSC5TCZt3Rd04myUqKhqIgZwhRnuNCqfeZQmst/26tI1KWryOlTC4FrRRGK6w1KOQMyz+5E1LO/+DXeB/JJaGU4jQsTHOg5MTl5QoUvPvwyP1+IsVC4zRK5ee/TykyzxGlLYWMUQpFwVhD2zjaRs7SnBUxgVGKvrdAom0cPiqGMXKx6bm6bNFGczpNHPcTWSUajdTBTp73cVzQytB3hlwSWsn5nXPCOcerT64pSjNPkZhgmD0JxZffP+CXxGbdsW4UL6/XnE4zisDrl1tev7hk1bdy7j9/DFmeP+QuKEXqmVJ/jj5lHnYHvnlzw9dfv+F4HPiLX3zOzz675N/829/yX/67v+Hjxw9kItEHFIWQonweuXC17fif/Y/+e/Rtw+aTX1LaFTff/UC3XtfnSVNKRikNxmJci2uaWrtC8JHkJ7arBp0TYRlxWmGU1OyqJDnfS8E6h+t7wjyhc8Q0LcYYeSZtw+rV57jNFShN+bGI+GkpCzydlZmSAmEc8PNInAdS8Kgi35dx9rmoNUajURir0UqTFRjbgLFgW0afefvuIzkXyNC2jq5vUCiWULh92KGVoXUK5zTOtVASRmuMKSyTh3pPWSPPVwyBFAJag0HOhuwH0jgRQ0DbBg43mOTR8gY9v1eop78a0JqsDcX1LP1LxmzJ2jENi/RfMZNNy+vXF3SNZhoWhiVxnDwPx5klJIyGF1eXfPr6Gm0ydw87bm933Hy85ebmluE0ELOcx422NI1DabkHUs5END5DUPDJz17z+eefcxxGvvjhB95+eM9xvycsMwZF6wyuaUilMI4j43RimUdK8Pzy01f87/+3/ykXl5coJWfV02mqnstD+ZuYCtPieTwMPOyPFGXYHwZKgcYasJpliaRcMEqxbi2uMcxzwDlL31pU/bkrraXerfda3zqps1J9NuufHEMmlUyKCa01fWNR2rB4z6sXW15erpm9R2tDTIlpWij1DKMUYiqkLHVj6wzrVc921aNVkfqEQvnxOybXP1gpxTBOfLh9kO+pwMPDI9YY1ps1jdWkGLHO8tQ7N22DNQZrDTEmdK0vjdGklAghcjyOGGNrX2pQFGJM5CznSds4Upbvd1k8i18wxvH4uCfnwvXlBS9fblEKDscT+8PIPC2o52fVcDrNhBC4fnHJat0wz4HD4YR1jhgCTdtQcsH7gHGWVy8vebx/5Hd//y3v3n1kmScgsiyREDxKybtqjSZj0Eo9188aRb/uWfcdyxL49t0HBh+J0XPz8QfavuX+w7cEP/GrX/6C/+R/9b+h61dopVD1P1prdO3ZtFbP/ZtSCqWf/p7nX1+K9O7juKAxdJ3cvVcXG1Z9i9FP3Y0iJLh92LE/Ts/PszW63g2ZxlmaWscvS5BnubE4a0gpPderoFgWj629AxQ26xUpJZw1bDcdKUWcazBGQ5Y74qlWgada+B+en//4f/30lVP1e1AKubt85MPNI/vDxHrdoVRhvz/ifSSEiNYKU3t2pTXBB6xVrLuWprHsDzMxC99itJKvUympH4xwIlpprDM4q1ivOtCKaVrYbNbMy8Lu8cQ8L3jv6/ck9YWzFqXAe19rRmi7Rs72kglB7jdjNMZYCnIX9aseZy3Gau7u7nl43DMMIyHI70MprFY9r1+/omlaZh+5ubvj/mHHw27HPM94v7DMnqIyKEMu8OKi53/3n/6v+WPwRxN8MUYOpwmrV6QCN/dHJh8gR1adRZWIJgt54gzTtEhBljMxZZRWnE4Tq1WPdZoYI5RM2za1qFOkGNHOMM8LigbXWIyRBjPlTIyJEDNGa9rWoZGqP+bMNC04Z2uhHIkpM82emKXoX3UNKRfSEvE+orSR4lBB01q01qSYKCi89wxLZH+caZymsYYUPForIprd/oRfAj4VDoeBYZhZdQ1N25BTZFo0bWPRaNquBWCZpRA3WqOQpkAaFCUkgHH4EAjeSwPvHI+PB7rW0fc91lhMPZCb1j0/nDFElNbP5ACAUkKwGIo0w0Ee7ugTMciltAwLx9OC0vcYDShF3/e8/uSaq6stzkoTJ5US5OeOuDwTqPAjqTdOC0pr7h8ODEviw80Db27u+Nsvv2f3sOM0L3Lx1YYR5HDqjGLbd5yWGas0RkPwEw/3B3KRF9taISxD8DwuCyFkYkps1i05JpK1LPOE0DgFrYVIco3jdBiELF21HI4TKS2sV2sycP+wp+97WmflkpoDXd9yfX1B8PL1piTNj1aGnKMQD1rVZjHRti3GaPyyEGPEGHm2m7YlhCwEjC5yGcb83OnFmCi50LYNu90O70MthqGxloQmhEhRivv7B3Il7TbrDVqXZyJv9/DIaZgwxmGNNEIAH95/4PrFC16/fsnDwyM5F7TWLPOMdY6XL19gjGaaJrz3BC9fu9KK7WbNPM1CCOdM21hefXLJOEe++3gkF03Jmd048+nVSi6YnBnHgLEKHxJtm0iNoQwTzlg4nvjhwwf6Vj6L74ZrTtcXrC+2bLZr2q5DK/1MUhVgGifarpOfma7E8TBxe3vL5eUl797doIzh3bv33Hz4yL//N/+KMJ9orcWYHussyjgMia6x3J9OHI5HVFHcTwNGaYxR7E4TlIbLdc84zpwOB6ZpYtM5KY5yYhwmcknyOtTmUmuDsQ1hSayahpBhdxrYrlohOmKkFEOkEEukYCg+E1PBaISIcYYUEyhT36jMvCw4a9DCJONcAyXhvcfaJ1JloeRCTBFjLc46Zh+k/FP1Z5iF7CgIGZtS5DQlvn17yzR7Nl2DoXB7f0Abwxgy0zDw+uUV1xdbUkp4//RMRXIGZQzr3mGNqmeu42rT0DrD7rRwfxj58Jh5sW342asNlyvN3WFClYb9EPjhwwPGajqnWbctfevYrFu0KrSNYd01tTiCEAKlPDX2QjpZa2vRlgAhfpYYCalwGGTYYp2l1RZPJPnAOGf+y99+yycvtnz+6Qu2664OddTzAKPAM7GAKnVmoggp8Xgc+e6HG97c7VjGiRfX1+wPB/7+4z3vP7xnmhZCCJAim77n4vISdOHLL/6G/eFASZHOydc/LIGv3zzKcCMVUtKsVw3kxDTPtE5IfdNYxmkhZei7hq61NMYyDpMQ8BohJoLGmBarC0rJ3aVUAz5hsxSjbePIWT7LrmvpWifDJYS48D4yTh5QuAJ+9lI0mIRShZySDIWkcpXGWxn5e2PJJcjdVIlmazRLgbd3A6dxoSiL04oSM9oajrsDWitCSWgDL663jCfPYfSstg0pBEJMhGmmaTQ+OfmMUkLrwjAMUlBqRfYZlCLVorHoTEkyMCrLQtNIgxBipADKaOZ55vjDkY/v72jajrbvWK07mtax3a4hZk6nE1pnri63eH9gWjzjEIEMCow2HMeZ07gwTjMKzWbd0jqLcy3//m+/5pPXV3z66Qu65sfyqyhp0koupJzkua7DgofHA0tK3N488Hg88v7dB7TWfPj4ka+//IrhcISchJiIAVWE+J7nhdEvTPNMzAnnFMdxoVtZnDFoYxkGL4OyknFFVTJRSW2mFErLUDJVItsYS+OEpDCmkDIcjhObVU9MmWE60rWWVdeiNZxGIfI3q46cE0Zbckk/GbhR21N5r3KW580aQyGTUqmNEc9NkpDbpRIyQsrkXFBa1eGHfm5iZh8YZs/+KE1k4+SdedxPnIaRw2kmpQJkjDaMY0CTMU1LoRKORRr+YgyWgqsDuJgUOhX63tJrxXEInE4zm3UnZG/K9J1hXmbevDsR/EJjNHmJTMOJQkQbVUlmw+rikhhmhqSwTqMITJNnHGf6VU9I4JylaRq+eXvkcY6EZeZ62/CrV2tap4SYDAM2TYSs+OrrN/zbv/4d19dX/PyzV/zi55/SNvKzeRoKLUvgcDxxPM0y7OsdX337gbuHI8s88vJqzX/7v/VP+OrrN/wf/o//J969/SikqS7oJPfdU30aUySnTEoN0S/4nJn2O/RW0fUdbdugtWIeZ5ytA4OmZXVxgbWOHBM5J4JfMAqWccSSUAqcMfJZl0LXtFLnlyQEg/cYa1FZk5O800UZbIqc3n2L3VzQXn2C7XrCXM8J11JyJk4DcZnQlRDPKZP9hNZG6tyiSIlKPAshkpWWRlMmZ2QSxhpyWCBnxqXw8eFIzoWmMXRdSwiFh91EylLrzjHTWui6FUoVVE4onUk+sESP0VSCyeKXWX6uIWA0RJ/BGFgG5vt7il8oxqBeXVOKhpKFJC6FkqCoRCGjlJFhfb3PtJ3olyNdtyV0L2k6yykkijb0rWXddQTvMaaBPBLmmZwizlk+fXVFyZkf3r7l5vae+4cHbm8fWBZPKQlToHMGZ1pUUYRSiCHhcyEkhe1bfvGLz3jx8hWPw4l/9Xd/w/fv3jINIzkGtIKutXRdR0ye/fGRaRrrzyJScsL8pBdV/INxL5W7fu5Hbh5OvL3dMS0i5OibhnE5kVJi2/VsVh37YWRaPDllNk/12hJQSkh/rRQ5ZRS1DskyaC9KhvzrtiVrLcOynAl14JN9fSZz5jhMMoxvG3aHEY2i6wzz4vEhymmYCzELmVCK1PWH04A1mslHDqeBy+2GvnUybK8ilnkJHE8jBTDG8Lg/Mk2eaZwYx5HVqudiuyEmGUbFKH/tuhZrrRCKUfpFay3ee0ou5Cz99zxPOOtEGEKGYhmnkRDk+1yt13K2TzPeB25v77FW0/VdvZ8S1H53GMfa0xfa1hKWTPABiieEhXnyRL/mmBK7/YHTMOKaBlM/1xzlnXPW8u3X3/PlV99ye//IfBqxVhNKIqaEQuGsolGGxjkWn8gkXOOwTYPOcJwG7nY73t7ecBoHUsw0RnHaf2AcNCnNaC13owJ0/eszkQfP99RPiTz1D/6ZquRwYb8/MS2eksEZqQ2csxyHkRADF5serQwhJm7vdwyTfA5ouQN9CDhraZyjsZacEosPaG1JKbEs4XnAj6KKZeRzDSk+E4TDNOKsJS5R6lyjiMPMqu9YdY30Gs+dl3omGEXcU37yxv1kcqJ+8i4q+VmhFI/HmR/e3eBjZp48p+GEVor4RELmjNYaHwJtHQr7kgHL/jhgq6ip73tiCCzzgtJC1jZNg9YF5zR91xBjZp4WHu4eSaXQNC37/cCyPNWwGk3Bh0iMUc7EKpIy1uCcEKQxRpYoHEaMsZK3woGs12v6TgQ80zTz4eMHDocj3idCDBij2azXfPbpZ5jGcv/wwNuvv+Nxf2KcZmIKLPNUa3NFUSLMsM7K4Jw/Hn80wVdykgl6zoQCISXmcaLkQGs6eqtJpRJJKaEBVWlgazUpZQ6HE+tVR981zPNCiDDOI0Yb2tY9NxPWmnoAgrUGlBR11iistqLqKJnZJ5awkHOh65xMF5CDWabgQmZ1XVsPKilwm8aJUqEq4FLM+CzMMkozzInbxwMFRecs3gT61kjTEDMxBkIs7A5HFIrtRn5/OWwtzlQmG5jG5flglgJTmoOckzSs2tbGbCEnITxzVigNOSumKTAOHm0M2ijatqF1DiiULM2NMTJt11qhjRHCNOT6mSmMtZXcWUg5My2J3ZMaMsvPI+VCCJl5mLjtHZfXW168fFGVa4qcC8fTgGtbNIr39w9YYxiHia/ffODr7z/w6tVLVt2Ky7bl6/c3/D//3W9ZvIcU5HPQEJBaKuVMpy3OOS67Fq0ym6altYWUYPYyETTOsL24ZDgJUbd/eKRoS2NFBXU8zTROnhFrNX0rDcd63TF7efmg0HctSmnGcSIEIblEsRZYfKDrGlwjapRxmjFa0TQWlTPOWWIUxaFrW4JfpHHSjpyEXJZGOdB2HU2jCCGyzJ5DSWw3K2Jc6kHQobQRJdU4cnd7S86F1XpNCJ4YREmljEEbmWykApeXF3R9zziOWGtou5acMz5GCoWURNW5vbzk8f4BrTUhejbrDZ9++pK7hx1N02CUXAB39w+0bcP19TW73Y6ng32ZFzlQjSUsAdO2uJIZTydcv5HnriSZMHYN7+/2/MUvPuFq05NDnV6mzOH+AZLncP+Anwbi4ukaxyknHkLg2xSralPRb1dcv37Fervl859/zjQvXF5c8sVX39C0DbvHRxSFkhPf//CW0zDwV7/5S5bZczp53r35PX6aZSLpeqyVqc7sPdM0oXImq56Pjzt89LTGcZqkCMop0lotBWTJHHZ7/DyyWrc4a1l8gKKY5gXIOGek8LOW1aqjX/dY1zAsGVsKtm3wUZQY7vnerU2CbYgpEhZP1xp667DGkLIUA37xWKOluNEKoxQpR/wSCVWt2LYtOskkWSGkTopCFKA02lghpKsCJ+VEThFjDOOS+O1XPzDNMpTJKXN7fySlwhwmfEp8+vqKVd8CBecUp8HTtA5rDYfTxBwjIbZsV600MzGJQq+ImsNZxfv7E+/vI4cx8OlFw9V2zePhxJ99smK+6vhwf+BwWrjfzxhjaKymMYpV19A2Qqoa81Q4gV88PooK1hrNqm9ZdY62dVCynOtK40PGp8IcZozW9UKVA8daw+Nh5H53ZL1q+dknL3h5fYEuipQSsw9AYZkD47yw24+8v3ng5v6B07Sw2l5x0Tm8Vvy7v/lb3r55T/QLlIJWosDr2hXTPPH27VdM4yiFgpF8DGNafIzMS2BeEkorUslMPrDZdLTGYXSR4dgSeXg8UpRis2pE5bheEeZFtBol01opTEKITEpVAlDuiFDV3qoXsn6cZtC6FvoJBRijaZzDOctpmEl1CCeiqh8n1DHIZxuzNNhaa/mr4R8UtIAMJEomFs0PN3seTgurVU+aA+Pi2W5XDONEzJlt39IrTdNYhnFmnBdao7ApYlRmOR4heLpuAz7iU8Q1opxorJHnumSUNiijWHzAFOSOzRmrDcZq/OzJpcivU0+1QcZ1HSkkjocT+8e9qIyMxlhLyknUucZx/eqCtu+JEdCWVOub3XEkKxkKrvuG7WbFOI7S2O0PbLcbvvvuLb/7/Zf883/+G1HQVjXm8TTxuNtzHEf2xyP3Dw88Pu54fDww+8gvfv5zmrZjOh35/quvWIYRpQqkiA9CsKRSWHyQJjYEfAworatSWQaNbT2AsspYp6vazVEypBxRCqxVOCfDw5xleNpU5eOq67DakLI0BTGa54Fk9lJ/xTzTNQ5rntTEFmfr16GFOGyKNCqVNyel2vwZIYn98qPiPldFcsqlKu4dMUYpyLWodnIS1WXJhVAis0+8//jIafKitFy1pBAZp8QwzrUJLzRGobStQ63AqmuIUZQ0aEXrHI3S0vhXhVnbtsQYyDkRk6FrOrRaUFaRcsY6i04zjXFMMXB6fODiYsMyHDjtdujyVIdJoxBzYrx/g7KOpt8yTJGsNEYpHIn54QG/29FvNuQcuWhbOhOwm0xnF/RpDyUxZpjnH9X2KiQ2SnO4veXDt9/zzdWGf/JPf0O/XnE4nfj62ze8e39LCJHPPvuMT3/2M774+i2744nhNHL98pLN5Zb/7D/7P/PXv/094ziLuiQnckz4nAjLQkmZhDRqxhhc42hXK1ZOU4oMfCYtiqFiFE0nw6kUMiUmoo8yzF+kuQ/zJPcZGW0VVovCOmX5ucWosEbUGk/1alGaohVkAynj00QyMtTOpwPzMlFcix+OosZ0jQwrQ6RkGbRrZ0GLwjYGD9rS9D3eh2dFcNYW3bTkGKrKJaOrQ6kAc9B8eDywpIwqCk0hWctxWJi8kNHOalGdKMXpNGAUGFVwumCVkjPPQI6e0XtIct6WXMhR7rtw3BF295SwVBJP03RrBhS2gMqA0qgirgQhq4Ucp4DSBRUTqBkznbDmI1vb0bdXjPYS5zoOdzcsIeKDnHPWKC5WLcY5htORj3cP3Hy84eHhgWlaUErEEdZoVm0rTopcWHIiFk0oGrfu+M2f/xmvXr/i/f0j/+Kv/x3vPrxnHE5CHOfEptPkoog58bi7x1di8ZnYMwpVRMVTZxA/levV5vTHv3z99pZv3t7hg9Q+RikaZ0m5sOla2kbIlWGcISeutz2XK6mltdP0fQc54Z9cUsgwcpgXOm0wyhBSBK0wWT0rj8XR4jHG4JeFHDOr1YpxXlj1MlD0IbJeN8xLeB7CWiNkYgGm6GWga+owLWdCKNw/7un7rjpChCCcZk+sYpfDYeD2YccwjCLscI7VesXifSX2oggiNiv0k0IvZUoqNG1L+skQIMXIw/0DOSf6XtRu1lh2u52cpTlzdbWllMQyL4zjWN0nmZILp+OJcZjQVlOKEBtLJVKDX+qQJgkBtyxQMqUEKJHVaoNWW64uVhQ02miijww+Mh8HPr674dvvf2C3O5BzoF05IaxiwipRzqJkiOPnCaUNTdOgFLy/v8GgeDzNaKe4f3hPGPf4UN/tNBMiCCXwI6n3I4n3j8g8pX7y/9fBlH4i+uS5OB6FaPI+sF71VUFdqvtQhtPTHCglcP+45zhMWOewVld1ukZhqjBIzsV5CaIwNvLnFWCuaj3I1emjoXMs88I0Sq+bc4b2yRkysln1lALHk3x+280Ka/TzHf0E9Uz8/RRC8j3VfaqKfnIpfLzb8/bjA4uPTOPE4j2NlWFVrsNEDajavwBM01jdRQGVE9vVpgpGpmeyzTkh0UrOuEazWvXEkDjs5TM0SvPy5Qum6kxTWhOicCeUJ0FMZnt5ITW7EUHTcDoxx/CjYCk9vc+Ki8stfb8ixsxxGHh8eOT+7p5pnuVsMYaLiw3XL17QrVbc3Nzw7uMd+8Px2ZUZvCemgDYaKZrlrs+VDP1RyfjH4Y8m+DarlkYXkdTnQmPgYt1AFoXbUwPQaP38OKQsUzKlNUXJAb0snr5bo/pWJNylMEwLIaXa2In6zxoFJZOSoW0sMaXnacm0hCpnflJdyJ/Xt07+WZbCv9GWTd+ildjWRLknv3hePCkkYcrrA5sL7E8TpznSO4s2hWlaaNcdvhYnQsYFTqeJtmtY9Q3RR4wV6W2KSXwp2lJUffm0KE6q+Addi+jjaYSiaBpTJ9SKEIJMMFPCaIN2psqzqQ/9wqieCCgnJECIlFpEOKPYDwsoTdtIk/9kTwohcRykeYWnSXph9gmnFZTEFCO7o+KHd7f064/ILFNzHCZpbMaZ/fHE27u9qAdzluI9Zn7x2Wd89uqSL776jr/57Zdk73EaGuOq3aLQaUVwckltVx2rxuKUJqkW76PY/5JMZCwFXTTbiw1t2zAOMzFnfPBAS0yz1Hyl0DhL21jaVhqpeZ5laqNg1fc0bYMxE8ZoToMcHE+H/zwH3n184MX1JeSMc5plWYgxs+pbYpIJGApyjPRdJwdm4XlaEqudzmhF1/U0KTMMI6dTIBVVVRyKxUeMhtMwEpYFay1t4wjLjA9i74s50Rj9bA+5Xl8QY2I4HlmtVhhbbZvW8Mmnn/L2zQ8sc8AvhrYNuKZhGkf8OLD3ns3lNddXl7x/L4q3tmkwxjAMO66vLri+vmYcB7EMVBOALhGlCjouHHYz4+TZXIAmseTC4TDTKCE/v/nmDS+vtvjhwHw8sYwD0+kgjU2ptjqtWSaPj4EQI7lkafCSZ35cePO4Y5w9/7ooQiXohbj0ojIpBWUsyzyigG/HBWM1D/sDw3zgcnNJv15RsjDrx/nIHD2704nr9Zb7w5Gb/Y4QPderLcM00TSOxhpaZ0ilsD8e0Bo2qw6rRS0wTjPrVYdSCmca+lUralptse5pwgnrztK1Dh8Sk094v2DahtYaUslgNLEUnLWserHpalUYfcQoUFrOvsUvWK1orAX7pLQB5xpSEhVezrpO5yVOwBj7bM1JKeEX/3z5ipUXPt7s+N23HwhepPnOWg6nAbTl4XBiu9ny6asLmQCGwDJ7ad5aJ0ObmKSICImH3cgwyfRR7i2NyqKq7RvLb37+go+PA/vTzB+GhYvOklJm8SMvth2fXK54ebFifxo5jgvT5BlSZn+acFazahsaZ1l1QuRbK1bd2cM0R46DqBdLkQn7k425IF+Lq0OdrrEyXCqQEqQY0FqRfOLrb97yuz98x+wDN3cP7I4nltkzDhPBR5SxUDLXL16w3a44PNzy9e0d+8cHINNogzJZBjk54U97jg8LIQYo0sSZxpHINEWaFFB0jePTlyve3tyDs9VCkSkZjHOUomT4omDTtXzy4oK+d9w+7IleVOxKiVZZrDZPn0+m1CGPs4ZcCvO80HWK9apnnCeUKs9E0+I969VKCNoQcc7V4jZKAd51xBDqaSDPoK6DKUW9d7WhFJnM26qCzhj+/odbvr955PXlBaVGMWAU+8ORvu1pOxk6NU5xtxuIKdIYic4wnaMx8vNbEozLyHrd0bUdOQRCzJXAN9XKLNNgser9OFjTSqyXSuln60UpT5KAQpjlXAn1/HaNEwtyjlilMFYR48yHtycWLz+HmMWSHnIhKRmkxVSJJ6i/lxZ1LZCTFPp//Xe/p1QLW86Z0zgxTAvjOJFkRC5qGatZtR2H21uG3Z6cAsV7Ue/GKGqMev9N3ktEAQWjYN31KMSC0rmGdd/SNo7TNLPKGm0t8UmRrjVd29CvHF3bchpmrLE0bcM4eYyFrhWyXQFat6LeiqkW6bBZGeYl1gYmUhppRA7Hke1GmgejxZ47L+HZxlRKeVbAqyJRETGV+vnkOvD4scUIdWoek3zOUBsB1PPw98PtgeNpZt03GGuZ58BpmFFKE3ykbTX92hGWwOE0koGucygtDVMB+say7lumxdNYjWtaQkqMw8Bq1dGtO4wRuW/ft5QYIQdyKEyniQ9vPjDMHh0i8bQjh0iqd7RuZACclcWHQdQ6KTEfd+yHhc5ZutaSp4HiIyEl/OFWauK2lc9AaWLXErIMdsMiKs559qQaV5NiIuZC17Y8vj/yf/3+HaclgLV89vnP+Gf/jf+I9arj8fHAv/nXf8v97QdyGFj3HW+/mTmcJt5+uBXXR07kBBT5zC2grSWR5LMsYjtWQCqKogzkwmZ7QSyauMw0bYt2Da5p5Y4yhq6X+uX0uOdm/0jwE42VWpkoTp4q2H+2fD0NGKyxaCV3DcagrKNEjy5QUsSnIMq1FNHVHZNSgrCgsoFCVYQWcojkLDWd3J9yP1hnUFYGGyUL0aa1IeaCzlQ1kyJqw8fdiXHxUEC7HmXFrj0vVcFUCqUYTsNA6hoaVeidYt26aj1DFH11WK9yBlWIJYt673BgOR1IfkbXOBalFKbroT5DGVFWZn40b+afROwUCrr6lUvOQpjqgg4nzHJiqz+QTw26aAwaVzQLDRu3ppie292OL99+5MOHO5awCBGtwWnoGxmC5pxZcsEXSMqxubrkl7/+ORdXWz7c3fN/+Rf/ku/fvSOMA6pEDLW+1QofAuPs5V5JCWEwE1qBVRLZo6w4XuR5+8dkw9P3CT982PHND7dVrCDOmb5rGMYJtNy9u8MRXy20F6uO1jkZ8LcOUsIoCFXFrFXmYrMixYhzBqWg0YZxXhj1gqoEqmsavJ9RCvq2JcXInLLcP0AMkXXfsMwLp5OW6BqeRurSqy6L/NrGGbq2xyjN5AOHw7GqQgOHUthebCAXUozEkNmPM/f3j4QY6NqGXETM4Jf5eWDTV9Ve37fixtAaqzTKKXzwNM0aX4mY27t7lmVhtV7RrzraruV0PLHMi9iOu5ZV37HMM+M4kXOqMSOB9XqL0qDNQt938uflzDzP8t4VsUOGlBjGqX5N/fPQSlf11GrVMY4Lw/HENB0ZDiemyfPDhxtO41xV5Ro/L+J40oqm9q8A4zLTNg2lJKbqrHp/8w6j4HTYM/uRsIykMNczIdehpsZog49PTjj+A+ut/sl/5Fz+CdGH/MeHyP5weh5G2uqG01pU3M4otDNQMvMS2O2PTIsn5cwyDry8uqJUPsVog2s03kf8IjWLDMDEVWG0+Bil9rG1DolST2qJaklJVIzyjHR4v3AaRtbrvqrZPTlD1xpWfVt7h3/8pv1ExacKCl1J6gJK433i+/e3fLw7ME4z0zSJa0yJ6GiuAglrjMQS9T3jNOMrCe2M1HROW1LwHE4DSsuv7bqGzWZdRQsaYzX3D4+EJbDMM6vNGlXg8f6eWO3lIXicc0IoJ3FLbi82rFY9+92enCKn0/G5v1JK1/NaYm422y2vP/mEh8dHPn685e7unuPxCKk6BFc9fS+xTR9ubnnYHzieRpYl1OGrRyvhdbSWGImoUuUcRAyXUoAMIfj/t2fafxX80QSfqaqhGAtNo7jcdpjSMk0T8+yJMbFqrDTiiAWVLD+wJ6tDKYV5mgirBte46ivXlOKYpmotUqIy8DJno2nAZrGyPeXqxVyISSyK1lk0cnFPs8c2jiUmcrVwplw4TYtMKVSdbBV5oSnlOU9Iac1h8AyTp3Nij1MZXGOfHxBFZpoC0+y52K7oOsc4LVgnzUWoageRE2uWkJ6tX5IZIQdcTokphGpf8bTtqh4wpZKAQoqmat3JRTK3rNHPxW8IUXJotEYjSsdQMtO8YI0hpMRplOZjd5w5TZ7dYagFrUzfukYsPCFGUgY9iA0yxMwSE+HdIz4E5pjZn0SR4mNiDoFUNCVFWmt4sW6ZfOKLL77h3//tH8RaluQga6xm5QyLl5w0qw2KjG0dF6sOLSIuLBYfEscpsO4bXlxfMA0j2+2aq8stm9WKb7/9gXnuaEqR3MAsqouUIl3X0Dix+GalaJuepnU463CNkFpt03AcRpSSnCM5dHRl+yMPjzteXV9yfbEm5ZVkYwD7/QnnxI+vau6QX7yoVZIQDTKdgXGY2O93FDTjJOrC4XRErVe0jUMrscUeDkdaV9UJMfAUelCqlXaaJ9arNev1mnGaKDlzeXX1LG+GUic5mk8+/ZRvv/6O00my0+LisVoUp67RLMOBdrXhF7/4GV998x2n08iLF1e8fHEFJbP4mX61QhvLfrenaUQhKhySojeaeT7xOA1sLq+xyqF94PD4wHQQUu/2a0+OYuMsdQqtlQGVMVaGF0J8aLS2ZApGJ/ycKUmavVaM4DRkspIJkTKitEGJcmkyikYb9OIpIZPigmtalHXMOdI3W5L3HOaJw2nHMM20rmF/Gtgd9yQyVluyesqGyoBY+FrE3pJykoYqF7quZbPd0DixNYLkK3o/43IiZIhpYLVe0zYtzkomoU2WeYmkkumdBSXEtc+FnCEVaI08/A8POzbrnsvtWrKxtEyS/LKQqlrPGLEdGGtqvp6chxRYvCeE+JzNZ7U8e0YpXNuyOy188f0H5sXz8nLL8Tgyj4XjEghx5sXVBX3TcLVdcbFdU1LiOC4MU6BvFT5khmlGabhet8RVw/44c3d/pG0sXecoSj+rSEtIvNq2XG8ajmPg8TDJlE1rYpRz1BpYdS3bviXEyOE4sPhECInDaaKUQtcYrjYNn392jVKSYTqNM8sSakEl72epVhpjTM3AyZLZohWrTSf2FhTjEri9f+Dj3Z7d7sQwzsQoyr3GCpnYGs3l5RZtNLvDkePdDbdvZzKS7+WeVGEEQvSkSlg/5UJqVYmHLEqxECLJWmkEnKVpDH/xZ69wRgjJ/cHzyYs1665lWSJv3t/TtQ5rLFYX9qeBebHEWChKEZM0oUVJHqKowMUi/6QMzqXUiAUYxwnnIpv1SshpJwXf6TRgrCbMqZLDcqa6xjJNMylVW2U9Y7QS5bVR5llx8BRr8TTIw1je3OyZlsDPX16RUh2qKeidRfUN0yhZPat2zc3dEV9JyeM48er1JX5eUCXKMKhrsMbi5wJNQjvJmslP+Xede86WDSEQZqka0EIIa2MkSy4LgZqTKN+MNjh+tJaElJhmL2ePq+rwGNBAay0qFwpyTqyt1CUFQJln4iKjGSd5D9VmTYiF2XsothbiClUK++OJ4XBkHkZUzjSAthqswSmwqTDvjsQlcppGfArEnAhJCL6lEqZPRKtWuubI1eiMIhPoftXRNpqQDC+uL1hCgZK5vNjQtY7GaVAwThFrHU2NRll8pG0bShFbSynUZilTchZLVBQ1l9FWcveMZp4XSlGkKKrZy+2KafYcxxlQMgSuFhmjNU9W2ZwyyphqwRPLsLzUBWsaTsPMMM5Ss1hRn1ijn7/++8eR4zCx3fQopdkfpch2RkOJbNeNWHSWwON+QFFYdw3WGU7DhLOWzaol13O2bVx1QIga0BnoG81m3UhdVgrzJO+8U4oPb99y/zigk2JeZj777BpUwvYNhoTrOrEALYHZL+SS8UsRS3Ox+JRZYiRiWW0+Ye0M00ksTb0RpW1XbcRt2xFzYnux5d0Pbzi8/4hkhEr9OvjAOAXmxwUfM+vLS/7Zf/M/4he/+AyfIt9//4F/+cWXPN7f15gJOJwG3n244+EgdtaUI61zpCzPq1YaZcVqGsgoq9C5NiiINTGh0VZiAFJa+PxXv+HJnleLCBmsJMneysFz93BDKVEcF0ZXq1IRwjtEqQm1qD2Vru9qzmRVrWAZtHMU1aBKISWJ/MmIejeFBdP0EumTxZmjrEMbOZtzTqCFwEv1fdK2oHKWXKe2IcWICosQIqaqf1PE2BafDcMiWU1d29GtenIMHA8DRakqVtAMTwriFLnYtPSNQYt+g5ILyuhq16/ZpgrKPHK6/QjjCDkKmVqVQVlr+qvXnPY7+X2LoggLKj14kd5B1foQpXiSXJQiylqJBshV7JSxOmP6FU1cwIv6cD/2fLsr/O79niEkCIlWK8kpN4p102CMYwmRJRY8hu31ll/++Z+xvrjguw83/D/+87/lw80NKczE6DH13i9FiD3vpRlOUaI4dFXZOGPQuYCTuz0UuUv/A3KvyPeXC7y92/H3370VJabOrNqWZQ7knBmnBddYbncHqOqszhlWfSMKrgJlCfSte7agKp4in0R1JD9eeeZzKeSabZqqKts1hhwzOUX6rhUbro90rQxtu1bqtcNx5PWrK9Yry+LFNut9dRG1DQoYhknyypKQE6dhZLNZ0ThXra0itLl92HP38MhmveLF9oK2cc/np3NCIWqta5a3eh6QQB3KAr0R4tIaw/FwICyhZtM72qaRr22O4oIwQkprBWGRYeiT6y4lL/EZhxMAyzzTuIYYAylFHh931fadGKeFkjNXV5e0XU+YPUd74mK7ZrNdcdqfyPNIsxx5+PCOh0Pgw+7EnCQf1cdISAGrlLgWiqhhgw8oo+mMw0fPbhq53+0AOO1uySng/UyKQc6KLMO1pxibUs87rWretfqHGXs/zd37qYJPVyIQJRnmp9PENM04J+KNFAIlK9rW0rfimig543PheBqZ63Pw5GKMMT7HHslrIJ9R2zZ0SkRAIGQwSKST1nJ/P8V/wI/KQlCVjJU6zRi5w90S0EreoWmeCcEQQpZhU0oYK6IF/Syd/dGtAaXWT5rjuPDlt2953I8MwyjvVK0PrdakEFFF3E/b7YYco5Bs9Z1SKFIK8q4Ez2kQgYJBBvdXV5diQ3/cQYFxHJ9V1MZopnnhdDxCKc+xIqoUcgwiPkLsvq9ev8YH//zOK61rPAPPQiHrDK9evUYZw5dffcPNzQ3jIENopRSuk9oohszN6Z5p8UzzQlYwzR7jHGlenrOKnXPkknBW3u0QI0rXMy8nrG0w9qcBBP/18EcTfKmSXIsPXKxb1o3BB5lYqwLrXoIbfZAJuNbCdFrrpBmgYGz1g48LF8bKhZWeLENGCjMrUyEfZTo8zYW87ri46HlxdSELE2ZPUBGjrfzAau6ZwqBTprFWFHchsoQkaqCcauasfj7knxjimAoPhxkfs7DrWtga21gIEaWy5G3M8mFeX29xVWH4/JJXNr1URjiGSONE5TMOk0zarZCKSkmwa9daQAszHSNQsEbytJYQRIL9nG0kMtOchQVum4ZxmhlmyThbG8M0CXnn48JxCNzuB1KMLF6m7qpkaWJbR2cVuo5KF58YZ7HhhCj+9CUmxkWmw4uPDEtA1ymEVdBZsV/kLNL0aQ58vI1MIcCT4kPJhFzlxLprybNYWlQEZYToHJdA0zmOp4nJS6bHr371OevVluNpxXaz5upig9aKX//5n2G05XQ6opTkV8WUnoPln1RNXSNNR05i4ZHG6MecKGcNphSsWbH4QNtIPuM0zVAKr15eYbRiCYm37z6itQTEW+NEjYIcnLkGjBv9Y8jpME6UIiSp95JllFJi1guN1Qwnz2kYhGRM8oPQVaKbUmKaZbK1Xsv3/GRN6lYSkpqqvLtpWlJKDMNA13e8ePmCh7t7/OJxzhCXQqYQ/AKuwc8jbb/i13/2C7757gd2jztKSry4vniWQ1tnefHqmt3jHpKozWIU1VjbOMiwe/eWJWVuPtwyHOfnLMGcJAtGMhMlQ6FpG0qKpAjBL8+TMmcN83QixCC5mE+yaApaW9pOmjXXtEzzjE/Dcw5LJhJLIedIKZaH8SjTFAXfv3/Di8tPebG5ZHc8sDvuoMBpGnk8HvBhIZfCZJa6xESW6sjXDqpxVR0laqTVuqdpHDEFTsNQP2tFTqLaGseJJRYaJ3SB2BytNGVWY1TDqSostitL7wwZIRomXyhO01i4vNyy7sQ+nbRmOB0lA6ZkmrahcU2dLsl7FWJ8Duedp1lk8E0j9r9xlAvLaFZtz93DkS/f3jL5wGXbEOZZCI2jp28bPnl9hTGWi+0KBUzjjNaK7aaj71pQisNwYHccWLUtq8ayahzdq60s0ThOnJbEZtVBEeJ8mj2X25YGxUVv6d2GcYmcxplx9qQYaVvHcQw4Vdj0js2qpXUBaDieZpaYCbHw7nbg3a1YrapgRxRTTuyCjRUVsyhq5WdkjJIFEVqxe5z47njD3d2d5KHMgVynm13nuHyxZd3KQqPDOHB7/8j+uCdGIUxNbTRP01TDd+NzcRFTqMMbaTqfApjz0yTQOiGa0NVOLAOlvlX8019/JkOrotAGFp/52y++Z4mRi23LPHo+/ewF4yI5fCkVxkFIuafsyFKemjqJsMhIc7f4REyFVdeKlWaRBSilFLaXFmsVV1eXTNPMsnhSEVVXzoXgfyRihdCWJrhomWTnmFBGFGHaaObFV4W+5jQG3t7tuF6tCSnQ9y1xCWzWPbOPLCGyP564vLxgGiVseLVei6LjRYcmU5aT5Os2Yt80Wj1nHfkpcHGxJaWqUh5G2kayvlzjmOaZpjYuoZJJXWfrnStKEJAA6t7KIhvhiRSNbURtNkeGVFC6sO47IIEWUjGEIIHkwjbw1EBpJQ3V2hqKMfSrLZ989jOpA2LicDzx/bsP/P6b73l82OFjoLMGV8lSlBTlS4jsp4HJe0KK+BiIKUkxSJbzMgmBq1C16XJiG84Shi9NQaZvLJ+9uCSjsU7xomb4qKqe01pze3/gOEw0ToZBh+PE7ANXSkFOhFgISVTsWsGqa1Ba7NAxyVBknmeuLjY01rIEWQpxGj0pFS63nRCCQZSDy7xgGymQjZGBRymgnmyJWgYUMQjpPIwzh2GsdlBRCsWYcFYYn2kKnI4jL682TJPnbncg5iKkhWlonYWUyMhAVCk5b1dtJfeMWH6neWG73aCUOEx0FjVl3yg6BzbO+FMkYzjNgeF4ogDffdxxOo6stz2dtfjsJVdSa4rWbLdrToeJghD0sWR2Q+Y4J0p2XG57Xl10dJ1j3ffEGLm5uSdnZHDSd0LaugZnHfcPO3KaefvmDcGLn2zxC6dxwh8yk0/Ypuf6s5f85q/+gpcvrynZ8803X/G7337FcfeArqTOsCw8DjO7wyhKy1zonUErGZhrTVVgyNA3V5IlVXJjiYGQEqm0DJOH7Nk0jof3b+gvPsW2vdBYtd7NWQZ20Qd++PYb5mGQM7NRRJ+wutodK5libFWj5UJWNauxSB2OdZSUidOMajp5hrQhxcJTTqO85zPGNSjss7W7aFn0QYykuKDrIFMWZBTQBRWE/HNNCynVIZA8K5IvpvjweCLGwMXFhUR5LDOH01yHHpFV35FTIMwTV53lxaalc6Jy1bpa54OXBTZOMsKU1ox3t4y371BRSBDJBsw/kpz9BfbiivHrv0cXhcGiEHUU1NyoSvI/DWhDkbpY2BlbFSUKUwqKSFIRXVakPHNaEj8cMl/cDdzsRhJyZ+nOYrVlXTOnc85MKeGLorm44C///Jd0Fxd88+E9f/dv/i33Dw8kv5DCgnYap54WASWWFJ/va7IMQJ9UPDlJH1JUwVf7qyx8kqHNE9FQalc+h8Rvv3nL4TCjiiIXcYUVFIP32KTZ9I3c10FI7c45rJJBnSg4DSlmFsSa/frFJavXL4gpya8pQqL4EDBWWmlrDI2xJF04DhPGGFarDlV/9m3jmJdAioX1as00zrRdyzjNvHl3y5//+lOcdZyqekoDx0GGE8M4kXKqbo9qf/YycNrtFqxr+faHDwyHE69eXHJ9sal3kvy6pg5onJNhXa75pt57cUZZS1sXKj7FNh0PR1KQHPCLywu6tuPhcU/wkXmYMc6w2a7o+xXLvDAMk8T5LAPjOD0vDon1fmqaFqUyyzLjF49RimItPmeapqHv6nMUPWRZ0uHajmGasDqTTo+8e/eBr+9PHHwmJHHUFC1kdmsNrdKSZ4kQocoolhiYFs9pGfj4cMM4HiVbUgmBV/LTUL8q9qwoj3PJtX9Pz6rhf0zu/Ujo/cP/74lJW5bAfn+CAuu+Z1pm5uXJsScLm57ic0KIHE8j2giHMY7iRnNGsyyerlljjRHyKAvJpqrbMClxQ1orxF+IMqAMIWCM1DuFgjMWH0M9e2X4t4TA2vYoVRjGie1KFoaGlEnRs/QJpVf0leSbpno+Oalln1TVTzTf43Hm3//2K3aHUZZZVEelMSJEoBL2fbcCxMK9LIGiyo+iljqkHo5z/R5lAGid5mK7YR4nTseTWF6DKB2btpF8x2GgbTpczZWU2i9IT4mWQbBzONtw8+GGmIUXMlYi2p4WlyolLqnVuuc0Tnz48IH94UAM/qnElvvPe4m0yRLVgpblftoIIWuVomlb+eymSYawwiNX8cHTshv5TKT/Tf9fMHD/n/HHK/i05IflWhxeXV2wP5wYhomuawiLJxVpfKhWNOsMfpHLUaoGeSGmScKvm8aIzbTa8cYpcTzNXGw62XTjE6VEhjlI9lznqpIt4kzLULcQqVzqByDS6qbKQFXNsWoaQ8r6maktucgmpcrID+PCHBJWF/rG1IZJLuocw/PLa63mYtOJUklZIeq0HBTz7OXBrodEMfr5ZyB/rDzMEhBPlWM7xtkzjCNUZVhKGaVk4UGppIGtGzGVUlhXN24aKWa6roWiGKaZYZIQ/fv9wDAvqAxFZVojFlFnRYVklZBSPiSxq+bCHCKLj8yLZ/TCfIeQCEmyjsignKE1GoP8jBpjOHiPD4k5imJm9h5XLaS5PFnGLM5a2iazBE9rLbP3bFaNZNHNnsGLj17pQtM0/OIX0iDJ1EiyA2wuWCuy4FwPsaa1oqxTqi5qSVLIawO6oP/RJjelZevtNE2AWHtTJYVX11suLzfPCpWHhx3HGuTqg+SqWaMlHDpKo99UdYPY10QabIxsgzZGJiO62jnnRawI1mn8EhiXhRcvX5JTJMXENE00bVMXd5hKMkiOYqmHl3vKV8uJECTfYb/f8+L6BcfDgTkEVqZFaUOOAeckeH+cRtTxyPWL1/zVX/45f//F1+yPJ1LO/OzTlxQUu4M015uLDafdEVTBKkOYFg7Hgd3uxMPuJEsFkhzQuSp/tJLitW0N0c+yZTZ65nEihUQpgbbrZRmJn2X6pyXnqmtbQJYFZApow+xn5mFkDjNTmHl5/ZK0BB73tzTWYtFEHXi7u+e1eY2yEw+HHSEXNqsVp/HEMI401jF7z7LMkpmVIssy4VxD33VS4DlN8hmU5vPPP4eYmJeJYThxOp2YakCwkGqasETatmVeZgnwNQ3Je8ZcaNqOVAydMXSNQquGYUmcxoV139BaISy0giUmNJrtugMl6oOcZWlGWy8w2Q4qRUcMQQgFrZjGkWmeqorTyBlSLattKxbc/ej5+t098yJBvQnF4ThSSubTly9QGlKMvLze0neubgWWTXKpvr8xwWGYSCnRdw7nDKUkYsh0TvHyYs3dYeb9w4EXq45GPkp2h+lZDRNTQQOfXm/wIfLxYc80B6xWhByZfZDzSQs55pylX1lRZQUha0qWyXlJEqVAEdJgZmazEjW1rj+vDHgfuLm54/Fxz+k0ib05J/qu5WK7pWlbIZqXhf1p4MPdA/MsxK8z1AVFkcM4sngJyhW7pxR2xhpKyjStnO+uZn446yTw2Yhd4ilE92nqmmX9lxRCVja75Vx48/Ge24eT5IKFRCqZw3Ggby3JGYb9XnJ/jKjLjaq5q3WY8RTSbY3Fo1iWRZRcjaMgpCvo54VDuWSG0RNift7orattLGRZrOKDDHWyVjRKQ5IFEwW532cf6h0LJ5/4+of3LD5iryy2GCbv8UvAasvkPdo5xnkhxge0behXHaVEtGvYTwtuOXG9tkCUfC0lSn2KIiN34/39TmxHfaJb9VAVhsbIVvhUCiWJ0kcV+fed1qLAS7K5TFvLkBKNNrRW4VBynqvMurUsMbGExP44yJ2tFX23YnPZ4JeZkkqdAKuqbpQm/InY1Ua+Tx8j33z/lr//+ns+3j6gSmbtHKuasZkrqedTZvCRk1+YfagKYgjzQkas16jyvEBJKU3XNKhUfmJ7zZQSIf5IWMRc8DFw1cn2t4wiBbHav/24Y3c4yVKoEDiNohTsO7GmH0+emGt9VGa6tuHmfi8Zn0bVjdVS2x1OI9ZA0zT4EKsqMrKEwIuLFa0pQpAjpEKudlvhmvLzBt8Uq8JAy3BjrFlfTWNonWNafB1OWnwqvHl/y+vXV+x2R+52k2x9N4rtqqWvzousldhhxwlTt8GHIupsVKbRGtdYgl+Y55ntyqKbglKyETTHyJAiOvYchxMPpwlrDHcf7hjHGWUtLzvJ7ttuNyjt6FYd1ool3D3nk0UehsLDCI3VXK8cm7V8334O3H64kyGkts8NhxoLPnh5bIvYckuOzIvcx+MojYZPsL285i9/83N++etfsFmJ3fzrr7/hD7//gt3DHp0ilszoA/th4eE4UurP2SnFqrHPgwJVz5dYSm0Q8/MW45SfbO3qeZiXTcO8zLIko5x4+PAtV5/+kqZfVesToArLsvDu+x9YhpGua8X9QMHV7cvJ8yOZF2fQihDkjsxVxaJSIaq6PTslbFhQzpGVg6ZBp4CPC1pLfZ6CJ9uGFKI0qVTFXlHYfk1aZsmvVNJWlhSJCIGTkygTtQKVEkUrQul5nDKxGC62K0CWiuUitvZ5kfD24XTEGsXVpmPdGKySmCANTLWXUFh0Y4mIOvD09mvi/kEyACvpIC21qPpVu+bVr/6ScfHMPqK1bKs1rsFoqYMln1J6kIzY97OyYFeoZkXTdhjr0KYBSiXyR/zuPe/uTnzxceLjwT/XHKYoOufo247GOlEepYQvGvqOX/78cy5fXPHDzS1/8+//mvv7e0ryqBhwKouKOETJ5svSzJvaIxrzrAMiq9oAlyJLLbSGLPeleVJOlbqRvPakS0j8zRc/8O3HByiFn11fyoKbtuFufyKnxLpztEaxpCKB+BqK0+xOA9Zari83kME29d4u8ifkKJbInMFZK+pCI9nwqqrIvJFBm7USOSTWTbkD+rat2aGVvHKWYZhQSpxd37+55a/+4ud8+vJSMvWWBTUHdvsDIQZZPFcHEEZLDEdOiVQUv/vyK2JK/OyTVzTW8vh4QGnFerWWBW5JHC+5Zv0VCtMwCZ+i5HlSCsZhZB5npmmsC1OkMb1+cSXiA2BZZqZlRgXIJdJYzel05PHxSAwLMUrEQcqZGALDMEje4brajGsm2ul4pG2kthESXnrDWON41t2KYZxRMbIcjnzx9pZ39xPjHEl1sKWQyKbGarG4F0hVkZoV7KeRx+HI8XjkeNwRkxfCONeleEqGf1qLKEk2pIozQlK4SyWb9DOR9+OmXOHIf7pR9+msVCjGaeHd+xtSymzXPV3X0KtOlosoROXbyvsTQuZwmsRuW6IQ7s5yGkdWXYdWhcU7tque3Mg5Vs2wxBifI0oUMrjyIZGyeh4chCRDjpwkhmpePCVLHSp1ndzRKRV8kMiXUsU+p0GWQfz655+w6q1YsIeRMsJq1aO18BpoxbuPj/zui+8YplDrzYSh0NQIq1TdMbbvpAedZ1LtYynUnrb+jKsATJbbRF68uObq6pLbmxvZ0h3FQWOspWu6uhkXrLHkLJmdoGj6BudcjfHSdKuW7faCxwdZ3KO1wTmHxHeEWlNrnLOkLIs3d4c9w+nEU57iElN1TlQiTkkkQi4ZlZGNzzHSr1ZVPfgjabgsM1YbMMLvKCVxPTllOYe1/XFJyh+BP5rgk+2hmheXG56SGC8u1qSYuL97IOUkMkxjqtQ/kxYpSI1VOOMknJQkrHWI0lhUu4azmr5zHE8z4xLYaEO/avBLIRVZu6yNBCAba1lmKXxQclFQpPEquWA6Q2sMIWaizqJ4MUKMyCIQCTlXpTAukWH0NRRaLD3WaCFq6vexxLrWu77MPL3gRlNirFttFKZemEIiChNvnCgVyVkmbkaJRS/LdmGUyDj9Iquxc6nS+ipdVUrsztq4qih52iap0UEmceO4oI3jdjdz83gUybhWz3l0TptqCZAJecmycXJcKpHnI5MPjEtkDkGsOnUSYxALUWPkJUzVerZqpIkZ54CzcomUnNDWVNltprOOVDKfXl/hc2KOMrFM9cDdbtZsVysSmfuvB/7sk1ecjsdnhcTTOmuUNGj39w8M40ipSknJRjDkXPAl1YmMleYmxprBIt+zqhMc1ziM0bTPJJ8S1amBjGYYJnbHUXImfOBJmWWtKH6maSKEIJlFjUzBQki1YNFVZi3vitaa0zgLiV1VoYrCeBoxruH6hVgPXeOe8/iclWUxIQR88Gw22+fQ5JQiXd/X8PvA6TDQdCuUNrx794FSxMLYt5I90DQN8zSxLAtN2xJD5PHxjtV6y5//6s/47vs3LMvCzc09l1dbfvazV9zc3JOC4uLqips3bxkPR3b7gcfTSMy6fg+SUbVer0RN46zkgoRAnGfCNLH4pYboClluG0cInhA9qhT6vqNxlpwKicK4LM+LZdAJY6HtLfvZs58Grl+/Yp48h2XGRENrHFP2nMYjISXCi8R+OHCaRq42V0ze1220DcuyMHuPNZa0BLyKXKwvKCHSOcPVqiP1Qo6ERSyQs/fcPewgJSF9nEJby7hIrmTO0DhN32hyWAhZg5H8I2fqBuQsi0iMhf0QeThNbPuGbf+k5tJMMbIuDoPkhPVdT2lbCRiv20SXaZJzoF7YUCgKsbapAlEymMRqJxfG42HmDz/cMIeMqtupLteiIrBOrCnWyea6cfYMw8xmK8/8vMiAYfSJ4zCzhMir6y2bVSNbvEISm3VW9J3hFR23u5n3j0eu1yuMlcnUcppwzuJ9ZAmZUhpWneX11ZaC4ub+kRQL2jmOo+SpXK7bap2JNM7ROkPfbcQKGmXz3BwC0+gxVhTg8zwyT/nZEva4P7LfHZjnpdozA13n2G4uMa5lGD3DfKKxjuA9KXhCnGkMBArTPDFNvtqjw7NtyFrJ0cwp0VoHTUZbK1loSolNEiH/i+KZoNdKwv3lHpVNpU1d/qOUEKjvb/c0rWXdOSGmnRGbpTF8vN+RYqRrW2w9C+bF0zhLV9UZ0giYqmAUi828yB25WXWokhinsRKoL0DBPM+ULOdXTBnVSDNbcqk5JhFKEoUXMiwTFV/Gewn4V9rgE9w+HIm5cL1ZS8bofiRTKCmKtftyQ0LTNE1V6kg+5OQ94+GIWiau2oTNhVgUPClWquLlaTGVqoO8cfI85bmlJBEQJRdibdBa58Ra5xwhyHIAo0CVQGscBYMHZj9D9nRGcmGmcUKR0ErI7lzgNHuWlDFNx6//8jfM08g4evn1w8DFds04Dqw3W0qRrdR//Xdf8vX3b3nc7dAOVi20QiFQsqjmfcpMMTHMC0tO+Bhk4ziZyYtyRAHWiuUIpWmNpbFis1YWmUBXYlGaZyXnT4a7/cj11YamcYSY2R0HLrdr3t/ueH97IOdEW+suaxQxF4Iv3C8jqaQaju04jYFxDrRO05rCPM2EXIgJtC7MS5SaRXtxcsRErsuBfEi8uFzTOlsJDiHwyKkW+0qaj3pn5lyV51GeO+caYhLlXi6SlWeM5vFmB9pw/zBwvxtJKbPqG7adpXWyHKmkTNGFw2kRW2+jMESizywhYqymN5a+sYzjQN1WgGtbjG2JUXKDBq+5vz/iY+D6csNwODL5jG4NL19e0a/XpBBYNw2lZu8aq4h1eKkNTMnx9nGhpITFEpNmmBIfPn58zuoqOaGVxRrDzcc7jJGGINShaUyJYVw4zbItHG15/cnP+PWf/zm//otfUCgsy8zvf/cV337zHbvHO5Kf5XlKhd3kORxGfJJAfAsysKFg6ueijSw6iVVJJQ2thJLnKM4XbYS0M0UaoGZ7jYkj4zKgE1wpy3AawTi5r5RmGie+/e5bTCmsNit0yZgsyoe+bQDNHPaUKNmFrTGk5LGVwM65VCtTrm4cGdCHILW7ahuUFSeGxAE+KXKEnDTdhlCS2HdrvE+OBaUbaiYGoWazKaWIpZCWBVfAtj2JiSko3u89aEPT2UoYSozPMMx4P8lCOaVp+6aeN0Jm+KIwBmLJuLan1KU/aAinPYcPb0jDkZwksxml0crKsjVtCa5Bt1tMvyIPJ9af/JyweFQYsH7EhAlKRCODf13P61RAu06U6Mbhmo7VdkOIshzquD/w7u0bvn37nh/uDvggTq1SZPv6dtXTWuk9EoWgQK1XvHz1Ctd3/PDhjv/7X/8Nu/0jKgVMSVDP/JAy41OEQyX2Vc6YggyOc8QXUUeTxWZplZKGOSSKEceDyomYn2IwpI5PBX737Xu+eXuHtYaC4vEwcLFuGOaFeQlcbnu6xlWhRsIZTWsN0zhQkFp2HBa6tiEmUbc11jItC1YbcqZmvcs2Ul2jFvqmkYwtzfO5C4olRPpW4m1ABvy5aJYgIf7OOen7/MLxlPjm+w/8s9/8ggu3YrPuuX3cc311IaIUK6KOeQm15pAFKF9994b98cQvf/4pKkeMkUGZVooQF9q2rZnu8s4cD0dx3s0iPLi8vmSz6UWFOweWaSEGT9PIAoDXn77i6vKCx/sd02lkmSaWZWZ7seHyYotzMoCQfk8yuBtlGMcJ72XZYNs4Xr98IZmDx6EuNgyMw8Aye7mPvOfi4kIUhjlLFrbVvHvznt//4SsepgU/TaQQCDnRaFm60Vpb8zkLKQcimaVEbu8f+fhwx+hHIfVTXeqUJRaq7zq8D8+9lNZiXZelIz8uSkk5YrTBGvcPLbhVyPOs3Hu26sI4zdzdPQKSixmfzlejWK+ayj2IghilOJwG5lnqB4WqDhwR34zThLOG/fHEZrUSFwaSTZpS7Ykpz1blGOV8S7nGRClZpiaEcCTnJwcgmCz57jFKpq8otDVdIzwCNV93HANvPtzxm199SmMtl9u1bFaeRpxr2B8nvv7hA+8+3Nf3WvYOGFVom7YOUGQIXIooBUt9Zp4WqArNLDyGNZoXV5fs9zsUiq51RB/45uuvZWGrkp0F2lnmcSHE9HyullJYbzastxfMy8J6vWG9XnM6HCXXuDW8eHnJ6XhgWUxdJlYjVxRVPCW80jhO7I9Hca3lwuIXUkwsIUotq1TlFrzUnTFRlAzTjbFQhTdySIm7YsoTru+Yp5HGOWIVeBlrWa3W5FIdo38k/miCb1wiqYhd6ckadNgP3N89iuxXi3f9iThrG8fsF5yVA8/HUF8smbzN00zfWbSuknwtzHzTOmkg1UJHpm9bcimkmAheLLdWFxYfJWOnNkm6WgFQElhqVpa2bWWa/LT4ApH4i2JBMXvJ5+taCfYOURZSaCQDYlm8PAxFVDJGyTQ/ZVEtxBRZoig+bFWrPW1j0UaOoaeHsA6knqW/FCnori7WHA5i4a0LgCgqV6mqZEUUoGvcc9ZTyhJsTAEfM6c58/72hl21CKwaSwyx2oQV61aKqNkvKF0YfWI/zM/ZQz482eeCTH5SRiNqRl1EChyTZE1gdLX4FOZY7XBG02S5jHUp9K1j1Ugjsp8mlhwZp+U5A8JYw+uLDcZo9sNE28mGv+2mJ1YbZSliDZFwW5lAjfOC9+HZYqQqkaK02ONsI4/5s92zHsjWmucss1i3MxutaZv2Oex1GEfWvWS2fLh54LNPX7FZbyhFMftZmoa6cVcpXbMtRHVgranNiVi2JchZCNXGGjZ9AyXLxkMfaFsJvc0pUpJm9AsAXdc+53a1bYPNhnkccY2jaVqaRhY8aG3IRfIQ4zTy6tVLUkp88+0bUTqMoizzw0hK8UcrqoLlNOLHEWUMn//sNYfDQEiFcQ7E+x2XF1vev/nAN7//ksfdkSXkuvQi0VhZcy8FWCSEBQ2QspAky8I0jgQfKEZsM1W4i1bQbFboyVJCYJlGlhSFVEuB9w+39P0KlOXl62uctfRty/5m5Oa457Wf+eHuA7vTgaIUq6bl8XSomZwH4o2EtY5h4sPte+ZlJpaCrhbpnJMsF+l6Zr/QtI6mbTmNC+1plpzGIpsUD4c9P7x5h0oJ7SQrpTUNCple9Y0jei8T6EooOKtQtn7PxhB8IqZQLcmWTQfjEpgWUcVerpqq8jQ8Dp5X2wZnrCiWx4l5HAgh0NQBgVyOMqVvuoamkS1Zw/EIVvLYNps1RisOg+ebj494L3b7mGYuVz2brmV/PBGBjXOs2qdN4tVaO0lwf0jyTh9G2cD26fWGzbqrjasUvkpLXEBY5Ey7vmixTnH3KJPxrjGyLKgoYhJlyONxwgchE3LJ/OKzV5wGydCaEhSleDjMOFu43q6wGqT2l+DbYkTxckHHyckmzJhstUFO7B4PTOMkKt763CkD7VoIxeMcMEHIn8aKmnOMIzknZi8F6lOeXEqRGAOtcxjjZApXCllD0gqrDbpfiWUTTUiSY+qLbM9yyLMUkhRg++FALlJ4xRBwupHtdmi+e3/P4j2bvsO4J2W53DXDtEg+pJPPyhh5np5s809h0qVojDMylaRm8Cgl2/YOA9t1T86SEfrx5o5PP33NatUzDB7vF5Qx5Oy52LTEEPBeNt81dQtkKWLJtNbItLM8bYVX3D4eKSj6xrFadZAj+8dHLi439KuOy6s13geOxxMxRGzTYJTieBzIQPQLmziBAaUaSoyUkqolRLZDqpxpraLUYV9Kimlc2Gx6mrZjmE+EUEBn2q6hX8uf+XRWiz2nWr7SQmssURmybohBsVq1z1m2OWfGcWaaZenQ5doREtzd7Qkx84tffsonP7tmOA5cXl1ISLKxfP/xjt9/+QNv3n5kGEdUSbRO4wCrJCsqZhgWT6h2Ux8TCVEGtE623yoldkNnDRfdCoNiCZLjKd9DwseqZqkZSEYh9Y+FnCMfdyP/9OqK63XLNEfe3z3y4uKCj3c73rx7qFtxE4u17I4SEF8UGJ1w1tXlPbpmMKqaaemI40QpqpLY9eyo6niSZAr1XUNjDT5GjqMUyC8u13Q1bFym9Uaafa1JOeFDqkpIad4Pw4w1mq44OcOLbNNbvGc3BT7e7pm8RMYYa9h2lnVnn5dOhBC42nRMi2xFxWm6tieFSNNaLrRkoVkj1tDLq2s227WE7KfMq08+4eb9B95+2PPxbsd63fLq5QUxJHbjwvrighwDMWqOJ7kLnBVCx9T8x+E0cBojc3Y8nA4UXWgorHrHcTwRHyVryGpwTvHy9SuO+wMxigVJl8QwifJmHBaOw8LsE03X86u//DP+8p/8OT/77CVPkSD/7l//LR/evOHh/o7o51p3F6ZceDycJFc5JRRKBha60KhSw8Dl3fB1EzaKuvFVk9DM0cumW6VwCiLlWSkSsqFpVmQ/Y5qe7voTmrZ7Vur4GHlzcyeDQWQ5ABRSAlM0i4qEGMUq3SiMyuS6PVFpWWT2pGiTIQMEPNZJYHlJUPws9kgKGCHeQpAsJIpCGUfXX1K0wWpRWcyHA2EWa1xTn7FcNFZ6XbSWwUHWkSl3fL8faIypVltRz+QYOR2zLMxTid7J4i6l8nOt/7Tbh5yxrgHX0PYrnFbc/PAt+5sP5LCQVIPuNuJu6tcywLOWpC3Lww1NHHj4+ndo1/KzX/8THm/uOH77HUqJPfVJUVSqXfdJZanjQGMi+e6WrDXxxWfoZs1hGPny7S1//e0ND8cRVcBqIaI2/Yp120AWUjJpTbvZcPXqJVOMfP3uHe9ubjieBqjEnirStwQFkw+Eepc2lWzMCpRRdSFdloFYKTXnNGMphHrfWy0W3ZQiVovaFiXq/VgU337Y8e3bW5zVbFYtViuckgD+3XGWe0rrGvUkuXWNs9K0F1j3DeRIDAFaJ4RPFrfPskSKq7ZtqMuJFK2TAY0zhtXFWs6jxVensQhHYvyx51v3a4a6cEDqZ3GglSJf1+3jic2HB375+Uso4gK4vtzKEqggiz1sJbLvH4/8zR++JBW4vNxwebklRy9impRoahxH05g6VJXN365ainXN7F31PfvDURRN40yY5zroWLFdr7nYbDgdJsZpIUZP8JJZlnOmaxzTMLLMC21jMYiQIKZclXqS5d00DatVz+3NR46HIzkGcoioXMTGrCVCZRgGQsjYxtL3DT989wN/+9u/Z38aJFooRelnncWg692cKKoQc2SJgYfDkY+PN+yOOznnq722VDWesZK/HIIQzeZpUU+R51oVWQL5JNwpJeKMZdP1tW9Rz6T/E7Enf9UoxKE1TzOb9UoIwiTklXO6WlVFfSm/j+E4ziw+0fddXTYlz+U4z6z6nrAshJAY4sLucOSTFxeSb125iaYTd9dpmDgcB7mrnaXye3UXQKBpW1pnxc2QE20j3/cwTYQo54P3gRhPpFVH3zYoCtvNinGceNgP9B93/NlnV9jaW+SiePvhnr/5/dfshlly7pIoMoVEVCxezlxtVCWofeVOZHFgEWpdrPKN4+JiI1bxKgbRRjOOI+M0VpFKK2q7EIjLArk6FErGWkfIcBgXluPMOE2kdIuzjr5p+fT1JdcvrlmtOjYXK9lAXLNeydC2La5p2D3uOI0jj4+Sa/qk1st1oPAUJeVr/eu9r4S6RIyUp7uALESkttWW3YmoTcnQ0Ne7pu96EclpTaMdWv3/wZKNlGN9AeThGKeF2/vHqirTNdtFJj+lFNIkh6yEcCeZSNW8K6W0bKIdFrH9Vk98LommsSxxISRwVUIK0uzkAqu2efbbqxoUq62TGxmZ6BvzI7HT9RfM8yz2q5Sx1a45ToHD6HHVZhCDhPQ21shqYy8ZeKXIlMJUFj+mailxljh7mrpRivpBl1IfvpLr/ymFeogZSqJg5eDQqubCSNOql7rNR2vZ4lcJI61lq+g4z3Ubj2xtKjVA9837PfvTTEqiIBMJrmwk7qzm+rJHo5jmpUpXI8dx5jTNTEtgmBaxgaSMBgwK7eoOM6VwzpCibLe12hBylhXoKIqSSUiICa0kc8pqy6qVfJmX2zV2f6JRhdlZgvf0TcPLF1tebDccjkd2w8A6Wpac+Zd/9/fM8/h8QUrmoGRvnIYRayzrzYpllhfMx1QLfEvXiUKAUg/loqSBMKrKu1UlXUWFGWuWXtd1HE8DXdsxzkvdyOu4uX3g5fUln7y+Zn84YrRlnAYh56pNKcVUt3a6SjRLUTXPEgqulJZ8v+ilmS2Ztqr+hDRuOZ1OxBBoV71sZ6yZdn7xeO/pOiH2urZDaSGFY7Vyi6UQFh/59NOXrFZrTqcTlysnAdnO0LUyLfPLIsrIIj/TEgO3Hz7y8tNPOJ5mpuPIKSW+uv+Ku9u9bEdMUiAYDW3XU2LCL4FlXiRfspF30S8z8zgQg8coeZ9UVQKUnMhKfkbDYRA1gtHw/LlEdvORkz9hDPTbl6y7LeNyZEmR2/0Dh/HE+9s73j/cMcyy7GXQltnPQjpnmNP8POW9vfvINC9gYPYLVsk0dNX3mA6G2bFqWtZ1Ic/jccJo6LuGmFc83si5tmodmcK6byg8LWUp+CL5n9routVK0zgZTCiVJS9FSQZcTpkpSmDzdtUx+cBp8kxL4HLdyTKeJXCT4fOXPVpZNpu1KHpDkZ9pXaphXctqtZJNf0rVxR6i0uw7yUCNGW4eB4bRM3qPQfH6ckMnTCzrdYexlhcXW8nvSJnFS0GZ6vBAKc3Nw0AqiZ9/cs2qcUzjSEYxLYGQqQVBbfSiZKQ0RvH6es3NbmQ8eF5drVFZVBHBizLhOFVruxXir3OW64stm75jmDyPxwEf4OOD2FOvtx05FabgJZt1lrwu6s/3sHvk9uMd0zxKkV17G/X8rmv8Eun7nlXX1A3bkxQ6YWEaT8Qkz02sVuCnmImubem7/tkWUbIsGpCtrIWlBvh2TcsUPc6CLopCojMWHxdu9zsOy8CqkbP7yUarFFAUt7sTu+PEetXy8mrF8SSE4yevXmC14n4c0aaGPleVdAhFbCrVHlqqksZoQ3Glnm91q721zPPC/cOR66sthcDpNFPKLa9fv0Irw34fGeeFZDW5tPgQaxZfAUwtigSxbtxNKXOaA4fTQFGai4sVD3c75tPI1bYTMqeIljtWpY51jTCuZPwUUdYwTwO9ipBmSm7lzypI/my1/ZeSJchEy+fZONkql7JiHBaK0rJl3c2IgCQxTwtFi4pe+YCzdYsfShT2JYn9OGusbXgcAqvGimJdK9pOFoFpY1iWBb8Euqq0/+7Lb/j5Lz6jaRz7/ch37+/47RffyrPrg5znViO7M4RM8TEzLIGlqhC1qgxK0qCqbQaxzDtj2fSrStoJAfa0pUhiL2TbX8pJCI/GUGIgJM8wHTE2c9UbPnm55TR5vnt3z2bVsT8M/PD+TorVIEV/TqFu5cvkLE2sNWJXXBZP1zbPSwCWIIH/z8q7ImSibDWsiikUp3HBWcN23THMnskHPtwfeHWxkk23T1nv1XI3zBEfM6rkuok843PGOslvzlEWiqHgcTfz9uNOol+0bAN2tmC1fL1958hJ4jSWRVR8F9uubtQ2HKaZ3rVsekPbOvq+k3zbIM3+/X4PSrPEwh+++iBE4YtLLtYt8xz59ttb5hjpV4ZVI9tflbXkkoh+Yb3ZMg4nVIqM0XC/ZPaHE8ZpVgouNy33d3e4GvC9LDPKaolPOBy4vLrg4f4g8RvLwuQDs49MS6LdXPIf/8e/5p/81a+4vL4S66Nf+O6bH/j6D19w+/Gj1E8xoaxhN8qA+jCMMghLEasVnTU8Jx3lCErIe4pYOk1d3pNzIuYkw6W6nZxcREEbFiJFthz2HVYngl+xefEJ1jZSsysZBj0OAyUF5v0DXd8QtUM3Da1RxOhJUbN7PGKNbGcMIaJJuAKlKNnsXmRRRUI9ZztlpchV6qtzksGAFEkkbcF10uiniB+PFKVpLq4oxqBzQrlG3vc6MM4pUFJiiqJis43F2IbDrLk9jlgi665nfxgkwifEmrUmy31WfStDnRDkLM6JnAvWOiHftKZtetCGvu/47ssvWY4D21c/o+3XNH2Hc4aml697mhdSLHz8/nvsdAAVCcGIaCJ60jKjUiBWAoIna7d64jkyxEJS4HPGNQZHxt9+zyEa/u2HyO8+HliWgEHTOtnivV71QuqnQsyZ1faCF69esF8W/s0f/p67xweWZZH8sxhwCrKSNUST9ywpyUZ3pXBKhAqSE5qhSFSC0UpcQaW6lkoh5MycojTxKT3bJWOSzdIxZ3ws3L2/47df/oA1jl9+dsE4eLbbjt4Z7nYj5My2a1A5V4t3QVnLw3HEIPmkx9MoOVwqE8ICGELdkDnP8XlZVogJHyTiJBfpiQqZZUn0XVNdzqkOkErdLi+DqCJhzTIQS0nEI1WxOh8PoODt+xs+eXlJ3zZcX12xPx6ZF1ETSj8LP7y/5+9+/w0pRTarnquLDcPpVPPrZ/q+I8bEZrPFOsNwGqU3qAsu/CJqsetL+efGG7YXF+SY2T/uABlCXl9dEb3neDxw//GWx4NsRNXOYZzFWEvMkZgywzhQYmI4jZymhXGRHNO2SGRPiJ7v3txxc3eHqorGdd/iKvG83m7o2477+x3BB7764mu++PobqbFzfq4brTH1rpH7SRadFB5OB27299w93rPMozhitGyU1UpVRZXYq0uWXtIqI4KhOpjQSQanm7bDGiuuiMbW5VquxuHoH226NVrn6X8fTyO3d48YI5zBxWZL6yQe4WkDLkUI4ULhNE6yUCMlSpEImpQyzjn6rpWeo+vIHexPJxbvq3vPPvMI2hhu73c87o81lkRIR1+Xq3WtnI/LPKNLS9NoVJEIMedkU/xpXDBG+AcfI8dpFoWp1YTTUM9++PbNLX3neH29ZV4if/jmHV98+05I7Vozi5BG+mlTF5M0TUMIC4t/Ivfkc4wxPCv7tCpcbDfSH42j8C85E/EorSROrEgvFatdvO4DERcMhtOSOAwLMSMkdB2oxDihteYwHJnnwD//Z7+hZFmkqaugoes7tNLc3t5ye/fA4kUpGkOU4XaRgacMtlNVrT5l+Urv0rTiVgA5w2KOlZdB3CYK2qYjpEDTtMSw4Jw4ytquqxuEM9GE/+qE3D/CH03wbVZ9zUAQddXD7lRl86LC61uxcxwOR2KUTXMxyVS5LlVGK6rdEbSxDNNC2zWi6Kj+ZKuk6YtJpn8KydFZgmTKtI2jb0QO6b3kOEkAcKxZbLDZrJ5DWa3RrFYSlp+SNOk3d4/MIdFosR+EateIc2CYZ8kbSULuda2rqsUs4fpojBMZdyli00sh1DXViqxKFQpmmrYeZ/pphCd4SpLIJTOOI6v1SiwNT8q1WA93I8WK1FWF7WaNMYrTEHh/e+DD3UFIBQoxZoL3skEQxeWqYduJguRxmPE+4ZrI/jjycJQJTciZxXssGlclyygIIdE2Bp8SYZatdc4qWTsdZLnAIcqGPYoszni5XTFOgQys+oYQIqd5orOWv/rlp7y9e+Dr799zebnG5MLd45HjdOI4T6y6LcM88fHujuYpF6EW/yFEjHa8vL5iWUfevg34OOMXCQ/9STVDrhOfIuE+oGVNdU65NukWUzcYPVmfc870Xcc4TTSNY/5/MfcfvbptZ5Ym9kyz3Ge2PfZakkFGZEZWorJKqoYgQA019X8FqFmAUCYzKjOSZJD38vrjt//sctOq8c69GQVUR2JHJ4AgAnF57jbrW/Od4x3jGfMsW2wUanfgi8VzXjy/5P5hLy+kXJ7jEJmVOO+MFjdQVQkPq6qlPKVtW7abB3abAyFETGlGauumbL1Gghc7sC0NvdMgUe1p9pydnUmVebFY6xJTk/Ia+UiHGJgPM0bD119/zp+//YGYtQjHdYOfZznwtKjQxhqmyclhqRMPNw/Ubcv1p2s299KAmRALsTVGmjadZzwOIp4jsR7bVGTvcNNUWqLkAJYoqdTEaqPpVivmyTFPXtiXVSXPc5qZo2fygav7e/q553Sx5vLiGSkFxuDYTwMPuy3HceD64Zr9fkvIUSzpStiQMUp0RCtZNMTgOPhBDuSkiCFwcXbKxckaqzWnqxXBOS7WJ7w8P6W2hq6rZftfNra2qehYSFQpiDOwLdGwupI2W60UVW3JyLvL+UTdtvIsZOHI1HVFSpmqMgyjI+bE6XqF1XC/H9geJrraYpuK7SAR5S8vFxhtOT09Z6hHcimRscZSVdUTn0pKhcRxtFqvAUU/e757c8ubqwec99Ra3Ba7/YHcdaxXrXCEUuLu4SCgW2WeXCRhlAvUoe9BKT57dkKtFf0kZSp1LdHiaRYG03rRlk2xvLe8C1iteX2x5GozcLPp5T20rAEDPkt0LieGOTP5zFxF2lpKKpZdQ9dW7I8D/SALiGnyrFYV664pm/TENDnu7zdsN1umcXoqNlKPzl6ti6Ve07Rd2XBGDgcZWN08MbtRtsEhEEpDaEq5lPBIVP7RXS7iZ6JSEtmU7zdIW3mSlkfZFms63bAddtz3BzaHHftxIEbHqj6hLATRCiltiHBzv6NSiVfPLjlbdYz9QFtXKGXo++Fp+9tWRtARUd7Z3UKi0CGJ2/dxk/q4OCpzBlVl0Lpjmjx3mx2nJ0vIic32QEqZLz5/RVNb7nd7cRYWp3gMnqqxpOAlbvzIglWJmBNz0Pz0/pa2WdBUhsO+xznHsm2w5BL5TCytZb+f0JXm480Dwziw0i2jj4RxpNaRVkV0Tjg3UccabSwpiMDw+PmyUiVZXDESLXVBmK5m0jRtXTiNsqSS9k1NP4yYEKBWxVlTUAlZlkDkgKkbdNOwORw4XTQsuxqdpI25aWsRD48D/ThQ2YwxFe/eXXH1sOOn99fs+0ma2OcJoxKLWmONxNCs1hx94Dg7coismhbh6UVSzDgtbqXKGCqjMV1LLLGbXJhUKE3IUtplEFRINlEuDoUpOs4D09QXl3/Hi4sVu/3AT+9uWC4arK34dHOPevQDZ3CzZ7WoJR2REnVVLkOlQW/RNkzOEx4/3yHK7JWEDSYOTkGwqCwXN1n2yVJyexhZdjU+yaB+db/jq1fPOLs4IROe+Ls+FoaQUoyTJ6M5O1mwLC2Oy2XH1d2GfT/z8XpTpkmJIlsVWFbC02ybSpoElZJEBeIc1tbSdY2c7y4wDJ7loqZpF3TLJckHtntBg/Sj5/Zh5DjeUjU1X79+welZgwuKP/z5G3GyNBUnS8t60QguZvaSGqlrtrseYw37KfLjpwMhJKzKrJuaZaXpNxtqIwmQYRBelTGWRb0kRbi93chyLUSOU2R0msXJOf/u33/Nv/37X9MtWnyY2e13/OmPf+Hu40d29xtmNxKdI5LAaCbn2Q2O5D1kKbGorRWeWYkVxsKNJKWnZYGSDfVTSicXrmttpAghJGFzGqQZ2yhxMZ0/v2B9esnJxSWqNHN64LDfs314YPPxHYvkwThWl69RVVPmKMv17YYUA+uTFUYrbNTo4FAGjG1By3JW5UzyEpu2yFxibC2usBDR2UAlwloOEWUrXJKlTaUU2Y2kqaE+PUerhpWV8jHXDyI+adBGZtwQE56akCtutweMn7h8dkpwTtAuqqLrKoJ3OD/TVIa2qXFzZA6JhTWgLba2KJJwiuuah/s90Ttu378huoHz9Yp6taQ7ueTQDwzHgcpHukWH95nd3T1xe0WVA9kInqcEJHHzRFTCIgs5P43CmkcYvpRuyJiecINnUIpPk+H3V0febmS+6BpLW1mWbU1tWiKZOWdWJyc8Ozvl7njkP/3lL9w+3Et7tgKdgpRmxEAuKJyQpPHWFBFHI+7FoYDqY4hYoC6FKT5JC7FC7kuqXNCNRLLQ5Vx2WThtoPh4t8XWLf/N333Fzd2GZydr5sbTtJbtfuT2YUtjLZVGGn59ROdIJNBPMxfLmvO1lLjdb3sRc3Pm2cUZvhfXUFPXEg3U+qn5OecszMgC15d3ZaSqLMPkMQZihHEqrv+ChuqaRpo825ZhGHCz4AIWXceuH9BUXN1u+NXnL9AKztYr5sazQxJl765u+f2ff2R/GDlZVrx8ccmybXhsI6/KLCoFdbL4mqaJvj8yT5MYEiorxVVWnFLXN7fsd1v2D1tSBltbFsuOk9MV97sjf/rhPcfdQYRzlegAIbgm+mPP/f0DIXjc7BiHmbEwIadxhufw1ecv+PjhmjfvPjK7SXSCynAcJnJMrJYNrz97zenpKW/ff+L9hw/02z3OCzPPoP5V87y4PtES7ZyD4257z/3+gWO/Z3byDLd1w8XpBbvjQZIOKdPVDSB3q0im7we6dkHKkbkIXm1Vs6ikoI4cqUxNDrHoFeVr0LqIhrJERcEwzLz/eI33gkKKMXHoBy7O11gtomQqS6qQEuMoDbfTNEshQ4meWluYq49zTmOe3KYZnuYAayWR8enmnrGk4erKUkmMCHKmaxtcQRFZ+9iq+1hoImmenMXhOc+OptakLAVmgjgxxXQBSme8S/z45prdceL7nz/wsNlLsVwxbij11yWzuDIl9h6CpOweBciMuOJErC3lOkrxsN0SC96KJEs5Y4SRF7yI01prWTppebOFBINPsjgsRaRirpL/IYMunOphdry/uuHlq2cF11T6FSph9n/8dMX9ZovzgRhE7Cx/C7ObxZRmjZiujPz8xXyUJGWpDKjiCiVDKkztkMiI+3i5WDBMPQqNrSSh17atCLc5k8OE/tsRfH+7wCe5ZWRjkTP3uwPz5HDTyMX5KWd1jQ9yiddkYgE3qpwLu05UTWtko2OQrc5uP3B2siCV9qucRUmevSMEzZA8dS0D3Th7nI8su4aTVUdMNcpYpnHC2FAaUwRuTtlEQokHVhVBw/XdhuMwsmqbp9KPGBzRCYMjR9kyaaOojMWWqJQ2Ch/k4mKNxjsBqqbSLoy2JXb7Vx5ODBGvA5myueKvrjyUxDiHfmK1Wj+5ulKUZuJKGWmmc8IcVOUFHiK8u97z7tMGyiVzO8w4J5GGrjJcrFvWi5rtvqefAz4k+nFinj3D7KXCvajZrbXwr372ISXmkMAUF4XRVJWhMmIvrzMMZdBYtlIE4FNi2Uixg3BRPCfLDl3ckMdxRpfW5Jjh8mzNtx+veXt1y2GYeHN1Re+LMyfHpw/so1sglC3HXGrQlRFIdkwifqos1nqAUKChIQSMNU8cAJ72SBQHB0+NwShVOEWBpm0YR8fu2JOz4t3HW3799Stevzrn8YY+u8DhMBLKh92U2FrT1NS1papryIqPn665uropL3rLarVCKc3xcBB+i5KLaFbyHIZSBqFQnJ2fCcA6yaDQNK08nylSVbKxreuah+1BGvoCuBC5ODtjdzyw6mrqypBiRYzy4glOnJoo4Ue6ybO5u+dhdxD7clKoWpcNSWL2kTSJo8aqRNc2LFqxGo/HQSCqMaBIVG1N7CdCFFZmW7f4EPCTQyVhm2gDOcBh2OOiZ3AT/Tjw7v4GDOiHDcvze9qq4v644eZuy/4oQsTddsPsHUmkV3wpv3nksgjXS2LZOcUy4IrAe356wuVySde1UoZTe756/gzlZRt57GesUTS1YXIzTbvi/jjKlrlpOF+foChlO5MjqFRiZR6tZRnRLTustfiYGJ0IDRiJAjSNESesy2x2R5pK8/J8xcNxYtOPVKM02l49jPiQ+fWLFYvViuVqKb//ErcIMeBDKZhJRXBJmRQ9Cc0P7zd8//ZGYvK1fK4H56mMYfSReJwZXCChnpxFMUdx6Ug+h81hxlaaZyeLIp5V0jqtDS5EaV2sa8ZJWIpS3qNRMTG5yOTE7buuDTll7ncjzkVeXC5p60SvMvt+RJXN/MFn+jFztm4xJuOc53TVcnrSsd32zHPg2Af2uxGrYbN5oD/2xLLxU8i7QluJIMQkJRZtuyiNso5+7PFBLmbTPEIZUB4vPilFKVzJUhQgPBFxSPkkLZy5QPlTLgsho1E5cRxHKiMRfUXmMB24P2zYD0eGacAYTWcMtjyLssjKRDSb3ZHd9sjZyYKutiwXHacna8Z5S0yRk9WC4BPKSFtmqi1DP7NYtuKkKYNoKK6vx3MnF1eBFA5JE3tTa9A19w8HTk7E+bnbHWmaB168fMbn3XMR1oeRaZzk4p+RYoYQnlosta04DIFfPm1wQVFZj24EC3ByfsLJaonrjzTdgqgMmUTbdlzfb/lwv2NRV+wOPS5qGhVpVaKymbpaSHlVpPDAkGFMy2CtniaR/BTlbKwhucA4TnSrJaYyxCmgFHTLjtEHGWqBmBQxCPvv8S+rjDgux3miWSzEGXE40HUtvji6fBFItMp0bcv9fuDt9RUfbjZsD704NIyC4FjUpdwpi3PSh8RmmMulV4DPOkuhVYhyzsYoQHaVMk1t8S6QVJbSS2VRUX72VSUNkxhFjoGqgn7omcYjbh5x0cuGvLi7H3Yjd28fsLbi2dkJP/zySVIRRkp4THG/h2ClDMdLgYXRUrqRM8LWK8O1fD8RH1JBlcjIQzZyzhRusC3lYiGK0NFPnlVXYxtAaa7utrRdw7OzBV2r6NqGkBDRummojCLEgFKWGL0UF/jA1f2B3XbA+4hSnq6tOF1UaC0FNstVh7Gak+6E4BzJeYwqkfgszshgNJeXJ8yj5/TihOWyw1YV7395yzz0bPczb6+2KNPwxavnvH59xnLVEGbHP/3zN4TgOD9bUlc1zgW2QZbR7aJimiv6YeLly0u+e3fHm/f3EvMks1w1rBvNsNtxsmwYjgPHkJ62/Y9uyNF7mdWmyH7wNN2Kf/vvf8W/+bdfc3a65LA98O7tR77/9jt29/cMxz3BufKMZ3yJOg+zFJz4OWKMLJitEmFXK0VMMovLpdVIzDs9xmYjZPW0jHh0is7FbRJSRBsDJXrrvOcwjnzRrViu1+UjmkkodscjHz98YLi/o8qeRCLOoOaeumnwymAaSwyeRVuRZnFeoB7f65ZqfYptOlQCPxzIpXQkpYLoyQmVRFIKQcSTlEWEsUqwQY9Lrcoa5n5LNop2dYEyFlu3hMljrDiEE4a2joRsuD06rq/vMHmmDp79jcfYihQTVRMwMWG1ZVKKrCv2vTg0uq6lqSu51FrYDZHrzUZEue09XZip4oSKE9NO0bz+kubyGRvnCHNJ6mRx0wzX76hTfOK9pQSxPC/OeWIWbrHRpSQkZSimCoUqMeuMUpZ9UHy7DXxze2DfD7SVZbVoaKuKuqpRxuBQnJ5fUK/XPBz3/Muf/sRmJwJsjBGXAs3jRVeJWOdDfGqVtFrqChKyiPRlcVYbzcJYXCwLtSIkSFJIvkYxOCQiEHN8AtmjtRTPaYNSmrP1gq6ynK0WaDJN03B188DbT3fCP6xF6N/1A1UlTbR39we6xhAiXN0fn5aaKIMLnnEcWK8XzH5mdnKGyELcEl3AR4mua6UFD6U1Z6dLbu/3jJNgnkxdM44To3M0tji+tNwxVBQxMEU5z1dVy/4w4H1gu+sZnzkWrRhCmrpiuVrxX37/F779/g37w57lcsHF2RlWK4Z+ICsp3EtH4Vmfn5/inGOz2Yp7SyuWqxXTOIHSVE2DQvH+zTuuPt0yDBM+Cju+M4ZuseQwzPzP//RHvJsIs6OfJaHQtTVff/U54zhxffvAzd2Ow3GPc44cCr7KWk5O13QFj/Hm3c/CCG472sWS66tbhmlk0bWsFh0Pt/e8+eUtb39+x+G4I/koy2yjqYzFWCNcYCOpsXEeuNtuGKaeh+0D43CQO3VOWGM5PTnj4uySOchcuK5qKmMEneJDKefUxCBs8xDKwkyLm78yhvWiK8x5S1tXxSmvn8qEJFKr2B167jd7lovl03yRyjz5yIwLZWninLT6StPtTIhgs7Tl5uLG997TjyN107DvB1ZdS11V+BAxlTAkG1tx6AdAsVotCF7ch3Vl6cdR7j9JtAhl5dmtG0nsiatO5jdXfhaKzMlqQUo9wyzCH/lflYhoxewmdvuen95e4d1MikGwQ4jZRGuJ4ZrCk9ZQOgwMsZh0xMkmn/RQuH8+FzY1UFUaozKLkyXWVAzDkXkaecSi5fIeR1umkDmMwkOWYpFc0k0ijj5yWh+bzH1Z3m8PB9GPxgljDOMwsdnt2R+PgogpAl8ohZaxJClRSpZIxuALA1mXOnNrLaT4Vy53kuewsjWqphQmCqtagYjDSpX0juhiRkVmd8CV8rS/5c/fzuCbPOMc6GqLyomz9ZJb53n56jlWiTNjdp7Zy4s6JXFzaA22uIe0fhzTJWpUGcswB8bJU5doyFzcIZWRNrtFrXE+FeEooWvNrpdf1NnJUlxCTS0Q5pRws2OaZpq2oa4fv3pVonsb7u63wkXKCj/NT9Xs4zjJD8qYp6+7tvYJsOmjNHcZa4TpUL6HGMSK/r+z6FGAmtb+K/5bieBmUMo+NfTMzjPPE3Uj22qApNJT840qrseYMx+vt3y6H7jbHJhnT2vhoZ8Ka8GwqDUXp1JHfXW3JwHHYRJQvvOy0SrNh5VWmMK08CGVrb4MnIuuIqOpqlxixYo5Jjpr8CFwvlyy6mqeX6y52x44DDMJaKqKkCLL9YqvXz9je+w5Wy44Wy3ZHUfOTle4EPAq8/bTNQ8lnkqWn6VBXDBPl9QsH9qYZhEMtWa17Njvj7IJKVGTEMX+TBYR1BhxOuUQhWdTVcQUi3ou9dQpJYkjas04CbA9PW1CakJIEj8j8/Hqga8/f0Zl5fdcVeK2W66WKJUxSovIAU+bljfvPvDh4xVKKbrlkvVyyeFwxBXentZy+GijWK5PhEcxz6xXKyhfX84QQ6KqaxSK4/HIarXgEaBqjGK5WnB/v2ez3TG7mc9fv+bh4YEpZdok0TXvPYdpKq1kihThcBy5u9/SDwGfsvwsa0NQArBPxQWpVWLV1nSVRevM0A/SLJ3l/2dqS/SeeZChomsbiQS7ubQGRZqqIuXA7rCnqVt6NzOEiavNHfe7HZvhiEbYlu7nv/Dbz77mfvPAp7s7nPeQISR5YVLcWo+A2FycghmEN1GiEpXRtFYYMuM88vLrL3i5PsP1A9Owxx92jM7zwkg7uFYU7pSha2umYcE0DPKiNzUxJKZhJARPnQVyf3q6YhidOPqKEGIKkDok2Vg3df3UDEkRq/f9RFV7Vm3F2brhYTcwJ2HD3WwHtILfvj7BFMFymmZxUpSLVkZAxijhaIWU+fbnj/zLjx9Zto24rmJi8l4uQKX4ZvbC/JILmsLWmnHyhd1Vsdn3NJXm+XqBIkoxivMcywLBWINPSItwbTgcZ0In74ycHj9ngePoCEmuGCermu1+ZPSRZWNZLRvOdGZ2keM4k7K0VE0PPefLpkT+4ORkwfMLzXEc+fD+lu12hxsH4bIoIGvZtWmFMTU5KzDixkzkwueLDEPPPI9SpiAbmKc2SGs0TduUZYq481Cl2S0XkRZxy6bHuGkUzosq8Q1ThsFpHNgNRzbjnkPf46JD6cyqoAke+amP7xgfPO/eX7Pb7KUQ6jSSc+Szzy7ZbvesmgqtLC4E4hy4vDhjv99T14ZVW9PUVprUytHzaFqWgScz+1liBjEKS9IYKq1YLlsOx4nJKE5Plmy3B05OVyy6RnhN/6rRK2YZyqTxtTS5Js23v1zTj46T1VKQFrMw3KyWOO/i5JTd5siiq1idnBJy5upuVyKcUDUdfuhZNxUv1lYa59oGIkyFV2SaSiIjzgs/SOfSsCYXwxzlkliVS1pOkaqumScBPB/2R6Y5opIiEpl8JhuJzYoLVgZEYfwpxn7g8tkFp6dL9psdKIWpDK44um82e97ebPlwJ7/f2iiZhRAeXVvcdVUlEZDD7BhmT200J00rjYJ+Zgji3AtBUCU5S9mGSglcuZYXjnFlNLWpS5PqI0c44MJA3+8Yxl6YPykVMTKUDXLkhzfXfPb6NevVgm9++Eg/e6rKsFx2+ONIXRvarsZUwotZLVo2+4FF23C6bKTkKWU6K0s72dhnnPfFMSpikLEGNwjfuK1lk+29F2ZwkqVTPzrO1504S5Xm3dUDbW1ZLcTx3pQI2+wCqimMTyXD8zgH/vjdW+Y5MbtAa6Ult2kapnFiuex49uyM0/WS2mrmybObnECz58BqtUApQ1211HVDVSnWqxOWK3FbH4aB3XHi09WOm93AyWrNF5+95OsvLhj6if7Q8813Hzj2I2dnJ8QQmJO4CqXJ8PH896xWJ/zLdx95d7snF5TLaVtzuTSM+yOVEe6kpBI0WFMaUxNJa/rR8zB40C2//rtf8W/+4XMun52w3ezpjeZf/vANP//0M27YE6dZOLxlNhxnz3ES4ThnYSFL0VcuhQvibn50WCorcdtHIV/42eJgJglXK7oCay9stUpZqqxxwTFGz+gnjNccJ0cyVjAvRWA7DiNvf/mZeb9Fx4gpLemTn9H7Dc1ySbu6YOpHVl2DSR6roalkKZZDEtfQuCOMR5LWKG2pTy5xY0/2Y5kbk5S3lCK54Gayrph8hDDTNi1GC0R+Gma6usLvNpiqwbYrtK2oFgviPGMrQ2VrfIhcb3ve3tzR39/y+WlDipmj8yyM5aSrsVr+3bu+J5sKqxRV1VBX4mgZJgdacXec+ObHW0yauTSOVRgwyZdWxUDOGn/cklxZeiWo247jbsfVTz9QxZ6sDSlLTFHeDUoQKChCEiEvFc4tWQprEko8Bcg7+z5q/rKdebfpCW5mUdcsaitMOGvJtuH08pzlxRmftg/85c+/Z7fdFAeoODe1VqysiFS5JGBccXVaremsIA7mIIuBGDMqZVZVhU2JgCSTVFkaVFnhjZTthDLzi2Yj7zplpJDKGEWVJK76bN2xbqunO8IcEvebPXfbPTnD4Dzb4yRLuZI6uNkOjEHEbl1EjBAzdaVLsY2U7+WUCD5hNaxXC2KQBIEPiaZSdF0tcWZrOPQjxhi2+4Gua2hqWXJU1rAfBmq7IIWMS4G6aRjGsQD+IWfFMPRcnK1KOULkfnuge3WJInF1u+F//F9/z/tPtxhjOTk9FUdoCGw326fm9lkb1qsFVVVxPAz88v4Td3cPuGmgbqRs6OWrF5ytFkzO8/0337F/eMCNI8PkGCNgKpr1Cav1iv/6zQ8cx4mLRpOTRqMJWRUsBFxd3fPTL9c4P1Ebw+lqifOZcRwZhh4fPH/3q8/Z7rZ8uL1jv9+RnKdqerx3NBZOupqTVceHd++5vrklTDPBC2ajrSrq4mjzIRKQ+/y2P3K9veXQH4h+Ks+kICHqqn2KvsckM1pbVVTakEJxLlelMbqq5Z5gFIu6wyqN1ZramqcUm8wxlmXbUVlNUxcOohZ0wH53ZLs/cuwn2qZi0dYYa3HlnS7OdiBLRHMYJ8bJyyyuBfdRJ2EQ15URtq211HUjxgsFx3Gk6zqc90yTY9E1UqwYApWVZ7ZrBfV0HCaG0ZMRM44xhnEUIZWUaNuacRipqgXLruUwTPgQqIoYXdeWyXlBQxmN81K4eehHcZI7T/QBH6SwzpSyudoYcVUXQUwrRUJYw8ZodGl+Hmcp3CI9zqhJPm/GyL0rp8JEzRwPe7mHFbwTKcpnxggr2cWIz+HJeS5lKFKaVGSeJ9a+MRqThQvoZidmpsWK25sbHrY7xllwXDGKi1hrLQvmnJmDlMcpKHiSgCoc54SkO42RZaZS5Uw1cr/TKiMFGwbT1ATvSV7ETKsywc/E6PGzI0x73LinWnb/X2lx/0d//maBzzmJd861Zb3s+OzVJc8uTxmHgXn2MtiNDh8TFZFGKqSe7MPkLJfeJKptFvUCow27w8zFWSeWbCRj3VSa3eAZvZINuZLY1WNj7c3DEVNVnK5btDLUteHYDwxTKcZQnrqpsUY+9J9uHvh0dSv2baOYp4m6Mhz7nljYCK21xR0gD51Wf3UtKqCyxXFV/m8Xkjj+DEidQLk8xL82y1hrGPqyHRUTX4lZSp5fqcxms+Py8pL9XjhtJGEJPtZ15xQ5jIq3NzuOw4RJ4iCZXCyqsGHZVawXNT4GDsPMNAeO/chhmJhm96Q/GgW1lUtICJFQ2sOaylLXso27POm4P0y4EKisLe4r4clllUlZ7LiPZRCLxYLjMPHsbEldNXy627LvR1yKfP36M3xwPDs749PDA+9vH/jh3UceDnv58CCOT0OiqSxtVZFyZpwdm+0BpQzLRSsfGCOX8MMwy6gQk8R1vPz+mtqSskRItAJtFG3T4IIjBnk5UV5AIYQnh5dWGheF8xNDIsXpqa2oH0ZQmuVqycuLBVorKqs5P1/jnHAbHy/uj7bqH3/8hU9Xt9R1xWKxoK4q7u8fpM3NPFpIMicnp0Cm73sgc3ZxLtHfeZZIebF4a63o+x5biUsnBE8IkbZtWCUAw9XNPbv9REofefXqJdvdlpeXZ8xuxIfIcn3CcOiZxoHbmw3b3UDISJubUYQM0zjjyAQnkbG2gpNFS1XArfIBlmZlW9qIgvNygTAWirAiz79/ishnBT4GvvvwnvOzU6Zx5OPugbvtBhe9iB9Jtr0xJ37R7zg4z3GW6IzO0iCrAZXk92W0VKa7JJttpeSwB7BW8+LZcxTw2cUFv/vicz6/OGN7d8vdwz3zMMiQai2LRcdy2cnltAytxmi+/vVXbO7u+PDxGp+OVElEbFNVsqXSitkFEXsVzM7TGEuVM11XMc6P3Iiy2EjSRNgog1YNu35mnKRY4WK95OHQ83BwdFXN9VaYgL95eYLWmaap6Y89k5uKI1CiYTFG5pD5l7+8582nW9aLJfM0QVaM40hSmcvlgvoRKYAmZ9l2aSufgZzF/bYbJrRVnKxa5oIpqCojjecFOLsskGptFdPo0MZyHB2Tj1KYFCTitmgshykwzF5iJLVlcxwZZy1xPkq0eNFyHCa00XgXedgPvLhconLi7btr3DSz2+w4HnppReOv0HKlwWiL0halK8wjsyMFprGn748ijIREzgEQwS6GKGDvqmZZy0AZi+PNGF0uFFK0YJQ0G1tkk4c1ZAVdVVPbiinMGJ3YHTbcHjcM08g0O+Yowk5rLCYFDiHQFHdCLu9+WfZkYvA8PDxwdrKAyzWdtfz6688IMfL27TXjPPHs7JT+eCSEwMnpWhiw5q8bVP0owJXD6rFoI0dxD5jSANg2lTS3o+h7x+3DgdWi4frmga++fCWXtK7l5GTF9dUtKcrAYhoDxuCT4ZvvPjL7wMm64bjb0z47o6kqnHNyWSHz6tUlMQYun52RdMs//fO3uCTO+xwiw9izbgzPzzrWi8IxSmBrRXYKsrgf2q7Dh0y37AqP7jECCvM4kfNMLnGIbrHiYX8ry4qQS7SmoOu0JofiKiFT1zWNfWTgRLKP5KQ47Hb87h9/yzwOHPZHjvPMh7s9b6423DzscN5RacV511JbXRxXUQQ8/sqj3Y0TPiSWbcWismjpn6C2lSColAzEqljJjZE4W4heLhMug1W4nKQUISUqDT45+n7Lod/hvSwAU0GZBB/JCQKyDL04O2G9avh4fc9umEs5irCKQ460yqCRhsfa1hx6VwZWcShobZh8wMcCoNcaVd4f0+Tp6kdRXC7K45w5DDPLri4XXUtHZnCpMIQdy6bGKil0evvxjr//9UsqY6kqw7SX7X5TS5xWK2lm/sM3byTymYOcvyh2uwPHfubspOPZs1PBicyB3XbkeHAc+mMpmRHY98sXF2idCT7TLRq6thG0iY58urrj+zc3HPuJ58/PWK5WfPHFBVZLWuPbn+/4dLen1ob9YabrSpEMEqtyPpK14TB4/vjjNfebAVMYqVWVWXaa7YO0kyY/y+XGKk7WHQ/bngwcZs/D9Z6YDV/+6lf89u++5NnlCW4cePfzR3756T3OTVx/ek+YB2Jp+YsZZp+EgeWDiMJWBDr5ncns+ghzT/mvcPiYZDav9CO7Slx8oVyQJGki2AMw+CwuphAC3jmm6Bn8TOUr+f1ocYVrozn0A3/65jvm/ZaLZYOpW/COaRpZVJocDWEcOH/9JeMwkENAEUFB8JkUQik/AVfY0fhE1gYfPCpLwU8io404DlVVuL8pk3KkbVv6cWZ7PLJoO1nkZ8F6WGMYdlvWdYuyNc1iieoW8nkCtocDP7/5xNRvuewslbEsT1op8kMWiPvjzGH2LFcL2kegPeLudjFynAKfbjdcb7e8ujjnH16+ZvPDn+UN9Bg9RJo5cTPEiXa5EGh/P/Hm+7+g5xF0wQogTGeDJmUpqlDG4rO8L40qDr6sREQqMflDgKsp8/NOXHtGwapryu/coE3Hy89fc/7sgg+31/zTf/nf2O62JD+TYiTFQGM1q0qukFPBP7gghXwWxcLI7CSR3SgN24Wj1mgRJB45exJeErdvRgqDKLjypDIpypLfKIiISE05MyWml+SOhGZyjpv7LYd+QiEFAodxFteVkjKqwUVud30pnkisVzUxeKwSRzelRCb4RIyCosjAYZwJLjCV5lWlag43uycslbGWm4cDzgeqtqafnGBMmgqthbnalHN36Ae0NYLiKUURVSU3xkf322azJ5H59oe3/PMff2ScI5enHevaMnvPYZ6pqjVDSclYU/H8xTltWxNj5F++/YH7uy1zSLRdgx88y4uWRduy2+z59vsf6QdZVmmtqE1FoxVUlpeXZ/zw5iNvP9yTQ+ZmHAnBleSdZn2y5PRkzf/2z99QWUVdNQQXhVXvJT66sBIDPjs54eZ+z9hPcrZVhkpltEl0VcU8DPzpj99wHAb87GQxp62UgSiFj4HBz8wxMIwj99sH9uOeaZZEDcVw09qGVbfgdHUii6jlmmEY6KqKs9JmHslUxeiRdGZVOHddLdFWo+SOrZG7eFVVgiaqapbLdcFuacZxoh8mhsnhfcJHWVwppagrS6MNzaIqy1ZZqGQUrjj1+2l+Ki9adAuZ3Uq50+N8KXxn+SgYYzgeB9qmph9GVotW8F8l9opC8DjBsz84oBR8piwpJmPoR8d6tSCnwGLRcehnVito24rdYeTRnVpXlcSsXeQwjML9TOmJ2y4okYRS+ckxqJ/EL+Gg/pWSJVgUX3jC01xEQS3JGkncyRx6fnbKNPSkFBkmR2WlnOhxJlZlVjN1Tbc8YXMYGadJXKM8truLuBZjRFsr6TElC06tJF1YWYMxlv5w4Obmjt12J/eZx4WXL8iZWUw+GXG1a2vJIQn/UInRSBvRQbz3oicoxewnlsuVnF0hyLsuSjnV8VBcpiGQtcaNPdFNpDDhxhnSjMlBvu+/8c/fXrIRIt5L09UwO15cnNA2FZVdsd0emceRcSpwQhQhiV3VWoNJpT03S7RTvphHODiEFDkOnkUjmwkX45PKe5w8J12FMQLJdhGWrWWYAu+uttjqklUrLTh1XRPCvkAsI4oVAFfXD3z8eCNb84y4rcqLFyRmYUtePJaLHtqU4gpVYgNZRMYchc3lw9OlSuJLj9ySv3IK89PQLwwJaeIRYc1aig1V0/eOeC5bpOPx+BQrmJTA+jdD4MNDj58iixbE9FY2YQoaa+gqg3OBwzjTT47tvmecpVHu0QZPTnSNMEHGOTwJlcBfY2has+0HlJJB0FpNt+w49BO2spzUirc3WxZNw4pGnGizp6okmvry8oTb7Z6qsRx3Ez9f3bKsLZcXZ1xtdny8uWGOMozmnKiVIpGotKG1hkZybFhjOD1d0/cTx34Cpbg8W7Lb76XZLEljUTYKXQ65YQzyvZYLiUY/5evFEahAx6L4Z1IOxPi4OSxuqeDxEeokgFYfIvPsuLrZUFeayxNpwJGhOeFmiccslx05Z/787Q/c3T3QNg2npyeklNhst+R/9Vy0bcPJaikbx7E437oF4zQzjSO2QOxthZQozDOPEN9pcuVFanBOXr6np2vGaWazOXDsJ+4ftlhrGOdAVTgJh+2Bq493bDY9LmUoG5Y5xQI1FzeY0lBbxfmitMEleYGmEKTtrzZEJ61aMabC9hMBJEXZgKgMgggULosxid1w4G7YsZmP6KS42W+ZnSMkEVpDkshSP038cvWJHBUhZ4QoI58xkxXaas6WpygS7WLJZrvFGvjy1ef8+vXnoDWrruaLZ5dYBMy9ebjn559/Ypp63DQLn0drETZjKq1SQZwMxdF5suw4O1vzy7sP1EbjfKYypc01R1KWZq6qUcSQaVspnYgxUlc1QYsQMTqJFbeVwQBTiTtenLQcS6lE19Scr5bEfc9hHAmp5sODNGh/+WxB10pk0MdILj/jEAKH3vFf//Ke3XFgvVzSD1NpDpVB8qy2xJTZ9iMCAa+ZJi/RJQ3KWHTwzJO4QC5bi3fTE1g4RmGcDZPErrf9JJgCJe4pawxTORdWreXhOBJSKSIqw62xGj85NIrJRa4ejrw46SSuFQWdoEIiG3kfvHt/xzweOe52Em0BEUcfwfxKmFrCv1Dogg5w3nHsDwzTQPCTxMcRMTjEiPMOhaatGxZNTVVVT7+vlISjQpYzxlRGFgDakL0c/F1bEzNPju5xHhn9yN1hy3E4MviJaZ4l7m8tjQKTwRVHjVE8xQhSifpcXp4Diu39hndvP3B5umS5qFkvG355d8Pk/JMjdpyc4CG0nFFTFtd201TCxNIGZSRSEkLEuSgb5bJhVT6iShPdstOgFfvjxM3DHhcjtqr5/PUFWmmePbtkGEY29zvW6w6lLYc588cf37PvRz67PGHdVKRWBEvvIqenJ4zTLI62eeKrr79gnBz/5ZtfuHrYc37ScRjkItZaw1ljaSuDL4zJMEuxkHcBrQyzi0xuj0IzDJOUdBj9tDXVxlI1mqqRc2C56miaiuOxx5rqKYL14tVz3Bw4bPegEjEX5qmWnKnKmabROC+Lrj//6TtCTPz49prvrx542B/lec6Js66iK1y4/TRjVOJi0ZYlD+wnRz85Uo4sqlqa+lKmsdJ4LTzOCh29CIROYkLCe4JcnMpT4Vol79FAXSmc67l/uGOee4mOe3G6xpJcSOXS/BiZ6WrNp5st15tjaZ6TSIk2ioBh2ztenC9oa2FIZbK0Ts7iBhhmYRQ1lUKTkRk0FxyELGtrK85JEH5ZyLDvpRm2aeR7dErKuJSCfp7xLrBeLwkxcnu/59XzM9ZLEWB8jjRG3LIfr7f84ds35Jx4cX5CDoHbu6081xaskQv7divlTMPgcLNEr5qm4vR0zcWFiJzaWA7HGec9a1txv91TWcvt7QP/9PvvySiev3hGcIFxCrz7eMvnLy747udP/PLmEzEnoq5ZdhVnKylcCkHQLnVl2GwOfPPLNePsaAtLV+dEleHh9h5SfnJfgCRR7rYHQoQQFbZd8MWXn/EPv/uak1VH3x/55S8/sHnYsHu459P1PclPxFRmTiWpltkHBheIxb1RKf7qcEWegxyjFODFXAqCZKnclJKenCXS7cIj0zY+zbIhJlJ8dI2D98KRdcFznHrm4OjaUnpXZl8XEh8/XROmic4oxv2eerGgQRiPlVUS7x0HwjSx226xWjhyPkR5UWZh6mUdUdaiszCTiYnoB7QR04BS+okDGZ1HmShMWaPJ3lMVZukwzbRdg8Ewzp7FwmCiJ449ZmXIlHeK1dxue/7rdz9ippGvL1bUGgw1VgHKME6em92BqODy9JS2pIfmEIXvWhbsb2427HdH/uHXn/Hvv3zO5uefqY3CZsRdgnyr1lp0ZclK0hjHw8Av331PGEesUpAUWue/Lp4kgYsPHt00pFycJSmLSyZL2YVLka2DN8fAh76XkiAjYmVGk3XNy1cv+eyrz3h3e8t/+l/+Z3a7DSSJ+pPlmVraWhZcKTIGaYqvgM7IAlyi4QGXYC4RwQpF++iWRjEEAdOXV4i4qFDMKQmjUmspnUkRZcXUEIjoDJ0Wl2GKEr18XMhL2khmlJwyu/0RH8rckaEtRW8f7w8kBZVRtLUheEddFzFBKfb9JJ/DFIpjPrN72KO1KZHawHLZ8fFmR8qJ1aJmWRlpeUXE1Gl0tI20jkcv853zHo0s5JtG+MGPdz+lJM5oKktXVxxnz7/8fMUPv3wihMDFuuWzF0uJGaKobcWyq+n3R5SRNF1KIxeXp0wu8Zcf33Jz+8B63dGVAst5nmm7l4QQ+f7NB/ajZwoJHwR7BJGTpubvP3vB2fk5/+kP39PojLIZIWxKSUnKCZ0TwQdmn+kHR0wOnaXwMueAiyJsnK1bTk5PuHvYseosZtGhcyZ6jwsiWg39UM4uSYdVlaHWlcS5Q6CfJwY/c7u7px+PTPNIDoHa2jKTKaw2rJcrzs8uRMwNkTYnGmuo2hMqoJ8GjDIinlm5N5Aga7n0PorAta1omhZrpVDrMQ0UU2S375ld5tj38o7JimlyknhTGh8jtiw3V4sOhSShYoxMs2dynuM4cxxGUkqsFgtieY5NcQtKqcuE1vL8zN7J0q2SiH/bSERXF5QDOZVlnSWTeHZxxjz70jQu70mXctFUBpZdg8qBtrH0x4GzkzVNZZmdJ2nNOPbs+4n9cZD0SpDSRO/mpwRhVclnUBclLxRj1uO9DICcWS0WNAWldeyHJ8Y9ZelglOZk0VFXmuNu83SHqGu5O7l5Lsw+qJoWW1WopuP+MPCw2ZNDJEZxB0uHqXAAJWbrqIw46rUpmCYlwun9/QM319ccDgfh2JOl1APKvSo8fX1aaZIugmURL50PtF0neklBCZjKSqRXq9LhIMslhdwR53FAlRTrPPfE4El+IgeHJlObjDJWeh3S/z79+f/Ln79Z4Jt95DjMdI2RjYnSvLxYUVnLatmy3R3ZDYFGZ8aUhPFkNSqp8guJZatpn1wEKE2MHq0Nu35C6w5ZQGZClsY2YzTHObEW1i5GP7bYwG6YeXe943dfXGIN1JXl4vyUzW7Pom3RxnB9e8/7D1fkIHBkVX65znseW5pMUY5DzBilaKwlJLn0WqXJKdM0VRGWMt5HfIFDGqMLf0bcdKjHogF5uFXh9zmXymZUFXeguEMUIkbd3T1weXEuMc4YSo4f9lPgajOSk6c1Upf92CwsTsfSlBoTu+PIvh/pR2mwUSAXwgw+hNJYlUpESTa7tgwNVmuUFj7AybJDaRl2lJbByljF5AOvL9fYhyOj83y8P9A2ltNFS9OUmJVW+Bhxbma1aPnx6ho/Ou73B97dXDMHj3l00T36dmPhHKbMy9MlqGK7zRIhfjgMhJw4W7V89uoFV9dbjm7GGIOLmTTJMIcuhRchyYUkZebioszIZV75XHL06okrGZN80EUwELdTTIW5aA27fiTEyKJrWbQ1bf2ouIuwIy1ZiT/86TseHrZ0bcvp2Ql9P8iFs5LoWlPXnJ+f0HUtx8MR7zy2stR1x3a3Eztv2SJ0XcfZ2RnTPMl2ASBKNFdmTeEFCGfP8ezilH4Y8VHjQ6JbLIShpzJ3H2+4vr5jdJmcNTELAD/qLLD7GKm0ZrmsIUfWjTTceScuEa2FmWlQ5CAtqBl5scnGJZNUllIHkwk4Yla4EJjcxKLt+PnmE3ebDblw6ebghNsSxLEqSYVECBHvAou2Y2FbNDL8ZWVY1DXPT0/44kJ4Yfe7A8sXz/n61Wv+m9/9AyZL0UB0jjAcmIPn/uGew/7AOE9ywU8RHyMLW7No69IUlzElshlS5DjPzD6wXnT8m3/4Db98/4sU+qzaEr2Vz3FVW2lzRFHnSjY42tJk4VMeRgdI+6C4xozwLREHQmM07dmSQz9zs92z7sSNfH/oGWexzV+etCwbzXq9JKXMMA44H7h6GPiXHz6gUuZk0UppBmKBX7YSM3I5M08zKBGCJheYfGBdNeKa9ImkDNM08uJMhAqVc4GXS0HI7BOjj1A2XS5kjPYsakMiMPpIVpr9MNPPEj+krQpWIRND4OXFis1x5m4zcOwFSP/1Z+ekOKM1JJ3wc89xs2U8HgnOAaX1VOsy9JciJmMxppb3kgLnZ/bHLf3QSyNj2eKpnMkKpnki50xb1ay6Be3jdre4NcSNKTDtXByCPoTC5pShMyNNeBL50OynI8PYczge2AxH5iBbxaSh1poKTcxRWDzGUBlD93ROiGtLHILShnt2tmC73XP7sOXVZxccjz39UaLazgf2zmOMZbVc0LWNDHzl3W2NFfeL3Jokaoc4XlN8HMDK5dvNxCCFFCdthdWaXYGNT3OgqWueX65o24qvvv5SokTjwM0x8pe3Nzjn+OrVJavGYrQwK7XRaCXFPfM8c35+ymKxkvPhZsf1/RFTNYRyae8qzbqxNJUWVmcjpUcxSxxDGY2tDMPgSjxiZjYCo26amtoYYedqiytcmKrWPNzf8+L5BbvtQZoE+4mk4ObmDoWiaysUga49Fee30miTSWh2g+Nm07PZDzz0I4d+5DA7xnmmInG5aGitiF/HUTbci8qy7izBB6YQ6Gdpo0MplqXwIWZxr4XZsR9nfEwYxEmgkCE85CQLha4hkAUzkGTh1bQVKToOhw2b/YZxlnPI5FKIJU+TiJnWQHGIGK15c7VldMICXJ90jFN4cuI2jZRADbOUB43O02jFNDuM1kwhYq1mUVvG2YEqCy+ti9guDrBx8k8FYKrMPb5EUycXOFstETSA1AIopHF7exhoa8vu0HN2smDR1nStpc0SdfpwteEvP30kp8Sz8yWbhw0PDzuUEhbharHk/OIErSqiD088oBAjtpYyjXHyzC7RZUUOAkB/dnnONE8YU/GX73/hj9+9YbU8lRKk41i+Z3CT43/5z9/y8WZLbWBRW9brltoo6qZmGEZCEE7Yx7sD7683pJTp6hpVziA3juigC3z70XFQnB0hkrygO37zq6/47W+/4nTd4qaRD29/4cPb98xjT3+QC25/3GO1NBSHKKmLR44jSqEzTDEQcqYr2AAf5R3WVpU0cipxJD7G+x7dnz4l5sL2FReYIpbiuTmIwKy1xqdAyJFhGhnczPa4pyquqqpu0MqQs+bNh0/c3dzTpYAhQVvTthVqnkv+skRMc8K7gB9G2lqjdQ1BllhGa2ksyKCIskxFZlatZaGWi7ijqxqRS3KJUSkMWooNTIXVhggEn9CVtMZvjxOLRSbmLQugXZ4QkuLt1Q3v3l1xoiInpy1+GqDpePHiHGMV7z7d8ulhS1NZPru8wBhDP4xMPpJT4GEYud32XD/sQMH/8I9/x29OF9z89B156KnKYlhIRfL12sZiV6fUyxM2o+OXn35m7gdsSnirCiah8JuQ5lkXMuPxSL06IaKffnchyrw3+MTNpHh79NwPMwlxTxmtQVmePXvB1199ycNxy//rf/2f2G4eyN4JU8pAoxWVqajQ4qSKgawoAmFpjIzCYJxzkhlbKbpcXOXIfKcLakYpMXHEKFE1X957VVYsjSUBc5TUTVUWecpobHm2vZ+ZoscVzlkqh13Oiv1x5PZhJ/FAo6mtRC5DEEdSDI6z9ZLTpoEUius1ljIMibHmFDgeZy7OarSCxbIh+ojRmfViUdpvNbXSwikt525M0tLrgqdrLFYhsUVtODpPu67Z7w/UdSPPcBQBfbVcoMg8HEf+/OZnfnp/Sx8ip13LxdmSSsN2jGQ38ep8TVdXHA69mCyMpExevXzO6ekJ//znn7jfHTHasttMzPNAzInffvmCZ5dn/Offf8tmPxCTZ9FULFctD4eZGGE7e9rFQpI7s0MFR1dpbM6omGRDqQ1t2+BDZOgPLBrD6uSc8TBIrDM/NowqHrYDH67uxL1daXGA+sgwTOyPx6fEm0bu1aaR2SR4TyAzeMftdstu2DO6EVeK0JZtR1PXYpQg09Y1Z4s1lTL0Q8/5ckmbwdS1uLGmSf4d1qCSlK09HpbSjlzRNi1t11HVUuqVM4IecDPBexbW4H0kJllKKqVEfHMS32y7WhxuSc7Y6hFPESL9OHM4DgQUD7uDMNRLw2xTVUUHkFKJnCkOMSlzaauG+92WnMTpuj8cuThdoVOS9tmUBGdWWaZ5RpFp2wrn9RNXUaRAJcUeKbNeiHNeNy3HfqBpOw7Hie2x53Acnsw9wXncNEn6UIm2YY2UqIpDT3iaZGHMaaPLZ0CSOrPzLBYd87GXc6poIFiZQ09XS+I84Xwqy38pu3DFwKIKK7LullRNy+Y4srm+53A8Eh5TKYWPp4qDzxQEhUKeN3FHGsgRTWKeZrYPt8ITz/IszN6VdIqWtFmSYg5jKkk2+pmQIkZLmas2muAdyhgMppRpGuSKUCqPkjj6chTufHI92c+EHDExkKLHIOaLnBI5enwUxrOpq79VnvvbBT6FvJyGIZKN4W4rMY6X5wvquhaWngvUncUnsIanbaCISLLVYC6HXGnkM1phlBwCu95xuhbelS/QQkNiMwVUNnSNMPGOgwgwLmZuHnrOVi2vLpbiUlm0dG1LSonr6zvevb8mp8hy3RLmUFoc/6qYNm0lwkKWMcHaSsSnHJ4GsrquitMnMM0Sj0xRsuRKZbF7Ki0PXrlMUSy1dd1I1XNI5BRIRpGtIWVhz/kgG4W+nzg7T6yWKza7HRE49jP3B4kR1ToToQiFEsUwSuC6ISZ2h5HtoWeaZ0LwItgBk/P4JLwc4QtKG5H8UoXllRBhwNhKRKO6Eht4ieBcnK1wmz0pRbz3VEpxdrpke5yYQ+Q3X35OUol+dny82nB7GHFBIK3f/PKBcRiBVHhOAqeXMhNQxU2xNpbOWtblBTjNvkSoMvvjxPY4c75asFrY4tDkKfL6WGWtFCSTISdiiNKqXH4+oupncrYolR7v2cX5IJdPGR/kwtqPIozUVUVdGw5j4O3HB+qm4csX0ma86Fpyzrg58qdvfuD+oWe1XHCyWnN3cy8vCaNJUZqdz8/PMFpzf78h+MBy0dK0LfcPG2nqLAP7ohMHQghBGm/L91pXBu/EOVfVNd47aQcq7skvv3jJuw83ZasJ2+2e3d0Dm82BkAA0UYmbVER0gZK2tWVRWxojsZ7sHX6OxWientrQpml+2kI+luLIgSl2JZUzPjjePlxxuljzsN+CzSy95+P9vfDEovDPFFniZVGGLjKomEkGamVYLpb8my9/h0+B1aJlUdecrpdk58g+cL/dYbWiMzVfXl6Am3HelcurlMrcXH/iOByJCNOyq63ELivNcrWi1lZEIyWLBF2+jhAzm8PAsl6zaBrmEFHGyCYqR3JhG9naMM1i+Y8+oCtF9J6YI40WyK8rF/ZspOikNmXzpyEVR+9JV3MYZ7bHnnXXcbnquDsM3G4C33yo+O9//QwFrFbCbPnpwwN//P4956sGozTb3UEO2+B5drbkYT8QQqapNE0lEarRhaeIA0DKWobdeeR81WARt4Y25aIeEqOLxdkhbeNGa6qyAY0pEX0QTIA2LJuaHB2zi/gYOFsuWC9aJi8xjNNFzdA7hikyzoGffrnmct3gpoHddsfcD0QnbjkFGKvRpbQnZvmibWEJ5hyZJsc4S2mGcKzknWaQwSgmYRLV1rJeLKi0EVFEjA6AXFyF2yJsR6VE4JVJUGO0QWcpQoglPr4/7Lk63jPP4pb00RNyQmlYmpqY5ft/FD3ImbWpOK+b4taPTxEDW0mRQPSBtm64v9/ifORwnHA+ME1jcf0llPI0pdU2RWFOxRil2TIEjKnIUYpYFouOaRrRShic8zzLPxcfF0OwXFhWbSUCoFIM48iPv3xitfwVbVNR1xWXL17w7T9/x08fbqmM4tefXbBuTIEXV9RVA1naCpVWfP75a148vyDlxP1+5M8/vuX+Ycdq0WK6FV1TU2VPXVvaRphH0zhT17XwaGcRobLSTC4UhzuCrEhIy6+ReLLSWoScwTPsJ9ww0zQtJyfr0jRJ0TUzXVvRNpYUZfHmQ2SOmU8Pe64fjgzOMc++vBcjLgYMkZfrlk4pBuc4jAHvA5VWnHUNi0q+xoPzbPuxCLaK9bIVFpVSqKzZjyMlRUdEuC2xuJ+tqiB7Fq20/Skl0b2zZUuKgd1xy7HfMo6CEVE5Y1VpoitOTcEVIIIlsrCslGYYZlbrNTEl9kdx5VpraaymqeryfAXmOnK2aDj2vThhXSSGwLJdlHi3QXrHMjLvKkKSn298Eg4QR7n3T+6rQz9xuW6IMXGcHJU1XK47WaaFwDjPhBhZbo588fIMEGbX+6sdf/zmF8b+QCbz7fUdSinW6466bnj58oLVopF4aV1B1mx3e+7vN7Rdx6IRQXO1WrNeL8kKbm53NLUsr9zs+c9/+Jbrmx0XZ+dQwhnaGppKs162XN8fuLrZYLVm0ZY4l07MPjPe74Qj7BPb/cRm32O0uFJVlnNGqURtFCrG8q6RgyW6QEpF2PvN1/z273/DetkSo+f92/f8+N339IcDfh7wTmD/0ywtlFMSxIDzQVqNi2QaYyImmSXrqsKii9CvSut5KoBv+UaLAQEfC7+VVHjQRlpNkyy/Q4wFD5OYnOMw9YQk+JB+mkBBZSu6qmHVNGhb8ebjDfe3t+gcCd6R4kTddSQfIEasTrIAknYWJlc4SDmhsiE/lXvI5VL8jnKPQJsi8uXytcmS33uPqmqMEdRCTsXBoR+5WKX9l0hWLUrJ/Ot7h4sWV3vmfsMPP7/lcHPDy2dr5sOeXVXz2Zef8/rVZ0zZ8F9//w13d7e8fnHO87MTJue53R0YxxllDMdx4v3mwPXNhouTJf+3//A71kQ+/fgXkhuotVy7Y4YQBe0bI7R1S/vic+4Ogd///lvm/RFDJimDzlkcicU1nnLGJykTH449J6+fEZQGIiFKmczBJz5Oiff7md4HjIJWy0W9aRb89je/xXYt//SXP/Hz+1/IwVGVxunWGiljyVKwNythMTba0GiNKjPj4D1zlvdEbS2dNqiyCE7FJaUQJ1HKiSGIGSKRqZWiVprWSLlFzFKIZrTCIhftmBMmSwmXC6E4BOWcm1wg9xNaKW4fDny4eZCznPxkWOjHmf0w01aWzy9OC4pHSlakyAFsKyVwAGcnC3yMNK0l5UhTGWItzteuroCKk2WJvyuJR2ctt+K2tmyPPYM2NLVhGKVIQbqWEi+eXXJ9t6U2hrrWmLrixw/XfPf+jrfX96Arztctv315Sa0VKXhaqzlfNHR2QcqZNx9umZxDpwxNwxdfvuLrz17x5x/est0fIXg8MHm5m16cr/jNb3/NP//xG3azwxjDalmTg8e7GZWDLBebBmMNx6HHZEHqDJO8dzJi+rAqsVq2jNMEWtxVh+1BZimlyv0JjJGI7jwe8P2IzhK93G4PTLOgUlRxA1otxhOUxgVPyJkpBj7d33AYj/T9AaURBpuCuq4Y3Ii1irpEc9dNQ2Us7XKF1ZB9wqXEHDwKcYVaxPTx2ORaVzWLbkHXLWjaVmKdKTIMI9M04b0jBCdmn+A59ANtJ6VK0+wYJoctjG1NFs5dabhV5S2/PfQMw4zSmsPugPeCFFstFhKLTxGUZp49TdWgyoIsZ2RZWdWcrFYM0ySuxRjZ7HvO1gtJAGpBZfkgUXlbVU/uNa1Bl36IumuJsWYaJ/ph5uSkgwS748jDh1tpNEZ+NtF7ESt9lPNCG2HzluuC/NbVE2NVuhRKaqu4BmOMMMBysXhyY2Yyq+WC2haH9tSjyMKpz5nZy38/K023WKOMoWk7Rh+5utmw2e2Z51nMYVrOKCiIJmueHHo5FxRSSWHmGMjRM7uZeRr/WoTy+L9K+vGxYFNMQYHSHyzLuCIiPuF0kPPOeS9Rbi3MyGmcWC46YnD0+y3JT6jkMTlhHtOeIRCDI8Qg838qRpNHs0z+/4OSDVdca6ZcJOeQuEo7aitxs6qpySkxzhIdaOsWbcD5xKGf0MV6/cify1niV20jjDdjNZP3DKOmazV5lAp2pRSN1dz2jhelsEMYDIYYEkEpPt4eOFvWtE1VnAqedx+vuL/bopTiZL3gcOwJSS5cWsFq2cim1UVCitRl6x584DjIL95WpjiqMtPscS7iXCithWKpVQoZUBIFRioDVk6ZppWmwn6Y/rrJijA6aQdKMZU8uziirm8eeP3yGbfbPdvesxsD0zTTVQqlDeMUxE2lM7WRD5wrldGb3UEuxzlhlRwuk5cCBWHbVOgysKkSTVJKyxY4Z5aLlnH2+Bh5SInTtURRlbH4FOTfaRXbw0hCWjrzeoHznufPTvh4+8DDdo81iofjgZ/eP9CPvrhhHI3cQqgyTElguyZLC9daiVtgDp7D6Jhc5Dg6EX33gzTnuJkfP1r+w+8+E9Cwkg9jDIk5B9q6KpGoVERlKwByI4NgVZhlgjgU8U8XcKYxUqvtC89JKU1tLbs5MASoQ+a0q/Ap8v7jPWfLitO1uDDGYeaP3/5MPww8f3FK9pGPn26ET2I0dV2zWi65fHbK8dBz9bAlp8zL5+fknLm7u5fIdlWRk6eua549O8Maxf7QM8/yEqwqS98PzJMX1tUgUV6UfoqKnp4umN0Ft1cPfHp/xe5hS98LbB9rCEjjozZaALOU595oKqUITsDdilw4KfI8u9nhHls5gRTEot01NaiMzvBpf8txPFBpyze//Myzk3OOY49tLKfdzK4/4suFJzxWsSuF0WL9Dq6UJyTN2dkl/90//JZ//OrvCtcnE3yi7mo+vvmFFDydgefrE05X0qhmjKKzDfvdhvv7G/phwAcv2xhg8tJUu6xbTG3Fmasl9ue8iJXWSGMWCrb9xMvTjuAkxr1qy0U2K+ZZNrbTMKGtLdw+IxEnH/FebKnW6NI8KSwzpaV1OcQksNyYyVrEzkcXwzBNhcvX8ulux5tPmt88P+FsIYy5t9c7fv/dW86WHQbhNy4XHXfbIz7C9jAzu8Tl6ZKKgLGWvjSEL9Yd2UVy1kw+klLkfNFgieQsQGudJa64Hx1zlFKJupKoOsVFURnFmGThUFcV64Xl+uEonLFK3Du3mwNGKxbd49GTqSwYFaizYz7s+HA7k6KXVluV5WJQLqPCx5D3osySEuV3zjFOo7TK5gKBDx5Ka7tREsWobUVlLW1dUxnZ1LkgDcLaaGEwpsgcpKkzlU3qYzyDnAl+ImsZDn0IjOPApt+x7ffCjMzimJDtvnDwXJRoUU6JlbGsG8sCI8mz4s4VppKchTEE5nFC5UwyCjd79mVbfzxKm5jWhpfPz+TZLFyFXNyAOQls+NE54Z2jW3SsVgt2ux4QJm2I4soRkbFnmj2npyuWTUVaNfjg2W573n+858svnvPLp1v+1z+94f3thoXVPLtYMw0TJteCr3CBcXKcrhZcXpxxebFmuexQCj7ebvmPf/yZu/sdzy9WLJcdD/d7FhYWNtNqYdeE4Mt/hvL+deKAL89LSgFjbBGZIsmBsRLbU0nmDGUMKIkkvX/3hq//7h949+GKyUW6ylIbi0LTDzOTCxx95Pphz2GYpIktRrqmwjaGYZpwKXLeVlRZCsD2zgsHFOgazWlxPm6OA/vBMRVI89mipa0sPohQOHlXHNYVPnhaY6iNkXOwuEudK3DsEr9prFwwJzey2dxz6LeQwtNgqBFnqmzHZUjsqlriXtaSY6S1FV3TPrX0UuJptTATSAmWjSyxhkmac900EbNiHF1h5NTCGEIRnQdVYnNRlWe4RPyzcIBPVy3z7Mkp09amuGQ8u16YfEYJmzCEiDWKYRL3Uozw8fqe05W0jv7480f+8x9+5Hg8EoOnqmtWqwUn6wWvXz1n0XV0XUVT12gNu+2B65sHrm/u6JqK1WrBctnx/NkZy+WCmBJ39zu8m2jbJW/eX/GHP/1ERnN2dko/TuSssdpwerLgdN1xuxv5/pfrUtIkzimlYBwdtrL0o2M3TOwPE/MUxLmDiGWjE0Zja4Rp50OWH7gA1+i6ll/96gv+/X/771AklDZ8ePuWX378ibuba3Hf+EiInsk5Zh9wPuOSlMJpY8mRJxC9i46AiKtLrcTpjn6KsmlyeS/IZTwkKXQJQc7hlCO1EQ6xS4HdOIgjM8l71cfIMA6MbuY4C84mOGHhnnVLzrsVy6bj2cUlu92eD9e3xGGgS55ai9vZVvI151j4d5W4NqRMRotrFE1XCxBdyWtYGrF9ERmjnM3yVpDvN2eJ42okhowVDuvjrJK1QalUln6t/FxiFOGs6djMib9c7Th89x6TI7ZcyobjzBdf/JrPPn9N07W8uXrgP//L94Rp4N/+6jO6puLj7Y795OQuYzWbgxRybDdH/v7zF/xf//F3hN0Nt9fXmBywWWbKyKP7BVSUhZU+e82dt/zhT38i7Y8YJe+GDFKKpjMqK1KQJVJWupSkHTnTCt0umXYbQkocQuJtH/nUj+IsKm5NrQ2Xz17yxRdf8/76A3/8pz8zTkeJkZOpK0ODLLfmws/TZCqlOakachKudUThYsCnRGcrEo+KnojEIUvqafaenBK2LNBDTlQIry9led+FJC70SpnC+VPonAv4PpbFWcRFL4VZOcnfH2VB7RN8/8sHYs6cdy2r1YL98cjh2OOw7AeHPW/Y7Af62VPbqsTXcxH7LLZ8zaumoqoqbLXn2WmHCxGrDHVlcT6yOwxoIyUMq2WHUprt7ogCutbSNTX7YWKtpAwhx4APmrv7nueXGmvhvj/y4c2OHz7cs+1nmtry+atnvDpdyeLOJ/w4cHm2oNIKUmSePPfbg7DzQhLO+rrj+cUlf/juLTcPW8I8sVovMSTGsaeuFK+eX/LTj2+wynLeJNq1BQWHPjO4QFeLU/H8ZMXJes0f/vw9uSQW2lpjdPWEdkLB6dmS/jhIoaTNWC1CyjRO5JRoK0vdVJwuG+I4cnd3z2Z7kNi0L5HUXMwCZb4TxE0gIAu07fHAzcMtKHG36SyidkyRYZR27VdnF5wtTwtYV0RdgmOKEcpiw2hpca0KoomyCKzblkW3pGlF1Jy9Y3fYM00zwTv87ERUfBRbFKW9vuJ+exBWtFY0tZSq1ZWhaRpIPN0ZHjZHjsNETDAcJUmXybRVg1LiYDfacugHcs4M08h60aEQvIXMnjJrGK0Zx4HlYilz1nqJ1tKF0NQ1x2FEUlS+4KWyLL6MJCRzymANtrJsdwfu3t+xP/bMxQmnyow6TXNhcadi1tBPsyT5MXIcEMdsfkIApBIJftQ1cgZPYLvf0TYN1jpqa1m1Nck7YvQYpUsh1CwzhTG06xNZ7BjDHALHXc++OAtD8GijMVXFY7a/bpqy9BEXYCgCsyC5gBgI84ibJ+Z5Luy/XFyaZalVWr/l7hxAyUyFNpKAMcLmM0UcFolTivEIAWMMFRmTA1UcmXcHcvDYMAk2LEqhZwheFvglWvzIaM2F2/8oND62DP8tf/5mge/RchmSxCxCzmzvDyhjWDSSr8/lBZ5zYtePZeCzKE1xD4gnyPD4QSw11FZiUqvOcBgdtWnpmop+9qQsji9QXO89F63BWM3ReWJWpCiQ4e1x4mVj2T1sef/himkWOGrXNmx2+6fPrTGKZdcJ7yfIhdIaw6KtGSeP97HAiRUmJ9pO2FbT7J7ce6ocwDkrvHfSwARA4R3xGNU1XN084MoD5aLCJYlQai2XvcqIkttYQ+M9Z86zGSI32wkfA4tKUZXYWMqJRSUwT+GXZYZp5tiPEnHKSrbo8OQcqm1FQIYyTcbnxKKuJXJa4LBZFh1IkYnY8SVWIoyQR6eAgOUDTVtTV5b1umMYJ7Eak5lS5Nsf3nL1sKU/DqK8p0RC2gxzSrhSIqLKZvGy6TAqM3kvX0tOPOx7bvrIODlMksF0dp7v3tzyxbMT1ouW65ud2PhLJHfKEv21lTgJfGk3rpEShGxkeJgLdD7HRA6Rylq5nMhCSaD8JKytWFSG7ShFBj5lnmM4pomf3t3y7373Gcdjz7ffvwEFX3/5kvfvr9hsjtRVxaKr6RYtZ2cnrNdLrq5uubvb0LYVr1+9IHjHw8MGgLbrcG4mpMTnzy9ou47dds84zk+8wHlKDMNcYKBgaysxdJUYx5njYeCw70EZdpsND/cHcToqRdZQt5ZWZ6wSt4fEw6VwJpfNX05iuc+PV+wE4zzJBiJJfNNqTdtK6yw6cru9Q6P5cH/Fu+tPNFXNfhxpuwUPxwN61IAhxCjtR0pjq1rYQFAaOA3W1KzXJ3z98jn/5qtf8/e/+opFt+C43+NDwCqNch58wtYVF/UJbdOyWC1puwXH/YGP15+YpgEfnPAikgjyWIlJLhdLzlYrUgjMPgh8H8jk4t5J5FkOx8Pk2faOzopopUnEpBl9ccJWFUM/0lmJKJu6wfuEqkTYnZ3DGnFIzT4Qo7gjxfYuWyI0pYVOXM6rVjG6wO1hYGkVF2dLttuBP/10zVcvlvz52zd8vD+yqjTHY09dWYiwP/QoJcuPyQfWXUOlM/OcyCGw6WfauubF5ZqPtwdSidc1JtMPg5TuIDXwMcnPJaZE8AK87ofpKebufCQZicH4kPAx01kpHckhyVYviCvj+mHH+bor7JvI7v6e8diDD1A4PyWLgDHCVkkZiYyJFFaWEpE5OGYnfCBhPRYXdbHQpyiEYlNVtHVVfs4iZIcYBdhriwshSJ+fvPJ0iWzKvz8WEdpohc4aTGYKnuM0cru/Z3/ckbQ4Wm0u33eWuKVPUkJTW81Z1XLe1E+xhhDTkwu8rszT8Ho4HPDjhI4ifigyFxen/PL+mhjl3Fh0wn30TsS6GEuJBGDd4yVO8BdaK9SkypktZUyZRF3L5nmOnnmMpXgpcbpesV60hLTg/bDj25+v+Y/ff+LnT/ekkOkaw+mqpVKGdlGTlXA3UwosFjWvX15wsl6Rc6SqLG+uN/zHP/7M1d1WxJEUISRqAyeVpmsUbWMZhxFbWebZFfeZLMhi1lQpl62muC6T9yilsU3NWFh2IAIZWcSihCGMkY9v33BycsHtzQPRQFY1o0tsB8eHmwd674glMnPSWmIE56WEamEsC6WZnGc3zUxOImWVlphmV4l78fZ4ZD/OzHOgri3rrqXSj8KKwcdUnDqJGGX5tBtG2RZ3LSSYXEBbjc2atnx+Bjex291zOGxwbsR79+RgkuWonE8xidMbDLWtqZSmbZqSHkjUVi4fKYWnWSfqWD6voHcjLgSOUyCrPS9Ou6eiLaWkPCxBcaxIK6qKCdUYalNcVkqhdMK5VJArcmqkMjcsm5p+nLg4WdLWgePo8Rk6I66XYQ5E7zGLhm9+eMeH9ze8/3hLKiiM84sLLi9P+eLzF5yerGhbYdHaSrAI+/3A9c2WD5+uyVmxWHYYrTk7XXNyeoLzkU/XG7a7Ayj48fcf+XRzz+nJEq0tu+NAypqzdYUxNet1y2Hy/OWHD9SNJcyB9VmHd562MaSoud8c2Rxm+kliUF0liY3RidhTKxFw4yMnNUYMitpYvvjqNf/u3/+OZ89OmKaZf/mvf2bY73m4u2GapDjDhShYhBDZDDM5wjhHlNGcn59greXZ5Sn317f04yiisFFURhxKIWXIEVsZEfdKJC2nXFopM3MQ1qxV0g6ec2Z0M2N09PNEawxWKw7zyG4YpPHPB1m2x4hRmnXXcdZ2VFqXRbfl7btPhHHidLGgCUfi5LBtjTaGcRjR2csSJctF3DtPExIhRaY50nUrpvlIRSrIHHHLK4SLFKPgbgQdEVBKxExjNFEM2NRthYoi2kfnS9FKKc6qKzQ192Pkp6st+6HnVy8vqXXGkDG24Tefv+arz7+gWzS4kPhf/vgTf/jhLZfrBf/N3/8KYuTd1Y7dNNBWFqzl7WbLTx8+kX3gv/vtb/g//eY1h0+/MG42WORza5QipbLczBDIKGV49uw1h+qUP/3LD6RjL0ug4pcJOROyLLJtBo0UT/hU3v0+4pyjXZ+x2W45hszPu4nNLLO6UsLts1XNqxefYbqG//F/+5/YbO9kkWw1DRKDTSnhyQxefr9N1jRWzo05enySc8sUVt6j+yWTqeU3REiRPjiykabzVusi+IlY2FhbOM5imiCK6POYZEgq43JkTlHO+BCRpnNZZjy2PT86sL9/e81hcoDi/cMRuz1SWRjnxNv7O6yt8dsRF+R76odJZtfCJU4xkLWhMYrGKk4XLft+4KuX58yHnmmKHHtHyFJmo2NivViwO45sjiNuclRW0QxSAphi4DCAyTLLtI00pv70/oofP9zx5mbL7CPdouXzl+d89fyUVdfgXOT69gGdAieVxu0d22lmipnJR4yG9bJmsxs4P13x2998xU/vrvh0tyN6jzWW+7sd5ydLzpYLfvP1F+QcuB8G+kHYyyFEKmNo6kYcaFlc8q9eXtAPA8Poios2kQRoVlJ3CVPVtM2Kj5+u6SpJNPgQmYJESpddTVsZFsuapjK8/+Uj97uDYI6ilBAqMloXhBXCQndRFqTBK653O47DAzmLWKXK3ToDta25WK45W65Yta0UDk4z/ThB15FDoDIaYyy1NRhkFrK2ou0W1G1H1TToShIO8zQwHQbGaRTOXBQmojFFXFNaZtISiY1Rot4ZYRsarchVjUZY36nM7v0wsz1KDwFZUn05S0y40pq2uO7cNEnZjNb0w4jRhtoKliTEhC8u6ZQydd0UV3x5vzWWqoh5TdEBUkJmH58IEQyZcXK4EBnGme3uyDCOBdMgqb4ck4hfPj6lGR8baSlzdyoiVAr+yYyhtS7YlPgkUolUIMtmHwL9MGKNoa0rVosWNw6kwuCcoyPmTFU3LNYnUpCRynyTMofjIFFuL/98Zc0TT99awXZJ0V6JzQZJ8j25vVNgHI7M0yTmjpifdBkfgrjxyhweS+rGVJU4f62wf5WWRZOt5dwxSkv5awqYHKkqjU2SIpvdRAwj4bH4KThCiiWZlgrTNjyVVuX8mByUW2elBdvziBf/W/78zQKfD6HEIBPOyWBrjObN9YbzZUNIisPoxCGEWKxVzjjvpeY5UT5IYs9vm0ps1cXJNock4lJW3O5HLtcdWksMhgytzuwmeEDx6kQOCecixijCeOTuamZ8MOwPAz4Jmr/tajabfYlKga0Mq0XHODlRuTOYlOjajmHwTLM0QzXGYpRUpY+TY5wCbg4iNJQNgUJccU1j6Rat2E5RHPcHYpQ4xe3DjkM/M7rEEBRzeRnJh1fqqStbEUJk8olaW7bff+LDw4B3ga6SrZErzKjaanHmzQI+HifHNDt5wLRiDtKCZkzF7B1tJXyjlGWwr62k1X0U4HFbW2xlqGvL+WrJfhRunjYyuL56cc79dqAq4NGcI20lB+Tl+QnWVnSLhmGaiSnwLz+94ZdPd0zTRPIJpSIWMFkxZy+umZyotGZVGc6bDpUKd61wPjzwhzf3vDo7YT87GlvRaeR3lhP/9fsP/NuvnmPeXROTcBvqEl9I6dHdQolYixCrlVy2xPknw3BWMjwqJa7UxzYeow0hwqGfpFGJxBATxyGSElyuOm43PX/+8SO5bBiayvLNtz8zjxPrkwUn6zVVZXn+/BIU/PTzW3a7gfWq5fWr5wTv2O8PpczAstvtCTHw+eevWS47ttsDx2EuVnCJPE3TxDTNRYC2xOwYh4HFQp7deXb0+yP3tw/0/YhLoCpbQL5WXgAGiBJxrJRs+FOJvALlpU2JPAcpKIli266Mpa4M1ipSkLrwu90db+8+MU0zu35gdzigjFwIx3EiJuG07PuBVA53K20DBUgKtalYtEv+z//hvyPOkd999ZrffP4aUzUkLyKs8p7jPNK2LcvFQqzjVnP27DmH2zs21x/p++FfRZcoLoiZrDOn6xMW3fJpuMumQleWYTyggMrYciDE0kQnA+DHuz1fXKyZowyXjRKhZtFWjJMTJ5GCSgvzaHSZVVsKGlBIS5wUbPTTTG3k8xdiZnaOdVdjjWaYPP0oz5ubPbMLuBTpGkt/PPKf/nDHf4meRaWoG8vkMvvDSFvXoGRDubAwx0iTREgc58jsRVS11lA3NTf3A0ZpDoWzYXVp6kY+N6MPzCELi6KAesdJnnuJyMg7QDUWFcQtN3rPQy/HqNWKpkCGgw8chp79/R01kIMnF8AwRcBJJGxVGlpDFPGiiAeGshDwAVeiEymL21gXV5vW5ol7Go0sM2yBMEMqztwSzU/yDKeYyUiU1ZYlE0Wgm6MMAaYwV0KU5cnt/oHD1DP4kSwgUwxKNn1ZGCTkjC0i0WnTsCwckDnKAic+IitiwiVxszRNS7foCNNE9oHgZ5SCYRqFEzt7TGWKuCTulFhAvhFZvvjRUVeWrq0J3tO2LcFH+mMvrNUQWC4XIgZaTT5kYvK4ObDdHUkxcnqamVzk/X7kbjexGyasgdN1w6+enbKs7ROXZZw8XVdxeX7Ks7MTKivNyF2z5ucPd/znv7zhw/WGlDyr5ZJnZ6cSf1CJrjLiTHBy0Qs+oVQi5ShNlcsl3kdWq4bJew7HAaVMaVZHuLnFka61uOMeC0WmGMkxc7w78Fmz5ORkTUhwsx+52WzpZ4FGLytD1BJFGyZxTtZKYaw4+Pb9KFzSJJ27XW1prcws+2HkMDlGN4nwumhJPjD5yOQlapujOGCCL5F4pGnVBYkPVcZgkXa3WkssNOXIvt9ze39DP+wJ3suipcQVVXEnxOIQVUqcL4uu4my9pjWyZfehxFJmi9Uill7d71i1NU1VMTmPTZl7Nwt7KmeOw8xn5ytWy47ZeQYn50tXW0GoGIPWmkVTP5W2hBCo6oomw70f2R4nLs+W4jCffREGZYjdH3vayjJ6mOeZi2enzK6nqSy3Nzt++vkj/f5ATImT5ZLnlye8fvWKy+cnnJx2soBzwgGMUZiawUc+frznw8cbiT+tGrTRvHh5yeXlGh8Cv7y7Yrc7sNv0fLzbME6Otmk59jM+ziWSWxGjpDnutwM/vruWKKmSc2CePbVRHI8T+6Pn4SCMpkprmTlIuDEUAUNKlELw4tBK4rR78fyCf/jt11S15bjZ8OGXN9x++sRu84Dzs+BbyiJOXICBwSf2s4dkyLrh4qzjV1++ZrvbcdhumXzhjBYnq0ZcYVrrIuplROKTxVWMqUTfBSSuSumJD/IeHN2ML2xkFwJ9CBzmkX4e5NLvIzEFWlNx2rScdC1GWVySRcGn23vuNxuUc9A7LppADjO5bZkmRwwerYVV9ei+UNFTKc962ZGmGTeP5BgwlcIUJ40xiqapC3MUuTjHhKkEVZBzJIRMVgYVgziMjSaRUFre6VobfNZ8GhK/v9qxGWb+h1+95D/8w694//EOZRueX1zw9bNzLs/XaGu42R75j3/+iXe3W756fs7rsxXJRz4+HBgmx6Kq6aPnh+tb3ny6YWEt/5d//B3/+PoZd7/8TBiPVI9SXXGAWqXFpaMUUWsuXn9NOHnGH/78PXpyNAlicZArJAavtCReYpJljkE4irkMytM005ycc+9/4dN+4qEsS1yUM/t8fUrbtry9+8j13RXeT7TWUmsRcUHwNalgKlbW0ihNzIkxBKYYQMn83mhLRKKUkoJSNLqClJii/C4aLcy8ZCTVcHQzWik6Y0ToUXLuxxioUIIryLIY89ETVSklKy4YSKRSJlRVS+r2hEzm4/2e797fMkwzi6rirGuIKXJzmPnlbsuiqjipKw6zZw6RrjI0yOLVhUBbydlcWXi2bnh+umRyQRjMsZR+1JngEofdSNtUdF3NZj+Uu05G6UxXa4wyEresK2bvef3qEpMz3/7ykb+8v+PjzQaloVuteH7W0XU1Xz474WK15Md3n/h08yB8tRzZ5ITVmbaxaDSHfkYpTVNrnl2s+LuvP2O7O3K/2VOpSFNJgcey0nzx8oyTkxWfbu75dPuA84nKVrJIDpHRJaxJNFbx8vKc0XkuLi64/nRDmoSPGZDovpwvIqycn65o24ahH/FBWuON1rS1RJKbkv6ZppHbm5H+OEtsXgnXWtrlATnFcCkzx0BG0VrLnCPDtGecDsQQy8JXmGqLpuFkueDV2TMgSxNtkhly0dYsqwpT11hrMcZSlfK0pm2Ee2iFPzrNI+NxR3CeHL0YGYJD58ijoCXvHFmKphRps6QeDoc9i66V8iktKZdpdpysF2ilMEbesZ+u7tn3I3UtM/04DDJzGUsExml+intqLQ3PwXsOx57T07WwAosJqWkawe5oQ4gB1Un6bZodTS0uUW2UpJGspBMOx6MwjlvNOHuu7jbC18uSxpJ22cDsPTEEmcHLHcw8JpfK7SkW4S5TiieMfhKpQgzFXsyTc+9x4ZgzKC/pGaMSbuxlzs+JnBS2rulacdZLcSRQxPfjIGxx4WBLsYcuf78t0XhrtLw/Q3haKmotAlwMnmk4Mk8jIWXBiihTCqbkBxtzQe2U77HShsrWZTGZijYlc2WMHoJnUdUiapJkeRRm+RnGQIjC/M4pFvyXOPdA7huxzMzy9Mv5JWspJaJE+muh1d/6528W+CYfOcxRLtwG5l7agryLfPv2lpenUsxgi+trcmJ9PFudkmOgriRegpKNiHNi7dSl5UsensKhMYbj5OgqQygukcpomkrjEmwHT1cp+ugw0XHSQBxn+tDiQrnQ1jX391vIBmMVTStV3Lt9/4jIo66ttBMNjmkOgMClU8qcnq+YXGC375/EzZgKNw65RIcYWS4XWFsRU+J4OBC8bPH7OTLMkc3R4ZJcQk2BaaYsLKbHCvjaGJLO7I4Tx9ExO4lYpJiYnDSm1mUzdpwj4+zk4jvLht9oXRySkuV3Ti7DqUDztZYWG60UPiWSlge9bmsWhbPXNjWXz88K90MxOc84zRgjv4+mqXn57IyTxZL391vWC9l4f3p44GbzwH/5y4+8ub4XPsUjn1CmFXi00SpFrS0vu5Z1U9HPM66sXzOZZdOAyvy/3274YlBcmMSqmlnWFa1V9IPnL29u+OLZCW3b8LAdcBmGGGgr9eSiSFB4ivrp55xilKab7NAFaplzIoSM0rUMwT6ijcSoEwo/e2pjmENmPzu0SnTPlry+XOP9jFGRm+t7jseexaLm5WcvaJuGpql5/uyM+7sN7z/e0B8HXry44LNXzwjeM45SUqMV7Pd7nJ959eoVz59dMowj/Tg98elGJxtNN3sRjhNM0yiRqQKwnYaZh5t7joce5wJRyzbbakNtiygXIwYpNrFKoVJCxUAOvnDHiouNxzi+DHe1UnRNKzX2OTElsZ372fH25hO/fHxXNqJlS0GxfhfuRiIzzHKR1mhSkCFWZzg/vWC5OOHl+TO+fv6KJmc+/+wzIDP2Pck7lI5UqzWXyxWLrmLoFiJmjz03v/zAMAzkEKFEgEISp9PsRcQ/P3/J6WoJsQi6lcW5kZgC766u+YeyEYsxSbwTgc16n7lzA6/OV/isWNaW4zzLNi0I43G1qOVgqOEwzLikOK2kVt0W0TmmxOTE8TH6RJxnKAytykrhiF3KBm+771kvau63e4ncziM5JNaNoasNESm5eNgcZaNm4NnpgrarePvhjrZtQaXi/JIhQsdM3dZUtsJHLzxF72iNxKTI4CNMXgQBlySW93jwmCyi7OSksQql6SeHUaV1PGeGqTQsl/Yp72aIniolTHq080dIWZg7CrQVkLcvjgsXAhpZnkh80eHmmRQiKBFbqvL+UrqIxVp4i5WtZGtb3jXWKmEMxkBUSrbJZGYe27QzUSNOLmtLbEQcio8Mj9kFHvot98cth/EoorSSw9tqjc3qCWwPArdf25plcaM9QsX7eSJrsMnifSqt3UEgyZOT5sXZo2NkniaG48jxODH5RNaKtmtYLBv6cRKnp4Zl11AVcSumhJudPG8p0dYNIQWGQQRjZRV1U9E0NcfDUFzn4uyzVcVhTvz04zUPw8S7u4FoDMtVy3ln+ccvnnG/PTC5jNHgXeL0dMX5ScfZaskcPKv1CZU2fPfmmj/88JGfP16TYuKLZyd89eqc3a7Hh5k6C9icnLGVAPSN0VS1FF/5GAhTRGWNrhbSeocwq+YQJeVYIiTWGtpOuF/zvicoje1WHPqJqBRTttC0XH0UFyQxsm4rvBOG7jRLKZPV4ibzzvPwcChirLg9G6NYtzVGZybn6Z3jMEzEjLT0ImwV54UhaozClsKgkCXW3tVS1jU7x+lyUUD1mlpXCBItcTzu2PU7dvsHnBuKizrJuV4+XynJrBGTlE4tmpqzxYJ124rYW0phRicswJAiD4eBMWhOlx2kxO4wgLV4Lw4TE4Sns+9Hqq5mZeH+ICUhZ0u5RPSD5zDK7+xofWmBleNc67k4DkSA8LdHXJD33LIVlxE5sTnA3//6M2xtOfaO67s97z/ec3v3wDw5VquWL798weefvaRraharJUYlMoGb63tOT9ccDoO0oBrh5dxstrz58JG6qjhZr6iM5eL8rLjzDO9v7vl4s+X66o6b2z25xBTJnqq2tHXh2abI2ekJ20PPT29vZMFnFCEpai0c6dlHbrYjx34mJGgqK82QSaKKRikaY0gpEJQUAGjg5KTjxeWar754zebuitvbG4Zjj/MS9Q8lVhaTFEtIwgOGObKbPBjDYrHkv/13/4bTVc13f/mBh2MPQUpFbHECNGWJm5UujfayBCHLMmp2XiRiLc4Uo+RccsEzlVKvmCXuHb04lXtfmJ1J4kRGwVnb8XJ1Ss4JqzQuRPZzj21qPl3fictdK2xwJOcwlUXpiuEwYKKjaYw0FmpDZY3wnIcDF2fnfHr/kTwUB1tlntoga63JQYTylMRVqrM4tTOKrC2YCmsNwQdS8BjbCJsxZY4u8a7P/PNNz4f9zH//xQn/j7//nLvB8//8w1su6op//9krXl+esqgElPPtuxv+4zc/USn4b3/9OasaHvY9+5wYh5FFW3M/jfz5wweu77dcLJf83//d3/P5uubTzz/APNIg72lTWs+NkoKy1ijCyRmcfc6QLN9++wMMIzpDVHIuGSUimThn5dfpEmix92ESVCrTNlJmt5kTv2wHNtMsC7AYWLRL1us1x/HIuw8fmecBoxVra3m8xsfEk/jbGM3CGFSGKYhjrw+BWj3GomVpEcki9hn5e0bvmFOEFOiMxftA0oq5RPqWdYUF1P+Huf9otuzKsnSxb4mtjrrSJRxAACEyojIjS2SJx2dGFkkjG+zwZ7LFFlu0ZzSWGes9suqVYFVmZAhEQLq6+ugtlmRjrnuR7DKqQU8LQ0QC7nC/d5+15xpzjG+Uxam4V5IIgUUsdEmWgY9uwdF7VIrYLM+pNhXL+TmqOkUpy2Y/8J9/9w4PvHl2RmVkbtqPjq9vt1RGcb6YsR8n9o9COJrzZSsFCFMiyGhLUJlt71Fq5OgDVhlmmz2nyzkfHo6Cv7CarjJSvNQPkrgnY3Kktg2ttRzHieAj3id+88d3/Pbbd9zujtR1w+LkhKY2nJ0seXm24NXFXDigv/+Ojzd3qBhojSZoWfqQFT4qbI4sW0vUsiD68rNPuN3s+d2f3pFjorG5FCL1LOY1r1+94Lu377l52EgJRCWfleAC2hqUEh5iRnN5eUbXVlS1YZoGmkqRkjgzqaQlXSF3RlvVHA49PmXqpuVkVWFyplIRnSMxJh42e3aHo7w7Y0LliMpSjiMI3Yh/5K4ri7YakzWNVuz9jr7fEp1/WvqhMsv5nPPTE7pKjEDr3ZaurlnUNcYaSfzN5lRVRVU31IWpV9QaxnFk2u9wU3FYkVAF0ZWjl3tuwZ3EKPfPWJaxKclCo5/EBdbVhr0/iDkkZlSliCkUxJPi6x/ecziMxQUm2C+Q0k9jjNyjZy2zSrjDKQQRuSvLOHl2+z2LWUfXNkzOYbRhOZuxP4pW4UvCqp+OItTlx1IGVZBB0i1gjeX6bsuH61tcCEWgEzfeNEpUVHh/JVav9dPSLpc7OOqxmE1hjAEl4pd/dBJm0UC0+lFzEN60pHpeXFxgcoIozj8fI8pYbFWhbSWlTqMTR14WAXV0Tjh3Sj0t5R/beVVZOunCyQNVsGmI8ch73DgUJrYT157WBc2lCY+t1s6RlRTgkGJxfFrh76Uon73yPq+TJ6WJnDyxlwZcidoGUpLnI8VUDByJlOS8S6XrIJc02GOhKQX5o0CEQBBkRRKH8pNi+mf8+LMFPnFOiLiXErgCHm+M4sP6yMmsprbQWItC/mCnJwtylkjRVEoeytMhDBfkCxGD5KFDFNHP5sQQ5ZCZtRX7USJbrUkcx8g+KKg8J4wsW4uuKrSpGCZfGsQiu/stSgugtm2lJUdixBTLqWyxDgdpf4yPjhajWSw6QLHe7KUxN4htVmlNJKLqjMlarLBO/p2xbPxjUhyGke0YOZTfd22NbFWNfJjmlUWKhGVwmc8aNrue/XFgcGL3tGiSycSsqLJwvVyIjOMkFddZ3v66PPC+VNinFFFZlQ19El5Lznj1Y5mAMcI/aaqKujHs+wnTWOoiFIraLHECYw05Z1bzjsuzFfNuxvvNFpcSHx52/I//9Y+MbmJ3PJBCoMrqH9hQKQOFuHsWpuKkaYTFlhHruzJ4BbOm5bRpMVbxbYDvbkd+ubS8qRNLF1jWsv0dQubvvr7m5Uyi3fu9xNYSmrkRVxBQPliPf32MtAlzL5evU1IKHRXDeAQjPL9UKtBjUkw+sjlOoODLl+f85RevJEo19Lz/cMN6s8Fow8sXl1xenBJT5ux0QV1bvvvhPTc3Dwz9wOsXz3n98gLvPN67p9jtMIrL7fz8glevXzJOE9vdgRglvz85R0pyIU9J3E39MJaWYIH93t8+0B964hMkXtxNbVWJeCGL2gINLYdiOXyEESDlIjnlAvAWoa6zUrxRm9IwGiNZZ64f7kRgCZEPdzf000hWj1wNiSgaY0TgCNJMHEKSF3eCtq45W53y+uIZv/rsSxadhSAso64R27l3AbzDjSPb4Pjw/ff84tM3NPUJ1hiu333PcNjh3IQLUo0SQ3FKkeVSYw2zixe0XSsV5TkzqxrcONAfN+jiMvFeNsZNpZkmR2VreYkmKad5e7vlk5eXfPh4Q06J1azmMHmawu6rrOLQew5jQFuLd2I7t9bgfKI2Wr6GWXEcHLvBsWprtIr0g4OUCClxvx/5+v09m/1RYLdRWtxmlWJRa3zKzDrLzbp/ajb75NUlXW3ZHXpsZfHO8fLVKaNzjIOXRUdl5PtjMgnLw8OatkRiVWFQDDERksYlWaZIm7h8ciOQvbz4vfMS+U6ZkGVLq5Wwc1RMkCMqBmZZNlgiAJToM/LPGmseeQDiMCzvgMpYTBbwugsyjOQYSzGIkgY2Je2d4n6SgdhoiWxZLSwtHyOD94xBhoZaW1JxJ1YqC5fP1kxR4N0RaeOzxuC9J6nMYerZHo9cbW9xyT0VeGjE7UnOTEk+K50ydFrTKmnZU5SWv5DwSZycsnhJXF/fc35+ASqTsjRULpcrjpst3idGP3J1vcba6ikCpVIiOAE8C49EzmNrNG6aRLjWwt6r6ooQHHVTi2t7nDAa8mkmeimJ8NHTtTUuZd5tR7bHQVproyYpzYuTOW/OFpyfznh3dV+aF0UsPT9d8eJ8LsJgf+TF5QWVtfzu2yt+/90N767u8FPkzeWMX332nLvtjn4aqBUyxFnZFOcgIOeckHMrynsqZnEi2e0RNwpKIQSPMhaFEvd7jrSdtFlv77eMXqKJOQX6kIghcXe75uxswaJrGIcj++AYe48vM4sFGiub3fv1kd6NxCDb1VppmloWahQHcsiRWVNTG0VVVWwPAwOSTkhKBvlaS9ytbixo4TuRs7CdtJyhTW1pTA05sR32POw2HPZr/DTg3YAqNU9KKVLM5Wwum+eYqYzlZNawnHXoJJ8PFwRA78uyrzaWeddx6CdWJydYMj7K506jJQKXFJLEj8SQeXu15s3zE7SGedeyPU4S303piTmUc34Si4SdCifzlilEJp/wQVIB+94RUhIOnUpkZXh//cBhmPj+h2sOxwEDnK8W/Oqnn3H5fEXXdqAUVx+veVivef7skrPzE5QaWJ3M2e52aN2yWs55++6Gb777gXk3o6pbfMqcny/54os3VJXm+m7H199d87s/fM80OrSRdsvKKmkIteJaiibz/HLFzcOOd1frwiIuF8AUmc0advuR+/3EMAVykiWzRiL+KUVBmBgjjdxFPFt2NatZS60j4bDhj7/dsN5sGacJ5wR430++NL6KazkkOYNczkxolLVYDH/1y885nVt2+z3r7Z6UpOSls4qcSzt7yoKaKPNWLK3wPnhxYijBQWTkgu/K730MntFPJfKecMHTu6m4+QT+rbWmsQ0XbcPr+QKjlETXQ3yKZ2mt2O0OnC06tEm0tUJlg2lP2R68vMt0KdaqDCFKXI9g6Nf3LF5+DjqRY8DWtsyzkjbJKaC1lYtQwTEoJQicrDXt4lSuRjEVBIYsKI9B8dv7if/5duAYLatZza8+n7OY1/yff/ORySuedzXzumaxaDFkxpj5f/yXP/H29p43Fyf85OKURmVuD0ce1nthMtaWd+sNv/vwgd1x4M3pKf/Lf/QlXQq8/+5rqhRpraLVBqNBIyyxFDPeGlK3on32U662Az/88A1MDotEVKciLqdEaY8vF9Qo5RQpII2OOVNrhW4t3z8c+fd//JbbY49LgcYonp+f4Xzi++t39O6AASolC9WQEyZLGy4x0WqNUvqJDztFEWLqglGxmSfXXixon1wK1nxKTCRCjjTaMBRmns7yLFZApeWc0FrKLVS5X/gsLvZj8NLO7KQMZHQjSSt0zFJAlRTKVPhxwO3u6NIZ/6+/+4a2a/nyxTn73nG73XN/cLy7X5PJvJmv6CfH6D3PZw21UcyrSi71CEtZUwozssRgrzdHKX2yio8Pe5qmZXCOrq745PKM2/sNx3Gis6YsbhO1qUgx8zAcOYbE9/cHvn57xXGSs+P0/JyT5YJZ2/D8pOPNxYqmbfj23RVf//CRm7sdrYaqqWiskYbrLPfByQUcCmJgMat5dirN9n//x2+Zd5ZFbfDjyOQF6/HZ65d8+PCB2+sbFlWLn8Yye5jigsqkJJ+Zg8u8u93y8uIEjo6H7REXMyplZrVwy6X4UoGxTD7w7uMtWdfURjPrDK3NhH5gu+u5f9gI0sEX12WWuVUrYRlLIZOI8RFhG5ocsVkK3Ia+lyVyVWPrhr7vqa3h2WpJqw2rpiE4x7PVglnViAvYWqqmYblcYax9Ep68d/T9geCEqZfK/KhLkiaWJEcsbczqH7jiH51pMQWck8KN9XbPfLmkqWsRP5XM9cbIua+U5tt3H9juj4CgROosHF3vvfy8lJ6KzEKI1KWBdZqcsFVLSiUjv5fKGsbRlzv0owklsj8eWS4k1ZjgKcmRSMy6mqVv+f7DHTe3D3JWFmHPT1LukOOP6SzRAcTdRhYBT94QSFlHSVvFGIp+k54EOMqvEZP8vYzc9+azGeerBZSkTQhelqF1g6kqMiK2hXIXOBx7hnHCJTFeyNtETAemxHFD4d1RvjbpUYdSko+KbmQ6HvGPrL0MlIbrlOQdRpmnKEgKAQoIyosUsXgqlSVJEh0U8TUnKYqKSVJsKQdZLJWobU5FLE1iYglRMFaPaSFJPMrcL7zDwvfOuZR2pKfyDvX/syj3448/W+AzRqzI1prybchiES9R268+bvny8gRDxk0TdVOzmHXcr3dYpXAxCktCFbYRqaigUPz3pZ3lKQXOej9wvmqIITD4SF1p6hzokmOpDe2qxTYd4+QYxpGmaRhG99SUq1WmbWuCF4abPBwWYxV1LRf0Qy8OJomjtMzmLW1TCzvPxcJzkzanpgy6j04+Yww+Zvnmo6RQZAwcp1RArbrAjhOVMRJn0lIs4rxsbicX5cIwefrRSU28htbKh8cWp9bgHNMkLWcp/riJHYN8aCYvFnOlpQVLkmci6tTWkLwwkiJB4lwlAnBxumLf3zL0I5Uy1KXdUGVpEqoqy5vLU3b9yPcf71jO5nz94YbffPeBD7cP3G02pBIhpmyDc4mWao1YvZXi2WyOVZpjmNiNjkrJRaGpLed2RmWgMxW7qScp2DvPb9aBfaP4Yi7RyvO2Ik+O7683/PSffok+jPiiFE5eBpbRSwGKIotbTMulXtwzsgmdfNkIlPZkoxRhSiKGGc3gAwcHwzByMW/49S8+4fysYxgOfPfhlvv1Dm0MJ6sFbz55yayRiMCzZ6dsd3u+++E99w87xmHgy89f8eaT5/THkRBKM3AIAs71gdXJip/85DNSimx3B5yPHA5HEZYnj/MCPq8q+2QfVykzDBNjP5bLhjiDEqBqI1yBImA9gZ2fDpoksNAowOIQxfGRSnSyNYaubYobK0vrlgJjavah5+++/h1NXWPQHMdeNjRF3MtJtmIpK0IuTgNbS/vh2SWvzi74/OVLLlZL2rql0uIMHQ97xrHnOPbUyyXBTUyHPdV8TiBxv3/g+trg1huOux3TeJShN8nzJlXn5VBFMV+eMbQVD0kRfeJTa1FVZtrfE3PAuyM4xdl8DsjGsDGa45jpDz1dU1EZjfOeD3c7Tj57RtNUnMzmHA5Hcb/O5OK+70f6IBvxeWPZDSOVNaXUxlCW4GgFfSnsMEaRQmQ/TNxve769WnO3kViPQeLBXW04ndXYsmWbBsd270hZ0zaWz15fcLrseNgdGYde4i6AyplxioQEyUWWq1kpadHc3a2pc6K2YJS0diUUPmaOzhOSCP9ZKY7lvHyykCt4zL9XStqAVUok59E5osuZkdUjFF5i8RlxLmstzbiJLC5iyeJKcQDimjsGgcurlLDo0nKbSrxbkZWibSusknhHisJ1qaw07x3HkZgzLkb6aRK+ay3DQ84ZlwMqK2amlYtuzvRuQiEO5pQ8V5sHbvcbXAxMfpTSD62osrzzfImYqJxZKcNCWwyZXM7kKQpgXKcsjA8tnFY7a/jhww3zxQkvX53TNfL7b2yFtpaJAaPg++++5h//03+C0eKah8zhOOCiDH9dZQR5YRTTNOFGR23LxlVrqBOLxRx9e8/xcOD87Pwp8jm6iaML3Own7na9oCK6huuNx0XF68slv3rzjJvtgd9/85HFbEZlhRm5nM355MWK7aGHYeBnX3xKP0z89ncf+fbjmqu7NaMPnM1rXp2v+HB9x8PoqRVkrcmmIlc1WWuiNrgUiD7KJjclBh9l9DKaXe9IKGmmVqos5SPZaKLXXN1sittOFmpjkCIMay0GwSk8rB8YJlmYeS/8LwW0KjOrKvphZDeMElvVwoOtKkWlxFUbgycVh6tVSsQGMjonlq1l1lq0mvNwGFBahJ+2rqiUjN0hC6tQ2C9KttJaiowO/YH7/ZrDsMN72T4blYooLheiEMW5J5tgRVe3nM47HvlAISZUcWNqq2jbhtZWqJyojWU5q0gxMRRWevQJrWPh0ASCkvIypTPvbjf89V+84WZz5MPDgDZVqYFMDKOkF2oj6QxldHEpwmGQi4gLEecVRkfqSiKVLidQUmjy1TcfmaaJrjKcLlpevzznxbMzZrOWYz9wc3XH8TgyjRMKxXzWCqMyBubzlmlKPH/RcXWz5g9ffctytSQ4zzj1fPH5Z3zx5SushZu7Pf/p777m62/ekUlolahUxFiLJjFN8i6cL2oW8wXffdjysBGneIhSHEWSGXS779kcAz6WxURBz0jToCoCtVwGtBKO17KtaHQijVu2ZRHrQ5QLnKJ8b6NE4SZZGqQESourpasrbq/u5d9lDMdjz9W7j/jgsSqL2Go1OkZQiJMwy3svxiQiYRA29eMSgCzMpMF59tPAMI4SzXYDUwg4N8GjyzkLu05rTWUr2qrm2WLFTCUaA/3kZIHiPLO6wipZNpAiLiVmtSa5wJADZMWh7yE45o0lJ0Us6JwYMxCYJscyepaLFYfdWuaRMpvJu0NjojQRPnKrYiilJbYSNqsPgCYay0M/8YfNjt89jEQ758tXl9x5+Nv7kf/03UiXtvzqcs5PFjUXJnHWiRD/frvnP/7pO3TU/M0Xr+mUxg0jY07sH/by3Gv46vqGP93ckELiL1+94F988Ybd5o7huKfRct/AVHg0LsvFVykrHK6zOfrkE7692fLh4w2ptEgroyDKRb5C0Vl5BmOW+TwjwpyyhlBmNJ8Vm82Rt9+9Z3M4onJgVVnquuZqe8/meBAHFZQCK4XPiUppOmPojC2twlJK54Nwl6cY6KyhKu45l8VZWmuJCOYYGZFIrc4UZxT00UlM3RhskmZP4abL855VYlJSFOSC4A/IcoGPWUoOH+c5rcTVbYqTPjgp/kvekdMSjEHblu9u9+z7if3guNr3uKRZVkZiylrmmFobUvBsQhLGdpLPRKUVlZZUzhgk0j5rKjpjGKaJ9e7AatHSWEO/Hzj0jlYrlrUhRw9GREyXEt+tB37zww2bw0jTVrx8ccb5smPW1VwsOs4WHaerGVe3a37//R+5u98WV2piNmtYmApr5DOcvLjtYlIy2+qKlDO//uWX/PGHDzgXqbS8q1NwNFrz8tklu4d77h7Wwo+bRDCLumKM4ICYxY4sbHi43pYESMrkrDEq0dQGUxa6VVURsmZKin7vqSzUjWHVVbQqczz03N0+cDgcCX4qzaSJrDM2/wNxL//IkdRobC0oljSOdBr2/RE/DDxfrVBGlvQn9UoYn01LW9VU2mK7ObquqWrBR+lKlsQhBtw4EabpqchA+HUlISDbVplJy7yXy10oP6aOsizYRRQD53p2hx2zkzOGYaDp5ozTRNu0DNNEJtHUHXVV8fbqjuu7TWl3zczaRlJOTgTF5XwmS9VpYhhGUlXhvf6Rb5czwQd8iignrFbvxQHmgrSZp5xRjeZhs6dtG7pWil/2x57z0yXWapSp2WxvuH1YPy11vHPijC3/rse7mTHClkP9KESRhWNstczcobj/ZMFQ8E3wI1rnSRBULOdzLlarMtv0TzHVjMLUDcrK3T14JymNmHDjiPOStMtZgZF3oJskkj6O7qkM9LHQURV3n0qRHAPRTYzDgWn8MeqrtDBXfSkNMYURm2KibRpZPCjpgdDJk6MjusJMjIEQ3JMALEulUKK35Swrd5xYorWPgl5MSe7B8LjOL+KnfOFiWa7potpKuCE/Cal/vn/vv4HA10+BZSdQ7Fw4RxkpLVg2FR93Iwc/oy0xiHnXcfOwI4aMp1y+oxymjaKAUwVqqUu0KuRchDNxXVljOQwTlTEcJ48OgcvGslrN6NqOlOHQj6KQ14r9vn9S6Y1VdG3L/njEO/nwto0BlaiqmhDgcCyNWylStxXzWc1yMefmfs04eYbJ4aMvhRPqafiIMaFtqYYGjLL0k2c/RpyX9jFUuRja0tSq5X/HlCTqE+UFfhhHplFefD4GlnWNCwGy5N5HnxjGiRA8oRxCjweoK1l0rbQA9wtgO8ZEU1nZBMXIsrH89MU5631PjInz1ULcTiGwmnWcLhas5jUhUQoB5AOxBCYvbrFM5u/f3dIPb/m42XEYJvw0EILYUykDimx1RSXXObOsKtl8Gc2hn7C14eVqSWcVna3QGqbSoDpFz3Eaia0nR42n4t7Bsko0KpfIgOI4ev70Yc2LkxXvH3qmFNFBsU/CkTFGhgVlKmLMaCX8DxFXanGpPW5NsjBRYpQh6nDwbPZy2X593vLZ6zNy8nz1x1u22wGtFavlnE9eP+P09IRpGskKVicrvn97xdX1Lfu9NGz99ItP+PSTF/THgck5iVENkxzqIXCymvPFF58CifVmSz9O9MeRcfJM44g2RhyUMTOOnhAcfpoYDyOTc+RQtvZZGoBs06KNeryjEFEyRObi7FSPjtlYXoglOpkjndV0VhoPo/PEVFwfxcEZiDzsttw93GOspulmsmHR0uacoti0F7M5r5+9RllN8BO/+OJLnnVzZk1D3TQsVifUSjMe9oRpYL/f4pPEMLM2uH4gjAO5qmhmM2Z9z+tmhpkGdvsDo3NPB6x8/wTAnJWims1ZVE1hQCmyc5ypRHIOnT05jCL+e482wmB6OATM3HM+q6i04W6Qtt/WVuQOfD/xzcc7/vLTFxy3O/op0lhF8pFd9PSu2LFRT6wLjWLfe3J2nC5naJV4OEw4H5nXFWEc2fSO76423Gz22JxZ1AatZXHQ1hU/e32GqTQf745sDqM02frIctHxj3/5KbvdkfW+Z7/vORxGTFXz089folVmN3h2h5HVouM4TjTGcn0lIOfKpHLxk5dw7z0hG3mZxkSYAr5weQQ6jMSNivvTkIjekXxGRYmjKUpbXkrlwqkKFFvgxZWVreNUioJAlRdc+Xn+MX4eqbJwWn1pgpSLumbe1CKwPDaqplhcDnJmuRSfGG0ocVrFFIkkrDLM246cpU37OE64GKisYVG3aGB92PHu4YbNcYfLMkTMjGxjlZZI2RTlclIpxVxbFpQ2R62oTSVujXLpboqjC5OwytIoxXEY+fr7d3SNRZ/Oxa3WGE4vz5n6HmJifbtj/bDh8uKUt++uUUazOQy0TUOKEoc8HHomN9IfxyeHoNEGKmkKdNNIDoGmqmlqyzRN3N70fHO752Y3ingYYfCZ8dCzbBo+fb7is2cL7ndH9seJWVdTG2m+Oz9d8vL8hNu7B+q24ec//Yz19sAfvr/lu3e3bHcHRu+pSLw6P+U4OPajPEcBGHKgaWpykviZionKVCStGWOiMrUs4+qaujJUJrPd7IuhSi5SLka2LuCCLAuFayfLBas1RmVMmSEO/cA4ObQWzljMGaMyi9qSY2Kz34tLOCfmlaIx4oyJMZNNfoIwJ1XaX30Q92RZQGqj0Vm4xFWlhUX16OywlsPgiEoJt0WBVcL1Hccj/ejY9BuO/b4wQFPhxyZUAlDEIM4HcWpb5k3HsqnoaovzwnvSVFRaMWttYbVqchLWnwuR0UEymSk45m1FU9VonUt8XIqrkpdCg3Hw/OG7W5Tp0NpLY3pMGGDZmSdBsaotwT/CujM5+4K9SBL51gqyZ4yeh82BcZiwKLROXC5rXj4/49XrS/wU2Wz3/PDDB4bRSUTfCz6gbRvef7hDqTUvX1wQLxInJzN22wO//d23Uqh06Jm85+c/+4zPvnjJODq+vbnnv/zme26ub2gqYeRZa4kx430kGUPbVixnFdk2fP3ujmny+EneJxKlFP5W8JndGJ6GcK30kwvEKF0iQ7IAq42mazQqesJ4YApB3Pc+ifO+nIdKKxKKYfREwAe5wLR1jbI1TWu5vrmX5karWc1qNrf3cp54x7yR2ClRnmegLPVkoeZDeropWC0JlRTFabWdBg79wHo4MESPjdB7cVpMTuYXXfi1TdVgK8uqbjnvOpZ1w+Amdj5ydLLI1ko9LZiN0ng/0Y+GF4slymW65RkPux2UGJosukrkPkVCVKAyzgXWtzdcXL5iu75HW1NYmwEfDU3bEqcBpUSAkrZtcTiqHHFu5BgMbw8Tf3e943pIvDg/5S8/v+SI4t9tHP/1Tty5n2j471+ueN5CpzPP5g2rWcfff/eeb6/veLZa8lc/f0kcHO9u72XxFD21tezdyFc/fJR3tVL8s8/f8MXlCe/fv4fgmRuIGKKy9F4Jv1MpSfYoxaLteL56w5/e33F/94DxnqmklUwU4dJqiVq7IE20uUQNrdLorMAFlEpMOXF/OHIYRkY3onLAWs1xOnLf7/BRCipKgAWboUHTWllI5keMSRZTQEbabltjmZlayrWKu0Rlab5VSZhVIUUCicFNhBxZKMNcW4KW2ccqRSQSsrj5chEBI4kxeNJTHFce1BRFDDBlQbJompL+CEQfRJgsy5uYElqL+HV0jsbA0Xu+2/aErJgbcSP2CUxMYDUf+onWKOYGFsX93ofIwQVCjFRWM1OC4zm4wGrWYJLm3e0Df/3Tz1E68+HmQX4vVnGcSilBjkxk/nS95+/f3UGGZ6dznj87ZdZULNqGy3nN+cmCQz/w7/7ua67u1rhhQqXEspOzfN7WEAK2tIRqqzEoYSCODpNhOW/xLvL24wN5ctQLi6ESEd7A/d0dGQ1ZkZWhB4IS1EpAhjdxXxVhh4yPiePkGUZZHGoMKiscGZ+BKNxKyj1ubhXn8xqbE9fXNzxstgTvSd6TokcrEWaNkblucrLQSEqRilvSKoVLiWkaqLNHIdxYayQVocjoxjKrG5bzBW3dUrcdddNKu6m1gpiKgXHoCX4gBWEHppAL4kue7YwswbQpd5ckn6n0xGJLpbCBcocXrnOKnmHas93dc/HiJcYYtvs9dX3OfD5nnBw+iCNvsz3y7bsPGGsIwbFczJ/uJY+M4Nlsxs3trbAFVSZog63tU2mYVorFYsbkhaGecn4SzlDiZM7FZehD5OZ2Q9u25OLwnaaJupqz3fV8//4aX5rsvXPFSZZLUZHM6KZEtXNKBesgusujTiELllQK4KRYgnLPysUckorgVdcVi/mCy/NT4tDjx0mSJCGCsWhbYavqCWOSgrj++qEnBClbzEUrCCGirPoxCal4cp7bIhAqJYvJHCbc0ONGKSGTr1VJG6WI0uJClZ9vBM+F8EtTcuQQUERZ4EZPyuL0izGUUphcyjEeC0hKc3D68XnJJaYccyr2BJ5K78j5aTEshSA8JfYe/7fKskd8dAA+Isz+nB//DVp0Rbh65FXFlNFWMUyeFnGlXO96/unnzwhu4m5zZHN0WJWxVheVWODkqTj5VLG3hBLlU0oubJLjzxidcGNkcCNtnXm2ajk7W6CNYfThKRaSM1LskOUbUFcWYy3rzU4290o2oqCo6wrnEofeFVBjaVutGy4vT/l4c8fuMEg1e2HvgTRUKiWRBLS8xA2aqqrZ9ZH94HEFxq+UXIitUaX0QgvXLKYnkOvkRKk/Dk62vCW3P0xOGoaCIsUf7aIg7KdQWGMqI61pxa6qAIq1uqolmml0pjKGX//FF1zfbYSpYHWJGjZcnq9oKsXLyyWff/qS3//xLcZqPmyOBL+jqi2DC1iTeX9zz5/eX3McZPObUhAHT5amOIFHPh4Gcnlf1BXz2lJZQ1tZLmdzEd+ytLMm5KC9ORzotDgxksosdOayEc7M87YFFeijovKBRmuiyvz+/QM/+5c/58uXI394e4/ziagTq8aWyG6GAsv2sQBAVSb7gDZi0Z2cDCEJxRAz9+s9kHi2aDhftixmLbvNnj/ebalqw+lqyeefvuD55Snj6NnvjiwWc2JO/Oa3X3N/vyZEjybzs599xptXzznsBMw8TRMhRKZR/jqbz/nss09QKrPeHtjsjhz2R6ZJ2pFTVoRJPm8pJOH3jKM85/Hx6yyHsTYWmkY290q2vhJHC0+Hk1UimocgmwqTMzVQ1QarxK6si90463KRcQ5dWUbvQCnuN2sm7yHI18xN0j5pq4qunfHixUvePHvOi/PnnJ+uiP0BgsPWDa/ffE4MmePmnv64l5dQEUS606XIFFXF8XjEGk3bVGyu3jE8PNBGYfrlfzBo5iSHoraW2jbMFwtS9CVmr6hTJOpEOO7oo8fWFSFlJjeRsrRGpSTuqOU4MNUCXV12De/ut1TacNY1NFZzHCa2vaNtaoyx4iY2is3eUZL2VJUVuPXgyUYG0rPFDB8im2HicBhoqoqbfc8PdxvWux5FZGUMs06hVSKFyIvzU16cL1A68+3HB459wBqJs744W/H5m2dsDz29c+w2Pf0wUVWWf/SrT3HDyHonoGNlLdpaXr845dtvP5Cjo9GyYAleGhVjGQQHF5lSafkOctYYJArWmOIUiYHsIiSockapLNGrwo96dMnJ9ipS6QLnzcKxKq/KYvGXuLaLQcS6GEsRjpc4WXHLGaULQFnLNjgl8KlE5QREPpWtLWUzp0rJR2MrYpINntYWpYSZ1zuHytDVlqYMINv+yA8PN2z6LaRIRfmmlpiEC/6JC9UqTYuWzTsZq2sKeELa0I0u9mlpxLTyB0blRPSB9XrHH/74Lb/6+efUtSGiaZuW5WrF5u4OYww/fPc9bz7/CVcf77lf74WvZSJ1LcVVSilmTUtjG8Z+ABLKSHmI0tLo3g8jGc33NzvebwZuNgNjDDSNpQ/CHqpszWre8dnpjJPlHD8F7jd75rMGow3aZD5/dU5X17y7uuXsbMXnry74cPXAH9/d8/17AZ0PPkDIvDxfEkLgMEV8FrhzVIJhcD4RoqepKhZdQ2UUxkqznFESydM5QZT2wuPocU6aRX3WjCkzBuFZytIGurqiUsJ0MirT9z2TDzJPFIE658TcGjor530/TqSYsAZsGcRJsiDQVhe3vohkLkl7ZGUenylTeJSerDTOBbIGELyBCwGbFU3diIPUKBqt0UnEiPV+yzAMbIYdfT+IyEwRFKM4/kEaT1PKGGU4WyxZzeeyQDOaRduglSwXUwjyrisbaB88LniSEeF0OW9YlCi+8wEVATy1NVRaovuSXlB8uN/wL/7yS9bHnuE4MWs0F4uWEBK7wygcX4rnVkFTVSwXLXUlDN/b+y0390d2B1n6qRwwGRazhvPTEz59fUldadb3W+4e9vjRkZJHoYjRU1U1TSULJjd5QnIYq7k4X2K05n/6939HzpnNdo9zgRefvKCdz/h488D331/x1Z9+wI2ezoLKEZ0NwXl0XdGpim5eM5s3bIbE/d0GNw6o4iKqtKYzSpxGIdKPPwrHsnwuzXjIBQekAa+zCqsS7nhgcl5msiBz5RSAnDBl3vIh4WLG+4AtizOjDd2s5uAS65sHMplnS/lsSJmJMA2tkYhjTOJYTjGWpvPy7KRcFh4yp0rZWManSO8ch37AE3E5MXhPjsKpVWSUEVFBGxEyaxTPFgsWtqa1FZMrc3ISx3WlNaqugUhrDJWG3kdUFSTVkyBmwzDF4obVTL4kPBpDrYUbJXmqyHG/ZXF2QTdf0ffbsoivIAuv2WUoxGQB/FsLMRJUze9vJv7tuz13qeLs/JTVzHL+/IRv+5F/c7Xj4wRNivyq0/zr5zNOKkX0nmezlhAj/+G3X0HKvFl2fHK5Ynt/YNcPPDxsaWthsn5cP/Dh/p4hROZVxV9++iknteXbd9eYnGhyZtAaPwaiyBQimllpF10u5sxOL/nDdx/ZbLYk7wvoPdGUN0dMCYy4VCjOS3kP/hjDm1JiP41sp4HN8UjynpwDnsQ4SorHKk2YHNYYGmWYGYtFiqRSlndlSDITq5yZGU2lNJU2YhYoi5SUEp2xuBDRyLMk9zcRlc/ripQtLdIO7FKU6K0CHz0+S3Q3RsG0JETszkmWzVoJV0tlcf3p4h7KMTAFadr03j/dzYwqM26GKWZWxvBu1/P1w4hLmlYArUzl4r145NIkaCu5gx1zRoWA0Rb9iG6yltF7fIKDjzzsj9SVZTc4ss5M08TuMFLrzDD5wgOWBfoPu5Hff1yjjebF+ZJnyyWzumI5b1m2hnlb88e3N3zzwxXb/ZFGC6YIo6mNoS5cMHFXZyoNXVPRKhHaRh+whavpgjCOm3lNV0N2cseIyPyQssIrjQsQlZVZTIFPCaugNqZ8T+TXzBEedr3wvxSopPBJFQlCo6MSPq5WzFvD5bJj2O14e3fPcDhCKap4THPInbgs04I4Minfs7oyZQkrgqIioLWIULXRYGQOa5qGtmuZzRcYW2OrWr7ngPMjYdgXp55gjlSSuSHkjA+yfAkxkZXEja2W77sIfOXOUBbwjzFLmdrEjWZMZgyO42FLPxwZx15QNCnRDyNtJYmtYZKSle/ffZAldojUdcU0OcoxxeQ9XdvQD4OIWykLQxO5f4hT35d2cGnXlqV2LMKde3IsO++plZz1u75nnAbmJ0vm3ZL98cBhcPz2q2859hPBOXJJ0z26zR6FMpnFkzAERX3CaF3uxZTlidwfJTqan0Su9JjiycLea+qaF88uaIxm2q3Fuaxl8ZrL9y6nVErhUnHmG/phZIxJOHilcEQVp7PRlkD4Ee1ln7Z85QABAABJREFUhcWXyl0j+xE/DPipJzj5deXlLC3qxpSIdK2p6poih6CSR0UvZZJJ2u5z+Y8wFx2ZXPh+uUSZf0xp5vKMUHQNqSOSuVHnUpihFDqV56qc4WiZlZ4EoYLvCcEXnFtGk4RzWxBAf86PP5/Bp8XOXRvL6CbQigrZmvhyy304jgwxs5rNuH+/4Th6usZQAXUtjoqUBUCuSg22VhLI1aoonlm+yDEkfGkpmTWGlxcLlucrkoscJ4dWFltZgpvY7vZFrJEvfIiJfhzJWcmloq7RKLquISYps4gxkVUiR8ViUfPZm2dc392z348MBX6eU5JoWeGsKKOk6SZnTk4WvH7zCVdXG24296WSuXwzc5YBLGdcSKgoirtBtvrDJILe5D3jFMsFEiBzcPKC1QpqJYN7cXIyeBE5Ji+bxVRcMFVVUVk51LumLjwmQ9fV+JhZrzfs+lEsq3Urgk/J2k8hcfuwZzFreMzBO+9oKoP3jk0/8O72lg8PW9b9gRQSOUdpVyt/VUhBqyqlHm1Vcd51PFssZFjNxdIfg4gB+TEakBi84+gDGM3oHfO24f/4F6/QsxWaCEnxfu94/3DkEBLYxBgz0Tm+vt7wVy/PeH8jjkKrDC7mpyYspSS3X2vzFP+uasNxcLTIVmD0ifvNAe8cz0/nLDsRJPth5OPNAzHD5emKv/jpJ3zxk1f4KfCw3qKA05Ml7z7c8OHmnrEXbgNk/uof/YxPXp5x2B/YH3r6fiITGfrAOIzM5x2ffPKCujE8rPfc3W/Z7A6M40QM6UnkDj4SxpHpOIjjhLLET9Kcp7UiV5ZsrPDJchKHS0rCRcvCUXgE8BuV0dEx01BrCzGQQpQhXwuI3D82FDWyefc5cnPY0DYzHg57YhaRJdmExnJ2esKbT7/kcrni9fNzzmdzusZwWG8J00TTdJw//4T+cGRYP5BTFFEiK3RjOLv8hPnZnHfffo8aRmazDkLg7v1bxmOPd3IghhBLHbo4ZawxaFOxOr8osbWIyeJGzF6T/IiPjnEaBZyeLUFrYVE2Nd5YQsislDAwHja9XHK05tXJkrvdgW/u1pzPZ3RNw4eHLf/dLz7n5n7Lvh+ZJilsME8ivrw4XYyMU+B01kDO3K73HF1gs+u52fVsjwMpJjqrOOkqiJFhEPv2i/Mll2dz1n3Pzf2eVKJwOcLZasGL56d8uHugqlrGMbDvHV1n+Vf/7JekFPn9h3u8D0zB03YNzy9WfPxwjeuPT4D8x9a8oDS70TNG8AG8kgGkqTSL2lChcG4iei9nDLK5ywoZ3gurMmdVxNbHQUmDNoQMwYvjQ5WYpSrbzRCFa1FoBLL5LAsRqy2kTFWJsCfDmDCltFE0VphaEs8Uxh+lFTWmjLJyMZOyCWlndaU8IaaEsZZKK7TK3O+3rI97Hg4bDlOPUcLZijHgSHgXpVgjiZupAjqlOatbamMIWeC5sTBcjNGoKOJkyJkhSJmJOIgV6MyYIm/vhFvzi5+8oqo0o4+0XQfGMMXAw2bPz39ZYxvLw+7AyWJGbSDlQD9k+qM4jGNp/bVGhoy2rqmsZd97PmwdHzZHei8Xbq3FZeVjZH0QbuzZouXVxQkXs4qQAnf7I11d43zibFnxxcszJuf5YXPHZ6+f8fx0yQ8fH/jqh1uubtdSPuU8KQZenC6YVZrj5Jl8LE+DMGtyykSVqKuaWVMLFD8mcVAF2aZaJe8FHxPHwdE7x+Aiow+EMl9oozA6yxAHdAY6o4nRc5x84eXKxdFqKeRojMUoLeJfkCgFMQr4XsniURcBeSx81OAzh3EiGY1znkVnGb24BsmKcfKY2tBYKQyYnAyHbV3JbKMErdFquVQe+h29G7nfb/HTyH4cnkRpUiJm9dTynrKIS8tZw+l8zrKb0zaVuBMKHX50jliaulNOjG6Sy32UQqZOz3h1vsQpw8NuIOZMY+Vr1lQiEocSh/NJEBU5BKbR8dOXp2x2e1JMbPejuHlzIgVF1ImzkxnzrhXXbcq8/fjA248PHMeB1hqshk5L0drZvOPibMli3hKmkavrI/ebPcFJk6VS0qxadR2NVuJQzwalDVVdc7pacHe/59//h7+nHx3DMKG04mS1ZNbW3Nyu+fbbD9w+3FOhaaw41aWpGNpZi64tF6cLbDfj7e2O69st0TuIAcGaZayRaNowRHyWec+UTX4oAPYUZVtfWWhrhcURhokpSpRK5hqZPVyI6Koi+4SJwlcbCitWKxHJqqYhZcX+IA66eaOpjaUywhF9fO9ppagfF+Q8RrZzYc4maX4vbgiQJUMo/4wLEv+SMpUDu1GeBT85wUgYSyKhs6RLlnXDibWctx1jkLl0LBwmoxStNXLGlRjZrNI0Rv7NTd2xO4wsZ6fcbY44n3AI28jmRFOJkIOVJZK1mjopTIa762vOL1/w7eYeazRGy7ntXcLWHXEaiEEYpEcX+aq3/N/vevZUfHH+jH+0WvD24PiNg//hd3eMOZK0YZkd/+q85R8tKj7erHkbIp+fdrwfR/a7PfOmYjlrGKaRq7sdm82OSFmmBs9hOBYuoeNsteDLFy8geN7t91igyvJZDyETk8bamuVyzvnpgtVyyWwxx0X426++Yb8/QIr4lEvLYyKK5QODLNEUitqY4g6R5y/lzBA9D/3A9rhnmkZpbyylBYHMFIKUECGpmLmtRcAv7pshFD6UEvmxM1YQHSmJIyqKWQIKPD+LG6YqSSqZOQUBNDMQETf+Poqj7+AcNlMMCF44yF5YjmSF9+IaRYOpZIZrtKHRUl7WOykNFM6nK4UjiQopJ5GkhnytYsp8vx75Zt0zpcxMa5SWxl2NemIHk5KU3iRKAZcmK+hDxCcYiii4sJKS2Y0OFw1Na5hC5OZ+Q200k/M4gBSk/EQn7sfMn662WKN5c7HifLVAkelay9mypZ8cv//qe354fy0upCx3DZ2ltOMxRqg1tFWFTonWKEyMjElYhXVVsR8cxifqxlLrSFNV6Fgi6loTTM0YMoMLJK1BmcIJhllT0XtHyKDSjyx0UsIlEWsem84VT1hktMpYAyczy3Le4ceJq48f2W7WwkVOkRw8uiyL7SPL0LnCwk1PIs2jQ8lNE4qEjg6jM0R598y6GSerU5qmY7U6QVlLKlzsDEzjo1NrhBiIQcomUkpyp+FRvBM8QSrx0arc9WL6sZgq5kenlIKcsKXdNBEJwWEVHIuzPsaA85NE66uWcRxpn50BgmH5eH0rRV1Wy7tCSdpJ3ItOEFrG0PeDLJ7LbBNCLDiZLFzjRwdXuddRNyJoaS1t7taU5uBUFjmJzfbAy2dnaKUZXeJu+8DVzT1jKWZ8tNspxNj2WK4Ugy86TsE3aF2+P6KZWGugiIsxJXG1la+XtLOL1jPvWl48O4fgcWNfGI+C6cBWKF3hJodWIvh6H3Feyi9cSGAqETSVkZRN8Bili9O3PIvGiGGpCKHJjfi+J4eAD44Ui8MREWylXE+wQQYxavgwkLwjekdOpTk5RkKWFu9MKq69UnKRHz8T8qzkLDO73JvFofyoUz2aGVKW50cj6YXHM0rp0lCsHg0NYt4SDFYgesECkbPcscKCP/fHny3w7Y4O1WUUgVnXcHQyUAtNT5Nj5DhEvrnt+ec/ucSXD7rVma6pSmOINFWK8BYxpWVGHsCAzlFEjcljkA9NbQ2LeYvPstklK4nuHiamUThmk3NoLYKENRrnHSC2Vl1cgvN5jdaW9fbAMMnDLodyxU/ePJO66eNE308MbuTY97LJaltiyNS1Yblc8Plnn/D8+QXz+ZyE5oe396KMK/XUGquNkW+meGCx5X9PTh6c4+gZXcD5SO+8DH7FkRRixBKfIOAg7Dif4hMDMaRElaW8Q+yylnkrAqo1Gl1b2UCXbdN6d2TedaSYaWvhBoYsVurbdzdsewG03z3s6cee2XzGh7sHbvY9d4eebd/LhzWEMog8tsckbBbob63gpG5ZtjNOZh11JYwp4QiIYJlSiQVkae0cfUDnwKKqMdmzqBsarflw9LhppCq8vDprhlDsro+Dbtb8/t2Ov/n5K87mluMwPXF0MrIx8UHA5rbSOPcI95yYQuDgErfHwDBNXMwa3lzMC6fHcf8wMEyRxXzGX375ml/94g1Nbbm7WzMME107I8XAV3/6jqvbB1TO7PdH2rbhr3/9M149P2O72bPdHRh6sZHHlDn2IyFkfvL8gtOzJcd+4m7bs9n3jJMwn3LOhMkzHgeG47E0Esuz8PSi0oYkNW0kpfExoXLCRWkt8kmE1BaFzoHKKqrgsUgjXo4SuVVKmrgqa0HJMKmMoq5beTGguN7c8X59z3I2sd5vqbSlXbb8/Be/5JNnL3hxfklnNTqIQ8z1B/bbQNaGbrGinS3pt2vG/RaLgNojie7klMXZGd285e7qPctFBz7Sb9bsHh4kapIogpDEnNwUyFUkas/Z6fPCeokEPxbxT1gPAWkJDDkRjSGo0kgJYCqUqWW4MfL1ulsfZCOjeXIbd7aCpuHdw07A6W3NmISb8v5mCwi3T96pwj8MIZFNoLWymf94t+Pj5sjHzZHjOJFioDWwKM6HaXSkEOiamtVM3Exfv7thCsIQaaxmNW8xWlM3Feu9PJc39/fUleHsbMXf/PXnzGYd//lv/8h2L0sJozWXJwveffhAv+9l4MkCczdGYO5DyAxRkbTi5HTG2ckCN0yMw8A4DOIWQQqPciyb/TK4PTEmUhSLuipiH1oGrsLwkKi+bOpCidXyKE6X8zdmKWTSxZavimNA4L4ypBkjzD2l5DIkTadygtfWPLmkZVjRmLoWMSs/8oUE89o2TYEYD3zYrLndbzgOR1yOGC1nS4iBMZT3TNIYnaQ1DsV50zI3lbhNkbjjWIoWUOJmyPnx5S/CUWsNZE1TWT57dckUNIfjxP1+z3/+Xc+Xb16ynLWEybNcLLm7f8CnyN3NLYtZw/F44KSrOJk1aG3YH3qm8RFFAMZmlDZMo+MuKX5/vefb67XEiTCCtyWwH4N8PVHMu5pXZyc8P5lzvqzZ9ROTjxwGh7aK03nHp8/P2BwH9seeX33xhq6t+P7jPV9/uOf9xzuUQkqmgudi2XLWSasvKrHoKolhUMRbZPg5DNK82hg5o6W4RzGFyHHwDD4yhoTz7snNrxFeri4xMJUyNkWWdYXVMlCPzj8tjxQiVjRGlyWVYB9cCDgnLiPhwhYuqdYMMbMbBhLyjqqVoW1qcQcUETDnSFVVwmvqKoxW1Er+HJUx1EqWXD4GNGCJHI5HnHPs+wPHcWQ/9MQo75zoJYKuM8KIy5aTFlAVuppzMpuz6FrIpRgpZ8YorKopFHG8xJG0VtRKvkamtrSVYT0lfJrofaAxwu1R1kIS10MGifBgxO2XFDknfv2LN/y7//JHrrfH0hCdOF3MOFnOUCSOh57bYWIcHG+v7hjHidZqzhojUH0j+JazsyXLWU1VVRyOjruNFEUoFLNaY035PGpwMTJFgfFXlWV1suQnX7yhblr+7f/0XxlGxzg6klYsKuFPXl/f8/27K4LzwtSSOy/WVrStZdk26Kbh7Nkp1jT83dcfuXvYoJIsj2VBJu+/kDLT9BjlVqUl98fGQU2m0pnWgs2BME4M3pGiXGKd/5Hj9Ljc1TmB0UTKstaKcNdWlcTpM4WXKMsGbS0hRMbCjLRG01opEvqHLKBcRA4pKlMlLSLfT1nOFbZajPTecRhHhhDYDgMuOKyytFWDrXRpM1VctnNqZCkiNRdliagyjRZuKjlSA+iEI1BpaYqtDSwXS16/fsnziyU376/YHh7wUdoLW2vJSmNVxRRF+NYKDIYpSjw0Hg7MTs5YrFaMh30xPGRimCRBE+VdvpkU/5fbiv/bRrPF8sWzBdtdJE093+8dPsvlrlGKn1aJ//WLM84r+P27G5xPXFhFv9lBrVnVFSpF7tZr4XSGNeM4EqK4SqdJ7gG2Nry6OOf56gQ/eQ6TRydoasNsNqO1hsV8RjfrOFksaOqaqq6wxvLQj/zXr79jezigixvTlRiheUITqaf5QSuZ8x9jcy4H7oeBdX/gOBwZxoGcJPI/BGE5W1uRIsytZWUqGiOJpghPxYGqzCoVqsxBiYN3uCTgeInFJhptCDGgsggmviSHVHGkTFkc8L4kbwwQiZKISRkXJoZSbhVSIPiIzqokaqCxghVAyZ9hqRVWBbxKUhQUSrRSKypji0tMFtWmuBwOLvD1ZmDM0GqFVpFKSQSPrAhlMui0RutMbSsskUxkSqo4TIEI90i5V6MTp10F5R3lY2I3DHzx/ByrJf2jjWbeVmzGxDc3tyiteXa6ZLWYk1LkbNHy7EQQF7/55i2HwwFVcB62MlRGM6ssbVOjEDefLuJuUBmXsgiSWWPL3GusYQqB4zBwupwTC59Y1xV9gOOUGCOgLcZAW9yQiliKDjIBEYYM8h5LxbWtyOgsaRdxjoqjy+rM5emcZdswjRM3VzeM/UGYiqWgR9jwwiENMeJ9EPGvCNaqzIcpBogJFQO1lm+6NZa6bmjqlrrpaLsZSsviYHIT47DHu1E4a17ik48tuLHw8jIZUuFTJrkXUaKdWsl7QEoQUnFLKXk+RDXCGCmjCtFz6A84N9I1DYfjjqEU9w2T43Q1p5kvORwHqspyupzz/bsr1tudnOEKqrohR2Enjt5LGsVIFH4qhTSq3H2t0XStuMvEqBOf7uxKGawx9MOAMUYEN+TPYXUnbjqlZNE1epyP/O3ff81mty8cugLbfXyHFf5qiuFJrHqMkz42BucyQ8dSdvaYqBOcExhtS1GpzFQnywWns47kRlIQx7qLSQwltgE0NifBR0VBMMSciLmUa2gRNzVi+klRhE+tNFMQtFtOMhemnMje491EdiPRTeXdplBGoZUtop7MHMHL+zGOvXA9w0hOARUTMfnCZSznUhQtIZdnI1OETqXL/w8ppUQOZWk1/zGC++hklBlW7lQUXUSCTWU5U0TZWBj3iizPdXA8LiTyoxv2z/zxZwt8WxS3O0drMy5OuACv5paVERDuzCoerOHd/YG/+vQCpaW5LMbMsQhqOYMuGwxjpTUxek90HjcMUIbzulKcrDq5cAXF6KRqWSnLMA08PBwBpPU0JqrK0DQVVW05HiZSktyz0Yq2NsxnDfN5x4frNcfBiz23XPovz1ecni7ZHvri3JsYJ4dzgdmsZrXsePHsks8+fcXZ+QnH48Db93csZgdchOu7DT6Gpw0qlMy8k4dRNu+yKfNBLpyT809xjZQe+VUC6TVE2kriuSHKZfc4BozVpYtEDopZW9FUwv6ZNTWLWcMwieNR6YroRVBt64ZPXz6jn0YetkesrTlMPe7gOV/M6Z00Vm42e2oL+5T4/uqOtw8b1v2IT8I6ylE4AgKLFDdOq+Cs6qjyjrNOc376HGM6YogMw0TiMSYqD/oUEv3oixoOU0wstQyaMSt0lIr13971PARp/K01dCqKKKlhbhQmy9d2fRz59ubI82envF8P5KAIQbhfzkuDkguJaT88CVbHqPiwd/Q+MzeJl8uKuRU+YIqBYQpYZXjz8oK/+cc/5eJ0ye39mmEYEUGh4sOHaw7HI8d+4rjf4YNieXbCP/vrL7m8OOH25oH1Zsc4TgQXiCFJRDtlXr2+5OXr5/TDxLuP96w3B8ZJBJ3YTxw2hx9jd4BOECiRh5QxtgJrmVIkxccXuBS9jKFEWH2gVvK5mKmEdV5e0EqRSnGBUkgLqTUEIrG87K2pCVnikznCtj/ysN0SUkJXll//6h/z2etXvHnxAus9xAD9SPSBUWmC0pCtvAB94nB3h1GJEAQ0m1OiOzunmXX0+x3D7ha3H6kXS67f/4DzYjP3RSRKWVxn2mpyVeHUxGZ/zWK+oE61tPcif7agEq4MeF4rXIRUGqyE4SBRmKzFEq9ixLkAWlhFFNHBVhYXes5nLS8WLR92E7vDxFfvHlgaRcigs2IqnJm6krheZS06JSKKr682fHuz4zhOcplUmWUtESi5tMCssajKsmxlAXIY5BmxRtHVFctFJ0sUZUQUyYrBR3yMrE5m/Ot/9Ss2+yPfvb3m9n7HODkaa1gsZry/viE5R1dJg3dG4WIgBIXHYtuOv/jslGeXZ6SY+fqHj9yvNxCDlAqEwBhCeWnJpvdxw5WKa1dTos5ZOIzhUWAzFnjkovjSQpWKW7u49rIMbI8D4eOwKBNIfrLmU2IGChnMcxZXoy7RkEcYudZKtrrKFOegDDBNIzFcbSoMcDgeuN2tudqu2bujvLQVhd8iLgKVoFXQ6kgetyzqhkV3gdGWmANoaVxuC+tRnH+Gx1uaRoslX8klJKdMWzcMg6ObLenOKk7CjF0/8tW7a87mcy7ms9JErdn7iav1nlcvn3PcH9kdjvT9SKWNxPYUVFrcY9kHolJ8PDq+f7hnCApb2aeGYhejNCTHRGstnz9bsepqlrOG5D2tnfFhmNgcJrLKvD5d8dnzU642W0yGX//iM0JI/PbbK27ud9xujwzeY4EpRU66motZw+Q9IRawvxInVUIECHLCmB+HNxcTUxTnx+DlXIshithrNF1pTBcRLpbBSMSmmVUs64oYIod+EmGlRHSs0VJGYCTyNU6O3k0lthuxKCotUQpXnukUMttx5OgcVglPLmpp5a2rSuKUKrOaNRLRReaGEOWi42NAKU0MnqZuMCjGcaD3PZvjntFN9P2RaZyYSjwj+IDV5dkx0szYVpql3bDqOmgWaFPTWGnfnpzw0qwWwbOrtbC5Ht/JWNLkqGpNTPLrrafMvBJotouRxhhSWTYaYwk54UKGrPEpcXN03BZO6BRAV4bLecf5YsZx37Pd7sWRQGIcIu+v7qgrzeWsRpaYCpIUkpyuOlazClsZDoPj3dWGYRyxRrNqa4xKUpaDxKuqSvAJWWsWixn/9J/+ktms49/+P/+W+7sdWYvYXxfx5MOVAN7lzihR/nljqSpNayzLVUc1n/PmzSve3ez4zddXT9woAyLaq1x4bzJbpMftfJKImQz4EqNpdMLmCOPI5B8d5cJsTApiYRdrU74vVotIopFLdkooZQrcXLw0VqUn7lHOMEy+PFPQWk1bCVsxeGGQ5RINfkTlPPKrjWxOJT6ZQnkmI+t+YOtG9sMgjeFOGmkbI0UwRkWacOS8NTybnZKSLApDcfjkLM6F2mp8cNhK0SCpDSrQKZGJVDrzyavXnKxWtG3Lh/s1+3GispZZ03K6WqCJDEdBu5zMF+Ky1wYl9ip8gLvbe04vnjMde0IATWAaPMQBZTTHXPF/+gj/wxaczmANXz3IWWiMw9pMZeDMBP71Rcdfn7Z82B74n797IDvHM2s4r0T8ddGx3h1LgZ5E72MQ939M8UmEW87nXJwsaY001bdNS1c3WJVZLTteny5FsNGGrqkZQmI89rw+ecXtds9/+tM37PaH8j2U719OuRTQCQsNoNaax1ZiyUzCwzRyvd+xHo6MbiixSInYOaSAh/JMzSvLqbEi0OUs+I2Y6KyInWRFyFkWe05csJTLbY2UGzRaY4u4ZpTEoLVW9FFKBn2KRFVMExpaa3AlKppT4BAENTR4T56EvaiSwpZIqi0/R6VMSoE6BRZVRW213NeCEra7FR6dL3HYGGNZ7CRygu83A7uomClFRcKQWZaCsVhcjI/tlTlpbgfHzCgWlaSVXGFFa6WJIXO1H3i+bAgxyhlTCevx492Ov/nF57TtA+MU6NqOl8+W/Oa/fs+UEqfLGafzhllnWTYN58sFX739yDc/fCT5QIXMrI3RzCpZCDW1hSSirC0pAqOldFJl4ahGpRlDoJ8cyipenp2hUkaHCCmiqppD0GxdfGpwbyqLQtpIRydzVUyZpIQRnHk8p2Ruq7SUSWljilspQ4os5jWnqzmz2rK5e2B9f48fR1T0kFOJWMu58NjSOnlfCu4SJj8R5IrWJO+nphJEk1INddvSNB11VUu7aor0xw0xCMYoJy98tFScVrKJopihZJYoGIKMLDJAljKS2hK53BchstIKpWTZGlPEOWGg2lo+85MbGIYjKTqcn8jZFFY5UkBkKjmHg2N0Fe8+XJNyaRlG4ZwTh31JiPgQWMw7mqpiCMIeTikRnGcxn7FYLJjcxDQFUGJEsXUlLjYfMFXFat5xf7+Roi6jWcykFC5rxf4w8O/+499z6Hv2++GJCafJwtg1EutOT+KiiE+ZXLisxU2GfA5Ucdrlx//LGaOsCISldMNqzcXZilpDDBPRCevPpSDvCt2QfMRPO6ythHNeZjI0eDdw//CBbn7KbPkMYypS9IJFUfaJv1thcGGSBZsbcWNP8BMxOhGLkftpThOoiNUNOQ6MU0Bni/ciDOcUCMmTomgVMXpS8lJyGUbqZk5OcicUwVO8WJVWpPTj/EqZ9WIu3sKcy3Mm3/sslnyJuj+ihigu+/gjWznnVETLAPkR5ICcwU/n/p/3488W+H67D3zMkyjzACoz33g+n9f8ZKF51TW8WFbc7Ca+vtrT1TUHH+hHEbHmXS0XxfIfozV+coz9WGzHSZgkrZaLbYKxFxh+VVnq2nL3sGe3PYpiqmSAnzWiiK+WS2Ly3I0Hqtpgsjhymqbm1ctL3l7dM0yS3w9ByihOLk948/oCbTXTKG1A81nL5fmCi4tTXrx4xmI1xygYhoG///uvub7dUNcVn37ykq++ecc0SR20K5wpUWxLZr18I2MUC+voBTjpQyzcnfzkilEpUllFa3KpiBY4pjisRPm25b/PrOLiZIEtjpf5Yk6MgX4YQUHb1PgcOF3MxT0RHeM0kbVcsLq25ThMJAT8vqhrUnA8jCNv7/fcHXoeeuEHmEcPbnkQjTz9VMCzrub1fMHdze8YxpEwv2DysrGbvPC1fEplkyKXzZgTJiZqIyBs6biUiKXKEZPF0j4ziqgQ1mKJFqSsmGKi1opWJ7IL/O031/zv/vEnRP+WEOVJV1r4XAL758kSfLNz3EwS0VrWhoVVDL1nMvJ1USkz62p+/cvP+ctffsZ2u+U3v/sjla3RGg694/rqFmMsJ/OG0U34rFmerPhX/+yXnJ3PuLm64/5+w+FwJKPwLuI9kGF1ccqnn72hHxx32yN3myOhH5j6gf1mh5/iUwOUMsJNSlF4VsZoqCu80kwx47JiCBl0Ki1FmTFErMosdeaiyrR5kgOksPoyFIfp4xpdS0Op0YVrJRcOlyJT8CSf2B0OpBw5Wyz5izefcjlfYGOg6g8oDGnysqEwlrpp0SnjppHkpKEvx1ieH2EvNPOObrFiv1szDEdsyFK2sblnGOV8EVdwBmVkK1jBbDlHGfhwc8X2uGV12LDoFjR1h7GKUET7oOTgjdpA2cjownwQobAqA4mCpOl9QpvAvJIY9yTLTCaXuIojtVYsrOK+9/zh/S3/27/+CUpdS0QzIg1dUQTG7XGiqg1v13vebXrc5GgUtJVmUVsmHxhTZG4tRmW6SmF1xeTL5UIZjM4suq7EGKFpWxZdja4s+4MMfp+9ecE/+dVP0Bq+f3+L1Qbn5LPaNDXr+3uMgaaywkMBfIKAYbE84Zc/ecVi3jH4yLurO969vyEMA5WC6F1xEJbIYHlpleWsxGyUXEhQMMUfY7jWiFs6lWiEsNBKQUdxZMWUniJkckmV9lf16A4s4qF9clOqp/Mj5OLbU6pwFGVIVto+OflcsetpY4jBy8CTRCi62m25PWy432+k9SpLW7tPItQSEwtt6bRhpiFOW0a3I6UK1S4ICSlAMqqIUdKiW1kRB2yu5LBRMvCqsqlEibPk434k7IWLM6srYc9VLTe7nt1x4nLR0s07DlvH3cOWX/7sc9q25n7jAOE+rpq6YBnKgJrg/cctN73E5pJSrKeJKcqgOwYREs7bip+/PmdWaXJMtFYzhcj15sDtdo82ii9fPOdk0XD1sObyZM5f/exTrm7X3O8kWnl1t2NzPNIZQ9QwrzSn86aU3FBaHiXCrYBKZWxVkRJ4L071IcF+lN8f5feWS8mB0ppKSeNjKpvlnOVrOK8MJ3UtrL1JnGmPMVVrxIlktUQ+Y4gcjgM+RXFahSBlBilLbEwhkPkQiOFHxkzMwgJ+bNvLGWbW0lhNW4krN8RUYN1yaU4p0VTiTol+4tAf8SGw7fds+j2jG/CF3yQCTnExWEtj5eJXKZhrj43SpqtVEL5SeJSpE5WRog4jj6lkz5QI66RY4lbyQ6H44D2naFZ1/WPZAYpsDFVrWVlDP2UOo8eomikG7tY9x9Hzlz99yW5/5OZuxw/v7pncRG1lm3/sHevNlsYqTtqKrpZLqXNyoTidz2nbmqQUt5ueq9u1nGNW0TUGaxPzpnlyNChdMQQR9leLBb/8R79gdTLn5nrDzc0abQxTcHRdh9KGD9d35CRFRHUpJVq0tXwGtWa+mLE4P+UwBNZ94G+/es92d5BtvoLKCnNq8lICgyob+ic/Q3nXktAEKh3I/vHyGYkFASJzmyGV591Y4X1SlpSpcA99cSlAKgUy4nozKhOCEzdeiIXNp8UNr4Tj9BhbVGVR/Mg7VY8zGeK0isXplGQ0Y9OPEumcBsLkwGgp3LE1XW1oUqTOoNyI9Xt26z3L1WeopMiFxVVpMEoc/8YmjM7oFDEqo0wkEsSVoDJRGVyG29s1H25uWXQNi3mHyZHr+zXLWcvgPIfk8Wkv8T40n1+uGKceqEj7A7PlknbW4fteeIfeEwvj+T/vNf9mnXCGJ5GULIgCg6YKnn+6qPjffHJOHA78269/4O4wYJzjJ13F867FBcf9diBnhU6RxazisxfnTJPj/f2GfhyYJDbA85MTnp+fM40Th2li1jbClG5r6qYix8BmPxC3o4iL1lA1NZcXl7y7uefvvv6WQ98XAULmV5NLWV+JFFqtpCAICGXJNfjAve/5sN2yO+ywIWK1FO7EFLG2JqVMZRR1TixNjdVaZoAkp4VViqWtiuNTYrwZYfDFGJhhqJQu78CMIVNrg48eleXd5kn008SEOKpbbTAoGltJG2bwjEkaKKck6Z7kA0Rhh+Yod7y2qqgVJe0gl++Zhnllaa0YMEgJ7yMhFOdhSk9OGYMq54SIOLtpQtmWXAT6TOYYPEpbxFUvc+4EtGTB9qSAwlIpxVh+fW0Ka8wq+imQNEh/UDECTInvr+758s1Lvnl7TYyR3/1wx8f1gdWi4/nJnJcnHauuIinFf/7NV9w8bCWaR8bWVZn9KmF1aaiU8CWVoiRG5B1uyoLax0REltpaay5O53z+/JT1xyusVviqYx8im9FjbU1jdIkPih1gckHciUrm4ZTBIguEpEWY66wINiFFEetzpq0sq5M5y7lQIW8/fqTfHYjTCNGXs8qXRaxwkYVP70tJQMLo4lxKUgwlrjVBrVhrqG0lCxArc4/3E0O/k/u4nyRuHsUhGKLnsflVPSXjpFW9/GGf0nJWaWKOKC1imVGqPD+SUGqbmhQjSotjKwQRK52RJXPwkzD+4kDMEmUXIT7xzQ8fuXj2nLa2xLDkd3/8jnHyqPLvsBhmbYWxlr4f5PerFRenJ7jJUdcVSmuO4yTlMNPE4DwxgfehCEmZ3snnpmlqam0IIRFKk/Vy1lHXNev9gfV2JzpDiCUtIu8sg8TjtZFZOXhf9vE/LuYVJWECpZyufJ2gpBzFwa+0KZdEQZwsZx3ztkEhmkQKCefk7HfRMyRHXdWkMPD2h9/z7PkbjJ2JGKwMRiUebj5wdfUHmnbBp1/8E5p2wX5/T9O0dLMLVGFtJu/IUUoox+MeP/VPRR8hepQGQ+DYr4VxOjvj2N9yPBxZLS6J0Zf7Zijx51yW9yP9ccM4Djg/8vzZp6CsFGMopPFClVRRWZRRhG8RSH8s01BZhPSU5T1BEuxQTAHKvTIUrMWjsCquwFR+Tfnro2tWos9/vsT3Zwt816PnbXLMrRULbJaWue/6zJ3zvGgSb9oKbQ0P+z3//S9e83d/esshCmOGnGhqK3GzSnPY7nGTEwtl+R3OuzIYrofiALTMu5q2rXlYHxidRFQjiu22JwM+OSqtOb69kmG/qvHekWKkahsuL06pKsuxdxwOg/ANastq3nB5uaKua7rZjM8+q/nkzStSTPRTYLve8f79NbxPnJ5Jo+H+OFFVmhcvzvnTt2/ZHRzOOXx+LDUoQ2I50K0WLtQwCadleKx8z7nAmmUisypTG2iMNL65+OOFR+Db4ki0tWXRVdJyEyLaSryy0hrvxDk0q2xxuwg4smlnjD6w7Dp65xmnwDEEvI/88O4KqyB5x82x5912z92+p5+kLfKxOSYnOVFVTFRaMzOaF4sFJ63BDw8cdlcYXbM9rNH2hBiNCHw5E3JxYqVc2IJiaVUpMrOyacg5oaLYjFOUTXFtE3tk4LmsLbUSx98UFYcILmUqlfhuc+AwRF69OOfrDzL8q6hkK5syWSuGCOvDyMNxYlFZGbBDIBTzfvYTxmjePL/gX/z1T2ka+N0f/oSbJk5PFtzfSdzWBWkWOj1tWG929H1gdbLiX/7zv+D0ZM7Vxzuubx4Yh4lpioSQywVAMZt1fPLJS/rBs+kn7m5uefh4Qxgm4hSJOQgjpdYkD9MkW6xExlQVUSlCNtKqnKTt6hjA6oT3CWKiUpnzBi5sxiSBsGv7ePCX2GAGW1lxoRQuAUmVYpci0KDYbPdkMouu4Z/94hd8sjxDp4DJsrVNLuHDCErTzRakBMPhII4vpYhuku1gki1aszoBVdHOWpTKPGzv2ey2XFYzchSHTfn4kIrPvqpq5vMZVWMJ2XO/veU4HLm73zOrr2jbz1HBUJlaLjmkpwFRGREyxAUowsPjVgYoop/Ad1WMrEOgqSpmlSUnz6qr2AyOtUvUWl6WV+st4xR4dr4i+Mjdeiv8qpyYsjDCvr/ac3UYcN6xtJZGZZa1ZQoiIjVK0VkpFcgZ+tFjK4vSmkVbc7LomHcN+8NABOraMps3fPthi7Waf/7rn/PTn7xgXmu+fXfHersTsLbKnCxn3N1v5CJrSituUkQ0p89Oef7sktOTJft+4O+//sjV9T1hHNDJY2JgiiVyWwZslZQAXHJ5AWpVeDzlG6WEAar0I2NEzoynv58fIcyytJCf+xgNKIVFWc4GpRVGUZhyP7L3pJhDNt05qScUgrYSe4kofMwMk0MV7lBjNbOuwQdZIKzHI/fbNffHPbupxwUvA2hOJCImZRamorM1nZKzyajEOO5x04BRiqHfYpsTrJao8KJtWNZyudQKYg5ly5yFu5Ifo26PDu3EdnBEpbEaXJLWcVNiNX3wfHs/8XLVopVhN4jzrGkq+snJkBnlYuddoPcTfVJ8t554mBIxwJQyQ0pMUQYTqy2V0Vx2hi+fr6hzJCVpNR595ONOXOu1VXz5/ILKwnq95WdfvuL12Yq7zY7tceDmfsd1EfeskXd5qw2rtpZNbixcxvwYNhORwGVFcF4A76WF0+eESolGKU5XNUfvGV1x+4fEmETcy8WVNDOKs6qis5opBHbjiIsRpZSw1pQIHK0V/tAwjIwhinO6OJVbWwmUvlx8QkgMUVijOean59EaKZ8wSgsHTgsTq7YGTS48QIlVKZWhCKVGIa69cWDf91Lccjww+Qk3OrnkZ1BZRKimspwuFlhtSNHRaUWnA8e9ox8Di6pHa4vRFZrCfywQel24MCoLfP8Jja7U00CvSEQdeR9kJqmBQ47EpLBBkY4jxsCqqVg0hlOluXOaj9PIzaHnl59c8vuvr1hvR1KM4mTMGecjd3cbiSBbiRHlKPG6mBV1bdGV4TAF9usDh6ODlJlV0mZXW8uslQKFxaxidIHBB5JSrJZL/uaf/JLL5yf0veP6flsu8ZG6aRnchHeBptY8Pz9lMW/Y392XeEzCVgZtamnRS5pvr45sv7rj2B/IwUmUR4tbyUVhGhkl7trHi45SqjCLArXOZNcTikCcyp//kZ8k/yzopDC5xHdSLBenzJBCiTsJ17OtDPPGoBGXR1CKyctmXynFojEYLWzR3gWJUZf3Vc7CL350MlulinNYUVoL8DGz7UcO3nN/2DO5UIrqLLOqYlG11FY4esmPVCmgqki/H7C2p6k6bH0pDgVjqHXCIMJrjAFVHGgUx5Z6dI0grbe73YGb62v208TgPffrLcvaopuWzlZczjuq9gyylL/Mq5aZmsjB0Q/CaHq4ueXFm0/lzjD2xYmR2IfM//UGetneCqqhuJ9Mjpwmz//q+YxfX7T87u07/viwZZocc5W5NJrsHR/W91TaoFPkYrXgfLlgubDEkPjh6oab9QM+BGZ1wycvnnMy7zgMI1PIVNryyekJq64mkPh4v2aaPIuu4fxkxWw25/RsyazteHez5k8/vCVFx0xl0CVSrRQ+Z0KWCJ84lEuZShS32t1w5G7sud6uGaeBJitUjvggy/XG1IQkBS9LLQxQAJfBZ7knNEqEw6zy0wyfivBiilMv5UTvhelca2npdSkyIamQwTuyVnjvqK1haRvhzKbAlBOTd1L0kwSplFIkFsGiQtPVFUqJqDK3WpI5KaLKYn9mMjMLbWUwCmaVYtVYpuAZkyzO5HhNVNZKLFVrifMb/cSLmyhFccYQs7j5Y5b3qo6JbOUz0pavtyxTSslA9MLCVIpFbUgoehLzumIKiagUf/j+iv/9v/o1bW34sBn56uOGpmt5fjLj1VnHyazhfr3lt1+/JblABeRK0A2z8mczpSW2NjCvKzE05EwkMjm5TzWVYe8SHnEQm8pyNq/4/PKM7fU1OWf6aNhHhUtZMATWknPGBXEeKpWICZQWpjRGlo3ZaHSUuaS18ntKWWYUlRKLruZstaCxmmk4cnd3TxiFeRdcL848BMNitcEYgwteHGVRnNCQCyc+S3FSpaltA0oST9ZaKOwzHz0uS2upc6Mw0HIuLLTH0rZIzILXUql8TtBPzDVxVYmDWRnEFGJkblSIczCVhU6KoRSkyd+zRhdBRpIwKclCJ0YvRX45P+E7jvst7WLJq2dvuLlfcziOxSwiM3BTV8y7ju3xKGaMnLDW0NY1u/0BpbQshspcaLWhaxpCCtjFjMNxYPQB0CQEZxV1YDvsiV4RkyP5zNXNmslPIhjl9BQtBSlQEQ1KlpcyN8OjNe1JPMr56edIiUYRrPSPy3rvBpQxzLqVFATNW2ZtwzSOwvd1ksZxURarzo2sNx95/nJJ3x/5+P6P9IcNn37+a7SuMAaO+3vWDz/wcP0WZSxNXVM6VenmC2Zv5qQc0apiHDby/XeRcdgSvURrJXTuyX7ksD3g/IC1Fev1FcO4YRonamMwuhbW3qNzjiwLsOC4u//INB7IKBaLFbP2hJglKmuNoFAeG7JzEfgkSix3iFwiuCmJiJ6y6HsxlTtmKpg5pZ+Y5JBLZDfJ50KuTE88P6Xl2X00N/w5P/4btOhK86JT0u71prF82lmyysyUgNE/jJFOl7a5tuGvf/6a//Cbb2U7kRRza1nOG25u1uz3fYGPw6xpqSrLYRL+hdWwqC0vnp0JJ+52h4+ZurVoY3jYHARKTWbeCih3dbJAac319QMKWMxnVFZzcbFiuz3QNvLvTknR1hXn50suz2RjSI6M/chmc+Tqdse+73E+MO9qnj274JvvPjCME9Zanl2c8813H9kfXflQy4ATy5AneXqxdqYcOYwTw1QaW6JcsBKP+W9oNHSVIgbPMIkIEJM4WGIBt+sEXWPpmpq2qTiODqUSXSd8rsV8hq0M7+63HJKwgpq6YT5bcLc9SNW6TgyDY++jDNpa40Kk9xOHceJqf2Q7ToxeXA2xDHAqgcnCXOgqy+vFnFYL8yKMI5uH79k83FA1FbPl96jqJyQ1E6h0uXTIwlUOzlorGlU+TMFDjpAmdB7IcSLril2IHGNEKYlwDOXT5JM0JmYFPsNdyIx94Nv9xBefv+C37+/xPpKSDE5awTFkPh6kmXhpFVXyKCUQT+flA3my6vjVz17z6YsTbu8+CutQQdd1vHt/z/3DkUzm4mzGfjcyHD37MbI8XfJXv/4p56dL7m7uefvumnEUYc5NwlxMWTE/nfHJ56/YD46P1w+sb+5xxz25FGfEGLCNQhlD7yLByyGOVjRNw1R4O2MMjFEx+ETQip0P0oab4bSGV42hy0Hal/mxuUmSqeJKsBZSEtE15EBMUhwzxohVRqzmhWFw0s14OTuXWFqM5OjxY0ChMVVD1dYoW+GmCT/0pCgx1Rg8IQWak1NiP2C0xrQLpmHP9m6DNZr9fs3msOfitJGNaok2ZjJVXbNYrtBVEvdpGBjckc3+ntv7GyqbGfzA7nBktbRkJ1+7QnAr7UryI5VLlzamNETJZdsiolJtNGjFcYpMcWQziFN2VllarZliZIzFeRYj/+W7j/wf/sUv+R//498XcLXAZ22CD/uej9sjisxSa3SONLYmBHFfGK2ZVZpZrSQeJ+A5Us4sZjOUUnR1Q9O2mKqVTY81/PHdhqpp+Jf/5Es+f3PJ+6sH1inz/npDCGBtjWo1+2EsF0HNMSS0sVy+OOf1q0uqumZzcPznP3zP/e2G7CZwDpUmgnfEAmgGSjxLSxulkvbMVIZnVQQtQZOJgO1Lk2NOj5FKfmzRTQKdD7FwPYqrTRtxiz65MRDHIbmAmpGWcKVFBBO2oMSjTWnnHaYJU4nF3xhbGDKK1WLGYRjYHQ+M08jVbs36sOXgpblb50SFkU15VpzYmpkx6CTlNNpKlGGaelIIuGlg1s6wOjBrW5oSO3p0NgpvtcSDyqD76OZOZKYYqZPETMYYmFnNvKmlWCDDOMo5YKzl43Zk1VXsh4Hf/Okdv/jsFd+9f8AnEc92x5G6UtwNga/WjrtJGGARRQjClDNa0WjFxcIybyqezaofS09Cph8FERFN5mK14CfPVgQfmNzIX//8U+q24uPNPbt+YnsYuLnbsTscmRWhy+rMoq6IIcuwV7AarZUIxeQCvQ9URkncZCsYApUSy0qjrcWnxG6Q5Vgu7gMRMiJZWPw8b1tOm5oQPNteosHaaCqjnoY4ZQydkVj20ZVG+rI0qgqwPkVBYDiV2PU9lbKEnOm9Q6NoC5i+rqRVUitx5hotkd7HwRklz25WMrhZDTl5dsPE9rBDoThOA947cXdHceqYrIUnXFXMm5auqWmMwaiMxbCyivXuiuMw0MaKxaKnVjNAWsFRZchUUuqjVQ1JHC9ZaSkYU3LOx+La+efLiu+c4vsxc64tfiyRmCBg6dqKe7m1itPaUlUNv70dML/7yPnqhF/87A2//cM7hn5CKWh05Op+S4gy3wUf6XWgM4JbsVox61omF9gP8r611qCSXDIaW7FoG2Yzy2ox52a9Zec0ZM181fKzX3zO2fmS/XHi7YdbjoOkDmKC6ThgreLNy3M+efkcN428f/cBlRNjKM7zwUEVWZ52vL8+CEPwcJQFqtYoLdgJ78XPpADnfBm0pe/OqEyFpyIQhqEsisWJLJ9lOSG1ytRG4txeldIxCndZSWus+PsU89rQ1lKEk1MoLFMlM2MSV58t7vp+cgXpEstiQ9zSLoSn1j6JjMuiIyeJxaWcOTrHehjog7QuztqOVJ7hua04rStqEo1RTNYyHQe2+1sB2qcKN21oqiWzWgoY9GMcNz/2Bsq5LE3C8R9ciDKmsAwnFzlbnXB6ccmiaXnz/JKQIpcnCza312z2O5JSpMNEswDHVIpCEilk8qFnv91Rz09Y7w/o4tz+fa/4xmWwEkPtSlFMkwJvWsX/4vUSHSf+zd//kXs3UWd4rmGZIiZIBLsymsWi4/nZkpeXZ2x2Oz7e7fjh6pr14UiIkYvVks+fv0QpxfYwSOOsVqy6lsVywXqzZdcfiWSWixnzWUdMME6Ormn49t0172/uUDHSFAyAA8aSXtEl2ihgeFVKKQSFsXUTH/c7tuMRnGemVGHcQUCWgQlY1RXzwrJK/yCO2xhLW8nl0hPKRVzKpabS0qhTYqkqchJhSWtx8fgsbeVTChjAJU+jLHNriTkzhak05QYxBKiE8xkX5A5Ua4NVwnutLDJnq3LlzOBSLKVImlpl5pViXukiDim0gVVj6ScPUVYW6FJIUwQKTaY2ir6ET3IuaA4kERRUJmb9tGDr0KysYd5YYkrsXJRykyzmB4Nc0l2AmBRJJZaNnKuSIsmMk+I//eF7Kqv5/bs7oq14fb7ks4s5VmV+9/Vb3n28w2jFopI7RWUNBjExPJbhKaSI5YCU2mk02hpcSoAmuEjvItoYVosZRmXOuopx+8CYYT0lNk78iRp5N45uICtNlHQglZWvyzTuuLp+z8vXP0cpy3hY0zQLjKlETEaEtspaTk6WLLsaomd7v2XY7whuJPtAzoHt7oacMyeLE3GAZXE/O+/K15nC8Za7VkieaTqSc6BeCn/VasG1+DAV9lgs8dEoCzDvqW1VGKPFSZ/EHSjlmOV9XBAvVj86pfn/QrcYIyKfD16c+I88uZIqCUGSJlohLatJWGjGgArFoag1ELDWkqJns77iy7/4JeTMdrMnlGcul/SG0YZDP9CPk/CHyZyerITh5520hZdzMqfAzdU7Pnn1CSfnpwSX2cceImSdyDmwPxzZ7x+4v7ni9au/IFvo0/jkBIPHGswfURspxfJ+KrzMclYUfa/ciX4UBOFxRq/KMusxfpq4ufqe2XzBy8uXnM47UnT0x6M0qQdxq2UKizsF7u9+4H59w3z+gs39Fbv1DcPxgYvL15yefIJSie36is3dB9zUo7Rh/fF7EoHBOVYnZyyahohm1q54/+53zLsVxjSyWEuCZskqE3NkGh7Ybt9JsVuScx0luJzV/JTl/JyUA1pV5BweJUymcc847BjGHmsNHz98wycvPyclR86Rk9ULNLYUnsj9IBW++NMdErmqpOgKE96Qs3lKIj26BTOFBZkfuwqEIZmzxyjhNhr9iNYQTUT//4ODjywZb5PlMtMoeFWa5Bblg/d+LG48lTkcen72+pyrF1s+3GyIMbCcLxnGifvNHkvk8uKE4IVN14/SQNpazbOzFc8uT7m923C/FtjzYt4BmfWjuKcyjTXMOgskaqup2xmwxtgKHyPPnp1I7KHrSOEOU7hFy1XH5fkpMWZubh7oh5GHhz2HfnxyXMy6mmeX5/zw7iPj5Gkqy8lqxQ/vbzmOsbSlJUKUDbCtrPAJdKafAkZJiUXvPJMvm7Qkh45W0sjYVgpDwnkvTXxZLM0uCMC5rgykTFvXtJUpLZIVkxHRIifZ3B3GEavFmeFDZGE1bdthjKYfxPJKgS+rDClEjni248hmmtj2I0cfcEHcFhZFRTlAtabRllVteDmfMWssVw87YpgwKeCnLTFOqClw++H3rC4tZvZpiVZJc1WrDB6ojaIio1MgE9BETPbkNEAaSNlBjDQ6yxCBCCcHl/BkpgTzSmKDtZEN+sPo+Y/fPfDLv/mcqu04HI5iE1cSB7vuHTonVpWhznIBTikTgFnT8NmrUz59fUYOjg/vP2KUpjaacfL88OEd4yQbv/ms4fRkxW4/cb8fWZ0u+MlP3vD68oz7hw3fvbvGuUjwgWEIDC4Slebi2SmffPKc29st7959xB8GdAySyU+QbcQ2likn3CDPlVYKVQu7YRcyo89ExA0wAlsfikNLcdIYXleKE53IMTAFhyIJPLcoNo8vJf1kUxc+Ycq5iIdZxBJtS8ua5nQ+Q2cl7A9jhaNWeBd1I8D/6CfC8Qj5MU4jrk2VPNJwpVDtjGnY0d9+oCIR3cRoFI2tOVssyVoGBFsu/UYb2rMZPg4ctjv5vGjF6Af22y2b3Z4QA4fBsVpcUruOptY/toQ92qfLACwOPjkAc9myKKVxzoGy7I49VWxKq6OiD9JevI3iPquQF2ofAykqvrp64K+vd5ws54y9XOJra9m5wN2+x5LKxgfmTU2OkagNldYsGsuiFo5aXVl659HaYLWltpqLsxMWsxafpCn0en3g+n7N6eUJ/91ff87psuWrH265ud2jVeJuvSXnyMNxZBwGgvdUtqKpLS+fn/Hy5TOyrXh3veHj9Tt22wPaO7IfIYjgkpVEcMkSOzNaLhYGJBZRvoaPG/BcYgWxtNhmSpqmbC4qI3BrKU6KUjySH6G2pWLeaBEEEXenUcLQExFFntlHxopzXopzUkIXV67RWhwESsu7qK6pyubU+8h2u+N+3LMfejb7LZvxQAieJiYRbo20q94NB2bWct401MiAWGlxD+6PDq2EQZJC4HDccnF6waqpRIhW+WkojTmXfR3lmcvFySjOoKyl8csF+fPV1lBbaSQbxoncVoyTxFKSgp0PTEnz+/d3fP7mNcooDkeJi9cWtkfF//vW8XHfk7N6irJbYGE0q86yaGrmTUVlFC7w/2HuP35sy9IsT+y31TnnCtNPuT93D5GVkRWVkVnFLlahgQZBgGBPCA4JkEP+ew30hOSII6KbVY1KZKUK6eHiPX/a9NVHbMnBt808OGXmgAY4EI5wf2733nO3WN9av0WIXrivtZn+yfERT58c8dXFKSkMJGO4OD1jfzhwf3kgZ8Vqe+B6tSbFwsxZaVIsRZ7rkihIE5wthRwlWtsnXy9SheizFAsVYRQWJfzJVMRJJ3FDaT6T2GHGoZk7w8WsoVGZw7BnPwn42hpTRUBZ35wW91w/Tozey4U3RGk1M7UtNgkbZ/CBXahDOdlWMdqgi7gxU64XcF3Faf2nc4L8yMhSOeMawzgNDDEyjhM+RQ5DL2UW3ov4YCwGRTeb0WJoGokqWV3LExQczVqS7ylxT4gDTeNobCKOK2ZugbONwOaLlLkIQL0CquvUVwR9mcSH6Cs/KDGmxDPnaDS8O0Sc1qToKZWpk0piiBAzKKWZZc9kHP/T+y3L5Xv+L//hZ/zZV0/49od7pkEawK/v7ll0bXVGSmlRNpqZMyhjGSYZYsaQcUZhKi/YWc3ZyYwnF8fEFLnbj1zupATmdNbw5z/7gvOTY65uNny6WbHZHHj79gPj6CkFnl0c87OvPgcyHz58YLfvhZXnhbjqYyYqg2qP+fh+z2EcCH6SwaQWtvE4hipOVaGq/OgG0YgjzKpE8RNTCIQqFj8e4AtoVQuB9ENDo4hgKeXHgaKvbYUOKWLonBTQTVHitSi5hJZSaF2D0gofhL/3Y/RXPUbUComSc73QmepQkWFTLQIl5YIukaetYTZ3oDU2ZSYlhTKt1jgjZ3ddMnOT+bQ54KMnhEAMHmsKXXPEbHaKqqJh/U1kb3jgo9afmBK6uj8m71kcHfHf/sd/T8yZpmnwfmTuLP0UGYMX11uK0t7rDJYs5yUl6QHhc8L6bs2zL8+gaQlTZIvl/z1YioEvW8czpyXSrRPPLMxV5PdvtqwPPQ2JF85iskclGGNgZiS+Om9bfvbZM3n+Nlu+efueq83usSV+eXzCi6dPpIinDiaW85bl0YJxGPh0fVOddoZGy3dse+jFTVUS//SH79jsvbS9Kymx6mNiiEFSNkbOF7q6kDKF3TRxCJ712LPuB6a+x2lJWeScGJW46J1WLIxh7uR8lpUM1ZzRNEDTGDqtOURxR+WcGGOszaEyjHdIjI8spRgxR4YgOJZUMiFmsi64ArMqHGQg5kTMQbh1urbapsLoR1SBVumKnLA0SqD3Vsl5IMhlCqfUYxFfY8EaKbhxqqCMIcWGJk+cziyohA8Za9yP7i6xyGAeJ5BylhUGNXij6p4jrhtPYYPCREVUInTmRHXWiyOtlMJQnVx2DFgNJ1ret5wjM2vICr55d8ftdo+q4t7Lk47tbs/376/Y7np5zXJLl4FlzNJCHOT78TAY1QrKJHsTGvaHHV3X0dQ9tHMNJydzTloHccL7ic0U2U6ZPonoNfZ7uvkRIQbevvkDF+fPWBw/FzdRAe977q5ec/Phe46WpzTdMe++/3uevfg5Z8++kLVPKXEh+UB7dsx02LNf35GnCVIgxYkcPSGO7Hf3jH7CVVRKCJ7joxNiDOLyNVI6pbUIZCl5gu9JYSLFwNHRMTQzQgzENKGyCCdyDhQnc4ixDlfqGV4JUijlSEka17T1Q1cSwy5iXHBK3ltKdUSmII7fGOSZfWDjVoc0BdCVH52RJJPVdG1Lip4Rqkgnw0alFD6OLOYz7tcbEdjrXWS3XdPOF0y+YUiBKUUMksTo2pbt7sCh36NqIagCDv2e3/zDf2L9Z7/kV//2PzBVVmLInsN2y35zy9XH7/HTgdXNR1rb8OTFVwii5sdnySiN0VZi2NELf7jeN6TwTgS9R7Gvpu8qha86LWUhLypBDijVkmJmdX9JDEd0jaHvN9WBruiHoYpd8v5a23F/9443r/4B4zo+/vBb7m7fMg17YijcXr3m9PgZcfKs7j7gpx1+ClhbSOOBMQcOU08JIz+EkUSha5es1584WZ4zToGzs+d07bkMl5QwOPvDiuAPHHpfh0yFgiGExHZzLUnOYcPpyQvGaUtMkXl3znZ7Rc4TWmX8GFAlcXPzSoZuStG5ltYtUQ94nSxnhvyACkDKzTSaUs/PdUWlkETnKDW3Utd4W4teChFF5fMZuUMpHspF5HP4F9D3/iUcfJGxRk1mRlMyvN4OxKg4mzl+eeJ46mCTNVcDvF4d+PmLU9q24eR4zn4YWW17bu63hJw5WbSyyE6BEHOtDDecHi3IBb57e0U/iIrbdQ39MOFr46w1CucsMUTu1nu++uwZ3azj/ftLsbAWODs7ZT7rWG963ry9pB8mtDYsFg1Pn54xThOfrvYEHxm9px+F96e1YrHoOF7M+O71eyYfOD6as5zPuLq+Z3MIZKSxTA5jAhEtZEJKTCGymyZUlotIP4rYIWwGmYwurGyEOUf60QvkuVTgYkTECerhU8GsMZwdzxl8RNr8NDHmH/+7QeK6rbOcHy8xWnNzv2XciyqdRjloFzLbsRfXRMncDyN9qIfPFLF1YuycRGLnRuz2TkukUOXEZj9xGAdyGDG5Z7teUbJAor3vKeYN5+0TnJrVS6ei04q2cmd0iqQ8okoU9kQJ5OJJaYISURqOdeZJp+lTZp8N15PEHJIqHEI9dJNxzrLOhW9WW+5D4c8/f8o/fD/hY+Tey+tzSnNiFU0RRb5ked+enx/x8ukxzhT2mxVaG0KI7A8D+36iHwJaKVrXcHK2hJT59vtPjElx9uSEn375lC9fXnC/2vL+ww3eF/res9uN9DHTzma8/OwJ1hm+/t0r+vsdKkdMfR2xZJTJKGvpfWKIGYzEmBKFnBWDzwSlOCRZ2EPMTCWR0Sys4fNGceYyTQr4aSLGiNHQmodFRGKjUtsuk4OU5DlLMYp7aPKEnFApMptZWgolBoo2mAfYvTFQEqZolDHkMJFTQSE8iJDq85UVbjHDHwLaNfKZTr1M7rSlOCPR5awxpmHhHFPwKGBKnqwKTjvCdkXMmclPIv7lgg8Dh6Hn5GjJ7d2KKUZu7y+xtgOtmZkZKT1MFSXGpmusLadcYacyTdNaIu/awrvthmEfOZvPuJi1HLkGayx9enC6iKtxpjXrlIgj/Odv3vJ/+u/+kqNuxjdvPhKrGwmq+43CUeNQKWKN42TZMWstu/2Bfky0jWYMkWEMHC0tR8sZX7x4Qtc5cTNNgW/fXONjYnl8yq9++oxXNzvi22syEllZre65Xh9I4yg2dgXLWcvnnz3l6cUpfcx8+/GOTzc74jTBMMJwoMSMVnVSVVl6RqnqnNaycdYoYwGJ5ldmR4xiT0+Zx9jPQzxQU+pBUEoEhLMn/MNScm1sE2ecUoWcEtYoWiu72wO7VCk5qKRUSBqpRNO6CtTi8VRKY2pRinXukZvSDwMhevqhZ7NbsQsDfuw50Yqu65grQ1O5NU5rzjrHzBrmrqmsSlmHez/QD3tUgWkULIPTihgGYrvAmVbKHeqa/mjTh8eYaioSOflT18aYi3DflGI1THR6S2vE6WgL4ESwjCjWEVII/Kc//MBXp0esDoMIpoPmd9c9l32QSaKCxipO2paF0yyNYTkT9mIIisFDRNyRTsOytZwfL7g4mjNrLf1QWZGt4ePlLU1tH1/tR/phomRxvYaYcBqO51II01rLphfIfU6KwUd85SeGys0qta3dGIMtirFkJgEnARLJNkoORgKfh+OZ5chZYpy4HwfGKAcuW7ljWstEvzEyzDr0o5RoJGl9bqzEpnNKEsfNid0YGL3Hkx6h70ps9ugi4uUUJOLf2ebRKRVjIGdxa8USBeCtCjFMbPd7fApEXwU2BMkxbxoaq+m0lWmtUZjCI2uwcZaZ0TikpGAgM6UDlkA/DNBptBlowz2zrqPRDVOIVdQDlMR5HprZqELfnzJ/Ywi833mUFb7Sy0azGiPLxrBPUeJouVS2JdyXyMwWNkZxVRT/91fXfH7S8n/4qy+JsfB3v77nw9Ud865l3lgO0ySXGSct3yjop0jvc21ElMFl11SnUuM4OurYHCZutz2HCXw2LBaOxbxFK3j7/pL19sB623N7cwspcXq04PmzM2Zdw+XlR9brvQznYoYcmUIQCLqZEUqLHzI+9uQx0FT1K+ckgl1Mj4Ouh6ZxAdxnrMrokvD7gRI9KWXG4B8ZX6o6P7SSs2eIASoOQCOivWGSNbQWX7TGoFQmBHGpFVQdWgjb1FkDJUt7by61bKNUp/PD/qXqAEN4QTk+xHRF0Gu0tNLaUmhacLOWVilCkaglSJxXlQeuVSaXSIkjKnui90xT4vykI8bMbndP13Qo01SepvC0xC0raAVJRItDluq4L1mKPdp5w7je0++33N/dEYcBwiBDozTRFM3cWp6dzEhTjw91SF7UY+x5jJ719h539ITrvedv/YJ3KfOXpwt+cTzn43rH0mZ8imwOA5voeeosP184SlRsx5E+eJxRtAVxlxnD4APvb9ZoA5f3K27W92StmLUNXz67QGkZshy5luPljJ989gxrFB+urjl4L+8HEumTs49FadDZ8+nd7wnMsN1zYvbENDFGS0AYS3NjyFEu9CLORUJKHPzI9W7PFDwlZzqlKTHgNBxyZm6lEKW1hlNrGXJkFyLKGI5qC7LKoIikHDiEILy9khmDRFCpF9WsFIecsSiI4JEBs08Bp6ScSFpzpfAhpUixGpBY71gkghiylAOWnGmtZWmslIJZTUOprFExeggmAmyWeLyqDlJTOVbWSfFSIsmALhdan4gV8yIsWxGQHtIWqUDSBZJ8H30Va3wpoCtfr2g8kTQZxmjRrtDpgqmOOjLsSmKP4hz5vsy0pQWmnDlqLEZprvqBu/1E01q+vDjm/Kjlw+U17z+tJI5JEXyDQthk1XjiamzSmEoYz3KO0trgrGbve16//gMvXnzB0ZOXNM5xMm85mzWM08B61zNkGELER2F0jvtbbj58y/Ov/pIw7Fh//Bq/u+bPfnkCuiH6kQ8//I7d6pJ+fcXV+285f/IZ+/t3kkooE8Mw8OVPf8Xm+j279TXH9t/h9ztUlHb5lAI5TKQ40Q87pulACJ7N+gaFoh8HvB/kme46uvkR1ojQlFMghYkQRgBCHMlpws8Wkobwk/AHa3AlprqmJPkgrZPofYhSkGbq71OKwRpbi91EvMrVVCOuNWGepRyBQokPhYRJ1iorTmuQsNgDvzTniPfCZEslkEuibWspSZ3WTrsN4zCw3e3JKZKVQWd4/e2vefbZF2zvZ2w2l3z+8uecHF8wn7U0xnC7ueXTq1/jh4Hjp18Amvu7e/a3H7hsHM9f/oRDP9I0LZv7K777+m8ZDyvCuEMVjR8HXn/9X1guF7SzExlmRbnL+RRp3ExSBapUh7zYG8pDi3RJjMOBrltIYQ48ltblGCioeh6JrO8vOT39nDDuKHFkc7/n+tNrcikslqf4EDn0e0yBEHYMU89y8ZQP7/7IdnVNNz9mPAzsd3eUGPAxsL79wP3JdwQf6LcbQbFpuSNQkyx+8lg0+80962GHVaYWcoyM00BMI1+9PH4USKfcM007Uoy1SEP2Ze89IUXW21uUigzTmkIgxp5xPMDRiB83UlJUz4MqQj4E5l2LsYa+X2EXTs6NWRIp5aFpt4BScjYsRRyPFHHhFwI+DjR2iVbCADVaIrdS/ZjrXpkqc/MhWfggxJZH9NE/9+efLfAVnQjjRIwW22h+dmL4t+cL3veZ32wT+lA4ajKz1vJmP+Lf73n5ZM+TsyM+3awZR8/NzYpcImedIyS4vt/JdNJapONQcb/viVEOZ6XCz3f7CZDDsrPiwPJebJOfPTnl9HTBm3efGIaA0ZrFYsHZ6ZL1ds/d/RY/SdS16xouzk64vV8zHCaGIVQmS8JYaY5azGegNK/eXBGyRJhmbSPNbUMUPTbL5MBqEU1CzPgq7oWYGYPwz3IFMislWm/njLSsUfA+MEUBKT+A5IW1J7bnxhlOj+YSI9XCXSKBa6U1aQiRpnF0neMwTBz6geN5x7xxrHY9KUb2MWAKGGPY9ANRFbbe4ykwRQ4pkFPBFYXTRmDiWiJPrTPoGqXbjiPjlIlRWGnkAPHAuP+BrnME39LnA4WAUwGdeoo2FONw2mF1rk6dTO97DBFFrCyFAERUCZQSoWg+jIm7IZBUwZrElKChcGyFq5a0YkKjC4xFcTdl/m+/ec//9b/9M663A68+XlF85FRruupaS8jE83Te8fx8wWLest/t5HJeYDdM9JPEpFWRi8nxwnJ8PGe/nxiGiVQ0T55d8MXLC7784jm3dzs2qw1D77m+2XAYPKkUjk+OmS+W3F6vWN+tUCmhiyxuYymoRtFYi8+ZYZCLcasbWtcwBs8YM6kUxqQICvpYaFRGK4sj8WxhOLfQpQAh4ENtTy4SA40JDHLBKCicq2UERaLikx+FG4Yi+ommsZzOlqgk8QTXtvL71gu7RZOjhyBNkzEHQikoo8gqgYVsCoREHDdQPMl78rhFGUMoGUJmSmIPD0XcTIVCSfGhLlMgpVoTkxf3VoxyqCMJS0kn7tYi/jlnuL3fcHR0oGk6oktkRECS1lgo1RGRHrheCNzWGkvRSpo9kebl1X5gN4yctg0XXcesdTglsakhFSalEFRq4dXVPb/54YYXRx2zruEwRe72B3JONBTmtfChMZovni45O1ny/uqOmDKdM0whMXrhIz45l0HEYjnDOcu376/5cLmmFHjx5JRf/vlnHM0Vf//dez5/ckIcD7z9eMswRqZxRAHzzvL5izM+e37B/WHg16+v2O4GUvC45NHjKMDkLNFbreSwLREZU3l0pUaORbyTDVnes5jlYiNYBCqUNgtTxwpQWSlFCOHxUkx1GIu9vTJacnqEMVtnxGVa5L+pNfhYiDnSGCux3JJrHgeMdqCE3+qslGqE4GUaHQXePY0jMUyEsWeWPAurscsFjZaLwaxp5AKufqy813Xq5ms7bS6ZYRrkkBAGjBFu16HvWW83OLvAzhtykVIJif/VSRzCr1RZoavgDZlc99C9jwRlUVPg2GlmjSGlxHLWEFJmPVRuV3TcRhk5//2nlXAlk5S5fNpOvDt4UpDihEUjUarWVi5r1+CjPPeNhrnTNI1h3nXsB48qmZlzFGXYDpkcJxSJ6/sDjZODdD9MwqzJctgN9c+TCWkApfB+wgd50bHIM6JRGCR2EPEo7VDFSuyQJJe+JAK7RLPU4zPXWcVJY9Elcxh7hnGSdSMrnNPCYVLQ6AoUn/yjcJMeSjoq+NiXgCrQeyml2Y2eReswGBpnsVWcsdagC6gi31XrpPVQON4ClzfaVGaKXDpDnBimkcPQy8CkRObWMncdnTYsZy1OFRpjiRWxoXKpfCCDKQK1t1ZE0clP3B923O/2NDMjLEmgcRtaO0MjzDqjVS1wKJVjWZ1AShztD+ygmBKpGP5hPXJQheMmc1IZcDYGbNFckzgoaejNKCgagnxXvdaEYeJ/+M07fvb0hKdnC95efsIgzEMfxKHWWMNyNiOmQh+iRMhLxpbMzGoZ/EyZSUFrHD9cbuilc0faNZ3mdN5wdNTy+t01o49stgfCOHK0bHlyLlzX65tbDvtBRBVVm2JTQhtLtjPG3BGTFcEz9HIA1yJAlRiYvBQH8ODw0WA0f1IikYnjyBgqKzEkUvE/gv4Rd6QzcrjP9Tz3wHMtSf7MVm3r4f8IVflXsWThrkVxh9o6QEZrUsx1SCxnv1wbvK2Wy5qIiXJ2kRZR6GyhUQpVIg8jBaMUJkfQlfejFKZeKsQ1LaKgRIUipQQOhw3eB6xVNEkcECFOErOdtnTdCUYZkvrxfKu0QuUfy2cAHhoCx8OWZTfn7//m77m7vSb5gZkx9cyXJJLuDBcnR5yfLmD07CZPKUYSC86RqsPKZzjsPS9ffMmHO8+v7/b8YtHxYj7j42ot7ks/cWLhZadZ6pYUA3f9yFjZqiI4CTdy8IFoRKRaTSNDvxfnnTY8f3rOxekZJ22DRjGFxOms5cn5CSfHC1abrTCqcmTcXTIMO47OXuKTOIVnrcaHno9v/yuqOWd5oUhl4u7+Oy6e/zVOzWhrO2ZRUiwypcDee/bTwPZwQJXC4mFgphNNmThVmTsjwydCIpAoyhBzYtY4FkqjyJLKKSOL0pMozJTl4BPaOZQulR2siUqc82OKWFRtl1TkikKYaxlgzKyT9SNGrBbhZMoBkxWxJEbvsRhJHzUNy7ahRfZzqnD+MGR4aNA1ugiKSYMqmXkjDmbhWxWMynKOLBryyHJm8EkGiaY6sB7OElDwWjEVzawWBmYFYykUJQkWn+VewHBAY9idPKczhlYXolaoWAgqM2bNcP2W2ecvcHrOyazB5ESrFb4UbvYHDj5xsZzx/HRBofDH79+w3vbCalUZa0WUfih2EjhbbXPXwmgbQqCtpWoyuEyst3dMm0/sLIynTzhqHCHDZuu56/f0PldOXCanwH57y83773F5YHf1irvbjwz7e0Lo2a1vOD5/zvruPbefvmMYdpQY2d39gN9fE8ae3f1bwuGWGCNH7Zzbjz9QYs/71y0Xx2fyfpVMyqE6lDyH/YYQRozWjONBSjBy4rDPOOvQBEm9FEsIEz5Mch4rEhUlJfpBWHiUwugntJ7j0AImzDJYLvVe2DothQXV/UmNPQpCQJrNqcONoi0xJUJ+KHiDqTK/bS3Wo8geq5Um5FCHPXWYrQoRaWUmwzR5xpBqMSO0rUWrzLBfcXd9CaZl6gds05HCyOrmA2nqaWdnrO5eEYc9v/jVf+T87JhhOHB3/YGPr38Hoefq41tOnv4EPwz4Ycen99+x+P0Ft7efePnyz1jffuDu3TdiwDAGrQymQL+54frdH1keX3Do14BjPmsZJs9nL/+CkDLaGFQxKCX8S4mJyiD63dtvePn5T5jPjzHW1cxu4ebqB7QxPH36Fbl4VnfvOVqccvXpWw67OyY/8Pb17yha8fnnf8bt6gbnGooP3N++YvIjpycvuL3+gclPKNWTU0+cJsZxRDvFdnPN2+//lkM/QH4o10kcHR0L/qEibUpKlGQZh+lRNN7tDqQSWW/uOD++4ejoWX1Ne0ocKLLVPXYYaKWkWT4E9vstU+qBKxGrY+A+vsX7UXi+NWobY8K2cpaZKfDjSGomjG0pOeJsg9GKaRowbSOIueglyl+Ew48qjNOBzITRBqs6jK5QBSVnIVWHeVQDaUEYkyLwUVMjf7Kh/jN+/vkR3eqOoST+Yub4qxOLD3uSbnmfC28HsJNmuR9YdC350PP/+P0H/s+/+py2cWg9Z7decdJ10nI3jSgtNlmjxTI9hVSbvMQOW6oD5EH9FFtq4kHLf/n8hOWs4/WrjyTkC3K8mHF6POfjxxv2hx5QaKtYtC2u7Xj74ZKUFeMk9e8lyQVCq8jp8TG7w8hhGihFpjOb7Z6bmJhGaYtSdXNyzlSOgPArBh8ZpyAsi5gqTBU6o2i0XBxSCkxTJCvwIYjTI8lhrqRM0QKVPZp10po0jaAEjBpSwihN64Qxdb3eMwwjfhrZ9iOTn5g1Df225xAmidlpzRQiWz9yGCa0UgzJM5WEjUVasYymLQJ4bq2h0XKtD8HXCEpmjDJpSSmJMJADOvfc375h8n11EBXIif6womne0iy/orFnMjmroHAVe0we5QuCTLRSiVDk72NKNA72MXPQmU1IEqkls0Bs+KZWnudU0DmTlWaMid9e3/E3r5f82z/7jMt3H7A5kRD2idOK1mqOOs28s9xudgLxRteIdar6kjzjnbEYDfNuzmq9lxZcZXn24pyf/OQpz56c8sO7K/bbHQrN5dUd/RCxzrDolsQx8OHmDSWmR35ERiaPxWmsUowhMeZIQssirS2DHxlCZgoQVWHMCk+iNYaZgmMHM2PossdMEiUoKQmMuwRxQGYDSvhizmhaq3EWsa5HOTCk5AUUiqE1mmdHp1K3rqw4EkrChwGVI41xpKgpaRLHAVoihwaUVfjD9OggS7lQogg8uTIpYngQkTQl5nqQ0I9lMw8buQZUkQlerBeHmAqOQiye1XrL5eW9CA5BlsvGKbbbe5bzJU3TQp1ep1weK96jz3WCJyJFURI/0listfSTJzQNZEjKcjtG7n3PwsKTxtFaaUo85ESsFvhM4b98/Yb/43/8Jbsp8PpyRYkJk6IITyWzaBpaqxmnyJvLeyYfpcFRGxEgFRirMVYxn7XcbXt+uLxn3484bXny5Ih/98sv6Srk9mQ5Z7vd8ebTPaH3xJzoGsPT0yO+fH7GwRd+//0l292IKQkbR9QwQI6VHBXJKtdnQ6CvU4l07ghV1OMG9OAXl4iOeoya5hoZk2lTwSiomW/hXhYeXScPPJBcarSsOu5s3dgeyns0ggCItUUzpoiph+YHt6lWWhoqrSOlwqJr8GFi9IkURnLypGnCknApokLA6MK8kdZQpeRCb5R5yHBXJ4v8TVbiBshZ2EIhRTl8FmmQDAAKhnGgrO5ZzuZ0TQva4awRCbS+fznLv5NURSHUUfADWyYoQ58Lo/e0qiEXxS5l8iFyOXh8qU7J0bNThcZp1JT4zccNL+ea6z7xvg84MrPOctR1kKSV2CRptZ1bTWOUxOCMsObGmNhtDsyd5fnZgqenc95fr4mpiFCXBCeBUlgljqYnC4dVmk/rA1lZtFbEDEPM0rRYXyt5IOs5MRcaBZ6CKYHVzR/pFk9Q3YXEmMcNppkBtXUXhakS8kwrThpDnCb2deiVq/DaaIXJtZGuaMZxYoxJmtyKRBgBwhQpyNR+HFbkrBiTpSjzWMChtGbROOFi1r075UxE4l+2TnDJUpoSQ6CZSzNqTIFpCIzTSMqJxolLz3SWzshl1YoRCQpYJRc9rUXIfCi5TaW67DJyoSoRmxV+Uhy8lOU0LhLjyDCuMGaOs3NUEReM0Zp+jJW/I47+x7hKEVdDKYUBWBfNOoCKGRdFHLJG3tMDIGMvBUXEfBWFHTWS+Xo98j/+7XccrW5IIbOct3JAzSI2Gq0ZQmSKkZJFjJpZhUqeMEh7LNqQlGa/HRhSYbmYoym0ncMZi4qJ1fbAdtsLwqVr6ZYLsoLLjzdVoI3C7cwZY6WxkKalD5p9tAQ0jYpM+7f0N39kcfFLGR7mieFwhWq+RCtXIzYFVx12KidKjPjg8VMkRlkfVS7kJG48o7XEkYuU2JRScE6gDQ/uSaurGDxuMCpibUOIyNkuS1hKK2SIrSWeG2OmboWoEtFF7rwPfK2Hgf7D4b+uyOgiv4uobLLGpqLIKfBwhShZLsil8j+pz1tOSX5PP3EYtuQ0PLqPQwTnBMPx7uM7vvzS0tqFOOAf4ANFvo8Pz5cw0OS/GqaeED3vXn9H6zRxCozOURopQtoOkdYXOusZ1I51LbtzppC14vjkjM3mQEyAzqxS4bvX1/zN3UjrHGPIfLy/4/nMcGI1XbbsvWc3Bj7ue1LOdMbws9MjclZ82u+IMREKuAJNKeQ8cvVphXUNJ4sjnp+f8uT4hOW8YdHNsKVgjGV51HF2vGCz3VCSx/cr9ndvuH3zTwwh47pjsnIYq4h9z2b1LbefPhLNDeexwTQt27vXGD3n6OIXeGMfm7tzKmyGkdV4EJxP/vFcklOgzRNf6HtOtefIXrBF4zrLNoiY57QMalGJ3ntKjlyogSPVgym0aNbGcojUPV/2mlhdngb5C13oJH9B1oqUI6lGJn2oZ/MMEYnw5ijJrZzBWsXSNLRK0Pe5IocKIkLr+rxnDa4OXZSRwU/XGBpTmCmJ6MacMdVR733geGYZfOZgDFPKD3oZRbZojNEMWTNgUCGC0nhlWOQRvX1P3l3B2VeE4YC5/4Fh3FF+9d8zqTNiY9EFulqGNe7uGH74W96un/LFn/01o3uCL4qtD2xGT9tYvjpdYo3h6vqG3e4AlTVnVUFpQ2sMjTP0/YHGOhpk2NfoQts6jNaUrMVVbhQxBELw3H14RTncs/YHtufP8XtHIHO+OGcfBHGhyEx+oExbPn73a3T0dI2jv3vLsLuDHMm+5+bjH1AlcH35Pf1+LUJYSoRxTxj3KAp+PFDCxFE7Y/PpO8q4wxjN9eUPmOw5Oz4V0cRPpOKZJklAxByxSMuxYAMql51ECCPeH1ClwfupxnADOQdZX7UhRk/Qci+I0TOMGd3MMIpHTIQ10oiuSKDle/CAd1FGCV84KaYUGKaJRddhtaNQSyUQV3+q61vWILgZObfqGMQgk2vDr7U/4rKK/L5aGxrXEodJ1s/KUcul0I8Ti1mDJqNzZj/08h0k0rUW32+5fP8Hjk/P+OKzF2y3W26v3+IPa5wppLRn2G+Y+h0hDMTsuXr/Hdv1JePuBpUSpmQ622GVFkdX45jixOrmPf36hv5wjzENQ+eEMxkmmsURi+VTGrdg31/TzU7FyJITw37H6u4Nh/UHzp58xfMXL+mHgdOTp9zdvKl7jeDEbq9eMetm3K8+stuvSTmxWr2Xs4ofuV1fcnryhDRNXF39gMqR/eYaPw6EENBqpBSNaxqUnyi5cDgcIHlyBqOs7GvGMGsaGqUlkmsdx4ulDBi6GeM0yR01BFzjGMeBq5sfmLWdfA67m1r8EtEoECQyVikWTSMOwFJIUTENo4hsqRCK9CToOqCUlI4ghmyjK8s0IiYjBXkkeS9iNRmferTV+FAd+toBmZg8U+wpJDR7bKMp2daFV3SE8mA0oRb7UNNlRcr9Yg5iAvjnG/j+BQQ+JRPD0hi+CyP/zzthua1KYB0UyrU0RTMoRfCZkCNzCr99f885md1ux6JphbVXEjMn3CRVF4D0cGjISsSuGscxSsnimKR5djlr0AoWnWEaJ95uDvLPOMPJ8QxrLW/fXYnDiMRy3mFcwzQWbnf37PcDbdNwvb7hdHmCpkKFteNmvWMcJcIS44DWLd9+/1s+/+wnNHqOMRLZNFqJGOMj3kf248gYCj5EiRSWRGfFAWSMiB3j1BNyIqcHcePBNpxRTqYYTdmSxoFm8TMBYleL/VHn2A+BqMRFs1rv8D4wjBFyRGEYowCkNQKO7xrHdhxZ94PApZM4blDCGGo0HGkrE+N6CCxVZMslMQYPBWG0KFCVV9HqgsoHSlhzvLzg6npPLj9ChDMjZf2Op+2Mbn6O01He3wI5TZjiRQVHifOmxMcWGYUcTmOO7FMQJpsSSO4OTYhR6sDr9NwqOfA4MtbDb37/ik2bUX7Apyxgcy1FJlpBPya2406ibaVCeTM4JwLEzDYoLa85Kfh4fS/OIZO4+OwZP/3pM4xW/P7rH2RqmRLX13ekXFjMWkJK3N3fE3xA5SQ5fKsJjFg7EwdUioylQFL0hxumkDg+eclhuGV7/4bF2Z/joyZqTQI6YzjVcN4abAgoItT3jVwIKWAN+HFLChvs4gJj57Q1XouOpFRkAhETmYTOkWE6ELPh5PhcLno54EyRqG8YMYhwmFVkyjz420HL99T7gI31wlL5VcL4+JFdEFOmaIGYixNBnGDKWHGDgqwpKWG1qS6LGmkv9TPKkRAntE6cHs/YD3IQGIaADnJJHaeBtpvTtTNCEqCuqlYDaWKVJrOxTLVpTSC1D5OTcZoYCjiTsK5BJxiSYhcSx1YYeQmI1WlYgOv1jv/5n75hdb9i30+UEum08KbmjZEhhxJXgHOKl59dcH2/YrXtOT1eMLeG89Mjjo+O+Hi35Xq9JyRoG8Vnn5/z1cUJIQHDwJtPd1xd3XK3qaKrVTxZLvn84owxJ755e8uh71ElMu1u0CXQNUe1+RASIz6OGN1y6Fd03RHr9UeCP/Dy+S8xTlxCOVfBFaAKH6UUaUszRoSQYogMbHdrlrNnFBI+VT5FkSl1KfKdIkshgojcIgRoIwdesghgIciQo1RnltMSU04FnHGV4WVAKfbjQNSJOAljiyw8jQZIUcptShYXq2zpdW/JBaMlfqTliauOJ7mo5yTPayqRyQ8M41Z4LinJtM9qZm1DyZG79S1FWS7OP0OjHnlkD22FqR4uxQUmQ56HZ3DMiX3UWDS7nAiHTMiGjY70sVB0wmnDVDJOaYiBlAvbKeMDrKZAi+ZsPmOKkRBljek0PJlLScTCGabgGbViGAZSKiij+exsyfOTGalo/vD2hug9+9V7kp6h22NpaVeKWQtPjhqij9z0ScIyudBqwzRlggFTpL9wHNfsLn/H2We/whdHKtKIuLn/nvXH37M4vqA9+yXGam7f/FdmR09ZvPhrUpHJa1MKS2doVGHf9/hJOGkYgyoyGCNsuLp+zfHxOa49o58CQVlSqo49IkY5cso0TuGnNX77VpwMzWe4xTM6Kw7OedPUdvVEiMILzSnWwguFzgHxAWu0kvIAcmY39EwhVLE41yjuDEuRAqLq/BTtOz/GyUoWwaxU4TtX9pCqIvlhOLDvV8Q4cXbc0YxSLKWBcfQYPTDvepRpsFre31Kn4SLE1xZrqJy4QkpRIllI9DlnWYN9KgSl0aXQqSxuTQpBPfy7MmQ1FGYUXhr49OoDUxp5ebKkpFDd7sI7VmS896QcmTeWfvyxtTChKNrSGMt+8IKeMJrjTrHejQQV0dqxiZnZTLOcOVRWDGHkZtszhUQImSlCSAXjDJTAws65uf0e3V0Q7FN8SBhbCIePDLd/ZHP5a0ycmM0XTOMncvJYc4ZyRyKOoNHIayAGxqGXSFZ6qGfKKAKp/4hxS4pbQvYY08jpSAHKimuvSLQmElFlkhI2E2nLCvQT0AmN7B2FglJZWnjrGcxSMObhc0LOYKpgHuNA8hz8KU82VbGv5Nr0p+vaUiOzWkFW8jlS0iO6oJSHS0YmxMC+3zP0AymDrt8NQmQcI8po+sMOu3QY05BqYRml1Ae9/lk1akTOTIc7crjgfnPFbLZAm06KDzwYXXDWkq1mXzJX717hsTw5OuN0Nse0M47PztjuBlCFfWn4w8HwZnUgKjgn8kXnuGgch2lgu5+48oHdJEOhI+tYNk4cvxGu+j0xybo7q8w57w/k/o4yDZz95K94cXrCct7yZN6QlSRrxnGk5MD9/YHgB97/8A03n14x7G7YrD9x2N2xHyNu9g1HF1+SNKxX33H78VuG/UAxBzY339B2xxzubsnjPzJrZoxmTlEiKtyu3jOqY1LRtErX85UM0Be6cM6W47LH6cKTfMWclqiP0c0JY/ix4b6vLaFtHpk5QdsYDDMtd4Rxyvik2XgRLBqtiUWEPfGFQygijvgopWkxJHyJkoAoSlxdCsYwYbVhYRxHTgblBkXyXmL4WuNKIStpCLZakljK6kd2mOzJik6LyB5zwtXnQniqhsYWQpQhmbPiLLZ1rZQ4nMTpSYlBt0yxUJThiRpxV79juvw9Jo+YYY0e9oTdjbjrP/wT6eRz0tOfk23L8OGfSOPEtL8nbS7Z+y1XJaLCX9EuTtnv17TzIxZWsfc9V7f3GMR1qIwkCObOMAxB2Hs5cPX2DxwfnfL05c9IQdibRsH17XtOj89RSrPvDxhl2G/u2F+/k4bu8cDth++ZxgOmabA//xWBOiTpN+w317QqYkKPMw5DYfQDKUqjaqs1q+vXNBq2d1eVQ4d8Ryv/12otSJVaDJX8Xhz0uZDTyO3tR3RJHM2WpCgC3+h7pjDU9aYO84ytsWP16Az2fsQgBRohBabKwVUFop9k6DtGmqbFGEM/DThlcEb+IpdqUIiMMWCMI6ZATLLH1bwIPgR2w4HBT+S8pLUOrcXRmnISVIuW5uUH958MIzJOG9l3H7AMdUihVJH/VhXFpmkUsdAgbcFa07iGcT+goiKXwLw74fT8XNAfITIctsQ4kkbP7YdvOfzFr1jd3HL9/htSHNEYcpnY3l8SwoGSAylNrG7e4v2B8XDH+dEZi65DGysYmCT35ZIi42FFcVKCMnMNNsj/t/70R3Q3w5//hOXigvcffsfFk58Aid32nmEY2a4+klJinHYcdh8IMcPLv2C/u4YSOOzv0dow9ve8ffUP4p4PwrS9X93StS2b7Zpx6onjHkpm6A+0zpKHHu8DKRailoHVWJ3BSiFu30narZWWFIZGzkFZi5O9axpsTWnmnCsSQpIv3keK1qx3Ky6v/0iMEZuDrHGNDN2strKPFzCurZiQCbJGKUsqkuYU5q7cQYzWFFPonAiIgvtIJBcpaZJ7cBrRxaCUsCLRFmsch8Ne2LatlNX4MBKTrzxwyFk4njkmIfbVgsEHJqLs8dLmnHJgCgMxBoyy1fX6z/v5FyjZkIs1qnCbYb2bcCGglSEpyywF/vXRgksvzVVHrWHWD7x785HQKfa7PT4lmsZwNGtxrmGcJkplhagirriUHhw9hdms4Wg5J/jIetNLg461hDDyw6crjuZnzFvLbO44Oz1hs95zub9DKc1y1nHx5ILb2y37w0TvA1e3H0gx07ZzfvuP/4n/+B/+dzg3J2XD6u6OVz98w8vPf04uidevf8Pnn/+S77/5e7qm4cWLX9BYmEbPlCIhRQ5TYBo9Y/JYZVnWplJjDQbPNK4Bg9GW1eoTrlngmtMK+FfyAJWMswatPf36NWG6RaUtzeJzTk9ekPJICg26xi2H/R4fC75k+sELtqkoYk4sOpmy+5xY773AyUOUBRPhDxwpg7UWhUR75GKbJWZVIqTClES04REiL1EQpxSWhCkT727e0bYdn3/2FZfX7/EhYJ0iBDB6YLf+xHL2GbqbC8epiP2b6t4TQUHakowq9VCqJcuuhFWF0uQU0Fls1RJByrgCVD7hU6NYqsRzPLM+sxmkdtxqYXcAjD6IU666hTJIhFiBU5pFM8Nqeb1TbXKu/h5UkU3r/OiM9frA7d2a42XHZrtls+tRqaAM3K/XAtFPuS50EY1lGg98uvmOly9/RQgZozM+T1g94/7mNcH3zLpT7q7+wGH3CdssieYMi0GbhmMrjj2VBOKrcyLFINGinNG6SOx1uudwuMU5Q6syqhxTsiJVXlOqxR4peVCZ/e6WYRpJ4UCMT8BPYk3Xws4zAscSdk+u/Ib04IATp5NHk5M0xGqtUcrUmnv57FKBnBXUiKdRItKrkv6/OG7kXMUlMEWe05QkcqG0XFxDFhfr/cozjL5GSgvjMFBOU42pSYxc1YleUZqaHyXmGgWJgajENWedIfrMGEQ4ziUwxYgVCjRBOfYRVAnMWsvcNgK6Rdrbvnt/BX7CaphbxfOjltPlHGs0g5fp9tOLI5wqbPcHtocgmqLSvDhfcnSy5NWHa9b7SSKVxvHhh9+yuz9F/9W/h5stN9d33O9HUorMOsfZfM6sbRhj5rv3l+wPE2ncsFm95vzsc+4uf40zM54++0ucbmS9vnnP3f0nXnz2Sy4/fc2TJz9jdf8RP245P33BwlwQSrW81wN4jsJPs1rLq03SzjlFzzhds9ncQRYGU9/vODn+HLRF6DsZpSwyd9dVhBOH6RgatHXkLAf6orTAwLNM+VQWjldWmcYYILM7jFAjk2FKmBzIwT+6Aad6aZZHSYT3lP+kOUwUmPq7Ia+zFLIS1p+qF+IYJ4bDjhzlEG1NoXVaImw1eeJDIIQBKgvzIfqR6xWaytZQSteLdeah7c0ZSGPiYtGQiWyjqrGBiDMNc23ku1PF7omELZBiZFvjCMoqadUEFlZx0jnmRhoJQ4hso/CwyhTRxqJIvDw9oXGa97cbgTvnjO9v6d/9A7k5o/3s3+GMkYEEjo+rnpDk9egaix5rhND396ze/pqjJ39BijsOt6/p2gVl8SXaOHb3n/j07f9CmCbSuONECd9rf/eGMNzhFk9h9pTOWE5nhhhGNl6Yha2xdNrIvLMUSBPv3/6G1d0n7q8bzi++ZPID9uhzTPuEUoXQEIV7pZVm3Hyg397RH9YYt8XoTJk/oXFzoEjDqTa0ThxkgYzFULJnDDtSjrTuiFRqs31KhDBJsZO1NK6hpIjWchFIsQLoS0EXVWNEElvTlYWaH5xY6oHRUssxSmS7XzGMe1IShmrXKrQWwTvmkb5fY/UMbaUlWWuJ1McY6j7zo/s2VqGnan+QpZjkYYCmS6KjYIsAC6w22OrMUBSWqvCETJsS51H21kVrHmNX5cHVWluKReCODDEJa7hxKKXJWqN1w1QKxhpm8w6DZswGf1hx9/aGn/7Fr3AWbE7s9ntC9Iw+4L00uw9eEYpG+Xti8TTtGaocuHv3B9rjF8TzOUoZZiVx9/3/izDek0bPtHlLqy64v/mINYa5fkd3+jNiFuey8HQiMh8QnrLoVzWCGrdMh49o2zKbPyP4e9z8Bdo2GCVFakoBSgTURokIrHQQSD0DpguQRrK2aI7qPiqlGI1RuDrl10qSKjFLkUapYqtCwOg+COuQypQUx7ucSyiCW8hJ9vZHAbKuerlenMQxACB7fyHQuA5vBnHLh0xjfozYW63wY49ZnlBSIJsiMUnEvR2rS5Q/Yaref/ye27tbbt78I2fPvuDoyZ9TgH2QJEuXDctW8+7De77/499QSuGvfvUfOf7qZ3StfI4+RZRp+K4vXI6es87yvFUsjWG13/P1/UAESio4bVk4Q6cKYwhc70TUux8mEqW+xwUTezoSTGsY72msJk077m63bO8t6ekzueTutgw+0Bjw045NY/j4/d9xf/0KZw3hMDAcBqZpYHvzHa5xaG1ZXb9hGoYazcoM6ytit4UpkvKKu9f/M6ZdyDkoFabdDWr2EnP0U3qa2tZZcBraPHBUdiJAZyh5YMaBokaisQyqo2DwwUMJ2OQ5Mp5OZXQdZlmtWFLoVSBUfzSIK/QQPEUrOiXs0qSEFxdjImctxX5IsZiKpaIXZLAzd465MSLsxfgjf05JW7upmA0ElysXdyX7q9Ei1ol4nbFKSrJiFu6lqjbQgiLkzKyVxIQuBaMNRp5sSgHtNKfjJzbqjNEsmaeRs93vyJ/+kbS9xzSWcv0KKKgU0DjGd7+lXL+hKxF3/Jzt+6+xqSf5IBgaPzDcvmdlWtrjp6yvX7NYnnAVE+3xEWkYOfviXwk2pO1IKdBowzAIm3e/uWdaf+Ru84Fm1rA4ekYMhW2/5bs//C1f/eRfY4zi+uoNL1/+OaurN6h4QFmLTpndzVumacA2DfdHx7Rdh19fMg07cWijmTt5VlTJxDBhFbSdpWssLiYOqw+kOBGCiN4mi7hydnqOUYbb2xspPQkeZw1CYpQyvxA8t/e3uCeQY2QKEmOXfapy05QINOIIls9Ga4meRy3raqzn71T5pCnL+TvEiLEWrTT9OGARVnxjTRW8PEFl+mmUO6GicrkVKYtYdBh6DlOPTxF6yG2HVhqlDWP0NC6DcY/3NlsbzsUgIKkV5PEUUUjJoCLFxOA9U0iSFKxptTF4Lp5CGA6sbz6w/OkvOOzu6FrHMO0hjpRkSNEK6zdlNncfeP3Hf+TT5Se2q480Wu4h3g9MvkerLEYFBWFayd1fbL0Y40QsplRhXTaYGCacQp49SmW7KVQK7Nd7pnHgGsNuf0MMPUYpdrsV+2HAT56CJvsD9zc7cimEfscwbnFGEfwk+0PJjMOOEALeyzA7hsDWj+LmVZlGy3slxjnhZz+ctScvIleKUo4ibcuKEBKNthJZp0YbHo08cgYyShGVDKl4uAsi3FKtNH7yrDYrjFGcz46E+KqloMrVNvmcC4vlkSQngyTOFrM5wyjIsIeEaIxRCklKqax6uSM2TgqQCvKsqMrwMNqgjSxoMYm7O9eEWSqFaRLnv7OWbORuUepZijr8pFCLsR6MJnI38GGknw7i1syRHyE+/7///PMFPvFDyJ2tSAuTiRM5a4p2TG3H9f7AhTKcOnihEksmGApXh4jW4oI4Xs6wqtCP1V0g4wBpi8tyQZ83DRfnx8y6lpv7FfuDtKk5rdju9rz5+Jr3777n3/+7/w2zdoHC8OnqDu8Di/kcdEFnzZuPd+wOIiK+fftrvv/2H+i6E86e/IzNzQ+8/v63/Owv/hp/mLi6es/3f/xbqALKxx/+kamPbO/e8vHdCd38CUprDn0vbkNtmbyITzNjcHVSH1NCK8+4+YHbux9ouqfM5xfs7l7Rzs/pjhtCSnUio1C6yHTc3zIerhn7DYftmsXyEzb9BZv1Nfvjz3n62c/JKTPGgo+y+YqCLUy/rhYK7HxgitLmGmrcyCJAeq2EtZeScNBCbTQqVVkeoq8AU2nWfHCmOK3RJdFoaHQgjXu0Uex3l4+NNroKAVYpGuOEt7d/x6z7s1oNL66zXKI86A92fq3IKVLqpNjaRkCERd4Xp6EB5kULMweLKxLtMiWzpHChEp2GTmliUTy05aUk7kZTpzkP8amHtkpnNGcnCxYzy+p6/ejqkiiUoahM368Y/YZX3xq65TGNUVxuN0xTIAFhGqVivWiB6pYMRaaqIWbuNm/Y3r+laxfMZs/weFbrD3TdOdvVG3Kc2Fz/gfXda8Kw5zr+DcdP/5rgD2QUzctfEacVY3LoMgdbIEPXWUiZxhTSuGMathy2e8jvWC6Fq9G0HdMUKFGiXBpFSZGkRYQ87Lb4cYQ80doGrec0zjxIFeTaRiU/csh6EOZCnfxSHQM5ybQ1VbGuUIjlQcQTwT6RqsCFtJ7lXB0pwsPKhcr5KY+8KZQm+kjyE30/sjxqmM0NORWMVYQYOfQ7mm6OazsKSgpJSqzcqx/bX1NtEVMatLbEelEN1SZdYpbXVDK2sYRcoDRoYNWPDC7yxLV0puDHgTh5jjrLRWe5OF4wayxjSPjBo53lqLNQElebkd1hxBrN6fGMk+WcpAy/+fYdCfk+qqKIeWR3/4G7T98xTYVu8USs5FbYYdoY9mPgw+2WKUw4Ei5OrC5/y/b+B0zoKSGy7685O/+pHHijZ7+9ZnP7htY6fL9mdfOKGAaGYcfV5Xc8f1aw7RKwbPs1hci8ORO4cY17KQVFBcK0Y7e54e7mI9PQc3rylN3mPbO2YzZ/KsUdWuKXxsrh3OWJ5+mSJq6Z7JJdfsGejpRkKg5II5t++KwKh3HAx4SUCHmsFmcmJWMQDqgPHucaUhSBjVxIWQRiufAIeqAo6oGxOgzKn2xrWhyKIcr74X1P3x+IYSKlLC3AOaOdpm0aNIlxkpY4YxusNo/rTa6OLq0fBEVIPPC0RKDZRzgNiRhHRjTz4jHbN/jjLxiLo2hNMRZbDNoUfEwkY0QEVWBdw/nc8tlygQ8TCUU/SuReK0U0VAZloVXi/Llab1AopiiHxLlThN0nNvefsN0O9+TnZHPCFApDzJVPJgMSW9tg+zCSQ8/NH/8z95ffUWrMbNqv2N98y8KdoNsl27vvOWzvURRUGdnf/0CKkTD25OjZXn3N6csZRrfc3d7QH3bM5i/RbYdq5AyYQ8SYzGF7zermI4fdSgoLxh1d08DYs3w2IyHRG6MjKgmrZ9xd48c9KSZKOeA3r6UsqWmIseDRNG2LrWUVxil0CaR4YBpvZDAxJbRtxMmiDTML2lmclrhSqUwzuXzKFNlq2fsePqeHprQfpV9hyFXsujj1VKG1hs0USSUx+sTgM2dHjhIyziTGuGeeBnHZZLlMy0CkpgCyCMAPQGelkH0vS5xK5yKXBJ2xOUuUPSva/SVWG4ajL2X44iILrYnZc64UP20bZiWQSqbf94QYyDmK60wbOmtJBXyIWCvHy5iFy9o1FuM0xrSoKeKsJo2B/f6Od3/8rzRWE/y/IntPXzKHaQKlGLxnHCNJOVQRITvc/Vpc1flLdodEGu4YciJ3P6GdLxg275i2n8QhXBIpToyHLWM/cnR6QWc9ZbjGKMsUDpTigUwsF4Si5WKYKjtMK8J0yzgecHakMYrkV2RrSJOi6c5QppWLpFbCt4sbXJnQKqAbA8aRxk9kdih7jm1aCg+FHDyy+Lz3gh9J8ntD3UNLTcqQmMY1zrUY1dQBqFy2U071IihnvlJRANIMrCsbUi4aqkiBUs4ZC4TxwDBs0Vr2Sa0zrnOUSc5GWkks14eBplmgSxUMERd8IKAergP1Z7v+yPXNr/HhQAo9zeIZrl2CsVhlsSZz8+5rrq/fsNvek2Lk++/+gYvzYz4/OUcb2PYbLu/u2cxf8PPTJ+Q4cXe/50OCkoVXdNS2FGdRKXPot6ChT4o+BLS2dGhUCbg8cWETiyyXqKBGYpmwqVDuXzGUiO5m3O7fotyScHxGpKUxkbvLP2KNYr/6gCqJkqR0otTLdZl6+rv3FK3Y3d8BcLJcst1tUDkS+j1GKWZOMEXT7kZcQgmsdkzDK1qAxZcodQQ5M1OFZemxpMrULOJC1Jo49tBumXwiacs07rnQQXjnRsqfnHFQArmeoY/0RNKWPopILsUFBZUKk8qolMhEXMmUWJiiFLvoIqVinc2c2sQuO5JucEDOgk4xgMsSU3WiUIMpNFpL2qYI61qeGSUpIAWogjPV0alFHFDVhVVKwarCwkkhxegUrtR1q7J4fZS1bbH6nuPUES/+mmN/jfr0e3y/lb0vJpxVkpKr/L5SAkTP8Pq/oE6fUvo1aEWrFM41aKNoSiauPzDcvMVPO8q2JaPprzPaOE5PT7AnF5gENx/f8uWXf04sE2MfuH73R/K4Qxu4ffM73M8btG24vvqWuL/j7Xd/ByiS7zkyinFzx8zZhx0BlSa0ShQ/crh5S3AOlUZULpiiiHmirbFSyCy6BmcqZ7pErPqxuZsiaRmlM8eLGc5oNru9DHmUFrRIgVSh/0Us4ZgwsN+vhWeco7i2Yh0QKhEtXOMISRqmjdZ1zX8Y/MfqJJf/zxhFt1gSkqIfDzLm1YopBjb7jbDmo0chzGVyYZzG6tSUYYjTtVwhesYwSsyyPsuT8ghjT5qWgxLH6aydPZYBqSyuaSg01pJrkWfMWe40SrSH1jpCCIAmxoIziovTOadzx2rcMo5X7FdLVnffEIZbxsGjS2S/vSP6EWsc3nvGqef1N/+V9WZDCqNE+FUghERJBW1rhLQmlqBIfLXqHxT5voM4Wq02xBQeW1dTjBSlcM49Cn1+WDOGiRAT29UnZm0jJTdRykhLfkCwyKA9+lthtNbG35wk6aSVFEzGVLBWM/mJUhDzjVGkFAlBHJYlFXKUQo+iqIVDgu85ni8pGbb9XuLsaBpjBRelLY1zYhjIUsgn5XMapzWmaWVQooo4+bRi0QgKQavCvJ0J5mscaUrz6FBVWtM2Hc4VMZ2EiVk7g5IfOe+xrm+uMTjXiLnAi4hslXAxYwpYp7FW7iEojXaChFFZMES2aShaEadJiiu1pXHye+ecyEpuueKqL8QU5XnMsmEqpQlZCpFURSFpox95vv+cn3+ZiG6SyR0poUKgHffoUpiaExSKGAynXeZLDcsMU5gYFSy7hkXX0ThLP3r8NKJRGG1qAYBGK3nDOmd5/vSMwU/cXe4YhhGtLNoodv1Azom3r//I1Ydv+GZxwvTTP2O7OOVo3vL0/IyUJt5c36BTSx+z2FH7Fd/+9n9ifX8rcPH1HbvtLW9e/5rF6VOO50dcf/ie1fUbPnUzYoyMhw2X7/+JMG349O73zJbPcKZlv7sh58Dy/Cs0mnZ2JkynOol1paDLnu3qBz69/4Hl8p5w+pRhf83Q3/PELYAG3Z6RSmDWKFoTCOOBOE0olckpsd9eE6YtMSUm3zNbXKC1JeRMUQ0pyUb6EA1KuTD6zMFPFYgfKxcvgxIXDVkTiijwUxToubRZ1gledQSQawNpEdaWRSZvjVU0ORLdDJsjuxgrh9CjlFymnbUM/sC0lkvnyfELNIaiBIYf6yU7Vy4dpVRYvSIGudCTotjzc2auFIsSmJeEihs695yUNVYrORRUkTQlxaTiY0uSuGlk6mjqxcpqiFWpdyQWjUOFie0wYLVEsgqGOHmSiTinub/8mn7YMG5vefmv/teEPklLoLKkLNyJgsKUgEUR44H13R/pZiesVhtWm/fEGLj9+BvOnvyS2eKIw+o9+/QGf9hgjeLu0+/xk7AMx4PHqj+SoydGz6Ix5OkG7VqOz35J45bMZo1MREtEc6AfPpGDFGdMo6exPXt9wzwdCwcoR5zRSFFvYer3xDiiVSHFwGZ1g2tmdfolLIicgjRH5Tqtq87HjCLU6KJWuU5gxVlCLlVYlZKQjPAWpGlPiE+lXiIehKOH6FGOD9OfWB0oCVu5jikFUsrs+onD4GmcFM1stj2npwpjHX6MTGagaEPXdWLdrweRXMSer5ENHTTKiIM4ZnktKYkjtLEW5UdMiJQCUytNyFnBME7c+MBzbeinPUtjWJiWmXPsfWLrpTH0eNbw/GzJat/z8WaD0pa5syyWHdo4YoHX7z6hlMY1mqNZw7OjBe+v3rG5/UTJE7fvfsPZ57/EzU5xytHZBktitTtggFkJELcM6/dsb15zOGzR6XuUkcP4/c0rXjz/K6awZ7u5JE4jN5ff4kxDsQf84UCcDmxXH9BpAtcxa09Zb2+JKfLFF39FoxdVwNDihFKaPq4ZhjXj4QBJijrG/Y47/Zpnz1tOjp+J+1dnnMq0KnIRPnISr6StrozMY4/Vz1iZCzANWJn8x5gZonBqhrAnhBGd5fss0TNFCL2Ug+TAdrfh7PQZpWhiDhhtURgpKTLC4Kt3DJRWmPJwsJFGTWHmaZTJpFjwU08MI/PGMSZPaRwSpSz4MTD4yPnJEZ2z5BhwrsFqVZ2iGlPjKapIa6HSyHRYyXDKDxGVDOu9Z6knWgV68wPm/veQeg7zn1BMhw2BEYPWhZALSWuW85Zl6/jXz8/rgTexnTwxFpQylBylAdc/DKwLfopYY4hhC7bFlYhSmn4YuX//Nbv7O7r5AXvzitnTX2KMk1ZfAsGPdLMFlJHd/RU3737DuFsRDyuK92yuX9NYTY4Bf7ij234gzZ8ybi8xSsTYEAqH9SXTJK7h7AN+84FtVmyKRxOJ05Z8fuD4yc8pac4w1YuMcdyv3pOmHo0wc/y4JwdL2h+wsyc0yxfkEjB+Tz5csuo34uwsIk6mmBn7Hca+JdqC7c5x7RFLq3EiHRPiSCqpApxHtGlpLSglBSqd02ICRv4KSRrOy8OQyZq6pknrvbSdi6uPP+E+Kn5kGEkMPjP5kRQ9R0vHMCWMyhwtDI1FympKFt7ktKftGkqWWK1W1Hmx/FJKP0z3H5heCVcCDuFOuZKZq8QsR+a3byjuBP3xH3GzDvvzJ4wKVFRgEs8t/MI2zEpkd+irU0xhDLRWP4LlyVJWZDqJcBsMxjYUV+g6x9T3MHek4ElRXK/9zRv6+4/Yk2Ou33/L4vQzOtew3mzFZY0iZ41zEVcSTFesbz/gmgYdYBoPxGmgTBPt8jWz7hf48Vai1IBzMwoNjTvG2HuMnROTQ6eV7GfTlm55xjhucU1DZo7VLUoblE0UPzH6tURpSmbY3xDLRAwfODl+RvArZm5BVo04KcsAYYV1QDMXio3K9OMtuRTa2R7MnKJaiQlpi1EGgW/IUJMSxMlU3SeURMyRlD1h2qOIYDOqCHdYhpQPg/HyKA5KIuTBLSxuCK1qnBdBvcQszZQQGCfPFHIVorWUXQCTT1g74n2PNQ3atnJWqxgDrU11Bmq5iFPYbfeo4sX9PW65++F/wTULLj77C0p7zna85er9H5j8IAOTkri9+ch33/2WkiH6gW9+95+4unnH/It/y53/JX1RDFHuG8u2o3OG4jOHMEAaGe+/Js2WmNkFNhfhzlqFjWuOpyuO53M0hhAyud/SKikhc/4GVMFMDeNqgzaO1e6E4p5AmdjffU/Xdaic0EUKd4w2LGZLFC0WQ+43TMmLSFXd7een52x2a1JKnJ5eAIa20Xy6+oGYYdHOUVhyHmjiNV1eEnMDWnGkM6d5ojEABm0l9VNyoqiE9z26QAkKHXY4WzDZ0jaNtJDXQhW0I5dIpwunxlOM4i5bhpQ5VuBzZiqF1mjO8sQT57lDcZU1RRksBUdiaT2f2ZGlWnAbpSyqpIRTGl2TGI0VrrikOxKdNcScCQnBcqAqP08GIE4lZgZMHXkoJZ9ZKVKcqLIwE5XV6DDRWhFtFOJCTkWKudJ+hb2940x1tIdL/OaW7MXparShtTK4bSo/MxZxRoXdSuLGFFrbCls6lyomKXTylBo5JYqIrev/vn79W85/8pc0SnH95vcsF0ccVrcM/Yb+/j2qRMgav71n/fEbnOnY3LzBqkweD1IKZjTj+gZHkYKgnChGnEVGKRpnUWFCnLYBa52cW5AhkzA0RbTJWZyrtjrjlFKkELDaEFJi3jqKT0zpQPDTY4u7DBNqLNqJ++xhsOrDSEpe0FPT+JiQSkkMGTlGGiuIk5SiYBNAOH3WUKLsS9qI8GNnC8IUmDenGGUZ+z2DH4lF0VorQ1sjYmCupZUPLienzeNATMq8AkX4CAQfK0IDjJb9LcckEfRuRqmDjlL37FLEjSrcZUkHiCgaZd8oidZpfChYo1jMZsydvJa2tWzuPrHoFnx4+4oQv+X45CknZ0/48OE9i+MZJ11HvAmEMNH3O3KcxFFtHSClChRoTEOv5JyAkruO1ZpcWYOlnh1LPTC4ml6pD0EVhH48sy5cwxQzfYqEGNFkAonRF2IsjJPHGI0Pcq6OCZpG3reiasFJjS2PXoTIlEtN4BlGL+IidYjYWIdV0gYumMMMiRpjrX+WMmir6dpOIs7Wieu8/v6KhxZZ0QlQCmMNnZP7jY9B3HN1D9MoQgk4Y9BFmOptIx0OylXWJ4Iy08C8bUQ4LNA1hlyE8W+tiHjWaFLyaKWYzRwqlzpwqyJbvSvEolieLDns7pmGAZSI2dY1hCRDT2001F6Eh1mX0lKGJ3ulFF2WLM+j/DPVdKTEfJAzEtlN///g4MsI8TRHiAG3X3PaX6L7LbsXf43TlqXLNCmiQqafAtpoZrOO4/mCkCKbfV+njAI7TjlCTDSmwxpDyRnrHNd3G8ZpYvIBU9vL+mliv13hjOPy4ysOmxvevP494zRwfv6Mn371U2at5dW7V7z98IaLk5ckCiH03Fy/Y79bE6OvlvS3+NGz217x6uu/5eLpSy4vv2Wattxdf4/RhhRGhmFDihPTcMfth9/SNkccdtcoXYi+J+fM51/9N2Sk9rlpO5rGMmzuGA4bcvbsdiu0KkzDlpwLffcKZWe0diYPY/KM2/dsNx9IGULQOKcZhxFI5KLZbu/Zru+wVjOEgcXxS3JWxKxJKkBR+JiJEXycpLhDFwwB0oGULbY9IiZdm+QkHlxUbeVLEtEwVDelhlYrYpLFz5a6IKTAevsJ398zny8YfU9rFZPThCBq9TDVC4attu4wokxDIj9GPXicRgM5P3IAUXKZWpIwMdCmyDyOLDavuFgsmHbvcKeO4I4xyjE3sMyF4qSavqXgnIWcpCo9KYyWCUOu8WNVPK1p5KBRi1Eaa0l5oiiNVg5ZuQree/bbS2Lo2Yxb2vkTZt0pruvqtCuglHAebPGUaQfjimF7zW5zxzD0jIc1826B79fcXv6BJy9+wWFzTU6jTCSSRpeJmTPsB0/ykTTc15KZyPryd2hkym51Q9v+NaVk9tPEzEYIG9K0IfkRW2NiDoX1B1KZQIuokYqwKPbTxDjumaaxPieZYfIUZbFG10mwCJfqQXyrLs8HC3JOD+Is1ZbNYxFDLjKxSqWQlFjuZWFLFTAvDq2YK7i5Wqa1NrVBELTW0hKlMqEEYppQKrGYtaSs8FPA6kzbWWatY72+4/hY0c1aGtfIAloPSNoYtLIoY+R50xKLdM4wTNJ2TeKRzabGNW5Y0eogQtBnx0ze0rQOCvgwsM2JWc64Vjaw9Ziwjaa1hdPWMmtbpnFivdtjteZ4pslF2DQhJO4390z9lpcvXvD07ITkR27Wn7i7fotOA9N4oN+8R2nFv/nr/47PT2Ysjxe8+fga5XuenT3lw/v3bG5/4LC9Y+x3JD8R7A7XNEDmsH1Pv3zC6PePa19OgWwtmkD0AT9MHPIWnTOztsXNJ/xhxfbQs1ic8uT8c0zTUpRDkYlx4PbmPfvNCkUmjAc29zLda+ya3eY9x4szDJ5xc0XnMmddpvE3TGRCkVjKxMCi3JPdjGgd2ymy9QNUhkX0Az5sWK9XtNoxn81RrpPNMnqg/jN+z+FgsdYxjDvm81PaZkkpGYuIbjzE79RD2YYccJQ2MrRQEpdMOTG3mn4/cKhNoaUID7a1WuJhCnb7A0Y3zOfHNN2sxpGE7ifTY5kap4cWyzqUdLqQwoRJlpQHTNliDlew+0gaNzR331CiwRx/jgk9kzulpIQKAxen55y1iuw009CznTxDLRdSymJyZtxdkyi4+XO5NKAwGYqJ9Je/pzn7kmHzluXxc/y4Ylh/JMaROCX83fe45pT5k5+gphtWN9/i/cT50y9JYcfNm9+zvb2UfdtatCqM/Y5mOUeRydEzrl5T/J4yHXBGkZI4UVIJxBhpnBPBatgy9X8AVbCupcRA9H+gszAzP0clTds5pmFLv73Fh6leNmr5k/coY8jDjTDSUk+/fw/jlt1uTdN0wu7TVtp0gThu2d+/4uKZTHFNkoO/jiMuC9e0EGTAxsjRyRKDRJZNFuGiUHCugVSkZCjJJRUyqVTnL8gaamSoVOrE3tQpcVZFBOEM5IKPnj6MjNMgf5aC0Ut0zqAJJWCNoigvAPMklSISnRZIvhzSFaRSndUB5zqW4x7vpBzFFpjHidnN19iPf4dZXBDWVwSjOXr2bzCzZ1jbcVYiP9ctKg6sDns0isYZGuegVDZQFkC+tY2cT4JHO8fxssV1M7zPxGHN3fsfePLTvyLFA76MhGFHHO5oG2E4qukelU6ZUmA83NN2M5bdjFZHStgQxjX97hb8SEwB5nt8L2epkiP5/hu603O2d9+hikTZko9EPUjkpSiS3xMHSyqJGPYEP+Bsy2G7ZrbULBdf8fzlU3IKzJcLbj/9wOr9npwyU8mkJEUuxgTmIZImj9P3mO6E1s3QBmJxhKmXa1lO5BRo2o4QEtHvMbohs0QbaaZvFJQUsQTBERSBbSuEsUgpEqXNk7gKopTbGGNRiOCkEFyGrsMM4dvqH91/VdR4EJe1Qpx/KTP6iRAyoFEqy4UpRSZfaBuN1ZoYY73kH1gsZvXyXXvoNTLM46H9V4ptrLJYpzkctgzra2Kj6E0gLT4nq0ycDqQovMucMiVldvefeGs8b17/E9cf/kBMie3rv+WwWdF+9m+wesGi6SgxMvqITxBDRB8+0vUfOcotJh84a07JZoYNG8zmLTZtUfkE3Z3iMBgjl1LRQYXjlvHE2GOLZtzsUG0vkWU/EpS4g5x1KDTJtnRYKZkwGoWiUZpJW4qCxhlm7aKmGuDi5IJhHDBGMWvmHPodzrVQFC4BfqAbPvFs0bHKM0yZ6BgEsl8UBYsxlqITKgamacSYTJ4yM6REIUcpHzDW1eIALyk4L7HopmTOTKTEyGAUxyrTl0JSsHRwpCdO9cTSGqyZsY0iEjcl8tksc6QSrSnEsRCyItU9FKSd1GroDEgHg8YaSWkIHkdolw+iTVMKrSloIo0xjLnUUqLyiHIplbOn8shFF7g/FFLF1BilcQYombi5p2xvad/9nQwmY8AocciaiokpJaF0bYCujD+NYqZlMNy6hpQLPgaMMRIXRVxFUkT6EP+ThIff3LH++L2YJfoNNx++I/qJtLnCJI81cr1ujMavPjGhcMnTaou2ilnbyXNTRL6JSHmXDI6kUEJimMIwNaaGrpXCtZ2I/yoTwo+cO60tpSjGyVO0fKdkrZIyg7ZppAQhZ4yzGKVprEEbR1Yy/HbGYI2qg34ve3WOpBLxIRG1ZTFb1MG/JBhKLSI0D4PS6ioL0WOtJhfNbHmEahou37zBx8TZyQXOKuaLOf4w4mspUCkWMJLM0lJmJXUe4tgttQDGVMxAiAGQM5lx4n4zxkiZopcGX6Oq6UXrHxvnixhIKMJ7NtRnNSe6tiH0wt1PRco3z9oWax0hJHSSQjpjHCfHZ9zdb+h3PapkDtsV+90WVUQsDN7zwHZOMZHQkAuNbYTxW+qRVAmHX1dWYKnObIm+JlxN25UiWCIKWFWH0UrKZgwKH8QVJtKfQmW5xeQsiBhQNYFSSD6StUNbXfeqImeGP7nj6So2hVCLThW1AVr2ndY4wXiVQucsPgbEN1QwRjPrWlQuHMYiEXtVCw1r2ZgzgljzIdBYKUoppXA0m0sRpjOknGmc46E4TOdCa211uiGuWyW4mMa5WvRX1xlr6xBKo5Nj9AqUmIGykbK+FDMpZfmeKUPbtJTMY0mM7ZZYZ9nsN+y2A/NZB7T00z3KSl9DmWR40DSNlAhWziMPe0yVzLQ2cieueBt0hpJQ6CqeJrQyj26+f87PvwCDT7gfuj/QHG453l+z7G8phw1meQGupc2K6bBm2zqOTi54Ml/SNY4xRA7jAacfuBCKomG7vmVz94YXX/4S3xhGn4CAaxaQNZ/ef83T51+hVcN2e8t+c8Nufct0WBFCz2b1CT/t+e73e+7+1a/46Ze/4PtXv2Z9+57N+WegxQW2Xt0QvEcbRQ5yOQTw44HVzQ9s1p/Yba5RFMZeLgmlJLTO1ckE27sfODp+Rok7qWbfQvBbrlXmybM/o/RbbPMZhobD7oph2GO0uGn82BOjfPmH/RWuaUnzC7Q6wvsbDvfv5RCL2J3HGEkp0A9enAIqc9jdYjSMYU/bXZCVoRjDZvWGrp0xJUNRM0oFDJuSKPGaPN1RSkfWL1FmQQw9jZ1hyJA91jSSta8MJKtEEVcpYpwGlSvnTwoX5rMj7m5es93dCs+tFGLJTCGTsrQiK2DWNJQ44McNs/mpuByMJkdDqHZ76qTFaVd5M3Jw1DmzCHu6NHK0/4Fu9Uea9Jw83qP5Le7032JpWRo47RbsphXz+ZJGWWKaKEps0CUmVCMHcIr8fofhktOzn8jhgYw1jpQOfHr3d5yef85s+YKUPA2W3e4TadqhSMTk2Vx+jX76FVadocgov6NpFjSNQ8c1m/UH4tTjsmK7WwscFEOjNCFpQn/P6up7xsNGYs9OFv5WWayzhEkE7RbNPki1t0kTGI3ymf39D8yOPqM0C/I00JZMntaMff8onlpdKgA3YJPEbbR1ZDRjEB5fjLKxWENl/2g6Z9jvNwQ/0c1aAYnXS6qqUHxdge1oUA8tiSnVqZkieYHEp0JlOmbQpUakJRZdkrgIS9F1saNeaiLqwbJeN+VUIrlM3N7vuN1sSbnQtZonZ8esNj39IeH9jvOTQNsuhAdhZ5XDJ04DKX7QtE2LbyYOh3217As/gVLIMUAtYujWb3DTSiJvpeCOPmN2/gXttGKKEe13TNtLzk+/IMaCbmWKfuQsZ0czUHAYRg7Thk/vX7NoZzRPn3G/8xwdn/DF8ye8//5bdutb4mnL6x+u2a1vWd+/xpWASQOGSBh3TJsP7O++5dWqw7SGr7/9HZ2b0aae3dV37Nc34gqqFZ3yWclfh+0dK/c9fb8lh4ngvUQTjUEX9dj4OU4Di65h7ubMlBRY5DSxvnmFCRu+evEzontCQTP6PcN+L7b1Oll2SmGbBp0zob/F799LkU5/g7cwxELRBTDYnAhKplrFDFA+chY/cOcNd6vCbOaw2pGnnjLtKFPP/OiEhS5430uUh0QMAzENRN8zqkLTOKZhT4wT5yeRcZzoTp9htKttoxUOrWVaNyIsKa2VTO+LYsgTisTRbIaubk1t5N+bt4YpJva9pxhDSJ7dfs1icYxuW2JMMvkvCR/DI4tEF2hVRaqkRJd2uOBowhozvSfdfovRwlOzak2j3hLHPWG4ZfHy36PzRD5c0bSFtc7oyXJKR/ATrjtCq4zGE6cD+fp39FPP7Iv/BmxX3YyF8fYVu4//xHHcM67k2R4Oa8Kwo7WGGAKH2w/Y7hR1fMr6/T+y+vi1lD9t32Ccxu+3RB/rwVJ4YcJRESdbmAJWr5kOa7lcGktQ8v2yktOucUSJ3vsQ6lQ3k6NESw+rd7TtAuPOsFi2+xv8uBPhqyRyAmUsql5OyrTD+jvCuIVpTcmZrmlRNRqy7ByHMJFqWQrBM+4/kMKO2clXKOWwJWJsZuzXjMOaOG2FnZgnKOJ6SoBzhlB5NUaLIGzNQ1Ol/OjqqDPUAZqExsk5yrAhF0BaLa2CnDxkTymJmArD5Ikxs5hJs9v5kZGyshgZ/chMeSj6UdwT1sFDDBhSqVFgpYgxcHr5W0pzgTl/gUmZbvuB8OFvyMOeEj3R91Ai6c1/4fRf/feo2zfk/TXxi7/i8up3PHv6M5rmCGcKjZGSHfldpQjGmsS4v6XEiOKIi/PnDD7R955+t2bcfaLfvJCpdjiQ/I447WkrlDr19xyuE4uTl8zVRKfgyDmUjqzuP3I4rBgOh7pXFHzfMx4OtI2s2SaNjDffEPuVTPpTpGk6XLukseBDocPRLY4Y+hX9YUOIifkyEhP4cUfjbmj1l0wlYXVht/nINI40XYtCM/Q9Rmc0MvAtRZHjniYWor+lqETBoG2LLvKcPQy+ikKGnsOGWSelMboEcpzEdVeknVSpTIke7RbC2c1Z2HdxkLOjz3SukIuFoh6ZPilnihLRT5o9FTFBSVmga6U8XpYVdYhBoHEyBMtlYj5zsnYpQSPkDD4Lw3i13dVzsOB1UgWh/+iIkT1HoaTcTYkzvpQto/ekbNmsrjj2PTFbbIGQsyBAtCbmyNTfcXMte4r3AzEqyhRo8h8wXUv79C9RecD4Nct0ILkTtiUz8x9RBDofmGuPVVtKOaL4FeN0La85WnQwKNXRtBZbZuJmMgiLOPTVVSJDzTDcyvtXeYhGSaxRWiClsK+1Ug4g8WfDYr5g8oEQMo3xGGA+X+KMpZm3oC3bdo4fB0gSPbRKQ9KUac8F1zRqQVaJuRLrdcZgjDh7rDHoGGhVRhePIqNTYt45OgM5BZIyqFaUtoLcV8hSC99pxakNzDM4isTmteK8EX6eU45Ta8im0HhLQLEgceGgNS0L16KN4+ATU3WTW2PQGYwtzLQIz0OIOFVkmKU1mR8dQrEUUIHWZpyzaDKdAl8UPiPnUyUtw04LvzcEceOTaoLIiBswl4wfe4KfUOsraMQFpLR6jMWVinjJudC4hgZxJFmjcUbTOSdx3iquOCNintySrexLtc2+FEma6BwJqytJRcXI4eots9mMeWOZVFvdYUhpZHWhaWtwWs6zrbU0taW6LttoY+iHnhCTRJpVEdSREtRR07RSPlZyHZonYvSgFSnIou+cpZk7KVCYWe52O8AQorS9S8mTCPbKWnFYF4nLGq2wD+6jIkMqYWvKQKprG3FlV/v6A3NVVTa3+G4qEkBprNH1XqcYxhGVFNa2rDd3zLqBlCz3qx0za6S4rJ4bm/r+O2tJKlG0JIJihL6m0Vpj5e6QMyEmtBOn/IMDLVdRLadE57rHgkhnLA+FQ601xFTqZyAx1hgjU5CyshBESJx1DdpK2/z50QWr2xspiOlmhKDQ2rE8PiKXeY3LJsJwqE5TjcLgxygNqn/i3tJKEou6JkdKiigrDj8Rex7mMaU+e7LFP8SVH2SjlGSAY5S42czYV1alxmBIIcprzFnSVkHc1gWYJk/bLtBAZx2ozBQTfhJeYKyoCmcEgaRNrYAq9ayTK29dgbEGPdY7h1I01jJvW3JMzDvBWBgtuAghOVWGNGLgMFk/suce/v1c5PNx1vJwutJRik01iqyEy6lsdQbXwe9Ds7s1mlJdmjlraeDNkZQiSSWccyRdB2BFEUYvz3CNIU/RQwgsl8eoYrAt7MdeHLjdUpBONU6r0I+uYXFWRsA+vh/UPbVE+T7l+rvKEMIJzqQojBEB9Z/78y/g4EuoMXB2+RuO715hfKSZz8jxgL59RWqfkkxhd/lPTCVy/L/63zOFPUovUCj22ztOTi4ATQpS3f7pw2vefvs3xJQ4Wpxg2yVvXv+WF5//nOXRE96//gf6/Yrl8oz3b3/LydELbj7+jmlYo5D2rnG/ghL49KYw7e5ZrT4w9Dv8tJcIlXEEPzyCovPDxBuF0Za+3whfJkWMNsSUMSkId8ApIJNSIKeRcbihpISxDYENMXiGzbeMVjhlJp4wxTWbzcfHxVKsqCLciXYxkULC799hynP6wyUhjGSgdS1Re3l4gRCzAGeNp99dYYwmpAP99iO6OabpOoLfUtKBYZxoZy/QZiGLSByJ/TVjvyflW7qUmC9/iu9vaJbPKGnEH+5oj17UZiPN3Eh8KMSekjzaiWAYSyYXj9ZZDunW0DYNu14q3XUREL2uavpy1lKy5zBk2v0NRjuUNmjrZL3I8mX0IcmG9filMZQMszBycf0NrUmo/oY4DOzTe2Fo+VcsZi/BW/rdmsXp59xd/iPl4ktOjr4kkzGmULKmlEAOmeR3KDSr1VvWq1cCYW6OSMFwcvKC3e6G7f0rcthzljNGRRKwvfmGFEZcI9bk7foDOW3wizPmbYspATc7InnDOGzw/YGUJuZNwwbIWtHaprZtQVaZfvNBDhxKoXNh3nU47eQ5mcsUwiqN8AoTViXZoI3F6gm1+UBZPkOFLSFGQn8rDoZqpdfGkBJoaxh8QFPEyaMsqsZUVYm13VOA6UpDP/RMfkItlUTWsmLWWDmoKUTcLxlTNAYRdsNDfDJnpljjt8jCm6IIfaYe+myJ1YIvzinZ+IQhUlQhlGpnV3KIUEUaKFMoLOcNh6FjfdhS+eMczVq0MTiraNuWYfKE6OuC3tBoLXGBIu9fSXJIMloOE/mBP+knusM9aIsj4PbXlDiJkFkSrN7StjP8h38AFNY5hvv3bKY1Ry9+wfLklKPjhin1rHcjxjbs9ltub75juvwWO59xfT8DO+PF5/9bVu+/Zbr+Gus9q3czijLkYYu/+8CUJ6zKKCtg+3G34ut//M+Y2YIj1zJt7nDdjG08MCsTqbH000SnLcVlnLa4ovApoXJiffeOGD3Bj7Ke+AnVWAE1W01jDCFLyzc5YpDLQyoBXTw6bTiZfqBPnsE0TPtbcvB0zmKVkQmWVhzP/j/M/VmzJFt234n91p7cPSLOOTne+RaqQIAFFcluUVJTDxrMWqbP3dam5oMkk0iwRQAF1Fx1p7w5nCEGd9+jHtb2SEiPKjwoQTOAsELmORHue6/1HyclPdLK+vgngoHRKotXmv4bjkoy2oYeRChUDu09Q4k8q4H77LgcHYcQCK1AiTwbA75mbIsss7a6OVNYlwuXdSaXTEyVVh0prizLooqrMJLLzOQ8TulPvAUvQquJ4IWnWPuwIeQaNRKgFaTbKHfBXRW2a9b4g4o+lzFFcoq0vFDySEprP9uT5p/0AHykt/aWCsZyt3zDulRsOmKWtyzLQjXgndo7w/qB5eEDVlbc/a9wpsHyFrEXbPqCw91ntNQoD98Qbz+HPDM6w3lZWR6/pyxnbay7+ZyMpfmJpx/+jrg8cXzzDzgq5w9/JMZZS2n60EFJXN7+mifvWZ++Jy4z1ghlPnI5NuISsaYrh2ovZ3COyTslDJra3HMHzb1xBOcZwsB+GFRdILrUOOtIJbOmiImtD4/CfHlkefqOm1tYLyuP779lmS/Uomz8NBqcOLCWWCtewOUTOR2RqsvRYZowxumQudtRjk89Q1SZ0nU+alj07hWYAalrB57esy6PakMbJuJ6wXiLC6OeN9Ser9vPsFL0THNCTKlbM7e2UdXyrTl2JUjDOwVeYurtgAbOy4VYZ4YgOO+Y1sbpUkgZ5rngJOn80bIu8iViCCCW3Eq3r6GWnqZAX+6tqbVWwuUHwp/+Z6YPnzF6WO+/I19OOryniz67rbC+/RXPXvxr5rd/y+X0jt99+D15fcfdNBHuHK2XeuwGTykQW2MwjZpOxOOP5LQy1gtp+VQVZPmB4/tvOd3/yLj/DcZ6ghPi6Z60nFVd0yw1LpSUru3FcY6c4g3D4FiO7zk9HbnMMwaD816fhZxpvchsns+IvKHkjHdCMIEwHnj+6iuNebDCGheWrqpIsWKc47Is3N69osSZ8/Ed3/3+vzCnxOHwkh++/Y02zdeGD0O34DcVO1TpSoiVOaeedSUYsZjg8cMNxiz6cwHWO7wbmC9Hcjrhm2Y+inVdmbEimp4CLVHyAi10UqoQ46pzqWgguYj+m76p9UsV8AVrB1U79DtD0ODzbu4D9D4vJfJ0/MB5PoORq+rL2kaJVdWIsTFOauGTnmmWcwITdCbdgJQOpuhSWJjnC9TCbtICqHVVdcoyL3gxOL9jcL5nHFdiKZjaSKmwLo8sKeKcvivaADtTP/yW292kJSbrWy0oufuKUDKtPCIm40XwLZFPb3DuLbVkvFjG3YGWM+lyJEyCM3uCdTintlexhVQT+Ala0ZK5uJByJTiHxeC688EaqwBU2wB+i1TBWEepWirgQ8DZxjh49vs9xgk1GqzxvHj+UlWaqbHfjeRsiGlhtJXQPvC5ea/vswQyz1hN0Jmp5zY6azh4Yc2VlGPPTkvghNEGrLW6u7iBss5KpraKMaoqtlQ8wuAdXlSVvPNq56RapFluRXNfn2LhWS8yND4whokmgmuVVQzHqJld+zGo+gi1t+Jg7Cq4tUAsPW9PVB0mVaM8aI1qROdaY4lFgRl1dSh4kQsYHM4oQWaq3h3OQBYN7NcobV2cXQ/LF2PwVgPzaa4//wqqWGNw1qm9NGuJlcBVwdaaEhjGGI3uKB2UMZaSlVAKtZLFsrSCaYmxDV11J+SmaiPXVXilgW22k6BqOfV9kd/yEGvtlvd+b6Sc8MEqYNFUpW2dp+RIrbqfUhs56a6p5Tut5zcrEDoOgdogdEBEOpm71lWJ/KpROrZ/5pp5roVjgpB6Wca1KM868AGDfi7e6V2Q8vb79p+hqULWGsMKhHFPrLA77PFPTzw9PvLFl1/y2adfsh7vsdI+Aq4hdKDVUa02jltjWGPmvC4MfmD0Xu9thNrDQp1VstY7j6RMM5uiz2GylkqaLiqBihGPoN9lSQokO+cxuWgzbFGhg5XGvCZCTJzWR6QZWmnM5wtGNGf39PTAX/zVX1OwzPOZ9XjPFAI5F1UZ9qZYYwyj1wZ2IwqoWmNpBtYYdY7q94ECQxpfREPzUUX3OXoWsK5hPYahdZBJHM5UBWub6Spl08FiaLIV5OmMkjso6kQQq4rVzTJdS8N7zULfSlToZRZTn+taA+dU2BGcQ0SVnYPXkhMRfa+sMZpvmLM6S5xmKoroO+E64NpqJ95dB8qc1ZKUWqgNxmEDwBQc1MgE1zGDrn7coNFu45auZLVZZ/DahGnaM+z3XE5Hzucz1jj84LugyYFR63lcLuR0QFzg1edf8cff/Qovmf3NC05P76k1siZV/m6grBGj34/p7bslK7m2qTMbnYQQzUntIGru3/O/xJ8/H+BLwnC+59n3f4cvSRHVtdLygn36huHZVwzWst7/gTVF7r/5e36siS+++jm3z17y45/+DsrPOdw858fvfsU43vDDn37J5fE93/32P7E7vObFq5/wwx/+lod33/DVX/wN58fvuRzfM4QdKR6p66x2g5p7e2hSdYYY5vMjDzVSqg7R8/lIGQamac8mg1aPdNFG2DBRsyhLnyKNxuBHlrgyhIFas34Rzmt1c47YpJlexjllZK2j1sb9+99yd7NneRKezhfm8xE152iRQ2tFCxhQRSk04vJOGfSk7UHeuy69tsSoTTS56DDlnSXHE8UUYlo4P/6R3c3nLMWxXo4QAlJW8vwdw+EvAINpC8vlkbieMWK5HL/FmYnl+AOeSikL8+kHDsNAcActT8GR80rNJ2q+kNudKggbtHYhlTMlP7CmJ1JakAolNVKtWCs82wdUgK4AUa5deVOzSpCr1rhb0cPK9lIG0Bd8TXrI7R5+w9Obf8DuAus8I6VwWs5Ya1mXGTv8WoOql/eU03fcf/gd6+U941+MmlFkMmG8JccZ6yfS8kBcLvzw3d8R1zN/Mv+J53dfksoCaebh/e/I68y7+Ve0/MRhP3E+PnG5XDAIrinbENfIpT3SYqTsdgxWBx0rEJdFD+mqzL2gRQPeqbVTQ1Mthaytez4QbGCwA6DP8H6YVClRCrswUkvqAc+at3iwAz6/R57OSFNG3hAZrGU/KhBRmzaLIgGkqo0mV5pkqpieG6NlJrkUcmc9U8o9YNRwfDr2IPUbReiaqgKl1c7aaeGKWov0gKol0tMZdDhqvW22ZaSCaRosWlpGqiGIaO5mazSr8vLcmtoxjL4zTjRA++F4xll4fnOjrdC5t3aVxHnVg3S/u1Ugoeq/70Og1kxtGmheq7ZbS5eNp5yozXIzv2f+4e+Znn1CjQstqdqTqmy+eXrDWhPrwxtV5BqhxZWnt3/CGMPDNBKXHd9884+4sOPTL3/B6elHHv74S3a2MEhA0swome/+7n/kfDnh8qyZVk8/sBeIZeFMphrL4JVJi7XwtMx4A65k3H5ishAouHJhGALSh8RmXR+UYLQe1sLpcgHJWHR4zSkxdAXf6DzWGmSs1OCxRsG/ZBy74LF2r5asshAfvyG7I5fmOR81G2cMB4JVkGcInikoeHw8QzAFaxrPnFyzQbMRvFFFlBENP97LwkDiSTw1wydT5s0pMpTCzRiIRktOnGjZjbeNuCzEGnG9ja8aBVvmdaUAa0zUVri7Edb5ibsw4NHG8AGnIfM1IRR2ohmRrllyzV2dFBESIo0lZ5wI51g0U6YHh2t+hkBNXJaZcdgR09KZ8ELJUeU7vZUW0HiCWpjiB24e39HI5PWCFc3+M2JJsWDcAinrGXb8IxghphXbZtrxRyr/DZfVU97+iuXpO3zLlGmngo3lSImR+f3v2cVHLpeF/eEZZb7XIpscCdMIvdQGtBTBGS19mE/3HH/8ByxqxRtCQIBl1sDlzQpijQ7lh3HspUJN1cg0jA+drTa8ONwyhKHb7RuXdSE4i7ee1tl4JQQMh2mi5Mp6uafmmZhgPR1ptajlaBiYvIVa2O8PPJzPTEPgMDq83fH4mFDbyEDwmhk2+JGzX7nZH5R1NcJpeWJwAWdA2kpMj8yXd8RV77MmVkm7es/+xU4X2BAQSneC6CIp0jroRz9j1Aqkgyl4o1kvgpYurZJJaVXm3ajywHUA6nhZaa3SauTZYeQ0J+bWiFk47HQ4bSaR6sroDtQehUAf8u1m+UWDolNK+DGQLvekyz02n3D7iTifNYPp+tk3LehIF+Lb/wfLw/fElMjrE8GNnH78JcE2wu1nHN/9ge8ff+Srr/+mE3meGB85P72/At3f/fq/sMSZ9z9+w/n0QMyGxzd/YPCWS3cm1BQ72JRZ16Yh/PIeWiGvF87ne4I1XC5PlKgqJLEjLuyZz2daa5RcWPPcM2AtNRea8TQE7wYaqFtDlGzKaabmgvUjMRXa6YldOBCGiaen93x49x25Vt7/+A3rfMY5pyx7g+AGwjgS10iMEdvfx63tz1nLEEZaV2Ku64n5fEJqIpWGcUKpRgPj2xkNI3d90E/auty6Lc8XVV61RkPtwQZVe8QUe+mXAsUi9OKGzOCFXLIuXzWpJahsAfkOEV3Kay3kVDuYmMk5scbEMI5UkwlBs5qWtRCCQ6QxLxfGcYcP+k7JZtXtYeJbE2EuiZoXrCm0mvFGbcUlNZ6eZvZ7wzSqlYlWGbw2LUvTcq2x+qvaq5WCodJO78nf/2f86LFimROIOAa0cdeiQE1OKznNrLP+LsEdCGHHJR7xFlpdcGav5KexCszFtVvYTF+snZL7VKSBs0EVvGj2W6N2xUi7qkW2vLcUwtVON447QhiUkKVBS7QYFYgaPLc3Nzw9FpCVW29wbWZsK6lBNndYU7FFgatm6Aosh0sKinmrETu5dbKhJgUCJXT1i7Z9q11TS+VabTjR+3cYBwVBvcG1RDYGJ55DAaVvGrfeMxqHGK9Al9UW9VoTh9CFESQGr0u3M7q8D66rV5IWQDirO4zLlWAMwWS1LtZK6Uu4624QJWH077MGLMJoKmu116zJXBumk5L7caTWwtAbwmsvkRCx6ioIluC8ZsWVcr2zRaQ/O7VHwgjCx/wrVRlZKqposl1tFqxFrCEWBRRVma5AhaCZX9LVOa3qjOOwXUyitsrW7bm1Wwhrz6ArTbSpM2ZsLgzTgdSV5xswmdICaPnfGJyCL6VqyWNvCR2sZU+jlMZoLbtpoOTGmnJ361hEdJZ3HbQpOWKNp1L7Z0E/fzbQseBzZjfu1YUhvXzQOVXc5Uyj4kMgamwfWxvpzeHAmzffc3e45eWrVzRjuP/+j7y+vcWUxGC1TXcautrLamVVLlv+Oxz2k6o4rfDu4bEDmKWDSI4x+G7FRUHbigKT9Exao2e55o8mEKN5jxmiPoXXwiqxhrip+HZqcX795c/53W9/w+6wZ9rfYK3w9ocfeP/+HafjI8PhGfvJ4rwCRM5qm2zu+fbWG4LXEo8GjG7QZ6rBFCrBD6ropPWsVH2etrw9BafoETB9r1PXL6Zn3O3GPWVujE7dLz5lTC79bzKsa1TFdi0dNDSMLjBYzZUzhm5rF9oc1c2HZehFMCKqFhz9oNZ7q+nFmcphGllTwjvLNCjZL8ZRmu4Zqv7s+Y0hdFyl9gzXTkF1BSYdD5Da1ZmioDWovdf093NTQ6qVfss0FHXOGEPwQZWGNZFEs/IJcLh7RqWxPzxn2r/gfD5xfPiAmQbG4Mgp4b1DnBq43735lt20wzu184u1NBEu5wWMYHurtelE0GAHwjAitZFQW7QVA7ZBjzvTfZzeCaDkAo2PCuI/48+fDfDtTkde3v8BF2f1vedIa1HtRTVj739LcwN5eaTmwttvf0lMC/PTe7786d/w8OY3zE9vefXF3/DD7/6fhPGW8+MP+rCsM5f6A3l5osSFufzA2z8l1rhgWBQcwLBePgDqQUf0JVakt3UrnkCVbq9VFVSrpTem6KHgrKNhCMOOWnvzq4uUWnW4qw0IPejU4MxIqatKUiUgCLvhlpgS1iVVfkhlXmZy/oZl1S8slbolZeODJa7grENQf3nJEZyCV7VVbapqwhBGZTlTwbumodN26I03KhEt6YH5sYAfSKvmAThrOD29QewBN9yR13tqiaxrwjsoLXF++o44P3Eqq8rd45n5+ANhuME5R8p7ak1qV8oPuHhkHF5ijWVd3hPjE+t634e5xjhajAWV5WWQTMwKOgTnGYPBm0StM070Mi6qT0cNZL1xq3U7S9HLwaz3UAvz8UgphcHo5ZSjSvmf3v6a3W7Hss6s53fkNXNKb/mw/5VaM8uFFy/+goen77k9fE683PPw8AMtzkgxnB/vyeusn+fpnlqjgpClcn56R1mUjWlF8N72AGq92FtplFQoa4TJddl41WU5OGorzGtCUFYqWNez5Rq15/rshhHbDFMIyjI5h7HdemR0MPK2aHaBVEpXPDrrqCkjdlG1jFGpdIyJmpUxlX4plCaUzt5IqxhNY9b3reTrRehUmtODUxtxXVnjQq2VcfCqVJRe593LKjIWakZypImnVmU/quiwQtG2tattQlQFI/1zAIv8sywPTT38GE7qRNV3lsbeG9b9jm9/OPN4upBLJQSnC5xxTBOMIXA5z9wdujpXtMny2gALOO+QqEP+skR2+z3TODDGb7HrCU4G1/PErGzKxEI9PyIlInnV4ZqPFpD58S0//vG/4sPAcvpArcLgLPXywEhkcl7zwJo2Qs/HD6R1RagMzuGXB3amaSisV7Kg0KA2xmHAVGXLRu/Ze6cZKmKYgsdZx24ctbm4qNW5drBlTSveqm1NmxS3RsXNXqlLoDOGVNUSU6eRQmUKgal5Ykm0mrg0eJwXshS8aJDtYbfDi2EYQ7e8KJHhBSajSsBBCt5CFOllKxWpQjAZ29TecbGO2Cw4wSXhs4MDYxmc4E0g9UUql8rtNBLXlTlGTNBwZqnKJpd/dge0WihxJs6GMo2a3SeCoAMLrdJqwpaME8u8qposx4VSMksuqmAxQqql53ZotqSxPfusVC7ryiEnSo7a7tuXwJILVjT83ji9L0opYApeGuQILWrLqWhWX8kVvNcyA9MbDetK6mx9vBSsW+HpD9R5JJ8eqcdH7DiSy4W0rOSoBEPLkeX4npISa71geoi0gny5W1BVbWd7ZIagxFdczuyGAalVA9VRVcSaMrtB26SVcPKIqCXDSKJJf+5KJsZICIFx0BY/jBCcNpd5p0PfjoHVLsSSGYNnFyZSqdScmFNiSYV9GIjDSKUSnCd0NfEURnKFaRg0S0cMt4dbzvOZcRwJ1iHG0WrjZr/HWyWTNpD1ZrqBrOdfXM/M85HSIillhsFDKTSbWOYnBmcpwDQGtClZY0qu2Xul6t9cdaAuNevZS+1nvbLLua6cTo/spj1KovXv2LiePyrUanm6rMRcmAYPVB7PmWkwXB4Xbg8zg9U2vNbQZ1qAvkSq/aVd/2uNC7UU5nUDrlHVdc5qFUFZ5ZIz5w/fUmpSIFd/E04P3/F0euQnX/8NP/74jzw9vqMt7xiGPbvhNTkvrPNFFTG1Z5flyLsf34AILz/7mryunE5ngtXzvHbrI4iqGQVsXPWOK1nvJcO1oMlZq22EvQV+a7mHregp9sVQCNZBTcynR6CQU9ZUGftEK43nL17z/sMj8/zE8fTEzX5HipFUtYXyOK94I4RpZNrfEJeVvJyJrap9y1q2QgVoemY6hcOtCMYEWvW8ePkFa1qptbAuJ1xJeiaVqJaxssWTqEGpp21hW1PyC6gp6nMrQuoxKK2pRdY0+Wj/6pa+hrogWs8ebJQOxDbl56iktBIGyxydzsVd5ZBjYY2FmAspqaI5GDTbj0JcL4RwixVLrUoQ1qotnKVkrFNwNcWEF1Hwu6maPLdM8KrmoOn/XpdX09X9tqudLU0MpWhmpiCagzhfaFkYwoQ1nny5Vxu/qAIixkg2lWXVBToEpyrDosuVQeNqyAnjPDmtYL0CoUU/azHaBKmSC7Uq5v576bSi33XOGdvP/9rBQtuJ0ta/h9FPtKLkU3M6E0+DpdaBvCZsjtxMltGPeFdYosENhkv2GD9qtpip1NKztkzrc6Tasqem9Sy2qfsglYJrKlgwVotw4prZrPraAl8Ig8FZwZass5NRO2nNOqfnlLkB7Ci9BMLQcqFaFTFYKxxGR0xZLat2y0uuOssMA03UpTI0g7G6m+kWb2i5Xu2HxmjxmhVHKVVLEsQomK//CXKBwUZy0V3NuXCd/S0weg/4DjDnq3JIxPRsOrWVG9HcV+kKqtbPZXvNB1TVlkhvpjZGcy2Nfp4pJ7a2VaGTlF2JVJvOM9sf3dFbB7kULrVGwQkx+vOVpDb+mFSIUkq+5gO2HoEgogUPKa4Uq8CGtnHWrj7LV+DWiMWKw1tVFw/OYYJlNPqZGxGMgSF4VQv2e2LwnWQwWwuuOsWkQcmFtCbEWsYwdBWZftclZ20a7fE3GxBT++9RRQudbp/d8vTwyOvXrxnDjrvbW1LV/HMvQpufGJ2CSLariZtKnvpeqIDkFIKeG3hevPTEeVEnoRF200iwas80g6dWwbitVE+LJOnqdm8ty1aykLLmcjdY1hUxlskJhkQwnn2wDFbf7Q/3Twr0es+wvyOmxs9+/hr3u19z2O+hFU7H9wQjeCvcTLvuFOpWUjSn9Pr8OKcgo0C1DtMJQEGVeteSy213Qt0fzeh72GpU5Zqxqs4Uh7eBXdix6zEgW3yH6c+IljiUHpWibp3x4Ps7RHdeNbJ3nJeujjSGfRhA1B4/DQPBWUqphC48qTkyeot3an/f/jMNbai2Ymg5K7goHUjt5Xa07T2p3aKsgKXQo6BE79QN8DTXd0sVisYaqCrU6L+uTj0lI3SCrkqPhVH3jBaBZs5nFXY8PT5p3n3wql6s+h68ePFK1fqtYcKBT16+YI1HSq4M042S8Unn/pKS2pCtuTpRrHU6B3ZyuoFa0o3B+QE/3bHMJ0wXkRjTXTR/5p8/G+B7/u6/UN//UaXUqcuGsT3/qVCP39GMp6YIwMP7PyEIy/kDdb1nPT9weviRdX7i9OEHjPuRHC8IjXWdMTTWNJNyxrbMsjxqTo0xV+R2awYbOkuWq7KR0zByd7jtg5awxq6+QRes/lxgrNFFXzwu7Ak+cDp+6IM4iDUcbp7x4tlr7j/8CbEDL2923N9/i/eGl6+/4ny+5/b5p1zOJ0qZyTFRWsSRFZDxBo+CCMqcqKjcWscw3XBzeMUy35Pz0rMmPIMbr8qqUivW7bAlXUN7rVV2KJdMTpm4JpqPBKfsR0k6yMRlYT1/jzGG5fyWdY0dyNOQ0JIXWqvM56Ne4qWyLtr8Y4zF+CNORlpZyHEhridaTmpxSe9oLXK6nDmtkdNc+jCmmI4TleaXAtBYU6GUlZIbw7gyhlEz+rxK5SuwLvNV5huCJydVzzgRnHEs86x2T2lYVHFSWqPJzOm4qiKzW5VKKvz4/W8Zx0BKCzmeWecT8+M7duOEiSf2bqA5OK0za70wOk/ipBLhDRxLjRCUbV6SWiuMURpFR0YY/dAReP3ZceDwmmdotF3WSsHY3jDY5cciSVn1VjQbrDMxpjN1reYuq9ZhxRuLFShWmePSFYKtKago3lGLoSCkGkEMUlTZqpeAEHPRf09EB+n+jJVSOtur7UEilpQja6QzTjrYEgaFZ7IqGEoDRC9RZzK5KgteatFhDmADlIpeHs1sYautnybafEzT5c2IwdObiWgEqbSccLaqWrdlnt1OhEF4PEZ+fPdELQ0XLIMz1Nx49eLFdXhqYpl2tTfp2v7upP75Nqz7qMZqywMtR+qiz0HtTJCzGvhKiwwEIloMovlaukrH+cS5FdzgKVGLGR7+9Hc8nwZe7oJK+rekiaZLy7yq3VGzSDLRwGKNyveDo7RGKGonGoOqLL2zTMEzieZzDV4tKIPXllf6e1hrH8KsXsbbkK/qg56ngQKutbcEG1E72VaSMnb5vjFCqmD8QM1qP7kLA/vOth3GUZkr73EWlcWPAVMattUOAlcG21hpIBZHptBLKYxhEUMojbEoC2+q9JZOuv1Nl9dUGsEIzw471rziRVtq4/YbNa4htykl2jgQ08y6PhHIiFg0IUmtjKUowOWs07iEdaHVhLfCGrvlsdQeWm9Y80JrpluL+DgslcwyX8gdNM0ldfwhaUNaVUVAqZkcG5NzDM4wL5olUwvkgjZEtoxg2YcAokB/jNpGrSSkp80PLGdVxjpB7ccxES9HjNDtNem6cJIzThxLXHSw7GHg1liaheA90ge60iotF4rVe8wabTObhoHSh38NHFa23VrHOIwKbsdVs4yKw1uvlgeM2p768DeNI5dlxnvHaEZK7ao+q+oZ53zP86wEY9mNI9Y6TpcLIqYvG6qYMi7gvYdWsQhVDDeHG7UHewX3jLUUVE0iCE489nDXl4lEjAu1JtTuGcm1shuNNma3wrKeGMeRUYQQ9hjbWNdVlwdq/661hVy6zUpZ+G5F60y1EV2aLvORUhKj35GrkEmsS6E1y+my4L1hv/PYqG3yc4rse76Sc2r9qCVizdBVX0VV/1Xf+40cKbVBLl1l1shFv9/gtCgHRC32PUvsEiO7MJCyZY4rwVmcUVD34f4HnCQej49445jPC5fzgtw5zZvLmZILuedmNWqvtmvU/vnUqmy/adJV4o7ShFyqnkNF7VJb0HdqhlZNB5hcb0i80HtErsGH17xR0QtTn1e1EC1rUitzqXBZoWU+RAVP01oow8ossKxZizFapeRKCBZaUSV3TfghfAQV2waEq/oAMYj14DzTNEBz1PrE+XSi5K6y7KRWBUyr5JwwYqEr35yxao8zBh0jGuu8UMt6XZpz1eeq9FywuuXW9j+1ZYzxsNmB2Eqvip4povC2t0KMPeuoWMQEljUSU+tZX6oEKqVRUmXJBSuJwSc6/XYFTgBVi+bIYRp0KTe6NG9Lf+sAQE6FVVYFIkLQO7UvsbZPkLmrOLaWxdrtu9kp+GFIuOBoMdHMqmddzjqNFf19vRuwRi36wRhM6MH/xpHTondhngnWkJPewcslYlwHNcNInrMWL+TINO20pMCqqtfQdHF3Dml0UF9VVanpDJzWCyTRTGZxGugvjiAOHyre1l7spHbWSzHUKOQaGJzXpVIqxum3WJLG/AhK3vqu4NwFBRWViOwqMareCcaQ0fNAc7+M7mitEoLHWp2vg3HY0G1+1uBqxPvc1X96sQZvaNbiKdQkNNOopgNHTcDq2eK9JYtBasOTKTETXM9A7lnGorJpgvm4ihpRMNE2ez3Dcqs0Ei/HM63uWMtAzgmpW5aZFgx4p0AlrV2VQtv5L0XnUYP+/rUv3IhcVbGK8TWqbOohVeIoaK7zau7EaerZiQ167EhXQPd3Qc/8Poe01nP0OoHSAZxSi+5vOZGy3tG2W9wVuGg0MSosAGwHvRS0375LQUJQUY2z2K4A0plDGPqsa9FCAxWtqJ3Se6/5j8DoVcAQ6zarb+rFXqTR6C3hlSF4Wsl4b/He6t3vDTUnzTRr2qJbuiIruMDj/SMvP3lJafD9d9/z/fd/0OKn2ztq0cKtwXuC952g6QBN0yxZjb8whKrWR6zj4f7MtLshGEAKUwj67qWqykRvqUDrcTwKDOr72bpFvJakd2eFYD2HaVRytlaCVZBtPwXoZ++7x/fc3t5oiZwfGYLhV7/8O3KKDNMNY3DsppGaIqHbbTU30uI7uZtSUuu2ZhX1wsNC81tLcldwNX22xeg+teXUiej/3NB3qOWKM5bgAw3RGU4akxvIpRDWpYOtCrjX1luVmwJN3jr2w8QU/JWg9MZgjSO2xuP5whD0s5l8ANMYnBJoC4Wb2zvyMlPriimVsc9uw6i5zzlXVbwitP4z0s8A42zPOtcAYyMamaRW+/4cdOIH0bvWbg23rSFWPzFpen+Yjg21rqg3ZrurwVjXI8NU2FJrZre7IZeZ0/lR5xOkz1eC9Zbp5o5xuuXt+x/Y396xLDPWPFHLQikrx6cjzqjSU2gM46gzYOnvck0q1nJOVYoGTNUIAIzl9uWnfP6zX/Dh3Q+8/9OvScuF0vJ1h/tz/vzZAJ9b7/F5BmuINZNrw4er9gapEUpUZrJ2P7mx5LjydP8G6Qz6+fEtKUdI6xXcqD0UVgNX9dxsJevhVXXZQtTyVUtBmuDMqKCLxP6Qm64ScAx+YE0aWrtVtRujqHLwASSw29+qTNwHnA+UUvFhYtrdUZuniePZiy8Zh5FWV3JaWGNi2t0xHl6Sq1CKJ6UjwTu8jdQGOUM1O0LI/d81eK9tm8O45+7Vl9S3UE4/qpy1/+4pFoYhaEmGMzQ8ztYeklqpphH82Bc4EO9JGe4fjjjn+eSTlxgjxPWe4ALLfGRdM2EYUNBf+lBitfADg7WeXCK1rNpO01bEFHKKpLQCiSiPrOuF4/KIM1XDlnNhF5RhLlFReR08u8KlWqoYSoW1ZEpOuKln1qDfrTFacuFJpKw2QycKglBbz4rTC7AhiLPXhqSaK1VKR/25SpovlyPravV3vf8RI4a4nInzwM4PTH4k5cRgA947dt6rnUV0AWpSEecYbABrEbSCXK2lfRCwBhHDbrdD2zmVTZAuexcxGGsZBv23jKiVagPtnLHXhQTR4V+aKuCMoIuENT20v11zY2pDlVCtl6AYB8aTGxRRVp/O3NaNnayOskmFMeRatEEIXSoQZTlSzsRacU7tNnqMmg6uFeiLcM6AqYgFjNobTcndqtawV+WcLk1bs1etHUC10pmLTR7fFHxvBdt0+DPWoTbJQi2ZtWQ+PB1Z18JpXvDe8tnrO9aUWFNi9AMYOM8r43Ch5Bu8H1RBJarui+sF0xLONpxAppJzZG8POJMIAT276E2ErdKKDkO7adCmVdTmEZwnFf0+WimkuJBzVLucGIaxMDmjDWr9zFF1TVdRohectZZkLGcrRDEYU7UJug991hoIA0tMeKtAGiJdjaaHpCoIFGxyRhfoWJsuNlZYkzYB60Wu4KBD2XlrLTElSi19WDbXHBotH7FMeJozTJNeztJUkdVojEPoOUz6zre+RDRRVUtpDaTgafiueixWaL263jehVeE2zxjrKViK6IBaOvDdQNtuW0NqYxc8t7tRM1ybtlfrsFnItSqYYQ3zupJr4hxHRmvBOPK2V/ZnUlV/ugS0lsi1qGSeirfC4DxLTLgCg1frJT1aQPrvm9JKdF7//8CaVrXtmZngYK6iGYS5UKxj9IHJBYpTVU5sGkzeSgXfh0CjLOxgLcVVLusCtRcr9HgJXVxsb+e1TDaQUJV7q6KWGyddaaf3t4jFG6+gRxO89UxhIiUlX6wNtJagauug5u0pIKQt5GrdOUw7XUC257rnyoQwYFPGOSHlqLYoa0E+AoJrXPF+YHAKINXWtL3ZDXjvtFhqXRmnkcF7DAb2ehbthqED0sLk/dVYZay5ttSWHmrte2ZP8J6StbjIGM1j1J4PXbBiWpnjgnWCaT1gXSolVYrJalEMo57fPYaiJl3sSynKChu151lQYE80bxK69Ud6DmitpMsJMxmqWC1EGaCiisPznLi8V+DhsPMcBo/aBHVAXOPCPujPYFtDg6I7mKjbAXNaaaiKeXCBs7HYBre7G+52N8xrBAP7YcRbR26FD8cnnu2fkWvBXk6MwZKS2t4H57WZNmduDhOjn7DWE2PUZSzlri4pV9WKs55pPxFXzbOhZozTO7PUgjMjqekia5ztxOZ2L6EtxU0/S7oKq8SItRuIpXlD+92EGF0EeiEgcU2kOZNr1uKHHrJuEbTuT88xzaMq3aqu2TiD8wx9plEVgdX2Q6s/K/Qiim5/LGgjLrUyX85M0y1iLXFRklIfioHd7pYmEE+nXtzwEQRwsp2dmjGmbbjpqnQzxvS7tX7M/BFt0G39HilFl9hNra6gbu4vfaXWzBIvzMsTKa2sMXW3i87K4xRY15VlLSyzLi6lVsIIGCUtYrxgZOpZQ6oOUXVT5XS+ICiwtAXfbzKmRs8nQkHKXBJGFMxrtYMiVTaji9os28dsQ8VzFXgYw8S6JnXjmH7XtKIKUh19FPyxXmf/TuiVrHsGXnOhS3a6s2znf7WkoqDCNO6p3cpeq6pla1HQS6xmaNV+l+aUcMEzuEBNc2/nrGoTFMgtXp0bIVjWuVJqxlv9/AyWUgtrtl15pg4hRBWGInp2b5lrNH33PUKwhma09VUV6a3bRfvu1D/7UlT11qp+38ZoG20wEJyjUVWZ6LtCNKqqNrVGFAV7Q9ASvgY9r050Bm5a4qJ2M52LU05KdklTFwW9EdwLtc8AtjNylaIz7EaS0GhSsURuwoVWZg6hUKOl5LETL7UrPvW9cVZzClsXYG7WUyM6C0nPBSxVg/RbbR0wg1bVucIGKiNXUN7K9vfoc1Ub1O4YK01V95WeQ4mq83LfExpo3qzorFtpHZBQ4KZSusOkF8+1+s+iikwHNhqUollmYsh9dvbWkArUKxiigHPMuYOXWrbTHxh9JnK7goNI7aH+CtZKrprDVotmnfZ32Ftt/9zyHcPo+1yoqtatKMJvgI0YglfiwvnAbdix5MY07fnLv/wrHu4/8HQ8Ypzj2TSxPsVrRq93jhjXTtRwfUYMGlsVwsD96cS8LNTa+PLlc1pJqoIn48Tojtt3qZIS+3FijSu2z6aauW84z5Fgvebqilzv8aGXgV2LwJrSCoebWy5L4nJZcFJY1gvPX77g2fNX/OSnP+fhw1u+/c3fYl3P2HOecRy5zDOlCbtxR0xPCjyh8QTOeUw1V0LdWqdEj5jr3a2lE9oQu1lga89utMZd895KzqoqtQ43DNAzkAcfWC4XdUzY0OdozfoN3jMNI89ubzmezrS2UhqMGA5DYF5XJh/YTSP7MELLDE4LFnXGAWsVb7FW2I2TEqjG0zBgYbLbTA7eeYJT0qH0RuvNcqw2anW6KRD/kfyRLtzZZrzagXBtbt8yYpWkF6vfV+1xBBvwNzjHWnIvtAh4d2AYhCYF5wce3j8QS2HEkCs08aw5s795RrD6XDrvWeeKtZXdMJLiTIqLCmbGqc/j9N1JyFS11UtkCANzm1UU0nd5Zy21dQdpipDL/39YdFstrHHpGTaW6nSpLK2bfNom3Vd9Vq2N2rQNNsZLV5WUjqCr4kHE44yDlq+A4O3hwBrnbnep7KcDwxbU3Rlx8Z5huON8/oAsF0IH6KxRhVIIgwbNG7UA1P7vqroI9vsbwJBKwrkR6waQSmuB5y8+p+TMuu5w1mOc53D7mmWe2R1ueHb3CcEP7A43fHgXmQ53BCcEszLPF3Z3L6h24tKEy3LBGPVwOzcS/IS3gf3hlpLO+pnQs1i80PD4UW073k9qwyiNEEZ2+7s+WK1Yb7HuQBPHi1dfEOPCu7cfFNQB1vVJPytjKMUyDjtyvmCtIWCIS2f6u/R1TQu5RA1sdqrcKjUjJNZVByVrqgJx6GDRig6kY/DEXChVJexFdFHOfWgKxpDSI2/eL9zdfU5wmtMUDOBhItKc5VIWaIZWVfXmjQb5Xy1a1qq9J0WgUSiUrEqV0PMLS9ZFwTtL7ocHDZzdclW0/WkKVptxnKW5oGG7pqtWrNWgXETDYAdlWpaYKGiOgRXb/x2VHqtCD10QG/3wrj3IXlVZtI+2BUH/DmscnXy7MuOlqkJERU+W1NvXFONuiKVbmcE2HY5rM+Q+LAQjgFqa+/ihrY9BM0k0lFfzdkoHO0QszgKtt1QZlUWv60qZgpZ4tIo2OH5UQtVSMLVA3axTmg2igKaw1tpZGP2/cVYHIzowqpk+erE5AS8VK5VUEtZcYUaeH0YeZCYW060TkZwq0gzH88JutASnLFGMK8M49ilXgbwpVHbmCSsLzYM0BTWtQHCNYD8OZUma/sxOZfeTNap+6DLs293E8TKTW9MswJQJ3jF4vahvhsDgdEhy3l8P900FFUJg8AqoVRdY6IGwTYNbXbcYCqgCFOlNcv0Z68BXa3rxSdEHqNaqz43Unn/YqUrRxVuD2sw1ZDfl3JdjtbV6IxpsvQ0YvYW1iRC8hiy3qpcUpjPEfa3Xwbj1Jc32hVsv29gKThp7Z1lq6zlNgkUYUGVKtQ3JSj4gTf97D4NuKLuXq+aj3Ewj2XsuF6FUiCl2UJYrKGXE443mDpagC2DqGUpS9DNZYlJbdFFFesqFYDsSb64zuKreGiw56bsjet/FlCk1EtPKEDxdQEgpkUM44Y0ub6l5LjHixx1CwBpLrV373Cq1ZIZhUts+qjbY7UcGp5btZY2qwkADwq2xhMFD05BpmrKg0hWitS8cTpwyyUHZ2zEERhdYWsSKZRxGdmGkeI+3jqFCzAu5rNp2b6wGN4sQbcEFfSatUVV67fYPay1D03ZFJ6q2rFU/Q2MtxloC+p9VMM/2LD4NbXZGVRdGDNYPiPH9MTc4C6MMWKugc9l8RGz2RJQQE/k4DQLGWWJc2doCjW50ag/JGnlQaul2Q2WKtZ01I+IViG+NZTmRxh1rt/I4a1mjquI321Q/2tUiZ4xaN/rPt81DKa0aYVAKpWVKrZzXmYenC0taMEZ4dhOIJXM8Vo4XzSlTBVFj9IbdkEl5xpoBXdfpuS5A3RRTwtPlgvEDr+5ekJYFaxyv757jrGMcdjQDg+g5U0VzioIbkFJ4dvDYVog2M8fEs8MdU/CkVHl2eKn5VEVtjBtgl3LCGFU7B9+D5GNiLhHTSid2gSqUAqUp8adNd3IluDo3hPRFXJ+Bzf6qZ59adwzS1LqrlmnT88eqAjpN74jBay6ZoXXrkCrVSoXWhHVNuszJ1rjp8F25apD+u+hD1frz3fd9Ba0b5LgQBnQeE4hFSZpce4lMyjysF7wfsFjod6eOCroIwMf25Sr0XB5D6vOCNYZaNMNncJ5U0lVtU6taHJtrbAVnbVPwFQWokKaKTXPHvM6UciZ1SzpoXuG6RlpTu9XN3uGD4XzOrGvGmMyhRMKw07+72yJrTbqwBgV9cleMbUuboc9BUnt5QidkrTZuVqtEVt3IQaPEhTP2n8Ut6IIooFmP9AzA1voMo9+7FlJUaokMbqcK26SZwSUuSAhoE3emmkgt2khrrQKSrVSsV5BlN4yaQ9X0f99QEhKj7bDeul7805UjrbGbBgXer7bV7moxjZQiJS9YS58FHLUkVeoZS2sG7wMxVpxrWKdkgQ2BuCSwCgSJka5+qz13U+8PUEIZ1MJtnSqEQEG3lmq3H0vPM9PZskql5qwKIYxm5QLNaB7ydvYrRNVwzlCS3jGtJYzTedzQKCWpdVU0pF9Bxx42XzIYKLnHXqBFJmtO10U/WEsuEcjc+BO34ZH50qg1MshMllEJVqeEUevv5DYIabSF5mgF3wsDuiI4xoiIktvW2KtjpbHtqkJBF+RShGY0p0w6maT3hFp5WwegMt2xYriKDuh3XC5FQRjbxRui0Us6+3MVrdAqg3cssWCdxbKBsBp3EqxhP3hKbURUka4K29qBdi3tUYW6fteD1aKJJSWN9EE0MxqdXUuPt7FWyxlKdR2ADViEWPW53vY3bw3BWQbrrjEcragrwPbsZkRwBira2Gus57xGbm73iNEm+HlOxJg5vn/L3ddf8vr1SyTlj4CsMaSs+6ozWrQoTnA2YIaBtmR9h42wxJX9tGfYQbyc9NzvmMDNOPH0+MCrTz7jw7s3GAreKTC5Fs1VNE4wqXfei8E5T/ABb/R7XDppl3PGj45XP/kLpt2Of/qH/8S8RPww8Zvf/oq3b9/wk5/8jN3hJY/vv2HcDTgfEKM2TRcmxI9gLhQsw+6GvJyv57Qzrpdi9Z2z73+bitk5hzEDYlYOhxvKMvdnVz46x4zB20BLFucHjLG9cfaCt0YV49aqMKo2jDj2w57Beeh3VbFOnSYm82x/YI6JIQT2Yey5fg7bMhXdiWorDMOAHLUJXR2KvbiwiUZQ0OOiOig9Bs+aIykmYBM9qIinto8igbq9H63p+9Pydb6iz7VsZ2szFEHvhNquGA9WwVJMUfzANcATph25zpS2IGK5u73D24EPb99gg2E6POeTT3/Keb3w7s0PxCWScuKzL37CJ59/zdsf/kBtF/ww4aI6NYb9HaRIi7POJV0AoKSzYRhH1rR24kmfuR9//IGHt98jPVrAGtOjq/68P382wKdMVqI5ZeOD0IePemVRNqnkEEZKqSo/7Mtn60y3ghsqzR7GCWcH1uVJZZvA4ANrnGm9pWUL6pYeSGy8Izdht79BqOS8qiWoK/+MCOOwY82ZcdxxmU+6lImivs4PhOHAFpSst7fFe8/t3R2lWOb5COKYxj2lVm6ffcbtHUzTntrVWh++fcf5cuLTz7+mxgthOpAZ2D/7ilJg9BMxnXHe0mpBxPP81eeqzhhHbm9fsFweqKIHsLaYrVBLB1MM3u81l0R0mLTeYG0ghBtun3/Ow+MD73/8FudHXrz6hNPTe0o+UYou4kYcNuwY7A7T1SqllZ6JBrVm4pp78HXB09VmLdNatytY/c9plgAUFRzinO+ZWp5G0VyQpo1OsaqtdRwMkPlwOnJ3ExScpeEsvChv8dyTa6GaPanekKoHE7ps1zB4VdoZtJgDo9bdRlPLT9MhVessul2it/a4ruozxmDxuN42Z6wwGrkeqiJ0K6wOps44tppyMT0nplaCF2qLbMGjtIqzA8Z6lZQbo9kE0hlOUSxSD6rW7TPQUOZea8ErtapCEzRjqBkFZjY2rbRKbaKLaDOdXVIgpfsMVMlglPktVZf8XBrWaI7D1UrQWf6N/ZTObsaUOtAnqnotFaRcG1itk85e6rJVUu5AZcNJQ7kztX62fiLnWokld0VRplYYvNqAWlelbApMg2aROpQRbqLNZKlqO/DxnDmdM6Ua5jVzPq0477i5sUxhUlVP8Jr5uc7s64F1XToZAM/8Pc/4HkbDh/yM75c9OWqG0LbomKYDuAbXa9HHEDxj0IbjmDPGwC4MquaKK+e6krvi6TCMKtkfhmvuVzdmX9VPNGXOrdHwfNMVlNYpCOKMAlyuS7yNaHPZxkBWlLFr2J7BJX2p06D9mBTgNl0dakSopYNJXR3dpHVVrIIUzlju9gds+7hYA11Jp0pFMWrvFteuZUFty4Rp7QpS0/+7bO9Cn8HFWBJdxdO0oECoNNM4utDVSApiGfTCb139YPrFbrq0O1QLUgkhMKd4VbpIH3TV0qSWwJgjS0m0op+esaLlBw2WpPa8wWieoxWQLZ9QH2e2ocI6QbaAbVHbg1hLjAtiDINDgcGa8SZz6xKXmhG5kLNjjZEijsN4uDLtakPIylL7np/iDK30Zk6xev8NoQN5/R6u3WrRC3HUiqIZjnoGKpMYnObujF7vT99VowFhSFriE6y2pFpjdcm1A8sKa171+bSe0q1dg1dgmqZ3dCwaQSCduXaiy5uei8qG266w2NoohzCgLLQhWEcZR/23qz6Xxip4WmpVCyfqBFAFclcldwKl1KI/u+2fQat46zsorArl2j6CKLk2yO2qAilFl1toOK8/n4hVsqqgSu7Bk9OigeciV8JQWxf1PVSwr6tVun9UOiALmrMU40LMSXOzetmXMw0xjfO5comJ1jKfvpx4dmt5+yH271gYBsduEgZXaXKhtR2tDaoAzptSOlGr3tlYwxoL1nie3zzXxdDqM6Tn0Kbe1qzT/TDpO1S24HlHy4bD7lZLn4xwe7hF1aHt+vnTcieeFPArpQO+gLFKAlrjFPCsmjPqvCcME2WJGKdgt3cecreJgT77zvQMQ505alUEcGt+1MgVBezEqq2rVjSXUwN7rupR04kbPdNaJzeEUrWgTTOv9PtqtWl7sndIz1irTTMnW9s0oz2fRwxIUYVTjuytR0Rn41oFp4XPrDHhwkhNjVQz3o2q2mtN7YSdiLKiS/LoDSt9SZEeS5ILhS27bztrO6jXwQKNjkDvg6YAuaqDLMZ5nPPsQ8B4T1xmfPScL7NaBI3tqhZLjA1rVAHsnMM7obbUwQ79vEFnAyFyM73i6Tx3S9+mkmpdDSv9BtzuBr2vnAjGO9r1rurEvYEkdeOdsXDdL8gJFwZo+ixpZIoQwk6dKDWpkrFnZG4K/tq04Ewzw1WhVWvBW09tK/R71lBJtWlOpqwarWIMsYMlTRTcKn0+NwJUJVda2eJJagebVG1Zk0b30LKWk7np+hkVY6gp47yKJCxoDIpzPe+waYNnq1fQ1tTG4D3WafxJKWAHrzN9jgQrHM8rObWParKmAFptDecyk0mAw5SoERVVv0tvhbU2YkU/Bx9U2YjOICVljUvqtlDpJEYzrrsZehmcH6m5QM3EmnshViYMjVy2+6A3zYqWKuScEJMJMrOTB8qSoDoMjhwbjQVkxKD3c6uVdrXT6knrncdPO3IpOKOW8dqVt7UVjbZBM9G0vKTP1n3mETGYut03QKmYqrtB19bRqEoUNlXG5m32Rs8djdHJGt/TiYkim5JS7ynbd4WGphko2WVVsWcsg2gBxBgGPnv9gsenMy2PCtrWig0WkzrIKVuunt5DDj3rnMDUs7+9VUUuBm4PB93fimaHOTGIaVrW4R3OGgbRTGVrVQRhBAanAOnoDDYMrCUzBIegAg8xRttPvWO8vUEy/Pjt71gjHJ5/whdffMp83lE+e01dIzEmDiGootrqLpI3JZPVckb6e2RFuDw9ss4z1QXK5GktY/0BPxQu88rOihZ/hAGxlmqkA9f67BrbowJiZF5npFQmA4dhorhGcA5v+r1mhJQzznr+4Tf/yPD9d/zv/o//J569+oKvdge+//4b8nLkMT7xq3nmv/03v2BvV9K6dNGS3gH7aeL2xeesa+oxVFreUHp0gfceSlbxSo/PKE330tLB2NqE6fAS7wLVFKRpbJdH55WUEjjLOE54F4h5VnBaFNT0wbGs6nBU5bRhv9+pG6ife2KMtlwbyy4Ent9oO+0ujDhjEDIWS8wrjcZyOeP22oDrg5aaCdrqLl3JWXOi9d0BUeVqK0lJltx6OYWKCUzbwC21+2+A36YyN0bv/+1u813ooFeJvpnbfqAqaMF4Q0lJZ00r1GZ4/vwlD/c/cn46qr+iFE6nR81dtvDJp19SjZBz5OWLV7z98R0N+P7b32Oqkoe1JNLaePb8EwqN0+nC3st1jtQfUV1EtruBnDUk9B0cvONyfmKdH9g5RzW1S3D+/D9/voIPuoqjoi7D7ZAyPRel9QdLFShms+qa2hUsipiEYUeMarVrFfw0UXt+mDO9eMF5Ss09e0bhA+sc1mtLmm2NZX6Emrm9vemLbLuqBlqD/XjAWV1yYs4KuhiL6wy4tEKKieANIQQQx93dc0IY8G5HrQsueG1cspacIFfLbj/ycP+BRiOmlZxWhmGiCPjpBdZa7h/e8+z2OdP+GdSFVi3WDsRY2D0LlBKwbket7/XnS+mqjDFOm2y3MGVo1Ca9FTRhfWC8eU4qhcfjE34cePnJFzx//inB7zg9fYtGLVUupxVSZtzvoJx7ULAy79Y6gvPEde4vAV3dlahVAT9EB5oUszaMoSi1M0LJwmHc48UhRgtRMo1YGrEUdsGxpISIxUjldDwRzJG722fc5idemW+Za6YmIUrTFl9zg5u2FiEdzPQCVaVQ6/bU1nQwkG7jaFVVcWrbUAZFmr1mGwiG3BcQMfTMEq4AU0WrvY0x3QKp/5ngPSDEUhHj8E4Pmkbr6oneYCdaEe6cp9h8VQhJD6NtHTwTUVvyFUCUHphNtzbW0v92SB2ALkXb5WqrSNH3w6hXXfMJ0AHTWYs0VY006cOP0X9DwUEd/G1XKhZje5NsJfWcNyOqFGi1IM5erQe1t29teQfagrYFTitg02ql2Z61INIVPqLW+wa1V7K7pkuTKvS6gqLULrPWkOnSGi0XTsuFS4rc7D3D2Hg6ryyrcLNXxdTxvPLjuyO7yfD1px6HpdVEWmfKONGMQVrh1n1gzyO1eQa7x3iDpEYquQMMhVpaZ8LhZpo4DLpE65Dk2I96qQTn2Q367ORcqCkxhYH9MDCF0BVf0m3rfRjt5C1dpUB/5qSDiO1q5as4cXq2CoD8f7S3tqoXiLVaXNE6c3xVU7IFzaqKcrM+0RrBWibvCWgQcS6a04gRlhQZg+arXc/7tqlITWedtWms72h8bLTqw3G3bWwsdxO1K5p+hlmvZ3oqwiQKIKdsaMVgu6pHHXdq77WiRTEIqgrpC6M19M8WYswsKSoYXAoadWFYU8YZwZaqlkrvqDRKVuVJzbCuETvogr0WBXycugAxtRG8ZpSZqvY9yZVoDKEVngfL29hYl0WHEm9x1pOlcusufLJfeb82ljhzSVPH19sVYAFdiDZ7D21TJ8n1zgN6O6HeZ7kvur6rj2lqWxZBVXCu9AzTLhToFhvvlBCRf/b+7/fK4nprad3s2qzBoERZmZUN9c7ifcAXHVSmMKiC0Hvod33tC5tmpGqGYk19Se+/q6qepQ/eCvyNQ6B1oAP5+OgZEcS5a1hxS6oCasb2W2A7Mz+ew7WDL7UWnBs0l9Ua4pL6rKLK6C2TKfeymVKK2puomKDPcKlqgxERvAgxLqS4IqPB2cD2DcaYEdvVZ01/jm3ZrF0lWlvuOY569yxxIQ6FSlGlsW989npkiZZSMl4/fl498z3MnGsZymVJBJNwsijs3ezVktl57KtSXIfLj7lSreq7WJuCpq0rTbbzm6ogmd2WWdEiAMXUDbb/vaVkclWXQGvqxMg5d1VXoXZiwTqn5Qs95J+mQJh3HusHmKNapn3QzNzL2nVCatfJRZcMJfdUSttElZgGjZbQ6Iku6BTzkUwQ/V/qc7KVFYiqJ6vOUpslsweG6P+Nsog9O7GnrLYOOhuBoqN4qlkHeBpVVEFsncWHgZG9EqTWkC96pgRniesZbyclL9haIj+e68r6i0YRoCqvFf2s6aTZllGlVq5N4ZZVQVTrlUAC6fk/H1eHnAvGB3aHF7ghcXGPcD7SmiOXSExPSvTWxN3eYV3DB0fMhdO8MsfMT8Y7PeMqlLLq3Fr0ZzD9QjNWwPbgeNnIx4/kYklZM+zQbCJMz36tDbF9ZuiiAenPkpaECSIZXFDLslXLL3DNuAphxFgtsAnedWtp0llQKrWuUM1V6dpfUL1LaiWlhuuZYEOYkFauYJ7vziBc3390GoXtXu7CglIyYoVgAzVrJEjOSqgrc1k1KsI5WlMVSCtCMfosDVMg54aYVXedTkAr0aUlgKnpeaqkgv5xzhNz4rKo+sg50TiWroptVVX6ZgMnjZJY4pzmaBZ9LkebaCVh7I5YMtIcpgoijpgviPXUEjFNa7OkqUXcD3ti1bZM8QoMpzVfn11nM+IiqThogYbHdpA25Uyrars3NbFGKNl2de7CzgvLGjBhe470dyg5YcRd74ySM893E8s8Uyk9F7fPRcZ1UF3v0M0JpgdGt6MiSjC3CjkxWKvf63auSiPWgtROaFfov0QnhtsVPHS2MXgtuChVSLW3haLqcaF25Z2qUYMRDiGwnwbNshODq4XT/Qec94ze6JnVs39puT99uoM700i5MQxeH7NmGbzVfNucQZy2MgsMwar60wp7u2NdLwSnKqtiQGLV9wgFHI0Io3NUo1FB4zBoWVvT92Dqeb70XL3z/MT9uwf2N3d8cfcJzk+8f/8df//LX+KGiU/v7vj09TPU/NQbqa1m7lkjVHHXsh4fAqcYKVK5ff6cu/2BvYfdtFMlYVeIWQPWOnKOxHXm/ZtvOASnRUPSM0xL1fs3J17ub9n5rqzPq85XVfe9KnqRWOvY7XZYZ/jNr/6BEEb+7//X/wu1Fv7qr3+BD47f/OZ3xPnIbpy41Mb+8IzTnMj5yBojx8vK7fPXzMcHnHW4wx05rkiJtKZFbfvpoPEl60VdLx2/iEXJg5u7F7im5NRyeSLV0tXE+n2KtQzDpHO/1Ty8adphUySVlSTCzagk3nnNjF4dHakq+elNIXbSahpG9lkLl+jldqKLsjrJWqW2hA8Bsb6Xz+ldlIrOgZPzLE2zZlurpFSw23kjphOFqtw2xiLdeWlMt+5mLbTMfR5RdXbrIGLPVQSNe+puOuvQGDBR8NyJYIMnkyE1jB8Yw45hvGUIZ47nR45Pj9AMu/0zPvvqr3n16Ve8u3/gxYvPERP4/Mu/5ofv/8jD8QMvP/sJ1MQfzkcG2zg+vMcOA3E+MR0OGgPU5widt8rHyAS4CjSMURfrvKyEoJEV4V9AvQf/AgCfMRbTRFsCTe1IMZ3N+pjDZKxXa2uwxDgzr0nloaYx7Q5YN7Jzhhi1PS6EwLpatfr2PILgA8taCV6zYraL37hBQZ08A4XqMhRopfWBXQP0g9Uw2ct66VkrhioayOmCZ46ZYQhgtF2sAcEHUhXudrc8Pb1nmg4YMZxOTxxunuGD53h8xA+GdVkYpz3ucmSZF+7unnM5PlJEGGvB28KH+x94/upL3r/5HbvpBkQYBg2jjMuZaT9S08T5dNYLNyUwDuscpavDUlrxQbBGX8rawNhANSOHceKLTz/lcj7y/ZtvOR8fKDmym/bUtGJspZIZxh0iehEPw9AHeR1Rcs5Xi0OpVe0homBZzrrwWmMwwdKSsMYCtXAz7LBhwIjrLyz4DqaOeHZBWZhY9OHOpTI5GIJhMJl9vWBywZZEK5U5QzEBaZG0ztCsho1Cb1WiMzoGEU/MKt2ldtUV0ll4izONwWmld+tZOWJ0GRKzhd+aribsAKCoooqmVefQ81ygK7eMPmPdfmI7TKM5clWzXMRTm/7exnhq2UpUthwlXZZMVybVqnZVD1qukBPWWWWbq9p11qgZadKHekRohqvVPRYt/si5kFvtjYyGZpSJwhpa6gqAzkJraGmloKUta0wdeDBd3aJAPJ3d0YML/W1lU3Go0sE06Yuzfm7GWOaeTUMt3arbl++mQafiBsz/9+IiKBBoQERD8mvTn3NOkaenM5eY+PCgGVNbPs7hEPjZ18+0CS5WqBkZK5fLwqsXDkxF0onR3DOOiVoEV2dKTKRUSMtMqSj4y5b1E7jb7bQd1tgeVq0ZYLXbg7yxELQ1S0xk8J5pUKu3AmuqONHnTfrCo59hq41q9HsTqVdVpeaz0FUnQhHpM6Qh5QVxjpJVLah5eY41anh4LQrS1lwoWVXAapNRdU0DUsm4nHtRgtpaQvCUDk6IMVoGke01g0YZ1q6Q6QNyEKclFbVdv/NtSZKrerOwpsTeq42glkYu+js5sUhOlKaXd+o5b91odX0maqudPFJipuXSFZH0C19zMYi1W7w2Rr4oi2oU8Dei4by72xe8f/cNNSfiUliiZjDtXOnfUemKqG4xa6oE8N26JyUx5ERosBS1hhmrJQC0SjCVbAovh4XRLjwLA5HK98fMeWnsXes/EwwhEJpHZO1W6c6kGrk2J4toBmlwXt9X0XDfWhSY2u7fDTA2Pdfzn1setkEQVNFke/7VYFSNqIy5PrOgClBpagEJ3iv43Qyj96Sq4eAaJVOuSopcCqXVayvb1kDcilrclLDqv6NsyqIO0HVmNufSrUEO2sfyJl38bUdB5LocbWevvms9+7WhOTWt9OgCBQ3EaF5YqXKNCqi1dfdi7QCqgqvBO1IsfQjWRUqsYVlOiLWEYejPprbRtqJtoVe1DNvvpct7itosv6SFWlSt6azltCx8OF04XWZVv9WGSGMIlnUpxFQZAsRcGYPlkBP70WIkgyyYNqiqCKeB7f05sGJZYgSvuTO51P7OKBjSpHWlydZq+RGsz1VBeStq11PVm+batNa6DbZdgbhWFbzIuSCm9YFe26Y1A850pR+aUUtXJYhFnD4fIo2WEhs6tym89J7Uf9/1TKy1ZH0PUaZ+TaqKUdDsY5OstQ7nPHXo982VYOvfPf3faJuddfsvteMLqiihE2ENHdqNtZS8FRrogrEbVZnXqhZOxBhx1nM6PpHygun33hACGW2QLE2BE23J1cWlx5fqveoCN/sd5nLmcjlrWYCztNLA6kySu3q2lHRV6hlrOzjWM5HRmVlB9ELLZz68PRJTJaWoqqzayEUBoikYnCsgmZQNwWnRRcyV/eQ0GsZO1FyJScus1txbnY0SUs5ZzdkzW25n7UPrdt60Po8XLVuprZeNKECyWV4FJS1A7xJvFACnFrwLeiflSoq9fdk6fLdhayunJTeHM0py5pwIw4gLmqssorEXm+pRpx8ldg63z/DDyIc33yGl9EVYLZu51g44K14XY6akivN9/rR9fixKvqSWO4cpncRUgnCOaweXtRSm4TpIpUpAXWzVdhmXnmEd9HsefMBKZi2l5zLqkuus4EbP5TxrXlhKDGGkZj3rboK2uKfSoApWHHWpGnXjPE4q1DN7nznNldwcdhgoZIzoOy2NHv1RKKmQatH5KOxoduyxBYmck5K0JVKlksuKtDMiE7UKBT3rUyuIxs6S80oQPftjqqxJ8+RGyex8YjFQtrtBJd8dVOsgbV45Pn7orc7bO0oH07OSM63PmtDtgR8VgaYWQobRGVX2ixIadDJ9yYXcNLfS9rPKNhh0qiPTyK0TYwK+Zpyo0+xpbqo4zGi7p7OELqqwBkZneTmOSC3krXCtNXxX/Nlx1CzGvm+rpVmzyZXgavhBQRJPZdrvGIPHWceyLhgxLK0RY+azr7+CVplPD1AawVQ966hEKlIdZgi6u1h9FqdBM4xbKVhRVSNGMBZudiNrSqT+XrnW+PTVJ/zk5/9rSi384y//icPdS774i5/xzTff8vqTT/j06y94ev8OyQt53eKgNE5jmiZyVQIuDBPPb+74w3ff8+H9O5zAs1fPNf/SVrwzBAsvXjwnEgBtPA9BiaEQdJ92zrHWxu3tgfvjkUbRuasVpuAYhgGa6TFfwi4MSPAcnmkRZ/CBdTnx5ecv+e6773nzwxt+/ov/lv/tf/iKXTC0GjHzyv5w4G8+/Yo//PZXrEvkq69/yjjt+c0v/2dyzdze3rIuZy6PC7VBiqo8N94xr5lljexe3zCOI1Jgt7/hxc0zxjFg5SWX0yOXeb46fGIa+7yqs4ADduOoM/U4cllnpMLz27uuVJ25mSYoWe/PGBXgjwoY11oZfQDJSgK2ourfWrA2KCBae0arc0qiW/3cUs+frkFV5bWD1xTNhC21kz5SuuqAa86e5qyK2vZrY9hsttTr7qT7uai4obRrYZwRGIaBNa5KvBktSMy9+KJZS+qik5QyMYJzAWMy1gY+//JnYAK//Mf/qlFybgA78uLFF3z5k7+Gb37POl+gJJ4/f0FJicNNY10izaF5qD3XfhwttRcfWtNRAm0UZD/d8It//9/xq1//ivX4HskzMWZyM/i2TWP/v//58xV8TUfrTVWl6qd2Hbzp7LzrLXq5t1GOQQsvjLWM0w1iAmkp2lDmAqUJN3cvaSkjzLSaCU6DIXfjntoVSypH9gy7Wy5PF10kS6QWesAjOOvxNuB9oDbwrRBzxLZFWQLvOdzcansamn2hVs7KEEYtsaAQ48w4PmMcD7x7/y3jOLGmM/v9DW++/47p5haqLoTjNHJ8fKLhePnJC87nldu7Lyh15un+Hd4PiO3hm5cL+0PGWFgvcx98GzEuHKYDa1JbyrpGzG7AuoEUs7ZoTiPzUqmiTUe/+/1vuCxnfvLVT/l3//ZrTo9HHh/fghGG3cT9hzfEbHg8XXj54nNy2it70Bn2nEu3PIyKOFuLH24oJXUbpcq3Y4mUVnqgpoP6sa2uCow9IyWVpFlGonyjNY2pl3xa0SXINA0w967SyEhL2qxLpMYT4kdaTmxrq76wupBcM2Z6W+BHfFyBED3ANGS59ptTJd50ZY/VgRtlSDCqCmh1y6xpmvFhNBtO//7alUm6SLaucLNeYceUEtMQ+nIjWKdNccty1kPRqX1hC6k3sg26AJoPUpo2Xbktc6wDMxXN8Us5q3LH+W7lFZU4d0lXPz8wWZcr08FEfWdbt+wqa6n/tkG8YRcmlsuDMr49WJfWOjPeLUit4i20Pqg648GIlr70AGcjyqJpMLQq18T0hbzUDhyrBbB10MFYw2df/yWP73/k6fG9KgBEOshI/xkKFmU245CJuXF7YzieZ8RYDjt97n788YTQ+OTlHbXC8enEi5cj63oBKrvhCZGVp5PahaWtCuZ0e1lOWhJiBQbnNDPM+Q7AbYB3z1oB6ICdQW2Qz4eJyaud2vTPXMUBPQzW9MxR6aqX1jAVSle3laJgif6/3sjk7FX12dpHxlowvUygMo6B83zuapcGLWFEBzC6hRHoeS+aebflBlW60pmK1IIP2lSnZIr+3M2a68+jz31lME6bl7sqqfVsH2PcFfjdLuyaC81AqoVb7xmCwJoYjOZjAtogiTr0SquMtVGs75kh5WqZLt1C0FohN2jN9MBawxTU6h5zu35X2qacscax5MLNzjHtb8lvMiVrQ2StFW88tWoWoxdtJ9tC5q23SFfGNiqDabweG0ksD9FwQDB+0O+vZnxrTLLwaqeDPS0SjGYDeWu52zlyUVLLiDbg5VTA9WeGzWqs7+hWcAF0pdX27G1CnU4cCORe4lCqAk92HDWPqUs4N8Uztp9qW2QGauXIKV0jK5w1jDJ0ZWFfXJ1lmdeuFtSiAptr/7sVuClOlfKt1qu601rNGMWoYoyqCwrGdqDoI7Ajm5Rx+637GbypOaWzzHre6+/jegZQa+Ccu94VN4c9Hx4+qPKz/4V2U1kAKSZqU2Ay9+d27N+z9fp+51r6oqhnkbPaEvmxRVWbSkengdOlFlpXEw7jQIqJmDOlLsSSNeQ96TPqrJYSpAxL1HPeO0NO2vK9Hxw3e4OYQkqWcRCWmDGykqthdAMDBzZVNU0oVOa0XjNkc9GFVBrEXGiuq22b6N1XuRb2XBfl1qCp0g0arekvWmu92ryURdezbFNf6afUQ9f73VZy1Pt1++wBbZdvUAqtZloxiPO6xPZZ2Bq121k36L2Z1k6OVJCPZ3JFQRQNgi+0buHXfCqPSEYo3X5vFOKU7iSpWgilAMmmanL93VPlnzMOpOqCmLWsQ0x3rEi3b64J5wdcBxVoqjTeTQOnkxZTTeOk6nA0d8n1LEdnLabnewqqglTgXMEOQ7k+29t3vDUji6FbeunEj5IaYhw1RwQtw9AmeP39zvPKeZmJUe3fzlqsH/GDLonrckRMozZVNC2pIs0xjaqCSjmzn4RidAYK3hGL3g+1ZL33ZWvG7eeZbPlSAjX3L9h2/rDpYn+NVmjXmcb23FsVBG6kqJKpmzJ+yw+21uKcEpHeaZZw7QCBdNWpsbr0VdOgmN5sqjEvtWfCtbwRPSiRUivSlKSooi2qKkBQN0Sp9aoibK1HFaFzspZ5aO4efR7AGpoRclcbixHS2rAhUAoYacRWsRRqjmA15ijnpPnIRdvgdVYtmqdcK9OgrcAtZ3YS2e8v5FxZjP/ozmgeyD3frdGaqrr96KhrwNWMN09IncnVUHKlGZ2NLA5xqq50Rgt3TCv62bTGZU2Y0rM2c6ZkzWuuRcUDmMTgHxjcPansudQ7crmlGat/v0EJz6auDSMQo4L14sC6RltncjoT/C2I3hubqETaBtI3SlzJOTHtDgRvmeelE/C6cOesreuCYGq7Kn4qMDZwOZMKrDUTk2X0TrMlG7SqBMPOCNYNnNfIGLyeY61wsI5oPceY2FnDy7tbWq3sdjuc766MlEl5INXKbhx5fHygCRzCwO2oQNnNNFFSodbMYbejDTs++/xL5jmyXk5czvfUUnB+xI0DT/cPSIm8P54wxvD89pbPXr4krgtzjDzfTUzjxB/ev8M1x8//3f+Gllf+8A9/y2gcbrQs5zOkhTVaah11JogrtcG4P/TyL0vKmeHmFl8ia9Rc2f040kpm8E4tofOMSOGf/uE/8+HDPYe759zdfs1f/qv/Bf/T//g/8PzZMy6nM/v9juWSkJzxLpBrYZgGbl+94unxgbgsiA+kAl998RVfOU+8XKi1sNvt8FKZBk9dz4TBs5ueEecnvIPDbq/5zsA0TZ04X8ilMC+R0GAc1MLsrGIamhUO0lwnwvTMWJbIX/zkZ5RamC9nnN/hQyA4S4oXot3xi3/7v0KacHx84Ls//oaYFETKyxEzeH7+83/NfHyipMTtfke5ueWLL39CqpW7mx01R+b5xGE3cnu4ZRhHjGl4a7pooNJqRHhFGHcYP1GqXGdzMUK8nCnLBV+e8GalVS3AKkDNasPOTRATuMwrT+fM4ymRUmaa9Jy9ORxIRfN3tzt79LY3YiugnHJj3N8hP/uSzVa0LDNLSmoL9mq39l4BdWlQjWW+XFRQVDVXWsTiwsCaqmb8CRycQyk2vY9LmjlfZmJcKCgBUque57tpx/l8ppTKtNuxLKtm83nHs+cveLx/R6oJpFyLOIwIX3zxGb/53T/RWmV/uGN/eAZ+4rnfUfPK+XLBh4HHh+9Z5nvGccfTwwf2057p5iXv33zL3X7E1MKS9M5QMlzzh8cwMEwT8/nI4XBLXFct2WtVS2dIEzkAAQAASURBVE/dyH46kNdIWkVJyI1h/zP+/Iso+FqzNOn+axEK7QombFOvKq8qw+ApGXJzunjaCREPWNww4WzAe08IA5f5rAdtKgpCGCGYCR/2lLLokiqWabfXbB/jrtXEW2uXcwPGBmwH+XJtWBOIRcFJZXgNrVmW5cTz/S3ruuJ8wNeqbPm0x3YmdNrf4IeBUnRxmcYb1rnwySef83R85HR+6KhwxDS4e/4JccmkNJNL4mZ/QMTg/YD3AQ12vMHbQHGBp+NZGRI/MIQCogoBYx03t88pVRimPSF64nIhpax2A2O5LBdevLzj9McH/uvf/2dubl9zd9izLGeMKTjjGadbPvvyJct84RLXK8Prg8e5QMoLzhlMDZzmM37Y8+Lllzw+vFXrbjlS8olahZR1UW+1EEzAec1hEhSUEu8VjjeVu3HUhsFaCd4T17XbRRxOKt5rTl4slVjBS+PcCkIi5RPFBmDowJsOia230m1LqLL4rgdJb4ufMp7eaztYKXrAO6+Pvg4bhmulLVzZ24YCggr4bbl1+khvQbvSFU3Sl2/pQ0ZR9I9Gxnm1SohRS/C6rsrG9KHXWUvqeUMxps7Ee2KKmBD0d+oZNrXnUNVuO6Y2mm09bRByST3QuttHTJdAi7L4W6PQxvZ4b3s7Hxjn2d0ckA+eeFGJuhOVyW8KClXuVYJZGJ0Qs+9MW3cJdEuOEZBa2I+eYkxXNmm4fqX130e/p7UUXE3YEPj0p3/F+Xwm3v/YD8ktSN2Ad5RUFLgohSFYnrmRp+NKXB1zTLx5d9J26lJ4fbdnHwbWWMgtU9Ki9iULEs/MvlGjLnaFhiMizZOSBq1bhMM4sR9GtgYmZAuUbgpMbs9ft4g3wBrHOO2gJDZVkTJVuhwbo9kqG7hbSkObCXvmUEcWtwUboJIY7JYDqcrnkjI4S+gWIbVhS7eKNB16W9GWxDVSGhpZQFeN1aIZK6JtxoPVYOTSRDNVaZ2p0xD6VLZGOLWbtFapTe2Cwar0vhRVXDo8Pgz9Z7Us66r2taYKCydCypYSEqbA0TQmNO+mlKatg0YYcmUshVkS0TSKaC6KPo/K8pfal3rR7nZnhNQKrgNhSG+Mc5at5Ga0mnV1uL3DCKy5kEplNIYaExIsgzTNGqUyWSF30FqCkJKCNmIsuVuIsYaWe8h6L1M42Mo+zIymEsWAs3h2vJwCBs8oXPPuXG8hdFbAqFrOoKpKQZep2pXBCh5lag9Ol36OiEgv/dBHYFNN5lJwOTOEoMoEo0tr7pYwVSr12APRf6e0Si6aNWXQLDbQsG82dVqtGoQtGktQi+ZIbVmaW0lQ6+SACqK3pb10wFq/ps0qtdn5t7y80mMPevyY5sblcgVOTAdgcr8HvPeqcm5qvx6HAWct4zhoLpHJalfNSlw4H9Qq24GdJUY6lqVnQTMsa+LFzR2bRbOmRPOFaZqUvOwkT+3W0doqflNTGsHbrq4rRZVEK5wus54XYpiXhTlFvIPXLwIpa5u17fl+McG8FO6MZTd63lxWzmtjPw28e1gZgvDFi8oWY7E1pvd4Z5Y5EwYFRvP22RmD6RlUbOphpOdo2iuQtOVR6WeiGUBbEHZtDSk9KgK5Eg11I9u65VkJsZ5A2AdyaD0e5GNb4XKJhK5AoudaqboyM4QD1gZKWvTdN1uBgf7PtTUGp5lv3mj4vbGmh5s7JaacthWUuF5nBv2q6/X50rgZ6WClft/OB0IY+vmf+udSe3uqknja3pq6QkhjM3QE1vIi4ybGyXC5fOjfretqHc3e9SGQUu7FXp68xq5OUJWgofTsyAgoUSbG4P2ojfAi/WyAuMwMw4gPA/PlzEeQXPDBYYuBpmq/vRn0HvKG22evWZaZdZ3737Vl/Am1CWGYcBhyWWlSmeeFF8/A4vv8UXuzYXdAVLDOU3K+RnT0Dw9EtOynKMhXU6ICDo3JoAfO56onlOlgaeslBSULzqu9ydeK804dCykxTaOCgKKNs856pCrQlmrT7FgqraSrNdM6tdMa6tVNUGpGTKPFMwmDLVknw1poRe8WTb7RM1/PB7XLkTMZgwmdMFaGSueFCkvUEqf9wYDRaALqZqEXdRo00LziomTboPZwY9B8sK7EU8t8/32760HFFZXgVpbzBw524Fzp1ltVH1IbuQG54UQz7Nak2VKDW2jlxCkGzlHICZCKCQXjGtb1EkNniaWx8wYplWDh3O3YraZ+fkVqLr1JXbBkUqmk7BjMws4F1jRwTqrgd0ZYU0ZqIrhIXiPG6e8IhsfjjLcDIrMqoDsZZN1GCiiJsIHDpgmUBE0YvIHqVJlfSwcFewC+17l7sIZCpUnhlAs4y1IqtpTeOuqgVlxVYUUQo62m1VK6qt05h7GwE8NgR26f3/LJT/+S+XziMI3cNCUnbNuyPxvnpzMvnx24OUzEJdFKwQSvRFUnL5pxMN5y9/IzblCl0rs3f6SWzDjsWNbI3YtPOL77jv3z5wzWMY0DL56/Zp7PLJcj3isp6+/fs3/2nNvnrxiC4/Ht9+ynET/sWM+PnH/8Ha6shEnzRpN4dvsD490db75/yzDCePeMz//qF/zw67/j2RSYTyekFSWsimghR7BqI/eBhw+Vb/74B37/hz/xk5/9FT/9i5/wk5/+BfX0wPn+AwY0fxj0u/UO65RwGIYAAt9++zsKhmHckVPk+e0N+/0AWQsvfBhYlpWXL3fsp8Czu3e8fv0p5w/fsxsnXn/+JU+nJ2JtzEWoMuBqxrWIN00L0qoSS8YaUlS7vHeW+fjIT//VX7OuiVwE5wMvXr4Egcty5Ntv/4CUzP27b/n5X/5rfvWbXxNT5r//7//PfP+n33G3H5ic4I3j9vMvaSmiJXMJWy8YyTjzhB9ADgUjM609YKIKaGjlKmwxBpoYbJ4wboDaOoGsBNdkLOIT1pxwouSSbArVvn/q1rLS7hqtjcSsxNR+CldSVkTAOlq/tzX+oZMwBQqGYkac1XtPmmajW6sRKpR6jaTRLHdVqsIt2AB2oLkB4/bgdyQJaq/uroGSEw3BTwe1tNZGXLU0J8WV89ODCsYEUm7UXBjGkfPpEejER0q0WricDM6uxFqxxnG7f877+2+AivcDyzpzOt6zuzWs68K6zh1jCtiszs6HpyfevP2R/W7Pv//v/ve8/vwrvv/dL9lbIS0LznktWLSeT7/6K54ePjAe7sjxt4y7Pf74hI0a65HLzLqcoK0f7+kNQ/gz//zZAJ9mFZgrYx+C6WzSZi/SIoxtmNGMCF0QnJ+4efY5Na3M85n9zR03dy+UAbWWEEaCM5zXe2JtDGFkGCemwyc8PfyAMVktXs2xH3aU/Qvm4xuoajM13rPf39Ca4L1e+E0aYdwzpUpJF5b1whB25AJrjDgf1EIgGhZZ1sTjwwM3N3tOxwtffr3n8ekR73cs88pueo4PjQ/3PxJT5ng6gVhSytzd7lmXE6VVHh8eMGIY3Fc4F3DBM4Txal36w+9/jfWGMOzBQJWF0C8gMaMqa8xIq5HlcmI/DphRlR9rLLhxoLTC+XTmZr8HGnE9MTuUsWLh9uaGl88/YV0Xai1czmdsSzpQdslxjJkUI956xnHP7bNPqNVcWfvgA0n0oq1ATajMvBQimtcyekOQTdUJoRkGW3DBsqLKhtF7Vb81VVCaGpGycI6J1AqpNmIGKxnazLKeaf5GH7m+dJT60QaOdGCutQ78gdBtX515scZSsioKbasddP5naiyrFkQRELtZi7q6qi9BGGXNlaUVtfoJKj8uWtYhpoNcOkP3ViiY14XcmQYd+DRXa7PhpVLJrS/WMTGOWoleq4JBMat6TaQSvGXpwJU0ZSxLUZbU9QV8G1xbbVTKVUXjrKfaQnMKfLJZcAERS0wF6/z13y1VWXAttCkcXONlOCqbW5/R2F2VZXSLn7GqDDwMAw+X1NUfVq2vtXYLaO02QN+VCo0mloJhybowOisEAUomxZWneebDeeZ0mVWt0VUzr1+P5DTw/vHMOAT2Y+AQdpiqjdNNHPO8UrK2pL7aHQkmUoLlwyMYmXk9Hon5oEpK0edyCEF/H4Cmdrttga/o4GjaBr5AM9r6tGU+aR5YVlutfhkKxjVV0wTnusVEaKZnF7VGbgqS1qYLkcFQc8YOozJWRa2kNasF2VtPzglc/1mNQXLCV226ctbwdLn070GzeHJrSG7UlnixH5mc7c+64ZSi/n7OE4yCZ6YrZjYJvbZ/NqxoE3POpYMK2qpmt3ezNdaUCQZKUqvWYAxjTRB2nC9qUd2k662qJTTXQqgV3wrZFDKG5rZMJv3spS8+Cho1TKvYXPjEWJ4MPHW9VS2FbHRwLA2WXLFFW7noSqRSG9U2hqDZfKYH2DsjGN/I1er7rvIfaBqGnaohZwWa9pNezNVqjtTTWnh9qKx4ah0pYqDseBZ61p0fOBYFZUou18bOVoqGHFsFjm0Pq06xUnLVxU40D9NafXc1Z6qDa12FYHrGh0GVc4PT/FBvbG9qViDFGXsFGj4uRijIBj2zRlW31pmrOt/1htRgnZINrefMod91sdKt5qp5UyWrAkFWDDhDXGMvQtAICOhqwm3AsV0BJipQzFH/M6WDBFsmXC36HOhgVJmCqrZTXknFUkukloR3H/Nct3dyixQocVXlUQfABu8R65hXBVfWqkD56FTZPI4Ty5qoRYGFrZCmdBBV/5VuM0YB09otzM4F5mXGD57UMqd55um0subE4A3T4BgHtdjGXDmMFu8quTRe3g08XSIilWe3I5MLWFJfqHXZNZv12zvGMVByvSp7NbC7qP0WndFMp5yo5apc0y+jdUtnz4mtjdLzDmtRQKP1f09VUnRAx1zjL+jgtDbW1qsSwPYCD20aTmrXLFFLZVDCuCIEEQ21lqxRDF3RZUoHN4yFWghG7f4KnAq9Y5zggs41phN7LGwkoIJ4Gu6/lRUh9VpYpI+etkrWWvGi0cCtbI2bmiWpxJy5Lj7GKIt/Pi5YUdWcltJVaJlhCjijlndVPteuei9UsXq2OlX32SDkuLLMC9e4gk4oCmrxFNG7RuehSozrFWCmA9NaLKHlVtYrAG+KYRr3PY/0grRIzQuuF9AF7zgvEecGdtOB+TKzrAVjms4rtTGEHdIMpSl5uMSERnApuS6y9nusg8JULA56iL60Rk5RwRe2JVUBs2q1GVdBta56R4PPERBvr2rdRo+FQO1b0tAmzKJ5j9YKKRud9Y0gtugMVAtVoMZMzZnd4LksWshlaqaUFTdMXNKqGaO5n19GATvTM2lLUcIDUSK70qNTrKXlfCVDnKDi06rAWqoFU5VwQUTPBS94ZxisFv0oYNf0rjcOaZo3FrfZSzSLSluIK857SjZ8eMicLh5rKl4yrRm8M9wMmcOg92ApjeY0z6+QqSUSMZS455K1OGdNhTCh83XNlBI0XxB3JURqyWjrcQ+gbzqvbvMAral60FZqMczlQJZuNTcZkQRdre5EAdh50QZaoZJTJxP6jElZMFaVeDe7nYJDzrH2xlwDHMaRJSWCD+y8RezA4YtnvPnuT0grDN53MM50UnXCDwMuaKyUdUoSWO8Yp4HDbiS4QKmFWLICfcYwDkEz1k5PiGjxiTfKGhhn8dPE7tktz+sttpd4easKN+mzUjMfbd21akSUnkGaRa2Z8o5UGuO40zzvnHhhXlFzxYXAMxcoMbK71WZn7wLTbs/dixfk2rg83TN6Q1xW3ItbTDjgiEy7HX/zb/+XlLJwuPsCS+If/6cP4JQUOJ3OeCnsnOXhhzeY2sixkPM9v//7/0Q+n7hIYT8NiOjdLP1dpDaGaaL6PWG3R55mKIk3f/o9X/03/4b54YE4P9FDO7FOgXnvHCF4Uoy0XGEY2N295OUnkfuHe+bzha8/f818euK+JHbDyO0wEAYPVAbncV5zsBtwc3uDDyOH569Za2OMwGNivrxnZ8GFvtNhGIPTGRuoTsESAd6/fwNh4D/8h/8DGcvv/+n/xTe//Uf84Hn15Vd8/ZOfsrz/hmfpLbenwL97XnAOzB//Iz8zlT0ByarONQ+iqmSvzkexah82oupVeiFiaz1r1g+IG/QuRp0TjYLIikjEGd19TVXbfM30PSSRmz6r0kkzzUPVXVqzWg21XOiUH5fLWXdLHQL6b9868dfz4+kxHEBxCZcrxmgOoxWQzFX4QN0iQ5R0bH0GaG2l5SOtCKx6hktVUQq50dyIVAX5Fgm4w113XTVMaUzW0cqRiYYxAXYBMYPO4ekRjN4x2WR2L2+47CwxVdyw4/D1z/nw4UeGvfA3P/83pOYRN1AKzMtMySvZCOfzE/cP95yPZ27uXvP5Vz/lbpmxdeFv/2//kb/6V3/N69efs/eOzz//qeZwS6PEmU8/+xJjHD6MrIdbxnHi5lb7EqzRbMnJGx6pnZQSjUz4F/jzL2LRtf5jm5i1npQWrNXXwRptj2ldemmMocQzzhv2YU+Y9hyXhf3hhjDsCOMB2kKhcvvshryekX64l9o47F4w3b4ipQvL+QHTs1XCMCLykppXTvGiS2BXyg1BD2RroKSCaZnj8aGHcA7cHF5RgLvnr3HO8/bHN3zx+Sesi9bHD4Nlmc/dZiLsdjsup9CDfIUPxyOPD4/84t/+e35xe8d//I//A0uKuNlhZWS/32HshdeffYEPA6fTE7vdXi+NYDV8dRfYH57x/s3v1EYTI3tv1Vc+TrgQqE0/h6fHD0jLTEHzS4YQsMMN3/3wA2/ff88nn3zNz372bzhfIs4Vclr47tvfcj7fQ7O8evUl+90Npayk9cwgmmfineOw3+MseDdwwIL1TLsdJe36RaZBn6kmcmnXnKshDHgzoZG0Co5IBdszx3LNBDdw4yc0jlbtHVYsQxjZtRM+HXnqNpnH7FlKRWyhlUyx9QrqbeAVoExpl/yanr1j2taSKLSWNQ+sj+nOB1Ker7la+swajFS87W1aTcOK9YAq2OCv6jX9N7pCwQitqALDBf05alG7UsuV0RsQ/QzXFIk5c3y6aB7AzvWDVa24OSvotaSqKj5v2YvDsrLzmTkbVmnkKpSSyKlQitHngoo4zQPc3kn9H+pV1WKtlpFsuW6aWVfZWo1KKez3O8b9niE4DEJO3frX1PrkrMqCboeFYFecE2qNLM1AtdQWaF1VYTDkIjydZ6oJWqzgdEhNpWiujPmYEzevmWmyykyP4ZrBU6pmPdZWqVsAMdp+ucTMGiOUym43EJzl60+fs64J0xqjMwRrCIMCNoM3SIt4zrT0wJuzELMlZTj4yIvpR8xd4fv5VjP1uvWldsap6Tapl1ktCro1fWYKXe2BUNqmzeSq8Kso0KgAa9Nlr1ZKz6HKqWcNNg1sxmrLV8dDFEDv+TmlVlJOxFzINXMIvhfcwOQ952qwTu0wzmQomVoyk7VUaznHnlNlYM1qSX0ZDHdes3gWhHNquow0VXSlHMF4nHBVIGoNvbbeQse+lWLUSIGkVvNWKxkwtWJKY2jCVMGMBnd4wXE9Y00jp9qbM1WNk0tlaJXaVNlnpJKq2r6c0WDp0tVINLXLuqZlIjY3ImDEqhXSiIZLG8NgHRZtPz/s9ozek23qStjKGhM+GHZSSQ2CWB1avKFimIvmAjoao3EsaQNM6hUQPK9bYyjcOChiOOc9RSxr1TtrZyzROHJUZa0PAWoPXJced2G0WS2uUZ+DqmCwqjO7VZquxqsVyeVadlF6jELKUQHBoD9n6xb/WjK16fJrhh4FsBECVcHlnLIqur1lyyFrVd8JYzdlYaGU3g54tan15Llun9yscUbQ5dZqFlspihZrgHN/2DunvGWHbQNi7dlgmq2kS9727/murG7Ua8NoGIOeN+JIa8KawjQ54rp29a2+14g2z4oT1tPch/pKcJ5GxUhh6ArweVm1YMdrC7ofPE/nC01U4dpQhaFmV9ZrI6RrHucdsdttjVF1oOZ+GZakFljtIBDOc+XpktgNVkHb2hgGS10rzingdJg8lyVqRmK2BJfZbP2lA3mxVpakYJtmoVVlrjvIoL+3BlBLf4fFCX5UxVp5Kh+Vnk0bJMX6K8Bk/t/M/devZlma5of93uW2+cwxccJkpK0s09VuhjPNUWvohhQEXUiX+h8FCAJ0K0CQRF5IJCGQo2ZPD6e7q6orfWSY4z+z915OF+/6TrYAChBZNwqg0ZmVEXEivrP3Ms/7PL/HNkdj+yhLzU+Ov1SqNjKj/Ep1fTYmrLNYr04la4WHm3fMx70+k7YCpzNlG66VTMmtLKYtiicHktjmmpLmZDWWTME5vRQjjTZoDMF3pNicfCgo3xiLJWJrQ3BIk82q7vfOWnUu5qgth0mfM9tKbWrbIwTTWjjV7VYSCtJ3nrpkap3BeLpxTTweSTGyWo0aIQ29DpfjomJRw9pQC2WOihZpzemC4J02nRqxGKMDzJjiaRFWN90Tpyg/tZTXqq7Svuv0MwpakGERvPV0w4qUMz7s+PrbGwRhjjqULymzf7xDrFEhksLxOLPEAyas8Z2nk073h6eBoeBCoMuB4zzp0Ke1yT7tFUWFdicObz25THiB1dklSGB/PDCne2pSYHxK+q7EovuwNbmlI8rTwDzXgukaj6l9Jtbq8+bDQIlJEwXG0YeOeDyqY6/x9Zac1U3pHSbpvcH1imqANpy0OmRKRfcgHXApY1ooLJLbz64Uq3bz3Aq8xNnGhi0aZbUBYw1l0T11yQXEMlhtsO07QXKh5kySHuM6TNQ/c4n6c3MuLFHXoFwzuWZ837O/h3kRUs1IVYFv7D1jV6glggMnpd3dHtVFg4Gsg5eNhX3RhviaF3J1FKcIC2phno7klNTJLid0QqHrOvaHibzMSGcQ60gxY0gUm4mphwUOVkWKzuhgJufIRDM3YBtrMupnLy2em2FaEjBR047NOPDZ61fklLi8vOSH775ldzgi1vDZZ59wc3fPenvGZrNivTqj35zxs5+/xnpLP3b0Q8AFgw/mCSlgRB2voq+jljg11zkyqVNJTkV5p31LEPNMh6ElI6alfCp4G6BYhu4Zy3JkiXuWdKDWqM8QIKaxpFvZ3AwNAdAWZwSDOn2nEiGrScFtdR+p1YDp8CvLswtDLQ5rvZ7p7aI83n6PSKbD8PGnF9Ta4dw1sf6A3Rh676hoydRHf/YciRfULJwd9uTjwn5/5GK1xpSq7LchsLp8xvWbyBxnfCuonFLCBz3HYizjakvOPa5aHu539ONAN67ox42mBEIgmcJq+5y4P2DJ7PcPxBh5drXisLunivDVN19xfffI61efcOweGdbPuHz+mZo4mthFBUeid4WzZ1c4r8V4GIM4PRNWMvvjI5vzLe+uP2BswThhHToVxyg4F8BarNH9IfnQ2scdzlSmac/3331DXCaMMyzTxLfvf+TLqxWvN4Ux/cjGe7wLeJfxfcA6RTKpOUEjt9LQZppq03t1qeqCVtlBB7dl2SFLodaobt3ToKcNZdWQUmj92npWay79Uktz2tunAZSczitywk+1vdXogUr59rYdk/S/NQjbk7Mb9L+TrLqxi0ZrT+c4VU3aEPs0jODE0Ne/m1iDVNPSJRYxvg3xVOSUmil5YlkmOlepbkUtFedH3LjGDx3WOBBPymBcjwkdm+2WNO+Ihz373T3RHMjznmm5535/z4s/+w+4ubvm4f6R+fGaq6tX7PYVM1wyrjestlt2h5kf3/7A8+c9lO9IcaKkyNnZBX2wWDNwfv6M882K7TjgrDBNC0MIXL/5hu3lFTnNjF0P6RV9P1CwrLcXOuQvlv1uj7eBZTmo1iD8NGD9A378wQJfblP+nHS6lvKpedK1aXptjS4rhs0V6/WWt9//jnm6xQ8dJVcurj4ix8K4UYdW1xsFUWMwvqOg8SHrApfPPmY8u2L3cI3zE2I8BaPZ8gLD6jkPtz9gcPTdFu88qz6QolrGrWulC9ZRyqy2y7AiTgc2qwvu7+6Ypz1xie2S4cnF8HB/x/n5lbaHloI1lf0y8+H2mlwSX3z5M47HPW/efo+1wmpcU2vl9aev+fDhHdN8JHjDb3/zt1xerNnvd/RhxfnFM25vPzD0a2LUrHepmRQzrkpzZDliNvR9x7jdsDse2B+0gS1nEGM5Pz/jZ5tLPv70Z3y4fsvd7TumeeZ4fKBWbV48HndMxzc4UxEX6PoNYxhwZXr6OTEmRAIFw2Z7xXp7Tk2VJQSWeVInWHOx5VKIWSGtxQq4QO8DQ9ejMT6H1IIPgojDGMvQnQS+grHKORE8NR+4Tpal6PJTyIwOjrGyy5ZDyWAiKS/tUCvUIo1P9NMGe7Ln6+LXpg5VY1vKEWrTP9HptXOC9ydHnR7oY2x8M1S8+ymWaKgnoK9ATIU5aqSjWt/wV5WSEqUW+qKuSu8tEJV/4+Vp4qESkDpexAo1JlKOGk04iSqdIZjEsUApVgGHtdI7IVqD801Qs0I2UPQYr4dKHf2QSybF0i7DSb+HotyEJeb29QxDDRgXKEUFhJgX+tBxIn2BxjA6k9mnjjlabSmtheAypgmQYlrLchRGl1mCYb7JZAzWBb3MxkTwytDprLomqzFgA9ZallwoRQheJ/G2qDBYqQx9R5XK7nhku9loOcI88Thnvn93IKbK5bZnPUaEQBDdrGuuyuswC9fRsj84nIVYM+c2YYnkgyPYF43/pA1wxaqDJVmju6VR5p1rm1POKmAtRZueMgq1NzURTsyb5mixooJIKZll0WZqa9ShU9CplxMtnjhd1EwTc2KJOB91c2/xtZozphiceHUZGLBdR9odIM7IUphSYS5Qc8UW8GJb9LHQWcum74hYHhd1WEc5OdrahDoaqtV/d6HDWWXeYRpPMSWKc6S46BtX9YAflwmsY4nqtCCr83BxlsdaWFdwBOVTHhI+ZkxJxGbVssVgqoL/U9HWVC0pQV0uOf7EP6uCKZlNKoQKDxZW1pD2Sd/JCnNSAaT3houNZ7tq7acp0qGOrSllEuCyxnNpDhgNyKg45Q1YsYqjSMrs8iJooV/RpkWETgRTHfd5ZB2FYoWlOBZxSGlxaaNrlfOW/X5B2qWvFi2GEtG/l6+VIMrmO2a9CEm7hOg+Zdslc8EYdetRVcgJzhPlp4jEvKgQoA7anxiJtTRBr3FzYl5acYeAPcU+FAqvbj9LCYHjcU+qyks8FTT9FC1vzzD6/bdGRfcUl+Yyg2XRy2MukGJWt1/KGGeoxTyt2dTKqeX0NME+iYYnZiqooGFOLr2aEan0nSf0PcY+aOzGVE7MU2MrrsA0LequzXpRmxaN2K+7jlqjrtEiLKkwUJliZM6ZKc4aAV0MaVI3rdSCFHXlplzYdp6SFiq1NTvnJxEbQUXYnFjS0j63QsqwP2b2U2kwdWVrbUaPkFiNnqG3bIYOLw3QXhQSHWpjrlY9k+2PMyvXPzm6kapAfq8cuRPWRJzFup6zy09UwPABYwceb9/x+HCLa63F1Nr4qRr1q82ZU/IJmSGKIHEdOR/bfk3DEOh36tRWH3PiOB9V+NNvoP4eVS862u5ZKcuiDvbaXArNPVebg7q2dzg4yxRPxRcGYx32NGhpLoZTTF1LawoDzflMaywUbfKkXaC885ScSEbJgs55LbppgqYzerly3uBrK2HqA74L2INnuLjk8f4DUjLzMT41WTtnNX4nEEIg1ta67AwxVj23GEUImNSwHNYgWV1FoVsrWzonOqdnn5IOTIc9roIJQ3srzBMrsAWxkZKJi0aXdMktPN4dcf2aq1efMi0T97c3LHnBFOXdLmlhvdkiwahAbQy+W7EeFdhe8oGC0Uu7s/S2OdD6kbDaMu3uSdNRFy1jKVnoxhUihbzMGKqyDi3EZSFJZl4yfXDEumCLnuEMgkPIy0JsvOeSErZWdtPc8AamgearRipFBw7PX77m3Te/a7iGiJOOfEpupIKtFVtVnHemIrlQkvKnurGnzpNyAEvRZloq87K0aLeiL+wpjtuGXlYEMZbNxRVjN9CtLuDN35Pubwgys1R1wVWr7uYlZ2wqZN+x3yeKcfTG4Ipe/PrVM/Z3C7YuKlwHR8r2SUwaQqd7Vo6cnZ1h4iOPDwkfPIcKobN0NuEFvT9VIcZINYr7sQG8FfIy4+JCJJNF2dvOBx049B2npulSCylrCUR1lhACLozEhwd9JrMWWwWn55/eZP3MvcFI5qxXh/NxSbR6JFI1VCnMkyMYYfSVlbEsCy3pUvGmYs3MX/ynf453Koo5Zzn/4gv97NF1/pVdqchQM7V+INYfMJtIqguPKfPwGHVtkMbUpAV2WhzatQby1u+lRU2cBrantkwVMkobWkmLd1J5YjfXKng7INXjfE8Ia0pO1DyzzBOxqHB4Glbw5DS3OBMQA46BueyoHIEOQUit2bbWgrEeUy0iDu/OyCVxd/eetFiG/pw5XoPJON9BdozrK2ISpuON/h3bedOYjF/ZNvATzIVHKmxkVCGxChfoEPNwPPLJp5eKzij6drqDis41rZm++0A/jAzbVzz/4mf8yV/8Sy6eveDzn/2cdLjj7Ve/YZl2PN6+J+536t7uR+R4pOsGYix0vsMGyz98/xXf/fAW6+B8e8b7mw9cXi7EOXO2WqFJ1crheGCeJm7udoRxTZofWfWOmjM1zuSUudgO/M3ff8fHn/2M3fUbRLQEyYlhrrTvmWHoOqSoYWLsB37+s1/w7bff8eH6A7/41a948eySr77+llevrri/6fno5Uu2fcSVB2xNUBNYbXXOcaFYFbWo9cmBW9pe5Zwj9EG//8c7TImNa82T8KxCsvbHI7Y9L0bLRaGlTEAkY62mzeSU5Di5KxuSQrm0PxlD1LxycvUpa7jNYoA2LGv/wwmZVSsUemqedVBs9OdWGpZIfpL7fhIST0KWrrFapGYoUhCJOtgt2sZcpWJKwxTFIzYedL1dPHmvXylWoboegyMWcMFjCpgcGQyYLpAEfFm4e/eWcX3BanvGer3mlz//Fefna1K0fBwGbqc9//l/8Z+TS+VP//wvePXqY/7t3/w1q9UFULn98B2H/QNWLOv1hlAfOLxN7IeO1dDpIK0f6cqBfP+WsXP4YeDTL3/NMi9snum6Yp1jyY5f/vJPyPOB/f173v34A+/evefs/Bl/6I8/WODTtqHagL46DTdWJ13W6NTRuUAulcPjLYKwvXzJ7fvIavOMvh8pJbFbHjQaY1UsPNtcsj5/Tk4L+5s3CAvGDoRu4OHullK05RLgxcUlX/3DbxnHgaurFxgT6HrDxcWlqs2lNpeWxngEx2b9jGnZEUJASuTy8oJhWBN/nAFpFcorrPFsN5ecb7c8PD7w/t07NmfnYAIfvb7k7bv3rDcbnl29wGGYj3t+/uUv+OG777DGMvYjN9cfCDaw7td8/unnBG+4v7/Hdw4kM/QDXRe4vf1A6FaErqcsM9P+TieI4knAuBrY7Q989vmXHO6vqUlb+FKpHA8T3eYZD/c7gve8efMDw7Dij//4n3H94YabD+8pdebibMVun/nZl59w+3BNCAOhKgj74XCPNYY+WDCB0G/wviPWCYO6Fk6OjTlmlqU067Clcwph9c5SkrIWEfDB4cl6WbUad5Kqhy7nADRes8TAPo86FZ6FKTkuuxljE5QDAc/xCdB7EhgbcF/U4bOOhVG0jcsj3Irhria60NGFoCDO5gih6uTCGfRiLkLXOeYlE9EDmamF1apTDlzRC0M8OWYARJ8rnZXIk0hqrXmqrvdeW6z2+7k5G/TyWp02SZaqi3qNurgtGapxBCcMnaG3lVIdy5JJWRTU6h2r3hB3idD1LLE5HVoMRB0cSae9OUGuyjPIyiawNmgpiNMI7BLV1TOMPavOc7YJ7I6Z+aiROzFCaPwzZxK9XXhYDIN3nA16IDlEQ6YDydqel6Cayhzh+v5B/3wGEhoZi43RlXJlSoVR0RoYKiFooYK1/xjEnsgF7vZHbh927I8qhOa29hgnpEW/R1fPes5Xgc61iZCFdGrW6w+kmvGd4A6ZlDymFjYhMe+F60eo/q4Bq7PyxIqKOCZpG6M2lmp0CNGSilMMNBeY44Qz0EmhFvsU3xarAuzJvZeybvopVeaohQjeKruyxELw7imi26w9yimSTDrOjQGlTs54OGKc5fD4iOs6uIsMRtstoxSyVG5SYqmVY85kHeHhApyPjmzgMWacUdZIVAWPs2nmshO+RyOltEmjFXAVDjWzLJng9Ht5nBcYAsGALZniHCIFVyJ9TQQHfdF3eC+JwWWMA9c3J+xBL56TdQRfkSNEUadNoZBKonOdGneTRomMVKpRx9C9qSQnvM8wZ23/LCW1lmE9cAvC3aHQVUvoBhXxrcWZgkWHDg9L5F4qY7AqLlZ18ThntDmYTEEQqy3Gxmj5Rqk6jOpbDeBRLD9EywtfqdVQkmFJDe7dxLVcCjlljaS0NOpcMl0JygWqlXF0XISID5ZvS8Q2/uch63rXjnxY0QN5qJnLtWWeF94LvLlbSH2HhvUzqV2UnQg1txg7ScUQqTijl9/ykwdFxZZ2gQTIWZkmtWjU8+TcjHHWqIlaT1mWRS+NqBAXl5kYF433WuUMxpJZksL+ARQjWZqLUd85YwRjDbkNQqyxpCehTN+fWpQR2lvB2tYcXHT9LlmHkc5bpGg7X44ZgyWnhbgcCQ6uzhQq/Xg4qHstR4LTw/HYabTK1ErntWmvVmXJ5ZQUfE1tiAN1DcWyqIO0Hyjphhij7pneIVKZYuIwzywpMQ5dczcry2o1OmoqFAIieubx3nI8LExL5ThHdnvlf63GhVdnW7yz9EGb7G92O220bbE3kYZTKZkYF20IzhGTNH1hnbC6OKcbe97++DtKjuyna2zNxBxP3xotIqpVeXfO4oDQDeQCD7s7SJVSE0407quuTeX6OdG2Tms1ftYZvRDkVkCzMY6169jHqTks9dmSxumrqRI6T91rmZAzBvHqQC0tSaLaZsa49mvahaTEhVpzc6DpxaP3sO4tu30iGo3KGePIkvFGQfgYR2rAcKGhPNoQ7cSzNUV5eBrDjpRl4rjfcTjs8M6TU6SUGSMwjmecXb7QhvBlTymRuL/HhLViMU4x9Jhw3cBms+b4eI01qV3AFfHhrKEbBtKykNKRkhYtNABc6FltX3D34Q2r1Yacj+p6CF6d4zZgZCKEgWIEG1asth13t7f88O1vWY4PKhgbdbSJMQy+08bxRXl2pVTu7z8gtSPHBZFEykAtrbUyY2xhPY7YMDAE4e7DjHOwWo+cbVcsi3IYrTjONyPUJr4avUvYAimtqOVSCxNqoV9vyEtkt3/EhI7Xry+pVI6HgHSV89XA5eUK75Vv6aywLEecCfQ+c/5si6mJfuwZ+p6UO0rJnF10OlCUwrKkNlwDsYEwrrg6t8TDI5spE4Kj85bdHNW1nFWQORxnStKCicNhYTosxJI4W29ZnV9SKjzc3fL88pxDOrI967HZY6zhMBcec8F7g3UecRZTKpfPznl8OOLGUR2pxXN28ZLpcI2bZvaHHR0ZcnM2x4Vu6EmHRdfkw0LO0BMZfOByNARzGok0R1O1iokQ3VNNruwOlRKFZdHBRnGF0VSogvMdq/WKGGdqmTC+Y3nYN+etsBpX/LhkSkqEweOkUiSx8gdW3SMfdj3HxRKCCoClFpxNVPG6RpGYCRR7wNbE8ZhZktD3AckLNRdidkzHHXcPfwOiDC6RirXScDmnPnl1jloxT0gHp+0J+gnYfzws03NobWkeRRLoPUNy22lPw6F2v1SBrz59LYS2bjeeLFp6AGiTdmPv7Rf9LLUAp3H2RNMY+WSTMuqAT1lj7kEquSgKxgC5RCoHqqkNOaFDHGsC8EipkVInqJZKpMoCJNJ8IJfCdPtB9wdjMRJQJr6em0/MRPUiaBGdEtc6huGcKe2wzjA8W+HqitA7UkrUXNl4QQosNyN3dxN/+Z/+bzh//inedYp1qoolef8D/Mlf/CcYa7j78Jb58YaHD2/oNxeEb35HwfD6yz/m3/3r/xqM4ZNPf8b5i4/5+quvGIxyoh/eHxlWZ8oYloqYnuOi6b/Lixe8/eFbQmnFT8ZgykxnPDf7mWdXz/nmu28hL1xuO1arFXE+0osl1UJcFkzwLSKrLrU3b35kvb3gxevPSfHA7hjZXjzjOM3sHh543Jzzy0+/ZMz3mCba+hCoOWFqJB7uoGgDtViH8VoqJadSxZK1QEMM2Q2NV6drYjnF8UWLJ6RUkBaNdbWlrk56zOkRL0iuzbVn2iCTNur5R5HdJq4rV15PflUyJzSHtMeb5i40jXXbpqU64G9DP8Vj6dm6fYWnX6fntPa2NKe8IA0Fgg4QjT1NhpGi52opFbI+h1YEk9Us8f76jn61xfdH3a9zocZe7+DNCOfaGS/ud3gnJIFp98j8eMOrzcjZ5pKH/YJZbSirC/7FX/4rbu5ueDxMOBf4xR/9GTUn/u5v/1/UPDOOG/phw/l6JE17rjYdgYXeOP2c0w7JRw4fvsb0A8EKq9UVmzGQnKFaj+tHluPMJgj7O3B5w3G14XiRGdbn/0OS2/+oH3+wwLfMM/vDkb4LT2pubFGlE+gYEap1PDzccXf7AeM7rq6u8KFXISQnHu6vySUSnr0kpcRf//V/Qz/0dMOWVdexLJlXz17w/fffcHt7TV4mXn/0nJg9d3f33Ny8peYLLi5fsL34SBunTu4rEbxTeL41lmmpfPazX/D27XccD4/sDzsed/fsj0esdWw3W9ISSXHm+sMtf/THPcfjnu+//ZZPPvmU58+f8+03e97++AbE8sknn9B1ge+//Za3736k7wc+/fwzrQ/3wieffsJHrz7F+47Q92y3Z4xDz3fff8txf6QbBqZpx931O0IYcG7gMEWKwHGaefZyw8ob7h52WAPLtLDZPqOmA9SCSMf2xWt+85t/x+P+ACI8f/0Rjw87vvrqK87PL/nFL/+Ev//tvwEKw6rn9v6a9XqL8z0mqZjgbeBQZ6YlsdmeEXxHrpVu7FkOgZwq1lb6ToHmyYk6CEuD2LYFKHiN/PSdxRtt4atGWSwx6QXFW0tN6rypVZljMTti9MRSEJM4JIgZljxDn9gdDixJJ9VF1y6NuzqLB7bOYErGhA4xhq7v2b27wzpt/EmngoGsbpTgHF3ntPilGjLCuBop+yMxa9vmuBrIrR0O4LAkYixPnBfXbD4iUESYU2K9WWkUwTkwljCMXL16zndff6/W56rKvbFWHWJaS6OA6Fw4zonn52umOdEZy1Qtbw7CHCslJ15dXNB5eDw+8jhn9lPkk1fn3N3dNjefba5CPTjZTvkivXeI81r6sRwba1LUHm8sLgxUCTzuFkRadDcmtjZz0VfeHjtCyBpbL4mzdSII7KeZOa2oVqCqy61WQWpmWRJStODF2Y5smvPNOrVeN+j2tndszwfGztB1Ad/YXaRINMoxBI09Dp16PIfecZwiM3CY9FLjg2c/JZ6djeQCVdSRU6hs1yOGyrxYblNHTRNTLJwN0JF1ymOyct5q0YuvLl/YYpujSEVaLZioxBZ5LqhDOLfNShtn+akZ1vetDfkUzdUtr6Z80ksUFm6dspxalDnlpJdMMl0phAViZzmW1AR3dZUWoy6TXBa6fksqiUhmXwu7BPspMlVIomURqUVBR+OJ1ZAaU3AuhVz15wTgIyOsSuIH6dmnyhRnLkMhhJ6Cuvew6gicloUpF7qUOe8tVzXyFo/PmbEWbpdMwVK9NjtunCVmS46BkC0xHtke93hT+V1VscBVS6IQWxlORZ08LgSknGQtPeTUCrb35GRxMZJF6K1RJlc7oJcKgzX8rLN4Bs76FZ+cb3m4fyCVhYjleok8xIgLgaFCqmAcCmIxRi+2uR2yKyxNpBODcgFNwRZpUX84RsPdUlk5S0xCKg3QL+pOK1lHBjklVuNI8Ja0U/fkUIQeSLGSSmCeI2e95dNRWYw3C9wsmTlVFSCDlpCcDY4XnVBt4rJz7A8qagzOUpJCyY0xrMaR3JhTXS6cW8exVDojXGw2iOyxRpsrfbsUWaP8yGmaePb8ObtHyzzPmFrogVfOs3eW2VSsobmbVCQPrcjF9a1NTTKrIZCr4XGa1bVc9GLmjWsxkKLw5hNnVH6KlyhUPuO7gGR1to4hMAZPTDr88s4pyqLzeOdZcsbUxolxhr7zLDHSO8NuKUyNYbVdrRE06n+MkRB6HnYHnAFjHK9fXjEEiy2ZzlomEbKVxrgpHOeZs9WqlU4Uur6n6wx+MnrqnrQtN6YjIDjXHI01k5dKRDjOsz7fgPdCzYVpsRyPumcYK4xDIBjLuu9xDWPgjNWopTNshq41rUPfd1Ar83xkqgqRB4MLHWcXV1inF9xxDFxd6YD1rFridOTymSJMpv2OXDIdIFi8Ew6HA3OK+D5w/uw5ZxeXvPvhe0C4OL/A0dqJKwRjOX/+c158/HPi3S2fxR1DvOV4fMAsGWcc1yQOz58zSeX9j2/o+4Hx/BlJLPPjPZhK6HtGtGHPWnXcGoSh60hH5QxbaxEfSCnhfKALnt3DjbLtXEctBj86AomlQrDqpra2QFoQawk+YEWeYs8YLYcofY9tPMDSWkaNqMhuO09GOBwn5d01t2qtDh800mRy1PK3YYX3gbRMlDRj2jnx+LAn5kgXPPFwj2tyu7eOzkPnPMEIq84SxSGrC0qauL+51r2/JIxVEXI67Ol81YG2MXr2loqdDIfHe/1cbm64zQVjHeN6jdgzfDdyd3+DscpFNWIxLvDi8oyHu2uOh4l5nrAu0wWveAprECv85X90xeBUCHPe4cRg/SWdu8R3nmCNYjOMuhm0DdZqhDary7iKYHNUB5xYbClUhGJEww8VclFeZC4FKRskfKrDIttp0VUroSu5tvOXwbgzhIjrnGJcXKYSG0NRBxGGZjIRS0mG3f3CeusxdvuTO7hF2Sq1qcog1WobbE483C7c3x5YbVacnY/6TIrleDcpg7n7NVaKpjpq0WRsai7/CEhurdCVtCyI3WLqTCYQ3IbjYcAWYcZy+923PL94yX6norB3jn4M4HpkGtmK1/OqXTP0gsk9qViCDVAjXb/iYbeAceSinNrKCC4S5xk/ajFczhnpesQ7NhcXHOdZkyzOEHPh+JgY1ytc12OkNQyn2JqEJ3p3zcCBgS2za1gfyVgLU6yKmmimA1l2rMKBQOIhVpackDTgS8DWmUzCndAmkttAuLFnoYnF5qmQR5pg613XCk8SldSCPs3Jnk78VBVsi5zoEXqGqFnFD2Ntc+cVTVo5eRqIn76ma5Y/0/axSiHXpO75LD+Je9YBOjCzzjQmmyNlLUVZ5qWxAJWfeDY+Z152in1IM7lMxLJrbHD9/cRaalnUnGEHoFDr1GLFGr2sVZNyFSHGQmWmDyMhbFniHct8j7OG4Ees9OSqQ3cjjvkIc4o475AcifXI8ZjpOgdJqMmzCl/iVsKr15WrV19gXCAXwUnVNmIpPHt2xrB9RqmV8fw53hre/fANx92O6/dvlVO52uA2K9Znz3n8OrKViS+/+Dnb1ZaPX3/M1ctPGNcbzrfP6M7PmG/f8W//6r/ho6uebjVw9fIFPZYXP/81dz9+z/H2ezabngOvuf76B87PRvIy8Ed/+R+z6Rz7H7/lsL8nxoWExnHj7k7dksvE2++/Ybve4iRz/eEN7+YjL199yh/96pd8dHVOOtxzeHyLnX5AyqyJqBZ9td7p4FLn5ZS0UIreNbRzu7a7NG04pecdYwyk2BIILcHR3Kag3LoqCcEg4igl6vdW1MlOVUSL7pLNNyACJ1KttGLGk9u0MXSbN1DjvSZjRJNDtQXQjDh9T2pQd7nK1BQ5FUWoiFhzxbciIjXw6Z0J0XI8a9QVWkpp71R7I6VhaVopTS75yY1dAJzn6vUnLQVmMVKQhog5tXfPxz3z8cA8LRgxPL8cuS8Gjg/Mtz+yf0zI3TdE6TiOl/zuw57DXHj56jXffv+G+w/vmOcjXdexHjpubx4YLj/in//P/hf88MO3vHq2YXn/D9R8Qy2Os+2ACxvEaiFPSonOF549PnL5eMXv/R03Y+L84kLXhnygpjuCO2DPPWm2zGn+nyLJ/X/8+IMFvpgSx8OBcRjapF4fxpKV9WBMoAsB8YFd0alerWoVf/bsghQT14c7jBQ+evGMYdXzw+6a1dgx9IGb23ccQ+DnX36JD2vMvGN3f4cIvL9+5Be//DW3d7d0XU9wlut337NeDXz6819gge+/+4bVesOyLHRDhy8VFyrPtoH93czz7YrLq1e8+/Ed9/tIjomz83Nev37JD2++544Dwc5cP7xn7GDoDX2oxPmRNO/49a//lMvtiv/uv/vX9F3Hn/76l9zc3HJ//Z6XL15yvL/nbLVi3j1wrJXvv/+O3XHi49cf8/qTT9nv9uRU+f6HN0zTwtX6nGmZW5zCkgo8Pt4zH3fsjguX52sKwke//iXpoBfrOUIuC68/fkFNlf1xYrdbGJ9tuL+55pt/+HtevPqET19/wldf/Y7jceHyUlhmT/aBYAzeOrbrc+4fD0xzZJVVTPF9zzwdiDGzTLcIB5CItHZcsmlOi1O7p0YSTpuu7pEqsOUWF9P4tgrBChyuSDU411NKImflPxhbWXLmECvGNMtuTiy1UAXG0LMUNf7uYsFdXrCfF842a7yxdH3gLAnPLs7YDh2744GuC9qmZizOe87WPdM0U6Vye7/j4mrDMSbiUXkvxQjB9xqbLOrQylVt/Nbq4lSr0Hl1WeZS6cYOVwqrzUgRYdyu6O4cm4s18zzhnWM1rrTNLyszy04WcxDCfKQYSxZDd3bOcLEhzom1qayLNmgO4wpjEnZMiA9IhizKRtyuVwx9z8PtDbVkNtsVpRaWSQ8xx8cd24tLjLHahugCUpSZ+OzqgmkuXD8e+MXlgO8zx1joqUxLJabMYSp8uAXrEgcr7GbDYi1zVAeQNVrUsBR1J6UYtX05qXvEBYe1jjnOBOtYFrXEr7zTDaZAxhPnhc44xs5xSFpjP44d05J4PGikCJRfMW4HPrqqCibPFdumpiUX5lQJXqOxyzxj+sC0CCY4LgMgFinwYRpZFs98UFC8N4bOGUKLD1vTGBi1xTbQ6Ji21FmMc5z1PYdlwRnLs2cX5Bw5256po8daclmUh1EKy7yQ0kJp7K3DdEDmwtgFOu8xXaC3ht1xYnBCJ5WXvccGx9JZkqwI3vOw32l8QNRStz5bYc3AK3+GrYnVITJOegBPpSq7sVR1qpZCruA7h3XCRd/RjWs6p4y93hhcnAHH59KDsaxcwO/3HKeoG20wxKLNdMV3hFLYBM/YqaDslqwuOAzOtmjPSt0XXKwx6xFSz2H3wCgVayoLhaWqE20WFTFM0XgLRlg5h7HCTGl8Jf1ejxZccTyGkXXWqPw/CbDKwoMxfO0sU7GYIqxqxofEYV64OWrj3bSbSTmrC6vC4zExjnpoMdW2Cauy1wwaWwYwVvlGVGGKSQ+BtbUIVnXHnRFI2RDRz9wgupYYwbmMWwniesbOsh4G+kfDAjxbD5yNGt9yvbI6+9GzWfUUhPNSeXUszIeZmCtd73FOuFx3mLwQ7JpVqfyHP3tBqSpWTVHw1nL3oKLwEg1ODB2O8yGw9obN2Qpxlv3Bk1Jl3QdG77CoyJdrZMmF1dkZMW9YFhWcTTV0GGKnMcWaIU4LKar72hmNuwAEZ3CdI5VElkqcD8zLwH5OFDGE4LXxtQgpZY5TxODogud+d8Bbx7rrMEb5sLJy9N7hjZBjZDdljcvHRLVG3e4x8fh44MV6Q5SFzgU8guTM2jjoBh7vHnk4TlydKRto1a2x+cDgNPYnxhHnhYebO55d3LMWbQi33mC6NdM00XnH/vEAVYhLxDuHdxoNrrWwnyeqKTinPNHDMZJrQUQZrN45nBX6LkAteEdj46or83zs8MEyL5FSErEUpgijy3gjBKvxnTEEjsHpXu4srz/5lD4EpuVALcKwsohJXF2tCb2ncKTWyGZV8f4VJYNzQeNEDYNRmhPCGIsxgem4Z/dwy2rY4rqRLBPDsGF3/wJrOoZ+jXca14JCtQnnOpzdY22PZDBmpE9XlKpFKWc5c2YdOUZe/VEAekoJ7KJHcofYnj85v6LvhuYAW9SdaTSmmOb0dNndHw7c3rxj2JxhjWG/2zOuznChpxqHw3N8+MBx2eH9QJwrNU7c3d9TKSyHI8YkSrZYK6R5YhxXfPKzXxOz8vyu379h2u8QkqJMiraMXj/MHJJFrEVMoMZZ47jWaSFKK32LKWNth7Oe4zSB8WA9nRPSoogDYy0hdMRpQTD0/ZpaFvJyxKLtodl6rHV4UDeItXTDSI5HFYrF0oWOyxefsdvfsXu8pQC746wtwUnRD2lJWHFUp5dNYx1iPM+ff8xxnrm7v2c66Jns7nHHuL4j5sKSkiYdYmT7YkfwM9ZabGsEd1ae3HkVq5de11xVKIB9rqYxyHSbz65iqkaStcLJ6edhLFIMlsb+JUNrebTFg9thQm1N1OAHVa9rObV0Z4yzjescEVtU8JDTxddRDDhUcPFeGymRrJB3o2KvNMafusUcUiwVg/Hw4uPAi4+0uCjng54Z80wnjs53ZKtsOXW8qHNXAagLpeoQlLYf6f/f62UXPQNtzxxIR8mZTz76kiKBuXRI6bm+rVwMK03i8JrqR9J0QNyKeT+TY2Y3zwiW5ViZpkq3juwPkWmeGNdb+tUZcdnxTJRHGg8zu4c7qvE4LCUDpQ1/pBnOrCEXQ79aYURRNiKtDb1GVt1CSYnVeGD/aCjZKhYoV0rRFl9nFmpZKGkHLBwjYAylWnJrf+6cY7QJR8GYdh9BNLEoJ0GufW5FXU2pKo8356O60UTRBympQUETQSeXXnM4iiANUUFzCBoMtLOheUJGZChacKXDKOVLFpoYKD/FeNVFpQqJtEK+UjO4TExHloqy543R8pgamSaIc6aGDWZ1A7YVknhPTZZgexUQ0wGRhZx2nDBeObe/h3FPwmQuEbFqGiA304KINmiXHV1/RikjpmbmZUIkYaRntfmYedlTZYczHkrFmJ5xeE5OQN6RSgTXsT7/nMfbHd1wj3WhGTK0SGhJkfv7O+b9LaYbGIaxueoTq82K+x9/z+ALP/74htv358y7Bzbrc44P1xwePzDFyPRwxzh4nr1+zZQikUK8fcv+8cA//Q/+M7q+Y1xtcdsX5ONE16149Zd/xPRwz83te46/+XdQvsEN54hduL554M/+V/9r+r/8z4jzwvGwZ3d9wz/8t/83ahcJWMQY1psVFxdn+GC560dKjuzu3rEOv6Y7uyD2A7lfURFcfINIppbmvs6aRtJviTwVtuWGTDFGMQomK+P9NDl4KpMUdRgrYzY/ld4Z9D0ahy/pzz7n7v6WZf49rtPhDGJ00G1FhxCFJzG6itPn1LSqLVGHt9hOB+MlUtJMTAdIe6iplTiqmSSWgvgRIVBLbiVspTEAkwaQEqxcbexTQxGv3Fnav5uW/AVinnFGWbjWjU301/9moEXR1UDjfIcNPeIC4jwlzpALsUSkRHJccKsrXIW+vdMlLrwwljnf8qtffEYwhjkmvOkRuyb9+MA3X/+O3//+t/zFX/xLHr3h/Yc3IDCuLjke9+z31/xf/0//O7recrg849OLNWWZ2MUJl/eqSYWAjGucHzCuJ67gh9/+a9Knl8TpgYe//3eK2coTtkRs9VwEYTdY3nJyWP9P//EHC3xj73lxMXK2dtjtyMuXAzUJoRNWQ8c4BPo+4D3EnyuUMFjDZtvRhTsQQ/rCUOVjOl+w8kD8WY+RL6i5ktJLYtH4wLxkHvfCWjaIc9RYOHN3RP/Af/TPPuGXn26xZmboKtg7akn8+RcjVUCKx5oWk6qZfsj8y189R2rFuYXyp+eUeo5Y0NdlIv96S85bkEz+00ugIA6Ed/z5R+d49xzqEeu+4dN/GQg2kMsdfFGhdoSgk/mahcNS1C1kC1PyrFaRy/HAIx94/vxjHt5FuvNL+nHFYY7c3SUOdwslwXZ9xkOJvHj1ET++eUPvDXF/YDOM/PD2DXf7mVcu8MMPb3l4eES6QB96TIKrF8+4f7zl4eGG/f6RF89fY61lvR45v9iyWY3sbt9SEV6+fMmwOePv/+6/12h1MKzGDvKkrq8ps6TMfq8NnHEp5CikWDkSWQ/qqnFOSzWceOU3OC1ZqVjEOpakUzXrLCW1liKj8ZYlzuRqoWYeZjhkYU7gHTx7tuHyQgtHhrHn4vIC23lWq4B4w9oHsiuMfaGWjHeCmKvGzUsgIwgUqVgn7cCUqTUo96kMgOXj9EJZhEbjtlaMuomMcHVY4fqACxXfW4RM9Q6pyppUDJ9eBCgeYxxjN7D+6Io/47lG+07Twja9UOuzp0QFyVMrBnVGtfMJANpPppaiLMKX7VBSoTHdXkLWkpH9vU7sEMs0RdKcWaZEvxTs6LGSCGbFuF1jl0SxBuMsoRo264Fuo46CxXjcxrKUyrrv8DJxWCK1OnYPMxsfqNmT6YgJxg6s73AmkZPl7LLj4VhZlgO2sxwOkbvdgc4b+j5QamVYDXrIsUang74xkFzRSaZ45ngkpIxrAqK3lpv7B1bDiuOycFxgWmbmOXJxNmDEsuocrmgzoxWoRd2KVipX3UJvM5GRWgrvH0fEO8azzFwKP/vFFZSRfhww1uE7S8qLxoafRD/9Z+fkqTUZOyCAyEHFJz6gmYkKpj5xLmgHyNPEDDZI1emXM7ZtrmAYW1FNRExFGm9DXSMHLkB5FSVTWOj8SJBn+G0P2ZDjRMUjEqhi9VRhC+JVoIzTAmhZQc16GbK1kBpugRzoneMCwTqvkzUZsb6DahBTWuOrkKZMMaKFCVhyTVymQk0WK46XJRKnTMqGZQ/Hkrk0HT/uJkpMeG/Io2dCXcm9NZhJuXvazqrNdGZZyMnQFRVHYtG22361ohOLWQ6UzsBuZpNm+nnBDnBvHdczuGAw3tEPG3AeHwL3t3t6b3AYbpfMFLUcaKFgqrLgnKiYGKs2btYqzCmTcyVVOC6JqaEqUgVTC16ETe/orf67UUu7PgLN9fzzP95qa6jbqCvYGb6wayoGb6Bi6X3Ae3ViGdGLOihw3Ihvhlid/pdaWznKoMDzavnItrVCQLllFSvPMUXAO3KKCAXvpbVequPBWm2hN85SS3qCJIsMlKylRVSPES0AqKeYReNlCo6KohfkNEkWjTMZQ3M+hnZh7/UwGdGIiNHSopqrOoPFYlopyAm2X2rVyHTWeK6KvRUybOaFeU7EOXJ389haTmEIlk9ePePdu8zge6wzHB4yH788592d5eE4qevfeKZlYmmlNOfbDTe3dxhrOF+PDMEw7z4g8x7fd2y8xkGOC3hbWQXP2Dvi0WFyos6V/WHGOsP8mIg5cX13JCPtEgxjb+n8wDRlHg+J46zTeiOFsTN4m/USl7UER2MwQlwy22Fk3XdP+9ocVeDKWR2QzgmvPxcK1xSO5BLxPgGRbGEquo4hhv3yI64EjbWlU8OueRIjcq2cCh0wsDq3ONkT7AXF7Jjj7+lGXU8KlSm19a42x1vWqHqt6h84Reep6oTXdmenAthQMXZPyo58YxlXM76HYt5xWDSCD1Eb/3JjMTZwNxjcGp5vBNDEw/rCIex0/SoBazzjplJLc9/ZNSUVjPuEGKNGqk3RZz5V3n7/DcN6w2rtOc6PUCeef3oO9QX96oKSIrfX98S58OHwNc8/2vD6888IJKb5iIiDmjkeD5Q8k9D2v+AtXWfI9xXfB6g93lZyVGFUCzosS1bekBOo1rJ59oISJ5b9HWmJDJtLnO857u/xviPrgQPnlW8rUrm/+Z67+wfm40TwhmPWcoNu2HLcP5DmhWWesE7LdawCPHl8uMZax9AFBt/pUM9a+mGkpESmJ/jQSh4mkhyonEQcKMZiqyB4HaC26Lg+dp6M1UunNJC71aIU9WPpYJWqLpVqSnNeqUOm1Ig45QxCxyneWJqkUm1UvpTTEidjtBCLWpXxJO0qLYJxDmN1GFyrRYrFW49lg3GOioouzujZMjWnlHaaOf36aQE36aCjaqCTPEHNuATGzlhTyTgELdwxRvmbYjQzWnKi4rWYRBxSHFI91SgkQluRBBtUqAwCwSyUaeIYVgR3R2cOKh6UmdAJqVgwmSKZzmtRixWDGzq2Zs393YGlFFarHieJEFbEeMC4AskismWKDusD1vQ4G9ivDWIDrkzkeWK1WkE6sOkc0a1JOSlX3Ai7o555vCRWITKlTM4B6UYogjMzNatBoAocF2GZKk70rmG9ISVtY1Zec6VantifUqCKng2MVZE7lUQ1p/b1qnxVUWzHiUV2UhBOQ7mMNJyPIgEy+UnANFKRBN72jP1HdP0Zj8ffEOtOcSItgmitNI02tzOiqDni1H4gghbZ59YuKpRg0NqbFtWsGRsKnZy4sgtvb35kOHP46jF0eKN3DRDEdYgpBNEUW06FXGYogmGmNocV1VCLtO4OwXWdltMYAR44LPda+tGG5VSDqwMxXpDKjsQD1gilJo7zxP7wFmNVrzKmwyyWt9d/RV3WTPMN1++/pnOWaY4Y6xnWl6xWK5b5mve//a+4+uzfw7iONB15vP6Rcnzg8eYdx/sPfPv3f8M3f/9v+f7rf8Pl2cD5s5G+LwTfY8oPfPjba1K23GwvKGkmdA7iZ0/i8nwsnL/8nBef/JySDZvPf47tAt/9/rdszs4pJnD9/gN3xz3DxTkh9KzPLWe58tVx4vWv/pwYIz/++B3B/XV7Lyv/7t/8az774lc8+/JnHG/fcPzxN8TDNcx31PVI7Q1IJBV99k4uUDFGnxGjCKdTkeGpqGxpDjlj3dNZT8S0NaZQ7BorvSaFcqZksDjyofDst2/5bvcP/P54z+XnW158tMY589NF0mnKQId0ppVUaRmlllvpyU19nRV8j5ZiTpQ86Z0Xjc/q3wOqcVQjDUOl5W+CbUK4x4YO00G1juoCMUdcnXTvq1FZxEmZfoieFRItAVonQFm3VQSs0zNmmaipkNKOsoci7qnwtRY1CYnouyVy+rP9I9EsW1xVLr51DtMHor2gmC1f/Eyjxb/5+7/l3/6b/ycff/Qlv/jln3P/uGMcAjkfufnwns57OgvH3R3zAGWZISV6L/r1iVoU6xxuf8OhX5G+sFR7y2o+kE1z8yYVdrNNpARpdcnnP/+n/4Oa2/+YH3+wwPef/c8vcDljJeODxdkF5yzGApIQMlYmvbgbtWIbIxj5oADFWjGDXjxUoK70Ho1VkZ9y4XCvz+eF4c8+X2GqUDFYe1CoqExQHp+YC7pR5zYpUaVaRJvOiom4bMn5DifuKWpVSlE4N6o8i2gEseaKPz0YRSHTXiomN7bCUrjs2uLZDtyqeu/0kmNhHHXu9slFe8HLLVXu+fSfCDl/xS//4wGqIeUDMRfmxbLMn7LMke3Vc3aHxLQUPjlznG3PeXHVUXPi1dlIpCeViXpM3NjC43Tg8eY9JVce7zuCg93DB37xy8857O6Zlkpw6u4IHnKaWG3OMLayWVmG3rEePNvOMTioQSh9j8xr4thznO5Ji14a4pII3uEc6nhyBmeE4By1gPWeIoaEJeXTAdwotHpJuoS0iFtMKkhBaBbhTKmRXEAy/Om/v8H3U4PfHzBmB2T9j1QSOqk4RECEOTVBpz0TOrXVQ58OBNUSLOK0OdB4pFqMdYQmwEnjX3jRqfNFaTeSZrd+KuwQS7uqINU13pHyerxdiGnfzg9Vn+0qYNplxFTggHTtwnQyXbc2HT0dGlotcYum6CHgqadI2nOHaa7Jcy28qc1tUYRclMNH9sxppbGzNlkRMazGSggbvvj3X+NjgednbKjYauiyxQfl73jriPlIrcKSKmmasVmU8WANpgu4CLKCzbMr+qkw7gvbfqDOR9zQM3SOq2cXfPfjO64fjqxXnrHq90WcUIwhx4LYDmblrSQc55szpgj7/SPb1RZEeNhNxAzeefqush46jq1d0ongCvS2MnSCN4XRG1IJ7GKHYKnW4rwW8MzzTKmGy1e67Fhz0Hf8NPlqk+FTm2HLZfITOFbXiSo8XSxOEzE4cS3aD5HGjDn9a/v9sMCs/D1bobQpf2usbl8BsUaFjWbht5Jb3EcwyeK9A79qrZeRZboFZ/DWU7hTy72v7eKtFnzrHSUnQq1PBz9jElItpR71QGotlv1TTN13ukZ3vV7KUjXEpWIrrH2vzE1jOCzCkgtCIEVHyY7VaPjlL7akSSiLY2cvKBFe20pvLSW28pFilMuWoM9HStaoPViWqWgb+cUZbhgYDjPPGwT++OGG4+6RiYw77lgvghjPXS8EX9mGmU8/FsZg8XNhOlYequFmUrHq/pi4WnuK0eIK6zzkjEiBmNo4ERXWpeKsvpFL1DKiYh3HCO/JdB5s22tS1cIBLQZIiK14D9SCQzBSwAseFb2906iBO+2hLmPbNNkZ3Te1nFJdpcaZp3i5tMiFpbmbam1T/KpDGFNx3lEaM6ie3mMRfbYrlBLVcWaVw1qzuvC16Vp0bQJKzhRRJmFJGWOzIgie3NxGnRqnhk9qi9wqF8ZZh2stb1mstvda2oW8QZlLu+wH9AjZRNOSS+OfablX8ZmwNtjs+OjZBavxjKuPV0ia6XzAX75ukfpK/3qFrZnP5YpP689Y5oXj7oGHQ8IXjZZuz0a+/Pwjeh9YW8c2DMQcCRcrjAh50PegHzzOGO6XiCwTH21HvIV1J5wNKp5KjMws3O8Xru+P5GzINZKz8OKyb+1xLQ4nEIIj58TYe5zRQ7iK7ZU+BMI6EIwwTXv6sKJ3PbtlQcjKMzV6KY35a6w74pyhl4B3Hmt7qIZhOGNOe3I5YI2l60ec6Vv75YKgxVmtW1yn6OZ0GfVt7ZoRKbjaSh3UcoDvekQ8hYSQdEAi+ms0qk270BpCd8k8v6XWqXFaC8VqCUCOAjXhxGKKoQ/PWnHTW1K+pZKam0bfs5MjwVSNf574WvqmGJx/RjGOku/w1lLSjoVrUo24fFrTdd+tVQcDr39myfkAPLD26qqnMdi8eU92kYvzxDK/oAisVmvGzY5xXHPhniN2Td93xFixOGpeSEXorAcsV/OBu+sPHMdrXNU13/mA6UbmeGDc3TElS9d3xFmLld7f70mxELqRzfYZq/U577+fCL4SgmMRIXSes/MtOVuWvHB+vmVZIq8//TPW23Pu3n1LqZa7D99Rjcc6z93NO2UIzzO7/SNpl/E+0K1WhN5iqkbtyUmHausL5mWi5gORhVpnLAYvthUVmCbeFWLVi65t36uYtTTPFquulFr1bGId0lzPytJW15Tug6btoUJpgp8VwTYriBhtVT6J/6cGx5M7y0hr+ZRKwetAougGXlq8S6ojhB4xM8wHpuMjtn+FsefMyZLKsZVdHKmywbkNxp1hcqWWg0aQC9hhhaVQ4oTxlSzK1SylRcpORzlTEJbmTs8kdLBjeaviTM3Yqn/v0jhxypcrFAySoOYVjqqCiTGIXcjt76dOuAVMxbqB+XAklkye9xzijsNRYfX98Zr9dM/VqxdstoLxA124wjnlPlvrePZyRGomJcG4jucvRuJuj5get3Z8+avPELdmv9vx9vff4OoeJDDPCzOCLZHOJMQ/w20/4/kzz9tv/xaRPSXPKhrnjPcGKY5UFdthjGVJkX2ujCvlH1fRBvVT1FBE0RC5RW5TVfed0JhfUprQJSeFr6F/Ts+Ifq5iTvtqixqiTFrrDC9e/lOutv8B5InHb74mtzKEXFSsSMk00cIgRlmtuvfJk8nBSMVgWY8rNuM5qU76DNQCklp0Myn3tK/UdGSplbgsxCVi7Uxy+r5q3NdiCXpvQrnRzgdEKrksevdoKSRjNDKp0eKKQ80CipbRu65UaWtnwNkVWKEUwdKR45HMzBwPlCwYG+i8pSwLJhTuP/xr9tewGUfe/MP/g5ev/oQ4P3J8fMN9KEBiOT5i7BnW/wuM05TH5vySw/0HVpsV129mlt0NOe745JPXPLu8YDlOBK+JgJRmfNVW4HS4o9SMlI7H726IZaa6SGdXuNvEh8f3uNBTgIfdTIoTwzDy+6+/5u7mllcvnrG/u2H98WeklJiXyEdffMnj2TnOe8pv/obH/+P/Hvd4x/228Kurkfuv/0vmD5YzG+F2YuX0czTJcvDC0gpQrNNorg69eHLUIeZJcKW5Tk8IlVpPdw6jMS2UVU0WiMJPTatNc1g5HjbK7v55HRFmUjySk3kq6tByjiYYNn3FtAIOY/V7XkslFQjrZ2zHNdPxATHq2BOzJlx8iYjhePMVzjmM6aluVKFQHHXeUecDJVXGi0syhnj/BlIkxY5u2FKO9yoAGl3rBQthIE4HuuDUMVsqpswgmVoN2a5guCDlRM0LlVZKQ8WyQNFhXGmDUDH2qUgOC7lanFiCOBIG75we31Ol85VYM4+P97x/947r93dcnD9ntdnQjz1v3vyGw/4eazTe74Phs8++4M/+/J/y9oevYX9NmQ5Yo4meGCHOE8YI4zhScyQebhr6zOC6c1bbc/p+JFR9PpZS+Prrr/nx27ec27/jD/3xh5dsyB7sQ5s8GUo1LLFqA6J1zQrcWtokAtIsx/owyWk6IFVfgCqN2aaA2xMvgKo1ygVIJaqUYmxz5J0W5opBJ1LSChAMtMVVGRc1A6KRp9wy6JoG0Iuf5sod4k72+Alr8086C7rYK3y1BzuSiEh6wEh8mkLrlUMX+ZxLM2to1OhkwRVUobfW6nSsCs4mulrYjKrwWwm4vnAxKMycl6MKlfKBlDObANQIFT75c0/JF6RiyPmyweF1UBTcJyoSmA3GKcelmnvEPuI/7Ri6ipQZY4X/5M9+yaobyTkSOsN+JxziJT98v+c3X5+xHB44zjtKVltwSsJDOvJ8e04wwuAEioLvq/C0iRaMNutZx7wknBV86MgxU6IlWqFGS/A981zJxTS4fVYXndxTywOCOvBs0cVSN2KngFja99ToJNi2Sb6ctm0DRYq2oFmrhz7rnqYGuoBZpEQgK1fy9AvRljQx8hMHqurgz5g2Wa0Gg8cbtUAb02PE4IxrgPqTCFRQ1sFpkVUBstAWo5p/cnvpeYOMljXUk/hSG7eFkxvs5JrROKOgeqCasQw2L1gHvV0R+tc8HL+FnHSyLIKrib4XLl8afPXUIqgS6qgJiJ55amJXGckx03nLvLNILDoJT5UygD/zrM9XYAJnr7aswxnGdpA/5c/+xZdIyZSa+HL3Gcu0cLbaUqu2rL042/CrP/6Md+9vKb3Q+xXRJELX8fzsgpgPDMOW+8fMYcq8erFhu33JixfnvP32b5jmhVXfk3Kh6ywpLiwZbBIOU8YUwdQeQXmQJVkdplaDs5lVP6hAUCKlzRdO5QK2iSW5QWFpl4rT99Y00Vc35dqeHeHEtRCjwrBpP8e0KdhJLBYKqClGgbWok6yk3Bh+WlCh2kvVtU0UEl1U/cB4FGrtAnHSqEZhQpwgNTAMVyxpopD0e1xze46UISjQ3l11UuSStbmyXalyiu3rmjbI0N8nNxeEVPRAboTKvrVrqgusc6JOSAQfLOu1Q6ZI9rruUvSAnWokmEIRSxXlfpBLu6wrb6kWSzZCmB3jEBAbMbJQxkoIOv07e7mhmpGaYJGKO13+S2R1JsAHzj+rPPtkw8Mu8sPv95TjHmMN8xKRziA9nG8cznkoQj04OpepJpNrZY6RjLZVU/UK4J20g7a2NOdUiVg2zuExTKUwVbAFgrNP8Z++61rkQsCoSco0B6M+I6dYMiAea4cmGNen50qHD6efpwMV57T0hwJDH6g1kXMEoro5SsY4j3G6ptWiHeRLbuJxgyjX0mo3RItYhq4jGKsXHttRbKFIgzl7FfCWtEDVwhNrLVI9RU47Ker2k0KUSCYzF73UmBJZlARNri3iZSoUjUzrfqwbeXAOZ0e8DQwusCyJg9np57EI2VRc31PqnuKEYrNebtpLaLNyXpwJWBcYpbBNW/rHB6gTOVeExPn5gLcOmyrZJ4bQ4a0jx4wLgZoLpb0v46cr5ljprCfmwtg5/nT4lCUfOH/o+fbrDwT/QOgcMRbyIq05uRAcdBtP33tSzPhgyIsheMvt48I0J7wV+t5QlsgiBSeGTRcYjBCc4WLsiEH3iIfDezAapddSICXopXSgFkspmZjvOMXIsDAfdqQWE7PWY4yH6shin5pzaxNb1eiyoIKYbpfShgZUQ63Htuadfq66pn4SXDT2ZsSR9kdAxUlHj+AwUS/hthhW/XPWwxnO9UzLPbncYc0COIw0B7TQIrrta9Q26BWDcx05L1Qy1kzUOmNsplaN+Uox2Dq1X48KBiW3gTOtIESFbT2zVnKaW1N3RnCt+OVAypVl2TEtt1gZcMGwXr1g93hNjY7t+S+w7ozBB0o+8nizUOqCDwKyIcXIuNliDMTpA9bu+OSP/ph+8xxbM/vdB4p0/JN/9SWmCp2zvP3xDUtM/PJP/zmm3xLGc5b9LZuzDY+3b5n3d7x7d2SOC2ILu/vrJgTPhLDi4uoFpjsj9COb8yuu391wZuB3v/tbZcJ2KyqGt+/eEZfCevR0vmJ84PbuPSUXVqNnP0UkLVhj8E5wllZAJli7qGDXYsSngaljbs+Bnt2MsVjUsWeNekIsprGGHSKZ03jtVLCSSwWWxjY6DQRUzKOcWGx6RjJFGtBZ7xq681qUOqVcK+TIfNhhZWCumVwMNk7k6T1OEoUDqQT6wSEs5PyGmt62wyZUo4PmevR6fmguRV3anBb+lC3iHSlN1Jj0jGdVEIizOqFNB5IdVaIWCqFrIKIDFzUmVKp8hO2/QI4/MC+PCvlvexAipOo4PO4px4IJlSww3SfmuTAnT5w84isf0o7zbcfuw2+wlyuGzSVx2ROjxVpPXlqLrLMYX6mp8Pz1mlxXlOKp2bAZXiLjc/Kyp1sW9vc7bh8mLWUrlVWAyMLZ6pywviDnmW4YWQ73iMxYk/AOlqlQ0oIzjpwWPYsVqAp0xhodAukxTIVOI/IUOy21Pg1brXU48SrcizqxfjKY2DbYPbnl1OCRySQKVuklCELOjsN+x9e7/ztL/IqFA9Jyyt45PevVfzTgFXUWVilPl0mDIeZELYXdcse8POB9r6JzrvTDwDA8w4pnij/izYL0jmE1EEsiZeVcl1hYlqO67IIll9hYbrXNJxpWSJsNT+ZBpOge7WwHpd2Z2rAYdK8oVHKJIDNzWjju7qFqGuuwPzLPinWIS6QUNX1INrjOEychHSzThWd3vyPFhXG44OH6N8T4TlMr9oJPfv7nPFz/gHOGELSwZ7UK5DRT88Jud8/l2NE/7ijxgO97XNiwvnhBjpHOLsT5CAamfYSccDVRlolQR0bxlLt3zOU9M4pTKVGY3l7zzdf693n1/DUr25HnmTjN+H7A92sMwuHhkfPnr+jefKfIn7TH3n9NneC5LYQZJFiqaJGgONPONZZqknKIy9IEpdPwoekJRk0i1pr2vKi2YZrwJ5gW+9ZzXhX35Ear0tAZpWpREobQBielbeSFCg1doe68dpKvPN1LQKjWPxW7mODwpqNfDeSaGZ+9JISOihBW52w++XNsLfz425UO+rqeFBPzwxskJ33GfcIF4bj/AFiM05JNazok9AjbluLQEkgRg/Ujdli3QY4OOKux5JJUsMtCyTvFMRgVpUsp4JXnr3y+0vAXhZRoLsPS9g81S+SSwVhq1lLQWgKlOlKeuL4bePnJl4zbF0hOTPsDN7ffc3/3TgvonOXq6hKpC998/Vv2y8If/eKXxHgAayhRHbzLvBCCvlMxLprEcp6UE0JgWz7hi1/+L+mXDjnMuEGoX/8du8cjF3/8C3L9/wMGX0XtkLGCZENuQG49UOXG+tJIhjFqO46Lwmlzbu2UqsJpKYVzdLa2pqMVxnpiPJJTOhmLn0CUpyZD20QSqVq1LlbbW/QBb1yOotNRRef2GLfBkqksFGlLYU7o1mC1BY6CNUWjVWIaxwGM96TYLl3lgDlduvgpMlNr0VY3KWDBWX0pXeAJ2FprpVpHMYE4P2CNa2JmpdZIzZDFEHfvyPke5zq817KBkiNWAt3mFfPjt+S8aHTLVKQWrK34lu2vJzimNXTBI1Jxrl3CTNKFRQ4qSBiDs3o4FYRlNgxhpOth8+UZH3/0x3z/4zU/vj+ouk5lMwZKFpbDkY0LuCJ0wVJU4iRTiLVivWU3LYwr4XictOVKpAkr+v1JTWytUomlMicV+ly3foLPGpEW6Tm5O3UClYvGtXQC0qJEYpRlUCzOOrUdG54YbVUMUhJPAF0KUrJuhsYBgWqKTiWeLiToIiiuOXiKRmpzwqANuCVHDAGpi4qPRZthdWqmVnplgKiIopBgcO2AUWvU96Zq2UUlY6sKQohpf7YKtTVfVUcs9wAY8c21aqkov0da0UDBUuXAsnyPNxFpC2nKieAM42rg/KzXSGttYG0DFCHvR25uCzFGhERYGYwp2GgpxTCOK23xDQkTEoU91uxBjsR6R0eHC4beqXBci+Hs0uP9FmcHQFmQzhv+2T//giKf8M3vfuA3/+4deVkQ6/C1cHW15R++v2ead2zGgZgy4rTFseuDHqazRienRduLffDElPFjr583erGopVKyIThRblZMsDR+mOj0UtVcMKXFC/Wl0kix2PY82qdDnAKW2yYuekHWb4KumE//iALxpaiQpwfAJv4Zg5fmVBDXlNr2/T8JQAIlJ0w9MeoS4oIeXnJkKQdyXSjoYU2/5k5bBV3PxdmniDgeH/+BUiNIpcO1gXblpE2aavC2w4oDtFVyiTfkpAfhwtKYcxVjZkqyeD+qeFATkrXkoKBNrFIdTs7U0VPlqTW8FB3izLECHtt36pazDiseUzxFIkbANdduTRGGQmXCGo3tGGvIVqMZ1pYWI6n4mltZg27AlK/IOWN9RWrCdob3u8QhVcbecx8XjfPEhc8vOnKMiAQdYNmCFzgseqCYUiIjHGNmLYY5qdjtrR62Ns6wDRZP0aKn3JzLtTbXUWqNv4s+RlVOfmAF1yMYCtSIQRvKS92T0tyGBJaCRwteAKPuk9OQS6q6D0SMJh5MpTa4ci1Rn99Sqek0KClPLJUCFNsiwc0BvZTIPB/xtsP4JsLo0o0Vi4ijtmhd33m8Uae8MWiENkWNLInR6JPRz0aHKupqcVZ5nUuciHkBE8myEAsE4+j7gSUV5jhRJZOJUAo56zM/WKBo8YgMA5vNlorweD+RypFq1DlRqRSZOdYJsrRLj6YIGApUS1oimUSVTLQRKZWjKTrYEaH6AkUvQ9jG0el1wrUg5KztmOVSmwlxhR//7pEpK0w+5cx67QhOizdME0APc3tmj5nOe5ytOt22jpSWVtoiPC4TwVpKtgxhRUwL224g2ordjry/90ylkNKEdwu1uhZbm8G69pw0h4BpiPqilwNTc+PoVCyelCd9PpqLTxckHYJaoyxVfYbaiU0KpabmKBEV/9pA7fTs6vlJqNlgLTj7kmACzliWuFNRqIK73bWz5LnusW3vwmjZlikFbwLWjNig5VK1LsR41DUbr+KA7chlIeWJWnu6ft0YqZm+v2Cabij1kVKg8yvmeYfIjFhlKSEdxgwY6Ulp0oiUAcTpQEQsRRL74z2fvP6I84tnhOrbsFlY4oLkIw+3f42pnTr0bGC368CsiXPl4fY7nr/6gpQO5HTDMn1gdTYwPfx3pIO2d2sMsPLhq78iZZqArs/vIluWneXyzFLOOobBkWLg7ffvEBIYy2a7Zhw9z59dcjyCGV/h+544TcyHR6a6QD3ycHdPjhMxLaTSURfPy5eveHzYM0171tvnbLYD+90j79++x4YBazPY1BhPQqbNN4tQsa3x01CLOpFNNSRRDt+JQF8kU1C2orFWz9MIpYw445E6P7mDTzxWazymup/2XPnp7oFYyskFX7QxHqMxeBU92sU6lyay6SUzR+U5WX/CzUwaA5UeY1cEm8llaoxNp3xeEqWliGLSKF2inT3T6RIPaSoY4zGzskmN1WFWg3RRZofxIyzqCMxlQYh6/hVFFzhTEZPJySLmSE4/MM/XGHOgb8O6bARjKjZHnK9MC+SUKFWYkvKK97sj+1iQQ+Lzzy8JIVGisH8oFHlku9VzeCXrQI2KqYJPjiiJKlN7z9TN70bI9T3GGbquMLmZVDO+q9S54rtMSTNWFs56z+PjxGbT826XiEtmWTL7g777nVMkRhUdFlGKFtoViLGqc4uq64k77SG+nX91uKSoDyjN2WycnqN1xl6oNSLox6/DMn0GnLTIuNEIuO7IhduHv1H0iYm6bxttFi8VTFXunrqn1WRSGprCcLqzolxwab9jTboH1gK2MsUdSzxQSyW4DiytiVsjhMscCZ1HgsY9cy7KEWaBheYQs4pzKAUtFKl4p5He2u5bJVVtbTUaSUcqJWtEXJ1/MKdmVskq/MV01PfICjGqu9tYgw9O9xKxjCvD2fMtpuhZ+e7mr7mtK7bnL1lvPqaWiJXK9Zu/hgRDv2mC+MCSF4zMeJ/oDpHV1rPeDPTbFevzl/j1FlMzIg7rntF3ARMXHh8fubt+jzcjwW2wphKG54zrK4b1S6y3THfvmL76O8LjNZ+XPWtrWTGxnSLxq7+iXFwStmfYEEgp43uH64L+nQwsFaZ5phMBW0iSWZLFirJytZjE4JPy53EaxT4xINWdpmuWM83d3Pb8JxtRbe68k8NP9K5rJLdhRCveQHUGQc+aagx5qpnRJRALKIO0ZJ7cqaWxF1XgVqHZNN6usY/sjtcIVvmjTo1PYXVJLjNu+znD+UuO+3tSUjfktLslHX5AAN+QRNmICozF4BggJeb4qOv1yRTQYvXEG5w1yCL/KC6uiZkqel831Sha7Wlf0eRfJSuX8jQZP90REKSha6pRJFiLPZFyIsaonyuRnDK96fj2N39NSomb2+t2vkmEzjJ2K26u7/ChY7W+oAp8+OEf6MqeLz66Igq4zj+ZjPhHomoYRoxxyibdDzz8X/6G30+veX32M6x4ZCjc/nBP/n6P/dm/R1re8Yf++IMFvlQKS1RXmlRt6qstly0Nmo4IzgElY0TwPmCM4I3FO91srRXELMQ8k6poPA+gCjHpwevUMuecUUaGUdg9TVQrzc2Vc6RyeoAd4PWSXAURCzVS6iM5HxGTKUxAwYoe9sUKnDZpkQbG1xfLGG0ns75l2p+ik1YdhqWi7KNAXO4w9cmH04SaQq5qDTem4iTrJbjVXFMjFWUvqCNDDw7HKdP5A84NbTEWIDE9vkVIWGfw4lQQqOowq1VZTblk5mXRC1tsvJLcNglTddIE7aHn6aG0p0WlLm3IWbC18uufP+ebNzeUKljXmmyNwUjktexYZI01haVYgrFECoc001FItdBlYRwDGnyu5Lho7rw0LkqpPKlhWLrVJX/05/8hOf+WOgvr7jnH+RZxpbkR2tpnTiJI24xpFkJrcMHgsTrFtaVt+qevocuAaRES3fArldgu3/rPUvVApQcrngTsKjoR0wh6Zc4TYirUiJRAKIlcZoqoO0/axEaZCgpGtW7EGcsp2Fml5xSD0ghTJeWFWlMTBpvDrxbEaLEDaUCaAFKK4JynZEcqC1UK1uklv9So76dRsSkXFWJNi9SLOUUH1a5fUFcCVIzNdNaRlhZhLhYXImHcsjm/4sN3X5MOj4xDBVcoLpPqXi3fWa983maO7WsC2OyQGJA6MoQd3gpdOFL9wudfXPDD19fsonBYjgznV4T5DlMWBFhS0na8PDEf9gzdyDHvQQy5praOG45z1LKHXEjiyaKFAMYILlRyNawGy8KGL//Zv+Lv3v3XxGWHldA2Pz3QmfaYcRLiRE4yXTvU6IW3NOdnrakdBuuTg6+exEOhrQ1FXcTtBFmqUFu1vFCwpv4k/jdB2KDCoVgF21prqJLx7gIjPaE6jHjEjBqLOxXhtEZPqBz237QvumDsSbhMuk4aq25o0IsWevDzZsSHLZiBxWS8ta1kI3B5/in3D/89dAVnBAjNrQNLiuQEh6jDl65bkTOUCh8eHyg8ElwliKcYtdYvObboUqV69WdTHXGGGAEM2+2aslxTqz4HtXGJgnUYkq6/RUXKanTkYC3K46kZbyvFG9JcIKuYEmPmbjc1QVyY5kpeFHwvWV0YNglFMutOG1fnuYCBde/wUnACzgkUQ2crLwej0fBcyKLCl7UWvMd5gze2DaocSNQYv9Xpu5PGyanNAcpPER9zOvRZjfpaY7DtWaoGkIjHghi81fVFD05trZEWYxCochoGFEpRXpC16kKw1rZyEFjSkZhmMoKRjsP+yBgCUzkQa26ig8P7oE7xkolppiJkq++ScXq5T1lFRxWAdL2ltVhTIhlLNdpW7nDUqk4XcmI+TnTO4t1ANG24Uyul6GEsz5FqHN4k8vJAjjeIKQyDwxqP9YE465CDaaHqXJhSIqGoyJ2NnhNXqw1LORBrbAJAhWaKjDmBEWqBxMm1mxWUn0/fK10TaoVqK8O68oufX/L27YHHx1P5ju7Dvjnsc87Emum9JxXl9GWvLcTHKZGroQuBUhPBewbvGILHUiklM6eFGCNLXVosWweNRjx9uCCXmSp7FaFRZ7AKITr11oRExdqANco1pYLUWc8qBcT4xpbSP2/ltKdk3TspTxdlaQxkjVv+5JKqtOcN+5OzmZlKJRaLuF73daq2IXYrrIF52hH6Fd57MjNWDtQyNWlhodSZnDKgzs+SdQ+V+kThVxcYlhgPui8bS4kZazqc0UGQkQ01CyGcszu+A4lInYGMuMZKMgPWGdKSKHViXgopFu5vHnBfXjEf3iH+TPeGuqfmSE2V0A8ENzDNe8oyU+uBw2RYZq+O2nJknt5hbWa13TL0QZvLi2iyRGLbbzJSiq71omzL6XiHC46SKjnDYdpA2mLDGpFMF7ZUqex215R6RGpi6CyHw54iMM2Rfrzk8oXGG314wNie+/sHRCz7nXKbrHF89dU/8MXnn9Gvzvjil895fLyh8B7q9CSs6XHLNhd71our0UZcOW2s7eyW23NgRffOhCCt3MXVl6zMFyzTRJUfwESsOByauqk1oZUQesYxRksvNLapaQ/BgrF4uSJwSTZ3IFVdnPJT/Ff3bBWGpA2EjZ7m9TnKBu+CXjKJCE4volWdqicIfSkz4k1zquo2a6qnmoTttDm8LJNGbLFI6FAmRUaGQk2PTLMygEsxVKNFcqYaREYoCynfqfUhvqXUe9bbNcgzsKLumRQRMqZkKkewR5aHheAscx8QKoepsvHCNCce727YbjzeCHZQBuvx+EgvPWJGTR+wUFMhPgRyDzLqmUsZXOq8LjkhBXKeybFyv4dZw1x0FqRWpuma7fOP2Dx/zu7mDGcm3n59w/1Um3gnWuThLKlm/ZRcp+VTXpjryW2rcoZgWnxZBciaIykn5X6XomfbKpQk7e/RjAMNe3FyGxuDGhHaHki7V51EayNOB4bZYkx6MlRYsRrbNzrULBSk1J/219oG++2ZtM3wUmtpf8bU7ggwxYmUEmOn5hXamZY4czgeEduG1lUTc9PxqOv46a5SSmOKG72DltTaRQ1xUTFRyDrsTjrEm5eMtilPioTAsKTCMHYYamsGby282TB0BSsLFosbnAqI1lKWwnbUM8eqW+sArBQ6fyCEFSklXbNNJsqOWW7JCGlRxyYrePbLK4b9TJ0cr3/xx1x+9DGmBFy3osz3hDDi/YZqIVjP+niH//1v+fhX/wTfn2FDjw8rRDShkI974vTfIi7w/PklGwtljsi8J6SZ+ce/5fu/SvSf/JzLj37GsHnRXKOGPjjOV4G3+0fOVh0Xo9B58FIIXoW6YH5yK7tT2sa3VGFLQpxSW4oO0+H8CZFnG3u9lMwJEUU53VflJ46z1Nbs3uwC7feQtk9rJ52cbiacmpNtRYU1jOoECsGlVj1rSWOTplOxXZlZYpslCBwPt+zvPiD+HD9umI5HDtPMUjKr4EjzDo+QTonGdj6Q6olp1mGGM6Qs6nYyag44OeTT6a9UQYy6ZmnmCozVpBCKuan1hHc7vb9t7S2CVB1AlDZUOn3A6UlDTW0Y1zWnasJZw7v3X/Hjj++Ydnfkkrm8esmSCg+PO2KYWW8MXZcp1ZJyx827o+5vBHJjiSvrXYjHA0NviYeFY0mEfsR1I/N/+fes/+or/g9//V+wXT3nyg+k/QP/53jLJ89ecvnHn/Ly8uz/q+72/+uPP1jg2x8LNRY6r5X33lk6Z7QtS4q2UDrbXCynBa4t/jlSZjB4jYQ1pdTaxlDgiAh0QZ4cDtW0S4mSitolp9lMTWFedLqUsx4agtNLky6gGWd6MI6UbsBainiOUeOPghCo+KqqOqWJbehkupmnVEArPEWboLbpdKIUgzF7ctnrAlf6tuirKLlMR4KZdHKXKiXN1DohBo5zwgWnl/CCqvwA1tIP5zjRiHFOuTkPMqXswJxYOKWlsOpTjE2MMkUMVjdbdGEuNULN6rto/7v+Yo3OnETTE3dCp5yejNB1ntA5DnME8WAMOVXul8xr7knHI8nAG3tGNM9arDQ/LRhGLLspkspC54weTEulCx1p1gNhEUfFY63n6vkXfPf1G37+MpNNYpffqRW+/ShUpMWUjTXaEGTkp8Ok1TIMEcc4bEkcyCWqO45FnTSCRjVosfAsVGmXENElss1R9HJogl5uWmyOE8CzKpBdnSqpTc0iKWecF71gGa+KPadYSFSLe0oKipZWQY57mjwbMc2BOAK0y1NtolAmZWUT6iIpLZ6wYIzVSUc1Kvg8xTpoEwZIOVFM5WL7McUMTwcgaVEYfXc6jLcMY6ebvQCmTUsXQ+97us4zrnqm2eMGwfkZ41AXlQNjcjtYtZp1Uf5VqQuGBTEHYp4orXAj18wiHaYTTCjMxyN//7u/Y5orEWG1WbMcJ549u8TawuXVObfpHWNYcf+osZToNL5hgm02eXXUlqxtrX2vTDGS2vZ/8at/zubFF9S3/xXKa2xxaE6TX1VOFDTfOFROEDXmqwBYlSuFOXHbTDt3KrrWOC0VUDdLm/ScBMDmPK3tPRTTYuRow58aGITC/I8OBOZJIKCAtSu+/f57+t7SdzpR9U4jpoZ2IedpD21ioe56J66eSGmT3NOkWdeCJAtxfgcC1maKVJwErCsc9m/o/ArTwiExQ0wK0I3VMsfCnHRgskwf8OYMf+YoVXg47HAObb+26hj0hjZkMTpcEOV+ds5QivrbvESS04hjwdJ1vQ41ctRJoER1orbt57ReS9V4akyp/e+Jviu8/kjYTw4sPO60kfEYFz48VD5+BtOyo6RB3Qgps/UzJkeOneEQDfs56sGulUAoN8+SivAw6ftY0PW2+g2b5x+R0zsVPyTqOyKGKBkp6rILzmuph7S1RdQRaWrFSm2ultyYVe2h4AT6dmTjECpz0lxOqbZ9HafPpS3KGTUOZ3W9kXZRKYIKF3kBycQamYtCnb3x7I835JSpdt0EHjDW4tV7qPHtdqBypsUhMHgbkGoVyJ8KRWKLKeulKRt1lNIa1jANzWETS1ywpuB6vazb2iE1Uk3SRkArpJIoVp3uVG1knyadiJa4YG0iZsH6rrGLMkHUXenChmDUUbXf35LswtAL6zIQCZiil7JcE2BIVafeJWemuLQwl7r7SmmYB6MIhVIzKQszlsfjzOEYwUCOiVo0huO9w5rMeuWJc9W4bqfrcm8NKUZWrmcfM0uODeJfWWJhkUSMC9kryyjmyM1+x9vbR9bnlpIXpExM5bvmJDDqQMEoo5HaBi+1rXWQ64EihydR2VmHN1s2w+dYe8YxX3N//J0KJOi6pk4Dq2e7Wtr6YTnFL0H5U86sMbYj5p06GdxIrY4ThFxxFekk1zAMUOs9U3xPtRMxd3pxE4OYAYxiOqqY9s6fhJa2j1nRtRy9MNU2JC4FnPEUJnJKeJy6yxBSOeL6jlILw/DsyZFdTjE7E0lxpuQJJFFKbDGNPatRqLny7k3mn/+Lv8SgMd3H++847q+5evFzLq4+JU43/PjtXxHjgdu7W7rVZzw8Vg6P123g2wOGQ46ILPr+Or38lFOhTdVBTiXpma5kcvI6mKwOG1aEPhAGz/ubt/hN5Tg9cHy8429vf+D5xrB72CN+4G63MA4baoGb6xtSWthsz5hmbXtejaOmbboBSqH3iZQeuHn3gLEevCGmSGVRikU2rZSKJpqAWH5i5cnp/05DDHVESov7a8pET2GmHtjVN09xQl8NwXbKeY6HdlbVS7LlpxiuEasDlCSIcVgspRxJ5j1JbvBenRe1eKxrYHt0cG8AgtPGZwrUM7z9GOssuc44yeoILR80AUTb81sKSEuZVBSmOWuwizq11HKN9ersqYs2TSPq7jdVhwlOemrNGDTdI0ajXqZqRNLbQGlD11IEZNZyBSbyElp5l8E4jQOO4Yy82bJU6KI6iq7mjvl4VBdPuWO77qgoAy74NpS2Bdjr8NFGihjqmQ51srFa3NCiiDUvUK069YeOMJ5RjaXrizLlqIgp9PWaDx/e8Nkf/QXj9hPS/jv6weAf1KGTqxCjVfZcWcAHcI5SCqtV4IClStsram1FTNKemaDcs1OhRP1p2G4aMoCqkWdlVldyzVoaVU9mAXUEGqsibYpZ1zspqIFYm4NPRR+5VuUQB3VkqhtUsVE5ZbpuUHOF6J0CIyyTCiLd4DjVGomBlIqK9CFhSkWqnrBKqaRYWJZFnxXR+860zIRuwErSBI4YYl2oUQVF52lMSsd+fyB4wXtD8IFKZVx5Hh4PrNYjFYtxVh3jS2S16jE0B6VHnVFzYhwDDosjtLOho5pOkxPOURKI9OCTNi/nHckBLjMtN9oebI/s89zE2coy73VP2I54qcwpkOwdtzdHzs6uoFzqsMXPxJohiTrM0545V0rQJEepkRIf9Xu0FEzOhMtLnv/JX7B62HHcH0iN0zauL5HOgCmU5YHbr/9Lvr67JclI1xuWwwesFHovXJ11PFtbZSBLJjh1H59OeKc1rZZKisrULEbgac0zTyYH3b8a/qfEdjDXNUR1jnZ3EfRZapHb0gokjPnp99IhhppbTmgwZbarKUjRBhWq6jD6axOZ9vta2+wcHdX0Kjga1S98t8J2G9x4TujWiAt0XWCZHnSfyEIOUNNMbWtdKREkUnJEzIFqDdmoOCfmNExUDIEYPZNqGVRBE1DNbFUDBS3PKPwUudfPqJ1biqIcqik4M0A2YAza16CfYUERMLlmKLDkjLXKHPRp4Z/86a/5+PM/gxJ5//4947hlbuL22+9+z/dvfsPu/iv6Yc3xEDG1crZZM6x77HZFMLWdkwTTd+o4dujaGxzGBdKUCcdH/rdkDu9+x2CF2RjeWYF+4Vno+PLnn/OH/viDBb5nW8FkUXebFUxtGWigIsxJFxZ1QzRmQ8ubWxGC6xjHj4nxLaUox0SkuaYy1NMFz+iF2RvRAg9TMVLIJTVFVh0G91PlbNWEP1OIyWNN1FjQ/5u5P+u1LcvuO7HfmM1aazenvW30kZGZzGSSTCZFUiw1YMmCINsyLFtQAWUYRgl+NGB/BcOAAT/UF7Bf7AeX/WBAZbgsC6iCJKuh1RQbpUQmmW1EZGRERsTtTre7tdZshh/G3Oey/Fj54ksEGJHR3HPOXmvOMf4ttjjNeSDrQE2elQ+ssbp09YowtfwPaQ+YkDWjYvZjoQndJKDqCK6793gXcYToobQWmvbg1mJWzFqFGKCLPVqrGaRqU/UguN4WbWupcW3xt+WzltmsZhWGHqpYnl90HlVbJMw+0iSsccVqfUna7XBuBgqlWBOXCx213llrHO21rwUfVsYISEHLrqkhzLabpgJlJhfl5uaAJ7Ds7bOJ0bNNE4vgCbUwyJ4clZoGduPeQCFnWROCZ3c4MJw8ZLlYcfPqOTATu4BoR5CIj3BzGCl0PHn7q7z/lW+idY+POzJK1gRFmiKJdjAeywK0WYncPZBV1fK63nnjdzhffo3nVz/ji7t/bLLmZqU8hp2aErW1C3HMSTNWFezALMyUMuKyx7sVIUS7XLXiOUVdQh2YmzqidWLZPQCXsWwhU/fRFh6TVNsXG3xsYJBrip3X75qBPgX02G5ZEVdBK7GDykwp1hJtUX+Rs+WbbPcvKYxYoF5u0u0OSiV6Y4ERJe9foO7AmVsbEBucWeOyEB3IwtprpznTeUA7Ayp6s353HSzPYOHX+C4R+5V9Lo5mAUt4Xy0vRgxgUZcMSK+AFpQd8wTS7Hpl7tnvdtxeTaQ6Ed2Sh+drFsOW6+sDOw1M48jTp+9x8+qGVzcbHqwHqjouLk5R3TKniZQL6h0HrayWji5E+i5YQDqVfhDGXLj96Xe5/uTf4x9ibbMyN0sGdlFKY+GlcrRvSMv8pJ0XirGlZyffwHthP/0UsDZfu8wMbbI7vGUQYRlgqgYqqzv+s8bGgSPIElRx2uIGHNYI7RxKamUJSzrveO+dd3GSmpK0NqYQ+31rC4puTJ6hhkaMWDZWhWpKEG3kBCINAG9/tL8nxRPElAr2sxSqBkpVZu2oPpK1UPHQWQlFzo4aOl692LMYbpCyQuqJtXQ5ZZ4ywVeGGFn1HV3sqTIhYgHjWrPZX2hqDFWCKMhISrOV+3jHYXSgnq5b0Lkl6mZKuaaUrd1XaLNymyVne4CffzHy4nlinG3IqFJJtfL5K8t9fbgWQhSSFnJWTsOOy2WGFPm8dkzeU7TgCgzRrEXLRaSIMs0Z5xQkkKsS148Y1m8g+oKFX6EkCpMNOE5bw51ALZSWleNCvs94i94hYmqGVWNtp+wsN9I7fLMKVTXriBdp9jS5t2dEPzTQ00CpqeyZMnTdEkqhaDUQQz3eWV5qUkhqNv05762JFgMcTCVTKMWsX4gxqE2c01hWtcKW6sgaCT5YOHkLbc11asCzKbpKrmaTchGKsOwcgUDXnTHNZkMPRCDgYgPf7W3CGDFTRRteVSy1QyZKzQQ3NEV0wMmJEX2ukkqizBMqCfWFu+mKFkNtZE+pdLEjOCGqUnMGMbUlRBYEkMzeZ7JMRtp5xyEnshaojtvb0cLmRwMcimZOh47V4FlEoaRM8IE+BOa5cn0z8+RiQNQKE7bTTM7VlCTO3VtBQow2b1VjupedNb2FY16tPxZDOYKzoiFxc7tk7JxTQEtTI2IlPN4FRIMN5pzg41OmNLLZ3zBnU4kfsQttQfIqAaemHpeSmoIpN5LE5hsnLWtMBJ0d0Z+S66HNIXb2WJavATzSVKvS1Ab29SlH9U4X1tQKWfccM01RhyMQg1lqldao2nhCAaLvqerIZQdqTg5T05tt24gOh0hzhOBAOtCuLUxmGQ7+jOXpOcs3vso7b/0uwQnDMrI6eYLqhu3VT9jsPkTLiMSv0g8PGMcNcxrJmjg/HfjyxReM48R+eU7se+Z0w9LvGHzAR/u+fTBrtWrF+QU+npDKLSXvDUzO6d41k6uAC+ynHc+/+JKUM/sXX3K72bDdH3Ch43J1gkwvmcYFr15uGN54k7u7W/Z3N8w5MR129s8qzNOWoCsePHzENM688dbbTIc7Tk8raZoZ1gNz+tScL97IoOOcJe22cWpZ8e7oNJV7E0ZbUC2Z4vg8ObTN5PaOujb3VYGx7ozI9s4iK4rHe4GiVOfs85eAw8qJvAq4Aron6wF8JbXYAAFqGhGCuR5KYyhSQNTjGJC6Q8MVMZ4yzTc4lzCF/UQRI2AdASFQ6HAyIKztTqlbQjRFvkoA58lpbD+DBkqUhHNzi25xiHZt9usRWdsplBPi7JmrRNQlnHi0CEIACURWbXfwOBlI0wGRPT6C+oKjEMOAtqZ4rwNpXoP21LK27M02V4ewtdiYOtrCXoPNdlIQN5FrAg2mPjOTC5afLWQRxnnmcGf29btdQekovhB7h+wn3M//mG615vL8Mav1GtWeWg/M1UMYuPzg29y9+oI83jClwmbM3GyFr1142znVVGkOITiHEMhJyeWOGAMhOOpsKqpSmhWRRs60TEMDeLXtDVY4pccdrRhQ7oLl8BkIPFOz7UCxucK9M6tqSYWhj/hwFLYYuTFpy/dWO6NDU/WJhfvB0QmGjWZahZKEnMzpVRpRR3XsNqmdB4lSheB7y1rsxrZTeTQHPJmqSohK19ne6SWw6i8ZBsuRNWDOnAAPHy7pug5hhbjXAqomxraRVExZqcFIY9uBZ1RgqgnKAdQzTiO5Qi6W5WfRPxxPATIjVCFII8TUoPlaK3MOzHlPLoV08Nxuf4hT2BwimszGPgwOp0oqMLiZaS5sns9s8r+kVk8lNCLGhDjqjNjrhzXn5+/z+INvEcIlNXtwHWkaKdOB7c0zDnfX7G++ZHu3hzxyvbNZaogBL2L5h85EDDlli61y5kjUahFkVsh3jMSyvVXamWaip5a9XuyMdE7uzXS29zVCyrn7+0pbNrG4ZgGtRztrm/HVvg5EmlOrtvPJBCW1tvlIQFsslKPazp8ypTjwioREkYEYV/gQ8V2HCw40oTrh1JOzEuIp3UlP0EDqlpAsSqCWSp5uzbofRsSNxq85UxOiFVdfw1CWhW4KbpoNWVqTsNBZnr4L7edkGJM0AYRg74o6OwNrydAyOL0LzMncPbkowSnanJriTpgmhQ6qK2xePePltdqsnvfcPn/B5y+uQSq77QZxifkwc9i/wncL3v/gA1ZD5PaLz1jkjMRAnTN0Rno4B93QQU50/QnLkyd8sfwc/dVvcz4f0Gnm0C84iPCXhp7nTx/y8L33eHRxwS/66xcG+GrFlOQKmi0M995m4Q15jsGW2iByb+c8KkJ20zm3+R0GcUT5EGu9gtgUaSY1MaVMRZlVqHMzxbUXRXB4sVr07d7YV2m+780+8+DEsx4iHlMBBBFSyqh65nDNpgqdJBbagnydWitiMAUBOgNCyWLB6+Kaum6Bl2QKHXVWNe+OS3pTjymtulmo6ghuiWiFlgflg2tYjmv5RgbMoB51HQCqHZpf24NLmfFxje8TOt9SZUmMC2re2KEhHbV4rm4Cu51jvR5YyIEYIuoCfX/BODm6fkWdZ7Ol7V9SiyByho8z1U0tuNcO9Xm/x6bswOnK8/iiY7tX5slq6k9XgWVQPhFYx8xSAtkpLgirxYBLM0U9KpHgOnROTPMVqxAYgyePewvCbLlmi7igaGV5+oBHT9/i8YML/v3nf0aS3b1KrxbbHL13BA33eXJaleyMNSsZwOEEfvrxJ+yvPkPjNd3D0tSgLUeNxh5jLKVqC4AWK465zyVrh05V5erLHdErl49PGqOiLBcPmcs1hX2TBivVvaL3T8l61ZiHSIwnZlloP1/FAjVNxeUboGS/nx7Z+JqgKSC1GoiEq9TSCsldT3B9s3rbIDzOL4lR6GXZABpvGVmls7a1lChpA3VG/IbqM+fdiuAred5S+4xyQDXifCXHTB4KpWbmcktuEnHvXpGrY3lRySmBKr7lY0hVou8saNuBj96WLf9VdukzqpubjSugar43KVBUoRcuzxK+eA6HzGpZSYdrrq5nXm1sgbl8uObhW2+yWp/RxwQ1s1hXpnHParmkK4Gak9nIayVQ8V1P7IV5NGUw2Zh2k15H0BHHaMoPf7xQ3J9TGdhGYudAap9VA9FUoQamwx25Hkh1j2X+HUuDLCfO7tcmT2+lQKZubhZyVaTapYuYqjGXqbGChZoF8UJ2TdNeI5qVfb0BtyVGMdt+sAvOHf+QaHa7NkIcFTtWKGN2jVozx1Zm5fXyjBhwbuNntWENBxUDyzCVXCk2SB3/206zgcQUpHo0K5cPHUk/ZegzXSvfcR6kdhhE483m6ntqyaRyMIilWbxE7d0M3oOPlCoGLAEUUBJpFmrdNctQtYY62jtVDpRs3/c4Kp/+PPPqRglLiKEyHuzsSDkTvOd6VznplFwSQSqnYeK8S2ynysPBo1I5FKFWj8uORYWFGGEjuZ1FvWO7r8wIF8OCkgu5JrbjzkAX78AXG8AEAsWahMUh3lGLnZH25HhbPmshFru3qogBsoqd11gma65yP8DhAlpMnVj0YOAdTQ2IBUMjgjrTCZdS8Kqc+jUxVnoVaqzgA7EaHaWiRLz9+8x4GRAvptCtx3tN2rNnWY4SBaplPDl/BFQctTr7/MViMUpTItRiGbdVI7OD7X7XrC7+ntFOtTblj6Okub1PViTk2nBLKxKJLlp2lRwVP0JVUxnjA4rngfT2zBfB+WgKzvbcZ62os/vgHtB0UHKlD2uy29DrSNVMrjafpDozlULKcHYaefutc66uJkqtlOoZx8qLNPHkwmxXS9ex6gZ8LrwkgXTWHJgUlR4niaKmLumcp/MRycesmWzMsYPVsrd36f7dPj4eakAa4MXe+XokKlqhChhJdpzrFFB9xaevvt+iVbBzzZvqVIR7cAys3bTU+0AGRAygd9LuVbWGxqMyTri5X0gWwyMEYcq3QFOwqqPvz0h5byAZZrNTFXI1IF1cpLZA7Ua32jNV6pGigKZNOtqlch3pouXklDpb1Ita1uAxiNy+CbU4DkCqMyWyW5OKWbSWi8i437G9+3fk7Dg5exOVh9zdvWKaXjGPzxkGT9IFV1c/5urqc1LekMue6LFMTKlc7zKnJ7dQDrzz9lkDh2zxqGpFA5qD5XqFFf3y6+ye/wtK2dH5wLq/ZJ5tPo1OGXcv0FFYn56y2S4IVLZz5s2LBww+UcuOoh1ZJ5x3ZtVNM+frJXOdKKXQLS+ZxgO1Vp6++Q4h9jx9fEIaDyyHFScnPX1/Qs4jUxCqCShMRQ/36pWjvEWOT1gDp4+RDlrV7o9qJL9zFiIfjv/en1PCKHbOHONpnNhfowbuqTbchGpEiYC6Yo3mu0QdoLKn1ApZTOUuPcGfM+URIb3Obi2ZOo3kuXBxIWi9IZcJythm+I4io1ktne1D1gYdcLqHOeD8GcUvcP4EIZPTFSojR9VWcWozoH8T73um+VO03GI5UwHHgepGfHyIl4cWQK8ZL52pcnxFGrhdaka8kXSiBY0R3CmJDFKw9rRsKnAV++xdz+Hu1AiAVWZOE31vZR8qlRAeIM5IONo1Y0rJagV2mBMFrO0dsbblfrnj/PFDnrgJ4h4XAudnpwzDCecP3qSwopTEsy8+I6REkI5c4DCbGCQs32GRPWO5YzvN4Dyh88TFgHcTTo8KTHBuYLU8Z54VZaRbQJ6F2DWFzxHckGzEk2sxU4CKUrKpbqJzuGo7WsWMHs6ZRdu7Rsxg+6CSzQrYzpxaC3POeNXmijF1UpoKHZ29t+opEhqC5ikls9vYfWCAoDm9nK9MqbaZ0c4icXDxYGHRVTIQ3YCSOX1wQozSzigDwdcnvQlXvJE8WlPLBrSCJQPPk7nnZKDWCVy1jOAKViBoqmwvJmioZHNJBccxtxcSFYc6GMcb0pzvj00JMM2VPi4b+KRI9vRuhaoBr3PJDLIgTXsIheWiRyVzECEFMU+3VkpNSFcZ7yZCb19vmis5VPIs5OLpXEZcwZPZbydOTqx1vKRKmmDcF/Z3n3H38k9ZLh7Q+YesTr/OcPIufnXOad+hTonrx7zRn3P+6C1Or2+p5f+IU3sGaq33pOk90Y9Cs3QfI1SOQFzN9s83hNN2HbHs9wbp3osJwNxDpdo/U9VK3KQR7HYXa7sTDDgMwbe/19SqQntOpf0+cp+xa6o8fw8Wi+sQb3/0izO69QO65SO61UMWJw+IizWhGwBPKoWUZ6Zxy3ZzS573pHmHaiXNV1D2pLSjlD0qB8RPpqBDwLc9yantx+37coj1mrqK02AiqjnAPuIw55sj3EdsVMnm2lUjXDmKZTS2fSviut6KTKPFfPjoqeLx6jlslN2ccZeX5HmEOZHuNgzZ8Y0Tx3R3C8PbPHz/Le7eH9lcv+T67par8YZXm2uUmeILvU9Muysu+khwAxIHuuUp6/NL4rDCdwOrk1PKPNOtH3D+8E0Of+83qaOyWp8Qh57VyRIfevrlgF909MuBT3/2M37RX794Bl+pSC5m7REbtGJ72HxrghE1JlkUXD0uKIbgBtmTp+8iw4gLtnjlUu8Vd4WWcSItuNqbKs4eUprs/risOq53e05XgXUMCJnVuSd6yzpTNcVS0EIcMnNR9rnwKt1xuuwZZ1iEQGj5O5KtXAEVijfLpyNQisPrgkV/Yku5a4e6K1aDTgaXmbMyp0I49iEUWp6ZsUPBh4aMOoKsWCwc8zSCP6Vfvk3afIxIoB9O2e+/xFrHInMpME+2yKQNtdwg3RpXtjbsq5DdE164Nwlxw3c/m3n37Io3lp/YBThfU6W3NkwKUwUJ1iiXygHK1Lz8LdtBKqv1GlFlmitvPj3ls2cv6TtP7zvGVHl2c8tYKj9Rz7o6+uQt7Bihq5VuoezHmSqBqQiP3nuPzdVL8mFPLzCpMqZEKsVCyhEuz844XH3B9tkbbJ59Rj2tiG8XeDCgKxzbqqRloTVLj0mSj7YOU5Xm/iP6p52pONzrpc5Dm/VrW3zsci1FqeLagam2kORmt0qej35wjQ87fvvRebvEHON8RYxLSj60rBkLFycWamplLjIyjdPRqMfRymEPiaOKWdlarn1TclrGxlGZWkvFE0jzDqRSql0y3gWoHbHrcUVxrSERb9YFLRnnEv6QcCki88Th1RU1JdzFAnc5UnNCVUhboV9O6GJveWnp2GxXITgWHMXS9nJbo3XLYWolM1DakJ+ILuJwBL+k80vggkFMPRQciIvkeoQubAXbe1gudzz/+R27XeXFzZ6L5cAHb5+z/ckLDofKYdzz0x//iPe+9i0W60vyNNKHSk7Kw0ePOdxdMacDOc+shsBqteCtr3yLfPMpcvqI9fKC5XBBNxQenD3Fn17yyXf/90zzzmzR1dj2EEIbBhvzJGYlEKf3mS3SFHdCYcqfohpM+dKygOyCNvu2ZV3UplQyQkPbMCntrw0ZMbLEuw7VGcGjvsc5T8ojJZm6V6tSuCG4BdEvoApzukMaOXC0AZg18yh9b2REsy8dlxsXnBUc5R3W0n1cplqREEqpzd6qlVrMomQufwOd7JE21XFVbcABxKDgM1IdUgtFZ7ooJCzEWcQu/OACiqAps+w6jsoz1BsZcVTuVmva7QZH1KZGy95KUVaWrUEWSq0M/iG1HthtEzGuKDWRUiarI4Qtyo5aA/v9zGEunK3h4Trw6LSy7iKBmZXvWNTCw8XMSZiIoeJT4fODo+JxCoMIb4jncVSeAwcHEoQ5V/Y5U521odd5i6z1nrr0eMiWTeWctlB2mrXIbAolHfPMLPpARLhT2rsJ3tln5JxZkMje7udWOKK1FQ05M2XG0JSRAlkDfWgkgHNY9UXFu57oO1wuKJ7ilV05sGuZJ74mHq/OCepwanUZdmdH8AMh9kzTDL6zQVeOiXcTuEQqBgg5lZYvVil5JqvHeXv2TCVqRSpGRhlAVFWacsO37Dc4gtedj3RxaflCFEqNDUgopHJgzJYP5J0pCMzu5w0sLbmRLfYM5dlmkSoGNtzNkzUoC9Rs+TcqDlJhznsenp2z2ey4ng/cjiOHKZH2ibyFPCmSEudrQWrg9i7T9dLKfqD3HqFy2DjG4Dlfn/Llq8R+P/HkYsGclWnacn56wm67R5yn94GTGFn2tozlWtnuE5/dXHG1GbnolhzGPcIWRaApc43Es/OLtghIc/RY9IneLx0mdDc7jZNAUVNiIWrgsRqgyDFHp4Vo31MJx7tMZos6UWPmY+3IeW7naW1kmmOc9+2zlHuOwUkgp4q43JZ1odSZOVlGGir36n2aFY/j11/tbA2uI3izkOHS/dI0TTdtOQpQIzgDLyz8PrW4BrHvFYcPAyfLr+DpOEw3aFYQz+rsjP3+iqlecbv5Prdbe5ErUJIt114ch3xAi2WJeRfp4oLqRt5775Tt5jO++X5kt9uh5UDRztREcY1IT4hLU4WL4tyew8136XpPJ+f4kgk60nWgdUJjoA8R0RX7MXL94kO221tOlku0zIgvxNhTpoIQWXY9QYTNNLJeLinJchUvHj3l2Zef0oeZZ19+RtUO8gN+9Vd+FSWyWPR8+7f+MnebW/7op//YspvFzjJ7h+X4sbTPuJ1vx6wqZzuEk2PGaGvMFVMg+wbkG4jn71Utpgx2TZlqXbX2bNvz5pr6nkYIiAYj5VVQsWB2U6sdn08HvCSK2SW1aJsVBdfN9F208hMSyIyVM5w0pbWRdqjlP9YWfYMWNBd8/hR1JovKGbq+R4IBbDavNnV/egnS2ezgrcG6elPnqgpVrpnLrmXzC7V0beuviAbLDz5aeklNDehBTdXpQqTUYHe1zuDE1PUIcb0nTxPiAsHfmuJNQGU2i3KpUA9UZ9Em9nLaPeKDEGUgVSF0ES8dRQOnb1yy+Oa3eNpUi6XYHZRzomRb1qvCq0/+DJlgffmE85sDKU3cTZlnX3xIbG6A87OHLC8uICupe0QIz1EqIbRCFtehOtH1yUCQ2dte0Mh7AYsscR2lzngXmtrKozWSY2a5NLVWlIjDM89zI9oKaGlgGcxjwsfcUGSLgvJeYOHxwbWyKAPFnPfIymKWjo4KxFpEu37Rvq7XdkLnTR1Xaj1CP7b3UaCVZKFqFuR26NruYkTVnCcDYL2JAmqVewJMcbab4HC+w7lFc2FEilZy0VY2UxCXjhs/VSfAk+ZCFai5gtr3WinsbgqxX1B1pu/EnkNnz7/D1I7UaGUhyROGjjQnkEyeE+vOHESlmtpKo1BnZ4Vi2vIzK7gA3WJhM6JGQgB1VgaV88bUXAi1FF59uWE9nFpZRJnaWXvGYvmQxfptFqs36IYLYndBP1zQ9UvEeS7f/IaBSU0Jdr37sQG6XlrZoFjMS3v2tNp7ElqL7hHYM7DutTqU484JBspxJDekPUdHavx4fnrbAXzr4Q7SxAemELTz87XrRxrYJ94jzhNCj4+9/f9+QehO8P2a0C8Iw5JuOCEMp7iwxMUFLnRN1ZtJ857dYcvh9kOm3UvKvLHok2qRELbLeIomnD8lzdeMhytUJzQUCDPkCa9WDHOMIXIa7CzBYsByWvLkyW/hXaZza/74v/yQL//oM958+6ucX1wSh54udsQ4EBYDfujwfYePgTB0xNjhfSTEjhAjvov4ocPFDo1dy8X03P7pT/kX/5f/A5/sn/M7//F/xOlyxUpWeHHEBx5CpJvAhwORCFtn0QNnD6hnMx9/+GM+8R23XeL7Lz7jK7/9Lc4uH/Hw0ZtcPHiD04dvsFiuCbG/F0YcS8WOH/zjD9pft3miTRVtTJEj//UL//qFAb7gzc4aGqvgxC5BbYHnRdRax/IRKIH9NOLF4cVq7oNAznJfP36czpyvzYrQlD/OtwseyzNobIZzgSLCZjuz2Y0UXSBS6cNA5807rtXj44wz0QBVHNXD880NN2UmHzIPFxecDGv7oVRT7jjv0ZoQ7Qz1DoEigaQJlT2HMjNPM5mK+EzJyiFVNGjLHTAgsuTaCjiUIdpiPcRowaspMO6Eq9uJcTuyXM103Qa4QWRJN+6Ypxt8tcDr6tQYPy1EZ3atrluT8ohioa+3dy9I+mNOTiJrfYHXg2U1MDNVpRuW5Loh+EzC8nBKtcu2ziNVPevTx5xevE+et5SyQxC6tGNYrvmr3YLNofCjj79gur3hydtLem+f/dBHRD0ni1PmrETMPhyHSNGeu31kv7nj5vaGNO1Zdh2ISW+7fkkXEp0GSlbeeHrGhz/4Q/xywYNvv54ltJYG/uam6Am8bqlqwFK2C0W8s4so7RA32nBTfeNLndm5GlhAC/BtewLS7I33AIxWtAjjVnn1xYFx2vCVrz3m8ukSwYHeEb1ZnbUcFwfHfvwZOIeTSi6Ze+5ZWiPu8VCvtnRF37Hs3mIut4zTSxaLM+Y02jOkFuyvRdrxaGxN0Wz2RQ7kJBRxZlWmBZKaE53dJxPjiy3pMJHnkcPdnpIq3folT3/rm6RhT3FbSt5bpmRujdHqmm0w2AXb7FfHfM2qtizXFpyqdU/NBXWQamai2gVWHV4G4FPuFXFSDJBwQs0DaCa7yLyH7aZy/uAdfPiSYY48OB1Y9Y733zxnHJUuXrI6eUgeNzy6uLQpsRaEnvXJOQffsU87AhCHQO87QgwMTz7gg2/+Fd547y18Fva7Ldvnr7jevuIwTkzzhPeTLWM+UKoBrCHEZhH1dgFraHkv3A9bx3MJWjjzceFw7h5g4f4K13sbTKuTanbsJq+nQjEWMOUDwUectwzH6B0uDDjNFj7rBGWmasW7C3KyXClam99RpeqOWWuNIDkGj4trOoK2SOOnhu015Z60uIXSYhhqaQCL2p8Xu7gc3qQSYpmfRWdygaQGnkstTS1lYGlWU9bEaBk+XWzPrpqN3rIpM6UkBE90VkdudfcToPY+VHDOcmCy1MaoVwvTVU9Kp9yNievbxHroKLWnzmpxB73nrXcHttuZ89XI0lXWa8f5AGgmes/CC9t9whfFhQnplEE9rvM8yR23JRCy8JudYxEDEipyLpR1y1ZwhaIdIpHiPqG4E8tPFEdRRWppSju7B7UpiKXaQuC1DfqNQPOuB8RKOaQ0AMaa7B3OADax9ldrkT8SYqZeqApzMQWqJsuI8XFBHy+sRZRK0ULXAGOLAFADxfAsneW5ODxpnnDe3hEvtjxUzeB2lHFEvDPVcjU7eUWs8bYmgh9wJZBqa3EVuxOOX6MgSIEg1kheSGQpVgMjYjZwnU3lotbE6wVKnpldy0RthVfSVKgFa0anWXecOFM3qiOl2fJpvQEb4pRheEzNL5mqkmsy9rskaKrJ6kCcI6tQA6Sx8vPbA1e7xDSBlkgYT4hFefXyirvryn4v1CSsFoFKwgVhnCtJDFacC6SbmdPlipQL/bLjfLFknxKlVOZppvGl9u52jjFNFFEkCImJs6cdv/HVjsuHZ6S8Q+vYFI8GlkhTrqDSCjCMYBWx951qZIYcc4KOmaDugGUG2e9vMKA2guxem8VR9Wf7r5mnpUF+lkFl5To4a0A+AonQyBRpZ2lrqJQGmhhI1hP8QKp25klTT9g5eFS86P33dyxBok6UujfCwhnJos2zK6o2z4qYIlYaQqlqRW5qmak5J6Y6cnfzrwguWiRKGinjBK7gJBIH++dDXdr30Qp2oCLem3XbWVt9qRNOt/Ts0HrH6SDc3u0sTqCqATR1pB/OKCkR6w05Kz52RD8wxEtCPcfVjbWcp519drWSs0OXb9CffZ3F4RUP36587eKS7d2em1fPcPOWad7g/MBhW5hTZuHgYr2AaiUXQQovvvjIio+8Z9kH3njzCR987Zv8zl//2/aj3b8k3X7G4fmHNqMc1Z2Yks9ZrGtT3Mk9cGfk5BHIOzpkhCDxHgB07s/dXxIMzMM34C+0P+/a/HZ0QrTcOPENtHudxSfiCMueEIsV7YjN69LOx6o2r2uzKdVaOCZUZs1INYuvNMCNsqGyw8fWZg5YG3ADyqvdEzYbRBBPFN8IUmtYNltvRJ3YnYvRnbXlWBY1t4qTjlzvAI+TvtnzHbXeAgdEC6UBQN75+8de2tsg1WYTcfb1eV1QxWys4mDe3VHniZyzRU6gViSIkOoGoViDqdLu1YzvzhugMKFltOU9V5JukFoJ+SFlOrB6/PX7oHs7J0zt5gWm/R3bCFkLWQeG0zd4egJvLy85e/AWy9NL1hdnnF28wcmDp6xPz7nd7fhH/+x/bYpl3zV7dzJQlGpZvF4YDw6ppgZ0ghHuzuFjtJ01VTKmaHQOdndbi/7QY15txMfeZr9GKDkXGfqLZme1rFRpoEutM4dxQ63JCKIyM83Zzr2jbbMp4qgGfCiZXLLtws6RSmmgW5sXK008YzuJqr1XqT2ZuaZm/TzuFw0syA7Udhx1gYpFfXgXmOcJcaU946a4d23mpQHjWlt+b6mm0q+YNXkRmyupufnEmR3aeea5I8oJXpc4bzZq6sySNRJXSKlQEl48uat0UTkNQuAE4kwUweWIjwMpJU4XBy7Tw2ZfddTZnh3JBZc9koXiKqnC8nRCUmFyFY2J0wevWD18n9OzpyxOHrFcPWKxuMSHJeJDc9jBEYwBNcK8EfkxHi3MjjlV9vvCs6tEF+x8CMHhXcVRCUHvBXruHnyjOQhocRotl9YJrnCfVShtF3XO9lbvxDKN+wHvoxWXdR2hsxIm7wMhRkJvwFzoVnTDCukWhH4ghoEQuyYyaM6PXMklUTTjfMd82DDv9sxXL6FOzPOekg6UPBlxX2bwK7zv2N39nODs7vMeSpqw7hllnEdWp++S6p5ad1QCw/CAXF8i8QiIR2KoBDGnRdQLTvuvcjK8xZInLJdfw7se55e8/bcnwv9Y6J1hGn9OHNlmETGDZfMyizYG8BipRFPflwpTocwzOs7s/t0f8q233uJ3Hvw6Z68U//IZSG0uAAjJU+KAHwLzWc9+3SOdQxdr6tDzzlff5S3nycBvX73i/I0nnL33Hm4RmyKT+9+dSsMVTBl8bMs2mMtiko47sJVptmfv+L38gr9+YYDvyJCm5p235a4pkwr3/nNowIs7IpNmB7Nqe/P42gNtliu71M1HLj7gnTaQpYXetz+v1ewpRYW7UZlL5aPPX/Er779JLzAmy3TSWlgsHF1r6Cu1sjkoboSBBVIzdJZQlqox8lIyEhwpjfcKlFQKaVJOVmekPDKl0fJJUmI/Wcvm0HWYOM+GFh/Muht9oIuRzqgwQoV5FiQNXKze51A2dPIldxslpYmXNwWRPevFhkMSYi0s+oF9Gc0S5RPrZbOX7p8xzpX1KiJknNtyJp+wu0k8XDjWw0B1NO++sJ134OwC9qqWyaGKcx0ej9aR7c1HbG++ZE6jtVGKo1v0bLd7plTwfsVXv3HOO3VJUMGH0kAmpbbmq5wNUPVhAO1QelZ6wjzDevkG3kWqmIJp6GxQydvP2Wy/ZBpHVouRb3xlSRhO+H66IR9tw8dAeKUxNRZW7JyBZP6oT3aWyWIZCPbimxqmUmtrWkWQKu1586hIy35JVIz1r7h75alDmPfCnApzUp59ccX546GxbomU9xj4M98z0NSMFpNnHwsspL07taZ2CVgQO2rg5Xb8lGMOAVUt6wT7/kIALYmAI3iaLfd16UypFaojhBVVc8tIKszjzM+/90Ount0xp0oXHeNU6BZLLofEy09+yvrrC4bLCQkdqEfEWF7NFXUFe0GKDYelZa4E7PtToUiluAmKLU7ee2vAE2tqMntNaBaxpipzAakOVwZ8XuFdICXHwkV+5ztrYjewu/0SgpitUg/Uj39E7wZifJNwcsHm1S1vrE+pzrM+WVJ3l1Qccn5mFe+uWplKUfA7FtFz+4N/zebjkbT4hNolcDvq3FN1prSym+qMQbUWNmsoDD5Q8pEtq5TiTU2B2cRNFm9xBJZV0xq0qmUb2jPsTBUs1hBry8WxVfQIGAINmHPeN9VgtryP400itBa/Y9lGoUrFuWfNJrnAyeuLRAwNQBrYc1yAaMt8aa3JqUY0O1Mo1GrHtFhxTCkQY0fOldTa16jC0A0cDgfLSa3GKM9pxMeAb5ey9wYQ2EUPobd3Mra2w1L0PrNVS7MHOtrPyNQ5Scxu18UVlr2T2s+x3isyQrQ7wiA+u2hDCPSLwoNzb/bP2lj9AkU7qkRe/XzC7U/wyVECLDrMmiQ9HuFUlig9QwddrMRuQLUjHzqGKRKL8EhGfIGqO/ywJ/U3THJtA5wPlCrM4x2ZzNVthJqNqS8GEDvAVYeTbH/dmNtUK53vLCslZ9QXvERrr3WGpLimKPee9v21nMeWR1dRXLTfq6ozpfV9CFal1sRUr1DZU1RQDbhiDZG4Y8ZRZJDeFj0nqDgDy6Q2AFCNQRZavpEx6bma1bPmxlCLlRWpeFKxmaDWCTX3PcUZUSgCpGx6nOopXpipSGfATKmJuRaKWrFJF3s6EVCz7zoqUaIVwngbsjvXt2BpuyNymUhemdXOahHLFC614tVx5gN9vODV5lN2eU8Ws+g4PJ10FsyOYwjQ41GNvHX6hMfLc2oR9vOe7WbH5npitfQIgfXaA725FtThiATXE13PEAYW/ZoYenzwvPHON+k9nHWwGfcMZ7cc9lumvLWMVQXXVXwMxJVj9cATh8CwaO+S9Fw/2xg4XwGxJtP77B7b1v8cc9xAFecoZI4FCPa3joPq0cLfwMDX/+rrP5V2D3MktE3dLd6sQkZ82P1lym33WhTUgMLcFMGu3etFD5b97CYkb7nPGC1tA3AtxgX7+pxYC6e11luzppeAqm/3fqvQamCka8SY5UUJIgtCPGHOr1oWmjV1EyLFZ4Lz6HxDFzqCXxjBoZ5OF4gNqZSacRrIaUap+Kb+qmWLlgO+zNSsrHzESeKN0wumO+Vsrfh5pO+Uqc5w+IQiEXaR0C2QekBLZnX263TXW7a7z3BphCIU7emDt/ZIddx8+SPy3URwji9/9jFaDwxaWC970qGgvZ1rtTjSZODVYb9nCIl3HwVCI9YXiw7vKhcXE49W17z6k7/PzbNPKbtn5HlHCT28ZYuNqeuaAk/aTNxACu/g2AZ+dPx459s81BR5LjRQzt3btLyLBNccDeKbo0cQunanHQG+5u6Rtr0d0eaWNVuCKbo0WTmJWeXU/r4eS2PsObQYFId3q1a2YM9TOIbWI4h70p555bheSbOEqkl8QVqxlwotjr8tfHbHqdKUU4ljuQxHZXqtGCWP/W8tKsCUf+F+pjC1YocwG1joIlIdSmdAtRQQKyBSqa3IwjL13DQb+bb04Bb4Wmz2dR404CXgqsUMiTpqsTMka4/4gTIrEg00KdkhbgDvuZu2SHScrh7w9OIcH7uWrWk/9f12w+7qJctf/2uoJr7mPRIWxG5J6NeEOBgYI6bsOrZ2u+kzymxusjJnm0c9eDdZ7M9R1SiOwyERnBC8zds+BCs29JGuW7AaTojdmmF1TheXdN2S5WLNYjhFcEzznv3hhpS2pHxAXWaat1iL8cx+c0XVVq7XstO8j00oAnr0plSLg5jLDBxs/21Wz+Bji3zI7ZlyhOCATMm07E1tudUttEwwgsLbs2u5ulCrRXGYcr/Z1V3A3YdbipG/Ihxddd6ae5jTRFtWyDljttPYlPlyf0YLmOrfRZxElmHg/OxNYliy6p/SuVM6b+WWgp3DrVXzvpBOnLNCVbFyFiOZtcW2eHQqlPehdh6cR+3gaGeBWDZqe9eKWMlJmTN32zue397y5gePeOv99+Eo5LCfrEFAyTJ+aQo7VSOODbjzTWGnlGIgfz8Eoj8lnnR0wVn5jCrBR6DcR5L50Bwy4uzO887+GTFQWXxP7JemrOuXxGFBjAN93xO7Dh89wUUkxJbzDoin5NYUr/bm1Koc/6+WykzBF7j78lNEE1rnRno2ZXw1DERcxXenHLYvKNOG0mJbjLSzd6vvF2gdKXIgJWU6fIFrWIY6bC8otjsrgriBnLbtbIObqw1XN7e8/cFgYCwHRIWcV7yz+C3efvCXIZ2SN0opmbtnN9Rkmey1VHIeqeNsRENtmdk5o9ny/dqjj9z/BBoeUBumVCpalXXoeOjXpNs97sUdy22lfvYZL6cdJR1MxIWiFBLNrt8JZRHZnp9wd3FGWiwZVx2+GwxUDQv6xZLp1S3XP/opb/32t+kfXzZix/AUtM2XLVP29Wwk98/g8Z7R+hqjoNn6f9FfvzDAt2/Z/dGJgVihqfqca6ioEExUivraaFyMvXMF512zqh5Z28YAu2jKjmSNm05obTW1MaEmsTLWwBpQ8pQ5TJVUhE++vOWX33lC9MLS21KtFFKuzCUxF6WoYxECeT+xTSPzlNge9nTBW16FKOKbvQxMoq2OIJHD3UhOkOZCF234uFx0LPpICB1DsKEkCHShh+pwRZHQm+rEC6FWUkwQFC9fsAyV1WLg/CKimnjy5Bzn1pSSmKaCL5XqC8t5YDPB4W5H6kwqHKPjMAqhr0BhtxvpF1tyUap6prymcmdAlwacH4z5w1FxxO7EhlDdIVKb3W4wO55XUIeGFXjH9f5jRKCPHeIHFtE32binak/wpwzDI7rhKV1/Rt+f0y9P6IalXdZhsKWl6+7lxK59pl4cLz/9M378/f8bN5ufMd7ekjVQpivQSmjNskpt7DetFMPuIqTZQMRzrCS3jmSzkHqJlDIa0I819TjBwjtrUwg4LAfKGTj3um7eFFVSHa++3EM12+rnn2x4872Z1TrivSdxa9kgIZoNCVMnOjHJcykF72zptTyq9j4Y5NJAmNoOB22ZUXuCq+3nZNJoH3pes3S2CFkDtVmXEPv9qRPeJ3PpLhJnv3pK/16kFCVGh+8D/cmSMCxRyWi/4zBa1qTmQqhCLZPlJ6pZVgK9MUtxQZIM2dP7RfteB6b5Ck0ercYQk9WWryo4NZUWuTBNI3OaLUctKdTRAGrvmcdCiIG+u+buy2u6rFwuljz+te+QLs/51jf+MovVOavzJwynlyZXD/61iujYvNeYf6MZKlLt8i/zTN7s+NEf/CN+pL+PX0w22IxrahFyspnW/q3cLsZw3wzqXbSCiWYbPIK04qQp3ZSkxjAKDpziBSTn19icHBUq2hQGBgAf2XXnHUhrLXNKsHYTex9p2R5YBqj5zzDQBm9LJibRv8/KOm6wbcmxoORKLjBnWwpMxTLjfUE04tyAUAkhoLWgwRQqQSrqIxI8Kc4IFVdHTs86wONdJVfLDJRgj0Etaue+CB4r1sFVEzqoQ53lMFas5ao25rjQmp0VKGrqb1ULCKe0hjy76kWVwjHou1ijl6+IdDjJ4A72fVARSUgDRmO4IPZv8PCXv85yeIO+O6VfrHB9jwsdIfatdbUzBeVRUeKaEkLaF1jV6Oxqw0bJB9J8x8tn3+OjH/yfGOdXBK9mMdREt+vR7OmcEL3HUpsNnDiWc1uBj0CzjJYWsuwKWIt6s7u1IV2t7rGx9pFa5d42K2rnp+ksPYHYAGhPDYlUlmb9bp957yJO7bl0xAYWHbNjPLWVY+Bs6fAutoDySm6gd/PqYaH4gtdwRJzbzt1UhGrqFlUQbzbe2hRU1Tmq65oNLjXgDsQLnQZWWE6l5fNaeZBIaBlv2cLva2XWGRVrQkxppKJkbSrPY9xGtXM1+IBXswTtaubB+gnil3ROOHWOmmeyqOV7qmvAtccDJW9ZJ2HWgZSFPp9xuerRJwuqdlQWhLhmMZywWKwZFiuGYclisWIYBvquN7Vwa0c8KphUC1UraZrY3V3x5Ref8OOP/zUvbv4Q7e7s3FN7dlSFEByzZubkKblSkjHbri1vR1DP1DxHtZUZRmrRBgTCMfMY5+4VKEjz4joD1sy6K03R3O511wAYsTPoWJ7ivYESiFnCtTXtJpIttyJtgD8qsto77qTFvpgiR8SWQy8gGujDguLMthwk4tvvId63z7aanb0tz7VFc4gXU1bU16AUKF5tMXW1MPglrkBLA7JbOxog4wCS3BMbWmfMFuhRFynZY8KtrpEYhVz2TKPFrfRqVk0/dDjfk4l8+GnmzUeOUqDzmWG5xlfPqImia0ruObt4St5fM9RKSTecdI7QrVG/Zr55hl91eCkcambbDezvEm9cnrB3p4z1AQ/OHvOV977G6eqE/nRFt1xBFW6vX/L85x/z8U/+HWX3Q9ZdxpeEeKEPuRGRX1Cefc5da/Qc9wnUkTvPEI3MiEHwwe4gy+A2MCB4m+WchJbr1bUJ6PXMZQrzBg5ikQLexaZetplKmq33GCNRBKomSp3McaGg2lSTNIVwIyvsAfOWndSIRn9schTM8t0UiEe/hKqp35xYWVApBxTX1NQGWJq0pC2dxwzdFumBFlN3qFn/i2aOeV7WPFnvFR2mxqrtz+0ysKvbvq+juvF1SdmMVEeWhNmUlc0LWJxbtIrHNSDezuRp71guOzvPqydqJLqBMCxQWRB1+VrtRwTtQTuqi2gNiBs4Ws2CG/CE+zlMXaV6sXbZlJCnG65ubvjBv/ynVgixXvHo6Vt849e/Q1yuid2a9fkbTflSKSVTciEVm5mnUs1OjuB8IHam1uu6njLBNBaCt8+XEAhxQd+dsFicsFiesFgs6PoFy9UpQz8QuwXOG4BjZ48yjxtS3rI73LHb37I7vOL51UTOEykfqDqbS8bZ14cTSp7tnPWWga1qYFAIHiWRirWth9Ch1dT0OZuS2XtHzXbPCgbI7dNoSiJv7wlFGPNMiKaqS2myXTRXQuiIYQCplCJIdWY59p6UE13XU6v9fk4i3vUGLE5ja/Rtx7ez58d7yKkQYrTnuIHtwQ9orXS9QAWvkS6+wdMHv8I6PmIZL+m7Jd4PeL+k69cEaeUIcrQSG9VapdgA2rBJqC0PvblW0PuMWG133uHZDW4/w5SoKVFSpk6JMlWmsVAPCeaJOu3RMqNOmVFmLQxENh/9nC9T4eFXP7iflcCst8F7FCW3UqvawBVz7tjXXlp2q3OO09MLvvL+V7k4XROcKehcjHYm+IqT2kovHCqFxXLNNN6hNd+3c9ejegvMOq0VZWZz+4LbUiynX45AreUjK5nV6oI0jzgytSo+BLK2ZtzaxAJSGfpLbl59Ts0HA/EBxLKUvQ3RgNKtHpDLnjxbTvh/I5oDOOwtyzN2EUe9d1GWViBis4MneCtTi3EgskJqZ6U7IRPU8+Wnt0hXcX4mMPDijx1fLmb+z7f/OTtfKVLQBs4edzZznBhxKM26bCuSoDk1Qrk5Bap9lpptNipFDfsA8jzzN68Lv/vJc356/TFXOmF1l634qd0LTu2/FVTpEE5L5o3qebk645+8/YTx/IwcOzQ6qm8xceLoCDxcn/BrP/ohv/P3/mPc+cn9z+/466jWO6o5az06JNq91UA+U2q3f+ceEfxv/+sXBviWXZMLu9dDsR3Qlv9TwOw8YleTHCW/Ltg3lIW5VBuQnR203glzU6gEb5e3F7usVKTZGA18icGGepcLFn5auDxZ8PiiI9cNuQopNTuZc5SaML7KZOWzzswyo1HIFKY0M4/2gKdk/nr1ZkuJEumc4+RkSRShPwlNKi340Jl1ThwqHtcq7mtOFpJeMyVn8jSZnaUIwfmWWQYlT5Zf4U1Sry2c3IdqQ2JUxCudV/o+sFz15NPzJiu1cNaTi8JR9rM4XRAk3EuMlydPmUqPlqmpFdqLLqD1jrvthhJmpHhO4kBhpNbR7GGt+ZE6MZWep+/8Kn1YMizexq0fsYgnxO6cYXFKDEsGemL1lgE3J2qaYU7IdYL5jjq9gikh84TOE0wjHBLMI66MPFwsKOv3+OR04qbu2O0KeXmOjHtr+eWYeYYNgS7bC1JsQVAsgFOdDeDVtyFIseBsjmUH+R4ckxZ26pwQpdkq2ztaqQQpbQAU0lTY7mZCjJycCicnA0MYWA89fRdMGWnXtw1V4gx7ceX+IA7Ot4y61A6vuYGOrcFZzR5m4IHcL1ImXDWA7Ji/ZZ+PUi3FDNVCUYB9s54pnkSlErvCxQdLkCU0q4uBopFcCt4Npq5L2pYeiNoTSk8qA54BzSA5Ug6VWQVSQnMmo8xpZHV6Srp2zcaq5LqHWqjV4cXa/SQMZleeR6iF1CxX9/bKXOkWJ3SLJYMLjPtnvLd6wPv/o/8Jp9/4NtIt7YCslgdTaguPr5U6JQvDVrNoalWzqEBj4B1RHTEL+zvl8L0N8YN36M9eUDjgxGy4XejtAmt22uPQXRXmNOFdoRSzo/sQKL4SfCXEdpa5Y0ukgpgVQV1oTVCuqZulgXw0MBnu2Z12gQHtcgjMOVBLazmlkNMOsDPT9ohICCdtsTQGPcqSPCf7zzbFhJeOED2lFII4qlP6SPt+22eFInpAJBnwWwuViHPJQpzl2ACdGVyh5g7BseofEPoTpvETY6JrbeoFh4+mwFayLWytSlGakkDE2lxrbmBA9I0QMltxwKx61sBcUF9JzKT5ClErrKi1WHa4OHKdqMzGLuoZw/KMWDuK2JkWiQzLt3jz6e9y/uDX6IeHBujcN69WqmZUq/08aoWU0XGiltou59pkwQZEaQiU0FF9TxKh+iUncQns+Xh+SkqfU+ts7Xo4tK5QKkVdyzFLuGLN1dEFShtEirZnQmcDfXDtebTzIpeKC76VFb0GRmo755yaChTM6krLBFKUqU6U6tFk+TEhLCArnazogykM7fdudn0c2mw+0s5LPQJkMhpjXBTLaYOjFEarUspMltL28aNygKamcsyaKCTGmtju9zjnGIaBGCOw46jGEVcINHuemnrTVwMiy9yyjFzXGlUnijoQOx+pFkmRasYFj2/qsRgjopkO+9+CF2pQUlXwCSShzEx6gOrpOsdAbKqQDu8ifXdGCE/ohsecnLzJYnlJvzgjhKEpII5AXcuK07awV1M/Huck2i1yZEWPCz4CMs/InLlMwoMcOQ1P+bdcsF3NZNX2bMCUZg45UUohJ29Ab20kFi0fz7Xcz6MqSY4ghSkpaMqlowL4qOowpenrwG7LCmvBF/f3lt4/q96wudcgDnZeqfr2s1BKmUzhLN29QkoaYeHl6PCIBOxnHb1lhoqv9HHASwA1VXUt2bJ6q6mhgpNWWlTuVSKmXG7FGyJmW0PIeQKq2ZhImIp9xrlIxNFhGYeUZOBM+6xqU+qJixzdLUqhlsB8sLITFyzWIqUDWgKrMNhy2wCeXDLTBBx2HHaw30XOVx1d9SzmSLd6G+keEYbHdGFBCIHukadbPqI++TY+ZHzsIS7NOeADPgQ09nzdDfy1dlwViXz6kw+ZpsIvf+fXoSTyNJuVaX/gpCYu/UO+8u5f4ONPZzblT9DW2jtNh/YeGmCcqy3aWsD5GSQz+JOmPA5IMSrBVGRC1kg2BuJ+0fXBIkyCF6KHvvN0LtI5Tx+CNT77yjGDy2IhlFISpnU7qoLlHjiMLhBcNFBQjoA2Rqa1pcoUf+2SFdpsKG0xbrm6RiXc/59irg5kwMe+kbLerPqk12oN1OYSTFlcj7l81RZ2vQcB4QgjmvKrGd5briUc783mhGj/bQSqBnuGRbEiGiPxzIlSef4zePvUo0Fx2tHpisCKjjNOTx4TWNPpYACdM+IfDUBHcB3e960lxdRTR3uzO7Zmu2pADI4UrcgLX0Fqywt0pjaXGVxh+8Mfkv75f43OF2zmO37+/Oec/YW/RLx4TCqZWuxndZy/EcGHaGUS7Rwy8qJduT7yzQ/+O6xXZ5ycP2R9es5ysaRfrPFx0fILlZQOjOMdu/1znr/8kO3Ln7Dbv2Ket+Q0opopFANp2nmrtbTWUDGQrAFeYHFJzre4GYXqKqnuDCiRYIopZ86OWjPj4bpFo0QjvbRYgQLKPI0UVboYjOzrV6gWcsr4UO8Bxapz+5FElouHDP0DStkxTzvWi0v7HssLpHoW3Zop7ThaoJWEcxFQui6gNbJar5nSFvFqKjGaWKAeW1/tPen8KSF2lLzD4+gP78KLM24+ydyVL6n1M2iqRZ/16NfFqf37rnIPeNuMaeCm82at77yn84HeOzofbEbH0XnBz5nPfvQ5c54pOpvGqszkXGAuaCloVcbtAdlv2fWFF9HxXAp7LRyqxSK88ZNf5e/8L/9XLE9PcCIte9eBE/I83wNLNSW79bw/Yi/tbjCgPbqJ8fZj9qljPoxUTfRDz2Z74OJiTcozfdeT84x4YbG84PrmC6gWN3IEeVTVQFyviI+cX7zDNJud3Ykj5z3ihJQKnXdUHXElM80jabTsTQPkrDzIu0AIRlLl5cTd9Rc4rdYBUBWcFXlZXqM1dVdZkmqipITTbC60li8ZorvfO7Ue3YkLvI/Q7OqhW+LCYIrD/pyLt77DNN7w5U//DaJbeu8Jb1YIJ/SLJbGbiTcrbj9+wb/8Hc/Fb/8HXPTBBBNNGXqfn9/IfBTGzY79bt92kMrl+Smxt0JGiglznEAQOx+mUtmMhc2k7L/4kq9ffcIn+5f8l4uZL2q5V2oqkMUENqqQigGNb3c9f2VfeThVNqcL5r/yF4mLNb1YdqmdAzYn5TTzs+fPePH7v8/Td97ig7/z37fds1nbj7OFRcMYEG8RIsJxADTnq9zPfa/P/V/s1y8M8JWi5GTXHY2R8M6yGY7Wh+PyU5MQo9DJcbyzllXgnpVWXLPrahsUsQvL03KlTNWiVKacqSjzWNkcKi+3haF3UBPPXt6QLwYEIbUGO/sqKyUnYjtEugjLuGDoIr1bIhFcqcTYN/m/fTjBxaaaAR+s3VZo+VLVLupaCrlUUhmpWhjHbGHhrf38HizQghNPKjDnRJZ0HE3QYjB1raaA8D7Yz0Idy3CK1wVam6VWjCEQN1FJqB7QGgnBkcrehrFiWP1+OzGybeUllaqekjxdNPBGXU9VsQKEsycshgX98hF9f0E3nNItzpGwNuWfj/eLSa1gUsaJ9e2O4UffpT77kunqFfvbPfspsy8zUyokV5i6jkNcsFcbTKqLTLGndj1ZPK4mQr3i/WnP+pfO2a+eMIcvKUFhnKk62eVTzYYRfcBpj4+tZccNhNBR0h2hs9KHSjW0H7MZS1MKclw4GjPghKYMNamzd54QIl4iXhYEZ0tH3/X80tee8O7bE8tl4MGjJYuVLRVRaOoC+yN6yz85ltCAIN7yoo4ApUlvVgjWOnt8toydaPkbegRj2/vgjA0rDdBTzWQd2yDZnjV1OHosjNdCs6u3Q7yoyaBTe3bNDwclB0IZICnnqw+Yrwp5t2e7n9GSyOk5mlr2WakMqwHNGc02mBdN5BhA92iNrxcffAs1dnTLSBhWSBdZB5Op94sTuuWasDhhsTqnX5wQhxWx7/E+8tk//AfU5SU/+HzP5sN/zjhNzPsth3lkHA+kQ2I+JMacSMWaJVU9GSsk8K1ox2O5dY+r8tsPn9C5gZ/8s3/C+Zu/QZm+oOtPDdyQCaS7b/a8z9LAWUGESYwo2kxgJQHWCJWK2SjAtUvX39umVWbI3Fu3baiwxtDiQmMJO0LoSTURwmv2fM6CyEDszMbqxdPJBSKeGEIDWwJdXINOiBSkU7xXqDNIwhInsw0FJEIottQeM3rUdBJOmkYlmJpBvAddEvunlHSHl9xsEQ18cAmRGaqSyjPG8RkUe/66aGcnf47NdWLKR/tvK49WT9jtX5KPlnnX7CXFwrdzGkHUFoDWBFo1E5aZ7BMljSacUQ90RL8khCV+sSJ2J4TuDB8f0A2PcVEIcU0IS2oN8NEz/EcTmz/8PTZXd+jdSB0T5EyYZ7o5E1LC5wRTRccJnY1JrtkAxaqmhFYn0HvqagHnD9Hv/BJnf+Ov8fy7P+CP/ujf8NEMi7fPuXzwkhBNjRcDpnDD7N/eYQqzAkLGi9gC5QJWMAVePS6ElmPoyNrsttVbS/1x+nMOwSyFdm8WW/5a5lgqCQkep8HeUhfRujOATAJpOpCnvZ0/rYEPbTEZx4WYgpOjldbs6IJ9bfgMVe/DpaURV/C6uZymYC01kYGxjNQAVZTlamFLrRNysTMLZ4pxV9UWpGDqBKdWGWvZlRkztWXmeaIPkVgCq+GMYbig6Mg4vmJG6TpPrA5XHJ2Hqj1DVIJ4vAZmKUy94v0Zwa95Y1gRnSfEgTCsid0ZfXdKHB4Q+wtCOCP4gaBiAEtO6GGGsoV5oswTOo8wJUgzNc9WbDTPaLbwasCUZMUydpWIDEvkdI2+fMH83T/m+qcf8oc//4x//eolPz7syWfK3/qffQBx4pAmSsXCy6kMLrIKS7b9HdX39lk4QbyRCPYeupZrZ/ZVI1VtWbX/3d+r3uzubMUGHDG/VnzQzoRGrbcsTSWI2VSCc5gdJlLyKd4PzHWH85GTZUBCR62Z4B0x2O8ZfVPPNkLEawVnES3eNRVEtk9cpFqxOUoophxEFCmtxKb97o0+p3mNDOTxwZQIfsmxoVlds/WmiTLvEbU7075frIWyzWwWOA6iM4Iza5uHaSdomtDNK7JvC3TLH/RiUY6pWg5nmgsWRSi8d7kibxY8fvg2J8v3WJ2/xdlXfhm/vsCFrpFP2GBwJBuyKRKR1zuCjWuWRyRa2rtfeXtxjl8Ihz/8U7h+QX12RXr1nHR3x3675e6wZTPPXIUb9E2P62ZElMWiY5yt2AQnxDhwGDPjNNH3PaV27O8K2spULHO77Qfe3rPoPUMv9NETY8cQe/rQE4/OCWdAnKjiZjsPDC8o/w01hHevrXDOhVY2dPzBGKlg+ZxGWpoC1LfZy4AkFU+TXNsO0u5mFDQ1N4Mcn3ab0ESOAJvlCdSmIET0fs6mZZAfc8ucGjhXnaAYMX8kPqC0ua3dxe29tPPWVLlHENCyHBsYKKZ+tq8uNoDTCD2vlZevOrqfP+WXvvIOl6sPOOvfYuEvCbJoBG97WFrUjdSMq+Z0kNrE17WpCUtGdMZhuXwqrhXRdRSUu5/8e7bPXnD55lMqhanM+OefUG5umXNk8Y33cI8W1P0zYrrl7Lqy8IHdl5+R/ubfJV48pOt7Ez0Ue8+sXNHm56ra1FFHclTo+wW/+Vf/pwx9YLe94+7uS37285+w3b3kcLhmPGxI845UD+Q0UnSP9/bMokKVGeesJCyXGZ2TEWNNheVrIIZgjpw2w7g2n2jJqE+mEK09wS/xYjNrSiM5bxFnTafBrVucxGSZfypmJQ5WFliKOXNC6Ol9YM4TIQYWiwfsxyvU7fEu4KVSiznJ5vElOU/EsLBG+Cg4/4CaR1sTMDLB+wtiWOJ8oZQELlNLJucNZ+s3bG7NGyNeXSue8p7gFKdnLPq3QHqq3BKnC37wY6H/5tfxJ2uM1TTYu/lJyHMitygIE61mfDsftX2fWip1TEy7LeluQ50mdJpxY8YdJkJKrLZ7/moaeVau+Gh+xVYKsxS2ZHyxvaeo53on/O7Nni9z5p88esStq/Ql0XWFoes5u1jz6s9+j7d+79v8h3/rb1FUWtSOzUFWaNKAW+fIuVmsveVfOuQ+FzTPM5ubkbxr95pXpnFPrpX9XtEy44rdu3ku9N3SsvKZzWniTSmX5ownYPoMx7i9Yrt5jqjlUaY0W/afVqTNerMfOBxGA4SLWedrK43pQoDOU7SyWkwsYsCLtn8GI+BogihA6YhdoFNBBlOHGjnc4YLFP4S4pF+c05+8QTesiX1H7FZIXCDOzq9SZw67V0z7K57/7F8xTTdUbqg6UZIVtDgJnPRLvDvn7t9d8/zXfo2zv/jrvHd+wvsX54gqt2kmSiDgmHLm+e2tPTwV7jhGvoipCYM0IkAptZJqaX9d+Nb7T7k4WfDi1ci//egV/eZAePGc7y1mPn3o2FcFL8xVKOKh2La+21RuNwdOes8Xd3t+HU8mwXRgPOzpQmyAvhIIDcO2n/1wcsqz4Rnf+6e/x7t/43eRkyXayoyORIRqbep0bfiJNidEI43a/SFN7f3/IwL8b/XrFwf4Wui/tElDq2l+XejuL0inSgyO0Ln2DZucpqpSU+Z1m4hl8KhiF4j35IZ6HmZrI53TSCrWGmqBoDZceR95cOp47Bd0wTL7pOVYLTvfhkVHF6xtLsjRD38U/hdj+0XxWM4ZrbHVlIm+2caUkuYG6tnppS0wXsRqxUupBkaKoGp5ULU1HtZqIaWlmkzfMuCOCjNtIfGB6oSkJrO3UNeAd+9S0y2aDvhaGMcdWkpj5D1VE64GTlcXXO82BOfpfDRLWewJMkC/JPTnhP6cfvWIvn9A11/QD+fEfkXfrVqldDAffDX2v+ZMMW8UpGzDUbM0xH5Bp9f8f/7zv8/16gS3OmV68Ba7h5C6SIkDxUdWqxXrrmvPiVgeWs48vTyniOPLl3f0Q0/VzE+uXvHoo+9x+pXHlGHDq+tESia99V5QZ1YNkWhsoSY7qMnk5OjjCSnvKTK/fmGOQxPH3BaP8xBdzzFXKvgB7zu870ACfehtaCqZLngrdnGeR+8UvFsRQlPIibwOePadZah4sxipGCBtDVQG8ppCUCi4psyx4Q6Z7HU/NqqJozKBFMv20GyDj8z3oDhHG9zx/xv0zLEFqQK57BoL2M7M6ihaQT0lQyhL8tyhO4G92YvX3/wlPvryD9i8/ClOAtM80w/GuIkX+x6zDbPqhRo7YrxE+zNOz9+gX5zRn1zQLdbExZrFyTndYomPAy70mF+pgUTNX31kqas2tU8tXD+/4r/6/ud8soab6SVJQMpMzHuCFpY54yXwx/4xmw5CMW3AUiJh6Zk7WIgyVFPKqav0Tvn9/+of8HeePmI77lnPTzlb/TpDnxjHC3L+jJQPVoKjVkJzzHlylWYvm0EtP8y5xFyPS5+SS8bhKKJU3zJOxDL5XJOVq894H00F57ABTTzOi5VnqCNUMeZaEq7eMITWvh1tsUEKyoRqRny2IO7yOaja33cVKQ5HoerWFpjjQI9vtmGH7xyeRSMzPM717W6VBrRtgcq8+9IuKLFYBdQa8Y4Zd14DVLOZFs3E4JmnyUAdN5vttiSLTKggVBahZ3n2TT5/+adMeYu0Jm2qNuuxv//DuUCIHTEsrUVy8SZ+fYaEFaG7IHQnxOGM0K1xboHQgZMWMtyWBLBzW+FP//33+Pn3P+ajT7/g5nbDfhqZSibXiuaK10LIhWUJLOktLzNgSi8cmY5ZlalkNM1Qi6nF9lv87opfvXvOe//mX/BJd8oPdGKbJh52b/DOuxMhFrKc2PmgLQycZqduUQHHbBhxR8WxawuiZYw5iUhxdB0knVu0RG4ZJorFDLR7pdogrmqqZ+d8u9sqAVN8SM0EJ1bmE7Qx+E2NXvP9c1xLJTgDeHBNrduUxLkmKpOpX5JNKf4+UqNlPpU9gtCFzr7Xlu+jqoTeCmRKY7KV18U1wGv7TlPEpFq5K1tSTeikOGARO/oWZO814iZH1Ezv4PLkHebyCi/XnPQnNgQ5JcRgeb84um4g+BUalyzCCsIKuiW+P6XrT4wIiEuc6wwsPQ5sqmw//IQP/+D3+fTjj7h79Yrx7kDZj0zj2AbiarazWsilMJdMgwAaLmYgljgL/jalaKbH8xvrBX99Hfnn2w3f3W34k+sbYgjMTkm7wu3tTHdun3/vI5cna/oCZ5xQ8sAL94LsQyMtXjsqvG9ZfApRPXIfmRLR4vDerO7c59ZhaodiKpTYWUC/D8IxzL1KRdXT9wucEwOl1dNFY8Br7Vk+eA+z+u7pw9LeK2cqfPHS3om2yOUD2kpCtM7UXAyEECHcgzomufAaDbxpM5RWIzJULUepFlNRWWmI0VC1ZeCYYsGWAFNaFbP0t9wv1JYmbaA52NVd1M7vdsA00MUT45JtdRZsTrG8t2pO/FosOkRloMqCuDynP1uwXK6Ii8dI/5S7n+5wNxM3H95xm/6MZ4uf2L09JxgTOk2mxqjJChG04qW5FJrrwOEIFfOvZm+Oeq9M28Tjiwu4voay4eebKz6a9/xse8vdeMuf7LeE9YpPbm/4i7+25jd/ydNFc9iMYyEVocyFEDzzXPAxYCaLwIlf0MfIEKLlT/tIHzs8jiCKD86seQid83j1SD4WvwiKqSMFb5mJzvI0palERY0oc7VZnrxQSyM0SIhv5JQ4hB4Vm7lNWdrIAM0UyVRphWg0dW09lsQcVSUCFKoUtCacmE0NqahLTe3V2GIUWj5nqe33b2UbtHiEpAmqnddHS7iBlf5emmYZuTRlnj1Px4xmE+m1Ao9GoYJFJ3htVt9qiqyvP/gK3Wdfw8tbfL4f+WT+MSlPpDlRqhXbpGw5V/ZeZHIplKKU5hJxzs7i3viAlqMIUR0L51kSedAPLJ+94Ge3P+c6KZ6JOy1cpYkxOvbjzPCHjsOjUzwz++2GrcBV8NzNnvfnyt/9e/8Lxsksql0XiV20UaXavihtKUaVNO3Z3lzx6U9/zOdf/IAxveLm9qeM4wtUbLZdrU9wzpPTgap7ewfrAamOQ74BKrXOuKbUtFZSiw4yl41vRLzJBivmFDNQxd5tkWDWTmuVIuveCpwoiOvwISJF2/ydiGEghiVdOEHJpHRNrQnvrCW0qhFXq9WbjOMNOd/gpBDCWXtmYLE4Q2SBk3OW/Ympu1wHbmCxWLHdfsk0T1xcfo3N5nO66BuJYS2j0/zyfgfSairDRb9o1mLw3QnDYPNTVduLQh+hPuLTj5W3/uZ/l/7xI1Z4u/adEsXAJVVlnjN3h8nUV8kUra7NXV5gORi4enfYc7PZmKunFlytpJyZxpm5Fj5/cc3/9f/xf+cH208obmYsRnzmWjhJhUdOWYTKjw7wdDQCo847fuOXCk/XjpP1zPNXjvO3ltztEv/qH/9D/vJf/+v4rv9zKIYpQ4+5ic7bPJMbgOS9gfvHiIiiSsozZa7358NRI4GAl4rmJlqSgsgd4zgRfEGrkPeV0DmmsdB3DpGC8wp1T+cHy42TShebiKNAxrKA5+lgrsbO5u8Y7f0ouSAu4INDNNju0s5RaO9sA8m9i4j3uNDjuxWn54+J/QmhP2nAXo/lnprApJaRaR65235Out4z5w21HsjzAakzWk1MQJsba0ngC6VkcosjCiVwfT1yMr3Jv/3RhuF//pdY9I6vPX7AeYjMtbLTQieeoEKqzVnQzr3zszV1vUBVyKVwmGYqjjHN7PeHVkYD6ivrdeDJ5cD19kCplbPtgbS/5tlCuNPEoWY228qclaKQMnaXJXi0Hnj34cD3N5k7LNxrMSfkekNeLCymqWRqi+gx16nhPcuHD/nBDz7mr/z4p5z/hV8xRX6LMjnOFkcLrhz3wGOr8p8D8/68qvsX/fWLl2zo8aXAWF8f7mWH3hncEJxCTeRWwmGSxdpYKwO3LGvKDu4CHA5qgAZwbBQJPuDoGZwwLIQ+OoJA9MdGQQtMjl3XHgw42i4NVFSOUvtszj5UrDhAK2iZDOiTlu2XG6CXjZ0rpSHFesyIsYu4qoV7u3YBC9jlTjWQUE1xY9JyszDnkgx4UTWwsLHetR0wpVjpSKfQRccQH9CHr1FCz3b6M15++cfkWoihBZ1LIIQVoTujW7zL4/Uvs1o/ZHX6iG71iH51Sb94gA8rQujBh3twxQ4BYxa1VAPy1Borazaro/eOrosAFCZK2pPGHdN4zW4/svl0ww/OHvGNv/xXSVVxuTLv9pSU7x9U7T3DasVhv0fb8PPG5RnRVcZ54vGDFaqVlD365CEvn51wvqn401OC7HCYTcNaiLSJzuzFLg7EV3wRswjMG8vB8yuCeLNPeRsQPcZWmErBWx6gGJMSJDTVXTb2Q2eCr3S95Y/FGK09DUdw0dovy2xPlZqFPGcbNgulsejZWFUcvUx4Nngqc11RJKBSjFlGqXUysJjWEtxUYX8usKIJZ1wbQGuT85q9675Zq+XvGeBiKrA8B1soELQGmDrqPpA2wnRwBgDkguaZ8zceEbRS0g5FKFLoFwtj4GPPsFwTl5ecXjxkdfGI5eVj1ucP6FZnZllpYbJH9gJx9+8+mGL8aJHRxsqiZudv4ywAHuEf/z//C64fPMGfPKA/ZLp54lu3Ox7mwpLEInjUezZDzw98QFDWvrAgMXrlvbnwnVpZSOFVH/hhiIxEpl/5TX7/49/n8bd+mXmzJ0/fJqdPYdreq42c+gZycG83sCXAI9raFxWcD01OrnaRZrM+h9gTgC6ahd97R4wmy3c4outwYgq+ZUdr5ayo7uxc1Nx+EgK14JskV0NFCaTSDioRG7TEcjGceJw/gr+VPnbk2tSpNGIGI2eKHijJsYiPqFQOeoWXmwZAB4KcUHVvMngCSm5fzsKW07JEZdfInYT3PY4BqT1F58YWNosuTXyaKyoZX50NvN5BHa3siIgnEoaOLp4RunN89MTFOWH5iLB8zHDyGN9fIH6BEuz8FLm37ihHJox2r0jLPzJgyC5d+OLlDetv/xYb/2eUMZEPE3kqlJoY767NLqFCXp7SPf1VXrozDqGDUnBlT18TOu/40x/9CYfDNbUVPVAqUZXNG4/4kx/9MTf9HUOozKVye7Xi5mrN6cNCkQtUt6gqOSu4SlXoXbR2Uky6r9kKp9xxARUll9kyBVF0quDte5rB7uGquCqmCq5HwDQQooG2rhFrWo+3lmmbcq1E8ZBBj9mQLWM3QDsPWrKp1GavbgoQKagGvGQjOKqpvFUEpJLrjDgLoo4u4vB2z3tH1tkiJZzlQ3kX7rMGs9qwbUBKbkpdAxa8C8w50XWRoGJfOw6ngSE5OjwdniqVKdl9FsXTu0gMK0LowPUMiwtwA9UNVD9Q+zXd8pRhuCB2J4jrGuBdKVVbga7agN4W+3G/43/zn/6n/OkXz6E75bRfsl4veXRxQo6Bl0S8BGIU+hhZLTtUPLdjYC7CkxgYygw1sSsjm3HHfhyZ0gGfK50m1i8/4s9c4VlNHJqtc05C8ErZCQ8frDn1Hb0XouvQENjsEtd5Yr7zlNkTfaGI0AVTVvXegGWqY+gGXPCkXFAii9UFrmSqToQ4sFhf4kJvbH/X431P1/V0Q0fwvc0kYiHs7v7u7XDiiO18plpGZsnJbjJN1AbcSZ3IaUdOO1KdDLjK6V59WrUpL8QRiDgX0bo1V2HjyVRCA1kSR39EzVZpYCySgTigBF+bvczyIbWaGrXMZn+H2ph211Rj2sAla5jWRprp8dnFCOaUimWsiVCyOS9SquYGoaNbnBMXD+hP3mHx+Ct0J09YXD4lrtamCJyV3/vP/j7/9T/7f3O1XjO5SImOOglVHKmaovlIEh9b7MHeO1crrli0Ainj08QizyznPetUOSsZl5Xf/LOZs/3If+EnftIVrlCqRt7LL7hbRVJY8u7lBT/9cuI7X+84jBNlLq2kp0NFKPRG9J48oJaRVOE0dBYp07AtR8HX8T6OR9QRpbcFUBoZerRm6hHwOmbxSVO2iYE92LunWAN7u5URsbuwKBangAL59bzkTCVdmdq12qJInOXVehGqGEAnbQYoRc0F4kD8O0h4i6wJ1Z7oZqbyvaaYm4BCyfb71rZzWIFOm+O0mA1Zlc5ZaYjoMbP8mNfX5j0agNie3+O87pzNY6qFisUHhbCiku3fdYPNFCXg5iVcd/xnH/4xX774mH0nzF2g+tAikdXmPleRKBQP42wE15N0QGPkp+sFYZ4IubI+JPKckMMGOexJ00yZMrqbGcrE/65UfuvBKf9+nfjePPInqxU/Xkb2SeDzK/5ChHTqqRE+//IGHc64fOcBOUz84F/9E37zd/8GT958j2G5NMUOx2gCE1KUNDPv77h99jm3zz5l//nPuHvxBd+fvsthvkFJOG9FXg5lys9RbbOGt/+WOEFzvVfodrHDqamExdmPvWSspbQLON9EJ75lGiOEEFEt5DyS8h3OKcF1oMdGZ0ElU8pEmlvmqfeWGayJUhohJxXVA4Jj2S+tQTePOA8pZZwzUcDQdfRxgQ+Pbb5yiVqEvn9MDAPT9IxctqT0kv00I5KMONo+xwVFpcO7Bev1U9K0JfsFQ3eCcwHViXlUuvgU3/X0XY9za1zM7PZfMNc7shrI3m2fMspTTs4u6BvplrXQKXivpGyOi5RTm7dsnnC4e0GMj4G5ZMYpsTkcyLXZGZ2SFSZAh47OO7Z3W3ZkNmx581GGZAUj+4Pjk59VvuoNg1gIXCu8mytfiyPfeGcib6BTuOgDrz59yfDGmi9+9GM+++nHvP+NX763aR7L11K2BuOAFThWZ9l7NecmIrJ39GQhdFjD93E3c+KYc2E5dAQx661zHUVnYijI0DJoxZNzwXuh8x3D0BlZJr6RbEuLExJaqaPdLcF7crVM8lb2bpnYDVDFBXxcIq5ah6CL9KsmEvHeAKYQ8S5QxZnjzduZONbEND6nHn5GKSOlzFjBT8JJAgo1H+MKWhRCNYK3qJEbtoeYq8g5RxBP30VWiwWxH+i7iJPAz//xLeO3vkMcep6erFh5j2tkbq0YsY+5IUFbBq8iwVHFgLKiYj8PFUo+5gs2XEkFr0pJhZebCc2Fp9st47Th533h2SYRY8eLm/19liBO77EprZVVB5Mot41cXs4T3c0t28tTXHNjhWDP7DFTUURwXcfzqHz+3T/h4jvfaipwm6udGA1TarG8eT3mthuWocWA4lpfx7P8/0UGHy2HqWRFm9UsOGcB2yRiDCS1Kodaqy2gat+gE0/J2ti3YxaHo+sDne+J0dHFjugiITZrkrMlzbtgzG7rf68lU2si58w0jfcKIIXXjUG0nDXftX9PmnxfcHSUWnAy24OkLfSxGMxSiw1RuRpjrWqSXnH24Few3DoKDauwryvZh1+z3n89JsdsaiDnkNawI40N8M4u7WXsTOSkQtQ3OOwnui4g84TkE85WA2cnp5wu32Z59h6rB++zuHhKXFwQ+zUuWHOR2pfSmMwjSNRyP5oFwIAi2iU6UcqE14TUW8r4nN3hcw6HL9iPryjzNWnestkdkKJ0LLje/wecvfNL9F1PnROLIVqmRM4mb5ZAzZmzcYdfLzgV8I2pUPGcLRbWkAN0qrjomM4vuPr8Jf0isuiXuAwBUzZoi//wYnkrwVubWQgLoiwZwoCIpwsRqZkuhmbR7Fl2q8YkKcFZKGkIrgX6Q2zKhhg6qiaCq9R8MCVTlXtmJGdHdQHX3qKszcbgrdW0arbhEUFUOalXXJbvM+22FjS/vGDbvctEZzlkQlOyKY6OvnvAbvqCoslUcw3qV1rOT2OUjmHUQTpEj/lGpngSTI2Z8mRssArTPjPedpSNw81KnQrSmr+cQnRwHmDz7GfkPLM4O6frA+uzh5w9epeTR+9y+vANFmcPCd0SnKdoU/LRbDBIA9cdx6DpUqzJSZsFurSlyhhidx+kznGYF7h69jkffv6Cy+98lZyVsXP0SfmqPxD6SB5O2Pc9m77jW8HxHpVMJRfL3yvRcz54wjSxUxiC53yIXFeh+8p7fPb7/5C3n/4KSz+wOA+s6ke87E65flkZt4rITNf3BkpEMVts14Na65pWpYuRgDFkXVwZ0C9C1/XkeoBaCNGyByuFKj1lmkGF4ntcoKl5B2s2DgPq9F7tGzqlZDVrkXOUmq3N0FdWw0DRA149uVb7ubYLOC4E0QgOqvQcDgdULK+yNJbIHUFXFebpQ1usnH1GZkcODH7JXPdmK2uqAtWRWrYECQTJ+DhiYq+OlBLer9iNL9lOL5mbelScQ0umD2YrMLWJ5+2Lb5CL4uKKs+VjFqcrYjjFdw8I66fEs/fx/SWEFSqe2sJwMw1UP95FbbltJyxaCvl44prfqy0M9p7fXN/hQ+Tq9oY3zx9z2O0YF4WXt7fsJyU5a6/rfaDTiemLP+bd977FuDynZCOD3ppnPt08I+re8gI5qj8qQSuh7OiioOlAUpgU0vWW7/5b5cE7Aw8uYwt1VoIbQB2H+UDpCt4ZWRC8DdelQGG299hVY001IM6aEaXYOXt0p4lzmBE74bynOsvNo1iJjag2i4iHBgYdIwxyPZYwaGvIVltInD1jtKzTSW15dpIsWa2pUaozdVVVJbuCePtKECW6FcVFZjWLMACloNWjDkoewSspG2ttuYKlLfz2MXeho+8W93lV0Xc4tcgQBEJ2xBBhtObxbTmgLrB+cEG3OEPckm51dq/Aq9WTfcAvL1idPTWwT7rmEqikUqmpxRkcz13jI+3v14LWzKuXz5GTFX/tG3+Fd/3AN09O+Hl2fK2DjXf8823HHitgeHC55lvvnrGIgX/0k4lhc8P/4NJxJpWJwg/u9vyLTz+l84WXr/Y8uHzM40XP7uZj9ps79qkwpUx01gbZiXCO573FOXUG9cIuK9XDYaVsDpknF9+h95GSr5nrHYvViqFfMgwrun7BMJwzrM4aAJab9VHQPCFaoFaCg1om0GzDeWk27HGPyJZSSlNeGQCG2BIoVEYMwDjaU4/NcWghpwlpqkxtqgpTb1qO2tGyoghf/MFnjF8k+jfO+fTlnot3Lvj6Nwais+AKdWYRo4HhFTtzapXWvms2pFpnm+eq2TMd5gy5B1uUZtdTU0FXNbWFgmoilaPtxkpdcrIcSgPMPdULeQZcxIWBk5OvMjx8Cx9P6S/eZv34PYaLN4iLNffFCtjM+PmPf8DvffRDrv6jv835xSUneH6+n9jMiVAUV6qRjWm2DOeCKblqK+cJLXOzKZ8OtfJynMl3M2k6UHMmX79A/t2/5M3nz/izy0i3DJz7yo+emwtnuah8vEu8//gJN599QSoLhlAoURi6Hukec/H2X0DCklcf/hHSL9hcf4E6O5XN6RGx8pXXqoWCLam5TFaS4S02pTb75fG5q8EEBFa2YXOBNGtUbYUUKhZTUAv3AA5HwhQ766U5ZMQLOG9ZjC3j2BhFW+LVGRFiZGnbb+7vEM88w+3mhi4IzhW07snlhIvLh9S8xYUbsj6nlolcJ7sTjzbT5g6KEgjOE+4J22L5XKQ/94wfQ9db9i/cz+hZWq6h83gi0CP0lt0sDq8LwJREPp3wD252fPqf/A85i0seCOCMTOzFcUfkQwroTJwrnx2UbYJhf+Dv/uhPiUPgf/sr32aXFBmFtHnB7AakJqIWnCv89z664b2bO/5tD9/7F/+UP/nhh/y/ZCLpzP6rX+H5b3wbPSQuX+3ZX7/Ai2eKnmFYsD3M7fPsGPPID7//Pd5+76toVXK2OBlBmLYbdtfPccGx+/Iz9l98Sv3iE/KPfkzohLS4xftsttLgyXlExNQ+9i4XhKbOOzoy2jtuwJwtbV5arl40MI9qgG/JM7Ff0HcD87xjd7gipwmlIr6y6DpzdqniXKDvPDlPSLA7GZSiE3Oe8WJqulorfVwT/YrOL5imEfGFRW8t4jGYC0eA5fIJXXfWnpc9KY+IdHRdYByfsZs+BV9JGduHgqPvI6UkU6Q5BfZsth8ZeO2g1MI4zZYLG5Y4SeSyYT4kyyB1BeeUrltSasSr59XPDpx88EugyiJ45pypNCK1nZNexBwQRxDjfm+xO3NKmXFu93tp1KKYECbVQqkCooRqRZI1TXztqefr7xSmWdjsE8/2FaeekANoZn0Sub0tRC0sN8n20k7pg6c7Ldy8nAmSWMSZP/7DP+Ar3/hlA8qLkXPiHDF05FJaFrm2/83d28Jzsc/s4Vln0RlUEMs0FBVUI8Js85ULBAJSq92Ldb4/h3rXEUOH4lgsVpSS6boOF9cMyzNEAnFYkOcd8/6WLrZIsPb1asttjMHUwFU9Lka6xSmlHhthM6bYLKS8A28EKdXeh1q4n4lzMiC21EpRyxR0zkqINNgeEPyxWddbtqDA5rBltRgsj7+z/lmweyH43p7D2BxKqpSrnj/84TOe/Ce/wUGFx+s1nTNl7FysiFDanWtK+eNcb+KqUoygTckizurRwdbuS5sMjLxPRbmbK2m/5elmZFtnNg5OFgvmZO5L8cLQixWYBiFX+/disDzrTW9RHl2eOH31iqu3HuGK3WO5ZILzlBpadrwJK/L5KT/50+/xy/PfwQ0dx4ZoE7KY7d2s1SYc0fs97Dh32DuSj7PmL/jrFwb4POb9Dl5arlmzszY76nhIlCIN6DDJc/Ce4MAFTxykod1iLaFU88DhQBNaJqZcGKcjq6XNZtF+cGJns2V2+JbNcAwPt8PuiIeKa0NBGSmSqOWEBw9+m5PLb3By+QHD6SUvPvlnfPqjv09Wa9WZWitLynP7sPw9UOdDb4uuGiSDV9Rb3lHwRgVZa5gNq75J9R2tkVBMeWjZRe1ydi1QWj2L2FsgpsJc3udAZBESbhV5eP4ep+tvsn70Gywevsni4jG+78nZlCq1saDU1yop7nUaR0tAC7auSs4tm6EWOr9j3P4JL17+Efv9J6T5zpB9zVAMBFqMmcV14nT2+NOH7FYrFpfnnJyesMpmgXlysjZrTMlImrnbTBw2B8pmy6ebO7a7Hc5bi9dqWNANA8OiNzu1c6wfnHL1Sc/jUQhuQaw9gRWD7wj9kkCkC4MNmmqyZ5VAjINJ4gFI+NCRRrPEBX8gTwegIqGYtU4rs3d4bwdLaraW3Sj3L6KhGs2uEKzl04lHi1KzoY1qULDZxoPZPZSAiKlZQ/2UtL/li89gnJSTh3cs3tlRnTUw4b0tm2pqif34BeI6ej0xi4gqzgeKWoaGKVpMlai0w9v8QaiahVZI5gUqmZJgfz0wXffoWHBzNuZAlSjNel4qEhxd13F7d8VXPniHbv2Q2J+xfvoe52/9Et3qnJwLOc1MpeKqNhvK8aDFvh+1XC1j+luIfBvcOA693rcsuqOCyDX1nC3Rf/Bv/jXnX/mAUZWilY6CnK34N+ffIImB90MSZlF8y76sGsGZrSSUmSvveLFcUBGSRg7FlILTMLC7fBMtMzGOnA4r7rYXTK/2vPvoEfM6IlHo40BOE57S7Jkr9uOGRfSkdGDoA7XOoIHQnzLN15RSiO6SUie60AKXNZBLQkg4sUt7ThVXK/jKfoJUMqkczN7Wmq40V4q07A4xED6UTOc7qIlSEt7NVBntUsYxrH6Ti6f/oeV1dgum+Q6p/4CaPrKfbW2fvVOKBoRkhSxqGUYGemRElhS/IBdn/y1pTFqppgx1PcGvOOwPTPNESRsyhZO1527/kqluUKl4gGqteEFWBN8z/39Z+7NY3dL8vA/7/d9hrfUNezzzqVNTV88Du9mkRIqkKNISSUuyrEBQgjhSBCRIAuQiQIDcOVe5zkWQXMRAgMBAbEeRZcuxNVGUzMEUpRaHZnezh6queTrjPnv4pjW8Uy7+77erBRlI4vYGCtU8rDq1z7fXeofn/zy/Z9phxHI6OyWXyMmtF/H2JrgWt7xJc/wF/OIeqcah9s1Te2VFgc16QdtP+mMMlUsk12vq9WW97gP7veDR48ccnpzw5MlTjg5uYHJgJoaL7QYfLMcHh0DBZT3M+Ri59+htlt2MnAemEHgWJ1Z55KVTKNGQY4EspGIZJmEjDmyDKZkYRnJMZCesLj1XmzVPTiz37ioXMbLF1DbaVKMIFAhZ9xNrjHLGBKhsSKFg7KSiWgpIceBq4YoxOCf18JmueTzqBEFvynlAshYgjHlLyTUaSrlmAeYCXgoWo5Gz+nuDHlY6U3h1foCfVHxMjefjbWSw2mIXK+8zi1VRBa/rjAGxlUOF6P4pEGMk5qSXYyn6OdRDtJh9IcdEjKEektSR5XItyrAWGwWi4NuFPsuM7OLEYXPKw0fvcevuHax4PRy7Gd3xfRYnLyFuRgiBfkoox1Kfr/2zt3dwKSx5/1f9/iistlsenBxy7+CAL7UHHNqGSw/LuQ5Zblj1yu9CYtzsWG9m9GXiXun52RuFg37FLqrIMfU903aroGwpeAumNTzdjqy2ejFzzjNlhw0J54SpGKaZJ9iR7TRQOsflbssuDoTU8crLn6WTDLxIiiO5jOQ0keNA2V7Rr56xjYNeEkogR3WJqktR2aIqWChTVRvsBeXfOsUMoJFy/Uyq26q+eftSq0yue4bU/UGFbEGQ7DVOmSIChBAQo02jkiP5PJH7HW+kicffek5qZ8z6nufTET/1pZtMU2I3ZOYLdbeGqG2D1Ji4ngsyZRrIWREqUpsPC/qzttj9I0khkhPKUi0Co9IlxlHIxeOdUYeCdRQTKz+nRneNZ5osguXw5BWO7n2ZYi2LW69w8NJncN0B1jfs3Qr5E9WY3//t38J9/cvcfumU+75h3Q98PCX2JjcPYBISAl0DKQRagasxcmqFWQfPkicnLYkJCNlb0tITGz2nW2fZtDPEN8QQ+PBqxxdfWsDFyNZZiAMmrnhv1XDbChcfJ1794k3m8yMkN4zjyG51xjiu2eyeEM63GilrFkxJ3/MxBayoy8VKvi6Ss05bp8113Hn/8y/XKJ8y5joAdPW8Wp0iRq5FCm2ErpxEKVCsOpjJYNRRbESF5pyjdjNW7mKp73XJKhdeg/X3YmvWtc7iwWTWF2+w2znW2fLy/RuMu2c0zZbt2etst4bj45fYjMLxUYO3++b3XNNHOmAydQBa6qAEPFKLenKGYjQFUApVHKmN7XX92+9fUtRFbcRopD7r++aKwRSPz4Z3PwjsXn2Zrxwf8Cpww3jOw45557BJ+E5KfA/dG762zHw0BAZaHI7j3cBBKbho2AkYZ4itZXJesTUYDnH85UcX3F9tGO7MMVbYFtiVTOst6eo5i2HDNgnZwq4PLMRxGSLeigpVDVjTIJ3l+9/7Dr/05/8iKQYQoes6LRqYBtL2ipgm2FwhWd3eM4kMpcE6S0gDwzRggl4KrXG0rdN9BnUPe9dinTLEnXdVzI1qDPBzNW4Uz2x+H2Msm91DSlmryztF1utH1QgRdWEz2oI75AnnOpzzpByZwgpj9/u1ljB2zQIqU7txJxwsbjGFLc6oQ+rw4ATrlvjG65pcEgeH98gpEdIVIT1kGNaKN0jq8Dq7uMDZRsWzoiiFXAuzjKWaDyamKdXzm63vkxCqIaWkiORAjBsysd7jIxQhFqt9KWJw8ZD15Yybd+4yaxwO5dtb0fPJPoVTUHONFOoQER0Ooe7ZuP/nqqNP6l1hn+RRzSdDEXarLV2I+JlhPSR26xHfGBadIRMpo9Acw3wxsRbBF2GxEfLg8F6HHk0bWZpAmiI3Thu++83f5y/+tf8hvusoQIgR55w6z2pJWcpZ0xumFkjZvSlJaPOEI5Bixjin8VjdUarTWLAhYrPiyZAayyx6p3Gm4F0ixx7TD5AyLjnS+gnhyiHGQzej7VpsjvisuLMYM04Pu9fO5hCjIsnEkPsRbyMpXGkSqHI9HahZiUJuEnbmlS1utdF8mkb6flBnXGP0GRWD5EIas7r2TKmDaLRM1DR4t1B9wxu8nemQ3oa6dmVCGsnFUpLFSsfzf7nCfe4r5OWcw1nLoddBS0boq+tZ6vA+1bWMylnuh4lQOw7IylEvtQQJqZiNoudiyPQx0oeIrK44Xm95aODxtGOygZCK3o+LYRwV+yUawSOkjNS0z5UIWcDmyEvPz3l7OxDnrRqLkiU7h8mRxnlKXevt4SEffPQhw9Nz2ge3sXsRrya79FCgv7/di2gFMrkOqTQd+KMM2R/n68cW+HK2hEG5U9boIReJlcWi/Ki2Ni5aJxr3NFLz2SNTSNclFXtuRT0aXTt6xOxjEhoFvp4GmL09UkGoxqoybYzm+VXxLuSpVGiokPJU4YiB5fErfPVX/n3a5oAQhRQTXXfK2Ufvs9k+paQ1JZ4zpDViwDXueqJLyRjTYy06TSMirkXosFmwzqrrSrQa24rGhATBWJ147NvnYi7E2FESHDTKcTMGWuegJIIc8GRYYqRgiBwtH3By9AXa+1/k9KXXyKZh1/eUIV1fBPkR11Qu+4uJsGcKqANNJyghJkIINN7QmGc8fus/Z3X5JjFuoARijlhr6EqHbzwH3ymUX3+MfTzyNIw8+1wLf/MG/fkV581Dhr5nHAbCNLHrN2z7nu1mw+WzR9psJ8oZNLbhYHlAGmf0bqNx16IL7l6MPPaZ1VXmras1hzdepTG7+qw1kCfy1JPTBrGOlA1SRrLbYW0tGkkb2tkcSiSMllwttSXBZKNGw02hhFKdntWdYaRW0sdrZ91+YywpkEuNwYnUli1Tp6hWhbZcKGYi50DJiSiR9SVsB8vzq8B63XKxDTyYr7GHt0BeUOgtz8hGELTkgKz8NdVrNf+/b/GiRkgo+mumTgY10q66HpUlk6MQdw1EbT8TMTgHJY7EEEliKClhSqHtljRHR5SrM7K7jfFLbn7mT3P64muM08R6vVYxzxhlY4lu1vvLMFBdhupM2rtFY0zEWCPbdbJxzd+s/MDd08c8++G7NMtjTj/7Gq+/9QEvfvnrXEVNwKZSGMvIGPVwHkskY5icgAy4YvGpUWdXmihpxJYCk7pJLIJ3hUYcV31Gbt7m3YePmb3yKs23IyG+wu78TcK0JpUNJjRkEaSsQBIpdTg7x5gIOSJETIKclbfZ95dktoSU6QeNLERXKmfHg0ukKOpYNsq4mUYtbI+iDFKzv8BI1iKGXGjrmiGS66Q+AZ6UHWPcqXgZo14YbMfdBz8BtIz9hMmFxi5Znv41Lh/9V/TjOTBjShbiOa5cUrB0/h5TSRA2IJEwQSw72hamKenv7RLTCCF5TGmZNTe5ObOMoyFNmcY7Gtex7I5xLmA4ZOpHXANihZAgTCM2Gw4Xd5g7x43D+6Rx4PJpQuYDsxsvcu+FXyQXz5QyGlmqX7KH0ZYai9R3IIRAiupC1V/TocqeUaSnBQ2KUfmpjx99zOkLrxHGiD80zKzhqk904rACUQo5BkIYaY0jUvhuv2LaXBBLYoyRbYhMOSnKoU7lc8qUkigh0LSOLsF6mihiODRwNmwpzZyr1Zoxwt37jbqUMMoqdHWYUC+x5BorK7XZl30rty5kJony88RRrIaIKCgvJOvhRQ01Fsy+w68QS9L4Tk6MSd337Nv/RBiDYK3C1BNCFksU3W89DkrAGc9tk5mvnmAlQaPOxc8dO/rieTbOucgHTCQikZxEmVdZxReDkGJUV43oAcc5gyu1Ea06e68/25KU4YWrzi5t50SPGwgFZyy+7bDS4dycUHrCNLDaTNwzM3bTBxi5i3MdxnUsb30ev7xLP/SkqRaK7GMS1YlgKjMlZx3gpJyvIc/qdtU9drfZcKPpOMBzd3FAmJRpaAk0GO56kHFkaSH1A1fvfcCs6/iZeYfd7HhvNxIokAJXoedoPmd1dcnCWRoyNhd6HH1UNMmh9+q2TAmH43y74YerRA6RKST9wRthDBEpLZfv/yYu9ViX6zOUqzO3cN2mi6WpUO9iatOgKg9a0oCyz0qdRJMLpUyEOGpjfR3ESnXhQT13mHqW27+jFZpdSoZYGEGFwexIaap7gqgb2wgWh7XwOBvOHrzGjVcsd4rj7Pljjo+OuD1LrPrM629d8Oj5wM/85B1mrXJEbTGYUionaT8tB7InRx2cCQXr1DEkTtMVWgSkxQ9GVHjduw67rqIbxNbPBEppavQP3Z+dwzUt42qEaU3cnnHyhZ/n9NNf1fcRqcKiiuq6shUuHz3irafPkM99mkMjDCEwEHVAJHBnBq+0wnfOA9GmenbQrHBwDdtS2MVCsnvHG+omyRGIOIs6e5yhN+CN0FlLiJY8Fk7nhqvVSGss7SzRY/j+OJE/NrzyK3+JL/70z7F6+hGPvv/brJ4/Ylg9ZdpN5EkYJNPNWvoh4n3GV4ewOH0qYhKSlFogkzCo87aM+fqz02exVDeyXpxT3v989tE6rgeLRmqRmRNIQohCLlHL6DIw7VlZoueiUpmTtSjDiqNI1hIynSzUM19GUgFRXt3hYcPNQ0/Kie3mjFAiZtK16/io0LiPudtW51JuakGbub7HlJpc0mG+FmIUqYM8ijIJRb8/qthZEBTqtX+oCjYbBKfYDilgfHWK6ZDYmg5jDG88uWT+pU8xy8LcFYIUkoAkIaTCxykSjGVGYlEGApYohVXn+A+/+BWO/cTWQi6G4gvDckEpvm7GBpeVm3l5suR513C7wCwLYz+yZSRZB0Gfb2kdKWZC6HWo3HnKtCFud0TrEW959/13GLYb2m5GAaIRmrZhcXiMt4bN+TPGzYYSJiyF7eyANPRs+4FcBuWTicOIxVtBcsZJR9secLC4iRHP8uCU7fYZIV9hnMe7JTn1lDIQot51xv6McdpivcG7Q5xZ0rYH9ONThvE54mYcH77MrDtlvXqPfjxDZEDKSCmuiiBC056SU8HaQMmBUqBrl3i3RHB6IjFLjk7uU8rAFNa0zZy+z1AS03BFTBumeEEh4mzLfHaXxi8ZhitKGejHK2IZlVMpTWVu9+SofPqSlWFrpQ5tTSEHQ+OO6Jo5zh3i/QkH89ustj9ktX4PJGPE0fkbjCXTuAXl8gh390XwhmXbUorejUyNqIaY6uBVhyTV9sLCCjMDfcpcplyj8yp867pZTSnVvWX0egAls7u44GDouTzPhBVsdrpW5F7van3KLMVx88DwsRuxYjiYImbV4O4Uwphpu8jB6chlnzk+6fiT19/l7Mljbty9i2/a6mLTVIOWhGoMM9czB7lcaxGlFHbPVpi0pbGWMe0RZU45bPO2ip3KBjbGYK0Qpun6buSc1SLCnKAOt0ZLvesJvjH0ItjW4RsoSYcg4tR5um/zbbzXc4h3uMYS85JiDFP/EI/eM8YpgbEUKUwJFvfmNK3XJthSGLYDm03magXjYLlxy9HNnBqwpDqtjaLXpGjrca6Ys2JGUgqMQ2QoPSlqaaqYqMNmOcTKkmnqOV4ZvvvGc47/1l8hGsOdRYMzuuaNJTPkhJMqkhYhpKifT4EpJkLKxISmY3IhiRrIFJWh94JU180YA/0WpikwO1/jLi9ZmczzMLENvaLXUib2ilmTrAKmEXXxTUU3jZ016Ik788rmgsNn51zcv6mmspRrksrVoUrGWY84x2VMXH3wEbcf3NHBZb3n7kt7PsHG7U0HNbmG1AFTqfvg3izz3/3rvxcHn/U65dwnpETUpWMExgmGa6dhRoyKH4KoRV5yFc30AmgsUCpsFpjQ+O6+aVJcjVyUUid/pUYrHTlkvLGUWNjDnmJUez188r1JBuOEg8NP8cY/+wby8D3ufPXnmH/x8yR/hy/9wr/PP/+d3+SjH3wD907AfMbT3n9OSZp7b51HEnivdnCLRkUb53FG/5yQcKbFCtp0C3pArgctMeCtYZwMPnqsa3ENCjg1KOOvWKw/xjYPSFcNLl2yaBvmR5+nufUyt1/7EmMq14KLs5+ApkuBEOvlxJnrKaX3Tt0BU9CHPCWGYaDkzOlBx6Pv/X36qw9prceZJXmamHc6iRLb0Jol9t1nXD4dea+d8zumcLSY8/LZhzzfRN565x0S+hB7pw2RbWs5PFiwmL2EoG181jqcbWmahq5r6dpWJ9m1oUoFuZ7LNwP/5e/8Lpdj4hd+ZsnIM7oZpLXGvrzTZ8SJwbpOI+FjwbqkApwxDOMaa7y6S7Kn8TPEGWLsNcKSU4UGq3usoEUe1rjKL4g6DbOuWmoF17SkNOlza+oB1Y4kyUQSNhWdqhqNNElx2GWDDZ7lLONKwrRC4xckbvDu2x13785w86vrg+0eaC/J1IZI3f32B1qR2sxq0Ul4fSOzoGy4BKFEYhJs6kjG4jyYmSXXaK41lpmtYpU1TFPGNR3TsCWMPcezlluf/jq3X/kMm82O9XqtAnGdtl+7aa9dVfp1HQGvm3aMkRA0jhdCoG0b/X30xdBpYZh4/xvf4NFv/x4dDR/++V+kmS3wTth89C7Hs44b845dyExhJE6BKUTCFJlCIEvCRCBGsknEMJDDRM4ZH8ESaBt1Bi+c5erjx7x4dMqjy0c8+Nv/Kd/djLxkXuDe//wVCjqRDDKQg8YlbXFAZAhnlXWRlJWSLzF2DzUfdTIjhimsKcYwRrX3FxKSaw2KUZ5G2ziWos1M4urh4nq4UWp0V9/TUjcCg64RUCOOoptM2xZC0In/k2dnrDfPuHF8nyOz5KNHz0nTht3mM/TDlov1c3a7Fa/ccRwfzhGEYau0KmPm2CYxc62C5pOjmI71OLBeZQwJ7wqLrsXlLSFA11qa7ghbDGKFhW+YuRNS2GJPhJQDGlwdSA1sdwNtGrEx0toFjx++xdPHH3PrM7/AzRd+Ams8MYQ6meYTwaXsY3160QPleOXqxM15D89XQUBd0jrt5I23kde/zXtHNzn+4ld4frnh5JWG5BpEYDbv2I47JIywWyEpYkLAFG1sTylgnEOM0YuvM+riLImQkm76RJS5ahmdUYOGSyw2Pcv5nC90C8o450oifxgyjUApiSmOJNGDJakQc4PzDTls4RzLAAEAAElEQVRqBLNUZAQiWAS7f8drvKRURlTlFlSRrhBKxBUhVfZrnhLFWLxVl73GYTQal0qh8QFXGkqNgBsBh9dnW3QNCiUyJb2Y+xy4nAaGyw3GjiyPM4fW0foWN47cNUtm/gYfbhzReGwumFy0mKYI3jmKy9oCTSHUASC5IjBEYec5ZRVAvCifLytE3RTli1pfmV3Ukhcgl4mracflsOLp5TnEGeOwYbe+0rithdnRy3THL3BxcQnk60FYyrneMlQ4QNQtpAOz6kbeT42r4FyyYbdecfPwkIV4DtqOXQm4ou2hzThwL+6421jcNOBmGsPKYWK67Cm+Y3E8Z/V8RR4jr7iGm4eZsT3B4AjGMSuBDxuNsuRcuNsKUTwlOu50lgXCGCPewLJrqnhlWXSRGBvGaUuMO+gLYrX5nFzFNyt6xrFOnU5Wz1pGihaSoVN/sbY6pSIUdY8aUYVVSrkeQIkYciWPC6IIB9V11Ymk0Qd1oXstKShREJJG0Kk8H9voPm2UGxmt4M2ck6YQysh7g6H1A7FxPDrbsphZ/txP3VXXvNXWS1d5RsYqR6hU1Mas8erKE23AznHCgmI7RKF+e1dJkdqUTkQbBAulqPt070pJOVeGs4pQmYLku8QBhvGScDdzdPdVSpZr3vK+LfW6tVXgO//q90l3H5ApNMWyCerET8HQCdxsCl2GKcEOIbmWZPfcvcKmQGMKxwy8MpuIBZ7Flnc3hakq/skmZQWL0ABz4/AusUrC7YPCowvDLd9SXOR8e8Fs2fIkbPnwbOBnDk65/Pg9LXNZHJGKIZQ17c0Ft2Yn0BxwFr/NFEaKGYlRsNEr51EyxAhYvFeHeimFplGBylmNbAv6nCjnqlSuGtW9VkV3NHkhkol5JARN8GCoQ2ypdwdAHAaHyfsLV6r/rnLx2LtOk0Z+SSrGleqed8aRzN5t0XLQNChyQAeKmj6a4URbzimVzYsO/yRHchWN2eMBKyMXqQM8o+8gxUA2iHQ4f4M0Xenz6zuyFIQIqZaQ2I4iuqY6MZWVK8QE7/TC8e0bdBicKYxZ96cQhUHgcfFMGeYCD0Okz4oPKAm+fTgnuwXZaISvSCbR4bLHl8Rhznx+3PDuZyxv+Zf53uWKm0ZwObOYtSQcQygcXFwyj5HZbmCXJ5YSOekcu6TCTmP1+w6N4+LynKvLZ9y5/5KK1dOEoM5hNz/gqF2wvHGP6cFrrD58h3L4BrvHD+l2P0BkprgJDK1vmM+WUMC7Fu/mdM0xU1iz3lzQdgvSNGFFh7Dz9oSUhVnnCGFLKolufoIRCOGSmFasdxNN47BNgZLY7j5gnD7GFM/RwYt0Xct2e8XJjXtcXHxAiFusBEQaWn9EZsKIYd7dpvXH5NKDm9N0DVM6ZwoXhDDUZt0ZaZyYpsB8fo+QEtb15JSYwgXTdAUmM4xbCur2i1MmpS17bnepBXyl7Pn1BmcWLGY3EFdTLHlkiiuOu5e5cftPcRw+x4dPfo+ry++TciSFOlwYt0zvzzj8+ue0/MRaxjBR3zYETYFRE2H7RmlXCksLPgY2Yf/cV6dbdb2X+u/roGPPoYQcEvHqHLvrefTOqLPZVH2wkpBiuJLM4Vniuxt4MiWKGA5CYTyD5r6lNJmSYHFYuLoY6W7OyXHL6uKCxdERUwh0bYfzXmdYlaNqKtMfY6pzLatjLGdyyIQ+MpmIkUJjhRIjUgohBsaSaJwjjImUuI7WasGO7gkGQ8i655gyaWGNWKzRPaqUTNvoQCtGddRZZ5gvG0rJGl8XW4XRTLdouFw94WIFsxaOjg1PzwY2AVKy3L/ZcrGNHK4jDz47A2dIRRimlnFaMjv9aW4s7rJ68oc0fmQYz7EmUFBHYTKaUlPms2CkoYhXJn4t1nIzj7gBI4U+TCxv/FWO7/4MT3/4L9j99j9nfO01ZifHZAoHM69GL4HVOOn6zieIipg0YpyLakkq/ubrSGvJ+izVFoHaGq+/3/vPI0NK5AS3rhJhfc5788RYh79T/VlIPZkUET0HlUyImSerQMqFjRSmKuoeTgNf/ugjfu/0kMkZrFEQbHE1VVQ83nmMtfRdy+r9D7n38z997dYDHVrl/flIdFRfqva1v9voe/HjC3v7rx9b4LvarRn7c0pOmGJoGt1QaxLo+hKvjoqik8O9AcmqU02vvlnV56Q/zMY4Om+IJZOrvTTmTAk6F8hRAbRVOUPshOSCz9okKanyg1A4phVTRRs9l5KFp9/8AbcvE4txxdXVFb/5m/+AZdMxXT7jP/zt3+VVH/j5nCifu8fdm61ewnNW27G3QNLMOBqpMChny9ZP1cpYmy5LFfd0ChxTIQVhHEekNHhrcbancTNduKzHlDnGH5Jkxqr3bLcDs7RBTl7A+BndjQd433J28YxC1j9fFRdLQf8bOVduSbmOGDXeseuH6kTIxBCYpsBiPidsnhCnLWDJcY1adVUpt86rMp4vGH9pyZ/weX7jvYl3zp/y545ucdmPfP6rP8WDB6+wWB7QNi2N98wNmBLUrhwjJkeMOMQ45aG4T5xgRizFCcWZ63a69+6d8PA7v8tH6x4rO8g7Ym0vImWyaDQjW4PFULLH2ZYi2iq3V871WKbxyGy0Mc2KYKrwYCqYfT+91WbHgEHdhNp1oAd8oRCHHjHKSCkxazw8y/UkP0s9/E8FMS02W5r2NaTZ0h09xy4E2yzZbSOxf8zd00zj9aKrTUgWKVYPegWQqDBv6vNeL1W+WGVU7V0O1wDhhmIs45gJU2AMmXEQwliQMdNcb62ZkICSiJNuSIfNAWMfCL5htrzNrZc/S4iR1dWFXoSogkLhuixjH0mivtugm/z+9dgzBXLWqZ217jqipSY+4fnrP+AH/+f/K+3z56xO7/CmtfzEr/4Sz1YbHr73Ab2FGzeO2Y2ZzXpDCJEUI946GCOds0zjRAmRHEaaSlz3tkE6hytCM4LPjkUxfHZ2kz/1cz/Dbzw+Z7p4Rk4ryk1DPpwzPh4YpxHjC+S1itW21A2YyqhAN5VSMNJo1D1UJqRTGzlicE6n+G4/CRPR6afRGIKpkTWTlROjXA1qE1yhFcvCueuhhzEKcDZiKuPKYa0hRc+ic6TccfbB25wcn3Lx0WPefw86A63LSL7iwO+4cVtwNiMm4k1Higk/0xZGh65tJoLYohHTELF24uahRvFs3CE+sd7seL4LmBw56Ax3bi6xtoUcCWGDSR5xOlEe05rNcMk4JaxxjEU48Ud427BdrfDdMae3P8/hzXv0/U6f9DqfKdcicn3+64Mm8K8dvlJtxzS1jVYHCY602rD5T/4fLIg8e7jj92/8c9afeYkmq6swh8ym73Fj4sVbt0iHM97/4duMU20qHyKkRDOfcXrjBo1XBlIqQI2K5ZTIFcgeJeolXgzDR+/y1Snxk01LWW9om5bLEZ5Kx2icshNLUQdnUUyAs5mQtroW1GZFSVoOJNUJj6iTSuO0iqRIKTKlCePK9dpYMNrsreR9osBU90lrDA5wxtAYqawe3SRjDDoUkVyZJwERQxFPHwdyjoR+4HlMdJvIja7QnwW2Q8K6gW3omB205NbQRotDaO0M6wwhT/qfyVld93WI4o3XMoJSubYpMMZJxZYMkgvDFEiS9a6QoRFHYzyNCKV+HoHEepxYjyOXmzWXVxtuLV9m7FfEYUsKPcyOOLj5IkNMxBS1XInK3c2Jfbvs/vn70QtIiRmzGqC1mEXHarfm4vKch48f8eUHL3JTFmAMtoVbEaacaLAcOwMxMFlLyoaUDKH0ytecGW7dvs38bIIMsU/cGZX36XLANkJImWfWY4YJL55/62uvMkwwXo0sNj3dcIxZ3GLeOiSLukm6FmtaNkPDB+/+DiWNGhWS6j5zNVFgBSw4qzFKodSoo5bOQP15jYoq2bOCqW5ZFTyVj2ON13NJ5a+JNZ+sc666qvYmOlMopbrqijrpS6Y6I9S1lbNQkhYy3DvVuKStrs9PnZwiRnk3RTQ+3Bowkq7fC2MSJQnOueuYu6ausrZNF9T9pR8Eyt7ex34aUgkM253y3kTPLGk/QDXKvFPBbnadOKFkShi1HTkXsIZ2doKfL8G5Gv+te+aP7JvTMPL6D9+k/fKXmbwnFRVtU1YH+6EkXvAejzDzwpCEURKm3p+TGPQtgNE4HuVMn4V1EBoSd/3I3Bk+DoZLp6+7F5gXYTnzPN8kvnqnZTYrxJAIDKTosAdzphR568032a023HzwGm55gzzu2G1qGVdIkLacXz6nnEU9V1Q2r0kq1nhvsLYgNmkhm3A9KCySlLGaC5IKeczXwy4j9V0spWI9QBiVW21tHcxaSolaiJV+5J8zypS0BBXiROPk1Gh2tmCyFn/oBcUplF40wikESq6M0xIpsej/TmDzhMXqmZFYL2lVoIxTZUlmxDilD1EobkFmpqVmpscQceIp0ZKKutB0vQmk6TGGkVIiaapJiXpuAqGkHlt03xtzVPRAbrjadZx1J3yq9diYELGMORKMMOXCyhYuUiaFiby95FEa8MFj7YJcINrKS5f9sKPgsuFntk+IzvJF2fKVi5HXbyz47eZFNpvXQYRWNLEVBUo/wh//gDZM+u4JjDHgpoSrR9syBrD63o8l8OjxI+7cf7E2VcMUJmyKVawXbNsya+7Rnt7ixhe+xvyDN/n9f/DfkGLAOsusnasMHwMUo63dztCPl4iMylnbKcN9zxsrxWMoTOOOIVxRylYHARiMWNq21cht2dafsw6hSmmIeaAMO6ZROZvbq4dQAs4acob54jbOBVabVT3/xXr+M8zaGVO4IsSd7mW+I4Ytw3CmpgTnWG2u9JkApmkkly0h9nV4ok6r/Vm6YFD2tsFZg/PuOmquw2NPxjBOV0xhTcqWk+VLDOtzvv/d/xdJPIdHx4y7HZhM02w4bB02d6xCx+xwybxrdX0T9C5suXazC1SWW0UkyScFOtYIJu0TKihXuAp9Ucp+AdRrRCl6P95esQsDl0n33VCoyI5Mdo5LgbtjYhNhY4UowjIXxqfCNDp957PQdhHnIuKEbma4On/Oi5/+NBnY7rZY62jbFu/99T1Fhb5ajlGdR7nAx+eR0KuAumjguLXsi/KMMdocmyMhGHIx1NEkOe85/nqGv0qGPmUedMoRnDcJV4eL1grjWCPM+8GtJPpxUORCLOzCpIPwFGnaSCgNA56nl4ZlsAyhYUwe8RAPb7I47ugOhCJL5kennNz/Kke3P4M1M7yf0TYNpfwyznnisGJcP8R1llIc5ImYe0rlZusPPappQTL7wiqxhRK2fPzoIX/373yTg9sjP2sv+aN3njD7936J1LQsG8uiNhP3MTHGTGMctjoTS1Z+Nuj9WhMx+1mq/mwiVG1IHzKTVUuy1vLkPDJvO8L5hgeXW1Jc8XZKpAj3l8ccn85wvqHDMw0j3798yjaP11zyRxcbYoFdKQzWVN5/4svPH/Pewxu8ff8O2ezvI3XolwveeZwzDJ1n9eFDSowU98m7qHc3e73X53p/qZ7V6/vO/przI3Tx/85fP37Jho9InPAOBK1KLgJTVS0FLaVAIKeiaStRR4FQtLGK2rBj1MFXinK9yri3xtZLtexbGD/hyl0r7gUVZozy22zdZJxzdWMwGKA1BtMYvFhyOuOcLaXr6MO7nGZPa45I3Tn/s3/3kNYkTpbg5gNZYl1EM7hahV10kisCYj1idFpzHS0m1YumgeIYx4l1cHTe0nQWl49ofIeTBiRh7UJdiTkzhQHcjNX6jCCnTOMWGS6Q/CLSzpkvj5kmtciaeoihUNXt2v6TM2L3GXAq10QfRhUQ5HoCoCKYYKWjhImYBxKDxqKNEGPEmTmlCHLY87W/vMS9Ad9944T79+/yP/of/00Oj2/i1hvaix73fMAMPSbsMGPSz0q/MewEMQuVIKIbk1o4wbWkg5bNgyWczDk8POFXvvKA3TjyJ/Z9YmgpRFIONF7htdbuW5gDuawg6wZsGoMpI5RSm3QtVgq+uuOsNcoUdBYr2mwl1MuOGEg1ai2oWCytRsYAa9t6aDMQUZGtFLTRTw+k1nt1iiTBkZBhR+pu0tkTGjzt7BgnR9pIaAvFWIztkFRLWIrGVr2HrNk76kul4i0OW/RQqlFdoKhrohhPmLJC5oPHTAlX1HmVijYEmqSNaDGoiJuSxplc5xjWF7rYzG9ifcvU74gxYK3Xg6cY8r6opkp+BbVX69cn0dz9e/qj0NB9ZMX8yEH19ue/yC/+n/6PxHfeJn3re7z003+aF197DUT4y1/7ArkIUizWKti2pIQZehgDznn8zGONx/lO31VfyJ7qBJHKASlk63EhYSVzMW74jV//LV753/wkd/rv4JeJsjyj/aCnsMPYVIU5ha+qIKehxZgL3inrJ+eIs1oQpNXpCo1NKZPTiIhlCgkjOwq2rknKRCl7CGvdLMUYnHUa7Xe6ebkq1GisXy/jQqFIQ4yFxs6xZo4JHrqW5R0I4TG+hYU35LSuB5xM21bWiRkwZqKQsGaN4GkaridI3sxI44ywG+jaqG4y0UOriKEkuLFwJOshFnxrkLxEfBUNcsMUBtab52ymQCIzaw7wnR5Q4hSwiwNKSFxcXWCPXuP41ssqyhfl0O0doPuvfTRr/3dQQTXGeP1c5RxrhL7U/7/BHBzhv/xlZqcnfOY736F/74z00VN+97/8R4TjA7brFW/+0R/yUnPAvRu36EPPK2dbYhOgVcexmXfIoxWXT59y6+A2N9wtBgrJCsFrnCGXgikqOGaTsVhWueFeCNwYoJwe4xfHHLUNn3t3xXc3E4IWY0hK6t6tg6+umV0PG6wURUEUQ5kiYvXiiXVIUQCyrQL//v0w6MFRU5L69ywGMrRWy5dcUctQzpliVHTKaajOqQ4nQiwgxqvxJo3kNOARLDNcs8DOM2aR6cOO7ThxkBZ0vsEdzNlisUmdO62dU7I20Bu0Kc3UfdpXIdaLY9YtKMbxbPuIXQzK4xNopOGwaQkCD7fnXG43LGczbONBYCAw5kQfRhVtk14k5q1FljOOlwu2m3Niv2YadswPHa6ZwTCiDaTadJ5zIqesmBF08loqd89QQdC/8684/IPvMfzsT3Dx9a9gG0/yLd979zFfS4csupYNgTj1HIjhkoR7cobrhCcUZJvwF1s2bIky4Y3l6P4tVt97i/lHV8yNEL2li5ZYm7HFGg5y5iR6fmV5mxuLYxYfTOTbd5kOMuPbP2R2fsjSfg5OjqCZ49s5rV9i3Qm7IfP+N35XzwclUwRC/RkoI9ZWIRckavuq2HA9RDUIJWu00BgLvqjbSGqc1TRVENS9TIwlZ4/zDSVHYo6ktHc3BY301EhUQUU9EZAixCxYr2Fy57vKztKSD20bzEgOYLSNOeXK20QvWjlrm2NMI1YgT5MOhtmXTjgdwOWMiNM0w6QlMMaoJyXEiDi9XTnb0s2W5KJw9yI6rEa0WdyUhpwdptGhS46RFAPtwnJxZbEEvQC0C8QqA2xfIDPGxMfPnlFC5v6tGzz66CPOpgHbCvO2YYha3LbuR0LOHDQFE0fe7CProOsqgOREU4R9q3MGtgXWpWWo0fL7ZcvLXcSI5YyuRrL1Mzs8vk1zPMMMG4bjBTdL4Pz9t3T/yHDgPc/Gwg8f90Q6bt27jTvY0jWe9XqFsZb1s4/ZnD1hXlrS05GUNriq5GhKQsjoQFLPZQrWFwMxTHqWMcqmNlnvkYo/MaRSsK5Uh5/C1JGEMVZ/VtUFad3+zK2iAsYiJWGZQPY4g7GeWPTcacSDeBXlXKFkZVMm00AuuKLFfi7PMaJIBSMWW58fEYcTQ0oTxhQVUnLS/4JYSq6sMyCbU/r4Cqa7i3EjuUz4+IRp+zZeRmzWZIQiherrJyp0etNqS6+tRSSxkPJEFIsVgzGOHS1NsXz4aEs+/jSNUf5dEZgqIieXwrMCV9ZgxPGknPDs2TP8hx9ya5XZfPoVNidLIKtZggLF8qDs+N9dfpNMoOssQ275uHxaY2tkLOrga6xAOyM1c8ysxdsBE0Y8QrlKNAFiY0k5Mmw3NIuOMO2INvPxow/5afkZvf4awRQ9r4wxqJOpXpKNGFw7pzs4pWQNvJqi7LfWL7Cmo50d6tlrmPCt0I8jRcZ6/mmYdTNi6Nmkj+oAS60A1hmsKD4qph15WCvfeS8a42gbr3fe6snyviHGsWIsGmbdQXUFPWM3bPHOs1zc5OT4RUqZ2GzXjOOAMRZjPK5xGDy77cTNW18hhpFHZ98k5i1I/AS3IfsSmnqvNftWTn3HnVdvXMiR0Fd2vBQdSEhB+qfK+ipqaHh28To5v8FiMSMLXFxFPHP6/gDCJUYKN6cFMjslGzWJpKTtqVL0zDVOQZMVRZhSPYvV1MDzKSKxMKUaqaTg9Q9CqdFWjzLMGitkUbTWxWqNXV1wNY6c24x0M1587VWWR0f41jGFwNk3vkUc13QIveh6d5NCexHJIeF9Jk0BM/O0PpOMZzZrWT97pgKpKEs2l8yu32FHey308SNC354da0SHdobMrHM0lZU97QsGi965M8KkHS0UUzg8vcOut8wWHchEYeR0uWAYBWcGBIMtGku1pc4YjOCbhmI8zawjFXDesNuMFLEsmpZUYOaUEz93LfdP7nHz/ue4cesO66tnzI9u0jQNi4NjcpnYnr/LuHmM84IwcPXk+5Sc8L5Rh6cVPaOlUddA9mz+gDU6iC6iuCQjilGhCK5pQFqcMzTtksPjF3jzwz/Av/MRP380Z/fKS9y8cYNiHTcOj9mOE1e7DUM1bJkSKCXUFunENCoCJ1ROfGM0jaPOw1ILOTWJEkNU0TclwhDo+xXnfc/w4TPuPH7KRSN8XBI/dXyX//2nf44bVmDaEseRfjPwXwTDf3D+HsWo8NpH1bF2JTNaw74HrosDf/adt9ktOtZ372KM18GEk+uCPG+Eses4e/wUCRHTePbStRHzSfy2OviEfXS3OhHrHUffn/8v2tv/D18/tsAXyAw5IkE3o6xKEmWPVhb90MTWIVBScc5Yo8Y2kdqUpAKcA6Q4Rcc4qXZGriOoNgsWtauK6ETNO4cxmUY6nFiKmfB102681jDbGm3yxpDQaZa/mYnHW3ZsEeCoOLKck04y902dgRpIVijFYkURqSVAcfo9F+Y8ujwihEPu3vYczjZIeVjb4ISQVGCKU8NmFB6fz3jlTsNs3ihbSQIiCd8c4NubSIHd9n0yhe3qKSEFAgbJyinKyWCb+fWkRDfezLX6U1S82zczGqMWbahus5LrbLdCw63GwoZhZHF4i3bxaabNOZI2ZBkIKdQShVFFiazthTSBn/y65Rf/zK9hb/0qJ/MT+sdndM8uOHzvKWW7wWwHZBxVyS4Fsx7IF2vMzGLmM13EMJTqdMpYikDbWfJf+gXGpTBbHDF78ctMq6eU87dx3UhJic7rYRFUTBOrz5kVvdhrrEYjSBoFE5wtOJK6TcVW4GxRPo8RxOki4pzHiKdgsa5VEaq2loFu8HlPmy8adZPgVPCTwhT0omDthBe9eBjbIcUpz2PmaNq58nAEkBaMVcaM2VPs1V2Xa3JESiYPhd3DHaVP2IWnuQllrlG1jGBQS31KBUmROGVyLCQaXGtw0TBsd+Qs2JyIORFCoh8nYtJnB2OZAqwvH9Ke3mMMVUwxVi+GJGp+WC+dCgIj10vGJ8JLfTRV4avTDt0spxhqQ5q9bhlGQNqW05/4GuZLXyHcfY2Xv/4TWkvuDBblmu1dH+QEMVZrPAgGiRlJEUJSsSRmjevngEwZiOATJYtGihpL6+CXf/lLtDf+hH7aKS8p9KR9xCFDLBHNBxR9tqpTQAXjT1igKWWGaaAUIQXHbleYN4Z2lmiaohcdcTpksGjkERU428ZrxEQqrJiMVPCsswbnmmvWCaVgpSWLyizzttG4ZeoZwpppNEh5TMoBZxziM34hpLiln3b00WDdhMikfyZx+rjFGW7SiVkIB2w2HU/ODXkc+NT9wOmBJdBTnKFpPWGcWPcBYx2L+QwjkdXuAju1NHZNP2wwrmMXdJ3xFoYp6PtRV6zF/IQUlde4XN4kTpESQt38PhnkUPeKusRVF2TdX5xFglTIsYoNIUamacJYh7GWxjsO/9bfoL9csZ7d4Ut/8ZQvBuH9P/gudneFmS74pc98iRvBwhRJfoa9dcTOJkoYEAtNMnR379O7kcvLS5oQuHl4izYnrCT979e7UCTQTIa4OOC9u46YPMevvsr4mZtIBHN+yekPCl4yKRQwhcY6bM3fW2cgqyhXMhjvKz8rYWpc0hqvlz2T8a5GDsRWUK82lepbaWoxVPnENVWU2dmYBhFLsZmUAuIc1Bgytend5ozNCSsW4zqk0Xe6ZCGlOhhqPc3sAI8FiUQUtSZWRVonljD1YCJiHdpoCs5byJAxSBLGqyvwO5Y3bnN7dsxquGSKATGWzW5Hv77k+PCUBwenHM8O9JxhDEMIrFLPNmmj9NHsBt45QpooJdBveg7nh0ybLWmaNNK9F/5FS0ly0rSACsyZfWM6gLc66IkxkSi884d/zO3f+AcczCdWJzPsfIZzcPf4iBfu3mTx+IqSA4SBECLr55fsnl/QOM9y3tDlFmc77rm5tiyPW2bvrPFjpOxb3pN+HyUFTCwUk3Am8+DgBsXNufnLf4WwOsONPaebnvPyNouHE6v/9Ae0/9O/zumf+VlKmTi7uuSH3/uWxl6tVGd4vZYKepGW2mKYUJeR6PqUQ6aU/fRZMLbFNqcqYpWC8/qAZrW1YUyDoE7gNCW9MERL4z05Obp5ZafRqBNGCt5pQYwWnCp7xjunHNWSoGyx0ut2W4yyiqjthVLIedIpf071iFxbwMUqA9d6FeJqm2aMmY/eeMjmfEcII9Z7ju/c4IVXbuJnnjgpGsA0hpK1QASzIKeMkYjzQghJwfu1mTeLYlXioO4cSiKMEXGefsj4lKERxHj67YBtG3w9/P/eN7/Hf/KP/hnTFPhzX/sCD+zE4tVXeZ/Ap6SwnSZEhPUUGYHLMfG9YeJ5FE2yhAlXYDTC1ukQm5LIYliExCDQI4QR3owtz0Zhbgub6mBra4HO4t5LnHz6i+xC5CEGd2OFffqEpvRapOfu84WThtOP3+XxH3yDe/f/CrNZhxjL0clNdU/HzPG9l1muLvj264EYJnIRnNNCsoKFpCVkpWgywvzIoE8RETrE2kf1xegQzYDu+aY6mfflSQW816GIokq0bGc/fjSiHFHv5hgsZIdYr2kNUyioaz3liSwZKR02z/HFYcThjUfyfljkkFDFaCs40XRGygkMuLqXamNrZZ7VNVIDIEIyAyW8xbMPvs2sS8xbS/GKiQjsnYW6tqpTrCh+AatjG2t0uJMTGAdZC2RSTvzT8zv8+seGv3m84cnTHQdfuYNUsbMAwVpcSUxW+IhIcI3G3ZKlHN9G2mNuPb3g+PW3efzp++zu3q/DWyEbw8KP/Mtbt5lPkCVCk3m3KVyUNYaRJhVcKhzeOODGn/o5lkc32ex6VpfPePTGt/GrFWeXG55Gi1t2tA+OeeYiLYF2NqNr5jx8+hBj5EdcYPp+lVLYbTd0XYdvGjLqvk1Fi//a5oR7t79A32+YwhXt7BZt23J1+Q4xbQjJMKYBY/WSbXJht+vx3hPCREGYzxekmJmGLb7R8pcwTUiBxs+YNR2zxX1u3XyNi4sfkvIKypLF/IS+X7GcH4AYdrvn9NutOoVmx1g75+bNT/PCCz+LkRnTtOL2bdhut5ATxjvefvvvs+nfJ5fMdnqo6QwT1UltfG2Z1kcp1/LCUhIp5dqWrTe7YdAG8YTGZrUpWM/vGG1zNiJ4X9MYogzbzXqFFtQY3v9oyfvvvMIv/uk1N2+8RbpymDsPWMyWkHU4V5I6t3bbEb3KOEJOKrZHHYpJ0Qb6vRl6b86hKGty6Y2m35wDb3RNKJkpOt5+a8NyN/JBTvTO8Kf/3C/w0quvsu0HpnGkK3B1+iHhaoU3hgnDJYXPlEyziWy3R3CyJRXLwwvLxc5wvh44ezbgLnYYDKU6z/dObIB+6BnGgaZpaHxDqeUI+5LO+Y1MmQq2BLDCVFQQ9s59ghoTywKroiyO7ugGX/vSLzE/POb5+RtcXXwP7xWtg5lhndPBcMV5CftKHrnm4CnCIXNAq/iWrGKptZpYoUDjL/B8j7x7iE878uoHrMaeVQnkvMPIBGViorA50z1/78bPqaLRTDUxZF2vxYE1ue5rquVQ30df3dVqDrKICWQC43okj5f46Zi+WXD6a7+g58X1jifrHZvLCzpnyUkI4jS95BLDsGPsB/rdltXlCjIcH52wODioyaVqCMlFy2zGwGa7YxwG4hQYUyIlQ8qFT1/saJ9/xEezzPMQ+Np6wzu/9fd5P0d8zfP1CDPXqnOychcrQE7dw7WsNdcr7Wl/xS9//01+Y7Xl+fIEax3Wl8o/FSRHpmEg3Glgt0OW8+u03Sd9EtQ73v6cJdWhWE0y1eL334O+9+MLfNsRNoM6yLx2UCjjztS2NQwlVZHFW5wI3lhaq1BYa5RTZA0YyTTOI0U3SupkWX8t46Wtl2oqzDFdW2LZO1qgtjR6LZHNQReNyvAZc9SHIyUmMTUuXFtuRKHSRfTysQdnElXCSEbBvSYb+imS8pyz9Ql/9L0VmC2Na3lw70WOlh9zfHCmLhxTMOK13AW4f6ovwhRa2kZ5dMZ4yAPqZNTFvBhLnlbsBks0QokTznpi6Bn7HSUlfGuuD+rlulyhincAqJuv/IgUHELEO0MIKpZ45+m6jmEYWA+B2d2fJQ0b7FVB4gc4gagfAHEYIGdCMRjf0B59nTtf/J8Qn0P+1jtkMzGlifzOBzTrFYxbmJI2zZbCME3sxolmVWidx1lteJOiF85cBb/pU3dZv/cD+M0nmOY2L9x8lX7REZ9lSDs6L9hiaa22YHmvTicpjTYLWoc3Dif71uYqBhunjgDXqXXbCJLBuaa+hJaUcm2RElKYtOUnhdqOhT4PlauSc1IAqTfkMOgHbAyN1YXeGMHiKbEywWyDE0cukTz0GONIWR1U++hXQluLxHhSmnQyWjLjVc/7/+hj4sMtLokC8m+13PiZl1i+coKItgjnaNQlYfYNvhmTesaQ2G1hmjJpLJiQkVoJH2JiiBlvDCcHx7QU5CiQec6237FdbemWCz1Epr1rdb9YaWRkH6H8b6v2LqBw2KAbqXOeYRiwxtC0ja4Ze5EP/YyPfvIL5BT1/Xm2Ra7WmO2E2e5gGGEIMPSYOEEa9OCfSxX0qioiCVM5DbkRshewhnj3DvK1L6l4viucHrzAOn+fplW+jetaqvdbLxoiWFMUPGuqzRooSYX/IvnaeduYQrEG8YnDpcVIqIiABm+NRipL0g0dizH7Rjx1MxibyDboAcxYhb+XT5wMezdNCQPQE3KiON3QsiuUpuBSIJRAEWEIA7thRxkmrHFEPeXhqjBeSBg8nevArwjR0a9v8ujDJc9XkSGOpJxZ94lX7oy8cL/BiWHdF6wzNI1n1hVCumQ9ZMiWuXTkXFjOb2LcjLj5iCEN9KGQUWE4Bo3enRy8wDBt8d6yWHQqFcc910ufHy1r0ciktqZm5VvWWLiI0PiGISd14NZDbAijroWVx+S8Z3HzNl/41fsKmE/wqVc/g3t4gYmBxjrS2FPioCVNsVCmjOknFTGmETtNGAwvlaSXginjjm4i00ROO5Tl5VmMhdQ6uLek+8++R/7alwnLDv/kAnnrI4azp8zOrujuLZnPHCkZSom6vRchRhDxmAStM3o5LqVOh9H4UJpUOFXlCere6PAUUdfcfqqcS6GkgrcWXwzeteQQyaJuOimiLjo06hZTBAOSpU6UlS3msEgUHX54gzjdOzPgsHXAZ9UtXi/8yQjZFY1JZm3Wjrm6lHOgpEzsN8h24vJyxFrh9tkFJ7cO6WVgWxLSNIw54L2lTyM+xtowr+KU85DCRCmRWdtxNGuwIjzfJEoB33Wcntzm8cUbUCLj0Gs0k8pGQbmFttThRSmkGNESkIRtbR0kCslaXvlf/i2evnybeLDATDu8sbjFkr/67/xVbr38Aun5FbJLsOsxY8/L25Fxu8ItZnRvP8VdXOBNfcZTorQLZJ50OFGSvvDeIU1LaTyls+T5kny05P57b3H+n/0dzH/8t7m1PSekLRzfZ3HnPnk2Y0lL9x/9F1w0Szb3b5EK3Hv5K1xdXTBEwSSnTcNF+Yag0ZaUM853pDRgqC23RRm+zggpCd40CpMmYUh4K9fMPWszxmw0KoMOmjBbrB2QonFbPbAE5ZDVPS8MVci3Bmc9vmkJvcU6dTFjDalknDEqoNhIyZOe+6I+Z6UWcKScyOyF8AbVurOus84AgXffveSPf/8xGCEEdZ6k751z49Zjfu7PvYT3SYVMX8UglyEM1d0AcTTkFKDsKKXQ75KWGrhMioU0Cc6BeEcKRmOfztSLuiGGRLtQp2NIhW/+yRtcXPWENPGdH3yfq0XE//RPcbm94Mnjh6Q+07eOx6ueUOBxKny4HQgEZB3o+6iXzX7HPAzE5QH5wV0mI6yNjv7SLpPNhDWFTYSrbMAmbE50IeIw9Ksr3n/je8quE8vMNpy4Q+bP1/xE8Nx/9H1Ow5bbxjL803/O8Gv/NtbpJTRXnmK3OKDrWtbrFWITjtpsW4tJcgpMWWiq21J5pZCj0LSmTm8cU0hE0cFsTAPOQOcbvHgyKv45J7pG7UVBwFp/zdXTW2i9S5SCLYrYMRLIYQSrA13JLdYVZk1Hjh6ZWjyW1llSVIegkbrfh0n5XHZBypOW1ZSg541YNFFTL7+5ulxyUYekTYaUHabLLCXRHQwYp8PcknwdmI5MY8AZIU46VMHooFcwFMn6HIsK3eIAo6WFyZ/w20+O+N33Nvzs6TnPzwOHi9ukAaRMZHFcbq6YWSFPI8P5ObeebzFXO/JqB0G5fnaIyHri9I03WX7us6zv39dmdld4G8P/Re5QyozkEphA2hly3PDKOHC0nfC50C6O6GdL/uS3f4vNdkOzaLh9eojdrWjuzwh3D/ABPC1+SrhcmMXEYYwcPvmI0g/Y5QEpKQbJGqsFUs7VEj6qQKVYhaY1wMDT8z9BSDhrWV2do3iBkaZryRlmTUchYV1H4zzjuCHGHd4tafycmDb6s7KWaQxY07DobrPoDpjPZiwXx/jmDkjh3r2vsd0+4/L8PcZxzdHJS6QwcnHxEQ8e/GnOL94mxOekaaDzB/js2F5eEMoHfPT+H3B5cUaRgeMbN5jGgTE91XimgXGc1L1pdDiWJWKsFs0kKp4ALQ2KNWadsrbl7ufrxrra3KliQuN9dby2HCweMJvf4uL8DbbTFdY1mFRwTvDOMk0tV9sj3nl/xkvde4Q1NJ99hY6O1I9cPvmYq6tL5vNDrAglFR6//ZCr9XOm1EMwdIsl3aJjdnDA4vi4MtYVjaSpBKmt2np21vT6XrQvrM6vON32rHIiGUcfIm9/8AF77A8I8eiQsQht1mHBpQiewkHMXP6LgXdvdqTiakFfQy47XsPx2fNLZmcr+jsn127n/KNmBGAcR6ZxpGkavG/07FUScqIs41yowHxNHxaj//fB4U1ms7uc3nqRxfIOTXvC4vA2x7deIkwjbtaQ8pr15esYN2KKQUmG9d1GY/GlBCBoeZlmq8DkyqivaTSv7b+SvaKvimHqIfaKA5vqEAypA9mMahyl5nTE6Dkou+puNkjWdAfGM5vfBdsRpodVDtN1CETjuEXNCCWjeJeYyCFgpsif//KnaZ+fcvfWA56Mc5585w2G3Zon/cjj88dsVldYGo5u3MI0Boagz3VWgwrTyLBb893NBbFtufHiK8znJ2RjsM4DVSB1SoIUaWiLkKzDhBU/8/CcaXzK91whFOFRHPnjsuEAaOsnXhA2YhVtVSPC7Ishc2H0Zm9VY1+FdHNzxl9b3WD9mU9hDo8wnce3BidezRiNYbkwlKTMYPZ/1cvwdRGg+YQ5qPteFfuqfvPfdpf+//frxxb4TOnwzGm81p5bK1jn8cbQ1GIDZyzeGhqvB7TWdApAt4UiWlRg8bVSWJtyzV79NtXpUlBmiSQKmTAmilXWRmZCssZnVQk1JDfVb7DyI6rrw6IRFLXlVnB52bvb9rw2QykOkmizVh6hBiFSDICQi+WjJy0nJ46f/akDGho9CDeFqT/mYBFonaetTjNrBGca5cK4FiPm+sXLcQd0OHfAODwkF0dMhZgKbfOAMDiWixNkc8l2fcZiXDONA/PDYz3D5KxTnDoJBX2eTIWnS+UIgAJlG+8RL0wVYt80KnBN08iueJav/AXcw5byNGN5hsmXemjOBudbZr7D2DmHh3+K7l8+x/zDX8e+/x7znJh+5nPEj6/gnfeQ7ZbUbwhTT06Zj7/yNaZXXyVvJu7+y99i8ewMk0ZiSVyJTi+c72iWf4Hn/7f/hu6nvsrgH3H8xpp7p6fcvznDyAk5FYw3qPVDaLC47MjZKAcvRnVFJJ1828Yqw0dE68KTugECBd/467ZXFQcsaUqQoEiLEY0FhQr2pzb8SI1IGCmQlClnrIFiMK4KwXUTlqZQcv19QtBpr4DY6nRICay2GueciWWiGGGcooK/c2D33sDZhxcMIWNjZcY8Hnn0z37IF/6dL3Fwd4kkjRJS0KiwTKQ4EUIBGpomU8xISIY2FEiZ4HRTNwmst8xu36DIBWn2hNzO2W4/4unTC15eLrDWEGNRPlXZx+L5ZCpRZw7/WjvQj0wljLGkGBGUmbPrewCaplEMAbqQ+imSLzcwZOTQkd/6gO6PfkBZX2LHnpIiqrYmJBRM9YsXt8f9opl+MhBqaaPBOMtw84Tpta8R3lfni11vsR9csLvRUk4MViIhlCqoJaaxMhR8obgKYyXVmIiyumLO2KQxOnLEl07XixwppqHERCw7oi9469m3lSJe16ykn+kkBYKpTtRC8VZ5eCURooqLUIhJ18i6fRNSBRunREgDoUykEogl45xQfKrRE4fbl1dYfY6ddcQcWE0QJ0MJczaXwiaN+HnhqDUsFoWjhXDj2OM6yHmiEWXT+M6R0kCh0FqPtzPadk4uAyXtGIY1zhRa01JiYDtF/bwk4dwRB8e3uXz0IWIzSNC1LERs2xGz8oz27YdFpxXqtsq5xux1/bbO4VPDmAdEBOcMOWTGcahPIDQZfDPDB0Oz6pEnl5hHa1hvMcNYN2LA6meP85RiKE2H5IQLAXl4RY478p2b2o7oBfvkHIaIIVBcwBRHnLXEmSP9B3+b9umHFHY0Vzty3PD4w/c4347gBR+hHwIhjjoAM+pIt7V4pVQGiz53TuMJpcbG6yFNSsY5p9tc0qgupYrdFLyzNe7Ij4jFhcZ5sq0i1r71zipmwOZGLzrGqnuZUkWNhPMt1jhSGomlaEusqeVIVTSzCMU5So0e5BCZULfFtctRmQCsL3rCduRy1bPuJ46OO6YxsRkts6U6FwqGru0wppBFmIxBRMWcLMJQAsmCwzF3Ha1fMk0VKyCGpW84nB3wcegxRd2KKQaNNFXndsq1Ea82ncVQW7JFERDGq2vXWGg/9RLL/9X/AllvcK1GU8rlAGdb5F+9g+m3lFgoX/4UXXeL/HxDe7VAjjrKVz5NfvcxvPsUYtB1dK+S1jUwG+Xc5K4hH3Tk4zlEIb31Pos/+gH2MuBP7mDu38FeXJBXG/zzd5iSYfb5r5Pf+CP4tV+F+3fqOqiOzFkDZRyruKhrv95PtLWUssZbsHa/1ulgTJMA4GyPlAtFB5C0Adk6jHHkSaP1IpBdui5dM9aTcyQVwTXK94xJ8I2ub0nStfM758A0JnSypYmFgp7XYrLEssM2M3AzZH6sB+R+DbMTQv+MaRy0eVz27i+DSKCkRJx08Fac4+bn79MuF3zn2x9jTOTWrQPmi46nV4U7N1t1vCQtXzC5ULIlpIKYCGQ9FxaBbMi2YIhaJGEMdm6wBcYkTGVGJDL1O46aDr9olRE5BXzryDmzWu+Y+sAw7biIG9y9A5794AeciOPxBw8JU2IHXF3tmLnMFAXrZnQu8PTND8g5sFgekXYDRzeWtEV49t338afH9FbAOmbJsGszbfEkMskX2mAwm4E7sdCIpRkDl+uPmTlDEoO3B/zKOvLisx2+rOt+btnalt0bb1I2W5rbp0wh4J1T9pSgkS9riKGQUsZbdb4Yqxxs53Q/1ff6E3G5ELTIIevZyYneG4xRh54z6tD0YigloKkfbdI2ouVUBq9M5EJNaHhIAilCabBugbFHNO1MHSYEmqatyRzBZ8EbBzmQkjLNimSmEMlBHdXOQ8lrShr0LJeoYjaQEjlo4kGMcrJyrudFqa7DjSZuxHhKiMQ01h0q6fooBu9dFXusulYFbfN14IiUEOtwQMWGIaj75cH2FP90ZEoDs9Ixvf59nr4jZBd4bgyX2fJoiuxGbQK/YRpi+wLpvicbS5KCcxFPYnF+jrz1Hu3JERc3biLWk5QWSBFtjkw0+KwcwgePn/Li1cSqOMww8OiDD9msL6EU4lA4OLhFMIZlgnaXOBosN9LI/V3meDdxctbTbtdIfJ/wq69jf+ontVVS9H5jjWUxnzNME6EOp/d4jlhGUlopk1oarL3NZz7z81yuHvH46R9Qyg4plil45oubtM2SfvuUprvF0dE9TIaQtlxcXpIZAeiaY+7cfAVnOmbdgilqidaTJ39IEW0l78fnKjQmYfv4ChixdsazZ68zpXNShK49YDNEHj37l2xW/5gp7pB2xuFC2fBn51syoTZyTiQsFr0jNr5j1hyx6s+YQq9CbtY/e9bYja51Rh2sbduqcQGuy6Cs17WwoIPTEHueX75NfvZDxApTKJgSMAYODw4hW3zbsOufsbo8YfPhMU/fu2J1/pvk6TlTK6TLK8WRVO54aT1DgXG3pXGOxnVsgjYqxZLAGW68+CLu6JB2PqObz5i1M5rG4ryraAd1pFEKu9WW54+ecG83sM0RY1piiISsre+lCnxlMWPjPJbI/SIsCzTWMDctB33LZ69Oca2naTyN87Q45Y//3r9gsx3w/9v/NbHzmqgpoum3yn+TGoWeaurEeUcqGQ5Bog6SbaNnAkfL6fGL5NzQLY5ZHt5BxDLIilHOWa3f4dnmDxingbaxdMeTdgsEKJPuz+3sDkc3P8vi4C7D9inryzcY+/eAoYp607X4Q1FfbUoGwWNMwlo1RzWNujJzTtdCkZiaDCo6YKcmyyqhhVJiTVoadWgVqYmFD0hTAUnX3jJyFQ1j/YyKQ4oD09D4E7ruFu7oNf4H6SanRwc0w5YHVwPrIdEUT/fCXdIL92EIXO0mrs7P+cGjD/jUwTGn3QzxFmKm2DmpPWJ3cIsn6wvWb37MAzvgJdIsDzEzz2QDqWg/Q5wS01ToBdht+In3n/FdO/HWVBhT4tsm8LD13GnmzLC4AsYZQtswWyfm2bDAcGwsnRNeCXDoDaneZvP1X5nu6buc/quIbRfQNOAM2TmKg+Qa+q5jfO2ztA9eqOkIjdBfH/D411t09wLg/teqxMeP+/VjC3x3T75KmZ3i/Xt411ZWlFyzExpTJ5gGQlSL6FRGjYQl3fSsNRSrMTj9DKQyHTSCIEancWNSGLizDabVaYAQ1XWQQUxXXUS5WkiFPJVrJ15OymYqxZBJ1dkQqyKtcTxjtERBpEL0CSqcGcGJYzZrsbbBGDg9nuHchR76RRkLhqe4OwkpNdpZNMZorUVbtmozm8S6kOhBcdbdwVnoYyDkQkyBbnaH52ct0/aC2G9wcUcKDbG/JIZRY4LGEnKppRnKL5HqztmzqnJWrhNF5ZZpCnjv6JqGYQoUI3jnEYQpjKyj4/DlX8XO77D6+HchPMSaXplS3R289aR+R/nn3yT/w0esf/IB/b27dN/7JuXv/YCjjeNs9a42uO4ZFcaxOvpZbixbrraG9e0juo/eBiZGJgICRpv9dn/yxwx3F0xv/4DiDM9DYfb73yT+pUwzn3BWGzJViAWmwpSD2orFICZXJkvGeE+YAkUcbTOrl8tATPrPjWOgpBFwymt0jS58ovEl6z0xFkTHwupIzVH1mWQIUwRT2y+KRlWttYiVGpE2apM3SV0NRcgmk7JyUZIkKAnJlpjBVa5gNhkzs6zDjlQyuxsQvr7E24YkkdmsATH4tiMvPimPERf14JxrgkM83mRtvMqF2AMp080NMQpNdgySmHWe2eESX0aSuSAfTGRjSOU5Meo00TctwzjWCZtGg7kWIaTyBaQKaj+yOFX7sTWGvG9WFL0Mbbc7Ukp0XauT8SmS/+N/wPDee2QruHmHbz3Dt1/Hn53r95IqQzKp0DOWgegmZUhFjfqR9GBRJONUT6UxEO7fYvOtb7FtLfbeC0yv/5CL5xfYv/Q58nLOaK7UZh2yNtJKxjfKoIxBuThGCsJUC4R0o08mVOu4UNxASoGchFJ6PbxIwQeHs4mUDTDStYnGK5hWxOBtgzEaMsq5OpKCFt3o5xl0I7bl2mFYUHbYmAbEau27sVlbjlNGDSxFI9hMkI06TbJBxDFFIBs8LXO/wDcNJ8vIqy8NKjQahYdrAi+TCtomaT2IY0gq4HlRx1ROPXH0LJYNIjNS2LEaJqYhsAsDpRQa58hB2ZEmZ87PnjLFTIgTkIlxpO3mGLK2rQqVFwqUXF2QBcmJH22k8k1DTFEnn6INpYXCMAwMY+C+LDn44evw+ruYs3PkagebARMmJAYVCq3RQYAoZsLqRoINGckRiQGXQj0VBfKuJ+8yQqK4ADZRmgXjz/4c2//8nxLXF3THB5TvfJ/trmdTRi52l+T5Ca13dBSi1SofQd2iIhpfwSaMGGIteLDViehddbHbCp83ircwtbhI8iclPMrJKdo6K0aZrFYnpFksM6ODLivAtTCYcGLBen3WTSLFrIUlrkHb4JLGan8kPhWl4LqGaRyREpVZFDOtczRNS4zqTg61bThIYd2PbOOOduGYHc24OT+maZWP6htLolwXl4SSIUac8fX5D/QxEl1mGHtKgpmf0zWOEM/ZhokpDyQSy+5QRaI4YlNQ3pIplJSx3mOtJcagXDRj6jBDC0/C3l1sPE11/bhhxL/7lHL2nLTdMdiJ9rsPkY1GzMs0EJcdrJ6T3vgYmwY4aCliiIs55ac/g7iR9uJKWabF6jTdWUzXUm4cIaenFBPgyVP4x/+K/o++RXz8CN8c0N55ien738EMa1zagXa3g1lSPngXmQSz2lw7HVQcL+S0hnylrc9l31IrGrESUSh7ihjj98YEdFKu7cZGvF6EoorB3lrEZApjdUTK9TlOrF5VQ9ohpkHam9AtCNMWY3r6cYcp+zITV5EVe/Zs5UKqbZ5pGkh2xircZHF0yuYqktPA5eWK82eX3LxjOOosdw5tHc4VYlS+hXWGKYG4QA6Ze3dn3Lq1ZMqRz776KSgad/NNg6BOdtk3Wgl6bqpurVLq5c8m+pDY9rBoDjWqY4QcIE2F0MwRv8RPK/qrh7TdkjRtmDY9TdShni+Wxgl/49/9C3zl8+/x7keP+JPf+mec3LzJ6Qcj4eoZs80zzp6dIeOORVSGmzEOa1tSShzEXp0Hl2u2YWA4K9x/eeTB7JDcb9AtTBhLYSqJgGUnE0EEmw0Pdlf8wuEJ2w+f8apzfP74gLTacjxreUEsn58GDkphoDBgEOcJzjInMV6uMEdLStljUdT1OlT8R1tZ/NbsGY37GK1iUmJ1york63O9s3ouaCpXzFRWLbngcVgcjW2vL7pStN3eZIeYGTm3uLRFzTQGZ1p1fO/nfSWTwhWUHleUVZhGjfGGONUzmdHPzWRK0DUO+8mwMPaFwogIxLEQotC4DmtnFAyxXrYRQ2mbOqAyRAnVpX8I9jZiAtPuIVN6Si6JdumRpNH3YPQAl/KApZDSqOkBHJg5pbFECk46RTn4zMxFfu7G6/zg+CaHl4FfeOULnI2JaQpEAqUIuyhMMROzrqnDdAHpoQ5ISyZWg4UXvUd0c+Gd3/xH3Lr7KpNrKHiidaytY+0cq9YzYYm7C/6tb32Xl/uBd0PGhoh2Ime8WI6c53NY7ty5z/31nDsXML86Q1Ybms2ATREbC9k7aC3hm79P97WvEEqusTxTkUTQtfrsT5O6eKcw4mzS81jxHCzv8hNf+GscHt7g6vJjjESsbVnMD9lseqb+MWMvgEfGC86enFPyDrFZi1VMR9eesOiOySVzdvUBu8dnxDRRZAL0+8kp4bxjmgrOeHK9d8W04Tw80sZx4Pz8I8Rauqbj4Nhj7QGxljUmgj6n1mDEY0xLipM2r8ZAnxKbzZaQd8Q4arzWiHLDG1sHUlLbuPfRXR0CatzdMY21/T1nEKdrMxZnoLGO065j3raYDDNZsOSQV27e4Bf/7AscdTNO45zh84aUHGE1Z+vnHC5v0XuLLxknBelHJEzQNrAdSEYQp/eoccrkMVI++IBRCn0K7KLuq33KpKYjNo5o0L9C4vx8xb0Pn3EcR1qBk2zoN1uCEVwsKliWzOEQ+Uzb8ZndyL9n4FacmOeMKyP0kbQbSUX1CHGAs5SuRZYHcPkUVzKBQgoREWXZGbPn1muSQRMhOvAbhoFkIDmh1JZ5BLINnPUfg3HI1QeU1Z4RWtMjtXXUok25VjKWRGtPuXnvi9y583lu3P0yy5NXycVh8gRpzTtv/UM+ePPvUsr22i1t9LAG6P1nyiOkkTyWukcbiGo42X/vUuQ6KaVYF6FtGrJoOiYXfR73a6Sy6E1lorZIsRiaypvtaNtj2vltZrMXWB6+wKK7Q+ePaM0MY2fs3jhnSlccfv3zGEnMxWH6nyW8+zFp28MwYn/4Jre3VwTr+Oorr9E2jtY0iHO1x6Cy6oxy/3LIsOm5/OhjmsMlyxfuIU0Ddk5uZpSuhQhcbRi//zof/fAtepPY1RKtXApj2zIeHSPi6LJlRuak9PzKwZKTsXAYCzKO+AJNzFwhjEDzyVUWQYhxYPf0HRwewStH3TeEdkaYzxlPDrHff50v/9LP1/Mxn7j4rn+n+uv/hpD3Sermx/36sQW+FN8m5XcJ04Cv0biccz3wwCZSuVEgdn9ILFg6Ve9txvtc8+8RjDbwUDR6momUInjrcdZyNR7w7nsdL376Fzk4aDloR1x6TOi/T4wjIWnFsTF60DPZ4IrXiatkkIiRpHDIGi80og20UuOR6iBEL8sVPmmwiCR1OBApJmHkAtALvhRtBxVjKFFdhNctPNagjU2ZHIZ64NjbSi2tPaWdvUiYNrW9L4E9ZNXPuHh+zmx+kxh2tDJRcmDYrYnjQI7penJ6LeTJ3r0HuVpDS87kGneu8jExqgtp3nWM40Sk4EVfrBAD6z4wO/0qt05eo3/6DcLFH5OmDcksedjf4/bqHbZ/9Ic8f7jm4eUfgIl8PEV++rKQd1umskZ9jyqYznLCfPMb9Kst8wncR++Q2BJQEXBOg8tghg32vbf4w+eWvvXcmAK3pkQzX1LKDcKkP5+pTDinJtsSwIjDOFNdVRHXaVtpSpmIwTlhnEZSjnWajIpRSfCu04NeMsSwo6DtmzH2DENCD3aWdt5SavmBCYJkZSTt2x9FGrJAlEwuiZACOaZrBxIZslWWSZGslm5niLHasb1jTD0iWavRoyBGwcjl1HH4Z27o9BthZmYctUfkvjAXT9csEFpa78lxIseJ3S6SszpEcizkDF2rLYJhF5iyIZqIn3csDhYsDzvyuCPNNox5R9N2iOspOTJNgabtYHVVbfT7FWBvKf6EV6WNddXRV+oECV1gnbNMU1aekdFWw3EcSTEy6+aMb7zD2f/777H++a9TDjw+TDTPzjl+8z0uLj7mI5swWbkeRgqbpuGFX/tVctNg7Izw4buU3/sWu+UCMdBly7slcbud8+Lzjzn+G3+d4XMvMp819ENk9/QZu299i/itO7wd4cFne6xkplAYpgJkdn1dJ0zBmIzfa/+iw4EUVQSxFuXZSUZL35UNaota2ncTOBdx3mJtwJVAmqhsPmGMDt89qOniNVYGPezZREg9xiYKSd00dX1SylohmyqEZP01qaKzAXXb1BgdUnBWBTFnDN50kCxtvs+8u88wvUfOqwpzNhq3xJJiUQaHZHZDQ4gTR8uhlrboBVnMEcezG5Bh7NcalAsDWTKzZgYGdmkihIDzM+4ePcD7A8QETGsoMinnNAacs8ikz1WpcXCpm/S12z1T9xo9+IgY2rZVuHkuJFEx0RnH+Pb7TH//H/Ls9bdx40g7FOZBcCFDCMrzqc8yogJ0igIJAkE/55BUGCvK26NYohQ2neOHR57n0uKmxN3ngc/++hkyDfRlRf/+B8zaY1ISgmQtppgtCEwc2oYrm+ga3WUoELM+29aoaGDr6UIcigwo6nwxknH7WLwR5UZGRR74fd0zqEsYoTGQsg50pMBh47ndHmBKIjeG9dAzkWvMzJDFkk0kS0K8IxYhSyTkQT8ta1AqREGckMpImirsvpY7NcYymsKQK9Q+ZUUxOIeYxKLzLG4eoGy0CeciRRSkvK571HXETfSwmqSC5VNtrEzgfEvbWObWsxt35JKIWQ+HR13HzeUDxn5NyQrBzynoujYOdG2Hs4YgGnX3qKvIWoX3x5SQSS9W4g1+LEy//i3se4/IeUcxmSSZ9I9/EztM2HGH2e04Xy7w/+SQ2flzrm7fRz77OeYXDyEEpt/5BnaXMesNdI6ydPDpF+Dzn6XcuE1+foZ89w0SA3E9Ut7+CPPhlnZnsM++SR53GDIq+Xg0NA0uZ9yzZwTjKKuNviPsi7UKcdphYq8lZKVO4osQk5ZVTaNybHMJGkkl6xmlUVejEEGaimUASqhDD8G6DtvMyXSQV5B6MBCDYXHnq/jDz5NDT5Mj7bwjlR278+dYMrOje6T12+ThIz2XoS21zhs9QYjlW+8WzseJML3Ht7/7Difzhq7r2I2Bo7OJOE781T97k9OFwyCEkBFbCDHpsGaKlQGt4q6RTJ4KzluMzZSgTokClYX0I65hyrWDJ8aCGEeJHUfNAd56YszEUhA7g+6ANPWY3UOm/pIQMo0PejmIgbbxeK+YD1Lms7dP+HSObFPm6k/9JN0uMJ950ukJRV7FZEO2gs96mtqziyMOUkCmSCkj5BEb1tiUybj6uYGJwuQckgqjTMQpkcaIlMjRQcv45oaPpshPW8Pn7IKz7Q539YT87JyjT30Wf7nCTVsymY11zMQSz54Tnl/SvXAb1zXqwCulDig1VWJBT85FsMXgxWAFmsZiAN9oE3AjjbrkrQ4OnHXqBC4GT4MtRlEqpkWSYJNFqjupOEdOiVgM621muWyxRJzTC2GxGSSTozqixSZyHonTSONqGVY1JTiv55UhZnKZlM+XsjZI16ZkrT0Tvewa1N1s1VmdY69TVhOqo6+QijqkxQgER2k8KW0o8V0daIvQzUcVhsqV8rRqqRBG7ywWr3HxkhA7IxdLSZGSI2MJpBzIY8Lnhi8x4//whVOO3zrilVUms8Y0idRkZb+mgolQrCdbh1xtaNZVkCn6vNgkSN0Rs2Q4ekC7CqS8VfZaTKSQ6KdIDJExbgn9jvlFIo49l0ROh4l7047Tm7f5XIZ7/cCtP3yHPA4sh4x1YOeFJltM1xBchwmZxzjes4m73/k+7dUFZblEnFdDhiiXLCd9N9uurUN0S+sPsDIDJkyZ+P4PfoMXXvwKy4M7rHYP2O4e0w+PyNkx606YtUvCtMbo9kU3n1fGWqEfRi77j3gW3yfEQNM4fE2HGGnU8W11yJ1LIkyZkAZyyrUB1dHURk3nHH65JFfGdU6RGLSx0xhL07T045acE8v5AlNmDNO6FiXqHQJRVq33moirLhV1huoxkDDo/pqqSaiQmWJQXql1NLXMqPMNc98y6xytbZmx4CCfcjR7mcX8NZaLl+i6GzT2ANM1mHEkTxP5oNGCkWdnyMdPGfoRF5PG+UugeXFJu9sh/aBYJtNinKeYev4vCcJUeet6bxAKrNbEocecHMHVmtxPpHjFmLeskvBfjxv+bX/It52ne3bBvc3EQjLLlDjJcG+dORyMnuNQhIixDmyLa2Y4YxDnKNZooUsOrMLA9vmazR+u+cwP36b9yS9hrWcKkRKTGjT2TNCiYkuMatxQhvgnEc5c00umQMwjIe+uewOQanyoLksRxQUZUdZdYy2vPvgKn/r0X6MfdvxHf+f/zvFywepyh0ji9MYtvv5Tv0h79EUuLv5Io6NkTC0oVfGrprX0QEiyRp8PX5lvdWAGpeocBozDGsto0Peq3k/F7tUBpwKw6N+NeLx03Fh+idt3/ywnB68ys4e46CBAiQEZMzJK1W16ljcPKAce8+ghFF0zGMFKw5PdFSmM3P/5n2Ixn4Gpa3OOevSuA1WqQAqmMkh1UHIjOyQAQ9Ah/dk5+eIZvPs2w/vvMXz4If3lUx6mZ+xy5Jet43mB1wrcjonl8zOaLNiS8WJwZFzRdEmUjImJTcmsSmYdCy/AdZy33nBBHNE2xGYBszlxuSAfLpkODwmHS8LJIX45V1b/Xqf4EcFu/z//TZ/ev/nP/DhfP37JRtySwgbnoCSnD1HZt9jqHcNafdCMVwFKL/cB287YjT1OtALeGgUWx5QQY7R62Fs66xhioNDy//yvnnC57ci/+3exRjg9OeXzn3mFn3ztgLk/A5OwVieCvmkRAWdHIFe4qlp/9jEmkVRbYT6J5pg6wRU0hmdFYx4KHi/korEfbWwzWFyNWUuFdtdq7ZpFikkhrQoPNhonBkQs3p4ym70CxTH2jxFj2PWeKS+4OttgzExh2HmiECBO5NQTJrVrN22rzVB1wSmmXL/YRoq2nRa1uEu9IFElmZgzeZpo2wabNIbg678bY6SfAgMdi/u/wuG9rzE9+2POzi749X9xzp9/8gE/9+4j3hkzm9XEfOr5Soi8khymTJxgqOUzGDINE4cffpvNw+9hi2OR9QBhERZ4bEX5RoQhD/zyuiOMEV8MeUq81Q2U1iLOI1bjO8p6SnoBtKY2MoOxjcapU4QkOOvYTSBOKEk3Pt9BThGKijBGOqwkrUnPOnb+3g+f81//yyf89IuWH54lTu82/NRPv8DJraVCwa2lKbcx9gDvNhiXmZIehMUJ2EIYMjhdYIuOYJly0D/rBCZYEEvrddLsm0YvU6kurLalbea4YvHW07oZTfGYoAu8nTnIiRJHQthQpsozypb58pBUDDlb/DywvdqxW484DGMx0HlloIinPWggjxSfKO0VQ9hhu0PE6iFmGgO+qe21Zf8X1xfEfTvQNSRUqrgH/Cibr1yLfAo7N0Y3zlwKl5eXPP17/4T2/Jx3rNCeHGrk4ugm0x98h29dRT68f58vSceH44aXTOLh2TPufP6zzGYH2Gy5OjvnQ19YfP5lto+fcSfDe5sVqwPH8Dzw0tsf0t4+of/4nLjbcfnWmyyLI7z7Lo9ay+2XofFoy2tKFS4Lzik0W0R5OKlUl4rRNsWSLSEK2Yi6Osm0XaQEqVFSj2+UG1TKHJGNRtFMYcoOsQc0zdcx8jLrTU/jRnI44+LyEbN5ochzUn5M1xWapmBMpGltZZpldToL1442Z6gT7eoGw2DFoUirBrCUbOjKDBFP4wdS/gDjNjiKug8qLy2VQmOVlTjkxHbccbAwiE0klIdk84zGzNiFkSmsyQmOZguKb5jKxJACfRiJKXE8O+HF01d44fgl4tgjRuOXIrmWG9Q/S3WH6VhCaoK2VJFPnaJS4wJ73pytbrEh9Zo0UE2TD//JP+HsnTdYfOkVuoNjuNrx9Bt/hJ22SKvA97l4dkDqPFsS/TDQuTlH8yPOhx2dWGwsrKaegDAXS5MjD09m/ORf/zU+9+kHbLeBN3//u7z1G7/PaVgxXTwlNwc0914iPX+GCRNt0zH6uTrSjk9wzQXFaOWaOqUckgX0LKbxpALZmsojEoxTkS8aoTFW/30jSE5kEUZj6mdm8M5jKQqQN5Z23yieLOvVhpICh4cdMwn6udojxDT0Yc1UBnJJeOsVUyAGTCHErAczY7UFDAGr3EhJ1U2IULIOS3IFaZcyEdKE+Kk2+WUdwjlPU4u3vNHymiKFmCFXgVrGomu/aKtl1xwwb5c83z1lilvdq61+jq3ViGssluPFHVpZstmcY01SF7ZV8X4cdsyOTmoza20gL1rK5ZxiQlJOhAwyBUoxpDc/5vD7bzP94Tdoli3j3PP/Ye7PgmzL0vs+7LemPZwhxztPNXdV9TyhG1MDIAGBAEhRIkXJskHLQTOCDj1YMsOhJ4ftCDsUIUfowQ6SMinZpmVzlEgRIOYGuoFuoOe5hq7qGm/VnW/Oeaa995r88K2Ttxpk6IHAgzOi6t6beTLPyX3WXuv7/t9/sNoQ7t5Gz3sIil5nBhUwfceiPyLMDOqlJf3eQ3L0nFaeUE3Q9+8JA8JZvP1z8OnL8J2X0Z/7HPb4BK1HqJ/4FGliqV//OuTuzBNGmvCqgA5yf2o3RrkN8APMVxK2tQZDCouPskZySlhtiWfJkEWaW6wlJKhAUbsNjLXE3OFGTzC9+GFizgwnt2F1i8pkgqoZzCX2jhWHR8e87+knMPO3yH7Jsqs5unOMf+U38DEwDJnLFy9w4fw2xm2zcfFxDo9OOT0ZsQti3YKoMJIXRz1tHJPdC4zrDY6PFjxx7Ziqcly5tMm0MVibeXjvCEUSe4KYiFqS0kkCKGidiDYIg3y9bwlhHmMkOCurgZAQEE9Zghd2vdbii6lNJgVhsjo3QiVVEnxbtNkkpoFu8S4q9XRdgiDMtaQCMS+ZH97E33yD6888j94/Jr78GurtN7GzJZuDZ7uLqF7AFK0jMRlmPrMcBmxYYX0U/2CVMU5sHqyrGBslTXQqIWKI96QM18ReAmulBkGDqgjHPSc/+D4Pb76GGlbo73yfzRTYbhrmeYXveuLrb1L7gMPhlccQibHjB7bh4nLJJIm/tR8CMWfquqLvReK429ZY1eKUQmcKiwUq63CFCWoVpBImo2LE+8SALyCJKc1pIKtEiD1+GMpa9OAH0gBZC2NJnvsOfVISRJGU7HPWFAa0Q8dMUgFrLRJsFglJwhQkrAwodj9K57WfgXgoozG6lmEyDcY4UurJqgQaFclkyr2AgmSykgTkFAIwEIZMjuuaKJApHn1anfUQ5Hxmt7NW3ygR4EB0kuqaB5GQG0fLBpvpcTbTdepqg0Y59PkTQt0wG4+IeweERRTFCY+YlkmBbyqu1VuMplNhI6ViSxBAhyxBX8MgQS6+h6GHwYPyTJUjVZFITZ5sEao5IXuaZeBvnMw4/42XUP0gTCVbYV1NrBx3JxW70zHq3kPiakUKvQAkQGUtW86SZkvCMDDMT1DWii2Eq8jKFAAeKNexco6UEovlHB8X9P6InG5z9+HbGJOIeSUev1XFZHSenZ1rzOYdz77/53niqY8DcPvdb/Lyy7/KcrWPoCbSL9VVSQzPZY0SWSxWxJAk8NDFUt9Z8Wor9a0zlhADfuiJ9KQEOQkAnkrtvOoXrHotATQo5ouHwlT3UQbJxuJMJf2bTyQVy8AcqSPJDMNALMBiTlA58fqsKsNGO6Z1lqZqmdQbNK7GGY2LYy7UH+Hc9vNMJlep6ikmOfKQSWGAEGF1Sj7tCV2HjuD2FVHLcFONDbap0T6SfIS7h9itKebCeVTOpCFhek/qlqiuR+Uo9h4qyeOjBN0lH6HrsDGh7++jug59uoDDQ7h7i+7hHS4s50xzxnSJzZMTWqlcmcYClKHwGVw9Ye/p52nikva1l/FhRfQLsSPIclYWOh1aO1pVMa41ww9ep/rw86Blz/AhEKPYdmQEsFIFbIqxBJbUO5BGZ0CUq6ac373KyeweJh8W0EbSqtaWYyDMZG1EnaAVaG14cPpd9l94G20qzj/TY9WS6rw8Ruk93rj3u3SDJ7TXxZJIlf2/nNHS8K49/MogXz9STFGIFzLgF1sdbQwCWRnBNYCco3jnWsEHFIpcORQBpTNXzCf44O4vY04ivHuKXtxEL1aw6Ej9ULz2kwQoaaAx0FTk8Yg8bki1I9c11rZcvXIZzYAzCR3EqiZrBbUp4aWGlEtoaEzobkAdL+HhIdzbg4ND0t4+YW+PuP+QYXFM182Z+Z797HmIZ54TPeI1+JEYeZ3ERoTkBxbAnLXWgMI0fvQRz66AYktZlKvJVYs1FRgn+75zBOfAGbJOBJ3wfkHcn+MPFd2ditO+J/37fwllGtmz/jhiV0hs//qPfxX6+zf5+BMDfE0NrCWuWSRgCej7RCaXTbEUGiqJz56CmA0qdShlmUw9KqfCgBFDcZVAaUPXRZJVJCxf+V7ixpUnmJ52nJzM2d5pmFSe3O+hYsd0M2CtFO4KmdyhZMNDi3zQFk8La4S2SklHVegCUBQZitJluidUSTFq1+WiyUTOKPlZ62ZGnUnphI0hvhvSKKd1/FFWJbVmgnM7uPoCupqwPD6gGwLzwTFbtpwcHhG7gXq0Qww9OizJNqEI+G5Jzgk/9DhXs8bdU16jxII0a702WVcF5CtIfmFwIO8aXdfjqoqmrugHjynNtNaaGAKzRU9vd9i+/u9w5XJH9ZV/wP23TxnffMAH+kE80GJGkegArxQBxfpqpILEKxQxRXqE+joo6DV4FVhoz1JlLGBTZpIWXF0lPDBozUt2xN5M45yiW4G1nQCczpKDQlnFZENM0LNWYnyKYX66zda1T6HbHVbDinr2NZI6FEQ+9WfMv76vmC3hwtYYbRW3b+9xe/8Bz39QceQTH/qpDTbGNXYzsdSnKJ0Y1w3KHpCZ0+keZeRslEsr7EA7dmgjYITTFQZDqzRNLX5ozlpx3NDiuaG1Lh4wCaMzMa6HGZHoPXQHGBwEka9oJIQFpVG6wlUNOSW8DqQUML7D957QB+Iig89EDLpqCkvR48OCNATIAbelWJqOjJX0uixFcD/0NKMpIL6OAiaXhEWVSyL2e2YcZ3Tk97L93rPxWEs/DJJKGaUxP9474Htf/jL/7uEp+5/7EvefvoTXGX1wzPV7D7nQecyt++gh8GQO1EbxPhLxv/p7LJua7D3NYsWzQ0/91a/SRo1KmatZUT2Y0doJs9/5HZZf/F2UirSrFU+kxJArvjI75K07hscPKrZ2DH2vWK00jXNUlQQUDF5AlUzCObA2Y00BKSon3hQkxmMrBzwTbD0iZZFz5OQYBsv2xvtZrr5HtieofIFaP0OOK2ZHS9r6DjrN8blBE9kabxPjXCwJnMK4iLXyenyUJGJnip9nQEx3DcLY8Q6nkSTxXA6mwuasrEObiMKTcqSL8zVqgNW67JFO6PEpMqQgjSyKS7vmbG/vQ5DdLq5I6QgbW+qqph6NaeqG2fIBHgkN2W3Ps7txmUk7glXPdOs63ckeWUWqypaCpVgnJCmcpdzQhVUHxbuBcouJd6ZKqPf4j1ZVJZKUvkzVQ+TuyTHXPvMZzv/MT3K68oxHEw43tjj5+neomor9B3s8deMKr75zj3BuiwdoNtKK+TCws7PDO/dXPHHlHLPFiv2VAOQbk5onbu/z2I1tdm9MSdNtNiaZx3/kOb722S/ysdkRra05SQPaK6bbV4jLBXm6ja0Mb4SKWGvCkIhECTxIibqxVLUtzV9CWXPGvjZWQoPkDI3EmBlUxGRQUSahWollhbFWwKmQ0arCuUa853qPWvb46FjhUbUlnIJtMqESdmlOReqcDVkZlKmptcGnFUZD24yJBKKWoUxMwmgwytK4mtR5sIqoQccozawpMt9SX44qK4EiyZN1wnsgZUZNRQ6JPstryMU+I2pF7QT8VMaQQsey66gtVLqiNo5R1aCjpTU1WUeiqWjb83QL+b3Fl83IZLUAfAoKeL/2LsqFKS3gJUEkIiEmkgr0b71B/PZnmd+7TX/aY3xE54SLvSgFKk2P5nS0zbDcZ0KC0yPaakWvTsjaY1PFfHNCnG2JNyQZde8W4b/7x9B7ws556ukGo1sPUb/6WVwY0G5CUBXEgRwGDAZxJZMCPytHclOUq1Ep4Pfvk1crcuVEPZAyi6VBDRanjDCHUZIWmVKpiQQsTzERs8FWNXv9JYx7nNYe0ecN7vzgRWJKXH/iw+yef5bDO+9wuugwbcOi70kElsuIVRusTgP3ThuqnYpxfY4+a3Sr6JqWH9w+JHLAzuEJbjJhFQPzqHFaXDOzSoVZn1HGc87tEcJDdjYGnvn0SPyG7CmaTIyBG1sawwkhpSLJEUml99KYoaQ2zTERo0bbIhtVEHMghwJgR0tMCMMrChMbY/A+YVNFCJq6OUf0ovDAbKBUwHd3GPoTQjdQuQqVEtlllDVoaxlSj0ordrd3UV/6JnznRar5DD3rYXYKiyX0MxlAk0E7vJtwOy158+iA5/WES0OmGwGrQFaKIxc5GeATmzvoboA4QPKQeyi+yRgFRpOcJd24TPqJjzC88m3St77H8s1bdENHx4CLHTZL0qjPSb5tNUOrjM8BlzPOe/InfoSf+ckfIxlFnxTZR4w1RC/J5aYwFpSPpNQRTJF6VY7a1YQhM6SOlCKm+Oqh1vVrsRUImipJ7a51QlkvoKVJZ3UkRuTXhqKS0StMXnMsFJW2FD67eBwjvnw+eVRuSIMlxApdXcfYBpUOpIk2ipgDKvtiP2LI2NKUQ8orkjrFR0/OAymLZ2ROudxniUwQhhdReofSFcivKnu51hqUwZoGrR3K2DM2jrEWawQMkn4EYVCH8zTxdZrqKmN/hbF5kom6hlNTUvZoGyFAt3mZYBVHr71DPR6LFNFmlE0Y77EhkbzCtlO6lBg1ClO1MhCMSdiuIULvheFoszB8jIEqEvqePJ/hl6cwOyAsOrohkcOCUxewUbHlJhidUX5ODitiPyflzLdax6dPLOcXAwqNoUJTo9BMsmY7RN5ZLs5a3Dj0xODRg5MwCOfkTNLSW/kQOJ3PGPoF1kFbVxiTgBPqqqZyNSjFxuZjPP30L7KxcY3zl59hY/uaDKhCx+6F93Hu8nN85Ut/h9nJHXyIuEoVH/OIjwFwbOw8zeM7V7j5zpfJ9Fjrzhhp1uqiCpIBQQZCCBgU2jpSDiy7pVQ0xooCSUkwkJBjVJFO1kKw6BKorqSTyr6skbXZd74MZiKtaWhHrdguNSNqJ+mvlXM4pUhhkNCflJnoLZ679leZ2CdQvScf9aQ4I1YaPa5xVSWApo2kaFDVCOWlxnVGQtnixOO6jBk0Yb6gr+eyfpcDaujRKpFrC6MJqE2UsuJjGkW6TT/AfEmezUn9nHjvFsPtdwkHD4mLJcMw0MeAioEmJ6qU+DM0ZAyDyegkAXIqZfrsWZI4ypE/8ic8ZzRX00DNmkEs/HZVAK2Ui0+6iSSdmFzYleCjAukIqJ7K3uRIWuoarY1IWVOiizNimrMO9VzEIw6Xd0BFlA4Ys84OKJZZoaCyBTfQRQ4vgXPH5HyLvO7LlfRREuZn0Vn8ygW7eKRk0WtcQ1GIO7Y8Xkt9pEXZIFCfrB1FSQs25qxPk8FePtszdSjyZMB6DSlyJV3iufQx6u+8BAeHsDiFW++iDo+gX2FCYG1Ul9fsQm3BQDaWXFfQjFFtS25r0rhGOcFBVGVRTSXS7sqBrchWY3QWGfZsTr5/SLx5h3zrLv3pIau44DQsOcwdBwwcpsSRUnQ6k5WijTBJam0OxttCjcIjgJcrf647VPWe/xIwWMfe9gViyjyTFDZloh/wy2M5F4q8Xqu1d7FDO0fTtoTWoWtHVTvaRtKp39v+rokx6974EVvxhx/z3j//JB9/YoBv/yjQLTvZnJT4BFmjsEoSdLWW4tkaKwl/ylLVYi5fuxpXWVAJi0PjMBZyUlRuA20t/fIYpS3aJK5ueZ655ukHhXMbOKdpXGA08kwahdXnUMoW42gvEJOloOi6+L0gh6xWkCXU4+ztzuLpppU0sErrAtVJXymeRoLom7ObJBfrIo1SZdpDsTOKg0SdZyALkKjtJkq3GKXx0aAZszg+ZDYfOF02DCs4Od7HoKmLH5shkujQ2hJSZjIaYUzFMATaesR6CUlDmIv0pkg51tTWKL5VYraqS8PIGQ90GAassTR1hfeBGAWwFKahIsTEw4MjUpZ0yBe04vZq4GIc6Mr07R2j+bwzZGdYZPCFSh414mmSM4MSCrFRUCkB46bWcD8m7gyRv5ITx06jjeHfnXUY4EDB0fZ5ajeiHivuPDzi0sURw+qUqESOa1xkqDMah3PglEHHMSFtMBp5usVr6KFnslWx8jtMRjUqdFRNRV2D9z3OKaoqok3k/GXNJz5xjYTCqRqla3SqwUDdVChV5HPaErMimy2MaiUcRg+oPGCVQuLNHVo16NiJBSMl6UoplHIi42VAJWEYil1WAZgj5KAwVtJUlanQ2WBHjhg1ve8FrAyDTLuHgRiivIc+4/sVywWE3OJjKfRDTwoDw2JVJsaKqBO2rRiaY3q/QBsnQIkSoLDve1Cb4mcZw9khkClkvULaexSW8d5dqzArtfio5SQHkzWWIQ7EKGbthweHrLqeuh/4sddv0r/zDkNtsKkmzgMXQgWrhCajVIUvee1pNbDSKyLrhK6mMG8CmUiDocHSxMxm74nLwAphbGErkrN8eXXM2/uW5cmI8dgyGWVqm0EJa8cPHtvIEAI0xuaS/C0HdwziSWZ1ICqNThnnHNZBihptM9osUQRWwwOy6vAxS0x8Cgx+ibM12l0k+FPqJhOGXkC4+hTnOmloiufVGaClQWeLoxEmWgJ6x6SyUNIga9uQshhRG5VRBBKpBCvI/lc8jsshJ6BeH9IPJT1Jo6IYity7D54uQFNpWp1AJ0aVY7PdQgMqRlq7wcQ1NPWUwXeoNBBmPbvbT1DZhtPuEFPVVHWFbSZnq2UN+kZRy55JHFTxfEyFEZ2TsP6kqJEGSmtF09RSqGWR+/rpJnfvPODCqmO5OGFrOuLilfPMFTzMnr2dMYN2vL0zIU0VuR9Y+J7OQWoSamuDO7NThqpCnT/Hg4MjMhUnkw2O9o4YTntiPsBOW3K/5K4KfCDDIi5xVcXN7iZXtp5hdOEqWEfMni8cPuRif4mdqiKlCmMNRgvwr9CE2AlbT2ucaWR6HDytyvic8DnTWFv84sSvr60qxJcxUmsrRu4qoZWhseIV0qeM3TbCNNAVthKZ+aAMWWV87LHOYauG2lQMYSXsIMRuwJoalYVNHPyAMxasgLE+i0+QaSq00fiUqLUr1ggJcsSZUmgHzpJwDQZnE2hPjoqQoTGuyIKFiZOVxH3oMlxTVuS+Wkngj1EWiyaaAClT15tkt0tKDlsb0myOUgnrwJosKXRa9iJj17IcKaBVmbg7Z8+AZE1JbN0dMf/wY/jnrnHy4BavvPwGZh557qkPsZjUqNMONWgOJjUPbGLIkSEpbKOI6jzN0qNzxTaOq9ZAHKid4+K0Jr75JnnqWJzfJleOdrvm0sQw2tgkffxj5KdvoAcYfvV3sF/4HCZ58ezEkW1DHI3IKGa64f/+pd/lR37sIzz1sY+fFZXjscI1FqskDF5lGRRoq+jLdKoLIq0mQp/gwXGH8TN2x5Fhdp9J3VAbw1tvfp/D6QijDMZKkubONKKmI3IMpOxIdoPzl6coF2idmPNrrQhxoN0ZA5GQ56juiG3X01SFPZADQwwoYzBGmAsmL6iNfG39GJXzmXl4jJlEJAVPijIYSLkEbGWxg0AZNJq6koPLVVYYm1kk58La1JAsSrVYU5MHUEbhGkNtK/oho6oNQvJoDMPiFn44ErZDkCRDjUbVrQQaxR4fBlzraNsR4+99H/vbf4g5naNOBlLoyDYTKk2mQW41hcliP/J8qnl286pI67WjzWArCcrYSlECgo73SUHYiolwdjYnlchRhs3qyV26/+hTsN1T968zvLCPf1Waslq30kDmjE8dO7qhRrPQCZMTthoxNopQN4x+4jOoynK6mpeArRJiVDmGYZD6OWdCDqTgyb2GbHABOiOBZMaCjz1a9aKIMcJKijHCmQepw2DQRnxns07kpCBRQs5AfGlLyFTS8nXBSaSeyhSLHPk7OUot7iWcahVB+QOsbmjsKcQOlYfyGuQ8lQAjRUqRrmg6k9DwpE8wsi+AMD1jTmij0LrBKCeDssLyWtd94pdakQtb/UzpQAkQ08USISaMHiAHum6gts+wXX2GC5d/llo/WYKgAtFktB9IDOSocHfvkl54lavzAeXFQjCrfEY6wBlyVYO26PMbqKu7YIuvb8xCjlhl8nEPxydwfEha7sH+ERzNyPMluT9mWK3YO3+JcXyAOTggR81SBRo/J+eZhBIUnopEoig+NsB2ilRYDA0Jh7U12ma60YRh3LJQjq0Y0Vq81lMqSbExYLzFuAplXZHtgjWG5MQCyjqPxmJNS0oDqy6wuf0YH/vU3+Di5Q8JGKsy89M9Zof3+dY3/wV91/GjP/qXuHH907wZfg3jRWmGAmflPXR2TGNa9h6+AUr8G1OWPTSTWC6FqWdLMRVTkO/XijwkrC3hKcV7fRiSsMVqh9YJHz1DL9dLoamMZTya0FaX6fsjYp6hVGbcbtNai3HCerdGlDVKp8Lwz+SwQqsBrWuctlhlcbXjyYt/ns3VedTsAbr4K9N74vEJam8fd3iC6mcQPTmK56IqAVw4Bc2Iqp6SnSY7GR6YpsK9+4B8eER+/Dr5ySukqpFF7QOxG8gnp6iHe+i9h/g7dxnu3yadnogXJ4poAr019JOG2UqzXM3YS5H7VnPBB+ZpQU4Z7R/VqYpHzKuKwPm3vk+bxF+/Q+yh4hkMlwvlBBQOnS2ExK512DJIRontkpBo5b3XKAlTWrPacma+GvCxk3AxJ4xbUf4J7hFjFpksUdb9uidaYznFUkUpaZpUAYjj2uta5eJ/G9BZEYP4Kw4I41yG3km8/9d9QCpnTgEp1/syxdImFXWEynLw5zKQCEaYyqp4bqoSTGSVxeTMThzxkVevkt74Q4aTGS5FUrdgcfAAN6Qi+RegQen1JEMXOTKIEsCJlFNbWS9WPNCyeLnI9xnAanJVoeoKaqkp1cEJ4f4B90/u8oP+gD165kroEzoXuyrluJYNKils1rjpFud++md5/euf5+79d5lkAfUiglM41q/th7gCZ/9+oDTfDj0PVx2b1tLO51L7kmnQRb1Z+kBlUE2F3tpGj6f0ORGtImxto7Y2QZuz/kn+p4rqrSyIcms9gvLy2Z8/3EP/m338iQG+3YmGqhb5AyJ1MFokulYZGtNIE2FdOcwCxilyiiJFUkKHtzpD7qQ4sEnApaiZ1GJISYY/85EKrTxKF4BNRZTJOO2lqFKtpMoEyMmhaMFnlOoJiFdTiHG9BoVNp4LIwpRQWoXiWuTFFABQZ1RO6FxMH5UcmHIgQ04SZZ+jmJHHtJa8OLSpwdQYOyUm6H1i1S2oK8VyaKmXx5yueuJy4OjwhFE1wSpB72tbE1OHNZbcUMJvNEk5Ga71HZPNTXkjzvC6tYStfFrIXegMsYQSwHoj+eH3Ugzqo/hYRS1DvNJcBxWJEWIITDemvHD+Ip/fvUNzcEgwlj87eIa64nPWsbCwSokYitFoygwlObbMNuU6BYlGz0oauolR/NdGYr8/EWTyGoB9NF3fsdOAiR2ffK4hxAX23JiqcrDeELUqUtdATlDXCbO9D2mfarOhri1DGnCVgtwV1psk7VpXSYGcPcpapqMdbJkuKqsLm02u7ZpRlEIiDANOZ5TXkBcSdrFmrSkj71f5HZWxqCgs0ZSUTCKTpD1L41MMpVUx91eGiDCZhJ4NRIUPHTEadK4gJ4JX+GEJWdHnxDB4VstBPDj0Jot5ZLR9ERVP6E8O8MtZMalF/Cqylk25UeTqhGEZwSm89zQNSPCBFNKuciItLYeVLhMkpd5zgJUF+cfXF+TSPK/PAYVzFj8MpJQZfOA0BwFJTYPOgSZobJ/w0fLl0cArdKy0YdCKoBIxa6J1RFURNQwILd4U+VpIAZ8i543nby5rJkt4WBnc9hZRV6TTBTl7nhvt8B3lmc9hdwj4mDk+zeLVpD3OBbrOQDK0E0/0sUzZZHdWSkvhaIT5YJ3DuiWkHpSEzGQVCEn8Y7RLWGVJ+Rjn5lSNoXaWnPaoWrmQo5EV/oGW9ylnTY6aykBVlefLsheSJRjBOotqQWPLHqQIeUnUqTANYG2ur1UWgDmtE7KkyCDnEqyhiIgnpzGaHNQZa7QxDbVWTNxAUxlUqqiK94wyGq0rcjKYbDEJRs0Yk3oqu82oHbG9+yR+tWDVLUqxPkJVmyhTyxAhRqxzrBE+KUAeeZnk9Ym5lupSjIG1kHfFj6+B4wXDr/8GP3fwkC8dL7n7zRdI1vPyH36N8O4t2vl+CXWwhFXiNM4h7mJsZr7sWCrxBu1WJ+wagx8ixAWT7JnqipeHGadHS47+6Wd5/zPX8Nrwle++zM7JKTn2VMBrVcN/sXebX7IVf715Ht1nOuu5uzpld9jFWHBWYxyQBkxhPLpKJqykJMyMmHCuNK0YWiODGpUTlTMYWxiXMdDUhoyXZG+lCH4lSd5Y3MjiGfAMMqmOjqQSOhucqtHGSRKmBkuPdRqlDAZ7dlaiM37oaYyhdubM01VHQ1CRbDIheVmTumLkpsTciTwla3wKxUtIkbWXIVxzBRWPyanHGkWrNFEVFhKyx5AiuvgXoQvDcc3aJpOUYzp9Ar+a45pzJLeB745BBYwWZp5ssXIwpjhAliZ+PcxaNwRaKywalCWGxOGdd1l96QvkaLl16Qqj65fpVx+kffZNXvmtz/Pm8iG//fZ9fPB0SrG9vcvhasFp1wGa6xfPc3f/ASaK19WHdi4wPzoiBrhUT/mbquH1vKT9mV/i2V/8BfqhY/7yq+Tf/wpXbjzBxl/7D7EP96g+/w3MtUsc/sSPYb/8dapYAjpcBbWEptxLnt8/fsjOuzd58qMfOysRjDiLCCspi5cpKEJQaCOpulZVRf6ZMNZxZdtTt3s4k7BtEJsQm2g2Iyr3kECr0qxqUEYS453N1JuaEPdQJNKgMfRiFl6kz85mFK4EYyRCactCiKAVfRcxVoCOFOV+l31AvJHWaXMpUVj7wmgU8ydVkqmrwuEobHOTSEmK634VMcaic42zjQyaTc18mYmDxY4sPq6oGJGTI+iKqtF0yxmL4z3ICwmUSV7k6Trh3AidK4xuiCFTWXBW4XMkHdzi5j/5PC+9+SbtAFs+s+Ub6hBok9y7IWd6JWFLgynMQwVRR2ySNHCrFUklLBGdJETHFM1EQLNEMyfS60wo++eNJ97Pzt0efvvLnL7gefjtzMJnqBSDH3ChpqkcgwqMTQ1ZUoidMphmg2a8wezcNtG2/F8/91vstQ3/u49+jN2dDWlkFWJxUuRwiz6S+oR2htHGDaa7H2K0dR3XjsnDKYvDV1nOvkYcDoTJX95CCX4xhBiJKqDJkoSbM0YnrBYW+tr6Q6mMtsUvEQmoqmxppJDaN0V5nLPCUAopoLVnrDUpnZCjIUSLJpGzRdsCJCqFeNIbUFYsdpSA/zkLq02XRk0he602IoVXZm3jI4EWWcswVc7kACEDHlXO5pwTOUn6tAry/GEIMkRUwoDaPXeDc3wM+8276AcvoWadpKX3PfglKfaE6Al39qgPZ2QfiTkTVUJn8bHLJQBEWQNVRdzapHrihjBpKhny5H4g7x/A3fvooyNUHzEqQxgYuiXHyzkn/YyHGvrtbW7MeurVjERmKiOmkkWrihuxtK4VliejMDrP7kdr6Le2GX76U+TP/DjVxSu03/9uAbQ1OovHbi7M3LiWUbogzLgStmW0K2BKYUo50FS09SZbWxd57ZXP8+pLv8YwzOm7FTlDHDqGfkFMnt//3PfIuiPkICC0UWdqAoCum9GvXpBhu9LYYlWhTRb1mbEYW9E0Nf2qIyXDWkE1DAPzhfjGxpjPghzqyoIv8l+lmFQNdatpKovF0rTnuHHlf8LNt79I5haZQAh9kcL2LFPxQDUap8Xqp3U11jiMNVROiQrNg02Kg9/+Fvff+j300FFnzUau2FhGmsWKIzXweui524sU3ufMkGA7eqrBUynFNpYtO2bStozqMZNmitscoSoHkw3Sxik82EMnGQjmmFGLjnx/j/7eHRZHD0kus8yReTdwvFhwuDyi6xcsUiSSsUqx+eRTnDQN6vYt0mmPz7n4oJXegff0EUAN3EgRlQMr1pnUclZYFJWtmF57hvGTz2HqEfF4n/mdO2f3hyB8uewhj/qVR7DPGjSTfxbaz1nIyToY7WwgXX6etG6lF1ornMrgQBlVAFnZQ7SRUBJQsLbT4BG4qFWWPalYo6gkpCStpVMVgE0Gl9bYUsNLgJXVBrsOzbByPhqtCXk468tk73Ioa6iMpTWW+9+M/O9//Q957LGnOV8p1M13eEo7/sHxfdqkaIA6i1TaZk3UmmihyorNCJs5M7GW2jo2sqPVhtpYrBa43ylFrS2bGFoU1hlq69C2YehPWT58hzxEvsEpbzaWK4NjRxuq3GBVKzVPseey0WOGgVi1tLvbqDDQlis4lHdxrSrM/LAsd/0ua+Cq7zl3GplpxU63JJOp0WhKzkLpYbWr2fzgB7n+Z3+W+vGnYDLGL5YcvvkG7779Or2t3sONzMWv+tET/jBB7z0QX3nf//+CwaeLp4cuElgpvIL4f+jEECDpnhC1HLoI3ctZXdK1QmmiC1tNF0815dHa4owrTEBzdhOJ50+UjTfBkAZSrlgMFzntW8iK81No7YlQtbNMrFXO2HWgxtk7Jc2C1gmlZPqhkGmhLib2MgGU16fK60xochLJXkyQo6QLmqoq16Qia8uiC4SQ8OkYH7P4kOgW32+zmgcenr5LDpm2as5Yj5U2aOvEZzhmDEtSKuER2ZOTGO774gOnyoRLnW15jyaCUPauwsQR+nEiliJl3TSvP1LOdH1PZS1NXdOr4Uy6tP7/dDSmc5b722PuLJaslOYj1rJRV3zQWh4oT9dn9oE+Kzpl2KpqpGmSab9W4rdxHOG5jQkXXcXYWnJTM95seP2tu3z+5i0cmVtbE67/6DVmcY5OM7qZwhmFiYk4rFBGNjRjZR2ugSebQGlL5WoU4hdhdEIFWfZKq0cbdfaCxpsGox05IVNYNDlbSLpMNiNaB4Y+sHe4oq5adndaKlUTfSQTip+KHOxKO0lJzQIQKpBGOylSL9IhrQ0helIxSM05EbNMYtd+M0qJZC94Ycn6riemjphg2QXQlm6xAm3o+gFjWkIYoe2EaqyZnRwRFnvEriN48ZBMMYnXg8moZIjtnIU/JKlM6xTatthmDMXDKaUkaZh+eMR2UevDS539916Qb/2x3qzUez4ra1bAMO8HjNVklwlWEf/yX+TBk9fRoWH6j//ftHfv89k6898tZkT0o4QhrVGDJmdzNllPKj16nlI0nzOK/7nepSbSPf9hrvxv/zesBo//vd+j+he/xtMKYW0tB3RuSSlQNT2uKq9TKSrrcZX4JyrF2cEstN5YroWs7ZQjvniTGSfTOGPBmfK9RgmVn+IDSsDoUH6WLjT8eHZZx/WTTMcXOTz9JpEBosEYinRDY40kiK/p9yI1iEWu3qCzgEHOiOw6qyy+nEjzqRC/tJQ0zsla10YTk8E48U1SOJlOJwXKAQGrEiZbMGMq7ajcCKugqTY4OnpASAPtaIpNNdX4MjpErN1Bq4Yw3KYPHX0YMDFQb+izQzDGiKubAvEXg3+VWVOoVbEjUGrN4gOVYnlsLp6nivDGG6h/8g+5/PST/OS1Ke9+4wscnZ4QQuI4JXZTZnZyAleu85bX3DmYs9s0zJYL+pNThghXLmxzMDvBnr9OtorZ/ASnE9e3a67rC2w9nGNXCXXzARtB8++121w+7wmLGRFYTWqOOnhneUoYIn09pjMwz5F+SCxXPegVrnjNiQeavIfWCmThioVEyoY1w2Wd7B0zIhVC7kNdOdDCZtUIG9paMbbXVgztGyVAXMoJjCHHhI4OqxuMrghxJYyeBMo0BN9hXITUIx4pVgZvKjDkQDaKkAes0bTGySzZKlQ25BzoYwckYgFyVCk9lCnvra6oNz9Bf/INgn94Fh/BGVwgchWxnTBkG7G2xWJR1tC2l1kt98hZM956mnsnX0RXE7Jx9P2clCvImrpusYifJsDQdaQYMXKh5YzL76mtlYCsxmjOz3vM8YqvJcvH/qNfRtUtJ6cn3Nrewdx8h42FZ3X4gJMY8SHS0jMZV2QT6EPC50hbNSz8QMia1WTMfrdktpyhqsA71vNHbeKv/uxP0p6bcPTOIU/84i9x/6U3ufT2Q/hbfx/31m28gu/euMjfe+1b/K9sxXNJ1oKqbUn2qzgYPI89/iSdL+EmJQRBKUNMDVlV5UQXtrkxodx34vWksqT9peQZ2YHsD0hREbyHVEkqohaAlpzKKSrJyBLiowihQhtDjkpYAjmjbCb6BGSsNkRf9mgkeKkzRuw+tCnhHZochKGXUybEzOA9MclgI6dYpPkao63I42IW6wttiMWDWCnxhhJT8uJT5YQdlJWlsiNSSHR9gGxYDDX9MMI0NZUb0/tAyisWq/t4v8QPPbPTgVFtcFaLDBAN0WBdRYyZsJxDFTExY5SjrhPz/i6fbwP6F38eGzUcL3DHxzx1+yEX7t7jtdjxgrPcso5sa2yEJkZhnJpAE6DuwXpfmHqeoDKVSpxHMR7VfI/AnY0N/GQHbE1G0/eeJ799wCfevM3JyTHnxw3jpw3nwxR9COqdPVptccZwod3E6RqsYpQzTHdRz36A+KmPEd96g2/ffJPfePX7mPGEt998k82ND6O1xheQQhI75fxzzQZXPvS/pNr9CAcLePt0xsm9BzR+xBPXfwHTPMXqzj/DcI8hil9dHKL43yVpfo3RWC0sG2cLG1EpFBpjhSkVglQXcv4W1ua6BlYSuGatEVlYOQOFKOBQSRQ82qqzxjzkWiTrKQmYqJX4/iklw93ki4G+7BVCaigKGrQAenkg5/I5DTEOZ/tKFFM2YXNlkT5qA+J9Kz5hknhfo7JF2xFBV8T9Fad//2/RvfUmMWumQVHHzFgbjLFAzVApDhdHmGDISpq8nCXUTfogARptRu6Te3cxP3hDgL2UybknEjjVhiMiLmfOa0dcHHPSzVmGngoZ+uxiqG/+gLRaoopaokKzIhc+0VocacTDEMugQFUTUBZMRagr9j79AdofeY7J8ojuxTuc73ryN7+L+umfIGiDJqyzJUpznKRmTKmwhaVecVafMXb7XlhzPq3Y238Fa38gtQpKEl5zQLvMqFYYI8ChQhh43kexO1FyTzjncNoShoixEthQ19s07YSuO2AY5sQUznolNxqRUsKHgA8R01SMmuJhXUAhawxaaWrXAhBzRypMUZW8WAd0c7SqUHFEU9fCNE+ObGKxlYiiiEP2PF0SvyGQc6LrwLkapRuGBXzuc1+i2d2E0YQuwOzwHhcfHvIhU/MvWHBQO6rpeTY3LuIzdMnQ0mNXIr9tZx3Kr7CzU9r9jou+4/254pnJDs25izz43pfZ7xeskKFDg2LsNcr3pK0R8ypw5+F99k8P6GOgzYoa0Maw9dg1lncfUOeMev9TXHj8fdz7H36FdHpMLsQQDcVt7lGHsQZq6sJ8bLBUJCqg0RVNPaH92X+byQc/wbC1i7MWtZzz8JUXYWe7AG+cAexSa+p1OVXOzUe9TMHppafJcoquewGl1utTGMmmDB7XPSFZlIG5MPcE95DXrdaMLmSgYAv1bx3WmWMsZ6KRwW+pV8QGrHxfsbAJPmKUw1UVJjsURkKglJI6CmGfOjeRHhBh7xmTSUpJIEns+dYbS3Z++uf48E/9JMvZkvndu/z2v/x1Xp2MRMqPRkXxAR+M4dLOJqvgSVHRxYGD2QmrtAKvqZTFpYSJGquM9Ekp8PTGmM9sbxGqKZPxhHN7cz788IB6dsC9uE+bFHu14gKG7dGEVI3xUeF1j1/N6LwA5/iBeY6YvQfM/v7/jZHRBIS1x3vWzRo2W/Pw3gsaZwQsHivDNCkahCwCiawrSQ2oGlwKTD78IZ78t/8CPXB46136EFFYxuNNPvRjn+H7R/cpYrVHi4L3AnuPANz3fk72uD85uAd/Gh584+uCpIQDrFrgtJJgDaWKPDdjyBILrdebvjA2xeNH/LyMFg8mq4V2WnQKqCQTj6RKM3dWeVPopAqtDdYmdLpHRSNfrjS2KTdjMR9WxY4k54FMJGcxx40lUjwnYZIJUaBMhZWY0ysMKckNkLOWVDbToM0GdXsOjS4Gr56hXxHTQPKrYtwsJqDKjAjRMMw9i5N71FYaqEo3WKNKUQohJJIfMM6BgeSPSXREk1FpYJg9xHczcrUFSlFVFauuK1K1Il177/pYVyGZM3lbzpmkS8Q67wFpymNXocdYQ9tU+CJLEIAQppXFNS0LZzGTTfSNK/wfH+zhe89WlXnf9oQNMpOoaYLiu6uey9stTaXpUNyad5yvNXe94jtv3ePiqOF+F1miWKo5o9OKh4uO32lrnr18gZ3zE8b0NNOnae05zPAQwgFoiZLPydD3He2oIYdMVTmShm41iI+KkwmcFHCyVlRZn8pY0DJBCzmhVI/WHnLG6/U0xkrRlpM0LBlSVuxOpygFoUsktTrbvJ0Wc/acItmviFGSUiWIwkhTW7rIjCL6JMWVgugjVeXIEbSTRj9ET0qevvccH3bs7GwQvGe57EGPODqV4jTHhBuPyXYC1RjrNLFbMp8tiL1nNTuh0pIeJIVIghQwpkLXgbz5EJs7nNE0zRirPSasAIezTg5Ta0oYzVoyWRCo9TpT/Ksf+Yc31vcsSjGuRSQW2lqCtUQC/tolZk8/AYcd1lW41NMkqFEkawkqU1etJHWhcbZG1N8BbQy+68j9kq35kknKXMyZae6AgBsWmK2K4c4x5tIFuhhwXaQeVdzfgyeuN0wmufhrJ5KRX8AYRPqVBUQyVsIOjJG/Gw1GW1kjKrAOf5CJz/qQt9JsZomnF9/PcAYOoiQB1WmDcRoDBcy8z+lyH1sZatOKf0tG2Ata0qVQCh8E8IsZVBbJuJCd1qBRgUxSAe3ymrsnz+9cJSFArsIog3UGdCj+kBaTDZoGrWqMabC6Fbmss7jU0/fHdMMMS4PVio3xJWocJmVcO0HbQDvaxC9Pmc0ORC4QA32AuhQMwFmhBI+YGu9l8qFV8d+TB6/3JhkiPAKUzeWrrG5co9623Hj3bW5UitE5C27C0bHn7UngUpjylhuRG0vTPkWyFbtmk67eIAJ2Ac9efZZkK5qQeHxjAx+XTB4u+Q+rKePLW1SLBbZbsdh/lzQfUMsVoOl0BZNNLqaE7hOHwTCvIgfLY07jwDJmrl35cerai2dY6IhxIKQFw/I+OQVcJeyylApAgeQ4phAISgBhkYiVwJEspUzMMqRSqXiZ6Qi9yPKtlibHYtBZF6ZfBjpUXlHZIjdLCZU91knCIFYVhk0qR4op7B2perWY1QJREuG1gDApVFhXYXRA4VBW3reUkyRFJw3KoO0I6yphrKQoQxZjSVmhVQtUjCeXSf0DUGMygcEH6vHjHB/fKQ28xlaueILGIgFs5UxOAZzFVAJwhV7CqmRQJtcgF6+aXBrKnEHf3aP6f/xDRvMD5lev44xhmYRp9q2vf4sfvPEWnzh/hVYZoq3p08CWMqyCpskClDyxucNJsDDKpNCxTc+xSQxGkeJAbFoW0XDn7ZtcvnGNq088xSsvfo/m1l3q0wF7sI+aLVk9cYG//Tv/jG/O9vmY3uJZNyEbQ2oMxkKwjtMhc/XZ57j2+GNiiYAwxJ//yf+Y8xeuMppsE7OhX+7z8Oa3ePf7v05Y3AKdCCmKFNkXpklane3z0gCvpJayqtRKxQJFiS+kH5DG2CIeZFm+V2tDGiRcSxoSdfbaUhKmlDEyKF4P6ihAvfiX5dJ4GawWFkRO63Ndl7oyM1oPWbMCldBWmHxaSRiKVhBCLHI5RRgUq6io6k0SGm0mxGVP7BfMjvYxqieEVWEWCms7BoUW2L2kvBoB2ZPcC9aBdhVZZcZj8WwdNVA3YJ59lg/+4i9TNxUxBXw2+H/6K/ze7/46/99lx/azH+ATn/gRtne2ST6QAqWQhdo6XNIoDSdHe9x79SVUzFxQhqtDZkct+ea77/K+v/w/5ZmPfJh+scTPZsxXJ+x8+Vf4qSsnHHVzrO0JepeHB5F6+zKjzrDZG+y4wtYOb1q68ztUzz5F9aOfwl+5wKAcZu82X3/5a2yfv8DDoyNeee0HfOjDH5C91mhWXS9sbxSLQROSpT8MdA++y8n8iDtv3WL/1pv08xU7F7cw3nP96ogntg3KyDowSgzvK23RgKWishVWj3HGkVmS6QoLzpQa2OG0wyhXQHk5H7V03qylajJ8F8lojgqSJeWBmEDlAUkizbzwxha7m54b5w+lFzERo2uMMYSwKH2LLgwdCeDTJcle41A6MXjxmJOgEwNZAjooAT8pl3PVCHNGOnaDrioyY5Q6D26HXO3gs6GPPcdvH7J8+232PvQU5z/5QQ5uP8B960Wa4xWTdgOqEQcXptxtzjOONcuUCKdz4jDIAGDoqX2kCdKbtSEz6gd0H7D9wHSxZOXgD9vMqzsVl568wni0xbm9Be+/lRm9PWcXhyv3Zg5R5JxUaCoMA54CxiKsb40DU8sgyViSjrC5K6EvquJELag3HfpbL/LK7JR/cPs13jg+4S9//MP83Kc+jp5ulLNJ9otcnjvlRAiBnCLtqAJieasl6EL88XKR0kqd5LTIo13lUKqWvlOLpZMu6yYm2dusKUzjGDBOgqnqupxN2TCEOcvlHJSiHU2F4aXEQzuXujYj6e85Z/ELj+LTWGj4AvQmCQLMiN+symJp1TYT6noLNx5h7ZTtrU2MGQqI7ovyQvzxUoau81RVhbGbKNVQuzG1benDQD0aE3Nkah5w/lOfYfTcM7SbU/bu3eP13/ocf/DmO9zfvszQr1jEBbOTQG0blNJ0xkLl0M0Yt2OprNhHLZRmHhKLrqN6+x7N8T3+yfFt7j95ievPPsuVZkQ+OsJ853WuxyWNV7z57muQIjvGMDaOOmY6Eidk+nv32fQBZx367Yesbs/QR8dQwL01CGMQ4KJC/PCdUrTKCCCrLS1GgsVKEBI7l6mvPslwdMKDm69y7/SI2eBRrubx01N2YwSr8cGf9TB6LTflEcD33p5azsHC6suCF5RivSh7NCFIjy1nb/kulTBZBgky1CrMMZNKcrisQeNKqB+FpZxE3q3XQJwWhY6ccboEeXA2INbKllC94iOM9GpaOcpcWGwClKxRkewmYrLic0xN5SyT7Y4nnn4fB7M5q9XA1oXrHDcto/EIFQJVNnKvKNje2OQIw2ArjFK4vufqlYvs+UAXPCFl6j4TGo1D7sPHR1M+uJhxt93kyr/155lcusDJcslv/fqvMfrGTR7kxPPKcLlq6frArX6fdHKfrOX+tqrCaEWlDD1C4kpkQj3imb/61/n+P/n7uMVMrs17Ok9Y3+sSyGqy1C4ANRqTFFrFMpwQFnu2FV5BNImF0eiq4Xvfeonbfcc77ZS0tQk5sWUNN7Jm97Fd/CBkKcow6NEiyuvF9V7uXqmphan5pwHx/YkBvh//pf8DFy+dY3bvVe5+9+/ij75NzoMsKi35bimmMzBA8SjtMZei0WgpDlXxxBP5uyQbqpKyWfZOYomKFiS7MOpUR2bFeJwYKX0mP1nmKH5hKRYgochXKUyAJBIPVby8JCDEYHVLzgZnDU45Ktdg9Riokbdc/K5i1nRDZjEc0vczeQ6liEGmKVaPsWZK7xNx6VnOHmBNRQ4Bh8EqJ2BA0kJZVQqtUqHYKrRNRD9DuUOSGzDrSXVdCZMmQ991xTcGZIFk2USEe1aaX8pkTq5fiFGacqWESVQkyYVI+ghp9oGuH5iOR7StIWU5kMbtiFE75qvJ8LFLI+w4c2trjN28wGe/+U2+uhTvFZsVpEiP4icnDc82mV4ZPn//lI+faznMjt3pmFsx8eaDh5BhPB6xuDfHaceVS+e59MFnOXzwkO/eh//0f/2fcePGVU7eeZmbL/0qD975AtHPhNFiFMGXqOsg0qJhiDhr5feNCec0WgUBhCqLzkJvDynIZnEGmsjERBspInTxYlRKS+S1QtZOCiV92ZILi9Jaw2opa9Yah9buTCqpCg1bgDIrsoyUSUpjjJi4o2E1LEk+4YMc5l3f45MjRssQNEcnK2KArhPfDZ8sJjjayQVUvYVf7NOfHKKilwZeZfphJYeP0mAkJbptLTFndBvI544I7pDkE5WzaGMxZko7+gBZV9RNW1KZeATovQfNUz/8zz9GP/7XbFZn+1uWIq1sbivEF2T4p/+MjRuXyP0Sc/stjol8ZuF5UrXsZ0XQCn/xOh//67+MJzGqR4QYqBpDNwRG1ZRXf+W3OPfbv0ID7CTNPHcsMBzefI2D//w/p0+B09ffZDN0aHOOqrF8/qvvcvcQfvpnPsH2lifmBcE/IKY9curLnkQBcwX4S2tQiWLsXjpPAevVGfihxOGdhPQcRlmSzlTOYTQ44ySZTUvmF1Emm0pB1iIxlPVUgFW9vpQRVBTvP2sK2BUAX4x2gSwMMBmk6NJ4BJQyiOQcwBDJaFthUkApiKoMDYzCRoNKLUpPqKsJKfTAKSksiKsVA5GYe7Rq6GeHKAImZlIcMNMNdAB0jVGO08Vd5v0JffJEU7Gxc43R5uOyyeeMda5IYx4VVmck0byWUZbiC1F7ChAqfC+K2XmajoiTCW/+1h9w20e+P2r4m5uJ1ipO05S/fZrYiJ7zXcfTXtEWg+NOJ+rKEYLHGkOTNZ331FqM0L9nYC8FxnXmwqTFuDFf3j/gt5dLmgQfTfBhNKkdsdw6x+54Sn7zDfaGU+YbjtWDfYLSdFXNRz/5H3DhwjlZU6IL4+H9V/jSF/5LmfoioJnSwixfm7rkJKANap3KrqSGVCJpQiEG/4oy5bWy70R/BhSmlIkEAWCS+DlpLT87piTrQ0eG4NDG4oqPJh5Zb+V8Lz00iUBADPkNjlhJsYp5HFtrfHgZ30ua8plsJBmq5rwkTY+ukZSc7SFlsikT+pQk0TmBa3c42H8JVw3yQpQh546cI0Of6BdzVt0K5yLd6oRuOKayNTHPMa5iurHBeLqLzobQzxlWC9xkq9xLgiwLI3Q91Mp0X/4a49sPUHbE+NW7fOm3/4B2a8wLn/ttnh9OuTRp+cBqxRNb5wiLGaa2uJ0dOtWQVwt0CuxuXCCqi0Qn0uClTXRbTxLiwCJ6nt/eJq0WfOUf/go3377FVuPY/PZ3+PGDE9TDBTJPztxcjnnx+ICV1ryWA4Or0UoRagHzcZa5AqoWZxvOgDRluPjUT7AxnZBywiSoJufZuvgBLjz2Sf7gv/9PGeaHZ++7gJ0CTqiyhowRe5K0bmQwha0gAQZgzuq+rk/iK6QLEJgCaGHYrCWOxspepLXCFWZMRpNi8TfLwn4TiWWR58coNijW4IyiWg/PjCr3A2epyCDshhSSJCqqVK7JlD5YnB2jcyanQLeaEXxPzO9wfBhYLeHcViMwXkllVgRi6GgqS0BhrKZxlhwrrK6o68SkbcSPtdLii7XqSC0kHTmZHzKEMWjo/MB43BKPe073DvlH3Skf+oW/TDsa850XvsGbr7+GsxVPPf0+ul6A7EwmRWkou37B2z94CZUzk/GIf+hq/rMPforKWp568jKPXRxzdOI5/+yzvPTCa1iVmLpj6qmEob77RcOV6afZ+MANHmzf49aLb/HUxoTw/meJH/s45uknJDBiYyr70mxBTI53Zsd87BOf4Ovf+S4HB/tnA5icM3XxPiWDdQqTjom3/1sslst1xaWrCnU1EZKm7w4gDTgT6DPY7KQWNUYGoVakpEkZhmiJKTOEBTGvkIMtFE/cIgnNXQGAJTCmkOHxUcLyjFnvmbKWtZLwK1vJgCyFAescIWSW/gr94YzdjRWkiGtA+6EMlAOu0mdnjirFT8rCMDValBXRq3LeyuDDKo2rike3Bq1aNGOUacCNMG5KZkKgYYgDSXtYrcj9TVKMaHrmrw5UF7Y49+/9BZq2JX7ok3RPv4///ovf5EtvvEqbFtyot3jtnZvgHBcvXWKhPbnKjKct57avsP/wAbVzbO1sY5ImLGe09YiPXb/O1m/+Pt+eHfLihuY/+Lmn+egv/BLj889x9+13eO3v/GOevbNH063QWCozIW+eIz//LPryNULXE1/6NuHWG7gI1kzANlDXZGtJRpFdTYgr3NYmyVh8zjx49w1Ofv03seMtfufcJX7j9n2GFNh+6y1+ZnaK2dqRez971mYiKatH+3OMxOgJYSXDgHU6ckhYV6xKVBKLpOTRGQYvnpwC8qfSBxlCRnpGnUsiu0hv/bAqPo8URrykAocoYX/DIH/GlM6SyLW2tHWNtZWAKRhcLQxCs1b2KAGFjTbyeo3D2YaMyJB9HEg5oFTDbLZEmZVgUMqS0VRuTF215GhkYJBX+Lgkxxmni4dYpwgh0C4j+q0xO7pm9ORj1Bs1o3O7fPjqRR68/Dr3b95mGRPHvufewz0GLYm7qR/wsdgtpUhKmbppWA4rxk0NXUfraky9w07o+NJGxcc/+gke//DHeOp957j79hH1j/00r//d/5on53Ou2IqtyuGHji4E+ram3bnGhekFAS5PD+hPHuJf+QGOwEkcCIXUY1E0StEUmWdrLU47dFXhXE1Vteh2Qr25Sb58AXvhIvXlK7z85S9z9e4dvn3/Ht9uNS8cvMPe4QOaquFvXJnwEx9+FjZGEohiJGV2DczGGH+Izbduc84GyimzDkeJSE8d46NQzbWTWopr9rgikYRFVzANbYx4YyIeo8ZYyIocih92Yd+mFLGmaM40JLVm+JkSBiKVfUiBnAeUEj9njeynxiiMFXxCaYPJCo0QAoyxOFuRk0VFR6U1qY9sbDZcu3qeaZOweovT4yWj1PNMWzFbeVIasB6SccyGQLh8nT/38/8W8/kCtQy8/YdfoDp5l7CaUQvUz2hl2eoVp9MpT/cr9mb7pB/5cbauX+D6hoFLV3jjZ3+el77/Ipszz5atuDc7xaPYMDVXbjzLhfd/nK0nnsbtXEHXLdr3LB/e5e2v/x5vvfRllO94+O2vE/uBNctTv+fPDPgkSgKVxErMsvYgNERnsKMJTdVSTSaMtrexu+fQm5vYyRaxdvyjz/8ur739Gs2zH2UYa777G/+c1fKEyjgev3KNP59/gjt/++/x7M/9LJc+8ZF/Dbi3/tsPM/tUqd3/NBC+PzHAh2kwzXm2n7rAZPcaL/zqf8zq+GW0imgti1MhzYkweQp4ojSqyHOjQianhbqKliJbrSc2RYaRCSQdiTlKoAAQkiC2KQsTL8RITHJjJCUILZSOhXLAG6Gzr4vWtfmpNY7KjHBqA+cmWDNB65aMZpkCKXuGVUdOJ6QgceYnJwPWOuo6kENDu3kOnMbYltPjI2K8x7Ba0lSGqtycqkg/jdIiNSaKSX9UYJJI5lQPeY5yhyi3pFKAMgxBMbr8JKaZMpQwhZTWrDyQBld+36zX60TYLjGKLM8Xn8A10GmNTCN0WVhnKS5IHXV0MmPc1GyMRyxVpq0q6mZKN9riN++8y+nrdwkpo827JN/T9fJcIQrjLaXMK4envHx3xdZ4xMx7vninJ6SEsYa90xmpeCMu5wtGkynj0ZTTRccffOHrdD5wbmeb/0RZsmo4ZJeTzZ/jyL+GjYdUylAZQ8xapm5KvMRUMXBXpRkwlZEmQOkCvgmYUOkKMUE2ZUsua1Vn2RQ0qJSIBCSRWK6RZkBrQx8WKF2hVMXpaaZuIllFQhwEwFZWDL4xZN/jQzxbA8HHs0TM1WrAx0AgIYzjiLKGEKFiisoKGwK9nrJceiprMU4xbUcMyeIjMD/Gzw6hNKY+yIQQv6KtDXGIVM7Q1CMG30GT4doR+vwhKmlq56hNi8ktrX2epn0S6xx1U6NNAevhPZT1/zEr0H8V5Sv5iOU75SOlTPCezg8c68iptpibr+Nufp+ezCtVw99SM5YpcDXDkwNEEg/vKn5hUnP9mac4fHCAtuBqMZA93ltibc3nNdw3FA/JxBUiP7bq6b/6hQJoK55Cc1dNmSXoQ+Tg1PPUB36Zzc1tfOiYn97j4f1v8ODeP8fH+dkvo0sAgkyHpdCXAUZCZWn+jJYQHmNKAIhRNM4Is1nLVJiz61lkG6bsfoWdp82aXCvm0CEVzx4llPzIIJMgJY2qhOjIdM8U81/QhZ0swUeyL0hAxfpd0kqTy0QwJ9AkTLJM9Hk23DlC9pgUcHSk4T7oJR6PUhOScbg0ImMJg6eta2q3K0bxRuOsI/jAaHyebnXI6fIufejIyuKaLXJ1HV3vCpvbWFzdMqzmJN4L5hXbtjIbXw80cmGCyfoSMBUSKQYWccGt8ZQYFK9XDX84BH6pb/ho9tRV4CgF5h4+EiLX4kDFI38X23mS1igl3jAexdA43iDwwqrHOsvLXeRCVUOCfRzfqkd0ObPqPU8lzfG44Z7KxMkWy+mEt/ZfZvt4zF5aEq1h5mpCgq4LGGslzbxpcJX4d2gt0gqtIiqDxbJGdrUxGCvyfvEFUu+RgMkkPBVpJsV6IiUZQvkAKXW4qkJlCUQa+o7KGarS+GYSWjdkbbl/UnPjypPk4U0UkcFDLIxzrR1pzQLU4LQkkqYkXrvRK4zbFPuHTiRQI1NjGDNuz+OqEcMww3crDD2nJ2+DCoXhKuwGjRTHptokJQ8FCMjKEIMM5oasCUkJiJQDQ1gRlGIVjkmpAjOwubPLud3HsW5TinediMGjgoBGUq+IVC1pGYwRIL5zm/F0B4Pjzxr4g3/5OVZx4C96z27nUZeewaWep0cTVLxAzg6VE2bIGJMJlYOFJ/mBXNKsZ/OISoqRbeH2AZoHPN5MeLYaWPzW55kEw8bxEaOkuZtWNF1kKzpu34VLTz3F4c03uR8ig6uoVCZbTTSKaDMHJlO1lZz9uey6ObPqVygSy+WM777wPR7cucvx4QHTVlP1I9KwV4aEuTQnUg7LcEcAdF3YnQrx+9HGQDT4LCxSOfPVGbtAJV2aogjRPkLqc5JwbA1hSKhczkUtMt263sQS8Z2EoyilwCisLUMTFSUoBAGrYywJ3FExJPFmTNFgnMO5KVqLisJHcffNsUP5GTF5dLZ0fmC1kv3Q6JbKBryPTCYttaoEcFYLejKVaRmpwMg5xnWDJjNua1xV49oJwl2cM6QBNZKhq9JiEVPrxGrW4YGj4znNwT5TZ3jmkz/K669+j7fefBPjDLPTE8ajDfb2HoiRvlZYWzGdbLKxvcNqWPL6y98jkzk+nXOsFizygDaaybTBGGhC5OT+Q1wwdCtNyFvC2l85puoc7XMX+Lsv/RG/+sYP+PMf/gT/yf/sr6He97T4tMWE9T1ZJznj+p57B3eYqcSNzR2uX3+CcTsqrgmy96Qo/rwZmM0Hou9QuZPBpgKKDY74rEcwmhhFxZMjRCN7eJ/EvD2T5YzMSPOrKSdCSdctEux1Lbf20DRl4qaMAKISLpHOehCloTJW0hA7ZLifEkZFyAK2dFGz7CM6D4R1WxIyKYh1RUoyQBcZ5rpmVMXrO4kHrZGW0pga586T9DbWjaGeEFVVgMqelBbE1TFZ3cfoQI5rEN2iYkBj0UrzcH/Fbj1mYiO6jZjZAx52x3Q7O+RzV3i46MlD5J39Y3zW5GaTd9+5w2J2QjUecWH3HLffvonPmWeefT+LVc/JwT1hKf6Fv8iVj3yAL7/+fS6YOZebI/rGMXtwiwuPbfLKY9t89TuaX+wrWj0hP/U+zF/9i3BuF//aTdQ77zA8dZ28PYbXXie6MYxacPpsAK6dJQQHtcNUDWHoWS6XDCGQmhH3NsZcuP4YDx/c42g5MCwWjLQp80eR8osSRiOubGJzE6L0QClmXDkzUsol1bnUAykKs7DYGvV9T0qhzBSzgMJR7BjWLDutLMZYSc/UGms0TV3jfWTwS8ixsIEFxKurmrppRPFSpNCxEB1Q4qmolELpgdwPxCQse2EpV8RYEdIgbGM7ImdbgCXDsgvYWmFdizOWVbek9wecLHqUTog1VhIlmFIYoxm6TOsaVAX5EFpVYTvP4uiIB3fvUTnH0C2IynDveMWQLfNesX1hA2cc83RCXVecP3eB5WoOaLa2ao5PT6jqEalf4ZRhGQzDScdy1LBxfsL15y9jRpbHH6s4HTTpfU9z/+vf4DqJZb8kBg+bF/jwp/8dtq5+gDgZ4xdHdPv3mC/uc3rzVfTBPaqTPdpqJOzJpIV0ozXaWdRojN3eob52Dff4DerLl4kbG7idHUKILBYn7N26z+++/iJLH3hnMuZ7b+4xmx0LGGcM37z5Bp9aLMi1QxtRscj+LyQhIW3YswGGFKKqEJdkP0MDMZODKBOtLXuPonjLluEYCpMtKsoAzFWarAZIwuRTVqakYZAkkYAMqpRSBB/PWOlaRQGlpGUQbU4qA7NUiCjKsEZRdOmJlXYYZalshdMNla3RSQsZpQTJqCy9Sm0cpu5YPpk53T9gdbxg87GnGU4z73QDD04OxbIqZIiegcxGSjS7S04OH5CzYms0xV+5yNH9d1kNPVbVkubNQOMT88MZV9sR+43hks1MJ5Y7r36Tmd3g0jOfot45zwdXns0UeZAXXK3HfOgzv8DFX/iLVOd2UQfHcPcd1Dv3yMcd02jYevrTnNvY5dUv/waH3/mq+P2XinkN8BmKGqmqsXXNaDyh2d7Ebm3jdnax21vY6Ri3McZOp6LgszU+CqFqMVty69Ytvn24z2y6wfsuXuDLn/0sy/kBiciQB15+8zUg8tc++EkWe/vCyFvjdmdt8R8H+tbYy1o98l4/yH+zjz8xwJcSpBDxoWc+VKhzP053+ApKeXQShpKxWbThSSSyOslGrZLI4LQGlJguoxQhyC+WikwmZkXImUDx2KJciCRgS8zvKczXMo6zrhV8qKjrQF0ZMHIwaG2xVtIK22ZC6yboXGF1Q4iKvs8c9/vE5Ak+nBlIk4SFmJMiqwatt6jqbUYTR049g19xcrQAenQ5NBqTGFUWS0XUCa0SrgqF0asIeIx1VKrGmkDOc5JaEPMRqvIoJUxDHy3jdkplNvG9ot2smUwn7N+6d9by/o9+lEnj2idCDrG1nPc9Mt3ys1RZbGRYdh0pBs7tbLGzs83OxpTaWZGELlf0iwUqyOG1sb3L7OSU6UbN+d3z3L93n8M+ga6Y9dBubBJyxpbmc6JgQqYfBhaLJZ/+9E/wUz/zc3zpD/+Az//eb8nk3Bj+wf/rv+LO/oyHd95i7+iEn3hW84mnhcHiUybGgYTIO3IoLDk1CAhjDEPqUVnad12o9+IBJUws8fLxZxOUpEowAQmDpACt+hUlgUUYWl7AHaNGoHd5/d0bXLtwm1E7J4ZQgmWkCNRGsVgFYs5UlaFyDjCgDCk7+k6jiMQ4UJkaayVJSzPBqBGV1minUU4BFm0yLZrsalanC6GMp0Bc9QU0G3CFMdhU4k8yIA2nH1boCvSVI9g+IGuFcw5yBdRYfZm2/hTKjJhMJzhnUDlL2AZrv4n3QHtlTZHX6+y9m9caMH7PTrZesaXojzkRc+Kec7wxbbgaKhbZMlOKXxkbvruy9MAbCt5RNfdzRPmep7/5IhuvvE5yIlvogicpx+XpLt+ZH/H9c5e4OwwsFzOSztzXmseCDAbEVU7xVtXwL8OSYMegFIvFkhe//UesVktOTx8y9Ev6bo7KO5y75HFN9+j1ZzkgtZZ7vTaFCl9wGKMENEbrM+ZfSoXZkhK+mH8bwxnTSmddGpjMEKQxzKSzJE+lxZesMhPOb72fg9PvkbP4E2UlSds5SZPRRY91MkzIUUzBc5ChiC5Fdyz+ncFDjoZK1WzYEVt2yoad0KgaGwYwmZgUJmt87sBt4tpLJJXpFydgE/18zrjdoalbYR1UNUpJilY12SbGjv29mxx3C6JJ6KahnV6lmVwRznFKNJubUtTEKOmgyPQiFh/IVGQ6j6QHwkSjTFXFzDxBDIT777D1RM38Z57j6aXnGVODDzxIHSs0//44sOEzDVMq51hVm6yCQuuaoCK2thjr6IU3wDL2DLub/GQ2HPfwa9/4GteXA1vqgHPAX2tq+hhwznHURe5sT9h3DtopW9tX2Nh/ie/rBb+ZPWHrPEtT853v/T6102AslRsxmUyJ/QGL3mN0j7ZZiq+UCGE4s2AwWmOLRI0ScmCswaiqTPlTsbuQxkcb8cQ7m0CTMcWzRaOpm4qcM1FZsJCUGMBnldnZeZzLT/w8917//xBiR7KJrAa8KgBrjBAzOoDFSDKd1uicMWFM1pFqfA49XKSuJxg9wvsF3fIBJ8cHaNeg3DVGrYRuOCuMZZWEZVpVrQTU6Bp0RWVbfCielRiSDwx+htaKPixY5gU6tASj8fTEuAc6UNUVjRujdQMYqtE27XSb/eNZARoKG1HLWko5kbsOf3DAb737AijLuS7wiRPPRE2xqwXd1PHZg3dY2JoqgQ89fQykpBicJdcVC9ewSp5OBbbnI2xj8DmwPF2y61p+WbdcWm6RouGJ+29xW694WFe87cSD7bFZYCfWJKNY5jkf+smf5NbRIYcHxwxWU6kkxZgzJBMYdnbYvXAFH0KxixA7hO99/fPEGFgF+Mrv/x5HD9/leLbk6oUJH7yu0cnhXGGjG1EVqLz2wCzyxggkTcyRmIoCQilSNmSliYgfmbO2BF8kURwUGwKNLiwCCwacUhgkeVTZDNFQNZnt0S6hX7LKM5GGq1RSl4sxeoZ+JZ5Wja2FqacUOdcoPca5UWlaDCpGhn6GUUeQvVizeKCy0uAHQ+wUYYi0jZxzqiTzqajAWdpRS1xqNnYqYojsTsVX2thKjNxHIxIQVMeKUw78MYswIyZFm1sujt7P9mOf5lq/zzd+8zfIoxG6dnwyNlzRm3z86pjt1ZJnPvA8QwpkLYOsECLeS+p6HCQFvNt/m0jgRz7wJCFrYtSMnOPi9gb7bw/c+trX8e9/P7gdpk5ThTlHecTXX9xgmTxbveGZdoc/evdt/tvvv8jce756csj/4vHLTE2Rm/YrstElFdai+4Fbxw+oty/STM6xe27J1RtPFN+5TIiBtd0DwGqVGYYgdgAlz9IY2au0ymgDzqYCRiiygRwS3q8bnXRmh8HabqAMuhRJxBRKBluyqaUC/CqsCWfPp9DonIjFQmXwsqf0yhcbISALEG10pq1bFJbVStGthBkTZ1GacmtJIWEGCUrLUUO2GNegbSW+xW5C5cZoO0LrBmOs8AtMJqYenxao1T45LVEmlCGV1AEKg89dSYUHtBgyCNFBcziqefm77/KXv/k17GMXCfcOSO4i451LzL7zXYYwoPUudjRmWre4uuLSlSv03QZV3XDp0mWaUQvKcOHSVWzlWMwv4LRmtOHodMfFG1fZf/UFwv1TDl57g6Ydk/QIrxfMdMKYMXp6nvRTnyTdeZf4m7/LsV7x3Ubz6uD52FNXeLJfoecDqqnJKpK0QhmHbkewWqLGI6K1LBcn5JAxyrLYHHO8s83O1oTTVcfSr+iXnnGxTqAMK9fDvHXdjlJ0KxlWGi17nfdegH8N3ovHoVJQWyssvSz7YYyRlDXOQnaPrCbWac2mfK5yDcbJcLSuSyCTVihVl/qDUj8LyJ2SKDn6weN9Yu2DKi2uFcaZGVE3I5x1VE0rag9do1TNfHGItj2r1QnNZIk2mn4xJzAnDwm5WcDYLEnPpsE6yETpOSotTMSS4H7h9DLT13q60xNe+PwXMB95GpyDZcft196ij4FmPMLExKUr13F1hULqhxDBOoPupdaS2sMUlVqLzuKLmmNCZ0uDo9U1k6YmGhgOB4btDd72A5cjrND4esKPfOin2H7m/XTDnONv/T6zbs6Jg5gsabQFZKarU+p2hGpH1O2E5uJ52itXGF2+Sr27i2ocSmv6YcF8ccjqZJ/+rdfxcSAQOX77LncP93nq+ef42t4Bl649xra/yN07t+hXK+4cHeBXK5zeLsw9zpRKa0YfiOTWew8oupX0D7IGkrDXTRk7JCXEjALmWKchZSKamBXLY0V3Kj6x443M7hVThlSJGGUfrK0tFmwCBBqtZXCw9uLL8j4YbYrqT2Aca0Ux5ozDqBqnRD3mjKNWFqWLjJmE0+v7x2MI5H6JJqOTKG50NaaqOh7bvMKvfe67/JWf+bO88+abfPGzn2XpV0xHIypX40KkSYlGW0Y588LtO3z1K1/nmaef4TDcZ3W8z3LkqC49RkR85JsY0Ql2bY26d8B4vmC+d8zdu/tc371E72EcB6bdkqfcCOZHbOmKpz7waa7/4p9Du0z+4m/Bm29w8PCYu6uevvgojhaZ8WjEjcee4+03XiSSCQqqqmE02Wa0tc30/HkmF88zuXiBamuLamOKHY/BCUs8hI5h6OjCQPQevzxh6DyLxYKD+/tMx5t863vfYt8veeLGB7j9zlucu3KebjXi9PiI1XxBzoHb9x9y8peus9cYniw9TP5jPfEfZ++9t0f+UyDw/ckBvq997u8Q/UOG5UPy8ADDAVbPCwtCJn82mTVRtXi6lF9Pa6HfqkwIuaSpZnzMhUkmLKp1jLMpm/naPFysvBG6aTGzrEwlIKI2aF2hleO3vxj58U/usjPJGCVfF9mvlWY6Q+giQ1jR+xNSjmhlZKIfM5UbizeVtsV3qsZph0+Z7nTg8PQ+vl+ACmQiKThcJVp2TSb1AXLEWo8qrzp7UE4at3hm7LlkSEtiPsTVYnwdE0gqnGXDbVK3T1GNr2LqmktXrnA6XxBjkolW8ZswBklX1ILgp3IYFibxmUnoOhBAF6BGNqVMXg/rlTrDaxQwhMDewSEbG1u0zhV5ghy6SinquqHvOz74/POc392VJMbKcfPmO+wfHjDvOkJfQC9g0XekICCfsMRGnLtwlVdef4PeC3ujbkV6qbRmsfwSJt3niRs1Tz4e2NoKHOWAi4bQiwmvSwrWlFsnzYCzmiEkghJDepG7KWIQXzWUMCFj1kQlCaLWCKU/5DJ51JqtpmZ/5jEmM27kIoWocZUih1OmE8t33h64ezhne+ehyN2M+HmkIJPD3pcpY5UZtRZna6xt0XlKDg2TcUWdapyuaKoWqxxUGr+aoXMipIRFPH36EHDZkZYLkh8IS08IPf3Sn7HIlF57f0SslWsjRuwJdo5Ru4fkOmBshUaxWigm9RXa+sep2stYVzOZTqkqx6pbCdOyNO9Kvwfky+s19d5pxPoLpWA/+/faa6A8SLYArE50bcX/ZQLTXth1nky6cZGPn3ueb3z1KwxZsbd7DqVr5ocP+G/+xb/A+4FVlBTZlCMhBrEFBdrif4CW5w2TEZ9dDcyDGMOnnDiNK1COC2VaFlPgtR/8HsvVQ+pGSRpkGxmNIs2ow1WyvxhTfsbZ75vpg0gsVRkbqbXksdxb4tMnhWJS6tFwQx5eTFnL/qhKcI4qgR5a5PQpSFpXyJ7RufPc84kYM/0gJuA5J0p3IKDXEMvwJBNWqUi8IEZDax0bdc1I12y3m4xMxUjXmCTNfU6KwXthGftASlCPJ6yCokYzeI/vTplWLcSKZtzgmgneZ7Su0W6EioZIha0sR/tvcZoOGTRoN6KZPoYbXcPahhQ8461NmvGEoV+SzkZeZdhTJDK5rKdU/LuUSo+YamVYIb9g4Pbr7xLvvkPz+A5Vl+ljzddXnr3TEw5WK7qxGOJ7KhbK8PSP/hTj7UuEHOlWK8bOkIJHI6nS3/78b9Asj0hDwIbM5pVt/p+1pYqZKmuqmNAh0qXEt1TmuFU86AfajZb9zS3+izxw7BNJKXaUwSvNq2/9LpkFGkl7s1aY3RqPU5Y8xLLWRAq3Np7PIeKsmMUvYynsQ0IbSWK0ugKKAXzxZrEKIIi3a06EPKBTxlpHxLNmawlTOWCdwYeET5EUHUeLGYM/IqtMpQ0rHxk3LRaNVYqmElDHUFHrMVW1zWhyg1XYZbKxy2L+DkcH76LUAkzGWEdMlrzUVKOInTjIVkzzVUaZlpgkxTuEgRA09bBidnoqZ7LVpFyRcsKrARUMQ/R0ZqDz9wirRA6Jxnim9QUubjxObSeolFH1iJ3rz3G67Fku1ynDZzMu3ltpRSzfbqac/7Of4fuvv8P5r3+fC7M5Shu+tjnl/3T0A+q64dz2FstVwGeFpKAHapNoTEKpSCBgasRDxjm+9+ZtnFZ8zD7GhVnGtptcYptvm8T/WfdcvHyVn7i74kfiMXWyaDfG1BOuXH+Ma48/wWz/2wyyqRCzx1lDsAl96SrnH3+cbrEokslMioG3v/1rrBb7NO2Ip3Z61MZATJraLNAIgw40OUpjJ/6eCHhCAYmVDIkqUwzriydrUpmYFa2zkIKcw0YAQlQZfKiMtXJdrdMiO7IiYTJW4ZwiDl4aHt+jdcuyj5hijqxI4pmcJVXcmApjG4IZIx2uQWVNCCvi4hSlerRKWJPxPjAMQHJMW4e1lsF3JciswtmGsRIWDl7O2c1JQwqJpHoJHzEZncHVjQBMlSSn9wycxHssGJj1C+ZqycJnghee0eVJxe7rW/DiTZ6+8y527z5q5Rn6OWM1YXZ8yLXhiBtWMXMKS4t3ipWWAFmlE7U2KD0iZFEiOJMJyuCjBJlsDpFnXvwBb8ae7/7z/4HPfPmbTKYjhm7JORyPO8O5ags1U4x9RUqKP7z1FvXGBtsbm8y7gaQVmiChYGhyVQGJ5DMPf/A6X7j5DubiJdrKMG5r+r4r9Ws+kzmubRNCkG04lBAWU3xTdaFIi3UMwkiPELXUK6aoeJwprBSd0DrhjMYqaYKUeWRCH3OhgWapd2OGyklv4AqDbi3jVgZiLRK1tfWKNNIi944+ngXXdYMmhm2slfRx24zIusKMKlzVonWNsTVaV2VQHCF5cu6IYUmIDyGuyF580iTET8l6ipKsS/JyLdLaA1dJYI7VuKxgSIQUmA4N505aLly4we9ecvzTL73AJ++ek/T6Z29QV4lnn76GHwYmO5scbI8Jg2d3d0q3PCGFjmwhJ8/xyQNWS49RFk/i9u3XyX7gvIlc3d1m++IW3/5u4vVbgY+99lXM9hYvv6W5+9pNPpgr2uk50mNX0Xduk1/+Psvtmn+0NebvfP2bHA4dn750kf/yyeeo1ArdVCircE2Nsg6lK0xbo9oRyjmGe/fljFKWbjzh0lNPg4scHR+xuvk6fVgzdyV1U9LeC2uz1Jpaa6pKaiJrbFl/6ZHCIkq/F1MqzMp1uJ1i1NZFvaMKCzVhrD6TXioFMfcEXyR8wBDMGk/GVQVgyRbfFa/cuPYMNhgzlvvWNGhtqOqRAIdWE0KP1pnl8pT54oBEkPPXaGL0aFtjXU3KS8CQAuioJAk5FTkpCnSCNBAGATJTzpAkOGukW54/eZKd7nGa5+F46x63X36R/vW3Ma5mVzmuZc2DTjHte7oQODaBhV8SmjEnKdEFjxuW+MUMWzcc7Z1wspjT2hM22hYdE42rqVwih4Hl4Hj9lZs0OxuiKoorbr/+Iovs6UxkljPPPv1RNp9+nuHkPqcvfIWXRpZ/eHib7+7fp4+BJybb/NWrT3LjF/8KowsXsNMaZRJ51RGOTzi4dQv17juYSkGlaUcy/Iquhqb48CfN3tEBDtj3iVn0XGwnXH3sSS5cuc63v/ZlFvMFYTVQF+DMOUlI9t6XGt8U9Zv4ZVPUOuIySjkPZTOzhaV8FuRU6vu1L6RRmdGFhLpQ9iIV0KbYl+WCRygl6h9tsNpilITZKG1xpqIxjTzWGIykYAFBAiZLt65RVAZIQRLWlTgYJp8Jg0bngHENOSuUqSVwPmWcFhWITxO++EdLoj1PTpoH9w/of/A6l77zNj/fOZ5hh1VKdDFxmD39Ysm79MxSz3R3G90d8uaL3+DKxcu45Ln74A79ux0YSc3NUQBQ4yomOxt80iu+8toLtJe2qZ64zvmdHfa//Hs0h3fZ0ldY6SkXsOxeuEq4+wC1OKS79TZfPHjAl3a2ecPX3Ds4ZLWcc66p+DOu4ReWDdMr78ftbLB15QLtjetMtrcx45qoFclqYs6krJiHgXiwJA89OQdCqc+10UQU3XxFP/QcPNgjR1guZ7y5dx/VjDHOsXf7Ls9/5KNsjKeEmPjBK69w87UXWXUdb757m8s3nkCV/viHwL38HpjvEa2vlJx/GvDenwLAd+etL9At33q0uAxkFQviDOSM0sX/DlAqiPdeobBqraiKzEJpobcqxFy+riXJzSiJfHZOgDyDsGZq484aYG01IXBG4ScrjG3QqsXpOX5lUKES2Y3J9F1A64AGARfRpKyp63Mk77B1xTBUTKctSnn6YUFWA0M8ZdmvsCoQkyd1NURJwIoxU9eGNBiaWjNxEY2iyxlnhbmItqTc44xBk0SmbHuwAz52nKzuYerMpjKFX2Rp3Iix2cK4q5it57DtOS5evYquHEf3DjC2sDgECsQWgK9QqVgn5crmU1gbUDYrMZMVT8NHcstcuKRnIEz5STFl2qYmxCBNNVK4t+2IP/cLf4G33nyDBw8OefHF77NcrQgx0ktV/UMMrzVItLG1xeUrV9je3sVYK5LXIYifRQhMplOOjg5JMVCNei6O52i9EA+6BO/OElpLY5ajePqs6a1azmkwimFQDFHhCuCWvcLkFkUgm1A8yyTxNEe5JmSZ4KWITIDDQO8zKuZiCC4gW1yAweFVxqdMQJJHNZVgS1qTbaJtHeNs0VZRtxUkRW03aMx5rLkMgwW/IqeeNPTFXxBSGgg+oFwqB/oIVCD1gTgZqLSjn50Q+5X4eRTD1LatcFZSUpPWUADHWEXy1gH60pLcgLYNKRmir5jWT+PsJ6jbp7BuzM7ueerakXNiuVg88iTU67ic92xEZQdbrxlpDPMZvV0o72uqe/lceXzKmWzEwPi4ddzZHNEtl6z8gubuLfq336TvekBxeHAfYmYYejpdPDeVIqmSvJkzXok0e+k9xtkzQ+aHx0ecjkaMtnY4fLgnBaKp2GyEfWGK1OfK9TmoJdpIYveabZhVljWgJKBH0lDWALoq6X8FPM8Is0/ls6SqMvZ4zz1FkZgUM91cCoRSNJwxsEJJys6qeEVmtNPUbgPfmzKJLp4uWZpyleMZs0+mg46pG9HQstmO2Kolvl5nRfZJmCohgg7oqilSSIfKDqUbmsoQs6VqRvSrE3wIuDCndQ22GUvIi61RyoKuaKoGssG0U1xTsffge9w7eJc+wWiyQzW5gWmu0dRbpBSYbF5itH2eFAeGfiBhyagiuxOmYSrA3tp7Ryl1xiCL6+uHIqcAIbKXDZ99dR8/P8X3kVVKrGJi5TNDjJRMZGFuWUN1/Q7NbEEzGZNy5M6DGZOqprKGxWLFS/cPOZ2fkihpkd4zbmpG1shQJ0sKdJ2MmC+cnJAmgasXrjOLgYOYSviDgKdGaYZ+n8Ah1hi6niLdln2ydgYp+k1hGUuQi0oSNDD4iLFOmGYRUKFIuhVarVBFQm4KamWtRVNSdfU6oTTiYi/hyDFSNw0KGRSFFNDWELoTlOoxytLYipgUIzsl+kNqXeFw6Gxp6x1GzTZOb0F2RH/C7Phdjk/vYpqPcnDyCsYmlJOkwxASUUVcrYnJY2xbHCaSMCF0JPqBkCQEKXnPOCyJPgAO1ADaEAj0bmC2mnF47w8ZwgJnDTopbG65OLrAZnsNZ6fkVKHaDc49+SGCaTg5OC570ZoQItdKSKEK3TS4SctzVctL++/yyt03+TNoogIbI2lxhIuRDlCTFmdqcpLpe4sMJI3VBJ1wtUUrODw+pukHRkSm2vD/Y+7Pgm3bzvs+7DfaOefqdnv67rYALoCLliBISgQpyRQlJZZlWZXESVWUqsiuVCUVVyp5yGue8uQ4dvIQl1OVsiNLKSmRSVaZjSlRNEUSIAmiv7i4fXfuPd3uVzOb0eXhm2ufC0h+CfSQhdp3L+x99t6rGXOM7/t//2bielLsUasO1Sx4tjqkUSdMP/MlTnmNcrxErMYDXaUwlefZ55/n29/9LsHJZGXjHE+mNb8bl7yp4eqwYVJX8txG9mtoTyj9Gav1Y7TRY1MSycrI0CuNslu13UvST3jTSrhFzoWhyFBN52268dichk5+r5EFuzUKFzNPqSEk6EK+3vdRBpJDIY6A4FAS1WSDNTVDyDRuIumipmLaTMlJrNa11oS+I7RrcjqBLLXYEKLYdSBBL3kclOrs2XFzZq5itV4JN98gw1jlCUVjOktjDJO5ZmYNbmLQ1uOthL0451BEBjWwUueclxNO4pJO91CgG+SMsJUhDhnvCvuP59x6dEFJHQZ44eAOQxJfSd32fDR0eD0lJ7BDgNiyUXKWOBS2FKxKqNyRtSXSU2eR5GVV8MXi/YQbu9eYYQi1ploqJpuAm02JexOqeg+3u4e9uo/+zvf46N33eKwiP/ezv4CqKt589VVyHNORa8VQIpWqePzmG7z2L36fs7NTXvzK51g/XrEzn/Dwycj+1aNHIWNo1jiQ0UZBEEBPlW0gEjD6nCrG+4bLXsEZhdUjg10BVoZ/JUuQ2HaYHFMhFqlzzWgWb0fpOKiRhTMOvrP4rZELxm0tVjRKeZR2iC2Fp9gFtprjqx30I1gOgdmNL2JMpqgEDJTQk3NHpiPkC0poiXGDNUEGcuNwzchoH60hxfGcEvxP+qRYqJXD+2q08bAoZclhIHeFUhLWQ0mRg+WETz54Cffclyg7cz7xjOGjJw94fPqE+bXrPJnv8dHrr1I1C2qfmc/2qPDszSpcThzs7jKrKlzluXnjGXLQ6BJ48fk7bIaeg1qGd9dv3yCExN5+w/7BPv/o7WMeL+9j0vsMJ4Gvrh1fWdxF7+7BvVvw6D7FW96+ccivv/M2pzmTlOH7T4555+7AQeXAG+ysgcpT0BRlKLpCOUsxhqEVT7mi4LGyFO2YNVOe/8Qnee3Dd+hqxxY10UiTmEuWYBuVyQiDOEbx3g5DHC1qt7LtcRAdRYlTsjCitn7sXd+TooB6SomCwPkgicgjm3vrbZvT9jEkrHVjoEqDMhVGT/F+B6Md3tfEOJDHNNsh9PThlJiCyMGVAHEC+mwHqeIXaHWFLgpfNWI11fek0MpZnRAfaCUASYoCTIu1SpLQN6VGgZEEJE36q5y/dRW9d4CbVaiX7vLyJ79CDgq7XOPOTokxcitnXhoSVduy8ZGNKyyVYqkKq75nce06F0+OKM5BjuQhMBkie30gJ7gSB/rJgr9TEhd/9HVe/Z5D7U5RfU93fEx6vOSw3iNieP7WSzx/75Pw6IjVu6/xJ2rg//DD7/LqxbkAsMBbqyWP1hf8b1Vh9/33yXmgxBafs0jrjcYd7oGdYO2EZBWhFIozJAWDFpD0/vsPsFXDWR+pJ1NSjhhtuHLtFs889wni+oSYZbzunaMAIYiKy1o7KkbyZVCL814sIrLsd+pjgyvpuUcrsDiSHRRgJHjFFI01Zhw8eJpmTs4DWhe8a3C+IaVASQGnnybwGoMAjIDOg3TiWc5VwV0KJhusFv9yra1IeEdLA50TVguDz2DRxo1+3Aa2Vl1KAmBiKXzvtSX/9bd7/sbf+R9xOG/41M/VTP7oe1x7+5yvn7/DL/sddvSU3EWCmxJ3r3A+rTmzhjOVWS07PoobHp+8wYOjR3zaW573e+yVwiwOGKVxeBYYPlz12LrhucePePhbv8HBy19iiIn+z7/Jz+sJE6VhOiOnzMM//2M2H76Fnk/4rfNz/stkePP7f87Z+uKSAICCb2jDyZXn+Htf+2u0tw5IunASe94/ekJ61EuAUyX+rmJto8d+NGONISmxUspack/6EImpsFyv2ds7YPXkCR/0LfXODY5PL2jqCY2r2Vns0szm3L19l/+2RF5/7RXy6Rm2D2NP/NRuaAuFbO/9RCf9r+32UwN8xhacTdKQlFFuOzIvlB4bLsWYMiWgiLVCLXVWDubGWSkIdcZZj0rjxsf4swqRSqptlPRo9J3zeDiLt5waE5u2F2YJipADKUZWXSaWRB4CKWdc1QALrG2ofYWiyNC59IS8ZGiPefy45XDfCFCU48goVMQkPmrWKxSOytcY12MteA/RgdXQVDNQmj6c0/VFpr9aJgPOWWHamMSQT9mEnqFE3Gxg3sywsab2DZXxVKpG6UPs4mXc/gsc3L7Dzv4e737wiKLU5aRJAIHt9EDen6fgCmNjvEWLnzL6tqCIyLYYGTPCiBFj2UxK+dKjaFpVpCzBFWR5jyfNhM994Qt88We+ysnxCW+9/grHJ8esR8Pzrmvp2462bRn6fvz9mfOTY5ZnZzSTCbP5gtl8wWQypaor6rri7t27AvDlwvlFJuVEUdLkaysTFKNGYFODTrLgZBOVTdKNk9HGFgxifl10zfLigKt7K+bzTqQjAbQrOKuFUWY1ZEWxCYVCaTtOj2VRCttL5KVdK8CLULZ3uLIz4K3Beo+hISdwrsaZKXFIOFXjrCd2gcprrCtcDCvssMLpdOk/pVxGhYCi4J148xnd09iGUAaWZysq0xO6VorLGJk1DVprqsaM7Eh5vDFpqBP54AQWK7JPOCuhBzFanH4ep79MPXmZqrnC/pUrTGcNRitOz84uKep6G9lE+ThONa63p+trC/Bt2VV5TMwuRcAaCSoZTZJzxlAkgKa2zPSEkAdM9Ny9c4+cE+9/cF8OuhFg1HoH4zzWO+IouSgpUmK6ZHdhNCoXYuhw2qC0Zj6bcPv2HV7PhaNjkSdnpVFa87Vf+mWaSYVxf8oQWkqR91iGEU8/pGFlBFPKZSForAB7yuZLGbNGXw49FAK4CGuhjAzdEUiAkWklr62kkcvzEHaEHvefMX0rZYz2qOyELas9qjiGqPHFcjCdUukJjTM0xuJCximDytJw5DaDEu9Lowzej+bOWlGUJZWE1jXeiRxvU1rarkUNBULN3u41VFK4yqGMYWg3DH3CuX3mO7skVeEmuyjvePjoO9x/+BYXm8juwS7N/Ab17DbWzelDz+7BHaYHVyk50m42ZNxoxSCgcEzioSj7Bpd7khoHGynly3UnHVwix4Go4Un2fLQMrNYtfScBD/PZ9HLokUIQyXLK/Obv/s4I8sjoNeck9hJKEWIgpzQG5BSyggEI/cAyaFTbAdKQogulKCpfsZh5iqpx9YRREYsqMIR+lLYlYg7CeirSsPRBoPIQxYNKnpvsfRTGNG9hKVitsMrgXYU2BZXEZ1QjTBSjNYGCtoo4BAHv0hi+pMAW6J0wXywS3FNyHNdGQWtDNitJVVZOGuxiadxVmuYqO7OrNG6HNAT67ozzs4fE+AY5DaATGEM2V/DO4qczUlqTSmQ0r6HkQGIDuUWxS9dvUEpk7GVsiG02xBwBaaKz0RST2ZQNXTjl+HHPk/YxURVU17FTzamKZW5rdptDFtUB3koKr232OXzuy+jJIY+PjsWXcASNpaaWYp4ioVQ5ZboMz/aJb/7wNfa7gWvNhCH2tK7ik7riP7z5Zd7bs6wWM75Rz9gA/RCorYOS6OJAMw4Adpzi392/gT09YefTeyxMw90Pj9k0G7qUmA+RZ8uU/8G04ve+8wPunK9ZFIMlE4ikxlOM59rtO2RnWR3uUO4c8H997fv8i9f/nGHnCp+4ep0bN2+wXHaX+2/Jhb4PDF0roMmQSHaM1oqSJqeAqMW/rhQ521Byzm/3OnIZB3SyhiRVeRwwqiLscWRQG/KWESoSXGF4xXFNb+2Wx3+tIDthPdR2Rqamqa8ymW3w1lJiYggXtMtTiANkqaUy+dLvSjuR6xtjGaNmcMbRNAtq05C6zMRWEA1z32CcowRJatXUwrZ0BqwjW0PjLNrK2aCVIsSBkHti6dnYNaf5iPO04bzvRDWXJVwm5owdHCZrFs1djpsv8H/6rX9B//A+V4fMNSy/lB2TIdJr+C02fBgGdoumYjw3xr3CltEXtEhaoEOxKYmgE4OWt8cW+MUw59pqw3POoa0lm8x6b8KJzawfTYisyA/uM/1hRH30mA/R6BsLbt+6yXsPHuK1w4RCcYoyRB7+4BU++P4rpK7n7idf4KVnFP/0j/5bQkksruyxf35AHM9jo/R2VMfWLiflMqbTFsSW6inrOo0UvjI2qXlU5mQljMU0Jk1KYqj0AzLAl7UppYimrtSYZin7rfcy7EpjUq5CkbMmRAPK4soE7eaYagdl51g7lQFJyojL8oYQV5Ss6dszHp98naqWcA1npA+QwJc81lTCjFc6YbXU4iU9DbkzWlFSQWOotCcHhS6aShk8htgGlIMQB1EXedBZU1IEZdDGY6dz1JNHpB/8JtkrtKm44ibsm5r+cWZ1Zc2XN4G/UF9HG01xDeaX/i02jSbUDuWR3kcrrKmwz77IJgbKxJNiSz64Qzrb4IbERbdistL8/M/8HBdPTthJgUNTc/jinEldU9dT7GRKJKNeuEc4u+B7H/2A659+mdV0wTuvv04XBt7pN3y+3sV7B7UH50ZpoYKixUogFrrNmkQBa3miNbFEmmrO7mLG9bt32L1zG7UNd9PIUDXL0E+P14nSmtOjgT60UkPZQuVhCBWrZcB5qOuMdeDreKmisCND1I7WFcKQV+Q+g3bk4oR1ZB3GeOpqQuWqce8zpFhIJYo1zNDSDi0595SR0SqJqkoUYdqijKEkQy4S3KVGdpa1llQCKhb6vBzloKOdgdaU3GFsI8SXLROGgrZbf+WC83b8vsar0TbGaLo48J9++5/zbzVzbrSZahDJclr1HBnNubPcnCyYaUeqPMEaVN2wqGp2JwsUCr+/wLsd1P4tnPMUAi5ookr4qkYZRTKyB3+GsfxSiTZ3qLgi31Xklw06a3IXebJa82sf/oCz5QnrsOG3Nqc8Nobrt25zcnLCZr2mlMJr6wveenifr+4eMhAJsZV6qVRUymNKIo5hdlkp+hjJWhFzpmhNf3TG46Nj1HzG+xdnNFf3USQOdhe8/vZ7XLl6neHdc3mPnb+0gJFQFPEGlTNNhgbeO0ou6GxQWY/EGCfvgcpoXUR6bSu8qyglklI79pMyZBV8JKJVxJYLiorC7k1rUqvl/CwZpzQ6SE9pxlRlCfOwaITw5K2XHU4Jm09t7YJGaS5Zenutx5AsIyCfZBpoiGPvn8UaKMaIUYl5HVmfP+Dv/9//Q2bNgs8t9vnZNz/gv1i/xTd2F/y9xRUOznsa7WiypgqKe2cdd60ju4ZQGvqd65RJxbAfOFcG167xqWXeZuKVe/j5HO6/QuyPCTqSJzWDd8S33qeNPd3163w4m/BOUQTjOWvu0LuKNiveWa75YQ68+dYPpPdytdjxSLFImzP/+Pwjfun112nP5uSJ4Y2zYwKZ6wf77M7mEIShl0tBWSdAaYFkNcpK2FxGkdDEXOj7njAElFU8fPyY85K5PVvw4ZPH3Lh1h/ffe5ez83OMq7l39w6f/5mf5Z2336QvsH/3NltO1ccoe09BvfLj4N5TNt9PD/n91ACfVhqnZV7l3AiqKPHwkKZ0LAphTA1SH3vcGVUghyAbmomkfhgnwbLBbdMoRQYiDa5GosxTMSOoJwlFxnhK1oRhTKEsYlxauUDhgPnsukyeY0CZTApr2s0xQ2ilAMkRV0kTrkogpcKyXcv3itCn66ahqh1kg0HhG8dy1WFKFGNUKgHwjCf1GU3GG42va5EDKEtB/AGGckQblyzzkhgjO82Uhd+j8TPqqkZFMMnjq5uoyaexB59h784zHFy9zkePTumGIMb9amSsjYAdpYy+hNKgbMG5OH7e+lXJuSmHmkqjdX0plyyZmBIxJEKMdH2g7we8VRyXTNf343RD2HNaK179/nc5O7/g5OSY1eqCTdsy9ANxbIxBKNB15UeZopK0tK1mA0W72RB6MbD3zuN9xVd+5qvsH+xh7TfJoYyMTymArdEYlWXSbcApA2ScM9RejyLuMoLJIhGxzqKoWZ8bnIZKgyKRlJhwqhF4GqIcomWQ18YaiWBT48ZZEElRXRl2pwtSakQila6wN3sRh6bEgdo5YuxQ7YBWiUaNPgguoCqLMYqcO6bWYshUW5YdSZqeKsj7FgIMiqENZFcYNi3npxvqusKOUhNXO2Zzi1YRpSRzTHvDUBIbt0LfXKJ3W6yqRLqnDAwTal6kMl/FNfeYLW5xePUWi91dVM6cnp4yDIGS0xgWMoLB/8p96CmIfPmR878E8glAI9LoMASGYSDGTI6JbrW6NN7OOfHss/f4t//W3+Kjhw94770PeOPNN7n/wYecn5/TthuW5z0hSlr21pdteygrJdN76xzee/avHLK/t8u0aZjPphwdHaFKIQ09OU3YOzhgvVnKc0AzDGVkt8pzSmErldWynwHOCktWAHFGc3fGxLeC0gKuSxhOIcUyhgcIS8qNybZjUKNcz/np9ZgihE6Aa2cc3grLoTEVtZtwe3oXnQYmrsEUSbl0ZEoIlBhRMYLqxbMUjR2LVltVKO1kjeWEsvK+hKRxvqFQSCpy0h2xDBtcNMz8FSbeUVyN1QbnGpSCfr2iqJrZbBdfzbFeGqmcO44ef5/T8wdgDTduHTLffYZq8iyZCcp49q4+y2z3CjF29P1AKhYJKBsHCz/G3pP7KY0syHH6vf2eJgsDLAVyHHBeAKmmbi5lzGmUs/YhUJTGjkWhKokhDNuTbXwjCs4a0Abn3MdSudO4923BRQF0b9y8TlN7Hj06IqaCqxtKSsKstQ3GWGIcKKrQdSuIA0MP6y5hRymtQuSKKWV8ZTBKjMC9V+g8BiYVmbyGkAhZTOv7vhsDmrQUcVrSTbdS/S17zxSIKpC0eBDhDGUt00VnDJReUt3RVHaB1Ycsdu8Rk2Zv/zPMvMLqmpTWbNannB6/wYfdEdoGMEmSnMkkVWSfSYp2vaIURUhGzOxtIaaWlCIxRCiW2gYoRuQxRpxPyxjEVIyiaAeIZKrXPef9KSu7po09enOEs4pDN2fBlMZVLJodbPZYs8CZBagZfnaDw2d+BjU54OHRMWkYmeijobHYDgjgLszaDDHT5kJ89wP+7uEhtZ2zF1v+S9XxDXUBxVOfH1OvLcN8ytWv/WWefemztG1L00zQCvqwobKeZdfznW9+m69/7xuUzQqTI8RMipFgC4Me+BvJ81f7jv9JXvC3ysDcNNQm0OeOYjxlukNWlr2rV/jKr/wK5W//j3ngHb/97//PWPcDVdfTrTtu3bzOK6++TkpRXrcc0fpj8jVjpMnN4k8WQoI8nmyaEZTJl6E/8hJJTSbyHkNJhay1WF8grCqRJeVL4IfMJVtATk0jgWIIkON9hdKeul4wme2isqx5WxTh4QM27dsMvlyCgjGP4V1xTCtUsm4tlhLEXqWyM2EulyzhUakhhYLKiaHd4Iol5YQJXgaA3uO0w3mDsRacYbADxST6uGYoGwbdEnVHZGAVennNSqIuFe0AF11iVikWszl7ybDbODj4BNee+RV2bn4e8yPF+997hYd2QJ2cYj94gEoDH1YNv94PWJX5FVW4F8es0AIBxVpZkraEnAhFmBwNsFugYHnPKv4kdTzQa/6DVHGtWxF1pteW/yge8YdPeqJR7CjD5xP8cq9YoHl87Qru8JCmrphWNVVVYW3Fkw8/5LXf/yManfnkMy9STyynH73DH736fX77R29Sv/Q5QhELFMYwi1LEZ0x46upyoJyLIkaRxqrRNiaN60ArJetAPw2DiikTiiRQpqRHDz3BhEoSwMRZSboNSREHqLxcq8Eb+lBhbIM2Dc7u4PwcY6dYW4lyiESI5/TdipQfk9QaYxM5Fio3QVh/YLgpvUJao2Ir+3yQQXKKYdynFbrI8M0ZTY4Zq5BQmagoUWwRSGLF44uBrDAFrCqENKCrbQq5RmkP2qBsTdVM8M2UrArnvuN0Y6i/Y+liy+TN97DHp6hYeHVvl//89guc9Gvqh2fc7C9wVUWjKlosZPCTWiT8ZJKCOhfmxjDkIiRoZbCpcHj/ARc2UecCUUExeK0xTok/FZmVUiwTpNSjVaSPkfefvUZ/6xYHV66wPD/nyYcf8NFmQzw8oKorxkQVtDKU0SN31XdsNh3rbkWHQvua07qhhDUf3D9lp5nw1//m3+TKzZuy54x1ZskZRn9UxuRQNXqROS3grrcWbzU5Rio3gu5KEtstFqs1lbdYY2n8BKcblHYSlGHc2CMgAG6I4lkdB2Js6cMFMQ6jJFKAFm0EqEaJysIpSylpvB6EPTzEgLEyMEspkZRBl8xQIHsHRJQ3Yi01BgoplADPIWDsHJWhVpZMEmkoRV5TpamwWO2pqyk2JWHhkgiq5UnJuE9+gnB7H37zj1l89CFDzrxdAv80ZpzxHDQNKgzUSjE3FTNTUxuPj4m9YjBovDY0WaNLwmRPNuKfWadCUUbkpFaJDyqKYivS1FCsIVYzVocTVvOa83rDDw8Cfa3ozhXff3iKrqbkPnLl8CpH6gnr1ZKQC2/2G76SI53NrFOgZIXTiZAl8I3xVZa1AUVZdEqYAicfPuYjMrebiaT+WsfP/OzPcuXqdfoYOTk+ZmfvANNUxJwwWuO9Hz1rRzuxUgRzGAEwheLq7CbWRgnRcpoQNwxBGPYqBSgDJa+xFmoLpsgZpRSj5HbMCkh2HHqNlj5FfPSs3tqPGXTRuKTRWeGdJLWrNOp+YxlDhOI41HWYrFB5GAcbGW21kCnGYbBSBq3FE9uaSuS/OCo/QTey1376ediZfcD+tWf4C1/+KvrPv88bFx/xX1UZ66b8789eJ6DxGHSf8J2iMZbGOiY4Jqqmjp5pWzHRiUPjqeaOpvLcWSq+0keW9/+M/5d9wvc++Tx9FvDfOc+8qXHTiRAzjGZQib4khphYnm44e3REjIHz1Tnaenb3rzCbTqkqz8OPPuT09IhSMo9Dz3faU16YX6WZ1zz68F2ayksmCBBilPBLQCX5W9oashLvfXm9PKmPDEPP6uJCesCu492TY/A1zlfEOOBrz7PPPs/Ln/8iQyr84R/8AdevXuHWrbvsXL/J3eeeZ2tb8bRL3t75cRDvx6S5/xoofT81wLdo5PC1xowT3YSmjOwPkYgbM3LzZegFaKwWeW1MkoiXigRbJCUsDQGe5IJyxuGMhawlmdIYcooYK/I3azRGW1Kxkniip1TVHG0aitHMdj5gvTyjX0ZiDKTcosdkpcpoUAM5KQEbQmEYErFA3xf2DiqmdUGVCkoClUcPP4U2DuqGvmicL+Q+U3rNFItJkuipjUb1CV20hDIQCPmUtnRs8gnZJKzVzPyCvckeE+b4UolRuanBXEVNXqS68UX27z3HbO8K9x+dsFy1Y2O+nTIAI6OslHyZKBVzJo7pucKAKePUXWLHpYSXlbT1tco5E1NiCJEQIv0QaNserzONN7z+3gfU3vLic8+R4m2sFd8aXznu3rnFi594nrppqKuGuq5pmoaqErDOOocx9ikLS6lL4BZG0E/LREKYAZJ4HMLAP/uN/yXrpcG7gnfSfItkzaCyTHCN0+QogRJbNmNJGavE5FQjqUM5DXTdwOoi4FQgkwlRkVHUlcZbmS3nQZgPRSkqp/GuIqkCWJSaUFdXcXaPWu9jMOzPOkrp2Tx+wJWZeDyaoJhUFleJr6M2AhaUIiw2WxmSsvR9QasOraJI94Zu9EMskBJxiOSgCQFyXxjaAMqQY8LVepQZZNb9GqMlPSm7THEDZWdA7ZyTXJLEX9wotzrA5s9j9Gdw9U32Dm+xf+UWi50dhqHn/PycGMJoui7Ned4ypcYN6MeMQX9MkvuU/bmlun/8azEGhhDpNgNt29G2PaXAxcUGowtx6PFWDrlXXvkhj5885u133uH+/fucn1/QdS3DMEjBFBNbya+U8VwOE0IYUJ1itVpyfHKCcxbv3ZhAnSihsFldUHvL8fER52enzOdierudpuhtEMaYlmv05ROm7z72OlDoLpnMsu3pESvSSgC8yst+JQxlPU6lIQ2ZpDRay/6nlcFbTTNzNF5A3MbNqU2FK4qprZiYiqtUDN2G0p6LlKGYseAapZjK4FyN0vqSOZxLIeRIUcKKzYBVBuU8ppowUNj0FwwMlKK5Xt9kauf4airsNF3hlHhoxRDx9R6T+b74iJgG3dRsVh9wdPQaQwoo5zncu0U9fRbrr5OKZbI4ZHHlOZr5Ll2/IoRMyuKNsQXx4gi2b+9vmcNbOv6WbSxrS1gUJYmsM8dAXXnx/XJObCOsQceI1pqvfvElCV8pipPTC9quR9sp89mUTTvQdj11XbOzmKG0pusH2V9HoBbg/PycfghoLQlvJmdSPwjQHwdUEdPilCRtfTqZcLFMcn2qzOriI5RKeCfeZortYAZCGAvDUSaZkqwl7/04cUx4oyQtXclAIPQOSqZygCrkpFBKJE05JXmNnENj8cYLA9xYjHOYqmHaXGVvfp3pZI/57IDKTlm1p5xfDFhXmFc1T+5/nfVwQlD9aKthSTaTy0COBVPEa4WxkE3Gop2AlNWk4vh4SWlFMm+NSCTqqpYCWhmUsSirL9MzcxIQM1AYUsf75x/woJxwujnHaMPC1+zVE2Z4al3jc4XHk1qZqCtVgWqodp/j4N6XGHTNw48eEga5/hnlgyKjFyZSKQjYEMSThXs3uXbjOq4UQmh5K674k7jkT1ICm7A288l6wg+fnPPpoyOeSZHFtGG9WrJYzJg3O7SblsO9ffbuvsDXv/9ndOteEnxRZOGx8NerHfqS+VFsebFvqfpHROV5Qibj0Xg2E0k4VFrzxV/+y6i7d3DrDa6ZkNs1OXScnhzx9v0HY+BOkkIsp9EfSuTeOWbaLoxNohr3T5EYKiCqPFpVCDOp72Wy5ZzCG2EaCyBaLms2YxXWuBHsEHBPW0seh5ta1xhb0TQTfFVLU2MgxUgKLe3JQ3KOTOuEc1OcvSuM+yLezDFCCJHKa7xxJFNIKVBp2ePEZqHBqQaVkvjUpYBNoKzD+yklFIxyuBKoqxqHRfta0ga1QnlNMh2bfEosHaFsaHVPUpmLfpDQt95w0a6ZNlMOTMO9yVXsRFObCd57UlOY7T+Du/FLlMkhO9MZX7QVpydH/Nqk5lc3CVcUyk85rWZMKLQp8vs68adWE5Vj0szpwiDXiFach0Gav4sLSik4Ch2Rc+AUxZOSOKo1O2Ggz5pVSUxNxWf397A5sx8L/8PjFSVsWFrPt8nY2R7nm8Cde/c4e3LCyfvvEN//iBduXWOvcWgHf/bWK/zjr3+dP/3gPqsQ+GKfWZ5ckILIn7csanVZC8j14ye3CEMLakUu4v4gPbkaQTmpt5SWAD2RFoo6x2jDMDCetRprJXFeGUtUFcbXeDuncnOqZjJ64W0N6yMxbIhlxWbzITG2KFpy7MVCiCL7iwU99g7eWLRKQMIpqE0vjOLUYVSQ+jInrNI0zkgwzGiFYrQhbgqhBYKGqNBZnidjUI2vHbWrsHbsXSa19DfeUdVzQtT4Zjp6iiZS6En0lDRA24uFyt/7XxAmln/xf/t/83O//XuQM+9NGt7oz4hdz/9jUXAsiNqjcdTaEELPQW1xZPo+YU1FnSJNgJ255f0cOEstDB3/q9TStD1LXTjoPa4ozHNz1MsG3QfUh2v0D8/xaSAT6SicTSaEe1/i+t4eHx6dcXj1Go8/us9p15O9Q1kLyggY3rd07YbTtuP94xM26xadeuxsgb5+yKnONCny+MF99p57gZSFqb4FjMu2nsqjsUsuY52kcdqhTYXzjqZpsNqwM/OUYqmrBu+k3s3jkCPFgNaFnCNd7IlpObLx5LmVkqUHMRrvRK6pyBgzDmxTBD3WIcjQUYsKmMpNWbcripKUZ/kB2XOUgsa6EWgR9qF0YAXtRUZeeUcKEspHVmjEhkNnx4QKZSGphNEGoy25GHIOaKBbdzgjvU8IA0T5fUsLjc2waaFI3bm2nj4FhpzpibwROpqDfbyznF6cUWtLn0RVYJRBJ/BKSy0TFTOlmFnFzxfNV6LHAT4bLJrie/wnL5jf7FjbwHs/3Of44Uvk6hnaskHrQt0NfHi+JDsnfqwxEoaBKweHhGFg6Hs+GFq61JOtZT30eO2xSgg8MURMEr/hnDQhanRUrNsNx4+P+e6br3OqE4ucWeXIzf192jbw/e//gM9++tN8/dFj/vbf/bss7tySYMWxfzGXigku1YAxiU++0Zp+dUSXz0X54hRKpUvvUGMkmMkpMFHjcqEkNdYXRs5DLXul0QodhcEp1mIjeWT0vlVI6IUM2IoMI7sirkBGE0dpuXdWJOxOQ9Lo0brMarG2oWyZgZqSNa6aQrYY49Gj4X4IA644FInKwLPX93nt0QUfvPseV/qOk1LYYMgp0E0mWCXeCbGBZCyd1pygBXAvBWsDtSkMsZcB32lG5YGdvuM/+WDNOzX885fu8u79+8S2Hwk/Es5mrfT8WEs2TjAdIMUx0Tj3PHn8gMViD6ssKUSCtrzw4qd5660fcXz0iJgzf9qd85XZLme542yzobISrHqp/Mmjn7UdFWlak3NEFQlb0cYTho4YE+ebDdWkISw3vNmtmO0dANDMpuzs7nKwt8fv/e5/w9f+0l/h7u1b3L//Pp986VM8OXlCnwLNj/XJT/GWbQ/59KtPv/6vAd/715Gim8gxjQytre/ElnyoyFkO9qJkUmWNTGGc3RrBK5wqWKcJwZAA5x1m1EdbbfCVoNpWG7kIlMfZBmVrjGkwdiJGt0A/rCG35HJOt3kAZCw95+fQbrJs7FbSKUMfxoLegIrkEqmcY1ZZrDVUwNwZTEo4u2UKCtjjTIXVhhgNsd1gqxpTCpUqGKsYckD1CVN5gk6E2LJWG1rV0usW48QAc+Jrdqs5VZnhmFKXBhMtSk1R9SFl90Umt17m6jMvUWzNu/cf0/aDSBcK4xRnBOryx4C6Uohb9t7HpIBbQ1k7DgFENjjeikzXShF2kbOaXFlyqWBnzm4DQwi8PP80n3v5M5epPmqUIm4bg6Iuf+OlNOgp86aMIKNIny592Eq5nFppo0ePAHVJhxfGE8I+GcrINAASlz5zSkGJBZVFFkGRhOWc9XgAjDr9agxt0RXa1dQViFeYIaNJueCMo5QKayZUkznOTVCqxldTnKrQKVFiR60T8eIU0kOyDjT+LkfqgKVz7OYLZlXBFCixo2CovCflIDTtsaEqXRJL/U5R0hrlhFGoVGYYhJHQb8LY3GT6YUxDzRlvoa40tsrjoDPTqkg2A2aasPuZNF1BLdMmM0qDLQadbqPK5zH2WRb7z7BzcJ29g1tUdc3F+Rmr5eoyGU9rLYdcGumL2/e2PAX3LoMQyhbIk/d46w+XR4llTpkQAiEIK7Rdd6w3G5arCypniENPG4Owygr88LVXee3N1+j6jq6Tj77vidsUzfIxM/iPzUnUx/7vpQclmRQCXRKZ2N7OAusc0+mMT730KT7/hS9AyTw5/S+lob1kJMIwCLOHPCbolUJdKZzPlyDe6A9+6b9xGQqRxuvVaKKGkMEbjSqGxhvqyjOtKpwyTExD5aey92mDKUpSnOMAIaC7IEzntIHDNbkPqJjEb8M6rGsk9U3ZS5au1gKS92FDHzoChTYmqsbinMMoBwb60AOZjKaynkU1o/FTLBZlpsQY0KYQwwXtENBuzmxyiLNzYf0ZyxCXnH74HS5WD4hoZrs3aCbP4Sa3UdQoV7O7d4vF4T2wlvVmSUqFmEfJ++V+IdPumBIpjvvHCIpfUtvH9ZTHlMWYCiUNlwCfc8LeVCguk8e0OJd86eUXmDaGECNDN1BCZLXpObnYcHy+YtNF+d4Q6EMgjEy8kOLIsCx4q7HGs91F1+3mcniBGg/1HElxwDjHJz/xKZSx1E2FMZrZrAH1HVKKwgwdpY5KCaPTWfDWj8zg0Sw5jh63xpCC2Fc4ryFlnIHNKlAbN7IbJd3PKoW3Myo3o64X1M2C+XyfSbNPXS1wvoKcUKVn6E/ZtI95tHqD2K/YhCXa77Hpv8pqOOZx996YCCOvvU7SgG+bcVM0TslrnrQUlV3bEeNA1xdiDmgMk6ahMlZYkzlRUkJrWb997C5ld6nAoBPLYc2637A8/QijC3M9YVE10gyRKKmwzpHooN/AvJmB30FPbzK98Vl2bnyKo1XPo6MPx8CY7VSd0d9XapUYCykVhhDpQyTFxOqFZ/mPXcvp8TGnywtyEY/TQ+t5f7OmVjX0PfvW8Off/DNefe1VeU4x4KywxcahOykluvNjShzZpGMdBZpvbc5Yacd3bWGqCpNs8SbhNLgcGXYy6eYen7p1k37oePPtt3n7rTeprGN3d5+jowekNLBan/Prv/EbfOmzL3O4mFNSIbSbETDNY4otl955KYmccFqZSyZVKfKe9n3BaGGyOqswupBCHiVAstkZq8dGpRKfoskE62oUFuersdEIaDpybEntMUNb0DrSpzSe/5raC2srD5l1d0FTJUqyxBJIsYCyNL4aAyeg7wKuqsX+QjcMIVBpMc5tKkmpb2xDVc9w9RxyIccN1sjAtvIelAGvKEMipMiyXPC4v8/pcE5VGbF9QBE24JlCr0kDXDXXqIaGxaRhZhYoBVYrmuYAd+Wz2OtfZrK/z8G1m0ymMx6/8Cy/8JuFo/UZV3IkO0dXVXza7/Cf7D5Ppx3Ra3KV+Qf2nB9cfwGaGRBx8ykpJtphQ//tP2YxBP5q1/AXJ3NMK8ybpk9Ml094QqElEEvgK53j/UdHtN5z3XjWoaNgoao5ahzeVSwWc67dvs37r7xKuP8u84mn3LzK+f4+b334mP/j7/w+D89OKUXq4tT3fPDue9STCU3VjOs3Y7S+HOSB5tYLv8wHb1k2p99F6USMRWr+JM2sVrKJb/18JdzMYUyDMhNmezOMb7B2Ql1PsE6a0lwKIXXkvKGLF6w3jyh5haIDHUCLhFZITMIqlJT6bTEABmEl6QJEYR67EslR/LFrdYDNhRmKKoLDYI0itWPUQszjUG4kLWRw2VDZGqxhPp8JGF5XOD8a2SuF9o627ynNlInTDH0iqYC2A6kkVOiIQWGtnH05JTZtYHpxwJPvvMpJnbkYer6jC1UIxBxYP75P1w303nDv+k2y9qxjRu/N6M8LH5hMM3Usu8LMNTxeX7AaNnxhssN7FwP3l2tcDrwzV9w9V7xeez4dM84k+O8tuPm/2cN1a977boP69064uYqI5sCy3N3nSS58/vNfoP3299HaUDcNFyFSnGWIiW6zpE09fSk82XQct5G6mnL7+h3SPcMHqfDNtOSJ0yzWK2aThr3dPYyvxp5CXaoaMkpAPiUeqAoZmN+78ylUbunCmkIkhpYYWlIZ6Ick56tRoIWR7LS6ZFUJkzST86gUe9q9kFOii2EkpiTJclFbrzs91lbyE85odNZoooC/SoTaVltqZ2VQWRIWsRZKIWK9l6GCMnhETumKohjhcFlXYVUhWYeJnv20SyiBwfXCku8TSmRyDDFhgKFEjDKULInxu7Mlf/76fb725JRqvWZTIq4UktYMRDwwDMIaTjETckRpy97eLg9PTznY2afEiG88bS40ShPCQLCG10+O+UQ/kJyRYA8iOSrqa2s+9W8e0V4UDnvL4tZDvvHHt7kIgU4NhCFCm3lrdcFkMsUay80bN9isN6zWSw72D3j06CHnIbDpOlTxRAoDCh9H1VhK2D6wPDpmPUQebDas0+uEaKjtnOfvfY7nr0be685R5wPNbMG67QBJSS9odu7cQns/SljNZU+jjbBGYxKrJGutkAViwCF7nTGaQsIah9OjD58z4s2YpX/VqaCKDCesGoEjGH1HpU9VGcE21OiJNwY9KkR9kfNoeaFEvWiMxzpL5dVI5JCaVogzBpQMc7VRl/Yy4kc5hiNihFQVB9COlPPYFw1QIg+XmmvXP8nD3PLnP/ge0/WGO9Zic89aW9xkB91HcukxVgbIhTIOOyzeG3KODF2H8+MwEWHdH696HpY177o555sNJ++/R8mJr926wZ5WuAw+eciGGyHx3s4+31FGgldLoXGe1974AdZaprPpyOAVD+7zi3NefOFTdO2GzWbJe8sTzh4f0+1UtEOLMjsMIY5An6fk0Qoibi0lJIAndpHleoNtNjx+8oSPHnzEw6NjXlgc8OD8jNOceOngBu8vz2lmc3b393n7nbcJw8CTJ084vHKVt956jc9/8Qt87S/+AvPFQhQiH2frfez+JZw3ttI/Cfz9NLefGuAb4piAW6QxY5S2yPLMwmoYZZjeCbOqlELlPCEUnHdoJWmAvmpGw16NUhZrKyiW2WwfjcfZCu88MSQKkaFfk8OKkJ+Qco8b/TlQUsR6ZYgxMq80j496lqsVkDAeKqdpKikyJOZa0vuMFRmBVZo+Foy21KoWyUnRI78zYEqPKppKOWa50CShMAuqX5HCmqgyfTqmVRdEHykmkZUkZ3lfMTczJqZmahZUeY7NNUbXJKtI9U248hkOnv0cezfucbLsePLggUy8twgCUmCLJZyAYXKhldH/QcAJi7CPQF+agerLn9liINtjrWwxkzGOXhKD5l5TWcXj5UCVpSgzo9efHMDqxxDoS6AHCRXYNthKZfFOHJmH45+8bJDZSrgvP8lzygWOThXLc4VB0dTyOmgtMpBNW7BG+LeVfYqweGUxRmMqh0VjKnnCVk9RpWFSHXB1t0apGmtm5KIxxgn7yWhSHNA5oGKPCmvy6hznEil1pBgYcsRXmiEUQolM1ZLX3+/ZeWaCSheEpBmCsFpL0XJQDZCtQptEiqOhJ44Yaqwu4kPWDfLahUTJkRTFlDwlKYS3aYTaWuqpATsQE+L9VifMPMC0RU0LztRoNx4iWEya49SLWPUFbH2H3f07LPavsLt3hZgijx89YBiGS9AVtkzRp7fLFNPL7z/12gMpxkTKOIJ6o9w2xkSMkRBEltt3PV3XM4SA0ppf+ZVf4fNfeJmhb4XVESMpho+FujxlqG6Xz1beo8ZprjHCXHNOwCvnPK7yeO/lvvd454VdOpkwm83Y2d1lPp/hnKPrO/7T//wfc75k9DdTWCMH7zaswNlxQ06FNEhirxkp/SOmJpPlInJYbx2N93hvmVYVlamYmgpvhdqukwQLkSM5ZthkVJFDlJTJRXg+BTFYrp3HVhqdYX/ngFLL9ZiK+GZppQlDR9JilB9RhNRjnMU2NVZpdAoonfHWY4pBZ0NtHAUjPiS5wXsPaCEA6YE+LOn7DQXLYnaDaXMN46boytK1pywv7nOxfCIm+dMd5vM7TGbPY/w+GUc932exf4d6ccgwdPTrldgtZCUHLHKu5cKPDQW2rL6c0yW4t20mcxbpS1ZFzK1DTwqBGAaMdUyahrPzCwk70ALyOWvwzkuRlmEgcrYaeHR8wcW6ox8iXd/TD4EhBGKMT9fz+Pcv6fQjK11pKaCcc2hjhPGXEjkHcuyYzGsO7t6m78MI1gHKSIKiNuIHkrcHvFgoxCgyGFVGKZgXJrzVmpxE2paR5GPvPdNmTrW7w2yxYDrfo6kXNPUM52uMtuNe0hLiiq4/p714g1VuUUoMwY0V+XIpWYBBW5hqYR6bHClKM+QBo73IxK1DozHa4bSBiKxVbShjjKZioNGZFHuqeo5vFU57csoMQTytUgrkNGCNA2MIJbMOHW0OrPs1Xe5JMZGDYt5MqIqiURVl1VOCpVOWFAq704r5ZI/JZIL2B9TXPsf+7S+S7ITX3nvAat2NoPtYuGuN8+OEOGVhzySRqw4hEmIi5Uic1Hy0v+BBt+J0sKxWK7joR6ou6NjzYBOY1Y7YPWR5OoLUIzAsYPRThvFTG4ORiDqew+da86oe0EXkOsoE6sqRlaKaOe4+e8Cv3tzlqz/zMt/+/is8eOcNLh6+j3EVs4mDjITUtCte/8F3+bnPfpKwOpM0076lHQp9L4CHlWWL0oqmFia4QpNE+YRVstaqMYzD2dFKwFqapsaYCdpU1E0le0QSo/cYOnQeKN2KQk8akgy1svhnOm1wCvFRs1sbF403kt485MKQIk5XmMpC62TgqIGsmRhPZS19DkwqhbWO0CWKDTRuwtTPKMVQeSfsRJ3xkwkgzLxAT6kTQ+gZvKYzkSEkbDIY4/hg9S5P2mMSDj9Eul4YtzPdcLW+TlM3uEWDyW40Y1dy3ilDfXCP2bNfpbn6HPP9A/xsDspysRk4P9xjriP/8xJRFNaq8J+1F9wKkbubpcgDS+SRy5xc3WEIF1S7MwIGPbOkCLqrWdy4zu5yxXOPEs9GS+k79NDBkHnSB163mjed5vNBMxkG/j1nWVeeJ/2AyZkNilNgmM/ZtzW7uzsc7O4xPzjAfOaTLIvi0ZNHrJ4csep6Dm/epNOGrhtYry9YL4/57Gc/xTsffMTuzpScwjhwTuN5nYlDxyvf+ie03WO8ARcdqli0NSjrUdZR1zMqV9M0U7yfiATfWgqJnCIprglhTd8/4nTZkhkwKqN1xOgoyeK6YChoIyxVpRVtK7I6owremFHmK75TBvH683pkuGsFKaJTxOiAGeWczisohrRSlFbR5/HK7cU/0LuKyjkmtcZWDldV1LXH+kp8UpUl5UgikrUkZaYSxIfbFXJeMnTCqLWuJ4UETDC6E5ahgdhDCgXfFrI7ZPdb38U/echuZ0m3nmd1sebTasH/rtqhcz05D0w3mQf3FjyZ1ly9eYezkzOa6YS2X7NqO2a+5uhU0z84ZXLRcXMIuJJpS8drPnA0TfwoFx7Wmqvecrhecvi4QPAcfWug6SVMqAKCVTx87hpmMeP0dMViOsNoxf7BIavlmsfdirDp2PSBnCK29uxMdrlz4wobZ/mjowf8wcN3+O6TJ+TJhE984cssJhMMnp29g9G/ffQTLyNxoGyBua2Vggz5jk7eIKalrJ2SMUZkolrL8EY7qdu0NuIvS5bgupGxLd5kspa2fyuO9UXlDJWzbEvglAshJmFgaoU14hdf+4qJd1Q6UdUerUYmOxllZC8aUpBAmgLGW6zzUitSqLSnsk586IsAj7pobMwE5yBrbHB4XeGqCUUXBtUKEKQrSjQjgBMxxqHcAfv6Jf6Dv3ModdVqSfW5L9MtI2nZ8sLZBdN14Hx9wfnqnJtpoMtwFjraEKiKZurmbHro+sienWBdocKyLpGy3nBX1fxCjByZgZNqwqSFyhYWK8fdU0fuEzYUmklhHgtHXc9SbThZr9jrI6vxdbt75y6feOFFjo6e8P4H79P1LWenxyyHgYt1z8JY2nWH84qkIGZNOEmYdU/0NWa+T7N3i4N6wZ7TVENH/+7btN2S39+cgLH4umE2mfD2m/f54MMJi92d0XZly2DPo1+dumR5WWMoFMKoFKIUbFaYpNFRJJ06jYoxxYh1yGRfZ1EfGECVQlGJkhUYJBDNWjQaXTQlMrJGLcYajJbzliIesigleEhWKCzWbW2tRo+97XpWBWsdZVQfbcMFtRbGn1YSiFRyEV9ZerZSGCu6dL771hPeP47cvnOPWz/zBWLo+PA3/hmzD3/EQUyYk2NMtnSlYHYWrPauMMQOkxTdZg3GUuIARtP2gwDhqkhgkvOcqcwDW7NuAyEmKqW40SamzS7aKDbecrUrfLk/J+wqvlcKJUWsqVmdnzCMkqnNas0zzz7Hzdu3ef/99zk9OaJrau7ee5bXf/QDngwtT3wity39EMRrNSuGLhJVhJxZxY51P7Bs16z6jn6UYVvtmC320NaQmimuWfNn99/mYbvm3s4Vdq9c5buv3OdwsSAMkWeefZa+67ly5QpD12OU5vjkhGeff+GyzvsxTt6/BPDJ17bqkZ/4J/8/335qgG/dKvr1iEYXkW9UTuSo1oy6fDRFCwpttBYv8aIlDl43eD/DuinWNhIH7SyMngeUgfX5GRDIuRXARWUURiSISUI7clFkVcjj1Nmogm8svvYsZgIK7O5YkWa40cOlCDikjGEIPZkk/mYUQoIy1NQK8RBMEnXvjMMaSw5Czy0lS/KXNaBFQnaxWXGRl9AE7DRQdBqp1/L3TZoxMRMa3VDlGT7PscykOK+mlPk9Zre/xOG9zxBMxbsfndD1Is/Yml+rkeWhjUhOUVvGGpeMuK30aDth0uO0SuzJRpAPdQnSbUE1kOZDj0CSUYo2BpYDZO3w5ik4uAUKt8jzZbgBIDLrEZShfEymuf0bH6OjXoJJl49Afp4tWFywSiZvVilJ/CwywSgBvDFYFNZNmE0Mmy6gdcWkqvD1FKNqrJvhmxl1NUeVCXubNRMbKeuOEDYMnFBVhj50VM5K8Q5YOUHlIHWarLJMmrUY3RufabyiLnA1WvHqi0ckloSi6LpM48TTomAxXpFii3Y1ymSMq7DWw7oQo2IYIn2XQVlyVPgRkK1qgXiUNuJPEMUM3jQZfaAgD1D3mDqgqoJ2FZX3qGKISaHiAbV5Hu8+g/V3aOZXWOwestg7wLmK84tzVqvVCL6OibLqY+tjPFC260ubkaVUhKW4fR+3MlxbzOWa2E54tkBg3t6P4ZKtRclirA3E0JOSpOIaI6CJ8wLWGSsGxcBTdmiM0qBv2YIfkwQLYFTGKYqsfbkEhAVlnYBAVe3HJGeR2JgRg87l6SpM46tQwlg8WovLBm8sFkvtPVNbUVlHXdUYNJURCr6BEUgrkDI6K2F35UDImUKUwjSP0zelwSicsuPjFOm6t16mZQp0iiQssY+EkolEeYqlkEdTznXoyKowqT2VrchZgj9qJbIVr2fEIPT3FAZwFTkV0Jk+DvShFxm0LgxDYbG4QtPsUk/3UKYipzXL4wecnj+gHSLaOqaLO+xe+Qy2vkbKGlvPme3eYLp/g6IN6/VyBO5GU2YUSlvE6GvLnCyX+9Y2jcwYfcnak2CENK7MQhoG4tCShp4YBkIMpBTZ39/jwaPHPCV4Fu7cuoqrZM2Lb6gAe10fabuetuvpwkAYAWnxk3q69pXahhsptkEWxmiapmF//4D5Ysbb77zPk5NTTBjouxXa7DDEjLYVk3qCtZam9iI/HT1gjFZo7YQNoBDvJluNMqMpVbVgNttjNt1lUu9R1/PxTDKoHMkp0A8b+mHJMFxwcvqIGFcUOnLawGiBoJQALSVHkaQQQRdMEpaqUVb8opRFRWFQ992GSbPDzmQuZw8yaS5RoZNBaZniayG3QHHkMFC0pM6lFKjqqQQgKAEph1AwlYDIcSNJiOvc8ag74SK29ClTYmRa1bhkmNoKHQTwbLuOia6pi2NqG+pJhXM1gRll8Wn2nvkqenqN+6fnnJ49JsWtvYCASs5qvBMmWMxZUuRiYkhF7DpiHlNBC0V7rly/ycPHD6knDet2M4apCKhb1xO+9ld+lQ/efocHj4QhaJTCek+Oka7bSEJpGQcfRYDpLZudIgW3M+I7WLQijV6fwWqRjxhLRHGyXOGt4cnRY86PHnDeb8hKcTjzPH/nJov5jMPDK3z+s5/lys6CPAwjOyAJe6ooKRS0+A0zsuqVEmRBXhOHs1OUqUA7fFVLw5GTBLXogZRaun5JuwljcI+8voaCVkE8H7ViHQsxJyaVpMqrIp64dSUhKylrAVXR9CGR1bgGjaHrO8gOZTQpFpGlmYacQRvHVMuwGFdR1RWm1FS1FeBUgzaZPgbSsCbrwKasuYinlFRYdgOpz6x7IMJz8xuYoeNi09H1SIjLOrMzaci9Yd4c4NWcykzQyLnRx4KZ7LF759NU1z9LtXcDrS3TnV18PaEdBpbrFW2X+HbwhINDfuH0lP0sht7vby54QyVevniIUZn3qsLX8ZyeDFy5eg8GR3YJWxRDH5gqwyYb4mrDr62O+O1BBq51SJSc8AoGZ9g0Fe0m8IvJ8wMLXx8u+MXB02PJ1vIDnXiYIlcXU8x8l+waeuX4na//CZvVivc//BDfTPG6cHi4yw9+9ArWenLJXGzWOO8Zup7pYnp55moKaQyxy7mwf/gJSriJHYcAWmdhf6eemAMpD5zHJWerI1IaIPcYI0x0kTQK+m2UlqE7ham3MkhTIrXcDpJJ4wAuFxqtsVZkhQ71lK01+q+RMwQIfSAZcEXhtMZ4yLEQh4JJGaUMy6VDVQmKZv9wgdlRI2gMrvZiKZQy2RqChYSmxIg2kUgk5VEBMc6vY0bYI2WDVk5AS+MxBZRKaOsFXAhFvLaKY3GwYHX7E/g37rNz/wMOwga76QlG07fHfLoHM6ahd/qM/8xqype/zGe++jXazQYonJ0e0ziDT4X1g0c8/63f4tmTjuIqSm5Y24aQNqxS5AslCYDTw/QfXfDRr58QTaFatTRFsdGODVC98CyvVhNUPeH7P3pFap/FnP0rVzk+/RGvnJyyaxxXZhOaZkZqas6i4uizL8Pzd/iH//F/xNuPHlJUwccARfPyS59mf3/G+VlLTmGsAxSMoXwf93P+WGdM0ZnL8s6MlAWlCCGMTMgMWeGtoXYepyyNFxZnCANKQTVxpDj6220Z+DmhlQzZjK/JWb4+6A5xWc6iOCswsZ6JqcX7Vjsqs4PNhZQjOYmcsjGV9JFWVGMgw2YpSwweiwmKFALaZEIZMGGFqSwxFmEsN46JXwhBRtfkfEEphhQVRjlm7gra7lA3V2l/93u0P/yALieUiaxdzdftnE8Ad2NkYhw7dsrhYsHcQj64zsN6RlivyBPLEAJd2xOVYR0KajGDYeDcN0zbgBssNz464nt+zXFc0T1Zk/XAcmj4xm8ecG/eUdlCd+SZ5RvshUSkg1Xm0bJjOp9TTUXm+P79+8xmU67fuMH9+x8wm0zpLs45zoW2jwyTfc6bCdOdBfVsxsFih/3FAVPlsF3AxkSMG46OHvPP33mND9slb4We18LAYv867WrNzStX2Nnbw9UN8bwdCQjlUnWR87Y+kPtDEGDPGkNd1VS+YuordFaokihmG8b4NFiFsT/XSTyTjR5xEKVQRmOcvkymd64SsM0IUCzLeawti0h6y6iO67uARhNCD6UwhF7Wfi6jfYF4yW6VO8YaFGKrpKzBGi9+fSOYF1NCGYghjF7IPajCF+41+KrnD9895u13TyilQ1WGD0vmfzoU/s2u4IgsvOdHN1/iz//9/zVTDavlkjgEQtdz8eg9Hvz636dJ4hHYxgCucBQGTtyM49kemo0MFFE8ioEh96L46HqINd/wjletIw3CemxqzwcPjlEKFos9fuEv/hK//Jf+Er6qCEPg13/t/8Nbb77JwZVD6mZCGwOPHh9ja0fQivcfP+LB0ZGQB4zB1RMmTcNiNmM622fiatqYOF+e0Q8d5ykxxIEuBkozpXrmeT47nbE4uM6fv/MGWoG3NaGPaAxXr17lu9/6JpNJw2Qy4eT0VIDFsZZ/qpUsH/vv9s7Trz2V6P7/AYPPeYWKdmTqjZ4/RQMOkCSiZraL1hbDhKaaopXFWCdF3bBBqQ1xWBO7I3JaSxIgCaOjIN/5qU+bG5PKrLHkVKidHac00jSorLDOoMmE0BNzwRtHGJIAaCaw7gNKaYZR8qQYf6cVn4FKaeZFo4yiLopGgfcNOQfR0StFsImsxTkn+jWnuSWbQKs7+jqAUVhXUE5jnaD0qmimTJirfVxqqM0UjYfckPQEtXON+vqn2X32C6hmwcPzFZvNmTThVj2lD4+mxGrU6StkX9n6VonMLV9OnLZA3CW4N94+Tg1lnIZdMlNKoXKavZ0ZF6sNXbTCfFOgVB6NR9Ul4Y78FKV+GtTx1Hvt4z5skub7FPTbssTU+D8BBnn6uMZ/XzmNbRoqV0sDUjVYU+FHtRY3lQABAABJREFUE+VJNaMoMcvezVmKtlIgBRQD5IFwckTUDyhk4rlj1bYkBrzNApz1ToxRs/ixaGtH2r54QpIDBSU0aSuJWNpmSeFynv0ypYRzrAY/gdj12NrSdktYe5xpR2+pTGgHYkgw+pa16xk2R1QupEFRVKKuNM4qnINsBGQYQiKZAlOFnhaYd+h5oLHSpHnXjBs4KBqsvc5MPY/Jz2L8NarFHrO9fRaLfep6yqZdc372mJzFoFjrp6mB6uML5l9x+zH/PRinEP/qz/KpXP7MtlBLMZFyGt/vQhgCJTeXnnHOCSVdKz0Chk+ZgKnEkR3DU9DwcvTxdH0KRmsuH+v2uRljxMNxlDza0adhKnHf6CysjsZV1FZ8y4wB7ysMFmcMzhmIeWxMRhlzLKgYSCnTAoqEM7KOjBHKvldIM6/UyNtPGOewukJZhXHiT6aSyOlKyYQo7AaRGCR0aCk6M+RO/O+1ok+Z1bCmpxCzsJMX0ylDVvS9MCy8limxsZqYB2G7Fcu6bakmRmTUqaeZThmigM3OOXbmO8ymhzi/QBHZXHzAenNOHweMW7C3c4X5/vPY5hpKeVCW6eIGs4PrmGpC1/XCsitavD9HqUth+/5t3yI1JoIpitEjwCprMeUkj1eJLCbnROwDIQzkQZ5LCD3DIF977tl7vPnmW/KeA9466qrhT7/1QzabNWGQQKUQx9CXGCWtGU1lNd7YH5umydDkKWNPPGDNmFwnEvOzk4Gd+ZSmmeCs4+rVPa5fO6RyDuuqEVwSZtL52V3c/g2aZs5stkNTz5nWc7xtMNZBEa+gMLT0w4YhbFidHXMS3iWEFbl0QKCUKGBoFpPtREDbUTar3ZgMLqmjVmvUeEDYbRiWNrgsTE6nwRjZO2PMxNISQk/tLTpvJSQap0WCloYMuQgYmp4aSjd+SlEJoxtpfK0jJwPaCkODSC4QcmLJCe+evspJWrFOLUZbdpVGl4JPDt846BI6GjFI1pbGVBhAmxqqK8xufY4r976EX1zn+KLl5PF9uVZyvtwHvLVU3uKMDJBifBoqFVIaQd0krNWcx8l94vade/zwle9R1RXOOYZhkIk9msXigHvPvcydZz9LTIESMmno2WwuOHryEevlGavzE9arJe1mTdd3pKSFlYjsGwWRmhQkiTOngaQViSyvcclsupYPPvyQ+x98yCs/+iHGKnbqBfP5nMV8wb/xF36ead1gvUdbN+7LSgJrSsG6GjtZ0DQ1aEPlJlS+whlLyBmjxYuYElGqp2vXGJ3oNy2FMBYIoz5jHDIoYEgZ6wScbLylKEMY4ghYG6yWYARrFDEnKIpIkgGZFmfcNA7tplUjclxkqNH4KUPcMJ82TKsJRlkB2Y2i9g1gcJOGPGTxBkuBREefOtphDbpglaVLPT2RZd9JgnAxuNJQRUttamycsgkdB/Y6eyWhXIWpFLtNhTETab6LpoRI0Q49v8GNT/0ieXKFZm+fmBV7N+9e2lEs257VuqMPSWw/rk75+3cP+IfDOTc3LS8Cs/mcH14cU1nFWYEHvmZeTTisDOXkAasMzXwiw/LlGiz0qxUnjx9wZdYw81PeXS4ZLiIJzYrEnVJ4uS00SfFDm5kXxV9PHp8DpxpOKs+v624MX7F4FLFb4SrHH3/rmyxPT9hdLEinJ+zMJqyGzNAPowRLkUrmjbffZtJUTJoJwyBeo7EfiG2HdZo0dGxWH9J2T8hlAJUwRgZ2Gj9aavRYl6Hk0c9RWO8U8FaGy+JLOlpgZJFM5gHK6A/pjMVkjXMCotXaYqzFGASs0ZqcRuZsAWHAC2/LKXnuGoWKiqjF0iBnKGpUEjnN/HACSmOnlqIlhRStJTk0a6JOFFvo0wAhoUoi9wrtxC9OK0XtPEqLwZbRRq7zmFE6oULBhEKIQeqQAHokKkymM1xR5G7F2d/4C7xTFbofvEaoMn/Yr/gww83c8dd7uJMSvTP4/SvoXFjszJkv5sx3FvRDIPQtlal4e/4uy+q3qYcNbiiYrDlQhaIyTXYo6rGa05RgYOUuJaNFF8rEkqaOH91a8J0n73DldmbTrTG2YPwh12/egidPuHX1Btc/9Snmn/wEzSc/xR9++9s0u/vc+uznsdny4qc+ywcffcgwtAzdhrOTJ+zO5xzs7fH6a9/mE8/eG+WDPLXiiGkcjEg/J/YCImMe4piia8Qj1FuxGbFKPMJtHj2IycQQcMpJcnTVkIr83shWaijDYnKRFNQMKYofsdYaWwrW6rHv1NTas6gXgPglE4UgQS5M/AQVZb2GHGAMnEkYVLHYKJZUOYkiY+g7ikpYJz60JYdRfmkxVSHrTL9eSTBRNZM+IhUJfMmaZnEdW+1TSmLxtc+Iv+XbD0lD5HjT8nunJ5ypigdhwz+iY9Zrfmno+dvW4f7OvwP/xs/TtCs2Zxv2u4Fyfg5KowfDyfe/y9VXX+eimkCzB4sJ5w38nL4Kn/sCvhQOlg1xOhe1ninoIrY0V4fEJ447uvfu8/rZn/F/6e9T719l//BwrGcL+4eHGGN5+OghB7v77HcBGw2Hz36eu7t7zKdzCZ2iMIQ18XjFJrY86db84Owxry5PeJgG3jw9oesGfFVT1Q0pS4/x4Ycf8sUvfZlmuuDB/d8bCQwjCDbKwcvouZdSwhhD0zTAU0VJuwnkYYPRUqyWLEF81hm2oXqVMygrQWU5QxwGqfmdJ/WJ1AessyMjD0qAPFpTxZhGtRUkSa/CGE1M0qOyDRRVfmSxZvqYSO2AUuL/vCX/bGtVozU5jUQsFN77EVMRpUApCTXWmpMq8TMvOO6HBe+dacIwYaMs8cF7/IP+hIDjrw6GOgdOVM9BFfHOMvU1B4tDTi82PC4rXgoDz59dUK0HeuNRRvFeNeHRzHB07YC70+vcunuHnAu9MijjqbTG6MgH1vFWSHQxU6dIXzLnp0fEFHF+wjPPvsgv/uIv8bu/+zsoBQf7B/z1v/bX+Pv/z/+Cvu/Z3TtgefSI6WzGrb0DqknFYyWKNzmrIkNfOG03fNSdot0Zdd3IIHNWiZduzoSQ2NdWfD3rik3o+Ob3v8drb7/JYvcKxjmquqZqagpwfn7Gzdu3OTo5hZgYhoB3hjL20x/vnP/V/TQ/hqP8tLefGuCr/C4Le4/K7UgTaKcsV4mhT+zvTEixJYUVOXfE8pB21aEYUEScU6RYqGsFo4G4KoGchZ5qdBmN/SVIY2zvxiCGiNWOnMI4zYmA0FBj3saHiydI5T1Dnzk569A2oGzCO4MzVpoH4zFYbLZYFNUYYR61eDLU1gFZ1Ln09Hmgcz3JBKJP4DI9CuugUuBH8FGo24XSg1OeJjTs+OvUeQejPCpXZNegpreYXf8sizufhWbO8dmSzfnRSBXVo/x5SxnWl9NARsAvjhtPTPLxNAhBNo9tAEfesrHUaOiu1CWDbwvEfJz555xjueloeynMGH9264m35dtdpliWMjZF5cc+0hjysU3n3Sapjr+SbVLR09tT9t6IAUCB/Z1P0pcFSidKyqhNwJqENStKOmdVPkSrQtZi2DzkJJ4EI9vMeyubthY22FRrZt4xrzXWgdY1oEUmmaEkSdBxXholax3aCjAkwELGVR5jFSFlMInZRPy5NqtMVQaGGKAkcoKwWmG1FKVpNEXMSZOTI4QlA4XGSpyScYppo0FFsim0VkzPBwXsZ6qZxtSga3DeoE2DLRZdLFCjywG+3KYqd9DuGtbPsH7BbO8Ki9196umMEAJnF6fknMW4/9JT8ePThh/firZThXHJ/NjXLsG8f+n+U9B4u8a2LD9JkFN4JaEjKUZsLT6begTctOjLfywtNcVITmn0mEw/NtG9TNDV5Smbbfv98WnJOh7ZTJdr7ykj69b0FqlIcMJ2wpLoySWQRuAoqsRQkOkujP4YIzMQIymzxmIcWF2Lj5XxY+MiCc8xdWDFeDflRFCIMW1SpC5LwVqEKaiycAids2iTKGMgUdQVZ7nnfNlyESM4Q609k7pmp6qIQQrgmBTeerzWIqGtPJuho8RE3/XkHrATVDa4ZooaDBGwdcVkssd0eo1Js8PQr2m7j+jWF+RcMG7Kzu6z1NObmHoXpRrQjmq6y/TgDm66wzAENqs1jJ6nRT31TZRAoHQJzGql0NZsN5xxn+Ky0I8pkq2mVGP66NAz4CSYxRtSbEgjM7SUzOHV69y6e4+jo2MJYwHE3r2Iz6u1Y9gDl/uOKmpMHVOX63kLGLMdloyg8Mc/tDbSGOoxYKkYUoEuZvphK2EfTZe1IuXAXvM5KEuGsKFfLbk4ekhIa2JqyXkgF5FSQ6Yo2TfU1hfYCjPUWvG+Q1lU0SidqazHaGHhOevkb2tIWWRCxtgR9HPSRKgR3FMNhoYSFJVzkHsq05DCgK48tW0wuUYZy9APDDGSQx7PBLlmKjt6CGlNKQnJZ0g41+CrRqwQ9IQ+Fnrdk3TgKL7HydG71NqyX82pVUXtDD5B7jVET7FytjvtSBEqv6DevcbiyqfYv/NZ7PQKpxcbPrj/mBjiGMYiwztnDd4aRoLH5V4SUyFEKepjSpLmPQ6VRGIt19ntW8/gXUXJielkQhjCuC4yV2/cYRgyQxgIoaNr1yzPTjg7esjq4oh2dcEw9PTDNlU+E7aekh+f2G6xfmVkKDcm3apxirdeLnlyfMQ//PXf4Eev/YjP3rjKtcWC2WwqIVbGoI2V60xJhZ+LML210lw9fIZueQKlFxA8LNlcPEFpqW702EgrrcYkRknTjUHMvimg0RQ1Jog7Adi9sxQUjbdYrcQXcmwYyLLutJYU3GIkdddp8STCOEmwdcIwqH1NNmNjYgyLxRVSv2I2XWCVIWNBSRIzSiTBcdOjVKYtGzalZVN6UpXQObHwCyg1QxvpjQzUjPYsmLKor1DFCq8FVGzcAmsdg+qoG2HSFqCMSdlFVyzuvsjeS19j5+5LxKwwvmIyF58dCY+SddT1QexrxkCg6WLOpGp4jcJ31+f82fVrrE5OWJfAW6bgreWrn/sCv/qlL3D0ve/x+us/4vT9N4iVoyiLGlq6AlUfqNH8zsVDGmVRzpKdQmVNDpmPTOJb/ZmsWwV1VNxA87P1nAcl8g2WnEfF3vkZQxz44Q9f4fa9m6QS2V3MuLE7YTGpKakwbSacrgZeqSe03VI80LLi/rsf8OlPvYiJA6uTE/LQE9telAaTmvbigq49ow/njHxetCuyPxIQpnYkD2I9MVLYZOikR18kPao6ShnDFkBnRr9P8YIkSVKkGM/LNC+FXvzAsiLHMoKGnkq5MXQnYp2XtObKopSR9VxJkELGovodKg9Yj2kKKQwMOAkCQI2MabFLUcbRp4xRmhTKaAWRMSicFqZuSAOWROwSlgmhGzAmo3JhM2TqWn42RIVKloPZlNpb5rMrOH2VM/9F/s//6LeJQ8fOC3dIp6d87+SIyc4Bf3r6hFeenHGrKO40M87sHM6XfPDRA5597hmOnzzGeIe3mnW7xBjNH88035xJyqqJ0CMemZ/JIrdvisZmsKM/V1GGgGKjC0NUdF3hT19PPNnd44a1bC7OqCtL2w/cvHWDr/2VX+Zw7wZqd4+PujPK+RH3vvgF1jHy8NFHWO24de8WIQWcdxKCAbzyg1d5/sXnKboWy5hhYMtSknovklOUgc04DYx9j7VGmO7WiJeo9cJAL4pKNzLQTAVKZsi9hCekglWKiWroUk9EWN0xDVTZoKkwTmybSgmUIkMl5zRbyXdla4x1EvhQxjHkoLDaE2KPMoYc5X3uh0gaAWYKYCwOR+WnpFhwWUBspyPFFNKmYBwwRBkgFiuBelajYyHnnlQUtW1oh1aURkULyUVpwmaJMpn5L3+CH1y9Q/v6R5Su51PzQO42nF9o9oMDp3j7vPBRgSsPj8lHK9K8YnIwpYqRfmcu/Yrf46I/5dvf/CN+2EPsHnD3PPFnYcXLwRIfzIn3T/mlTUNUDkvBqoxBri9yplUDpzrwoyryPdVxOIZb6rGW2mw6rl27RlVNcPNC/eQxF7bn1k6Dc5rVk4942Hascks4mNM8d5fps5/nN//pP0XNrnD94DP83PMv8vt/8Pv8/h/8c+x4hmujaZfnNNbz/e99n5/9hV+kbddorUb/Y33pDw5FakLnJGE+pctaUFGoncPYBjsOlw3ivafHvaoosQ6w1ojqzDm0maLHpOEQwmVtS35KdCAlYs4Y6+laYX6lNCbbayhkam8oJZFVJ/taLgImakf2HmO19FBa0qCVFuDSMAYQKYOTaGnpf8bhNEXCTMmZrg/k2OKITKf7rPOK6e4Ot174NB++9UP+CYVvVYkq99Rx4K8ABrk21+uWth1oTM0/qzX/QvX8jb09FssN2mscme/dOORBjJy+9xDnDZPJBKUtuXQoFLHE0RMzExF2dgxhrI8Kzjd8+Ss/y8npKTEE5osZShVm8yk/+7M/y+/8s3/G7v4Bp08e8u7pEVd3D3jp+l3ao4e8dnpGaWbs7l5j0ky4raGPPeerNUPoKd6Dt9y4c5s7t++wu7fPD197jdPzU95863X+8I/+kK7vMMaSR2Di2vUrbNoN7dGaL375yyx29/nud7/NtYN94jCgisNaM3pt/ss4x0/ePt5P/7S3nx7g0zuk9oKL9SNK6ikpcnJiWG0CJck4zPiIcwVxr5CirSRISdNHzeYiMq003oO2mpwifRRmS4wCBgUbRU6rMtYqyMLK0mi8NcRcyGX0NcqKkkfpkNIjCCjskLk3GOWpXUVjK0yU+HTtNVZZ4pDwVqFSFqN/HWhDS3SR1vdQZ7LpSQTZ/LUaTakL3ksYSBkTtLzyeF1BNkz0nNotMGmBMhOoZ7j9e8zufZHJlefps+VouaQ7eywsH6UuWXkKBNgbgYhLgKQwmtALsCfsvaf0dTXKcMsluKdG5p1MkEaRI7LZwJZabI2iqiybtmNITycbWnPJHNw+jjw+jp8E9i4BnK0ks2xDNZ6Ce9vnsT3wtv5EWwnl9uFtZXEnD9/k7PGbXNnJTHwFZUxR1n70M8ioDFp7mcgYkV04rYGMdxlllESZj5NUkiKlQMkapbsRsJB/XzRkFcTDRRuyQyauRhF1T8gdShViGgjDmth3bIYJQ7rC8VlEdf24yRaZ6BlFshBjIoUg8hPr6fqObBTQX772pfQkl4kqknwkVRkzU7i5xU5koqORSbDKFpJGqSm63KRRL2L0LZRfoO0M42oWewfs7F2lmUwZUmR5IUbx4kfmxIR1fMF/cl9Rl+vkx4E/Oc+2NMunywhkzantJOLjv+wnQD4A6+yY8DmmUClJANbGXG6IW3lvinFM9ZXk3JzGyW5O42N6ynT9+AREJOij59UlyK1HoOXpc98CSV04Z9M9RJtB9g5kEq/HxtMaK4y8EQgij9eFkimcGM9CsYmYCzEbtEt0cSONsfKUJF6iKufxMcmH3cojnZEmQWm0E1Aop0IwHX3Z0A0BPSwx1vOk68lO0zRTZq6WhOys6Doxl/ZOmKnWSAorGtq+53jT4b3HuIbp1FP5amRAFGbTBc7NaepdjHWU0rJevkfXnzOEgrM7zHdu4JsrFBzaNli/wE0PmCyuYad7xBRZrTcis1FW1sI4WMh5a2w7ArFK7BK2IKsUVU/fG0qmZAHXpZmOJKOpvKWU6eV+9DSSXnzfQj9wuL/HMAzC+hyHDdvFoEYGoVJbQHH757aej1yChZeyYb29BtXl+64ur5Rx706jHHOI2FIwjXo6zBgfYwiFV977I4bhIdYI0Km0ACLGqMukdDVeScYaULIWVRaTeK3BKYvTjlyKgC7jXmhRkrKWxnWZR2YU4kdFySLZVBZdDAaPLRU6O5lQZ2HPpBIIfY/dO0SrWqRP7UDK4J2ToYevxPsHJOE0RUIRw+6iI/3Q4iaOqC1diqzLEUEHGBKNMdxsGnxxctaVSAgZFx0TU+EnDocjDZq2s2i3YL5/h71bL7Nz7Vmyn3G2bLl4dEwMiUprfOUwWkBGvaWabfeRLEOnEBMhZsIIzOQsQ4OYRC4sCd2RTGa62GNnd5+jJx3T6ZT1ei3DR1dz894nOFuuaVdnLM8ecXHykPXyjKFtCbFnGAZCiFKclyIBm0ZjrexBGqlVxENUiW/smCKvtWYdIiiIYeD8/Jg//MYfcXNvzjM3bjJr6kugWskpKB+Zj4HmMkF+/Phd1qcPmdSy01mbUEURk7AonYTjYQ1ihF4gO41KmhDFU3dSjYwHY6i9ZuJ26IeOUBKzuiYPGes0fZIBm7eWooU1IwyJ0bdQjawUbfDGY5VH+YbKOIy3KFWoqhpdDCl3xNhT7MjmKQmVDIOKaBcoQZNM4qSckhrDOg7suR1cmeHdHvninGneh9wRugvm8zl1dtje0Ux3cdnSty3aJFRKwrQlk0MgZaiaBW7vGnsv/TzTO18kKY+uZ6iYqScTOYu2w6eUSUX2EKPL5TB0t5lip7vsHF7l+OSIFCO7V69ysVoTg6TzTm/d5Uv/7t9l9atnzH/7v+bdP/kGrZV94bztuf/4mKhaNAWfI0POXNndZdo0xJh58PAB58MgAJrV6Kw4UYVTX3F6dY+Apjs/IXVr2iHQp8zP/8Wfp6o8x09O8ftXyP2SxbRCWc9mteFg3vCpZ+9x/cYhpvEsprvcvvcMzz9zl/7shG4YKMOA8xZT1WxOzrk4OSWFTOqzpNWqTAlFGn2d5BxVApxqLQCdMxLmosfz2jhhoVijISWMLqgkKekhSwJiJmOz1BVZQTGjT24qGKWpjJyhRitS0DSzBlRCVRUasdQpJoHRRBWxCkooaJOpvSbFDSkXbF3oy0Y6pqJRpVBbw9APeKXJZUBnjVMKqwubtah4ynhmWV0YciEFRTEBHTRtDExrjYsVXluMamgmM+a7B0yvvoTeeR5/+CJqckCIFQ/+wR/wwVtvsFmeEjYXVM5R92tyN5D3F7xeLK/2Lf79VzBa8aN3X2MybXBaM5/O0Eax2N/DWsuH9GzmmUHLc0mlMHSJ77EROwwUDtkvt5V5ApJSBBQnMXF8kbl19Sqrbs3tmzdRSnMwX5Bz4o2PHvL6Rw9RxokfuDMjwK+IpYBzFGOYLvYgZ4a+5ez8nG995wfMdq+KLDYH2uXFeO4Ko27bU+Zt3VAKoW2Z1UigSo40usJHgwqayjfoQeHHIApvjLBwi/RAEzuh0hW1bkTmqwvWKZwxJISVFUOLrzxkkZnnAnVVM4QWiyZ0Ga0rvBEyAUm82i1alBxo5CQ2WJ3x2gnTU4sEU3UyiPBWfFC19fI9LUohlCdqGcjp0mK1JUYBPlLuiUaj01h9lExeHbM8PcbmgeV6yeTwGt/aGH4QIqTAut/gak/THDDTmuH8nKNJzd/veiZvvEq+/wa+rpg4x7RyLBY7zK1j/uxzbMKGdw73OLGZZQg0JTMkx/uVophMMYojkzA5o4vCFTAlSR2lMh2BdY7cD4HOFDb9wM3dfRZ7u/SbluX5GdeuXcUaQ3N4yH//3/m3uX71Dteeu8d/8+u/xisPXuXa7XvceOHzfPJzL/PJF5/Hec+n/uIvcnZyRl1PmC/mvPr6j8RWZOjRxtB3HScnS/7yr/5NkccmUQI1k4ns26NP3XZ4kHOmpCB7Uymj77+wO6sxjUvLhUKMcfQcj5DlXFe6MOQoVgE2i4rMZLL4k1GKugyT25JQrFYYV6GNhGg6a3DOjanimgwMfRz3sozzYtVTkuxXGkNMw/iYJQla6mgZsm79BGPsBchUQoSJg6Rrm4lGKS2s/ulNVmcbuiGzWq2YNhWL/V12dr+CIfHuKz+kns/wYSCtloRZg59NGLpAxZqDW1M2V6/yndNTTnfnzK7cojSeEi44N2Dqmojmo/c/4PqNGzTzBcbXEq6q3OiFWfCl0HUbnNYoVTg5DhzsHbAz3+GN117lL//lv8Ibb77OSy99iqapuXv3DuSMc6Jg+CgMxMke75REvnqVeVNx3vW8+/Bdci4888xzvPDiC3z13l2uXb3CZDpjOpuy2JmPw1XLvU9+gtl8zn/1a/+Ef/p7/5yctz1rZNgsmU5qHj854tHDB+xfuQLAk0eP+PQnXrj0ss/F/kQo6VMa03/X7V8DvvfTA3wXF/fpl++IJ0oxOJcpVKRY6EKHsWJePeSCM1qSqJKYy6pUaPtCyIYQMtbLE7ZO4X0RKZlRGOPIJZBRxKTo0pjgpmSq452kqFKKtC3aoEtBF0m1Mk2FUy1T5lwxVg7xmLDFYtDyuyjkEkAV2qEll0SvE53tYZbIZkCNSXJaKUgObxuGIQrNNRVUNihd0yjHzM2xpcIgclJdanCSjFsdvsDuvS9id2+z3AwcH10QQ7pkTuVxcTMWJhIgMDacYxObPgbqbT9LeikjC2CU0SD3R7RlXFWXQtjLxbZl51VWM62MNN5WzNW3wwYzLk4Ywb0tQy+PwQcf81fb+rBsWVZb9p701T/BpvpJFLswMgS2f0tKjP0GZnsVtZPmOBZF20uybM6deD1pTe07nprzGnLRgEgCVRBvhFLGY9eIuX8oCaXjqOV0aKdIdBTb07uBGCIQxwni1pcrS7GiNP0wiLVLClh7yOl5oi4FlROuAmfk3VDji+kmjlQSxWSRl5iE8T22m4BXBFsYdI+eFnJVsBODmzhp4qJDR4mWL8pSqx28uo4tz4A9xJgFtp7hqwWznX0WB4dU9YQhDJyvVpQxhMEZN4INW6Duv+u2ldn+q762fSO3LJTtt5+CbE8px1yukzSCWtroS3BPNr8xMGNkEm4DW9L4mseYLlkS24CF7d8o4/rfPpfL4JdSLh+vrHV1uabVJbi39emT+6FsiKrDavFfcWOMuxp/n0aM4xVyUDvtyHkYJ2fiAZSVIhPHQs2ibcFgUCWBcWifQUWcMdLEkkS+QRqB0EBU0GeR/GaV6UOgT4mkDDErJiFwOL1CXTfiCZkVqhSUVVinqZXHWYt11QgQdKSsabtAiJn5rGHazGjqGU09RVlH5WcUU9HUE8LQoggM/ZLN+oIQAtYv2N27ha0PUKqSSPt6n2bnGs3uDbSfinfLRhh7Yqwom8y2eNqyoraFtlbmY8ArT69fEGBvu7BGD9KcJdnMWHsJ/m7Zx+InMhCHQZiWIRBTIRdNwaL0KFFVIgMTtufW/0RWSs6FtPUCzGN4U5HBix6NtbcDFK22RglbqwQZvAwxi49bkYJPlp6+fE5KSWIrJUi6fMki34dLhpQ1klypMUQyavSloogsRI1nmcZcXoFFCctKFS2BTwM0zgtYbKxYTRQoGpQxUCzeeilcRsaqUoEQA5skIRExK1y/BnWDdtOJf2QR8Kz2tcjclaIoiGlgyAWMJPoVE9mUNSfdK9hjTavOGPJAbTST4pjYCm80tiicMgQFjZpR1xU6GbR2hKQpZYpt9jm8d4/51eeZHtwhmYqzizWb5Rk5ZWpnUE6S2/SYiKgYz6dSRt4ml4EPjN/XSj4yZbS6iJfeTTENtF1gs16ze3idJ48/wjnNfDFltdxw/fYzbNo1D++/w/riCbG9II3+j5IgnrB2DMYZfSTNOGATJihjarxm6+eox4RbO8ptTtYdxxdr/r+k/cmvbVl+34l9Vrub09zu9REv+sxgksxMMUklKVEkZdIq24IawAXbMGpgoACPamDAE1v/hWcGPKiJZ+4AwyoYMixZlkouySVSbJJNMphJZmZEZDSvu805Z++9Og9+a+9zXhY9KMQFIt6LF/ede87ea6/1+31/36bEyM3zF2yM4zvf/Q4XF+fC7pXNTMKHEjJEW34GC2uYUmgbg1OK/TQxTOBtYYpUKa2ixCgy6lKNw7Vi263JJTPFkVXforJCO8U0jkQN1rR0ztK5hmhE3m1iRGlNDKN4CDtHYxucb8kx47Wm32xJOdM4K7JJa9DK0nhDjBNFZZq253ocyVmRxj03+8xq29JSGLIi60jSgbsy8unuljZ7pkNi7F6wGgYaq/CloW3WbEk87C8Aj+/W5CFgx0RJI5vztQCkcQ9EwhAwZw+5//436e5/DXfvCVNMTGFifXGGNo7OmTpYTZwOlRTCqtVa2PrC2kioYY8umfV6zfWra+4/2vDGW++gyDx//pLz80u8M1zcv+Rv/g//R7z3m7/N/vaWL758xmE48OTzT/n0k0948eIzvktiGEZSDIzjiLGZNx4/FLsEmUAIY1kp+m7F2XbNq1e3XCsJM9nd3fL9P/s+f/c3v8vnn33B7W5i4x3GNDityHHkvG+4d+8+v/TLv0Tb9RTvCCHTdStCCIz7A0yRtvNopRludxz2A2Ec6WySVEQnz6I7SbLNZAx6GbSUIjLIxpqaQC4D+ZSBICw8IxQlYc8hnqUaqoVCxlfrGqPFVsHbhsY4Ya14Q0KOIwkDOYiUuEiDrmwj+3mSIa5zE+uVIanEamUoWWN0hyqacNiBCRz2d5hYWTElorORYcGYyXugEea0My0uS7qsbQy22aLwKBVFqZQc7WqDOn+P9sk3Yfsmpb+gYNkdBtJtYlfuOFuvubn3gM12zSd/+WdMYUTfRV7d7cjXN7Knq0K7b1ittuTbjHkGMQaxtSGTtbBg+qLQynKYIo1VxGlEKcVnKKYYUSlilewfhUIGsjLsU+RQYMyFtt+gXcd2c8mLn/yAd9/7gDffeocf/PAj/vD3/50wl2yDqrJpqy05FjIJ27YobThbt+x2B1kkObK/ecH3fu+/5jd//buctYa7Vy9kyJDzUlPmGkRVMXSGMdBER2vWeGVxwbKxK7QTa4pogvjUWrGS2pSVPKFGwJEUU91vMjkJyJxLJAAqScBaiYUU70AHUtas+y273S3FaZzx5JiwUWoT4TIrnOkqeVX2/FzTixwWtMIqS55ZqtS6VRW8bclF0zQtUwZDSxiusQrGwx6FhFwN+xGrYMqakhJegy6Wu5tPCbsDDkUyLdGOZL0hMXKIO3746Udcv3xJ2zR88LUP+cmnP5YBZc7Eu+o3bQzOeIxSNNailaL5/d8npUhRijSIEuKgFKt2wxdh4rNnr5jSni+dpc8Kj8Kh8FmTdWQisSPzQkV+qhSYBu0bum7F5YOH/NF/+D1unn/G9uxMfn7T8fBrv4jzLddD4Nu/8Rs8+uB9Ygicn5+hKfzkk58Qs6bzrdhmDHt2JN5++obwDmpvaoxmd9jx059+xre+9S3+5A//gHXf4b1bmPJQSDFImallb0pRhlxS+4viZBoCxIRCehJjNdqJHNc6i0LO25ATIOFIpIJKuQ6wxZ4FDTlXqyujpc5E+vu2bYW0oMA1dul3Ui4YK+xjpQxZISxypSXgpyic83jXkkvBO1fJotXuJmcgUepnQoE14oGstaNpOyiavL7i8t5zfvLRJ4T9wF99/IyXL17gvecf/MN/gMPy8vlPGe6+4P/6n/9vUAoePHnC9uyMVed5+/EjVrnw1mbFD55/iruynKmWYhtuX3zO4/UZjx49YdjvePbsGQ98S+87Su37DDLED3UoaJ3h5vqaFBPbzYoYBr74/KfkHHnr7Xf4oz/6HiVHvv2tb2ONom0bnjx9jx+EiX/60z9nde8elxdXPP35p/yNe1eMhx1nZ1sePnzEdr1ZasHdYeTZq1vcF89pvOQtGGOZXryiaToB/ZzAZo237Hc7nr94xfMvv+Txkzfo+zXPvvySu9tbnjx5g3Gcln7HOQn8nAkMp8Gk89fcSc/M9a/69ZUBvlgKRcdaNovnkyJBckzBYkqiaRTkQijSnEi/rWi9YmtNbUwlvOBunxmjBp0pJTHqCWukkXdGYbTHKS+FY0oCziShPVsjkjiVDa3vKFPBZYtK0HokGKMkrFWELKmIIWfQMIUJbObAxHXaU7yAVJaCy4aumlcatLDYrKYEzUqvaLWnFE3rHI4WlSxmajGmQ6sNtJe0V++wevQhzdV7BN3x/PaO8dMvoR4GUnwLU0hR2SGVSnKUJlZgL+cqI8pH8GyZ1B/ZVAUB9wpFTI6p8e56DsfgNepx1xj6xnJ9N3CYJE5A4uAFONN1QZZcju8nH9NTXwtPmEHHCvYtZsgVsAGOrK86MTya1lfQr64XmINFLGnKhCz8k2JkQ1QojLWkItKY/aCxrqBLAuUoUVK1iIYSDY01KOVRWnG3j9y1AZSEDCibOIQbSXEzE3E2jS5yHVPIaCVU/pSUpF5mMNYyTQVVMiuvGZPC+QJZfCpzyXSdJcUMHnKJFJVJTST6CF7TmgOHa4vfWvSZonc9rpMpjlUeayy6NJA11vaYcE5JF2hzj6Kv0H6FMytWF5ecX95ntTlHGcPhcOD65roeVBptZm8muYcLvHrE6Zb/f4LYHf9dys/8cV4AwJltOYO4x9eYAWFZK9pIs5lrMtU82Zi9zeTHlIW1J6BNOjFMLlWiMYPhFRCuwHA+fY/wGjVaMTfWldWk5xj54zeYKqE1SGFqlBGpQUmV7ZgFECgZW72ZjGmYPYPQEVSmWNmbErEywQxaB3xpKRRCCUQzyjS2qOpFWN9IlvedikDDKIXJlqbpRVKqaxp4d86m6xinCdNqjDJ416CLJLLlPHIYD9VbSCSA69WaplnRNGe03RptCmEYse0KpSzkPeNuT4gJYz15Amsv6FZnuOYC3W5AdzTbBzSbR/jVPYqxjNNE2u0r4GDrtRdQK9f7PT/+x2lW9ddbAL460ChFLkKZA1LykQGoKiCb5yCVTArC7gxhZuqlyswq4q2kLMoVDLNFAYv57ezRlHM5BhUpRB6hZHpolAyoZpBvZiIqJLMgZ4gpMwZJ5YwpL4e1rqy9IwhQKtNbEoSHg6wTlRN968l5IpQoDQgJb738EKNQM8OrzGCQo9XiqZJVXLxRlRaDZ5ULPkkBa5WiZC+L3MqTm0tmKBOZRJmEJSEFr60TImGVxSyG8Fo5sRpo3QLIZ+o5bAyTKdxOzzkkCXc57PeSYlhewZ2isxpbLC0WVwreFxoctjjWzT2chTAknNpQTIPxl6zW92nOn7K6eBPbnzMkeLk7ME4HKBUYsoYZv2f+dW4E61rJpmByrn44mZSs+PNUqX9ImRADMWimMTCMI2mKpOGOcX/DG48e8OrTM6Zpx6a12If3uHdvAzcfcU8N3Ntm2DRAu0hMnZVE18ZXr2J9ZO0pJXJ0a2c/TysNsXFoaxdAckyZgsW5hm614tH9+5xvz2pyt8hwY02YLkbS5W0dDC5p8/upKgIsvlsRy0uogWXTFHE2S5VgnQT5oMgp01mN1p6mMbhRkYJh3W/YD7cCVGhPoyWgZyoHAnN6cGZlPQXx/3OASgLAy30pHIYbAMZJfJH71svAJIgnZu8ym2ZL0olI4Hp/B40nErghMeaJsoesPT8d70iqMN5lOtWQbzRn7Ub8dKwkthal6TpHSYFSNGajKSlwiBN52BNSIbuG/v47XF2+yb1v/wZBeZq2RbuGi9UWpR2oulfktAwuQWorioBIwjIWX89cCuuzDecXD/jxx5/R92vudjuUUmzPzqBEYow8efKYFy9f8fz5Nc+fveD582fc3NxwOOy4fvmc4e6WnPZcrhvu7m4xSmTeShtsAdc1tHixrQBU4+jbnvPzC754ecuU0jIY0FozDq948fwLrq4eUZTm/HwFu4A1ivV6w/riivX2HOM6ilKEMdB2PcNuhwoRFSJt69HaMN4NTMMkW4Z1uOqykGMhqUJJ1euz7n+ZXMMw9GIpsx8S1KGYku0O5WRAIuCLQafCWb8hpQljhCGqVaH1Fu9aSha5rtZK/HxVZhh2aO3ltRzEHEA3GAcOB7oRMEsrrHeU4ri3DVjjsbSUklBB7pEtkQZhoGdv0CER76BzGWcsbbfBdQ5lxCvLZC1+vVZDMOSDeP4l3RCbLdP5W/Tf/E3M1dvchoIB0iHSrRra7QZtLVtr+LkP3+cHf/kRYYy0/YrDzSvOzzfEUrDaElIkpszf/NVf4z/7z/4XPH/2jD/93vf42tc/pGsb/vk/+2coZ/jlX/0VmqLYnJ3z8tUtOQd+73f/a/7493+fP/urHwOax48eMYw7xhCqTZLIdG9f3tG0HW1ObLcbDnd73nzjHR5eXPD1r3/IECLeKobhhsOdeMLKeW8oGJJpxC8O8be62K7Z3d7y4P59nr75lG984+d5++kbvPP0KXmKHMbj4HWu6GrE4ALwTREem3vYPKBRpAxrt5IhgnMcShbv2RSIOkM2jPkgapASZLgfZSgHCqaIaxVWNYyjplceZxLGtigsID6L3kpNuHYiH1UlY6wR4C4JOyqlREZhrdRxEj7pCIjsXFOgyDMMGWwi5T05KA5hwDhNeDaw++Jz+nzNzas96c5g7F6sV8aMjhrfelZvfR2zfSj9wu0rTLyjaxom1ZJeCPNQPMMaCoXdYQ+qsL284tXzZwQSN6+uUVpzdnbJb/1Hf48f/PkPefHsCw7jjusqafXeE1LEWc8X04hKexqtCcCrUrhRAWXngWehaeU8Q4uth/MenxM5jOQ0cbh9heEJb77xGP34AZuLK/KPPublFz/lP//f/W/R1tUk7ELTNBjn6Zsa/OQ0rl2J9Yw1GG1R1jCFQNd27HZ3jONAjANqMPzR7/8eYdrzB7/77/mt3/h1vG+YQkCVXEkFqiqCTtRkSgDUlAr7w8D1DTRF4XUmZVBJVHshiS+/hA9WMHoI8rq1T1JJoZiYxhHrFBpHkkmu+KZnjbENN7uEdw0xQdO22NajjQCtcZKwjVwyvrF450U9aFwVpWSRhZck+5aypCjsaZHkCrHDWSuAoTGisoiFfBhIY4AYWXmPNQ6lBkpOpOnAYTrQNC3nV0/5ycd/xeX5GTc3r3BW88PvfUFIkd04orPi+c01xShiDPD5X3C43bBZb1j3nlfPv+Ds/JL33vsaH/359znc7ej6lfTEM8MxRg4Hqe8OcWIahLl+tl3jm4aLy8vqz64YhgMvXzzjO9/5DtoYUkr80nd+mXGcWLUNtvHoYnj57BUvn31J27Z88sln/MUPP8E7x2a1YtX30jcZwRNc46W+NgZjDf16i3VePg9Sx0xT4Ccff8q3f/HnefnqGu0a/vAP/g0XFxc8evSYME1Lz1tKzXlYet1KemDhXS0N6Az0ftWvrwzwGZ1RVvxUUixoq1FZ8+oFtN6hrFD0c5GNN0RFDJpclHjhFDGn1zVF5nzryMT6AQUNt8phnKHBY4pQrFe2JelM9pnG6SpNcjLpywajOnwvKZYxF/ruhruc2OtAzIHAQDaQVUY3gp4Xk0lqxDth5XTOYUXIhFOOkmC/L2hdWFnFpukxaYXTDSoXzGRRymPMGmU3NJfvsnr8LfpHXyeYFbeHiWcvD5SyX5pYlBLAq6SFJTcDe/PCiHXDETnuXFSysFaOCbR1odSFM5OrlDouKJF9iQRyaaSpCzArXt0dSKkChUpVZsERbT5Kbk9CDU5+nX2LTkM15ga85Lw051DxO6VeY3jJ/1JHIHg+xotMO2z1THPGghYfI2vkwTHaAQVtFehcP6+VtOWS8VaiTL21oAzOJG73I1lnlAnSkJbAlAeKqvJolSlJrqE2CpOETm28pPa2pkXrlnXfM5mMMi0feUu2CeXEJ6gg9yeQMJ2BJjPFQGkz+p5EtDdNh0qG5qyhOdMY43GqwThJqLTKo1WHzht0PEeNVxRzjrJn6Lan32xZbS44u7jCNx1TjNzt7paEKGPqBIrj9FOxkChZFg8nxdQJivfXAXuvgXczoFcbt/kb5783r4XZtyxXIGt+Bo7+f2oBCQXMS5W9N8tx0+vgcUpHjI8Z7/vr5iLybo6HdvVDOGH6UK8NBVRdL1ZbGSigUQjwUaoBtkYKVaMQmWNOKJPQLqP0DLxHZhhIZWEcKKWp+iJimUhRgiMKmhxFYqSQYB5nG/FZKgJgaC2+HKqyxqZxRJtOWFhG15AQT2M90ziRy0gqYO2Kvmsw2qNMg2t6uv4S63rCOGG8wbkAWRJfUUpSnqeBeMgYv6Zt7+FW93GrS5rtY/z6HsqtmGJiP00UROagzOvA3pKkXGQ6LEMFjnvgfE+YD7n5mU91cn+8t3Ma8gzYzJLtGCMxxKMHVhZj+7lxRIv32jzYWNjLdb0jWDypFFKGUiorr6aIa6Ort5J6fY+qMsiUC2PMTCGKtFM2t5Nn7LgmZyuCmYOgXcHUYAqrJSlZF4dWHqPFgNuJNlz+rpVBEFquTwGGPKKVAH9N01KKSNuk6JO0tAwc1EjQE0MKMBVS1hWw1Ohi8LrBFlmH1nmsRmQlxhDTIKylzQqdJR0wlURUYk4+lgllC7s48mJ8RcwJ7yWERE+GjWrxyrOhw1lF37TobGjtlqbZ4m0DrCml4DYNur2i3T6iPX9Cu7lPUJbdYWJ4Vfc1wBu13Iv5Wqv5Hp02hZX1WQBbh0zzOTbvNYuvU7aUnMSLNTlybElxRYqXpPiE//i3fpEURlJOtYjO1TIgkmJiqgBvQaGNFZmttSK91QpylL1CyflkjK6yeAmniNmQtAAEwr7Tyx4yy9blPZfKHpN1WyrfxtWiUSsJ5NJF9imnDV3TkKPDFkNruzrsKTg94r0wdlLM9VpUw3hV66VJo4ti222gJNZNIwEpYRSZrIJDGlDWEKbAum9QCEu1aT1Wa6wuOAPWOZJKDPlAUlBKomgxmHfOcKMn9inwwF+wdg2HGIgMdF2Lb1akMDGUAtqRJ81lc8WrwwHfWp72T7BZ07qW3qxkXXtfU7oLKkVySeQwkWMWqKlY1u/8Dbbv/CJudR//6C2ef/oT3PaheP9ZtwwdcsmkdBxU6pp+jZJ1NE2xhkBJcJQ1lpgzYYr4xtJ6zeTl9b746Se89dZbYkifMt71/N7v/hFffvmMm+vnlBS4u73h1YsvsSrijCaEgTgFpihD6lJksLjMRBU4Z+jahu1qhdWaxIQqkf3+gFIa6xxhCjx/9iU//PhT/uIvv0CX6qFot2zPzjk/v0I5T8IwZUXRCuc7xt2AigGTC+2qRyvN4W7POEVZx9YxTAd2e800ikdoQQbwcl4qlBYGckwitVXIEFbVBG+rNK3XWFNwzuCtDNwaq2icp/E9OY9iy6MgxswQA0NMlCxAq7Wi2tAodMmkkiBnbNEY76VnGTK+6UQFgvinphBJ6Rlv3HfoHNg/P6ASqAj92uOSRk+FEB2ran5P8PRthzcOZxw6KXLQuOzw1pJHQ5kgqxXl8j26t74J24f4i4dMpiX6hqwNq3O/hDXNgWEZOWfeePyA1js0PSFdcHdzze1uz3bdEUPEtT2H/civ/a3fYLM+Z9tveP/tdylF8+LFS/6n/8l/wjiM7IcD+9s7rl/dst/dMezvWHee9999wnbtCWmipEhKllxqOEnORDTZeHa7gZwzw35PzPDJZ1/wq7/6Xawz/NX3f5c0Hjhbd6gaHFQU7O8OHIYd1jfcf/QG3jnW/ZpuveZse8G9q3tst1sa79GlMI2REUCJYLsUqpn4sefJdXcPOdMqjyaBUTKsLIGsCuMUmOKI1YkhjssQRDvxcCyqEJlQqqBNI2qnUs9iNOfdFp8siPqS1rcEMjYqzvwZXmlcrf1iDOQxMKCq9ByMqczAqjDDCOicojB6xjCijHAkxzCJBDhlVDbkbMhZ4Uz1koxS24SkyUFx9uhtwjhCyrjtA85+7tcIpiUc7rDrS3Z3O3jwBs3j93hQvkf36TOef/lTVusNSn+OKvDlF1/inBBmXC6LNFhp+KVf+g7/8O//I7Q1/J//T/8H2tZgreaLzz/jH/3jf8x6teXP/+RPeXXzko9+8EP+5Ht/zIN2TQgTwzQwVauAojW6aXj0xrtY2zBNIy9efI4KE4f9QIpw82rH/QdPuLy8YgowTf+WcLjlL3/4fcoyWFe1D6se8NrgnBdvXScertvNlvVmTdf33L+4YLe7o+TMMBzo2hU//fiv+PTjH3CxPePnPvw6z599KbhBEVsTPXsp15451rpA1Zo8TqEyhxUxi5/0YSzc7SPOaXxrcNrK/lbrvxAmvJWBqTJgbCNqicYJGAgY19H0K6mZlaNrxUdaATlmnBdWTkmKfuUWtv80TigKKQUJ/aL6MWsjgxZlsd6TYybFgDaKEoIo86z0TjEXtLGoKlve7Ubs3SvubT5kc35FLPDy+ZfMHul/8kd/xNXD93n+4iWffPwjrPMYhfhQOk3XtLzz1nsoJ173pSiuXz0nhAON7rk6v+DVzQ2vnn+OUoaz7Zrb25f81UfPlx4tF8X77/8cZ5tz9vsdN9cvSXFCKVGx5FL4zi//MsMw0DQtP/+NbzCNBwH4YySlkVcvv+D25obGGEKSc0G2lCIy5wroO+fp2pau6/C+pe0ajGtomo6Lywv6fkW7WmOM4f79h3z5xU8BRYoJ3xr+8gc/4Ne++yu8+94HfPzxT/nLv/wBv/Q3vkXXr0S+vYwiCqW4akN1JDictqlLd6FE6fRVv74ywCdgSp0eqwJJFnfJimGvUN4SJoXzCBkD8TeQMScUDK9uwXnNtlN4ryip4JxM1KxW4qGBxucGr5zo8/FIDF/BFkOmYIoUTZlMSYlpuoWSGXOmbw0348CrMqJcQnth4qgiN1xpkRDH5GSSbhs600IyAh4pS0xgvMKqlsas8KqnGJEQ0Xpss8J0D1k//Abtww+J/oLdGHnxak8p02tgyqmc48jWA2apa5mT/XKVDM3SobyAKcCRAXfCfJsb5ddAPT3/U+VBSrybrDN47whT5HCYZi5WlZ/pKpeYC9tTUK8sfn+vMfcq6LL8/oRaLx/vmGYof3Dy3ivgItenpuvW/18QllzxmtaKd4/SQJxorMN6YUbkIKzElIXFUwxYk5hCEMlxgFElhkPm7i4RIlzfDhgb5R4pMSf3RmNyQZsiBtDI1NVaMbH1qqPOZQUMwaLCRIojVq+4OySijWQthb5pFGMstH3LalswzuI7S9Os0aql0RsatwZlME6RQ0Frj40NqlhMOgcuKeWKwhrddTTrNauzK9ZnF7T9ipTFV20/3i6AmamO8gKO5AXgOl7+EzDuZ8C518C++V5xci/rZDXPjKSfxdXKMU1Z1rk89zHG43o/YYcu4F6Wg+YI7tVAjZwruDd7ZaXltUuZ5yDH9TR/lBPouz4b6ri+ZxbW/HfqP8ZoQinkkpiiSChTShglko2cFIlq4J0zoDBWEgZVghwTqFzleHUCrpV42WU4DIFNc0ZJLygoVNE47QkFbHF0ymGdquxQLeBOUjS2IeYkgK/VdE4YfV23Zhx2hCBeZ4NyAg4Vi+96rOkwbc+qv4/znRTG8Y54uCVNEQ5SPFrjsKYhxUxOYNsn2NUVbv0Qv3pAs7mPataUohjiRD4cQNdQCaUpSjMTz2eGXaZu1erEbqAc7wmVJSxDnbzIcSingTylDhgkSS/GQKyMihRlv4nz3lNmwLn6JtZ0gGXJyRWv612GOzEL7FZqIAFllk1SB1CzJFf2pFzy8hljLEwxSZJZBZxfe8LmIUzd/7SSEIL5+dtNwiAqOeKdY58mnAJnTPUBy8KGyQiDpUiqsLES4mSrX1BWMObIYdyREZ8rlMYbTYmKWBKZjHcWjcVGTUuHUcjkWSlyzGQjZ24JkWw0qShyyJhpQCvHmAspHci6MMYgcmKriCYSh4mYM71taJ1j43ta09KbNV4pbHY0ShLHnV/hTI+iQ7sVxbTYZoXt79Gfv4ldXTJhGIaJ65thGWRpyhEkrld59jnjZBuYtyO59tWLhgJFyTRbi0eWKqCsFPWmZGGwliqXSQKm5hhIYRImcQqU6rk2D6+EuZkYY8EnBcoIi4iCKqkylzIlR4zKmOqjaLTI13NRxKIIRR/9Eee9SwlIN3/OUs/hpDJRyzMiMiMtP0vNvbD8uUh/9DK99+2GFAbxp1KuetwYcpBn1Gnx8wtRJEf7UfyUvdGsmx5N4m68BV2YpoT1GooRFkOeU5s9KWpSBchBS+iGNiQtDPaQEkElkRIr8RwaUiSYyF2cKNaxTwJCDzHh2laY91ljcsuFXzOlTLtyeL3mWxcCELTtGqcEcFPzPhJG0nSgVMl0MS2+vWD15B26x+9gto9hc4lyDeuLC4xrefrhOc77ZTHN+0rKcpLMgO2sbAhRfCNjPZOsFXnufnfg+ctbbm7uePDgDcbx36G1ZbVacXt9zQ9/+BGQOT+7x0cf/ZDD4Zo47hmHOw77W6zKdDXMZBxlcIHWEsRS2ZGmNi1GG1rvaVvxUp1iYUoSILPqVxjzSmoYCjnBfr/js88+Y7t9zJMnj3h8z9AYhe96aWiz+IgqK+syHg64yhxuNx05FQ63e1KCru/BGDAWFUdiUuSkcNU3UQ5kaY5tTa40VstQQ2VWnWXTtVgMpUSMVTJcUAVvFSnJ9T+EA1Ma6wCoSBJ8LLRNU9nyYrsSY8a3Vga0psO3F2QVKPElOSYOecRmhUmF22FEt54UD6iSCVHRuoYSNakYGmOw0eJvDehM11jO2y1Nt5WhgdJoMgxAFF+tkCy2OyO2Z2y+9g3i5gnm6g3s5pLdlFhtNjSNY6MNqkoCZyuBENOijpmH+T//wXusGk3RHZ265MZ+zO3dHrXpRRadDni/Yt1u+P6f/CnDMFKmA+TImCOQBBieBvZ3d+x2Ow77PdO05+7uJcN+RwxhGdRSRwZojfeO1hrOkxA1otWEMNL0HV988lcw/QJTUBx2e/r1mof3HjAd9iQl6qiuaTDa0m7u8fjN99lsL1itLjDe453sNxTFNNWabhn4zc0xi1dvnnuCOrwuSrFLIyYdpIbxmhCF2Z5yJBIJKZNVrcfJeCXeuSkn2sZRBjhrz9nvbzCuEWuTZFmXFlD4TjNNCa8czmRUkhAVVRJjDU8qOeGMZj8I63EOR+waTyqyP2gtw9zGNexuE7txIqqI8zUgMlXPdWVpnEcrizeebnVOu75Ps3kIKRGuX0BImE6B99j1Jbd3B/KmY/3GB/jLJ1yuz9C+BWN4/8s7/ugPf4/9fsV+v8c5z5gGPv74Y3IuaGtomwZjDTEm/gd//x/y2//R71TAJPO/+if/a1IcROp6ewulMAwT93/rt1AlE6eJH//oY3Z3e16+fM5PPv0RH330EZ9/8TnjOLA7jEzjgbbtUBjIkWkaWK0bXr56weXuARePHrPeXvLs2RfEOHK723Nzt5MqUavXavVcz3lrZP9wTthoSol1i1aqAlxSq43jRIiRrvc8fPCIX/3VX0MZzYvnr4Sl65ykJdfncFat5RzJIUDOxHHk5cvPqy+jRVtVJfiatmtlKKgkGC+mhPUSztmu1lX1I8w+Odd1DX5syEVhjaJMhUwUu6lpoGsb4iQDnFiQ3idICKPzMA4SLOpq7ytnrEaphhwj1mhCyAzDXvqIUsgjpBgZxwgJwhTIqXB+cU6/WZEzKOPQGh61ilWjGboV27Nznn3+CaVkvve9P+Y3Lt7knXc/4PrVc7LSbFYNwzTyyU9+xLZb8b/8J/+E25trrDE8fvyY25tb/uovf8j5xRnf+LlvMAwjP/rxj/mn//SfgpK95JNPPuWTn/yEw+HAmOHnfvFv0Laev/yLP+PV9XOcM+xSpIAE+uz3dF3HD//iI959922+/sF7fP/PPiKnxLjf89knP2G/39E2cg4bK6FyxhjxDA4TKaXFg75rGy4u70kdMgwobbl3/xFN07M+v+Li4op333qHLz//BN+2gttozTQc+N3f/X2+/a1ACImvfe3rfPOb35o3KkDVPnYeVpSKd7wu133tSykJtvmKX18Z4JsmxTRSTRsVVmXxHbOOxhl8KxuWc7NhvviQWaUgF7yxnDkvsjIDRhkwGV9ReqM01okU0huHtU6QU+coOdVs20LOkRgDKcsmXlRiKDKhTwW2lxqagukVvrXiS2U003gQv6yksMayaTpMchjr8fQy1YlAUfTaYY3HlB7ohPLv1/izJ6wffYi9fEr2F9wdIq8OE/Hu1XFTmoGRecSKWphxipnhMrOSyuJhF2MilTl99vTvcwQmXrsjM5ChasEngN7M3JstoKxRbM9WkqS5HxhinVKUI9im1THJVuR1RyZOqmyHOTwjVYZequyqGfijHD8bzIVDZVwsC7twNNOfv5arVgHCLPIm64VVYI0c3gmUyoxjQCnxjyqxkHMgpox3EEjEEDnEQMmWkmEYFWOYBGceVQ3BkMTTxlphcWlZtzlHeZ+WyuZRWAoxTKhG5CdjSmSn8E3Ltit8fKNYP2xRRqQWyosfi0HRdD06dXjdUPSm+iV6VPZo16BTC1njaUi5oeRzlD3Hthva9Tnriwe0qw3WemJOTDFyuzssTL0ZPJvBshmgW1ZKOZGtnYB1xxV0lNguf3IC7h2BvaPnnVq6a5bXm4MJjDaVtSdrYA7CWFh7M+hzAu7N62gO0kiVvbeAezUN9ZSdV1+8SoCOIN/xWyqrSonX3yzNPU1LFWl49XVMmThFtE7UOTop6SqnoCaQWjQORYMxkrY3hpqAFRTZGkKRfU0VjbGFMWpyBrPO3IwN66alc4bONmQrxXzXKCwywfVtKyEwM4uUSSZ6JUMSL8jDmNDO4q3DuTW5GIzVeLPFujXOd+SYGOI1w/RiKVzilLC2oWlWWL1CY8E0+NU5bv2E/vItzPo+2q+JRTPGSB5DBWathNbU/UzueWKR0i743QzGlAV0ZWYm1bUgDCppvk8HAlBEpppmMK/6MFaAJdUGNCWZ5wuz6/W9zszPw7zWmYHk4xoW1t5xfQq7qg5FZiBJ1b9bijDSkwQ0TDFLgMIpyL18hiNoPv+vXNICWlL3e6kFpKG2RhGLgEBFKZz34vNqXQ1kMWhniXkkU5jChKom4jEnDOLhZrUwrkLMKGvwzlNCwkSNUxpVB1Ybt+Ym3ZKoezpF/DkV4DQpRZTRhHRLTBNRaW7DXtLKjaaEgEmSYnjWbXDK4JRl1TR0ZkWeqMyWDq1XKCXJsBlLsSv8+hHt2RP85j7KrQjFcDuNhJvDMj03INpyBD3V8xnC8d4s2J6q7Ha1fPtyD2YWlqb67ukigNjy7M/RUyeFWEpkJUl1Ci0+m0bM3mMqjCEzlkxxGutFxKUVqJxQiFSGHIUlUjSC18vPSQVihowhL37AHAOwysw0le0rFTHEj1lRavqntgZdJKxAV6axKjJ8KDmjbB30xYBG/IkDYGyLzrBqVygl4H6IQRIti8K3jmG8pfMdzjS0WoOKTOlAVhGUwrUSYqCBYhRb15GKxniDsVWSQsTOknZVwRstyLnVjqIyXmlSKijv2aWBXDxjTMQ2ErNCqTW9ayAYWiONqDctyjR4Cko3aC33y/uWPB0kSTsEwjhBTuSicWf32b71C2ze/SbNxWP85hyMeFUqrWi77ui3pObnWNaPUtQBz2xdIoOlVNOXU8rVYN0RQuRwGDkcRoZBmBhd3/Irv/Ir/PhHH/Gnf/IHnJ1tefrWW9xcXxPjxMX5BV9+/lFNW1f0nWa7voAi+900BazLdSCRWfUGSsJbK+xsZUAbclHCIk0ZV3uElBKHKbLuew6HPUobttsz7u5u+A//7v/L7/z9f8TFpuH88lyM1ytrPgKN9eI9HCZaY/FW0zYt4zgx3o1SK/cS9FJQTDlhvJP6ncpKVgLg+NZidKJtJG3ZKDF/R0vjuRsO4iOrCzbWfrhkBiNjGS+2UWKVozVkjdEWqwpxzDSdJNlrBZhCGANeF5QKjLd7ck401kOQpyyUwp0bcAWGZwM2K1S26H2BZiBZRec2rPqOvj+n1YaSRvRYhO08GHLScn5s7uPuPcVdPMI9EB89t74g6QbVtHLtGmEcrU8GkKeBdKkcB+ixgntTzByGiWZ7xQcf/iL/4fd+l/W65/b8guvPB15c7+p5onjy6B63L17wyV/9UOqvOFHKiDaKcTwwTSM5RqZh4DAeGPYHSpyE0Vr3R7FdmH3HRG5dciGkyNm6Zz8qdkVzsdlyd3vN5z/6Af/+3/4rhinw/vtfZxh29G1LCRPdak3bbdhsL1lvzuhWZ2jT4H2DseLfm7PIdXMdfsnAYw48K8xu3HM4EUWY6qrWeFopXqUDtox4r0lkOuWxyuCMxjjx+9MqM+aJfTzQJE1vPVkX8pRoXUdXLNvVvSVoyBiNinJRnJKCr0wjSidyyEyjDG5iCAyDWILY2bsNzf4QmEKka4342BnFGBMhJQ56xDpHDpmQIU0Z13Ssu5aw3wnAV1pIBdeuKWXDYe+JzqL9Ci7P2dy/x2RausvHXL71Hq5bg3Fk5PnNiM/qtNvzxhtvoa2n8R2r9YrLew/49OMfyaBSKaZpZJpGlNZY43n46C2Gu5ESE7vDQJgGSh4gwYtnL9hsep59+ZxXN6/47NOPubu75eb2ltu7Hbu7Gz7/8nN2uzsJECziDaMQlldOEV+96hSZ3e6aN56+Kf7PbcPtq5colbm9uyNTB7RK/OtKlr6hscJud04SSp21qAqUW+Po+56u6/mFn/9F+vWai8t7PHr8hHv377NZrzBWeO5xmigmEePAqGXwkWJElSJhPtPIdNgTx4ESkwzPo8M78I2j8Y341FqLdQatM3EKdEbXHkfWUds1kuqdE1qppd4t9dxIQQaAMVYWZcoc0kTbOlIYKyvZoq2w8sh1YGMtvtGkaWQ8TOxe7riuQZ3WaFZ9I4qfYnAG4jAxHhKt83SrXpJ+0dx+fotmQ/Jbzp6+R3fvKa65z+aTf8VULMY85fmXn/Hs859ye/2cf/3//r/z9ntf48GTN5jCyE9/8iO+fPYFbdvxP/tP/+d88MGHaDQhjoQQcG5FvzpjnEZ+/MkX7A97pgS/89/7Bzjnl7DEaTjw/NkLfvrlM7q+5+XNK3zjUaqSArTldrfn8y8+58c//jF/9+/+Fs+ff8kXX35K3/82P/3sMxns+E6SgK1mu9lyd7fHNw3TsBe5cSlY39BpVRmSHo1id3NTa8mM9y0lB3a7V1zfvOTVy+dc3b/Pan1GURqUWa7zqxfP+NM//T7379/nV7/7q3zta1+XoZD3S7gJSLhPqsFSs5/2MsiYe1A1a+2++tdXBvhyVpSgcbkFDVpbShJzwhIUaIPSiRRznWgbtFZCZ9UarxxaixDWqipJMRnnRE9PjnKgayDGaribGWMAIiHXSHEt0+BgR6KRFDdTLG3rIMO37ilCHjEuUWIhJg3W0tkOjUyPVbYwGAwNKljAAwatW7QyWOPI2VGaC/oHX6d79HXay7cY6LmdIsPdSM7XwupBPBjIRaQB9TA6DaqQ6ycgSEppSfYTplJZDvy5aZTB1VEidkyfhdl7TFdPpNMkPqNlWjU32XJoGq6vd4R4vcjMZg80rSprDypboBzZOPnIsim5LP9d5ve+gHun4NLc7J7yWuRfC3OK+sNQSyO3NPn1c+4PgXyIhDDVtlmBysRJiZeiknUihvkKqy0paSyFHAphLKBk6qE1dI2kGsaY0DoLTXsUuYcq4uukEN+XoiXYZYhBXlcnshF/rKwySYHxntvdHefbFjrD6nwtIRrG4l2PLx1WrzD06OJJSYybc25x+h7Qoab5GWrIZkWzvcd6e5/VxQXtakUqME0ThxBR4YCplHJVpQwgRqxHOOEIAM/hLaVe6xmAmO/L68mzR7DiNLwiz6yqeXHMP2WhzJ0ylpSAEkqSg9WymYnkUekT5uoJuHeU4s5BGhV4WGTfdVWdUJhnpgvI/T/dHo+hG3p5r6cS3fnPliRhpRaWgTKNUPcLUthZYXt5Kwnf3iVJnzSBadJY5emooQHGgy41bVWLP6cxwvqwBjCcn61olKGoiLGGVKIEsigBcnKqHp12lhBWOj1GEm+blqaz3H/zMSoD1mKMmNhPYRTZXwgcdoESD9IIRElwa3xP1/Q4u8W3PbpZ41cPaS6f4raPyKYn5sKYImmY5OcqMY4/PsdyX+b7cZxfzMOHk05mBvrqWk0pShOeZ2bpEbIVpl6swSriLSSSXGGszJ5p4iE3rysWdvK8zuQNFSkwVV3jMxNArBxP9pIKrmixj9BVEiQpZDNjT56vMMtlYiKeeGwsbIO6781sCFWfP1VmyXGVg1Jk6pocbZU6NEbkFcoYYhhJVq5rmGJdSxHGCWUgVlaursxRXapLUMni21gy3juIYIqGKGdd4xzKFvGNVQarNcx+uERC3aCTjkw1TKYcPuOzL/6E23jHkCJeOzyWVdPTFLHHcNrVBEGFmUQO3tk1WoscVBmP9ivs5gHt9jFufZ+iO4aQ2I+RtN/L9dJzoznL5+V6zvdV1UHhbB0xM8xfA1PrtZ//Q1dHO62rvF7NnrXHodP8d0qmMmiOjBHqPptSYcqJMYo8FiMsJV0LQ0pGkyUtNgvgrIrUNkY55uT5WBRFabKGXGW3ZvFqzHVAUVBFPmMqM9NUV4+ygqtDJ1XZeqrMa66CfKayBCsrYbPZsnu2o2t6+maNyhljpUn1rsHFkYz4WZY40lrNql1DmshZPHAKAvo4K4W5b6wMvhDv2zElemtwrSbFgDFW6g5V/V+LQRWxzcAKa9JaQ0IzpcxK94wpcusTVguDZtXdo9XQrTpyLJSSaJwmxVGkWiaQQyQk8d4N4yjPl3G4i4f4xx+wffPn2D79gOvbPdl5mosL2s1a3t8SyjUPv/JycqplGHFy1pXZf/j19PcpRsIkjX3O4jG3Wns2m45hOHB3t+N/8j/+jyn5HzOMI0orQpCE6mnYV2av1FozO3kcx3oWVhl4mDDOVglYonUO773YN2SRbgsucQpECpicssgBp5A4DCMJWLUNbz55g7NNh87V5qBkirY01jIOBxwa4xv6tsVaw7AbCFOm3W4x3tU1p0hKQVZ43XK2At1aCWswLCwtCaxQxCCpm2EO2TKlShcVOhcOseC9rBUdLVNIZCtMp9YWel/Y9q6+npxF091EyJoYA6vWoCbNqBXBFBgTJYBqEj5nQgTfOpKOhDHic4tRirsdnG22bM+2tH3H+eqczjsIEyUVlFlRmIiTI199SP/Br2C2j9CbC8zmnJKpwRKGpvFVUjifCWrZk5a9aqmtjuqdlOeQEUnwnMbI9atbvvnN7/D5F1/w0ff/CK001jWMe/FyvDg75+vvf8APf/DnUEODdMnEODFOAwoJyTkMhypnk31QIUqpXMSHepYoljrW1LkQybjGk6dIs2poNxuuXzxHGceXL1+RXccv/Pw3+exHP8CWyOX5Qx4+/ZB2c4HzLSgjJI6mEXBFyRkfpnE5Y5VRdaAxn71quTZlDiBSahkMzn7iwWjWusGVgs1Kas2aUN47h60hX0ZrbLfhbneNtxZvW/n8WuGNh8rWtiVRimIaA04rSons9iPjOKC1YhyrD3MSi95hmMhRWKRTVRCsnMdpWcfXLw54Kwyh1faCzaZFqUDbrkgYQpzQFnJ2aLdhagp2dUFzfp9mc0F3+ZizN96luXyAaVdY2yBOz9ViAunfXt3dUVKh6/vKFhS/cbKmvTrn1/7Wd/kv/un/jaZruHpwn/3+ji+/+LwO0WRv00rx3V/723zj577BX/7gB+x3e1KMOKe4vn7O7uaOV6+uudu94nDYMwwHxnHg7u6O29sb9rsdh3EgxQQkusYurOcYBlBblIZ+teL6+hVxmrhL8OrFS7757nuUUviTP/x9vNbENNG0EvhjnaZpGpy1OOdpG1EIdH1P2/VstmesN1vW23P61VrSUFdruq4T375qGyOyzLkkKJScmKaBFIOwu2MkjAfGw4EUE6rIkMoakXIao9mcb8jTTuwYwoTWUMaBrvPCnLOWrDQUAX2HXWQ47Gs9I0xJhfQP1gG6YJ0owlyK5Dgy7fdkpbn7IrAbEo3VdFaRwoT34jlqnV2ULNMhMwXFqvf4LL2/UxYzKHJytOsrXLciNonNww2r+4/YPHhMti3atDTn99k+fEqzvcTYhhhFufSbvx75L/4f/4ztowfo73yHf/uv/w3722vu7l7yJ3/07zHOUnJhCgHnHL/+t3+LR/ce8W/+y/+K65tbYhgZpxGjDX2/wjrZD513tZ5TTNNOwqJCJMaRQuTiYkXRmvgy0nU9MU4VV4GXr17i2rYSRhTeN5xfPabtN3zvj/8UKPStQyuxPymlSDBHjLTbM4xW3PfCVBV1hPQCvhEpc7taU0rCOs8wTFzdv8+XXz7n7uaGs4t7/J3f/G3afkXbNDSNZ3225f69+1xd3aNtGqwTj2pRZsoOO4egzWOLXNTiwbzUnhyxkHnf+6pfXxng662Hbo0rDmUtVhliyJiN4qy1bFqFzhFthflEqix+Jx5TdZCLQlPKgHGFlAMJK+w74owy4U2LLoqkAiEnRiYmHYklM06yqQM4D+ddQ+NkiphVJqSINpIm6LCUIuxAnRVEhTUeXTqsWuFMIzdeObRZYZo1pr+ivXyT/uod1OYpQXfsholnr0ZKua3eTHMxJU1cmmOqK3gwF4aFCoidSFtnScHpIf/6/T2CEQu4V7/0/LO1lmtrdGWezImk1GmHovWelOR6hZpIOoN6c3IpzGDPPF2c/YqODL5cQw6WtNxZPrxIJqV5nUG+o9ee4vWvnwH+ygnTguNGDFLoDLsJVEZ8rqWIcc4RcyKngrUKpZIY2DsLeSSoLIwPCkYZtFWoIM229RKY0TmNNQJmemeZJvF2SSWhgLFMAno6TXYTCi80bJPxK4O7cDSd57zZsH6ecD/VmNSzWXUYe44qHqfuQzTkCSgbdHYo3WOKI+UGZ3tM29NtzunP7tGvL/BdRyyJcQwMtzsBMIyhcb6CsJVNl9PJ8jhldda1dAI2yJ/Oje98r5YbcIQoTu93BXiPuN6cwCzg6wzyzsCGqRHjuQIqRqtlHSzr7bW1Vp+FCtykE4BvBveWFOn66+nE42d9KE/X1/znOf9MmEct+owxy2vNElKjFRGN1qX6/rTEkDAuo3QSRiIjzjmK1jTKkwZQynO+3oqvg2ulUdRa1pW3ZDzeOcbhhqgyxmViPKBq+lUJsl9RlMhllZKErQTadXSrNVlZvG+xRpqtUjxdcwE5M4yROA6oEslDAsJMEZICxTZY39B2Z7hujVld4laPsesHqPZKTLAzHKaIVpOAsNpi7RH0PyZGHv3xlqGDoPbHYYKSCaxS4jUqstrDkR2Fksl4YQF1xUvvKHedrQmEKZOPQA4CaMxyTfE3rG+mAsynQI+sMZY1fAJPSzM0M/ekHzjZYwUgzLkQskxZQ4iVPXgE9+bPNAOIan5O5tfIuX7WKlnXEMlyThUnn1lBVvLM2CQ5vikpnBUARelSk24VZGE1lxJxlWVB1mxcx56Boln2f4WkFyqjSGQiicZYIkEYGqEwlBFthFFVyBXQTSgHShvi9JKffPrP0S6x6lrUaHHR0fctjXZYvaI1rTBqrMf6BkyL9mfY1T26zUNsfwVuTSqGQ4hc3wVKuT2C7vXZk4sm12w+IeZ7ouqzX8qc4F5eu8/H21bBT1XBPMryfKvj6pDXYmZylsVke7agAC0ealExhkKIBZRFWSVSL3kqRIIr3Za8rKae/a4C4IWQC5masK2UgNNaXkOXMmPRKGoIEbVOKJVlikx+5/1TUUNjlrWX6+8V4lejlj1ZpEoHQppQpuH65hWtzeSScK7FOMP17tViNdBoYWvFaYR8YMwRayzbpiErGaBZr2nahinKuRnzSIojzlpIQdhbOJxrcEqCO5x3oK1YNRSRt7WmJ6YkUlNjaHLmft9AdsS7HdvNI9oU0IwkRGobD4GSM2PKpMZLCIPfELuHNI8esnnzfSbdc/Xmu/izC1JIbC/O2T4UxsXpOTgPseZBkdKn1g2KeQwwDzVnXpHIuOa9KdVBlsI7i3eGXBzjYWA4DJQU6LyhsQ0Ux6rvhGmTBHiW+iMzToEYCmGamGKozXKpwwfZNwwF5yzWWzmrxkm8mcs8QDMCrAmKLQymZXirUNodQZwYpLGNkTBBygHnWzSKMA5s2k68PX1DyYlhP4KyrM5WaGvISmR8M9DgfEMcA84axiA2PiFlSfdVAtiVSdZkCfK5U5bwuxQLMSqsAWJBRfHFSjngMeicaat6I2fF7V0gl2oVVLIwBhuL05oYFb0RT+7OehprsCUSk5GmMbcSnpJ22NVEv1pRisL5ht73lBhRoVBiII6a3F1i7z+hffgu9Ofo/gJ77w2wPdrVlFYnHksCUP0MiMfrX3ONy7K66u/L7FmeCCExDANhEpB31fX86q/9OqvG8JMf/QVnX/uQZ59/QdN4Hj54yKrv2Wx6Ls/W6JK4fXXNzYvPSWXgcLgjxUBnNetegDxX5bHOmFr7CUA8TlVCH1M9q4QN7BSYac/N/pqu7fFty3B3ww++/+f0zrJpW955+jYXFw8opQJrxuKcKEtOex6tFFi9sLSLOgbtpfkMVcICVVXtMdu5zEFSqIIzhvt+QxkKukDRWcgYdcgZS6pySksaFQ5IY103GlCeWEaUjux3B7QpEp5XMsUqhv3AcBjJURQ9U5DzxCCBXKZAmSJhEtbllEGFQq8NtvGcrdZ0mxVX9x7TXD4iG8XLjz9GX77B9snbJNWjmhXt+RXrR2/Qbi4k1MYYYhIWf1HUsB7NMBwkwXoc2Wy2uMZDFom6EV8OlHNy/6aJkguHaeRXfuW7/NWPf8L/51//S8Zh4Pz8jN3dHYfdrp4rirfeeptf/eVf4ft/+PtM00CYJuI4MMUDIQemYWAKgWEYGIYDwzBwOAyiZlKgVKF1lmQUISB2FvVaDsOePgass+QijPisFN4o/sPv/ls2my2ffPwjvvjsUxpfONussEbTti1909L1Hev1mr5fs16fcXl5xWqzpe1XONfimwbfNLSNF1+9ZW/OIp+lYBDl1Xg4kIL415UcCYPc43EcMEqSuX3T4poG7x2u8fjGcxgHPofFK9JaGTYiyv36UGfCGLAmM42TBH8WoA5p7vYjWiumacKiOOxHvLXio2l0BYfEJz7sJvIAUQGdRqnaB6lCGhMZR9ff4+JiwxDAr1ac33uE6laEpFhf3uf8wZtsKnhnfYd2vvpTUxnfJ/09UoejCs46vvNLf4PVZsv/81/8c5688ZRv/fJ3+d4f/Afurl9IPTOJHL3ve9brLaum4w9+73fR1oLSXFyc0/Ud0zRxc3NNyplxHCglkXNkHIVpPw4T0xhIITAMe1JOaGt578NfYBrPWG/OuLm+xmjDOE28ur7l7/7O3+N2t6dozy/90t/ko49+wKeffsz5Zs2DqytimPDe0zQNoQ7FnBE2eqnDjBAjpSjabiXnV86cnd8jl8x6s8Fax9WDRxQMXdvifYNvW9BVIakUxtnj8GG2xqqqsNeCBOs/+vS/F3JNPQVyPQtyXvber/L1lQE+FS0lGIopMEaKKjTaolpNqxWWTNNAKRGDwTQicbMK8UYomSEOFB2lsU0FbbKY1tfSOSLGilrvUXX63TUe1zREIq2y2GCxThrynAylaKaQSFEaommUYtvkQus9NvZ42+KMw7QeqxuKMiizpuiGbnuF3z6luXofu31M1C37MfPlMBFeTSim5WZBnYzKTiaNptY14fAoP1zSZmeWXgXI5mldzkem1CmAMTOLXm84heEgfv0zuKePUtzaeGhkwz0/W+O9Y5pkGiXeFgmtzdIgL43sDO6UY0Gbywkzr5TF/2wBKNPRa2/+8+M0vCxvm7lxro0N1OZtXk/1/81gUO3VKaWwP0RyEjFTUQp0omhDmjLKgfUCIKgi5szTWHBOwM2mcxgjTFKlRcpRlBikW6dAF7CSdJZywqw0xSiSV6SSsGdriikYWoqDEhRWJUmtazV+7SnBgGrpu5YPP1gLG2boKOW8AkJrUB1KtWjXUZTHuBWr7RX92RWr7QW+XZOKTPUPMbC/vRWJqzVykNdrmapZ8BHIq5IiWJri00nxXzcNmL3z5u85An6ngG4+bj4LsHeUVpaTew5SCDo3U6oraFIZJIsHmzoJtWBmgJ766x0DWuZQjSWN+Wel3vUqzEyehbU1T8qXX3l9o9Uzu2EG+iqDbwYDS2XUmNnTw7Lu+uN6AUpJMkU3mhQMm3WPsx5vraRyKSkuyUkmveNEjBJZfwgDQwoMU6TrLSpqztcBbzY8vHgXp3tKSRQlXh1xegVKo61HmnUoeWS/O7Db/Vc4nwUg3I2CLCiLTwplGprNOc61KGvptvcx7Tlu8xDd3yOqjlAMQ0oQgBhkiu/8AtqJyfcRYF3YRRz3NnmudR0qmArqQYyxppjFBaTRdQ+QAYHIz2IUee5M1c+lhghUufbsfzVviwvYcyqhPQFzqeDJ6aBibrRSfa3Zi08a5xPWnjp69MmzNtslyKEb4pwMXv1QZTFUTEqeKbWA6kcAgQVILxV8kp+9G6MYbNfr7UCa1SIpgDorYqyM8CEzqZHGWBrjpUFBwL9QpY/TlFCNwXstAGD1MXLWiMyjXsAhi1/tlG+JFgIFQ1jkYU5JYrxOhaIKnXGUMdKy4kL19I3H+RZvWgwWrRzWddh2i+nOaLYPcavHmPaCWByHEIljIh8Ocp+0QlEDCphzEY/3qt5GZinWfH1P18IM7C0Dh1Lqsyfn8Ow1O58xPzv4ENS6+ttWxt4xtV4MqKeQiFlSrpWyOM/yfkoRGS7zc0Fe1rdStu6NLB6PWQmAV3ekJVF0/ow1K0GYzLUIz3UtqiohmiXogDD36mvVhQ6U+kyo5XPGGAkhcnN7SwlBmC/jCMVSdMIVze1+IOtM71tCmLBGGnJrAt42rO2qevwolPJ0/QpttBT4LhJTpG1bLlYeVSZudi/xncEkTWu3+GZNiYWiMs45phLxbo0zAWMdfWtJKeEbK9P1XHCrC1JMaJXQRjMd6v4/RUYUfnuJO3vMxZvvMwyB9f232H7tmxjb0vRVguT9KZwre1e90Fr+VQcNx4J7WSUnZxvL369nRHp9wFkKFXAvpBgYholpmgghyLlhNGMKGGvQGGKI+NbX0AlFmCbGMdQkyIw1LT0tKGrDIGC1tfJc5pQk8TllXNvTVGa4UfOAtzYYlS0vz0+Fo5MwpFOa90z55NY1wiwK4jm5Xq1pvMday7g/MA4R1/VY5yWILEmQCE5XKZ4EquzHOw5DkQCpmFBaAtKmJIxlq2RoBZI5U7JBo2jNLGur+5qGErPsZUrkl0YVfCMDkTHJMFdNFlC03pIPknDZYdmuGtkrVYOzDW0nahxDg1IWZTIqasowYaIm2xbXXcHZE+z6guTO2b7zDbI7J2iPbVdY1+LbFuv9Mryi1tvLoOG/Aee9dlrOR8YynBBQj5r6Lp5hEuSSMVo+lz3r6dsHPLi34Rc+eMo0CRhhjMYZJfLQFDncvuT2xZcc7l5xuXaox2eQU1VYnQBl5ngezHv+FOsweZCfH1NifxBAKcTA4TCwPh/ZTZEhFfp+Tesdb7z1Fl//2td5+OBhHTbJerXz8zAP/0vG6uPJqyloZ2vtpY9WRFVMIRYuuu7jZt7plv1XaYW1BhUyVlXrJy3KB28spUj41hQUOSY0Qi4hJ6ac2IcJcl4YxTkV8Vyre7oCQkiMQ0ZHh200bd+hUiLmEaMMaRyxVnP/cksqkqJbMty7ehu92nL1wc9RLt/Enl/R3HuI8R2PM7imJyYJK1Ha0mw3xBw5FM1wfcvhMNA0smb79QrbNqAKNhvatmWz3ZIr03e2vMlFlAWHwyCARUpYa4hTYHe74/133uXzT37ET/7yh0xtw9XVFc4Y9nc7pjCiUPyb//JfSCpr9SzTSIhDyiKvLSkfw0o0eFuqWioJyzYnCaDSYLAykCiFXAI5DRTTorRie3HOqxfPKUXz4tln/F/+j/97jIYnD68wJvHO+RM2qzM2m3POLi45P79gtdnStR3Ot3VgbfG+MvusAVXEqisFqYNQxBQJw8g0DpRU5bcxEsaRGMQbMMaAbxq2mzXOOXxNG/a+AUQ1NRxGUcXohCZhEGmzM7quk1Cl4xLkM9zsmIaJSWliCvWh18Qhk2Kh9Zo8RXIu2NZBjBjnUFqTcsZ0Ha1bYZXBn1+yvveIR1/7OrvbO4yxbO49YnX1mO7sHt32HON7lGtQxtV7Y056+ExQEFHoWERJqBE2nTFLvzj3YKUkYsikEHj84AF/77/z2/zRH/8xbdOTQuDm9oaSC7e316QUeeuNp/z63/kNVl3PFAPTNBJj5ObmFV98/inDKKzhMEVCGBmGAylOTGGCyuAeh4lSioBxWoZC9x+9ie83vPnWe/zwo++TQiCnzPf//M959933+cY3fp5f+Plf5Mc//hH/8l/+v0gh8+7XvsbZZk3Oma5tsc5RSpHQN+vIRbHZbtkfDjjnaFYbVqstvpU1dXZ+gbWOtmvr8FchDORad6lag9V9jFIW5eCcczDX2Mu+rzhRq8mfnvbPc60x4z7HE/mrfX1lgO+yd6jk0NpgtRFPpyYz6UzRgQlZ2EbDmDM6a2KKYmZtNLFk7mJA2aMfjlWS6Ne6Bms05ImihSJeUsIjvh2d7wjhgLUOW2SiqZUmZkVrG3JSrHxDoxR61eKdx6mOxvZY1aBUhzIe03hMd0l37x26y/fQ3RWTXrEbIrfjSHgRUDouiKv41EmDGitTbUFn9dyw1AM819jnE2mrBGeUpZFI9YSfU9mA1wCLBajgOLmf2Xlaz1LcOnU+dkKAGLB3redwGHn56o4YizQbFZyYAUhOfsbC2lsAvbxsFKfBGrO5/WI2Xj/PkSU2XwSk/1gamSN6Pf/+yMA6XoOjZ+H8e5F3ZF1QuVRfgkJMsOoV2hdKI5Hlysjncl6ATwpoa2haj/Hi3ZCLsD61M2Aizvn6RGRM16AsJEB7LUW5MxQ0ndmgojTVxAzO0aQthQ6nGsq6hWAouUflFtdswPQYt5JwjaZnfXGf9fkDfL8hI2anQ5g43O2WaG7r3MJGKfVQWkCs5SKx3O8Z/V9AuxOAb15PvLahLHfpNaBuvu+nf64qgLMUqQv4J9+ntcZZK6lQ5Qimzaw/rVhi6Jcyd15f+QQwqWyI19h7OTEzQufvn8vppTEup89K/Vx1OZ16/h0ZhCITnsMTZHM2C8Ohbz1N6WUQkRIQEeGhZhoSTS1KcyikrNAZDncjubO1sU/cTTtMqyglgbYotSHKbkHXXWFTYtNknDfEEFBKM8XMF89+xPnmUg4Uq1FRAZ5xdy2go5amyXmIRZPHSNNu6XoJbFGqwfqO5vIKv7mPXz/C9heoZs1EQwiFQ8kwgdKy74rst4KxiuW5L/l4n3VtRI/gagatscZijExMRVIbiHHPkppNwVTbgpyETR3T7KOXKekYxjLvj6fgcq5M6OU91MOyOgnAXOzXf8/JsvM+NrOHZ2Zd/SvLgEbWZu0pFLUJPu5/M7s6VBNsaezTEYiq+5MAPnlZfsff1zOirnmtKhunhgDMbIUZPKEUGm8pVeJniyJk0N7hlJOmqErEVZ28p5IkwACNaxyr1nCd9wRAWwGrpxxRDkjCULCd5XCIoEaRaiqNUR29thg0m7bH0uCMpVEOb1a0tqV1DbpYchK/Me0bkYCsHrC+ehPVXBCKZ4yZQ4ik2wmtErMdg4TtsOwDJVf22c/cGzVPd5iB2Tk9We7XAuzVk4tSE60Fs2FOo58zaJnvT1HLmZbScYCVC0dZXEqEVEhFo5Swn1xlQsrUPy9nrKrg7dKElhq+UmbWnUi5mPe9+bxjBpuqzDgLY+84VGO5ItrMAzu1/CxVH8EZuZ6BdzODDfV9HIdwCWWqoX/ONK0jhISpsmNjCt612GKxGlrrSSVijWfVtMLIM562X6O1GIjHEjmMA1aDtw5tWpxrSeHA2Upkd5GC92fkkFFFzM6JE0YpsmowGKzSNEqRjCRWNt6RI+gSCdNAGgbAoHyLXz3EvPWI5t5bPPjwW3QX9/FdTxoHrG9wbcdiwDmfh6/VHsczdDlf678yr9tPHC1EKqiX5wZoro1AKWGo55yZpsA4iO+QAGnHwDFtNG3TkHPE1bpMAh2SADqxBhIpRd+3Yg1Q98TGO6nz6nk0TZOwh6zHtW4ZUMnx9TMsgfpslfmsjTXAal5nlSUkEjRHCEEanKaha1tSTBx2e1KG/vy8MuqEFaO0Xa4FGRrniCkyTlP1cRMT+kSiUz3aWXI+YHXCO01Osh+mjKSaRtHEj2PBaIsrBec0pEIo1QQ/Sv3XeU/nLWvnaY2EXDkjQSMahc4yGG1ah0oGioVDJsTAPoPdrJhuE6sH77J+721W996gvfcE1V+QmjVoR9EG7T3eerZVBn3cpU5qjSLX8K/B9U6+9bS2lUd3HlRMoQ7ASqFxBqdlwDYPN6egiUmYd4+utuJtqahndKakSJwGwuGOqdPkyw2l+n3NlhjKWMpc6xgBRFFG9tZcBMiaIjELSDROwpDVFRhMWRLrUWCso+06kaNZW4PGpG5QyOA0pSiDiiLgm3KVNVtK9T82y/qUYV5ZGmGrzZJcr5aNsv5ayrHHmi9/DqRpIqqEMQJ+J62IcZIdu2gO40TfNWjdkCapUw7DWHsng8qFw26U4V9R9K0lTBPK9PjNfbTakOMNh/2ItZ6b64R1ChMtm7M1Rd/jnW9+m7tDZrAbHn/3tzBXj1jdu4+qz8V02HN3c814t8O6Gxn+honm7ArrDd44AW+2m8rspRIuarDXLOFOeQHmcz2PbJVWa6ewekWMgWEcCePEOBw47G+4Ot/w3/2d3yGH32KaJsbpwDQcmA4DYxwY9/sqvR2EJXgYCOOIohDiyDRNYk0yTXW4ICi91pIEL2w6xxTCss/k6sk8TpFpvCOGCW08TdPia4/TrTdAxpTC1eUlT5++wf179zg/v0fbrbG+xXsv3qtuDsUQC6Wc4uKVF6rUdgaUS87oIriCK5Fx3HM47BgPA6oUfOM5226EpefEA923LaogLMXDgHOOrumwSnG7yzz/7Dll2mPrcBkKHihV5XE4TOLHlzJGa1Zti9UyaPLKsKtJ5gaNP9tgXU+zvmC1vaRZn7N68Cb95WO68yu67QV+dU6z3uK6Xp5XpG6fLbHmAjhRmbaq3g8j4UCq7gGq9uA5paUXjCc9fEzif6205uZmx93djptXr7jb7RnGkbfefMqbbzzlww8+YD+MTFNkmkZubm8Zx5Evn1/zWXpewfcs+9EwMgy3xDCRUxDwN9X6F4V3jilJQWeMDOVtMcKAB/7i+9/j7/z2f5/LzZqffvITpmGPVpr97o5/8S/+OX/2Z3+CAj755Cfs93f83Dc+5Oe+/iHWyGcrBdabDdR+b9WvMM7z6MkbaG3Fe88alLZLf2v0bHcl+1SuvaNWRoJ5Ujr2nXONUG1fTG1KtBLFUj7Z+08Bvbn+gxOmX60hcg3FCtP01xwm/+2+vjLAF9QB7B0gaVa5FAKa3WhpN+CbwPUk8cnOGWIMuNbRtppiIprMBiUNYgEwOKso2ZCz5aw/Q+lCSAPOO1IcMaZgTYNRLRf2vixqjwRg5BaspOAqwCqPMxZTGoqyks7re2lG7n+N5uIpavWAiZbDGHm53xP2AcVLFs8uLd2EFOA11bGIwbhMSs1SNJ4CH3NxPU95F1nuSeE9M0zmTlGfghQnwNdxMVQm4onH3vxn8h3SNHqnWPUtOSZub3cchiRx5TMLYPECLCe1xynA87Ogz9Fz7zUGX+H4eU9+XcCW+fMtyPSxuSkKocJXs0nqty2gVQX3qKwKSZ+s6YMGii60a1NlTRnjxOvFedmocy0i4yReSCFqmitPsRplYk3108u0qdgqUZgyugRKlIKyHBJTUDTbgi4tMVlM6jCsyGMRiZtfocwZTA3g0WqF357h+y2rs0tW51c0qy3W9yL3CpEhjBxub5glNcaaYzNRoFTJjWwiR/bJwu4stQksM6w3X+9S9/wToLm87j3ByWvN97ycgMwz0HtKI2YuNOp6nieovspSFsBNUwHCKlHXx0Zjfo3X18uRpVfSEehbwjUqQ/Rnnwvqz2fZbMvx96eA+UmB+LNUaeA1OfsMFi0m/kq8g0rJxBho7BptLDEFtFJ4a5iGQtN3wjabRkrTopSl7c/RXjNNB7TXECZMK2xBqydKSXStQevEVAJGaZEZOEMILwmpBg15iy4eZxzWWXSxFKMxVmOMR288rlth23P8+gHN2WP0+iHFbZmSZshZGoiDQuuENga0FclnPfxnQKzEsOxN1PuvlaqsIbmcxorHqq4HUoiBYbitMogZYJkZSaVOfmef0RkgK8t9LoU69JA9JS1VO6+tm1k6u0zRlDpZynP67VwMz9BPBSupPqN1DczDEVQRCVB9wBaLgTynlkuiYUylJmGlhfl6ykyWz5pZBiWLfHkGgY5AA+X4nCoKpmhiUALOGSVpjKKfgORQ2tH5RFQZ5RTEAt7RNhpfr4XSToY2Rsl+aYqEtmiw1nOIE0kndC5oHKiEioWNbbDVa8vj6GxDq3pUtDABWqOTo207Vn6LsS3Wr2nPHtCfPcZ29yl2RcqWISVehESZIhAXIN1W5sXi5TnvQ/PzOD+3cLrTVGnPCXMT5LMKpVSeXQpqluCqWaY9D4+WTa42GQIk5CghBTnNe6WuwRXiyyWNpjTBVlMlrxWgrSxiAdAyOucFVJE1OAdh1PWnqtecKgsUCTUAo+T6d/Kyrx6nuDPgPJ/rVHBYQTFUXu0RbKzebYsTaz2jSynSiFWWrFGInEgZ+RxG01p5/lvXYSoNvOlWEoKmLb31jMMNbWeJeKacUHkgJml0ldK1XkikMIl3aS4Y7Smp0JpC2t+RtcLahDGFnBWmbSglsdmeUUImhL2cK1pTQiYmhaNg+8ds3/t5usfvs34kZvH9+YU0eb7SKVHQdSfn1KKXqnXHce9fHlrqPrEA/6eg3nFwdPQZPrLZ53MjpUSYItM4EufrHWKV/oj/qvcOhUXVBGulqMw+2RdDkIFHLpm+a2WPrbYOwrqVN5JiZJgmOVuVrkl+ZmE4LXtlfeNqbi7mOm5myKcsz1at5bTWwmzIWZJCm4bWO4w2DMPI4TBgnKVdrxbGUCbL2VtmhnPGOMecWJmzBIWMIZK1DEJjvsGHgk6JYgpjre201lijsEoTS6L1imIMZYq0rarWBmI/03iLV4qNt/SmytUpeGtQEVSUMwltUaYl0kI+J2fD5vE7lPYB959+SHv5BrrdkqMMc2MxuK4nKyUMHitBfKoOLOev1waIP7O+Tuuq5fvnWo75HsyWKVSJqNhDNN6i8vEeUdIyTDdGs3ZtrXXKAujlGIhhIox7YbbEgCXh2galWtm7tRUgTYsNyXImIpY3MdWAi1Io2oh3nSm4RrE9E0WL0YqYquUOYGpAGXVvyQWUtSx2LSlKTV0Z/TkXKMdnbx4iHlOC5XWtMdWbuTa8dedbGmlYerJ5GJgqODGMd6TDLUVFtNISSGNF6aIwpFhofMM0TuLPmUQd0XQriBPeS2Ky6oWhNNztCaoBs6HvV4S9Ynvvgu7ht1k/fAd/vqW5d4VZdUy3O9quZ33vIXa1JWME7HUGtGYIA+PNK8gJbw2rq0su3nwT8QI3S680n40hZkoJS/+kTutnpWrQj13ABdmbZGCaSqnJqIkQQh24Cgt0u1nTNY6UNpRZJVGSeH2GKISVaaqqCQk0SzFye/OKGCeGw57D4cBut2eaJnKWvS9Xe6RIxlpH17YcDoeqlppLompzUxLPX7zibrcjp0hr7nM4DFxcXPL222/x5PEbvP3O25ytJRFdG1m/xs4e2aV6M08c7sS3LUeRlGpqsJiRdTyOA/vDjtu7G8I0EkOgaTyNa9hcXeG8wzpH2/USEJQz0zAKI9NYNiuRCOucyVNA5ao+mGDcJQ6pYLXi8qzn5npkGAPbzrL2a5TK+JXsIc16Q7deYWzH9uoRZvOAzaO3WV8+pD97QLfa4vs12nqUmT0LK36QZA1MCsIY0FoAbIPGWkvTmMVe6/XKigUokufl2M+9prKre5o2hpzEWzKnSNc2NK1ns9kyDCPTFAjTyBgCm2GzKAKmGATMDbLmdLVJM1oTQ2C/u+XVyy/Z3d5wOBwwWvPsy+dSdztLmAJlLQoDjZwl2loa55bwzp/84M95+913+I2/8+v8q3/1r9BA2zhub17wF3cvUWhiGHn88BHf/dXv8ujqAW3fYatX+L37DyhKmL4yXJa6TOoWGWDMe7QQYaqhV6l12tL/yODfVVKI1GdluYbLyTCTnk5woNO6Yr5G1JpPGKdpuR9aa6x1OOf+G+fJf9uvrwzw7VVAtxPOZpSx6KyxSrHpI4VIMRlvZXoUS8a1BW8STdcwZrBW0xqF0zLF1cqI/jxLUqBSUCJo5ShF03cbckwY3VASGNVjs6Jkj4qtJIkVA8WhraFoR6Knu/eU9b33ae+/g+0fElTL3SHw/DAw3d1BuZMDscoH8zxRnA/jnJmNX8U8cT6wynFafpIeOxc9BerheHzIUs7Lgjq2NDMYU5lsc9EwN9gzCGHmhKujyexycEKtN4rQ9WNkTh2ybjYLPzbfM4j2mkwg5wXcO/VVW3z4ZklKOrL6FvDv5PtnRt8MJJ4yXE7TM6vVEEdGFvU6sDxk8/szWoGxKJ3RNsmm7xCkMFtKNigSKfdst/cJQaHNiM4TKUS0LeRBoayBbMgGbAcFh3OGMiBErSGjssF2jchNY0PpevRksGNPiQ1pUkTTkmgxZYVu1jTNGRcP3uL8wVP683NM06KUYpwC0zRxNwTKcM1iHr/Io/XysB9BgRmQogJax+LydUpvvYecyBPn7ylzzVlO1tt8z4/N8xKacXK9X2Mu1IYh5bQ0Q0ZrrLO10JD3K1KPI6NVqzkhVy1r82dlvTOQl2dwJ0qYxFGqe2RAMG+WtRAy80a5PEGVeZXlM762ltRxg1V6BniE3Tkn6s4FKUqx3m6YygXaJKY4ENOA1hbjG1rbQUrV68MS+og2npT2GCMNSUoBFSZKCqgU8NpLn1IaVJkwLtIEGUCEMKJJdK2nhD3OdJRS5TM0GBqM6fFuLWldjce5Na7b0lw+wa0fQH9JVi1jEslnDoU8xVowG6zz9fObBcScmzPKCWiVy/L/Vd0PbfXpsTUJOcTE4bAjpViBFnVkAqMkfSyLh16Kxz0xVk+909CeeQqZT9YmJwXtDOi9JrOcJXUsSxOY7Q1gxtZmydgcIDTLeQWwrKCNmvfd+veXPbpUUKQQZk/I+qzMz8mSVp2P+56q7+VnG+za6tX9Ty6+4MmF+7oluw0pJzrxs6DzElq1nwI5FLquZSoRQBqXJBPbpDUmKw46odtMngrONVDE+y0HCQ3yVnxnrTJ0TYNG0RlHr3o6tcLbVoIgsJLu5zXW9PjVhtXZA7rtQ/zqCuO3JN0SEuzGRBwSpQSUiossQdWqvtT1ddr2zsDbDOyppU8uJIQ5sTzn83pgDmFBADVZZQuo9xpjadk+qydYLuRElS5VX5NcNwStiRlCjKRcPaC0qj6uVFAPZt9ECYMRtp6i/mxTfcyKkrAVFKWoI5N9TkcrR8AxV9bdz4J680fWWtU9S82b5nLNWNb6EWw8ek/K98+F/QzGxBCqP5sw/JpWEldLTDRdT9/25GlH4zVKWVROwtDpzyHsyGnE0kAddCS143p3h7OKC2fl/Gw0w34ghIGpGcWvrUhaslYiD7RakidLUTRNQxzluXk53OA3G1LzgPW9h5jVFlLm8vwh3eOvsX74Nqvzs4XVPn/OpaCuD32Zga26Mcg1e/2MyHVzOAI1rw995Hmue8DMGC0zzqpQSmqhME2L515OtUmuzRRKLUDerK6YmXcxBGKSJPBpisQkATZN0y7MIynwK5ucQgyBME11HzM4d6wDXwMt1RHcVTW0hXLCkk9VglhY1qfYT2hCjOQM682KpmlIMbG720sKbddjrSbnBFoalJIrsIf4NlkndcAwjEwhEGPmdlcIE+h9YhwSrYEzZTBYshNfbo9CFxlshqhETlscXevZbNe4ztE4SYk+3N6SmbBWY7MkaxolwWj7naHd3qe99zbd1bu0F0/ItuPs8VPc+kpSp42jWC81uTFYK/5MrjKDtJoPRpb9puTl5i/1BK/91wzgvf4NM3l7Hm6VQg1iqQzb+pqz7+zcDEIRkM256u85r0cJAIhhIk6DpHomaapBABzbNkfAt8rFZNgkw5JcRL0To7A3QyrieZjkLGu8om8b8Xhl9r6VwYHsDfIszX64qq5zSvVgRhQb2pj6GkcwfX7cZkb8XNMppXBewp1Q1Y6oLKNa5lpyBifFj1KJKgqW9Phn13ccbm4oObFqBUx3rSWFhNWFvuuxyjHsI4dxwlnF2aZFl47V/Q9pr95hff8RScE0Rnav7rh8/+tcPHmKTzBev2J77x6m36CsR7cN+JYpF3yQIKGXt3ekZ8/p1is2ZxuMURRVsM2abr1Z3usy4CyFkqKkSBdJkTYzoK/kmsiWdjxDjz7U6dhnprycT0sNvbDKJYgpaYOx4ieX0wzgJWalxnzOzH3bfCZJDfeY4bCvbDEZtgv78XDsP1Je+rdSFKWCIG6WscMJY1MJc7FIMq61bpHZKqWXvlKpak0AlBQZd3vGGoihkOfJWoNtHApIYWLY3XH36pr9fkeaAs5brHeszi8x3tM0Pb5taJxFlSrnDZK2bqxjtd4I0EwhDwN5N0qNrBTFO0zf08yp604S7VPUPHjjDXRzztn9h2yvHmLXl6wvHrC9uKJZn9Gs1rimxzRdVcvIfppqouuQFTokdBJvOFsZkbOcfsEa9HGTmUkMSYndQj165P2e7lB1rzn6wSHnvDqq53IpFO9keJNl5KoBvNRETeNIsWEOBVUIY7nUsySHILZSgwDAu7sdaRqxxrDdXtD363pv4dEb78iaq2dUqizynMUP7zAOsqfExBQnUs58/PGnGO/54Ovf4NkXP+XZF1/w8NETjIK+X/Ho4QO+/a1v8eTJUy4ur3BO0muVnj0+oVTrnXqSE7OQ0uZrQ60/C5xgLjJKzXkOPZuLen3yvLxOgjq91loJ6x6OQ4mpguLSN8lZ3zRNDWM64kB3t4av+vXVPficsMlc3dCb1kuanzYo5TA6U0qUC60NXncYrVk3PT5GMBljFKoUYWVV5CmVyDiOoI2ALkhTNo1BNskQoQgia5VHK0Nre3A9fn1Bd/6E/uot+os3ceuHJLNiP0auDwfC3Q7YyftXQulfNjbqQUVNU1XUon82d9VHsGq+qQtYUWnmiDRjaTBONk44YuyLX1j99dQDbJ5cyfvTJ8EZR4BiaZYo1TDXMDeSIcPudiIXBWQWr725CizHBvg1sCf/dQyro/9eLqUesvXzz1K+WkyWUzBpAXzUUmwcN6jZs4oj2lCO1wY4afpZQL5MwqhM0hnTaqHX5iLS4yQNrgmBqdvhmi1MEEcNqZOqKylAk8YCWuO3nmbV40wLugMMuXeYtCe+GHDbBuwbKLtm/9Ofkrp7tOt7NJdXrM4u2FzeY3N5j9X2UliDpTCOA9eHA+nujgIiN6heOGYGzKjXOJ00sBw34/lKyGWt09Mysy2Pvx7ZddS1e7xW81ak6v2Y7+vxn9PQDJb3dNosL35U9ZvEY88uRaAAFVXyVg/lI7BXgTXqeliAvXJ83RnIW0C+Y7G7NCWnzBaolOkZ7oG5gDyCPSfrqHAyAa0TFI6U6HlNztKb+Wfc7W447D9H6YA2jkXiRqREJ81VcMTkZR9KBqUSKapaSCmsbVClB62wVqT6OluUFk+/4jV91zHkG5RxrPtzSnE0fYcuFm0brO5o+nNMt8H2F5j+Ettfkt2GUCyHnLkOkXRT0Hqq0yGFNhanzXIfCkfQK8fqZVjmNXe8ZvOBY+sBCUr8pA57YQHO4IZWleUoB2OKURqC2ujOYPXRO/HIhBE5Tq5g2bF5OrI9Z2Bvfm+zY4/c5CXEQqk6tCiCqaGWxiOf7LXL4V33ShDwcvZMnZ+zDJWplwl18v2aH2Qu80p+/WfM67NeZc0MGCoUWZJHqyRUze+jMhCNhr5tGAcrhjaNmOanWi6r1mJKZiiRkiAFKdadz8QI2hWaTnPmGqwTLxytzTH0yenFpNway8Z0GOOIOaOwGLWib8+wvsf357RnD2k392n6S3ArlOuIEcYQ2U2BdCjAntO09XmvmK9PngGpurhmPzjZ2/IRxDtp/ObmdoFuZxkq8zWr7LSTgInZbF0e8vln1z2zDqpiShW8qEwIbcjaVClakXpNydDOao1WR2BR9ssqW1Hl5L2o2tcrYp5luIpcQYdSP/dcENaRl7xmbeyW83dej0rAI7kgc2PLAoAq5r9XweMy7731+Shq2T+lSM8L8BRiWPbTrmkxMdN5S0HCxWyzwm/Opck+3OKblhACWbdoF3A6Uvwa6zvSEEnjc8Y0kIsmuh2aKCEEKeOdIk57yIGsDGORQKKSwHnLOAZ8s2FQG7qrx2ze/JDt0/foLu/j1+eEXPCtJB9638hAQ+sKI6mqSK7XacY765fiuNdTwdDT826+zsfrLX9rvjb59HsrYjOvY2EsBFKMFfiPC/iX656o1JGFZPTxdVOMTDETwlTXokjIUALszWEXRmu8s4uKI4RADGFh7C014MlnnM/WZZgwr54yg9JlCag61qSybzVtQ0qSqOu9p21bjFaMw8RuNwCFfrMSUDdLYnSp9WEqhYx4NM7eaMMoBvzU8zmMmRILkFh7sd5JiL2AxtI7z8pZNk0n4SolYoASCzoUdNoT9xnjRCZvcUSBBAWUzC1q+4j2rfe5fO/bbB+9i+7OwDhCRoDU1oNv8Y0XKx/nqlLiZ32tZf9XpwtqXlf1GfzZtfb6t1aZcqmsMXUcJllnFnA+1yHpLIebQS3tzLEGAUrKpCSAXpomSVMPgVISKuda82u090e5awXHThnmcz2fs9THcralCsaJn2PjxV4F5EyLIZwMOxoW9mcstTEV4Fyd7L1Lsu38OvPaK0emdCmz3YnCOoufmTAn9+D1a3wEKGdZ6lyvyjC2rn2tSAmMNvjGAJFxKtzuJyyW7cqi6bibHGpzhbla48goa3n4zb/F0+/+Nm59n9Zr1O0dh5s73L1LglLkEDjc3jIpzyvjaWyD71te/PRzrLPcf+stms0KYw2bq/P65iTNWimFrgCG0pCnVPtJvYD/R6YiONcszy0gA1RmP9bTPjO/fr3q3qaVEsuhE/A4JjGF0fUsmK+r1koUTPUZmC0nylyTl1y9kSPJGIy1UrNVgLVQOKvfrytBYV6/x+GWrEtr7QLgolhCoOa9KNQgodkWyGpJrEhxYjqMxHFa5OatM6hGnuEUItPhwKvn1xz2O8IwYlTBec/F+Rmu6Wj6Dte0ON/IeomROE2UcRK2rvesupUM1WIkjxP5MFYGuoGmRXtHNpqESHCvvvGbPHj0BNesaPotq8sHrC8f4vutBIjkkz6s1kJRaQoGE5MkklsJZ3BKknn1iW0JpSzs6EI5Sf6de6i8lAkzPkDtbayR6z3LPl/bq2qPtChdOK6nmS08n5PGCCbinK6sPkM29RxIcZFoT9PENMWFGQ6ZrutYrdcc1V91XdVje1ZljdNIiLGGCE0yOMilsk5j/ZwCVEtPY3j/vQ8gR9qu4969B2w3G/r1tjKNq5967VvmNcPJXiXLUnoXX2s4NdenUAE+6UVn8NNQh675eM1EXXfcrbTWEiClWAC/WAMDc87LvbLO0XUtxoid1XJW1/5yDGEJ7NrvdnzVr68M8HVe0+DQ2aCLxmRdJw/iieGdRmXQzpOJuNosZxzWOFKRzWQYRnLJaF2IUcw+iyqSBpnELFyngk4N1suEz9srmvUl28s38esnrM6eotsLzOYBIRuGMfLlOJGejZRykAOwSkCoD54g6PUBqsDdjKQePbuOQMIxQfL1SdT/X4AMThrS43WbD/zaxgEVuKjfp2rTMUcta83Je5LX0Bq61rPdrFj1Iu0YhpH9YeTmRjxTYJZZltd+3txcHdlUR0aBNB9H4C5XoGUB+U4+78LYmxuXk6ZNLUVRqdJaI2i61nVCM8t4kXHBzwBNSklhMktUMjI1MK1Bd4qMYpwszsr/88oTYmAcNeplYtNGlPWkSaEmRS4ajWyAcSwM+4SaHGZQTA6wGaWc+DL6NSpE9q/AbS/ZnD3h/Ft/g8tHb9OfX9BttoB4jg3jxIubm4ryy6RTG7P4ks0761zwHNcAUBvfmY9QynFDnO/X6e9fWz/1Os3XX/7HEaSat/aZOTrfv+WV5vWgjh518xT7Z4G92WPPWrP8DK3rBCamBXiem9+jrPx1JtXsA5T/mn8WyWZloMzg3inAt0hGlUxm5s5GioXj5z5t6GbwbwGmTAX2TjZ3mEM25icdlLKkUFBYvIcUirB+KKhsyGPEqEjre3yzlr0qBhpX6iFrSGWEnBhuk4T7KIU2K5q2I44JnVu2F5c0boN2HabpMN2Wbnsf3Z5j+0uU3xKzIRXYh0gcMnkYQBmMdShtK7jPcn2We5ekKF8YamV+FmevCQF/vPPCVjWGFBPTOHI33cpBx/H7lanXu+4JM3Ml5RO/PmZmUp1a1XU3h2WUgsjz1VGWqSvodVrql7ppqgriCWA2FzrHAnFeY6UcbQGOEk0BZRa2ywncuazPk/cWUybMTJef2d8FUNEnn+8IEArIUqeZzLWsXPdEPgY+VLDGVDRaKXjpI8GK75EpUzWVN6SYcdrR1KAXpQquFDAKnTRnTlMMqKwIu4jyCqPF59YbR1McRWmUtrS2oRRH39/HuB6/uaDdPKDpL/Hre9h2S1GOmGCYEndDJB8CEJZmbpahLuyTarQ9PzCn0sYZ0JsLVimMTu7r/JDVvVGVUyCvDgqYzYyPz64MqGbm5RHUO2WUxyp7lLPDiGRHw5QK41jZDXoG9ar0XMHMjCuliK8eBUVe1qjs03NIQeH4HRxlGMy2Gizrf/79AjjV9z0/r4J7luMlmd/O3M0uhu91n6/J7rKW8gIYpHlIMjPL6uCEclQXrLoeGxTOOIpxIg+0A9PhFr2+lNRm48VcvQTKdEdMOwl+Gg/0XY/SjgvVYnRhipHGGtJYiCEz5owznsMhktoVUXl8s2Hz6E3On36AbrdcPn2f5Fa8/PIFj3/+F2i6DlU96ebaq9SaRdWaq64cZibusrZOztCTRbWwpub65zSobDkL0ywZP4KqJ7vP0sjEus/lk2Tved+Z0+K1QgbVFfCYJXKpsqViCIts1zpH2zbLz7HGCHulNnPTOFYZrKwn42amv1oGNqdfM2AutWZearH5/s/nfkryOVX1Z4oxk4uiW/W0rbD2bu8OErDiLd65xaZgZijUiuS4tmsNMFbJcalSeKnZLMNesepadM70xtA1CucUfevQqdZ1KZGmhI5JhhFZobXHtGegPG79gPb+2zz5hV/Gbi5xTc/udk+zvaRZbTmEhLENd0rRdy2Nb3DeSb1i9Gv70QLUnTRnM9igSqkJ1vV0KHMNW04ezPlav15XnXoeCnBS5g2AlOPCjC9F5HCuAnrLesz1OlTZbZomcpjIKS5NvdEatME0vkryjuzU09p8Jh3M7Jj5/hVZmsL2swatvQCxtanMRUAy6z0zQDF75cpZZbDVR0+2X2GKzoPSWcJ+7BXqsEOLX3Up0FY7F+m75xpu/gzH55kZEMj1OkMFZY99wVF1oXDGcMiGlD0+jSgjQSpu84CzD7/N+9/+27T332J9+QCKZXr5nDwdGG5uefXRxyjzOd3K8vInn9JfnNPpTHt5iVv1mHXHuRG/rgxgLE8vrqBAqFLfEKsPZ8rH8ylnGZbW/Wep30tBoSVwKR/PrdPBO/X6zfd2JmYoxclw/eSr1BrmZGC+1CdK9qmZnEI9R2awNmfx/pxluTHFyio91v5a+2oHok7uw6k91BEAmfe1OSCFk/02J7FsSSnKIFArvPOYRhFrOu+4k9RoSsY6S9uKH6kqhZIid3c3DIcd4+EgmIHS9P2K9vIevvG4tqm9igOUsF7HgZQi2li6rsNYJ5LQaaKEQJmi1GVoTNuDd2QloSWJ6j2vFKbt+Jv/6D/Ftz3DGKrir5CVYgyJkDLeO7yT9WKqz/cMcOaTPk3XeiLNfeFcJMz1aV03qSazW2uF0KLmUJoTm6F5byvH9bDUrXPNXfetGVSa97I5FV62q8raTLGy/9NSW5Q8vzdhcTdNS9/1stfP6kd13ItmdY6cnXUvmZmbwFZvlteT50DeepwmtCo16V7J/TIaXRmeM4g2nz0llyP7usy1oUJpW1Ve8/4x1w3H3pmTekAV6WvmfmcmoMzDieWzK42yagF0UmXmi9VBXvZqax1931d2+IkEqT5zaZbQh7B4W6YYlzpnfj6/ytdXBvjW1Yzea0tJBZRFoxjGSIwVMCuZHKaa8hcJsUA5AAL4YGQhKG0wqlCSwhmPUYbOb2jslrbrcasLus0D2s19to++xuriPbJbM2XFYQy83I9MhxGGu9cP3fnK1oOipNm0X76UoqbKHE34YV4vuUp8TiaiJVfKuyDOlCNz7wiWHQv2RVpzivBxUliWsvzs2VPPmiO4OMvfZqBOKzFhvjjb0HXCGtvtBnb7gf1+YApxaR5lA5YDYW7sT5vwBUTKM8JeThr1wqnseCmM/7oDaf5EJw/DSQ21PPzLLjT/oo5F91xQzcb4x9cESqG9cARnaVsoNeCiDJqMQRsBjIcwUKIiXGv2YcJrS5hksuXN/4+5P1mSbVuSxDBdzW7cPZpzbvuyK75MZDGrUEVAUBAIKZixEQ44pxBDTsgR5xR+BL+MwglqRIoUCsWsbN57tzkR4e67WR0HamZr+305wsUAIXLvaSKO+/a917JlpqaqNmK8vGI6n7H89I4wV+Q24HZ3QAiYP33G5fVbXL76E7x88xucXj7j+atvMT9/Rjw9Ydt3bNuG67rg/fc/ciNLd8v7iCHw8NOPXatKHPqj/yVzQEoCS6hkEVnA/WUiCgluun6O91izUGO61ePz6NfUK07+G5V0aODv3lTcC8NAKryERXgXpNObe0F/XKMKuh3W0x8xCg6Sgj5QQ70dKe3UwRv60WwvS0Le95MzUIfwyWPBJvH+wB7tEt3jf03WaWtAWoDJPSFOHhUFKIXTcWtCSjsGx05ixIDBTwigv5cHsC8JGBigh/mMaTphigk+jDidX+D8jGE+Y/yTrzGcXxFPnzE8fYd4+QyOEApYckHeM8pa0ZaNQEUMCD6SlWW0/b6lOpNWpbcHCaoWXRJjhmE0WUTOBSntuL+/oeZkyYdzCoCI7LBWFOnW5ZJ7nJD6p3uMHoqNQ/LQpCBg+eQMyHHQOCUf54GdzM+nnogN9O4hHqOAefcW+uVeCLYuZa0fYrAWqbU1JE1GijKgHgFxTbZLzdCznp+r9oRJV5+AMbUVKXT5bGSHdYkwG9XIjWbV2oUsqSHUiOAbkCsGFzDkhilGtOREVpBpMr0DoxsRHQvmwQ8Y3QkxzojTGfP5W0yXT7h8/hbz859gfv4WiGek6pBKw7JnvN8T3H0D3N6Z1k45kxpTjoDJAZyVdaI7T4Epyll1eEQv4iBsBr56FVDXwTXK7TyaNbP0mR2LZ322BsCCA2eyMF5qhQAYEXDAVoBty1xxjrE6alGir6fWEg+sQXq+6mcAgNIgA1FkQjMOkk/0RozW9vrVZVB8L41JDs4SeycLkqGz/6yeh4z5Cuw5KOjHgTSSgJeKWqRjXPl7QPcdG0zD9IRaHU6vTyjrB9b1Z1yXL9j2FWn5RwzxAo8FwIDaduzLz5QGlobzecKGhFoTYgyoe8OOCcP8LZ4+fYU2POHy3Z/h/NX3mJ6+BsYL5k9fw4cJp5dnNAFVx2lCjBF/9jf/0mRo+ixao+zJGGqu5wgPe1f3nKzJCtfXGDogDF2D7XE/WzySNayJeUqJnngyJEOBUrK31byc/kessbhn0SpKpkxJwX968ZGBNwyUgzpHz184YIwsQFqtKMLuUyuArtzQ+8MPbaea1WdN1hvXWDvG3XZg/MjPq4Qz7RnOBzw9zfDBY102LMuGVhsl3N734uzAHjI2yeFsoSS3CHtafPGcw3fzAOcvOI8Vp8khgP5trRbaoCDAYQT8BfPn75A+Etz5Ez799n+O1+/+Al/9+X+CUiPGpxdkOOxwWNFwOV8QL0CcTxjmGZOArCF0g3NdN7Wpl6WulX4jH0FhBfkOf3LOik5dKyy6mhVs8eCnpIzNLFOTgWbDT8JAvzXLuoTZWUu2icV53zjlU84V7+nX68MAF4LsB/fwXoxB/YxqjeB2ygeGiZytwzBAvT/1nIOs/yBAlALBCkZzeEJA8L2O0OxK11+Dk6EtatXDc94LC6gBtpbNR60pi8v3R+K7xUpRVlHtm/qYQ4fA4S5kHjmUr/4X+C/+1/81qg/43f/n3+K3//l/ia/+7G9w+vQt/Dxj33bs24a3n7/g7/+7f4fl5x/x23/9r/D627/A5emC4XRGGEZ8/jf/xhLGKmE2yDXulZLitGwYZegNPTIPMr/oj2FIFgakcIflvU3QzM6a0py8iZWIs4b7sU605y51mObOukb1PoYYgNZVKa2JnL5QMs5BaIw3HHLXiStOFo0PfGYQSyEAfF15YMraqrVI81esq7yH2uvoII5SMlDZzJhnTjUvOWNdFyy3K/Z9BRqHFAxDxDRd+Nkr4+py+8B6u6Fk7q1hnHD59jsB0YIBeiEG1Jyxryv27U7AfRoxv77COSrc2pbQ7itqTnCtkXV6PgMxIjcg1YoKAjylNn4uYVsWODTPPOJ1mgXIoWpCGaV86qJsApByQXHCZq0chsI6rgJCdonC4LN66/BnN7nHkk3r5VopSGtkVB9Zf5a36NpC+6Mzodsg9d93ckhX84xyj6kMEYCNSS//bS3WCGI6JHs+0t5nxghlTGs84Oep/RzR+Ko1QqsWL022Cu2D9uY/JGb34X+8fp2LoHvQoAdt6mldKThH983ruf4RF+KPqg83/QfJiGcTeYgRp7Mw8w6KMc0zai0oSfZD4oCfJL6FTc4TZXLvO2089v8pDNlwzmHfEurAxZP3jLQzMNNcGiiZSlsn95QU3RFj8Ahuhm8O53DGND7jdPmM6J/x8tX3GC+vePn+t3j66p/BDTPaeMHeIj4+VrzljB9+2lHKDxL+nBXw9v8DMFXE28SGUUgSEAOBC32IgLJBJDCXQ5ejNWMK8Oea0FLdgRbfN5geXA0HEEu/hKlF2RCnRelEXAX1OiimCR8HZ3x6fcLpNKO1ho/rHe8fC+4LJxy1RqmHLjImuR3kKQbKNSnE+p+PEpX2y2CgifHh7395SOlm1V/d4eDWAoOjpe1OA+2wMZvcFuimOAJWDa9fTUjzCdUN8PeK+70hOo9QHPYaUd2AdakYPFDdgPefK8YARD8A04QhXtDwgjB8wtNf/BX++l/8Z/j+r/4G5bYgniZcPnMQRvVBOkl33LYF7z/8hIqfeOjGSHbeMB6KUHavOFG5SrnB589va4aOwz06yAP1Mx4KRS0AIb/y+VS738dix17nl8/wsAAf1p5cEjvI3q6nik+LUvjHMUoXheuHVO3aR75LEOsJtbdC1cC9A7DXJCGxidLSHbGDpqgnW3lIZCw62y99L1ly1FNnPH5Sfmmx/jhd8ABmOGUb8d5MboBvE57nz6glYZwHoK3wvsA1hxgmjHGAawHDfEarBQkZUxwB53F+/oTT5TMlj/MTwjAA8xN8PGF4/gbZn+DChHXL2ErBR84oXzLgMoG1OMCHweKCxrfGE497WQBQXTMaq8xrQ9eb9xhHAfSGESVX5LTj+vEusp/a/em8l5fXNVHoQZf7gAyVy+jS6zFWutGAdd1/GRNUeimrugMWUjGo5NLYSur7c0iEdU1osd7XgTxrA6k6cGJxSk1xa7dUyIUAkTKV+wQ2/QwK4tlutfWt0V47pYCyXKRIlI4g9weZe8F+L0MoqsdyI2tvcg5pCyihYI4jZucwZCbsF/AZRhfQRiegwUj26HDG5fkVuXq8fPeXOH3+c7hwgpufkKtHyRVfckb9OaPh3fYtgX3HyWuusy90R3EVZUrA5LodvMV2Sbu4Dtph7+k5eDgLvDxvV1sH8gConM35ah1xO8NVeivnLxolsTmzkNb3dF46vN5hTxwWwOXDxJ+v7xXuYfytx1gLuFZ4PQf5f21ArsLWa04sLzTWCitG17fExIZqQIEmknrqHfLSx669xv/WQWNIDNTkV6VUTX6+++xRFlmFwVGExafr07yaGhmSgMf17Sek7UcgvyOXDXvi1NJW7si5YAwzcr5jud4wDifsOWB8/hrj0wWv3/4pXv/0n2M8fcbw+j3G588oxQFhxOXTC4Y4okr8OT+dEQMnH3qRInlFB/CYm1jCrkuoVjTfTam7f15P9I+s0Yd/i87QO+7Xx8Yhpfhp7zJmZSzlnOSSAgsV8cbigCTG5NYgXlQZOgk+SXLemtqmTP2c8QSEZmGP1FKwb6tYAcjzcsLU8N3mot8jOdNtnehG64wJPTePRb+u0RgHtNqw7xnzPGE6jSil4uPjjrxnhOAwzqOxD1tzxgpS/ME5Z80jOBkWkgtSygTEpIBtreE5NBQU+K3ivjXEMMIVj/n1O8zf/AW++s1v8fkv/1P4+RPGz9/BVTLE3TChlYJ9IJMsjAPmaeQAqnGwPN4ZmMdYz33jJMZ3tnbT3ztYXtWzp0OeJDHe7nXVPL+an5MOqYPkyH2icrG1GAMH9DinPytRshQCejkh7xsnS2axvXCsi7wAY/AjnPoD23Ns4rmnibWcYwKy5CysK4lHUQA1H5wx4bjO+RnJCheiguRdOTdrkATf6wfbeMICa3AWVwBltOo9ppckbSECwhBhzSJZQ1ptudALf56/3fvPGtq6d7URq/dCzmgfR/zN//a/wfOnbzFPJ/zpv/pfASFg2QrytqMudzxdzhiix+nzt/gv//qv5HN55MaaRAcaqEi61iIAJQBkxBgwiHx+GuMBbOzHIGO1Njg7cKCxDOh1p/kCg/XfAzNXrXOk7lKw7FhnAWxGAw1q3fQQT1sTQK8epP7lcL4rw1frYk5fVdmwdw4hRrs+Mu8KGvqZN01TX4v1wGTaN4ufOnTDeaAKoPfx/jP2lT5rwXvM04zL+dxrHVexLQvuHx9Y73e0WhBjxPPrC+IwMW8JtJEZhoEWTWnFvq7Ia0MMEafzhWBLDGiZBKO6XeHSBl8AxAFtPgFDpJcxZNCbnC0NyrSNUF/+fSc4c7lcMM2zsOm5NrNYL9RajCxgObkDYojGZhwi5ZlhGESm6R5y9uOXTmzVb/TaWkCxX8j6jYhUek7ePc01X+W/UFAphkgWZfCyx/Qc1lznEfso4reoXz5ExHhUebSeGgJd5ddgIKeBaFLXeNclq04GgBlRRZugjgNmtB7W5nLTwM2ftjzxWPsaEaH2uEEFSjvsSye+jtFiLcG8xSw5nJNp0fPEGBmDxSkHYSJWMvFqJUkjZR12kywvcI7NgQJ6QG/7ipwyhpFr+unyDGv0/oqvXz9kY6nA6lA+siS4FQ5ejFuZn49uwOACohsQwoDBR/j4jMtXf4nz05/gN3/1LzBcvsPLN3+Gy1ffwrmINRER/rgt+N1twXpdkdNPByBBD2YtTMU/olJCMYRgCTjAziHAfRJEBsLX6l4pWiirEewR6Dpq1LWYAfTw6X5PukGrphVOGTA8ePX7ZNOoBFc6dZ6yW5POcTwsQgi4XCYCe/OMBuDjeseXtyvWNWHbd6DVB3Nd53ohwevshTeOv0dHr6HFugb/2ruER7nuEWBRE179MimAFvEir7V7cyiIjt4bHQ39JUAj19Ua3r8AIY04jTOyCwB21OYxj694+fQdfJjx/N0T5ssLHByG8wVf/8VfwfuA8/MLpvMFz5+/wdPLK6bLM2nV24bldsN6v+PjD2/Y/+EPQOVwEB9VZhsRlYYMBw65pDmqXb1TllGvNMhREerv4TkwMZPgVR8/rXmmySGjoN0/9aV/3Q/9A/AgoN0vARZNiBUA1kNI9xKn/lGKWy2RZ+DKsgcUkOEvPVF5KER0n9THokOZMkffvaOkw/xGDqwXfW0pw9FaX2N8u77P5d0Phw0OiVQH89iRdCLf8/YQ9Tq+fn1FuS5wbcEYPUbvAcwYhhnDzG7g6XSBDxFwJ9QYUO8Zn//0n2E6fcbp9WtMz1+jjCfsmQfsumzYSkH5OaPWNybScWQRGSLCqDR3YUXZMzoUt1JUHKVmum5a0+mclAifTif6utSGXBJu1xty+sIkRGIm14Q34L3VakMl9FCzKeCS5+u6ryLrKfVYUB46zlK0QN8Lfc14rzJM3TKd/WXFJPpnbE2fD036nRY4VvgKM07AIi2AADLGqnTfa6tMRiXpKSIdMKbOLxoX+mW+N7p/Nf5X9c/UIghyNol/q+Rm5pUGLT75c8EBQx0Q6oihRHxzGhDGCbUVhBAx+AkxjgjDGZenzxjHz/j81feYzp8wnZ8xPr2ihRNKmJHEK+9eKt6Xwmu5Xs1jUoEV7wPjjhSIDQBcB5HsV2kw8ZlJ06I2VFdAfVEvj/mxLCBBPZKca/BN5LYOZIIImKwspeO5yEJdesCtwZijpQqop9IeToh0gVMa99KwrwkNwUCkMSoQIM2iUsTjV56b+Op5iGRa1ihl1k7WNSFboHsuqsSES1LsPmQVQuMd+hrRFJyFlbMGh+vVa3/Npmcgf1754NoQok1fEeldNukMPV+yvZamhgpcV3nN9/cvCPmOkK4o5YaaE2qlx1lOEYgDnl++Qzx9xuXyim9fv8Wn7/8c49PXOH3+Dj4OSKXh/PoJrgHPry8EnSPtAqRu7rYidiZyIyjrEoAVpqpMYL4kEd9xt2RhZwa1ugDgDmuZMULyk6r3/AjA43DWdS+9fU8olQy1VukD1WpnzzwUusELA8kBAqgu+y7nFSxWatFOJsnwODBDcjO0SoZJyvZvIHuBYMzB2/KwhmR3WN6geZJKcq0pJmeurdVaZRqfQ0oVPnhcXi6IQSbk3jfU2kRSFkWGLHYFYmavr6PrljHVYd12pESPywY2LCBFYmsOf/82wfuv8ee//U/w1Xd/hW/+5C9xuy34/q//JeL5leuzNew54X5LOF8uOE8TTqczxmnAMESLDfpcdF/p3mt2Z/pvnEbY1uOZfTWuTy0Km8Q0nnNkZQQfMMTBmuxAkIZkloY+pPhqXYI3jJa360HZTOqWkHdh6NVEFjM0d2JjwtaH1DeaixzPfue0WNXGKG0dlC3IYXr0O2uy10pt2Lcs10qJrZMze0/0M9dmnXPA6TTY7wkW8nXVf7tb+XT5GO1Aeh3kHDBOU78fdk73h3QEAowZI95cR/aLc2QCWZP7UI8p2xXO47f/4j9FHGfkVEShEOR7lCPHOEHP6FL7Htn2Xb5PTzfGMRbuUcgWcuOhVZ0+Yn0+HVDRc0UWmq5FybfhDvnncZ00+iLj8Gx77t2Blp4X9hipF3NkYjEeJXn5zry1HFviUvABYYoS64IBUw60rpIjGA5sMAYX5e3UFiJjTxtq5r5wzmMIEedphjvNyIWx9vb+Bdu2opZs4MjT87eIYbDzLu877vcr1tsNaV8BOIzDgM9ff02SQYNNTQ8OKDlhW1cs653Tc8cZp8sr4jgQmM0JZVtR7ze0nAF4hDignU+Ad5zSDYc9k7HtvUdVazGAVjSNDc+UElqtAkaO2Pdk+0Bjzb4ncBjFiDgEntXe43Q+GQtMvcm7nLbnmTlni1e6h3TdVFtTyjRXhUxDH0JYDmxOIWQ4NsdiiDJBVsgpCib6Hhk1j9bX1dpRX8cJU9FJ3aRBVUF7A91bo7pR6z3ZG/qhzB4ocKAXdPCF8539i2q1KpzjQDDBJ5oFccUVtL6Uv7d6oT36ukt6rrWgt9rLyecWr9xtJetePHJjGDAMI06ns7HfTRVln7miyHlesvgTyprRWjQEDinMAnLnzHvCScgznp6e2NiRevx+u+Hnn3/Cr/361QDf9ScgvzdMcChwOE0Tovc4TzPmOGM+n+HchNfX36DFGadv/hm+/ot/Dj++4E//5r+AcwNKbdi2hPu24Ye/f8O2UW7KONnEc4B0dwBAY7BywiogJV0OOed5gOVsIF6QARNMsCBro3aGGFSWWNHkYFNjeE2otPA7svccdPN1MAGWnHXqqSW04OGtTD1NXIIkkoqct9YP//NlwKfXZ1zOJ9Ta8PZ+xZf3K9Z1l6JUk4zYQUvfT9ReeKNf/6EA6fLJDsbUw2e1LoBuHC0I0ZNPsvM6mOQchK0HKfY6QENafi9apFQHoBJL/CIb6ODj7WOGv17w4Uf89l//V3j5dsYUgfnTd/jt3/zn+Oav/gbjOAMqdw6HqcitIG0brtcP/Md/+D329f+HfV9Rc4ULNL9UerQfJgTzFqFks5QKFE56hDwbk6cqCOOa1Lj/hOzWft9BsCMAJek8am6Hn4V9/3hL2iExsp/9xfsYAATY+nQOlmhocaL9bVKxI0KUQFsqjNknkt1HRumjQTDQHgssozwf1pSCe6XaRF47CGpFVt8Q3kJo50q70sruUj8bfn7Lcg7/13tgOVI/zOR54QBydsPo/r7Bz5jPn5lcF4d4esHp8g2evvoznD79GebX3yDOnGrrXIBOGLxvBcue8LbuwPqOXH5inAoDnPiBhWHgxHDvAUfqOw7MKALs5ZD0Vfs8erApo8o6jeNoLD3vAlLasdwXfNl+xqOPnnYLxaRaksqSq3UhNeEvmQzsCieWBMX2gnb05Gk/JCeaSPeYpuBR92txfeHI55FCXV5LARCNJc0OdElA9fuQTrYVDFYJAVC5P+9bKUxaWdgX8aCimT3Q2WvsvPeGT+9kNuvEd2DrUU5JuQB/VWBHawRIQudA6bD+9xJGnE7PGEJEDM8Yz1/h8vQ1Xr/+E5xff4Pz8zeIp2fEOCI3jy0V3PeMLymh/FRQ6w0NN0skHNCBAgColFgXMGnJKHbvnNeBWNxrCry51njOWlH9GKshn0SBVd6hiqigschJA9CZoeoje4ibkNdVoKPV/h8l07l3jD0Z1MF55ALct4o9k2kUIxP44L3kCc1AH6lWoVNk6V7VjK3nzPcUyO3gr6eJq66sw1qweK2FmC3lbldx/EnmC7Jy5Pc26Mb+zGaQrjWP9rC+KE1vkp/0+HlMai1e4ABQy2arFXh7+8CL27CnHdPTV7h8+x2evvkzvHz3F3j55k/h4hnD89eYnl4wThzC4EPAOE04XS4Yh0EkqqGfgRqnARtU0NBQipyJh5/5Zby1/SqfmcNyDmyXA1vLAD15Vjxvqj2nnmO0Q3HE3HLbNvMaa41MJhZwRfYKiyHn2BxWFQRJFw0prbhfCWhpGK6VoARAKdskU4bZoXcYpok5iOQwSYZQHC02NE+xho4WT4dcs6+2ftb3hlgvcPrvufbJQBkstxvGEdM8obWCj487UmJzdp4JzKY9GdtDjb7V/zgLE0RTlXUl81ABZGtK60LwEf/V/+n/jvnpgtPzE2rmfn6ODktrCKngNE94Pp8wn2YOv/DeGL3O9T2jZ/fxtIdz9ucjI9/Z3YL9m+NvNCaYb2yjz+c4jQLsRRtg00pFqklYOMp4AZtx5q9sG59AR5VJyWlHSZz42WSghhbKlBJ3yWo7XCJrig786PPUoRVNgP2jN3III2IM8j0928ioDDFimiZoIzfJhOMmZvLec4qt914sjPSsJr262bN/zDn1vK0yMEsB6mHo96UdYlmPAT3W1tYn8vKWK7DfhO0arMbSfa5S0nKUIIMWG/MwYJpmKsVc4yAp2VdZpJ21VQxB2Lgh4HKeTX7pTzPzE40lsse0iVBKlthT7RlZnMJBVut7fqMkDX2enGItn4cJONSX23y60C0kHhnKyhDq/6W0m1SWz0NUc7J/tSHvZL0Nw4A4n6yZ0Bu4fA7acKHU0Nv5lEtB3hP2fcMusdMFkdOeTvCN8t9tXXG7LtjWFa01DMOAaZpwefrmoAZqqLkg7SuWO8kVOSWqGYLH9PSMMJCxG2RoUSsZeduRblesmb7AcRhwfrkQ1HMeJe8oy4KyJw7hRIMfBuA0AcMABDY295SQ92T5JZn/AcE5qOFLlX1bS0KIAcNMT8/busm1co0PE6cETzNtJ/xhcEw/sxh3Sm1A0Ty5q/f07EeD/f4Yx2vpElo997WG1sZAjB5xHMiYlYaUTS0+xkM5V0rJHICke1ObwAZGDl1Z83DuCKBfuRc1P9OaDnYKcPiqxgUnaykegEUfOtPROQ9RUD/GbqthD7mV5EFVm5cHqTE9YF3fk94jSqzWj6MNsbSvAtbyqWuD5Hx+6nYCTq+BAYtnfrFnksRHL4mKQp8rXIMLQNqyNQBZZ0fM8wnz62x+pvu2Y1luuN/vMnCEFiiGd/2Kr18N8J3bjBi/xTR+hXA54+nr75HXgn/9X//vMX7+Hl/95i/QwoTT6QkIAakU/PzlhrRv+P/++9/hdrtZR6GKfMsAOXfozh4T2EawrwnzSBFue4gHcAew/NGQZCviLEmSjdRg72eNUinodIKTJqkKMli3SW9Io+xUE0AvSQtc7woTdAS6SSlAE3k9LLjpnp7OuFxm5Fzxj7/7Ccu6YduSTEZiYRalg8hY0kHF9vDf8bDtAaQaO68nEQrMWLJo/64n0jzoj3r9Y8EmRZPTUrYfgkdmBuw7ito3sisUIGqHQCg/9/1v/w2GlPH8zbf407/65/jzf/6vyGKZusa/ijnovq1YPu643T+w3K9IG01b2WQONgRjnLsRqkazWip91yChyukABgVX1DCX3Y7O0MSh2HuUbR/vw4O5sj0fkTjoSrKDASbN7M+tA7R6TbrGj6ArAAn0nT7dZZTcXzFGjENECJLEiKEr13wxVgNX5WEas/puHT/HgYr9AOwJMNI7TpLY1GL7zzwgDhITNSBWlpkmlx2/6SxFvU/2zERmp4lSr3W7z6ZOriJ2xOI9S/I8ff5rfPXyhPPL9/CnM6bzC8anz8iF73lb7th+eiOTpjW0SrYmh16od5KHn2Y5gPvAFZMyO75WLo+FWesXdbh+AZB8QIgB4zhhnGkoDjjklLGtC65vV9S6s8CTRINAUmCyCbLgai3YpeOkzylL10q7V0cg9ZcDhfT7Oo3WWKKAdLn6QAl+hA7+a9KI1jqAJGCtbpXj+tb9o8baFjykGKgo8O3ASq3KuYIlJX0SZCOYKZ1ZSMKirFLdQ1Y6tM4qsLgl+63VcihEyVxvrcI3ADoZu7V+LaB9AmW6nHhWasOf/Nn/Es/Pn3B+/Q3mp88YpydOIE0Fy7riy9uG/YcfCLrDie9nZwUdp8rq4JmSCyr6Xva+WBzwcvaYXYWxySh/dfLM3eE+d4BGt0yzz+HQENDgPP9OgV0D8yR0OlkPcEcZhRyZEO+nUlCSSLQ8GbY+RDR4pFyx3ROyyGTp8dITWhZMBbXAnguBVzL+FdQLD4k3WUSlCAvFnv8h07TnJxmiWBn0kZvNElECBocfrTxJDIA6ngmtA3sPrMDW0Gq2Nden3TeJ0dmkLkXjaW1W/FkOU5WND8tt5stX+M1f/wv85i//JZ6//wsM52e4MCKOA8ZphvMB0zRJ0etsnfD5eSs6uScqtDnFX6utQ4R+HIYgBYQGb83HGvd9UzBCGFNBB+JYsIA1o7QQqsczVWOqLNicM/Y9iXQ0SfOoe47VIpYE3glQqX53Giu5j0tOWFM22e7RxqKWysJvGM37iHmYl+Sc1i+5ZKz7ZnFW8xoFGJRJ3s/vil8sPX5e9DMWrR0YNs3i8jF+RZGrl8IYPV9mhBCQUsKyrPJcPMZxAFojo7FwnanRt4J2uXABhUBf2XXdkcUDU9eFQWveY1131AakYUarDm2rOJ8I5p2mkbK3oBY0B2BOzgM+0z4UhTmYMIK9/rk3I/ptEoZsO4Lo/L0qTbzEzyjyKvM5awQdisrmWzNSAD2IY38v2ZfmX5Z10u2Omjlp2ewnwi8YelLo6jn2oM5osLhjZ64ANXYogkDQMAjw0Zin8ZlWOMfPNs8zmSWtkS2aCD4qwM7issleLlZbad7U7RB63OE55wkO6D2WHFJZYBrEOuvQ9ejpHNTnqpSCXDvJggGzdW9h3Q+S6yoIReaLe9girUGG1NAL0KHhfruj1Ir5NGNw9MgOYegWSM7JWusxpOYktU17uCcSrWytEjToCovj+tWgp8BDj8ntcL3NgEA4IPr4cMZaEiTxwKbZir9qV3Fo7cbXz9LAdE6GIITIXOEXzKMizOEizDXvHC1k0Ken5pyxLouxkTS+DcOA52mS2FawrXfc3t6Q0gaHhhhHAfRezLeN5xCHzaR1kwEZd+wbmXrDMOB8OlFyO7FRDUgtt23Y9yTneMA4zIhPz7xeIvUoy4q8U+4OB1rbzDNZes7RUzVnVAVzxKZCa4AKrV05DAklwTtgiAFh5lCYWhv2LeG+rPjqfMY8nzu7E2SqdysinaKtOVNfI5JOcT2UIsNNBMAT4EjzccsdXRPgjpLhECKvTc4PrbclOkBr6izrz2pCiX18jiLJtes6rs/DGm7NYhB9VjWvkI/u+jkaXZDay1udbJL62jpgBtdjtaxx3R6aJ6l6UEki6s2uoJ4SjcwrXM4yPU+1fmrg9ad96755lfMeYoyc7TDQQxFa5WouV7n3qgyeKSUbU0/VTUHiQJBmYkoF+76hVqoA5+kkjPRRhnFxqNH19oHr7z+writqIxA+jCM+ffoknocRP/30I37tl2vHyPM/4Ov/+f/4v+HTPONf/2/+DwjjE77+zZ+TzRJH5Nxwvd7RasLb2zs+rjTJTLkiBqA1h1G12+BBo51hPZBN/tqaJZryF6YX16m9RuMX3ANND7BmRXwfdaydFDm8rJiFvedRPvnHjKqjn4t2nmCgh3aeexGmyQmEvdcTWK9IvgCDzgpoLmKbQlqbHTDOda8tXlO/ruPX8XDuAIwkyQps2iHeWXs9MepeEseO3B/dD1nQAIyGe5QNAnhgFuozlNtnQU/r6F6oM3lPaccwzvjq6+/x1XffY5xGAA3rfcGy3HG/fuDj4x332w15XdFKhvfszGqROAyjyYhUztxP1A6MaQKuyZAl73p/5Z9YUGz93/KPB8nooeClpKTfQ9hndvaZH54dNNdsh3v+uPbsbsrrWfEuQQcHAKVJYeyDN8aeFmHt4B1hMmtbV5IUhQ68P1zlL65RgeJ2XF9abD7IccUnIuv0oUPCop/J1nsHnPQ+6L0+/Kj9vYH8AkiG6CVZH6UwGwR444HJT8Jrfnt/w/uPv8c8jCit4b4uuN/v2LYNuVT4EBHEmyPEAVFAPed5wBlbGJDpWV1+pomYHfJgnqLgH7vXUjQLUKmF5On0ZBPF9j1hXe7Y1hUl7+gG/F4K6g4iasJdRI6WM8ED7URpwmwDMeAsJlQZB3+cek1Qrz//DiJ1LxgtwPwhPgE9FhjAomAHeuwyoOQAbBuLVV7TfEJkKXrw77t1ghRKshZLrTK4RRKf5uSQPrKTCdpozNQEwVZVE2mSbBq9xloLga7WBGxogA5pcA3eKcutIQaP6D1ZQsFjTRVf2mek0nBfFuSaUXNFhTINvMiF5PfewcEbe13vgTVDDMDmudhZzO3AhpIEy3XZo23lVi0OBHlG6hdIr3EpwtBM5m2+ZArsCYNO30svVCMtyQ8qb6ziJSdFS/CInh310jiZbksFRYpimumrdyA/vBbzQGeKOgHTnMREfRa6NplYq2SU5bix7Owc1T0rsV4KL12HTTq/ytfWBhdENqK3tvvNqMSxg9Cy0PgZ9P0br4gvUQ1McPhl3KQkN9fymJDXLtvl/WbukErB+fNvMD19hh9mnM5nejiOg8XYB0BPWVlapOCxYFEJoxaJBrjoWgQI4GvRqXtf97+t0w4IW3qH45nCXPEAuxvjDrJvt31H2hN2GXJBaW8GwH2u3XAF3/i8uC6GISIGJ+bz2brylD/yYFEPI+8chnGU2CSyx6ANHQU/OfBFp+gqi5hn6GPD7ZdfPdZ1Buhjo+yx+crctdtfBCn8nHNIudKn8zSitYp1Tdi3HQ7AIMB4qSJ7t6nh0tRz6DlyFUqtc3J/ZdJia0h7YtEpGy9nIOWdP/v0FS5PzxxOpbmwOzzrY55s8jX99cD2tZ/pRbM/3D9rvjgcwA+uwSB5QIzB8nFNrB4Lacmtg6NHllfbCkv2+h4rmZM59w0lcTAGBw0EWxMhRvss/9SzVlBYmerHpntRoBFCXgDXTpScg7hGxr5zcIMPzprUDg4ld8mrkgHgPOLgMUgjuzUycNSDFWI1oA34UqoMFIKcl1xn3gkRQ5qYanckkdH2ru1krWU0BymdUHG8tyZPlvtTmzKNqvmItcN9KhY/gdv9hm///H+Gy+VJ6qtg4EXPE/qL25RaAbQbOltW31/zfwUcvaxvp+CE5KO9fqpmmG+Bv7UDgH/8j7dFB3DpNSkQrQBCFdBHgQw9J9QbzDyXAxvICqgp6HoEpLWBzrw4WM2sAzZKITCRczJvWw4REZ87cBrtum1Ylzty3oHWEMcR0zhhmmd6l8FZPVAkv9r3Bevtjm25I+07Sk6Y5gnz+Yw4DJhGst8cHGP4SuarEhBoURLhQmBtXCvqvqPsifvWBzTv4GJAdWThUS6pFgxyNkuDKsYgQLvgA4VDlYJjHhlCAKKDDxElV6zbjj1lDNOE3ICv/vS3GMcJCtQeyRSPwB6g3qzaZDL10uG81iERBI6D1CRkE7MZ4v+IIa3SVGvqWP2qgJM0PpWNrudyUzl967nvAUhTWb+SO1Txx9yre4vKsrL3VkzC9hr6uW/NH809W8cZqB6SwYpFYp9YISheoTWo1uxB2KfOB8sZ9GzM4nGqYF4VFm+QKdhxiL2pA9h+NjWZ5A06LKuWIr6lhXmZc/BwQhRIWJeVMdY5+DBgGkeMM/fMMLC+TnvCfbnj+vGB6/WKVsVC6XLGNE2c9nw4D1ttWJYVP/74B/xf/q//Z/yar1/N4PvP/nf/R3z3zbc4P7/i7XrF3//uR9zXDduyYN82dh5LscLBOY8xkL7Jh85CgRRGIKWDAaMllvwi/uWMhmpFHzogVF2nuFuCfQAejP0kIAZcB/KO/nLHA1mHQ+hXB7e0I6sBu7ODmNDx8AyCsD8aaTbbCJrwa6HL9+iAiBNgwB2SYaD7Oum/0QD+kBijQfXpTQo4ds47iNkPzS5ha/IzfbCD0smbIOBO8yIWIdDpvE0S6A52KnCH2oylp89Wu2R6R0vVDnaze6WB8PL8ihAj/u5v/wPev/yM+/Ud6/0mhbMaU3seNvNFUPoD40yCuYqodN0oOKzdqyC+TuxMiyTgqMTqaJKt097RFEAs9MSAoA7ZJf2TdrBar6EU3lD1d9Aix56yUyaXIxIta5UAcZ/ArMmJGgdznZO5MwwK7DkzYqdvm0PKxZ6FArRMCPqadsdr0uL0sIaOYMkDuNdU9l7t57VoMvCvdjmEVeq6LtQnxv6vB0QzwIISD2X8uf7TUkDE0AsNDfpw9NrSxF/BzX//H/7W2AI+RnryhAnjGNgNlsZE8EHukx4azpIwwKEKeGlHcOvJnA6DoDxGu2Ii9xppbzBPJ4QQse0Jy/2Kj7ef6VHSqgGJzgFRafAaCyTmasfrOOq+HfabxjzzcPKebCZ5VuoxZvFK1t4RHLJ1DAFWLG7rOulhSvmJHof4hD6tsMdFeeaWRbTDmgS09IIkEQ3dRgFSZJuUscmk1dokwdJk+sCMksRcWXIq5zRCDQMikxlosaOMASkaoEza9nCNrnWwM9ja1FgB/Lt//+/hfOxT+QL/g+z3VigddSjIrsuc+/PvUz0V6CTGxiStSDLoZH3ZWtTCs9YDW4uFWJB4IeUgX1eKEh0O0odBNWksODhUuOa6rE6KqXJg6amXnkopgucec3FAyhUfW8WWEmoT75IYMXmHIz6kkqQHwMnpuVb7WtFzxGlSKWwQqDzkUJhWeVAP8e2f+FXZ+zh8td44U5BYz64mL9t9HPu607VjcbURIH5IwJsALLLHqnpPtc78K61LZ5R9eWS1c8gGcP7qe7y8fkaMjH2W+KPv4WPs5UpjUtsBGBhrVIEUtEbO6iG2NM0bpNqJvlnxHW0fQ8BMZRqyEdX0PstFGCjkHVoFUtqxXndsWzJ2nE4DVwZBKRXTNHLatOVjDSEQ+BlEMpbSho+bTJWU56USHC1eohZbnr6AIUSZSupsH9dabArvESjzPpCxZuwk3RsW9GC5pK1J4Nh8UO/kDu4BRzsF55wVL3ovz+cZYYjY94Rl2YEGKSApNc0ps+GRsp3HCuJqKqrMi+ADlm1DLs2YRDkXgsNgHq9MwnmecV8WA8q00JPEAtDJqa7fj56HHWX87mGfNTRIioRUWXC1w76LAnCFSM8pTqJsaDZ0BiiilNGG9KBD0wQU7fl0B9NrLshpQ9425LSR6VUzwW1Zk+NIqZ6TBow+Ez0PrNGtBW7pRbUWoprPQZ5viB7jPFt8ySVjF9DEO49xGOAjWXMEaBJZiFXZ7rwHwxg5REnOeT1fuf4heX2xfFH3YFYLDlkMyhgaD/JkvWPHJpzXIHIo5LMChvpz8sY6QEzvu65tk5hCv+VkT5cOtLVuVTCNEeOgdUc/e3LuuYw+B9uXx9xfgeVjLqd1iwAiKgXsz6t/bpPmojNTdeHqMAx7HWUw5iSel8Iubspy6nE07buRXUopNoCH5yJBhBBJYFDQjj61Ukc7nqHjONpnLzVjWzfxHNuQcuJnkJ87zWc0UOGwrQuuH2/YNw5wjDFgnmd8+vTJGtuAyDUzWXQlJ6zrhtv1A1n84QGHIQQ8PbFJPc4zPfFqwbosWAT4mIYR0zAinM+0v5FmY8sZeVlQdjYoCMJ5IEQgRFRwLezraopASF5UW4ML9KDTxnct9MXkYC2HKTizz2kN9BddV8B7xOmETy8TWqv46eefD3H7AFbVhtSSscuKALDMP6uc6zrUggqMaRwxTgNBTKlNHhoBreekjNFVUx6rVwmAdoaw07Nb8mAdrlOaePWZnLV0eXzreRTzOsZDBD3bJF+FYg+6thXJ6FiNd7B779BZjQRci9gHJGl+yTnZiBmYV6Hncwhe96Q2tF3fGwKo58Rps32fOLErmoTEQcKYDe+0XK8YmKf318BtUUXo+T4Eh31v2LYV27bJZ2VsPZ3PmOeJ3pAynKOUjNv1ip9/+MDtdkVKGSFETPOMb7/5FuM0y96E5WDeB2z7htvHB7Z1l32c8Gu/fjXAt2fgD1/uuP3t73DfNil4mMwxOWJCV5s/FDZO/J60sO6FYj9k+YsGTh7AhwSoHdDrQ3F4TAy1kC12UB2S6sOfNfA2PWTQYCiQk+On9sXRN6EmvdoRdgY89u4PBOBzh8/WhGbvcZonjINObalY94Jt27Hv6aH7d6TT6r3Sz8iIxVd+QPQVsNDPemDwtXY0wnz035N/SrYKszwoyq3JepOTn0CfswCmIJQmmprkOCjFX15Dkgr9DAZeQem7/Rnra/23/+//lxT1FeM4Uh4j/mPDMMLBWxLupDovBcip2nO0YlA6mVGGsXh4jhp3DqWoPEo+rgFKh4V/uF64gxQWUmjKmsuaJMh60WT2KGu0g0IO5HYocuxZ90znocAKjl1nFkG8ZyVXA0107YzjgEFAqZyyJUFwlBHpvvGW5PSOu673JvJzK+EErDIvwHpkg9Y/WlPGPKnKSlETVH3eQEVnq+qB9QBcV3TwpSnAp8FD75NjDSH3RGnUTIx8f1YHiZDGESdAYBWpizL9NDnovoM8PEvL9DizpsQxmVPPQ312+n59TahP0nw643x+wjhx6uK27ti3Bb//+e9R8oZaKgEX70XGFnjoSdFKo2aZoFnFY0MOVtt1zqNIwyDncogFre95BV7kNqJ1g9/DQrS/PxZFDiITFZAHztnz0Z/Q5KjImnHeG3PQHoJXtib/oZMCX4EmfcbaWHgoDtDIgGsHALlBAE65L4e1qPHHGDOte+L0oquzPFprXS7nGHi1WNE12Wplt1MefRBGSvCOAx08EIMWBSy0KvhMucV4/XumDCeI9E/XLQJZmt4FeX0ArQDNS0ytqFVYmU38YiR+eB8sPnMPNJEUOzhX7LwKnmbTwSlLz8s+OjD7HqS3HagprQKV8YcFEf9Lmfc+iDzCBTYWtlKxfOzYD35mMQ6YQvdAKdVQjw5sQmV6Da2Vw58VUGVaqjEptybAXi+g9Fcneasl7xL71efzwRvUgzJa8bFqrU9f1HPRwBlonNLv65oTQBiAWps3HOS4AlTyWVYzxleLBbTOACi1SNOu5yjK2stVG6YsRIZxEsmzekTqXlJ2CmzPOfRm0bEx2SpQnOYZ/TXgHJziIyBAHLwwqIKyT+UslUarNhubXkerlvd0lh7j1bLv2NYNe87Ytg1wQNq7bI0TD/lpWEBRfkrWqaPUMng0mTh6XVcrrpMwPXTfEzAbZGBLP199CBi1kSZ7I+eMZdmtoHPiJaYy5z6BWvMkTQg0pzgUjLI2egNWAfLHM7TbVajcN1qcG+KA6UTrhtt1Ea89IEbmRyVnpCTAQsr2Os4dvJRBKVEDMAwRt0X8AxvsvxjpW6X5ZM4Sf0vFuiWcIGCXBImez+Kwpo6svc72MP+9Rr/V2oTpL40VZRCP4julLCOb81NoQUEQsDLeOrJ3ggCh+v58LIemdu4MvbyvKCXB1WrPjl5NgwC3wYpea2ZLHlYbJcHK1GIDnfllKQe/KCibzplflPceuXA6cS5ZAEnIkIERDtwTuwDKHHQCxABaeKiHmsQfnu+SU/le0+h07f5cnU1u7ZWSk7zaG7gAPWtbB9Qg8UKZOYz/0kizHxEg23UlSM//m8nftRYjK1/Zcb32Kq1PBuXU8IyUdPBNzwuOrDkFH/zQ1VXaBNFdyLMiG5upijQQAHQYme45h0Nd5x79hRWoraUilx2lZJE5dg9O3QdN2EA6dKfVKp6UHPaiHoq1VfPRM/9G2RdpTyi+yEAFlvXKzEv7ir1Rfrrvu0msx2HENM84hwsAYNtX3O9XpH3Dtu0A6G07zzOenr/GMMxSy8tAgkRf07zv2LcNy3KnmqSJx6/3mMcR58sF83wWvzqPfV2xLHfk9Mb3GAacn56FGR0YD1pD2lds9xuaNCB88HDDABcjmgwkSClhv99QckEc1DdN2NUxCrNRpOw5oWwLXCVgGp1DGCaEYUBtwJ52bOsuRcOA0+kC5z1ySvj5px9Q0o5lT1juC/ZdB92UA0jfPQ9D9JjGAfM8YRyGPrzloLDoUV/AamGq2gAudObuMA6IPghxxFt9qzkMBz3wcz2w/BXEU3KFvJ+uH1UvaTMUzvUzC71RqwQqXlOvnySVsry35IKtJBQZvkQAO1vsBhifgvcYx9HeQ/eQrl/zGNfXlbMqpYR922iZAQK9wzTh6fnVGlxwcm8lZ6zit6r7QZmxJScOiSlFlE8B4xCB5rGuC67vXyxHcc5jGCNeTyeq36aZtktOGHq3G64f71zXopAaxhEvL58wzTOGcWKMEbwlRA602tOO99tNWJ7NLKmmee4556/4+tUA39/9x7/F0/OrAVox9mlhRbrs2vHIAkbZQgmeQw6gyaSHD7AiXNFNPmQN8BJgimaSnQmixaSa0bIk45f+jCYARymqExBH2WqAHCRODzIn+at25HAI7JqwqCyy03QNaNIF1ypC8Hg6n/H6csHT5WRMxnXLeHu7oZRkAw60ONTX0/d+YBwcNp59znYsJB4BPUCBvWYHqr6Wytl4f6oBOPY6hwJFk53je8OeSL8Yu+/yTRZAnKSnkjqP/j56mDYpFo4sv+AdxmFktyoE+sc4Z+uttYp9ywdAAgbKmJTIw6TDaA1JgDZlHx5Rtf4y7rBWtOsna9T3qce/9NrQTqUF9KbPqwmwUQxY6/CyZkJdzgt0uVsfWqDm/c7u65765CvvpQM80mNPuyj983U2i16rrV1j67UD4CjMJkW+Wy9mbXDLYU0Ze4xZs3X3jwXKcbKXXoNSqnWvmReYTsK0A6UXoJrA9r35x3vUhwB3AN+18G61eygqGH69Xvl8Y7RrKaWgFfWwaagbo0vwAqTK2rfJo96jVWEqa+wIwBBGjNOM8+WC0+kJQxxRW8G6Lnh/e8O63FHLdng9kZx4neYYbE20SmnV0RRd97l5nDm1HQAa1CS6WxKopxPXpjd2ribXGhtYtOjEWGcdMQdYbDqK6HQvkwHY17+ucihAogmN6wmN+gd2ib+uefncTX9VtpMjA0FilzIQeWjCGIxdBnNIjI7gsaxb/RDHyaZOT5Pa1GKVFZKsgabrFh2M7CBK39khBMWsbKczsfdmcu2LyiH6kCC9Bwpg9ZhRjAGr9H4A0sDgzxnALYWxcwSoIDYGMdAnNnoCesHz6oMAyTrpHQLcNa/MBnkWjpOVa4MxhmtpAug1wAM+eimsA1Ju+NgKtj0hS1MhCiATYjAQPwtdR89C8y1qDa5RFq3G/945uNYlM1WAgVwanDRv+Gqy3jUMajxoXRLJ87oBFm+kQSTxQmOinYGNoK/eDN0n2rA5xsjj9EmvzwI9Bmqyzl+79FYTQ2P9HJlceubr62j8bYcz/hCf9Yiqsj51sAe8s3Vy3PsPZ5PT7dGL+mMTkmy3gOh7Ea/3XBnqpbbOjIXrz89DLFr4nNKesLxtWNbVBmS4Q8FfW6WH7BgEPFS2DMChCLWDeq2i5A3XJQmToGLfd/SpnbDiYBjpl6MQxzAOVvC3WskIBFmEvK4O5jL2673Q80fl8JDzXtin6ICFxTRhvuu91waYrqGew2lDmYVazhnOB8zzCcMQkXPG7b6hFnrnjSMZm+u6yet1hnSTfLqatzNfz0uTYttWk4PqlEXXgGGKhzXvkPKO03nCsmxydso5Yee5FKfHnNZrI0KipDQRi3qOldrPAU+A8nw+ieS62kCMkpIAKsXyojgEm+6sbBADqhvsmZacDNBLOyW3ENaUrc3g4aM2+9TTTPedpweXseMluMszS0maaZVwnkniNLaFgGmYxPqiIaeCXDbxeYxkNMXAQllM3ksu2BNjPzwwTaNcl8RHHM7boz9tU4UI96M+U40tkLjFc0MBTLUU0jrr6L0p+xzeXpsTmDUH0aJF7+WjvE82q+zpzvLrsa0aY5oNy3JYh73wv9/vUospS1dBXLKC2CSTs1HuA0EH+hAXbcgcQAxlLJvN0mHd6t61HLhWJGP4dUBDzxU+F7JeqzBg932zJnoIg0w8DXaGEagTxVqMlj8nmcLtAJNzjtMo71ewrQTxto1xc0+JQMg4YJpnhHg2Wer1+o7lviDLkIBhHDDPJzy/fLJJyEUk6Nt6o01N2si6uy9AK1KnyRCPMOJ0PmGaZ0ynGTFElFKwrQvuX35GK2Q/h+Bxen5FFNDPOYe8J+Rtxb6s9NMD6F85TogjJ55WVGzbirze5bWCeJuJj3rgJF8tRFst2Jc7kLmfgwsI0wgfB+YYoiaoAOAixvOAYRyQUsK6LGQ6Fk5mfnp5QdwLfvrpJ4spPH9GzPOAaXriEBOLN8dTknFSPezMi1zye7UKGoSVeySMaCxpUC9R1nG6HrSxVLVpYM1zB+8jm7MSj7kWxXZKGqV6dZZbHUC9YyME4lmuoH0pyUC3ZLLy2gFxr/nAgGEeWM8VxivWqGTrjeNgijdVHCW13Nj7cKwQo5AhThiGCT4qwQG2d8thD1ZR7DSpj0pJZEBLzhhDQPQeFQ37vuN+35H2LDVXRBwmnE4nxGnCMEbE4Algritu72+4X6+43q7YNzLtzqcTnp6fMU4Txmmiv+OBxalDOZb7Ivt/t1pkHAecTicOSQwB27LhbVvxa79+NcBHVgK/FCSpexEEGEb/P6LWemiS6RDMJ8O8tg7SlApYkLTJtU3ZEgeWBfR7BwaavK8eaJDXssRcP0Rjknuwh4ImW0ZFl8PcBmP4DkJ4SbT0yxK7w7WPQ8Dz0wWfPz3jdJrs9a63FV/ebrjdVqQivgqtSTGPDrRAk0D8EcjxT3kF2kGOLu/Qg/PBc+9QKDwAg7X7yB1Zgd7Rt0WL7T4wAL1walJKNS1gDtfWBGATMMU9FEd6/62UV2QC7MiMCHGESpSzMEKkxjRgT2nQPghg4Rxq46j0Whtc8Q/v1cFcfZEDWnRYu71zoYAF5XNFEHu7dqdsCBnIUQtq8/bMdH3ruj0WT/LuUEqmTfgTxMcf2F+ATDTN8vwcQbpxCjI4Q8xh92SgRU/yqt24nnTDGBDG17AuQt+Xx+SxS3E7MKKGyM3WloJ7zdZ3NumqFoFy2+WdnSTMmiQ7B/OrqHLvlBHB3+sqsCfbwb0DC8VLcm4+GXK/rcCuvROVXEb1KoeTJeHYgAAA7wIxgABJZAW8bCKVDAFxmsjOu7xgPp0QPBkU99sVf/jd32PfFpSc5J53thQTPPVdC3JfC1LJXSqiDJ6ixX+/AxXNGgXqX1Ue/Pb0e7A92mp5kFaKxQu8d6iF8VFZyQDEN7QBIuXVGPLLCWJa1FsMkGRdFqQBJsF7YWzwolwVgEf2GpxDq4wfOsBGmVHqMdZaAyqQa0EuzdagAif1ENc0Th3BD7t/arLtnDSXmoEVrin4x58vTfYlerOKRZaASnL/vYuSSR0SJ0fJX3NA1O6uc/bv9bW0M6WTyxgvxPxa9s9xcm5orkvIWkGAg6sC6HhOMyNDz8M3DkKIziPKMBYfD4Ud9BkDjKEZReJukyKR3oYiTdekNQR4F1Gdw14aPpaMvRAQoRw5Yh57nCq1IW8J1s2VLq7XAS3C0nPooFQ4xEY4yu1LE1DbSdGtbDN53n0aOPrfN2YQjGkHySxgZ5ueMQqiWWKp+UnVPKX7OTh5T/3ZYO/bbA3qWmuyZ+3na5fUdyn9Y3JvS7n2s7yIpLe1HutzoddgrWo5IlONvVqIdEC4oKHaof5wtVDWCtl5lHt2VnRvT+l9UeC35xd65or0NWjxzc9Er9OEVabe9onB2iwgcBzjgHEQhl4Daq7iPSprWc7NXMjUS/tu90eZpECX/YcwHKY88qNPw0jZzr6TRTEQ0Nq2jfYzmkfK+RRCNFDMyetKVvCQWzHs8eSxiYjtkLMZ2HB89o9Mdi3uASDnihAHzCeyv9d1x7ruAEDftWEA0LBvGTkTUC+lexU6B2vsBO+RhNUXvMOybgSoWjvcs4ZhjNDpoM43pL1gnKIMhOC+83AIOHjsKfNEQloBgNzQWmdWhODtfDtNE07TJB6RTuSABCLTluFaRZC8QCW54xi7hY8WqnL/a65ApYdeSRuyDsZICU18LB0AJ2tS/aaGcTAw9cg2s/PgEFsamkxsPeTSuh9qH9ikwIyXAjPlgpw3AI3s5WmS58SCeV9FQi7SvyCS8ThMAnb2RDsXDpPjYBtpPlsORql+KT3n1/NXc4ohDghjoCxfXtoAbBwYN/LhqpytyqjLVZmJPafpuRqDqNYJR+aK2md0mXk9XLs0hNEByZQpz9tzwjgMmIbhcXq8fNVWUFJfY4wnanngLMeOIcDFaOw+uGOTgre3yORseod1ny/NTXvrSD9PMa9UXTtBPPOmaZJcVJp5IlOUC7NYWSUf1bpzCqPFg1abDMLYsW8r41ItjI/jiMvlgucQxWtzx/XjQ36eTeRxHHG+nDHNJ8rMBZRIKeF+vWLfaLWVxJ9PfQYpEY+IccY0zRiniVLFgUBjSgm3jysZwq6J7QzZcgp+6F7elwV53ZATG47wHuPTBUFAvSSeaozhhfcsRCAOcPCUc4KsKLjGCb3bipYTUCpB/nGCH+jRl1VNUIHW+O+nkUOJtnXD25efkfaEIA2Fp+dnhDiQDJHv+P7rb3A6X6DqRKYr0gKWmL3tO+OMsCUVzIri/z1Nowz5ObC79cFrrifMuy7lJzBsQJ4WlIf6NISAMIpUXdeV1ejOYpWPCvId17k2LWDnoHlmVrIl074TzEvZ4gnZb6K8EH9ajZFFGnGofK8QyUbUPaVrJd12k9rquTpEDp44X54Qh8HyZY0dtTUOVzHZsTAgdW8q6FgLhhDh0DA4oHhK3+9XYfy2iiGOmKYTnl8Izo0jGbQE5Xbc377g4+MD71++YN82NDTMpxMulwu+/faCcZwQ4iCKikq7q0Qw/3a/oeSMZVnsPBjHCefzmVLicUQtBdu24f3tjYqCPeF+u+LXfv1qgC+ljD3tdlg476TSzDTmNtCAX0EKZANLQG8I4AAk6cEoh4qXgq41pbk/yhmPiejj30NeB7YReDCrV1WXBnZkRUP0IbltOj20y2S9Qze/fCgcFCjipp6nAa8vT3h9fcI4EMUupeDjuuLt7Yr7spLKKmwTJhbOwD2gd9aOXXU90I+S2t756kAeXJdd/PK+KcNSae7u8By089zPZNe7+fqccQA+pXA1QK0K48tei0GwtAIUFpZ6iJvxe6sWXDR5tOSiUV635GygqybnKllUSYwV85nrqWR2sMoRELIkRYOGgjgdmFO/oONzLyJtZIF9SHTkF13TDQywaoTbUGw997V5/PfO1qIZjwc+gyDFgDENtViCs/cJwWEaB4wiUW61Yt82fZeHJE73DP20gniQaDe2r/xWqzVgcdhnfcJY77AqsK4GsjpkQ0enFzmYdH0dC+N8KN7sXtht0WfjZJ33BKrJn+WR20HK8fOQ2NPBvb6fmyVuzrOgcM5bIRzHEdtOY10ynALQKFeAZ+IWguPvAaCKx18UycPTEy5PnzBNJ7TmsO8r7rd3/PTD75h41GxAqncyoCCoKffRhJ3gcZKpuAqKqpce4JBbhfdR9rYWFARLtOHRRDJG76jwECuMOaf3vDY10QE0MQHEj+PAdHJAE1mRlwLRgG0p7HGIE0XV/hKHufNkH8mapwdas3XYWpXpVAp6CABTOvNYPVXVVLzWBlQZqqEFzSEmaePIQ88UTfRh39OCHDgAhOh+QgwUvA/Be9iwpton7Sko5j27hOohZlYTzsEdzP4dGpqwRnQMqxkNNwdgt9jCda0ekA5N1nKFSG8d4KqjvDYEuMoONFl6AcEBYyQ4Qqlw/885BZdUws09wqaORykJTbhNpbAD7uSAj5HDZ5zzKNXjY8nY0o4kvkkh0jh6nmY5u8BJp8ri92S8Bnn+wUlcOLCGj8McHARwA6SYAgAvnoM9Ue6SKGf7o6lqzMANssCPuYN+X+NSn3jJOKpS5c6Wg+wlOY/NQ7KvG2drqZrKQNnnTWKrk3jZQJYJ42exda5TXr33VvTCQQABjakSB5ow5iQmqE2Bd4Br3HO5CbRpH5i/8nhUVirBuBi9ycuDxtXGtZ7zAahq+tmUfSX5UuC/jzKQIOWEdcm43e8AHNZ1pV9XKchpt5gT7d9GDPNg99U5IPjG65I1nHLGbUmSV3XATE28GxoGAVhCjGLTIXHBkfWexItnEOZDLQXLuiCJF5Je10OO4Pu5peu1SS6ox6fDITdtPZ8yhqbG8EOs0rOtyj7SCbC6RsbphGkeCJDeVux7gfcQf6eAlDK2rbMVUyrmU0V2ekaMbPZsW0IcmNdu2y5S3mqxGE0m9MIjlQz13lO2x7LuYA+vGRisxW9pZHZpXpBTopG8xMQxBkxjhPej5NWM2TVnFEhhCx0U0H0ROejhWCRLjlG4LkvJIrelj14riUxBAQv02uHIhIojJ4q6Q97XakUSewuIx2iVvW/nUK3cm1ACQ0ODDrXiGplmyhDV43FZVzhhvU7zaOFGhyjosJgqsWkcCeQG3wFTZc0pizwIeAJ072I9D3Xp5dLPKs3XADIBbbqxrWMcGqK9wNY8IuduxWKMWDQD7jXmWi4Hvl8+TOTUekHXvj5LZewdaxq1e9hluivPsYP/nABiCjoCPTfU+BfFX8vyQ8CAEmhMF2auMohSSvJJ9OwP0vzUIRU7aiEzRxu0cRxkMFSwYVkN0rzyTvZ8lc+aUXQt8nLk9wIaHxhbBOfJINZ6bBwnPL08Y4gRrTZs64L3ty9YlgVVZLPTPGM+jXj99GIDh2oF9n3H29sX7Bsn5+ZE4ASNDHgvg97iebAprMM4YhzIHC0pYV1XfLx/CIuWTOj5+dkGRWhh1HLBfr+jbDvJEYGTpqdpQhwiaqNtEH0Ck61P7zx8HIVp3qfgOgfUnJGWG0pK8K1hCGT++SECQkrZsoCtXobjTRHOEVS9frwL4J/hh4DpfMKkXmmNzykOE8ax0nsQZBlvazafZ813vdcBGQPO57NNme7xqecKWkt1ZVOX1Nrv5VTuZ7eT3I9r/ji46TjYh+ejMFHRQUDNyWHXwHMm5f1h0FRRi4DDBHitCWKMmMaReyg4A7lrzWjNW4w+nWYhKPBnctqxXK9Y11UabTrRdpDpy88yAf6PPT6LsB5rqeYfr4QRHWq17xsgNh8x0Jcz7RXL/S7WCLyf0zTh6fKEYebgjSEOhjmsy4ovP37gfrtiud8JdKeN1/f8jK+//QbTdDKVDM/UTJBafC3XbZX3ZMN7GEfM84zz+Uybj2FEyQXLtuF+v9vkXUi8GYYBs/qv/oqvXw3wKSvCgJwCo01q0nksbhRUY5DnxmiWeDPYee8l4PPvUjrIUeSgUDDuCFgplVuTTINRrBgQQ9DWwSwnheVxiAaAx4PaHfzVDmwgLQr59+Jz5Nj5vJwnfPX5k8hw+b57ynh/v+H948pEKGfzxOIhr91fXgNr4V6EG+vr8NmNtYijzKyzrAAYy0r/fc7FwBlLQu31jwBh97KwCYNQY1xYcmBfTQOKFFWqhwYPZaO227UqwNglmhDgSuVvNgGp8eAMpBEBcPBRJCIOaE39tiRRV5aerMWUEg9w19kKCjwyMOvhH3vCLgV+ViqTXr87MMAO3ULnHFLpnjYNxUABo1r3tOkBeHJ6rQLuafRttaGYPFUTNK4B7+mPo4MzaPqfsSWuCyktD4dJL3SDV28wlf2xgIeAM1q3WQIIwNkawh+BerbnpOigWXOPDVq8KD39Yd3AQdlvXthqusb14ovJlurDc4DCra7fUzT9jATM4JR9yY6ZDjDgLWVSnKRJoZ8NEK8xkSs6B6SS4Jp6E0aEccL5fMH58oLz+YI4nlByxrrc8dMPP2BdrkjbHQ7FQAsWypReaPGojFCNiVknSx2YkfmQqOoaIqvN24AiSmOKsJds69ktVvatLuWgjGo4K1S8sOhUOqVJgsYE79xDrGQxLz+HYAWYFfqlX4Cu3R7tD88MQAOBN/2TA7EumyjY+jlDA24ydLMyl3KViaIwNoIDrEC1a67Vhv0Yc0pARAUw2dDo90o/v8lxoczGLOdcj1+6osm+FO+noFKCeljj7eFzBe+w5wIvz9rWsPPwvqFqMgcHBI2LzsA75xyiqwjgsw5oCOAAjcGzqOA6YDy1GNca0DhcRS0wyNRQPyTu3Vz62aD7KchEuuY8lpSx54Rtr3KvOIxmmidZ84xj257kbNWYKw0GT9mqP+z7hmJrQmWYcvOEHebsV65T9W86FKPHVSdJqgF5TVMJBVIOLExZpgZqo3/fu65YeGhIVm046LpiA7M1MjBKKcY6LKhWgFdpXB6T/SMDGod43IchdV8brnnxvWpctCnlzqZuVRgLIm+1ohaWGznnkWs5qAcEjBPJkJMYpqyCisM9tL3UjznnIAbinYVea8H9nrCnjGVZxUjakYmz77xHMpHUJkFH9dUFAGV908cyeLKhcim431dKAys9d7TgV6CvD19ggargSBGAwAt7DGiYZ/oD7eJHpdPELfezwurRQ67JPqxNfEhlgele1bVpz0Sfb+uMieOEZTVwB5ijGJBRCuA8zuczB2lsO9aVxXAIHuMUEbzDtu0o2aK87avamlhOsKmcU0UIAENTlWfE4kT3v3qMcb3LkCFZbyEE5pVwiNEhFyDVhpa7LUROCYMPHCTkgXmcMI7qS8U1RACQDTAtJtFkWvHAiZoxHg3ppaFUyVpFUw+9RNbRvnIoRslotQiYyHN9miYbUKBDCuxMYMKCKnYROpRD8768Z9v73WfRWQOOqg6yiuZ5hhNAm0WzqHRiIKDmvUyupDQNYL5KeTIB5HkYZeiAgmACDkt8toaRxg9o04PNGAXHvHOAMDWrNMLoKXjwrpYQ2VeNBkmtNfh980WUNaoecT3Pb/azCu6pbYv6if6ybgF6rtcZq73+2/cdORfzcd5TQi4ZX97eMC4LevOW4I+qII4SW+ecnZdGfBAwUIG8WunNqcNXGMcYL/bE9aWMtlorwQ6RG+qetHwpPEouS6V3olrUeE82+zgOlvcmiYdkgFXLaShTTvDeY5wmPD+/IIQBDcC+rfj4+MC2LmYnM4wjLk9PmKcJwzQZCzWJof9d2EXZrAYkvsoAgRAGA6fJGCWwB3kW148rchK2cBxwOl8E0At2v2spqNuOfV3ZxJTn7GPAOJ/gQgSEObwsK5p4pQFsUKIBLnJYQhSWJgDKjNfFBnlE5zFFSlx9jCitYRPfQweyx8bzJP6ZzPmvH2+ock6O84yX52fAOQPDQxwJ6Dk2z3Ip+Pj4wDQl+MAGw2kaD76Ix5qu1+1kRffzXe0HdM0pMzEIe5VstwOpyMEG+ln8Q8dWIH92/ggEHqwR0C0eyp5NUptTZwb3Wo2xIojHN+NDMM88veZ9WwlWR+6zcZjEYsNDh8gst5sMcsmW6wwDwdynl2dKkmXYocWdpgqF7m/YarXYTM9czinQhqeDwzCMOJ/O2PcN67rgY3mXPJzXfn5+Esac+Jw6j1Ipuf3yw8+4327Y1gVJGHr09Gz49rvv8PzplXZKzFyBRrBSWcHLsmBbVywLZbVxGHA6U3I7TbRlAgjir8uC+/XKs7kUhGFAyYUS+onrcxwnfHn7Gb/269cz+DIZfHqTfQw20VGLIAXCqiQUombrSat+XwN86Yi4JgdNbmx9SIr4GjrlVsFBBvkuw2kC4BgTxNGM3IBE9c2Sz2QyXOcAx26AvtZx8pIWdN47uEaT55fnCz5/fsHpNEHs9rFuCV/ePvDlnXptspm0g0qpTPBdigT0a7HOv0jg0CqUAA+5L0fvD0Pa0ZF5fsbezTsWD/y53iXG4TW0sIAAXZBCH4D5haDBjLC1JDOvESt8YEEIVeSWtRyAWlkDyrQxrzMcXqNJ0ixAiaP5qQ99MpiT97AEw6vku3cPj8Hwlyw9ZWNqAONacHLZDHhMpvpwDX1S7rCAFJsiiPQIZDi5LgCWvHId0HzfyQ1rraI0ZRn14Kcj0BXUGwdJLEvmpF6DR5RFcTDOdiL7dDIZ93jNBymbQweImu7T2sGI49Tcekw+NFGr3eNRR8Tr/maCp4yqZnusSoeugyodWISDreFjsQ2V7rnOaFKW09ELU6UwR2Dql91+5z18o+9T2hbUVrHnilAhQMaA8+WMy/Mrnl8+Yz49IYSAbd2w3q74x7/7j1hubywkWiVwqgWZsEuDdByj7908Lew3MZZWmQu78rIW5DpzYQKt90hhjJxlapgcvk7iirHTvEoVD5IyLsAHOZkuMhKvm8Xc1soB2GtAhY2WcPr6Ao4QptO13mNUB7+aJfx8DsICBYxVF3QdSFLFc6KKlF+n5TrkWtBKFTkuZQB6PiiwYdChgFYKQKPyM+rEdQMz0YEa4WigSqHu0VCLAn4ETABeL4tLYcHKXgtyf4P8na4B86KS98wpI0tcVFZBUOkGvBjZ07jZVT1vCnwVRmDNBFEa4JuXARnibeekH6LsSHSWeWvCjWvsgDphI+o6UkZGrXz+TqRFIYxoAHJtuC07tlSQJD4MkQV8jGSktkbWs549vdBq0mQgy8XBWT9It6ZDM5mYLh9Kz5tIhOWMkcLae1jMUMamsd4ZZnpRJ89dvyzH0DPKP8ZN9czCMS9Bb7Lpuekkluqa1RwlQAoGfV25rzzSKyWo+qmlQNfz3DknDD69JrVD6AycXDLjc60ojZI/Bdu0610a5ZypCAtFvOG43vg8pjHKkBXfpc8CmMHwKmeMM65RB+dkSECM5k2kDcRSMraUsa4b1m3HnlQeWpHSdrinnIQaPUEi9X9ssliDd4jBYRicgCLAum5IWTrlYO6Qhd2jvmtNcrNpHBCHAUV8S50jyAOJu9owaxU0Uk+dNWMelk4Y9mbT4LoUV3OVw7qylSxJwdFf79hI1T9Dcg0taDQS857SN2rfMubThNP5BDiH++2OXUB1muJz4uP9viGlbPGq6roWfT0BGQ7TgDauvMO+JWPuKQhBZl3fb6XQ1L7sHChUW8Oy0pi/VLLNy7rD5YZxZDw4TaMMfxCwsTbkPWNvFU7WtfdA9E4alzIlVGKhskk5cEftGApqJphX0oa6y5RbKZq16A4hYDzNJo11PvAanO6hipy4ptUziee+NJPl3N1ksqENaZCYmdYNrZEdOo0j5tNse3PbE4Ak7wWMg0gsWxOwKvFX8dhzjqqBWa7Xub7Xj/Y63nuymaSQagLYqaT1GL/0v9ooVeZaIXsSdl5D4lb/NwBkcI6DTuRsDeL7pbUF183oh36SmsqoN/Or5IAlFwvyx6m+vSbobHmT/RaZEix1SZHCH3K+tFa7pUkIEtcOjXyJIXr+J2UpCVPSSayLJtFlEyGlHeu6GvgRI+/XNE6Y55n1pjCjKasmewvOIRdK7WrN2MReIqh/+DDAiW/etnJAxcdHB/MAIOVkjd55GjGfTpjGCQ4OOTGOvr99wZ52GcLmjTU2jRNlgyHIsJYNX37+CbvaC9QO6DjnxTMvisKDzyAKOD2OlP7ntGPbNlzf33hfPX39zqcXhHFACFHyp4q8J6y3BS0ntKzeqQT14kgf9erEdmbdUPYEG/4VmCdXAAgBwzRYrVxL4TTrfUMtmZZEMcKJX2QY6J+3rBv3bQwYRBo8yNTebVtx/bjy88PjcjljmibU2hWA4zjDhWBgU0kJu4CUf/6nf4ZpPlneYKB4rcik9UqdVEXloFLR3mh2IPjfvdV1kjfEUkGVjiRFefFuBsSL+1CzKuMTsjfIlCuolQBxyX3abM5JAEatp2RYkgDZp1ljjrf1sW0b1nXDstxkCMaAcaK02znGxVIpZV1uHOSSizbVAqZpwsvlgmmaEQQA7GgBhJFXbaKtkX/ks6S003dRrj0Gys9nkbbebzes6x3quTfOE8ZpxuevP2OeZgxxFPk2Y8W+rvi43/Dx9oblfpO4wnj/9PSE19dX2inFwDUgcU+ZjLXQM31d7liWFerVPY4DPn16xXTq0lvAYV3u+Hh/Nz9Bi70DJchwHvPpjJfXF2jTahxHrNuCX/v1qwG+MUbMqrsGoGyUJpUQPT8UGDom1M0Kd+/6xFUFl3jYKPWTXR1//P7hIKomY+r+ct6xIOyFb7aiyhIwBwTHrpd3XfaiwABcB2GOxv+Giwi4N08DPr8+4/X1mVp+OUhv644ff/qC623BntQ7S/1agmzuJowtXo/1wLWgkG1dD4mhJoFaLB+76Hq4Ax10AZTFIn+vB90ByHPusatMQAxS7GhRCrseTQAMgEOzAgpwD6/5+NVQRD7kVepQqrE4NUnWZ6lrRYFM+hTyZ2PwcNoQctKp8AeATz8DumkupT6U5WhyZ10L/XkBLa0bKN3Zgl6weecNROvru7/fA4hxAJa89wj6GZvKGjloRCWs/U7BAD4fgvhaeYwjO4WcvqUmnrIXSjXwtQnA50AadXBOZkg2cOJmPfiZKUh5kKg5Z2CIeYy0znZ6AIxbTyhVVqYHiT7LfEjmTOYEKbytWNdbo0Vys7ChXpJ6b5wA+gAIXkmBq4eVblanBZbTAxPWAXdwMt0sI20LtvsHPr78gBA8Lk8veH7+hNfPnygrbA735Yb3Lz/jH/7Df4dtvQHK6JFkP3iPUeQfwQAdJ8+eBeiWkq1nneqq3kW18jBnsyKgNR0Aw6+Uye5TAEKTaLRO93fWyBC8QoBUGnI7ud5AAOsAFNTW6FsmbCjzfkSXhzt0KajGg1wazWqFBcXroRxf40QRAEPjsa2vdoh/6ICE3rMiIE1zkMNf5UbN1kMuxViXar5fGw5AKIvJquxCScKUqWqTfoWFwN+TTUh5HQFb2+FNWAVyf0tR7xjdC7rWOiM7SMfQ2O0S3Rmv6REUYzgcLh10Dj6w+SNS29CA0UdKcAVYCcKoCZ5xsbMWmAw2Keg9GnTCLgonJjKZ43UYWxnisTZEJu8+oMDhnjLSUrBtGVmA8XGImIeIONCXq9SGfec0X3rtOGtgKZBErDgDTZmN4NqUWswfQJPWQF84weWqgExOzkE9c7I1enojqkgjzYpWiVMqfdL45bXAFeBPC2Rl5SiLykC8pr/nf8dGDmQtGRNRY3GrKHg8p5sO3RDAmoNWIACMsHFbvxbBwuwaNPZr7CiVXpRZilb1QC4C/O25IOz0OSQjrArbgmCrF+YZpe/HJl1n6gJsSI1DNIBrGifZCyy878uKfU+Uh9WGbaVsbVXvOnBqIZkvBMhDAIdiHEBgtIIxsqGlnmTrmrBtyWIm0LDtmxh0k43HuMgi6TTP8D6Kz1kxaSfBKxYSQwyoteC+EhRjoad2BAd5/aFhrbkiczUcgGX5k8RlMefqZ7I+T4lvCrah9ZytNyZhuUoStuP5csJ8GpFzxX3ZoMNLxpH+TjlnbFsSwISsAY0FlF9lOE8wnuAF6N9XK9Zll+mHkh8CBmoADioDL7XBVZ45MdIU3AcP1sdcW0PwOF1O4vHIJkdKux7xaIU+piFQFj2Ir6IWgdqQs9yjCmOqsAmX1gU176jqDSbX4pyyNAcEmWB5ZP2V2hDAvJZS0WxNR++Yl/s42PPI4qOlg1MamLolKWThHOXQQRhStYm0VpsaThg+nIy7rGSIZDnLszCnxpG11DAOwrTq9kRqxk6QqPu3qr0OaxxVTEisE3ap+e9JHRM8mVBaSGmDgudntQa0xTr5e7625nUiF1cAUs4xOdihg7p0vZtEuCp4x2s+sug0vtXWbA2q9Ub3zYRZVyh7sNQqTLMgua8DaqWsuzUZKLFj3zd7L+/prRgDc6wkjLx1XUxiCxDwGMYR8zQjpd1k/c47jNMstktkCueUUeqK95QQPAv4OAyIQwDagCyDLbaFcsGcM7wA4rUShGloGMdRJIQXGfDDaZvL/Yrr+xtly3IexDjgNJ8xn2aM04jgA9Z1Qdo3XK/vKCnJZ5MJvmj0K5wmgljO0UJDvoZxZrwMAVRNrXyd3PO38/lMNqAAa6iVk3fvN+SNdjKoAC1cxCNvnjCGAa017NuKmu4oe5L+keTsYTD5bRwGq0UcYENwkJmfBecRZPhGGOiPt2076n6n5HOg1H4cR8A5kStfkXfu9WEYMc4z4jgRAC30noyD755iDTa1VWXfJZPpmFOSfVkkj68may0l62kgnopd+adgmn6xIRbs/XrziA1drVWP8dDiZy3CjCvGwkvKLi0ZJWUOT3FdzaResvMpIobB3rcUMvlutxvr2lLhXcA8TyIz5pBCbWrnlHG/ca+ktKNkMv8H8XQcx1HYltFyeeZVlJab/FiIDU1yoVKKDHXarb6ZJno7zvOM7X7HnnZ8uX4IwYf2XJfzhcM3Ju7XEJRlxwE86/2O6/s7luWGfd3QHHOWy9MTvv72gnGeJVZWAbcJXObECdFp27BtqwyWoZXTOM24XJ4wTiNOpzPf1wekfceyLri+vWHdVmtoxIFqhmkesSwbfBjw8vpJJvJGOT8Z5BSQ/bVfvxrgA6rVJK3qUAw5jIQGpF1AXfRa3CtzRrvPWnDrhDiA/0TEU6i2tPWLr2fdet8Te2MEtiq5nkNDl0dBgkRt1YxNjxvo2LGF/JnBhu8XvMP5NOPT52e8PF1s+lsuFe/XO758+cDtvtrEK94nL8UXJFgq+8jZNdvncsdhIk3+qrPmLCFsHfB8ZOJpwS9Pybo1zij1Top3Po9fAHhQ7xydssN7rQkDAOs66+SuJoXxH4G1v3hsTAiUsq+eHcq+gbExNfpokpCko65yr5K7rwZHdlegGAYH9Wj4JUuv1YoCJmasEbR7qTRn39eTA2rNApY4qJ+DAhy8FZ3tBzgD/YyFWF3vCkJkaL77bJRazJ5f70FrgDN5AL0cB5EYaYdM9f0KbCkbp+Ve+ARZl8GeL2QPyt5t/qFYlgy9A2nHtXUAXA08FmAJcDbJCTjINzSQy3PVf6ugjdf31fvXdK2BScIBhIE+g2MEaH3/2ORqQVXcoSjzJpFUD05AKfRRzG5ba7hdP1BKw2//8m9wOp9xu37gd3/3d1juH1iXO9D4rGNw7MaKTDF4L9Ijb/ua1ycsqNZQN0rosjBqFFxU0MfioYALaFnigJ3D9hlqbpT9gPs6u2wSqg6iNvMWqwr46G6uOgiJ4LJC08EdBsi0hiZAiC6LfvcbSWt4bDLos/cHNqhzYisHZ39WwEkZTd27kk9fO4wAmWIO9HvlNFTHblpVJo6HTuy1ibIQO4emJ0sH+Xi9Xb4LiT0cSHGMkxUQxhzjZRMmr0jbgxfQu8oUxSpeYN6Ylj7Gw1qQOO4FQPUBzlWQIdngSobzYCLgAe8rAhogssnoPRQDjK7JpFIY44pxlNfJO0mgpzZv/muwM5lndEoJRZ7h4IN0FQfEGAUs4pCedV+RG8/yGALGIeA8SWe0yZCNTZpoFusqgiNgHZyepzyTK5xMwSVzSmW4XlBTbWwoY6RB2IY4sKKdxzF51MWpewTAH+UEiiBaDDqAfBpHjzGpn6HHWMc30WfP9+nsuiaByTkg4NCckxxI/Ukh9gg5ZagHHPMWBSIqlNnsvTdWi16P7rvWICCBSHAkNnNiY0GRNV2q41qyRpc30MJrXGl9bShj0byqPAuUIQr4H9goyLng47pgXTeyHGSiqRpc55yQk3p+wQqO0zQAqPAApjkaEOQdm74xMsaW2rAsmzQ3+JxrLdYNV6bPOAxsZImR+TgKQyZlDFGLKZq2qzkBHAGCZVmQUoI7rAk2xrwVWLoG4LviQyVtGi+86TbcQ+OgSc5lIJ/9XuWI7ZD/wRpVUQfQ5GKynzh4LEuiJFfWHqWeDmnfse28N9xXkNeoWLdE8Bn8+5Qy4DzmOQCt4L5s2FMRNgObhcGRNekdX6PI9Y/jgJwrpvmE+7phy109AMf7tu87cF/ho4OrHDDjPeW2wxAxjCOmISCIRMvL2mDaXmnzkRNaTih5RdpW5H2jj1YpzOiL+C/GiCBgMQs8Mon1egDAy8AP5ilk+JXWhNU32AAGtIaWIF5QBNTU+23PlG3FGDHEiPN0YQ7Xqnkd8v6MBMCDR8oF274L6033KK9BvfdG8YIMXiwHhI0HG3RFgFuOMdjwGYkBeo6pikHXFATkCj5gkMEjZicksVH92WD3vzPuq5wVR0ktp1d3dYxeg5Nc1GoMzX3k31qj3qI0rGlI0JRgas5dorvppGvJyVPi4IJcem2DRvA4p4y6ZZE3C7iBJsOAYgeMS8O2rbjdPsTSpHASqwBLKslUAG0aKUt9enqyJb7vO5b7HbeqzGxvoNn5/CTnBtlHy/ILGWTpvmbcC5xce/o0QQcQbtuK6/UDm/h6OQdj6F0uT5im2Ya/KCjy8fEu00c3Y245cJDGOA54eX2RM4Ls3FQqpmnG04n+8ECf9JnuN2mOORkKMdNvL1J6nHLCtq7Y15V+fTlZ7TSMI+KJslXnBfwsBcvtnfWFEAsaHOIwIEwOwTMGhBigU99RM9K2oaYsyadDHCfEkXs9F4Ki632Rte8xTicZ4uHELmfBcr/TcxIO0/mMcZ4BAWX3lMTXdUK3yWnYth1Zhjy1UkWuyfujU3TJlEuWLzqIlDt2iTJrziDnSDQ236ADYYKX+qHLyVVSa2dBKWiNAxtS5rCRnMkopJw8W93lfZCzk3XJebrwvQ45KRmM79i2HdM4AQDiyHX+9Pws5CMvwD5j4n7b5L0JHipTeRgnvJw/Wc5oSj35tzntsseUvaiMdQKmZLXR79EBwtoeMM4zKtgEvH28c82JHDfGgPPlgmk+EfybOPUetaHkhPv1A9ePD1w/3rGuK+73u4DaM55fXjD/5kxwfhxRKih5l3jnAWxpx/3K82bfNsvVUq44P3HvjfPMidQ+kGG4Lnj/+cPyn1rFn9d7jJcJtTXMApSO44jXz4FrPxCCK6VgW1axKuGk3S9vX/Brv341wNcaJAAdKN6ly+t0Opd2MJUR1yDeXU47ngdgSpNzKdic52JrUlw/Mv669Meuw3UpJDs61VhUtRXoVEqgGTgAtAdkXf/WChYI6Bccni4nfP70istZvTUqbncZmnFfsGy7+d8AkESaU1xUnqC/tqaFSwfC9N5pocIF5sQfBg/3tskzsIlreuAewNTOulLGCH9fJOgR1xGZivNW6OgzCgJ+kOWmbKBeFBeRcGn+2wEGLeaV7aAgriYCkGS9WtLhHtZDLwocKEOtpaLlDB95Tb55IDsDf4IPgAcngQVKUWkELUmdJ5vlOGRDs3UrkmVtVVkftdeFZO3A/ULCe5Az6NqSBMeFAN9YyHkQGACkUHQOLTc0+C4TkEPSC2A0jgPGIUihWjkdTxMq7wwE06IMcl+DFzDZKZCswLCyEv0BFG7273R9eeo0+/qTz2SMA2OA8nOqGXKVjtZxnR0LUpWQyuK29WLAn5dJx+jAooHrzpl08+iHo7mp7twQgiWa9oz0B9FjjJqqt8Yx6XnfMM1nPH31Lf7bf/tvUXMCpNhxDRhCQIgOUYyF9eBkUeoIXJSMtBcrsm0ghvfW9W617/sYowxX4OfNKdlzdfJvFIjUBog+F/wiuYYNbXAG1HF5K7wmK6Q1hCCx0/FVOajGiSSN+6i0YpvY5I6SBKVcjcXqBHDjnuGXenxVgGNmoWALwKqlF8LaTFC5TkMHbWutHMLgOuDQ5Q66xlTiRv+s0ppNutWL0El/zmnA1NjUPV8hIJ28s51HCjySzSysFe/M58brbZHFTpYf5WGUkURh/vT1ikbpRgPgaoavlMsNwcO3hAgva45J0xgchiGgoQ+a4LNpZpjuZc1nkTuobUatGfBA0iKrcg36QHB7UiYDAopMu93Shj3x+uAE2BkiTtMsYDiQcsOuyZET5iDYMFPvQe8avTtrFa++3tABlFXs4L0Urq5ZEUxpdGffknHsbT0fY5TGTjZvmuUc8lCAwx7SvUAg2oKeyVCLxJ8srNMjo5Q/KzEQgJezlgOdqk3J5S3ReNnzG2WbVp3MrCDhIb7pQA1rdKBPkNTY2otrMuIV2Duy8BUMKLkKq9VhHiPG6Oz6WFRLrsCDhcCWNCpiUA80Fh2BSCC9Fq8J+57xceW0xJyZ/McYUXLBuiVoU7OWgmkie0BZrQocjqOA4E7YXOJfte8F275CpTfOk2mThPmiccJ5sh3U/D3GiFwrlm3DIGbgbCQU1Opsyuq2J9zuuzBwtXnKZz1IR91Y5iJndhqbLB41O2PQ+jOzYubgW6kSSs0l7AxVdqb8HJwzZlDKGQ4B4zTjdGYxdrtu2PeMhsocYRpQa8P9vhqDkms2IFeebWQe0dZEG56qKMmJTJAsTMDg6d/YIA2z5uADz5p9q5hP0c6yfU9k66q/danQyZCtZrSa4RoL3HkaOanTH9h5ACAs/yz3ouYdeV+xL3eZhrmjlSw5vbPnMM0zpvMgz7cDesrITXt6yHGM0ayAX6TsTaciegd5HfqOFZGFppwE7OmyYQeHmpv4KNGHNQ4DpnkWcLsg551+o/JcU852DsYYMJ9PAgIGy81qaQefXP9Qk1TxAGvolhi1Kgu/WV6llhe1VJHh9pzyyCJF04abNtd6vKSkvxqwSSa9RwjSLJY1rpGcTUFYPl+qMJaLMlZ7jEZTSbwO2iNYZyb6AqTsyqQFUHOm910uUjs5AyZLLfjDH36HGCltjNFjGOmlXaX0qk8AAJ5+SURBVFLCsq5Iezow86SJJo0A5yJUTqgA8TzPwkqmbcu+bbheP5jnCNA22YRnfo6cEtblLuyjwqENpU8c9YGS1vl0wul8lnXEfCbvO374eCPgse9oaLyO0wlPzy+Y5pN8PrJg77cPLD8slAquC9QH0guwfb6cBezplg8pZ4zThNN0IaAn9XXad9xvdzY4vKzzccApXiwW11qw7yv26459o+dd3ndEzYOF1adek61I02SnDFrBjgpHRl+McA/sLq7Akji1PO87QuD5H4YBcRjhx5HnWC7Yb4vt6yBSxyiqppwSlvcbirDX4zDgfLpgnCZhkBV5FqMBappLprSjiB8h80wImExQe5pH7NsKL7Y4IVCCqqQBAsneiAYaNwwsFj9iHzpOYbtO1lAtFSkn8UXk0IYi60jPHC+qDM3L4ilK7BottiZhrV7f3y32xDhgnOkd/vmrryS+eAKEjT7327pi33aTzCo4OY4jnl6ehXHW/QFNuVUK1QM5Q73zNN9WZmNSzz/1iJTBSiHMHOqUybgruVssqC/dMJ8YYycO96iloOaK+9s7btcrbtcPLPc70r7Dx4DT+YTn11f8yZ/9uYDN3ogeZGHSEqHsCWvaUFLCx8cHHPgcYoyI4wg3RpyfLpimE4ZhJKN23fDx889Yl4VgurC81eM3TIPEY4/nT5/AaewjVV6h75FtXQlCLwuWZbVJu7U2bDIk89d8/fohG7UbPevBWuxAlSS7KCgljC75WXgyCxScIS3UW4e2gAHctfbwns0fJCvtEZgDtBHFg6QWKbTkgFJfNkD/bafQ1lrNyFKpteoP1A6doFIbvry94+cvb+LlkMVDg95QrRYa2aq5NGCmrs4SQEWNOsBVSuuFYOuT9JwciuYXZXiLFt8yuZTfPnhjdCDKQEE74Pn2OuVUK/PODKx231S+8PAMWpdH6vNUvKV/Jn4OvX9wMJkni5Y+sKMZwm+Vcr/uQwDJu3igZGfMJ/qscGKVJvx8/V7oKEOxaoekHZhDYkhaxRjSSRGjBUSzD3mQGGohd5R/OQev8ojgDolTB7daFU8h6XSwqBRKttNJgQGzTPcJns8wSXKiklfnHEoqVq5C1lcfatMMBKCfD99PAVdjZB0K3Ka3XZJE1L5Wfsk8OAZ1BQiPE6FUKuKDF1PgAA5CqXC1wQkVSc2r9Vnreq0aKHAY0NIUTPUi21EBMvpalM+knWoyw7oXi4IDVeVdQYL9LgdoTcjLB9J6ZYHreQAN4i0VvDe0t5UdpTg5PHmfPPhnAkrowFGD+Js0iy1oTaYy8t4rOB8EqIN0vr0PFmMhhYoBPb5PxSpVp+RyTTXeSPotCrimMVo3vd2PegC0vGdHVkBud2BVoZAFVwFJ2mWoABxa6ftJAR2NDcoeLDULO7pLHbUy6HiMSnok8S/NGH2lFOQq4IVM/k4CLh4LZacgWm0y5KCzprTgIJlNvPSa7H5ZdzyeHFCrsZ2P3pv03WEcDF4lhp4sFXkdLRgBYagJ4CYRT8BBj8E3OFQyZcAzaPAEInxU9lSXQLnohSHppAj3ZJDkKmcn35EF0yEWAzLdLSKOEc5Hym53+uimQuC2AfRaEabeIGBDaw7rlgEvya2TARn+8J8D4JgstgZUR+lncIA7DMwQBZcUaJyAm8RUXvdLbc1kZjwxnABhCpDzrDo2DuF0e3amW19W8noWMZVB0oG0JuBe0XNH/75B1hcZ2GxYeQFwBTz8JVNP3v34HBSsI/jHGKEAX5P39cIy18aK+mpp9lDlzFDZnbL3VAaXSzGJZRVfr1oqmicbjM2Yfp7zswgTKgREyV0cGhmjvCMoDfjDH37CsnKi89uXd3r9NaC1jHEIZDnJxPiUdsynURptYvQt+3ccI+AbGXfBScHjUXLG+zsZF1oYO++QM6VmozAOdO/CCQNmmgm0NmBZN8zTJAxAnksl04ePnz9h23c76/Rs9oczAxpH0M9IzU+OtiPOOXumei97Q1NjepOhC7KuzWdIcjv0nDkIeKBgsHMR85nyu5Ir7vcVVaa2h+gxjgP2lLHtvFfBORlGw+m5CqDuKSFvmcCHB27XOwBgGinpJZDFBsk49EFjMajHEpBLw3wKFqtjjHi/LpYfkdUZ4f2AlDZM00iJbvBwToeDqIVEhWsNrWag0B5jXxbkfUXZF7RajPWrhuhxlEJ+iDK9sw8XKiWzkSHnUgeogwFqAKC+WHANeS8CdsqwoEY2x8ftRsZkZDF2mk6IY7Tvr8smsmeCgdN8ghMm6LZtBrLSi5DqJF4DBynoBGeCcs4k4UYmCN0/TtlM3VevWc7JRihzTV17WjhzwES0BuRxXfbSQ3/ToHJ83QsK0mmUGIWJ3qCAtHp/9XoE4KArrl1Gvyr5N2RvKknh8ezne6ZMhlITUBqSUxNsSWZn0ZndjZL/mhE9Jd574uCHknfZ4xUxBEwig3OHtRBiwDhOOJ9PlELGiJwLtn3Dx/sHvpSfAbBxNYwjzidOzoxxEEA84+PjA/u2EpgSRjHXQKH/2Dzj8vyEy+WCECNKrti2BffblcBNJjjgQxBvsRM+ff4Kp3lGGEc4eOzbguV+w9uXLwYo6JqapgmXy4WSyJGssibDsgAP7yPm84RxGukjKSCSSpEBiNdpxNPpYn7VrOsLbvcr8r4j7UmamHzu4zgjPj9zoIWj9LzWhnTfRApdMUgdPcyzgR1BAC/vGfM8gJKTAIEJrVRhvHFQRpwm+qChYVtXpHUDnMMwTpjOM1lQMQroecNyXyT38ojThPl8hg8RKWXse0aIkdOqNV+AMkyL3dtWqLRJmQznOFJaSdnzFa/fvmAc6bc4Svxk3g1ZR0GYfMHuJ893reMp8WwSH3JKBONE3pzTbtYaQZoQvOecyBxloEeIbLRmAQOX29XWYK2VE7fnGS/iKeeF+FBqRcmcepy33Twcq2zHGPnvLk/PGKdRml0SPwFpUAoAWorIlatNXda8Q+WpqpYJUqNP00SW5L5jWVZ8fCRbz8MwYD5fBEDvDSHnNQ5kXN/esZiHHiWzUawdptMJ3//pn+B0uRC4lROWzNmKWpLJ9feVjaN1W6FDeaZpIpg+jhiniX6IGvfvC778+AOHN6WdeJKTuH46wccRIbLJ0wB6P4qfoeJitbJxsdwWLMuN8uFtk9w0YJwmNgDmM94/vuDXfv1qgC/nIt2+ngz15ObR38sYC9pV0EJdThGdamJJOlSq4I2CHkKw7o8mXua7ZcWTAk7yexwKAAVpDqCM/qcgpG6CIAWqfo8H94513R4OTPlQVsyHKK8PSYUc0Jr6j/mH+6dFhwKiWuzr9wCH0tTQWjzWDu/VWrWJcfp3miwck04mNQqmyXuaVAg29EOTV128rRUbsa3Jg/rHOP38h/afPnsCS1LmyAFv35NnYkmGAlQSAPU1tXBzwQt1nx46LLYjXIN13bwnwFBEpmuAm3ii2JhyYQJocc11KNdTWbyX1BlsunYBZ91gm5zrHaewquTBAS50th6c+HM5hywbuEBZq+x6Oy2ShbkwSUB1oD/bct+sMKD8zltBpwCk7guursaJlLoenLN1yN3h7QkAMD8k+aT8juy14xRSAEYDt3WPvkcV0FP6tUqWatK1KaBAjPIaHdKpymw7vK4TEEXfhuB0hcpHNT6wyyfl/wGs7KxKlU5FFlcqW6kEzrhHGoZxgnMVP/ztf4/f/+2/wzREk0QHAUbp5cI9pozJKqyfPWVoJ7BPae4+X84HAwKzfK/JBFDGyooQorBVmhSr3RtMX1eBQK5Ffhbg6FlWDHDSn+c9kZ+TmNGqxk5l7ChIjAPY24yZ6BybMVkArSMbrunqkiJPi1nXCKJVCMDjdA32+IrWn4VcEQ9y8dtDqzxZnAATsiCymE/HIMB9q+af0Wrrtg5StJCBJytJ4rECsM71gT+Vm4IFW272mVCVid6bV63pcCS5V7L3vGsmc/DhF8OeBN1ibHRoPnD2cM3i4RgxBI8hekuUGhxcjAJqsLjJjXvG+UBJACAdyQZlPisbZdAJiSGiAVhyw35bkBuQK8SLkEyrEGlaPQ4jIIXUtibAd2NnL35tg9fYX9gwKQT0UclaVzDbmQGB7omK2tg1Jkgn+9R5O9/0UFGmG6x75AT0Vgmkeyw0G6CsVA3K2ljTJt6xjQSJ6ccp8co28e4A3Mh+0B4UZdkCNgpwXEqhh2XVCaPNilIFpPX1IQC4+msdLrdLRRtsvas/ZJW9WYuyXhREkLhcG2l7IJClMna9V+uWAM+J4fT7cRgH9VAmAHf0u/zytiAlTolz8FjWBd7DDK/V17SUhtttZSwVz7zzeZRbrAOHBDSKBA7niedBTgX3+45kUh49R1gEODgb2pKl8TBNE04nJvEpJQ7EaJx+O8TRigqymDxKa7jdbl1+rPe1qZl5B/f6GePtZ33tjSPNaRTc09xMX1OfjbIpVZGA1tdZn2ivr6XMrsGK5Rgjnp6f4AOwrQn3hQNJggcmkZStW8K27YDc42VlcR2EzbWn3QBjHzzSnpEdpVC5FqSSxYdPvVCdTMPl+q8CVCwr/bLiMGDbdozjgOttQc7Mf3Qvx4HsN1sXWYEiGSLTKmpOKGlFWu/I24KWNrSSLfeLQ0QIEQ0O0+mEcRB7ErFmabpOS7FYjNbE85ZSNwdp/Ethtd8TINJvvhaZV7kUTnPOarQuoMnTGcEFA7vut7vlU3GMGCRPK5mG61X251Eq7xwM1IshHsgFzUB3fU8nACC/2210oOdY1ebzEWDuYF8RIoMOEdFDR/MEBefY4JBgY3WLKFyEraf+3qaAaA1N4jTrFR341wFD3bcqhVQFkOXz0KatO/w7At+tMeYpqE+gJPC5CRCvrG6e/awFyNwNaKng97//e3gf9SPhNE84nU6yH3kt00wwbJZBAjkzblxvN2PzxBgxTpMU909mG1Argblt27CJbE/llqUkNPHAfXp6xrfffYvT6QznyDheb3f84R//gXG6NbPecd5hPp9wPp0wz2fEIaKkjH3f8NNPP+J2u5E1J819H4L87AtCJAif9iTPlcMPJpmUG0K0wTAlpw5eSU0J7+QzjgiBzEdli23rKhLfJNPFg3gJDiItDfBwMqma/n77tsE7oOSGaZ6khncybElUJVGmBFfKM9O2Im0bcycBot04YJDnA+eQ94Tt48NkrdPljDgK8FIb1nXB/aefkISl7HzAfDljnmbURu9G3wpiHOBHb8z+KuSZmgt95Pad7EzJD533OJ1PaI0TjT/eb1iXFdu2CXMvIsRAMOx0MjsFtavS/aBecspay6kDerlkaeQxWx1tEq/H+Xyif6DsBc0fcs64flyR9l2Yuoxz0zzidD5hnr6ympiM4IKUk7FPs0jctaYbRX5+fppkX4zdwkhqyFwKmjDnc6LUXOt5xtBsa2dPBIKHMWIII+bzDOeBtCV8vH+g3u5mDTCMA6bTCU/DM+teUUYFH6BzAvZtw3JfRK6+YBUrjSAMzNfPr3h6esY4TQhDZLbRRK5f+J/3Hvu64X6/IacdraoCCJhPM06XC+bzhYMxhOlHr8wFt/cvWO43FMnJSq7C/o0Iwwgf2HSaTpR+695TrAagguK+Ldh2DtNZ76tJvodxxKevvsY4jjidToz94iVsdnK/4ut/BIluNQp7E+ScaC4Pw16oCp1Tfs/zpaBCJ8v1ojYGL51sbpYihZmagR87Ukd5Xy/wYewAzeSDFAHK7AN6Z/bIBFRgxwoA6Wg5ABmH5EyuQbuFaJ196AEy+LTolgKjAwDqgdaT9+Nn4SLFAejipRi7qRTrDCugdzxw6eNWDCAwQKCpIS9Qkx7gDR46RMNZwaQTeJ11c0QS1TpzSGUorbLIVWS/gyvt4V5rl9yeVdNnKubowANb0IBguVXOaRKng1BgY+o1MdKJa9pxcFUnKSrQ4uEboSWamzrUXMxYmA/PoXuIOfmeADcOcE4SPSdTdWvtHQ4pAisamZyO16VyS1nJIBBM2d0YA6ZpwCjG3/u+dqacJG5Onn+F+tmREeHlczDYSp0ooKX5mtWDfMOeD4xB2Q3iu6TbCtEDcKuFTQf0esKl61kPDkhXTL1T2L0Xo17pXuveMRm+BHVNOvWrs7J0VzY4p/dbJcjyn9fJ1B7aTDiubX09Zae2WrHtnMq1rXc0AKU6uFaBVlByxW7DHfhnA/xlj/gQICpcW/dOQCQ0ygFq1kEo9HVsrcBB4pwAgTnvaE3XRjCjfI0zMUYoi8t75UIFYZIJsOycrJnOFKvVoTl2U1spYkDbZA9o/OB9opyYMhwyguSeFzXZh0mIuDia3WcvoK4Bz62ZP1yrhbJdicsO9ICKwQuz1Uls0kmA3rwxci5oTvw6paDWidolZTZAQEBRTbcpP2RBoaxkQJsSHOpDiwGJs61/Fpj0qMlkV67LKuPfxxhhEGLj/tIYQ+aigtjcq8pg1k6kAgIaYYLEtSGotI0THfnzgZNjawE8z55cGEMUrCgC6PjgZMpZtElopQLLuiOVij1nwAW4Jo01T/+XcYgYIs3DCQg1rFW6qoHF8hCA6DnlkmGyT2nWKcJO1t4QAqf8ekpYeZ6Kj5X6Rjlhr4H+Xk0PEQF/Vf4NAXf9QwzooAqLr/IQIzrXTVapgLMqK+Q5I9+XwlzPUT2zFOyDrCPnenxUOWJthcORpFiQN+NermooT9CZrE4dlNEsFqssWPe4rUO5N2pXoA0dZanps88i3VUWgrLWc85mp2DSUL1+cLLzEDzGKSLnDc6Pti/vyyqARsHbByUjOSdsy0YgOAa0yoJFvYacFx84ojjCICcbI3i6B8TQMI5co60B256xvS3SHGGByV/5OTTmOcfYMM8j5mlECBG5APf7imEcMI4ENczjqjYMozTJcsHHsghr8Zhjgf5HgQ02a+jxxsM7VXE8fumZZw3h1hlRCiRA4pA1xGQdNAFZKwSElfNI5cejDMgAHOZpwvlyRm0Nt+uObc9wYCNwmhgnlmXFnuhLNkRvxWerwloszGl5rRyQAMkLeJYVAWqb3TfvdfiYguc04a8Cnq5rxjiOZFuVKpMmxYc7RANZWmtY9x0Rnuy6tKGsN5R9Rd4WMl8d9wTzbgJzBBFGSs/GwWK6ThRtAKW4rvtoeh/7lEnXJWObSh3jIOwt2h2kXLBtd/Nw9CHgdJq5ZiSGUW6WTaFgUjxhE1HKtulyQcnVhhjosJBBFCUqpys52xrS6z36vXHgh06/7kOrnNM9XAwM1JwqiZTM7EJUUQKg+0NKrLT41WsKlWkrExdNm/8wZYCCck5yY4vBlc9G7VmU7FDRQb3jr05jZdM8UYbElYKUZWCAxqxWbW9pnsY4pIqH/v76cwoahMBpqk9Pz8Zua62K9HDF/fbBKdtyVs7zCfPL2dRbEBbVx/tVQKzdmHY6jANwuDw943y54OnpSaZxA9t6w7bd8fblR/NIs8mjswwLOF+MUZhzwnK/4h//8e+wrQv2bTdQOcSAaZzw9dffkGFq55YzH/DnlxfEYSKgJ42JlCjz1Yay1ttOWGCDTNdtKsncyNLLiZYKQDPfPt2PXLfMQ24fNzLDZXhPbQ0hUBkwTq6vERZiiJLjVwGB0roCWpc5wIvnWhwnwNFHdLnfkXdezzhNOD09UwIsDbCPtze+Dvi5Ls/PBFiGEWlP2BJZdeM0W53XJe1cd9tG/0DI2rGJtBIjc0q4fnxgXTcy1UpDGCe8PL9glOdNVSBjxio+m1kYiWnfTZKqsu0ozDvnOCl8mgkqRQGFOLCC7ND9YyPTMrG5EkLESeTdzy/PZLfJMEgO2Nhxv3/IgJpmMtmcOaF4EDDy+ekJ03yiRDnoRHEIqJux7BsHdeRHbz/JxlBrEWCXoF+IlO/O8wnn80XYoRsyMr58+cIGXYgYpolAnrKwxStV93JKO+7XG9Z1we3jim0loN7EpiiOA56enzHNJ5wvFw5i0Uytchp1ldzBtYZtJfM1JwLrQcDp05nPbzqdhGHnZLruhrTw3+zCwtXcRoeiDuOEcT7BhYjpdMI0nzgZOkagUZFFmyY2znaZQMz9yMFg59MZ5/MF56cnyM0FnMO67fJMI/6J1ON/0NevBvhSLqjIFryVBaa+BC5QtuGCs8MyN9jCFEBfJJI8DNT7phQCczl33zwi7H1qqW4updg7dLle8KRXKHjUS8teiCuY5u2ONtvwFR1UkLNPyr5myZoWdlpw+0CWFH1mDoWCJvb2pUyBDvoZOPKLA7Jact4BP04BVVaA3RkrvrVo1QlJDmp8yw9yfFZNfOGyjDNvQmdVgBVQRh/sIOUhp/etGehp99X1TqMDwREDgf2xGNPCSLxDWoOM47UETvAwK1yqdnsELFADYidSRucdqrCIfCOgomCTrwXZOVDiJBfnOjigHR7t6MM5uKLgYHsAF+nLyEK3lkL2SiNok0ufRgbn0DKBK/XWG8aIaVD/gYCcM9aNHRKVExsLJGfKtxWg8nza6nMFBfrQGVsOInn33QxZGUy1ArVIol96ImXgKw4FpRQq2g1SycVR0lmKToAVdpM8u1obguvrmJ2oZgxSaMxwCtLzdZQBqP/OmJyOC0HZZt4p0yLKfXHWvbYpvOhG+7b7Wu+G0ZR4xXr7wLbcUXPG5fVr/OEffo9tTwKoVKg0pYuqgCCeL81YIRpSnJBoCNwU6Y47ENhouiaUOSSfQzs2zjkgd5ZmajRKz3kXgDsq7gGgwsETPPABuSjDDoBIdjU6eFQ03wCR8OpzUrCeMbdxvQtoqZNw/WFveziyfET+4p1O8+tepw6d6WieOcISUZDBOWDPCcEFGbQEG7hUSjJmFQ5rUBsFGod6o0cLPpVzMk4roCdhnYCTAToE4E3CK3Grs115f3muiOQdTIToYch3cQi8PwKa6fqwfdcDpwGxejYeARzzJUJD8x4lV/gA5FyxOyZ49EPqjaoQgyRMAxO6Rp+s/XaXs5nngjYpGjiMYBwG+gc5Pudtz3BJBq/4YGDeIDEmuCa2BmoL0OBdAOTnnK4x7+FcMeYpwVpApdFNhnzAUz7BvVIEIWm2/lmIyrpjIJAz+TCgSwtjOVOUhQk5u4Mw9aswVhkDq3GYe5NM3hd9EysrHrVgCBHGJFQpCg4NKfl8aCLH1XVZCXCpmT/Zg8rMEZl4kxznKF1Dl+Yd/W1Vtl7l+9oUNUld6f5VRc5w9fujfNPDoyE6IJWC/b7DYUJrDcu+4HZfcbvx121fcZ5HpFyw3BcD73JJaI1MIzKtCAAzNBQDALkvGobYMAwe0zigAfTsk6Il5QLUhijnN+8dWVDemjLA6TSxSIfHngr2+51Dp0YOJUj7jibTUzkB1dPPRwosaz5II0mllwri4/D8uCQVwD3EDckLHhuxul5gKgvNrX7JbDJw74FhK43lGBBDxL4nmug/ncmU2xOWJVkMHUfPwSGl4ONjETCE02PFuQQN1aZsThNfY9+z+PlGtOYp3fUe3tHDiJddMc/do0oZKQ3Atm44nyekJMzZVrFuBV0mLkNRApsKzEsrvvzwe6S8o+wrfKuQ2cbmbRgjmXmjNBfGYcAQAtTbGQIytVqRm/g/omHbi9kGcPIgmZJ77j7G0ziZnLtUehfnskOHMc3TxIEl0tQAGtLOgjZXrplxGCht9OrTm1DrZntZY3YpxSRlnJRI/0bAWbFeajddDybRheW5Si63pn2jZ3QvqgmE5lJQ9h0xDgjRY5rmfubqueJg90G/jAHoIHkHz3pTg1SJoZKzOu8sT4dFJvn3kg8x3nCna153rHCqgHjaVMmFChwIYKlg3b7vUJ8/SeqZd8nezQL+Wd7ndY2JxVKreHl9xadPnzHNExwccknY9w1/+MPvRU4H+BAxz2dMp2c8vXK6MovyDftGcG1bN9SaUFKixLBwmN00zbhcnvH5q6+NAciifcf728/Y1hU5CzjXGoYYMc8znp4/4XwhABhDwL5vWLc7fnj/CR/vHxxylROca5jGWSSCM8aRbDcyriqCyCRP08x9I+tfn+263NFaMUkkHCTWjeZLGpzDnjgcgwyiIvdYwL+ZgweUBYvGXKsIQLWtW6+5gocfR1vLJucW1YL3ZA86VKz3Gyfg1iq1eoSfJoynE0EXHwiQLXc2wkE22/xCeW0YIlqruF8/sK+rxPEAFweczxfEcWTNlRJy2RAClVBUEQhYXAn6lJSxb6uA+xUQAokLjEHK9nr/8sUA/NIAxIjLy1niIyfT5pSxCftv2zgsgkM3KG/2jpLTGCNOp4ne3d7LQCSCnntKuH1csSx3k6+TRTpiGke8fvqMeZ4RdLCkTJpdljuuH+8yhVsmTtciiiZgEv/GcXymR+kQLTfWc0sB6D3tBl6jKduesd87J8NMeA4Ncp+ixG3nPdZ9Ry0Z72+Um87CLnc+4OnlGfM021AYbfzv+47r+xvW5Y77/Y5t2ykZzhnKQL+cL/j8+RPOJkGfoDWFEkyKsGhzTigyAGRfN6lludYuT8+YTpyUGwdeAyXRC+4fH9wLOhBSJhA752UKMBUwIQbez/mEOM3wIUrTgq+1LRvSvmG9C8t33bDuG3LmmT5OMz6/fiUEFJ6EPAe91ba1VtyXBfvOgTXr/xQ8+HIpaF4lKBVO5CZeOpStskjWYjYIvbtWPsRS1atHmVaAMgEf2F6SGCv75yjH0+SLSb6AI74PbegQnZODrxnyDsCKVz1IO0ugM4p4aHT2i/68Cwr4KEtPoTa+xwPzyHLCY+f3IIfUfLNpB1+LQv5eaatNPrexONqxMOpsQGVg6bGrHTYAB9lzT0TV/BGOI52PrMijj5MW6ECXY1vgsM/QfWp0I+jfqySZBTgMVNTitkow9ocCDpJM0ViTQza0yCyVZqMQDxbzN4FD9crq6kmQt8KPSUOTe+e8B6qwJw8MFfpjHE2KCSrlUhG0eEVDK41gqSNEUGVKnXo6jgM9G6ah+6Ooh4GyVhxcL9AqjIUJKZ5DCCxQq0jc0ddzPTyLByCVT5nrTUHxSvmfHsoKDhhwdwBQOpjnbJ/rcy25dB9HSWi7Jya76MMw2M93QElep0EUes7Wk4F+uqbRn7/3OvXXoVauU32wBgxAvFZ8JGDhDp5K8rr8eY9xGpHTirTdsX78gO3+gWVLuN4WA/Rak7HpTb19evdT2ZWQdVSFzZVl7+wpW1ddA3nWjlQcwOmmvLcNnGJbawUEOBMMxGj8rdEbZPAePgYB9GXogiQVEHCklg6etga4qFJyAmJRJqJpIQGbEkuAsAgtsYoEkQAKwUFKrZlsFAhLD43MPwNnHErRxF8K4dptCJrE/oQqEgsvpvIESHMpApx1iU4ToCN6j9rox9MaTBacZOK1WReAvnbaIKn6e/F4aq2KhLjHGhYajYM0GkA2C2OuDwJAgwwotCa+V95YP8qaMY9EWX/KiNGix4cIp8bppcAVB+/JDVTAoULwSDj4sCN4+nJGMckutWG9r8h1RcqF4Ejo3dYGsn6ik2l6wyifv2HfpDnnvExFbIhBP1tEDA4OAppWtZjgsBmHiqCehEULMz6sWinKrZIcK4tWY4I+ey7uHqu0cOgNiQZIh1c96DSOPAD/YMHYnMrNRSGgBSM6Swqtkb0poABBvM6E9OjPWsG/XHRNyr/RzyFrozYOy1CPFf2UpVXkpIM6CowQXQnyck23fr7VAzNWcwd0uZtKdEvl74tIKUtVIK8aKK45gU1lrw3VUSq0p50sKF/x89sb3q4b3t9uGCKw3O/0Z3QOt9sdcB7DOEghr/YTBcMQEIKAu06bCJXydFcxjhGn+cQitTT8/IUSpyym+1xvMn00F6wrJ7zS48ojDh7zPGGaZrQKLAsHIZzmCUMcMYwDskx87WBdxbJu5oPW1QgERYc4mMm2HIYWt1pjkWvDNgB1P7D1pEN7LJ/BAcyrPadTlsjxPNbGoVMAsbWD3UrDXhP9ui4zAOB+W7GsG0FLUS3EGKQgE6/b0idxZrVPEda3C948redpBMACJqWMlOgvt20bQeNSEIdoFgiUijlUVGw748m+k70+zxG3Ze+qGoiP6DCC3rgdfP7x938H9R/ilPkBLgSch5mNTQDTwOmurBU4Jb22wjFM3gk7UaSBOryjdel8TgLaipdeFHAh7Qn3+x172smOHEfMpxlDjNZAzLkI844DS1ptmGYWxt57AzZUstwaGWQp05JIC+HTPGM+UZ7VZA+mlAS8o/fjMBwluLD1YfvU6iVp3Euz37E4sZgOB7s+zY+PNkiapynQ14kCjFWlCMAnbEE9l6x7JfFHc3JA2ViwfEgH8h2Zc4+EhCapYm/IAQf2XeXZvgpYo1/e85mQseTk/FcGfgPAZ1LRZAK0w+l0govANI94//iC/YcNtVaMI0Gy+XTC/NVXGAZO2WyNksvr+w3buvAZrwtWGWSQcsY0zZhPJ7x+/ozz+cLmhAA767rg4/1NZLpkgTlZ29M84+XTV2SDSvMj7Qn36xt+//cf5nvXxId4Pp0wjQMun1/5PGNEq8C2b4hVBl2c6EcWhwivIE8hW2vbNtTS7RmCpwx2iDMnyfpA6eS+Yb1f7f5Lcg8feM3jQBCwCfBachEAJFnD33t6lKn/bZxGaaJ7NJ3wDG26F+zrHVm8CdGAcZ4QxhlhGuEFnCw5Y1sWFPEKdZ75eBwnYWexubBcrzat1ntH9tl8gg8DP19KjEHCDPMuyP6qBKNrlSF6O1LaaUHkCOq5g0/eti14/6A3omsOrTnUIMDOOAJo+Hh/w9/9x/+IWiGTkUnsUDXEMA44jWcb7uSArmBJBfePD/z0+wWbSDRjjLhcLnh6esbpfOIZJd7OlA3v+OnHD5GcVhSZDq32Sbw2NitO55MM8dDzUKaz7jvK/Y6K7pHpAGNx2sAvcMI8YkRxjpJZR9LEIJJ5JfpkYX9rU4Dy8BlPLw7DONoZAqkv9m3B9cvP9JxbF9xvN5EKFz7zGPH8fMHlfCGIJvVxEPZzzkV8IL1YjxTcloWMUAVrwXhweX7GPJ8wzCObPI2xbF3vWD7esK0r7rcr45yc5aVW5hQl43R5wnQ64XS+AJ4NdB3IAvCMzdtGSfK24X67k327r2JXBwzDiKfzBeP5DB2sEYcIB55PTvCFlLMM2ljhgkeIA56fn4HmsG13/Nqv/xE8+DKai+bhBmFupAObAyBLT40oadYutGvpCFjt6KRXpEVtg3TDtEDsKLeDDkHoHjxO2Cl6KHFiJB8MD0WeFUdTfkAOPXR2kW4CXryAZgY48q/Now+d3aGJIwDzvVPJlxUUfOeeSAqqrT45dlhq8ghYog8BxvRwPYKd3QdDuv5SQKF2Bp1O40NTKj5fT++xdmiRmVyw1unsi+N7skiph+fX+ltWnbZbe4JwBFj0c7meiB672/3ZNEusSymd6ZCEHSUFqhrVegGNvYBqvgUrnLzdSzJVqhWfUtyD942TTSlzDVEYGM5J9xfwPpL+LgNVYgzQ1ZKFSeFCEJCJEyjnecQkk7vQKvZttaJX70dp7PQWMTxVoEwT/MbMD03WcRW2lu0rNeG3tS1+QpBiGewMN3m2OiG4tmzAsYLcRxBa15sWvQoqK7NU16YmlCobyaUY47EWsliCFlCKCMsa0mJdQWWVzfFzOPu+k2KBgKzryYd3JsNReaKC761WeKFi60Ggxs0pJTR4xPGM8fyEfVvx9PKM/R/ekFO2goBSQodSM4pj0Ry8R0rs2EquA0pdlTXI+9xEdmWsm0ZwLacs4yq0qIwmvYDs9UG6zM6rRJ5efTF41Jrl73hvY6AcrtQK3zy8eIE2+TcaV1Rqr747VeJhln2SDom/V/mV3LsgYHNKCSHSNFnL2Bi8xcvqGpqrxrB2UpAo21MZWvxx+n6VQ7zTYgog6FlqMal5axVbEraGMDK0aFfZPlyTa/cHQEYKBhkGoxNCa+MERwUGlRXgmoADnsMjvHNo4umhLEAmY4wnaJTJq99kKc3kGGpwzPXtUSGHPCrls9tOlnqrHPAgz9N59Xbhfi6tYl0LyrJzknEcUJrK9uld4iqTlnEcMI8EQ/R8oKEv1yjNkx2G4BA8/SzHoINAxKfR08BeB79wCIl6Mzph7wkK61SGK/5lTnicDWgtyznQpfNemMg8F7qXFGRPU5rZG38KmChA4pURLGcFG2oKwKDHLH2P6oDaqBCQWNVw9JLszE07++X1swDCrhEE1PDF6XMi2BZmi4OAs7kz97zGVgGDtOEAnRrcdJK8gERa4MtzqyCTE+CZU5tOzGUoTVK8FfE5Npmr/Rzv7e9//AL/5YZ5GvF+vWFfN6BV3JcdgzDK93WjMfleEKMTxhv3+BBH851UoLghYRwD5mnEED3CQF+9n9+u9NbbeUaHwOftQsCyLOITx5gRBxZHo8iWfIhY7gtSuomvlMc0D3JfPNZlIytFzpO7ePPo+ad7uR6YU/qc4RTwEAm0qTycNZH6Fxnv8g86mIxumfLI1ntsbJKxaodDf1mHh/MsDiPmeULOFctCKY/zZAaP0WMYItZtx7btyJnNyWmkRIkeXV1RkBKHqOTK+5FzlWmYXAfDEHC736XO51k0RAEPMs/0EAKWlebr8zxi3TLO5xHbngXPZwypTdQ3jWcOQSjmeN4FOGH4zDHi+XKRZjrv6xGcp/d2Q2qJKodxgI8Bo6f0icxR9UqllJgTJCepMxz2tOF235EzY8Y8z3h+fqFdhYCFCujpNQxxoP/xdOLnKBXbsqGiN41y7tNdnaN/4TTPiMHTq1T2aEq98HbeYQgDhoED4Bq6ZLvImaWKBT0PqdAXJr+DePIWy4lUhqvrs0FzauCobngkEPR1WAW8UWBRGy8PpUI72iD0vaKvqXI385LU9zrGzEOurxPvITFNffU0Nmm5lEs20JHgHpvPKiVnvgkBVgkiqC9navT3Op3OeHp6wTAOBJPFluF+vWHbVqzLDSVRsUFJY0Kpjevk5RkvL6+4XJ54ztaKdV3w4w8/Um6YNgD8/MGzzpjPJ3zz3fc4nc7CcGaD8na74e3Lz7jfCOp5ECyZ5glPz09kyQn7ybzSHdVG8+mE55dX6OBAValQYswJvSkTAPXi9xV1+EKM8HDY9g3rcidzNIsM3fG9hnFEDMK8FtICasWedj6XXGRohLea1YdgbKg4DCiNbEjIACbNycq+Y91W7OvKfCkEDNMsrCcOyygpIW1kukHys2GazFYEspaXW5dJQmL4fD5hOp+hg6KyNNgn8T5jrknAqpYqMtNE2bMwQJ1zcFEGeET6s6d9xfv1irQn1nTNwcWIcZgwzjPX8U5vwtv1ilwZr0+nM56fnwgADaM05Llh1vWO9/vPWG43Y2n6EHE+nXB5esLXp28wzqPUvbzW6/s7tnVDEaZxEmkutxSJIjEOeH55xUVk4YPIVCnHzVjvCyWhKYm/ZcMobMYYBwH1mCM3qQmd7MEQA4bhbLHjLkM7nHM2/beUghhHjPOA5+lZAFWJR7K/k3yWtK9YljsbSVlZ42y2fPf99xJHJwFHo53HzKu45+/3BVUYek3u0y5y8kEk5JfnZ0ynM06XJwzidVoLa+zrG5VZ63JDyTvU13SeJzgn+fUw0lN1mjmt2Qe7X5rp1VKw3TmxeltXLLc71mWVnKMSGDxf8Pn1M4ZhwjBOUM/5CkA9u40Nu+2mguRneGKeEgfcb3f8+OOP+Lh+wa/9+vVTdBtQ0k6I7cjsQgMKxDdKPGpKQy3SzXcyqQ6S7DcniYV2rhsn6oRA6ql0y6oc7lrwA2qS3CV8+hr6KwEUMqK0I6ZdIS1cFXhycNIZVxacyBylwNfExrsuj/wlAPFL+ZAm8/xzBxUB6XiVYsWFmdPym/1wlQ6jMtz6oSudMgioJtTfKsEm52webewka1JV7ZoAAi8lZ7s4BcpKq2Ju3PNTZV/mooVsfux8gxGjarHVHgE+HD6j8FWEXixeJebVp4xImPGkSvkAh1o9XNCJscGAJx8CUhFz/pIA7wT5F0+4BkrO9Hn67rvQdFE7kdsJY+nITNNhI601NO9QUxGmTTOQcQheGDOBMg9H8HldNlunCobnWgQgD/bMyQgVsCsn+Ej/mIpGz78YAN+BDSf0AGUJaUJWTLYid02vW4AdTeLQRConFWMTILez+DoghNasy0r2QIbWTgr8KSMUstYUdNRusxadmoQdB7zgsDr0ty7oM+p7SSXUFotqhfcKaAV7vvozuv+A7iMZQkDZV5T9jrRv+Pwn/wz7XuHcf2+vCeex7xlO5LVeplGq5NjYSY0RhGvQicdhB8dQZeJpbSj7jmkYBQzSQQ5F4grjla4DynUAJ00N1IxUnYDYNF1HI/igIK8CSfoM1fGt1Wa+f7nQb00LV94jiEdgsyEZ3vMZB0/GaHDd/1Hjn3pmaYeP27yiFBrqsygQEFruV9oTnA/SgRNPzUrArEiTgsBE5k5xWlTzc0ZhHLM4UsaeNEeKNl2EqSBNmFqVhVNRc7X4opO3vXfo7aRmElEdoBDjkaldCXLJ4JggHno0uI4CXsFk484HaWI5xDCg+gB4ymbSviM7T6N7kZZsqaC2ZEVtiOyknk8jqhuwXTdse7J7HSOlGeMw0PdGNnLa0/+/vTfZlSzLssPW6W5jZu+5e0QkxUYQSFEU9FMaSf+giQb6MUEQAUEaiQNRmglUkSxWVlVGhPt7z+w2p9karL3PNU8OBFQQEAO4B0hkZoT7e2a3OWfvtVcD89xLKcI7IPqggSBApEGcWjPwd7ngGWJkjKenvYVJubq/NN/vqZmoi9BWhGBeAz325LDTCPTQKqV1ubkx7PgOGxiqoCvQf7e2tfzOek5YA/PMuIXusIfnVDPMvDMB7Lm1Z8Z7z/NSAQviltKfdRWG8fnQc7OJhTnYWdi6TMuAuoO/+j2burNycXwu9O9w1FOlNlTbX1uB+UwaA9CGnuZTZQm8IvwsUlmAhhjx7ddf4eOAryJYlaERvWAYRm2+M59vXzDPHtFzHyXQF3pKK4HKgnFMTHwPtAf4+FiwbEXTwaHvA+DRULPJlAn+bKUQ2EuJbL1hQBPB47HCe2AcRzYengANm5+KYZw0Ebfh/W1Ba4XntVlUmD2HZy34nQevnRv6fPgnZv7zkOo4h7Q+7GeMdICjPQF8/ezq9ZruK7aX4hi8UiYEHQSyTkjjgJwL7veVw6TApplMHIdlXZEzG/00OHiMEGlaDwmggU25mGSUDfO27QRnHbocb10z33P1EY2Rv6sUPX+iw7ru2HPB5TIh54oh8czbc9PzoPbvy2sa+uFhzK/rTCnTEJlAK8qkDFGZbgDWWuChwT2B8jXou180zM5qbReBcRh1sMe95GO7I6uPIOVvCbeXC4NWGsG8bav6PhOQTmpmPwwEiGtt2DaCThAjLdCrT1oFoP5V09jBZgv7K6V0axkyuWJnFNpzZBL6PogX0TrF3nGnwFVgj+LIXmsGdiaCkHae95/1VPsYM8veOas5yKBHBwp7b0YkBQcIrkoTsd3Q9eddoEPddgxLjt9p/cdhyaNlEAMFVMJs1+EIyPBdtm7hedCfQ1lo7Wcya6TQ2X0hEXxxziO3hi0X/PTjDwgq135/I0tnUy+wmgvls8182QZ8/vIZn16/YJpmOOewLmQV/c0f/xroioKIXAhsueBxu13xw09X3K43DAqsPO53vH37pr9zwbo+KNFN9At9fXnF9eUVMQb1pbc62SH6hGk2th33IJOMl5KxV6YAZ5VQMik0MZAjhq6MqSZvrQamSgfwmMiNLtONkUEEJWeUnTLmptLpkAj+pCH1wYOz3rfbx/heE7TW0IpKVNcVThqZazO98OLIQQ2aYN82SGvI206vPvNfc2RWwzky7JSBbcivDwHDbcY4jmilYd8Izg9DQojjcbaLoO0aelIKWin8OYDK4vk+xqRDodawPR4E4PbMkzkEiPcYLzOGkVLvvDNtNu874IB5nvH6+SekOPRwkeV+x6/Ln7Apo0vAIIbbyw2XV7LJpoE+ibVQIv3+9ob9Tztq4b2lpUbtTMkQI+A85suEy+WK6+WGUcHGVgnIMsF5136LKsqYGIoyDAMul7kP1nuYR2t9CL6XwhTqWsluloHqG+EwYRgGXF9e4JzDPE1dveRwpNrfH+9YHg9s+9pToW2gnQYm275+eiXDdSR4xkG0DrprUx/QnYEg+07AXwHnkquelfTApAfeiJ/+k7+PmGhNY3LinDM+3r8SHF5WQCpqzXA+6nPNs6W2hjBOGKcLQhpwvd00MCV2tYzUhrLvuN8ZaLLv9Afc97WHo7Tm8PLpEwH2OCCpR6tzXlPeSQ7ZS8a2HmnFXuvwYRz6MJLIk/ZN0tRb87cb8f1mgI/NFym6/QG1Jk+RVPNq6iCYyhXM0coa8daaCt750sYQ1EvnSBPxvdA/Go5nKSK0Cewgnz8Oxg4yAb2Yayo1EEEvHHp7Z58X0tMa7fA0fzqT6kr/mQcAUZ9kQc/MvOcAASvsezKV/t5eKMqfmYBrcWl/zgCLao2EyHfTwoO1R6DtkAEZ+5E/K+97R5nt79iEz5qYPvWDBXdYM/e9BNZAjqe6uvuc2He22sSkubU1SHkGbgyEtPvTmPpWNI01EOyS0hAD0GiEhKAeeM0+L5x6uUj/fSFEPpMq+QCORi44Frvm2RMcne0MnCAATEYC6TpOgT1OxUIIGIeEeRowJMrpStlRO/hzMMg6UKjXKWuBHfQdQpPOQjOwwK4zwUuyDM1D0RoXk2ZC7JofzCHzVJMnYMemuoAoAEHQFvpMt6fn1zyeKGE5glyMbWWfr9SCGJigJc6m/AZAH4bRhzfRITU/6P6HjP65WDbWBkFEr34xOs2Mqe8xz2xR8wpCBz4LtnVhGlXZUXNG23bs337GYytd7lhK03sHBkK0Bud0WOAIMrFwPNJcg0/Y8sbpTdWAjBAgQvalARZNDqCY98rzORVtavVnA7bfaDKfyhaJA1YlZzo0cdyneCcP30ktClxntwZUZQwYu6Aq+8Rk8kcD4exp4+cWMqBCUGlQE/iAzuSivLfqRLHpXmIJpsYips8W96imLDEy2XiPyULyugd4fR5bZWquDVqqsaeamuE6/Tzeo1DkBWk2PDlYNpQONMqPxX6PmqlHNm4OQIWDk0rqvLH29FobyGkAAn1eBDAWne5/HmY/EGklEAho5ZIR4sT9FcCaiwLuZDR65zCNCdM4YBzUL897bHvGfd2RpWAvjebdgzWAeo7Wik1N0zm15fPkg0P0/ExOmaN2f+3wEZGDrQhNBjafNd4VlXbx70o/JyhLDyEpa4xNbBNR+w3fByCiwL3ZI7TK91jqwZ63s0REvXAZ68F9QUSDbZ73CwXKjG1vIB10f9S92wZaJo/sydxN9LuoFBOtew5CoaOmTUfW72z+eHa21Zz12eE9b3qm2FvUG7wmCtgdAzY7E6BgQYPWSLVCiYcqoWyd5cIghdbDfkw21/1pqlqnSOt74H1ZsecVITj6sqWgLI6CFAIAe8co01b1JP3iaoUEeq2xQeM+vK4Z6/pAzk39a7hnR+/gUJE3Do6qni3wDnGMmAZK1HyI9Ir7WBCjx/U6wVLBW6Nfj/cEf4aRJurvy8Lv25qyW3kqwkEn52qdIMbS9P35PoAJ/v+s5vLGBOuFWP9TSoDHwcA+arTWWQHNlBp2v9sx9CXzISDFyKm/ZwPENNyA5bFj27IOAvhT5ssFrRUsC0GkUmnu34oAwlrIgQCwhUZ5L4ghqscWWYMpxu5vlgvBV3rlSfdGrIV10TDwOtVG5p6IAxwZK+/vC6rQl5VDXjah0DrRrqelR9tARjzTbXdN/Ewt0MNUvbXJJOKV3ra9v0/0mBsZRKH74rKtPQ1SGoMI5mnC/DIDQhB13yuW5V39L1lvhRA0oMVzTwZ9R4sGbVhysT1TJhEbBvXWe2KLbprsejCzjxq4y7jakZ7cE7qtdhNRAPxg8wMc9NowNeizYr2G0/24A812xnTVwxGuYbUqh2McLHLGbuCdAoDtkLE7d8iDHQ5pP6/J8c7YeWG9nr0HttfaO9NBO60PLUF0zxkmm4cA277D7GJ8CCglfzdIhwgDA4R+gZfbTQdeDkUEy06269/+9V/SB23fsC5MgRWhd92nz5/w9/7wD3B7+YRxmgARrI873t++4q/+8t+gVsr/rFd0niEd8/WCP7y84nK5YRgSIILH/Y5ffv4Zb99+xfq4dz9LgIz5T59/oIH/OKqkknu01yJpGmcMQ8IwjBycKOBUasW+rbh/ZBiICxBITilhvlwoE9UAr21d8Lh/Ra0ZRQNDCMqMHaQzUIO1I8+L+8cdrTXs+0aMF6wZhzERdBxSJ4E47UNaawgxwVkflClVzkrs8T4w7XocCYZ6AoVM7/3ge6rD9HCZlAlIgK/kTLlmyVSaVU1HTgOm+UJ7gFyw75mJtePUyQJ2nUopZI+pdLnkgugcog3cGtNKnXeIAJbHHfcPhi94H+BChHiPNE0aKCKQWrCoH5r3AfNlBgR4//jAv/7Xf4Fty6AvOhm9l+sVt9fPGEd6f4YU9Lna8O3rN/ycM/K+oZVCRQtIFIJnjzpfZszTK/3mxgumaYZX9cS+05/u27evKptWn8eUMA4j5mnqdUVPhA9BE6AJxtVSsCwPhj4si9a6CdfrDdeXV4wTz9yYovqhDn2/sDPy4/0DqybZbuvawWHRPmzS8AuTNNvzDWGgHhUIDSI79x7Qa3t5UOIqUrGtG+uLlGDhST5FXF8/YZgonSfLziPvO9bljo9tw74RYGzKhhUB4jBgGEesjwcutxfcXl4REmW7PgRlwFpYYyPgve1YHgu2Ze3fseQd206weJwmzOMNt5dXQBziMGCcZ8DTs9WUErVUvL+9sVcOHjFFvNxetA5x2LaV9bUOi7ynN+6275Q6v4xokvFb129n8DU2wLVqQyCC6JX9VJn66bxXnfxhdGxNGk9up2wkY+dZo2lFXlPjZjwBeMbe4EvcfY+CpUviOFRNDqbI0jO452yS6tlCGFOlJ/x410HFZ5DuuQZ8Bl6Of6bsA2MhPP0FM2+2Nqt7smijL3KwxA6fDgWGNIUQQG+g2dw8sf0E/eCXamEa8h1wBWeyFF3GHoNKa/X6WUqSsRy7hEUOVsJB5Te/OPRJwwFwHmDq8zXqRv9PYML3QCkO0FKbFjbf0gHZWlv3QAO0WYfXQAGVbsESyByAotR+81FxOpXidaashlPmXZtP+uURbBagN09dHhocJgX15nlArQXbtvTmn0BYoMeYNrv9GdbJqBXdzw+XAas2oWXisTsmJd54VPbs6DNu11XZFiy0mB7aQTUFfp9TnAkGs5G0aYOxUCDoDMpWjxRdk470lCoF9AxMVngSPfFYn5FnUI9U/4N5aAVrN9sHiw7zV/Tea2HM98dev56o2QTiteCtlvJ2sNjyviHvub9DEiLi5UJ/FMcDad12ffdJ5Q/OweOJWaT7XhNBUZCPTUbhnxX6CRknjH5PRzCFs+8uT4bWQhDNGDhwmjLamk5jmwLNyo5SdqrCs/2eNJX6BLuvIqh7ISBZinqbKaOqM6MOQMXeR35X3TvgEAPDjJoBiI4yXttzaqW/jHlCWdNBFkPVRm8HdJ/nY0uAuNZKaY0AgobSRNkgfOcHTRbmM6oAvDe5OgEyjuD4O7Om8AIqgdSzoFan6b38s6Ud+4BJOQjmKRirYEoMjnLhWiHqL0L5jFOJm7L4vMmoRIsNgkfiBMURuPUhKvtK8O39gXXdEaPHbRqY+ujpsbjnhsfbA6U6VBCQnKYJ45BwmTwsnZsBSXaukjkfA2WRKdreRmDbqVybfoLQRs+CBAjeSSsKTAVAqvq3OB2UOIIm3lLt+f8J+hUFLaUPaOgrqOEvCrSJ06ZHvg+XMCZIteNah4GQymeGv4khSp5DEDuHuMeq/x4Keoqt3vd+Few8qhXwTkH4pg28Brs0G0oegzI+Xq0zX/oeKkearQE+zjk4Aw9FAXTdN02+bz/PzuPuVSm2V/G9tRRcKx4Bsj5tD31mV1tT/9zgt0YDbgeywUXIInaVabdJmRsCeo2OAw3Zm1TUCj3fgOtl7N68j4Wej3uuZEY2O5/4GNRWsOWMGBhyZX6pl+sF8zxpA9iwrAXOVaQh4HqZ0ESwbRuCZ4PEtL2EJqKpsfmpXoDWnNxDnJMOilh9YpJG5w4QprPY8czGpyRftPDpA0qYRA5d9WCDw/b8z61aNXxQz2bzgbIgsFJL95oapxG1NjweZOeFwD8/6HeuNdMColXKSw0g1ucoRK8gCgcsHLh5Hfh5DMnDe7L49p3goTHVnKsYxwEiQN7ZFAUPlEJmtY8897Z1x+U6435fYXPpGHwfjoRA2Vhn+et1baIgtQLhrRWU2jCmpMnqoZ+Xe9khGqw3DkxatETTnDOWx6YsPYJiF/WbGpSdJK1heSwcqDUm7joHjAMlj9EYhMKwDQPfjVHWzybtIcZhwPV6gfeBXmrafBlwbiD6OIyUazqoNzgUFKv6bLX+DJGQYD7afM/NO9KUFCF4xBRUAmrDCBy1uz9AVFMvmEea1QpUsZgfqNYX7ntATxRcMKKE1fu9zharbawnQQcQukpLz0Eb/lrtaPuUAZgAmTX278xX3fqYotI958ieZuooGZfOk0VpUtRh5kCsNibCbzqEFQH+4v/5V3DOYbrMeP30ii9ffsTt9kIQqZDh9suf/gYf7+/IeYMRFQz8mS83Mq4uTN41Rcnj/oG//eNf4e3tqwZpHKxKALher/Q+GyfYKNRCQabpgpdphPNBk5wNUOCzUPKOt6/vMAluE+ifjXy+lfUFoYrh8SBAU2rR4EmPcYoYhiu8An8MX0kd8G+14vFYeYaUgm1b6Y8WI3ooHRyGNPSayvvQ3z8D50qmh50NWp13mC8MAwpJpab6Hu2PpfcTIXgEfZ+Dsq2cAI/lgW/3Oy1lxMAuh9vrZwQfe6qy06FhGujfefTHpQPAaA15Yz1vL+FWCmsgZQo2qdg+7vj1412fXw/EhAJgusxaW7NOWJeFEmJwME+v7IrlseJ+fzAw4cc/kHk9TArkkg358f6GkneCea2qaqEAWlcMw4Dr7cIk3JcbhmHqgSm1Vt2rN3y8v9Mvd9uwZ9aGDKsYMIw37QH5853nvmn72L5vkCbY9q3DHtZr0ifvFdfrDeM48/6FJ2xFGZAf7++4v7/j/eMd67pi2wh0PR4PDOOIT59eMYwD5vkVt+uLMqt931OzsUMbWZ0kEpi/u2BbFqwPBsPYsGCcJ0yfP/NdH0eM0wXjdEEamfabc8b6eOD+9o6SN2X5Mbyl2nTcB1yuF4LDkcFVX/7w93C5vaiqhudyKQzU6LLybcW6PLA9GPrRmiDGhOvtitfPn1BKwTBNOlh2Ko8+AphKLVgeK7ZtVcsMypqH+QL67jm8vb3j669f8eWHH3C9zn3otuuA0QgZMJun7lv9d1+/ncHXKpiPpaCRfB+iQTmT+d8dTRmAfrDwoIeyUNqRVOo9vJm745iEeZONPMnwrPkXafajAN10OpupA26uH74ixnyS/jDCqSTHHUluFohgB2sv+IEDJMMzGANtNAx46wO8A4SzYk2LcR2pqKzSTGbV5B46pVcZnDGs7Frzoc3H59JCggg+D9Eqlvh3FAaH79nxPXoSr4OyBWBIk33LJ/DNvqjrgKTdZ5EG144m35hanYXWGsQbQ9CAShz/To57b9/TQlkQHFwlt8I583t0aF6UkiMIXplD/gBgvf4HQlZNAKVGTYGzo7ipKpPh9bLp6u6OifDgaXw9jQmXCycurTbsq9J4tTg6ppt87mhIDeS892kUvS6AqD5rtdKjqqcI6/MLHHp+Xn9+Hh8Os3A7lCnjssZdUNqR9mqpaX/O+AT8AZI9NYvGELVnb9cC7hnYjjEoYF7VX0n913Sy0QFydwB5fQrs/vzdMRCah0/TaT2AXojDikvgiUmgzF6TRYJpj/Z6QZ9X0XfP7RvyuqAsH8jrOwDhdE+nulEZXSLGStQAA2NMoHXJQq3VrMggIHMN4H1slT5zZvIuKmvk968Q8f19hDNgg+8ovzYLBT4uT56klftCCL6/T957lT3p4dOl6ZTnBvVj2UvtALATdFmY9x6uiTaK0o3bIQ171v1bb3sM9HYySW1tlYwB3jXb8Aji1YrqjLHJQsD5iH3blP3qaYLcmJhovpBizOXakBVISQoc1FahwWEEc0WUPVhNJ4rWSi+gUmR6tkl9Azd3vg/grKnViiEeZxeEsoYUA0HZcJw3bB65bwVvvyOilMwpZn++leVSybh0IQLewwfgMg0IkpGSJzCyZGzFoQo/v3Me4xAxpKiFqGjD7hUANimiIEWP6DyMYAz10nMqPWazpwnc0P9uFS44OLXJMB9aFjOUItRG0MDpgE4UwHMuwMZBwdsAzz2xl3iQiAiKGIihB2JnVh2M8KPI0UdMQT5vz5McwysnT2m3upqozNWhN7QwsFFlvLZ/CoS2IQoYlVqVeamsrwYEEYhjIyiqRsATOF+LNfOlS5DR9yZ8l45LBqCyj+thU+H05zfd06syIOnZqYOQZlJfY+sf4GDVvdukOtJsP5d+9ri+vzb1fCMzPQbAO8E0EMwQUL7lIkOhxoFsvSaCdS9Y38hqMC9f5wzwUimzSr2lOZgAeZpHXK83hJAg4vHxoVLbwasZvUcMXlMpqzKyvZpSA+/vH50ZyL3jeJa8MmBjNL8qlc+rDcwB9rkuCwUOsK+zxvv/ll7mGGgFMebewVLq/87+bjvOsKASpFKFfWQP1OJZfbkyzW/bMrYta2qtV1BgREqR6YxZ/cca34EhMa1yz2Q5uQ4eEv+2fbmUin3PCPOIx8IG0YHgHvRapcSUzJIrYnKU7ntPQDd4TCM/3zRPBBef5PKl8L0lYOF1jzDmGJmaIg7busPHiOZEQzYoX817QUaGONYgQ0yYpqkP0/ZckPcHU+yFzMfr5Yp5uinowEHh/bHAbE1qq3C5YJonzJeLWhEw6XJZFtjQb99z93WD4zVLKarsMWpipfrFlop923udW3XIFmP47p42R3brM1APrYWNqWO9Q1E/02PPsuAuynq9eq0aQNjVMU97XH8GbZgHdJYbwY/a/06HwXUfdY62DDY3sT1TBE9/X0FMKxYhkH6UP6s5jv9Nrz1R4E76v9/3nX2AssJK5f5ksl3o93ysCxlqzhjiQM0FgNfgHTK2mUhM+wqnw0aPgH/6z/4rjNMh2VyXBfc/ftAzLTNII6SAYRwxjQPiMGC+vWCaL7hcLhhiIoBxv+Pf/MXf4OPbG+V5ee/s+aQM0Mv1ghRHXG8v3c+xNspG58sFwcfuD5Zi1LpclF1YsG+U3to/H1LCOF+R0qh7HpPBl8edjDT1cHbgIDGGqDYFTAQNMXZQWIRpstu69H4wK0vVmIAppe6bF01lIugycAOM6146S8sGU8NIUCsquF7Kjn1ZdXCn5zWE332ghLI/Iznj4+1bV+l5HRIM04hhmPRsq6hl74nHPoa+j5vypj0ByU3luPu29WecrK/E8J7asL5/w/39zn4+BBQB4AOGy0wrAwUw93XTVFb23VHPw3XdsG872Y8QfHoh4PP111+xb2QMtpZVbWJ9rAaCjBNePn/Gy+srLvOsCg5l5m0blgcDWxjmU1TNEDS0heEZV3/pCo1WC1otiDEhRs/97YmVZy81U9c11Tsmhk4kAqUmtyarNmN53LE8VsrUH3dNTF6wbyvSEDFfLvjy+TOmywXDODGN1rPey7mg5B33j3fUzJCa1poGj0Bl2QsBWZX1xsDnNcSIYbhgnmcy4aYJw8S0Yef43UrOePvlFw3EycQynuqZ4AKaD/jy4xc4H5XhpxLzlLqyDqBFxb6t/N574X9ywbZvmoDNnvZ6e2Hy9XxR4pBgEEGIrL/Jhm0EMfXeWcZBeHrHjD3eRLCtG/74139Upm3sIUwxJUQX9Z643ufWWrun8G9ZvxngEwHEHeb5uWSMw4hWChDQfREcgKagnMn5rDlq2qC0ZhTzxgRMWJqu70CIyfeCgnJ2mHpFqI3FAHd47fSGws7Ihg4qWOpPVGYQmzmP0M9UZRP16dcBjkBUUqQXotk/x1H8AQYu2T/rRy4L8Scav4gxC40lIKii4IocrLaisj3z8DkMgI9msoMfHSCjdMOmi0aZ7nLOJ4Cv7xJyyCef2Q/SZc32lw7fFYix0ZQdouBdLy6U/ccDw8A/fbCV2VSMRYND9mzgW20NRQRoUNYMPQMCjom5E5OZ1M4IdfCkcXd0PPSXyej/R2ozp+D8ekT7lcPGScMYMaaE62XWJp/N0r5unRXEz87iyPxGoKh8yfvxLOVC/X9Sk369XzEYiMJnRkBgxu43cIB8tVYECfrsKKirxZ8B033qK1akHUDmM7tUWiV47J2aG/PZtcnMOAxdwvIslzWAC3ofRHFWQGVmT1Im9wTyFfU2/I6RqK+JPStV5BgCPB1izhubL6jPJOC8po3Zs+/c0bAZUxKOaVXOITvBcn/jtDBOqKUgDVOfhO977g2nWLMNAJqsl4KH02zWFG3gAMAR/OD15ne0xrvhAG9pRcAEUxtE1JrhtXgDOB2MXoNcxFhmB/hTa6OEToty0eGFTYYAyhqd4zS76e+x/ch7Y9nI0QB0aTSfsV5gNOh0KygAcRjLG8DsHIMxdvX/rK2gNe4He9t1X46olVNsQBCkdTNz0Yb8oNvb+6RDmUZQXirfSw49jn2uijGGda/rnmoEB0QBICcMX2EzUoFIsNW8FekzZ8CVoOwZaVCQD5b8yibeO/4emvZ5xCHSS088mE58sMFLbWheKHHzwH1Z8fb+4F7lWPTGmDCoz05QX49SG3Ld+z0LviEFrz6M3N+tOJd6gBZFBF6c/lkPNLKuyJh1NHFklDXgjiTvUjWkxLunNFxKbwCngH49JDNN9/re/Fm1iX7ulcJk8Rh9f507CGkAvZ7NDEDwHQwLClLboM9SAZ/BGoECtVXf9WYwkz2fjWC6grFHQU6Q2+QmTusCY+nZEMpA3L2Uzm6xvRRVvWxr1f2X17QP0JyCE2KyNTIbrTwRHCFYpTLh09j9xQAEKDuqM1kPFowNCWs7ks2l8R0j45L7VRPBEBzGxP0qRWOSV21gB/W/c9i2DR+PdzyWte/vrVaMY9I9pPUaoJTc992QBlwvF0zzDDiPda/I+x0hOIwDwZd5HjGkiKwSrBAoifTBq6RoYUqh12dS6LXnnYZmKHji3OGHLGLKjOcziYMIg1SN+d2ZnI1yfYhZghxABsFVA/4OwI8HkDtUKVZLAsogcwcTCwSAU2KSK5zD475h3XYIHFJ0GEY2JSlF7DljXTbYRMp5gmqlmqTSMZQnagCPBrXkUlVyTbZlLgXrusKpOXotZtkgZAZWATzgWkDOTWuJgnkeUIp0Vtpj2WFDpT44DjjOAzt3BGii1inCIY0HtCliemkGWZZD0nCASKBxWcjSy2bqPlDmOA4JIdIOZNv2/t5WTbZOacA4DhjThKj7UKkV62PhHlKPM8VqHfMiG8cBo4YQmXWC6Oe0mpB1Ms3SpyH1e15UifE8sLb7ZYqgaEPArkZg7SEQBfl8r49jsEGm1Q6Hx7D1Fb2G04O5A3Kt6X7nYBJ/szZpYDqmszPdarL+94/arxY+R3CUxULPkm6Tou9Fr7+0byi5wgJcdKNFra3L2hwOkMlku72eLxW5VvWucl0hUktRGWdSwkdALhmlCUoV+JjUVzSg7QU///JLlyK2ViCVfmwxkMX1+ccf8PL6iuvtpomo3Ovf39/wy1//EW9fv2JdHti3lXLuacI4TrjeLj1gYJwnnkMhaoovKJ0dJ0zjrD5eGvSnPl2P+we2jXI/EVHAJWKcZkzTTHBO1QR53/GmoCLrZSZ72vlPQGRk3+NZw/KZbsh56yEZdm+M+DFNs37u0PdqAnERDgExun6fmhT9OQyo6L9zmP4MnFoZuIJDYcfPmDSsQd/5UuhhpkB50YFYDBFpHDAMA+uakiFNmMA6Dx28baokMnWQhUOYzHh9PKjt8Y5ehoFnQysZy7dvWJcFcA5hGJBbhQ8McRrSqOzOjH1dSMooDDZKaYAPyijdNpV+Z9Z0zuHf/Ot/hZLpCRe82QMxbXeaJibiTrNap1B1sq0bfv7TLwrmmVcdz4xxIjNvHAlsmYTdR4KMSd8Nqqr4Lq3r2vEHwCGEyOCfSGA1hKA/z/UhM5NkN+SVrLXlcceyLFjXFeZbPgwjXl9vGH76EZfLzL0xRmU8N6bw5oy3xwe2dcHy+EDJO7wLPcQjxoiyMxCjmmWH5149jAQap/mCcZoxX6/8vM6jtop933F/+8C+rXjc70BTn1nFL1LU+kBJF59//BHDNGGYLggxEfDXPdL8hx+PFfu6Yd9XbMtKNqomICf1GbyONz6XMdIKKCb1h4y9jt63jPWxYllXlLITm3IewziqVVNVK5XSh/veB4QYMM4D/ot/9k8hDV2Sa7VSVhY5Q1GOdOY97/it6zcDfAAp2BICguO0pYNLepp0XT2OAr0HGoBFhVYM/FAh6oRJdKNDZ2mIqD+ZTpWCevF0iYRo0ax+Pk3BKLJLDMyySZbrhyEp8gZCqX+Kgns24X+e+DoAhm9JU0aQ9OO0g1xNi2KnG6tN1JvKNixByaQ5dvCalMmkBA4WHkIWQwf1vIMlchmboZm8t3ES4YA+ybFEOUsnstPaGglrhmxzNWoveiH73Pg/gX1gMdcUlD0APMOppIMjRpMlmHswmcyvkeDnwZIwALWU0j0RpEoHxAjAOvigDZdnI+uDP0A+tP5isaB3VIeJSXGAZo1f431HVf8zR0+fYRgwDhHTSN8rh6aUZqfvQUEaEnLOncECETQp/d45HJIh5zx8IKDS5z5aHJohNzfw1sGZo6E92KXP99wO8MPwuHUAtRu+a7NejMHV/ywLuy4P13fTacFu4HwTDTWoDQWlsycsNCEp+Gc/syh4Z++OgesGbpv3iwHWIViiEiXFBH5N9sjvGCL3AJt80Bzcgg00ARRHKisPw+P98SpPkDTh00//AGmc8fO/+7/x9ee/wsfj0c2geb0dmgJwTcdHR4gBemNtTAw06UbiHXSGeWP4/vkaqgJpZOyIo6l9SgEmFfcHZtTfezY5rRd6wYWnfaMRaBKToLFp5fXSFFlpCIjwRDS00eC7Gz368wJ3BJ/Yc2ISdWd7YDsaAPOjYbAP9/+iqZ57zmhV04OrACqjMkTQDjXv6RdU1OD82QCf7zZBktpo1l5z5n21/QYHu9hBmTfOGOXQvV/6+5n1s/J51udECFpYIiIl1Xpm1YoQQ39nremtReCCIEV663g4uCbIhV6MDhw4CDwkJPg0U9oiBXsRVPGojUnQQ6T8nKzHxmbbHc/9kAICVB4X3FPjpkboCgbXqoMrBwzBE2drFvyCvr/YdTM/NygjujZh06yAq7gjFdsrs9aef8Xp4G3gYMC/ngVw5perURU2/OBxrGc3fYec5/kojiYW5t9nDakYqCR65sqxfwGgDYHWIF12qwy4oCxrCEHvvv9rI+6cQKrtcU9nvUqx2xNAh2Y2GipjKrXXGzzzdQ+zd1mOz5hLU4b89wCAKJgn+otbM2nmk7RUGa0AnkC/psyG2qVztVU4O5/1c8xjRPCaDifCswWUfc8TG4JcG3759Rv2vfQpMv18RPcCYHks+vsJfsaQMIz0K7vdbvBhwL5nPB4LgIZxSJhGPrspRjQBtpXMgxCDAoqCdV303VfWj9NBk9ZTJHzaMJTnQWfcO/pM9jAWcb0BatLgtf60s4lH5TNI9zRMsHugoG9nllq91GtNG1Z6wB0SJH2oFfCruF4v9A8sFcuygr6k6tva1CvaOzYju+2NTt8lVtLeCbY9w3voWdyU1e36+0WpvwYSbDuc89hWsnCsWXMgGz0krW1UjrduBUOKaEJmxjSPuD9WsFQ8gktiDAiansj9whPUl8OjsIlgrxVl3XGREdOQkAYN3ABZosu6MWCskSE9TSMu17nLd6Wxt9g3nqe5ZJUw02tsVt8oel3tWJQ9wlq3QLQ+88rmjDFiHAZcLhfEEFSto81b3jtwHnyA14AC2o/wRnbZq4ju6aKDF9pDUKLt+uB8r0WfAT5vAeiAoYHTVHPwGbVq1z3tZVa727LGVnSvfGbwhhAYYtLlwtJZnb3X0X/ecTolO9i9O2p87unOathOInD6Z4+QFfNBC3r2t9bweCyIydLbD7aeTUQscTgX1o+tNezrRiBKQbKg4QsiDnupKJVkkFwK4HXIqM/bX/+7fwsRwTCNmK9XXK+f8PLyipeXF4zDAIhg23a8f3vD29dveH//hnV5IJeMSUMu5nnGlx9+4AAqEJwfJzJCIYcSZFKvtpQGhiHoOVZzxn0haOJAho/3YEL2PGOaGRYBBW/LTkYbJYF8v2Kk79h1vqikmawhppWGfp6VUvDtzr9X8gEWWb8WYsQYR3uCYN743fbFginBz11KVokr6+SYBlxvL+gJ0K1hWZcOmAd9ntI4IAWCZUFBPjTB+qDMNeuAnPskAbxpZlJrzVkHFWTOxjjomae+emo9IXreijLO8r4Tc1BSiAF7Tsjoe7/fUbaNg8CYyLD1HmOaMOq9ptxzYQBZZYBeHChvbqUiZ6a/7xvBfhc8xmHEsi74eP/GsJN5xuvrJ3x6fcU8XTqbOOeM+/2OX3/dNejDzvbaQeDb9eUpvJJAqPeU8E7TSNsZoTT7Y3l89w41aRiGEdPloh6lBEq99klWR6xrJpiVMx7LA4/7Hdu6dkWODx7TNOHHn37ENE+4Xi4HQFcIkK8PBow8Hg8dwJDdJ60iRLIEb7cXjOPchxKlZCwfD8SYcHv9RDYbCMCGlDDPM8ZEMC7nHY+3b7h/KBC+rAhBfaKdJ7icZqRxgPMB43zpHo5pnPRZJrnFQpXWJaPsO1Nut62HwJS6IeeK+TLrXsXwyqD7z7ptuFwIvEdPK5L1TgB03VaIAGkcMc8TnJ9UBs93rdYKFNFgWO4Tw0ALjH3be4iozk9Y5+0Zy2Ppww9j77JPcPgPsX47g6+13oRViLIrskrRKOkydL8BcKLeE1qoOu8QPGmyBrRRQom+CZnZvnmcdPBQ/2BSFsbhdaasvXrIPBuM4SVInrHfRMs5lbdDkCefyf4UmJNjotsBE52wNICfSXxvZkQrQ2ucgYOpZ1Mw0cLRwAdAi3Uxg2LX/45Xs+BS6oGIG2AJgmjmL/Xn1H9u6DoRUECxp1ppkVFrYzKrAnIGQrinoqApEPrcvAG+N1cmrxIRaLUDA5p6UaHgjTECq06+Yf4TukH0FF29l7kwKc7CQppKtWqpEO8QwnGt2FyjPw+lACkdRtdZfYd0iM9EUSg7rDEpU/SaWypmjB6Xy4QUPaaR079WjZWlfi6l9ojw1lr3KrJnp/UGhQ0LJ33HfZOqpV2w50T9T9QDydhMwR2b+CGHax1MBNB9q8x78Qi3aL3pZMPgtJlw6Gluoka6JRP/xZMkQ7Rg1e9kTJeSM02o9cAyIFdK6fchxgSTOXWWKdDvN0DDUV7bY6Jrz401aCxXnBa+gLe9pRGYEQFqJROCS1NpvVHcbWhgMBWfmTRO+PIP/ilefviHuN8/8C//7T/HXjOvo7KLUgzwjb9YfNVDBWxwHKfovKcKBKWAWjNEwVT6vvEeBecAMSmieYeC4ApcZy+JOA3EeA4bcv0eoDZkUf8vvSZVKEWlQlhZkMryoxSDB9IQg/7rprIyA9KMLWDs2+Oe23NSdFIMB0jhteRg5JD3bBsPLmNX29+z59U8OUq2IYgyCOTwRyu63+gIpO9dpQnypmE3ld8+KyDrIGgOcNL6PuqgYGczBgWBQhaPXv+/SSwU3HHKTBavybG8Nl6fKXqacrrJpkS9RppAXOsSqy5ZhwPiiDBe4dKkPoQZpTU4r2wcPQ9KLpQOG8jrFbxwAoglbvP7FANZRfq+YiCndzpYUaYNgQgDdAku7JmTel5FnotOOH0sei4Yk85BAW80ve4OHkEbWQ64bO/qHpNODRgET8+1yoP1gLUhArSGqArAEhxUQFaOsw3WoNrf0eezs7BBqVyx8wcHKx5oCDy0YWm3Xhog9BO23+LAz5E01TjrnthsEOGceoMBcFXfZb6Dxjrs4Kcz1o/t7cf5yD1VYOm43D9dt6kQbY6asjXo4es6AA0IRAczTd8zpc+rHLGgNe5HuRTswmb8dptxvYzqtyf4+nbHsm7dP4uMcXoRFk1wNYmdMVLHccDr9cIk3cRQho/7iloeiCHgcp0gjV583jvKMzOL3WGkh00tFR/vH/TmlMPPDCj9HnsFRjxCrxPM/7YHeJn/ohibjteFDAL/xJY8ajG+7QdQagw1U1jYn2VtpPuhs4EsB5xdGqf3azBPWjjK6S4DgvdYtx3LQpP0NLDBCZGhXK01rMtOVqcytvLO/x9jUgYgZdStFt1/qvpoEiQueyF4shdsO+95qQxEst/XWkPJlWzOaF6cwKpJ2yF6LEvG9TKpHxSH81GHSGxQBL4BzSljEqzfDhafYpwALpcJMSj7eNvxVg7/sCElpDHh5XJjY6RKh73s3Z/OmP1BIqaR8mUmKFeyWCDK5GU9aDViKQXeOYIxkTKzpGwp8zre9v14R1tTP6qoA5xDJkuPQgPa3AEg6rvGABVKMf2TQinnQgmgsgMNgOmBg0EHF45SfAbDqOFBB/NtU0FXyRjz3sKobI/tPpvt+/AMAxgAHMNUOdiutZDde9gWiZWSej0bzA/KWHoOrMsthZcgae6samuazReM7DyqkUzeVioVNDln1gi6z6NA2XsMh8nSsJdGVrTziIPVktwrpHp8+vIDXl5ecLlecb1d6Zu4b/j6yy94+/Yr7u/fdMjN/SAOCa+fPiGkSIlgiOpPN8CrJDzGgQBvJNiXVHL7HAKyPhYs64K80XON9gcjYkp4eXlFGkeEmHoNf78/sDweqGUnc681pKgghnqNMsAoYlSZuQ2/1uWBkncclk5QOadadXiCM05rDYGxhUKvc+x/k53GwBpoPZYGgpZpGCAgk2jXIDrnvb4bEU7IpoopHt734Fm4rne+s4B60xV4FzFfX5T5uHVLlmGckMbxAI3VcoAppTiYo61hyxnr8lBVEUNEfEoIie+WyxXL+7v6vjkgMPlYPIH6YRx1kFexPR4E3hoHlyFSulprRd52Mih12Ol8QHAB0ITi4AP+8T/5L3G9XAEHlJKxbRu+fv16hDwAel5FTNPIwAzn1KMuq7deBgZ+x2mcME5TZ3G9vX1TdqDv/ubTNPehQ4hJgcrQ+79SK+q2odWGx+PRgzCyegmKkBBwvc4Yhgmvry9Mzh0IquZckbcNX3/9in1bVeJduj+xSX6vlwteX18xDCOGwQaFelpnDkbn6ytePv/IfsW57vMXY0KrDJP55ds3bAtlwGTaOAV6xz4YiBrYcrm9IsSIZdswv7yqPULovWwxAG/b+b0XgpKbynGDvrPX2yumywW1NozTjBiSqr0AHz2ur69Aq3h8PLDc+YzspeB2u+HTly8H5qJWcLnQM3wYxq5MSUk/tz7Ty7Lg/lhwe7n2HhgQ+hu+P5D3HSkNeNG9aNtWpIH+stv2wG9d/wE8+Boa2AEaUHYkO0EL2gONFC0yxpRgJrpO0RZL02sQWJKotMYXtfFANOZdl97CplrtkMGZf5NYCu4TIOaOJFl6xrBw89BJl4FXjoVj1XTWDhrad9HCvQOAsGRNA0vYAIqxxZ6kuNDfbpIXwGS5QDcGh30HFqAGFPXmvj01r/qdzJ+uttqTNmm+rgEZCsT4f+/+aPOt17/m0j0zoM1acGQ+BH9IqQH1ZHuaLkT1nwpOTSO1YKhNTcufAL/jmTjYNJzuN/rr6fcKarDZhB4qBoYEHyEIfboMOPUro28UJ3EerTQUJYhaQ2ByD0531f9MqfDeO3oMBEfmwTQhBAKHjEv3/ZCtVZtJOQAqniMKWnlStIOIUsILLPkZBtLpI+X1WrEX5XNjCWQOBxjTGavOd4aoPVNOn6EOAOpza8yCJmYSLUcBrQ1KbdJl45acbI2q13fVGisBJ9IGGuzbxqQqAOigBifh+14gQkozFLS15GDzkYEBjw5MN9bn3zZT77ihm8zgANyl7zn8/kENwK0olX5/TQJo3zXvO7blgbzdsXx8Q17fkbcFy1o0Br5oYxopi6+C6AKiSoZiPEz5nThE9W1rtSBFlQ8HR1DIu/6+EciRzrxqrfKeQ1lOMD8VTuntmbJ08FIygb9KsM7e37492b0UAKhd+m7fP3jzVANEmVI9+McT0HMqTTU6fGuHXJYgmusgvtHMvbIBcjGpNv+8JeWZJyjgNLWbDYbJyA9TcgWkHfhzY+xNd9Pk0s7ubQUCD2dhDU6BGQOj9HqINjytNjbFvVkXSKtIMYAYujGvNW1X70PQBi5FAmvBc3JvkznvPUKKvSFroMzIh6AyYDwNZgTxCfwKIaDWRQFJD7gISCODPHgWmGia8C1oFdhFEP1T6qmB+Y1AlTWJCPTacwKVFMjTEaagKTh0MHClQeBaVdZiIJDkNWBIDt87Njr8vVETVcUZsGjvpvT9kc2/MNzB0wtRhAybpp+r1oIgDq6z29HZ8U74Tj2DMT7wPTDw2Vd3DDicI5vW8Zk2Jph3gmbMRB6mZL4oYm/i2qqBCLv6QnJQc0jFN/VsIXvc/CdVOQD6Y3agSerhgQsF+fjK9TRUY0q0Jt3D1Tx46W/Fv2C+fjZIMbku2W5Fwc1G9p8y7Hi9Gi6XgYbY4M/89nYnkKMhAtz0BQ6UrzfdJw1Yb0Lz6NcrJ/5Jp9TruuPt/R0ifEeGwWEcE1rNcCHgsWxdlmvvy7ZuWNcVZjlh3swcmh0WE2aDEcLB2CvK/AEUFAffU/osHvXIwW6V43x8eve6JcDTfwiE2dCBP71W6ffInj37fMagskG2AdzjGJURB7x/sGEiY4DXdZoG+u1tZItU3eOqet4NQyRYLA0pUTJuoOCeS/eMHIaEPVtYAaWlTaomljoAahFiTHFpiD4g54ppSjBXketlxrbuGIaI2ioeS0Yptl+qJYHz8JHpuU3QvSNFnpp0QWf5v71/oAll4t4D1+uM2+sVKSQ4OKz7hm/f3iAApnFkfVkb2r5jSAnXeUbqlhtgw3Rv/fozjVU0dMapKX7E7XZjomVk6FEKqYNYIlXBMJ4XKQ28LyH254RsZrNr4BlitbLtZ3YwP+/vFohjcvOoMninPZJXdnUThsMocsiMu6ZMXRwDVxt4wB3AHtMoVaHjzU6g9QEynA1OdKexM9vZc+x6r8ByU4FwfSfseXbu2OusbjRwcLeAMqCTBvZ9R6lFfWJV2QWoQT//+bbv+q0O8GkvlfWV52A2xgC4iHUv7B0dWMvHqInqQEzsV6L3CGnAP/7H/wStVry9fcPf/vHf4e3tK0reCUoF9jzXl9cu86MtTuKe78jU+/T5M0JIAASDyiVjSgylcLzej8dDv/+GbV3oH6oMuzRcyU6aLn34X3LB+xtBk2VZlFCiqaxgrRs0NTRE/WzBCB30B8sqdTRv3GHgYKTUwt8d+IznTIWAd7H3FCTTEOyrJWNXDzcbdKTulTeAdVnG43FXIFEoZx1H2DDKh4BxGJ8Gc8C+ruq1KF1SKQDm+YLr8AkiDfu+o5UMHxOShjsYToBWv5PhWk9edgJey+PR+/uUEuB9B1GkVazv71jvD8A7uJggav8xjKNKJR3QGrZFwUWtD6Dfxdije84Q9Ya2utvCYMzWAQ54PO749Zefsa4L9swgi3GYcLtdcbtdCRJ7h2VhcMO+rwjKABxHDV5QjKLkjGV5wE6oYWBSMMD6alQfw2FITPjVuirnjLytqJlSzsf9gcfjjvv93uuvcRrx8nLD5XJhuu00w0JV8r7j/vHA/f43WLcFeduVtcdhXEyRXnSXa08Qr4UElkFBwW3LSAOfHwAIaVDWPZDSyMA8AHnf8P7xhpI37CsZdTHSJ1xaxThPyoYlw7w2II0Drrcb4jDABQJ6N+dQM5/ffeEgMu87yr5hWxWUzBn3j3e4EPDpy2eM8wW32wua7rkhBDLlPN8TqO3Stiz0HVS/2mkacbldAVX9DWlAbQ2Dse6V0R9j7ADoPPE9KZnsxwZjZM6oKtM2DGPfNkhrePn0iuvttfewoXtWWk/729ZvBvg47YceUipT8ZQt2EZqIIA1mebnFWNUPwQefNzHOYkwAMQMIXvSix5IeGLEmT8OUVQH1MMvj8wXwAvgdHIW/ZFAaWxAFsoEVTpz7amBFQB2IgpPvidm1NG4NgUcrNEzEMbAKmMb9VTaztrTKWw9wgvsYCe417SIgDbyJq0UpWi7/vO852TIvNJ8L5xVoiSHRxVBU3SZBkQoR/T0wRHdxI+Nlwi0FbLsjwRQ8Ik9mevTu2hTYq9+InotTF4KmHzOGi773+i/24qpaj5EDuo51lCLIEQHh6Cgkvo6CptaiIOgoaonk/eWlqj/zjmY7xKEIOQwkDJuMk5IAzMRmACae3PhjqJKRK+XgsGlwaRCh8ywInqCLWSp+c6eoMSID6p3nvI09cc6WHcetWWYGTX8c+H2JCftBdoBrJtxsXkKmV8jpdoEWgiisHjct00DFAhixBj0ftvv9Aoe26aZVEp6FIi8P61PeeoT4A0tlHtTJ1Y6WxKcqJyIXmVd7txa9wKBOzZAZ++J7hXfgchamLadlHmTDLdKE+Hl7Ve8/fyXuL/9yusSJgAKuLaGIhUhqpxBKlmVDmzs1WfIOUBqhWfvAyYf2rOukmyoIXilVL62Q4ZtLCebdAehUXuXxdkQpD3bHzhKtpQdw2bAWLGAsU2C99hz6dIgAwJLrQrMNDiozLdKl3IwXEEDPOxZ0ev8bNQLULZXFdjjc9r6/pTzIbU1IMKksWw2MixFjwMCDiUEJn3MZKBBUJsmFDt63hUhkFe1IffuAKdt33P6H5M5iHa0dh7A8ZwotSBCGymhZYPJRrd9o/Rc/WYtAZI9GkHg3uRB2RpJmeWNIKoH93QPPUcamb+WgJpFk66laGPI/89QhYBQARf4zEUFYvUE5H3zvrMWjSVvMlJr5GrlnxVRJh2Mtc13psHktB5NwdEOijQbokGfSwYD2dnr9FzlvtM6IMY02aD3BL0hJeBPNqDvTbOx+I+hRNU9iWDuMS4kGMKXPvjQG2Op6N/ZQdDEa70g6uPHJsS+8TOrxYcAM/HvZ0416SWDE2ynyubvpuwpO0u8Pv/0U2wKjntt4A/GslijDXTPQGPRdjCvEbiw/b3qPt3kqBtqbX1vtP1azIdPjPkncD6iloxvy45SGva90LReGaYxHHVG8B6PTIbsngt8cLhcL3i5XTBfrnBgWML7+5sywgTTHDANCTEmvpOlct+JFdM8kgkpDR8fD5RMEIp7x+EjZ0CqsUaNgUQD7ND/uVcmFvQ5NvDJOQM3D0WCSWgtwMim6LDXxz1dU9tj+b8gnTVq2OcBhNDmQoeLwuCPcRwBeMzqtbeuBTlbQqYyV0PQPyf0ntszwzP2vbMS7b46iLKe+d23bSdjlG8uxnHQxqzBO91H9oxdGWzBO9oXRDIoSqkYBoIoKSaUWvH+vuB6nfrvjzHg7W3hcxBUdWDMc1U1cP+yqyIwIIoMV9b/f/vzL4BzuF0v+PT5szJhBY91Qyv0HKX9AX9MLhWIwDzPBE48G8B1W7spuQ0t7b3cto0MnWFAcA7X6xXjMCDEoy6nd9QOOOl7jFcw6UiwbCqVOqxcrFZv9Uh9BYyhwfOOZ6/2KN5rE+l7AKClmvc9Vut68yluUhlu9FQHuV73mlrI7BNMniuqmAhaV6A/+4oX4gD20H9ua+jgIKx2NyBRBPCHEobvnPUwCqrXqjI47k88pwnkmR+bydasTrS60wWP948POM8ESmkE6eueOztOHNSPTiCgDYfXQWkue7du8f4gNoh6Ev+Lf/m/Y9s2Hap5vL6+4nZ7xThNuF6u6kPKfTvq8zLNTPSOiSnLznukNByBPRAsjwceH9+wrRutpERB5CFhvt4I6I3KhBIyuu4f7+pPRg/RmOjp9/ryyvMFfBYYWjEyMEGH4vu+ddloKYUhOEPAkAaCTA7Yth1pIKvLvHmj9xjGqLWZDpqF7KZWW5ffCgTTOCEqYGR92uPjoydtM+Bh7rUoQNusaR5U3SWUam70gUNtqK0gl0oPussrnCfRY99XOOcxTpceomIqnrLvMDVRr2mF+926rij71nsEAQcLMSUMIWJb6SFX9x0tF/iUkIEO1g4pkSxUCd4UHQBQFRYwziMYfsB/12pVpZjrtSifhwiHw7M37xl//ONf4XohmDfNP+ngifWl+esZKPby8qIDXAZTbRuvRxoS8ZFEUsQ4jvxnifclJoJa5vnLMAvKRZeFQVfL445tW/XMIBP8p59+xGW+YL5eMEwTxpQ0aOiOn3/+E5aPO7Z1wbZuGqDJ2me+zHh5uWIYJ8wzwWfzR4cOZuEc4jAg18rnfj5UUuYlSbb/jnW5431dyGrUZF44YJwGjGPScybhEhPCMML72PfSl8sVSWXX0hoHYDmj7vxPKRllpwxXIBjmET44vHx+RUwD/p78IwL0gUGCTYTy4CeLrpIz1u2jX4eYEubrBa8jU5xbrbQKcZTaOgBeAkotWJeNwT+gIszOJQPjIbYPNv1dDeu60pvXe4anXG94+Zw64GqBJxyYaiOLo/b4u67fLtEFi05LnYpKM09RAx2KNqR2kAPcrCxN0n6OggbB6wEBKMXTJnUGzPyZaa0ePg3oBzr/IzD5rTFjrFk2twtYw2nFH7deSqss9MOaGy0EbRjs3PME2HVPgmZNn5gHYO2gH6ddnFQIoCoauwJOk+LMo0slmgKINmle2RJV5cUiVT+jsu1IdYDpuOkFIgdLSg9tKzwAdDPdWgu8+GOizY9EebQ1wcriaY1+U2QYHEwdK66dQy+oq34n3sPDs4jSGfS/t+cMgXRJnnnQWQPenzahJ5VLAQ6kTKMBPh3PUc5kfTph0RwMEAInPs2zKXAdFPPqycKCM3LUC6jnBRlTwCMvMKYeCxrpYIlNdZ2zA9xB4BFUUgeEg73Rn42GY9Jqz5MA3p5xsoAAlXDW2lmqtVZ4bfC+Z6YdBZklKdo9M9ahg4O41ptJA9dsihaC7+lftVRtNg7Pyn3PXYbkFAMhrk5ZHsHTw0vK63sg4tT78HgeW6WcmQxdS3hzMBmhMSS+L2CVSeDV1DfELiGwapomvfwsVT0ObNJsgHUplUy24YLLl3+IT3//P8c4X7FuG9r/+RcoNdMoW4CWKdVmGBAlknbtvIu6E1LOK2BIiqWbAoLgBLVkJgFrE2SAa1AW6pAiyNI4gDULeHAAsu5V9BektEpEpXyNnlXmm9lag1MQUQr3Qms2HFQi24530mS63JfUMxIKVLvW3/W+P4Fs1qpDg6r7mIF8TZuHpvJ7tANogDZU/B4Ei5pQCrTnXZm+ZEKIp3dka+o55zmOabXBBWPKGrBcOuDealWzdxCY8l6n/2ywyUTms2AJkSHwvAiO+w+HQfydPg5I/nsGKUR9W4JK8rTx9Cp37imu3sPHAT6OEJ8A3Z9bpZyfxtHVplB8ByAcQDSeRQZlt1L4bDtAquiwi+ctATj+t52sWe3anFdZLxya7uvxicnp9Z1p9h6aPEYlWEFZlEWM3e060yr6eOw5zcKcWt8f+u6t51ZvPoHuNdP97lQObuwPr8C3jR562JWoHF5BbAKZTz6w/c/y2eAeLnAxQlqBedd2Jnw15lzVc/wAiWzg0BtdZWEbUJTROsODjEaoWkCfYTiCWY7WBx04sPNUCG5ZbQAPDco52LHQmsg87yzIpEo79rSe3C792baBWCkV8AV/+tNXJlAC8PBIKSB4QS07WuX7FELEVnb6Fo0jvvzwA6Z50nS3hq+/flCi2CqmMSIlj3FiUIFzDvvGzzjPCbcbjelrKXi8b8rupfzXewO9+I7b9/XBqw+bmcLruSoEup2CS832sX7WmSexO+ohh4MpYng9ntjfgErPlTUleNrXe6V4gDU8lPqQ1gJ5TL5nz9W6boDj9XKeEv8QBw4mokdrGcuakffK59g7DEPqQ4NxGFTKpmFEZe9s/hADSq5Iqmwwb+XSGpZlVzsP+juSoUPwYFk2vvcK5peScX/smOeBNWMVXK4JHx8bSjGuojK7tX5qAnUq0JpBh4JNFfutUeYuAH768iNZqw5Y1xV0o6IyAvp+hsBGb55m7Rnom5d3vgtVLU8IWEAH19yv53nG58+fELwyXTRtlTUDP/2yHezbYRyY4EgkG62JekSiS+Gs2DTGeFZmq1kFeTv/HUMPDmmsRwiO4SHBGFRPgzsc9ZMBTQD+vT3Snke7tsa6NNm27WfsMbR+sCGwgs+dGADWGdZL2B7bhys4eihrfPnsP/lfWgACbDisp6j2X7VaHUVvRIZksEY0/13W7Aww8IEDg23dME4TnAOisjm5aDEBx5qCCc7KzFW1UPSxnw0NQpseH/Dly48Yh4HEguR1b+FzPk2a/hkHspJSgtM6N6pfctl35H3Fx9tKqaeeAawXKPEbx1EB6Ki2FQXbtuF+/8CyrNi3FdJKD8e4XF4wjCMaDr/FaZph4X+lVWzriruGOXDIIBiU0TRf1IvPeVQRpJhwvabO2A8hIUYOD4113GpG3m2QDXhPYGwcKX8k07wRiNz2zpKe5gkxkA1cm6iNwtQ/d8kZ67oQXC8VTT0uQ4gYxwsu16RnDVNlQ0yYLjeEmI76XQ67Khs+s1coWJcV+7bBicBCicS7norqvUPZVvz68cC6bl3Gv4NYwTAOxBYSgxK2ddWEW7PNAsaJg5d937Gvq/ZX7PuDD2Q/Q5jA6g/wvhSGanjv8J/9o/+0g9tSCra9ISXzrcvYyqL9SFDgbdBE2xE6F8YwTdzzhkGT5DV4QaCAXsW2PTT5dcPj/oF1XbHvKwBoMu6En376Sdl5E5VmPiDnHeu64tc//YzH4451eWBTqbV30D0q4fOnF1oXTJMOy3QI4QNaqVqnWFilSo7np2BJrbPRBNu+YckZtewo24qcdzjhIGAYR1xvn9jTOZJTpsuFe+gw0uMSZsfG53jfNk0x3+gjuGdNOl5QaiEQ+PKK68snIIU+pHUqQ7cByzAdOEfOGff1Hfu2QEAge77MSMMIFwNc8MjbDojVgIJxGOBhiih52sv5/t23RW0JCPD5EBF8xLJuqLVS0h8dhjkhtkhWYtIewAbHjp7uoZmylFOao/r4u6/fDPB5BdNsOnmYtB4eED0JV/dw58i6C+aFx64eBuAYs46+WwfDpfUC7PAgoCzIHQembhre29RKgS4RBNEJL0wK9TwlRj/kgAP4eE7oMwCGTDBtuQQKTBX9v3JMl3Lt16UbY3uVNlSTkbj++wwwPL6fUfVFwQqV8Cizh8wa+tVtO1OK6P/Fh8aKCbHzXr9PrQ1JZRjPSbYmqbXkt+8mOE8xzmyM9PM4Y9U5BbBYvtjhwkMIMF890eLaCqXexP1ZwW0TeTGpaGs6xTR5AkMDIAegK/D0sHMGengtirP+TpVbODL10hCRoh7ymkaZvEOIDikFLCpdssQ2Y6LRiu6QrPBl9Pq8mOck1G/SwXkCCwZMA+hFaj+EQ4DodzFfFjIgOcEUZXWYF58dBodc6cn/rh2gqP28Usw/T7SRcWSYGeou9Jzg8+fVX0XTU73r9w/Kgii1AsUYaiw6U0oEVO2ZV9CrZErTDHB2+t5ac1RUEu6FCWlR/TsFQG2uG/tbw2dR8rU1eFHJoCctv5SMiNg3aPPjsia3aBBK1ALdPERijMr8oCecAQ8EAChPDEr150HEax2jekY6h2EgKBp0r6vUDgLepP+87rymJm9WD9CmYI6CdARJKxACzfibsq0UGxURSKFXYW2gnBtMkEUjMCV9H1GgGWQgOecwGLs0hKMAcgrm6B7RhyL6XpNJwhghHw52ACfsyjzWP25T/A626T+vmj4aVXrtHFRaYnYKBHeMfZLz3ocM+176dNo7shedkz5csYLDzgKzfBAtDp0C/KUUVDA8lpJk16eVpdAXKFK5zwGRULJI7zA19vUBJWd4p89wK/Au6Hvi+wROnIdzEeKCFs2uP/+izZQIJ+DJJ0Qtgo9EdTLQHQQiBqS1Lv/kpNjBgc+WMc9QDpmusfQC+G5BBLkVCIKChwdwBefhlFno9F0HHKRWeoiwZetyIbiAKg1BLS4IrHAo0Sp98zrrLtrEkzJYQUVw+i4YQK1sNNv7eZC3PiU1mb8FWsGeecfvPKRwpPhCZbCNcmcOF7IyqMnMtTAKwIE7LZ4sEBzKTkZIqa3XH17rAJMpNQGyNr+KphKA8rYHSf+ZBOMOG5BSsxanXhtwO+erMvorARN9Rw+purL2dABkjUpTlk+fHmtdYmfD47HCEo69c9i2ooEBsYcYxNjoO/OJDW0pDff7inVdEQMBmmGIcBLovReDyowrWRzjiBDJaLl/PLBtnLTbOQ+hR6Ylztve7oP/rla0v2N75zPL2WqU1hhW0hl6fbsSVFT1bX0CbWwQIfWJ4fUcAsCHoIqybrVGFBHsmd5SMCBIGf9xYHBErhUtC9MHY0CIg7IpbdhREdKAnDO2bWdoQLP0cPXEQ8O6ZPVjU49qZc04CAaf+vCzATTyd643hbkwTMh7B69hGzZkDUHDKyBowkAOH3jt814wThO2lbLcgx1stbxToFplz+L6/t8aCbKHFQj3t2VbkE1No4NDaZRwj+OI60xfvFYr1nWHQYAl751ZOqSBoH3jWUfpc0JwHvM4YprGXh/kYv7SyqL2/K7TyOTR4wyQnkTv1RPPvDgBSmDZlyjoJQZIH8FBW84YnhrzpGBf71t0//JCbxjuJ+h1iX+6uhB8xx5tIt3j1hQ53C/sc1LFEIPv7CFo3SFSe8hQ60MDs1U4AgNrD/ji3+12QQ7cn5pAHM9rC/YwELHWim2npA8i8CEiOo9cS/fR5E6mydp6FvPq8qydLxeeX2Po4Xr23XNtEBewZQsg1IALZeDnQm9D1gIeLTvcXl6xbStEKoCG19fPiMOAaWIQwZDILPb+CIKsJWP5eMeyLqg2AFJQMw4JwzjjcrlgnmfKDVUdk/OOj/c3bBulgU737Jgig18iwbLWBOMwYhgYrGH977pQcmppqPZcOsf0aJ8CajbgiXvgMA79XLR+NQTWoSKCrAnCRWWm8PTddJ7sQe88WqlY7h94LIsOjz0ulwtPZ63xpVWVlqv6rjaCepmpwK0UTbxkvTYoWFr6d/EYJn7nEEdyTlrVcA6rzY59uNXKIYWqa4L2o8M0IaiUMoAy4LePD5R97+9iA9NxpzQr85IDgrzvqJnXgucFOshYSkHOZFp5ocUNQ3J4xvoYuhdmawyB4RCWIXDbumLda5cIG7CXC4csaRgwXy6q8lAWXozd23CaBibBetff61oKtoWg8v1+7wnyNryRVhFTxDTN+PGnn8jQu5A56oCuiPzbv/4bDlI05fXj/Z0y0UQw8PPnz5jmi+6/lAFL34SA9bGoXRPP3nGeMV+ugPMYB35maRU1q0R239XzkGxxI73knDUtesSn2xWlsEa6XG+YrzcM06T2H1r7au2wrwxlyRvToJte+21fUUtGawXTPOE2v2K+3iDiUUpD2TPgPa63C+KQ4OCBBtRcsD0eWDfKee1+3V4+kbXrSCyqrSIhUIWh16OfudYeV6rRXNBBnCPj3OqwWisu1yuGccS6rEjDpbP0idcpQ1v7KBIj6KlbqtVq9al+lO7l+lvWbwb47BCxgty7qLR7AipBaZe5ZPUX8KitYIgJEB4246ATHDmAM/MFM9mKbaKGnJqU0OjyNgGGAwRHoxp0mmYbC0AfihAPqjy/x/fJag7GHqp9entIZoUJLOpJ5LrsBp3CDOhhbsCfHZCl4Nlo3GQ0DiYTq72BsCLX5CNBEW6vMe32d614qrWiqJwybywSTWYZbWqpRbU1dE2bxEN2qhH1MSHbd4SgSj0YPMpcsIRaaMFdjWFm9wKi9OTa6dI+0L/MvhsABe2OawC9Vj5IT22yySDspZOmTJamxaaH80eDdMhnvJr0ozcJxJMFKTiMicBNjGRLOa+Tqm0ju8UZm+UAeXmjNWigA63tSb7Cz8Tmhd/nuZjSR6wzRJxT70jU/h7Rh4sNgDFXDal1UA8AHB4pJecuj5Wn98jkZe35sz/9Pfsd+75rEcLvZYwuSxikB1/pUw0RUUPhYwvpybmQLlsmuOYVzCRw5gKnqxDb/LSJATqzygpnvt8m72Qz6kNgYW6m2NrcOe8x+EE/jbJU3fF99Zfh8Vi0AC5kZIhwuhYSBA3RjGlr1VQ68oL2nRMZiKCJGcCrLD8YGC6ABLSqoRPS4EXl7iKo1VhzPNxSoueLJe0aQ8T3ayrItSIGwFLBBWQI2gCAwRQe6CEkdt0tcKaiNR5MdhhDpTlZQTPx1jj4vjd4z8lkb64d/QPJhCx6Px1K472PIRygvQ80ZxbzxHoCn4SBBUFZhGKgUVVGJTRkQU2o1eW1H7oGchvAyiKncALbKpImYFniLoTSJFEwMARN5hQH6D47JhqrFw1NiIGQfi0N4oHBOzJnCsNJpGY2dfa8Nwd47ndWtIQ0woWEKoBvDeIqpOTe6Hvo+QKmF3sFYZ07JplJZereAU5qn6w7HVax4A40vAclCX3wAKHESQDvFaAVm/YATRx8A2ofUADOc6gGZ6CCSp2fhj3OQA99rzzQWcdwAnH0mHT6c7udQuX7GNRPE8oEbUX91nSP5rPCvcbXqhK+g9FicvRSKr0FgwKqjsMCAt0ctLTKhE4WpwTJiu5dtVX1SmRSafV83wyw7x6AhcWXc07/bOzPr/dArofMzStb0Bg3TTf7Wlo/P58lbAYUso5StoF2yA0K0BtLT4ECkUp5oIMOfuzMEZXOmc2H1iAKInk4IHBI5KMnIFUr1j3D+wHDMOHL6wuuLzSdz7ng/stXBWU8hkiWq4gg7wUpJjyWDc7TPy2mCOf47t2/vXeQooNx9nlIM1e/tNBDDTpg2tQqpXE4cQxgFaiTpvur72cW5JDiHoCY1WxWVxx1mUmgtdjooLsF4+iP5mdpBJptnuF1/01xgIsMqhrHSZMgaYzfRLDtBDycA6YxIfqAbd3oSavgR0oRIRkQRy/Qy3VSOxLBtmVY2BhBxh2QhmmkJcC+Z6auN9EmxnyXgcs88ZkVQcn0FDWA4PGg7On2MmHfqprMF9yXvTc55scLR1mqj4dJf20mx2VQGUE+UcYH/96yc0DqtGG6phnXKz31pDWs64a3/EFmr25LrMF4X2ptuO8PSKtIGobw8nJDihFjGsi6qvw5Bg4byBaDp7RKAWJaRqDX5sZaouKDUnWCT8pWiQGu0SJoSGR4rfvWbS5SOvzS7N2kT2SA6BBAgD6sbdLgmnlH6zkmrfcUlnZvTFPrV6y2MbCSv93rP9eBMMs49T4T/Tm8F1oKoTOe/SEtt59mjaTVjGYHYOCmMf/2PfcQOfplJ9YKGq5hSijn6D+WcyHrt7CeK/uuHnsRKQSUVpBL00Gz7xLmmBKWXPFYV8yXS69JUgg6UNI+UOiD2lrDNM94ef2EaRwwzzN8jBinqYOv0Pd/fZAJtW0EVOxehxAxjAxEYDrp1O0o8r7h69uvyGXDvm+Q2jAk1qGXy0Ul4WR/Tfq7Q4zHMKo19anbVFrOM3/fM6WU4whp7LvSMMLHgBRH1mMx9P0J7qiRnaNf3poXsqXg9D2LGMYLYiSjrZSC5XFn7V4qUkrdi80Gm7Tn8JjmC8ZhRC0VpdAbrtsigYoNA0oZGKAsuVIxDAPG64w0Tjo0Fj0Hm8ozud/XpoGJKtvc1hX7xp87jIOGSGiAQslY7nesj4W9hABwARKYFp1GY2VyqFcL2ZTmvw/HIYcP7IdLzQoUkYHoAtluVSWaXsMd7F00RVqr9bsk2TTQq9R8xq+3C8ZpZLqrWlIFH5DUv30YyBx23nV7kPXOIIh1eWBdF/oM1qbPSMF8mRHThB//8Adcr1dcLjPGYewEh7zv+Prrr1iXBY+FYQ2tsS7Ie8bLyw0//fQTxsuMl5dXQIA0DH2/KplJ7XnfCXxNIy4vVwKzIWrQlQOkotWC5YP7cNlXbOtG64RlARw6q69WwTRfcPv8BcM0oWQGXHz68QYfLAlak793AoTS6Dm76/tYFNSs+kz5GDFfbxjHAcOQlOQjaI2hrcM04WWa+jBi09Tb5fFAra174E2XK/fQ1oCgA2/vMV+u3IN1iEMLd6dnSVNvYsHjroNKIQHg85dPSsaoGOcR13hljVwqLpdr78lrq4jDALMLcQCGxJ5A9MymBY9iQiqnX9cV98d/BCEbtvnHQMNtQM28vWOqZdWkUn3BvW5CDugx9QbsWQEl0uCaMWTYYHZwT57Nj21yjcNoXOhzZqCAHehW7ALaKGqBV40tAzO9P1JYTf4qIl2CBv135v9iQIH9kqKsJptY2Z+3Zqg3uvrzTILJSRgblVyLUkyhHmaAUbrJ0HK9iGg6Gax6rVpl0UCTWCB6T7p81u/nHYKQ6WJTRztIjO1E5l6GTWKhBZ2LKpPRogVQaa/3/PlBvQt4hyj30Vts4J+BfRbY4BTg2bYdw5A6KMMDbO8Tt+hib1qcXrful+ICfRefmgfnAHGeqrdIppIHWTspBgwxMkjDAVILsgh2YyV26FG/iVOmkzZyIbAoANDToHmjnRrRN02h9B20JOCAzuKzokqaQ9UQlBiCyncEZCcSPLCG0+Sex5Ra+jPlAFPT0LdgNxaA1TYqUS00MyZjk980aCKRTYu5GfF3mcwiOgJqomADi8gKkaCU/HaA7cZ+VZBC+ie0/+W6/5sB+8ZeM99GO1wtqCAp0GcG7RZaI62hNBZ/dtdYdNZ+bUQE6/JAzjsszSmmAWm4qQwkoywL1scH9m3B/fGBWgvloAYoo3VgjAWAMhtb7VNHEo00sMU8yhxTx0x24tWDrLVK8L01VDn2p9yYUGjBOFaw50y/H30kIQYBinTgn9ecT4a9Z5CDOZrzzuvRmNoaoudzwl2bIIbui2ZZcKRwGUDLfdoHsjwhoszMhiKAVCZbc5JMv8GUeG9ypjzReY+aK8QdKdCA9IK4KMtKaSFshCAYVD4CZ+wM9WIScODTdEigzZoTaHPIv+c8YOnJIbiepCqCXoQmBfpbpQTO6WDEhwjvuHdUlRtxD9BzpFa4gSmiwZOVJp6sXJ4uDi4kxDQDPkK8U0mk+gWiwYmyr6oDfEL0LLA44KERe3A40qKb7svVWMP2TgA+6Nm8k3lnQ5kGwHy29OjVc7x1P8yqXksmT5HAvafpGRZDgJcGqco+1b0Pjvub7VeADTHMg9LrDqD7gPNo7mBP2bNmgI4I6Here6gNNLyjTx50WOOkKtPvYMJHvYeif9eblB1AyRWiYSmw4YKBxrWoFy/3wdqY3igKvBEgUbapPwKM7Jy0/20SqvoEzgEahqX7bhWTfRjAV/vfY/MPBfD5HwcyvsWx2SlaY1CaW/WcLf0zmKfYc3p5LRnrY0NB0+Gnp7feCw21pQke9w3b9gamzQd4CGIcURvwWDKGIWKeBgCNoRn63CzLin3PvSE09rgNuZpIZ94YGGIDGH5PBWe873XIcw0njdYggDsGIny5OhPX3kWrjayGseGc1XUGorJ2OTyMTdFgViYGcFcFK0P0Osho3KcQMM+c1lvI1p4bHo8Ne8mY55GJ5k1Q8opcGvaNskMGUOXOYJIG7Hvpz4Eldnqtz7aNe+owRP07BcOY0ErFum5aJzo4PSONGd0aWRwcsglyJrDx8ulKQFzfz/uD0lw4U46g1zoMoLD7oee/iFoxQM8p6Uy41kQN2UfMKSKpF/e6blhk6fV8yUXPq6L17uF3m2LC7XrDZRqVEWkedk3ljIJ1WeGcwzxPSInP1ZCGfh4CwLptekbyDC65YBwHLNv2VPPag4QOOJtyoZ+lkO6XFoKH+VONQ+py0KaJ7uIP9RJ7C4JMAp6jXQ2CA1B7VhA557t6w/ZkY71bfQT9WfYScQjBPwNnvqjc5A3MAdBZsXw3VGaOPwP2tIZbtw1wXhOKS9+HnHMKXvN3x0SAeN8IaFPWaxZGwEPZQUUtX97vO6LW+z4mHSRyTyRTP+DT6ytqow+dj0fQilNwj89nhHiPz19+6J7vKRKsKyVjW1e8b5TOrssD0Ot3vd0wzZ8wjDMGld2mYUAr9C69v79jfTAgweqecRpwmSaUUugjCIdhnHC5TF2yzTOPfch9vaPslMuK0AcMIpgmJsdO1yvoN88E4VHDLBz0fPbH3iVQL7rWNIWXjDobeI8jAxxijF3a+MvPv7AWcvSlS9er1pzoddM4zSrB9VjXBW/rqkMs7fUq/d+mecb0aea5Uwq2ZUGIEZfrC/389P6YB6iROExRB2jIx54ViCr6XgTcPr3CA/AqrW25YL3TKw4AnA+AKgHgPXxKOlBi2EPZyV6ENJj/ahwGxEDP9MfHnXWOAHnd8FgeGKeJ3m8A4jCyH2rW3zn1rVM5cqs9vZjPfSETLkUEz9CGEJkqPKRB/dt9r+m3dcdH/sCWCejt245Vk5dFbSYcHG63G3746Q+YLjM97gay7FrNyHnH+9ubgoIrsvm9aa88ThOuLzfcrjekOPSkWR8tLBPY1g1ZGbXDOGAYRgWjXO9nvWcPv68P1JxR9gV532jhob7iFgbz+ukzfNKE8jSilIotZ8Rhwnx9YXCGgvatCmqueGwL6r5Ralt27Nuu+w2f8xAj5tsN0zBhHEbuaYGKolwFaRiRPL0rRRy2dcO3r98oQc4Z3hPIvNyuKl/nfamVQO0wDrqv7UgDE7MfHw8NlxpUrg8s+0YZeCKWZNdmnCZM8wTvAnKldVcu9KIumWc3wd/SGaExMYjManBj8Zn9g+3fYr0zRH/PBb91/XYPPvlergoH1FbgHCnkzptU17ybTFJpkkeTvtLHIYgyj3AEZ+hgF80ZCGCG8TbdslTSehjet0Ma4J7kL12KCgNDVIbozAQbqLBNlY36M/vJZLTeA6UqGOlVumuoPwzQIYhiiUrmz2dsAIj0xgVQNqQWHJZQ1Yt9A5JEerJogzVjOqU00AiAlNYnJmTgEOyxZsMBiC52hpzvwMkBb3VfQm1si07LDtnMAYPBHx5uOm6i3Mcdvir2nZlOyDtgP2OeZ4iwcDNvheei3A40K9779StV2StH8rIl+TgnZIs5euKNQ0RwZIx2HxZRnxVjZAFPk8iD2WmgrrObpY1CN9zHkZRqgSXGCrCACE40D285K6ysGTZ2kjWpVnM2lUvYtbZnObnUjZ3N5JjXC/3+mGeNSTuaCFwTfbu4tm178lyxIk+0weB33rYdaqEHxNhN7fO+92fFQES7Zj3MRD+4FbD0xIMWwEdTbKxAuxZkUxwJsFb4mrTGfq8P3MbsGWtNC39NrgKA+XLBUAZt6IMySk3qBoyXKy63FzgA98cHgH+uIFxArccQwfYuZ4bdzUGc62xH892Ef0oDlopaHad4YkC/vanooPQz2GJ7Zu0svyP5bkhsFqqYnFkZq7UhDvEAnKEepM5Yspoq3QR7yQhCc2Yzdc85U8biDrk+vXM4YKiV069WK7a9QkCWZK4FtUpnq1iDHIIleZc+4EiJLD/aDDD8wBoPfi3Rhp17q6W+UlaVETywFwWgAGV78N/76A+2Up+YCZxmL0W9PyF47PuOcRr6Nc+5QLwjIVilvcHxbOD+lYFASUAICSEmCBwl2zHSs8WZ16V5rDaElCBgKmATyvg8gv5ep7MdZVU5Qhb0d8xo6q3nutcimTSUMamEVgFzsiCs2XOIuhd4lbIHZW5oj9sHRVCcS+zPcxNR5o6ezSodMHDQWOX0xzOuqQH7PON9OIzKO8jnpe9ngKOs2T9ZYOglsdR22/+qsTEF/QzrIVUw5nfu/on8LNw/7PkvhT5eLCJDrz1EyJo3E2g722ozbzvpoD2b8YJaoN/LdXDO6oNme2wHOlqX5FXd0wy0JyDQnvY/A6y5j3bWoErkvLckQ/8E5KmlB+hjZ4EbZg9gw5fWBCkwsXVXQPh6ueF6u2qqa8MvP/9KQHxI3ZOWtgsZ616QUsBlnpCG0BlkNRespWDfKXEz0KNqUEnwQYevfJaDDlGNwYR2nJEMzzF/MT4rFrhlvmPfBUh5/RlOvUdFAWkImiPYx/9yR3FtDFE5gPlmrFhnf+6QTJqM176b3QMydAKmy6jMCj6f65axbjtKEaSB6oC8F9oJ2DNknsqOtSDlzaJnTELLqsiQiqygXlBp9DRG/Y7cD7Zl0WebSc4GagdPz69cGpx7tr3h9xyGyCGYAMMQ9DNDQULAiX96dk1N4zpzj/fPdRCbEjdjjvHeXS4z/dZKwbrtCMGp/DRr2Bqb85QirpeLKjwC03OVscKUUQKk+7LqO0EGG1lKI+ZphqXOd2mT1aZPz5PtX16H3gaeWxCd+RO2WiFe4EVtV3QIEENQ5jyX1aIC7R1gNcpRz5VWYCzCQ9lzDH3NeialBLNB8U6tSFrT55cJ6mROh+/OFwO6uH/yPahVgV15siVSJPZZ2QHdx6EhT1aXWJiG1cbmsQeRPsQ10NDDdfP4vOf+Xh1Ae+jnkNlROLAGS53xxEFOaWyWiwD7tiPFhBgo44Ujo8hq2qZnT1VgfLpMBHS2DV/f37Fti0p2+b1fXm749OkzG+dp7n50gMOeNwVPKLk1j2W0RkN889xzrOFutwFJU3ZZw7M/yQvZdMZobA0a4qKhQN5zsGwDbBwDMAtKM7VQ72HB+iDvBY+c++AtxoDxcsUwMvhi23Zs64aP/KHECMr/hstVWXEeuVSs245xmDDNTDyttfRkYKsNcs5Y24YU+F5ebxHbvmFdVgBO/d6YoG5sPQPCRYRei44M5aJ9fWvWzzK8wKuv4TCo92VryOvGAIl1U9CdvsmlVERNur5qWALAej9rQIaxnwdluW3bjnVZutJpXTeGi6GxzleSAF9bVSNpuvm6rdpL6LC87MqSJJifZYAPEePEPWqcxq7eqpWhEPvGxN5tW7EoqFeFqcjBB8zzjNvLCy7XC263G4aBMnKenQX7uuDx8Y51WRkQIhXLunaSxny54uXTF9yuN4yTScCdyrbZjwDo72T0PMvts0b10+31Tt6xbQbmEdA0+7UmJATEOGC8JFyuL0iJnzek1Ovx6+sLvgyjssFZh5edn3/fd+RtRy4VUgvWZYEPBOqmNGCcZsrwHSjRrfRyHaZJz90IF1y/ru/f3rrPZxoGXOYZL58/IYSAZVkAgYaWDKy3qpBJFyP9P8eJhBVpmOcJ4zAR36iV79K2I0SeRQAwvtxgwaK1MgQm+IDb7QYA2PddbbKa2kBFzNPMd8xA7z9TeVovybOkYdt3TPPc8RPrz3/LcmKnzt9x/Xf//f+AKkBwpMUbW887NQ5UijEEnd5ujbo1g6ZHtwMSclDce0JprZ2G/2x6G2LoU2KHJ7lOn8rpF3WuH9bHP2RB8l0z6LjBPl9dmzYCR/Mtgn548LCV7mfGK2qF4gHgtNb+vTAQO1QN1KEpMyd//QC3RqscpuG1cbpeSulAyvNhYU2+eYFYkWEJk+7pn0M/blMTdB+cfnzpoK1Nbr01YP64D9XA1NYMXe3m2do5HhJnyPG9taGyhrIzvrSZ4aOpqVm14l/8H/8XHh93NXnXIt+h3xvATItdL8ZjiDBpj3OcCtMMmBNJODZpJvG032sAlP096DULyjS1Z9a7Q9prU1G71s/PkH1GA/54/49/1hlY/pAk2XV4ehLJXlGg+mDwGVjGpsDhaIbs9TaQ2MIhoE2mPd/tSX4evPkKmmSE98iujUlM7Lo1OYrb7+6dHEzI52ft2XC3Xzegy/rt0KHsJfZ7E9RA2wyOo/63Uwbi8drq9dPmv+o1MgASUC+41giUOM/DSr039m3D//Q//494PB46MHDH/Vb2o3nfeNvHwHCBDkYqM8wkNvYumQm7gb7OESA0GTR/njJYvJqa24ave2LUAsdkmPZnbc+zfdABnbVgD5QzSbiCA+Z5JfqiG7v5ABSkg3HPQS2wfVIBEgcLC6gKINle+wzU2z5S+7P2vL/0I02k+7LZO20SRLjDB6qpJDqobAxPAyN7Fu162D+zoBGADba9386OHmlki3gPJ02n8tKHDlFZJFAQiwA7AOePvVFlWuIC4API9lSGugsEH1R6uOeM//V/+1+wb6u+T3wGntlNxx6m76Sg70EiR3Lh4etyPGfGzu17zNPzbCwpe7b6XurQp8rH9efm/8xq6tfyqVA5ZPHHIO/Yq4+zpu+N1vQ+/SM49PAM2+ecvk/2flvtYPcUQGfpWHBWf95x/Fn7GcY2cniSa2rjag04QQ1RA/POD/7+We4/+9jj7Cw3BoupHCCH4uFgOx1DLh6Px37dQ7YMDcTxuYwZTVl7A9AYqCXt6T1ViZ1JYmNCS68IPmEcOV3f9g3rtsA735MavYMGCPAMCcq2Symq3yVBiaJyMx983/eqsh3hzHtZ/zscgBvccV4ZE7IPdnDUSz48s6COs9Nqgn6e9HPX3ufvS+PjOkKfgeOa24vvnX0+e976k9bfge5X7B0bsmHowGCtFXtu3U82xtDPGw5/7feAJu4udBDUPobTz9qqHCCgP2pm6OfmoMf1v281Xlc4eErk6U4gBDJ00F1b02RIh72Q0dBqxb4bVI7+s+zeOGcDepWD6jspKss1lmBn84mglg1//PkvURoDaEQle1R8QGXfDKQInnUVG9AZY2IKsykdDIS3ex5DxDAMneHIo1VB7KfkctuHIYd1gr2vMRx1lJ3PNoC0IaHVIJQl2jBWGcH6zIV+Fh8M0OcQgU5m6GegwFJxTT3R7L7h2H+P+sjeAa2p9Gztn9G5Xn/1bUZra5FjP37+/f0cbSrjb4cMl0DNEQR4qI6UBax1ikl3Rf95KQXbZk2u+lX2Op3X1TyX4R0BG6+bvQjWXLDndgDGehb1s9gdA929VjTn+8ATdUfc3rrcMMZAVpoOd8ZxxDjN2nBzP8l7xrot2NZFB7hkMdk+FOOxR0K4F8WYjnPO+yerkqKgtVkAHX3vkAY+u1ordAsqvbbdA/7p/LGz7ZmBbb3GM0jTWlM/zxWtNQzD2D+jAY/OkbEOp16JkaAmPe9WMs8CVQlMAd31Wl1AW56Mfd/gnFNQ5ImVpWQQ2p0cz5doL2kDMhuasFesCj6qXZeCSevj3r9n8DrEzBmITDb2gSmrPFMpsTUQzsBC56DMqL0/23lneKMI76kNIK3XdfqctUrmZrGgKlAC3VpRNhb3Fuc95pcfEUMC0Po70Z7eAZOa9j5P/zsOEWkYuifkMI66p5AxuK2L9iUVxoiuxSy7KlNxNaAFjmeQszrW6WC5tt7jhOCV4KLKMr0mMUUOHJug6vMDcM80T9YQYrfCScNIRmQcvq8xFZgfhqHjLvZM2vtAVYZhK6H7FJoNk+g+ZyQgC7Tx3vPc0rM1bxnLeicY3Rqm+YppZnq13cei98npexdj0D1MlBByKDycQFPJiUU9/13zagxK7mhPz6+xou09PzzGD0zHP73n27Z13/P+75z1SgfwbeeqAbMigve3X/Hf/jf/NX7L+s0A37nOda5znetc5zrXuc51rnOd61znOte5znWu//+W///+I+c617nOda5znetc5zrXuc51rnOd61znOte5/mNdJ8B3rnOd61znOte5znWuc53rXOc617nOda5z/Y7XCfCd61znOte5znWuc53rXOc617nOda5znetcv+N1AnznOte5znWuc53rXOc617nOda5znetc5zrX73idAN+5znWuc53rXOc617nOda5znetc5zrXuc71O14nwHeuc53rXOc617nOda5znetc5zrXuc51rnP9jtcJ8J3rXOc617nOda5znetc5zrXuc51rnOd61y/43UCfOc617nOda5znetc5zrXuc51rnOd61znOtfveJ0A37nOda5znetc5zrXuc51rnOd61znOte5zvU7XifAd65znetc5zrXuc51rnOd61znOte5znWuc/2O1wnwnetc5zrXuc51rnOd61znOte5znWuc53rXL/jdQJ85zrXuc51rnOd61znOte5znWuc53rXOc61+94nQDfuc51rnOd61znOte5znWuc53rXOc617nO9TteJ8B3rnOd61znOte5znWuc53rXOc617nOda5z/Y7XCfCd61znOte5znWuc53rXOc617nOda5znetcv+P1/wLdlok4yAsiPAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "processing batch [2/3] with 5 frames\n", + "input of current batch:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAADRCAYAAABRqwx3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOz92a6lWZalh31rrb/f3WnNzLtwD4/IJiorMyuLTBYbiaRISIKgG4KCAD2BHkPPoQsBegJdUDcCREAgVVRVkayGmRkZkdF4uJu7W3e63f7t6nQx195mUdQNKy6EAPZwONzNjtk++/x7NXOOOeaYKsYYOeOMM84444wzzjjjjDPOOOOMM84444wzfi+h///9Bs4444wzzjjjjDPOOOOMM84444wzzjjjjH9znAm+M84444wzzjjjjDPOOOOMM84444wzzvg9xpngO+OMM84444wzzjjjjDPOOOOMM84444zfY5wJvjPOOOOMM84444wzzjjjjDPOOOOMM874PcaZ4DvjjDPOOOOMM84444wzzjjjjDPOOOOM32OcCb4zzjjjjDPOOOOMM84444wzzjjjjDPO+D3GmeA744wzzjjjjDPOOOOMM84444wzzjjjjN9jnAm+M84444wzzjjjjDPOOOOMM84444wzzvg9xpngO+OMM84444wzzjjjjDPOOOOMM84444zfY5wJvjPOOOOMM84444wzzjjjjDPOOOOMM874PcaZ4DvjjDPOOOOMM84444wzzjjjjDPOOOOM32OcCb4zzjjjjDPOOOOMM84444wzzjjjjDPO+D3GmeA744wzzjjjjDPOOOOMM84444wzzjjjjN9jnAm+M84444wzzjjjjDPOOOOMM84444wzzvg9xpngO+OMM84444wzzjjjjDPOOOOMM84444zfY2S/6wv83/+L/5Lb249QKKLKCNkcZTSF6ygzR6Yiw9CTlwWbzYamnlOWJcMwkGUZfd8zTRNRG4wxrFYrjDEMw8AwDOAdANZZMpORZRneeaZp5OJiQQge7z3eQYgBNBgjr7Xf77HWUuQFRmu01tR1zfX1NdZa3rx9ByiUUuR5DoBzjtm8oe87lFJUVYOdLJvNBq01xhgAirJgGid0et1xHOWBZhkxRvq+Z9ceiDGeXruqKhaLBcYYpmmiaRqmaWIcR/qhZ5h6uq7j6emJyTmstWilWcwWXF1dceg67u7vUUaDUoQYUEoBEGNksVjQ9x3OWfIsoy4ryizDOUeWZ4QY8d5zeXnJNE08rZ9wPlBXNT/+4gtuL68Zx5HD4UBdzchMxqHveFg/8s2335JnGZ+8eM5nn3zCMAx473l6emI2m3F9+5y2bfn6m2/Y7ndUdc319Q3ffvOSi4tLnn30CbcvvqBuFig0UavTGjr+DESIURFjBCJagTEaozW5ARMdhInoRpwfGIeOaRrJ85zgIzrL+flXv+JpvWW93TI5x25/wPmA0hrnLCFYtBZeO4SAc47/7H/7n/P3fvIPiURiiIQIKn1/eWsKfEShCUBUEaVBpX/i8X0rCGECN6CZCH6ACErDfDbDmIxxHCnL8rRGQ4yE4NBac3/3IJ+VMeRZyX7X4rxnNp8xTRMhRLRWaJOxPxwIwVM3NSEEjFIooyjzEmdl7fjgsd4TI9R1wziOvL27x4VAZgy3NzdoQMXIMHTc3tzw/Nkt6/UT2+2eabLUdU1VVQxDTwS01jjnTu+/qgq8c1jnOXQdk7U4F6jrGucddrJUdYPzjoeHR7JMnn3XtQTvQSlmdcNiMWe92TCOA3luUEqx2+0gyp6dzWbEGKmqmvX6iavrC+ZNQ9/17Pd7siJnt92jomLy8jynacKHgIseZQx93+OtI6jAi2fPWMxmWOvZ7HbcbR6JCjQa7zzGaBSKoqzpxwk3WazzRNJaVQEUpzUSAmilgUgIAW00WimcO54RBqU0ysA0WUKQPweKLDNM44TRcnZorfHen5617Ac518bJopQmxoDJNHbyKKX4d//y3+dP/vQ/oMg0ITpiVCg0KioUkbKAptG4cUJhCIDSCghyloS0zpWsZYioKJtSqYAmUBSa3BgUEZPJeziufaU0Me2pEALWevq2J7qJi8s583mFnWRdWufYHXbEdCaWZUmmM9zocc5S1QXWWsZxZBpH6romz3O22z3Wefp+OK1pO01kmSHEgFYKLz8IUUFdVUyjrAG0ph8mtDEYpVERRjsxWMfjes00TdRFwWLWsFgsMUYRQ+Dt29d8/OI5z57d0h4OeO/lDlBybsUIwzCl5xjJjKGuGpRSWOew1jEOE2VZE/HsDwdcCLx5+4Ysz9hut/TDCEphlKKqSqbJEb1ntVoRozzTLMtYr9cYYyjLnGEYcN7hvGc+n9O2LcvlHK00dVWz2WyZJssnn3zCm7dv5Q7MDH3fgYZ+GOjHEZ1naKOo64r1doMCbFpjdVWxWCwJPrBeP8p6VYqqrInAdrs93dvHdaqUOq3dD++m4zl//HqMMK8bqqai6zsAvvzij/mzv/hfAQrvA5Hj3wMIRBQxBn79i7/hv/2n/ze+/OJjfvmLn/Mf/i/+93z5R/8uUWkUJq3JiFIRpSMKRaYUGo9O78Fk8j1kzymUgjyLLJc5dhwJXvaz1pqI3LMu3QHH9xWP+yOCVooy1+SZbCMIGCX3SCTK54hCp30yTQ7nA+3hwDT2LOY1y+Ucgjut2bbvcN4xm83kztAGNzr2uwMXl0ti8Fjn6LqOsiiYL+Zstzu6fqQbBqx1VFWNc566LORzUYpxGMiLAh8DmckwWnPoO1AKH+R9ZsZA8MQQmJxlu2/ZHVrcaKmrCu89H3/8EcaodFZv8HbkT37yE7SC9tBSFAUQKaqSzWbLOE1kWYa1o8RyJiPPCpQC64KsaefIM1nfd/d36DwDBevNhsk6+XeaaKqSqioBxTD0LGZzOUuKksenR7yTfVFWOff3Dyilmc1mrFYrrLXs9jv2+wN1VVEUBVprMq1ZLJbcPzyQ5Vlar6AMbHcHHtdrbJBzP+Dpu46AxhjNMIxopTBqy8vv/ms2my3L5YLVxYJpOjCb1eSZoaoq8rzA+8g0erzTOBdpuw5QzGeXrFZXTJPFO8/QBv7s7/8j/vTv/0MeHu6x/sDj0/e03ZaiKOit5wc//Ed8+vFfUBSX5HnGbJZRlQV2jGz2PVOImCxHEbDWgoJMK/7ZP/l/8Muf/Tf8gz/9I/7VX/0t/9n/7v/I1c2X+KjQ2mBSnDmNFq0zgvfMmkLW9TFkixGF7HtjFJlWZBq0hslZuUuiTruA4+35ASJKHV9HXld2GeSZRmuI4f3ZEgI40v0EqOglDuw7WePRYTKDtxPL+QLrPLNmxr49sNvv8c5zubpkGAaMyVGAC46278hzuX+LPONqdUHbtnS97CNrLSHI+zzG+CF4YorBrbVkRY6KUFYVbT/QTxMhvg8X8sykuCxgXWC92VJWteQ3k8TTRVFweXnBfFZz/+4dm+2a+WLOX/zFn9PUFTF4vHcQYb9tcS7Q9wNKRYL39F1PUcj9GWIEBdZa9vs9+/2e+XIBSvH49CRhbQjsDwesdWilubm+5OHpW/7L//r/yn6/Y7GYydo2UJYZITqcDcSoyDLFs2fXlMWSl18/ojDkeU4/dEDE+ZGmKbi4XKF0IMaJ5XKe4l6IQc7FoiiZzSSukzM1UFaauilxLtB1I0VWobXBOkd7aKnSc5umgcurFVWdYUwkevk8tDbkeUVmSsYe7u52QAFRcfv8itVqTnfIWM0+4kdffsnFxSUEx77d0g5rfOhYr9/x8HRPVJq6vuLLz/+Cj1/8EWU+48sffkZV5Sij6QdY7x0+GHwE6z2EiNGR+7vv+cf/1X/B5vFb7u6/4+Lymv/0P/3P+Yu/+I9BZfz0pz/lxYvn3Fw/kxxCy01HlGeDUkTvCUFyGGM0SpPidrmDInI3SdYUUTGiY0Sb9IxRRKWQvxVP+dX7e1kfM5ljQnaK/TQRrSPRj2Q6cnmxYBpaIpHgI94H8rLg6VE+O2stwzQRIxwOLeM0UpQlPgTG0bI5HOiHgegj86YiN4o/+9O/x4vnN+w3W9quZ7uTOM/7FMsR8UE+1zzL0CmPDSHiY5SY0lpQCp3l+BB5+fLv+D//X/5PKBUoyoyi0JRljbMaRUHfDyf+IMQgd/CqOcWds1nDxcWK3W4rn0sA7yU2JypQke12k85Jg8nlXHAu4EaFdUhMbxRKB5bLGfP5jHEYCTFQNyXgyXOFj5bgLVluEr+gsNbhnGMcPftdS1kWDGNPlmnqOscHz2E/oI1mtZrx5Zdf8PbVlvW6o8hLsiwjyyWPGMcRYzR5bojKUpSwWNRobSBKXlGUOYvlgjev37Lf9ae7susOkGKGq6sbnBOeY78/JO7CMWvmjNPI5eWc1WUDcQIfmM1mkg94RVHUDKPi8aFlsbgCBc+eX+PcwH53wDuDChUPDw988skNi3nD1eUNJi/RKnD/+IbBdcQARbbkj378b3Nz9Tmfffpj6mpBlpd4r5gcjC4wWbA+oBRoE/n221/yz/+7/wrCge+/f8ntzS2vX73h5voj/mf/wX/Cx598zuPDE7/5+jd8/uUXQCQzOZ9+9jlF0RCVkf2V9kU8bRW50UIIp/0k9+L72FcjsWgkygWnQCl59ildwUeNi5EQJZ5UwP273/B/+M//o//Rjfk/Bb8zwedth44DmTGoMOB8y2J2QXSRzCjsIEmOzgx1XTNOowTLiSTQWlOWJZjsRJ4dH1RRFEy9EHxFXpy+FmOgLMqUDCuMKRiCRUeNzt6LEquqoshzvPcAlGV5uoy11lxdXQHqlEDleZ7IPsM0n6UEU/7sbDajKArGcWQcx5QEyd+dpumUvEzTxGQt3eGAC56yLNjv9ynYlffUti1lWaYNPPLy5Ut2+x0XVyuqqpIg2Hv5+YzGOse7+/uUqMr3NJlJ5FI8EVb7/R7rLGiFnSYiiqKsCCEy2MAwTUJyqIxhGIlR47xjnhlevXrF5eqCQ9dinaOKAR88WWbw3pNnGT/47DOW8wbvvZCyUQ74h8dHotI0zYxnL56TNxUvv/uOp90WowxvH+6526y5fXzkJ3/8Z8xmK5Blj9bmg42hPrh0AkVuhOyJARM9wY04O+DsyP6wxk4SMORFwatXbxit4/Xrt7x9fGB0RxJFwspgHTH6tH6irLkYcek5EhNhp5SQNnhyo1BablFlwBhFCBHrvRAkUZFpjdIK5wPWO3ToWS5r8qwk+BqtdCLxAodDi1KaabQUpRBAGjmEn1LynmUZ0zAyhZGyLFBW1kjXdSwWS/K8YOh7tIKiKtEotDGMY48hw3zwPK33KKXJ8wwVAt5alosZ7x4e6ceAftJcXa6oioLaNEKKTiPPnz2j70esdcQY6NqWEAMhBrIsP5HaqCgkfJQkbkZFPmWMkyUGT3A+ka+O3W5LCI66WfD4+MQwDsyahvl8znazY7fbykWZabwPVFWJcx47jXIBFQUhRra7HeM4gJJkRSGE2du7e+qqxih9Im59es/BB4auRxuDNkI83D89YrRmso6n9ZoYIibPIII2hkDEaC3rJUS5041BpYg9ynKVtao1ioDSUBSVnAdEnHWEIIe7XACeYIO8D61xzgMRZ+U1j+TY8bz68PJ4f/ZJcBZiQHl5C1rpRDYFvA9oo04EpVaaDEWeywUTVFrvQIhyscj30igVOcZ4J5KPI5ElQQsRMmMINqSficQLBnyIxKjQGoKzeNeTG81hv6PrdlRVhVYZu92Oq+srnp7WaDRucpjCsNluKfI8JSgOk+Vo5/DRs5qt2O32ZJnGZJLoWSuBS1mWTHYSYlXL56+Uou96YgQfIhgkANQ6ke7yDJx3hCAXrfeRh8cNoJnNGpSKLFcrXr15S1XXPHt2Q991GK0JwVOUJU+PTxA9WiPElTI4K+QrEbyXc7TrW/LMsNusGcaJ+WzG7rBHaUNRlgzDSJ7L51jXFUPfE4Lsg7queXh4oCxzbm5vGfoO5xxlWXJ9c0PT1Gx3O/q+l7vJOhaLRbpvSi4vLyS5VoqyToFlm0siojRKIcmvD3IeK413gWGYGMdHMmPQxkiyQUwkvpDoHlLyG34r+ZU18/5uOhKj1lp5TkS6QdGPA2VVpp9V8eJWE4Jmu4v0I7xPW2TXKaWY3Brr9jRNhckU2qgURKkT6Spr+Ph3kLOfIHsYTgSkUkjxTylyI3vdf7A/nJMKzZGYOL6T93sk/W4MOCdnDQq5nzMjyVmMGGOIAabgUcrIPTINBD9RVznWjqw3E7nRNPWMw3rD5cUF2/0OO1liiNRlzW63l0R3skyJrHHOo43DZEJKZblhZmrG0RJjINNQ5BnuSESkmEhpxTgO1HWDMTnjNGJDRCmNs5Yyz05nz7HoUFYVxuQ477l/eOTycsl81rBcLrm/e8dPf/oz/uE//HOef/QsnV0+FVtG+eydS+dP+jfCME5Y5/De45wQnA+P9/gYWJQzDm3LYrlku93RjyNZntE0tSRU1lEWJXmeo5Viv9uyaGZUdZV+hoIXz27ZbvZChJYlj4+P7Pd7yrI8FQ+cc4DETWVZYjIpBIxDT1GUmKi4vrhk17YcugNRBYw2rOZLDq2Qcy5IMaSpZxAVdVNSlRnNbCGE6WldRsqyoCoy1k8dXWsJoaQqS2bNnKqcsX3asFy84M//8id89OJTlFaYLDC5ibxQ9OuWbtgRVcab73/Js4sfUCj5XK4/+pgiD4x5IATNrpPPOkYhmXzaq1LE8PzmN78ihJF/+v/5f/Gf/KeX3Dz7CKNV2qsRU6S43Ci0CqezkyhFUI28ltb+t+4KHxK5F4/7KcoeJKYilSRKWkMgYNBpSUQ0iuACSEkVraRAHWMkRIXRCqJDBYciUOYZ3lpc8KgYUVrTdS1XVzeAQmPIVEaIgbYT4rzShrv7B+4f7lksF3z00UcURUamFXVdY0zOMNydihfTNJHnOdZa2c+J3DveO13XCTGiDVmeoyYrCaY2SXggBbv3ecOIySXv2R8Oco85S98PzOcz6maGDRILPDw88cknH5OZjIgQSFojr2EM4zgwjfL/Sil0KoxbazkcDnRdx3yxIMTI+umJQORwkFg/yzKKPKOpagiBsshYLBsgsNu1aKVYzHKKEubzJd+9fMB7KMuGqq5xkz+RtHmRM1/ckhcZh/0aHyb2ux11k1M3JdNkKUuFDx6FIi8yVhclh8Oevu/o+5HPPvuccRzoWs80DszmDdoYnPV4J3dN27bkeSnkeNtSVkv6vocYmc/mKHUskoZUUBm5ub3CWctsVuDcyDBuWS4WuNDx07/9Nctlzv3jG+pmjlLQdh3L1YLHpzVtu8FOO8Z+zc3lpawxwDuP1gatI9ZNxGDQEax3jMOex4dXjFPL9c0N/bCnzGtZ236ibbc83L+hyODFs1shg5UiqES3yUePkyAvxSs+EQAxCSI06VenuA6lUBoyo4k6EqNGblyV8qHjHztReqf4wGiDVsh9Nk04P+L9QHByN2kcwU+UVcl8sUKbjF/88hc465k1c7a7PW3f0XYSvyyXS7Q2KcaK2MkxThNNWVMUFbO65Ltvv2M5n1E3DYeuw8fAOE1SYDMKvKyvLMuJMTLYCWstMZDEErKHJiviiIgnAs4FtIroqsDonL6LBBex7oDWmv3+gDEarRXORe7ebtBGURQ57WFiudB4r9AqJ4aAsy7FaHB/f0+WZSgFVYqpjDEs5jPaw8TrV++IITJbNBRFwXK5xHtLUeZM1rHdtlRljjG5fIYqw5icx8cH+TSUoqkbjIG80Oz3ey6vFqwuGooiY73eYbKRxWLGs9sbDvuWruuIMTBOA7PZFVVd8vD4IDEdkaf1mufPLykKRdt2TJNl1syJgBla2m5HjEIid13PYT+IcGi5YL3u2G6+5erqgmEYaGZzpimm55fhXEtRlAQfqMoSlQvx2vcD42Cpygl0wWJRkuWOPM+Ypp0IYugJIfL09BaUwdqJH335b3F1dcN2t6HrH5mmHePUA5p3bx+4ufqETz7+gryAzWZNWS3IyxlRKbruQIhyD0UC96/f8NUvf8rUb1iv35CZyHqzoaxmNM2CaRrp2j373QZjFM+ur/jN11/xq1/9ksfHd/zDf/vfR+tSlDpw2kMfFrBPIqX/H7+WfSW7TKcYTYRMKWcKEqtmIe3/6JEyq+d3xe9M8NlxYOo6quUSjMIoqI1iCpFpnAhegt5MZeRlQQxDIg4UzglhMI4jEUcIHmunRIodKIuCPM/puo48z0/qJx886Ii1ijzPCCGmhxVw1uKs4+LiAmsnQvTkeUae5fKAtaLvW1arFbNZzePTmq7rqOuaoshZLpaM03i61IdxZBzGk7IQhHh0Thh26xwmz5jN5jjv+PblS+7u7ogxsrq8wAXPOE2MdqLtWja7Lc5avvjihzw8PfLmzZuTSsVOlr7rJQg3BmeErFFaM5/PeVw/EYGskIB0PpsLIeAck7UEH9BK41MgdOh6dvtDStAyfIw453j38HCqphoim+2eT198hM4Lvn75HbO6pqwqZlWBnzzaQFHmDGPP7dWVVKmcqK+KqqKsG2JUjNby3evXPG43hBTE2HS1mBh5/e5bNvtHri6fcXn5jOXigpubFzgbU2ACfS9k0moxk8DPO1S0tIcNbhyIwePsiNKKZjYjKs3ru3u++u47rPc8bNbsDgeU0alCETAmS8ouT9WUXF1cQpADKCghNz6sLSsVT0QfRCFMNBgjZJ/2IizNMpFrhOjR0RHGju6wQ4eRui4pipxhGAkh0nc9IQaKoiDPCxSKabDsdjuWqwWL2RLnHYeUeDSzGW3b4qOn64YTMT2OI5k2FFmGVgY7TZgsIzc5WV4QAymJy8DCMYmyKbA0WUZZloytqO222x3m8hKjNXUz4827t0zO8dGLF1IJd/Z0QZhME4Molrz3GKSiVhS5JMpVjVby/sqqZrKOYRzYbrZMgyUEz2++/hrrPHmWo9VA1/d466nKQt7XOJDnOe2hI0a4uJAL5fHxkXGaqJuacZTP33vPfDZn6AeCc1xfXfHu7TuyIqdqGnb7HQopJoREjC0XS3aHHeM48e2r16fDerFYsFiteLx/wDp7Is+zPCN2vQSvWc40TrJ3zPvkXgglIfLGcTiR1j4GyqJguVzQtq3sB5/+PIbMGKzzTM4SvE+6BUmmQ6pMZll2Uk5phLgLMZVuVSKqVMRoRZFrUZ5qdfrXqCh12xCxYyREIZ6CLAshv2JEa0mk3qtpJVzUKTCEDOfBBjBezlviMVGPEHzaMxFvLXbsyfQx9BSiq21bqrrm9vaZEBEm4+nxiWY2w1pHWZdoY9h3HbvtlsV8hvMebYS0K8uSYZqoa1E+xyAXYYj+fQUtkelaCVmeZwVt3+O8fH0cRrLsPclZJMK6KEuqosQZIRq10cxnDXU9o+s6/u4Xv2A2E5JPAcELEVvX1YngUolADMHjJ1GZW+dPxO1m/cR2v+Xy6poAQkpkGY+Pa5TR5EUhqu70uWeZVHTb/YHlfEGeZ5jMUC0XGKVou55pHIkhcP/uDmsty9WSxWJxSkKF8MlOxbQp3aHdoWfZzNi2BylA+IBRhjwrsJPHhYC3E4URxfxiNWcch6TWCycV+pT2Vp4XoiJOavjj8zgSfR8W1sqqTMqEkBSQQv4YFZnXEYIl+Cj7IggxItVPWfZF1hAcfP31r3Bu5J//9/9vFovnfPnDP0YrOeti1KJ4ToS+xMwKnQhArRIxr0BrISoigWmEEDVpy6UK6zENCqkAkBRJISblg6i6g09JlpafLbO8fw4A0aXX8URv8W4iz7R8kyhnyjD0xBC5vrkGFLnJ2W63iTiFoirI8pzdvuXdu3c8f3aLNsfAU9R+drtjCkJoHtXd4zQSjiqPKO9bFIyGcRipZzOiAj9K4RKt0UaIPiI0dcUwVCgteyqoiA+efdsK2ZZLgfSw33N3/8APf/i57H2V4b2jqqpEygvpOI4TdnLEo6I5CjHqvWe9XqONpqprdvsdY1o3wzicOjEW8znOWYo8Y9bMT8XSxXJJkWfkWUZPQOeGIjOUtWX/0PL27VtJUJqGy8tLlssl6/U6kSImKdEgM6KcybMcjWI+m+G8w2SacejIiwqrHV3bcdjv5Jz2Hq8C+31LlmXsdnvqJidTmq7vqMsjmRiwdmDeLIW4MwWLxRKlPIvlDO9H5ouaH/3oSz7++Bm7/R27tuf+4TUmMykuEaKta/foeM9+8z1ZCPzgB5+T44nOUWY5q2XN6Aasi8QQyLSoeIZ+x9XFEpPlPK7X9P3AbFZwdTGnMPDy5VdY7/nyiy+FoFOGqIwoi0hxhUJYcJU6SpTcP8eiig8qFUI/VLyC0kkNgezBQJA9l8i+KOUy6ZrQGqOUKL7SfROVnBvBO+oygwBBSWxb1RXWOZbzOXmWYa1js90RQ4rzFLx6Lerp3f47rPPsdjtG62hmc/7wxz8iyxRFUdIe+pOaWWtFXhRyzwQp/uWJKBdFsmIcLdM4kpUVznt88GiTpWcSsS6IiMB7ShSL+Ry0Ji9ziqokywu8FwJkGuX7VtWMtj3w07/9OYdDx49/9AVKRQyK+WJOlhVsNztUVDR1LXmEtWinGcaRt2/fYoxhvlhg8ozHx0fQSorI44jJMpqqYtbMJB8wmm0b6bsRaychFErNbFYQgmezbpkvKrIs5/JySd933N8dcN4wjR5tFE1TMg4d2902FeQMbdtR1QUxRu7vHyRfcpJbDEOP1kjM2lse7p/SXp7R95b1+o75fIHWmjwvyHNF3w8UuabvB66vVxChrmeoGFKB1zJNnroO2BHq2hAZyEuFyR0RS9Qbvv72X/HXf/3fkpmCL7/4Ac8/+ojV6pa221OU8N2br9FZQEfP0O9QeMq8kOKJMhA1/TQSfUxhkEWbnMwE/uV//894fPgGZ3dsBkddz7GTqLf79sC7t+8gOooy4+W3X/H8+QvKaoZGi6hAy17KDEJYIIUsEUKI0u9IhsuOFNJXa4VBxAk6CkUeAsRwJMxTiBelcE0SNqBTERuPjoHAiAs9mQ545SiKCqUCzjuUy1hvt3z77Xe8fXfH82cvePfuJYdWVHuLxZwmFfDHYZRCp/dMdkSKIZ7RjhSFxDibzZZnt9e0XUuInixPAhbncdaTFXkiNOMp9rCpyJnnWVLawzhZpnEgeiH7TKao64KiqFF4ejeehDjOQZYJUX/M7Y3RXF9fcjgcaNsDzjqaumbXHSAq8rxkv9/KvWok1nNuSnmAS6/tMEbhlQccq4sli2XDfr/FeU9Zyv3k/JRik6M62XN1dcXbd3cMvaU7WObzmvmi5sVHl+Q5oBS73YHZfEZVFVxdXXI4tOy2A7v9SHBIHoiIb0TBGVguFxA902R58fELrB04HFq8h6EfWCxrVDpTFCP7fSdnuIscdgNuCuwOB6wL7LYHmmaHD0EEVC5ivWOahlPenWcZWkmBL89znHdCeDY5IbQoJUKncezRWnH77GM++eRjtrsDb1/f8/XLX1NUmn58Yrd/R9s9gYrEmHF52XB3/w2b7Q/Ic8NhH/niiz8lRLBu4q//+l/x7u4dy8WS5WrBy5e/5u7uW64uSt686RmHiapZ8PFHn/OTv/cTLq9WvHz5FXlWcn19Sd0UvHn7HVdXC0IYefXqW774/Cd4OBV1PsSHMe77vfXh15MIQ+sTSRhjSBJch1KGwpgkkJA8RUVF9j+Wu/9Pxu9M8BW5tEmM4ySXYJ5Jpbco6Ftpvanrhr4fTkEqSPIpD8VgTIYNFuc8WZYnhVuREnP5PuM4npJd2URjCs71SR0nLUs2BebSZhejASJZJglOlmWnqu2r16/Zf9BKEmOkH3q89/R9Lww9irIsTxXso4rmw8C9rhu6vuPly5c8PT2dVHjDOHJ5eXmS3h+rx0opvn/1PW3bYq2lrCqWqxVlkaWf07DZ7dKmj3TjgM4zlP7tNriubbm8vCSEQOEcu93uA1WBHPDRByYfUNG+10J8IHHwROI0st7t+Ku//Vts8FR1jVKKtpPDerPdsu8ORCKXV9dMw8iQSMl6LsH1/cMTm92WXdfio8jJRQnlE6EgNEE3tPRvXvLy22/47JMfpmrBwKyZYZ3lafNI37XUdUXXHqjLghAsY3/germkyA0fv3ghSYJz/Oqrb/jNd9/R9j3DKAqBLKm9tBbViVGwXC2JStQUGuTZe0fZ1ASEjEkPBZ0Swskn9j0qiKlCjyIEaQUMVhQwGrBjixt7mrLAWUtPYBg65osl++2Bi4sVfTcyTZY+DMzmM/aHDSgYJyGNrJ1QWkvrVJmhByF0yqpgmqQNUCHVf+ukBcMkxUyW5/T9QJkXOBfw0eF9JMukcp5lBhc8fpTW3RijJFnjhPeBm+trvHfM5wve3T2QZRk/+OwTDvu9HGD/mmLJpMRfYwhZQGuVAg5RLLXtgegD93d3YAxlWdDvOoqyBmOx00itK6lIp01ujOLy6gLnPPvDjpuba2bNjLdv35HnObfPn3F5eUnfSyv74XBg6CcJJmY1VV0yv1gmpZbi6upCFHR7Tew7iqJkHCXYMFkmxYco1b6uG3A+ilLJO2nDCtI2FrxIvHxMkrkoytBIINNHxZC0DcSg0Do7nRX9OFBOZVJm1cRuYLQTKkp7ZQhBaD0l7d9HxacQqpns16NiQst6LLRhHI9KP0VVlCdCjyP5FwNHi9V4lNmlCm5E4dN7JlWNYiSpElLgh6z5gBJeI76/xLTmdFGBTi0hoEMkYjGIqgIC3nM6dyORXOdUZcVmuyHLcsqyIoTA43pN08y4f3hks9mSG0NV/4BZ06C1WCXEpaa/u0+KJghBpZbD8X2gpDUahQ+Roe+pqkhVVRy6Lj0jLZVg5/HIe2uqkkPfkxVSxNDGsG9byqqgrktMlqGN4XGz5eb2VqrCRhSPRZ4zn88TeSXBV5ZJIuiDKGdUVLSHlrbvuLq+ZnKOzW5PXhRyZicK9erykhik1fj57S12mpjGifl8Rp5niRAWQn+xXND3A9vt9kRuXF1dcXFxcQpglVLSfqjkXnbWoSJkyrBoZnLuhcChP2BSe0vf94SkpIoxgpa9vdls0Iks1EqCcpUSriQ8kOLSB+rTmApKR4WLkJZZUtkgyn5tUDqRK0Ri8KhoaGpNO3iGQSwTtJKqtvMTs6Zk1izouh3b7YZPPv1jnl8vyXXk8fEtr159z5/92b8FZCciXBKk1CYYhexAqRNR/2EbcQxRFAfxvaIVOK0fiQES2ZAobB9SKy/yeSt11B5BTGy6jhpDhGgxKsgeDfKsi7yAALN6Loq0LOdpvcY5T1VJ58PLl99SlBWb7Y7tbk9wjqqu+eSj55RlLnskh92+g2hRmJSIGOzkRJF86hkUXdN6u6UqSvKqOj2DmO5CrSRx8kkp7aYJnQXqqqLbiBrOBU83DCzmM+bLFc4HnjZ7rncdlxdLQFStEsMNlEXBMEisZzB4JQR+kUunw2a7gaQ03aXWwT7ZtRzjrVnd4L0Va4NpYn/YCmlXH1uZxb4kT3FhlmWUVcViuRAVa1lyfXXFfDbn0B4IQYiXWdPgnRPrCG0oixI72XTKRW6ur+iGnsuLFdvdgWmSljOlNUPfs1ou2W73OCtFlhigyCu0CVxc1KgYU+uVR2EYxpEYPCaDPAeTabI8MLk9Lk78zc/+G/7xP95xcbnk009fIG3GKyLyujZ0ZDmYzNL3T9xcPid4T/CiRrdWknGdWmYVsna1ctzdfcW7+5cUZcnzZz/ml7/8FWVR0Xd7tDLcvXuFzgwxfCp7PPq0aN6v+xAhapXI4kj00s5HIvhCKpIduUCt36vNVYSg0v5JLbyoKNdRen05U5ScoQj5q4io6CAGop8wqmRxdUlwlmA9NgRWZcXQ9Tw9beUM8kHWUd/TDT1FWUlcmJVMfiIvaiKGt2/vWC0XfPHFZ7Rdi3MpZg7SOqWVFhVjuvryLCM4f1K0VnVStDmXzkRNDIGgQCuDiiSVqiigyyKnrCs5D5U6tdJtdztWy2WyWnFY67Eu8ObtW25urlguGrRGCtcamqZmmkZ8CAzTyDiNfPvddzxtHsnzguvrK3x0bNc7RjsBMAyyF2ezGVVVU6Tcarlc8PpdZBwsIcKXX36CyQN912JtQOuCaRp4/uIKax27uz128ozjRJaVxODp+xZtFFVVUdcleW54fLonBLi9vaYsC2LU3N8/cXm5wmiYzRqmKWAnxIIjKDZr2f+Hfcth5zjmz3mekeWi6JvGiXEaiWpibmpIVh1d1+JcTLlXxeqyQmkpuB4OTzg34H3g8nJJU9d0B89uO/L3/+SHlFWDMZpXb7+jPTxQ1Q2bzZZgDT/8/CdkOez3O3RvaZolMRrawwa0ERI3K/j1r/+Ww+4d9+++RinHMDryrJHC92gZh5Z2t2W/21KXOT//+d/y+vtv+MOf/H0uL55L7hePNHgqlKrIUf187LAI6ZaRM0+KxNJ18f6ch6OlECgvv6li2muR0/6MQfKGECaCbTHKEezAYjVncXvF/tAyTRNZUeJ94LBvWW93+KD4zcvvGdqOSOTzzz8TBeThgLq4IBJxbmSaRlEyJ2sYl3LW6uoiqb3EQsc7T5FLB48yGVlQBCfnj5BFIjoo8rS/QiAqyHWGU05sL6YJpUSNlhc5TT3DTjtpU00kodayD0IINLMSk0eqOqcoIwtdYN2INg4XOrRxLOYLjAHdBfJCU5Qaaz15biTuyzXT5AhBkxeGZVNxdbUkyw1dt2GyHcZkZJlm9I6mKUGJqCnLDVU1Yz6fM02eQ9YxjY6um7isZlxeLtjvd9KKHDVd23FzsyLLj/ZiIkoyWsQWd3fvTsVd6UwUS4H9vmMcV+S5pihyptFTFBlXV1co5dlstmy3LVqXKBRVWTJNE7e3z7m4uKSqpAA8DnKPuSyyWq5YrWaM04ALniK/SLxGwerqEqMzHh7WwolMvZzhWhODYhwcPjiaZk+2VCxXOU3zgsk/8auv/yVFDs6PoJNtTFlSVhV9t+GnP/8nXF58w49/+O9grcTF1o7MmhI7Hfj88z/gzZtXfPTRJd3hNYu57L31045/7yd/zsXFFTFa/vF/8//Ee88Xn3/Jzfw5/8Nf/TNmc0VmFF999Ssurj5JyvF4yqX+NY7vt9R8gvdtvMeuU6JOsaWQwaRc2WjQKJQK+OAIPnXA+YnfFb8zwae1ZrVaAdIG0zQNwXvyqpEDIwSCh77vyfOcqBRZlp9Iqg/b0I4VsZOnhTG4yZ68qKT6K7JQk+XSChiFrKlr8WQ4svvH1pKiKCiLkvlsRt+LP4X3nrZtMcacEqJD8lcSJV+JQirYMYicdbvdJc8XTp5Dx7ajaZr42c9+JgqK5ZLlcsnj4yO3z59xsbqg73tWqxXDMHB1dcUwDDw8PFDXNd57rq4uqcqKaRrY7/dMzsqzsqJ6Or7fSDzJ/OUw5uQNuFhIhUsn5VxM/l4o8ZIi8sECfb8glVJ4Ik/7Lfv2QJnldG1HjJ7ZbMabt295WD/hYsB3B372y1/grMMHT103ElyME4e2xzppkTi2IJICm2PCEFNiJS0a8P2rb3h39wptRK4aQsSl9i2jjSi1EqFQFznTOFBlGRerFZvNhsM48suvf8OmbRnHiZjUUUfSq2lqpkHUXVorZrWoUHJl+Pzzz/n1b74SQjcE3AeUu3IxJWgpeNVg1VF5pYjaEKNGx4BWHsJE8E5aeon4VChzwdO3LauLFUVeMg42EUw++SgamllDP/S8u7/nYrVKqie5bMuiwo4BYz7YG1ph3XhKQE/tuNaR57kEnXlkdKmF3AdJmvNckp48k8TFRpbzBTEGDoc9ZSVKjNl8xjAM/Obrl8zncz7+6LlUFRIZNTR12p/S0iTEtwTQk5WgMATxx3h8eMRay2qxkHaH5ZL1dot3A2VeMqtrqXRrhTGGvChwk2OyE599+inHlr9ntzc8rTcE55mGkaeHR3b7HbNmxnK5JHqblBA6ETImqbikTbVre+qyYhhHgkqty9qANoxuTAo28eibz+fMZoZ+HEWFl86jECPTOJDnhaxrLb5zx1aJPM+IPuKSCllrnVrhHIdDi1aaafKiXk4koZYMBqK0Gaqk/Du16iYi9uj9KW1kqd0xtc5HNGhRnuSZgXD0oVMEfwwOlSREBEJUkHzAjue3Uu8DQgkbVVL6vA8AUSQaSqWfX79XAynQAYwOODtxdbnETTld354UEEVZ0dQNwzjy8Pgk62Wy5EXFt999R54XPK3f0o8T/WAZGXnabHl2e8N83rwnj6Ioao/6Y++FtBKvMZdI20g/DGy3G54/e060U1IIiRKDpPY7Sue1ikRvyXOxLKjrmkikH0fqpmY2XxAjrNc7vn/1lo9fPJMWMYRA67oeoxV9N2C0KAd9CBiV44Nls1vTdi3NvGGYJg5th/WezcNDSrgVTVXjJima9N6y3YovYFlWlFWJMYkkyjIhHLOMrCiIqcDV1DXPbm/RSotlApHlcikfcpQzd9ZUWC2J5rxpqOqKLDOMbsl2t2ffDXIXe0dTSVGrLEqmcWByDozBuUgISdVihEDzMQgBlO5ElVTRx1b+D/34nBNVrzGZkKImUJaJEPVBkjLrmKKsSa1EoSqqVsu33/0dr77/OVpHPvv0R+x3PWUxY7/fslrc8u7da9puyzDsmc9WHD0zDZqojgUuUZTKfQTOh9S6Lc9JxBhHIkOSKiH3jjuDE9EhAr8U3JE0rzEpBUkK29Smb2IkU4FpHLm6ugBqhr5jHEdCVNR1Q568QttujfOecZI2//v7J/KyZBgcLgo54Xxgvd1xcbHk5vYaFaEdhKCNkRO554/WCogyzVrLZN1pn4consGjc6CktY8YmOyU2pAU1jtWq2VSWSmKskBnBusswzAyb2Y4H2maOfcPj6zXG/7y3/qHLOY1SkHTNCgU+90OhXjSlnmFTefl7rDj7f1b6qomzwsmaxlHieOGvk/ekxLHEcTrUms5E1erlcRAs7kQFdGflNneeoILhOBZLJaJKBzJM2m7suPErJIi35HcrsqKZlanQtnEvGlABTnbE/ldlqWor0XyiTbZSRk5TULg1E3God0zn5eM0VPkGdZNbLdbQFNXc/K8YllVFHkkzw1dtycykeeW9nBAZxm7bUf5oyU//tEf0PcDw3igHR7ZbrZorXn37nueXX4uCm+dsd215GUJUTP5CU0g11rU20px//iOX/78vwd6+mFLUxfEmBGDwrmBp8fXeD9SlA37/RqtDJeXN+nMPSJwrCdJnSgQk9+lT2pMjU51oLQHtRKle9qDUkCKRzpPFEpKWqBCFHWpQiVlcESFSHATzg3EMEGItPsJP/VSaJ/NWNUL3r67482bd9xe37DbbDl0LV3XM02WZ8+eEWLEOVHddcMIaPK8ZNbUvHv7luvrCzKt8NHhomNyE1pn0uYcjoyIOnn8ii2GIXp3Uk7nZYEKcs6o+N6bVKX7uCpLrHFkRtpoCeI5FoJYhKw3WzJj6LoukRWinP7N1y/5B3/29yDd28vlHJawWM15++4do5149/iOp90TaE1RVUzWsd6ssYk8IYoCcTFfUtcVZVXhrSU3mRTqtBZVLYH1ekuInu12i0LRdiOff/EitcgWLBYLDrsNujYUhajZH54ekrjCo7SnrJZJuWrxfqKoMoZ+oChFLbtczemHjrYTNfo0WRbzJV3Xs1xecLESNfMwDNzf3zOMkhs2TcV8MScET9eNVFWGMVDUDRf5BTFKq6GPDut6jM7xRlo3nYOqrKnqgouLmu7gaPctr979TN7P+MjoHlF6IsaMi4sZhInXb39JVRe4qeKLL/6cgMYHy7/8l/+Crm8pq5KmqfnFL/6GTHdUZcarV+9QuuD58xs+/fQLfvDFp3z9za9QGP7oD/+A+bxmsi3rV2958fFz5vWcspx9sNeSnyxJaYd49Rl0um9iiiMkvjlGRymKE/sKLXs/6oxw7CIJSY2bCsKKANExDgdy46iqjKuLW+q6Tv73BU/rDYeulRZcuVHo+r0Uq7Vm3lQsl0ucmxj6luAt3oo/6WI+JypN23diJRVJKrgg+ZIVEq9IrbgudfoUheHQ7iEVCpXOKHJOVh8mM0KaTxPRB+oU15hM03eO7vCIyZJKW5tTh01Z1RijadsD2ig+/uQykW6K2WLGOE6iMlWGLItEJlCB1UXN6qJCG839/QP90FFWudhZuUDwkdXFPCnuInVVcmgPXF6ukne9xWSACqnw3zCb11g78vDwQFVVXF3eJLJtTZYZ3r55oOt7ORP6kY8/fi6q9mFgNpux33W8eHFFnpd0bU/bDvT9KJ7WVcYwHpgtSj65uCYEn/wcpYW16zvGsSPLFdc3lzTNjGkMPDxsOLRb9vuO3X7H1eUV19fXlEVFDBMxSqvtKXFAhADjkKwMDh1VVeGseOXbEMl0jlaax8c1MUj3wGR7rq+vpSAepWvSWkvbBbIcqqqgmc/Y7/d4LJPrcXHEBs2hywhhFNJ998S7h7dsNm/JjONnP/1XNE3J6zff8nD3hqmfs5wvcVNktVxyf/+aN29+QwyWTCumccP9fcfLl99QlAXBG5arj3n+/BMRmp3y7cj7+bQfVIDTgwgnqfrxt6Sr8rjfJMeTPOxoD+bcRPQOZwdUDIzjwNDt+V3xOxN8ykh7ip0miqIgyzMma/HRgYY8yxnHiaIsT608R6+7rutOgb9RCjtOqcVHBkNIQiMBb17kHA4HtBYvDYIcaNaJUsUlQ86yyrm9XZ7a/YZhOCXJMUYOh4P05mslLZZKMQwjTd2I3511jINlmmTx7g4dXdejlKIfRyEPfDiRT0VR8P3r71lerKSibR1d33N5fUVT1fzqV7+krmq8c4yDJIAPTw8k4TRCI4lMPVjPi9sX7A8HMJq7xwcZ6KDE08ElPw5NqmoqcN7irWeYekwmH+cxYT8ZjR+z9LQ2j00Wx7YtiEke6nEh8vW7N5RFzmzWsF6vsT4QlcK6gPOj6LRCZNjteNxsQCHBmJRoJWlAPMiO30c+5vc+XwFhsd2YTJ9NhnX2lHjbOOGCl2p6jNgpkyEHMfD9472sD6XZbPdMTqoJ0i7hmOUZi/kiJZAaozMWixlllpFpyMuSSKCqRYGgkGo7pEeU2g+lEqbQQdq4lEqEaXrIKkhbVJErVDRYPzGOE1Xd4F2gqhuRkJuc3XaHCxGT2vK+/f4VRVFwePWKzWZ3arH+7NMX1FVJXVXMKsPQT4yTlWDYixLPWlHQHeXCx/PksG/xVcWsaZgOQowrOLU1HVFkWVIOGPb7lqIUkiIvcrJigcnEQ+bhac3zF8/F0NdoMpOIrFiT53Lxbbc7iiLHR8exYS1Ex+PjEz4Elpcr9u2BcZpwXhRxKsp7qKqKaRyZX11RVTJ4RyvF5WolprLDSJnnZFqqtevthkN74LA/cHFxwXK5pCwKNpu9JIBVhVGaXBls8rwriopFM2Ou4fW7dwTvMdrQzOdsdzuUkQE5cZTvvd1syIsMtEreHhnWtuhck6V9ZYwWIjpEUT5pkeUf25NEkSTemUdiHR1FZQBCRHtHWRboqJOiQ58Scnjvu/c/Om+VOg04QQmp6eyIIqDT4I9jdUnrpDRN6zmJp2XtiuV/IioTmRJFJaWVwsVI1B94tMSjx1lER3UygpU364jBMroeFRyH/Za6EuPs+uaGiGIYLd9894q6KhnHicl5uq6j7weWF0vs5MjykjA40Dkx+kSoveGPf/KH7A8Hhmkg6Ii1Pt0NMkhEo0BHssLgPYz9RFHkXF5dSVI+iZGyAoIXfxpU+rmjJNbXlxcy3CY3orBUisOh5XK1wvtAUVY8Pjzy9PhEkf8F11cXKCJ5VdLMGg6HA1meUWXSZjz5ibbreP32NcRIPW/ITM7TZksE8djzXgYvzWbkWZ48PyVxXC6XZFnGfDY/+S75KOSZ9x5nHfP5jIgYHhd5Tl3VrJ+exIw9iu+Qt7LO6kKMrp138hlMIy445osZTZxRlg327duUIEh7sk1eO0qB8p5pcskmo8K6KamDRHGaScSaPEVEOSx3+zG5jSdHYaM0wTq8d0ISOE9mNF03st9baQGNoprKjCfEguAD07Tl1Xd/zWH/DqUm1utHFBo7Wvw0sX68YxqkbXkaer6+f8uPvvwxxAylZPgMJD4uKY2k7UO0EMSj2kYl1bkQlSAeY6iULEWdWtxFCRFjSOplUSKZxNvrpFqPCIEco2V0A8Fbdts1ZZGhteLm5hplMnb7A7/+5hsulxd0XccwjnT9QNt1PH/+gmHsQUe8h8kHjCkZRsvLb7/n9tkNRsMw9vjok4+LKBV8ahdEKfIix3o5Q4JSlFWFDBCRezYSUvFKnQqtUriRtrfZTJK0GALjMKIVbDc7FrO5eDaFwGQ9znm+/vZb/vgPf0yRS1KV5RnNTNQw3nl8JsN2fvP11+zbPZeXl5giY7Qjm82OPM+lXV4JIVKVFU1VE4NnvpizPyR1uQ9cLC+EZPZSHD16xvrgWcwX4vGz2ZyI577vk7JVBqDZYSQvpEvCOscwjig0y9Xi5EPcdh139+/Y7vY0zRydZRKTGrECGQYhkXY7UVegRMWvtaNuKlRpaOYVeZEl77AOHTS5yhinPVDL8BU3cXm54PLLS4Krefd2zc9+9ldcXi0oK42Lj+zb77H2gDENRhse129x7HBxz927A89ffC5KkXHk5bffcnF5TXCKfuj4m5/+M/puzWb9Fq00+8OO1eUKFyx26iVBPOy5urrg3dtXfP/qFX//T/6cTz7+HKENUnPgMY/RSpSpJKsTI23nx3b4o8JdxaMKKSTiXB8FRrLn+OCOSorxEKQll0Q+6GjBj7KmkHhE4mAvxaOnNb/4xa8oqwbr7lg/PjKOE/P5nPlcBrG0XZvivYj3Dh8iDTU+Rpqi4OHhgR9+/gMe7h/S4D65K6J3RB/EGzbdre3QEaNKsV5F0zSSc/hEXYYUv0+jEMbOU5SFxN5GiLTdfifdRy61WGY5k/fkeUFRVWAMfdcmJaLlcGi5ulyl/EUUhnmeY/KM1y+/4eHxCW3ETuTxaX1STx/v8bqumTcz6rqWwoUy2GHk0LapDV7x6WfP8GGSzgbr0apAqcDl5YzLiwue1g+JUHOsLhq0yvE+0LWWvve0fc98IQom6yY++viGvND4OJ2SZOcsITomO7BczKnKJvlR6tP5dzgcyIuCH37xQ0DIm7btiVr2btPUgLT9930PRMbJMp8vUMcBj3khBvY+Mk0WrXJ2ux3TNPD5F59R1TmLC01eG+7Xv6SzNXmuiExoAxCYzSrGMfDm7hccuif+4Mt/hHMTmS4ZxoHVxZz94YEfffklv/n611zfzPBTpO8U6/WOj158zo9+9Adorfjm5S/4/tvveP78U7JC8c3LAz50rC4q/vk//yf8b/7XH1FUM1SK2Y7dbqf99iHPnvbOsXHrqHZ9P9ImFWA1YiGhP7iT0+aMUXwKjYbgJ5xtmdUVRS5er0YbnPG0B3m+88WMru8YWsnfLy8ucc6xPexYrlbSyZcZmqZGp2FsWom1RaY1ZV6mDqKBImtOvrxZlqOU2AI5L8XCPM8pyoKGGeM0SZdSXRGi5OBaQ1E07Pd7XMqL3luTlBwOlmGwmNQCXlcZ1g6nwn1eZNL9Uwrn0A/H4q/kgcvkez6fV2w2O2J0KB0pyoKiKBjGhqEfpbiOxgbHbD6nLAomO9K1A7ttS0Tadvu+YzafJaWdZhwHxnFAKSjKjLpu2O8PKAV1kzNfPGOaRp7WLUbnRAKrVUOea6bkQb3bbQBPPw4oHahnouZ//eZOYr+64IdffsLd/VuGseXqapVUxJJv3NxcEhEPYRDLlO32kGI7z6effsRms2V/2JM/FSilybKCGCRnabuOgOH6Zslut2EaD8laqadthTsZJkvmPb0bKIqS9WZLXS25vLylKEUUstvtaJpZsrASkcb+sGaaRqpUcJZ9vifGwGQzjO7Y7u/45uVf03Y9Qz/w4sWC5SpjGj3b9RpCYLPesn3aoFB8/PFH7HaPONdxeblgt3tkaA+8eTvgY6Rt98S95odf/An/0X/8v2Q2vxR+SaVOprTvVBJqHEm+KIsmxZPqxLX404YVoVVMeRaRJAgKqCC2Rt6OjENH37cMafjc74LfneBLJt0yaECMnrMYZRrU1SV9P0hikYYeHCWxx7adYytQDBGXvIfE48IQgken9gqloKpr+r5n+7QjolgtlyiELPA+kGWGy8ur5Pcii3cYRLq+Xq9PB4lSosBybpSpZlkm1WpyylIzjRPDMNC2orjJC7m8+rEnjuKNlec5dVnx6u0birLg+vqa/X7P3f0dZVlyc3vD3f09mZF2vcxkTKP48CmlMHnGYj7n9uZG/Fq2O/Isx06Wpq4ZpkmqzEmRN05i5jq6iUJnPLu9pWsPMl2YjMk54tHIMalxvP/QUyumBYUE+olkPZEKaTG6I9PlLON2iwsBnecnktQn9YNKChalZSMGpL1KfLB8Mkh+rxR0zp9IJgncEMZeKbwTxYHW74esWDdJEKhUmjrmiONAiJFxN+GsPV14wYtZpTFZqhIePbnE867IJEn7/vvvMFozXy7Y7Hfsu/Z9kKSOUtq0Yd/zoZIIKJO8MJJRdAwoZSE4tC5YXKyYBvn8rPU0y1mS9m84tAPeO5yT1uX75IE4OUc3WLKipusn9oeOfdvx7NkzMq2SN5U7Ve2MkXWulAz2yHUmlTPv8BHatkNFLWon54WkSmpGa520dBClxSEzUlFPSWAIkb6XKYZNM8MH2B86vv7mO37w6cfkmbQFlHXNOO5QSpSzx7Y7nZilcZrYbLf44GnmM7b7PZN1tKmKnuU5uTE0VZ28eQLTNDAMomR5dvuMLJcqT5GqQ3mWi/IwDUbJLi548fy5JIDrDUQlU3ZDSGo8TdM02MkTfRSFhwEfHP040Q2TtH+NI9oYyjyjqRtijHTt4fQ8YvQYE8mLkhADEYtGpWBcWt5QJrWDi0FxDBEXvZxzMSZSKVIUEmUF55LiQ52mWkv7jzyLvh9ToKNSRXyERIajJLkwShG8E+VZ8ARvgYCKHuJvk7lGH9up5PJRWhOVQkWdSDqZNKV47wEYAR2P4w3etzZG4qnFSjKkiCESgyW6Ee0l0PbOMgzi0aWzknFy/Oznv+Di8op+8lIFPshzLguZoOuVVHHHYWS0ltV8QTOr2R0O3D88MKtFZXNU6SlO/Iz4sbpJPMTS2RSJp7bZoiglcAzJGDu1kcZIOpuNDLsoSpTKmMYRrRV2mETBcGyr8gGtMr5++R3zxZyqyNDaUDU12mh2u72QXirw3avvefX6NVprbp/d4rzj6Wkjyo9xJHjHvKmZz+ZUZYUislwu6Pr+1Eq5Wl4QvZeKrzFodJr4NlJVNdYF9rsdRus0+Gk6BbfDMJAVGSb5coo6JDJbLKjLAtUpBmt59eY12+2WZ88+om0PjNZiTMZms0UbIeaccwxW2mLqZN8QoiHaCesDdd2QmYwxWuI0yQTpVDg6nudS3JE2ZJvOiCJvmM0avHc0s5movYPGeyFqfvbTv+by4gJrNWXd8M/+u/+ScXzg8f61DMPwA4vlPE2nHNlt1wx9R1M1eD/yP/yrf0rf7fiTn/wDlMkhtRkep5Gr1F6YbirZnyrVZiN43puXn3zPCChlxJogCmkRPrhbTwQFcg9Ky24gRkdwIzqpBLUSSxFvAyYvOHRbfv7zX7JcXbBte7brDfvDjqqqmc8W6X6U83scJybrmFU1VTWjqg3fffeKL7/8gizPmZz4EOuoiPh0V8nz78ch+YPFdM5A8DIMTKamauxkU3ulqJOIUObSNqy0YX/o8S7IfjCKIvnNWTsyDFLIKYqch8c16+2OZzdXoKRVvmlmNLM5d3f39NPAm7dvaDtRA2lt2O72dIcD3kX62KMRZdZivpDWPhfE3wcoTMbs6ho7TYQ0yT07KZvlvDrs9+RZxvXNtQwsiKDUjP7QMo5j8v86ToK2ZCb5BfWeyVpuK1F8dX3H96++p5pJG2ZUyORuo2VSZJGTZVkqvshd1cwN/bAmRPEh3O0G6qamyIVUncaRsqjx3uJdGiQR4PFxTYiOq+sVi3nBJz+QAsjrt39H3WgCA4GerBB12+LmEh8P/OKrf8rbh6/49OO/RKkM72F/2PHP//k/5dmzW6qq4vHpjqenV1yulty//Z7DoefquubZzXP+/M/+lMf1PWPvWC1WfPbxp/wPf/Uv2G/v2G7uWC0uWCyvks1Duh3U6SQ+7XV1SmIi78NPiQ1NhCwT4s8HB8GcBoDEKNM+I/E03CzEiHcBFSb8dKAqFHWRsVjMT1YPzjmyPJcpndsDk4t0m13q6gh88skL8jxjvxNC+FigH4YBhZCEkx2JB4tRDU1d0R46IYxCoMjyNDwnKcBTXKuTDY2zXroktJyXeZalgXeeLJN9pZRKPo1CIEhO5HAhyLTnpubduwdccIRR7iQZsmeoM8009TLQDMevvvqKv/y3/0LOmhDxPvK03fCrX/2Kh4cHnJfpouEYs3tpoTVKyyTnsmSxmNEPvShIPMkzS6e8K2CySKYKnJO/O5tV5IWo5t6+fSvqqL6n3Y/EqLDpjlpezMnzmt3uwHJRcXG5IC8Mr159xyqfY0xJ309kWcFqtWQ+rxmnAaWEYNhsW5yHiKWsMmazit1uz9P6nhhEXViWVdrdgfv7t3z8yS0Rw37fsVjMcTay3x1OA3umyaKioSprtts9Rkvb8MXFFXlWMA4D1tmTJ+nT4yMmU5SlDPwKPjDZDhc8k5voBo11O5QZ2WwH7u7fsl2/Q8WRv/2bf0GWKe7ffsdht2YxW1AVc+bzBc6OfPvdb1BK5kBPtmHfRl6+/IarmyVPT0/MZ7fkeXGyUkGpkzL4tJdS7HIatMFxTSYC4UisH/dlKsjKLSx3TyCgcMmLVuJQ2w8QHVeXM4pM1s1sscA5R9v13N8/cnGxZLVYMSxGxuGJeVMzTYH9fsesrGnqGues2LZonXIz6SgZp5GIiDnKssIyyueTaXSeU1bVaWBalhTRUsiGvCjo+l7uq+BxXgQ4MiQtUJQlkYmqrKSoHaDreooiR6uMrhuAyIBLcTrsdy2riwVX1ytMFrF2oig1ZVnQdS3L5YIQHf0gRc2qlvN5GDoOh566rlksGsriSNY5MmeoqoKqrMlyUdiNo0vvO4rF0CDEqJvEVzrLJGZTqSMlzzO6bi/KyUyKAbNmhlIBkymKMqPvO3mPqxV5XrK6qKlreb6HfUsMEvfNZnNun92A8jRNibVCKvZDj7MSY5oM+v6AyUyyxBi5vrnCTuIFW5Uz8iJjHCamqWMcB0LQiH5BSPOy0uy2B5yTmHpDSwiiVFyuFjy/vObd3R1Eyc2enraMQ4dfNGiT8/i4xrnAxcWlDP6IMNmRoR8waWDYbndgPpe4JM/Fe9TWGX/3y3/J5cX3HPYHTFZR5HOaZsHQRy4urpiGiR/+UFFXBY8P99zcXFLNcj79wZf87Gd/Q9ftKfKMyVmqqiAi1luQUVdLUbcTTncUx3gxnkxYhIeIR8uJdP9FsZcJSu4OYlKrq6PGFlSQPem8dLZojgSzJvI+j/s3xe9M8C0Wc66urk5mszoNhMiSQqfvh1Tdtyey5+jP897zRZKIY4B0nMQ3dCNFak+TEdSei4sLuq7HJXNfm9pYx2kkzzPqnRgeH82a27alKgsyY5I8VtpV5PXeK8xknLNPXkNZar3qCCEwpdbgYZCJfzK5x7Dbyyaczxuenp64v7/HWstsNuPdu3fkJmOxWPDh1FmFkqpTCFJBSxX2pmnIdX76fsM40jQNZWpNNhGCVgxWxlQPSa7rrUwLVTFiJ3syFVdaoaPm/aSvowJHVHZaJaPweFT6vV+Yp8EEiYT9cCriMbA5Dv+IxzZrJa3AQibZU1vW8bM9tijYRMxJQP9+qMDx68f14ZyTn+Ho3xUj+7ZDKcOQfOMMor4BMeyv6gKVzJZ3ux1aKTFDNqIizYucWTNjv99xOBxk6q1Sv/UzHSeDvt+2AKkdU0VUDOgQ8LbH+wG8J9oR5Upi9DSzGXU9ZxgnfvXV18zmM6ZhpG1bJufY7/dcX19BBBdkLW73LXlVM1rP96/ecnN9xWqx4NC2KM2pTfuYvKdNI+2ikVThhovl8vQcRQHzfsLbkQ09mt1eXayo64q+y+n7EaU14zByc3ElvhJZyePjA09Pa8qy5OPnNyilqMoK20wc9i1ZnlHkZVKrjWz2O169fi2t23M5pIdBXls8LQ1NVXGxuhCD+aJgnERh2zQNZVHRVM3JdF5rI8REFMXt9YX47znnmNVJNWUMZTHDpsmeZVlSFDLEZAxWKmvJn+6Tjz6iHUYObQ/Ji83aiaZZEoIny/PUepmMk+P7fRCVtBcWWY60DWlRqGai/skL2bt2tOgsKScRA/lpmjBGVFouih8KEWIyqR1HUY9cX13x9u1bpsliTC6DN5RGJnQpDEaqqlbUNmJxwClpOJIMx66oY+B3bNmXab9JZ5TWgyFQaMiN+CZZH5Mvn4Z4nOOUqr5pU0SlIICKAecGMu2wtmc+q6irSpSYWjwFd9s9L79/zb7tGewj280G7xwXF6tkyN2clEJyVhxN+Aem0lCVDY8PT1z9wY94enwSb1XNKRgCCRhDjGlabU+RFWQmY7WcMw6TePIh9gCeo4epqIxmsxmFEuL+af2UlKYeFRRNVdL1PWVZMFqbWuID+0PLw+Oazz55gSIkf9WKsqp5d3fHervh8elJiFRjUuK5TW3tou6qa1E4LuYzoksNoREyrbm9vhFj6klaRPI0zTSEQNSKp/WaH//oioAQYVVV8fggrSLH89UYI4rxdGb0vceHwM3iFu89h67j9du34qmXZUxeJt23241Mny+lWDLZgRiFvJ4vFozjiPMSYMuzN2SZSWtVAnHx2Dq2FUkilg56GSKSZbRpwrEob0vGaYIjQasCfd/y8uWv+fZb+OSTT/juZ9+y271jOc9xE7x798DF6oIvfvApf/QHf5/MZGw2T5R5yWc/+Jz7u1doPfH48Ir10wuubz7iNGwD0j44ne4cv5CaJkSIpNLKD5FcB8rcSGsfsleUkgAtInczMRHOxFTplSBwGvYUJhJ9avlulhzaVp5flrPfH3j15h2D83R3D3Rtj3eOZ7c3ot4gkuWG3X6bkj75Hj74pIIoGfoxDUASz9DcaFQ6o7wP5IU5+UG64CDIBPjlbJbuZYmhSEW/mO4YiZeypFKTOGKy8lm54NDok69iVhTUeYYuMrpDT1HA4+Mj11eX5JmQkyHIvaWM5puvXrLd7TAmYxwtd/ePqPRMrBtTq5VmuZhLvKA03dAx9BbrHLNmhtEKpx3WWaqyoSgL+r6FKG2I7xXPisWi4bA9sJgtmKdzyllRF4qS26KNom5maK2xmw3KSHzQth2z+Zz5csG7+wcCitlizuSdKHfrkiov8JMQ4Lvdjskpbm4vOBx2EEWh0R56pjykKfVelPOmRCvD08M78rxhHKZkB6KZpoFplGmEeZGzO0w0jaGuS7bblqJUZEVkt31ArTuiHvmB+XO8m3BBFEzXlxcUJnB9OaMoLtmuX4qXn4/0reXHf/lHmCxns77nr/7qX3B1cc3ts8948/Yl2907nr1Y8ne/+GuWi0suLm9TC9IxSYkpZvsgWlKKo/c1yH0n1giQ4SizDG1yhnHCpf0ngwDkrAhRirNCoMtX2/2GRZNRVwVVVVKUhSiN5wv2hz37w4H2INMYfVRMPmB9oMplcF6MnjHvhUxNdgzzxQwXA/00MllPVcxFme/fT7LXSqMzc5qWGoKjbSWxjkqJyi6Tfa5imjCfYq5xbEUR6iVGLsuKfuphlKRXaUW3b+UO1JqyKGj7DqUyKWgreW7r9ZPc11pRVDVtP/D1Ny/58osvGPqOX//6K371619jrU3FLc1k3alDx3vPvBGlp/juSez07Nkz1o9PTNZSliWXFxfEJM13LiT1TyXnuJapv95bhn7Ah8jF6oLl8hLvHV1/kL3oJvb7lqG3vHhxhUyzdVzfXKOUFMoOhz3G5KxWK3yQrptpEqJgvqhp6jlPj4/M5wvG0VJWeRpAODBNAUXOMI7kw0BWKLpuJARP33dolTEMA1VdURYFF5dX0iEzTsyaBdM4kWWKxfISbRTv7u4oipyrqyuausE5C2h2O7E+EJWYtKEqZVIHzcDj+hVfffUvGCfoh4HnLxZcTjLdVEVwk+X7796wmB+4vrqmKgtev/6G1bLG+YH2sGO9fs3dw3dst2v2h5IffPbH/IM//3dQusT5+J74RqHwp1xFRZXO6RSrHeM5Jd0Jor2QYuCJg1CAEiEGqSjs7Mg09qIsa1tyo3n27BbvJ4zJ0XnBMEyM48i7u7eiuE1rXqc4RjoKZMjEbFZjNOKDbnRq5YT9vqWZyRovCo0PkSJmOK0Yx55xGEXM4MVDUux1oCpLyjJ/n5cqIftkwFpSHwYvZJUXP1qZPhyS5ZcQpajAshAiTdR2hdgVWBiHnhhnrFYXxDiAkmGfdV1xHNwm3ISnLCu6rhf+wTmyTHgJpZX4QstbSsqzHavVnMNhhzaBIi+Yz2c8rZ8IwZFlTjwkJxEZeS+iACGWS7zPk51Tsl7KTVKXj9zdranKmq6zeLfn+uYarSO7/Y7VxYLPv/iUp4ee168ecX6iPbQoJcMQtVZMdpICoxvZHzZcXq6o6orDYUfbdlxf32BMgEJTZyV92xOCJcsj1zdXLFcjb149sd/13N5e8cWXHzNOex4e7kTR13Y0k6UoDYtqRnvoWa/35HlOmfzCP//8M969uSMvYHU5I8s0201LkZe03YGuk8E7dV2htRQQ7x+eyIuaqqo5tD3OBkLYY13gu9e/QCnN9eUX/MGXn9F3EyFExsT5FHmFtY7H9Zp6lnPoPVpHunbkzdt75rNKPIzjgr5z5HnFNGkmB2mI/Ae33fFX6pRjxchpCvZRbSt2VZFwLPgmcl1/EId65xjGjr7dYqeecWiJPojdjnn/3f5N8TsTfFmWn4ZcSKVICKjjxpBfqxNBd5SKH//8kcwZ09AGkElr19fX0haSLsujt4W0XZq0sScW84Yiz1k/PdJ1PWWeM5uJf8HhcJDk0aVhCFnOZHv4gLwaE5HWNDPmM+m7b9uBruvEpy/Pf+v7H4dv5HmOtZYiGaW/e/eOGCPz+fwUVFZVxdPT04lALEvxB1uuFmitWMxkwlDQWir0Jmfoe4qqZGnEdHc3DBAjdVXRjyOzvCKGQJWXaA1VJpddN4K1Qlw4F1K1R6GUBCWicNMEIuYDcu/YEvjh8JCYlAnHysJ740hOElOZFhlO5N2HfopKqdP/izk/J4IRNN5btP5tRd8xwT/+Wiup/hxfa5pGhsGC9qlF1eC8BSevoWI4JdDHdYXWbLdb+jTVEe+YJsdiNqe1lsv5nOfXNxR5/t6zEE7vQx2TqaOaKQQ0AecnCOJtoxTkaYDLOFmGcaIfNvzdL3+NjwpMwePDA217oChy6kY8hpy1EGSC0TAM5GVB3SyZ1Tnfv3rD4o/mlGXJZr09Je2/Na1Hydp1QdqvRL3oiDFQ1zOKvJBWrdQW5xNZFH04tYxnxmB0Lp42yefqab1FayXToyeHUhm/+c03LOcN87m0dMxSS+Fut8d6i/aar775mofHRyEHipx+HNhtd2iTcTjsqYqSpq6pqgqjFWXdUJUlbatO7X2rxRI7jeI/iVSgnbXUVU1VVjyldpOjH6ecPxnjNJBl4tH04ZpbrpYYIz9L23W8/vprfIzUzYzDdisDTZxnv9uT5zIUR0y5bSJ8ZUlIq614g5R5zvABiX304iMEMR1P22Q1n0tbDXB1cUEMnuV8hp/N2R32jMNAWVZpXLxcRk9PG4zOyQzp3HJoI9P6shRNKaWwU48xWSJVlBBdUfb60Yz5BHWcqnuctZY2sU5fU5BlUOYKHxVxjLggisJAJKRWvSOBD+G0D/zUo+JIkWesbi5pZpJEaK3pB0lgJ+cxWUHXW6ZDImfLkmfPbthuNwxDS1EYlJLPNM8yCJ6oYJgm9D5QV4Uo+9JdUuTFyQMSwE6evMhFjWFynLUUWSat4HlO1/WMbpJWsmTLkOWZqI/je9+oZtaANtw9PuKJjG4S8opAM6spqpL1o3gZvXt3x+3NNbOmTOoURVYU7A57vvv++1OC3nUDXTeIR5eSgSRVXbBaLk6t1hLg9lg7MV/MT4mZOxZ+8pxDu0dnJnm7yXlUN6UE1zHy2Sef4CZLF4JMGKwbnBdiW4Y+GR6eJLgMIbLZbJg1DSoz3D09UtrpZK9QNxWZ0RT5nGmaGEYr/mzpbOz67v3QqtygtHidHZNiuQOO/1UQNC5IML7e7CBGpkl8KquqZhilDVWsEaBte57WjyznczbbB4ocnt1e0LZ3LOcNTVXhxshHzz/j44+eM07v+Ku//q+pqjkff/Rjntav+c3Xf8vNzZz1+i0/+7u/5n/+H350qr4a8/6++633yXtVxJH2I6lri0JTZRAyg/XQjyFNtRYiI0ZFUCnpSGR7jIFhbNFMFGXO1fKSqha1ZyByaDu6tmWyDm0yum5ktKJQbaqKm5sb+u7A0PfIYCOJZYxWaWiSw5PTdYOYYQ/jyX+4zMsTKeF9YBotdSMJkAxbEL/M4yAxo7X442lFVdXoTBIK52XIRZbnidj1zGYN1WzGqzevT0U7XwgZYL3Fhww0HLqWb7/rWa0WfP6Dz/DO4kPk6emRn/7t30prTww4m2IO3vsBlkWBIik+7SRed146D8ZxSGstijq8bWXC9iBFpLquT57KeYoHtRIbmKoqk5enxBZNU8s5rzVFkZ2en1KKejaj63pur29ZzJfMdWTfSuvSsbhcZDnPXzxj6FoOu12KUwbAUM/m7LZiT2GtJI19P1CWg7TmL5bsdjusFlP57W7HzXXN8+e3VLVY0pRFQ1U1zGZSEN1sO4Zhz2LZpNa9QNtu0VnA+QOH/QOHwzsyNef+8QmtIS88yih+9cu/pe/33L17xdPDG4qs5nKVURaGb7/9mqenl9hpi1INzm34m5/+GmMijw9biDWzZiZqqPTzny7IU8HoQ8Xu8bYJQholNVJQOd0UMdqlJEc8kwudJSsS8fILUexYDDD2B4oikBWipI0hMgxiQP7w8MDiYsUM2O1a8W+bLZjPFfv9nlmyGMiMtHOKdU1AaUOmDUYbqqKi62WgXFk0QmqbHK2zNDRiwFvpbBD1mKLvOkyRk2U5Q9ehkCLl4SCD83Rm3qtiT8bq7/15t9utdBakM6bbHwheSLkYAtMw8GQt17dXzBZzrJ0SoT+CCvzNz37ON998zXq9oWv71K46k7Z05zE6UFWSK6wWC5bLJdMwMqtrIGBURd+2DMPAfLYgNxnBBPJChBlt29F1kpRrLZNwh6Fjt5vwTtTH4s+p6XoZvvDioxsuVs/Zbn6FNtLW3/c9i1VNRGOtEEGisrXSLnh5hfcTu90WYzLmM1FiXV4viEEmD2sduLxacnG5ZLcdeP3qkbIoeP78lmaW8fBwByrSdQPWOsqioiw1Shl2uy0xelCBLNPcPrth/bQjyzSXl0vu7+/ZbreEIMOMhqFL4oWYfKTXLJZLZrOZFOM3WxQtdlI8Pd0zDJbM1BTliqa+wY6B66tbbm8+xhjxme66A7NFxfXNBYd2y91336MNbLZPlFWJdT0hRm5uP+b2xWdEMskd/AeEgkqWD4rUKSW/ffR6hUjyjTjtw6BSKChyv3S/OoZ2j7cDQy+DZKwdWS0WXF1dY60U3MUnH56eHtnsNlg3sWhmqWg/0LYdi/mCx/WGw/4gcWqm6Q4tFxeLFKf75Jk4EGLg8vKKohBByzROqMygVMnYD3z33bfc3t6glOSVKpPYQnx5pRgLQp6No/ieZpkUdoMTP+cQFEbJ8KJj/D6Ovax3ozE5LIoCFRV1veCwb6WoECKZyZlsah9PR1cITki7EEUEoSaGQcjP5XIlOcMwsFgsaQ89eV5D3NN1HWVZMU2WqiqZZ7Ok+mtlCBIR73wiv0X8cxQ3eefpXC/xCRHvJ7EyMVJMrMqKvpt48/pA0+SUhWYYemJ0XF5enAixvpe2VqMRxaDOWJhavA+J1E1DnYrrES++fEqxXC4Yx4GqWlHX4hsfCSm2VywWEku2y5H2MLFerynfwHxeCoGbhFPeB+azSw77PePYExVcXFxwdXXJOE5styIcEcI6Z9bU5GaFMgrrI9c3C0KYIHmxOucpy5r7uyeaWUNdz8mSYb3SjqKCup5ze/MRX/7wj3n16i3DMBGC5+bZNW3XobXh8mol1h5G8dVX3/LmzVvxI24MP/njP0mKy0BRrPj44x8Q/HsRlIgm3hedjr/+cIKucChRFP6AWJ6LWOIYE8pgRYnNh2FgGjq6w4Gu27PbbZjVNUVZ8s3LX/O74ncm+EJqyzwSMUWRApHNhmEYKIrq5IMXYzwNufiQ1AkhnBb4kTwahoEiL4gftFwaY8jznGfPnnP38CRTzLY7ri4vaOZzQvJOubu747PPPuPy8pI2XWJH8q2pa8ZhpCxLmdqTTJPnaRqsnabTRJ+jVDLPTfpZxGMQpD1Ra03XtScWvqoqrq6uOBwOjON4CjzHcaTrukR+FORJ3Xj/8MCsqsky8S00YvJ1Mtcvy5KmaQCpEhVFIW2QdmKzXvPJxy8gRIq8kNYcbwF1GsQhCZRMx9PJf+lIsJ5IsA/w4UJVIAdLapsFOA5UOJJG7oOk7xhMH9fBkYzS+rjh3yd/MpUtnkjWD9vKjt/n+PeHYSDPhcREyUafpomqqqRKlV5Dp2TZ2pGiEPPfEALToHj27Bn39/dc3FwlpeNEbQo+efYRL549gxjIjLSgqigajphIPaUQ8sZHggqM/Za61GjtqcuKxXzJOMjI8bKqsNaz3mw4dD0Ow5v7X+HtxMVqSTObYScxIB2SEk0bSdi9s/R9h1E1Riu6diAcW0FNek8B8XApShmmotTJCzLPpeVhmqSl03t3GsIh3oZSXT22pMe8YH/Y0w+9VIu1pilyRjtR1TJm3WTSWjSlysds3kiwnOdkyR/m7bs77h8e2O32J/+izW5H10nlxHWdVOOqkvl8Jl5gPpAbAz6wnM0xacCFTIiKwHRSnQ7DSAyR69sbxmlK5uqK/V6mTHsnQ12myZIZkUIH3wOIUbp1rNcb8b1M1b/Ml7jgmEZLXuQyTWoaT20+eVGRFQXjOMrUufQc8zwXw/r033T7S8JAWj9GjINfPH/O2zdvcVaq5zHK+bXf7Ri67kTYjlZaupUyKAM60xQqDSGKSdEQIKoM7ywBIey8l0rjce/I90+TPON7guVYKTqZTKa9fSxHRRTDFJOXqQyIiUCmFZqITIwRj5doIt5bGQQTHaPds5xVlJUUXI5TfZ335EXBoW3p9h1ucjRNQxVht98l78Sc5Xwmz3gc0hk8A2XY7A9MdqIqc/lBosZbIRsNJqlQ5c6wVgbXmDQMQGnNbCYDN6QVTkzL220nA6CCTQbDhv1+z3IpXkbH6W3zxZztYU/X91gLk7E0TUXwjnGSlm7rHE/rJ777/jv+8A9/TEDRDz1/94u/45tvvjmd58755NEo+0IpCVpXyxVFkdF3PTZYqqKSqfBoYhC/1fbQUs9qUXfmUkSbpomIYlbVNFXNMHaURY5z4aSeLsoSGYBhmBdz7OROirPlcslkHYv5kpubW5RWfPf6lZB404h1jovLC64uL7l784bVi2dSXV5vGaYJa8W0ua4qvHeUtQxQ8M4BUdocJoedLHluaJqGoshp2xZ8wFrPfr+nmTUEDUorNvutDCUIkXE88PDwC/aHNSioKs8PL1/w61/9Dd5b1o+vePXdjtX8kovVFYvZjDdvfoP1B7wTwn+atnz//QP7/VtCrOlaxx//wV/I8lcqJTpJkfrh9afUSa0nUVk88eRKgbXSChdjSNVZUcErrdAhgnIYldShXu6T4CZi6JjNKppKJpE6Z9HRSPtQWTI5x267Zxwm5rMFyyxns16zXC7IMlEsKSLTdHz2NaAJuwOjFc/XsimJUSw5iJo8K3BW7o4jwbXZbE5JVZblMhWHkIocUhyrmyapdBxt37FYLIgxpuRbiLO2bcmLSiwiUuui90FIxqrCx0g/9EQVyYuCoir55uW31E2DVoqvfvNrvv7661OBRNrLLXVdE3xAE5klUruq5J68vLxkvz3Q9z1XV5dk2QrvRbU39GNS4mZkJk/tuWn4TduxWixpqprjBEpT5NjRYoeJED3NvCHLcrquI8+OavbIervh/v6ey6tLnp62rJ8eiQr6Ue6WTGt2G3kudpi4ubwmR9G191xeXvLZZy/ohx3b3RPOB9p2wE5S1NT10ds1qZb9yPX1JcMwox92XFy9IMbA/f0dRhfc3DyX4Tv9ATs5fJSulc1mw2Iu3ryzeSNqp8Lyq1//Ky5X7zi0B1arC5ZLibeur5dMU8WrV9+y33UQFS8+esZ298BilaO0+P0+bV7xuHlDiB47TVyuPuEf/Tv/MYvltRRqT0WkD5V8x71y/P9jYVgG1ZHIyCP/EN1Rax4J1uPSVOnoLd4OJ4Jvt9+zWsxp5jPyzEjChazZ+/t7rLPMl4FZM2O1XKEPLURDP4zkSjGrheQ6erAeSX2lwI4DRZGDC5RljTsOyUgF/Kqq2G6EeCLd18akFr6+o0hT55U2hNQqOCXPyjrPMMlTzGiFd1Za2cqSvuup6orgA/PZAmUM07SmKEps38skeKXFj2u35+b2JqnTFJv1E8PQ4YPncNihUOSVTLzsx5HlfE7ne5q6ppnNpItouRBCBMXt7TVaa15++5K7u3esVhcsFjNpQ3X+ZNdjtEGbYwFDYpznz2/5/vt76ZSqDGWV4cPA1fUFq9WK9tByf3+PAhaLGXZybLcjKEvdSKvhOA4sl3OyTBiLcWqBkApGCuctq4sVfd8JEeIty9WcoiiOQ8dZLGpp231aE2Kdzrc1CkPwUBQ5ITjevn0i4lmtVnz6ySciJvEOpUIqhNc8f/6xqPQMPD0+kBfiyblMU+rHKTI9blFKzPyNlphku7/nzbuXaFVwc/0D/vQHf4/t2pFnJftdj6JAq4KHxzWHds0zc0W+U7TtgXd3D1RlTlXXZHlBP1jquuH+cU/EpLvoaNZ/1Jknr3Qvfsok8cFxKDpwUvwppWTPpX0aVUxFSM/UDxIvEU5F4bKeYfKMu4d7ri4vKIsck2UMh571ZsObt2/47AefUjcNzjkeHp6ky6es2R8O+GCpmzmTnVCkTreyoO2krfn65oY8y7DThNKyt3RVUhRzhkEG5NhpYrfbsVjMsVYIujzLsTYI0WsnlIaxG0+eg8ILCFFWFhVZ8vsvy/I04A4l54gPkaH3ZJmmzIt0p7sTEbnZbFiuZlgr3QMhhJMveFmUTJO8j3GamM9l8vR+v5MhZandf+ink6+dtZbj4KC+7wjBghL/y2EU/+XVaslxoM3xZ5mSzcqRb8gLEbLUhQxsCzHy/MUVy+WCWTPn3d1byjLHeSHQht7y8ptXOKuYzxtQkrMLWeopi4phGNEqx/kJ8ZYXhXtV1Wy38jMJZ1KkKcElfSd7xGSGaRRriqg8RZmTZ1IEcNaii4KLiwv2+wORgLUyUCzPC4ZhkPZ3Y7i9uaEsarabFmczyqLC1DC5iTyXGFbUvRP7px0+wDSKuEfrklktysm+76iqgsV8xWJ2S1PLgJe2feLb717y6vX33F4/Yza75LA/0Mxqfv7zr/jkkx/y+Rc/4t39Izp46qrGWsv9/QNVOeOLL/6AabL8t//dP+Hf+/f+I7KiJAI6pi6otPeO3ZIfdoYoAlFlKHXcr8nvXKXSfFKoTv3A0O/ZrB/Zbp7wXtZPUZSMfU/8IGf7N8XvTPAdW/6OKrUYI09PT0naLOyy0Rk2Tif1Td/3qb884zgyvqqq3zKYPyrmjmTRqUUpCkE0axo22z3b7Y4QAxfLBfP5HIKnbTvevn3H8+fPxIchVWX7vodI8m+TpL2qZPLTbrcDpC1QCJP8RDLFGKWCkxucd9zd3YnnVyKgiqJktVqdfi0MfkmZC5l5OBwAUpWtoes6np6eAPj8088YhkGmPj48nHzNJmdP6g6pOGppH0uDNkIM7Pd7bm9u6YdeBpbwXuUj48TDqfVZHFbfq8COLan/Ok5qPERmekwSjoTckTSaJqmgFkUhI7HL8rde78hkyzjof0199uH3Sb9/9HY6EpPH1sgjiUjkNJ0mS1XOIhPSgxhTZVTWzZHYlc8sP32/ru24vLigqBqmaWLfHvj+p2/4n/3lfygm0Tr10avEMyV2PuDJ0Ez9Abwlzypm9Zy6kuSgKPPUQz/StXJhhQCHtiMEhdY5z26fkWeKp+FRBodA8oCKVEWOdXIJ9f1IXRVy6DtZt3mWETxEHX+LxFQGTKYZx4nMZUjSqglBhsmgkIQ/JVJScQj4GLBWiMaLq0tseKIfR/F9NBlEJcazTcX9/SPDOPLq9Ruury+5XC2kJTS1Hz6sn/j+zevkbyael+PoThOIsyxjMZ+xXMyFxApg7UDbHpjNZtSNBOBCYkLdzFAK9rstVV2diLEsMywWM9rDgWfPbpkm8e/oJkteFGm6naYqq9Q+vwNk2u96vebi4oJD3zEeDhQhiOuwgrLM09pLo2f0e6+TcZrSM5VgKcs0wzCd0prjsBqV/uGo/lGK7e4AKGknjzENDRmE6EnJsXXSKiEePSRyTpIIrUXBJxYEojZwTsaoEyPG5MlXUc5DUKm9MRVsVfzgM08bKCGcLqNUVeL9WXBUhzmfJhcqiaplH0d0skOIwXJ9tUAngqeqZzjnWa+37Hc7nr94wWq1ou9GqqrgymS03YCeL1jO5icfvaoUw+SyLFPhQNTKEZmmVeXvp2lnWc7ox5OXapnMykGGFAnhpBmG8RR4OS/TL+v0taNfGshZs91uWSyW8jVvhQRBQxAz+Wm0dIeBZl4T4oAyCq0y8jLn2+9fYfKcvu/4zW++ouu6pGw++gQqikKU3stkW2GMwlmL0ZrVYsXj/SNNVXNxuZLPOkp12x+LXlrIa2XkTO+6jme3z5L9gPh9+ejp+gGjpA1zeSXJVpbuj2BFDfv/Ze4/viXZ0itP7HeOaXNzdVVEPJlIpAKyIAoosprd5JAj/r3kiFyLvbiaLYgCm4UCkPLpiKtdmTY7goPvuMdDN8nVTUz6TjKfiHhx/Zodsb+9f/vh8YHrG3Ew7HavOG/pxoHVes3QD4zDyHJZkSUJ2/Waw25PXhYhojySJBpIMMYym9BEDZhZPjMVKWINgxlRKpH2Xy2XYHG7yro39J1wZaqFsOKiCDtNvL5+4Le/e8ZyJIlXxMmWfsi4vtqSFxJv2e9e2c0Hrq7vgrM2ZrtZ87J/zzDt+fb7hiiOabpX2n7Nv/93/3s+//znCPryo7P7/NZqJRcp5cKeGC5FMqMN77dXOAtYdYlggHAt3bky3c0hqiSCeFN34Cw3VxtiLYyVPC8w1nF43dN1Hbdv3rBarWibDo8milLabmCRZfKOGIH6x2F4lWXn4aggAVQUMY0ySJnnGe9E4G26VgQ/72E2l4FXXdfECF5k6AeUhiROgxPbSpumFdffYpGFPVBRLZcXZmYaorL7wxFvRQyVWKTl5WXH9mbLcrmUVt5xoh96jtPA83/1XzFPk5wbvGcRvj+JLsqly2nH3d0dQ9eFdk8ZEozjxDgOVIuSJBHhocoqGZoWGdurDcMwys/L28ABMuwOe2kb947jsabpOoZxYOylOf329pbZWsapRdpvJ7zyPD49cjgcybKMppUm8NvbG7q+xXoZsI2TIYmE+WydvazX4ziy3x/IMkVZibCmlfzeSaxZrpZ0Xc/xeADE1XJ3c4e1hu3VmqfHF7TSbDdXKBWHQaPl4fGDFDPlCctVRdsICD3LlqyWG7q+p+96+h6acuL9/VdoHbNp3rBcvMPMKVW5wTu4u/2C/POU3e6VapmSZRHb67f84z/+9xgzBCfHlrppmGZLkq149+lPcSrlDA8/iwzC8ArinQ/8Pdn58S4I4sqjXHh3COmM8HuowJ6184gZO3EWDeLm9dZyvd2wWOShVTdBRzHDJOf1UyPspCg46G1grinvmcPzkmcZ3lpUJGcDYy3H44nlagVKkeUZrh+J8oKp7zDzTD8MzNbSjyPWOyIlsbnz+3cuBIjj+LI3KQiDrYQkSyWlEVIr02g5HmsRsSLNoqqCYSER/pyXeHvTdSRJJgNZPHGisQOcDgc8nsfHR2Yre4T2UsaRZimJjum77rJOrFcr4vO7imKRZ3Rdz3JZAo7TqeFU1yzXa9I88IWVDw596IdzYd/MOPUURYbzBudnPvl0zTR6mqanXGTh0r7DGqhPPY8PO5K4JMsSum5ksdRMk0HKEBKSOEer+F8MKM97/+lUk2UFw9BLsWKSSTy27XFOkWcFURACQTAbcRzRNEc8jvWm4nhoyLKMrm/I8lTWCx1RNw1JiFr/5E++CI4waZ3O8xiHZbFckWUpc3gGp0na4o1xvL4eWa+3iHA9s1yVJNmSJF7y5u4TvvjiT3iv9wzjRFPXrK+WNF1NMscs1ILD4YSznu9/+J7X5wNX12t+9rNfkmUp/TCh9YK3bz+VAXSa4p267Eci1sl7FWlZE2T4q34srYez3xkP4TmL7Mp7nLGc6iNdWzONLUPXcnN9zdX1DX/4w+/5pt5zd33Fp598Srko8Si+++EDD08vzNajdcIwW/pjQ55lDLPhu9/9jjRNuL65QisRvs/7+9mYsdlsLuxppbU0T1s5j7mQmhI2peX+/p5f/OJnLBaluBStrAHTKBFefxl4f+R8eg/zPJEVwt47s3/l3uCJkhgdEAHVMme5XNCcBoZuwjl5/631mFlKRDxW2l1HKY6L4wxIiDTUbU2eyzkSD30/EUWaapFIe20nWsDr64F5tpjJkaQZSjmqZY5SMfPs5C4X9laJ+87keSHlUEH7KIpC7tQYjB0Zp54si0kSjfcG63p2h4ZPP7vFOcX33x0Zumem0fPh/Qt2VqzWa7ZZSRQ56rolihRZWpCmBfWpIy9ihnEgD9ixOEZQVoncLcZxQquU+tSQpgXea+4/vOJdxH5/pFosKIpMEmRxymolrElrpTzH2pnVakmaJZLMaFpU0FK0lqFoksLj8wdurm9ZLjfEWckwSkIEElysMEXONDtOxx5I6LuZqbIYO6GU4+X5mevrazZLwzwf+G/+2/8jOnLU7StJbPB2xJueNFG8vO758sufst1+RpFf8+knP+Wwv2c2E19//UfSLOP29i2Hwws66fnLv/pbfnj/G+4fXvmTn/yCu7vPAgYh3KnCMyhpKLnPe+WEu+cVWhNYqA7lXBDcLWbsOR127Pc7jocDhLv9WZ/a7V5ZVj9u0v7/7+tfLfDpwGpyRmC4zjkiFWqsnSjm0momL9Ew9EF1F8u6c5YkiS4C4VncSdMU6wJDAIULgFX5wSvSJGG9XtL0NW0vPJ84ikniiOVqy+tux+F05IsvPheGXti8ZFPR4aWPgkMqulwUkyQhThKyXC7kPlycx3HEzBNPL09oHdH1LfvDQSbbgefSNA2xji5NWjZwMOZQHlLXNW3bMhtR4qdxpO8GqqoiiRNenp7ZbNby/RqLRpFEMfM4Ms4jJrDAhDGoONYtw2gw1jBOE0W1AAV930FQmbMsZRyHIKJEF/fk+esssp1dlBdRMzj1JJLgLgcbFWmSJMVa+fkNwxQEQ8LPT7YcqSKXGI18ycT3DO6OovPPEoyZGcfzz2O6LNznApZpnpmMwzoEEB+YVFp7olSzWpY4B2Y2rFcVRVESRRFdN+DMjLpSbLdbXl9fGeYZE3te9nuGSWD6zgv3SesYb43woziLHZ4kBu96lB8oipgskQXLORcuIBKNWixKTqeavpvI0ozbYsnpVBNpT5okaC2Lm3PuYsu+vrpienphMiNt15MHAc3MBo0KroQQu4gi0jTmeOrQkbgNozimTIRToWKFsuLWOSeOjbFMs1zc5d3zrFZrEcFOR6rVhqLMGaYJb7xEmKsI5y3H+iSCoJOF/9tvv6f69a9QwP6w5x/+8R95fHwkjsRZaY278BLNOQIcx1TLhUClxwnlhUVzFnOiSHM41ZcpxzSM4qpIE2YjpT1nK7nWUJQFJkzH4jgmL3OiSJiZ4zhdnsFqWTFNwsP85JNP0LHmZb8TsPUsB+i7uzuMmZjGgbvbG5q+p+/H4PQbA/NEkyZpeE4DdyyOcB7mcZYoY5aHw/6E81Jo8rJ7JU0SnPIi1Jk5CFOeOLATjTUiM5xb+pwgCc5ugXmewnsZXaJwcSyx4jgGksC+ujTkBVu4D0c/RwClgCQcPjqtvQsi3zm6e4HHishoA2/STAPYkXHqsE4KNKII7m5vkOhDjE6yEMc1PO9eSSP582TB1TzNnVzkvCWJNWmsmYdR1lytGbqOaZ6FdxRptHGUecYU+Cz6ShOnEWWR0Q8NcaQlYRwLPFpHEfM4kRiHNxa8wsyy3jdtRxac086dY4AuCBolbdeRW0sSx2RFzunUgD3zlhzeSwOYniLW6zVd19L3A7vjgXmeuH+6xznZ3JM4Js2CY0SJqB7piM1qTbmQ6ffV1TaUIxkOux1FnpFnKc478tXqwmp9u15LFNE7UPJ9dV3HfrdjWS3php7X/Y7ZWmldt7AoSxbVgrpp0IhbVWnF4XTi9XWHUor3P3wgjiNW6zW7gzRd50lKO3dohLFpppmyKBnGQYQXD68BjTHOE95x2U/O0YUoCgxT5VhUBc57muaEC2VKUmQiT5hC4eaZJIoYuk7eK+cYpgP/+Ps/EEcx280d66VF+SVZumDse1bVmsVPfkWWltTtjiTvePv2U7799rc0bU+aWNJ0iVeKfuxJ0i3bm8/QyULEuLOrKPCNlPc4pQIEXPYwwuXhYkxSH+X78z7mQjwD71HeyvNtJuZJzjbTPJMmMXe316DEYZCmckjthoHnlx1pKkURSZyQxDF9N4qDyU0UeUoaR0yDODTjJJE23boNzZdaOGbeouNImvmKFBVDGiXCZFWQJjFZnsrlXXkciihKJB6dpCJEB1cbVsRipSN0EC76YZA92RqiKEHpWERkpUEpkizBeo+3niTLyIqUrm25vrrCGcs0jBzrY3D2iqB/xn5M0yRt78NAkefkiSAcltUCjzjrbm6usfcfeP/+nqosWW/XWCPCgFx+uQwWtVboOCaKxQ3+8vrKOM6sVxseHp54en5htkawLVrE/Zf9jtuba3FkpBnGWR5/eCKJU1abNevVWjAIWrNcLikXJUmaEUcxwzgxDoNA5eeZPM1CGVQCyLn3fG6SS6DELNMkom0asiIBL+eA2UwYMzP0E2/f3UlDoY8o8iU6VvR9S7WsKMqMvq/FRdFatE55ft5zOg0syiVpugQ8TScD9jRZ88nbP+NnP/1b/umff0e13GLdkWKx4OXlmYfH9zhWjFOK8zO71x2nWoSMOK5wXjHNltF4JqvIU3HjCQJDRIRInQuiROj13oGK0NrhgnMIkf+xVgkbOAw2dTgT4qSB2JuZOZQi9EPP7c0VSZbQjT14L0y2fuL55ZWXlxeqqqAsC84lEs451usN7z/cY50hjnPa+sTVdi1uf+tCJEtEvLxcEOmYeBHRdx3poqDrWj58+MCbN2+khEZrdCTR7nmaglPWoYID3FsjTlYsZrCMk1zWu74PbtcUZy1lkVPkJYd6zzg4Vqu1QORHib+XVQmxYppm0iyhbRv2xwNRpNgdGsHRKCXt2Ao59xWlnIW05/b6+kdtpIKhKPOcPM/omoa3b95gnDz/T0+PVIsFUSLDTa/EYTiMPX1wT0VaE8UpkUMie0VEFCt2uz1xnLC9ychLxeNDj7URTfPKODr2+xlr9mw3K25u1iyXGfPc07aGthM8hNI9cSwx2GqxIFIRUZRQLdegI3b7o5g/5oGunUizgq4deHk+Mk+Wpmm5ubkGJXHDJI1DZF2Tphk+uLNXqwVpmnI8NjR1TVkWbLdXoByn+sA4jlxtbynKBcZainyBdQalIvqxpms7lNbSdq0j0rRkvS4Yhonj8cBmfUWeytnv/vEbXvbP/PGrr9jvT9zdfMZicUXbe2Y7cv/wyGef/ZSbwfC626G1lNPt9weqxYZPP/kF9anlH//xH/irv/obIp1CeM/EHXTGHilx48n/Ay9FLD60hnuJHOH5CPXHOsa+Z2hbjoc9TXPEmZm3b95wf3+PsYY0iHFRLMVhv//9H/nqm2+Zxpk/+/M/J05T7j98oCxLNtuKU9NRFOLQz5Lk430liYlUSVM3zGYizTIpdbISK+77/pJKi5OUcZqJk5R5mi8D0jzPJfYeacaupxsGjJEyOqU1LrRZgwxyPBLZl/tGFBxxButEpFtUGc5NGKsYJ7nZCS4swVkpr5omy2ymcP/WaCXvdRz2k/VqRac1ZV6itMNMjjKTyPLr84kolLQV2YLrTcTx1OAS6PsRrT3GeObJQRLhnAwYj8daxMksYxwniexrWVeyLJNiQOtYrpZ4Lw3CeSlJQ09EksU0bcvT44m+tfS9YhwcIJ/5bndkmnu+/MkdV9tr+r5jHGeOJ9EHxjmiaU8sq4o8TTB2FsHTKyZjmYeZrmvoO0OaiDM50gmHfSfJGBVzPJ348su3SFFagY484zyRZRHOO8pSUjT7/QEdIw3ydqRtT0RxwqJakRUZ/dgwmRnvoGkbyiIlzyKiSLNcVtTNIIMBp0V/6QasnVguc6yHLIlxdqY+PdF2PTe3d3z69h3ffvdAVVUsFiUOx+PLyPPjgT/96d+yWd/St/+Jw74hikbi6xVVmuJxjFPP1Lb8h7/7L2Xgrxc457m6viNWmRz/zoL6Wd4Idy856LpQzBb4s96BMgG/0DGPA1miiTVEsZQzaRURZwneC//UuP8FOPiMMXjn2R/24QJzJc6DJJbYQxDipukFYf2Ly2QMvKs0SbHKXsS9czTVWoGCz1b4YhdXWuCMOeekQTYR3lfmUh6fnnn79g43T6R5zvG459vvvuNPf/qntPUJ50RoiUOEtWnaCwdOoJxJ+K48xk54LJGOKfICM08cD/Ulcrs7HC6xUq0Uc7D9JKm4SpbLJUmS8P79e66urkgSqWb3QBXchufo8DzLYrJerVivxMkxW0Ne5NjZkMYxfugxkxwGzgUh0zTRBsCoLMyaLE+ZpsCoCXGEs/03/hFv7yzsnR11ZxjvmR9ovQcnk8skiRnHgXmeGaaPnJ9zNOPM4RNx8OzQ+8jXk8itCH4usADPomKail36PLk4x1bkIGUv8bY4lsp25w2rqsTMAqAvipI8SymLkpfXHTr8TOq6CXDNmLoWB2Xb9xcBZJrECZSlGR6NcQrlhNXh3QRmxjqJKPfjgHKW66u16CUenFUY42nb/sKzyrKcarHAWcXSw2Q8aaxZlLl8UkEI+PHUsm0ambTG4gQapxFjEqyzFGWJr2uJkYeYepqVLBYLhlEA+jqKOTUdaRqjkCnJbB1Znl0EKbkEwTyL+6Oua5ZLmQ7M48g8iWDmnDgzX1933Nxek6VBiDIzSkd8eHjA4ei6lu/ev8c6Kw1zAT4XRRFRYIfdXl+hILTXnbi7vWNSI82hZlmV5NmayUwXJ2gcJ8HN5RnH4eJWKvKcsig+lrkAwzSinETZ15s1wzhcYnfWGIah5/nlRZx+48SxPmK8YRwGVtWSU12jnCdRmnKxpK6PnA5HdByF1i2PSjRaJ/TDQKREBJPnHPCeWEMzDfg05aq6RisdJl6XJCDWWjbbDQRGmQvWubMIPg2jiFpa4awNrWCW2c4oDVGiibwctudpJM8SVpsVp/2BNEuJnWU0YygGCYL0xUQoBRneffQZ+rNrCSUiRXgmufgPhS8BIu5ZOzEPPXbumaaBtmsp8pTPP3sX3Moj2Uqcy4fjif3xgPOWYilYgH4YQvFJyqltmOaBTbjYVKVMcJXW1E3DMA7c3NwQK0sc51gzo70gE16fXpi/+FKKBKxHa0+ep4H3IdGJPM3k8w3v91l8KopcDpnGhjVzZn88oCKJipwFEx14Y2kS470jz+XwCbCoSrqupSwKrHU0zYlhGgIjVAZLRZpig3icZxlOKYo0J88yVuuKJIklIpAlxHrF73//e9I0ZbVcSpywD64VBGNhgoObwD/qupGXVxGNszzj/fv3tP14+eziJOGHD+/54osvJLKwWBDnMV999Uc8msViwWq1urjtF9WCvMho246iWDAO4sIukowyS+mHniSUW3WjlC/oKCKyCdbb4CycwlqPDK2sAPWTVBzI8yTIiDODRKtIhD4lIqsJDjXtpfDB+4Fp3uH9iqGH//W//c/49usHFsWCvh+5u/6Mr7/5Iz98/w1l5fHEQMzxVPNw/yxtlJknWxR048hiGbE79ty9lUufvH8fI4TiKAqjJ68+AsnlIbpAjP4lySJEC72IF86MTOOAm0fmsafrO4oy5+ruRsS+cSRfLXEe9ocjL6+v4lrLRZjqO0GBrJYV908vjOMgl4m2YbOqIMQ89vs9fXCpxrEOA42RgRnlY/a7I/uXvXCMz1D/NCXWGmMd3vpLmYWcoSwKKUHCe9I0CUM1K/GsYSDSEbNxJEkmQ1rrQmuhJU0Txm4WFqC34gQopXXz4fGBYZSWP/ncRUAv0oxYR4yTOB/iKKK6vgY8ZZbLPxs71qsFeSbCxO51R1EUpMFdaJ3Becc4T2GwZBiGgc12eyl+GceJoR+4vrmm73uiKOLuzR1dPwSu4MxsLH3XMUwj8SQlIt/98D27w54vPv+SarEgz3POHN79bg9KcTqeiOMkoEuEH7teLnl8uCdOYsqyYL2W9sU4zikKiUh7FOMgjN5ikVBVwvQ67I+cTifKsuTdu7d4FM9PO+IoYVEtJVVgPVkqPMc4jnl9eWGePbEuOJ4aFBnrZS5nlaHm5mbFarUiT27ZrG+Jo4jtVcr7h9/S1APOahZVwWef3XGq9ygVc//hwP39niyNWK9u+NOf/pxvv/8ayNlubrFGzpCRSmTofXZ/e3FxhmlRiBX5i8iioo8sW3HHquDGkz1nnif6tmEcO9w8YOaZq6sr0rzgq2++I8Lx13/9V1RlQaQi2rbn5eWF3W7H9fXPQEUhqqkYp4m63jFPA1Ekl6okiaXhc7GgbjqiOOJu+ybgdTp0Krvfer0ML7+0lL++vnJ3d0vbNsRpQpJK0YNzIp6f7yc6nGNBmkmjMNzCw7Kq6IeeNImpCmlwTZNUWJFa4xXMWhMpRfejSNY0D3RjG1Isci5Yrlc09UlYkjpiu1qjvCOSsQWLxYLX11e6MDCJtEZ7mOeRn/7kT8iylGkeeP/+A6DQOrpwxOMoommEQSjFTUb2hTKmXKQUpVw622Zktbzj8eGFoW95Niden0eSVJIs4zCTxClYQ9dO7KMTeblie7XldKqxzgmXrMgws6Vpa4wBAt5jvd4wjTPz7Bi6nqbuAY01LYqYcZT9+2yWiFMwtqAsM7I8geDCNcaz2azQkaeua/q+QxXlv8Ak3dxsGIaJfjjJ2oam62aSBPI0I443FFnOfi+cNmGqyedi7YRWgvrJ1hHWdvzmN/8PaZOPe/LUkiYG5QfSVHE8jfziF78gSSre3P2E/eGAUi1/+MNvWC433Fy943g44XzCl198yvsf/sDx1POLn/8FcSxIBi9RiyAofBw4+XB34rx1nZO5Z3uCM6HQ44XX12d5D718P84KzzVNYvJqy3a7JU1T9vsDX3/7LdbBYilYj6++/gbnHEVR8e0339P3HZvNWmKIsyEOvw/ei8HAzhTFAq80c98zjTN5UcrPLiBQklTc4MtqgTUWY+TusVpV9ONIFCV0gySL5D4p33cURcRJKoPuKMIhd2jrTRCqp8swPc003lvSNOf66ob9YYc3chaI44x5stSnlixPiWLPMMwkSUyeFVgjpp48y6mqJYtFxfPzU7gPjxwOJ9brLUNnUdoRRznHg7jn8To4tyLiWIXCERGP44hL63o/dAG5Yy8loMZYTqca5wxJqrBOc/dmy3K14vFpR9sYrBHhXSlo6plIRSSpZ54sxorDP44SslTYvqI3SMR1nh2b7RrwLFUkmLFRPv8VMV3f4hFMz2q5JtYz8+Qw04xTnkUpQvjNzZbZZMSJw2PJs5zj6UjT1MRJxGazCfd8w2JRkmXpZViapsKc1ZGmqlZixrEToKT0ZWhRKhUn8NAxTRPlImccPHGUSjS3yJjmkVhbTqcD1ji8TciLVXBFbvn88z8h1gl1u0dpmEyPjhS/+MUvKYs1f/d3C9J0QblYMAw9u/2O3X7P9dVblssN9/cPLFcbpnngT//0LwQ/k5bh/RNB/WxCU2HQpUKLojq/jzjGocOYEWsMx/0rV9s1s3X0XcM0DWidXPYGp2R4rvS/Wp771wt882wYJ+ENZXl+KadIUjnsaX1u8lSkWRoOmWdnSizAaf/RDfDjsoc0TZkCc+0csT27VVSImzorD5Y0v8687HaslkvKIme1XPH0/ESapPz85z9DeR+mGgTHXfs/iheDbHBnx9o0ziHy+0C5rKRWfRxZLZccDgcircnTjCiSC76z9jJVruua66srYQ55xzhlmNnIpCSKOB6PdF3HarkiThJWqxVFUQgHQiviRMDxsY6wL89MZr7EVod+4Mw0EXfkBF0nTTrrJcMwoJxEhs9i3BBaFc9R2TPXUOJvwoQ5x2SdsYHzUaOUurQKndt2f1y+cQHxBrfiOU59dgx95P35f/HriiKXyUzYoM6irwi9H6PfwtgDxhlFhFZyAT+daqKoRARZ+XebpqEfxkuDzdD39P0Qcouavh9/9OeJsU5hHdLK7B3z2IEdsPMYuEeWPMu4vboCZHNMs5RpnKnrlpfXV6yV4o4kSdCRlJpEWmHmgSKPWZQF8ziQxBFpLJvg8XikXCzQcUSuNMM8U6QZ09gxjBE6jkiyFLRw2RItTlivPEkm0SURvG0QC8WZaQOTQp7pjwLpuRBG4uMS411WFeM0hyl0xOQMKIl81qcTV1cb+kTiEvvDnmkaeXp9wTuLjuIg6MXoSGGYxaWoNLfLKjh2FDc319R1Tde21McTN1fXJLHGK8V2uWW327Far0iimHGSxl3r5SD48vpKVS7YXl3xuj/Qdx1dJy7ENEq4ub3hVNeyQQY3sLBZdugo4v3792ilWW/XvB7kYh1HMVhHmeV4Z1mUK/q2QUWKoiypW9lMiPRlTdBaLqPTNJEGhqD3TqIEeOr6FFx3ImwrK2K3dSa4OmLMMOLsjEbKKlwQpcJDJaKxEbee904aKiNIk0wYRdZilac+HciKjCSKcF4xzD3GXGSK87YCiJDoUSHOwTkXcLGXB/OV/FUQ6HVYU4d+ZBwbcBNmEsbd7e0bdrsXfvvbP/DTn34pB+EkYxhGDscjj4+PfP7FZ0RxTNeLOyHJUuauo+874kgzTgM4eX+TJOH55ZVpniiKIjBaNEmimdGUZc6cxAxdx/v371lv1qheESdRuHAFCLKXnta2qUVo1vJ8T2YmFNMHhlGER7AMRVlwOBzRWUaspEXuzIHdbrYcmxNlmTH0A3VTE0eab777BmMmGf6EfSrPcvIklVKiNCWOY4lzpRkaz7paYszEYCbe3N2ilOLl6YEsTSkXi7B+SxtqlEY4Y7BehPb1ZisOvrA2aq1ZrVbUtUTMlmtFfsp42e1I4oQ2rP9JssU4x8PTBx5fnvn88y9YLlcUWSZQai9NZ3Z2AmiPM5SXEoKqWjBNE/04Slw+cKY8Hh1HRKEFtesbYSYZGwRVjQvukfMePYziyszSTDif3jMMHXkuTWqH4540SoLgrUmThDd3b1F+w/Xmc+ZppFpGPD9/x/2HFxaLBYuyIHqzpR1eeHk5EEcrHu539L1ls8n49a9/zet+jzEjRVaxXa/wdkKpiAhp6/RhHT8Ppc5uzfPB4iOa48y2PL9foZ0eebfHvmcYaryZw1qfc7dac//4gf/0j//EL3/+M8qyIElyhsmwPxx5fn7m888/J4pjWWtGubw0TUPXynNmrcFbwzQnZFnGbv+Kx3N7eyd73TwT5xFFnpKlEjs7HY989913/OVf/WVwwoqbwhrhx1rniOKIthswRtZqlJR2TNNMrmPhQCqYJmGTpWlG2/U0Tc3VdkusFX0n73QW56g4ZhhGbCr//dfdSxjUCcdOzCQSySyynEiBtTNv725DBGgMAz3H1XYDxpKlKevtiqZpeXp6IYmlcfeMcJFBQ0c3jJRZfkGQtF1PmiV4K22fN7d3FHlGFGvSKAllOqD19jJYWq/XzPPI625HkzY8PT+jgnDb9S06FJ09Pj5eSqpmI4UYcRyzXlYURcY0TRwDUmIYB3b7PcXiBusMy9WCLEvxTtN3PWkWsahK+r7ndDpKc6/yeG9kGJEmbLYFbf+KV4arq7vQED/J74MMXaNI8fra4CzSKjxbjJ1x1rF7PrJabbha5RyPP/D8/B39eOLbb74nzzbc3XxOnEQMveF0aCjSK37+81/zcP/CbA9EsefD/fd4q3hz8xPKfMnf//3/nX/3v/rPWGRrKQwSihdnKUE8eXCuiP9YYuM5c8RUGG55LyMm6yxj39K1J9rTieNxz3a7wTnH+w/39P3AZrUg0hFJmnE4Nfzz739PfWq5utpK82/dME8Tb+7e8fD4NeM4sF1vQtonJk0S+rFlmEd0cC5DGNZ5GAcp2ZNiJ0+cCCtst9txd3fDclVh5xkbis66vmeahYXrESefMaHsyjnyogxORtnT53kijjRt0zCNA1mRkSYx8zwi5HzFqW2omyY4Hr0MeecQ/dVgnaNtailGiyVyOoYBjLWWsih4eX2hqZvLeWV7d8fUDyiV8/j0KGtuGKx7vJSz9T1ZlnFqRIjvh4nrmxvuHy2HQ42noCgj3r29o657/tM/fMU8HcAL5WAcLXgtgldkhWkWpSyqjDiW/du5mNOhZ5osUygvS+KcaRoo8hWnQyMFYni6aKLphmD8iKkWK8bRMg09BPdxFFnKRcZ2u2KYapS2KB1jrdwPx2lkUS5k/Ytj8tyRZ6nsQbOYQ/b7XXDzbem6iaenRxxyXu66me22CkMA4aYlSQJeYY1nHEbSTIOb8G5kGo/gJHlSVQXv3nyCn18pi4IkiUizJV999Ruq8prPP/0p33//Ha8ve7J8YrkU9773hnE40XYn6voJrWOSZE212PL5Fz8TTrc/b0/CYPlor/j49z8Gs1wwIcxMfU3fnpjHntmMgBRbWTPTti3LqmAYWuq6DoNFw29/93sckoKJo4QffnjPPItI8/0PPwgvuRTHZKwVxg44C+MwXBJ41rowTLGyt6fZ5U7vvBNBG7i9vQXniGKNc4r7+we221+xXG5omiYUXwgGoOs7Iq0lPaCjsIf92N0oSTs5X1tW65Kuaxgnw9X1EtQszD+rybIFfWfouj7sKzPVsmQcPvLwoggW5YKikAHvcrni6uqa0+lEni+Zp5rmNGCNLHvDYHh+2qFUHJIrM6jA95wdeXEu3jgP0xxZKnigiZlxNGgVoXVC103C/8s1Wb6gKCqc1Yz9jvv3J4oioywLZjOhlTzXaSYOuaizctYNKA8zO56fXplMSMnEmpfnV1CesswvgmSRl3TdyLFu0UqTpxF4xf54JEtK6QDwclZKsoTlqiDJCtI0wpiZaR5J04wsEyNEkVc0zZF+aPn008+wdg6sdYtSE9fXN2R5KmaFuKeoluK+dJYiW6O0FOzEUUQca6plSqQtbTMwzQYQjuZqteB0OGGtIs+XbCtxP3omNpstf/zjH6nrA2hHksFVsWKaG7766o88Pv/AclUQ6Zlv7j+w2S5Zr5fMpiNNb2mbjiRZ8Lf/7r/gZ3/6C/KsENyZDggjT+D3n99DfflfpcBZS3060TYnvJu5//AhOHDF3OOcJ4liPv3sM26ubvj7/+d/wM4TbdNQlP8LEPgcit3xSJEXjNPM8/MTbdPy6WfvSNMkiEcR19c3vLy8Mo4fL0fnuOiPWXf/osBBSQPg2Ql43rzEvTeRJTFlnuOAIssZtWKaDXXbUVUVcSoMh4enZ959+inbzVJy0B5ylbOoKuZpvjjQzs1+s7FYQMcp09zz8PRIsSiJEs2pPpEXGbv9gTiKSKKYq82Gpm1ZL1fkWQbeM4wDq+WCxWIhUY68II1idrsDx/0Ba+VQvFgsWC2XAVQuk0Hv5OIYRxH90BOnGXmakV7f8LrfMVmx6S+rJU3X4qzEAJ3viSO5LGgtUVqPCHnGTpeii3OM8uyYdO5jBBdkQpJkKfoc5/WepunknwfAf5pmSEOf/JofX5g8H913cayCG2+W9r8kDpw9acY9C5bnGI9MR8y/EP6iSIN3LPKcxaLEBg5hkec4Y2hGg3NtAO5PGOsxYdPweMZJGks9of0rZN09MBuBolvjwYsDR3k5rAyD8NHKYIueZ0u1KImimK478fzywjD0bK+26EjT9wN937Nar3l8fKbvhQM4jr1cTCONc7Db7ajrGrSiqpboTJNYEd8ildHWHY8f7kk/jy/FE1kiPBERstyl5coYKwdt75lDS3UUJ0irrjjzmloKMLTWwqkEkihmGIUXqJUijsCnUQCyStNx27VM88jz63OAl8tXmiQUhcTQcY4ky6RhNk1IopjtZgVIRXmsNbGKOOz2rJYr8jyD8K5Fcxyab6UIRFo5Y4kvHg+0Xcvnn33Gbrfj+XVH3w+Xcpu+7zk0JzbrFVW1oCxL/vjhK5SSQ3wVotBaa6rVkqyQZrgsy2malu1mK9PxAGYvi/IiTKtIE8cCmI10iAE4J1wdYy4HRYm/j5jZgBPmnY7FSblYlDRtLWuks3jlAnNRxKc8y0jjmL4fgsgOdpaIkrUG42Z0rJm9Ei5frEnTBONkqm+VCoxNi5ntZXChvJepUniv3VmYUPrigJSvH0+cwt/34rCex4GuPTKNDacQRf3lL3/Jw+MDDw/35Im8P2VV4VB8+/6eD49P8nlHMcY63j/cs16ueHp6pu1aqkVJrHRYNxR101AWJUprNpvNxSE09D2R0hR5jtII5DyOeH194fbuhjSRaGMcxZhZhFC0YuwHUIoojsQZEprTkxBXWiwWUmKjheV4Op2IY4kmRbFsxpydxMaQ5TnjPDJMHXY2OGQ9i2KNCyy2OItZ5MWl/fDu7o79fi/TY2PJEmGcFHnO23e3NHXL8/ML0zRdYsNpmkg8bxzop4lFUUq8LhNxJYojzDwzThN3d3dEZ0yFjsB7iizjzd1tePeF/3T/9Mits3z73becS6TGoROBZhz4cH9/EbCMsaj6FNxvCZHW7A97ZjMxz5pCQz8NOC/tucopIiUtrcPUy581TWSNTuU5si48dZLkZJxH5tnIsCoSd7LSUrzjrUQ8wdN1E/Qj11ca7xt+99X/jXmeef+DQKPj5BOW1R1d3+HMyNjP3N18Rn1qMfPvAMPLywP9MLFd3fHFZz/jP/7Hv+eXvxz4yec/JdIpxhM8Lz/es7gMvIB/4WoPS6uwU7wT3B5e3HrNUS5Hx314R37F4+OjRHAjMceWiwXGe/749Tfc3z/Kfpak9MNIXb9yfXXNh/sHhmFku9mgQoIhiiLqtsYRou6LxeWcNE8zZpqFURrJPirN5wNd21AuSoZemj2lZMkwGXGtGWtIAjdXvlcdRAkRKdI0YZwE6XA6HJmnkSyNMWYiKguKssA6z6mumaxhDGmBYerC+y+/R6QVQ9+HA39KnibgnMR+I83YjJxOp1ACUvLy8sLb21tu796QpDGnUyuNhaEd3RhDO8/Up5phmkjTnGbqaJpaCjyimMMPB7x3vPvkbWBVydniw4cHGZaGMq4kSdjvD/JniQVH0bRSKuJCec85jj/PE1VVkmUFD09P4oxL89CCuyDPU3bjgTTPhfOVxrx9d0Uce4wZqao1xsy87vbh0i/P1GpV4ZwR5mWa4Z3ndDpc9uhFVTCNPff3H8J5aiJNFYsqo1ovGXtDWg+MgyHSCXXdoLRlUaY4O1MWMd7WdOaEmTOKouJqu8aZnDyL8VpYuKvlUmKLPubu5lPaEV5fH1guVmTpiqpc8t3XX/Hv/v3f8vjwB16fD/zyV39DubxGqxiPiMfnd+iCf/FcBrXnYZIwYWXAZY2haw7U9YHd6wt2mpjnKVy2J5LwM/j03RuSNME6z29+/3sOx4ZIx3z55Z/w3fff0jQ1P/nJT2jajjTLKLJc9gctjeU60uRlQb8bsBayJAt8Y2k+b5uGIs+JshTnPVmaYyYT+LuKsihoQrvmMA4M4yiiRfh+p2kObndxc7jAF43i+FJqZq2Ih5vNmiiJGecJE/aZvh84NjXjPDJOY3AGy+eZZTnFopIBojtHEoXtap1BhWFV3/dMo2G73dI0wkirjyeKLL8MndMs5/e//71wiMeRN2/e8Pr6yidv33L35o7nlxeWqzV4xTBM5NlSXGqz4fHxmWmImEdFfRrZbCuyLEIpWdfLKubqZknXzhwPE2YSCH+Sp4zjzNCLMCnnp5nHp0eyNCUPjZ8gKKDDoWYYLWkag/OBXz6SZyXOajmvpTHrzZLNVUUcl0SxGBKMMYyjrGllKeUVh8MrVSXcvnk0cq4ylqpaUlULsiyjbXuyPMUYDSoiSeTeFSearm9QGm7vbphGS1N3jCNUpCSpoq5bcBHetVxdvcOYmSwteffuU8ZpYH94ZJonUJar62u+/MlPmM1Ikia8fXtN2xzY7w88Pr1yfX1HVa25v/+BarmmXEgiCw82FKCdn7mzpfwc05Uhpgt/22PMLHH3aWSeOooi5fmlvdzVrHEhqSX3sapaoJESrt1uL+efLCOOU153e5yXPajuWvR5bwyYlDNH1bgZac5STPNM048YhIertCaJJNX3+PgYUg9yjjkej7RNI82hidx3mqZmuVzz7Xff0XUd42xIkzRgkBbCqoxirDHiIDyn0bQizQM31VjMPFEtNVkRUa1ijO24e5vi5oi+UdSnM+P67HjPsVbTdp1wzmMo8oymOSEleynr9ZpxmJhnL+3vqWaxqIRDpxPM7AFLFJkwIGs4nRq0hu12LYPBcaIoZMAdx5KSwFussQyzJOW0iqgWK6LYoch4//0r9ann5bVmHDzTKGt/msNynbGqCjbXC6JI8/BwYP86MHRScHJzfcXQN6xiT5bnvO5e8d5SLnLOqDSrIHIJq2VF1w9Y54Kr0bFe5+BTsrRkHIR7maZKHOVpxmJR0XaOcezpuoEsK/DO8+HDB6yd2V6tmOeZrmtDEYoI9noYKRbSzK6jiGkexWRxOtG2DdZOJGloVVaefmgxDqa5xTlQWoaB1k4QxYxmwo0njnXKoqg47L8jViWb7S2n04R3kvBaLOHb7/6R//gP/8R+9x3v3zdobUBPLKoromRmNg1RZPnrv/o3lIsrfv3rXxNHGR6LVo6+6/jNb/6ZX/+bvyAvSlRwbEpfgkJHcpc4Hne8PD3TtTVtV4e7pOebb77He+G6v3tzy5/98hfs9rugraTB3JTxr/36Vwt8L7sd1skhua4bsZkaQ17m/PIXPyfLJFI09NMl/vljp965xOEyQUfEvd1ux+3t7cdLt/rYzgpcnGfeWWbjWFVLXnc7cQ46xzBO5FnKZnvF4Xjk6WXHqlpINCCwdYyZL26DM7/i/N84N3u+vL5KIUgiefdpGjkc9kyzJVKaPE0xk7ivpMihDXbzNYuquPwZtRZBKo4iYQpYae69u7sjSRJem4YslrbEs1NRa02Ry++xqiqiSC577Tgw6oi6azk2UmXvnSPNc5yzAVCbXC655/bhKD5HnP1FgDsfylz46/Nne453zvNMGidBnHKBV0Q4PH9swv3x5egcwzImcPuURDUv8d/gtju7C39c0iHsMXOJ665WK5JE3AVpEuOdNP4N1grDaZZL5kdIP9J0HByEcSxRSzlkip3WKS+OrHHCeWmuHIeBoT+Cnej7hjiOefP2HT/88AP/8I//yN31Fb/+1S/J0gxUzOFU8/zySpalEkmbDc3jM7N1GDvQDp0sBhqmcUBriINjrut7bu5uRUyepuD4iVE+I15VHA8HHp+f+OSTT0iThNnOpLkAu72DaTKgNf0wCMMiNFebaZaGYRVJ4948y0EqTShKYXM1dc31dsvQNhIxiWOur684nmqyKKbtWo6nPUkSs9u/CtTZnZuAFEWeSbzEzSyrMkycxH0TacX1dkPX1RRFwe3tDfMk73JVVRJLU1I/b72hbdvLgd45x2a9vkTmhmHg5vZWylOimNu7W8ZR3BZ4IEDNrZPSkIfnJ55eX/j0k0+53mylPVrBNM/UTS0/n7oVULeK0EqzuVqz2+8uMU0vYM7AuNFEUUzTzEEM9pd3QuL8wu1M0hgzC6cpSZNQPqBompo0T+iHnmHwpHEsh1ml8U7cLbM1GGeIkww7zxgvrtlxnkjSJLgAFFme4F0UmhJHcb4YE2IGCUrFeGeF8xAKM/7FRDfEMv6HXz/+dwQU7pjHkb5rOJ5eOR32TONIUUgbsXMSBbq93pBlcsn9/od7vvr6W6w1/OqXPwel+eHDB66urojSDLSmLEoWeUGkxMV95nw1bSOHhSxjGqdwSJfYZ15IOUy5qFAepmkOrbdLhk5ayJz3tG0n8dCwfZwvlLOZBbAcyRRZBd5qksA4yiCgLMsQ6ZGih3GaOLUtTdtJg7QzgXfycf85H5KTKKbIMmlLRQ5p4so5XdbAfLOh6zvu7m7xTooFfvjhg4iDsXBEu7aj7TsBWUeafpg57A+kaUaSJtR1jY407z55J+6XwO98f//Adi1w/eV6RdMLON2cROh9eHxiWS0DpiClKhe0XcsYBIs8L3l4fGJ7tWVVrbDWkOUp1hriWNM0A9ZZ8kVBmiSXZ7xIcqZxxtiZKI0usGytI3mutQwMjHeBsSrFNOM4EkWarIhF5A8cNDNNWA/KK5Q3JNlMmkwYs6dpOqrFhje3N9y/f2FRJCSxp1oW7I8PfPH5n4Ivudq+49Q84X3P/f13FMWKt3ef8e1XX/HLP/tztOr4x3/4b6gW13z201/ikUvH+V0WZ/nZ9XweKkUXuDl8jL0rwIwDbXNkf3ilbU7M4yiMroCXWFUVV5tlcGRlfPf993z7/Q9Y6/n1n/8K6ywf3r/nzds3OA9JlpEkaWC7eolGpwmraMWxrnHOkWc50zzJ3jdO6GlmsSjRcRJecEXXNLzu9nz++ScyZfby/bWhXEIH1MmZ5TnPRoo8wqobxwk2lJ51XUs/jjKACnD0ru+ZreF4qmmGFmPls3NB4EnSWHAl08Tknfi2nMOZmdHLeaksS/b7HX03hvIkGfKY4Jb//rvv2Ww30soeaZquwytFlqTMzuKVBiIWiwXHw4FxmplsLcMVJQ7XJJJ3q2kaiqLk+vqGYRrZ7XbMRtAnWZYxW8OhPmGsJU0SrpZb5mmi6zquthuU8mR5Sp6ldMNwObecTieyLCVOtPxMzCzcqKFHRTF3d9dEsbtELo0NqZGx5/buM4ah43SSBm8dRfRtRxqnlKWUzuT5gixLqE+vRLHGWn8ZQMzzhFcSb0zThLyQcqu+78kyaVz0dmK/f8HMljRZEEcZKMtm9QbtKqJIoSOF1uKY+c//N/8HrrZv+fu//w8cmxainrd37xiGkb7f0w0H/u4//JdSIBEX5OWKP/v1Fc478EHFJ0Tgg69IOM5nB9+P3iIP3s6YsaWpD+z3r1K6l2akqWKeZvqupSoL9gdhCeZZztdff8N+f6AoC6rFkn/653+m7TqWqyXf//BAW59Yr1dsVhXai8hRFAXWzhhnUBoWRYkxsn56J4PuJEnYH/YkSSosvHJBVhS4Tkot3n3yhtlYoljTjQPjWRjX4u5N0xRv7GWQbZyVvSkkjs4mhyhOULGIe9Y72r5jCvzUYegZrfB7Y6XJ0pR5HoXNWdcXfvhZ2FEoEWm0ZhpmnIWbmxs5wyvFNArfMs+yyzn6w/0D948POOtYr9dsN1usMVxdXRPHMQ/2Eefg+8fvAR+K3Qz1caatHff3B9pmBq847DvKRcyi0qy3C7ZXFSq2XN9siOI9zw8dx7pjscwp85xpshRlHpqULavlMiAwepybZSiQRaTpivvHl1BcF2GNND8nccE8+7DnzxRFQtvU3L25YVFlvL6+Mk8idBdFzuHQCOYljYAIaxRJmiOJHU8UJ8RJxhRaVNMkJi9y+k4cYsM4opSUIeRZzvFQ03UzfS9sbaUSbm9v6bqBfhwoi4Q486jIcqpfSKI1h+OOw+EFFXmqdYJ1Hd//8Ef+7j/81xDQT4+PzyyqnKvrDdb2lMUb9q8N19ef8Bf/5q/55JN3F9HuDFq5ZHAvw6kzLgJQXs71ZqZrW15enri9uWaw4uiKtGaz3qDQvL4+0XYd797cUuYZdr0CFO8/fEChWJQLTm3HbK2crZTwWucgvud5ilaKtu8gUiyXS6ZpYghnqGme0Ykh9po8S+XsZAxFnn+MkF/OZJI+sJn8nrOx4qpu23CN82FgmjH2gyTmtLSsGmMupTDVakXbd+zqI/04YIxjrA3OJTyMNUWZ0DQjZbZgntwFMQJSFimsRXHNmllKHEFTFBn7/Z5xHHh9FSTENInJIooksTB1E9dXK375yxXjOPP88ny5v3ukxXaehRW6qAqs0eiQmDk0J9lbdBKQM0p4dUmE94qumfAo5onw54lZrSuKMiXLYJp6lLa0XU2eJ7x9t6XvXqhPPR/e33P/4YnNekFRxiRdR1UtcX5GKfk1aaapFiXLqpLhKROLRU5eRqyWUiaqVcHuuUcGsQ2LaksUQ5rkjKMhTTJaOpq643RsUVoRRaIfdO1Ikow0dYexlqZuZS9JTzg8N9fXVFVFU7eMwXQyG0vXd2zSNdZaunYQo9MyI0uVoI9Q1KcjwzDQNjI4XK9X1M2B4+kFZz2b6oanx++YZhPiyTNZ3PL09A1Zarh7s+LDfc1sRn7y5afEsWe5lNLUrLDMU0Ndz/xf/s//J371y3/LJ598xm9/+1uatqapG/Zvb4jTgkjH4losU+4f3mPMRBwlHA4t8+wFyxBrtE4Zeolin5+77XaDwpAmmjSJWK+WXF9vyfLof3Rn+5/79a8W+LI0vUypojhFGuVnTk3H+/f3/Pmf/wIfYMI2bHzng885GnqOd54nMQCLhbQyOvsvBb7zrxNouqNaVBgrLIw8y1CxXLjHYaLMhV+QpTm///1XdHXDX/6bPyPSXBwXh/2RcRyJ45iqqgJbw7M/nXh5fWWxWFz4edM40nXSrrQopRgj+dGhWaZu2QUkemYFSiMvWOspyoKiWlDXNWVZUlUV+/2ePM9JtDQ/nsW3NEsZh1F+ULFsQl9+9jmDmTmcjuyPx8COsuRLaQVTeIaxv8RWzhdblJKLrvro2vvx5xqFOLA4+cylaXiaJ5yx5Hl+iSyeIdVxnF5+FlVV8fj4gFjpo2D79YFVwyXGdb4EnZ+Fc2x3DBuHNZZx7AWoPEbhvyObgdYxs7GXSV2kYnQUI6ZJ2eSyLGcKUyUArYSV45xnNh7nlDhyEnlm5NcZvJVLW1sLQ+Dzzz/n6fGJw/6Ic9LymyQJcZrwx6+/4evvf8DOE+8+/YR+mOj7XjgH08zjwwOb9Yp1VaGU4nqzph8GccAEh9k5QmtBOE0IZHycpzAN1+x2r2yvNiECKrFOY20QtsSlmGQp1oGdgy26KGVxDY1t1hg2203gfngI9uAkTSDEAZtTLReNqWcYWqZpQHUypVuE1ucI4T4VRQ5e/gzX19fsdweGYbi0HB72B96+veXqakt9anh4eLxMo5PAj6zrPjBnlPDR5pksz+n7kdnMsrBvNlSLBd4a4jRmHmcipbjZbhhnE6DHKYfjntnNAgueZ5w1tJ3EXfqh5/H5KRyA5AI4DAOb9YqyyJmnmePxQJzEqEmRFhJ1Ho0Rl5GFLEkZQ9mFlM5kFxs2CuIkwXuBh8/uYwxFh3ckiiLiLMZOYimPdMzsZqZpIMvTIC7KsMEr0HGEnxBhPric4iSiqWuiQRyW02Qu8fp5lrVof9gxzRNRkv/IRRGmvf9DbS9wBD3nplzwzuDMTNseeH594ng4kMZxcNxpjsc9eZYwjVFo60w5nRr++NVXaK1ZLNY0bceHD/fEcUxRVjw8/J48y1iWC0DKCay3pFFMZOTPlSThnR8kBhzHCX0vzhpxqTriRKDBXd9xcyMN2dYautDUeY6lg8QetJd1DKUYfB9cw/KuSIO14vrmRhyj0yTtl/PMbr9nnCfGaWbuxXEWaXFO5lkmfKPg5rTKStuhs3Lo14rn5+fLoCLPc7q2ZbVaBRRDcil3OdUnVnrNPE3cXN+gpxFrPdWypK6l0TTGc25rXK+WRAqGXhra15sVX/zkSw77A+M0Mu13eMQN/PT6ImuIh9ura7xztG3DdrsSTkqeyh41DKILOcfxdGSzXl34OEVZsjscKMsCZy1N3Qh/zThsJPEXY+fAspEW5SROw6OlgiAh0VdrHEkcQZaEuKtw3Lz9uGZba1BoiKE+ndBkxHFGHBV4m1LkKZ98UpAXCSDC4evrC+/ufs3Pfvrn/O73ntfnjqyYuL27IorgeNwxG8XX3/yG9/dfEStNnl2zffMZ5WIdRHB9OYucixrO+4Z3Z2YfZ78fIGJV2+zZ7Z85ng4kURTekZjDfkeRpxgjU/giLzgeD/zxj18TRVI29LLb8/z0RJomHE8t3373nuWiZLNagz8H/0JZlRNvRlHK3jsOI1pHFHlB24qYF8VSepFlsp7VTS37qBPoejv09OOI98FtoSPBmYyCY4iiOOzNKsQDZxHhgc12Q5KIey6N5OLbDT3H5sTsxBHonSMOzYWr5Rod4sbWyc81Dk2wZjZkiyXTOOKcFBwdD0c0ir7u2G7XGGNZrVY8vrzw4cMHxmm6cHyMMbz79BO+++47VvmSfhhoupaszLm7vRNRsmlx1nHYH0QULRegNKvNGlXXbDYSz1VaAOD70/HS5m2NiC3zOFB7w9u3t0SxxJb2+0OIP8LLywtpmjLbiZf9kSLPeX19FceWc1g7M8+GzfYKYybq+kjf9hTFQgS1D490fct6vaQoKontJgXewzw7Fgtp9J6tJc0SFmUpl1EjA06tZP1KkoRIRzinaNspnIkSFsuMqlrRNDXGasrCc3u7RGvFcrXAzSnvH/7INI8471htFty9uaEsFijtefPmU9LU8vKypx974iTnanvL4XSiPjkWSxnuiNM/lXVd1O/zthLYQx9d4Up5UPLuGDNjxgFnRoo85dzabI2ck62zJElCmka0bcw6cEOPJ1mXsrzgeDwJLiPPadpWyr0UpHFMlqT0o/BMj20tRS7zTNcJ58g6gfsrL+U/WZ4xjD1t17K9upYzo9Ykacxut+f29oZqueJwPNGH0j0PDH1PlsT0vaHMCiKtpVU8sK/7vsMrpHgvDI+8kmbUpm85NTU2NA+7gADQSjqx4jhCqwxnxXFrneNCCUDKQrT3REUURD1N33YURSFNs5FmvVqR5wXeOx4fn2j7jmqxwhhDUYg4HmtJG+x2rzjneHh6xFofzo7CUvPWk2Uxb99eczrVlGXO7e0WFTmaumaaJ47HGuNmbm8j3ry5ZR5esPbIy/MT+Jh3726kCRdLXqToCPqhwdiJRZWxrEqKIuf1dU+SerJccX21RClI0wVtM3E89HRtRxSLqFUUFeM4Uy5KIp3Q9ye6tud0akjTGO8tdhCe3zxNWOepTzK4P51q3n0Cy2XFcrkULuksZ9i2NQxDy9W1CGFmninKnCRNiRNFWZZcXVcMYyvuxGGgnwYs8mfp24Gq3JKmBTqyUiqjAEZ++7u/5/2HP7Dff+Dh4Q8kqebqpiRJLZM5oiPD3/zNX/L23Zf89E9+HpJW4tT86uuv2Ww2XF/dyb6FAuVRkboYLJq64eH+PfM0cTgcsMZQ183FAXW1WfNv//qv+O3vfot/8eKOG0eqqqQoVux2O6yVSP00G2FVq0gGnX2PjghYrZhxmmn7nnE2LMslh6MMSs7t0U03YJzi+iqTiHHABS2rxeWujNIcjieyJCNNc8auw+MYxvFf3hu1pixFRDnrA8bO4GVwm+YFaEUbise6oZd70uSxVvPSTCgNm60mSQq8V2yvFkRRzHFvw1BZylScs6EERPAMWZ6hQnR+GEQ0FP66CHzTNLFcLuh7QVkMw8w0yv1T7vKGOIlkMBsGRApF147kOSzK6nIGiuOY4/Ek6QnrUJELyRxpjr+63pDkmjiJKIqMcZSfUZ5FNM3IsBtZryVuenu7YbtZMw3weH+SAWBo0t7vdhg3UZYpq2VFmieCb3GWskx5c7fBe8/bN7dEsaKuayINXhmUMqH0z9O2DafTkZubK5arBX03hTtdwm0o4RPGZ8Lp0BGFs73wd2MWhZRbtU3HOAz0XU+1WJLnC5I4I8lS2VdnRX3asd6WqFijlKapTyyqZXDWTmRZwXqzCp/LQJYJGimOHW/efMk//L++oT4OHE87DvsjTduCUrT9kc+/eEPbHpnGDoVm99qj8Ny/f880ONJsxe3t57y8Vnz77T/grAcf8/qyY//6SNuNLJeCBTC25sPDH+n6htvbT9BqyTQIvi2KS6Q4h6CTaFbLikWZobCkiRIhNk9D0s3+fxbd/md8/asFvjiOQ95fxIdhnoh1TJzkHE4NHx6fuNluMHYK/CIDqACW5+KIgLMIFF0u08bMEH1sdgUuhz25XElpQREuYAel6MeZSEe8vB5E8R8EtjnNlseXHfdPL7y53RIlCjTkZcZkRqZxZjIzQ9/z7fc/sD+duLq6gpD9b/sO5RVmkklCmqSsVyu8c1TVgsPhEKJXKTe3V8HKKZfOcwOmUpo8T2maDuU88zgS6egifhlnZNONFUVVAALaX1bSgGq84en5KbTU5DTdST5HY5itIk1SZmNAx/TjjI4FHm2NkTY474kjOSD4MGlMU5ma4CSCaecJlSSkwVkVK0WeJShnWS8rZmtpQxwizdLg2JzpmpNwwZxF45lngcQnsUaFn3c/dLKYGYOKhJcTxRGrtdR2m1kWj2VVUpY5RS4MrCzN6MdBnAs6AhXjnGWYZoEpB86Y89Kq6cILBErKQpCLv3EK56R9VnsvQq+Grmt4fLrndNyDFzdKpMUhuigL0qRiu90QJzGnuuaPX3/FOM7cXG8pypLf/OY3rFYrqpUcoLZXVyQoEq1RWhiKVbCWt+Eg5j3M1jEbR9+25HkOISJVVUuaumG3P/Dm3VvyeQTn8dYyDNK2K63PEjFUSoNzGO/C82AlljBL4QTKMYw9ZbEQ1+BsMEoxzRN129K0vXwQ+ABulffKGiMTHWdD+2HgKylCO9mRw34PSlEWubDPQixqvz+QJum/cIk559jtRETpuoHt9oqmrun6jjhKAkOx5u7NHVVRygVXa+4/3EuLsBYbdJLKc7c77PFAP06kaUGZLUjSVBwgzQnrDatVRRTFvLy8sqy2LKsK56Tp83g6SvlB05BkKUmRSdtvcJTiYZ4mxN3y8XARhdYycamaCwdkGEfhZqQp1aIkSaNL/N2Fg7zxJlizzyxMYbDNVlhc3on4mufC61SAmSZp6vtRbP3sOJb1xRBlKbO16ETJRSMMevkRreV88VIgThgfYunOgLP0TU0aKeJII3B/G36GMgioFgVNLUJxnuX8/g9fARHLqsI6x/3DM1GUEMcJ3373Hrznk7cL4iRmmga8ccLG9ARHoHyvwxDcC4gwnZBwOBzIi4L1Zov2YMzEfn/k9voakMtU1/fi6vGCfY90JHE360BrrBcQOiFWfY6R6VhKhMZhxONpu45+Gqi7htnM2FDWkSYxOEscZyLABlbsbOWfO+uYQglBe6zZbNZopahPDUPbU5UleVbQDyNKR/zmd78LDqKC1XrN09Mjd2/uaMeeYlEwTdI6ulwtuLq6kkKPuqHre7pBGuaKosBYx7pc0NQNm+2WfhzRUUTddCJMhZhh03fYaQJv+OTTN0RJzGKxZPe6o2kavPUc65pFmdMPHXV34nA8oZSWdtZpIilyFsuK0Qo3pzEtSSSFJFleCDfQOxHsrMVpKXBxF1+YD+tFTKgdkwFSONCecRHWOeI0Y+osr8dXimLB3W2JzjzOQFosONSvHE/fE+mYzfaaOEm5vb3mq68j0qTil7/4gqeXH3h+OTAbTZ6tUFh++O4bquWSX/zyJx8dCR50JK7ki0/PnYVxf+GKBWIVzs5gLX1bU6RakAbe4ZwijZPLGrEoS2mI04okjfnuh+/RccoiyZmd4fH5mSiO8V5JZNfDZrki1pppnrHeYGaHDQLvMM4kWY4LlxmtNAZLVhS0bY2KIq6vr+W9SxKMtTw8vrCoFhjr6HYHcdopcTwnsXzPaZIQqQjjHP3YX0Df0zyjbUSsNM6PdP2IB47tkWEcGacJM4VzXGiKztIYY2WvGUcZ1MknqcXFbwQH0nYS490E0QakQGSxkMvb0I+Mwws/3H+QCLGCRVURax1YSAUez7E+st8duLm5JgtOoLbpMON8Ya8lSco8T1hvpLl0HHHKsj/uqWvhbY5mDp+TZRzH0BKo2ayvef/+nlNTU5YLplFc5M6DcQ43j6HZuKNpW9q+Z1EtKMqCYUipFiuGbiLLxb01jDPjscYHV6t1DnzE0E+cTg1JkkpR16KiHwbevXtHHLhV49ihVcI8DfTdhPMzm8360hI+jj14hbEjuVIslyVxAsMYM8w9URozuQNuHvnw/EiZr0CPDNOBaR7ZXF3x4eEPfPfNB15evifLIybTcjy98smnbzmeHjF2Zuw9SVbxt3/7v+OLL3+OUtJm6bwgEuJQOqIUoagpJGUQ11bftVgzMfY9+9dn3r59EwrqIhSG5XLJqT4xm5E3d9ds1ivmaeDm5pr7+3uGcSTPC2Zr6YaeKEoERaE06IC/iOS/ZeyMirQ0eyvPNM+Mk8E3nbS+ay3FZlax3+3QsTzH4zhyPB5lKLpeoZTiVNfc3Nzw/Py1FNIocfjP00SaivNII0VCwnmUIUaSJjR9Rz8OjJOcC1CKslzQjQOzM9Je68zFfZrGKZFSLJdyjhxGQSN4dx6U+0tqyDlx63klTND1aiV7aCwc7WmeKRcLDocTxolrVQccx9XVFXhh9z09vfDDD98zOUMcJTLEOx6QKvHAqy0Kuq5hu12S5TGv+1densVZvqgyhn7EOou3Dc51XN9s+fTzt8IkezzRdB1R5FmvStrmRBRrtpsVOspZb1YYM2LMyHq9IMsikiRic7VkCm7+OBH2ZpxEUuozO/b7ZxaLPMTZFH0/ARHbzZJquaAfWqz1gYsubLZhnIhmOX9No2HOLN3UcDrVLKsN6/Wapm1AeXSUMM8Ndd2w2V5R5Cmb9YqizJimkQ8Pj0yjoSwXbLcV1s+c6j1aeYZRYU1P14rrz9iJLFlwc6O42qZE0RVPLxO3t1csqoSyithsVkRph5stjw/f8PJ64C/+4q8BzYcPH3h6euZnf/or4kijVWhJLjN2zy+Be2d5fnllni1d08i5Eil3wzvSNOLm5poij4kiiGMRgYuAXTDW8tU3X7NcrvFq5mV/wBjHHPYOtJRZGOtQynJqpYl1u9mEM7i0rCbG0fUihDvv5BxpDNJ5Y/HIXTeKIkFhOYsxjqIspVwOeP/+A19++aW4Y73c/dM0YZ4mKVs0hnPsP8kyMIbX/Y6mbxhncefqWPHpTzL2uwHvIqqlnOdXyxVd13A4NPSdou9GtI4FN+Bk7/AO+mGkKCKc9cRpzHotpSxDPzFNlrJcEMVKRPnIsVxJAZu1wpBLs4Qizjgc9qJpWCPILCdDMbzDWcs0yLk/SwpUpC6DvGKRS8ll4BUvlxXTNJBn4no300RzaqjbDmNitFbMMxwPM8tlRpIYtIblKmW5ukarBKXF3NI0DUlSkCVyjykyiSFHgVt5d3tLFGmmWVh3Ck/dHIQfu1hhraKpG5bLFWkaMQ6DsKNni0YxDj3j2AtXe55pmp7TsaFaZpSltE5Xyw2H/Z7TqWZRlKRJwqh7+qFjHCfevv2UQpW8vL5w2nc4k/P0IMNL5T1oy2E/kuUpSZKFn8uONE24vtnivWIce5I4YZpHVqs1cVSyP+xYr7cURc5sZsax43SaSNNYynpSEdWHVtb15bpgHFsm88g339bgM4p8g51Tbq5XaG0YxhfyYoLZ8Pz6LU9Pf2Q2HeP0wnb9GWm2pukOxMk1ShV4pO05UjAPA8o7Yi2xde8sbdfw9u0tddP8/xbf/id8/asFPn8Gyiq5dM7TTJTJ5TUvcnavr9xebS8i3Xmw58JUKoqSi2g3TR9jvHKREaaYPV+SQ5zTWnH2ZVlGHqYXdX2SaKdxWCUP7SnY24cAKFc65ptvv+NquyRKYqI4oqqqEBs50HU9T8/PFzZMFEUcDocL085Ms8Sdqkqa0YLYkCRyIV+tlpeiiB/HRs92/c1GAMJaabbbLc/Pz+wP+xCNlaIAM4htvGkbaeOtZJJlneX9+/cM08gwjqzXwjGbnUVHwmMaBnHsDYPE6pSWCMn584sChw2Eo0bgGgIXV18URWRpypvbOx4eHhjnidVqJcKZczRh6nP+3qZpCoKHJY61CGlGXGha+3DgkintOZZ9/n4hNCKdm8cQgSvLEoZ+JEnS4CxwGOtCC6wNoGZhPc3GoyMf3FKxRI68Cgw6gzXCR3HuYwGBRwkjJD4LsBPjKG3EeZKBjmm7jrLISRJN2zXiPrQz//Sb3wBaLLxZyX/6x38OjEPP7373Bzzwyd2b4EySpj+0OGWcteS58JWarmMaxeUxqJ7dbk9eymR8WS1lojUPl9jLbITD1XUtyiusmVBhGuSsbBjnggSlZXN1TsCuTjlWmw1pkoTPQthtx6ahaVtGMzN3RizjWqJa6/Wa0+mEdRaLxThN5BzeWxaLReCjNIFJMZIlKc2p4fb2hnEy6Cjm+x8+0A0DdV1zc33N8Xjg3SefsDseSAOLrw2H2OWiwBmJtmehDOTMavzk00+ZxpGXJ2EBRt5RLSv6aaTpQiR+uUTrKLiRlhIXc+I6PJ5qtI6ZzEzdNqxWFR5pgU2yFD1I+6Hw9Czea8wszpQ5OOucmcCHgYbiIpQ676RYxTriWJNliUSYsYiJLDxzAQtA8OiM80Ti5dB+di7LdFQaRY2bJcJgLbOZSJKEfhwv78w5dn++CFdVRV6WwqZQ9iKsKP8RcH5xQZ9j+W5m6GsUjuNuJ7HjspALkie0XXNxX1eLirvbGzbrNdM0cQgc0rwouX94xIIwgaaRJAsCpRL3rBQtCyM1SVKM9TRth0MiXlmek8Yxrv9YruOciHDTOJIlCdZM7F53vHn7lh8+3F9ihwBd15MkEpMtchmOaK3x50O+c8HhmNCPE9ZBFEc0rQhoNjQWaqWIlAhRSYgSOysOQ+GPimDqrIiVSRIzjQOJlsh/nqXEkSaJEqpKineafcPT84tEUXVEWS4Yup5FXkoU2ApW4Xg8sVxWFKXA+o+HIzh1WSOTJJEYSaJhJwK9c44PD/fI0EzKR5IweBnGkUgpNpsNHx6eAhxaDl1REjM7xzQMUk6gFC+7HXXTfoxNuplTfZICIhXYrU6+7+VyJQfsRFw4s5EIrtbS3mzmiUjLYEdi+RKz8c4QEwUXt7CaQMq6XGrFlVPPwEzT1QLS37fMg2e92TCZE6iIKPF4Ov77//hf89/93f+Vrt/x7beOH95/y9XNhiyvadoGa+F4GPg3f/lf8Ms/+0vZy5QMIkAGCMrr4DxSH91H53OKnenaI1pZdq+vZEmMLoXXGWn5uURRRNd1wnepSq7MlvVqSd/37F53xFFMmuUcHh+xToYj0zSTpBnWCFjbGistxFEc4lZykemHMbiO5DySZxl910ucLBJIf9v29O0Ly+WCJI6lAfTNHd99/56u65mMMK6GfkAXOXV9Yr1cEsfSiJpEItAZ65iMFHzM0yyXjygiTlNej0dU4OYq50liKdZSSFmTMQbjLGqamMIwUyOoE609cRjUnsuKyrKkLApiHbEopeH5VEvLcBrOVFmehQGHgULxcP9I10k5Whzem6Hv6bseTRQSGx9jyZOdWSxLbC3C5fPzM8M44p04x9NQzuS9YC+KXFrMX/eHgI4wRInBeE992BMngk/RCk5tQz/KuqzjSNzb08g0DLx//wPX19ckaULfz5jJEUcy+JVymQMozfF4whhL2x7p+4GuGyjLPJwvS5yxdF3ParUNSY8dUmoAQ99hvWFzXeEsfPEnd0SRZhh6Xl5PTMPHwfnD4wx4YpWRWCti12Xw43l++Y6Hp+9QUc/37x9I0pjVOmezTUkzzapK+Nmf/BVdp1mvriQ5gQcM3//wFXGS8PmnX4JISOIsIriqFZxONU+P98zjyPFwkDP5JBB5gDd3t/z0T/6E/+a//e+Etdg03N1csV6t5CzctOAg0Smvu2dAM02GaTJ45Yi1IopT0BHDODFNhmpZ4ZzndXfAWk/T9iyIyIs4lFMIemS5rC4uwtnaEE2VIXYSy75+PB4ZxkH2Mi9t1DqKmMaRRXkueRNHUxxJEmjoew61uP6m0O7slWI4nfB4bIg0y34TgXVURSnRQ2Pp+5GhH0CJg0mhiJQmSSR+rhGAe5HnpFFMWZS0Q4vHsVhUKCKen59p2oY0T4l0zDSMbDYbTqcj67WsT7/97W+5e/uWYb8DJev6qXmAsJcXRUFVLVguK45HYYcXeUFRjPTDLDzhImUYLPXRsrkqmCdPXT9SLlLWm4w83wqveGjxSCKn68VpB0t2uxfWa/lZX11tiCJN19YYa5gnh3cJq3XJslpJ8cI08vbNG6JIcdiLOwkn3OhhHFiu5Weileb56ZWyLEmShOurK66urmmahnmWYbkL5WyHozCeb+7ugDWH/R4zwdDDSU0oBpyfiRMt4o7KSNOEsqjo+4k0k0KkPNPkacF28yW/6R6pjzuOpxZn3tM0HW1bk6SKL754h5kHhqHGvtYob3h6eGKeYbm4YXv9CV99NXE69lSLLa8v77m52tLWNUmakaYxSo/cP35L19Xc3n2CdRnTqLDKU2Q5pnd45Yl0xGpZURYp3k0s8pTr7Zo8E+ZammX8x3/4jzRNy+2bdxzrF4ZplBL5wI32CEJEoZitIU8TnNbsjidOdU3TtILouboSd1sUh/SdBy2Gj/PpN0szcat72Rf6qQfyy336eDwKuihNg7tNuLOzMUTaB/SHlJoN48jL645jKwN9G3jqxggP9vpOsVzKPXKePXmqiPSK+rBnHPwlbWaMYVEtAEFKbYsNSgkWZrGQQpYo6qRd18r30/eGYlHgnKRzzry5ru0Yp4nt9RodT5jZ0LcTzjvWmyXeOxbVgpvrO6rFkrbt5Lwaq3DWnlivlqRpjHPiACzLgjdvb+m6jtdXKbOKY1gvc6rVgsWi4HA4oFRKpCM+fDjy5s2C9VqY9c6OxFGCEa1W0EJ2JI9yxrHH2hkQwe90knuqdZYulDkWRYFSMctqzdAZtutlYE0btNcoNFVZsihKVARZWQQdxHA8tJRlSRRJumOaeo7Hhmq5IIoUbVuT5znX19ehjAUp7rAeazzeKYyBWUybzKNFa0eaSwx4Gi3z7ImcZ55GkqTF2oHtdoH3hvc/fMM8VLw81/Sd4f79A1dX2/D+5mRZTF6kTFMv5oxyRdM2jNPEQumAX+kxxhLHjji55hc//zMW5Yr94ZHj8XuSZIPWjv3he071I1keM88HjidPkrxId0PuKLIbtC6JlLjTr9ZLjDFkaUaWZ6xWoketVyueX57+vwtv/xO//tUC3zkmZs5xjSSRrd8YDvs9m+2Kvu/puwHh3MjJWUSRc9vqx8vn+aKb5/klOvXj1t3zv3th8P1INCqLgvZ4witpE7WBZ7NarVBxTNs2ZInm5WXH55+9uViblVLkecEfvvqa1/0eHUtU9vn5OURSNdZKW+lyuRQmXxzTdR11XePtzHK5xHt/ESCLopAp3DBQlh8B/qvlSmJ6s+HTTz8VG3/bXr7vM49OKUXbtuRZhibl9VX4McvViu7xUUDEScrcdyRZTJamNE1DFKkAb08Zp+ljJNYYyuXyIpR+bA+0lz/bj7/GaYKzQwmIkpj2dBKmU5oGgWQI+Xy5GGmtwuFcygOmaSIhCdOF6SIiGmNJYkWSxGSZtCpFcYQmJApDtFcadTymH5gmaYpDKRIlkbt5lomODhFe7wgT1ghjzy1fQUjWMcViQdO2+AC6REVEQRTrug6tJNKaJMI1SpOENIkwZmK5qjgejxhjyPOcNEn5cP8ICvJiwcurxIKW1SIAviXiMPcj51r7aRhIcmkt8l4uet46llVF27WcTieur6+Jk4QkNXhv+f67H/jskzdoFdG2A/M0gxa4dRwOMVkidvbZSYOgjkSYMmaWC7RW4B3jJBevU1MzThIrnsyZPaklSocwFeu6FmE2Eku09V7aj3BEsbD+rrdXUvAyznRdz2a1QuuYtu1p2o5vvvsOay1XV1s22w1Kw83dDc+HHWme8vD8QBLHLLdrFosFQ9vTNi273Z4oErdSFOztSkmr1zCNTEZi5MLS8eFZn5n9hHcBKG9n8qJgtzvQdQNdLw7Q7WbF8SQXuJfdK3GWYr2jGwbysqAsS/pxoq5PLIocY0biNCFLU+JYBDU7u8BQEyHNh2jdmSnlRc0Kzl15T8/Mr76XiNo8G4ydKchRCtbr1WXAAQrjLPM4EUeyJrhQcnJ2PJ0bX61xUrLhFDrEQV5e73l4/J5/86u/RulEYlLooFnIz9c7x/PLI317omlPtG17cZZaY8iSmD/781/x+PTC999+R9u04sRKEq6utjw9veCcp1wsadqe2Ti8ViF6LZfLsiguzM2+G2QdRlE3HW3fS8tqLHiEM3JBhYmviOEFbdPQDwNZmlDkKce24VZ5TscjQz+ClmIk5WVaba0V15USIHmsNUmW0vU9ddcyz4ZunEBp0iyXpmxrxYXmHVrHF9ZnUeRkWUrb99JmawGviLSmSBJ0YHl679Eoyjw8r3hiosvzMBuJ5q7Wa6w1bLYrIiXi84f7B/aHI10/XIZZTd0yjSNRkgrqwYkDoe97aTBNEpq2Zb/fUzeNAJ6jhPVqJRzaPJVpenB0ve6PxHHENM7oOGMylqHtUErRDQPRKSJOEsZpJooj0JohOBZVJCwmEbM8s52ZraWM5Peew1qqI8U0jkHwiEnihOjyjoiZVD5ffdmznbNYrwKWYSRi5PFlj0KjNTTtidNpj1aaZbXmdHoOCA2LJqcfa17332OpMe7I1988sFwuWK40mytI44JP3t7xF7/+KxbVHYkq0V4Dlnls+eNXv+VXv/gVabIIb8dZ2BNHkHeex6cH+ramaU/0XSfO3rAvpknEX/z6z7h/fGJ/2HM8nfjUvSHPMq6vr3h8fMIaR7ksONWdlD95T9sP4GTgVuQ5KnAi27Zltd1KjPtU0w0jbTeAilE6IsmSUAjmBRXqNVESY0M5wenUsCgyokgzmplTXcvZycPESBxF2HkmS1K8d4zzwDhNxCqWWK6Cum2kSMBYGYopcQQb78CG8pRw7srS5JLJVEqKbi5FaFYub2ma4K3BOYlhZ3lOVS2Jk5hx6HHOkMzCKj0eDzgcZVnQDwPr9QrvDFdXGx4en3nZ7ZgDT7Msctmj4xQTWRZVRRrcWV3XkRU5RIpu6NgdDvTjKGesNCWJUz79/DP+8Ic/iOCHD+cTKTiLk4j1omKyjrrrGENpzqndo5RiWVW87PYS7bOOOE0F9K4FaXC1ucIZy+lwYh4sOI3xM+PYs1xWVNUCpTSvuyOLqiDPM6qqoqoqcRo6T9f1wltuGpyTtXCz2fzojBnTdRNpAkobXp6f2Wy29N1I300kcc5ms6EoU4ahZ7HIiCON0hPex7w8DYHVPFAUG9JcUZYp7z65xbmZ65sKazrK7ZIsc/zTP/8d5WLLtz98z1//9X/O1faG3//h9wz9wJu3n1ImMSBFCmke07YHGRQR8/p6wsxWhpNK4ZTieGoBT7VI+ezTNxSLBLSIXDJgSCmKG3744QdAkZcFbd8zz4IncWHgHMfn5KoS8SfSwcE1yv3Ci5N7mg22qSnLAmsNSRiQpanE7NI041Q3tH1PtVoxjxNt21I3LSqSSPQ0icNzWVXkaXo5V1srjqIky9Fa0Y2SLuiGgckYGfCGQbo7r33IYDBWmixOIPLgpODreDwGp5RE6NPwzHrrcN6Gwq+EJIq4vpJnTWk5f99cXzOGssB+HKQQZJrQyopbpygkVjoM1KcTn33xOcMwUlVVuDdk5EXBZi3rUKQ10zRzfX0tCYz9K3VTs6hifvKzWxaVsMvGwbBZ3fD4cOK7b5/42S/uWK4joigFrxnHjqbdiR/aepYrEQ1Ppz1xLOgUuf/NnBnCMgiQwe16U5BEKcUiQXlFU7d4py/4oNVyQZ5noXkzIdIpj8+veC+lZuditg8ffsBYy831FShDmiTSMF+U4V4iDttpmphmwzj4MHwxmHkgzSNhKqcxbSO8sThJePvmDq0cZu5Rleb19ZEk1VTVktfXF8qyYllVeG95ev5AWeRUVU6R5yTpuSQM1qslxpxoWsdsDkSqRCtHniasKnFkwoACXnbf8eHht1hvmO2OzfozZhNjnUbrJc5rlIrQeOw8kUQykDkbL3y4+x0OB/aHE1le0nY9T6+vggHysgeeB3Vnd3Q3TAzzRPvaMo0Sy1R4NJo4Stis1nLP8mLISeJIjk7WUGY51aKkDbzDNBX8VVPXl2SLmAZ6VsuKaZg5HE+yT4XWXJQiyTK8UvTNibpv8NoT6wRrp2D2kITKPDuG3gYMSMLjhyfclOFdjHeS6pjNhMeCclxdbSjKjKurDZv1QnjqbX25nxszM5uBJI25fbMObGFPmuXc3t5RFAteXh8xdsSrjqtriclrtSJNUlarCmMN69UN+JQ0ycnyjJeXZ16eX0kSzWpdsVpKcUdeVIH9txdmesCLzWZGR/AnP/uULE84HPZsr0rSNGf/OlGWuRhe3CwO+UhjjQsNzvK+ffb5G9Is5njcXSLIRVEwDpPwTotCuIrDzN1dxXJZQVhznXUsFxX1scFbjdeKIl8IR3ueOO5rrHX03UyWCfM2SRVFkeG9Y3944c3btaA5JhvOfDLcNLOUdw2jYRhG4jhhUSa0z3t85EmTDBU58lwQPje3N4zjRJ5lPD09czicWFSJ6BsSTuL5+Zk4qeSOb6UYaVlW8l6tKsDgvST0pmkmyzMSYoxR9H0DeFSUUJWau+uMarGmbWoeHr7icPyB2Tyy3lY431BVKVrDMMhzU5Yl1rY8P3/NejWzWn1Omi7wnuAwLhiHkfVmyd/8zd/QdR37nTj6/7Vf/2qBz4TYR5ombNcrnncHaW2bLXmiUU6a+kQlt6IiGxEUtObCLjsLfGeG0ZlDp3UUnAf55d9RYTMvy1LqqAMsc7Pd0M0TTTswTDNpklCuFozjHOzC0HY9X339DVebJavVBqXgVDf80z//E4/PT9K04jzeSSvWNM+hXSulrEqqqqTre6ZZHCBq8kzziLV5OHiJa2WeZ6qqEpddiKvmeR74ForIiR12GCbZ4JMEnehLg4oo5uriplitVqw2a55fXuQAG2Clm8Dei5OEL7/4krppeN69Yl2McRNKeZIkJg1uvbN45py/tAafOYjGSGyu6zqGURq9JjPjleJwOjHPE2hxY0yzxGEuzbneBWit+CCmebg0Y0qcRAXHR0YUybQjiiK0VlK2YWbiLAuulPDMOJD4LRK/jUMsNQBfnfLMzmMnexEPvZ+Jo1ScNuHzs/NEFMcMfYO3sqhHWoQjnSQSjU0SsJbr62sen55wtePd2xuqsiCJJNLx+w+/F3dpVnI4nJgu1nKP18JCUlqabrXSwRGZ4J0EvUbj6E4NWS5CSpqlJFHEy9PzR3fDOHM8ygR1WS041SeUfoexhv3hIJyLOKVpahZFwaluqKqFiN/qY4mJs1Yq5mcY50m4XkmOd4pTfZToqBH7dRpYZ0kSkSUFxlm5+HhpYPQOIkBFIiw5a4mVpmtbynxBmsSki1IOSnnO4XikbhriJEVHEvPc7aTMYpzEhfbw+IC1lmV1g7WG5+dn5kHeWa01eS7RRttL6cS5xGC339N1HXEsl9QqtDDNkyGJIxbLJR8eH+m6Ttohg9Cq4oh+GKicxDePB2lRLJOYrCgwZuJwOjI7iedlmXDfsiJHRxKNE4eEOEVVcDTNdro4k6NYYY3HulkmiFoOl0osnDhvw2VCossKYew5J3EDraOPjjkvjdIaTRpFIWKqiLOIKYC+p9lKhMI6np7f8/z8B7755mv6sRFYdP9TaVmMxK0cp5rD8ZVqseL19UDTdEzTyDB0gKJtB5yDJIJPPn/LmzdXvOyELxUFp9X2anMpvMiyHMKAQkX6o/ii1SWm1/Y9g/IhZj9dXH1KRTTdgFNwd3Mjh6AovrAurTWgBUy8qKTRr+868iylblpxWyTSgJyl2YVPFicpBP7iPI2sVtLgJZf8gdk6eSa8xB/FYBlECq0D84Tg9JLmxD7Y9UWcgiQAdc9t3kkcsygKyqKUy6TrycoCh+fx6YnJzMRJgjWWarm87HnTZPj6j3+Uxt5pZrvZEkeaLE2Iw0AiCQ7FOI6FfeqEFXZsG6ZhxOJRccznn38uDoGuJXM2lIfMeC8Rp3K5xLiOZuiZQhNkP/RkaYZT8LLbS3mPUtIcbZxcGoE0xBMjpVDhYmuMYbYziZJIS6w1aSaOq0grUGF9RQlDyn2cvOM/TvjxXuL5gXdkzMzt7RvW64qmPVIUGUVeYMxAFK9o24GhMwzDgb43ZH8SEcUzN3cb+i5lUWVk2YxSI9VqwdPL70jjV4bxD3z93e/4z/79/5aH+/ccTwfGceQnn72jnU/EcQpaUZQpz68P5FnOYd/QdRPzPDJOA14pul5c1UkScf3mmpvbNY/Pj8RJLO7dSFNdby5xvzyUkNRtc04oM5mZ5FLy4YUliVy+u74P5RXg0fTDhKOlXMiQMIk1WZaF9mVDFMe87g7ESUJeFDSnI3mWCC8oNLIZY2VQqAsZMiUpKMFxGOtQscSpX/d7+mFgtiJ0OSUiijMWHym8Ek5hkaRgpJgiy1K6vmMIn0us5XktikzcniFhkKUFWZqSBZyKdYbFoqTIcpzz3D8+Ms1DKBkbLuzjuu6YrOH+4YHrmxth56BkyBpFUkgSyzowThPjMJBlGU3XMUwD7SglXLOzmFlc0W/uxIF8PhP2nTCLz0PN0c4QyYWzDVG0OI5ZVAuJV1spcYszcTl4YBhGoliiWPKMiyO0yHPhUypDVsQievcj9/f3xFHCOM5SODCOTNMUgPHh1yUCUxe+4nlobGXwbCPqk8POQxD4I9rmJTRhJ3Rdh/eeuo64vrmSZ8070jziTXXHOKR88/U3RFrxGDi5x3oX4r8eZ41wBh8G+oUBF9H1B8rlNR8e/nv++JWlyJYcDiJ6R0rWxjwv8PQ8PP+Btj3x9s2XOFswjwqUJklziVOqiFhZbq+3KD+TxZrloqDIMjabFWVZ8vT8yNdff8Nnn31B7BXd7iROeK0kYq8kGmudEUh/mrJ+c8M4WQ6nmvpUs726oh964lQ42D4MRcEH5w0Xrq7WmqEfWS7XdHNLlMQ8PD6yXC1DoieW+8s8o5VGRYIxmWZDVuQ4bXnZvdIPHc46LDITSuJzhM7IPjmLCJEoHYYfljgSnl4zDHjrSJQwuO/ubgDEUVik1G1N23cMw0BVlkzzhMajo+xiehCHsgjB0zSho5zVpsLOlq+/+ZooitgfZ662W7abK56fX1jECw7HI9aIa0cpTRwJl0wA8YkkXMpcXJOJI81EMOi6iSyN+XD/gfv3A9vNWoaYk2NWLUWREydw92aLNY5xGri+Fsde3Yi71NiZPCto215QR5ncp8xc8+VPfhL2iZi+P1JkJVVZCNeKCG8NVSnr7DAY6mYQR/HsKMuSLJVo793dDc/PT3z66R13dzeCDXGOJMkFWRBFeCzDOASub0QcZ0yjJVIKrVPiKA2Ig4w8N6RpTtv2vLzsgZHPPrvFGMPT/XecDpp5SqnrhtfXHW/evUE3hObqFX3fMI4T1WJD33eMc08UJ+R5yTjKmazIpLn1V7/4OXjoh2fG2VAtUg6H7zmdnkjSmLaN8H5mtgpPRJr8FI0IGlEcs1wKmiZLEjbrNT98/553b98wz3MwghjyQvP08iqOr0vcnAsbcjYzs5lIw3o7G4fjY9GHmF/yIBwKp7ssS8wsa9siOCmVQtb2wwGPvqTlirIUzEqecmo6tttrFANJJ8PE85k3jSIUHmMndvudRIeNCTF5cR2a2XI6TIyj5/VBePGnUx2wUSOLcs1sO3xoZhbXaCOxziThw4d7skTzpz/7jGnuOR6PbLdXgc9n8BjSTAQ7RYKzmnfvPqVtG9brirxcgp5x3ghLWcswYbEQ9l/fOZ4fH4l0FthtHQLfjinyGK8MsxlJXcz/m7n/WpJkWbM0sU+JUafBMnPvw6uqe6q7MT0XeHZc4Q0gAsGgW6an2GGbJAnizNyoMlz8Gr4LFxCB4MwFQqRE9qnMjPBwN1NTXf9a3xqGket1YLfbE1KgKAvaVcu17xhGx1//+pnFicAVQsfXLyP73Q43K17GjmbVs99LCcqHD/cYU6BtIWf2ZcppvMB+v2McJ+ZlgmTwLhECrFYNzgWqqpFkj04c3jqsjgSvaJs9VVVwPL0wTgM+Rs7dlbZdsd3coXJje/BwOV/wfua77x759PEeYxV9kHXKUOGWyDQJwikmcTMHl+h7T3cZKEtL87CnrAzagNIJYxJPT/f8/NNnpnlitWr48PQRrQLLElGmYpwO9NdrbrG2lKUWx15VUBaWqmrY6C2X7srhcGScxPF4PJ758OFjHqwkVu2e3e6JaXJchwvX4Y2QOqZF4Q+d/L3kSUmzWrU4l+j7jnmeobb0wyub9T0hNHSdQ6cNw1jJIAhYr1Z8+fJFMEHvcde/4etvj+hm58q7UFTXNdqJ46C0tUw/YsKYgsJWt+bU8t+VcyzLcuPxvP/3e/HClNsOgdv0UtqxAl3XoZRM16ZpQluXFyXZsA7jQFXZDPEV9l9ZNyTgX/71z/zhD7/n8+fP/OnPf2Jxyy26E0O6RY+aSlwcsjDYfAG1HA4H9vs99a4kpZBjVhPOee7u5PW+i3zX65X1en1r63xvDZ4XmdaWRUlRFSxBBDdp6RGH1el45NOHj7y+vOBTZF4W7u/v88QLNmtRec+XC2cfCKRbY22ZSw2WZaGwJdG/u/QU1kqsCBK73ZMUFpzeoymy0TXWsqt2DONwW/RBRNj3MpD3ab7JhQ7ep1vEWqGIEWIM3N3dcb12OYaomed0K1bR+pcNV4gRhcH7gHNyiP+FqZeygCVtvmI6jJRFkw+08nqW5PPFmflPVSEPBO8pSyMirJBvc8vPSFOt+Q9//wf29/d8e31lXhzX7spus2K32zJNc2YJWWJI9MNMyuDS97hXmwsTjLVcuwt122Cspe8HEnDuOuq6RTtp3Ysh4FOkfndmJEvIzc59P2CNEWFjnrn0V4ZpJKEJapH30IlDL8Z4i/BqJa4QbQzDJAwYgaxrTDFhlESb3stSVGblNHVFUUhU9Tr0crDL97dCooiFVQK2TQltDOvVRly5SaKqiYTPDbkSsaqByGa3oTByuPm3P/2J17eDxDLLCpcLU6Z5ZrvZohEOxfl8pmpqmrph9jOXruN0PsmGWCnuHh54fXvFBc+0TMQgTrrl5KjqkiVEcMLDmOblJkqcuytVYZmmGWUNi/c5Qq7QtkC7gDZAFHt50zbyu2VXcFnKYUwnicsYbbJTSq7joCTqafIBPiXZvIYoh0KXP/u6qeQwmCIxSO16WRY5jpPQQEoBF+XvWKvzBDOSiLj3+EoOFvbDM/+3//v/hRgihamYx8Tl+JW31zOrdQsmcJ0OfPn6F9arBzarj8yTODOl6ERYKCBr82ZdE/1MWxe0jZSr7HdbfFj44x//REqw3mx4O57EBRoTEeEMahQ+RtI04eeZTx8eqZsV5/NFmBvtiq7v5bAbxDmXosDuU5Sof1nU+CgCc2WkJXxxntfXA4+5IKMsDTFa1u0qRycC3rsbo9RYwzjPXPsr07LgfAQth0IlFhBCiDlaCqUtqIpC2FLR49wi1wmaqrDUVYW1ZcYFzKxqWXt3ux1FnkYvLnF3JwcZH4IwmOaZoixvz4Pz5UgIgde3Vx7vHxiGgf1mIxuN7IB+b3G/LCKKtuuWZVwYppFuGIQv6EVcIAamZeGaW6mHYaAoBFHgU2SZHKrrgCQxTSWx6Lu7+9u6qJQMUN5bzAHhvUUvSICQ3cJlASBChJZmaBecRK+NkWdtCCzeUxhxQipJ6WDLUgp8cmOtWxZS0pBkEFPYGu8Sh7cjl8uJu7sdMWqGYWaz3tA2D0z9mhNXjseOezQ//PADw3DF2CTiXmlQRA6vB1RSjKOjKieMaVmC5//x3/6vTP3IdrPj5duR128/MfTSFpuUZ/IXfvz5j1RVy93u17hZmheLosA7j8g3gboq2O/WuHlk1ZTsti2rVct2uyVGzz/90z8Dis12z7fXN2nXTP8+qi+Cy7wsBO/4+PSAKUpOxxPdtWe32XLte2wpYlzKXECSJiafh6HlrdBkcQFrS4HJXwfeXo95cGfwPtI2rTBuVytcFpJsVdEWBdf+yuvxIC6nJMUppixRKpF8xCRYbm5uGRI2deZSItHUmCKFtlJg1LYMw4hSOjNcI9M0Cfi/KinLgnHMaYTuKq87BHFI5WGENlqi8zHyl7/+ld/9/vfM08xmJbzPwlrmZWa4LqCUXPN5GFo2FVNc6E89/SQMwZh/L2st356fOZ5OOU3gZahQFlgnMbBxHGWwleTpZ/MgQSdB0tz2FkZhteUXHqujtpamrCXZEZXczyaQVEGIkct54Hi4oFLBql1jbBR3eGF5fv7KH/7u96zXDd31InHL9ZqmXhGyo0uG2fl+pGKeE0oZ5slROo3JLFvnAiQPeIzp0Cby+LChu3b42dP3jhhFDNnvd9w/3HHpXnNcSkSM3f6eGD2Xc8d6tcZWmhA7joefQNUYrbCm4PH+DreMODdSFRteDn/h65f/gfMTIVx4uPsdy2KQ9up7YTcq4UHP+XNTKVBZSRqkKCLL4XCSvZ/W4nLOjjSt9W1IUBQWKBhyg/EPn7/KngxIPlAOoxgFkhTqBO/zoESeN0VVZqeRNKlbI4VSzjmqssAtHrfM+V4TTIy05CaqSpIypijwIfL69sKlvxJTuH1GKansnJZBtTiotAwJYwRtsIU8B98jy8ZotusNd3d7mqbi+eWZh/sHTsdT3mP7233k3SK85BiywyhgjOXl7UDVtKQ8/D9fOuZpgpS4XDu+//4Td/f3HN4OvL695tZLI2zUwjIvI5fziFtCdgwbdBIEQ1VVvL0dmCfF4XBFa7B2wTvFMibS1vLty5Vp7vn7//BEDCPOL+y3G1arGmvX+OCY5kGKnKKIB0M/3FjlwnA0NI0wMDebNUZb4VT2IzpZ/AKb9SPLMtOdz8QYeD2eMIVmu9vw4WkjQ+7kIcLpeGK7afnNbz5S15ZxjMyToygMyzzinPCv5sULkiNJOu14HFmvalYrcTnXdY02io+fPuBdpLtcUUqzv7uTGKmy3O0eeH3+hltifpZGVHQ83O2Zxo6mKikrKcN5fTtS1w1Ns8upsDELzhOP9ys263tS0ry9feZ4+oGYepLag+5pWkkKjIP8/toWzIunKhq269+QkqawDSkqxmHC+8CvvvuOsqzkjOUlsr/4IIiGxRGTDOW0UrlEqhD2Yd/LOV9bCBLIl6I2WeeEHRlw84xShvWqySaBgC1KeR5Zm9NCBUXeSxVFgfOBxgqaZ3JLZpGNYpqJImrNixg7+nHEFoZukH1djJEUBfORUuZhRjgfA8INF+SEFGMkFhVYrT2bXckyOrbbHUpZ3OJlP+M8SmnqTZVNOb8kZ8axpygsCYUxisPxheATiob7+yeAnC6K1CvJBazXK1KEvr/i/Mh2u6OqazbbgsvlhJvlnitKCGHK/y3GhB9//JEY5Mw7jhPGShFW33tirPin/+0bITra1rBMM8sSGftIXST++PyCMZ5/+I9PPD8fqJuSzSpgi+IWi40xcLlcWK1auq6/Jf60Fjd2XdfozCe9XnuWacHoiof7J7pTz8P9B/7ln//M+XJit1/hfWKcFrzXzGPkcn6lKBXGyvuldaSuNdM8Mo4DttCUVZF5mRPei1HHmgI3LiiQwbkfsUW8MSvR4mB8eLzj4eGey/lKWRaURSmMZx+p6xI3R6Zxpm4qqrqg3ZQYFQhRhu4fPnzI2oWTIZ0yfPr4HVoZ3l7fmGfHDz/+iLGap8fvcsN9y7XvuXRH0J7FDSxZl9K5wIsI3rmM1PBoq0B5Qhy4dF+pKsWqfkBrSb5IuekvovjiAs+v3/6/VOH+P3/9H8bgc87JxNhatEpEm1tkWnGirddrusv1F24UEutomobL5XL73yhwWfS5nM8oK2yD96jouzhW1zXTNOUHgrQbjYvDv2f9gzjwusuFu7t7dvs94ziKPT063g6v/Msf/wi5sa4sy5t4lFSktAWqKHl8eGCZZu7u7vDJ59aoC9ZYqqK4OXuWZZZD8F4YR++bx3exoq5r7u/v6bqOaZ65dh3zNLNeb4WZtkR89LcI0w8//HCzrb8+v7DdCXh3GAZpcfPS5jhPEw8Pj4zzhNbSetpPgxx2g4gXKUnb8RxnYswFJ/k9hOzYy3Hb9/hzyjEksZfK9CRGibD5LELJxiJmUY6bo+a9+hwUMfq8wR8py7zIa8XihGEmccFE8FGgpVqsxNM036KsSpksLupsa/XZGWVyi6k4IeT0JC6RzHfGe8/9boU1hvPlSgKMLSBF2WgaI7GgumG9WlGX8hDfbdYYkxs065I//elPNG3DsgRO5yshxduUK4aUpzABtzhOp5NsPJXm3F2ze6XEucR1PPH09EAtagbWFGw3G+bFUZQFXT8wz47d7o55GTNLS7gyVVXhgljm22bDOM2s6waFRKp9iFirSFpxeDvRDxOLd+KmQWVo+5w3mHJYK4tS7MqrFRDpB2GSCV9JpuRocjw+oLQI8U0t8QJxu3raZkVMic9fvmTnSM0yL9zf77lerzw9PfHTjz8zTCNlUTGOE7u7HaUpsMbQroRXVpUlQxZ/fAycujPjMosjK2/OP3z4yHa/58eff0Yb4Ux6H24ORluVqKKkn2aWXOYwzxNN5kqcr6OUnxSFTEreAdkJVG7PtEpTtCveuZ+2lMl9meOkQHaw6uxEyizEmOTAkt06WhfEzNkqbCGbJmvl59eVlNokEZdSTCzBMS/zbfgBirqR9zlGaQd3LuCjyq3Q5OHCBR8m2mZLCAXfffcbxqmnHw4UlWceO3788k+cL1/oujXL3e9omw9cupH1+p4UirypVJRWoVNCpUhTGjarCqUkHrCMjm/Pz3z49B0hwfHc4aO476IPlLa4YQL6YaRqW05dz49fvjFN8sAmIw8U/OLWVjDPk0QAqhJlxRVsjWKee8qiwliLmydOp3MG+EqbsrRTy6Q6kTC2QGlDNwwcjm+y4UMTM+usakr8MqO0lthTFDHOKgW2wFhxSS7LjAaqohDwsNUMw0TTFByPC5euQ6vEet1idIkyCuW5oSimeZGWW+9YbzbUdc3nL18wVnE8nfjw+ITRVmLJUQT363CVA2VdM46yZu4f9tSNOGOvxzdxGmlp2lRJnptfvnwRxyhRwMzGULcN07xwvpxwwb0vpqhcvCRsU3HTKyXDG61VhprPWC0Ckojqkdk7dKFISQQqlVIW+6EoK1SSgUCKyGbOaBG2csR+XmRNVzESorA+Uz5UlFUpjedKMU0LaZS18XA483C/YrXSfP753+i7mn6YGcYT/bDi97/7HSjH2+GZsrAiMKuC+7sPjMMshws7U1QG7050l4WybJnmiU8ffgUJ+uGILTw+Dfz09V84HH8S0cn3bFffc+kG1pt7UrCAlgINo4jOYYG6tNSFQWV+zzAOvB2OfPrue8bFcTh3hJDASMtmYQyFlkPOMI6UVcvr8cyl63AxZtZnKZS0BNHLGqStYRoHcV2XlXw/ZL3pz2eJYGXX+uHwxn6/Z3HCB5pnwTvUbYWxWlohbc3b6Y3n1zcSMR/sIKIgBKKSspTo5fkenQxx7Lq6OeaXRSKubVWzXa15eLzn9fWV9XrNMIzZ4ZTh6G6G6EmpRimNn7Mze5pAaWxRUTUNWmkuXUff9ygNH56e2O22fB4+Y0vL6fVM13fZFSUb67KWSI6tpKSsqMq8LokNNS6BZZnQKmVHYcHL+YTSMuxUKEG89APr1UpKYmJis27FyTe8pzNEEG/rhhjEkaUAYzVxkX2Sc56qaqjrhnkZGIaOaXacuitt0/Lw8DE/k0aMVqSo6LuOx8c9d/uGzbZltTLEAFpb5nkgZpZof5UysrJYEcPMPM6s1404G9oSraQdVIbSNS8vL7y9vrG/X2WRUvP68kLfa5RO9Nczhf01hYWmLNnf74hxobt29MN76qQUNiTCfev6E4VZ83T/G/7LP/7PpKT4cvoj3fUrtnxkGH6i675QVgXzrDmdPSmWxFhS1yWaFVoXtG3FarWmMAWFLQS0vjj2+z3Hw4lhlFKLw/FIP44IVkZngauSpMjy3myrOPfX7PzWxKSwpWa/27Nqaw6Hw20dKsqSZZkxRtHUEn89ns5iVMioAVsUlGXFer3i2l95enhkHGfe+oM4eMtS9htFgUqJYbkyjoNE55WwAP0iCA+tlbBi8/5aoSjLSvZRVYWbZZ+mtXArY4iURcE4DAzDlf12dxt8qpRYrxqaumbdNjRtK+6o1YphGFiWwOImnFtYb7ZcLmfOlzMkeHp8BBK2EDPG4Xjgy7fPeC8DmaqqWLVrUImiVIzDSH91bPc1z89f0VpzOPVcO9nD/fTXFzZ7xcPDmuNxwC+J6zWyLK+EEKhbzdurFKd8993TbZhzPncZPaG5nC+s12uev73eznLvDarvqKJxlAHuMnv2u3s264rufGXV7vnv/+1fqOuCurFyHlwi2lR8+3qiqQsSjrKyDFdJRKxWIorOLBgjw5Lz+ZjLgMAWNdFL6kghw1utR4pCc3e/xfmRlBxNu2K7a/n29Y0QPaWpaZqah4ctbgpcrmPGOE0UpaKuCwoL07Tw3aePVJXFFg2FsRyORxYXuPYjx9Mbnz59zzwvNE3BbveEtg3X65VhPLG4E0n1HM+CN7BWrA9NU4thZJlZ/MLp/DNl0bLbtsQUuV4HVm15a4a9u7vnX//1X3l8+sgf//IDRVnTjzPXPFRRYrilKC373eZ2Pr/2g5TN8M6GlOFJ27aSWgpeOJXWcu6v2fzi0CiOhyN3uw1VIRibxUcpzFASizZlyeXtRdqqQ2Dxkaf7B5KWPbbOOLB5meiHwHW43lJp8I4L8zkRo/CLRtvAe1GHUsLzq6qCaQgsS8AtnpSuKAQJJUEoQUq17SNKKaZx5nQ+Y4xlvWqxVsww+/2GwlZE77IxZsJYJaVPU89WN2IGOh5kqJqZxa8vb9R1Q9kUPDZrDm8nLueLDO+VnAOXZaSqK3a7NX/+0zObzZrrtcP5meNh4HSaAU0Ikfsny8PjGpLmeBxQTDx/O2Otpm01fT+z2dZURUV3nTDjknE/hQii2aka44xzMuBSSko2lNJ89+n7rN90rNoN3WnA0OR495G7/ZYYHCmJc/Px4ZHntyPL5LFljdZR3MDjgNFSYHN4u2AL+NWvPhEQQbVpGtp2wzJ7YtQYPQAF3kFZG37/9x94fNxjbMT5MScbN1yvp/y5R5qmJQRBxg19ZJk80+gxVlHXJeiFsR9wbqZta47HE/O0sNuKOJ1Q9F1Pd7kwDAPrdcuHjx9o6hrnEss8c+0uKF0yzh3X4SJFSTY75G2J1nU2tZXEpCjQKCVIpmU+QjIoGrbrO4pKTGVKKbruyrzMPD195J//5Y98+fb/Bwy+xS+8HQ/S5JYMm1XJ4jzeK6boOF8vjJkvlJADa1lZyqLCx4RPkLRBF7JAay1AT58iVdugbYEtLO4qYtApQ3ptZlO8c4689xilMWjWTSONaMaw323orxceHp8YhyvDeBULan5Yltk5GFygNAL1rJuauq6oypL9ds0lKqqiYNfu+Ld/+zf8MvPw9ECZoe7WCty5rhtiTDeHolJKmkZPJ/7hH/6Bt7c3vn77Rj9MWfCq+Pz8le+++47VasVqJRn28+VCSon7+3uB648jTx8+EEKkPp5ZrVp+/OlHtpuNTDOVRAXqVYtK4piA3PaZI4fzPEl7W55ohBAoypIY1E1wBSjy666qgnEcRAhLMsWTlF6QyGopE3yFur3/cmMK885lDpc2YAsNKh8mtWTZQ0j0ORqTkgJtWZYc8VUylUIbFBofIilplIqMowDypUlTXFRzjjSiVD5gRrGVE1m3NQakWVaL4Kdzq1FC1PbCaJ4e77Ba0dYl66Zku27YblbyXv/4E68vB37/hz8wzleG3IiGAh/F2SB8JMd1dFRVyaqq6fqBw0HcapvVe8uZCDnvDdApRlwIAhxWckAbp4lmteZ69YSQ+Omnz9zf77FWHFyrlUyENptSSgiWBWMs7WrNte84ff3COE2EBCEqbFlk2zxoq/MDXMocyBPlcRaX5jxPkKQsYr2WCneV+QzWGLx37PZ7qkKm133fs9ltmadFPncfpLkX4UqVdSUH3rc3jDXc7ff0/cD93b04F9R7865Ej4SLI46G0+VM119ZgjgE5bMquFw7+mFAWWmeRGuKyjAvM/O8kLSIuBLbFCfd/cOeGKSt1hY2lz7IJEmuwShrAuJElSZGy+RE5DFZBFnmWfhipiApcC7/jJRu76XSIvhrbeS/J49W4ohsVq1gInXC+QUNN76JC+HG7vMhZIZZ5DqOEh/N3EgfAj4kpkkimAn5ect8oi7X/J/+0/9CU+04n79yvPwLST1gykR//co4vKKYuFwCMV44nwfK6vc05UdikqjSu6BYZnbGPI9s1iumZaTrs7gN/Pz1C3MQl1hyUjTR1DXTPIo4qTRdP+HcLAKWUhRahjr3+10+eEiMzxYlLjfl1U2ZN16Roiq4vJyJtTCE2lVDP1y5v79Ha8PpdJYDUV1hVKKshc1yOJ15Pb7dGl6n2d02gsq7PDCIKC0TdpPXzJgCycufFdrSNjUfHj9gjeH18Mr9/QOH4wmlEkrLQS+EQGAhlWUuLBCmyKXrqJtaHCPB0/fiZhrGnu+++8B6u+Lb1+ccz3PSRpmZfa6X592yzIyjNH4uTtY5bS1JRVRIuc1Rij3mZSE4d3PAS+xfc7e7k8OT1rSbFd4H5pSbbpXweIw1qOzwjlFcMt4Jk09rQ23kdb1zL1FKihNSIvoAxjA7J7FyrTCmwDnP4mXCXlU1yss1ME2TTPSLgqQ8ZebyFlpLhERXvL2dOB07qtqiiBDETXZ4+5my2KKipe96tA40dcF+u+Hufk/fC/C7rmsUBUYrjLYQI9PQoZihVfzH//J/Zrv+yDR0XPs/E2mwpeZy/oGhf2a12tBfLcSerhuo6t9R2g+kJAJUk+PIZVlT2oJp7Lnb76WNOHMR52XheO7kmaTBLxNVIQUSyySNqAnFtZ9wfslDIyiNYb1Zs6or2e+kiFHkZrtIWRhWK3HIn6aOorSkFBjGAa2EcxNTpKrEDXo6dXlvJWgOY0vasqIfZ96OB9DiGRYuaBYYs9OVGN8L1rHvAwpjmOcps1ETVhvqQqK33flCVZTCBO6uGC17iaauqQpx4rYZq7Is8vNOlwvrzZrT+czxdMHNM7vdXkSQwtCuVnx9/sbz67PsH8uSopKCkmGeuPSdDFzLim7s4Zx5bM6JEKoS0Wr2u20eCEihVgieqhA3jvMLS4Sowu21yzo+kSKs2gZIeL9IY2BY3pP9sqt9H4zGxKrd8PZ64o//+m/c3e1AJYbBE5xm1vDTj9+o64IQnbiQw0zdGO4f1rSrEh8mUJ5hmAhBDqXzFLBWAO8hROa5vzGO6rpku2uxRpGQ1s6nD/d8/fxK8FI48fDwSIwjpd1QFpEv52emycvzzEBdatqmwmoom4bNdsPxeOTbtxf2+3ueX15Bx1wMAw/3Fev1PUqXnN6+cDj+hevwBcwr3k+0bYGxBdf+RAheRPUpYs4l97u/AywxKebFM4wTT+ae//pf/yt9Pwi3tiw5ny8YUzJOTobm5HXCGLL6SXABZQzbzZZ+kHhYTOIuapsWawzj0MvgrSioqprL5QTAfrfOGBVNVZacrtcMeU83VIRSItiWRck8zJTW4oIw2lxIFJVFGcXxdCTqJM2vWsrmlNZStGZ/4fXZsiAie7/tek2MgWtGDKHEHbzZbimrkq7ruL+7o6olut/1vfy1d4QQMPYDdS4ImyYZWsmzpmdxjnEaZN91d8/j4yN9f+X18IqLkWkYiCkwLTMhBfwcCCqx+IWiUPz290/86z9/wXtJIIxzZJkil7dAjB11q9lvG9q2ZLu55+X5jFtmpsFji4Km0rTVmu3HR5SKHA8iqNd1ecM0WVuilKEsK1KCay9stnGc2Gw27LZ7tCnph4m22XA4XdisNjiXQHk+PD7m5k0xWBRVw+l8pdAtzi00bY13jnma2O43HI9nlJ759N1d/oyFgwYmJ4ciR3dhu9kClhB7Pn2/4eFxg9ILJiQ+fXpitW4YBin0KkuJR0/TyOVi8EtiWWTov92taNtGhK4YKEpxyXvvmGdPApq2wZqSw+GId5Ef/voTRVXzqdhii4p5XpjHha5/w8WeeT7hQ53xLpLGMUr42c6JGyyxMIwHlGqoi0TRbHLqKubCv0hZVoyznBN8CEyLu50RSYnoHKauAClfHMeBYRoEOYNCaRGvU0ycujPXvsMAbnEkpYkkQhAjilEaq6GtK6pcBObSjAoijKE14zQzzAuTc2ilOF2vFGVFU1YkBcPYs/iFeRYHugsL3sn7GoJcc0orDGJy0EYxjeFW/iVioIis8yxcYaOlUE/WATGvoMQg9Kd//QE3zzStxU0ztjU5Ji5OuS9fXtluNryXU3x7/szT0wNNU7MELyU5JJSy+WxtqasGrYRZHoJjXAZcjLjgWK03VJUhRM/xcMQsC/u7O777Xp4FqMBq1aBVRXd6xrlE0yo+Pm1JSYoxisJy/7Dm7bWnrgq++27D/X2D8zMgzP13FipJ0bY1ZVnx5ctXKeJxgVW7ZrNd35yR4zgy5/2zUdIMHdyR/XbPaiu4qQ8f77mOF1KSJNCff/iZFDWV1vl6hKIwzNNICJrddpMb1I3ErIMMjsdhztxOS1U3PD8fOZ9kPxfSgtKeqi6oVMPxcOba9cSgmGdP101oKlarRpilKVJVBVpFyrIBpfBxoa0fsNbQdVeqsuH1+QBoykIYfPM0MYwDZWXZ7dasVrUkfMqKqtSM05n1ZsviO0J02eDmKQubP2+Y55m2LXMaU4oFVUoUVqFYcP5KVShicMz5bD4M4+1s99PnL/KZ/41ff7PAd732bDd7UTvb1S2C2fcLbdvQ9z1//etf+c//+T/dVPSylINk8C67wnSePi03jsR7s2RpC67dlXkWV0tKic12S99deW99nedZ3DNKs9ls6K5XqrISBksvLZt//ssfmRdxGYbMhVm3LYWSyVhhLMaIBdwaTdtIBXvXHfjw8RFrK94OB4lZbTbSjgq3SLE0xkzMs+P+/p734ophGLi7uwNkE/jp4yfO3ZXzOYPPF2kZlSbemr/+/BOn45E//O73bDKbUCbyB7Q2TNOU3yOZwu12IpjUdSPOEW1ubDytTc77C48l5pgNRGwhdfTRmAxKTbmWXCYi0yg11+MoDT/GmBsfUeKd6dbuKZEhbhP9oigz081S1eXtd+hzmcg4jihts0U4ZmFPphHvYkdRFPLgcRHvk4gYuSEX5PeTw/IIiChibcE8T5SFZdNWPOwy62IaMyOoont3j2qN0eLg0wr66wX74Z4YHJrAPPVo/cA0TZyOp+wslSr6YRJIfyJR5FhbVZQsCvyyMMyO58NfZaoQJDLRNiuZcKUglty6wkdp6DNa4peLdzmWC0Pf5clszfly5sOHR+FNOkcM0hJYN43UbUeZNB7OJ14PbzkyDD4kYlI4L+JIyu+TsBc8uqywVY1SKXMzFxHI12v2uzvhUgwDVVkzT5NsvqwICSSJS7+3gFpruVyleSihWK0lVvTXv/5VXB9a8+tf/4Z5nGQCdjjmdlJxjq42G8qypKoqdvsdLizES2SeHcqa23WiMJymM6vVCucW3rmdIrJWHA5vIqh4hzEaawuWZWaelvyZy+el84SyqmURLrLop7QSbmjyqKjEXp35Yy54bGkxuaRCrkNh7y1zXleUwi0LRsu00VgosvtPWE7CeVEofHDYDKTXWdROKmWWSESnJHzB2d0eyEobvE/0/Zyhu/LwvF46rJnQDyVVtWGaJl4Pn7kOX1n8G5tti1aTxCZi4HL5hlILIQZOJ4XaW+pKrOlKGeH7Oc+HDx9uMbY+u0tDhGlZ5H5U0q4WnTQ5By/NWm5ZaNd7XHYHJHweqJTSPBgdVSHcyKZpOJ/PwvdayUG6bkpeXw+5REVg/WVZUdUSdS2rGmsTXXfNQxWZ2hprCSkwjFci0koaQmKJIXObEiQDKUBKFFpTZ6eGInHtr6AUOiliChS6YBknxhC4u3vAGpvRBIm6rFitpPFqHkdWbcs0iqt8nCdiCpTGMmTRZ7Pe0LRNjitY3g4HXt5e5TVHBACfkjRsu4W6aWiahtfjgaiSQNO9PLu0Fn7j/X7P+XwmvW+mAaOlZOe92Ki0JZNzFFXJPAtnsc3Rc++8uB5DbjaP0nwKQIwZ7K4YZ3mGWGtAy/Uag5RuQLqVNwkXTnhS705vuQfdTXRcluXG3sm6qrBnF8fd/ZrzaWQceqq64uHhjroqcIuibXfEcOT59Cxg+E2FLQJ1U3I+B4yBu7s989zw9nZA5SKT8+krVV2RkqIq1rT1B9rmDu8Sb29fOV1/pBsj+/0OY2Y2mxZS4nr+imEhxsDxCHd3BVVRYXVBShrn5ED1q+9/hTaWohQcxq3YwnlcCLmAQZ7XComGA7jZsdpsmV1giZEUxHleFiV1WbDMI4aELSvadsXp7Q1Uomo22WGwypvLhbKssdayXq3IxdQ479lutgy5nCnl56kx0mx8HaSQLCYppXExCCcwBkwywt6LEYUSsbuqeXy4v/FTTXaCW13IHrDvWa1a9vs93fUqjbPaSDxbG6qyIjgnw5Isjkkbrmfo+4wMUdzf3bPf7zgeDyxOmpzP3QUXA7Nz2OBoECHSBU9V1/zhD3/g67dvHM/njEqQH7C45SbgrFcrzucz7/xMZaSAJ8SQmwbjDRmzZO5rCmCNojB1/p0tbSO2GWU0RHkW+LDIzC8L2KvVWuKFSxBndbsiYJhHKQkZx5miVAzDTGk1VbXhdLzStK9s9w1aKTbbTYZwJ6pSEaPl0J9p2zXrdcM4PBNTxf3DFlMEQlj48PGBDx/v6PsrRaluxW1aabRq6Do5rG22K4oiUlcVKS3ENPP04e7GdvRZ5KrrhmXxnE5nTGFpWw3Jst89UtiGa9czzR2zP4MeuPZzdjRGBPAuRVXddcC5hDYlbXtHWzdM80yhFWMeUrZ1Td9f5dCeJK5U1TXny4UQBZFRFDLYX6/azFCUgWXXdfIMEKwiRhv2+ztx83lF066IStH1I6YQp+N1mLjbrG9nD6sNnpA5sYZpWugnccw29atEJl5tvQABAABJREFUtPPeMUVJLU1+JhHop+GGOli8sExjTDR1I9eXl1h5XVUQoS6FMzsMPdqoLLpI9Ha/22K0Zrffooyi7wde3t5uiZ42l2BcLh3WGCngKcrMmr1Ie7q1XK9XlEYiX37hfL1w7WRg6vqrlNQVhqiRgYuRkifnA+fLmdWq4uP3LfM049ySi9ActnAYo6hqKGzB5dKzWhXZyAFaB9qmZH9XAZ7nby88Pt6LO2eZGIcF7yN3d3uK0vHt24uI7VXF3X7Pfn+Xz1ILx9MRW9RYXXE5D8SYWMYLHx8/4GbPH/5uT8Rz7Y/YwvCnP//EcJ0pS027qanKgnESR944jjw9bYXbW7VM08w4OJzzrNdbrCkpCilI+uGHr1zOR4qyYn+/4unjlqJITPNM1x3oB2GUnY4DbnFUlaUsa1Ik42LE2W+LkufnV6wpbyLk589fhOm5apgWabs/nS6kCOv1jl/96ldsdjuunbh/u+uZmCL9eGaae3Hbq4g20LR15iybWzw1BIdfei7+M0bX1MWapnm44VD6vkcby8PjA//2x79yvnS4G0pLUimadEtRvL29QnbvofTt+n/HK727uYNSWKXBGHH9o0TcCsKX3W/WWC0FOSEllDb048Cl78Wd7pecKBDW+uI8p0tH+VBRGEtM4vafl0UK6Ux2Tjs5nyoUVgtvcfLSgi6IqByTzkmk99SLc56AIph4OzO3bctm2/Dx4wN1odnuWq7dhc2mxhgpl5zdwnq1Yhh6UoKuG3h6eqTvL1SVRukoDl9tOLydWeaFj5/EtT2NF+7v7rlcpITCFhUuOubFYe2EsTWXy5XjaWS7NkzlwP6uAUS0HwfN6biQSDStpm7hfOmpmhrvJk6HK0oVFEWiKCNF6Xl7OzIME7/+9Ue0UdRVC0oGdkVR8tiucc7z7etz3qMlVlHKnw6HE+fTwGZ9x3az5/ByQWFJSnM4nNmuE4+PT6xWDfZqOJ2OjOPEdrNlmjzj0OMD2Eqz3TWs15bVqqIoYb3ecjyeWWbPOC6s2nVed2eu3ZGiaFFoyqJimhwuLPz0wzPtSgwgyyLnx+1mj1aWGARdVdfiag5uQWGYJ0/0gdV6S/KynyqLhsPhQIoL125kWQQHZguLLSoK71itWorS4twICpra8Pz6I8M0UZS/Zlk6rFVoY/CLwy+eaANJKSkXy+eh9/sjRtmjazVxX1uU8jRVyTguNO2Kw9szVdOglEFnx/zf+vU3C3xNXfPhwxMpwZLB/NZa7u/ubo2y176/NbSM2Wr/3r76fvMJf0UOFu/CHfnP39tzQwhst9I2abN7brfbyaJgRAFOWtGsVzjncP3M25AbUDS5Yj6gjaWtG6qiwC0zbduy3+15/vZNBDQNZebYfff9BwqbOB47jscj682GqhTgbghStT5NC6tVy+Ic1tjMn4FhGGhb4fJI61wpDYQZNuqWBWulCe/l9ZXZO56fn2URmSasEYfa16+fOR5PFEXFvDiSkoX9fcJ4PB3BaqyDIlTiAHIOU7yXAxhiiCxuYVWugF+iccJR0rdobQgCbFZa5YYgw3vbMPyygU0p3dxW87yAirLYzlJPrpWibiqA3Awngud77HAcR7bbLV3X3T5bnaMVKgpXJnqxVzu3EOJMUiFfsu/lHpr3FmDvI0UBu+2Kp4c9+6Zm2zSowvDt5TlvWoVlJpN4R129c+eEj6iMpmlrHh7uGceRpqm5XC6M04KxecLmxSrufchRqSJfB2PmFMKxEwcHSoGWivPdfkdVFbfIUllaaflV0hDXVDXL5YI1iqosMk9LPrvNZs08ywYrdh19L04NlcSR1zQ1IUZO59PNXeW8bJBJCqsM1moRB7RCa4lX2xxPDjn+bk1BaQwPd3ekmBiuV+7u95xPZ0Deu6ossfkB/14M4r04MYZhYLPdMAwDp9M5lwms6Icrjx8/QVI8v7zhM2+gJKFzi1Y3Cdx2dAuzX4hE+mlCF5aYXVZRRWHZxEQisriZqqwgt586v3B3dydA05TyND5irRHOQggEgJQbZZPKrkoREI0VodRYLetHjs3Y7LQMwUl8cV5EZDE282qkoTGlhCkqET9iYp4WVmtxcJUl+ODF9RkcBi2sP0U+fInY5Z3PrjBpx40eic0Ff3MiLbMwJlCZ84eSMop2xePD93SXkXkeCGkg0DOHSDifMUUiLtL2Z6xjnDqm2SN9NCXffdpjzJrz5cJm1TAMA4+P9/zdH37Pv/7Lv/Dw9JE//+VHqqbhcDwzLyI2m8y+WrcNVVVxvpzxMbE44d7FzHPRSrPb3xFSwi8OpaTgxHlxFRXWAtJSqxMyRFEIq9E51ustb8cTTVPTXQeqspSoQVGIq2VZsCkw+Ynu2kGSliqfr1WQ6Oh7CU1ZFBTG3lrAhYmaWYBAXRTsdjsOr288PD6is43+fc0yxmBNSdf1WKXxTpqdY5S1dppG5gyY3u523D/co7Ti5e2ZeJGiIqziOvWk3PZYFAVJK+7v7/m7f/h7/uXf/pXr1IubSmzJhOiJSbFerWRDn7JIgxT3RKKIPCiCC1yHnkAiLiL4yXNWYua2NGglkV0pUpHhWojC1AN1G4oZbdDIIULYkuKyTEn4PYUtcrmPI/JLq7TwVeU5bozO7jpNigFyhM05x2bVgC3or4PAupFn6MPdJ9zsuZwuWSCtaWuoG0OI4kz7w9/9PrsZIikl7u7ueW8IPBxOfPjwkXEcaR/v+fThN0yjRDaH5YSPV6L2nC4jSnuSz1ELqxjGM5OPwuw6VXz/6Q5rKy5dx6op83Ct4tPHJ/74pz/y9PSBf/7XP1I1LW/HEz7EPLiSz2bTNlhrufaZsztN4lDPQprWwkZ8PyBVTYuxBdPsKeoakMGNqsVdpoHSlszGMc8zq9WG4+GALQuGYcwOkJmyLJlmcUKFFMBK2VLwgZAkfp0y18L8uzKUshCmXPSRqiw4n4/yylTCKEghcf+wR2vQRuUypIm3tzdhfqFYrVaUZc3b24GyKGnbmA9vF4kyhsjsxIWz2W6JRGxZ4EKQA+DQCQOVSFSCVAhZTC7LkvVmQz8OvJ3e8P696RfS+3OmrIS7Oi43jm6IUJUSpYkp0axalnnKMRvZ17j3PVT6ZeAcYsRqS1QBowu0gaoqYA4E5zPQfo9zgf/6v/wnnB8YpiPWFvxv/+NPjJOnLCV6pQ1MU0/XXUEFdnthm90//IG+70mZA7rJwy9jahSG46HndHpjtVX8/u8/sd1XaLNwvSpWbaK7vjEOwtKytqQoBWNBSIyDDDjXm4amUZyPFxY3k5I0WZ9OR9brLZNb8jBQopoxKGwhQ9j1+r0MJuBcz7l7YfFXuuuJVSsHQyX8BXyQ+FUKIiwH33HtfiY4Q13ck+qCOZ8JQPjRs1rEtW4KztfrrbyNBH52lEWJLS1aGS7XkWs/onObuax6ggo4Xy6CiHHS9OmiuMVJMogjeZL3rJqahBbcSFIURUVdN5K2GYVTnT5/4eOHD+TeN1nj/cw4T7lkL4D8KXVVMk65lTlpDEnA+OuVxMFjpK1ququUYZECtipZ5pmyrBmngbau2Ww2XLqOr8/P0qquxem22WxQymTXqM1O9gtLCBzPZ1EykGKxp6cHEonXwxsh44JkiGgoGzkIR4SlGKK4sZfZczn5bBDQXK8L4xioqjPBFVibWG8L1puCojRs20een494v3D/sGe7LSgKxf6u5HjoGYaJsuxBBeE7Ks1mI0iW/W6H0YrPn7/Q98Jca1s52F8uZ+bZc3//hKkazkdBPJU2cTicWTdr2rahqksgcDi+UdctTetJUdN1HYtXNK3l4XGLKRJVZVlvxH039D2X80Bdr3ClZwqOaTrmYg2HVpZ5CnTdgXka2d9tJFFxlXIqrUVkSAnKsqEsakkGpUTTVlhTAZp21bCqVsy5ndyaiteXF6z9xOIjl0uXsUaW3W6F0p7r9cBms8eHEed7tIXF94TocH5EacUKGdLFGCi0kvtYOuSyi37BLxeMkr2rQ8wGh+OB/f6e6zDx0+efcS7i83CnsJbSCm9+HEaOxxNlVeahpmBQtBIh3ORzGBkNJSaZ9/tQOL2y/4oYrajLitPxFbvb0rYrprnnOog2UNUSx1ZRxHmrDaTEOM1crh13+y3jPIiDbxlJKhJ8ZAkuo6EkIVaWJW3dkML1hngy+RwtZ9xwQxTVdcUyLnnNl7Ok8w5jVsQ0UxZ74VwnhVs85cowToKz2m43GTshzyBBxkgSY7WuIb0PGwzDsPD55288PT6K+LoONPWG19cDPnpxl0XLOMpQyS0yjH47dEyZP3m9Ot5eR+pGsVkLt3K3L/m7f/hOmqyHwD/9738hpMgffntPXRuKUuHdREqWprVA5Hy6ZuenJMFA8fr6ymrV8g//4e/oug5rDSE4Xl4ueC/pi3kKnMNEU4jg74lsNmvGcebrl6/85re/5Xjo+bd/+4FpWqibFUp5tFKU1vDwsGF312ALclO143zuiNGz3W7xHppmhfcus/8a5ilQlg2FXXM8XZiXgHeG4Gvm0WFtzfUyQloorCV4cMvI8QhPTzvu7+/wbkYrYe+PQ880OU6HnrZes93e8d/+1//O3d0TLmOetBY35t3ugYenPWVjKQq5XrpLj0oepXrOl88Y7bBazimqkAKmlGCaJ8FymcgyzWhjmcZRhjDeY7SjaSv665m62PLhg5Rovh5ONM3CX3/6yvF8uZWt/S1ff7PA9y7ihCAuimUe2e/3N6GvaVqSD3z7+sxvf/eb279L2X01jtNN8HsXkd7FoDq3bprsWFgWT13XjMNAlW3RLre5Lt7R9R1dPwiraRH+kSJilNiIXYbIy0KUH4LZVdBl5ktRFGw3a1l0ylLiJ2WF9+IUS0BUiWmWB4RzAW0N12HkdD5R2BJjLF3X8XC3Y7/f3wTL55cXEc20cJ5STCJ+Ook3fnt+Zb3aYoDVakVVF1zOZ7TVfPj0kb4fqJr3B7w4OJZlwZRWChysoawrgXy6yLquxV7vRRyoyiZvcLU85JUiRC9NNErhFsc4TtL2kzcj70Lg+2f07pgCbsKfyqw7iWIVlKXNYqEgya3VN7j6+yY5Jf6dM0g2eNJAG5ldYJxEHFBKCzBZvfP15Ou9hVTmtYqyEEByUxesrKEqLM4tjM7ngoR4e/1KyaY8JhE3pnlinBeJjj5G/vEf/yf6a59vyiLDzhvGyd0iTFrrW318Spp5ltbgsmq4DoNEA7OIvVlvBUQeRM3fbLYsLnA6n3m8vxMosxIo6PFwzhu5gvVmLU20Cq7DyMPTI/PiGMdZJsXOUxkDGq5DLwfuSD4AOZJWufFWBCyixyhDaQztqmXdrnl5fQElD9XgHe16g1+EpbDf76mKmml6gaQEjFsUbFZrxmmirqQ0R2XWYoieZUl01w6jDU9PT3JtRE9Ikc/fvnCdhlsjli4tYXLS2Kw1jx8/cDqdeD4eSErWB2MLjNIUpeXx4XumaaLLAkRMCVMI1H/uhXUoMHyXC1wcIcgkNWQWZYoyDHiP7qIElv4ubqcYWeZFoOtaBA+t1K2YRYQ8aRk1cp4ghpBLSKQV0Rh7K2goK0dVWpwX8Qal8F5ikJlYhlZyn3kfCBk6DAq3yJRRCmdkSrzMM7OT+wciISlCkFr3ab5y7UfKemYaL5y7N+ZlwIeJzWotEW+SCJW2YJ5nlIooFpblwOn8E3X1iaZcMwy9CKWQWwPFmQhyUJqdEw6mks2PrUS4qeqKcZm5vL2BsqSoMn8kSkV9jJy7jpC/1+tRHDWQpBwxer77cI9W8nNnJw4yMPiYOF96Lteey+XK958+5bi9DBWWZaEfFyYnjBhy62cKMbd/ZSx0grZuWLUNRmlKa/F+wftFXkOS93ez3lIUBd99/xEfhU/58vpG9J5IYrfb5YHOQLQ2ixVB3BazEwfyNNG0rYg6gziYl+CZ++xet4akRDhXiPPUFpZxnvnnf/1nzuczMYJ3Ig5nnRJlCkhanECmBDTalrxHBHSODKIUVd1kXpVMOElSaOSDF64lCqXlc9IamrJiGKSVGqVwmbkjra5j5hLpG19Va3FE6cx3DSHmAYREGt83KiofPNpW2kBTisTopWXNe8plor+84JwwV42RspGhn/GL4AqKQtG2K3orcONpGlmt13z79pmqavNGXloql2XODntpFW0bYWr208AwT0zTlevwyrxMuGFkvZJGcK3B+YWqEAGIGADH4g4czj+wqr+nKTcizmXXTogiQggf0TD7mSV4UpT9RQgxi6hWGsJnR3+SZl6l3ssbJPo8ThPj2OPnGd73LQpi8hk/kfj1d0+UVpjBsq/RaF1gi5JumAhdLwOZukUZYUoqlaPi1wEXl8w1Fq5eWZbMi7jQioyweOfS2izsGq3ormNmbNa4xUnZhnPUZcmHD09ch57X11cu1wsqSdvkZrvJAzyTB4Qz47xwuV7xQZxZMQa++/57lNGcDkd8DFxHadDVBnFwIdeyUfpWBFaUBYfTgfP1xDxPqIz6SEkaI62Vlud5mSmL8taqLg5sWTtRimUSluBq1cr6PS+UhcFoKUB4Fw5JIrBjVF4ff4mpVVZi6afThbv9vRS3UFEMibfDkdV6hXMT3sHp1NG2JbY03D2sWa0K2rbg4XGDWzzXbqDvZ0F3oIEJ7y4UtuVy6XALRCJfvryg9B3tuiQFw5cvb1RlyTg6LqeZEKBpdjJAMtIY2TQV2pYEr4ne0TQ15/OZpllxOByJUaFMwbUfuF4HvJPiqg8fH/nu++8JIeF95PXwle32gcX3jJPEvoL3kArh7yWJzXnnKUub4edXuuvPGN2ybu+o61Ke5VmMv3u4p79OfPn6jWme8R60NVgtLbfRS+Tu8HZEKS1CaN6X6xwp10bhvYhdRudxTQJlTL7aFbUpWDVrbFmhjMUqgwmJaRqYneNwOnOdJhmcpMi0eE7nC/vdLqNYelzwDOPAEpYcE5Q1zSpJYRhrMErlxJJivPaUpRWn4vXCOEwoLRxr8LSrFSkmLpcrl9OZEBMvb6+3cqZVu6KwJUpr+kE4xZfugi4sx+5MP44ko7Iz22Gt5tvLM5Buf9cHT1EV8uzOD5SEvF8aUOY9dO65nANN3VDYmqsbiVbz69/t6a4X2lbxX/7nP9APF/7yp1MuOYQP37WUReLSdRQVfPxuizF3KAWn01nikCmIyO4jX75+Zrvd8I//+I8cj8ecyHIC4LeWsqgZhxk/ddJgmzQqiWv4cJAylE/ffc9PP73y04+fs7O/YJ4mVIrUVc2Hpx1N+y7GW5Z54PB2YrfbYm2gbVcURSn86qRZ5shut2MaI5fLiNGJeVSckzinpjnQX6/sttI4vSyOoR8ocxGdVnDtDlRVi1IlKQSmaeHj0xPPzy+cTh3Bw9evz4QkeJ66tpSl4ElQjrKuOHdvjMOruP3WLcZI8Yt3iRQC8zSTUJljHvBuQTjlktIShnGitGJYiSFQVBXTtOSyC/n8QwqZAyZCvIuBpqxkL2FM5gNbrBHsTkg+J8JiRmBoSqOp65JxmGTY6hbZMydpVK+rirK03N/dA5G6bfjh5y8E51HAfrOlritIicWJ8SEp4Zp13RVS4HLtbvgaWwjTsn4feuX9BCQRFhdxEisl0VDRIXPjL6CUpioVu21F3Wq+//Udf/3zgW+fR47HC2B5/fqNsoK6Udzv76WcTWnu7u5zxFoiz0pB30uM1BjDNC68vL1y/3DH0Hs0FdOQOB5yLLd/xtoSYkl3GRh64fttNg1uSSglgmRVinkghMh2u8IYzTyP/PYP99gycrkc2D8Io/qnn1+wBbSrkrLRKOM5X65st2sg8WG3lzNcYRjHhbquMgt9ZhxmxnFgf7dlnifGMWQ9RkS3slhzOc0cD2d8kyRZmGDoZ1BQVy2Xs7A5tS7FAKUMq6rmw+OedmX51W+fOF6eeXl7pm1azpcLRaF5eNjx40+fM59ckonOXVGpYJ4EibRe3eOWRH91DGphHOS8LO91JDHRNJXw1FMUHFJ0hDiy2VXcPdyxarYc3xLHt4m+m4hRdINlkaH8MA6s12u0tlTViqoq2Kx3oAPd9UTTlBSFpm1XWAvO9SxulgEWUFUNxuYhfJYlbFEwuzONLdhs12htCH1gnCa+fv3M3V5RDTt+2/wd8+I4njv+8uNn+mHGxZifC3/b199espFS3kxLZGMYZGHebkUkK8sSVwpPoq4bprwpXpxjmeebzfddJJLNsKjs4zCIW0Cnm7PMe896s2HdruR7Rbnhj92FMRcSxPGd1iHukrauGYZr3iSnPHlciEFTV+IOmSdx8r1PH+Z5RmnF8dgxVPLA76cR4xxqhKeHO4lMzj3r9ZbT6YR3UVr8FJmptxZWR46FPj09MY0Tz8+vt6n6er3m+vLM5CT69nB3R8qxlE+rJ2xp2LQbXl+PzMtCWVW8HY88Pj6glLBmmqahGweats1Cm7jkZAMvUYJoZLaZUqIo7U2wk8YccWSY3IJsjMluO/mM3z+T9+nMuzPzvWxAppfiZot5SiqujOUWwZ7nRfgDWqO1yVw9OcRJcUpiHGdmJ9OLmEel71MYeb3y/wOy00Y+q6os0dYQwoKbZ14Or3RDKS2QueFYIOUCllZKomjvUeBlkQad7tpnNkVBlx+Y8yxCho+RSzfkZJ8ciJoMQXXe011VbjcSNg5JSXnFZkvdthgiwUiJxOIE1r3e7JlnT2EL4WJNC2VZMS0LwUVigMskLCGA3fmaBdjsmtQiEBurOZ2lmTOmmCNiElEqjLi+fJDDWFWWIogAXXcWQUPJIbapKna7Hefjke1mS/CR43jm2vc3rmS9aXh9O1JYK82rznMdJF7l3MI0R0IMbHdb2nWLUoovX7/I/e7czeKutaEfRxEiCsunT5+o65of+07iqdZgS2FihEXRNDUuRIZJwNs+JGxZQAb9VpnhOUwj2khUTmlh6YUYSMTcFCfTPo1GGU1wc54aSTvoNE0ieOYItlxrEl/QSjOPU47dRBF6UsxRZXNrEtZaC7B6FW6CkbXiip2mUYYEWRiXNKSSQ+i0CLRdiXjivSNGEdebpkVrLexBRWY/KKxSWKPYbtcYA9fhjXq1I8SecboyO4nT3ADjhfAvlRKnTqkVISxc+1eUqbB2TV3fEXlf1xe8c3z8+Ikff/6am8LDzfkoDmERVvteDj1vxwMRgYULG4abw+L57S2zDuNNZE0xijhrNOuVAPibpiapGU9gWgZCUlz6nsm7LLhGTpeOpq4hLVy7KxHoB+G0iLgrLYXC/nBSAlIa6rKktEbip0SU0fRdhylLkhI3Ycg4h7e3A3e7LS56vj1/Y3GOtm6wRUnbtrKO18JjG5eZeVnohhHnHT4FmqZmu99xPp9hGpnmmYhMlSOJ5f2Zl+SejEkifLNbKJXEuKS526NzwYv3Eif0QVymMa/xKW8Ibk2fSNxTaU1wjqowKJMdsFEOrubGpolMk7utp7lfG5cjBkpBwlM1RS54kim/D4F12wrDZ55u15VS+bmgsmhp5HfxQVp55b7MYrh3eOeJhWK4ypTZudzG3rZoZagqg9aKlVIoIwOk1XpLippxmEkp8vL8wtPTRy6XK957uu6SMRY7vv/+I3d3d/S9YxhPXLpXjIn045HJjWgtTkSlS4rCEHwSh7O1MiiJC/1wwBYrqnJL3TxgrMHHwDSJ8+vx8YmffvoqHDEfiORCHSVt8lVVChtuWTgcT0TeM3/ZXZoHam+HgziMopR2oI2sRTlS3m4ajC0oqxJnAi46Fr/gfOBw6pjzUIsAb6cTd7s9ZSWoBxHBR2k+XkTkCylSVhWKJOVkQF3VmCxK1FVFVRT0/SDlLLmkS2JRGucCX78IS/h8PsuepKplSFk2aGMklp2ZtcM80o1XJifu2hhlb3HpLzL4i4GuvzIMA3VTk5D26xiClLYoaUdMQD9JbM87cZiiBaLeti1h9uLI0AbnnQhJJGwpztJuHLKgXtBsGhY33fYyITgZMsSQWUHpl//9zqfMsa4yswnd4jBKoTC8vr6hlKGqav75fzxzOEqrqaFhcleU8ihleXrasNlUaKMoCs04DnSdiG1aeTbrPWUlYv5lGljiwna7pu8Dfb8QfeTr5zPtqsb7xPU60q4S69WOEJbs6BE+GDFAMlzHC5vtDrckYZCVDfM8cTkNXLsZ787U7QrnIxqJKD093WOs5vX1K/v9PUolrtdn9ruGlAbK0jAMInas2syiTjJQF64v8rwgQVrw7kpdJLyfWZzcH2+HN3b3d/z85YvEcgOkpLIbydC2LdMwcjgccxpHmFqCBTK5VVxaO43S1G2NUbl4qKyY3SJpEh+oq4q73Y7r5YRer9hsWw7nntNVEA1eceOdFlrjvByY29U6DzekxM65BR882mTki5a9XGksTd1k57oixkDwC95FhhhRuWRocS6/TwqFsPvGYcpw/hMhBDabDZv1mmkccYsM5wSJ0uGi5/UknOfZLShjSCGgrGA+mjrz/4KIH7bQcj8pee8F6SCNvglHjA6tE4+Pj7y+vjLPC9pEHp4q5mVme6f47tdSFngdXhmHhaYtuLvbZWTBTN/P9P1EipqmsTTtiuAj+/2ecXA0ZUsMcOouKGU5HS8En7heJbUyTyJqNE1LWa44HDoulwt3uzvqsmKeIlUp7lKtCi6XK/Poqas1VVUxjgMfHvbUK8Xdw5b1puDz1x/R1nI6O8Zh4MPHOz5/eZa9oLHCM46gVJGRBpGiWDHNjvOpo6orlkX4dDEExnHCO0kYhBi5Xq/c321Zr1uqUnN/31LXKw6Hka9fjlzPBz49fUfbbPnxh2/c3e0Ypp7tfkNKUVzg3z1SNwWmkM/KL477uxbnjsKltBCtJdQtdVGSoiAIvEtUtWKZJ2xR41zI94fHFoZxvFDaDR8//op5dnTXgc+fv/Ht7cASAj7zHFOKkhaJkXmWvYwwHRNlaVi1a67XK87NMvCIUZAOJko7t3coxPRRlyVJFaSU2G13jNcet3hCiFx7EaWtNTR1gTWwWzdyXnYLiwvMQYSQ9+v2cDrivaznKPkZMUW26y2n05EYPcZqvJvzWTFQVRblYj5Hpn/3fwABHxx1W2Bs4OuXI262rNo1Hz89cHe34dp1/Or77zmdjry+vLHfb9BGM0+LDHWjNL9/9/0nKbFysv4ao3l9uWBNgw+alEq8d5xPE6tVQ3dxhJALx0yJMe8pNxlQOR9ZrTa0bc3pdOF86nDO8/Rhhy1WFBU0jWa9eeDan0lR8x//4+/46ccD4+ikF8BoYrS8vV3Y7do8TFWUVYn3cs45n885XVDQDxPn88/s9jum8UpRCId26AObdZFFwJFNK+aib99EqHt6emK12uSTkmaz3qFQDH1PTInvv/sV/Xji589fCHGiMBWff35hmgNNY6jritVqxYcPH5iGmdPxgrU1JuPInh5+xd3dE4eDFKFM40hKirK0DP1wQ9akGHFu4ulpR9taUpL02GZTYYxoSUWx5eOH73j91vHzz1/YbFr2d/fMy8Tf//3fyZ7HWMqqIkaPNmKcWpynqPIeXBu0TkyTNIOH6ITDbhVpkuLAwpbSURA8m+0WAO/kbG+1IijFOPXU45Wm7JkXx9dvrxxPF7phlMe0+kXr+Fu+/maBTxpnHO9OqqaupfFn6Gnbhu2ulXjINPHt6zNlZQVePM83h04IGXRbSwGBLWI+wHi0grhI/KooypvjbpjEUdcPA+My0/XX3F4LwXuJbyVuUYt//2a9i4kYc4sUPdxLLHPKTbv3d3cyHVeWn//6I99entHK8g//8B/ohysPD1JbP03ywOj7nu12y/39Pc45uq7jfD6J08sa6kpilGVZyoNunsUS7BbJZsdAUdQM00RYFiKJh6cHQlTMS6AfJmbnGJaZ0hYsy0J3PtFde0J2FvXjSNs2NE0Ls+NyudA2wrkrrBLbaxZVleLGO1SoW5NLVZXIghgyv0Bs3eLm48YrgXcHXp3z5nKT/cIjnLMrLBBUFgPVL82jCZ3dTpG+H7MwqLLN1mGsiIXiwvlFbFG8O/cSKYitva5KlNEyEU2QlOE6Dlgtbgz53bKrJbNK3qPHEqsQ54QPgeADS4rSELs4Dqcr2so0O6aI1gZihmjmg71W4twYpgml5M+FUygRwW/PzygFLgtv4ojMd0yK7DYtD/s9RsHic2TSWExZ01+uXPsrWmt++vkL93c7lnlC56bPYRwIKTKMQ94oJsrCsHhhP1mjScGzblesV22OdSiMUvSDMPW01uJYKEv84nh6/AAqcTgeOB6PMvU1ls16jTbvLkrFME4sbpEWsMxrCjHw9PhISomX11cW7/AkwjITY2YfFtKY9++ncT99/hltpGlTacM0DFLQkiMo3iVCKSUYSiURSayIHbw/Xoxhd7dGo7NbKcd6grsxwnRmiPgoBz9rxR1WlQXOuxzhFsHFL+JcCE4cJhgZ0IRs8weJqYkYF6R5Tel8KDGs1wKqdW5GGcBHFudu0ypjNKj3g1COxUVujD9tFDaJcLjZrBiGEaOhbWtIgaqqsNnFnJKnLjV9/8J+t0ObhLESeVrmAW8jZZnyvZ0nneOYizwStiiIfiG6EWsU3i2kqBh6EavKsuZPf/0r0xLxeZNkjM0Mp8S1uxK8R1sjnzMS90hR8NXvB2ejlZQrIE2BPorbICXPbrdltxbRLKWEqWq644HzpcOWJWGSNSoifSNvxxMfPjzS1g3hcmacJ+Z3J15mf2EMyXmaqsBoi9WKwmrG8cqqaUhKc732EvFeZPOoteHu7oGx75mHCWONNL0rxcP9vUTZyxLvHN47pmlEG40NltfDAa8CySjc5DFu4eX1RTbEKUnJSy4W0sbIepUiEh6XTatfFkJUTItDGRF7q7qkqhs5iChFUpFxGvP17WnqRv6dD7jMqvrFzapR+VDn3CLOyizqhRioywK3CKfLWmFMLt4zL7NgMoKIX21TY60mBRF3VdLCIE0Rgqc0gnvQ7yKflvjONB1kxU4SS3530OtcPuL9QmkFWRB8hVKBeepuAqrVMA8LigIXHPt7ERskAlxzOp2IUQmzMens7I+8w63X65YQHc8vX3h6/Mg4nnDLCdtatJZ73juHdwEq8nqS8MExDD3l+zO0LPB+wC8DRosrDIRDbKw0lf/1x59wQThW5PfznW3bXTpiCMLYzCK7fM+AyfF8EHe5RpGSoWkalkWGI6TIbrtls2rprz0pRJrViuvhyvFywVgrrEktn3dM0HU9xtjsFJf3f8mFLe9s3EIbfPQUWhIAhTFYkwd0SdAdbl7ygFARfCQoaU60tqA7XajKguPpTD/0NE3DZrUWJEIWdX0I4uy2htVqxfFyImUGbnBRSmOMInppm4spUtYiCockRQpGq8xdE8C+XxZpEk+ClxCnn6MoJLkwjINMzeO7y07KEVTUWN1SFAZtYRhH1qrNA0xxeZe1uNvc4ki6JKTsPl1VrPIgdRgnqrKW+G4WaqSVWxItwzAxTbMcwIsVpSnRxcLd9x8oisTv//A9Sfd8/vozVd3wergSY+DDxzte3w6MgxQ1yeBZ5/tDuFJKyYBtmibaVU0IjrLUzJNnnHrGQTHPco9fLh2b9RO7u5Z5mpjnCa1ESDq+9RAUv/71r/h//q//XZyZPjGfL5n1mXh4uGO9bmlWJVVVMIxXjocLHz5GzheFdx2ZfCL7HOfRIUBMNx6rxKJlL2dUpCotiiDA/bIkKSncIA/exFnk8YCJGufzUOz9mpFvL+eH6G8JIp0kjVDVJbvNmuA9IfPC3DSTYkBnoTyFmMVBC1pzHXrI94Q81ySaj9bYqiL6wOF0pG0q+rEXh252iXu3UBYFKQ80KltkZ5U4iuq6YrvbMY6DiJJ50PvuKESpPGBOWK0wRgvKw8j5IcbAPMshMSklPMrg8ASu53Ne65IMSvKeyJpfnrtuWdAGYnRMwyitp9qQgsJFj9UQ40jfvWZ+qghsyyLtmL/53RPr9Zp5GTi8DazWLdOQSEFxd7fm5fmZ4CN9H6nrlrJQKAqCVxR2RQwTSkWK0nDtL1SNFIiRFMPg6C4vrDcr+nHG2oph6JinnqLwTKPDx0DTNhAizy/fSCmx38rgQoqDLHd3d2I4cY7dds/+oeXl7TPjBFqXdN3A8/MBo7VEplcl3z08EAO8vhwlWWUUy5y4239kv3/kePwnac9cRhmM6zz0IjGMkwzJTGK3a5mXDh8Su2abmb4VwVvudwunt5/5+vXbbT/oXODTx+9F5NtuqeuS0pa4eaa7XFnlJuyqLNEGKffrLzLYiNlZlwUr4RPLfrpujAwAhivDdeTb88+khwZrNxj7G/pp5Hju+OtPXxidYIuSVoCmMFaa2JOU6vnMkNXKQEh0l2vGcsizXBuDUgkfpVRjnCc0hs16w2a3oe97rteeaZ4Yxonu0mENKJ14+ReJrP7ud99zeD3QNhUxeO62W879QFpm5kXnUoMeH2Z8CoL+0AofBXUVvYeYpGDTGLCKZRa8gC0K9DujPwoT/t1sIxpA5O3Zi0tYe4IzbLdbqqqk6w/c3z3I4CCCC5HntwNVWTA7L8J3Nr64JbBqt7dSyu48UJia7jzJGaMoIUbGaSYFJcMooxmniYfHB5JVDP1E8Asv7oAtYBpnvPMYXbBqC8ZpxJiC9brm2+cTx+OVh6eajx/v6bqevn/m+dsFpTWbTZOZ+YbNeg9JsWoeuFwuaGN5fBIWprWKeXZM45KfJZH52xljBFEkEknk9fWVwlasVhUPT1ui83z6/pGHu498+/pCf/2Jh6cntFI8PTwQgiTXumvHH//4J2ypKerEal3RttK4XXhHioIWun+Q3oRxWDBFRVE0XE4jShnmZaEfBoqyFEZ3W0sDtdUkDL6XQketaprasFoZPjytWW9KNhuJ1H/5/AqpYh4i06SyliDXfF2VPDw80NQNKSWeHh+4Dr3suRaNLUoiC7ObmaeR0kfUOHEdx1xCqfEu0ZQlwzjJuV5ZKm0Y+wGUIHCcczmpEJmmAbfAqnnAec/Xr690XU9M7w3i6XaW/1u//maBL/rckFMUFMYQ5glTlfTTjClKuusVEpR1w89fv/Kf/8v/xOVyoc9OHLGbX7HWMF9m1usVRWHFyZKk0XKZHT5GlhDxedMl3CXhuPgoHBmVm0kLq7EKTFkQo2eapY0km/PEVqsRp88sG91pHLHaUBhLu2ppmxVKKV5eX7lcxH2okApsjWwixnFi8Qsvrwe2my11UXI6HpnmWVhnCuqyZPGOU3cRcHpR0Y8Tz4c3+nmiyk2xm9WWYZoymN9S1A3//Mc/s7iF9WrNOEhz6+Ijwc0oZTmeO/pppKgr2vUKvzhO3VUikCpR5gXtvXX13THzzjsxxjBP0sCqMFjLTXRUKhFjZiVqlTfrslkoiiJ/3yZPS+LN4fW+mL4LaDaI2yLpRFRJXFM+sXiZfqTIzbWX0BL9u0l4SibnObprlLTQaC23ZwqW3XYLCpZlYLOSSE0ikrwcgr0Xd8B6LVNEpRMh27aLomCeh1zGYAnZvXA+n6Qt83Dkp8+fmZeYRWiDwWJKc+NSffv2LNPTeb5FHpRo3Sirmd3COImTRWeBM2Y+jVGK9aqlbVo0CltYTIDztWP2nni+MEwTUchXdMOALS3rpmUcRfhbvLtFxYIPt+ZakkyxiYmqFHdGf73S1BVGlZyvnTBisgvBFAIOP13OMi293+eDc2S33tA0rThwl0ViNyEwe0c/jvTZSZsStFXFNE+3dttpFpHAFOIkdD6ABhflwAqJcV5y/EkilEZDYTTteiUFIZEM2F1uQHStdY4DvTP2pLEWYna9ybWqtMViiFH+ro8Bglz/2iux+Kd0i9jEGGUab4BC47O44hZhNqa6Zhinm3iYSBDEiROCl/amGBnnmbpuMgqgAB2F11W93zMpPwzkSk9ZhJbXKVbzlFmDAj5fqErDdtMIML4uby27xqww6srPP/0ZU6zY7VpsoVFqQkGOVIkImaIU1czLlIuJpClLJQ82sF41YnO30lDuFk9C5wO0xYURF8QN+V6q0DQNKE1SJscJtYhHSSKK4iyLNG3Fw34nN0eSWMX5ciJ6h0qycVvmmWWZWG3WRLSwjFAY5LBklcmmJ2nXPl8uGLtlWiZmJzDwxPt6VLH4gNUyeKqqhhQ8zi8SwRlGiizopgRaGZbgSHPiEE8SB1MSf1dGUZrqVjayLDPr9Zq6qTgeB9wk4ubsluxai9lhqqibmmkU1lqhrLjhkseHzIzSyEbZTXIgDRCSxhibpwDSqOz8cmuHB7DaQorMizh3tVKYqiQsE9pagaY7hyIRldwzyQURmxMUVrMqS+pSQL/L7DHK4hdH8JG6qYUXWhju7+4wWgtjKCxUlQUMwUfcMqMUlMZS1RU+RsqqYJpn+lkKoCC74t9j7UmiWjHfk5W1uDFxeM3Nc5QcDxfa5gN1uWK/uefaX4hJ49zC0I903RtVVdPUW/7pf/8n9nf3jMNEUomyKKirkvu7DZt1TdMKU+/l+TPOQ7ta4XyFVoLscLO4Wd7d6cYULH4hEJgX4ah457DKSVFNcNhmjcnua5VLurSxuGnMbYTy/VQSR/+gNUSVS74kYum8lJ5IqzqUdcn9fodRWtZz5xn8INNjkQJIWd0oSony9+MAWlEWBaR0QwugxN3cXa+0q5qu76R8xcvz3Qdxj6OVMPaqkraqUUhhWLuqSUmEoLpqsgtP3EspRoZ+ZEgDKSRaW7A4iYBL8ZYMneqqZrVZ41W83R/XwyguUIR5JutfYpG+FmLyWZBb5Jrz4ZehmQQKmaYT43DF2kacIjoR05LvFS17C51A56i+0ZS2xCPurZQHSzop1rZBG5gXQToYA0p7jElQSEQ2JS8CRWEJYczphpTbiRWoRFEVTBeHWwKbzY7C5kKgsqCqZD29XGaeHu+xpefrt58wNuK94vTtzNvbiaY1GR8S+e3vf0XwkdP5TPAKq1uW2VPVK+7297y9/MD1uuAWKCrysw8iAa3E0Wl0oiyEJdk2kaePW4xpqcs7/pje+PzTG305SjomROI0s/jAdrdhtW6J0fP9pw9stytiWlBW3BO/+vUnEo5hfiVphyk0beZLCmvPiSClTC7Ik+dziJEQF5LyXPojRbni7uGB7nplXjz/7b//D769HJi9w0cRv2QQkYRZmQvagg/YoqJZtVyvHTGJmBwzpmOZZ96WiaauMxNb2px90GzXazRJ9sXJS9y1kIK2GBxVVfD9hw+8nQ501x6MCPIueoZhoB+v0uIZf0m1tKuWFCP9MMoQ22iGaYCURDCZR4ZRnpfCt15uTjxj5HqNEblOS4uLM8vSs9quCHFimByL8+Ju8o6QRByMMRJSQqc80LWW7W7LNA0Yq/B+IXhJA5Ta0F3eOBzf+O1vf4+mJHpNCoFh7iEMdN0bTb3i2onDaFkiZVnTXRa+ffnK189HYoT7xxVVoyAlLpcTyxKzq3PEqJGHxza7uZC25kXSDPf3d+zv1rd7GQWp04IsGM/CQDYL3oEq4NJ1tPWKqqioS8M0zvyn//QfqIqWv/zlR7rrwMdPH1m1Kz59+p6ff/4MKL5+e+btUqC0576uqZuSYXIYXaKVlKI9PG6Z5olrN2KLkrJouFx6EhYfIn1usZTXpDKLzhGCywN6EbjapmB/JwUC3316pKlrjqcT18sRwgZjxLjS9z1NU/P999+x3e6xRcHvfv97+fz9jLWQXLq58JxfIMmqPy2yZmstZyemkXmasVb2hLOfWW9WqJRy0aBhthrvHeN4oamuDPPI5y/fOHVXJufxURyyYpCOwiyN8jPkWipkGJvIYrCXhIFKKBUhyV4iMTIsE3W5RqeS2VU0IXEdRAgRt53DhTHv1xa664l5eaMoPHXVYlRimB3DLPtSN89AzFxkSaKZ2xQhoYHgFtwUcgIk4md5rho0MSbcEhiGSc7674MHrbm/l1LQeXakKKw/t8i5obteCD/PKA392bHeXBmnCdA5oaPzuViMAW1T8/L8xuPTI352jFcpfajLFd31KpidRaL+RhVMkxShhSRJkXGcqeuSpm7xYUHrhFIhG6c88zRlsb0mRc2f/+2Nl29X2bMG+PmvXyhLyzR5VEZgHJcJrQL7u4brOacop1e519LEPomo5tyENhZtFZOvsWXJ4XghxMi2WTMtM2VpaBqLShaNYRjPlLbg7u4JpRWnc4e1Benljd12x/U60PdX3t4OrDdrfFQM3UAbC77/1Xe8vj0zjY6um7BF4vFDy+l0RitNVbXEIHz7YRxwS+T+7glb6BzBlQROVRdsti11s0cpD8nTXUbW6w1PH3bc7VvmeeKHH34ieKjKNW5RnM8XSA0oz6qt5dlwvbDfbSkryzLNTNPI8/M3Xl6e2WzXuLiQ1Mx2t2azXsvw0AW8v4qTsGiESegjTb3K+1qk5MpmrmmU8lG87APLqiQGxNkOHA9HnE8knc+TKgGBFN3/j6rcL19/s8AnzbfvMRQB9YYYhZ0zDIQQWKaZ3W5HCD4DewPn8xnnA1Xd3BxVy7KwLEWOV0k+tDAFZVXTX85MQ3+LCxaF8MACMmXTRkN8r8QWgGbTNHTDO6NDDuFayUbYanODqwOsVzLty+ftWxx4WRyb3TYD5x9vrplvLy98ef7GvCxUmQMwTRP9JO2zVVmSoud0OlE3DXXT4ELgcj5yOJ2JSeSru6dHvn17JnjHNE+YwqKiZz4swrOaF7SduY5Djh94CqU5nE9cpwFdWFzwJC+MnaIqCZmL9t4wrPPGalmySyuI68QYgy0KbI48vUOC3ws0QgbGvvMRp2mGzHxomubGQHzn771vdt5Zd+/svqZtQcuh1y0L47jggmT8Q4LFR2JI+cD3y78lCcxbadkMWBPyFB8Rw6yRRUqLEKiUNEgprW4NvXMGwTsn7EPnvbRVerFoF4WhsJqUZFHRRuC8+7t7Xt7e6MeRJcgDQxsyw6ZhHAZO50sWBgNJiSOF90KSlHCzo25q6lWL0eYWReqHIV9rifv9Hcs4sOgFUxgiCJsoxTyhk41TTIl5dhyPF1bN6hdeYW6UEqeosJFCililc7xNYRR4N2dGHizLnFkUwtSIMbLdbqU+vh/Zb7Y8P7+QSDzc30shhNIioGRBMUYBnr+dDmAkJjNPM0tw2GRFAHW/cNBC8FnQT/n9Ak0gBi8inrKYqLBWE8LCbrdhmhcR45HPNSFTbGMMlS0IOQLu5sBmvRYHJSJSW6OY3ZSFaml4rfKkc5rk9xdrd8q2f3J0NtC0FaUxUFqGcaAqGwgSJdMKalNiigIfvFyHhZEBxHzG5IKNd/eKuI5lnYxBmouLSpoKnZPfJXgHSeepvWxSyrLAmHRzxMYYhG9ZaZL3LEgkwSBTeWPh4XGHMiXTcqLWAjqX9mYlFe5JIh0xvK9vDo2SUhDvWdRASjOXy4FPH38j7pzrgAuRz9/emJcoolRWsL1zIjgkcVT6HCdu24YYAtMiZTwht0P7xXE8nqjLir67kpSiKC1lUeYHbsXD/R2X8wlbFFy6nmWSgcrT/R0oxcvbCz6CMQU+OPpB4N1d3+d7RSSAopLYnPcOo4TTOAxXgvMUpRW3pVaM8yxFG1pnmLtwmuZ5JsXEum0IaaEopEV8nOU+qquGc3eR1ugE47wwXxfQuXyjsPkBbhjGXlxPQQ7c58uRzXYrYlpMhOgxBJbpTNddKMuapt1LU3mYCGGmrNZ4J0w6rWSDGVNEE6kq4anMrocUaaqKoixxyyJOzJRIOqKisEoTSqbuiIg8T3IPgRbHnNGsV+sczwls1y3WJIbrkWWZhd+jo/DJYmTxDo3BWLkuVu2K4+koYH9DRgd4KcjxGRmRMq+qKKjK+ha7nkY5yDjv2WxEVOqHI6v1ju9+taGqG4YeulPg69dXQkjUdck8C2YjxsR2t6EqLUVh+PDhA3VjmZcBrRWbTYuxK5zrKMpASp6yqFArLfcIEGNingU14ryj0EbcSCEwL1diHDl3bzSrNcZYTt2RcOmlNGKRwiFpEJTf3aNurLD3iGe7apj9kq8R+d7aWKL3HN/eaJsVQyf/pm5rvDas6oa6LNnvd5yOsha6EAluAefZ3kmh15dvX2VPkNmr3k+8vr2K+967mxvR5D2U3DtyH4/jkFmBimkUNmIMEbd0KBRFVaERkTp4aQetyoKAx/mRpi7RFlwU1q6Pgc9fvrIEaZdbvMcFcSqmmNhtVozjkDmOCzEEaa82BV++fhYWzuaelDQpQQwLYblyOX3B+5m6WrPbPRLTxDBdcG7G2jsUEivWSrMs4gJcMptqnmdsdgdUdYG2BcH/woCW9rvINI3imMLnfzdiTEPwmmEIRKS9NCZPWRVEZAN/soYff/yB+/sHKR9ar3h6euLz56+0bcvXr9+oqhqlE+0adtt7+uEFYwpIwpz87lcPpIgMBlygbfa4RYYq9/sn5kU+Q0GpRGpdCnN4XLCFxttAioGHxzWrtWKzUXz4bkNdGaZ5pOsPbHcbHh+feP7yzF/+8he2mzXH45m/+4e/p2lqFIHNZsV7MdGlu9CsZQAUo6NuG679RQbOJJybMmxeeG5FbmaVoZmhaVfM80jf97wdP1M+bei6Nbb4By5dz+evz3T9iMv7A5SiLkuJ9Of9uHNR8CMIo/VyvuSDd0TrlFsyHTolXAhYbynyPeO859J12KLg+PbK2PdYreiHntfDK7/7zW+ZRwGk16Vhu5bigMk5TuczqCQJDz8J9iOnMWJK2KJk6K9oo39h9d7Knd4jstxwOCknSnb7Hdf+infvCBto2hLFTNdfCNee6n3tp8aHLOwJZUZKfDJ+oywreY3BoU1icT1dd2K9XuN8T0TRXd8YhhPd5ZX16p4QJEbZdWfcfKS/niiL6nZ2WJYZW2iMruguHd7LNdidF05HyZI5lyiKClNoUnRoGxh6cYe2bYNfBLVibMIWlt1+DQjGxxSGuyDDitNRyqus1bglslq3bE2DXwJWWfq+4+7ujqoUFvHl0qF1xeHtTFUV/PGPf6TrOoZh5OHhnuPlhC0CRXFHWWgu3RcRzpaZ/f2ey+WMVoaybDBaUD3OOfprx8P9B5pWeOen0zmX8dWUVQtKWJrWaLxf+P77B7777o6iULy9veRihoLoC67nE95LysFaEcuUgk+fPtBdO9wyM4fA15dvtCtZaxY3UDWFGBmS8JvHcWSz3eLnBWHsyXWmMr95nmdSEJ6zlP3IOeRyOaFpWbWfJHK9RLQpQIkbMUSJi6IMMS0EDKtVS9uuUMZkh2UPJJQPLG5CG1jmDu8namPphwPzPOKrO9arDwzjVfbuKTPvVGKYLsQ4c+6/kmJPP56Iace3F8Pvf/2PRAQ5kpCmUVtYChLzLAUJGiPN732PNlnAy+m39zPpe0InIIOYemUoGsNmXXE698yjuA6HocfaQoYh7/uRjDVZlpBTThqVZlAWY2UIOw9L3p8bwW10/Y29d+2G7Hyc0Xpgs9nKsEgbTsczECmrUjoFrCUhfwbiai5LixtH4R2myHrTUpaa/X7H6+sJFFhTY+1C0zjmxTP0I48fWrpuYJ7lddeNxEvbVck4SNmMNZbzaaKqKoyxjL0n3Wm8k/KVsqr5/vtPHN4OhCj7g6YtePrwK3bbDcvsOb51dJcrZblmt97hnWN0PafThe16x9SfeHs5cX9/R4zw+PDAZrfl5fiKLQybTctw9VzOE9MkyKPHpx3rdYvWMQ88LJdhIHrFZttS2IqijCjleHi8I4TAy8szbnZ8+/KF7b7k6eOGT58e6a8jIQSu1xPBD/J8pcDNgRSgsC0kT/Ce7777xG9/+1uWZeZ4fOWnn3/g44cndrs9w9BnUXyUNavSfPh0R1Vb5tmhlTiv58mTNorNakfwgWHq5OwQQx4IiCnHuxmVBNURk6DCpmmgtGtiFMST8x6fmYBaCw87xUAI49+kzcH/AQKfzk15MSv+9/f3EuHU+gZ21o3OZRrS7nm5SOTQFrIJXq3WDMOV9XqNNUaEwGmSC3/TcDydOF0uhMy4iiRGN3MZ+lv0U1pLxNmwWq3QStNPI2PmfIH6pXk0i5Faa4rcutM20hqptaIoS87nM5fugilkAa0qAeUOw8Bms+F//6d/Yn+3Z5hG1lWFNZa2qjFlQV3X+XAws80uumt/5TqNjNOMd3Izfvz4kXa1Ylzkd3UhMDkRaworbghjLefLhXf2ndRjrzmeT2BFEBJxM+Ucuqi+74LbZrMRV4KPeVGTiMs7nBTk0P8+OQeJNYfgMi9P3YpMjBFGSNu2/28lJU1Tsywi9P375l2tTW7kgxgi12tPTLA4KdJQ2kgsN3DbAJHeLbTZrRATpdEYE9ntpdzjel0yQ0sOaNICyi2+LVwBiQU3VSWbFGtk+mQSWnt0YeX31hk+r5W0+4RIP8rEpqxaeY1OxOYQRAQssttNaSWQ+szye2+fFG6PbEqrsmS/2zMOA+RYbHAykSqsFeEytxZWdcXz4YTSiiIZ1k2DIbH4JfNGLN5HjucLwS+Mszg+rbUsbkZriVLP40JVSSup1opp6FmtWiAyjiN1WbN4J9GVGFAoTpcz0SeM1vL6jcZEi1KaaRYRv1k11NbSTyOLW+jfXkUcMyq3PmcmSZL3hOhRSKxIoMoQtXDGChIh9EzDgDKlxAZtQQgTxkBM8n6ijESKczGNWwTormKSg2XMvpaEcGR8whhxeRqvZIodQWOpixJrNdEXeB9RQZichRGR27mFTx8e0CoRvTBC102FyrFYiUqbzF2yrJqWSKLPGxoBE0vhiDQvipMwZI6TiOYLaY4obZmnRRhymPyQl0iURBcd1ootPWYXgPOLsDWsIiweFWSD571ERY0OlJVCmUA/nBnHPrspAkYZEXkwtG11i+pvVhvapuF4PNH1r7wd/8r9rqC7XkBrLteeH37+wjAuBIHUSOzAGN5bUsX5kt2PWrPMi7DhkjzIb+3oCLuiMAVlWbPZbYjJ0w/CD319exP7uvN8/vqV1WbNb3/zidPhxKqpMsfvjsUlDucz7w3ap/NZ3BsZFI1WrJqWoe9RSkp+3oubQBpu39tySbDEhcIWsjlSAkwujaVqS1ariv56YHYBW0qcKEboc5O493IYFcqjfKmUWLct4NEm4vyMD+KoXdzE589/5vfV31MU6zwN9hwvL8zTiXnuSammrg1aW5b5jPMTxkYKvaV4Z/ClJBPCEJmGEas0JIVSliLfJwol97H1xCjOyLKoIBmsgXEaKMyKaV4YBkfdrLBFBsTnCEkIju46cY0TSgXOlyMuJD5+/BW77QM+JBLCcRuniAvCWGvahtB7ZpfLHFRCWyURbifuLWPF9ZYiqJgkGuYWjFEUNvLwWKGN5+HDjvtHgRhfuiMxrXj68MTPP7/y008/s93u2GzXGKv53a9/k9058gwuiorL+UI/nnl42hGix6qEsdB1B6ZpICknPEDVZjE90bZrXG7HbIuCqqq4XDr64ST3yL7geu1wIXK+XPn89ZlhWgj5BGesprAySLRGeDLi0hEhqb/20gqbWUJFYSFKLNjFQFnUFGXJ3d1eBoPdmaIuORyPdNczisQw9BRVyR/+8BuOrwd2m4aq+n8x919NkmxZlib2HaLUqLsHvSyrklRjptEtPSMQ4P8/D4Ggu9DdVVlJbl4SxN2NKT16GB62ute8jQgKDwiRlJsSeTPC3MxU9ey11/qW4e3DEbdEzrdOzkxZvtMv5UZKKUJKa/u64CKEgyvwe7XiKtwKSdcrI1CtjsDDYc/pdCJHKaUoK0NTa56fvzJ7S8QTgwhe3TAKJzlHYlL4GF6dRnplKRWFIbNw686vi0WbSobhTN8nmmazLu8y0zww9l/oukfquiDlyHbboJRmma+E6Fmcpa2tuA1jRBNFbLEFMTi0LlCFpWlbjIV5cTK4WoNVmsTIspxwfqRt7iSWrDKoCWEOCpy7bPaYokBnszKDRsoM4zgzjjPGdOx2Iur8+NcfeXp+IqXEdrfh65czdZN58+4DIUdhsyYYhom371ou5wtaG4lGtXtilGRBTpppHtlu7zBGrd/zgrqx1I1G24jWmaIQJ+P2kPnh+weshSVMLE7z9cuJstjR38Z1uW6JUZZ033//HcfDnhA8H95/EKZwiKjC0DRbUvJMszCaxmnEh0C9uj4XFyhLaWqtrOX+4QG3eCkbSfJ9fXEyztPAOPVUhaMfBk7PZykxS3Lyewkn5STLX4nfyOBtXwqyUCwprqzXF6Er4uNESjOaTJ4DxtRoc09wjml2cLnIIne4sThpMPZhoSwj37z/Fr9kwuJIIWC1wc+9zAw5r4UEspxXqwjZtg3eB5YlrCkZtcYIvSBbVtSmVkrcdlp+b7fbs2m3PD8/k1MmLLOcq7Nm8T237pHAwv39txT2iHMja3aFpBCneo4Ya7C2kJIMlUl5JrMwjmf64US70XTjE6TM7fpE9Av9cKWwzSsOJAUptuiHgc1mBu24f2hISQpbPn96IudMXRsWn2m3mu9/eMPT45XHx5HZDZTKUjdSNOFDFCGJku660K6FVuOQqCvISLx8u99yOBoSHqUrlNLs9zva+g11XTCOM91lYugXtts95Vp2N/YLw+CwZuJy7qhqy+FwZL8/cDgcKArL7GfKyhC95jQMuCkxjZ7jXc3u0NI0ktopi5Khl1Kbumqo6i1ZT3g/8ObNPfO0cL6cGIeZYZz48M2R3/3+B2JYGKeBFBf67iZzU9CMw4JWpXyOi7jLPn54z29+8wOPj4+M48Knz79wOB7JJPqh4/HpC+o5U5Sa7a6magx1vaEpd4zzgnORumqJpmQYb1hTYhorrtFhpKxqItLcGuIi1/5mQ5/cyvFdZ49k0KLbSYKHhXm+CG5IaVIyJFUwzokY8tpsGln8SEg9Ppzxc884XOnHK8XthXdX4ZdMblqylpSWLSqMgnE4odXEMDzx5cufqGqoKsOydFwuX7kd31KWLeNwIysp6hlnEdEVEZU07XbLuJZr+iC84ZeFjDjVFVonIKJVQKmFuoayNrx5t+F4X/HzjzemURYiOctMrJA5NeeItZaqkjnjxZDhvceHvJ6xFxrdEHLC+YA1wqYrS2GPHnc7qrIkxsxut+WHH35gHCWC/Xw+0fU9RVGRsrRVb3aVqBkSX6JpyhVbJE4ysPS9OOkVlj//5ScUClvB7q7k3bs7NtvMNFX0neEvf35EqSSFLTW07Q43R8IS2G0PFIUYU4Yu8emXK1UtC912qwlxoSgN213Dpt3Qti3Pz19QhNcUXNu2nC8XpnFBpxK/iB7gfSDFyHa3ISb5Loxjz/PzE8MkRaTPzxdQCWUzbbths6lpmoqhH9gdGoxVWKvY7zfMk6epN2zaLdZIEqPvHHf3B6zRGKMYpjOZYV3yCP/x/v4B70pSikzTIku+ynK7zlTlwmazZ7c98vj4SFWWhGXh3dt37A8Hfv3lJ7yPLM4zOQcYUlaoNXWmg+ZyunA9/8h2s5f5ZXOgLBusrSltQK8JxbZpQYnoTkawOCuWQSkpBXRp4tqdOR5vbNsj/0cpTkqyepal/z+T3/5Pf/2bBT6JWoXXqKYxZhW4DP0Et9OZ/eHI0A+42fH1yyNNU1EUBSolaS3ThrosXp1gZEVVt6SceLpeuHU34U3EKHn2NdKUFomfFda8Ota0EnafUkpq6FFUtmDbbmTrnIVHIW6zxN3DkQJxPxWlwRjhufVTTyTinYhbbdtSFAXTNPH8/Mz79+9ZvES9Cm2pqhq0Rkepnc45oy20bcs4T1z6jnkdLGPIlFXF+XoRy7IRWHdRldiccLNjmCaJzqTE7GaapsXkLLZX74lIpAxgcX6NsupX5+NLi7Ec3BN2bZn1wa/v1YtbQYZebTR5jZ0Yo9eSBhnY05Jeh/fNpnp1RYW4rAwxeLVCIrGkpmmIMUiExWgUsrVwS2JygaQ0OQij5aXYhDWuQ/5X4p6RF0m7DbTlyOITTbGR6nVrxEWkRMTAiKtNlPMFayNGN+SccM5T1Wbdogn7ScoHIs739MOZv/vN73GLwy2e/+V//39xOl+YfVqlRtaHiLzH8nOZtRFMShX86o7IOa8tkIZxGIkuUViLX6QOXmIYBcUqpjVtw+V8opqlat0o2e58eHNPNxRcbzeWkIlRNsjX65WYPM5NeC8uQa012+1GbMir1DBNozBn1Av0VCI8IUwCA7eGQr8UOgQ0GlsaAg6dPMfjUZxniFDTPfZMawQxZeHJRSI6K/bbHfM8roflgF8kLqN14tdPP/HtN9+DKkkhkeJCSAtD98Q0dmzaA5vtEZQjxI4lBGwUC3yhrQi5yM9fVcLhJEurdllIxEViKAFtMjoHchKIeYoLKkujWNIRFw3z5CVylyJlWdA2UtijciYnTz9eaQrL+fSVh3fvUVq2YLlP+ASFlRiiITOvkQJrpcghZ2lpNda8ogFSCpRlidZWvgcxoJGBSko5WPlQkcJarBI4vzYv8db8WnZAVSBRrEDOWhovlXBHXRiZfViH0EBVV69Rh3GUDVfTNK/X6f5wENew0Rirsdlw6y5smlGg67cbn758fW2EfYnOF0pcCCFGiTUGYXK+HIwk8ipXjdH5dYjwviNnTzcmtCp4qB9YFphGeQ+VgsfnR2KUhszRXfj73/wd93fiIgnBS6O5n1Cwvuf/6qYgS8N5aQtSzCxLkFi9MZDl3leVxdq2Kb8v3DNp5/zm4wf+/ONfIAu7MMdA8InZXbndntlM95TlHShhlgFkLc8UF6SFsywqjFKMY4fWiWE4MU0Dm82GfphYlpFl6ej7E3fHFpIcJC+XE7M7s4SRe3skRTngRT/i5kGeq/sG0owmEXNkGuW+XhTCHrO2XDEO4tAurRRG5Dzjfcc03ajsvYhMZFCSgxIRVqHtim7QInb7uMg9Iwa62xMxjNx64bg0bUlVGWbnQQWG0QGWjdqvTvNl/Uwk8riuawCwhSwCzMqKU1kQG9okyjJgC812V3L/UPLw5i3kzDTNjMPE5TpitKe/iutcIU7tzabl3bt3aC1FVVUlpRApQl1v0EYcWPM4siyZjBTxtI0cyMUFIfDspm5oann2HvZ7uZ9pjbXiBL3eLmyaCVfNnM9nHh+fmZdAWgOkmYzJihQiQedXcdlau5byyLU9zBNKg8nI+2AyPg7k5BjmTI6WO30kRymgyumGUplbfyH4mYQnTYHNBnb7O6yRiLtRSvAHOZNTXKPAgpQAMEWxFg7ZV1e+bJ5L5pXzaawmRXHKS4u2ROO//fY7xlX0MUoJt1MbFjzX2yd8WDgeP1JVb/FBfu6M4DkSiaxWfqNCmLPLhDYR525cb19483DP+fRIVdUSwS4r5rmjKg3RS4x9GDu6YSRS8eZuS04enxKZyDT1oDVV0WC1NDz7vLD4BWNbikL4syE4tC0IXmJgYUnUqkZXGU3EqwXyhA/i9MhA3WiydjSblrI+0I+Rxc0YJAoZoscgC2xxiU+cTlf2uxZtFMfjQZIPVhGjY7ffoGm4nr/iZhgGx8ObiqK0GBspbIlGMQxr6YwVkcjaDCTu7u4ZR7cyTAs2u5Lf/uE9TWV4en4EAneHjfC5wsLj10e80zT1UdwU3YIxJZvNluPhjsfHL1R1gbGKhGaeHT/99BPDMK5xbU+1MWx3LVXV4EPCuYEUX8oGFClmdtuDLCCnmZSFs4RShGVl2ZK5XK805YWmnPn555+JQZGV8Jm1SquTJOOzICRQJYfjEbLC2oJ+6Mk5kZdADBO2yPTdM8EqknKM85mUEsfD96Ro+PT1q5yfkqAx+v6G9yOny6+kPGJUwi/PfHh3jzUNMWfmyUn0viipVKbrbuusYcmFZXaOrGCZ3auLLpPFQbUuAtP6/M7ImVBpjTaWnCKPz498/foZBew3W2L0FKUmBsftdmaaupWn2rHfb/ApvQqGMSYSKx97jcTL2dmTk2dZBubpgmZm6J+Jy8Tt1jFPA8M4YG3JYXNPVcv5OK/ukrbdURQlVVnz889PvH0jotnT049Ya/n2hz27fUVZZYax493Hhvs39/yX//I3OcdkaLcl3377juenkf42sd8fMLpgHCamMZKCYrOrmKZIUXjc0rHdVKgcaeotxmi+fP3C8bjDL2l1Xu+43m703UIOisXJ/OMWR1NXrxihFDOLn8gkunEgXjM//fQFWyVMoXj79o6ijCzLQlWJo9dY2O42vDDbd/sNhS3Y1CXDAN98+5FN25JyYHQnxqGnu1mK0kg7bLFjcRMQWZaMMRvmMVJXlqbZ0NQ7zqcb+/2O2U3UTcH1eiWEwOFwZBgHcXUiMdK6abC24Pn5jJ9PKC2L3rbZklPicr3gfWJ20vzeblqcW5hnh1m5s8uy4GZh+So1EZIUAmTkvKi1CH1hdgzjF7Sq0EoDJaWH7eZB2IjDdTV4ONz8RN9/wvkbsxuY54lpkOSU2u7Y7kr8ciapSEwFrTqQ8kTf/0JRLJwvnwi+p6oayJkQE27pGccby27g8fkT0zzx5v17cpKopzaG3fGBEJyIbctCyGv5FFESPkquNaszSk0s6UaIE323oIfMODwTI8wuonUh+I1lwfuASqB1QVFqKUBdsU5YS1WUVFW5lgJqyrLG2EJc7j7S1C1VVbIsTrAKKbDf73n77r2wNK3h/v6Ooiip24ZxmjhfrlyvN1LKzM5hrRYet9Uc9wdsofn10y/c32/RWjFOns22QmuDfYrsd1v+/vdvyEhBVNf1uFkzz5qsXrAncH9/4OHhwF//8vSqCcQgjNOcDeSKFBTkwDzKoryqa1TM3M4TT18vuKXnm2/esSye6/nK/d0bPh7e8+nXR2pruHU9dS34oLK0vH9/R8qJ8+lK07T0Y884jJyvPUZbtNUUlVoTY6XMlP1AVWvaTS3mhiSCmHNn2qZlnkeWJXC7DlhT8eHDOx4fv9D3Nx7eitHop59+pm1bDocHJidIjJikWCljmJeOee744du/I4TAu7dvGccB7xf2+z3LsvDhw0fmyfH8fCKmTFFV4lhXBdfrjV3a4JzHh0hdt9zd3ckyoGi4PzxwVYpxvlE1jeAcvKTPtBJeoF7v+8GLFmEta0ILtM7/yu7NmWFY8MtEXOeqf8uv/5+06L7Y0L33pCgKrlhQ1frQk3+vriq+Pj7yu9/+PVVVYlcLez/01GWFtZZpmiirijBPfF0h/UkBWjLnrw9MJXbb4AMpBqqiRJelZPNDxK/xs7ooef/2HdYY+r6nLgtuPkjTjDXrzcuKMr46EfXKVIsxro3Ae6Zp4scff1xFLml9OZ1OIvZMjnl2OOfYbDeAPCgOd3uKsmB07vUwkLO4prJfmL1jt9nigpctnJYt6WBGuu72onUJrD+mVRwM69a7JKZ167C2cwKv7rmXoeKlxVdr/frzNU3DS6smIGyUtVn4JZqsNMLtKMtXSPirEAevB7UXwcto+Sq9ONlemrucj4TRCYzay5bXuYAqCtIK69erYw9W5NQad81ZmHtGBbSeGKZHympDVTfESfg9EnmQyJ4IP5mqLjFFRusIBIpSE4L86SFIk9yyirwKTc4LXX9mWRYu1xtPzxe6cSYEkcqU0rR1LYKFMVLGEWVokvdC0XW9DDAo0IrCFITgMAZcSCQqmqbm7u7A+SLtaCkEhv6GteLief7zMx8/fuTDu7fcLjeq0pJTi0IxzQvnW48tDG6Zha2ytk2/iDmsB8yisIAIJsqI8O7CSxugtGgqo2iKElsaTmcBDzd1RdM2hOVG132mrDXTqNBaXKhJCWsoKVZXRlo5YQJJxwhrYxpH2d4m8N5xOn9mt2tom7crXyzw/PQL3p0xJjNOC5tNsTYAn1FALGuKYoteiwfEnWWY5wWNoS5bqrLCWI1fHKgo5RXaA57J36jKGoWwt6ZpoLAt45QZ58TheEepxOG0LI6QhC8yDT3X2xOu1Dw+/4qpNYf9W7CGmBwxCqi+rhoR5QtLXCIpJPIq+mA0FoPRcmjY7nYCi/eeGDxKSwysLMRhoqwIvsF7UgpyiGc9aLDe87Jwt1KQa7a0JRo5UeuVU1RVNTEbUpLCmU17lNKJGAT6rKTFzLllLcqRwWuahBs0TRPT8Mi2uVEVM3/8lz8TYl7hr2tUP6c1piNlAfvjgaqqKauKaZ5fi1a8lyKCsCzMrsfYwOy/4JaRu8NvyXnH5y+fV0evxxaaceoIYeDWf8H7gbq0aN3z+7//DxgN/TyRUSyLo6lLrv2Vl/odW1UibmgRYYZheL03+GVlWawcx7oWx0WMiaKsiDHglpkf//YjbpopiwK/LJSlJqfAPF0ZxzNog7GtIAVSxphiRQtkrBEBKKVARmG1IvieaXjCLSN1FTg9f1mF3JHrRSJSKdWrKC5xKGNeOKLihvZhEfFZd+w3O6yOaKsYp47FOxoayqJFKbnf2KKQzbdeBTWVsCYTUkApz+SuCJjbUlYaH3revP0IqeTx+YLCMGe5t8QcQCXmONB1J0IYORy3q+PvmcslsbhEYRvqqkDpUpxISr7PLz4brTTaKBFFFXLPJRHjQgwIioHMw8OetvmOp+ev7A9btu2GHCN9N3E+95RFjdItp9OAdxL/2+0PbDYNT09fadtaHI2zw80jf/nrj1gjImdIPXdvt+y3W7w3aF0xdAumrRjdRCZSlc3KyJTEgUQCJbrsg4jF8zwzDU/smitVOfOXv/x15bGp9dklIkYEYpJl2X6/Z9O22KJkmiX6EXNAK49WAR9mFjdTlNCPn1n8xMPd71Ac+PT1C4JSkEXcMHX4OHC+/MLiO5ra8tMvV/7jv/9/YHQWTtci8f+mrnBhhpfIUimwbpI8p2632xoZE9c7eZGFQU6QNVrL8lAbYSyHZeFvP/0N7xxWa2lkzwGjNf1wZZ57Zj9iy5asWpxLWGNBqVdup1n/E2MgEymMIsaJvntE5ZFxSIQwMAxnYpg59Vdpkn3YvDZ2S6NkidUV0ceVbzbKvRNFjp4cJ5SJayt1YBzPKL1BYai2bwgrAjas59embSBFYvRUVXo9gA/DCZQWnqouGIYrbx4arBbX2zyvDt4YicEx+YVxnCQWHEZ2+x0+BA4bccUNwyRDWDQ8PQ18+XpFaUkzvHlzpN0mjIH9fo/3C3XZYkxgngJN01LVFXVVUlcl3377DUppTqczIc7crjcWf+Yf/uE3PLzZYm3BNAw8fnmmaRqUkoFnmqAuDxS2p9k1FHcV33z7gdvtTHfriSlxf/9Av7YU9r0Mam/e39E0tTwDfMZ7cHNmt2nYbVs+TTMpCl/T6oKcJCGTCeLATBPFyvSqKi1O/pXVGbMRhpRey3/igPcTtt2QEejyPA84F2g3W3lWjx0h3vD+xDCJGwjW71VpMLpkmS809YZl0RRFTVVanOtBTczLE4+nH6nKzKYtmZaZz19/5P74AyaKyyyGxOzWRSkJnRWH7Y7rINzwkNKKk1lPr1k44GaNEcoyThi/Rpv1XBtZgmPqOzbNlqau+c3ffcfnz7+IKzXNTJ8HERgLy+JmYpxRWp59ddXKdZWNLFuTh+SZ/cAy92yainm4ssydtHs6abUNPlIUFWUhM8TiZ7a7AzEHJtet88KE3yzEPPD7P7zFWMvlcma7t3zzzT3H+5q+68TVojOfPp3k+1RLK31OkcP+nqZVIv5m1llEnKJVVZMzhCURQuZ2HUkp4eZACJawSGlbVSk4aLx3XM8d7958w7v3D1xOAxnNeO4p1qRRUdX83d/9huulY+hHHt4+8PMvP9H3I/0g6RMbEnWjMAbaTc04jGsqaANIUkQbmUV3+y3BR27+wuU8UpVbvv32A58+/Ur0nru7DeM4cPrlxN/95rdYA8aUZPTahr3hdHpiHDo+vPuGptmy3e7puhs5iTCvlKYsS27XjvPlTFU1XG9XylKu5zf2gfPlyvmp4ze/+R1vH95Sl4Jb+fj2W679mbbeUVXVOssZOdesCBu5zhTn0xmVC8axo27ek1VGrbNhUWRCGHDzWZb7RtP3M36R71DX31i8mFFIE/N8Yhye8EEE1NKWRPUyRya865mGnqo8EKJl28Ky9MzucZ0pF4pKEaKjMS3zPJGi4tY/s9lsGMZn/vM//mf+0//8PxGCNPO++/CBzbbg+fFKzjLrZyIYDVlWalplco4okwihJ6UbqEjblnQ3T3dbsFbSDSjwwVHVBdYqlnlBKXH+sgqFRWHXf8r3L8WA0mLYSMmz229QKMZe+O113bLf7Ykp0LQ1kFZe6MD9/QPH4wGMph8GccAfd2tMWFEURs6lfmacFt7u7vjhh/dok7ndbhSFJmeP1ok//LsHdruWEAUPRVaURcU8RcZx5O3bLcviMVYE0GlyWGt5eDiw2x0hG2EChpnr9UxVGbk3a4XRltPzedUHKtwSeHjzhqpqmGfH/cMBsudwbNjvf2DsAn0vhUF3xzvevX3gzZs7QgicTs988+1HQvKUTc3p8s/Mi0dHjS1r/BJ5PnWMc2K7NyilOR6PpJhWwc8w9I7Hp6+QMvvDnvs3LdaWzOOFp9MnMo67uw/c3e94eDjC2t6stREBNSoUDRrB7/gQqBvLf/kv/0jbbHn37gPjPNHPE/vdlqqu5PNZFwUy5wfKasfhsGcYrmy3G7779ntxz+oC0IJzU5ZtuxfWblNK4kabdc5fr7WyhBjQSnM4HOUMU2rmpaNtFupmj7ElcS2di0mWof/WX/9mgW92ApBMKaHWgbdpavq+e41wnU9n8hpbysmwuIW2aZnmmWmtmxYni6Fuajm0nE9S2KDE2OUWv8ZLpY7+ZbBVViJFL0NCWNs8NdCUFe/fvMWsw+v9/T2n8+kV0l+VJSqxxlRWd1aS4RCgrmu89zw9Pb3GzIzW3N3dcbnceHx+kuFFW6qqIs6Jx6cniZ8shjk6rDFc+36NcVqBS3thDCzeE6JUfxdlIawuv6CQi2Ych9XOLx9026yFACGi8CIYJoGDvrC6hB8gr/Ul1isgX/NqaX5x1tV1I2JgCKvgJSOZ/Lth3UIrqrJ+jdC+cEde3i+1xp+tta9sM2tKlsULH25tftMq4qMUagj/Tb3+XKusByRKaynLYj24BKwOPNxXGNtxu0rVek4FMR5QSRHjQlEWIrSEtObfV9BzdCgVAGmyeWFEal2KPVspaU9dhZeu63h+emZ2CyFk8io9ksHNDnE3GqqmFu5VVUlNt9aEEHFeeCVSF5+BgWnusaYkxB2ZDZu4YXILwXsKawhx4dKdMTZLc9hy4d/9/n+grDQpeqZ5RAHOTUBeXa7x1bEpTZUCAO76DvhXBmJY49qm0CsnU26Cxsr18/79e4kNhYQ24J2nMDBNZ07nXxjnkcPhNwQvLYhqLcVJOYkLTWtpnc3glwmjPcNwputO3B0f+Pr4KLFnPzD0Z5rqCLkges80D/T9lcIk3r97T8qOlBNxcTg3U9iapjJYm3EpMM8TNtk19laQkkdps8YHvGyO2xqjEiFOLMsVoz1gUBGKQpHzTFU2GFuy+InClKiAMH9yRJGYhp7L6TO2yMQ08/T8maopmFz3CmL3ywyI48BGw0sb6EtsW4SzFxHFEMO8fiZrpbvOuHnCvnxPU8B7+dzyyklMa0xaKWlvrIv6teU5BHEEyqWj1vi8XQt6KnIERUFTbyFnTpevwFrasN4jq6ph8eGVtbPdbkXIj5aURfibnUd0cbNepR433zBlvcbhLTktTC6wBEdZlNz6G2RHDGdcOHPrn8RNVmiykp95Hg+0TYNzC1VV0TQVKTtgxC0nnp7/irURazZcbol++A6zq1e+ppZ6+nUxoLSmtBWsooHWBh9FlDEvMaYUqYoClCYnieT7IMUVKUdi9gy3C4WtaKqK77/7htvtStOUnC+/yMY8Bobhym4vDji1buZCXpsbjRHnYfZE7zGFYhpP+OVGip7L2TM72fwOfY+1BSFMbDaNOJqjsAINGjc5ZjsxLzN+WbDKoFG4ZYBClmgwoZRE+4QYoICSJJ5nyrKUhuc4YYuEyom6sgzdRdyatkVjWZaRGDaExVAVgokQIJtHJU/TFCxLZH9oZPOr8npvmpmmC1qLw2m72zBNmXEaadrNylLV68AfsbYU17AWflBcAfqsAq3YwD2bvaVq35IinC9nyspidEVZbIhBHPbbtqXzMx8/vuPbb78j58jteuFvP/7Ew8MD23bD7TbJfTZMwuL7sMcUwkq0Zodz0hLfNDtsaXk+fSFnjVJmZalAVW0E46AEU1HXtTxbbClxEwXzEohkESdIqLzg3JWmEld1xhJTxTyPaGMobCnO63AjxmfG+cxtODONPWVh0Fq4nW4609QbaeesGuqmwPmOlHuG4ZHH5x+p6oixNd2w8Hz6xMOxYJ6FCen9zOwDpIhOWbbzSjE7QaW83M+1VjLAIOVGRolzOqaMX8LapKqZ/YhfZoYxsWt3vH1zT1NXjPNAVcDT803argvNPI1s20XOYzHRNhtQInyTMjpLRGocr8RCsSwd03DBh5noA9M4E6Mwq2Ic8WEGvBTa3KRpNoWMnwPeBkJpVtazXwX9QDfcOJgtyyJNl4UNuOlKWTdM04mcWkwuqIqS8IJ3iQmlRdBJwUOWQp7CFkBgngVDMo43tArkKNcYGspCMTxfsEn4s2VZklKibSvevrnncr2QyJRNxefPn7lcbsxOioCqGso6C+vMlDw+nslENptSRHtbEuJM3w3c3R8JPjKNPV+/njke7jkev+dyOXO9JXY7w+Vy4Xa78Pd/91t2u4Nwf9yCUjVV1fL8eGHSC+/ffo9WJSpr3DxzOOy5u7vjp59/4nw6iePKLcSsUcYIiiFJhPqP//yPNNWB4+HItt1RFyWVacghgVEoY1fX8sA0TnIvWGOZwzCRk6bXVybXUxUtmBqjtRRsqcjtdsa5M1W1Z5oW0Pfs9z8Ammt3wvuIwjFPX+j6nwjR4cPIssykGKirisPhDTl2BH8ipg2FVqTsuF5/xpiF5+e/4eZnmlra7pfgOV+eePf2ey6nJ06nC4fjAZUDXX+Tspz9vVzXr0kNgTMkEFHcaBSBhLjVc4KcBFJflvIMD94zDlemseOwbagqxafPP64N54ZlGQhhYZpnXBcwusRNHU275XR7pjiCMnLelTN4IoaBaTwzjVfq8o6UnZxnxoHt7kgIEe/DyswWDt3l8sRm0+L8wuX8RE7CRdXGYk3Njz9+oW4K3r694+H+jmZT4FxHzpb+NmELw/ffv+PTrzfaxpByWEuuAo9fetp6z7cf364RZil56/or/TiwR2aPF15dd+rwXriru+2Wt++PGCPuvcNeeGb3dy33d1sRBXPAzfDuzXvef3hgv9uQYmB2A+/fv6XdNPxv//t/JoSB2S80FJJSyo55Hri7t3hv2O/2GKPp+5GqtkzjxPl0JsXMfrfneFdSlQW3yxe+Pv1M02qOdzvaTcluv6dpN/hFWlW999TVFq0yRVHSTyNN2/BP//2/st0e2O12dH2H8467uyPWFJxOZyniMZZ5XkCV7G3NNC1s2j3b7+9om5aiqLCmpLIFXe6pyw11W2KsLGjdNMn3MSY0Bk9cTdwKbUCbhFIBJW1FQGZxM/N4JcQRN0dSYfF+ZBzhfGl4erwQc8G3336HXzoWd5P7KdIc69xIVTVoo3DzhEJcYOP0xDQG9ltLTJ4QxtUIshDDQtnUvLQRl2XCFpkl9IzzicVf+fmXP7Ld7vBh4XLJXM7PaFVRVVu0lrhsyqA1WP0y1y7E6IhhZJ5vLE4xjpFhcBRWEhwoYenZQvBgdVNRFIoYZA7VWth6L+kC5+R1102ND462rWmaDZvNlrqs+fTrJ/p+lGephqZqOZ+vPD2e12erJAyNtdTthmkcBX1lDW/eHtlsah4ejtKqHEaeT8/8+Ldf2O/btQlY03czxszYwnL/YGh3CpShKnc8P3fkNPL+/XumMREibHelzC4xMk+Jw+5IWTaUpSWDtBG7DlN47h52ODfT9w6VNfOYyCoS08jDw4bjcU9RGt6+faAoSnGSx4kUhI/5f/u//1/59ecTZdFyf3fHOPScTmeqquTPf/4js3NSwqHVK07H+wBFpqkNh+MGbQLn88B2O1BXBYfdlvtjw/PTlWkUIfbhzYa2rZlmR1mW/O4PH9nuhN3nw0TOiev1wvOzlEJWVcnDw3vquubL1xPKZHaHkjlcaTZKzrY6sj/sOV9v9P3walITxmRBzpF2UzEMPTFOaJO4v7/j7u6IUQXW1DRNi9WWqqwIt0AMiRQiiwt0/UTXjaLfgETCV0POMPTiEi41xgSM9ex2Dfv9A8PYcesvuCBR3X/rr3+zwFfVDbYouV7ONLVsy1EZYw1dP2CtRWnPpm7ZtBvKomAcRr7/9lvIiWHoZThKiWxWhlMILCGQFJiipB+HV8ZTUQpzLnjhCpTGUpUF+91OuDAqY5AoQ1EUxBCYvWe/3wurbHVzFNbSlA37zZ55nrFliZs8CXGUpDXKOww9VVXz9uGevu9XoKK4C11cCEuiqhtCzuIwSZnd8UhWcLqcwWiWeZaY4+o6/PDxvYhKN0+IHmklWmH/a4lmTB4fPNYK2L6qKmwh7jpbiLW8sJacxUn34q57cc+9FGoURfEan45il5CImhJ31UuMoK7LdUiNvLQIxpBIL/PeGjl9cQPGGF+3GkZbpkkcjEVRyBDtAmRNSl5EDaUZ3UxEWFw6SfvyS9ugVoqqLKkrGZS1gsOhxlqFVleiv+KXEV1BXQWJzWRxG9SNFFG8iJBu8VSqAjSLdwISLUvZ/qzFHdoIn02bLJthv+Hr10fZ5NkCbYTFpJC4Z6JYMTASE01Fpmka+n7AuRltPDqOqBy5Xj9T15qcRsbpijENh93vcIvm8+fPa3RVgQo4f2OYnvFh4NY9c9wdOV0O3B2/lUjz/4FpWFUlrpMHlohbHh89KSdu/Y0c5SEln7NC9Fq1OkFFHKzKElaI/Z/+/Cf8srBpG4k8lpqMF0juPJKyoW4mUjaARNqJ4iYp1uhjSouwX4iEZcRNJ0gD8wTj+ETwkXG88fxsOR4/rIyZsDbWZZS1cv3ZjtnNzG5a45wTVVHglwGjNcPwyHa3J3pFfbAsk0ZRkpVCFwarzHp4kM+2LGCer1hbUFYFxhbM08z79/fEVPL4eF3jysJuyzlQGFh8R84OY0ru7nf048z59Fn4hqamrlp2my3Plx50IbGulcGmNWirhLHJ2vqV41oaJKyNvB6wtMoURqGMIbhAQhx6ConfGCMb5biCh0MSfyh2ZTaqDAkp6ACU0fz6yxeuj3/jeHzLZtOyabZYDZfLMynKz7rdbbHWMgwD0zRJsUuKTNMonNQM0zwI09FWZGUkrooi+4Gx/4ViuyGrhNYlJMO2PXDretw0Ev0kwsX0M7O74NzMPA903URRWO4Ob1FqJKULKTYYvQMi3fALWs08Pv6VoX/i4c0WHzpygsv1K8fDO06Xz2usWcD5i5upyprj7sDpdqFY7+9qdTRGpdahMRDTSM4BhRHeVCFsxZA909xx60588/4HNpuaxY+M04UYDePYMztH11/Z7zXT1FFVO87nM/f371bXXibngCbhw8jt+sx+38p23E3Ms6MsG9y8UBQSiVPA7XZis9sR44ybJ+appywKysKs38nM4hYpv/EeNNwf5eCLCigCMWXO189oNmw376jKliVKpNy7ibYt6bsnyIHgPWVVALIcu10vaFMwux5FTYigtYjOrr8JD09bhuHCPPdUdSG8PKAoDW6ZUGmmKBJFWTPO4u4VSL7BFGshCBJBFQyHPPNe3c6wRuMDPka+fP6VqiolbltItGHoZ6rmyPW8cL0MFKbi97/7HU9PZzZNw/V64eHugbqu6bqOXz994dbdAI2PC9pq5mWhCiXd7czXTz9yPLxhu93SthuC11ww5CjQ+qpqsdYyjr3An8t/XQ4ti5MG2bkjRIfSNUlpCmuwSuGcZ5y+UNp2LXKx5GTZbe94vpyZJhELfTzTDf+MX4RR4/2Em2TJdnd8C3TAM36pMOaIUomu+wWtZ06nH5mGR9p2JzGjnLleH3lz/5Gn519JObPZbolBFqhts2FTN3SDCMvLIssqKRUSRpzVSmLh2hPDgilajLaUVSNDe4p03ZmmrGnqe8Dz+PSItVqWeGkhLJHr9YZ510qstt7x+dMXmm+/RStxMuUUsYVhHi8MwzN614JOoBXDOLHdlKu7NjP2A1VZMfQd3ebC8Xiku50YbjdhZ+0rieS5sN7LE7fbjXbTSuu092uUS8qxpnnG+5nuNlCVR96+2b+6CnPORALGRvrnM8bIvWLTbqUsCEV366UYrtqyaTN1rYhRiQCZE6QJW2zYHgtysnx8+4E3D/dsNxuG8YZRJd9+9x3HuyP/6//2/2QZBmKOKFOQsrz+2U1s9yIy39/fkWJiHGaszdwuPY9r1HS327PZRWw1M3QDnz79RFVnttsHabtVBT543OIxRuOWQFO3oErcnFBlhVaWL5+/8vbtG7rLVRi3YeGbbz7ifeR8vpKzoigqxnlET4lm0mv8Xpa6b9++p222NGXFu7ffcLo84sLEbtvifUIrw3a7wy1OliJFyTg4ZjdRlRMpOlS1Lo7DgtYQ4sg8n5ndI9U4cr3cmKcLm7piHDTnfqbZbDBqxrkT43BaFzmZwliwRu7L0TFNj8yuI/iKbftbQlpY3CNFCSrPlIVCIa7zsHgul0cul68M48J//sf/ld//w+9p25a+v3B3d0+7K3h6vEj03UeMUUKWSYIx0Uphi0hWN2b/jJsn6vINVf12jc46yJFpuNBdz9wfWuoahnEmesfh7sjp8pV5mVAKNm1D9I5puFBYTX87s6lLyt2OwXVYazAqMY1XhuFESh4fG3yYJAWEcDOtMQQCbpqkGC54FBGlRIAhyxlFWGqen358ZlkS50f46S+fuH9T8vGbA9t9zfVyo+sSWnu0Luj7hRAz7cbw3fdv6buO4/4NyRaEMLOEwG6/o6gq0AVbdtzfHxjHketlRKuK4A1GK6Zp5M12L+V3hWW7bVYxzzP7jpwS22NL3b7n8VNPWQk/+U//8he8X5jHgX/8z/9P+n4m+oVNU3IbJklHlDVJJ3b7kvuHA9fbha7r2bYNbV1yd9hTFy1DP1G1JYdjxe4g74fSlr8373h4s8cWaXXBV3z5/IVxcsSwcDgcsRs5M2iVadsSbQJFlYlpoqruUebA+XyhWRZinATrUYmgUJUFZJimGecm3r97z7u371EUFEbmDx8S93cPPD6t2ISYsNquTklJW5CEoauUsMHbtmZ2HTkHDvsddb0lxIVhTMyukjNnCiifKArNPF3564//lcvVsz+8Q+lZzkMpCFver6m9HKmrhsmNjONIJmEKyxKEaXq9fWWzaUjr0toYQ1PXK2dVZjUfHOfrE26ZeTr9gjGeEHqu1xGAcbxgTUNhdxzvxHSRkpTiLV6WYePoVkewI4SJlDwpFbgpUBTSdByiR0uzDVkbMBldQIleFzfixM0+cTgccNOMLRTHwx6Uoqq2xBioK8t+23J6PhGcZx4mbFXggyOFhaZppIhDWXKG2U3YXNE/SYEjawNxyoHdoaGoIj4OVI3hd7//Ow5PO5ybuMQb1/PI9RxXVx70N8vjk6MsLUMvz7Z2U/Dz386cTiIm3b9p+fDhDV+/fKa0Fp8VKYEt4P7hSNNmYirWaPFMTJq2qYjBiBAfHE1rpKRj7kmUCOfeSYxZJ0xpKauW//aP/8LQeY7H+5X3Dg9vHtg4OXcU5T0/8BEfE3/56y+cLzdiFtay1sLWS1lTVYb+NlI+HEhJcT6dmKaF7WbDdz98ADxKJZqmoLAV9292uHnGB8fsPKfzjU275be/vSeEQN/35Jzp+itx5VEe7448vNny5s2/5/lrT4qapyfhatrCYrSibTdstweWsAiSbRJ5LGZHUcgSOyVpKxYjGrjFYY2VDoZmQ1GIU3OaZlISMdo5t2JJFGVZ0rYbQHF6fkLlEk1LVR05sMP7Aa0WtA7YfztA798u8IkDZBG2hBa7JUqtwp7CrDBlEfEi59uI1TAvM867tdU1MjmHXSN/l/MJ5xdSzox9939wqcibNM8zViuKsoCUKQrDNI0y9CJHV2Msb9684fL8zPFwRClpshvHEZQ88LTRPD09iftuBWo65wTanuQ1aa2p24Zms2V0jvPtxrnvxGZOIJAgzGRdoixs2pa3H9/wxz/+C/PamKOMFEIs3lOt8dl5fnH1iBAJctCu65phGPA+rOUVL7zA/CpyvkRr5f0X1900OaqqRutibfKR3/9XYW6NzaYoRQXrRv/lz38R9kIIa9uO4Xg8vv7+S0T3ReATJ5i8DmvK19ev+FdAslJQFgX7w4FpdhRGYttuljZcyJTl2rYL1FVBU1vGYcIaTVUo7MreGrpevlMqYsuF1k64WaFMRUqZTVuzuOH1/RELumWcBIpfV9J8+vK+SHxCxFGlLXVdrIdEiX0rpVA64d2Nab5w2N2vXL0Wtwy4OTDN0tzp3EQMF4bpMyEO3LonrleJirZNQ06eHAdy1iSlsLYiJscwSaTm6fQ3Qhioa80SMp++/IW62srmdpkkajMNxAyo+BoTP1/Pr27LnBTGGuLqkFQKtH2JR2RCSBhdrEKfYxiGNZZb8903HxmnEWUSy3JjGHqcC8Q0Ef2ItTXOO+p6g0Jj9Qu/MaDywjTeqCrNNJwZhyvez2s0ZAZl0cqwLA7nOh7e7JiXQI6BHBPewVIGlsbjvMM5j9ESu/XliDWKFBNVFViWC9aWuPmJFFu0OaCVtGVqNCorUpxZlhFj1BptTMSUiU7YgLfbE+SSsijWbfUL/Nui8KBmDnc7MuIE3m2bdUM+Qwxs6kq2YGGhaqr1Gpa/P0ZxZZZFIVEcMs4vwtFbS3BCzFRNCSZhrXAgp0kiIlL4ITH6sipFtE5ehFursGuhRgxB6u0FRor3nmWRMoMYM9vNlrdv31GYinJb8eF95Pn8RFXXaFWsrlPDfn9gmAaaZoM1BcFfUXi6/syH93JtkDNhEQBv8BNufmbQF7TO9P0EyfPxw7/j+fkTTXPA2oSbT8zjidHdIK+Oa1tQGE0IM+PwiXk6E0LF+3e/I6fM0H+iKAIx9lSlMMSm2WFV5vn0K4f9Gz59/gvd0PEP//B/oR8vDMPMP/zuf2QYeznA57TGcpM4JVJCFRprPG55IqWe4DXbzUdiUuRcSYud6+huX/F3R5xL3PrP1FWB1tX6XeIVYXDrnnkoCsb+zHYjRQjOLWgURidut8/Mrmeb5FpNWaDOrHyp/tYzjj37/Y7r9Ym7uwPTKFEqayuUFo7VOEworbBFxXzuQWmGbqA0iqoqaJuGq79J9HXxTNOFomgoQ4VSpbgxWAhhvT/FYb3nQvCJXIBfEt4PNNWOpi5panHniJOqxyhw08A43DBWE16YqYg7dRqkGKCqMtZWFOWWbVETFlY2W6YwmsIo6gZSnDE6w8oyUaYEjMSIrZICmSQsEu893i+vcHt5vljG4cqH93dcrxcBLN+uzPO8RhCluOrp9MzsZnFYTwN+9OgystneE6NswDebHe/ff6AqW+qy4d3byJenzzRtTWFrYawqy3ZTMblpdbtbnHumMJpxukq8RQ4c4sg2ayRpeqbTFzTyOebkef/md5yfPtNsjxRGMwzPuOnGNA8SIzYGn1cuZJiZp2fcfMX7gg/1bwlBMQyfKcpEThN1Lcu9lGAcb5yvX7jeHrncvvCnv/wL/+k//Se6YeB6G/jw8X8krvdkYV1KvCmlIJe4ivIsVAPj/AXvJ5r8lqp6R4oLixO3aN89MqF5c7+n7wdu3ZnjYcc49bi1pKJpGpZl5np75t4opvHMPLUUVYGbx/U+aOiHJ9zSU4vxWbhGMb2eV+Zxws2eutH4ZcbNHSGUxCDlQE29eUWY5KQoTIluC+bJSyHF+YZKcWVFviBG5DpevMMvZw67O4pKGumX1XmkgmfxM2qJGAXTPFPWNQopBOuucr2UtqYqLORE358wOjOPVw7vN/zm7x84PU00TUlVF/zlr38GMrfrlb670fUTMQQKq+W+7TVWl8QIZWnYbltOzzfu7nY0taWsFN98+1aWYPOMLQxVk9kfNpANMUohwtv3e9592EEW3t8wTCxOWL2bzU4WRcFTrgVcSsHT8xeatqKqKk6nM33f8c0333C9duJcjBEVAyEGjoe3EhdNiX/4h39HoZsVc2LQusSahk174FjfYwt55o9r1P3FcQOCiJmmkbIypDyjCFjVoI3Fx5mwyDM8Iy5PdGBxF56f/0I/wK1P/Gb3W0K4MbvbOkAVXK8dZVHIfa4qyWlgu6sJceF2nTjshK/tQ0fKIi6kKIziF5HDFAn0go8do3vmp1+iOGTmgXJKzD+PxGDRRgpqshIHvqRm1jOlWnDziHM9ixO3otE1SiWm4UZZGGIagJl5ubBNmpAm+rFHFZGn58+E4GnbGuc8EvmbcFOPVp7F9aTWsiw3YtA0tTjr+v5G29ZcbzfIeV3uJ0ENrG3vd3f3wlf1C8viuN1OeB8oCjlHDcPAfhf45ts7fv155DY6ytIwj5lff75hizPex9Whqvnr5caySHFf21T0vWOeF57cCUVNu6kwtmSeZVZ5++4gLq9RXDNN07A4RV1VLGFiv9+zP+xX8QGGUQrjqrqVwh9doVLNf/uvfyLOht/8sGcaZ+7v77FGcX/coaxacTVw6zr++KefmBfPOM0UKOpaA4G2aeluI9YYdtsdj49PjIPMRr/5zbdk5UBJ0/Z22/LxmyP9cGVZAl3X03eO4/GO/T4zrIVeIUbGeSCjuLvfcTgW/If/+Hv6zuOXzDRP5AzXy439brMC9RWmKPnmm2+4XM9yBswLm01LUViMLmmqVkQUDN4vtO2GshJcz9fzI+fLGWsLKf1Dop8vM3MIEUVg7M/sdx/ZbbZ0w5nSSjy0LAvG/kayhnEY2G13FFaRWRiGMxmHcz1ZSbFXiophHrhdR8bRUbfVujAtXhEwsiAbVrRLQutC0gIpU6yopLpuUcA4dqsRY6bdFGgjjdjz7FYMimb2kfLtHUuYcfONBIzTyOFwR9edadsHpvFCCAO2sKhcvaLBXrjry+LBC4N2nhdC8Ng1XlxVlpQiIUQRAw1s6ga7lmzWdYVzmb7vmPqBum5p25ZhnNkfd1iLGBK8R2tDd7tyPB6oqorL7SbN4tpI2shH0Jbr9RkfCqaxQ2nRON6+fYP3M2/ebvnwceDzp4G//umRpm5QKjP0Hl9GvFds2obL88Q0ekBMP1pP+PATVal5vp3R1Gy3kZQ9WmeaTcW2bWVpl9dSxbiI5hDFjVyUBU3bktK0PpcXdrstOcnyPwbD+XTmdgpYXZKT4f74ln64cXe/E4HK7olxIanM4hPH+9/xp7984pdfH0lRsdm0bLc7np9PXE43Pny4Q1Fyer5xvcjZqyozbhZ2vqBXPN7MaL2WkCiZvX7797+j63rmyfHp02e+//57tCk4nS60m5qqLChLmKeOeQr803//K1W5ZZoi0+T44YfvuN6uzM6hjSUty4qWE/zHdlvz9u29LGbGgevlCf1dQVlIuapb5jWNJxqT1YY392/wMdAPA8PQE1bEi1KKum4IwdP3V7abmX44UV9/JqWO6/VpLUl8QvH/Bw6+59OFRAk5C4ywbTjsttIm6gNLfAFrF4zjxOXWCVMLTduWawusgZQkA60U3STWWJ3FpRaCRHirUtofq7Jg2zaUpQD3S2u53W6otbnUu4WyqvDLwts3bzFGYgvn85kQRKDa7A8SN1zdN+M0MznH5y9fUEqLam4sd/f3XLsbP3/6xDRNLEFs7C+p0qKU0oSQAsZaxmnmj//yJ6ZpImVw4yhCVyVOOu/9q2AG8FJeEVae2zzPq8orjX4vlcvSVJNW9VvIU8si5QEvLazGynAIsklkFeViFFtgSoGyKISdk9LKCJNqZoDgI1ppafTK/wqof/lyzvP8Gv8timKFRcdXyH0IgbqumUYB98+zk226EnD1YSucxRDCGi2QDdPQ9yw+UJWK7baiLKK8puwpq7Wp1gi7yQeP0p6qnCFbFlfig7wGiRayxsjsWuCRVtdPIngRLcqqxNgSaZHKDOONfrhw3B0g2xVAqygrSz90TNNnNo2n7zvq9sB+++/QtUA4X5qepumRrvsZpeMKiB14AcgfDhXOfaEqHTHU6OZACCPd7RdiHBl62Shb2zK7G8N0xi095IJffv0zb969wxSK6/mM1obD7h1hmUkhkpQMRQp5gNnCohXk7AhxIPiRwm7RqqAoKmL0eD/RdU9st1s27Y7r9ZFpHmjqEh8Gcg50twlTeHa7E4f9A/MwolKkbrbyXc1gLAz9E8PwzEFvQC1AFv7b9sDsogi0PlBV8Pz0hc1uyzTd6LsrOUWKtiVnEeNSkhv64hZyzFRVgTUVMXiqqmB2CzE5np5+pS7veGi2EhFERGBjPEsYmeeeTKDdbFZHl6XremJSNPVCWRaoJCJuTJ5luZCCkiFt7ln8ssbzF4w1KGCePYUtmIoS6aeJ0qi3gC5AkakKjS2k5l4OC369VxiM0WRlQEVyXHDzjXny7Pf31KUmZYmPhhUXEKMXdEHOoLK4i1KQwTxEEtLiF1exbhxHNu2G3/5Pv8E54fGxNoRZXXN3fKBphdfiozQXxujEJUYkF8KZmqaFsszkPGNIoNZWTTfhpo6YHPMcKauClB398ImnZ82Xzz/x7Xf/A3VV4VyHj455miEb5tnJkJ0SSo1r02+gO39muy1QFCzLbUU9iFsop7SWY0SKEhITw/zEz7/+lcNdgfMBrYtVHLcoVZGS3JNBmnN1Zi2SmPH+zOIfSdGszVzvGccrIc7EMBLiwDSf2G4VOU9cro6xsHx5/AVlZDjRWgQvN3f4MDIMJ47FHjff0Fqam4fhRMqBSyfqwziKgJNCJAaP1tKe+BKL9n5enXL69R6sWuGlFtbidWS73eODZ54WOtuTs8RiUpI41eI8t24gRmg2LcYkktIoFfBe3DLLMq3CUs/xeEdMinl2TKOjqTuJOavI7GbGsWOeRqZplGa0GLCFuJW1UtRNg/crE9ON0jSeA00hxSezloi0NRGtFmwhhUzT2FGVct81qkCpkpSURGKMDHu///3vGceRvu/xi8TJdvvj+pyUdtrjcc/5fOLr1yd+88NvCcHz/DxwOOxfGbBVVb+6IAH2uwPXW0eha/7jf/gPBC9ulRQzZVFSVxve3L+j3bz8/+ByuwAS+1xcpCwNm81G2kIrRU4iWNp1qRnCxDJPpORwLlEWlpQdXfcLRiW+fv3Ed/W/pyotPnYyaC8Rj1vb+AooFBMTWidsaRnGgetVU5YbYhrBZ1JeWZ2pQhlIBGEbpZHJnThdf+bnX1u0kSXrp89/QqsWpTarU+xfRdqcEikvoDwh3Fj8heAHcspoKlCJaTjTtJbgR3RhGMavbDY1k7ugOrc6YW7UdcntNqMVBO/kPpwX5vkGlMxTR1kW+AhdfwINkxvFhWIlHhWCZ1nRIPf39yzeSaTQzfS3K8F7Nu0O5xamcaaq7pnnSF1XxBU9kMlomximmbKyuGXBFgVVhr4fmCcRDI+HOw6lFjZRmKSY5XYlLBHvZ9q6Wsu5BLDd3QackyWwCLrLWnQ1MoeF2Y08P1757//0E2VRcbd9x/l8YbfboXSirGUJ+vGbe2L+yPPpwp//9DNKWbyPFCbKgKsjVbXhdh3JybDdbrhde8hwOOz48PEBtEMZh8qBb77b8v1v7liWmX64cb3cmCYpqZgmube0LRhruV47TBF5/2EHueN//Pd/xzAs1PWW7bal6zrGfqAwdi3YkmV42zR8+vwLxkbef3jL23d3qFRidU1RVihl2G4PDOONHDNYxTjO4kxbkS5Ga4rCiNBSlDRNRYwTVmcO+z373Z7z9YkrPVVV0A2eZT0j+xD49PlHhiljzB6lHfN8QmtJt3ifKItanFVVy/Uq2JOyFidnSI7T+RP3Dw9AxPu8ui5aclLEnGQp6We+Pv7E5XIjMeK8ouslTvjr5wtVsacsj2x29/jg1vTKwHazX4veFDFIi693s5wZhhulaanqzDw9EoIhxZHFD5xPX9BqxljD5AbyLTDPPcYKU80aw9PTI9vtDpC0yfG4YxilcV0rhVGNCMbaErxEM1mXXWVpOZ9uWCtYk3EcpVyobUlJhCmJjhmmURZC1iru3xaEsKHvJoypVixSImeFc8LaW1xiHAM5K7JKLMuA0pkPHx745W9ngpdyoKK84+6+lUiltcyTwy8ZsMQ0CeaJSFEoUMIazTnRdwPaQFlWdLcBv0SSN3z69We8KzC5ZBoD33wURtb+uOPtwx4X1uKwwnC91diy4J/++FeWlXu1P9wRguPxS8/hrubh7p7bdeL5aVjPgTXTNNFsDCkVzHMkFAuzckxrFHa3O/D+/Y6hd3z5/BUyvHv/ga4f0BqKqqBupCnWL5l//u9/oq4O3LoJa0ru39xxvpzZtnuUknIycYMKOuT+eI8p4Hx+RlNyf/cWlTQpxZX7VuH9vL6WPXXbcrle19IkEdObpqGuK56fn4lBQdrQNJ9p64Jb90RIIzmPNLXFTbJsKIpSuJkKtIqcTp/pu2/EFYycN7SGvhvxPr7O5g9v7kTY6gbm2VGXDdfL9XVp92Jo0cZgipKY0lp45V6RMzHJImEcB4qioCxLxmGmbQvQma5/AuB2e8JWFr94lsVitEfhBPkQHa2R4q2wOg3neXl1UOWcGQdHuxG3pFtEkMt5TWwp1p9TnMp1rjC6YJrkmXTYH6QQIYLSmfuHA7tjw3ZbY7D4JfL58xNt2xBC5OvXL/iYVpbdvJ6fapSO9P2A0RuUsszTyE8//UxV1hSlpm4Kuq7DOXF5dt2ILTV3DzV1UzLPgZwjMcqCKyWZE8Ypcvew4Q9/+J5//u+/MA7SrPzu7Qc2uxrnRvruxR0p9+aiMJJW6kakbGziegFbCNvQLQtlKdDa26Vn275h6ERYrArL7Tbw3//pj9RrAWJd23XBMaFLTUzw1x8/8enLkxg+tOb5UUxSl8sNaw3nkxh4/BI5PY3U1QaFI7xbU4PKcHoeuFyvHA5S6Ljf77leL7hJjEfn8wlrC4pCEGFkiVobpdEqr/fDCjCkCMZYlqVDGcPx7k5STbNc38taiFpXBW1TUZWGotCgDcfdnrh4krI4H8QhnzzL8rLMkuKucRLm7PF4xzRN63CS6boB50ZJOxJQ2nO5/o3nc2SarpSVIuaJXfvx3yrP/dsFPhcDz9erPGiAtm7Q2lAUcnj32YvFeol0o8MFaTl9Ot94X9xRFaU0/jjHvEgZhff+te22sAURca14oCosVWHxy0KKkd12y+VyeT3IC9BbWr1unajtx+PxtRBj025omoa2baVB0opzph9HumFijpGc5M/eVC3jPOCWWS6eeY0cr0wqv8jBNMS1CCDJ8P0CljZakbKhbVpClGH/xYG4LNLMo7VmnqVt86XQQmK26yZhFf+MsfL1iC8CgoScXvhbILFcgyGtLjtlCpQWWH/bVPgl0bYN8yRcmpwy1ihhGKJW+6wUmPgocO2qql5dbyEEttvtq4Mv5bC+Po/EhCMpBapaWop2+xZrBBK624q4IIJjpqwMi5Mvd11LZLUsQamZTWuIITO7hcU7Up7QRjHNsoW43q7sdoaiqERUrBrQmbI0ryLqsswoHdlsZfseQmDxM7vtDqXFwWeMYXEOrTxhzfIreIWQj0PP4jtm98wwzkzzSD98ZdfsIG54+vrE8e4tKMc0n1mWUb4raDbthhAW8noo88YzzxfIFbvtbxmGM9P8hDUJY9O/xmijFH4IDB/+8rd/5Nzf8e79e7rhwv39O5oGPn++orSWxla9Ap2zCJroSEo3nPuMDz0xH9lvfiCswH7UzNB/JYWOt/cb+iEyTj3abHl6/kpMC6Yw1HXF9XqiqRvG4UKKjqbVuKVH5UyRFdP0hFs63CKbumGQbRRZ2q27W79GDSfIC9GPpOjWg4p95UKqrKmKEnaWS7gwzwtfvzxzf7+naizaGGbnpJ05eG7uxG53L03JtoQcUCozu4lhHKnrgvPpQtO04q7zib6faaoNWlmUKpjcBGkhuAFdGHzw6+a8XcUMs0bZPfM4s6gFrQ13dxvevNkzOXHVaqOxNoFaKApNWAYKq/F+QWVNUWxJQaN0wpaaee4IfsSHRRg/KaEyxATLPFMUhqqoiFmuqayEk5lXCDzI5iorwQm8vI/392+4vz8Sg6GwDcaIU2Oz2TM+9qQig1EMw8wwynCilcLnKPEP72nagqbVhHDhuPvAptnRNAWnyzM5l5wv8vCTyyRwuXylH248n8+8//A9s5uJSg7YZVnjl0RK8t9nNzLdekxhhFUZR87nn7m/fy9uWR8oigKtwOiCxc/EuDBOF74+/Y1ufGQJHZfrZ2KSe18/XCjLO47HD4QoAr4PnrpqCYunqJCBKywss8esjMmiqAVMfzuBTgQ/cT7/jDETMSGxydKIG2+75e7uQN8PFEXJ9XYixAlj9szzjXE6S5OfkvijXctTgvdsNxtSEiAzWZYUwn7bEELgejkxO7/yMaEferbbGudYXZlrQUJbM80D11vH4Xig63t2uz3L4tfCFIkJxyBN1jnk1QEXWOYJs7JNq0qGce8DCkvObo3+LOuSZmGaB6ZxlPZYH6nbFlAURUlYPNEHnF9QKJS2r0OuMYb6YGkbGUT0K7x6wbkOt9xQqoZsSSFRmlbE45iJeMZx4Ncvf8IYGTZjTOsSzzAvjnH21BvY7DMuwA/tO8ie3W6zDqvjyl816+dQsGk3TG7k10+/UFeav/vNA8e7ncSebEtRVhhtqcqWvr8RvSzvhmF+hVSnFFdWHbhZ7g91VeB9z3FXsGmltffp9BnvS/RVmKk5ScPc9fbEMAw8PZ94//F7pom1cKDC+4xfRBAty5ppHpldBJMpk2UJM6fLJ96++YhSaXXcC6xeoVic3LO6/synL3/hfPtEyiPD9LzGKAtu3YmquuN4/AalLWnlwZDl2S7f5UAMA9E7WWhMHWVxoSwiw/CZTA0seJ94/PpX4puH1cG+sCyDoDi05XDYc3p6pmk3soBIDqUD0zQzzT1atxRYNOBDxLvlNZ3Qthsupxug1khwh9ZaYk8hcLtdKMuCyzCsrhRBUlirRXR7YZJpxeX6TMwL9w9HxmmgaRqauuF66cTZhEbrwPXyhc12R3+7wHZD8BPkJKIcmV1Zcbv11FVDXbeyREBc5fM8yfMuJ4Z+ZOgnSp1QaYN3CWNKdlthgx2OLW/ZSYkEGaUzh7uG/X7DH//4I303s9u1vHl7ZJ5HbpcZReTh4R19F7icRvwiPEu0sDFjKohBzgwxLfggcdyPHz8ijfMbvnz5yuIWdrs9t+62RmMtply42++Y58DTY4eh4sunz9Rtw+V6ZbvZsdtt6caR492Rx6cvPOzfEdLAbrcRPMjsuTu0KGQozDmy2WxQOq2Cz8I0OXzw0jasLXVdU5SWpm05n08UZstVP7PffiTGQMoBpSJVVdL1kjxY3EJV1ux2LT5MDFNPSo5x7IgxUlYNOXuG4UbfDez3C1VdUVaaGMUhb3QlovA0EYJE+xYfeMFAZxTb7RbnZy63E93QUzeWolCEODOOI0YbPIYYM2/eHhmGCwnD0J8pbKDvJ3a7lhgHcp5W18+CX2bG4XktFHvCOItzAVRkmm6Mk7CetZZYcduUTNPMMisKW7Hd7qSEr5Dv+jj2KCX4ls2mZZpHbtcOgEJJMqkfBsH5mAqlNM4tpJTXs7FbmyoLjDmScmYaR+ZpLRzMhr/97YR3mbpRzNNMURuabclue+T9+4KnpyshzGw2FTlLm21RSPv2dme5f9hyOXspbmtqQOH9QtfdqCq5nudZ+KjffvtubZWNEu28XmlaS1EKSqQsFgpbcbr17DfvCMvEPGa2dUF3G/nnf/ojdV0SfKBtK74+fkWtrd0ozX/9pz8SoqKuW9w88vPfzqQkZX+FjTw93zC6oL953JyxtiZ4TXf1GFNyeu7pui/sdlumuWe73XG9PvPu7TtOJ4n5fvPNNzK3JVkcbZoGuxonUlTkpFkWEV9dXCjrmpgDl9tZEBbrM7koNG1bsd1VlIWmsjW3y4xfHOOKako5EUPkdutQOmO1oR8GtpstdVmtiZQSUNxuPVqvfHbt6fqfmf76hXnpKKtECCMJRz9cyUmx2+0Zp1Ge91ZRmMwyd/hlEib4NLO4lxKzQq53K0xXmwSRklISHIKTRfKbt28Yhn593o2vc6C1lr6/sd1uVsOHNCOzIli8T4zTiPeBu7t7+uG84qEmWCRmPg2w3W7wbsC7kRC9uPFWp3rTVDgnRVPlyluXkvlMVdVMMZKTtLznnCnKQlAkMZGjlGQFH1fnt2fTbjBGjAeLu1CWVkq+nr/y/ccf+Pbb7zG25PR8oSorLpcLKFbExyScaFNgV67r0/OJsjSUZcHiRGzfF1u6rufrlwtVVfPtd3vOp4l2U3O83zIMI03TcD7dWLyn3Ujx0hIWysoAll9/eZTnpl8oCsPXxy/cxyO2MIyDw1iZGV/clg8PR3FyjhMpSZJQ6cg8jzJrZE3bbEjeoqmoypbJjByPD4xjzzhM9LeBn/72M5vdntPzGR8WtFWUdUnXjywhYAtBcSmlOT2NoApsVa4aR8Gp614Z/rdr5F/++S80bcm7dx+4Xiaen3rGMVJVdj3HWxEmSXz77feUVbmm6gSl0t1u6MMeNwufv22O3LqBbz48oKMgZdyy0G6PlHXJ/Nnh5xnnhFu9225XlmLEL4rr6UxbHzl8uFuNY2dQ0jVR1w3LstD3I6Y07Pd7+r4n+cSm3fLp02eMsTg3Mww9ttBsdzsxxuhICBMx3+iGmYxHq82/VZ77twt8AlCTDfa7t+8pWYsusjgw+vHC7AJLjCxhtZIqRYiJp+czH969QWlh5LxEzV7ccbYoRH1Fsd1sRDhcg8myHbNcLpeVC+BfxbO7uzvcPDP2A/eHI4+Pj+Scub+/56WEwjlHSolhFLdgWVWcL2eKosAtwstbUkBSLJlxngQQrla1XKY1YlpQKmOIr66dlCT+kPA0jWzBxWFkXp16L/9smubVFTfPM9vtRmDyKlPVctCdvPwdKct2rWkblLZ0/fAqCIYYBNweZQO02wrEMScvMZPCoLB47yjKEpNkeFqWhd1uJ404ifVizngXaNaNqFJKDgvWrvXyqxMo+LWtSZpbjd3K5t9AWclnlYJfnZWQ1EsJiockyrr3C+TIbtuu3DFx8fjFYXWGJEwg52ZxyRiwRqGIq9Mo4FPEmErcI/NMURR4v2C1EjemEx6hsS0xhfXGLTZxtZatOD8Sk6cpLbao5HP0mRQWFJFxGlAKjI58+fpHVG54euo43h3FKZcm3DJjTcnlIo6euq5YkiflKFwHd2PsF9rW4oMnp5mkNSJKRBQGvwSaJuL8lWWZmZYT85cTRemZF8/1Fhn7Dmt3aFuxBCkeUEBpDYlAzhMx3piWs0DKfaK0B8gt03imrDMxim24677QtDX9+Iy2C8+nz+QcqRsLCEui788o7XFLIPgGN53QRob7rjuBkuhB8OumDE3w4sRr10HPuRm3jFyvXxmGURpfQ+RyubDdtbjZCRw2JMqiEjcLkXFylLWVB9/uQNcNwnucOobDM4eDcJ2Cd2ilGPtOrOZTJGclWxofGUdhRM7jzLbdEaJs2YfuyjT2OKNo2xalDdM0i/u0bokvkba1YEQbKTtoNyWbxgjzBAFaG+2ZXM88XamrCklmtkBcSwcyMXpCGDBWtprej8K5ciL4l4XCmkTOs9TaZ00KkaIsWZxnu6kJYRFBhoAp9BpHFxv6NI1YI9EOlMQzU4ocjgesVQyzCKDOLYAnOIc2hqqWWLE1lu52ozQnmvKZ/e7ISxMreKq6Wjezlr4fub+7h3VDFvxIsJrFichd2IppHLhdB+Zpoa5LmrZFYXCTB6Q1fZqED6MUEiVKmWDiyoPTjK4nXRMpO/leqsA4drLYyDNu8hwPB3JyAqPvR0hH+mFkv29IWQpSqqrCzY7JfaWu5YA4TE9yqMyR6/VE1UicQ4qZEkWh6LsbTbvBaOFFtpuWGD39cMVohV8mCquZp0l4lFmRY1rjd3JdO7egtSUEz+n5maZtqesSWxiUMqSQxO1gSkigMFgjxQ3DMOLHkWkeOd7tyQmKomSaRgpbUlc18xyw1jBNHcvtmegTi3NsNiKIK2WYJnHSTNNMWTQsiyevTr7dPjNNPbObcdPMPIvAFltxIqYYaZsN3XKju/Xs7+5wsyMlOfR3/SAuKj8yTQt1VQsf0yoUAa0jix8pbCZFLW2qNpC93MMhUlYlf/jDP8izHMvj4zPWWqy13LpnYoJ202Cs57vv7/ny+cr1NBKD43y+stlsuN1ubPc7aZ7PicPdHY+Pn9nt9+S80DQ14ziKAK6Fyzo5B0pEHVsYxmnELcuraDiNI9ZaNtt2LbdRXC5nrN5TF0/sd0dichgrYmZVWfouEpSmH0bevnlDSvLsCn4E0usiqCprhv7K0+OFcfBsd+K6sKZgnhwpqpUFLIBzY4RjSFqfGSvWwy0jl+4rMU9stjUQ1ga3hRQVLinU4Q6jLNNyEWezsmhTkpIMPT5MFGUp0e1lZBi+YvaRaX4mJmHxzNOAUoFqrOQ+ZDLGCFPUuYmm2rDdCtuuLAuKwtB1V1SWlvEYPEPf4ReBjStkIXe7dbRNJiZwThhvYS3/6vueg9+y27XMk2PoOqqqoSwrltkTC03bNqS0ME2jFB6heHP/jhyhaaSxMfhAWZQMQ4dWimHs0VoxPQ08Pz0RljtQmWWZV3eWlK5YU4gbrRcB+XbrOB524jaZBhHStcEYGaSnaWS32/HT335hu92w227wIdBsLU9PX6maipgkMvjP//RXYpQo/vXi+OkvF3xwuDmTs+bXX55RueJylsbpoiyIXjHEQM6W86kjBE/TVjg3UZYl1+C4u7/jbz/+xNevz/zmh99idEEMkfv7O6pSY43EiR4fb/ztx0+8uYevXx/5/R9+T11XnC4nwX6YdYGrAm4JvHm7Y7drIQceH08UuoIokUClJep2vV1IKbJtNhTvC9wycz5LFFQp1qIsy9PpRF1eseqR0+mvTHNDNzyxxCvCoIx0XU/bbKgqaRhMyfP49Stj9x2FyajVURZ8ou8mClvTdxO2KKmqBr9ExnFGq4KhfznDy2dkjEGvzlG3iBuz63riUVwry+JQCkLwVFUtgHgVUGph6J+YpmdCCrjFMc2y1LCF4XR6JMWR/X7LPM9UdcUwdRijWeaBut5CThhtWNxIPw5SEhcTh/2OorJMTgqJJic84HkaqauK7UZijcviqAp5homwbZCiME2OmeAjZdmwLLJIvXUDKYiTaL8/sDhBJCllRIjphdVZ2ApjhWv+5mHL/UPkehmASFvvOZ0GpnEmhMzQBzabAlsoNlUh/MQF/vrnE/d3D5Rlh7Wavh9IMdI0jTiPkif4uN6DPJtNS7tpmKYJbcTZCYFpdGhliTHT1BWH/R0paA77A0YF7g/3PH79CrQ8P534479MbHdbni/ndfmkJOq5JBYfaFopfZrHhHOB/bERc0aAJcxorSkKxeV841/+JVBWBd98/I7zaeLx6cYwJCCsy4+K7jbRths+fPggJXfdTZjT/YRFYWoxVWx391yuA999946sZs6XCyEE9muKLHQd4ySi7aZtxeUexSwy3C5smnv2uwOLC+J2MwXWipv8cjkRcqCt6zUFVVLYkufnZ5TSnC8nrDGkXSblGecXlpAZ5ytqWkBFbFHx8ObINHpyzuI005qqqrE2czk/klfnYFPXTONtxWYkQoq0RUVRVSQyVVNji8A8Luz2BzL/ikZI61K2rmsW73HTJKz3GJnnRWKsxpKivAYpCowoFsrKklIQPrvOBC+lfMaAcyNBKSkNWcRp11QtKaVVsAroNYUhzyURwQGssYQkMfamLdlua4bxxpv7e0ojnFJrCpzzq6klw+rsKsuG8+VKu93w9PVGmP9GUdSMw8A//OEP4mZ0jvPtyjQ5cTa21Suqp64LxnFknEYKayhKw+0iLPK3b+94/1HKcdwc+eb7DX0/M4w9wxi5nq/4JRM8kDzL7LGVWs1UE2NvefvmDUZ7OecR6buJlDLL4mk3DVAy9B2bjWUcncwOVjGMDu/NGuMP+BAJy0QOJePo2bWWpin57f/8e56+Xnl8/IqiXfmpmX6cUFa6FjZFS0iGsm7R0a5FP1L2EmLEWkVVlRyPco9/8+aeu7t3fPnyiFKZZRk5Ht/T9SIG+qBockFZbDlfnri/axlHx/6woSwrmrpidvKZT/NIYQucG3n35lt2uz0xlnz85gOLW3g+XVE5rzzSTEyB3VYKQ67XC1XV0rQN5EhKhhw1ZM3d3QNlWa6orO2ayszCV0eY92SFmxdSzAzjxOPXE8+nM4fDgXazEUSWKdaSVI8tEINIpQhzpK4qtPlXFNv/t7/+zQKfUoq8Cl5WZeZpIgXNm4cj3TAyTU6g/IVFrZD5nBUGwzQ5+mHkpVFndo6cVxgzEgOdJ3HZNU1DURRM00Rd15RWDuKbdvMq7r24ga7Xq4BlrSFGj7FmddlYZjcRo6ZpG4wy3LobzkW6YSCmTAoSjXv583JOKA06I26aJK9fmC4LSicUka6/kGKgqA4olQRhnUeMhmWROm+lxDWmlYhKdmXC5TUSVJblK4zfLxmbAtYoKmsARcpxVegD0peRcYvDaIM1lrKwLNFxPO6wxjBNF4KfaTZbYkqURUHX9xgjrXraKI53dzw9PRO8CI7LIvw+rdSrSxIFRhvyanOOa5FHXEW/nCLKGKzWYORApJWA041W0ha8ioF6BVqnlCQiHeNaBb66iJZAyh6lA0WZUYhL0lrZpG92EvGSopCesqrx40JwEMNCDHKIFDF1Wd2HIo6CKPviFqhfo8JaZ4xNhDDTHGoOhzvmeeZym1cgbJTtpjLMbqKwDr8obl1CqZlpOqN0xBZWmmhtvR5mLX3fU5SGppZoz7JyvPb7Az4ua4lBQVmU+MW/vu7r7QsxQsrj+vdeGceJvjtRV3ds2jfs9m9w842iEmbRZi2M2WwVIQzSJq0t09BR2ke2m3tuwy80qUApj5s9Xx9/5u7uiPcDXbcIa4NM07QEn7lczhij6bqOu7s7hvHCsvTC1zSNRMGBxTm5t2V5aJ6v3cqs8txul3XrL210Oat1y+eQlmi1um6kdVk4H4nL5cLD2wMZhZtndpsdGiX/e5GxJnK7faVtD3TXK7t9Q4oSSSrKgkop+n6iKDJFWckGVQlrZ54GfPBM08iwtlXbolyF2VqcL5cOvXITXmJGXTcAiv1uw+IDVq+Nz6tIoZTHLT3GSGt0oS3WJnJUq/jqsUYT0eJIWCaMhqqsUN6jVVqH0BvT7Gi3R2JEnDUqrMjshZwCKEuMSjap2xZtLviw8PXrhe++tWQ8RaEpSsgLXC4XTFFwdziyaVumaeSSpHhHinZalLJ8/fpMWewx/Lqy6AyzO9MPv66ieuLaXdjttmtrsDCCvnz+kR9+85HCamIUl+E0OpwTRqRSis1Oym9utxGVxd2rlMIWpZT7rAucoiiZl5llcUzTzG63J3hxqj0+fWW33b5GepumZXFnnJ/phzMhJMAJ5N1oTk9fKauM1plEJinPOJ6ZxoUcF2lwNGYVUkaqusQtnvu7IzEnibwmRVFWIvzEwN1hj1KaaRwwhWZxwh4SoV6RdGYehSHjQ0SbgsvlhtGW4909Ocvhc7vd4tzE6fmZw+GeqqpYlrRCjYtVjCvFGbG1lLamuw3UjSHliJs9l2uP94nL+cJm0+DczPV8ZdM0aN2sz0VxtVtrubu7o7uNHPZH5nmm7zruH/bSju0Xykrc99YW1FWDW8R9eD1f1jhNze3SkZJ8b1x0gkhIicU73DKitcTLay1NoG4ZaOqClBZsUWFXt3ZMUBYSw++7kTqKm/90OjNNE7///R+Y5oGiMBz3e8rC4JxncYmvn098+mVkvzvy5ctX/uN//I+M48DT06OUTFUlOUrhjVpjRNZCip5PX098fP8dKsVX3qWxitPpGW0MD3f3uKVlmqf1PCBuWmtbFJqnp2ea5g6rf6Gq5Jnm041p/kxRhNUh4zgcDsQY5Lsy9Xz9+je+/fYtdSFuz5Cgu40oZQlB4kObTY1Wlq67YHSBmybAUJQFyzKLGKAibdsyzTN933O7ddzf370K+l3f0dQNoAnRU9cbxvEZbRSX6yNaW1LUNM2WshQw/DCcOd5tWbzwRYfxhlZKMA8rb84YwzSPLL4lZXFM73YbhtFhbcXkFqq64Xa70DY1m0bA3fJ5FOsiSAalGCJVKQzJtm6FE2sK3NKRQqZpNuz3B2lQNwXGlAzdGWtKyrJBayX8Zy94EHFv7SmKEh9ksff1y8DuIGedlOF8EYZWaQtykobDaezRRlGUdi1vM1R1Rc6JwhRYW6LUQlU2KKV5fv4qKJXCAonNZsM0OrbbHYUtORx3tM2W8/OJGDI///QLylrKpuTL16/YwgARaw19P2G0oapqQoLLeeWo7kphpaqSvnPEAItbOJ8Df/kLlKXl/uE9z08zz6cz93cHZjew2TZoMvPsiTHw3Xff0mxK3DxSlxW38437447bcuH9+2/Y7y2z+xub3QGlvzA7x2a74e7hjsenJ8ZhwhiFypndZkNhNNYI8emb9x8xysIq0iqT0FqiT9O8pl6GnqIsePNwzzhJO3KMmS9fT5RFsToSR56v/8TyNBLzQFECKqF0IKXIOE2EGCRxYit2m2Llbc0sbmKYFoZhYRhm7u5aKStQEGLAB/eaKJimCXVVfPfdN/S9FFQM/UQhf6EMZc5Li/X6T6UMIWSUCis2ILLfacbxwuJ64orjGIcL280WPw8s00jKC4uTxvOQlTzTR4lv1nWBXzzj2FGWIqYtXp5zm01NWdYorRnGURakWVGVBdM4obVCaWnv9THhXWK33a/38YnddifO56IihrR+NoGyqrgOV8qywWiL0hZFJGWNtQX73Zahn5lZeBvv+ObbI89PPX3v+fa7O7q+o7CJb/dv+af/9gv9bcZ70MqD9q9LfW3AuwRZOIDjNOKjxeqKoe+Z55nDvqCut4zdQF2XpGAYhgtNK88dKU7wLAssi2caBxQbhn6mrUuaTcFvf/sHfvzzL+IyjxFTGoqk8SkQ1896fzyQVKZsLEq7FVmUCEGi8jlFjsc9b9484JaZbz7u8F7Yb+N04+3bNwzjiNJW2n6Todk0dF3H8VAzDBMfD+/XRYYgPBY3ylzmZu6PB3a7PVqXfPzmI8EHnp+e5fm6opbkOr5n6Ea8X9juthSFXkvRYJoW3j60VGW9ni1nplkSEiknYs5SVBgCwcv5xYfE6XTmeDySs2YcZ/aHPSHM1E3D4sWx3fc32q0wU40u8X5mtzuw3T3w9csjWgX8iiPYbFqapmaaF5q24e27t4zjxPHuQNedyb3ncJC2Y9aiD2sL6qZimia8j7jZEWNmGt3qGp3XpnRZEjnnKYsS5xxukWdn0zTUTSXphOhfsVExJtw0Y5RaEQjQbjfUsSGkKO8JrItVwYCJgUVKJ0KI9MOIVfK9RVlsAV3X8xKjrIvM4mQZqJVm6B1t62nrGjcvBJ95fr5y60bGyWF14OefvmBtyT/+v/8bd3d72m3FbRBUS4gZqIkJWQZrcZWGQYryJCovaIOnxzP7w4Z5DIQI7z+UvHlfsdlu8K7kf/9f/kJ3jUQvTsesFZjEhw877u+3/PK3R56eztRlyzhM7PQONwkTePGept6TUqK/BVQOGDPSbhuatuTNuzsu5xspGtzsiVELIqgxVOUG7yObTUvVGLb7iqYtySpS1tX/h7n/6rUky9bswLGWLdNbH+UiUt9biRIkiiygG+BjA/3bW6HJKoKsKt6sShkR7n7EFqbNluqHaX5uvScfOoAEEokMDw8/e5utNef3jcEPv/pH/vK3H/np61ecD0St5bwSxDTsXCAmkGcGHRxaR7yfeHr6yP5YoZVinh3/8I8/4JxdwyEWVFyTmGBt4LL+/ppmIs807W3AWsvj0z1JgrwHNRz3B/I8ZbfZsFjP68szwcvy4/H+jm9fv+LsjLeWvMzo+57UGLZVjQ0LfSeivDzPeXx4pK629H1HlhaUpTAa8yLFh0A/9Dw8PFDVFV++fRPEU2LYbfcoDM8vZ9q2xaQJ9aZmWgau1yv74xY7TtKkMOJ8mKYRFZa/dzz3f0aCD7Ispc4MWao57h/ouw6TGW5fWxbnSbXi6e6OaV54aRpCCKK3xnC+3UgS6Pp2jc6nEANlWTBPM1EFOYQto1TqgDAF8AEfAt3Qo5HL43f5hESlI3WV4+KEd7A7HJjdhIsWoma4jnJZQ8Co3gc8AR0i260c2FSUCkmIHoBhujD0A48PP+CCkgGMt3h3o7n+hEkjRabI0w3T3NFPz2TpBwgHMd7qgLeRLNGEaJlHS14WLMtMWUoNSoybnkQnECURZHSJCCkCznUotgz9jA1RzKchUpUl1lqIjqE/43xHlil+/vknHj/+kk19JDGJgJajx40DxmimxVFWtZhnCNhpITc5abLaWLVsXLVWsh2McpHTSpGnwjKTdKAXplqaodFYa+UyjXqvIP+3Px95UMuWzZgUa51sTHWkKMzKoxjxVoZA4zizLI5jumWxI3leoZQnhhl8xFphIOapQRuNSjRhUevw4PsAUcDigieM74KYy9wyTgod99Tlke22Yp5blBrJUtbY+0BQkmjb7/eM48L1emGeL8zzjdmNYohKIm+vz9yuLZttzeFQU5SynR3HCaKm7weU0vh1GLAsC2VR4rwYemKMnC+vxAhpmhCjkiqQQqCzccLaljTd4fwFP8nLKksFAluWFcNwJc8N0yzGzbZ7Jk0jy3LF+gTnrfDbRsgK2dakmeJw3NH1I0oZYUEUUoGtNxusWwidlQtgkXG7NvTdQJan5FrSoE3TkWel2A0Xy/c4btd1DGPkY/oB7yPXy0UeklUtfAsdqbdb7DKt9VjI85Kq3Kwae0U3DDgfGQaBYzfNDZ0k9F3P5XwBHrDLLJ9xazFpio/gpnnlTiiuV2E4OGfpu44YIEky8lwMufMyMg4T1nrGcaKqNqhEo7UMW6xdUESOe1HMZ5kwn0wmdmA3D8TgcE6242kWicqBDhil6NqWaWzWepmm0AmJBmsH8ly4INZNOD/hnNTfimLDMgurpF06wAsoeBzRuiCsApU0VWiTcjoKs6zvZzabEh8W4srkWeaJQGAa5KV1f38vLxMlFZK+a9ck8IyLV76+dDg/oROPpxfeaJxYbKAbQE8dZVlRVSkh9kzTTeok48BioekGfAgUZUWayWVjHEU8kaiEcRD24g+/+IFhkDpA13VkWY5WCfMkIpJEpyurJkWrBGsD87IwjRNZmtO0zzg3M44dSht6b9lut9ilYRobQGrBwnDNmaaRcZwoywrvFNM4kiQaY2TQPAwdu+0GkyQ0U09qsnVbl2IXsZ3GKKxTt8gAJ1EG7wJJkZGlOakR+2aSKFmUREXTtHz48AGzVsITY8jRbLcHpnXLW28qwrKw0YZlcaRpQZIoum6g7zq2mwpUzuG4p2k6nI3EoDBpil0cRku9vt5u6fsJpRNJakVPROrHIURuTYNJEpHzuLByBjVZWnC9tJIi9V7SInkOUTFNlrAePKqqJklzYStlYo2bFyv2aK1YxkGYpDhJ4ASpEzo/48dAYhwqFqRGnh1utlxuL3jnyHLD58+f1u+RIrqMsbeo0jJrxfH4hDEFy3xj83GDXRzTOLPdbenHTrbYfUtYxTdlUWASSFMwSvFwf0dqpH6jtUcn8J15O00TUa1pWJPw+HAvqAgvF66+H8mznBBmrH/l6+uFee7QxhEZMVlGZMHaSNs2RARtsT+UaCWsoGnuGaeJZZGNt3fIsC1PsT7i+0kMvIjcpOt6fvjFL+iHjhgi4ziRr5gJpbTY4hKzspxEfDCO83uKIU1zIKATxbL0GJOxLIGqSuXZ1jTYeWaaDCGA9yL56vpWpC5FxtAJM6neFjhnGccFk2g2m4q8KLnd5HuitAw0hmFErWIFlFhyE5NKEnZeKEoZrAszR9IpIShSk3HrbpRFLZf9ccAD3kWKYsNtamkb4fmVVY4GsnXREAlM47hC252wAqeZu7vjys+zaGWYhok+y94FY9vNFmKk63uKogTWhXHCavvsBPid5wQf8C7glAxQgocYNM/fnvndbx/5x3/8LX/649/ohpl6s0enmtlO+DngY8BOlu2ulqR8VWInwdiEEGRxKxEAqqqiLGpMklF8rOnaga5vuZxv/Oa3v2McLM4ppsGhTun6M/XURYGznh9+8cNqzQ4Mg+V2uWF0yTSOfPz0gNaGsszJ8xIArZVc0JFLWV5kYtAdWlmqZ7kkHoeJ3i7Y0fD73/93xCg8J4M0Ubx3zPNEVIHdbsti5bmWZinPP36VKva1xSQJdVWj9AJ6xvozLvSMiyxG6vqIdwhnN3i6tmezKdEqMo0DSonsQWlD182UVSmfz7Tku0VUKcVmu+F2aXl4eEQbxXdetDxbM7JcBmzWSV2tbXuslXSzSjTjNDBPi1QoTSDLDcPYyOc6eqJ36Mwzzx1Eg7cL0zSQZzllUWGtJAG9k4vx98/tsuQYo8ky4VmnJmWZLH23ME6W2/VG0/bURcE8T9zf30kTSMklsGkalsWR5yUhSOXx7fxGkqQQJQG4TCOLdQL3V4quH1isxaQJWV4wL46huwESqAgBnI385eczMXpOdzX1VnH/4USWGb5+vbA/pCQautauF9yMNHX88MsTP/ziiX//v/yTmGiz/P2u0N4s3rJ+PhVzCEy9xy4jaM/D4440CyRG8+WnF3zQNDcnXMVEMw6BstjjnLCZs1zx9PnItX0hqpHHxyOPH/6R//f/5z/QNK3gLrqB76b2GLyw8YyRWmuiicpTlhnbXc0x3TFPln1e4GxBYo5M80ziI9ZOKK2ZFy98xCRh6C2pUXz98szhtBUhTpVjbU6RlRwPJ/IshxB5fnkmBk+WfU8HXVimEb2rVzi/l/rvOBKj4npr1+9fzXa/Z7GWppdzfbWpAalnJzHh8fGR55cXYf2mwm2cbh3zbOm6gf1uTze0IrlbRswMIYhEQM70kvDa1hkPDyeMyVlmvw6KPYnR+OBJsxQXAl030LYdeV7wcH+3oqfkM64REdylbbGLMOaOxyPbXS0J2EUY8tNqi0/TnDRNKdchoFQcZVn4/bmcFzlKSfDEGMPleuXtVRKidb3FWnnHyf1RGIIJvKOgVhQ9dpHhWZola7hEliT7bcrpvoSY8Pp6oywr5skyL57b9UqiDHkasYvMJrpm5PJ65de/+hVKy5KqqrbYueN87tE6Z7Pd8Pz6hg0z213B4bhltjN+dMJ5G/W6TFrThDrBGFBGkSkwacmuruk6sRP/6jeP3D8U5EVG0zZ0/YXf/eORv/zxRt/B7/7hE6eHnLZ9RWvFssxstxWJNgydxeiEZQrMQ88yWxlQ76TNmOoCa72cO7cZ18uFsqxpbqM0/hZFagpiVJzPHXVZ45ae3X5Hlis+//LArflKluZ8/PiBw2FPksHPX76ARVpICM6HFStQ1hl1vWUcAzpxlJWh7W5sdhna6JW7P7LbCQ7sduvwAba7mte3K33fAZr9/oDWmr4fUcqxWPlc7w8VWZaw328oyhQCvL6+ssygYsnpdMcyeawNVHUps6Z5IitS7u7vuF1vMpRcPJfblXmeeXwUDm6iFEVRr+xpGEe5R1WbWpA508QyW+z657zZbej78Z8FUKkmTTOKIoNWmNfj2JOk6h2nBlGwFOXfP5v7uwd8JjXsdjsMnufXFzb1hmkaeXl7oapqfvXDR5rrjd2mJk8zgo/YEGjado28esb/xigb4xrjzYuVqSMDj+gj7ybXZbUWJol8gHRClmUURcGtuaGUoqpL6irHuhtt80ZRRoYxoHTJuExAfJ/y+xhYwoLJNErJwyJJFIu7ydCFhBgDbXvlfP7KdlehlbxslmWibb7SdxcOx4phfJMovr3h3MA0X8lMSprscR6iG3F6IkSPQiqwRVEQo/xziZHEQGocy3xjnK4c9nfYRXhUAQs+Mi0RnZRk6RaFpCi/W3atm7m138BPDFPL65siyxRJyAlxZh493sFmu5d0xbTI3xsFGImKaKMIa7IqSdT6kLXo9SAdfHgfRpkkAYIwdexCCB7v3Xpg8Gw21ftD2Hu/cqDk1zQmWVN0isQoYpSqmU6EA9gPt5VdGFblume73aJVwjgMlGVNDJp5spR1iQgCJW1XZOn770MqdwPpmu4yJmEaJ4rU4BYZoM27K9fmL1h3ph9a0twxTN9Q2skDqN6x2W7FaOvhdn2haZ4xqSJD4tbL7Om6jqraCFtyWSgrYUbaRcQAb29njBGO0jxP5HlOmqVrQqzj/HbheNxTlOXKSMikGlhVAssHrNc07c9cLz9RlLJxnm1OahzzbBn6G6nZEqyIVaZhomvPzHPPdrtnUQKvnuaJyhZM04jWkBcFIUasd6RGNslNe2O73QjzYhpJUwHchihJK+8CSWXw40RRVEQvaad+kIP98XQkSTR932KSnHkahHuVFzgbmLAYo2Vg2I/cne7wTurury8Xqm1GvclX7kLLOC2kSUIIIq9ph46ilNSdUoukhTWgFHVeMM+O7Vaq5F13Y5llaJAYgdfbJVAWlVR/ZxlmiG2wxHup6YFfa1gpVbVlmhemeZIKT7DkZGtd37PZlBK7NgmKCU2Bd4qskrquUpq+E5CwVHOEPbRYSfdZawFJBEZvMUkgrTKC07y+3dCJpBu0jmTpag6Pnmke6K4tZX7g6ekz4yDsIEn98g47VomirjfrIEOT6Jzz2wWdJFwuN7Is5Xg6oPRMVBOTPRPmmcCCTgyH44bbdaLIc8ZpZBx7tpuStmsZhgwfLHmW4byTxcDKIDFJtn7fFbvdjvbWU9ebNS2jhcGziCChKErmeUYuu/q9Nv1dgDQMsqBRROFXhEFsoGsNOi9SnB2YlWGeR4Zx4cOnD5SlVMMB0kzMgSZJZJBORCcapcWGPo2yce76gak/y0Y8eHyWkq3PlqqqaN5airKS6kySMozjauWUw2U/jNi16uBjpGk78iKnqrdM40Tfi1lP6+R9OCLp4oSyrOXz0nccD3eE7+nTJQjk2gZiTIg+4lXE28g4TyLPKD3zvEgVIs1JjCAA7OK43TqCl6TuZrNlnuWCG4Pidutw1lPXW8qixs6OtulYZkv8vpBYF1IgWIe+n3A+8Ph0t1ZxYLETJpVDNUoYNIudUAiz0pBKImy8oRTC/Gwc2+2Wpw/3ZJnB2oWvX78xT4FEB6oyZbPZkGjNfr9H69c1VSiJuCoWsuV2C8kituu6qjArw3aaeuZhoEj3PD1+YhklaWcyEeGAHNpUIvWLaR5xTiqA5/OVLMu5nK9UVcXT0z0qkSXk4t+w80DEk9qS7b6iuU5s6op+aOmHjixLGKeGyhq0Vhz2ey5XwWzM0ZIkApn/nkCvqw1t27Pb7TEm4bvsw1qLMSlZltM033m+IhIap1lkPU64d3rFiugkoBK3Xp7kEpAXJc5PqGXBWhnKm0xT1hVDP+CdIhKoqgKl4/rzkPaBNDISgo9czwPOa27XHq16pmFingYeHx+FGbq+V24vLWUp7/YslXead1IlNiaTS9psJfkU4XK70Y8jeZGhlVTJr9cbVblZF5KQpek6fA1sNrv3Otjd6R4UXC9vpJmhbQVBUuQ10yi1R5Nk2MXT9yN9P7LfH0j0Wi1KNig0XSu13OBBcmuKu9P9KkoLK1bD03Y9Dw+PHA57pmnh7m7H9XYBbfnw+YGqqvj//vv/ja7rAamLBS/nzBAV1sW1PhrWVMPCbvfIx48fcX4CFB8/Pbzz00KING0vg7QIXTetpkRNdJY8V7y+nDnd7UmMpMb2h2JNwFXsdxtCNDQrx81aQSMMgwDYldaYxFDvdhijSbMEk0Dfd5KsKQqO252cFbVit9+uiBpHluXkWcbiLMMwyXCuG7lcGy7nK09PGVVVM40DkYh1E1kmUjM3KhJtpH0TFhITKHJNngnL0C0T1k10fcvd3UHOdUsvS5EAVSlVsdfLV/LiEZOkeCvVVec9ZV6I1Ry9nmcjfTeIyMV66mqziiCW9X9zjOPIdrujqjeUZUbEr8zolGWB6BemYWC322ISTVWXmMywWMu0jCzzQr3Zrd9tzTQN8t1MFJttTV7ka1rNUaQ54zgwT44sqwjerZ9dJ3zsKAzHxVrSTJYmy7wwDANt27Db7dhvt3gnz/4kSZi7jv3+xPFwj7Vyvj6f31buWZRzfBC7cdf1stR4PPL8/Mr9/QNVbUhM4Me/PZMmBf/y3xz5w//xBZ0E/s1//xvKGhY7cLv2/Mf/+E+cThVZZnh9bVFBsSyesR2JIaHtGrbbI9lWU5Q5iRHOmXeBy+WN3X6PdxrIcMtEsi7ObtcOk4wE5znsDyg18fnTFpP8gEkUm03FdrvhX/yLX3B+u2JtJFjW84dUSX0MHI97dALTNEjafZlp25a6LimKAu8t211Fmhm4CuJkt9/w8nKl72Rw+PHjZ5Z5FhRJvzDNwu3cHyrKIqOucrQONLcry6wIMefp6QN9Z0WstQ6Sl3lmdxSe7jQuVFXJrbtyvdx4eHikaXoUkOpcqqsx0Pc9Dw/31HVNDIF5HNFR0d5advut3LGso8hENJFlKVUs6Psrw1hQb+R8JqnyyDSKAK3rGu6O91KddDPT1BOjfK+9t9h1IN51PW3bstsqbjdh0GkVJTUbkPaCE777fneUZ2b8fj8NtG1HXW9W3nxOjN/P10oaTuvydJ5nuk44klF5joc9WidiBZ8WkR/lBfMaKokxSOtjkqVqVci99fuy4vu503kRETovbS9rI6+vTgzHgzS+qirn8eEgSdeYMg2Orp3WpswWO6USUjLJiquK0ko0Od7J9/Hjx49MS7uyiQ37/ZYY+1VMM1F48L7jdNySpxVox36/wQexpOuoOBw36CSQZwXP3xqSJOfnn24kJvLwYPj8ywLijrJ0NE2DMTnntxvD6Pj973+BUoHza4O3iudvN9yUURc1T48fOexPdIMgpiIzWaFQGPpuocj2jINfnyGeRUcReSqws7QjsyzQD4rN7sT/7f/+b5nHhXmyODfw8FDzm99+ZJ4Ct2vHshq894ctkYLtriLLC6Y54e3tBdC8vl5Y7Mjvfvfr9Uwpw0ARCPY0zUiaVnz4cIddPMsS+PDhA13ToSKMY0NqcpGfKEF15VlK20jVv8w37PePmKSmyAVPItJOWYxqrVjmBayibTrqssIFqZdHRNQCmv12K6EhIzMh7yUIoo2hLIv/hrW4cH93Wqv7rdwzTLXe82EYhZMZwsIyz2TaENzCd+HpNFnKNPy947m/f8AXoyQBskSqm823LyQJeGsZ557f/up3sIKGCZ5NVXDrurXuIoIJ6SGH91+vrmtJOwFKsYI1xZSaGkNQiswIZ01MmIGHhwemecYHJ6kKtzAvkXm5cWl+ZHKvbDe/xS8WH4XRwjrkkF9XeH9KQ/ABWOj6Z5ZloihrrtcrfTfifE/Xn9nWJShYbEvX3+i7hrJKqWvwocP5RThG4crDaYPWARMio7+xLAlJkssgISyIA9WIadE7NmlBbmb8skAYmCYgJCgNRZ5hksD24x39IJdPY1Lm6HF+QRNxfqZpLiR6YbMtmeeGpnsWuHlM0cqQFSXTKMalvMhACc9EUgBrHceIsESmymIx1EqSeC5GEqGiQpD0YwheEItakZc5RDk86PfBrZIUzpp++a7q9l4Ohkp60Fi3kGtHDIscZr1UGxMTZRs6Qp7JUDdLNXYGgagaEpNwWxl4GvVeo1nsgjEa74XhF6MTTmCa0s0iGIjMdNOPDEukH65kmUJpR5IayipltgOxle30bnfkdNrSdxeyPMW5meglAj3Pcomt681a9zSMU0+WCZND60SSPJ8+4NYNmrWOsiyp65p5Fpafd54sK+Ri5zy2aRnGgTIfeXw0tP0LOrHMiyUC/XChWmP0shHLiUrJC7/MV9h4RlVLvWCaR3a7Ld47nLM4l5IGqdg8v7yy2+5ITUrfT4hETQ6H8zThQ2C73RNCj/MBHxQBBUoxLTPOBlwQk2FVb8nyHL0yzJzzK1dGXuaJkch9XW3WTZumGzuAlbEh4pa6zkTQkmSSdhosxuQ4F9hs5JkxjjOV1qSJwa81yPPbbT0QZGuCxeK9MMbsIlDncZzY7fYMvQxHJDEqTNC7h3uMKdis0elpFJZXWVbkecpw7fDRUuYGbcxqfpRDUlWDR6P1ah7VEaU0JsmY54X9IZWBqp3BeigySYt6hVaRvruQ6EhVbnDWkuhImsphJWoPcRaNvAskacGm1pwOD+uGtiIEYRcty0JV1gzjyHdWqfdwubbcrjemeeDDhyeKvMT5meDFrBkJAvYe12RWZB0sBopCs6kPvLxcmOzItIxYv7Dd1ngf6CfH6binz0Ye7u94ff1GRFPdn1jmBaUTfJDUlIgiEqyd3y8mUgGFqioIQep4aZrKc945dvsdVVmQJMJx0zohS1P6fqS9XTgeD6ASyqrEuoR+GNchs1nFR45Cw9vlTGJEfLHdVMKHmaRqMg4TKkiCU8xxM3enIyrTmCQlhEhRluviytL1koS+u7tbk2ky6B36nqcPT1jr1kOAVJeTMltxEgathQ0FG8pShusxhjXZt+DchTJPiSCD504+i9HLhpmYrNbKwNCPnI6Kutq+2/XqupQhR1HKn/Ui5kjnPcqJZdxaT/BhTffU3G4N1lqqasNuZ2jbVgQ5RgQ0i11QVtKDznqxfSpZXomQKpJogXDLkmdNmsVUsAYmrEN3R57uWOZIryZeXy88Ph4Zp57dviTGnroq2W1y6k2JW0RYVZQ5IUgyUSzvJ6mLZBm73Y6+72SBhiQa7u5ObOqcbb0nhkBV1+Rlzne7fVnUDLkkhbtOuKuXy5Xz9cYyL3z69EkA1CoyLyM6KfFueb/sZ3mOD548jWw2KWWhKYo95/ONyS4M08zWbdjt5DuiNNzdHbCL57Df8fL2TDorinwrw3gS+XvqCmeFs/v9bCRJcEXwke1mQ5JomqUDJQNx5x2Hw4EszzBGrMpqtUwTI+e3V46HA/luS1Zk7NM91suCapon9rsDfnI4bSUNGANplgiLMM8YoyWoiLWRvu0xRgQ5fS94CGutnPMSwzCO5HkhSAelaLsWHzyPj4/kWSGpba1w1rLdbTnd3a/VLc3l8kaaynuiyHNhps3CH9OJ5lDvSTPD9dIwjiPD2Atncb3YhRjRWgYubnHM0ywpnGGiqgrmeWG3260MxxsozdAP7A871Coq2Ww182wZh4FxGqnqUpYM80IM38+MGmcXDvucRB1YloaPHz+y3ZXkZc3zq8hWglO4SYHS4GFaLGnuORw3MsiJM9u9vGvmZRC+nYJpEiB9mpXcmp46wLzzvL1d6LsOpWG32zMOE8ss34dpnnj6cEdZZiSqZLvdkZmCfhiZpoFpkiHT4+MD3759Y7vdMs0T5abg7u5E309sthvGoePL66uk9VMPqWOZbugkpSxLYoxsNjIcc15zOPyKv/zlL/z89QtFnnLY7yEabpeOrus4ne6EnXl943hXElZBm7Q5Al07kKae/e4oSbS5wxhwMVJWJToBnWgW62jbjqYZ+fzxM2lqGIZ2rRMb8jzj9eWNZbZcL185Hg+c7g4rfqBiHGaGOKNUXBOjubBP1USWyeUsywsZkms5t35PCv3pT38mS3P2+z2LXdaWxrha4wsWv1DmFcaksvBaFjEZX1qcC5LiQLBGEZiniegV18sN6wKPDw+CPZjFdj8vi6TZkxTnHeMwURQFGkVRZHTdajEfx3XQLd/B4+FAWVV03cg4rs+MEPHekWcpdSUD82maMMaQZRlhdPzwwyeImr/+5fn9WdO1HfcPFb/53UnwK90rX78uzEsg0RqtDY8fa1AL9W5L28xEv+HHPzXst4/8+te/oKpz+kGWxtYN62VZ450h+IxhCExTiw9S24yLJIWXKHB9Hzu8v5CV8N//2x+Yx5Gm6RjHN379q0e65re4RfHnv/xEkkpCcn84UOSGclOCSvjDH/7ENFqyLOEPf/gL//pf/yNpKqmvYRgxVqQXTdOgVMbTx4MYdpOC0/HE7Xqj774zJQ0hwjTNGCO10L6b8Yvm/u4TeX6gay27HRAV7r/Y9U4r94W+k+dIWUryNkYZKGidsqkr0lTED5JGEyavnD3C2jYYOR6P5GXK7csXYvTUG7mfem8py4JpEgHGPE/rIloCG0M/Mk8zZZkxzR2JzlYWfEWynsve3i50XYsiFU6eErNpngnDbX/Yo3Rkmka549gFlNzFYpTz/Lx+hvO8eK/ZLstC2zUkiWBxksSIPMgHtttqTdAbhnESjtyK9imKEp0oEQatYRHBabHCOP7bv4R/b1L539PMkOWG0iQ4u9B1nuAtoghNmRaLXRbgxm67I7qAXeIq/ZB/hx8+fiBGxe3WyFkoUdR1SWIUZVUQkfuIu7X/nD5MS7SSoZBJUlAJzgYWK99RHyQMstkZQtRoJc+Dx8cHWWrPmuvlhrd6tfFGTndicf76dWKZIsPQrAZeGYhneeTuwUi99OmObz8q7vYf0QYijr7v5Cyfa7I043K+YRfFTz+90HfSQAoBEqXeQ046UXx4OlEUkc02Ic8Ci70JcmmYeH1tuH/4zP/0f/l3tG3PH//4Z56ePhCi4+Fhv37fNSEq/viXH/n27RsvzxfSVLHd1iyLl5DTulSbpnFFJMhSMkbH4bhnuz0SgwS8iiJlsylwfmaaLNdLS1Fo9ruDcBRZsEvEO8M4TGzqHUUuC/zddsdiZTiJSsgLaXJ5J59VqeLWmNSQJAbrRSDzXQoW1nPOOE7Um4q6yjjdHciL700gcQfkecZut+d4OtB2LX/5y58oyoyyrNbvjLyDvjdRy6KmKKq/dzz39w/4lmUBbVHRsIwj83JlsWf64UpdbtlUOY/3n0FBN7TCtLAzZZnTtC1ayYvapMV6IIwMw7RWKA0+OHyQSqeOgIpiTVuHe1mW4a3jpy8/S+omNaJG1hpFYBwv9OMbPm7QpiVJvgPvDd5FYgjrA0cqk4YEzcK8vGGXs6QF1cLYvzGPs6jN6wO7zQeSRKETqTBttluc81L9mkbsYvEukGeKEEaclU2mdx0ajbOQ55HgKiCXnIrRmFy2SApLaiBLE7ruRpqmEr+eAkmykGUbEqXJjCYgF/EQZ4o8ZVkCx/0BHwaUEmuxm3uUTlAqpS63RBW43jrKqhQ4r5KCi9R4A2g5FLvg0cR/jtrGlYmXKpJEkjDWBqx3RKRCGhFldyDgFotZzYYiFonrlFqU0WJQFqZfgiY1GW7pSBNPDBNlntC2wlpIE03XCZ9nu9kS8UQ1oZQGPMTvCvmMEOSFkxfZmiBy75HzEMNa15UtfNf1+DgLIL0opRamF7phoCgyEh1FJT9bNhuZuk+jXGQXN2JyTbEecrtR2BHLbKXK0Xdk2YY8L4keuvbK3d0dZVmul/yZYRi4u7vHOb/CqEWMkhhh2ZRlyTxMa+IrIy/FEDeOPXkuA42wDi6dXbBuxvvA5XLldHeg6zsKSnz0UgFbZpIEiiJjt9tQFFKzi1HR3jr6YabvJ+zsxY5tEk6nI33bUO0quq5jHkfy3MqW2wkIXarlKaDfNeDH44FpGhmmjqos8F4MXMZkK6wZ9ocdyzLirWO72WFnRwyw2+3wwTGOLVmWYJczzga8i2tVWa9wbanQHI9H2fItMoh01uGDWg8VGSEE9rud1FVCFPj8ZMnzisfHJ4ahR2t5JArEvVi16XKAuFwuwr0aZ0zbo7Rns5VUaYoiRhkkt23LYsd3ZlZVFGgduF5f8T7KICovWBbP7dpibU5VJVxvF/Z6JwderUmSuKZhLeCZZ3k5lmW5HtQhRIuzPYqCxXpSpbneZIO92YjtcLPZorVY6apNzZ/+8mcxQxYVp9OREALtzzduzZXdbkvTLLy+vnC6qwCRxBTr92IcBigVp7sdiRYjV1GkRLxE0I0Rvso0cz6fqcuaX/7iM95ZtpsKpSJGJQyLx1nH9XbDB8f9/T1ayUFjmmfGYSExCZvNjizLiDFSVTV9373zO80KtffekWYiZbieb3z48Elq2l7qwCEEyqpiXiZ2u927zVYpJRe8fuCwP+KDpx/69yRtnha8vZ5J05wPT08MfU+MkhRZFk+amfdqSFXVECTdnCTfbd5u5UrOcsEoc/qxwwdPRJgiRWaoqoq+Fz5VkRcYk1DVNUob3NIzTQPL+ozURMoqY7vZkReGvunXQ7RaZSs5IEKpqqoYxlEWDOPEbr9FA6zc3GHo32HBIYK1kaGXyrRJUrpWknx9P8pBL0mk9hQjRVESfCB4xBztHDpJGPoRrQOZUdR1Lsy7IM8I6+w6BNLM8ypDWizOSkrKLoHreSIrJuZlxtqZx6cjMVru7jfsdnt0hK7r6TuL94a6rnh4uufLl5/JMqn6HO8PKCWJgO12R9/3vL09s9vXDL3H6IXgGkJIqIqKEAO73YFlWVBa8flzyZ/+8heapqWscu7u71lc5NvwjWvTsN1uaZozb28v3N9vmJcexfr5HGQASlDs90cA2qYnSRBQeJRLhg+Bpu349vzCbrvnw4cHsS5XIt0yicFZyzxNNF1LjCdMatYzT840yWFW0it7kiRdU5Al/SDJqCQRPlrw8uevtOF6bfjpx6/88MMvqasK5xzD0NMNHXku78osz0izdOXXKrRKuN3ESJ4kwpv0QcRFbgmSWm97Nrsdx/1+RXKIsTPR8oxWSbIu6TRqPQOkmZz55lmexz4EtrstVbVhGCZutwaI7+e6NMnJ12ZHCJHD4SCH2DRlWaTeaxdP9ApTZCu7V1OXNWVe0DeDiEDKklvTUFXFWmsrVgGAJOVCjEQXJfVpZPlnl4VxEEmDUsnKV5M6o1tZrN55prnFZK98+HzHb/7hX7MsluulwTvP737zJA0Op/ny5Zkk0WS55qGs2OzKleWV8de//Yi3Ukn+T//5P/H7f/E7dvsdEc9i5/UyPXC9tqR5xoePJ6x1OKu4v3uibW7cbm9yPp+DGKldJM8UXdeyjDdMUrHZ3LOp9ui4JUlSfvnLX9I0t/d6dV2LnEQnIpoLAakFb6G3Iw+n+5UJB30nz82yFEbly8urDIWQ9+/zyze6dqaqqtWiW2DSOy7XZ263C/t9vjY1vpuhoyBqpp662uC9XWteCff3R87nC32f41yUy1lUXK4XjFbrO7KQ5b8TbvY8T3z48JHId762p+8HmlvH45MM0qRl0K/mbrVWzM16rr+t3OfA6XQCZKnWLz11XQnIf2WcZnlG13VoY9jvaxItn50YJBEqFWBHWT0gfGhPXW8gauwUUMDpeGAYBhENJmYdgGiGoaHpGoqikEUDMI49y+L49OkzdV1zudyYxhGlEkCEBfMizY5ECcU30fJnM44TdhEGmHPSUrDOcmuuqF2CwFG0BBB8ZLstaJsF7zsUmufnVobkk0NpSZT/5//dUlbw+Zc1n3+5YexylH+gzO/ledje8GFhsTNJooTp2vT0/cK3r3+BmJCkBq1YB5oGrTRVWfHx0x3bjWG7y1BqZBwCdoqM3cTl0vP4WPLv/u2/pmtnPn+653R/RCeeutJYP2GylG6YeXt74fn5gl0W7u4qGfalkRAVMWqm0dJ1I8bIoj3Gme3uwH53zzR6iiKnqh5YlhHrRuHKBc1+X5HnGzJjGLzHuZS+6yjLmuPhQNt2bLc7rBNGY5KmlGW9Gn1zsqykriHLZHCFEgFl6KKwRa3j9eUVZz1FkYoI5NOT2NdXczxKc3/3RFlXfPv2ZRUGFFRV9c4zK0vhSx4Ohhg9l8srQ99z2J9kSBYD87ogEMGjJ9HmPSk/jsM61K/J8kwqwLNIUXb7A8MwriGD7J17nueSmHZOmg/DMEj7S0m6zzt5JwpzWVhndf1Ekpj17iML1SSR1leSJO/LtnEc6foOpRKU1iRqoqrlLgyRvDDkmeHWdoTZsS9r8szQtwNEsViH4Nf3ZeTyNnO7XKmKgrvTHcngaJsBAriHyLdvP/KrX/6ath2lbtss7A4nttsNP3/5kTSNFFXxHiRQWu7Oy7JAlMFUmhm6fkQM5IEyJuSlIjEiE5umifP5wjw5nAtstxtOpzsCHW8vDX/+44VNvaVtAmka2Wykcn+7Wt5eznz4WLH7h5LtPmHoBoY+4KeEtEhBh3Xg6KXNQck4LizW0bUjioTdbks/TmhlICZs6oq6ztjuSp4eNySJZxh6UpsTbIKKBcvQcHm5UlYWu1j+1e9/R1HmzMtAoh0kkXnq2WwP/MNvf0VeZPyHf/8fZSk9jLRNj9ZaGJq7/SrZ6smyQvBaGq63M84FgtOrAGVknAZMotjtN4xDS5rWNLeBvn2DmDENjrfXeb2fvvDD51+syewtX758IU1zLucb948ZSZIyTD1ZWbwPi7M0w1pLlmV0Q4/REnxKTb6+LweWecYkUaRDtTCCv3175nIRycrL6xt3t/t1UCmtQ+cX8l6wAXmu13OQw7tADP9/kOAT42VCCBPW90zThdfLnwmxJTEnvjynlHlNktwBAqq2diYmZt0mC8tnmMb36aW86LUILWCtcMp/iHE11QozwjrR0DtnKfKCu7sHEokb4dwo1s3BEvxMWc8kiRH5QCLprhAAFYEFpRfa7kaRa7rujaEXcOMyLyzzRGIyUlOyLD3WtVT1kZcX4ec048BuX2GtDJnGcWRa5PdpEs1+V69Vmoi1YlBpby/Alqo6kacZLhoikdQkeDcyT6OkKUD+nQJi9EsjeXrDu5JIgtGREGa68Y3cVFjbMs0tWZ7grDyYY5SJfaJz4QEq4d/F6N8NvzG6NbmXoJRwShRxjb3KQM5Zh0qc8IecpSh20uU3RsDGdpYhYdDrUFAJA8Ha92k3SHJSLhAwjANZmhFDWLfuBu8t3gfKOlthzRN9P8hGcKsZhhYfHEprsiKFbsH7kqGTQyDrVzN4+fwEL0IPrTTWyiFPK7MmxkTN3nUNRaFY7IBJFSHoFeQ9sqm3lEUq5kuzpWtnIp5hHKjqisQktK3E2rfbDfVThdLw8tzgbYnRsj1QKuH55ZXDYc9mU60Ab/l3K4qCNBUmTlVVTMsCKzfFOo9JU3abLVmevNepJWVimKeBi/c8PNwTbeR0OuK8Z5omgg9irlpaQhTwdYyRoswlHfWdq6hThqGnbQfuDnfYRarbeZoxT5K4EsC9mJdjFNbdOI5sdztRt18aSUjohMPxKBKdjQCN52kEBCwrQ4J8NRDCw+MjWmdc3i60bcc8jQzDSF6klHVKUUjNrr2N8gD0cRXSyGDj/v5Bqm7zstZsM9m8ozFJoG2H92FknqV03Sh1Biffj8vlyjzNLMvMbr8jTRU/f/mZ7XbHdltjlwmNpGdijJhR2I7zNFNVJSaJpJmkbb4fPmSl6FHKYW2LtT1lscMukaHvV+5bTWoyhrHDhSiJiNTwdr6wqTYMg2cYOso8x9oJnSTvFUI3C7vTe0tCiV0is+t5eBB2hXPCgfhunHRu4XK9rGlNset9/fqFYRioqpLUpGISVtB2Z27XK5udXHacc/T9QIzhfbNaVcJwsU4SC4oNt9sNY450XS/1cm04n1/XCpDwVObZonVC27Y8PDyQpsJv04lE61/fzjw9fliTZIq2FQaUGLjBaEM/SEqnaa58/uEDINvvaZpXOK/wV6QCLZzGvMzYbnc0TUP0vIOfu06qwtvdluAdu/1e7IyT2Is39Ya2aaS+7sPKipk4v53ZbOS7GmNkmeXP4eHxAWst5/MFY1JJpSyW83yWd49SsqBCY5dAv3RY699TvCFEXl5eCO+cV/ms78otZZ5i3UTbNAyDoukaUlMRY+D8dn4HUk/TuMLiF9Isp84y7GxJtGIehrUma9ZnZMTPHr8Etpu9bPqnmbZryVa4sPdSmSiyFcHx5Y2ilG11DEG4c16eIV3TUhaG9FCR5wnd0OC9pOTnZUJp3j9T3gfSXJhxURs2mx1td5YkyuDp2onEBNIMmlvD1C/U9ZHd5gFVF7ilpCorPnz4uA5I5EJlUvN+sRCOoNjoptFhdGBzt3/HRHRtT5aVlGWJtQtvZ1nsZVlGojU///wT/TgLVNkk1HUFBKap4Xo9k+eSdJ/meeXeeSBhnuWCGEIAFeQSrxau1yu7/Y6hH3HOMc8zl/MbwTuqTUWSmDWNaGjahqcPHzH6n41q8v+/8PDwSIgyeG0aufSHENEqITWaeV4Yh4Fh7Lm724tZOHy3Gtp1ACh26SSV5Zn1jt1uNcR2I0RhP47jjHeRT58/EIIM84tTxTJ5Xl9ukiwzCW3XolArsy1jGHr6pqGsc6nAOcdsBTexPwgr9NtXAZMnWr7/yyLf4yLL1wSgQOcv5+tqYC/lWRBlwfy3v57XyptckpNEkAtZbrB2ou97lmXieruQFoWwgxu/DnPMarTTFEXFPC3s9nsigXkUwLxdHFpJY8AYGTaoqBmHQRitlaLvxC4ao6euEyITw7BgF7heerztOZ0e+J/+r/+Ob19f+PWvPnI4bjEmst0nWD+SpzXfXs78/PNPXK8t8zxx95Dh1rSunFk0bdOzzHK2CsGjdeDp8Z7D4ZFlFqFbmkrde7EDbTuw2aakiaRalXcEl1MVd8xz5NOnzxR5hVaJfO+miazMVy6iJzf5ahQWxuP1duPp8REbAgWyQImBNe3rMEasukWRkhd3lFW5Pu9STFpQlgW35gooynKz2m4XnF/WIbKw4Lq+xxhDcBHnI2VVYZKctu/RiZLLZSrp6WGFo+vMgJL2xDzPTG4GpdbPizAQp2lem0IVWifv/Lqua5nGmWIV+pkkY1gFT9frWWSC6jvjW9ApWivmZSFLpa7nvF0Fa8IAlKqvYx5nDgdJvYlUJ2GeJ0LQVHXFNEoTZ/SjVJDbyN3dI+M8MwxyFlIqcjzuSIwMRYJz5HlOluXvy4R5XtZ7ViDLClkoKkmvj/1IXYvsLNHCVlMKrF0kFaUF5ZFlmVhbF8+PP34lSzWPTwe2O0kJd83Ef/7PfyXPCrK0Jni/psu0pJCfe2JMmKbA44cMO3u+PT+TJTNZVkjSL1EkOqNpbljn1uZUgndynqvqSiRDSUEMmt1xR5FrorKUG+FX9v2CzxKCzSiKe1TwjN1Cc3nBe/jwdCLEBe9Hhj5gvcVeIsok/Pf/3e/5X/79P/Hy8spiZYDSND23242qKslykWJVZcXiLFmacr28YmcH0aC14dY0TJOIJpyHODuKBdrbG1PvIOZ8+9Ktn9EXfvnLXzBNM/v9gW/fvuCDx3eD4C6ilvOfNu/PdOfc+3/arpWzf1qg0LS3hiw5EBJFXmQkRnH58cLlcmUcJ97ON+7u7pinGaUMy2zp2o4sT0kSgLg2dzxJInfp3Bj2uz1tPzKNIyZLiUh1uyhqxkEkINnKqe37iabpyPKMeR5FSLhWZU3iadqWGCrSPEdpSUVP00iSGDEma7UuSRe8d8QI8zSTpRl5VpDn2XtgQxamy9r6s8zTSJJUNM2VGDeY1GBSqf1+D24URU6SaOEDak1RFnT9xDw7rpeO1CTyc1p5q7I0FgmHVlIbb5qBLC3WdKZhmmf6fqCqKs6Xs/x7GENR5Pyrf/WvpJr+9ryaqAvaTjBF+conFQyXLBOEBZkiYRdNCIoYpJVwOOwl6KMM89QSgqIsc15ev1HV8v9/e7a8xjP7Q4m3AQIUWcmvf33gr395ZhgmLhfICzFRhxAYlpE8Bn77D7/m+eUryzJhdM7t2pMXqQgzV+5v24g8ZLfdsNmUPDzcMc83xqnl7WKJ3uFdpCp2TIPjsHvk8eEzaZYLdsgHTqc9zk+y1I4BozPObc//8//1/+Dx6ZFmEFTRx493/P73v2GxA10nC+3m1pFlKdu1SXa7tURvGbuB61tDWWwFTzH0LMtCnucUVUU/yDN/GGbs7EiU49PHX6/vxoSH+yfSNKVtW5IkZbcTSdswjeyto+s7+r7DReH6C+cx53DYrclbEbeCYEOKQnE4HPBe7sKuW9jtNnjvuLu/p6i23G4d/SBhkd3uxNvbC84upJlhGEa2+5r9bodJjQRixl4WWn/nX3/3gC+4hWV0jNMLip5vL/+FcbpxutsxzS0tX+inNzax5su3P7Opj6um/oZd3PrwKGi7HqUkCaCUCB4iwoLTOJSfcV4eVgSzKqzlZXu9vpDlCcfDDrv0NENHnhU4P8iwbZjpe0tR3ijSnHkcCUHse8EJfDXqibZ7YRhuKFVjsrgeIB2bTYmzHdbO2MUz9gOvzz/xy1+XDF3LOIoJ03uxcJlUjJzDpSH4QJpo8iwVI26RsXRS6xjGlhjn1XaXkWiDdZ6gF9wiD8NIxKwQ6kRnIjUoNEU2kqcZSmvGqSH4EcXENFua9kJiJCXonSJqcH6WqH9wa+w05bDdsiyB4B2Z0etGWfr1dpaJ+zQHEi0cqBAjeZ4Q4sQwNFg7k2c1SpmVkTO9swlUlMGkC15EJit/T4qcYR2ciSE5yzNJ1WixsaVZxNvAOFqWRIZyzgXGwTGNjqr6HsmWWPJhX1FvJD0zjRalNGkmLwcZBse1Ny8f92mc3reiJtGkxvDl+Y2q1hyPBdYNaBVJjaa9XcnzknHq2W53IiiYJuZ5oqpLnJXD4bIaOF9f3/j49GE1t3nqun7fOFlrWZZprd6JKdqHKMmXYSRECFFR5AXL4lBreqLrOxlejRNFlkqMmZw8K/nrX/5GXW/59PmjpIWs1JrHcSZNM8qylCixj4BBkayJkoQsz7ncru9GYbvG/Yssx2hFfTgwjGIFc4t7Z0QKK0yzTAuRwP6wJ0kSvn79SprmFHlKjCurMbg1DSiD30QJXLdtWqZp5v7uDq1EPuAc2NkJ70gZirIkyzR65Xo03ZW2vVHk9Xr401Rr4kU4BxnCSUqY5oVdUTD0Uned5klqnxGReigRuZgkZZ7EYJeajLKomSepPFfljq4biVHSwKw8qmWxLJOj7ya0kgtKVmbMVvTsPsjQWIZsDusmYlSYNK4vuwSTSnLLupmub4kIr8vaBZ3LRUvSGmCSBB88Js2Ec+S9iBTKYmXoKMZ+lurT8YD3kl5TTlIx356/cTwcCNG9p3QeHu7I84Jx3pCmYugsiozL5YLWhjyv34eJiU5IM/mzjTGu9akCZ1vm2XE47AlBE5nX9OdACLIRvZzPfP70mclOHI87lkXq48KZs+sAzq/pXkVVV9yvbLfEGM7nN5G1RIDVhxoUdbXDWrcmC2WAk+iUuq75boKVofayfm4VBM3QT0zDQp6WbDd7vGve0zveWw6HA3aeSdOE67Wl6xq0Tthtd3S9cLwEHn1gs9mgdMTOcrgoSzkE+HV5obQcnL1bUCS4eeF6vXE6ntDoNQGusc6TZwXEmSIv31mqm82WsZ+YvaXIMqoiR6nvKAtWttOG3e7A0I8rE8ZgTM7pdMQYwzwv5JlUwaKPLM6tchKLThKOxzv6fmCeZdiNslxvDcv34X4hF+4sy7jdOrI0p6pSvv78hTyvZCiKVH72+xNE/54egsgw9vLetJLYUEiFXykoy3LlYUnCusgy9oc9Wa5JDCsofCQvIM1yAWAPkOhKKqyj53e//S060Qz9uFb0BZacZQnLYlcxwGoptV74aMcTzsv36Hvy/PnlmdPxSIyrmGHOKUNGlqVM80KWW/KioCxyXp5fMImhKDZSh50mYYoWIuvxznG73jA6JTFyidrv9syzXKbGSThCzkuK9Xa5kD8+rsuUFBc80ziSrxeURAsrxlph0xVlwf6wl8R0knG9XNcL08rpW2QoVZQl4ziyqTeSxrceRUJdbySxZCLb7ZYQItdrg1LfL93CPnY2sNvu6bp+TUooLpcz5Zr4riphGVk3MvQTh/SESRKmaWEcb0zzyMP9aeVeWpxixWoYslzS3GipxaQmYxodeaqYF4edF0ExTLMkF3XEpIayKqnKmre3N+HguYXtdkNqDL0WwLWwTyWhCoE0kwr26XQiTXPhRPkTSZJi0pTHxyc2db0uEkrcyhqOa3poipauuVFVNQ8PD1yvV9qVAejXJdr5fME5z6+Tj0yzJDWMKfGLIU9PvF3PTJljWQbqsuLT3ZbFtsToGYeBiGMZHbttzv/4737P//of/kjTdAw9NNeO7U6WJ5uNnCdu14Ysk/e2SeB2OxODMBqTNMWvA8qyEqZu1wvr9+u3KzqUtM2N5vZXrA1s6h0Pj0+AnKdTk9I0DVkmw6N+GNluNyQmYbfdrsnxwLiKn6q8Zv0ac7veON3tybKUzz98YpxGvnz5xvPzKy5E7k4FRZHz9uZYFktZF8yTJdF+NTb7lcOVUuSF8Ij3R7KiEv5WlDNUUWRU5ZZpdhzvjyJqmWZ80O+ptxAGrHNUmw1dN9L1A2mWklQyYHDOr6m870wlqGrhYn8/EzQ3EVA469g93tP1NxHJrcOwEL1gIowkGbum53K9kqYpatFYK9/bLDEEa9clSIJzM9udLBJNIv/sNDOYTPPphw80157r9UJRbCjymtvtSr0phVM8tBRFzvF4QCu9LgQWTqcjbdexO+z/G46g43a9UlUbqqpmWUQ6NC8jZVUBkbt7SYC2TbcmaieqKqOqNuR5StP2ZHnKn//0N/JCuGQaw8uz4C6K0qATSDNFnhsOJ2E6v70MbDcFMRTc3z/y9jzj3MD/8D/8W15en3l9fSXPyzXVVq026Yy+mzm/3SQMEDWPT3dsdhuca4kqcrvdGLoJZwNVGZlGz2F/5HT/gdSksgQ0muNdTdef0abGWoftDf/r//qfOF9b9qctbdvx6fM9//APv+Dufs/L8wt5LlgNpeB4OK58t0g/dIzDyOXcsd0ecDZybRpZ2GlFvZVlRAyCxElUzuP9PampmEbHp4+fEVmgpISNybie30hMgk4MwzTQDS1lXa2L4cBhvxUG2Ti+3x9k0FOR1SnLPNP2N2E+R89mu+EXv/glXTeKXItUuH63CzpVWOfkjLLfkhcZ8zzRtDeGQWRUh80OkIVPXM9bdV0xjoJMqaqS66WR94hOuF5vPDw8rIsqGVZ4v1CXGzHTtwjGakWqyDtHzMFiTBZG+7JIcEAnkbs7GYI7txCj51t3oayylYvt3rnMXd9S1QWHg1QsnZOzoIhKAlE77OKZ1yVF17X03UhZFjTtzDxBVUWsiyTfBZIeolIrUx4SnWC9iHGWaRbuZm64Nmf2uz3n82VtVQjGQUSUiFBrd+Dt/EzTdizWSurt6YB3rAIzERqFeVk/DxKwEQsx3BrhG5ok59e/2dPceoZh4tuXK5tNRV1tqapcavfDwjAId96kM4ud6XuHUoGff+wJQWH0lrIu6G8OnUA/tCgNbddiUrM2fgpUqQlBM/TCn7bWMi8DKinphgtVlXL/eGCZLM/fOuwcMCZidEbfvbKptmxqubuUVbXeaR1VneN84Hzu+Z///X/meuu53Cx5ZdYKuQQ3vj+Lj8eT3JmMMLTT0qCUVJ9DgDyLQIL3kTwrqOsNMcSVZ51wvbUcD3u2uw1Pjx8p8w23S0+eyXvser0SY+QPf/gnzGpR3+72K3O9kxmB0VhvyYxw0r13JEku4Q0U3nuKssIulrIsSVPD4iIqSbi2LT5YpnFmmGaavuH82hKCNI+MSag3xdrka0iUWs/lIggTHJr+O6dz/ycM+BLtCaGj7f5ClgZiHEh0JHq52CZacWl/pKxLfvz2HyHm/OpXv6Mbnokh44fPv+f1fBEOH6ybr7gO+AKpSUgSy9T/jI8DMWq29e8k7jrLxrTrX1HDwt3+xMhA130j2T1yvb0yzz0mTUnTkqG7UpcCFNVKc9jnzLMcsrIisCxnpqknNQGtZKMtGy5JAizzOsyZLDHM2PkKcd2YIRwJtJEDhoncHe/o+57LRcQfu70wuwiRiPC/mvZMWZTvybXgLSpx9L2AuXWiafuBu9Mdzos1WI0JRT6TpTPOtpLM8pbb9cp+v1uTjtB2PYnW5IVCRSXcIjRumUlqS54LH0dpg17Zg2niaZsXFLLhDzEnTeo1FaNQamGZWgjLyi5YpEoY5VIWrcDQnfPrZtcLfFRFqirFuhmlHDFqEqPwwePWCnaInlSBm2eBi+YFdu4IOoriXCdkWUlVbfDOkaR65Tic0VRMU8Y0a/JCgKBSxY3vFT8QxqMkBMW8G0Nkt9syjDvapqHvBJAblAwH+37AWr+C6Ke1quCpqpws3/L6eqFpriQme5cudH1HUeQs08jxuJdN+mJRWtN1Hb/+zW9ZFuEfCoNvZl4s1WaDThJuTSuJ1KKQi3At/IaxH7DW0XVXTHbCuUhZ1aC+A2pnjseDcAldxvV6Y7PdopTmcnmlKGqGfsJbj12sbAxMQmZSylPJMFiuV9lcxCgVwr7v2W33pKmwpUIIa2Q/4qPneDqSF2JLc87KS9EKP+Tt9cwwDOx3B1Kd4EPAucDzyxfyrMCkGdYHwjgzzSNlUdMPg1RYC7FRhehY5lFAxPNIva2pq907c8N7izFmfVAuKKXZ7fYoFekaMXN7B/r7xh4Zqo7jSF2V9N3AsjimYaY8VhyOp/VS8oX9/sg8O26Xjvv7I2mmhJG52VDmJS8vX3DWkmc7YpSq/rSq3L2Xn7kM72VLXlYF0xhItGGzqSSVESKJURR5TVoY3s6v5PkkuACTcTgdhckXPZHA4hwmlfpcCFKLNEZj6loMts7TdB39KNv6eVlQEc6XN+7ujuQm5ze/+RVdN/D16zfO51ec93zafZLP7LIQonBbnBNWT5YGtA7EoCUJaOH8duXu7gGTZIzjKBzIIEbNoiiAhA9PT9zebpLEzGVTqbXCR4dOK/Z7GR7ECHW1k2phEMZMWdYozZpQSJkXuUzKz8tSljlplrDdVsJiKwou55u8dIsCnQi/dRxH2qbFrIbAru2FA+ZmNnWGQrNYy/39PZtNRWYMzouZsCwyfvObX3E53zifz9zfP/H2dpZkxjTR9w1parg77VFKfuZ9P3A47hmngcfHe9qmIzjHy+uF7fZIVWwZh/kd0qvQnI73TOOMtR2Xy4XDYUdVVyx2JsZAVQsw+3o9E2KgrkqckyGCNpIWD16Snssysd/vOBwOtG0rEpCmIc/ztcqsUVqjjRbWKpIOdD6wPxwJ3uP9jXmypGm61tMs//rf/Euut05SpybB5JJmTVJNmmuWeVjZPRvSPGO2E+OUorRjnAa0NmRZIWD9EDAmXTltM303UBQbyjyS5ophilgXyPKcxcpmnZDz+tKhfMbPP75yzmesDdzfLWw2wvjsuo4kkXRunpdkqbDGqkqEIHf3d3JJUjDOM+M8Y+1mrSdbXl6feXy8x5jI508fud5ufPvylbfXN6wPPD19QK2psZCAyTXD6IjBUZUJyywCE2OE13J+PfP5hx/wTkDii7VENIfDlkRnxKhI05zbpWEahd+klCL6sMoWNNt6Q9u0MlzZZ0y91Pu6oacsahJjVhthtkqsrCTWZrvWmfQ6wO7ZbrZMk10HKHvM+s61i2ecBDD+naE0zzObUoZdiVpFZ9Hz8PAktatxhhgocsPd/YHjUfH2esGYnE295e3twv3pgRgdXdsK92i7wXlHjIrm2vL49Mj11nA4HLhdroz9wPXWYZJUGGaLnEHmaaLe1BiTUOQlbSs1nsvlzOnuQFRRLIXBsdnVeO/oBjnXVVWFXRyzHUEpqsqTJtmaMJ7Z7Xbc398TpIsoHMNGvjdTPwi3VSvqWv75wzBIPchL8yTN0pXX6kSwM8yM0xXnEvLUE6Nhv93z8cNHyqJYIfMFdVWQLDM+KJxPmBbH//I//2dCiKSFYRhmnj4c+e1vP/D09Mi3569rmrInTTM29Y4sy7k1Z3zwNE3H+dysJnjH7SbphKcPJ7S2pJkiwTCNFjt1/OLzb1lm1ot7Dci55YcffuAPf/gv3JqWspBn8NCLEfY78Hy73cgCarFyDiMlMakA550XoVc/i4xOK3SCpOBuHT/++NOKWZB38Di3FOUDZZ5QbUqUVmvyeFyT+AV3d3e4oHh9PUvF18iS83sCTREpC0lXfvnyRer50wzKvzOkHx6eeH55oR968ixdP1fCTlJKk+cZVSXoC+/l3SsSpZIiz9ltJa1elgUxroMGJU2QfuhkcNA0sgxLZYg5TcIEds5SHQrGaWKe/XuiNPLEbrcTK3HfU4RIXRc4F0l0yuWtI3ipWCdJyuPDB3yYSW8yTPjOeJ1nsQFvN3uaVlApzluRGi3CptVK4WNYz5vTyueV4dQ4TtI0MimbjQz8nQ90Xcv9w57DqebLz88Mw0iMFVWZk5Vw1CIhGwfLPAkDu28v6+La0Q8WpS6UeU1zSyAaEqP59vx1RWjYVcggldSuF9NymnpC1DIwY6YoFSHObLYlp/uaaXS8vDQEb2jMgLMOZw36vqD3luv5jcfHB4pNSl7lYqiOipfnN/72tzd81Ey2JTGyrL/dGo7HmhAtRVmgleG7DEXSwo6y2KAOKSFIYCQSqctalq4x4Kxc+BvfUxYpv/7tZ3bVnr63xCDX7OfnZ6y1/Nf/+l9RiUGblLwUjEbbNtJaI+Ldgq9KnHXkeUKRZUTk5yNcYkmn9d1EagzD0K8LNEvf9dyantu1xzn5e4oi47itCWGSxD2Boe9xbsFoTZ4VhJCgTcLL6zfSvCDPqzWskeJ9XJNyira9MY1i7/ZecCTfmzRaGaxf6Pue9iahBO8Fw6QQHNYyj2QmEZ60McITNAllWTD0I23bMU2WzaZe226Oz6dP1HXN+XyW2nmU5WSMrHfMSJaXTKvoocgLTJJK5XRZyPMUk0hjw7kBDYQAdg4kOnn/HqRrcy34QFVVOOvRKojQKQaqSoaMRZmx3W94fnljWizZsvD7f/Ev+Pmnn9kfdiJDtFbOS5P8Xq/XjseHkiwVdIT3kWg9GmkR+BBRMTCMA10LZZGQFynj2LLfJWx3FbdbK6KdIHzIotKcTh/ox25FVMjP6/V5kl9PgzEZfSPJvNeXM0blGKeZ5oHEiIdgHIU3Wtdbfvr5b4Bw+WL0fNhVbHYFv/jlHSIh8+t5SWGXHEVGexvpulceH+/Z7x44XxqZ3WQFt9soQrUykmg5F53uDrig8UHhXWS3O3K5fOXHv/3EvAwyLDNiNnbOs9vvuFw6liUSg3BC49riMmlCoXK6vsc7+fMTcU/AB4tSGXmhSNPAMN5YFsvlfOV26/jw4SOn0x3/9Y9/pK5qNmnKMk0SfFjRBc47xm4E5GyWJHK/K/KSaVlITU5dCSdzsYLVisozdB1JogjBYe2IczOJ0bSXHqLgBrI0pW8HpqVnsyup65wQw2r1FT7m3/vX35/go2FazljXrZ1uRwiOED1aGzG+pQHrOobhwuv5TF55rB/IzJafvvwBH3K0liGBFEEVWa7XFIhj9i2LvbHYG+gEkxzI8h3D1JClCagRF2b64RtaV/TjmTSFy/Ub0zxSVSXOR3xYaNo3tJaai/NbFteA8mAl2RSiAMu9d9R1TQieYZBtX1lKvD1Gyzh1vL09syxS81gWz+Vypawe6bueGCPBiTAkIhe//aGm7+WA1LbdOgRYmJeOZbmSaM88dmiVMk3yw02ShNPxBMgFUmvhTjknXK7FTgQvdqN5WhiykaLM1gqkkrjnMEoLORogwblA3zds6g3By4DB+wWVyLbRuZFl6WW7jwW1XRlJkSTxZFkiP4csY1paily4K6kOmJw1ydOSpik6UfggcNjEKFwQoYMPmuATlDJS7wWMBmMiiRGAtooJSwzYxUmaoZ/59OkjWa7phxeqVADGyZrQGMcglRntWeaFssrXuLGYe//Z0iSxW/nvCU3zfQC7xwcZzBSFxL0PhxPWLlwu5zUdIOwK2Yy1JImiH1r2+zsUcT1sNyj2UnvMU/q+FStOUa2pIhnuTeOEAqqqQmu3Wn3kggZhTXEJD21T74Tr6ANZlmOSdK2BCh9gWRaOxwNJovn27ZXvNuq31zN5LofzsigIXkDwAu0eqU2JXWay2qCiMJCkjhuZp4kiK/ny85dVnODQSSTPDUVZkGYZJkneI/sP93fy+zMpLy8X0rQgUSl2tsQQUFo2l09Pnwg+8nZ+BZWw3YpiHCRGH2MkBMf1esG6hbqWg2RVbd5rl8aYdQg5czwepZrXD+R5Qdu0ZCtDKkkMYy8Xwl1d07YdwzCzqTdrlX6ibXqpGVixBD89feJ8vhEja5XGsixeOIoqiLHqZFAmwQXHtEwkPqyDTY1SKcFLrd7aQAyKcRwhLoQgaddlsvT9xMPjHSj//pxZloVlmXl6fJLUjZMBpopiA1usCBbsspAaMfkprRkXT5KINGYYhX+YZRn5ylhTIdI0LT7MbA9bjBHuaJ7nzE3Ln/74Z7Y7ubj1w8QwNpQ1VKUhzfL1zz1jGqVWWJaVwKYbMYUVhdiKY1A460iN1N8PhxOvr2+0bfMOVs5LGSRud3sulxtt01AVq71wkUtRDIqyOpLnOcMwrIN5eZ5stxuqqsKkUp+vNwfGcUAnijRN363Pt9uVNM3W2nvBOAob1aQJ+221SjcG+q7ncrnw8cMT8zTRtT3eeXa7Gms9p7sjb68NXTswDgufP31id6h5fo4kiRijp1GGsmJarDlfziQmYV4HSZKGyXBWQOxVWYiQwQemsUNkIlsSrbk1DT46dvutCDSsDO7ruuD5+RVr/fvBe1oGST4v7l0UEYIMlHa7HV03SNJQQd8vLLMcUCUhU9F1w/vnW4ZCgTwrURjS1OC85enjR06ne/7xX/wjf/7Tf+Ht/ML+IAZgMeNGQIaiyyJJyO32RERwACJNiWy3OyZmxrFj0cLQ1UZTbyqUMvRdzx/+8Ee57BY5n3/4QNNcOJ0OPH9r6NuRRGU8Pf5A305kWYkMKD0xRu7vH/nbTz9xvYnxPEQYhnFN8QlfqyxLxKY7SpU0K0hMSl2JlbBpWqwbOBx3qzk2Y7/fc2s6vvz8jd2uWp81PcyOqtZUVSrsMSWJrq5rWRbLcXcUYdi8yCKgMMyzmOZVKn++82S5v3vgx7/9jTQz5HmP944sT5mmmarecLu1tNcbxboInCbhN+VZkNpokryzKY2RX7csK8pCMBFdJwmZcRrezzW3243Hx3upM5uMPC+lQWEdwzgCgeJUAsIia26NSLAQJtf3qtL+sGO7LZkmx+F44HrueX29ME0zHz9+IDGy3Egzg9YJfrE469lu92w2e86XK34Fy8s7qkRrSdV3Y4/3nu1u835RXGapP+73R4aho2kaqk3B3d0Ra68sVtg9m03Ft+dvDMPEbrchNTnTPKysOlkOaW3kAtSPnE5HNvWWeV6o61qQMEoSy2maolWkKCqmaWaZHdPsUMmynskS9vsDMUSiT3j+umCtYlOn8sx5iFSFiGFut4YsTUWYVuaEkDBOnr/+15/50x9fSUxKVsj5N7K2HrTYQDebLUoL8Nw5sY1rnVCVFTHANK6oFSLbbS0VTRtJilTYmMxkWcq//Ff/QFlsGftIakrqaicJemv5p3/6g9T6TU6SpLy8fqVpWjFh4snzlHT9vGi9ENw/y/GWZeG43zPPIypIpc6t7+/FeawLK6w+ELynyEv2x5JxaNnujpSVDFPkUl4yDBObupCltk7XtI7leNjRtqOweFF8e/kGIaFpRzF9RxiGiSxLwXvqSi7/mSmpa5EN4KWVkCaGqiwxa139sD/R9R3ehZX79J29WzJOHYfjlqLImWcZbg6jWEHv7g5orcSQWRRM42p8n0a0XplqUfH29opWhg8fPrOpN/TdwPl8ZlksVfVIXZdczrdVZOAYh5F5lDPA16/fQDmcmzmdjivzWvA7v/zlr9ntDpg05dvLV4LzuCUwTf0qsNPc3d3z+vrKMAxolTAvE1ppxnFZa+rC7DQmRX0/syBDb5MYIorgpeKcaIUuBPETYkQn8Pi04+2lo+s8KBF/DI1mMXB5HcizgsRkhCiD0aoqeX19e0f1GGPWIQ5UdUpZGT798CQJKmtRytJ10Fw8weXk2Ya+H7hcGkIwZElNDJ79/p7d9o6u6SBZyDKIMUEnCf/yX/4DL29XsiKj2mRcr898+/rKNDXCpis22EXSQWVZME+ecXRkWVzrstIG2tQVbdeLNCcG2rahKA3HY83xtAU1sdnfcWuv9IPldu1omp5f/OKXfP78A//bf/zfOZzuCU4wIFVVi8E6wNDJu4koidqwtnzs7Dmd7iRhJ3EY0tTQ31p0ArOdxQ7rJYzR3FpSk4GP9Cl4BpR21JsCo5UMCXvP+XJhu63kcy8wb6o0IVqRfjkXGIaWzWbL589PdN3I+TxiXaCsRaa4LBqVGJZe3jFtJ4v9JJGGhlaKRGtpo3hZVscY+fb1G7v9jnqzYVnm9dz6z+KMsizXJJPicr4yTvL9ykzK5XJGacEPjcPAMDgSldG3E2Z/WPl76xtL63WBY9Banqtpavgu8Pz+ewvBk+UZMcK4tqqkBSFpyLu7e6yVO5osjQVXc7lemKaR0+nA29vbOgwDrRPqqsZ7y7cv38jLCp3oFeMhw0S9SicFQwZt1xF8hk6gawecFTagUrA/1lJxN4rNtqRrGz79sON4l+K944fPn/k//tPP/PRTg9EGZw3nV8vt2rDfHqg3JafTAaUjem0U3m4tSmm+fPlKmmqUDqswJOfjpweOxx1fv36jaXvqcoNuc/765xeUrfjNrz4S/ZV5ctxuPfP4Z9LUUG8qliUSvMPanrxUBDxDP/LrX/2a093ANDtccLydnxmHmbe3Cw+PRw6HPT/9+IxWOUTNZmNYZsXry40PH++pqoyu7/j29Y0ir/ExkOVArld+dcnd3Z7T3ZZNXQq/ferJC/j65RvNdUbFlDQtuL9/4NvzC857EXbkOR8/fqLrezRijh/swPUisrk8zzEmZehGiqykrmqmWdBJPoh5eFwG5nlmv98SSs/5Jpxyk5TEoNBka2MpcNgd8SonTeWelWcZSsM0LZj07x7P/f0DvrZ/Jkkl4eZ0IM8NSstgSoyAcGteWOzCODc4N3C9vuD8RJr2XM5XiuKe090Tzs6YVMyFVblhHGY225xp6vFxJOoZ5xLa/meOeWQYnhmUIzJil5mvz3/ChzusnWi6N4axwcdIbgp0iFwubxhz//4gud2uzPMo+noEWMt6UPkOSU+ShHmSDZq1Ao7f7beSXkg6sqzg1pwZx4W6rnDOr1XQiLViRxLZg8gHIpFuaEjTHK1TUiO2waY9M01S8Twe92sCLoL1KC/GvDTNxdoWpfK6LJbm1mCd1EOnaaHebvBeLI1FUdI0FoViu9kxTwvL4hhe37i73zLOLfMYhFUWI1mhxHYcLSEszEuP1hnGOHmAqwTnLE17Xgd2ApMPmWxxyrLA+8A49cQw4lzCZlNhl5EY15eFn0kSiUPjc1CSJjFGY3SCTiSJ5qwwHcdpwLtAUW0IwTPNI9aLRjqqkXojiRi7dNTVx/eE1LgMK78xwbkF7xdCjCyLpa6FRTPP8ucR1uFM3zlSU6JUxOrAHK1UYEyC1gnTPPHD/eMKzRyJ0ZMYxf3DHXYJHE8HinJLexP+mPMLWZ6uQ7kUnWg2217XTRgAAQAASURBVB23mwygBHo7iw1zse+XCfm9TSzL8s7g8MG/M/PG0a8pxO+SE8tmW9G23XtCcZ6lokvU7/+8t/MZk0jSY5oGfv/7f2S329A1Yh/UiebutGOaLJdzw2ZzoGl67u8eefrwwOXyymJHyiqXGqjzuMXz+PCB6+Wv1BsZBt6uLc4qQKC84zhKkk1ppEKrV3B6+c54qlRJlkpkX6DnAsf33qOUYZpmmqah3shmbZ5nbreGh4d7vA8SHb+/Zxxlw+OcpR96ijyn3mylatRLdcFaAcyKeVRTlhuKMgfg7v6J4+mBjx9v/PjTn8nyRKox7Q2PxdqBzCR0XYNzC3mxIcTIPA30fUueF+8geGvtP3PQ0nyVMRTYWYlS3Wu6thdpwnHL6/nrOpjPQAWmeRCZg5Eo/n77gW2958vXv1EUmpmFED1lXUKUempZFpL+UQlKS7IzS1OO+70kkrXYztuupd7m2FADkbaZIEoN3yQZD48nxvHGdn+krEuCcyzWYtKcfhjYpuk7R2mzrYW3cdxzuw5kac7QD3z7+pU83fD68sbxtF9TZw6TSZpPmFIJd3dPYln1XhJQer10rUD74+FE1/fM00RqpG53uZxBRZIE7u6OiDHQ0fUtSaK5uz/Kwa8XrlPX9eRpzjzOeAWgVsHAyIenT3z6/MQ8z7y+vjJNE9vtRsyE/YUYU8Zpws5S7/3y5Su3Nmeee+7uT/JnlqbEqHl6/LgOJBxv5zNFXtFru4pSFKfTabUmapZFkrLWei6XG8YY7u/vOB6PFEVKWZQkKlkrgFeqqn4XHyglqaIQc6wXecF+v0cp/Z4kbNtuZd3J0OJw3BGCxVp5b4SNoihK5sXLMCF+RynEtVo/kOYp58sr49hxvbxKYlIfhZczD5TVBlRguyasuq4R1iKQZynWGrLssCZOA6nJKIoKtzJZVdAicckSfDAYXVBXhiz7/t7NuF5a9rstu/2Op4ePbOsDbTWx3Rwk+dENXM5nea6NE3lWQoTL+cww9iRrdfX78zVNU2KUZ6c8Q2WZeDocGIYbJhHDXj80bLZiw5ztwjQ5pkksyGVRszsWTHPDdn8gzVPsLKyfsqrxIWLylMtVcBkiPwnUhz2324BG07QtX3/+Rp7VvJ0vfHh6wi6eZTUNB5AUns447MX26r0j+kBmMoqVW6u0YrPZMU4j8yxpyXmydO2LcHWi53Q6SNLEOdq2WYfGW46nI9PoKMuE27UlMzm5ybFO3j+ZSWluLZvNjqcPDxR5Qdd2vL2+cTgcJA1LXNPLC8M44qZIiIEff/yZPE+wfuaY79b0t1qZOx+pqpoPTx/59vyNoijpmmF93msOxyPOesZpksRcELZTMwmEvSwrHh7uJOlfiJXxcNgzjiPntwt5Xq0LTeFa5UUu7Md1GF6WMkiUsx68vb2trCYx1pZVyf6wW/mNltutwTkZ8plUGhhpmoqAwzmWRc4t43RAs6HMUl6+nXHeUuQbsqTgtb+w3W7IsoLL5UySWrI8IcaEqkz55a/uaZqZoszYHzdcb9/4+vVnxqkVLlm1wTsRe9T1ltt1Yho8OonEqNYzqqesKmLsGYYe58KK49CkZqKqDdpMVJual5dnVKz49vWFGPW7pOZ2azid7uiaBo1gNeS8KVW7sixXUR1kiVjN9/sSY8y6lIREGa7XC0pH+qmnW9+9za3jx799Jc9SHu5PDKlm8QPe7eiHfmVsO/phwoWANoIoiUpzPBzJi5RplsTy5SJV2LLKmMcoLFSCLIOtoF8W6xhHy+vLWVjUSAMhNeYdrfJdxjZNE5fzV/bHAzqRAeWyuHfpRpalPD4+Snr0LBVpk8rFuut7drstEQWrpIEYKLKKsiq43RqqSgRN4zjJ4j/KwvN71frW3DCpFhxCO4FSZGmOd2JTN2lKRKFTxfV2JV0xH8aY1aR64HI+M69iJeHaavZ7ef7ebpJwt9au/CmNMgn7/R5YWdXBr//edpWBSErSu8j93W7lDmpiLLFu4XgqMEaYXZttwY9/SfmP/9uLYJasprkFlrklS0rqTcV+/89LWpQgHOpqw9evL+z2OZ9+OFKWmqKCu/sdWZby889fGQdHnhZoFfn5x4axg3/zb35L8M/EA4zDzJ//9FeM0TybhL4dCcpLylJb+f5HzdPjPTrRjPNM33dcLy11bbh/2PDwcM/b+cI8ewkYIMOgtmn48PHEh48fuF5bfvrxGVREacfukJAXJfv9ge1GJARZrtnvt0xLI0PJ/sb1bcH7hJ9//sLj4yOHw0numnZhu6tJ03v+OvyVRCdr6KBdWXWTCK1ipMy/o0Q8RtdYtzAvjsvlzN39iaqWu2heSLUz0QXeRewyYdKKw+6eJJHlYFVka1hFkshiW97TDcL+HMaBZVqwK+YiMXB32pHnGT4s9H+7cDo9UFUSYLlcv9ENct/XSlLBX79+5e7hjs2mJFGKrm3Xe7OhaVo29ZaqrgkxCJcuVbhpgqiYZ0eRC399Xmasc1jn3o3DRZFSFOnKdI/0/cw4OubRCdO6H1CAc5GQxnX5JQz/GHlvdUlaVySQhLhynhcSI+c5SUwqfIhY51Fac3//wDTNjKOl6zrSVPPly8/89re/Zpwmuq4TRI5mDZNYnBOR1NOHj5zPFxHIGEVUfkW1gMkURZ4yLTM+iASTEGnaliLPSJKMw6EmRr0ueAzH05a8dNw9yPD8p78+03UjaSYtPm81/exQKhXM1Thxu10o6gyTJlg7CQMbWXreP244nAo2m5SIxaRxvTckqJgQg2GxChUlnZnnFUUx87vf3fO3v/0N0DRNx89fvvL6cibPM9JMY+3AYkeSJOHu/p7LteHa9Mx2wfmJEFnlYRPLUrDdVsSQcT63xBj48OEeky2c7gqqquQp2XI6bXl9a0jTjKou2W0luGDdQpqlvDz/zDJvpVEUJFUcvGW/P7DMkfPbGa0VHz585E9/+TNiRzek6UlQFMAw9u+m5jSVhXxRZOs7UeYDSVIwDAPTNDBMPbMb2e83YiMPjs2mIk9Lzm8dP3z6wLdvF6lAl4au7zmcNmvCVLiGzjlh7Gb+7x3P/f0Dvr5vKaoo0dbgmZcZk2Srcn1NlAwNixtIkkiRi4XUOQdR+vK2feH+YS+MBRaa5oJJPtLcWopiz7xcMZkm2AQ/O6bxlbLMmaYL1gr3LXr5YYxzjnUzOonsdzuubQMKTJqx2W5AQVWLPa4fe6ydVujvjaZrydekxXf4uiSlMm7XZjURlSzzjHOKTb3nerlyuzYcT3diWOkG0vWBoVRC8J4sLajqmsu1paqNpBLniculJXjF8/MrDw/3vL6dhaGxvnBZa7+pSTkdHxjHiYf7J8axp+u69UAhk/+yKEhNSVmUTMsIJDRtR6INWuec367/zaXGYsyRaRoY55mYyDYykBKDJdFBzGBxkchpHLHWk2cbpkl+jXGUOmSapoToiFisE5sjTMCCs4roC/I0w+hI016JcYHUoFBkmSFZrTNSLbqx3aaYVIyus5Xh2veqESoI6yEtZAM5WcoyQJQtttTL4nqZg2kWK67SEKNw0Hxw64tNNu8xeIIPdH2HSWu8h3pbsN3WxABt03K7XQgx8nD/gDGGPE+FlVeIvc8uC2Uh5r9x6Kmqmj/+8Y88Pd3TNj2osHL4Ilma07UDllVaIJIniFDkBXVd0w8dIU2xFoqi4Hi8I9EJJtG8vZ0JwVLVsrVKTLIKKVL2h+1apdZycZ8tfTe+pzaqquLt9co0LaRpRpIkDP3A9dqRZWatsEkEWyeGb8+v9O1IXckA7HK5sNlKMsSHwDINfP70Sw7bI+PdyLU5U2+2TKOwhoqVrdR1vVx4tWaaFvrhxjxbsiwVplCqSBLNbrOFwGozZLWmDhBhs9myLAaTih23KHLy/PH9cKuUZp7nFfYcKcuCJKlBQXMTJlySJBiTMU49i3WysSkrhn4Ss5GSqH5Z5my3Nff3B6ZlwhjFOGrqusRa2FTVymRYyNIUYzTef5eHCCMuyyqcEwupdx6dCE9C4vgejVixmvZGlsvQapkXqqICPPM04ax8NlUi26YPTz9gLXz9+o3Xl2fqjaGoBNbtbcowtlg3E0OkKAv59apKnsOZITEJPkSen1/RSaTve6Z5oW06Xl9a2rYlyzMeHh4ZBhlqeBel+qjWCkrbypBJQ9e3GGPYZBvSRGPdzDxPnM83ijyjKBOC9ZT1hrwo0UlCtakFfLzIoGHoJw6HI0M/UFeSBBYwsgy8p2nk9eVndnsxJE/jRASKQrbYdZ1zOO75+aeveBc4Hu5xznJ+u/D04UFEQmuNqHczh8MOtKdpG5JEapLX643dbsPpdGC3P+D9hcvlQpoZttstb+dWLs3ekmas74GCokq53W5YO8vzJ0hNe5nFyGVM+s6y2e/3xBi4XM4iMLhcyDKRx5SlVEgl4TgxTgtZdi+AfyvJuNtt4Pnbj2gN+32N2deUZUXTXkhTgd/fxobrRarT4wptf3h4oOtauq4HxMCrVwbo9Xqjrj37/Q5oha/YDwz9yMPDia/ffuR0v6EqDcZEXl6eidEBAh1/uD8yjBObzZaoJL0clacoMrybaZse5y3OzWta0TNOgyS4rbDSTFaQJSlploKHaqMZBqkFD8NCog1p6jFmQCeQl4q8CPz88xnvIrdbR1VuSNOMn376mRBgdzjQNjcSlcjzZJiZlwFnxQ77XcCUr8nL/bGWmqsx66Y/4fXtBXTgrX1mGGfaduF2G+najrzIeHp6QDWBxfU8Pp1omwaFNANubSd/Bt4xzRNlVVLUssW3bpF693ClripOpx3LkrDd7qk2FWmeooxCJQY3O27XhmVeON3dMU0DdSWJBq2lQlbWcrj8+vWZ+/v79ULhAL0mvCT5uj/sOb9d6PuR/f5ECJ5b01HVFSFGQjDMk2dwHXmWcdifpMaTGPKy5PX1vB5Wf0dV1dzfP9L3LV3fUW+2IgqYInW9oQ8Waxf2+wMq8eTR0HYtyzLLYTtKqtAYw+vLNxItVSFh2ghE/suXL9jFyTNqEilHmgrfaLPZEmPg7e2ZskopytO7NVSQAQ3fvl3Js5yyTOXCWZZYP8nArchYJsvLyzNFKYnMrrtxPB7I85yu7xjHgSSR9JKcaSK325VpmjmdTrKx94Fxnrierzw9PrLYkXEYGYaZDx8O70b18/nK9e1CWeRcVoaVjRNZHolKBsxGFfz2N7/ifGkIRJr2RtuMOBepN7kwzF6vtLeFLC8wiZhbn19e+OUvP3A67fny5YVhmEmsZrGz1PsKecdudjmfPh3ZbArKPMX5jqwIfPnxG6/fJqpyyw+/+MzT0wculytKgU4UP/zwA3/84x+xTpbdl8t1/dnu11SaMFrLUgZNzktVzAdBj1TbklLlNM0VVGC3E2NokYld82C26LReF8Sy5FNK8+e//JV5nun6jtRITXuparI0F8N5VqG05/7xRFXV/O3PL/z85cx2TQNdr1fGcSEEOe9qJTzZNDOkqYaoZJHsHMYb+n7EmHS9cEkifBhb6nqLXezKCFPC310W2rZfB6EHlA703UBVlgz9yDAEIEWhWJaAiyNPT0fBbqTJWssc+PLlK1WdSz02zSnykmV2uBDYbneoUHB57ei7m+xG2a/YAmnBVJXIQCZnmaZhTRZ1LIsMqq1duJwvnI73RBQvby/kmchuhrFHJwkbkwmbra5Y5knstsuMtVaYp8tMVZbyHEkkNZ5lAoLXWmrWRSnnmv/yT298/WmhrDRu5cP3nVTXvQqcz2f+f6z9R7MlS3ZmCS5VNc4OudSvs0ciAoFAApmT6pqUSA/615dUt9QEiQQQ5DFnlxxu3ExVe7DNPXPc0S8GIUGfu99zzFT3/r61ul4St9vtGs9EFBmyLOF4OpJmK/JcE8aWOJYhVxTF5PmGsbugfMY0aIbeonVM17ZoE/Ddd9/x6eMnsmX5cDwemIaJ+4d7+qFjGDua9iNRHHJ1dcPHT88cjkfyKgFliOKE4/ECylJVJYH27HcXsizm+npNUb4njhVJqlmtr7m7u+KXXx8JgpKb2w1BIE2RcZyY7MTu84H6UqNYBiFuZnu1xc6Gur6w272w2Wz58OETRSkJsjiOeXj1QNe1RLHUzQMTCBfXK+IoZhxloBAnCfvjkb6VtPd2c0WWJnRTK22WIObLlxc265xPH57kXNbFlKVI/MQQ3S5DKmGtbbdXcsZRjsPxgJtFyDVr4UZHkSaKFF17pCpj7u42PD/tyfOMOIlI0ojTSURPQ9cRBiHr7VqkRFqWjnGSLtxomOaZfpBhS9OcKauMbZQThW+o65anp2cu5/pbIj0IDDc3W25vbxiHkWHsmCaZMWy3G9J04ulpD07TtSNBMC0NQElDee8kCanVIhW0fBN3giDCrBeGqQE/SGpOayN1cRQeOByPXM5iDO+6ljgOSdIYE2iKsuCvf/0r5/MF58Wce319tSwWI6IoAmBdlaAsYewZbUMSB7RdJ4NyOxCHAUkiw/soijgcTkuq3CyWWWF0102NGTR1PbK9Kfj8ccfueUJpQ5YHtI2gBOZJllwDA84N9MOJV8ktcZKQpLIUyvOMw2ER/TQDfddQrQrOpzPGBJggwk6K3fnMPBqeHw/EYcZ//7f/zqqqiKKIsijou577h3uGfqTIU16/fSBJIj5/+kDTnkmzlKra8Ph85tOnHWFkSLOAOI5o+45qXXF7vyIwMV8+HzBmRZzIHXddFkThjFYiBbq5qziejjg3oVXOy8sLTVPLMzZK0DqUv0do0Gj8ZDAmZLvZcn/7ht3uwPlyZHfY4ZznXDcAXI4n3r99z/G4p2mbpWFnFiSCCJqiOObUNLSdLCCDQPPq1QPd0KIDKMqcYaiZppG721vO5zNdf+Lp8TfmUZOmOVW1piwKnh4/s70uqVY5k/ccjzsUAZt18feO5/7/MeBrmKwYUuZl8ywxWBingWGoaZqvPKge7yyX85G8yPHeYV1HkgRc6kdhCdizQDEbvXwRNcfDE0UVialoqe+dz8/0/UEMRU4Oh3aSw7OdBLC5rir5Ys+WMAiIglBEBasVDsc8SPR9GiY0mjiKcdYtG39PkqRyOVdq2TqcuLm5xTpL38vhN4xikjSj67oFeq0W+6PGW8tms+H5+YVuGAkj8L5ku1lx7gX+70HqD4s5abu9Eu5G15HnBUov1i5tFhi6AGCDQC8iBoG1z5Pl+elZ6nt2Wv6cHF070LYHyiKnqoqFi2CFoTBDmuZoreinEa2EeRhFEcMkaTsJOZ9QOpNNixLraRBEdO0C9nZSlfReHppd2yPWxQk777i+vmWaJ5ybiOJAathqBtUSxjC7CcdMlCh0CFpb8BDOAfMkw5owlEpqHMfSszcao6Dt5IJnjBaO1WhQevm9LyZCGAhTC4uYYxhGuVwG8nK1zrNebUnigK6bKaqMcRQAujFyeB2mCa8UTy/PAlBW8tLNsoSnxwN2kkHI09MeowQIbZ1bgPtS9XTOLxdtvaQsxsX4rL5JSIaxW9gyhijSXC5nmqZj7AeurracjifevHugqirGcca2g9SO5pkoCvHeEytNXfc4K5Y6kdoMeKDteoZh4v7+NYExTNMk3xkXivTESEpzGAY0Bk3I0E/C4Unib8m5r/Y2qYAGTIutWSEvmLJcYWeHYsYYYXnNVi6bm+2Wl+dnxKzimMaJqsqY7bxcFCK+fH4Er7FePjO5jgmjELErS8rraxXu9vaOl5cXyrIULtAiKchyAaJO04SdW+IkJU0TplksSOMo0oOyyDme97x995q+P9I0FX/76S+UZYTRjjhWOGcWOLCwq4ahpSgzvJvpWzHJOu8JQ+EnNG0rFSKtma1Fe08Uh1J7HD1RmDBNjjAKwDu6VkD9L8/P3N7dEIURWln2+z1xmBKFhq678Pnxhba5oBD5hgyOFYfLmcP+mWq1XvihHUkSk+ciyJnGhaEJUiXNxL57aS6YQLHeVMK+Wwyx3mXEUSxogvWKLBFIbtNKUjFs5NUxThN5UTBbz+V8QRtDFClu7yvuH67493/7KKnUVUEYGU6nMyYIOZ9EhDSOl2XAVuK9YraSTNZac76cyfKMumnkINjW9GNDWa6WmrunVZb6Iva73csR5z1XVxtYBr6H3YWudeAjQpNwOnfkZcCrhzuen3aLkTCg63uenp5F+qAUq/WapulQxlCUBXYa2D1+YX84U5SSevwKvlYqRSmpZHedAOmHYUBNhmmynE8XgQYrx7m+kKYZSSKb2Sjx9OOACTV2HrDzxHqR1kxLaiaOUl7dv6Gtf2KcWvqh43wG5+TAfDjuKctysUJqsjxFK0WapguDLZMNtYJ+kIRrmqUc9hfmyXI8HLBOZAQex2pT0bQ1r1/fsd5mmGXoLWm5njBSy0FdczwfwGcM48Q49azKhPWmJE0149Qx9IoiT5Y0riNNZGPfNlILiaJosa4Lo2eeJWGoNISBI81ittuCd+9uyfOENIV5uhBGEx8//cJxP1KWK96+fcP19TWfPz8KJycKeHh4zV9/6hFLpgxjnbf0WUEUx1xcSxzG5OWMVgHjJNw65+V5muYhZZlxqS+EoaEqM+xsSRMZnm+uSvQ8SY17VRBHkrLrehHeGC28PutmScdYx9jPCyw64u5uhZ3hv//rr2R5RlkVwg7d18yT51K3xLEMNF5entleb0Fp+r6Tmlwm0P2iLBd4O3RdTd/Xkuhre4JQWJ1t07Hb7Tmfzjw97rm+uSKOhaPWNA3n84ybQuIoXYb7R7774QE7L1byNCFdOEjes9ggS9Ik5XQ6U1Qb4iRh6DyHwxPTNLPeVORVjB0l2ZcvQiTn5HJUFLn8Pox8V9uuJY5SqmrF/nggDGNePTzwsnthsjPGWklGID+jMNKUZY5zX02ujjhOeXX/mrb5hXFwBOFE29UM04VqtWz8i4g4ialWFXEs4pTVquSrhOsrr3KaZrp+Is8EIfH8fCCJNYfDiXEcyIsCozU3tze0fUeahqRRxv7lM95DUeTc3d3x8eNHkjDisNvR9z3Hw5Hb+1v6sWUceyY7kmQxWZrx5cue0+lEnIb0g2ezLejaicPhQJ5nBCZlvz+i9Yqb2zVx9sB2WxInAZvtO/a7lufdnu3VLZslcROGMoA5n/d03VkG+nIcwrqZ6+sbmqbn8fGR7XbDZnNF28giJY6EhSsSsUYYm6GwkbS2Uj2eJBU2TRO1c5yOe6Z5oB9qikqSvXEcUpZbToeOm6tbfvv1A9M80bUt9683JInUjru2wy6G8zwrKXIxOH76/Jmua+haaetopTCBpShC3NxTViHpwRAaRRJF5FnOzz//SpJkwthLYvq+Y1pg/FGU0HQ9QRihjZytr65vyfIcpeD+/oqylPPObidpIBPIcj4IDEGoqapSBu1DR5ZF9EOHMRrrJo6HM0aFnM4HXj1c048jSRTRdC110/PjD9+zWhUcjnucU5TFhiyLORx2dMOAVgND65hmy/6wW/iAAyZIsLMDpb8lYr9a073z9P34rSbcdQN5ni+oHTlHay28YoeXEEYo7MS6rgG/MIxLYr/GaM04TnSdmF/7rud4PC2tkq9YkYHbaMth37LfTZRVzGw9bTvRdz3TqLDKY1KpSQ5DT7lKhAk5wvZqRVmUeIRf+vzUEcWKm5sN4zRznGphTLczzbmlax3HQ0NRlPz7n/+dV3f3tAuO4rQXfu2r+1vCQHP/+m5BvZwZ7cD2esvhcOH55X8wjjOogawICeOAJDX88Lt7qjLjfBjAD+SZ5rD7TJobsrQE5UiSABOAUjNNMxEdYo7HA9bNjNPM9faKfpho6zNGgSYgMDn3d/c8vHpP07T88usvfPj4GWMCTscLWiseXr/i4eGeX375ia/yuDCMv4kL40R+RnUj4phVVfHwwyv6riPNQ7yf0bWmyHO+PH5hmC48ffkk79+i4N13v+fx8QNehWxUgNOe+nLAOcV2c4NWsN+dMAHLwizEzY66H/HKsV6vGYeO+iKoiDKPeHIjh/0Tb9++4dX9FasqY384cJla8vyKclVRNxe+ChGdF+ZhWeV4C+fLgSIvWK0KmubEOioIwpAsM1SVDJWdlbS0dR6lLH3fUdeyQMuLbDmHidzl7dsH2nrk08cnsiyVBhwev6SNrXXYWYpEwu4Eh/8mD2SRMX41zWu1pOCsRalwWbY6lFFkec7VlRWOaN/x+uEBa2eapl4q5SI8DIJgkdvIbCQIAjabNWFs6YYDVZqSpIbdbiCOQ6Io/8YklPcabLdbpnHG6JDt9orn52faqScKhRUXxQFd41E+oixCdAB1PbBaR+yeerwz6ECRFYnwM2NFmkbyOdaOzbYiNDHOVRz2F4ah5dXra6ZJoYg5ny4oPeCt1L5BhsXb7RWPX164vd2iNXz3/Xf87a9/wVnLzc0Vfdfy8eMHgkBCSklaoYzm3/7jb/zy2xfGUVLJ0zRTrlKKwvD69S1VGeOd582biuYyYueJZpSh3ma9om0bhm4gyUvyIuOvf/nI5TLirPycj6c9eEjTDK2gLAviMCAKUr5//wO/+/FPWKu5vrnhL3/9C/vjicAEFGVOkWcURU5V5mht2R9fpLa+YNH0Ur32yHwh7jrGWYIex/OJKA5o2h7wxKHhan1F3ZxQCrZXa1arGz5/2NN1M5vtNVEUUv/2M1c3V1wuDd5bwjCmbQfatv97x3N//4BvHAa6vub16wfO5xOBUQxLckSpma6tiZNEWGkmYFZ2SWb0WOto2467+4imeWQcRyYrSau6eaEo1vTDkb5vMIEniuShE0ch0zgQhpo8E9josalJ0mRJEfYCyXWOMEw57I5E4UiW5/T9SByLBfXrJmqeZ9arDTiFs9A2Mqxj6d/Ps0R55eXZkufZUvE9y7bARHIpQWoOIOwenF34NwVhFNN0Z4Ec5xY7y8vUe4t1Mtzpl1ScwuCsWirKuWyh7ExbS3Q3TWPyrKCpe6bJ47zleGrYXl1RlisudU3bCm8mDBOiyKONDGHGqSMMAvpTvZi+BFjvrMSPPZ5+GGnamtkN5HkAwUgSRzTNC/0woLQmiWPGYZSqzqbABIrj8cB6vSaKA4Jg2X44+fVZO6IW7kPb1CL1cMII0YFfqrsRdnZ446mbM8PQ4pwXkG/XE4X5kgoZKKuQIIhpmpYomEHJplB7D4iV0yiNn0eiZKLr92gVsCo3NM1I3+slhmyxs6NfLjpaz9zcrplGEZD048hut6Nar+iHjnGcWFUriqKg7waGYRSen+/ZXq9IspT9y8AwzVSrimkWS5t1wlbom36JV8cL+8EsoPQQZy1GJzw9PmGt5/r6Cme9VFbjFDc7yqoSXozXHPZHhmFkvd7QtQ0vLzuur7Y0dUfXzswjzHakWmeYwBDGMXlRMIyWDx8/Yoyk0srVWsDq44TWljTPuLkNeHq80A9S742iCB0FHA8H5nGiKgqpS7UNbrOlbWqsl8j/8SDppaJc8fjyTGhC2r7HO09ZrZjnkevrDcM40HY1RZEBAvOeZ0uRr1ivb/j44TOoiSQ1DEPIZrvifD6RZrEMsRp5eFv7P8H2ZVkxjgPOSbWm71tW65LHz/tv1cPAyPb+cDzIhSXS3L+6YbVOMdqTZwmBCRZJSUJRpih6pnHABCn7454o0qzXhVxgbc80y3d/GEacE17gOE70nSQQ41RkEfM4M1tQzAzDTBxFslDQmigIWVcbdrsd3m9Zr1dcb6/Aa6IwIAwVUWi4utoQBGuUEo5kqAK0FjD00A+kaUoQSLq0bcUcVlvL6XhkthP9cKYqI5I4JI40VXXF6dixWf8jnz5+EbjsMHL7ekOWGZybudQzfTcwz444SVhvKkCx3x25XC6LoVMOTnGiyZZkYbWKGMeWINSUZcHj4zNNe6aqVszTRJ6ndH1HnAhnVFlFFMeEcUg39MRpRl7I4frt+1dc35ZczhcOh24Z+Ed4HFUlFf4oSmjbWhh1swwZxuHE6VAzTzDNHe/Te5GQFDmfv7xQVtU3O6ZzjpvbG7kYnM4CHHcKN4c4N9N37VIVv2boOkwQLIOqhN72y2IFLnX7zeKb5Sl5keLR1HUj6ZpIEo0oz/39DZfLSWDqgWa9qWjbAaVC0qwkTXM+f36hH0bSNOb7H9/SdSc+ff7A1c01WZaA8njliFNheGy3V5xOJ+rmwjDKAaRMCw7HI2mWEkZifFVaxCfDNFKlFc5lnI5nMYCNDucilBfWZz+MjPNEmufMztP3Z6y1XC41RVkwTS03d1IDmmxPEAXLn48hdR5b1+z2u4VjEqC0VLsudc00OtIoJCsittcZ600mrKAgIDCG3e6FaU6Z5xyccMakenrN+XTmy5fPrFZrLpd2aREoruOIPM+Ep9NNBGGE0iHT7AhCMDrEWhlWBUbMoU1zYhhbnOup1jl4T16kbLYlp0PP1eaKX3/9jZGZrm24vl0J48WO9KeRru0Zx5k0y9hebej6jvP5QtfJd9/oAOcdSSowefzM9XXO7qVBKUee5zw/HTgeJA09zyNFkTHOE3EUMo7CZkn1V7DzwDQ7ymqFVvDu/WseXl9R1w2PXwacswtfDzbb1XI2WSDS88g49azXFdN4YXdpaJuB4/HAqzdXXC4XqZTGMZNtqVYrkjji6fGJ7eaKsio4n4/sDyeGCc7HBm9lCTOOA6fTiby8ZRwnolCGC3GU0PcDWhmiIKFtB4JAM/QyeM7zjCSJKEs5q7W9pCVmO7NeVygNh/2OeYLNZkWcLNZLHRAnIUmc8stPkuZN0pAff/cG5zt++fUnrB+lqqe8SL+KlGm05EWxpJPPKK1oW+Gq6cDQtWdhzUYhSZIsaQbFMPZEcYgJNC8vzwzDQBCmGBXSdBf+/Nf/4OH+FXEUkaUJysObN68JQ2kAfPfjdzTthefnIzMNq21JU4/8f/7vvzDPEw4WA65C6ZA37zasy5zd7ozSKetVQt+eqIqIKACNI68ygtCwOzwxjh3jGPPhw88EQYJ3sN6saeqG81EEKVoZwqDiZnvLdnvLx48f6ToRYNRNDcpz2O95+/oVp8uZYWyJ4wITaLyT81sQhUvSrsMrTRSG3N090LY1q817TOA5nw+8un/gebfjdHnh5ekX5kk4ipvt/TIgMSTpGu8Vh/2BLKvIsoQ4DWi6RbwSRcRRzGEcGbqGssiYhp7z6UhZXHNzXfHLL08kUcTVzRU//viO3f5IU7f0k+Xu/o6+7wiMpP6zNGN2M8pIY+F8OrHdrMFZlHLc31+htGK9WvHTz78Kg1hLXfb6WrAQx8ORsiiIopCqKplnuXOkkVSyrrZXgomZHCoJuL+/o6k7xrGjazUaYZJV1Zph7DmeGtQio5pGS103clnuOxEdqJzZdoBnnCbatqWqSqJQxAJZWlLXLX0/Mc+OPCsX8HxAludoFIfjURZBWbYkmRR5nqJ8yjh1RFFIU090s8VOnijOuJzbb8mraVzs8NbjbMDTlwthGBMFBmMcYSzPml//dmRCE0YBeZWQxIaskNSQtcJql19/9Q2jMQwjd682KBWDt0xTj3VWatJmIisirq83rNaSgAsCBd7x+x9/5P98+T/pu54izbDW8euvHxjGnjwvqbue3z79J3/5yy809UAUi2iv7wfGyZOXG5SeOV+eidOS776/Q6uIy8ULmy8tqOszx/2Zar2mLCt++/VnpkHLXSEMRTZwesQYQ1UWVEVFmuTc37/hj3/4F9pWmjN1LUtNvOL9u7cUZUZZ5ijthYvX1t9kGlEU/8+le98taAFougvhSWzhnpk4ClgVK+rugjaK+1e33N6+5d//7VeiKOXu7jX/9m//SpxuOZ8vxLEEObp+5OVF8ARJEpJl8m5umw5vHaEJCCKDnSe6bsJjyYsEE8If//gDz88H5kkac+PYUpU5XVtjAghCT6A90ygcfJR8BlcrOcN17YmuPYGL8EzsbUOThCJ7G05s1hXH05mulUDQONVLgyHBWUvXXQiCnKY9gtfMk8fOmjDy2LkjDBXWSQL7K6cXBUbJ7MLO/yujTxGFIVpLTRfk3ooH7yxBkGICTX2pSa8TtpsVx+MLYaRJs5SmOXE6nwhjOQPPzmO8oevlTBhHMVVZsnt5QWlPOM14etIixVrL69e3tG2zzBicLE+PZ4yOGIaZLJXFwzx1XC4T82wxyi08bkVz6ZitLLrSwPDP//IdXQv16Wes1iSpJk5kkW29onDRcg7Y4eaBh4c31LXBWYPRKfPol7PMQBzHyxIjI3y1RnnDqlrjUayv3hIbkSs5P9MNLZfLBe2XJXAQ0tQ1l3pP23c0Xcf+cGYeBcUhSADP+dygdMCvv35hHDoUjtWqIi8kCBEnEfv9jvDkGMYJYxSTbSjyFVo/cz4JGkiYxNlSn0VaGUQkcUmZr7i/f+B4OrLfnQHIs4zbm9vlZ/CaeAmRXC4XdLCIDLUhioX3XFalJP7PtUyIjdjT+6HhctEUqiQKI/puABcTRfobOiPLcoYBTBjw/u4Nr1+/pa4v3N7dUzcNXges18XiKGgYx/HvHc/9/QO+oiho2m7ZwMvmLYpikiRdLGgxeCUv2U4YNc47mqZZXoYhcRRgfS0Q50kxThNFEdMPZ7wLUEpe+q8e7r/VLwHCQODZSnviJCQvUtIswRjp3p8uNU09yTZJzbStcFK2243wQ+IIbTz7fUvXycG87wdhQxnpz0dRwuW8o6rWJIsR83Q6E4aGIPg61c8Y+5G+66lWYvAE2RS0bYd1HUHY4f1MGMbUdfOt4joNwoDp2pGu69FaUnzjIlQYh4kwCPBasd1e0bRyOLBWthNNKyBcaz3Ow26/p+t64jhmu/2q8pa6o1KOYRBWjrWW06klSTRxFJKmMUEo0PjZebTRRCZh6MWwY13LMNTgpUJzri+0bUuWR8tmrl2q0Gqpb04EQcxutxdumh0AR9e3hJFhHAbSRPTYfvZy4Qog0JKW/JpSPLcTxni0Nrw8H7HWYQJL1wqLqqln7HQiz3LSKCKKDEESM1nPYB3aTGjdMXUnymJNmjhMkDB0EZ6ZskzZ1TD1I6/f3tH2J1BQFLL5HceBNM3pupayzOm6ZqknaNpGIMXGKIoy4+o643Ie+Pjhme2moqwypskswNAQ7xVxEnN5PqONYr1do43mcDx94wEdTxPX1zd8+vwZpb2YvsZ+sRbKgLTrWpT2jMNIXbdYC2EEziZcLmfqpue4lwdM3w+czid++P1rwkhgsE3d8t3370mSlN3ugLOe+1f3ODfz/PRIVs6cTyPzbDmeDmw2G9liLOII65zUCqKIpq0XBo1IDuZJZA9XV1uCKGK3BxNobtc3PD0+Y91Ema9p6zN27gmN5+Z6K6kto4lNQBzH7He1VDHjkPv7W87nPb/9JvIEDyijqFYV82y5vr2Vn9UwcDwdaZqa9WbF4XTAuYk8WxHHsVj+nKUbetbrNbd3V1zOLZe6YbUOASd1gDCmH8R46dF0/Ujb92KZjiKUkiHg9mqFtZ08w+IKO4uIom07DscjJtDEifB77OzYXfZMg2a7fsPQClPKBPL5qeuBaR5xXmFMJOKDfuZ4OJPnuZi9F3X609MTUQR5HlKuUpq6weiNvNyCgHmeybLsWw1DZAKhJDXaCz/+8B7nJk71kVcPr3h+eaRuduyeR/rOC++suOK0P6KUJFymQcyMRb4iy5IlUSjfgziOSSI4HA5477i53dJ2DWPfc3NTcdif+PTxN+LwO3788Xt2+yPnc0PXtVxd35CMqbDFnCdOhPGilEMreH564nq7xbsRxcz9/Yab2zUff31kvzsSBgHKe5Saubvd8PT8Qp7HBJEmy2NhlUUpx6Lny5cD66TEWuEwmcAIG3AcOZ2P5HnGU7NjnATMfrm0GGMwQUzfteRFyt39NdbN7A9HtPmf5ugwiCjzXODNQUKeld/kSmkqJlttItbrNW3bcTweWa3Etvv0/EhgRDaRJCFoB8rSTwNMGqU0L88vTOPIDz++Z73OiRNHlLz7ZnVrmoZxGlFovPM0TU3bNIRRSGDMYpmW9980DxTFmrxIJO2RpovleEZpS5xqtIqJY/lOxWGIs/LdjsKErp348vmFKA6YR0hiA15xe3OL0chyx2kxOfYDgYkXHq8iTXOyPAU3M9uJ/eFImsqhSDilkt6zbuRvf30iWoyXaZqy3z+TxGcCDNMIWqe8ur/jd7/7kU+fPgjwHM/lcpHE0uXM+/fvOBz2yyJhRZwkkmC3YtVuazlIdUbYmjfXdzL02iwb3MMTd3d3fH585HjZs3vuGQe4uRGQ+8vLI/fRijSJ6Kaey6Vhs7lejNTDwkYzpFmKSmC/PwCeLMu5XE4467i+Lnl52fHp42+8efuG7394w35/4nA80bYNd/evGMaeaeqFlRuGDEOLDwVy//z0mZvrG9w8ME8dq01OtZK645fPTwRGARY7dWw2BfvdkSAQRlmaBGRZxJvX12xXW3779YmqeoVXcu5w3pHlKbOdOR8PRNc35FnBy+5Amuf0w0xdd0SxCMmauuH1mzsOhyMoy/PLM9aOGKO41C1aBURBQHNpCF6nFNmKyXa0TUuaLMmH40CWSXX9y5cv5HnJPAuMG4TtGEUpWREvLZAJZxdW0+ikntl3vHm/Zr0N6YeJH3/3Hf0wLvV/qdI7K+eKrvu6SLQoB2EQEsUxTXNmHHvOF0+WlOS5DEaDKCVKQpRyOD+SZRHaOMLIsNmsePX6huenZ8JIFhC319/z3//7fyfQmrIsaZoLf/7zXxingTyvmOeAn/72yF/+8pvUD41ehieOKHHcvVpRlAbrT1zfpoSxIVRQNx5jDKvVhro509QNWVGQpAk//fWJoTd0nUapmcv5wtOXlsAoNpsVaZQSJgnf//hPfPfdHxiHmSxL+M///A+stWw3W9IsIS9SVqsKHRiOJ1koohYEzYIV6PsOlAzdkySmyDPCKGLoLUWeUpVb6u5IFIVcXa/I8jUff90Txzk3N2/4v/7fP7PevGUa3YJYMXTdSF13BKECNVEW+VK3k/O5NIUMwzSChyCAooi5u90SGjDaE0ea7aZk6FqU11RVgZ0HurZZFqojSWxYrSv2uwP7/U7S08rTXi4YLZZ65Sde3cnZ29lRIPl25HQ84mYLRhYIzq6x80ieJgTa0LQN4zBjtCFPE/r2wul4QCmD1pKsDIOYX3/9wH92fyaKQml+zDOb9ZZDcyCOY75795rfPvxCFEVkSbTcAQZ8HJAXa5ydeNwfuN6+YuxnkjiXs4xJ8N5wPOxwWPIyJ4gigoDleQ/z1HM+DWRZyrAwgp2zPD2/4K3BWY1z8ucVxRHDENA0PVHg6LtZzr5FytP+TBQK1+392w15UbB7avEWklSjg5F2mKm7M6tVwXffvaPvpVVidEhTn5gnMCZl7B0vL3u8n0jTkNgIYiSMMqIgIU1TprHhd394hZsisIqff/5J4Pd9z+54JAgCHJ66rfn1wxOni9TpplHOUd47qdZFmvNl4rcPz3g3kGcxoelZrTaCwslyTuczu5cT0zRiAsXu5UgUxiRJxvnULDK0GWtFzJMmGVGQEZiEJMlZr7b89PPPHPZnvPdcXV3x+uGB3377jSg0zOPAcT9yf3+HUhqtjXDJI0m4p2lKfT5LCrZI6YeOvp8Zoog0SaVFNwREsUhSrJ3ximXRGfDHP/6Jqlzzhz/8kf3hI00zk2UbwshwqQf6XuyzYtPWhEHE+XQmCOU75pUIGcIoYBhamq4hCGN05ChWETpwTNPAsCxjXj/cSIvPKJIwZZp6sjwEBdM0UOYKowxV+YoiKwhCGSA6P5FkEc5Z1qsY5zzr9RXaGAITsCo1cSKMa+/h0+fPks5jIorlu+9mePVqxdin/Nu//xnnRAAoP3NBLoSBWqRAHvVVthQGpGn8Tdw3jiPO2SVwI+xeWN4bzvKXv/4H4OT/Lwy51Bei1HB1e8vLywuTVeggWqzcM85ahl7OX+t1iXOyWNIq5LDbcT5LAnyaHEM/8bl5IY4TzoeGaYbTYcDoEKUN48IXTaOQp6cLdobttqCtjySpQWl4eXnGzQHaeILAU66EazkMM11vOV8Mq/WKLM3p2onzueF4rJkmK/fzccKEEIYG5yaurleEgeF4PJPGIWmhOR5PxHGGZ6TICj59+sB2uyWOErq656effuHSNKRFzuV8YZgm9BJOMUZhkHlDFCu0EdZhmmaM40jbnEUCmZcMvUPriLxYcTp3C2de3kenc0cUJtSXM9PosRa6dhIxUBCzWW8osozQBBRFwePTE58+fJFU7zjxX//rf+Ph1S2n4wsvz18YR8FPJEnM5ASNcr6ccX4EpTiddot8yZPmKddXG6y3NE1NlqX4JaXqrF0+Wwl9Jw6HuqnZ784cjhe225ulur+h6fYczi0iXZnRWlFWBXme/b3jub9/wKeUoqqqBXapGMdZeBXqf2qs4zj7xlUSdkwvkcXthjiJ8cj/Vi2Tde89u92Om5trANI0Jc8zmqZhGOTwJ1UP6ZgPvbBdysUW6BYjTT9MnM9nqnKNQuC9eS4foK+w2aZpFsisAWAYeqmeZBHnU8PlIvylsizZ7faAWoaXA6Aoi5JhmAhDGTDKNkxqIy9PO2GiBAbrRtIsIstzijylbV6kHmo90+i/WcukttILv2OpkiZpTtcO8uFduvrC2BDQhdRcgm98EBBg4+V8AZSYXb4+aJwlz/Pl9zpxuXQo5VhtIsIw+lY1nmcxxnytXhM4nBvRJpRfbxiTZYp57miaBu9F9DAMw3L4ktReUSZ4NxGG8udr7QyIQctZGfAqA8rM2HkijAEFcSybLjsrvHMY43nz9pam6Xl5PnE+WqLIkaSG1TojjAxROlLqhLqV1NnQScqjaU407QVnp6VGKsmRq+0WZ+HLAss8n86stwUKQ9uKFXPopYK13q6XQeUsnMUwAu/wgPMzURQwzT1xBG/fbPnw4UDfVqRpyqpcsT8Iy6AfBtbbjbATjdQ3q6qUyLheKnRhRJ4llFXK1U1CkkScjjW//fJJLtzJljRNeXj9Cq0Dzucz09RhAlitS6IoQfuey3Gi95BEKdM44eaZ169fc8oueCvDiXma2WyuSdOcp8dH2aSYRIQF9YXVqmCeeo7HA2FkmGdJiHXDwKqsMEY+N2mS0Q+9DDQyqTQrY7i+vqbvep6evlCUy3PCz8LtSBaTaxTQdQ3Om2XbMfOy2zNPI+/+4XuuritMKJVplCOOQ7puxOMwgaZpG7Qyy+dQEmbaaIa2x7mZLLWUVUZdd2R5ivUhWjvGsWF2PUEkW5iubQhNirMAhjBKaJtZDrRRzDx2DO3AelVRlQn4iSjUOCtw/yCIFkisJLGKIkcrzzB0dL0jCCOiMKGte5J4RRjFWDuy2z+jlGyB60bSZ+fLhc16u4BdPadzzfWVWFmHoVsOYzBN88JxlFrBOMrzxhip8hkjQxq9qsjznCIvGAdhMt5cJezrF8IopKwy4mjFx9/2xFHO/d07/q//+zc222pJMDvmCdpGas1RJBX3NMtk2eDswhqRV0p9EZ5pEHnevrvj6fEEOIyCPIvx1nI5HUiTkMB4mouwv/AjSQx3d1t2ux31eU9z8WRJzPnUM8+SPMNNvH/7wJcvn8DlaD9x2O9Rzi3ctQnlNwxtAxiyTBMEE3hLGKTYqaNrJuzUCJcoDgS87Dw///QzSRwxzwIc325zdo97bq7vyDNh4SRphA48u90zWscUZco09oyDyEiEb5dQFAWghF01n1hVK9I0Jk1u6LuOzapYNvUhl+ZImm5o2zNJkmJCaBupy8exwOuVmnBuIEkCqtUNj0+PaCUg7TAIFymL5nKWy4TRBqft8tzPmGy/4CWgKFKGoWEY5XCitOXmZgWq4njc4+YJkKWQ0QatDE7N7HYH9i9iSU+SjDCYicOZ1cMNbbMnCB1h+PVdDrOdl0q4J4gDpnkkSxOaWqqxmgCjxXTsrOfXn05st4a69sBI152WepmiKiOyOCCOcn73hz/x9vUPTJNwBP/1X/91eZ5tF/ZYwXa7JQwNp/OFeXbMk5hG8TIc6ceeoJGERJbEC6g5pKkHqiLlanvHsd6RZjHXNyuKYsOvP+1J4pJVdcsvv/7M3e01Q2/xzuOc5nLu2O9PhKFa6syF2D2dLP6k6udpu5aqLDGB54cf3/L0eEBhCYwnjgzrVUFTn4ljERN1jVR2FRNVEXFzs9R1Lkeay54o0FxODfN8WUyeJ16/uuHp8RE39Sg/05zPhEaWg23dsFnnjG2DUga8Jc8Vl/osl5Cpp3ctXXshjWPiJJLBPp6ubfkf/+Pfv8meurbGaMU09lT3KVoJriMrxD56PO6pypQ8j5bamWYYRl6eD6SFIs8yvNeczxfatiErcvI84+Z2g7cW5+SSJxUZEXZNk6BU8ixlmuF87tDMpGmIc8MCrh6Jo4jNes2nL58Wc3G3sCTFnNj3HfMk8oh5lrOcxlNVFSCCKxNAXuWMU8c0tyRJiDYzqzzj+loq7YfDC2EE623I3f33dLXUOZ+en5nmiXNzwS5VyWGc2e2PPD0fOZ0b9ie5oDinMIEgO3SgOB4GflEfGPsNRR4SRRN5mTOPPatVxe7lwG53Zp4HlFb044n1ekMQXDjs2iXhDIqMeXIkUU6gc9KkYFWtWa+veXz8xH5/JAxjrq8l4eM9vHp1B4s13oTBNzZukgh3tizL5Qw7YQLwzDTNQJ3ElGXBOIxcrCdKAhQhXd+SlylBoMiLnPfvvmddXXG1ued0lKFBVRRczEjTdAI4T2QoaFQopuBBzNIKj9diF9WBkWphHnDlc9p6wlvH0I2cTyfubq+YpgF8S5pYuralyCqCMMD5mSyZqcOBh7sVWSZ3iGlq0MwkkWYeB7IUnHeEofDvrG159+5WPj9tz6WumYeGvmvIi4rAwHqlMTonzRKG/kCchBS5wOSTOMe5nq4bSVLDfv9CWVTMdiAIPJ4OO7cEBpr6iSR25IUhz42YXL0nzwzONkyjiBqSJKC+HDlfLoShIo40sx3RRpIsRjk0E+/e3nI+i3CjKjJhp2JR80gUC3dPETKMM/V5xDlFFHlhp1tJ76VpSJ4FfPp4oG9ntA6ZsNy9Knh+3nM81vT9iAk1eWV4eH3Db7884yyM47zw9RKiMKTvpfXQNB1hZBhGRVFlOA9hJDwy5ye00sy2Y1zOI85r8qQgjVccdieur6+oqorHxyd++fkX6q6lWq05Hk+yONURo5dGQ5wE6MASRBZt4M2rex4eVpyPLzJw8iP1pWeezuS5JOqb+iJV73Hk+fmEs2YJYowkacI0WTZrSfjc3b+ia1q8h5fdM6dDy4cPnxn6kX/6L38SlnikeHr6BEji/s9//jNRJixt6+R71XYd49gQBhEKj1GQ5QmhCUjiSIzsSjEME2mWcjwciKKY0+XI09OBcYTTac80dcSJ/FlqbXFuwgSOzbZk5Q373VFSyWFMGGhgRiuDteMy6FMo5fBYZjuwWVdUueL2qmKaHLP1PLx6Jw2ttiOOI4oixyONKmdFHuW9ZRx67u5uCIy0XsQMrnBeBoUyB6hk6TLLudIYTRhdf8O3KKO5vc3BK7HQKk8UGLyT4MfjZ/8NGzBNMjSJokjEHUjbpCwSLpeWPCvoernHAkutNlsqspJwreuaOA5Zr1acLyfCUJNlCSIT7XHOEgSGw2HPOA2s1hnWGV6eDszTTDM1hGHEel0RxzHnuiZJYglikHA5nQSPMwx4pxdTumMcLePI8p6LGTpL11uapsdXCe/e3/Dn//jCb7/thWcfacJQ+Lz1xeOxrLYB1zcpQyfpRGMUzsHT0wvOKqbJs6pi1mvBiSklQ88iz4XfXsbMc8f5ciEIpXnx8y8/EUchxijiSKRoeZ5TrVZU5Yqf//YbXoHXguRI0pzD6Qt5WYIHrSGMZDFmNBgNd7c3RLECM3D3asPNzR1dM3H0HbvnE5ttgtEx+8OeMNSM88zz8x58wDAOGBUu7G6RGAYm5OHhNfXSzPntt1+5vr5htSn56ee/MQ4zv/76s0jKypSX5x1N29D3Lc45kjxmvanYXq0XQefAvJyJ7WSpz2degoC8Ktiu12KzVyzCPTG8oz3KyL2t7yX1HwQyKPR+pB96nG9xtudyHlhVrymrnGmcKMv8/7eh3P/y19894Ht6FIvu9fUtxoREYUzX9VK9CAOytCAIIrx3pGlOXZ+FBaWESybsGEeShDw+vnA8nnn95oEwCyRmOcofTJKkEgldb5ahk0OhqS8d53PDer1dzJAp4KQKNfpvMPYoitBGY7SRLZn1NHW71IdloOOc5fr6irzIeHp6XJIDyWKUuuC9qLunacA5x9CPDL1UeOd5piwFMnk+nTAmoKkbscNoyIsc5ycupzPz2HM4HoQdNyuOxx2rdS6wfDtLzXCYWK02YppqluqXdQTGEAYG8MyzbDzX6zXnc/1tuPDw8EoeNvsLakkLfP7yyHYrk+nZSm0ny3KOe/nSp5n8jL4aeL1HYqraSPVwHMnyhGmGaXTkmZgzgzAlDCPCUJKT+/0zZVnQdQPb7RXzbMXGF8bUtVw8ojBYqsIJYRiI+TJgYbuI1exwuHA8XrCzcMqur9cURU6SZJyOF7q+J4wD3ry7JooFAHu+7EmTDWma0DYDV1clqDOn8yR8p3GkrS9UZUWoPWkScTjUC4z+niQxIi8oQ8qq4PnxhfrScHNzTxBpDnuBpyZxuujbFceDJLWC0FBfGpT3rNYFT49Hnh+fePfuLa9f31CtCj58+Mw8Tbx6dSfQza4h0AHeW7y3lGXBpR44fT7y+uGBvqmJ4xTnRooiZrst8U7j3Ii1A0rP7F+e6dqealMs5i9HlhjShy2ntMc8WRwzcRSC99TnI2M/4G3AZlVwc33Hh98+cT6dsd4xLi/FoesJA83733/Pp8+ficKAJI3Y709o7Vmtcywzu6cDm831t+RuGIghtW07di87ykpqVJvNCqUUgQmo66NsjIeW1aqk7S9EccgwODGMOk0SyyXYGIf3E1dX628GyHkaaOozxojEYxwGkcDE8XJBi0jihGGU+n7bXViVV7RdvYBeE4JQcXO3ZTtPXOozUWjQSmC78zQvxuoTnz4/0taOJM7YrDPaduLmdk0Sh9SXHUUhG29rZ8Zx/jakj22KxxJomEbDZC1RmuJdzNjDvjmChtdvXhH1MefzntlZwlD4aNMsNbc4FRj5PDuyIud4Osg2Es/sJvp+putaqnxLkkSEoaasSqmWziPey1bpeBTjYJ5li21WkrTOeYahZ3tV0beay2ni9cM7snTNqrzjdGgJQqiKEmM6mlpMUcVXIx6LTcpOlFWJCSThGacp3jnhZFUxdspxtse7gMtxRxBE/PDda4LAoplRuSKOPEkaMowTgelZlYqquCPLC4yGtm8W9IPCbxPSNAC9pqoi+t7x5vUtq/UGZx0fP37ETSPj2LPZbAl0TBhcC8sz1LRdTbXNiYyw56IQuv5IWSW03QWtA6JILfXGiSRWeNdS1zVFWS4/95EiU1xtIobuha4fuL66J44009DQ0eOssDiNmamqHKUm8NMiPghp6oY0SzifnglDhfc9MDNOniyriIKEpq6pKs9qk5MX/tvA63S8kGVSAcRNDJOlaxsufUscJhgdMI6yVW+ajmmuGaeOokjRTCSJ5u5uw+xm8jKnbRpQI2FoWK9SpklQEd6qhTc4sNpGGLPmchoo8ivGsWccJoahBy/8QtA8P7+QpgKBF7aZoWku7A87qnVJmqYopeiHA/0wExuH0o7VOuPDrzWX84A2AgTHz0yjEt4nCWmypirXbNbX7HYHDoejJKVub6ibniAKub3dEoSatm34mmpQWpNmkTA981z4OvMIpMzzyOUsxmkZynqRfARyTBrHgaJMAVnIvH//Pavymtubt7y8HLgP16RpwVENMpxoa7ZXayIMgQmXxVxAXlR4ZZm9lW31NFGlKXFi2W5zlNPMg+N8PGMM/PDdK7QeCY0nVJCmYqEdhpk0mdmsNevqlrJcgfJMU0teZXjnCY0njlLS9JYiz9FmYHuVs16tcc7z6eMXQgXT2JPnGduHNet1inMKraEfW3QQksUrhnEmSyLs3BAlnrKKOR3P5FmGMROrKqW51OSZYegPjIMsTvNU2IrbTUyZK/r+hbZpub15Q5YanO2ZBy8XVR8Als2mXFIENVkWE8UxXdvh/bg8Cy1ZnmPncRlqjVxfv8LNjmnsWa00m21JlinapibNEna7mihS5GmEJqOpO06Xhq4bGIeZMq+Yxn6Bo2vO5xaMk7NpHBIYR5pobm5XzFaGbH3XofWMUp6yCPEuI00jPj8e0boiilLyvODxyyOv37wmTXM+ffrIx798pO46iqJY4P4ao0NGP5AkYuFUZiKU0AtX22uur+85n75gXY0OPF0z4WxLVW4EydE1hHFEP4wcjpKUbJeFbxhKtbssS5I4Yb3egPVEUczL7pFPHx/5/OmZ1WrNn/7pD2yvVjw9vfDzz38jzzPyImeYBu7ubwQArqU6udt1ZFlJkkSsqlx4Sv1EHEf0fSepyn7kOt0yTsLXrZsLnz8eaRuPNp4oDnh4uOdw+gBe2IpB4CmrBGWkJte1HUkoiQ3vRVKlcBRVhrfQNDXRYpQtcsiThHEeiKOZh1eyQEnSgqrKCYPNUgHymKWCNU0Tr+7fo7UmCELwSuRu3uJwuHmLUoppnlGobwzmebLy70/zt++3CkSMBiJeEEu3F/C+c2h1xfPzTrjjl5Z0HXN3tyZPpdn0prrDGEjiiPsbYQW2Tcc0GzabNUopssSSZmKFdm7GewNek6WO7SahyDUL2hmjAyaboZRlmkemccSoju/f34BS1Jcz2oRcLg1FVgAzuBk7O9pWkEBGh2ilcMjvVeQMllcPK1brhI+/NfJcXEe0XY8xiq4diWK4vS0pVyLEaJuRJM4Ig5jTsV6Wjw6belarDcMgNvevckaPWN3ruV+wTgPX11d8/vSZJAlYrw1etziXAJ77+1vCKOaX335je7Wl/TQyW0cUJzLAjqTxNU4Ts+3Jy4A0zYjTkKYZ+PDhM2Wpub4thZusSvYvLfPsKIqKcZRlmwkikiTHBNDU0mIQqVW0CDMWEdAsyR5rJ25u7vntwy+cLwc+f/5ImkUUZULXXTifLux2O4Iw4O7hjig15GmOneVzZXTA5VxTXxqiKCSvcvJKpAtFkRIEBm89aE+1XvHp6UzfDWzWa7rmBaUn1uuMn36tKauAw/7A3e2KuEoXMUaG9zPKe9arjM2m4ve/e0Pf9Xz6/AmpJmakacx2XSzIkUwQSAuvru16QWorSKJosSTLohs8s/VoLaGSOIRAzRit8U5QAVpLkrGtL1hnybNcFr5G43HM88DYtTgPQRwR6Ii8TFFK0w8t49yjCVAmxDvBX4n8QMzT3olkwzrPtLD3nZuYxomWlnmecd6SJHLm+GrXjb8JT+TX2vcdUWwAxzSPaJMQxSHWzwSh4XI5kOcxaR4wzY6sCJk6/w38t9sfieMQpS2fP+4wgVSghxGOh56umxbGvWGaLVlhWIUJCsXl3GG9w3lFmgY4P9I0F16/2XI61eSl4fZuBWqg70bmqaV4l/DwesP5aPn44YDyEUkiduXLuSUMY8Zhxi5M1iRJ8H6kbQeisyxlPnz4Qp5LeEkbR1lKqyKKFWnhCYMBRyfIqN6zeznwsnvh1et75g9fOByPXF/fEIQRTSPD33Ho6fqOINRsNiXzNPPzT4+EHx33DwnJdyH74wtj7xkHyHORyoVRzDiODJNYw+9u73l5OfDbb5+xs8xEnAVnIQhC5mnGORbkh9xlhv7C/cOGjx++sDs8sl5tyIuKOA04nkaaoRWxlnGgikVO6knTGK0z6rrFhGCdo24agjBgaDuqSoa3ZRUsLVBFGMf0UyNivbYlTQui2HBzs+L+Vpb5l8QTXBfk2Q1xmuBRzNOEnae/dzz39w/4rq9v6Ib98vIyDMPI8XhcBnGKJIk4HuRSLRHZAKU8bdNyuXSczwceXt+ijQcCnAPvPNbNYoYN5QN5OEiFKo5jnp+e5IM5CeR1Gj3eKeI4lC1/VZImOZ8/vdD0HVEc4ZXEtfM0J4mFpTLNMhjQWiye26sNYRAAjq8GnX5q0TqkbTuapqOqVktC7aupdaAq19R1Iw/6hZNgjKFrO3CeNEvAO+bREhcp0zRztb0mL1LaZiSO5KGy2WzI85z6IgkxGZqEktCwkzBi0Ny8uud8uVBfWrJcOE/7/ZFplOFgUzfc3t1jzMA4ynZtHC3KhJgwQqOWVEiGRzYdXdvjmZd0pVrsQloOVFZUr/VFKnv4hH5o6PpGuDhKHg5N02FnxziObLfrb9wDrQzWKarqiqapmeeOLIMw1GgjFevTqZa4q5ME6DjIISMMI4o8wQSKz18+Y1TC3f0K6zOurnKCUAZ7SSLVyXGqMVqU5+t1Qt3u5OA+O9q+Q/maMp+5ub5i7BvGYQKvKYstTXOhaz1NM6JUTWAMioDHLy9MdiArEtI0WWqyPXael0usEbZZ33N1dYX3mj/88TseP+/xdmDoPc3lwvV2xeHoCLQl0DPz0JOUJcZEBKFitcoZBmFzzOMJpRz7lwtZnhCHMW4SA+KXL58os4jL8YX1quDV/RVtWzPNI0PbSk1W9ygsoZlYbVe4WUQdceQpknyJuU/UdQdYvnz5RFVVKBxKzVjbgtPU9YE8NWSx2I6a2hOGFq1EaFOtcsos4bR/ASx2SSbaJaUTR4ok0WRpSt+1wpBMCpq2xvsRY8TSFQQRN9dr2magbVuKYibJAuLE4uxAtBx41qsc5VMCrWi6iaFvGQdLWazA22XLOHE877G2p1xlBDogywKub4RHs94UtF1DGKXkeQwqxFmHnWasnUBZuvbMze1aTMezJc8q+q4jjGTIP1uLd3A8nCVVGEVEaQTKUNc1+8OBalWyvt4swpeRrp9RzlBfJhQSpXdWLkRxkjK3jfBzhpGuaciShPtX12yvNpwOgkG4vb0hCB0mcESxQSlHEGoCpYgTzTB2XOqZOMpI0pjb22uc9zSLkazrO/AO1zq2NxvmaSTPE87nE4+fWo4nyw/fS/rwu+/eszv+BJ7FXg3lKiWMNXYW4HFeRDw/PwvHLZJhTlWV2NlxOh1Ik4jQhNzdCufKzhOvH1aEoVQxqpWIT7x1gKR+5kWkkqZbFEjNNBCT5TBZvAflr/HAMJZEQcDvfrxZYM4iAHrzsF0saZKIAQ3qTlxoWtH3ksAehytOpzNRnHI81eT3G/JU8/z0xJ/+6Q/kuSyAjJJD3TiOhJFUcqdpYravRNYzW5QOsHPA9VXEf/uvPxInAn8OolAAz9birGwAtTbESSocGA/zkij/+ZffeH7e8/DmLet1yTxNOKtRPqdYCZ+jbhqcbUliT7UumMeJNPYUeYxRGS+7g0CBrbCDxmnETj1JtSYINXluCHRAFEzEcUDXj4zDUVhy04BWIkVxVi7QWsckSURRhBQFJElKmoZ0/QDMeBzXN7d4NRGEBmMUEGCdJvAK7/XCuInJ0nyxAzox5EURVXnF+dBSX3pOx+5bohelZCE3TsIhTTOqaoNWIj76/PkTv/32mZfnA9vtmn/8x39gva7YHQ78+usv5IUAk+d54ub2ivP5iAmEFTTPPWlakaQJ1aoQqUk/kuf5Ik6R5Pt6XdLXI0mScD4f+fjhTFcbPLJhvbm54lILr8jOI1kWkOUBcSIWy8A4FAmX85E0y9FKES7mPTuJZKDMM/IsYFVU2FmaDr///YYgkN/7ei0SBQD/lSWE1J1eP7wR4VOcEARiCBznEaUM3m4l2dzJu+z9++03xEkcxbx+tUEpIwtX7TFaobTUrb2CyU7yLlEBh6NwVY/HC2FUcrNd8R//3rBZxdzfv5EhMw6jlvqbnRZmnaHvezwyLPNOhsDehmy3iv/2394Sx4ogVERRjANBFbhp8RbKgvKr0AYUQz9xOXf89aefmeaR7374niyNyJOEaVJEYU6chiitaOoG70cCM1OuCtxsmceJaJ1Q5BHPL3umoaNrR/K8EFv4ODPNA1fXG2Y7kiSGQHu0GimLQCD6zQtJkjKNA4P1FEXB7d018+BwbgI14XxA34so6N37NygV8vHTR9bbLZcPn0nzgqYdaNqOIIwXELxlGEaSTBHHEVdXK5yF/eEzRQ73D9eMkycKU54+X+j7YVmcN/hhYhoVfce3541SMDSNcHuBsqooy5L6fOLz50/c3V9RVjH/43/s6PuWOBEeVRB4Tqczp/MB7z1FVVKtU27vrgRz0YmZfprEdKt2is32iu1mKzzcICIMQrwVm6TSCmsFWZCkCU3d0DQ7jP6OfjiAbzntLJt1zuYqIU4yhsHz9PjIZl2SpyHfvfsjKM3j4yNKObI8E1TGKidLY5EMicGN2XqmSVI1UvuVZZNSHjxiPJ0HOS+4WQD3oSKKDNqI9KcfJL0ZRnI/iK28g2bboZQmDKVpogi5vZFnczc2GDNhTIhaUqwysCgxOsBax91NidKGthmWoZlj7CMu9Zm725xqEZNoJcklrSSVpLRCo7H2drGBzlgnQ0dnNetVwL/883v6oSHNJGUJinkxnyv55X+TCCg0Rr+R4cosibh//dd/p+291CTXKdVKRIVtM3A6zbhW7ktlkeMslCvD/+P9PVHScXV1RX3pGfqZth3Jy47rm5BxsHz49cg8eXyk0UqWwPNkaZuRsvAYI0MNbUTS9/hlEvP5LNbrMBApwNPjfrGLOqJ0Joha7Bzw/LzjcNxjTIB3liSVaqEstFZyf2tFIuetZ5ot7uxksOEnHgPIC8N/+a+3nOsT4BnbkLwoCQMRORodYIOZJA14t7rlt98+E0QzSVLQNj3OznjvSJKMvuuwVhjDSlva4Znf//EB63ou9R4TrqlWW+I0JJ0TYqtEOtO3ZOVG2kHeURQ5dd2x3W5pLj3T7Oiagal/pipLilySzlEUooziuG9p23bh7gbkZUSRhazKhO0qpu2O/PEPb4nTjGEcKbKM4+nM6bRHecfD/YqrdYbRMyaF3//4ennXzMzzKItqA5fTjsAERGFIGMakqRjrvXfoJJQz79CDDiV5OQ0YYwT3MAw4PzO008LO1stQ3BMYg51ntBIcjfKefpyZ5mk5h4nkAO+x8ywCIRyBkTS2fLYdeI13inGWn4n3X//9GTc7xmFAqWEZBM58laZpLZVbEXMopmmS2YaW8EBcJhRFyjgNzPPIfr9nta4E1RLI8lBpu7zTDHVo6OtBlnKjhCeM1sRxKAz2QNLNzgoKK44D6qalaTpu7lZoZalWOW3bUZRrDvuJxy8nrHXcvL7mdKzRBv6f/6/fY13L83PDYWdRaK6uCvLSEARSaZUzoQzo47igXK05HS80TU9TC9NazlklbXfh8ctxCQl4FPKsm+3I0J+pqhjve6yrKbOI/ZcPHE8j8xQRxYrVusB6eZ+EsWKcOt69e8Nf//YzdV0vzyLFNHr2+4YgBL3cZTwXrq4jhh7KckueVuBjPn16IQhjptkuJwPH4fRM251ZbxI26w0vzwf2u5px7JmnDOc9682KMFBc36yZpgt5FVOt7xiGGjsDzIxjSxQZHh7uGIYZD1yaE9M0kGYll7qWdlicykxDazwQJQJdnMZhWebAPMt7B63Z7194fvnCPE+ShA00r1/fkUQByo9kaUCSKIyFopD5TNeOhCahvjR/73ju7x/wBUGI7zzTOAEiD1iv15LmCUMOhz11XaMXsuU0irUmTUu6tifPC0mbTDKtFIvjSJLGVFXJ+XzicDgs0PiJ3W6H0mJlMSambSRCrrSm7Vp0mGOtW2K9Zjngi5kxz3OeHp8Jv5p+jSdNI7JstdSJLXEinLW7uw1dN2LnlM+fnsiyYqnmjoBf4NUx93f3NE3HMAx8+fKFm5vrb+bOIAioyhVNdxD4fbIS+K3tCXQMyuOs5XQ60XahxJYD4Q1Z62SIZGcxxWapVJN1wDiOAqo2kkQ4nw84Z0mXwY0xmpur1/SdVKSbpllg5K1EnGGp9Hns3GOClHn2DGO3QDUTAhNx7oWLqDXk+VcTo8HoEG9jVlXA5XJms60oy4KPn/bY5ZKttKZvhE/RdTNGBby+/5HD7t/wbmIeR+wMWS5R6HmJUsMojCytKQqpgKw3KybbME+O/eFEGGuurnOm2dK0PWEU07YNznn6vqMqcwHi92cCg9iA3cxmW5FnJTc3K7I0wzpNfbGs1yvubm+5XM4EoeJyOi3g5IjZnpnGiX6x5rnZoZVmt3uhLAq0VigjL4Y4STmfL2zWGyZ61qsI2Yh6NCPYkXevN8SJZrPeMkw9eZahlGe2I3muybM7sixdBqzy4kLJAOHd6xucdXz3/oooivjhu1sBgAcB4zByOJwIw4AoChcjowworZ2Z5pHL5UKW5jw9vRAGinEeubsruNpU/Pqr4+pmTRRfybbj1YbIRDIAxVNVIjpYFY5qVdINHXEUYSdDWSjevb0iijUOh14qaKAWjoVb6nWvhOHjPW1XYZ2AzbvjmbK4Isssipkk9rx7e00QBVjn6LoLl0sDOKqqpG97osgRBIaXccD5kUszEUcxxmjatidOIsLIk0QJ8qwd2Kxi8hwcA0UR4KzUXa+uVvLMsJDG6+WCbinKgO2mpLlcaLsa1MB1vJLkmHJU1Zqnp0cAjBYnVxAaoighiRO00tjZLcnGnqqq2D2d8c6TpDFBoDEG8jymbRXH45FhHJdUYkdR9DgH5/OZ3e7Eu9cDj1+eaLojm23COFqiOGS1rjDknM9nrFVYO9E0NefziS9BwHa75fbm9tszMwqD5eei0CZknCz9MJGkCUHQcDq/oM3IOL5gdMPh8MJq9Zbrm3RZjCh2LzuuriqyNOSHd//CPE18fnpEadisC+Iw5OF2Q1HkS91hRnnFOAonTszLE2EoG9owDBmH5XKPsH2CwC0sDfln+RkNYjhNErQJiEKpXExzIyymMCQOQ8pcOCdt1wIOvVyUtBFLWlUEsvgYZq42OSjF7c0apQKqwvBwX1AUkaTqmIkiUN6jTQh4FA7vQ0wQy6HUyXNBE1NVMYF5wLoWrRFmE2JpE6ubwJ2d8zirMcZgnWccI+CGotCsVgmvHlZL/Xbk5fmJVRXy5XHHw/12uTjIdtzNDh429MPE7373IBfvwS6sQcU0LVUANxNEUmWPw5gil/dMGAScLg15VjEOjmmeaC8X+kF+VllSEQaezSamH3fMs0apjtDMFFXC7V1JmMwoNTB0F+bJ8fTlmTRPubm+AeUY2555mOjbniROGIcJ5x1pnFAUMXka8/njhZenmmm2C3dFo7SWg/1S98+ylLEb+PTpI7e3d1RVxp//88+Mk2yDldYEoed4vHC+HABFUWSUq5TNVbnIQiyKgHEYOJ0OgOXm5obtVoYTaZIShIFMwpQDrRlHS9MMVFVJ15wZ+jPGjNh5z9i/0OiQzdU7SXdkGU09cDodubqqWK8K/uF37+najqeXZ5T2bK/XhBrwdkmmJzL8csKSc25GqxA7RwuHbF6+I5K4l4QBBIEMAYyZQYF3M2NfY2dLkqZoE1MV8bKU6JbvSARqpCxitJKKqnXL0oEZE+qFjeUJkoR5csQ3K0wQsFnneC8cuzj8jiAwlGUMWJyXerhWIvKQN4CcscJABolyWVAoFbNZB/zD7++wvsUEy3fCO9ARmmg5ZynwMhyyTi9DkoAiUyh9y/ly5uE+pywL8BltU7N7eRZO58eP3N1uqMoN1s+YQNLG/naFcwrrPP/4j++ZRuEjRWGMdVaaFEtt0fqZtm7Is0zaD7PUvcZpwiiDiQ3jODOPPUNrAUcUQxC1ZEXM1J95fHzkchF7uHMzRZkw23FJ5pZcmvYbz3SeHfMwg5J3TNvs+agdm63hn/75gdPlLHKABqrVliTORcaTFgxTy2qdcHt/zZ//8xeGQT4z3oHWUl8zJqRrOqIwwjuHdR2T6/mHf3zL3/76K/vDM3d3t5RVwvEM84JRmecRo+VcJUPXDGc94+BERtL3xG1LX3esV9K2iKuIIIlQRqEHzTBO9INcXpLEc3dbcb3NWFewXhdkaUlWJPS9LFIup4bL5chmnXJ7c0uZR+A9ZXYnnxOUfFemkShMmcZ2McsHhKEsv6yV70USh7K80GCCEG08WZh8W3A7N9G0Pd3QkiVS/TvuD4soqiKNhWk5zSMKj9ZecC/Ky0DcO7T2aC0tG+EpTSKe8vLfwXq8tUuDyaLNgJ89qzLlD79/YLY3KEDriXGs5WypgoWbF8rjSGlQcpEMFIRKSfU/UMSxYbNJmSYPyqKUx+MJvfs23PsqgXLLd9N7i8IThDIw+f3vX/Px88TPH2PyPJXUSxASRTHrVUrXHCXplEZoFfD50wvb65j1JubDhyd++nNNaALSwnP/kBIn8ve7u1/x8ihJvK6TerkOE7RuOR7PlGW+LM8jZjtwPO/pO6lr2nlmsxExgwkseSFiOqUngrjncK45nluybE0QzKRJQFFG/O4Pr/jl1ye0hvtX9/z28QPjIJXWIBAER9dJAGEcZmY78/h4IsmkAr5ZXWHnmMcvL+CXhezyDn96/kgUO/75X96hdcjz05mX5xq8o+9b8uKBV7crTqcD2mgm27G9XvHdDzc8fj7j3MTheCDNU4IopmtHVN+hDUtiyHA47EjTDKOF6xxF8SInG9FKEYURSsvZYZonTvsTjy+PIlvwoI3nhx/eEmlFoC1xqGTIGYiwwVtFfR64nDtev3qPVp6qXGO0IQjkOzHOI+NoMTogzxN0mco7MotlyOw8znmUd3gNWsk52Hn57LVtQxCE8sz3koK91M1yrgtIsky43tYyTTNKGVarNQp55gvKKCA2cg5wzvH0/MQ0ORTCZtxs1pIwUwqvNBiFMXbh7E1LYEWhPN/ki2Govw3xgkDuTG3XytJ2njHGoJVinESMIoxo+d7J91CYflVVoZUmMJLy1xqSJCYIA+pjDUCcxAz9hFLy67fWMk5i6R0G+Vk7C6djTbXKCIwhTkTGFMcph8OBy2VGEzGNnjhRFGXMbnegaz1lGfLTT58Io4n9buDx80AAXN9HFFWJ845haLl/KGhrGPqZruuXlGpAaOJl8RJT5MnCjt3SNL8RLC2Ky7kjWCc0zUia8W0YaoKAujli4gBLx9PuUd5/wcRqnfHq9Zqn3SNxUpFmIdc3W7pOxKZ4vdwHwFm5NyqMnJl1SJKElGVJ1zrOpyOniyziV6uKphlFSmng7btb0iRa3A03gmQ5joxjxzwPXL/akGUBnz6d0cbRD3vSNOP993c8P8owsB+W3rBROCWf26oqMKEhCA1hpDkdL0RRTJZlHPYn8jwXBFXbigRIKaI4QWlN09W4ZuJl9wRaBLG7Q08/dNzf3IGa8VicGzmfjzjfUxU5dnLsdgc+fXzh1d0f/t7x3N8/4Kvrhr6fyLKCtm3/ly/VAlI0AdVqxTj2C2dBQJNKyYQ7SYTzFkUZ2shUPAgqnBOD1DRZ6dX7AOcUYyc1imm0RFEKaJq64/rqitv7G4axF7h4GLHZliLbODQEOmTsZ9Ik5/3796LbvhyJ4wBvFX0nDKMsKTnsDkSp/N4u536Z6Ds8aolZZgRhhPOKw+mMnRRVtRHWzOlIWRasVhvabsDhubm552X3RNv0VKGYAedxpOtmvPdEi21wGGRwZ3TANMklNwwDwnl5ADU9JjS0i9RkmsaFOwab9RVdOzH2I1lakmcF37//jt8+zkxTQxpk1I0jzzPsPFEuw7NmbMnSdBlmGbE7Lg+iKAqXlOMs3f1AOExKadpuIEurxQgZ0bUt3kEaL5DMtmUYJTadpwVFviUOMwwhz4dHigrKVfFtkOmVk3i+0QxuXsDJESaYadoz49RJOvR0xhjZSgx9wDA23L9aMS0m1SyLMdqSJuDdxPFypG4bylK4cHN95N61mKDE+Ii3r1f89S8Xmn7P5qqgHix2cAxDt7A0NgSh4XC40PctYSSX/jyNiEK5MATKoL0nCjSTm4lDTXmdE4Xxkkb1xPErjDZ0Q02Ri/XSef+NTeFcgrUT202JVkq20VoOhsMgTJSvVTO7vGjUAhlPYoNWJQ+vrpimkXkelssuSyIvwHvDq/sVdoab6+WiO454Avp2ou8SilLz6uGGKA7QekWglYiCjJhCPeD9ZnnRyibMWcNqFfG//29/Ypo7VOBQWrIXACyKesWSYPIQmADnYRotHz5+5nNoubtb8ebta5ydGYeel90T26s1L7sd79+9JjDCe7BWBqbeKYZpwoTf0zQDwzARhbFA2sce7wUWO3QtWmmqMsY5qFvLuT6T5wWzd3gHQ9vKIFMFxEFBlhi265hxuKCUZRwPJGlKWUbc3BXMtsaN0NYjL4/PKBNwe3sjdZq+Zx4tfTssTI0ZsermrKoCjeF8qjFGkSQhSs8kScjmao1TUBQlT4/PHPY76qZlfzhhAs1kJWqutRhzL82FzbYQwGvXEqmYMDSYIMc7zzgIQP58Okuyekkfl0VJHAYkcYzVklzo+5G2GwhMRhQrrq9K7m5LHl8cWRlQVa/J0pSmHsR6er5wOu252mTc3dxRZAHWGorsNSh5WU/TiLUTfg64nFqiKCSOYsLQY+cJj2zCrZ2lNmSUcLG8o8ilumjtTNcNy3siIVABQ9dL+jgMJamr5NAmDEs5dDgnDFGlWS5dBpBLmFtSGN56vFfgLc5JumgaBqIooshFljLPHd4H2HlisEqMy2Eol3/vYUklWSsbv64dMWZmXW3RyqMDkRvgHW5Z+NivFzwt/7kKtJjdnNSyivKB7757wLqJaZTaa5oovvvuNf1o2e2+0LYn/vSnPy1A3kVOZBRZmtB2g0iCyhiFJgwN3ie0nebp5Zmbm3tur0sCLX9+zoN1JclOk6YZzin6fhJLppdNcBQUhOHM+7c3fPzSMM2W/+P/+CfyomCzWTEMNZ8+/8Z6VVIVW8bB8vT4CTsNdO2F02XGeU8YhCRJirOWtpGNprUjXXuiKCruX21ZX/+R//j3Xzm6hjDUtI0l0ObbUNhZyPKcpjnhfI/1Le9/uOPDr584HANu7m5YrTPq+sg4zYSB1ExWmxRn5V+XRSF8m0GWBF3XcTnXNKea66sr0jSlqiqCUKMDjTbQ9R39MJJEMWUZcb1dc7Uu+VJ4ynJDUZbESQTOMfUju90TXdvy6m7F9SYniSyR0RTlDUopxmnG2VmSCNPAZeiIooA4lsrVbD1Ky2fCzpIYDvBLStWT5Tn90NOPA9bKWSHNUkmaesU0zMShzInwMuT1yNJTcB8eixX+rXYYrZfPp8NZJ91QvHyHF8ancwN2HnAOojDi6irBzhN2Pi9nmo4oyBaLd8A4TYDFKJYUhQz4ZEGTY5QnDAwBAV6Jgd1ZK4klL+NB5dXSsJClkVYGbxxJnLPZFigTiEl4GPB2piwSquo7xnHieNzTNBf+5Z83MHvMkvDWSYgxhtk6mrYlL3PKKlrSJIah7zhfzpwvLW9fv2IcBkITypBsuXiuLymBCQHD5VyjlFjDh1GSm147grTn85dnznVHFCeM08RqXRDGE69erzifBpIk5c2bN/z62weGaURrgwki+t4yf/1+G8M4TVzdHPDayGd4dUVkCj59fMZ7LRdOPEo7Hh9/IQh7/ss/vyaKY/72t8/Ulwnn5BxXrUqSSHOpQWnLah1xdZ1Q1yXehdRtjdaa69sb6rrDOcs4dgxTR7Fac7lcsNYSBSlfwdlZlhEH4ZJUkBTcPFu0URx3B77sPjJMgzyTIsX3PzygmAmMoygD+mEkL/1ycY44HvagDN9/9zuqMiFNQuE6zyNKCZ/MWUjimKq4kuQWM1pGagBoo1BGSZoVj1OecZrRs0y4VCDojMulBjxZnopIz2iUUxRFSVlWKK0wYSAPWuvQRi1M8ZnmeF6G1oYsj+U7qBVgUIHCOkk4e69AyYBOKdAK0iTEzg4TeFKtcE6CAd4hzNWhX/iwMeM0y7tDG5yzIrQzAd5a2l7Oh5WXpKQKZLjoHQzDgPOSKPHOLYMxhV74rErJoGOa5by0SUpOtdx51ustbVvz8nLgdBjoWksYw5vXJfOs2L+05HnB6WDZH07c3FTc3Jb8/Ocz1hqaQmGUZZwmwkhxc5dw2A0MfcdTP5DEBUYluHmm7wbCQJMmESaI6foLYSDVzaYdGEcnwg8vSdsocjg70zQHoiSlWAfsn3dEQUjbeGYXk6RSNyyKiHGCIs+Y44hxlKFVEISy6AwUSZpxd1dwd1dg9EBVFkx24HySlo9zE9vtFcdzTz+MRFHE7d2aMJLzRNcrjmeLnWYulwNNe+Tdmzfo0ND3I9o6DsePVOsKayvaZpTG0SgymXmW5XC1qkizBKUs602J0SFlseHzxy9ES/J7DjQ4uY96D8PYsz8cOZ1PHE4vbK83nM4jh8OFMkuJIvnZn89Hjocj1arCBHA4NvzlL79QVRu+fHrhcNjx+Dnn7es1v/vxtZxbrBh6jQkIQnl3eCwaDW4Z6CknJyEnn0+P3P2dt1zqM2EQEUcJVsmidb3dLu+WWQb1XtH1A13XCfddKXb7HdM0ymDcA8qS5RlpIin+eZqJ42Rpdxic90udXJHEMVqP/3OR6mW5KlgweTYI49Au7ZSZeZa7uAxGxRI+2plptgSBtCxAcT41S7IyY54n2rYmiiJBDE0zURTiveG4a2iamcupx1sjjP0gRKFxyPusnwZJs3tpC7bNAH4gjARH4r2XZKPXzGPDl09nrHPc3Ka8e39N38/sdw3eG+q65fo24h/++Jrj/gP7545hGhj6mZv7gCSTRN9Pf97jw4CuH2gu0zefQVnkOG+ZxoGq2nA67ynKlDjK6PsRlKH7OqS0EvpIUsFtmcDTuZlqG/Dy2DKOgRjmQ+iHI/f3FUkcMfQD0zgu9nbFPFoCE6DUIitJAooi4tWrTHirbc+X4RNBUBAnpSTsTYhGM/QDw9gCM3kWYL3gnMapYbatvEeV4vHzB+5uIrIi4+5VzjSPnM4DkxtQQYgKZpQFEyjiNBNO5jAThQFxmnxLPRqjub65IgoSrNU4K8iD8/lIEoYEcQRA14rTIM0C+nnATh3D3BNEAWEkHD8dzBRVRpImXC4dLy8vRLHH+1fMdhIWOG45P/19f/3dA76+H3h5eSHPc4IgpK4vUmvzjjSVSmPTtijlCSNNFGuSJBdgcxTQtDXrdUHTXrCuJUo0L7tn3r59Q9+3KKWJkxg7w+l4YRx70jTm+vqGy7nhchaGmvMCv60vNX3XcXufY4KA47EmTiJ2T2fatkNpw+PjE+PYE4WKLC1RSuGs4+r2mlW5IXhv+Pz4M0VR0tYz1g4kcUq53tAPH6VusBy0rfU8Pb5QlDk3NxtQbvkgGqqqou1azpcTQSCMDYciz1I61S0bEEuaJ/TtgLOO8+myRIZZDuOOsixQStH1HdaKdCRJY4lLhyHDINwf2UqPRFHBpX7m559+w/meskiYnSeZNUZ5qnVFHCcMw4SzifB2+mY5XMjhBfy3w4FSIvSI4q/2NEOWxWgtmz2tNX03ooHT8cT2WiQQzjn6tiUMS9r2SBxWtN2BsoxJEoGqDuOId46yyNBaKg3j2C22Nk0QSIXh+uqGPAXlE7z3rFYZz0/PDEPDw8NGkj/akaQxGs/btzcYk3E4fsHOmuOx4eHVNbvdEx8+/iSmnNDQtResE8ajDixFNdHvjmgTcnu3ZX/YkcQRcaqI4pRX99esq4LVP7ynvtQcjwcA1us149gTh4aizJdkkWxMm6bBuhPea7IsxPlFnR4njKMnRMulKRJ78Dh0KDWTxDF917Pb7dFas91sSNIYh4gdrJM0gVYOhUMrT2AEhaWVvHC9tygjBwG9/Ho8Mqw1dsL7me02Jcu+k7qHGsEJ6yjIMoIwJAw01gmU3DqHWhJMYjpVAm1PDWYGlEdhmZ2o3jV6GYbMBEbJd81bQBOFhj/8/h2/+/ENs5tF5rI8sIviNW0/8PHDz2hleffuHcqDW4C8YRDifUTTD6RXKWGwJggMSkmK8/Hpi6Rz7yuUV4RhLC9KW3E4yYDeO6gvnTCdEk0YCUsoDC3ffXfLh4+/cnef8ebtn7i62pBmEc+PH3FeTMd9M3DavXA8X6jPIf3QMkwjURgK58I62qYjCA3OWuaxZVUlrEphWg7jgAlm6qZBYcT4Nwysq5zd85NshEJBBkRhKJbhJGF37IiNo6pWtH3Npb5wvxH+mEB0Q4IgRitNlkk6aJ6Eh+K8Y5wngshQN2c+v3xktmILi+OI73+o0GZE6Y68CGg6S5wYSRaomNPpgNEBP/7wI5sqJQ4EISAQ7GWwpgxVkWAC4cR475bUgsMsVrKvpmzv5FJf1zUa/e1ieDnLIF9rRZ7J0NvODq0D1utMBnnLP5TWy2ci4eVlT9/2KDRllcuFOgxRmG/Jao9dqopeBmAIYyMvYrnwOLewSJIFMyALjyAA/AxLzUuqG0aWPc6SJAlaR5Kk8vbbYfJr4sp74cB8lXkEBhxODntjK0kMLRUUMVKGGK1lS+7BuZE4TYiSGG0U0zgyTTOrVYXyIsOY7UBdd0uNNcXbgNmO4Bw3mxV27JaNukCanBUBR6Acduoo8ortqsJZh/OzVJJNSlVoXj9UbDY/YL0TaZLyzHOD0ZY//fE7jA5xk2McZ/73/+2fZXjooe0Hmq7He9g97wjQaAVRaIiLkiSNKLOAfT/z+PQRY2b+8MfXRFHIn//jI+NgmUbZ2JabTCyQSQ6qY3Mdsrm6pe8agiASxu9yGGvbHmstdX2kH1rWaUnfi2wjjrLFoqooi2pJFfYoozBBIMOVwPD89Mzj/hOztZggJIwCvv/hNc42KDUQxY5pdiRphPcabwM+f/5Ctdpyd3tHVebLwMOj3ISfB7k0mIgkTzGBXLJZSifgCQKN1/KuBcDB2M8M4yypMSUcYbGMyuelKspvCZ159pTVBoVinp0MObQkEqMo5bA/0pwbnIOizAT8ncaAPAOkIjvjnJNxifaEgQzOsyzCy5uEOI4AScIopUhTQXrId3X+9v6TBK38fuxsiZOYwETopbJovlYJ54mhH5fzh8hIpDYsz4hgGfKNUy/ffw9MIyhIkxitU5yXhUo/OMJYhDxBaBiGlmGQBGYYillxso55Hnl5FuB5EkVoLQnoKPBs1iXD0BIaI+/VRapl7cA8dmAmqnLD+uFOPut24uPn8dvP7dw8UaxjwiTg8+MXoiDiUu+5vssoq5jd/kRe3tL1M6tNISzZ2TL2HghhSV4FoebqesXVzRVh1LKpNjgf8LJ7WZbqAVdXWy6Xnr4bKYqMt++uCUKHdY77h4yPvx2ZhonLZU+S3HNzHeH1DNrT9xec77h7qGgvmmF0aCNJ33mSBeR6vSJJDNEiPeg6R1mVXM4ifrm9vWMahuXM4ZYh9sDx8sLpdOB43LG92XA+HzgeLqyKDJwMuA+HPdN8oqgqrB356acv7Hcn7u5ecTy88MmPtPWK797dkCaKtutAy4ArigK0EcSVUQblNR6PdxAYjUOeQUoJX+98PqN1QKhDpsmijKGsVngvCVSlJWV0Pgn/eb1e0bQtwyDPVJZkUpIssqflrygWLhVLsTwwwq7uumZJZ4/fGH9qGXgrpYiTEPmGCAYnDI0kl/FkWYSzMqTTWt6Nfvn7a/X1PSH3AaNjtDY4NyxvD4/CE0bBsuAVgIrWMmD0yCU1irV8D6zIz5QW4YV3cD5fRDzg5QxureOqytheldT1RBB6+m6g7c7cP8RUq4DTccaEit3LSN85vv8x5f51ysNDwXFv6buBNKl4fjoIUy5MiJOIt6/fsnv5wqos2R+fCUNDEKTUtdShL5dGFutJJO9gZJATxjH1ecKEIze3OcddI4btLKYfzrz7bgNu5HTuqC8XqdVFMWka4v1MGEmbwRgYp57Hx44bH3I5n1mvr1mvb2gv+29NM+/UIiacOJ1OlFVEliRcXWX03fT/Ze6/ejTJ0i1N7NnCtH3SZciUlVWne2qa0xczIMALYsB/zgtiwCE55Ez3UaUyM6SrT5reghevuedpECQ4KF4wUIGszIzwDHc322K9az2L3YOjriqO+68cT4aytGgLx5Njs9kwDorj8QsxZJTlgkVe0vdfcX7Eh8DhsGecBDekNdjMsN8/4byjac7s9xlpkmDms0XTnFkuM968ueLyqmLxZNjvH7HaYTJFXSZURUmMUaKfbc/p3KBMTb1Y8N133/L4uONwPJEXmUTOVRR3fVHKOZYAs6AXESEtziUcaubnMbeZW5OC0sJnV7BZLcnSDK3sPIjQMK+l1lqIAaMNq+WK9XItA+IYePXmlUTPnfCtrdXCd3YRP0V0IUMNmyZAoB8apmkkTXMm53Be9lWtlZzXAFSYByHiPJQv4XOj7jQ7ZtXLezyO4lZWCK5jGAbyIp0HuZa+G4X7ZiLrskb1wvR8vG8AzdBP+EnOWU7FudwikmWZGBycOCNFXFR4Z2gaRzpp0jwSY8txfyYEQ3OKFEVF07QYk3HYD5xOe8pa3LPaKJxvmNyZn35/zV/0E/t9wzQprq4uselImhry/FKEerPg//R//IWhc5gksl6v2G7WHA6PVEXG8Rgo8ozD4cjQO1wQNFFdWRaLHGMifd9jk4SLiw1j11MuNP/++oZ/+cevjJOnXlRE3eIj+KmT4dGpIQYZ2hVFTm4lIaNUwAUxOH3+fGCacrabnLJKqKsFzVnE2CzNmKaJPBNMmLWG0+lMYis2mxVlXnN18Zr/y//4r2yWa7abmjSNeH8mzSyH0x5UJMtK2sbj4wRaBrkKWC1XtN1I2574/OULFxdrRtfPd9cIueJ07IlB7r+TGwh+QKFYLUW4jtGxXKy4uV3w+s2ax90Dn758YrPOieTkpaasM9Ii4/RV0G7j0NH2HcZK4cd/+9/9N4Rp8f+dCPf/4cffLfBlWcZqtZ5bZYX98RwzFTdFYLPe0PV7xmlEzfy3vm+l9MLK9G+cJGL5vAFP08RytaBvB7LU8HQ+zpwZi7GK4/HAOHjOzZFXt69ZrWpiFIbcOE2cTmeWqyWJTdj3e1ARa7IZJim8vhgc9/f3LBYLsjSdnSCap6cnrBUXnU3EJqqUYff0hHOOx8cnsiyfhbaU129v0EpxPh8w1rBerzmdjqA1SZJyf/ckuW1l2V4s5eJm9AxAznl63NMPPWVZ03Un6sWCzWZD17azky5lHKW99OH+ib6vWK6W5PkMVX48slhsKIoMH04s1xnGCtT946dHtI6U9YKLi0seHx+p6yW73Z6IZ7PJqJf53IRkMGlC38n0Y7ncSPQ1yoU3zRJ80Iy9IwaZMBpjcJObC0mE6ffp0xe0NpRVDsGhjQhBSjmSdK46z5VwGayRaGAiDU1plrLerFgthUvVdS1t23E6DpyOI30nDKxxkibkPC+E58YobapGs6xLFouCGC1KxxdA+um05/JyQ9efOBzvCOWK4/FIWWYsFhmr9YJD43n//paqWoGaKPKMtu1pzg1KSYtVnWeoMFFkmvL2Qiag00RW5VgTCK6jHbu5fCSZW/2kYVRpQ98PeBfwo8OPYgdPrOV4PuHcSFUIjyLGQJplXF5cyRQhkca44KcXYYAIp6M0hRrdk+Xi9lQzZTnOcXKPODPExSGLapY+85ccdW2IUeHc83RYk1ioipRxlAbIOOc8InPs0EfZPJUcUZWSTdM5Kct4diylaSpOKqUhzo6EcZwFEjuLjwIzVyqZzRuafpRmMG00iiAgY2NYLus50u2Zho7zUdaGIk/xXp7d9aIkxCANzjYV6qqKxDCCH4jKU1VLtuulTOumBhccq2XBotK8fr1gtXmHtQl5JtGsaep4/24jESCb4uqc1P5AP04SSZ8k5qOUtJLFIF+b1KQUi5KqTKjylECk7z15nmJtxI9eXGEh0J53oCzDcGSZCXtoHHvWi4IsVXjf4HxHhmV/fBKwvhvlEp5qpmmkrjecDrL5Xt/coIDWTy/g4BA8D48PHJtHHh7uWG9XHA9HHu6/8u7tO4jCIjweDjT9idViiyPwt5/vuLt/4tWr1+wev/IhjHzz7obvv39NlmrhWCTSdGmMQqs4PxNyGXmOdGitZkcPL6Jb1/VUZT2zUuLMcI2z686DNpybVrhs1nI8HZmmkRDdHLMwlKVEuOuyIksLbKrROsy4BEVq5HAwDiOHwxljDEWRCiOVOcahNWM/zlNdgS5bawCD9x6t5ynwDGJu21acFWiypCDL9HxwlPIS54TNUZal8KBC4LlgynmH854wSGu6D55xGOeL4/MBE3a7A9oY2q4nzzOSVA7xy0WNNTkhThglB2BZb6Bre6ZxROFlgq8VxmqiUrgpMPQ93jNHZQw315dIAz2A8G6sTdEq4MYJrSN5bknTAjc7zyY3Mk49XXfmfPQslyvKvMKHieUyAa1J05xh8nz4dIdzcHl5Oa8JCetljTae9arGGMV+P1BVOW/fbdAmEHzkh99t+fDLA34a2e0+8913l6zXBbunI56JYdyTJgW3b2q6RtEPvcRvRxlSTNPIarWiKBLqOkdpT9+NLBYV55MUEKw3a4zSBD++cMvcNHE4PvB0uGe3e2RzueZ4OHLYPbCuSjQRozS7xx1BdazWW7pu5M9/+UTT9ASf8vPxF6pC8/79Lb//6e0saAeyLJ0vR+LsUbOz59l5hDw+s5ggbKpx6JkmT5VXsj4nlvV6jVLCKw4+YIyhaTu0sS8CzTTJehiiuPSCDyzqBWVWkiQZWWZBx5ezT5qksqe7iePxTHQRYxWLRf2CWbFWXGrPazggDt25edq5EZuk6Cjv+zhOMuTyQTABOkHhZX0mMAwjk+vn/TzDWju7niIKieZ7JxGu58+jaU4kWSpfv5lBNk1SmGSShKaRtsw0TXh4/MqiKinKGtmCZMCVIBfAJJVCt845FotSKv2UIjGaGMXZ27U9RClYSBLDm9vrF6EkxoBBhjGJdaRZSlmmaJPy1HdkpUSNh3ZisaxIU83xfOS7H66YhoG27Tkdz7MAZCGTgUOaJXPbpsYYzcP9nk3wnPYNy9WG1eqCrnGkSTWfQQJd15EmkbIQAUyhqKuULNXESRHCyOcvf6WqL7i4TOiGER81eZYzjY4vnx5Jkor1ZkuMiofmaU6LTCg9sd8HYvQURc40DQzjQNOcubv7SpGlaKWF+dqeyVLNxUVFWUVU0jKMB1Lr8caR55qiykgzy/l8phv3XEw3uElxcbmlOQ98/fr1hbt7Pp2Y3JrKFGxWG4KSdyP4Z1frSFQKoyxScGGY3CCuNWOJKNwoQ+gyz8hSKZNBi8tPK+QCFzxplpNf5vOZR5pcY6jx7jlxk8xRRHEQ6llIENdqR9d15Fmc371I13XsZ6dflqWsVks5i8SItTnBe7wTx2YIniRNSJNkdkeKO10+Hy+OkmliGEa6rhNhU1uyrCZP17PAL46kaRCxvCzLWVCUs6A2Zm6FHDmeT/N/M8W5iaZt8X5L3wemqaPvPU8PDdrIkK/vFP/0nx+ZRke9hJvbDdvLBB8bIoFvvhOh4P6uwXvH7esleR4YhjOv315zdb1guVzzP/4Pf+LP/7wHnXBxccUPP35PWViyVM7C69WG/eFI3w/yfVKKEByr9YK8iIQ4CA5nu6KqFvz4U8bQaPpWnsebNyXvX9/w+csDQy/7lziRxIGbZZYkNXgvrawxBM7nFpsoyiJydbkkSTIxYBQF1mbCVE0SjIXUpoTJURcLxnFgaMVtH+LEjz98y+3tgjyf0FoKs7r2xGF/xtqS73/4lnGA/a7leDhSFCXayDqVOk2SLgTBoaAocp6eTsJ/y1KM1RxPOxb1QgTKRCLbea4oqozNxVv2h2p2vSnwlu36NTaRCGlUkX4aWGuF1o6ffvcG/fs3RCTSXWYWYz1pAgphnen5YwUlw/2uPWOUIcvEHBI9uODRSJnFs1BWleWLEO1ChKjxPnI8nhmnidQayjwj4Gdnq2IYepSGsiiFP5lI3J6g8BPgLZfbC7wf6YeGgGMYe8ZROHfPZ0uQ4bDWWjAbiDtYG01ipARBEClxFvUk2u+ce2GpzbY9iaIaQ5JYplG4xdM4zbw/Kfq05kRZlTSnETeKIUZcp3KuxEWcdrL3z+fjLBPO/jNKResEQuR07CmDuMO1Mjy3yyfWYk3K7sHxp3/6Ql4YssIRQ+SHny4wtoKQ8nh34He/f800DWQ5DEPH/d0Jm/RsL0pevSsZO/jmuy1PD+LW/fbb9/NZMOLcQFkWeGAYHH3nSazElIdxoCiXLJbi7Ou6nru7R8qy5vpmw6df7yhry9Pjjq5PefftlqLUPHzt2O+GmfFsUdrOJSVWnNZKk5gUH0aasyPPRxZVTrIucT5gbcrNzRKi5nDc49wkJrKsIM81BMVf//IzCs3945kQNatNxdt3N9SLyDjtCC5Q5hl3Dzs+ff7Kan3DH/7h95yPPfd3B56enlAkrJYrDocnyjKnLAthbida2J5ZyTh4jgfZr8uyZBwasjQhSQ0ojzWKtjuSlyVZBq9uN1zfLPEzMzVGBaFgtazpuo7JTWgLUQXGqaU5Nby6uWW5vPx7pDk5q/29H6BtW0CmPXVdCTg7kebUoshxbuLnn3/m6mqLUpppUmiVoa0IDdp4irLg+OXIcT+xXl3jnOPrl6/z7/d0bWAaDG0jUUv5wkrz4XZzyf39A4GWi4s1VbmA2Agkt2uxJuP25ooHdeTX/T1dN3B5vSXNLF17epnUj8PANMrL3fX9zHxTwuiJmvV6w9f7HWVZUdcLdrsnsiyRDH0EFwOTn9hcrBH7sVRx1/WS7eaKr1+/Yq20IjXNI9uLNV3foU1BWRXztKTg6vqSLEslNnQ6URQF+8OOaRpY1Mv5AlcwDiOn5szV1Q03tzecTg2n88DV9YLJOep6ycPXk4g6MRJDpG27uQWrF7HJRK5vtjjXSOY/X87QdzlAHw4nsiyDIJ/P8dDTdiPLxQ0Cs7ckicWHnvP5iPPS2raoF5zPLVpJpDlJMozWLBcXDF1kf7hjsy1Yrxd0w8DkHHqc8L6fnR05U5zIU0OSLvBezQJfxzCOIjhOHh9G1ouCosg4HkeaZqSuPHalMHbi4eGOfthxsV3x9eueN2+uaJqW7UXN/nCPdyPdOFFVS8axw6ga7wd8MGgTcC5wOJ55fDjx5s1rfBgxJiGi5w1iZBhatLHkeSG14S+RQHEzgFzggpLJdpyFvqGXWKmA1D0ROWhITM6RJQXTOHI8yTRouag5nxt2+x1RQ/Ti6iqLimEchZOU5RgLWZ7Mk3+LVoZzexZ49zS+fM9ACcjWiDNDnDxB3kmtyZJSYrx9i1JGYmNB+Jnee0KIc2xWmAneOfqhl5glz1NlaaKLiDEpOPlvBDeJ8Bg9XSNw2Zkbj9aK4/GEMobD8chyuSDipf02y2ZemQCjrVUvU3E3TfTRUxQZIHZFad8KtE2L95DO7V63N1cy4VZzhFJr0qSg63sIniyzEgsq5jm4F5EjOGEopElGsqixVrFeZ/iQkqYpAcPHL/cMg2ez2eB9oCgyqjKjyCyLRYHVME4jMYlzMYxltaiYvERX10txBrx7s2WcBlbrCjelDG3k6qLk/bsNy43n/ukT43CiXizpukb4JWjKsoAYZu5oz+7pgTwXNqFScDweKIuM5TInLZdM8UjTnbDGYfREagNVmQnXsus5HI5sth1Gay6vLum6kbsvX/F+YLOu6IduBpGnbNOVOHZmWHwIEWLgubAHzBxtmuTwpgVmniaWIl+LoDTHRpWVibE1hhgcxhouLrazSO25ubmUQ6cXQVorSfVJnFAu6Flm6ftGIu5K0TROIkxKy7pGwFgR7rpObP1pmqG0JUn0C99Mza66maQ3pxcjaZLOrdANIXj2xz3Rn9msXqG1JrEWbQIxWJkST6Nc1pIM7/wLv2YYJ7SCfmiJRBHGXSBJE7TWLJY1Tdvx7PAaxp6nvbS2jcPA09MTwTm01rx7/w3WiggeYiRJpOHPeUdVyR5jNfh5nfJeylL6oWOxEO7os7g4jJ5xnEhMRnSO5nTGWHHnWqPJ53KoDx9/5nDc8/uffo+pS3KkHMKHCY2lbc5E71DI5dsFh2sboh9ZLDJCyMjSBOfEGTVNkTKxsk+lwqRCWaZx4OnxA3V9xeYipR894QRKTaR55OnxjDYpq9Wa07HHuWn+mdA27tkcSZZlDEPPOHq6ruPx8Z6qLLFzKcvpfCLPLBeXNYs15JXjdD6R2sDkPVmmyYsCpS1t1zO4A7fBM7rI23evuPv8wPG4IzGWqiowBnz0VHlKltqXfUH2ZrnYGy1rspnLEIxCBCalCc5TZDnrZYbWVtyX8/UrEskTGVYm1rBZr/FOziTl5QVq5htJAYYBFfAuEpMUow1pljBNPdMkRUfCrJTF2FpLVMIbQ4lb5NmBYI3F2nR2Ckn0DyWxyKBBGWAKaPVcRKA4nxqaQbArmjOb1a2kFNCkOp0ZvEocDcgwQlISAeeldEscwpHT+cjSriXehMHahCSNLFdL9scDMQbGaWB0gn0xVmHcyOPDI845hqHnzdv3pFlKmsoAx2jFNBdIGGNIM3G0GKUh1cQ56tw0DZ1W1HPpm1KGybmZ9xYZh47TaeTq6pKqSPjhdwljZ/jTf35iHCKLxYJqpbi/l8KS52KxGMMMOk+wiSLGiSSRd3S/P8/DUMNmVUnJ3Dhgrezx4+hI0xSjkUbwpqeuVlhjybPAoq5RwfDv/uHfcXlpqUqHsZH9/om+7xgGh/cJ3373hvNxEjerUlxeXvL161f2+yeWK2mGl2daMQ79PKROybKEpjuTGgssZ8E6UBaG5ari6vo77h/uUfpGihNsxeX2hq7v8cHho2cYB6qiYlXnfPP23xOiIxJnQS5iE482iKIQQaGeF3z6cSAxdr7R6JeBmTVKHBraYqqSssjRWuLZOihGHxiaDh8cqTGkqZRySITbE4J8XdOigNkV552UMyQ2J01SRjcQw4T3E23bkCT2xSVujJVoYVnKnxdwQdxYbvQ0WthqWZZQJCnMxRrCgIwoM3MZ3TCLEJqqLClzKQuc3IDzwiz0816olJJSirkYapomxkmcfVmeCeJo8jP03TBNnhB/K9jzPuAmxfnUobBMU8R34po57kZJ/gRF1yqG4ZFqcSFOwnzBf/q/f8Y5TVVZqoXgDz5/OjMME2XVcX29Zr9rSWzBj7/bcn/3xOs3N/gwzpFOKVeyc1Ot1h1hRgS07XMxSoLVenb6N6RJ4HTa4wYpOOr6M3WdkeeWzbbm04cT948HEX+YnTiKl7W2KHP6rmMaPc054C4yxjGSe0XbNaw3t6iY0g8t/XiiaU5MieLd2xs+f7rndDwCmskZfvjxW4bxxLmRO/A4dJRlwc3VNb9+/Ip30pK63z/RtoG2m9hsLumHgSzLeP3mGmMCZSV35xBlqDiOUn4lUcEt1mhps3YjejScTp56maKio8ql1bWuCqLTeNfjXM8wdnR9Ow9vHjkfThSp4+pqLcaLLJHzFAHvHGHGnkzOkaY5iZVznF0sZLATn+Pd0i7snUQ+kzQnxDiniyQyb55dgCpglPAjFZHzuQHijD9JMSZ/EXy89xhjRCSLOdvVK8p8w2q95Jdf/4WvX3+hWsq7Y6sFMfrZVCSO3mqR4CbNMI6Mg7jxQgiMcZrPi+LOEyxCgp9Z/c+lM3J3m0XBLOPctGijqOsl3377jv/0n/+JcewZBs/h0GBMKoU5o5f9PUiZj7UAnmFs2WxWhDDNe8kw76cFEWk1F2SKZxzkLjOME825wczpp6GXss7EWIILeKfI84J//s93eB8Ze8P91zPKfOXmdcb791v2u5HPHwe0GjnuAkkycNh5rF6SZSl1XXE4PJEklk8ffyWEiaAiy/WGGM+ApusGQpj49rsrklTWC2HfS0kfUfO3v/2C1RXD2JBXkaubFefziRAG0sIT1cBqXQiaLAg6apocYZgjupnFu4jONETD5BW73Zk8cyiVc321xjtYLZc41xO6iXN7ZrO9wbkRrSzntmO1WvD+/RXRDXTDHm01u90dZZ5R1zVXVxf0M3f308cvPNwfcSMolbBaLjBJQpZlXFxckBdSmqINaCNIofP5jHOOJE3I85SqNHg3oo0nzSxj3+F8wvnsyArNMLS4aSQqR70sKKua6BKMCmgiysDoRpr2jMYw9o2wrPP2f6Ua9//64/8HEd2erj+ymF967z1N01JWBcfTgcViRdsNaJXS9Wfa9iQtXmcRj0wSaJozh/2R06lltzuxWlVUdUbTnDmdz7SnSNcG8jzl558/8vrNFVfXNefznsenRy4uNrx585rD/kjb7tluNxRlxv39VxKb0zYj3lvatmEYpakozar5ghVesu79MOB9YBgm2q7FmhylNJvNhqIoqcpSWuqmfr6gKm5vbzkcDvR9x6IoWSzk8mC0oawEZnp//8jkJn7/Dz+y2Zb8+S//Qtc3LFc1CoSZNTpAIpUfP354mYIkSTK7G8WBtNkuac49VV2z0DUhjgxTyzidKYpCLKOdTLzFjWBI04Td0xmlNSFo2rZjvSlZrpbz4Vfjw0jf9ViTMQzdS8Q6y2Wydzqd0NqQZQV9N6FVSp5pQpSSEGmG1DOnQTP0PenFlq5L2O+OrJYbmubMbrfj+lWNUoG+H5jGgcl7ytqidSpx36GhOTfYJGNRr6S8IYwsVxuMTjg30uhX5BVJ1tIP4nQsipy27RiHkb5r2D3tGLqB6FPGzvLP//iBy+sKpSLpdcboJtABojAltFIcdjvywrJabGnOPZ8/39OeA237K6fTE+tFyfu3N/z7f/ejTEeLHJskM/nlmTP0PJGZYxRRFvokSWbxI3A8HmRyp+0My7Wz6y5glLQWlcWCNClnl51MklyQy49RhtSmRCC/yF/cBcZqxlGcK1mWCU8JuZxNo5/dUWuMhXGeCsZZaJCCQ3EOzCYk8AE7FzEoQKNoGxFaY4wQDIktsMaSJAkhCNNCnB0iSOiZG+ODMHD6YRBuR3CMk8Pa9cthOMZImqU0XYfWMEw9IY48hIlXN684nRv2Oymt2Ww2rFbbGZgrRRcheJruRJrJIp1lKXmSwxwV7vuWYWwFjmsk2jmNjtF7QpCN388urxgnQgCTJNSVOJN++ddfWC5rlqsfsXPjpHPSztX1HW4a0KQYrZmmQXhFU4dZ16iYCqMD2cBcCAxTh9GKzCYEbcizSqbKlcKYkiRVjFpxsVhTV/C7H26430fef7NichNP+zPbfsM0SjQyywWa75wA1pVWHI97rNbUdT1PBB3LVc1CeS4vv+fh8QHnRobRkWcFt9dXWGs4no44Av0wcrFZUxWGd2//8PJ9LfOMNBXQv9biSBCVTUQwH6OgENJshuNLbFxLRkkOWApWywXa2JdD1egcx/2BafRkaUKaSTQpz3J5tqKjrkuMlY+rogiK+IyL7S3ejxxOd0yjFPYkiX0Rd3wIaCuimUx3I8Mggw+tZR3WSsC6WZagjBF30+xGZ+ZdaeQQakzCcpGIyO0DRmfCC4tBRt8zS00pXsTx4/E8R64VeVGIaBgDwyQHahHVLb53EvPuO4ZxIkZYrddMzqGi5ngc+fL1K9577r984fJixeX1QFUs5tZMKWH59def6bqOP/7xj8JtIhKU7A8+eKpF/dIeH3xg8o5+jkr2wwBpgfMB58R5ZxOJYPa9XMqqckFEnIZVtcBqTVXkaGtBpbhgmZzlw8d7np6OFEXOYnak1lVJlhiMhiyxBD/St5FFteTqYkXXOs77kfM+4/c//Z7tVSTNAmmq2O2Os8gha9erV9ccTz19L4Lu1dUVnz9/Zn84SqGENlR1OU/qxWEpAw9D0xxJbEJd17Nw5SlKTWVSLi7es9vvCfH1PFjJuFxfizAyjozB0Q8jRV6SJZZ3b74RoTQGstygrScxcqGZyXIiYitxbU5uJE2lMdh7cY5KzFUYZlpplsuaxKYMozTJOuc5NyJe51mGNYrBQJYVTNMAHqqqEqSGFSdX9BC85XLzCq0jD48fGfoe50eU1nNUNr6ci8qyQCODAR+Eo+hdYIgjXZCv3TNHGSUFORJDFxi9fr4gKU2eFyQmAy2uCatLsqxgv38CHV8GhgCTE06z9x49uy0E6ZLipoQQJrIiY3QDwQmXbxgGIp5hGuYIp+by8orJyd5+OkvjYde1PD3uCWGiWq5ZL7cUeUqMgXxuAv5f/tP/zJs3b9lsthACY/C4SZpRjTWsijWaeWgVIj4Ms5sxgtJEHF078enjZ1arFY8PR4YmUlSR42mPSRasNzUheh7ve07Hk8ShlZq/1p7ciqCUpinD2OEmx/k40m9y1EqaW6fJc3FxjaagaY7shjN9f0Yj/Okvnx9p+xZFyumsuL5+jVKSmtgf9hgtTOaI5uPne1aLG4oi4/HhxDgp9vsz799+x8ePH1gsKy4u5SyWJHaOuFnivn2B0q9WNUWeorSbz9WWtjuzTBISE7m+WDD5iTJfEINGxZHgB7q+ZcKJINvdEaaJn373PYtlPjNE4zzI8cQg626IEm9LUzNzs0TrU0oEYjeJk9QYRZqVIixYhUlmvqOPaKOwMdC5UViSacrpJAiDuq5n55xwXb33mLmoxJqSulhRl9dkueXPf/2fGcaOvLBUVc1zG7z3sv9FpefiAhG6VQyCT0jlTDcMg3C1Y6QoBfNwPrdkecY0TqRpRtTCNpbVQzaUsiiJZAQiMUjhQN+PL853peZyFSKpSpmmkafdbhaFJekhhTGd8PiMxhAZh5HzqcdYy+Fwkve3Sul7cbFut6sZNzTw+vWGoVf86z8fcNOe7mwJPnJxO/Dum1vytOSvfzqQJjlfDwPn/YlpVDTngFEZVV1wPp/EudLsOZ2OJFlKtViIS8qLwN/3HT/+eMubtxVRtXivOZ1OWJuRJoau69FkHJsTq02OTSMfP3+grBZ898NrinLFv/yzuKtjlFKN5tyDijRNKwO9RAYbQ+95fDxyPHWsl5ck1hKDYrVaEujR2mOTiE40aZ6zMgm73Z6qzmmaHevXr8lyy+HwiCawTGpG50EFjscj7ZmZiWnRSrGoarIsp2tODH1PkkacV2gNqc04n8/0/SBoisxibMBoR1YEcizH4xFrU2xaQxxpmgMoT5FdkNqUusgoi5Qff/yWL/eafuhZv12yXlR0zYknPbFcFFhdYU1CQDGMct5PcvMSTReBVEqU5CYwDz6NIs0SOffp2YX+XLIXBfOgZy53og0X2/U8WBxezmdZLk7Y5+G9rIXCwlMYrCm5vfmWLFnw6fPfeHx8mFN4gWliPr+KIFKUFcZYvvl+TZLkfPr1iU8fHwFmwQ5xBUYRIJ2TIaf3UQQm/Zur3lhx+rm5tMq5URy4KIiasffEaBkHT9+PWJvQ94OclZJsHr6IkUNpTZpZ3DQyuTC7fuVuZKzscSFIovHx8SvHY0NdFRgjA+k8Kxl6R1lUbLcVgztSLeX3EWv+H/+3v+IdczLI8fpNzfVNTd9GUiP7zXHvqasKqw2nY4vCsNlYmuY0mzH8ixkA9AsTVPiEDud7VusVNgkcjx1KJbTNQNcdZnyDlDctFmtC7Lm7e2BzUfHq7QpjBrQ27HcTzkFzagh+vgeYSBYSslyjlcFNgb71HI9PrFcrri6XuMmhdcI4jnNKrSTNao7nE947mm6kKEoWiyVPD3fc3txSlIauPzNME8RIuahwfprPfD1GpUxjYBqFEZ0YwSllacbHj7+yvVixWpdM00RdLmibfhb4IpMbGMaa1TJns13iJo82E8o5QWeQok0pz48f0UZKjcLUkyclWaL57ttvyIqJh8fPtF3H99/9wOKHiuNeTF1/74+/W+DL85zdfuDi4mIW+GZhKE0Yp55x7LnYXDD5njfvtty+WTL0I/d3E83ZSfOl1lzdLKkXNSALrlIBpSPv3t7y4dcdxInzuXl58ZumZbPZMvYJEZnEP09AN5st5/OJ/e5EWUbGMdC3PcvlgrbrhcUQHd71WKs4Ho9sNxvSTJpQ1sstIYw0535u7x1p247FcglE7r5+ZblY0g89Hz78KhO+VLNclUQ1zJl+8KcTISJTzlSx3uQo0/O7333P8bQjTS2P9494J/B8KVMQfou0slhR1489p7N8fpv1xYs93yaWLDMsV1v6tuR8PlOUCW0rX6cQxdX1cL/j690RrTT1MiG5WENIqMs1h+NnFosM52XRHseRPM/I0lLafm1E6WQWqFIgISCFH0+PB7777i3r1YrHxzt8mGa7fyGOsXFgtVrjncMmz/Xhz1BN9RIvyrOU4CfSTGzQeZZC0PS943xuyLKUJLVMQ+Bpd4+1mqZxDF3Ht9+v2R9lCtr3rQhMfgACq+WGf+n/PMeHLH0fmUbHNElRSZ6X5HlNYVOMjng3ErxjvztzddljteaP//4fuL/bs9s9cbF5w/XlmuUyQxtHnmbyCgl4CD+ziMbJkcyLuzDIJNZhjAWtMSby+s0rET1CkHY1YHLTHOtUWKtn0UGLM8BHyrJAGYnJEubUKbLwT64jRHn22qYlzQQg/AxW327XaCUiitKKpj0xjcNLq9hz63WS2BcRUkU1X+xHmONMZVlKQ2IITG4EREgbZwfC86YVY6AfJpyf5FA7w6WLopqfBTg3JxKtxLk0H9x9EIGh7VqU1lxeXM1uWMP9w4nPX2QKev/1C7/7UVOUS8pCmpizLKXtzvzLv/4L/+E//NfkWY53ntFL0YHzjrKqSNNEFi8VmZyjHwfizDBLE+FATYMnzVOs1fRDJ3cCH1kuVzKpb3qKPCfLMsrSglLoxDGMik+fnri/P1KUOYtFTl2nLBYleZ6QWJlM2dTgeod3I8fZuXCxlXKGfmgFAp1o0jQhNQajIqieotRsKQlxYhxTPvz6ic+fP/Nf/fQNi9UCNznAcD5NdN3AcrlksawpshRp1jMEH9g9PbK9SNE6cH25ZBhaiqqAqPCzIyEGL/G5aWT39MDYtfzh99+zXNVyYAGe2zOdUxitcXP80hiNibywRyW6PfHcmF3kBSZ5BsOL0+BZJEwMlLnFJeJk6zuJEdjEYlOD0bk8o04ayFQwFPkFF6sfyNIFf/nlf2K3O1DWVgTs6HHOvfCP1Bw1L4pCSoKynCzNkKlrIHg5MMYoUdev9/cs6hUEyIscrQMqCkdQq4iZ291kWB3wYUQbmJwjKxLc5OQ9V3EuE4pzEU2k7zq5OM2XsbZvIMByKa2lT7s9aZYyeU/b9Rgf2D3t+fLljsvtFeem5fr6iqt/d4EV0wwC5tfYJJnLTqQZ9LA/sFysSZOUqsxxQaKbMQpzi6jF4WgkijtOA+HUsdlsqRYLLi9vcU4aXsPcHhmC4eryLdlxzzgOPD4cSawlS1KSLCXPLYktGfoj1hT46Ui6Kri9uWVZp2g1kWeWEEbhGGYZeZby6eP9fKFMOB4866UUfeR5zun4RJoqVqsVLu75+vWRzeoVi2rB/nCmGwa688ibN+9xzlGVOdvLBUWZUpYl0ziJE07JZHq73ZLVhqqUCG8IE94pjocD67U0bm6WJaMbqMqMGCec25EaEeSUEezIcXcktYqffviOLPVyAYmBqOSSGqK0OE/TRJamEkvRyTwUkyVJWvw8BBk6Rh0gxnlt/M2FaC2URUKeintr6Efyua3WJhkGGdJIU54hBE2ernh19XuKbMvfPvzP7PZH8hzyQpyo0hArLiFtBPGQJRnGapqmoSqreZBiXrAUkYjznuPxyLlpqKt6BrILY9NouQZqJTHTSBB3tQq03ZE0N0wOaWT3bhbTIUkTpk5cdc+ijThihheXUtucKbJSkh7e8/C4I8tzXPCMXYfWKcfDkf3TifVmw263Z71e8v33P5BYhdWGYo4EZ5k0DZ9OZ8ZRxMDLzSV5lpNlBWWRyNoVxAVstRFwO8yx/fmyq2Swdjweubjc4pxmvzuSpzWn9sRqm5OXhq9fv1KUC25eLQih4E9//oibAjFovIenRyl+SFJLkoA2DpRiGuHu7oh9OrFYLNmsEtwIdVUR4lLOa0wYa6mXC5Ki4OnpwOXVEqUHbObwceTctGSZZlWK61+ryNPjI3s8+31HmpTURUWeptxeXzN44WiPU0uSFqRZzqkfOB4OeG/ms2hAqYGsMJRlweHpSNMk2DRHq4muOzMODfntFWmSUuQJWVby7ft33O8+Mg4Db1+9o28bHh6+EkJNVeVyZjCWycE4eZJUybs0D5IkUW0JsxsnmfdNYi6xVOYzU4wEMYnK75nbGi8utjMwX4rVsiwjzVKJzs6cY4l2RjQWqyvevPoJayr+/Jf/hb5vMZYXx5VzwtvLs4I0zef9RpEkAs4HyNP0RUi3Vs5DcqwLHI5H/vKXv7FcrCnKmiQRF5e15iVOmtjsRQB0Xp5JFwZMCoP3L/gV5yemcUZOeM/kHEkqA8gI9EPP5CaccuKoak4Mgzj80jSlrsuZvZlzcVmR5xLfX62XBN0Cnof7ieASDrueLHPkmeLt+5r1heHprsUay/5pJMszoi/YbJZcbBK6dphdv4au7xjdSL2QC3sZa5x/xgvIvWF/3PE6JOSl5u7riaqqKIqKu69fSdOU7XbJelsJFsL1hAhN12BsyuG4I8k0lc7xDs5HibdqI4VXy1UFDBjjGEfPNE0sKkueZAxdC9EydIGxG1guVxSl4e7+E0M/0TQD7969pswyTucT2nj6ocUmKZ8+/oqymvW65vbmgmWl6FuLdy3HY8tiIZgFFUSg/vr1jqpOiEhMt3P9C6pjHDuedl949/ZKXFNKIPyXVzWn04HTOZBlBpta6rImS1MpclJS/vC7H77n1Zstd/d3+Gng++++JfpJnESGl3SDiZqqSuWMEgPRPntPZbCrZpFPkkpIj5gKsyIgv1JpzTODWDGvj1HNSAr571SVnd+HOYKhmEui5kGYkn9utMEYxde7vxGjYre/JysgIf03VItImopz+DlB9XC/43TsmEbmNc4ILsjIrzfGzCVOhgl5/rWScz7zmvE8eDLGCLd1chz2J4zRLBdLzqeeyQU5B4eIVoo8K+hjzzhKGUVd10CgqBLS1GBMghodRNknh2EgRpgmcf5lqeb6+oZ+aEgSQ1GWDH1HWeVUlaVrevaHHZe3OfXScP+l5Ze/HWQApiZsEnj9ZsnFxZqu6/n8ac/5FBmGiYuLDd7DclXyzbfv+fWXz6jZzdj3MlRwU89hvyfNc6w1FKXGupQ0LUkzuQdmWUGMJ6pqidIigAYC602ONhOJ9bT9SFGWPD6c6fuRwy5yODZYU1DkBYuq5ng8y9qWKCY/UJQJMCOPeoexltViTWIszelEkhS4echZViXLZcnd/WdQUhySpCmn84mLyzXaBpwfSbKMqlrycP+Zi+staarZbBYkxhFchZ/gcGjme40mz0o+ffxI8JG7uztgw8XlGmMteZGQ5xXB97Obb8ft7Su6fv/ST3B5s2QaR/qupesbfJhIU0lzVFUGs0knKkVZZbx984q3727Y7Z7QSrFcVGxXC8bh/w8YfOv1mhBvmCb5omdZIWLbzOR6fHhgudyitKfreraXFfUiwybw8cM9NlEzD2LCWMP93RNFUYkFNLE473n3zRVNM/DhZ4VSNeM4kKUXdO1I2zagPNVo2F6u+Otf7vjP//lP5GXCMDqcP7GoNzyc7/j22+95eHySqEOe07UjXd+w2azJ8oSmaTg3Z/b7hq4b0EYYCF03cDweqReO5WrJ7atr2rZltVwjjUGRttsTYkrXOYpsRZZlnM89wTnKymLTwDj1LItc+AlhlKmHj3TdQNvIgjAMR8qymPlPlv3xAW1gs12hlaJeiOtrGAeWq0JqyI1hvS6JoUMTICjaVko8hqHl5mbL7rGnriuG8URz6KnLBE3AGsP5fGYYO8qilGlhjOz3Z7quYbtdsFxVTONI1w5UZcXDw54kqchSS4gDNvHkZcbj/cDp3FAUkxRldD3r5YIYI4f9CXttqRc1ZanICmGUXF1vaNuWu7udRCrHSWKqXj4Ha+3cmCxQ7r4XobbvD5zPJ+7uRY3/+OGevh/45rtL2vbM/vDAft/i/cDTowMyFquMq2upDT+fO5ZLR5oo6jrn6nLBYX+a44NG4qXeoeKJf/iHSxb194C4MJRyckAkwswHQSt0InHXycmlGSWFIePsdiuKAmVkapckVvgUTqKi4+g4HY8EH8iznOAdaS6V3MyxvRjDfIE3KJ2Q6AV1+Yr1asMvH/8Tx+MTdV2wWC4khoDwWIZe3BZYRZEXDONImZeQ5xgtvIhhGOaWtoK+6RgnR5rk6Dm2phCuRZgZGyg7O5OkjTNJFVPXkGZ2LhSIROVRJqFtWrJEuGLD0NMP0oStNEzjSPSB1WqN1oav9/ekWS4FLK2ArR8fDzTnjkW9pjkPvH51w83VDWmiBbSc2H/jxpICk4f7J6xOxFFkxFUW52iGNpbopdELNMkym0XzkXqxYrO5IDIxuQ4fBrS2eGewGq6v3nA6nzgcpD08S1PSJCXLChJdMPYnjCnw/kia5Ly6eSVChnEUeY73A1WeoXTGsq7xQWJ2xIDV0h4tLbcLOTRpEXtRmuP58UUAi9HgdZRLapqgtQc1YJOEcQjsdjuC1+R5Tl5EvOvQNrBalpwO7SxyR5I00LQH+vZMlmxJs4x6kVEWCe/fvuHhEBn7ljffvsJPNfcPD/I5VJlMAm1CP4h7MM0SohKXXJoYdNT4wDwpNbO4P/cczocKH4QLFGKcW3AFilzVJTEawuSJSp5/k1jC3LCtlSIoNTNUNFW5Jkkz7h5+pet3wuBUM5P1Ocqm5TkRkcIyDiPoeZiCuHGmSWDLSZLjo7gXnx6eCJPl1au3KAPT0BLxKCeuurKscNMkQrixpEXBsX3kcHxkUVU8HxSVtvTjJIUiZk2cD4TPoGjnPH3XSaQ/VmRJyma7YXKew/Ek6+l6w5tXr1mUtRQG2IRZW0BpcQsOQ884u9FDDGy3lyyXK3a7A9akuERg2NoIL2uY3UfWGvIsnx3dkaEfsdZgbKQfzlR1zTimDENLIHBuWtbrSxSRr18fGYaRLIM+Olo9sVpasiTh4W7H0/2Brg94r8jSnMNujwoZRjsSu+B8PhKioh06Lq6XoCM2yXl6OnJzu5HW5NQRlePUnEhGzXa7Jc9SUmt4enzgtA+cjg1JklMVFXmScHt1xbk/kucJIXb4CDZJOJ96drsdMQhjqyxB0ZNkkSJfcNw38rmOislPNM2RaezJ00u0hkVVUFVLfvrdD3x9+sDYdbx/+55pHHh4uGezWaFiTl5kMiBzEz7IZVaAzXPLZ4wYtDgjjBE+Xa7mlOyM15jFiRhnli0IQ84WEPV89oqYxJLYBBdkIIQ2UrbkA4qEIltiTMrD00d2u88sFgUwMbmRoZUIX5pmWJ3Ma6O4ydwwkSRWGI4ztyhET24z/FxqcWpaPn74zLs333FxtWEcO2L0KIRnZLShKCv6rkd4rY5oF/TtiaenO8qqQCvmd1Key93xwHa9lX3Gy5qRZokI1t3I8XREKTnoZ1nC5dUVPgROTUuMiqrMKbKM6CLb9ZLry41E8+eLq7XQtY3EjZOUfhAn3vt339I2Lb/8+oF3b97MF7wwO8ciwQf8LBulSYJNEmySzuyzjq7rWa7k3PPhw2c225rFYkG9SlmtNuyPB47nDmUsVZnQT2cWy4RpjAx95HweUXr+3kcZSmmriYx07cg0ThR5yvVlwdj3TKOWxMbkWNQ1aaa4f/xK0/RMTvPu7TV5ltGchUXa9x3KaD58+kySJWS54ebmgsNTxLDg6anBB0eZl8TgiFESB233xPXNhqM/UleKw34vg0AsX79+5ttvL9lsapSOTP7IeispHtM4skwGf0WxIk1m4Ts66rrmD3/4ibftJZ8/f6EsMt69viW4EZOEGSMibpssK9GF7C8mAjEQoybGCZTwU7WxxChpF+Kz4y3+mzVYzXutRQgSmmf+13qbyT4U5HcprTFaWHjSNjunNNTE3cOv+OA4d1+pl7nsc0RCkLg4RJQy4n6ZBzrOudllKO+WDL0kBqznNcHNxU2gGKfAm+0VWZFxPOxw44gPw+zyDPgo4h0KQpxI0oxu6Pjy5QOJ1WxWK4ZxABQ2zejHgf3xIAPkWYAxVtoiQ/B03UggkGYpNzeXDMNAWeYSX06Fxfzh416SEjFw/aqWCHWp+OpO1LVlcp6LK0FB3H8d+dd/vqdrYRiDRGuN5+lpx+tXb6Twaxw5n48UVUq9qOn6E8YGlHasVgtJUOiEpjnz6mZF8FI2UBQSHTzs91R1hrWKSCsuYibOp44QFbiJPukoy5SuD7R3Z2ySst4u6NqessoIYQQtJXBpKu5GmypWmw3lYkFz7kmslAbO1ia89yRpRlGu6Po7/vLXn1mUOT98/w0KR9tKSd7l5WuKoiDLUryDpt3jhpwsN7yqr2lbJ+fdMBGiomk7mu5EtSixScZud8THSJYIX/piu+T6ZsWf//SPLJYLLq4uMUbhVUbXdRiTUhQpVVXODk7hbWsla3eeGn787j3iQJPWW2muDvMg/lkxiy+4FRXn90eJQPf8/72KEA0zMWJO/UjOxyo9F+DKMPT5mZ9PKsAzF2+Oys5x2RjVvLIyv3ci9E2+YWobUGCLKGxNLGEWAzOrpUFbXnI0cD552tYTZqReQFyU2gjjdY5dEbwnyQTLIi3yM3tvjsQnSfJyL1wuV5KmQNH27axzSPIkRuZEUkKW54AMx7u+pSwzikLclz5MRBwhQmYS8jyTWLwLKDRNO7BclFxsrzgeD2RpzqJe4j386V9+pWkG8izh8UmTFYqLiyXffnvDw8OB5hwlsj8EPn9ouX94oKyW+NEz9IrmFGcX2sjkpJCoHzqSNLDeimO6bUferrZY64jKsntqMRMYA2WxRCHahnPQdSNtd+Zye0GaFZwPPYqEEBSHfUPwiiStCU6xuchQVPz5n+85nQaSJCPyfH+WVvEklQGXTRJMokgTRVSKoqo5HXtQBm0t49BiAuz2DzIYqJdkTcHX+wfyVJOkkBVLvj58xhjLoiq4vr2R85gKeD/SNA+kVtqFb26uuLvbU1c1p2PLol7ytH8kKsfD3ZMY1gbHw92R9hRIlIVoWC9L1puSX3/+SkRxcXmJtZ7JTQTlaLqB7WZNnqWUZY5WQT4HBYnO8G4ixh4TDTeXW8E4zGij+L9Ch/t/9+PvFviKPKMoc/b7PWmSEudGoqvLFV1/5tfjkdPhQFnnnI6O0fVUVc65bbi+3XJ//8g4DTJdmgZWa7G/9sOI857msCNNE9wU5g3fslytOJ6OJDZnsaqoqoIkhePpjDKGp92BOuRErUhyy+A6lPGcmkeU6cnykro2+CDVyEmmOJwf0cpQryqmvzrJQxuxboao2F5sSBLNMJxI04TrmxX7/ZEirdkfdxRFOi/Snm44sFptscNAYOCHnwQaHjmxP5w47B+lMRVpvkkzWdi7XqN1ijt50lTTDWdQnrKUQ5hNLJM/s9ws8F4T40i9SHFTh1aW21cblLKUZc5qXdA0CfXCsF5b6jqh7zumaaRaJFxcpYzuQJYnHI8dWiXEoGYWgKWY4yoR5oKIlDwr0KokxhNaR3FZMrFcl0x+4uPHgaouGfuOYQZTd13PMPS0bc80Oh4fH1HW4uJzW2/K6bSn73qur68FOhzEeWDmRk2lFLvdjizLWC4XFEWOMYYstWSZxIFD0ChS2mZiUYkFO0nlgHY8DAxdYH1hZiu5oW97Pn+659Vtjt54VBxRMeAnj/Oec3OiazqyzLJe1/TtgTzPhLUWoR86VBBA/TAMLBaVMCeSZHYtyXTfGDPzvuT/K60E3uwDUUeMlv1R5wnXV1vG0c8FFQlVVcyg7ecNT+ZnbopoDBfbd2xW7/jy9S8cDnv0fIhEhZkppuYW1WQWEyxGG7IkRekU76d5QpVQluUcrXXc3z/y9HTg9atvWCxEUBcNUzbTqqxBKbq2I0k8LuvwIXJu94zOiNXeezwRFwL784nt0kp00XmsFdft5Eba5oRG4+uSNC25vLog+MjpdCYGqBY1VqcM9cBqucGY13LRnNuBnZvwfq64D54YIt999z3n05nD/gTRkFhx7Cmjcd5Jm7ZSlGUhTD8fZhu9laarGMjzBWpMmaYWufoabq7f8PnLL3TNI8YqtEppTue5pGfJ+TzycHeg6TzTGDEm5Xg8kNoSYwKdjRz2OxQRm0jLaVbkGCPxT6ORtrFhnl4aOSDJZUhA3M9+BKIisylvbt/w8eOecfCMzYmyWHB398Q0TXif8unTR77/8YrLq5o0TRj6E/Uyp+vO+GNgtRSn6Xq9ochLKa0gkmcJf/jDT/TTNZ8+fiL4ke+++waiQz8XqujnSWxNLCJ+doOp2aXgI4SoMNpK1G6OF8X5cGesRgVxtMU4R/o0GISZFLxGJSmo2fUT5gnvXHRhlBbXhtIcT185HB/woaeogjgVowLsLJIzX9JEPHkugIpenLvPB9tnzISwwaBte5KkxPmISRJQnq7vGIbu5XB6PB1ZLCX6T/QcTnc8PN2x3z1BuGS1WqKNpe3GuflbmJnjMFDkOfWiZJpGthcrrswFnz5/5MuXD3zzzbekacY4TpxOLY8Pe/Ks5P27S64ul/I1mx29SknZ0Tj1Mw9HAPTPbroiL+i6e+7u77DGyHAqRh53T+L4spY0STipM0maEmLk7ssXlqslX+5+pW1PswNSYNTWJqxWa4ZhgBjYbjc8PjoBnv/wE3f396SJxWpLXS+oq47T8Ymu6zkeT1x+e83FxRKtBDycJHIA3l5seXh65HzqGAfN67eXpLagPQ+kOZybA5Eog4A8wRjYXqxmcaKGcMZPc1mD0SgVaZoTf/3bgdtXW5x31OWK0+n0EsP5+uUj3/94zXKZibhKy8VVxak5cDj15LlwPutqdi/PjuIsy/nd737gzXDJ1y935Jnl7etrQT6oOP9UgmGoChGHYoRktl8T8EHcR+Kce3Y0gIgFSAO3qASAmV0OsyMJeZ6F+RXnqGvEImUqIqYruXNFzbl95Hh6BOXIK2kMDUEKZPIsR0pwZKN5vvQ9F3QQA36cI5DTb84mpTX96AhRY21BkuTkeQEq8Hh/J25IL7yvc9PMjMeAtZ6n3Wfu7u94fLpnu1mz3WywmWUcJx4enmiadnbpIu/HVlrqyqpgsV6BidzffyX4idtXr+VycujY708cD0fyLOfN61te317J3jyX/DgvOJFpGl+4S03TikNLQ11U1GXFqTnz9PSI1prN5oJpcjw8PYJSwmG1lizNSNIEUJyOR5xLZ6asODXX61wGgsbj/cDh8PBSaHI8nmYOpsDa27Z9cSU1zZG8SGfxx5Omah7yKZQyrFZriqLmcDiRJhXOzSKvEZdztagpiiVfvjzxpz//javLBd+8+w4fOmJUpGnOZnNFnhdoO6GVYpo6sB2biwprCwwZSZaQZhnNucHHAR8m/vCH34nbRAn/aRojZZnx5s0Nv/76Z4yF6+tLysKAEWSN9RabWqqqnC/u0uyslQxtFouS7eanlzggRlyt6vnOrtSL6/k3Z5CZn9Vn7AC4Gdhvni+O864jv0XhlexPEYOKzMzXeQ8Kz3gJjYpKfipQUdQLaxQxeFxoObaSEsmqIEgNJUKhff7zEmXoGJnfozg3S88R4yCiSZLImuq847n99+7uidFF+uOJw+nIIpYMfcv5fELaVefzVXBcXV3JO28Uw9BwPOw4HvYoFairXJjESnM8NXz9+sDQDy9layF4Vqs1Mfo5Yr0gzRLas56Hpoqu71mvl8QI918PPN63xAj7Xc/Pfz1gk8jrt0vevV/TtZHHhyO7pw6tDf3Qs92uSLRn7M74AF3nGaeBvv+ZxaKWoYWFSqckmWZ1cUHTWCkvOWmGPqdpOtLU0rU9xkLXnXHeM4494Li82lCW4tzxXtM0HdFHFssF56bh4eGRoqwoCjgfn7l2UcRuE8lyTVnYWXQZQcm1eLfbUdcLykrYX+M04oMnTXL67szXL49Ym2F0Ql2tyazm8emJ9XrFpw8PLJY1VVmjVildO3F/t2PoJ25vblksLvjLXz/Pg5qEjw9fGPqBxXJBmmnOTUM/9kDG6BRJkLX9fDoy9Atuby9Js5QkEwa2O03sdg+Ur27Ic2E5aq1JkvzF0aafG8mDpGq0em6SfRad4yxAx/9SXJh5PWEWxV78fLPwJ++mkcBu1HKPjL99DBHu5GODIqpAQES9MA+vVHz+qPLeCidVijMSKwK/0iJSPu+PCl7OmsxOcj2zP2V7jaSJQaXyMWMIGAuDG5lGR2JFCIwxouwzmzGQ5eks6vmXwhrn3Iyp0lR1QVakwu83CmMlvj6N0rSbppK2Cj7Qz4xRYzIm18v3O1VU1XJuiJYBgFaKJBXBKwQpntLaUNdSBPnYH6RRu/dEr2mbQNdKj8Fpv2dzkbNeV3gXOB5G7j73PD12vH6z5XzuOBxbYsxwTs5M4+DZP4nzuG0bjA3iwk5rbq7esXs60J7OuDEh1QuUhnEa2N0rmkNPmmWY5C1jNBgF+JruPKHwdN2RcRpIkjdU9Yrd7sTd5ydevbYQHEPvGAfNlP5WqpVlkbKCNFNMTqFMRBl5ro6Hjrr0ZGmNm9FjIXqKouJ47tk9HXh6POMjrNcX5JnmabdjtanQNvL0eI8fK5bLmqEfOJ+PPD2eSEzKm9dXGFvyyy93DMMIHtrTmY+//MJyWVEtcxbLCudFy4hR2sfD/KweD3tOx4zNtkarhCQRNmZaWB6fzgxtx2pZYXQ2c/osWZIJjkxp8jxDOUOYBI+jlUTflVIv79nf8+PvFvi8b9GqoyoikY7Fys4A2haVT3z/7SXbzTXGwOQ6ijIFHdkuZUr86qogzVLGMccoS5KkpJnly5cvwizDsFgsWK5WeBdQ0eAZOJ9PWCOHi8P+RFXXnE8TF9+84XKx5NzuuX11S1mJqKHit8L0GlvquiJNU47HVNxSMWDsGoKhyib++A9vaIeUvBC7prESw3RhxJg5bmItRA2IeOKc45/+8Z+4u7/jp9//xOWVNP1MrmeYOmnta1qKrEbNLb7OjdxcFMQQ8eE1p+PEMDiZ8luFcyNKBYoyoetPeB9YLVOsgaadeNo/UZYL7My3apqeaZzk4OMD69WSu3tN0z+ik5Y4wPqi4PXbFUG1oGr61rF7ONE0A9c3FyyU5XQ8MfSOrutJ0zVd4wUUrwLrTYn+XlrONpsNaNkws9Twhz98g7Gah69PfPgwcjyeWK0XEukKkNqKLK9ouwPL9ZIksRwOR5rmTNt1/PzzL7x7/+aF55jnOcZYmkaafEPwbDZrmrahaY6UlRxCgtdstwt8AO97+qGhH+RC/PTQE0NksUrYbMWl154FDL65SNDWYxOFscJT/ON/9Ue+Pn7hdDzx+59+IgRH37ZU2QqjpG1NK0ORVoBMhJMkmVuCZ6HiecNT5sWCLrwx+Sv6eXIVZgitHA4TK63Li0UpU2gtr3iSiBX+mUkR5kte0z0yuoZD84l6YUBJVNUHT10tZ4edfHyUXPaHOZJLkAOAQOglCizxYk+WVhAblsstVZ3Ttsf5oqMYRhFvjRbX0Tj1uCBOqY+ffmGxqLm6uIJ5Ov20O3A6NUQPQy9Oqs16ifMjy1XN5eUFnz9/4vOXD7x7947Ephy7nt3hRHPuKYuat29vMOoZeGtmELA4V4axYxodwzihohSYLOqFuErOZ/q+p66FcXL3cE9EkRc5RskhyloLUfH16x2r9ZLPX37mfN6jZ+i9sB5LJodcuvKU9XpF2zb8+ONP8t85nUjTlArL9fUVHz89MvRzm9vtDYtlBWGiH3pMItwQH4KI39M4r40TqU2xOqeqVrKRuUFaH+PzpeaZcSebgAi6nrbtaJqei6sLvJuoqprjXhrL00xxdb3m6eEzIcLFdsNmm5GcB4ahYRgDidUvF6/ncay43SDPLH/4/Q9ozBzbk4hQBPjtbMXzvOk5io1CALJKo4wIauqF2/Lb+yBibZx/PgsXUWISYR5mzREW9bz58dye+DwEkBiK1qCMxLGFdSQHO3HtxRfWpID7RTgQtsgzr0iEnGe37DB6nvYnvt4/kecNeWl5dXvBel0SQoE2hof7e/75n/+JP/7Xf2S1lLUOFUltyuePXzjuj/w3/81/QBlNXuRUVY1355dpn1aRjx9/wTnHdrtgnEZ2u0cROo3h5tVb0JZhCrggX9imOVIUyQuWQtxdei6lSLDGUpaFRL8E8If3nqsrEUhiCOJomy9BPgBK03Qd0zixWC4lphygH8VpHuJAiDD0jTBmpolxdCRpTlGkLFcFq9W3WJvQdmcWtbQAjsNImsLbt9c0XcvoKzbrGm0i3o+MrufUnGeBfsWiXuBDR1EYzseWD788sNnkvHv3itHtyPOcKqlxfiLLEoz1TJNBa48bB+Haao01KcZayqpi+DhyPnfEEPjDP/zAOEkDntYGbaCsE16/ueLL558JwXN9fU1ZKYIydH1DElJxU1ciFMugRtw50zhSZCk//fjdLDjM8Z74fHn67TIUQpwdRLIeK/3sLtIosYSjon7+HfNQRc/Pr4h53nvCzOIS5qWaI01xHuLo+VyiiC+DMgvR4fyEtcKI08wQ8dl6oWaBIkb/cnGL0Qvfa/57iC9CZJImMnQIUsT04eNXptHz66dfSQpFXWYslhlKFWht+Pz5M//66z/xH//jf6TIC2EMErHG8PSw47g7sv2Pa7nYa0OeFwy9Y5qksbWua4Zx5K9//RM//u5HLi8vaJozx9OBoRXhcL25xiQpTTvgZ/fw6AbyxLA/HGeRT9Z170QcD0FKDVarFc7J10drLW6YYXb6JcL9k0uzwiTpy/siDdciAN7fP+LCmr6TUoTAyOVVQV3XPD3uSJMlbStxybKuOB5P7A9nLq9zJtfx8VdPczxLBDgBpQfSTPhWSjsEIp8CsudcXVxSVTUq2hdeT5IYjsc9Hz99Ik0qtNaURcU0Ofa7J7K05OHhwHqzpKoyFJau7dg9HYko3r67ohs9H37dUdUXjOPE/rgXlm1ZkqaaX375mTwvac6eaZQhSts24uS42oiAnBu0cfgw8vh0z6ubK2kxRp7pNM2wJkGhSW1CxInwNrcyKzUXIswuPObzkrB9/40YMP9VK4mcovX8Tsx7jI4v7iV53+aCNC9pCHH6iaj3zJANIf5WDqbU7HIexM2sAaYXlqmeHUYxzoNbJbFbBfL38XlI9+zClailDEkMzK6iWYYkhkBz7rm/35MXJY+PD1TlDet1xWKRoeeh9z/90z+y2+9ZrVYs6noeWimKLOe4P/Dw8ECaJLz/9j3CsMxZr9Y8uj0hKBbLem7xnPjzn//CxcUF2+0a33v6XuLKdV1xOjX8+vNX+r7HOYWeXVNu1EyDoCB++cuZspbh+TiKe6hvOxbLhN3TxPnUECIE5zA6oSpr2u5Mlk1Mk7RE92OLJ5AVFav1kq6deLjf0TZeihjihLUF2mqsFR5jVVYkacLx0PLLz0+kqTSLf/3yxM31khA0XT+iVCTLLFdXBX9JT7QtlGVOvUixKTjXoo3m8mrFODYsqprT+UCSJjg3D/xsOjOmU4xJOJ5akqSgbSYO+wN1WRIrS1UWXGxrtpuK8/nEerUiSVLOTU9iK25uCpbLJTbJyLMFTw+PHM0ZpQLrTYGjZbNdcHl1yTCNfPz4IBHqwWOtoqwWpKkMw7ruzOePH3n19hV1XVJ8+57UKooyx5rnEj37cqYzRhOes+A8n7We3yM97znx5Z/8F2e8+ewlf/+sCs7YkajR/+bfPZ9VxW0uxRrybj7vhQoVhFH8/N/5TaibhTgt6ROUOONk+/ltH4qz+h9jwHn/XwxoZb3QLw5Am2is1Shl6Qcng/LnM+d8xjdayzsdZd9M0xTn5D1ViCCfF/l8BJdm7OdCmjgXyQ3DwDAMhCBcwcvLCyLxZW0ehpGyEt7xNAVOp5b1KiNLU/p+lIGbkzWw7x1KKTbbNedzy9BPTJMUNSaJFhxHkrHfyX22OR/5+uXIYpHRdQOgSRz8+usji4Xl/Tc3HB49m/Ub6sWGGGU4U5XCgE6ShKosWa3W3H/ZMzQWHbdoP5KnKXmWyIQdz+ZiSZrl9IMnxkTOMsqS2og1nu0yYZw6IuC94s1Nyu2lJ88HwnZikZ/pOxle2iQSwsgUWpQeyApNCE6YlO2Zvmsosy3eVegkI8nAR4dOBOe023VU5TXn88DuYcfj/ROrteXd2y3bzZYsT7i5uUA5T1nW9P2EVgU312uSRFyywacoXeKnnsPpjE0U33//iqAdzdBQVisWy1t2+yOH/QNBeZrWU1aWq8tLiqJEqcDkHF++3lGUOde3t1xdXlPmKVmWUmTCddZaYUyCJkHJGAqjNSaxv+19/Fu369/34+8W+LbbnO++fw9zBbu1muDlJSpzieWlWSIHFlXPlsSI0lLl3Q8DUkNdycYbAlmWcX3xI1pZxqmfD2azZVZrYsy4vsghSsOOf7MWcWJYEUhRHMlyzfVlxnJZoJVMuOTSlMM8XduuVxgjU0AiAsFMFK9vrjg1EyhhXxAlzhejHK5Az3BIUEom8dPk+Xd/eMv7t1sWi4qy1PhgcC5hGCNd3/H5wwf+4Q8/sqwXGC0gU8nhC9/l1Y0cnqWcQUTDx6cHhr7j9e0NIUTSpEDrlGmqWa9yjEnwQdN1I9Po0VWKUQmLOiOx8O7tmi9fj/y3/913VNWC5aqUds3dE5dXa/reEcPE5093DMMZjiNtP1AWC8rC4iYBqisd0CrgXctqYdmsc3FRmpTTYU+IcrB6fNiRpDnn84k8vyQvNMEnEAw2kYPc+XzGhwITmd1hmu3mguOx49df7tluewFSBj27rCxlUc3wU8049KAD2hqa5sTT7kySJCyXNafzmSTJmaaOqBQXV5fiDrytcVPk8yc5ZOSVYbVe4r1MaYgiKL5585brV5cc90fKPGWx2AhTLjiZGM3OCGvNLDqKMw7kOQjzxmO0nfl7vwk0Mc68rujnfw4yidIYLZtwmAs2lDYyMUOh4vzCR4WxBh0CIUx0wz2DU9jUEaJY0bW2c9uawQfZ+GKIBCUutTDDb9X8XIvD0L64Nfpu5G+/fGSaPH/5+Z/57vu3oAJFIS6svEj5x3/8R9brNT98/z0KgYM7pzgdTzzcPbJarKTEwEa0PqMwDKOjWixIjeH+4YH94YE//vHf473jdDoAkS9fEl69ekuS5oxjIEbDOE003ZnESGPos+MuCJYEZXiZPmuYvy+RSIUrC/zkyHKLMcgEZ3IYYxnHgbHthKmGZvKBfujJ8oTAiEIawsdhlKIBZNOvq4LbV5dodYP3A8FH8txKq1MMbC8Kzm3O6lCw3SzIEkVUHucnuk4m2wqoa4nghuClmCNqvIskmXAc6qqkGyMhTjOoWM3pA42KIvSaWeT0PtL3Az///IHEWsZRyZAlyRjHM9PUs94s8GGiquWyiHLs948s6oL1zY2Ip/MU0VqLNRlWa4JS4jbSs3V8nuJqJTDc5/KSGOTZf+YNifVBvzwfMqcMv50a1fMEeBauX34vLwcv+aUSuYiRWZwLqMg85RzmKXWCUpEQ1BxJkTKAZyakV88b5xwnmTmXz1LK1E9zMUbETcLPe+az+Cnw+HTCmDPb7QqjL7CpxftI2w18/PyRvMxp24bVYiHxLBmTo5UArT98/sT11Q1aJ/SdANWrqmZR18TgWK/X7PZP7A8HQvAsl6tZzLb0/fRyxk4SKYRQSrF72uO9o14siSFQ5iWJSRlHcU43bcPt9c186RpQOlAvCvk6A30nLbLr9ZrJe/K8nAtyAsfDka5vKLKcZb3geNiTWENZKA6H/bx+e6a5OMi7BUV+La3fhx1pmr4wzYC5YMdT1wmHo6csNEVh0FZKIZZLaQh/2Ct2D0/cP+yoqhXGGmLwdM3A490jSVLy8XjHci7hSmzCMI60bUvbjnz7zTuIKV/vHlFkDNPE0/6A1pbt9oIsN3z89EnaJ0fECa0t5/OJ02nPei2T6ryYI5k6cjjsSOyG1bKW5jctzj07r+9SMNFLpGJ+hp9bGrU2L8LZ/GC/7Adam/nXzPvDi1gR5nPFb0Mg1NzkHMAYcYvJ8/4sIMilJ3iPj3P7ZhRG3L99R2JE9qdZPAxBRAgRujzwbxxG8zsqTlnhDykU0UTAE52fOZyK6CNdN3L/sGOclrwZrtmschJbEmLkeDzz9f4LWZ7TNi1VWWGNuKysNnRNRwieDx8/cn17i9aJvF9tT5blbC8uUATc0VFVFZ8+fpyd5dNLm2/XDWjbELCziCdgc+8mWjfM2Ahx7ldlxdC1jNM4N1srFosF19fXTG6kH3qKOqdclnJJVoquHQhT5Pr6GhcjRV7J19sJXqZtO7KixLVSrlCWC0KY2O86Pn64Z7mo6EPP6dSy2Swgyho9nls224yiyNCqxftAmaeUlSUrDCGOVHVGUaZMY0tdlUxTi1ZIWdqqRGuBsLddLxiTzqFI2O87+m5iu11CdMQ4cnN7y3JZMowdq5Wwks/HjqIoubhYkGYWnZQE/8TT4448KyBOXFxU+DDyzbfvsanm8WHH08OOvtNYq2aEipzXxqnn69c7Lq+uqKqK9+/fkFhp6bRzG4acc+X9sMYQlUXLSEjWPq3Q6jnqql6E52fOUQheRHSjUFE6OmX7MC9nmWcXhPd+FhHkexmDnLl4OfvLniKvqJdkhZLzl0bEiOcyMjW7aOMsZoR5QPS8l+nZ7fQc+1WzQBjne0Nqxd2pUC+MP6WkzV3PxWlJmtE0A8djS5GnvHt3jVIRY0R4/Pr1M6eTMOjatqUqSxKbol5Kehw2yXjcPVHUJXW1wDk4nc6cz0fWqw2r5epFsN6sV5ybI6fzacbJJLPLVBGD4XQS15/zniTX3N6uuLy65M//+oHDbqRtNG07UVZhTiNIiiTJDKuN4fsfr2kb+NufD7jJ03UDMWhi0PMamktzvO85nc70vWEcAg8Pe4ZOzg2vXq1JUk+Mk7imTEKaZpxOLVmWcnmZst8dOR6O3Nys6NqRp/09WRZ4/fqK5XrJftdhU0VsPMF7zqeGJDU0bcfx0IphQEW+fLlHayjLWrATiZvvIhXr9YrPXz7wcP/I5dUt5+OOulqQZZaitLz/5jVFqWes0jV9H1DR07UD3kWyTLE/HIle8eVDR99q/CJSLxRv3t+ADfz1bz9z2Ac2lxdkucImkb4LxGDQScrnrzvGqSExQQburTTwrhc163X9vLDz7ETVyqIws5NPSldehkjxt6FuVOrFrTefrueXQvahlwHt8y+bhcLfPlp82cvi80BezYLeLMDH8PxrxDCilTCajf5NoNNazrpGCZomeMH5KH4T/0XkC0Rt5li+/Ltns7vWCmPjXKY14bye3335/UkiWoKKYtiwJp3vcL8JeM8f0wePmZu4hdEsjEbh5POypydJ8tJm/fgoTs7b21seHx+Yph4dlZgFJsf5dEYrw/F4Zr1e4b1jGj0hyDlvmgTrVNc1bgp0nZzhtlcZt68uuH21xdqE/+v/5Z857ieGQb7+JlFsrwpA89Pv3nD7asN68S23V78jyzaU5RajC5TJQClhsM/3zyxLxFH9X6m5REnNww54enrg86fPfPr0maf9jqfdcRZWZe0ty3pOsZWMk2GaUrq+x2hL8HJPbpqEECzTmJImCnAEJw9TllpQohv5MJEnJXUGy9xjEkPbOcxoMIkmSS7IU8P5fMTqK+qyRoeW/LqnrBJc2LFdr1Gxojl3ZOmSEDp8yOj7huNxpG2fWC4D0TuC9/z5Tw8Er9isNcoOfPNuQVYWfPjwmePhjjSBzXrDftcz9Sf6MDF6QzvAx897hqGR+wYRayN+DNRlyXpVk6YaRSRGM5sYNIoEpQ1GGVyYB0/GvLwDz/H4v/fH38/gW+XUVTs7azTTODE4h9UBrUaSJEUrh44QgqM5nxjHgaIoSZKEuswFXuyFT5FYO1/UJQbkfY9CFP0Y3PzyyhQWZQhuIkuNWNZ9S15ofvzxlq5bQIxo5RiHAZVZcpsJeN/PKn/w4JljEoHz6cx2vcDYhMRkKOVASVmEws73QlkorDYoZV6iXolNqIua66uACH4DISZkSUJdL3nYnTifO0IQ4PY4uJeNbZwm2fjaBiKkqbSDTW6iKjKKTL4myXP800eMDqgwEmJgtVhyfbEkeMXkOkbnWSwMi7okL65483qBsfLwjGOPNZHN+jXGaMZcU+dXfPf+EhQM08Sh6enakd1ujyWnLEvKSpqYVnUtRQBdj1nK93ByKZMDN3mIwuX6/rsbFssli1ri1YsiIzGO1SpjqS44nXZcXV8yTQPDMNKcz5xPE2lS4peGm5tLxtFzOh3Jc0vfdyRJRpI4srwgK6Q9qOvOBAJGSwvkalVgE8Uw9ny9fyBMqUwI+56PvxzwLvLj76XqW2tx0ElTmnlxJ6XW8OrmEm2MLOBBBEDZ9swcsQgSDZ3jTwrmGGKcp6lmFjj4bSo2T6OUsjxvojHIduv8bM1DIqIhRnF1xN+cfm50TFNHkj63gip0lMOwTLXFPqy0Evi7Eq6Z9wL5N/Ol0jtPdJBYPTeXCoT2OTpybjp2+xNRB14NF1xsFtR5ho+Kn3/+G84NDEM/xxUsRmsSk9C3E6fjiQ8fPvDum7dok0IUAH2W5mzWG4ierj+TtJanpyfSNJFJHQCatunxyCXWWEU+t2sd9oe5vGN2UOYZ/dAx9gPjNFJVJRfbDT5MODdQVtn8PYXgAsdjQ1UvyHwgywuU0jjn2e8PnI4NRVawrBfsn3YkNiFNFIfDga5rXkTgsszJs0uSpOLp8QFjFFmWkaRSTBKiRIXzLFDkUFeGNAWFpyhT6uqC4/FE27bs9yMgMdXEGpIkmWMnc6FHzFEmELzj3ByZpomnx0e0MZR5DVHjvebnnz+wqBa8fnULJmW/33M6nuhaidrnpVzeV8sS50ceHu9ZL1ekacrt7S0KT5qlEtsmyKElyjNu5va/52dXDlbCp1RKfj4/x9pYjJoPaLPwN09NJNwxRyt05OW9YD5AiHuCFycSswtJoVBWfm2MATUznZ/dEXLAehYCn4si5LBltHwso5+7S+X5cvM7G4InBNlBnQv0fcM0iYMny9OZ2ZeyXK64vLjm7u6Bv/3tE4tFxmqZ45y0hd7e3AqUPU2ZnMMibhpjLP/hf/NfM0wTkTAzXBTGKPIspcgzQvR4N7JcVFxfX76I8lmW470jSVLKasHxNNKeTiwWNVoL++rnn/+KtQnffvsdi3pBP3M2V6s1RZXPAtzAOPZzA2oA7CzsBIy1LPIFMWqUR/amKOOGbpjkexsj3nnqqhRddD58p2lCmtUsFkti8MQQeHwQBl9VlgxDhzZ+Hp5p0lxcT5sxA7YsFwnBDy9MOjcOoD1aWYYh0LWe+7t7jE65fbUijD1Dr7i9uSZLc5xvSazBezgdesYhcHV1Sb3IIeT88utXpsGR55GxP7FZpSgL337/bm7fPbB/OjKOCqUc22WJNoaqyhmnni9fPnOxvaAoCr799jusgaIsSIzFIOKv1pIMSIxFaUEAPD/jAvqWCLnSwjNUSj5XZUSoe3HkqtlhhAh2s65GDPMtSs2OvygxpejFoa1moUMu6fLMW2UQeDNYZYn+OQL4m1gug53/8uQoMaH5ghSVvK/eyTrkA1aLe3CcJqapAXgpABLH+ZLr61ucs3z+/Ill/YE0UWSpmoW6ltubW/KsIMtySRmkKZOfGIaBP/zhJ3HpaonBWaNwkzSa13VJYgzeeYoi5bvvvhFXhVJcXl6z3Vyg0RRFiTE5Xx92jG3P1dWWLE04H0/8+usvxBj48cefxCHqA3VVo7SiWlSgJD7p5wKNJLOzoCLrzoxkIityIgaCmpsFNVFFDscTT49PLOqKcRjnC6q4MLKsJE8Dx0NDWZZkWUbTjHRPR/Lc8P33b9HWkOeOv/zrkeYkRSeT8+hRcz4PdN3Ejz9tSLOEppFI/LIWQX4YR6yBLMuo6luenu748uWBq6tXTMMBUsc4BFarlPffviLNAmWdCWrFG7reoZSdI9d2btDNeLg/s6pTvB745t0Fi1XCw+M9Hz/+iVevX1NVwj2zVgoS8uKG/f7I01NHjI5x6KnrFYtFzXJZsFzUxCCNxrKiG7I0nzlXBlQq4pDnRRzz8ZlDyEsEUMD/Stw23vNs/BHzubhqtTa/ccOiDKPE3q3nwhkv79Kzgw/z8j2TsIO4/eTjyKb17LjQKsHFEa38HPGVRt8wM4+tmgVFHdFRM41u5swGvJNG5q4TQLvz0tyepoYkTUiTFGNytLbCG24bvny5p6pTXr+6EEblOJJlOT/++DvSNMUYKaKKwTNNPX3f89Pvf2Ka44Nag/NSvKWVIk9TlnWF1WKm0MDbN29IswybWMZxpKqMlPhZeS6cH0kSzet3a7774RXbixKbKLKy4+Fuou+E41mUgeubNX0/slrnXF0vOBzOfP78lbdv3vBwn/LwpWcYpIgxSVIZ5MVIXS1AZYxTw+l4xpiEy8slfR84Hk8oE7l5dYWbGsapJUQpjnr77pa7u3v6ThyHzgXGyVEvClYbEbN+/fUr5dMeo0tsElFaGlwjAdXKGYRM8fR4Yr1OCU4xBUd7HjnsPvPN+xxjnDC0lWK7lbvSr79+4fHhSF3nFGXk+naJTQPHvSf4jMwm86BRE90aN058fDyjVY6bHKfDiE0yaWW/2nD9as2nL1/5/Y+/xwVPN3a8ur4lUyP/08d/4ebminHMcK5D2mwNiQU/BVQaSbRBh5mTF+f2Wy3nZbmrWojJy74DGsLzoer5jMS/ERaeHbTxt/PcfNMQMU+csigzs5BFFJpPbnKX8YEQ5yST/G/mVc4D1xhQWhMIL3chuduLmK1MBB3nFms971HP7/az4Cefw7MDSpy+Cud+O/mNg5eIPSIoi4AtrOjgPVmhZM8FvANjNSEohn4E1OzmFOE+ywrqRTU3dXvSNJtFw+Tf/BXu7+/54x//SNe2HMaR07HltBjm1IliGiU50jTS/ns+N4CSZvN5iH1/f4+xkapOubgsuXm9YL3NqOuI1hP/u//9twRvmKZAPzQ4f6SqMlK7xLDmevvvWdW/Y1G9JcuF3x+VuCOLqhDn4XxObJuG5aJgs9qKiWJGc/3rv/4zf/rLv3I4Hvh8/xXvI867uSRo4P037/nv/w///WxckmfNh4CUsHm5g3nP5ORnCIH4HH2eHJMPjC7Q9i3DOEgEfxxnbuAAVjP1A+euxzmHd+DDACR4v6ZrDMqnaA19q1FqwZeP8HSfoFWJVh6rK4nPqprJL0m0oj0qEltwOLYQNnjn0CZnvV1w+yrl6WnHZp1RLzQutLRNx3qtOB0mpnBmXW7QNnI8tRirqeslY3cmz3PG8Uya5BgjqTqjFDL3VfNNRGFNhiLBqAxCmAdbmqDlOe57/u4ff7fApxQMQ0eWySU9hEBVlbhRGhNPJ4EYZ1lCkhqsyYnWoJSdmT4zfHaezk2jY4wOhZQnWKvn2mY5FPwWF/Hz/TEAGmOUTPVTecHTVC45wNxe5edY0MSczpq/oGa+zAXKshQ+WAhz/IsXLgfIQyrtr78dkOMMio14lJovjTFirMLMzXTBB46nJ16/uWacGpyfGW3ayiYc5t/rpUVHeGCaLM1nXkSK988Hg440kfjV9dXVy2REKS+Q7SQnnjviJJXRIU9kgjg7YIY2cDoeOIRHLi63pDYhGI8FjE2oioRzc8IauLjY0g89MTq0TslSOzceOrQK5IkmhIllkaNtgveBq22Jtpr3b5eM00Ce5nivyJOa66uc/+1/9zt2xzvaYUWaWNqmJwaFdw1GZZxOPX3fIuxBy2bziiwrOB5a7u8O7B4bqlpTLwsWKyktiFHz8dcHul7x/psLcUU5x8315TwJSrj/ehA3D4Evn+/5h3//jiTVnE9S3Z2mCVpr0iRBzxFaFV9wr/MGyW9uDORwx9xcKQKjxsyXrWdH4/MJ9MXZxPMUSS7QzxMgyTGqeSgWn2fZcvFRCo24Bo0Rt9Kzi1freZOd/6TCRZudVi9/drlw+hCwOiHqQHCeYXA4N6EMZJnFWktd1VxeXDMMil9++crl5ZrEaGmXchKRefXqNYvFCuccibUSE+1avvv+W/x8aO26jiQF7x1Wa+qyQEVhJ6wWS66vthijcSFIocGzoFEs2B1ahvbM5eUFisjuccdf//pnlssl37z/FpMoJjeQpgmb7QqbJLhpZHQDz7EB+fznizORxXKJ0gk+OnnmkPdmnALWWIKT9sq6qok+QCJ18XmRU5QFZVViFJyPDbunTxLLNpphbDG2xFpDlluyXBwERkeqKiH4Ee/loj95j8001kHfdbKWTVBst2grApki0vUn+uFMXmZ8/fqZ42mPsZahH4hB0SWOLK3YH058/HDH2ze/I0kM/diRZwIZT5KU5nxme7mm6wamscVNI8PYkBhLnucsFgsut2ueB7cK5EBIhlJGMAQ6lefs5bn/7Vl7diKI62ee5T6v0y8cljmWCKioX0Q1PV/SlYryrXoRN579SM/eVi3vCUYm0/P78hJ3f1meRSTUcwTL4/7NnzfMBw55fmVCJn+etm3puo4Q/cwdEnHT+YB3PbvdHucdm82Gqk7Y7Q/SvofGmISqqun7Hq08YQoo4wghsFiu0Ubjg0DUvY+oCK9vbzmfzjg3MfWdRN/mqJSbvLQ4pgU+iJ1/GkfyLOGn3/3AMPRkiSGr1yj1HXmWs1jUFLlwS+VbFLl/uOd0OuHcSJ5lLFdLcUJrg/eTCHfB88tf/0LAAJZpDPgYSfOCPJECDmMTjseDNI0aTZImbDZLYlwQkObt4OWQttCWNJNiLGsRoQnh0E1+QqFZ1AlVeTEXgTim3ksBUCLt6ZPz3H09cHnxBj89MgyOjx8eubnO+OkPb6gXis1VRQyLuZnXY0xNnnnqes3x0ODdyNPDiTQtSO3A+7cbluuE3eHApw9/4ub2mrJIZL/Ulq7vybML9rsju8eBGB3OS5lUUZaUecZ6vQTkkKZnF4NRws7Ss9j3DOGP4TcXqwD7fzsrqHmxlz1kPvzOBz/iLJZHecyJoOehnIjd4r4QSLM09j2/I+pZlJj/fGEW1H9zBc6OBzW/rXNcXmKIz+4IGQqFwEuRhEQLFW3b07bNy3lKSmlkGu0mz/HccjyeCD7w+vY1SlkOxxOLqqDve4qiJE2KOQpvpNysG5mcY72RYh8fJYIaQiS4wKubG4osp+9aTocdVVWSz6w7ouxFdbmgbVuijy977aIUx9gwNPhpIM9T0iSjrAqJCFoRJoVfqRnHXhAhfSf749yoW9eVOIW9FAAFIofdjn6Y8MFIhN170iwnNSm3t68JfqIo4jyItbx7d8XHjx/J84Q0XdK2PWkq57HtxYoYHH/96yfSzKB1+mIoa9sepQLH2Mu76iN3Xw+sVyl9OxCJNNnA0/2vfPfd9xjj2G435FnOar3m1fiGL1/2fPm8Z7UuKTPD9fUlznnGYSBNMtIkpW3OZHnNNAW61rF7/EKaLjmfHH0zsK4Vizrj3ftromrJcri+2YjQO0T+3e9/4P/8P/wJHSOpzTgderR2ZIVF62QemHpszDBREZ/Zdsr8m59qBv0LO0+YoqAxcrlQisk52ZPnSJ6OEINAzgPPDDBF9POeFKWN9jl+HpHom9IiZEcfX/atua8TH+IsgDjERatlPdfPG04gzGkdNUduZT+bz3sqoIgEJaD+6EQs1FqESq1BWUPXDDw3z2utKIoCY+XPMgyOYTrStB3WGtIsZb0uaduG/f+TuT971ixLz/uw3xr2/I1nzrHm6hloQAAIkSIpQSJhk7IiJIcvFOFQWLJoW/SF7PDfY0c4ZFsOOWSLDNmaSEoMQRIlAiCABhrd1TVn5XjGb9zTGnzxru9k6VbtCyeiI1CVlZknz7f3Wu/wPL9nlTGd1HgfyPOCcYxsNy1N0xDGkYgnxEDdTKnqGh8c49in5VpAY3jy+AF3dzVjP7DfClakKkpiCngaXH+vbHLOsV6v0Vpz8WDOfFlhLfTjirbfcjSZ896HE979QCfVnuf169c4t+Xp+0fc3vT86Z98gXewb0c2d88Z+wwfHFVd0DQ5/bDFuYFmatlsVmgbKArF0fGcPM9YLEu6LvDJz/a8fnmDIlJPLHkhCqAYPW/e3HB1uSFGGXY3TcMwDnTdKNZ2panqBddXK4waMVZzfDrDu8A4OlGB98KdfPfdExQ9q7gmLwqGYaAsKrZbWf5pJTW/D47b2xUvX16LTTjTnJycc3z8mJcv3vDZzzo2t6IGVDh5BpUoXIehR5sOpTuCy9E6Z7ffkn/hqJprMjsHrSirBmVyQlR024zHD36Fpp6wve3Jy5xHjz/Gmp6uf87qbi/DglmJc/Zw2RCwMqAzedrgZ0SydCcIpojknpDQiXj/c4d749vqPGImA9mkHFeH2isqYsJOiNHj28NCGRKGmJpuRDUnogVJrI063IsfDrUkQe4fhcJqhbZ5GvjL7yPLMHl7Ay6JeVJ4VVpKjwOEoFgup3T9nuAV293A6GNazivOz46oGnkGFFJjexfJc4VzgarKGHpFu+9wo/y9Rq3Y71RCOqRk63iwB5PwUhVHR0vevHnN2dkZPnj6oWO9Pqiwhf2a51lawM/JrASlCFtSHEzNZEYzLUB5Tk4mrFbX1JMZzjsyYyhrUfttdxvGceD6Zs3Qz5k2hrvLPZ/9+SfA10yaBWcXD/ngw4/5lR/9inDsrSWawNd//jm3NzcYrZlMKi4uFsQog28fAj+uv8cH7z/g5vaWth8YO3E1hSAPwenpMUVdp140Csc7WVZdCqILKUwwKo+2CpNb8iChYMqICtA5SXsGQSMYJT2pR8RD8rHKEshHSf3t2w4/yrC/7/b0w0DX7mjbLW3X0bcO7xz7fsc4iHtm13agFEYVZNlAlmdUxWOOFw3XV79Aq8CLF1uKoiHPFXEc6HZrHj644JtvvmFSz7hkQ154VqtrnO949/0nZJlhUsPt3RuGsSLLztjuBcFUF5WoVA9DaXRCVIjC1oU+OZMOAh3/35s1/A/98UsP+GKQl7BLiadKRYJ37Pf7FJUdKesCa01Sa/UC9tWw32+x1iY1hKMs5VBdr7dopWkmDdPpBGsztMqoqgVdt8X7gb7vUmGqMVY2DMbmKCWRzW4ck2w2JysyUeAFiVw3xsqwa+iFx5Mg0EoZRj+QWQ0I/6XruzRkNAL5jJGopEHsO0lI1UoGXX2/Zb44SsoF6IeO7XYrBUoYcG7L6m5PmcN0Nme1vqUferqh5fTkjNlihhtd2hpHur1M9osioyhybCZpOzpZZkbfU1fCoVBK03ej8LHiIHLh3rHftRh7sBAoZpMZX3/9jF27YbZomDQ1mS1E1aUc+/1IkRUMQxC/erS4fmB7N3I0nRCcJLGVhSTadl1H2+6pqprpZHZ/YQ3jnqKw5FbRO0dVaIq8YznLmDTHwJyvn79mt9my24liJDJy8fCIPI9YHVjOi6R6iew15Don4JlPZsSw4/rNDW2/p2kkcr3bGz779JLv/+AE8Oy3W3yQYmXfRapqgtEdWsP11QZrSo6PnqCV2Hqsze8H1SAHtVLfVi+BNGZpAKiTdUpFGdDFA4fiwBMj/bt04ekDLFYsvCGEBI0NyYarifgUPnJgRLg0PFFiZYkJspwYMcboxG0SqXuKgCMkZU0kpR4m5WhwI7vdjqEfiMR725+3hhg9213H3d0dymiOjk/Y7QbW244803T7luPjU5zzoGAYHG7YJ66A5vHjR/joCd5JUxQiF2enTKqaYRho2x1VWVKWBSF4eidDvdwoos5Bg3MjTV3y8ccf0Pd7ytygiobHjx9R1xVVnVHkWUq/zBn9wPWbS9brNcZoptMJTdOQZzkKRT8M+BB4/eYNu51sTMcx4kLEamGVkZYLt7c3TJpKLEdYTk7nEkaJStbgkbqpKYsS54WFcUAT9KO/Tw82Bo5PmmS9N4z9nr4fyMsMmxnmiynTacNut723mrx8+YrdbotSineffkzb7tlttrT7DoWhbwe0yjBWhlAYzfnFA05P32WxeMS+63h9+RXTpmbxo+/wJ3/0DbvtlrKs2Kz3KEbK0jIMh/PPY1Qmtvd0NqBMGmBYgheLaFQm2dTsff3nk0pO7qrDs0qa+6n7x52QVBFp2KeVgaCTMkihTCogI/eQZVEyhfstsnDLIPrwVmkUw/2Q5IBukF+XtrvKS4OnYAzhPqHNmAytA945xtHRdntCEJuqjx6bGUnD9TJo6LoxgYdlUZPlimF0dMPIvJkzjg7Xj3IGoMnzCpPJoD4EzdXVDT6MDOMgavGAqKHrmsVylgKpUpOrNLv9Fmssu81Ofo1O6kZEoV6VGculpKnPF1NJGCbigzv0oBIQU2RMp+cAjIPYd6QITUMbxEq1WM65vLpltRbEQkSjd1tR3zQVuRU8Q4wNWseUguzlrEPRd6OgKoI8OyjwyHJFp0nVZrMV9qSVpNKqqNGm5N2n7/Ly5UtQPZ4B5zwxWibTmss3K26udzSTgsW84uLiCNTI3d2WIiuwpuJudYfNarabjrYduLnpIJb0e8Nm03F8VNM0JY+fHGOzkWZS8ODhKbvdlnEc+fjDJ/zpH79AxUCRV+x3e7TyTKY1DNLWuKGnzjOBSMeIClFUoth7RYQotWXJopWStNMY07z6YEeSKyDeK7nT2R5kQO6cDA5AJYaezLt9UAkN8q1lU4zp939raUfLMJE43isf5E082B0TM1hxjxaJ0RGQYtJFCW0iiiKLqPBKBtNt2+JHR13VYiNM6brCpgrsOvn+12XFdbJWOz9ydX1LZi1NPWXftomBJqqNqqhBQ1EpjM1YrTZ47xiGXtSJUdTmTV1zcrLAjdII2UwUWrvdHq0ifhyJo6d3A8PYozA4HygKy2R6xHzWoLTiR4sjVJQGVqyfsj6LBMZ+AANFLkO5LMuo60bYa8HhgjhLgg+s13d0/cg4KpTOQVmcg7v2DqUiVkdQR2gbCThubm+4W+8JHkEeWMPV9Y7ZPCf2niwrgYrdbmToW8pKY21JDFHOaWsZB1FDPXlyBHQEH7E2o933lEXJft/S9zI43G43hDhyd7fmm2eXTBoZTJ+fn3J2esrd7SVaZezGPccnNbvNlhAC41Cw23pWd3sePFhirSysLy/fUFdLbm57pvMcoyMuOAye04cXfPHZa4pSkRcFfbdju7/m3XcfMZtXRO+4urzEDQ25EateVUkggZzduSibQmJGKo13EHEynAhK+I9KmvR4XyPFZJyNadmjkgrZJFxKYvHhicqnIUB6D4AYPAfchfxalWq4gB98quvS+C9CdD6pA9O7h0vKvqSKDY5DUigh4pBEX4MhM5kMzZVhHD1tuyfESFEX1KZKYgNH1ztAHAV95zAojIaqsGQJ/h+SQr3OMvb7juBJNY4kS1ubEwLozLJa3bHb74DIMHT36t4sMzSTCUfLBcTEdlaHYUnHMIx4JQqmEALL5ZLprGa73SRhg2cxn9PUyEK1H6mbhudfX3Fzs5eh466l7zVdq7i6kmHyMBja4Fku5sRosSajyEUdGBGG5/HJBK0h+JGymFKWmt6MeDdwdjrl63bgm29usJmmmRjqRti7ZVmyWnm6Xli011dr6iYnyzRZJtb5o+MZy6M5RluGYZNUsjCbVZJeGhQ+DIxuwGgvy8/5hLK09F0gz0q0znBjTvAZWVYyrY/51R98zGx6Qp5XHB2dUWcN83rFr/04J4bDeWrv+W9t2zL6AWMVMY4MgzyLzgex15uCfeu4urzCuT7dFxFNKV+7KzGmoV8P/OJnO+Hs6SXGHHH9RvPFpx5telFXRWFuZzanLCJN/QVRDdjMom0kT1+XqACtsCpNTEvOxK5MPEulE5svCJcV3QMuqWEP9Z5HByd3kRdWnAzbZMiuUnLo4e5K6hy5w5SWQXpiO6v03h+Wu94HBj/c90WHQVqM4IPDx4B3njKXOkenmtIN0vfudz11kwOCMthuxfUzonjz5pLHT8+5OD+lbVcMRcAqRZbnxAB9P5JnFZdv1oxDYLXq0EpUl92+TWE84vwaup7gXUqbtUwnNV98+TkPHpxR5JZJU6OIbLf75Iw53P2R1XpF1w0YI8PWPC+YTiXdVb7/jucvvqZuMgpboiKMvafd7en2gdvrwO1NjzWntPGU/V0BIeUERMft3TUv37zi+fOvePLwlO//pb9IURZc3lzx/e9+TLtv0Qg65NWL59IvOifPasLNnB4tMcYk90tAZxmZlZ5EaZNcZwaDDP2NtfgYMVZcXoS3imwZdju8CyJciMIhD8HT9T3jIHV42w+EEBM6ICbFuk3YLE9ZGlRlmZsarY/lbonC1ZVzPfUV6e/jhoF/8kd/xO/93n8FRNpxRO8jxnQ09Q2zheX6boUtSh4uFxg30PUD67s9m/VXFKXh+Lih2884PV5QTyuGsSU3Gq0i2mTMZydUZUm3dwz7axbLKdNymgbbSbygPBF3r0JF6SQKOihRNfcqnl/ixy894DMpHXG73VIUBcZoYrA0k0ak9tqnoYNAEfMip0z2Op9snc55ykqm73UtUGJjTEojk5SXPI/sdjcoHemHlrvVmuDFwrewc/b7Vg60IlmQvjUMMUrgmfIByOY8EslyQ1SerhtS2qvDDYb64gSFKLrEPSgqvcGNkoia2Gt5YdBGmHe7nTSDXbclBoW14nEvyoJu3VI1OcpMUcCu7djuel69vGa13jK6nl//tRlNaVOwiEhof/azn1HXFcujJ/JC9PKQuzAKSNWKVVmpyDh2DKNHRXkZ3OgJwWBMSZZ5Ip6+H/HOc3x8Qr63rDcbyqxEq4wiz9E6w84a2tFwdX3Nq5dXHB1NuTibc352TFFY6jIH5cisoigzmomEhEhxbDHaUlQTQijEymwMVRnRyrPdXVHkgdh5aTi9Yxw7sixPUuWeEC1FVXJ6esTF2YkwmNqOl92NpExNJ8xnczbbgdxWaKNR2jGbV+y2G06Ojrl8tefsfIlWgfWmo2pqlN4R/JbFUY3zI8MwcvLgIYv5EqUPlsJ00SixIRIPl8lBki6D5LfKiPgtFZNOBSMQkqguXTTS5Ekhq7VYrAkKFW1q2A7pqElddFAqBblYxT7lMUoOR2PEviuHVkThIbpkc3rLdyE9/0WWic2UKKwiDbP5hKhIbCaxG7e7lrYdmE2n3K5ecHS0YLvZcnmpuLg4ZTKZsd3u0nulqKsJZV4BEZtl7HY7trt9UiyNUmSYnLqqOFqeirItKbe8d/J7mXAPp8XIxR+8HHKTac1yvkCpyHI5x7tRLnCtCEo4hN6P1HXJbDZNn5enKqv7TRIIyH05n+HcHW8ur3BBotgzY7h885LppCIzSNqjjmgtXD2vPDEqPDAMB3j2ISVMEaJiHEashTYpwYQnasmyCqLi8cP3ePXqa3xsCV6SDqMGrSyLuShMu87RNHM5P8l4/OBjNpsb2v6S6XTOfr+n73vmswXGmrQNdAKRH5QUs05RFZqysjz7+mVSk2Q433Nzc5vCIebM4oSbmxucG7DHx7T7Ttgb2iQosrwLxlisyRlDJw0uSQcUZPcb71WjSQkhfqekFk4J0sqgQlKhxhRMkBQWoFBpCwvq3u6EUqLKTsXggdunOGy/dDrzDirCeJ+0KX++Bx0JaejlkoI0sxkhKcWtNng8BoGPOz8yuIHNtsc5j7WWPM+E37Vds1zUKKVomop6UlIUOUVeYu2I1mLZDE7OBq0Nl1c33K3W7LYbprNJSoIrmU2nCctwUNKJcuLm5pbgoaolVGg6mzD6kWEYCCFQVTUpbQUQ6DfRYqxhHAd2uw3O+TTE9xyfHEtaaXzLng3Bp4I4pDNTcXK8YDad0o9jas52sszShqoqUBHc6MhswaRpGN1eCvygUEYToqNte9r9CFhG5zg7O2G73WGNJs9FDVVWguFQCXmgo6bIZxAuUcZT2oy6qVjd7jBa8/LFDQqL957l0YInTx6y2dwSY6CPPbNpyXq1ZTrNyfKK3RZevrzi4YOnBFqyTHN7c8d8prhb9UymFmMiQ9uho+fp44d89dVVej88+3ZLP9zy5PE5TT2hrnLevHmDG5fkxrDRUWzKKRWTpNDLslzwHkEl5V0KbCEx7A62ppjuDxJbMsa02BFlNPFQzGlSdPb9u0Z6V0hKpYM6wUfPYSEc0v2ikkX3EPZxmP/FGHBjLz8f5V1VOuKjA899qmtuLdGFFNahZCbtAmVRAJHROfp+ZN/KgKGuazSG9e0KFRyPHpxSVSVlaambirLMqZPdPURRTKooQTbKaG6ub1htNtzdrbCZTQE3hirPmc3naXAhaBatI9vNit2uTS6RiTAalaijhkE4qVVVU5SirDxgSayW5ZXcORuEFS2qWZ1pJpOGzFhCAuqrVN+FIMOdLBfuYlO/y83tijeXNwyjY7/bMmph6i7nCyZNxes3gTevEmtVWfZbRdc6nJPhfd1kbNcBYzXr7TUPH5ziQ6CuM/r9iDUCa5/Nq6Q2hqxQZLklBAkDWcyW5FnGOAwYY6jrOtWwPc717Hc9k0mGsQPHJ3O0cezbFu8tNqu4vr3GDXfMFwu8y7i+XHP5ektdlxwdnTBfVOx3f87Vmy03t7conTGdPabISrxzfP31V7x8dc1yccbRsfzZZ+cLTmJJXWeidMpz5vMlk0nJzdUt8SjQNBXaWvyYmpoo900Mch+GEMTqGrQMSChkCPitwdpBuSpnvAysRdkqakEdkYZYa8JB/a1UqvsVxuRp+WOIQQKhgpdGVmotn1APqYdIFg1ZoqSh+rfCM1xw+DDec2GVlprXmEyWI0SMNkQrS0KrIzGO9L1n9ANd1xF8oKoaiiJnvdoyjC3zWY3WUNUZk6kEEZZ5DlHY5tpk4hqJQVSPKnJ1fU3bdqxWtwQiRZGT5ZZMW5rJRIKXMjlfdFIzbtbbe95YnhfkeYYxmqqqkrNJ8fSdh1xevebuTu5CUBSlwo2B2+6Wm+s9L77pZHHqPO1uyzgKBsI56NoggwI8gYFhHEFlEog2qymKjOlsQt+tGYYRrcUBVRnpS1Caqil49fKaLM8IQbjs3gnDVTJGOmazJdttR7tvJem7yMhszX4/EHEsFlN2+5bN5sBL2xNClAWYUrS7Hq0DwUfa17copZjWx8zOLnjnyQ+Zzy6o6gVVNSWvalHvZiXWFvggydqHkK7go6AZUk3qhgF0YkmSuI1BMwwjX33zNT/75FM+/ewrbtdbOXeiQivDw0cX/IXf/A1J400sSu8cfSfnYPCC/3De47zDe1m8+BAYugE/Ora7yHYPw+BxfiCEEef2ssRyoogN0aNUSM4BwUxFAtbKQl04kZq8sOQpYTmzGXUjgR9VZahrR1H0mExJHZ3+ntJDWUjLZAl4MvcMPpWUkdiUcJ7uThG8Jy4sKSwtxPuvc3Qjw9hj80yEGUl0oZUo3UWVHunakRgcZZVRVZJ2ene3kspVyRD39ZsryiLQTCyLWYUxmsm0Tt8jzwcfH/H69TVXbxS3N4oYhF3nncek8J6DC/Hi/JSyLFivbzk/O6YsDQ8fntJ3W7Q2tN1A14/UdcMwdPdLZqU2XDw4xlrLy5dvGMeBZ988o2kKzi9OODu9ABW4u205Ng2jG8jznK7bc3010LeWk9MTUA1VM6MpK14/f4mEd1uO5jP+pb/5P+Jf+J2/wt1qxXa/4eT4hEcPn6Q+9lBpCJpDxC1Sy4fxsBhMn4mKDKN8jh5h/fajqPqCF2TA0Hb0bsB5wcVEH5IgKyPLc46OjpifLGTxnuZDIcjz7WNg9AfVgBI2XxocayXKeufELdO7QRSR48jYi/XXB88wjAyulzrapZrGBap6xtnFQ27urvEhSs6Aj9ghsNloHjx8yvHxnEmT0e1fk2eOX/uNj9hst+x3e7rOc/5gxvHxHJtpIrmEsiThmQRbif3ZaljM5lIGQnIwKaKyGC2zKOcPTP5vq1j1W5HQL/Hjl7foEvHeiVWoqu4vYaU0LhzUSFKYNk2TGOeBad5gFlNIlpfIkKb+UuTGFAbQ90Oysjh8dCivKIqc83MZwgH3nIh+aDH9wSJhUgGuhK2CEv6Sk62C1iKtzZV8OBCJwZBnc2IMjK7HZvremiYKFM1mvUkMHk1ZVkkd1qaHXuzGVSWMrOvbG5yX4iogipf9vidGwzhGxsFydvqYvDDEaCnLKm1QtAwUB2GdnZwKD6goCqyVBlqSHuEAJM5zTZ4Z+q6naz2LxQlWV9ysIs7tiGpM1mNFU89pO0ffeq4uN1gLWa6ZTU6IFGxWA1rV1JUwVMoqp213GFvTto5haGkmJVmmqOrifmCjdYTo0MDoRKV2aCZC7BnciFKKvJAL8OL8AZ9+8YrVes901jCbT2j3A5ktyPOCLMvxTqCl08mU3UYzm03Z7zY4N0pi3mbPm8tXHJ/WvP/RklfPtwQ3Utd73nv/jFevN/z8Zy9RSlPmCqUCs2bBxYNHvPPkI6IvyTMBoRttkhJOpVwBGXTE8G1FhkpvarwHyUYOQ7y3wzVRJh02U56QNsXBy6/xMd5bI2NS/d33g/EwwJAi4PAj6GTbjTEdlm9tkD66pDhM0nEjA5uYhpQhBPbbnXwfipyIqOV22w3DOFCWJQrN7c01MYw8PD9mOp2Q5Zq6qSnyiqrIsCbx2YwwK4qiYL3e8OLlK9brNfBWcVpVNbPpDJsZeQa8x/nI7c0d4zhSlgVlWYgF0Bp61+H9yGw+eWt7S4qgzIhcexj6e6Wb804UcfO0WfJvbQZymIplwEdR5tRNxfn5KSEqdrt9StD1FFkufJveicKwlrAC+f2E+RmjZ7fd03Vj4gRZlsslm+2O6bSiqCY0zTypz2KybFuMzhl7UVba3DKZVOl8FBaKNDBJVecLVCwwqmC33eMZUUbhwsDd+lZ+fSMD1f1+DSqnH2A2g3Hs+frrr6jrY5pmynTm6K/TcEprskye/dzmTJsps+mM29s7urbl4cNzplPhyvnok1VY4xxJLSE7mpi4GnxL0SqP7mGirZIFK9wPwa1Jm72k+jqoHwLClVTm0DDF+21uTIWsuk8LFfabSo26DLm/nb4b0PqQphvw4yjbOh8oyyKlX6t7tZXWYsG1mUj7nXfUTU1eZBhj2O12YofP4L33n6ThgaJpGoRF5ri6u6TIZZPYNJJWOTrHbr2DGLk4PcE8OCPPM0Y/MPZDKnzkDNDKShlrDCcnFxxs9ABZtBifUZQV1iQrv9ZsN1tW2x0KKIsaa6N8Zs6gsGK7MJIU6kaxSBidrNakFL0gqutIxFhRVYnSyXB8MpXzwnn6YZBlTV5Q5DVFXuO2QRT55YS222G1oSwNw7CnLCd07ZCUC2JdLotMRMvhUJhJk71a94y9w2pLVD3ODWzWA5ttyzfPX2MsFLmhmeTkpYT33N3umc5m3NzcsV17Fosl3hVcvb7m9es7iAWLxTEffNDws58+44vPXnJ1tUGpkvnsIcp0mEbz06++4vWbG46OLpjOLC5EHj06QukJTV0mDEPByfEZ06kMw4lzmhT2JMzShO+IEecgIqyuGGJiqZDUCdyfz2ltK+/AYWEUpILKMvMtS21MCycZlpu00CAcxoNId45s5pURW0wMHmukNfJpMnhQT8TUZCoTiV6aueg94yjKybzIhReIDCEw8o5oo3HBMY4D4ziitCQ0ZlmG94dFKRyfzFFKs9lsKIqc+WyBzTKGvuPm6hZjpeaylUVpRdvt6YdRmI1VTV3VNJNG7qRRHBHG5jL0iUGUxIAylqqupE5KeJeiyHFpIWb0wS4V2Wx37LY7WcRmGWVR4Fxk6ANtu0PplrKuKHNJRvQ+oKJKsHWhTMkVLGEfMXRkWcZy3nB2coSxJWOy0bixZ+g6QgjcrQP7fc84wunJgqYp6fsNR0cztuuB7UYsO0VVYHXJ1dUtR8c101nNV5+/ZOg0WSZDzRBluD/0fUrhVURv+Gb9EhVhNqup64rz83O2247V7Z7ZfMpk6inrEu8HiqLg/Pwh89mM3eYFEc1ssWDoB1CKzXqLNRlPnrxH3w0pvTWjqnPOLpZY46irCfPpkn7Ysm/X/Nqv/Zh92+JGUVwFKo5PChRpwR9HtpsWoy1N01CXOcvFHIVlHHyqpUNa9mSEoPBxQCkZAsRQ0A0Nn316xWefPWO379Jnk8mdns5EiN/iJztUWjwLtjJKkIeR59gYTZblFHlGM51Q5MJsNEZJ/ZuBNRqt433IktGS9Cz3nZPgtxhxQZjPziW+ahSFtlJyLw0h4pUhM4YDtiK4HnSkG/bECFU1pWoymkZs09KUQlVNmE4XdF2LMYamqTDW0PcdqzuxtFprKUpoqpxIlEHH0AKe6bSmrguapgQCzo2EgDiA7IFRi9yxQJYLaqQqq3u1b1GIsujVq9fMZjURx9HyhMV8Rtd2ZLkgl2zilJVlTZ7l3F3fMbqAc3JO9K0DvCyokJC3LLP3ixDhl5Up/O4181nDbHrK3e0d3zxbc3yywFhFU2cUpSUv58znM7JMlvDfPLtiddthdIbWjnFwWKOZzyW0qSxKxtETHORZg3Mjy2XD9Zs73CDqutE5utbjfUaeI+zz3lEWEx4+eIfZ9ISjxTvs25KIx8dI7zy5i0y1IRpDltUUOr9nsd3b8JSn6/a07ZbddsNqveJosWR5tERF6Y1evHrJn/7Zn/HNi+d0fUdZGPreY41hNp3yW7/xG5ydnwM6CToCBJ8W3TotzbP7nlQGKAZrM3H0hJjCoZIQQUktJfdYREcJr4spCGsYesZxpB96+V83pF60YxjlOW3bjm+ev+H1y2/Ikrstz2B5BN//wQmPn9ZoenyyjYMiuJF03XG/GFbC2dYqBWb4wD0xOb69H0NSOgUvYqJDuFSe5ZI+qmSKEFXAMYprwh0Cr1QSzUTWq47NegBkUOh8ZBsG+u6KZmr41V99wslJwWwqAz7vB8qqYLfbEkPg7KJiNs+4vnbc3e0p64zba4Uf5c8yGIzNmc1mtK0s5X3QXF6+YRg6zs5PePHijdzjSd0YY6QoKl48v8Jay+efveDoaIq1ls16Ky4BZXn18pqyzBEhvkZR0Hd7FIH54ogw5uy2A+iK0Tm+9967DPuBzz/9AmtKFosp//N/9V/ld//6X+PN60vOHlwwXyxpu4HPvnjG8+fPuVut6Ic2sahzrM0xmcYog9X2njWNilLbKVlc29xiMovNLMYo6aej8LNtZoU9HJW8p4jF3QfPft9y+eaSo6MjDq6fcGD3HYQCSXFPwlcYrNTy5YFbLLx6bU3KgQiCY0h9cFAHnILwIJ3z/Oqv/Zh/4Xf/Gtc3b9hsdmzXe7p9y3azZrO55Xvf+4CHD5YM/ZbXL3/CbvePWK9XlFXBOCqG3rM8qikrTd00rDdrhqGjKAt5D5ViMplhMyisLDJiYpMrBF9hdYWxEq5qlAIjfQEHrrlS4qr4JX/80gM+bRRNXWOMTfBIsXbs9jv2bZu2QTXOOZqmBiJuHCnrUg4kJTZCrSqMXjCbzsmygi+++jO0GbGZJsuqtI029H1PcsCmRFmIzjOdNum/iYyjqB8OsN7r6yvqukQpZNviNdaK5F+lg/IglY1hxOYRm4W0wYJh9KkgIgWEVGhj8F74KNZqYjTcre4Yx4E8LymLWpKqjGJ4dY0PgaqZsFu9JkQ4WsyOVAHmAAEAAElEQVQpSwnTUESs0elwHQAYx5HT03M2mzUvX7zm4uIiKd3k7zS6gX4QaWtdVeRZhnMD2/0ONNyuX9BUC6wVlYHzoniryhlRBa6vV7S7LTrWBF8BAa0rxtHjesf6Zsvqdk1VwtF8yfJ4gTbgxp6u61hvVpSFpSgzyrKQpF1lyWwlQwpjUbg0FJOXNqYXV6CvokQLAS4v73jzei3cRA+vXjmG1vE7f/UvUNU5y+Wcwh5zffkFZZVzcXGM81Oev3whcPte07WRqjacnM1odytM5tntV+x2a2aznPlswmzSsN87Lk7e51d+9Ju4EZ6/eMXRcYNC4Klqb0RyHaUZxachwrcn6gdVnhKL4WGAdrDSapVQ0sqkw0ouVwFAy1Bc2ikpPlEGH0Y0imDS7izBZ0mDbhlwHP5w7qW9MUSiing34kZRzeV5jlaKPEFfAQ5cqK5rGYeeEDx5WUCdU6kCNzi0VhwfLwhRGHplVSawv6FtO65WK/JcVKZ5UxOVZrW6o2076lpA2mVVoJRsdA6JVbKpl/cMFMvlAq1NGv5LwWnDSBHlMExVALtdy2YrZ0iZyzPV9yOy3dNUVUmeW2JQjEHA8PL9JG3zDG6UraA1shWZ1DnKaKZTiX0P3okiLxgym1FVU7QxjKNGaYPNLGPfk2eWLAsYW1LmDd6LqiMvSoo6T9t0LeoEHTHaS9qo92R5jvctw9ix3Y/yxYVMWAsOdq1Y0+qqggit67hZX1OUsvkefcDmJW0/oK0MXSbTU/oRRDXWACu+852PaNsBa3PeeW/GyXnJ06cLYWKII4J212O1pcxKykXBcjGnrgU6LINq+UwkrVMuJJmZhvR9j2nTdEg3TP8+ynMsQyrhhMmDd/g0U7xZGh7aRJlMesA0Mxc1a0hnhvD75I7RHNS0IVmWDoD1mJocd6+4MUZjs5wC7ocmHs84Orqup2kaSUYzWhh4qkBZUV4olKS67nY0tai2JtMy3RGB66sVXTuIXVFn1HUtEOlg8F7CEBQjRjWoqNhserpWcA8+eGaTBk3EeZ+szgE/CK8phhEQLs2YgqAUYLUiLwx5XjObneJSOraxGXmhKKuIMTk+hGSrkHdCJ46LsGhEtaLQ5EYUx96JYmWf2DIxOkLoMVZsKVkORVbcJ9HNZ6f0fc/D8+/w6ed/gA8tyhpOTs8xylIWA9ZmlHVJ8B37/V7wGTpigEwLqN4m1mkMkc12RVBOmhIz4eLsCdt6g3Mdp2dTgfQvjgnR4kZHUTTCM9QZm02PG0uOl09o2x1Xb+6oKkU9MRwdN0nZVtBUSwZ3x91mw49+9ANCgN2+h+hYnhiOjkpizMgzURHtti1Ga+Hw5Tnz2RRjcobREbzCmPT9BGKQu/9QexxsR+FgN1KH5Y+EYmiUgPzh3rLL4TmOsjFP/wKT7g9J75Rz3wUZzon1RGyI8iykhMQg23OlU3o6gWggaMvoNfuNZ3TgvcY7GWaxldfVuwFUS4gjSpEGByN97zjwYBRtusfln7tuwLtIWeR4n2MLzXq1Yd/uCH6k61uOj844PT3H+wJtouCgxp4sD8yms1TvpM2/7xnjiLUlZdGIAsSDipYyh2DTEvgAbg8j1kQiPZGWiNRxRhtC6DmcEH1aKB1lFtQSmxvWmw2Hj20YXeLcItxEJQpNpQ3apBAVfFKfeELoMDpZJ3Ugy2WgdHRc8L0fvMPd7Zq+A4KhKkqausE7jfcyrFFIXWnRGFPQD3uaScnqZofLJPVdgnlG6omEbeSZYmgjZVExnzUQI++//z4xRrabjrKY8ubllmh6mmlB9FCXp/T7ks/evGDf3vKdj4/54s0rCRiZPcQWmmbqKfMly9kTnn3zBZP6iLp8zdHSsDxqOF5MKTJNJKOZNITomE5rLt9cM50U5GXOdGrY7Qb6oaMsM6aThrqakBmDyXPyrMI7SV3UJqBiuiu0QzHHqDlKW3xQbLaGP/mjb3j+vMOYx8znBfP5hJOTIzkRtTRrb4fn6ZlPoH43jrgg570EkYys7/Zs9y02U8gDv8OYDGsyqiIjzw+qV8XB5nWwE5rcJEC/qPWtVVgTqcpCFoCmQnQMEZQ4MSBiTUZuTArsgOAHFA5rwA0GFWTwkFkH7BnHDWUt1snptCHLDOPQc7u6ZbXaMowD00lNUYiKHO1R0aO0/LnGaupJQZFnjGMv7zP+bWBNU6NURtu3cr7ojKbOcMFxSIuWpVpkHKUu6vvIm9d3XL65lYFylRO9ZX23x1jhm1ubcXtzwzi6dP8b4Ql2A8ZqnGsxJjA6TVUXnJ+eMQ6evhtp9yNFnnFyOiezGd6Bpubu9pqhW2EzRddvOT6dE+LIan3J2dlJEgAYtptOMChjYHV3k1xfUot7Hzg/P6YfBp49e8HxSUndLFBKwvaUEuWocNQd3pdoKnILy/kFbsx49uyGL75YMzhZvNus5uLhO0Rl8FEQUA/OHrBYHrNYLnjw4IKzkyN2qw1KQ1ZaXr56xhdffElVlsxnU45PTkQwEALHp8d87wcfs9mvEQ6rBArJ4CejqWVBG5IbIYpsVe6NIFLvQ//RdxLgMDovQ2bv0hLHJUtoTExg6R20VoTRiwrN6PtgS5vnlFUN5qCGi/fOGa3l7/3ZZ5/xd/6f/wHNRNLuM2vxIfDZpzum84aHF2fEOOJdhyYwhn1yJiV2bMIHxSAjvJCwPzEkRSoJ6XL4oWRxLL2E3IU+LX7TrBClSJzREe+zNF+QoIy3QfbC8ROskKBd6qbgu999zMOHRyyOcvzQJ9xYzmp9R4yG3NbkWYaxW+q54nyYsl9bPv3ZmpfftJRlRa4L9vsdX331NYvFlPl8TkTQY8Ijl7Tgdj/Q9wPOiJhns96nOt7ig2ez2TCZNuSFRSnLODr6vmNnNQ8enjBpZgwt9HuLHwq0yvGjIssa+lG+h94FXr66IssaHlw84H/xr/1r/MW/8Fu8fvWax++8hzY5//V/8/v8v/7O3+HTL75gHBz1RARGzkkfOTqP0pqhl7T6g5hFZhQKEzPGQZSjJjNkRZHCUCO5lRRyk2Xkec5sOmdaTXj/nff5jd/6dY5PjtP9kNHuW/IiF+xUGt6GIEIbHwcO/qFDHw6gklDmQJoPDvS94w5CeoeUSkvLxFhVCaOSVRmLo5n0pUklLorYmFSIHgM8OH0PTcUf//TvcnoRicGSFzKwRknQh8az2qwJccLJyZmIBLYtRRlolqeMo+Pm6kYC8KpGOPpYUXgH6ZXk3kl9vTr8rQ7OpP/hP37pAZ9AAaVoi9GhdBTVjyrk4kGGYsaKZcJosd4qLZN4ndKcrJnz7uPfwNqMTz77fYZ+JC/Aq+Ee1lhVDVmWJR94SKoHyLOCtxbKt6DkGCPb7Zbn37xiuTjh/PwhKpqkjBsE2qgjTV0nxY7CGcizNW8uX+JGx2wxxY0eo3OCUqw2W6LSuG2PGyOzeUVZiG2vaRrW65Hdbk1VVeS5YdN2rDd79m3L++9N+N4P3qHIM7R5ayNTyuDGkA6mSNf1WJuRZQVnZxfc3d1x+eZaZK3LY25ub2XbU1eyrd5sKfMcrTQvX71iuVyw2rxkdKs0VNKyBdee9X6L1oonT05ou5KTo6c01SnrzQ0hDphs5OxiQe8Um/2OIs+TWiuw3m5SoErGfLZIbKqedt9KmILJUWQcL8/lwhlXKBVwTrgxMeqkikqqIA2jE7B8WdQ0k5JmIlyR4+WxcLqUIc8MozGURUNd10ymJSFG3lwpNpdrYlRcvm4pSo9Cc3y0gBgoswUPLiY0TUf0A2VpmDVHTOoZJ8sHtG3LyQ8fs+u/4CCLdT6mrkxUE8GH+6Hq/bAMkRoL2Ftj0NJkpI5OttiyjYIkP0+/UqXhJqk4FUtXsqqk/5MaVmG0JuA4MP8O8fGH4V6IkmYk/xywuVyIxsgl6KIEvBDlYnYHqLtWVKVAVjMtBZG3lnEYqeoMm2ccncwxRgZ7NzfXdF0PwVNXR5SlWO50+pq0kd+vbkr6fk8/tDjvUIjVsawkWdOktDoynQa+cIhityanG/bsdnvKUhLWyqpEmZyhh36AqpxQFkf4TC6Yu7s7xrFHKejaDudbiqKS99g5QhgJmKQ69RANZVlxep7x5MkcopcGzhpiLDFmQogZ/RBppo9wTrhtm/UlKkrATpHlUlwMkb7PCdHTdilhWamk5HEoNaDNBGUUbd/SDVt8GMl9QVlUCc5rsTpjUSzlco8BrQqycs5k+pQsEyVBZh3nJxWz2RFNM2ExP0KpApvVlGVDmU/4T/6zf4d+fMXZ2Qlv3lxRFpAVGVkW0DqjbVuMzqiqhtxammYCRAnykbwijMlRNkMhg2ET04APGUbE9NwKU+btZ3iwFx4+TwiEKCnBMSSVazzMXcWqa7Cgk1qPIPbzEHB+QCHq2YPdUYZ74/1zLoD8iLHCr/PeJzaYSgVc2tqlQ+aQpuyjsOecc/fqA6Wh6zpUlO1glsngV6nIvhWOUdNMpCEZWqqqIM8lSTb4yDgC/pif/+wbfvHZp/RjR14U6fujZTDUC+PVZAV5FjCklFWTYXSGMXnKCBAbQcTch/RsNmvGvkWrgPMj3//hD5nNZwlynLadQeGcVLgS9gREhXcBH0XRZ1KQQgyH+B45y3wKvnn98iXDsGcxr5lOLR99vECrO7b9htXdHU09oSlnLCdPmJYXHM0vWHev6MeB3f4WFcR6YaxYpiOOzX5FWeVS8HQDi9mScRzEkaqcgOltQddGslCw2zpurvaUVUaeadxQsZw/4Ztnr7i9ueSDDz5gu3lN3/c8yB8xnZZo7ZnPjmnqOV988Yz5/Jjr62tOzyuOjpc8PD+lqXNUZ5k0MjBqJiW7/YamzlkUU2azkmEY2W42lGXNbDqlKnOpVcpMVCbOpWIxx+gCoyusyTAxux/uHZhJCrD2rfI/RlGmSgej7lXG6gBlAbQ6TL/TMicldmpj0qIk3Q1uwPnhYFQnIE2YipqQBlwHHiUqYjOL05btXclP/skr/vzPP2O9uyMrcqq0UMhNgVUaa8T2bYyomLTWaGUZvb1XtmmjEz9W3vvgI8FFhqFnvx84uzimKDLyoiDPMqxxuCHn6jIt/ZTBj+C9nCmXL2UgZzPhTIZU0KuDUN7L99AaWYx5L5DuGKV5JXjyXGMz0CYwW0ZOT3OqSpIQhbkHJrOJgRNByb1Z5Xk6T4K4I4zmkMQI4FyPzQosGaPzKeRHDjLvDyFwCqdUGizIkvH4tOLF82u++XqHimLhvb19xWRS03+L6fzkwTmbzYbnz245PjMsjypePNvhXfrLRyPJq33ADYbMaIyOjIPj9evXPHp4xPPnX4raWVmqOqfdV/iY8ejiKUVR8ckvPuX3/7uf8uBizq//xlO6fktRKx4+uCDLPUWhmEwzXj3/mvm05sP3P+TqzTWL+YzlqSYvoBtu2axHULDvd/R9y8nJGahIUWY4P9L3LZnN2Kz2aF1ysjxDq4ztds3R4gjnIjfXayaTYybTI6w+wZpzTPaIo5NHGGUwWUEIGSenOR+8nxPJ79Xi3ktAClGJqiSpXw4KeIK7fyecT8sqhGP55dfP+Ef/6L/jrn2B94HM5lL7G8sHH3+fRw8epPo0JNWQuBRiCIzBp8RIj/cDMTqiF9vgODgRE3gnCijvQXli9PjRSUpmBJAAvRBGfOggCvqjbXsyayhKjbGBPI8slpZ6MqCKyLDvcONAZhXLxQKbS4ib98LsFGeST6o7Ufp5PzIMgX7sgJG231MVNbNpI1wqZe4XwIegqtxmCeFwUE1FmokhBksMGjfGewVVVU4ZR4fVJeu7Fuf2xGgoK03EigrSgs0sMY6ADGyyXBLk89zQD3txQ+xHQrBESt5cvubJ43MKW1JVSx75yDgOZJmlqic4N+C9oyxrdtuB607UwtN5hnNwMTvl2VevMCajLEvu7jaMY2Df7mnbPUfLKdZoXr+6IbMKrEZrR57laJMTwkBMrMyT0yPqZsbtbYeLGq8iOtcslmc8ffohRT3j8y+/4na15fT4grttx/PLT/G+wxD4wccf8i/9zf8x5xcnXN9cEcd3uDg95+BQ+/LzL+6H0yEEQZjYCFHjvMJEsV6P7Z7VzU1aVsvZrFBE71NfAnlmk2pIk1nLbDajmcywWZGcbyJ4UYfaVIU0XJMfBn1vfYwpVIEoNl8XQ2LshnTmCeYgDCMnJyf8y//Kv8zzFy+4u7vFjZHgHMOg+ewXLU8f/zqaEccKxSYt08VSG7WIFzJjU99Omh8ElDb44AjR46KDSBqeI6hOJETKJ+SItRa0oCTAk2lLVmZIVkNalBkJ6+Rwx6ZBvrWW0Y+gPNvdin2bU+xq8kxqWecEkfLVFy8JPk/3Y2B6ZAR7EnvKytyHyB2+j7utBGXM51Oms5phHDg5WRKCZ3W74/Z2c7980yjpy6Jmt92RF4bJUU1RKs4vzri8vGPs3zobd1uHjp7MaKr6nPXdgDEV2mR0Q8fQO0bn+OzTL+kHePedD/lb/8a/wW/+5q/y8puXPH3vfXy0/Af/4X/Mf/B3/i5lVXJ2foHzMfULOtnXxfZalmVC58jAWPjriiwrGXtF2w7s960sA50joMhyk8RQA6EPrHc7bu42mOj4J//kD/jv/vC/5X//v/s/MG2k/h2GIbnk5O71Ae7WG37v936Pb775hq5rUSqgTKQsa6yWoaHWhrwsKItSFlZNQ1XV2MySGUtdVdg8I88yqlyQZhENWuZGWiuxV6vDUpT7hTraEoOjqhf88Ed/lS+f/wnbzZccn8wJPnJz84bt7o5x7JhMZsAUbTNxXChDWc5QasvQ9ylQRTirRmfEIEKncRw5uDtiBJ3YzjEtiJT6pcdz/79J0X2bhPs2lKCsMorqcHEg6q5M/jgpluXF476pCWx2b2i7FfvuJbOF/NoQ9T2PTxJERX2glQxEhnG4l5bHGOh7gcoegi7GcaSqG5QpxDpLZLW6ox9aovIYq9is15KahiUycrt6yd3qkq7rKWvDdCpw2Bevrllv9+zapHDIKjbbLc+eveaD996jLAuev7jj9u6SGAMnp2dYa+k6h/cS1Z3NMtpuR4wOa7NkWTg0ypLouzwSeb1WihADS91IkWtzlHbM5xVFb0BbvA+M/YgbIUaP0SVaFynMRNh2Nzd3bPctbSvA9fliKqyhuqLtrxhGuQylth3RpmM+zzBaUVcV00lFWWWU1RLvJux2W7quhZijtASOaJ1SSYeem7sXlEUDyuO9qD+22z13q5vkTbeEaHn+8poYPOfnR8KjUwoCVNWcL37ximefXfKjX/kOT58+YLvtCUGg5nlu6XuVVFwVp6c1Kk756qvnDMOOMEYuzo/4wfd+i3/8j/+YfgNNPSfXNYvZEScnZ1hrmC8W/IXf/Ov8J3///yhFYtTomJFmbPKiHRpjuFfThXv+mE7DMzngtZafP/CVQjyo5w6qA02MWfqexbSxeas8urfsJsaV0sKr8v7Az/Iy+LMSQx58SPYu7i8Z+ToOjDQkZTBCVVVkuRVQeQyMg1jftRYZ9dB3jGMnAzcXyaym3XU4L4yJo6Ukmw1Dd68yCRGKMkuR8j7J+Fv6YS/P//E5eWlEFWsM/m3vJJu8KArYA1dHeJwBl9LUwLPfwWc/2/Ls2QuMzrB5mbaJAjvWJqI1FNmC6fyc1coBliIX+43ROdPJlNvbDZvNDq1qdpseyztkuQY8aM96G/jZT2/J8hT6Q4co2ByoCUZLcmZEnnWjswSyUW+bPjfy6tULfv6zP+PRo3Nmi5HlyYSqOSGqkr5vmTWnVFVNVTVU5ZzF9IQib6iqCSoFxTbVkh98qMiSgviQ0CkHvijlXGJlRSJhlES4169fs1gs00LFCr8GgMhmtaasKo6XZ9RlzWq9YtI0KGW4ub4myyyLRU1MG1KjlCyS7oMFpCGXZNAUDIF8DmAx1ibQvwyitDL3zdmBOSYJz4rgQNkcm1nRBSYl4Oh6MiIuiH1MK5v+bBns6WTZHd2AHz3KufvnSGlRrHoPMfjESM2TnSMmxahKVlpJ2RudsJNslqdtsabrhFEp9qgGYyzEjLYT8Lw0KSVuBBWnjP2Un/1kzYuXlrr8ER99dMaHH79PWeQoY6jrGTEairLEmPT8INbcQ/L2gbtxzxjRVlR8Y0oWdSM/+ZM/5Sd/+md88eVAXqzIsoxf/dVfpa5lI2htLkqjlCAdQyAk+45KSXn6oDBLaWcxiCXbe89/0/0ef/j7v884lmy3sOuu+OAjC3HPZiNcoKo4ocobNtsdz5+/oo9bMIGqKNm1OyqdsV/vCCHgRofzGVW1ZBwgz0tOTp4wjD3jGGmad/jB9z5GG0OeN0ynS/7u//vv8sknf86DszPqesJqtec//Y9+n8Vc8fF3HqLwdP2Ghw8fMpsXOBc4Oin56ssvaJrv8t3vfMxmfUlTVSwfH1FUBudXvHp9SWCk7Xfs2x0nJyfyDheG0fVstxvyLKfvxAp4lu7tzWbDYj7De7i9XTGdTJk0BVqlOyJAGD3aCABfJ2s5gArp+Qe0zmSobUTlEPH3YVnSvaUGOin4lJKz0OQyTItKljY+WZ0VQXAlKgUsxTKd9ym5UYMbU6qvyohhzrPPr3DDY77/nQ+pZwUffvQ+88UMY8XWhY+ypTcyGFMKsUT6IJt0f1igRhkeB+Sei5G+G/iv/qv/mi+//AIX5oz7gN/A48dPOL84SbWYDH6zPG3Rtehrs0wGpCH6dI4K9QyVbDo+pCWwDFGM0Qyjox/E8v73/97fZ7dZc3w8hzhyfBYo/qkMm424wdHUkl6p0h3pvQz5jTIoKzYekOVGU1f03f7eHkRUdG2fFqTmHosSA2RGEirdGIho+k4aotWt4/ryjvOLI/a7nul0SgyR5y8uCbGnqguG3uFcZLdb0/V7FvOGMDquL7fkVri8yjiqKhfOYJThg1GWogocLWdMm5wsCzx6Mmc+b8ROPRh2a00zXXB7e8uf/fSPGcaeSZOxWW149tXXHJ9lnJ8eM5kUuFGYm2VRcHFR48YrTh98wJsXrylyjWbkYOsbgti0i0KYT845jo+PGQbHet2z33fMpxXHy+W97a7IMzK7lGbPOSIztHkX5y7oQslmqLncOopqLtzcIGdxlheyCFJvQ2KUj/f33egHejcIRkVbQnCMQ8s4DnTtnr7rOD0+xWSWy6vX/OEf/D6Xl2/wfqSsclFKR3j86BHf+c7HMtiNCqXTMiuK2+LgBNBa1BU++PsGUFBEqaDRcodJiejkl6V6T5YqMkT20ePGTgYHXvH7//gP+IPf/wPOT49RJqLUQDMZ+cGPlpRloO3294qmLM/xUSbjzoNyGuc6+mGbUAoTIgEfJbChHwe22zuGYcfZ6QlTNSFEc6+U8uEw4oGYvnYfQmLQlnz0nce8ennFzfWeEDRFUQp/c99hM1guFkwnE774/EvWmxalFVmW7vExst2Ju6goFWWpmcxKptOS6bRgNp0QwxSjc148v2O32/L+e+eEsOfq6g3DIH1DWZQoMh49fkDVFHz+5S/QSlwcq7stXefuAwJfPH9D1wXyLEJ0uDGyGfdst1ve/+CBKCczTWY0dVmQ2Zy2ayW5M7Nk2YSqnHF6fEZmYLu+Yxw1zkut/fDpIz766Ec4r3jx6gXKwrsfvMNseoQbAypTRG+Jfctf+u3f4N0np/zZn39KUVa8/97794t9peN9Pe98SJZz4TzLx6DBm/vBVkh2RnFXSF8rKdFR7I7CiMA5GeyMbuTm5obZfElZlghbMU/P6sF18Xb5pKK6t/uqpAaMaekUEZQQPqCMToxmoYU/ffoUrTUhCPMseu7Za0RPZnIyo2m7N7y+/GP8sIUo9nIJJTvcJcK41Ebsx0opsmjF3hvEtntQ3B1UITJEOYQKylcq00tN9Eru2Pv0+pA4gCaFVby9A8ZRhqtDP3Jzs0brAfX+Q1QcWCzm6DRMPzs/4vNPb3j+9SVDB/XcUFYGraFvc3FCWIXNcowZUXpA6yw5gQbu7lYcHS3JbEU/OA5YGZBnC0jLaqibjMVyxtn5lM12Q5YLRqaoamIQnqCOI1UxoesdVk9QuqDtOwYfGVygHwOXt2s+eOcj/va/9W/xg+98h5fP3/DoyTvs9iP//t/59/nJn/05H338MUPfcX13x2w2o6xLuvROKC3LvLZtUUpzfHKEUoq7u1sgstvt2e48u/1I1/epjpEeoR+lr1TGgo5oYzExUGaWp08ecnV5x83NNdNmSkS4nUprVDCJJRn52c9/zj/4h/+Q7XaNGztQiaeu87SgF+vyoX72IUi/nDAPAFqZhGqzKXDGopWhqgUJYq0gJGShWzCbTTk+Pubk6IyqLFEEXIhU1Ywf/eCf4Q//6Jq27RPWQbBqPuHoxKkmHGuioTQnjKFlUtfUVUl5Ia5OjRYrvy559fKFvI+hILMFWgsuRNxJHmsKftkfv/yIUCnxPx9UGkq80VkmAzoS8PltIogUrWJllA8iakVkz6urn2JMpKhAOFYaQ0FRpGI1pq11Kr6iDwIJ1RBS1HYpqRgSKuA8l1drXry6paz2lHXgeLlkviyIUZQF3zz/mq+//pof/+qvUTepwbWWsc/4xSfPCCHjO9+VJmo2bei7jugVZ6dL8iznzeVrbq/XrI431HUhD7uKbHYr8iJHm4lMp4Mk1Y1DpOtlWtx3vcjSvce7QNfvUSqyPJ7TNCXODegoKsHD92692lHkDdM8l1ALkzMOI5dX12x2e5SFgONuvcVmOTFEtvsOhabICqIPjL0jFrDd7XDjgE2gaZO84lUlCblnpxmLeYYfe4ZOOCZaBWJwdO2O9fqWEAOTZsJpOgCU0rRtR9ttmDQz3ly94e72lqIs2O033K5uqasJ1lZ8/cUzfAvvvvsen332BdfXN8zmc44/vuCf/u3fYLNZ43zPJ7/4hKGvOTl9ih/vILokpc2w5pjjxQVlseDN647prCaEHWNQ3N5tmU9nRBdZzGYsFjNOz45RBLp+w6MHH5NntRSTMWAUmGhABWFFagshKTKMflv8oYjY5KlX6WL0Ym36VvLNYeimdES89zllUTGOQ+JhiWLJjR2BMW2N08UUBHB/YFjIMyLFiGxwwRjubatuHDFaS/pTjBLJzYEbJgymcRxp2w7SQNZmGSpKAvaBX6QUFEVB8DIsN9ome7uWLbox6d2SpOyyrMjzDOdGbm+FRbDbr7GZhD9ERqyRIJdDxSxnYSrek+Ln9atrsrykaeYocrq25u5mzi8+WXF3U/Lg/AN++CvfYzJrKCuBdWdFidEGa7K39pIDRB5hywQfEu9QMQxeYNxxxPetDLK0Ybff8J//g/+Y7W7k9OwUay3f//53aSYztBZbnUp24hAS20+Lik1pI0rLIOnBRXHEZgN5YXHDwNWbU/6Zv/hbzKeS7JtZ4V0dBljOpblxFNh3SIW3sunicoeUO3ko4r2aTaXchXivonMpbOLo6JiuG1hvtzJUnM05Wi5xTpJ088yynM9RSkJCvItkRmzlIcpzPrR7opdh8+AcRSFQ72hS13NYSJgC0Fgjl3OWWbw3SV0qhZfJDP3QpULLs1rdMqkbilimOwNAmF5E4fYcLs0QHFme4QfQaYOt0lAxXR8cwNUR2fIZY1GHrXRiv/lxkM+OKE29ilRVCSiGwbFZrcnyjKrKybKcuq6ERdN7ogpM5w0qnGKzJcpMyLMTrFlg7YL3369kS5yA4GJlGO+tjvetVLL+v53ky/9sJgzYA0MzVa30fctuv2e7a3lxeYUqCoYYGbuei/mC2XwpFqnMJqWiEu7U4fdIVlJ4++91+vq89/LMIoO/v/a7v8s/+zv/nAzmhoD3A8fLnK5/yc9+9l9yc/uCi4uGbduCKvnmxS2YnrqpaPVAUdYok5GbnK4TRt7x8pQnTz5kuXhIUy0oi1qs38pC0KA0ktYmQ8bFfM6PfvA9bBb5yZ/+hNvbFfu9J/aau+MVKu748P1HzBdzuu5WFCkm4/HTCf3+mieP3qXbrbFa0ic1I1FHOrejbXfUTYXuxTGwXC5wo+fmbsVut6M8Kjg+WiZtY8QozWI2F06gg+gMVsngQRZagXFoISl3TCEptdYWKGXuv+8KQ6bl7DM6wb+VIWhR9oUQhaOnFX3fE2JgHAWUv5wvUlgKjM6m4s+9VWmmAaLHyxZfzbB2QV4tUTrH6BmRCmMrHjzMpRZTCZsRhIWFEU5p9CNK+eTIQBSE2qIzqevKlE6qtQy4DoDru7tb/t4/+M95+eolSsN6t2EcRhbzBT/8lR+l4XJIVladVEQkbIjDhYQsiLKMEHu5fO+0Eq7e4T0PPty/G87LkPRHP/4NXr96wdD3+OC4vt3w1RcZP/jBd2mHK9y4x9gepT06hTqE++ZPBs/tfmRzt6PddKA8WS53ofdi+TI23qfWj86z33RMminW5vRdIETP6JzY1Lzm6mqFd5a8yNhs1uy2DjdAPS+IQdG1I13v2Hd73v/gTNTnLjKbGwmnySradkdkpCzlmbKZQamD4g4uzhvms0o4yCXYLBCKyGxmGNwbTgr47eX77HctXTtS5RXNVBFoKYqCusrpVSCzBk2kqSw+Axeec/7Is20DxsrSqqqEGysgeFnYeBfpug7vA9ZY+rTgH8YBqzTb/Zq+d6zXW5bLB9zeBj77ZIO2X7PafoXQJTTLozMWR6dc3VzjgihEDsPMpinJi4zlYkmTeL51mTGf1zQTCUZ48fwbWWaVGX/2pz/h9uaG87MTnr7zlLwomE4bHl48YrdrGcZBej8lPO26rrF5eb+8FczE2/tIp4WU0kCMDGMaqifMSvAxMQPl7j8ox9+GqkVc8GlI7jHRiLU2wjiMvPPeeyil2a438t44WK/h01/s+e3f/piTk1OUXjO4W9wYCKNiGFpR0McRDTTVBGtlUTy6wDA6fvH5l9zd7YgIy3S9ec56veXJg8dU9fTeAXXPOEvKe2sl+bKsCoZxZNe2TOaa2XTCbjfgXc9m5ykKUYptd3tQFnHmRLQSlVnbDRgRyiRFkCUGz9FRwXe++5SLsxNuby8Z+8CLZy8prOLRoyk+tjx+MhFFe9Dc3uy4vr6h66/JyykXD5bkecHr12+YzqbUteHqzZqhj+y3AT9adp1HaUddFTSTjLbf8+UXr3j06AhtDMfHR7zzTsXt7S3eN3T9CFExm57QlMcQDG27ph88AVjMG+bHcx49ecLJ8YJd6zjuF3x09oCAZug90UdyG7m9WvOv/Et/g1/78ff47LMvefedpxiTc3l1wy8++3OePfuKtt2z2W4YRof3gl8JXovuOnI/hMiyIolWRpRyWKvS91RcARKKlFPYkrKqOT054ek77zCdTqhr6S2DzVLPpjhUSKjI0LepfwoJ5aAS6zUtApO1VWkjfDBr0tA6KeLgW0M6CavT9iBmSBdE1KgYmeVHoL7H69ctXbdHwikCaCWp6YdhjZZUVGEwS8CHVlIHk4JuSC6HkHA8B4fHoZY6oF6kDrTYQrxW1ooYyKTlVewCZWmISoassqTwjK7l5mZDWRjmi5o8l6H06emSsweO65stLkSuL2W2YIxB0aGVLI+LvGQcBDNR5FVCfoy0u5bPP3/G9fW1BHmGkNwOYoeVRa6cO33f8/r1S04valwYmC1rHj89Zzo94vZ6x24TUaHEBYu1FSqztH3P4AZ6L9ZsW9R8+P7H/Nv/m7/N9z/+iNcv3/D4yVN2ref/8u/+e7RDx1/4C7/JMPas1iua+ZS8KMgym5LYRVXvo2O33bHfdaIajZ7ZtMH5gHMD49DhZctyf58KE09JEBsSiEIMDCHgPOTbniLP7+uNw3kZAmn5qZLyOt73MxcPTjk/O0Jb6U0mTU1wI7v9SpJ3vWIYR8licHC36tlsnAzSIaU2B0xMDHulOCRDi+oaVBA15ayZ8O677/E3/sbf4NHDR8JU1obHFz/gy9mfstr9jNHfMPRbYogiCBkjw+AwWURph2Zk3X5OjD35wwsyk6MxWJVBNFJPqhaUF65uqMlskbBI3CvG9fj/Bwy+LM+w1qWNJ5BKZOec/AfxnrDEgeNyGPYd4pElwTH955DUIcJYkWlmvP/JyEEKe9g8SPN4mNQe5MiHmGQXFNc3a7K85PR4wdlpTmFk+3y3vuXy8g2TyYS+H5jNZMvedwKmXS6X9KPj9es3LJcncjivb5hOFkwmFaMbWCyn1PWH5LnFB3j8+ANJlLUZddlwt+4Yhp6TsxOMgZevnvPNy685PT3h8YNHaCXNsa4s5xcTlIZhaBMcV7YuooxUkhjaFFJsDANdJ9H08jEWNHWODyPGGhbLJTYzlHkuVukgVuSiKOi6ntvbO2KExWIBKqKUl+1/ZtBBcXJcU+YXKB0Y+4G+l0O2Ki2zacNkWtEPPd3Q0TQ1bbfh9evXMu0/EovuZrvh7nbF4EaG7SDbYISXUeSWH//4x+R2ycnyHS6On2AyTVVXmEwgxifH5/jQsmvX5MUpVi3Z7Xr5zPuRly9XvHy15eHFglf7r4hEptNjXr/aMw45MdQ8efwdfvBxQ54XbHc9L1+8YdJMOTmecHr6iDYBnHWURMPgJE0KI9tck+C0Km1jVVRok6F1hjEZIYrVmqiwprhXQMnl4SClXnbdhqpsCH6UDZI19xuiA4hZOHsZVqXUv5Ag0pkixBGLJnjZZIQYSLku5ClhjyhWR+cdaJOGUZLS07aSupVluaiSEItIhWxnjdGUZZGGY8IkOihduq4jRrEyWiuqUa0N0+k0NUKOvh/47PNnXF1f41ygmRhuVzecnhzx3rsfoYxC6zy9xolzgCeaDpNX5PWCvquo1QPK+ozF7Annp0d8/wdLNDnaGkl9NOmgUKQQHxn6aMQeI4ENkhapjUJbwI8Ya7HF4ZdqOtvRtnteXL7BuZF3P/gB1zc3FGXBdDpleXxGniVocjqytLbYBO4+8BfFckpaIgbOzy/44a/8qiiv/EiMA7c3iiKrKO0EPwSc9+mkG4molPaXmIppkCczIE2IEe8PIRbyddyHS3g5F70PVFVF0zTs93u0FktCUYiSl2RXtcay2axpdSs8s7zg0cMnFHmZFNIGY3Ksqdhs78hsRq4mVFUp6XsKAcvHw+WbFi/B0fZ7QNhx0vyE9PxaMDkRJ7BkPC7sGQJkUdJ1D8+EhGjIENUosY86N9D126QqSltmJCHapM9B0k3F8uDjtwpNZOGglUEZkeIbFLau0/c6sl6tGQf5O+23Wzbrkfl8ymKxkIGMKUAdo/UFZfGQSEM/avYtjA76boMPW3QaIgv3LZLlSlhNmQygizyXbbXJMDbDZjrZyhQmiFRfo3jz+o3cnSbyB3/4B1w8uOCf/u3f4n/6+H/Ger25h2aLhd+k90i2fs47lBeWZ11PhAETpYg5cHxCSJt7k7bfOqIiFLxNDNcxDQKBqjrhnXfg2bN/zNPHP+TyVUcIJfP5Q/LSs1geMZ8umc3mjH7k4uIRVbng+OgBZdaQZzUhKIKXcymMMqB2obtffMnSBKaLyMN3N/Rd5J/6rQdstzNurrdUxYTJVDGdR1AjRaHJsvK+BsmtwjDi/CuOzxReKawNjGPPZNIADfPFJKnFVEoeTjadzNJ1PTG8tTJttmtym7Pd7jg5PuH89AFFXlGUBTFAUVYYlbHbrZjUUwHBTybEKO+2D5FxGNPw1uITl7hLymZBlxwS0xUmWJQV90BEGtRIjws7MiT8QRGISiW3gwwGQzSEmDO6JYEFJptDmDDuDYMTd0PAYcxOarVMVPlGS/iPNpo8N2QGslygzocQHB+RtPGEh2j3a7a7LW2755Of/4wQPX/lr/5VFkdzfvdv/C6vXr1MqX4SaFFVDccnp9KwHRQLEQk9UFKbxeDJrPz/pHrOBzgkcktReGgklTy8pIFhCAQCD58+lsYvBAm3Ch5DILeK7foFr9/8Y2J4DvSMQe5OlbAwIAzB7WZg6BzWWEIcqOpMFmNBBvJd31GWEgaw2w2Mg2ZHpChgvZHFhRsHYuzZbCx5XuB1Rtfu8V4zdBE3WK5fjxgr4WxFrdjve559dcfDR1MmUyMNe1axXu8ZnGIYOrSJNE1NkVsyqzlaNpycTjleNpR5Rt8N9K2nLBpsodhsVrTdjqKsmeUZdZlTVcei6sex2UhKeN/1SUUq96TSgRC3XK++IAZDYM/tzS2nJ2esVrfs9wN5PjCfzZjPFuz3LavV+r7md+mcGccRtMEWJcPg2O096+2O25sF9eID2hZad8tkMeU73/s+ZTHjm5eXZNWUXAuDdRzE4rrrWm5WN7x6/YKx7/DOk1vDfFZxfn5MVRT88//8X+Ps7Jy7uxU6Rva7HUrBs6++uQ8e8F7e68O2RQbMklZ8WNK68WD5M9jcykghSBppVJK0ulyeMJvNOGxmDqnlMUry56FP0drcc8QOoteQhhAhSPCB0oonT5/i/9KI8yTm1UjwI4SB+dQyuhVXV7/g5vbPsHpNzGQZb4xgK+SdNuKeGHuKqLl69oJnzy7pB4RrVQpb+NnXbyhsydOnEoRoTUaMinF0qQZV+JQuHKKnrCJP31mQ55rZbMZuN7LfeiAjeMc3L57dO6La/UCMlr535Fkkpv4LFSnynLLM8X7Pfr/j7m7N2Hv2mx3t3rO6HWiaks12RdXI2ToMO8Yx8ODhCSenEz797BPK2qOMYbXesm/3GJ3TdSO7rWO16ml3giJRGMZ+5K7b433GbFkzDFuefXVNUWl++7d+le99+D7fPH9G75QMB1tHVS4Jg2Gz3omwwmjOThbUk4ZqUuPjSNtuqfIZTx4+JGJZty1ZSlzetxv++j/3l/krf+k3+MXPP+G999+n6wP/8L/8h/wX/8XfY3BbbKaoa8ELuaAIoeDTXzyj6zxR27cKaaJY+dIi6ex0StNkONfeC1yUMoz9IB4TH7i6vOWjj77Lv/6v/y3KYoK1kuIMJqm7Fbvtjt/7r/8hz59/c+86ErHBwcEg/cjQi1L3wNWH+FYJlefkNr8PsrTGUpYlZVWKYrcsqKqSSTMjNzkERVk8IM8fsdt9TQwdACGln+tMJ4W29PmZOWCMEt/520rTtLBVSpLNv61EPNg7URGT3j0Z8KQls1bUk5wYPGVRpP7ZS19ipDaGyOgCo4tcXt0x9pGi1Fxc3FI3FfPlnBgH2nZP6APeiVKtzPO02LMSTGEKJpMJjx6fonUkeMVnX3wlXMp+EIZwrsn0IfhMxB6TSU1RamzmGEfHcrG4F03d3twxOo3WBc5p8mKC0jltv2MYewYnTOeqnvHe0w/5t//2/5YP333M69eveff997i9a/m//d//Hzx78ZyLizOeffO1iB7GMS0k5FycTqU23m7XRB+5OD9ldbdNvaOlGzp2u46hl7NHgiOl3/UxJlUqvG2KJFQDpfBRse9H5oVJ3FCPLPYPqtEkzlCaPCsYhpHTkyW/9usfQxzpXYt3jkljyLOcYVD4IAxPpTU+eFxwvHk18MnP7xi9Jiqdzt6IOdQhKnB8MqWpBNc2Oke73bO627DdbfnpT/+M09Njzv7Fv4lVshDM7JzZ9CHXd5/go6eZNFy9uUIbCZn03tNu9lxcPKDdbyEKkmEcOwgBoyzR+Ps6Z+glVTuzspzftRsOlvMDO3D0Nb/sj19ewXf//skXHlLTeThUDj8nNiojQPv7YaAMMkIQv4vSkr4C6lsScn3/+xzsv8Ike9vIGW1xo6fdb4n4lBglqZunp2ccHV1zfb3iF7/4nLo2zKYTSa3ygceP3kmR8Jlc+Hqk3Q88fHjB46eP8DGQWbEB1lXO8kiaptX6mrIsUMoxmZUSrKAtWZYz9D2HNOGqtDx8cMzoR5SW7dfZyQnT6YQ8F8ivQixhm+0du+2e3X5Dlmnm85mEHBiTgMGR7WbPmzc3kuLmwHtpxvLMEBAY5m7fkeeapq5gOqGq8gTZDwxjByoyX0xls5gOVqXFEtD1vfD0rMGakqoqODk64fb2Tv5uaYMotqGMqrQyMGkdRd5IOMjJO7gh0A8t7747Zxi3jK5lPj1JHAeZeMcIbuiF92P3mFzRDiviOKDIqcpzNhvFV1+vmMwijx4cM7gz1tsSFxZ8+N5T3ntqOD15yOA6QhxT+lGgqSYUZYHNMnwM3LY9L16+4ptnivOTkr/8l39M8CVvrl6L7NsYNusNIUgim0jJD/ByjQ4yfNFKtk3BB2EBEWX4kCwbKkrGUV4VtJ2wIoIbWK2vJLUyKxLeT8uiK8J98muyuo9ji/cjRWkpjMG5HqWlAbeZpLsdKseYDtWIDK1dCj0ATQgjCiiy7L659d5zfX1N8BB8ZOg7nOs5P5fEz4OCTOT9QJQibRydBBKU5f0FrPVBuehp25Hn37xBG0NRVZR1wWqzwftLTk4vmE0sWV4QnJYk2hDJS4NzOX6cURbnoM/pxpr1q8jX3+zFOj58IZbJTKTXQ2I4dkOPHx0EL/JrA2UlrChrJM0vLzKqssBkljzLKPISpTWfffYpp6enNHXN7WrNowfnnJ6dysWd2ILejQyJ8ylJpEbsCCFQ2Rpt5GvQOhB62TgG7yTi3XsiATeOeDeyM9J4fOeDd6mrQjZIUThSYrg7PAhSrKBAxZi4XLJpQpGA84mhEuWfZSAm7/Dx8Ql937PZbCSAB5PUM5HoJDVzmmV4P7Ja33J2di6DYyvqEO/lgnRjD9FIg2QU7TAQOoe25n57GlNSZ1AQvNjrQhQLk7gpDhY7S+yNDCUSQ2++qEWd6Ec08msknNpz4C0Jh85jrSgzhXkiIHURQEpjKsm+h++buh9eo0XyHSP3ygytoe06Rueoqgqj5YwliCKo7TuauibPjUCwlUWrBzy/LPjk8ytu7p7TtWLF806GcnImyDbdakWWWSbTmuOjGdNpw+gCd7crmumUtu344utvaNsOhUC0c2to6pKmrrHa8N677/KX/uJfZHAjmc2JKvDq5RuyTIrqrLBkxqRAkEPPKs9IiD4xVzMi6j7V9GBT3my3dH1P13e4pJrz3gkbZ2iTPVkTPWglzdLx0ZzTk6ccL1coVTOf1WSm4OMPvsfiaMrJ6SOIOcfHp0ynU8qyJniTVICB3gu7RRYW4/2wR0JU1L2KLcRA9I6uW1FVNc3EcrSY8dH7D6XpVHv6YQ8xY+hHQgySFBgceW6wueNm9SXWFBSV4+r6FaenZ6xWK4ZBlmWzmYCvu65jvV7jvegXQwhvhxPApGkY3cC+3aLNCT4MKVRLvv59O0BYo6IUaN4p+rtNUr+JOleaqwijKEtFLZGYSz5itb4fjsRo8QNSjHoPKjBfTOQc8mNix40yLEvKohBkqPLqNdyuB5p5SedGfvbJH9DuOsYgbNdh6PAMokoKyLDRHYpoQ12XTCcV00lJ09RMJhOc8xRFRVFU1E3FdrPi4YMzHj16yOhGYhCg/9D1bNdrFIbZbCYDd97yYm9vrlFaYbVNCfXqXh2FfDmgYDqd3iNVSCyocLgWlVi17u2QKajrYOeKSjhRggiJaWGSMzpFXT/iwYXn1euOcfzmrQJkDPdb8jy3lGVBXTXEEMiyJvHCDOMgqsMqb8iynMvXL+hGR9Ms8MHz5uo6LVSEp3l3d0denjOZTFjfOfa7kd3G0Xea4MWy6ZzwYKMqaJqau9uWT39xxaSBv/KXfp13njzmy6+/oh9ahrElRM+kmSTFmqcqM06WU2IY6VqP0Rl3my11U2Ms1E1JURfYdEZIeEBHVTaMXlA319ertJj0LOdTyDOGsSPPLbt9T1lOmM0bmknB3d2K9WYvKdaTBdYIv64fZHF9tDzi9naF83B1dY1WmjeXGx49eofNZs9qk+PcjN5lbG42gOHdd5/w8fc+Jka4vr1jsSh4PL1gu9/gxk4C2/CiLE1qEqsiYXBUZcFiPpc/e77gw/ee8NWzl9ze3vHOk8fkRXY/KNFa412QBex9J6K+dc8Klwz/VpkfEc6iilLfKq1QmQQs9X3Pfi8J6yG8rb+896LiP5y/JoijjHivpj7QSYTRG9ACtE2oBoVRYHNLCAVaaXwIGKYcz2cob1lt/xTULT6MSeUlv59YxQLGGHoneIyqEvWjnJGQZwoVLa8vX2MLzWJxxHx2QnQGNyRnih5BR9abNdutR1MwmzQ4N3B7vaNrPet1y8nxOS4MNI1lcZRxdHLE+cMpd7e7FKohNXfb9lxfrQDF7c2aLFe8erHn8s0vUMEydmJR3G0HdruRn/50ZLGUkLWHjy64ub5ls3XCxswEd4G2bLe3tPue1d2W2+uBbg8qipPJ+4jR4mqJAfoucH215eGjY5RydN2eyzdv+ODp+xzNHjI6zfXtllA44TzvO/b7LcY6jo6W1E1OlssZqnTPOtwymxUU5ZQYwESFGwe69R2/+eMf8S/+7j/Ll59/yePHj2n3A//ZP/jP+MM//H0Wy5qynpLlCu970JZAQddZtL0kr7So2gmoQ7hYPCwoPeMYOV6eYGyg67bkVZYWJpHcaqwteKd/yk/++Oe8ePGCd9/5KC2yxrRIkWf166+/5o/++I+kF0htdZZlWBTGJAbf6Nl3e27vbu5VTrKMkmV6jBLmEbwonuRrVOIE0Jq8KNA64+z0gr/8z/wVHj54iB89dXPBrj2WQbpvpd5NZ9Ch5iVGxhR+cvj6DnXxofe/nyUcFruHd5lDkNjb97vIs/t7QinBLWSZvr9zvN/io0vCCkEVjKOowIITtW7fOV58s8JmO6y1GFNwsFrLgl3s+kZLvVwUoiK4urrBZDLksaag7wasMSwvzrm8vMI5999zTBmjqeuKpik5OZkzKSYpyLKW8BpVEUbh2VbFEmVK2q5n9AHvIniY1DPefe99/va/+W/x8ftPefH8Fe+9/z53q5b/0//53+GLL77i4uE5+90uDYmF/+dDSIFOmoinqgqaqkapQJEXTB/N5HNVisENbHc9+63DGAklIypcCHTjgPMeq2Xw60Ngvd+z74QXHVwgUwE1pEG1T0vxIPdxTC7QSKQsy4Qrm0sqL5Gi0jhn0TokB4rc/cMgz3mey9JyNi9QdiMc6+SWSU9FwjpoyjLnaFkSydMiyLC+3fH5L77m9nbD1988Y7PZsFwsReFscs4vnvLVi4LCTGkaw12+ZrvdUhQVk8mE27tbttstwTuOlzOc62VZoCIhduzakcGN+BjJjU3cXiuD9ExcT/0wJEyCxX0bafU/8McvPeCL0RCDSAsljTK9fN8awMmUVhq/qNMUHnWvwBA7hrlX+OmU5BSCTFvlIRAf/jAMaYMrL7Fzjt1ud18E2kzdMwf6fuD6+orRO5rplPk05/rqjiyxVATUmNF1QyrUB0zy0k9TIzCOo0xivdgvj4+OyGwmdjRrmNQ1znu6tj1AE9BKMw4DfStJt5M6JysnzKdTtF5APGd0I5mxeO/SlDtgNCyXE87Ojuh7GaRplRouZCM2m8rl8urlJZtdTz+4e0DwyekiJbRF8qymKiXoxPkBqzNpuPpR1DdRhkmTyYzdbktZ5RAjmZEo68NnICyMY7zfosxIUYptQisNSmDyzjvy4zpx4SJNdcTd8FIKHTR+1Kzueoqsx2bSyHfdDu8NmZlSlgZjA223xhZiS5xOT/j0syuWJ9/j137jtzk6WgjXL9p7xYdWFq00xljZHETZhKq0DQsh4KJEaM+ItMPPuXjwIXc3N/zsF8/54Q8+RGmfNlMR7zsmkwqtCoqiQBktpsgQiV5S2WRhNxJw7LutgGCJCdovKUBGWcZW1A8hOFCe+aJJG4uk2AuiUFDpknLOcwgaNTYxGXTAuRGV3gGb6fv3wqSQGkA+//Q6q8OWAo21OTF6UXEphbGymT5aLglekm7d6Dg5XgiXKF1Uh4L08B4HL5dRFrP7w/AQYiBDPhjGngePTum6nqIqmM4anMvph5bPvviKaX3Jhx98xHLylPPjp9yuL7nbvmaMR3zyacYnn1yx2d+mIB6PtSPDOFLmOUfLBY/feYTC8PLNJcZW/OKzz2T7MvSEcaAqcmyyGfiIpBKn9M4QhF0SyCjziqPlhP/13/pfyvfbe6yCPNPMmupe4TN0PcF7ttsdu/2eu/WKPM/58KPv0CZO0/X1FX/yk58wtB3jIIPz4IMwFhT3qXJWRX7w/e+wnE54752nQJDG9D4OXsgmB6FKuuUIKqZmV4os73xqIkQddy9vj2+Tw7uuo+taskzYIJvtDhUhsxm3tzdkWU5wjrLM2e3X+HAkm7eQzl6j6dwgQOGowEnh5pzD94GsKO4HNCBbuxDDPXMPpHE3ShM1yRoycJDhH4owhRQFKm36DioeOAzVk3o5fUu89/J7KlJyoAIn3yutU5NCkM9UvQ3pkEsIUUGlIq4oq/Rsp++1idhMBsJSdBmUq+n6E/pwBsbg9StUpplk0vQoApm1ErhhDUVeUFcVdV2ymE2ZTCogst91zKYN5XTC1c0N/tkXFI0VvlYaBHXDjpvbV6zuVjx58oDTkwWffPolDx+KOmm7W7Pft1xfr9jvd7T7HXe3t3T7Fuc6xnFP222T1TXStj2/88//NT766LtieYuR1XrNf/j/+Y+4u7lm9IKRyPNCBuQmqUJ0OpMwuFHRd46qzvjd3/0XODl7h7quWE4a+nZDOKlp+4HtruOHP/wx03rO2PaMuxEXRlHaB5/OK1G5+GRBj6lIT3vjVEkIG3A5X1CUOQSHy0YUHVU9oRsyul7Ttr3YqhBGk7WKrhtQSjP0PXnmqOqS8/yU3W7HZrNjvRYFW1HkDMOAcyPOjdR1w2azZ+xHri4vybKMm5tr3nn6FDeOzBcNm+0t87kkIg+jDKCjFtZQZgzRm3vlT+8GBE9SEvDy/EUSuzJIsEwqOB3pdYlAFCWv90HOgiAqhRDFfisNigQKEA2GksGVfPmVY3H0Lt/94fvcrlu++uQzlNVU05qJUaACWjVJRQdNXdLuNsQ4psFywbSpKKoCHQ2T6QyU5u5ug4uBP/7D3+ebb77i4w/e43f+6v8KpTSffv4lZ2cPaOqSqirTkE0aAxm2C195GNJnMgyM/Sipnj7gx4hP4tHj0xOyPGMYRqyN9L3UcG3X8TIpWduuZRh6hr4TJWgIdF0vKjzv7oeuIYpyQymBVR8vjvnORx8xby4o7CPa7oas6On2HVfXN+LucB1VnTNpJpSVJYwjeSGLnGEYMaYkwzKMA23bs9vvQStubt4wnx3RthtpdkOgqhvqqqQfPc++fsPNpaPdgRshhIMyQU6z4DW7jYQ2PH33lHHcMfQ7nn/znAcnZ1ycnrPZbSTwR0kC0tFRQ9veMfR7XB+o65k01FlBUy8wNhDCHpeSM/soQ8rJZHJ/fotacUdVTVitN4QQGXrPpGnS0K6nKEqqWmyrm82eA6e3qgrGwbFabchyeR7LMmcybYjAl188S5a2KVU15eamZbtaYooH3K5aIo6z01M+eP99Ts9P2e1l2bCY5disQmeW4+Upu92Krl0n9XQagsdIDjRVznJ+zDAGXr16ze/81b/M3c01GsW77zxlvV7xRz/5I559/SWbzS3ejfTp+ZHTRqfPQhR0NhP1VRglZZ5ohOGaBg8+BmyW8eF3vsc/98/+DmXZJJXv2/7HOc+f/fSnvHr9knHspabyPoVYyEBP6xR+ljhQKgrg31hZCBmbozMZEGRZTp4VzJopR/MlmopJ/Q5X15/Th5eMfk9dNeLMUXKHOjdijMGFEZMZ3n//Xfwo3OW8MFy+eQkhZ7fr+eKrZxxttnzwbsXThx/z8PwDnj//iucvP2MIHRGFihn9qiCbTFDBY71jXlkyOjSGqlI0zYJdu2EYWkIMHJ1kzOZLVreO/V6x3uzY7yWF21goqPFDxthJkEfwgkfJC4s2kZsrz93tgFKByzctk1lGjBJyVTcVkEG0VOWMfRbpujalw4P3A87L99lqneqjgTgqdIy8efmGx0+OOX18RpXVaHKOZhNW2y1jt6frAvt9zzDsyavIYrkgyzIZ1ihFVU5YLE9wo6bttwTEyUHwjO2O7378Af+Tv/nXefHNcxbLYwKW3/tH/5DPPv85777/GG082kjt77xC2wxlata7LdHAAUcSg76vZw51OGj60fHZZ1/x4YdPqKoSj9x/WWYxmdQ51WTKyfkZm+3mXuQQ0xDNJyuuNobXb96gFPzgh98nAmVVSEBLCiLTxjIMPV27R+E5PZnfK+JijLIwcmkx6MQZ5ry8K/t9x3q94/Z2RbvvaCYNx8dHklSspsAJLrxG41DK4/z41u6e+olDb695qyjUCgnF+Zao4TDcO+CKDkO+w6LIGpkjVFXJOIoicxzFWrtc1uy7TriXnnS/WrrWs9m0BC9DtywzSSnZ0XcjNoMiF0W6tRqViatEhobydYmy0eJcx6uXV2SZ3Ot5aSlqhc3Fvhw9jAMYIxxG56BpKllGesXnn37N6clDquwcP27Y7Xd0raUqF1hbMoyyoA0uEpxmMT3iww8+4t/8W/8G7zx6xKvnL3jy5D1ubnr+r//uv8eXX34t4Wxtm2YOcj8orUErvPMMo4T3tO0eCJRlTl7kkgae5xRFda+ClrmMPIMqQmlyanLGccQNMnxr25boHXWRk9mMzGgmVcnVq5ci2EhOBJ+GjEoLskUhM5wD+mgY95S5QhmFHxzeu4QTSkIKJ6EZo3LobECbXBTU7r+nP0vLP1Ax0LU7jK7Ic0tE+rT5ouKDj5/ykz/5hDeXr3n5+jXL5VHqvwzTyUO0adBZi48j0/mM1y/eYEzGer1msTyC5IjrhpbZbILHc7vakNuMwY203V444FlG2ymKoqDICwRXE9jvdgzDQJ7nZHnDL/vjlw/ZILvfiqHeJt4cpMaHpk3r5Mc+KPJilAf9oL5IP39InQspCjzdjUnGyb3sPkYZ9g3DQNM091N6efAk0GK361AYmnrCdjdQFDWRjmEYmc1mAvRPDICisCny3TKMI6vViuvraxnwRY8xUFc108lEHnYll/QwSPHXdR2TSUYIh6jugRgVeZZjrDSP0qQHST7KM/peEmhiatCbpqKqarSOFOUhllo2XYCwPmLPfF4wmz/BmIy+69FGDqJDOpIPgdlkidKR7e5Ovpc6S5uGwGq7Icsq9ruBIo+07UBR5kync6xJUnEtzfFuPxCj8HhC7HA+Env5vplsjzE5+13HbrMRiG2WM4wD1zfXaOMpypqoHFVtafs107zBWMVk2uCdQTOhrpc8vPiYrNBkRUbfB1xYcrd21Isn3O0VV+s9XXtN320xSpr/qqoYuo6ryyumsxludGIBMjKAPVgiJJXV0u7XXDw84/jsjJ/+/Oc8eHjMclnRDztW4UqKLqVw40jbi01JHWTUSbV06MlEfqxwURo5P0qTLA5BjXfcP9s+BIyJwMjoJP7dR1H7RfS3Nlai6lJa4fyQEnCDXCYBFIf0UlHIik39oOCR90osYALqlqJWpQvJ3ofaWCuHa1WVRIJY/SSqkXEY2O1alBGVXmaNBKqk50oO+uJ+yAeBfujouo7lcsZkMqFuKjbbDVfXPW7I2Kw9R4uG1d2GwnSsby+5uv0GU1R89mXG168jdjLlaKqYTEoZiCuxb52dnrBYzMnznK7vOT874dXlmjzP+eQXnzBmmqP5Ge++8wSlI1qn7jFCnmeMXccwDGz3A7/47CW32y3OdWQa9m3L6fGSL7/4nK+//IK+27Fv26RULFgsFoQg9hyrIv/g7/+n7PZbfv3Xfwv9/2Xtv54tS9LsPvDnYuujrgydOisrK0t1tUQDDTFNAiAAAtQCVEaCamz+mhmbN77MjNnYzJhhCA6JbgCEaLSsbqDRokRXZWaIDB03rjxqa3efh8/PjWy+Fq9ZVlVG3bjinL19u69vrd8K0NYNm+WSr3zwPlVZMJmWFFlOluWkSUrb9fzRH/8xz5895f6Dh+IUPDwgy9I3LqYgDx5U+NLAUv6cCGHesetkWrbjVsi1qbVCB+i6luVqKYu6TZhMJngXWK2WXF1ecvPmLQCapiZLLUUpDzcfxDHRDwPb7YZu6CmKgjwvKPJ8d5lT11tpsRsLkrQkBtFj+2ss/AixnTWAV8J3+3JraPACQFYxpifxqBAji0FKKMJuYhxjyruodTDXTj3nPTpoeeCPDqVGjNYEvZMDwanYGB2dhDpOgI21clfEU5qO7b0+RO6mHwk+o91OcNyh7jMefPGAItUcvLXA6BCdwobEpPJcyFLyJGc2mUYBUVzN9bbB9QFUyjD2bLdrPJ4PPniHxAayxKClW5qhb/n0Rw/42scfsd1upWRiteF//pX/hQcPH8haEKMMWS4bJqstx8dTDvdLDvZzcYTbhE9//IB/9k/+Ee++8z7WyrBrHEeauua99+6xtz8lSS3aWJT3ZDaRaXpwwqkylqYZ+OKL5yxXK56/fMHXvvour06uuHOkOb/4EXV9TlHe4etf/4TpbE6z6XHdIEiA6Oq9bmbcCdEO/LWDZlcuEuLloaRVL3j6tiNNLWVVyaBQReF+AGtS6laaEecz2F/MREIeBoxJ5bVJkrhJDdeH8RBgtVpFIVP2EGVZUuQTPv/8Pkp1HB4eUlUVbStN8UWRkmUJ/bCOA8NOUAfEdTCNDW4K1KjYbLe4caSqZqRZHndA8T992JkWrn8gvSs7CXHtR10XCVwXDCgRBbUhugITujbj/sOag+OvU8yPefX6JWeXl+wtEm7dPMIH4cgpvRtOGfJyhg6eoZviXEeeppRZSpFJqcF63cjzxBiYVTx7dcp6u6IsUt6+d5vjowU/+OF97t17Cz86nj17whffe8LZ+Slt09LUW8axw9hAUCNNI8Usy6ueq4tanPHIYVbK0Hru3r7Jf/1f/ZexxCy6Mwj80R9/n3/6a79GQJpqkyQl+DHyaQWOTnStKoRvFqKaErxnbOX7vH59wl/6pb9Enr2NXz5luXzIer3h5ORCXBM2kOeZALeNlG7IkCBcA+SFL5owqRZU+QziwDTLCu7duUNdd6xXK9kDjI4nzz2vXjS0NfRdbAHXBpSUmMggOuAGaLYjTx+/5r33Fty+eYtZWTKZlORFxq07N2TY1HXkRcF2c8XQt4wEqvwYvDAZk7yg6zesV0ts5un6Dmuh71rSLKfr+tiKONJ1HU+ePCVNJ6ANYz8QhkBZlPRDR1WVlGVJmmX4EJhOZxRFgWLD65MnEARZkaYF1mqSJGO5vKIsK46PF/igGHsPYc5yWZDmd3l1sQIDb929x3tvv49Csbw8i6+tRylL327Rg8OPmq5ZMnZbglUkSni1wgjMONqf4b3i1cuX/OKf+TMYm7BcnrF/eJPPHjzg1/75rzGGkemkpJzOyVPN3mKGUp7tdkvX9WglGJiyzLGpwhpxTRljhAsa5HUdXE/b15ydL/m1X/vn7O/t8/M/92euXUy74qvz83N+4zd/k6bZMI5yMHaIU5YghTFKaYZYCGWNwbBj4EmBjPOKZuhRRuGd7POKtOCX/tyf5Wd+6qcwdkJV3aVZPoXQ4J2/bvV2Tg68AKfn5zR1yzA4irxiMpnQdg1DH3CDpsgOqSYpi+mEzWbDsxePePTwAev1Gud7lJXI3jhO8CMkJmM+LdlsNiyXV8xmC7wKdKOUBl5dbtjWK+E5W03XDTx9smK1bMWZohO8G+IQeLe/kf2owPS9DGFVILWWNM0xGobRU2/BWIXzI863OHdGVQpKaTqpeO/dnPp4oN6O1HXHZtvL/aYGlBFndZ5ZqiqlSC2r1YqmXnHv1ls09cDV6RVX6zXbeqBpe/p+IC8S7t47FAFBJ+JG9zCdLBi6gabZok1gOtkn9D3d+pJbN475t//WX+fi4gJjU5K85Pd+/1/y4NGn3Lx9IA5sjZwNgsfaVEq90pyi6Hjnnbs4Jy7u4BzBjYxuiFgHSbd5N6D8yDh65nsThlFYreMY5OfvAk1zRtM5Nk0tjvHgr58/IUBwgbKsmE7nmESxf3jIp5/dZ71Zc3BwRFVWZKlw/3wQ7liRWsoqxRj/xrXms8hFjUk8maleY7OCM9x/8JSTk0uWqwvW9ZpJtQBdkBdvUTcP0XaLH310znEdN999aDTK6GuzkLQBcy0AAtFxtnumqOv/vnbx7f4hyPAJx9GNKV3bge6ZTFPaRjGOkjRwoxMziLJoq3FOXr0sTckmgjDabms264Zh8DgHRZFhVEKSpAyDw5pAkibX8WdrUsaxEzSG9eSFoSjFqbfsGynSsm9MTdZaDg+PMcYymczJk4LNuqHpoN5mLOb7JEke0wYdwzDgXODG4S3efes9/o///X/LjVsHvHzxknfefZ/lauT/9f/5e3x+/yFHxweM4xDXCydmj1gepa3BFjZiBVwsTHXYRK7ZYewZ3UDTNKAM3su93vomlk3Jntx5R9/3bLcy9AoosBZlLIaAMSlj39N1Q3T/wZsCPEnN6GgqyRJLmef0XYvGkySSKLN4lDUySBnFZNX3g+yjlCEpNEqNaL07/arre2CX/AEYugG8J001SiV0rQiv88WEt9+5w/Mnr3nx/Dlf+9rX8KOsXVk+5623vs6jJ7/OtllzsD8ltSlNI+kX4dBfUVUF06mU+PRdR2IMA4E8y0hTHfspPNvthovLNQQoikoEV6UwVov4HQvAfpKPn1jg86PG9eLCCLwRQHZVvyFuZI3V0U0g1mIV23CAN1DP69FYjPEgVtndplgWyRA32wN1XYvTahdtHAf6TjL+eV6ilOLy4rUcWIsp+/OCyWRGkWUkaYrWjqqq4qI2MvYj4+C5XF2w2awZ3cjBvvBLbKKZTqbX9fI7x2DXdYQQ2Nvbk8ODUSiK2Li1E0E0TdeyXq9lYcwziYAM/bXAOJ1OSdNYYODkkJskCQQVYZzSvKbi4dQahbFBnDpOnALjKPZ0tJbJ1qDIkhllVbFdrxnHniS1HB7tY3TJ0YHwOCaTGaiBEMZY3ewxdjeB9GRZgdaabbulDcL2qMoSbSF4TWILjo73cL7DGJhUB2TpAUk2Ys0EXMfR/oxJecB8fsCkWkhzaD7H2orUTmOsUeO8YtuO/D//7t/nN//l9yG7T9d0KOCnvv0tvv3Nj9mf5+SpOGC2mzXnZ2ccHu5jtSLPclxQfO/7P+T84pL3P/qA/cUe0+kUZeB3fvd3uHl8g9VqxdnpKfP5XfphA5zhEUcgBBJjRaR1kKoUeZaF66s7eFBa3GwGaU8cowijdge2eKDbgdR3Ti0XYsSVHX/Cx2jcGKMXu5IMmQy5USKQxiYoAkRniFKxgAEtwjZcx8QUIU6+pClox2/aWZVBFmXvA/3YR1eVgKSTJKGLPCprdTykCnPBxpimRKzlId02PWmWcpgeYIwmSxOuhpEym3Dr6ACjM5wXUHTTXjCOPcU05cnTltPXt7DWc3hjwv7+hDyzsuHTMKsqppVAXZ3vmVYlda+ZTz2Tasq9O3cIvme9vMAHx3KzputFjLQ6J8sHDhYl1aSkqDyf3X+O83D7xk1mVcF2teTVyRnPn33BzRsHlNUdvA/MZzMWe3soBcvlknF0HH/7Gyz25nz3d3+Pn/3ZnyMEzWIx4+d++jt859vfgtj0urPh7VrTlssLTk5e8Pr1ay6vLnl9fsbtGzdgF8VQGmlwloO9APBjDFf+WBg5uw1VeCNihehW2wkDzknLJATGwZFlObP5jKHvaNotZVkwjj15Zun6GpsUvD57SZ5nJElCXlpyleJ84OLyjOAVRZ6T5bk4Hbyn7weSdHcNIcLQDtYcwc1am+vNpYruOhChDi3r/q6Fd8fVAxGY5FkQsPHPxNTt4+5OgbIY5OsoDMpIvONN4nHX3LuL8BG5jJEEG+IkMBaXqOvNZTyAKMOmNoRYqPH5Z99jMUtZLEpMIpvFnRPRjw1JoslTxaSckqWGNFHXLaBplpP0jrrveH16zmefP2Zv74CmGXj8+hXjMKC1JbMWi2cxn/O1j77CyckV2lh+/bd+ky+ePiUohc1SEfkVmMRIZCkotM3AFgTjwRrysuCtd+7y3e/+K9p2S1VKXKkqJtw4OuDevdvkucKHUTigcR0a+wEXJAaltCbNC47bOTbVnJy85OOP3sUNlucvvuBq/RnWaG7tf43pZIF3nqGXOMJO1HN+J/AhEaHdTC9utHZRTMIbR18/9PRdAyicswR8LG0ZWa+3vHz5CmMz0iyHYKi3LdNqwugG0jQlzyaU5QRFiA3I4q47PT2j7waUCsznc4zWZFVJU3cURcnt27dwTpxhWZay3dYoldO2AY+hbldUZYFNEyZpCUoKMS6uLsBDWVVkMR7ivGIYhyjwhWsHUlDCldsNKkVA8tFNFIsn4iXufSBJzLVgrrXcOyZotm3BZ59tWRx+RDsGTh/eZzafcnw0kWeG6hm9i0OiEYzGq4AblhibSAlD57FKyrSqIiV4QRKE4HFYHj494Qc//oyua6gyy1/9K7/M2dklRTVhcJ5f+dVfZROHAa9OTtiu16RWcev2IW+9c5eyUoy+QSl4/HDFD5vnOJK4xwNUIHEDz1+95MmTx3zt469DEKeDR8SLrqt5+50b7B9Mmc/2yHKFtQGCHL61VoxhwJCiVUrfCRTcucDlRc2PfvQZj558wXc2KxbVDGuO6TePWK1WdH0reADtWSwqlsslaWKxRp6PSSLDVe9kXWuaLW0zkOdTaYcsMpSKh8Kxp4mtsmU5YTYt+OCDmzRNTb0d2W5GtpteYsRWY7UcltMUylIE5M3Vknp1ib13zHJ1QlBTLl9dkueFRJ3GCYlJuXX0IVrnKJ9webliMsllQBDxMZvNJZeXF+SVYrlakyQtN24U13yo4AaKbIobFefnV2hlqDeNDEBTjbUjZSXokK7r2G42JEnKYj7j4GBB1zqWq1OGoeDwaJ/E5Jy+PidJEvYO92jqwGowrJYFxtzlatOhE1jsz6hmGXW3IVEZaZqIaA8M3tPULW2/wiaBNJW1XIkqAQTyJGF/fx9tUh4+fMZb77zNR1/5gO//8D4HR7d4cXLKP/xH/4SgAmVVERA28uDh9fn6zcKDIeBplxuafuTWrWPSzOOdMLzZnSN6xaCAzLC4ccidt9/m4Rdf8Au/8Iv4iMqxcRjhxhCH3YaPv/ZVDo9KAfnvntPxHDMOUYgL8nedE16wd55hVLSdY/COtul4/vwVz5684l/8/u/xla98yKwomU3vMfinBDLGoWG73V6fH7JMECwHe0ccHNymHxq6rmPoRxQZt27ekkPmqHGuYbtsqY5LlBrJckWaTSNSSIprLi8q8ryiKkp+6pvfYhxH/vE//2eYRKFNiy0gzzX3sn1GV+FGidJuNhvefnuPx1+c0nUaP0LARm4ghCCFOsYo3BhjdgSKxGL0SJIo8jyNztCCYWwYR4vRlnbbc/H6CUrBdDqh6wZSm0PuMVpTVSXjIM+dvEwoK0ViHUkSKNKEmzducvJ6RZIlvL44pd1MGENgXW8Z+pYkS9jfnzP0spcty8m1o6hu5IxXTebk2R6MgdXFJfNJyX/07/87bDdb2n7g4PAm3/vB9/n+D/+A27cP8K4Vbpo1aC/inpyFU8ZgMWhuHd3AY7A2I80SEq3Buxihl8Fu13R4NzCZpeztZWBEhNluBh4/OePyssV7zTAK28sYGHoXRb4YZVWBajKhKCp8HJyM48hy2VA3J8IVD1BUBSAJoeODGQf7FdrEGGs8kryJvO9SXruIp6WcpHzyjfex6RMeP37Foy8e842vLwgB8nxBXhzgWWFs3ON6h7k+l4jgIwUfkrjQSjGOch5+s1fcue7eWGl3z9Lrf7xmHMR8oHXA2pS29qzXPdZCksrXc06cvVoZhlFip2maX5dfaq1Ikohp0hZjRoxNIrNQU2SFnDnHgEmSyDoecX6kaUZCEBdrrjS37xyQpAlKd9f7AGsz7ty+JcPVvuPly1PyLGExnzM6Tdv1eJ9wfOMYYxMRVEUZYxgGiiznw/fe5+/8V3+HO3du8OTpM+699Tbrbc/f+5/+Pn/0vd/nxq0jnOuEyek0pS3jtiQQ1JsYthwrnQxvTEqeJfR9jyfQdh1d3yEMXM0wCHc+eMfYidFKaXFJek9MUTnGfhQIj/NsUovVWrAWykSNJJYjxn3Pjs2e5xlH+we4sEHrhL6TRBVo/BgkhelHjEnJc4s1Bu8cWlnKIkerJTtcyO7EpJUiaI2OJoI0t6SZMHOTBFarGqVGbhwf8OzJS84uTun7HqMMQTu8gjw94OXLM9K85vh4xt7+jLwxbNaaVycXjONA3yvyZMK0mlDmUqr5/JlwL6tJxd7ePmU5oSongIr7nR5jDG3bslwu49615yf9+N/BwReiAr9z0MWpdPzTEJsfQxT1ZIf/pQbdaIff3as+7KZaPePYYbXG6ERaALUosVkqTjulAl0vUT5jDXmekecyvZebWvHeu3fphwEUzKo5iZWm2/OXpySJtG/NZlN56OqermtJrOGtu/cwVhTtrq+p6462SanKaRQ25CKZTEp2pSHSJrpz2ogLS1RZKUIIIY3tc440TVksFizmcsht2q1MpBV457HWXseaFZrEVmiVE+gI9CgVm3mVxpo0OtVSlJKikKHXaFNyuP+WxIlnW+rmkr7foM2Gvl3iXUORL/AM9OMVXb+R6ayRpi+tDWF0uHFA6xSrpjTtSJJOGX1KoUuqyTGL6W2KYhojtIbpdI+PvvKvodBYW8UptnBMdGxZ9n5XzKLpBwUkhMgV+uzxGb/zx59DOiHPCrpGmG2vTs74vX/5RyTW8dPf/DpdvaVtNrhxpKk3zCYTbt++y+Mnz/m13/o9eq/4/uePKbOc+XzG3/hr/zpHR0esNmv2Dha8fPWawwNL3a5ouiu0NuSRNbBtPXXT4JxjUk3Ji+qN+0LF+Lj3+PAGkH9dIhMFvmseBB4fIbYqkisEeu3+1MRpN63axQflvpGWavgSz+VLLq+dOLL7TtZoRu+jEB3Bz/Frj9HuruQHkXioil8kOgDFkaIwibABlArRcSb33na7pW0liuKcYz6fk+cl7yykRXm9XrFcXjKdzJhNdXwQjsyqA2azuTTbDnNevJxwduVJCsXxwZyDw4I8twQ/kNmEaTVhOpmgAyTWMHrF5brh5dmafpA2Q5QmMUBQPHj4lEdPn+OioKqVwqien//pj5lMKzbbnuBHMqP4xicfofA4N7BeL5lMCvIixVrNq1evOT07FZFilDjO4eEhH330IR9/7SN+/bd+i6ZpKLKSaVUxNDUhjFitcDFCIC+wQ6F55+27/OjTH1FvVzx7/oy9vQVHB4dRiIPgxWYuTbnueoCh5C0mKHX9+yi0sLW0RFzUDjGhYLvdsF0vKauSGzducnG+JoSGg4M9uq6RaGc78PrlFWVW8s77tynLXCb8Y89mu6aqJpSTXFpkqxId9PWkdBxHlvWWLGjKWBITQsAhXEiJ6XnQmsTG9jW4jg/vChykoEVLZbyRtUvFTaN3TuIgOytjBOKKu2/H+xCVS2mia0+zWi3j80A2s9Iqu5v2SoPazkUY7YVyF6r4noWddyih6xe03U0ms3f5/PNHVLOM/aMJ49hes5dUAKMDg+rQwWB1Bl5ap7tmCxicB5vm9EPgTz59yKOnz2n7gdt33+Lk9JST15tYCDKSWw3jhv/43/4bJEnK6AOvzk54/OwJNjUS9/TitBWHrmZ04qR4eXrJ2eUSoz1loXnv7dss9g+Yzeecn59RFhMU4ii8eeMGXVNTTUoya2nbBhdC3Pgg5Qs2I8kknrR/sM+zpye8enXC6uqKg2nKydkZHsXB/oTbd97HpjPaRriNzrvoJgkxIuSuz9YhTmtDEDzBtbgVd2ASU+lxjFxeXJAXOfvmQPizo0RXu3bAec+2vogL2EieZvgwMpslVIUB7+nHnu1mQ5okzKZTDvYX1NtWSkqCZz6bMp0c8sUXz9k/2KeaSGNykljOz8+5uDjHuRl7e28xmRQ4P7Jer/Dei8tpUrEo58xmMymkcHLPN21N03UoFZEJu9c2KBKT4AkypUaGJTqK9rtBIbvLPiBu2VyiU9amoBSbOudHP9ow3/uQk7MlTbvhgw/eoSgTxkE22H3fyj5Ca6xWEUQv7KfEGFI7MC0r8klBVZagHOMAw+BJi4Lv/eg+f/LZY9q+R/uRv/iXf5nbt2/ygx8+YDLf5zd++7t891/+AUVZ0nVdHHB6mj5w9fkLruqaX/jZ90gT4UgVRYZOwKHxMeuxuxOr2Yynz5/x0Ve/xhgPDN6P3LxxyMHhlE8+eY80F3cQapBoFxpt5IDnSK6Zt0URCzq0Ye9gRtc3vH51wbMXTzj85CP25ncY/B5JMnDz+IA0TXBuxFhFlsszP3jL2/c+4tXJI5Tq0XGQkRUJwUlx2mQ6Z7O9omt79uZH6JCQJSmgyNKCrtuSpw6rFcGNpEazN5tQtz1eecoqYz7PSDNHYqEqKup1wuX5Cq0GikqR5oG79444Pzvn6uoUaw5xxnJ5dcHlxUiRzlFY6m1NURrBi4SWojhgf5FjUsekeJskycjylMxmGAaqoxvsTe/SDyMvXr7A+8DF5WtG57l5cIMsT0hsKvsThKNZb5ZUVcXbb9+hbQbceAOlxUEzOsfLk1P2Do/I0wndpWK1DihzwLpb0Y2e2UJYfiYxKGvZtAMMPVmSkKaypy+nGam3GC0R764fZG+DpF3mswlGaR598QybWv7cL/5ZfvzpI6azPVZ1w//37/1PnJ6d44JHmyVVJRxVglTUq935Yxce8gHUmrodeO+9QzQ9bdcDiq5znJ111M3IEAaCybBZKY2xAEipGH7EeU+Rl6RpgU5Sbt4+oqrk2e+DoFmuNX6vCSTgdqII165mlMYHI04il3J8Y07bt5xenPH0xXO++v77oDPS9Banpy+otxfR2SbNzTvmsjEWbRKyXJIM49CCGyizBG0Mk1mJtRXTYiIlBcTCNkfc68nGcLU0aFNweXrOyaMv2NZbLi7PcLbGpjV7+1OqypKOCUoJ33hSSpys3vbcvnmDl68uaJuernO0TYsLPS5AVZYkNoEB2qZDac90ltH1Ww4PKm7cPEYbQdpoDXXd8OzpS67qNYk15EXGbFqS7GdcXYmzejqrKIsJt27fJcsyzi5P2WzO6LsV+wdThq5jUk0pqhnLVaBuM/pg6fqBbuwpSs3+QUmSedLEYKzianVJkhVsNyNox9Gtd9DZHlrn1OuGIi/4j//2f4SxhvNXp9y++w6Pnz7jn//mP+Pdd29hdI8xSrjTXspjUOJgD87hvGboRvqhZnSCkCmKkjy1GKMZOnm9CE5aUvse7EhaDKSpDOS8N7StJ4QMT8CYjDE2h+oYZ4SdEcCR2oRbR7d49uoBmXWUhUJpi/P2euDpNq202YaAHwfu3llgUjFfEOLgOp4FfERwCANSYxKNCwNBjRze2ON73/ucx1884ZOvfSOeaQxWH7Jtn+JdjWBODC5EM0l8HkpBXYyN9gNd1+9kBbwfyfP8Osm3Y4tLqk+em7vP7XqHjrimtnExru9xyU7Id2gDeZ5ijUYFKZjCKfqI8ciylAFFCANaISiXJCcEcf/1Y4/SBkXK6MJ1osqHEAfSiry0LBYl27om9yXe9/F90Yw9PH92Stc1KC0R39msYj4vqdsViiP292+gMxtj0SNBOUF4Kc3Xv/oJ/83f+TvcuXebZ89ecu+tt9lse371H/xD/uj7v8/7H9yTgdY4MoxyUnSjDAAFR9ThWmkkNkqRJsKGGwHvUpTWNHVLXXdRkAsoZelazxiTRRopvGMUZ2PdOdqup+l60V6CaEE2DveLREemsbt2t+8MU7JX1yQ24+jwmIurkdl0QQgt9XYr2JXtmum0ipy+FKUVWSbDMm1gU6fASzTttR8ixLPIrvyjmlYcHu5TFsKw7LqRqsjwfqSuAweHB6w3K7q+Ic9yggqMaKbTm1T5nK5f4vqe5aaWsrIs49btGzIstJY8TcmsONC7KBQPw0DXj2zrlqbtqcqSoihAeYyRePNkMiPPi3hfzflJP35ygU+9gV3Crl4bAccjeXofD1dK7dx6OwU+Bli8qLjSHButvkFsllrzpxqp3PWLtWvplQNmEjcM+JE0ndD3cqPneYHSZYwUKi4vrqi3NcoIf6C65m4NcUoh03NjFd739EPDMAqbJMuEV+D9QOBPsziAyPYRwaZpWhE6plOm01lsqDRS6BEtqeLMcQK6T4Qd4b1nOl2Q2JK2XYkIA7GRM2CsRHa83000FH4MBAxdOzCODdumZrOpmc322Nu7QZnd4WT1GZdXp3jfkWUwjD2JNTT9iq6rcb6Wg2CSMXSKwxu3yNKSoVLMZ7c5OvgIpRLK6pDF4gitU3kvtZScEPT1g8xH94ZMoUSUavtdi24Uc9WX+Viy2XHO0Y4jf/CD77PtB2yas6kblBa34xePn/LiVYpWI8+evuCv/5W/yHu33sUaaXjCydRKrP+JsBJRnFyu6FxgtVkzmUx4/vwpt+/d4vkXP+bhw4vY6APresnVUjZtMtVOGZuGbujJ8pKdcwpkndBaQ2w4VerN0UXtpl3XRxmFUUoicXESJL2IIvBYI7w9EHaE3Bfyvu8aa6VpWkksuevo2uba0ns9yVI7a7i+jkyKU8+hY7Rk2B2sr6Ny1z8igRBZHGKb3jmhdpD+pmm4vLwkTXOsTZhOZ/HBKq3OOsaZZ/M53kNqLVmSYpNdSyR4nXG1XXByqemCY75nuX0zx9pRgNA2pcwr9uf7GG2ktMIHurbl1atTfuN3/4i2l9VFo3n33m0mk5wXr87onWH0MiRIIyB7te2Y7+2RWIEiB+f4xte+Sr0Vjt7Z+RmEkb5rsNZwcvKatu+lPS8OGyTCn3L71i3SxLK8uiTZTzBKXquuadFFKheyEtFdXn9PWRbMZ3NePn/GF4+f8P57H3B1tWZvbxHdzF8WRHalGR6jNCro64eSZ7f5UVwPUD3iDPVQ5BlZZhmGjtVqxaNHj7lz7zYHhwtsAsYG2ralyEsO9o9EHANm0zknr09YLq/wHtCaLAtkaUFirLg5u46yLCmLEqNkwikxu04GAUqGFCHyGYzRccgDBCkvkIi4ZRyFxbXZbtGqx+gUmxjKMpVCDRV9skGmr0rJsEMYJxITH500Xva+o+96fICr5U7kk3tGaUizjLKYyLppdq4K4lov0T+8Yhw8Wqd4v+BqNaOYvM33Pv0cwsDh4QSle7R2Emnb3TDBURUFVV5RZBPStACvxfWjNNt2wAd4+vwVDx4/o+09g1N8+tkj6rbDhUTWcefwWPbmB/zCz/0cV1drUIoHj+4TwkieGlIrrFPvd6sCGDRpHl1RWkfBFZIk5/at23z1qx9zfn7Ge+9+iBulGff27bv8yZ/8PkUV8PQxIirrlY7FOUVeUlUTtFV03Sitc2nC69evOZq9h9YTvCtI04rETgjB4LwUdyjCNVrDx/vHOa55QNcrZBT2dkvPbh0aBgchIc8O8b3CDROSag9tHcWepvzmIW3nePL0KQrNxcVrzs8veffdd6iqPDJ11XUByXK5JM9z3nrrLptNfQ22btuWrus4PzsnLzL2D+YkiZT/TKYV49hJQ7jRcu2NxOhbH12h0kA+KQXXobSn73um0xnz6QKtkmsu7tD31yKmiXGYNweSa/Q+u4ZzgK7r8d6zXrVYrbCJohs1n362Is0/4uS8JeiBD7/yHkVhcb7HJiIWGyNFMy6uI2OM13gnro7BaIwyzOcTtBHhoe06lEnYNI4Hj5+zbVtUGLl7Y59/41//ZS7O18zm+zx/fco/+81fZyAwNiJI6jSP2zBJcLw+v+T5i+e8+9Z+HFiNOFwc88oeUa4FTWI0r05eYoym7zxGC8v56Gif+bykqjLS1DP6uA7E5yYEcaTH61fQJV5KrIzE7u/evcHZ2SUPv3jANz/5mLK8xaS7xXyeoLU4Dtzo0cZQlZUU76T7BF/SNoGgWrJMYPRKi0uo7WraswZIwZe0W0cIGqukNdiNHms68jxluayZzzPyogCfcnh8jM0Ul5cndP2ScezY35+i1cjh3h6Lecp8kXO5fEGW3yJJphwezTg4KFEqCDx8L2F+YNFeQUhZr1o2dUvYel6/PmFS7XHv7rtUecUwBKpqSpFngjjIFN53GDYYs+G9d6f4ELjXv40LHVWVo7QjBHm4XF0tmU5n1M2GfugJOBZ7i2unzjg4AoaPvvohWbLH00ctV1cFmD2W2w2rzZLF3pQsq5hOJsxn+/Q9jHEdaPqebuxJEkuaGPJMOI7j6JhOcvCQaMW0qqiKCefnS169POG/+a//jvCuSVA249d/7Z/yo0/vywAogA81l1drjFUi1mhxOGoUg5N9iosom5OzV8xnX6XIBoa+IU2mfP75KX/yo1cMTkq9vJUkxI35lGEc45oom9ZxdGhjKcuSV6+/YL0+IEkKdi3ZIe51d4MNgKEbr/ETu3VR3MsD1gpGR5uBr33yHr/73R/yo09/yAfvvQ3BosKCNJliZz2o2N6rNcpIFN+NHjc4tG1JtOZgbw8T7xlpC03FjeVl6KCUiXzAiH3BSwomz8mygrHfMi1y6vUVV8sL2rClKALbTcONm0dMp1JMY7XwfpUOLPamTBcT7ry1R9+PeIdEG+sNRHTMbFKhvaKtG1CeJFV0XYu1itnMivs0LcgyaZz/4MM73HvrFl0rseQsS9Dasre3YL3eMJ1OOT66QUDKX8pCMZ8ekefHpJnsm7pGs7wKZEUJvqSvW+r2ivki5fh4gdI91miyJAMMxmZ4pZlMSorpMWleEIJmebXGdT3/+d/+2+zv7fHo8SNu3rrNq5PX/Oqv/s8cHS/woSOM8h4J9zHE2OObUoGuMZy8lD3rMI4kFtJoOEmMNK+7IO0vwwDdMBJUhU0t41ATnGa1Ujx//prOCStQM7LZ1FijGeJquzMM7ArMbt28zdMXn6JxVEWKNpbR75zVMEYUkA+etnNs6o5qoq9NKyEWqRktZ26JX8t13HYdm62UTV1dSkPqkydPqZuWLMlQGNJ0n7qdYJMz/OBwfsQaYdC7iFXaHbOCFwRRnqexFMyT5wXOjbE8q6csCiaTStJNSpht1upro8zQyzXjgzQBg6Zr4+9gxTI/DJ7gBowAAYHxev/SNC3GSPJK9pFG1kOv4+uhcNpTlmnULd6cqYxN0EaxWOR8/MnbFHnB65M1adYAPUoZhiEw9IIXUUDfBfJ0DsxQes7R0QcSGaaPJg3PdrPF+8DPfOdn+O/+2/+WO/fu8MUXz7jz1lusth3f/e536bqaP/9LfxabpFxdXXF5eYmLaS2U7K29d1jjKQphqysURsv1KKgVsCrBJpb5PBN9w3UoDPV2Qz/G4hUN4zDEIi3Z39gkQY8jahRjye7aQmnSLCXJpMRSigLVLugQ33gZOEymcz6//yPquqUsFZPJVBBQdcH5+Rlt11EWlXQuuMB220qDfcgIHnH5qcgp9dI7QNgxQMU9ulv7jAqkeYInIbGWxWJOU9fU9ZqskJJJD+T5Hh9++An9ULDZvmSzbeMaKgWWZVmwv1hwMJsJ8zie0+fzOavVmmEYOD19zWYj69bh4SEH+4dSuJeKppKmKRDoup+8A/d/F4FPhADYqfneC0R+t6VT1xbcnR1UPnacHmvNNSxT+GCegJGDR5AYoxg3FJvNhjQ2K2VZQpolYgWNjgGlxL3k3MgwOvphJE0TlBrpuoEssxhbkmUJO67VzhqplKKqSgFDDy3duKXtGlbLK44Pb5FmitFtY2wsROGD6xt/1/S2XK5QSnF8fEvciM4x+hhLNsL4kN834Pwb1LhsWg1NUzOYEBesAfDXAoqPQlpTD2JHrSq6rqfvuuvXe+gBFJtNgx9yrtYtV5cNz569oKxyrNakSUI6SVAkKFUyqfa5ffM9bh5/yN7iLbJygk0KUpNJXMKDc1FoAGHEeYET+9GxY6rsHDe745xzcXMTlEwAdtcLsVEwSFRB2s4UF5uaz+4/kL/tR7FxK1HIQ4itnSHhYtVytdrw9t1bUSB0RD2Lo8MDDvbnXKxbfKzJXm3WfHb/PgeLkifPnvKVj/4STx8+ZPQpNkmYzObMFwuBdzphWHRtdx2PFBFbxYeQF5ZXdKUQpLBlJ1z3fc9ms7muvG7bniRJY+Qmx1owBolUaTD6TStq1/dRDImRxuhEGkdpSL64OMfFYhmJau9y+wKlzrMMo+WBqXdcPrgWsLUStqAPcqgfhoEsy2maWg6gqY2tk+M1H2InJKZpys2bN+U9jWdTbeK9H6TZMUkSbCrCkFGxfVjFCU6asdqmPH2i6PqATTx37i0oC4VRshkvsoI02uOrsqIsClbrDVfrhourJZttQ+dlYm21YzqfcnLykrofCMpgE0PXtbR9T5lrul4GBk09Yk3C/uGCu3duc3F2TlN3bDdbYEQj4OarqyX96KQtMjbFzidT+r4ny6U84/XJKw4WBxhjZHN/8oo7d25eGyGD3nESkSlxU9O0DVerhvVmw+vTU8qyRKsdlzQWxLhdxEDuIKK72ccx1J9uC5Nrz4YEHzyL/TlHN78ihQMYlldrjJEm1R0D5/j4mE3RU2Q5+/t7TGcFq9WSLM2ZTGZ0bU/bnbFardjbO+DO7TvkWUZi08jZSTDKXkOWjTHouB51Yx+jDfJwInhxWQJVVUkjLJBlOev1hvPzS/puRGtL19V8/LWPpE1Q75zgUnzhnLghgpOngqzZI0MYqYppfO00ebEfv61wqNbbNcYaYeMYfQ2bfxPl8IyDi3D+hK4reH1SMN37kB9//ozeNdy6ucD7TtgHcWAVCOggA6nEJhRZTpFnWCMtmX0n0nMI0HUjz1++pu8dLojo23ejTH+dxxpNahOUH/n2J5/w1t3bfP7ZE5x3rFbnHB8vMEp4QtYYbJqgETiyCzJgcN4JyF2BUp79/X0mkykHBwuePHmONoqhlzVsb7GQQoG0wCRxaq00o3MYbcjzEmPEjegGR1s3bCO0u6kbhlGR5/u4YUViKqypxLHuPMM4RkcaEIc1UqrB9Z8JnzGuafjrAdlug1eVhxTFN3FVQWJzqioXx693KBUokoamW1FVC3kG9e8xDFv29gUE7sMIKK6ulhAUeZHRtg0hOKazGSCtgX3Xo0j46scfYKxlvb7CWEvbDRijODjY5/Bgj4ODA2yi2Ww2zGZ7bLdr2rZjuVozDCP7+wfcunFLINRJJuKaTlCxLdV7ERSJboeu78jzMt4LUpoxDD0gfCQpBwtkWcFyueTyas0wNARvOX0dIP2Y5WVHOUm5dUdiq13XyDWpNRopMhlHgWhro8gLg7ZEB7DCeEVVlOSZwQ09Yy+HoNHBH3z/h1yuNmjlKFPFv/Vv/lUO5nPu33+OLaf89nf/BXU7oE0KHoxR4oSLjcyyRlkuLpa8c28PHTyr1RLlRSRBIcmHIDHYaTGhbq8IQdzVysjeL0tTDvb2Wa+27O/n5NbKfsuF672Dib+PxzPqKKT4gAqOLLXsLaYs5lO26y3nl5cc7+9Tlfdo+xalLgjBk6YFi/kxy+UVq/WKRxdPGDqDsR0HB8IwtSoHBtqmR+tEhtTkjIOl9fHwOQxs3TYO1ODWzZvMZ1PqZsX+3h6L+SGTWUXTrSmKPYyZYLXFRqSLUYq3390nBEddN9TNRjhdWgl/SwWUE5diVgRM6GnbjsncYtuRPCtI8yPOT1c8ePCAxd4R+/uHDP2Kk67h+MYhZTknuIzEKlAmXjMGikDbrunaLc61JKnCWkWWlWRpjrWa0YmDpu87nBvp+5Y0zVHKcXzzgKcPPctlDrbi9cUFy9WSskqZzytu3rzFfHYDHwzagDHuet+NF+foroGSsHuuefIkpcoyJkXJ1dWKP/6j7/Mf/Hv/HnvzOZ9//ojp/Abf+/Hn/Npv/BZBGwYXB2Fe3DPOe9zgsdaTpeYaC2GTDB0CbdfQdSODcxTWoEZD0zgeP75kDBVeGWl19APKK+qtCMLjOGBUKht22Xhy795t7j/8Y16fvsIme1grPGbnh+vzz+7ZPXaCHLIRu6OU7JmUG3He0Y0jOMVkUjJfzHj67CV978mSnCSZkef7DOMWEM6d7Es9XkXOtqoIjAQ8xiQYJc8LVGDXrq6Uj/daRGrE/ZkKMphz3vPo0SOK0JFkkpnuu4HuamR5NTKZFlxcPpb3KU+4eeOA+bzAJgpjN+JoSaTI0BjDfFGw2Ksoqoq23TL2DX6Qs1iayXB+Nr2F0kr46POcNDpyXJXTdyPW5mgStElQaMZhoO96ZpUMWao8oR86MIpQlqRJilae1Gi8L3j47ATvbqGMoakH+qam2645WOyx2VySZgFTFvgQkwlOU1ZT8vkeOpkxOoVre/q24T/4d/8d3nvvLe7ff8TNm/c4v1zzj/7Rr2BsR2JyEQ6Uu2463p2LRzdec+VevjxjvWrpnSSaBuPRVY41ijAKgy/+VZqtFEtZK/e6Mj1a5XR9oB8CIWJ+0NCNYzxbBTTxGlQipPggTfLOweACSVqQpw11O147neRzAaXpR8d627DoC/DD9dlNKy2M5dis672jbmoG16OQvWbfyn774lJY9rdv3sIHRZpMKfIDhvEVOhEhfGf8+fL+1jkXE2AJgqxIrwW8EHEPdV1TFDl917G5uKSaTCnLAuc8oxPxbYfpwHthQI9yNpZoqsFaccaN3uEQobOPbnqlZH32jusyxOsiUfGyMQ6OPIvfI5aoiI4hQz5jDLPZXITuzcjVRc1quYkGEQMUJEnO3mLB0dEhQ99TliWHh0fcufsu/RhYLq/k+YikLNK05OuffJv/03//33Hz5g0effGU23fv0naO3/md7/LyxTPu3r7NpJrx0Ucfoo3l7//KP2C5XlIWicTfh5622xLCKAOkuD6G4CMeymKTJHJjpQBGKdFOtDKcn13RtR3GJiJMJ6nkGIMiTwzODSQaVGIJyU7/0dfPtN10V9IdARyS7Ij2S601x0fH1HXNq5evuHN3RpIkhCDFRMfHx9R1C8HQdY48y+k7hxsUD794wDj0ksgrCjyw3qxJtJzjvQsMg6PvPWk60jbSXJtGPvfLFye0TcvF5SUXFxfs7R/gBkdwYHRKUexRN3B1taHe1uS5DDkXe3us12uuAuTGSDmlkXsmzwsZjEW96d133yPLUrquZRh7NJo8L2gaQZvsDGA/6cf/DhFdBUFjVCqCXehFtIm3AAibKUTxgyCQcvkIZJkVoKAySKuuxO+8H7FKR+cd1yymaWztGkZhWrStCFvWJOiQooxnGLo4DdMoLY1HdS0vnLXCRmrbJjoBu+uDhvx7L5GczZrHz58xDIqxH2jqZ6y2K3HxpKkAeYmxTOXjomhIU+FrXF2tGEdPWRQorXl9ckliM45vytRjt5HRkfPgnDRjbjYdfefRqsFYx2xeXjdy9UNHkllGp+j6GG0KI3XdSnuuUvJ6eEWSVszn9yjzW5ysX9J1AcWUMj9kb77H0dEB3nv2999iNr/BYnGLSbmH0bnYo728voPbtRsFQrQOXd+UYdeQLA+w2ASBUKgCosbtrpEgbcA2urKuywLkwO0JjMry9NUZJ69P0UoLK6wRBoCXLySHSMCj+d6P7nO1XPGLP/tT8b2T1/PmrVt869vf5Ne/+/uyyYiC75Onz8iSe2y3NUMfyIspTW/QfYfza8qyJM8yIDCOA5NJJTEsJbyvnYhN0OBDjI3bP7U4OheiAq+uYbRFIeyy87MLlLKR5QA3bh5Gx5JhpwgFN+AYUViBVkexkeAJQaZmwcN8McM5aVAeB8dmu6EfWsq8QGtFluYkWQYhCEjWC1tPIibiMmqHThqHkcO98wP90AsLKQTC+CYqvmvAVErJxjFJ4iI0oJUhTUuk8WjDeL0GeJQyeAKDS+iaI549SWjHnGFY8t67e1jTg7ekmZQ6GG1IbRKvt0DX9XRdR1FN2La9TBiVja+vZ7FYsK23wCkqunRBDvvOQdtKy9um7kDDVz96lyJL6NqRi4tL2rbFmMDYtzx58oTT0zNsmhGQaLI1mouLCwD+1b/6A549f8pituCnvvUdaTvKUu5//imLxVQOEXpXYiJus9Vqg8ezXC4JYeT169cspjOGXjgoWit2MqyKjhQRqmJ8L8Qo9c7Cvos5KhGb+364ngoLfHnEaPjww3fYbGrOzk4jiyXEKZ20Oxt7QN8LA64sK5zzJFZg9bdv36UsJrjBM/SeshQI+ziIE2c3Ed5uaxFujEFpeaD1XjEOEh1qOmHUGa1xahDh3Evz1vHRIcIpDPEA6a5dagL/1RgUxqSIYObZtbHK3Q9Ns4YYfTfR1b0TSifVjMQYZlUiJTfWythIx/IiF+LrovF+wulpQjV7h2evLthst9y9u0BrjwviTNpFH61JAEVqLdNiSpWXUTiXZ9I4DvEwmdD2HedXVzgf30NZNjDKkBiNwqOCo0jhL/7Sz7FabQnKc3b+kukk52DvHmkiLlE/jrRdJy5C5VHOy6ZICfOtboUr5voGTeDi4pSri3OsVvRKEAJJYpnN9/F+pEwzjJKNa2ITYUQN3bVTfHQjdb1FaU+77UhKw2YzUBXHOD+ymFVonXxp7Crc190QxI27pmUFYkQQUU/r2IAWZHBEkPdXaZotXF2NVGWgVT31Rph5VTWnHzq0TgVSnHZy0JhAvb0iOEfdNlgLGE1ic7IsRVt/LUoQ3UHSugppYji+sc96teHx45eCQdCK6XRK39ZcXjqKosRag1IiECeJlcIta9jbO8CN4bq5OC9y+rElOBe92TLAXK+XaDTGStvsMPQMg7TN20TTts11VNGNg3xNF8izksPjitHN+OyHDdYeUrucclJxfKNiNjOEMJKkSRwsyrNPWxvX4Z7g5eBkjbgvrDZkmWU2zbCRg6UjJ/izBw/44skLfIDSKr763l3+/C/+Aq9PztA25enzl/zox59L6UfkzKY2IdMBlUUoedD0fUGalMK9HEe6uuF4saAoDyjynLpZ0XVr2cTawHrVMIxt5F25uGO03L7xFi9PHjCbHGOjizeoAR96FFpasb0SN9LoCQaMSTiYH7Be92w3ayZlzuH+IZdX59w62CfRx2zHl5jkiqLMSO2cxJYMwzneacqyIpknEAqUkmdP04x4eoLTFEUa11HL6nJgWklZkkb2ckmSUhaaG2aPritpmpK9vQXz2YLl5orgesosQ6kUowxlkVGUKT4MJDYWqQVNlpZ4H9isa05fvyRJLHleMF94siJh8DU2Ffh9Vmq0GsnLgqPjis26p60NTbslywyDqzm/GOi7gcQkBEZskjA6T5pk0javSvADWWawNjAMNSGC1FGetuspilxwG0aTZiNZUlHXFU+fbDg9VaArLtdrNvWa6azi9q1bEd6/LwK+H9EoytwC4irb8YYDAwEnpQqdQytDkVmqqqBpO/7oj/+Yn/uZn+Pb3/gGP/rRfarZPqeXS371H/4jPDIUd7EATWstIpZWpEmCUQOJDeSpDMfRRoZ+WPLUUk4qtGoxNmW1Gti2AmvfuYhU0Bgt4qbS6rqlNcT4vVdw68YNEYWGUbAaTniyKBk4XR8wAB2HvkNsO1ZaYxL5M+cdxiaMPrBarUhSy3pZ8+rklHffeguj90n0bfpwgk06jM5iqV1LCBqtLFWZ0fczmraOgwWFVrKH9BHto3fc3xjdFFKbrHOSlug5ef2a40lKmuUoY5iUJVfNRtpSG0eaGow1KJ1zcrbm7OqKNJOiPxVk0GGNiWVO4qapqpKgBmaTnDLL0RrSLBG0kXMoIXzI5wVxHzs3YnSCGz1ZkZJnFd6DLhSu79mfC9Ym+JEszdHTiqBECLRa0/eaP/7eFd59BFbjxpZhaNmst6w2K+69fYQxmtE1XF6dk9gCRcbBwW2UTknTCijQKmFdr/k3/9q/wTe+/jWePH7OweERm63jN3/7N3n6/DOOb5Y0nYcWdAjRkS3C1TiOGC0/q7HSzC3IHI2gaLUYKLyiHzv8OJKlKQYrDLqg8E6hTYbS4rAanCS3lFIYFFbLWXXHaVdGklreRLSI0hweHtH3nhcvLrhc1YxDFB3NzkX1xoATgqLvRpqmJTE6PkPl7C5FJBo88Yzgo9tZBi9VWbJYTHn8+BUvX74QzpwKGF2imTEMBq1dNLbwpe+5O2OYmCrQ1+fkIZZLhBDo+i4aDzTlZEY1nfEG9SVGht1gO4RdelBhDDL80jLIkNItwUPhtSSsjJVno7boYAnek6fldVljluVypo0iXVGWTKpZFJ8S3rr3dtQyFNYajo4OqSYZm3pLlW04OliyXm+Zzg/oOou20vRbliXj0AMekxR8+vnnoGRYkCZWCjGU4Rvf+hb/xX/yn3Lr9k0ePvyC23fuMgbFD374fX7nt36Tn/np77BerejbjtOzKTrJubzaMIyONO9ZrzckSUWaStyYqM0MXYs2gXQizHnnnBQSJqms/cqQ2AxrE9556xaXq1bOVQSshixJcU4xrLZ0dU2WZxgVGMaAG5ycE3xgUk5RBMETBcHkOC8MQHESy5n9zt07zGZznj9/ya07uUR5nSSGtNZMq4pnz1/z+tWK46NbLPYWeK+xxlAVCVfLNX7smEyn7FUFITh8AKehbzvatsOPTtYeZWh8oK5bNuueqsh58WzL6vIKHQLBDyJgajC64uJyy/JqS5YlBC/R6qODQ957511UADd26HhW2onXeSGpQBvxLKg35pnEWJwTM5ekuMJ1edJP8vETC3xpMiNP5SLseuEJBLWLYorTRlvLOMpDXBuFVbsJt5MXOYw4L1G4NE1Jkl18VV3f4PDGCjwMI3Vs9kwiK8yN8uaUVUaRT0lshvMCuQwB5vMMIDbQDDG/LXy8cXTkeS5iW+hJrOXl/VMePDglKE1mLJrA2cUpRZFydHyA0alEi41i7McY7VZsW8dkWlEUFeMgB/Asy/ng/a8wnRxxdvEAiUHsDuyOgIpxVgMkVGWOD46i1CSpRgWJ11mborFcnF1gtLQmbjbb6FIR9t75+Yr59ICm8dy+eUBQlqra485tw63bM95/7xM0M5I0ZT5fUE2PMCaj60cG5+mGXn4vRKABovYUq8yju2jXhuXD9U6IgI8TwJ0DCfndvADVffAMbb3zdV6/F2maRiut4osnz+WgqAKTKqdv+jc3vTHkqTTxjM7x6OlrTpc1STnn2eNHbFZrnHPcvX2LvKooJ1OIynjXtaxWDXXjSNKSi4sVs9khXb+iXi8ZTp9ER8bNa0bYzp25c2EOgzzcTIS91vWGNC3jtSYPob6vcU5+1ixNoqghduAsS/Au0HbbCGJ2ceI1Xjvx0lRiQTshxxjRTd0gMSRtkTaryKeRv6soi5TpVK7hcRjpxx6TpHFqbbGYazeNwuBdiNwVzdA3CAOtx8RomUzRQnS47qZr0n5qIkshsynrtsFpmZR3XUtAo1WOMYpxqOWgqTOcOuDVa82mnXB+dcmd23vkuUYxkqcFZVaK4zAKwtZa6qbl8vKS9XaLyie8PjuPbsAYTQ+ex0+eEnyQyKkXj1WqDUOMv7StuFN8UBA83/rm12gaWROePXvKZ599isIzDt11HFcFccx2dS1RhbrhN37jN+i6ltu3bvL46WNZ7zphyNjE8vr0lPlsJvf2Lp6KNNst5jPaaNV+/vwF77/3Aav1hr3FXD43Ci3XzDL/pXvOexHDd9fRtY1drgEXG/XGYSS46P60is16w7becHFxTlmW2DTh8OiQ+UxA0sPQRweAOC+rSSklQkamD+PgokMnjTBvJ6VISkFwBBVIrLQv98MgB8q0iKKPjkOOK5zro4A0UFUTrLWy9irwCIskzTTOd7IZ8/Gh59T1Zi8EHQcCUuxCiA25KuCiS8qYhLYdGPqBcQxcnS3RRnN4eMB0Nkcpez1UQVZfglMEl3N6YrH2Iy6XlpcvX3Pn3gFaDXi3c6DHiLxWWC3TysmkZD6dkWjDeC28OhJrUTohdJ6Hj59ytdrid5vw8KYvzii5Ga1yfOXte3zjo4949fIcBaxXl4zdlmHr6HdlTP2AC56mbcSh4uQ0JO43de0E6+o1F+cvqeuay8sNbVND0HhkE7e3t8f3vv97vP32MVo5bJLg3Rgj/xqbJBij2Ww3NE3Hdl3z8MEXLOaH5Lbk4w+/CaGgaxVd2zNdqLiaw+CdCNG7Mq04/PFxHZFnRWSOsnO2eHEoqSBFV2ND3ydkecpyfYYyNf04hWCwKZgkxTstLXAo8jRhvT2/jsU5J07wtu3QxtH1DVmWXYuPShnyXJi1y8tzTk7OaNot88WCoAI3bx2zN5vHOLZhV97i4jR2Pp2LayEOPKyVTXzft7gd1Fxp2bwq4eISoO97mq5hSAQErbVlGOHq6grvR1Jr6fue2WyGMZa8LHBjxoOH5wT1DipZkCc5ewcVs7lFMcTYurgdJH7kpIHRubiW7J7T4h41SRrXSUfXtFiTgbJ89vARP77/mN6FyLTz/Ou//BewynB5sSSb7PPd3/sXMVbvsFpeQ42jygxWi8k1eFBJwd3jA6pUM4yOxCaoYFldvOLR+RlNs0Ea5QPayMZ4vVoyq/Zp2za6/ODO7bs8ePAjslRhE4cKHuW2GD8ABnSKV/b6IK9NKo3RAywmM3RIKIsZXes4Oz3Fv/MhiZ4zr+6w7c5Ab1jV55ydnlOWBcfHRyxXV/S9DEglUicDKmMLpGjaSYlK1zMI3o263aBch00NzgeyrOLg8EAcEu00YgNGFvMSr3KszUmTCVZrvG+omzVGFRgSNpsNid3DGgVGY6cZRV4Qgufq6pKTVyccHe+xtzePEfBd8RIMTqKz01lCWSqGoZXDrlIUhaHtV3QoRteRJHL9jc7GCHeDTQSn4lxgHDyJzen7hrJKmcU9+a4F2Fhww5yz156TVxkmmXO1XbNctxhjODzc54P3P2AyOWAYPP3Qy4HFSyzVWktid1ifEPeZgXEYsTpQ5SlVXtC0PZ/df8zNW7f4q3/lL3Py8pS8nDCM8Bu//bu8PDklSWUYqPBoZSIDWwQ+YzSpNVS5JouD92HopYQueGZlRRiHGJ9JOL+4FNFEuchU9mSpJVGevh1o6i2pTelHaVfeiYD7e8dU+YJ6I886WYtcFB5DfFwHOdBpQz8MIuYZyzBKO6Xwt2Rg6iNyoypzLtjy+PET3n37XbzXJHZG4gpQ63gI94zDiA8jWjnWq0spDlA6ut0M41hL4U6QtvldFMz5HRsXvBMXV2IMfR9Yr9bcmh9zcHjAq9NX3Lx5k3D+mvPlMrZYQ6oMwyDCzuAU3RBTI96j1YjRAWOcvB4BXr1ckSSaqrJk1pBnKTaRM05RpCSpDCCyLMEmUlaQWGHSWZPiXE8gZxw9Jy9fkljDdFoJkiaMjMFHp6LFdwluMDx6FNhsJ6i0wo8dbnQslxuurmpMklBVc7m3ydHGU9cNQweEnNn0Jnk2h5Dz4tkr/uzP/wI//3Pf4dWrc5K0pOkDP/zxD/j+D/4FhzdSkmRgcFdsN0vcMMTzZbgeEimMXJtKsbpaMbSBgJU9l7Z0SuG9tA6nRhIwFk2V52ybju2m4/HDV3zyzXukecJ6s0JFuqnWHhtGcIPs6YeOYRBMlQ67ZIhmPp+zv3/Ei5enjF5JpPt/02O7Q2koROTbRaN2BVohOPpB0k1+lNKYNE0xVpEkGW4IDH3D3TvHLC+XvHr5FK1+GhcU3lvwM9xY4M1FFGF3TqXdHl6ur8ENjGNL349MJhNG5yKncqQfBtYRyzKdLtjbX8TIsAz4TVQ2tBYxaBgEqZWkJqK/VMQeSSGcsgarchKbUVYT5rM99vcO2VsccXx0g9lsQZpnZHku5ok0E1Fdy5oo/x2/pwLvpHAML+VK0uTrGYfAarXh+9/7Plle0I6Oduhp2waUYrVdkaWW5WoDgaiTKGySAgl379zmP/tP/mPeefsODx9+wc1bt/Ek3P/8c/6nv/c/8sG7b1PkGVsn6ZS2q3Fty4sXL3j0+AnL1XPywpEXM5J0JEstNpG1MU0NVeXIc4O1CpSP91bCZLInvH+bMSn3cKFhtVrx2edPcW4ksYajg0PQCZ/ff8x6vWGxmKG0o96uWS1rlBY23f7PfEfKOcYBj7neX6mg4mso79liPueX/txf5H/5lf83z18856239jFW9n8oxWbd8eDBQ/xQYM0SH+D161NevDrharVmHERDSqwM5bM8AzRN25ImmtXVgoODQobz/UDXjpy8esXx8W226yvGfuD89BwVIltRA9qymB/z7rvvc+tmxdBuWF5dyNBnHMCNBARPtbtfiqJgHMWMJqgEZO/unZgynEdlJcaYaA750jPjJ/z4iQW+fljTj8BgAUdgFHFI7ZrixAHm3EiSaoyW5pU0FeeQMTvnnxwGIHr/gopsp91B780vLBlueUjVdR03yeJ+2WyWFGXBQQTZCwNOHnjSMmmuOTxpmkbYvSwK8tBLcS7QNgNWp0ymFcG3GOMYRs+LF88JNBzu3SFP90n0jKzsqZslo+vY1lu0ssxmC0ZrSSOA2bmOur7AWsMwqMjzsdR1TUCxWq2oJpWIk0mO9w6tR4ZeBMc8z6WaupUIbuu2jGO4job2fcd0mrC/P2U6mTCtbnD3ztvMpgvms30261P6IePVq3O++tFH3Lr9DsPQ0/Xye0nD8QAIrFr/qQiVTPqc2zGDrv3cb8Yvyl8LEl9uM/IRJhyIufcvXbQPHjzg1clrPvrq15hMpmzajoePHvHxxx9x895brFYtj+1zXrx8TizgxGhI80wm/jHK94d/+AfCK/OGgOFsWcNyLfBWrbBZhk1TQj/w+WdfAAOvXp7zyccfcnGhWEzvsLcvU3M3yFQhsRl938VY4BiVeNhuNoBMQZU2jG5ktVqxa8htmo04v6yhb9toAQ8UuUSjldagKmxiAOGH4WVzbaOat2sbHL2PzUECihZXqiLVBm0swQfqeoP3nrqpGd1AnpfsLfYpbYaK7iaB5sb4izKMLnBxfsVkMkUbhw8dzklkAjzGapRXUQBUMWoMxAOFuBjEuZrEKMYwdGidYE3GbHoL7x3r8QKfOJSd8Px5wdmZ5qJpmM0KZlNLoqHKppS5uFT9KBG7vuswOmH0jrprudqsuXh1zvnVGjAxGePxCp48e8Xt27ejMzK6RxONshaCY/BGANZ9x3xW8PHHH7JebenGnsdPHjEMHVli2W7WbNYbhqGn6Vq22y1EoXFvb8EHH7zHnbu3qZst//P/8qvUTU03dCgdmM7n/OjTT/mpb38Lq3bCt7igxnGkKIrrSP7rs9eM48jZ+Tmz6QSvYuhdyQBjJ+zJ1FFHMd3HYcWXDFPR/bTjHqZZSl7OY8xPYnfeOWbTKVpr1ps1fTenLI5JZ1N2nEyUJzDSbBo2W2kVV5Gpt9nUJH1CnhekaSK8PG1wfcvoHdZYhqFnu15DjNflRcrQvWmXVKhoiR84PXvMZDJhbzFjWlYoIwMSP3qCfrMZc04iRuFalJGYvQoiBMnzIbDdbri8XLJtaoq8YDaZS3PwbEpelHT9SGL3caNhs1mRppossygMqATjb3LyoqEdbtA4ePb6ObO9nLo+p64HyrJAGUWaWbRO0cj1XpWV8NeSVIT3EQSfDVle0I+aB48fc/+Ll3SjrJHi8Jb7eieQe9eTMfIX/uzPowNs11vqvmG1vOT89BWuE+EnSROMFgeic56xH2i7jmEY6J0XB1+9lViEVXz8tbdR2vDwwSlXywumkz0GLy622WzCerXlyePnTKYpeZ4RfE/Xb8iyjFDLgaTtu8hE61hvL9lsN1ib8JWvfMS261ltLYN3cRoujjw3jtcDDRXEkbqLzMkAK/zpTYsMMWVTrjxFGZiGhrHzDGNJkiRS7nJ1hTGWoEaSVFg3SmuJz9HjwiicSZUwjC1pUtL3DUmWkhcFRZFiTRpFvx0jUuIueV6x2Wzoh47VekVTr5lPKnHVKStxpyA8rW6zpWkCeZ5fi2bL9ZYsL8izktSmWC2FDUPf4II0mg/dwHq9vhZPsyxjHANNs5XBZwh0QZwSZ2cds8khi70Zr862tM0cqw/wOiXJFUna0/cdQ5BI1m5N6NoebWRYtNtDeSdHpa5rGAZPYiypSeiHgUkuXOKzizXPX57SDloc92HkG1/7Kj//cz/Ni2evsEnO8xdP+ZMf/gFh2GKtQ3sLyknzagDlPX2zxQTBj2wvod+bcLXs+PGnP6ZrY5nA7pDY+djOLhvg5eWao8Vt2mYtQ0I089mUvne8ePmEvUNPYjISLS3yAUff1yIgJgWohGmZR4dMF0VwHcu3Gi4vLtg2DWWS028Shj5Fp6CUx4eOR188J7EZ1aSUeHNwENy1673vPCoN9P0AyuKGHjcm9P2ATUaqLCPJDHXb0/ctJ6fPSGxCnmc437NrGdeJgSDPFuEwQ/DyzPbOU+YJzsn7NnRDfJ4nzOczZtMFXd+g9YhRWhh4MdousHkZ2iWpMNyyQtZKN6Zo1VNEMWmsNwRjqPuazKQooxn6nqATBh9IrMSoEmsIOxyD8gTnUZmOpTeaR/evePLUkuY3WW4blsuOcfB85SvvcOvWTdJM0BrDIAOYsiwJQV9jG0TklzjhOHQMdcuklOKqRTWhGzwvX11wdbnmP/vv/xO0MZycXzE/uMlnnz/ix59+Goei8jMnJr/eww+DF6h868kmCUSnz9g3KCxlljF2HWPX0m4GbCUFOFdXGxILeZ6wf3DAfD6hzDMy4/ni4UOGvqEqSrp+wDNGYcST5xm3bt6hbl+KqOckFqliosNacWE751htr740OFIYrVmurkB5Fos5gUCaWIo04d23btJta54/fcjY/QLWJNh8waadoDiN0TpxDckAU4OTlto0KTnYe4eqXPD69BHdsKJpN3JwR1owx3EUN4necTFhDIJbGIaBEPT13uX5s2fk8ymL+V7krHnGAXo9oo1hjHvkxArn2NiAUwETEUuEgB/lGdB3I0Z7Ef9CIEkURWmZTFOms4Jy4ikLQ5LKMDd46MY+4iAUUuQ3EaeMCzRNTVmWMgxXEIKlqS1Pn67phxsUszlDPzB4R73puLzYYtOSslpw+rqlKGCxXwBO+LPTijQ/ZBxndBguzl/y9a9/lV/+5V9iva7p+oFysuDJ0yf89m//BsdHR9y5tU9RJgzjwDI74+LilMvLU1brc5JUsb+/R5rlWGNp247nz59xdtoDRowTSs5dZVWwN59TVTl5jD4qJQJ7V3e0TUNbD6R5YDaDzeYZQ29INGRGE9xdETuHAXxg8E72wsi52xjDJ1/7hL//q/8/bJajVYHsMqOsEHaFfUDw6BCoygqtHH3XyjoQWcdKafwoqQzvPWEI9AE26xptC9IkMKtSLs5eMXQdIAxGq/cI40RKRHSIvGqI7hGUEQNQXbesV2uWq1WMvBr29vZI04y9vQPm0zld15EmGdZmuLFjvV6RJAnO5VGI9mjtvsQrl/2G/PwGgiVLc+7dfZePv/IN3nnnK9y4eZuynGCTlNl0zrSsqKoKk0jEsm2H6PIj3kdxQDEOdF0bjUsNXdcy9l08F8tQQRnYP7zJt79Tcv/+fdbNFZdXl1irmc1mVG3O6esTWMzY25ujY0x2W7e8ffsW/8V/+rf58L23efrkKYcHRxBSXr085e/+3b/H5fkl7t4dMR5El2I/eNqmYbO+JEs0eTbh9ckL8mIkK+K+VUWOs3akWcNsmlOUhqI0ZJlGW023PJXknQskakqzSfnBD17z/OWSLM2YTqRMc9sMnJ2dUVYlVVVAcPF8taGpL9G+kOFOEOHSB7nOfHBScLLTexCH5c/+7E9zdvGM7/7uP8b7wK07M1SAvh/5kx8/4tMf32foE/KsIEkt1ia89dZbnJ2d0A/iuhvbWCYzilO47VqM0bx8NcW5EmsTCCnPn51y89Yxk1nByckZSgsSrmtbxLKkUFiyZIY1OfPFjERXHB8t2LHqh6Hj8vKCSVkxnU0lreK9pAPSNO4/34h4RlvcOAgCKstiGlBHnSjhJ/34ySl+cTOkGPB4VCxP2Ln3vB9oVku0CfhRo4yOgl54oxGFiMyPK4tHSTtK/Pcv35w7mKfWmhAVz8PDA7wPtG1Hmgqs0FqJiepdJCuE61zzbuLtnI8xSx1/ZoVWlm5smc8nFMUEpQ2HR5bz85eo1Yzz1x2EDWE8596t29y88S0ePf4hV6tTlO4xOgM8l5fn7O0doHQE++oeTyMbbz8w9h5Uxtl5S90NFGmG7bZMpwnGQqLEXTgMih0n0BpDme8xyfcJtGgr7KS9RcFyuUJrQ9f1WOtAXeHHnnqzoigN6+0TjB25eeunuHnr7et4n3fRLrSDUMb/PcT89586kH3ZPRR2QpS6/v+CF/DwTqxwo+TWvwyXDXAdOb64uuLk9JTB/wnHN+7Q9J6m6fgLf+bbTKYVP/p0RZJMKYsMayWeaowh0VKx3fSdTENDwA8uTskUZ30vjcpFThpt2N4HBuUgyYCE1xcXfDtLuLg45+ZxkOlgCBgrm+W2ldY05UWU9mOP0oqqLOjHns1ahNk8k2hQiBuZtm25vDzHaMtmvSbLM6bTGbPphDxaloMKeDcyjBLNUUq4DsMYK+J9dK7GWZqP3L9h6Gialu22xvkQW7cyjEnYX+yz3m5AyeKndSaWZO8x+o0QdH6+5PxsxWy6jx9kQvfDH/6Y9eaSj776AVprjo6O0Fr4fEWRoTXRwSWOwNGNMbIJsqlWjEEYXGlqUKonqJyz8znvvvMzKJvyG7/5a6TlPuvNiq98cBNNQ6oLqqLCIL9/iIdAbTVoWK/XXCwvCFqx3tS0nceTsNuCOK+om56nz57jvBfBN8KEjQKNxQ3QN4FhaHnnzg32FgvOXz9hs1lz8vqEfmjF7VGWKBR104AWVmbTyiGdGD14+PABDx89FEGlq/G4aD2XiPGv/fPf4Jvf+ISD/QiYD2CTjNG12NQyuIGma7haXeGDo+laiWBe31Y715NEsm0sRvHxAShQ7jfONh2jq7thiLWGvmsw2jKdVkyrSVyDBTJrjGYcB1ZXF1STijSTyFmWpShVxWm+bMKNgaLM8E7ERXmnDV4rgt7liGUztre/R5LluDFglEGlKW1bywYEWWubpuPO3XtsNxuWyyu2mxqbiBPWJpbpdEJeWIy2BAVNbLBOUomGqSCiRdd29H1HWU4knlGWJGlGvW14/fqM/f0DulbeM5skMtGnwg0122ErjCKvubx07M9vU7dreia8vloxBkc1K1lenuHcQNc1FGVBmk5ROIa+Y1KklFmOVcLgHFxgdLI+p1kOKuHBw6f80Z/c5+xyI+wpraOQKqKXtmC1wtiUo3nFz//sd7i6XGNswtmLJ5y+fslqdc7qYoUbhWWTZjk+KOq6pW06rtYr6qYmTRPAc7W8JPieNDO8+94B1ij6fsvZ+Smz2T4hHkoh8M1vfYt/8A//PgcHC4rMYhO5b7NsjD+nNMhZm3B+eUHwI93oeP7iKU23YQRGp+jbHhXeRHTcMF4PcXaOFdGh3wh7gnKQ5753ProEdg7hkdkMtB4JvqXdKpJEo5TB+YZtcxU3TANlKa7QsR+kWGk0dEixjrUy6Om6Dj1KG6A1A2kmRThDP2C1JTGWxXzGwd6+PPqUx/uRvqs5vVqyWOxTVhXgSBPLbDZlx6sBjUltZAQGhJUbxK1ptBQzBAnr2tRyeHiITVPGMcQSDoWxI7PFAiDyYkpu361YrxNenUy5XC4o57cJdkozNMwnGamV5vDRyTO43mxkMh2CIAp8fL3jMLPrhV9pjCUEDc4Ih8ykhCAb8ovLrThntWaap/z7/87fwLvAat2SZiW/9y9+h4uz5wQn8fDgR9oEqnLO2ElUeBgHrLKM/cgf/eFTPv1MM1vM2K43bLe9fG8CJrqkRSzrMVqxvLhCv6+5JvcGhzaad955l88efJdvLfZk8MWIc8IDAkXXdzRdT15UnJ09BwzgsSYhzxfUm5rtquXk1XNenbzg3p278TtMaJuX1PWKrnckSU5RVLKeIa5ka3ZNyOK+7zpN3ymSFCZVRbvpeNOMCdttx+gkXu2CRwfPtqkJIVwP/CR2KJEm53pGF0isZRgblIa8yLFWWjeH1F2L0eMow6EizxA8xQ7tIreScxHIjyIMb+LwWoM1Entuu4HX5ydUVUXfOp49f8Z6W/P23Xc5PrpJWU6BQNc31xiCLBd2qjWJOJJMwKF59dLTjkcsDqecXZ7Tdx1D1zOZTHjvnQ9QVnO5vGK9rkltytHh8fVgysbyKynjkffLWE1iC/Isp0xL+n7kat3yxeOn/Lv/1r/NzZt3+fTH99k7vMHJ+RV//IPvxwINzw7XsZs552mK0Y6u9WirI9fY0Xc9idZk1jKtKspS9jWvX9Rspgm37x7x/nvvc3Q4Ym0R0xgtQ1/L1/E9bdsS5jF+65WIE8FhTMLHX/2Y7/3giqqa48aOfmjwwTHJihjHHCJ6SM4YmiA4BA9hHKjbrbANM8ukqsgnCUO/htDw+tWl/H9JBSolT/dx+gVj1+AVON/HQ6Fl9C5GE0dWyyv6fmD0nqEXkd3rgI/lH8YKz07FVMYOzbArhPBehD4VDRGrrhNW9XzO6DqJiQ4jvpPob5Im6KBBZxAEOSRYJnU9HBYmt2JEhvUKxeg1GEs3eJarhixtKCtDWWmKImE6XcRBOTgvKKLgQHnhmw1DwDnD0BuGHq4uW9q2YG/20/Qh48XZC4a2jvFOw+07b6GNRmsRH4IPbFaGJEuYzI/Jiht0TuMaqNev+eSjd/lbf/OvgYLVumbv4JCT1+f81m/9Jl3b8As/84skScJifsDx0TGzvYo//v6/5Fd/9X9E05MlKX7MsUUlBhfnWK1WjKO0VatYotZ1Ldv6iuXVKUd7CxbzCTbJ8GQsNy0vT07woWHkhK98fIyiwA1nPHt8ilWGvcUeWnlx0cekgtlxuGPsLzDyjU8+4bu/89s8fPIF0+kUlCLLi3jWTuPnB1QQ12eepZSZxVcVq82armvRNj7cUxEmRz8QxkDTDSw3Gw4Py4ghOuLpk5e0TU2Rz/DKYy1k6Ywh5Cjk+nJO3O+nZ69JE0tVFmSJRc9mlEVB07acX1zgXGA2nbPZ1KSpFS6rTkhswWpVc3lVU+QWyMhzy664R4oUZZ+WWDlLEzRpMuHP/9Jf5msffwdrclyAq3XH1VrOM1af88G775LlJXW7pek6ttuavneMg7t2BTs/iIvLO9kPIG5SYlxYhpliEtEa9vbnfOdnv83LVye8vi6589y5eQv8yGp9Rd1sWOzts9jb4+OPP+Jv/4f/IR+8d5fT01OSJCNJKs4vN/zKr/wDnj19wtA1DNF5fv2Pg77taeo1hJEbh4ecnLyCYDk7XREYJbYckxSywjcYa6JrWzGZpNhUElNaKbTr2K49Jycb+kHhXI9NM5qT16xWNfuHB7x17y02yyV122KUlwZirUiMJi/yiOSQgV/X1FLYJpZz0UjiQBwFv/yv/RW+ePyQf/pP/le+/Z33uX1bShwfPXgkhakhZdXXKCUlOa+sYuyaeL62WJ2glaPIC5puxLggZiY1UlUZbnA8vP+Es4sr3nr7FuPQYKyUVQ5DJ8Npp/FOCU9YVxAmDMMFOhlQJp6FEHTJZFIhgqBc0y6WeSQ2BROF8cjjFLMQDGNH027F5W2tuP58xU/68RMLfJ4RF6RififsKBTOBxKb4IMjSS0hjPjgCG6MCrpM22RDR7wZwrVII2KbEqaD+tOAea0lSgQiHu0YaFl09YWw+1oqsq9CtKCmSMR3uHabCVvnjVLqnOPlq5eRpZRwcLCHJtDVOdYkLBYJ+4sFflRs6nN+8Nmv0nedTOqHgaoqI0NChL3lcolU2JsoNDnGXqYZF5fnPHt1BipBB8W7bx/QNh02EfZJYkqJYwYRW7bbRlpvsjlpmuFDwzA2dH0vqrQ2lOUMhREmoTLYJPDi9A9p+xdMkn1u3rwNQYQoqaZ27KCmu4OZc45dZfXuvXjzhofrz33Tnsybv7uruka4U28cSV9y98WvlyQpXgXq2JCqs4zzizP+x7/7D9jWWwZfElAY35IXGdlkQpVVJIlwKyZFFZlxI4kx0jhoLbu2YlHELbtoaWyCJxCYTQrWq3NOXjxkWq4pyyFOjWqKQhpDtRaHKSEwxtYydCA4H1tIdyDzlK4d2Ww2146tsqwo8uL6tV2u13R9F+NEmtENzOaTKKaI0NF3Q7xOs2smhoYYDQ5oZWIkUzZWl+dLplPZcA3GkyS5MACTGX2nOD8/oZpY5rOKYZDIYdc1VJOCrhNxYOhGbty4RZqlfPHFM/b3F0wnc8qqomlkCrVYzBEgrHCJkiRh9D27JkitDSZIzPXqcmSlO65qw9PnCaqo+ez+H3Pj3j2MLdi6FGNTbBKoigmJycAN14w5myQkScLgHJerK5q+A52w3vb4YGODXXS3XYsGiizLaGMRjUaRJxlaG7I05epyzdi1fPubX4+gbMfl5QWXlxckVvHX/ua/xfvvfcBsNgUt3MP7Dx7wf/9//N949vQx6/Wa/+F/+B+4f/8+y/WSvKhYrZbCrhulrOHGrTs8e/6cf/i//jPee+8dvvrRh1I4EsUPayxZLhPczXZLVZZs6y12OhFNPYhLIuwWxJ0jStqF2DV07VzOhBgzDW+YfASNNZkwKoIIyTsx1GrEBeikkbGpt9hEHEpyzRW8CWc46noT4xBxE+8dSZIyqaYYTXR3GtIkRWkDypKYjNQumFY32dZLlutnjH6N0p6pneBGz2Q6ZT6fiTgz9jjvKAppQM2SDJSU3FRlGmPLkZ0UAn23JUmy+KzRlNWE6WwBAYZeJr5ZOqEsZmybDdpAWVRUxT5aa7phiQqB1abn7HLg5Pwld9/6iGWTodoV2vcR4HtDojJqx2gJJDalzBImRU5qE6zSeCeRam0STGLpfWC5XvGDTx9ytW5wREtBPMgQQizW0OSJwrU1P/+dn2c+m3H/1WOcg4cPH9A2NbdvHvFz3/lZUptGoL1hU7c8fPiE3/3ud6k3NY6Bupayo65rCH6AoHhw/wHHxwd433Nx8ZqvfPAxjXfXhSVHhzf5xte/wz/+x/+EMk/JspRJlVNNU9JMkxdQFIaua9hNdYZRYth1s8FqyzhC3bT0Q482miSx1Oudw5vo3JMNjhJ1FhcEM6CiO1XxJaB23MyJo02GVHmVoBCG5na9lIiL85xfnnD18IpbN+4ym+xRVSVKCxxb1vlAmiaUZS7uFhfiUEkTgsaoAa3AJAlDbJl1kZXlvZQZ7e3tSVzIh2uuo1I2Dgn76MjfiIjW9XSdRKSTJKUsK4ySe0SrJLrsxY2SZDlldoOiOGC1OWW9fcHgaiCQphKbvNrknFxapvt38MWCs/MVRTGi4zPdh4CxBu88k2mFv2a1RBeOd7RNTVkUGAXldEpVTCAoEp2RJJkMwi4uePDoMev1FmVyEuP5P/z5P8PHH33Ag/tPSbOSV69O+eH3/wg91PixJ2iZUltTYlSA4DAmkOYZ2htUkTG6jLOLMy6XHQJKF56s0TAOPU1dC9PGDgw24/ziXNAUQYZZwmqEDz/4Cj/80e9x8nrN8dEUp1qUsvSdp2vFOWFNzjCMpFkWr7NA13u29Zaz8zXjYGi7NY+e3OfWzWOUrXBtQduK8zVJMhJbygEzojhC8OjEkpmMruvoup6imKJNoKkb8A0+KNpuyxAanJfSEa1TtDakRq4BraXwRWEiz04cr945jFbkWRad2iJ2j/SgBNXSDx1jM5IkqexvEineUjru2YK7LroSHmsU/cIOmC/4l9EJe7rrevqh5uzJSybVIbPqDovplGl5QGIOCF4i3nkmYoxCBt/BO4ZWUZUTNvWKy+WK3u3Rs+CqWdONnk3TYpOM/YNjOmfYrpckVnF4uEdVTtAqpe8GGe57B07HlnoZuGvtqaJjdrneorXhs8/u81Pf/jbf/uZ3ePXyAm1K6m7kRz/6IcG1mNAxLxNQuwTByNh3jG5EIa7rLEtJrafMM8qiYDGtKLKcRCUELc/aelOz3W5woww2V6svuDq75PzsTL6WUWgcQ9fRNuJIl2tlRGkpAwtKcefuXT7/fE5TD9y7u8/5xQlBJWQ2pWkCo1akXpMmgfVmLSJg15ImGbNZhk0Dbdej8XTdhsRA8B1HhxOePXnO6dkJd+6+h3eaEAoUOUkicTDh5wrf0wcvDjnT0/UNm9aImSFE12xwX9q36XgG8PF90Ndgd200zg1cXV3F9nGDG0aWyxU21aSZuCeN1igjKIM0Sdg1Svrr1BXXQjS7s17QENdDlMImOVk25+aNW7TdlvXVOfXK07fQZIq+GSlKS1lMSDJZu0g0JuQMvWXoA+Ng6DtLXSueP28JeE4vX3F6ecHgO8oiR6PRRtI8Slms1SK++EAICegKz4LlNnK++w3v3LnJ3/qbf5M8y7j/4Ak3ju+yWtX87u99lwf3P+O9d95iHATj0jVnNM3AvXCHzWpkHFJmk5uUVSbNxEkakS+OrhnBK5wbhIMWAtZEZvSo2aaGwMje3gFjUFyuLmiHBoXj0cNXNNuaDz98h69//BVOnr/GdR0qxLSPQlxRXu6LLM/is0zY2lmW8df/+l/n//x//b/w7NkXGKvEIWcSJlPZ6/sAQ9+QZzU//wvvcnQwJziJvi6XI0rb62Fe2/XYJEUlmpOTM9669w7z+T6KlDypefnqhLrZkGW7IXJClizAVxDkvTJGIrlHR8f42K4NMJlIs/wwDBweHbPZbJlUU5LE0naythVFTpJUfPTBe7w6ecpmc0LTaKpJFiOuPrZ/6xj3FrNInk349jf/DF/54BsoMol+aimTCEQ3GfDo8WOevXgeS8Qibz9IweBOwzDGoBMjEXUt38dYGe4aHdmUSIJLq4jB8YFbN2/ifaAbOpZXV2xWa2kmT/V1Y/n7H7zHJ1//hP35gpfPTri8vOKdd95jtax5/MUT/vAP/1BMRM6JU9bvCs2ga1vatqFtatYR56W1oWtHrM5ZrpcRVxPLMXc3LOJClusplgGGQKITDhf7BK/xgwwzZ4t9hkHck7PpgtxmXJ2dsVxeMZ1UrNfr6Ny0Uq41m4pzbRBUEjGpJmuEIkRzhPeybyuKnP/sP/8vuby85Lu//S+4d2/KYlFyfrYSnjxdXHMUzTjy7MkWHUv9gjZxDVck2rIdR/zYM4wNm/WS09eBzabm4aOXfPTxx4zjwMVlw2p1RQDW65WcsVBfcrmWuG5GN2aY0qDNFmVqSTgZIwz+mGgUnctcJ1mUVzLwGQbGoccHd122JMkvKdqU93LOT/rxEwt8g+tpB8mPm6jAGq2jaOZjbCRci0RvmmffCD+Sh5evF+KhQPRQpIY9gmlB4ghpmu7ocNIQFcd318yq+LACRAjz8u9FUTAMA9ba6zjYLq4rGX2Bex7sH3Djxg2G3tN2Nd7D0eFdUVVdQ9vWzA8PSRKNTTxlOcOY9Eu/w0549BRFRVVNI+xb+DGJDWgl8NS7YSFTP+coK5n04gzT6REAbX9+zUDLsxJFBiHFDyXr7cDB4RxfNMynt1BKs5gfRrFJVPFtvebs/DFJ2vD2nZ9hNrnFrrbde+F3fVnc+3LEdsfn+PKHCm9cfbvNwJcjuePoRBjcWW1DNIDHvzfGRUhrzVe/+lXee/990JYnz87xSvOX/7W/gU0EROnQGN+j+p4Q22issbRdK99bi1jX9wPKGGyWsb+/T1PvmgWlVGDHDtRBwO42SamqnOdPfsh7796grAasrWPpgTwI224rVm8vbg+xMofrayrL8ujOAqMyqiJDU1BVFc530lAZAmma43xgvVnStS3rYSBLU6qqlANX3BQ550lSTa7lMKRis9k4NGw3NdpoiqKkKEuq6UziuZuOetuIOBNf3yRJmE6OmJRHlMWEtj9DgN1b6romSTPKIqfvHdvtJVmWcfPWIUfHe2KTRjGZTEAr9g8PY5U419d2miagkEktEr8chz5eGMIqQwXavqX3ls8fPSKfZHzzO1/j/LyjHucsV6/wxcjezNCPHiWXBMZk2LTAJAVNU7Npe9aNHNYGN3Lr1iF9Lw7FIXJshl6iirPZjNlkKlNkLT+bsDl7mm5Dlmk++frXWK9rnHO8OjmBEPjww4946613UViC1/Le5pbDw2Pu3LxFcAMnJ6/47d/+bhTUHGmScX5+ymKxoK7b6/vhW9/6Dr/+67/On/zJjzl9/ZqvfvUj9vb3WC6XlJOJrCltj3PiLF5vNkwnpZQN7CwOu91DnAD5a+Fh54zefWr4U2toYg+YlxXb5iVKjzgv/JIdR8oai/Ei6FVFKe6TIBwhaxJxNVlL1zU41wrTSUszuDCbUpxzbLZrbBywZFkl/1tZjKkwzLl9/HWO9t+j7ZY8ffV9lusv8GqLwkdcghaGZSFuAR/EaWKUZdcQbnSCcyN+FFeuVlY+z0ijWpZV0R0mwpHRBluklNUUgkTi81wKl0bXcLl8FmNyQcDZ5YQhrHjr3bvcfesem4djjDy2DKOlbQbSLGdvXuB9jx9HlIr2elvhfIKP4o9DnE/tpmPdNJyvWrxJSfOCZttgtCbPM5kaW2kmSxMFY43H8Bf+/C+y3bSMLrDarrl//zMePvoxf+kv/Dnevvc+s+mcajKhLKeUkwnf//6P+Ve//weMQ083NOwfHDKpKs7OX3N5eYobFT/8wedc3d3gRs/5+Rlpaun6VgpD3AgavvHNb3N5seK3fvM30MqzKhLKSsDY1jr2DiqKMqOpHc5p5tN9DAnrTc3N4xu0TUPfj4z9QJrnIhpF0T2EnYNfiiPkupULV84eMin+3z47hmFg9OLIE06pQmOleOTyOWOvSJKc7WYkuCl9O8FMb5IlOeiRPIsuf5dCMKBHxh7KYo9m22Nsyv7eEXVzRpJ6mnZFN7y+duVJiYBE+3UiLeMEhVYJ2iAiTYC6HXBjLJyy4EbhvGR5ej0kUlHsyzKFCXKASswEoxbc+v8z96fPlmXpeR/2W2vt8cx3zLGy5qqurp6ABtjoRqMBNAVKBECI1GTCUghhSyEpJMsOSRGSwv+GHXTYIQVFUVLYClGkRJmDJZLiBGIg0KhuoKvnqqyszLzzvWfa4xr84V373OymP7n1QaejOjPvvXnynH3WXut9n/cZjj/LweIRq+qMp6ffYLl+gqcmBM/zE0/Tab7wlS/w/Dzh2aWlarbsLcakyTjuCY3IkxUkxmCMkromTXZT7+l0itGGNMmYjmYkWlhZZTFCmxQXPFbBpulIswKl4WB/zJ/6lV+irjqqrYQxfOvbf0jXLBmXCQ8fvBJtHBTWBfb3D3l+8ozHj39AOR6RJ1lMD1Ws1h19P4BNAhRt6wrbt+IVqtnZs1xcnmASomWAkmbUOsq84Ku/8E/zV/7qf4H61IzZdMTHHz9hs25oG0/wmjRLyPOcoshIMkhTQ1kWFLlitb4hz6bU7YbHj3/Al7/0ZbotoGfoZMIo6UQ+7JUkyTcbNputnHFB5Itd5zA6RasEhYv1pAeVCnsseJQakRWp3BO2Q2eOrmsxJsXaEBmqUrta21PXFWVR0CmRsMuAGrquJ03FSy4Ei3MdKChHEwGVvRNmZioWGsJOsbGelVCJvhfPXKUl5EWeX7GtNjRNKwB0cYCyD5hNXyfPJuR6SqoVLjRY23J9dUqe52RpSb3t8N5g60Oen1pUPuVmnbCqDVXd0bQ9XWc5PD5m2wb+4I++T1mmvPLoASoZ01jxgetdQPlA73oZHKGEedV1lGlCSk7Xe8pyxNNnz9nfO+ZX/5lfpa0dq3VDXoz48KMP+MY3fp/xqOBP/tJXGY0k+CZJEgLw0UdP+Iv/5X/B2eUleTGlqjYEXzMe52ituHN0l8lojAqKtmuou47zszM29Ybyt0YcHx+zXq25vrjk5upagkFib3J0eMxmu4reXgMjOUQ/Ts94NOatt97hL/+lv8hXfuHTjEaBNAebF3Rdy/XVJWhJtk0MBC2MN0Fpe4rcMJ8f0bWdSMt0TpI4Dg4noCzPTj/i4csv4zrI8yOqZk4Icr4blWA7txtS6OQ2eEoSdTVJmuyCoqz3MujTMghpmnY3RBaJuqQaN01P01RMxiJjMz4Q6T4MXrb9rjlVcVBjhM0SBxwKAQuVj7ZLRqN1TpYVTMYTprMZ+3tzXn75DQ73X8Zaz9npUwnRUQqT6BhaR/S3jWorDJqcpu1ZLU84Pb1gtWywTuHZp7WWk2cfslzfQJCwpocPXmK5XKN0QCuLTVKyrCBJE1Q6gnRCNj7AOEXbbJnPR/xv/sU/zcH+Hh988AH7+4csVxXf+va3+e1/9JvMZmM++5lPs1quCCpgfUfvWjbbNdtNxWS0YH9/Jj6DaSZsRRs4f/YhmR7Rhnpnu+Os3MsBjfWw2naMpwua3rGpapbrJc51LGYLDg8P0Qq+9f4Fs9mYhw9e4+T5MzmvGHq72z70RWskacM9b7zxOr/xG7/Bf/qf/t9Zb64JqaIL0DRLsa3YblDKkedznj37GBUqsjQlMT1F7lmurkUF1vdolaJcwuMPLrm42OJcyerGkxclzoqCo2k3GHOHvhPGHaqka0ErBypIQIdSOGsx+lbVsiP0JAlJlsowL9YWWW52IErd3LCtlljbkGXS80mfIIM3rYUAFLtYvFO89eZn+NS7P02eT6LVg4QIGWMkfEyLd+eoLMjLgjxLKcucIi8EKEwSktSQJql4AqtBbShKRZA+LjGDV+oto1WCgIgDbEUYcimdePglg0+t0iSp/HzbOpIk52D/mM2moet7np88p6orEgVpnovCoxGiQ4qi6TrW2y0XV9esN1uKcgRBs6m2LPZmFH3Btt4Qog9q2K2RWJuJe4rUdEExKgv25kecnJziXGA8G6ONZrOs0MbQtDVP1ytm06nUmmos3rqBSHhImU6nu6EMOtoQeWG+3yoG5T63QVh+49GYf/Pf+rf5c3/O8kdf/33We462MQR3Sz6S4XG8gE5kuQLtaQm2i754MlpwtHVH13j+6BvfRasxV5fX9H3NeDzm7PyMi4sli8WC3jqCSgiDxU5aUm1GnJ0rEqM4vFOSFhs0LeLrGJPLETzL+4CzEU+J/q8C9uYY5UkShXUSJmlMSlFmeOfo7f8KQjZEphClZTGWWuQCAs4prQhqAIqi4XOcLuRG/JakOBXviPhT8Ve5CQQYi88wrD41HChqd9gO3xfTdWlO8zznRTnpwPYD2G63XF9fx+ZZooyLwkT2liRvBd/TNC3zeSFeeOUBWXYvmieraKCaxFcbvQx2YGQs4JShzKc439G2woqaTFMOD0vu39+PZqjiT1IUY/ouZTZ6i6vlU6rqhDy/jRFXCtpuTRMaYMLyqpOGPnohLJcrFIY0HWGD4/T8CZv1DQcHE8b5Plpn2CCLxzv3Ah3/h4G94RrdsqTi9X1BsTt83Q8R5BEoVEq2ChcZghLbPgAUKkqqpHlPjcF6mE73UGbObJHQWfFC6zsryW5GE42uePLkCW3XSeBGkqGVokgLdEwim+YlR/M9TJLQtg1d11HkwgZKI4ujt4qTk6dU9ZY0lddYVesXZJCSYGP7jjTJyFKJuC7LAknAVUiYQEqRzjjYe43F9AGX1x9zefM9ersEbRmVJbaXlNHpbILRSJEeablZmqOU+IikSYaOG1yqExRplLFZpvM9jBb/m+FgwSuKfMLhUUKRFzjn6awwadtuRVVvsH2DNiKDKcpyJ2lMkoTRSLO/P49SeR1TvmQday2TGWcdSSrSIpFfdxIZH2n/WhtG5Ziub2naRjxTvBKgUKfM5wecXXd88jOfpqobvv/9j1ltC5abmslkxqbqcakni+lMXiW0veHi5pKnJyecXi25Xm7xXmGDp8wLtPLYvidLEwKaLDVkabrzqRQ/mqjXUQqTpBhnuXN4h+PDY558dEJve87Oz7h77x5/8pd/mdF4hO8D682WrO/RaUJdN2R5SdtL8pJJEhKt6TtJkz09PeWdd97dFRhDGMlP/dTn+Sv/3V/h+9//AV977+uY5Nbv8+LiCuXhM5/5HFlesLpZcffogEjh40Ubgoikx3sp+tD52wNw8K6wkW17faEp9assFu8ymiZcrz7i9PwPabtrtG4ig8mIoXRMxvZeZDTOW2Eo0QEapcbkaZz2p8K8BjETr2thDcve68R5TmkUGWW+j+21eJKElL3ZS6AalpuP8L6LQw+RLwi7uIQYvGCdjWCyouvE86Lv27ivtgRErmmSTApiJ36NzjowGq1BBQE/fAjoVKMIWFujVCIhSMrgVMnpZU6aH/Lw5Tf48Mkpz07g9PSExEjyaFlquuBRWpjBeE3fw6hIWK56jNpK2nOeR1N3S9t1rOqKdWUZT+aMJz3KJCIhTsUQP14qEh3ompbPfeYdXnn5ER988ByVZJydn3J5ecE777zLl77486QmY7Nt2NY9WdZSlDWrdSX3e7BkeUo5KnEe5vM9qu2G8bhkubnh8mJFYhJWyyUQoq9hZNG5gPKaL/7sz7Jcr/i93/1NvOuwnaNve9IUqqpmPB2x3XQcHj1kPJ5xdX4ZGccJ601P37PbD0QC+iMee/F8EBa+vgWxh6+/8N+LZ7vRBoXsOVmZcnr2jLpeE0JCavaZ5a9zdO9VinJMkmQkKLzr6JuWm9Vz8rQkTSZYV9P3PW05YbvpqZoWbyfsLx4xn49pyits/z5Xyx8Q2JAmISaiyZrUKu7XQeHi+2xbi/cpSTLCaIW1PanJ8PR4B8dHj6L8qgEc2gxgppJ7pNijrS3dyKJCycHiVayr2NYnXJz3nDw3fOrzX+H0OuFq5bi8WuE9tJ3i9HyN71sODyaUxQjbtzSE2MwlqMYIm8VKXHNZZswmU+pakxpFUeSoJKd1gY9OLnh+dkHjFPcePmSzesov/eLPcO/uHb7/3Y8pyzFnF8/57vfex/Y1v/orf5JPv/tp9hb7TCZTyvEE6zz/8B/+Jv/Jf/r/YH1Tw9RQ5JrNtqauhU1kkoQsTZkvppw8/5iu70mCxyODoa5r2NYrtBafQ++FeSwVRODevUf8ws//Gf76X/tr4B3Vditr2YsCIEkTkqSiKBImkzHaBCbTwN6eoWt7ilzRdh0Xl5fiBWrB+wznM4IzrFfbCOz3jCcl+WhEU4sMcLVZUWSSpF5VFegUabpSAgatRygyFvMj1usbtlWLzgpUBKv7XuRPbdfgvZVGLQQmkylGD4NwEwFtUVS0fU8aPXqcA5PKGpNGF0BjLfRdR5aK55CcP9JsOysp7gqRffeuY7Ws6FqPtT22D0zv3uX+0Rfx9gBtxGRda2FdJalis6q5vHzK66+9g7eOq6tLvvvd3+Xjj89Z3HkNp6asqnOsW1OWKUfHx7ig2NYN9x484vjuS/igqbYGr8Q6R+uM3no2m14qdRUTrR1oatZFx/7+nHVdcXm14t/+1/818nzE9777MeVoymqz5mtf+30+evwBn/zE2wTnqTcbGBUU+Yw7x8eURc79B/d5+uwZVbWWc8r2LFeScFttKvK8YP9gH6UTNpsNF9eX9K5j01SStq4MddNQN1tCcCRGURQZzve0XRNN0G/3LyHKyHp+4823+PSnfpq//tf/Bl/++U9SjlqSFDQBk4EPGhs6dJLQ1I5qbbm5qnBW4R2k6Q3basvh4QF9a7C2ZzotyfKUZydPQAU6Kx6Yrp+AvkYpCQw0WokPa3CkqaHrrQy+dUx0TAw6Ag3BDWFdmqbpdooUkwhgYpKEsijIUsN4MqLzUgeHtkejUUr28zQdmlkB3sRyQepURUqmCybjOZPRlIOD++zvPeBgf5/5YsFsPqVpWq7ObzCqIEkL6kqTZjkPHh5jdC6J3VLtIPFpsa5Dah8fHNnIMpod8/Dljm1VUVUtl9cr1tuKtByzt15yc33Fdlvx4Q8+5Oj4Luv1ltl0LkMlZ+mcZZSkTMpSPCKdpzCeX/8X/wwvv3SfZx8/xyQFVeU4O7vgf/47f4fr60sO9qZs1mvxnzZJZN9K+nxT13zzj74lEj8/7P+Kpu3o+15qbCWkE++8BC20PTZonJPwyKvlFrXecrNco0zC4d4dHt5/QNs1rJZrfIDvfu8J9+8e8sbrb7FZrSI484IaTt2CDIQQvZzFzuFzn/0c/8qf/Vf4C3/hP6Gul6AC2qTU3qLxJCawXa344Hsf8vzjD1itb7C2oyhKNJ5yrCjHIhU9ebrla1/7iMSMWS97slT8xJLMcHlzzsXVBffvv4oNEpiESnFW04cGlJwTaZZSlCVEVdmL9cHA8BfboSGUg13t7al2OMAQsCN+tFGWmxqyXAbZhMDLL7/Fu5/8SRJTonVGkmUUo5LF3h77e3vcOd5nNimlt8hMrJfVTnkgf5bkaxlgCcdL0k/l7GIgabh4nsWfIZLkJJBUwEB56QqNKHPsCyGXooQA52C9aSRgybdyr+cJd+4c8fSjxzhn+a3f/m2+9rU/YG9vwWg8IS8K6qahKATADIBJNPkooSxHLPZnVE3FZrUmhCCBSL0MWYNn551MkOCXV159g2Zbs60bnLM01ZambUiM+GJ2bUs5m7C6vmE6mUTfPlFPGq0ZTcYcx9Tx3vbR3ioO+30k0QR16z2vNA7x5D7YP+D/9H/49/hz/7f/K7/zO79FcMIWjg7/AhS/QC4KXpRHzjkJdnWOrumlv1CBJx89Z7tucC7j1TdewySa0ahku92KL3PXstmsgSDyXFJCAB8sxpRcXxkSNE1d8dpbr2DdBWliqNoa6ytMIvu6Ion3okGh6KwEBeZlhmSzenzQpFmBc47xaMJ4Mubs9FYh+f/v48cG+FQEzLTWePfCzRipwgN9dYiWN6kCZeTriSLPS5q2ZljMwzTzlgWnf4hJNhjYD5OcQU76YhyxUmoHXBljdiDU4ME3PI+1VswzjeFWRjt4pcjzjkYjmYZHRHb4GSLLEOLWrQajWnn9fd8hkrkUxYiX7/8043KPql5xffOEtj+ns1dY18jiUSnT8TF1u+bq+owPPniKdQ1HdyZ4F41qCWyrLVkise3WgkmN+BI5hzYJZZnF9N42ov+e+aKkzKcYU8rzWJHlucjiG/4brtOLYNwt8zJ+7UcAPmFBGinHw4uyyWiGz63894eeJwK0wVvaTrwGjW5JM0M5nqC0JssS6roSD6HEkaYJR/cOCV6MizNt0PGmNon8/vZQgLI8ZDqfkCRaAi6cYrNpOL1ccXbyMSgxAm6bHmN8pEfp2JAmTCcFtne0TUegx3lhUWqdkKQ5ebogUccczt9mPrvLqDggTXIubr5NYIUYQCvQsqa0Vihndoew25nOK7q2IwRJFtImQSthg6SpxuiULEvpujZew440ydFxbW/r7W59CzAiEvSdoTyKohgxKsfs4u2RpsD5gEkEmA8o8BrbmbixeqztCN5iEkNiMryC2WzOarViNBoLZX4ywnmHc5YkUXSdZ1we8Tu/+33WjeG9995ju97S9xlel2SlYXl5xGuP7nB8sGBSjuhty9X1Nav1itVqzWrT0FjFcr2hyEXCmaRyT89nU2GfRqbuEMzgQgDnokxX1oBWiqaq+NTP/iQ6Fu9NW3N6dkKSpGw3W2wncnxjUmwIhKYVZquXQzovxpRaYa2jqmqStGAynjEeTXD2bLfeA57xeMyf+tU/xdd+72usNyvxdZmMODo6Yn9vn6ODI+7cucNmtWKz3dK2rYBILzxkj4tM15hcuMNGXgBJ/Au/T9OctvOs1gplRij/kId3jvj42R9i0g1du8L5Dmc7Ktsgl8qjjaTDhhCHLV1HUZbkeYK1wgpIMyMAb6dI9BiVaJJE/EuMkcn0cnXDjdsyGV9Rd6e0bcPl5Rn5yNH2DcELo9YGjyIhMQVFPmc83hNmYHVNa69wQVhvSkGSjOJbVj/C9JLDX5peBbjo7SPSPu8trhdJ8RACJOt5zOmZ4h//wYf4UPK1r3/AzcrSuRE6K5gtpmiV0XaKskioVo2wcE3KZDJhu+1ItGdcjBiVKUFLWIN1gd4Z2tZwvdqwqVqyTFh8Q1CKCioyG2RMG6zl53/u57A2UFUdKMVHT56wrbd8+tOfYb2tMHEiKEynnkArnk1KU7ct43HB6ek5k/FUDI0Ra4zj43vU2y0ETxXBCmE8yxoWL2M5M//4V79K39R84w++RtduWa3WKC0SQLTCecWonKN1wmI65d7d+7vpa123EBvGgWXx4pBoGPQN8uQXi3UffYKE7ad4kf0taWISeLBeNaRpRpblrJeBR3df5nj+eRK1h05y0iyDyNbO5prN1nN28TGvv3bA9XVP1/dkRUvVVGTFDI/h8npD2wcg5WD+eYw+IssrVuvnbLfntF1N13QyWLAStCBNq7yvqmqYTETi5b0mIOy5ru1ZL1ucMygyTKJJ9BQT2a/Xm0tubjZMJ5ds2mfUdcPN8pIks6yWmu/8Yc9rn/gyjz+0PL2Q5PDeOrQxXC9r7t7ZJyvHVE2g7Rz4FBsQD9rIxu+jL1CRp4SspF97Mu2ZFIbOB86XK04ub3h6dknbdahkjG97DudT/sQ/9ceptzVV1ZBlhu9979ucnD7l4OAOr7z8Ftt1T9/dcHPTUI425KMxSuXRi1WanK7t2WxbMf1X4q/56KWXaRvL4eEd1qsVHjg+OuJmtcQ7z2p5HRM9xZs5qBDZfNDZwFtvfpL1lxv+6n//39HUW8TYF5RqYvOmabKMZusYT8dirN1tqJuesgwUeUHfudgIaAIFIYxou8DF9Rmj8ZQsLXB9ElOIPW1r5WtezNM7a6nqLdPpPmVWSL1pUpROuFluxYA+yopCbGqEzSH3vHjwuV0NJJLcyIzQmoH1qtDR/gCMUdGSo4n3jdh5iHxNi8dZtKQIxOCYyCARr2lFns25alrOz7akZUpRjnl+cs2kXDMu9kFJsudkMqWzlrreYtKMYpyy2mzYbAznlxXf/u4J+WjKN97/DrO9PbI8J800V9cr2qYjy0om0wWu85w9PydNR+A1QWtcUJGtLfYsQupU4LPdAIt0RNAlTz/4Hv/8r/0pXn70iCdP5HnarufDD3/A97//Xd58401+/is/T7Nt5DzebgRgUZrL6xsImulkxHLZYL14fDoE0FittxzlIwFijeN6taH3csbeu3efxXzBZrUhu5NgVGCzWQmLLzIy2qZ+YdAme52wB+V/tu/56lf/JNvtlr/1//kbvPL6jDw3pIkiTQ2T6YJyPKFpar71/kdcnDX0rTDUiywnNeLp2dUbylELqmO+11MUJSfPn6O0iknEGeX4GOcu4sDc0Xc9RVlQNzUBhdEGnQ7Mf1EehCBeytvtRiwnyhEgHpEBxEImptaORiP29oQh2XctShmMFo+/BBUZz2pnPQSaJEvBJ4zyfd595yd59aXPcPf4NcaTsQzYUOhEMZtPmU6nLG+WXJ2/x8XVNZ/5iTd46eWXJazJOyCDoGnbPgL/NvqGd1GOaHFtTW87vM5RacF4MmI6T7j7IMH5QFVVrFZLlleXXF9fcXFxTgiK2XSPDx8/wQXQiWY6nbDY20MHT99uUc7yz//zv8w7bz1iuVxzs9ywv3/EzfWWf/Sbv81HHz1meXMjgNmgFhNmB8E52qambVqefPQkequF2DtqiqLk8PAA56UnyfMc21v69QbnAiZLSdOEO/fusVzfsFzeiLd1kpJqw+mzZwy2OM51uK7hyeMnaAXT8Wj3Wqy1GJMKwSJK4Z3tccHuejMI/NyXfw7vHP/Vf/nnWW9XWOuxfYfWCcH1VJsV3/zmd3jppQcs9g8iWNhTVyu2XUO66tlWa77zrVO2K4/Rju2yYTwaUY7GjKY5V5dXXF5ciCrLdZJAjyFNF8AWpbsIJPldVz2sVaWcDCy0fqGGuK2TB8LOzjJKqwikCRlfwD61qwuVCsymh3z63c9TFgu0SUkzGZQu9hccHx3yxuuPmJR5/Eylz+h78fJzToLwFOBign1APLCFpSekHhc8caqMBDbF8DGGa6/poyVPGGrUCKSZ6Bd42wtEGb1XrNbbaA0kmQdHhwf8m//Gv8HN1QX/8Df/If/oN3+T5XLDbLag7z3Wi//tu+9+jsl0KsCk8jRdhXdyT/W23/WNKEXXNDjvSXSC8x7Xy+DXGM24GLHZVBweHcnPJwa0jvYrMkjerNcsZhMW8wWXF9eMx1MUiv2DOZ/97Gf57Gc+vTsDlfI79qqLey1ObFEG/MF7T287ur5lMh3z7/w7/y57iz3+zt/+W3RdHUEJIepoE8NdA5HF2ULw5IlhtVzGHlrANmsNZ+crwPOt73yL+WzOa6+9Rt/Barmh7yR4cjQqubyqUEhQWQiWohgT+hSnPcurlJuzffYPZ7TVFdu6k5C6RMLP0rQQLChJyMuC3kK1rZgrISZkWYKNTHuU5vz8gu22wvZH/LiPHxvgM0aTF5lQLJXFGKHbDlLHIUBAGeFtCy43sFB6mq5lu93Q932URLooO0l2HlbyN15gBwSEypsIMCeNniRVdV3HZDxlvV5H779Bf2/ipnfbTEuy18BYE7+nJBkYfskOiAlB7YAEGEAqAd2G9zd4WoBsTlmW07UpWTLF9TlPnjzm3t2UVB/x6P4dVuvnPD37Ot5/TF6MKLIZSbLHer1GG8/iUGH0FK0MbevYrAe/gTFpkuKcZrOpOT4co42kJvkgshijE/K8BET6GZwhz+aMyhneOzE5jt5axOvqXTQHDXLjDTLbHS8xcNuoxocCLMMBp/6JqcuLgOHwvaHZHGj9eMVqtaVPCvpoMlmWJccHE+4eTjH6SNLhUrnhjblN2fEq/BA7VBiikqY4vJ6ut6xWG05OnnFxuuT55RXjcs7x0SHXyzG9a4ECHRZxTVpS4/GhQ6mUu3fvRJZnH42wxxAknbltHCpzXFw9B2CzXaF1Rp6N2FTXeGdRyhCUizLrBEWBJo1swRbvW5EBR2NrKZzA+54sS3ax2TLRiBJGoyNo6naF5vDaRQLnd40vwaF1Eg+bIMxDAm3fxftXGoK+bwkYjCq4c/QIkxRcLT+mai8ZUks9gc5azs7PUQq2dYVOUtrVFq1yelsQ1JTOJpyc9BTZjDTLKLMJ1bgRk2rB92k2N3zw/S2nzwpG5Yi27bm8uqKuKjbVFusCTeOom5bO9hgtU5DDo2PyokApmC5mOAd9ZBUFJbN0hcakCUZpXG8xKD776c+wXG4kmWu9ZbvZUBY5dS2+TokRQM96HxsrR54XTMZTRuUoSkcNx0d3mU6n4mXpEd8oxC9PpnqO+XTCr/6pX2YymYj/Q7zfuiiFubm5pq4qrLVCyy7KHS1+2DONTgSoxe8OO4bhSZTA7DKtgzR6zjmsazm72LA3P0T7Ca88/Fl6u2a1/YiT82/jQ2C73uLxNE1NWeQM0u4szWl76F3F1fWS+WKEMYquk/v14uqKJEnxriVNE+ra7YYmQk3XrLYb1vVjtJKGtaqlUcenqDBhOj4iTWe8/tpnuXP8Gnk2hhBYrS94cvItHj/5ffr+iqAqiJM9owU88IEIRkqwDfjo2SbTTh9ClIgnKJUQQhrZeyldD8vlhPf/aEXfFgRluLq6oWl6rF9TNR03FwWL/X3G4xGjIuf89BnbzQoVwPbudkIIjMuSg8N97ty5QzEag07ZVC03MRVd6ThMCgKomdgQqaCwVcOrj17mnbff5upyibOOTbXlo8ePRRZVNfRdj9cehSNJBLgLOHrb4oKnKEYUeUmel5LmmaSkecloLJ6OSucUWcrd4wdMp3Mpil3Y7e3DQaqU5ld/9dd4+61P8MEPPpAJfZkxnU4YTcbM5gsmkwXT8YzFbMZ0Oub87Iy+d1xd3UjKppVEZZTaTaL97gwQViq7ozvEwcKLoDXxMzU4q2jbXhhdXtHUluWqZrXt0Trl+uacvXGNyeYoDHVdc/fuXay1WNthdIJOHNv6jDt37/Pk4xuenrzPZHSXLNH0bcdoNKbtambTfbROmU9eZbW+pCxGdFaz3p6y2lSSMt9W7C0WOCcS9jwv8PRsq4aua1nszUSuHRNhr5fXMoxpK4qypGlWqBiGY7RBa8tyU7PcfixNFIrtOuPv/93HdM2Cf/yN/4HKZ+TjQ44fPCAtS1QQK4SLswuU9yRG2KzBQecgqMiyjmqKxCSU5RQfCjoXmc9pwqruubpe8/xig3MjSWa2PVW15F/49V9jPpvzvW8/Ic9LlqslH374AUZp/uyf/Zcp85K+s1gHvrUEGoISCapJSzbVDdXlFa7vafsgqdhoymLMxcU1eTYiTTLSGG6iSEgTCYjyjnhva/quj7Yusrs576nsls9+9rN0bcP/+7//y/FeHEBjsJ2V/3qx6+h7SznK2FRb8lHDwcERHz9+KnWq6iAoDCO6xrC3d0SajRiP5hzs7/H02Ue0jezBbSvKEa1TtEnY3x+R52Pm032urrYEbfG+p902zOYjHIa+dzKRH2pfAnXTCGCXaPKioHeeLEmk5nJiHyLBGAMLRGSPZVmitIq1cYaPYT7eW2Fm4WnrJgbFGVIjIUUOjQ2arnVkrsSFObP5nMl0gklmjLKXyMoJxWQknm5YrtZngCRUT6YvMxo/om08aVFz58GEL8zvcrPeMrlecXW9ZDSWoff5+Yp6W2PtimfPTlAY8nzEnTv3MWlGkuXsHR5S5CPa3qLThCEpeGjm86JgOp9xdvaUT73zNj/z059nebNmtdowHs+5urzk93//d3n+/AmfeOvnWS5vhPmnNTokwnBtarqmjkoPSascmEuyzygZgvWO1fZSEpabmiw1HO0fYoLm5nIpzOwk487hMfPJmNXymtl8RpIK+0cTcK4XMCZ6KYNIyp3zGJ3yz/7av8R2u+EHH36Dz/3km6AsRiuaynNxXvPNb36LauPoe2FjpiahMuL9OR6NSHSLtwqVeOr2mq53VNsVRgmJwjuo6x6tLTas0HHdtJEFOoBOSokKIwQJMrExwbgsxU/cewnbcEGGooNUDhTaeMpRiUbRdy2jUU6ngzTy2AjAeHrrUfQYrdA64fjodX7ln/51jg5fwvYZm6rnZnsW6xslzfizE0ZlQVHkPHrlNd58K+elVx4RlGJb12zqhrbdRs/olrZt8a5n8JALXuSEKoiEMDEJmBSVCmtVpxlGGw73D3e1klKKpqm4uVlydX3Nvfsvcb28lhrLB8ZpwSgxHN+9wxe/8JO88/YrPHt6zvn5OQcHR6xWNTc3S77xja9TbSu6TvyyJXzO4AliV+Og7aykYiYZRkla+MDgOjw4oCxKTq9vmEzGGJVhkRAcuf8d49mCum25vLrCJBoXBPw4Oz9lXJbY3nLv3l2urjeEOFhXwdPlKdPpTNZl12GVxUb2oLzP4eyP6epNg7eOn/3Sz6FU4D//z/88m+1Gwu6i6s2YnOfPL3n+7Aq0IUkNRZEwm5dMJjlp4vn+957RVCHWXBZrYb2Wukengb4TNmmaJfS2i8BZiu1NTJbtpXaLYZp4AfUkWEXINjp6Zg595EDcGXoYGCyjFCYGzhwfLWRQFCKgZh3jcsEX/9ifYDa9Q9Na6m5FVo4pypI0Mdw53mdcZpFFLuC4nKkydBZGrNux8aT/lxrd2YC1UQHmw67GCUrwARe95vDySXsGJmAMuoxCRAlKcbFuUrK24r+xqSo5+rww1qbTCfPFlFdefsinPv0pPve5z/GNb3yTg8NjFot9xpMpaZaRZRkvvfSA/b3pDowLwb2g4pNe2VpJALZ9L3/ue/qupa2kD+vqVmwEuo6m7ajbhrZp6W1P7xxNW9O7nt52GJVw9/jB7v0dHh3wK7/yJ3j77Tf4zrcfS33fW5ztcM5Ev/GBRKR2ve0w7LOdo3aeUTHiX/vf/+u89OAR/+1f/m+4vrlA3AlEtTUQZ4KSNdEDmyCe4sM+FILGOqkx0lTqsNV6y3e+8wNh33eiELp37x77ewsuLwX8ljTohrQEk2n62pKkOc+fn/Hm61/C+Wu+98HvEbymqTvaxlKWObZ38u91PaiEcjSl2kpg4Gw+JcR91hhJprZ2Q2Lm/LiPHxvga5otTdOTpRlJGoXk3AY1dFFOmSQSke2sJcSkS600be9AB9JcGEp5UdB3LRdXV6RpFlM8xYfhRTae956c/AUACZwVv6m2SSIDYAPIVHXw3hs2hYHhNzx3mc+FidFv0EqT51PadovzVTwsk2gEKVNgAgStUEZkYv6FTUeMt3tUmKJUhtaBTf2Ub33/I/Gn6u9htOb+3Xf56Pkympef0ten7O0dkmcp16tLWfzItFoCQmSS1duepnF0NqXta0K/FM1/AK1SQNO0lvOrp1xcPqcsAtZm1I3FhRatS5yNh3m8gYRNJ42Wd7eSXbiV1Wp1K29+8eG4DUJ5UXIlNNlb5t7O1y82gUopbO+5vLrgj37whNOzKx7cuUdeaA72RvziV36WNE1YrVfsHRxQVx3rzZr9/QV953l+espsMeXo6IAnT57jXMNLLz3iyeNnONvz9ttv8833vyesrWZLU7c8f/6MUZEyn89Jdcps8jLnpx+QaPEaQyVU1YYkHViYS2FRKIUOGtv7KBHs2W5O0eqKm9UTTi9LnLNUdYVJOtLM4y0kSYa1Hq9Ljg5f5e7xa8znh7RtzcnpEy6uP6Tpz9DaIpIQLRJGLxRj20sKnhQqRgI2uh5jZAMaQNNB3mmMRptbEFWbeIiiXgCsQzw840QKmeAMcvirm1PaxlF31ySZNPB11VOMZjibEEjJy5Iky8myBUl6BxgxSycYU7BPyqOXUz7zuY62d6RpSQiem+UVve13jUrwYceGHe5hb53IGGxH07Tio2GlQNhsNoQQaKOZdtt1FLmELtRNQ7Xe7NKXVLxnstTwybffIk0Lnj47Ybvd0DQVdVWjgMcffsRkMiExiaTWyoKX4j/LeOvNtyjLEdPJlMl4zHQ6ZTafcXCwR9PV9L4T83Dl0EEI4847lusl23ob98JepKQeeOG+ct5SVxVlnu+mvMSBgY/J4kPoqJx2t/fc8LkPz5XlKUmWSRR7yOgspGUidPNty3T+Gm++8YDvff89PB3b+pK2rUkykXj1bYv1kjzrgwMD261D7HwCSWowmaEPElDQO0vb9zs2aB5ZLWLLQJTvxGQ+C2U+57Of/OMc7X+CQE452iMxOauNsLeV3ueTb/8SWo/52nt/GWvXJCbgFaTGoLRIsgXYczgbyLMpWZKK5wwaQyFegMmYNJ1Q5HtoRhASbPDszUfcv2/onKfpJBjBWkvb9bRdT9fLoCgE2aPsO2+yWl+zXa3lcO8jg6CVodTp+SU3yw3WOdJ8RD4egRHZkxQPhvF4LN5oicGkCX3T0dVbvvzFfwaC4vnzc7qu4+bqgvOzM2zXU9cNtu8JRpKUnVV4b/HBYm1NnifsLfYpipwsyzk6OmZbbXitLKKvk/gVjUdj3nzrbQHPtKHpOlmC8f3pICFZmITP/eRP8bNf/nmMklAMHxyDf4/zQSwAuoaz0+dU24oA3FxfybUPg+9ePBtekEqoOI4PDEMjqbcF6Ivfc8QhggRf+L6ns47EpFzeXHGzWjIaj2kbzw8ePyY13+O1R0do5cnLnLOLc8ZjsR7YVDU3ywuq9ozr1SWXNydstzd0ruXtO/eYjaakWUnTdGzrjjIPNM2Wq6s19x7c5+WH93j/279HZ1c0fUPnPdfVFoVC9z1pbxnlBX3Xo0zBZmPRCnTiKYoEkyisc5hkRG8zApmwYM0YY/YIJBTFOFqTBK6u1lxepiTFGzT05BNQDtbbcz78/hWzxR6HB8dobfj+dz6ibSoIFqNDtFUQdunRwSGjUUmSJ0zH+6QIaqSM5mq14fy6l4RflYj/npemsK02vPLwLl/6wk+xvN7QthZlEp49e8IHH/6AgMhHbdeJ16WR9dV2AaUrrA/k4ylV19K2snYD4JxlMpmwWa0YjabY3jIqM7I0psAmCYfHd9hst/SDsX9q8F0rvr02DP2ONB9Nw5e++EWMUvy1v/rf03WdNEeup421XGctdtVzcnGCjx6Pz08uIMCjBy8zm825ONsQfGC7rMjTkqDlXvVO8dFHj6mqiiRRO3CyKEup+Iyh2tZs1jcsb67pOkVRTEhTj3Ut18uN7KfpTAZ0CvooNUvzjLZtcb3DJNJkWCv1VJYn2F7q1vFoLDLaIE37pmoklRyFU7CY71NVW2E354a2tyRJBiojuBKvpmhdkucj5vkeWs0Y5Q947ZWU7WaNtY4kyQR4S4QNhknxIceYSQxGUORhCijKsWIWGZVyByNndVB01tE2LevVkpvrSy4vzjk9O+Hq6oa6avj48feZLRZMF3POTy2jyQxlUtI8i0xDHV2WAnmSsL65ZpQl/Nqv/gk8jqfPzyiKMVVd8Z1vf4sPH39Atd1AcKhg41EowIpzwvDoXYtXPUqHaBXkRVkQRCk0mS3EtmC1wnateFe2DaubNbZfMplNmYxKmrbl5NkTvJdgCms91nUEFVBG4XsbhxICeLlghUUZQlRgFPyL/8L/lv/Xf/1f8Tf/5t8hTRXjkbCgt9stTeN3DakaBh5K9s1NtRXWTHCMxzmpSUlMRmc7Ei3Se28dISRIuLLDxX7Ke5G9ic2M2A4Ne3DvpTYxRoKf2r6GoHBevHZNrH188KAVWenRxhNcR5mnZGWC6jxGKVIje1qIjKREe7QJzKf7/NTnvgJhzPn5WkKBtEYZFRVXArSA+E1a66hVT5rWXPzBDcok9JH9KjVi9DGD6IVoZFCWiE1OkohCKkuz6EMpw2rx+RM2pELd9p9S5aK1ore9PG9UfiWJhE0lmWFUpuADaVqQ5xPaVlQ819dXLJfXEALTyZTVas3FxSVFXmJSIVX4pkU1LetNhQtIOm1TE/AcHh6JR3jdgDIUxRTnoG6l+bfBk4VAs91y0y0FtE8Mk/EMjWZcjrk8PydJ5PPqu068u9OMNE148PARDx68hNIGjzD27I5M4eUOVjJ0I67d0Es/8KUv/hyTyZi/8Bf/POcXZ7EGCAIqS/Kb1GEY2iZwVm84Ccu4hhMBIp2j7XoUmvlsgUk0FxdnNHXNdDImTYywtILB9TKEtH2UrcYpR5IkqMTQO0uWlpElb8WTOe6nQzkcK+EfUoiBEAi00dzZ22NTrWOwhSGEhE998su884nP8eTjU779/h/RWc949B2+8nNf5uVHP8He3owQ01BRMgBN49oNHtwLJBiR6AZcL4CfN4okle/1zqGdWB/F0y0y0V5QyoV4wg2/Dv1cGAbJfrdmFbJmbdviyzwCfEIoWC6XtI0oX1569AiT5FxeLXEBOmehFwLO2dmFMMATI3J8RH2XpgmJNhS5BPD5F4AwGaLEYUm8e3cAXAQah3rSBaE2uqhEC07tajyTaMbjgvl8RNN2VPUW6y1GGfEzjt78xGDA3SUhSOJ4gKAUne/orWM6nfJr/+w/yx/7mT/G7/zOb/Gt97/F2dkpdV2zXN8Iw9fKOSqM/D5iNLdZDSE2VwLmCRZUb5u4vjzj8ZRf/MWviow+WGx8TV61OL8lMYFGeRSG7bLlo4+veOONY8bTQ9YXzwkoOmc5vzxDafGnT/ocpYwM8KM1nPU1eaZRWvb0UTlBG1E6/biPH/sZ2ga+9f4HvPzyfWbzCYPmfQD6RJrgca6P7BNHCFZmCDolzzPaVgCiSTZGJDo5SoskMAQXE18Do5FEeadp+kNS0oHOImmkAecrrG3ETDXK98S7xMYfl03/lt4LKDmce+vFgNVdQUgwZkqRTmi6ir7donWIoKPZSSGJjW0It5tN07QkWlHVqx3rZjSacHHzbc6u/gijJR2xtxXOW8DR9i3vv/9N9vbnBHykqkuCUJZlkpAG2LoiSeYYHSPNCRgVcN5gkpz59A5Pn5+gjOL65pr0qKSuPV3nEWaiiZKDNrLAIkjqpFEb3sOOTWTMLYvrBbn0jz7+CXAvspteZPHJN4mSPc3V8orHj9/HbrccHe0xnYm/1vXymienJ/zh17/N3/nb/yP/4X/47/Pee3/E3/ybf4P/4D/493j84TOePb+kKEf8iV/6p/hz/5e/gDaO/+g/+o/5r/7L/5rt9ob/+D/+P3N2diGyCjqul1dstje0lTR1s/ke89keZ2ea5UYkjIvFGBcsvpdJQGtXJElC37ZkaUrbdWLKi9DBPR11t6Vz0R8vk8O07QKKEQfTN3jpwScZjw84PnqZNJ1KEizw4N5PUjWn/NY//h+4vP42ihatpflKtMgeBrlFwKCCIktGONfj6RFp4q1MVZbiACDF1NVEXqvWMjHfFXJOGB/iK9XGQIqevm3YbFbCvmrWjFVJ01iU2iOEu8xmDxhPjsiyKYmZoJIJ1ucoExPUgqXva54/f4rWCKiuREK9NxuhtJH3E0RWlOfC4lBxOm2tk6lt10QA8tbDMUQvCpDGbphIavUCRR4dN1ORzkwmY6aTEdc3S5ku9a2YTWu4vDznG19/j+PjYx4+fMjeYp/FYsFoPCYvcz73E58liczgwURaDo6eq6tLkZh5F5PYblmqcvBJIiixgFfIHqUhMl4DLgRhNQa3O9QGBhQMzrZS4L54j/kQPT64nVpVzQ0HR1PGownrZQsBzs/PSFPN1dU1TW95+NIxe/NHnJ5/F5MYUlKuri4wRqaltaqp64a26VAqYzbdI0tS6maL0pbF3pjZomDwYFRqYEfI5+mH2Peg6HorvnhK0fWBJAlcXF9RFGvOzh9TjkYsFvs0dUdd1Wy3FfP5gtQU7M3vc3Z+TeuruHd6fLCgEtpOYXTOqDgkSQ7Jkn2ybEKaj0EVBJ1jkpIkKYTd2XZY60jjPZJHAHjwafSIDE6aosGjFUxi6LpOjG5D2HmGOq9iInXPkLjZWyuJ07YjKGiqlvV6w2pT0dYtdd3Q1xWJHnN4sODNP/Y57t+5y0cfPZcERydSs+1mzWg04gff/z5XlxdMxmMxFsdIqacVVd2wf7DP/sEeeZ4xmy8oipLxaMRoSO8elUzKEWVZUJYFq9VS5BSxEGMY7ARZRc53XF6es75ZvjCoienqPkQWjJOpckxuVsBmvd6dEdKMJHRty05GMwwUYoG281iR1YOK3p4hSGPZ9Q6Lp+s9bduQZQ6T5hhdcnXVslo24BN+72u/w8Heu7z5+iMeP35M07Q8f265e/cOn3jr0wRzwUcff4O623CzukIpuH76PuvNhi98/pfZK+5TFClJknF1cb5jsT558jGvv/mIO3df4Xz5bVKVEEzKar0kTTK8DyTGcNFc4HrQKqMoRsIm9x2j8Zh7d+9R5HPyfEGa7TEuD9FJJibeYQJJR5pmMYBCc3wv0PeKuu3oOvEn67puJwlqe0vbdtRNx0t3j7i6vOD6+gzveuq6p2k61ssly8tLRuOReLeUZ0z3DkEnKGME8NCGg/0jTCKAiCIQnMV2NX/m136dMs/5+KNTvA/U1Zrvfe+7XF1dMi4zuqZBF/nOCNtoR0pC3xtQHhc8N6sN1WaF8rLOiqJgMhHp62a7ZTYrSVKNSsQrLy1KHIGsGHP33gPG0ynqXIzbNeJ9qFBRryXnVVVVfOELP8O9u3f5+3/v73F6eioSNI2oFoqUcpST5hnz2ZyiKJhP58wXe7z68quyr9GD69hc35CNalSq8b5jubohzzT7+/s415EohfOOqqpo+y7WjhpCDGLKpfZquy3Wt3TeiV2NUT9UP704gLvdw2W9+8hE7vtA1zkIkuhsQy+yMiWtXZpm2N6yvNkIcKlSCrVHoufopKTIZ4yLe8xm94QRjXgxKpMwmY+YLib8lf/2L9FUDR8/fcbdu3c4PDrgtdfe4NFLr+K8MI4Vit4HnPW7M9dFph1aRQkRyLhQxzN4kE+KR13XWVbLFfW24vrqiqfPT3BIgNLl8obLpo1+sJAmKbP5lMRb9ucFf/pXfpXJqODJ4+fUdYtWKcubJe+//z43V1d4K02gMDG0sLuDBgN1U9P1rZxJBKzr6Z2kfSqno3l9wtn5BV3b07ctRZ4wmUzJs4LZtGC5XDIdj+h7Sx/3pcV8n/F0iveB6XSBMWlkZotfloSfWDwCBgQUdW1JTM6v/9l/haIs+dt/53+kqTeUeYHSKUUhyb/WOWxMqPfOEYMsadqKTbViPCmZzxesV2vm0z2m4xnPwoXUOcHgnCIEhwsCqoDCxUbYR1sLH8E+YdgTpePIWaDiZz1YG2n5XLMs4e69GUf7U4oyYbW8prcdSivSRO/ODaK9h9E9aap487WfYD59JJZDotwjyww6+pXLs0fYIt4PIUAXE6CVc+RJQloUJEaR5ylpmmFMQpZLAGGWp6SZpFWmxsjAwGvSGJxoQ8CF2xvNxT9IHxhZVQxsLz8QgfFOAqGca2k2wrhrO0sbQ9H6rsWHnnv37/Ldb38LrQPf/ta3+aM/fJ+yGDGZzSjHY0wMzWiamnuPXiKJ6o0QHFlWUBQFxWhCUc7I0hzvHNO9Aw7v3qf3nSh9lAEM2mj5jFxPog2JMcwmU8pyFNngovJAB/I85d133uFLX/oZsqxk8BIP3oskdgDBosfZcDJ7PK1zOOv53Gd/mrv3HvKX/tL/kz9472vCVOwtKAFo+raTM1zf2mEFQGtLYm6TQsFxvbxiub5GacV0OuenfuqnMToh2Bii6RVNLaCLMqLE0jpgvZMEen1LANgFcnkJbgGir7Ew4/q+fyFsSJiqeZ7zi7/4i6yWa07PT3BhSbX1vPrqm8xmxywW8l7GZcnd47sUec7R4aF46jPs18NIQ2psZQQ8dEGklcEHTAgQs3IEtLMy8HVmxxJz3uODsJYFdHK0XUtn3a0nYhjqLCE5EM9n53uCj9kGzu9k6njpGZwLVNWWFQqlZbiIUmij6G2H3cjwQSvNannN6vqSshQFlCSbIIAmorjJsjR+plrA9Jj6q+JRjLplSAYNRqndz8m3k129Jz6dascO7vqe65sNp6cnbLZr8JEQFuLQIn7SQ3aBDCmCjASU1OoD5Cl79Yy7x3f55/70vwB/msg+bKjrLX3fU1Vbuq6jrmuqqqZpa0kUbmqquo5Bcb3437pBJiyvYzwq+Zmf+SK/8Atf5fLy5gWVZ2B5+ow//Jt/HT2d4ENCb+UKPj854ROffMB4MkNf5zRdDVrR2R6leqwLuM0mEgUsknasGY/GFHmOItDbjnKUsrc/ZlT8r8CDL00Tjo8OSRIFysmG4gXJlQmMJEY6b+MiEtnFYJKKFwNGpYwwoKKJclP3JCajHOUsFntxOiM33S2QJI1FW7Usr9fMZlKc+bAGJVIcgPF4TN/7KPkd5Cy3wJO8phalxWCcIIs0MWMO995gMX3A2eVHVOY5bbuVQAkvDaFSOnpGqd3Np7WwqNp2S5qOcBZ6W4EaNoAW6ze4kJKmBa6X4rWuWiYzSTBVKFzvSRKzky77GHTgrCHQ4THUbUegJmdC3wYSlXB28YQ8P6DIx0ymY6qmITUN222NswGTRJ26d9GjQWjQA7gwNGg/zMi7leoCvFB7R4YGt1OU3d/3WH87Xbn1YJK48LrruV4uCXTcP5zwg+cXbFZXHB7cwwXH46cnnFzecHpxzUdPnnB2dsHFxRUnz0/ZbiVlsWm2PD95hnUtXVNxcXHCtt6w2m74+Nkznj59inOezXbJZCryZu0txiRyeMUJX7VtCThurjekaYp1PZPpjFvzaQlv6HpPb3vxH4mMUMGXPcokscCUtKyjw3u8+6mvEPopXW/ZbFrSVHNxfkXXWYoyZ74Yc+/OJzg5+4C+u0JpizYKH+XnkiglV9pozXg0wTvLplkCimTwzwsCmFrn6LsObRLyLJX2Ogwx6Lww2ZU0WpC10LYtIejY8DvSVFMUU9L0DovZKywWb6GSPZQaAeJxopMClCQTqWBQPpAkGU+ePOa/+yt/lbfffouvv/ceSap57dVX+YP3vs4bb73FdrtlMpnx67/+L8tB4UXWELzDDjR3LwdEksaUpRB2LEQpcLMdgFTkOaMsJ0nEKNp5T99L4+m9p+8a1suKtm/YVmu8t/zxr/4CSitefvgSo9FIPLxSYQP64Ohsx2a7pm9b+q6X1N5YLLdtS1VvyUvxBgvRBFZmXGoYxgEDcxW5UyK4JGxJKSLarpOCNMi6kZ9Tu/tFpBLD4Tnsurfyx+ClWDq//Jib9ffYm7/EfHaHg/37oAw3NzckeWC9vWC9ycjyhNGo4Gp5SlWt42QusN5s6Doxr7+8XEFIGRUtRV6gdeDy+jkPXz7kpx9+FlxH01Y0dcvdO/eoKkkhr+uKPE8FPExlb9Zak4ZA017x4ZPf4eTku3R9NPONU/I0KSmLEadXitRA3S1BIR5YIaBMRrA5o+IBk8l9RqN9yuIImKPCCNHmmJ1EW6fiI/QP/v7f5g+/8XWOj4/58MMP+NSn3uXs/Jzj42Pmi33me/u8/sYbwmpJMjabQf4w+Emmu33QewECtTIkiUen8mE4Z8l9ymwylj1AC1shMyJ5TqN8LknlWphEo7xIi7ebmr4XbxG0lyCCkxOePX8GKLK0YDbbY29vj8l0TjkeSaOTphgTC6sYhqMCuH7wVBVQuWtbAQ6rSrxHlMg9gg+RfSGLSuQjAdveWjYMa02Io9JIKgJahd2ARsKhBkBD1vowRAtxmssgzZInkvshPoeK4EeIk3KApulj86XZbrcURcHdeyMuLpdcX22YjKYspndJU8PFxSm9rShHhvF4RtdfcnJxxXL9nCQLrLdLnHPUdcN4PKVqLvm9r/9NpuM7TEZHvPrKO8wWOR988D6b7YrZYs7jJxVJ6kC1rNfXrDZrscTwjr4F2wfKtODyYsnB/kvMpi9zcHDEwcFdZuM3GI/3yfOFXGsfaBpLlhqUiRPwVHyA0lQ81LKYLL2IRt0BFYNzbv0K1a6ZUvS2pe/FI9Q7zXZTc3l1Q7UVBtlyfcNqu8F5SSO8ub4QTyVlWJ6fC1PEeQncCI4vf+GneO2Vl3n8+BkX51dkacZ6dcPjxx/S1A2ZMdRVQ2IStPbxnpCGsAkWZ1uazRpcz3wyocgynLeMRiNm0xnGJBweHTOZTqjrmjffLhiNyt0kvSgLPvXpz8m9HpsfRZThReWAXEtPVzv6vufho5f51//Nf0vWewQmtJYwKaUViZGhjHXRqw8IXnF1taSua7R3+N6RAjpLSU1K8Anb7YqTk+fCyFRQFDlJJqye3vrd/U4vgGmaGupWQIE0UzjfgfKkSRbrzEE5YlAq/aGhso410ZBSrqLMejoZs20qAUNRuE72CuekMc7ykvH4NQz3mU1lr1c6papqqtqzWm9J8wytU7JE43XK5dWad9/9CaptzWuvvcN3v/cdxqM9lMmY7R+w3TbUVYt1fawBdCzzNDrRsrciAymQayNsMAVaPL7SNCXLc5z3HOzvY2Jtbq2LNZNjUzdcXQsDUgFJklKUOXuLKY8e3uPBvbtcnq+ptiK1r+ua9XrJkyeP6dqWPMtYLVds5gK0aa1IklwYI3XNtmpYrSrWqwpnA2U+gaAhFbnq1eUVKijmsz20WpClhqIoyLOcbbXh5VdfxmhD2/dM5/vkRc58NiPLMhaLBe+88668J++jzC5KYIn72NCsouh9j1KGf+7P/Es8fPgSf+tv/Y+cnZ5ibR2N+QcKRMBo+YMMmxwggGG/dCyXFWUx4lf/5M/HcLWACo5qvaTdLhktNEqloNROJtdbIR4kJpE1pxIyI/XSMBj0wYoaqA+MRzmj8ZibmyvEy3nEg5f2GKuEbb3h8vqCNA3s5fnOvsSHROxMtMaYnPnkDq++/Bnp4/DCrQwOFVKUE//IoBRJnqMTYdcJ8ywlS+TX6bhkXGaUo4I8y8hzYQBK/aewMRzEvgD0eifeh03TEtAykNOxD/HDQNSjgsK9YB0h5ImIqPqhrxF9VnBO6mjXs91Wko7eS5jJr/zKL6N/5Zf53X/82/z2b/0Ws+mCdz/5KdI8R5kEY1ImswnT+Ux6yyiLClGeKWEkIskfBm0yBO2w3kYATuSkXilEH+VQTupiFQeSSQwnAPHwms1HfPazn+b4zj2efXy6Y5k5azFKEVPZho5td/YPPri2l8ToO0d3+D/+u/8+JyfP+eCDH3ByIqqXuq5omkbO9+h13rbtrgm07jZNWSnZdLXWzGczvvDHvsgrr7zJ5cX1Dnjsthve+wf/iE9/boGaKEJMF9VKU9cN3nnStMeohBAGybn0Qjb0eAT81FrvfD3l70evSOu4uDohSRNeenSPzua4Pmext8AYw3K5JksS9hYzrG0py5I0zWPtrXZ1j9wrQ9idXDgBz2NJE9mQKPH5S5SsbQH8IEPJZ+mlZgqZkICKIsO6QGd76e2dj+QBj9OSOo9WKAsWi3VdZLqHnaRW1HE6vj6xeiAEjIE8T/BNJ+tnsClwHVXoUcEKo1apOGwRXazYQTSyR8QacahDBum+UjJKEHKL9CfRXlOGPkGLSZJRt3WfkoFREv0hu6j60CEG3job8aBIXIi4SlBy7Z1c9B3hSWFwWK7aC1FfliVFUZDEoMXRaMwQPHU7sB7wqFtJ9KBMHCgUIXix/YoD7DRJuLpcSTji0He5ns13P2D+3Y8o3nqFVT6ij0Pwk5On/MF7Aa8uaNs1y+WVkGcSFetkYeuWxQjvHSenZ2RpSl1VZElOmuZst2sCltfCI/Zfn/LjPn5sgE8nLbNpRM77DvBYhxj8ayOmsLvNRTyFdpLQ4CRavPUU5b4AfsqQZzkEaRhD5SiKAq1KAtF3DNHoe+95/uwpTR2YTe/QdyK3+v3fe49ylHD3/h7j8Zijo2Ohg1c1k+kU4nRyMpnETasXnwfvIpAYJLjCN5xdfMDNzTltv8HZDVpD38tCSVLDYADpvI0IsCd4S5aPGI1m1FUbPVIUdb2lKKQgUURz7LalayX9rByNSNM8em/F4yeCHFVVobUiTUu5fh6cU9RNRVY4+s6TmDFXyxOKcSBVI+p6zXiSs15XEKcgdd2QjUrysiRc30hzF41DYw/GoBYcUoDC7tMeqN7sbgpgh10MFOPBHEz2vR/25gN23h/LzZZlVbGp5EBdr5Yc3X2ATgLrVcUHHzzm+M4RX/rZL9K1PcfHd/n5r3yVEDRFUfDs+XMW+3tstjd8+ee+QMCxXN/w1T/+VbquZ7la8fTkKQrN4fERVdtydX7JXlkSVMO9vUNcgPOLS07PnpGmOaNyQmI8q/U1WX7D8d19DvYXKDy9bfAukOeleLAkKgIBJm664oGklaHv4fT0Y/7gvf+Zo8OXOT87lyTWxIiHz8WSopziP3KMZ4osy+K6MtErJeB9j9aOLNXSmJiUuu7ExzJ6DyodQ2eISasOYYtEOr4kTkVph/foTIpwAcF6kcm7DpMkTCcTNpsNZZmh1IRZ/jrz2Wcw5hgfMpzToAQYThND03eE0BHQqBDQifgW3Tm+y2/87/41IPATn/s81vYoBe9++rOkWcZ6vUKbVNa/7VFILL1OFLkSyXxAwLQhbILIJB3CRBKjSRIDQQA8F03/XXBYZ+majhBEZt3aVgxybYfzPSjHdDZmNp5Q1RVXV5exsDaxkdUELY2VCi+wnYJ83u+99wc8efoxn/jkJ3j19VfJVDoIEHd4hqz/2yQz5f3uM9t5dapA3XUycY/FXlC37dVwoMFtiNBtwnWU8sbDqm5WfPfx7xBCzrg85KUHb3Owv8cPfvAtrm/OePXV1zj9g6+z2BtRt+c07ZLNdkXXdozHY1AGrWEyn1HVFYv5PsbkNE3DbDrFMub6+pLHjz9if28OypHkKderZfSgcYzGuUiUtKKuW0yiKQrxLwy+p67PaZolicnofU/XtlifgZqyvRFvOQGye1AW6zXBvOk8bgABAABJREFUlezP3mUx/yRZfoegRwSV0dmA0mI2r4jm9hE4DTbQNi17+8d84Wd+Fu8caZZzdHSX8/MrQtB89/vfpxyd8OZb79D1lr6WSb3Ww2coA6UsguQoi4lFTuINSovpsNFjaVaNJk1TVCoTzzTec8EHetdjbUvfWZpdIedou4q2a8W2Ijh+8as/T9e2LGYL7ty9J0UtCm3Ef5LIwGgqYaL2tpPm3zpwwlqR5kdumbZt8OF2gOZjaAzBR/ZrLGoGECQMIxspWIawrPiDsJPZKlSiMV6TpNKEdVHy/OIjDAdKGP4dG4tHdqdKiEDf0Nyq6N02DP5keJGSZh3apBgz5e03P49OGi5uvk3TrnBbWK6nfPD4D0nLCsuSEJDmPc8pygKtDE3TcL38iOenH5BlMz4++TZlkXF1JUDhYrEgzyaMJikurOnshrZt2W46jo6PyMdz9mev8Mqjdzg8FHAvMXN2k0tlZPCRJ6S5oqm2/Od//j/hpQcP+Pa3v8fbn3iL9WbJy688ohiNefvtdxjFJGAXAn0rQUGJDrvBmYr7hfMust6F0QXCSFrsKY6OjuV6KhmcojxNJ/KsphFJede1NHVD34u31mg84mB/j3tH+6yXG6ptEwcOAjovb67IswxjNH/v7/5dZvMZi/mcLMukNgoOFzyrdcX9u8e88ughWZZGuZuEQpWjEXmeiz9kmjEajSmKnCIrGI1LijJnNCqYTWfc3CxFxuqFKeecFcP0F4aDg+XLzc01VSVp0kZpeu9iXdZL44wwl/AxLA1hCHgfJ/RafFpTp1lVW7btFoKwYbZ1y8H+gsmklPdjFJtqQ5JJGIV4RQ1BcFF8ZQJd09C7nlR35LkR83xrX2DX3wbG9X2PCp4ipnBLuqHsLZttjzKDD6UEqGklfs8mgSSdEuxLeI5JkjkX1zfYPoInJiXLR5ikIMlzkjShbTs0gYODO+wtArb33L37kKzMSLKUp89OI/td5FqCAmkUbtgJUAEBKiJ7Z/BsluG93kkjDYZMEdlasiRHhYSS+cjaC7wSAcJYG8ZraBRcX67pe2Fcd5341XadeBQrAmmS8Ju/+Y/4e3/3H7C/f8hoNKIcjcjynKAkJMK5wBuvv4l3PUrF4UqWoNEEL/up0OjjOC2w+4yEiO85ODgUppCSf7MoCt584w1eeeVVVsstPiqSPAbnhXHqlQCgSilcEPZN13dkfcqXfuZL/PRP/RQXFxdstxvatrll/WktrLYQUPHM0caQZoY0ScnTnOl4wp3DO1xeXuG8pXcty+sb6utrZntTXLAkacq2qmO9pHbptkmSoJG6JctKuq7DxjAb0PR9x2q1pmranZwTrTi+s2ASJOwOo3jt9TvUTgZgi8UCrQzr9Zau76m38NrLnyGENOIjtwPMMDCTUGRFgjaGvCgYj0dioZKkLOYTHtw/pMhSFMJm7TsrDPxeerO2dxidSjiNtbcMNdQuwCCo2+RU7/2tHUrE8PwuFVTqjKDc8EUBjOI5NxA/5Ny2qFaAjFQb0qJgsTfnV+79KT79mc9yeX7FYr5PVhSYJCEvStI0oRyPZXCciFpDDcMtPwyzBhliBI92ChCpQ7VKwKhYB4vnYaKSXSCPjlWiXF9LlimS1HBxfsXp2SkD+8k7j9fx7A4DsBErzOBj/yfns3jhd0wmEx4+eIlXX3ldWLvxXnY7xdxgtTSAxQKSCCDjd2tAy0mOVorVzZqrq2uph2xHW1/hz69prxOyosBpAa1UrzA6RTIlNdYHqqqm6zpmkylJbghaiD7OO7bbNdY5JuOxyEtDiGBQz+Xme2gNuSlRaIriLlmeEbzn5uZmd80HFdRqtSXNckAGM8PAdBheom/3tWH4HkKQ/TPW6S+CqLKvJMIGdrdn2Y7NHSDROibnCrs11Z6QGIK3kh2QaBJnaNuaqm5jnWRjTyJPMjAZ5UySPTVNDW0XwfAoBXU+0HUe0xg5x7XGKclF8NFzcVAEMfTr8blD3J+IUl1vBXAbFIw7PCAYtnW9W0tJtEAbarEkSdg5QcbhXW8t1tsow+XWQy9O54TIMKi3JECRuK/0fc92u32BQah/aJAmJDC1+/OgdJOhm7zfoa/03svZruXf27oNTdOwXK2i1QME19JubsjrLXQVvU5onUYFTesqTs8+YrbfkBcatQ5oIz34YrEANJMgvpIYz917B+zv74HTrG62FEVGWR5wdnbKxcU1i8UVP+7jxwf4tELpQKDb0TJBbghnO3xQu8NcCHheGhak8Wlay/nZNc5eoJRhsXfAbFJS5Alau+ijoFmtz1muLjk42CfLCpyVQsn5QFnO2FYrZvOSEGrefvstbpY3XF5ckRhJlc3zglWzwjkXJ6aKuq4jYJAwGBv73WRHWFjGtPTdBWmaUaQ5Td3KQtCatpEmpOtFZieMhig3alusCiiVY0xJ12/JsgQffJQS327wIUBRjqjqhoDQlgepk4meTreMHRiPJ9R1pN2bGYkx7E1f4eTkGcEkbKuao/2Cqrpmu7mRYldZqnolTVhQOzR7h0Yg0z3nfliC+2KBPfz6T2xUDGBGTO0abtAQdtM0oci/IF1Rim3Tsn94l/Fkj+vra+65DJ0onBWfo6PFEW+98Taf+cRbECxZOuYTb78j7BWjefPttwjxuY+OjuLU0nD37p3dBDrNcpq6k+YxMSTvvsN0XDCbzGjajmdPn3J9vebDD08YlVMmYymWIHB2fsZ4Oub+/TFdW4EWmffBbEpVSRpr29TkeUqep4QgCXdpkqG1xfuK86s/4vT8/SiVENZLmhZkWYFWGZ11UmhQkSQiG2vbliwtqKptZL8qkjQXgMkHttuKvm+ZTKdkeYp1YPuO9fqapmo5OjokyxMGg1KlPE3TkmUpqreID0lKGllIWSbMP+ssJjV4p3BuQasecHmjSbM1Js0px1PyLKWuxURYUktFThDihEq8IzRFPsZ5SzrLd8y7g8jzvn9fxU+HCFL1kYWkSEyymy4RpNkIKJQZNm4BQG3fsllVOBtT1aw0h50V4Mg5K0yQMKRQBbwTpl3w4iWz2awJgQjyO4xJCWkgMToWfgNFX4oUtBZmoLO8/OgRDx88EL8oLwCn2t0j7Cblw8E3UN2ddbvQH0nFc1J8/v+453b3U3wM98+wdwweEiEExuMR+/t7bKotrT3jex9e8/53OooiISsVH378+4zHC9pLTZH3TKY5RbmHs5aD/QOSNMO7wGazYTp9iDEpddVxcLRAKSgnhxijaNqKy0sBmfMiZ1SWWAuJMfS9yCRkyitnQLXd7iTYfd/iXUdZljLx01akZ52wm3X87GXqrPE2Jc9fxXYvs1rPyEMi7BST4FX0SdFSVIkNgyJY8EpAv1dffiOCqoG33noHozVvvfWONPyE6I9phSmqFcoPHnwO1K3sXWtNnuVRqqBjKE5MVNcGjRczYtvRNY2wuGOivO1l+BP80JhEll2Q12ydjcAklGXO3mJOkqScX1zsJuYif80wP8K6FkHDLQh3O0iBDz/8kG99632cc3zyk5/k1ddel70yMu6iWWWs0W9X63Am7MA9NQwPhhF23FkVNDEZU6NiY96/wOgLA5Z4OwH2RHKqun29PjbaXorszKS0bUvTNHEvTVlvt1xdXTKbTXl49zUAPnj8HiqpcK7nwb1PMC0PyPOf4PzqKc/PPqRta1brLeNxyXQ2wySedJJinSUvPH3fcbP6kKtri0kgzRVVc44LWxrryQrH0fE+Dx/O0Iy4s/8p9uevM5+9jkn3CTqnC4EuTsNMImBzUPI+XeeoWsvP/8I/RZokpNmIO3eO+f3f/z2cU/zD3/xt3vrEp0nzMXXTiN+uj8xlEyVtWgptFwJKZ6KoCQHruijxlIJ1NC4lJMnLmZ4lmukkiQ2GMNq0Chgl9Ycb9g3vwXmurq9pm4auqyNbrOfRo4d0fc3VlbD6jo5KkjRnPt9jf2/BZDplNB5jYhBakiTCLE0E5DPGxGUpVbt3MXFSKQE3gt8xZderNdvtlu12K+spyrh/1Ftp513qHHVdsV2vRTY8yMYjk0Or2KzHxsYTCE6GikPzmepUgjmCk4RdLwPb2WwGsAPiBlar7OGQ56n44PYNIU0wSSJgSkhJdUYSPUH76E/64oBzCHrTcf8WtquCMPjy9VJ7RCmQs1L/dn1L1zqKkJGoPWo0k5Hh5mZF0AFjsnjNkwik95FxHEgTAUGlSXWgE0bTGUGJf5TIoUBHKaBIrDwh9DsWrzgSKjCBNBU/M6UCJpF9Xe3qwhjWEIKw64NC+WG/cbtm2kaARWpFF0FDqb2t7Wkaqcut69A68Eu/9FUuzs74+tffw4UtP/3TP8FstiAvcrRJmc9nTKbT6L1myNMEBfH1ATqglUEFuUY2WJFCxnc2NLu3ChPpY5SWRnAI3luvNlxcXMgeTEB5SW4ctsXovCJbqw+Ao2ksl9GP8uHDhzu7G2N09AiUXdc6aSB3lkJKniM4Cx6ur2+iZLIhBE8SNEVv0C7QeMdqvZFNWWtGo5LpdEqSJJycnFBmOYlOqKotJklQ2hCsnHWj0TgGL6nodyb1RpJoUlKarmM2nzEqerpQ4HyL1o4kkXCUxEzYm7/JuPgc56ctdbthOpuSpcI89sieJRLbjLKcMJlPY5CcJJTfu7tHWSQQPE3d0sX70UXWXtcHbO9wOzBDlAvW+XgNBWzwRNsW73asBLFV6XFx9uF3iqKAVj6eQyEykLiVmb7ARsckO2a8kEHEMipLc/YODmjqjqptMYlBr9eyBvM87o+i8BpAoaEXHkA1AfyEEWyUjoEMw94v7KbAILFOGDz0VIiMUYZBnMP5nqap2Gy2MUgxKuWG/ZZdtAO7U99HdmSA0NsYLNVwc3NDnhfkebEDRnbg1lAtRDDIW4dXyGtW0W03MrTwgb5vqaomkmi8qPmCx9Y9p88vmc8O0ImnLMTb1qphDSYQFHle0LWdeJhmKW3bs1xfUlcNVS3J1vt7noO9PelluhbvMrIsxTsJ7DImYTE/IE9zqm3FenkTAcINR0fHmCShd566kaDKpqnFS6+30W8vAqRx0JkYTaKjl6jWkqiOeJgPZ4dYOwR6J/7Ngy3Vj1o3DDXm8DVZmxEolOIIay1d15KkuQx0GeTQw967w+UQVp3CaEU/3AtKPjfrRNmhYs2itQavCOo2fG2w4xoe3slAQGu/qwF9ECn8YKMxqPyatuYf/v2/xw8++AFd1+zeV55mfPnLP8c7n3wnEhdkT+0REkbfp3HvHGgSEdBTtyt2CBocAMdh9uxDwMZ6e2AnheH6DAnF8f0PQ52hxh3sZXbD6Og/vdtAiKBjEL96FXpsV5F7CcWRgUmCCobetkKmSmrysuPevbuilFBxLSslgHXTsNko8nSB945q03LnzoIsL2jbhvH0ASHIc/+4j/8FPPgcwVcYA9PZRCaBcXJT1TVaJWK4rgVNVQpOTp8zGU9IUjFIvXPnWJJ3ViKlG+VTttst43GGIuVw/22SJOP56fv40BI8LJdLNpsNs9mMEGTyv1pfMJmOWewtOL43R6tXRXqXpSitODw6jI1gBCbVbUqspGSKdLTrhCqcmDTuhY6+A6+Gw1xulCRJ2G4rHDI1SrM0bmwarZKYDtfSdR3eO9po5hii9wNKk+hUpCTOc3l5A0qKitFoRNtJ0IBzltGolHAB25HoFmPGBG9wfU4ymnB+eUnQHR5PcCWgqdpzmrbC6BRru93ky/vwwqJWEROPHmfhBZkh/6RUdzhU5HHrLfMi8MeLCHzEJ3YhApFpFgLU2y3btmdv/4B79x/y4OFL5Jk0CmU+kqQvJweX95662caockkf9cHtNqUQDZVt38d/S3Hv3ks8uHsP76WY7ruOp08/4sPTE9quZTZdcHV1SZbD3ftz7t97xHa7BTTj8YjLy47T0+eUo4TpeATKkRepSBaSDGMUs9k0XjME8OsUeeYI0dMrIKlRWZZJ458oguqxXoqE3smmnqZSfGy3PSEIVdo52ViiqymgSbQhL0a4AH2vMCZlvV1xdn4iBTUGd3rF/sGCIhOJoTJgkpyuF/mGMQldt0WpQKINKstFJtsKAGHtnBCOWVeerNgyUVAYMUMNuscEYQzoRHyIBs87Haf3kvYtYSG7Bj4CUlqJBM05i3eWPDNiJh1DGdIkQRu5J3WcrmhjuF42rKuK9XpNXUljH7yLUe8W2wvAJwdabOxeWLMC0knTEWIDJSylWyaBCgrvFUEbOQAHkCM+F0HkVD/3c1+RvSQ4nj07iQyIeED+CCCOUlGGkkJwNL6RgBvno9F6DDrxIpVVQe/usRcPscG7LMT7i926vwVKVlcrysmITbvFW8t4XEb27zp+5jVt2xOcJI0uFnOMEqaTUgprLfv7s/iyDf1UJCVN25B5adAzlYL3sbCBqt6ilCYzhjRLabqWgNgh1E2LQjEqUvE37XuKfBSDGTx120gBFhkq1kuhkxppQtJ0ijb3uak8mV2SuZ75TFFkZfTSkYJpKIblI/J4RTQ993GvVWiTxuZFvDIJInlxLnpCIQ2Hty1KRa9KL0xrozPSLI/TQTHCddbirKVqN9iuE/9K2wuAYiVZMXgBg32wAmY7j3VWzK0HydFQ7MX9d91uUFqM3dsBqFaaIrNybzD0fi4CAwMIrHZeJdY7Tk6es1qtGI3Gck6tt8LUDINsiB/Zy2V1qd3vht/cfiUQdoMKY1RMrpX3vKk2u8JV1u6tv95whhCZvgNbKQSZ1g53mdaappZGYDQaCWCoFUkaePnlQ9rWYe1HPL+4ZjY9YjzZwzuFt5rJZMFkfIf7995kb/oh8/keddWzWMxZrc/waoP1F/y9f/C3SDLFtqpIk5w0SxiNRlG6LwOY3nZMJjld4TCzkvvH91HuLtv1RJriuQIlyYZpKsNK8bCNZ50FrRwqaF555TVUUNy/+xAfHC+/8houeN565zN4p7m6vomm1rcTZ5yLE3Ut4B7DgEAaqjRJZN9CWJ1pYqDIxXxdaEjxCJdi3vfyfK2tBMCLrClCwPqYlNfL+ei8fJ6f/dxn+Kmf/kkuLy94cP8l5rO5vAZkP0uzHIIwdawV3yEJiGnj5x5ivSFMQmd9ZKr63eQ/eL/79+QaGLl/Y1l6W3THIcvQmPrbEDdCXMWDskDFAy+eN7v1F53jhHEBWZZHVqsXhlmQInw+n9G2NXWzRWtFlmfYoWZU4i1tnUPFoZZzFozsM855EsRP+XaIK2eMNkYYIEajjWEymrFerUDdJtnnabb73I3RsW4URuZ4OqPeGs6eL3njzRKHxTmDDiKfN0auVRIGyxBRiLQE0iTHWk/TdhTFiKDEXiSPUmaRNkvSd6JEbZIVpXzGSpHoBG+FTd/FayFAcLR3ce52r/PRzB+P8o6BgD+wTIazaghoGFhFIUhiunMe28dBHOL7eXR4yL3793jj7bfp2p79/UPSRBqnNMtJ04QiL8jyfHcWE1UK3ovf98CmF7bNsEcNTBR5T7JX+x8C+7pOJIfOOZq65uzsIgIYSFMcBpmnerFs3q3fEFQcWNToGGahIqvEBwFZh/sFJTK/AUwi+B2o4rzUlBFFQHtYXy3ZrzUhC6RZumMwaa1ZLlfCgNYCKndNjfWWLBfZuQCJEnbz4iNJUto2sN1uGE/GeO92PrQil5Xk4KapAUWWTnlw75jZ6B7TScbjJ09YLpfc3FwzncxYzPbQScLv/O7vstnWLBYLHjy4z8HxPo8e3GU+l2G0Cy7uLYmcjTaC7sowGpeEUMoeEpNrnQvgDBowEby2XsA8HzF55xxBqcjkDDvAwLme4MRSJcT9ZDiEZC3LoDrEfapriUNit+tjhrXsAnR9Q9PeAuJDGMhqmZLlGSYxcu69AJqgBv8x2YdDBFa9cy+sI4GgB6aTUobA4JUepbAhRGA7vHAva/Ax4CxYEW+FsAN5pH64HRzvZshKWGG9lTTyqqriaxZmUyyBd++fEIcpENmocj4Ne7+cW4OtTqzRohVUcAGsp+sUVQNZ4fFVTfCOLM9FDaFkjaZZzt7igOl0RjouOD8/R6sUrR2TcRH9Fw3X18KCSo3BWvGC1jpD65LEHFKWDzFmRNOsyPMMpRTleCThVCbBdj2bTUXbtLRtI/t+kLrNeYsxiul0zN7eHtPJmDyXEL/4qceLGe1ROvHz31Y1N6sN69WW9baitT38CIlmFxyyO6PkT1pzC6oGAbm18biozgq37bUQJUIkWETwN9UJbWhvh4FKRZupHpNI2I6P5yHDPhbvkVtCj3zWChO9LWVKK3ug2tmtDD9cbTd88MEPqLbb+BoFnLxprvnud7/No1de4sPHj3n00suUZYFG5N3D/TXgA0MfRVzj3gdp4JAAxeF9Dz0eIeza5KFkVcPfHz6hHypu4xnAC8zUeD/e1g1hN/P2QWyuggu09ZZRotnYHofBKpHutm3D9fWG2i4pxpClCYu9BUWeiKd0nhNwGGVZzMZkcVjWjiU0yTknoZheahGj+LEf/wuk6NbkuZKCiQRjxP/I+YT5tASk2NJai8+A27K3d4j3CCuuiHHYNrC/p/HOMJvcpWnWBDq0Uaw3F9Es9VbylmUZ0+mUyWR6O2FQ+7KB+4ByQulWw9QD/0OTQ4UwxYwpAEmfTZI8NkziR5Kmmj6aXCdJio+LrW17+l6kbcpoirzEujZOhzQhJOLBEaQw6PuYXujjTRqR485asrTAB8V6XbGpLPP5POrJM7Z1LyEEPtD2Hm2yKFcoWMzvYu0IrQyb6pJAz2iqWK178nzG9fKCqrnABwF1vIfZbI6PcpbBt02uq0xxh40lRM+KXWEGu0Y0xOnKAI7AwOS7LYris8g3X/xauL0DVRCW1PL6kr/7d/821loWiz2+8pWvkGUZ7ajl5vqG/+w/+8+4WV7FqbRMYvXgfRLiYRg8WnsGT7a+Dxid8e67n+E3/tXfoChGgGK1WvKX/pv/Rg4OLD/5+Z9kMpmwtz9m/+gBXduiE01ZTvA+8GB0TFnmXF1dYvuWJBED4jTNZNquDT0hpjPHgwuRQScmkYKht9EjSBrxupXpdJKkAmACKOh6SanS2tDWLbaXgspEVkaaFmR5uaP4j0czJuMZaE1rLQcH91AosmhKvNmsY0Msm3mei4+IVhrrG2GxxQLfmAZjEvJ8hNY552eWP3jv91lVkOYZr7/+Ol/6ws8SUiuMlRDAyPvRSuO1xyMM2DQRY3fwaKT4SIxIM7RWu5APmU5Y5uOS2SQjyxKyNIn3xu3aQmucg5ulBBY416ONpBNDiIWTxboUELmGszaCD1bMkQfmXhAg2w1dXzw9k1RjvcZjsT6gfRYLkyhnFCiJAdDuup7nz55HsEbuBeci6yz4yOQTaeX+wSF37z0gS1OCs9zcXHF6dkZVbQmIpFrOVhX/nkzThwJSbjCNDrGQUh4cOxbxAFQeLO7wvT7l+9/5kLZtSNMchyUvkmiqqzCmomsr+q5jb6+gaWr2F1Osa2V/2+0FQWwFTIr3PUUuydyBEF/rMH3Uuz2j63uatiUvcpy/3TOzTCR6WotEdGj0xOcxxZvYkCm5wkkikfW2z7i8hJOT9zi+84iXXnpVQonahrau4+szDAWBScwAccmQJBUz7oCAYbdelrG4tZbMaPJUvLRSLayKJNEE5eVrqfgJKqVZrmq221qMe20fgXD5L1gX2Sc2fm4Dw85H8MKJbCuEKI8XVqkbwL24Lw5DW7wUXUPyrPc9nVUYLcCriqtxADZkD2bXvGql+OQ77/DFL36Rg4MDZrMZ3//eB3EPdnFNq90evZv8IsbNt6DyiwykF+UnYdfodH1H3TVc3VyJ36q7/TkVJ7s+ai8G+PAW0DMvMCrkYYyJgDO75MMslWK8yIXBbvuezn6MXY2wNiXRS6rmmr3ZfYpiBjRs1hc433Jx9TGr9TnWN6Sp4t6du3zw4Ydc36wi+6snLxP29hbxPPRsNhs++mDD/XuH5A/voPYf0fkxaCUg2aqTELDE4HqDSVLSJHq5MRSSmqBVJLAPaebyufXWYQiEoBkYzyBN3jAHGwIWlNLRS0uTZrf11cDEHO4p58UQPjhH8APQIvuSsCelAbauj/uh29k2iFcpu0GkNBfCIrl3/x46UVxeXUVzb2HLaJ3uBppSmOo4SHM7/zxpAgebgaFpEPbqarnk9Plz2qZBa8Vrr7/GeDqJwLA0j2q4GC/8MjTKu3UWr+mLQOBwFvvhQB5WnAIlsJEMEwygPCpoRmWOTgLbSmxYsjyJAVFIaIBSrLYb0jQRs3gXUEYRnJbmVStMIoFRxugdi08+S0WaZdIAA31vub6+4kXWIUpRFAWulyAbYRYr8jxnNh/RVIrr60CeHeO9+DdKIKrUGT4ygawTBYh3HmUdprM0uqO3ntFkLIxnLX9X60CeyFBtMh4xnZWUmbCVNrVlW/XYrmfd1ztAVRo7FwPm5NwaJJI+BmIRPMH18vk7OTN88LfA2CBF9MS1EmSdREab+A2GCGB4nBWGBsowmpRs65quXcVzSPZ8ozVFWe6aOB9lbChpDEVxcAtMyDkQmS8+7PbRALu9WvbUeGZE9qkP0oYbBSHWB17d9pHD8wc1eD/d1r7eO/o+8MJ290PrW1ZnBPHi3qnCrdRV5NJSjaRpwnazRbOPJJ7GBjR4NquaJEuxVhhTBk1ejlB9R2cd6Ft7Fu8GZoyAiEmSooKiq1q2ZkPYP2RbbWX/GenIDAuUkxEhQKIOyJOXqRtLlhke3r9P3VSkacrHH3/M2dkpVzc3PP7oMXeO7zIZT9hut3znH7zP/p/8JWbTN+NeIRJPk2gyhBVlI5BlfcA50HmCcZ409+Jf1rnI3gsEDMY6QpIQMmnQhwRN73xkIfnIDAXbI/tvEMaOJ2CDgNgaAQyd63cNv3xOw2BMeiOlBFjLslRYgkO6R3CR/edJk4GVdxtkoHQkVESw+8UeSQ02LiDgCQGDIqjIQAaaruab3/wjzs/PdwzY2WzGu5/8JPPo/TdYw/ngblV0u9c+DLf1bv3pOBTw8XrEm2UHg4Q4VB6YVD6ywO1uWKR270O23RC/pCJAIz9jfMAqREmmPNuNxtSGfGTpXScDBRR5OSJNM6qqxnpPahJWmw2hqfAeimKMNjKA0CowHk24ub5mvakBYS47qxgVh9y7+xOU2SskWUHXa7bVlocvvcxms8EkwngNwWFtC5WnrptotyVD3CQxHBzuc//+MaNJwWDjogI7Bt7uIRdI1AipwRWBwyRjb++A5WrL9c0Nm/WKutrEaxq3KXV7TIUge7NCy/keP6PeWtK4RhVKJK342+tNkM86xDpCKRKj6G2I+13cR5xYmaFiH65eGJ6FIF7WPmCGeprBkmLYI4cBR5Bh8UCND4EsS/j85z/PqCxRRslgv+uYjMcUoxHKGPYPD0iLNNoURN93J/e4/JNytg8+tcT392IdMPy6u2/i/wtJQihLsQ2T++gFcG9gme/YwERwVEXwcBhAvvDBBobrGrCbDcYFrA0kylMT1TuuR/ctq6sLuIL9vSnapDDNCfQ436OV2DI456haIUJonZKkhoClHCUoRAWQGMOP+/ixAb69vQXz+a1E4LZAlQLUaINSYiKsFQQvk440laJWpLwyvU1Tg84Nnb1AGSl0fLA0/YbgZRKQRIRzMpkC6gVTbx9pyCpKFeRuca6NhTQoHWUIEZTJ8xLvpZFr2woXzWlFLmFjem0em/oOrRR9J/K6vBBKpjGG0InxqBRBNk6jFRoxAkaJ55KKB5do/+NEWImvXprBwUGG1hmHh/e4WV6DMnR9j7eBUTlF64TRQqLFV5sz6gayNEebhoCnX1p616N1xXx2wNVNQ5Yb+r5D64TEyKbnvSzyJJUiANg1BD/kmzEUoDvpV9hNfnYbefzVxGb7RbafPH54WgHDBiEJy+Cp64pHjx6xXK7ihE6YIY+fPGa5uqHtepy30vgFMZMnhJ1vymQyE5l4PGxkCKY4PX3O85Pn3Lv7gCGVZzab0bYtSVEyUHRHZUleTmWiEan/fW93U/T9g4VsXqncLmKcmRCck+TIrpNiMBaSeV5gTEIdJ2BZksf35KMfo4AArQ00fUtZiqmw9wFnrbDhjBzoIplWpJlhNplTbSt625GmiQDNVmQJg5zwZrViPlvQ9Y6AIZCwvF5SluVucqyNITEp1nkSc3t/OicsvqdP1pyebnnptTeZTCecPX/Kx08eM58syLNsl4ybphl5lqGMifLiRMAMRLpIiA2IiqawgxeR0eRZBPzSwPXNBW1di4wskYZ2XBaU5YjxbIZIWpRMfBKFc8IiI4jsVqRGaWS0yHoVqUGL8o4+NrfDRBbvI2tr8ABSMazA4gg4r1HR3Hfwaxm8SCTAQIq3gI9swPi92ET6AEZpHj58xJ2792Ox6fAosqxksdjHBU/fdZg0jR4mDM4AxJZvB+ANzSvx8Ao6/hpuf653G15944i7DxZcXi65OL9iVa0YvCnqupbiHRP3R8PF+TW2a1nsTdnfP5DmN0rZ+r6jr+oYiDImSWTvyrKMNMvinazjoEC8RPrIOMmyTA7OIGlobSf+adrEMAxEPqaMwsfSIkkSnBKzYRUMbZPwja8/ZrVO+MEPPsaQMHtrQrBCjXfBQxhAOy177S6tTxpdZeWeJLJ7Br+4oBKS1JBlhiIzGB3IjCT0lUVGXmjS6KUXlKaqOy4upOiTtDdpSNJUGBmksRH1fscodU78vsRLTNiAQYF2DhXT0IYU7KH4H8A1FdeAMdI8y9DK0lnITY6J4IkPL077xftp2J8PDg+YzxcAPH369BYQZgjXGAqmAXYT3o00IIbZbMFsNkcp6NqG7XbDdrOMPolDD6rpu57T01Papo2Fv0yepZEPO0xwaIqGL9w2SbfreABMh9Cfvu+E/ZplO2A9TTNMIsBHIGB8jaLBqS3Pr56QpVMMmq5tEYPyGp15tA8U4xn7LuPw+F2quufyYsn16gqUp2kaqqpGayXJmcUYbxOePe45f/Yen/zMF9kvx1grSaFGJ3TRu8skqfgGGbFnSFPxFA0qYDDiFamUsDaCSD3TLInSrQEMlX1JxQFHmiXkWYY2OdbKX3W+p+962kaaSesGQNnfpiRGiZobkjljgqKPgLPsaWJDokNkHsYzU9bkcP5DYzuatgMCtnW0TT0gv3GwWewAeR00BAGDhwZEgLrb83/4nL1zfOMb3+Bb3/xmbGY048mEQ+fFIDs4hgnPD4Ek7kXTbB9fq6ArQ8jB7Z/ZNS/E+0MF6WQDCqXS3b6d6oREG9q+kb1deZJUxzAEJdYDJpE1F+W0SsH+3h7j8V0+evYtOleTp/kLoLbcbwNIPTC2JB06jybyAqb11pJlGXVdx5JJ3k+SCJhbVw1NPSKoMfcfvMLJ6YWoXzLxNRyVY7IskesxgGlaGiTvxB4gzXJMojCJQms5w0xszFKTsr9fMCrFn+rqasNq3dPZeMpFS4EBoLsdCg8eXrEhinUdPgYgeIvtHT6qFDwDg89FIBYGeTLBIcEP4KzfKWyGWZyTfEWavqa3PW3TynWK565RhrYWYEk+hMG3VnYBa/3tulED8yjK4vwgyZJ71AfP6ckJTz/+OCpCPIv5nLc/8QkJW3NWbmKCsKli83kLxA3gTATpdDzR4zX8UYRvB1DDTv0k6CeAEaVKYPf3gvcCfnsZkgQcWZHjrYsScEPfu9iDeeq2RdHS95bRdIJ3iiKfRPaODCpCBIrqpkWplNdf+Rx4RdskKEqMEhaaDGyN2JIoRWomKKTva9uWLEkgBCaTCcdHRxwcHvE//U9/m81qxWwypa23lMUeRZ5TVQ15VqJCZOwO//M+smV9JDvFQeYOcJLBR5aLb2YawQ+nEA6UksY4VRpnbgOghrVnfYLP3W7fdL2lsx3KK0K06rC9p4+AteaF1xf3P+IQNnhPajSdHuydBOgQxr7FtjVGZbf2LUpsZwSEFxuL4bnlnQ6VgLoFVIIAalKCKh5/+AG//Y9+i+12I0MK+Wlc3/GzP/dlrq6umM3nJCYR9pmy8X6T4a0OKq66F5hL3J7McakKgCWnA8MLHQDCHxpAD7qCeJYF2dQj5hN2QSND1TDIhxWihGAY0CpHlopSouskVb7rxINxXIxiknpLZjIGlZbzjqZrUEFCOLJMArGcVxTZjLtHbzIZPcS7HOcCq9WGLC/ZxlCh+eKA0WhECJ6ua+noaJvox68Ce4sZr772iOl0HF++250zagDzlFylEBCWdjAIGzLItdEa5SDLCg4ODplMJ6yXS64vr+m6Wva3EHYWHAq4e+cOB/v71FXD02fPRAra9zKUDA4V96lYXO187QhD5oGMDdM0WkbY6OOoDX304EySRFKACXglxAs/sP/jfg4BpY3UD8PnGIf7w6BWeE9y1pdlwS989ReZjifRhkhq2bt3Dzm7vOL9b32XxXwP7wJGBVwQ9t4Ox3nBdQYGyXIkAQzl5ACGMuy9cV0xgK7xuqiBrzrsqcP+eXsv3yY/x2cYQPcfeezsnpzHtS1NEtBJSt9YrNY7haRJEqaLGcEGNpuabbXhYK9k/2BKUeRk8fNIEoPtfZT712y2NWma7PCJIRD2x338+Cm6iTBvhJkgflJivt9HM3Fh29leGBsDM6Lr+tszVU54AceCNHmSihZ2B3OayZ8l1CATFlZsRuXr8ndU3Gj73mI0JGbMgzs/Qde1nF19E+hRKqaN9luaOkaT4yLolGC9ou/lsGxbMegffGWMUSjtYtIdCBA+MJNiYAWGIt9jWt7jZnlCojWWihBk0rJc3qAVtL1FJY7t5lIK3SSnrVuefPwM5xtJGcumlLMM5zs2my12s4l7rULrKc612LCJQIUUS9uqo+0ajFF4bxlPRjjX0PYrOrvFOZGNGq1f2KR/9HFbpL44hRyKuB9l5Vn7w83a7feGSdEPF+WBwbdI8fDhQy4vL7l39x5pmnL3zh2m0ynOWv7Vf/U3ICS4oLha1ZyenHA0z0kNKK1RRpOkGctVQ5KO+NLnP4Uy0jTnecGDBw9Ikoy6avje97/Lz3zxC7z//jf5/zL3n0+2ZWd6J/Zba217TPqbef0tc8sBBVTBA91NEkCTQ4ZG6h5+4MyQilAoQgr9W4qYUWhiNDMcMobN7gab7G6gG94DZW656136PG67ZfThXXtnFmakCAW+6ETcqrw3T548Zu213vd5H1OOR+zt7jKfz/DBsVgs5HNMcqyTmHXvXAS0DN75KKVREeTxdE5kTXmeD6ydNJUpvvOBrChx1sox6qHtLCaTa8XoDJUYRtHvr246nLUUZYn3nrTICF7hg8VokYqfnp3graduKsbjEfN6gbWWNE9jcwaj0YjeVzJJUmazGQQtCakhkGcZZVnQtnIddC7gcYyzjKau6JzGOcP62jpvfuYN0jzj9OiUF1+4xb179/nJj3/MP/2n/5SdnS2++73vkec5n/nMmwQPjx8/QmnFxuY6RVZErwjIYjNioleTSQxZkZEYzW/f+Q2PHj2gTDOyNGG6NmX30iVu3rjOZNIwqmr29vbI84y0ljACr1RkUDVY12I78eETn4pOvm5brG1RKlLQY5PS07kBhpFoiNOy6LWhjJJgVq1lMj+saznUjZEi0iOgitECjsqaB20SLu9e4daNF7A+UFX1INWUptwxKksyo5lOxkMhJ01xj/AMp9ynrjN52gqvHM73gRuAcmR5IC8yNreu8PIr1yWhOoQICndYG9jZuoJ3DYdHD6mbRtayA9u5QarbdSKnVUqTZZvUdUU5ytFx0CGJ22K6K0nlCgMkZUJrJUU8TXMZynjxtqpbkZsmSuyEjZH79kC/jv5UIvHOqRawWliuXxfmXlnmPN9/Sts9xphE2NNKmKlZVjAej0mDyDpMYkh0Qh+cIhJYg+9iIZVolJEC6OzsjGq1AB/IM8OozFlfHzOZjNjY3IhKGrn2yyIlTUXW6KykPoc4OPCRTeUikOy9u8CqcATnaLqWumlkD/RBpLveR+mV4sKHLUMorelUPxlHigvVxYKrH7j0hYuK61TWke0sB/v7UrQFT4jBCBF5iyCfFGahB4u1Zmt7m8t7V5lM16Osu5UQqa7l7OSY/edPqZsaH+V4BwcHUWIhTERlzgt9HzyfSoTuoet43YVYrfXDOxVR7mFQ5i1tK+9lkmTCRguQmFTYZJqhyNUmYFKw4YiqaeK55aM/WUrnOqpqSZbLpHQ9N2xvX+XwuEDpBIWOctOO3Z2XSXXG3U8e8uBjWPiKs9NT9i5dGVgXrW2jYXSkPqQKlMibfIi1QpJgFfjOiVdplLYURUaWp8JYJga0ZJo8TSjzjMk4xxhD01mePj2l6lppWmyUu3pLn1ws0n1pAHtvRZFLRgmZ9+cgsupbaMArWhcZppFh6fx5wzl8Rl6aTa0kNM16YTb0Rv59Ce2jcbzvi30l0tEeRx5K8Nj8joqS1157ldFoxK2bt3jxhRc4Oz1DB2Gd6BgqQ1xXARnQDnVETJvsm2HiV3KtqAuvIRb6wdN728m3JGE8rHtMIkl8W5MN9g/26WxHXdVooyQdUid41xLwWNsSPKQqcHJ6xNm8BzSRpGpjMcm5dH42mzGZjFFeGrIkSSGIH1/byhq66E/segZkvHkvSpTlHLa3bmLSnMtXJoMXmNZw/8E9skzO+/F4QlmUTCZTMgWYhDQxrKolDx/dxzrZ58s858reNmvTkt2dCUWeIEFicWCoVGRFy/umg4BFklypgCSCb9FTOYC3Pu6JDpcYvLeETIAM6yw2RPDZXmD7+BCtNiLrqmc2o6MP1QWfuwj0yDVjaG0TQ7DAKUcX9wKjz4FdIYP2Bu3n60d81yLbPvRNreyDnXX88he/4OOPPh6khmVZcuXqVSbTCS5I+IbnPIU0DKCMPJ+ge05JzxT0DAMOxbBm+72x/5uc+rI5Bq8IdBG0jfeJ9ScKti9t44LGOkNwSoA2D0anTKfjgbXoMkuR5yyrijRLY+J9LR6TtmecR/9EpSjSKZiMaTnGNh27e5fZ2JugUkNrJeCvaVq6tmNcXhrAxxA8IQZBLBdLjDYcHOyz//w5WWL4R//gD9jY2OTps+cQPNVqyXwug8fOOrqmjn7KHucCdWujf7jGx2Zc3kcXG/Neps9wFrrIYhTMWFiTPbjXB704153Xcwjw770brr0Qgeumk+tzSHv3PcjYr/m+vxHmYWcjM+78Y8apgLMao893KfE87HHoCyvzd3qqXiLYD9OEhCEg8O7eLnl2HW3kftubm7z44osxoE/8JW1nCc5JMqgsSrGhuQCCRLyGnhCjBKkegL6+9tCRaXy+f/YoS2Qn9oa79JY855LRvh4g6AHgVt5RlCWTS1dYNS1C5DXoSM5p4hne96AEouy1w+EkLbqzlGVOqjOs9SLLVcL21RqKYspkusN0ssfaxha7u9usr0852D/mvffuDB9Slkk9sVot4x5sKfKMa9eucPPmVYxJ4/Pv9+WeHBAtvuK3nOtBI3kuzgU6p7Be1rMLwqJLTM50ukmWFhwfHTJbnMmZ53vWu+f4+IjFfEZiElEh9SSbAZCKe1b/fiqEiazUuYyac5+//uN00fM5eGQIrsyFPerCz/UAcBwu96CbiutPEdmC9EStXhkiz321WJCkCWkkxRwdH3E6W+Ci53WPL3jnCc7KOdPXCj2QN/Q/nnMIUw3LScVrI6h+r7wwFIzWPEPdGYuQ/prtAeL+DBt248Cwfi/eQgCnwNmWJli2v/BZjq5eZfXLDyP7MMQ8iAmf/9w1USaokq3NS9y//w5J1sZr3pBHyziFwQRhU4/HekiqlkFi7yv++91+b4DPeYMPhXhy0OF8S6AlT8eAI8sSNIHExIbEB+q6Boj+PYE0tcPUpZ/shVgEQWxoY8KhiZKuT0uG5GadJbjo26XFz2JVLbj/8NdC9Q1nJKlntZJJ6XQyxvtWFkZMwrFdS9eBdQGjEXmrkws2SQwtPk5lRcbmbCBVCd6KKWxeTLBOUzeO1dkMDMNkMk0T6rqicyLdWCxXmDaPMq4QGX0JRTnB6C1WqyWHB4fkhSfN4iaqpFEzJkcFTZqk1NbinBxGbdcyXy6o6xVbG5tsrK8TgmOxnFFVS9bX46EidA3OF7v89dMeE5JoB+fGoP1F8mlgsN/of4fWGu8nUhJ1Xnh7OSzaTnxcXn/1NWzXMRqNqRZLzrJT7n1yl9VqhQqBk9MDWtdw72SNvStf5B9+5QapXjFbrAhKUZYl3/vlEb/66DGHf/EdtFuQ5TkbG5uEELh27TrXrl2lrlekqeHtt9+i6zrmZ6fRbyZnVQuYvFic0DTtwF5JUynI+9TmEIIYz8apmY8sijzPIjMykVTRcC6z6Wn5wnaQxDoV08QWi8XwHppEWAVpmg1MRh88SZEBXuQ3PpDlBaCkMOo6mqoGJX9v6po0KZiM10jSlLW1dapqiUkUs7kkniotDBiI0eFKEpmt1SxXNW0ngSHf/dvv8uZbn2drc4ujk0N+9vMf88GH7/HNb/0Rjx4v+A9/9Re8/NLLfPUrX+GD9z/kX/+P/yPTjSn/1//b/4VL27v8N//Nf8vx4SH/8l/911y+use///O/4Nmzp3zjD77Oiy++wPP9A377m3e4desFXnrpJSkE85TZsubX77zPdDJGa80ffONr2EY+r8ViQd3UtE1N1wmAN5lMmEzWhutyuVhydnLMchUbYWQv2dnaZDabsVpVAyuhbxyMDhRpjnXt4MXZJ5ZJQRYb5HDu5+PjhNlre35NBJhMJ9y4cRNUnOx0HW2z4ujogOPTY7xzjEYFm5sbFHnGarWkyApM3AMvFo7nLIYwHERBxyl3AEIPXDqyTKajXVtBUBglIUcb61OyoiRLJ3zty3/Mvbvv8PxwRNstSI3C+Q7nPMvlKsrNBfQZjcZobeIh7eLkKSVJ0ujPEhMh45TSGIOOvlZd15GaIhZlDV5J8rLqQR5EctgDrs5a8qwAD9Zm1JVnc+MSn//cW0yma2xubDCfLfh//Q//E3/6p3/K3uUd/uzf/RkvvvgSn/3sm3z88YeczU5ZW5uyubWFd466qsXc24hUuCjyYe1rk3Dng/e5c+c9XNcxLkqKIifPE8oiY3Nrnbff/jxvvfV5tJLwFzBiBeACloDrxA/Fuwi+WB+Z360MXiIL3HVtDOGw0qD1V7z3581DPMmGogUpI43W8nP0PkAeG3r29DmLrzct7sv0cwZU9FYdirbzhqKvenwIoDTXr17n5gsvopTBWk/bdFF2LN/P8oLtnUscHu6zmDc4L4ORNMvEkzOcXx8Dlb+HgGIz40OI0g7w7vwc6QvjKno69hLn4KHrhMlsjJHr2UemdJHL2aOCsLJjcE2IIKGY5wfE3zgCvcpjtKaqlizt2RB8470iL2XSeu3KS+xtvcyDT/4CFxaMJpuU5Yj7jx4AirIUf9jxZEJiMvEgRc5LpYSBRJDGWekkDivFGzFN0whUWTorDOosTSiLHKMsiXEICcnRzGs626K0l7Q9nZPgsNZc2G9kqp4YaYJVEABSpGhOmmBr6cNZXAw0Qstk3nlHiNP9HrxUw1nOAEr0QUluCBWQNESTaAnvGNgrAuOq6AmlwsVZxbkn3Ze+8kUuX94jz3LKouD46IizszNpCrUMnS5O0i8abPdgsAKC7xMMOV/7/Z4op+1gidJ7bQUYkqlNKmz0uqtZHM5xzlPkY1oyTBqgXRK0+MsJ67eUZq4NzJdHpJkG3ZBlRoZmhoG555wV5rzSMgBAGNLCqhAPWZBACGvtcH6IJFuYVfP5DOc0XT1hY33MfD5jbW2L58+f8vLLL3N0dMKHH37Af/1f/Zd89NGHtE1FliV89PGdyLAvSLKcu/fvxzRAGbJ6ZymzhGtXd/k//5/+FTGbENAkSUFiutiwahItHVeiDEFBN6wHfc7K6yXLoU/LdlxMqZThvxLvM9dFQEWUGq5TeK2xtgMvazZ4j4/saxX3FB8HxAoh0PXMIBXXo7MeoxUmywYmCoAOYvgfovRL1q/DBAXh02CGj1Scsih45ZXb8XNIeOHWLba2Njk5PWU8HsvrUOqcOcOnh4dDkx3X/iAT8xE47zvJ+NO9kiBE0FqGMcNIZJAH9yCJ9Y7RpMRrRVrkKEzsVawA1MfH4tndyVCxZxTlWe/zqAZLjhBB9C56QLVqxSePPqKwE7Y3dnny7CGndYrOBPTtrKdtLMGnFNe2JE1eZdTNCkIgSyUoaW1tjcdPntDZhiSVkK3Hjx9y/8EjFrM5eZaxWlYkWUnTNKyWc+m/rKNtxGuv99kUTzzxzcuyRIKDDGRGwo2cF+sDaxvaVs7dtq7jsC3uBwPY4c8l1f1J6/3wWQQfLiRrRvaai8Bw6FmY53uOR4ZxJgIKAn0JGOedBG2pNBW5d4hrIloVxMUI0XrKR8StB401/VAiDPvhCy+8wKuvvRp96qQ3uXn9Gkpr3n3/faZrItPVQdhcie+v7PPX/L8mYnx6wNhXCi7un8H5mJLbA0Hq0z9zAchTEfgGeZ+D6kE/H88owHvyrGRj/RIVTynygmolae5ZIYpAG5m+aWoIwVNmJV3wdF2D0YrJxjqrqo6MP8fm2hYgJIf5wlDXHdvbN7h25UWma2uUZUFZlBzqM1arCqXE7mO5FGBvsVigFVy7cpnXXr3N9vYm2sTApqDo2b19zdS1HVVVUddSP3dW/A9TY7BeQtw0Gut99Ht29FJlrROyvOTSlT3Uoeb46DAymwUtnM/n4ifpPFkm9WpPIiECfQLEDmYtUcllMPH5yeApkCUpbSM1ZM9qRoudi7B4I/u9R810P6SVzyyWWMPPC9s6xL0qrigf9xgna2Xe1Oc9i1JRln7xiumvJyf7OC6ClP26ckPd0Ock6LiDK873UKX614KEFF2ABuXMgICjD1CV4Vl8pNDXyud1Tl/0fBrIhs5LyI93DWntKC7vcpZrqrbBeyPDIkCpRPZb7djbvcYffuVf8Wfz/zu1+xCUox6GzwzYQFGOMEaT5/nQ8/W1wO97+70Bvjde/We8cvsm8/mcBw/f4fDsfRp7gHWBJEnpKfzQ06RFgqO1Jk1GURpSo1Q33M/odJjAh8Aw4XTuXLbWP8ZFQ9wgCAtVVUVw0FLVDbU6o206tAkoLc9Jim4gslI8vSeQx3kTI6U7VPAkkQ2VJBefl3iDdK0jzaWIq5ZznBPZGcqRJj76WxmcV9R1LTIuxKNF6ZTgc1KTkZcFrbUENGezGYcHRyjt2N4ckeWGsixoaotKNJ0VhkNqjExXo0TFWimcjNGSjhVgsahxneLF63uMis3zxLDINvEXFvNQKMfq+RwBj+8v54v+YlqiSGXN8Dn0EzM4BybO/cLEsBNlBKypK0KQ9NumadFa/v173/sey+UyAgUCoi3ULV649SKL5SmpWtJZ8VNb1XOwDfXsmPeO3sNWZxg0aSqf9dbWFl/72tdwzom81hjqWjagoijY2BYpdgiQ52U08XWUZRFfAwKkNQ2jshQPnthUOcBakTGVZYn3YNuYRuuFZZGmOdYKC6XuWtJUZK49FRekIEzSJPriySaXJBlt21BVlTDgTCJFNJ7OBvKsEJ8QiFMRxXRzDehlt4o2vt7OisF2HIpHia7D+97DJhfz6nzBq6/u8vTZ+0zWt9hc32I6mdI1LYuzM4o8xXvLk6dPcc6yvjZldnrM4eE+3/jDrzNeG1PXNb9957e8H8GTqqq4d/8e3//777N/cMAf/tEf4oPio48+oapbjo5PSdKnbGysc3p6TF2tODs94fLeDlrByckZdes5PTtmuZxLQrUVluWVq9dYX1sDFFoZ2rbB6IwiL1mtZuw/f07TVrF4lwlvv8/0IIhSSgpvFGDiFFgSDQesIvRT2x7giw2ENoOMvyxLyqJk99JliryUQrNpmZ+d8cndj/jBD7/Phx++T1EUfP7zb/LlL3+JPE9pq5pLW7voXIqJfjh6btJ+Xjj2zXUv5QmxYPLe0XSypq3tIBiyLKHrhBld1SvSZMrm+hWeZg+kcEhTgncYk8SmUxhvbSum+21rSUyK0uJJl2XiRyeMqmRo3kJwBGUIPohfSjphd+sFxuUWGk3X1Tw/esRitS/ptyrBe433wpCuVhV5UTAeTciTEkVB11RUq5r337/D7VduowPcv3ePqloQcLz77m/4+S9/yrVrl7Gu4ac/+xF3793lH37zH/KFL73Nj374I/7yL/6Cf/7P/znf+MY3+N73/p7333+PL37pS9y+fZvZbMFPfvITJuMxt195neloLGxXFXBdhdYpd+8+5NrV66xvbEAIIlVdLWnbmqZu6Nreh09sJ7IsFwmp0RAMHkvXNLRNHSW6AnZ5pGHTiZHG3/bNXgQhgjQyKojUu417qUOkFMqcy0MMhl7GwLCLf3rariPrQ0WZGxfWDoAxKZevXOXll1/FK/A2EKJ3rKTC2chckknuZDIlTQzbL78k4J73+GF1xgKJc8Cll0D0zGd0X+yfF2PEry6uK0m710MjKntignchWnWIakAbOY98CLRVjVaQxrPae09dVzHd9Nxbpeu66OMJqIAJwjjqupqm8eTZJrNTywu3XuPtL3+Josz527/9W65evcbVq5f5wQ9+yO2XX0HrhKfP5sJKThPSLKPICybjCeVoRFkalJLzUJKma95//z2eHzyPTIGC9emEvb1NLu9u8uYbr0fyXKC1FpNmZPq8EddaxeuUIY3QRXBI3uZeNhmiN5obWFXCLBB2bp/2p728d13bDXtcD3n0gIV4B8p7rp1IV0MEN5xzkswJUV4UfzpK/iQFvb/5yLqUtuTk+ESuq8i+7hvnHvTuza+1FoBMiQBvGESKH7AETRXliMl0LbLp/TDorFZLXPSLOzcw1yg0Bo3tarLxiKapIqPJMhlvsLd7naPjZ2gT6PwSCJjopdt5S+cso2KMcw0KR9v0SZdyHVpro+Kjl/fJb+2DPfrzvetkX5CgrZy2sXivsZ1j0YnvpzYF49GUohxzdtqACnRtg1YyJH/zzc8wm894/933eOsLb7OzvcXfffe7/LN/9s+4cuUaf/Pd7/HRBx+gjcaYlNFoxIsvvEBdLek6z6PHz7h29Qr9LiL+Tw5CTNuOQERA2Ec9kEEMRugbJ9c3JXE47Hp2c7AxlKgHn925R17PyorrMzg/eJFKnS77YnQtuwCggEmM7L308imxljBG0luDEiaPiwPtAcwhpgcHD+7CDqRAxZDAP/yjP2JjfV0sKdKU69eu8ezZk3idEMF7TU836XfAAdDusY8BDIk1dmS/qBDZx6pnoMYaW6lYKyvRzcfnLRx5uZYEsPIsVyvcomIxl8A2pS56D57X58bI8C3VcnbLoC4Z9mTnXHwNFqxDq8jywRO8ZVUt0HmG6gKtt0DOxuQWV/c+z97l1zk4XLKzlRMQVntZltFyRXF4eCBWR2nKs2dPmS8WLJY1SsNkOsUGT9O2nM3mtHVN10pghe2sMOucRRuYTifsbF1iujZiNBphIpjcAyvWgbWe+bKiaYXpXK0qquWCxXxOE+1DxGer39fccE6p/gSK9bEwaKSX8t7KOv3UqXa+q2k5ikkTHdmBDMCzx+OsqKXQWoZX+PMBTbwp1csRGa633t+R0K8R6aGSxDAejSlHZZTmw7KqmJ2dSS3Rg8gDYUOdg4vhfK3R7/F9rdm/P/H67ock8nYFgr7IiPod9CEMVQf0ffvwLR/rVIXzEgTUNLW8riBMw6YRZUjTNtiYrmytJY21qbOecZZHT2d51M52FHnJeLyG7RxZUshaVhJS1rWK46MlKjwmPTggzwvW1tepqoqbN6+j1FUu7e0wHo/J0hTnLM1qRZ7nzGanNE0lvy9NoiVCTt3UHBwccXJyJjLipo3hl7IWtUnIkmywUEgT8WwfjafC4leansuptMaQsLm5BQFODg8RJq0E2GmdERIfWae9HUc31G3EgKXB3xGiH6Ua2JMynNYkPRsdLYqJfjCjI6uyvwK8qC7U73y2w6/s+/l+7RD3z3DhmujBMYi+sxeA797/jrj3Ox+t21wELEFhLuyJ/vx30wN2ml65EAR1jkzwHqjswTF5vPNH6Mcx/fO8MNwhDKA4CLsxBFGoEoeDTnkZ1rcdRid0VU1b13iVomPOgzGKLEvjWu6GvlwIbI4Qg2OU0tGjV2reJDGf6veMSQbP3t/n9nsDfGWxw3R8lbLw7F26zeHRF/ibv/t/UncPUEoCBohMsCTKWDOTxUWRsLG+Q1Wf0FqJF5cQgf7FCnjivY+NU3K+sYSA7TqJt25bjEmp64YkExPkpmmlOUWjtaEoDNZ1tK2Vx9IpTSNMC+J9ZHqZUi9bUNB1jkRrVJqgTYKzkBY5XSfsBe/BO1gslxidxOk8OFuhSNCFmA0vVrXI/4KEAwQnsdFGO7TJWVUr7KpmuWhZrSrW19fZWC/w3jEajSlLFZkNIovIMmGLtW1LmoovRqYzuq4jTxLSPBfDbS/ehqNyyvr0KkaPKMtiSEJsm/YcHI1IQX/xXTx8houiP3d6YEH1ctVACOd00qGxvCA96f+4aFYcEJr/nTt32NjcpMhyquq8yH769LEkOS1XOOWiy8OC/+W/f8h/SCyGGhcU9CwEZ6i8IXVz6rohTeT90FrxfP85ne3Y2tyiqqoITtoBCP7aH+QUo5YkySjLcTR1tkNjBkEMib2nadoBzPRJSmoMJslEUlAHsqTEuY5VXeOCGPC21mNMyqoWsLepOyonk6oizwlBETQEH+ic+EzJweyoa/mM0hRWq5Vs/iohSXJC0+HiJF0FRXCK1dKzvbWFNpr5fEVbQzmZUhQQfCcAmFLkWUnddMzmM2nwlGVV1dSt4+H9FWmquXH9Bl/+0pdABd777W+xtqUocpz3EXxtyfOMpmtYVAvquibJRda3WM5o25rRaIQLjtPTU9quYToZQ4DFYsaz/afcf/iAZ8/2mS0rXnrpJdI05d779zk+OiBLhUFZVTV1K16NTS3MvaIouX37FfIsR0fAVXwcdPT9VJgkY21tnZMTASiePz9gkIlfAK97GVvnPLaTpiZJU/G6U7JvFVlBmqUirc0ysiwlSVOMTsiyDOcFPCYGwDRNQ9d2rFYLPvr4A/71//yvefToASEmRlXLBavFnK99/atkSYp1lpRsSIRVfYEVCzCZrkW2bejBRXXeQKjeE0nu46P3m0ijU1rbsapOmc3PUKQEoheKF7+buuqYTKZR9pWQZYbVakWrOrIssvoQ7w8dZThZlsu+GXrJgkdjyM2U3bXXeemFL4i3VHPE5dNP+PHP/yNZ7uk6F4GpnNQk5OvTGIgiRWBm1tjZ3uJsccI3v/VNXn7pJT54733msxnTsRT3Z7NTjFGMRgWz2RmbW5tc2t3m6pUrPHr0kPfefYfDw0O8d9y7d48f/eiHfPjhR7z11ltY5/joo484OT1ja3OTvd1dXnrpRd55513ev/M+Tb0kL3IWyyWPnjwlzQpmZ6ecni1ZLBe0bYOPDWuSZWxv7zCdrsV9OU5YnaSxVqsVi/kZs/kpi+UyFmKBtemUK5cvs39wwNHhIefyLmnOZGIqwTs+TaPcXcViWaasIQJpvUdq79Ejxf35njtMfmVXhtADfrJ8tne2efn2q6AN3koCXFvXLOZnnJ4dx2u5Ic8y8iwlTVMu7ewwnU6pqxrnHHme4pUAID0IPTQHQJ8UGUKAaKJP6IHICJrHQkiGHy1JomPKromSfIfWMijJi5y6raMVVmC1WsYhiDlP1rZ28M7sOhvZqfIuKCUDNx398fIiI6jA6eyAcb6PeTGnaT0mq1ku5tTNkqdPH/PCi7e4e+8j3r/zDl/58hdZVS1/8Zf/nq9+9Sv88be/zZ07H/D+3U947bVXWSxnnJ6eYpKMvCgwScpvfvtbjo6OY6iR2DkcZymffHSHtWnJYrbgW9/8B2SZwegEo+S665l1RkWj+x407ZvVKNm1tqWz4rtnnUjcuu485bkPSzhvGPrmS0Bdo3sWsfynL46VEh+5NAKrUiNIk2WUisBWL5ORnwrODWbX4cJe5uOaXbZLeq+pvtAW0LJnCsja8cOA2MXnIsV9kpZsb19ia0uuPwFPNErLQK5qatqm4vjgkOOjI/F7QmwXWudovSNPCm7cuMXxySlPnz6Rc3N5xqqeUzdz0ixFRQnYarVkOp2QpRmZyTBakyKse7H/VZHBX6CVBM+1TYdIe2VN9jLDNE3xwRDiPp1kOatFTdd5skSTmBSjNZNxTt0qJmuXyIopRs8I1srWrwTQ2tzcoqkbnPesT9d4/vy5sDmM5uBwn4cPH0Dw/NEf/iHXrlzhZz//BXuXtjk6DiSJ5vj4JFp2KJbzioOjM6qqw0UgvGfB97VQiN6izvX+TFFe7ALWxTRd18vIo0UB0sz3YNwg51Mi/RVrg1htOhkgCRhIbNjk3O7rS42kRzsr7BnrBKxxLqCtGWS6Pu6jOu57KH++/wWBXfsql8hIUUg6b5KIn9+qqnjvzh0W8/mwd+iekdI3s0rsKPrOePBck78Ig/AcPUKaPnW+/kNklHgJgAnq/CwQMqITiZ+Tx+ic5fnRMTdf2KbIctrI1NNaSR8Vzn2DpWEU39u26eQ1m3QIxHFeYZSha+XMylLZG9dHWxR5zvp0DYwjKEdZFIyKK7x48+tk6VVmZ548H7N/eEiWGra3NgV8NRqtYD6fM5lMWJuM2dvbo2k70s5KE98zqGZnLGdzmq7Btl308u3I0oRLu1tcubLHxsZa9ItWg6zbebD+gmdW9I9VOpDqjHSaMx5NWJtuMl/MOZ2dUK9WDDG76vwzGpUFV65cwdvA4dEhi8Uisp77qIFzMKMfYqi4FntwVSshnPSNu0A5HheUeNd6DfrTTM/+drGvHb4dAqhzeKL/2jnL6dkJZ2cn9FLlnhU0LEl1Lhnv99+eWdjfsa8v+zU4MGTjOgwI4Oz7/dufr3VU/5zlyQYFZgBP+mTWEIeJcn7pYKI3YcBbWMwWNPc+prvscC4jy0q8V2KJ5L2AZ6FD64ZM5ySqo3YdOBlKaqWxNrCYr9hY22I8Xuf09JSjwxOaNgddsFytSPSMvMjlrEoM07UpL966zubmGnmRk2YJSRL3AS/MvB6ECQqqquHJ00MePHhACI7T0zPu3bvHJ598zMP7Dzg7O5N9z4vKYG1tyvbWNrdu3uTll26zd/kKk8kaRTlmPJqIUmtQbXi8Ex9511lOjw9kiND7yKrzteBsK/1DLy8d1uUF6FnJGdz359HYjzTTuCoQfBd/VsfBn3y/X2Oq3wqHFc/weBdjakP8fHtxq7qAAoaoUTlX7cnQ0EVANygJtwmx7/IuyuLVeT6Aoh/w9Xslw+/uJcqDVDguNd8HsWotKiwF6GTALJyPtjr9WRLPht5CwUeLk/Nwi2i5E+T3apDz3He8/4OfcLAxxlU1LjVo7VC6w7uG5dyjlCPkEjqXmxzrDE1rSbOMbFTSti2Gc0Vr2zXkWS6J0GmG9TZaVPx+t98b4Ds5PuWjDz/i5OSMa9cu45zh6uU3uPPxPVo7I00lLTd4RWfBJArXiOzHGEt3FidOwQ7orhkOKFl8SZpGBFS881Ij5qrBn6fhBq9wnSMERdvUjMcTsiLH2mUMQmhIkxxjLFobXJewt3eLh4/vorX4nDjrqWuhmWqdsDbZpCzWmM0PcV6KuOWiJc00XedIk5SyLMQzwke9urVkJhW2VtvggqGzGYlJKLIs+oRVLJcrAo66OcGHQJmPSLSmzEvmZ3OmayVpqqmqM5pWRyBIJh95ntFZWZBJoiTAQwnN1dlAUYwwhaSr5UUJrmR75wUCCUUuQRV13dB2bfRniltEBOP6Ar43Se0L8EBEyUPPxpDDo2dEDRMoGMC8Hii8CBhaa0HJAf/o0UPev/MuCkXXtdg+3KKrBXzQUZ4aHFlmmR095yyA0RkvvvQSb37uTdJMKMgmSWJYhRT4f/3X/wnnLIvFjMVqwde/9hWM0fxP/9O/ZrFckKYZW5ubaH0NawOdbVitxPvQGE2WpcMG6z0U+WhgzgQCTdtiNYBhc+0mb735j1ifXEZrzaI+4oOPfsbDJ3fIi5SuFQmipHMFbCuhG/J5lRgjjD4VDxRnxRsozyaDUWmSZFRVR5qINDvNCrS3GG1ITMKknNC1nsVqgdIelRjyUUoIHctFDb4VaRCB2XxGVTdUdc1oLOm5STplNNljZy9QtcccHh3yzjvvUK0qxqOCl196hf3DfYL3ZFnK2nQqHnLecnZ6zCef3OXGCze5/epLtF2D9QIOaQXLxZy2qSmynESDa1tmp2fYtuFLX/wiX/v6H/Ds2XPm8xmz+Zy2a9je3iQxCctlRWcDXWR6GGN46aWX2NzYpK5bQADbtqnp2k4ksV2NtS0mTRiNxywWMim2nfiv+OgTZbQhSVNh3SQJaZKQmITRaEQ5KkUuFaduIjH0UbJvqRYrkREoAC0SMy8MpzLL6dqGx48f8YMffp8sS3jttVdYLZcc7O+zXC1597132dre5LVXXxsag2EqFpsdOC9g+2v1XNpx/jOSzJwMX7vIeJkvzsjzEjTR26ZDa0PbdBgjjMayGBF8E8Frje0seZEzGo3EMzGGM8hUUVNVQjNXOqaG6j7VU5rw2XKfX73315zMnlKtVsyXx7RuBbpjuWwwOic3OZ1LSRNPkWcoLTKLPBuDX+Po9IA0zfijP/wGeZ5z5733mc+jHDTAcrlEa0Ve5DRtTdtWOGciK1DMbcfjkixPmS9mLJeLmICdMJudcXR0SF2tKIqMxWLGJ/c+pukaTJJycHjEzvYGTV2xWlZUq5bVsmKxnNM0FbZtcc4xXVvn2rWbjMdjvO9lpJoQHNbJxD3NC6aJppiM8c+esZjPUMDpySmrxeKC/Faa3t9t+M5FaQKEWSdrcEhV7gv4CJipfn8NYlEh56whMTlJImC0pBtnFEVBlmVcuXqDohizqipsJ8y9/edPuXf/Y378kx/x8ME96qri0qVLfOYzb/CZNz6DMZrFYkFTVThnuXb1CkWRSUANDE3KRY8/AST9AP7Bp72M5CaNSp6L8bXITgT4S1MZotV1jTMqJriJ9DiP4GrTdZHBXtCbdfcNeQ/w9UMnpZA9v5qTZTloSLMMrcB5RZaXbGytsbEx5fmzZ2gVKMuCjz76mMlkhHMdBwfPef31V9nd2+Xw6JAf//iHnJ3N+MY3vsbR0Qn/5t/8G7717W/z7T/+Y05PZzy4d0+kGKknJBJas742oa1rtra2eP78UBjb6ZTguMAUbQeGvngbC+Bpoy+T925IKu+sxXVdNCqvI8spTrr7yf3FuX1s8hiAF4a02iHhOQIORhtUaFFeEpel9rUSoNRL4OhVPsJXVZHtJ6Bzv9XpITX8vJ3oQY8LbIAIdl+U2IWgGI/G3HrxJdY3t857ZS9+R8F5YTnG+mf3yhWSLOPg+XO6upNg1Sxl88oee9fXOVnMsNEzt+tWnC2OxXtLBRanS8qypLPiW5amGZNJQsCzqpc434myg4Q0HZMkJRvrV8izEq3HJCYnzQx1Pcc7YekpFbC2leTh0IGOfs9R6uWiZFrCwjKsK5mOb1CWG6ytG9mfo0dw1zakiWExP6PIc1BwdHTE5uYGxmhOz844PT3GGMXVq3vsXtrij//4m/zN33w31sTS6C0XFSEoTk7nHJ/MqepaBo5tMxihqyDXYpFnbKxvkmQ5OpH0epSwRzobaNoa27ZUq6WA47WAnCbuYYSAV71tgEi6iHtY8HEt+yhZjOsznnTD4KNnymVJRuNbSX4MkdHbNoyKfJCe+b4R7evTONk4x1jO/132Uk/XNhwfNed2CiqauGs9gOuhBzAieDlQDy9cUwOoHQTM7H1+TSJs3yT6EjtnRU7bdjRdEx/z3L5Anl4EIaIM3EYWyLJaoBJDlqYkqfQJVSXJx6KUSvFexfNfftaojNY11LWsw6wY451iOtphMtmiaR+xub7J7tYO89kpNS21bxmNdriy+xZFfpk0m5JkAl6tbayxmM24e+8B169fZbI2xXpPXTXsbF9iPCoGS5nLl/dYzM+EmWSbWLfVUVLcooNjY2PCiy++wM7ORvRgcyjlIEg6uYBmGhtU9GQWT3PrQuRSxrodRZLlbGxmjCcTTo4OODs9EtVNiFkpcf9cLRcRdxYGqncdWvU2InE/6xlJRHkg0hxIGIjYQ1kryeUeJ4AEHuMRcC8O1vRA8zxfM58iWwzLUvZFYfSf23sMa7cf6sXn433vfRsZg/G+6uLjRcmsPu/q+BSrajifNRLUJ0MTE5PjdXJuJeOci0E0dkiTHq4P5L0McVAUoke8Cgoc0DqWZ4fsvXaDLC9JjGJjYxdFijaBxeKUql6JfDHJSU3KRjYmN2KR1DYShqGMWC2gFOPJhKZboU0JTDEmo2lbXLBY12G7luAduztbkd3fUDcSEKZVIE1SsZqJFg5nszM+/PAuJycnfPTRh/yn//RXfPzJR5ydzsSTNAY7RmgJFT1KjTL88PuBsii5fPkqX/jiV/jKV7/OxsYGo3LCdG1dzkzOyTLrG2t411JXKwGugo14gaXrRMmVJuLhrlBDn94jcpIDIGemVmrIJBAvcRnm2E5qS+GwyyA6hCAHtgr0ycqDXzNwLnyNXsnhfF++aNR1cT0O6eMX6rv+uQ2cutADctF3N9J4gneigrywyMOF+mG49uKAMkkNk8mYyXTC+tom5WjMeCSqSusV1kHTNhKkVsmQfrFYsFqtzv0NI/tcfeo599ckRJwSWzVimzJvWFYLXOuxpiBRHoNjMi1Js4BtW9p6KcMEr8iSnDw3zFYzMl1gvcMFIf4kaSAtCkKQa1zrhKbr0FGp8fvcfm+A79HT39LaDeazGaeLD8UbQ9coNEmcZHpHTCRt0HEC3LZdPFA9vrNo3ZJnqWjIU2FLLRYLnLNsrK9hjAQHBETS0VQ1eVFIs2ME1c2LAtCkSRblKG4wM+59/0Dub9jg1rVvcHjgqbp7dJ2jazuCN1G6o9Eqp66k6W2blq5p0ToQYkpo1/lI407ihEPRdlAUGV2LbPrK4FzHciW+eEUeUVotRqhZft6p++BwvmG6npIXYrhsjBaANIJqfWOVFyMp9LIR3ido08XiUQ/TjywrsV2gzEtWy4oru2PyXPzdFotFnCr3m3EYqOshXAT3fvfPp/99kDtyDk787q3/954iH4JIS8SMP2U8GouMsFqKf0jjUNriQ4f2HTduvExVNbz26qt8/MkHLJZz9i5d5drVqyKrg/i6Y1MSZTC3bt1CAldEWvvBRx/E5lI884pCAADvAkVZYp2l7WpJnVIG76VBlGmRNBdJpOwanWAyDT7graJaLbh39xNeurVG21mOZ8+AhCwthblqDEJyFEBjvDWm69roZZZAMHin4ntk2Fi/RFGMhGGCpWmXtF3LdCJ+KyFIApFzHV3b0DQN+/YpVS1pPNpA09ZkWUGeFiRGTLQXyxlZloJOyIqEvJjSdC2b67e4efObGL3GnfAxVZVxNpvxm9/+Grzi1duv8vrrn+Vl/wpVVXPr+gv8y//y/4gNlrrt+MpXvsLe7i4mT3HWsrOzwxfe/gJ5kmKUYlwWbG9ukGYp4Dk63Gd//5mAR86x/+wJRZ7hbMbu7jYP751x7epVmqZmtZrjSWibGu8dN2++wNWrV+laAbW6rqNerTg+PuT4+JiqWqFwFGU+eMoliSZNxxSFJD+WkYknKbAhNluBrol7RQg0VU0dZKJnW2Ek9OyYIZUNUKkconVdo0lYX9/Ah8B8ueS9995hNjtlY0NSlLa3N1nfWOP999/n6OiQd999l5dfelHWsFyIn2poBllwvMP/1hXWX19iY+CjbFQo78JUXRK0oiw2WCzmrK9viIymPcVbT1VJgWO7Fm0MeV4KE4aA7TwkwoZoW3nto7EUTmUxwrmY4AmkCZjcEIIUuifzT1AqkOaKYME6hTEZ49E642KTAMwXp7Rtg1JOTJIpGI932Lsy5uDwjB/++Ce0rWW1arh56yV4eB+iT+VoPMEkCdVyyYN7n7B35bKYLHcNs9Nj8iKJRY0YKBulSBNDmYv03doGZ1uSFHYubWJDIB+VrKqaxXJJVa1oW8d8sWJVr2R/amvwns2tbV557TXxHOlBjaDPBxvB43EivUGKrc3NDbxzkY2taLtOPu5++KHO/RbFLkwaws4GAQLj5NYYQ5LK//M8IzECUud5TmYy8vS8cTTRl65nFxRFwSKme/dnpIBglTBP65rHjx/ykx/9gO/8h7/g6OiAPmFx/2CfR48e8PDRI/7oj/6AtekaXSspnZ3zJB4Z1F1YlyFWR35gWfx/aGZiy6HQAlw5L6ywoNA6xflOwoaCJksLlotF9I5soxeuR2nxIc2zQtjuPgxrMQRh8Q0gve+l+oo0STk3DfdU9Yosz0El3L59m0t7l7h37y5pkqFQnJ4es7G+jrUiX0sSg9Ywm884ODjg6tWrLJdL7t+/R1VVrK9POT4+4uOP7tLUFbs7m3zzH/1Dqrri0aMnLFfzKMNpufvJR5wen6EwnByfcHR0IiE9XUfXVRB6DzwoyjHTtQ3G07VB0uF7eWTXxfChhpOTE2azGc61sZANRANPtja3GI9HHB8eS701VLP9ugwo1fv9SY2QGEVno5eNl7UqIxDZNYiBX1orglfDPtk3M0O13NcYQ5MbzkGWC2tH9eBMiDYU0zU+++bnyIuSzrpYlF9gYndNPEfDMJ1LInPjsD6U4Uc2JqgdHjw5IiQLmm5JUDU+2ME2RCkiy1LqtTzPMEZFJililxGvIWc1o3ID6zx3H7wTay9HmgkTDwxaFbSNPBdRPMhrV1qR5RlapRD6xjVhc+0l3nj1G2zu3GD/aMWDh0+xrWfv8hWUNiTGcHR4wI3r17C2YzwpAc/J8SEbGxvRw++M+XwGIXD/7sfgOlZVy4OHD9jb2+Vgf58sTWm7jqaxLJdLVtWSpmlwVtgKvVz+8t4u169fZTweEQI0bWBV19RthzIJXSvJk1maoEYBv7ZO1zYslwtOTo9ZLWaD1Hpg+irP7u4O08mU07MzDg4OIkARmcqqB7n6wUcPTMg5qXrPEQaYhN7wXcX2RoUAKtoTRGBQsAx/QeolW5NWPegT944exOa89r14Cg/DjMhS6QFr76OntvfC3lKyj00mUzY2NpmsrZHnBX14X0CYql3XslwtOTk95uz4OCqYYnp0vBaVD9BJ0ERV1YRMnnfv+9wDe/3e2nUuMmMMzrc0dUdTzdE6JXgD2rC5scv6mmZUTkGlNO2E6XTKzvYOzw+e0qwsaVrg7IjT0xZnz5iuJWRFScDT2o6NrR22trY5Ot5ntVqQpjmvvPKqrCVnefb8Od57NjbWMVoAT+nNZLjonUXjuH79Ci+//IJYiBDifhIIEWhwTlQAIsuFznm6LlA3rYRyhHN+kzEGTDxdNGxtXSLPUg4PntN2MWQsypYXCwkBCCj53UHWUWyG4lktn3s8imNTfp4o2ttGCQgTV2UQhrXWPcv5d3ul86/P19f57zy/h+y58RkM31MXU0TjnQVH6ffbHmwL5yysT/2+eC31TOpADMyCtc0NNjd3GI9GIjONzDPXe2g6N9RXp8dHLJdLbLSKUZFdr0QnT08WMUo89bwPpGnCuCylt00TGdT6JSFYnO+kl+6kLlm1S2rjyE0OPlCtlljf4oKPZ7OOEl3FZPQiu9sv4UPOfDHn6ZNH7O3ucu3qNZaLBc+ePefZs+fx2pKeuSwLrl27wmQ6RaF4+PABDx8+5uHDB/zZn/07fvnLn7NazWUlahOVQqLw8UAf6BKCo+2aWAt23Ltf8/DhQ/7++3/HN7/5Lb785a9gXUdeFKRFiQRcSajY1avX2dvdYTwZoSIg3HViZXN0eCgM2lEh50TX4WwXryEZOrddK39aCW3sbLSR6TpcqPExtKyLth49814RYuBv3Avj6lIRKByYepHxIim6/2uATyTest5+FyiT3t8Pe2sIIaoQZUjUl4h9tSD7dLyyohVCrzRUITCZjLh+/SrXb1xnbW0q2IZHwnJCoOs8rYPOQtLk5MWI0WTCxsY2nXWirlnMODw4YLWUenKwUPid60MGpB5fN5RdkIRuJXZILjiCdShqUVQGIVKlaUqeZ+R5xmrRQbCYOKA2JpGBLJo2JrVrrTE6RemELCsxpPy+t98b4Hu6/xuWjaJta7LM0NkmboyWLB3RRLDGWofzAVd3JCZB64y2c4D4nc1PF0wnG5TjlMXZguVyJSELXtHUms2tNdLUD4smkGKtwntNaCTiGiUT+KIosLbG1pIUlUSGidZmkIiKIW+JJPZ0pEaYOzaIWa8Pjq47wCSGNAPvGopRJodVUAQn9GCjA3meCcMgSanqU1ar5nyyZnSUfAbaTgC1fjqsdGA0GqGVoussSgmA511gMa8xJsZ+O0tAYujTRPwAuq5Dac/m5hZ5Oebp87u0rYBm1nZiQB4UhJwsWSPLSnb39ghB0oiOjo4Garn8X+RVvRzmXN7lf+cwulB809Nwzy/ii/cBBsNvlBzM4qcTsD7EVOWUthMQtffPWY8+CV3bglK0TUue5dy//4AQNGuTLaqq486dD3CDNFiYH5KsfC7TDN6RGMUiSXj2VLyI2qaJIEZsSvQ5a6mXIklzrMlzI02n85G6q0iTjKHnIID2rLpT7j39GSfzR8xmS6xrSRJFZ2tYKNYm20ym6ygU89VMJvvJhLLcpihzgu9I07MIdmjqakm9WsTXZDGpIihHqyqCh1VVoUzc9HxAG0MwnnKUyGswirwYYztL3SwkVdckFCMBFk0QzxIV5VXOTVktMvKR4fKVa2zv7CBhCZ616TpFUUTDf2HBJcZACLQxKMdow87OHk3X0NmOJDN88x98E28dddUyKsf8y//6X9JcOIC2t7aYjDueP3/K1tYat199hSRRnBweoAjcef8Oh4eHfOnLXwVlqKsVWzs7vPzyy8JCXdU0TctsfsrTJ494//13+PkvfsHTJ48IwfHyyy/wpS99mcuXr1AWBbu7u2ilWS6XVMulJFU2TQTErCSGti1NXdNaez729AEB/H/HmwIIOpCoFOvFRL03S62bhidPn/DJJx+TZWKQexZTbUejkuvXr/DBnTscHhxQV7XQ5L2TuVoI9OmsQUW/Lc6ZXH0x2Vd4MkQJNI2NfbKOxbFCEWWLUoJQN3O2dm/gXYJROSYNaJXIVCokoFKs1cJ2VoFyXAgDc7UgNVBOCvJ8RFlMmYynqJj0XDUL6naFik0qCOMyOh4JY1cnJASqesnZ2Qmz2RlJKgVxmY+ZTne4deOLJOl1rH3CfHmXH/3oJ7SNZe/SZTY3t5hMp8xmc1577XX2dvew1rG1vc3bb73N02dPI+iVc/nyZVbLpRhNu45Ew3hrnSw1nBwf8ejhA1QIvPLqbf75n/wJq6ZmY/M5H9z5kDQ1vPm5Nzl49gxhTTc0TU3XtgJeb2/w1lufwyQZ82WFs71EMsikcCVScu/E60z8NTQaxWhU4oNltVxGgK1vyIycScYMDLskTYTpkSY471BBTNLzomBtfW0onHtTZO/jlN+dn5OSpHgeupDnObP5XNa9k2YmSXpP0Jr9/Wf87Gc/4a+/+9eUZc6NG9dou5rVqmI5XzCbn/L+nXfwvuGb3/y27IWxcBfWVIjNNeesVN97i8RCjyi3DAy+WgBd67FthtYJ69OUtltC0HStY1ysidS8FdmzCmOKPGCMJ80ynJXVnqY5ENAkoBVZ2gJODOAxw/mQmJzxaCQSiaaVtDrbYn1L04hH1Esv38YGYVSnac50uo5S0kRsbGwCYWCBlkVGU61YrpZsb29hbcd8PqcclUwnU9q25ej4gOVqTlGkAoZPRly+ssdHn3zC06dPqOs5rm2j3L9lVa1YrQRswXW4TthUeZ5z/cYttnf2cD7gtaFumuhno9HGxAAX+VyLomAyGXN6csL87CwO82T/SI0BHzBG0XsnKa3PwZN+yh5ZSFoLgCNJlv053/v/KdxQi18oyn0fbwCEvsgXUIS+IeiHGEPq8lBIxN8h7cTW5jZf/urXSdOMqm7iAC9KsruWqlqxqhY0TU2I6bajosQozbgsKa5dZXNzizRJcc6zf3iXD+7+NW17RpYptNFMJtPYjHsJVIkAcO87bLsOgiYJKcZMmIy2WF+7wptvfIPHz+7x4f0PZA0mAbGpMQI0qIZRbmi7Fa4V5lKelzhvCG0TvboEmF5fu86LN9/GdRs8eVzROMv21iWqasWTJ0/p2obpeMLn33yTRGsu712iaypUcNi2YfPqFfI0Ae/IUkOZ5/zBN77Ga6+9yt37j/ne9/+eosipshRtDFXdMDubc3q2oG4rnO3AWaBjZ2eL1167zc72Fr20vWmj4kYJQOn6BEcVerdztNEkWcZEr1GOSuZnIw4P9rFdE2tBqc9s11FVK4jMFPo9QQmwRwTQAIyO4RA901QLC98EhgFviCCf0r3/Ub/43LCWhtPUx/U7mOcR174a1vRw1nMuhesZJATZ14PqgcXeKiGCfVGeu7a+wfXrL7K1fQmlDJ1z0TqhD8/wcSiTk5djinLE2nSds5Njjo+Oca73GvQoxJstSROKPMemGh/kfXHWDu+tMQkECY+zriM1OdpkJFnC+nhXzv2uZlnNOTk5ZbVasLa2xmR6iSzLmE4nKKWYzeaQBIzJ2Lm0h1ZTDo8P6VxgsrZOluZkmUGrwN7uJd783KuMRiUhBL7//Z/xwZ0PUUqzWM5xwXFyfESaJFEGGxNunWNUFrz+2itcvbo3DGV6OWAIAR9TSquqZVXVVFXLYrmiqlvaTljKWSqeiX2trrSAp71EPoRAORoPYVFt20gNpTXeE4PuhPWJF+UO9OBUiMM8YYTKMKTfI8/tCURiKv6JgnF5CeMzelhjnouVZA8icL72B4CD3/m6J1R4huTQAEH5YY+WIZD4ogurQF5bL5vtweL+GgjBC10YUFoSo69eu8KNm7dY39jGek1dd9H7Xfp44xwdXfRnLiiLCVsbO9TViqOTI05Oj6jrlVyTKhIw8PRqe+8cyhiKSYbXlmpZU6/kHDKJJuDiMMUKWFV3BBfoMujqikRr8YxUjjTpfeh9VAHGQakvAYN3K372s5+igucP//Af8pWvfI2uFVZyDzT2CeRaJ9RVw73793ny+Ck/+MEP+Pf//t9xcLiPcy1ZnjAalRRZQZGXsUcvYt9th2HYcrlgNptLKrTr8MGzf/CUf/tv/2d++9vf8Cd/+l9w7doNyvGENM3F1iB4GiM1Ttpl6KjA0MaQ5SVKJ6yqBufg0u4lynh2igf+BSl1XCH94MtH1nTTtsxmc+l9koTJZII2GtdKMFzTtXROQri6yPzv2o62aambRmwQvI/nraiBrI32C0rR2yioGBjTn+Hnz/H8eRHZeNa2sb71Q3rukLIbOxjUUErEMznj1dsv88rtlxiNRjLY5DxczHkJLXVeLBs66yJ42A8JBRsoyglZWrA+3WQ5n/H88Dnz+dk5is9FrEOeX1ctyDrwOqX2rZCyrKW1NeUWQMXsLLC2PhbbIdswna5zPFe0qw6PorUdo3JE01WooCSoLfr16qCpavFJzkzH73v7vQG+NFM07REoqBqRV8pUUtO6ltY1cU8Sj44iTVnVNnpYFXSdoxytk+Ylm2u3cL7i9GxFIGUyvURRFHhnOT1rSFJD2zVR5qdZ1RIgUFV19J7QmMayWFYYo5hORmiVDtKKRGspoLQnDIa8KVlWRKP6DqUCSSpyYmc9WEfT2Cif7Njc3MRoLbI9Jammy37i6TxtK4EL3gestyRaAiXmyyUEQ1mmoBVN01KOCrrOopWODb2jLMeMy21CUJzNn2KtPI48V0MTPVGstahgODx8hg2npJkc6uJTE+i6llGxxks3vsyVvTd44dZtCZBwgf39g4G1AwyNV2+C3hdJvwvi9Qy+3/03+F+Dfv1j+yCHpI1SNBsj7p0PcXPMWK4kSbbfqHZ39xiVE05Pz6jqJbazLBZHw4TWWjHRPe8CIpbZL2ptMMqgtbDFtIbxeEyapBCQiXXTgIeuETPNJM0upN6qCLLJBpZlBaNiTJ6NSNMcjyQIKiWF7GRUisQrQAiGvdEW1rVY1+JdicKgdcF8Mce6hqqas1olaC1TmK5rMQkYoyiKTNJU44aslEwTlXZY31E3LcFrQrBoNH0SrBc9j/jGDNdmBpF1aJ0jKJl0lsWY1aqWiaf3ZHnGkyf7PHv+c0aTNUajkvF4xGQ0IU0MOqYCp0ZTpgV6NEJpPUx/ZNKohs21n6h75wbTUjFNd+RlzngyIk/EGP39D97HdZbDg30OjvZx1rG5ucH62oTj41N2di+ztrGJ0gmT9U12L+3irGNRVayqhtVqyft33uVvv/vX/OQnP6ZppDkxKnB8/Iz79z/hn/yT/4xXX32D05OTAbCx1rNYLofpSW9c7cMFtkr04BBmioARfRjesO6iB4rtpADXEfhdrJZ89PGHLJZz8jyNviwCQK9WKzY2NphOpzRxej0kWYVekttPW6VoHK4pf24yfhFQz/MclWwQz3JGozEgQwjvHY2tsU4mwOPRJpPRLqPJJYyWpN/Vakaa5qRJQQiGshSvRK2VAHcYrFvhvaWuF1jbcXR4QKpTrGtobE2apTLMsMJOEbarjowVORPEvD0QaEnSLjIDPU0D08kbaLOHMhM2trZ5Lc9xzjOeTBmPphglrNSmFYnwdLrBcrXEe/jMG29y+/YrVHVFs2r49je/TVVXWGuZTqf8yZ/8CYvFQiZ7rbDFNzbW+O1vfs3rr9ymdY77Dx8zOz0lTQxp9Ptp2obFck7XiI/ZeDzii194m/X1DY5P5uBFYmY7y+npMUdHh8xnZ6yWi2jSnDAZjyhHY4qiRGvE0zEvRQZelhBCBGJKkiSJ8hD5lF2UDzjXCfDcthImU3dDwIfH0TYiXw/23Dfr4r7cQyp5mVOvBNQOCopyRD4qsN6yWM756OMP+fFPfsTG+pQ0NeRZQpIarHXsP3vOw0cPWK4W3LnzHpcvX+bNz35+uL7jr0BkSRfAIcz52RH9XnqZeV+OhhAYlWtMpi8LyGRa6kY8WaaTAkVOGUOilHJY17GqjvGhjhN4RZlvoFRGlmYUZUrAUlVnVPWcJJHwk/F4LE21h67tSExBno2jUbslTy+zvnaL2ann0s41Do/PePp4n62NTV5/7Q1A8fZbX2S+mOMJzGanPH/+nJdffpEQLImGybggBEe1nINz5FnCZFywmM8JzjI7O2a5nHHrhRcxieGd9yQ0yFoxt2+aDu/FVqLrWrztwDcEOi7t7vD6G68zGk+pqo7FsqZH65SO7lBe3l/XbwYoynJMFhNrD/afRwWFH8KSzgvwCO4N53ovFQ/D1/2u1IMl9kLY1vlakL0qxPTUi82Hj55sslakke5l1CLL9CQmJU2zKDEUoHs6XeP1Nz7DaDxluVwNdUTTVCxmZxwe7nN4uM/p6TGL+QxrOybjMbu7e6yvrzMeT0gSYYn44AhOMy4vce3ymzT3j+m6o2GIEoIMIKWJO7c+0EkCIcW1hlSXbF/a5o3X3ubzb36DItvhyfP/ltn8iDTJyPIMtKFqKvJcfPdQnjw3pCZnNCpiAybegz5YXCcput4ZlktNYhpUAiYVkLAsS/b2LuOtlfUUAseHB0zXpqytrZOmGV//+teoqhW2a3j6+Ak72ztMxiPWJlM21tdp6g8p8pxXXrnNe00tvsCN2HWs6iVd06Dw5JnmhRduc/PWdUZFAUSPzQjgd1YSW0OQ4AIVJIjEKxFbDdInBHiejNfQSnN6fMRiMe95Guwf7Mf9Sg8hOyRc6OoCRP9FzwUSUtzbjNFgW/AyvNeI35IOMfQknO+D6DDsOeKrFH1Nh32of9z+Vwxcjr6QkecRmV99QnYYgJ4Lj4Goe67dvMHrr7+JMjmt9TRNJ++JjgFrzkbzeKK3oYzzitGIoigoyhH7+89pqpj86RwtQJ6hkhSwEcCKcnjvGY0mdF3Hqloyma4zSjNOT88gGPZ2r7G38zJZOsaHmsOjJ+wfPsVrS+3OYJVgjJwhR0eHnJyeUG5OwATW17Y5PLT84uc/55XXXmfXdkxGU3ZubLG1vUWRp3StY+kbjE7I84I8zzk6mtE0HXmW0zQNZZFTVauoOuiYjEa89MIt1tYmwnBJDMErtDGYROqY45NTnjx5xtnZXHxiG0vdNHSdgCOJNqSJeJtqrSnLkvF0XSSXumeRh6Fe2t7e5uDgOU1jkbAC2f9CiGxKG8jj59z/3IATXOh7LoZcKcAoSI3GBXfuN9uDfvFeQfVMPIZ6jn6F90OwcxpRXHcxIMT72O+IvF5AFRWHuP39JbzHuY7EmwHSFlzax+fcs6Q9KE+aJFy+vMfn33qLrZ3tSEoJ2CaylJ0McgToCZwHdglrTumEspxwpShZW1vn+HCf4+NjOtehenBTR48/HK21TIqSYpzK63GthDDFcVBVtaIQ8T727gqnBWASkCaC/tELOwTQOkErhQkSoJSkOd47Tk+PUUF8zEHRdX3QHohPvQxyVlXNkyePef7sOf/m3/xb/vZv/4aua0iMYTrdYG1tHFnZCVppxqMx6+ubwvqLhBJrpdafz+ecnkp9MF8sCYgN1Hvv/5bDwwP+xb/4L7n9ymuMRlMJhPSe+WJO97iVgRthCGpKkpSHDx+iUWRZxmq1knCQOKARFWMMc1AKebv1sDakN0nY3NhiVI5RSg8J70IocPK+a+h3xb4nkZC2T9ttCfHED3VL10n92TZtJEfVVFWDd0K+alshY7TWEpyLIRZB1CRKBhHBxxpGa2F5KvGx1EajtYRX3Lp1k8985nW2tjYG8E/29jhk8lLbOUcEIsV71PueNRgx+QiGK63Fq319k9F4zOHBASfH+9RNE4lJcvaIP3QQdqoNdGVK3S1BKVzbCtt1fcrtV17CmBawqJCTGM369Bpr46sE3eG8qO6ct6TJmLJI6ZwjTUfk2QRnJQjNuxal1vl9b783wLdYnqGTE0DkMXbVgyQ6NjTCmIHY5LeONMkIPhG/pdBGWm3KbHEKqqYoxHzaOWnGy3LEcrlAd8IAOzqaURSSmGO0lhS3oONUxZEnGRCwHTSNRekRypQs6hl5pvBWGnUB10raRpGaQJLkOKJ/UoA8HZHlI7quZTxyVJUg8grxUOupoFVsOJVS5LkcYEorlJOLLMtSYW44FRkDNVVV0dqWMhcmgcg/MySiPXB6ekaSjGhrj8kKglkSEFqtNCnQ1kbCSZKWrus9uKKJvU7wtmBteoWbN15hc3ML5xyHh4ecnJyeA3C9X5dSw4Snl9T4ITH0vOjtp6S/S7+9eDun454XVp8GBKXISlNJdDs42Kdta/okJ0KI5u2B4AJVteLcBFb8a5yzgCSnAvg+1RSh5ffJPFpBnuVxotczFj1d29K1kn7ZtTCdbpCmGUopRqMRVTXH2xnTiUgBR9mEIlvD6AxHoGrmtO2Kpm1oG0+1mos0yosJqoIhBUcYmxWz5RmLxSwmgAXG4xGj8RiQNMe27STxtmkxURIUgkcb2Yy6VqaUaW4gJHTW0tQVgUBZFKCi4a6Swraua6wVSYxIljSEhLpusdaTZiJ1S1LFRx99zPHZI7705a+iVcDbjq6q6TrH/QcPSdOE0bhkVBTk8U+SZORZTp6KIXWaZujERDlTjkoFbNVG3odB2tPUrNqK69eusbe3G/2kOrpY6GqtmIxG7O3usbl1ibYTfyIB4oR63ScW37//Cd//4d/z23d/w2hcUI4y6qqirVb44Hj69Anf+97fMh5PuHb1Bn2KblaUMdVLCpfeaPXiLHX4quecR0DiIo/POYcOevCbLDNJ2T47O+HRo4diNq0Vt269xHQ65ezsjPv379FZy/bWtiSfeY82Bhe8xMT3TY3q+wkpz3rgvX9OPpx/3RuaK62xbcfJ6TF5NmI8mmBdIFcJZWFwXU3TOAiGuq5QyrNczTBaWE4iKzi/tsejEc630c/NiuwCT+eEPW2tQStDWeY47zCJeDHJlNhhtCKEjuWqpihK0hQ62xIIjCdjJBU0YLt1nu9XHJ3+mvWNbdana6xNp2iTUo5Gw1QvyRImaopC46IfYhqbTmvtwKIAqJtmSMve291jZ2cHazu2Njd44YVbsbH0/C//7t/z9hffZnZ2StdUTEZjPvn4E549e8ru7mVmswWL+YokS/jsZz9DUeacnJ5wdrZiWdU0bcvhwSFPnz3m17/6Be++IwWctQ15JgmMb731Fq+88irlaIJCsXdpN7LA5Bw6Pj6CoMjLAte0wzqV4qnBug7X2ejdGmJjGYY9sd93g+tlOeFTg5YwYC4XbBXiXtenij99+pQf/+iHOGeZjsdyZvkO68T38taLL6AM3Lt3D9e1fPzxx7xy+zWK2PwPTW5/LsTf2Ycm9N/vzb1/9/yomlNOjn4lzz0aLee5hNlolTBfHkCANJNrqqpX9AnGoDnllFhbx6kxVPWCcpSyWoksuiiKQZLlvWcy3iTLRiJVC5qXX/8jNtevYe2EUXnChtdMrk0luKFpOD07I88LQlAsFhVf/eo3OD46QKO4vHeZV27fZlSOYhqpYnNzjSw1zE5OODzYp8gybt24wX/xp3+C1oYPP7nHb377HgrHC7du8PjhI5He1bJ223ZFcB0qWK5fv8Jbb3+eNCuoGysvUvXyLzPsQT1IoBDZasCTZimhFSsKAaePBxBD5Hw+Sk/lc9H0DCbxQXbWg9LDPtN2IssmCIM4SRMkfVWRGBN9jPo0OIMxaVRDZKSpNOLGaBKdkKd5bMKl6dXGDHLb86Ghjkw6Q9N0Q2PRVDUHz/e5f+9jfvqzH/OrX/2c2dmJMJlCkKZ17zJf+MIX+fKXvyxDlUaUHf3e0FlPWxc0TuRCa2trg3JCklLFU2i1ajF6xM7mTV568XVeuPUyly9fpsjXOD1pefjgPvPFisl0o6d40TmPTjJ8kIFyf8vSTK5hmSyTFyOKPAJK3uOs5unzZ0ynAZMWFOMRWSZ1bWJS8lwS27WCy7vi+3s2n3FycozSwkqdLyvWN7Zou0CRi8fv3bv3+MH3f0hRZOzt7fLs8Wb0KZ7TNCu6tsa5hum45M3PfoYrl/cGUCugaFqPcxrrAnXT4WwYEnKtl5RduWfPppPmKCCMvrIsCZubWNvRNE0E1jQXwyGstVKv9b/Xn+8pAzmu/19kh6SJhH30XpLeeUIiwXbEulUAkvgBxL2oF39KyX/xgc8ZVee3Pl6BOBDsHycyUS/CNCFQ5AVvvPFZXn/9DTqrmM9rLryUwcpBasYL3poxAKcfFo4nI3a5xNPHT0RqHzxWZ3z+S/+I5yfv4JXDmBSQULm2beSciP5gtvPC9HUMtg1ns1OcPUZpy9n8mLZb0bQL8nIkqeRIsrbroMhzYTh7TZaO6ZoZjx895v69B7z44ot89rOfQ6M4Pj5iOp1SliVFXkqdmCW8+OItbt9+CWNgMhmxsbHOxsY6o/GYUVnQ89mCl9Tvtu0IjcgLl1XNkydPaZqWqmo4Ojrkgzt3+Pijj3j2fJ/5THxxlRFj/fXpGttbW7zwwovcfvVVuT6LgrKcUJSjwSOv90FcW9/g6OhQUnuVlp4jDqc66+KA1A+stxBkT+3rshB6UNUN563IA7uoYJC1Yn0gSVwEVPor5NPgXs9kFoBPnRsEBkDFXiwodIhMQsWw5of79zViTJ/2CCAnY+Lzwcw5kUH2+XI04vOf+xy3X3mZNMtobaBzjrZzdJ1UnUEJSy24c/mlimFeOu53Ph78RV5y6dJl8qzg+eE+y2pJz0ANzrJYzcmKnN29S6yqJUkayLM+Yfy8Bu33BRW9EVvbYJ14ZBZ5LhYNJmBVDIiKn4sGsX4CjElYm67Tta3UKlpdIIgosfJJCzorLLunz57xP/z3/z3f//73UcB0MqYsC8qRBO2laUpZlkxGU8pyFAEyH5l2wnw1xrCxscHNmzdZrVZ89NEnPHr0iNYKsHV4tM9/99/9P/iv/qt/xWuvvUEoSpIkxYXA6WkVB2MxvCXuiycnx5RFgXM5z55Huw2U9JkKlEqGRPYkAoMBMEqssIzWA5tca40yOnqMi42LUqAM6Bg6amLYhDonng7YjgwUjZzlaRYJBQz3NyZG01ys87wfHqiLe9/J8QlrkzW8k+veOkvXdTR1G8PBrNTRueG1126zd3k3vo5ogYb4JVsr5BXvQuwnLHXb0jTiy+kiONnXFfIqo3xcybWRpjmX966wNhnz9Nkzjk6Ooj0NaCUs3GW1ZFYqstzGQazFek2eGtY3xlTVAqWaiGVrDo8OcVbhrGI0KWltQ88Iti7Qth5lEkLQdJ1HYciShDb2pb/v7fcG+LTRA7LfNpaANN9aG0lts448L84BH0tE+kvSNGexWOF8S1GMaNu5THQGrzaZKgTvSY0kV87mZ3SRdUMI5HnBaJSJASUJaNGs53nGsqpxHayvTzk8mtG5ljoB8Qny1HVHkW1g1BRjHFmasupWGK0oyoT5fMHZ/ISqXoJyJDpBm8GVFUUCKhajQdJp+sz0JElYrpYEFHVt6TpJ36niFG5ra4ftrUsY5SjLgtVSEmRN0nE6f0zVdpTFJlevX2exOqWqHW1bC5rdpwkroUiLj4ge/ABHo5zUrHPr+md59ZXPcmn3krCkDg852N9H/EH6C/DcBHNYTuq8CAE1gHrAQIMdJpyRLdBf+N6JX5NzDmdFxtMfJAM7ME7IDvf3SbWmWi4l4U5BohPmZzPSJBemrPcxOfB84pXqPGrWVQTsgkx+4sgrMeeeSn0Sbtu0mMSIF4HzMfhFXsRkvMHGmkhYUf2EuiXPc6xrOTk+4iSc0Pvk5WVB06zQRta/bWNRmkhKdJ4Lc7CuOwlE6Vq6TpqnyTQnScQX0iQBHzp6eXSSirzQKM1iPo9prZkUPY0kRnsvvpIEhTFpZJCJh5wCtBGWoo+G6pIyKawhpTXOKWEfah0N7A0EWMzn3L/3lNdf/wxbG5uoOCl6//1f8+d//meR3SiAXZ7n5EVJnmWUZUFRjCnLEUVZMl2bUI5KiqJgPBpRlvFPXjAZy/fyoiDLEtam4qGWpRlKaYxJyHJpBLM0FakDivn+EY8ePxFWgnVc3rvCzs4O+/vP+enPfszdu59waWcnMo5StNbMz055cP8uy+WCp0+fcefO++ztXmYIh/EyJ3Tx/buw9M9BPblA6D2lBmFZQNALdc4GCF6KLxOp+ocHByzmM4wxbG9vS/LopUtcvXoV7x0PHz1gPBkPyci9R0ufvdY37wRi4i/n7BIYGikiq6+qKlbNMUSphjEJneuYLZeS/BRksHJm9hm/PuZsdsSyeUSeG5LIDuk/4yxL6bqWRKc4V2OdHGTayBrVUa6cpQkKQ5rmccgsIRDCONQxxZQ4FPE0TYXRmUjCg5OwBGdJkoK2tdz95B6bW2Ju3FQVeXrSe9QOktU8zyVtKs1J04REJ3gjHmhpmkmsfQRBi3IUHz9hOp2ytbUxBN6MJlN+9etfs5jPsdbyzm/fo7MtW5sbERzTfP3rf8TLL99GmxTvPXmWsbm+FQH0BJOmdIsFH3x0h9/86pd893t/y/PnT8XLJng0UK8887NjPv74Az73+c/zrW/+Y9bXtgYTdBtBvNVqRVIZwpn4EonMtue4iGUEStO5DkIYBkp94XIO4MsqVnHtDsOVfp3a82RwpQyjUYltWo4PD/nNr3/FyfEha5MxJkmYz+fUq6V87kmCKwquXbtGW9c8e/aM/f3nVNWSsizOz8WLt4EFc359+Tip7ZuogSATb2KtwLAemygNkWRoRV03FGWGUsQzQ2Q9wlxeYaLnv3MOj0IZkW/lRYIokWTCXI4EVPJeUrmbxqHNJp/cfcDVKwmTNcv65jp71y5j4pqyneXSbgPIZ2RtR3CWMi+Yz2bMTmZ85ctfFY/gpuMP/uAPODg4iJPtjjzN2N7eZnY2o64qXHB85y+/w7u//Q2vvf4qb33+81SLhYQUdA7XSZqkwnHz5jXefvst0kwCttqmo6stwYmtxmq5ol6tWK7mtG1zgTkFeV5QFOJzFJwjTVMmk9Fg09EP9dquEwuQJMHJKF8aLKUpRsUg5U6zBGOSyFQIYv1QFiJn1dH3LO5fergah9gMiGEI0hzHBPjgsXFtJomkdC8j49bG0IkkzShHE4pS4VzHarHgwcMHvPveb/kP3/lLDvafoFQQn1cFwQor7tmzJ/zVXx3y4MF9/tG3vsWl3csE7yXMIMhwaVSuM0o30CrBeUvbNEPgV5oosmzC67ff5HOf/QaXd19lNBphXcfx8TGHhx+znNeSnN5J6FOWZBF8j2vRhyFUoWlbfBDmrzHCkCWC9mmSYluPtTlpXvB8/xmt9WxubTIeTUVNUFqKPCNJDEVRMhpPcc5x6VLBtevX2NnZYDweYUzCD3/0c37y45/ineXOBx/zyd27HJ0c47zl4w8/lFCr2ZzFYjWs6cu7O7z1+c+ysbEOCCMUrePA3VNVlqOTUw6OjqhWNU1TSbJ4IL4mRZoIIFuWI7JMfAz7GjBJEtbW1zk9PWFVtWKJ46PEDqKXn70AuIWhiZa11eeTRqUJYJ3FeSSYIkjogY2BErIb6sigijBHHDoMe5I6H0KoIZwghhFoLX59XBiYBEBplBJLlIHBHL+ejtZ4++0vcO3aDawT6wYXZA+RxPiauq6YL2ZUlTDiO9tJHWA0WZJSljmjcoz2UhXsbO/w2quvkRSFgDxdzdNnL/Duh9+j7o5J05ZqJRJ8sQIyKGVQKsE2MCplYHN49IjEHNLUK7QWNpjSLVnqCLbFdR1FYcjTNK7PlM6C1zl5OkFRk6Ul1eqMX//6Nzx8+Ig/+T/8F1y6JGydLMvlnM4L8rJgfWPKuCzZ2trg0qXt6GUpvmV9fWrk7Yxgk4BFzw+OefLkOcfHp/z4xz/iF7/4JXfvfsJ8NouJ2MIcC/EzSoxidnrIwwd3+fkvfsp0MuXlV17la1/7Grdvv0KejxhPpmRZJiyZ4EjTjNde+wybGxsi5w3EgallNpuhUYzHI6lFnZzDwriN56o/t54QbE6ICF3XsVwsaFsZImRFTpaLJ30I5wECEacjQm9RCSb2Fa5PDY+9nXUWE4cs4tfuh3qAwKA+EcmzrLPEi+1Hb73UM7p61pbSgWtXr/D5z7/J7u6eDIitp21liNPUjqbphl6+axpW1Yq2E5KFtFlK7JZMJuQXawXYV4FiVHJp9xLt45bFYinXn7OEouDGG59lspnTmVOS1GJDQ5/I7aPCyzmRPGvkNWQeTPCoFMo8J0dCVvpr3DqHdy0bk5TPvPkZus7x9OlzvvLVr2M0TNYmsSe00XJC2OHWeU5Oznj2/Dnf+c5f8sMf/j3eifpjOp1IrZnoC/7dQuRZLpcDmzFJpQ7NspSykB4oy3OyLOftt9/i+vXr/OrXv2I2n+O9Z76Y8e/+3b9lMplw5co18qJAxUFdb0jX+zt75wg9UBt76KZtZGARe2MX6jicYwB7fSAONWJET1RQiAeq1It92vbwY/IVJhGrK200qeltJqIFiIk+9FrOamPifXt7q2iRpZQawGiDEuwiIolaiddclo/wIZCV5yqPyG8A7zBJYHtrnaKI53rEJ5yLfzy0NrBa1JydnHJ2dsZ8IWQs21kJRYy2BUkqA+NyNGZcjqV/gIFdqzRk5Yjt3T1qazk8OiDEAYxta5bW0+3t0Lol9bJBETBKoRLD9qWCzs3RymJ0inU1bVdh0pbT+SNWHbh++BTPn7ZzBAVJDK7x3pDolOAtafK/UVP//3j7vQE+F7X0RqeYPBEPPohm/5kwyQIkRuNcizY5SZYxW87x87PhIrad+BKJnEgAojzLJfgiCTK99AnT8TZr05YQLHVdC4W9yARs0VpondrE6YOla6E6eE5nYX16CTHcbwl4ltUsMusC827OyVw2y6ap8M6K75FWWN9RFAWpyfCRBp/kKV3r6awUsMYozmZL1s2I0bikaWpA/CsEMFa0bcXG5oS19RFGx0RVX3NyckxiJmRJztUrl3n69DGJ0TRdzdP9ezjv0Ubel9WqxnlHUaSUI3NhoiSoe5GNScyErfVX+OoX/zMu793AWcvR0RGH+wd456Nnl6X3O9H6Ysphz7A4ny31dG7ojUT7T1/F6U2MlQ4MU2mtNV75YfPomzzxuvAYrbi0tcVXv/hlXrx5i67tJP3P2djQ+YGl0jMTLibxxic2NLsmRqtrJb4v/XNPEo3Ssn5GRUmaCoCQZ5Lqlec5lfslT/bvoOMmJZIcOaC01gKqKikcdZbgw4rppIjTV4/OQekQX6uAdU0jEt00qEixjuzKyFYzRgCtruvQSpNm4hsiB1tKWUzoPVqUElCtbmuRy1pPZx113UX2JTR1EGmC602phXavDENCUKqNbBpBpsXeK7JUpAN5XjAuxUxbWFDS1D56eB/bNZHNCZ0XPzI1P0NkJkYkEpz70/h+qq4NWZqTphl5XvC1r36Vb33rW1G6mKETLcwMk9F1NpqPymGRpIkkERrD6ekJ+/sHWCseYuNxSdNU3PngfX7zm19LeIIxlHlBGdPzdrY2uXZ1j5/97GcsF0vu3r3L5958i42NDXmmCrx10SZHR6YBQ+E/+KD0cuMI+sih2Ut5xXuwa8SXUCuZIDZNzf7zZyJ/zlJOTmasra3z0Ucf8fLLL3Pz5k1Oz06wXcdkOiYvxLxfx98mzca5TN6HIEmDgFLRkNufs5z6pkrpgHOWNJX0Z2tboI1yflBJjrMdZZGilCfNAk23oLOJNAGdjZ+/JCameUmiDUWeUNdVlII2JFqTZTlJKiEIVbUEJN2uaZq4L/TXehCPTfqa4xzoF5BKpAnBBR4/fgxqi6tXrqEQf7Af/fRH/PKXvyTNUkbjiUz/19cZj6ZM16ZMJlNGoxFFkUvQRATFxRw/FclOlqGAx4+fgoIsMYzKgi9/6YuRNRAlK0rYvuvTKaPRWMByDE3dDpKsk9M5JllHaUPbtTx8eJ8f/+gH/PVf/xWd7Ujje+K9QnkXmVCeqlrxy1/+Aq0M3/72PyEAy+VCZAXIY6f5SJjFXXeBOBIIQRgdQbLFCIrIzJILLvSLJl6AUgRGs+C++QgyBOmcsBeCDmQ6IU1Smrrm+PiYjz/6EK0gzfo9ILCxtYXWsFguqasVzqVcuXqVw8NDVosly8WCne0dftd3r3/uF5nc/efuQ7+2IycmxrIJE3Qi9gmBuPelAvzE67EcF8OZlBeJ7MmmP18UQUb9IoVOEnRkSxujB+ai74QVnqYCkhAsJtHUteZ5/ZRF1TKeTEnzgjwW6kVekufCVM6SnHEpwVDSSK2xs7UrEiLvWcVkYW00e3sSsrW+ucbVa1c5Oz3FB/jzv/hL2s7ybH+foixYzGa8/+57tG3L/v5z2kbYmj5Ybt9+gc997jOkWYZ1nra1VE1H23YsZ0v2Dw44PjlkdnbC0dGhsHOcI89Ttjc32VjfYDyRNZ0XOShhtm1ubDKZTKVOMwatFLbrmE6nmFRAbdH6iDdcf44H77Gd2GTUVR2HWzlKmUFSFYZz2w3DCO/D4DkpvsJxPTgZ1noXZY/xHK6rerCgCEGxsbmJdwKOLJdLnj1/yq9/80v+6q++Q2Lg5s1rgCdJE6yV8+T05ITVcknT1nzw0R2CUnzrW99ma2sHrZXIGuOF46ylbR0BR8BiVMnW+k32dm/w2de/ws3rr5BnY6rK8fjhPkdH+6xWqwHAk6m9Gnwwe7mp0koABR+oKvH8Qkvzo5UwJLMso2tEchxCQpZN2dra4e//7s947/07bG9tc+3aDV544UV2tncETI3MiSLPma5NuXntOtF2jqaxpIlhY32Tl156icODA96/8wGrqsJ7T5FlzM5OuX79WpS9a5y1jKdTXn/tVbRWnJ2dRQ8sT+c9zivm8xXPn+4zX8w5PDzk0cMHPHn8kMOjQ5quRQOjMufSzjY3btzk6rUbrK1vkGclo/EYY/QgRU/zjIkxJFqGjyoOLdqmpSwKGeDGdUkImMREuZhsckkidjfyHgsgYjuH98LGKvKSIi+Gz1fkZsIu6UvJHnQkAhWR5xeBmBCDOOKAJPSfmdwvMT3jqDeG7yfjnvG4ZHd3j85LQFLdSlpn1zpOT094/vQxy+WMo6MD9g+eMTs9ZVXJsG9tbY2rV6+yubHBaDRmbbqOjgmmxOGHXBQjLu19hi+Nr/HJ/b+jcw9pm4rFckmWJUhirqGuZ+L1bUQl0rQNIVSkacC6lqb1LJdzyiylSEoyo3G2pa6WKJuik5QsH/OZz3+bl1/5PIdH7zCebNB1Evhzdjbj9PSU7e2deF45mqah7TqW1YosMcyTBGvbyAoSP3LrZBBmFKytjdndvYTWmq5zfHL3HvfvP+KTTz7hO3/55/z2nd9QVdVQX2e5Ee8qFdUtvcceItNUSrGs5rz7zq95/867vPbq6/zjf/xPuHr1OqPRhDRPJZhJCUGl6ywmEfaw9EGKNMuZzWbUTcP6+npkP2bS0PfsTaHoCfire9ZzoAiSyu2iXUaSZZLQrgWIEv2tDOaHGqQ/v/rUeYQFJH6EPZuvh7RDBDs+zToNiFReIyxC6V8M1vcS5Gg4EzwER5p4bty8zHgsfvSdtTSRtdc2lrpuODs75fjokMViRts21HU1BKcQAkmakKYZWZKLLHpSkqW5pO5qqWuvXL4qHtgx7E//0T9A2Yb54pB7T97j0bN38WqfoKycNc4PxCHvwfo+Fb4dWOq2k4CtNJNwzRDEI04TSFPNm5/7rPSVnefmrZs8ffxYrllnhz42TRR4j20bTk6P+MUvfsF/+M5f4oNjOh1TljlpqsV7thDQ2rYd9aqmbbuhV+gDMGWIY1itBJvI8zySNALr6+t87Stf5Wc//zmnszMA9g/2+U//6T/yp3/6z1EqkjYg+uYptAYX3FBr9JE/MpSLvMy+rrkw0KUn0sQeQgVxShOpuvQXKtbpKoYKEfogn3M8oN/revKSQmqcwY5Da0APQG9ACDkaAQSV0qhILkkiG1PHAR5e7IgWi5WsSqOHXt7oqCj0gXKUDfV5CAhTL5J56qrl4PiY58/3OT4+ZDGbcXZ2yuHhAaenZ8xnM7q2IUkM4/GYzc0ttnd2mEzWSNOMIi/Y2tohz3NCUDhkL6nqhu2dS9x+9RXxHPYB51q6P/hDXNewnJ3wwg//jr/5j/+RB8+eMNkomKwprJ9h4oDAdTJkzbOJhIo6S92cW7jleUHb1YxGY7wXdn9wnqYVgkaa/P8Bg08mRIbE5BGEcSglIEm8A2lkk2it8NZHZkfv+SJJOgBFUUSvO6HyW+tYXxcvifF4zHi0ztnpDK8czsJ4PCEEoTl6r6iqliTNyFJDmpaM10dUlZPm1cu02buWqlnhfUfTLkiTgqZd4FQFCuqmRitIUkOCQRtD6mO6rzK0jTDA1te3WFkxeM2SAq1HlOk2ezuvsayes6ru0nYNWZZJum2i2N3bRhs4OTlg1S6ZTnbIk5K1yQZX914lTTSdmzEer7NcnXA2X2ASeV+ta0jTTDZtEwTNJlDXlTTyyjAuN0nNNq+89DW+/IVvMZ1sUFXCtjg7PZNGOpx75fjgh8nlRTmMFC3n6LHI9tz5lPLCv/ePdb4e5OByIZoc+zB4g/SUX2OM+NsUBdtbW9x++eX4fKJvEBdBlvPmsP/6otffxefSb26ec4BGCt7IMOyb5hCHXvEwrk8CaS4NoGxYbtDJZ1mK83JgFnmB1h6DxrkuAkUK61oInqYVD4LxZETT1njvqaqaUSn0ZZFi+IGRYK2XWPYkiQEqGdauyJKMvct7zOdn0b9ANoXeNLkHVstiLECVF7Zk8GLmnOcF+wfPUATyNEVlgV6C1TaRYZCmqCynrluyJOP27at4ZpLAq6TQTpKE5WIpjUpAqOCBIWxCRUzBJBlNV4MWiXVikpgsaGl8oG0bqmrFT3/6E77whbfY3r4k4TcqEYaX7/jOX/4V77//Hl3XkmaGyWTCzRu3+ON//I8lqciJPHltOqXIMz65+wk//9lPWC1nQmd30DSBZfz7aDRifX3Km5/9LD/76c84PTnh+f4zNjbWz9lD3qEGXxSxdJXpkI9AnxT4IYIpQQnQZq2sDeslEcxHOeV4PIkBGxXHJ0eAeL0URUFVVTx58pgXXniB7e0dLu9doVqs2H1hhyuXr0Y2qpxg/b44wOqRqNczn/qDHCdSDR/lDGk0v+9DG/rrLTEm+jpC1zVorSjLEbbS6LzAtp4kkTRplIoeLWA7S2PryGjw6ERTlOWQ7KW1FfAlpqT3Da0wicWbqE/0SxJDWYzY2NhiPp/R2Qat0wjkZxgjqeAgckAJIPQ8efKQ4+N9ep8NBrv+Hjg3JFkmnnbjkvF4zGQyZXNjk7W1Dba3ttjc2GJzc5Msy8nyRPbkLJpxJ+mQQpulCWmSRFBamoTn+8ccHp3Q1LV8xpOStbUJ1jrufvQxP/7+D/jxD77PxnRKUeakqRFZdmKoFktOjo+YnZ4SkOvgt+/8mu3tbb70pa+Kn2fvaxa8/JxSGNWDGlHS0jPgetZJvyhkUZ5bNYb+W/JzcUeOjyWAQ2sbHMIQSNOELElYVSsePXrIbD5jMh7RtR2jUcHtl15CaU05KpjPZzx68IC6qVFasbG+SV2taNuG8Xg0SHSA2OiEyPbumQ0X7BlisXmR/TDYQkj0PFprskyab/FTNVG6JmeOc44umkM7L0EmWZbHx/o0WyGJzOfE9FIUFc8jKShVAB0Sjk9aUl2R+RbvOp48fM5itWJ9Y5PJZEKZlySJAMjjMjKR81ym22mK0hofkKl9mrC9s8Xauvi+2c6SJgU//8UvODs95Z1371C3LUHBuCxx1vLxxx9z5co1RD0kjPire1d54cYt5vMlxyczVnVL3XScnApjcLlY8uGHH/DLX/6cjz/+kMV8RtP13q0Cnuxd3uULX/gSn/nMZ9nY2mZUjkApxuMJuzuXSNKUvl/df77P6ekZ65sbKKXo2gbxtKmGs8s7h7/gu1NXFShhUQ5Jgl6YLD2IR2BY674Hg+mZp/15IjVhkiZ0ATrXRYUAJGnO2sY6SWKo6orDw31++9tf873v/g15ashTHS0aRLbay1t2trd5/vwZT589pW4qHjy4x09/8hO++c0/FqanjeEcq5piXJKXJUrl7Gxf5sVbb/Dqq19mbbqDQhQdd+99wny+lAGu74YmSMVrlriW+zRNGXjIdbuYi0KlKIrBm3a1WpFGj9bgE2FwUTDODRr5mbpa8PDhjIcP7vOzn/6Y9fV1bty4yfUbN7i8d4X19XXmizHL5RmjuC7zoiBPMrSCWzdvcPXK5WEAZwyMRwVr6xtM19Yoi9Hw2WWJYTqVYCUbZUJd53l+cMT7dz7gwf0HPH74iJ//4uc8enifOtqnON9bpoAKgc6K3cju7h5vf+FLvP32F7i0s8coMqgEoEu4evkq08kkSrpleLVcrDg9OWE0KhlNxijkvi5K0qTpj0ByLEQUEJyjaWra6Juc9eEow14AzktTbvpGNw64tdHC5IjAiu/3WhUVInEfJYjSpSc2dNbKsOVC/Rl8IEkzyRoJUNcNbdNKDfD4Mc+fP+Pdd3/Db371C+7e+5i6Xg21eUDqjrIouHb1Ol/5yld544032NjYxJiE07NjODuls6IKcd5L2nHIeP70Oat6KRI2peNQWWoQHxzVchXBsTQqDkQZBZp0vWCUa7JEerG6qTg5Ocb4LL5369Srkgf3n1OUJZev7LFYnFGW5TnQGfd85xy/+vUvaDvLztY2O1tb7O7uMjubCYDbtpGFJjYjRZawsbGOtYG2rfnkk3s8ePCQ7373u/zFX/w5s9kJaZqwNh2T5XGAF89vUOLXF2R4sFosWSzmdF1LAFEfdA2/+tXPefLkMf/5f/6/57XXPsNkMqHISwIwn8+Yz+ef6mUCUFUVi+WCPM1ZLVdR2ijrzcd6rEeKQzx8+9RREAmjpBtDqKoBbJMFpoY6T87EyAZMdeRaRYBFS3/d92PD4Llnjerzc74Hn4X5FFUEicE2Yn/UK0+00pGU4dCJBLQEAjaSBto20NSWw8NjHj15wunJIfvPn/Lw4X3u3vuYZ0+eslws4zUuoUTbW9vcuvUCL774AhsbG5TlmOk0Do+UIcmzuFdCCJpgCjAZucl5ZXqJnd3bvPvBX7JcfYwyPoJDajjv+z1V7EAY7EskLDMGjETWuom1W9dK7991DU8eP+bDDz7k29/6FsEzSLK9dwNj/vj4mO985y+omxVr04nYSMRrqSgKjDKsVivaRsLjptM1Njc3h7q3qiqOjo9p2obGtNFepYu2XWI9tr6+zpe+/EV+9OMfc3Z6htKaO3fe486dN/jc594iSXy0dhJih4+s5BCiZYX3GKUimOk4193F2isAMW16sELpy8MQ6KKzh+7XLLImhlox9AqLWLPJQpP7OgH4fPARJNTgzklA0V1Chr0hxHUsQTADwVmd33+5WFKUpag/dP/vRHagRnnpU2/evI6zW3St/F7rQrS1Oebhw0ccHB/y7Nkzfvnzn3Pn/fd4+vSJ+GZHC64BolTib1uOSq5eucbrr3+W1157jbOzY8pizMbmNjpJcM5T5JnI/o0mTTO5nkxClhXY4Cg3dvlnV1/iC3/wj/mP/+nPeXryPiZzmCQK5oMCr8XebSz2aPP5nD7pvCxL2raOeJkMYsqyxHYdTQwP6wOAfp/b7y/R1WZo1ELwlMUY5y1JpL7Khyw0cR88dbPCahfp4yKrUkghlGUJaSaJi95bMRv2sLNzhbZ2PH16QNvWlKNMTJizBK0TsrzA6IT5YsGyWuCDpm5aVnWNtQ2dbVitFqAc08lUJIHasVzNeOHay2xsXOZkfo/54lQ2kfFYJBxNQ12vpPDUAa/EvLeuPM6uzpvOULKz+YYwkNSEhw9+Q1p2sWBVpFlKOc5ZLlZUdQVBsT7dwegxZbbOzvYl5vMTrF3QdDOUFmmb8x2rRYXWqcRAZ7lIIYuEplnhcNGEc4wiZ31ygz/8+v+OV17+ElonnJwc8+zZPnVdD4dvfztH6QXa8H1q5wXmSH/ri6mLFycwAAiDpxMROKOfygNEeVds9PtD9CJIN/g5wMAGvAjq9b9rYBn+fwH4+scJMckz7k+g1ABZ9iBJxFPErD60JEmKMYYiL+hsQtfKlCoET6JkCp/n8iitbYSqrATs815MtMuikGShIB6DeVYwmUxYLBbD6xBvPUgTYROaaBKvtY50esvx8XNMIqnUqBBToMUQtWkdipi6ExmGZVEwm80EYKprkSrGNOG6WZEkAjwko5TghDGVJoZkMsY5R9POMNqzt7PNzRu3GI+nGGP4zJufY219k2VdUbdSpHZNTb1aikQrBGEgpKW8uYk0pmUW/RSHaZNnPp9xeHjAxuY2SktBZoxMKReLBU+fPuXk5JhXX7uNc4679z6hbiqc7T1pDOvra3Rtw0cffMDdjz/CdgJ+WitSvSxLqVYds7MzCJ7xeMTlK1c4PjphdnZK27V4z+DR6EMfRuAFLPN+AOyEHRt9reIEVIBUL1IsoxgVIwiBosjZ3NxAqcBiMWO5nBOCZ29vD6VguVzyxS9+kclkQlVVbKxvUBQlX/nKV1lf20CFSKcnVoQRyBJ21oVr5cL1qyPTQBmRSBCy4XtZlg3MV5Mk+M7K9FhZ2lZAZ5VuRom4pmstZVkIQJtoSVFUinIs9PlEy3TORz+vNnS4AEFpVKIGlkqWpUAaiye5xpKkxCTC/T85ORHg1IkfhyQ113hXcuP6NSbjCSoQCyt534SRGPeJ+A5IKrvDW0drO1bLJcfH0Xw6emB6B2Ux4sbNm/yLf/Ev2NzcIjQCgFZNE2X6RI/YQJposjQjS3OKssCYhJOTU+aLBV0cSl29dhltNA8+ucs77/yWn/z0x0wmoygTNayvTVhfW49FpoCrjx894t333qWuaxaLBe+88w4vvfQKly5dEl5JQEDVIE1qD+T2wEjf1NKbBEfwN66WgTXne0n3UNhFcK0fpOkE14rrlAqKRBus7Vgu5zx+9JA8S/ERnL398ss8evSI+w8e8I2vf53PvvEmGsUndz+h7VrWN9YlyV1p+cziOdEDRcO136dCfwrgixNmL75uA/NpAN6MAJ5J7+UmPrtt2wxnhbVSCKdpQpnm9A38xSatH0p1XRclNuI90ycqGpNFIFTFYAONimFdSWJ457e/4ue/+CVJmjKdTNjc2GJnZ4dLl3bZ3tlmPBFAv8hzirwgzQqyLGdUlmysXWIxW3B8fIqJ9glZlvGFL7xN17R0tqWJibmJ0qyvr3HlyjU2t7bJ0iICW540UWxuTcmLhLqxlE3H4eEJp2f3+fCDO3z3b7/LBx/cEZZ1VB2AWHB429HS8OjhfZ48fcSHH93hH/3Db3L9+i1MkuKU4+T0FB+bY2sti+VShlW2EcPv4MCdsxRkTfpzGbqR9GdhSZoowRaGfu/PNEyCIjtAxzUvLIK+QdZybQdIkUFrvx8GFGVZMBqPsd5xNjvj7scf83ff+65IQY1hbTomzxPquh5qUWMSiizjlZdfJstSPvrwQxaLU9757a947dVX2d29JHt8CKxPd7m0e4tXXnmFG9dvs7l5FU1OXTkePzrgcP+ApqnxQTx2dUw47CuQviHq996+NsrzfBh49OtTa43r7P+buf9qkiy58jzBn+qlxp17eIQHyaDJkECCAwVSvKoL3UXQPTLb+7Aiu/s8T7MfYfZ7bE2vyPTMyKDJdDWqq1BANYAEy0wkjcjg3Dkzbpeq7sPRe80jq3pEdjAPY4IQRzoxN7erV/Wc//kTVyOEeNqjyA1Q4ukAbVpEQZMqsTmKRFJYFqIu2dmdsLe3y3vvv0uz2WL9zAZf/tKXuXL5CpNYWKbCNgrwfBmktlotYb83Y5rNmIWFrrw2o8jzgjwvKIqMdGpQlHS77VrJsLW9xe3b93j05DF//f3vc+/eXbIslUG4p+v7trILwBjHorPs7e/wgx98n5s3P+T3/+CPuHbtRh0GgqW2qODU+5hlOcPxkMlswkIpAQjKgtEVz13XQ+fCDUCMEQkb1pJmORapfRTzgV11ntfgCMopGZyPGqcaYreRWSVDh8r8vRrAFWVBFEaOVUbdFKMUWvtcfukSxgibP0tTTvrHPH++xe3bn/CjH/0dDx/cQyux14liAdxKU2IcuzVJpty7f5etred88OFL/O7v/j4bZ8/h+QF5UUq4SWnqeiUvcvxIsxD3aLYi+v0+0+mEOG6gtEduClARQdQj9CNQJSbLBARUsg8Xs4TpZEQYF049Yh1TStRJJ/1bvHR1yuraGl/4wudoNmNuf/IJ08nY7XFyPvm+z8P7D9ja3gZrWFxY5Pd//w94443PkmVFPeC2VuRt62vrtFodkjTn/r17bG1t81d/9X3+7u9+AFi63S7NVqMmgkgafZNOp0PcaBBGAvZVa6LMc05OTnj85Amj8ai2DDo43ON/+p//NX/6z/6Cz372TRmC+j5pWoqNiK2SO6nBGbTUPlmRMj4eyfDo1ETttP1EhWKoaoihxCPcWieftTWkgnbbYuXTLfigoqz3QxxgKHY8p36L299xZxX1/QeqQnJQRs6/IAolFENgFjTKedVplLKcO7dOkRtm01ykjHnJcDjmyeNnbG1v8/jpE9566z/zyc2bJMlE/JMdeGNdf+Ud7vLw4V3effdXtFotrl69xle+8lWuXLlCr7tAo9WmNAX946NaaiwSe0NRSj2WJSmhv0DiR2BF4VO48JTKkkuGfmEN+gFMJykbG+dYXV3hwcP7jEdDQAZMk8mE5eVlsjTnypWrErTUbssZmef4YYC1hjRNSJKEX/ziLZ49e0oUxTIE9sUyqOMCNCaTCQa4cvUKr73yGp1O9xQjvXRMPcOzrefcuX2H2XRafy2OI7RWjMdjoiji1Vde5pe/+hV5ljMzlnfe/hVXr16j0ZBUWFEFmnoAKUFrxgVDKExRujUmK6M+ZxXi5X16HbpKUQL8HBNOn6qT3fFcMaUxLmDQ9cnV80q16dj21iKWh66WQ55EVfpZWyWTVxYJlXe57BFFWVCUGYpIfOJ1NaE2oCw5ygUzLdPttDBGBv95UTJLM+eRvcvDhw/50X/+e27e/IjpaERpxJ6tEYfEkZCgKn/TNElIy5wsTxgOB9y+c5t2u8Orr7zKV7/6Na5ee5l2u0u70yUrSpS1TMcTimSGWDy4mtoTBq610F5Y5598519w684P2dr7iZw5FrQHaFFvxHGLdrtHXroOyq3lCjeRMBCpVWezmTAgtXYDjN/s8ZsDfMpjMhED61ar5QA/jS0t6UxSbn3fr2Uavl8luyAa9nGC1iGNuCWS17KkEbXwVETcCDDGYzotiaMma2ttJO1HMRwdysaQJgwnQ7I0Y5qMsaqk0QycibKwn+IootNquXSSnBzxexlNTuh2VrDGI5lNa0pztblba8V/x4qJo/IUURhRZIbA7+LpQGSadsTO/geyrvU6QZRhbUan3ROGlucJAKEXWOxcYGVxgSDwefbsGQrL8+27gGxifuBTZrmkKjYi4kYTpXzarfY8IVUZAt+Spym+HxF4bV59+St87ct/TLOxyng0ZWfniSDGRoA1rD1F9z7l1UCNH8gUyVYbxpw5MvfOs7JBuMfppMbq49x8Vc/BNagXdOUddfp5X2AGKl48ND/1/Ke/9o/9/4oFVQOUrkFWdn74Ai+Afb4fkKVysGbuuheF0KFFPhthbekirk3d0KA1ynlcCBvIp8ilGGw0JBEz8COKQmSTnq/wfS2x72VJUWT42qespxeWNE2wtiRUEabU+JHT5pdSuCpnmLq0uOImbjIFyPLUycwkaVN8kqr3Q4x9oyiU8jjUGKOxJiRLcrQHK8td2p1lyjLn8PCANM3xPZ+vfe23MF/VZCW8f+s+eWaIvCk+lQGqmCEnyYzpNGea5GTpjOnohML5dKSp0NmtLdnfP+Dq1eviZVLIdNx36ZYKRbPV4tr16ywuLfLJJ59grCUr5N6IGjGNRoO9vT1u3vyYLJdJx9rqCufPn8P35TpkuRSKEiIBG2c3GAyHJFkmUgUj06asyOU5nO9nDRoZQ1kUGCB16bee50FZijQqiugtCIgTeoEDD8S8OstShsOBAxA0rVaD4+NjkmTGbDbj8PCQTrvNQq9Xg2BlKRMvbMUWsM6PppJ+nQKy1fx+PR1+o7VGW2l8siyrAeaqIAqCwBVlzr+ltORZCVpeZ+nYKFmWO6BdTGeHSYLneTTCgDCWokuAHVXv9dodZMaU5IV5oeBUWl6PsY6urzw857fo+xqjDVpZtNV0Oi06zRbtdouFTte97z5x3KQoSzyH2lkUvk/tnTiXLZg6vdVYg/LFO2lnZ5vt7S0WFxdlUm0kgVwrw9279/jRj35EmiYEnqLTFgbg7/3eH3Du3DmMyTFGUg9bTZERjYYD7t+/x89/8TOgwPekqW+3W4SB7xIihYURBAEbGxt0uh1+9ctfkiYp+/t7PH36mKWlJRm0VNN3FKacg3PVDqXsfHBSfZSC6cUApHpAY+eC+dKxULUSf5osTbBGJpmSrp0zGPbZ298lDAPSNOHS+Us04iZhENJqtnj5xitMpxPOrJ/hpN/n8OiQOG4Sx+JFo5z0skrPtVSekdVrcZcHKR5NZSRuqY3kjRHwPMsyZ9shSWsitdYYUziWq3ZT8VD8LvMCpW098a8K/zyXM7S6T0SCYepBTJ5bdy5V75+Pp8USQFLYFYNBH2NysqTgOJtxeLjH3Xvi2xOEYu/QbndYXl5hZXmVlZVVVpZXWOj1OD46IIpjgjAkjkL3vU1atiH2BNqrWSmtVkN8Hb0A0IzHM5cOmVKWGWk2ZfPcGSyK4WjEzZsf8/FHH/LXf/19+icnRJFPr9sk9AMMJUmWkUynJLMZDr8ky1Ju3fqYweCEP/rDf8KFC5fxg5CDo8Pax7VwTb3vy/udZQllPcR0a00pKk9SIW0aJFwDB9BJ02FRzg/NSjdRn+una4z5pmbdcwkIYygLWUCl8/NsNJoEns8sSdjf3+e9937NdDqi223RbjaxpuTo4BhJNC8dK0uJ6iH0OXtmg+lkwu7uLqPxCVvbj1lZWcBYy+WXrvL5N99kZXkJPxCm3u72IUdHxyRpRp4mdSODdQESpmKMvMhK4FQpA6JKSZJEGmFv7kvkB4Ekrysl4WulluTXoMXa8nU2z72KpUsYNYkbbfI0pfAN2jW77h1klkx59PA+yhouXjhPWYo/Yuk8uEwicmZpjgMi57e6vLJEo9FgOJThRZaLBCzwPK5efYlOTyxC7ty5x81bt3nn7Xf467/+PtPZlCgKaTdjwiCQmkIrGSJZy3Q6YTjoU5a5q67E/+j51hO+973/id/9nd/nzTe/SKfTRSnNYNAXkPlUjVkaSbSOwwjtKUbDwam/WTnAQ9XgrNgJCOhcVXdGKTfZmCdCcwpgUapqeufD3irYtJpNSCl5iqECYB3jwpP0xDTNaoaRQSSenU5Eu9MiyyThtT/o8/jxY95++23+5m/+E0UuXq+NOMAPtAuo0Q7YS8RDajCgLA1ZnnD33l2GoxF/9Ed/wuaFC6AEEC7LAhxDusgTirKg3fLR2nOm9w5Q9zSBFxA1erz28rdoNJbRniGdToljzWR6iFaK3a1tdnfvY53Jfq/XZTrMSNMJRa555fVr9Md9zP4BnU6Hz372DTbPnuOTT25R9XQVeFqaspbHaQeOVPvyXOml6S4s1sOiR0+e8ujJU/7N//I9fv7znxMEAa1mLL7Kvpyxvu/TbDTotDtEYSw2L06mXVn0xK0WKyurXL16lZuf3OLBg4fVVSfLUv7mb75PoxFz/foN4kYTkIGSW1XufTNYm6NKgaK0C7ArrVi5aBxw7B5Sd1Tcu+rsk5+ppI/WVP7N8g1KMfdaswaLFoDx1NTOImnC1pTyKSUjD4Psj7qyEXJpqNUgGjR5lhMVsWPiuoRpN0yzQLvdotduoVEUuSHLcvYPDnn06AlPnz3j7374Q9799dsk0wlxHLK0tIAf+PV9Wqk1xuMRWZpibM5w1OfDj97nzt3bvPrqa/zh7/8ha+tnaDRalKVhOk2kx8JQYiQozRjyJCHJRF2ilSfqkTQnCGW4u7CwUKfHBkFAmkqwZRQbjo8P6PePRDEXCWiHskxGIzqdrtQ5RcnS0hIo65hwFuUpikLW5PHxCb/85c/xPI+mS5cNnfVBFVzZ6fX46le/xurqMhrNr371No8fPxYGKZZ2s8ni8gqXL1/mO//0O3z88cfcuXOHNMuofNaNMWRZxvLSKpcuvCTDkjTh0cMHbG8949JLlwVxcyw9T4vqgIohi4B20seY+Xmjqj1LBmUSTCTncbV/aSvXXtinbu3VEypVaZjcwWxODebkuUU+Pt9Lq0jzKjzDuPO9GtbK01dDXVODfQrx5Y6isCZYVMOBKmRGa49Wo8nZjQ3aTSFcZbmlfzLg3oMHbG9v86Mf/h0//smP3ZrQLC52HUEnklAxV7NIL2XI0pQsz5hOp8ymEkA5Hg945923uX3nNm+++UV+/w/+kMWFJVrtDn4QkBYJx5MJqUvVVUpX6nqMC5VKkwl5MiVQJboUBaBVJWWZkGZTPB3QbvUYzxJKKzZIMnQWQkZZlsTNCK094mYDSrE+OBW0/b/78RsDfHmeS3GPMCHEXDWabzK5EQYZQrvUWmKdPa0hjPCUpdtZIo5beJ4ly1OwHmWpKIop4+kEi2wIRaYJQ2HTaWUo8gxjDX4YoD1DHGvCuMl0Nq6ZAJ1OF4VQOoMgqA9RpXzKIkV5OcPhAeiSVit2m5drrAkdk64k8H2MkU0njjucP3eVTnODoig5Gd3l+c4nRLHHYPwIL0jwvAZlaSiLhGazSSNaYmX9GmfWLjKdHLG7/5RG02c02WM6GzlvEsPCwoIzsJb31FpJsRKjYk+AEuPhqS7tbodLF17m1Ve+wPraedLE8OD+I05OThwiPAfoPJcWU7F65LltDfBVIMF/SRb7jz0+DbxVgN+nmX6nE3c/zQSsjY2rRrVqX+3cC+C/9PgHX1OV1OfFn7NVt1mNZu1p9p+kb0kqq61NhUUD71Elm2nfc54Lwkz1Pb82wQ2dXMDzPMpADr0sS901dMmAWksSIfPD0RqDHwp7Tw49F4ZhXXKwa2jlfRKT66IQevhOmlIWFu3JwTGfYBZCnbfiRWKtodVq1wBOaSHNUxpRl97iBp3OEk+e3WU0yMBKU/fkyWOOjk7q4sfzfLzWIrfuzXjp2sv81pfO4tsR6WxClmZkacZkNmN/XPJk+5hvvP4Km6sNbD6jyHNGo1H9fqyvr3Px4kUsYlQ8nU4ZDae88sorfHL7FhbL7s4OT54+odPpArZmRDYaMUrB8+fPePb8KdaWnFlb4/z5c/zil79Aa8Uf/eEfcf36Js1Gg48++tC99x7tdoc4jh1TxXBycsLx8bHEtZ9q1jzPF+ZlHBE3G4ShgDRxo0lYyYjcdDQtMrLZjNFoSFEUhIEkbO1sb0k4QCGT5L29vXrdB0HIn/3pn3F8fEwlwxPGw6lJHDgg5FOfc3dI1ZiUriGvklELU4gPo2OC1mlxzgPDFIbciHQgimKG0xJlCkxpCTyPLC3wtSLwfco8xwPCWJiZMs2We0xqBkWWFqysrJIkGWUh+03hUsKqZrYCA42TcGFLCjRhVEl/pJDRXkmv2+LsmXU2z26wurrOZDLhL777L9g/POG4P2I86jMeHDIcDZlMBMhOs1w8VUoJOfK1JNr5SlgR2r2Og4MDucZKSozKdzRJUg4Ojjg5PsTTcO3qZdI05eTkiI2NM847SyStS0tL+L7P48dPef/99zg5OcTXEIUBQegxnY7ppyllkaM8j0ZDPFgaUUyn2+X6jRvc/Ohj8ixjZ3uH117LnDTO1VLK1owSV8pR1VvSAFT7mnIFk/uWamBjhWEuTC7Zc3NXQPvaZ2xs7VvT60nBnCQJR0eHTMaj+uzWWjEYjegtLnH1+g2KsuT4pE+jEbOysspJ/4RCKy5fvszm5iaeFwhLwM4BjhoQmS9b+TvMKaa126fFq0T2yGazKWtGOwakk5lVazmK4vpe8jyfKIzqvU38woSVEoZhDXT7vhRUYgquajBeziNLmWeEQYdms4NHgO/5hEFAkqaSulsxgIwMBayS97HIM4ajAVvbz1BWo5VPoxFz9uwm3/3un7PkSWpzmswkOMINghQi1fI9xfEhzpQ+ptlsMplMOTrui/yuFInJjZevYlGMxyNu3bzJB++/x1//x7/C2pLlxZ5jgUnicBCGjn0q9//uzjY721uURu6L7e0tfvT3P+Q7f9JiZXUd1NzH170hLvVYWCaVjFGuoTvHzfx6uWMXW9lwaFVL107hd45Ycsoj6FP7mq36CrdGjBUAAGQNtJpNrDEcHx/z8P59nj17QrfdottuUxYF08mUZrPF6uoyYRgzm03Z3dt1AzN5LRfOn6d/0icvcg4ODsiLHIzhwuZ5Op0eR0d9jg6P6fdPMEVRA0qVzNPyD+uX0wvcWmF7pal45cax1JNhGMoAIQgce0nA7cp/Oi0KisKSZzkmWqC5eYFma41xYvnGb/8uD+7d5vmTpxwc7jNjVr0SLKquIySAqpD3rzTg2Llv/eznpGlGI26yvLTI2uoy5y9KsmP1r3B+1UrB2TMbLK0sk+clt2/f4datT/jbv/07fvWrXwKWleUlgkDunyhwMkklZ3Oz3ZH0W2Bvd5tnz54ySxPnpWUYj0f84O/+ltIYvvylr4ikHpHKzoPcbN30owRYEUuMU2FBbmhbAXiOa+LORsdycTK1GrBxg4cXMdgK5J8v1Gp4Uq3JmjVd/5DszZ4OKI34SBr3dWsNWvusrq3SarUo84J+v8+9e3d49513+OHf/oAo8Fjo9Ah8jzCU/SKMQuq5NIazZ87Q7/d5+uyJKD9KuW9/+MO/4zvf+acsL6+gnf+zdQw+Yc0GzGYjBgMnnfUDZ2WQ4YcBKC0+nEEDS8koGTIdTzGmZDg4YjQ8BoSBGIYNtNJkacpkPIFgiXa7zeqZdX7+y3c5c6ZkbWWZjbMRS0tLWCPrXGkPrX2iqMHyyjJZkjqP3BiLnG+VZ2UYBrTbHSyK51tbPHr0kL/+6+/zs5+/RRxFtJoyMAtDD7Ry/sstTCFyt4maojzxsKx6iTiMyDyP2XRGu93mi29+gZXlFd559x2yTIa1g+GAH/39D1leXmZlZR0/cKFNpgIwTD0M0koAxNKdr8pdZ4N11i3VgWfr869iple12qeWm1tFoE8TEeTGdf/fcaVstdYdbFjhMaraKK37UDrmX7WJKtk/tdgCVewuxz8SRYbns762xuLSogBYWcne3j537t7jk9t3+Pf/7t+xs7dLsxGzcu4svudCFzwBf8VzUHzvsmyZLEs5PDxkNJJgkaLIeOfdX7G9s80/+86f8tJLVyT0zDhfVmMoKOtU0ypQKyumwAxNgLW4M1xAxCAQgK8626sBXqvVlrNd+65GaFDkGbdufUgFPBd5hudrJAE8F/amEb/HLMt5+Ogez549pt3uCLkmDun1enhaM5tOWVxc4lvf+ha9hUV8X/btbq/Hzu4OL126yMNHj1haXAStieNXWV5e5ktf+hJRFHHz448py5wsc6nyDox96aWXODzcZzwZUxQZn3xyk83zFxwo73ztlRKbveIUEFZWwVPl6Y3JIcZzexZlq71PsLz5iazqAChdne7q9BI9fa4p5vuhdZiedfv2aQa+O98/9dP11+r1LfVGlqW0W205T6ksEeap0Z72WF5eYmFBhnBJmjEYDLh3/z5Pnz7lf/6f/ydu3bqFH/gsLvbotluuFxaySBAETt6uagaf+PtLkNFslnBy0qd/0qcoC0ajAT/+8Y949PgR3/3uP+f8+UuilnT1ZlHkNaO0sGKH5SlFaY2Qw7ICjSJPU4LQc6ozUZ0UeUGW5Y4IUTCbSShVWUrITxCGjMYjSWH2A2IHamt+c4Tv/4AUXcXK8jKeJ3T1PM+wAYBG8A+PZtxhobfsCp0ZloLJZIAfefgtMV89GQzJ8sRtHJYsm7kiTwp0pTyZmhlZ4Arny1FYkiSTBFSrydIcrQLKMieKYjFtzXKSLMMPIjxfFiZKZCBJmjGeTNGhACLTZIS1GmuEJtmII5I8YWGhiTUBo9HE+QPmHBztUJQzxtNDrFHMpmOiOBL5X+lRujADhaLI+sxGN3n+/H28MGM2zUiTkjgWYC8MYvxYgJ6iEKP6dqtNFDXJMvHEq0DHXucM1y5/hpevvcFCb5VkZtjbHnB4tE+ailnjnEVja7aNcTKCijZcFa/6lFlwjXojFNna78s9Pt2cffpzn5bNVq+lYu59usivvm5PbUbK2BfOvaqmk6aR+Z5zekM5NQ2rEnetu87KqrrhPKVSrn47WZ4xSUY1yFdNh3SjIcCckjUTR5L8rLV4Kll3uEoDmtd/J6j6ELNWmkprXBiI2+DdGwQo/CAkCBtkRYY1Re2XprVHXk3ftHhGge88T0Ap8e1y0CnGWHIrstmikLUXBD6FSYiigKwosMbK8wNRHJNmM8DQaPpoIoyFR48fcnh4jFUCCh0enpB4bdYvfhvjNVB+REhGmaVE7ZAyNpw7fxF9kPPR9j3ev/0EVXboxQGNRovltXU8T+EpVfvtNFst2p0OBwdHjIYTzp/f5I//+I957/33GI+HlHnBuY0NbGnI0gSAZrPJeDzi0aOHTCcT4jjm1ddeJQhk+r25eZFLL11iNB7TarXZ3LzA1tZzkiRjYWGBuNHAOOn9bDpzaZLtGthoNpq1HLQCTfJcGIqz6ZRBkrrkLNcYFQUnRwdMJmNJEnXs353dXXoLCzUTuNVqc3JywurqGmfPnuXa9et88P4H+H7gfIfEJLzyrKjuuYoZUN0j9f3gPr7QFNsq9EMR+AGmNIR+IMlrngal0f48PbvZbBOMAiw5ge+RpSmNOHCNFMSxgLumFBlZEAX1r68YVtbqer/JXeKkDOq00O7VHKAWY2PwfSWgiSkZj8YUZUEYhFgjpsST6TGPHlmeb28Tx00arTZr8QIPd++xvNrj/OYG2jXsuYUSxSyZkU4TxsMB0/GAPJmRzER2kRXimXp4eEie54SesFmVA0hbrVYNJDXjiK997es8fPQIFBhbyn5sDFHYYGFxUcIoHtzn5q2bTsop8uTxeIzC0u31CIKA/mDANElIXWhGmmecPXuW/d099g8OGI+HTGcT2q0OZSlm26UpycpUvBDBDZrm3nTifTIH86o1qqAG9MoiF5DVMeVy44qIljBywjCg0+myurqC74s0fm93m3arQZKkLC70ODk+ptVqYpGvP336FGsNZ8+eZXl5lafPnhJ6Af/sn37HNXdujXJ6iVbttZWGRIldkHVDpPl5M1/fFktR5mSuGNcKJtMJnkuvgznQV5mSe85TTwJtQgI/rO+FMIzqFDXf3ddFIUmEQdSsk1zDRojnxfQ6y6yvXGd5eY2iKGh3F5ikGVmaYAoXeOT5c5DAyVAk9U4K1CzLePr0MU+fPmVhYUkY8xhKW6KNZWtrn6dPn+Fpj1Yzpt1ssLS8wuraGlmWMZmMmU4n9SBuZXWZtbUV0izn5se3+PD9D/jbv/kbAl/Sq/1AfILiOKLTbqOdpBklDI2N9TWuXrnCu+/9mqMj8QXd2nrG+++/z7e+/Tv4gQuksvL3gEEhMpPKx04G+ZX01p039blcle/WKdc+Xd4LGH16mCf/TpmCuzahOj9zB65ZI7YJge/j+ZrZbMrJ0SGf3P4YKOl0upRlwXQ6YfP8pju/Dec3z+N5HutnzvDk6WP6/WN5Ddqj1+uxt7fHYNB3SZyWg4NDxuNJ7dljXIqlcjYBp4cvp72hTGleWOsgDK7KHkEYXOJTJc9TkiRTAAcihzKA8OW9joIQbSKeb+3yfE+zezSh2/a4cf1lXnvlVQ5Pjnn+7BnPnz7l+OhQhgHKgI9jnbuURVNiCwGbHjx8yPHhkZxDjZher8d3v/tdup2Ok7+JHFMDrWaTzfObaO3x8NETPrl9l+//9d/w9ttv02zEtJxMsgItO6027Xabyn9J2NyKdrvF8vIi16/f4MHDB9y+fYfCSZAmkzE/+fHfs7S4wJUr12UIWcn4KwMKI4x2WWvWDVIVpQNYFNaFFGhqerO7DjL3MI4JVTFQ3CqtEiTrz7l60er6v6tGtVq7yu1dNXDi/r+1uOEVWOUYF0qay8WFBQqXbP3o4UM+uXmLv/vBDwhCAQ7azQatZgOtlQsGKea7pxL597lz51hZXebBg/scn/SZTRO2t57xi5//jD/8gz/E832sEeDTmBztG8JYU+Ry1s9mGVEY4HmyJxkKwqBgMtvn6HCXw6NdBv0D+v1Dx9ZXoEQhEgUdDJDM5FyVvaRNGMSUhWFr94DxeEzo+3Q7Hc6sr9Hr9ugu9JhOE46P+1y7fp1r169hjeX5s6c0200spWMlFmjt02y38IKQ/mDEo8dPee+99/jpj39EHAVEoU8cSUiS0tBsNdHaYzQUb62iELWVcj6qKCGQJGFIHArrTxReKWsry3z5i1/kV++8IxI4z2N76znvvvsuv/M7vz+/h20VlOfWhxVJndzv1d5IDdBLP6UqXIUa5D/VY6jTa7P+vKp7GmlQ5ktYlltV6znARhxr5/vMqQ3YKk3FMpV+SMA8Y0oBuU31d83XvLLQbrVZXFpCKY8kzdk/OODOnTt88OFHfO97/wvJbMpir0ezERIEsm67na4LB/Jquye5xUqnpFnj+PiYp0+fiLKoLNjaes6/+bff4y/+4l/w0kuXsUbJcMyIbFhSRa0b0krCvaeEtaYRck1VV1cDuzRNHcs8B7QEHRWFk6y68J0y4/adX3F8eECnuywsYFuK3UanI+s5DEUFlU559Og+586eoSxlqNB2IFGaJHhewJe//BWm0xmzWcLm5iYokepu3tzkwYMHlMYwGo/59iuvsrGx4QgJDV5//XWKouDh/XsOyHRZAEa+vrS0zCyZEvgeW1vPSJKpS2C3WK3cUFK87E0hFgTii5rPbQSq66pUvXbc7LfaCVFI72spBRSfL8NTvfeLow9Zi1V3aWtQ2lafVxXgJ/+tqu+28yC1inAjjER5nrJw/oelRSl7yo/ZBVUhvd7CwiJKa9KsYDKdcOfOXe7evcO//h//B7a3t+ktdGk2GlL7dFp02u1aMVmWJXkuQL1VWtJ+QyXSWWUxZclCr8dgaZGt51tMpxOMVTx+/IB/9a/+kv/qX/zXXL58BeOGZjjbjzlArSjBWSpkFGWC9jS+38TaQtQUxiPJJjLEMJ4bAhisLV2wlartYioCV56lJKaQALjaX/N//+M3Bvia0QJlYQmDJeJWSBAGBKEmSU8YTwbuD8o5ONhyUwRDWYiRvud5pFlBXiSkeSoMOyOIted7BF4g3k9GijNPB2RZIXuinheHcdiVSXk6QTm5CEqR5IkrunMJOnAJlCLzyciKDDwPP4pJ85Ky9Gi31igKmRrkeUHiJsDT2QilfJRWTJIBRfmQNDUUxYwo9CmLHC/wRNKpPbTnE3i6Zq9pnbOwoJhOcwbDY7LUYo1H2F1gcVGKJjHo9ojwnUeJT54WZLkBWxBHHV59+U2+8NnfZbG3wXQ85vGjbfp9ofN/OgijSliVBkg+N/fTm/vhydv1IjBnTUWZFeDB1CyjF1N2XviZU8DfPwAM1ZxGX03B/zG/pBrQsEJFrhgrn56EVddeMX8ddR1mcAbvc+bgaXbi6b9ZucKg1azSGTXNuOG8IQqsdQCFsRS2xJiMM+srDAZDylRYBkWRuamMgHllaSQdy5ZkWYnnBfheVIPN0oyLPK10VPFOp8Ps5EgARWNEUuwAvCpC2/MC8qxwr9M4H6ACpbUrgjWeF4ArMhqNGDBo43ytUGJ+6gDJ0eiI6SznpH8C1ufM2gXyNCLwXMFbyua2urxEqtuEQUEzNmgrnhLpxKKtZA5mWcnR8Zgk9Xn7vfd5++8/oeVL2urG5nnWV1fptJosLS5x6dJFGo0Gi4tLbmNTjEdDbly/zvUbV0VS5K5NlmVkeS5BCL7P4dEhW1vPKMuC1bUVfN+n2+1y+fJlvvylLzMcDtne2SGOYl566RKj0YjhaEiz3ZYk7CCg2+7RaDRoNptu75aiIUtSxuMxeZYxmyVMp1PG4zGj8Vg+XxR0uz3OnTvLtWtXaTVbHB4c8PY7v+RXv/oVZSnXa3FpicWlJUpT0ut1+ef//A/4+KObnDu3yfVrVzlz5gzvFu+jvYAwCGsWxj9kvtoX/vvTj+rT1fTf83yUFY8VgyEIPJci6pK/wwBTyBS93e6i9jwnQ84kiMMXeaJFGtkiN/iRJCzmWSEgi2v8ZW8Q5kjlXSm/R+QinvPdrKbH2g8xuSErMkwCpZua+VpjjUKrAsuENDvh5sf3yQphO86yDFpr9GervPq5z/DqxYiIkmQ2YzCZME4zDvtjtnYHfPbVL3Jtc1mYo1nObDYTL6eJBMWsra2K5YJSFEXJaDhlY2OD1dVVer0uCsP27o6kGXoiaa0SvdttKfieP3/OJ7dvSwqrkwCWRc7585ucO3uWdqdLEAQMBgMGgz73H9xnPBHAJvB9rly7ysHRIYURT5A4jsnzklCFTGcTSdYtq0LCYBxd//ReVhRlzXixrqgFTRj4zkQ4JopDwijC851kz0iieWVULVYBCdPJmIODfYLAd6n0EWXpM5smaF8axMPDA5aXl9jYOAMoOs0Og0EfaxVlIcm+KJd6ZpWADk4aqqjkl/O1ehrsAevWk8jS8zzDC+R8V1oRurCuigmaOsNwfQoorGQech+p+TloJanMGkNe5q54l9S3wA/wrUyTkzwlzabEfkAYig3AaDrjO3/2z9neP2Bwssfw6Ijd7T1OTk5IkqmAKRWDzSrHJKnOSsv+/p7soS5kwpbSeNy6dYt33nmHIhO7kG6nw8bGWf70z/6MtbVVsizBmhysIQwCzp87i1aKe/fucfv2bX74wx+iFM7wXdjnzVaTKAqZJc6vVEn9FPoBMzfE+K3f+i1+/vOfMzjpU2Q5t2/f4saNVzh77hwVC0XOToWntDOJdsw1NW9uqQA518nOYRHXKDi2K1jnWYY0JzVDq0qalN9XOvqTUoh8JQrFJ9VWgCGEUYixhnQ6Ym9vh4P9PeIowPMUk+mUc5ubDEcjfv6LX/LFz3+eRqNBWZasrq8TxhH37t0RVp4tWV1b4/jkRHzL8pRzZzdRSibvtf+pnXvlWcQPtAJcZe264cqnIO2KTSFggHXee5qikOGcsVakQ877KMtStOejA08CvYKIbGq4decmiZmgG+f57GdfZXbynIODPQyaV974HJ998/P0jw7Z29liZ3uXw6MjV/+mcwC1VPiBpixKJpOxpF7mThZlLGVZMb9ljwnCkLNnN2k1m+wfHHDrk9u89bOf88GHH7m9z6fb7dRAe7PZxNceaSogJgrxyvQ0yWwq9iRBwCsvv8Lq6hq//NUvmbmggfFkxLvv/pozZ87RarZBzUMD6rrSgS1yT8vegLFii2IVtZ2MqtakrFB3cjqTd/d9juNXrVGXmYGuGtzqSn6qPoRKvquovF3qetOUzlbDvQa3J3U6bbSnSdMZ+3u7PH38mB/87d8ShQHNVky32yYKAsq8YDpLJfTI2YYAeL4mCKQ/CaOAa9eu8+jxIx49fESSTHnw4B47n/kMZ89tYtxZbKwhzSf4AUwmCdoLJCXS81wqu2P6WMX9uzdJk4LJ9ISizCitDLCMEgks2qOwMlxa6PUwY8PBNMPzDMamlKXPzu4BH+48oRkpXrp0CVtmNJoNXnn1OsbAf/77n/K5Nz/L0eERB3v7ZGlKs9moQbnSrTethSG4u7vH3t4+//Gv/gPi494Qn2pKAQKbTWHdJAllnovv5PoaUSxD1cl0wmAwYDabyVA1y0mcCiPNMibTCYtLC7z22qt88MEHri4xfPThR3zuc2+yvLziABKwVlEl3ZpSBhoawJSYshBLibLygNMOtHB7gGMaVMBy9XkBkCthraw47X52Dv/J2tW4e0BxCsuTc0Rx6gfcZ9SpdV2BlFWarDDs5HycO5AbtOezsLhIs9kkywtO+ifcf/CQT27f4d/+239DWRYsLi3SiCIuXDhPEHokU3lvsyQVULmU+6JKRdbOB3rz3DlWV1Z4+vQJh0fHlKakPzjmb/72r/nud/853e4CpXUejzhvQmMxZY5ShjiOwBT1cNvHq62drC1dQCdobZ0NR4QxhQM5PawxjMdTQj/DV4ccnsBkekzgKwbDGXamybMMrYTxnuc5k+mYw30ZujYaDRqNFt1Oxw0T4Y033iBqxPz63fd4/Oghf/In32F1bQ1fe3zjt77OT61hlmZcunSJK1eu1GDknTt3mE6nvP76axwfHjIaDijzwnnqyf22sNBjf38XY0umsynTyRi/swB5TqmUSw0XYLzyayyKnCxN5x2xmkt1PeW7dVOd0xWz2amFbHU+uR91x1a1Vyp9+kzT6Mo+Q1PbCNUgtHJDk2pDBTwFhTFUWnRRGwu4VbrGdDqbOWac4BPVfSPnq0X7Ae1OB88PmEwS0jTlydPHPHn6hH/9P/5rtre36Ha79LqiylpbWxHSVZYzmUxqNmhZlPNe29NO4i99jqdEebe2ukKv22Fra4vDwyOs0pycHPLv/t3/wn/1L/5rzp+/iKd8UcbYOfu4rMm+JdYUYAu0r/B0iDFOFlyWFMWUuBEThi0y04eyJIyC+m8PQhmwFoWkP7caDSo1iqc+fR79///4zSW6mcQKm/IEz/MYHfZBFWClwZQDyyeIJUjD9yIBIZQizRLyPMHzJNHPGEOS5PUN7fsezTiSX1QKgFEZKJe5bAK+F1LkkqSrVcR4fEKz2SLNEsbTsZPrNFDKJ0sFoFGIt4+lwA803e4Sx/1DRoOUQC2iVc7J8DFR7KMI8bxQQMzQIwgUeZGQZFPQEYaM0chgVUq32cUPxHMtSXM6rS5ploBV9HqLwghstJDQEdm9izLHD6TJDaMGRZmDlTQjayxh0KIZN3j5xpu8+vLnObN+njTRPHu2xeH+bp06LH203CRzU2fprKr3rKpf5tKaF0G9Ss4Hc2T/tN/C6Y+nAzOq56qarvnGP5c+nn6u6vOn0+Yqhl9VAFRSjMrLy9r5ZHX+PJVfxampF26CbecF42nfv+o1vigrNkRR4Jh1wl4Ig8A1UnoOVCA2tf1+v3498vepU6/TOrmsoaiARwM6CCnLnPFkTFmIlFIhz2+LgsOjQ4kJVwFZMcNTMi0O/YAiS4nCGFsad/BZoiCiNAXj6chNsyQ1qtMRavtoJKDU4uKCM/gtyFLxV2tEkWOnpZw//xKtZoeT/gFb2w95+iil1VomCkPSNCXNE8rCUJBRqAc8u1PyQbLKci+m3YxpNhsCxEzED0mb57SikEa4SuQmFqN+n+lwgII6cOXll19mOBjS63bxPY+iyBj0j91GWoGyXs2AanWblGXJ/v4eO9tbBIHP+vo6jx8/5sz6Omc3zvLg4QNm0xkHhwd8/vOfJ45jup0eo+EY3/OJowhTlOhY1sLTZ88ZjyfMZjOmsxnTyUR8Y/LcBewkzGYzVlbEV+PSSy+xsLDofO3koNw4d44/WPxj7t69x8mJ7IGSKOrMbZUcLKPhEHUObt++C/js7+4RuEAX+ymfvep+cvD1qXVtwGpXiJ4G1yspo35hAlzde0WeU5oMrTMCLYlelUzRWg1WiTQcZ7bv7gnPC5zRusH3K8lvKZJtz0MrMY43tgAkpbW614wx7jVZJ+8VAETA1MTdJz6hH9YglLVQpDOGoyOyXGPRHPX7nOT7XP7MX5DkIUHYhkw8X1pxxPLSCourMY8O7/LOzafocspar0EchnQXFlhaW0UraLdaNYtzaXmZNMn58KOP8bTP7/zOb3Pr5k1mswkPHzxEpq9NaRic7UCrLf/9+Mlj7t29IwEtjp147foNprMJDx4+5Itf/CKtVos0SVm+fIU4bnDrk1ukyYzpdMbioqT7NlstSgxJljCdpbRsk/6gz2DQr/dfKaIsnhaZfBSHRFGM7wdiAB2GtS+R+PAIOOPKNvFZdCxSk8t9VOQ54/GIMBD26Gg0YjwaOfuKkiAIuHz5JT755A7j8ZggDLh69Sq+73Ht2jV2d/ZcA+7WHtIcYpA0vlPFo6WaWNo52HdqD39xL8ft1c6ygTkYKP6dsndXVgRpmhKHEUoFLzQ5vvNkstbWvkTa8/AdiOB7vjADTg2/oigiw2M6HfHs+VP2D48gjNg5yrn3pM/FtR7nN5tcvngZHQS1ZPn46JiT40Mmwz7JZEqapRgX7nB8fOy8UAOUVuKHipzzk8mEYb+PrzWtZpPpdELukiWrf8YYlpaWWVhc4vikz+3bn/CTn/yY8WhUD3z8wCMIfWG2nRw7WamwQbXv0242yXwJQGu2W3z+85/nZz99i8lEGuJ79+6ysrbmQBtFZfBZ3b/1/uOm8boC7KorXwVzVXtVdZ0rVkF99lcIr0v/c89RWseKdCwDT2tsUTp2gkjeqsGOtSWT6YTnz59KA9pbIM8zVpaXabdb/PjHP6bVbHLmzBmKouD58+e8/tk36HQ6pImweSXILRQZlhcQ+CFra2vo+Q2H0hqPeW1UpZvOawcZdL7Awnd/XjUs1Fp8IqsvC8hXCFs5DGX4ZwxRHLl7NJsPQcuc6WzM3miHpc0zRI0Wq+3znD9/jqNRwk9+/g43rl3i6o0bXL1yRQYdgwH7+/u0Wk3C0Cd3QVCB79Nut1lZXWUyHtNuNWm41ELrAEhJM4Veq0On02WWZHz00cfcvPkxP/3pTwgDT+Skzmc2ikM3HByQpRllYTC2QDklQeh8X6MwktTuPGdhYYEvffFL/PwXP5cGXWmePnnC0ydPuPHyy2CMGP9XSkQj77tW1KyValtRzh6i9i5jzoyar8GKSXJqJ5ojKe5r1eChgviqb/j0OTxn9ykrwwyxuygdtmjdPaMJQ592q4MpZa3u7Gzzk5/8mCxP6XZbLC50UcBsOhN/TGvxA03cbGOMsJOn0wlpaurAo8IveOniZY4OjhmNxgwGQx48fMjq+hnno1tQ2hl5OSPPRuIHZpR4RmlhPitt8QMospSsTNEeNFsRWeqRa5+8yJ0vqDT5VTBEFMXiE+2XZGaPuw9/wtqZlzHljEak+fjj9ynzlNc/8wb9fp9Bf8jC4hJae3Q7XX74dz9kZ2uLOIqk5izL2r869AOUNQz6fY4OD/n7H/09/f6AZlOAe62V83gNSLOMoig5f36Tz3zmdTqdDloFEqiWTEncfb23t8e9u/c4PjqqPdRtZICA0WjM+c3zHO4f8OTJEwwlg/4J9+7epfel3rx/0fP9ypQlvlPkFEUhcmg3eDCn+pFqf7Q1tdsBLNWQwpo66GoO5Z1aoNadddYFDZ36kqrX+KfZPNWZN7fuqMDtCnCxbtiilJXwLgQkiuMGnW6XojCMJwOePnnOs2fP+ff//t+TJAkLC11arSary8toTzEZj5mMJ2RZRlFklBbKUoAdzxOWZeBroiDEOGD/tZdf5eGTxxwfH2FQ7O1u8fYvf8G3v/3bEh6YF1SOhxLyN8PYAl+JGkHCI726joTKhk4k+74fOKluQVlaoqgp/sUoGnFM6EdoVVLkO4zSXTzVwAtDyiIizwsGA0MQiMrh+OiIKA44e/YMo9GYpaUl8WBXmsWFBS5evMT+wT7Pnj1zHrg3+YzWHBwcMBz2+eY3v0Wn22Nvf4/nz5+zuLjI8+fPee+990jTlMuXL/PSxUt8fPNjirLAKoWHBCpUPtlVmGCeZe6MkUucFrkLYZBwOxQMhn0Gg4E7nypw1adSzFR1lPb8quwGpV2IhqwqkZ5rB7CpObBcVL518lxGlm+9Nq3bn+WCVKDyfN80Sk5znLWHrYFAt46dTYyKorqOVKdvBw1xFBPHDbKiBFOwtbXF7u4e3/ve99jb22VhoUen02Z5eYnVlRXSNGVw0mc2m5EkmajrEJ9POdflTchzISn4gYevZY/xlKLdaHLj6nWazefs7R2gtCZJZ/z0rR/zT//pn9GIm1inxqyITqaQe8yYgjxPULoEB0B7nnK4gZWBtfbQyq+9+EF6n8IF92klPViVjwBSk3rqN4bnfnOAb5LsMU2e4HsB3c4C7W6AtZqyqBgoitksR6FOefOVLo2nJAgc2OR5eJ6wlIS+GtdAnqcFQS2KHO0Jmyr0A+c3JkbUWnuUxhCHQiO3BsIgcjpvRVkI8l2WCaaUYk9hmUwGZFnhpgAl1pZoXxgDWZ7QanURbw0FtiRNpkSxoK5lYQj9kMj3CKIYa3OazS6jUe6MwSHwm5RFxnQyRnueY1/gkHJDXkhhr7TCM76baPs04hW67TWuXXmNy1deY3nxLNNJzrMnRxwd9YXZYUqZaDJv+iuPofk0tAL2ZEFXxftpoOs0c2gO5FGz4KrHp7//vyS1/fRznk7ZPS3XPf3cp8HJ00Dh/PfK91VF6XySPv9bTj+PRNVTg42f/nr1HoBQpa2WG68swXdpXVmWYYyqgc/q9xk3YdKewlM+WVZN9j0qWR1AFDdI05TxZMwsyZnNJqDc2jXC9sqKHOv8FsMwImw20YWw+CgL0rTEFiXJbIAfRGS5NAnKugQ6z5dpnRWa+3Q6YTSeil9UloCbQkvCZ0+KS1UQBRF5UXD//l3CsInnh/ih5c69WwxHpXhVFKVIA40hCCLs8R4nzz/m459babw87cJDfIJmh9LvMMs0+fiQrBjhIb+3AjKVgjAI+fCDDxyd2uew0cDzJQG7cMmtSik32TOkmXi/ecEio9GQx48eMh5P6HQ7Mv3d2WU0HKA9zeqqbPb94xPObZyl2+2y0Ouys7ONAqIg4mD/kPv3H4mnivNoMwizoihL9g4OmCUzkcfHMa+8+irdXg+tfQ4OTzg4PHGedgJmBI7V1mg2OT45obTWpdwVKA07Ozvs7e4yHA7p9we02222nj/j2bMndNpNGlFENeut1ie8yNg6/fnTj9Nf11oTeiFFmoGiTpyTAkCKfK19NEqACGOZzWaUpChlSUuRgXhOXpYkU5rNDkkiflLW8AKAV5YlJWKhUCWdVq+pGi5UgQZ+IGFEWZbj+zFaS6K6KQuajaZLcCzwg4BGpLh8ZYVHj49Js5KFhR5e3mK126QVe9iyRNvqHiop84zjk5zx2Ofh/R1u/fLfsxj7LC4usnnhImfOrNNutuh0uiwvCzi7tr5Br9ejGcccHh3z+uuv0et1uH/vLufOnmF1ZZVuu0OeZRR5ThiJR9rJyQlPnzxhMOgT+JKGfeXqVdJsxq9++QteeeVlQPHkyRM+/uhjvva1r3J2YwNjDDddcZckKWtr67SaTaoEbK00o9EI3/dZXlmh2WjM/fA8z/mCVuniSE1VShMv4TAFyXQqXh9pRp5lpGnCLElJkpRpkpAkM0ltLQqXqCmsy+3tbYpyLhloNhssL6+Q5R9x0j9mbW2dV155mU6nw2Q8lcLD90VaOKcYuP/ZejDjVm29jmv/rE+t3VrCizD1q6InSVPX5MXgQCuR6gbMprO64RHJlYCdpRE2s6eMNGlWWFLWIo2qM7M3xs6NoE1JbnKUajJLR/z63Z8QhC0yA0M2CJc2+eKXv0DTjhkNhxycnDAaTolaK1w/c4WL59aYTU4YD044OTzm6OSIo6MjYYXlmVw3W3lmGlqtFs2GJG8Hnub6jRsikXRsf7EEENb34tIKxioePnzMnTv3ePLkKUHgO0mdSDyTZEbge5zfPFf7XE0mE477fYZORpdmKUmW0uv1eO2113j33XexxnB0dESazPBabSqEq7QuGbcUKYpVFletnxpoUQ84KtuPT21MNWRS+UidHsrJ3j4HMitGcFgPBCpTcp+g0yGKQrIspd8/YXd3h0YjxgB5UXL+wiU63TavfeY1FhcWCaOIZ8+f8fY77+CFAV/92tcYDgbs7e1ydHhIaY3c+80mURzj62odSyNSycFO78Ev1iFzprX8ndR/H863q1rDFWinlMb3Y6LIr4d/WTpzPkHGecCWWFsQRoaFnsc491lfXZYEz3Qm55UO2TmZMvvoFtHnXqbTiGk0WywsLvL6a6/T7XaIGzFxHLO1tct0MuPll2+Q5zl5lnF4uM90MnUMAknNLY0wenq9RYyFx4+fsL29ww9/+EOsNXjad8xfuZdHo6GcG64O6fa6WCAvCxmSzcREP01TojjCYjk8OmRleYXPvvEG7733axSQJgkP7t/n8uXLBH7orGwqaxXxvPSUAAG4UCyLM25XMliwc46UDACoaE81LCIflaMTn9qXXjCTr66fa3bV6S2sQm+d5x2IzUSVMlulcGutaEQxjSiiSDOODg559OABDx7cZ2Ghw+rKMkoZkllCmiZ0O11euvwSnW7beTNJjXxwcMDTp0+FzT2euabe59Kly8I+K1L293bJswRTKkozoyynlOUMpTV+EFIUMqgLoljksMqjyBLwpUYNHMg8nkqSvNYBYSjnsDUKrI8fRPLe2RKlDX44Y5Y+4tGjE8JgzMLZRXqdHoPhQNIpw4TxeMrCwjKdTov7Dx7yta9/jeOjI8JAPIDLonQpoML6SpKE0WjC3sEe7/76HRrNBlHkEcWRA4rFBzUIQ771tW+wsrbMk8ePmIwnXLlyDWuRwLVbN1laWuL8+fN89WtfZXtrm5sffyz9Y1lgjEee50ynE65du8qzZ89kfYaax48f8dnPfQ5fe+BZsFUvMR9GaSVJ02LTIMiLrtNB3Uqr+i/mAzZZN47+ZJG1VgGBbt9QLmlUNtRToYWO1TRn5jkmeLV+lZ5/jTksbU21R3nz60elgJIws3a7RRzFFEXJ4fExe/t7fP/7/5Hj40OWlhbo9TqsrCxhSsOgf8J0UgVQKtqdDkEY4emAyWTCdDoT6azxsGVG6RvnmQ2XX7rCeDLh+OSYNM344MP3eO31V1lZXZe9FUVpxSKpLHMMGWk6deqLaV1nVmx15Pas7YfkrJChZCOOOTwUJnOUR5i4R56NaDZbMhiMAD1FqxbJdEyWTdnbHVEaGI5SPE8sIFotsexJkwylYGVlBd/zePzwEUeHhywuLrK9vV2HeBlj+MlPfsrConjzae3R7fZ477336Pakfj48OODixUvcv3efxNUjYuGQARJQFCFp6+PRmMXFZTlXna1TGEoS8s7OLkkqgU3Chq7ZLahZZYcz77GrRXbaKgeLAEpKWG0ihVY1hlANuSqfaqUVyogqQynlwCheOBMBFwjhPE7d98ynKlro0ojsvxEGwnqrtOwKKv9ThabZiNFakWcJk8mUfv+En/70J9y/d5d2u8nCQpf19XXaraZYmkymzKYz8VkuZHC2uLhEq93E9zwsmtFwxHA0Yjgc4uWaKPRlUKo98kzW2LXL1wDFwf4hWZpw794d7ty+xeuf+ayc6w6fqNin1so5UJQJhZmiPFHTGGPAMVxLUzIcDer7sWb/2zlxStRWEZ7nA9b5txdYPcdN/vc+/g/w4INOu0VZiDTRK+UP19oHDJ1OS5Jz0sz5jkrgBZT4vmxSQRCQl8b5W43x/Yg0naEVhEET4XMZlBJ6ZFGUdVFfSWlFVitTtNksoxE3aHmSZDUez0D7+L4ijDRlIdPLKFKgSzY2znJ8+xZ+UJDku5RJTrPVkkWWp8RxhFKaZJagdUArXsXzQsTayuDpJkmSMBzvcnR0iB/4RFFEkZd02suMywNKmzObTGg22xSmIA4bZGlB4LdpNgOmyYBpktFpnWFz4zpXr7zOS5deJY66jIYzHj/ap9/v1w0L1tY3lRSZn2alnQbTeMHPq2LMnZb0ngbbRBbhntvdpKd/dg6O8cLvOw3kffrn/rc8+yqG3Omvn5b6uiFp3RC8yAJ58bn+MWmwTGPUCzdV/VASBJCVkvIVhjGlEWmq50uTVk1EPC9w75chd2ECoIkcI86YQtipCDU6L8Snr9Fo4fs+nU5Lwhj8kCzL8XwlEx0r6claeRgjrzXwZbJayQkMFj8MCcLIpf7mUihYhTVSsJZlAXlOHMWgdD2tbwQRSimSWUGWWUpjKYsMZhm+F6I0pFnGYJQSRj5hGpCllsJKAq40LIosmWDKkjiKyZTIZyt/BaVFAqy1TIZEKmzAlGgtzBlP+2ilGQ4GzKYTzl/YJI5i2o5qPRwOZZqkFKVxhuaeptftMhr0mU1nPH70EN/XRKEwGy9cOO82UDg+Pub111/nwvnzjinVpdVuib9ZadjZ2WUynZFmuUu+QqSkxjBLE2xpOHN2oz68lVKcDAcMxxOsUs7fZ+5tKdMXOZ9EsiRTsiIX3y6tFP3+Cbc+uc1nP/c5Ns5soJTm448/ZjQaceXyS8JaOc16emFt/8N7pW607dxPpWIR5HleM0gqE+KiMKDnoHrhpoRLiyv4foCyHsaW6MDHlnNA1/MEuCzykiDwQInPXKvVAoqaiQfGeZlYAj+s95UKFE/TjHkit9wXnpZCXytFmkiQQeBDWYDWCesbDY6OAw4PEzw82gEcPn2P3caATrnIardBHIfEYcg0z2m22pgyIQoVzW6H0OSMhkMe3LvH1tZzfK2J4wbf+MY3WV9f5/jgkEYUEYUB1pQcHx2yuNjjt77+VTnIcwmpSLOMoizoRF2MMezt7fH4yWOUssRxTKvVxPc9/sN/+E+EYcDq6ipJkvDwwQPu3L5NI4753d/9PTbObLC1JWzRJE0lBCEQZpfvB2ycWSAMI3zPq1k91T5XloZkllJOSpJZQp4L6CispJQ0lY9JMiNNMtIkIUukicwK8X9cO3OGc+fO0Wg0mU6n3L79CR988J4AsL7PlatX8DxVF47j8ZgzG2dot1ucv3CB3d1dptMpnvbpdHugPHw/rFmXVTFTVS+VpUHVx7wIkHxqKIR1wIrbM/Nczltk763CiyofpGpdV16nYRhhDKSJSGZVLs9lccbIRYnWHn4QoLWcNaEv+1CWZWL0X8r+Z8wUY8dMJhmjacZ+6nHl/OtYE+AFkoZ7+cIFWo0F3n9yws/ffh9faS5dXGZtdZnohhjv57kwYlZWV2vZYppm7O4ccO3aNR4/eYhCURQpk+mkBnqLsiDLxVer1W7Ranc5ODji6ZNnvPfe+wK0KBmWeEIJ5LXXXuXcubOMx2Mmk4nIpDY3KYqSp8+e8vz58zmbxVqWFpdYXV3l6OiE6XRMMpsSR5GwkmzlK2VI8pzcZDgIds4k4dQZaqWhrOTkFdhlykKeyzr/tPqcdme9k6qZoqwn4nHcQOM8JRW1V+TC0pJrviaMRwOOjg5ZXFyQ4DalxPMy9PjCF7/AwcEBW9tbJInYKzzf2iKKIjY3N9nb26Z/ckKelXzhC19gfW2dSxcuzmsFqgGjqWuK6u82FWh9qvGXv/90jSL7tbBcJHiu2+3VgGGnvUivu8by0grjyZCtrftMJn1C5xNdNQ5+mHFus4MOYlp2QivSGO1j05zprKA/Kvj4nV9xuHWfV29c5/zmRTqdNrPplOlsytWrV7h8+SWiqMG777zHl770ZT786ENGw4Fj3GhnC5A7o3ZDFEXEccR4POH58y1+/ev3ODo8otmI3cBYWJSzZEpZFpzd2ODa1Ss0mk1ydw2jKKI0hoP9fR4+esRoPIZUAsGCIODg8IC1tXXW19bZ29sDYGdnm0G/z+Lissi5y8p2RBI/Pe0xzRMBLVzyixx1CnFumoccWCqPKeWAvlMoXWXbg/tU1cli6sAYYf/JmjY1cFLJySup7txyp6hUHW6dBNojalTqnYSjowPef//XtFsRCwsdwtBnOOyTZzmvvfYay0vLBGGI73m8//77gPjura2u0Wl3ePLkMfsHe7K3pSntdptWq8V4LE1qmgpDtCiHwBSUAC2eH+F5lul0SJpO8PyAKIjxaGCsnP1ZlqG8AE1AGLQolUfg9+h1Fui0F8nyGceDPfIiq/evQqVYk+LpnDdeb6BpkUw9RqOU8WhIq9VhOBySZRntdps8q3yTYzytZZBS5GAVYRw4tZYElL3//nvMZhM6nTZhFLn09iZ5nhGHDb717W9irOUHf/u37Oxs8/pnPsP5i3LvplnGdDrj3r1fcefOXb70pS/x0qWXaLda/PrXv3ZAdoHSwmpstZqc2zzHwwePSJKE/b09ZtMJ7VbLyZ09VGlBCWEE5c6lsgqrkP3RKOtqb1kfSgGe2y1NBbQ5IFA5NpMpa29IrVwarQOrZblZlJkDhnNQ2rr1Pn/UZylVb1XtT1AWOW7uXKEJVHwqP/RoNUQpls5mHB7sc/v2LR48uE+v12VpaZH1tRXGY5H1T8dyPt24cYMzZ9bRvibNcpT16ppyZ2ePJ08eM5tMwEKZlxQu6OfKlSsc/uqQosgZDoc8efKUpeU1QBhVeSlhmUoZjJVBRJnLuVx5eoZhQBBEToJdunu32pkllGd3f5c8FYmmsbCxtkLkdylzUULl+UwGKGGKF4aMhkdkKUzHBdrrUYVFdDptYQxGohxYWlqq9/CKAT6bzeg5r+WjoyPe/PybHOwfcHR0xNVr1xmNxhweHtFoNgiCgP39A65dvUa31yM/Pq7D8aogzDzLKMqMwA/JS0mZLkrx5Ww3WzKICkLObpyjMDKMNca4oIacLMtdOvW8/7enhk2VHFRITLImTvt86yrMsdofawCbOXLsph6VKkIsvuagItrZPzlG2rzmc4Mz93PT2YROp4PJSrSdQ+EKhVGKZtgkDHxMWTDLcg4O9nn2/Ak/e+vHhL5Hr9tmfW2NTqvJaDyqVVZpmrO0sMgbn32DxcVFZrOEKIppxLGQGdKEsijZPzjk8eNH9PtHULh71hgH9mluXH+Z4fAdRuMRZVny3vvvcvnyS/hhoyYXVf1aaSV0LS8T0OKtqADliW1XWUhPFkcRvhczmYywOq+xq6IomEzGxHGDwi8dnmVd7Sz+i7/p4zfnAFoNKnCSL0H1m46dUAEunucRO22xyGiEAp64dLksy8idKXuz2aIoHEvK91EEYD3yPCWKlUssrUInjFAgPZ8oCrAG8qKg2Yyw4AzmPRaXegxHI+JGjO9BHHbldQShSIR1RBBEhIEHGNphh2arzXg0YjjMa7pw4IWcO3ON61e/TFlC4AdkaQbacDx4xOOnMwbDYwno8H0Wl5dIZhPHiEkcMJai/YBkVhB4LbqdM4xHI1rhCucvXOWN17/O2upFtNYM+kMeP7wvuvLKMBJTLwDPqvoAUvZF5P7TAJ68735dkJ4Gy/4xUEwYTmX9udPXswL56p91d2n1tdNMwP/So3pddapcBWAwP7ygAghVvXmdlgKfflS/z1o3QaiK9H/k+15gILrCPk1T9zkFSGMjG5wiDMI6lbBiGMprALBzqq3W9WFbvddYYfkppSSNFy3hAQ0Yj4d4ysMLRLbqaYstCnwnufZVKImNFJgiI01SsqxwTCi5daMwJvRDJtMxjWbHsVMClPLE4wcNBrK8AuNkA06SjGazQWkzsllCmhQEYUTcCJhOLMZTGL8gIRGgp5CUPTHZFg81zxe5mzAdU0BSPHHsC9+FPWhPromvAy5fvsLG2XMoBcPhiP3ZPqUtacSxGCYrRRCG4s2nPawSicDW8+f0j484PNgn8ANCP6DdavHKq6/wn3/8Y3Z2d2k0GoRhxNe+/ltkWcpwOJTrURqSNOfevXvCANAeypszLKToFwZA9d+Vh5fWbnqo5Dp6ukpH08L8Vm5632g4QE2kkKPhiGZTGJz7e3soBePxiMl4zPPn2xR5TqfddcV2ZZDLC/fhP+oh6QC9ih1drbfSMWmslYJHGm25N0sH2gF4hKRZShCK76j2qBuNCkBM05QilyCXOHaFb2mI46Y0V0bhaZ84UmT5jCzLMUahlew3FaNvdWWV3d1d0lQOKgGESiwa3/MxphRAygEtnmfI8pzh2PD4yX0Gx5o8B4NG6wfsP/4lvwg8As+j3WjQaDZodHvES+eZHheU00M8Y1Geh++miUWWkRkBjp48eczS4iKTsqR/cuyusyVJZuTZjImislqSwzvPkPCGgPF4xN7+DlvPn+I7qejm5jnCIOTKlSusra2xsLDA/Xv3GfQHnFk/w/raBivLK2R5xvr6GWazx+KvqWS9KMDkOYWf04hjJuMR29tbTGeJnBmzhKI0taeLMYbhUDwF0yShcMBNXhT0T04oi4LVlVUunD/P5vnX2Ng4S6crnoDaeXBaY2i323z00YcyKPN9aaY9jfZgPBny3vvv0el0+epXvsJHH3/Me++/z9e//nVee+11GlGEsoZWqyHhLaVjan3qDJl/lD3y9OMFkE+p+dTTPU+aZg7E8ushQhiGpxQAInG0rpHSKqDV6UjCosk46R+4QCIBAIuiwNMefiB7uDCTM2EKJgmltVij6PYsm5sdDg4N2o/I0wYrix0oS6znCvI8Y6wSdoclu+OAt372S46PVllfXqbbXXCJ9wJ0TycTFpYWuXr1CtNpwsnJkN7CAp/97GfZ2dnhYH+Xk+MTFhYWCIJAXktRYo2l026DhWdPn3H//gMO9vcJQ9+BYSHdbptvffubwliIYu7du8fNj2+itOLM+gZXr17jC29+kU67w/3797BWGLujYMTG2Q0Oj45BQV7kZLmcfUVp8L2ALM9qT6vTBa00uMaBenaeiOxSJ7FSe1S1BWgZTLkho++H+L54V/mOgRiGEZUfcOBY8r7vuevdwPPFvmE6nXB4sIenxYvKlCXNVovnW89pNhuMx2OGgwHKKjY2zgqIt7HBaDRiNpmwsLCMHzzFKwxXXrrKSy9dcsMYGahpz0nAkD3AzBfr3GfIzAGd2t/NvljneJ5HGEaAqmsbgH7/gJPjYw4OWhhbkiRDPE+GQdqdo8KUMyg9Zn01YDj8FR9+sM/ZjUvEcQdshCag11vk+PCYnx3+jAsXnrOyvMLrr7+OMYbnz7dYXV0nisTaptVqsri4wJ3bn5Clqfu7NWVeUDjpe6sRk+cZBwdH7O7t8cH7HxDHEUEY4Lk0YGMEdPvGt75Jq9nk6dOnPPvwY46Oj1heXua3v/VtegsLLC0usbGxwYOHD3ny5Im730TapICrV6+yt78nMtbJmMlkTK+3WNevpbEueCmgxJCmM0m6V44E4thOpwHnCuar96DTzGJU7Qda1YP11TKnZLaO3VKD2PW25UCTU4ya0tWBpgZPIAojuYfTKcfHx+xsP2dnd4eFhQ5RQ+qzPM/ZOHuWuNHgl2//ii9+8Ys0G0329kVaeu7cOb7whS9w7dp12u02ybsps2RKUQjbZ21tXczgy4IyTylJKOwJqITCJGLZMs4pioyiSF2fpQl0QBy3iMIGxng0og7tTo/l3goLvVV63TW6C0vEUResz9vv/YCD419IMIpW+IHPLJ2hAiiVU0wFDcJGkwW/yfHJI7T2uPvJHTzlYd1+XrG+lO+LokFVaiMt/uZJwmg05JNbt2g2GkLoCEO6vR6lAyy+/ltfQWvNWz/5CScnJ/hB4ALO5Ouj0YijoyOiMGIyGcv3aI+rV68ynU64c+cOWOu8KCcYU3Lu3Fn2dvfIMgnCmU2ntJstxyQuqAIIS2PwnMx8OOyTzhJRbjipq/CeKksjKz5lbmkpezoB0/H61HxfKXCe41VNJ4UdtdUPp5jD2HlhUu1J8kH8X10dW3lra09jyqJem9VrQKlaOp+nGSf9Picnx/zsrbcIfY/lxQVWl5eYzaak6Yw0zWh3Onzly19mPB7x3nu/5ujkmCTJiIKY117/DK+//jqdbpeNM+vcvXOX/b29uuaczRLanRYbG2d5+PABWZbx+MkTXnntNbCKLEuc/2SK0gkUOVEQY32/tp4C69ZRIjWmdu+PtbWMtiiljglMQLfbQymfxYU1/uR3/28utCthNOnT7x8wGB5yfHxEt10y1VPiCLLEw/cVvV6PRtzEmLn3ZrPZrM9OayVc6LXXXuO1V1/jF7/4FUmS8fjRE5JE/EWLvOCrX/0q9+/f5+T4iCAMSBMBBhsNqZlkICaEjCjyiWKfaf+YvNRM0xGllT1TO1/sRiMmipp4OiDPizrYqDq3glPKhKpHBUtZiJdzWUrPWDpfeRn4mfoerc7sopABap7nlGXhiCB53YsYFzABuk6Xrlb8XFFX+VPaes1ZY6XOSFO63S6D4YCKDahVxS2V+qDrBshZmjOZTRgOB/z8Z2+RTKesr69ydmNDbE0mE7JUBtrWWF55+VVefeUV9vZ3+fGPf8x0MuP3fv8PCMOIPM95/OgJjUbM2uoKZ9bXefz4Iffu3RUsBUtmLEalaM/j+vXrfPTxR2it2d/bY293l41z5zHGDUCt1DZ5XpLnKagcYzOKVPZGz9PCGrfyt4VRRKPRFC9hN0gqXMDXXG1ZCqlNe5SF/I4o5Dd+/MYAX1GWlPkUhYdfSqqbyE6lYZxOp2jtsbqyxmQyZTIdUZaFQ+alENJaiSxFKwI/Io58ULJYr125Qf/khKPjAmNThBZp0VpYVUEQApqyRIrroCDPS2bJjNlsRqPREL+mRkDoa5SuGGU+ZZkyGQ/otVeIwyZFMXaod8mgP8MPIjq9HrPplNhTKOsTBgtomkymI57ub4NSDCfPGE93SNOEKGw6uZp49aXFgCxP8AKPRthwaLqiKHy0adJrXeSNVy9z8cIVWu0FsqzkYO+Qk36/3lSsk7BUG753iooL1F87/e8FPz230QvKPy/Wqyk0Cpc4W01IX2TowZydd1reW3/dzlmB1ffIe/wPmRufZgyelsGcfu2fBvms5YW/R6ZfzvtHxljC/CqccScVMALzY9exOyoJh7V1c2mxTo4igQKeL6nDRZnh+yHJLCMv5uldIFTxVqtN5bnj+x7NZoN+f0CeZ47h5ZPkKWEUoJVHlmcURZ8oColdiq21BmtKrJIDQmtN4Ef4gfiPKCvFracDWo2IXi/ElHLwRVGDIstY6C2BVi6OO3DNBSjlOcNOCS3xnWSr3WqRFSl+IEbMURTiFz6L3Sb9o6E0Vx5kaSpT3zSl0Yx5/fXPsLW1Rb8/qCc5nu9TZiXGFKyvr/Lnf/ZnPH++yyxJCXyf/f19Go0Gly9f4c03v0AYN+S1Affu3+Ott37CZDJhd2+X6TQhCAN5j62aB61YSyMOabVbxHFAFAe88urL9Lo9Ll++zMnJCW+88QZxHPPk6WMCP6Ddass61B6z6Zit7S0JLQlCl2YsrEznb+2KMOXkxDK51ko5rwr9guxbeg1dy5cAWq0W/ZNUPIqGw7rZ297ZRnuK6WRMkRcMh32sga3tZ5z0D1hbWxXJppr7Y2qlnTJOi1Guqhiocw+rWkpCBd4H5Ekq0gGUrJFC/EbLWk4nh1IUNQmDBqWdYk1JVk2oEXZQEHrYUjzNPM9zzXt17wrwWZQ5YRhjrdwLQeg7BqDsNXt7e2R5KgmiWpHmIvc1WQlBSJok+M68t8hSdAhy7kVEQeTkaznpbEyW54Ch1Wqz2Ftie9AX2W9RUnofUOLhKUUj8plRgpmHSmjt4fseH7z3HrYsabebPHwoja/2PYb9gZtoGipvrdIVed2eDIP6/RO2tp4znY7ptFp4nmZlZZWFXpczZ/4Z+wcHfHLrJt1ul2988xtcvHiJdrvDbDpllsxYW13l2bNnlE5yrlGUWcH28RbD4Yg0TRmNxqRJwnA4YjKdoT2Pz37uTZqtFkEUEvgiWdrZ3SWZTmk1WxgsYRRx7cYNet0uy8vLxFGM5/sMRiNGkzHGKpSyGCt75GQyETayLt17mOHnvhhOTyaEQUSR56yurnJ+8zyb5y/w3e/+BZ72+F//3b8nmU05u3FGDKArFotblP+Qqe0IM6fOg+ohA5Y5MO15mmazUf+8h4DrlV9kmRtXnMpZEPgBeBpfSwE16A+wSIp4npcCAOr52WONrf29fD9wr8lgCkPo+xTlkHPnWywu+RwfWZonFr1/C662CVoRnU6XNJkxS8cUuWZwUnD8/A73b/+c0NecPbvJpUuXWOj12Dx3jrW1NfqDAVEY02g0abc6HB0d8tWvfoWf/exnpLMpC50uV65cQYErrjPCuEmjGTMaj9je3ubmrY+dj1tJxwUevPr6a9x/8IDlpSWiKKTT6VCUJUf7x2jl8e1v/zZLSytcs5CmGdvbW0izVLC4tEzsZOCFKchLAYqTNBMWxHTMaDRywU22bkI9X4B7T3u1b5+nFF7g1QnGlRWL53kOuNJOijo3ZK8YAtX+VZSiwsidcXhpSoqixPfm4GOaJOzsbtPpCBtqPLFEUci9u3eJogYAnY4kUj/f2mF5ZZWyNOJVZC3tdke8jpKZNPL12gBrSpRMfuqzxrghjnUSmheiMSu2DY6+7VQUFegEljAUWX3VVEm2T4lBmKZBqMVLSvtgS8JA1mNZFihdEjZPWIoDJtkRH9/+EK2WwX8JnzFx7LGxeAaN2BwcHh6ws7NDs9FkPBozHA6I4waNVsze3i5nz57hn/+Lv3AeaAXGlhRGk+V5nd6XpSnHhwd88skthuMh7ZbUsc1GA2uFpf2tb3+T0XDAX/3VXxHFMf3BgOFwyGuvvUpvoYf2NIPBCYPBgOvXruE7C4DKuygvctqtJr1uj+OTE1mPWS41sZNpxkYAAQAASURBVMYFn0gqexzHJMmM8XRMkee1L2997lmRk1dwXdVSzveiU2xiW9YXrvIrk6TkF60DKg8/Y41Y5Zzas6pEaWGXlPWepZUmimOaraak0Wcp4/GIu3fvEoUBiws9kYdOZkRRxJn1Df76+39NGAZkaeoG8e65w5CrV6+yuXkea+H8+fM8eiQJnUVe0usuEPghnm/Ji2OMmmJsgqXAFE0ir4PWHlErAgWNuMXy0hk2z11h89xlwlDY4b4XURYleVZiCsN0mrD97JgsO6AoDCdHfXylyWzJsJhQ2pxGHJHkCXgS1qW0IQwTdMOSZ8/pj1Imd5/ybOsmF8+/QpnmnBwfyff7HkEQEjeaNBtNmnQk5GokCe2D/jFRGBAEntjlOLbf5SuXWVlb5sc//gn9QZ9Ot8PBwSFZlssZOZmIV7ID3qIocn7JVzh/4QKe77O7u0f/5LgOKZjZhE5HpOx5PhYwNM/E7sIxdLIslT2pKInimOlswvHJkQx46qFqxdDz6jtf6VM9WAV8VNtFdTZW52IVTHAKeD4N8KkX+q85wHfa97xSWVVy3bLMKYtCrBqsMKr1qZ4rCEOCMMQC09mUo6ND7t25zfHRASvLSyyvLJLlKbPZlNwFU37rW99GK8Xdu/d4/72PyMoca+DixUtcuXJVWFKNBlp5vPzKK8LW3d8TH+sswU89Ns9t8uzpU4qi4PjogCydind+lmBtTlFOCMIR1qaiKKn6UoQokOcphc2plIGe7zl/xAiDoRHH5FmOF4BxEnOsz9FhQrvVIg67dM+c49J5sbeI4ghPKwk6m83Y2tnh33zv3+J7QyFG5MI0lR4gYHFxkT/90z/lX/7Lf8mFCxfI85y/+g//kXa7zd7eHtPplLzIGQ6GtNpdhsMx/93/+7/j/ffe4733f836+rpcz4pMgHJ1ssUEBa+8epGFpascHh9j7ITCsfgkMGREnmZ4/pilxRV6vR6+Jz7EeZ6RpRlTa2RI7wcScOckzXEkIXuys9WVVv2vCsEyZh7cJiw/W6sfBEivpO6lKEgKee15Xrh/GVkuSp3qvCsKQ1HmKOXRaDRptFqYonCKuMoaRUgjFakjasREzRiDJclSJpMJh4cH3P7kE+I4YnGhV5MmZklKUZQo7XP18iVeufEyt25+wls/e4v+yQlra+soLWfEZDblZz9/iyRJ+PznP88bb7zBlStXCcOQB/fvYtywJstzmM5od9rCApzOyPKcp8+fsbZxFosiL9x7USrnP5uhdIpCehxTyr3meyHWGGZJIr2gFqWfdf6mWEuWZzURqCytU4wWDvxO8f/PINENghBtheHUiBtukRhhJnl+DbaMpycYI41GEFQeTfIcSZISBU2R0SiZ7qLk848fP8TagigKQMnCHY1SgkCK/CgSvXZpLJTCOmk2fFqtmDRvnWKUOfRZVQmmAp5k6ZReewVTgO95BHFEnntMZs742fdBRQyHY1qxoSxTHj35iCdb9xiOBlhT4nkFvq8IQp+ytFRzmuF45Lx/PDw/JPRbBH6LM6vXeenC65w7e0Mo8VnGaDRmd+cxk8lELngFQCE3wByjOjUmkrrbJe28KIX9dKP1adAMqEEU0JQU9eFVPf9pQK0C9U5LfZVSzjRyDgCeBgY/zZarjrrTrMGaRVWBdqf+VV/3PJc4deo5tdYC8On5BMEYg/YV+oVp2ItAoyNm1UWVUkq8v7yWACBGWKRZlmMxhEFEWVjiqInn+xSFX/s/hKFXv/YgCEjThDAUD0mUwqq5p5H0SM4Nw1pmkwl56qED7YynPcBzHgeaooAw1HTbC8yyBJ2l2NLQaDYlGQgr4S+lFZktiiwXQ1ZTSjJaVuQ1A6LZaDIbj/GMFCVZVlKUVorqFFSoUDbkwoWX2Hp+iySVteb5p7zclKbdbOJ7LwaslKYUtqyGz3/+Td747Of43OfkXphOpw7k1/iBeA9OHdU+TXOG4xkbZ8+ztLTIxsEhxycnzKZTjo/7HB8fOiaPxtNK5MaNBn4oUuY0TRhPhviBz7e+9S3SNOVf/X/+FcvLy3znO3/CuXOb3Lt/nyAImCUzhqOhM0AVr4xqmqxeWEfameJ7YvyNSHbq8Ay3hgQ0CmswsEppAmEO20wO52bTMh6NMWVBb6FXG+muLq/i+5qlxUXiKJSGF0thXRagmbNLRdbx4r2rlEJ57uA2wnzLjJOTo/CDqL5ffe2hrMELfDwvQilDq9WVwtDMJ25BEFDkhtksJYwb5HniGKse1noEXoOylECaKpmtyHNAJCdFXgpr0xjAcxMvpCBBfBsDP8SUHp6KaTelufV8kc+UJfheRKvdIogigqDEGk2ep6g8ozQFWZpw9doVPr55i9kkcTL4qTSQKMogqFmWlYGtVgrf8xmPxoxGAy5fvszi4hKHh/t0u11KW5ImMwc6a5l5KCXee3HI4aHYIzx78hBlhdHXajZpxk3yvGQ6m/DJrU+IopjSlOLFaAwXL1xklswI/JBet0ez0cIUY9IsZTQc8uFHH8qk9+REmgonmVNKEUWN2vtjOBwCLhFNwdlzZ0kmM8AKA88xCvOiYP/gAJw/XgVqAXL/6Ip9mxM1GuRF7vz/xuJhV5ZMp1PWLq5x5sxZoihidXWVy5evgFU8fviIBw8eUJZia6FcE33avuH0Y75e5/vwp88mSSKcW0qgxJ/N83zmnlyu6XYScpmUSzPjeT4FBePJ0L0OQ+QkYNWZobUWGTpiqyH2IVXDpWlEsj972oJNiZc8FhZ6fPvMN/nv//J7/A+PbtNbWmRtbZm11R695WVCr4NWU5aXesSNDkpZfO2zu7PD3s4OhweH/PZv/zbWKo4Pj1hbl5CfPM/Zer7FjRvXefn6NbRjepWlhEuUxrhrYTg6OmR3b5u9vV0UllZbpOlXrlzm2fNnvP/r9/i93/tdut0OeZ5zeHjIuXOb/Mv/y/+VtbV1TvrHtDstrly5Qr/fZzad1szfZqtFaZzfrRssdFptskASyzutlsjIldR4YRgKm8cLatZnFRYxt9OQKzqXl8uUWlgDwgYoCzkr8iyvpazGSNpdkqTiI5llFFkucqnAo9vrMZvN2N/bZ2l5iTiOOe73nQm7k/cqj4ODI+K4wZkzZ4jimHfeeZc4Drlx4waKzK1DARxq3pfrwK2RFN9PM/7rlOpTdYqxLo25qltc21b9pOfrGriRIXRcA9hVY2StRXuB/IwxFCarm3o/COXaeIZGqGk0CrJsl/FkSlAMWe7GaC32F0VZoIzi6GiPSxc3yTKPk5NDFhaX6PXaHB7sMR4564tTtVBZGvIsp9FsYYyh3z+hPzjh9u1bTh6raDUaBIFHkhR8+ctfZqHXA+eduLuzw2SWsLa2yrVr11FaM5lM+MUvfoHvB8Rxgxs3bmCtZX93l9KUZGnKLJmxsXGG4+NjSRRGgAnjmCWZkw77QcBJ/5iBkxbLvSzDrWpoU1aDY7GId1JqlxrvrohSSkBVV08Xzv5AV3uQUu58M7W01xiRSJbOv1qjxbMxCjFFjh/49b7SbIgH4sLCAsYaplNJQt/e3qbdaqIQlihKc/HCRW7evMl4Mma1sUqW52zv7LC+vs61q1f5xje+QRRFdQL3+pl1Do8OGI1GmLwgikKaraaTWBec2dhgaWmJxcVl2q0uUdSm01yUGrGc75dJkjI4zkiTE7I8dSwU6qRhCfabEwVsWeKjyCnIfENZ5IReSKQjkeK5f9r5ECs/BbON1U2myZhHj1M67RWUzhlPU1dL+UwTUYM0m1PHnp7y4P49+X1eRLfTlmCgNMX3Aq5du8Hu3j7Pt7bQWnN8ckKz1eTKlavcvXuXo6MjNjc3+ZPv/AmTyYQrV65w/fp1AEbjEY1GzIULF1wonnHhZ1CagjiOmIwnTrGQ1KwpkNTuAGCWsre3S6MR1Yoo2RNkv7AoijrQD/SpIahYTohdQSW101oLwOyAlPn553ojNxCz4JiCc5BQhsgVc1Veg3EAn3ZhFKHvE4Uh09lMBhBKUUkp4yim2WwShCFJJuDbZDLmgw/ex/M1vcUuWikHnIgv52uvvQ6uH3/ttTe4fec+R8fHBEHAF770ZbrdLkkqQMzzZ8946eJFrl69ymQ6Is9zZumMoiyIAp+FXo9+v0+Rp+RZjgoVyWyEMVOCoECphCDQlIUijpuEfkCWC0AUtWPZ660ly5y/KVoGMwryssRTATrQaBVTFCFlGZLmM4pRdqq/VKeAQ4XvKwcMt/ln//S7/K//639g/+hAPKONsNmstSwtLdHrSRDLeDzm+PgY7WkuXjrP8+fPODo5xloJZtvcPE+SJAR+xLe+9dt85atfYTqZMBwOnX+orJFKVVOWwnzzQ8OZs13ioMnJ8VEdlJNlGaaUIV273RGLkTCQ/kXJAF571ikbQ7QW1p+w42M3wPHxfI2nJSjJC7RTOIDvR/heiKflrK9USY24Aa4uqJiUFZZTDfhNOWfrG1tIQGIpbP6ilOTf6Uyud55n9Z5sTFEPfSombKslPtlBGDkgMSdJEu7cuc1kPOas2+vKvCRNxTu2NJa1tTVu3LjB2+++w89++jMUmjCM6Ha7ACRpysHREaPJhPF4zE/feos0y/j8m29y6dIl0nTG8+fPwJTkZUGSzvBDj9XlFT7e/YiyNDx5+pjPfO6zSFBrhjGiWLKlQekRVk0p8kRIa67vUiAKVCVEkFarRbFbYJDAFPFr1ARBKL6nCnxfO0sjhe9HNaHkN3n8xgCf7/t4ShpbQb6FTWJK8cyTBMUcS4RWgaONu7TGQlhmjUaDpcUVplNh3SV56lIdFXEjJC+kCIgiMaLsdDou3UkaljSVtLqlpU0iP+Lw5D6lKQhCKQo8L6DIBciyCKhhlBh3T2dTzp3pEIYxQYBLO8vxfJlSNRpNsB5lkeEHAUcnz0izKbN0ClqMkf0gJHJ8yixL0briVoaEQY/I67G6coYL52/w0sVXWFzYIE1yBoMxB/uPGI/HdUMii34OoChkeGNOFdKnAbB/LMm2kkQA/+D75cOnjaNfZOed/rnq8WmpYAW2zQMv5sy8Cmyrfu4fS649LdM6/b3/2KP6dCX/Ow3+8anfW79np9ginw71OE0kqd53P5AGV1kpwsMgwhjlZGI5aVo4kEXVqHs1ycBaciupx9OJxMmjwZYGT/nOtyGl3WqTTccEsYfBoJWHtj62MKRFTkZBGDQcwJih8EnTgjI32ELR7S6SpTlZJhNkL5AGYTpNBBwyBWmSutRckcKPhlMquS5GPFc8L8aUmlajxcrSGloHrCyvs9A7S6d1hsnoL/nl2+8iYTdNkjQhSxOmkwk//elPiWPnG+R8VMQXAxYWlvnKV79JaTSlNc5PStI1Dw+OGAyGtZQ0z0V2MkkS0iRhMJpSlhZLiB8oFpdFdjccHJNnGUqV+C4VsMhTslQkuLt7ezx89Ig//uN/Qq/T5cmjx/z+7/0ef/7nf8ZHN29xeHRMXhRMJlNHL583akp5KBxgbJ3EWgNGkkEV1F5xynrOm3EuPTRlUk9jrJJ9xdOaMs8pSsMgH4AV4O/46IjJZESz0eClC5fYPHuejY0N8RtzprbGClukYoLUU+BTgMgLTFdsnVQpRu4BSuzy6ml0VDcjnisqMsbTIXkuxsJiryAJ53mW1JO88WhMHEUURYb2IA6jWkpblEUtnfQ8OYjEWFlTFAIgR2EkTTGOCamFgaSUh/YDrJGi39OW6WxKI+6QJhl+FGA1LC21GJ6MKQuPIPDJMilvyzJjd2+bMxvr3L17B8+rZAJuGGEKMRkvc2mwlSJyxY81MEtGDEcDrt94mVdeeYVnW88ZDPsoK2CZBFCI95RIfo4pjeXw4IDt7S0ajcg16x537tzmyZOnnL+wCcB4PKYoc9bW1mjEDb7//f9EHEV87atfpdls1N5p7Xab9z94n8PDQ6rAHlVP8sV/bGNjHaxh6/kz8bc00sBWgG29MWbzBM7qdVmlahPwStJSTWy1JynhnU6H8WiIMSXj8YhORyShMh1N6C10hGCgIEkTbn78MW+//Taj8YgoCllcXBQplgMdP71/n2ZjV//9v2XbIOeJdQUiJLOkZtkaXSVTq9qaoALBjBGZaXV21YboRsC/PBeARnu+hF54QW23INLn3CUT+7X5dFkUoHLCQJMkM04ODnj48Cbak9RAP27SXDiLPylkuJFLQFehxC5Ea4/j42MG/QELCz0G/RM6nTZKGTwt7/GkyOaFoBZmXO7qpygMnGRyn6dPn2BMQaMR02kJe29ldZmfvvUTxqMxR4dHtergz/7sT7lx41W6nS7D4YDRaMTBwT5nzmywsrzK08lTxPsqodvp1KCdLUv8MKTX6RIEMrQQkCYWL8o0q9OkRe4j03OsyNgr+bjIfKTIL03h5PcCKJROjl86uWGey/MkSUKSphSlpKvGccz62hnOntnADzzuP7jP1tYWo/EIa0qWlhddw27xfO0kU6/TbLT4T3/zN2RpxvraOt/73r+h1Wrwp3/6z3jzzTf5xc9+IdfO92UvsBZTyl4vI0EjwN2pQWYFeHx6D/7frJFO1ShVE1XVSpUX8OlaJs8ywkA8lUwp3qd5VoCWYCJsiXVG82GQEXk5O9sHlKak3Wo5dpRmezul1YpYWlglSWasra+jPU0yncgQRM2BMUlW9fAQdmyappycnEizenSI7ymiMCCKQvI8Y3PzLGtrqyglMrbf/d3f5Qc/+AHdhUW+8pWvUPmTPn/+nMePn9R73Oc+9znObpzlYG8frSxpljKdTOn1FgjCUM4MxFKiKMVvN/Yj0kQxHPbrvbsaNFe1rfZ9qkgNAeh8wqAC7XXNlPJcMrwkkbum1AGEphRQ2ff9elDheWLBoT2v9tiTasUFrxhhaVS2HFpL0FIlvUtTYT/1T45JpmNeeukS09mUsiwJfJ9GHPP82XNWV1d5443PcHh0yGAwYHPzPO12h0dPntLr9UhTCTFZXBDgMJnJICuMAr71jW+SZRk3rn6Br3/964RhIGBKMiOZJRwd9knSXWGlIB69LsMI414/KGxpHeCg3GCr6g8MSkMQBrKvWulH4jgmVDBNZ67W0G7YXwrT3hZgU6wdME6mbO1+QjKL0N4CjUYTT3tERcFAiReY7/sMBgOePX0ivs+h79h7cgYuLCywsrzMxhnZCw6Pjzg8POTixYtMJhPu37/HbDaj3++ztCS+oufOnSPLMtI0dUC8ZWNjgzt37jj1UkHF3oyiEKVsXUeVtqQw4o/V7bp+0A/RnkcchwJKmALfCyQkxFLXVKe9xysvUmPKeU1nT/VuBtf/yPqTcAHqQZl8T4lBVARVsIt231M4coE1lY+aDC+jOCJLUwFjo5CqLRSlXMjCwoKwmKOILJfaeTDos7OzzcJCjziKmE4kqMsay9mNDfzAZ3dvj42NM/hhyFe++jV2dnbYPC+163gyYTQa8dZPf0qj0eDcxll6vS7nN8+zs7MrMuxZirKwvLwitii2pMhSlC0o0hHNdgF6jDE5SktSbBxHTKcFWZoThpKuXYHkWglQVZaglSj9fK/EqMK9rwKc5uW07jPnj8oyRKFKRZ6L5dV4PCFNMun16zpGiEij0ZAkSVBKPMdnsxk7OzvkeUaz2eT/8f/8v/OX//3/l8lkwje+8Q1WV9dFEvr4Ma1W050BltFwxHQ6QXs+hhQ8K4y2zOeXv7hFwQnonLWVi8ThChhFliY1mzDwI2FJa4AcRYHWht5Ci0Zb8g6U1phSBlByw2v8QDzbFZKqq/AJ/Aae88sO/cid+SF+EDgLJkvgB/J5d14GQbUP2xfIDVLvCHGr2qMDl0GA0nQ6QkDIXfBSnud4nqpTu40taksOaxRZXjKbzZjOhBhy585t4jhic/MsjSiSYYcxKKvxfY9XXnmN4+Njbt26Jd52bhh58eJF8eHd3mYwGEgCfBSRpinv/vrXrK6s8ubnPseNG69wcnLCLEkojPQNk/GYTruNQpEkU4aDPlmSEAQxyWwMJBRlwXTWp7T7rK1HBKFC0RD/TWuwyvkXO/A/bsRUFgW+7+H5uh6AigenqoNhrRu2aO//BACfMaaefgRBSOAkgLYQuZPneWjk5ijLFOUaMa/yYHI0dWEp4FI5hf1RFoYslUmvH3CKTWLxPMXMNQHWWuKow0JvnSKbgSopigyv1qaXmGpjdAe5UvK6ppOhyNB0SJ5PAU905x41aGdVQW+hgzKWrEgIo4CSBl6Okzm0EQ8yiKIuvhcRhR2WFl/i2rXPsnn2Cu1Wh2QqoN7dvcdMp+PaQ6CiZVfAm1Zy2a2p/I3sqdc+L3aqoroqOKXALmtvHHDP40AIARKq6Y+sPFO+aPBf+6V8ilk3n9KbFz6e/h6QguE0gFd9PP39VRF9GpSrfva/BCy+KO+qZgEvgoOVQXdNgz8FLlbvRTVnr38XljwryNNEZGCFTBp8P0Qh4QEyCfGYzaZo5Q5gA0EQgdVSDDm/EWstvts8tZN1CsMgBKtZXFymNDkNrym0chWytL7G4eGBJFLZgjgSqWJRKHKXtGSNT/945iRrsdxjjpHg6RZlURJ4moyETrNL4SZES8tdlPLodZdZWlym1e7S7SzTanXpdhbwvNBRggsGgxGj4ZQ3P/cmH358i+FwBErkMkUuac95UVBMxzXzQRi7oHXAV772DbLM8ODBEyaTCUmSMpvNakNv8dosMNZSlKaOf88yaSBNad29KtTwshD5TjV9qrwwk8RQWsve3h6Fkyil6Qy10OWP/+SP+J1v/w6jyYSbt26KAWuWMZlO8HwP35ubAyvlUfk/Vay+ynQWVXkqSqOm8Qh858GnBGjwPc+lxHpoz8d3zVMQBPV9FMeSariw0KXb7dDr9mi32i6QogKr3b2tPDyETQCgXHQ66pSMqLovEaYeLpzAGmmUPK0pCweylxbjWeLauwyKwpJlU4LAJ/AD8sSSJnntxxZFgQBxRhJwlZID3SKmvs1mAxDWV1kK2zDLcprNFrPZtL7HxUPMEMchRS5x91jxiPE8g+/HJIkkvpamJJ2VKOtJYqRNWFpo8cwfo7VHGMYS9mIKjDXcf/CAhYXFej88vVcZZUhTCaPAWpZXl/lv/9v/FxtnzrK3t8/R0RFnNja4ePElwrDB3/3w7/j4ow9J04SPP/xQfFp9nzTJatDJOpC3020RNVo1UDedztja3mbj7Dp5JgyqdrvFhc0L/PCHP+Lxo8f89re+zbUrV9nZ3wF32AeBRxSG+O6ck71NOjGZ3sPh4SEnJ0MCPySKxdPW094Lf6/2KrBXu3NjPvCo/UCpJNWqliprpZznkfhJaVUyHo2I4wazacLJ8Qn37z1ge3uX1ZVVjo9P2N3bZTgcMRqPWFpc5OhYfI+azRaBL6BhdR99+iH7LBWB6tQOPgdFKtsW35dBS9SKa/NoPGFDe54UlnKWiBzC8wJ0IPtvUcpgxfO1SETyzDGQLV5pCIJQwCckTEES9iRp3HPJsYHvCztVwfLyGmvrZxmMHoE1DPpHpGmC1T7NzjYrK4u0ejEnhxOwvivm5pPyn731FteuXaHVarO9s8Pi0iJpmjLo993fYBxQ5Tv2lqLRFKb4eDzm6OiAx48fEniaTrsFyrKw0OXxo8ccHx+ztLhEFMU8ffJUBpXnzvLee7+m1Wqhleb9D95nc3OTCxcusLK6zPbOVs0UVFo7Pr2YshdAliaSXhkEDAYDtp5vUTqT+tlsRuH26rKsQE1D4lgGlf2HtZY0zciKDFPkDnwVyc/R4SFFLjVKGIb0egv0FnpcuXqVM2fOsLS0SKfTo9GI8Rxr4Omzpzx48ADf9+ktdBwjJhdbgTThi198k9dff500KfjGb32T6XTC+pl1XnrpEufPb/Lnf/5nTKcSuiFMewFkpBB3LGkrQJNlDkgLm+dUTXaqZpEhkazfTw9Fq8eL32+dXUNYv/8VwGyNpVBS10qKnjCKDDl+EArDGoXCJ4p8Fpc0+7sjRsMJh4f7WOMGX502J8Mhl85foj845vGTR6yurWJLxUm/XzN6BEz2CcOYhe4CxogkcTQa8vDBAzAlfhgQxaG8L9Zy5fIVnj19wsbGBp7nsbS0zB/84R+hPY+joyPeffddGo0GfceqPDg4YDAY4HkeKysrdLtdTk5OwCrSNMdzILtB/FJlRmoI/ICFXo/Ql+avkhcqT+RNlc+U54sSoEoMlaHrfPCrlbO1oKqb3dCsYuRVtbOzy7FuSFuPh0/VutWwtE7uNHM/WwkO85y0eEqW5ySzKdvbzwld2nWRyx7W6/Votpp86StfJIoiFpeWuXXzE1rtLlvbu5w7J6//3r179PsnvPGZ11laXmRpeZndnT0Bcv2AP//zP6fKb3388L54dp7aU+U8ccMcpJ6yVol1IcYpjOY7sHGss3pQCSjlETfbTNMM7YdgDJNkRqvTQRfS1LeaTZqtBsPhUN53q9wQvMALU/wo571f/JpBXxOGTc6dO8eFC5doTdscHx3hByFHh0ccn5zQasa0222azWbNoltbW6utGXq9HgtLi6ytrfHhhx9yeHjI+fPn2dzc5JNPPuHWrVtcvnyZ0WjE6uoq4/GY3d1dAt/nM69/hk6nI6wrrel02wSBR7MVoX2LoaS0pbvOBk9ZAu3RCCK8wNkQaEW71RJ2k/bcAEnY/hVree6/LUynyurDnlqHc5/uyiNcflb6pVNnpSxS91yVygQqD925D5hjShdWZLV5jjUGzxOQRcAYRRC6gSsiMaxCiJ49fYopchYXehR5xaaWsLSzZzd59513OTw+4Rvf+CadTpfpbMb5CwKcvPP2OzQbETs7uzx48JAzG2cYDPv0FrqcPbfJ7t4+vudjS+nh4zhGewalCrJsIKxbNWI8HdJdkJqmtCWagJOTIWIT5UmvXZRY62xijMG6lNbc2Q1YDHmRYQ0URYpVitBfpSiEFT1nACum0wnHx8dMJlNRhGQZaZaRZwVFXhJFEbNkRlVKHR0dkiQJWmtu3rzJ22+/XXur3rlzh//mv/lvePnGDaI4ptdb4C//8i8JgoAbN27w6qsvc/36dawx7O3vkzpGYO2RR0moNZcuXWOajAgCmIxnDKYjCUlzgzMhS2mCyBcPW5XiexmRr+gttVhdi1FKyAjT6ZQoivA9zWA4Ji9mcq9b8dNM0ozJTFOWYmtmjRZlhzsPPe1TWlHkqP8fc//1ZFuWnfdivzmX2T595rFVdcp1dVd1Ndo3TAMNgBcXhgAY5CUvQYlS6EEMKsgHvfA/kN4VoQj+CZJCQQZF4pJxqUsDugbIBsq0r+oue+r4k3bbZefUwxhzrpVZrYfLfuFGNE5l5t5rLzPmmGN84xvfMElkC6ZJjrUpNknJ0qHo6Qaw20CibLRc41qZCptgbEqeieRSkmakiTDCg+Z9miTs7MxAC7VVWVKVBcV6zenxU548fMjWbMJkOGS9Xonf9zJg9PDwgL3dHa5dO+SP/uiP+PGP3uHJ4ye8/NLLHF27xo9+/GPmqyU3btzgtddf5/T4mL29PV5//Qt89pXPsrU14+z0lOfuPM97P/0JWZKqv5a8VIorG6qiptxUWHJ821AWDcen9/j43o/4zCs7GLOL1TihjnqzTtmQUJZr2sZhTYbzIk9XVzXL9UIKU76TDRMfYmgax2RUfyqW/l/7+rkBPqFf57GybqxhOp3i21ZEwJGgyjlPkqDDIsQJDgZDHZjRBUrCsnFY47CZtIbJZtTEwKDV4RlpmgnAlRhWqzmPHt9ltbhgub6Qts51RT6QakuSikC1R1DtqqoYDIUOuinWyCAPaSdpG8NwENqZWrI0YVOsGeY5zhUM0gnVqsT7lDQbkdgR+Cl7O9e5du0mzz7zEgf7NxmOtimKmrOzOXfvPmazKnRr7lg33cOFAD5JG00ArqBLh7pXDEBcNy0nAIVhsV5qUVXkK2iZ9CeCBfp5f5P6WWyMPk29P7q8z87rg3rhb2HTDsfqvz8ES/3jXAX95N+O5RGDkwh79F9GnfPVdrBuqmN3X5VZ4gN7pGGQZ1RVSZ5leC+TFq1NWC4XHUvEyjTdpnbUdUlVtsrQMaoV5kVQU8HTzaZgOBjjvYAvknx6vE9o6paT4wX4nCwz4C3nZxuSJKMuG7y36jASvAvacAnD4R54Kw50NCRPhxweXWO2tc/WbJfhcMJoNGE4GGFsgjUSmKxXBUVRs5qXnJ0c09RNBIpFZNizd7DPb/6lv8Q/+6f/TKa1eSMgS1VokNxnXMo53bhxG+fgL954i1YHA7StaMdUdRUp2c7J9zSt6H+1TRs1EJqmpW1qcI3qeDZ4HLOZtJO2LgjuJjS1TOW6fuMGr732Gnt7ezRNw3gy4fHxUz54/wN+8KMf0LQty+WKVoW7jbYKi/1KgJ4ord0qcJekFmMSksSQZgIKDrIBg3zIZDxhOp2ys7PNdDaRwR4DqXDhfZyOBl3QJxUuMD60w4Y1GtZ2PzGUQM542/3aCIW7Y+FeZeUGjTEI2iFSIUtU1y+hLEstnmjASIoxAwyJVpitBqyO0Wikk867idpefcBiviAxCdZbGmUbe28oippBPmZTSEBRFDWpNTRGEuKmbsEb0f8pnQyXqD3G5FTrEmsS0mwoQGmWc+1wys1rhp8uHjAYDKjrEXVTyeTNpuX89EyeGap3o76trqvYApclli9/+SvcunUb7+Hg8IC9/T3a1vHo8WOaxjNfrLl+4xazrS1uPfMcy9WC1XLFarXh5PiEi4szoCXLBzrJcExZSnUuyzIMns999nOkacoPfvADlssli/mS2zdv4euWv/Sbv8nt27f56O5HgEhFPHlyynx+LvYSNBetjQAfoEFlTUHBerUWYFoB7tBqhJE2yeCb+xqR1loSIzIGGElSjE1I1CYTK9P0Li7OAcdysZQkwAt78+TklNaLULY1hqppWCwXVGWJcwKyjsdjxoMxR4cH7OzuxsRZtF2U/WLC8wngpQTclws26tcNMsAlSQmM1DTNhFHnicWAJEmihlHTOLJMk3uPDtWoGQ7GonNV1RoUh72l09MsVMdloIyH0P4zGA6oKkmKd/e2pOKqepxpmlC1JeWqYu/FA7745Ru88Z13efjgDOdyXf/Slr5aLzi/OOa5555nZ3ub4+MZs60tNusV6/UKYwILxGNVbiTP88gaePLkEcV6yXg8VOC9YW93j7fefpvRaMQXfuELPPvsszx88FAnOJdcv34dayx//D/9MQCffeWzDDJpERddsyJO2/ZedI/LouSimPPgwRO899RNpX4xxXnHhx99yGqxFAZDsRFdzVaq8k1di66sjD1ntrXFeDJjOp2SpQlplrPeLEiMZWtrl/39fba2dcL5ZKJFhRzvDefnCxaLNYNBLkML0pTxeCKJQiL7eB1agtqGzXrN/t4+RbHm/GzJd7/7XX7pF7/Bi88/z+7ONq9/4TVuXL/OO+/8hOOnT3BtwzDPGWQ5TlnnOoZcp1lq4h28ci8GatvQ8h3a5aALyEPcJntj0D8O67CvN9yPpay1OFrSJFVGpPw+TTKaUAxNLNYkmCTBuIbDowH371qKImO9cTrwQeQqyrLg4vyc/f3fwG887/z4HY6OjsAmwuwPBVUPaT5gkKVcnKd44Pz8hIcP7pFnCdPJmEGW0dQNk/GY4WDAv/7X/4rd3V1ee+01iqLg3r17rItNZPPv7OxEVvd0OmW9XpOlGZPJmP39fRaLRdyrnHPkg0GMaltt+02txXrwzjEYjhkMcx2QVbKYLwCDNYnGfcL2bZSpLpuptEwa78MD7ArSQefYg2uc6PKZEJ8KS9Iqj83hdMgcMTaS/TYwguQZVlWtrNqM0XjEeDKm2Gy4+/HHbG1vqVi9fGY0GnF4dMj1G9dp25b/8p2/wHlDWQkzqXWO45Mz/vN3/pxbN64znc2YTrfE/tMU0zas16LPOhuPJGbwut8TeCACUmtVJ2pngmqPmjB3WHsDTHeYLp4DSLDJHoF5kg5KrJVBIkUlg0nqynJeFkCOMZBmKVW1YndnD0+DtUs+88oz/Pmff8jZ+Zqnx8d8+OHHPPfscyyWKwxWNNKHQ9JMhjQK1VDOYTbbJrHCZnW+pVxXvPfeexFcOT4+5uHDhxRFwd7eHs899xz379/nT/7kT7h37x6L+YLf//3fB0SbLwxAS2zKeCwF+zSXoTY2kTi/LivauuH++gHGG2ZbW+zt7/H06YKm3bDeLDBG9AQTm4l9+CD5oAPZNFYLhTeRhVJNZbr9BwSkMCQxFwlSKc55ZalKBwQk2hqdaGtwizECRuIV0O4x5VsFnAHyLGOQS57ctC11JTInrqn46MMPGI+HTMZDlsuV5DdJwmg8Jh8M+Ojju2yKgu997/s888wzfPLJfQ4PDyOIsbt/yPd+8CPq1nF2dkE2GLGzuwcG0UorCgENfcvO3oSXPvMM3ldczO8xnebYzONJuJgvMdaRph6LSr+0Do9lsaiijIy1AsZnqp/rgdZZHIbWJZRVGSe5Oi+AkbxRWP3L1Zqf/uSnnJyfSA7i2siodK0M+suyIDEj4OjZ2SlPnz7h6OiQJ08e89FHH+Fax61bt/CpAGp/62/9Leqm4R/+w39ImkrH1k9/+lMlHpS8+uqrfPzxXTCi6Q5CQHKuZbo15POvfQ1jEg4O9siyjEylfkLxoXUtm/WG8/MLfvj973Jy9oijawfcvn1IktSxLXa9WSkxqhIN2NSQZZbGVTpMCnZ2cqqmAmSQhmUg+VdrIjBc1S3FekNVN7TOsilb6tpFEoa1GXXpwedACsaQpaLvmGaJSjxkQIqxKYN8qGQB8Zuh2JVlOU1Vs729JdIDo5HqR3qqStrj67pif/82SWqol5V0eal/v3btiCSVmHdvb49f/pVfYn6x4Pj4hPfefw9vhIm8KQu+/JUvc+3oiBeff4GmaTg+PuHp02Papubg8IAP3n9P2Idppi3FDYNhRpZ5jGkoyyVp0rJaPeGTux9zNv+EF16+xrVrOySJ5PLOt0JOq6WrxVqLTWTi+3A4JM9HrBcXcQ8Z5kPBm9pW5zZ4xqMZYNlsSkJX0s/z+rkBPq9YlHOexBra1uPalFE+42x9LIKwtVRDvS6+LMk+VRUNP1dVyXCYiJhj7ZlMdrBGRnO32qpgjI0Bpk0M1jd4NyBNRrzy0kvcf/g+Zxf3tdIrjInWNWRpzmpd4E3dVbLHkKVpBLxGozFb20POla1grVHtmxGudkgXTU1mt5luXedo/zmevfUsz9z6DKPhNptNxXKx4uG9JZv6iYIaodIoe2ocQU0nkOoDAOU/DXQFEC9JEhUZ7wLK8ArgUx/U+1kMvKttseHnPrgXgtLw/qstYP1hGv02rJjg9SugvXMEFOi5zNDrv787pw74uBxAS2tleN9VJmBki9Ddx37VLH5v+Nc58iynqQ1ZKvpdw+FQqPAq9t00om1xcnKKVXp4XVfs7Owwv1hjjGGzKRkOB1hrGAyGFJtGp7dZsnTIZlOTpRnlplbmjFRKDQktlqZuSbIRkOB9w2x2yHSyRVXVJDZle7bD1vYuOzv7DAcjBsMho/FEK3NW2WCGoqgoq5qmblhc1ByXa8oyVIK8tFqFamGY6eW96s1Idalqam7dusmv/Oo3+c5/+S+cnZ6Jtpr31HWJTHJ2OC/aXnu7++zt7/P06YkKrEqF0zsEwNPJZF4BvqZtIsMwTGkMfxPx2Rrng2amaKHlmSexMJ/Pmc1mUoUsNpyenfLiiy9GX7LerHnz7Tf50Q9/yGKxZD5fsFwuGI7GynhCBeGFKWzVH1krwsZ5npPnGePRiNFoxM72Fjvb0t4wGU+USaDaJkZCsMZJy7QEcWFtE21O1o8AfMLK9Z0/1B6aIPAd2afO9Z4TMRnp1rQ8v/C5JEnIk5zEpArWyntsIkGhc4amlQp0VWm1tjWk6Yg0Haj+l4jdWysM1WKzwbiWfDBkuViSpkOyYc5gNGJzeibXahIm4xnOSWI6Hg0xCPPUe8tm7XGtZ3GxEWbzEEbDGYkZMMiEnXdtf4vRaMr2zj6j8Yyt7UNG4xnf+Oo5/7f/+z/kyeOnJGkqiW/U+fLQtFrd1KlqbaOafBJIH167wS9/81c5O19IUNq2FGXJZr2hrhs2RcXJiQR7m1Jae6zJmIxn5PmYPB8qa9eR5dIebq2JrJejw2u89tprfPGLX4yMFeck+PuFL3yB+/fu8+WvfJn1ZqNrQ9bexfm5TN/CRQaACEgLMzNMSRcmhhSdnE40TBS0FQOzyn7rJnibXoLR+dLA+TBRY8UgA4mAOFUtyyXRWq1WHD99SlFumEzG2CRhsViwnC/Y3z/Ee89gMOT6tevsbO8wzHJpGzZh4JHmmK0LlRkIQbqypNqe78d0BQanYsMmScizlKIsGQ5HVGWlmpiyhkRQWr7s6PCQ09NTZe0EEmNgo8h/ZWkaW6qMTUiN6J16V4G3OJcg0hopdSPPoG7PuP3clB/8sCSrUxGpdw3WyTV8+MFHTMYpd557julkwQ9+8DGplbYqmZbn+fjuR9y9+xGTyYz9/X22d3a4ceOG6l5pW2AiDL6mqbAWVqsFRVny4QfvicavFb2X1CbMZjO+/OUv82vf+jWODo548603yYfCYDw/O+fWzVvMplOaumE2nXJ0eMR0OmO9LhiPpjgnE+MHgwEvvvgCVSEtyru7hwwHQwFke7FZWcp+8i//5/+Z83NpsfI4om5ZBKiFBXR6KqzJF154IQ4jGE8m7Gzv6LCNhBZoHJyez2nbWgFbjY1sxz5xrWexnJPmOQbZmzbrdUwW2rbhwYMHpNmAu5884Cc/fZdnn7nFiy/eAe/Ynm1xdnbOh+9/yMV8Tutarl07wlijhSIBfp2TANsbF6APRBurA/K8vyol0hUM+zFSYIQHhkI/pgqDRbzzkY3bem0/0++VVjTDIM2p60YHTsn9sVj29jIOjjKWq4LBKpPkTOhE2gLd8Mabb3Lz5k2SJOPxkyecnZ0zyHOm0ymHB4fkg5zUNTx50sr0bed48OABRVEwGORsb29FX7a7u8t6vcG1nh/84IesV2ueu3OH+cWCOy/cYTAc8snduxgM3/rWr/PX/4e/AUbiPBlKU6jftJfiw0EuUgd5nkWAsthsePz4MVmak2cpy9VCW0k7aRd57rKHhoKk82GvDEBeeGYqB4Ow2oTJ0+IbJ23BrsX3Jsz71lE2VdT7bJ0j0UIA+Fi0dF6e3+7uHvv7e0wnU2azKecX57FV+eWXXpTCe1tjreQYrvW4tqYoSsqyYj6/iBpZaZqyu7vHeDzm2o3r3Lh1i9nWtjBh0oy0lSKHRew++L4YTxiDV7Ba4lovxZ0eMy9sHM6D9T765pB/hH1je3bEr73+LbxvqOo1TVtS1yXzxQXr9VKGHrQFjpYkERmDTbHGVQsWZ9o6n015+aU9Tp56fvKTT2ibUtn+FU1T8fjxE6xJuHXrJuNeYi8EDrnvn3xyjzfeeIOd3R2atmYwHHDr1i3Ozs55/OgJIOBwkiRcv36d//gf/gMXFxccHR6yt7vHtaNriFabEBJaZ6V4Uq64ceMmh0eHVKWA5KcnJxSbQnXPVPvMNTjfkGcJg9woMGK00JZibUpTS9uuFJBQiDUAboaApHplqUq+F/ZmkTPxXotuqdV2aiutnA71J1lk3npPLHznqelyvgDk4sGh52hZLpbs7+0yGAyYzCYMRyOMNywWC+4/uMfe7q76KAUlEst0OhXN1s2GwXCEtaKvmSkTSyi3hulkxh/+4R/yxhtvsNlsIri/2awZjcecn51jE2jbgsEw4Re+9BmgJcFibELjamE1NZnEcXmKzcZsyhLnpLgxHIyUsedESiJNMUihypMr0SdlNh4SWH9pmpKnuwpqycTmDz74kHsPHrIpi1gUaJpGCRcNTVWxzkUfNOx/xojd/OhHP+T69b/Er//6b3B4eMS/+lf/mrt37zLbmjEcDBkOR9TLBd7DZiOF4Zs3b/Ibv/EbvPzSS3z40Yc8ffpU82HJhcqiJM0yNpsN3/3u97E2JXRyhOFwaarXkg/I85zxaMz167fYPzjg9u3rjCc5w1HGaJDTuJa2rWTieNvQ+gbnK+pqw8nZMWW7YbMpuDhd0riK0TgjsTmDPAMasoHHU5KPPQOTM5nkNG1CmmS0raduZECU99A2hk8+fsrFSUNb5xg7IM8GhLTdJiJXc3GxwHtPmkhXEzYM6ErIBjl5NiAxCdev32A6mTKeTtje2WE8GlOWJR988B42Mezv71M3tQK6jRaspai02WxUzy6hqiru3v2EJ0+eMB6PyXVI5dnJGR9/9DH3Pv6E1WLFbDaL+EvrPLPpNoOhkBrSNJMC8TBld3fCzZufZ7VesVx9gjVDtnY8n5nOSPKX8abBWIcxogUc1vzW9hZFMY+xdlVJQfT8fIk3iWqYO0xk1TvCcMMwgESKCP8NAHzFpqSoFspsKBkNx3jfcn5xJm/woi3jEW2+NLUU5YY8z3ttEOLIyrIUB1t7rZ6BTdcsFysWizkYz97Onib9uWjyNQ2OAcPBiIvlY5aLJYkdMBrv4fya5XLOydkJ+/u7rIuK1nuaspRjJxmL5RPefe/PcH6DsfD4ySPyfCgG5ROc8bTViHywzd7+bcajLfb3D7l27Vn2dm/gnYi3P3m8oCxPlLWolx6rZaESo2lHTOSlchAZPypaHXS/HEGTSDZhSb4D2EbU0BAmh1aSVWQ4BJVAF+j0AK/w+6tDMfqvcF6X2Rbde/t/7x//KoMvvOdq6+/Vl7WJgn99CnufgRc2yh7y4Z1UbAkgqcGYVEWUe9+PlfvpuyqhA1ov932UjKSS4x1NJRqMbSPXWRSFgjdGEzJJmsuyYWdnl6oswUj7Y5ok1BV4k1GsS2HYZAkgAzqMy2haQ1W2bG/tMchHjMZTtrf32N0/ZDbbZZANGQ4mDIZD2ZA1KGgbqTaXhWjQnZ1UtO0mBp7GGGlTI7AjvX6WyBgzYYJwfI7itOu25vTsjKdPn7JabVis1hRlyfPPv0ie3ePJk0faSgbepxLkpplQt5MAfiag7W8RfA3Ang8taSKOGkRmQwuNULD0dzhEF9IraCksImskMBGGmVTniqLgwYP7HB8fs7W1RVmLhkJRlqzXKy4uzrHWsqtT/vIsJdX21CyTwHoykfaQ7e1tZtMZ0+mE0XAk1bQk1ZZ5iYclSRNHLmCMlnGxtEiLeGqstpih977PNO2AHB/0WfRY1hCZJWFCGoCPAzYMFtuz6f4gHQXZ04wkyST5QfyrIyEdjESMufXUbUHLmjTNWa88ZVWxXi8ZDESYt1XQ2ztDZlO8M+xsj4VVWrUsLjZkyYTaNfjW4nxGlo5pa2EdZvmAfCgt7KnNGY8m5M+NyLKcg4NDZrNtptMt8nzIcDghywZKX5fkrSxqmrZlZyfhN37jN/hH//ifQGnJskFMaD0tPXUB2WB9KABYxuMJX/7y17h37xHvvfextGSojxKdwVZAZi+tHu25k2SvbTRxlCQvsVY1yVLVgJUCS902DMcjfu8v/x7ZYMCmKPlnf/w/ce3aEX/19m0whhc/8xLb+zt88MZHMs3TGFrvWa031LWA14lOXI/BnRiZgP8KDBPfYzFJR+U3qkljNHDqQK0O6AtGGGylruoOYHYyBMC1MsH19PSY4XDEZDpjvhCNnjRNBPjOMg4ODjg6PODg4Ij9vT1m05kUx+gAD0toOQrMT91ndN14ZzBIQh6GFYRWOKNMzyzLaCrRZLPeYnxCng2j1meSiG+XKaQJ6+VCKvdGEj6ToJXvGpMSdXCaugaXUBvRMaxbR+tTAcW9VdaUDPdIs4STs3fZ3qnZ2jEUlZFAPjCLnWe1KPje2+8zGj3EkJGq9EeWpKrJVbFaLanKgtOzU+7du8v+wT6DYc5mU+B9y82bNynKNaenZ9GPW5uwWm+4OD8jTQz5UNoTE5UEePnll0Wzr5L214vzuUqdJDx69ISXfuUl/se/8Tf47tvf4/q1G0zGE7LsQpiQCBttNttid+cA72G1LpkvC9XFE2aBUZ2yum1om4YvfOlLfPzhhzx+fI+y3ER/EzZip7HEtaND7tx5Tl2dDEcCw2IhOsPC1BEGpgEV6+98mjzfRIceScwwHAwpiw3OOVarFfv7B1hr2RQlx6cnTGfbVNWao6MDWifT7Iui4Lvf/S7T6Yz//J//LDIXb9+6redmdMhIx5TwIfSI0YH6aYvGb11LqOl5dBsYpVqY6cT4JXAXcC/BqXRCYGdbZSamuRaYPaTjlPVKtKhlcFPGel0QBukYU/HMs1s8enjBYJBQ1kYYA15a9dqm4d79Tzg9PZOulTYAUy3Xr99gvlhIG1JTq0yEsGVWqzWjPCfJkksMxdl0RlmWUZ/Qec/Ozg6LhTAl1usNbdOyXK754P0PGQ3H3L59i+VywWq1pNgU2ESSuuB/67qWNuw0pShXFMWKxXJJVVaAxXiJJ6XVXhiOaSKtYIN8wGg0EvvUeGE8GTMcDKO8T54PSKzl5OSY/88//adUVSH7tIfJbExmExmi0TgdyCSTNderFQ8fPdY4UMD30VgkNrI8Zzbd4tbt2+zu7TGbzdjd3WV7a0u0nYqCf/n//Zecnp4yGIp2G95jnOzrbdtw//49fvijd2Wa7vXrnJ2dM79YsLu3i3Oe1157jcEgJ8tSnn/+BaqyEu1kBTNns7EWmBzeJnTCHWgBUGM7BZE1aoGQJ7TyHo+n1XjGGO1eiXE61HXDowdn2EQ6CjAJg3yPva0DDnY6xr/VfUFD49hd4ylo3JqyavjG11b8o3/8z/hX/+rfslqvODk9oa4ryrKQeNHAbHuLLM9EGskY8lwAM2MM9+7d4+nTp7SuYV2s+dt/+29z4/oNPrl7T2Sh8ozJRDSrX3j+RS5O57z/3vt89rOf5fDoEGOtTkSWYmRRFayLgg8//ogHDx6SpTk72++TDwYKGuzKuSUABVvbKUc3jjDUjKhJ0xzvawWxW+YX54y3j0iMDNlLU+ncKUuZxJumVopCNsWSRAml0L1S1x60Tdo5KNYNi3lF20LrpG3dWvETMi3ccHJyQl2VpNYgXIdAntH4EGEOJUlGluYcHR0xnUyZTCYCltYNDx4+YD5fcOvmjagjaBSITNKUUmVz9icTvv61r3F2dsb52Tnz+VwYXFXD48fHHBzs8Q/+wT+QezG/YDwcRqKMVXkZDKTpkP2d24yGQ4mtB6LxORyOSTOZijvIRyTpQH1so0yvAYOBAFzGSMyQpUN0Epp4au+YjIcoQk2WZnz00T2ePjxV+3YsViuKsqSuhYAg019lUFcY7uPXKwZDYY7L5PMMj2G+XPK97/+Ar371q/ziL/0Szz33PG+++QY//OEPwBgWizkbbeN1bcPXvvZVfvu3fotbt2/y+PFj3n7rLYk76zrmpHUl01JPT8/wXjTirOrZJdaSJl1nR+gukrZ7AW6fPH2qf+/ILiJhJOsnyzLyLGUwGDEYPE868uxuyayANANMqwSWGmNbjK3YlBc0bSHg/xA26wLX6MTxtgFTYm2BzR3Pv7RHcW2bi7OWomjBSbxTVyX5KGM+v2C1nmNtS9NKcdaYFJTc1DReh83AO+8MGY1HTGYTxqMJaAH1/sN7DIcD0kFKuSkpa1lTSSosxzRJ+JM/+RPOzk65ceM6e3sHlEXNfL6kaUJrvEgppDbhhedfYDEXKYrBcMjTpye8+MLzPH/nWYbDEev1BtpW/VnN0dGQO88fIVIkG7KBI0kd+TgM0AlEMxd9rUykl0EZbe0wyUaJaQN2ZtdZFU9xTtZWlqVk2VBxMKsyELLfSVt0xs/7+rkBvloXiLCEGtZuyWazwiIBSZIMVLOlxuBo6g2taymKDcOBTN0dDoc9ACjRartlvdmwWi8xiWVrewe0eJAqi68sK606DoASYypa0zDOt1gtL0TguYU0H7EppVK8KaQvv6lrmramLNecnT8gyzJa3zCZDnAuwbuMYb7L/t51PvPy69x59lVGo22ayrHZbFgu13x89kD1GHzc8ELRJm6yps9WE58U2HZt6zC+Y8CFgOUq8BZBM9uBY86DaMb0W0+7+vNVAC1UT0ObbUgCA+jWFyTtNMnspc/2j9t/fwAQLw266LHrrl5PTED1ff3W33AfApjXF4kPn+1fs/zZ4CCKWwcGoDHdeSjRVP51PSYUhrpuGYwGLBdnwuhLE3wDTVkzGIzY2t5mXRTUtWcwGOAcovniUoy3TMYzMIZyU+OahKpOqOqGapMxHAwZja+xvb1Llg4Zj6fs7x+ys33A1myXyWTGYDgSh+EkuNqspcJ7cV5Ke0DjLk0sEhtqJbkPm1wAXHsAcHi+IagIQwfwQOIjiIHel9FoxNbWFsvVRtdWCd6zv7/PbDZVLQGhdtfasiTdMR68aDnJQIoW7ySBCs/cRRqaiU8iCGCH80VbFKSY3A2PqeuaKklUW8czXyxk4tdmrXYqk4/bpsEjLIjNSooCo+GQ3d1tppMxWZIym03Z2tpiOp0xnUzI8jTqRYQFmqWZtOv4UE3rrU2k4mdtKjEGWmVV/SQDWK3QBnZZaKkMlfIA7gfgPzwXH2ycHojvHFhPGJ4dGMAByHJeKu8yhVfYpUmSKEPS0tpu4AbI+PZ1s+TP/+I/stls8C6XFrsm1epRSp6NqDaGumpovXxXnme0lWU0mjHMMpzP2NsXNul0usV0ssN4vI3B6NChAcPBkMTmyMQZo0FVFbUYN/OGpydntE1oiXLK4BTNpNo13LnzPL//B78vDKIzYXoWVYFMofPxnjtCC51hMpnxmc+8QlE2/PSnHwiArW27ceqXa6PmTKNt48b7CN5Y43UoiIJsPoiUq95p03JyckI+yDk5ES2h8/Nz5osL3n33XT772VeYry544803+P73fyCTcsuKxXLJarOJ028l8ej8YWAbGwXuArM0tO8lCkhYZaAZDEmaqFYjYDyJ6Ynpa1EiBH3D0VALSaox62WqbtM2cYK7MSayKqaTCdPJlO3dHXZ3dlUPMBHf6qUiHSZQ0wp7AR2WEaaIBf8vDEZ5hjbsG67BaYLYto7NuqAdOK1gi2iytIqitpUQGHrGyDCcs3mQTzBYnWafpCnjyZjVKui26NAqk4LJGU+3WCwWUs0vWkAYO8ulTJRMkpz52Vvghzz7zAEXZ/do8iGDvJLETO10uSzYbFpGw4kIRatPXa+XCuJJom2NTMH9u3/3/8izzz7H4yen5NmAL/zC57HWcvfuJ7zz7ru8//4HfOc7f45rGqazMbOtGaPRuGOqKtOmLEuePj3m+vWbPHr0lIuLJbdvX2N//4DReMJf/v0/4Bu/+Msk1rK1tcUHH3wggW6akqYZiU358MOPJfFwjroO60IE51vvRB+zbnBtI8OUWhko1jSVtDgGwpARwCtJLUW55oMP3ifPR+S5fE+ayb8edAKvVRsS244st+jXOuAvsZat2ZTHqxWuNcznC7a2thB2Yc3F+QUPsgc8//zzvPjC8xwc7LN/sENRrFmvN7z93e/y6MljVuuVyhZYaR/NMvAe6xUH9wiojrkUx2BCoVZ8c9NKYpZaq/GJgHWhUCsMB9GkFY03bbEliRqyIW5KkkR1pBLaRnT/bA3WThgPZzgPVZlSFTK5u6g9RVEwGu7w0gt3WM4/YL2uRJpK15bznqqsaJuFiKtrDCBapjnn5zKl/snTJwR273QqLPU0zxmNhxJLoaxwFSZ/+vQJSZLw6quf49atm/zwBz9guVrjPAyHI3Z29njxxZdpW8/du5+InWVWdQUtGBsn0xpvODk95eDgkLff+i5pmnB4eMjv//4fSDyUD6RgYT1BRiNL0xj/ZlkOeKqqJrDkJUkKYKayPTdrPrn3Cf/8X/xzVqsl4MhOLDs72xweHLK1MyNLMwEhbcLp2TlFUeJaRz4c8KUvf4WXXn45xsImyHloS+d8PmexWOj+UuG8FGakq0KrqqqN27qGTVHwox/9iO2dHV5++WW+9Wvf4vR0wQsvPM9gMGB7e5fXX/8Fsizh9u1nuHf3LvP5XOO9hq2tGd47mkbXTWBtCfIh5uo7QkAXbwE9gDrExhh08jAx7vJWYvaqrbGtxCnee1bLjaxzY3A6jVTiIi3meGhbT+NqGqetyUiM8ou/+E2Wi4r//J0/4/j4OBZ0Q5FgOp1KkVxf3nuWywXPPvsM169f46OPP2JrR9b87u4uN2+V/OIvfoOmadnZ2WK+mJMlGX/7f/O3uTg5x7eOr3/1G2xNt3n69IkyiUXOQVg6KS+9+DleeP4VaffUPCEA1at1QYrh5s3bPPPcDsOhFO6N7eSl2kaYzFmaYVWDdmyHUqjKUvJc9pumaUnzEVhLarQd13tq7frwziooKOx85xIeP7hgfr7R863I84xNVVBuVlhrePz4Lk0jOqQiMWCIsk7O4rzBIUwn63N+gCFNM/Z29/j617/B1vaMN998K65vFWgEI0z3LE2ZzWa8+tnP8pu/8Rs8//xLvPX2W3jvWK9WQEKaDhkNpzz77HM8fPhQbGS16GJUm6j+LTQ13Hnus/yNv/5HZDZhoG39BiOAjzUqNeAU+HFYg7DGnFMyQE3jpdjkGw82pSo63dfNYq2MWQHnz07nBJmSxjQcHR5wfn4uHUUKbEuRWDq1DFC3DWfnZ1w7OmKz2jAcgkkkDvvoow9JbMLXv/YNXnnlFV588QX+8A//gPF4rIN0HF//+tf4K3/w+9y8eZOqrPjgw/f59rf/jGJT0FS1DsupKDYyWfr8/JyyLgU0lruGTPdNyXpaxmHiqk1M3EfCvUNjwUQlXGIOYo3qjadx7QvbsYuDksRK/pMmWONJ0iGj0RZpakizlGGWMhhm5LlM7DU0QI1NDUW1od23FNegrSzL5ZrTs1OqqmZ3d5vd3T2atiQf1AyGgtcUm1qD9YT337vLu+++T1M3tG6JOfdCZHCAk/ggG2QMRwdqntIJhhIm0iSJMfGHH37E3bufsLOzxzd/5dfY2zvg7OxUAFov1727s0eeZfy//p//D5bLJZ//wus455lNXxf98SSNQ0TqtuZ8seSFV26TjVY4VzMeANTUVQtmCOT4psEaGQBrjNjhIE+pqgpprzW0bclieUFiE6rKyOd8pfINogtdFo36ZP3+qiSxKQz+G9DgG+Q5g+G2gim5PAjnSG0uE6lUuH40GrHZbETLxiZkmSHPRRuhbV0UQU4SqyKHsrHYNKGuGvLBiKYJqH5O0OAYDoeAMHmGwwkYODl7iCQAYlh5ntA0pbT9Nh7nRCukqSWozNIhg3xGko7Y37nJc8++wv7OLUbDA4xJWa9Kzo5LHpUPhCKqG2QfuAIuAWchsO/jbJdbV2VaJb7HyOkBAVfBMgmGJZUNoEHodO02dFSsmwjaheAkGHq/za8/oCP8PbRS9Fl4V5l9fSZe0Ne7ytoLYGI4t6vsvf57w0ACwVfspesJbBCjdOkAzsk1dvfUmsvn0GcJxmfkrwCM1pIgzrB1NZPJWIJ3JDGeTnLqynFxVlA3HmunFJsWa3KGgy2ybIL3CWkiuguza9vs7x0yGs0YjSZsTXdUf2DAIB9pkCF2XdUtZd2wfLKgqk9xrVaU2i7493gFyUxkdHndiIMoe2jpC+CRa3rC0YgodWTvBSAttrSoGDge63WC4bVr7GzvUVYVZVGyWq9YrdZSjV+vKTYrNkVB3bRUdSOBhpdKTAiyAyMngCWt83EqXeuUJeUk0Td01WMJFNvYkhMEheum0e+sGeYDLrxjOp1gDCwWFzRNxVoTuKZqpAWmKskHA6bTEbvbOzz7zLPcuH5Th0uILmdoJwx8jERtz5qwgco5BVZpkoSpcTYG/AT71gS1W8faGm67llp5giZORgvXbE2ig1sCa6S37q0V0f9YjPfqf0z8Wew8AZ8yGE6ZTKYa2Dbxu5vKsClKLDLdfH7aYMjI8gnT0T77WwNGoymTyQ6H+7clQU9TBrlM+R3mWm1NcoxJcd5G/Yimaagr1XDEU5c1m1WBd8JUC9crAFwbr81pUuCRZnHXik1UZcFivmC+XHI2v6Coaj73udf46MP3uf/gHqlraWuvx5Kpdei9Go+mHF27wXpTsLl3Dw13otaKMcGnqGC6F9aXgNQqgOwV/HYNg0HOOBvhvExbG49HynppWC5F9+ull17m/PyMF196gdu3b/Hyyy8xGA3xlefBw4f88Mc/Zl1sWK6WnJ+dS8I6HEdNvVB5Dj7OIsFaGIpkE6NVvQACBq2uUOnT4S46gS4Ac4N8wHQyYzweMxqNGAwGqsXXAYphz5A2n66YFBizEHxqJ8ZubGg9T+I+6LxOkU6C5qQBq9y+UKAKYENYCbG4U0U/1rQeqpYkkeusW7EOSaIdnoRW9WaHw6lqMknLmqzPmqY2pIMhVWkwjMgSC95SVhX4lDSdsF4YilVC0wwFqEkS1Qc2Ih7tRFt4ONzi1Ve2uHX9df71v/1PFJtC2IR1Q9tWsr6dtKSgmkhhy2+bVkEWaf3/vd/7fb7wC1/i9PSMjz6+y4svvMTHH31CWZYUVcHBwTUg5Z0fv0uxWUWBeQGjK2yWU2w2PHn8mP/07W/z6NEjXv3c5/mt3/pLvP/+h7z44ovM5xcAPHr0GO8967pmtVpxenYuItZFBR7V81rigaIsVVpFnlHVlDSulSl/ZUFTy9CMshTWocg1dOLl8jgF0FivlxSmwJoFqTJI0jQjzfJQpxPbzbJoeyAFijQNE/nEP4gGY8poOFJN3JaqKDk7OWU0GuFcy3w+J88HfPzxx+zv7dK0tYJYBY8ePeL8Ys5ytWI+n3Pt6IifvvdTxqMxk8mE2Wym6yRVhsGn45hQMZWlIOtQCi9SkevHfwB5MmN/9oUIAhgFqr0zOGdkKFNoLzeyVrJU4oNMNWKbtpW2rCynLGqsTYVdgKNtK5yDzzw/5vr1j/lf/pd/y9n5uU4sLmR3sA5cS7WuY3G2aVrOzk4lsby4iAWr2Wyb5557lmJTClMtzZAY0+rabBip//it3/otvvnNb/LRRx/xhV/4At/73g84v1iwvb3Nl770Jb7zne/w5ptv0ja1TIr9hc/zhdd/gc1qI5utgk2D4ZA7d55ntVxTbGrygeezr7xKXTuePHlKVYVYqNGCjI96doFtVJaF6r8K2O2cI1F2W101OpTHYJOMr3zla/zwhz/g7Ew0sZ48eczp6Qnj8Yy9nT12d3a5mJ/y5PgRiU2ZTrZ49bXXuXb9FstVQV1VZFmqHRop1ipTOLDpdN8eTybMLy7wXopjwjq00vpblsymEw4OdrmYL7l+/TovvPgSH7x/l3/0j/4JW7MZ3/r1b3F4sIfH8cbqTbLUcnF2Tl3VNFXD3s6+QM1eJnCK1AKxsIM3JKazW8HRojcKCzXa6tW4HoiFcNH0lhzGeR+PI+tD8oi21OEOTc18ccHTp8cs10tKbUnzdIXn7e0ZX3j9dd776U85PTsldG4UxYYsy8QHea/xuOX8/Azv4Rd/6RfxOO49uM+LL77I17/+dd5++22uX7/OarVksVjwpS99kReef5Esy/g//d2/y4cffMhgOABrefTosRbwJFat65rxaMxrr32ePMsxpsuPnHPM5wt+8pOfgre89MIrTGcpeSZaonk2wFgisGmtTKO21iOThFvx+VkqIFWSynA9Y1XX1GGtdLJ5g8bAMgW6riVuz9KEwS+NaWvD+fk5b7zx5xwfP8VkFtc67j+4z8X8Qhmpynz3VuNP8VEOH9sDaRsgJR94fu8v/x5/7a/+dVbrFW+++bZMh0VAhTwT7VpcS9s0vPj883z+1VdJk4y6qhiPRjx/5w7v/uQ9kiThC69/gTt37vD222+xf7DDbCZt6jLAa6za5do95EWT7eTpsQ7MAOMTLS66mC8IiSXBKZPTaU6DJw7T6HZXjZN997uQA4EUk1MrRYU8z7l96zYX8wX379/HGBdXQmIslTFQNzhEq3oxn+OcTHMNexbO88EHHzC/WPCFL3yBO3eeUxtcsVmv8Rhef/11ZuMxT54+5s233uIn7/5UGM5tS1nJhO3FYk6SZBRFwdnZGV41qq21+DAszQrz3Ua9RgHTOxkWaeW0GveFwpRgK2E/kmKr6EJKHpJlGd47Eh2W4TXTCO3hWSqF4Lpq8U7AP0kzNf/WvCfLctLUkg2EwZulA0bjKbfGU5zzTGdbupdLu26SCgiZ2kyY7N7z1S85/v1/+Pf8yb/7NzoIRABXTW+FOYjmjG2DNTAZTWT4HYambmjahufvvMBbb34XPDRVy9bWFnt7B/zFX/wFq9UqDj3c2d7BOc9qtWY228KahDsvPMPh0QFlUUW8whirJuUYDCwmqbFGBl2VRYlNEg6OdlksVhSuwLUp3umgHucAiZPCIFdsyrvvvSUMwc0ck9aUdUVVC4lBBjWOYkGmaRpm021hHledr/6vff3cAF+e5wyHM5q2YbNZgYHUpvGEhTkiicFwONIKlKD1ReEoNmc432r7gUzLGo9zaVGwMkRgNJQ1Zo0hS1O8Jv2J1SDTeF0A2pZjDLPZjM1mRWNadTICQiQ2J7U5eT5jd+sGR4e3ef7OCxzsP8N4vEtdtqzWGxaLJWcnT6iqGllgoTUzVJ4SILSUKnvKh6mibQSYOnckL2GF9EGyLvnpg1990C8kRt55DSaQzTCyQIiAXRyWYa1M/VXh40DhDZt6qCaH9/f1+66y8/r/9oHDq8Mz+u+7ChJe/fvPfnXf0f+s2M/llmD5VwPv8FkvNhJ4jH0gE4iDAvrnYAxYRhi3S7XZkNqcFhE8tz5jazJmerSLMUO2tvaYziZMJjMmox0G+QSbyACLkByERLQqG8qiYrXc0Lo11lxQtxIAxKmXUXNLK4O9lp7WSbuw0yAtTt7CKbXZXbqWy1VbFCjUacZ6ofG9ao/xHvsOLAUYDYfkacZkOGJ/dzcGYwLmVOpcpRpaNSJIWmw2rNarGIiXZSnTqeJ0LtdNhfJalVPkURKQJuruBZZVEB4XlnBFWZdKs69Zr1fMZlPSNKWuay4u5oAkYOPRhBvXbvHMM7c52NuXgRiTKbF93eja6wGmgcGB3uXAojPG4hBnHJgQUhVT0BTR6ggtW6HdNtxr17QxyQptu/J1JvBCMIj+SQDgtcgLVjTLhCqoVW/5a1wTUSTeDciSA2wzYXVqmA2eJxlLW2mW5aR2xGg0ZjqZMhgMGY0mSt8fayAqbeASNybUdUtdiR5RUzdcbFqOjxfaJqkJhA9oRlfwMIK0y7X3ACMggs7iz5DA2zmgG7LiW8eDB/d58uQJ88WaoqpYFwXrzQabpmxtzUizhFzPDUQvUIY45SQ2F7CF4POMJtcoEKTn5gJwpIUE1+qtDOtRhNjLckOayr4U2sPB4JzY5OPHj7E24fnnn+Plz7yINYaja4eUVcndT57w7k9+QlWWrNdrNpsNrW8ZT8ZakRVwLklSbcEwkZ1uNVgTNnUqrWdZxiDPyfNUn6Ek3rPZLE5rzvM8TnMOLxvANAURnevY0qKJJjZle1p90Ud6be9VINzE/Yb47MGTRAzQdDZgpDLfLy557/Gt2K2JYLVIU2TZhMwKKzTRNdNWHmyGawGfUDeWLB/IufsB40GmLV1o+zTkgyHGC6g2Ho/JB2NSm4G3ZMmAfDDGeEuW54SBG2makaSiCZMmucoMWNpW9tmiqhmOd/gn/+SfcnzsyLIGjxQuHNrepAzfjoUp+3aWDfjMZz7H7t4R/+7f/yeKouTifMEPf/TjyCStygrnoSgLDJ4sl2B7OBywXC2kIOgdZxdnDIoh77zz4zjd9s6dO4zHU9566y2+853vcHCwx+uvv85nP/sKaZoxGAw4PjnGq523TcP5ciHtSmEyKFbXJ9KG7FtcXcmE3Vp+BneJqdZnwru2xVkZPOPweC8+XwZ6ZCR2g7HSepskKX69jslMAJyNgnwyUMZiTClgtpEC8WJ5gU0si8VChiFhqDYbzk/PkNbFhvlSWlATaymLivnigvPT0yig3rQt682Gsiw5Oz9jPByzt7fLwd4+ed6PU6SYKq7O6D5MBOVE8F1jMb0nzjkO9m7zpS/+thaoVDDfiK8XnWp7aS9G5ShC4aPVQXBtaI3aDsUcS9PUOF/hjbQ43X7mc0wmu/yzP/5nPHr8BNu0OBx4q4zPsNYl+bt375MYC1qbMBpP+dVf+xb7e/u89eZbzGYztY9S9yPLarXk5Zdf4e/9vb/HjRs3cM6xtbXFcDjkxRdf5q23v0tTi2zIRx9+xLXDIx4+esj+3h5f/MIX8cB8Mb8cpzg42D/i+rUsane9994HvPuTDyLrMeg0hziyabRlP7Fx0EIoMHvkXrc+aEJ3u6tM16545tlnSbOEp08fKtjjWcwXLOZL7n5yVyVHLDvb2zx35wXSNOHJo0eghSirYF0XF3hMosxqY7AGhvkgfv96s2FrOsMh51XVDav1mm98/Ru8+dbbHBzsx2tbzJecnZ3y7W//J37ll3+Rre0Zs9lUdBG1RdcYw+7uHpuiVJBRdbA1BghgX62tudYmGoco/heKgjF2oIsh0FiZkL84BbDk7532dQDsBGi998k9PvjwIwHnXEvdNDpQTfTN67qmcQ1NXVOUXev/cDiiccIALnQQgzUiX+H1XIqi4PzsnDt37khh4s9qfud3fpc0Tbl58ybvvvsuf/zHf8x6teaZZ27zR3/zjzjaP8J4ODw8JM0z7j18wMPHj6L0TpDhdg5+8P0fRXvsg57CLLYYEn763vs4L23j1qb6t76UUeCrOdWaa+M+G3JOiXdSvG/1Par9GZ5fK11r1iQ6dMOrtrPVNuGW8WSLgROpm4v5XLowyjUhHgy+Q6QnQ2Fa9u3UJEynU37hi19kXVT8v//xP8a1Lav1mqBbliZGNEO1sFeVBWVRiv6kC/phFwyHQ37zL/0m9+7e58b1I/7Fv/hjnp48YjIRHckvfelLfOMbv0hdlqxXa52ZIkDTZDLj+PhU/IpNJVeLQ40k9giSU17XsfAQOkZ3iDsieQaifxbGaBA0VkKE7edF8OztZ9gsV1zMz2U9eB9CFvHDRrCF09NTdnd3aJqastA+G2Npm5aLiwu+/e1v8/3vf4/bt29xcHjAYDCkqVs+eP8Djp8+4eGjB6zXaykYNzWbYsNyuYgkJikyPBHfZQI5QyE5q9p/pmeLWsyPYKPmERbZF6yRtW51iJpGbHLeiY3yXWHgXmLTDiMwwq42RlqDrYEkESxGPTC6ZRGGwIR4TgBy8Q1pGArTy/eNxoyhgJ0lmcSHiP8cjaa8/vov8M67P2a5nBMnQ5sWECaq18JxlmUyadc0CmZ71qslz79wh6OjIx48eMDu3i6/8iu/wocffsyrr77KxcUFs9mM1WrFYrHgN3/zN7l58zYvf+Zlmrbhtdc+z97eAffvfSJ60U7ARGMgTUcUm5w8GYNpwTe0lcH7hLOnNXVrKYpE2KQmUSkAR1VZ2mZIU9W0bc0gT5mffUyaGTw1rgLvJ+CHeKAuM3EFieSKTeU5rzaqu/jfgAZfWZR4v2EymQittpZW2NVqJSKHqrUwGAzVcVd4L0aWJinb27ukaRLF/0VQ2DMeT8FDpZNw2qbBuYYkG9DUDYN8EBe19w35MKOs1kjyZSnLGu8y8nTGcDBjsD9ld2eX/b1bHO0/z87OEWkypCwb1qs1p6crHty/q21+jtAaaq2hbftJUdA1E2CvY5gFps5l7bd+a2sHXHUTD/tgU/+9fcZDv801BDsyFbirwPXZg42Cdq7p2mbDsRKl8cbN6ErrbP8VPtMH3MK5dFN7O7AyHCec59Vj9+9J/3jhu4KD+DR7sdOpCiy0LljRY2vw3D+PT4OJHeOgf+9eePbr3L51E2tSZtMxeZaTpgNhKmhrq9iggFRVXbFeNSzna6k7NG1kAcXjCiJNAOyMcQK6+e4ehjfaxMaPONdiXLDrYGsKoPQqWP1nEp6lXJeP4F286kB9huhEBfDwEQwV7S99bt6SZPZTz1WGa2S95EWvMdq+nE9d15dsWQC+lqIoO8ZX01CH4FV1wJxzUeOqroUOHdrF27alrEtJiFsBn9LMarIxYjadMRgORWsklylgadLpU4QA2JDijc5f9uEeIroP+Ev3JNqmlSp2sFG5LgXzroDO2ksYn09Yb13zPHHKqLWW1rvIxO2327YI0xGAxHQ24lDmzGXw/MU7X+YzL70g6yeAEy48a5me1gZgGMtm1bKc13guevboo71eBfYJQCMKhoVrdF7tU8FKFwKmoBPaLxagLK+kZ0PaZqIrwFgJ0J3zmOQCu1zSOkdTV9jJhCyBptmm0bbS0NJb17K+nIemUfF112iiHiQApKUTr8LsmhjKvZcW3UsAn/N4hKkXgsjz83PSNGWzWeO9aDednD5lvjzn8OCA2WTGw4cPePL0KecXF1R1zXq9ZrVaUTcNo9GYxHjSTJh70n6RqpyFtKLlA9GZGo9GjMYjptOZtvqPGOYysT65BAza4BbkSfnO59r4N60S64AEF56hDu3wgtjEZxmA/86/igkYrQaERDaAHhhITapVd/VlWgjq21EAv1qZMqRBrqyrawd3+OovfEk0BbUYJRpEGaPhEGszPF6D2K5wkWlw2bSeuu6AOaO2KhPLEf1Rb2jaWooMVRgw4vGmwbmKphJgSjS+oHENtQrjTydTvvXrv863//TPePzoAXZtKaqN2Jlz0WcL8CUB99bWDjdu3GZ375B33vmpxgthL7ZRNzIwTNu2wSYpCY20uKaqa+obWp9wMT/nc599lZdffokf//gdrl070iEGKaFN+eJiztnZGcPhkN29fT768EPmiwWVDtKRiXzncd9o20b2RfUdjWuFBeKdCHa7Fh+KRaYL4qVK3dmdVw3Sbi+XRNkjexDa/Om8aJ9FUDQUWYyhbWuqkNT0XY8X1+q0EHSxuGA0HMmUTSctjGVVkKWZsv0EwLmYXwiTdTqJichsOhPB+CRhZ2ubremUNMvwRiYyWk12QABJb3pFOHraq/6yH06ShLJsePDJWaw8fioe8UHzrNtbEisFnFAMx1hc2xVH5Pocq/WK+fKMsqoERFpvaJ3jy1/5Km+//T0eP3ygAEsdn0jrWgJLJxRkjE3Y3t7lpc+8QpYNefLkqRRNBhnOWZZ1QaprdblcMRwO2NnZZr1e0zQNT5484V/+y3/J0dEN/sb/+Depy4obN25xsHvAg4cPeP21z/O7v/07HF0/5M2332K1Xomv1qFltW1YLlcxjq7bhvWmUN1r1F876rqMHUBhOFvbSrHNWJkWive0SGHIG9Eg9t6J3lXrlLVVUJQbaX2KNhuKpuorvciv1E3Nxx99KNrI+Yg0G5DmwkBNlImZKDsl2qiRMChNE9Xvapmfz5mOJ+o7HWWx4eLigueeu8Pf/Jt/k2vXrvPo8ROZEnmwy2uvfY5vfO1rfO5zr3B2fs7F/IJ33vkxVVWzWq0ZDoc8evSIi4sLtra3mW1tMxjkCghZARxND6oK03W9VzVJ+b9E28C6olyI7fqxedfmG4r44iecFmAlfqyqmk1ZUJRSxA3SG23bsNkU1HWlMWOjcXMNxjKaTCSh9gbXeubzOcPBQDo6tDDlvOeDDz/g6Ogan/3sZ7l1+zYvvfgyn9y9z/n5OT/+0bt4J7qo9+8/4J//83/O//BX/xp5llPXFawtP/zhD6Wo1gqAXpUlvvVs1puoa9mtz7h7YkyiuWjoD9C4L/ojyT2iVAWCJgVNYNHcvJxLyRSh0L1hdM/T4qw4AhIjrf9dIUX8ruwT8ozywYRnn73Dgwf3WS4WtL6TKgk6qF7PcTQcc+PaTZ577gVmWzucnp4RctrhcMh6taLYlGzNpiqRIhN/y7Lg0aOHPPvsc3gPf/EXb/DtP/1TkjThb//v/vf8lb/yBxgy3nr7TYpqSdvW/OqvfpM//MM/pKlb/tN//I+UVanSLw1ZmrGztUNViZxHm3iMJ7ZZeudxJsQNod0oPAu9vJZLTFJQEkOsQwa2Xyg+tSQm7fxwYtnb2eUrX/4Ky9WcJ0+fqo7oMcv1CmshrWuaWtqDl8slg8GA5XKpJIWadij5SJqmnJ6eslwtsD9NItPOOckDnROAuypkpsBqs2at5AdrDScnT2XvRYY8GWs0vyB2ATkvmtAgdhPuTrffyE5krd5Do3bpNSXT7g+j0j5ewVspnCV0+bRV3NBGKQTvu+Iyut8Z1aE1ceq8SBml1up+nuj+LXH2pYBU/Ueq04/xqOYyOF9z+/Zt7t37hMXygtC+b5SRXNcNRVkyHU3wvoqxSt3UPH36mBdefJFf/bVf4V//q3/LH/7hH8h0Y2/iJOPRaMw3v/lNrl+/zuHhIX//7/99vv/973NweMALz79AXVXcv/8g6tK2TYPBMxpu8au//JfZ3d5ioIXgplZyim8py4a2LcG3ONeodAesNivqusVisSal2GwoKmUoeik02LTTusxSSz7ISJKUtvWUmwqjkhtleRW/+F//+rkBvrZtqSqZQJjnaaf1lFqcr7GJ1f7jWvSaJluUZaXIvFegDowPFSdZoN4ZiqKkbkutwLQY4zk/P2WQDymbCu+9aAqZnLr05Ok2eXZAU3sOd25y69aLHB3cYmd7nzwf45ynKGTK7d2PjiPjzRhlKHgBAELlFtAKQReoGYgtjwI0pWBacfLGxMAsvK4yrPptq1cBslAJ7jPPYoW8B4oBEsi09FgeHUNCgJJaphWZbtJSCCo/zfqSV9jM+3p44fN98Cr8/Sorr68lKPcGgvZSYDH9rPvQnQu9BOFn/+t7Dl0WzeXW39DmGCdR2uDhPm274f1bsyO2ZzeoqpqqdCwXBXW90GcQWjS92myXAEsCGdp0gkiaVPQCtTxUQGOSjBiaN6pTZSyu8bS+kcmLbTd4BgWaZcOWTV+OYCOI1CVpWsVrJSDpJ9SE0wJtGQ0JTPesfNwrO8CqrxcUfp8GYNnKPQ6X1MVBnjQdXbILECBna8tcshlrjeh4GSJYYMJEC70GA2SJMIJb57q2GO+EPRkHVnidxGhkHWsbo0zSUmgvsYSqdsAl4oZqdDP14YL6IHIH2HWvn53AmZCNdrWrDiiNwVyPrasBV0jOReevu9deE5gAMuNtVCcMAY+xhuWi5OG9C4wNm7HpVffV1oNNoEGgCm6H+xOCfXx3DrJGWr0eq2Ck08DgMkOvf5/ietTBKv3iQd1U+t3apm3Chi/3ZTQa8eyzt7l5+zZ4KKqK5WrB8dOnMt1V2aLrYq1JSEtdCYOgdUGzRabjtV5aD12aRHt3zmO9ahuqD0i8jcCfdZY4KdpJC1jQLnPugu3tLYxJqCoZ5CK6JkOePHnMWXqKNaLzVdcVFxcXor1S19LGn0+YTsdx/Q1HQ7a2tpnNZozHE6aTMcPhkMFgSJJoSwaBH9ollYbAyAv3VYB22/ODfZAk2qmCC0bZKGHjk3Vno117HyzYdeuFK/63vxx8PIv4Y+d7OnuXdeqUwGCiHRljSJMxeXqgCbdcdVN6nDdsVjXWtgJ6m26fCUGoJGDS6hTYj0FvKp5vD3zGCCjUqhZStHVvaB2cHh/z+PFjVus1RVXSNI0wkp3j5s2bpInl3r2PwIhmS9vUqiuoK8xaBoMR2zv7NK3j/v37qkdGBMrF7tWv++DHnGqXGdE1bvt7shSTHj9+zO/+7u8ym23LJMhKhnlYa3n++Tv81n//W3zzm7/Czs42b7/9Pb73/e/jkQnozjnOz89YLeZBwDY+38CEcnEfJvqXLumV/SNU6AU0SyLALxeW9J65AKtZpnIGEvrGmMqrsfn4cxfDBO8rYBokNhHWeFnhGpF/GE+m1HXF+UXJerOWwqwPRQ4B0LcmU/I0ZTwcsbe3z/VrR8y2ZOiSlYegCfnPslfXxTHKNAo+/CqIJ8WVluZK62Pf9oOdhcJSAE50xaj/VxDYO5paNJ8fPLzPkydPKRuZAhntsWmoypK9vV3qquDk5ESACa/MhzRVViAYXfe7uwccHh5R1w2ffHJP7NCJ3tdkMqKqUh3GJdpy77//Pq+88gpt2/LkyRO+/e0/ZX6x4P79h3zt61/n937nd5lfzHn2mdtMxyN+53d+m8989jN8+PGHvP/BB7Fjp6oqjIf5fAGYuKe1TmQRpEgqz8GL4eA9CuSFLhm1My1aepDEyUl81iog3dQ1tJJ8OV/rPtQxJXtQWLTlALCXRUGZlWzsmiwdkA9ysjwnSTO8F30qELZq2LOsFT89Go5Yr1cUqw2b5Vq6mZwI7K9WS+7dv8d0OqNtG9brFYNBzt/6o7/BzVs3eOHO84Dn3v17/Of//GesNxuKYkNZVezv72sHhAC7xyenHB0dMptNRUYDBXi8dgI40bUNg5hkjXuc7fStJS5rYvzmtejrnTImrSTYQZtK7FdiT+9bprMJW7Mtis1TqloGY0XN514BLQCC6IAA2kYaoBx443ny5DEvvvAibVNHn+69Z76Y84Mffp+vfu1rvPjCS6zXG+q6ZrFY8t3vfo/VSsDnvb19trd3uHf/Prdv38bjef+9n3D3k7vUTU3dVDopVQDmi4uTjpHZi0s6EETiriQUr3t7YtgAg78SkEV9ou2kXxIt4ro2DFKTQqhV6Z1QzJUtSu6rBS0yyv1z+m/b1qyLDXVdUZQbnMriJGmKaRXR0VdgZmEMw9EQYw3Hx085v5graUG01yTXFTb0aCi64mVRwUAGbj16/IjDwyN+8pOf8O/+3b+TtWk8Dx8+5Fu/9i0uzpd84QufZ1Mu+fVf/zV++7d/m+3tGW+98TZ3734M3kku42E6m/Lo8RNG4yWj4YjhaMQwHxCmJWtIqauyFyub8HuvsYkAgNGf9iQiQj7W7eVdbuxDTG+k43Av32M228LjWa/XPH36lMdPH3NxccFqsaKsKgodkuK9lzVYlgyHBVVVqsxCysgNtWBgY75e1zVVVVAUlc4mELkgozrUjx/JWpE1ZWUgmDHRj4Q90dKLoeMeI4s08PPatmOl+it7iTXdHuC9JzGG1hsqZULrTYtSLB7JlctK4sCQE1ir8WHv3mro1u3lJmiAm7ju9SnE5wM+gp9O/UuQV2lbAVDTNKEbFCTftF6tOT+7YDQYdprGSpCazxc8fPiQr37lq7zymVd48cWXRZbj/Jx3332Xf/Ev/gXee37yk3f5O3/n7/D48WMODw/5+te/zs7uNtPplPffe4/j4+MYhwnI58Cn/Nmfvs10PGI222Y2nTIZbcngxVwkStJ0TGIhtZ6B6mBvT8AjeuYGnYScCUPXWmmFBrFta1LtaBDb9C36LBxZmvDJg3v8vK+fG+ALVZ4sS+PDXK83MhmxgfFoGooXeJ/gW4NrvLaOSc97UZR4A+PJWGmsFk8jQv9lIbpExmASi2XIZm0ZD2aMxlMm4x12tq+xs7PL4cEtDvdfYDKeYm3CelOwWq04frqiLE9xrYtGxlWTda6Xryh4oew5MBgXWr50GmBk6sknnO992nQsNNsDUvqMtZjs9MCxPvAX2D9XGVp90M/IF8s0HOS6wrTCVPXBroKFjWsuMezCd3aT37r3hv/1WYRXgY7uGjpQrX9f6rrR62t7QIbt7pvrg4jE77jKWgzaZ13VVZyawgK6WUpQg0dYjMH7GRO/ow80hvt+fn5OrtWFvkMKwwG871qvrgKv4R70X4HtGSZhdnYkyWz4uw0t5gTWSRsDrw7AbPXedqBq04hYabif4RwkETKXziU43Hjf8RGwxHdtlMYYLMJ+TdJuQl3YbPvZvLHCkPEaGEsQiXp+H0GEEDCBUM4xoYJkewCSJkeJnE+SWAn8lOUS2Ug6XSpsNs7pNue6+xUSR7ELEYsXURrVE9OEWrJOXf/BDVgBAK5uZiH17YPLP/vVIRw+xlzSfmbjPTSqK9jZEsZoK7awhkIAGDZteT4BKhR772tvBgq/8ivlfjWun7/oeyG0ebegwVFn1wqN4j04G+ym+x65Nllbss4vg3YgOio401sbAq6pd4jn1JcwMGovBH+mxzLGICQ3S5qNGAwS9na3efnlF/Ctp9gULFdLlosVF4sly+WS9WYdE966qZUt6nQQkgScjWo6ybUr4Nd2gXR4xG1b65QxE5PTcAzwjEYjCeKqirouY3usVO8tbeNYbzZcnJ/LVOI8J0szppMZR4f72lY5Ic+lhTIkmSEQtZqkGWzoIO9eRp5WkqSE1vkAxngjlhDR5WBjUQpCmEkeNXft8g4BW2fyujYCW91oXVbtWMA5eVtYUx2zHWXYhEEM+ruwHxoTmZzQKnlL9EmLQiu4VvdMBS47pqVWoNW+mrYrGAWIKQRrYmPKmOhQrEv7rveORm1dAk753rOLMx4fP2G93tC0oje6Xq912meJ8y27u7sUxUhaJwOzXQFmEN2Z9XrFZrPu2nZjQGyUxd8xuuSShEkxnY0wwyHHx6eMxl0CltiSs9MLtrfn/LW/9tfY292nLEUm4dVXP8uzz/0Wr7zyCjYxvPHGG/zbf/snlGURhyMVxYb54kJlBzp2uBqAsEiTEBc4ZbCJu0ySrkWxY790cYFNAmNCirrGqi9EJ+NGByn/JZpzffa37GlhMAVe2O2iM6UsvbJkvVlRVaUMSalbRqMxeZYJy9cIq2dnd4+DoyMODw7Y2d5hOpVhVlmW6nCaAJb7joWu9u0Jbem6bzrZEayxIrreWyP9GCp8NrBQAhRgwr6EgNsEf+0crcbGTvVL5e9yn5qm5emTYz66+zHzhbRU163ExVVVUiloVFcVZSUJ6WQihey6bfGtgNdNK0OvvBZuNkXBwwf3ybKcTNtKx6MB8/kFWSbsXheSb2O4e+8u125cJ0tTvv2n3+bxk8eYRAagfPzhhzx98piqqHj986+xt7fH5177LE+On/Ld732P45MTWtfQOmHB1mXNxXyBx3RAaO+em8jslP0s/r0XswW5gH7M7ZR1ipPBPSEubttaBsLExS+xSgAGo0s1XewJop/oCFrDlcQtVgelKKswSWS4VqL6qKJPleE9lE3F8ekJu3s70lZc1yyXS7Is57333qMoSvb2D9nd3RYGVVPzox//iIcPH/DOu++wXC5ZrmRvy/MBg+GIsmooSmEBjbxjtVgwyHMSY7V7RWKyfgE+yDJEHdzYkRMYfkS7lz3YRFt1DqzKLUmcGXIO0Tvc290lfSWnqWvsXCaJVpXXgREWnwTpmpTWQmok9vW+BR9Y/BJ/n56eMB6NdGjiEK8DBO7dvwcGvvqVr8nvvefi7Jxf+eVf5vqN69R1zZe++EWefVaKgR99/DHf//73+NEP36GqKppaJnsWm4KmaVmvNzIMQof+BOAkmlLAPgijCbSVMRae6e6DAiOhWBXYkY2uO7zXlS/sY7EdKR42OtjBO2Xz+bAOHN6ptnHb4NqW1tV630JXguyPaZZA2gchQ6wl51ZVJScnJ6yGa5WlGpCkwkRNpQ+Y5XLFbDpmMh7hdHhS0zaU5Yb7D+7x+dc/z3wx573332exWFJVJaenxxRFycHBLv/bv/VHfOlLX2Rvf5f3fvo+b/7FG8wvLhTk2tA0DYPhmHv3H8r3J6I1N8hzptMJwzxnNp0xGg1Js4TEhF6Xbo/uF9rD/Q/X2sXFyvrSwNkYg03FxrIs00nKyAA8b2N8NdgZsD3b4s6dO5RloZPB13xy7x5Pj0/U79ZATZJYmjalbkrapmG+CC20SZw3UNcVm82GppYupVC4r+pKChsGBsNcfEiSgkpQoHlUiIETm8p1G2jaQGKRrUoAeBmEFQq6oPuXdsRYY6XlXTu6Qq6XBF+o+3QoKhpCXKSFkOAXnSHR/Sr4kCSsGZJY8LK95yAYnPzGhSKLczRtExl4oXDmAwHAWjLVCgxJWchdT05PmE2mYv8+6PIJ3vHxxx9yeHjE5z73Ko8fP6UsRXP4rbfe0k4yzw9/+CP+zb/5N3zrW9+KkhDDwZDzszN+8pN3KYoVTVPJwDfnwaTs7BywXNes1zVn5xtSY5lOp2xvbbO9s02WylRnY1H93i57CcxIvDyrgIjKPXZxjw9SPDF/c5c79ObLOT/v6+cG+GazLYytKcuatjFMJ3vkWUNVlRRFAcM0BlLOQVUKCltsSoq1DnYwGQ6DDFIaYEhwrWM8mjFIDZPJPoaM7a1tDg9vsL11wO7uPrOJTCbFyGjioqiYX2x48vhMq3gNgSnUts2lllEg/s7ajsnUtbTaS1MUA9BW17VunN2t67ex9ltir4JV4X/h50u6RL2/9Zlw/epvAPyCBkk4vkx2daSJtumYrgUwJD/hu/rHD+1JP0tL7zIw1f0cXv17GTbHru04LF51PL3ASc6D+PvuON197rPH+vexzwoQ+jwRvAMJ/IIQfRrAyR5wcPVed47CRQAtYD/h3/41X223dq0kQOF5yDk71W8yGNNeen5yUK/nqJW6S8BoAE3CNXVAnyHBe9XYMdra1KtAyvf5yCCNQChalVQqNZ7oREMCF7y5VS2sMNU1sWkY1CT3KoBdeGwiOm1S6fWYJJHfW0vdlh1opEFmmiVqz0m3VmJYr4GmXqtNdMK09aINHZ6xtnFZrNw7py2Xek4hLDN6LYJnqW2oCKonJJGX7ftS0k9nb0ELKPiELimIoZT+3RJ8fJIqyNN2tuMtGK3gGv2e/hqyqY2bbBsAvzTtjDF8j+2ARufUt6H4ZFirHZVI7YHIdAx23AeoQyLlXb81M7Bw5bqdsgEkuZfjRxDPeUGK6ICbflIgSYQP8AtBKqD7u+99h+iddsxqAZdsKsEOLgEr7QGz2YzmQFh7znfMZamiitjtelUwny9YrlYURUFVS5DRtjJBrW1abf8SBqdHgJ66roQmX1XSPqltF0EzqK5rxuOhtKKcVnreiYLuwi4xXkSItyZT9vf3OTw85GBvj+2dLba2tggtGsG+ukKBQYbg9TSf6HxwABLCvQtFC4koQtBE7/mZS4DvVdZCaOcKJn21gCNrPDBdiaC9Pn21Ofl7V4xS9pbaeX8fSdKUqnWX15xmmgHssrofhOGAYKkbPYbrGJ/Rd4YA13tc08Y13N97wvf099q2bSEJxRUf79XB0QFplnN+fsHFYs7p6RlZljEeDcmShKouyVSbMdyjpmmomoam1gFaEQSVZ1M3BYmuocZLWCznIoWd1jnQwmKSyn1bLBaiXew8RV1hbUaWlnz00Uc0TcMrr3xOBjh5z7PPPstsa8oHH33I3Y8/5oc/+hHz83lkD5VFyenpGTZNSE2KsR37INiHsVZYR0aSb2m9kaedpmkU2o52FZNddTnarpSGqc76/BNtbRJ7CG3p0mo+GAwEAM9TJpMJw4Ho5UmLo8RnWZ5jILaShdguWGqWpgzzTEW1hXHVegXXjLYc0YFcls4mw0CrkPBHoM6HtilNOgwRoHVevGY3QKhji/YLGPK3DkiS4k3n/6MdulCIu8ww293bwaYpH9/9hMdPntA0oldbljIsJTEJbWL1Xo6p65ymqUmaUMiAvB93EoqAnqLcUFalshNrhsOMeqvGYGjqVsADGopNwfe+9z2+8pUv8zu/+zvcv3+fBw8eML+YMxzlnJ2fyn0fpFy/eY0Hjx7yX/78v/DOu+/I0KRKkl6As/MzlqsVJjB3IqCkcVViYlEvJJ6GTj6jn/T7WMzs7n1glVvdO4w1JCaNe2twBXIs29m9TvoNTjAe2ThqV2F01HeWpLSJ1TjKkqRJtC9h8xgF9BrWmzXJwjIYZFR1jV+vlQme8uFHH/HgwSOmkwmTyQTnHKvVms1mTVFsWCwXnJ+d09YNezu7VFVDm8h+n3rLarlks15zfn7O4eEh+zu7pFmCt13HjTEGZ3p7vUHUhMO+gNH4z0CQGTJERlEgNwRPH+w27EUe2J5t8ZUvfZnFasnjJ0/45JNPWG9WlHVKWQozJ0kabJJITtZ02nPeOB101fDgwUPuPPcsQb/ZITGLTTMeP3rMf/j3/4FXXnmFGzeu87lXP8vXJl8lH0reM5tOOD895cOPP+att97i5PhEAPBSBhusVivND0tOT09kHeiaDjqDalQKfMgasapPJlpuorMaNEOlYK1SEDYUPQXQc97HWDuNLDKDpFmdr1U8Wm+trNVWNFgInQYGr9rUIZaUGNT4sN/p/+vZNb3coWpLGfxhc+q8ksn2qjkbQPPlasnRwUFk0hbFhsFwwOMnj8jyAf/db/13/Ppv/AaL5ZKDgwOM8RTFitEw57XXPsdoPOK9n77Pn37723z44ftU1Yblas16tWEwHDIaTyjqlsbpMC08gzznYrUmMTJYZDwasjWbsbuzxXg06obFqK1Fpn4ApEMrr+86lLqCgA4O1JikUeJEaHVOrJUYPMQl1jLIUp1kvYNznjvPv8Dx8QlPjp/y4MEDnj59TF1XLBZL1StsFWySfNZYYkzrWodFYuAgI1M3DVlmsTYjzTpJFmuTKEki0+XFLvNsAF7jzraJ4J3sgQEokvwx7jNBo19tQWJiH3/v492Xe2QQCR0ZHNrtOT58TvPVNHRiBJJPwBG8nFdo2w+HCMNNJX/WPE2JVd0zVTM1BqNDLbu/BVKDsLcX8yXHJ8fs7exQN8I4TpzF+ZTlcsWP3/kxw+EYp3HiJ598gnOOGzdusruzx/7+PsWm5P79+2xvb1PXNY8fP+bjjz/i/fffE43szZLlYkHdNkwmU1osF/M1aZqRJeL7Thcr0sdPNT6RwZppmspwKh2QNRoOGQ1yGT6SZGFHUrsMNqu5LCIrJANWQtwe4sauUPPzvIzvR/P/Fa//y//1/0DdPGI8nrBYbBgPhca4KeYs1+dYm+p2KT3JbRPa0lKqsiFNc6xJmcz28QjjL0/32dvb59rRNba395iMZaCB1yS2LKUlZbOuYrLlvbSK+CsJZAju+8bVJfV9Gq+/0iILEfmgazUNL+9M/H0EmMKm2mM/heP2GXghKYt/14SkP5FNrqdfPePS32LbbS9xCkBTuP4gtN61MhH/Hs4r/C4c8+r7+sF8/7PhPeEVmHj9310Ct+Rd8fdhoEH/vl29xu4YXZuMhheEpxMCv0+fz2Wgtf9779XpaUA9m404OjhAktJgJwHQEXutm4Y8zyOrRAZhhKpmlxQI8CdaFkE7rrvHojGUJN1z7nZmYV52LMWOARDGgXfMv4S6qWLVuGNXBkBV7CxJkhiXNa7RqXNepsW6AGR1gFfbtnhHDFTBR701kKSmVZ0OY1KaumtxF20KAdUCcB5swhiwPkxtDjYpgxVQwKpv4+GZWTo9OWETSBXIaDDUrdVQ+UgkUEeBXgOhmmdsZ+99u7wKZvRBZ3kAJoIYAkJ3dtkFF33blU3U0IH3HWAc/AQEAK1vq/0gPNjCVdv2cvMv+SPvPan1XD+8rj8HWhY6GdN+ah3Ea9SqZ5geFYfuJKanr6dJa2h/c53eWGgFNkYCDGOSSyCUNd06stYIm0L9btPUch8IbKZuTcg98SpSLjZXNzUWS2pEpLl//eE+hvZxgt/QQUjSOtTgvAj/l5UAeFLccLR1Q1mXlGVFWYlQuFMW4GojkxTLsmS1liRssyloXctwmMfBG6I1O2AymbC7vcv1w+vs7e4ymUwYj8fKXutapLr1fkWX06sg/6f2sMtTOzsQWlvd2lZA8R747L1XBoK91LIVj+Eu23/3PUbaclxnL85LYtQ/h/Dq73Gg0gUKTGI61pd8gdfK7uV9Deu5ce1mXNNBPcq1HYjZ32t/1itowETNSt99NvpE/X3Yi9sI5phL7zPqf9rW8eT4hKdPn3B2dspquWKzWamwfE2lDLrG1TolHGWNKoisfrufMAdJgv5a8k4HKLUem8DW1jbj8UjZoZmyWwYMhyNGo5GAYlnG9es3mE4m5IMBRVVydnbG+dmZJMtFxWq1YLFYsF5tWCwWgCdJhQEakvwQ7tiQdKj7tIkCF+ERhWTEBpHuwBLSCaOJTKTN84wsyxgOh1gd+jKdThgOBoxGYwCd+qysOtVeTkKSo7iCIbSyyt7fIgmwlnHiHtffo8L+7XzH/EyTpOdjfWxH7IBKaOlirWAL1hhSm6gdqe04R+tdHOrQt7Oq3nD98FrcT7vCZKeT6UIFHyKQGFqwjaKl3nXsetc6yqrm8ZMnPHj0UFqslyspUjQNRSWtY03jIhu8aZy2q3aFj9D217atAGBOpTHwJEnKbCZTXre3tlgtVxhjdDr3kOFoxGw25dVXX+Xw8FCG12Q5w8EQgLPTUwzCyvzhOz/mp++9R101rDcraVktCi7OLzg5OZEEVe6yXGt8DhIPWEWLne+mefsr8WF0GbYrkuCR5FPxDu9dTPqttkyG/w6gTpAR/Vmv8Gy1zBJ/ZyD6RdPzM31b8E4khbIsZWdnRxiBXiQZxpMp48mU6XRGmqTkmSSCVVXRNDWLxUKAKO/YmonGsOhCZ8KAEiOMTMIsSxkPh+xs73B07VCnaSYxruvnEN52e0miA52862IGg6WuSw73D2LxW/x2YPdJPCAFjVZiESPSHXVdc3x8zCeffMyTk6exzTEUP8qy1D1XAO261kKab8G1bG9vs7u7Q1GUpFnKdDolz4fkWc5oOMZ5x3g84tq1I7Zm26LpZWVAxNMnjzg9PZXp5rVoA65U+zZ898nJCVUV9EbjQ5ZnHGJCjXsTBSlkzxOwOTHaYuu9yL2YK3rhSGtu0+rwMLVfQwciekLRJ4AyxFhWTVi8Qohv8RGA6YN3IQOKe6jGX327DYU+44WQktgUk0qhJUkzfXaG4SDn8GCPtpXCaJZnTKczJtMpo9GE3R3pOLh24wazyYTRaMgnn9zD2oRr166zXq/53ve+y4MH95lfXLDerDg/k8LS4bVrjCYzvJG2dolpWhn4oJqVQSrBYJiMRzx7+yZb0wlR+Le7c5oOGbCau/vgV330A94ZimrN7s42SZKI9p/put4M3V4fwfBEdOn6e0KIGbGGuq6oyorlcsl8fsHFxQWnZ8cURUVRFKzXK/GzVU3tamlLbx3WyDAKycdFU9coqSg8B2OssHATy2g4YjQec+fOc2RZxmKx4N6D+7GwHPaVpmnjQMNgO21vgGcb9zGreVqD922MxcI0cln3YkChIBQ6apwOgAqvkKdJMVbZfkAc+pjoPqogp3edgqXkrpcJTtFXRoDbR18T9mmjefju7o7q5Bs2xYY0yxgMhozHE4bDMXu7h7z66muMxxOWyzVt25KmMn3+lVde4fr1a4zHQ95770OSxPD+++/z3e++zWazYrNZSnv2coVNUg6PrjOeznA+CQtLgUjZXwxoIbGz3SzLZF9NZBrxaDhiOh6zs73NYDQkTa0oAikBS8DNUFA2lwD6cG+W6yV////89/h5Xj83g6+qRRh3sZCAYL05o57LFBRrRtQbgJzZdFdGcSeePB9xsHeDnZ0DZrMdtmY7TCY7jMdTGR7RykJbr9eUZcnx0wuq+lj7ybuWm8CUCG0iTePjWm+buktCTbc5u5jQ+PizU2qm98p+Cxm5Gr1oeQWnLWK63fE+DUyE/10efuAuvadfZZNgrzvHkLyHDTYkeuHfkChdAhx715mpyHR/8ffP83IiJw4/HOvq8I3++6+CIpeDh0+DCOE93T0It1ZYCwH86ZKrADhJu26//aX7b33AoK2YfOqc+uffgUCeMODhEiCryZ+MqZdzvsSsshIApUka2w2DAzUQKxd9wMVYumRNHWEAmkCGdQTWQNs2XfuSD5u9OMjQOxfA2852PG3d0NIDivV7A+ASgMiYJBivGjwmgk2BGu57FUIBSWpCq5RHElyxeQFtEm3bSJVJFYdVIOceWJpha3ZND3DSak5YYqIZ2Nnipeftgk2LvQRRbc9l2+ieO3HzaV2nr9e2YZBDt7FfXTPxGFp8ABf1DOW9mo6E91/JCi4BcXrO/TVy+b997/8gdOAGtlYAUOVS2k8dg3ANvUDVI4WC8LNNQiJ5+fqu3mdjUD/pIjgqSWWX/LVR7DcwYlBN1OC7uuuW0+t/Z1cAcU4YFbJnamCs2l4CqqR0IrtGwJG2iQBVZjNty9IgXCcFXgKWWmldEPAhBG1iZ8OBVEUDoBELOkGXzhL1bAwQxMjC+nPOSTVVq+sBxJcJ8CZOxQ1tutIN0dmzBFnazhiHN/XA3cA2RVkBPb2o4NP6NtsPlDo/awgMhFBFlb2xjW2v6DPyzkc2afDj8ThBtL23D1hj8fZywti363CdxoSJbKIr1KjOXQCPYyKVSGBr9FpaZIBC15LcsTu7e/jpqmbfx18C1AngtIuf67PpO/CFWPyo61omtnk9CS+i20dH++zuzHDuecpNxXI55+z8jLOzc5arNVVVUjYlVVlpe5WAL847KhWeB0/buOiT28bHARaBSWC8x+lExtVySTfdWuy+LCvCtFmr+i2PHz/gOBGQrNUWdNeKqPzF+Tmr9UoF8GtG45ECAJbEmm4IkDVxEl6Wyb+JTUhSaTvMskEE7ga5tHYOBgPywYA8E7tP01z0ytKMLAtAoSXVmMpABAV141E2uScmV8HHdUqj0c1540kR7aL+fioDciJ+o0m0akwG2QgTWJ4eq7IbwYYFvO6msPa7B7oiWdg3Oscf/h5sq8/I6+/ZSWhVdJLoNE1Llmd6Np3tBuAp+PYgzWCMgDg3b1zn8OiQxcWc+/fvcXz8VFqOEtmHm7ahblvapsXaGu9TPJ66lsFxmIS20W4OJ+wuUXJpQRlkWSpMksRa6rrBmITUyST1xXzJX/z5G9y4cZ0bN26xv78nwEvbsFgvOD054ZO7n7DerCkKaSEuig3L5Yq6qrmYX+j9sBq3dYAxug8FdnAHKPc0okxgQ3TPPsSLl3wQXfeGFxSdSyytOPgM+W9jpT0rAgpatFUAJTFBi/gK21+fT/ApYcK0xB/allbLwJPpdErr2gh6bYoNm82aNMnIVBetqmo2mw3z+QXgZYBYPkC2JVk/o9GYJE0kv3Gwvb3NeCwT1Id5ru3nSbyDXcwcES0AEptFwC7omgVbu+pTI0CNhFEd8BduqdhuZlKuXTtid3eH5WrB2fk5T0+OWSwWlGUprYtNQxUm7DYNTZ3pwLWK1WqFMTAcDtlsVuAdw2FLO5LJylkqU5cfPXrE06dPCYPPBnkehxgU6zVFWbIpCh2QIDpwZ2fnNCHWvlQk63TKUetCdWFj/Oi7FklDiM/CXqu+S2MoC2TWkoZ42HXv/f9XlPJR4zvYZ8hx5QChLTGC3D4ALP3cznfn4jsZHq8xTBAJkFynvhQ3WAsnp6fs7e2Cbajrhs16g0HBXwdn5+cc3rvP9vYW4/GUICn0k5+8x9nZCUUhepGr9Yr5xQVlUbC1tUOSpNRVjbfa4eQaDA4Si6sbGufJ8hxSw2Q24/rRAVmWy9BNuq61KCskNwDfEgHNRME55xuVBZEp3GHw4aV41FqM79ZxWBJCIkkiW9soXmgD+zsbMBrIML+bN24qe+5yUTD+z3WF57YJHV2aK1ojxdamxljDcDAicJgF6DNdAc0Ydra2uXn9xqVr8N5Tqb5fKJQ2Tpiv0pYuUg5VJeCjb0JnS0XbOpURaeJ5xwKx+r+2bcEFUpTDBSDZB/tCpBC868BAjaGdDosKQ+vC+TplY8efezlY214urIWhjH2ZoPPzCwaDnGtHR9o114KpIiHm/PyUN958g2efvcMzzzzL1taMQT7Ae/GRZVmyXC5ZLOa8++6PZUJ5sWaz2XBxMWe1WtG2jtn2lDRJKYsSTBp9hYGoeS15h6GsBGNKkoRNUURbTLOMoqw4n895cvyULM+4fnTI9nSmensqw2SD5h5xP+r8NT17/69//fxDNhpYr2uGg7FO9huQD8dMxjtMxlvMZvuMB7vs7u5LRWA8YTickNoBNoGqriiLirKsefToJFZ7wutnsdeE9tlPlsXx9gMtmSjUJefeaZtarHJYdRqud0NtnNQWQJ5uk5OAOGwGVxk0kkR1lZYQOIcqQJ/pFz5f6+bfZxX0A0QQUdDwmYDeX60yhL+HwLR/Xn3Aq5/k9IG3/sYTfn9VZ65/fv2fw2fCxvKzWEfhGgOTwvY0vnzvOYV/+//dBWJ9pp5+v3z5z/y+/r3szrG7132wpUNZRMekUQFvm9ioyxQ2xxDwR+06hLlTVVX3bOmABTm2jRVkaTfRISgaSAubUCjMxhuk0GKkhUFviVPw2csPn3IIsgasOmwwJqFpm8jyC0BFuEfBjrIsjfemaXTKVdsQJu91VWAXKxfhO8P0zURZeN4JENRqAGJtGn2UsBfbCO5JUEQHqFx5PgKOykZjjKGTXOfS+4M9xGdJDJUu2Wtsf9bD9G2mfyyM6c4xRGgQzzl8h7EmBm9X14XYR6e1F16RYQYSPXg9H3wkIUh7R+97XGC9SaAWKPYmoBghUzIqVo4k/YFib4Pwc+/8goA28dx12IvvNuskSQmM0QDYSgIm15PYrq02PA8Tk/hQEVfmH+ml5yOMDKI9h+DKO69Ai36vFW0T5z1eK5zee3zTFUbkaXe+JE1TaFvRyjIBo5FCkE1tvFeukQAys0mnXagt4GmSSHCX6fnhdVJrd52Nsl2ttdKWrEUfPFGgHtMG9FOq8Ipc9Zmkny6KKOM16mvqsJimiQWeq8nX1WP5q8xSH/4ulx8YatIK2322AxCJn+/kA7yuDXdpfwrnHttTnOvtVY2AKkZasoIP7593KGY47/FWpl6GvcpaAWlCy35gFnofmx7EJyuzu9WBFMYmsYhiuMz0TJIk7ruRue8kMQvXFa/Be5I0TH1VVpuHUT5ie2vGzRs3cM6zWm8kjqk2zBcLlosFp2dnFGVB3VSxbdzFtmSZ9tnUjbRcugavrI+2aWQojD6f1WqtbZk1w+FA10rQ/QtC/QK2GX3um2JDsREGS1FK4GmThOl0ElsEx6MRO9s7ZGnGei3DKba3txkMhzrkZaDAXhZFxVMFs0MBTpZfqPQHWQgBA8LgDfFhQfD/8lRnjAb+vbgo2GtYEk5Z053QxuWCoUN8pFdAOlT9xGfo92BotXgorORPA3LCQLissRvt3/t4nBifaZtmAP6BOD2+vwZCEnUpyTeepqk+tXb7MdflWEfZ+caTZpaD/V12trepG2EVzxdLHj16xNnZKUVVSGtkqwCKTqTP8wTXhqKvJJsybVwTUi9Fi9VqhTWW7e0tqqqO665pHVmWMxyOefDgMcfHp3F6teoRCIOxqtgUG8qyYq3tkZt1wXqzxhhDlg8IrZeByRC0iFrX4F1LlgRfG9q5tUvBuajha62Njbk2PGdjNKqQ/05s9zzVmtTGOsC5s6cgFhLNLO7jYc/zPTHUuI+7jo3dqNyDdBWVMqyjLKguKqqqklbc1lNsNmAM52dnMWYOtubaljzP2d7aEnakl704zwcMBkOuX7vGwcEBUnhtGQyGZDo0oQ9KX45peoWdJLnynZeLvmJtPjJgwsT2AGC2bX+th7gIwlR6m9g4yGB3b4/n7jwnrKZGpskvl8sohF+UIuNUFAVtM6BpahnA6CFJDZvNBu89RbWhKgqyPCPPcqoqJ7UZTlt827alKAuqsqFtBCQNLPy2aVku14AnHwyxGGxqVTfRErtD9J5guMQcBWj1Z+8D6OfjjY37sRYSgm2I3SRBthgbnq930c76OZwUDCWoDt4uANptHNQRzFLZUV6slugrFHDynQNtgu/Rn+umpVWiQtvKhNtis6GuKlBwta4q6kp1AJsK51ryfKQM9rPIyJap1qJzuVotWS7mzOfnNE3LeDwmyyx1WeJNjbEZLlENy8TG1nHnHFVZYBuLaxpGecb0+kiKfr7rIutiDtHwN8YI4xplJGt3SPQVePIsj7GuiXGrxWmhdTAYxHsU7rntAdyXc/ZE3UrIbwM8LosgSTNsPrjib8ArI13iufCMOluJhSzXMdv6a9cai8kHhGTSGGnnHIdDaCIWc339dWdXXbderYNwWifFx6qsFHAX4G9drGUye9NQVY3o0mmxsq5rap0wK5OPpSvMtZoztNpKLDS1TkaMLt/sg3ohJxHwj0t/E7sT3ck+i/j07JwkydjZ3WK9KqirFtcoG7+VdfLuu+/w0Ucfsb21xXg8ZjAQ+ZK6rrm4uGCzWdOoj1ivVywWczbrNU3ViLZellCWBd4kGBq6YqqV+2wEoBMg2WtsoriKD10YDpdl6jtayqbh/qNHpLcStrem8oQ0d25cN2sAvHb39clMP9/r5wb4EjPjcHeL7dk11cfbY2/3gO2dXQb5iDQZETSPiqJgtVlzcX5MU0u7Xac50r0iaOE7dkP/f5IkdYlC2ND6yUN0kN7HRdgf+R4SpgC+hYUQ2lrDTb8KEEGYttVDvtt+ItydZ3AQgVEXKrod0BXaCW0Ej6KT7v0czrvfQhsqx8H4+kFhH8QKCy1oB/YByvA9/c/2z+/qM/lZ90IC0zDAAeg/gyv3LDyPfqLWT0wvM4u6BLL/DPvtsP4KcNE/t0u2oJtyP6AJgKg8O3G+IvjWowzTJYZ9Z2+sia1tgXX1szQDr15LfG9gWiBsAjkHaasIwULAHEOSm2Wp2KoxqrWoI7eTRJgBbccqksSpO2eDxbmGsEGEe2isoapLbNKx5cJnumfhLiXvIXawvQA6BIQBxAlB8VWmnDjL8AyUPWg6+4jJESYUy+O5hHUa7db7CGj1QtkrttO3CwWKL/3uMrh49Xr1oWkiYiLbsH/smPD1jtG/7m7N9CZRGwGBOv/maHqtks50ia7RTSQmiQFsu2T33dqNgIUKuzq1b9mI5JWkorWYJJ1OoEeCWBfB7AZjIA6k8D7apwSYra6XAJyk8TiBldrdW68tv915OB9a74K/kcsQceBQtJBRexaDU5/uQAg87WX2c/+5W2upm26YUJqmmKy7jjRJ8YmPvjnYblSFtLa3vgFrdQCN0uutzFpv1c6DPmAAkMSfdPdGAs5QAZQLuOobgMgi872AB64MVuoHfwqE9fe/8J2ffn+wNxsHGxhNYmLBB72fvYUSzjNNhQ3ken7iEmv5ks8QofGQCnkXAhiDb1UoOdgrRm1cGVYK/gTtNwkAJZTX8djyc2+9hEnmNgn3QN4r7E8urecIbvaC6fBswz0N9yNJuvsbGQVZhm8d3iUEUHp7K1Mpgx2uHR7hvKcoC8qqYrVZsl6vVFKklMmndRMD7kqT31CJb9uWupLWtaqqZDp0XVFVG4oiYzabUpYbFouL+Gy74S4JdSnHdApmWG1jHY1Gsbo8HAzYms24dfMmR4fXMBiS1GjLUKLPzEX2gjHSrm0CiBLsQx9BajPSJNHkv5vuHPypsZZM91ohpQffIPu6c31fFlhakkSJNo0KfQdgkB7wpcC8wcQ9LHynMSjLQIAI7w2o7RhNvGIMRLenheJdiDs69gvRh4Trj/8d1p2eX4i7wtqAUBAK688RtPA8/tIajjGR83FQifc+Tt421pB4Q5IMGeZDZtMtbly/RlEULJYLHj5+pMlMISCzMnbqWpI213oabdFqGhHyb1qnjKqSxWKJ9zCdTijLkqapGUSdUvGZIPuviL4HjSVPURQqZSDTKAOrJEksk8mExKbYRJih4ZrFD6lEiSHqN4aikzDLHUka0hXxA9bq8L3QbeAlQYr/bXVqK4F9FVrOhaFrEyliCkMyI8+yLmG3XQt6KLKHc8oHebfXmCQm+sFXtc5RFAVnZ2csl0vOzk4je825Tnqn0YJEpppco+GY6WTK3v6etEgOx+TDIdPpjDzNZMhgiOl0f7dG2Ua99SP/P+xJ4teiXE+o+fje/sbl3wW7Dj4y5g5qy+H8495jTdTnCjEiJFjjybOMYT6grmtmkynXj67x/HN3ZFJpseH84oL5+QXz+ZyTkxMu5nPWxYbNuiDVYkzjazKbkg+0TdmKFIAA9+If26bR6Zfd3umc+OEsS8iTTPS00pQkE/ZzmqRx8MVoNMImMvQxSuEYKzmqxgwdGNoBJ96HwkQofHUtht5blZPR4rwPRbI2xr8G6S4IU6Cl4nY5dg3+uO9PfGTFa8zdA8AEsA+xmOt8loPcNdq+aWhq3ZO9dOJdXFzQti2jwZCqqlguZB8qy5rxdBa1UQM4GuL1siw5Pz9js1nR1DXTyYzxcKgAqSYMrlHmWMtoNIzXJnGm5grOc3ZyAm3L0eGeTCttJV7uWLouauODaK96xQNsEtpqO7aZ+AjJTft7e1fIS1QbVoF6tLBA1/0T8r8kSWl0grH3oThhSE3n/6F3rhDZfPL7sOK62KJVvQKtt6s/gv6Axm4NJ9o51u3BEWq23fAnE7/Pap4t61+0+ls9vhbpYvynu1jvdzEeaWph3TYNFhkY1DQNy9WSzaYUjcGqYr1Z0ngZVlcrS9dp4SiQOwDClO4AbHuQ4oiTQqbc84GCfJ62afDIZ87Pz+J+UWw21GVF01TUVc24bhmMRhg8y6VhtVqSJAmTyZTT01OEPV+xWq8pi4KLi7kMQDMwHo8lhqkbSHT4hZaQwl5ujey9ZB1WkaQG5xRPsLYrhuY5g0GOTSyj4YBMW7PlHiqLU4HpDkMRn+ViS/5lDOa/5vVzA3y/9PW/zIvPv0CeD0nTjLqqKauSzbrg+PipiMMqQBUQTolaNF0L1ui7VigIQY0E6v2FE159ICpQQoMTDRtNXXfV1LDo6rqOxwnvk0rYIL63D7KFymr4/j4boO8wrmoQhXMObIHw+T5I1//cVRZfH9jrg3D9ADB8/lMAKF2y379f/cSvfx/6IGQAWvqARbjXV8+l/2p000sC0o0GGb33dp8zGBOCK6Kj/FkvCZqIbXUhyRegpANouuvvT/wNz7iNyHgEQWLSHIYJXL6/1iaxIhTOo/+MIACpNjIzwjX0bUHsRBN+TwzYoz17CToDyy9MeLbG45MEXMeoiSCj9xHMa5oaY6xo7FgR9U2MDCKIDjUCQNJyW7UVxhphEabCfgjXFkDv7vF22gzOg68jEgOJNFA1rbbdho1NlPglGW+F4h2SvgC0Gr0RkannvSb6ROAmbISCa3WAYKiQCoIg7C4fbK93vwxeE8TOxoKPCZtfYDQEOwqvPljR+dnLoFw4of5ak/PyutH27TOAmtJCrbmyaLy0HStKnm8YZ6IRh5f7nNp+9djH9RXPzkow1YHa4XvVZuPlSaU9JH7hup0PDCgbg/w0tXGNyJrzanNx+eG9+jmv7QUmQRiggIJmOLmexKj4foikvIlTDjU+xVoR5PYKhIbWfYwA65fXjwA6QVsIwDhI8yz66LqtLxctvBfAILTv4YUur9NlZcLcZd/ZtlKQ8kkiui+gAWVDAMeMQdhM4bmCTnY2PfuTYD3oGVprZbK7/p8skSiFHO9xCFjRcdUBFItsDRPadC4XVqKvMgDdgKPoTOkz9EIyrQvNewSv1P3XyB0KoJ1zzaVkUI6sia9Gy77ng70m6wYb2b8aUca11jauY9srSBW18tpWGGTG4u3lPboLhrviGnQM+lCASdM0Jqzx+eIxCrzjDLkmcz4RcX/X9gEY8Tvy/GRNZTYlJZFnVtdkSYLJEoZuzNbOFmkqgGJdiSh129TxObRNo4w7mda7Wkk7Y6XslrKsmC/mnF9csF6vWM5lWEai09eatmWzKYgtqUCeD5gMp2zNtpioiP90Kj+PxkOGIxGJNlgG+YAkTUhtn83jhWFhrYLYoLTcaIoCVMm/1lqSNKNpy5ipNM5Fpq5zTkAbtdA0sXH/8q3aGh2Q5Y1igB5tk/e0RgpV3gff2u0VTg/sWk+fNWsAowUME/1Nt6guxVIgfliXhwmAvrU9Xb8eMNKGNRmcUefr+69ubwg+TNnEWlTrs23CK9qujE/S+yegkvNhiqbv9jUPqUmYzaaMxyOOjo6EmVFVrNYrFouFxuUVi+WCoijYbDYURRF10NpWEvWykELier2hqiryPCNJDeVyQ1auGAxEDzJoSqU2jSyqSlv7+tpQxsNwMBQgJU20fVuE5vd2djm6fg2L4fT0DO/FTkbjsbaJi32FQSzR5muRbciyjEGWK1tbi7g2FB9kvaYK1IX7alwA9ohxiW87xqX3XuOxLl7oPx2JR9U7R/F6Yituoslh0NgM9hmGsVm9JghtlOjnZPOzClwaBS8JAJ7hkjxFd0Jhb9f42IbGb/W/KMs52rmsAe+c6I55ZNqyj8tQl52Dtm+/3e8NAlIbbGS9Bv8bbN5o/Ha1AOS83OvpZMJoOGR3ZxdzR963XhecnJxwenHK8fExT58+ljbDck1VVVTLVQTdvDd4JNaVeMTH545CrhbDZDyLeqCpspHzPCcN9phl7O7u8OILLzDIB5yenLJaLbHWkg8GmoPK9Qa7Dq9+NxU+sHd079aYweuQhb48kOjbqgyP7TqehJXqRGqle7xiq8pmMkhxu65Eg1udFaHICZclKYIWoLBwhalWllVs0SyLktVqRZYJ+/Ti4px6KNpmrXNsNiVlWbMpS3KduB1OKuzJdV1GPzYcCpvcGyPstWB3CpCl2YB8IAUCXIOxCYPBUHXMUgHs2gbfeNJBitfenTCcyhhLMkxUY1Qm/iYxPw3kDwHFmqpRB6kDJrSd1PZAf/DaXdD57VBICLqoXkGqALgkieSHAp6G9dsBgv3ibBKIL/T2BicSS8YYuV59R0A3fNizTJczX4pftUhurHS5SAlKi2Uhx9Y4M8R3EatIVPLAdftnuA9WJ0ZLvpyQZRIHDRkSusC6fF4KI+2l3CXIVzUCAraNao8qyOedrvM1VVFq/uFwSC6yWqmUSC1s302xoSgLmlo0NDdFQdu2nJ+dS9dCnmuXhOggF0XBoBiRpqLtG6TUTk5NHJxXFBtWqzVVWVGVEgcOx1OyNMU1ksN604C1OF1XJqR6XoFf40L7WlDxUcID0fbSLOXa0YEMjElsBHA9wgj2rTz/xnn9e9dWH1h97ZW44L/m9fNr8FWO09MFdX0iWh/O4XqO5mpl30n2gyycNjr8AHRfBo58L6HuT3uVOxV6t8N3hMXVn/oHlwGgNE3pg3ZpbzGH9p24sfeCun7bRkyIY6WooxE756Km3VXG3dVzCccN39EHk8KG2a9yhuOE87/aItwHla4Cfv1zCT/3E7PYphICfOdiO05/U+trzoTrMepc++cfklRLVznpB9TxCffOsf8751oB2RTIc733hYCm/xzCsaNeGP24OSTLHRss2JMI3YuIahD39grOXAY1pZ2lf67OGfAh8SPaKojzlWEbEoEba7RDTyuhEBNZSYRbveYwurxL8Pv3KGxGIUgQAK6VKXqqk2e8TotKZMBAx2wQYC5J5dlneQbGi26YtzEICa0LZVkqMwS8ThWTKb5SLRI9h5Ywardrw26jDdnExomFNknwTRsDhDBtONHkOEklOA0U+85WxAk2gbFnrThdFeT23mOSBNeCNUqbVtqGiRt5eGYunqes0Q607fuqbi0Rg2e8VFiSwBTyfcBS/+eJgEiQEQjHstbQqk5oCHycbvRpetkVCxW8Ww8JXUWvF2HFsMT03hv8Y7AnOZACTbbzzcFXXQL5nOsCx7iGRBTYe2FtyBCWrn1b/LIVcCb4+Z5fjgm88zRxYq98PlTSwxoWnUsNGBya6ATWoNpL2C01iQhAVbdmVAMPaakJepeRZYvBO5k6btAgKfjlXkAcJrVKMoa0QGqMFVpJwzGjfflOu9HaVIAu1UP0qkEYAE+M6QJCBTSsMdL+57QNUIPSgCdLO1tCnJhG2DvUAIxV+w97jQHvMIRIRO6ZBLlhf1Ucpcfu7ReKRDsxXFOfLa7XcmWvjGxfI9qlAsgQ963EJL1wutvzXWRu2ugH+pqwfduid7xgw/0kvX/+/T00xAB9Br0kuJ0EQih4AbRIcSgUGuRzYc1o8G3C+lK9Xi0YhkDYWtlP8szR1C0+HxAZZxZ2d3fjs21bGYCA97hG9p3WOR3+UgrbT9uaZTfRqnGSYqyJk92yLFcmlFxLADnlpoTYQ9rIvNpHX+M3XJdajqx5K6uhaVtSBWDE33uqqhKGkRHQUVyQ1+vqaRUbaF2DtWkvseqx3I3BWxMBDWuTmOSJjci/wdyFCSfrPzgsa8IUb/mdyGBcjj8kTrxclDV0sYoJIKG5zPoPtq0nG7+7A0HEBoKN9ZPueH36uyRNsP6yrElYD/F9Xvxjl+gF6YwQ74rmnE2kEBO+N8lzBnnO1mzG9SMZ+oEhMvXKzYb1RqboFkVBsd6wWC05Pz9ntVpzfnHBarVksVyQpoYsF6bzarXsWpYI+5ycp7BapOXRqrB/NpaJxlmWMRgOGA2HDIY5o/GI3Z1dbt68yTAfiMyBVXZ0koCV5DHIQgjY1QG88ky8/k3adZ0yyvsbvu2BEeH+X/URPrn8DK6CtNE+4ucuD+YLALYUt0Kc1MXfATTO81xqfyE20lgUiHmJxJ6dCHsonMohuuJlmHgf1knfiA1d4b91XgHCy7bfti2mnz9o3BvzpEs2d3nidP9+9EkOwd6DP/5Z9ixs4U5jLHwuTVPyfMjOzg4v+hfxphsIU5Zl1HirKxl2UNUN66Ls5VByb4SoYEiTnCxJhZWbJKRZSpKmpMqwmUwmZHnQMU1ItOA8Ho0VlOl14RiRODDGYD2xaG2CXyHcY81D6eR8jIKp4X7ELjJxjMgOEZh/iAZr61UuRPaEACo7F9p7fQSBvNp7AJiaRqaW9vfbEAcFjbUAdgizqmG92fDw4UNOTk44Ozvl7OyM9XqFtdKiXbcNZV1h7SoSVvrxcpqkDPMB+WioQ5Ny1SVWSYc0YTwaMxgMuXHzBlvb25TFmvVqzWA4ZDIak+hwgpBvBHAcvT9hWQdgNLROJtbEYmEXL4R70ovNNB4OOWIE8zU+7ufwlzUKgzuRn0NO7DykppMi6efeP8vHmF78EjaxrutNc8ce4SbsibKW5N+mbUgy2z1jtR9r0CEdwvBzQRsvDrJXpq/V/AiJY+M+FLpvnLYoJ5bWd/mocx2WE2+m5mTed907Hb6Q44d9lquPuWd4WTrMxvsOcwjMvqZthSimhc/FYsGjR494/Pgxy+WCi4tzFos5w8EI77wUrMqCZLUSLew009y51Xy3VXZgLUNNvSXLhgyHY6wRSRdvLVmiQ+h8YFxKfGut+BCrGooY9PqJsXd4Hq1rmYyHDPOMxEKaGB1s6TBp0osLjHRyOa/3W/wgV3L+n+f1cwN8q9WSxXB8KYi76tzj9BcnbQn9VopwMXFiaT8YBNTLxaqGJDfiqOq6jhtOSATSS+h7B4iFY/bbnQLQEwLbPh03JA79RKB/TeHYfTZAv80iMOLC+/vIfkgM+5p9V8Gnq/eyD5Jdffj93/U32qsBbTjHcKw+INc/XriPfeAi3Jdwv66CAhDa7kKi2QFZfWfbBbh9huHPOm9ZPHLcwLLrLaQr59x/Rt6bCD5cvj997cErAGhi4nECiNnXvRJn1yWa8bq96QUrXduzc210ApcBTnvpvkm86mNiHZJMh1NtqABSBS09BDCxWqUVFx98Lp0umla7rJE/h3tvNHiI96VrjXVtNyDDtXJtrvWq8RCSnNCeIWvPJmlsl4uJfd8OejYsLVpy1m1bS9UETQR95HpJ8GQMaLJMTN6TWH0PCUtI5BLTaRL2399PssLzDZUna0I7WhtB1U89X7VPNWrRD3FB264P4F1mzMZz7N0Dp+ARht55STAdvq8LpnUD6K2/cMwIGPruey7rSnXn0C9YGGNiJT98V/CH/SAdL+LqYU1dYvuizEukwGIU/BUgogGTXGYjR41T0wPMxIxdpO1fBv2tti84gMZFFo9T4E8CkSQWk6yR9RAriaimmz6+wMAJ7A6vCYFzor0XKu6SgEiFzfXACWuS2BKFTgFOdRDDp+xch1tIctVqMNr5FmMNad/X4UlSqzo/XdIcNHvQczIKugZqf3jP1eevoWEEmaWAEEBeOU7wT9IurdfpifYYAReDgIP63f09qQ9YxGsPz0/9ISaA8V1AnWVZZDpcfXVFFVlnTVNdSih/lgxCf732CzJXwfp+TBHeF3X+jPnUc4x+TH1u2LNCm7rEHjpRVlklbVyjl69JGGvCosEKaGZNQpKnkTUrBcbAanYK2ujQC2A8nIg+qg7kSKyCsY5u77Ad21Ewa2EPNW2tjBwfE1dZ5wgbEaIt9u+H+ItE/V0qz9MYoIp74yXGggeHIQCf6PeE5LnfKt00FaH51cRz6N9/34vtfJxeaUxYNx1oHLRQhZDUaVyFWEUf+qdAvviMej4x2E0AW64WPeM+3Hu+zvUASLp4r/+6xMDQ19XW+5hEeXoC8UTfJUvTR3uUWE6fPw4B2Myl+xyO57SgklidcpzlbG1vE5nHrmvJKsuKTVGw2gj7b7G4EDCwLOS9Xvax1mlB0FjSNCPPhwwHEyajsU4+HQoYmKU6CVomjqdZB5BF3mmqyXS4k95gbApGnqfIRyg7TYuSGPl8UCZJFCSx2mYOKOP7cgE8xKSeDnzu+5NLzyLcwyt20n+u4eV9B/QYtf8AwkVvp+uh3zEh+44AFqJz1XWWXAYeg930BmL1zk+sXxl2IWYP1+S7a+yAjSsvo3bqjU6H7AMOXdxdVVW0s/7f+/JGl2PcyyyifpzVt9PumnSdmYwsyRkNRpit3binhRZXa0OnSpgaqvkVMmjEuz7wTpT+MFpAiEVW73Q6ZgdC4n1kNAb2ktGVliYpsbSadrZwNe9yzgljVAF/mehaSV7Z9mJAlSoggKwWjFVg1QvDzOm1J3oel/I/NF9yjjzt51hcOp+rOSGae9Rtw7PPPEMwsjAQpdKiUhjQ1DStDG+qa9pW2HGJTRgNZdKxtQmj0ThOTgcBxLJcClAh/rHWMhnl7G7vAFJoytJEdG7p+TuQLirT+W5rjIAk+nBa10Zf2flES1t3hJywjwc5kqvPKOR8EWCBuL/Je7o8PWAOIQcQgE8mQ4eiYHwu6t+kG0E0A8M9DtfZPUO6DRBPnzccgC9jiCzEuEfrccK0dN0Vo6xQ33dYxVJCDioxfMewDfuKTVRF3nQazLLPiiax1TwtMRaTdrrNodMmrKGgW+xdj/VM53O7PLWTfAl+SXzFBLMXWJmez7z8srSOr1acn59xfn7O06dPWSyWlGVBUWwo64pyUwr5pKnweAbKGDVhLWPIBxlZlku7uU7MlvZzLdTYRJnhCVmWs7O7g00sVVlQFiWBMBD8YL+InCYJrm4pVxuGezt6jWH7vtzt0q3F4KdM7zx//tfPP2RDtWSAS467H7j0AShrgqi/j4m9vKfXBkbnmAI42G1MOqHTSEWs/x0hYOoz+Pq/C5tO2JjCZh7YcP3ANkxG7IMW4TN955llWfx7+PeShhdXDVo1gXqJX/jusiwvOZ+w+V+9p9AFnv0ApX+eV+99n+EYrqMPKPSdXThn6LRkYtLWe86XKOpGnFIAO2KCR2+Tp7/haBuWF4BAPiPV6VAZiIlmL0AISXOskPWC9W7z6lhkl5PAvkC8MljgkoMP9tAPSOTaoQ8QBnAuVI9arQ4lyjoULSMvrDMvQEKo3ERHkKbRcYffx5ZrPUW5DWo/xsd2YJtaDYS65LOftHRBvbZFGCMTxboBa/oshLlKL5gMYXCappF6f5VdmihLVVgWqVKMQ3WNmJCFVwcQhepm2CY6YLhuauIUayPBvEy9kgDGeXdZID8GcEGsXQIBG7UuLoPBXeDpNDGLaSIhBO8ndFdfXVsKAX+L9z0wQb0OznCu26S775eNvv+Y+j6oH3z1v/1SctILnDGd3lXr28526SrQ/YRPfORVoLsDFuN5GuJEwP6mG36WY7lP2URfD7R/H42xtE2reJG0+YZqXgjp45qyRIF8r3brbbf25DloO7EG6bKPdH6u/8yrqsH5ptOqpIlSDuGpfyoot90aDf5E7KUNpM0IxPTtRLRvwkCdTn/FgAY7XcLX39NiUmG6ir43CkDpEWLiqUC0ifYXbFZXV7AVL/fM+e5vnZ/R820dnpbECpBk6NYTqmvWulaB0svarFcZHf39KtiEOILLiZ4n5mmX15Yx0a8757TT8nJxKR6XjpEe7mPY27qAtltknT4ol44R7LRpatI0i3HFpT0AWcsksg9ZY2l8t/d4L1OChTUqMYgN7TrafhHaWPBe9J+8VM2d6gh37J1wXgroGtOTB7gMwnkvRQ2Srp3e9fVDvYvTucP9CrYW748hxmAh+W1dsDm1LQ3Q00TWWEt3jP4a7x//aux19XnEfV1TZgjarlqy8iauS7UOglYu0W9L/GAUUIzf4W0Hzic2EGV7PsVfam8Pn7saLxE+5/wlO+vbVLivfY3aAFBdlWyxVhKIUHDp70lXbfb/197fNkmS48rCmIOMyJpzrumaJLNH9///Qkn3OWemK4Mk9MHhICKq12Ta2Q9as+TabHdXZcYLCYKAwwFkICS/rs+lIJT3DX0e6dL1fns9Opu4ROMZwDgXa2bJBL3HcRz4irp+crInVL+Xyo9dKKW5K6jU0NsrWEt3BpQKcq48J1mY3aLEhR5daalrELCpdqd5sEoX7gECd7hZ1ihcg3q6dwJAFjUX0/b7sc53kFXzVwNgz7Ir1a6sYKADQHTLvNkQ0i2S+S3a+j9mnwjEdEdV8vsevmd9OXorbDnbAOkG1u6Mzz1l+2xfS2z1OJrDOde7CfioYF31ZxKsbbuWePU1nvaUu/8IPPL7JsSS/zb6BPXcZNkc2lI8JHlN1uisgIbDIu1ZZ7H0hNhuHgFtvWt9PlPkA7jZTyZ7Y3GyNEcarZF9r0PWbd1+r2HN0/KEgJdcF8v6282B4YPHD3ZQr+orBRgsbGJrD9uifOf2DBagTTC9Q0Dxer3wP/7H/4jzzrKGrppeWG+yFmjjho9CG0P+I1hj0kpQ2ZWZ45G2Tp12FEbnKvtsDDYmyyYZXp4b+6yfka2ja+TeXTOBruWeW67au/p39fkF7nHPjNv+1uc5nyvPIuEPz88YkHoPvgGwCnYZZMeGP+AAsoVQ2AJtr2GWO5K+8g026hzlvXewzT0A9GI3IuxIgYsGC6Yq4B7dpqP+cbOGdh7xGNIn1OEJRjkv7stzjwEM2NuivKzcn1ae925v199X3dFbxx9fX/i//M//if/1v/5XXn9e0XV3Tfz5/SsaT/1v/Pr1jb/+/DMB6hX1Os06Xq8TzQ70fiQbmqy/lmdhj7qFf3z9gf/r//3/hq+vF9ac+O//+m+MOcjI7h1H2yQyEnosG2iiGUFto++3rnUDX2WLtHYirPsoN2UR/vx7428DfE+jCKiG8y50vo2XsRctOulc1wXDRsN13ecB4e7ZZbcy0bSpgUKBjuu6e25cOaH1GauB/X6/aTiH8f6kmusdnmm+1QCoP68GcFW2eUgWkK+CaxVwk8LR555O9Rjjdm8d5M9I/DMiqeeoKU66bn3f+p3qKNVDg4651mAXYte7pEHkv5eXrZzu985/h65bazM/np3C6mHHRgk7EruNs3rYbeVcP9MaO8FVAFFKCGjFiGiwSCPoveNI43rBGlMrlnuy0eSQrTW5cQMIMkPW5SMohIzINSPr1dfMtDw0gy+mxu5GJQjnfEHdagGyRMZktHXZBp5aGCw0xLhPj3anWfsEPA7lZsa6AQnsdCzbMo4o3LprYcThcuw9mp91jwMvQN5O58PB1CrVbYLTUOnBuBIIond+As4yVua0PDB+pJJXmfUdBZdhXGW76p8tX7o2srujRPCn8QQa666INR2rBtYP035vsAAl7ylCTU5pcZplGMhQSrae0/FPveNkJ661MrXk/mwlsmlM7VK4ukW6ausGsVMkFzv6zneZcaD1fgTLbxekzfdovH4/Aqxofku3313LVhhttoExWrSQQfEElwRSJFhQ9FwF7Hs7cp3mXOyO6x7yMpPBpxQrt60X3B1BrIKo+CqOvtYqwB1gvWNeE5jAcR5ZfwyxpwEasKqwt+CwpWirXDfktVuA2zuFeYPhvQn9D30RNf3qe/M60sc3EfihxyFQBA2qI6J1h23D/XeBoXpN/ae06DHn7TxK3f84A7RmydpagzJYdHh1LmsDqgpC6zlUcuMZsa/nrwa/b8FIvafr3Bz/5UCTw6eO1T1raLZDhp4AvziTnMCg2JMAa3b54l6doUvTnoiz1NAwI4jTQhd3a7uIemPh5+kR1Jgqj2IMjPQ4P8rZXtm1aQOsEuDEToO1CMDBECwXysntbLYdpHjKQh13WQmgwgXohRTrZkWnyuCuz3scjSGMqgckfwgHCIiC5GJO83NHZ7Rea5oBXEi3ejrRwAawZ3Vk8GRWbRtJYGuVtwT/Hvbhc670fjr39RhKsa62S343npspW+3HNRWcPM6GNQtLLer7WQD/FajYARB9FpjOwJq5QFk5mfo8iAavXdN2BdggsGvL4X73LC0Q7591fO1uO9/3LQEugVkCRG6gnSM6pT9s2gAmnnJTwS797mnH12eQ7tlnXPF/7PGSIeS7A2cBXranH89f7gW/vX99Zp158M3+HYPd44FqI2WU+OYjVPkUKMV9wD1Q3w3YJYwAZAmi67rSF5I+fr1eqUukz3UtMdjEaJNO3yQJyUAHPNhcqDpFci9fMkAyQ5Ty6PfrxBryLIpi+LYZMhuMus9tlcffBo2cIJVsMMmI6rjfUkNLdpjmYcvTBjfqeSoZ3XuSerEV+Xv6PpJjBWz0DE+/8vl+CgyMNTfACKBFejPiegIjsqaeFX/UoxOtO4MGxwHAcfbMEeV3vOjPkHn9azmbKTz9VaX86/0I3K3d+bizuZYC/qa10pUF9l1XbrVqi+Sz2d12FU7QolFP9RH397SX72t+Px+L3pKt2vHjDNCZuCbrLIqxTdkwjDm4Tx4gvWzCjp1doHlaaxBrRhAGiqmnciibZFJ0OpB66Ogd04Gzn+WeHtgKL/rEOerz1fmV72QwLLFtgxRxIxg89F3qIafmn3E2Sd5f54nWXgAcX68X/H8C/4//4/8ImY37tk2aYK3XBmajhUuqhldhk7FpSfEXo0xIe534H//5n7d3ZUp0+EbPfdpZUoe14e+BxefZdrM1rG3/9G+Mvw3wud/BKTJI5BDtTi23hSso8xjXrUPR0zmrxjoQRlocDnm/h9GkzVlBILFLKiBYmXsVrKMRedyYePqZhFvXF4hYowIVoNPnZCDqffjud1ahDMEKXlalrOdVRK0qJBnawJ0VVI2SuomqIaO896eBrntVwwd4GusEaRa8zFUFZ2ODRAHr/jCG9AxVhsTm1O+kHCGD0+w2z1UxcK1/NizRdbbyNbiPANOOIo/bGKHcHXfZLXOgudZcbaMq2D5AMW6BpfTYODipgBeL9pttY0bAwBTu4nufibXYtDcWuu10A8d2jAQuVYNRBqHkadeloFLZjjHyAGaEN6JvDUBHpG4FSOWWrKeULfebfHK/LZztAFNrwviPazbrCV6cx4G5Rhp0KgZtQDrJz8BBa6wP2E52tZvRcbgeeHT+tlGnQ6eyMSD3pdFoXO6wqFdhYFSY991Gdl33NN6bouBgzYdi1F8BiLqz8KxyjHRozTlhpbRAdRKhKDcCrEU0U+nalw3wcOxNEVYvUXU5YGHodpcNhzQyonQCZpFnnxEFb3Focg9l3b1FwCp1ULSS7+3I+SZYQSMw92aX7o3DMkAmGe+pnzNSee8AXs+Iqv/mnASt2wGHmKaFdaFrOfeJNbIMu1kCcPncAZgLlO6NxZ8R8pjGkYPgQ6vM3zAS1sI1RzgYFo4tdSJZXz0NQENDP6LrqG1ZNQuA2HgvHq4BG6vuHjaoSoNvRAqkHAoFLMSitV3fzw0w1sz06ERLkZahg7JP9qjvKhln7R/cnKCqC7Q39XNrFs16BOKK6bt1snRLNUp1Xmp/1DOuysizDAfPw2C39AMzikCf7cjaSrmOYslFeugcUVt1TTgM47rQjwom6gyT7il6tAAxR29Ytjt+VpDBFgJEFOi1d6jSfja7goEEBMgL3X8Gy6I4TZoP6Xmt281BKewofX+jfmF4Jwp3N1Tze7m2wIxCDGIvVWfD8rL77Ffx8Ba5u6yZJEP4Prc/zn/T/BqazqSp+XOWEfCftRrlODTSg1OnP2W7ghf6/pj3ZjPVPqrPVm3PKvvSM/XvclipO5DGvsCpu/MUQEixmfghnUdK9+SENyf3xgrLgl8RE4PBy7RVW7AOcq8zBbY6rXS2EPs73h1bb9RzmIBSPIPsO8lSaXSie+gsAH6mfO40y592nuap2tGygVzOpv3eQa26rMp7tV1vzM3Q2x7zXf0Gzsm9XEAFkfn8MWO27Yttg/Z8d/25fZty/tidpSvg2nzLTQ3S/85Xeb7/rslstzP2h86wDZJUHXyr/QncWP66X7W/TKAX6tmq9VLQxeIcDhArmrSps7Kuu9cvOoRHR1aA9omySEYhSNQ5qPrluZ8NO+hVy0CJgdNCn9f5ufs4xQfKBg7S9VsH3PZHuY72Uv25nvUJYP14p1DAHjZnkhVjn7HRQtkLFM0NPO2L7owdhO0WtUDNQF8n1ipftey1bRvV9d+AziI6dTuz55zhKyk4tCKzZp91nNIt75qfOle633OtxVStpJlayqvKgNZT6/8EcG81GBHNO+L8qu+6VoBH1rFZuwJ5kX7LuMa2ESOAKFs3QVi7k1oqUFp1UPUBn/NQ/1ONyqeu4M+2TVbtsB0w3fiBxca2OMm8rEfrJTXbLH29lO+0PwMXWOF/tmD1T8pha8gSTpSrxQaMKjAK+W0ky8zo4Ez7OXToYXDf/ofFs7op4MAfMs2enX/VwKu3FiSeEoCTvejCJo6bDk55XZWItBn1f3f8SwA+eMO47gAQgGRRUUotX1JCel1qkX3f+PVQqdEiYDMInoaXDP96UN8PDrvVy6sHVt2k1Xm8ruuHo1Y3BIuVXpl7/zTgzEj7FUuu3r8eqNpATwp9vaYU95Nxl59dYMT+N2m4T2VU7/00cH532N/ngC7GZoWEg+jIlMlaSFKucgslk+kzYcS4sx4b10SGjDZiA0C66tRBYgYV0L9wN6S3bCDWasH9nmKhudvAZU0zvjOWaGAN5um3nXbwZIZkR9Ui/72T4rx8Yfra3fLc4Y3sIRV3X0ZnZkZjEQSdeo7Bw0t1s3wlkLLek9Rgdx6skdrKunhk5jUzHO1MhgbCEK6GmqJPVSZZVydA9y6AtWcKGHXwLhQKWwQaS8q0O+AjDs3zwDKygghwyoKL6NNJAK9H7cTlk6CE69BmFLqB7IvWWZQUuZeR7etl4B2vk+Clb4XeFJUxOsRixFBHhaETslUBHrgAYdHsWwKarfUAyHdTE6Wep54PuVWXpI4OxL5fvnBBzYPCMBHrIUFyOqyKJMpZdvCzMsbcPd+HKXdR9wtIJqdo+ss3yEiDKVIc96kW4C9Stvl5ghprFhainLYC8vezwyffd/nKehxrLWAh0xOHj9jr2/jkHt/zsbtJRTQuDGGe9bzHcfSbg0NjW0XXcTtTlN0DV0pEGMMNBJv7/RyBDLF4j7U8GmkQTFXNT7Fups8CZbDphtiQ3uiE7DPywMQM8aNx3wJgOh4Gb2us1WfmMG8YcyWgt3wF62VlA455DToaqEazGH0CYsko3Qb3dorSy44dIZZgDcbxHe6GSBrnzshyOhslKl31DQAsdSkOGVFhc0ewemIv9qNnmQLKquE72HAwoK3EOShbsf4HLWjAGjurumFcBNDaSQ+nRSMfdlILuTOkfEYpSHQjNOsNuOab8+MtHI478MTzqDCbbZfdQCM72WAEV3WMSD5bYwqMQckbBO5jM1Kf1r0p+Y5arjqYrQS3sBku7jQqX8cXbBmGXwBYf4uAyUyjfMb3eupHzzNfgRkLXWVGUCrvg7XT5aIZCWzbDVvu4kXMMdaVRb+3MSzwrjjHZfA6PYMLCIdUTTcom8BO8Y1OeaHjk4OvNSnOUr2He5TeqDpC9y92lO7B60SNRdRsD0DlSXQmZyqkUu3U1Ro7UChIEog1jxfb2QII591hkP0X55VZYAjbbhJ4uqJZBtgmIO9p2qdx3hGYCydLDHXrUdRdNWA9/mN9sx4byWDw0FtHaztlK54lUL20LZZFWpchi9DrnDGw46DA0DrvGrl2pUUsP8KglOMeFACQTHM5k61b2Ge0LdnkiTpLayG5V1OU1UL3rwWzIx3MtLHj34g6yeae70Cw1OCl8eATEB5jMPWtObw7rhl71bHPWl9RdF86oCWQ8wTyckfFPq4gdS15VEFv6bGq86qfUUHd6q88u5jrObYtH/Na0uOVuXEeR877CnBHDeKuNdkwrtji7o7rerO+1nmvz44AhjruZIsKwumz7l7q1y4gziRf9APTr5ia2wcrO/XtJi/sh0TsSYQtxjWac+vtep4A9zJTu/nkHXyq/qz2lpW15r61bAp2B/R878PHWumZZYU5Ddwf8275Ui3VgVEThK4PmTZPgAUeAWZ41CIMGyRrzMV14/otbHeDoUXwkp9pOZcjO5wiv1uH5gkhB7XhnWx8+nuUTdMaWcNYlEk4cJ7sMpykH9mXjZkYywk6KfV8+5vqXBv+h+9nEu7xw3aaccD2jt5a1iGs8srz5JV7xwOdct++9n7P/R1dh98x2CKBY6ctyyWK/RLZGjDDebyg5kCyO3bZkB3gUemTFY5SE/gJkijqnnCEPiJwEPXyncQSM6y2uIvdU1TNwOB+6qaW9XGxdiag2ZarmhmqAD5URmw5O0GH/hvXgA7aDsu0deDeiDQzlLAzsn4bDC9nV9oda9sd/+z4+110v9+32nE1Cl1RZG2gm1FfwJKaWivBrsImQaldiJ6HRH0G/gCs69UaXq9XTmZlCGpDPrtJ3g30DXhVg0/vVdM7NQQGVZZgjYTpHvUQrfOSkfzymfp3Dc3LNmDbDYDSz/T8eh599xm93M76ft96z3rYPo0OGbiVZSPlKraBPm/YoGyd9+r48v67SK3mNQE61WuLez8Zi4CimlvmdvrtCQFzyx3eLB3jJ+Dl7hjXSsPMI4roLmWjyM99vtNx82LABZthzREgQMwzBJAxlWap5pgrPas6UTQiWzgwGXhfSj2lkzI9OkNufQmBnFvGt5K2WrTJs+xUApJmADtGKY2PzBPzDa5/v+nw1ppjutfr9cJmF1l0ZOUsjGvgOASUT1KaWyj81CHI9Wg9AFBTJyOBzpXdCSB+72FMwy11AmVmwJcVOUKsEzJyJocacSiz+QnX9w4sS16AfTQF4Lc2KNdM3cA8ikNTblbMJ1lVe+/L+aLclsK3IdOtB3ux0ZDK4ufnT2ayBeKR6d1abHjUtnMI3Dv7zzVkis1mG+3IM6eo93tA5n3tdPcazNgHHQ9ZOXS99Zu+1Lr21kO+J47ImW0mwI8BgNaqMxRyEM6Xc2Om0dBaA0bVN53Fs41pEj1S4qcvKJZnYKoEuyNrTvneY8zQvS33qq+JOQYS2Ih57EcHZujS49iO65oBhNBRtrYNgKNHkwM1ECkOlRvYKWzus7J1Y2WsYJxKBR5Hx5y4GYLPkeCZDC4BDOvOgqzngv4t3feM+v6js6s2a+j9KM5oPAciDQeWzswGO1cCRdPvZ6YCLxZgxjVGdHVnfRTJgIBbySgM5ezce0/NkizWHr6iHlSLxkV1r26GRY1qU7ftvZCR3EUdq0g8gZKQNWfd4llAlqPvcibu21iFdfSMuBMS1NqkEdmqzUA27/u62Ml8sTsk0SHbHbcdaMbubs0sU5UZUFxoa+sXgVFmNa2RbLoVhravQVlSylYAklPAbQAjzbYTu2VVAMh2durvdc/KNFLDLa2L8OhwTTPw0xCM4daw5krQrdqsyPveWWMCALDuzda2bUQmgYJA1QGvcrvZH8oiUH2tYEWPCeILyhYJPTBV32rvseUO81KfK5a2gmF8R4Qt9qKsH4aGI2zSHQzQGezwbGjhzrOsFQZ/2l4hr8CDvbRC50PP7wnkSoK2d+cs/WHbzha4vCwYG0t6n6uqNarrx7/z/FYaH+IpdcYQ9AuZRwRcwimfoIMOR95nQUyufe4cxwk2EhxplzRTnbuSjRONvawBcyw6uW2fEXsZpW8s0swU0mIzqFb0FCdl7Tpm8bvs8tg67ZaUnZ1OXYOaCho8yQTSI1pL/a7aGBUArGe91kDlkuq6yHaUD1R1ZL13nlXaU9i+EgM/Yuq3G4hZfch8HjBz5klmqPtR5Y9erxf9UWzCRHXKZU8LhLCmz9W6sJUZFb5c2O+tt5v/K3mS3sjzrgQaql9W911Nia7nUb0uJYVyoXnW557so9Qn+V3J0h1wqs9R59PDXwIESpbssbb3KssT7TqTDIbybPclPa2zpTL3HWrc6Y7bu8jerM/Ye8f1/U4ZvMkVto1b5xlQVuB+XvmeTUGKOMf1zgSJwk+FRU12YNkO3MPqGdbT59X7994z5d3hsLPU9jeEv4bbuzztLv59P5PmpcrHk1FW8Yf92V1zX3oNxgZYaWcsx7Wu9Al6gJva50vgIlpk8k00BOZgHf0o5IQAU2WDqqFhoM+353uuXx1pc/eOLrkszOuUZdQajmRUr8UsOu6/IIXovI3yD0d/5d50/AxmVBzmaQtXm/lpL7g7sC/zT4+/DfDJOJbx/WSXaXGr0NU/9ZltsKybcFYDSkLPlKZ7d9I6eap3AODGrgN2Y476X41O6bMCGKsi3YbCdmKAn5tHn31uNN3j6Yg8G4k85wR4Gk93cE4RTIGXlbmYQFs4Rs/PVCP5acwKlKk5+trgz7WqijTBqNaiIDPpyR4GvIHKSc9WN+XdyFG+uhz4dnt22lm/R8UFZsio0FrrelW5OxhVXJOsmUrPrter8hgzVGT4nvasP6nYqKDGmOG0U/FhrmALSUHYdnLcs3jnmCONNPdgTES3TqYu7rkjwBfAX6T+Lo+uc9iO/Y5SdbIlADS0R+2VUGrqb+tFBpSiCDE4aAiLUSanIkGoIls6MILQEA40AUt3ss7UQQ9rZp0pj5Q10b97GuY0hKwUNJbRwC6gSrcfZLpi14t0EPRwJ/NF7z7rWupnYdwSUJoJrFYZrjqhrmU2Foj9fHZ2CD56346iwBOocL/lXHkBMHR93dsdyczkfmxpTN0dHNbpUa0aGhJFXmlx8F7GZgLm25kUE4wCp+chGzB16dqOddUjVa/BgNeLBW35bzaNYdRqRXHf2APnCR8R9W5gHRfLp/2R6nlz8q2T4RG1gDg/jjHeaL3hsN0lPefoiFIT0RRkjoHz+AohPmBgnSPpviPShPpBmbnGhV3P0DK9/OiMUD7Zbh5OCUB2VA+Gkkd6LMHNKGot9oh7GBvzxnhcvhs8kQlcDQzN7wzDnHOYz1HO7A1oy4gME87vnWefc/48q2L1f6R26eyoetvMkg2RBhUEQBtaOHC61xjsWivjTLq4ykLW81qhw+hZoR/cewJkMkDy0O3udyDU3dE9DHeP6HbUVU0/yCprazs29Z1r2loG1NYuM6ChGlayrerz1bnTja9rAgFmE3RRCClfiUEVAaVG41b1y/p5Ys2Bbj2YgmwKgkUQooXBfhwdyyfG2mDrmmS1OPa5qVRauGPI8YquwapJqPIEN1tWTIxmP/RI2mrlzVIGQxaeQJfmvs6r+w6upC3jfpNv2R81iJtGeDBWqr6pe+gWiGw7Per7+/u2fgA2S6O8p7snE0Q/672xcl7qYM5RBgNxPxcI8sT1TAARz2Wkc7QwJ78zIhjR/ECWxzCxYnTGWpRw0LUMRzty7jZwjpjfe/1NRKDAjnCQAzGroEO1n6qznj9nJybKzXIAPdZ87/3qWwCIAL/KMyQ1Lj+j90ybD0ZmiklvJGSJeI3b/Mouut4RqI+g1Ywgg5DLSB6nE6ngyXLAxNT8eY7p64xHM3vAw+4zrYP0dTQ7Ebv3MIKCK86LMe9NdPRgFmdFb2SJ3+3oey2+3znR1c8QiFdt5roeAs9ca/i4XyUs1N9Rz8x8bwV1tJcF7KHcr/pAz+d5+qnaA09AaC12SK37uP739fVViBzhGyqA2lhWQ+9Sy5HAti766eSXciLFt617QX9X2vMzAyxtWQE48b4s89PDTw5WnN19zGrTVp0imdEz7v22r6HPcq09s2ee/jbPowjSG276HACb4zQDumom73fXu46LILV8Q8kgEB18zxPv9zv9/jEGjvP4YcsoU1BzphJdv379AhApmWuWIBRtZ71rsgnLPK3Fz4250IOVamYJ+I11B9ae81MzDCsAn+fN3Hvqud7Pv1eZf/qx1d+twLWeTX5Fvcd1XYCeI+Shh83JAMI+b2W7eMr0whhPnGfjJdNVg+5+hstXf8r/fd8Aochv++CJOdU5l491w2baBstvtnF8XriShc9cA1gp37d9sH7otfrnc68/wfZ/dvxtgA/YAqBIx9PQqQKmjSNBlhFbF0KjCqP+rQkQiFcPHzkHMp6/vr7y5/p+FYZ6LSkAvUt9DimBinTXnwH74KoAg9It6sF1N3bKZn0aZjGqcOrfFSCUYFjbDpI+p3fWc9dn1fxnVLX8u76nw7P7G53KOyhYFVJeA6DRgpWGwzXf5X6EhwRMyiisG0PPwHsUVpxtMHGs7RxLGdZnT0c3nDUVIdVtavqGNrXqOdR1qbUPdrSYoMP52my/p1HJluoEJJYv9KPhPI80pJnCS0YXU3oFsNCh4trfHcw8fH0boisMnWaG4StTdTYoNfGuqQa3g5tgAg3IO9jN+zQ0o7OnWgK9NTg6HecAMFVAV+vYWkNvR9SIc8D23qOBV1mvsbciotfbjogQfCMN3mDomW5FpyU78hUFK+A3/x5swN47U4VvDIq9r8Ya0VWQJnW3hnkNZlsU49HUdaGsSw1yPOVAzoOMrFY7CAeglQcWCKDXVHo6VrrHdrgkc6kno6ahpwMDNn1AOHUBwq44lOVMpWwpYlrTrJR6CgJINX2BztI2pPWuepcK+ldGdu6tkFNGNQGgoXXs7rTO+ji8F4HV3iPFD7jpv3p+5Fqsi6lrS122PB0tGYJis5DpuoNIYnIc/UAP0HqOgfYiq2Y5O0BOgTUOnK1jOVPMlZ7hIYpe5sjdb4XzOzxlcvrEcbDeiopHcy82dodcu7OwqQ4mqa43g6Xuc+Jf0gcDa9DZ62Ho67vbuUUC0vWcGVFo/2kg1p/VEhbS9dUx0jWfRqXkIYHTk40sCLaPCJKofADvO+aAg6xRw64lpwh88w2ANTOmYwpACCaSQAI9v+rqznmhteOHbTLnRD8ajn6QFRjpzrWujmTzCezVObgF7xBpsQLvzW9dSGsNoGpP8M9wcHqPFFDOk9HSjqUv62Tb0cj6+2aBl1C/xoLiPS60NYPpEvZbP/AeM64TwIx04Vw4wo5SHVfKfmFpodpzTJUWo2uPYF5gAyflFfa85hxAGyzPBguZl2OYPFxrrIEKJEt1xYOmIwqwQZTjJhdai1y78lAKJL4v/6Hrqg0r/aI982Tl6E/9bp/V0RTMgd2sYaKbYyLWcu1zP21E6dgM3mz5k30kpivnbZcGkRw/wYMWgpOVSuOM4HXD1jHpfs1DsStgrGW7FlObtH64d6rVe+/6jGJnUVezlEWkgzVP+2655okAnIDpwBLDfvEf66Prm/agzlFDMnYyMAYHFs/lLB/TGryL6dwxVKtT11D3VhIjaSPFuSM9ZGB2RpZ9MS8AKJi2Cgs2zE4JdY+sgtBFUyC3CbyuDjWwawBW9tc9zayCZLn2AtQevpD2gP6swQ35JD8AMni8q9/up9/Lf9LQntOzqwO0GYPYXZkpNdgedozk6He+XfXlqh1Z9Wzd97LztIcq0YEy59nIzj1qjqUeIaOZ/0Y2HZH//NQB1Z76CQIin1vX0FzWOdMzq7ZyzRrx3MKxL3HXtU+bQmrPDAneqcwAbjBUsXfb9pESG4jzXnYolrzCAtQgbMHQTdXmTqJH7E3NT++dzSiwfd6nj32cJ3WctwRua5ag5FYyuH1yg4BRmJU66JOZJ2tnMrXWkol2HAfGHJmpoeaFdX4rCJRzh22nwmjD1z3ElNOVnch/h188gyOS+apn76WV7iQi/fncF61FZthaadvOxdIWPRpn1KjdcRyYRSfXNV5rZdr+KpkR5vfnpD7bz1OHu7PsF18wfk+JvvmGfgfRaB+Q3V3fs7VdSkDPUPf5Bl4HSAzf8/t+v2+kIoGdT32qffkE5qt+/LvjX9JF9wl+JQjxEBo5h8dx4P1+5+9lwNbDox4Quma9djW6q0GTLxaFuJ/pEs/DXAtWn0HPWt+tKgBtxOpcA3cGYH32GimoCHkF6zYYc0/LrdfRtSV49QD8XcrVptTuua0A2XNDV2dE/x7XHTBMBmWZpx8ywS/c5vMuKyyarWikQEDNw/Og4oGy50dzP6NrmJ73CeRuJ8oiNU1zxFTT3Og6oBy4wlCHIwutSz7M2jYoQUP2/f7ZsZhyOfZzrpX1GdYiy40KjPOlejtrXjALx8YQOfgb3G2tRUHSADXHTONQMspnQXTrjD8dtw6Omi/VCXQsAnQBfmjerutCOzbVnPXbPD2j4zgJKq6BEesi+TCzaJShro9xcewDv+5hrVfOoYzacGjkhI1Fp95tRQSJQKOh1IYpB5yAlOmO0w6ofbvWZk0CvgKZaTQXlpLtrtnVSdOfz/2ln1egk8BdmM7N80Ds1tl9LLa6N8sUxV72q/YO7zF/3NvC6OXccZqrAepOENlngMEQ5VxMW4PPbeRvx5LOSj9YI9KXmj7saNPTGK73rPpX692sBfjV8xCzPMpCj1rbzAnIiAnjh95JrvEcI1h/fAfdL/VYkQXpgn5GnQ3zBJVbb1mPTvecgwbbNd7UWa1hXQ6goXnPQMEN3AQdDIGnrZ3BbDH4mLiUeh7NPVSCIOuWNu774zzDGfCdUuURJTWBI4CBqY2YYoByjnzG7yNgsYy1AblG3DctmsDUs0Z7tBqbUpqqJ1J1SF37m+HjOpP2WfI7o3Ofn9S/Yn+MOW6yX42j3qJ+Lyi7c06cxz31O2uZ6foWQBMart8w5vWM0xflvVX2bOzJo4eT7lHWg7q6Pit12TNV2H/sj3rmI1/fE+DXXFZgiXprlyKQs64ggcMJANiB13Fg+LrNfYRxssmN0srXAg4cWNeOVjtKg51ZUlNsZq0lgaU+GPRBJ2AxnWB661YAiFJ2QnJ2M2I3O9g6AW2t/ZgzatwgAbk6p3LwUdcSSD2un7Lrd7Gtir26HdfqKO15fso6YFEzd+tp2WUVFH46yDd7qdhZv7MjbwAxItgXndn5MDq7ti1ZHRjOgyFfTtdeYsZKzjoUaOO50G9yW23o1jp0ZQDk9ocd2CBb5sgaUQzS7ZIgMGZ1mIEAXTBf3NdO2QayVqBKG9xtybCb4XGeWZYhcc2rx7ayltdgKjhlTWCoSiHcbZCQy5g2L58nWBjp0hE8Y63xCLYE+AawGRMCrL/mRPOojwfps5B3C2jl5vTSMWS9v5CThWhcwDMku5EEoK3ZMwM6eIaybiD1sC89V7vJdPpt2tfYOldzLyBEe+Mp39WWq2m3dV75XluP13O6njeyP6pPVveFrwj8Agkse/hFzVjvLEv/wDDHBUTQoPWe59OaK3WSrl39xipzesfq/+mZBOhb2OcNZMi2zhqrzdiICU4QkmeKdC/1fW10uPUHUxkBBjpXAEi/A/9+Z0drncg2ko6523C0sXfQmD7BBpaeNt7dh906A2Amh4BoXptplzdQ96braIdIZrHa7dyRvGiN9DP5OUrRPfr5g0hUdTmAH0Gy5ez47EvlwWgXrWDSy5+6+UrxDMdx4HydLG3R977XXlKGUfozDrz6i+UE8qwYEOlBQ89b/dgExwvwJ3lrveHsB8aYmHM3+KANxrmprLHqR+paOt/HmrfmlM9g5FMf8MxdYFmV0uBsLer+/VZbnt1ugOCKua92IwMpHePa++GGT5S9rWxEnqs95761wJcQezTsCs19zTKVXaQAXcpijHqe1r1VfTP1YZjjHgzc+ryc2WXe9Rya61qmjd8y/N3xL2HwAbg97FMQnpEbKao5J97v982I1WeEgNZ6aBXt1ORVkEvK8WlEm7HhQj18JCACAGrqZwqr3yNVdwBn/TgI9N66pkBMPe8tCtruqXPPe9QhQa5DivapIKozVIXyH9F2nwZhFebqYN1/V4tXqsvd/TnWWrKO0sCsrDzVXFhMdk+lUztakTUwUevo3VD0SHPUqBvr6VDdGYEb/KEd6Szo3TdTqocRIODkGU2UTOu+NVK0jRlnu/k5oTpsFAZFt2JuA7DgWhDkI7Mv7gvPwvLX+00mSli00l2tdYw5WDto7YLL7g60e0eetaKLmyNSw0z+NUHD7pjzSlboCtCPLL0wuEy1ZQggak8pRUMR6HkNnOeBa5LN6MR1ow6FGD+sPQgd/kZmFB7K3RZrX2yjW5Ewk+DRiJL8Nsvn5YEfqdirMAnamYcc67Te627qIEPIxyqyXvesO9f7ODrOs2E323gwqSCHTm7SloNqMNcU+jVnRu+YInDfb3r3GU7EE3BuLRheTe/NZ+H7M9LYjqjr9R5osbZMDadDuDDBWnkCTbYRWJ9F+lf7rgZoWhzCPfYggeMATyxqG3bLn/P6u15i7j/fR990NkPoRpT2zjygM9VagISScZUNeASPxIStRogMWAKfi3WPukVdKJOfux2V6Dbc23HTVeFnwlCYWC32ryHSxlj/5XwdZW8FmB/7f0aKuTsytc66hXPB+p1zrkyntnivuVSbj8yknCMrhe6VHuyG4+Cc1K5ywF226rmhOcgIsqeQ3RgMko088+dIPVODCwbgPI90PLaxVBztkN9lrAE2dV6g1uhZmHOgtwNf/QV4sE7bPmPk/NQg4Rg0eLWHaa+MAJLowqtjWtbqEiUM24jWs1ebQrKX56uz9mQaxiX1v877Blh3HWG+Z8vzRPI7ptIDwylaK5ZjM9V6pFYadK6WM90d7aDStN72HoqUM5VtMON+ZUCh4/v7F9SVGunEEcCAezSSsWAxq8A7Zc+i2LjWGEDWR6Y0WTZ1MNwDRNURfQYdqo3G30fwouh6M8uatr6CDdV+pn1rP3DetsMkMGF4ZbEi5WGpBmteS04230tdmLUWlrYTQXztZRhTzHlsiPGClGMCZpKHmHcqGGwmHI+iI9hVLZoyaH+pqHx1aOocStZgBnXA1HxvuwtRy43r6rHvrFt6UALo4Vsm9YBmjaUfcAc+12RQs4U8sVt96C2QZe5mTO+rDpLJ7qFcan2qTGmNbw5x+fsOGpHBl3bmcpCWZwDINCdL2gGbgLf9nbmyeQbcGPgr81uBmy09AaZj27XdDCu2GBt4AZkWPIPp38AzJIBA6oYHQ6r4aND8DeD9vkJPU+9cY4PXrTWcx5nAi/aR9loFveu71bO5zimArLGon+saks0dfI004rkzHypgIQBUvh27a6oJAG7v3o+O5nsPE3i5Z6BpHeSvVjkH7j4HmaQhdZHp5NPhDTjz+3Y7B2TT9dZTB0jfST4pr37rHl/f+Xcs8+p3m4wMcK/LhpPuTj8Ewb7FvYRTnY8MGHODU5eHrp+TpVYUQLA4o59+Zl1fsdw4FyR/IAgPM3wLupATlj6a3XQscYOFGnievn398zxTz1efe67JDB3tL6OcqMzRLTCBTSA5jgO9dRyN2UDd5IdS51wXZY9nHCLL46At2zvLuvR4d0TQtuzHuq5zrryuF/u26iPu01cGuVTHvXVLnVDXUv7K/jcD/tRH21fONS8+jJqGXsHyXosBUZ1n9D1rGZdiA8QerzZgxXzks9H2/skGlU1RmXXV13dfGJPNGkkGUF3Co+gZBkqs1Xlm6aLsgszIwQ3M8zijqg9Xddn7fYHBdgV9drbmnYmvYKcCd8h663X88O/+yfG3Ab5aTL/+VxeyGkk1+lPruwlEATb7REIuGnMFWiQg1SjfxvlmnVX2hkCIqlz1Z3VWKiik69RDq9ZlqKCg7qPuu08nu27KCoJq3MGhdXumH+huOVgr2FQN2Xr9ev8quPV6+lx1TvT8WgMBN/yIFLxhzj2v6cQ022mqiFQ00EHqEf3pxgxI1dDwqCFEx9Rh4fg0u0cQ6OzeDfu6tpqHexRwYc6rAA/savU6z0hhDIYTQ5g35aj1eM5vnacKxCqFdy2+q89gOQDZxbOmoY61UoFMj4577rjmm+y4AGnSsIxDofWDYNeY7HZkhrOddEIbHVW1JD3Pk0VDj52KMX2g25HNAM7ziMK/FulqO7WajgYBmbUGxopIUziPkqZfv/6ic2wtm6t0hNFtkZojsDOKDGPUgwg4mvZ2EfqmfRZGj4kmvTISYyYDQ2lnrD9ovrAmcLYT04pxA+zULAOu7CAsYFk4qGNdI/f/EzBVYVmBh3wmAPFM1TiPqoxoZniFEcp35yRK1kERRAOj0HL6VKweES/ldx3nb3Sx9rSeMw9FBAUgzmCHYSToRGO12YEeTR/muKCu0GuFwbsW0NUVa+u5p3Oov+9AgGGZY46Lzo6D1zE6RjL61lphQ1L/9GZMw7E9V8d5wALkWMv5+cYoPoEPRs/WovPVwukUkJHzZJbdyHrrcGtA1/4NILAfwLhYRzMsBTn2YmrAadzWzoOZZtaQhZGrDlmx962xqDJCR5JxQeeNTVQCSAqZEht1Rce+NQYMLVMLub8X97sHgBG/axbsXZ/wuaJvgrgnjjGr0e/qqYkxx+3Mr46cDG45UxVEUZ0gdzK0EECUOVNLzYH3r2+MKOVgbReB57kfUfpmm92zHF/HC+/rjR72BAN5M/V974bXwbTRBu7LnmD5zK6753GEGMb6HEyvwgTMmZ6ddYZaSwAUHsETI4giYHgssooNG0jurbOrdegeX5GiBjqbcwC4CLAaADtaMs2xDOp2at6wZnQHXMCag7mR2KD8eZ5ocf8Z9fEs0vsX+A6+HBZg1goQm4DKhM2o5xfGOjuYE/BEdF2UYax35Lm0QaClYFDiQTxjaUQLxBmlZMEEK2FvYzgDw8vRQhYEW2kPXT6L/N0BmWobaC9OpWSvDUBkUGfiJtM3EKK1mIM4B8dAMwYqyUOWQ96iEY/nXm1xprrj5ii0fO7NOmkBtHMHbZtLe9/XROtcX+5lh2OlzWGGYMPwChY41WatpZdCmew9mVC9dzQ7cMXZzvMG2AHWqDNm/KW5Q7V5daRbUyBINjD3oguIXJTd1g0+FgOItteM67Z0zMc1gF2eopTmMM+SJIdqBC7foB2XIxz+BXPq96Y96JQ3D4B0KntRecMJjihjALmuXJL4jO85ZeAiUTx4dEkXK7/lfT069AKOySCQ3wP0bsbgsy2wTD11bPfQN2KgOeVPNurMLu+hgxoZZtYR5+Hi/g7Qd8b+dBAgPY9XBrWWA80OpLnrcsLvfkI976uP97TJZX9Xm2eMwVqOaUt61tf1qPc7RySFl+BMs04g28jXYQChofcjy37ADEdvuMY3agd79w2k1HeQfVf91hqg2X5g6FDwbIetqEMd9r07YNKDHUffZTnWsjwT4YPBmJJZwf8Qqe4N51F1m4BazpNYyZVlVp9VQRTWjAWUMxEWPdPKfaK3k/t4rgSeVzDD7sy68EVcOieeqxnmcnbXjk7cx3FgjXs5Kc2nNe4FERI8zuwsEeMMzPcQE9VHhrFW8k6pZpMxC3/0/R6pP4GdBv2sDYm4W29RHqk1rMEMIRiyFM/1vsq785cKhhFUjsZpQGR9sb6eRdq8mk8YyBodHqBWNEbyVoE7+e3xbGffHbNDPwvHeL/fYe8GCB0+wZwsWQC7B7iqHMt2dHd4bwmWv683zq9oKqPyLc1wjTfl3OivNdV3jzOzt47X64uBjBVnPbS/drpqlkhB1AOuBCnpVZCxmHWTc/+wa7sA6Qoch1UMGO6N9SyIzi26Dc8rVALXWvc66pkSwXbpBA6WimHvhx5le2YAsI3PtnbGSMW1boBpL2nH2AzCA/uziSEUGf5nx98G+KoxpMl+gkpiOFW0VQa2WHC3SGrbSOhWiPeUNADJ/qvPcTfGNgBTOx2lAVquCdxTaZ+gWd0k+rNSaSuAJiBS717vWx1gs10QtD5vNS43kn+nxQO/KdhewKc613Uz1JoYTwBSEY/6fc1J/blAFucJmQel3lNzNeeK9IXtKALcOvWZqiE/ZsiDe85PTVfM7+nAKSh5fSfJ1hNMrdED/pvG3XkcG0QNcIGG2ILZcUPjawRFtN5q3ORcBeiV6z5ndt9p1tBlsM+VTVJghnYcGHPBx8Dr64XXybQYn46oY8qITqR0JpOgRyQGPMwFaiOACz1ntVvPiG6c55kdq9wjTXKBh+yK9W33FPJcO2OXyjM6VVcjZe/PLSNaJ8lT7a58k+Owsat8U1dEx6KYRxp80ZgilDyAbPrB9QyZbnSeMsppe98KuKoys+bEFX//Ol8pu9UxBBzLEcxBYPnIg5rPzYhgMxawVqfZsVaCRDK+oG64IJCh9DiKpfNdvW/HOe5vxiia5r4GWDRvuQ9XGM+JyhrmmNmBs+pQOAsha54quL8BVk8HSdG151r7chzRtn4NsfcAdWatYOSY4dAaWQvSKWLMEVCm49jA/cJ0tWj0dHZgKaILWDbTONJBG8EEWIupNEyj3UxSrtuM9WQ5gBmALbSejcybbMjS6JD31mncO2v40ShZsT7bCYV7AncWzEUPj3qhbYN8eTasWY+9wn3fIZBbTVGkixVBT2C9BLVmANNhsmvbhGMZ228xteKIyD9i/qq+3fuzpPs1srEpFwWksKjXJRkLkOhoLWtU5TM4Aqzb59+KOm/ncWJGoeazrP8cK1m+lNV9Tabg2K6FReEIEOwetQY28yy7HLvSpLf90NvBz4I1YRllNvR2hB6lrm2tRZMplofI62ktLk/nVo41Qv+q4QtsbqbmEgujBejZ0+FCsOFEFWoWdb1kMqpcQwtASsBxyGk/GlliZriGZ6fSTMnq4SIamxcIFKNhzUDSNS743OCdFYAJthsyOGYa4jJ4G3YaY4LCRdY81qE6DSg6x92zcYVktToR/LhAxX0GUTdQb+isF7iM2HtpI0K13LjHCD6zI7ayT/j9LX8JODYkG1MM0yp32p/7jI1gACMEkL7e9qKeOwIvY+50aAGJISNTLFEnQEV9uxmhcy64qWkMgw5H73i/dyCbQLPYljpst82o59e+n1HzUHuaz9xu+40O886CAOxWf8sc6Uy5W+pBygGLsk/b4C5Qat3Gs/nkGeWNDNfWG8/2FXMLAkYCucecaJ01vbwYI6wvFdo69qCyMGR/HCc7sgsw0ZwzuKB1pswhbC5rGyTNd6PhgjAoILtATDyl2/qMe8eZP4L1TxvHdpMvA4PoXuYqzoZV2Jh0Urc/QFuCDB8BfLsucMPr9SLgUHw/YPtUulfdw/qcL7DcS7s3E6JtAUBn5NFwtqN8F5l2fJ5nsHa0T++1x9yB//iP/0z/q5YvevqllfixfbxdfzyBwEYgK5vPmec+bIcCbe3H9Wu2D6AOqzzjiSmVbLZIOZxzpE5bK9ZAvhcxzVtA4+b7hb3rAZRQdhvtsXklu9+MRIsV32/WYIdqeQb71XZ2BX2LbZ8QBOI2Eet4jnV7nu0blsy42Fmak+WOuQqgmNj5BnRa375WvV76tL7PC/m8m9jBa6lWb4/yTe/3myVZwoZljeYd+DAzfH9/w4z2IEG9APMbfsiSbJ4eQTyU589svvATKnnk6AfBRWy7RDiJ6rvVPUa7Z2AhQF6UYEK769lMXbddV1Lg53tcCYLOSeYv7Ufuz70+weRz2eEbj+Hz7JIOwG4YqFImC56stekrdHtkZm5z8lYP391xzcF3szseQJHztNstUD0PwoIH29fDBnEzHM2yAUtrOzvCMdHtfNiCu7SCG9COA0EAhMpNPXErDXfP+7DG/8ZZco9i60TpJ9kYf3f8S1J0qyIF9mZea6UQJWr7YLw9Ec76XY0sMomtJDWhFVSrAJnuVSMZ9XrPoppSFvW56uao36kO1BMdr9+rRto/Yn09aevABi6fEbE63xUUrfOQBrHZj99vo/MeZZNQSfFUVF2/q4pLc/ukreu56veA+7vV5/jBxHRHt31QVWCut30wUPgtizzXtavOZ3131uCrBuVmXPa+AUJGc/SZcMKLIVuVapW5ergmABoGqi/H9IlxXSxE3o6oeXCQHXKpxlHfziRfDONipLuFYScjLjy+eG4WpYd7cf5agqsLHkZsmLFRt2/NlWlmmgsalbjVUbAVe6wZjuMZxaQc/nGeNNJnOL4HDTdFVVSjRsCI7qd57t7Qy+G693Kkc9Y9RsuODnTUxHJbmTaiorvppPkGlcW22/buXvt0MAPQrnvAChAgRtJW5jr4tE8iguQCiaJezKTzTeeMIITSBX0hDC3E+8SlI21c4AoCfBWQunIeo65ReYe6d6txxIjzdlLMEBFMvcN2wDzlAhHZFfgba9LlPCm17s4CTt0BAZ90TpgaStlo3XDNK+e9gYa6WCk99rYYGmxosPXmvCLCaTz8ydTSPow0o9bhvnXO6wxHwRBzEfoSjsP0/DqbVuoQ6RvJ8oxU46MfIWPAHJEyDBDMFAixyIYwK7VME4xGGrc94DalXnKNKH+9gDvSSVNAijPtTo2FWovOoGvCjN2Ed2SxMsnvzpgYvNU4790wxs9Ugh1Q2mlUnnq5MZKM0DdL4Kgnq3hFin4CankeUZ5Y7mLuVFWzXdYDW957RPdb6PKjn2it39j07kzV5RkY6ceTDJExxq02ixx3sXsTfAu5Y7MTPvfNsQJTdBYI5AOMKA+fokIRFIr9Jz0iW2JBgbFO4Mc9GV/eyLSYY6AfB5rvemhkuzdYV23FdTPgm21d0Tuj0WcPBy3Ai9aYRpTNOmCwg8auddkxBp8T1tVAjAxSFsembvj163vrG2eph+zGjWCrBhuxB6+/tZ41MOVY3JyT0BtV/igDkai6VtkXd9l8rg8MUZh8O5Vk48xMWReoTD0dZ3KjY71C4Ge8vzWDN7IdUZgd1ZlsjTVpn4FIARM1cPi0326giAfDwCwYmSucY4S88b6vM1LgI83/OA4YOloE6WY0GEqnbS0+P3qUY5CNOPH9rRS4wmArpTEIDIt9pJIyAtn5qVmAQdYulJ1Pm6U61rsWG3lALZxnOUJjAeYL4cUnQFxtYP49akoK4Is1g8UemJPOt2TGmRaobA4CqsAYF8waU96kDy1sG+1PBMqiM9j2uXcckkPcznHqPDmyEFKLFQeJOlwbPOtm9m6AtyxEn/Z+6FPpp/M4yKGKYJj2w1gzAjs6k+/2ud6v+gSttQAWjmChrpzzZ+mGandpzwk4qX6Q7pMgp20/csv7LOAO9ZShPQgP0gVH2hZ17+/zaeH7+zsd633/LRv6WfXzBIQch87dBaDvmt5OZriZYXi1fVQaajd7qO/3rC/IR2F30R/BpgRUle6MDG7tbvO7s2e99hwzsqsWrG2A31sEYxUUagy00fa0HbSQP0vvG3MJUYz9O2nrJJMxfIhmFnYt98csAZece3uw6dbKNZY86DsVF6Cu5M+PsOOuqIeXa7hWkhrElPwdyNdau3Uxn/Nebz9otfkzZu3JX1o70LQ2EWfLcJTXiXrhrRkbs0X6+IwmkRXvUCq3Sh/oeQU0f3193cBA7bka8KnAtHwVyUSdi3oG7WBFYYAiMBcwDVdnp7pCH/3I826LKtm/eqdrXLf5lD75+vpC79GlWOV40of4CW0l7hLyVX+u3/V6ZjY1+3Cylpfs4GAKOu0H7pk9b2Kn1x4RcaeN9cwVwPsG47R+zyzR3UHYI4uv3/S2SBTSinUNqgr4Z8ffBvjm2huiKvvtPGxlWnPYq5Krik7CK2EQKmxmKYT3ugf3SM3NGAJ+PIP+TKEoOe16duAnOKjr1e/c0NbyfYFk23C6v6NGNUgrSPm7d6iHWjq2c9fS06j30u/q/Gju6nP97v31Z20TXQ/wfXAKBLkXltzgx515V9dBQ9EJIePVyK0G2j8aFTW/g0PVYbyzF/X7OgdybhXJbNhAB9MskewPzh8w53UzLOucwElXnyNS31bUmMAkYzBADfSgJC/WExOQYf2gEwYxwJBsvBVGHWvKqL5KrU+YcQGYA1/HC6ohVZ9zqjaPK/IShebRf8h0a42dRlEK8BuZYEy9sbDEGuYVKa6QE7TXIw9IINMtVKenykrvPdhcW2YYUY6U32ysYcn6nGPS8AaAcOJ93h0/a2KskQaud9zO0m6RLgfcjCzFO1AoA2RlfTvVsTiOM/aODKHBAzEMP6URtkhrAFS3gYbAmDTEe1MB+ZXA3nIHpmMa17jBApjdoHc1hqqjnIB0pDsmqOsOgGw0Wy0aQbhWKYG/MQfO4wsWQN6UcRXA7Voz6xRSDncdswoko1Vdg/3+1vDqkS5sDdN3cWQTrO/7IOf3+y1iaeH0uUe6yYr09GCUjDHhKN1enWkG7LJKcG3NlSA65SLmusxl66xF1npLB0uNMMaYWd/MfRHcgViaO8AAtHBKVtZ+UQBjAwUt0rMsnoeQTAvWyBG03na8CGxGehlT32fUFqSxViPeyQKAExjS2ijS6Z5M3jFmnkHaLzd5CjugR53KMRZ6j2gwW+TBQQAWDZny0Wl9wSPtR3NTdTifOaarUFwEuFf5EhCr+oWSCen0ZG7E+qtWzTO4h5jfEXsIZrsmJbgPDkPWO6tBpTkHrPeUITI70lclY3Qxcj3GiHU5geg679gBRabkkFlqbdc4TXsp6uJJHykC37DBI11rBXC22kL3DqwNsjBNUsb5TJ1e7QULEEVdAKXHHGzE4+pUDel6sgrXpbM8wPDzuKWRt2Af71SyzY7SEAs6177Ym8v2z/R9awpiIOU1wQ6PY8oT+4jnjQi8kbXMewSDB8hGJiYAO/UnddCKepI1syLPihKMvJ2/xSH8nb1ZzyK9hyUwJ0YvQbA5Z6bP53VjL6850Q9LDKr3ljWbBI5xOtlMjCmOKzqob/liyYbf2YELQKRxOtJp5n4Mdlzqe+nvEHY4vN2d+Krb11qME9iev+bG/eCeNVPF+qlzu+VHLPYN7rVImfe+nak5AxiJ93vWlHvW7Gy9Y0TgqtaR60x+DKBTKeuW16V8y0JzKKrceuyvxWL1rFtrMDtYZmQBwIR1pHMtsGTOCQRQnOsPxyrOv15UASz++85+1Xg6rqgOtBmwLG33nYl1Dybq72lDBRBTbagKuCSrVkGNEmBJMEMB2erXqLup72DT0zcEdkbY7wgX6VcNlc6pTQx1XlPAWatPQFWkqi+e/2uMrDf83PNbrneK6ev1wrhYu5eN6e5BtzU9xIO2M+2rFkG9hTUnxkCmXdb9I0BDgfVcEzDIofRnfY41LslGhOZcdrlKuqBhXu9g8EUzDjDIDgeOfmZaLudz+1wCnNIgeMhc7x3jWvm5agdsndM3KO7bRlhrpZ6cKwLx/cgzE8CN2f07nKKul3s0Pih74z/+4z/23HqUIIo5kK1d/XRzhzsDchuUbWlnwUsQPZ5/zZUBfu0Vvd/39/dtL1QCgvZZBQD1s62/7l2ftZ9Y/3qXLrn7DSXjqQbdnGurngMZTCx6o7cewZiNt1S2pOxDD/vCvYBc6OE/cs+l3VveIzGVqH/MgA1JL5zjyMAwZZBw3sckixswmPsuiwQPHywyVkIeaMcryIAgkhieeErVKXUNzuMMG8Iw5r0RkS/qjJp19ZTJf3b8/S66kNN+F6L6kmvtzq/A/fDXfxKItVYaqaqFcHP4S9qlPq/76HP1kH/+W5vht1ThBzBUD8p8X9sFvHXNitwDuB9Yvmv/SQjqZnkadXq2p7NR02q1oXSvCsBU9P4J0NT7VOFLRVyiy7fNA/xWeKWEn9cFaqrjvk9VDjVaneuzopaN31MMe2vwofSlfXDWUcGhug71PlfUUKtGxVyTxqKus3ZqMsBmDxa15ADA5n0zU3HcZXlMHtLudIDMaCC01tCMdbauixGCrN1gwFzAAQNsf7YZsCYNNXcwxdfI5mveQuF1WGAIDgR9vOE8FbkBZtS22nsmItSRsuZO5gRBm8pufHRhsnsXNjVFYaROKYAL6o615SsiWGV9YIxQ516epZlMyiCN4RbXGFFDEXD0dsYhPLNA8Vpkkhw9OlaFEb7mTtOCs16LIYwaJ0tTRVzroW9m0RRkBhAVCjnBhAPX9Q4AKmpSWcO45nYiSQjgdxoAhMHmC9Y7C7pi0+rNLRohMPLaoANHUc57kGTNlUAlQYW9FxW9q3uYna/YsKX3Ix1nn2STtqZ9rrS1bXC/Xq8EhuacQGd6jsXLnsdBhwSi+RO0Ntt6kM/C/9gN735emFEXXMH0gBVGdzJHClPaWjLBDDs9g3Us9znhAaLJsBRgx73eAtjCNmhNRkOn0es/AzjmYA27qP+3FsET7qeVIECIdI4dSBoh4xYgewQYArWwSD/f9jDTU8QEFOM3Dax/UILBlmfhajbaCMcePYhlCYvfnIOtszcIUZ0nfZ7zvUHJBjGvg8VnhKIPi7qAoR/GHDgisND6ZnOzuYrWeMsGWZhKObKIeI/cG6213JNrTay1534tGZIBrM9JINILwJdGXDCqw6GAbQDI3dHRQ4C4NgJks3O0AjbSK9KfIO7Uz1ewyLSH6dy2o0VgyXZx8KkzbJeEkF6CG2qjqQSLAlSQrdVav3cajrqHrBNFAZPR3bqlTL/ff2XKqdadEfRwbpTibR3uI/U09UwP52EEG8LZICH0bDMBsQDWTzvw/k731LObDVDstmqXLPdkDqZMg2dxD2a4amEZEHVtNwg/sdkTegaDUjH3+/kky1i2i/IhK9DnMLR23s4VOVLV1qo2G99zB3JXAU+p5/dc6zMjAohHPygX0rfLb7bzcRxoCRgxU4C6agfhmu26Vtr7AhGs6GQzY/MMVOd4BXM62B4PwMPDqRIb6D0uBiv6nUUL2ewlZU9sZxjPeZLgWZZBel7OZJ3TtYDjeMHXxNkPuJ7V8pgo9mHD7vBJNt0aIauFZUImb8vgWpqFZjiPE7d6sb2jWbBtzTPlMZm6W03y+iPWbClQpPt6sGKpRy1tkrv/YGbJ6Es59PqeAv3KmrSGOenAai2ko8yQZ7X+uwWM4gaObTe2tmuf1XJLFWx4BiHzOUZlQyGvUQHCvTcEWtC+q0AHdfvMoGUFb+pcKa336Afe1wWzDdhoLkFLHLI/5rywwECumEgAsMb256qfJLBpRpd7N9Z4Y3mLg3vc9lqnHli7rJDZln+um5h6C8fRbx2M3ZG1v5WBQXnm3m62fXexwAk4rfR54Az6r3lRb5ZmAtYbgWZDkAfEWmvwAEpn6EudXakDG30VDc7ninP57t/q9z0apmxyyz2bI0tiBVO82kJa+0rIqQC0vl+xBNm/Wovv72+uvbU8n+GAq2O2++25lckxVpwTD9yB67H35Cr+51y7hJnkQLJfz7S1dhffJ/aSINq8N+p8lhcTaL3t0pnlsSTzuue2/yxKrIzcfyp1tX0xT1LMzUceP9nsAEpN2iAsTOwyNrkm++/1+S0yi6inLFxzw9FP2OEYI5r4DWEhYWesBbRN2hLhpcqlfDt3xxJY6AAeTaY0p3UdhBep7vBxcD3SNrO7TG4Q/ifO8f/r+NsAX42SVOWr1sEVwBF49zTe6jUqqi6BVG2HusD18/UASPAAe1Pr7xI8YCtQHS712bQZ6gaqG18/e86BnqUeWPUg0vuc5xlAyQZBatSlGtN1QwDbMSRIdP1Ajp9ovkBS3aNu0lrvokYDngfT853D3YNSLedi6koePOABsR1Ax94x2uQtlKeUYkQ3W1WwBIqWuoIhmEdlXatSretaZaTOUZ2HeBoCQcYDemKzXZ5r31rLlAaBQdY7mXO+bgrS47lWdPR5vWIvhNFYU5ndPWpcbRA2n7uAWwxAlAiJIRoA6B1aWHAeztmV8qiR7Fcx9xpYCw7BCGotCvvKCG8YazNtaXQvTN8pRTBSz6nzJnCEwxEHoZymKpMy8CVLlF9FsTve15vMJGNUcYbxASl1i3TS5bf9YdYwxwUU4Bux/r11gn2Da2rB0IGixMX4o/MX/9b3e0e3Izut6XcWe8mykplt1lR0/l0tIry1JX2pVaj9r/tor7VgTCgdoEWdnjtrlSDTdV04znuxV8l8peR7AKd//PFHGJqhG8WSMQIv3F6M/pJNqb23DUwBWQKIVuiCuTbD1GwDVdKF7nTKxpjRUGEb/Vqbs/U0LLg/o64e9t5OWfJtOCEcshnpz2ZRH82BZkemjVZdkTrOF9S5rEc6em+AuWFBTh6LuBNoW/le4cqlwW+dqVpWgC+BOlpzsjfK+YXCJAw5dPR9T+nNtbAUmKh6X8ZeAKjLF5/ZAHRGRW/OR1iYBD72GXXNgTPSkFoY9C1ScTwZecEM6gfgmjvVLTtSflQzZcyBizMPqeye+y0K4y9C1WTDSGZ73JfOVw95IYgef9eZGwySNT0bN+3DgbqKTgeN99fr2IYeNWeCA7eASNQiJGDUyXDowHvQNuneUx7Jpp1gHaIW9V921Hu5R31XjwZSO62rHUy1ls3Ds+oAfMHNs7v4WmRuKg2p2j3uUUcJlnsw3+WqLFoCMz0a0Wzng46hL0dvBwyN7PGlZ4/ACIUv9FPsU7+n4Bk2+yd1/uS+XMGywCTQ7NHcRyAGyj6PGPr9XWVroLD9yxnXWtDVio7VGrXQEZoLXfM4DgboluNekN/TcY0f0IFYK4IKBLOv6Xi/v2MfeYJ4cGQZgbUQtlPs7wJOAzvFSvpM8sj5YtBjTNYM1TSQOUiQcY6B9/UNBiajVphvh4OgpYLsDEz1bjhONlKZg53mM3AdtZAI0iIK75Op44xKcD60p+PdtXeU3bFWlIdAC0CYOnaC50E/DvhUmiNTmoFiWyzL+mDLncHJsDkZqNX5vX2B6kwbGlSlxaOQephLcYaX2oMoOtkI3i2qjwTVJFcdhhX2aXfuDd6zoR+SczCgJ2Z8OHAOMUssgwSUAbA8h/uNoQtwX9raYEeemVkapACQxQZwJ3h09pPZCLIrsRk9Bs7ldV0MFBeAm99X7a5+s/d1dj+HbI/qjNf03epbVPmUbVyHQLvc42szwjZjETttEiVYb4QpKtPItP6Qbbr91/M4UyfyLCssnliyMUekiMa518nE9qXAXUtfWL7Z19cX3B2v11cBXyOktFYEPLcu2rJ777Qq3aayOJYQTwEIPAgW1nZwAPscMIFXyiIR0BtzPFQKQvPVO5QQTICTwUEFrq3Ys8pIAJANCGoWGoAEyWpWFYOyO+Xb3W+19nWPbX9un7ACWAsL//mf/5nzUf333nsySd39R1mgP/74I9+fdk7496GDezswxkx/b8xgsTfaKQwia96p18/jyKZtN/svjrW9XgzOtN5SZ4tBXc+Iep05WCO7d/o3tJ0C4PSdgVdJM7qG9tNUtoF0WuuBUWzQVXYdA5ITyxB+6z6X3+/3vfRD2HVii1dwXiUd5O9soD3A+SUdzgaJyUDNsl/7/Icbm8zJB7ZIMXaPBoFGv2RMgtprPw+s3UgrNXCV/sraeg7BHmV91Du7+LY/H/pNNtcq+NBaC2MNqNiKWdSI/vvYHoB/UQ2+ujjViNJIoek9J0wTUHPDgbuhWnPma1fCJ5AG3FNP63eU76573IAKbCaMnr0ukq6re+oZ63NKGH8H+GlD6N4bPAjD71YoeRdprAf0M5JRFVMFN6UEKz14A2x3gCtBpah78rs51Uas79Ta7rPIWiYq4tvg48rNqPSHvT46SAX07Ai1mBpUdp4bR8XXE5mPFE5xMrLTAABpE0lEQVTWN96RVKQTRMOOqWQ/uyW11vB+69DdkVkZW3CH9YYDZAMZgGtO2BFGre8GIHnEyUE6ejowSuvkKYVwtrdcGliwvMpOg8EOy1QKRcOVZkuaNwBjt566hgLSsogoaCgvn/s57adDoc/TeA1gcZGyTzYWnYOh+hTLMTHDmSCgpCYFFiy74zjSqOq9s6h1EA2q8WYWtSzGRKerm+kJXfXTPOY/19yD1UYjxXWINkbBLVID2wJ6NPtYPiO9LVgBDtYjbIZxXaz1BkbT4Yu1zyL9U80r3BdsgUXz58RqOyW/m9IsNNdk5h3nCQ9GgvYOLcxgrFiDCBhKL6pMSbEKZPDL8XUg6/3MtbL4O7eW7ehp23NNQ2wbBDIMK7DYrN+6k09MzOHBjphkix1IpiejaQ/2cdlPMxisZz+3vK0NpCmVh5twpZGdxqUDRzhM4dtxD8FZH8aCsRDzBwRtP2SF8yM9gyh27hlo6AdBFxlndGAbbA1m9Z0tATvuU66t1rGZZX0jOtYCeJGGoLBeBkIUkXTY2tFU6vnQraFD0tGJQvLqdErZtdRNBr6XRY0YNAIzBjHOQhnAk3WjsZ02pINMllisQeiehdAtAThm7c5IC0UYhRZKxubu5IciF77UJAVp1FaHEdJvTpDApQeXwVYYo5Hegs56MNorI7reiR1Adimft9tma5/nie/oDLcmu8zRyUOmi9IG+NkYy4zp+b0dBCswA4Dg+XQcB9bFrtOt8SykwQjqHtspk277TB5zBIsnUvbWQr+Codt2/aeYRT4n2BiJ9hDIOosz9Yjzf6yZDZjcDE6iNroBOHmRqbqyFrrGdUZT9xuA3lYCYWstLItgU7C+r+uKfY8s8I215zLBVkfM10JHsLaHnG46zG4zQRUPeWDcvGUX60koKABzRdYt6n9uMEZBCAciONhynTj3Y9chC50oUOCwCAwsMWWQthLBLuyAhmwfr4wSTztAqX7SG8sFUDDQJ19E+i+Dg86i5msNsrtAZ5GFzsNWtANmCvTpXCe7TXWa1mLK/KnU/WKnyrQ7OksX0A5fIEN417ZSgAXR3IBNrbp8KARXJnRlnJcoHb5LBgfnrKVOHOPN9P1m6JAtgQSlV9T1o5PbC7s6nDpDdHReMKwEt5avONu3vmNAbNvA6oYs0IvyUUtZ8GdmwPK5ma7GFFqEvqI+M3gAJ+aIQJLFmRO1Tt3haAwSxBnCPa+ADaJXg4GdmQ3euOdlA6mgu6fzyKCw9c77ZyeNPaq/w+YaAEYAznKenSnQEUIHfGGtgX6+8owSGOjuODo7vc91902qD1R9EOng6hNS3uOMo3Ebe3cHL2WT1MD5rWRAAzAp80c/YUY5Zrfc3UwPblgBdMgX1Lq3sBd61IFMoMdVT3biOE8G+CR77sEipZy7Kw07OjQfB9baRJb/+IMgINIOl/7fdS17a5hg3VvV3jX0qCMWwcMoOdCjo3wCCWECMHDmRYYNAn3Ps+VcZ5O6KO1BQEesLCSDfPUDrfHZXfaUNbQOnGc0kYr3soD+YEbGld/rx1eGps5UleU5OpmuG7w90NqW5dZYAmXG/yqQ2I8Gn/eURjNLAoL89nr/6uOnL1IYfHrur68vjDESh/DInmi946tHR9cA6AzGNVyswzp9offS1CKCNmOO3QitWbIrc246g3ZsSheN86wz/Rnbj9LnyY6N0kQxp3Pp/AXU9IXvPenrYLNBtSeP3tM3ByxriM5Fe6sfBEW1F1vrGdzSOSFmOxp9OgG8vqS/yDSVH8GMurttWnUH3zeEG4igN+1xNiocPC+WAqvAGsoUFVIRutWdQRaEPXgciKMVDtyCEOmrHgEmS7YRLOTQ/TwPN1u2YieyASpjNPGx0OnZnM8YuFph5wtj+FdgfP8SgA/YgI0O003j3ECZIpPPtL/KKks6dLmOgDJ9XyCXJrXSXitwqM39vN8TkKv3qFEibfBquCl3+pm6q4UVwFMVyjNlqgKi6ejgDsRpzqoy0vxWYE73S2ZWuVYFXOs8V4RZ6/IETOvz6HDmobrTbTcraBu9lQF1ngfm3Kytp7w8AcTsJGmbQcEDftyMYBOYsfbz1ncX8+85t/f593x2640KbU1gChSj5jYEG8s6akdgQCDZAgJ43eCFHMOQtzHjcAWaaevuw44MMsN5Bo23C+wdWbB2TKbdzmBGZlfCMMt8rSjOjHC6G7BK4e5YawRodx4HfMyIGEV0YzI10MPYU3etVFpQ/b0dAeq94/X1wlWAZTFh0yGQLGk+l9hqNLDUROfoncBupHaKgcAaIvSERHlH0Ki5vgsWTEkxWlYA0EqN1vsxOuJQp6cus3ZOAoWmSURG4AgaA/2gw3FdM1Mb4mGi7hrraf36/isAisogDQvJGpqxTgT3VkunB74BH3ckGDCuseczmjmwEP9mpVDeWKdL+1rzIH31ZOc+dQ0g8KZlYXA0gso9AeKth7jeI2uTWVMUtIXz4bfnSCDLd9oI/MG+OY6sXbZ810uyQBK0PB09nOOIgmElcN4a5Z+7jHLTYu+mfEQY3iJVc7qzCzIIbE4gjRmCxSvSC7kPdoofywrUej0E2FdhSXB+rxXXK63CtHfntXCUfZNR6dYiBZvi0wUYxjMIZBJbVo69/NGn7tN/53kyCDAjJdj43MlGMj5nU0Chd4x5ZfozO1KS2TWXOuy1dGwFaC4xKtVUoUcjiXjP6SuKlLMe3jYgVa9l1yU8jxPXfOe5Q+M2wJtgrq5J8LE6hTofeD2+SxaLdxqmOtd1vn5/f99skBrgu1RL5+AcSa57PxLYa30zXVlPMozWMHTh4VBiR7E90K7WdqdcC7lVoyCN4zxKfSruJzIzwS600QY5WQVxPlDueQLx6FHjFwuHl3pVgC/1oMF6i+YeJ4ZHmYQCksKAcV10cKOupMX1POaf72rJWlTa5YwGMMAGfhMQL6Df/j0ylUxn7D77d+ByrW3vAbteoz6vc1rgfLOG9683EpgJgKzaQb+7z/O5eU/PFGqxZqgHZBuGE2L73fScRwQMzvPAH3/EvIAp1WR0e3wmbF/wvDj6CfRtp2quqJ+3XaKzlTYJdWprLfTPwAoG17MGVr1uawL+pWTIJNE9trQ+slMiBdHMooapR/H/HcBfUBp9S0DE4ueqtwnzqEks+eA9m7UoDyD2tuomBssQlQEULM6s66lz1KGu8HIKCUCFzQGjrRC2mxoCWYD10sUMTNJ27QEi612EESIAGDMeXws7cKkUaZ+LNVhtz6lsSNmBkF3p9xJJedYDwaIJhhuAGbUDtX+5PpugQbvesXygtSOzTwCBLvcme5WIIb15BDCgdeRasXa1gvLUYZ41rWo6a2VSy84ho4ayd0QTIMrySGBGacF8J2BOi/p2d3ajfBaVQxFor3t56IXelblBQL3FWTDX4D5sHdZ6lgXY/oX2jWy9bTcLcNt2pEdAmvtWwQCAtaw9YOS9x0r6vqsOfmmquMjEUrMnsyjZID/INztaYCWvrbpvQRpwAefByIr6ejNY6qkfUDLPxLr1AnIXuax+G+WzMNEfa4R456W6ajqnEKWPUEsa7O/CNoliy7SljwIg9ZzuvdOVd7M+rc8Gu6PWo+y9BHVKbfLyTApkpR0RZwDsjlPo7w5DOwJPuCY8WBIVH6n+8+v1gp8ea0VF0nsno60JtAbWagmq67vpH+b5ChjIcG9hx0reKojP85w1+BRoY7xw13y8kbfEegt7bfsi+LFuNcX86+uPXIM8pzprErMB32bCeazrDSAM+5nrAfQeTdvGVZ5hB4KrXVB/V2XR4roid5htAE9zmmfZ2mUInr0n0PceqPKb+6n4Z//s+PspugIcyoZ80mFrnYTbpN026vwxSfpsTSXVZqtU33oQ6BqVCad0l16MyHpoANgHh2/FLPBMm2Czs5DfqYCZnIqqtJ/Cc0+52HTzKlT13fUudU4rm1EbsM5ZfdebgozP1RqHv82DLyCpnj8BwrL2dT163EvgK4WfSHtlBz2B3NszTjrRWsu6xtUo34Dl/r7ebR98TO+Q0aFrVGO/h6IACghpMsCUkhJRFmcKzAan9maUfFVZqc/T+wF0Rlm2obMPfwOZh3T8+L3reufnFpyssOUb6V87JabZkUVZUwmbgMoGsziQVVfDCBiqfpJFMfUlRqE1uC1GoezYKQ6dDCIpaK3zGINptdFyvDZmWS1qNLWdgrLGQree9xkedWbagQa1LGfUuwfIp/pp7gvHGTVV5NyBxgZrxpDJsNbCWCvrP3gwVNg5LIxJRfndIDZE7ZSqd8j9cF3wjptDKPkT4CAjR/K9ncqWzkIavUdnmkYU9mZzAnadkhv+DET0HryWtqn2Ag+rYb4jYBu4rwA3ZQ2MPpa0B66J53y0HkYrlcieG8xse/96KaK80mC/6fK52L3UyUKcKwpLvy8Ytv7LwFBQ8q0ZrtgzBrG/LHTtPi+oC3qCx2Yta8OYBZgErrn2NkG0lefXEQzNWmNIgM9aKxjLjE6nYx0pzePiuZDdyta9SDKDFDwbJibTMBdZMsDCnGSWVr0PmwHKv7L76ZxkkTFerELNhvBdi6zKoJtxDzpAtcC4UpyYjsz56U0sEEeLtOAZNT/d5nZU18prqX4ZQb3CfvcItASgTraXs9j0Whk80PdmgClfX18pY6/XC2vq3QnOn0ZgsveDDONIq8u5C8CpBtkkWwul22I9yaykejfV2dk2yXVdMBi+v79hhuzYy7fehvw1BqY1FsPXfopC6GSJaj+31BNyLndjp5b1jBxkA1/XlZHdNHYPyt+8oozFEggezxWF2Md77DMn0pybgkIB7NGhlfxR57s504zPE8O3wfq+BFovvKLUiFJ4OJfAtUaAi0wZbZk6uHWC6lWxa7bqoG5H7FY7KZ57YdeUYuBn15TielFrvt90xGPLAgXUcd+gYHUyeZ9SdypA1tY306uWZqj2CR1i1uNSN8nW6CiPK2qDiq2R7zMBk8zhpudZtmCnKgFIdqiFvDZr+Po6wvaIjoCvM4JBwTbtDcj0y9p0LdhgUVZEekPdNnk+WNZkZMdQnYUREPMVtkA0tQr2YO9H7NkFGSjVP9Aa6DnWAhpW2tUJ7j6cqxUptXUka6ScA7quRRq95Pw4jiyvcHOmBChArE++O5xNO5Di0AQTcr9GEEP5mtbKe4W8WiB5VHMZis30NwHmK+b9Sh8oWM7ODb2WkiLDjid9LGA+BxYCvAJWnHEJ1NkdxAp0lbCMEfQRi0Z2QW9iswmkpK7xAny1qFH4en2xhMpaGaxcy2+NgM5z2/iIeTnPF1Q/jbIR8j4ZYFSq/jNgbEb2De3wQX1f7G3a7PdsqtYaDjvRvSfIJ1nTPlYgFCHbOh5UPsR91xUTyEwbwnEcZ9q3c8rP8pQH3et6vxmoD7agAjACOQT88fOR9REAPBbP8wWPciGbJLIBzvvPJItrVWJEy4ZKtzpwWMFG8uKjCFipdRy5VgwqcK1UagpeGj9G0LHuza1nJqqtQ3Y3Ug6egE/ubdxxhhX6WkEgXTOz6maRCZSMqdbw69cvnHG2Vh+36h+PYPlOlV5xVl/oFnvCqy+0bjhEHQT3t59lAPp5sH61WQYUWyNDelzs3H0c9ClY8mcHqCtgScbnnpM5J0H5Tp/V1Nivk0HH92BN8fP8us2ZQHdgp+KL0FHB9t47G9tE2YiUjVC4LbImBNgvRKmlMfNZla5eyQZ1Lc7QjTDD0Y+w+zoyO7CH7MyZZ2CVM/nk/esA3Fi2AjzDxrynPMterD4tgbw7YY01ioErbH5fd3yk7veK1ciX2P4KyToC3KvcSQ88SVH/zPj7TTak8Nu9rXrdMFLAqWDKxFaH8wmMadSfKeUWuEdg6qFdQa27YVHrVdyVx90h34afQItqQAD3GgEVhJOTJ9CxAllPhpyeWZ8FsJ3EIvBSMLVIva6nAtx6nrpZKnCo56tC/OvXr1sDED3Tk64speHuJL4WIWVEeGFG0whtFD5f+d7azVPq+lcgeMyRtb/y8ElFb7e14vrix5oK6eehSef5CeZyqN7iBWDLL50HAjLn0XEFqOuyFFH+M9aMqEAjgKx54yAbD2FQu+2oGsqci77N5zC0pQYaETl24H29w+HftSi6amt41H9oIWPGIvU7nTeYB+4Y16AhfrTobunJypRS0UGm6Pz0CWQ9NSqt1/kKZ5rpRvO2rxbe72C+BFgnMCgd0JjLBVLAW2tYY+JaBAv7wagQo4VisRi8O96T4GdzoDU6x9Pp4NIw2vUrACpjFnT3qDPEx6DTNoCSPiqFrC6cKTf0A1J2zSyi9+sWiRtzAB1l3yy4M2r3irSna04oPWJcA1jANdXdKw7fANZqtJH7TY2G9jymg3eeWD5QO9npMzWSVPWlGgdU/TYwcfQeoLIMu0hZLUZx1aPSWwI6d1MlD4M9QJxGGfv+/o7mIffUHgHRZHN2jLW7WKbe6Q1nOVPc6QBqHqazHhNTWtRxmU7QckeID59fKVPNsMzCoOk/9C0BaDow5ykDLtI9obUQ0GbZMGYHNkoxfWO6IZ8fdITXPXVEMjbGzMqOTHPtCVxIRq0ZrkkZb3F/OSFz3B0a/Vm7ySmdlfMcLI9VHGpHOqw3RwpIffusV8bF9Kjr2DItA04mg3TbBgY95bYC0RBDoOnfhjnI3vEARsgU5/673hdZEI/6apwrpsiSGV0ChWPeANrqROi8lLOlbsFab+7NkMFowHT0aCjhTJtWd7rzPPF+vzlf1nG+jgiIiaVKpuh4D3z9QaCToOLdeAQUsJtRL3UDgqp/A6NubCjOohnTfQjJUOa52CDjPQDdFnZd37XUdB4fweS+dWw3Y7Og3MOINNqJMSeO44w6vRvUMxCEnJMpcCMCWjWAJhaFatKYN3jMv7qdwqjfq/7YTko0yGoW5T4Myp2vtoR00CuaCjAgYGQ8ZkoVAeebfekRAJkLCqKReck9uYrDJ7toEdGK+VbTkv0MtKe43yrrWvrD0WPdJuagzYXAmd7f720rZZ3RDZBXZ0o18OiUFpZb6ByBPrVutRycfT3ZWaGvIpAVsDesdMZFzL7FubfWDDuLbBXtdzpyC3PsGk2yYY6+gZ6dloxkHnFNETbRKjYJyKb2nVFgZllzVnIgNiPv3XZNWoBytxYac83CKYs0MPeIy4buarTpWBtLaXMrf05bKgBm+SyLNXv7EcDxnLL+aB9bMC898Ktw6gUbZp4mBCbI3t1nSW9MXKuBEES6poZsgvP42nuqsZzKiDMxA0QeLFvrPK9bgwdDVkxg1RgUMNaipIVAI637Cl8mIgbUx2e7FePnOiRqn/sHqIH9icSbim8mZrnmpYI5FYDaNl/YVnOftToT59wZQLmnFvJ3re1Opfd5NQbo0o7suK4RwMUOItRn641NywjazDgrPNeMepyZL9y7m1HcWgO6RTqxBRmEdcaP48jU1LWYIbDmgMGhkjYKghH009lvAawEIF/8hOahp7HBuGrL3EG9Vs5ay4Z5Zgb0O4FHbpt05HO9HPvcSFBkbhJHPdMrOUO+vf5dg0qSpxqs13LqXXRuV/t5pL+4QTPqBJ5jcw58vb7y2fX5bKi1FnqjLe+yCQ1hd77Q14rU+E0auq6R77HBxR3A4O+pr8aa2QCN51LP71ffGk5fw6BGgvfGqM0syyDUbrOpW8ocZkMPU21mBo8qPlNxIq3bNQfg1BnHeYQfzUyOr68X/vrrL7Ar+hG1lD37ElR85v3+TrueJTs6zhcDJ2dcd4yd+SU8Qn7AVIAz7KLeOnC03COSuSpL1c+qhKWavguw3Mr7uuBWat7aHcf5O+Nf1kX3qSyrcquTVpHN+ru8nt2pqBLECloJjAA2nRPY0QMA+ZmKOIt5AOzFqEqhGnsyyuoz1o40dRGfkYOnQV5Tfeo7PZ/3HzUlkdIXCySBobKJKthZwdXX63UDELUJND93EO3eReh5EM45gX6kUXIDSVu7F0xPRcq5Vl0YfV7vp+vqAKpgxJYZOc6b3i6njd3Z7ixQrS/vtdM0K4Cj++jzKvZqrUXBdsALeyQNVWOazIq02kqZrszF1gg0eBh/rKdzp3CnAbJmRimucUU79QBZjd1wv/pJJ74YvdccEQ3e9Wt6M6YWRVV0rncxgpZFbSMDrPE78dx7H6wwkgE7Ol7nCyucu+G7G/aaNAbHnFE/0XKhGkCWBlE4uEfBbCAdN5R9y/Q2OkVzTDrv04G5gjk5c97F4FHEMhaaqUjBbOpR+8rhOI8ea0UnU3LGAuRkq+jwUASx6rBUvEVmWTg+9Aru3birQ/P19Qeu9wWBJXNOvJOdSYO1RwoIv9OxmkUNj3sHsbrHaVhIlwWbZ87SZXjrFOmQDeBuHQNYgEabhXP2HrW2dorcewycvSc1vUYptSelL2u3Rhkb/WDqniL97XyFY3QPUEhnrbELyivSLUDMgIiEK320wexgsf5Y89Q1Hh2VIYAU6G0HiPT83L+U5TlVz4kz1Kzh6NsAIusyOnulno9OlBZs3wKqY0XdjWCAwHeDGaW19XbcmjG4iy8SWyrYMNcgm4sySofwGheNfGvAWpFyWg1i5PvrHWSE5vkVKdiGzYSSk++umjI7OBXYXKyz6hvicR4h91OdZ0XWZwSnDms4vg6856/bc44x0Szd3J22aveIt9hykssxJ2wJfPN8H0dh8x+R4tE6+h808uqZV882ygCZwk2OcQR4GCMRiOssil/Ost57pApuINzCWRdjOtcckaLlqo/aNqgUaetZ5NqAI9L1zSLYUUAjsbf2WkTaTNaCagyKGLIBji01PSHA5cvh7yhQHswRc+R8K/Co91qTIL5qoFkz9HPXLcTaZ7T2Rw9AB9i2Rw0wOpxFqE0RbaXQbN2jP2UvaHh5zgQSir7ZOoF1d/cZyPXrERowU8pdSfkKh5ry2zEG2W4W9QkDu4k1uRdJN0MEO8j8smABKMo/huo6FxDBQ0fAsrZS2h6RBs17biaPu/4jK2zPC4Mdub9BnXFddNZbO+KdyUR9ZtBIXrkGkUnhAppwW59mLe0gXlRBid1oQ4FDOcxqFOS+15DX3bWdNyblP2RAQFsyixB25NjPngzmtbLsAed+2zeSoRbOufUGj4CjakqJiboCIOW7CdiK87p37q2wGVbsfffN7KFcxL1wMBDrO7BBlr6l3YHG1F3OTwcgxxx4Ha9979T9Blv7TJactLJPtBfe3++9T3tkWjTgpbImwVYy22CHmWW9S11r2xQ1SNDQWjl3qg2MfS3W0pu3vUu9OrMOsWpr1bXnZ38GOJvNYBvdbXCNJ2Gjh2zrGmL+kbkUNTuXJxhL1q7KkWz/qPo8Onep12i/mfVgy+91edal3yASZ9LiL2R47aDU0Tva635Pln9hwB8hiw07g6yb0Ua9BtwmkgwAMdAVAG1lTZmy/Xq9Yi/efS7dWz+76XP/ydCt69SPnj5ErjnCVVBQO4KQZhZNp1rRrXcsIf02bHtIMiD5rGtTU8yrv7hlY/uE6ooO4AbsyV+v5+OYA8uVOh16yjYhRnthjIGJwWZincwzumrMLHi9xIzd86a505xI//K9ZKdSD9qyrP3PoOf7doZL7ugDAjDH/PXrNgfS5e/rSsZ7Bo7Ch6r159LudGa/nMeJ8zhhbfsOehcFlKQPidlEw8NOP+B9XcBVs/mqHbr9ppttFeegjDbpP+6LCIrl3O3OwFbWqGOTiCRfNeh3s91D9oTpSP70ueM48OvXr/CbOkbIZS0Tpxp9f2f8S2rwaUKeYJz+XVHLJwD2NKZ1rXpt4J5ypmtXMCqN6fjMM+2rdqWrivepgLSg9bOp5Oe9k0wdFbj7HUip6H11rp81Tmhg7vbbtwKfvlNA69z9DgWvkY4EGx6KDrjXmKrMwYo215/1o+N9zbSt7kBBQeoRDpE7XucRBax3/QR4sDK5MyMCM8MQ0jq3x8a9MzV1/ytThvwH5ZpzhUgx2QZ2BQmva8uFQMino6e1SQfCgfM4Ezh9nexKBsn/4vP7HEDfBafNlItPJShQca8nU1zQWP9xTnaA7f3e9alH9Gw1NjKYFwurt8n51MEPeDgREfUP4E7nwnkQZGGdKx6sM1JfmUJgWfDax2aG8X0arnfUm4yaS6zJEXWCwhhVWqQbHWNfCHo7/8E6KgfTlxHRbzNMj4LuB1mCUoz9OGALbNARaVqa8+M4+bvlWcuQkjFxDaZT8NlZ1HuOmUZa663IO6OWkj8a7YJnwilajO4zwhaKPlJz1EF5H6K7Exg7k+2GOWL7sIbKdjrpZG5DWDpwTunMFg0S6Pxd15uRqn6vz0EZ32ytynSlA0oDgjUzyQD0AK/XWsEGHTi7Uj3v6enbqF43vXhnr9FBaa1loVzHruPTGtfCgsFKygx1xYoabarLxzkqjocFbOzGbs9Y6J3z0zt7UxHcCPgq/EwxFzXf0gkE70oUDQJH7kYk53czmRGync7oqHpMTuzOpVV9F5ixZt/Crk8VjoWnnPH7qjcDU4e2iTHIgJ2TbFjDPhf0vHLKq65/ngHPoJF7dKG1SH82slOPFiDLWOywF3KplBwHv2dA1qgSixlm4ZwhjNt74ItrFrWTDHCMNHLmuJeS4PwEm8MAuIBnsR0WWc9LaRUNTOmSjqSunQHovl5npiMj3rlFLT93xzKB9uJORFAgaqJ5MKFUA6t2d5f8XWNkkfIZdQ+PTvbz0XfZgSPqhkkeej+g7oI8l0+YL6aPRZo552RtoBJI/ZHn4XScUScqliOduZG1Dgn4a0+1LzKp5UTOOfE6TgwfGfQQMK1903Cw/EHsc0jnt3ukv0UR8es9gt1APbHUPRWyhYI1qeU2Op1iWDUjkGhgkEd6a4N3d9sx93ZxkI7jyE7kre90fwQYUyPxshe4ZwxnKUNCfUMgAwCu8U5ni/t/ZU3EZwmUOQeuC2nrVJuNjOYjJ9Saox+hzxr1ONNmHUpRVC0kyuBKvcn9GvZbZ/DCQfmYhe3SmsGnh37arKS0i6iQISDRopSGNe7JiZAJ0OZQ2qUcVAYFCGYTMKpOW2XhO+S2c987dWJZi6fuAoBTDn3sWTnM+kxvDcbW0HyeSWYjQsaYgqVzaANx1AMIkH5lfdc11V3W9j40lotxjxIfspk9mPfHmanzHroUc7FDsYLa0nUgUCCwPcVXvhBAlmKL7IeSPqcsiKSkxQ7TfqpnOmvhMT0dxf6hTS+dsSJgfeQaiaXNzu08rylHO+hDuXe8Xhucq8CP0sz1zDqjKyNmB/IpRzXF2MyApRIJm9ml7CGCd5vhLbviR5B7MRgMY9BcDLs5B1ac/Ws6Xq8Tjo45th9WQSQNM8Mff/xRfJMIGmSqK3Jf9M7UxzFGljcgsEsZpL1W0mFla7rY8GJCxXnTInulH1EKSKV2Qm/MXUNy60aeYUf4CAhZmcvRfJe/yLM6AGjKxz1bb+vZ7Xvcgea7X8ogkQK3rDNMJjx9kbnmPmts2zTSqRqt3zNNKjDjvskvT+BPz7qWp4+u80rfV0fc1sko29lWRUeY4TyjtMJl0ZiK/rQC1NZ2CTKx730x4+kaI/wDgzntl2vQz/3+RWZ/Daq4O/oUW8xTZtfkflR2mif4N/E6Xptt3EjEeb/fZV/idg/5Er3dy2jJ/lNQCKC4zrkww6ZC47td14W5nDXvofIHIRu+9WCeM7E3DMB1KRMmZMd0jjDwfh4vjMiG2tgI9fHM4MA+L66L/o4IFnneHgc89I7hzh7dIOgsfQgeabbcCLRxr4nzRfxH8iq5PA7iI3+8Xni/3zdMZkPV//z4+zX4CvhUjUD9XZtGAEV2lTG7KQF9r7KwXq/XbeNVBp1+VimNFawD9ka+0303GFY3YgUXn8AZcK9Hd6OMS8nhbmDUdzS7RwI2Q2F3bqnR697X7bkrmKe/swgzmSgbrNqNN16vF67ruiHieid9T4ZRrR1Xi5zX96exi12/Z60sEsm5YW0HORrtPNDmotfrC3MAE7s20Rg8dJW62ZNRsg+POVUfhnW+1OlNaaQyprbhsIoSzhVKx0kOueaP1+5o5jj7kYfe0Q/8+vUX64g8QE4aSWRqvKKe1BozOrxGZAh0xP84X/x7iTAdveNQTQszHMeOpgrk9EhR8ek4z1eAJ+eWz0grtMX3WMFEMfOcRwBRzJ+OEjsxsWaO5obGNyPBLI4awKSYcW40JK2AEpEW3Joi1yvAPT4DIzorGVcywpT24u4EFmG4BtPTEGDvEKsBtov0gpGX88V0UWI/Ks7cMWakGMJgazd4obzTcGFNo5aGOoHEht6ZhtVLpJT7abMm3HzX02p9A2xNxhDTWUek4zTVw4JhzCuc86i90BzWWY+iNeCI4ml0X2gcqWGB2TbC7o7pzM92ayEHBOSaui8XwIZA3daHyd5a94hVSEQ6YXRS6Rz1I67h3E9PwzWdxrpHQi/VA0vrz6YqZETNxwHZGiPzzZjyhRlyF5aGHFiDZddBHeJHpKrMxVQTdSi+OWXOvz0DRjIOM0gFD1abwYzGB0F7gijVGOQZtI3JTGc8CMysxSg3WTMbOMXenVCKqyBpd4saTIFIYhuzAEFPIM6fxWYxsSL7HUJue++RGnp3QKpxomsB3CMsfm/oJY3H3TFqqnGzlN2G2F9TIIcDvptqhPkL1h5TCjGfeLpjXhfe841rXeWMj5S6ta3MembToZmw6VnHcroDrQfgzwj2cIfH2Xier9yPGm7AWCuYdgjdxI7KOmcZoVezqWCiWKRTuqLIYgoKGAXr2IUsvzodrQbD2Y4EAXvfwPgy1nTiGs0wihfe12+Y5w3stNmCbeqWjuZcO72T7xjBGlg0xAqWJqLxw1EYNQDP7UbAW3pxMx8mzjPORSBrDnrUfT0CfA+7GmK/rUXmJJzAEXU4OwYj7B1r7B44Bu/REPhL/MUMaO6ATxw5HwoOMGmI4AvP0vH9jpTKLd/an9JbK4DsaqALINW++AFuOW0hgTg3+0yOTjoEcjbIrNXYtqJsmXaT71lqSNHxWzlH+r4FM93E9vbt2FZwTw3JrmgIwJsEY7fWUCp6oNqwO2uCZ/qarCG6sHVFaCvWsY3aX9q4vasGnJ5dqcBAi7qaZJ9GtkkGOu5NO/hvpG6oQd9qn1d7lwR9OZCbSTzHrr3mtrMmaDftmnWmwAkM/SB7WwE+xNk247wYHjZVgh+2ywlM4Ohbx8y5ouGMWDFhPyOYV+aZ+ht4O4E+N3RncxpE4EUOtw/VUUaZa87rGAMIRnyL89MDlHDQ9hC4wwZMstUvBjDjfzOAcDPDNd43RzXnvDAP17r7V5JvyZmCKLxmAUEllcXG33YGOwirZIn00+08M57ZxxFBRTfWqw79A1j4DC1BLjWZUUMV6vWtR1fU9e39AIzpkgL64bsGWmutBFL2uav36H3bigJHMjXenUFNI8gGI4NQwdj0kW2D5mT0rgx60IbqaZuY9J+xqVJT5k2LYJYZYLs0jQNoRh+slu3pvSUAlHvNInCb7xo2/2LTOWsbeEyovuhL2Upr0e9BZEZMd0wxo93gl2P4yPJEqa+xbZo611Vvpe8RdeEkc8IYzuNMJrm7AKR78Hrrv3tQuPUeIP49gKWA4xhX1E4kqaI1w3q/0/Ylm5jBlX4eSRBQwxX6YlHKCIZff/55swPWWuhR81LPxzOOn1eZADif+/g68Ov7m9rB6KfAmB0iu2qtBctzCRF82+enjgvp/gzmgdagsjMUQNy/RbCfDRMtniFYmyEj2dE3gLijb/2vVGMRUQwRjGgdcwx8R03ao1OfWRBLzIhZLBeBQzgMGNCTjBjwvi68A6/SaAVfemZr7XJEnJsxB1oE0a9J8s37L9lvZD5fkS2I8LXtqgxIYjLf19+H+P4lNfiuMhmVwaHfV8VWBXM7dffmGBVRN9uMusosk3Gma2iCa4Tnd2DbBo/uXSU1sRWVfr1e9+KX2Hn99bs1SlANjWfkANiKSNer4NvzWQX6iQqtZwaQxTmrwGUUrHSSqfep61VZHMBPQdXn98G2Oz9pnhAH9p1GD7QWOftzQfTpsSauOWCdKZ/HUdrY4w6UVlp/dVb3M+3ir3qnLU9KHdjvpu+ttdNKkm3oYeCtYJ2YYQVjSYa53r1u6rkIUDbb4O09/ZHK5WzBjIwI2VoLv4KmfL0DTA12Rj9C4eVhb5Eygvh+GC9h4KAtnMcLv97fqJG7PR9kEqkDWJU3C0dvzKCWI5zNZtHpqMoB53VkZ0WmQSShzZTiILYdwqUP56uVGkSuKJsVfUFjS2BIM6ZBcF9ZfDRggmUpg1u/3KP42heOhfPoOF4H9BUeXFVfIEGvd3SrZbOMnbYhGdgytH8uo3WtlZFdzZeMNY/aXYcFq8VZkB/YKXGMBu5o4d1B/H1tUveFa1B+e+tlD3iZm70f6tzw3VnPTeAVjEV51Wlr6yUWzK/P0CMqPEess3vWnXN6/TdjXvuGRub+95OFDcihVaQ69PMR31+FJR7sxTEIhDMtUQwJrkHtBkkQ9qjo/63Okhwy6x1MqZ9hPA58vV40glbUxGuG5SMau5Bhxuxchx0EvFakvrVGJ7NH4wrznRLGqGhh/zrZnC32YKZctoavqDXnkB5AGG3scLuj9euHEVKNUxnUMm416hknh+D7+/t2RlaZrAEnJa7CKvgdRqGTGZMlGAJAIUuOc9YMaL5ls0cpCK7Jg00bz9LOHfndsr51pPs+X7QPKmtT4IrOilvJijC+akMqlXsw2+eIQak4I2SvY4x6jhNsJDCNKEFwhYOILHa+z+padJr3WHOlA6RAKhk7BOnosERKzBEsyhngp5ztkDszFqnureN78DPUL3JcOlP5nLqJ81V1DtdzvMVsBCC2TyB6FoC8RYq/mfQy2UzJ2DY6UakXYkYJZu91a8bIf+ti47W0AepaVucrbopmYuNsPf/UN3ISUycEK8udASUBvL9L7dv7pZSlCcej7pN6v8po4paJ9O44P6odpjlQKIDBgm138kI8y1kPkAGt5VsH6GxGU95wJwAUIJkCDz/HtpelQ6kDnMyzsEl6gLlzRKfQeM4W3T/3+7UE9p+2lO6fWS1sKV3kajMfxBAa18Rxkj3Fs+JnuRRoFykLxFqAx+ctU8ex7fWVwSyeD6ozpjV0eNSws2T/2RKD7el3INONWzf00GNrTshENWsQyTnrPcn+hQcQyxIpyztYH6sBLkKCgB45rvfgINlYRpB/xZwawqkOS81DP63C7mx8guM4bo0Kk8VTAiU1JU/jaT9VP0W1RfWzeg7perpGlb86r74KIxzbaa/D18QRaY1zVB9jpZzU85FgAeuEsYOpw+fuokr9fiWjfLXNjpZcC6D2+K9FvcTtcwhAU3OECOxGzbO5JoHkofO6llLYAdXqZzKtX3rbwqdwqEa4hz2keWLZG4oBm/8daFm3k+BStZk3MNmT+a71yZeFl/2NfFeA2SbcDGFrFZ1b7dXeezR2ueMCratbONdePke1k6svGZun+GN3TEL6gfbXzvra71QaxsX5JyB7DDZxkv7g2RABgWBPK5tMOlTvPy42v5C+qfOrDJ8bSO2b0GPGIPbOZpPNs7ELAZdHjxqLheCjZ7W1z6q//vrrjmXUmpcLUD3J6p/XwPbeFxtX8WCn6t3q9fVf4gidJUzaApYVNupcgEUTrSB9bPuu4Tye+Akzks7jxf00Z/osGWwI++yJtSyVcHHns/SOnv4e3//6fqOZZfMgvWtNx9bznccJO3YNv1pfcYlJfxxlLrYuqnhQbqK/Mf42wFcXtypXGT0VWDvKS1VjWsbTU0FXgOoVFEYdFMBdoes6OmS2kYz8bP236LE+/QZQ6lrAPrR21Gi/g55PNRXqM2vRxhiZ9lkFSpu5ou16F/1Z31HzIyHS92p6Z71mBTtWEVTdS7Udnoi0BLUCiRU0qBtdjmel6kqp/fr1zd9B6QnOQ/boyTAbI7rIwW+H9G6gImApGFj2s8aZnq+u266Vs7vDFWmF6mtJBua8U9MrmOfhHFRDZs6JV3TTFbBbm77oM2cy6RRlkqMbEV3f6etmFuzHFuwK4IiGDGNewTizjAyPMcjc6Jw/dW9138xZOWfNOiN1EDhdIqNN6Tmcx/n9Brvleb7T7kbcMNbKLprMbIk6l+HQXdeFboiuqm+EB4vlUXi+MZW3HQ1YNGYVvdyAWxQhDlbIbpxBp1+1aZ4RuycQRgc4IoGDAHPvnYaZLyy7d26qgQPO5WaD/g6IqqyWqs8S/MRmXPERCXw1Yydq1o6k4W6LxfDnuHAcJyN+y2977ynvutdxsg7XmPcan/VgPY4XdqQ3nLKjM92iRP2UvsHPtB/v1dqWFV7/SN1zNMvPxVYr6wKoRhOjxxvoJHhjt3dNQw77AMy9H/+jxRtsM2c9mykmY+vwOVmvDmQIEIynUXSNwchj7BMySXs6zj5HgosrHKIZ6ZXdLOuOjLnwPa5IHbQN8BnfdQ4yP3xtZ1w1lFh03ZieeRyZ3kvDpKdxOaPpDNkVk8yk1uCmTmw9ajwC73nBbDPFn8BqdaLltNXSDHnuzZnzU8+rykxMg2V5dDvbZ5F0oN7nJsO51tsI9OWwSMfJgs6+z75mbZeQL87gHDM7q7Kb4VFAnp7R3c2+33UE9U6tNfgKYAodyyMLwRds7VSjHTSbuU+OgzpbbEM57Cxerm7yLB2wWWNHOoIW77QKouArOtV7lEZYYpPtzIbli8zWSIV0gVBz5vajUxT7xwmEv3+98ccff2RKkVKU1lo3/UCWqgEWjT9iX0kLmVl01AReveEaIxiP3Kt/fJ1hV5DpvoTpm1LNn8Acr/86pftwk51YsGChywnrN7msulhMMTlRApCqPUSA6MozqbfgxMpBjZR5sfhasQGqHfS7wEtlvD5txZpqmPJdAMob2FmMf83tirq2tz3l3EsEMi1/X8vUKOXIsYMaHuwCmEeJCYSjrmCuArs7dVD143o3jCjLAdNeoufNd1Qpjrv9rM9onhCcnuM8sdYgWdfFkGXaMucHODK7Q3ptRsfeAKN9B8/nmKkvXABhsE0OKx17FRAiKktnPlImHQBCDjTPZqy3B/cENq01tNgnCPlL/weWDv0eARguAdrbRvSl1Or4RpyXBgYKDLQhqB9kn0ejncW6WbVEiPSF0nzJog67OGpmEsQA930M2QWyi6pcVp+rZh7VfVDtM8m8gm3K8FKTh6qLJRcKrOjfVR+YWdoPFfTT/W92U86LSrT0+zuW77ojABiC1AwUbBYt9/AJM8qEO9JWVGBT7zPHRIgZ52YFmBrnZzKZfZM/NE9sMKK60fe00jyPA+hxmuIwNCZURfYIAxoezQeCMTt3HUGx1XQ/ZaZojGjaRRGkLUbd7Tkf+9k0H7I7GaDd8yOxV5o3Ay4/ag5b7Ia211S6chbi0BgXVO2E8qnyMYUEga1z6781lwrMf39/3/Sv5LOeF/qzknvGmBCDlGsXfmJrGNe4NfBYa7J+52IgeswrmLttl2JCpCaPK4MPekatkRddXkHB8zypx0F9oucff13ZhFPvXYHNOsfVj6m9B3RO1TWqeqDiCjm3vUNNpyrzu+IbmdkDNn60oh7HGMGkiED6cvgat/VT3JEBf0SzjBW21bo9fzbqMbEBZSsEqzPKK2lOZgHiZY+erxdWAfSkq+Qnaz4SS8FOaZbMVBCvzv3X1xfe42JTEduNWp7Bin9m/EsYfPWBa+fBCmK9Xq8fkQcptMqIe6K9mqDqKFRwRICH7quNqkWoKH/9fGst6ljsfOo6NLn1GnreqmylFOp16/vXCFUV9GrkViAzDbrWsm5XBUEB5Nzp3s+oWY2G3dD5wo4UsPcEBH4HKihix43PjdG7ZVH7eTFN9L9CWYrO2w+yMHoLpRFF0h1M57nGmwdHUSI7RVo0/BWHxZ1+Xb/zBHzVca4q5f3+MjA3CGt23tZFhohSMznpcSCtiJBPRY35u+cBysMNGFcARaE4jteZqcyS76okjuPANS8CULTuyHDp6kS6WBw9nv+wA2SJON7vK40CyTuMHTZlyExn5NhgTCt2z1b3YqIcx4ErZI9dEzUFnjWxVhzcftU6OZyQ9/t9i3p/f78xbAS4u8gcQGeKme/PbSAngMw10hkGEDUE75FjyaeA9puO6BHRsh0AAJBAqWRGzvschUWFeI61jVjJXgUxtAdr5CVTzwGogHkyNAxMC7bOblhxGEDpc9iR+OfB+gQz+U6k77djO41VnxhapPncgxzvoLJ/fX1to2UyMum+66PpneF3MNCs0Xkv+q/uufM8dkmFiC5bAfZoXEeBZvNsMnFdbzSwyK+BVHbVB9T+ZNHoqGHRDsxwxizAAtUw6a1lUxAZ+0x5cWCxLPp0j717Ua9pjpyMpy5nBpvpkKl7ISME9JiS5uGVcb0IGrB4uvT4THBvDc3tiHvp8N96m1UO1Fl8ReRb6as9kJO7Y6M1kIFVzwHJsnS6mBkacjTJuj3TealsIK01rzUxrncCEHkNvzuZkL6IPcEgy4o6fTtYySDe3A1LAKaPAlkPEIsO1FwT/ezB8Nr7krK107PFgGfKzQYc3u83vr6+mLZYAHwz3qsXu2BHWfWzALNN+xOpE3aEdxEoao80pKkOywy41J8DDUe49wlgrWiswkMIr9eJ63rD7IS7isqvcBZreY04i2O/ni+u519RfoL6cp+5VWa4J2YAjIYVachWzqHWWxil0ZgpthhrjSn1VWmkM1J5gnHtrA/WW0c/ORe/3r9wNJ45M4BbyXM/ohaRAq6xHk/2hQeY2PpufvTcGzBj05zW0I6DwaoZ3URD93qwYVprAejEGVJKDkguZD/OOTNwVO9ZzyrtpRpofer0altqr4pBytphOxjLz4fOccFlex/U821ZyXChMuMeM8mtbEk+by0QTvsTCXanzuEhQ9umv1JuGeNatzNjedTuTDAn7GjZ6B5NVxbBYa6lGEKhl2J9ZpTfcASgsjYLgg5dMIAag6bqtCsnUHqbGQP83JqlJvC6djCptfw7wbLQr/0kI6mRsa1AW7W/AeAatd7mTF1Vz/e1FqwbWgdsEZDkQSDZ28DssigJIV9KNaVCz9JGR0k5ZFppC8DRGDHQJ6GguOyk2vSmsu4qqCP2t/yS+tl9z+0nJXBVCBGVrbQDM9sPknzXM6yO1lkm4UmWqICFGrnc5jvOt6yDpuZNvWMNBzwCmQ0hjzuTzCIQz3VR3dIj0mGZLdN7x/v9nStCtnI50ydBcYGI7gvHecLQYu5Z/L8CAhWoYFCtx/4WQMnzpS35u9Kdex1qwxtde0YglEHFXvx3j0BWy3OYdscs5XdiPhcec6xnuoOvZERbfqY28co/H3pQ89Vb594wQ62X1tu57aY1dt1Ov/v/1ceV3FZfO/2lkD3Jd/1+JQHQx0TqwQSzx65dr3dure06pmFPrbHBonpGKeBacZPtz/RkW1O2G86wh1ZpIHSELVP9AA2tkUBE2R16Fj139adqsKrqLO3Jun5chw3MVp9Fc6u9HbOHtZxlOlCCdFR4WYZhLjK3ea293xlMqQGGFrbt9kf0HCw3Ij3DoHrvR6nvjExPrmewGcsZoPP8NX/K+x0vmuX7tYnKxidqqYHGWtEx53NOnO3Ms+vvjr8N8PWj/1DEMhIrygzcI58AbkLwTIGQIaIJqjWEAPzYcLpvdTIkvL8D8bRAqlVXD6Lq0Ov5Bd7pPom6FzBFgI0W7ulsVYPuCapVAVF0S3NQP1edMX2nRmqfAGk12p8gRX2fKngaVcD1Pd3ruq6M+qy10nhUqqAAFrMdDXAEGHtuoWd3VsvI/tOJ1ByLjlxZB6oLUZ+f67q7HOv7G7hUOsPdaKgKVvMtUIDzuFPrsHZx4W3IBOXeNMfF6QZTM9qBqAMQ2a1lrfjcC+/3RWCrGc6QF7NOIAdUSIrQAQggY7NA6nOFpMEixUOsyDFo4HdjxInFxYM5tID3tffimLtGyFw7gtUaYI2A3Vxi+XV2YI1iqu/3hTUcr/MrZbG1htW2oT3mlWCS2S7oDpDq7HNi+YQ6O+lAEJCmaK/kpTZ6uK5g/PpK5qg76y1a2dvLFyO3thlAAsbMIgU3HbKtF76+vm4GjH6u+/ZDDgy7srVmmIuGIedspXOjiA+dF8pXNmLAnc2c/474v7UDZvvQqIETRUmrrp1z3grJV8BUANNxiJVK2vuuwdHIThUfxBadocA7yCoyqPaODL3qLMrAYo1CPtc134w6j5ndmfMQbfcmTt/f31mnrDd26Zxzoh1K3UvL6248AmkkW4BFvlYy2QwR6R/I5gnmZMAeB8GMtdh1kUZIgAWtw9Q45qZvtMe4B8fF7o9HU7CD4KKBrCnHImO3GcYMpmMYDFlvShFKZ3RTdaS0fjW6+zSu9Gyao+qw1dTF1lhPVSnOMgh1FtVzUmCLrudOcHXNlWcz9+ZMlpmFY7IC7He3YA3uxgWtt1vdTjqy0WxDTmicObV7YwJUy4C2980RwQXtZ4EmtDtUYmIm+HgcB9bYDUjmnHi9vkCGaDQGGOwmuPI84B5YEdlvjd0nl08g1pZzTfbbXDMDJrIvXueJmt6yFjtjv16vsAeoG+eYGNeCis4RmCWgmB3hy7q3o6e8t7KftJ5aX8nL8hV11SzBhbUGfDgOM3aRpWcHd3ZCzjWak+C6E8ylw+zBECv6DC2DPCOM7LEG4Ezz6QdBurF4jWYMvERMIOVcYwc3wj5r+3zewGUE8SLFWCCtNWBek3WFfaEb08dVlw3ucLObzq8gnezU7/GzBvQGw4uzLaDNgi1qrON2tBa6hPJrzk6X27naBcG1D81Y8H8Gw7dHLdIEZhoDd90YsLAV62KG3s+0lyzWroVucr/ijNznhgIs2qOtHWSegCDWmguv88C8CBgqg4PPGMy4xQCvzrMZbCH3hWvJ5l8AWtZKcyzMqdTlmAul+zUtUe1ASnmXLSAHMW3zFuBeixStsCmaO8b1ZsOiHs0qvDYEiJRdE1BKOT+MZ2Jlnco/kQ05ZjQcKfIgUJlBCTnxXEcFTM0M/WiwCQB0fscYaOo46gxqqUj/GIMlZ6wnuJDvnw76yhTMDbjEfEJAMgEGfUb6UnL3/f19Ow+kQ2q98q3/t97RteqZUsGABAqKD/DMOpL+kF2j+a5ZYvpPbCExfvp5RCMoOu4JSJjh7F/xPqwRXYEmNbrSfKiMjkoOuMtXqL6sAS3O+WJjiWawZgQvoMyFe8ryU4fQxiUQ2K2wgRANgoL9rz1X/b/jOEtAyjJ18TzOZOBpHuv8ya42N4ypRpHs9q6za/tt+PHsFVCsOhDY6Z71c8u2br+DhttGfto07/f7zvrE1jvPQFCVuaqHJV/neWZprvqstO2v+A7ZnCodIblXLdfNHGwY440RKemGA61vP7OeWw7u/+qTVoITG9Hhx/y9o1Gk9lPr1P+//vrr5uvreqqXqv0irKHOeQWjc10ec9b7TtfXMx/HgX1kbjumYjOyY8RTDslHN5VUIRv1Gm/MNXEcCqS30FN3v53PpzRmPevOQpSvqFHXtbKL6aPcyRXV70r79n3d1qFiWIk/LeraqvskIzVo8v39jfP1oi04InBsO6Ps746/DfBJ4VVAhT/fqQhPUK8eCvq58pTFWpMx9jTinshosq3WTt2VgVsPowr0pWO/djR9K89Nja2L/0SqK2OwKiI98/Ndn+BkIsO+WYfAVo4bxLpvknqP6nxUMOx3jMQn+Fc3vpyq6hg8FbPuIed8g5IVzKQRkZsv/m8pzWjuKAeMIFXvZJ8Nv34ocD6bnveudHSYaLPqkJEByBb0u5bJHcgrKHqJhleQNDdlODHmqhEX9e8ea8YDc9fVqBGqPadkMZznAV9R38sHruu+h5atTMeQ0aqi/L3tTp/uKDKwHtHK7ZyoVbpSSpY7erCpRCXvjUZD6xYR512zo8p2Kizr6M0wHfAZtPzmUZ8Cu3NhiwLGYTT1o8GH7/Rc6xjXSqe/hdCMMaIgvPYXcPQz9M0+zOr+4L6duaezgyl217wV17JmiMA3ZrCFnoZi7hFr7MhrAWxWZ6ccXDVdhc6uiePFdZ0AmkUtHaaMoBjBXGNG5dJZNQMUoU7nJJqMADc2gJg82q/an3AkKKq9AjC6TcfaIOIHDxWClPSkd/0kMzIwxiAQoi5dkh8V3XdninkLI9LXNgJrcxKB0ruYfNTOgvYPo/RjDDYUaYyst6Pnvh1z3Fht7sFhWI4x3rfDuRqsNLa4ludx3hwRlqtqmGChaJ5jnKtoicGOXS309JgB5hpTRgMoPI6GuS6swYg6fINtqhtlFjXCxFjqdNaZyk6nF4ts1t4a3JQKxiL3IwAvshIsOikrjWRsBy8AdASwZME4xj5at0HknntQLEgZr0ekwziAdxjB/XxhhAG9FjvCtvNn/Vs525jOhktRn7PZgeN44Vdp8PTsYKco/VqTadKNZQ3U4Kmm4hBk1rsOzOgQyww6yuvrFUGBuYCDLDcBFBZOH9adCW+QDUCG61q763itY8a977jGzLR7d9bFadbwvsgWzTqurUeK4gqAyxIYGGNgrom/fv2CAmgrHKxmlgCZ28JcSn1e2eWdz8N0MAI4rOVFOVu7aczcjLnqYKsDYwv2XcwwweqYM+4ltiIAWshl7Hc3+GJNOLQoWwDg6+s/2GVvMIBDINyA6QTXG5suzWBMscZgcXatBaPznrEgfaJ9RUDKcikpJ9SLx7FrF/LYsWRLjUnmt9LxrXe8jhNXnJfWGmytaC7VEqgVcCHZ1/lZHbJqF25nm+xhPQMsOncuBgCOg6Urxpyh0mU3qog+dYXkWPdLB7aw5C0Uj9aiQKRQ6m5rbN5wngITxZ5rUXZusVA4yBg5+is6McuhUio603ndfYOO2I5jBv+nUqZ2qpkK/iOCDWFRBjvH4qy5zy3P7e2LVBBxRjfm3g70ToCmH9GdXPUBse1Cj3rADgDqAA2mhwMBqiGCDgJOHIUFDiAamIlRgmDSreW5hmmlWpwL7CgTZxHZyTAvcxD6b4xMw5/pI4VObT0DltuGirmMNMtqw1NOFTBRXbY7IPfU5ZWdkhIU+yXrhLrfar3yGsWnCIBLtbF6PDv3LUK/IfUewW1DM85F3U86OwimtZsu6CV7yMB9PRdtBtbR3cFE2nBR+iGAgvf7V9oBksNbwLTtbrWsUcm2Vzrba/NAGVv0Qy6sawDXo0Fe2N+tsb4yyt6VnqbMH7FPLJ9bdhXX03Lfva936jl29Oy51yS/0mMK1IbxiOXR2TwYtTWIuH2r0lU19raAWTG65Tuz4/e9nJTs8yqb6V8XmZKwWtsZNlnaI/QAfAeSq3xW/MBiHtKXXwtoBPV1zXoeaizp4MWzVKzdJCG4Qx2Nj36AbLG1/WuQCMKO7bvG33mctOHWijNgk0A0x6qbLpP91/cvynDYMwK3VpAaZHNayOvXH39grYVrMitAtfxr74Rco1ivuRjEraMG7CuIbMagxIxArmpQI2xH+SutqcFGwxGyvVQPOfzXfjIoK50B4xzNyCp46hvN5VqI0kWWwC8Qe7nTd4Bvf7vquHG9w766ZzPq3601tBdrnFYQbpX1dSAaidx7DFRwWXhT77TjzBrs2I1SLdb6745/QRfdew03YAsNcN+oT6OmOgASJk3IbbMCt8muTto/oobXKLUmUwi2flYnWwCjnjOjFmY/nuXJBKzPD2zFr3vp+QUUVkS7gn8VLHwi5YqeVaaF7lmpvk9lVp9bP5Pg8TtKWWCktvczfr6fVf9pVGeZTiQPnd4ZxVRqq1IZANw2JK8Xxuc1AihY6aDrsBYyz2LpLd51t0HfhslmWW4weNPf1TSAz9jisFdjCqW4CFw1OvFROw4zjIoOdrV0sv+mb6U25m4U4bG7JQNV6c45sa6VkT8hTIqWui9YR3HGZkZXsMj8WYMAhGQHUD2IALpCIZ7nAbP7/HgcPMfrDAZE/N4cq8UBtwA7mJ5GpU8D8TgPAIVG7aSFrygAvNaF3k8knV4Hku+C0mM61opwu4qsusHagXbIKVo4GmvyAIZlhh51+dgHwlN+qk7RvjS7lwsYQ6wISwOSAXsBLUytNGMbdT13LYisUfeA9mXd95J11dVYmuNucOxW9E0ponMhmgWTrTfUEMPCUYg94BscNwewyJDp1jARNPXlsH6g475P5VBJZ2zwMyKNkW4vJ0IAuYxE8wX3YBwVZppYtelA9hZONPfTHAvXEhWfRsIqjiZBWhrrLFC9DVI9s57FmrFAePmPLIVwOJYc3R76Q3vufn5UhtI90NRZUHutAMeiDhcIeCuFl+xZOn4LBlstdN6F6QTNDcD51clumOWQdjqGmq8Z3cOPSHV2gIynRQZFPxpagEgHO1CgjrkcV8ynL+C66IwnoI4StBiTKa5N6Vk0lnrvZPOEjhpxvePoZLSCjtAqe6ABoePARkTArWaJ/qz7J53sDIQQDLV20BleK1KlS6Mia7vumTO6O92D7UA9rpolvfWbkbaie3vvDa3YJR7O8XUtnJwCGmXFDtHeHWPgLEbYmotr1rYeoGwHC2tNoASb5DQly8jibAiwjRLeAOt4X9xL1gzv+O472K0TEz2MadPubmS6NXT01dCtY4TRyzRY6hd10HPzYHB1tJBfQ3S9hIWjReZWFmc3NomxdDIWlFLWFLgIINNCl64AEMYVzPr4OYKhTzODLvZYE2c/4bby/OvWMI2gy/tNFtLRGjwcXM5/gJ+x9y8Fz9a67em5JibCjgggRmeqGo0oWKc9qdp9rJMb3QdNoBLlPEHT3tKx26D0yhqO1THUv2tao75z1eCFK9q/6xQfbQfx6IQ6nX2faR+4CwDjHq/gVu/RjCUYrXwV1k7e7HHWZIVblErwZK3RTqO+vq5B2x7A8NgPToBvTWYFNDP4XJgRvOs90qtiXtXcQGdAZqt04um1XqmCFpV5ByiThDZBZSCTIHDBGusuXqt0bA22vBV7r7UW4Bzvg1hz74YRwLeDgUG4Y2HufW0NC7u0gj5LsG3tmlICW9cCu7+reQGDR4j6jwJPHSv2UStM1YkuUG/N+L50WYCLazKACx4kC1GbdjFQyhQ4S7baTaFbNFppdgNdKnham1UpEC5Qpfp40qG1bnhvHQOb5YXoZjvWwnl+hW5ryXrpvacNPiKVcUb9PF/ITuH94D4YF7uAkpVK0/Lo0imG+V4MWkN7KZ4ldXgLX2XAWwQGwral/Gx5IbiGBImq/WkNybZ1n/JOaEMYqDUboj43dUr3DmsH5tx+Ka8pu5Ts5zn2unC/BJgWvpkAF3YF3iVQyL6N5/ce12QdyW2a0H9RQIdgij/83s1g5f7dTMptI+8gR+7hBOjCtzJLENGaOpyqJIJH3fPdAbwCiLORcTnm2H5xa+jYTfw2pnDHISroWMEaPa9kmjW77yUrngA3EAHABGx26S4Y3wsRUGUtY2SJJZ0X1hqZpDPqkBab9GxHsZMpj6mPqewh0A5mOF5Mp2VmC/++/bctu0m4ugg8KitSc1mZjBXMRzOY7wC4hs60CvC11vBr/IrAA+Bmt4DXsg1QK/jGEgkILCJAPiMhRTZ8ZlL5oiSFTC+VXGhFL8S8uoc9L/0EBp6+v98ZBKr4SzJ9Cz6VoJ10oSNlFqE/NM8EGdk05LquUlpjBwQqMUs/A8Azc0Wtes4u1riTtP6Z8bcBPo19aO9UTin5ZEsV8O0fgUf6fQXlNCnAPUJav5uOZgG+RC//HfutOotCVm9ocI0eFOe4Mvfq+1bEW++vyE79nT5fnZn68zsotG7v01pLpat7VMMHILhQlZMUl+ZWG5GU1APuuxbKjWLqahXuN+NF19Ez7LnkdYweEJlg1+87BFd5YWQLeU8enDxQ9Nyay95VeFZG9HYmmSJ2T0NUCgYVu5h12+mUkalUNP4OAGzXnwCLOo/xjufiYaW00jGvXAsCW4wQjOuK+fHN/ItoT/NI6X0o/d57pOP5TS4BRPc3RqGlBJQukw561jShEfW+3kXGg0kZLceXexZY3s7JvWmMmDT7+yr0H6AZOvrRcTaCnL7Kc6+VxalbzDMjqCUqhYbWjRFjgeZh+dQDvjLjJA9P4E21iRx776zrkaamd9WzrJWU+uqQbeBng5S6fx6SvksEVICx7n8xEMYYOFoHjODyjV1gNFqmQF+LdLhr66MaCQWQxiiaGhMZJkYw3XwDHUXnyLnU/lawgI0eVPeSrFClA1J3EMytjAvNg+YM7kzlLrpIAGvqfRBkfwWQu0D2WO8tmISqm+G3/elOUHbMFZFshMEfRkXrYRBGhzC7B2GeHf+qPk0jJvZXfx3JZhljYGFlmjRfkzUTfTFlcIw3wVGQnbTWAjoZysdxQN0FFLVVrRuAYEbrLVgiO+2czIuOa1yYg87o2XtE7ouRarszsJnhj4jMYu2yBVOM6bmy/mnvlvMqfXZdV15HqSBd+vERSa5nNYBIBbsH3mpNMp3LjugYbWGwytBxhGPHwIL2vGpiyakcGdghMNxawwgGoMAm6QJfE69zp8B4MFMQQPkcF2BkUtN4LqUmYu/CPVnI2nNmQFfxddyBYqYdElh9BjSrDQQXK2nrDDUC6XTjMcYI22Ub2S3KJxAQ6WiRFrbc4JjBGLHcxwi9ICDcgWjuxNQ9nU0uT1P2ECydxhUEDgPiHItam8VmSb3prGGluo1mNFrXmmyO0BvWICOPgITjmu+cl+M4cEVznfk9ksFOEOhCi+Bhj1qWM1I2gQCOFaxy/WlQbVp3suB2gPaewq732OCy4Si1bLWW9czxsrZ1X5rvcjDVzpROq7aeu+MMx1QsiQYWAq8Osj47BhllrSk4twOKK4KVkkk9G3DPXtCfCl7uICmZKUcAgrRj8m1jD5HxePSO7gZYRztaAiLWOo5Id6d+pm2luR6Rxui+bZJ67sIJLLC+KoM/Ah7ySQKEGJHOVM8b2SuyM2bYrsepchtkrbOLJIFmBmhm6kbdSs5zHbWrtNj5iso4yKJLooK1dHBN+8wdjKhYgEEN08cGidbMgIBSqGesM1MvJ8ZaaGADsQRK9Pt4b1vObAETK3KR+Sl5ijld7gxgHwezCYpOk4w+/Zoqy7+zg55ngc6Bqi+We4IR7n4ra6T78js77U9NFuVPzTkIbsJLp/N9PtX6fpVlU2sGps2MDfAgGN60a4/iV1Lu5vzpT+nvfO+Sarx2HXEAYf+PPLc9A5COieoTkRBgiA7RINBnAQozALU7tFb7VUSIuTaTLn1bJ4NbcyrdQP0auima4tTGfnkugKVbrveFZFnm/AqArrYz7YyVJQDkmxQCiHSkR3CIgou5dpac1tQe+1EAkYJsaWv4JplU/aK6s+6OX79+JQBY7cGnz/2scS8ZMt97xcNGumeR7Wesuuvpy9Q9d5UsiHXtutMKjFdg6DgOAtuhr2rJjfM4b0Sm7dsKJCfwpVRkXW9Opjo7HK/zdWM29s667GutGyM3+xnEc9eMyjpndV8rMCVSVZ2nynhTkDrnK+v3epY7MedefcpGnnkdUQbG03fwsLM9upFX9uectIXo54glLFIV7ccWz6m921rLWtYLDlst91fVmakXfJf3aAEoq9Z3TTV/vtM/M/42wKcip1WBPxe9RoSq0VTZFdUI8cfmBHatO2AbR/Ww0XcrZbt+FrizOQCCYTX9NtH1ssHrJGvi672rAqkLWK/1RIprWqmUUn2HOm+apwq+9d4TOdfcV6BBm1ZzUedVCkoGoxxiPbeel4aVpWJ8Hu4aQtf5bAXcHHLw7utY26hrjnZ9L3VJmgnWCSABkHRqRdtrWtZ51q61il6Tpr/TnQ21i2w1wKtc1Hflf1uWpAyqMZLvsQYbh8QhxjpRHsYgI+Xs5tlv7bWrgSO2RJUFAJsV0sk0k4NRCynXPTbnwHHec/iprBVRNLRSSLYa0VJ2fAZ2V/XpsEaj24OtstaArajHYzQAVITal0HRGEVPXi91lBbwSyXee6fjB0bvaOPudaoM4cq83Ua9DKhibJX9WA2EOWcCY/04oN1d56Hu17qXn8BFdb50aNU1EDNFgMX5CuPJ2EmVcsbrDgw0b3iPd2ysljVyWrNMpWst2rDPhTVmzqMdjIAP8OB4x0Gr+yuaJLBhH8JWmjXYDYCs7y89M0Z0mK063DaDhs/big4haKf9SMOb4DawUyI1b08Diz8H06wHmaR01EjBOtqB6QZ1GX3KcwJJa9PiuT7B7HUn6OUCKQgEZWqwQIHBBgbneeD9/QvuTBcYi8Dk0QNQWzQkBMhx3pk2dvQjwRsxXWeyDyWJDCDw2itAmt1V9glub+c50m191/vQOr9eR6TEMsJvILBgRgbWH3/8kWvbWoO6tWl/TSitiWDazVgJZg8a2YiIrqpiP6nZwbjeMGPHbS97tr7HKsAL/6Muep2sHTTnxHGq1u1I3SL9I12h65GlNcG0JYZ5mxlrSq4LwxdWpEprr9TGVl5ZKjBgWXSq3cG2qoNasT20T7Acl+9IrnTLnCudqs3AH8WQ3yym0FCxRwNMj3p7nCfWKnOlDDcAp8oIBFvLEIBeGMlzYAr0spZ1vZYtAsqtZfBD6fStOXwRgDJsu4PnswJl33nuwlTHL85JlHIbRjCQskrAHovvKOM+zwhn2ujWO0iHcfkKuTNYpFsagOZkheqz0isyqn/99Qv9KDoNhbHUGq6IqMOwS1tIITtlaUEpNq2wJbiesptqsFiMCekpYAMRYqOolho7069cf8310ZnGZdPSmV/L0Vxpx0fu3VV0shz8MXct6R4pTbvxQ6QAY0X6ohodIK9BB3FmoC4d+mBdbd1NMFlnfe7r0COEDHZ5GT4TswF4Dwdsg0dyDnmWSr/u56r6a81B+UUwagKkFiCguVhzkaXa7gH2OrLmJlg3dylNNrrYLnf0ZhhzM2u23bvBR755jz8dHk1A0E+g2D7wqJ+YssatP8fK0glk+G37hDJrsSZMa1NQGWYbbHRK03fU7JIsVmCh/lnlrtrKOkNlB1cZk32k+XyyWKSvqm1WAbgKfFQfqvo/srmtbVDmuXZP/4vy3jOAPefEO+qi9b7TP8XIESN+g5sDvccZEueK3kd7nzaiGrYMKM07bcm18nnUSIY1VQFrPHsUXPXoOJv+QICB/YhgKAucAsANoADEaqp+gcU+/30GnfRQixT5ZOf5But2WZcNempOuUe3L0b9w/2fBrYvZhyY9gCAfmA60EA2JdyjFrEA0rXrTRYZq36fgk++Fo7yPOMaeF/vrAlfh4C7qiMl47pHkhBKILuSIRruNeVoqzBNVJ15q92sddI9a5A8f15An4qVAKGXS2ms67ryfM5SLGJOXrs8hd73thecpaE2KL8DF+f5CvB8g4Ksg0sdoWap13VlPdrqn9Xgkt5fe3fbdXwO3UOkpOc6Vd+Ktk0ELBptjdf5gszIat9XcL9Zj4ZejtbADIBgq0sXaB+01rJ80nUJiN/1/1trWdqpgrlmdjvrGYTZ863rV2wqM+pWdOZ+7MmKj/2d8S9psqEJBjbQAOD2clp4ADdaZwWVKrimyXiCffpMBY2Ako5QDp4NKu17V8dc96npnfUQ0X1Safwmba81FuWsFHZ9pgr08wB6ApP1wKtgKbCNwNpRR//VTVCvpc0mpLg6VHXuVRtB73J/nh1xqM5JrcGnwy8VoFmkETpZS22Ds/quCsHua3reby05Cz+ZNhvMYY0SALiuKF5qOxrdAli5wpDZUchqhNxTelIBjgUVRanGpebnCQJXAEFO4hhXMrj4WVppaxFEkdE+oi5MlRefwQYB1/SPrz/otEWNja/YOytYEDMMiFpUey0P42eneedzB7Di1PI3w6uC2hvkii5ajbXHlk9YFIllp1hGqEWVzrXqjJDI0W0NWUcpdcMC4FS8Y7xzHVhvC2l4Pg037UkZZWYs/suK86y3oyYRtci35tmjsyRwB6b+0do+91c1jPQ9sYXrzwRe6vC+gSNOswsBdI+LKXSwyrTgM44xgKlnCUp9O4C29QBBqS5/gCzFAB0rIFr1CZ+l4fVF4LW3KLiOYtRjz/82ODxBjj0XWx9v4P5KI9GawSdB3zlXsFh3J9bWlea/D7VM3zKCRihGlcDqa7Fj5+vr3gm76j93v3cja1EzcA0C707AZDmjb5Act70PknX0vujIgiBjs5a1nVpx4NYtcsuC89IhcvRp+Ojd994FFpoB83pn7S3Na+r7eL7b2dkMPoMp59s5mysYcoZ0OtcKoP4RXFGVIhpFEcVuLVND5NjnXpR86IxrhnmtdELH9c6zGQ6Ma8D61kseDmhzMm60t83U/ZIy3c+TZRJCDhGyq7159F2DZsydmiImtuZeqTUEtpBzKMeuyp90DPU60xczkOV3R/RpnLl7AKI6Y7ch/bQR6vWOfhQA1JnRWz6nmltmB5Y5sPa+y7MfPIObNwI/k3aam2fdKc2HGciwMIFwBgtQZsx7qoo7AXbNc9YUCqYH94Lj+5vy/To63tdFxh8cleHhaGFE89yWLrnGgK8B83bT9WtOMgIjeKeM9Qal9BswPOXuPE40KNg1c/9TH6wMMGgdNH8Az+W4YqSydkT2X8h4pFjF+qLIrZgzNQpfz4/KCJGc/GD7FYeJtEsBdHFGT4Ku1/WOdew4jp5MgyqXVRf23tF82zCghEHOuPaT2Wa7/zx7EQEMxRPivI/aw++3nqnhODukBhN4RE1b7iBZtjLE43mWofU7Q7LOJ+/7c/3WYimI5o3Bn7miAUKw/KO5D/UWgymuFPNytuhaYy4ctojAQPWdmE88xwwmHcE1zTyfcWFOh63MReC7e8lsaAd1ajAweeZEyY2pusCxrmtEuQdlf1hhl3uuzbIFBIDP7r73GlBiNlU/qgIJMaMJUniR7Xq2Vn/q/X6nrVx9A/1Z7ea1Fr5eL8iukQ+W4EPOn+8sg1gLNUSM6Uyf6+kLPR1jfUbzwHMLkQljUVuWZTH0nF+vr2zewmeT37RJLQBu/sEZDZJu52nsQWb9HKl3+F73eb8TXiQ3IaMgwVOBzNZ27ba6PxKkLTZqNu3B3S+UHlcDln52+Nw+6HICb3VfvN/vKJWz/cz0u8dI9jeMmSkAATzau6HTo46hQI3lTgYfVwMIXaSUR9nW8tErCDyKrhyLIFiVoad/U0GXpy3/lNc6p/UMfL1eUFOeepb32C/S/dVvlNw9dWplrPWSPXXzV+BZrkdEguM4CFDjXg4K2Hq/4ht5vainK/loUf5oRB3410vNyPZ7z2DnyyeWnfR+v28AfrW/9d26958+m9ZRP6v6QHOXLPTecb5e6P3Ar+tXBF0ie2nO257THMjvwKR9ypqAI31V2pbr1oF9mWXZGl3HvWXN5bU8muyJvXcP0i33m87Sf1pLXbPK4moTr6M0iCnErb87/jbApwKudSEFKmnxK3Amh7NGharBqEWvm1jXkJEmoRUtUhNVGRrPDSxnrQI61cDSM+jeZpYMv+oca1QgoDLxgOJYzV2EsYJJOiz//OvPVNL3A7awgIpRU9Fp3a8+c2Xs1U2iuZATU4WO0XM+lyjB1cirh3+NatR6d3Xe+WcctAeLeesZOO7pGTLu9Q573SKltBz2er9tNG/g835/XlPr95wnKpF705T6mXGNVKIJUuMeKalggTamUgieilyF4M0swTtrtovcVjkFnTwxwNjZdlPax1VB847ed1RmG13R5KBtpZ97y5kqvGY0JWBLvQQoJdOVKadIh00DYq7ewRIFgOFb7ofqILTyXmuxEyLaQw7oYF+PeWW60n6feghW4L7+rPn9MwR1J+a8A+jArgVGp3f/7rnnKmhfjda6vpKbCgjq8wQ3ZTQQvH1GPpd71K8LY6HdmQQyKkXhpiyShaV5EAOw7vVm931XQRntV875/QjwuK4MfOCeqkaWomdar3QEr/k0NBvOoM+riLq+c/QedTf2fFTdXXXz8HGbj6eRdDxSEtZaaWSJfVwNttbYJIAHOosWs+lMGGGqfSiGiwByi/omxg6vmcbbyByaUaetH3f26Vp0IObym5xIXwXRInQBCUJzjgT+6mdzTRUE77ueIoETfp8yd+Z6jzVZdBlMiVfaVsc+C8cY7LJY9FqdO9gurl4DP2KjinmjtVlrRffWYBf1jmvRJmjaq/hpiPNd6eDW955rhqEZTlxrLBaNfXaQpbMNqMpi3YX8t3xJL34HmyP1SWuw5cnKrYX7UfaedITmYKdah8HIBYszc2YX+MrMqvtTjr30Q61zWZ3XOZmuyU7K90L47is7bibDLh5de2OuiekDWKpvG42YWtRFIikOTSBJMrHoHE+byRq85kVdbgQxUwdGOrOM3jHV4ZS1Iue1bR6uXRj1jWywGWeUBZB+vKI4e9outWQCojYP5fd6vzG8AFnFHqw6kP++g4+S15THslY6D2aUM4hdu/cPSpOl4jzqWX+vv+7A3HaeYyFMz099rM8o3Z8ZFA737dxW524Up3e/H0czNsqiLhGA/fvsE62FgkCS03Rm/X7m1PvWelB7vWey5/Z8RLA26sG1vhkhW3dvNsWa96ZwVZckgBHvQG6QJQOS7FLdn7JdZUr7henpFAl1h7ZI12S2BvBWMEbzH6wTNHVZF8xnqbu3E8s6YteQ37BynQXw9DgvU0cXOQCQoKEPMnbbAbyvgYaWjWrC6L75XbpGtaulNysoJ4BtrZUdJyvAU4fsL4EB9VwHgPd15Rn7tL1/BwrU/a7PMBX8nkml78j3rGdXDfL03plmarsuGQM+7JxLJhPt53ekJWp/IIOynuBCPQvNFJjcwONxHKyH2nfjJABJDHk68xsYEBgC1kEDgzbHse83Rg0kelxzB9Xoc1Dy3A2t4bYW7l4CiNzT1GPBAkw/ve+soci6uO1ruwONshfot+gJQ/c0MbMLA9wi+we76Yn0qoI00mey9ar9Lf2kBkFLZZcct87nmu+6d9Za+P7+vp2vum9NR1VmnORGRCXJWmIYa910wRgjsYpXyZqqxAs4bnZj9dFfrxcbThX5z8BN6OCKp4y5ST27NuMoGMT+7Pev7/xs2qZ9n5fneWK937fyS5JpzdkNLJ53olbFceq5WP1K6ZSKy9QzsmIK13Wx0Zw7S1k1licgqeO4zQ31ohpMBrP53M00+RHPwInmVtgPn0tlRO5rozIByj6UXdw6sx9qd2HJQpWTqo8UJH/iKc8z858Zfxvg++v7z9uiaXP99f4TAKettRKF+8VDtWV4ZIOEOmy1yOehIt6bpZTxsBbdWLHZFkpjdHimpcy5bvnr1WlhZ6aVRmFSx+OZ/uuv/zNTJSo4Qwd1p2oqIqh3qJGVNMijcGjdIMkILFFNMnFafladglpv+PP7v3mtsRkbAvyO44CN3Y2mNRZ8lzNIh6BsmtKdprWOo3X89c3oK+dnxnVapsOR9LVuh7PWa6eKbpaIDbDQdSji7E5z6YDk8/z6HuHh+m4moHsAyeQYwfjSwcazouF9/SJLzFj4OuuqRde+OSdbugeQRYejZ3H4//5zlnXbhpiMdQaglEqw5WQt1VwS+LAdcB7CCBmskUmgRxFtFQXOtI041FjMn8aG/bdlpyi1ONe+6gEEck2o6LaStgQLOM9hUMqQ0l7wqC0QMib2UnV2kvodoNv0iYbdYIVzEqDYUE2xrSN6E5NFLCKF3pEy3NqudcDnC4CgN/ivvad4gO0ObQI2W7d0sM7jxF+//gp25H627/eb8hMMUoFmhq0TzCLqE0aJXUJekNEyARBpt8S+SOAm5nKulYWENefquKd6cg4AQwY6048cmx21ogadZFo39Ig8u3NuZqQ3ORRIOZjyWGpAPqNbMiDkQCvSLN2qQ0gp+NIFZrsTK1kEO/VizplgR0s6vFLMNyMAJlng5PKZkE6z9IwCAErnlu4Zc2T6BXWcdBF1x1/ff+b7SdfQABnpEFsDrkGA5miqR0g2ZQuZ3Y5DsPPcMyWPHRaX+ibg+o7GCH/tmkQ7UvffKYdzzEwP5BrP22fFWFStOUW+1wp9YUrTAuz7XtJiZS3HCJ4IJEu/kim/WdNxOf789hJ4aDhU17CceTqP1prAezt1ZKXE/Uc811x7n3oUIm+GFgwkXJZA8u7k6Zg+8P/6f/8/oQ1H9pRl6i5MBe/3HMhmEEWRGtzx3wIcnU2NjkjLgOZ3Bfvjz5LiHCPlHtG9cYnxLeNfDjKZFbIjcneWc9F9RYocAT51g1zBIpM+OCITYstVsJTaPTgo3URABTulM9L6uPYe+74w9+N8nGsCfwk2CAfiPFmTVQGg2HcWBddnpLc4HOaW+9/dCRy2rR/llDk3HuXG6LTxvSd+fROINrTC3FD6M5V/71FjMAIFLAHheR/pADFcez8ypdbjXF5ibcFu552eVH+n0hHAqCCApXzXPcB6PzvNhp0pLVn7ZsB//fl/5rlb5aGeITpzK3NuAy4t2Z/LZ9aiVCDBXew1D31pea5KH8450PuBmsZLFkLUVTXdJ2TXJ44edVqdwDJM50BcN2ZODQHUGTRlTM1jgl2nGsN6t3SsUWxq7BqtMgukbz3WRTKl91OTMnbdrCm8CtwKbAA2i9Yz2LzWIrOu7JUWILdSsnReKFVL6zWnQBcyhY/OoPiYE9f8BkDAXXPgANR9PAMlCHbwHMWmpLxc3wNjTtqm8b7mhrV2454xmRIpOwEAzD3trCOCdtcYeI8NFOLxN57V2540oj8Y88L//q//nbqO87/w33/tRoTVSVUWUNr9xmuNaKCnoAcd475LgoTd1NsGVSroCAPw59apaTeGL1IZdh46tbdGH7P4Kpwjj32768G1xjqv8l167wx+yz8swZQNaCmwUp/Jy7tzDvGLz6mmJb2p4Q3SBpFMSca3k89/K3WedhHtmh41vrOjcrxn9Yt9rTg3NiuqNZ5/St0FqMN1PWD7XTUAWXWSu6evXkHJ9J1sC9cM2512Mf0F+koMzA11C5UNGyaLbAIAycZmaZcJf5MZuIo/ZWbw4WknwD1l4b/+/C+8zhf++v7rBrgApZ5274Ev4LYmVZcKT9AZcZ48m24NGEKHKJAgEPAe7HD8em/gd/9HRtnrOFNX1X1g37vsh5mh/RV2sTZAHGOJIdjGO9Z/U/ble8m/Q7DuAbsRWY7jwPXnewPLfyHqIdKOTyDuz1b8P9nI20eb6cdb7r/WGtezbdKXvsc10zkQGWlrYwqqZT/njLqklLHeVZ96RfmedmMCYq09T6B/VIP97otn4AoS2NplLliblHJyzU1WWVEGJNAJ+r1vytdxHki4UA7NW7szdHcAgOd5Qp2G3+FnCv9wd7znG393mNfQwWd8xmd8xmd8xmd8xmd8xmd8xmd8xmd8xmd8xmf8W432//0jn/EZn/EZn/EZn/EZn/EZn/EZn/EZn/EZn/EZn/H/r+MD8H3GZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ/wbjw/A9xmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8W88PgDfZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGv/H4AHyf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rn/xuMD8H3GZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ/wbjw/A9xmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8W88PgDfZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGv/H4AHyf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rn/xuMD8H3GZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ/wbjw/A9xmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8W88PgDfZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGv/H4AHyf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rn/xuMD8H3GZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ/wbjw/A9xmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8W88/j/LHhpQ/ka18QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 15/15 [00:02<00:00, 5.74it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "results of current batch:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAADRCAYAAABRqwx3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOz9V4xt23aei309jDRjxRX32jnvk8lzeBiuSJEiJV0FSoIhQDBwAYcHvxl+sR8MP/vVgGHo6VrGhQXDFmBJ91qiRFIUSZE8+ewc1l45VK6aeeQe/NBH1Vprn0NSV3ywDzB/YK2aNeaYVTXHHL331v/2t78J771njTXWWGONNdZYY4011lhjjTXWWGONNdb4mYT8//UfsMYaa6yxxhprrLHGGmusscYaa6yxxhpr/JdjTfCtscYaa6yxxhprrLHGGmusscYaa6yxxs8w1gTfGmusscYaa6yxxhprrLHGGmusscYaa/wMY03wrbHGGmusscYaa6yxxhprrLHGGmusscbPMNYE3xprrLHGGmusscYaa6yxxhprrLHGGmv8DGNN8K2xxhprrLHGGmusscYaa6yxxhprrLHGzzDWBN8aa6yxxhprrLHGGmusscYaa6yxxhpr/AxjTfCtscYaa6yxxhprrLHGGmusscYaa6yxxs8w1gTfGmusscYaa6yxxhprrLHGGmusscYaa/wMY03wrbHGGmusscYaa6yxxhprrLHGGmusscbPMNYE3xprrLHGGmusscYaa6yxxhprrLHGGmv8DGNN8K2xxhprrLHGGmusscYaa6yxxhprrLHGzzDWBN8aa6yxxhprrLHGGmusscYaa6yxxhpr/AxjTfCtscYaa6yxxhprrLHGGmusscYaa6yxxs8w1gTfGmusscYaa6yxxhprrLHGGmusscYaa/wMQ/9Vf8Dv/8c/5ZWXX6Gfabz3GAeLZcUsr1jMVhhrUdKTJRGR8Hg8wjk2NocUZUPbGpQQCGA87pEkMWVZI4QkSSKUUlRlDUICAqEkUoJWgsGgjxTgvcN5kEIiBDStZbVcIaUCIXDOAR4hBRKBlJIsS7DW4DwoqQDweFrjaFoD3iOFJNIQxRGtsVRVg3OgtUYpCd7jvUMpiUCSpjFCCpyzlJVlsSzw3qG1RioFzpCmMeNRj7JsWK5qyrLGA6u8ZL7IibRiY5gRR4AXeDxxHGGtwzmPB5QUIAjvRWmcc2gtqRtL0zQIIRkMMuJY450nSWLiWKO0Cp9Ra2lai/ceawzWWkCgtEYA3lkQ0P2Hsw4ZLjTGGTwCkDhrkVKgtMJajwSkEsRJQhzHDPo9dKQRCFASIQTe+3Cl/fmvCD/XX/y2pyG6z+VZeB+OOQ9NaxDSs1jW1HXF8emUe3tn/PH3PyIvCmrbUFU1xlmatsU7h1aKpnUIJRAI/vFv/jwvv/oaQgikEIjunxTiqXvmyfFnz6N7jvA+CZ+NMY68qHAWYq3QkaCfpYxHfSKlECJcB4HAI2iM4/BkQlHWSCkRgFISKSVt24KHNI3RkQIPdd1inSeKNFoJlJRYa/GIcG2FomkalFJhTDQNvSwjjjTGGJJEM+xneGdRSqGkwnnX3dPno6H7v/sAnnwOXzjwkx/cxaFwXboHCBrrOTqZMZku6fd7JLGkrGryvKKqGowxKCVRQuKdQ0WKtjEI4dEShoMeSilm8wLjwFtHkkQIPEpLlFTdrwrjXiCRUiGlo9eLGQ76CCmoqoY4iQFYLFYsFwVFUWGtCfeoAGc9eE+WpbSmpamb7md6ojgiimO8d3jnaVsTnhMCraMwbpwlSROSOEYpQa+fcXBwxGQ6Jy9KTNtijMHZMD+lacLW1iaDwQAdxRydnDJfrjg6OiUvS+q6omkaqqoC6XEOrPPEccovfOurvPLOV1FSIoVAyXDPKhnuVSkFUsjw9fyYOL+vJVKA7F4r5dPPPXt+uPdBCgHd4/NxIAhfn74hzsdoVdUoJYmjKNxnQF5ULJc51lr6vR5JrEmTCK0kCIExjuWqREjBxnhIpCTWWYSQeATGhM9KqTCv1XVNHMcoKWjalrJsUFrTNg2j4QAp6eY6qOoWISSrVUEcxySJwhpDa8N1xUPTVGRZysZoSJJE3esdddOipLpYP+q6uZjH0iTBOoNAYKxDKoVpG5Ikpm0NcZywXBbsHxyyvb1FmsWcnUxAhGvvrCNKIsCzXOY0bbg/Br2E8caAqjacnM6YzxYgwhp4+dIWaaqpyprZfMVyVeIF9Ht99g+OEQIuXd6myHOs9RjnQEj6/YRBL2XYH+G8xXkoioL+IKWsDJ9+dpf9wxOMcWS9jK2tDXpJxHK5Is0ynPMUZU1ZVrSmpW5anHcoqdja2ubypS2UtFRFgY5T9g5PuHtvDyElxWrOjRdeom0q7ty9zeGjB/ztv/XrfPvXfhPpbXePnN9HF4sF3oO1DX/8e7/HrXd/BFIgk5Rv/7Xf5Cvf+AZSdzPqU3NSmA7EM/OR6B6cz+Xw5N5+ep6/mOOF6O7v7l5/+vnuBz8ZB9333e85HxJPxscTOO8xxtM0DdY5lAzr5PlcIqVEKUmk1MV4DGsoWAvT6ZSyrslXBaNBn82NEUVZIaUkTWLAUxQlUZKwzAuUVPSzmKap6fV6lEWF7FaiVV6SJCHWkLKLh5qWtjUMhgNEtw5aa3HOYZ0j0gn5aol1hn4/46WXXuxisrA8nP+t/nzhfmrZOH+u+2QvHnsfrl/TGObLFXXdAp79vQPOziZkaUqv18Pj2djcoCpLtJIoKWmNY2M8RinQOuLg8Iimbdna2uFsckav18PUNXdufU5RlKRJ2l1LS13VJEmCTjTOwmqVo7RGSkXT1CgtaeuWurFonTAYpjx68ICmLqmqlrauuHKpz/jyNp9++AF1Mef09JBf/rW/wdtf/iZtZXC2od9P+PSz97lz9zM+e/9HNFWDEJooyXjptXfY33uE1rCxscPu5Wvcu/s5wpe0zvHmO9/i+vUX+E9/8G957ZU3WOUrPIJ/8D/5J3z5S1+jHycgPUJJIq0JsVaI2M7Xcus81gl++N57/It/+S/YGG0gRcS3vvVtvvmNrzPuZUglkMI/+ZzEk9F4MZYu7usn9zs8GR/dd8+c82R1eDIWfuK5Z8578v3T4/n82Pk9dnGfdV+dD4+tc7StwRjTxWoSax3WWbRSKCkx1lEUJVprokjjfRh7zkNrHWVVU1UVkdZEWpOmKdYajAnrWL+foSTUjWGxXCGlpKobrLFhbyDCetTv95F4hJTUTUtrDM4Lzs7OaFuDlIJIR/T7Gb1ej6Iou3gebty4jhICZw1KRazygrqpL+Lv1lja1rLMc+q6ppdlJFGMtYbxxpjpYsnZdM6de/fYe7zH1vY2u7vb4DxlVSKEoG5aJpMJpw8+48ff+TcoFaFVWL/HGykaxebmDk21pDJzjDU0rSfWCZe3rrA93qUyOYfH+5jG0vgG7wyDJOHSxhaLfApOkSYyfCbOcXnYY3tjCyUN02nBYDzmt//J/5aPf/ynPLj5PV5+7W2+/ou/yUff/R2Ws2OWRcEv/e3/BbQz7r//B6SjG9y+/S6mOEG4mrKymMYx7AukcZTO8elJQ+08VWNZVI7RMCaVDmMjvvSNv83NW+/StiWvvfPr/Nwv/y22ty9x7fIOP3j3x/zZf/zv2b//IzZ2bvDf/M/+dyyKJW+8+Rpvv/QisdZdlEw3h/puLyNw3uO857s//h7/7L/7b9nevsG3vv3X+c6f/Cs2N3f5G7/+25StYf/4MZH0/PZv/i2U/0KM/YVx8MW1gy+sJ+LpQfoTZz49WP/8M85/t7j4waKbO8BJwcHRCff39hn3h4yGPfq9Hv3+AC8lZVkB0BjL8dmUh4/32d8/4M7duygd0R+OiCPNYjpDas3k7AjvPe985eeJJTRty6osKVYr+llKYywWKPMlR4/vI3TMzuUbFEVOv9dnuZhhnadtDFWZY70jins4a4l9zu/+zj8n62Vc2t3h8PQMYxpMa+lFAxpT0zQ1bduS9frUbQM4+sMxWM9yPg2xfXdlwlR4vt/zRF2coWRYO50TZLECHMZ5nBMoLekliipvEEoySCT9TDLsecraMc9h1I9RwpPnDZWRWGCyasLvkhApjbUeLzxCOpJIkKUSbwVaC7JIIoTHWUskBYN+RGMEh6c1HonA8eLVEa+/eolHe8dcuvwa1557hU/f/wNGwxqlMurcoVTLYtWgpeYb3/hlNjLFZ7ffZW9/Qe2HbIx67B+fcHBcImJYLhsu7faJpCGJFK+98Q1+7hf+Hh98+H3y6X1eefMdbjz/ZR7ce8Tmbo8sTti99DavvPkK/+5/+Kd8+sM/4m/+3f8lymse3HqfbJjypZ//Ld7++i8iBBzsP+bg4V1GG2Pm8xP+4L//v/LJJx8y3nqF/+o3/iGz6RwTSf7+P/jHXLryPGkSdR+SuOCDBOC8wHnHbHbGP/0//x+59ckPiIZX+O1//L8iSXp8509/B2UtVy49R39jE+kd1rVMp2dsX7rE3/ytv08cx92ouNgRd8Pk6dHqn/722bjnqeeeXqdCjOSfPPaBH3Ph17B37w6//Vu//ucN2P8s/JUJPucdq6JGCk8SaZarmv2TOdZ5vHOkkUJgEK7FeY/UijSJKPIS40AKsG2LF4HkiuIYpVQIfG1YIHu9hLYNGxB3HjkiyPOCQb93sXE1xgYyo26wTtC0pguQBQJHrJOwQXCOpmmIIo1EYFqL856iqjDW07a2W8gjvJfUjaHsSEbfkXp4iGONQCFlIB+NCYFEbTyLZUUUayIpccbQtg1xElHVDW7myPMS6wR10zCb5Rhr6adho+mdoW0EWiukkmit0RrKvAbcBWnmPXjn8NZgvURLAXGEc7BcFnhvEQjiOBClcRKF6yUlWkmc88S9jLqucM5jTQuEzYWUMpAcLgQxwoHWiigOwYQ1rlsTwufkrMe0hjiLmUyX5HlDHCsiLfFC0u/32dwa0R9k3YbKX9z8nH8forWwV+bpc54sPtY6hBSUVcs8rzg8mQGeT+7u8fDhHnsnZ0zneXilCxtFoSTCO5IoQhMIUq0NshtUstt8SZ7exJ1v3sRTm8EnG0Lx1Pfni+A5VquSsq6xxoMXKBkTyZi6bZnOl/SyhH4aI4XEIajqlqPTCVVjAIHtCJ+2bQOZLAVJEiNEGFNN3Ybr4wnnyLjjFxxChIDSukDcVnVNEoXAtCxLvE8QePLC4H0I4ltjiOOYYT/rNqhPCFfhBf7pQPxpKvbPCxaeiiMkIKTAo5jnJY8PTqhri7We+WKBMYa2afBC4rs5QwgCkYMnSSMqaxAykJ2z+QqtFcY4lNboKMI7S1U3F+MwijRRrBBAFEnSNKKqatracO/4EY5A4ow3xlRlRVWFQDnWitoZrAv3MoQNwXIxD8SpcyRpTBLHeDx1WXRzYCBQsywLV8hbtI4YDvtEsUZKyWQyYW9/n8l0Ttta6rq+IA6yLGN7e4ut7S2KsuTeoz1OJ3NWeUHbttRNRVWWHQEL1hpwnihKcM4SxRrrHMYGslFKET5bJ3DnhJ6TSOmRriP+OvJAOBGOC4HwPiRb3FPktvgpjy+IEDpioxsX8ITYIBARrbEY60FKojjGGosDZvM5RVEhREiMaB3maa01QghMa7A2bFRNRxDKNLnYiHgfglClFNbai/FqjcUJH8aQCGRE3TQslys2RgOkIBBtkcZ50EpSVyVxNCBLM6hqirZFCtBKUxYVprXs7GwSa4mQgiSOscYQxxHGeuq6oWnaizlhOOiDd9R1S9029LIUpSRaaR4fHDOZztnZ2qZuak7OzijygixN2ByPibOU+XxBWdW01tK2DUpqvJCcnC15vH9M3TZc3t1iNOwBMJnN8M52BGdK1otRKpDMG5tDbDem0jQOwYqHwXDIaNjHtnVIRCCYzOZoFTGbLpnMck5Op0gEgyxla2sDqSS2rXjxxjUqC++9/xHzxQLvPVprdnZ3scZw/eoVsjghXy7Z3ByxWFaczE6ZTE4xTcloNEYPh+w/vMf9e58zPTtB4rCmoSxWCG+Jsx5ShJlInm9PBDgEy2VJKzQqilgsJmz1R8ymJ5weH7Jz5Wogwi7mqifk0jn5/ExeogsnRPeN/8Jc/kwu4y/aH31hbhQXP/P8dc++WHSbwKYx1E1I4CitOoIvnBOSM2EdtM5hXUgmecI9vJivME2DlIIsTdCxYjzsoYVnlpc0RlOVOVmSEEmFMwahPDjFaNCnqurwe6KYoihZrpYsloIsjSnLgo2NDbwLSbuiKOinPaq6Jk5ikiRlOpsxPZuwu7PDaplzdHhCEsXceP65J9fTn68m4P35pxIuuv/CxRRPkYKz2YLJZIaOYuaLBflyyXKZs7uzzc7OLlVVAgLTNKRJQts06FiT5wuatkcvSrl//z5KR2xubtI2DavlgrosaMqCYrUiTTIu7V5mMBzw8MF9qrxCRzFYR5am1FXNYrGgrqswT9Qt461tpCRs8ISi1+tTlyuEK/G2pK09n/3wU04nU6JYkcSK7a1NnCnYe3SX6XRCVa7Y3N7m6pXnODvYY+/hQ4w1RN7w8M4nNHWIp4vZCXsPboJUxFqQ9TdoCovUPUbDMVI03L//Md/65i+xOd5ilS8RzjDPc5z3vPDctYuxA6K7vuGzWOUF1oOpG1bzKV/6ytd5990fcOXyJUavvc6jvceMx0M2hsPz8Owpvt0/dXN/8dY/32Q9GVMXL3zmdU+OP/OjAdGd99OTvufjOTx2PhB45xGLc64jJAXOeZq2CTGYCsVKrpsLoyjCGkvTNpRlSZamaK2JI90db8nLEmNdICd6PawxNE0bSIEsRSlBU7e0TYuPNMcnp8Rx3O1FWox1NK0jSxN6aUKkJaK7BD7qBBHG0MsyFnbFYrkK+5e2ZjgYkKUp1lmsNSzmC8bDwcUV0EpipGQ4HOK9Y5XneCmJpMLriEGvx3g4pDGGxXLJ/QcPeXxwSFXVPP/8DYajEbFWlHlBXVY0pmIxn3F0dEQ/EiSppKpbsn6ETmLGO5cR7ZxVcUKaaPJFgUPhvSONM6489xLTk0OmsyN0qmnbhixNsEZQNDWn8xmNaRhnKb04ZmEN1jhaJFIZTB1iPKwgX81ZnT3Etg390SbD8Q47l67jnGc6/5z69DMmJwf4dIPKNjTlGUI4tBSk2iMU9KRFRRJvBLs9hcdjheLOoUF7GGcxZdPy0Yd/xKoKCbjIrfj4w+/yta99g7Pjmzy4fY9eKulnPXopfO97/4Hf/Jv/gM3hqEtEK4zzYd/1zPQe7sXjs1N+/w9/j8YZrt+4gXWS1mlefOUtHu4/Zr6ac/vu5/zcV78EXT5LcD4vfoHk/mn4ixejnzztLzz/izstf/EH5VXL2XTG0WTK2eSMKI44NVNG4wFIxYc3b3M0mbNclQwGA2QMn318i9l0ymo5J0sTtjbGKB2FcSo8SkGkI4ypOd5/wKsvv8zm5ia9PGevqZjMJpydnnaLfkiE7165Qa+X0R/20ELRVCtOjo8QUtHrZxSrElcvWCzP6CmIdcyqLGmPTzFlRWMbQLEsZxhnQAiiKMJZg60bkLA4PQv3oXtCcgohARc+GB/2psZ64khhvQ/7vC7m1BJ6scS00DRQ48h6isujCOsMy9KAUAwzRWsFZ1OLVoHItK3DqyBSsB3Zk/USyqK6EHMIBcY6hqlkdywpS1iVDikUcRKEVFVV0x8kLMuGYT8hjuHW3UMWRUNrP+feg88xbYOOEky9pG0FVVOjVIKWFcXZx4wuDUlTg9SSX/z5n+O733mX5azguat9atMgvKcoK1rriZXj8vKUH3/v3zHYHFJ29/nnn39AFll68ctcf/5VtjdSbn74J3z6/ve5duUqL914CeMVl649zw+/97sc3P8+Gxsp491XyacnWFexmlrywjGZGRbzgq3NKf/6X/xfePHlL/HVX/5tilXLpzc/4Utf+jJahI/o+PQU4xw7O5e7/ZLl3ffeY7WYc3Z8xAu9Ifc++S4vv/4VTh/chXpJP1ZsXb6MN5b56YJ+f0AS90LM69zFPueZxYe/gMgLT16c7s9X3i4Z9SQx9VNIvvPnn/o9/6X4KxN81rR4PI0NapWyNReKjUhDIjWxDMy2Upqmbam7MNq7jiQSgXRpakNVVGS9BO89TdNS2nMyLSZSCussxrY4oYmiKGRh0xitFOeZB6Ul3geyRClIYo1zMih0fCBQ4kghZcMTxZOgaV2XvQ4kSZeQufj+PMMWRzqoTAg0cV01QQmoNXllOJqu8M6TWk2sJJH0KK1wzlPXLW1jqFtLXtTkeYnAMxykSAFN06K0IlISIWUgzowlzeIgYvSByJTd5NRaAxK0DplJb01HTLlONdJirKUsa1SpWMxXKKVIkiQoA7TqCBFJK0MA433IMjrnOsJF4EX4vecTn9IS6cKGt2lD0CMQ5KXl+HgKUuOXljjRCCE5O11wsHfMxuaA7Z0NxuMhSqsnIZ4X3WfriLQOgY6xgQC2jlXZMF+uuHlvn6tXdnjw8JjN0ZjZcskf//BDThZLTFEitUThkXhaAd4GpYESglhrUgHDQcZktWKz10edkxsdSfFE4fHFf08UGjzz/fmxEFzmecFimVM3hl4vw3t/QZICmNbQyKA20EpT1g0nZ1Na48LC4j2RDqSxdRbhg5JPKYkH6qrCGEeSpnhvQhBpLNb5sBB5TxQphPX4JEIpiTUGYy0IQVFWZGmKc47lKqfXS0EIlqsCYwyDXkp8rrrkqcx9t977v2DOeTabyIV6xQEnkzkHJzOqusEYx2qVI7vPRMcRdd0EwllrvDN4D3EchXuvo3ubxoB3aK3I0hjvPVVVYa0NRL4MZHiaJAhpSdKYXtajKitWqyXOOpz1pL0MpTXz6RwhBDqKaJuGuqou1JLGGrSSJElG23rSNEUpRduEbL5zISkQRRHY8Plaa0iShKzXp9fr0bYtRVEyny84Oz0jLwpMd65SkjiOuXrtKuPRiMl0xnsffcbZdEpRVjgHddPSNDXeO4w/V71KVNSNaxeyxMKHOcwYi5cC6QXed2o83/0TvvsqkF7ihED67t535ySgwImgkA6E31NqVfcs2XdOToqOvLhQY3SkuHPhvj9XJAnvMW1QR09mszAmpCRSmlhrsjQJa0BjmC9WQdXXH+CNw9lAXvWz9GLsnSv3Lu67bpwJGYg57wVChPvsXNFV1RVpmpDECa0xgRxIE6qqoigKtB51quYWlcRkaUZV17RNy2KxZGd7I7xnJQMJ7qGuyvBeujnzXD3VzxIirWg7hbSQmtt371PWDcPBgKIoWK4WlFWDVpLNzTGboyFFUV+oBIuqBO/ZGGc46zg4OGQyW7C9tYX0UK5yEII0y0hiTRJvh/t6sWS+zGnqBiEVo34/KDkjRdbr0esFcmcymTIa9jDWkaQ90jglSjNu377D4fEZGxtjoijGGYNtanavXSXWkv39Az67/5D5fMVwOGQ8GHDl8mWm0xlxkjDoZZRVg4wTHjw64uD4jKJpaNuWjY0NHj96RL5acnL0mHx+Rl0XaK3Ye/wY/cH7SG9550tfIeuHDa1/avMkBORlhVARXmqsqVlMTjk8OOTa8y+xuX0Jr8Nn9PS89HTW9UKd8AyD8FMIhycy8/Mw5S/BF894Stl98R7Cg3Nla9slEujuYd8lMIUQGBvW+fOEmxAC11isc0ymcxbzBdevXMZbw9ZohLEtxWrJcNCnbBqcaxFSYL1H+bCujoZ9Eq2ompZIR6RZxGKZc3B8RJZmjEbDsC5VJYdHJ2xubjCfzSmKnOtXr7KxMUbpoALvZxmr1YqjkxPGozEb0QZn0ymXLl+ilyUXSahngtvuzYbAWFyoy86vS1W33H+0hzGOMi8pihOa1mBMy+XLl5FS0LYNeV7gnGcw7KOUpmhLrC3Z2d5huVry+PEjxhtjtra2WS6XHB0e09YNvXHK3YcPqaqSJE44Oznh6PAA6yxbu9tMpzPm8wlRrFnOFzjvOTs9JVIKHaVIqWnqmp1L25wdzcmXS+qqZH52BkpS1hoZB4Vhf5AixIBPPv6Q6/M5k7NTvv3tX8IaR90YHu3vEffGJFlGU9f0+hlpkjKbGJqmwHlB1hug4z47G5u88uKrbF66yuzoDrQLPvngDv1Yc//zD/iX/+Kf8c1f+TVwktHWNi+99PJT9/uT21MgmSwm/PF3f4CUihvXr/Lg7uf86R/9LrtXbzDc3GGa5/zrf/uv+dJbb/Grv/zXuoTsF+/uL9JvP4Ucf+qsL/B/538aT4biT3v1k/3UBS0vnoxRYy1VVXUxgsBa06n1Q6rW2Ja6bro4Qp6PSIwNcdVylVM3DVprWmNpmhabxKTxeRJPsFitaOqaOEmQSkKXNK2bmo3RiH6/h/Oe6XR28bdZY0IsEkVoqYi1RioRiKDufWulcNpR1zWr1QrnPOPxmNVyyWq5DNULAga9DKkUdR3inDRNsNaSZSlxHOO6Cox+F29kWUpRlGxujinLmsOTU+49fMC9+w/xUnD92nX6vT5FvmJZVWFMGsvd23cYjAYMhiPs6pSitkRKUJYlCDg5fICzQfVY1Z7BcIgkwpgGreDRg0+ZL6fUpiZpdFC3N5q6MiRRTGUNEuhnigiLEB4hPKN+jG8aejpmtDNitlhwtncTZ0qapqLMF5ydHuN0TH+8Q3b4gL1b70O6waWXv0qxOqVuLUo4BomG1hBFID1IpWhryzBTaO+wraMYK7z0ZNKQ9aDJp5gGYq2Zzmr+3t/8W2zuprz/4XucnNxi//aPMI1n+9IlTg8fcf/RA6I0YnM8RDnPdLlkazhEyCcrhPeC2rTcvX+X+3fvYBrLarnEXmupW8vG9jXqtmF58JgXr1+nlwx48OgxL964/pRy7gvj7c//5uK+/vMQElg/uTY9+5POo+xzBhoa57l59x6Pj45pjUEgaZuavoDxeIO8avmTH/wZt+/dR+BRQnF5d5dVUXJ6coj3nl4vYzgcEuuIxrRhDHkXiDkckZLUZY5WCts25KslxSqnrWu8s2T9PvNZQZL1SeKMYrWgrgoOD/ZZTE+o8vlT81vMxvZ1NjYu4/NTqqZiuD3gF7/1DaLa8nD/gA8+voNzFnxIeJjGhHlRhrVIdl8RAqkEOLqqBEGsBK3xF7GAt10tm5R4HJEGhUBJRZRInGvJVHhd3RgcULcepMcaC0LihKN2IWZOEknV2Is4HzyLZR4qa7TCWU+WKnoaLo0lGk+jBZsbCWVp0F5T1p6i9RSVCSr0wvKgXhFpSZZpIhkxrQqWeUPdtCTaM+hF9JMIiaGfCFbzM86cYbUMCY4/+aP/QOscO7sJq7zCtJ44jTidlDgvsNpx7+5d3nyt4rNbE/JVzt29m0gl+eZXX+KjvZucHN/ENzM+u/2Avb3HLE9T/sU/+9+zMd7hK9/4NtXpAx6e/JjV4U02d27gyPBK0TTQ27lKrx+jleT4ZEqUJESR4Pr1KxycPKa3OcI5g5Oh8kcp+LM/+2N2di7x4kuvcjaZMp1O6A3GvPzymyAUl3cvIbzn6pXLLCae0c4u6WCTo6NTkvEleqknzTLu37/LbL7g+RdeZHtri4uM8BNK78khuCDnnnn8U7667mecE3vuQnn+1DH3/wcEX6QU3hpMA00UynS8dWglaMsK4pCVbjvyLIk0eIcQHqQIi4bWXbarYbmC8WgAwoUyEAuNMSzzZdicJYH8McYipAy/p2nx2hOI97DRS5II4UMmrSgM1gvqusURVINJHBbexriwqUd0sk5PlmjSLOlUaS3SSeIoEIoCT9s0NF3gbp2/KFlZzisWeYW3liSNqMsWkSh0L6bIa1RHJDjrWRYVddMw7Kdh8msbkl6GkiaQld4GibCQVFUTgvuLEkqBIxBfUgiqpsU5z3AwoDUrqiqUjBljO7WeIokjvKMr9XVBPSMFSmm0UmgdJt4uDgoqIe/DxJZEFEWNcxBpSWtC6aeUAulDxtV7WKxK8rzCC4HytiOXHIhAymgtaKuGh/ceI5Tg2o3raK0QSpPnBXGccDydYp0HJO9/fpcojjFFxd7plJPjM4SI+IVvvM3z168xOzzkkzt7TKZL8AYnQAtPFitc24ZFQwhqY4iUJNGaLIkYZQnLsiBSgkQ/W277tHKPp0m8803ehYrpKfKPQBoXRRnUQToCggLznGBs6oY4UmRpAiIQGblpmExntNaxKgo2x+OgPvEWCURaB6WUDurQ1oTxgJQY0wKEkkdrw2elZFciHqTluiP3nPe0ddOR4EEKf654zYsyqD8iTdMYFjZn0A/lkvJij/xkh/0kkHhq8nma2BNPHRIh0/X44JTJLCcvK/KiwBqLtY4sifE4irwJCj0BOEMvSzsi0NDUNSDwziK8J5aCrfGQyWwelIwelJREUVD6DodDFos5w94ApRWTyYSmaoM6VQg2NkboOKYoCowJZHaTLzsSCrxzQRWnFTu7O+HatS1aSaq6CmPyQmYNVVkHQj6K6PX7XH/uOk3TMJnMWK5WTCdTFvMlxrShLChSJHHCeDwi6w/Iy5Lb9x4wX60oipqmNdR1EzYwbfj7pApqkXC/BeIOqcA7Yi1o2xrnHMbaoNzzslOmPk3wheNhzD557qIEt3usZCAML14rBE48fd8H4k/yhWNPEXxN02IaQ6/XC/OqaQNBa1uOTyYgfJhn0yRsnJVCCkGelyzzirJqKPKCzdZxaXebpi5pTUNjDbojOs7VTeeq6fOkhbP2YvN3NpkihGA46KO0piwrhFBoHYWxJQMRubkx5mwyxfsl/UEP7xxlXoRNQkcwn56dEUWKra0xAogiTVXVlFVFFMUoFZTMrbGsVjmRkvTSsClcFRV3H95nuczJsoS6bshXOQ6PUqEsbLnMmZ5NsFbgheySUBFxrMhSTS+JeePVF7jRGs7OJiAgybJAFllL24bEgKlalqsV1jpG42EgpoXoCIQeSZKwWK44m0xI0zQQq0p15eKWj9//iPliznM3blAUJY8eP0Qg+MqX3sE4z8cffsL+/j4ySehnKaNBhhSesi47+wzNfL6ktJZlWXJ8fEJbVaSR5Gw25f7tz6irmuX0jDqf470hTROEkAx6GU1ZslzMsY1B9GUoTaHb4Hsf1hpjMPmKay88T5WfMtwa0R9vsLG9xXs//B6Xrl3nhZdeeDIpnRMJP0WFdB6mXcxrTyUynt4TPR1q/QStISTP4JlJ8OnpsyP3XCjrdt4TdeX83odkpxQSj8dZhzUWr1RQertQOVDVNScnp9R1Q1WUWBfuk+VqRRxFGB0yzuNRn9ZY8Cl1axBCEicxcRwUC96BwVEsl+wfHIUxEWkUHiWgn2UsFwvm0wmj4QjlPYvFgjiKg5pTAt6xOd5kNpsF+wvvaKqG27du86V33rqwk/AdkefPyZmOOH2S3Q7XZjKb88MfvUfaGzKbzWnrJsRSSdqV3SqcNUzOJjRty3g86mxZBBtbGwwGPQ72D6iqisuXdhFSs1iuAM9iNiUSkvdu3qRqSrZ3ttGxpsgLTNOiI8XZ6SllXbGxsYHwgsFgE9PUSC+Zzs8CAVmuiOOYg4MDtFKU5QqpJDtXrzOfTCjygtoaXnjpJX74w+/yK7/61xiOdrjx3PNsb25S14aPP/6Uja0xu5d3GA37zLMELTw4jzE1b3/lHdoW5ssVL73yMi+++A6XdncxlWWZT7h3/yYCz5Wr1ymLnPl8wXgx5d6t27z4yhtsbmwwHo26bFyIXHx3r7eN4eTsLFy/0YCibNi+dI3dK5c4ncxYFguOj5Y8uPs5u5vjkDRR6gv3/Dlp5y8U/l9MAopzOab4ycH0NJV+MfKeJv6+MMbOtQyiew8eMMawXOUhztGqW8dUmCPwGNN2ewvVWR8Elbfr7DTKuqEoqzC3SM98sUQqSdNaGHjiSJPEEcNB/0Ixfl750gi6BLgl1pq8KmnaliwN5d7GGDzd3sg7jDMkuiMZhceHUiQEkKYpw9GQ6WzOcjFnOBySRIpYh2Rta4NwwPuY5Srv9iCh2gQhOouIGtWVD2utSdOY6WzBvQePOT49Ze9gH+ctr7z8Gm1dc3JyyHQyCTFl2zA5PWW0OaaoKnpZjyjJ0EJRVBVRJMGHJL67SHp2Cf+mpN/rUzclvTRDR+AJdibOSVxrsT5UGDStRUc6ZGu0ByVIEkX3keFUwgsvvMjsgw+4+eEP2NoYMuhlpFqwvb3F0Z7gpbe/xuMHtyhExquvfYO0v83k7AAnFFpBYULFUmNCzDQvLYWBLPYkQmG1YAuL8R7TtERpSqQssfZYt+L07EM+/egP+ZW/9hvcuPoyy5cmTPc+pqbl0YM7XH3ec3pyn3feeYPWtszOlhjr2B6N8XhWZUHTNlTWcufhbf7f//Kf0xRz3nnna9TFlMXJXVKWHD3+hPnK8NLLrzLs97n14DZ39x7y9//Gb3J99yr/xfhzOL6fTv75nzgaxmwYY9NVzvfe/4i9w2O01Cgt2drcIIoi+lmfpmn597//H1kVJXUVbB5GoyHLfMl8Oseals3NTa5euUpVFhweHZH1+lx77hrWGZwzrFZLpNIMNjeojGGYZvT6GZEGqwNBniQpN154EY9Ea8HRwRFpkpCmCXJ7m9Mmx9YVTdsSZwolLW1ZYJsaqRTLRc53/ux7vPnqK0TDPjJWWDxaCKxxneUOgERJGGaaVIXZTUpJY6GoW2It6GlB2TpAdhYiIVlYm7AvzpTCCs+ytHjbcmUrQQsoakMNSC1pjAwVLQp0N6c4H2ywKuNCwl4IjHeojqT2eGIFqZZI6YiUovWK1oZEkZSCYT9mI0uYLCqMFwjpyGIYJYrdnR53HuVUeUvVLFkVbSChrWPQV2AtaapIE0EiNV5J5mUe9preoYRDRwLroWnhbGVovEEKGPYV417Ez33ty2xvj2iaT3DbPeaLit4wosxrIt9y9/PvEis4O1vQtDBzgvuPHnMpr1gd/z8QFGyOt7n74T4vX/6UZHAJoxS37t7ncJpzMq9onaMta3Rb8/DuR/zb/9f/iUvXXuUf/c//N10JdagAkyJCCsnND9+lKmacHM/I84KvfP1b/MH+A7a3djktap770nOkt6/S29ymtorZ6T5feeMVlqsVj/Yfcnq8z+npEVJGvPP225zbi4Xh86QC8Ukcc67Ie+p5f04Cnqv2utd8UcX3jLKvI/qeiTr/y/BXJviyNGI0iKkbj7eWWMLGMMZbhetpBJ6qaVECerGmbdpAfLggT3fOY53vFC3B56goCgaDlDSLcZ2PBVJS1TXOO5IobHbLskJKQS+LA3mYBI8y7xuq2gRvLNN5ZQiJIwTSWqouiPBIGYJNISTKW/qDPpEIpGEIkDuvp+590A1GqWTHtAflxmxZk1eGNFZESfBnstKjtaSpmjCp1RbrYLEIrPzu5hghfCB/4iiQZ7XFSVAE4sL6kIFvmif+X4Kw6HofPJ7w0LaWvCvNkPo8iA/+gG3TdmRV2ODHkcKLIDxyzlKZBl97oigmjhRaypBhkGEi0zaoaFrrcQiSWNPWLYZQMlWWDYtlwaJowYfPU3Qlg1JKYqWJIoH1LgQKXtG2Lff3ZzStwQrFZL4EJEVds8gLllVFUVtM0xApGTKgzjMe9LiyPeTxwQF37j3m4OAYa2rSWCOFYjOKaLyncY5+pDHO4p1lmKX0Ex283ayj30vJq5pGdVuvp8k90ZUgwkUp4oU308W5XGRyjLHM5kva1gQiUwm0jmmNRasQFCoh0F3AZy1P+Qs1ICRRpKnritFggHMhQGytoZ8FtVHTGhwikCMilE/HHaEnRBQyTueZdilwTYO1gaAVcfBpbJqWOI6p6ophv48Tlqqq0UoT6yALr2uL9wWVlgz6WTdWOz8oJZ8EAeILGfenNrGCcOHysuH+owNmy4o8ryjKEvA454NXnFS0rcVaSyQCIdnPUox1QW3nHK1pUVKGcRVFKAQnxyfUrUFpjVKKLIvpD/r0soz5fM5wMCTPc6qqCiRhFTLwaS9jMpl2vjZd1t+E0kodJxRFERRnwMbGGK0UZ5MJ3nvKssBDpxYMKgGtBZaQ1U57GZcvX6YsSo6Oj5nO5kxnM8qiBB/I2jiOiNIEpTSn0zn53iF5WQWpu3HdXGiDl4gOgXzbNghEUFJ1yRCkoFpVOGOIlKbtypKsdXgvUN5fKPgUoVzXizCWpQ/luU4+ReB5GRR+IpQNKiEIdgQCdzEefHiNEAgHvlPy+Y7gFt2gCKpfEFIxWyxQSjHIYpSMOZtMKOqKrdGQWAsirUiTBGM9i1XObLbE+2C90BrLbL5gNOyzsz2mqgvapiHO0qCgE5KmaWibNiiQo6hbT4L/xnKVozp/0rYNGxmtFMtVEVSWafBPFEKQZQk7O9ucnJ4RxToo7KqSMMwEvSxFKsHB4REe2NkaI4EkSYgjTd226G5D2BqPdYa8CL5gjfXcvf+Ys8mMa5cvU5YFyypHqQhrgg9TWVYsBWgJcZJ2HodBHToa9knjiKRTa2/GGcJvMJnOqZo2lBo7j3S+82FqSZOMJAlBp2sbdBKxtTVGRzGPHu/TOh/GjlZIrYllxGe37vHJJ58RpylJnHDn7n2ODg+5cuUKr7/+Og8f7XHr7j20lmxt71A3LbP5gqKqSNMB6IxBP6OuKo5OCoz3HJ0c471jcnbC9OyEMs8p8hV1VRFrSZL2MM5gPQgPxWrJaKvG47j/4CFv9YZEafBW8V6As3z84Qfcv3OXydmMJM5obcJyUXDZNtz69GM+/uB9fnk8xhqL1H9OD7GnCIdnCgG/IDf6SaLhqcnup1IeT4iLJ6TfE7JPEMprlnlJ04b1OekqE2S3PruubK/olEkxMV4Ff8jlcklRVOEeNxatJXt7e1y/fi0okbU6T0OhhaCsW5SOiSLNfL4iL0rSOEJJUJHCWsfx6RlVXbEx3mB3a5O6rlAKdna2EBJOTk5ZrpaMxmPKqsSFKIpICoyArc0hUsHpyVl3vw44OzvjwYNHvPbqSwjJBSnjfSB7vHjKi1eErebZ2Zx33/uQ+XRFXViWyzm9Xo+NrW3SNKUqC2bT+mI9SNKUwaCPtQatJcvFkpPjQFRubm4GdXiScnR4xHx6xuT0mCJfYduWwWCIaQ2r5SpYN3TrgdShhL2pK5wJ3mt13dDrZTg/oqoaymLJ5HQVlJdS0e/3KPIc7xXWOTZ6GW614uanH7ExHiO8Yjadk6VntG1FlNQMR2N2dy4Tx5rDgwPyPMc7qMoZUnluNwXXn3+Rl15+kUuXbrC1ucm3vv0LnJ7Mw/vqbfD97/4Bb77xFov5GXfufM5o5yqXrl7Heomkq5o5V6AKSV5WLIuCcX+EFJq2Ksh9iN9efuurLJYrrJlycvCYo8NDZmdH3L71Ke998C4/9/WfCyPlaZ7uGbL8/PGzA+ji8E+oh376WPzLjvtu/FR1HeJIAplWVcHuotfrEWnVWfC0WGs7lbfv/KsFi1XBYrFEKAVYTGvR1gRVd9siREjSnBN650kk5wORrlS4rnFnDzJdzMnzInitduuP9yG+8c4RdeSj6rw027btxkIYR0oJ0kizORoQaQnOoVVysZ8xvuHsbHJB3BlryZLkYrZJkoi2MKzynPF4RN0aHu0fcPf+fWazOWeTCUmccOnSLmWe8/DhQ5qm4eT0hDRNcMbihaQsajY2t4mjBC9NECjUNab1SKkQwqFVGoQHzmNbT5woRsMBw94VnAEvoaymT/zQJcQ6EKHOWaq6ZaEFximMtUSRYlkUDEaX6fU3eXx0inOSul6RpZdxXqB1QpVPafMpD27mVHXFt37l71LZlrPD29y9+SHWgxaKqnEYA5kUZFrS09DTGiV9UPkpGESC2gpMGjGrWoqyJYlikJ6yOOKH3/2/cXZyl6987W/z8bv/idOTfZRI2N6+TrWacfPj93jj7Z+jl/W49/AB77z+Fh4oTcMff/dPuXPvYxbzU45OJpwdHTA/O+STD37EYLzDztYW8+mU73z/+/yt3/6fUuQtV7bHvHTtJX78/vf5//yH3+Mf/d1/yM5g8FRp/RfH2JP9yhP8ucw4T1tDPFmhfjI5f37UOsfe6YQ/+LPv0TYtV69eRSNJsogkThgNhzze2+PDT25SNQ3WtGyNR8EKCc9iNgfhuH75Ctubm5RVSVGsiKKIzY0xq9mcYpUjtSbSEavVCp1mcC2Q1UVZYawAqdm9dJmNzW2ct9y+dRMpJE1R4Nqwz/QOBqNtqnyJdgape+hIsZhNUK5GeUHTCs5mJd/53gcIARboDTIGw5B8XkznNJVB4tnsKcappHWOonIoBVs9xXamiGOJElBbyTx3WCfD/lsGP3fV7cmMCfsYFAjvaFzwPPZCYKuwJ0YIIiEQSlB3ir000hjrSRKNjjxFLXDCkGiQEq5saq5sxywWNSISmAb6mWCUpGxtxMwLw3S+IskS4rIhTRXOWFpn+fzhknkerKgmviFSgkhDL41ReDYHcdiHe49VGusNUgsWS0s/6dFEhsYI5vOak2VDYz3jfkQ/1Ujpef35Hle3EoqqYHdrxGefP2J7d4fGGXS8y9Z4wHP9lE8//ogrl/ocnD2kdEt+6a99m9/4zf+Gmz/4d9y7/2N8vMmXf+Fr3Pvgd8n3P+PFt7/JK2//EvbT7/PoeE7TeF596UWkLWjriqMHn/DK175N1h+HvZN3WBdKh7d3L7Ga7PPJez8KHqVNw9neZ5wdPub09IzXv/mr9JIx88mKq7sjnr/6Ij/60R/ywff/mH6W8vbP/wLLec50OuM3/sZvoaMIOk9GeOJTf75UPe3B9xPKve7Ys+c+5XXvfafce0Lu1a1hMpt/cVX8H42/MsHnhQib4zJHiJg0UUQ6BRPKqoqy7jb04km5pw/NHc79ZYKCg0BCOU9ZVWS9mEhHVFikCguFaRV11RLHGucM1hLYcAxJHEHbEEUpaRpTVQ2tDSo/722nGhThPO+xxlE5TxSHxhLBhywE2quq7gZeqG2HrhQOLqQAUZfBk0ozW9YUlSFSIAn+XqJr0GFaE9hl7zHWMVvmpGnCqJciJeRli44jlAwKQ0QwWg/B+hNfvFDKEozyz0Nm5xxtaS7K/oAQFORVaMTRMdqhSUgIUpwNQZFUKizceHSksMZi2jZ4E2oN3pOlMa01TMsarRVKCfKipqoN1jnOpgWroiavGqqyQuoIiSeLg1IuixKqpmZZlsha0pogh25NTdkY2nbRlZgaFkV1YShvnKNsW5SMkEKgEWxmMdZLWlPzu3/wPYq67Uz2Q8OVVCuUdcRaYZoGbx0qDuqbXqzZGGaYNhDKaaYxlUdqTd40eP9UueHFvy821jgn+p54jIX3YpnPl5hOCRpUkRF1FRrFWOFJkogkiTp1WFCVLvO8a+hiiSJBEsW0bVCtaRUaXhhrA5HS3bdSBdPsqqqRyIvmHkrJUDZlHWVZBpWGD8e9O5eDB7VpWTXh9/ucNImQQlEUJbKX4nFIraibhrYNCr9BP8Nag5ACLVXInEkCySzO6TzBk6Yh4JFM5itu3n1EWRvyVRGaUPigOL0wt25bBJ5ICUbDHlrpsOmqa87LBM5NsX1HChetwTt74RlnjSFOBgwHAyaTKW1jOM1PqOu6I+NEuP/blmJS0dQ1guCjpoTEdorfUAJjAMWgP2AwHOJcIEyc67L3Wnfv+9zrJyhkt7a3wmby+ITj0xNms3mnPOx8M4RECklrLOV8RVFVNNZRVTVeStpu0RdK4DsS77y8VcZxIPecpbLBdJuLezAsBlm/d2F67714QvLJ0IwiNMygK90N2XfpgzrKy+BP6WVH2nrRPQ7nn3vv+XOFYzcOvPRI253XNemompbFYkWSJN3iYDHGoqWkaSuqsmJjOAx+WSIi7vUoqyY0HLHBY6zIc1SXvW2blqPjE/q9QJ6FcuVzharDGBtIXxXujdYYlAz3c1UFo+K2DerNra1NVqtggC4kaH1eZhyyomkcdQ0KSkaDEc0ylHeNB328Dz5K3nuOj0/Ikohhv4+UsLGxwcHhEShFUYXPZzTIkFIwX5V8/PldirLkxRvP0Ysi8qIgiiPKou7ICUWWZSQ6YtBPg+1EWVPXAoHHGQORCmPOhqRWXdbs7mxRNQ2RlMT9jKauiCPNYNCnLCtWqwJnDcNhj43xBotlzqODxwihqKqKrNej3x9ycDTho09vcufuQ65fuxZKM49PUEry1a9+BWMsH33yCacnZwyGwVZh7+AQYw0vvvA8165e5d79PWItiRVcvnaZe3sHHD56zOT0iJPDA/IiECvWOXScMtwcMOj3WC4WSO/QOqJaLfDO8+DePXauPcdwNOLo6IDnX3g+7FukxHnJ6dEhkWjo9RKuv/AqZ5NjRn3N5PQI25T4tmZycsinTcEb73wZfXEv8gx5d3HwwheOp5IUfPHEnxb5cK6OOg8LnklwdK9+shETtDbYIrTdfHxug+HOPTOBvCyxzpLEycU807ZhA79cLJFKUVYVy+WSrc0tqqpkNpuzs7WJVsFHVElBlvaI4ph8VWEc6EiT9TJaY5BRhLGOydkEvOC5a9fI0jT4fOKhNWip0FKFRIuCqmlC6btzIS7SMliAdCprpSRN22BdynA4pGkNs9mc7e3N7moFDyOHeCa7bazn83sP+fGPP2S5WHH5yiVW8wW9NCZLY6azCf1en+vXr7K5OWa1WjGfLdja3mIymTAcDVFSMpvPmU6mvPzKSwwGfSA0L2jqknt37nB6ekqv32MwHAPQOs/zzz2HlIrD/T22d3ZYLAvGG2NOT46YnJ5SrvJA/rmWyekxg9EGUoVGB860DMc9ynxF2zWzasqSujdi+9pzPNx7xJe//GWGw1HXRKWktS3z5Zzrz9/g8pWrtOWC3d1t8uWES7u7rGYT5tMFVV5z//ZNjvb22L50k88+3GC5OCDtb4JPiHWGKRf80e//K95+5+vYpuDw4AFvfeXnef3Nt9jZ3gyJ4I4kq+sGrSMeHxzymENmp6f004i9h7cpFifAG7z2xltgClbLOUka8fzz12ibks9ufspbb75NP8t4mvX20K0H52t+Z+rxE7ycvxhcIRnku2H3U8p5n3pt+Pn+gtTwhKqHoiypu2R3FEXEWqOSJPjvdkmuqq6AYL0hLkqfHNPZktlihdIRdVEghWcwCM1jVDeunG9IO/sPKUMpVVCenb8Xj+5IxLppyYsS5z1ayo78A+sNcRS8xHVnFaCUCs93+4fWBIuPtmlJ4ogkiYPf72pFY0KCKE0SsjhBb2+DhDwvOTo5ZXdnm16aEFRGqqvAiJjN53z82U3e/+gjkjgNvt79Pkma0JqWIi/w1rGzs0OapqHUfHub5SqnPxxgWkO+XHKyt89sWiA6qw7na7JEcv3qc5yeHiNliM37WcaNa68HEq6eMH103JWWgZcGYYKQQyjTfaaCSVVSWkmiFcJ4bKxCozzlmczOqExNInt40ae1DfNVzqNbn3C6d5/GlIwGQ6bTU5arE9Jej8XqjCSKUQqWTYVCkkWh0WGmQUpL3QhS5cmtIDcQRQpTGzySJFEUpg7N6mQEbYGrjrl787sUy7uMBiOkjOgPNynKBcXZLb77u/8tP+xf5sXXfp7el7/O2ekx+wfH3Lj2EkJE3Lr1Ca0FUzXEUpPEPV5+7Uv0hlf4uV/7O7St5/qVa5wcHKBkzagf8Su//KsUpuQ7732fb7z2FtcvX32ytlyMkL9oPXoWF6/888i9i+PhmPOwbBo+vnWPBw8fsTkecePaFWIdkUYKJwTWwt2Hj/nk81uUVfAJHY9GjAZ95osFRVnST2OyQR/vIEkjlqsFVVlx5cpVkjhhMjkjSVOWZ6dBmRZF5Is5q+WC0XDEaDjAXNrBOU9/0Ge1WNHUBbYuMdbTS1P64zF5ntMfjLoKHgUy+NkePb5PlS/Y6srN337pFd790Q9obGeFIRXlsqRaVUSJRkgYbvVpljlahoqjpmu0tiocZR2IvqR19BJJouDSSDNdthSNQEceCMn50oS4WwnFMNO0XbMqKSTGhXERqm/CXKW6ZqHGgo4UL964TGsqXnj+BU5OZtx7fJd+T5PFEc4ZZotQJu28QEmD8JqeDuPndF51MYNHK8F8ZShKT21Mt18QXfViVx2iJauVw0aOSARyzwtHrGo2pGYj0tzYiUh7MR/dydk7c7ROcmkrJRKCo2mOUQnOe/ZOcg7OfohxoenV7u4mV6+OaE3MX/+tv8/9Bw+498mf8eqbr9KLBYdHRxydNDw6PuLmpz/AmIrdK5dRaPAVTeuJdMze/Tu8+va3MK0Dq4i15/nXvszs9IhH9z/ha1/7Ji+98DbvfucPuXL9eV548TXA0++l7GxucLM0zCenVE3OG2++xdSWeJvzyttfw7YNo0SyNYzZ6HsSXSOaEzA504ViNjvBOsPrb77N1avXnijwupnsCTnXfe3Wry+W6J4vZj9JAPqnjj9R8RnnqeqG+48f8Xjv0X/2eP/z8Fcn+KzDny9W1jLIYqqypnESaz04zzBLsM5RNsGcUYtgFo2AKIk592GRIsjtrXEUeU2vH1QoTaf00yp0Ci2KhkE/QYpADlkXui1qLYi0Jkk025sj8qIKExFhEjBd2YvUOpAxcYRyPpR21cGsOs9LWvuEgRXCd/5n555SAiEVSoARmrN5SWOCX0akQ/AaSLMI0zQoBd546sayXBXBJDSLEcIhZFAgCbpOrN3AP78TrLVkaYxUmqZpadoGqbtSvS4DrqVAZzHWhm6fq1XemWlDqjVRFFM1oXuQVKHkM0j+Q8mP8w7pJKPBgLwoqdqGZVGSRhHKhGsttWY5L7BecDLNma+CN1Rrw2cm8aSxDuQPjl7cbQxsi21NaB4hQtMTY0ODk8Y6qqbtsq2GsnscKUmsJNaG8tk4iTFdWcWiDErQWinyquqMk0O2NK8ahHfU0jLshQ5McRIjGkBYTGOo25bWWtBp8LryDmPbsA5eKJWe/npO6j15/pz8QwjaNpB7TduSJcFIvyjLQAgpRawUcRLUcVIIUDoQGnlBFMdACBCzLAXv0FJT1w3JsI8WmqbJQ1MRnuTEz0svlaQjXSXGuJD5MjaQqD4Qwo1zXfATglclVZedFrTGkMQx4GiNpa4NkQ6qKGMdxjjSFKwv2d4YhPPqhqoK6jIVRc90UoXQ1dkjOJks+fCzeyzzqiNYAmkpfCC8ZKcm01rTzzKUlFRlzbxZdWXlXCQD7HnZRR1I+mCgHzwvlFaMRwNirdl79Piim23bhvK3JAnkWF7kWONCE4yui6r3jsa0Fw0aJII0SYI3pZAcHRwFlWvnjSiEwvtQ+nm+mY+j+OL+PHj0mLOzM+oqKGwQXaDrQ9mVc6H5ilTBl00qjesUdOcdYbMsQ6lwfcqyCL/HnZdZB/m+s4HUqp1FaU3dtEQ2+HJZ23UtQnZ7kY7wk11DHhl+13m5Vvh6nnQJ53W8KoiQdZQE9Z8U/sJnRgLOiQuC13kfiKe6DqpMYwBPL4tI44TGOKbzBcN+D2taGtMyHg1ZFWVQP3TXNqgwMhaLOf1ej8HGiCKvmEwW3LhxFWg6FTKUVSBQg7dppyqwDmM9y+UKvEArQdIP5uiuNYz6A1rTkkSBbFfdXGpai5CBzE6TBJxH64iTkwn9LJB1dVmTRjHeWk5OpiRxGmweIslz165Q1S11d/5wkLEsat77+BbCO67vboN3PHp8QNF1S9RCMh722BiNGPR6OG8pqorJbMZiUeC9ZzTshxINIaiqirKxzFehM/sLz1/n8aO90LxDawShzHU6mRI65Gb0eilKSo6OJ5xOZqyqBu/DBs87+P6PPuCDjz7Go9jc3Obo+IS6Lrl69Ro3bjzHdDbl81u36Q+GCKWYzmY0bUO/3+edV97k8vYWo+GIycmULEsoqpJVWXLr9i0e3r9HsZhh2zrYCUjNaGMHH8WMxhvkiwXjnatUVcn169e4/fH7xEmKQHF5Z5uP3v0Rr731FgqBJdhilEXJzvYlvv/Zp+TLKa+89CLb45TpfMrr7/wcwhlsteST7/0RrW0xbcWXv/mLSKEurCeeBC7d16fJvmfUDeKZ0yTnNMNPsIQ8tVt68u+Z44Hcmy+CN69WuiurbkApoi6hU7dtV0YuLrxDjbGhcVcZvD9Dg6mK+WLO9vYWvV6Gijp1cBShdVAWRJFmvlx1ZeAK4TyR1vT7GU3dUBQlHtjYCL6Ts9mcQT9l1OvhbZhnkzim3+93nQobiralKEKCcntrjBBB2b+1ucFoNGRv74BVkbM5HlPkBYfHJ4zHoXMiXUJIdgGwQ9I4y/sffc67738IdE1oHj5kOZ+htCTL+rzwwoukSdo1ookpi5JVvkLIMFcoKbl37z7L1YrxeMR4PCaOIm7fuUue5zy6f4/HDx9y/fo1EArvYDgaYY1l//E+TVNTVyVlUZAXJZPTY8qywjtLrx9TCkNV54yGA9qmYblcYpyjamrsbEZd1yRJzGK+oKpKrl7bZO/hfWIpuLJ7iccPH9EbDHhx8waLRUVfC/LpPp8e3OHOnc8oFkdkaczxyRnFcoFwISnVNtA2C/JVjtYPOdi7xVe+8SskyQZtuUSbKdrlfPCjP0ZjiCLBw0//DE/LN3/+22xml0AIDJ4PPvuEl55/iRev3eCDTz/g6Hif+fSMYjnF1UvGvYjTx/c5ePSAV974ElujET/+3h8yHG7xxptvd8msLrFzzhl0SsyLpM8FO/dkI3PhY31O7P2lBMWz5/inDlVNy2Q6C4lGpYnj4NnqnA22DM4FkrXz+gTwThFHIbk3X+aczeZoqRj0UkxbXVD0WgdvXd81RipLxcZodKGkreuaQb9PpDUqVp0NSpdoVQqlNVUdKiHOy2SFCA2elBSdgCF0jhUiNPoIXX1DAynjQtwWSMWQYC2kYDjs00tidJSQVyWL1RLvPdPplPTyJXSXICirmtsPHvLjd3/M7Tt3WC2XPPfcc8RxQjIecXR4SNO2DAdD+v0+VVGyubHB/Xt3mYqwXh4fHzKfTVjMpmxmuuucrru9WWj2t1wtURoinZJFGVmacnS8T9bPqMoFr7zyFR7c/4zjyRlN7YgjwXnFUWtNaBgoFVJL4iQ0M3Heszc7ZZGv2NnI8HiipI9M+jjbsv/gJsePb1GUNWkW8eJrb+JMjqlq9k/OKKuKRnhmJsR8SkqqxqGiLoHnPHEMSiimuWBWGXodKWRMg7FgXKhKcL7FNoaDR+/z+P6nLOcVWmfBy3kwpGgKjHMcH835yi/+Kr/xa/8188Wc3/m9f4nWMd/82i8yGm7yzW/8Ivf3bqH1gLu3b7F15SWk7vHO21/mzu33+MGHf8L84DZn0yOu725yVhh2b7zK3bu36GvNr37tmxfE9AXj/UWV61NDRTy11DzzUHxxxD1L7nkERRNiqtPpnM/u3WeVF/R7PV64doXt8RjTNqRZSlHV3Lxzh4eP9hn0Mvq9HmWeszEadvGwp5clvP36a0xmc+aLJWVdBXX4xpgXnr/B/v5BULcqzXg0YjY5pSxyEFAsF6SRhiTGjQZoHVFWFWVVMp/NUEozGI+QUjIab7KzeylUQ8ymGNtSriqMaUnTGCG2SLOYZbHkR+/+AN+JZGRYeAKpgqfxQSzkjcU5yGuDTDWiE41YZ0Nln5SUjaUxoZFLFhlGfU2kweGJdBDYxAJu7A45WxXgLY3tkvSE8lbnQ+Vf1RoyLcEF0k1IQVG33Lr/iEEvomkNcSTItCBGMtAwHG2zLGqksMxXOVVraAzQk8RSECvNKm8o6uD3XDZQVC747yrfcYqia/IjMEaSe4sXMK+DN3kSQU9JtrKUN165zvHxhNN5w8kSprkJSbzOv3RjMMD6Bu9gtnJsjPqMhjGP9yboSDJfzEmyPv/mf/jnJNoT65Lv/uAhqZaUjcFawe27j5gf/N95aSdlZ3eLelFw75Mf09MpQnhmpyua1R+TlwXLombz0haDwRhnQqXo4/sf89k//T/w2te+zd/7J/9rynxGWbX0ej2USnjlza/y5pe/xve++6dsXn2VKy9+hb2DA/76b/wd7j16yMcffo+Hdz9Gl33sasbuzmVee/t5lqXhwb37XLv+PF9++0vdshaqDfDhMz8n554m736aH9/T69iT7386uddax3yVM5/PWUxnXN7Z+UvWy78cf2WCT0pBmkZYD23TMOj1AlM/XeC8o9dLMXWD9UH2fh4IJEmElJK6abAuyFrFeV2k9xRlje7KVuNYox3UMnRFLcoW7xyjYcYgS6kai5Ae42GZV0TRoPMD6oz3k1BGZVzowBqklqKTyxoiqYgjFQJQGcwrI60wVnbvUVJVwaBd4KHbZC6XFY21gCVNIiIZPO601tRNBc4hUNRVjRcwHmZIGWT6cRJhjQmlWDqiqirwQVkihcQ7ixdB6ZQkEVVZX6gfz3UDvusFnUSawjQsF0ssIFQgGp3zNKbtvNdEKMn1nlgpvLcopTuPv4q6DmRMpDUISaQ1RVlR1pY6N5zOclZlHdQHLmQmIilIE00Saby1eGuIU42Qkrq2FHUd7ovONL5uDVXTULcWY1qaNqjUnA8ZkKjz7EkjibMKhSNSmtpYitbQGkMrPAm+ay6i8dbjCBOYQqIjTaQUSivKuiKJIqqmwXUqHJuXzFYlVWtIY42j8xL8IrEneYbwO/9H97WqDfuHx1RVQxJr0jiUN0vRD0b7GnQahUyrd1hnAvmQ56FUyQRSJuv3yPMcSFEyeFP2TEyWpmRJfEFqnRM21tiuK3JQ8IVOuQ0e1XVaCuq9846qlWtJEk0cRcFfhnDPWOepmzaQpEKEkleVdKQQSCXJi5K6FiRas7M1CGW81pAXOUJI0vPuoFKhtKR18HD/mM/vPKKqLVXTdN55FkHwsfTO0frOMzDWeDzz5YLGBO800SkNA5EpuwydQEiPJIxnaxvG4xGXL+0ynU45OTnpOmc7lFRIpUjjmKapMaYMxyKBaetABvnQtEd3Jb7OhS6gw/EApWLm0xllVaKU7kp8gpqzqRukkl2DG31RUnB0cho6Arftxf3TGN81nzFdF1OJjM5VnA5E15SoLAMJJkP3LGdbnA8Kxaoug+ccwaIglOiH6MzZ8DOTNOv+vi4J4elShV1t3Lm4VzpwHcsRGLqO4JNPvBa7l523mH9yLJTmn2/Oz91bPGE+WSyD51u/l6G6hjJN25KooAw+PDxDiOBVWlc1aZaExj9F2XUujFnlBU0T5qrxaBQ2bzaQu5Ppgu3tzUC+ERJJCEiTNHjw2aAUtM6zWq26pjoy3Dd059k2+Mf0egjhL8aOFDJ4LzUtVVUzHA6Dz5uznE1nbG4MyWKN9w6tJaPRkLKsmc1X7GwF9ZASodxhPB5ireN0WvDBZ7dpG0OaRBwczxBK0lYNo2EW/IX6A+JYM53MyPH0BwNWRc3pdElR1kRa43wOBPuFssg7lWDD9taQQS8JnR2dYbUqQuf3KAYhQuMcPNbBg8eHnE7meO/pj3oMhyMWi4Ifv/s+t+/co9fv0x8OOD49IdaSN996A6VjPr9zl9OzM4qiJO/Ipa3NMW+9/io729tsbW1wenTKp/u38EKyLCrOJlPu37/H4d5D2rIIYx+BijNEkvLia6+zt39IaKjkwpphWm5/+hFVvmC1WJCOL3Hrs0+wFoZbOxcxw3RyhvCexWTGxnCIq+bcvfkee/dvcf3FN+klIz7+4DvMDm+Dc+xefyFYVhiHUCCk+s+IZv5zSIhzPNFEfFFnAVwkh0BQli2T2Zy6aYgiTRJFIebQof7G4SnKMnSn7/xTq7JGSUnjWs4mU/LVKqz1afAfUkrx4OEDrly+Qi9LWa2WeJOQbW6EObZT4jempalbBoNeKFUxhul8yWy+whoTOoW2lkhH7GyNQ3WFtSxXORYYjcYcHR+T9lLSXka+XLJYrBiPBxeNndrOwmR7Z4vHj/cv5un5fMX+/iEvvfjcM9fMezg4PuO9Dz/h/v09sk69pKOY55+/TrFaMJlOuHL1GjvbO3jraU3DfL7g9GxC3J0f6Yj9/QPyIue5566zvbXFYj7n0cMZRycn7GzvsL+/T2/QCyWWSlHVFXuPZvR7GXlRhgDbtsynp0ipwWbUVUhyeRtK0Iy11G1LJCOk1GihGG9m9LI+k8kZURS6hs7nUxbzKQ/ufMbzN67z0Scf8NWv/zxJr09ZVQg8H334HsZWzKanxGnKCy++hbWezz79FFqLxGK8Ic0GlEVOGndeUW3J4d59vvb1X+eHn36Htl4wHO9yffMKD+59gmnm3P7kXa698U2Go62QjFZR54Gs2DvYZ3drlzdefp2mqKlrg4pTDs8mPH60R7+f8vyLz3PpynWODh9TlTlf/9ovcHx0AhbeeP11sjQojJ+Mks5D72lV3xfGU9dO7wtf+WlSv+7eeLL4nK91RVlxcByarVR1zWg4CrYJXXJRdRVAZV1TlhUq0qEbvBC0xrJYlRydzqhNy5WdbSIpGA8H1G0opy2LkiSJyZIUG3uSKLlIMCqlETLcA1rpi8Re0zZ4QnVE3Sk4zxWF1pkLf9fQkC40nUB0nbO7criqqmhtSCC2raUoq4ufU7eG+Sqnl6V44VnlxUXsIaSEbs69c/ceP/jxj7h963OWq+Aj2Ov1wIVGBpPJGePxJtJ7Tg72eefLX+Z0MuFg/zGPHt0nTWKKPMfakECNo6hLogrK3JD2FEpB03iWfsbWxpBhb8RsOiftKer6lNH4Ko2SCCuxTdHFqyFmSpMYsNR0jQGFRCmojKVtOxuLpuHKxjaRD3GDrStOjx7TGsPB6TFKWLK4h8o2uPrSl3h8510GWcrRySMiIbAEb7R+JEm65oTWW/I2kItZItDOEeHZ7sWk2rNqLCvrKVsZKmmcI4k8MYLtzTFSRcxXLcPRNpcuv8yjBx/ibLDTAcPD23/Kn/1pxrz01LXhzde+xPd+9B32jvYZpBEnp0ccn51B25AljsuXt/nxu3/Euz/4j7z6xpe5fPkFbjx/gyTWPBf1uHbtRd565au8+cIlxp2q9Jzj4wsE+RcJvZ++PP1FJwiM85zMZuydnnE6mTI9nZCmGZsb44tmdVIJhFccnE7ZPzhkf/8gNPNKYsqy4tLuDsa0zKZzIh2R9VKm8wVnZxPSrEe+zHn7rbfYGA14tH9AXZf0+30ujYbcu3OHJI5xWY+iKinzFTubY+o2o6iCbU2eF6RZymqlibM+rYdrl6+QaM30bMJ8OqWsctJI45qis+JJ0TrGNauueilUVcnzzIT3+GDYhpKSN15/laaqeVA8RMmw9sU6WIuJJDShLCqD6XzhPQJbe6q2ZZBovO2a5wgfKvY6OzLrPUkUYnCtBE0dGlZqLTufXehFoUJmVZ+r22GZ11RtQxZJeommbWuWpaRuW65fvc5svqRpLHXbJQpsFcrhkSgh2R4kVK3lzDadd2/Yz2mpg12ZD0Ip13mJC6EpK8/lcUSmIYslrWu4e/8hR6ctxMEqaHscRESzPDSmK01DWRmEkvQwXN6KeO2562wMMh6fTjicFCRJg3ct1y5t8/mDU8pG8Gg+Zzjs8/JLlxj1xjw3tojlCZ/feYRvbOgVYFv6cUQaxUwnMxbGsTHMKMuak6M9ltNjnDcsy4qN3Sv8wq/8Q473HnHr/ffYvnqZF15+Cx0n9AYjxpubfPOXIvKqYT5fIVXGx5/d4rVXnme1nJHIluJ0n/t373Hl5a+SVJ7FYoVrGrIkJYp02E91e9FzMu58rXqa1HtW3Xe+nj177CfIPbhYE/ZPT/n01m22Bn2uXt6hOD3+Swb5X46/OsHXMdyjQYYgdDl03rO5OUQryenJGcaG7pdKiIsyw7a1OEzYAKiwaHrhu0yWQEcq+GOoc5VLKOUjVrTWBs+5smHQS+n1U6qqxNqgKmsag9KSujHB4LUxF8FzojsfMSk7812HiBRZHOOdp7QN4LtGBOfmwmFgO+uIdFC9FLUL5cc2DBgBoaOmMHjviIWkMYbKhmyi7rw7zsOgc+NjCESLF6Ir8QXn2s7Dw1NVDVEcmjZ4FxSFEhVKRVwgQ5o2MPE6jhDGUZug+jLWEp13Y+1afXsf3ptSEtu2F50ok64swdigCmyq0BRkVbXsn8wp6xopgu+bTjTeW6Lu+pg2XGfhwRnPNK+o25bGGNomBMeV8ZRVTWNaqrql9Q5rXFDHqeAZpEUo42g6BVAax9RtQ142nZePC6rGKELocD29t0QqNF5JooirWxssqwIpoWrNBakrpODq7gbVoM/BbMZkVXB5c8x0Pu+Mup9syoR8Vs33tLoPAVXdcHRyRtsGs/Lz8kjlBEoJer3Q1Tn4YwUyyyOYzRYY5+llGQBN55EYxxF12wKeJNLMlzm9NCVL45CVVBJnAnES1DqghbhQ2kEo+xWIUIYcJFgXSirrWrSOgp+e9xdEsXPBE7E1wQtKt6YroQXrgpKubiz7RxN6vZhhL0ZLgewH8q/MV2gdEScJs7OSe3tHHB5PurFiwRoEQTkSSiyD15GSgcyvm5aqCuTrubdg6EgK+LAxV53HZhJHYZPrPUkcE2vNw4cPKYoC74PHndKSNOuxXOaYsuTcQv/cDqA/HKI7deVoNGLQ7zObhnJaa1vSLGE4HDOfTUPnqq4rk+8a6SCC6a1WiqZtqeqGVZ6T5wUIMM5j2iZsCBuDwyGE6kpwPQIHnR8NAqqy7Ex2beeRWHdZf41SOkjp49A1z5lg4m27uU9rTRQnRFGGtc2Tzt8XadsLzSfnncK9eOLz4DlvjNEd+0JAeLFGiae/e3KOBKz1HJ+cEsUJ+DBvjIZ9nLUYG7oQHh6dUlU1ly9t03al10kUB0VOr4+1lul8EZr+CEFlKwa9hDiKO9+kQPzmZcXO5pjGGJqm88U6VwN3pfettTRdZ9wkCn5kdWs6s3DNcrVCa0WvF1R51hiSJKYoQ0dN5zyz+YKN8ZCdnS2OTye0bc2wn1HXFYvFkjTLsNYzmU7JehHDXtZtREOZ7837e7z36T2ssahI0lhHqiVXt8bE24okUqRJTF1V5Kvg3TceD9k7OGT/aM50saDfDxlMY2ryEpJ4hDGWYb/HMi9JI0WiA2lflKb72ysQoWtdXTeURc3e0X1OZyu2drbYGKbEccrh8Yw//KM/Zr6YsbmxSVnWlGcTdnd3eOP1Vzg8OOL4dMLp2VkglEVYn1958QXefvt1ejphleecnJxS1CWD8ZCyMbz/wYfsPXxAsVzgTQPOBqV7FBP3+sgo4f79hzgbOqJKKZnPZ2Aq2nKBrXKEM9y4sst7P/6Ynesv0xblRVOs8caID3/8Y3YvbdG2FVVbMdrYotfrsVyccHb6mFhZLl25Tr8/RiZ93n77S5wc7nN4dMTPf/Obz2x6/MWGyXd39hPS+otbo58cGUE5Ls6lvOfrBk/ZN3SnThcrHjw+REpFmsZI6alsjdVhHgnlnba7r1u01gx6fZw15IuC09NT2saihGBze4Pd3UtUTXWR6CuLHDvsURSGQS+htaEhUNMaxuMB3q8ofFhbbGs4OZ1yMpl2Sbia2CdY58mimNPJPKiq+ylpv8fJySkewebWRiCIswxvDUkag5fEkWCxXJJlPcqyopdmCBTL1YrLl3epy4p7Dx6yvb3BeDQMc2Tr+eiz2/zOv/8jIq0Ybo7Y39/n6tVrmKpkPvOMhmNe3b6EjgTL5YK2tfR7fcqyIU1Stre3KcuC48Njzk4nXL1+leFgSF3XfPLJxyzmc27ceJ7T4yPiKKLX67HKc7IowtvQpGW5WFDWDavVijjq/JMaw2I+RyWhHL8uCpQU5HXJcGOL1WJB1hugiLp106NURtu2NE0g2NumwbYtxbLgzedfJdMp/azHaTFhsSp468vf4OhoD2M9ZVXy8SefcvXKdV588SW2tnZ49OiQ7SuXuXLtKndufsyjux9hbEGWJpTLY/7Tf/x/ki8mxFHEaLCB8A2bw4yqaBFRzCiNeHzvM4TwbG9fI+2NSOKEzY0NPr91E6UUeVXywqtvkmQj7j98xI3nX+LTj77PfHbC629+mYO7N1mc7HHw6D6/9bf/PmVZce/+Pa5dvcbOzvbFqBEX/3XryTOk3YW07ye/fnFE+ac6W18sNwKHZ5kXHJ6EpiBRFKF02KiWVUjeIkCYEEcZ21KbFls39LKYfpqyWOXsnUxYLlckSfCa8ib44MWd757zUHflvyBg6Ek7JU9V1eRFFaoscIS8ckgIGesw1oTGFwKE8Dhvg6WJkBhjQxM0F7y6AumqiSJoyzIk7+MoKELrskvchg7VxnuKqqJ1UNdlV5I4oN/vM5vP+e4Pf8xnNz/j9q3bFEWOte1F3JrnBUoHpfQLL76EVpqjowNm0ynvv/8+TdtQ11UgL4q8G+Nb1GXRxUwWHUmcCT5nPmgaqK3nbLIiX7VsjTfBC8oq5/H+AcNhj/lij/4gIW9DPJIlGYP+JovZEUKEBHTRtAilyOKwPhvjGcQRpsmZl6ESqqlXNKuwn2kbwyhJyVvLwFkOHt6kLCaUhWIyPQkejKZhkEQk0iMkKDxpFCrIBBrnPfNGkJuGQRzm7lllQgmlCrnPWAnSJML7huPTI+pGYl3M2eQYL0MiDW/p9wdIEeO8AifY2tgi0Zpr119ic/sqRyf7bPQjyqpgOp1zdvKIDz76hBdeeY2XX36Njz/6Hl/6yrc4m9bUpeP0cME3vvEmW4MtvvH2G/RjezE6frLz7V+g1vspC9ZPPNcpaoum5d7hCYenp0jnmc1mXNnd7chYz9bWFkoE5XdrHDdv3WExX9DL0kD8ScH21jUWyxXHJ8f0sozRcECSJCyXoQlRmsXILEEIx/HpKQdHx2xvb9M2hoO9R8xnU+bzGUlHJAYC3LO9MWZVVOzvHzIeD3BNw6PVnPHGJoiwZi7yJa1tiSLF9KygERCnMQkKLxXVagJt1Vn0hNJ5Z8IeDQkguxogz6c3b+E7QUGkApkNwSbq3EA2UqHLtldBhWcMOC2ZFhYlfdf4LfBAiyrYbIVmaUFoo7RHadBC413IoLcIFo2/KN09t/vRWiK9RziBbQ1agRISZy2nZ4dhzvMhee28oDYeIcIPyRLJpa0M00pOF3WwfxKyS/rbrjlesCxTXcMgZxxeS1ItkDaooD0glebG9T5GJhzNTrkykhxPaloXCM+6hdZ6ohiSGFZ1w0d37nO2aDhZNHgbGval/YRskKJizaAvuHztTebTOV/76jf56ld+icO7H6Dqh0T3b3J2eMqqNiwqRylrhIRB1mdnmNEeLlhOCj7+4M+IteC1F24wmRxxdTzk/T/99wwHEcdHe3zr1/8RRVViTfA3vbS1ha3nTPbuspkluOIxz+38Mk1tuXb9JX5/MufKK1fx9ZLlasqg2MKbmktXn2O0vcPx2SnXrlx/QuJ9gdx7Wrl3sXRdrGs/ceQJudcdsc6zyAse7u2zWCzY2dqkpzVtY8h6vZ82uv9H4a9M8BlHMEMVT6SKeCjykrOzSfBFEgKto/CECIGAjsImWarg7ea868oLQ4dCZy1NXZMmoYxKddWrUgh6acLClsGrrW6wzpKmMXQbuqpu0VZR1i2x09RlAwRvGimCrP98cytE6PDb7wWfuiSNoW4uyue0FNRd19EkCeRKWRtWVUuiNYMU6OT3rbF4a5EC6qa+uCG0DioP2amlPJ3vlRBUTehGk+jQ2v18z+DxHcEQXiNCjRAQCNTQxZKg1LOGLNE4JEXeBf+CQJicExNCEKmQ/ZNS0suyYE4sBa0VrPISJTV1WxFFEXntODmacjRZha7EkUJLugYIljiSRMIzyJKgBCP4eM2XNWXT4IWgLGusdayKmqI2tDaQG8ZYHI40elK2aW3oHCgl2M6MG28paoP1jkESQ+07Us+FMrpIo7UkS1JqG66jVJBXwdekbluQkkQK+r0MCzgco0GGPT7h+euX0EpcBJjn2dFnS3LFBXkiCN0Pl8sVvSwjjdOOtAoEbhR1XUplFNSV3oUsilDM5yuM9WRZKC0JCjWo6rrrcOwpi4LGhaYdq6Jic9QPTResvei0lCZR6BxtPItF6CIXfMVkVz4a/t48L0jSNDRU6a6tUoJ+LwXvg3LDBiVr25quFKyllyVB2Wg9w36PoiwpyoaHeye89tJVYh38AJM4xgFFUbN3cMbHtx+GUmznOq9He+FB4zq/ubAh9sRxFHz/dCgdkyIYZFdVjXWB9I20YjTq451jY2OD05PgC6aVoq4qTk5KWtOiowglQolaUZUsl0ucCarHYGRNyHgj8CqiqCvy2ZL94zOyLEN6wc72mJ2tIf1hnySJGAwzXJepOVe0aK1J0qBYrMrQ6XUynVLXFc7TkUvtxWuMMVjAmKZTiDWcm2+3HQkbSm4DAa2iTikogil3FMWkWQ8dRXga8KEBhyd4k+S5I0kzpIy6rKAg6jrLwjlZ3XnvfYGoFkI8S2LL0EEslH4LzpvxnDebOTfMlt35UgjqxnB0MsE7z8YwojaB1KyjFkVQD995dERVN+yOh5imJq8qtjbGodshkpPTM5zz1HUbSEhnyOKIwSB0cdZKE0ea5aogzwu2t8aUVR0SKd7Tdhu18zL/tmm6MuLQRGI2XdAYc1ESnsQx1jlm8yWDfi8kAeqaSEcYEzZfzrcURclwOOKNV19iMj1lMp0RpwllWWMcpHGMkorZfEEvTVESTmcrfvDh59x/fIx3gn6qGWQJOxsjJJ0Xqk6CMmM5JYk0u7ublLXh3qNDbt9/zKpsEN4y6idc3t5g2O/RNGXnrxeFTszWkEZx9zl4jHHYzmpBS01Z1TzYO2Z//whURJr06fd69Ad9bt9+yO//4Z9RNRXjcZ/5fE4c9Xjh+lU2dna4fecehwfH5EXRjR9Pr9fjypUr7OzsMJvOKaRCKU066BHFCXfuPeDjTz7laP8xpi6R3uElqDhF6gQdpWTDUVBtNwXOtNi2xrYNbZnTVitsU4dETX/AyeSYZnnK9Z2vc7B/j8G4z40rl9F6wNe++nW+950/JY6jbh1UNI1hvBGhkbz42jtMjg9I+302N3f4N//qX7Nz9Srf/q9+hadJ6j9HPHSBp5//gi7vYoF+urP6+Xmi+88T1rDJdM7B4Wkgql2Ld4pIxSHpEcXUTVgfpQhNraLOOiTPc2KtmS0W1E3LIOszHGRsbIyQzrGYzplPZgz6Q7I04+xswrUrly6UgJFWWGsZ9JIQKy0LGuswjWG5KkJTIwTDfi/4gjYNbdKCl8EPsa5DgipOODo9ZTzaCGSvVPR6PVpjKPKSJFWkaYpzljQJTYCuXb3M0ckJ09mMSETMFlN+8KP3+erXv8x0VfLD773PnfsPwBi2N8d4L9ja2iVLM1bLZdcdNZAxo61NilVOlibUVUXWS9FeESURRydLDvYPeeGFF9jd3aXf63Hr85uYpmFna4t8PufevTuMBkPSrEeVl5Rl3XkgCdKsz2gr4ZL31FXJfDpBohhubJH1+hRFTqFjer2MbSFJ0j55NuXhg3tsbm7jnaW10O8n5HlD0zYk2TD4IynB1s4Oo/Em2SDlzq2bPHj8mF/7zb9JJCMePdjD2wjhCmZne5wePEComPHGGJzDUrG1s8Xlqy/Qz0YcHzxgOX9IsVqGVLN3CGdYTo84OtoLSWHTMPKSP/6df85gsMmNN7/Br/3632E6n7K7vUVdhUTzrVufAI5ydQrOMZBL7t/6gLacIdspk4P7uGbJeBCzXBzy3e/+Kb3+kBeff4HxePTTxwtckHtPEoiEpNbTXXafPv+n/IyL8UmwopgtVhyfnuKlDNYWTdt5AHctCISnl/UwbcN8uewIN0sax1jjmS1WLFYFzjo2RiOSNEYAUgcbDIkn0t1Gt/PHss5RVhV1nXSqeHexP4l0jJIRy6KkboJndawVw+Howse3bg1RpPEEX+/zbrtV05J2CTrvHYN+r0u6e+qmATY5m8zYGI9YrXKSJEYIKIocIQS7OzvkZcGffOc7fPzxxxwfHdPYUNZr6m4zPBwghaTfH7C9vct8PufhgwdUVUWSJgw3NljM5sRxeG+tUrzyymtkSY+T0yNm3rD/+DFXNkeEHYjFmKCo3NjcoK6CNU8UaZwU5EVIUEohKfKaca+HkSJUDXiLwIayV4KS23lBlsVUZUPbQBJ34gIlqW0T7IYihRUtTTOnaQyNtXgfoYQn1Z67n36X6zduMJvNqYocJSW9WJNF5w0LPFEUGjbEkaKqHcNEk7eW2kt0x5AJoB8pCu+6vw1WhSGOFCaKaawLTRyVxlTHZHHCdLbgxZdfZzjY5mDvAf/p9/47VrXhm7/4W8wWr/PWK6/zyo0b4AyT+QwfH/H/Ze7PfnTL8vNM7Flr7fmbYzrzkHkys6pYLKpYFMkmRQ0tqaFGt4B2W7Yv+sJAo68N+MZ/iG9874YNyxa6bVkNQQPdFEVS4lBjzuMZY474xj3vvQZfrB2RWUUKsFA3jkJWnow4J07EF3uvvdb7e9/nDWaHHOWaOBnz/MUbrq/W1I3l7p1H/OT958ymEZcXr6hMRy4tP3jrbRIXfMMa/s0h1F9x4/zCHfUffKwNHyiaji9OT1ltc4qi4PzsjAdHd7DWi1XTyZRQ+jPE1XLF6+NjAhWyf7A/pHFgNh+TFxWXlxdo3RNHU8IgoMwLJqMR8WJBOkqw1vLFl19SVDWHR3dZLpeslkvKIvfFcNb5c8o4Y7Xb8OkXn/Pd977FJI15++kDwiji9//1v2KzumKxWDBZ7HF2cuKLMIOQbH+fOErY7jaUu5wwDElHKW2xxBp76yp2zrF3sEeZF9RNi5A+6eRTcgIVCOLAO8cQ3gAUho6mh7JxBIFfk+JQESto+h6MQgz7Yms0gRAIGVB0lkj5SG6rffGD6v3P0OPHDHHo3a1IgekMN/gfxw3zHzrj16ZQSurGIpWmM44s9iajqnI0RjOfRAgrkApGWcR629EPZ0uPDnV0nR3OTkM6Ryikcxjnuw0QcJ1rnhyEg8lI0PWGuqsoqhJrWpJ4TBYrVpX2KUUlUQEkkSCLYk4vGsq684IjAVFoubefMgkNb16/4v79u+zNH/MP/9H/nv/+v/8/cf7mY9bHH3FnMeLs9XMOxoqDRQgrDUoSxiHWGrZFgZQ+NWgR5HnF03tjTHdNVe549eIT1vmP+NVvvcNk7x67zYpHpsEZx2KccPH6Cz593w+vroQgAtabc77z679HOtnj3e98j+XqjDv3H/Ppxz+lqRve++5vEGUzAqnYWxz4YX0gvhbxbmK1/j/+Q3fcN29dvm6Vv3mf5yO+eHPM5XJJKBVP7t0lChXjNCONEy5OXv2HP/f/j2+/tMC3zT0UVkb+UzkHbdNzeb32Di0EDO1wxno2jEDSd95VIxz0XY/Dt0wZa+m73rs5Gs/RiuLgdoMppK+4DsOApvXgTKn8JEiKIX46WOPDIcbohticcv6wHyo5TNUkQvoa6qZpCWM/7Y2jjqZtPbjd+EjkDSewbHp2RYOQkiT20VRtNYESYA2BEJ75ZYQXeKRvUB1KdrzgGXiGSNv1KOmde8INC9IQ9HbOH66ds9RVfXsw934cBq3Uf1/GfN26mQ9nEGfd7eQwVB4KHAYhQkmatqNRvoXMaf+6SgRRJClKuMwrrtcFZdUN4qr/e7TRXvmXMIoV0yyh7/1DUUlB3nR0xlC3Po5btx3dwL7rOn0L+48DL1pGgfItn3i1XRtfuNIMm6QwDLGiJQx9tbi1viJcSkksFbM0Zn9viusNZW8om4bz1QZt/SZYSeVbdxdTlICTqy1VWSGVQ6iYL16fcnpxwa9++/Hwtf28W+9W1BjiulXVst3uhgh2S5qkJFFG13UE0g+HJIDz0WLEAK8tSzptfGul/FrsSQY4tHa+VCVWU+q2o+katruccRYRhIGfBBmNCgRBEFDXLRfXK7q+Z5QmhEGIw3NcbiIeSnmYviT2G96bVtquJwgVSRxSVp2Pog+Hzbrrhgei9Q663rc7N53hel0SRVe8/eiIQPqVqmo0n7w45cXrU7rB/XezgZV4QLwe8p6BGpxLXUs9tOkK5x2JSgjqqh6E5BCBZTLOyJIYrQ2XF5e3scmm81HcQCniKEYq5YVB3XumFWIomBFDOlXQW9/oe7458zzPwca22pZIBOsi587ejLefPvatlmGE1oX/PgZ3ZxAEJGnCcrlms9lSVBW99g+7pmluo3VycBj0uh9acS3CMLTLek6cEP6AoqRASj/YcFoTBf7nZoeYfxCE9LonjGI6a32hSBSje8/r63RPqCR9Vw/MrJBbE9+NwHcj6MHPR9EHoV8Nop4aNnU3pRrqG9f/7f8EmEEQWK5zmrZlf7EgicMhyuQ3BkVes9nt2JUVSRQjpKSqW7IkQQjJdluChKKsQQSYwWk6HY+YT8dEoURrTV01JEnCfDYlCNRQQuRZXW1bY51f+/pOD/w947mUUlJVDcZYkjjxArqzBFKCUvTCR4GyLPHum6ohS2Os1VhjaIwmiVum4wQp9jg+vaSuW39YM4YoDDDS0tYt27zkxckFP/v4S6ra/6yyUcT+KGGSREgcu6qmrDrGaUWWRFhjOdhfUJQl19uGTz97QVk3TKdT9hcjpDW0dYuwljCUfljS9whrEc7HhIWAUClfVKMgSmKullueP3/DKm8IlOTxvTmj8RRtJH/wxz/h/fffRzhIk5CyKJkv9njy6AnOWb766jnXV9d0bUMYSJyG0XjEfD7j/t1Dosi75CfjhFAqVtsdX714yScffcR2vQLjoylC4FsNg4TDew+wQhEnCSMLXVtz+uorbFPSt5WPo/ftsN6AaUvOl29oiy0f/PmfcPD013jw+G0/JCorqrLkrcdPef+Hf0a1WfHs3e9yePchbb0jkBHLizW7bc7h3bts1mume/v87t/8O0wX019wHP2CW+gXT0V/1Snp5r66+eU3fnGDbvBFAD1121N3PWdnF961NGy4oyAYBn2Kpms8fzVKADy+AOhay3SSURQlq/WKo6MjkjhmNhkjcAgliIbNb1WX7CVzsnSG1v5AaqOQqjTMZhPquiFNR4RRwHq1Qw/8xzROvPBXlGitmU0nJHHEKE39vWc0RVEQxylxHFOWBbPJlPVqzeHBAReXFwRSEsUzJuMx+cBbquuGQIVMRxM2mxVRGnJ45y5vTs754P/yP7LMS0IVcnh0wMHenEgpRKBQMkBgOThY0LaeCdW2DdvtlqZtSZIULQ1pGnPy5oR8t+X18TFPnrxFmqUYY/j0k4+5vroiG42QwCeffkSW+vt7vTkjCCKyyRSco21bMI7t9QonYba/T1TVGFuRpRmPHj9itVxTVyVCCvKyZLtZ0dYVe3uHBGFIU29RSrFZrajqnL73Te1S+kFqpGC3W/Kzn/2QOJK8++630UXBTz/4GYEw5KsTTs7e+FZVJ5DGsF1de37gpz/l8uKEv/8P/pc8fvs9Hm/e5vjVR3z2wV+wmEwpijWu66nKmrrvCGVAFITk+Y623XLv3lu8/davEsYT6rxAqIgggslsThDEbJZng6OuIy+2/I2/+7/h7Phz/uQP/gfKfEdT5uzyHUFaMC1yJvM9fvVXv0cYhEMa4cYMJH7udroN4v6cyDdIdsO+9pZh+Q0x0J8b3OCk62gG3EZeFAgpPSPbOnrHwPT1YrhPPGgE+Gel6TzzSuK5VlXPrihv9+5OW1wo0L0lCIbhapIghECbjjTNaNrGP6etI4oCJmPvMtd9TzAaAT7dUDeNZ0/HCc76IikZ+2KLumnRpvVxVyExRhNFPiEThQHGfJ1iGDb9LGYzjPEpp+l4jBmsc5vtFhkovnr+go8/+5w3xyfovqMscuI0JU1HzO/cRQhBnCQ0bc16vWG12aAGQX4ymZIkCVEUcnh4SKhCqqrk6PCAu0OZwz/7Z/8jl+fnCAHpeMydhw84e/1mSApZ8rxESo3tHVJayrpgMR8RKo/Fefzg25ycvE/dbMmygM3OsCsqqrbHDaksnKSqWtrW852z2CNaRCKp25ZJmBAH3qiRdz1F1xEpwa5uGcUZRkuEtEgZY/olN5yzURSQDxikREp6DVEMvbXIUJH3htoYprEkFBZhLU/mIY2L+OCsomxuN+4IFDoA3UGWZAilaKsdRCGhUpydviR9NiFLNJcXrwmjiKpZc3h0RN+3aCuxumU0njJOSw739/jzf/svSaOYJw/v8fDePaSwWKNZry95/fyYvcVd6uArJrMFe0HEt5+8NTxyboK5N/fMf+AR9c1h1M2A9y/9Rs95++j5VxgnsX3Pl59/wWQyAQfbvGQ0SgmUb392KuDFqzfsigIpJEGgmE0mjLIxL9+84uT0lCiKefzwIWEY0LXtwKh3HCzmdH3H2WpJEATcObqDVIrLy4tb1EaUjonimM75wVMQKF6/esP+4oAkiQmjiDfHp1yv1rz1zrcYjRf0TUsYKGzXcHV+RhhF9NYxny9IkoTLkzcsL19TlzlZGgOCbDwhHIR6lOPR43sUeclonPLk4VN++tEHNG3NaDpmt9rQ9D2JElgBnbb0vSVyAxpI+5/GrdNPONrOr2EWaHqDs17M6bWjNdA5SygDlJBUnSaLg1uDjtYWJ4aoLIpEBd45KaHtLb22NMPnUkIiHFS7nrr1nzcKBG3TM84UcSBJlL8fjBXIAFJ8esiYm72KQzqBMQ4VSGIlaLX/PHVr2DWCoDNI4UgTgUKQJgG/9s6CPK/9YMk5FvPIuwc7jXX+zHm4GBPIjKLV9I1Bhv7c9fqkwAqDkTnrzXN+/1/8E3b5hldfvOLRIsEVhrZq2HaC/XHMJEoou4666TzrXSl2rWXXgFCKUPpz/fPjFUYLqr4kDQOWqyXnu5oH3yq4fPMZL1+e8r3v/zrHx6fYYMQPfu8/YbNe8+//ze/zxComswWj6Yxil3O0OKJoNL/5g9/i+asXfPLhj7l3/yHj7LtcX58TBCFZmtK2mr39o7+8L7x9Bt7csd90uH/jfhTDcw5B22o++vxznr98wbtPn/DsyVPauvLptDDgYDZhc/FLy3O/vMA3nY48g21wjVkruLxe+7bHAewssURx5G3t2nPAJP4h12sPvbfOfL1xxh9GtbXs8pq9aOKFkKE1te99a27fGxAKY7yrqzf+BVSBZ1qMRinWGFrlM+8YLyT1xkdWDaDwokKSeHeHlII0SwnCgLbxzDk3MLR2VUdRNt6tFXjRUiiFbXsiFVA3jWdsadC6RylBrNTt92ScdwwmSUjTabpOEymBGmIOYjgkOMfA6jJI5Xl4SRCyatrbaaISwXCI999zWdYs9vcJwpK+ab2IIf1koDf+tdVGgxnYJL13ualQ4mTALq/Q1nGxrtnkFYB3jbSNj8w63wo8iiXTLCJJYnZFTdNqslE61DqXFE1P1XY0XU/ddr4FUuA5VoOLzF8nvhRAKF/nrQLfaBQFAWWvCayhaOyN2O3dlaGX0KIwwjlBnMSUVc3BbMz+eMRyueGtB3f54efP6RrLbJSShQFl1dDrjiBWuFJzdLDPR2cXnH5y6h2J7kb8+FrguPn3jehXNz1vTs4w1rMbtNZ0nWExmxJFA69CCKT8mumntaVsmmEx7BgNBw45gM601gRhQF/XvoYbx2iU0NseoW5q1z2/TgoIw4htUXJ5tfJuVukdW8HQfKsC3/bmPyYJpXdRSin8AVJr2rbH4ktRoij0bo4Aut43GtZtixIQRQFFWfvNrgOk4OR8TZYlHO3POD1f8smXr1luvcNTWB8zc4Ng5AQe1h4Ew5TXi38317kKFEqogcnnXW9KBYO7JUAI5R1YbTfcDx5QLaUv0okiH3Pse8/jtMLDrG/EbYSkM46ybqlbjbaD4DiwcPz64m3rtm7oz7149t7oLarKFzhEUYS1ltl8itaWq4trrpYryrryh/Fee4flcC1rZ7Bdj1TyNiYdRjHaDOJ24Ne7JEl9y7IUCBmClLdToZvhBs4yHU9putoLfoNbte8HrEEQobSmr0uk8o5HHwG8cd359VXditaD4De8/oivr+/gG9e8uPnz3Hzci+t9512eRZ7TG4vVllGa+LVRKiJlaVuNEYa8bsiLhmhoFVytd0Prn+TiekORl9w/2mM2GbFal0glSMKAvdmYOAyo24aq7jxA3UGSxIzShCgIPKPH+J9VVdZstrmPOVuPJUjT1Bcg9TVxEg/O2sDjCIaDn3Weu1gUFWma+DVQQNN0AwssoOk8YHs8ylgsppydXxGqgGSSkRcVVkrenFxy+qPPWBYlkQpYjFNGaeKdIXHM1bYgSkKqoiIIQ7/ZPdzj+mpF2/Zs84pPvnxFUZccLeZEgUQ5z+vJ4oSu7ynKBimg04a+MzjtmxH9jQRKOKrW8NnLU47PLihKLxQeHCxQQcJyVfCjn37Ai5evCaWP2yopufPoCUKFvDk5Y7la0rWeESacxRrLeDrl6OCQ8WRKXTd0VcXB0SHGCdbrHT/6yU958/qlv/6s5zd5Qd0hg5iDozvUTU0YJdRlgek6llcXmLpAdxXC+gi/Gw6yDkffN6wuj4mVo2533D26AxqKgVv65Zdf0VU5i7uHLDeXIEM/TUciQkMU9IzHMWenV7z97BnTgzuk48k3ok5fB3N/bmd2M1z9S8LeN1S9X3z37S8HgQ9B1XRUTcc2L6jrlr73zEnP0fKN60kUEkehb8XNc5JFiCJgNB6zLXL6vqPIvbg3yjKkkCRJwjbPWczn7HYF5yfnTEcTdnnJbrcjG6VImZGmcwIpKDvPKtvmjiwbYY1POvginIYgCFitt4RJjAJGqRfBm7pmm/t9AU7StT3BN4aq8SjF2d4X4RTeMTEyMB6NPL83DNhudl5Uz2KuVmuev7ngzekVwjke3D/k0YM73L9/lySMKfMCFYfk2xwpGZipPWGU0DWdZxZGEXnpB0Kbbc5ms8VZw+NHjxFC0DYNb169YrtZMx2PWS6vOT8/I0pi9o+OWOztMZ7M/N7MWDbrNUb3bK7XWGvodM9ms0aogCwb0VQln338MV3v2+ZVFCKDhMl0jhKKXbGj73zZ2W67oaprus4zM5u6YTGdEASKi7NjvvjqC4JQcri/x6cf/Bkvv/oEKSPCKKJp66HtOKGpPcbDOIcxMBrNKLY5/+p/+h/467/9e/ynf/8fslpdIIKI0WTGcnmO1TcDXIEVDoMlCRSjNOHu3Uf0XcXLT3/C7OAuo3iBSELi4D6zyZjz83PKvCaME5bFv+b0aoeVMQ+ffIvNruDq8gwlE3TXMZtMePLoMcFfwbD8JhfsL2vnX9sVnBPewfCNG+drKp//TL3WbPOCtvdO+Lbr6buGLEsJpKSoS7Tx3Ogg9HsK35jb+r1Y70vCpAiwzjdEl1WDdY5wYBYb43+PE/7wHEYxXd8PiA1fbBMO5WFd58uYsJbpZEJdl4Oz17uO+r5nMZsAwu/RAgdCUdW1Z1NKiQoUbduSxBHa6FvmbzA4bBGe6wv+uS+FZJfnzGcziryibls+//JLrpYrzi+vKcucPN+ipGR//4B33nqbg8MjTs/O2BQ7rtcrijxnPB4RxzFvv/02fddzdHSIkgqjNaPRiMl4wmI+wxrD5XLJD3/8I65WK5JsxONHT3lwOOfDn/4xKpCEwbAnVpa+98KGcY40FuRlTqQEZVVQVwXO1mjnMF1HFKakiWC1ruh7yCYJqVLUdY8QPdYJbG99UVjbEQrBKBljtKMzNZ2VgxOz983bWFa7LUEco1SIikKMU1in6Yymc47ACTQQCr+fag1EwtE6QaY0sxS0EQjjiB3o1hfSDU0HhAGkcYjA7yOjOGb/8D5NnrPcXIBwRApWF6/ZVWt027OYL/jed/8GDsFXr7/ixavX7HY7QPPy+WdUuw1ZlnD3wVtcX15xfXlJEsZkWcbe/j2e3r3HweKIbO8J9x4/IIokry8uuHuwTxx6tzdC/KVH0M+rejfv+gUF8Bvmoqbr+PFnn3O12pIFIXVTs3dwyChJKMqCLMvY7coh0TLn+fMXlFVFMEQ2wyAkUAFn52fkRUkUJ6RJQpakVGXFZpuTZQnzqS85aq3m9Oycp++8y9nJKcvlNf1gbPDNzgmT8YT16oqubWmaiuX1JW3bMB2PGY8ylBI8fvo2i70Dri6vaOqC6XzBanmFE1AUOSoI0b3h4OgBbZ2zW59gdINSKThBlefDgN6LdHuTBW89eMJ8MaeqOrJ0RN+3niM45LUtDmf9muXTP4rxKME5b17xTRVgDX6vqUEpQRoqZOQNKhpBbw1SBhjrxWYlJcaBb8L1xiScRVgxnEMtvXYePzWkC511pJGk6gVx6PeBKMckVB6lpS1FY4ingnES0kWO87UXxrW2KDwL8IaXa3rvVq07b14IFAQKZplHOPVtz2wcEQjLJAsJQ4lyPVI5ysabMkzvsE7QNJYoVvQG1nlFHDimSUqfGIrWsix6ut5wuJ9RFTVHhzM++PDfkO96dNNibMKmlkymRwRUVG1DGDhU6wtLem0Io5hV0VE2LUGkiAKJ7lvCyOtD01HCOA09Mos1H/743/HXZUISBNR1z7NvfQ8nJPNpxvr8BVkAttkSS43sagLXMJssaOuSSKR8/699n/d/9hNev/ySuu3ZFQX3nzzh7OyUpjP8V//wH3mes7ilyf7cbee+sbscIpa3+8Qb5l7TNHz16g2vXx3z7PEjvvPWU0ZJSj08F44ODyiLnPVm85fu+v/Yt19a4AuU8kLXsHkum468ar0LptdYAeM0IRv5haAsG+xQ9oCxXwt6w2HTWsuAdCcKfcFCWTaMR4m3tVqHDbxLL44CmrYjlBFaGx+nNZbeWg+8NJZxlrCYBdRNjXMhURRgq2pgXfkIYZrGvoEOf/hB+Il6GARYoOt6rtc5ddcTBgo1NEz2vXe0CQdl4YUO8DZ/FYihJMFP74fz/mD7Z2B3ePGzH5x80lfd4BxYnxH0Diut/TPo5oIZImdy2DhZZzGdBeeZe93g3APQWhNFAUkcY4yflLS9QSnBfO6t+E1rWW0qLtYlxnqWVttpqkbTad8UJiXMsoiD2ZiqrrnelFRNR68tRdORlw1F21NVrY/iDo6rOAgG67GjcwZrFX2nyTKfM++NIVSKAEcSh0zHKdum8y11/rsdXhvF4XyM1t7G7KQb4KYBu7Km6nxL8CiLiQNJZx3ZZEQC1NZyuc1pjeDqekXZa4qqoem6WyFDDTFcH7EVwyRYDuJex/nF1VBS4cHLjoF/qHuSIWrg8I4ihKLtPAPBWs9S0WZoOXWe1XNzs/dth5CKpu1Iw4hQCdTguDTW4YwhzTKCQJFXNVfLLUHgHRxREBIFXiQzxhAI33bW1JVvjMULNXleMZtOCIJw4CxaH18PQ/Km8S2HSUTVacA7KWl9c6u/N50vsdGSL1+e88WLU84u1gO/xrfkOudFe6l8O5QXbMVtRNcLtV7YVGGANRYthva7wSXmyye8U7IsquHrd4B3dqZpgnN+u1eVhRc3lcLeLKtCgFDU1lKWPXWnbx17Al/UoZC3G6YwCId7ylJ3LZerFXd2B95WryTWaPpOk1OyXK48KL/vscbfszfRSABtDWbwbd+0KPsDjPAC7RDPF8YLu/5r8DDjTvcEYYTCN+YaZ6jbhjTxDmTdG5IkY7fbEoQRsQroum5wk0HfVoQSJllyGy+/uaZDJVFKDO/3cduvI7tf/96boo0bt593NcBqU3J9veJgf05V1Vxeb5FKsjedcng0Y7vz697+NMVYx/nVlqurDU44DsZjf3+HIUk24vXpkuv1hv2pL6J5+ugOUgTUbc1klBDHPqJYN56LJKSkGYZC4ywjDJTnnUhJpw3bvPQR39ozEHtjKesVSeyjWHVboY1vRnTO+YiUHWLz1pCliT8sCH+NJVGEw8dem6b1zW2Z4uhgn7quqRvNrm746sUJV9sd28LfO+M45N6dA9q68W2z25xN6eNMB2rMt99+iNU9TWe4uromzTK2RcMHn71kud0xm6SkSUiiIs/JNAZsi7MG4yx1b9nuSnpjePfJQ0ajhK43rPOaN5crPnt+zJvLNUpJZpMxKggByfW64M9/+BOuLq6GohrBfH+fKErY7kp2eU5TlZ7Pgr/3gkAhg9BP+Z2PYY2mE+7vLyiqmufHJ3z40UesLy9wfetRE858fdiXkul8RlXm1JVvgm6rCtO16L5BmB7lfIuk55P6ARVC4PqWUGh2u5x5MqcqClxb8ekH7/Ps7Xf5rd/8ba6ur/nq048pqwZle0Rfc+/OAavzN5S7JUGUcPfpA+Z7C948/4Sm2fG97//G1wehb+YFv6E5iF/479v34UHtN0LeTTSX4f6R0mNBrjc7nJMURc3rN2/YWyzQXTc8u4R3FzsfJ6+qkigKicJwKOtxdF1PsSvYbHY0raaqavb39xA4rOmZzyZEYUBZV1yv10Qq5vDokLotqKoG3Wsmacb9Owe0qqMo/WBgX3d0XUNZlggpSZOE9XrjDw7jEWmWkkYhcRgQSIVrKqq6xVnPNb2pjgsj3z4qpSTLUr54vmG9y8mLiqODBbPpFLf2PNvzy2s+e/6Gk4slnXPsL6Y8e/SAd549JQkCurbh5PiEThtmsykqCOnaBmd9uUhVtVgH03CCc3iheBBL6q7jzp07PHj4iJOTE5brFW3bMJtO2W7WXF9eMhmNeee9d3nn3fdQQeBf27JADxHPQEiO9u/QmY7e9lwvN+Sb3a3TS1jHJMnIix2j8QSDxCIJosgnVNoW07e0XU8URn7IJAKyNCGJQ6yBq+sN42nGPA2R3Q7jJF3X8J3vfpezs2uqpkdIhTEWYw1IUIHi7v3H/Nr3f4O2a/j8sw/5+IM/Rbdrlqs1j58+Y3t5ymwyYbPdMs4SAhmgAs+8yuKEfLelyVccf/yndH3D7/z9/wWXV+f0vfWFIEHIZrni6aPHrFYXjCPJ0/tH/OjPP2W9WvI7f+d32GyvkMIyjiXLqzMOD/4ub16/5NGjx4RRdHvv/GL01r/7a+HuL4sSX3/85nYDz7mr23YooxJ0uqeua9IkHkrfvOvVdD1SumFf5v/xrj+/joSRL6Mqdg1l0+Ks56ImUTSgVwRhqHxMT/ivMVA+Zt73/hpJk5RO+8ZIpQRhENJb0EEEUtLpnqqphyGq8OcJa+m1oaordkWBc+62JE0IhlSF8hgUYwajgt//aa2J45jJxDuakiRhtVrx4edfsd3tWK/XXC5X5HnOOAt59vQpd+8/IolinNZUZcVut6PXLUdHR7z3zrtMJxP6vuPe3XveUW0dXdtxcnJMlmXs7y9o24a/+Is/52fvv48FHj9+gtWGozsPWF2/IY0dSo6YjDM2uw1xopDS0PYtYazQTnueWAgeE9QQRBJsh24EVvY0rcI5hZQW3WsMAqUckzSg7y1WQBQoRipjHI84PHzMyeUbeuvTA4ETqDDC2sAX6Snp9whdy2abe+xGGCNsj3SWUPq23FiAMX6tbZVACVikAaHraXF0QiKUIzOKu2OHVA5LSG97+s4y359RNRvfZlm0LKa+QK9sOpa7gm1ekKQJQjrWuw1/8K//H0x/9EdkiwfcPbpDNooZz+4hBYDm448/IZodMml7RqOE1y8+woqX/NZv/B6rZc7q6lM+/vKfMj8+4ssvPkQmI/6L/+wf8bd+7XeJpPy5u+mvcub94mDKmz5uXLbenffZy5fUVUvXNJxcHjMdj8iShKaq6PvOl8GNNH3XcHF5znq7RfeGyWTM/t4eSZJwfn7B1fU1aZreXv/WatJRggwks/mMo7uHbFdb6qbB4vjsww+J04Qb50GSZkRJMhQLSqIwRA1nsLau+eTjD7n7t/4281HKOApoypxP3ryg67w7typL0iRhPpuxWm990/t4RFMV7LbrAeMlb00ybuDupVlKEsXMF2OKoiDXDevVmiRRlIVEqogsy6jypefbac/WB4/AqpuOQEDbG4JA0PY+daCkoDe++LFTfr96Q5hCDCYC/DnSOEvdGZSEo2lMEkiuC0dnLEKCwZGE/mzpO/IEYaBIE0XV9FjlCIb1JIt84WESDUNIJ9lUPQfTyDf2WkMcSYyGyEHROAIJaSYpqh6coOkdEwXTOCQJHONEEI1ilADwxUUKw7YxfHrc0tmAx4/vcHaxZrfzBoW784woCrhebWmjCON8cqluLV1v2VuMmIwiYhFxdrzk+LygrBvCQPBmvWM/S/gbf+dvc/XyQ85ffMw8DUjikLrVKOl5seMs4kEQ4sKQqunY1C3GepESqYkiyXiS8fa7v8WTZ9/l4uoNe4tDNm/+gtcfd4xnCx48fpv11Uv6pmJ1eUpTt8wn+yQBtJtztucnXL3OGR+9xQ9+6/c4uVxy/Poldx484NNPP6Ntav7Wf/r3fCnlsCsUwou1N9rON7eVfPN9zlFUNb3W5EXJR598jHPw6N4B7z19zHw6xhhL23UkUURVFSzXK25G5r/M2y8t8PU37ZfDN+KcZbUtvLrcNhwe7BHGCU3jm7us8VXR2thBVfZCjbPghEVgCZRvLZTOu0vyoiYIFEEgBxeOt7iGStIMBzvZCYyCKA6pWo1ufZGEtQ2L+Yh5PMHTFnyTlXN+AxsGXkyxzqIChRuU2ZvDrzVwfrliV9WkQUAaSrS19L0G6/ktxuGdQEPsNwqlj4M56xmDg+XWOhiPY5zxoh/OP/A9uFF+LewNr6V1voAjCMIbEqf/vc67lNwNb0p6/kSel6Sj0eB4MGDlrcXeOXtbFCDwPLe+99XfX7xecnbtN8DTccSmaKmbDq29wJhEAfNJyjQL2ZY1RdXSDA24ZdX4soRe0w6Hcd9K6hdvY4yPC+O8q834QhDfYCYGR5aHpxrrFy+lJM553loW+cnCpvAtw749T5HJFG00e7OJ5+4NzZPaeqebEBV10/LgaI+L00tOrtfUXUfTtKzyLZ25EaWdn1AOMcVAeaeUdxlCXtZcXa9RQcjefNjMg399hX8dnfNOSayP2jbNEDMBiqL0bb/OC87RINj6cgVLUZYgfAwlr2tGWUKWJNRNM7Qcay+CKUlVVUwmI4TzGya/OU19A2NvENKgAj85NsaLuEpBksbkZck4S4bij24oMvGtjM5Zsiymblt64whEiByuOSEEMojYljuqqqdpW7qux+p2AOYbb/2WXly8aY27jbA5RzS4E28cg9bZ26EAcMtJ8w4/dyv6+eg3RFHIZLZgt9mg++5WgJJCYHrfvOqEwAhFNfAx9cCY8Jt4z85UQ8zzxkEoh8ilZ+Uoeu1ZOdYNbi4haJqO88trNnnumXkDX885R99rv5YNLj4vwnt3p1IK3XvYdjjw06TyjeDWWOIoxFgvzgvwDbHW/1tbMywB/sAZKEUgfMGNAozpkcIRCEPfFNTFlkgJJmn0jbXLb8Bu2mRv+KM37tLbtmjhv2Z5+2sBQrKrWt6cLsnzkkCFHJ9es80LtDFEkWJfwmyU0NUtgTBYoGxaTk4vMdYyGiVUbccoCoiCiC9fn7Fc58zSkCxR1FVHviu5d7Tg5KwjSxPEwPj062vvrxftaLqaTZKzmE8IlEIbw3q14QZ422lD11mu1h6c76w/hFdD9MM3oKfeIeoMdw7mKKVYbko2ecWje/tEKLJEMU5iqkaTlxX1xRUP7h5RVg3X64rPXpywzgv6rmcyHnEwH7G/2PMg9rJhk+dEUUOoQvYmKbNRgnGWqm4IwoCyqBhPMsqq56efPudytUYg2JU9SlY8uZ+ytzcji70TUzlNGDouliusDHFG8/DhXYwV/PSjL/ng85e8OjlnudrgVMDBZOzt/Qd7vHh9xieffEZTF0ghmM1mEEgsgtOzcy8yux6r+6+vsSj2MYg4ZTZf8PDRY88kAi5WWz7//Au+ev4l9W4DfYt0/pAGN944/1zabVYYbVEOrOkw2ovRzmjvVDJeuPSiu4dga61xwg1FOSNGWYLpNvy7f/PPePz0GZ81JQ/eeo/JeMzdwynPI8Hy/A3TNOD4+CX3Hn6Htil5771nrHZb/uKPf5+mKsj29uh7D8L/qwSJn3sTt569WwHva8Gb2zXNC+VegK5azcnQpi6l4suvXmCMIUtSvw7ibiOFQnkhebsriaKYKIhpm87Hd613I4lAgnBMJxMC6QdrURAyn05ZLdecnZwShSF917BcXTKdTkmigLquyPMdwb1DsixBl40XRXrDfDplvqsZpxl5VbJcW9IsIw4U41FGHPohka4boiAgmkZcX6+oBuE8DAPyuvHCufHPorefPuXDT79gPp5xdb1iOp1Qdj3vf/6SF69PqBpNmqV8+9kTfv07T4mVxAnFcrkGIZktfCt2MxRvlVVFGse3La1JmlGWFVmWcn2Zk2UpeVlwePcee4cHXFxdkuc5i8UM1/dcXV7y1Zdf8ejhA77z7W+zf7DPcnlNWVRUZU1V1ThryJKEtusQKJq+xQlLud1hdU+YpExmU3abgjjyvNZeG9JRRFt3NGVJWxbedd72CKEQShHFKVYowjClKLY0dcWdgzlCGKzpqXuNFCG6veJnP/ljFnv3iSJLXXp0SRiGxElMr3uOj1+yXJ6zf+cx777zXV4+/4SrqwsWh484unuXi+NX9FXNJB0hlaNrLVWVs9l41/84Sch3l5x9WXLn4VOEgPVmzWqzI99ukc6SxSEXZy94/tUn2GZHvjylLS7ZywTHn/+U4uqYWGqK3QWz/Xv8s//nPyGKEv6b/+Z/6/dW8i87iv5D99VfJfR9831FWXG13NwmGJqmpa4qRtnYc1iHJE/TtrS9RoU+uSOlRYYhXdejAj9gFUJR1w3rzRZtNHHoC8AAet0jAaVi0jTxSQajCaIQhs8TR15QFAKPPhCCOIpwbUcce2FzsyvoOk2WpYDDaI02lqKqqeoGhE8YzKYTP9wfGHwISW8sVVNRNw1GG6I48uyzIKRv/PPjxetjvvjiOXnVoPuON8dviJOYb737jHuH+zhjCOKUpu4Iw5i8XPH06dtIaRmNx5RlxYP798E52q6lKCqMsUynUx4/esxkMuLk/Iw/+IP/mdcvniOE4OjuA44O7zKZjvnxj35EYEpQEQ+OHtG1JUF1gbUBWSZJRYREY51iMpKUtX/29tYRe8qQP9y33qkXSEUY+vRG6wRhaHHCeEenCknjkDRJieKEVbWhM75Equ8FTW9IQl9WmEQKaxzSGl69+JRNUYKCXVkjpWUSh8RSoIDeGdIhQmmsIQksgRAUHcSRYyQkXQ+BgGdHMdEm5HjbInEY49gVFXWj6VoDqmGza4mjACUFi9khh/v3ODn7EiEglAGry1cc3n0KWpOEI+bTKSKOie4nGByff/EB568/5M3nH5Nvznj58mPuv/dd1uU1Vaf5zd/5e5wenzDfO+Dh3V/hzz/4I/7x//SPeXz0mHfuP/TxzL/yefVXOftuP4R1cHy55M9+/GOmszm91qyur4kTH3nHasCw2fhypXIQz7rOo1GS1N/rcRSx2W7JixxrDEb3jDLP2JNKecxLGpPGIav1muX1iuvNFhzUVUnXtQglmYwnPsUmvWN1Mp1gup58lxNJ/3s32w1t31HVDXfv3ePpruTPz45pu479/QOEFGzX15heE0V+6J9vVxS7NWW+JU4z5nt3GGe++M1jwAS7XUmpGs4uzkiSjA8//Oh2f+3PIh11UZLEAiMAIek6RxT7oeUNBx3pfGkevuTSc/L9GbwzYCyg/CDg1uElfVHGTdmlQ1A0PeHID4wCyVAmKom+YcCxzmGE4GrX0/SWLJCo0DvztLYcLmJWhabVmk7DeJLy+O1nqEmHrnPabsOL44qigTRWVI2ldRqLTw36fY0kCiyRlFyuasajgAjL/YMRaRTStj156QultmVL2VwRBYq9ScxkEnEwi2mrjrt7I1alZl00OANd59nim7xmPp9z9/5jdvWK1W7Hnb2Uvu8IhGEaW/7lP/sn3JmnmK6nEng+oLEEUiBEwDLv2GjvrOy09lKIkDS9w+F1h8k4JFCKLz7+U3ab19w/2CMaH/Hb/9l/x+XFa9I4YW//Ho/vHRLpNbLf8tmnx5h2RdNp7t7ZJ1+W6OqSmIa/9v3f4Hd/93fpRUSYTrh/956Ps9ubtMfXCaebB6AX2sXtXhjAWY+V+NFPfkJe5iyvlwTC77t6JWjbju2uxFrPiQ2U4vz8hE73qL8cKfmPfvulBb6mMxRVxzjx06o0iphPRzjnuHtnH3TnuRbOeR6DE7jOt+qGQ6GBRCCUQ0nnD+rWIKUahA1FZyV52TKfpDjniJXw/D0hScKQuvOwW2MddeMZLr3xltii6ZA7xf6ej38Jwa3QoI2hb1sftTOW0Sj9xoLpLZVX12vW6+3Q0mhpOkvX1WRxQt02NK0H4Ieht98r4V2AYaCGwh5vv1VKESpvuW27zk8/tMFo42OggLflDlEHPGg4HFqLojCgsF4UMcbipLt1FAxln+R5wb37Iy8y9AaEd065gf8VBP79YohGH5+tOV0WrHc1fdcinWBXVBRlj1IQh4o0EuzNMpSA5aag6bxAlxclZdPR914gaXuNxRFKQST9RW6Mode+jdUa5+HrgSRRit64oWzCL5ytNl5swrcl74/nxKHi7uGc5Wbn7cRSoFSMc5pISEbjMc8e3+Pl2QWPj/ZxUiCdQwo5APk7tJS8PjtnV5W3jWk4EIOr0DOA/CQxUP6weePO3O1K8ryiaTTaNKRx5NkOQ/uZ38wpv+BYg1A+QllWNU1vqFvvZC2riigIqa1BpImf+vQ9YRgTRTEq8M1pgZIUZc1oaM/Ji5LZZESoFJ3Rg/vTXxdJGiOFYFdWVFWLsQ5tWgReBG2alixLcMb/3EUcUQxFBaMsxVUNXa/9vdD7co44jrC1Z2n46m5DozV5uaZte3Sv/WuoNb3usNY3/AaBX1xDpYaDsbt1zWlrh6m7dyZGkT/A9do3xt5M+83QuKuEd8+Oxxm2b0lCD9RfX19zU1IRDoIAg9OOIMAgIYjRXYMVvszFDtH6Gyi3d1eKIS7nRTrfvquQRviDW99jjGE0mXJxfsFqvb5lE2pthsbbmwIc31TddB1OgFI+Io11WOvdvfYmfqg1oYywWg+uhOFCdH69kAJ64w+CSkpk4J2PpmpRUmF1hxIO01U+Wta02K6gb0ts7+OVN21eXsDja8eRuF3Sbt+ccF6YFX5CfPPnhJBsy44Xry9xTjAZZ7x48Zpt0eBcQBxLzOBMlUJweLhAm54Xx1ecnl9hrQdpm7ZnMsmIk5gvj6+43pak0nLvYEEUCuqqY7XacO/uPpNJShRGtHVDXrS3ZTFV2Q7ux4CzyzV37hyQxiH51rs7u64nr1pWqy1aW6qmp+l6zMBO9Z5SXxA0in0U2mMdHONRAkLSdB3X6x3zUUooA3LT+JdKSPK64c/e/4rPnr9mM8D+x1nK4u4hoyRlud6y3RX02iCkYG86JQwU27JinCUoHJtdRRP5MhitNbrRfPDxcy6uVz6+t5gzGo1IAuVfhyCgN76Q43K1ZlfVbPKCvKr4lXcfMZ6M+bd/8REfPz/m9PSM9WaHsZb96YTRKCMIYj785DnPnz+naytCpZjtz4nShPVqTd9usNofboWwxEGIUN6t3nSa0WjBo8ePmY1T3np0j67r+fP3P+bli6+4vjjD1AXKeqHODQcM43zEUALCDEyZoXDKGo8EMMYPFDQOpEA5Cc7f/Z5D5ujbnvVySRxJuibnZz/8Nyzmh+STCX3dc3FxgtCtv/b7julij88+/xHf+8Hf4O69d1mv/z989fIF2XjBfD4jvHOfg6OHKBkNJQBfP9t/XsTj5yawN6Ie33TtfeMfhMQhKauWi6s1daMx2lCWO5Ikoar9oSZTKWka46wlTWOSOGa73TEej8nzHIEgyFIEdoh6dgRCMJ+MSaKYtmuZT6cs5rNB0Lv28H0pmE7H7IqSzXbH3aND5rMpZVlRVBUH+wsvOOIxA22rGaUJuyJnvdshhGCcxexNxzhnaVrDeltgjd9EJ0nEaJxAab14kddgYC1LAuUje1mWEIchq+UGKyw//eQ5L44vWOYFURBw/+E9fvP73+HhnSPyomG5XWGt56xNxxmr1ZrzszOqtvEDTOcbseM4Ybm65ugoAimom5btZsNydc3e/gEHB0e0dU3XtozjiNXZKc9fvKAqS771rW9x5+gObWt4+fINTdvQtd3AvW0JZcDr12+IstQjB/oe8MxYa3wDer7JUUISxSHj8Yj1ck1b1bR9x2a18u694VkcJjEOgdMa07WoJCJQkr3FGFxPOzR8Z0lMlkjiZMzs4AGj8QEvXj7Hd4V5wS2JE+q6wrmepjUIZ0iSEXEyxjjv8sdCmmW4rqJtW9qu8QM5NWzje0tN69v4RhPibIoNY+7uHXB0dA/da66vljRtzXQ656rpOa81O90TpynX656w77FW02pBlk7Jy4b3Hr1LNh6x3m44Pj3h4YNHTCcTfi4DeHM/wdfPm59/5Hzjzfn7p27Z7HLa3jObA6Wo6nZo6vTDf2MsrdYY610TTdMhnCWJYyajEc55l04Qhuxy766ydnCNJ7FHBwjPp5XCpy+kEKRJiJQRRdmw3uxwYigVShKmkxHOaK6WKx4/fDAgQ7wjfrPL/fATgTWWMAmxtvP7IusTSUkU0dQ1SZrQtB1l3aCNo+k6+rZlbzH1Dr8k9qVIb054+eaYl8fHnJ1f+MGfsei+42D/gPeevTUUcwnmi32apmExmzIZjYmTiPFoNAzUA7793ru+0TpLWS1XpElGFMYeO1FXfP75p3z+xadcnJ0wykY8fvSQJ8/eoWl6Pvv0E4wz3L9zyKsXDdv8Nbie+f6U1TIncI7Dgzm2Xw8DM3C29eme+R51uaSqvRgWhwFNoxllIUFgKeuWIA6QSIQyRFIRSIUKa1rZ05sdcRuzN0p4vPeI918/H85OAisMjZZEwlI3PY3xhRDWChrtnXudcrROE0pIAkkWOmJriSKDAvLW0lsJvUU6OaSdvNMqdvBgL+W66ClrKIoKay3jLMNJgXWatvPJit32mq7JkUoThIKurbFcsj4/5uBIMk5DfvazP+TgYJ+ri0u+/OoTdLfmix//Ka5fMUozfuWv/R7paEa5WTMJE3ara7I4Jg0iDvYe8bd+6z/nZPWK/+s//T/z9//2f87f/NXf5OelvJ9vnf65jwg3mAkML45P+bMPPmaXFyzX+e2QN4s8rz1QirLvGY9GSOnPrmVZkqSxd7haSxpFxHFIc9WgtWa+mJEO+JCm84zuOFBEcYwQUNQNbhhya62HchrF/sEhUvhEQF1XPH36hPOLC5q6QltNmmYs9vZoupauM0xnc7qu47133+Hl88/ZbnOsE6wvLwYTkIQ+YNttODw8JF/3xGHA4vAuv/N7f4er49eDk26IOAuFkIrnr88YJTHCfo3r8M2yg9lDhNRd5/FRTiG1HVIjzjP4nERJv/dtnRsKtCxKhreOYOu8k/TmByOELwlFeOa8NpaidVjbD0YjwTiSNL0/kw7YcuJADUVAgqYXdNoxSgQEjigGqRyR0hzuZSymM77/g7/Nt77zPb747H1OT3/Kp5+tqLUfQlrniIKAtvOGgkDCKBGepz6kCpVUTNOIUA6Feb2PI08yyXuPM7aVYL1tSYY9TWc0L05bxknI/n7GTFRkfQrSstm13mmYRTx9/BZ37z/jq3/3L2majgezhDiJ0M6i0ExTS11uGEcR2kAoJZGCOA6oOsM4DTm/rumMIY4jjGmHM6PDWgiSgLZp+Isf/j5ZNgxNTcujyT2UCCiuX/G6WnrBUG8gl/zhP//HPP3ub7K7OmEn4N7ju+zffcz58Zd8/u/+X4zvvsPDZ9/j0Q/+HiLIEOjBsOVxdNYaXp0e8/bjt4iDGCstpvfOb5/Q9GfJq+U1P/3Rn/P+z37G7PCQew8fcXdxgFKCKM1YLBa0TcNoNGJvPmOzWVHXFUKIr1E8v8TbL9+i22mKsqFtW2bjjCBUvPvWA4y1lHlBH/hRgu57H/2zhkh5Ft7Xk3GHcwbjArrei2E31nIwKBR1rYlCTRJ5W74FghvOWAd53TFOfBsr0scne+0rq1e7EpTkaH/iD7RDm2zdtFSNv8msM36TMeTfHYKziyVnF9dESpFEvpzCagikYrPbYYca7igKB8eeuxUpBM47egarrhRewOxaf+F7J6IX3sC78W5a+aQUw8XrhYokSgY3ENy0dHoH340n0Yt8dd3RNB1ZlrHZ7G4jQVJ4K7G1EvCtrNtKcHy9pKhapNEEoRf9dO/bggSWcRYyTj0Id5XXdMbSND1FWVM27dB+OfwMcURSEIdDpfjgxOl6TRIHpGlE2/dkSUgSh1xufBw4DHw0KI6l5+DEsW+aDRVSKuqmQUjB0d6M3lpsr5mMZkRxyOnlmqvVFicFozQlGcXY3rA/m/HF8WuuNyUvzy642m4Hp50/jAYIAhxxEKBC/7OTg0paln4SWzUdXe8nNb2xGMsgolnSMBrEYu+gxHLLzKvrBiugbn1Et24Kz1BMEqy5cZV6Ae0msd93njcmCBFSkhcFaZJ4ruJs4tvatRtiKYIgDBglMdYadrt2aIX28Vi/+Hg3al7ULGZTjOk9SyVJWW1yFvMxSRLQdD1tZzz8XSrGaUJTNvTWklc76rrBOC++dW2L7vuhrMNH8uIwIAyDgX3nHavW2ttSG+FvRcDirBdNu86LhMZ6HiOWW8eakpCkEfuLBWXuD6J5UQyV7iEq8JuOrvPuOofDCsFssUdeeTRA0/ae/4k/qCsh/cHSWoxztwUpHpprbg9HgVIEQYBAUFU1m/WWzWbrC1GGSLxSEtP7TUtb+8idHdiBMvAOXIwXIaXy95NSAUJIglu2j/Zxs6YlTUeoQNFL6d2SzmG1RgSCMs+9iNJ3yDCi6xr6tsH2DdZ09HWLcD3CtMSBF1aN9ULqzfrludFusPszuKTBCocanH5O+HIia32UpWpbPn95St1YbNdRVQVHdw6wduWdKIEkSVOC0K9hSileX2w4vlj7SH+neXB3j3TkXbifv77gcp0TRYp7hwuUswijiEIvKG13OfvzGW3bD3ByM3ytPtIRxSFtq+k7w9nFFe88fehFJeuom57T8yUS5xl9UYiQaji4+wFCkkTeuZNmw7XsuVVa94zTkCBKEdaSZjEy8PHwTVHz4mTJV69OcFpz786Cpw/u0BpLqx0nl0scW5x1LMYpj44O2BUldw/mXiixjovNjrfu7HHn7iGvXp1xeCfFkPCjD75ktdkhlWA8mjCfZMzGKXcO5mRJyHQ+42q54eWLU/Ky4exiSadbnr31gLfffsYf/PB9vnp1zfnlBevVDucM9+8sODw6pMgrTpbXvH5zjOk8kHpvvodUkvVySVs3WNPfFrI46R3I6B6hQrLJnO99+z0ePrxLZx1Xu4JPPv6UTz75hHq3At2i8JPZQIhhqm0Ixc14yvkDhtEY4yO4NwUaSvgyK9zNIcQOLumbjbXA6ZoscsRxim0rprEC05CXBXuHj5mGE/LNkjiM6LuaoqqZjGfE6Zyf/uhPCMOQb3/vNxiPF/zkR3/EKIg4Ojjg5ecfUpQl3/v13xhcdXAr8v3c29c8vW9G2IWHWvr1V/q47tVyy9nVkr7zB/uqLHwDYRghhPUiOxAIQRCHZGFA37aexaUkUajI8xLwfPeiKNjlOw73Fjy6d3eI9fZMpxPqpuX45Jym7RmNx8i68WKgCsm3W5qqYj6eEIwmrLY5+4s5s+nY7yOco2xaX6zVdXRNw72DA+aTMUoKD+C27rYZWkW+URsE8+mEq+Ua3RuiOEQGgiiKKKuG/HJD3wsu1ysuLre8uVhiZcBkMePXv/8dvv+tdzB1yacff8x2VzCdzRiPR+R5wfnFpS9Ws5a+6+ioAcFkOkUgaNrBxTWZeJ6phPl8nydvvUXXNvRdi7KO129ecfrmDV3fcXjnLovFgiRNOdjfxxjD8clrgiBgt83ptQYlWOzvk5cF1jmKsmR/f0G+2xGkEbo3hDh2uy1FXRCFIWVR0PceGdJrg0aAignTjLZpvZO97wkB23WEY4nVHS6ICERANon9MyAM0E4RZYfce+s7fPL5JxT5ligMaZqKvvMtojg/5Hz18nOOX79ESsfe/pzdZsNm/wCGfUg2ytg7OKDIG5q2ZTLO0Ma3kOuu5uz6kvHsNdeff8yTv/kPsEKx3uyYT6e8Pt6iu4Zms0J2HfcPH7A6ec3k7jN+6zf/LntHT/l3//M/xYiIZ+99h2w6Z7td8Yd/9IcoFbC/t8908k225e3t8/P31jcOuDfrw7DrJy9Kzi6XgCNNM7Q17LY5YaAYjUbovqdpvIDQDWKsEoIwkIzSzBfCDM/c3kDdtORlRd9rP3AM1MDj9oJe23pGJMInZqzxjG4lPcu5qhrAUTc1QSCZjD1XMi9KJuPM3/e+vQOBHfAJjuV6izFmGPSDHHjIi/mMrjcDisC35oaBJDtYIASUZc2r4xNeHp9xcnZOnu+4Xi2JopAkTum7nveefZswCInjmMU8QylFVVc0Tctob8R8NqXvO7Ik5t7dI+IkJgwj+omhLEoePbjnfxZScLVc8fzVc3700x+zurogTke89e67HB4cIVTEq1df0bYt/+t/9L9itzzhj/7N/w1jK6bTCGcjDhcz6rpgfb1hOk6Iont+GDXfsBdlaAlNv2aSZIRCUOUtOImUDmN64jggyWLAJ5/63mJMR+MkIylIZII2LXE2Ji/Lgakscb0gDqSPRoaKotP01pElCtNoP2xIIow2IAWt0d4N1lky5UXiWluE8iUJYeL3WuPYEmIwMkIqwaY2FAHsjCWOIqQ0vrjF9qSRT9RIq2h7TW860qE1PJQBysFu9Rltccru+mPOTl7yQWOYTjOK9RopE4rTj7i6fkEUTzi8e5/daseP/vifskgErQGrYO/BE1Z5Tbkt+O/+2/8D33v6KxzM97wBRvzCjTbcUTc32E2awRjHyXLDDz/9hO3FkruH+0gn2e624AQHB/u0Vcl47PEHzgnm8xnFbjBRhAFRGGG05mB/j3GW8erla9q+JwgCZrM5XVMzzjKPV5CS6WRKpzWr1Yo4SajqyqdVwpC3n71DmqQ09cBnNIZil7Ndr7HOEsUhYKnKHdl45JmxtgNnCYRD6I6jgwOCICLPC+IoQknY7bYgJI+fPKNtG5I4Y3QY86vf/3UeP3xAfn0OTnrThwIhHSJwRCpgNhuTxDGr9dYnC7jNctF2BmuH4kohfSGF9Oc+f44AEaoB4eRfcynkYPBQJGmKQ9Jtt35P46w/y8vhb1BDgy6SVlvPRZaedSek9kWJg3gthn3RYhIRR27oL9DMxookEowTbxQ42htz986C7fIrfvbj51wsr7i+WvPmoqVqLNp5ETMMLHVj8NHoAfOlBNvC0CcwH4XkVU8cSdrAoZRDtwZnFcb2uE6Qlz1VJ6k7Q9s7LIaiNayrjiR0ZHHINIoJxpbDvQnbuuKDD3/Czz76CNO3QMwqN0hrqEzHLIx4Ok/9Pr8zPm0Rh6AUdduQBJJESpIgoNUdutfsjVOkczTWMImHUsbRFK0dm7wmVJLVpuGozClOX9Ccf4o6usdHn3zGZ1+eIaOY//p3/it02dCUFa2xHOTnXKyWXF1e8OT+IW8++xGh2ZBXOaPpEW+SlP2H3+a9975DFCVsNms+/fwj7t95QBZn1FXNxWrJo7v3afqO04tzlhcXXF1e8OGP/gzbax7c+zXefett9mdzyrJgvpjT1BXjQdxzzrEbBr/3797j6uLiL+1Q/2PffmmBzzdMaYwR5NWKO/szkjgkFAopxux2FcZ2lHXr2/WEF6SMcUP7rPStL9JbaS3CT9vBt4e6wQqpYFe2BMpzuHxBxxCBCxR53RFoH+lVOCSOunVMRyFV13O5KlGB4mA+8qwwIIwi9ODAUEoQx+HtYnl2vuT07AqtLQQgtZ90lEWJ1j047/oKhw2EHaKngVK+bdG5W0eM8kN/nFA4htdLay9gOs8XuxXufu4f/xpHUcC28a2QUoAdHHta+9ZIa82tY2d5veHOvSPW2y1936OEb2Hseu+Usxauip6rTUNd94wSMMLHeJXwBwI1lF2kocRZyKuaqu0p65ZdUdFpL/Q4vOsHfGmDHITafrAnC+HFypuJDkJ6AKn1LkKMQSnJdDairBqksBwdzDhbrdlVmkmaMJUxSZKy21V+gyAlaRZz92DK2dWGOItZXRR8dX7N2w+PUEKwt5hy9rMtV6sVrb4BufvXLpIKazWxkGRhgDUe6rzdenbKbld4ED9eMKlr71TTxqCdIox8nCNLPedLKt/QZIFquMbLuqeoGqy1A2cppK5Kf80G3sniW6J9M6eSPtbR9D7mFQzg4VGW0HW9B9I74Z2Hwteth4HEOcHeYk6vLVVVDfwuiwwUTetZENuyYDoe4YwXteIoYLvNWcyHaFer0Uahe+9Sq9qevGqGGLKjG6bOZngdhfBuUqXUwC0ceJrWfO0CGwQuZyxhEHg7cu/b7rquvRWokQHa3ByGHYvpFCUd2/USq7Xf0CtFGMWYzseKb9r5nAqQYYiKU+resc4LqqrFGT/Rt3iRSA9CgsO339luaDh2ftOH8yK7CH177fVyydn5Ofku58Z37W4iuEM0vzfeHSjxwqYKPJMmUL6t1TlB23fEUYIK1G103xhDGMeDk1Cih3IZz0X0Yn6chFS156KFgaJrerq+QXc1um0QTiOcJZLefeek32h6kK/zDlZ54+AbCIBODC3ediiNAevEN1x7/lvdFQ1fvbxEa8tus6OpW9IkwvSa95494vXxBXXXoPBfqxOC6/WW69WaXdmA1dw7mCKco2wdx5eXXK1z0ihgf5wRCjBW38agnHVcLTfc2X+K1v1wrXveV9s5pBIY3TIaxXS65vT8mqeP7iPxg4v1rsCYjoO9PUIVkFcVnda+iRPnRSwA4RvXy6oiTWPm0zFSeB5frzXaaNa7mt3pmi9en3G23CCc4/7+grce3WGTl7y52nG93uFwTNKExWTE3nQEgzs7rxrM1YpYSB4cHbLe7rjaNjTNmjiNkUHABx88Z7XZEkrB0eE+eV5jnCMOBOMsoreKT756w3Kbc7UuWC03SGF59tZTjo7u8Ic//IjVruTi7JKqrhBSMZ9OSbIRZ8stq6sV1xdnCGMJlSTOYnZ5Tt/5IUCsFAaJUEO5TW8QIiBJRuzducfB/h537+zjsHz8xVecHp9wdXZCn28JsSAcVtxsNP1QJ1BqKENxtxgIM2An/OBJDbgJ75K6cQYEKsAO5TNhEGKsF86NMbesKkHA3vSQu4++TTKec/bmS7I0Ja9ytAs42L/DFz/9V5x/+efUm5Zv/9pvk8UJX3z6M65O3zCKQ/7k9/85y/NjHj37NnY4pHgX3s0OZhiR/ZxLD37RtacG7pdDcHx+zenFNbrzrctg0YMrEgRxGPl7PfLAf4kkTSLqpmV/PqdvG5zR1JWPRLVdh1KSvb059+7fBeuFgdlkRlU3nF5ccr3eEAa+qAoGzifecX5+eUWgFHt7M7Y7f42Oh4KO1WrHq9dnyNAnARaLBaMsI4xCnPWsydF4fDsgiuOQNI3ouo6yanj08D7PX7ymbmom8ym6s5R5TVkWXK/XfPbyDettS5gkvP30Kb/9g+9yOI85fvWCq6sluuvY399jtVx5QUV5J76MQ9qmpWlbyqokzVJUFaAjw3w2w1nvAH15/JokG7O3f5fFfEqVF1yfnvD6+XPKYgdIJrMFjx4/4e69u+Dgs88/4+jokLefvU1ZVLRHPW3bcHF+yXa7Y+9gH6stbdPQdb2P70rBKBuzKwofoy8ryrajahrPWZURxrXEcYLWhr5tkKYjEtYflrRG1zVi5B35URohTY8xjkb3tGXF/p17mK7i9OUnpGHg249NNxQfQdfV9NrdCuC9rgmkZLdeM5tNWa+XfPe7P+DTD/6UqskpqxIhQvq+oSx6tO5olCQNFZ0MyVdnlNdfsM1/i729u0RxzPnlBYvFlMvTE+r1MXrzhvf/9F+QFznf/vXf4erqDNdsuL8/o5cBVgaMZ3PKYstsOuett5+xWMy/YXf9WtT7+v/d1/HB4eMOMUQmoaprtnlBFPlYrjGauqqHZEuC1n5dTpJoaKr3+9s49g7Jvut8cZ4LUVKhrWW92VBVXiiWSmKtIIij2whVkkTDkFx4PqW1fr+mNUmWetyH1rR9h8NRN76cbLfbMUpTlJQsN1sUIEMfvXfD9yKV8mxbJQZB0YuwVV0jhGA+nRJHAXXbcnG94uT8nNOzc3bbgt4YutYnLx4+eEDX91hjeHDvDtb0jOczgiBAW0telIShb8Y9PDggTWN+5VvvEUYBaZIQhoqybrm8viaJYqIgwAnB+eUVf/HjH/Mn//7fY7qO8WzO/YePSNMRlxdXCCXYPzjgd377v+Dp46f82fkrrGYowDAEgWV6kJBVI4rSst1ZmnZDlDisqNhUSyZjhZUel6K1wFhJZw26sWQjSauhqVocvb8WrECiKCrAddjQEYcJl3lOGjiwEuE8H88hkCqgtZbWaMZxiO4trTPESqCcxUioWx/9HQWC3koKZzFCEg/nGicEq9q7l0JlOZw4yr4jxHB/Puai7lChYZRImkZQNi0iEPRtT1v7s6Y2BhU6pDIgNK02GDRqc4GUK/p+St91CCfpm5YkTHAWlmfPabsOp1r+5//7/9EXK7kdNIpREhJPH/Pbv/1f4wgYzcY8PHpEGkriIZm2LXKSOCZN4kEi//rNU5sEm7Lkw5cv+eBnH7DZlSxmC66XGxyC8SgDZ5B448holJHnJdYayiLHYZlMZqgo5Oryyu/9m4ad1ggp0Z0fmua7HVLAdDIjTX0qQUnJerP2Bp6m9mK8lMwmExbzOcI6bNuC7smSCHW4j7OWzW6Lw1HlW5y1lGnMweE94sjjuMIoYTqdcHh0h0dP36YqS66ur3j94oUXtscTsnHG0b07VGXN7/zmD3j4+AnL1YqiLAlDQRRl7C9mtE1NEIXcv3MP4fzeO9/l1NoMQ27ACR//V3LQJQyO8NbAIoUA5Z1/be8NLJEMkcIXVTTWstsVyED5M6TxdHBnrd9vS8/0U8o36Pr0XYCxA6rLOsaZ54E2nUOFiiASw89PenSZkYxSweFiyng8oe4a9hZT1tslUdwQyrucvdkQxpLZOMXoijQKCKTngpfDEB0hfambgLw2OKUQpWaSQewk253/eccBHO5lLDcty9ybHXpthtSiRKmIrteUvaOP/HlQyI5RKBhlKatdQVG2pJnlaG9Kl9WA3yeNrEL2FtP3WCnYlDeMe++WbHSPEorJeEQS+UTaLE0YBYqqaai0ZZwJ+tqhHFR9R6gEaSxJJKTNli9/9P9G91u6dEpT7IiUI4kMV89/iDYOj5+P2V6fexOFE5wud1gkH3z0KdHnn2Fkwv1v/x6/fe8Zq+UVUTTiyxdfcXV6yjbPmY4nnJ6f0WlL1fV89cWnfPbBTwjChCxN6aotcTJiMZtzuDenbz3Cqe97RlnGwXxOGAYs12vSNGU0yhilGcvLy/8oLe6vevvlBT7r+WdJHKC14WpdcLQ3IYsD30yrDetNS1F7YH0goeZrV5kY7KHG+Mk/UhBIibZ+2i+k8I4MIeg0FHVPEsnbh6jDgPWC1K427I1CDy12bnAI+UNIUXccX+7IkpBxGuHwVvrJKGOTFwBEA0D44nLFyekF7saNIx1JFLNZrxFC4SwEShKGXij0MTwvRgjh7ZkCUKF3a0VReMvTc/gW4F6b20XDGIsQvuXqNgaEuBWWAC+wMHzPvcYONmEp5QBU9b+uqpq+6xmlGatmg3E+7mytpTNwnWsuNhU4TSIVEks7NHppbQZ3gfQTKuvYFBXl0A5YlJX/usWw2En/Z27iWdpppPANlR7u7xdSeXOxSf81BtIxigOqwf7nhoN2FIZobRilCau8YVc1WOtIk5DeaPaSMQ2CMAy9OGsMTVVyuJjy2ckZo2XE6fkVq3zH5XpF3/df8w+wSAROGxR+OmiMZW8QMJq2p+/8daZUQN/1FEWJNh7Qaho9fK1+8+2F3YHJhiAvK8q6wSJYbXd0vUYJkFGENZpRltG2XtwS4qZRVuC0P3QGSuFaR1lXZKlvf3Zlyd58MnBcvCDtrHeZhlFEnuc4B0kcIkl9O5Jp6VvNTblD32k/uZ9kOKcHvmVIWdZkWUrblrS9/z1FVfuHNIC1NE2D7nqc9bxBKSVBcDO9EjAIU1L66LkvY/H3dNt0iGFTHoa+3CMvSu8AdG5g1vmvMo0Tv5HpGu+6ZYhMB4Fnt9TVwKqTiEASxAnT+Zy6t6x2BVWzJc99xMwN8Vik8tFWZxFOeGj28HXizHD9+u/FCc8Hq7Vh/dX1AACGIAjpjKFtGh+RGqZ4xpiBHRYM95+PFxKCGUQ7JRUM0zuBIA5DWvymuWsaHxc1GtnLYT1RSOUwpgPdgOnQnYWuxZkeaXtCZfHoR0GPjwUa4wWq3vp2uxunnr2JHg5TQDm4Kb2rUmDk1225xsLlquSLL14SB8qjCOqGJ4/ucnm5oshr7uwteHhnn/PrlT+MK0Xfa0ZpxmI24/Qq53AxY5pEVE7w/OUF66IijgLmWcw0Dj1TcWgz1Fojg4BdXvtYrQOnFH3TULUtddsTRwFGa8qmRQWKsuxYr7fsL2Zcrwt6bVnMpxjnBcmy63FSEQgvMDfa0qwrwDEZZwRRBEJRVJ4f2feaJBtxsao4/vyEza5CScHBfMIoTanrlh998hVF45tFF/Mpi3HKJPFup21ZsVrnxGnEtugAycE9L7h3WnO12fLwYM7hnSN+/4/+gqtlTjTEheuqIgwV88mYg8MDdmXHxbbk9dk1V6stTVWTphH3Hz7CqJg//fAr8rJks9rQNo2Po+z5xrqi7Dm7uKTYbBBYlHRko5Syqm+F+UB5FpQxerhXA8I4IR1PeXjvHnfv3cUBn7045vzykuvLM8rtGvoGaXvvynOG22DLMH3Sur/lwnrH3nC9DUMjv5R4FpIYovJSBcOAy349IEBQ14Z0sk8cCK6urxiPF9x/8IRxnGC7kmq3JAiO+M6vfI8f/8UfD2uPYnV9wbNv/RaryxO+/PQvSLOMd569w969txlN5symI7ZlzR/84R/w2//J77DY3/Nr3M2zVvyiyCdvn6dS+kgqQqKd4OT0gtevzzwTWClEGFJWBbuiYDGfM0oSRqOEsm5uxf1WG5rOf78xvmRolM6pms7zzAQcHOzRta1vbzWa2WRC23pHflX7gct4MqGuSpxTBCpju9kRRSFVY7hYXpONE6wTnF0tuX+wQKqA5XZH3WtmacbVcu25X8CuKEjiBCUlTduSpgngm8GFAKEUCEXfdYyyjO1uy3q55vpyyXqb8/L4jE3RYFXI9OAOv/79d3n36QNM1fDlF+e8ePkVaZKxvr6iazzKpDeGrtO0bUuve8qyHBrCQ+qmQ6qGMI5YLPY4ef2as4srpvM5T56+RV+3nLx+w/Lyks8//QTb96RpyngyZb6Y07UdF2fnRFHE9eUVF2enHBwe8ODhIzZrz2S7vrqiyEs26xWL+RynDUYpRuMx2lnGsxmT+dwPkMOY66srLNDf7CeFIHKORFmfSnEa0/cY3dMZQ9P23InHzPeOWK02dHVDEPkB32Q8Jokyzk5PsM6yXq5o2mZAtEiyLPaRzr5klE6IIkUxTPOthbqqmIQRr774lED44Uo77BfDMETbnnQ8QomASPSEoaRuel589FOMC/i1v/Ff0ouEarvkYoCMt03JbnnGdnXFdLag2iwJMGzefEoqoG9Lvvjpn9Gtr9DW8OTBQ2bjMWEYcpO+uX37pmZ+6zjy77F4Vnc9OEm3uxyPBEmIIkUzDBAnoxHJwKXzYjo0bev3ccI/rzyyxje7r9YremP88NwNThrhkRdR6IvluiFu11kztFEXXC99XPxm0HR+dUkcx9y/d5cUz4cqq5LFfObd90PRx3a3I44i6rZFO4/aCQJ/7omThCyJadsGpSRlkROGkcevOMvZyRnPX7/harn27ZDK76GkdcymY5yFk4sLjO5599nbxFHA519+SVk33Dm647EscczeYkGWpcxnUwIJWRKSjTK/B9Ga7W6LUor5Yo4S8Ob8gt//wz/iJz/9MQjJr3z3VxmPM79/HMo57h/d42/+3t/m6PCIV6/fsNpsMFoThhGjeESUKIpiB71klEzp6oKqLn3kVfRYZSnxbaJB6BiNArIkpGkB7QhCcLmhbXrC0J9/hPNnuO3WokyCjg19ZHC6pZGScZh5s4CwaOPPW01vyaIYJYw3hSAJAkfdew6jkYJEhfQGtHHEkaBvBUJYxoEgi6FoNZPIMY19mVwcSPYnIV+uNWXrOJhE7CUJSwxFU9C3dkCyQBhDFAdYa+g7jdWev+ZczyhNmY/GVGVB01pG6T4HB085P/sUazTWDokOJyk3S3COcRYNjtCednPN+3/8LyCZML3/gC8+eZ/5Yp9xMmUynvCHf/7vefLkCf/gd36Xpu+RUpIGIUXXcna9ZJpN+MN//8cs84Lrk2OCKGaSPUJJQVWWJHHAYm+P169fkSYpozSjrhpfUpFGpHHCaDTm9PIKB2RZyngyJgpCNtstURwihKTtWn9Gm7Q8fnyPumo4vbggSzMqV9O0DVEYIq1ls95QVoWP7zrP13RCUBYFh4cHhEHI3p0DPnGO7fKS1fKaxWzuB4HOIaVPvzx8+BDhQB3s8+TRQ+4fHfHqxQvP5p4vuHN0h0ePnzLJEoxz5EVOr71jN0xT3nn3VyCQ/PSnP6bWPWjI0piju0dUZYU2miTNML3h8nrpkzAwcMEtTeuxUdp4RjDOm4DsUEDli/Ykcah8yqPpEIEiyTL6usPKm9itF5kDFeJsj8QhpUVJ/HDUDc2xoe8o0H2PVoqu18SRQktJ33fsL8bkjSadWM6u1ry53hEFoJTGuITFYszx6QWz2RiHIQwi1puC623D0KWGxBAMBiohvFkhi2CeBmgtSRKFbg2zScRq19D0lqd3UwKl6Izg1XXLxaqj0z1pEpCNIlbbkqr1LuvZKMSEG0QgOdyfIKwlVkCoqKuaLJKMAoUMDFmsSJylShydFoziEBVatFBYK6iMZ6M7LVBSUVeNR7kh6K1AK0FbV8wn2eB6tERKcbG5wK0vmI8XxNmUxw8fsq1z6qal256Dtdi+Yz5NiFRIFjiiwLEpGvbmI9LYC9hnq5zy/DM+/ff/GvPXfpN8V3N2+oYo8QxIb9RRNLtrNquUzz96n/XlCXcfP6OtSprtihSLMj1YS916PNZkOmN/b48wCFhv1jRNzWQyJc93w5D8/y9KNnq0sXSdB85vixYQ3D2YkkaCJIlpOsum6hnHEm38psRb6M0tK0/cRO70UJox7B6k8NZWJQRBELDKGw7no8HG6rl4oVKeT2X93zOJfWuV7Q2tsUjn6J2jrTveXGx599GBFxdxTOcTksyz/aIw5OJiyevXZzjn2WVJFNB2nW/1dALrfGGFUgopFHo4MAXK3+AqkBRV7QUBBEkcgYS2bsCJIeY7uIycZ8B5R5Mdih4UFnvrqnEOgijyMNGiQiBwVvsiD6W860V4RyTDbOfiYsmDB3fY7gq6vvMsLytYbyvWtUZYTSgdQn3ddiOVF0Gk9A9T6xxl2fpSjbKh0z193w3ClqTtNdo6ur5HSjXEh0Fbn0OPQr8Rs5EXOIJIedh4HPDkzh7HVxuaIeOfRhFmjP98WjPOUnZlSzZKyfOK1mgOZ1Peun+P0+sVQaA4vVxS9JoDKWl0z/lyw6uzC4q8puladN9hhSByvsrcYw09B1A4gbKOWRRzb5wihKSqG5RSBMpHQuq6IwwjL+IKSNP4dgObpLF/rXB0bc9ml3v2o1Lsdjldr3E4oiAkHabI3VARb4wlDiOiOBrELB8XlEIwyTLvDuj1UFDSs1rviA49m0IKgQgCz5YRvllOyMHVpyRV29PrQTwWeJaN8Hy/smoYpxFpHBKFjm1Rk1/vWG9zdkXhmYjKT03btqVvPRgf55DfEPXUMJm/cZneCMxeGFW+3dV5LqWQgqKsvCAbBhjrp17GGgKlvIgnBEkg0X2NAH8vS79ONE3ztUs3ionSlHQ0Rju4zmu2uW+ta4ff569fz8fC2MFJOLgalcJ2vXfAOl+44axverZGo9uWtvVsJ6QX17u+v431+rZDO2z4vWApA+WZllicsahIIFSAUgGda9GmJ1Q+otVpTRTFnvMofFw5jX3pSVHsMG2NbiuE7RFWEwzrjLAGh0UbjbW+pMgOzYu97jHau+lOVhu+YyESN+U7HlYrhPMbEv8sH4RNEMYDfDdFw/n5hvVyQ5JEXF9eA4pQeafmvTtH1E3FZrvh7tEB6Tji1asLogMPhC3LmqKsONybMc4iqh4+fnHMpmgJpGAvSziajwiHKPDNtRNGIU5IirIamnkdlxfXaA0Gv5S1beuZPUKiFAgkV8stR/szFrOUs+uQqu7pusq/Ds4SCDWsXwYGt24S+0KVputou55REtJr4zcqry+4WBcYrVlMJn697zUvTy5p+575eMQ7Dw/Ym4xpWg87fn2+pmq90yMJQ1KluPPkDmVZcbEsKMsOJwxvPT7iW88e8a/++CdcbWrvSLSOsukJleTJw32mo5SiatmULR9/8YqibumNZr4/5e7RIVoL3pxestxuKYscozWBlEwmE5I4Ic9LLi7OqMqSwDnC0K8JZZGjjSFQ4XDNDExKqZAqIklG7O/v88633yWOQpbrLW+OT7i6uqBYXWPqHU733ukqPPBZSuU3HcL/LG7uTTdcqwgxUA/t7QbFDazGMAgGIW+AWg8CuJBiuMYF02nK5uqMi7Nr0iTG6ornn/2QxTxhtdowyjKevPU9Tk5eM5kvwHT0Xc1iNmN5fY5SvsQpGc+xIma3yblz7xF9u0fnar77gx8wWywGbAY/L+oNETxxW0Yjh+SAxFjY5Q1nF9dcXF2xN59hu5YojKg7zw9q2pbTswuePHpIliSMR5Lddsd4PPKDt7pmOh7durLzsvTPbW1IkwSlJHEYsL83Z5pldH1Hqy1n5xcsr68RUg2xXEVVdnR9z2icDayvjLIueX1ywf7+Hsv1jmeP7rEra65XW8q6HhqmW8qmY2qHlm0VIiJFlESoQFEU5YDdyGjbCq078t2Opmopi5yiKnl+vORyU9I6RRiOefL0Pr/7m3+NWRpyfHLOyavXFEVOVVVUZYMxjtU2Jwgj2m1B0/r9oZJ+2JFEvtCp1xqhQjbb3O8tEBwc7jOd7VPkBfUu5+rylMuT12Ads/kMKSWT2Ywoiil3ORfn51jnyNLYR/rPTsnzkv29A6qyZH9vjyIvUCpgMh3T95ZsMmY8zqia1guf25ztbkPftJR5Qaj8UC+U/sCnhKGpK3DQtt0g7Gl6a+iNHxTmeclsumBlHXES+OGtgLyqSNIMjKWUIVEGmyKn7RpC5YsjpqOYJJFe/DOa0XjCe+99jxcvPqZuWmazfXAZWEsoIz/wFQaI2ZsfMp3f4frsS5zwSYl8u2V38SVffvhDgtER5WZFtbrki88/pNhceuZS4J1xk9GM/PI5rtnSNpqnb/8avZAUqzOe/drvsi0agtg3aLrB5Qp+oFSWFUkSE94UXgx70d7aW05p3XgnsRy4vcYYqqqnKEuCQDEdZSRhQNu3tJ0Y2Nger5GmKUkS3+6h6qYhCBXaagR+zVMDHzIMByZw4Nvmd3mB1oaiqGjbjsloTBAq7/C2gq7tefXmmLwseffpU/b3Flwvl3Rty97REQIwQ2FeFMRUde35Y2HkhwNS+pZqZxllMUkS+4FaFPPVqze8eH3Mcr32z5++R+BQacredErbd5xfXQ2Oxpj9+Zy2qhEu5slbbw/De7h39w6jNCNQkulkxCiJCIbkRxiErDZbNkVBVVXcv/8AIQXPX7zkX/z+v+aTzz5nPJ7w3e98h6O9A1SkWF5fU1cV3/3Ot/m93/ubICQ/ef9nrLZbtnkBKiDNUsqqYlf1JElEFgdcXV3RGsl4nLLd5QSBYzSKqHONlAFOBfTax3KllDDyA6fDJOTq3GBQft/q7DCsDumsASuwtSGLIoRSmCEZFEiJUp6LdoOS6Y1BBYK+s8MAJvQYHeNQkaTsekahpOr8ixdLQZyB1YbDFPYSjTZwUilmsaPVAVXjeLofMQ38/gyruK5DdK0x9L7pVYLu/cBMDcNnZy0qlNR9wzrfDumJmN60HJ8+H5jnCm09sgTrW6KVlHStIQgMPQG9LXj5wR/TIxCBou1BZHOC0SHPfvWvs6sr8rLm0zdXLOuS49MX/OC977Mttnz8+ScEDlZX3pSC6ZjO7g3pBcFolHkm42qNkgHj6dSL1WHAKE0ZjUaDMLmm7zqm44wkSSjLgmA6o2sbkihmNBrRtA11Uw1YF0deFn7wrxTWduRlhRSC7da785QKiOOE6XhMVVUsFvscn75hs17T1C3X12eYTpOlGU3bMRr7fUkwFPbtLeas1mv2Fgs63bM+v+S9d57x/V/7LqEKqKuOMInRzrLNc65XK774/EvWqw1t21NUFX/yb//t4Oq1PM9z0jjg4OCQMAqZRlOiMODi/IpQBbz99G2uLpb0uiBKQkzb+uiu8RFw6QRSOuJIInuvT2jj97VZILBJQiU6VCCJA8nsYMZ2V3j3sLQDNqtnloUcziNmqWKb14wnc5J0wurqGm0M+5OAKIKn7zxjfXHB1eqaJA7JxlO0jDi9vGZTtVjrURNxGpAkAisaZrOY84uAtvFnznEUEM3HHO45ji8bqqonjSRBaDmcR4wjmI4E6ZBG7DpDrWFvkZA3huNLf5bOupau0WgRsdxowsA7peMoYjFNyHc1wvmz0rroaPqevWnCNHXcmc2ZT+eoUczq+py23CJsw3hInfVOMIoiQiXYlC1p6CCIENbirERL7yZWytH0hjQUBFaw1T1RCGGgWBc1KhTESnldwzqkdURhy+XVmpevLugaiyJhlC3o24rJZEwYhSz2H1IVK+rlCaNRStFqNpsSKwVhGLO+fIOViu32ktW6JIxT/tF/+78jiRL6rkPXNe//23/Ow3d+hXqzRCE4PLjD5ZuX9PmWdVtSblf0XUMYBsxnM/b2FiRxwna3oyhr4iiiaRoCFWCMHvZKv9zbLy3wSeHdZT3+AG2RbPIKISQPDieEgUIIz8CIZEDTGMLAT2+U8DRJMwh1DncbO70RAa01BEoQBQppNYESrPOGxTTyLDNr8eu4JAkly6JHOkNG5F0cdYsKI7rOx2GvNjUH85r9aeIfzu6GG6d5c3zK2fk1OME4SxBSUBb1IMAB0pJGIYEKETKgaRqElASBIA5CmrZH9Axfe4hxDuM0phc4fPGBF3CMb7YcohjGDnl+B26ILeEY3GI+irfebG8baQWWzlmMcsNrpG9KdpFKUFYNTdMwn804v7xCO0feWNa5b4ULpcMJRd10WARODoB+HKHyD6661Sy3uW+D1RphDfHAmWv6nrYf2pOlf/BFSlJ1fgETDlqtmY0zenOzofM3fj9s+H0bZ0RvLSqShMaDYduuY5eXJFFAGij6NEEby72jBXfvHfDi/IJm29MZzaZp+ODz56zLlk3hAePKGZz0xQ2JkLSup7cWrHfyKQvTKCJTEuFA977lUhvrf0Zt7x0TwoH2mP4kjfxGKgqH6Jnn53XGstzs6LUF6QHR9VBSEYSK8Wh0K5IFUURTVmhtiIIQo/VNwbbfKDuLM4JRllBUFU3Tk6YxRd3QaUMYBmgDWmviIKSqG3rtRTlnBrhzHCBlPDhQ5NBIHPjDVt2wLWta65vgVusddePLOZT0m5q2aejbFms8D86LhL4pcNCMUEoN7kPPqQgC5aPaUtB1fhJ/c9A32r/uZVkxGg2uRGsJlGI+mZBECt019F01RMQU2hp644sukIowmxDGibe6B4pNUdN0mvWuJC8KnLNDE3PgxTxrkYEYILdD3C7wXDZrPHxbSIEzBqc1venp2maY9A/RQOv/rI/e68GJ5GMe1g4xRKsHE5MgDP3fbZ3nbnphzR86ALqu898fDmEM4zik0h2B7TB1hWh2mK4m8HcjYDEDx0zrgWdmDMb6Uh5wt5FhhjV0vRviXYHkg7VABZJfHRvCwal3g2vxVitB2Tuen12zW+ZkFhaxIq8riqpmNhmTjrxD9Nlbjzk9bwnCgHoA4h/uT5mOU7rm64KiSFm63vHZ6yuWeY1CsDdKOBynhMIzvnDGH5gHEHHdG7SznFxc8SvvPeXpo/voXrPJC7S1pHFIEkeEUcQ2rzg5ueLyOuCdt3zzJA6M7pmPUyT+GmitY1fWWO1IQ8V8b0ogBW2vqSoDYch10VFUPZvCN20ncUiaJmhnOb1eoc3/l7n/6rUsS9czsWeYaZffLmz6yrLH1jHF0yKPqFaTfaGGDCBIgP6Afoh+gy50JUASpO5Lqi1FkWwekuIxVTxlMiszI8PH9mb5aYfTxZix6/BCgIDShQIoREVF1DZrzzXn+N7vfZ/XMyoyPnh4yOFiynqz49nZHdvh2su05PHxjE8eHXC33FKmWWz+CoFN1ZImmk+eHvPR0yP+9U+/4pvXVxBlZ4L3ZHlKmaUsZhO2jeHi5orbzY71Zssoz/nwg8forGC9b7m4vGG/3eKsJwQX3RmzKXlRcH5+yWa7wdkeFWJJDUHRNj3eWZI0ux9ICIIszRFSMVkc8ulHH3B8coLxlm9evOLs3Rm75RWm2SFMHwVyAloJnBcIGRdyIoihdT66et0Q143XYvz9PQ9IEK9DEQQ+uOiWjf84OqqluC+AEgT6rmW7uSXLFCfzgmADtrnkl3/5T3n8nZ8wO3nA4ckDrs6foVXg/O0LVGiotld0qxUg+eOf/CMmxx+iRM+bV9/y7Fd/RZIV/OiP/oyDo5PYZBu3PdRVzXgyjss6+RtRT4n3LdOS9bbh5dkl+20FPi4jt6sNJyeHuKEYoKsbijzHaoUJniBBW5hPJzg/lABkmrIssNZyu1xGNq6UjMsRRZEyLqP4H6O1oHTG5u6G7X7HbDplMp0hgOXdbVyUOA/C0vYtSqckOvJb5RD9NxY224audxRFTj+gMUajET64KJgUKeMsJU011hgODubUTcvdzZKuaenqLcubG3ZNx8265nq9Z2cEVucU4wl/+Lvf5Xe++xGYli+/fMmb12cI1xMwdG0slinGYw4Wc+bzBVKp+ziiVDIiRBBcXd2yr2tMb8nzHGM9D58+JRMS23vubq44ffsaZzpG40ksZ9OayXSEcxEGbnz0g2d5zmQ2YzLz+OAZjcbcXF6jUKy2m+hySzTrqkKVGU5JbldrTGdYrpYIF6j227hkMTFxogQEZ7A2lk51fRfLxZzDDEur4P2QRHHU9R7TdYhg6ZuGspyBLvjsBz/mwcMP2Nxe4P1fcXt9gRKxoM2LQFmMqfZ72mYXHTp5xnQ64vr6HO8d48mYo6Mj3r66HQoOXHzeyghir3c31Ps1WkQmnDcts3JEZxWbmyt01WKR3N6ccnn2nCdPPqPQgv1uzWQ25e7NN+yX75iOp+QjxaMPPuXd6VvGZcH16TcUoznPvkrYPnxKOZnywQcfIIk4itV6y3w+R5TROX+7Wsf7hFBcX19RliWJimcFJSX5cJbaDumZ98vyNniyNEMpz3Zw0idpSpJo+j4+i2N6JqHveo7mc4KA5WqNJ+BNdKx0vWF/dU1dNyidRHTDrmEynjCdxhilEpIk03z3O58wnY25vL5muVkzGZc8PD7Buug2tUVGkZdkSQoC8jziHdJUs9tX8WdV5PR9T6olo6LABs9f/+0v+OLrbwHBbrslSTXz2YSDxYIkSdms11xd37LarJiOx3z89GlMvQRP23SYtmE2m3Awn3F0sCBNkliOBOx2Ox6dnJBmKZu64tmbN4yLkqdPnhAQ/OLLX/Pf/rN/yvm7U54+ecoPfvBDHj16yL5uODs/4+b6kj/6wx/zJ3/wh+A9787Pef7qVUwfKIkIkv0m4pUiS9zj+o6mc5SjnLrphwKAlL7zpDphVE7Jck3fbtBpQmc7bG8xQpDoWMJnTU+WaKyLnCHnIter8JKDMiMRilRK+q6jSBSdCXQ+ck4niYosOKVpjSPRCSlQWUvTOwotUUhaBF4IvAscjgSJkgjpME5iXYfznrsmLhjTxKGk53eOBcb3uJBz13jqPqC9JAwu9BCgbTzeR5ZskhnSVDAuEoRwce4BUp0idCxC6nvDKC8wxqF1huwMfWdijFtpkJrGWlxvQKVoGcsLVNDMspxt1ZKMJF1tScmQIef6asPF5o6f//V/zyJfcH31Ci0SjLHMJlM2m1vePf8V88VDch1ngIh62NM1dUQ05AVtUzOdTjk+OuLmNqZW8jznow8+wNiOzWYXC4rElpOTI6RUzKYTrI2C/HQ+5+r6mu1uh5Sx9E4ISVNXSKnI05TZfEZd1aRpwvX1NVJJ9lVF2zQorej7duCyOWzf8/Tph/zoBz/k4GBBCJ5UK4SDaVny6OgIqRSH0yknx0fRrCEE213Fu7Nz9nVNkeWcnp5xc3s1nFUkwgWs7e8b7T1w9PQJeVmi84w3L15h2pbWxAKRf/Dnf87l1TW/+tXfsK93uIGt7yE6hZXA+kAIliKLZSUYgU4ExVgzy0b0rsQHSJOE+WyKD4f0bUeeKdqqoSwkaeLJcMzGCeeJp6or1n3DaKLQ5CAjmuD2/DXQM56MsM7xwdOnaBU5ta2p+eDpU/pG8uDhiLyY8dnnP6RaXXD44EPa2rK9eYf2LXdXPUEptluP6WRs4Z1KDkqJFp6uc3StoCwEqRaUSiM0LPc9Vgh0ktD2jizNWIwK1tsdjx4vOL/e4Izl+maHUIpJkZCmASktR4sxUgZGeUYIkde7vzFc327JpeOTA4V18bVFCmw/pNoQtB5Ma0kBJyTB9MzHGQmBnbFMs4xxJmido3OCxkFvPJkXiFSRicA4zcF7Ml0yP37K4XaLFx2N9TS94fpmRdU7Mh0///lVPPsv6z2tj03qVW84GI94cjRnWk748OPf5z/+n/wxOksZFXN2y1uKsuT81z/j+vnPSZVgdvCISkkCkV1Y7yu09NyevqL77g8opzNmkxGjLGW33XC3XJImaXSSZimO6A7PhkTpb/Pr/yctuqM4i9N0Dhfioce4QJooHh2MIoMIhtbUMLjTFDZEDlDfGVQSXV8+xB8UAtrOIhCUhcIgSBNFqqDqLXWrGBeRm2UGgYMQSBPJdWU5ERItiC1ILsZKLdBbx8XNjukoJdWKgKfaN7w9PWe3b1BCohMJ3rHdNQQRI3haCPIsI0s02yq2nQkBRSJia1ZnYmQIFWN50kU3hVB0XRujKSbyobR6z11L4vCOx/qACgqIMP/3Q1I5Ktls9jRNj7UxIhUQOBPwwRJ435QrSBKQxDKJi+s7Pn76mNOrO262Pfs2imfFsFmwzmF9iBXdWtw3k7Z9j7GObdVErpsaeCNDDLnt+kEUihGsPEsJ3mO9Q74/rLrID9tXHS5E9tP7FuVMSHZNT5ok1Ls9Ksup2o40URSjkrvVnjTPqLcVjycFSZay2TdMJlFQcIPbsekb7jY7tpsVvXHI4KNdWEpUAC/jxiYMzkYZYglImaZMdILxls45lk2Mi5d5Rmc9V3d3+BAH8SJPGRV5/PsyJZE6QkCH63S53tOZKLrUnaEzZmhMFpRphrU9ZV4Qgqepa4yNLtddtWc+GcMg50CMRFkbXTZZktK2Dd7GsgxjHVLI92gbtB6YL1IMkTtPohOCsbEtTmmaAcQ+0CPwQXK33rI/u4kb0zCUswhwxtB3/T07KxCGKHXciIu/w4P0wQ917wOYdojmSRmF4feRa/f+ewuefVVFkTRNolNnXKLwtPs9EFuqnA+0XWxHSpIcXZSkWRat6tbhgsf2kt2uoqrrGCUbRIMYl43XGFqR6iQKcX5olRgcnHIoRpEh4K3BtA3GdHRdf9+EGgZWRizBsSBiWU+keopBRJfDnxkihtxvnaVUMGyonYtxYy0lwjkyNIqAq3Yo09A1PcE7lPcE30fGn42OYOffFxX4+02xJ9wXkryPxfsQ3Zv7PnDhEr5dwv/pG0Ga9vwvP8/QPjr1MhwqERQK5u2e+mrJWMAYh+kbtp2ltYGTgznjUTq0fUVB7vhwznbXslpXpFmKFtHl27Q9y82eLNX0TvP160su7/ZoJViMCo5nY4Tw9L3HO1BC4AMY0yGEIslShBNs1jXbXctsOmF5tybPMnSiWEzLgdkKqZQ0jeF2ueRutWU2nwCQp5rJqKAoCq5vNtxstxRJwtEsRwkZ2Xa9p+sNlZGsVjtqYzBD4VOeaFIpWe0r2kGMf/LgEBECvfV89eKUqvcYG58x4zJnkikeLkYkznEwm7CtOlabLW0fxe2PHi74+IPH/JuffcE3r28wxqN0vDeniWJS5pwcH3Jxu2Zbd1wt10ghePzohMVkgkfy9vSKm/UW2/WRb0mMwI9HI6TSvH3zjqauEcESTE8IFqEEfRsZn1LFe5VEkA7C3mg0Yzyd8PijD8m14OzykhcvX7G6vabbrwl9jR7iskFrYjmOv3ewwG8EPCkHSPPwXnlf8BMLd34Tz42MS0hUEhd4g3P9N4w+idLRRdf3EZOQac3i8CO26zW71U0cIvdnXLdLxkXB9btfURQHjPIMZzrWTYVMRkwmM579+i9p3V9HEUBrHn/wKbubNV/97F/yZPk9PvrsuxSTQ7brDf/ur/8df/4P/pzFwTzeR4gs4OAcNtHc3Kz55tmLeK1YR17mCCJbRgpF53vulisQMpa5uFh6FRtec4pRztXtLWWa3pci3dzdcXu3JM8zHjx4yGI6pSyyGMuxNvLo8pLL62tOT8/Ji4Iyz+ibmraLHNUiy/E+DIDykkjji65jGQJpojHO8fb8gtVmT55qqqYG75mWOdPJmLaNbdFN2yOkjA323nN1ec32bsl2taFuKnZtz5vrNZsuIJISn2vmBwv+/h9+jydHY3bbHV/+6mvurm8QQ4u7zksOHyxYzKccHx4QQixQcj7EQ6t3VFVNs28wAxdRaR3FH5UwGWekIdDWNedvTqn2W3zXsVhM4zN+PBoKYwKpElTbPUmWsFgs4iKsMzRtw6ff+4xmX9P1BtvXWOeZLRZMyhEH8wm36w132x13tzeYusE1LZmUyK6N6ZIutqNbF1s0jY0Lid4GrLX3KQwpAkIBRKzEo8dPEUGw397Sd010mu5rXv78L3ghBMdHRyTa0XT9AA4BnSQDg04jVXSOTiYjxuMxy7s1ZZaB7fn6i7/l8HCBcwKhLUE5pHBMcg3BRRi8MZguOn2nszlpOsX5MDjlA4v5nMlkxmx2yN3FO6RwSOfw1R2F9CidEYzn/PUzZuPIPSx1Qlvvubk8I0lLJrNZxGEQ2FUV+6rCI1ivt2RZyrNvvkQCbV1RzBZonSIzyLMsuuhd/P57Y8myPJ4hhyI0PWyJtdZIG51hxjjGZTxLxWbnakgLxGXrezxHOgzyxjq2uwrrHK5uCSFwfHSAEIKqqui6yL1MU01Z5BzOZygVGVxt1zKdjBgnJVIJsiwjTRTTyZjzy+v4OUOgrpt4Ph7QF2me4Tz89S+/4vnLVyx3+/jstoYnjx/x5OEJ+dCce3235M3pGcYYjhaHPDw+JM9SqrqOzMNdw6gsOJjPOTo4iPczJRnPDthsNuR5QdW17E3Pu/MLyrLgoydPMNbyb//mb/gv/9t/SjEq+P0f/5inj58wHo25vrrh8vqS5WrF3/uzv8ef/dGPeXd2yWqz4eLimsl4xm6/jakTEehNjJH2BlSArhoYXM7hbMA5CF2P92B1wNgto3GC7Q2HxyO6vqNvA7pQdG3AWYkmmgSCc4QwlGfIuCAuisAklYzyjGofUTpJAlpqvHF4b3EExmnGfr8nUereHZ45zyTT0ViQZUMzs8PkglKBFpIWhyFl33uKBIokJi+8DREtZANOwMooam9J0gS7rwkioNO4pCI4TAfGCoyBvjUkRUBKx4zAQZHTO421UbR3LmCNQBWx+OV9CsxYSyIVSogY25SSREY+rlIaJaPJJB3NefzwI8oipxiPsH3L+vwVt2+/5sXXf0teFIzzHJVolre3VJsty9tT9utLxt/7nMXikP12y34XG94n4xFt0yClYDqZUFcVgkCWRV50wFHt9gTvmS9mmL6nqaMg52zPx598wmg84fbuls1mgxCSNE3p+471ak2eFxSjkuXtDVJK8iIfOP2GVKSsV0vquorFb95xdHLM3c0tgp7jwyM++/hDxmVJ09aM1IhRmvKdjz9iVBYxOpynJDou09e7Padnp/TWkWXRGFGUeSyLkpLZ4iDyvIPld3739wg+cHV7jpeas4tLuja6qT785GPenV3SGcv/7b/4PyOFpLcmGkCcGxyd8RwazzXRAFE7S6okfkjQZRradodDUrcWDyzXS7x3pAKm45Q0kZxfdahEkEoo1wnzccJVvb8vAEu1iezV2rKpDYfTDNtbLu629O45ZZ7wP/yH/yOSZEqSQLO5Ylfd4HzLbnnNdnlJ27X8+Mf/iN32M/7NP/8nmNCTKfijzwqWW/DeMipUZMynmt7FhnKpU3ad5XCacH3XsG88vXG4AIejlAezgnVleHhSkouOvjW0NlAWiulIURbQdX7A/tTkiaJtDV1pI6YjBA4WmolUpElE8njn8FKRJgm7Xc0ozwBN7zxISLXn4TxllmuChWleIIRg2zhuKgtSshjnSByFzul7y2Keo4RA6ZTgHDfXpwMTfEWQCuuXaJ3S9nu6ruXm7DUIS1HmPEzSiFQjmqIOD4747u/+kGdfP+dJf4MNHUeHj7FtxX63Ynm65eXP/imp69AC2taCcwhn8dZyMB0zSj2ZDDTbNQ8/eMp8NqOqapbrFaOyjAiGPMe5uKifTSfU2+1vI83F2fO3/QDeR2dJXVuciLFFFwKXyx1BSqZFwmq1w/pA3TsQgarp6K0h+BBbVYsIQe+CiayxgdmVpopESRItI3RTS0AwzRWbqiORBamO22cfHM5BLgVVEFzvLIeFIkslq8ZgfeR2BOHZNS27fcN8knNzdcPl1V1sx/GefJTRdz3bxhBcQEhPogSTcUnX9eyqBiE0SkWmXJ5l7Ks6ttEN7hs1FCfkebSxd52h7+PA/p6J5TzgfGRdpMlwU49uPOdiYyrEYoyry1s6E91FxkHnJdaL6OzSUWRJtWZvYhlAoRXGe1b7mpt9z92uwzpPIj3pYC23Q3tvnqYIYizT+kDX2wiwbN7f1B2d6aMzIHh6F0hEdHKZEDDGkaiADZGPoqSgzLLYgNsblNQUiSYIhU40SkTXWSIlRZ6gkhQtozjTVg15kRNEIMtTCHA0m5AmmiLJ6K0hzRK+ePGO15dXrPYNfdMT8Eg3RCWH2JMbms4Y2AepFBxlRZRlRKA3nrrrsVoOLsyE2/UyDhlDtMOFaL9OfIyOFllCqiVaKrZVy3bfULcdwTvSLKNu2xhjVQoBFFkW+WjGRBF6qDPtesO+acnShESryNAZKuXfu+rSNI/bSh+o65Z8MSFJFNq5+PkSPQhX8bUzJt5UjbXIgVvSOdhXNat1dOv5QYCLRRWRJRcLNOLrxMDP0kr9HZE5WvdiPFXEKBXRMatlZAkGAl3bDf9+iO16P3AdLVIK9ruaNNVMxyV4izGxORiiK9ENFeRFUZKVJU3T0vUmNi0nKft9zb5uqdsBpC0lUiQDG1Dd87Jia91vuJMR4h3FmdhuHbkLdRXbEY2NvEJPjGB5H1t6k2HgdHbACOjoipRSkiQqsseIpTVCKtIsJ4QofEsfXQoIjQieRBDt+V0VHYN9i3exlVhAjAi7CJ8Ofjh0Di4+739TuoOIBRreR3eVUhIvYhPqReX53/2rJbflISEU+K3lf/9VQoIkJIJAT5IpHtZLvvfqX/KPf/eHSCnYVCsmWYH3glR6DueR/0QI1F3PerPhg8cPqZoL8Ir1ZsN3P/sQpKRuzRBNC7w4W3K13BPwFDplUkYxkyE2OipSkuGaGvp1EMEzHaUYH1itVsjFlCBiIY41sNxGYHPXGUCihEKRcnGx4mA+YT4uafqE1njOby7ZVC3OB05mI54cz6g7x74LPD+9427b0lsPwUV3qrfkicZ7z2rfYJyjzFLG4wg53uwa6i5iCJRSSAKFhu8+PcI7Q6oTeuDibhfLn7RCBsHnnz3kcDHjv/uLn3JxV9F1NYhAIjWjPGc6KSnynLvVlrvNjqrtyfKMxw+PyRLNZt/x9uyS7a6K7zwfv16kYDqb4Kzn/OwMZ3tksPi+RRDLiqSQBBUddkgVG66lioJpXvKDH3wfZ3pW6w0vbm65vTyj2a2wbTxwC5VEIHaI15cLkTEa/N/BUgQGNkhsYlZKIZTGhd+AouXAsBNK3DubYqN9uC+EypJkYLOGe5B+ohVawWScYmyDcw2Hi5zWGN6+/oqPP/9TsIL96hzZdtRhx8lBys3SsFgcUU4e8eDpR5yevuPJx5+wrSyj2QPgludf/ZJ6fcXLZ1/wwQ//jOuLS/a7ms1qw3Q+4+2rF1St4+nTx/zsv/9nPPre70boc4gLPIulyFOmkxFJkrBcLjk8OqZuelbbHYlPoiut61mMZggZS5Qiy7RhXGasV2tCgPliwXQ64cHJIdI7Mq0xpme/r1gcHnBxdcOLl6/ZbnccHh5xNJ8zPjrk7PwC5xxpmsXIbVUxHo1p2riMm89myCAY5Tl+KNDo+w4ZLHmeUeY5J0cHmL7ncDGnalpa65geztjuam4uLlnfLWmbil3dcbrccrXrcLKATKCSlMPFnD/58Q95PCt5d3nFy+dv2Vxfo4RHJ5qj4zkPTp4yGo2QMrKOtJQkWUJVdVxf35AXGft9RV23dMaQJAnzxQKl4nIwy3M2qy3XV5esb69RIlCW2b1TyjvPo6dP75t254cJznmKsmC1vOXy7C1KaZ5/9Q3OeLquJysyismEoiiYzyO70nQ966sr+t0OYR2i72mMidBza/EBuvcuPeMGJEx83gkpESKQxEkVESLfNUtzfHoYAePrO7ROhvQDCGK7+yjJOT27IoRYvOR95Ox5F3hw8oDAwOUbTcjSgiybEnzPvloxKsacPP0uTz/8mP1uTbNfcf72OV2zBhyZTuitYjpOGWVQb7esxLecFD/E2gXj8YKbmzvwnuvzN5SpJJEpRT6ODujW0XU1UmWE6pK6umZ0+ITx4WMOp4d8+NFnfP7ZZ6gkOtKrpo0N0OsVXddDUNhux9uvfo7ra07fviKfHPHjf/Cf8p3vf5csSwg+0HQd+6qJjnkhGZU5RZ7FAo22jWciF1/zJJGMi4IiTWi6jtVmh/Oecijv8kPRkZSSJE2oq4bleo0PQxGd0mgt8S7y0rz30QWEoK6r4X004mC+YLPbs69aDg48rm3Is3xI00RHkXeOJM3oh4bdg4MFXdXEQh0p+fc//4Ivvn0+JFsUiYQ/+ckfMysLFvMpd5sd3754zZvTU5RSnBwd8uTBg8hU7HtG4wk4z5NHD8jTlMXBlPl0jHeeJEnohgW7JzLBrq+vsM7z2WcfsVqt+X/+83/BV8++YTKZ8KPf+x2OD49I04SXL15w9u6Mru/5/T/8Q37/936f6+Udp5eXXN/cIoKgKEsODk+QO8ePfvj7vH31miD2jGYZy5sdxnqSND68Q3BDG32IZWDOkY8SrDFoJZHWIFw0dUynkttrgw+CPBOMx5K1h0BgPkvQKoACJzxtsJj9nkyXBB8Xrru6YpTnNJ1HEu45zVpIpNR425GlMeqrRYTtr5uecRKvCS8Cm9aRauiNw4hAnsRnjwuSLPXYoHBC8fY2sKo6DicL6nqNd4CQeCsRMpZ+IHx871qBtR6vAib1NGnHutlirUapMSQZ1bYezt0Tms5gTUyk5Wl67/rXOkEDZZEQhIjlTdYxPf6IB598grM11nrqTcPmbsWzX/0F6+s3fPvFX/GTP/+fkugMnUjMKGV9F5FMV+9eIP/sHyK8o6orvA/MFwuKoojRW5XivWE8KthsNdY5jg4OIqtaR9Z2mmiKLKWpa7RSfPTRx6w2a1arNVXdxPPvkPbp+540zVDDoVhrHVNGJrZLIwTeRmZpwEcWWbXmotkxXyyYT8d8+ukn5FmGsYZffvklv/ej3+HJg5O43BBDKkDH4qqqaXn26iXLuw3j6ZR9teX03SmbzRqtNZPplMlswqbaYXvH+eU5YXBV7m9uo5u87WmqmmpTRS74wNgWApJEMR5KlyQQZMALzziPaAGNJxu0CSECnz1aMMoU612FCTLOVSGm4pQIjIsU6Ry7ztD0gUKAV56N8di+o0izWKRTtygpOBznTIqM87sNSktGaUKWl1yvOtKk51/8y78gSzOSJNC0Kz78cMH19ZqmXvLoqODy8pR//1f/JVoWrHctvfM8Gaf01oG3dF1c1PZ9AGNJkljAdru1zEoFPnA0y5mMYVt5lBQs5hPaznK9qinGCUU5ZTb2hH1HmWu6rqXpPUoqemuZjnPU4Ka+2WzIUoUiIJQiSwLbznJUpJREE0TfWuZlhkfS9h4noklkkuWoNGW7bWh8oOpj4eWqinNBKuO5WQK7ynE8zZEyYV11JIlmFAT15o5JLmE+4mbV8ujBQ65vryMWzIHtDZ2F4HsSkVBmOfvNksMy5TsfLvj53/xbusawPH/FT/7REeO85OzqNcvXX3L77gXrd8+YLhYEWzMZ59zdbDDVCtE3THMFzlIUGaubUz62P6Cq9qy3W0ajkjzLI6qgbzEmYqCKPHLOf9tfv7XA1xt3z/yKTiNIhCTVivPbLYdlRpKm1L2htY4yicIUQ7Swajqmk3JwgjmSLBn4dzqKGENjrveBpjWxCXaIxt1ua46mJYnW7FtzH6VLpac2krvW8zjTJBKa3uKDQCmP2a24u2i5PXU0vcH5uJ0ZjwrqrqeuGpTSCAlaCSbjMXXTxAfre0i/hiwv2O9b2t4hYHB2BbIkbl9X6z1dP7gUTeR/ZWky7Gyja8yHGN3RiSKEKE7td/vYIofkdrmhbnqaztM6SdVbhHCkWsaba6Jo+x7rotgqZDwo5Fpz8/UZ15sWayyplmRDsYQLMV6Zp1Hs681v+DFN2w8iTsBZi7exSCFJFKa3OO/I0ySKaD4CjlMpCSbgCEMFuCBPNUki70HyLkBZJnzv06e8u7hiUpSgBFe3OzIt2PeRaZXpCEpuleThgwMECpkoXAhUdctqu+bbswu2VeSleReQIsYWNeK+0dEPmeVESsZJwkQnjLKUfVUhEJjhtXKRKM7dakPXmfizrpvBoRg5bOnAoCN4tBa0veXi8oZd1ZKkKVkSizSc7RFCxQx9iMJcmqW8J9IkWqGUous69lWNlJOBBedx1pNmmpDDdlvRhi7GcZMUpMQNTq5JWdy754o8RetYSHO33FF3FiWhyBTVvuHydhkb40KMTqvB5eqsjW1tQ9wzhPimEjKWjwgp/o7LJtwLfwjQKgqL3vkB2h+j9cG/h+tHcc85H6PSAYKLfz8djbBdg3PxIe+DH3h4CWWWodOMtm1xdUUIsZGuriqa1YZ22NbLoYnqffQ/3itipNZ7T5bGaLy18VplePUlILzDmo6mquj7Dh8ExkUxROqE4R+jZCwF8CFgBuecDHHx8J7ZFTWUWCSjhwY923doF8h1QrA+xni9JRiLtTHq7p3F+iGCHCKsPb4OQ9TRRbHVORs5YQPcMoQBPBxiMYa4jzfGgdPVLbfvVnRP50zKPYwlupAU0lHUW6wMpNmED1aXiItfcLtQPPn4+5y++pofffcHZFkZxRdvSaWmt3Gzfnl1ywePTziaT7hZbpieHJClCcv1novbNUonvL1ccX6zxjrHNNN8crxgXqrB+RkPgK7vaV0UzPMiIU3el/BEx9F2XZOolE3V0PeRPxaIzum2s5ggaNoeLRV1F4eIxXzM7mLJ5fC5iyInTRS9DfQ2sKocv/j2nNaGmGQOFoknkwpHxEbUxqCU4nA8QmvBtmpoWkNvHSHE6LzwgWJScDLJY6NeH9k51sbiotY5Zpni848/wFrDv/g3v+BuWxEQ6CDIMsWkLMjLfIhorlluKzzw4MExk9GIzjjenV6wWm8jp9a/94xGl+h0PqNt29ju7AyYjmDN4ATPhoUQODxJoimKEVmqmE5GHJ0cs2ta2q7j7ds33F5fUm/WhL6DEO8ZsdneIRgA0j62eRIYCmOGyLqMzW8MB2I3LPje3xuCiC6yIOP2O94AiLFKCUJHZqd3kX3pnI1NxtYOm2LFZr/Dnr1hPp0RhGO/q9GpYre94vbyOfV+h7IpXtzSthXWeep+h7QnvDs9QxPY3t1gneC628RDtqk5e/Wcj/7gH7K8umO53KCLjOV6j3x7xtm7M0RQ3H77K66++je4riP/8A8phMN2hpOTY3SaMMozTi+uGI1G5EnKwWLK3XpD17eMi4y+rUn1YUQWOIPEc7g4iEs/Hd2bUirGeYHrDYvFDCUETVMznc65urrh4uKKzWbL/GDB4eGCrm8QlY/P6LZFEKjrCjUsNso8R3pP3zXMxyWjImdU5mSp5juffMi4LHj99h3T8Yi2rkh0Qls3pKkmIDg/u6La7Vhd3xCs42K15+3tlq3xqGwSo79ScXh4xN/7vU/RBL59e8nb1+/otmvygbX84Qcf8PTpE6q6pesaHjw4jpxg03N+cc16vWO73qB1ZAcrrRjlGXkWnSW3VzdcXVzhHhxyeX5O8D3z2ZimqkizJJ7Rikl0jSQJ45MTsiynbVvSJKXvWvbbHfPpJMb8TeSzleMxKtHMZlPKcsxyuWK9vOP2+prQtsimiQO0jU3y/ZDGcN7jiM7DeA+OiBiIBUx4GduTByd7LFhK+fDjj/niF/8O21VkeUyKKCUJxCjj+elbJDEJYGwAGRBBcHT8gPF8ytXlBUfHxwipubg6Y1SkjMdH/C/+V/9bbu5WXJ4/5/WLL2iamkePHjGdjFhWa9rWQ97H9tmuY73vKNMRo5mj2S3xDupqh+8btPDMpmMSKchlFK/7rkGpgJQJXqTkWUpX73HOUt1dMprOmE1ypPRolVDt9mx3FU3dUO93BOsQMuXm9Bk3b56TZZBLy+3ZS158+TccHM5QJ4/w3lPVbYwjqihyVnVkEI3HI5w1NL3BWo+UsYAsSRM2Vc3t3Zqu7ymLKGL3XYce8CnGGG7vlrRNR28tUkShIk9TklSxq3ZkaUqaJHGhJCVlGUtxXG9jFM878iw2+U7GxSAKxvNAnueUZU6S5kglqaqauq4ZFwXOWX7x62/4+vUrlFZgHcfHB3z28QccHMxxbcfbiyu+efGK88srxqOS6ajkcDYjVwqnFLY3SCl4/PAhwntGZYGQEYNUjsfxrN73jEYxAlhVFfjA8XzBu3dn/OVPf8a7szMenJxwdPKARycPqJuOl99+y9t3b5BpwY//9O/x6OSY67MzfvHlr2isZXW74tGjx5y/e0s5Ltlfv44MNdHRNIaqNUPxgMQ7aPv+vlDN+4DQAq0lSMN8lpIow8GBxy97iiCoth1tLUmUJgSHD5bRWBC0YDQ1ZBK2e0FvEvqu5mQyQwFBxpkjTyP/2gvNOIvMriLNSISktw41JAoIgqpr6Ikt8rmOZ7PKOJRQ5D5glSAtJH0XUxLTIsbqTVCcrQNrq+icZb9cEjyUhcaEyMUWUtzPPAgPUpAojcDHUrBEk4hYVCiCJ9joNtVJgtbpgKKy5HkZi84IdNaTCkmgo6oNQWoSlaJkhktS6t7idYtWcHF5zenrr7h69yXBOerqBjUsnrI8o6sLLk+/ItMBr6JL8Oz8HKkEi/mc6WxG1zWMxiOc6bhb3TEqRmRZytHJCdPxiHfv3uGtoyijczwEUOMxT588Yrff8frNO+bzA7a7a7IkZTGf36N3Iv/bEgTMpzOmkymv3r1mVI6hDvTOELxnNp0TgmGzvMM5S1mO+OM//iM++uhjhJC8fveO/X7Pty9fcHR4QJL9HaFDBJq25/nrV7x5/ZbZbMFus2G12ZBlCWVRYJxl0/e8fvkC6yxFWXC3XsWixqMDDoqSzWYXEV824GX8N1IK6l2Nd+BNiAWVATyWJFUoHV3WuVIclglZKtk2PaNMk+l43je2B6mZj3I6G8v8pBexZdd4Nk1skJ0rRa4TlAxkiUKIwLZ2LEYZH3/yA87ePefoKCNNBZerDoHB9oG67iFXnF2skTqQZnE2NH6Nsx1Hkz3/+ts3VJ2izE755CTn8UnJdlfz5qrHmNhaPpvmeDwqgd4JVpsutuKGEFOMWUxLToMnlZqzpeHm3ZreetJRgk40y1VDWVgWh1MSAet1wOuc9XbD0+Mx01FKXfU01sfP6x1Fqmk7h5aR87/vHaNMg/MoaTksMnqncK5FD+nJtrds2oaLfWDbeSaZpHeG2TijSBQiOGprOZ6O6fqOUdJzUObUQhOU4PhowQdPP+Xq4hW7/QYlBW/fvMTLgPOS9a4lEYrjowWu39K1FisVVd9Te8tf/OUvUFrjjce0NdJDoiXb6wvazQVJ6FhMc6xpWV++JZ0+osw0mI727ox2fYVUmmq9Q+qUu+sLum5OOZlRZAV5lt2XozrnGY/HpGn2mxTMb/Hrtxf4nGPfWZz1ZKmk7npKnaC1pO8M37y75fsfHYGUFIlCijiA9CZGiRaLGfg4TCqlgYAXYIxjMAEhRECqKBxZ5/Ahct+kFOyannGm4w3GOKwXjFJN52LLzbLqmReKbd0TrCHzlnkmqKs9SVIQS2Ads8WMu5slxvpYGgGkWUKeZazXWwLvG/cG12GesNu1dL0HHErFNtws08zmU1brHVXVYpwbuGLDm116PBEIbJ2jLAuSNMV5R9tEdl5wgSAVdWdpe8+mNtR9IAiJFGGoOo/thH1vUFIh8MNrKOiA1b6lanu6Pj6YvA9YG+iJPLdUR7eTddE1Zn10YTk3sJKEGOq049caG2AHx2aIDp/IYwsIJD4YBDJGsEQsokDGrXSRZ2RpwnQ6YlambMdjEq2o2ybyhpKEJHhGec7JbMxkMubXr84os5Rt1bKs96y2G16fX/P84pL1NrbHBh/LWISPDa8uxEZlAAWkSnFc5MyzlLrv6UwbxRAbt49jncW4QYCmN8MwK+j6NjIyhji59fFa1Ymm6x3PX7+jaXsSnSCFiGDMJDowtdYopWiaBllkJD5yDeP12UNIhyY2MzDkcoo0JUs1bdOR5zmjsmBf1/eOua7r8OOczWZDmaV4LQfhBxg2/1XdDky8lPOrJRc3d/RD87IglitYa7HDTeS9KywEh0SgtBrE2SjGhWh9RAo1ND0OjZIiisPGxtcrDGKqGlx75n1kJgTEYGufT6csplNMU6NVjJUaaweXUYpUEc5c1U38HgahfL1c03TtICLG958amqr1YGePn03QD5vjdoDixqhxPPhJ73F9H9uL+g5j+hgvGUpLonMvOhq1UnR9R0AOB3WLUsnQjCsH3oiJOAFnSLREBYdyHh1iQYbt94N48b4Eww4Noz6KqiJA8PfogFjcM2wQnb+P46qYZRqE1ri88CEMrj83iJBRvC1SkMcFh9+ZMBKBm6rnh+OWH80sb/7Jf85ocQzyx8z7d2zMkm+++isePjrm8vUvOZlmfPyd3yPLC/TghAwhxvd667hZrvn4g8coqcgyxWbfcbPa4qXm7fktp1eb2BCaKBaTEXJgeiiphrIhRyI1WaJwTWzGDjIeNKTWOA86Szi9uGHXmliWkSRo4ZnMxjxYjLnbNLSdZb1rOJyP4rUgAqtdhfEwKjOmZc7D4xllmnN+t+EXL86ojEd5j5SgFEgZ4cNN3+OI168Sgt5Z9k1kbrxfgCgh0FJwNJ8yHuXxMCEV5TTnerOn6wPWGyZFxh/96FOev73g6zeXVFWNTQZftwABAABJREFUFpJMK0jKeIBTgu2+pu0NxhhGoxEHB4vYoLXd8fbsKvJih3vXb95rlvF4RLXf0zQ1GEMwHQJHmiaxvMK54b2fUBY5eVHw4dOH5FlKmmWsdjtubm64u/71EHeswfZxUzbANe/F88G1q5UkEJA6CslCyCGS5+9j+n4Q7+Km8R42MMRvftOqjY+uP2ticc97x16M0dt4TYswLAYgVQmzyYS66djudhSZItVwffYl1fo8Ph+JUZDVtiJJC3xwTEcFWqXsd5esry5RSY7UOeX4ANs3yDTGhXY3l4yKGScfPGY0nmKxqK6nOvs1Z1//DWWh6NfvePi9P+T6y5/iDHz49D8jH+fsq4Yk0yzmE5T0HB3MWG02nJ+fk4oZUgk2+y3f+fQjXr1+zWw2J0sz+r6hzDNOjo+wLrr6DhYTijzldrkGqdjuK67v1tze3jEdlzw6PiJNI+KjbuKwWNct4/GI0ahECIkxLUpqlErwWJwIFOMMrQSPHjwgyXLOzy6RWiNUvJcbZ1FKUeQZSnve3lyzvb3DBHhzueTdaoeVCXo8RQiNkJLDowN+59MnWOf49u0V+/WGUO3RIjCfT5hMJmRZzu3tKl5LOuHs8pa2qanrAfchBeApipiGEEIynY4RQnJ2dkrbVMwXI6r1HcH1FHlC3w1CpPckeU6aZYxGYxYHC9qmxTnH4vAQgK7eY41BBijHU1SaRy6cVEymE7qm5uztO5a3dzT7LaZr8b2h7Q2tsxhnY5OhiU736F4NBG9JJOg0FsOEILAmPv98gH54nlpv8c7w+ttfUt1dkipFPjlisZiwvj6PiAIXcMKTZQnU3f17bTYt2W7uuL295g/+6Cf8we//Kd989Uv2mxua/Zauqvlv/u//Bcb1dPsbvvfdH3L0wfcw/YrV8jrGixJFQJIoQdu/jz56vAfTdVTVKcmoIk3GURDxNmJfMoWzZogLxkIs60VsujYdrt5SFjntzRu+/nnH+uPv853Pv8vdco13nr6pCW1F126p257V6TNybeirhoDicDaiunzJyy/+Pfzen6CTAhAURR4TCwNHtxkcP3F9KQghslAn4zGb7Z6bu3UUTHQSI/FhaLAc0A+xMKy6v99kRYyde2+RMhmW24FdVTMalWilaNs+RtsFJALmk0lkQ0aOUDxP9z3eK7Ks4OGDY+7u1iRao7Wm6zrKNOV2s+Pl69fRsRkCh0dz/sGf/jiKzzrh3X7Nr776mvVqxagsODk4oBiPOT6cM8oLqqZHS00YHGqjPMMTmE8m7PaxYOH48JA0jawmrTVZGgHxb96+42c//yVKaT56+gEPHj0AH3j3+hUvX79mvbojzUc8/eghj0+OefP8K25vb3j56iXOdIQguT1/w+buimq/4cPHJ2SZJU0ldRcwvSNBMQRQIMSFtEMgZAAtODxQKG2RKkb+g7cYGxu+Q1AgPS70SK2QRSCRgmAkdWMJWYKzgVY2HExmjCclfQ2SQJY4lEypmj4+n2RE2SRKsq1bJmVG5pPYbIund45poWl7mBQa6wPLGvI0UGSKSaqpOz/wwCWVkSipMc7T9AHXe/oeemdIMo0yfkgcOISIrjaHRarApJCkOgwMaMU41RG/pECqgA8OKQNFlqAklLkm1QIlIpLJejlgeQKFFnT0pIkgSEeRpeTCMinHPH36EWWuqe7ueP38p9S7XUzH9A1N2zCfZwTrefPqNavrU6p6x3hzy4tff8nRgweUozGLxSHBO26vrpgdHND3hrraw0HgyZOPmE7HXJyf4l3ks47LkiJLI//8o4+xtufs8gqtI5KJAFLH6/W9GWA2GaNkgsgk1xdXnF+cUTcNfdORZRmr1Zos06zvrrHOUOQphw8e8Tu/87s8ffIBs3HB3WrJer3h8OgE6xznF5d8+sHTaPIJkdV/vbzjxYuX96aDpq4jR6+N7rf1ag9+OM/YEGcxrcDD+m5DJfb0vYn3BeIcbU2PTjQogQoiJv2GUst4IhME60iHRaX3nqqy9/eeNxcbylzQOkWaCVRw5FKgs4hOwseyz1Rr6j5eS3XvgIh8UDIahJQMvH37NVkKXQOHU0EQkq4LMPFILclSyZPHB3z76halFd4EXp/tWIxKfvrVBbNRTlXXjPKCurNc3e4YZynOq4i4yFKqxlB3ISYBTVxu5Bk8nCjGqcQbR2/AIbnZdtyue8aTnEIojBCsti1CCoo8xzvDwfGc7318gs4mnL17x8MPTri+W5OoHcd5SbHaR0Z6cDgn2Vcd5SjFOFj1jrGMmLDOeaQPzDPBdJSxMYJVbeiDoncd21qwazx5GmhsR5ckFIlEe0VTGUKi6ENgXTeMywLlPbaq6eptLAxzgU3d8OFkTBCCs+uIlDielOy2FdY7iiRj3xiWe8e+6ymShER5pplmf/eG5fUp08mY02c/ZZrF8jnT90iRcDROCd2e8WjO9vaU5uY1k1RgpKYcT5BKsro+pyhKiiwjS9NYhDqYaCbjMZPJhK5rWa9Xv60899sLfMH7CApOxeBIgdZ5NJJCS642NQerilmZ0zV1rBXuOiSC6aRAK0HTObyM4ooIMdrzvrxBvB+GbdRu4jBvUVKSaE/r4og/ylM8huBAS0iVZ9c6vBUkWFJbMVGeLNWIJI3lA11klCVpxtXVHfGsEB1CWZ4ghWK73UfK3TD4KCHRSrLdRjuqGyKIADoTHBzM2O1rqqrB2Lh1701sS3XDkJ8lGmyg9i1d36OUji6I94KSE+ybhn3v2bU2WuO1IlNRTJEysifGpcbZyP/yzlEWKUpq9rdr9nVLay1iGM4IAUcUYWTw9M5jraXrbGyddUMMSwAhFmjYwbLsXHzlpVSo4WOkicK4gBfx5p4mCW5gsSmpYtwqUWx2NTLRjIqM9b6KkVcdGxi9kKhEUXc9WiuOpmOePDlBejAhDv+r2vBXv3xO3Rs2ux1NWyGCQr1Xf0MgDAUQksi3yJQkV5KDcjRw4aLLTQyMNKMgV4ppmqOUYL+vyCaWPI3b9uickugkiZFLydD6Bi/fnVM1LVLEVk49tMu2bRuZVCIynLRS9w/AEML9YTaKqtFtZq2JA5eJPzutE/b7OopXIeLjnHM0TUuiI+gW4v/uA3g7tIiFwHhU0PaWN2fXLFebIZYq7ktw+sElEwGDgzQWYsPle25WGMQihp+pVnqAz0eB2A2C4fvh/H2LHjDw7sKQ9I0/mzRJmE/HTPKcvtkjRaAdtsE6y6JrTkTRrO0i/FgKSV01NF1HN7QMDz6m4ecXhbf4UDaDMyL+XXQUxQNXLLWA4Cym72iraojyE+PxKjotwyBWOBc/txxs4UmSAII0yWK8V0lEcCSAlpG75ENA2IYwlGCEIWob+XmxiEMMImi8T0SBPDoeo0PtvdvwN8PkwDobOD/vHVB+iFB7Im8oOi8HHpoQONMyPpiS0VP08Cd5w3dki312hnn3BVl7xDTNqK7eMCk069U5X/ziZ7i+4c3Lr3j84WdMpyOMiW2HeVFQd4b1ruHNuws++eARs+mI9XbP5d2G1a7lallxfbfD+9hIXmQ5XsLeGMrpCNNG93CSJrS7mkQqpJaAYr1tqLvooJZCMs4yFrOCXe8wNg4VBI/3O5q6JSDJc81m54frE9IsjQ6ZRDMuMw6nYxIs613FL56dUbcx0pNqFdk51g5FPhYzFMUoqWj7eNjpjY0x78HVlyaKWZkxKRIOZiXehdgM2tnIWBGB2Sjl+x895stv3/Hs3TkA0yJlPhuz31a0JgLAnQv0pkcpwcnxEZPxlKY3vHpzzt1qjQ+eZEA7CClwJvIXx5MxVVVh+o5ge5yL7NdUZ8PSJhZvjPKM6WTC8dFhXFBJwc1qw+XNDcu7W5pqD87gTB/94yJyvmKcluGQHmPhsfPHD7+H4XDt7yP18TmoECJG1xn4fFIOpRqD+9s6h3duOEwPTb7B3V/b4v4aHhqiBHR9SypzlqsVbW8IQtCYQN12KBUAhZYFaZphfUmajKK40ge6pme5PUeolsXiABs0vU85evg99rs7tqtLqqs3TB98l8+++x0ePjykqy2bs1cUZsn+8hkTYZG9J2yu2X37C9zpF+gkIVR/Rp+eYIzj5OiY4AyGgA9wMJ1yd3MdlwIq43a144PeIJSitw7ZNxzOphweLDBtg7eGUVmQJgl3qzWdcdRtz/X1HavlmiRN+Ow7n5LqyG0qyxJno0sEIdlud8wmY1brLWmm8b4lzXPSpCDLc7rWIoSizAs29Z6q69A6QaUp1b6iLDImkwlCwsW7c/bLDbum58XVHTeVRWZjsiQlSI1Qmg8eHvLJ0xOCh+2uoV6vcfs941KT5AVZmuIsbPY1BwcLMiVRScp6vWez3NB3DVmWUBQZpumodlvSNCVJCzKtqfd7suBxtic4Q1PvY0umiciWoiwZlSUyyyhH0+jsrlu01ozGY2bzGUma8KufvYkLL6EoxlNGsxkHBwecvTvl4uKCrqpoqgr6nr7eU3cdrY3RQRfCPa9XSRnPagMKIU0UMm7SoigdPG64dwfP8HvEr1TVjvXqDYuTIyDhw89+yM3ZGzonsKZF4UiTFKEynNtivSXVGbt9AyGgpeD87Uu26yXr1S3NbktRFPhg6JoNB0cPsUXOvm4IasPHn3+Pg5OnXLx9wdWLL+lNS3DRYe9CLJmqqgohRxRlgTc9Xb+PoHiZUBYjUmHAmfg1eYEPkizLcV10vAlvqFY3OD1iNlpwdHxCNyQAjImuatHvqTdX9BZEt0OFKCKP8yiq52VBdfmGb6zn+OMfcHTyAO/DfepGSokYluTeB7SWLOZTsiTl8uaO1TryiAKS3lg22x1ZmqNkXAbe3S3Z7SpAxIbcLMP2Pcg4L/imxTiLtPH+XteCPk3IkoT9eg/BMyo7FtMpjx+ekGUZ2/1+QJt4jo4WUSgejek7Q9cbDg8XBGfRWvH69B1CKXIV0ys/+fHvoSWUZc755S1fP3vGdrthOhnx5OFDyqJgcTCPordQOGs5PFwggKatGB3MIku57bi+veXho4fkeYYxllzGAX65WvLzX/yCi5sbghc8efSIcVnStR1ffPkFb149j+UU4ykPjo7ZLG/5xS9+zvNvvsR0DV21w5smiqM3LVoJbFdhjcWLjO9+7w/49ttfs1ndEFyMfwsfcEryngaeZIo8F1S1o0gT+sThBFyuYFdZqtqitSTNFEnqyNJAnim2K0/fOMqxZNV0sQAvCJq+526zZqxLHk9zioMxb9eW1iu0CyhAJxkmWHSiUEBrHUrF5/sky5ilCu96Ohe4bXukVLiQ0FkRGYB49m2HECI2cApJpgP5BA4nkle3lptaYEUgSwW1iakDLQXGerRUSCUQKp7tkHJYZMbSpSJN0UlJVjxAyiW96Yaob+Reax3j1VmALFP37kMpYyGb6S2T8YTd8pRFs+PR8QHPX7/g5etf0Nab4efj2G22vHr+jOn0mIP5BBdqqmqLM57bmwtu7854/OGHlKMxeZbRNjuUDHjTxcIb7xBS8uDBQ3a7JW3XEtMxOjpf84yDxSEuCL799jlhmBF1IplOJ3gETdNQ1w1HBwcURU7wsN5tIyu72mO6njJVNHWHsz2tsaSJRMqEg+MP+Pyzz3j69CkHB4c0dc3NzR1KJTx48IgXL77lb3/+c7zzfOeTj2najvOrK569eMl6u0EKTQhi+LojH7xvevIyp60G3n+iGY0nZHnO8vYW21umR1MKApvleigTizNY7xzT8ZRFOWO12SJESxh6AkRwjPMkFoMOsU6l3uMZAh6JVBmpCLStZZop8kyz6nraznFQaDKlyaTFqjC0gwf2xlP4Ad1kOw5nGdNxBsLT9h1FljEpNV3boYTgcJaiVULfGhbjjLqz9K0lV5BIzyhLkBgWk5xRmrPcdvTWU0vPctuSZdFYFIiYs8Uk4dFBzn5v2bYOnSq0FkxHirqNKZXFOI2FRIlkU/XcrB1BSKyH1b6iyFKMveV2uUVnK9bLDd9ebJDCIZJBtzGWPE+ZlzlZBlokHJYpIwL7XUVFYF6kiBDQOnLjrXWMdcIWj+080ySBqeTlbUPjIyJCq54iFeRKMNMwJjZDO2vYVhVH4xypLM3uBoklBMe4zBllsRzocFISlEDHQY3eeYoUlLNkEkQaF6daSYKFN68vOX/2BdV6yatvf8nTkxMm2RSlBHlREPoWuz7H764x+1tke4uWgWw8plueUa0kSkgWhw/I84h/EELGZdZoTFkW9F3H7c01ff//By26WZrS93083MoYneiNoe5jtbpWgmfnSz5/OKdPFWWWgvCkWcp8Oub6dkmqE0zf45QcGmTFfaudM9HxFrlCcQBSQwuv9wGpiQwkJQkuYJ1n21nSRKOCJXGG0A48vqxA6iw2KlYVRVnirGO3r3A2DhhKQJ6nCKLwE0JADIKaVgwg3I6qcTG6QeQNSKU4PJjSdh3rTUXfxwHHOk/bRaaXECK6IAaHlBJqYKfFbbBE0BhL1Qd2rY1RZiRZIgk+Fi1IBUWuwfu4YVHxczQhsN5EltSmaqONnoBQEhU8QgSUVIQApu9pjYvwaRejEOJ9DFPGIg2PiMKbitEvERd1oGK7sZIxPhjZFAL8IELmCUGE2Aw4KtjVLXXTIpxnNCqou45RlnDX9PS2R0rBw4MZRZGy3ze8PrvmZD5juav46dcveXl+w/nNHcZ6rLc4BwoX67NDRFQLMXxtw8b1wWQSlXs8q6ZFhgCDJT5LU8ZCUOYppdRUfUPf9RhjKYpyYLYorDMIFErFJk+E5M35FXerHUrpqPTnGUWS0vUdtbGD6FrGmKmQsbhiELqct3HQDVGcsC4WR7imIZ1MqZueiAyM7DNj3dC0KOit5/L6NtrV0xRjLfu6YT6boFQU6GaTEW++fslqu8MOjjrvLMZEYU8Qh/W43Xb3cVwp30fyouDEYOqRQqKHxlzjPFKo+5iwGFqKI2fv74D3ReR/FWnKbDJlOh7hTEPf7GKE31i8EMg0BZUgVIxgGNOCjC5RZ6Ig8J7/JZQanISxWQ0ho/A88ASN6UizFEVkROpE3T+0vTPYvqWtK2wfGXdR2NBD1D8WaUTRXg/lFoF84OklSsd/j0cIj7NtjCFBbDA0/QCL9oP7yN6z+cL7llHnBkElYF1s3o2Ovfi69da81zaAQdiDe/Ev8joH8T+I/0AYAe5F1gNV8+jqC5z+Y/70g5zx9pL6zbdMhEQ0W1ylGFWnNNUtTbVF2A6loohzd/uO3fqWg4MjyjynaVraposisRQsN1v2dUuRZ9ztWu62DWc3W25W9cBcC4zKnFmekEqB6S1V3eF6i1AKDUgd3W/OWXzfoZSkyBXohKruaLznOFH3CIF5qVmUKQ8OpvQ+8Pp8yWq9p8g1i1nBertnOhnx9HBGay3eem5vNxwclPz61SXbxkR+qxRYY+lNdOgEEQsjrHOkQ2NgZxxd198D87M0RWtFpiXTUUGZpey3e8qyYDobs6s7ZKj49Mkx89GYXz17w/lyTa4VDw4XFEnC9d0dddthbBw8lNKMyoI8TxiNx5xeXHK32tK2PVrIgekV2Y29NVhrKLKMerfDGkOwBuF9jC2I4dAUApPRiMl4FJ3wwdO2Lev1lvV2z36/pWtrsB1iWNooERdESE1wg91ZiMFx6hGRgR7RAcPC6T1bU6mhwMhFd6YcmKtRgP4NV9MNjsK+76Mgbf1/cL8IIRZ3EOL1J4fvJbJrE4KWtDYuobI0jYefMkdrQVU35FqDTAlBst/3TKYTDo4+IS8ntO0ZTbXj9GwNJHz03Z8wLjS23aJCTV/f8OSTf8xkPiXXgq5b45//DWHzjrxboYqUrmmhW2Nvv6WUHru/4df/9f+RR3/vP+Pw0x9QpCnrXYtGcHV3w5OTYx6ePOB6tSXJM/K0pG46DheHrLdrnA9Mx2O6LnL2JuMRk/GY29slnbF4NPsqPruVlDw8fkzf9jjt6Kyl6wxZlqITzeHREU1dYV1sH1wcPGC329A0Dd4Fjo8OOTiYYa3l5MGc3es9PgQOJ2O6fYSrZ3lsA33+4g2n786oasO3FytMmqHyjHI0og+BVAg+eXzCJx88pKp7rq7vuLm6IJMRLzIaFXgcSZYxLgsW8wlFlnN2fslmtWazWlEkKQfjYng/Kfo8JaQFo8kULxPO35ximopmv4v3VB8IIRauSSUIQjGeTNmul3z84BHj6YTRqKTrGsqyYDabcXZ6znq14vbmhqwsSbKCxeEBSmpO35yyWi5pqj1dXdFWe7b7/SBYDyVRg+DswnsnXlwq5youdL33hCEOGG/+EmccQXgsxLbHINBKkyUJWgiqjeEn/4M/4+tnX2HaLePZDNNl2L7CBYlzAaUSypEmTVKUUHFp5OPh/vTsFCUFWZowyzXGgPWCopzhXcfZ6TPs6WsOjmYcP/geq9ufkaYKrUp8MOg0IfgWiyJPRmTjCX3bYmWD9ZZEKbIsHQDnDpQgyTNoBYT4bHOmRUgVQfOJZH74iLwoubk6Z7o4outbmrqm2+9o1td0zZZsFAshiixnPM3AuhjD71v6tiHp98gs4/D4GCUCRZENpVkRYSKFjOfILCXRKafnV9RtH9EmfY8QnjRNkELStLF0pq0bmrZDJxGzkeg4ZzTBoXTC3tbUVUOSaB6cHOOsY7Pd4oyjGx6+WsUlY/COUV5gg2O12bPdV2itQQrquuHxgxN0otns9rRNx3RUcHZzzdnVFUpEYeSH3/+MaVmy3te8fnPGt6/eULUNi8mE48MDTo4WcZ4YmMGTUYoxKZOiRCuwpmW7q6nqmmSIHR7N5ux2OyxwfXPLs2+f8eUXX+DwPHz4mPn8ACsEP/v1l1y8e01T7VFJwmR2iJCSzW7LennN+ds32GZPSJJ4vwngbWT9Op2S5iXO9mxuz7Fd4OGDD/BmR9c2CO/pfVz26FShEkjyQD5WYCR4z2bjGI8EKiSk0tKreEaRgzlhtxMEK/FGRndyY6MAp+JM2HQ9D6YTJmmgdhV3raEs5nR9QCeKbd0Nc6BnnsXzmdGC/u/MievGxXZOS8RsDOc64yX7HookMtQz0TPLFXgbo4dCoLzl8yOF3gjeLPvo7GsNeZHEM7N2Q7FUoO+jwykJAoxjPEnQTpIJRaIUQkjyvMS6nixLMSuHCNCZyIx8n0CyNnKMkfGcOylTdk3Ftt6hz76mb/+U25szzl99jfCxSE8oRQiGRLXs1tcEb9mtV0znh2xvNxhrWd28I0v/PuOypK73ONuRaM3y5prJfMZoVPLhR59gXcfqbkm1r5jPZjx6/CQ2XRcZbdvx5u07jLWRjz6gCPI0pTVmwDdp+r6jriqqpon3rOmI5fIKQWC7WaGThOOjI5q2Y726YXGw4E/+5CeUZcl8OsGanourmxiBzXL22w2JUlyt13z17BlHxye8fvOa88sLbm5ukUojQkxbVXWNs7GIrG2bGFnte0KAJM9oqpr9ZhPnHwKr6zsQkXOvtCLP8ij2lpL/5B/+Y/Ii46uvfsXp6Qv6piUdOPdCBEw/IHuEIEGQaUXbWaQSLLeeNJV0NmCShAfFmNP1DXXv0CIwUopRJpE6JvFyrRA6ZVc3xBycYN9G/EuqA1kqMdYRnCFJ/H2p0XyaI1BMx1Muru/43c+POb/YcDjPyXKHI8E5zTTLuLzumI0y9m0gT1V0dSMxPjCbpAQCq22HTgRHs+hIbY3heuMIErY7w8N5wnc+HZOnmn/79YbOWoQKWBNAKJomsKsblG6Ylj0TXdDRU+QB4wXzMuVkMeHJoxNM3XKzucXZlsa0YAOTMoMQSLWg73qUVOQ6zkAyekDICkWJQjQ9D2cSJxTOcV/MZJE4L3DWsKsU0zIj13F2dUFws11jOoO0nukoI0/iWXaeJ+SjguAN3jhIUlIdEL7ncJGS6Yyu69lULXXXclJmPP+b/wqbT1FJg2BH6Px9Mq3uDJOipbq5QYYeNSyvXbXk9vwlv/Mf/acElSJl1GHMwHwcj0fkWU7d1JyfnbLfbyMb/7f89VsLfHUX21ikjzGbfuAzeGPoup5UKm7rjtt9y0GuaPo4kM9GI+5WO7wTVCa2Z0YiTLgXlXrrIldOyMi7et+MOkTVogBokEKx3FYczkuqTY8xHmtqpsCkgGk5QSYSVBKZZNZSlgV13dD3UUgRMpZEFGXJbrvD+zjEJ0kUHZWS5HlC2xr2dYxxeWdIk+joW8xGEETk7nWG3hisd9hB+LkvHQgxfpUMzaGD9oQQkm1jqHtP27sY+yC2z2klo7VdxjZCLWOTVdt3Q0OjwjhL1XS0vY3uPOeY5QnGO/I0NgTiIy+xadsoPpoYEZTDZsm6GAm21v3GLSUYSiMEQgSEUPTGYQWUecIi1yCGhlEP4zyjt4591fLo8CB+vSJuPGZac73acTwfURYZWIlxgoNZSdsZ9s7xzctzyuySZ5crmtdXNPU+wpsHZ5wKxC0KcfMmIUYUlSQTklGqyYRk2TVYEUhl5N+MkpRUxta0YGPTbcBT9dFq3DTxMDubjJhNZ6y3W4xx5FlKkRe8O7vi3eUVeZbR9z1FlpEoTd0298yqPEuYjEfsq32MvoTIF4N4bQGURYG1lsRH1kffxXZkPTjlhNQYFx1GMYISDy13qy1ZXkQnGQFjDH3fkeRRfLy523B5sxpKNhR93+FMbGR9z5B5LyKpQdiDOKwPgVwE7x19GkIEVEenGJghphyIIqEYPpq7b3aOglya5Tx+/BDlHKbeAfEaM8aBUkiVoNM0bkvauNl01uOxdE0bnZ1EAVEINcRVo+lQSImzdmi7jV9rmqYRXJxEJyAhIHGYtqPvGvquGRxyYtiUEBUFKTEDUF2l0b6vBkefHsRRYVtk8NH5ZA1gYmtxCHjnsDZC052z8ft370XSYWAchDl4L4LGh7QbBL73zjwZrX0A94JKZK9FwdQPW8L3rcfvXY0+DEsOJUnqG/TP/nO+f3TI96c/5Pqq46t//U84ODkh9DvavcTtlpT03G2XJDJw9fZrUhXdwq+ff83Hn34PiKKy7ewQzRZIlbDZ1wQB59dLXpzestmbYakTSDUcjwrKaHqkF+ARw4Mzlss456m62JjphxKTLFH0tkcEMC4C24UMLMqcz58e0exrzm+37BrHru6RSnN8kJMlgrfvzvne55/w5MEBl7cbrqsdjbX0q4Z1bUlSDbanHxp0o9NmaFYmRiW8j5FHG7gXV/IsJUk0UgQW0zGzyQiAybikaS3LTUXVNnzno6fYvuEvf/41extdOeNM46zj3c0tVddFB7exZFkWy2NSzXqz4fT8GmM9oIaG8fggl0LEGKu15IlC4DBdE58dProRwyD6pjphNCujyGItd8slu/2O7W6HNT2m68BZxNACF4hLKoaWdaUUyMiZMS6W0ggRgdEB/kM+J7GxOdEpSgREUPfLqt4aOtMPOIHocPKD08mL94sDH+/TQzxUDsDtuJgRw/M3uhr2tWdbNyQaRllCVsRYY1P3pKmiSEuU0LT1Lm7WVbz/BS+5vjxjtbwi0wmdqSmKlMs3/57rN1/Q7m8IBKrdhuAg0yn1vqG9eoO6e8l+u0QGjVARpL3bbnDmaxrjGI9L3OVz7IufUj94ipcarROq1rDZ7BDB8+jhA/oALsThZzYuyAaH0GySs9qs0YlmNBlRFCV3qxWtcQQPVb1js93StC1BvGf5xuIyhMR5uLi6oyzzKAwlkec0maa0dY9SOV1f43xLnmXMxiWJUqAki+mUy+s1renJsyTyq/KCV29OeXNxzen1itsOfD4mSRKSLD6/J+OCzx+dcHyw4Pxuw+XFFaFtSKUg15IiTdBKMD844uT4ENf39E3D85fv2G5XJMrzYJqRp9Hhp5Qg8uo1k8mMzgWuLq/Ybja0VY21BpUMQ/EoJ/jAaFRQjArG44I0Uzx8+pCuagje8fSjJ9TbmtO3Z1ydndLsd2Q6JS8nJFnJvjZ0+ztWt7ds1hvqqqKu68gxtNFpE+/RATcUwTgfBtSJJEGhxYCsuGdRxnI0JSU6SyFYkDo6s210OygpcV2DyAQ/++u/oO1rjg4e8b3f+WOeffNL1tdvohtbapKspK72sdTCB4oype06hI+FQniwNnBxfjOU2WxZr64Ylxl5kqIRfPvNL1lMj5BuT9u3aF2gkhRlLTpZMDv6kCwbUTcVWiaUoxnbXYW3ht3yisV0jJYKLRRdtUfJgcUr4jMSqciTBI/j7Zd/yc3pM44++JT8R3/M9vYGnRaYeo1vVwjT0qwMvm9JlMCbWBimlSa4Du8t/WrLpfiWj777e+Ajs1AP0XEEFEOSoesMF1fntF2cJyIKJi4lU61iaV8TRbv3WA4BpGkSHTZ9T5ZmGOuYjMr4cQiYtmNUlojJmCyNLr2+76jrhvlsysHhITpJ2G5qms6wXG8ZjyMzret7FtMpozLn+jaWAtWd4ctnLzHOczgfcbCYsRiPOL244ctvX7BcrXHWsZiM+fijD1GAM5baGJbrHUdHh3giC/j88pKnjx/gA2z2Fav1Cucsn3/nM67vbrm4OOfVqzd8+/IVxlnKsmQ2GmFd4Pm3z7m5vY5tnqlmfnhCNpqRFwWr89dUbU233yLx5KMRu6pFK43pGxKd8J5WTIgJiKbtaOpzUvkQh2f+wQHB9uxXBo1EZRKdCHQK0gjSXFB3gcPpHG8MRVYwfXDAdt+x36/ZNxt8EGglqBqPFpqEQN8J8hH0xmONIE9Sdm1L1bXodESKY6I85Thns61pvCURmpFSlFqy7x3gaK2ncwaBoFCScZ7QuZgeGKeaXEtS5ci0xFhJa3qOZpGVJ4UgVQoXYqGiCpI89KQCnIlx2r739MZT5klcMAtPrgWjVDJJNeNBnBYEhArUZst6UxGEjgvzIcZrjMfZWLSXpRpsxPnZ4CBIlIR929KutyA9F2+/4Bd//a+5uXpLX93StA2Jjh+zMw2nb9/w4Phz3i1/zcXbr2nrlsVByfVdzfXlG65vLnj46AnOOtbbXYwSDgiWTz/9LsdHh6xWS2SiGI1KyqJgtbzjydOnKJ3w8s03XF5cMZ5McN6TJul94cxoMoqIKBFZcs+fP2e5WhK8IS9KRqOSREnurq9o+5Ynv/9H2L7jrQw8fPiYJ48fkkjFqCy5u7ulbmoQkq7vuL29jsvy4JGJ4vTqkuevX9O3HUJIvDX0XU9dN0gl6ftY2jkaj2LDcppAgHZXD014DPML8X4OSBn4/u//Ln/+k/8xwYFQDZ9/93PuVrecXpzxRDku3r1FuRbTxeJCFwTWR0FHekHTBSZFGhl7ncUFQWcDl5sWazwGRW89q9ohCuLcEwS9gEkqqFqHtQGdCLI0Cs+PHj/i4vKUYBxV15NKQZrEUsq2MVgDn37+Ix4++ZyvvvhXzGcZj04+Y34w4u3brxiXc373j/4xv/qbf0m1W9Mbyb6O6TkpBAZHZ6C18X2XSMgygRxLNpUh04FRlkV3qxJ0XnC7a3AeztY9rQkoD2mqqRsD3g+4mIhKkoVmnEkODmYE2/Lk6IDJJOfmbsntdsVmX5NpTaFE/J46i5aKTWcYZZJMC3QSjSDXdx29JaJhACEF00zSe4HXMZ3YmxBTkR6kTtB6gnWBFoF1npFWkGo2zRadJjgExnvWdY3VkmAtdb1BJ5rgJVKmJCphmguub5YImWF9jAy3vefFm+csjg8YTR7TupzZOCXJypjykxKz34GNz7tgLIkClWXMTx6y22youoqn3/89vv31Lzn+8FOODw5JdULd1JyevmO/3ZBmKWVZ/n8rw/1//PVbC3x2UBmtiUUQSmuEDQQh6J1jUkh2VnG5bXg0P2GzuuVgPmPTtGwbEweQRMVihyHuiBiGcRj+e/yPHWJV74cxTXTOaCXpjKfadZi6Q6rALIPZpKAYZSRpTtcZdnVDnqaQaqo6Dn9RSAgkOkEpFVtv2xiDSnTM3hMiD6ttDbvKxANhiBeXFAnTaRy0zi5uaIfG3LbrcIMIIQJ4ET+GHuKFTkQIazxoarZVx66zuCGtJIVADLFlObh0vA9Y4TFtF1lhxsXWFWNpGkPdxsr6tu9jXHJgZbTDgOiDj6LGAEUdzBcQYtTLBo8dhAYlBVrEbZ0a4ptZksa/VyE65Y7nLKYzXp9d0vWW6bikSGOcLW5xcp48WHByOOVmuYsFF0KwqQymjwftznjaNqFqe95d3vHrd1dIAatqHwUTZ/E4VBgERmL82wsQw9emEIyThFQpAp7eOxblmDLXJDrBmIZUJwjr6a1l23aME01jLY0x8dqyMZqYpQmz8Qgl4kCitaKuW96cXYKQ1HWsVlcqtkTJaGXEeU+SprRtF0Gzfrh0iAKOsbFN11o7RHYLMpngXWQrKRXZImYAfSupovPuvdhtPKvNjsWsRCAYFUWMv1mPsY7nr8/o+1jLbUwXB+xBULoPuQoRowVEwfk9zw0AER0076OfsalVRm6Ct/dx0PA+cjoM8mJwxSVasZjPmE8mONPSdW0UJAgY6wlSo5N0aBKO7MjexEi99566behMZFqg5MD1i1EjhESnmj4ElFZYYweRMjK+0nSILltL37V422Ha5r5dWwzRW4jvpd4adJKiZYwaahnZSokSWOOQzoDr8SY2NHMvWgwOvRBwLrox8cPrFSLD770AE8LQTDzEHd/zLMV7x+mwBX4fn2dwRTrHcACLXCCEuH/NJOK+Rj2KsRDu74ENB/KO0fY1zdUTUlOxmCSs3n5BoSWHixNm8xO+Ofs5aZIyLSXb7SX5aBqjG9qw36xIyxm9cVRNh9SSB0dz2s7StA3bNvD1mzvuNk1sLQak0jjgZt9EBqgU5FmKDZbWRfZI6t/HnyXO9symJaG3jEYZRZbiw566NRTpBDkKTCYTtvuGm3VLZyNXtXeBaZnwnQ8fsdttqOuWy+tbPnjygDxR9MP99u6up+lilLXvY3QauOfHuWFh5Jwd7uPRMV7meXTfKDnA/Avm0xFpmrCvW6quYlM1FGnK0wfHXFwvuVqvaZ0jSySF1nTGs92u6Pp+cIPEhjyQEfXg/RBXJUZcB/EsDO8/1xukEGQ6vk5dHx2iAFKE2G4t1dAQ7Wjqhmq/o+s7TN9FEdp7vDNoBEKqeP8ZXEgRWRMHEefdvYtYyiikD+deCLGcSLxfLokoYEiiu9cO8HAI9/cAZ2ODbhTT3VBqEmJztYqtbO/F78gmivcaEUK0zQ/uySKLpTnTcU6ZZKTSYoMiSBm5WD7gsfR9Q983SBEIznJ5+gUiBCyGUZmQZiWIlM+///dRMuGXP/vvKKThaHHM0SzHt0uk7cmaC9q+RSQZIjhEa2i9J001PsQkQB5qeilYn78k39wgsoJxUSJlYFQUbHd7Hjx4QHCBssx5/OCAk/kC61qOFlPu1mvuVmuODxeUeUFVN1zd3CGkHlq/I6d2v98xmYxRWYIxAut72i7yXXvrqG7XjMqSECyT0ShGBa1hMpnwuHxMnioePTgmGRY4vbGkaVxE6YErLLXi2bM3/Pr5Wy43G7a9R+icfDS6d2k/OJjxw08eoZKEl+8uWO12mLpipGUE3ocY5Tk6OWQ8HmG6ls3dEt81yL7hwaRAqkCaFnGoSDI2TcdoPr6Hel9d3rC+vaXv6+jQVgqdxK+1KPNYulCWPHp0ws3tDdPxlPFkxtX5NUII5ocLTs/POXv5glQkcfOe5ngp6ao99WbP5dUFdVPdO/R7YwYHHjj3/loMwxEvFpclUkbUh4kogNiArZBBEXQsQxLDeyR4SW+G6965uLCzDl2UjEcTdD7ng4fHXLw946d/+c/ZbSIUX6oEQ8N6vWPftDESJwXKRHFXeE9A0/cGKQJJXtI0DcLFQdA5TzopmE4OCQReP/8Fxx9+HyUE66u3eN9QqATXtXT1hq6tmMwXBA+ru7PYCCwzpscfovFAPWAfXGQeJglB53GhLiWdCSjhkM5i6wQpMu6uLlmdv2B+9AHrs28JJkaMg2nQKiB1iutalEriM0yBN1HNyJP4nE6zAoa22XjeECRpzn5XcbdcYYyJHE8l6U0URLIklq6t7jbDsjP+LN6bAvCePMtwzpFlKSF0SCk5OVzgfWC92QwLn0DXtgQhqJq4VFFDVGpf1ZHnt91F9Eq0gtF2ku1uz+PyiCcnx1wv1/z0F19yc3vHYjrlYD7lwckR+6rh65dvuLq7A+M4PDpiMi7p+562rsmLjODjkmWzXnN3t8TaGGnO1wVCaardhqZtyJOU03enXF5fc3r6lrubW9LxlAePn5BIxe1qyXq1BOcYTeaMypLZdErEe1nqtqNuaspixHh2QJoWdH2N9PvoItNJdJgPz5S22eNcSQiCybSk7i0OSbWLpVA284ymJT646GIlZbPtEHjyXLHd1QgihsGFwKiYk6YTzPWOuvHxLOgENjiElngXD8lFKsBJnPbcVTWjIuckSbGdx3sZo7jOkWrFLEvIVAq+R0uBD/HjpUowTlOcjUulTAh0rim1ptCKzvdc7ixNbznMYoOoCZZxGkh1dHNVdRRfizS2ydogkSG6hZSSGDM8IqXHCMXa2Pg8H4HAoZB0taXpLNtdbARfTCYomcbHnAQ78Gm1iuJekiYUSiBIyLOcqmvYup5gLazP+em//b9S94G2iWJWwGJNvGfZbst6ecM3X/+/2KzPUATOLzYgS7Scs1suMcZS77Z4NxQbpSM+/vhTnn7wIcu7G6ztkUJQFGOm0xnzgwU60bx89ZreRlxJRPYoslRH3EgblyTbtmJUaO6WK9abFdb3BNtTlg/48Z/+fU5f/Qpje+rdGp0IdjvDh08/JElLTGfIxwnbqma53rDf71gsDulNw9npKU29Y3qwIFMZ7169JknSaI6QknI0oqkbBJLRZAwIrq8uaZsG7z1FVkQKkXP8xo4QxwtC/HMIgbdv3/H/2P/X9KYjzSXvrt7yj37yH/O//p//bzh88ph/96//Ff/sv/q/4M2Wu2UscMm0Jk0lTWsxDjIdyzjyVNPaiNjqnOPtJroZvRfsTTzfiOCRWmOMozaCzjoyFQX+vhWUueLXX71EahjnEfG0t55RHjieZCymKTrJeHf6HDl+wB/+0X/CfDJnXd3w7bO/Yl/1FEnLm2/+lra+YTouSGRM5TQm0HSWTTW0RjvorSckEmlhvfVkieN4plA6Jj7KUtL3jouqw3pN2wlEkPR9oGktISgCjs515FYxn+SsK4txPZt9Q1nG73WyK6jqPp6X9YTZNCMLhqbpOMpTsI7aBIKUGDzS5CQ+o8glzhuCF1xsWhoEJBJlJSEIykxSpJ5EBTKlyPMZH336fS7On9N1LXmumJQlmzpydqvWoFRKolKMCwg9FArqMpapaIXDY32HNZ401yQ6o1p3BBtY5JpMeQopefrJd9jfLFle3GA6R5YqEi2xTQOuvy//GRUFHsn25oIHH/+Qplpy9/YrZHnIR9/9YdQYuoaLiwv6oUFe6RT1vvjxt/j1Wwt8Dti1llypCPMd7MdpIqmbnqqJi87eB7a94+njB3Sd5Wa1pjGGTEmyIfITRLRcxlE8ChKxuWiA0xPLALJED82jEZIJDmEDu64mlYHFWHO4mDCejGl7w3ZfkyQps/Eo2nl93FD5wWWTpQlSajab3cBTYIizxvhpmmmshc22iXZyHzfviRZMJjGacnp2Rd2aKOwN7jvvPGFgnMUUqxu8EOCDIEtSpE5Zrhvq1mMGl5/3YQCVg1TivnEuhMiJShONxdGZ2IDrnKfuHbUxBOdxPgJq93WH8WFgG7qh7Sg6sSLUPNpKe2NIdBLZDkRG3pCpQgpIk4h+lzKgiQUHmdZ8/tETvnp5infR4QgBYywnR2MmQ1QVb1nM4/ZnvakION5e3TEtM6QUVG3L1cqzqSqen1+yqhuUd7GBML6I92KllmIQVIaoTNSCmKY5kywhSSRFmhID1mEQuRytc3SDlXfbtSz3Db7IWTf7KLi6yKIA4iZ3XHByfMjtaoWUildvzzDWkerIrUq0pmnjBrRt+yikEV2Y+7q+Fw6UkjECoxTWGISMXAEp35dBxP9PjPDFm/x7HptUahBfwQ7cn11V0RnDpMwoshHr7Q5hA8+ev+FutcGYGK1hcHZF942/F7jkUIThwnvrb9zWSxGjUJGFFa9BreOwF8s0wgDEdwxIuEGoisJakWUcHcwZ5Sntfgt+4M0RRX503MqHAG6Ak1sX6LsekHRtT+c9QSVDVFEghraURCeRmzjEo4yJLjApo2BkrImFPnUDxmD7DtO3g7MQwsDUY3D9xgiiRxFI8xxne5QIWN/jWod3fWyw9SbGZJ0dOEEBa0182AwxxfgSht/8eXDfRXE3DLHa+DOUg0NBDNHcGNEfhkk/OCjvb3xhiL2H9/PocF/wiOAG4HMUF70bBMeuIlR3FLZjqiUX+2uuzk+ZFOBdx+buDYuDY05OTnjx7C1b63DW0DaCqtrwxa/+Fi9m/M4f/kcgYmmCt1H0LYsEL1P+6ucvuFruY1RTxuFKyugkrEwcsrSIrdbjQjFONFmesGsMddPz6HDM4WSK8A4xylnXPZfrmvXeDMKu5vHDEdtdy7bqCFLftxNPcsUPv/OERImh5dZzeb3kYD7l0aNDRJLwy+dnXN3c0nsT49xB3McpHIG2M4PgOjjWBuEpVZpUR47f+1f84ckBGVBXLTfrPQGYjhJGec7r82v2VYcWglJJ8ixuVlvrsH1P29Q450hUgjGO1sTyGDmUtEQhbRAeB7HWmtjwa7voJHbWggukUg7Ce2xt7rse51q8j8saIQa+IwEdIscxthXG978Z3HTqvjwl3u99GIpHQhT/NDGCm2iFisQFQqwhoe8tzht63xNcdIN7/96lOqAobGyAjKJejBvHEzb3ztYQhgKnQUj0g8ApBserVoIsUXjjCb2BNGXfGerWREemt+TZiDxNh7bLFKlKFCm7to5bbl0ig8balsk45eb0G9quxruWJBdsrp7zN//N/4Ef//n/jNwniO0tpq1RaUbwgQxHUBFBYW3k6PmQIHSGc4Hd6Utm04dYndK1HevVFimgb2K77aOjBR8/PYlbaJux29dc3S5Js4LZZMp+t+Pd+RU+CPbVjvF4jLWGpmnAe8oso2ladnWE/9dVE1muAeqmoSgy8lQjtSARwzI1WBaLQ54+PGQ+HSEkNH1EHUynI370g0959uIN+8pwudrx7atTrtY72hBIRxOyNAfis/Tjh0d8+OQE0/V8+/Yd+6pGe0uiBKMiJc8SRmVOojWp1Li6QmHJvEVpHR09WmGIBTP/b9b+69e27MzyxH7TLbPtMdebcGSQmUxbtst1V6NLKKgbaggCJOhB0ougP02PEgSUIHULeqiqNJWGzGQyIhjuxvXm+O2Xm1YPc93LKkgvXdQJELiI4Ik4Z++115rf+Mb4DXRC11NunZ7kZ0hnef78Dc1+h+9akkhEmQsXUsrN1kpqTo6XLGY1F+cXTBZHnC6OOXt3Rj9YBJJXz16yvrpGSI2ZLFAp3x+H/Z6zl2+wvaPvG6zzBHLsNsZ84enRaZNd7GIsl5Eflp75OZFIaRhZkwJSZlblYu3xWUBeiAYfCMmOze0OlxLzo7ucnNziiy//gmRbkJn/fHJ0ilIznPQcmoFusGiVS9acjwxDZtpJKTCl4eGjB3jruby8ALKTfBgE8+MH/OHf/y+ZVIa/+JP/Bw/mJ8zmJ9iuxSjP5uoVyRu871jcesTHv/fPOKzWvHn5S7xznN66RZIGKVz+vJGLx0KKaK1G7qxAmjK/R8GSbI8D3n73N5yLiGHArc8IbW5GTkkAHqUL3q8OpczFa0ppSlMwhIC9Puf1k+/40R/8EUUxp55md3NZ1hyajtVmMy7EBFrrnIaIkdu3blMYzbuLa1yIzOqKYRzozVhyBomj5YybmzUCwfFykcUJrfMC1lo2m10+j5EwZcHgA81+y8ePHzCfztgeGja7/Yczt3MeqTJ+KKZ8pu96yxdff82bd++4dbTg3t07TOoJlzdbzs/OOLu8oZ6U3L13wsMH97nerOl7S289AbDWIcgxLescRVkhySaGu/fusFlvcMHhXODp8+dc3FwzmUz4/Kc/Y7o45mZzzfNnT/BCcvvOPQqlsTZQVSVGS46Oj3j+/a/RJpfS3L33CVIkbi7O2F2/QaIY3PBBvIne4l2Pdz0ppXGWuSHFG45uVxR1yW7b4WJP3PREJ3DOY8R49kUSfX5dVJE4tA7BgUm1oTQmi3t9Ph8ZnZNAk7nG9tksUFWC/a5H9YaEJ4Ye4a+5c3QyOuphUhfUusT3uYFZqIJDsyMJgUyJSalQItERiCFx/2jOYC1tCAwxz0suSrzt8NrT9IllnT/f69ahdaK3sLKS788Hrps8z8aUi7hCihAihREYnVNL1gfWrSdJwaQsqURBdAKjKu6c6szmEwk1ciGd6zBFjmeHGFEaQrJ5SSsE0XlUgLLUDC4hoqJt9tiQSMEBmWNbaI0Kgs3Na5798HOGYcd2v2MxKSlLxeAHIgPObVjdXFEV6gN+5vHHn3D77n0O+zXeOw77A3fv3QddMCsKlISLs3Our65ompayzqVNgkhhSmzqUbpgt93TdR1+6KiKCUfLIwbbsl5dcPfuPWbGcH15iZSRWV3y9sVLlrfusjw+wnaOd2dvuX3rNs55rq+umS1mCOD05A6PPnrMm9fP+aM/+kfUZc3Z5RknkznPN2u01lxfXVKVNcPQgRB5kVUYBhspyxJl9Dj/jOLeeMAW8GHWEwJ2qxt2N1c5uaQVZ2/estAlSSrufPSYH330ER9/+jm//urnFIWkKDWHQ6LpAynJvOyMIhuAYqBxEZTBKDWWfibyVC049IlJoej7gE8J4SPTSo/zt8TbxHU/YJRgUmm8y1qILAXNJnFoG+Y1SGnxFHz36v/Og9MTPv/8E56/ec3QXZO8QydPv91ycmfC5YWjbbIRRAlIo+uwHYXpwghCFLgILkScz4aNbohUJjEpBZMy8+cf3VkQhONXz3YkKfMMZ302WMT8PS70QKQyiuW8ZLPtaTpPvR24c2vJTOfEVZIFN9uWuQ+0MeF8oHEeYSOTSjJbzrl951NWr77keD4jhAOCiEARPJztLf0QmU8KZkXk9qIiJMG0Knj5/Htat6OSaXSEZiF4MZ3QDzuWk4rlbMp8dsz1bo0NEL3MnQrSUWsDIrEfPN4zzh8lUxWZ6chCK7wb+MXf/SXzxW0+PzYoG4m2pyoneXFhJX2Xm3GnswXOW1TsuXz6JaYs6Hdbbt/5mHdPvyN+9GnWbsYzfVnVHJ2csF2t/3+Lbv8Tvn5rgU9KqLTIsZa2w49Fpr3Lo4uNgqKUrHcDzy9W/PTB51yuzuldoh88otaUQlOXBuvtyAOKRJkvxujzwT8LgOMGP/k8FPiA9WGEfyaMhqPJhHt3lwSp2G73BCmpqwrrE53NinHbZdB/bmJUIy/PgdR4n+NGWhuMkswmNSFFtvsDMQnsMIyNvpLppOSjR3d4c3ZB0+V/9+DsWJSg0DoLK8Po8lBKkyIsljV37pxy/+FDnj17x/lNm+UMyTgI5sORGmO8IUF0IUPRlSTGzJjohhwLsSPI3docFZRJ4mJgiBGiJwgopECODj0lFT7ED+Uf3eCoxm22GA+whdFUhSaSOUjeZWu3NJKiMFgf+OHZK3qbD4aL+QxizKDqJBhsjq+sDwNv3l5iXeLQDfRDFk6kiJyvD2wHy5urK64PPaumyULO+5BmigRG0SnlaKiWAkJAIZhWJbdnc5ZVSaEUzrsMPB0bHuPI6IsIQky5Lc95ksjttCAoZea9zKY1CUkMjnoUfpaTKavVmqbP7IoUPVqXiJRjEEJIfJB4mw+AQObESDUWJqS89RxbYNOYx35fqJAdXdnnppTOcUWlUClRlEV2+zDGOiPgI9vtgdsnS0iCzbYh0PHm/Cpz/3z4IDh90IrG6C+Qr3HeR8LFGA8XHwQnQcIolduRUxzbLuMYu4sfnLVyrFOTQjGpSm6fZlh0d9hnd5nMpSY2xFxoow3O+RFaDsPgRvEwtziHlMHoifz5NkpiTIGzNgsYMT8iU8q8y+yeiCAiKQSGvsX3LdE5kg+46EhRjc3KOYJhZN7OJ0Ruk4wBvCO6Hu8H8J7gHUKMZQDvYepj/DalkMHl8f21Od4AhcjOMOIHd15IIQ+RMQtgSYD4jR4I76+F0YWXB6vfsPoY3U+J/LunFEdhMAv0wfYgUhY4bQYMe6ew/Yr27G940V1z/fYbCmHZb5uxhGLJ6+dPmE+Pmc/mHPbXKCEQaUBJ2O+uGIYDxijaPrf05YZvzaP7d/nq+RUvz9ZIKceFhfwgoucIVUSMBUJ1aYhCsOt6cIHORlwQXG4GnMtuF+scuqrpvMSNIujrsy2lWNK7zE6qEHQJpnXJpw+OOFoUnF+sczO4yMuXzWaHqWuev73k++fvaAf74bVV4n1DbqAfHD7m5m8h0yi2CcpKZ4eTyY4ZrQ0CwWbXMPRZhI8xced4jpCSZ28uxiifZ1JVaFmyazvavsdZh3XDWJQiGWzMn2elUEpkdp1KBBGAvCgSMWbBOUWE3zLsrynqWyidD4lGSIIPDN7h+0AIdoy2ZodBiomkVI6US0lkZD2Sma6VLrITNCX8KNC/b7YVRApl0IXJ72XI994wLhp88B8a8oJvGIYdSs0RUhND/kwk8nPUqCyQlEojJGNTtsOH7H6JYeTtZbMeIQV8yPGFfMFnXqXRBVIpZkeG9WZH241gbxu5d2tKtBGjstu+H7rsaFSGFATzkyNmZU1RTDi/ekPfDqyuv0CqQNt52oOnVBX3795GxUh7/ozp4RJdGBwCLTWyBGdzW16hS3rr2Awd0VtmR6eEZgMp0Pt8TU2XM/q+o+1bHt474dOHd5mVBZ21rNY7itIwm0woTBYX1quMUdCm4OR4ifeZm6iV4uj4iOOjBbtDT11nXmVu9BboskKqjsurax4/ekD0grKs8S4ymdQcLaeZczqWOPU2MPSO5UJzNJ+DNLy6fMf3r8+5XG9BGKazJUWVma6TouTR3RM+eniLs4s1F1cZui6jw2jBbFYzq6fgLSn4nLqwHcYoTMxFa+urSyKe+vZDZke36axFFxpjKm62W1bXK1zXs93cjIsaiSAXxPS2QwpJNSlZLhcsZiX71SUPPv2cerHg6ddP8j87WjJ0HV/+4s/p2h3z5R0mixP67Y7d7orD9sB2l5nKIY7cTbIL3KiMHBlDImMb9JjGyDUa+fNBQsnAMKxIsgJR5o1+dCShiR4Gb5Eags8LnSRyI/SknvD4o39Cu2948fRvKVSLrgRKT0hSE5Og2+9pXI8UBq0MUmZH+Hx2izt3H+KsY7+74eTWktn8FGctx6d3Gbod52evUSJx/85duv2WF09eolLPq6//Am00upxy/+5DClMTbSCKSFnOGLwnSsndRz/l7dMnXK+uuXfHoOuCEpOXailijMnPWKEIPuGDQCaP7xukCLhujxsOoBVmsmBYvUVpjUt5OeKDR8qCEGwup5E6N8v7wDD0hDDgk4XDOTdvl8w+/xm3To4ojGK7a7i5WdGPHCbIC6YQIkVRIJXkerXherVBSIUbhvFMYMZFaSB6T9d1FGXBdFqzmEyRKvPzYgx453AuM46VUuzWO2bTksm0pq6nhOBZb3c07cDFxTmJxHK5YFqWlKVBK8V6u+dP//oXnF9dcXq84KPHD1Eonr9+x7ura3xwPLh/m4f37nA0P+bzH3/C1dUNN6s1Xd9xcX3NgGO/b7IjX8LxfMbmZsX16pqzywtc2+P8QEiCoprw4MHH3L51m+5w4NnT7zk0B+7dvcfp6W1EUbHf7rhzUrLb71mvNrTtwM3FK+aLY+xhy/WFQmrD+bsnrC/fsFjeAWQOvoVA8pahO5CC+8DjFkoRhWO38/hVj5R5UdTuA+hEDAld5ZmlLCTORlwKFFIRfUaH7A4OLQIpCKTUOOtJEoyGIKCqwcVE04J1gVKMjDJTMJmWlJVBlyWD65EqF/v5mFtxLw8dNiS0ymigSGTnskOvUpJt0+eWa6BQmsM+xzu1lNSmQCTHTeO5RECITCtYNYFXO9hbwclRjTz0rJoBIRKFkXifcD6hS4VOkqChKBSmKJCqJAhFNSmxfUcImr5NTOopAolzIV+rKhCcy2f+EPEp5ILC5IilAOnRKpGIDHbIscoQcSlHhZUWRJWIKPquw7/9NvPkhGB/aPK5XhnWuw2//vWvePzx7yEXC5bLBffvP+bWndsMtme3byiLiuXRKdPZgpgCSisuzy+4urrOS7oYkGL8/YSkKEr6oaMfOurpnM12zc3VO4rJbe7ff8Q3336HMYbri9dsVm9QShO7hkf3P6Jc3kFoweXVBbNqwbNvf0399/8xk6KmrmqsswihabYHbt2+y3Z/YDads9nc0Bxarq/WFIUhhkBz2NO1bV5eup7oBoSA5WLBxdkZh+3qPxUqRpUviczwN6ag79u8TB//8i4ihOev//LPKKc14uu/4P9yuSMknzE9NqOKpIZaKuwAQQoiEpcy4/E9v1UbkUXaweXPWcyzd0QwrQx+yIgbF/P3KyFwAmLI5+HtwXM6k/Q+UZOQWnO1HbBOURSJpm9o+oS3DjtsiDJhZKJvLF1tuH16RGphdxg4X3uaNlJqyWDBR4nz2WGrTe41SDFSapVdrH1OVlmdqMq8TP3841PcEGl2OxZTQ/ASMRW8uerxnrGPYNSEhKCNkc611IWhd5FBOUpabs0nDLYj4MdkpKQbAn3wmELhveCmcazbd7TtgY8mhs26Y9Vb2ijoo4AUWE4Mlcln+0ObWJQCHx3y5golEkkrBi+42gzYYc/tW3epTc2ssyymE1IU+fkUsuFlWpVUpaD1Ns9tqiCEnl2f50AlJW1yqJkhDp5US/auofMw9QV3NZRFLhrNZZuRIvPVSMlCiqToie01llOGvqe9OeP1N39LPZtTzBb5TGQKqnqCCB7b7v4zFLn/9Ou3Fvg2jaXXligSPkFZZjaNiOSYj8oXqXORVRu53PeUVYVLmxyDFZm1AzlOmgGqiphy/FcXOg8yIcDo2iN6nAtElwdppRRSKaa1RpWG9a5lsZijjEEJwe7Q0bc9IQQGm98ApTQCSVlmuK5WuVSClB1NEphNSxCS9bphGHKcSUhBCpHptOCzj++RZMrsuy5v4rquGw/lBjCIJCiMoq5LPv74Iffv3WY+n+XYZhDsdt1v2gmTyEO3INvDnR+rpbOwIQTYIbe+xRTzls35PCS4MEaXxcgJy8wpTaDWKoN0R1eUHVtVnQ8URo9OpZj/PMaRq9IwrUussxRKYlTBMFhKU+WYacxlEMfzBfumpzYKgaaxjkPXc6Q0z96cs+8spjDs9/mh4CMUpeHpu0su9j3rrqPpWjoXSSnHlTJ1PdvsYwhoAYUQFCSmhWJhphzNZkyKInPKvGNwDjc2QDKWPmQxEQafm4i9d/kmVihkssyLAi2yaHj39BgXI03bobXg1skt3ry74uomq+gpRnRV5EiidxhT0Xb9KCSGvJ0ehjGCm0WlGLOrqSoU08kMax2MTWEpZUdPjtzlLbVznklVZg7d2FhVmIoURvaW1OybjrYb6HrPtz+8ZrM75IKa964uGDkq2fnz3oX23g4oPtjEsnvIez9G4DMPzoXA4NwobMQP7jUlZRbGRteeloL5dMLpcoEfOnzINfCRxOADLiWkLmEEEMeUcDZHs0MYI614wgg7R5X4kB8ypJhLb0Yn4/tIeVGY7KoZBQvnHN5aghvA2w9gXaRAqjgWAOTWIqMzvD34HGH03uO7SIyWEB0yvi/KcKMQmAjRZUexHF2eZNHkfQtudvlml56SYwNvylsjmXXukVWWP5fvG7CzgEhuC085OvqeBQN58IzhfcQ6jG7MLCymkF0iYoQEM75H3kdCSDz96t9xenofoqA2huRz3HO7veTxx3/EcnmXob9BSEnbHqgA53Kb+KsX3/PRj/6Asj5iOp2iDTx+cJdXVw2//O5VdkqozKdjbEnMTc15I10qSSEl+3ZgSwaImyLlZsaYIzG9yy1ySgr04HJMKtcB0diADQmJoR2GrHVGz+my5O7pgrY70PaZyYRIuACXu4FffPc3PDtb4V1eBCjxIXg+Lj8cUkoqozBGZyyCyNyWuqxzwYRz1KVhOpmw3rVcXG+ycy7BpK54c36JjTnKPzV6HDZ8FqH6IV8v3o3t1ZnnaJTO97Hks6oQFL5fE1yLLk4yvD4GpPQkn+h2l7SbNxipSGnOkAQ2CVIYECT0CHHXqMxhdQMu5sh2zO05uYVM5tIOycgIiIGQskPwvXNJao0WGbic48qBwWY3cl7RZdE5pdwe6v2BEPYIAkbMUMIglBybgQ0x5ahRXj6N12oMENMYp88DS0jvo/1ACigxumJI4xDkCW4grjXNIPBJUanE0dRQ6XzQ1VIhYmJS1xgt6frAbFZh+y3bYUNKuUhHK0VVVGwPq+wgUoZlbVhfXnD27S+4Vwm69fWHttTe5cOeTRCtI8qEEwFlBFoqhnZP3a+IuzP04idMJgVtH+nXHST46N4tFtOK3jpW6x1lVSKJzAqDT4Lzy2vWmzWnxyejpim4ur6irmv6oefxrQdM65okDe3NhrbrqaoKZz2HrmcYr+PzyxWfPHpM33mCF5RFycliRlUohmGgtRkuPfR5u77edTx9fcl3zy+43G3BGKbTOdpohBTMJiWfP7rD8XLBqzeXbA8tQ98jk6OUguOjOQWCvj1werzkaD6lrEoMieFw4OxqhRt6VLIkN1AZw5Cgtxl78OTpMwbb048NtlJGJnVBVZRst3u8TciUCxfKsqAoNM3uincvvmFxdEIQmW9LSDT7Bu9azl98RdNsWJ4+oqwmXL39nuvLZ0h1hNInpPT+vhtAJozIyJHwXnCOMd+XhCQmDymM12x+jmk5IGJDTA5JyIkK16LMInO15BizVxAJeBRKakIElwRRWJp2h9b5XuWjZ/AR7RKPHz4mCc8v/vYrYgj5mlaaSV3RHLZcX18Sg2ezucEU79A6MpvO8j3W5LPyF7/8S+4//oif/OSPuPBb1v2OwfYE13DWrUAW1JOayfwu06NbiNTj3YHLd8+QZcVceIa+IRR5mVdok52D0cG4YI9JIpMlDC0peTwR5wa00XgfcUOLKcs8Hiud0QCqADUhccjPamM+xKCVgKAN9AMXz74k6IqPfvy7CBLrzYG3Zxc4H/IydTzDdH0PCIrCsNs1XN5sAJFZaVJkpAUiF/3FgBBwOLQkKbCrDW3bMq1n2OA47Pe0TTsysRPt0FJXJe1hjZbQ9xbrc5O6HbJLmrF0iBiYT5eEkPi3f/YfWK03PHpwj6ow7HYHbrY7Xr0952g24e6du9w5PqWqSyZVzWJaczz/GPfxIxCCtu+5Xm/41Re/Znto8Tb/tzbrFc4PIzYiIqPDJcGjT3+H3SZHdPfba6Jz/N7P/pjT01s8++EbrL9hu9myM9DZSFVXbNfnNKs39Id1Br3bA+3gSTazWcOwo6rmRCSDa+i7Pd4OH7AfJ6cl0+KUfbvl8uZADOC8Q43upOAthcluJCkixUwRo2duBEaDSiBERChBc0jIJCiKiAwKbSQxQtdEDt5TlPnsZAqDVppqpjiaLzg9OmU5mVIUM0IsuVfWXN5sKApD6yM2BOpC59+vSJytu9zcXCpOFzMqlZeAl5sd230geEFRZhfXYQgcRKAQkamWzGqN9Wkc+i3zSuY0iBvF5pgdfFUtUTpS15GJNshkUFWO/IsYkcpgh0CMAi0qiC43hhtBVVX03YAPHq0NVWHQLnCwkegTZZlF7HVrca7PwlKOhTC4HIlEqFwmKRKIiIiCru3RushpBGNQMpc1puCQqeXm4ntOT/8p9x885N7du1mgazvqumY+nxNdoG12bLYbpvUkt26LfHYoC0NRGiSKtu+ZWMt6veK7777gs09+n2ff/5rri+fcuvuIWW0ojCPpOhcGJUlR1tyZLrj78Ees9zvevfyeZz884bNP/oBff/1zjo6W/MM//qfcvn+PL7/8O46PjonllGpes91vePX6Ba7v80ydIofdgd1uMzp7M+poGAasdRRlwXy+5P6De3y3usiCfKUpdEEzcl4ZZ57MHh/9fWkEpYwpu9cXlyig0uADeEDJNBYUKgiCJBNVpRlswAdHTAapDCcnJ5R1zfm7N2gjmNUF3iWaCFLlxFZIMi9SRH4+2pQRZIuZ4mab5/myUOO04dBC410ucxq8wAZHYTS1GeeDFLm9nHG92TCZGoSW7H3HXBbcOV2gZMP8Ycn5xYGne4dMAogUSuQkk5bUpcIOEUmgVHluXUwlD04m3D2aIpPnzaqlnhjuV4m2TTQhIWWiKrNRxbq8TFNKIUVkUmkkOeYqSSyXJbOZJvYFlkAhBVNAK0EtC2KAq24gycx2d7sDQ6o5tD0WweBh21uCSCgStVEsK40g5UIPD9NKcTSbcb0/0AyWelowmy8QQSJTwmiBLGZMqjm97UgEmqGn6TtKpQGfGcg+MDOGkAStzctqVcj8vNeSy23LTZe4datmtes5Ps730roqOWyuED5rMyJlh6RQCq00MQROl8cMm3Ouuy3OOw6Hlqmu8D5Q1xPqquLizQ9cvH32W6pz/38Q+DqhuOoih2TZWwfBobTgXp0LyUUIVCIDJDsf+Obtmr/3yTEheAqjiCGx7zMHLSaRLz6ZuXXaGFSKROcJ3hOGgb4fKHSBkHmjspxXyELRtQGfoOscWk8gQTcMrFZNjrwKibMOIQXGSMpCoY2mbSze5+GDGPMNzci81asr3p6vaDub7dnj3KgV3Lt9zGRasWs6vI80bZvbGF0eyJUUTCcFd27d4tHDe9y7d0pMcLPa8vL1U+7ePmW777m6yXGE3KKeM3zvBbfBBURIH8QpRGKw2X3oY6DvPT7mCEGIeZbzIY7RvoSWgVrLzGUbmUmB7PzTOgNdUwy5QKTQWTAbXYeTumQ+qWj7PHQppZEyEHxuojyaTbl364TBOza7hrIq2W62DD7RDpLjabb8Esn8jpjh5W9We26ubrg4HNi1Az7lG66LEcUYhRzjXzJBKeBI1xSio6Ll/uk9CrNAiAy07+yQWyVTIMTcFtsPHo+g7ewHblTvIxpBiUSLkNtcQ2b6ee9w1nLo+lFYdnSD5eWbdzg/iqtSjo09lroocmyE7JgQwHwybqAkVKYkxoSzWdw8OT0leD9eGxnUKoRGaZUBxz7gY6QamwkvLm+yW1UIZpOaGCLFGGG6vtmxWn3Fvmk5HLoPZR5Z1BsdYe8LaUYn2nvuxPgYy+Lj+0hpHJ885OvHuvBh25U/NyoLZSNrUI2bwtPjJYUWeNvjnRudtQkbHDaBUBXORZzv0Ij8PtssDJNyBNW7gabdsN/vuf3gU4wsckPZ6OSVUuGcBwFajEU+IctBYRhwQ4f3A8HbvB0JudBBU5CSzdFxWSMJdO0eLcoRI9DnrXV0RHLLqYw5ymldjxA5gtXbhrKcjo46PgihKUGSYhQQs0MvMwp/w68MMWbkQAzIlO8/7yOSWma+YxrZfill1uT7aGYaX8v3DMUYIyQ/DqLZlSoBEbOgI0dGZoyReWkQ3tJ0MTe5RSA6ZIQ3L37Bcw9CeIZ+IMZAiGC9oy4LROrZby+YzpfUVcFnH33E66stf/K332MjaJ1/t8JItACjNCHlApWYBIPL3EEbAmqsug8uECUYKShUblD3QTK4vKToXQboaqCaFEzHSG8fHLeXE6JXPLy7RBA4tD3OZfe21AX7LvL1i1fsmlx0I8aYRUppLLhwmW9WlpRGj+6U7Da0488anKfQMkeklGC13tL2njjeN6IP7Hc79utzquVttNIYnegGy6HJz5YYwthwK/LAOx6OowuIaLF2izIzRDAM23fYbsXRnYpS1ITUEV2P8hHfrgj9NfubSD2/j1ATpNC44ZqUBLPZvVysEhxeJqzvAEkK+aLMYgJjoQUf2GAIDwyUWhGCzddTzO8ZSY9RWYGS+UgZQy7MkjK76kLqCbaBMNA7i5oIKj3L9wgV0RLc+AwNMT8jqrJECvNhURHUe/xGxKgc4RVSU6h8BogkZpOCOyc1fZsfst61yBCY1yVGa/ohQ9OHwbKYzeiHgd3BIpLh6HhG1284tA2D60jJYFSiMCpD+31uoXfBY33H9duvmR4tMCLhlCS4yMDoXCa+N9IijUIBREXwjrQ+Z//sOx785O+hk6JpOhazmk8/vsetkyMO+4bWu1HASxitSNFwfbXi8vKaO/duI4RgUk/YbvdMJhOkFBwfH3G0WGIKTbttEVIhTEnfOxazKUor+r5Fag0hcLVdc/f2KYsR7F8XuTRi3w75GgyRg3WcPz3ju6dv+PrFW1bbLaYqmc0XhJRF+TvHcx7dOaYqC16+OmO9awjBoohUVcWkLHBtT1nXFEVJWU7YHzpCSDRNC1Jy0yXsfs/m1Ze4YcdnkxMefX6bXbdjf7XisNnh+hafPFqKXHATEn3XE4IDnTk1mogMA0M/sLt4xeXbb+jaDY9+9k94cPcRm80hF6e8eUO7u8b7nnb7js35jM3lD7S7S7RpmR/VKFXlA3VKBJHTHshITH5cXCXS+BpEAlKBEhJCZql6u8PaFiksRicIATfs0bpCCYMxBokEnXBEoMhnVhV5+s2fM5lMmM7q7PB2PUVZ4ZrI409/yt2799murqkmU3a7Hh88QuSF1G6/JvgWKQxKGz7++DP2u0uGvqOclOy7Nkfkywi65JMf/UN22xu8b5k6jyTk1vgUMfWcj370R1xtrrm/vM+svs35y+949eoZJ7fu8vDhfXy3pzKaop7jumZkbxbIcbkkR6FNCIERAjdiNowxGDkydp1Dq9z2mHSJIBG8BXJzekqWYHMhVd92dN0BqyKf3bqPQPLy1TsObTc6nPSYLsjRZ+8zS6+uKy6uVznCrCRaCvrBoseSohQCRkHXD1yfveLszXM+/vwPWBzd5lBapARr7ZhoyGVCPniaxrG5esPrp1+iZYmUf4RPETv0eBeYzGpOlgtOjo9BSP7iV1+w2zU8vHcPoTXPXr/l+uoaqQw/+fGn6Bj57JPHlGX5gWkZU8Yo2MERRGK93dM2A8entzk0b+ito2n2JDcQgsPUM0RK7K+uECLx7a/+ElOWaFNw69YdDtstu9UV6+srLi+e462nni9pe4dWBtvs2Vy/ZWi2qL5Bm5K+WePCyJyNAWc76rLCoOmDxfZtdoOPRYZNO6Bkvg5T9KQgUUkhogCVmBiDMYIhOIyUdF0gJiiiILjIfKLwQbAbPHFc8JUIiII4srBxirqW1FUBRIoqc+nKuuDQNJzLRON21HrLreVDjuScth8ok2Dfd8ynFRMBwnvW1mNk4s7RETgPIVDWC26aPRc3HR4JMbAUEq0SQsNxpZgAWiYKAxJNwPE790p2jaV3oFXNm81Aax0ivE9VBYRWFHUgdBHZgowGpfKyJcqE1jXOZ5d631t89PT9gHW5vEyb7Iib6HxWt0VBIbKAvxOabe+xLmAKRVVoSB6jJZO6xDkHSRJloCgKrMtpN4InEVC1ZqYKhFR0bcPV5SX/5b96xKNHj+m6bBDwPjsB+6Fn6Bqurq/prWMxmWdXnDJIlWPtVTGlqEour6/Y7bY8++Ebvv67P6Xfbzl784zD7ibzoT/9++xW53z64z+m7xrKouTOnY9Yb1c473jx7DtevfqB18++YXd1xXp7zVd/81f8g3/wz9jerCF5zs7fsJwdoQ4lr559nwXfsmYzLsb6rkMIRVHUnN5a0hwOVBPN4qigb1sSku1mCynxv/nf/+/49Rdf8sknn/P6zUv++i//nBDyuS+JcVk/8vDV2N5NSnifQMmcRkwQIoiYkUshRvCCLnm8Tx+W3P0Q8drR2BWq09TVe+RR4O5RyU0j2bZ9zvrEvNjXpSCScTNVkXEuUkaGlMskRTHBdRFX5BWuDYl5qamMpNSBxURwejzns8ePaZs93ntkyrzsuiwpzBRPSxKSN1cd+MCtmSECQ0wczwukyNgvXRtMlZjXkulEczovmeiMpdm3BwiCe8uaW0vDk1cbDilwvXHjsj23Ai+mFZ3L83BpNALBdFpQquxw37YtN4c99VwTvcWogmklGI+tdD5SF5CCQBWKwigGF1mUBp0kXR2Z1JrOBUJSiBRJMn+fP1imRmNxrNs1xhhuG82t5Tyjx1TkaFax3kc22zWud9S1YDYrWcxKvPNcrXagFMl6RHSczCpMl2hUJCXNopQYowhK8/amYTsk9m3P4rMH6KpGGUW3Xef5NQSKMqeBinqKtT1u6HFDw/bdE8qj2yyPTljf7CEFog+UZYXRBqLnzdNvuTl/99vKc7+9wPfd3nGuPfb6vUNMoJRgKSSfzg2PJpJbdcm9ecnZvudsdeDH944RMNozs0umrjL0/n00M1eGC5IPNF1HHHx2WymZq+xrxWI+JQrFYd9m553Jb4BWkqvVge32gACqsmTftmghMeS478OH92naA6ubA0LmuJOOEq0FVVly794tXry5ZPB5CA8hP6TrquT09Ih7d4+IQNd0dE2PVJoiJY6WS+7cPuXBw7scnyzRIrdsnp9f8erNFZttw/HRjMnE8t0Pr7E25EISm+vifcwKfjZeZPCxAKLMjTA+JrrBfShY8DHmGG/IEcEYA0qAkYlaZwHPhd9wmLTMbor39thCK0yKHB/NUCmwnM8Z+oHpfIIk0nZ99lbEXKAihWRaG8rC4FzPoRtIRLxzVGXBEB1SakxZsG8aZlVNIROHvueqG3i3bbna7jhYi3UBqUY22ghmkoAiD6daJI4KxceLJUO3YXvzLXvhOLr7u7lIIiUG7z+04Fmf+YI2jK8LmVOmx1Y4M6ozglEETR4lYbXZEd+cU00qaqMJAb794TmHJvMdkhBjtFkyrQuU1DRdvuZiDMymE04WC96dn1OVJUIqDocmR7qd5+zyKh9yUsJZn4fvBK2ViJTjWaU2qNEmHsjtXrm4YsFu33K93bDdHbJLKYylD6TfOMhE/jy9fwi9F4pyvPQ9XHbkkYX3BRDvm2Xft12OwOs0fpLVyCYiDz9SCqZ1yWI6QRCJwRNH55hzmQXXR4sFTCpIwXF99RotFdPF7eyuCwGkQik43Ky4vn7Jfr+irmpmx3dIQrDdXFBPZpTFYhTUcklD9Hb8X2DoGtzQZi7Jh1h2yMUAItJ1G0KMLJb3SASuLl5wtLyLSIoQHfiQHaOMLMoYR0dSS/AWa3v2+zX37n08OvFGoRNGTGEOVwspxnKN3zQOv3cnjaTCUfgb6W7pvbOJD+7P4B0KOXKYfP4eflPeId+XQ4yRWN7HgdN/1LYboB8C00nCW5hPpzTNgbIo6fuefmgRIkfzlRZoFQki0PU2A79lxLUbvvnirzHlnD/+g9/n+bsr/uyL5/RuZJICRimmRY6EMsZB3fjaSSGJSMpCfmCIlqZAaJiaHKPc7G/QZobUJkfUBVRKcjyvmZcFi8mE718+YbCBWam4f3rE0aRi2xzysyLlwXy/aXh3tcUF8aHp24Yc+7ZjkZDRmqo2GKUpTIELkb4fMmSdPHxZbzGmYrs/fGhjjCHHxIe2y+9pt8HePGdalzhZcdXl5usUIlKBkaMrUApCSHhvcc5hkCS3obl5wWRxDyWX+PYGuz+jL+YU84cQOlLo8O0W362xfYNIELSiKE+RQuHay/zzmjK/8ymBjoRuhymXCFFlMdj7UTDL0dnoIzKBjw1Dt6aaTEixx9qeGCxCGAozQyWTh9GUWwi1EAgRQQR8HLCpAfqxSTpi+xW6GhBIvEsoPUUKk1vhRcTozG1JURFToulahFaZbRsDRuYh3keJUYpRD2OwlpvtFpE0paw4XhbYoQPhcR721hH2nsVUM0uRQ9uAEFRa53KEwlDKGUJVNE2gLgzbtqN32TndD4HkPIOxTEvNUFcQYAi5vXwfIgaV0RZS5p9VZd6S91AXEtke2K2umNQVMXjunCz4yWe/z+lyQtf1tGPZy6Qu0UajlGR7s+Xs7JzZbMK0rrMAEiK7pkUJ6IeeBw8fIIXk/PqGFDU36y1FVVKUhhChrKqMRCgntN2ew6GlrGdcN2fMJwZxe0nTWTqbQdFnN3teX615+uId786vaOzA8ugYVdUokTidltw9XvL5Z4+5uVnx4vUZ20O+93k3MJ/U1IVGxnwfc0miTcHgIkJodvsO6zyqKKkKxdXlK149/RVVKXj55JdEs2S1b+l2B4SzYww9M4WDTwy9xaiEUKCNZlIo1ldPGboD0/kd1ucvGZobDrtrdDHl4cOPIPVszy+4fP4Vh2ZNYTS223Lx5huGfkfTNBRFoKhWmOKYlBRRZOe2EDkSH4PFKAlIYsrCVZQaG2y+r6aITAPWbiE4Yhob7WNCJMfQb9BGIVQxIhPGc+qIVsnP0oTt4Gd/+I95/vJb6tmCTz/+KZgJH3/2U24d32G/O7DvLIfDX+JDGJtkYRhs/r2cRyRN3+4YBoe1HVvfEYLIz3mpUEKz3lxw98FH3Lt3j6ff/oqTkyXd9oauPVAf3c6cvTBw9uo72v0akqLUBdF7kizR8gAivw6KkN3sSucG7hSJuiIZSSHzPSGFQPA2c9GkJiWZXU9xRFxIQwgNRE9RTTMWQQpc9FkAKgp8NDgfefP8ezb7lo9+/Dvo8Z4gpMiNxGNkyxjDZDphu9txOBxyszvpAzNLSUHwEZEcb9+8oTIlb5/9midf/5z19Vv+6b/871HqGGezaz+XWwWMlhgR8c7y7tl3XL1+whc//3fcunOPfWfpuo7FYsZyMWc+n7PZt5xdnNN3FmPKHLndrNgeGu6dnnByfMLpcs5gA9Z7Lm+2LJcLZBK8fHfB9tCwus7FGTebLc1+TYgQfZc5TySELplWFbNb92k3V7xdXVCP5TdSCerpjOurS3zfcNhcM50vR6yAZrk85vLsFc5tsO2efneJ8y6fS4LPmJOUlywxhex6KvdMVEJEOy58MyM6xBy52+xvqArD0WlFv/dM5ppSwq7xPL47pdaG12929MkSBoFPEENu2Z4uSzadI/qcGBFRIUM+m4ooxgi2IGOyUn6+CUG775FtRJiAqTUzWTOZazaHd9wMJaUqmKqCzX5P37WUdYUgizBHiyl9sPT9wN3TBWfrS24OB1SREL5jXhec1pHW+fGeHhlMjgv3LlCXkqQUwkaOb9WkKJiuBkqhebOHTR/o+/dFcwKZAsYkppVBOkFZCZCS5nAgxp7j5YI5FVrLnC6BXManMq7Jh8DgPELr7EhzDmk9M20YypoYekiCYQhYl4sgK12gACEMve2IKaBVSZAQXV4yOp8d+/VkynS6QFDQ7laQPsX5zB8uS41Sgrbr+dtf/Jx3b5/z2ee/y9A2zGZLppMZy+KIm+trJtM5TXvg7euXnB7f4odvv2BzecZXuzXD0OFd5Pj4Npv1Nc+efs1Pfucf0aRcYLA8vs0v/uZPIUTevn2FKabEwXF98ZqUBM9/+Iavvvg7pMr30OdPn3D79BbV7Ijt1RnPY+L2vYe0bc9kMqeoZ3S7XRbMXeDQdfRNw917d0kJCqPp2wMpep4+ecEPz57wqy9+NfJR/yNO9geMkSBXuIi8YFBydGwGkAJNvma9ECP3Wo7v44iNJuXm6lJSSkHSmh9/9im2a1mtLkjJcbSs+MnnD1nv9rx6c8W+HTLarBQYZZDCozUMFrQWzHSBEoLVepcRKQeR9Y5JweAG6kJxelzy0e1Tjo9POb79CU9fPqW/2fP4bo0xM8zkc/7Fv/hv+eVf/z95ff4rrE8czSq+v2ppsn8CnQJGC2LIiJV+cEwqw7ySFDl4xeBTvtZ8Lg7t+wPagA1w6DL64mBzApJSUmmNDYH11qJUNsWcLnMLO1qRpCEoOJrPKWwgpJCzjhIowBSawUd8SCTv2TlLbTRSG4QSvLvOxUhGwZ15xs+EYaCeFhxPsjimiqxxqJR1lRgl1lsGX6HMhGHw6FIipGGwnrZrUUkhFdSzCt8NKJNdsp6E0jmNagpJ2zl8oamrCUlnR/thsDk54Q4QMk/fFCXeekK0dIdIUUii8EhVYFTE+UTfOZrdBmyLSAvKakJd1wTb0exXNF3z28pzv73Ad9E7nsWOShsqPWbQY8Aj6PeJt33gcT1wxzhKo2mtZ39o+OzBbV5fbrKAInWObMk8SOd4IbjB0hwOuUE1RgYRKbVhWpaoUnG97XLcVubijarWmEJzdbNlsJlDVNeGm80hO6TKgkBAtJGvv3mehQNVoI2g6zq0VhhleHDvlOADh9ay3zc4n8WWwmiOFhNOTxYUhaGaTFAjO0cgKeuSEDJTZ79v2Kw2HB8fcXW95t3ZCh8Dk7rk9q1jvv/hJU3rcqwTGFwe3H0MWWgZeXh6dAod+gz37+xAZ7OolZtM8/uQ4wkCLRKlEtQ6i0vW59iCUZnnV8gsHsWUyzOqQmOMolCZ59QPA3VhkCnRDgMuQl0oCp2jzJbETBYgJI7EpDDsdG60sS7Q91mwtW1PZQyGyLZpeX2zYdcNXB76zMMiO1/kKGZld1lEhoTWkkIqbk0rTmqDTj3X27cMtsMGz6Hb472CJBl8yK8Dv2FM+TFWyphYFTFQKYVMOSojCCSfuRrRR7q2Qez3IAX3T485u7xhs2tGpKfAO0dZZsD4YjLlZrfDuTxEk7KY4r0ljYJZbl6LxJSB8nVVMQyWSKIwNda57CiRGjfkB78k31BbOxBDZvLocsKTF2/Y7Q+ZLzjyKfNmiDGOKLMbc4QAOz+WQoyunFHJ++AuSzF+eF3GHof3/5cc6RtFKxHygVCpEmM0ZaGYlAWL+Yy+y+wLb90H96HzeXvcHPa0Q8PJrc/wznFz/ZahP/DRx39IWS0gBbTUDN2e3fodl2+fs9leUZqKrllTlgvW2wuOjk6Y3J3iU8iN0tExDDtIAtcPDP2OYO0oNGUREBGIrscN0Pf7PGyFQIg915cvEckzm5xmZlLMglwIkSSywBy9IEbH1dUbvB/oh57F4oiqXmKkGEWR9zHl8fpK2V2X4iiajowzQY7aKnKEi/HQnHjv3BsPiuPPEEcBMHMwE4y8Qpky6yzHK/kNv1GOD2kpCePfk0DykWJaZmcM+e/7OMZ9U25O3TduHHLUhw2kEomu3SDLCSZ2nF1u+YuvX9G7NPILEwpJih37vaUsl4TkckGMMGhAxgjCjrImY4mPYGhaytmS6B2vnn3Bvfs/opjepigNy0mFShIZI7ePJ3TdwIvX3zAtS+aV4V3Yc/fkR/SDp21yNH3fWXZd5uOVWuB8vg90gyWGiFKC6WRKoTWJXK6zP3S4EHAjV46UD3PODqz7DmtzjFYLlXmIPjt5lXB0q9fE5gq7nqGnd7EpIpSh1hptslDoncfb/PoaAsr3iJDw3Q3d9g3Rtcxnj/D9hq5dE6+ecreaIpNA+oGmuySEfX6PXEu7O0dOE0kZomvwMeD7CikNicAwOETsiTY7ymPKrEgXVG4WjAEtcovt0O3wbk8Ikr7f4f2A8z0kRQqWSbFECgMxR32MMLjQYl1HCAN93+D9QBqLQXyw9ENAS0WKYmySm2dHk5QU758nMguvwQ+ZheQiqixQ5OIp5/NnRaLHJY3EeoixAxXo+hxVCQEGO1CXFUIqClMiBVRFSUoBU5Zs9jvaYYNOiaLIbDcQHM8WXK4cNjkqEbm/nPOj+8fcPV6gkqJvE/icw0tSIJUhdgFHLhvQQuQhjMzmM8sFR9OC5uaC6ekpn350j/m0pj209M4SYuRouWB1s+LoeMnNasezl2/zJldVDO2AUBKlNYUSGAHPvv0OoqWm5Fdf/x137j5meu8BXd9w7+g2vQtMS8NiNiOGwMXLr0mppFKCX/3Fv+GT+/9HQrzHrukYXODZi7c8Od/x+u051+stNgTmx6dMSsPUaH706A737hzRDJ4Xr99ycbmmGSzBDmiZF6LTaY30LguwQlHoghASfd9S6AoSHHYHhPZsLs64OnuCdwNOaq5ff4eu78PkBOnz4kUZCUlgR9eVFBFBQBMJ/YGDW3H1+gv2mwtMscA7S3NokErT7M7p9juitZxfPOPt8y+QMBa7gO13OJud1yk5XL8heonQk+zUR4+cuw6BI1eFFXifiCISRb6GSQGVAio2eNeRYuZ4EgdEErjeg9lhVJUXZTGjBXzwaAJa5Wvm9M4D2t2e65srgrd0PoIo0Erz+uVTYhx49+I10Q7cvXuHKCSr63NMUfHo8Y+4vn7Lvr1C+8TV1Zt83UeBj57jo7sE7ymMoNkd+MVf/Fv+4T/+xwQ15fM/+Gf023fsrt4yv/WIT37vn+P6AVFOmE2nvH7xhHo2Y3nrmOniGKN15nVKMTJsW1SRf84QHFKVSFNl5uJYAWq0RsmA0prsJRfjuikilP5Q5CVVFvx9cIzIT5CaFAeCiwR7YPP2CbfuPiSFgJD6wzIveMd+s6IoCxYnt2nbjt1mg0gRJVTmVVlLURSE4Hj23d8gUDx/8kuiC2y2N7i+ZfX2CV/97Z/yh//kf0YMAing0BzQWpJSYH3xkvXla9r9DTEKLt7+wFe//CsefvJTrLNMpzN+9PFHDMHz3fMnmYXad7SHNmMtUuTx3dvcv3+fXdtydnaGNBXv3r7CCU1xLumbgSgF1ieCHbK7Q9WsLl5RTo5BCMpyynI6JZ0KbLthMqm5fH5N6Lao+QS8o1u9Q6aAHSyxP2DKirbZ0zc7YrBcx0S/fovvD1jbY/sWokAq8DE72WNMOeGT8qJysB1SJvqh532QI41LYKKkszkFEZDoamzcVJ5iKrnat4gQUVPBTCnaPi/NpcgHSx8EbZ/QOhFFNiv0Q0KOjnNlMkYlxMBu12OMQraKbgiUNSwrjQ6JQnlW2w3OaWa6YLqcoNHEdWbzIiI3Q0szBOpkECJw5/iEQ3/gst3S+45aa5SIkDI6KqXE4GIuUbGBWVkgQkAqixvkmFQYAMPJXNIFxdnek6IgeBBKMTiHsRqtJL21CO8wRWZ+ulHoJkJtKpQWqJQXb2WhEYBGEJXObMmYjRuxKPIz3PYIESmKDIXxPiFlvu7xEZ0EUimEqfA+R4htjFgtSFJkbnNMDF3DenNBXZZ89+QrPv/pHyClZLCeaV1nljpw9voZX//qTxnaPT/66R/grGU5nxNRDH2H8z2H/Y5vvvhLlJRcvn2O6z0htMTkiD5yfvaaffM/cH31gr/+83+Li46ju7eoqxOeP/mKZrthGHrqyW0IebGdkOw2N/zZv/sfuXPvPovFCdfnbzh7/Yz58UNWF+/Yb3cMXc+tBw/phpb54pRmt2ZjWx6oIpdQDgdurjTTWc3V5QWr1SVdd+Cb775kdXMzDjm/wbZI8lwmJLw/tIskR552QomcSpDkJI5U76O82emXOd4Zp5ViotKK47okGMHltuGH5885Wsw4mdfMFrdo2tyQqo3i/knN6VFF27fEaCHCpIaTqaHrPbte0NoR6aNkRhbFgCk0SsNESY6XBfePapZlwPUrfvnra2Sx5L/7X/6f+Ks//79yMin4l//qf81gW4SBf/4PPuXbr9/w65c7Vm1AC8FiopjUMrtXlWBSwERrSpVd7a0N1KWm2fdEBKYouN623D2qmBjJ5a6hNPn3X0w0RgqCEAw+0g0eoQRVrakmhtZ5dCEQBBbTgkN7YOcdUyXolAYErXXURjM3imOR2PeB7S4SlWRIoGPgqJRoJXBRs+stx7OC01qgVAEyIovM5lcy0Q4eJ0AlS1FOQAfe3lxSCMViNuPk6DZNk5vpfRTYkBNgTdMjYqLU0NrETWMxCmaFpguCHsn1vqf3kt4lqrLk7GrNUkp+ejpB4sHn2bAoCnQEH4uMXPMeRC4Sm88Vw/4Kf1jx6qu/5qf/4r/DmBJtDLv1DSAwuvjPUOT+06/fWuCzKTGMH57eRwyRE5Mz11EkrIu884FNZbitBVUBN63lX/+Dz4jpB168vcE6R68k5dRQasmkKthsD+w2u9w46i2l0pRFmSGQ1oHNDpLCCKpSc3q8YBgc19cHrA9IlZjPp6zXBzrrR+ZKpC4KjMoV8N4HrA0M/YDRmc80mZQslnPOL25QQlDonJ2uCk1Vao6OJ8xnE0xZZah8kW2Y6/WB12fZodcPPVpK7t+7w+u3F1zfbPAx8wnv3D7lyfM3bPcD1o0wfxit/ONOQUSMzocnKRKttbR9FoK6wRIRHxrh+I+cb5USGBGQjDHVsaBDi7wZGBqLllCovGmaVIZKa3yK7A4d06pkNpviB89yPkVryfUuC3IBciNUSJRlxWbfkVLJcjYj+A2bbUPnBlRSlEmOMThL4x3XXc/b9Q4bobMuc9Bk+gC6TiHHU7RQaBm4M6mZCJgVBURP292w37yj7bZI9ZpieszgJkR0ZhDG0RkwipzZ1RZzLFAKCAkVs8tKEBDBoVKft9VSsF1fUh1nBpEQks12nw9EKQvKMeTDQF2PTh9rxzKQlMWvsmDXtISUaNvuAz8mi2mZEzk9WqCUwDu4ulmjUrbxKQUxetroOT9/TWkqCj0nSk9z6DIXYhShUnzvBMuHMKWyQyTFiPVZtMkbqpG9JbKoJ/9j7t7IfoIcv0MIpNAj/D6DVyGxujkjAY8ffc68rplPq/xzNgesdXgfiH6MVKdAJMeku27Nbr9hsbhP1xxYXZ2x2bxjMT/izr3fQau8dTnsrtiszhj6LSk49usLbLfNQ4H3DM0Ns2qGMAaja/q+4fryJcvFHYLz2L7J9vrgszApEjFZ2vaKtlmRfMiRdvcKIQVdv+PmCoq7BUbXo+MusyiyE04SU8Dbnr7f03UNSitubt5ytIwsZgvabkVR1NTlMkcwY/5eRI485uOYQMTfCG758PC+sEAA6kNkJfKbWG9I78clECkiZHafkjwh2DGCPTacyuziECkRJblBcox0N90+xy+RKFVQVQUkcgGEdxitmdRlft3GxgPr3sdZA94dePP6GVv9gD5mlkqhFSHkmFqzesd2fc4nP/7nWLslRYHUU4YY0MkgZKCzDYfNJXfvfMR+f8H52TPWs7ss5zWb828phePx50sqrallyk4hGSmk5LsfvuLt079AJkmzOicpwaPbx1xuevZdYHdo8CEh3g8pztIN/oMLpppMESRETDkSM7JGJYoYc9FGFAKVEglJ8o5gM1xcFQsSjhQcjjGOHDuGYY3EQnuFKQuSKDBGI0TCDl12cIYAMVCIRCkSvdvgDhuia0i2ZfCeUkj8cMC5Drhm2J+h9ILodnTNJXY4kNmSAyJFbH+N1gXetTjvGPSK0lS4aOmHXHAg5YCqAiIIlDQoSrQUeNditM5DYZe5f95rhv6ACw5rs9BSqBwhFaLCDTukmCDMBGcP9P0+cyh9FrCdyxFZHzwx+A9OI60js3qGQKKlptSZpZR5lIlpVWCdhyQpC5N5plIikTnWP3L5lMyNsD7AYD2FMeT0f0CmLCALYcYYjf+wmCDlOLgP+XnnbEQS888wWJbTiuuDBaXYDJY3FyuKsmQYoNQTolRIP8boYm45FxqQCh09NmQgfPCROuUm3Wc//1P+q//t/4FFXdC0LYeuz47r5ZzDYc/lesNkMef6+gbvLI8fP6QsJwTXY71nsJZmu+bFd7/i+y9+zve/rOlaR1EINmfvuPvp73F+8YqT//q/Z3m6xLuBlAKH1Suun/2cpKY0l9/jVt/z9LtfMVuesO0d19d7Xr96zbYNbFYXeF0yXRxRVxM+vjPjZ589IiV4/vqM89WWwUWszQKWkQK6ayZHd7A2jEy2POwHb0muxXpDlxyVkRQqMfQH9tfPuHz7A5NCoBTsN+eUZ9+xePB7H54t3mbWZggJIyOFhtDv8e1lHiBdx2F9gR0GvM2RdO8dQ9dRri65evuSqlDsNxdIkYX0XFzlUZXBh7wICt7TtGsmVUGhNAqVC2yEJDEgokXKkoghSUWIA6SRn5rvxKTYE1PEuQg6M2AroykLjY2B4LbZkaTq0RrvAYe3PUoK2t2Bs7cvefv2e4ypqSvFix/+mnsPPyelmtddz1/99Z9xdfku41lCjox2bYsQuRxFJjOe8UR2BPtAURZU9ZzddkXT9gi54vR4xvdPvuSf/sv/FdH3/PKbf8/xyRH90PLqqz/LoqpzNMJRlhPK0oAf8ENLd1gxn1aokVcoyMIcI/eWaIkxt8wLIPhR6BOaNDaCI2UGLIwgckGOHA4uIpJF6gIhJEU1ZegHlCmQyqBlJPqO3eqKk7sf4ch8qmhTLobr97RdoiwKdtsdJI8UiqKYoY36wDreX53z5V/9jzn14jN6ZnNznXEdRN69+YEfH/4RxkwQIlIayW59Qe8GLt695PLVNzSHNrfJBsd+/Y744GOW8xm3To5YHC351ddfc3H2mkoodkNPcPm5XRcFfhg4e/ea1faQxbcAKQWUUfS7Cy4vrlgcn/I7v/ePSHXF+dUb5tM5h80lIngefP7HhL4ndjdsDw0yDTSbS7YXL4i+pd+viHFFjLlBWeqCYX+NPLpDf9jQ7tf0fU81u0H6Bu8GQghEb5EiRy3xYVwMkl32khyRH9FI3oexOC2fG1NKueFVZUdfktnJUhgwpaD3juAMSipC8vgeQshsiKpWVBM4uIF6kagRhKBot4k0jLNHTBQKfIoZ26AUzmb0CkniQuToqGI5meK9IAbJ3Vs/4uPPfgclCi6efQ2lIbSR9YhEmBUFpREUSlMUklc3e7xzBCfYuYCRCWkiVil6GzAFFJVAhkASnrpU7K3koou5cRbFro28bR2v15GbPrvTqyoxX+T4caFl/l2kJBVhdLA6ZrOM6BEyUdU1SQSEFkwmReaiaomROaURQy62sD4vj5vB09pICJJSV/gYSdJRaEmpy8wS1hJTlAzOo9IU66DzAz5oXPCoJAkjUsY7x2a3yTNmSjRti9aSQ9NQ+JJ92/D0yZfstmsuzt9w585HvD08YzqbcufOI5pmw25bcXF1wfW75xhdwrh0dvb9/UAy9Jm56frIl7/6dwihmbyYs79as744J3lPTIGDPfvgcpYSiPD6h2+4ePOcYjqnWa9IMbC9XjG0Ftevedu3+BgY+p7S1DS7DVeXZxzfesR+u2K9uqKaLlitb3j74nuC7bHOs73avN8s8B5QJN6fyREjJkR84EhnrBWUWhFjwMbMSZfifZpuLGhSmTlntKLtMr+6HdyH+6HzjtV2x1YkzHpPXZZMJoZFXbFbt9w5WXC0nLI77AlRsR8SD+/MOJ1V7LqW86sdPiTaPiGFHvmRA4TA6dGUUsO2TfTDlscff8oREidKPv/ZPwfZEzZvUQH+5P/9f+bduxeUoiA4yx//9JT5dMebm4HjOrGss+hUTxRCBo5mJXUBl2P0djaRIAJH8wnCB44+nUFIDEPg0zsGomBeSoYo+PJVi00DWmeUjxzThJtNXjxrLShrBSjKYkptNCkEVr1laRSlUCDBFBKdRP5MKcfgIHk/Ouk0R5Xm8hAoVEISIBkKBQiNdbnYxAePd4npvGAyomIaN3Cz3zIvKk5HvEs1MxzbCdJI+iEL+m2XHf4+RHzIHQXHleTWrOSmsZmBSW67T0ngvGC5qBk09FJQRnILvdRUswXJdbhoAIcuKqrZEu9yKVmMFqME+ANaaY6WS7RSbIjMjm5xV8/+cyS5/+Trtxb4UgigUoZcGgkp8OO65kGlMUpQa4WPiZs+sgsOETRXm4ZDM/BHn3/E4dCz73LpgI+Ju/MZN9s9Vzd7YvCUMqGL3PQXxkE1AloIJoXm7q05J0cLzi5WrLYNIeZWo+l0wmq1px9ydFiIxKTQPHpwjBscRycLdFHy5MkrxNi0G6Lj7t0TUgpUdUldGaw1xJiLMubzGafHR0zqiqEf6FLg6nLNdtexPwz0Nru4lBQ8fHSX3b7h6npHCImiUNw+PeH56zP2e0uEccNJdpWMfa+FViSR3XaS9AES3/swigrZEZQLScQI508Ylai0wLpI73MpgdYK6zLLROVMNIns3JNSUpoMdu7HUgVtDD5EBuvRRlPFAucsPkYmSrKcTSiUASHY7luEEGx3FwzW048Dnx63trum5+Asu86yt5bDYHP8LYYsisS8RxcI5MhUmUrBg+MFU6No+oFhbDe13Q373Q0pOYbmiqs3XzG/9Qe4WGbHKPn10u8P6SP0X5MoBASZEO9h9L5HJItIAynmm/PQ7xEiMp1MuLq6gpAFFyEkIfrsXokVQ29xMdA7hxgPxbPZhKIoWa83dMOAHllrzuUD6POn3/FcGP747/8D6npC27rcGpsi0Xu8s1yev6QqK15+/zcYWfLRZ38PXZeZd/I+hitEdtmJkU85Rhy9f7+djR9s53JsR3sf38wa8LipEvI3kV2RECK/C+/dOQKJSHk4TAR+8uOfsZxPsovH5aKZrs/RAcnY8ipyTPLq4iUvXnyBLiasq3e0zQ3dYUXwPe9ef8/R0UOK2WluJ9qcs99c0TUNIQT6Zk8hIm3f0FsLqefiza/xKTGf36bvtqxu3qKio+t7ynKCEmWOIYvMxwzOM3Rbhn5D1+UDsdIK5/K9RSRo2x3TOjLYnrpekFJgGA5U1YIYHJvNGdZ2hODw3hJ8jpeJeKBttxTlFLNUKFnmD+P4uqqRwTfq7cSYFxD5YZHjSzHl4ShGOSIR03gAieP7GjO8nXxtJXKsIHmXW5rjCCrPd15GZGd+39LYwE12tE4mE1LIr4kgP3TSyF60fY8xOse4ySU0UniqYoLt9nSHG45EXp5oWVIKyf7QoEWg256zOvuWu7c/4+rqCXU1Z378iChB6DkpOvabM7bnT5gbwds3v6Y9XDNMzmnrCa675uKt4+T0MeLoDtV0Quc7+sZRa/jiiz9he/WWwiiebK9YHt/jq19/zezkI5pmS98fKMojXG9p+oaQFFJo5nV2j0QkbdfhvMO57EKNMVILR7t9ialvg6ozf9FDDB6/e0dKA+Xxj/JnLWbQuU4g3Z5CBpIAnXpkd82kmJJij1MVMY5RThkQ+HyfSQHaG0K7IhGyizMOhH6F6w+EENCyZ3PzktOTj+j2FwzdNkfeYz5YlNoQfE+IlsF2JBJ9v0XhGLwduY2aGCyN64hRMpueYrSmkJI+9ihR4lyH9y0hOFzfYoeekMIYa084Z+k5YJRjGPJ90AiB933+HKTsFgwp3zu8C4QQKIzCeZ/5ldJBshmUbhSTynyIvfvokSJm7pFUkHJrZCSXb3yIE8dAGA/Rk0pSmISSuTSn0EW+3wbJrdPbeJeLRPbOYYNjWh8To6cqDIdDByFX4UxLQR89zg5IqWg7z8FZGpdYvbjiaDrn8dEEKdToKFDZgSlyjC+JiANivvWiFYShQ6SC5bSkMlnc6waH845pXVKVJX/+Z3+KSzCbLnn3+gVaKZbzE5SGq+s9VT1hfX3Jk1//LS+/+ztk6Ok2HabUxENgZ7/h6s03CBHZ/u5P+fjTf0E3SK5Dz9n3v+Bw8xqBpktQFY5f/vt/w2Hf8/hn/5Afnjzl6mbD8fIIdu+oj+9z73TJTz95yJ3jCZt9y5NXZ9ysGhL5dyUESq0RceDtDz+nOXnIvZ/8I2IS9D5Sao23HedP/orTh59TLu4SXGK3ucC2LZcvv0Emh7PkhYSzbM6eoKsjquV9QneDwlNM7xJxpKEj+D395iXt7s0o1pCdRw4KIxkGS+csJNhvL/nhyz/j/oNPCHbPoelIKi8R5chBLYuKZC3eRfq2wegdVawwpqIQ4HHE0KOxGAReVPm+Ow6rMWUkiMQjkkOLfD7qhoAxenRuBESStG1LUZcYoUEqRHBI5Tk0O5Qx/Oj3/5D9/pLZ/BbeG7TwXF5dsVpvcS67nNrD8KFV3nuL0ZK+PdD7NUJkrq5SAiHVyDkK+Aj1ZM4wtOy3e+yw4+mT77j76GParuP69TcE19E0gmJ2zPL2Y7arGwo5sNk13H70OfvtW7aHA58+/hlVVeD2l5RlOba2S5AZBK6kQOgSby1CKwgRbztidLkZXIt85qqnqGJK6PeEYJE6O13et8dLmcsKgs84lBASutBI73D9HuEa0tAStfzgLItuILQ7/NCycj3eexSBvuuQtx+QZscjq9dzffaU4dDQ9w1FabBWokREqIzGKbWkWV2giylCSVLwvPr2L9isr7OjTGve4zO8tfzw3Vfce/g7HMnEf/iTXzC0DU+e/Jqvf/7vuX37Hqcf/RQhIjZ6dvuW5HO5Wzc4tFQ4H+m7A9NCsr78nqG1rG3H5B/9K2x/wLZr+iTodxcId6BZnRJsZHX9HENO4NysLmlWlwTb0u3CiFeJuKEnAb5v8LZF4enbHc5FZHLUlSKGXLgWYhzRHfnPPqTRpafHVEMuDHQu4F3IcXXy+6WUoJ4mJhOD1gGhNV3j6H1CTCRVqtjfWA77MKZKckLEVAIxS2OCJrO1jEo4G5nOJKFUyCAY2oiKiSQSUguUUDgbQARm0wozEXS9Z1bBcnlKihOElvzdt3+FpONH935MsRW0u566NMzmNdJ7lDYMzrE9HEghZje+lCAidalxznHdOFob2dvEbgjcmkq0DzgpWHcja1BoGhfZ2IhNIEXAqIjQidlS51l1PDuUhcIFSVEIBm8RaWyKj1Cait1+h0uO28ePSFFgjAGR8CnfBwL59fdjkZyRgkJIdFHR9AOHzqFEpF5MOJkvM9db5TmtMiWzakJnHYXTpORA5JK8ZrAMzqGNoqg0q7OXPPnuK3ZNy/37H9F2e5Qq2e8b9tsrjCmwfc/Z2xe8e/cEYxSLf3LM5cVbQHB1mTmgsnpfDKhywVtWEkesVD6XECHhaPd7nnz9N9mhy2+EtOzdy8tlEtiuw/YDYb3KrGohCTGXYgoEzlne/PAdV2/f0O5bzt48oz1sOWzX7NaXXF28ZTq7xebmjLOXTyiKAmVqfpNgyu258H7wyefn8eg8RrwzyslHiN7lNFYSeW7gffO6wvqY0ScCTPBIka+XIQRoI7bPkeuULEZDqSW97Ric43A4UBeCaqrYHlpc0Pyzf/G/4A/+/n+DlgkZB54+/5rN+pwn3/yKJy+foxR89GDKtL7D4XAgoXKpoDmiw3K+EXzy6DOK42NStPzhH/5rnn37J3z55V8i45bH9085O9uTVKSUjke3M1bFjxnjo5lGJEFdAiFwaHP8WJvEzaahNJrp1GMHz8QUVCYza6el4uFSUhewbiKPjjW6KplViUWp2TcWVWrWmwGpEkJKDi5iWwtR4oxExci8ytivGAV9kgQbaPsBlQwiJRZGM5+V7H1gkJJFcohCUugJk0rSWo8PiTvzY27fvcvgWjY3Z7Qu0ax6hmmkLl0uT/OBG9uiipbjxT3As20Hdk2XeZdKcWu5zExpl8/dD08maCK7/Y4Qc3HMUivmd4443/W0Q2DXOmQ4cCPgVqlwBEqTm9tFdNSzOU3T4YYeyIkp5xxmuqCanTCdLpDBQhhou0C3W7O7vhmFwd/u67cX+FJERU+pDYVSqBA4hMBF6zGmYIHntJIc68S1y/ygosiNW2Yy4d6dY/y7G1x0aBGZTku+ffoS5yzLWvHo8X3W1xt6m1lyQiSMFCwmJQ/vnSCk4ofn79iPwfJ6UlEazXqzx44xSq3yzUVpxfnFDbNJzXQ65epqg9L5hm2dY3E0/XCo2u9bmrYHoCwUs3nF3TtHCCF48/aSlODQdOwPHb11pJFRZqTg4f07rFZbLq5WgGA+LVnMj3nx6py2D0QEg3PElD6UNSgJpVG5yRBJb12OIoRIO1gGmx+mYQTzkzFMGAGVEUgE3TDQ29wSl/U8hfMjo4wRIBojR7MplZH4GJHkxpowRgZFyirCdt+iZGIyqRis53hW56r2YD8IA7vtAQ2USmLxWBdpnCcpuD60NN7T9Dbbx71Hixx5LcatiBA5wlUKOKoLjgrD8bzicrNn3/WkMKBSoDtsEQr61hH3ewrrkcUSM/sYiUSmiE2ZUZFdgYlSgU4QvUXgkSkgCUSyuBdiD8lBUlhn0UYSQmDXdDmW6/Nm7bBbsdtvqOsZN6trPAGlC0pVIpSkLkt22x3d0LO6ekNpJpSTCZLc4vvq2bdIAY8//YSZT/Q2EIOnG1quLt4QveWHb/+a46Nj1ufPGZxjvjzi7sMfI8g8PDE6rSALolrlDXZM4TdOTvLm9T2/7X3kmZQPzuJ9HJfMdsv9uiMXTnhIHu8CWtcMfcduc40pJK4/sIkOFxxaFrgQ6PoWJXLjUNfvqeolwQ+8evkVu8075ovbnL35NZfnL+n7Fh8szf6adn9JXdY427FeXRHjgFQyx4iip9s3WByD7dlvAsJ7XLScvX2OkgHnelJw7A5b7t75iOXiESKbUXM9Sxzo2i0pvhfnQhbKksgPDuc4HG5IcWB3uOZUPCalwGb7jmV8AClvxaSMFKWk63LF/aFZE9whC6rRMqunFDo3wyVy/PV9LDeNDc6CLPBGIcdikYDzAa2zazAGC8IAuQlXylHAJSFFIpHbsUgRIRlxApIPwh7w/g9SCFzM11ZSIru6VMFsMv1wSPIu0g+56RuZbeJVmRsOBVn8sy43du03V/xIgtSKMHJ5YvT42LC9ekm3ecv67Gu218/w02OibdH1FHP0KRHH7uYt/eYN1zKwX71CCsdwGEh9jR8OHA4H3j79OfOTe/hbD7jZvWZ1s+Xm3mNevvgVbnAYJYnxwOrmFV9+/df87u8XvHvzgtXuit/9vX9Oc8iNg/P5fRAFUQzsD31ulg0WTyS6XKxgRMK2V+zOv2F61FAsPho5mBHpWuLhkmHYsZgeUxUlPrUfeE06tKhCUIgKLQW4BkXmSMYomZUzRPSUIi82ondYP+C7LUZm0bUuS6wdcH2T4fMBHAHSltZc07bb0RXsMUqNDNJIUom+70Z2TC6AKbTCO5v5U2RGY4weHxzWKia6zuKaPxB1pLd7uqFDCOiGFqUEyUNVVhlnEAKCbryfOAZ7wEiBD9kx7nwcC0dkbg52mdMXfEKI33BfveuI0qF1RMoKHwOdbTFG40L+HUIYW6oFgKHQJbkd+r1rRNB2coSLa8oCCh3pySy8qpBMJlO26w1K5BbCQhi0lhlybT3Led56bnYH+nFwzcJ3dtD74DiZzHi4nHE6WzLXJXsXSUpAFCMOZGyuVokh5dInLRMLU1BXmp0F27esr6+ppjVNNzCrc6z15avXfPk3/wEpCxaTBefPviTEyGef/y63bh3Rdj3L5Zzt5Tu2Z6+otUFVJ/g+UNUKMZGE0BEPl/iu5+f/9v/G8f373L73kNXlC/arZwQ3EHyDlBJjarrVW57+6t/SNjuub/bM7vwIE7bE3VNK7fjRJ/8NlYHvnp3x9mrFYO2IDPBEmVMC01Jxff6SYfcO215T1jMmJx+hVUFZFXS7Ldu3X1BqSEhUgvXZU/q2Zbe9yA4urdBC4oQk+h2b62fcqxc0Nz+Q7IaTB3+EEgbfvKbbPieGwNDb0dHsyYuOhHORGHIkdLAWrSz7m+cUytPsrilLibX5uTgpDZPC0PeRiSlpfU8Qghh7RBwwSaOEI0WPxqKwqJRd6z6VeCkQURCDz4UaYiCKkJuoU0JUOjcpJkEuhY5oJSG2xFCQqHM5WHCk6NjeXLFaWz778c+YTE949vw7vD9wenLCzWqN1iXGCLa7Q478hYhEoYVCpMSsquj7gZQahFAs5kuOj444P38DCVbXb+m7BpEkTdOitKZcX3D58msu336LruZZpDEVl2fv0LIgJcXy5Ba3H37G9dVrQoKTew85vv0Rq5e/RviOYbuh0iq34cacdHBBZXZzAufzPSRFgY8WkkYUEuE8pAOEAYQcnX+ZDxxjghQJ0eP8QPADfd/ixmIwoyWrd0+pJzOOH/8k4wdidp/FoQF7YHC50CWFQLB7WhEp09iEujnn2y//ApHvUNjBoUzmCRJyPLXbXvKLP/k33Lr3EbfvPqbvO5r1GfubSzoLIeUEhIs9SlREOtZXZ2yuXvDih18inOXl86dszn/A9xtMWSNNTdIF3T6bEIa+RegCSy7iie2atg00uxsGm6ik4vzd96TBcrh6QagP+G5HxLI9/56+S1xfPudkOc+i0Ooc27ejC8xl3AvAiIAQQLtffSgp9DGig8PZkFljI/pDqtwanfMbeT7JC97MUg1BIIVE5I1LPi9CTh+IjEuoFgodE3opsReC3VVAkttavYp4n2cyKSKVloQIDJLkBUFFohGImEUhFzyDG0vrVBbMo0/YlJvdp1PN0bHGlIFDb1k1W7ZDh1IldatZ7/bcuzVjdzinKAOLI0O77dk3A6eTLHS9Z9386PE92taijOL7N6/Z7nukgGmhcnmCEqAlqlDYcQF1WoMvNevBc9V4YpIcV0Ve4ERAG4bOIZAEr7K7bow+DzZkLiaSSRkoi8TucM2+8RydHuVyLmNoDh1S5eevd54YE0YJhJIEkc+TlTEEoOk76sJglEQmSaVLZqYgSTkWzJixcFJTVyXEhI+OFA90wiJjLvpqtitevfiGvndYn/hn/9X/nHfnLzGy5OLda1J0DG3DWfsDm5szJlXJqx++5KOHP+b68h0vfviaGDNUOeN/JFqXxBDxwSJlThPFMMa7GY0GSSAjJJFnTyVze3IW+2Q+N4vs+E1k7F2S700KmTSd6YwS1zW4vuP7L/8K7xwiBX749S8Y2j3Wthn1c3OJ6zuInlL+p/HGRDZJ/KYob0QXxTQaVxMxZUdfSL9B7Agh831f5HN5eB/1HQM2MmVzQ2EMZSnxKTH4/FmaGM1sUhB8wjvHvvcYVfLDixuKcsp0UvD2/Jz253/Gnbu3+fijTxHllNO7j/nxZ3+PR9/8FX/z8z9jvd7hXMOkNFT1lGfvBqLp+cmnv0t0LV5NuHP6O0TvePLtV5y9e86PfvpfUOmek6Xh7PYz/sNf/oqvb/b0LuASLKuCwXmMyqYiHwQHa5kUmspAVUqkLAiu5+zmQF0ZmvWe+0czVFTcPtW03Q5TlpxqybxWHPrMW50XkhNdsFxWtDNBbQQozVeXLe86C1JyaFtKQJYF3uUegvciHN4AKjeaJ0tU+dq56Xq2NtH5RCc8zQBJCCamYLmYcHPzim3TUKr8LJWFRsj8/sSY0EqhilxUU5SapmnpXcQmiTAaJaG3fS6skQmVEkPfcdUNGJONW0JAlyJnl3v2Q+DO8YSphuViymS5RKZI3+wpy4jR4L0a3dN+LIL0zOYT2u05++t3JCkJu0ve/t3/i3b9+0xP73P27Bv2775HLx/8T1Tj/r+/fmuBL6bIwQYaIqV23K4M/RCZFIKrVct+UrKoFIVIPJhqzgZ4snPcfrPiX//uBKUkk9mE7aGhsZ5ffPWczb5jUuUWsfPza+yo0gop8kG/LDBlxevzdQYy+lyoYLSm6wf2h5b38rzWEmN05uI1Pct5xePH97m+WXGz2uJcbpGdHy84PZqRkuTJ09esVvt8sNeaSW24dXJM1w1cNT2HQ0eMka63uBDzViYlysJwfLTk3dklN5sDSkpuny7QWvLu/JJD6/HjUBVG948SZI5TCDku4wM+BZphgJQ3njki+5vYnxRgRGJSyFyz7Rz7Prsd/CgixBDJWCnxwZhcmwzrXU5LhEi4CDEGymIEoCvBpChwPtfNB2sxEmaLmttHC757dYEeb4j4kLcwMlvqd/1AF13e6JC4aVt8FLngI0VKKamkhpQjf4USLLSmKg3e59rv3lku15ZN0+GcJboeQ0fb7HB95h8E6xmSZbd+ze3JfXQqiULmFk4lxpiJRBJIzkIacryDlOO5YmwjjRZBgBCIcaDfbFhvN9jeZhbJKIi+efkD++0Fpam5vnhFSAMff/IzyqPbVFXBYlpzcXHD7uac51/9KdPpMcXiDloXNE2Pa7Lg9OKHb7jz8DMOzYFpPWe7vuCHL/4M71uGZktq1+Ac0jmefPnnTCdTpos7DEODMTV+bFiyQFXMcGObsYgpc+E+RJ4TkAsk9rs1dT2hqqY5tivS+FAVOJ8beOsqi0beNayub7h//zPcsEeKwHZ9zdvX33F66x5t13PnziPW2xucG1BJEPyBze6Ko+VD2mbDfnPG0HZouSfEAwIPwSNTpG0PrK9e0bcbog/Y5kDXdKMAL3PrZgLrXHYDS43tBzbdDu8jldGZFeSvGGzH5cVrlrPbaFVl9lcKWLfHuz5vDGMcW7KygO2dJ4rEenuJ9w3tsCbeeKqyou1WxJDFLREdyWeOZAgBLwU+5Pig0Rqip2t3mGkxuvGyBV2k0Y00uhakzA4HKcdDMAGRwhh5tLjQUhYLlChBjO3HUiJijhZlcTaSyMOQVGo8mOTPtPyQus4Hl9wam4HPpcqfL4LLByitMLEAkT/jQmVmo9aSrhsIznNwgmkhKAqB921m0PRrhiRQZkpwPUN3xWHzhugatudPaA9X2HbDbvWG6fIek/IWMTm6zVuSa9ltXhJDn6HPytOGdd70Jrg8+5rd9jWH9UMQPZvrM/YX3zG0e6JLhCFvGDu3492rr1lOj7i6esfN6oxFPedmdUVIkfKR5GA9qpqTvKJvr1BKY+QcT96+q+TYrl8x7K8QMTKdnyBShUoDtr2i312RYg/7N5jpDBUDeixvKbWkKDQTY3De581nGDAiOyG0dbnEJ2XGkkwJFTyG7PwZYiBITZKZzeO8z3eimOHAw7Ajui6LXx6CC5TGINFE/74heRzMoshNkEKgUVSqYAgBFx0xBdpux7xa4AaPswe61NN2bW75VRLrHVoItNKo8bCrpMQHixf5Wgs+MtiGEHKs/P2wB9k5XJoqX3NkBIMQuWCnH1rKoqTrI3WRmXpNf6CIBuctztsc4XGOJCVGVTmmK0SOy4vcxuxCZDIp2O8dzuV/T11GTuYVRjtWqzNCFCg1QY8W1hSzE7YoS9zg8NFRT2YopRn6ligkRkGKgeNpxVGtM8sFaFLC+hwtRSgEIfNhhczMqhSppMCQ0NKz2R0YZMX6/AWXb59z5+EnHC0XLKY1KUaurq8ZDhtighff/h3bq1d0/cDZu1fMFjMuz8/wvuPZ918jUuTk5B5FOaE79BRVZp7K0OOHHavdntX5D3z1l/8Df/Bf/LdcvPmadr9CkYWJGCzeGUiCbvOaN79aM1mcUh/fYvf2G3xzxv+HuT/5tSxLrzyx327POffe15mZm3kffTCCZDLJZCVTqazKQgoSJEgQJA1rKmiqmYb6VwRpookGkqAsoaqUkCoTKGYWM4NkBMmIcA8Pb61/7e3PObvV4NvvOWsglCDmQBZwODzc3OzZu6f59vrW+i3tFbtvfskvX76l9k+o/UBO8qzrvUCpe2tR4cB0/TnH3U54jr/9GR/93oLu7F1UDaxff8q4u+b6m18QY0Arw+UXf0bF41r6IqeCsh6nLNO0J62fM508Jh3eosuO481nuO6UON6wvrtGVU/fW7QxhFiJSZ6Xc5DnVs3SDD3PgYMu9Ns3xGmiZCkWs9ZgjcPaDmMrlgo9pGNmHieCn+QAXEBpef4aVclxxneWXkdSEbqpNvKcMHXkmAJoWZrWqdBZQ8wFawxTTNLknjMwYrWlkkhxIrSt/+3uG3b7M/7+H73Phx9/h09/9RZvJ84fXTCGwuNn7+CGU/aHmS8++1LADKoyh4k8yQGztjkvzzNXl29IMbTnf+KDj7/Lzc01Ks/EMOMJfPXpv2Ox6DHOorTh0eOn5Ls7Pvz4x7z+4tdcfv0LPvn5v0HpRO8GXn3+N3z9xWcMuvDkZMAai9JZyqrmQM0J6zxFSzybGsUNXWs7DIuzs+0SpcCppUZiSMRccb1Fu57O9XQ8Zr/f0OkD+bDBV1lQhsMtm8uvWD56ivfLFqscicetzHAkaoyUnAiHO1LJsqwGXn3+CzY3rwlJFvkxBrySI43SGaU107insmd7axmsFX7o8YC2HWWOqFrIOUk5WY503nLz5jPGwy3z7pYvP/lLwjyJyyTMvPjsz1mcPebine+Q5ySx+fUruv4MO1ww7m+pxyu0NaQQKRHm3RW/+cWf8t47z0ibS27u1oTpgCmFYb9hfXfLcXuHr5nce3Hqte91KfL+F4hIbQs7mXdSW444Y6glk5NgXLSWlI3Wpi0XJWmhlBFOnqz/7weIdlaShXAtYB08eSQN4PstBCoxVPb7whzk4JtqohsMzltiTFgjSZEcKn2nhb0bCk4Zzs8esTnsqSqinZFzjWrvlSTvlaoqzmu260C/UCjlCGNhO92IU22xxCnNYTNxx5py1IQZplp4dH7GElBOo61h0J6nz95jmjWhzjy/vmIeZ7wV5niqid5Lwcd6n+iWmqGTReBEpsygqmLZWWqMnHSFQ8xMpdD3hhRFCu2dYrnUD0v4ECLeL0BljDHMJXF6umDReRa9JD763kkBmFKCw6m1NUDLZ3WMiZAEb6WQMoGTxQLnHYu+xxtNTBmlZSngjJHvofU8unjE4XgArZhyYD7IOXMcJ25u3nI4JHb7Hd56CoXLN79hd7ehhCzIijBTc2SaKnc3V7x++SUpzLx5/hladXgrTuacQWuDNp44tlK4IuK/Mx1wP6OaVrzWuNSKxkCX05jVrrkBdTOlyJwjfFPVnPVt4Z0ylUKag/DpCqwvXz3MxLevv2KejuQYqSVjvbjCaVFlrZqlodbGYJY7Cg1KS3pOxCApXykKjNEtBfW3xUn5sy27TpJdNUPR6KLJKXI6OA5RjCMLL83NpRbQFYtlcyiEfOTjj045jvD1i6/5i1/+mu9//AG317f81V//a04XS/74H/wz/vE/+V+wPHuXf/5/+T/Qd7AcCrvNFc8enXAcR/7yl3/Fh0/POcxHru8Sm93Mz/7sP8WrPR9/9Ef89ovnbG8+wTqFqppNSNSqOYyB1iEsxTgp0Tk47R0hgHNwPCZCzqRS6XvFGCPnJ5Z+Yampspsnnlx45jmymTSvNoWvLkc6b3gyGN656Hn9zRpVCk8vBp7f7fhiHzGdJY6J1cKx6hxzrThf8L1l2o+UqeCqFHVkDMVojhliqSz7BbsUOcSJxeA58ZbTlSfPicvrK44hsBtnTpaOoYPTleWsF4zMMSSO88jT83P5vK3DdT26SvIvVwXak5pZLYUjc4H1PrKfAiuvWPUdU8i83mb2c6UWw3YfMaeaL17fst/t+c5Zz3nXQUU0K9s/nMu181IkdJyZpglrFL4XLNjNV3+F609wpqfsbzlefs1Z9/8HDD50poQAxRCxnBH5x48dH50t+c028W9vI3kLg8u8ayzHkjmkyp++PPDeoy0fPjrj5ZtbSi5stnuO88zCaZZWWAnSeFix2uC0xirDNCemuCPn2rZPwh47jiJyaS3Nd0bLhnSaI7UqTpc9P/zue9zerbm63ZCiDG2LoePibEVKmc9ePSdMiVrAWU3XWR5dXLDd7VhvD8RZ7O4pRFItGCeZ7+Xg6bzj+atrpnECbXjn0SkKeP3mjv2UiKUdHHIRQL6Rr3GOiVykETbGTMiVKd6LTzw0Z3ptcAo611TpnDmELEylLCB/rSTG7ATuBlQ6azhZ9Dgl4Fxp6hRuxmLw9KqSXCVVxenpirlk5hA47g+cLgd0Kez2+9bcm1BG2oi1UawPB6pWbKeZZCrzHNG1Cr+gKHo0hUrnPL0xdNrQ27ZNbA7CQ4iMIT7ETVMMGCI1H9hvfot3lbOzBbtdFLitMpyuOlQ6CKtMe2w10uSTCwtrKClySEcM0rBmjJYtcIlQxbFWmiuq5sjb18+5ePoBhcK4P+L7JSpHNrdXTPsrbt48Zx733F5/haXS/+SPOTt7jxAjm80tr775jMPdG+LhjnD5hkfPvk+aE9NxQ62J337618zTyOXbl7z/wQ/Z371hd/0a65F2wfvDB5WSRi5ffMb5oz1X199wevaYHItk9vtTnj77ATEntLVoLFLyUB/ioaDIKfDq1Zc8unjEkyfvY4yXVlwUpRQu33xNjDMff/RjlHYcdjccDzfM0xNefvMr9tsbpmnPy29+Q5h3zEFKGV6/+YrV4pQyB25vvma7vSY82bLbbTgeRDCf5yM5VlKcmaaRqkFbzfXbL3HWMM0BrRxKK9IcWA49uiLXay4YlLjaKtRcGKeZzllyzFLsUQvHac/19UveefwR1XioiThtMRRikaGxNPeaaS2BtVZyyhzHA3OKKHbEeGCeZmqSazFGOdzVXB+i1r4J8NSK14YwTSQfMFaePVrDarFgPB4Iacb4Xtx7dSJEaaEqObZhJDKHLVUnUmobJuPa8JH+mwUbqjFC2ueay33MmvbSkO25QngmvZNtWc2JnBO298SEOEFLZZxG5lCoSsnLxUmkyFqFsU6YgmRq3POrf/ufc/roIzZz4oMf/wmkHeP6a8K8QynY7y7b5neWZ9h85PzsI1KKHHfXmBLJdZamuJAexJz7rW2cJ0qJjIcdi+UplMKc9q3NuVAajLvmCunI1evP2O+2lGnD5Yu/YRoP1Fo59AOX61ve++jvo0rP4foT+m7Fk3d/jznJRjwe1mxvvhIHyf4KDlcslu9T05FpvCLnSUpqpi3Kg1Va+FMV4iwN0sZAbLE5rZCoaUnU3ByQWj4P+ef6IKJ1zuKsoZTEYToC4qy2yoIWDoexbRjWBqNMc+G2zXaMzU0kzt1cQKvK6fIUiybmI7UUOdzpyDRvSDkS05GYEFdnQyKgNEpr+bsyGK3lmk+BWCIpR4w2pBwemIy5ZlIq3/7euoHUEddpybUxt2YpUzCOzV6htSYEiRinlAlxJpfEJBck1VSMthhlxElWEsZUFp0mp4zvFKZtbs+WBm8KcyyM84beO8bZMGfBM7haxLVcpCDiGCpxDlKqlBJzmolGC99kf2TZGTAKZRcopfDeNThywllHaqiDuRQiihwrp05zlxKhOKoulPGW17/8Mw77A9//e7/PqzdXDJ1nc3NLGg/Uarh6/jl3l6/R1rK+e8vx8F2uX3zBN5/ccrh8hdHgTI9fXZDrxDBYnOk5bN6guRdfI1//zb9jaRccbr7muDuQGyNLUcgxkLPCZ+jskRMU09f/it36mjhFcNc8/9l/xtXtmuX7P+HpT/8Zh+nI0Gmeffwem8srdNyzffs52+vX9L3jeAxsLr/i0eNnXKxO2bz4jP3rvyaFyLS7xulPiCEyH++ICXJSnKxWxBgx2oGtjAHKvObuzS/xeiLXxGH9gkW/oKaZFAveCxfMWkfRFqsCMR0wVIxT1CmRiqKWQqqV47gnxkJM8t5WFZyWqPgcZUlYGo+xtmd57e9RJvXBWWa1sANTUXROkxoP19VMrxOzQtzW7cBnKhjnCClJ3L4WMooaR7T21BIJ80SlMs2B6+st5yeR3/zq5/z+H/wj+PEf0/cLnr57wVwqH374A776zWd89sUnwFcSTVdGki1orPeM00jFEJMwgWox+M5htGW/uaPEI70zZBQ5Jo6bNbaekF1Ga8fz51/z7Ed/zMmz73N3c40+rHGHmfVmz34feHvzN7z//rvsquLp4z+EfEstBq0MWEO3esJ8OIrzIM/EDMZ36JqoubnVscQUce35ZKxv3GFpOo9R2goPm8v2uQhPsOTENE90ncd7B3Embu+oXlqLyQHiSEYcUilKG2xOgTpuCbtrxnni8u1zYszS+qsKFYf3PYf9kVILZ2eP6PwgpRvHHYf1JaUmQgikLMv1cUygxN1RVaWmwPXr32JUJkfhSaZc0NozHUcyW6bpwMI7ij6Vd8ruhpoiq25JiSNx3FCNuBedVuScOK7fcEdiPOwIWeaalCKbuyuOhwOlKo7TkdqKqxRglAgStco7p9KCHM2BlHJpPgbdegTut35KYp8xYbTCGEOpSZreayODtIhuKYqHVlGthQke4eZG4VRlPhZhVE0FXQ2uirjujYGsyTWjWxLHaE2n5R0ZSiLFQtSW9fZILVKo56yRgjolUXyspiQwVjOPmZAKfnCsFhJjfbw6xXuLt5a+V/S659QpjjahYsH3HSlU9iWRlGbhO7BLvnx5yf54x+32mvEQ8J2iFmmGfmfR4b1wWs96zYdLxbtLRQkRbRw+K+a5MseZ91eOPnSMCaZ94niInC0X9F0lpUgqEGcpf/GdQ5nAHBQxHDFojB6YxokwR5TWpBAoRZbs1iDx+yIpM4qYMpSHkIVTW6n03nNxcdHwPwqtLV4p+cy1Rhuw1kIr0Ij7HRRpmaYKlmW323DYBVQ1fP35r6glcdhfCWfMriQZpC21wjhOGG24u75mOk6kOdP1GWUctSppEz1KHFgrcchbJYKRQov4aNocU+/tJfpbyUApSpUZQal7UrXMsErJvPUtM7xyn+YtVc7MlYKUcap2PUv5jcyOtRXetZf4PaKoMbcfnHwN7QDi7lKqHT9qbkk2KS00LbLutLRE14YqkQW8fJnKgLGVJxc9J6en3K23KFNRKnO3m0lV0XnH8RCpWsT156+uURVe3VyxPwa219eMuzU/++tv+Pg9+Tzwio8++IDHF4+xZsvj845OKS53I8+vIjFUtrsD+3HC29/we29+xes3r7jb73D2fwfTzC7Czas93lt2Y2SaZTGzPWQ6WwHTWtFlKaA0HEJlfcxkVVh2hgF4dDbQ20qIVa7hVDkExSfPE99cBUKEohRJVQ5z5NU20lk47TSvvjmyLpWxVryW8904RXoDg+/prXDCaxHW7DjL9WcxgnkzWmLXxuK7jsVWMRUIM1zGiVKFueccLAcjKU8ry7jjNFGVQWMZhp5cC48fP+Pi0TPevPycs9MF9RB4c73jpk7kXFhaw9IVpjCxmzNjLIDhZAErr3nvVJOM53IT2OwDc4RHpx3TPLMazhhcj3OaXAz90BPzTEGDcazOnxAPW0oZiaXiS2Vc37G+ekOt/5b91VuuXzwn7d4Qtxf/v+ty7cffXeBLMmSjMgul+acXS8594e6wZy6WywpvEphsMePMhVf03sL2wH/2yWv+kz/4kK4TaPl+s2bQsHKe4zhTWrTQWPVwsIopU5SUKtQiN3POciNqY4RlpVXj0ycqhlQyj896Pn7vCW/f3LDeTSitsM6y7DveeXzGer3lbi18JKWl5WnZd3TDkhev3hJiomCYpkle+BicVWgS56sTSlW8vlyTihyerXZcXt9JrHWuzClTrTyQrFL4TmKWU0jS7pgKh1mA5nMssp1rjILOSLR16T1UAaTPrZEzxCibt9zApQbhqZSAs57l0GNVhRg4Fhh6L2UUaKwWrtDpcsExRG63I7d3a45HAYEfx4ll6lCpcgiTHDK1OCmlzbdwnCas0kwpknJlioEeg0OJk6iIfdtqRe+sOM4QZmNuUeM5pYfDWG0HF0VC5ZHN+jUhSoRMG9k7pDizuXtLLT1u8R7OXOCMxdQocYESyPGArQGqbKW9FXVeHvS5RcIyql0zocgLQFWJgJtaOByPdN6yj4G+c+SoSNOe189/zXJ1yvvvPmOaJ/aHNTdvv0aVBEVRi2Y6bInzTIoj1Mxxe8X1a8vm5iV52kJOWFVxSlqMbRMRtFeEHNjevSWNR3ab10zrS6w28u/dkjQd6VYr+sUFfX9BCFtimhn6R4S4x2jPeNyzXb/iuH3J5ZvnfPf7P6GUhLY9Q79iffOCWmauO8diecHVmy/Y7bYM/cBhvONw2JBy5jiuubuOxKwoaeLq9iXp0bukaebq8jlhPpLjkRgTMco1EMNMyQrfd8wpSiwUuF2vWS68MLRUEgGLytD1DJ0XZ18R/tjZaoWtipPFkjkkQgwtOp1wnWMOM9c3LzhdnuD9knHaEKYtJWXinJuATNvMiwMw5YJvLtKSNXFOJNNiRzHJJrHtt63WYKrEBKrwa6xWpJrpVEHrDDWgCNRU2G8mQphQVnE4TOI8STOlZHovsWiozHEilAkBMR6xnf2W20cRAUbLz7+PDtR6L6q0SDWFjESfUs50fpCWb++YQ8Q6J6UXIWCMx2gRmlgMaB2EZRpj4101pkwQ3p8xM1ptORneckiROQYOp2fUEJhuXqJrFq1IZfkzVXGe1XRg/fa3EpkuSRqytbRUUxGndANL55opWsQ+ayuHg7THVgQvYI2lZImfGq2JIXLYXDPNiRAi27s3Ep0osLt7ybS5Zj59hHOnHG9fwLCinD+jVo/VmnF/SZo2xBAwXSHs3nDhV8zzLYf1W4FjW0upkZgCQ9dTMs1lDcpovLOCiGgCucRK5TCbc5SDcStMuWepeueIM60hWYJktUJvPathxRQkThzS3BxQFWUUi8WqRUQySmkGa0Vwtpb7c9zQ9ehqSCUyzvXh0Da2Eo1UI0rpVgYkQ7NC0XW9uJ60pu8G5iCFHbWU5iwszDVSVLmff+m8J4SIc55SVLufZVCeQ5JtPao5SYWx6pwj5sDcXIgxJRELizSJaQImTlgtDr/yUDajmVNi6A1Gy/A9zjIcKpU5WTnmlJjCzOYQqdqyOnnMzXYPdZSokoKT5UBvHdTMFCdClKH/YnB0TkMO1BTIKpCt8BYlTghzrZTa2GdVUU0hGyBLHD/lzLjZkp9/jrn4Pvv1yN31HWudePPlb5jDzON3v8v2zdfEeGTwC3Z3b3j5/Cuu3zxn/fYbvIIny54y3bC9DiyGJSqMUNfU4zWGgraG+TgTr694/sVfcHd1CVXeURpF3y3QqjKHQkgF4ytOFQ77t982fqfM5s2XTMc9qSTO3vk+N1/+nKLg4tH/nFIy29vnXD7/OYfthpxnYgzkXLh6/mveffyM6+e/YHf3UspVpoyzN+wOR2GbZuma97ZDK4tz99zejEdTwh3Fa+Yw43RgrhEaB1bIBYZiDDFPKF1Z9B0KwxhGrBGnRtEidlujSBmct+SUcVpJnK1UhmFAFchanueViiqQYsRYR4OdSkN2ET5cbcVGJUns2JpKr+Cs6yEdpaDAy2y5n2bhRmppmM0pUQpUOxHmmWmWQh+FomYYx8jL5895/vy5MO5I+E4zLE54/t6nvHnxhtv1RooPjKA4DvsAOuGSb650OIyBk4Wh6x1978npSJwCtWiKUjy6OJX4m/HsDlsuLs5xtufRoyeYeOSTv/hXhOMN+80dVzc37I+xMX8qfjgBY/Hn7zHur3DGtiIvTZgTIUx4XQlZ4/2CnCdpCK2VQiLME93iBIxHVXHRpRgoGKz3xCTOO0qipJlpFFxHSTPOOXzfUWKixgPT7XNMd4Lve3KYyGEvzM/mpAcRVtN4QJsNu/2a3W7X3PXi6JMES1t2othub0WktZZSSls8toXDnElVyudyqRQqurkQvTx8KfUeKyAFXt5ZUirM45Hby+csTj/gOI3M0wgV+sVGWIQpUHMRUUu1ErTxwE4pxmkUbnQVQSMEcdCXBq/XWthfSpdvl5JZHGFSyCLlDbU1pN/HxkIqRC1FQ5TcTAE8KIJaqZYsEAzQvSeQtnSr6AcxBTRlVhivqXNBlYpri/qk1AMH3CFurqIkxh1SIQeoR0/RDgWkWAWZUhJOaQwGHALFD4EQBUuxXFppK9egvCbrxN0mctL33G13nC09J90J75+c8Wh5zmfbV+z3E9NUyDXSe8tm3DFdXYoLOAZ5f5BRRhYig9V0XnM+GEpOLAbF095y3lXImV2SOcgZz2rQrGrlySAOsuNpx9Uhk4rGWsPuOAlHz1ZcZ+h1zxxH5lrwvccqg1Ywh4knT84Zlk4mg1ywLUYuTPACWjPFTK81Cy//fyqOkjLWWxZ9T83gl14KAjtDVZYQaoseWgziRF4sTjivlZwhlVtiCoSU6bQmhYTSivX6BiU2Sjn/mA6jK9N8lBKNAiHOXF2/YL1ei1BvLffQ55hknjem3XdN1L9Piyhl2nUqDEjbfp7MTYp7gFBt1+dDMWJLsTxgh+7FPqWopj4suo2ycuaV310WjSm1sjxpNa/ItazarwNiMvDeSxlOLW0poB6MMRUZrqQx9975J0vMSKXrNMTawNey2FfVkqtiHxNmrGi35/GjC7yaOOkrX6nCZqxsj4nOGI4VDtNM5xxDZwkhEVPh5fWe13e/RmP59PMjV7c7jvOeZ0/e4Xd/+lNurl5zt3vL8ZCxyjJOBza7TFhWKIoYj3zy2ZcYrfjO01O+9+yceT/x8vI1T84W5GpxKkOnOYyRZyeWk6ESKzjriEkcv8cQ2M3NMOAdvQfvNevdyLtPTrjdBi7OeuYw8eZu5pvrKBHxwXC1HnGNzR60Zj0lJhyxFAIJbTXFKilsjBO2g345cHJ2Rhn3dMB535F1ZQyJKWWiUYQKpJn9HDkqw3pMHIs44WKuWAePF45HvaNTCWt71uMkJuUiz9TeSRQ+5kJOicu3rymlsDuM7I+RXBLLfslxGkkxkK3mEBJzyoLYyYnbQyAk2GfFYT+jjeXxqed4rJiqOT9ZSmxdz8Tc03t5VlYM2i7wrqMk0bGWqwWxPYfnSUr+7l5/TolHdMz0tmBU+G+V3/7bfvzdBT4FkMEqjrbwr9cbnuYlxylxXRTrGfBZGCNAioqTmoglM2wO/OL5Nc+sYbPe0TWXwOZwRKtKZx3OGoyRYH7MMpDlmtHVUBrLA8AY2zhVprWOwmroyblw0XuGzvLNq0tyLBgrW4/T1cBiMfDy1RXjHKkabM10Xc/QD0xj5vbqht1hpLeezXhHAQbj256sYm3HdgpMY2AKBUgUbTikyBdf/Zr33/sOXg1UKt7aVlJRmeIsXMGUOTZ23hS/bdU0tdAbi1UaZyVelMLEnEdhimWI9zw+oGbZnOUijVGOLTVCt3pfrMVGYRU4o1lYzX7OoBWlVvZ7iaWkXHhzdYtCkSuElCnHkdoYRgvXAYXNNLMdJ2IRLqLw++QvrzUDhoXSOGNEZNEtAFCkMbeoypQiqgkNIsNKq5auGW+ghi1Oj5wuH/Pm8msZHrO8uJSuFA4UnvOk7+jNY5yRCK7wcSSCqwltM6TIcZboURWyw/0LlgYjHroFN5e39M6Tyox3K07PzglVBN/N3Zp5uiPlmXwM3Lz6nOn4B6QIt2++4bB9iy2RFOWG3q+vCeFAyVHA1KVwd10YxzvmccPF6pxF51HG4HSLX1IwCmpOhHGHqRIz9r6T2KDWlHnPzas7+pNT+uVT3nlHcX3zNcfjmg8//H2ub75CoRgPI7vNa3IK+O4aqwMxzyyWj3j6+GMO+2sogefzgX5YcdjekOPI118cWK83MpwD290WirQHbTbXzPEIOULJHI47DIocIjHM0o5cZMhOKROTxG2N0aQQMRrmGay2aF3JsbW65SzMw7b5632HRg5gpZR2KNMop1FFEUKiKsPuuOfq5kuMccT5gFfynBm6Zu1vhySr21bROXIuAm8vGq0tJURofM4Y5YAmDixp0hqWPfM8C5MLRMg0gZxmrM2UHKUF2miUkiZspTXeefb7PZlM5zqUkn8/zwdKFTivNbq5SeXrLFUKS2rbpMsG9Nsij/vmr1wiMc2kFJsDxpKSZZoTzkr80xhHyg6lhBpijWO93RBSRDQf+T33cQSl8MbjrJPwRIVx3GBz4aRfUq8+w2lDn0dOukHYhkqae++LCWIOHHdvMdpSkwhAJd+Lp6W5KMXJlotwPlXVJBLkTO97YePkAkrjjSfluX2vHGEepTSjFFKcsUbarY/7a0o4cLh9jjI9x70A/eP+JTebDeenz4iHG+ZxT8oiLB+210z9CevNJfvDTpxzRsC3WZo3xNGHCMRU5HMpAuTXRj9siFX7XKy2pDyhqsZZh5Grj6TN32qrFjeFM9I0G7M4l0sW4VZp8K6js33j4c1ybSqLshVtHdpI8xnKQNuWizPPtOh3IJUobC+jsNZLLLaI0BhTYbUYcNrh7H2BlCcU4TLde3NExNXCtyy1RXMkillyK3AKUYRvZ9t9L+/jWUFubimlNbnKgVS+bnHWhgZ971xPLkni8Kmw20v7+zRnloPBO4k3rAaPaXFBYzvmICD3oV/Qec+wkOKr3VGe+SGDGeB01RPSzGGa0NowFsXNfuJ0uaKMM0/tKV3DTBRjGcNMMAZvnXCACigtB5iFL+SkOMwZG2bMeMfu8nNuHj1iv1lzuHnJ/vWvUOOau1dfoeOOMkfGvGf79hVXi0foMhH3a6xz9KseVSY4jqg8UNMsE9l8xFSFVxavHaVmLl88J8YkYoMCrYyUMCkRvjSFmiOb7ZbDKIUMnTOcDyu244FtBjXecvPJn7K+/Jxu4Tm++YyqINy+Yv32jZSzRJklqBAOt1x9/TPKtBUEQSmEkEQIzZkYAlpbrDU41xHisUXMe5yxTPPMyeDIMUi03FViEn6jNQaDYegHQFofQ8yshoEYMt71GD3ReUXKwr1LKRFDImWFtQ5rXGOKZTrnGQ+j3IvWMs8TIOwbqrhJci5QM8bKtawAi8GqiqlyCG7tMCy8JVRZoPbOSTS04VAqFec90zgTzEgqUjbzgE/AopTl/OyE43QUML5WKJtQaeTt899webkXV5SSdIrm/j2XiFFiUstFx2K5ZJ729J3lR7/3D+i7Ez775Z8z7W/AJNzQ89HHP2K/u2N5ckGc9kzhwOsXv+Gw/3MO+x3DsOLs9BSrPdv9ntW54wc//DERzddffMqPfrCj91YEh3oPji9Yq2UpYh0lHslpwhlDSVJc4+xMTgu0a6VQ9y5hN0AFY2SWtX4g5dIcMgpje7zrpFiBSokz8+4KNx9gdBJLzRHjeom5KvmkFAgfM06kOOG9xieL7zvGcZQkT9EPbNnFcoHTUEoQ13iIaIUskGp6eO45ZzFG0/U98yhFfa4xde/fwbI0l2efs4Y4HTjyht0YCXOQ98XxhhL2WCPsUrkehHecY+Sw3xFzlHi5sa2EqAg+pMrvFYMskSTXWBvOR844OctXdP++qllY2PLclSWaiHSF+1KDUgVXAiKwpBRleXgvrMiDnnt28z3nO6RK74X/6wfBediqmDYRbSEnmPKM0YbeWVbeC4YhZoKTQ7VVIoZJq2WWZUmU5Ewxmd5aOgu+SxymiDEO2ym2u4n1RhMTzOHIydCxXA1EMtuS+fDiMby5ZrFQnCw04yQmia6r7MdIN4h5YRpnqtEMnWkGkYp1mikFVr3GUYhzJjrNMRSmZNgFRWcKFniytJx3MBe4vJqYk8yuV9ej4I8caJN51FuWnYIMpu+YU6FqxcJ3aOOZQ+R4nKhVWjm10fI8qQWjFbGkVp5WsJomahfBVBk4GXqcX+CskVhv+yytUSSkpPAesl1Key4bzdB5KYsrhTlmaivzEce/xMud7uj7JcfDDorGWk+K4r68fP2CFIX9Tlt0D4uBaRK3MlXchCKWtaU08nVUsgw0yH1jbHMcIjFc05InMvf+LTG6nSO55+Xx7b/XWomJReu2HEr/DS79/S+TS/1WoNO6LdArNVfCLIWSVX17fz/IGLRoTCu701rOyxnESZwqWldZKNwX4imwVoqDvFE8fvIOH3/3u/z2Vz9nLoXvPDuh5MRmX4kp89Vd5ThHMrDoLEss4zQK4iAVrJHni1aKTz/9gv3dLd//7oecn77Lj//kn/Gv/+X/jc1+y7Do2B5mxinTOUtvBkxN9EOP7zu0tvTLgaennuMx8NXrLbtJN14mPHs88O5J5fOrkZikqHBMCYzi8Zmgh0qFi4Xh3Uen8kwls5kP7DaRy21kPyY6qzhZLrndjoDitDMcUmEMgkjYhoBzUr5WNeRUuL7ecbrq2R4zc7xhPx0YKJwrhS+FojLdYChVXMFhDpwulqSpMObK1XYiIWxcVcWJeZNltny6hE5HeiuX39NHJ1ilWSx7dvuZ9S4yjVu6zqKtlznJKh6tBmKuHPKM7zwhShmm0c01miFkRUZzGBNFOYzWeKU4fSTuvf1hz9YV/HKF8wsKGu0GVI3EVEkFTs/O2FxumgBu5K9aJAGTM4evP2OaZgaTmMfx/2sZ7v/Tj7+7wIfwc9CaqCq/CDDcHNApg7EkZbBz4r2+xxjNbahY1eHJ+F3my6/f4B4NbG7XjHMgV7FXDt7hnZeIV4zct4EqFM4J+F1snVLa4b3m/OyE2zupmLZaDr7OZMb5wPaocVrTe4t1iicXj5jGmRcvXxNjwTrLyaLn7GTBze2B7XZmewgcw47dZsv52Tt8/vknnCwXfPj+D8kl0/me3eHI5199xnvvfkzJsDtcMU+BxfKCL3/7Vyz6gXeefI/eOaz24r7LkZASY8iEOXKYRyoKWwUO6ayIoV5DKXvmKWONY55nNtu3nJ6+Sy2WMMeHA1gpGaWMsIbSkXD8hnle09uE7Z+QVd/cOpHe9ezGGW0c0/FAipWI3JQlJywC7Y+10Cs5VOZSCHHmMEfGtnnLJTcmC3RKsTJetoT3Sw6lSCoLb6oWahHBJpIJMTWHomzXqmpUkFqxNTPPW96+/YLT00d8/PEPePPmJYdx19gvsiGK85HN7UsG/y6uX7RtZKKQqCWia2ltYvI9ylncjrQiBIoW2G8tbK7eslo+YRgeEQ57rH3EsHSoEtAalgtLmBtUl8J+c8nrr35DyIo3zz8hzkecMxJPno/M8Yg2lZRmSkk4m5kOM0IzVqiaGoOiHaKzRB004sZJYWSusv1yzSGjiwgKpkS2t2+Yx5F43HFz95KUA73vWd++ZJonDuNRmBQFvIusb16QS2K7vua4ueF43OKMbBjnaScDu1aMhzU5JxG7tCKnyHGsTPPcNmaZYPYC5S+y+go5EVMmRrkelJIXbCqpFcLIti0X2r0mh32tzEMUrZaH3l/hw2ndmi1FGE45goIUE53rAEUIM3fbO7SqDNbRu142fjpTYsQb2w6GGec6+mHBfhwJOWGaiJSVJqRJGsyMkeuiVuZWViPMM8gpEaM4TJy1D9dUrSKeKyeO3gwoK3Eu5yy6anKu5FLJyPdpDhHvPVkXMlL+ci8415IJubQDkkW3ooZa5ftjlLRNHuNBnokZbA6YbtUckW1IoYq4rMSdYozFWs8UAlbLUKgVdKqnKkhRPj9vPFppvNE8OV3S256UDmirOfEWd3pByIXr9Z201LWDXcmVGEYwEiNLOaKKpuRKLTItlVzlxdaWMCkXDLp9fwslg9EaioD2uXcLqCLCZEriqFCmYQ4U03QUl9bxllwMJc/M84719XN22zvKcUNNAXlZ5HZoGLm5eUXKUysZqc21ef91Jbkv2+a3Fmm8rrWhFbRupTMS+y/SgoJtDkVTKxiJFloj7iXdXFfWWPqup/eeKU4MXc80yzNBRC4RClRjxhhtwIrIKNxEiVLnUpoILYuPlBLOCiA/RnEUFsmUYLShVvDeo9DUqvD9QK1VmF1Ko2kxO23INcmSrIoAn2vGGktqBQPGWXKMeG9JSYqilFEotPBtVAYlQypVNuq5OTJzyqSSccYScmwbeynfEFFDcRibWUAVOi+g/2me6b0RWLmxWGsxuaCTHIZVjjxaLAlVc3l3yzgnFj4zh8zQWazvOBxmYoFkDJoRowyQ6Mji1ikVaxVeQafFLba0IqAZk0m5kKK4QJyv1HnEXv81d3/+kpoD4fYtXZpYqEjNO3pT6U+WhJzI+z3byzdsrt6KoGSlPdW2zyPGiJMNqCwzS8Xa+0NaglIopRITaGuxzsnYhcIggnRFAhXKyDt4ZXsWWmEWPZv9gRQDu6vfEsYDJSguP/2vmBPs19foLMVSJYqIZ5zwObe3rzEo5mmm0QPIRQonetcBhpTk/tfacLI6IcxHXItNUoQLhqKx9iJaWUxzUmvEIaGq3GdKabzVD4J6zK1EJmmsdTIQpyLXu3ayIGtCAl3HFAKrwQOFUDJLK7gWakJlRc6qiU3yvq1Z0xuF0xqnkftwlsOiU63FtjXZVtFTqbk8RN7l2VBaYZrcl1K8JGUyEi0KfPzux1zfvWKcRpwVdlGIErs3Wji6zlesceQkh+HFsGS5PGW/2WJV4PmXv+Xi8TPe++B79P6H2M7y7oe/Q62R7WHNOx/9lK8//dfUMGG93COr5Snd0OF7Ry2RvneMxy1v3r7gd//wP+Tr337Cr3/xr/jx+++xHAa0NqhSSPMRqHT9gpxD+/MoSirEFu/USLRearEFsJ5LlWbtLMsSoxzjfosi45zDmQXWWo7HPdrI86GCLGBzIkfh+hkN2jhymilKY5xDGdvKwTJhPDDPAVQlzHMrnHGcnJwSQhRuV60cjgGtszTDelkK5ZybWB3kc3aKECbmacQ5IyxJo0lZ3Oq6sUpV45dCJadI3N8xznIppBjZr68aNy8ypySczLYYFEEiA1q4vVoinlIEyMNfMWVKbpFNauN+fRtZFNFO3Km13C9kROQwTcyQ5678J7o5oKgV7z2Hw0HeabTFYJYSD6V4KEjQunJ6pjBW40zh7Jklp8B+rHzvseftq8QcoUQFVdy1sSbeeWzpfcfpSvH1q4gy0mqbkhTgnQyCWtgeC8PKUGcIydA5J2w/KwLXFOXP03WVzivOVoazpSOFwna75dXbG06GM47HK5xSnJ16Xt7e4Zc9abNhvxVHpes6wpQ4TFIMcjIIa6+awn4u6M6w6hTbY2bZWQYKnZNlwKJTdCaTtGYdC7FUzpcKZS2HYyKMSVpWg/DKVJ5ZLLrmUq9SCOUt0ySL69XqnAKkUjBUxnkml9wKIGVJaExbClaJizstZoZcAgt/Qs7xIYZ9z/WSaLRp87TGajHAxNSiwNrgjERhY5AzmSw3VJsfM3EKOGOIWkERsTfFxMTcHHFZznpF0Bc5hIdls1YG5+RsKg5FmQclTWepKqG0MPfKvaiMEtFEdnQPnMl7IVGu+yzvCPW3BMAmQld4QOZoJWJnTlmeXW2OUe19eC+OW6twDZfy5PGZJNWmQOcs3ik679nuZuaY6HuD3H4iYlZdWHSWfL8Ypy16tWLhNYteo20FbfjqxWu+fPGakhMfPO15MsBxSlweKideM4+TxJKriFVnvWHpDfsgv57RFe8UH777hJubLS9e3RFC4kff/w5ff/MVv/v3/ruMuWJ+/Rnwa1KYsW7BDz7+mH/yx3+fj370hyyGBSsf+eQv/1N+9P1Tvnk58ocrx1cvZ17fJLLSvLk5sLAdxjjmOOK9xfn7hF4FZXBe0feazWHHLghbtTOe773/Mc8uZi5Xt+S442Z75MOLjo/ODO8/WfBXz/d8dQxoYxlz4TBnvDdYb6AmnNOEOT8IqPdLjLGA1xWnFKYmlt6L6GkNnoopie02oY3G1cw7px2L3rI9JPbHme1R5pBjSiycYuk0xzGKUekwU5M0fjvXM0+SIJxnEQZPekdJCaeWhBDoOo2qFm1lWaBxjLOgQDpjuB0zcUooVbhYSA9Dqpl9jPQx8CjN+H6J7zuO2yM1y5JpGtco23H+6Jmw7rWlFE0ImWk6MoWEqZneC3rj7/rj7y7wVWSQqxWqJVc4pICtBZ0SBQvOEEPgTAHF8lgHLnTmwmTsBC9ebckpgtb0neVk6Fj0nsM4E6JEemrOaKVw1oqTIGWc1gy9591nj6Ro4jBxOE5oLIuFI8wzN+tbPv3sr/nB936f9955jDWaJ2fnbDY77rYHAdB7w9liSecd37y6ZZxEyNkebvj007+g1sx3v/fHvH3+G64NPH3yHq4b2B0ObPa3fPbJz8QKqizbzUsuL1/w7L3f4/rN51y985ST0/dBF1KcOAYpz5hrZpwCqrk3OqtxtHhJLRgC+XDH3eY5qJ7l6h3Gw47dzW9Z9KdEnETdisZUjW4H1ZojxBu2m5fkMPL19r9isXqX9z78Q2IoXG022I9+B6s1Oc6EUomxio22AFkcKrVCh8LVSoiZfQzUXBmbsKdqRbWDmtEajzBxFBBabLpUOSRaYziGWaIEURwAAk+VQ7AEIysWMKbidMB6xdtaWd8+Zw6lOZEUQ++Zp0hVTcDRkOdrzPABBSUV57rIEFUSICKBlBdUUk5tSBSnlHU9KlWm+ZYctsx72N5+QTjeUWtl3FyRph03198wj3uMNk2tX/P1Z3/J5nBkt75Eq0RSIjrHJCKiQVNzAlVa3Xpt94sMEVSJBljtkG4u1dwY8qI0XizqtUiJjLpnVpRMzYnxcMNm/aYdTgs3b38r4PWQmOcRrTUpymFkmkdxQtjE+u6VxD6cBSWCZU4Z60Tgmmdpcu6spdZMiG0gThFnNTnNwhRpgkWK0lSrjQjTMaX2AhcXbmc9IUXGMFOduJ28tW0bp+id8CtBkSnMcxtc2wHWGUPnxMFTOom/KwVeK5x2FCKd7xm6JTkF5hDw1pGTCGfaG7zr6H0vTqOSMUqzXAjUGxLGAu0gCzJIO2/b8BTR1mGMNClRZThXRp5HYvUH7TtpBY4R52F/kGG9It+P6ThKJEtLNb3AhWnivJQNSBy4tIGqiB5cC1UXFJqYkwgwzXmqtSaXRE2JcZRmXDkkFqac0MrSefl5Z6slxlR2+wPTNGOcaUIqzCHROUvl22ZHrwy6Ftn6ac1qWNL7wu1my8J3xJyISgRMrPBRaylUpaG0IonchlelmxtRhshSZYjPCCQc1za8tS1vTJaWurbZ1uq+rEQJf0W1mEdzeU7jnqrFLRBmaVMO0wFVBKJbGq9NttmRAzucUVgt1+xgHau+FxZT4wRqLYee3AQUkK1bbWwWKu1gpTCAt5b9eKTrBkouzaUpQo2zlsH3aG1Z9APOOTrfU1Ml1tDa7yo4ue5KLnRdJxHaKbAYegbfg1akBlUv7bD4MBAr6Z7TDdjdO09OsrWNKWGVYTmsGAaJC8hBN2O0LJ+SajEZZACNUZ6fOWeKrlhnyTmLg7Nt2VEIz4Ym8JXcHmsF2wTFUqK4NtqC5/57GWIQkVErQP6d1YXH54aURXAPc8JYuUbHUFEqUYohZ2mWdycLQpqpNZGyZgwTZ6uOgjhkQozEPGEMLAaFMxrvDPt5kmfcfOSkX5CSPIuNb1GxkrFauDKxIO+Sdlj3paJyJasM0w6XtnhVyflAzZWldmAt+l5oLZUy7nn7+S8I2xs0YIoiZ7k2NPJcL0raY2Ms1GoItZIbJ3YKScpFrMdqw8ILU9cY2YzXPJFrwBR5RglXsxeRIme07dFUcdnkTAyVm1efY7Rju5lJSWOcOEy9t+RS27NEHA3eGHKWA0AKMnguhxXOeFIu9P0gc1qtWCufu2mQ9IIIxyVDioVS5Dl1slxitcQ5k6r0/YCp4DvP/rgVAVtkbkAzHoWl7Jz8niEmpmnGainEGrxD1UyZNVZbOutRrZBBlkm0yvXchldNqrAyCq9bq6hRLHvHHAtGWY4pYTQYmnuvgtLCypPZQmaZ2GKkWiuGheL07JRcArkYTi7OwS/IQOcHtoe9PP8bU0u4TxJvjIhjwDvDer3m5m6NUZWUNLdXL7h6+yXeWE5Wp5y+8wFPPvgx5ydncoBICe8ck9YsVo9YQGNzJlJMPHrnCU8+POedpx/y8vUX/PbXf0lJR84ufoducUaOO/ruhDhHSo2ShkkTKUyk3BAmWkMWIUgKHyoW+TMYvyBP0pwdwrEB7CvOO4zxlOORaR45HCLTNHOyOm/iuQi6VFlkaW2k/TUFck7oNmO6bkmYD4zTyDTvqVSsdXT9glIK+/2GzeaWlFohnxWnaMowBXn3LjopC+h8IVfF8uyMeTqybBHEeRrlWq33C6b2nlUQZuHzeu+aSzpCtYIOKoWFtcRZOHIpyaLzntslP0pLzaiGVJCG7nvjQimluXPrvSYnR6wKpUpbuRRoCNDfGd2+ThE15PrTzUklS6NaK7r9fiHM7cjWBJDals3qno8moo3SYM8ru+sASnG3C5yfG55eaLabzMnKc246rO8oQAkj/TKxHCqdczw99cQ8st3LEuhuV8gV/KDBJZ5eWJwxbG+TtO5SyTXR945aIKXIsLQMvSAWBi/vufV+z+ASw+AIZWY/3WEunvHxD3+XH508xnYL/uV/+X/k9lbE1JAKYZa5qpBBdcKBpXCYKlNWjLHwTm9ZIVxBozWpaOIsjbwqaVZG8/6q8moXuNkdyVWxGDSdlnlpnGdQEWMMQ29JsaCqOAg7t6TmzNXVK3b7Hc54tKoNaSGCHFW3xZeIXrkalJHkRqkQc2CapVxIG2kkDjGilMFq+SytNaQCXjnOV0vm+chxlnOQsaYpyPXBnW1as60sjWJ7byt830uTaOWBr3vvGr2fA+/j3nJtSsnl/bWXsrSpKy0LBtEkdbu6ZMlTGye11NxKIGlLVZmlS3M3am3a8k9EQucHVKly/mlfU2kz5YNIXhrGpkXgjZXZxHpp/U41sxkPKA2uM9SamSOMs5SfoeoD43bZG7xW5GzEcWggJRGdvXU4DbXK/TxYx2EOKCoX56ecrhbkcUfqZYF9tlA8v5549mzJ7tVe2spr5eX1AeuMYEMK/M533uX3f+cf8N4PfsKf/bt/wauXX3O73vGzn/+a9z+4oeTCn/zJf8T/8n/1v+E//xf/Z1QJ/NP//n/Cs8fvsH79OWOtbLYj7370u/x3/ic/4bOf/5+4W/8XHI97Pnyi2I1H3nvc86NnAy9vj5SSeP/pCTXF1gasudxFcpVrb/CaGAOLwXO+7DE1c317zcI7zjz85JklPu1YdJb5MKG94vvvDmRbuTlEQqyUImdar4VFeLr0eA/WV5wzGKtZWIMfI6ZoBmeorZX+rPOYhWUukZ88G3jnEfzFV1u2Udy4h3Fk6BxUyxwrh0lKRnW75rSSmPt4kBj/cuEwXuaCVGbmGDg9XVErOAPnvSF6w+A0Cw/bKbA+RryV88CjE89hm7G6suodusKTswXHSTix1nY4J9ilNFdUrXSdYwqGUsFXSREcd3tyHjl9/BRvnOBglCbkzMJpWQDdR9X/Dj/+PZRsKEit3xo5bOjxiFcVMhTTU+hZp5nzzvCxUzxRmUeDI40zc65kLc2qQ9ex7B3KGq5u1u1FJBsixf15olCrQtXC0ycXLIae43HmdrNlmqQNS2nF/jiSS+HLbz7j9fNPWQ2ndF6DOmX3/ApjYbXoOV0N3O53rPd79peZY4pYozhu7/jZv/3nbG5eSe189txeP8dQ+OrrT3j2/vfx2nP99iVXr37LarHE2I7t7QvWmzdYNZDmO7754q9Ynn4oURqtubm7ZLm6oFiLLQatvDQJIcN8SglvFcRbNte/4vLyG3x3Ro4TaT4y7t5w3L6hujMSlt4PTRUHQ0KVmXHzlppyc/5Epv0bLl/8OTnOJCpd7zk5+wBVIdVKypq5cRZ02xxKREExxsQhBkIWgHxIQXaJVRwvTulm4BSWR4ihWdRbyUGVQ3iIsQ2zBdNYCfcPYqsVulb65lzsDdyMB6yK7OPI1NR2wXlVTlYLGUw0HA5bYvqMrlvR9SeomihJWHu5HdRraxuT7bSIIxpNrW14N4rt1Vvubp5T0iMuX33B8vQROcHQLwjTnrdv33J6sgLtUGoCNHfrt8SUhHdkQCEHmhhnyDAsBhmklGoOvXZANE7ci9Bc4QJtvXfsSG25DKf3ZRHSRqXQRtgp3nggEREoqdaG4/4G7z0pC5h5mgOgCPOMsZpxTtIwaloZS7Mf5yjuyhQrMStSKhK9ThG97CilEmISXk2S4helFJ0VToiuIkzPUZp9qbXBZGnlKh6t5dBuVQP/3m/zsrjkDIq+6wSc7pwAeL1DhZGzxRKnDEXJtXovyljvqBRSUTgtcfZuWErKqlaMtw+bTt91zT3VkUokmfbr2ILL4lqSw4RM1roxPZUCo6UxVYOw82pzzLrGGSlVxAwNMR1bSU8hxcywWKCtZRz3AmfPEpntXIdV9iHaLgO9DFz34mbJLVpTK6rK4SCmINEKK4dw1eDFYigR/glIs6nw/STu4YxnuTjl6m7DFCAVTaISCG1QQqKRIdP7xH48CE/TdbJBU+C8I5TKNEgj73GasM0NITFVTa6KWO4dXOKYnuYZo+UgVOIsbKVUiCnRG2F3lUJz1tSHQ0cpEgX23dCWAnLdGm1ZDj3HcQJEVM85UfJMSgVVAsfjnhgiRgdSFYeMRlyRJWdUJ+yRVCDnwHIxsPCOfO9S04pSNTmnbz8fkANulea7e0ag/HyJdd1Dza2xUO7xBVJIcX562ra3IgzHlMRVnQop73FOrM/aKLSSa3ecZ/rOQ1UMw0KeL82l5ztLyhIb887Jtr00+HqqghdAhmqrJRrsrMfqjpCyICNqh7OeritNpPjWla2thVzFtaTEaaaaGDUGcT+mJtAZI82J0nwnW3qjJUKp4/xtq57QNshZlixzTAzeNJc4jLPBlsrJQuNMJRtxlqG0DInGCqDcGuYoG6X98cDuGHBnHq0zIQhW4WK1IFlYHwLjnBiDFOZMSSKF1iSUGtlPOxIOrwqUTKoVSyGhmHJlqSILVylaM+aCRXOIhZPOkEJBmSJu5ZxQqdIbx1yiCBaNR7S7viLWwKAVUxKxpJR7vqbFaY9SmZrAa403hql0hBww3rb2UMEKeNtztjwjhSaQGkOs0mJrEJeStw5rOuaqiRmcsVK+pQxk+X3HccbowhwyKUd6JZ/X/aIup0gKmikESpHrNsWCtjKPpVQYOofWhUU/YLQsY+Z5ZugHQrh3eWVSLFRT5M9qHEp70NKAK84LS+flGX4vsD9anbDZH5iruGqd9ZRcmaZAVeL8lEOvwVjDnAJzEqeZd/Ie1UXu0RSjRHeDHGTauk2+Z53FqsI961QEPXHh6fv3Wb3nQwln0qjaXJOFqsWxUnNh6Ad++nv/AX/v9/8hru8IMfDBd37I3fVb/l//j7fUGOlCoB8quuEhStXyLlCyqHPW4jtY383kYul64e3pajlZnVBiYJpmNl/+iu31S37wk3+IsSe8ffMlm7sb3nnnKdU6zh89ZjocieOB290a7Xu6xcDLV18xHba8vbomxoDtTtjsDpwvGnMyJ1KcUVGeg8YJ4FzafSNKyyKsKinlSCGSYkCbTt5VuVCqtGUWNH6xQGOZI/TaU45rKprFxfvkaYeuM6rWhrkw8mzMUrqmlGoszNLmySznjYIsJrwnzJG5iRLe9xijGKej4GCcwRgnQnibucQoIK3kvl9wOB4wujSHXUPJ1PLAN8spNye0JqREbugZrTWmVmJIKGOYQmziRAUMuch1LE6q5rRrzmhZguS29GjvFWSuslocp+lvNei29VJDL8hMcO8uLO36FE5re089xCpL++c2jwNSecpDvJ2Hc2RLj6TKdhvpFsLPriUTwsxh75hH1eL3kTpLGeHjpxJ7vb3KPHkEu2lmOSh++qjjvUeG/+LPR3ZjItaMt5BM4mTlSEFSMVqBd215agxnzj8s+pYLQ+cNJ8sebSyLYcnt4RW+P+XHP/0Dnr73Q+xgyOrA2ze/5uzUs9/KkmCcAykW3GKAknlyvuK9x2dc3lyRbGA/TjjjGHNhMytOLMJtV4bFwpJT4ZAq1im+907Povdoe+T2MLNYWJZDx3GMqKjJRRZW3lk6LziYoVux3QU6AqcnJzy+eESaAtbI+SrlKlHZ5m4WhUrwS2NrjbVa05VCjBOlgEM+4FKFCa3bwjm3ayDnImzfJKw2nAOtMNqisjzDa6mgaXyw0pz4EOYiC+4qgoxoxN8mBQDOzh9zd3tNTMIH+7YEQwwIuiXtapVWa2hx9PtYeJv777l7pS24c8lN/KvNfsHDPS/x24J1UKvYM6iKmDPW8LfOUQo0mGrEYexFKPrOd7/LanHGrz/9axF4p4hC3GPWyLkiRGF3giLUgtWKKRSKFc+e1pWFNYwFOqdxWs5099HT233AOsWqg8EVwlEc83f7wtIZnp33fP525uurA8YpNvuInpOIo3ORr8XC8+s7tP8Ec7rk1etL7u729EPPFEa6mzt++oOPefP1X/LpcuAnP/ohngLhyGrVc2kML774G4xO/PaTPX/wR/+UP/mP/9ccxiVff/bnHD75Jd97Ynj/QjOOma8uR7TVDHMiTQHXWRaDZ+k16+OEtZYwyhLFa4WuidOTJbYrgj2J8l4uMbE46RnMiq/XwvpfDobTR70guqxjjDMnqx6dM48vlhQ1kbUs3qZxIpGxFIpS7CfB5Cy85hAzaUp03rCcIzrKs2twCkMlt7lw6C19l/FGs2ifT8oJ33sxiTiNd4rTwTN0nv0xME0jWjvuNiOaxNJrxjFgHEwhoatiTopYlJgXqByjlG7MuWByZNl53t5tWA2Os9MOr2VuykqzWAy4fsHxuMd3C1YnJxwOgcxMP/SUquiHFXGaiLEwhdzKVgs1Zdzp312e+/cQ0b2PK1SoGXLEjQf6ktDzkePZhxgV8UqsjucGTtHE/Uwokc5oTvoFy75DacP+ODX3ivC0jJaXlqpVDvDOMIfEk4sLtNJc3d6JZTrOGCX2+eM0koKAfN+++pLby+d8YTypZKYPP8SbJR8+PedkueB2u+bTr77mbHXGPFuKztQ88urV5xw3bwjjSEiB51/+jDjvOcbA29e/pWJ5fP6Im6uvCdOaNy8+5eT0gt3mlhKPvH31N5QcOWzf8PbVr+m6FSoltvuXzLsL/OIxznacnr1PypEsihi6SlPnHLYcj1vWtzusH2UznTPjccft1SecP/4BWndo2xFLxKLpdESVLcd6JMaJWiOayuG4F+5VTVTVsb59hbMXKApTCvjFmTyYc6RqjWCSIeZKipUpzQLTVggbRRtyiRQ0GdvUcBGJchVuCBVKzFhnmVJ4iHCIKn0fLQCnwVKbDTaiyYTjHavFI3b2NaO2dD3s97O89DMcJsmmKypKO7R15HwkR4+qIu4J3yS32I1sY+/blXKRdrPYvl5tLCVH5mnP0SrWt7e8ff2a5ckF773/PdZ3Nzx5ckGMmXfeWfHmtfDPQjtgyQDXIMUNoGyMDKoKealZa3hoXqoCTr5/8d6zvQCourWeiYPGaE1n1QP7JeeMtwaHYY7iFLx38IhDQg64uZWuVCpFKUrKqFIJcUJ3jqxEhMs5o+9p+ginBkSwNfdR6JTaC1qL+6aAVYZOWaoWx5rWhmrVg0O1KmHD2EFcYsIZ0QxdhzeymUNpnLPCB1Ii6jhrKOq+VVbuhdWio+RCrAI8tW1LbZQi5IhTCmcdoEmx4ru+8ZZK+76DNgLmNUYxdJ5oxGVmnCFlR2xuwpLTw2EuZ3GMaCUbQNuWDabFh8v98KwtfrkglUi42zLNCd8v0TYTc2EYPGVSWOfxPpNbSx4I2FsGnvuoffnW/XL/+dWCQVxbtRY5rGRQqsomtFRiLsypkMtMxbJa9vJsVjL0xSQtdp31HNSRSsZpz3IQETrGTMny/aFtP2uVCIm+F3Gspo4Bpw2nyyXOOKYYHg7Ztl0Pm8NB3LFGWEjWFDrfoeVU0WJ6BshysO8WaBSJTClBFh7KYrUMjwZLRpggWkvc2NmB85NeYvtMVCVttvLalwbHWiCH3NykhaHzeCOMJwMPIhtYMhIFkZg8OCPX4zEntDEiZBm5/xbDINEbNLoqvLM4IzGkWr045mISlgpyuPLeAQZDi/05x4U1TOPI4bjDWtMYPE7crNkwhoRSCEjeOLTxzVlmJHrdGKqlyvNU4mE8bMgXw4lEnEsGI4M2FXov6ItaauMCOlSKEqusbbOuCzE0xqOxctBGmoShStFBLlI8kXNbPghDV+Jj4na8j7GXIt8TMWzIvGBa/Fw1x3JpB5U0FY6TZugKpwtF32nBFGiFN4ZxCmQt7jJVC8dpZL2b6Lx8bdYvmMZJmHUE+sFjrWK7z0wFjvNMb4Wvdjzs0KXHdZbOGMaUhPOLuDM1Ge8SEp8HbxSHWKTBNCuiA1KCeMAqud+OJeOdLCFqFmerwOQ1VasGfxfg89Cg6qaKw7QqJe9yZ7FRoY3lPqJnncTnJYIrApV2Fqc1aMOoHAUHuuBsx3JYYCiEUqnY9tysDF1hipNwfFMmpCi/jxbERM0F7yxGQ8oSB8wNxC8xQIVzHd45zlenLIeVODZUkfi0VoyTxWElllIqVskzTBuPNz3Odigc1nUYNNbK9/20H5hjRA8n7JMc4GKRvUrKkhigxZqxBmOFpXO3PeCdYiyFECKdtVASGi/ReSut3BSwzkgcHcWgtYh5RYrbVJH4UFb3bdmyu1ZaQVKMk8C1taqcr5bsD0dKSuSGD3DdwKN33+X15S3L04H19oaPf/QHnJ0+4ns/+D1+88ufkaksFh3awDRNnJ6cQVIYG4g5sVquMKYyjTBN8n6PMeIshCBLotViiTEr5sPMZ7/+C85XZ1ylPSdnpyzOHpP7C37nj/4p33z+l3z2iz9ls71G2wXzOHF59YachHcbJ8Mv/urP+Ic//Qm19q0gpaC0lfsSBTmhahDmtW5Ld2slMZELVkXuEwk5BrSRFlHX9VirOW43kAspSBFJDJFSKtM8sfA9Oiac1lRy42lJIqhJVGhtQIG1Bq0c3VBZLJfsZ5kvU57xTpGLuPmO04RSCm+EM6q1RjtH13VY7TiOO2H+Ks3N2+dUGvYhZbzTrTFcAelhtnO+l6VZkblC6UZOUAi3smRikkXcfXtoLVD1/Tu8NeHWKgvfyoP4d89eVtwvCzVkCEo/VAnIwCuRbtrXWksVXwVGHrpKZrYSYpvBWjz4/pGrapurRMC3Voou5JdWf8uxqEmhcUnThHGC4jDV4DuDLoGhdwyLJTeXG3Z3iqQrqmjGY8JbeHpmmUthPwc++KDy8rayHCx2AXOKqFxZdrD3CuMsulZ260jXWZYrictZa+gNfPDukhI1cYbcJ6o54aOP/5BZGf7Nv/t/8sHHF5Q8ceYv6Djj8erA7pD5+OkP2C0DT559yMp7jM7MuxuenhqSmvji8JrtKAUhKzRLmwnFosmYAkV5Fl7zyFR22fAqbom54IxqcdXMNCa09UDEWEkr1SjP/9vNkXEqXDx6ymJYSapHKbxVLL1jnGcCimqczN0KeZY7KFhxqLYYuwY5q7RNY80F7RQxTijtiDnhfc+iP8EM5yh3x8vXn6JiwCDOxGJa+QUijktyBPb77YPg2/c9tRamHFu6p0V6Y8IYxWZ9RympzQ32wcEspYW1Xfvisq7NgV7lsCYTb6mtRK657BrfrLTzI86L8STPTaRuJ712rnS+JyUp6zJGk/IsltP2mxhriA1xU9si6/LyisP5JM+urOQ4aBSrRUcMhfE4c89Sru24WJWSaLluXHujWHWGwSvmlL5FUJUC1chiXMHp2UCNUpSptOZuPVEGMUY8PR/4zasDx1mK6UpqUmZb2qqquFnvOY6/YX33huv1zOnpAmcVnfF88PQZJ8M51iTGu+d89pufMU473OIj/uTuv8fnn/4Nn336c37yo5+wW0xs1v9XHj95j+//7n/IH/3j/yn/9//9/5bp5hNu15mXh4iyPUpHxrnQuY63tyP7UeYylMZ7ODvvGJwUjJyYyvfeWVLmypv9zBwyi85RbGZ9OPCry8hi6Yi10K0cvfPYnDFOzvfzPIKqvF3Lc/Y7H/2IXDLT7nOcB9tb1nczLldMBWW1YDVSQdlE0oKHee8xBKXoFwtevdmymxLeCDc2VcUmRk4Hw6JzYjopoh8pB5pMjsJNv9tscX5BPgrWLVrLVAOH9UznhCG6D5kxCIYiBOH3ajRio7Ac5kzOinyU5Y4967G+JyPR4/1hjzKOnI68efNaCvSMYhz39INGa8EyWWdxnaYax+EwUhrf8e/64+8u8BXV3iBZyg1yZLh5yQVH2Fyj3YBePeVca/paqLGwzwajitg1hwXLfiCVxOF4lGG2SOOK1ppcE8fDBucW2G4gZnnpbvZbNgfNPIfWFCjxmsNxRGnF69dfcnryiLur16Q0cv32G7Rdsrl7zerkGd79mBBmvnzxOZ999iseXTyj68+JeUdOiRdf/op5Gqk1UlJi3F8Lw7dWbi+/IkyB/aN3ePvmM0qOrdDgIFv7kpnjHbUkap3ZvP2MYXFBSYkw35KnI/NxDRQW/VJEklHgn6vFCU5n7raXzOMW6wopzUzHLSkXyIl5f8fkv6Hi6dwJnXOYPBOPb9huXlFyQJsFYR4FBKtG5nkU98I8st/dMvS3GJvYH7ecmY6MRhVa++cBVcWtk5JA/VNK0ppUM7ocSPOawhI9PGqqs7RkKrQAv0vFKqTVtGS8Maic6VrcxbUYhvcanQreGWmmyzOXt6+YD7c4JzeScxp9sqDmyhRmeTgCtRZ67+SwkwJFTxJbaKJzC8Ki+PYFcu8CkWiaRP20dcQUHwb6xeKE733vx7x49YYX33xFDJMAp2NifXWgloQxUJ2WqKuSdVhKWeImTdDTtTYrfCuHae4aY8zDFgul2mG7xZm9etDMk5yMm1h1f2iWQ4hq7lathWMHYJWVlrIqYo1AcCVa4qwltchdyQXn5aVvSn14uYUoscicC8pYYdxUiceklFFt+DVaS7OaEWeBbNobBruIw7ZWYUkuhh6vZMs1B4FRa1m3YawmRnngOi/RBVXBqSaGKlgMgzg+XSVXRyli6y45N9ebsDecFjaG0loEC1JjusmAXxVQKroKy6wohbKycZyVljapFgkDOQTmIlvc1MDQWYmYk7Jwc4wx2L6jX54yxYnbmxtyrpyerijVk8cj1hqMlchsLcKdc84JQ6y5VWTYkU9RK9X+rkmtfzWnLPsTSmOOiMOrKBHtjDZkJWKHt7aB0EWY1y3G13UeXTMXp0uUThznWTbFo7CSdBMv78M6UpiS708G5Ao5RKqqdF44ewZxUlEKXT9ALsylMoZArprHj5+w3W/bplVL4+UxU10rLMkNBdAP9H5gvp7pvMT5Fv2C/XiQw4+W+8VoYb944+j9gG7CSYihxdRl8EVZYuJB7BKBSkAA3nk6L6LIyWIgpyhYBCUlToteGiFV0XitiVoRciYlhbeG/WFELQdCA2Evuw6jMs5IkHCiMufmOJ4iSgnYPFcpWep9L1trozFG41Jz1VpHSOLUtVaYslpXQpoBTd97+r7HaU0hM04S2akl46xD6UoIs7hHqrQr0kRjreXAWFXFWCPPn8asohTG8cAURDQ5W56ynzQp7/Ct2doaiV5bLUO9OA8kuu2tXHsahVFG2HKlSHzIOnlvaEsuEe+sMKcU1JoaY85J5KZqvIXOFkJUrAYkFoEwHJVTLfpv6Qdphk5JDt9Ww7tPlvSd5na9Z3ecGIZO2gmnjFIVSuL8xFPR7A4Ti84T5kJYKHYxcOEyU840jwtZRzpnMM3JMzeh3GhNpx2KjjlpFqlSVMbmhM4VVzUDRTbSXlODuKRR0kMZk7SEG6AzFqelmbMSwMizx2iFt5bBe1AKVTOLosntjea8l9ZPJ9HlkgtWW4wRYaY3mr6Jgc4Yhl4xZqhI07lS9uHNKK5K+e+968gxMPSDIDOMDNex0pansOg8c8r03UBvPZ31DM6TqyJZS++6JiL2hJqkxVYZTDXUAmMKVOd4dLZAGUfNEn1adL24B1Ho2gDnnUFPEkPMf8vhW4o4oJ2RmSFbRz90mCQlRSFnQlV0iwFt23uB/NAiimqt6cY27mul97alKCqhGvJcKErepaq9kLVSnKxWTCFgkJbBMGlilhi80orjYcdf/bsvefe9j3ia3+fm+jWb6xds1hPd4oIf/d4/4jhlvvjVf03KkQ8++ogf/8E/YuFPqPWWVDuuXr3k809+ju8U4yzc1r5fYjRMU8A7jx96jrvWyDof2JZA5z2pRBHQ0hW//Nm/YI6BqCzn737MxePv8PL5F5ycRuHkacPN7Zc8ffqIk/MzwrSTEoBWOtMvT+QeSw023rkm1E+UkglVHBi5Jlmo+wUpztQoBVclZUiJ2pimSgnTt9aM0YUSdmh7Ku9GVbD229b7AhhEiRIGYovChgmtNV3XcbJaEVIlpcYLdJ44zaR5xMgJvDHBkhQmaYXtPcIVk5C1dZaUhKeddEKRJD2gFTZJakRpRTd01JLJWTdWmjwPcxahoRYeltbCwaUxyqAqmSvuURyq4QpqE/m0Vo3fCrVIEuYehn//a9bm0FL6W8aYamiDe4e50RVNQrVFpog5In7o9j7QSqEaUkm4aTygPu6FmlIrx7lidGUxaEIoRGWoHg7bmZOlREv3O2FVrXcj3QLOzy2npw5FkUN+F7gKHfsawVXupj1dsuhquNoHzheOx+8Ypr0kHuZZGmvjrJhiZIHFLTvmqXC33nH69GP+4A//h9y+/ZK//vznZAVGF3Z3R16/eMX7T+Hp2Xv84MPvc7fPnK/OePPiObrT5PmA7T2ug+loGPwJVb2laMUUM2WluZkFS3PeaVRJdL2WUqVSWc8Zv1gwHMVhs58ixWaWQ8d0j5GqhjlUlp1nmgu7/UznpZU2lswUZpy2giYpmd7J0mWKCbQWF2dBhPwkvFDnHSBYGYUTF3XNxJIgyvLVakuIEWM8c9iyPhy4vpNCNWuFS+eMB6MZW+GX67omqMucjlKEOUk5Ua0Y40Qgbggla+R663vPYTfKAUXLbCGO/G8j/LotgWrNMncZKV5T9wJyFY5x0eohgluLzLr9sCTOR2KYqLpZXZspotZMmEfCdCTX0rwNGSlPrOQSwfQtRQR5ypRU2d9t2W93bUmp231cuVtPbQknbwitRfzTVLKqrZQscbZweFVRqnAM7f3jlQiRKHajnH1PO03NgSkodkGiqZ3V7GbdcEuSyFkMA5vNURZ0Srf4uMyqstDVPH+7E4ft9sjJ0vD3f/BdfvqT3+Nn/+5P6Xzmg+MzxsOO13c3vLp5wZsXn5LQfPKbF7x4fck//Ud/yL/5r79CdZX/0f/gf8bpaqDEAwvv+XIa+cUXW6xxLDpITlKLmxFCqRhV6Z0mxMocAiVFOqd59siyWmw57zx+IdHX9W3m8pC43BW+eDvxwXunLDpLmWZxxhlHv7Jc3s6SqLMSEz87H9j9+jcMnWU1tMjzFFBWUn4aQWtpwDnDxUlHSIl5nskTfLOOjOHAlCoh3hcPZS4WcLJwTKESosxwpx103tApxdDwESFpbjc79ofEo5OOPBe2x0hIhSkVQuOg6gJPTnpqqZyceo5TwqjC6cKwOQaUUZx6y8mywxI5zoneBTaHA8r0dDphvefm5i3b/Y45HHnnyYf4bqCWEWsXHMcrdvuR/RRINXEIEb9wTdf6u/3498Dgk1iLShF/+4JBzZzefsngNHl/zenuFaU7E+ErF263L3j63nfx/QmPl0usMUwxMYYjJRd66ymAKsLj2m/XvPrqL3n3498lnZ4DlXGaMFbh3AJdLZdvP0epyrvv/piryxf0fcf6+gXXLz9jOq4J80jOEI5XfPLF1/h+QTy84Z3HH/L1819x+/YrpvVrjOmwvlJi4bh5I9EgrShUcg6oalGqMB93qPqG3eY1h8Na4MI5ktPYAKPysi1FRIbD/lK8bkZT60SKipJnYtjx8svM0/d+iimBohxOr0hhx2F/wzjKA8goCPNEVVBKIqYj4/4W5z1pvERzQao75s1LjvudlDvERM4jKQrAPNdMCJpSDMf9mmm5ptSJad6wXL0LdgAFc5q5ufwNFxfvyeHIrACFqhVdC7ocyOmKNN6BOSFqjXanUCYqWlyFNQAFazpiKqgi7Z7WarxR5BwwtWJc4w0aJMpDwmrF+fkzvtlccrddk3JEI01TucA0Fxk2nTAkOmfRNTAebvBuoOTGc2lQ/xRT44xJtKgmccBMOaEbQ+PRxQWLxQKlqvBvvOft2xtKgn4Y+ODDD7i+veHx+WNu3jxHZfF4GC0tUqk20LzVTVjjQaTRKLQRkem+GEYrYW6gxZYNMkTeR6PkvoKcMs53wliRRQ85ifBllKJ3HccwitCHcDVqlvhbasUMtcWatdGyzS2FORR876m10FmPqfLzY0kiCBhpRi0F7mMlst2VjVPJBYuSCEzbcEtU0bBrX6dWGkWh8x6vxJHYOScC4cP3RZPLfZusuNlMY/cVtDTUltpaaZuwpiS6jJbviQyu4uC7Z/EabeRFoVrDWJX/L6TQIliGauSlXooUXhgr7r1cFYWCsQ5dKyUHzs8fcdgfJIqcaxsEBKh+OOwx3RI7LFmeeQ77G9b7EW8qvltSamUe91jrmIMIaboJs0rpJq7xsD0391EdrVFF5AbV4sI11yZ23TeTioXAGEvUiq5z9L1tW37Z0N/HkmJMzCVIVHsKHOfYDgmarutF6K6N41kyKc3k1KIM1slWFPkaO+egVAbvsUacT0M/EObAmDJTjBznyH63fSijcNZitRGhvw1SQUeMgf1+R/RSgKNb/sRpAfHHHDDGAvK981aEiGFxSmc7UgmM006ucURQl6vrW06MM06aqtH0vmPZe6xSLLxn7ntqDKyGnsG5xoZMzQGiidaAbk2FNGdnit+6TLQMRLVmjnEmK6iYBpwXt0fKiZgK3vYP95fRGqM0sV270iBt6XyPUYKrUAoO85EYs7Tzuk7cI0jEtyBCPVNtTjtxdty7Q2OYUcpRK+2ALc+X43EUQV0LI9P7ji7NjOMoxS7NWXKfS85JDssVxerkBOccx8OR9WbzwKv527wqayQ3U6ogHXItDyDllCWuZo3GGqhVrrFSwRi4ODWAwdrKdl+YQsXaLFGMtkgaei+H0fYZlJxxBrrO8/TxBc4e2B4mxjhLExqJY4wQ5MBkrWIKgX7RMYaCsRpyJiGRpjjOnHQKGwW9ULUW56Ix1JAl4g8sjGFREr4eOLRnoTeFQSWSTtTaCydWJZSBkuMDw3PZObwV963Rpt33haok4o3WUraDbKarqoQi7xvdolm1ynPB0to6S2zPLUEjaFocq9Bam4UpaGKgdz3OVKaY2/Uhgn1RIp6pWrAGQpwwtiPFgjWeRb/Cl4IxlkXXY51H1UrvHAWPtw5KZPKOeZTrs0aJeWVlZfOtDEo7ahUG3tlqwbzfoTVY15FrZRrvxOWJfO3kLOUeRd4t0zzjFiJUqlpZOsNq0bMfpXTtGLI0TioRs03V5BikUR1xpWoNY0p4Y7BG4VVtIp+4LGNpcXmtKTUxhUhs6BOlpPCpIvPhfeRsnEbu1jest7d8/tmvMMbw/JvfEufCxZljdfKI1dkTUpR3+8ff+zH/4I//CXNI/PJv/oJ//E/+x7z68lc8/+oTnI1YZ5jGRM0ZYy2r0xXzHLm9XpNTZRg0j5485WR5Qo2Jk/Ml7zz7Dp9/9Rmx7Hj87g+Zk8JRWS3POOwPhJJ59ORdXr9+wdn5BRHDZrNnqZsLwViqcYRQwEhRXY2TiAoKOWSlTFQFnUQATTlinDQq56Iwg8UYGo9LU/BgLMPCYEMgHY4Yalus3icYHFrbJhbI8ue+mK228hltFHGO5JTp+wVeGY7TRE6w7JfQQU4zY5aF9GIxEObpQTCjJJwTXIE2Htd17Hc7tHHU0twryHUnPLaCs5rpsJf7EoXCompEIZxQh0TF4NsDWam1Fce1GH6772VZ0pa1qgWfECHw3l1VShP3mp3o3sFYa6akJPOeKiLWaUNJ4vIcFk5wMbpglBE8RJv/jLpn7ck8oI0gMORPK//TDScjLb4VYxQhKlKECYWOstTaZIV1mTzvKQWOk3AWX79JvH6bcF6xWAmnTqujLC+rcIdTquRZZtN3HvWsvOEmVKZZs1xUaaSerSy0Foo5Fd7eBgoD33n8IcvFh/zV5b/i7dULBjuw9PBkecZ7v/sDzpcrygyWSJlveXH7BdfXN5w/PuHEGw5j5Bef/IZcC/tR3kuDg+WZ4xAzHXDag8ISq6ZkLaU8VVESLIicd5pUHSZm3nv6LqUUXl+9FZNDSFjbMWVhZzunWCw8q2XHdrMh5iQJnZoZVaFmYRZ2FpSyhJTBKHGCKnkfqvbSTjkjPFsl5+P2ltdaSSKkibfChZyYpw0xzNheS2zVOWlCR7XWexHU5Phe8P2CFCLQuJVJkE05CwNXa8OwWHJ2/oQUpPVehGH7wMsTPEwrt/Qd85SgNqdoQzvdn0mANps2RE27B+bjtjkBeUhHKW0eSmVSjsJRNwqtyt8q9mvpGmPJTNQ2J6nm7KstDZNFiUc1BjTI9/jeBKIbc9AY9XBvWAVnC0mjTCFiTRMxVSGO92m0Su8sgzdtKZaZIkxRUmQ3G5hS5XgUhrb8ysJ3BtBV4ZSwNmuWBXjKiVQzU9L820++4vnVG17fbnn/nRW9vySFyOYAL9/s2G5mipJlYj90/Jd/+m8k0r5c8sWLV/xH/+Sfoewpw3LPF1c7jkFKChed5p1TSQxRDNtD4mSwVKcE3VEq3lSc03TeY/yCmzGyP2pevN4If996zpaFrAJfvz6y7AXV4wY48471ZqKqxMnC0yvLMCiOKXG72VDPek47g0Oe+87D0jviFOiNZTdnjMrobOhN5uMnHX5QvNzOqN7w9GTB5dXM+hDkfWMs4ySL2s4UHq8sZ0uDVZqn571w+g4HYl6w6peEsGGeZ7q+43KzZT8F5ljoO0MPnHiFq5JgKAm8NSwozFXxNhRKVaSUSESennqctXROc7rwLPqOaZq4ePwe3fKOPoyUnDhsXnM9Bc5OV3z88Y94lQMhZfquY2qFPnOu6IZo+rv8+Pfg4MsQK8PtN7zz+i/wOVGPI/7iESEd0TdfERcfYqxh2l1yfP7nmHjkO7/zH3CcNnTdCqstx90aay3FSNY5hAml4OryOZ//5ueEnHl0/g7nj97l9vaau9vXvPfhD1iunvDm+a+YwoHl8JiXX/0M352icub68lPivBfmSh65fP25bBjzyNuXn7BbX7FZv2K/uyPlCavlsKO0bs1hrYG1SmECqjR4o2K/X5MaBNgYSwoTObXWE6UaKLcKINQlpumWznekMOM7Sy6TsE7Gl0x3wlQziwtMfsLt7ZeM4wbZzmW8F75SLXKwtLVADeSUCMcXWA0xrJnnAzEnetfTdR5mYfBpLRkXMeQUapk57i9RKhHTjsP2Faa7wPU9pURqHRnHOw67Nf3yfYw5lcheSaSwJU53TIc9VW3pYmR1+kPSvJao4nDGOF1T84xfvotBceIMnRLWXskTKR4pCozqoEVvUAlUppbIvL9l8I5aeraHxFQKXjth79R7IHPlbNFTS+Q4ZZS6oevOsMahnX9wyClaNDhKLCyXir5/qCpDyZWbq2vCFAlToAyV3XaDsx1GK8J0pJZzvvejn7Ld3KGdZ5w3DN5Lo2fbQJnGhjLG0mX1wNhz2pBqonee1A4HRkvzVC1NDVOgxKtCLTRnYWoNvwCqiWByiJCadvlPqQZnvLQfKyOcnHagz61pFO6ZV2I9V018kJiGeoCPO2PwRmDMJRcRiMr9Zis/xOmM1gzO4dDExoHrvGWcJinmQNN5KcIQl1pt3BtD7x1GNZZNqRgrEbQHKKqW4gM5POnGN7ovs5C4rNFa2lsrWCsik4hjLfrb+Diliqj5wJ/R90wa1UTY0hyQ+oEbBrBYregWSw77HbXOHMcjSqvGdJKSDDTkklC1EMYDdvD0qxX9ouPFN1/Sd4WTk6fc3V6TayBGaZ62xrZ7sKKsDCQVGdRREpmmXbvC3mvDXFWUIvEHRZWYZovpqSo8l8M4k3Oi9w7fBHDtNE7ph0IPVS1ODdSSUVqE6ZhiE4ydOIG0MNuUvo8O38fv5XNQTTCV+EhksVqJ68Z5tKvspgkqnJyccphmjuPIyXJJZ8TYHtrGdtYarUQg64xmyhllhedmjWXRLxiDDE+ab2MYSjt8t8JZD0oiuUYZtFFkJwzHaQoCvfYdg++xJ5CqxNytlgikUYrl0GOsYeEdzoLV8nIVnmhuca1CasJL71u8ycgSQVr3amNoFOYkw6a1lppFECiliFuvNRevhr4N2UApnKXAHGZiEjdI13uWixUoxdAtMGrm0cVjfLdkGvcYawhpluh1jM3JIY5Fo0xzMMsB0axnPpkAAQAASURBVFqJqY3znhgj2UWWFwPdIIub3lsOB0uM7d2ijRxatSUjw7VzAz/63o8Y93sO4cB2uyOGgDIaUhKelaj6gIyu3jnhQ+XmYMwiXsmiQzbCmtrix4ZSMoex8uq6sOwLQ28fOJ0pFqKpLI1EdVPMD26vWgrKtNhMmAnjzGLpWJ2c4RWMx0wxrdWvGmpWTFOR5sxYOOk1dY6oDmktU5oiRgqmKovGoT2Hcy3YVqWqtByCuwqEitWVgKWoyPkQSRTWURAMXkM1iqkkqm4uPK2hSMFRQXoLnBKJQGkDSVx1CyfMH3RhzNJE7rQWd3uWw15tAuv986/3fYsm1saKEyE018KUvo2CDc6Sc8CaIs5I5xufrhDCJL+mMljtQGc61+NNjzaw6PsWi9FkJIKz6BbytSAcNm8sc44PrMFaFct+ibYdRlmGoec4R2IWF5LvesKcGMcjusq12LmOkEV4q0pcYM46XKdlYWRFNHQ1U3OmpoCuYJW870WolndA7x1W0ZZr8k6NpTAHYWHKAcNyiFHu++asz/dijZEGXxDxz7T7StILhlgjZ+ePePrhM7a7Ld5V7m5vBWKfR477hNW3rO/e0HWes9U5J8tzPv/sN4zhhr/++Z/yzW9/S4mh8X+yuItb82vUlb6zLIaeeQ4YD0+evYP2SxZnj4jjht048tVXX/GTH/493q7XPHn2MX1n+bN/+c+hOkxNfPTRD1Cm448++i6/+uUv+N3f/0eoeUQdX8v3yxiUcVjrpT1cK1LJEtlXFYMhlYz1Bu3/38z92a/t6X3mh33e8TesYU9nqolVrCIlkRIltbpty3a73bAbSZzBuUpyFST/UIDc5Ca5DZAESGwjSBDERux2dxtqtbrVkkxRnIos1nDq1Bn2tNb6De+Yi++7D9VAACPWjTd5CLLO5jl77/Vb7/B8n+fzOG5ev8F1RnAHupWEVYl2C65F0W82OBRxnaEeSfGOMC8Y0wk4vyZyNqSy4LsOZQQxoaoMnEpBzofUJsQJu2kKCaelFbyUQlgXuagrDUqizQ+FbtKYLnv++cWe++PCuizkIpzIJ8/e4/711ygS3mmK0sSy0vmH2KCgKPquI64iIKpS6K1mTk1o4NdRWPhXB3XaSFGGDDQqymiM4m0bqirCoKrI3mOsx9n2dWvZO4wCpYrsk831p7U4TYRvJs4T4UQ2MaiJew/DPqWUtD62YVBtLa6iOOr2zGnsKCHt6mA+SVICLY3G85Kk6b4aKIrTMZEUaCPif44wU4khs9/IcDMEcRamKCLS6RRxEbyG3Qa0c8xrIByhswatCkuqvHP5jKItX776ivffu+bs8jGH02u+dfYhV8MOrR1dv+FXn33BOA5cno1y/mTkbBxbaaDhiy9+zP1pYa0PjshK72CJkdArNq2o4thiuDWDKQK9N1uLz4pJwawWMJb7w5E1RmLRaBLD0GGNkmGTrWwfDWilONxfc7F5RwwFJdMNFlMKxYggpxV4I2fxqiWx0VnTnvVMrkoMDSpTlGmJEiXGGmPpeoerns45nPN0my2pWD5//hkxLTgnQ/MHB7MMmcVF93Cm1u1cX2J+GwU2WlOyYhgGNNLWO80TRotbVowD9i3ruxtGUpLX2DTngjGaZT6hmuvhoWhNGpytOKTbHaXkTL/Zs+u2vHrxGRRpsVaNRJTjKk5Jqty9ZLdsAqE46x4EDWGfP8TbW0t7c088uNcVtf2zh3crCAMZQM6Krg2JY0rErOV8UOQsqQBv5V5TaqZQCFFY8ilKkinmSlaFXSdN794opigpLkk6tHRWO8tTFSFWGYwhBwNvDMfTwmsS++2e0ynyj5+/YOgthwlq1tzfZ6oueKf45effMPaOlCe0i1xuR0ieD7/3h/zFv/h/8eVdFnYwWu5qzshZxik6rXBWYuu9VRgHTy5GzjY93/nwEfc399wdE1o5Xt0lQrXEPHN7SsSoWEPEu5HjaWGbDbdhIqlMVqBtZr/VXO632GlBnVXG3mG1pCouB49PFRezDOBVxXhDrlBUpesENXV9Eje+pTCdDo3ZLimo0wKZyq6Hq53FO7g7BUqpKJM5H7ZYLffSs23f1tDEdJw46wyD67k+rhyXTLKKZc1sey3n1VQYvMVRCVT6Tp6F3SClHDkX1hJ4g+K9c4VRnpRm5tM1xjqUduwvHjO6THr9mt1uQ7fZstn2DEPHcTowz4EMnEKm//8ht/3/+/E3F/iSQqfE5dd/jj++kZgemhpPUCLq8ILN6Utcv6fefk6cr7n+4kdcXlzx/HTDe+99l8tH73H3+lfkqvjgw99mXY/cX7/Edxu+/vwnrMd7Xn3+I+LxMcu8sM4Hvv7sTzncfsO3vv073N98yTIf+ckP/yGH68+wfkPfbZuAEyWiXzKUIPwA23O4e0Wc79siUQnzTNKrbJBWDrpzkmKIkjJFgXMemQZI3XOKkUKhc56AwMd7L/ywlIR5ZKxu7WsV74xkqxvbrLZL+vHuOdvBM5iZ+9vKzevPBBKsRSEWo2qb+GmFtnJRpkJc75iQ7y+nwtANwgzwHaymQeIBBJbdeQ+1ksI9VUWWdUKrL9hegGIk5oXpeGJwA7qulOUb3KYHLRHblCeW6Y6UVoyxLKdv8G5Pmu8ptdKpSji9IMWJXb/B614iBVUcYDnNkI4SWWAnNeYZlA7ibgwnlJ6Yl3uWdRXQa4JjCiil6L1m2xmUlpZewdppQlhJacZZL84jo1FFCfVKKTnsNIdJrQXvHWsQx9TVoyccDgd8NzBuRjbbc87Odjz/8ktevPia2+uXdNsLtvszut6zzpqqHwDHEt8pJZEA4y2dd8QYJLaqDd46YYqZjFYGZzuZrNbmQKm/dgepZi+XjUw1ZpX8euCj5FqxyuCsY+yLFKAgInGxGh8TsYS2jYl7S6J6RoozlLjovNE4bTBA1rXFYDK1wGmJ4lqqmc5ZOuua20zYBL0VV5QuFd8pyHLR344DIWZ8aw61SjV4tpNYgvdt3iVlDNZZ+qGnpgebemvy1LpFDPNb8c80J+PbeDPCUdLNsakbH0gjB+KSH5yUMgXNsbxtx+u6XqD4FBK1Rf0s1WjG3ZnEzIYdvpOGpdvrN0zLynYcsN4Jj8dK81E3jNzf3nM43HO232O0JaUqUS5nOdzeUgHnLFoJ+Fe3yJIzFtprWWOk6PyWZWK0OBrzHJtPRCK+VouLBd1EXqD3mt3oMUog3Q8N1bbF2NIDu8tWri43rPn0a8Zizs1FpJrDQBxbKWRSzBQNyth2UP5rAlat9J2n851cBBuI+XK35XCc6IxharxLpxSdc5S+w2WDVuL8KkgT4wMCwDuLUQZvPf0wUm6T9GC2CGHXebabPU+ePCPGSH0lrD+DCK85imjqvRxax35kN26otWeJoeFaBO6Mkrh+5z2+gdxpMGgBrMsoIJUMReG9xMR675iWVcRoJQ6jsEactawp4a1Eh2OMIgxYC/zaqWeUYux7coV5mfHWsh1GCuKwmqaZR7sLqHIRy6Uwh8CFkkKgUgrWeiiNfWhtOwHLkKCz4oLru4Heb0HBspzEaaQVx+lAantCTvIMe+cZ+p6h70l5Fscs4qg425/xrXc/QCl4c/uaL778gpcvX0mcRYsLrdl2pVVYNXh1e39prXBWmHMaYR8aXeicRM1TUeKE1LImHmeoJHYbEdVT1HhrOBvgbLvh1c3SQPZI03CamZeVXKKI6KWwHyubccMaDPdzxlrDHFZ2nWPbeUIuOOtYlsxmpzmGRGc9GoniZ0TgGYxiMFJMsdaMMgadC2FZsVvPlAu9y/SsqNqTqsdXETSzEsajXM4UqvPELI2Sql3qjbVSVKTBKjlnyGG/MnYWh7DSMom0CpbAGd24e4J9iA/OBKDzXrAV0BhIImZJ2Y5cJntr2FhP7yyd74j1wGYYudjvqTGylsDdsRBTkAivMjhnGLqBXb8lUfFaGEbeOoqRiPvG98yLCIOd61iXCe0UYY3SkIgciMkC7h76kZAPGCuC6Wma2Y0bbNJ4O1DXwKbrxREcxLlRC4z9KNPtkjFGLr+9V9SSKMaRYxKxQwPI+pMKEqsv4irMS5QhR9tcrUrNASv7+ZxKw1U08QW55NUq7y/VnNjGGXTRhFUYoSEEyrKilOWjjz7ggw8+5smz9/mLP/8jyDPvPfuQzz7/Oa+++YqSE1d3r6FWfvrTH3L95WtepOc43fPtDx9xPC4c7te37/m65jYoiDhXGYdOLr3Gsr14xof/9v+E+f4Nx9trfviX/4yvn/8Sqy2naRLWpDZ89K3vEGrm6vEzUlhYp5XPP/slv/Hhe7ho8N7LPpgCKQZSnDGmvnV/xZRlUGEUIVfisqCVOIxLDI0JbBh3e9bpJGfiYcD3G9aYyXklxITvPMr8urXVKNuc+5m4Fvywp1aJj6NFaK4lkVoM2xhBDVid0H0H2kqMvFZsmKmqic8pUmtBG09JhWKlyC7HSsnCqB68I6wnnn/xSzmH9x3e0AZfUFvaI2c5P8QU2hBKRLHqINQsQ6YqiALTsAbmwYrVxodVPQxbH5IA4hfMpTnu2+BSa4lmSvRWtiYZvgFK0kDi2BJxw5g2tFWa3EQTiTvTxH/dmMFNgG8M3MpDDFq1M6IcONdZIsHjqOkGEXyWWZFD5RBWVBuIbnaaTe/Z7eCd95/x+sVrrg9HdtuO4xRISfaww10kRMhFWi6NVlzfJsqusu0t29FRyQzecOoKxinOzx/zGz/4+/z+7//7PP/8h/zlj/8Zz7/6S0zS/OCjP+DR9l1uXnzO7eGG997t+dZ7zzDayz6te9bYM+qVw3Ei5MBm1LzzeOR+WmWfNoq9s1x1iq1xb4XXXDOnqKmxctVpqLKvzNlwmCsvb1eWmN6ieKxXkMVdqb0j1cLoDCXB/Wni8nLH5dUVX3z1M7QqCNkyCy3YiogWc6azMpzf9sL8BU0sipBoA13ZsyvixKvIz/P+eJR2dWPluQniDhQ9y6KR8orOO1KCvutwXpytNcsgVFuLMa41kDYjgVjsG5pJWtW3+zOOpbAuC0orSq50vpNh47o0cdCJy7eVuvjGwUzrJENmLS5RrS1KWSpLE9gqYZlZp+nt/Rak5MdqTVgXnJfSP3lzaFI4ATJsAXEj5pzfng/e4sUfPppA+PCf8s/kl2nn5lIyxvyaDxwyHIJG68TjvYWqmNeC1pVUMrtBy/ccEqC5XeHFMTE4jbOKeamYUqm6sh09p9u13eVkDZCVVV5fa6o4uEKRdJjKzEn4h0vV7MicQqB3hq4zhJw4P/PMS6LrtuwHzzwfefZ0w7eeXHC53/Dn//K/4Kc//Cd8/OEzvn5xi3cy3EpVGPhDZ9C1MKBQVuG04nwj6/bYO37zo29xf3jF3WFB6Z7zXc+8rEwRDivcniLHJWO1Q2nbUtWakKHXMlBFKe5SZpoSr04JQ+XpxchWQ54Tcy14V+hLYaMLvtP0WuOq4ZQqU4FXd3JHeLRR8MxyPSvenCpTiAx9xdmCU5mtlVitN3BahYW4GTwv7xbWZWYcZvq+p/eWm/uJeQ1M84wplVI1l4MnF+EFGmU4rXBYEvtecdYXLocKESwF64VPepyS3AOo6ATTuuCcGHemuxccThPOVubjPaEGVFLcXt9DUYQ5U5OlVE1CmMPOKXR7pv8mH39jgc8tkf3xmnG6wbZDVUkr4RhIccWYiL79FXp8zHr3nBQWTuk1b77+CXc3r4inW5RW3Lz4lDks+Aawf/3VT+g3l5zuvwYyJQXW0zV3BcI6kZaJ4+1zvvlVYp2P5Lhw9+aXcrkvK/MpYJQIOJXWOpnbZTJHctYt563bZltlQpIjqaq3bDVnLasJUBW5wDhuKFkipdZqiSMYYYSgnECpVWmOLicARdtEz6Jw2tP7Haf5yNBZaXWtlWlZSekbjD2xzhMaTUxR2jMpWOeIa2kRRzl0S4tcQJUFVVrtfZb2vnWRaIFWlhBSY4YYacU0npxDi0cVNDPL4SusHVhrRZfIfDpSU+I4fUNVA364QtVEmG9JIRBSxBVFyivH+6+bwLZiKcyHN1Qyy+klxoz4zpGLRylNDCdiuCele7y/oPN7Yb6EAyXdcZoP5HiHJtM7xHETNDGJ28dqMLaytmiROE4Uu42j5BNa7aiNGRNKfdu4qjSYB3aJ0qxhfQsZz3MiF80aI/04UrTn869veOfdD4kZcow8eXTJ7c1rmehag1GwG0eWdWYuEhczLZqWW8SvNLeduIuMsP8eOBDNni5OFHFhPAhZokpJxFhs+rox2RK5Te2q0hKrUhbvelQVUOqaGs+iiYdGupUB3rYrUiW6fDYIv9EqKRxRKVNNIVjNrCoVEZh778VVV1JzVTiZWsWMtV6AtFmidmPncVYaOq21eCuHC+8leu+sJaeE944cZEJZmxW5liritDWsOTU3W22FBwqlxNEjUZLmzkO/jRQ8lFXQppHJGLnYFloETjVGWZHZn1KoFnOrRaKIru+IKWJt5TTPWDtwmibmJVBToO8cRGn2LApxvWrHGg6kmIjFcXH5LqWuWDeIADHP5JxIWcBwqsHqXZtyKmUwxmKtI8SMQmGdgyTCrDG6MUsspveEZRa2Sn0Q3BRTKqwx03uZJoI0k4YY38anobKmwDydKLU5lh6mmVom+blmJDpQKAqUac2KFeHDdALRH7yTNdI5aZQ1CrxlY8WxNFhZWdYoh8bN2OGVBm8xSWFqJngrschapZ3LwuAtJVc2mw2b3blsnodbnPV4mxj6Hu8sh/sDlQb1V5rt0KOqHKpzE4qNMXS+o+/Htu7f4oy4TQGU1QzaQZUWs5KLuLNUYx+W0oRjjba+icDSFOqdpTS2lFYV4yymWo5zFNd2bY6N2gYLbb98aEnsnGNaV7x3bHLHdDoyek8ohbHv6KxlO/QiP1eI6yLR0CRlFQ2p1Bwu5a0wm2slUyk5SXmCEv5m1y4euZUkXZ1f4LTj/ngjwjigUVgtDC5rdBM5DTUGXr16zd3xyC9/9XNA1rr8NsLY3B+NU6YA7+Rw8iBAx1waH1OhdJafcZXm8Jzklq+NrJOUwrxWUoHtWHFaor6v7xtHyzqK8qRlpbQW7mmNnIJCKwdrwBk53Fir0QZOUxTua6n4rlKWzDQvDPsdIef2LINOrXG9FqzTbJ1m0AXtIK+ZpBU1BpzpqKUy5cAzOzN6EfOPiyFUz4x6G4PqrYgXtg1QlpTpnPwsJLqc8FVhdWXOGW2E3eO1uAFizHil6KxFFzmUO63EpakqEdkjnJNpeGcl0pSzNLzKGpgJIeB8z9k4MhoFacV3niUNONex7Tyu7zjMB45Gs6ZK5z26CvH5wdXRe8fWWbyVZzwoCKkw7DfEuLbvu6JdK1lpe2FF2ve8lv0LhCdmtW2ChIGSGYwhF8NdzMwxiitdSXw4UbmfZhEY3QCISysYy2lZeX1/QiEOc11kj+ysIUcpVaFUVENllFpJuWI6w3GOdBa8hd3Qc1pnclTtkislH9MaSKXSW1lDzENJlZISHznfLHz2xc+oKF6++Dnb3SX/3tOP+eTD3+Hl9a/4zvf/LrfTyu3Na4be8PrNL/nmxRc8fnJBDs/49GdfsqrAN69u0RicrVA1ShspPQmVooTfVurMNK2Mw4mvfvYnlBL5rd/796AWDn/5El0Kv/zpH5MibDZ7TvMEJlOSYb9/xOnwkps3X3JxscX597FxlLMsmgf2NDXJGaYoqjFS2lMrFYOxXi6mOeGGse3DEFMgrwvGSOokrBMVRywK5xTGyEBn6GV9SFkYfN73WE37fC0t3lXY1LXK+pJTBOvQfsSbkTVek8KM32wZfE+Nk7AZS2Gz3XK4P0CVdUNVK04OKilEckqMuzM637OsE6fpSM0RipSIaIS523uJ73pnhFFlNLpxZbU1aGsIhbfRQaUNIctQoTPiFK5tvU4t8fD2HEP99VnkQeao8MDFi6ngtG0wv4p3FsgYI0VtzhmUEjFI68q8RqKAA8W9a36dYlBVWFWi2zT8RxuUyoy0vk2MKGVJS+ZEpkNcTecXnmWGcFJ0g+LqMTx+uqEbDNtxx7i94utvvkZ7w+3d2gjCmlevTmiMDD2yNFznUlgDLIvmaj+gTKQfDd/5zr+JGy443z8jB3D7S/7sL/8xP/vlP+fFi6+4jq84353hxo/IrnAzH7h8dMX19WvOzy6Y1xNrNuK4zpWlwpwD33zzEq0VVxePePHmC5y3aCLWZM73Dl8SgzZ4W3l1TGSjMTlTvWJOhlg13hQe9YrnRlO1iKfWaAya7XbDftOxxJkUEpOKb5MO5ML93T2SxBFn+pIEHeSqDNGEh21lbZd5oDCFU0V7S8gRad8oLcKpiFnch6VkPJoQAyHN0r5MxDoluAEjMcJiCs6JBcdaQ1hlHS61MgwdcZ1kgOSciGtaYa0wflPO5Jx49/2P+SL9jHW+l1b2zjUjTSa2qLBEXUWU0srgO09cAzRDhFWgrUWXTGwlLw9n8812zzIdSfGvNfKWRAi5rfUrKSWglcxUEau19jinUMqwIsJrm+vL8//wJnh7wWrO1fZJWitx7lVJUUmhm+yra2pFdxrWVBiMxllYo0JZw5oSmzZoennI3E2JOWbOBoNLilojc65MiyBHJEGVMEphlJyzCsJ901VwHbXdKbUWXihKsa6Zl2XCeiMVLBU+eDZytht4dPU+T559l5vjS/7RP/rH3NxO1Jr4+VcvOJxmznaeTb7ni5d3kAp975nmSMyVaaqsOYGqPD7vudz3fPfb71NJLPOBr1+9ICwzvXc8vbik045PX39JZ51EY4HeWEIqlAqH48oaC7FonMk82428Oi7cH1e00cyLYnCF0Z44u9hwvh+JEWKIZF2pWnOsBaULaU2cauXNMfDO3vNs7+i04lvnns/vEn+2Lrgzy9NHA+ejwpZKzXA7B05TagYPTWc1KhtiqSxhIXJiWiNQ2G96bo4Htn3HmYK8ruwcrdzEsCbZ2zsLCnFsXxjNceu5XSTdtOkdyhhJrJTCFFbujveo4hg2e+Ltgf7yKcMwcP3iV3ib6XcdGI12imHX88XN12QUMdHcgw/vjf/2H39jge/s5ue88/JLVF4hJbJWUFormxIIajk8l3jpcgslUUri9defEdYTy3SLs5rT7XOmeeKLtKLdwP2rz+iGVyynW5me5sS6zFDfMC+TtNeEE/N0TUwrUNEqg3IyaSti4/Tei1DWDoIKadHc9HKYqUDNmUSDlSPFBFLdXei0uFVAY2yHMT1dZzkeVx4aNlGKcdywP39KmO9YlgPWdGy3PafpFqVgHM/ZjiO5Zny3ayHRiC6VWgNaZ1lgVMY5SwGClM/K360NWRuMAes3uG4grgdizGi9oKvFWo/WnsH3hJhQulKXCd/BvKQW25TYzsNiF2OUOHQEPWrWNSMEEodxEI43dMtrjOmAyLLcyaITM6oKgybHE6UUUlw43H0jjrSS5bV1MzloivJ4vyWniRhOpLyQ0zeUFHB2IIQ3VI7EeGRajpxCZFlFxKu1NN6dIuZEqo6YhI1QVSWVyOFwQtWOvguUIsw3pVvstQos1BiFqXL5NEpJBbqBeTlirPC0ilI8fvIO730wcn/zihgz42ZHiJlHj6443HxDzVIw4a0jrNIaq5vglpNAio0yaK3FtWM0FXELRUqzE5cGS5bN59ecldY62WKCKLHtVy2m8hIrvkUYrXU4l9ionhITm36kLjND1zGFIPwbpZvNvbAZhJNWkYPH4KSxU1XQFagRqzRVaeaUKLGxRJTmbBybM9TgnYiVS4Fhs8UZy/1tpDrhwxilcM7S94McDqJY6bwVZpIxEnnpXSVlaah8gEab9BDDeoCjywTwobzkQaxS6oFZo1r0VF5naiPKiIVFnDMPTDFa4/GDANQ2UmO0PB+6tdqllVwUXe9Yw0wpgRQTnXNt8q3etjfuz55g/IhzB/y4YX/xSCK/ZeJ4uGeeTgybDSUX5kXg3yUmKrQpY0UDKQVxHxhLbIyOB76KbP+Kb//W74PtOR6uuXn+GSVGcpVDVa2KkjUpKYouVBWpPPy8JbZplKY3juH8gunVK6Z5au91WGPEGYPuFNppapIJ6rpGvJNom/zMxOXnrLjwSmv2BREbBgPbXU/Bs0ZxEtyHyNB5yrq2OIq0yI7es6RIrcJA67TEvq0X8XPoB/puYFmkrGS/2WCtZr/f8867z7h59ZKzTc9ycOx8T0zSXlcRHIG1ju12C0aen3HcUNMqLlRrJQ7vxHWhlSIr4fS9BY43p6Q3ilNY8UaElZxFYNNGHFCmJDCGNYiLTynDpu+5PxxY2xRbK4XWwjJxXhxRJjRXd3Ls9zvi/R1WOXrv2W56VM3kEht7prLdXWLOO5ZwJIWTiNpaJsmltIiYbmzM5kJURr6XsR+ptD8rrSzziWx7QlihZvreyZqkeSsYphzZ9AMXuy1d5wlv5HONkXhsbtw5p91bdqRWmr7rZTAWgogeDRYcY5LYkyk4K5cUayBpYS2FmKm1HWi1pgQRqbQu7DeaXS+N4pvO8Pp+wTuPswa1VnpvsFYLJDlm7o6JNUJOkd3GYczA3e2RXMXh0ncWXTWpZNYY2DgPrbBHoQipoE3llIXT1nnwqpICGHkw5J2jFMX2xFQISpyuBYWuTi7U0J4VhVcGlTS5yqWwU3KpWLOwBbsql+1aM51WWKU4rQsF6IyiryKWVUBbg2k82VRF2LVouibEFSXcIdNOGoO1nI0duSpG5xmdRtmCcZaMYcmG3WZE54yqA4dl4TDPEg2ssn91/QbnejpX2Q4WWyuxJsEWGGkid1YaMZ3ReCVFU12b6nvjuJ8DymdCDmw3gwwFtRLXe4LBGVzVLKFQO8vgB9YQcEpwDb4NRpZ14eY+sR9HeushV5ySlvA1SXRLawQloRW908xBE6ugH5RWhJwatxNSgTkmMorTHMgpYo2j1vyW4xqT4BNMG1qhmos/NfxDFmewOD8yx/vMdrvlzavPefr0fbSHw/GOv//v/Qf85eWWv/jTf8jx5UwqcHu44/r1nQg4OnN+8ZTLq0tef/NL7u5njqeJ3vVYVXFWRPJaKtNaiEkxLS/5+vof8c63vs+rV2+4OZywGu7vr3ny/vf4w3/nPyDOEy9ffsk0z4S4oJTn2bNnVO3YX33EFD4lpCO9kQZA1zmoHuMcpd7glcJ1nuNplmdYSTy+VCXn7hJb/K8wHe/EpZfF2d0ebbmMG491ru1/hZgS3dDKBFJqvLoibpz0UECQG1MyU6vF+wFve+bDHdY4YlgEsl+SrEc+U3KWPTTLsMkYK8O8muVeEAuqZKbTEe97zrdbSo4436GtZdwo6lRwusrlTYENuWEekjhvjOb8/DExvxRXj2nnEwLOKHSV95/Mjgw1NREty36snMLUIvtGqZDbwITGTa62OXs0vZNyOqMNta4UZVrMN6O0DMrmIGfeUvLbJuxYSnteG5tWyaBKhIYW1WwuQXFyKbSp7WuU+421cgfbXWiuPhpINXA4JKYF3twcyeVILS+4v434TpNCJZVC5+X5SDlRsnprqRo6SyGRKNiuZ54TJjte32f+4JPfwRnHX/3qj/mv/+Q/4rhO3N0eGf2Wl89fUS6PvLv9DlOAfr8nqMhwtmeqmf2jR1izodTAOI588+WnJDTby5H7uyPLaeVsf87t8RrtKtUbDmsGCypDJrTOSMWuV2xV5T7L8H10Frc1/K1PrvjJixuS0mw3G6xyhFgxrpdiGQMgw6Teg6HgLBiTUcpQycSciMmge9NeZ0WulVFrtBKmbCwILgqFLY5ppbU0087MMtQpWEmLGUuJlXU+Ya3Cu4411sbIdu18K2cEax3P3rni+ZezYDDCgreavu8YhpFlXtFaklHeeSBQS+L5Zz+Coui6AYC+8xjryaUQS8G05mooJGS4HNelnb1baRsK4zpGa5lqJKy8FcrPH79HXCa++tVPm7vUyvBPyd0iF7kLliypKWMMZ+dnLEuk5Mwwdq3k4yEi/5AXas3W0BS/h/9SeYj5liJmi4ezTKnSXKwKDE4xWMFqrKWKIaKJ90UrNk6wDfdTJGRxqs9LIVsoSu6iCi17TmO3wwPqpRkslCKDIE9aoska+f9Zq9ltd4Q4M08RVEBZOBwVvekxV1tOpxP/9I/+JRrLm8PM7Wnigycbnlx0GA0/+fyOl3cJpTVxCdQqJZrT0mLVTjMtibipfPX1SzBBBlhUHl1sCGHheLjhUKD6wsUeRm8Z+x3fvJmZkxJTjYLbU+AYCodTQmkx6hhlqVWjcuXqwnHRae5PE/enA+9djVzsOzau0JVK7g3HKZJMwbkOlSqPNhZnCneHiLKGjdXse819Ubx+s/DyTaS3ivOxI8bSGr/lfjWdJnpv6Z1Ck+i8leRS7zC18Hi/4bAETqXQW4tzmTVl1hxIGc46izOVNUayklLGjauErFiSYg6ZlBPbXgo7b44nLjf3DG7k9ZsTh2XFTRN319fEsBJ1QZ8WclHEWEihimCfpOCvJo113X+j/vbf9PE3Fvi601d0h+dgxM2WgggIWHEq1FKocaZMr8hhbhPAQljuqMA6zXzzxY+k6SomTnffoI0jhZUYV6gVbQWQrJwmh4Aq+e2FPYa5iYalbV7N2dBA+MIZ8ChVWPUq7hhj6DtZjL139F1HSrGp9hKJ0los7iATjZgK5xeP0Ep4Z7XIMluqHOq891xcPON1itgUuXr2ESVGlKo4V9C6QxmHUT3nV+9Q3lRKXllmqeh2zZ6dSqUqj9EepQK9qzhj3opAGsXFo3dxZuR49zVhPSBuHWFRTfOJZT4xDB05VKxzTCdFyXIBslZiw0I6NcLvitJuY/xAVyLXd9eUrNnvR3LMrMs1zo3kElimCbQ4jkqRN+5DI21FEcOKNhIvTGkhpYWhG0nliK6Fkiu1JnJYiVXid9P8ktPpFdpIBGJdI6mp5tLkJyFljUykhH2mWLMAKb0RfoNPgVqFJ5SKyBu6FokBlyRxWCAqJK7YAM7z6QRKcbY/Z51n5uOBElc+/dlfsR23PHv3Q97/4EN+8sN/jrMd2jSRqFSccRi1tM22w3SGm7tbfCdNo1kltLKgKtUaqnJIXM++FQalKbTZw5G2TWUMawx4K6ywkiLaOJTKLSLpeGDbWWWotsUorUMpzdAPHJcFlDQE9p0nJwFMKyQa2vueoe+wxnE6TvRdA/YaSyyF13cHus4zDB2bcZDDhYbB6nZxlctk5zuMtZgqfI+xlwZHa72407zEQWxzSVVaMUSU1lHVolHisBSBTzg7It4ZpYUn1hyS8vFwCG6uvQeBwZq3jXZKP4CkS4uoiBPQWjkMK/HlS4zaySU05IgujvPtI27ubolpopQkkPucmOaVvhvQXqD+tus4ng4cp5n97oxXL76g7zuWeabvNMvpnqWxeZaQGLuOcRgozTXknW0idEZbjakiIFlrSEkukVIyIRyxqg0pVvphJNQjNUqTKqoSUpS1QMsaq5WsdaWWxosMFITD4p0lZvtWJM1FtVZJaXw72+/RD2JXrhinwejmzBSHVy1KuHepElt02OrCpjNQNckq1oywpKLwrIw1xFXi9ttxpMuBGCXWanyPNwrIraBISgk6L/Hu0XVYY6EY1jlCrvTWsx0Gei/lIlNsbW0orPU42/Ho8btYY/nqy59hTGLse4l2G4U3CqeklTTE3FzRwt0yxlBSEq4n8uwYKxuMMGUEpJ3nzLLOnJaVec0o43HacXG25zidmNcFpQ3WiJgeG4+u77wUW2hNCJGUM1oJ/yenSE7y/Q+DZ5kTw7Cj6zaotkeVVuBhjMR8xr5jXkWUCTXLWm8UMcQGWZe2tFxm3tx+wzjuMErcLUZr+q6TMg7Ae0eMicvdjv1mEPe0gbPNQE65FRGI7887+68wfjrb4a0nrFK2ZBQUJQ4TraRcw9lCycISsg5p8zPSNFeaOx0toqh38ntjp6gqsxkjWTuWFfaj5TDnt42SVhfONh5rHGEVt/PNMXA2OHZbwzQXSrUc14Qu8hpvvGLrDCoHinUco7TYbh6A29pRS5EorALba+Y5cNFZzobCKRruyhn1oSQo2bdFDapUSk0CClfgTMVXUKrQm0qvFHMs0oba3B05V0pVLIijL6dCbyxdrTLhLfKeFE5cwioZ4HTecjb0KGWkPAMoSbhc3lrMqlFUNlYOrCTHsNmQyswpwmAkdpeNuFQ1AstWyBqkm4hgkJiiosqQKxes0oRpQgtUTIQcYPCKVCxxynitGXqPUpX705FqNHNYuNjvOK4zqWZMTXgCRQXuYuTQ4q5aZ3orTfHTsuI6T6c1V9uBUVq6iKtwmF4fTuRacNow9IJbsS12lqs42aXSRLYRSxFh1FrmKAMT6zSxlTopVfBeMXhZ13rnOE0z0K6HVgRA3eDwzthW6lS4vb7mT/74P2e3u+L88gzffcqTJ/8jPv72H5CWIz/58Y/YP/kWa6xQfkqvMneHCVMXXnz9Nfe3Eq31VqNrwruCtsLaVFrRGScO1FRZ5lv+xT/5f/KDf/3v8j/4H/4vOUwn/st/9J/xP/53/wN2l+9xevOSql7z6NEZb15/jQY+/u7v0u+v+PrFC/w6MfYiIlitUcqI6A5oLFUbdBHMCDWT0kLVPX4c0E7W6M5p6ppJMTCMG4zzVGWxnZSA5CTD/5JrK9B4WHPFqZxj4KH1GoXE130FDSVKO7dWvG0s9NZQi6PvRmoKLErT9yMhzJSaRIhTCu87SjZ0/Za7uxmsx/UZYys5LThjSSHQ9yMXTz7CdTum+xdYc48cFxJliaQM++2eGg5YJ5fEECOp3Rm883ijUc3xo9A4J8iT2tzeWheqFa7TA5vSOXm/uFqEjadEXMipYKzsbd5LoY21up2j5Ql0WqOMlaF+K38rubRiskKnrZyB0VK8UUVEUFQRFduwXxkrLd+d4lsfQo4G6yFWxZNHnnFQLHPmNBc0A6NLvH51RGtDiIGcpJRkOWa5b2BYkwzRc25uqQK5ZpaQGQbLGhM///wV3sN5KXxz+894+eYF3/2N7/Ly9gXGwbv7j/g7P3jK8eaOv/fv/C+4vX3JHF5iVOLbv/m73E83fPzkOxymO8btYw7Hb3j+/C+p/gl+t+M7V99ivn/OF/VzDus3hMMtqVSKMtydCn5UbHRl2wVZSwdProaNF0ba1UaRtCYkTSqaj/aanzwvvLpfeX0re1zMhc3o6Zyld6CLYdMb+h7OtyMl3HFxNrBMK2hF3zt0NWKoaE5ti+wL4uaU/dUgYlZO0iwqDc+ytpnGgjW6uaCBWjJnl8+EjbdIg3Ut4KzHag9WnKXGekIWkdA7zTDuyNZhNPhukHtwXIWZbTWjcqSsmI43PHr6Hmm+x3jLZhxw/Zaa5dkLueIErYe2wkgtRcThag2xMRyd7yk5M2727XxS2Z3tMTWxv3qPb778jFoj/TAyTZMs1ErTdZ51XXBWEQQnyzzNv37eQ2zsaLk7SJmNQjWqFcjVVylh6jcDa7vLyz3B0JyD1MYUNBQURRX5PS1OvAcXplKVo07iZKxiEpBiyEzNld5rcqr0XrHXmjUWeb+mKGfz9r5UQKQIAxpx16YWR3al0qck5/1acd4zrwVvEhcXV9wtij/78T9lu9HMc+W3v/c9DJ7nz39KrkrcndVCSZxW2hC/GbHaukRL6bx8c+LuMDOMlo2Ts9pXX98ydA4VV1JJzKnSeY1Rlq9e3nM7wSkUccE7J7FiDZtOyg9jew6rznS2ct5b+rY2j+PIi2sRkH/r3Z7zjaEbNVfnGp0r14eEwrLpDUtIBO2YppWnjzZ833v+ix9dc0qO01KpptB3Cy4X9oNl5zWbTrP3msut492LDcbuuD0qLD1fridKCHTGYTaW++ORZU3UBFOQM37OGW9kn9r0hlw0S66gLZ2KbLaeeQmc7zu8EhTNg3nMeENVUI0hkVhjoOTI5X6L63xj0GeMqmzHHuaVpLK8hx7iL3+Dj7+xwKdypMRFJlBaU6yiYFobofhTtFbUHJpzKUOW8omHN1WYj43FUYkhoYgtcieMH6MMD8Bka2gXVLnIGq1Ym/r90D4VY8R5K8yWqnCub9ODE+bBeRWzgP8R3lNqzV0oQ45BQMzw1jFkbQfI4tT1lnUdUSqTUqHrtlxcXnF/dyexUd9hzEDfb0jxyDIdwSp8t6HfnOH6gX57TsmBZX1N13U4HXCmEucIZsR2PT5GpvlWvt/Oo4zFN+fXuNmynAbCekJr04DkMjkvGHJWbzlv2jiJcUqbAiiLUo7eG2qNaGPIVdrPDlNgjaB1lLZFZ4lhZZ1eU5Uwf6gPrUXS5KhrgaLJ7WcqB2dDShHIzDWjNFgzk4NcDlIOGFNYw5GSRKBdUkTXTGpuLKvL20it0hBSbkBTEUKtcW9nMGvK8rrlIJByI6JayRVvDZ0z6BqwVeJexveAIpfM/uyKbrPl1es7tAmMveHVmzc8e/9Dur5H247jkji/eso3X9yjcmQz9PTDKBOlJsbMIbPbDBJbFW8AldJaMxVkucj+K61PjamnqjAXdDtY11yIJLrOoxu/sGrhRlnrQKnGMzGN5dDLs6nAzyfmEN662nSbyEvJBE1ssAxdT+87uq7jdJyaYwFMzWz7gcM0460UFXgrUV6tMl7LJcAZTQwBszmTDROJp3jnBHhrLDk/xGbBKU1WAksXkH9PPw6EZRHx2hpqa9tSbcqmjZZIjBL3pn6IlEjAnlwkvq5bcUVtz2cuMvGPObfN/IG2JBFHp7W8bjnRW0fRRRhtSjMOW3zf8bi/4nAS1s+bVzfC0tMa33UkCv14QT+eo32P1Z5x7DC24/ziEcu0sqz3PHtnJCwLh8M9OmdpY9IWbzy6tmIQCloZ1rBi28FtHDbcHe7ksJJluru/fEQIhWWzI893IipbmRQ7rdkMEht7iPTKYKDKTypLTMh7mfauayI1ELe1hsF24pRFxKslrIz9QCoRb7u366k2ClWLHBwpwj3S6u0FxxrEtVALnbEMTiKF1hpyFah9yJnOW8ZqqVmxagPNbdr3nhRnao3EPOO8xi0aVSUu2HceZ0HVhWHTUXJH355PYyreSIy61JliDMZ5hvGM0/GOkBIeKYCQaows03qthe0ELZJrWmNzc5FqaWMuWmO9o1ChntC6yrBBK3w3UpQllJmsdPNcCq/Pt0i9M5oUVkoTLHMp0ipcC723mBOMnaM37ZBoDRZNrZqkK9dvvqLrd9BKNMQtYzDGgTYysQ8Ro+Vg0TlLZzSZgu96ckoYXdGmENNMjLKWeGe5Pya8leave2tY59yKGIQNSZEVDYU0TdfM0HWUmqhV2iStFVeOda29WbX2RqT9VKlW4GEr1EhBppYKidHuN5oPnlSMkbInEIi11VaA1FSWCC9uZzqTsXrL1ik2neNuOuGtoXde0Asxshk7KIVjKpyWwGYwnO8dxym1weFD7D+zrAtDZ0lZ03cDlMLGe0yR9SNV0MazsQlKJrquxZwqVWWqVuiqyCGijCWrQs0BqpE9LQEIz9QbKXqhVjad5VJ5rk/CbHVaEVNiqcI7y4g7NxbZ9w2KqMQ510nDBjXLa9V7z367oYTIskzy2iAunBIFoTB4w9ZXelvQtmPT9zyqMKZKVwtrXIDE4M2v+YpN8OuMpu8shoU5JFznRJQtql3aJ7b7nWBawkpB4scoibtoJSJkSBmrYZoXcpGLYGlg+xQXbufAIcGiDMcqDkoQZ6rtFH3vOS2BXW8wWVzMtWEE9oNhzY4pyOS+NxpVRVzUtaCqMJq0lrPBkjKMHeTEcY7oVryRFRKBNMLwFeepJ+dMTpmHNvTaHH9D56kpUIsMO6JMslmXjFYzQ3fL1dUnrFmg/J/85h/wzrc/5On7f8L3f//vonH8R//H/w2f/tUf0zvH9fXXHA9wWGUotBktj6/2EqOkcJpnqEEQJUo8KqkqXn39GX/2R5GPvvMD3GbPv/WH/4Dd8Ji//Bf/mE9/+qf89u/8m1y/ecPPf/qnTLffsKQN3faCN19/xR/+4Dd4MuykodtapnkR9pv3lOohiQPY2Y6UJ07TCa13HI6ToBPshlqEu2mtQ+l2Zu56QYSGmRBW4jJRc8KaDd5a4pKbk8y8HaoLawwJsNaE0R2hVmFBN/yINYYSE+Nui+325HAi5RW053AQblpOGW0clEznO5yzeCt7VkyJbAxUERw1MA49/XbPxaN3+CadePToKfNyIh5eU8tMKVKQk61lHEaWaaHmBYvwhMfO0T3w93RlXVPjJso5EMA8FI+4VrilDM77t07QZVlwThzQ2QnWRGvN2PfUIgJeavFbeZaNOPjUIuiIWqjIWqubSKB1Y7fFhPdS0gMZp2Svezi/1WayWqcK1aIobDaF29crh06wLCjDvCZyqMRU0CYz9JpjkOGYzpqrK8XxHk7HxhozSvhupqKKkS0s1TZASOy3O6apcJgWUvyMaX3N/WHivfeecnvzhk4XvvzmSz76/DN+85Pv8Uf/8r/i+vAN243n/qby1eMf0/UZna843w08f/UjnNLs/BPuTm/44vVX/PAXP+aLF2+kxKBThJxxrlKN4WIH3xkjvVJ8MSmenyJrHbiucK4yzIp+yLy6T7y8q6jsxYTSUjZUxf0h42ymswV/pViLQmXHcbpmUAatPFYvlCwlAgVx3z90L8s++dcj2421XOVcpbScIWISJ5rTct7ONb91FBuriYsw+TaDJURP0YZhPONsf8X1m28YO2EZa6PovTw7j56+x/H6G2oJ4vykkpUlJcHxpFpxStIRt6++5tkHv8Hh9g01zTijONttCOssLGla9L6qNlisxCrDPYmlKganUYPn7nqi914azpWCNPPs2SNuXjzldLyjaIPdbVnmCYWiH3vIUupRi8RZ9+eXWOs53d/x0ccf8qtPf47hIZremnTbfUJKFWor0Gxu2Srcb+qDKUm9dfh11tJbMKoSk3wffSfYDGscD83FuYI3itEqYlI4b5nXgPGWkmGpmaIU81IIBRSJqiVlkXKhNARAzkVce1UEnoS08+ZSeXNzT+811htqroRYeBMqf/LnvyTUn1FIGFU52wz04yV/9w//Af/x/+1/y9NLxVfPZ2KsjBvD3SES2v0s5cyUKoNTmKxRvWZZM9MaqFT6vcEpKTGcQkTVTO8svS34jeUXX8y8PqzEIiV9oJmXyBzkfVEIvHPZU6m8e2kaT1SwTEvKXI6W0cIHF3IndbUyr5lqK6UGtrrnYtuR4kpcV3G4HyNP956dqRzXiWd7z69uM5selhUxi1jNfnBsXGV0lW2n0SViySyruJ/XpLk9rEwxomuhs2I88aOjTDMqZuZUqUURimJ08kzdz5mIZhwr5xvHYcmcbRydrrx70cmQT5t2996y3+64uf4px9OJkAI6V+6PC2duYF1W7g8nihYn5WHOkiRRltQKvf4mH3/zko2aSSm0ab7CGve2obO23HutMsWmSkbeqIf69kwpmZhWnLXUJoBYzVu2lDGW3m9Yw0mu9VpjsZzt9kzzkRglp+x9xzAMGGVZWcVm6xSlwjBcUEpiXg9ysDe2qfXC5PC+I7SWUG2M8OyEQt6cEhXvBrzrW4W5RpmOqmaMpbV1bvjo2+/x2Wc/xhgvC10t7C+eYd1EP/Sc7y7p95cc7+4oOXN/e+Ly8TNSXNiPnvn0BuU7rh59zOFwpG4S83pCa4c4dqUldbs5QyvLZn9GLavY8EOUC4I1hCh2Y9d5aWTqPCvCh1EKtLP04xalMnU2oC19t0fbDZWF87NLYoycjpMIWEaaD1GtfSsrun6LNx3retfEXYdd5ecqHIOKspU1StOwNhbKEVCUHMm1yDQX4QCiJKpZWqxp6IyIhjnjOktMhbVkahFXqDb17aJrEIhm5+Cb619h9ciTxx+KHVgrgWGS0HVm0IYThTVLyyoY3rx6xfT8a37wt/4QaxX//J/9E7zz2Kr42U/+ClUij5+8w2//9u+R5nc43DyHJhopLVFAYy2b/SU1iRtDWcPm7JL57rpZxgsaEfS0ljZUbe3bCdqDA5XmPOv9AFrT9xtMqYRaGh4Z+XOMLPpSGiKxV60NRuUWJRXhJrbX7aGKXlKhmu2wldZUFGkN0gyXMwVpftw6zflmQwZ67xl9J9Er61Ctqv6hcUobcYauQZGSHO5r43cJKqo0hk6LJ1PRquKclTZdGbVRElglTZlZa0KRo496+PpVc+XVykNLLrWJV4XGiFLkVN62nMbcJjCdZ54lBqtbdBslEc3aILadsjir8N5zPF5zmo8Nfj3wwQff5vP8c9ZpIhG4uHqX7f4x83riyy8/JSyBGCIFxeXxxLc//IRluePNmzd03rGGjLE9xjqG7Tl1XSjLSaD9yrThhGqCujQ2OitsExDRLs4TX375BYfbN3S2MUoUMl2ssLSiB1cr2raYqpNiCKO1CFOlsKZVIrNlYTOO5Jw4TpO0YBvNshbWNQhrtAleMco68jBdzlluArFEdK2UnAWk34oI5F6f6WQZFrdAOzSt6yrYgmGgKrCuI6LfuslSlRbMdT5RU2L0jlUhLsJaWe6uKWFis70Qd45pZSSt0bUzim3nmatiWU58+vMfobSwobQW16737u0zE1OS1kHrpKlTK7x2EpdOi0xMW+uuqvL1Y6yIdEncS6iCdZ6hV/JM50SIMkn2zom7VinGYRRG09pKWhAuj0YOSOfDho3zrCFQlMDlhbNWOd4856Q9HZV+s2eJK8u6CHvNdCgMg1/lkJ8SnXH01qL6HmccNQaJD2ppEn2Ifouj1mGMp1ZF13WEtDTGm2bcjBLTapfjBxB8ypqKfSsUO2NQ1rDbbgkt8v7QEF1yYEmRbIRzZIwiFSlemebcnt/K3RGsXQlJ1nZrZLhTSsVbxcXOMFgLxtCbyNPdkbtDlBbpNbL1MPYeVzW6ihCzHTRz1CwrWB0ZvGWakrQYpsoSEsZWbBW3hCOhnSHkythYg1kbSix411GYWYpi1R6TAklbrE6kbBk1GB3J1UJtw5r6a15WTPmtUAcFpStPNx3zmiQS3lxNi/q1+wAFqbm1qW1AVFvveikU/cARlXXUKDgbe24PR0pRqFwZFeCkWfes76kpsQLleGLjhYeUwyIuMQqj1QKKr4rOCtLCKg0lo61iXhOpE2cjKSMNkTAfZ3F45kTnDTGExv8Vrtm6Vkqq9F5KdNKrlxRV0N5TU0TlSk6JGDKmFDbasColhWfGUqtCNTFo7DtSycxFXsd+45kmaeWNuYLWbPqOvB5wnZHCllJa26K4Vq1VUgaThaUz58ISpME+F7mMVq0by1f2jlSVnBdTxKgiwnAKoCqPnjzl/N1LfvHTPyesJx4/ecbjqx2v33zF3e0tv/W9P5C1xVaONyey0txfv+L69g0vv/6G45qoUaLAqWh2m56hl/PXtEa22y0ff/Jt5unIi68+Z1knQoxo5dl00o5+8+IrdvtL9HjPO0/f4T/9T/73/OSn/5LNZse7z75NP2yhiKvx6qznxauXpBCIWcmVoMp+bWyHKZmUMyVrqnKkIjxrGx9KrWCeT6i8xehtS14IoF+hSDEQkWHbdLpHaY91PV3314pynAwpVK3CyzVycc9Vy6DdVGwVkH5nB+JyoqLZ9iNzY8GOXc+SFkpVbLd7QlhxnaKkRMgZVSu9dzgn6AeUpmZhuqZOsd9vuX75grRGjm9eMXYDh5s7pmnlu7/127z4dGUomlxXhq5jrQmNlXOXtVgzY4zjfH9OjomhCoahlAPWOYzt3g5bu1Lpuq4lfGRoblxPNJGaE+MwsoaVimI7DA0RJG2a3TCgFSyrDJ1yLoDsmSnlVowm+71Smq5zqBhxrmvYHkk2da7xkVHEmECJKKkaXqZmRQiR060h7CubQaHIbAZxknYKoqs4L8VS4wi2q9zdQz+AMpXT8dculNKYYlVVclGUVNjuDFe7gTUmbu5Wzs96bu4zx8PMsPV89OH7xAz9xpKSpabKH//X/wlf3/wZj8+fMk0Tn/7yh1xu3+fHP/kLnj69ZLQnnu7/gLs3Kzf6OQf9DT//7DN++NMvyFWjjUanytA5vvPt9zE1ovI1L8LM4B2PjWIcFI/QTKnSGQ0pc7FRBFPBKjZd4iwU+glchc3opSToFEhZzt2C5Sksy8qjYYdxlZuvr+kHK2VrBdYsHeqjc+gqZ3yVNd0DNxFxoXXOCq+6Vmxz21vv8Y3hqtCklKG10e/Hkc3+EuctUwjEFGUQnDPn53soFacy5/tLdl5xf3dDx0p/cUFYZ6yzBAVryThjGfsePVoOd3dieDCKZx98h0dXj/n6s78SJ7nWbMeRkAp9P2CdY54meX93nvvTDEpzeX4JSnN2dkbXdbzz9DE1BkIq7M7O0crx6NET/u2//98XNEBKxFoI06ENtB3zdGQNgfl0j9fwwbc/wfmOz37ylziteOo9N2vh/6No5/y2jiN7qrWtoKQ11z5YBoSpD6XmVnwhxUzGaFIo9E7uFrEU4fQHSZJ5JQy6bS+s1FgrlErUmpyQc7eGNWSsVlgnIpgw/pVoKA9yiiTjcUYRk4iQ8YHLbYTtaYpBW8Wmt1ydjSwzrFPAOMd+67m+P/H86y/46rO/4oNnlziz8q/93of84he/4lcvDpQry8u7JPdXFIbaiqgS8yqptM5aoHA66TZAlLuEUZr7aeFs1zGHlfffGXj3cUeujj/+8T03U2K7cZxZK2YuFOsSOdsZ+g50lSKSzsrZb82ZvExY4PGmQ5XCNFfuYuV8a4gW4hwYR4+uGacUVztL56VT4b2rnh/ezqwh8uyyIwS513lvWGNEV+jb+nm163DW8XrK3OXIi9uFzehZjwmnDK5W7kPhOgT8Q9lJzoyuoSHQOBRnneX5MRFOmaG3jKPj+jBTRs+Xbya6TrFzBecWlnXm/v6ew3LChAIVdr2n916Ys30PSu7pSongT9Mtcv7vgMAnFvsGijZeNj1dxIlUWldNs5JLvt1gnWzKuUTgwab+wNDSOOdJRTgZ1vXYfhRmiJbJj7PC+6hNSHJWGha1FiCytP4gYiOKfuhJIbEZ9+LwasUGWjdRwHb4LHXwVEVKwuqTA53BaUs/7NqUOLKu9deTM6XYn51jjOHVq2tpadlucNazrBPbzZ5xvBR3yrhlDQnTe46vblnCAvoxSkW03YJd2W3OsG7DxfnA2m+Yl9vWQiqL035/Tr89Q5WCUht0veJ0/1qa1tqCZS3EsKIQNTgIU5qh3xHChLWauIo4aYxj7C9w4wWbiyd88+oVh7sDftjx6NkH3N28Yp5vBE7uLNlYLAbfjZjqcGZGIxZ8qHLZM5qco4gEVTYxqxSJgKoKEA5jqQmjpJQitVahUiu5iDXaGoPRHd4IH2k3dpQcwRRCjiwNiG49pBq4PkaGccu42UEFZcDpwqNyw8ANpa7EbDHqjJuiWLNcSLVVfPnZLzDe8Qd/59/g40++zzCM3Fy/Yj7dcvPmK6bpnr/80Q/5/sffYlTSxqOV/PxiPLEZJD799IOPmZcVbyV2WtHELAuos+L+eWiTdcailUB2dSvjSJV2QVoYd48wWtp3l3lpMcxE3wtLpZYiUWPjGcbdX4PWPnDsrAi+JZNCYL/dElIGLOPYi1hXRdi21rLmjHeeEhOd77nYw3Fe6F0vBSFZ4q4oTcqykIZl5XQ8yIS+wGYzYo0D/dBmJZNbtCXOEmsqFZwy5MbjLK3NUKny1iVUm3tXIZcIY7S0LSstv98cPSiJ8Ka/xteQhlc5XIrwpFszlqIiYqRCQLxrXNGI85daMdqy213w5vWCLorTdMD6wGefvWE6HNjv9ljnuLx6inID893MJx9/j9evXjOdJlJeub3+huvNVv48o8gx0fue88dPuLu74/bmhtFpnAZUkair0qQiny8CsESa1xYxN8phFBzvb1FEbLUkJZKvbigE0+r2atXMIZJdQa3S8qe1OMbwDm8dY+dQesO8BOH4WUvNctyxrsM3h6sxwh1UyuC8a7Eg4VDF0JqircE2eLLVwqSalhVnDa65rWMrVNAV4fqUSq2aajqyMpzvzzndvwaEV1rSTEwBZzz78wtevnwh4nDJlJzIq6IMid557tulsNMafTrRdx5tHafbI3oDNWeJNZVMro0TpgTaL9BqcaOmUlBVYsgpZ9kH2rOni/hxB+85nE6y+eb6FjBdskSrcoqkkBg2g8S+UmLsennmrcUYI5ewFJhnadp1Vg5Ove8YfY+isi4LaC2RofavuEwYk+jHPX034NaFECK+70hBLtEOja6WoqXJdOw3dF0hrCuj6wiltK9rEWceThr7WoOwsw6jrLyHncKPPQlxnIlbQFM07HyHtwL/jjGhETaadtIULAMGB3Vu/EH5emrNKCPtj9YoYpQYMkUTI5wWwxKjvEeVkkIKq1tsObNOBjtWSg5871uG33p0DyHxi9cS7XWd4+XNTO8s27EnpMKa5cywhpVlrXgf2I2WwTvOfCfFIKkQyDjn2XZOHHlKeiadUuzGXriwMdFZSyywmp5dmek0LDMkVRicJidNqJVi5JmpCrSSi3iIkaHr6IxmMAoVI+e7nq1TrLVSkjTwzjnhlGbsvDxrRc5UD5ErlMF2DpWltXOeF7aPzuVzU6azjq33hFjQquIp5EUKV+K8knMlOEMqGYM8u6mKy8dVzdZ5BuOx/YDK4lDMOVONAOxDKiQgNHfdQwtnLgnnHPOs0M5IO3VRrDGyzIFcDYPvKUEuOIZKTRFyFidEAbSTKG9cCGvAG0NvO0KWabo3IrZ31pGygONLKehQOJ4Cx7WQqwxLtFXUUAjzSs2JaY3cTzPvXmwZrcKnhK6FWASRYAGTaMgWgek7LetazgWMZYmJ2AZZ0lhOi6Errh494x/8h/9z/uP/8/+OVy9/yce/8fvcvfmSoeuZDjf8iz/5f5PyLYfDFzx6/F0+/atf8p/+3/9PTNNCPN2Kg0Bbkon0m8w7l1teXp+gFuI6cxMWUkk8ffIM3++JMTF2liVE4ahaTcwLFxeP+cP/3v+Mly9+xcsXz9kMW2qOfP31L/m9f+3f5fziIz579ZJqMkpXfO/55Pt/my4H7HpNVXdoZ5lPK+PZGfHuRnAMFbzxGD+i5yMoGQBZ68XFbYWZFUNkHOB0vKW6Ae88cT3hO9Wc+YJksNbj6YVRVSuqRpz3VK1kHXI92tgWldOyflBJITDXI845ht2+JX3k1+A9S9dTMaz2iDEJ72TYsdv0+DrirSYOhsvzM1Ca7TiwbA2b/Q5te3aXnqfde6gKY185/+AdQhYMg3eW03HAGsO6RqoGV1eMG7i6ekTOidMc6bznm2Yi2GxHDoeJVu9F1RplDF3nmZcVtKHvO+5vbui8Z5lXalHiWh9Gxn6QmL3WWGc5HjtKa8utKNaYmNfEbgfTNIPWXFxcsMwztULfexH9mlu97zuWZcV3PdM0SyqmVs4urjC243CqbEbNMicprZhENJ9fiSgZEzitsSbhuubsLpV+A7bLnG40XS8uPbTGd4YaG3e4yvt4WhSdCSRjOR4T942neHW+wdsNH3/rX+f9976LNSO+25DTia7f8Oln/5Cb6694cvWY27srLnZbel24HJ9ycfmYw+mWD9/9NiUH0lIoa2GOimmeUdLhxEYbqA7nzhi2A6f7l/zlzUKnC2eqcGU7hk6hambFcJsLdyfDKSSCciL4WHEt3k8rkpOo+M605yIxboykpHSmhkjXBKBadWsEb+xiRLjTVtaxDKiikbozGUbLHVDEGMFTS3qiPpQtacUSpcl7iZF6d4M3sLGGUyltyCLOoGo0RivG7cC3P/6YF19+Ji4/b7B1z7SuYHvOLh7z6U9+iNbCFd3szvHDlvfeexfWE/vdlrPv/R79sGGZZ+ZlZnN2yQcffpuiPP1+i6pQYiROK8P5js3+jHVZcb6j5ozuBzrdkCrOUlIihYJ1RsTgGInzirZgvYNqyEUKgOI6o2olzkdsTXz/2RPMy89xh4F/+vzNryO5qgqPPYMxCmcVg7NcnZ8TU+LuOHOc14bmknu2iIIi8y0hvb2DUxWmKlISNJemYqwmx8JsxXRyvjHkLNzd05IwDWlkjby+qhbONo55lVLSzhnKKmdIq2RQZ52UL7gmEuZaBOFiKjFnES8MuK7w8cdP+OlnlpubW7S1PD7f8GSjiKef4yl8+72/Bd7xwx//nCVplpgYOsWy5paOMyRV2IySHjotGZSlt4qhU4ydxJBvjhG778lJc3sfKLHQd7Bzik9fBQ5zIWcIEZZlbcV9isu9ZmM0d4eFcSPnZWeMfF6RSr/L0eFs5fHoialyO2deHzMnt7J3lte3gW2vGIyIrEXJPrDkyrwoRu+ZQuXFm4B1hsEldr2lc5o1Zsxo2Y8OZ5HSz5NoSH7bE+/uuJ8D55uR/bZnehO4PQXRPIygwfaD8HgPa2HXV/Ybx6+uA6eoMCZwCpWlZLadYsgV3Rcui2rnPkmXOS+N9rkklLP4bofpt8K8XxZUlstxqoolKrb8dSTVf7uPv7HAJxN61RbtgmmHLpolV7ymv+ZuKW2aBbZR1VQT+BBxR7hJPSEkrPUS3XAdrhskrmcldma0EdefALew1kpcz1is8w06C6ZkpukOXYVRlKpE7nJKbyOAtSp616GMISV5MUJKrW7dSFRLSevdskR81zP0jgUPGDbbPcOw4Wx/weH+Szbjjm7oqDpjnGU6BXa7S5Yo7aHX19fElEklUXKgHzbEnLD9nkpH5+Grr1/z9NETxs0FOZ5k+h8LOYm4aI0Vl4yWinKlCmtIONtJwYixGNcR44yzhqqkxj1XKAjLIKUV6zxmGFHW8/r1aw7He3a7HVdPnnG+f4w1PddvMlZnfN8R00oKiRQi27NzyCeZZBtxqeVS8J3HKM26nLBW4sOUSswRawwxSYmAtJlKzDm2iF+pYkOX3xaeilMWpTIxR+YcBW6aKylnNt4TUnlrr56nhbq+xlx2bDdbxnLg0nxDqoEpS6155kjJoMxGXDQB9rs9zsDPf/pXVOBP/vhHzNOJ7//2D/j2Jx/z459+ynS6x1tFcp6YEvuzS+bwhmHcMi8Tuiu8vr1jsz8nnI5orejHHVorwiT/O5bCEgKbzQ5jnADvQ2LoJc6bqwBcjbUM44bO9dQwMYwbYpgl+qNbqyAPTq/ubfGJNhZnHWO/weVISis5yGVk1/dMaySkQufESh+SxEQtFa8NUxCX29B1JGBeo7gFq7AFvBaxIWQoSmJk2loBoZqFGDKlE9drrmI/d7aXuHBzTeSUpRxGlbf8C6VlTcgxorJp7trcRD7d1pImDqFJNO5jbfwjkftkWt+cks6K0AAKb2VKmtOv26uMUnRO4NaxIQB819P7kXF7wbouWGM4Hu7bIcqh7I53P/yEJ+98yMvXbxiGPU+ffYDSG/re8/Lll/TbDVfPvsXYe376oyM5LJAir158hTKGvJ7A7HHe/jVHoRw+SmqHibcDkXbx0UqiRmhO04LrHDGJkNyyTG9dclohYOQqAwpjHTlHOTwWabqKa2EOicO80neGi90GVbIIfjkTwkoWJYGcC260wuTKBQzkIvHW0uKBuVTBIFYtAxaTMNbRV8XWVU5J3J9eV/J2Q0a9vbAk3XF5fsV894q+67k8u+J4+wJjDdoPvPvOO2xMpSjdDgxbwhoxXQ85sWx6NpsegKFzPLq8YA6R8/2+7S9gdGart2yc5XLTY7T8HDFgvaYqifkbY2SamTJ932HweGvQpUizbd9z19Y6jLhvlVWUOaMpaCX8DW8sOSe244Azph3OFPN0RCuDGzoRSeNKCAu2RbBAmqVLEtj7ZhjJKZHiSu07iZ6kQPXCjLNacXd7Ty5wcXbexFkH6wzlgccEZ8PAud3w5nikOkNNmfPNFqs81imm0x2DMwxO4uPCFzVYJdNkZaWsp5ZCXCLbi0uWZcGmQPWZEETELsqSk8Dxc25Ov1RaI7i8z7WSwce0ZIHEm4cme4ihEKImJME9KC0Hud5aem+42CiZ7K6Bd/YZnzPnfebZueP1sRBTpFaIRXN9WOm9J66F43F926yXMkwpYxUUWyna0WlpWus89LZx8WrCoBmHjpqjRCGtISOCkDUeXTRzzGSt8KYyFxG1HbJ/qcbD6pQctYwTqLPNEe88CnFTfPj0jF++uEcbJ61tSLSo5iziHopaEp0xhCpiWMhy8NdIkY5SmmmaGJ1FIxeHdV1ZU5QIyLrSF8OKIxtDXAsqFwbbk2MWppA15BBZa2XoPKc1sPGWosQBV2qSdkelmaYV31mUkuFPLbCsC1pljsvCiEJnAXiPfceynuh9h/MOlQq966VgKEQsRdoRleA3pPlv5PFFhz6emOabxlcujGPPNAfWEKnVsFcK19idu07z+hDItUJNxGVmXVfKusogMQb5e0oQTo6tbVBb3p4rvRUsiMUwdE4YV4vsdQZDikl4sNrQdR16CTjfkdaVN6++4c/+xX9Jv91zlp5RtGPY7vnq+UwplbE3fPmLH/Jnf/pH/IN/8L9mtB33b15hrAg3vYNapHikas2r63vW1eOcxNQ1lfnuwBfLSkgRr2sbAnbMaybGQj+O/NUP/zkJw0ff+i4fffdv8e0Pv8PPfvrn/PjHf0GImbPzJ3z0nR9w9e6H/NM/+iec7wZ++OO/4h/84b8G94nldC0YDm9R1uG9gSwcuXVdpb5Jwf39LeuyClvOGGIQ3IZ18qxrrQWXQsU5JziYuLa22iLOvJoxxknrt3UoPbCeZrSdcJ1HKYf3HalESopYrRi3e1KMFFUZVUV7Tdc7Npd79udbdiw46xjeHcXRvduzHTo2Y4937+O9ksZSo2XAVxNKP0blxuXKE1JbkynlK9SV8B0LHVAodScOxda4WcoZKWaKHolFk5SULZ3Wp437bJiWyHScWJBh/HKaqdoQcyKkzG7cMj15TM2JpKSrwVqD70e8s3jfYa0wJQ/TJMxdJfzW29s71jlxfzySi7hfO6O4uDojNldeqYp5lfeD1pXqJCWghkGGTh6G7Q5nPfOkWNdI18v5qRjQRgpzjBaETIrSpjzdR3IpPLqyPL7oKHqlK4rFw6PzLeePttzeLvz8p3fNGWravqx5c5codUFpDUWBqxynhbUUvvzyG56/OvL5lz/i2eUl/9P/8H/FbniP6en3uHq053AbsHi+fvErfvfjD3n1/AZTM8+efJfz/W/xi0//FFMzfd/LwAbTmrUrx/vAj372Y873hveuzhic5nZaGccOq10rptAcZoXR4vBOMTF6uPKJ3ltefxnRiPPXtWSOsQnnE+f7LbVmairNYVpYekmpLUHwEwopKsupyHktFXKFSCtvhLcFfUYBRuFtG5YaQ+cdNYpbtiZZR42qWJUZnIhBF2db1td3hBixPvD06bdwxkCZOR8Ue7uw+eBS2kCzIBLef/oU5fZ89N3v8+Env8nxdGTY7NkMI8Z4tvud8DW7ka7zeO9ln48iWtZ1lvhyjqynlaNJ+KFju92x2W4Z+vFtNLaUinO+oYlKa/srqHzE1Ag5cCwrMXvyJGAe3ZidtgnXuttRXj6Hw6/o9Uvub7+AVkAqpBDVyiglAZhyZa6JU4jc3rX3Sxvw1qZqOGvYtPfFGldKqSxBjABWa0qWPVDVgq0GYiU4EbopYr7oPeQqXv0QG5tNV8bO4k3h8rLj+hC4XZO4NZGGdFXFMKM1bEdN50devbnDOoPvFSEKAqeguLkPFF7zd37wIZ/+TO6xP/jdv0NXr/n8ix8RVsWrF3/FlODmsOJ9Za+0OPWs4zRLgZiulZQNsRiszYyDoesk3v/yPvF4bzlOgUc7w6Od8LPvTwFVtAwzDLx3ZcnKoTCsg+H6OLPpFd9+5Hjn0vIXX61QFCFWjjWzsZVvX3me7jpxWDvDzd3cdBjFGhT3x0TZgVcwr4XcTFdpLcSUuY+Z894QVkhK1qdSZB/vnMY1ZFE/eCkXCZkcIpoB5zRhCWyGgXmJ3J1mkjdy/laG3ld6o7BIEnHXa0E7KYUOUTiQqeC1wTnFaU4YPIPT7XkJlKpR1ZBi4Vhlne93G87Pt4xDzzwdubu7YS0B11tcMpKqe9iH/oYff2OBz7Tih5JFrDG49rAisUQlb6qcpQHOaNvgm5p5ObEsqUHgxS3SdRu08wzj0CrtaQw8R0rS9FirKMDeeZaw4q3DW9/ayxS11WbXxqWzAEpEBYs4AaiQsrQMdtZjjUyj13iUOCFG4KApg7booonzzLDbcTqeKFEWaWMcuSi2uwuOxxnrPM4N5JSYTkec69juNpxOR1zn8N5SYmYYN6xx5XA4sH3nXcIys4TIMI7UHCnxxMtXz3n09AOef/4TvLJsxhFtxa2zPd/xZj7Qjz0lbpiO9zgrZQwlZ7Q3GGeIydL1G46nI867VvHtxdLdRNaQDWPvON91qPe/xRoWfvXZz7nbvyKGlavLK27fvMQ5UNqijWK73TW3ozgtlTZ471hCRClNjInU2qdyKRQt8QSaoBtTxDu53BkiRMUSs0wXrWPrBrT26NZsSc2oqumsIyKxvYc/e00VqthotQLbabpO05nENk+YKCxAlSI5aw5Zo3yPLoG4Tuwu3ucsRM7OrljDQowrTx7t+ebFxFdf/Irt7pzv/dbvQw5o3+PPDKVbMeMZv/17H/H1V1/w5uUL3LDjg29/l5QSn//sR8RcGPuRfui4XmdiiuKUiIUUCt2gyRne3Nxzvt+z224x1lFSZOh3DH5kHDd0F2cs04bpeIedJsZxFN5cc7CllEQEMwZVjMD1lZbYhxKrtzFwdnaOup/QIbDtpGhgShljKjkE4UEEiaumLE6VrsWPMzKNUQ8TJutZU6AqWNZVmla1Zui8iOa5kIJMQXJp7LxKA9BWcWzUKi6q5t5ViIVZKUTUKtIkq5u9XlpDjUSDaA6bIs114mZ+cFOoVsKjHv5N54XDIw2qzcFrZDpmHmD11pCT2OFjTIQAxkrs8ng8cXFxxXvf+g5ow1/9+M+lUEYbbm9fgRp4+vQ9Lh+9Ty6adZ6I85H9bo8xe+bjkb7vub25oxsvZC6bG8Bca/q+Z268KtXa7mqFigwWPvjwO7z/3d/k8y9/ickBqyIhZEpubV/FMC3ies2lYkvGalk/tfwlEqnWCmfA7wfiIXJaVqy2UgriHRdnO5YpY01PZz27zY6cC52XtSulinEerSqdDoRsqcaSyFja4RSJR4eYMc4wdo4lrdLK2ETIkDPvXO15tN9weXbG5dN3mD85lxiK9Xj/Ca7vca4XwP/f+l1p+jIKU5qYViGnAPwOupUuOV0gr9BiYZQioHatKFpDSeQY+ekvv+J138mBel7QzrFWced4axj7HUPnuBqd8JOodM6xcZYPd49IjafY+46cMiEPhJiZY+Gzl3d8cNax2+zZDMLkiFmcmDmdiUCiNSlmDrOIlneHIyEXvNGEEOi1RKt3gyHlig4arx2Prq443R+wXjNnCHMh6eZAyhMqr+Q1oVNEO6g5kOYFMwyc9ztOpxNFSYFDCitLWNjtRsiVu8MJ7zqePH1GWCfm6UhcIk5ZdIXB95yNgwxfKFycn3M63jEt0sQ3Dj3j7py72xt6JxGP3W5DqhJfTTkybITBV6pmGDTzkgmxkHJhN1S+/5HlVy8ya6kMg2NZZA05LJmQwOvK+VZzuXHsXUXrzKNzx/mYmAoc50iKlZjFSaZrxVsYho67gzDxrK2t3bESk8Y64SXlVIisGGNJVeMaAHvNmU4ZRqMo3rxty0xREaPQfoxWjaVqCFmQFTnLAROtZRhTC0p7em9ReZE2NwpxmTg/O+OdraMqhz/Amh2DVuw3A15bvJWyGd0c1AolrrIijcMZObBrpeiMlCWBYrq/p9QMJZOrROB1rVRlObVyj65zhEEGMIrKujqy1pyNkSUWFIlYNdveiwhjSovciXOz9wW0lBvpbYdVmmf9I5wqdA42Q09KhWmODN5hjKE3A917V3xYH9GPI3Gx1LLBAfO8p6gqSYRlIZU9h/cvWWJmCpFQKm+OIlrmUvj42RNyzFxd7jgeZ56dS0z44tEj+po4ZItyStqGvUPFRIccyO/mReK4MZJRVG0IUZrD950ixUQ/CMPZaSXN4UpKxAQrEdgN4mRVa+ZwuOYv/vQfcnd/Yn828vLrT/nB93+bdf6GNy9fM80rpdzRj55f/eKf88/+5D9nDgkdzb9yme/0Q6lPRYdECJVU4dF+x/vvfchXz79knVeqk4vM/RQ5u7giZzhNB5SeePH8Vzx+8oy1JP723/63OLu64qsvfsn96+d89/13+eplZOwc1mQ+/uS3GDvNzfWnPBrPMMYS1hXnRnHN5IK3whnMOWK7jt4o7taVkhK6wmbc8KatBTWL41Qb3QqwHmLaGqMcMUhxiKmBUWfSA8LHWcxgsaUNPKO4WVQV9mVvLalmBqfxvedxP/L4rGMcK3u3pbMDzjl69xRjLI5CTQuaDPWOWq6pCFNU5SxCQEkCK6jq12DzIs5bySDlNqAEVKU2MUpmh+KyqNaCdVQWcdaVQkmF5CSSllDUrYKNpZieWpobGk3MhhAySk1y/otyjjUUUplRaqZWWSPbV0fpCtmKU3XVhfkRjNlxc1cZjOV33z/noycD54OIq1DIGFKVtuqQCnNSrFlzWjOnNXIfKhVL1PI95wQlGuYa8KpiDAwby25wfPIbTxjUhm6MoCLaGc6ejZyOR7767AuunnSYaqSB/nDi+nUQN5qSASNZfj7WKnKUu9jgBGew33mmeeG/+qP/jCVUusHSu8j/5f/xf+DDD36X73/8LZ5/eUMtlb/zt/8+P/vJP0W7DR9/+Ji79TUvb36BMwNjV3n+4hVPn37I1S+/4MvjDBiJqBorzuKQeXl9j1OVsdNyNkeTjAyfr3zBq8Ju6Bjyymorn94VfvgyscTMbqzCbWus7WWVKGPIGYsIRzuTuegC6JGbk5SvSLJayo9qzqRa6Ix+27j+kMgyRkSEXAwKSTl1Tp41azQ2SRmQtV5a1ovFO8fTR49huubqkeN4Wsjasdvt+J1/4+9xvL/hzRc/5bd+/+9hnWE+3nEx7nHaszvbcfXoCVRDMZb3tRhqrJZiP6NF8CBH6jrDdEO9O2LzCnHClEBVlbUaQnfOfLnnaniM9z3Gdw3VVFAlQlwwcaLOr1DrkbwcsPEWlRYZRitPNHvs+Ai7O0f5UQrkUmaeZ9AW7zyazHL/NWm75Xq5Q50/Iy3zWwdfi51QSyW1kopYFct62wbnUhwlZXdiWoq5sKYkbb1Z9kaqtOFKZFYLD1NpHLqJMnBMgU0v5XVWG7zJzAHWVPBO3HCjb7itnDgfNb3tuJsTIYu5w/eqOS4NSyhos7LbOZYY6TtPpeANPL3sefbokudfXfPpzz7j3acD3/n4Y373b/89fvTP/6+cbzq+vLumv+p5/vqOTa/ocuVyZ7k5wOcvMyEoVgfno2vJiUIuijXI3u5bKcZZZ+nf33LeKS43He9/6wMO9/e8+uYN9yTRf3aFz68Xvr4tfPB4w0cXns3G8PGzgff3jhd3M6+OEYuiRonXvrcxPN0aYfOGhcebnusFTtdBMDMW9r1mUKCqQTCmFesqG295pxv5DoYXh8rtVPnupeIX17e8PAZqqpztey4Hg0krnd9I+isXVDnxdFfYjE/48tUbDjdwcT6Q48Tl447PX88c5ojuDMbJWX2NlXFQeF14tIGo4eVJUDh3cwYqoy/0Bnqn6YzcvVKM9KN0AuRSOM4Lt7e3nL/zCTklSq3UXDhOiaVltQdv6ex/Bxx8pSIxPK3f2vUBce4p1Tgb6m1NtDXiOFtWied2XceyykVZG8d2f8E8TyjlME6KHJY14PsNTmvCcmyX2AceDoz9iEKEAWm1LfTjFm0t6/ElpWRqiczrjDc9Rslh3BqHNdJ2WpEK+nR6mOhKW5jShmGzQxvHsqTmLLRYNzAvC953dF1PLprKyjyvPH7US/NuXKBEXr++wTmP8xtefH2D63sMPUobttstJVdCgP3ZOdZ7jqfEtz/+LW7vXnE8HPBeIMX9sKFUEYlCCM0avIqiXBU0V00/9KyxkFMhxIBpMYcHbpZWGus1a1hQyvDs2bscDjO3hxtizrz3/rcZtxd03nP9+gXH08zm/DH3Ny+JObEukapu+ej9S3LaitChFMpYcUikROc7SlkBMNaAktdKmw4IaCVtUCEHcs1orxm0oVhRvBWqwYI1nbForyBElBZ7P/Whaaiy7URoHLpBGoE1mAo1VzpdoWZKkkZmasGrxGE5yoFMJ7GKG8vhOPEbv/EbHA93uA8+Yhx/IUy0deXqwuFsz5N33uXps2esa2A6HLm/fsGbN3esIbHfO8LpnvPLKz7+5BMON9fEEKg503U9ndvxyW/+LreHA+8+eYxWcHP7ho8/+Q4X5+ec7c9xXYf1Bt/KKjSluQuyLLjjltxKF3Ip4vx00pB7+/o1tgZMmTE6UkoipijsqyQuytO8SMX3Zs98nLi504RcyX5DCgt9L+yxi/MzgTMrGAY5hJje0zuDtwMxdhQFIWac69jt9lzteoy1jRGzSDOcNoxDT6WQUi8R4NLEGYQfNx3vha2Xc3P6ykXAVgVZINm5Flw3MnZeuH4FyJHjPKOppBSxtqPk0oQsYe1M8/S2MMf5DhPk2QPFbr/ncH8HJbzl/Dnn0VZhjeLZO8/4/MtPmecJYy3nl09R2rGEQlUe3xnmeaYbLF1v5cCgLB988C2+/vJXcopT0s63LhHvHYNThHWRNlrtmjNRYYDO93SdYz6dmmMzEnRz3SrNOO7ZjDvseWad3mAWpKyoRZmp8t4D3ZxSqkXeC6Vmcs0kpeRnpgxhkbKBlFKLJCo6W3hy9Zjf/d7v8fqbF/zW936HkBP3L79hc7Zle3aFG7ZYDesycfb0W9QK0+nI8dVzznvP2dlIb4UnZr1mPZ3I6yoxdSeuN+8MQ5uwOetIZcU83svXXmSz1DWg6kwpCV01OkOe5LJWHkqRtGlMuAeI+cMUVZoyVa0UJcyyGopEWpzidz5occbGdiylclgic1WMnaMWRQkL51sjwkwpGFdBC/Cd3HhGObdLnrDovj4mvnlxzw/euWK/6RjHHm1kWESRA+KDOK8UFG0oKUK5lGbl9BB5Ve1wmSXWnzrhmZYC7KRhGUfKW1kLmlu2NMdcrtLCWCpUtZdSjlr46NE5KUVSkTKKkhVrWXmqNXNWaDPh0fi0EFSmdwqnYOg6TkbzZgk4BWld0J3HgnAbSyEuC3r7EMGqbIYN13e3eOOgE2f8OEjT8rREtFL0nbCfus4SMry6zVgr+3huQzTvNJ23GGQdjKs4hLeDpesqX72YuZ8K4BgHT1gLS5BIzjhuOc7XjL6g94ZlrSyNhRKVuJZ3TpyzBY21nTR2K5lqi4Ju8YO4aZYgIOtCxXbi7FRUrNIsS8Z5TSwOTCctwMDGiitwP/bcnyYuO82uzux9pcaVNFXU/BW/0W8Zug6311LEocDUSUQ5LcK5UlXSCQZoQx0qyIsZeYAHFSOfp7e2NbcbUA5qfTsFR4u4XBozuRGLqFlYjDSusqQrzFvXeFbCe1qrpqyB7dZjEcHPKCmMUnlEUVrBmggWlIpCSq7Qnjd7xyZ7VE3oM4dSFlIEtUPnE9JKJfycWttAryppHVRSZFJoLdDKtCFSD/YJGUVWAykH1vSIWAvzuhIKrEUxhZXDunA3R0KoHE4Lc6xcTwt308QSMp+895TX17cMVrHzmsejo+sGjtNCqAVvKpf7LWtcuTslvFasSyAbzdXVIx5dXfx/mfuPJ9uyNLsT+215xFUun4j3QmZGpKwsBVlosCGsm2ySRoITcsIJrf8ejmjkqI3GCc0oBiTNSKBJoBuNRqPAqoKoqsysrBShxRMurzpqKw6+4y9rzJzA0zIyMsKf+/Xr55y99/rW+i1Kjrhqyen5h7x6eYPBsdttOavOqeoFzWbF4dgzTIk8ZoySgqS6KlReSgvWrcJVDdt9RwwDu5tXLKxmsTkT/p6Dcep5fXPHcrGiFMfFo3f5j//e/4zl+RP+q3/2f+Pps9eYakWIsLSBv/jT/44uGsbpSOj3fPbFp/zeb/81bG0pZULlidpasrZkNV/XYaDkCZ0D05hnB5xhs1pIEZcxGKU4dh3WKOyM1ElBGpfHYaDWFlIiToXKC5jepcQURnK2EnXMCbdYEVVL6xSNt6juhkcnLa1JdOPI5WpgvfQ01uPNiMkHOXNoM4sHChXlmn4o5kKLG1GEJhkU5ZzBGCmKm4eKWdlZ0AvynC4Sz5Kkklj2ZA8SySrDPKjLRUmiZhb9FHqOrkepW8vSeK9jknUDcNrjgRpx8ZRJnp+5yLNclxlZkgu2CMsOCiVNchaRbC2qaJY4Wg+xH7msR87NFT6E2VkvOKIyF2pkXSiVImVN9Ia89nTREMrEx5OcZ4xSEm8rmknNSJYg548+vqauDHYXcZXFVoVvrgOWwjQGUshSbKc93hsWS8/tbRSnVskonclF1kVjoKmhbRQhFF6+usdaJ1G8mIlj5vPPv6ALv+Lzzz6h2/0Qaz0h7TnbnLFavsXV7obrcKDyhavra946f4opictFy9391+QkA5K6raWAKGVikibWXgdMLeV9Kie8V9QOFIkAWJWYpp5RwV/eFH52lUg6c74xLFeamkxxhe1RXM3joAQpVGtWjWdVFZaup3KOw6hJxZBLmgePmqDm1ldlpICIIuuKkXIqZ2QfJ2iRwmrR0p4+IadEuHpBPwWaxQIYaFdrdDhysqwx529j4hb/4oouCgZjsX7M7dUVxjlOHj9htTkjl0KzWmNRYmiZh6dGa7yvcQZU6NDH1+jjPSp0IrirQtGGrDXFWXJVUagFo6U03nlWNqPyFeU4Ue47GHvy2EOcIAzCaSuZjBe9QCVKSUTdEJpHjO4M6hVqbrlWc0S50oUc9qTdnsPNK9L+FbZqYPmYvHkHPX7Fg8JX5iF/ycxt0nNsN89nYTUbA2asT0FYz+Mg51c1mwZKVjijsU5arBViZJhyQUWYSmY3CePYKks/yR41Z2lFXVYWbxRaCy/Ya1g2lpIjzy9rrnaTNNxqResKi9pxcxjYHRPOyM8RQmTpDY/OF7z7+JzLi0e89+iUi8tLDscDy4Xlj//r/z0l3mNV5vnlKcZmNIm2zpyfLjjsOvquiC5SxDnoPbS1k8G9k0RF5eBsVbOpFY2FxcJTe0NdVby+fsnr23sO+4BHsVk5KgP3fea6T9wdJ/7uhyu2xyM310e+/+iM33/vjK9vjwRVGLueJ2tPIXFznDhRmbcvlhQMN8cdlVNcriytl0FQTmJSOY5SsNJiUBqOMbAdBqZc8fj8Ed22o2oU/WevWDXCpDxdt5w1Fgckndm0mYVVbNZntJffpfzkJ4xxZJp62tpgyDQOYlIsao0tGeegcoohFGwFzmTeObVslpbXXWE/aXmG1QbrCsYVrMsYNUo6IQf23cC+m3DrJfu+0I+Z9TixP/Q0jWc/RMZ50OGMn9Nqv9nHb96ii1itlfFvYnkP/+aBq6eMNLo6Z0GB8wbHDKAs0mopDY9LjPW4CtLQoZ2fBbQGlGIajlhfoRkxGHLJWOOoqiWKADFKPExZqspLKUEpFIEAygRcKUqe3U7aYrSlrmtxSZQyxy17bEmyeVYG51qOxw5f1yhl0d5jClQV5KzetJ/mOWpQNSu0KfR9R9cPLJZrEaXmyGm9aNinkWkcyTlx9foF680FJVuMdqAmujHi3QK1KMTJzcUeGh3N7F6y1E3L6/tb2Vg7Rw49sm9QGDeDeW1FjJnN+WPG44EQDvPvwM0bIstnn/6KMQaur18CmpevX/LhRz/isN8xpThzCTKPHr/DNE1UdUPfixOkFLn56qrGGouxbgbzK5zxjNOAVo6Tsyf0/QGrDXWj2Hc9MU3CbksyX8xZGBGNcxgcVjtykYdqQVhiIRZSSZwv13TDIM4FZ4lhktiM9zhtpcHQCesipEQqGqsSViVUHtAYYh5IQXN/e4s1hvOzM3JWHPYB4wKbkxO00Uwh8+XXn6DI/OSn/57vf/9HPLl8wsuXL/j66y/4/g9+F6Phmy+/YLOsqcrE+nTN9957RgoBO3MfSoxUVsRjlSeZKj+5xFqB9xvTYcxAThFSxhVxq4r7IqOwuNJS+YVYeIscoIjijDu7UKgxYkJPZRNFzZtWxKlZKChdUYpsHGBF5pyuj7y+3XF++ojVskIpKXBQCjDvCScuZbQRp640TypUNkQ0GYepl+Iu0ZocRmKamMctlJDmPyMFNWneZKYiBTUpZZRvCTGDbzGmxbRLxmIxBaYUySlS1Q3DfkdRinq5xpA4HgfiNHDoOwrQdweO2zvGaWLROJbLDSll6rrGe8d2ey8lP6Ww3qyZhkF4j/mhUVVKeMJYUFo4i1AwWnN9/ZqqXrPcnLNcrKgqx83NDU+fvc3d3TWvXn6O1o5vvvmKceypqoY/+Lv/kLvbV2xff40OA9ND/NJ5/Byn9tWCqm4Zxp7l5oyr8BnL1Ybu2GGHEWstu+0dx8Oebr/DlEkiUbPLY4oybXZWBK7C3BQJhDBR20qmRLM9UiuorOHR2SmL0DKOPX0vTKxcMlUlDeB13fDoyXPuDvcM3YHm5IKT80uolhIXXK54/MEPSChWrefu5ppFs+D+s58RX/8Fvr9FWcVFU9EuvLSrKnH1aiIlJpSylDTglYbUzVwhafDUJYtwl2WCmh7EbgU6T6AkZq60olCRrUc7h8oRlUZKjJQifMuia3TrUXkiTQO+qaUFMydiCLIpNcwssI6CJjpwukDWSDc5c4GIuDxRGtNYhiHy8vU9N4eJl9uR++PE9fWWxp6RzQRGnEEqBykJ0OIsK6VISYgVBzJakbWlrQyEMLvMlTBhaksMwslD5htSDqDd/PcPQm6Z27PVm0h2mR2uMUU5SGQlvEWlpaCFTGHxV9ygmb9+/pRjiISoCDmRTyo2yfJUL2SYVgq6SgRvycUQLheQNH3pCGoimkLd1NzejlKypDOo+WCnIlWtmUZIUZy7lbXEqLk/ADpjjBRFyTUuAr7RcLqwrHzh3ZOM14GuA6xF64k4zQ3sCipX07iKOEZCiPQFmaAW2ShqZP3rcoYxcb5UnDQVm0ZiowOFuhYeqRL8J6TEuq1x04A7JExVUw4KbwtWRRqj8TpzlwM2wZnPbEzmYqForKLSCn2qIA/kopliYXscidbS6MRCH/Clp8l6biUWVqggCoy4H5QCJUw+eTQppOzJoPRI1gaMx2AAQ9F2dhtIA6pSIuSrHCGJZ094vhlpLM3y5eXtkgFLiW9E25KkGERpS56/jr4DlCKVTDEOXebnUAmQhd9TSn7z/HdKE2xEVzW6XWGKQhdNdrLfyqWgY4Xu7lHqITSlhKdqNE4BeWTmOwjEvIgIoimkIG7ybhppWkerMjEkMJlohAubSEzKMlYVOEeynqQFgdDFiX0YmboD+fGClEbStJzbkeE4TIQEYy58eb3jus/4UtFi8Bp+8pOf8Nazt3G2oW5aXrzu+O53/jZaB+6vv+DVNy/YrJc8eetD/uA/avlX/+L/wctvril6FsXIwuWdp/kxF1ojjdy5ZKawZ2lb1psFN/sd224UrleIbLd3PH50yTgc+LM//UN++6/9bZ49e8Rxv+eD7/6Q3/2Df8inf/YvyCHzgx/+NXS7oVctX338c745OeWDp3+NeLiSoQKFEkeMSYQcKSninPyu0jSAMcThiDXiso4p0VQWXVcolXDGYUpBGQcpSJzPWSkRcxW1d8ITS2CsQgUoRkvLrs2s3noblwvh7gua8Jp0c2R5ani8qvB6hx4M2hqyr1G2kgIFbQTKPEfdVMnztZLEdUSe4e95Zo/Oh3/xulMQzl9BIt4PhSO5yJ6MksR1MUfnS2YutihkbbG1wlVLuX/mJINShZID5AgpoYokiIy2sp7kgPVA1iIYlvm+znLlpxhnmV0E8pzzm/+WDEVbjhPsA8SQ6Cb48Vdbcmr59oWhsQliFKSGvDIUWZ6XaXbtxYROBR0iRnlImVgyxhuIsrY4a5hipsREHAZSa0ilMI5HVmuFt5rNSqGLZeyF7ZySMIa7vbyn3mrq2hDThPcF4yRRUFB0XSHFgiA5E7WxZA1eK/pjj9YOpon99oan5894+uQJH3/y73nv2Yd89bOP2d/teXy5ZulXVLah8o7B7elu7lhtHNEowiRcwIy45YUJrMkho7KWgVYq9Dkw2UKDPNeUs1LYVgIfPdG883jD3a7nl1cDnVI8ririKHv9WCZckqRL308claV3nqIHFqYiFUlCFBVxdi4IslqKk7S0SJdZ1MWKO9xbjTcKZQTZMh33oD0aRbtYsFydUeJr8jiKGaCMrE3FcdfPBglBcRzvvqDfvmIIPS+++Zjl6SV1JUMtlJSKGFdRGYUbt7D9An24lv1UAbREU9FWTCVpgiQsfp0SxJESRvT8fNZzIomUKHGkpEzJsi8DOT+jPcW2hFxQKZKnXvjdfE0sipAipECaAjH0kANp7EnhQI4TISWqk6e482fYIq/fpKM8PGeD0cNf5SzEbAhSgo4KiaSZkT95vvczWc1PhoeCDoQJrOaqaaPFRT+S0RiccVirOI4Sj+9ndh8GKq1RZEoBrQqNl4HdstH0xjKGxMKL4DyGwj5D5aRMKmtJgKxqK0cqLU7nF7s9X11f8fz8jDEMhBD5+ccfU+nMwmWWdc3ZSYNWhnbh0bXCaM/zJ4psJ66Phf0RHp1UNCailKQV+ynOw1NNN8zr7MJhpoHjUMQQ4QpCxlLEpBgOicMoZpqz2jAOE5aB33m75ZubkZwjxMzdrsdZzboxqJR43UlBj64Kn9/1XKwrmoVjPw6s2oqum7jtAzFpvM2CH0mFflSUSjGNmeOkadoGH8HWrWB+2jserTQL55imwm3omKImRGgaRx53lKHw4otfcd9NoDLGFrpOeP59kGHEoQ9UTvZvISWsEtpmKpavbyOf7Qt9EEOINZrX25Gmgpwsa9/Rq6+IyWFVYdlWWK1459kj9JRZblbYxlNXBl0S3hqqxhOmACXOJXy/2cdvHtE1wppIc7nCQ6xWz9PfB7EnIwfnh7Y3pYRzIk2NBu+X+Kple3cnkdf1AmdrvJP2shACvm4Zj3dMYcQZaSNaLNZYv2DsD7KBxDCFhDISISjLU4buTvhzUQ7xzjdoJRNjpSyqzAQvBda1xOMIGLFRZz1PesQJtz5pub254fxkSSo9aZIoalV5Xr/qWK5PsJUlhJH1+hTnHWEq4uTQCu00t9evuL55KQ1Ug3AflBIO25dffMpud8/l5SM2m3Pub3dY4zk9OWWa4e3aWA77PcfuloKlbs+J00gdE05L24tRTlh49VIcTtOEb1pS6EkpMgyZXGQRv3z6DtbWPH/+nE8+/jm39/f8/Gf/juViwThOxHRkvVyy292yWK65eXVL5T0pTbRWxELjHM7VaNURolRWa18xxURVr6jrU8Zxomlr+mOhdY6QxlkQioRcZNHLI8kUKgveyUMzF5nCWu9QKuMdrJymcS1DUThbkcJISoEyi47eS0RsipFYMn1MTLmQsmYIkNVEKB0Bg3GR7fHAcvVtUi48eecd+v01X3/+guVqwdvP3+H13S0vvvwckzu2X/6UZ3Vilfcsyo5VumFjHY/fcqyag0DDY8LdMTc5ZrSenR5GImHWaKySjVaZMqApU5HDvzLieM0yerXGUVtARzQJFY7YeeHS87VbCqRi0S6grSbN7aYUKVp5cHmVJJZghbTRqjywdJrVs5pCQOc0i4KIQDipecGTiJfE3kFsIg8tjhWxs3gVKaoIUJa5GINfx14eILUWERfKHM/V2kA00ugZLARLHg0miRhSzVwvn5fosUNZC9tbbLtiZZF4iBf3YDltGU+XFG1Aadz3V8QobL1ut2Uc9nJAVYq+61nVNYfDHUPX0fcDtmlpmg3feq/i1fXnbDZnbDaPWJ5cUAqcbE4IaeLVqxfc319T1Q1XV18Dhmka+c73v0NB8Yu//DHD8Y4/+sN/zgff/j5VVTEOR5aLNVoZSopU3uGs4fTyEauTx3z9+ac07QbnHEob6ral73uUUZyendBUmvV6wf56jzLi2EtljhUUGIaENYrF0uO9xlsjYvnMxktJHJ3ei4uyENjv9wJ7LsxONhh6Yai0bUMIEzevXxDCiFVAHKhOH6PCyN3tDsg0VcPN7TWnj55xslpxumoZP8moq49xuccY4ZYoJWKcEmKyOBfn0WqJUURuQOWBEjNZabLSaNfI/RAnyImSAloVYKAESMpQTCVcqGFHGjuwNapaoLSw+RRA7CihxyAbS5XlEOiVPA8Skayg8hXMmzmjlYiGWGHIKU0ioVVBmfImKmkqi+pGqkqA510u3Oy2WGrWqxaMpWiJKIsgo1F5gtCJqPLgdFdSsKKck2IYN4vkKWCsE2FHiUBXsqHoMrtH5oPbzMIVkUaujVn/kM8vZS6/KcSSBdjMHOmceSWlJM6WGpUtRUmUJG4s79cNcd9gtWKaJmLOMMeaQ4FpnAhKkx7VTKEw5shHixOuDz3bceB+KuzCyL7LFG0JQaJjbSvx+XVb+M4zWU8WreJ+X/jFlxNjkVnBycpxUhtaFfjBc8+ZT/QqE4fM0Be6SaFnkXuaRha+RqkIJTFmzao1GKukLXR2yZSk0FYOz4dhQpvA0ksJSAwKkws2ZVzxNJXHaUe7bnH395RcOK13LH0ix7mgwkGtPUsyizLRGMuialhszrBaXIh6OpLSyP7YsWoFV7KuHbWW6I0xYExB24xW0nI/U0MkHqjFuQri/mVuCc26pigz6wOzQ485Mm89D8qwQg6zZQrzoaOgcqbECV2gFCnFosgeQSLBRa6pgrjvZycTpVCMRhWJIJcwzurgzEUtQf6s8RQs2/sjIVrCQjOdeZw/xSxOSVQYI8Op0nekFMns8CqhsqxZugBJ+EbkhJod/krLz6zUgwgSCSFzyDUNgRICD9SrnGcHExkh+iQykdgfiX1m0oVgPI1b4JdPME2DqyvSOIJKIs4OPdPujhgGfnjxlCHCfgzkXPj/dp4//UXi9uaad97/Dk+ef4t9d836ZMHf/Bt/n//T//F/w+6wp//lyPXN/4W/+Tf+NierBbf2NWESzAgqzekFJwVFObE7dBKRzRIxsjYS+gPjFAhRWllVjsSY2N1v6fY7bm6v6Y53DMNAVf+UZ2895z/9H/0v+bOLJ/y7/+7/ReU9vmkp44TJI8Pha4b+21wsloxVLUmBLHv8OHZoHaHMpTgzszbFiHUwTQMLFlgSrq7JocMhh9birYgdWVi91smhHmUwaqAkSaPkEJlKIqTM9nhD3408efSE9foUdfN6ZoEarNXYeoNxHms00i0VheuXOigJKZibh/tF9iVzd6bsg4oUHEix34zDmEvqYE7D5DCLEbPbJcuwJaOJ2YBusdUSvfAoI+YBwRMliBNxOhLDHlXijAyZY76yq5PCuRTIJcys7/nmVxldIlpZEUCcDGpNnluGURQMOmaGGKmUY/viyOc329lkUIjKsguJEc1CS+FNDgFUnlFGoHXGKWnSLTJ/oWhBLCklLqbKWoZpFPH8wbmsDVkXuoM4hlPU7O8Lbat5tIEywpAyOWoO00RdedZrR8yCS3KVImWD9cJS7idFCYphlGGKQuOc4zAEQhBetHMebaCupIF8vXnC1E8YZfjmxcfstx1hTORuoll5itpRUsPN6x3bY+bFVUeMUUqAKnH7rtqMweKsoraIs1oXWpVZL8WhqgosWzEMnCwd7zjFq0PixXXHdRfpQ8FVFooM7vMscq9rxztnDlcymzqwaibGVLFpFGGAMUBRnlDkelPaQJL4rp25kGV2nsYkQopRMrzyTqMMNIsVYdyTbcXbH/6AV5872kWDKYGTE4/af8E43aOIlGw5v3jM+vScT3/xc47HAzlH9ndX6LNLFvWS2hvMdMDdfoY6vECFUe4bpXi4Mwj5zeA0x0gKA6HbY6y0b2sCBmF2lwjKe/Kwp4wjKfTEGCTmHwdIkRzmeGdKpFzIaT6DzAJ2yjKwpBThY+Yg5XwJYo7MD36Gm88ZPpZ1QGvFcTiXveaDC+ohpjv/XzW7+h5AZykVQVmgZIjM/KXnewMlybDaSUtLTCLGK9ELGXPAFkUuIpob7bDWAwk/76kiRRxwVp43zsLSKS4awyEqrg8F5x3bPjNNmfWyoQ+ZMUygEeHQymsdv7rjZLVkCCPH/op1rXBa2IFDGFlctlStYnHS4I3jh0/fZa8WvPr0E7793gUvb3/F3e5rpslxVXqeX3paPyfwAuwOgRBl+GB0RW4M993IyaLl9PSEV3fX3G0DVjtULqyXirpKnJ/UXN1lGt/w/oVj5Scef2BofCCS6KJhuw98u/G4FFksFPd9YdtHlCq8dR7YdrAfNWyHeT+qGPpE6wz1xmCNuJ+noOkD9AFyJyVyWRnGMXO6aljU0BponeLRyZK+D2z7nrZtcCowZcXqfM2jYjmMA/tdRykDXZ9lmJYzU1Ac+0SuLbokLpeG2gpjdllr3tKa+0FSVs7AuqpYNAqnArWJeFOwIROC7EFzUbx+8ZLWOsZDR1wNM85CUBv97JDGC5bsN/34jQW+VADt5hiVTMHk8DkfOGaxwihECEyykFqrKUSck8Vxc/GMoTtQ155hDHjXsj455f5uT9MYlnUrm26j0Ni56UYTkuJs/Rhjarrja1IG6xsRm4wC3YDaA+Ns85So8Hp1QoiZtl3gjSZNQZpeIyhjcdowjD1ts2CxXHG3vcE6Ry6wWCyICZzzhJg57HeURxN3N9f4WoobXr+653gcSVlxsrkECofDjpcvX/H+hx8SC1xfvSY2GeM8XddT+Q5K5Pz0DK0MVVWz3mxQRJyvmEKhaloOu3vu73bUbUMpI3d3W7S1VL6mpCMYhTaVTAtmpkx3uGW1XLJer8lplIhSjjTNmuP9Lb/85BOauqKg2GwuRFipK+oK9sfCGEbeevo268VjCoWhPzL09wxhxD+AxL1n0bYM48Q0BazxrJcbXL3AWKk4H/pRNuLKUNBonXDeQEjSmotBZ6EapJgwymK8lXpxPR+ujQHzMIGz4rI0GvBzoYe0ZC70xNoc2Q0JVQIhwTErlC4YFFZNHMaO0Ux89c03vPOt7/Hd736Lfgr8+b/7BS8+/xVKwc9+/nPW5+e899YjXHfDW01k03/OxhS+891zdH6BTwZXGYl9Oz03oUpTqxHLiBy1jNwPoCVnqsQuLq5SP7eWzo2VeZy3cvPUK06UNMoipeaD/YOAluZoB1KAIPVVc0uXrFTz9Gp2O5Qkos98eHpQApQqs8NKHHxaq3mR//U0QWlxZWjj0U6hlCejcBRQ4qIoD9GSuentYcVU84tRWj2cA4V/w0OBhvBfDBprDErNGwAkgeZTTwqZFA2qTOgiTlxfCkSP9p5QBlQAYyrGu1cSTw8VejoQ776CEskpkGLAxcSCCWsjzcrTrE/ZfPAhVy++YNct+Wvvv89h21FvztkfR5RpaHTh9PySw+HIoes4dvd88dln5Jj46Y9/yvP3vsX5+WOWjebuZkvuB54+/YDmve9xulwQ0ySFKDlx8/JzNmePWJ2c0+3vOT/d0N2tWS0X83QxokthGhO76yvG434+bBdpZJ3Esl4A4/Q84RcuYgwKlZHCHzJKaYx2xCSukMN04DhG2sqLPd8YQMTnaexpFhXVwjHt7+gPe7pFS2sNp4s115//gqtvvuL08dcwdYTjPefpjv0vrijbb6iGLU7HmW1ioGhKFli/rlvhH4WBnEaUymgjmISMoBHkZ9IoDCUGcenlh/ImcbmUXMjKoFwDQB4PaFuhmlNppDOVxG6UQdmGcrxCT+O8p9MULW2pJRe0bzE+Y7WIZIQI89c3ykJJMrxSGpAGuJyQ1w68fbbm1MEn1x2tzVQui+PHGJLW2NmZmIuUJ+g58lSUnR0j8U2hTMly2tIPJo4H14XWb35HWWfZnIZJngVGDswlRvI0YbSwoop6KLCBUoz8LyIkyJZXeJS5JHlkpCQbXQVEEfVD0gQHvp1T5zlRvMRUQsqU1jDFSFmKozKGzDBlppS4aDJPa819X3OfFH95lQhWmtwWtQXtGcdMN2ZCFFdNv0/cH8Sp6ayUhBgjbpy10Vy28OJ6orISz7zYaC7XmhffjKQp4a2T5l0n3L84C3rdGHFGBkD9OOGdFeC7UfTDiFkI36bkiNVG3NdVjW/W1Ks1MXbYqubs+ftUVz/FlInTZcBPHVMGV7eQZyxJiYxWkcOEHRzajGgXaVVhJdXILFbVzHKL4prW+k10FmMoRpGUQWsn17+SVleJ42dIWV6vtmRjZqFO3KKlgCkyTM06A9KemEtAY2QN9gYVIypHCgrlKhE+kjSb6wI6QyHKdYSIoSDlKRJrlNbsN7kNJd87TjMqoa7EwYpGKUdzuaB2lrB+zHahQD0iLp9STIW/+SX++lfocI+aBmkUJslA+GGNyqL2Zmk8IOeJjJRkZIrsiVVgMhVDGoljEBHbSGtmiUCeMBSSKvTjQBkjKoEplrZE8hQpR+EThgydrkhZE1xF0Q1aeYbRsjh5hqlr7NBxsYyonGnjiNaWbhj47OOf8eknv2Rz0pL6jv/x/+R/wQ9+7x/wx//qn3B7dYupvuHVy2/4rR/8Xa5fvmZyA2OQ9nRjJH1glRHXs9ZUXlq+a2+xDoYwEIIcKGPK1PWC9aMzDtst3fFAOG4Zwl/w+7/3N/ni85/wb//wH/O93/t7HPuBaTzwyc/+kCEUrrc9aZzYtEvuX1/z6NljqnrBcX/AKE3qD6gU8d4Qx4lYksTUikCGfCXFbmkamHb3tO0K7x3OKJyS6yAoqNeXVO2G/dWX+KplcfIYd/wSPcmzzeREClKoM+zv6e9vMIeXNGdL3j4tnNWKxcLjfI11FSUnVOlRZUSV8GbwqOb0gZhb52gucg3lWcCGGa8wu8RzyXLvMrv38puaK3lumgp8jfYLTLWisgsR4BgocaCMR+LUU/JETuLAEBK/JheHWAtmV20p8qxOhRIimWlet4U9pufGam2ciDzlYTj6EPOVfV7JUEIkKsO6dqiciCGS5u3f2AW295EqKcFalAJJi2hoNKkIJ1Qbj6kMqlbopFCdFwF3Xnm0kkFBzNJ8HqM4xu28NwQpCPMqozOcbWCJII0aV81t6hPPn3q228jnX0aU1VgL06DoxyLHxTwPqzGMY0JnRaUN/TBRoViuPBenZ1As3muWy7d4591n3N9ccb7w7F98Th0z20NP7TOdjixay7ffu+SLV1cc5nhmTBlrElYZTpY117sjORT2yvJ0Y6ltpHVQK2lC/+oQeNEbdjEyxEyfFbu+I8SCs9JKfOgzlYZF6ymxiBMwTLRacVFBlQa09gRrcLlgkUgwat5L24opjpJK08zDGXnvrRGGmzGOog3WWKp2iV0usVuHqVtOTy4pKXB2doGva87PL9i++JSL1S94e/gF96Pmo9/6A771vb/Obt8Tjx/w4Q//NiebU+x4RG0/xXRX2OGeB7xWKbOjLkkDuZoj5iKEmZmPLq6vw/2O2nuMmgglQh4ZDwcR6fqOMk3kOJGjrK/kSCnp107YIiWbJcZ5CCOppPzgoI2FmGCyFVN1SkoDeZTzckoTSYVfixIFYlpgjJHUyPz1gTnJIvsG+R7z4aiAKlICqLVchXpuTldzxt1oIGUqJ+ejMcn7FFNi1Tg2tWPUMkIwxqByYQyzu7dADIXaRE42jsoYsoo0FjaNYdj1nDWSEzlOhUPOfHm9m/crvCmy23Xz69CW4xQ5Hkf2h4Fp4/n+e+ekaeTR40eQxVe4OxYePT2jWr/P93/0P+D2w895/eVf8OF3NZ+8uOOLrwcuNjVnC2iMYiqFFDVnm4oQIt61rGrLNAQab7k8OeFqd+D1/SDMbzXxaOGwFM5Wmm2f2FSJ04VjXYPXmnGKmOWKYdqz7wLaKG73hVcpizs2aR6daS6XirX3eJN5cTOgjUNNgok5XTkWTtb93ST3V2MVjXPUtePYBbqxwyjFs8dv8fjS8xcff8ngDOM0sG4tlYLHJ47TJnMsBWMKh8PAYvkI5+54cTVytrYsq4nXe2EFLr2iNoqmypAkyt3FRFWEk1t5TTwUpiwJB5xGRxkKLKxnqTPYhD+t6QJ0U2JhFDkE6rZFG4vVYH3k2bnn/pjph8LZuhbW5m/48ZsLfBmB8M/cn4eHUs7yQMq5oJWd3QEO4wWcXkpm6O6BQKUc1lZYF4njQFUtUMaitePkRMDgyhjaRcs03hNCT0ExxcTZ48fYZk1jCtNwP3OVDN3xwOWjC7x7zLRY8OLLHwMQY2G5bFBKs1kvoQjfxjrFFANNU3G/uxYnR9WyWj1iCom6XnFydsF2e8Pt9RXf+ehDdtt7lDa0bcXV9Su0NpydnTIOI8+fvYVmYrvboijsdvdsd1uePX+bt59/i0ePnvGvbv5rMoX77Z6mXmBsgzKeKSsuHj1huz+Q8kTlHJnC2fkFd3c3rNdrhilwcnbJV5/9FG0K3bHD1NJgGUumrhth9GWD95Yw7Lm6foU6O5fFzVgRo/yCbnvDcrGgXSxZry44OXvEZ59/gbGRlAJD36PUwFdff4rmNR+8/wH77sj5+WOOuzsWrkCCEEYU0phXVR5rPSkUdFVTVTWhqaV2fkh4W+bCicgY09wMpHFGUWlwrkJj5hZQLQyplKVZU2emEGhdxapqSUWhtIgaTkvBRFU1+NAT45FBBv4kDENSUkOvClMsTEWcpWdnZ1jg5vU3XN3cEMaet956C1dVrE5O6YYjh+0db69q1vWAzQexdA9RDtLGkTLkqRAlvSdn5PBXnGw8lEbMLZxKoY2ZXUzIBk4VEQ1KBuSgHRG+CzBzYMQp+7D4ocQ9kudo3gP7ssyiglJyjRslm0drtDgKFWj0LMCpGYat5s+frexahD+tH9y584vNzOOwLItsyIQywjzx482P9MDAmT/Kw7+fP2fejKuZRfcwTdfGgrbM5jJUMegcyWUiTyNxgtoXjF/IdD0lXGNROrNcLVHGoZSnyYqCxdQLioLTx8/IYSQMHd1+RxwHYjhwd/MNr69eEYrlsl6Ri+Jw6Pj0+DMa71gsKmJ/RLeF+/s9VVVjXcN2d4sxjrOzc2lZrjz7+yvG8Yhhg7I1ISe6bsd0yPiyIefMOE6cnZzRNC3eeYyxnGzWbNZrnjx7H2cdrlqxvnhCaw2HKWNdi9KexWLDcS8tkMYYcdREuW6MkQ1jVfl5Q5aJKTIlOSw7q6mcpfYeFzTDJK2jfT+QS2GzXNEdj4xDx9npmqkbZv5IEr6Wq2kXK6b9DePrX8Fnirb0qOnAdJ2FvZeCuMysoWiEk+cbORQCxKO41rRCGy9i2VyQQpbNobiM5mtFz/MixN0mJGolDJUHl6pyIhPnAHEgmzNYPIaiUETob9C5R9nZKTG73XTJpBIpaY5oxTJz8uT1RUDHKBwlred7A4qS9uiiFNOQuN8O/PLFLT/57JZjUDDC+rShsQYlpySZcOcsgoeyoLyI+yqjmMW/FB+Gym8Op0VptA7ys81OFTXfK3redMqgbRbfvTCkVJEyBCmyz7OjhVlIRKJmWQ64Rpc3cWg9M4GUVVLYYg3KJqwv6KVD54dnd8IleTYZLWu8QthOJ6aiaEM3CG5iPcL46prNomZSmUOQcqbttkeVxKJxxKQ5DpZ+nGaGZuH81LE7JoYxEItiU2e+/VhzvhHw8aErdKmgYpEG+SRDRV8ZnDFMYRDBKc5xVKdxLpOcIUyJaCy1Kjw7dTKUiiOUiaQttiSSGkghUukKU2Uq3ROvfkkOA+MY6EuPVR3L1QJdEik6VPFY75hSxhqoTaEtRxotMSunpeVNFStRJSVYEa0dGFlL5OAnEfKS00xll+tdqYfiAoSpVbI49bSdDypzzGhmC6E12dQot0D7c5JtUWlEjffonFApoaLEoIT3UCDmN+wi9fDP0DA3IMucaFYesiY+3KtzjMx4iSZJqgJKmYCILVZEtuMC4wZUiSg/YKbX6PtvZldHQsXyRizNRgYEkl5MEIVNJ27VRC7xjaM5R/nZB60ZcLg4MYE4Y0okqUTIs6u9SKN9zpFGayqdqUwm5pFcAqmAcsyM1kScFGNRTEHhjaN/+Ypt1hRToYxHu5YpCc+zUHj58iU5Z/rjkt///d/h//NP/wn//f/sH2GK4sVXf8mTJ8/44Fu/zb/6b/4x2kSM1ag4txTLg5NxioAlKM1kNCeLVhrhvccQaZvEpHoaV0Oy1M5TFg3DNMIU8Drx1Re/4Pp6zzcvr1l+/GO++Nm/5snast8HxjzgnYNScbc78L2PLNPYExKyr0gjcdqTQ08eJEHgcqYoRSgFUqJyFukcSaTYU8wa6y0pT5gc0UTC1M8NhiNpf0XsKqq6pSEBEt9zOnPqG6oSOL30eBNZNQMXfuDEOBauwZcRk3rMdI+ysvahjThK0SjtZ2dOEIccWe6xkmYTj5qvo/JmP5JnF7yaTQgUhdQAe8CizQbdPCKphE4jxIHQC69ahMEoe7USZ2drlNg4Zt6XZbI8nMlFz6LiNA9WZpfSPORkRtYkpSBP8jWyDE5VgVziHDEVoTKHSNcljkeNtVIC480szlsLxjPGglGyRzZWDslKCw/dUglmp0AYZ0Fdyb5PlTS3kme0me8hbQhBnITJwGJpqB2sFvL4eHWXudgknj7y3EwJrQs3dxPDBFonYoD9oWAd2GKYxkIKBe8VF6cOZwt3u0AqkvCYYhZEhoJl09AdJ6bwmv/2X/9XrBYrvvfDH/L+t3/Een3KJlzT3O/wfaKqPYeQOTld8Cc/+YT7Q5D29nlIp1D0QRHvR3lOacUxZu76RNsqVrlwcmq4Hgr3UXHMkarShGw4Hka00nin2KwdeZT49/Ozmm92hXEKeDK1g6dN5mmbcXpC6YwZI7ldYeqaV3fC2/XWo/AUJmnvtUYcQVqeabHIni4XSDFTLzbU529x+c4PuXr5Ne3mArdccFG9zfrkHOcritJcfuu3ie99j33+ZzTbO5TWbF99jVOGk0dPGa9ecHz9KcvS44kootwzcaRkuZZLiTLQS2Xm6Wu5/lIvSaU0EoaRbr8laSgxElGYNDJOkVwiOoljPAHJn4D3qP0VZehmHVxRjKYYi2oEX5KHgxhRkPONqhryyTvkj/4uLE65/tN/wdplqvUaM+wxww3leE2eOjQZv29x2lK1Nfv9FhCzgpKZlDSyvxmgznue+XO89/TDKK3pGqwW1yS5SEqxZJwrTCkxRYVVBYphvfAcyNx0E8SIVoYQC0b/OuZrjKGuHEYlQpy5kzlysfGUYhlD5hgUN7tALpll4+U9V5CKnAtzklixtS25iIO5HwtfvNwLhspqfK15990Pee/bf5vPP/0JP/vzf8thMsTjgHUT37z8hsrKdb8/DHRtTZ8nVkuPJVOmcX56ydC29oaLVcvt/ZYvr48ce0WJhvVCzSUihTAVKR0N83OxBGojCJPd7pazVvPR04rbY+S2kzW7n+R9v32Rue00zgaenjlO15brfWZVGxZO4ZXheIxoJymjEqCkwEmt8daivUFbWLY156crrm/veHLWUntHSBPdGDjZOFSJrNtM32eGMLJpAvv9Feul5q0nG3755S0nTab10nC9crBwluMYcbUMfdJsXtFKs91NrFrPoQsorZlKRhmDNZkx9AwKxlzRT4GcDDpO1LVnConF8gS0IOtGArkUppA4XVYsSPO68pt9/MYCXwHQs/k9JoKOEslNeT6k86ZooyDlFM3JExpf8fKrX9D3tzRNBUXhfMN6fQFoqqaeN5AJb+Fks+F4PGJ8zdSDtQ7rap48fpfFySUvv4mEbGiaGnSNq1tSDNxve5pmiVIWrS2KiqZa4K2ltpppTCgrGwRtLKpEwjRR1eIoMbYmhpFVuyFOhatXL9EUhvkBUPkGVE0MmZw1m80Fh+OBGEcRvJRm3x/Z7nc8f/tt1ssVv/rlz9jttzhnaeqWYRi4uLzk9PSETz77S3FxhJFPf/WXPH1ywdhn2nZJ5Ras1iuOh45Fs2K3vWMYR4xWdH2PweFIKOspxtENgfV6SdFw/uQ5h09+SSYS4tyCpxSruuL9j77Hfrtnd3/FsbvncNxCGtkej+QMq+WS3S5wPHY4nej7e4ah5+YWTpYLwnDPomoZgsFXjmkYEWBsZnP6lPOLc8JYGLp7FIqhiHKfgGIUs+JGzjBOCVcVwhSovKWpanLO1M7LoZWEd47iLEobKleRipQylKJBGSn4iBCU5ipVhDRikTIJawpVUeynwjHDlDM6RC7PL3n85CkvXr5kt93y7e98j8eX53z66efEGHn3+XO67R1P3n2Pte1xaY/OAdKAlAMbaS9WAWXMG6Eq5CI4LSXtzsZK3MA3HqMLsduSYz+76uR9kAVoXoHmg55EWrWIGvMBi2IwWr/ZoAjEJlLmA7dSYvVXvNm9zoctEQiE1ywHEpRCFS2vew46yfeVg/Ebtub8cJNYoXwNpb0c2lQGZchvuEkiOJY3gp9sEDR63lDLq3vwasmuVf55ihmlBHKdM+ISHHs5YGiFrZxENYcbdBQgsQr3wtDI0i5XXI3VTjbMWmOdI4Qg0UdjqHJCE1A5YDPkIbB+fsZitWTRNPzuj36H1XoBeGJQPP9Wzc8//YSP/90fE1Pho+/+Ft/56CN+9fGv2O8nTk8usNYwTQMqDRx28rvIo6G/vaNRmfvuBW3tUNkwTve43KP7RFGB1aoGa3j87D2GYaBBpoNt01CHTCma3/29v04OE/3+jpurV3z+xRfUiyX94cCyNW+A/BRpAHeVcE+1ljblYZQW2XEK+MpzsWoZxkC9WDBNiaEboFpASniV6e5e0B8E2Oumnvj6l3z5337Jerrjrz2xtMfPmGU7tFKkrGSDoBQYL3xS7+VyzeJEIU1QRFigRPQDl0gptLHzUUeu10KROGGKUuJjxL1HzuSiKdqTdT2zVSPYBXn5BK0i5e5zTJzE3ZOCcMhKRJcBFcVZmrSHaglVS4kTKgxAEhOVgsPYY5xFOeENeSsA6pwV2lpSgiGMjCVwcbLib3y35s9++RXPn1ywWLQYJz9NmoUz5riLypPEGUuZ2zPl3lFWXCMUmZaTEyUEtBFnidJzqYKSFTUVhZpbjUGTYnjzXgJv3LRaCw+qxExRcR42IPe8mXmbCO+OIsfTnKI0YpeCVfMmvMjnWmvQxuCK/Gxufk05CutNNniZrAK21jhvuRpOyPcDKSSmIXM4jpRi0AamEIkZXt1FYhH+ohthUQWmKWOMxRYouXC/y1iVWDbgGmiS5u98YLkaCr+6imSvaayW4QaJpiokYBwSxTpCnPC6sF5L+U/lLQtfGKYINhDjBMVjTGZlNM/cyCYfSdlAlyiVJowrqpMlqIiqKkKwLKsFTV2zKgsam3C+0JiMm6fFRhd0URQtB2plrDiDEClAPWyowjiPgxC3qmJ2/cxi7fyMAxnSoEAXDTG8YWw9uITQGUyNUR3jYLm5v6Xoe9oyUcUdJUcRndPcLKqUDH1Knoc7vImKiTDBfB3qB/IDRSUZwun5AZ6FVZNGYZah5yIPbchzFLGkHaod8N0ryvY1errBTB2EjhKGufhKyofKGMjazo4SEbqFG1gws0MsRUuOCbRjLIpdhF2MOAteKRFkrWJKEZN7ctF0Y2GMCZ0s1hmSyYQSyFNPP0psrtaQwjhHEy11KuJMy4EGJPqrJoYRhv0V5DNiStSVRylNiJH9ruPf/NG/YblZ89nHP2DqEsYp3nvvBywW51xvr9h3ETO7xcYQ37jnAXES54kxFLyvqJsFyrcs25o6j/SvXuC0JRvNq1cviCVRVZ6z0xV3d7d033zN2emG082S73zvd0n9Hfef/1s2rWPRGg6vBi6fv8Pf+u/9J5wsayoCJc2M1Kqm4AjdLTkf5wNmElxBgRITlQZiD0UK57yxmJKovWZMIyX2uNxxvLsiFk3jM7VVDK9+iV5XTCERgiBMaidla47IwiXO145F21DZgDFzhFPLYFSbeTiJJCHULOTJhiHNI0TZV5R5g6WKpmjLQ7auGHHuzD40SQcpxGEHiHDXkYcvZ5EDGXLqNSwucc2KdHxN3n4uQnOOInRmoRgqZUE7DBa0xiCNwhDe7POkdCnPrj4oKpPyhCJTsnDfSh4p2ZCLo6iILlbY0gZGrUhOk2JP4x2qKE5qTWuziNPaY2wlOy/jsfP6mpHhzBSksXIKkSkEpiKlY97JwCApYSRaw4ztlufLep1ZNJk4KfrBUjWC3AhJcXVfIHmGqfD51xHrKoZ+wCiDdY6SMgvvMREOWRFC4uY+UNeaeuazHjsIQVHVEINifxy5vHjKvrtnih3WaL76+nNc7fDKsPng97n66hOeLE44JI3PMux99v6Sk6ficv3xn/9buuNR7i1VSEQqNF5BY6CtNHWj6XNgjLLPOF0aHp8IMuhqG9kfC0MuWG/ojpkUE2cbi3GZ988LU2RmdWUcCSaDrgshFHmuERinTMYSmWhsNQ/zFChHyoWkIGbFurIiDpkkpReuxhLpb7/mi65DpZHGFNrKENyGs4snNHUlLbBDRxiOLFZLVilgnePm6hUXJ5WsK8Me6zMlBYJWsldPRQwEZglao+++Qg/35BRlbY8RlRWxRFKWM1xKRdIKJaNcjXEebTdUKIrxxJQx2mJ1Q1yeo01NevkJZTyQFCg0ulmjmg1oR+p35N01Co1qVuAbaNaY5SVNUdBdsXj/LbmWvSePR+LWkBhIZaDEEa0S3/3uD3n8+JJ/9k//30x5TjqQ5edD/ZozzsNZJBFjnItG5rW4SDFciBGtNE5nSAVvDNk7hpBn9qckslpnuC4whQcnJhgrAnUIGaMK28NEXUk52b6PMojThU2rmULk+89brneR7VDoQ+Hp+ZKrmz3LhafUiSFI2+rt/RGlpFX8MCbYBi42nqvjyFvLc/7eP/zPOXv2e3zvt4/88//yf8fP/vSf0lQtL+63rH3h/PKUX3zxgtWqpm1g01TEEDl93HC2sJyfLQlj4tVtx2FITKXi9W3H7pjox8zjE0fjNCXO4qMpLOvCsvZMYcLVnrpVTJMMF1Za8dZJJAU4TvBqH7HF8ezS8vI2cb3LfOozzioqp7CzCeX2GFm2Wp4DsQi3PWaKEiTKYRxx1mJyxBvLdvslh+FAHyfuu56m9nT7npwzH15qQsh45wil4u7YAwuOY+Fw3JFz4MXWkHLgbKGoDRQMpwu5Xq4OMKU8R60L3ihu+8huLDgLMcGxnwhrQ0vFQinGIJzYwziyWbeEKeCco1mdcH9/h1YQhwAxs1KFD9rCuvLcmL9ijPn/8+M3Fvi0kkW+5CINNUpLeYXsxtHKzOULnoQhTCO7mxfExQmbsyeEVyPt6pzzs0uOXUdJE/v9FufPUXObTVMtubh4i8VyZL+tmPY3wqzAE2Ph+vULxr7DGss4BZrlivV6xS//8uecnCzxp6fU9ZppHLi8fExdNwJjThljxK0kw8jEcnXGot3gKodzjhJH1qsli8VKapt9TUwR52tOqgpVNCenl2hVaBcN93f3HPue07MzjGt46/wJt7f3rFYbmnbJ2ekFi3bBV18V3nn7OZ9/9iklFZxx3F5fM/YDTx4943Rzznc++h515bi+uqJpWpTJmKKx1rJeL5leHfF+Sd3ULJoz+uMdMY1U1okjREfaRctuu8VXNR995/uMh3tS6ChFEXOi7wY2yzP6fmJzesr9Z7fstlvOL5/wo9/+IS++fsHdzQ0pH8T5iObmZuJbH37IV19/gTEr6rahrWuO04EUE1VV4bRCmQrrGuIswBitSSFR1xXdUQ6AU0iMo4CvyRqvHJVt0Fi8McRJWGVaK0KYWNSVgO+VtPYKvH6Oohknl3QWl1oInmNqKSR2IcuNRuFxNWJcwASFz1LaEUPgk08+o2oXXDx5m2k68vpmS7vasFot+OwXP8aQ2R463v7gOdV0jy4TpSSsc+LSK4k8dYTuDpWTiHHGoJ2TxVLPBSm6kKaenIOEZl0rUdt546X17Mh7KBSg8AaqrhJKy0T1TbIWJcB0LbwIrcTqLhhM/Wba+7CaCfB8ds3Jd0Qm2/rNRlhYtMJZms/u8+cyO0MEhm7U3K6o/oqIMSep5HdiRKgpD7qEehMrfvhaD5GZh/+UhwNqYeZNSaOyIgl/SGnZzCdxdGil0FkDEzknXr24Zn12IY4NLSUwFEMOFSoHnBFXlU0TKY7EYSCHgbqxDNPA4f6Ow/1rLlcNbV4QSpIWr6x49s53+ANdsd1t6cbAl9+84N0Pvs3p2SPubl7xxed/idXQNEtMvWHVNgzdgbZxLJYOa7K0Aqq57a9M9Nsr8njENCu8sSzaM5btkuQMWRls3bDKmmnoKJNmf3tNNhqnDevTDcq2hPuO7S7N0WkET5Cl/CbPrERdpIhDz/6CfhgwCprKsKitCO/KoeLE2PeM/ZHu6jWp64ERdzC0ywrVT/haCmBiAZBIhdECrLZGoqS6ZFRKlGmamXMjD5EoM8OilTZzpNCJaKCEyfimzUz9mpdEniSWqJ1IwqrAcEClO1KWopbUPkGfvkPefQPHe1KaW3fRGJ1EFFOesjyRJrdxQA97ynCPJslZUQl7TqHYdwnfetIU8LXDFSUTZwxJNSQiy6alrRyH3YGjgnVbcXs40B13nJ+uWC2Fq5kRMUvuQcA9wK31m2KMogqk+MZBWBSYSm52lcTVV9zM8ssZQyKnaXbxSrxeihAUKCttqsrI2pwT2kjplRRePPBlZucv8zNkFhe1kZhQzklqZROoysvfprmRAyDluTRE3AZYi4rC1MFKUdJdP9KHiUXTsM6FfX9PZRDIuzYCGHaKy40mpDmS6BQhZJKVkpNvnRoetRpL4DDK72e5EHbJV18nnjSF+5WjGyNKebRShJwZAlTecLIQTkxK4JyjGyJGK+7GQr7tMbbFhUzOBkqi1fLsnYKIljrIOCImg3GP2NQrTv2KWhdsfcpmdY4eMut2hQ09jglLRjsD2hOVQuuaMsO4CTIIeCNwPzwhZzfaA/v04aM8OI1A7qNZLC5zuQrwa4em0uJcQpw4JSq+OPb8N1/tOHYjv7vI/N7jCs0k3MJZw3so7ShazY6j2bX94ObL8zUyP2dKnq9Vo2e3rIiD4vMTFAcKrJc4p0zzNE4XtF1w176NB1x/T4u0/aESKvfkKI25oGGOIhqlcDqjmGZTo5H3KU/zm5Tpoud1Fzlmi9WF1oEjE5xlyAoVPQtXOLMTx5IJBJwKWBJlyhzGwlCgKhN2SmjlIGRCGqSURs03cErYoghDByFT5YK1y/m9l3VUF0UMiU8//YRHTy74v/6f/wveefZtdsctf/6TP+Hv/Uf/Q37rRz/i5vWXdPsJUwp+3iNoVdislhwOA90gBVnbfc8wTihlWVQrFo0VRplpGIBx3IJStMsTlm3Fzc0dKM3U93z2i5/w+K0P+d7v/sf845/9a+qUiGWiO/ScbAZefv2SzUfvopolwxTRcRBu2djjXEWhEKcjSQ045yljwleVCMmqQqeEMxYTO6wumDhSa02I0q5qUqGuMk3laF2iVgXrGqqmsFpWHGJF+/h9Gg/+tqM1I6sa2irjvfAzcZVca0oOenr+nTMD7OX6kritDEwdyrRz2iHMspZEZRPzHkUpQM+ttcJpLLrM9xYI3sLOqQZFWbxL8+1/gNWWwxd/gp7uMd5QSgPFU0rBZdlXiTguz6qUI2l+rSRLLsLEe+DjPmBTQp54dcjULrOs5MYsqYJsZMiiIRUD2uC9wjGxHwK5jJxUkSmJq3RZFdpKYZ2XSGJWIjxmccCGFIRRnRIhFaaQiVmBlUG4RsQJazLaZXBSOLHyStZ6rxjHgtJQsmKMmeM0UozFmMLukKiritZrjn2g7wNNpecG+MJ2N2GVw9eOMo2EEMS1mxV9FzmOYIo06xoDpIJzjkcXb3F//7VEM0Nmu93jKstUFjz56A847jvudq84PzslTZZvffSMfuj4+stvWNSew+4g+4CUqRtEzKgdrkzkkrg7FpYNTCXw7lP4yCdKLOz6TB0V20vDy2OmjwXrNNtYuNomxqlwWqvZHTaJPtQaolIMnRKmtQq0VoQ/g8X7iqbZyHs4JDa1JeZCziIwOwPaiFu9oGgXDfXyjNYa7u+3LBYLTp6+i3YtrfGEFKl0jS5KHHhjT1UmWiKr0lHCyNLVVBjqHClDIukkpWWxlz1EnjBpkpjnNBJLnvEgFpwH7XAlYVMm5IiJUkCTkiQMVBpxPJxDdnIOiXNFTP+5rHI5oV0mJxk2quE1aRD9ICpHblqSaykM5GlH6b+gvDigph0ldPLa4iRFLjGiozgNdYqUVDDJ8mc//vdM/z682deo+RRTZsFfmnBBTLWyJ1Zy3AAkeWUUpCCWh8rDppZUWTcEnNH0o4iCyUsCcO09phTS3NCtNMQYqStL6yyr2tJPAWs15ytLd4wYB3f7RGUCtTekceL7zxv+/IuOu+PISzKn64bNuuK0sSRl+fNfvCKEJGevkrCVuP+2fSQkeHJa8/rVPX/0F/+EpVdsNu/z3ruRv/j0L/jjH3/D05MFcZqNHlnOUkPQ9H1GmciWxP1xxGlDVJqIpuhMs2xop8ymVYQQ2YdAyoZKJyrrOF1YEqIBhBh4cV8YQmFRWVaV5flpxeXKcHmf+Jc/37JwhcsGNk8KbWOxJhFCpKkMj9ZiVrhPhWEM9Fn2I41VnHjN2ms8EZwlxkgfNIYe0w/0FA59YEqw7w9crioqL+VaXV8YJ9AOnr77HV7ebHHX15TScLqB1/cTfVDsRsPCFbwKNEZcv1ZnGmdIUUBS98dEFzONU9RO03pFYwrrRpFNJGvLopHKs9sQudlGTiuLw7DYnHN7/YISA48XhhMyrWpYVtB6Q6z+AyjZiGHi2A147+TwMk+kUpLIj3P6TUmCsZZQoLt9zc3VC1zVcn52iqtaxphYLFa8+PpT7u9vadqGpl0B8KuP/4KPP/052nqePnmLoj0JePLoCVfXL9lu79je3fH86QVWe7SuefHiFdvta2oPh8Oey6fvMY49xlazo8VQlGz0YxKRZj8cWZ2teO9bH7Lb7uj7PdvdPcPU8+UXn9JPkbOTNQo4Ho6gMtfXt7yLol20vHj5gmma+MEPfogynuNhz9XrV/TDxHe++12WyyUhT/zyl7/g6vqazW7D87efE2NkfbJit8t89N3v8eG3vsux63jy9Bmnp2f84Ld+l2++/oLtdkcYJ9rVgvvtLfe3V/iqReuaqUwUraQZqx+5fHrCUmfut3u0KgxdR9uuWa3PiJMnhkzdrHny3rf52c9+wvb+lmNfUZTl2Qfv8frlFZ999jmVr/nouz/kk09+Tox7Ki+x66ur15yeXVDVLeE4SBGEr9DKMoUASrNsGmkozpnFYoFxjsprDvtB2rOUIiThekxBNrSUTI4ZrIhDlTVYpfBa0bY1Vs/uBeOxxhFiRhtDbb1sThCAbkqJNDMaU3JMqZAJaA3bSTFmmNIAzqE1fP31F2hd8f75Bf3Uc7i7Ypcjvl7yztvPWf/od9ltr0lhT3f/NQwvUHlkNt1JpM3IdFIbsdmbXMgpSYssgCpzc9ssbmkR2bKae27nCGBGGBFGz66Nh+Eec7ygaNAR+WkduQThshRxOehZRkv6YYYt7VACT56nt/Nh7A0lduZnPnwz9eD2kyO+iIpy2pf99BwVU0qTs5bvbYwc8Ge4e3oAtCtpYdMZzNwgJwPrjM7iVXk4NBljZ4PWfEAUq8ssCM5w9yJct5wTBWllLbPnvljH03ffnUfNRlxKM6sKEjEmtIqMfcfYdwzDQAiaxivO1xWdyTB2DHev2W5HzLZB24YDjp3f8Ho3MYXCo8dv8fNffcw09Lz68lO22z117Vg0NYf9ltPTJ/z9f/A/5cXVazyRRk903/yUlZIIz2bT4psVuWi8s7LBz4nGFy62e9aHC76xO16vIu7klKpuML6Qu5Ep7XG2Ry8VlIZX9x0KKSwyWhNzxqOxRibGD79LPfPl9MzrssZK9NQqYgq4SmNtpq4FZO7ySNjf0DSGxlZYFbDF09QaryLWS9tamgWmyoq458hoK4cvpdLsulFgnAi+2ojWrOWwLOzFNAPNJXZeeIhyF3ROpChxdaU1OY+/FqznOLlGHHzq/jM4fAmxl4IbCiFr1OJMorjDDu0tZRoh9BgeGnEtWTtMU0GcSONELpp9iJhJYNJnRiZ0zsxbxT5QSNwdem4PW272W3b7kU9e31Npz48+egdlLUlXKO3BN6TUS4OpkuddUbxxxOQU5+ZHiRAqnDgaH2K2JHHvzvfFQ/JX7uHZGeUNOIFPlzy3lxaJgDG7Xx54N7PxcnbyiVM2JOE8SbZaHH1JiTs64zG6JuZpbuTVsyNY1nsUaOdnF66CGHHKEGLmfgx8c39gypo8Ri5O1nRj5vruSETEQB8yuyGTAjgnnNRVa/CmME0RS2GcFPWionaKr+4i8TZRO3jVaV71hdZrjNb0k0CznZHnpp13OkOMjCPSFjnzF1vjuKg9jRcB8HoXUTimojhMiSujUdvEwmhS1OymQt8l6mqNX7xHmXq03TD4x2ij8SpROxkQkuTAq7RD54BOPcQeNUzikiPN8cJZkJhFBTWLvuQHQql8CPw+z/fJ7ChSanZWz/9OAVr2XDkkMtJOXY0jj0NHtJGnrYOxm9uQZozEPPRRlDkW/+s1+cFdLg5PSWUoJS5O5gKpksUFoRBnaM7zoEhDNg5lZHijsCgCLh8pj76Pmo7YfMRMHo4KughKyrWSmhELWlGlEaWCvFdBQ57ID/eQssIszIlRae5iksZDYEqKtxpYlJ5dGAnjHNUyBpUl5p4oTDEThsRuhKALujI0CkoIlKmQtKIQ5eA+F4zI4KIAkThFipbBmqBixLmSSmQKiRffvCbnl7z86ktKSdy+egFhwldL/tE/+s/5s3//R/z4z/8YncWl7p0lzAgF7xyLZoXKiXHqKCTON5ecbNa8eH3k7PKEq31PKdDUjtPThmN/BK2JKdMPic0mEoeXdPtLHr37I4ZvfkqlKrTOfPbFZxz2t9x984y/9Tf/DpZMN+6wSmHzQA4ySCPL8zKnyPxIpsSALg7GAyYnFlYG82ba0XhwSeLstRfXba2gprCoahYLi6s82ljOU0aHn9OS8ScKb7wUrdkZGaKKuE1Rbwq6snoYFArPE1OTEeZeLsxcPRHs5Ug2i+ElzQOnNzZUGdA+uGKT7NfUHFTT1lKKCLdpOpBuP2fcvYLdr7BqQlVLiZcTBKEws0UkHZEpeUDlMA/1Iilp4rx/KUmJiJAtSQX2U+Jffzbw9mnD77z3BKOcCCE5ospEjBMqjxKVLJZ07LBDz7PliM6Fr46an704ctEseFIyJk5yjWdx4+kiw5mSZWD6wEH5dW9Ooa2AXKgcZA3ZyQDJGIgRSqXnPWqmbRu6QdbCRWupvWN3AJAYeIjQ1JqsHa2xjJNgcZ6ftwyx8Hrb01iJ7GqjmIIMeJq6UHlDnikGU4zcb685OTmjlITXhhdffYIFtE8cuy1fLk4ppXB9e8f7b5+zvT1Q1RtWJxuu77/A11BUIeSMK5YUC/s+zIdsTWvhybKQdcF6zapWpCJOycolTpaKv74y/OQbzU9eRPpSyElJOkhlnlTiQBxDovaGqSh2fQbtqG2h1hGVJmoVcMqjypw4SgOtF8OIU7JWZ6XfMNQNBa0y9fKU87d/i6oqjD/7Uxanz9icvy3MS+upvRdElsrEaaQcXrOkx6VbTu9/QeOhLRpnLQ99TXZGdqBERCxOoeoKhZQ2SeJmLr6Y2dU5JmKcCCFw7IK03KvMOI3ivm8dVs+YoZk5XmJ6k7SQcqeHwZaYDjRKmrqRtvZckghvOcl6x0OqIZOz4EV0Fmd8tgmKolhh7Noga6LwjCUFkuZB8ZviDcUbhNAbAbDIPlkbaOsKTcIohINLpqkNViu6AbzVaM2b9blqpZRis3SEozgbSy7kOTmxWjlCiFS+cBgS1RGWzuK9Yll5Ys683kpj/clmwbefLfnTT3cchkTMPbfdke60wRjL5mSBVlmafI3jow8uWVeWX3z2Jfv+QJc7/rf/xf+au2w4Hnb8J3/7d3jnyTu8dXnB5aLB+5a3LhZMecvjU8W7T2sO3UjdWCBiW02IBVsbxv0ApWbfB6YpUfmaaezIReGqmuEwYJSW9bTRhCHTWM2hC2StuN0HtLW0aO6OA4d+Yn9UvHNec7+P3B6kyGizUjxqFV1RHKcJVym6PjMkzRiE8+w1LLxlJnhgtaYfIzEris546wlREhB9P1I1HqtlAHjoDC8xVEZ0B8qEczXWjrz3/BlxivzZJ18wpsTpQhJ/L/aJLmi6pFh4YRG31WxOsInzhcJHy5TgOA6EbAhOY/uEpXBRO2xI1F6xqD2USGuh0Z66WWJUZmETjyvDqbLi+rVQG0ke/KYfv7HAN06Brjti7BqjJNZTnMVaQxgFkF+MODuctdwfjjjvsFmAz8VoTk9OQGmOhx0xTlTOcrZZYX3F69e35JxZNhUhRj75+OdcXl5wujolFwcEDvstKUzcbQ9szi/59vvv8eOf/DnKWo6HI9recNganj59n7OLR4zdgZvr15yfnjIMI845pnGkrRsWbcPu/gXDsKWtNJeP3+L+7p5d6lnXFbu7a56//YzLy3M+++xT9rtbtHqbsdvRH7dY7dAU6tqw392x22159533OF1v6IaOr7/8nPPzUz54/11evHhNf+jxzlEbz5e3d7zzzrvcvH5F3Xo+/+QTfjZMPHr0iEePH+PrGq0M0xh5fX3NME2cLtaEKGBfax3KeWlx7PZsb19xvx949vScKWTOLk85Xa/pdpaQMrlYXr76irrRfPuDt3j16pbN40fsj4HnT97h1YuvuB4GyJnHlxd88eWBu27HcrWk63YYaxm1p3YVClg1S27sgSFM5DHStlIG4JtaHEva0B32lLLD6QGcbHx1lKl1ig8AUzn0a4WUd9QOXbK0X8aIc9LGnBU446TBDE1Kao7CinupRClaiCmilTgAnJbY55QyQ8zkPNFsNHXTyM1WOy7Ol/zJ158x9js0d+zfuuSjD79DuDzFYKXN6k5hpheo+XAjbtUCcSIrOTtHhbjyZlNcmR1uZhYkpJRGNs0ZKEliczMLGa0mif8++N5mcU4VWZBc9Zj20XeIudDvXlLi1SyAAIgLQ4DTZhblHlqtRRAQzI4w+kqRtrysLMbW4kDICdJEJpLCEVUGSpkkfj8LjQ9eDaolOfXkrObJeKEkNbcCzqzAWFg6iVFZp0hYMDIRy1m+fxGnOyhFzA9tqQqlLdp4YowSIYMHqQOlhO+JMjhfoV0NRqOMI4UBgyLmTMwTJkVSDOhqTbNRuFxYO0+JQQ4t2hHDFd9+9ym10cSUmLLidHFCf8x8/vnP6PqR11cv+N73f4fb69fcXn1FDEeSXdA0K0oK9N0d/8//+/+Bpq1wOvOtt5+zIBDHkWMcsfmAO9Ro61CrlQj1rkJbQ7SBw8ufYh4t6IeJ/sd/znK1wKmISgNtjlAsvgETNdvbCasiq4WmqR0pRYzRVL7CKtmEy2FHYiohRvl9WzdPhgPeWqy1GAVLLyyfRwvLyUKzPgy8c3nByapBl4gqcW51lc9XRZr3ihJOn+jS4h7Ks0glLbGZHJP8vpUcEGSSOs2HtyKcOZA4qdJyPRvzJkoh4rg4AEAm3RlEPKwWIvyGhDG1bDqNOMrSdJC4bhlRIaKDnE6z1uAXlPYMHtoi04BSkI4d0xR5MR1pTWJdK5ItM/QftPXEAlEVOiLbsOfr7YG+FI4p8PLVDafvnBGHgqkKjHI/Geb4Y4xQZHuYKXMxj6IYQ7aGYmuKqclWwTRiUpp/6rn4JksEUtlITiLwaJB/noXhkmcjLEZ282nezOtSSCmiEHdAzokpZlLRpKxJIeC9oWqcMAJ1i2pbwlBhtCKOg7SDp8iUOorOs+NPzUJ9lOdXgprMZZu5qAOliyyfvcWrq2uGbqDyBq81MSZpWCSzXolb9nobuDlKoVjrFFM2HFOk22bug2FVO7r9RIiZp6sFSkX+4mVk3+m5/dVy7DNDUqghsmoUtVdoZRnGjK+1XM8kslKENOEnz9JVjNHgtEbnRKMrpkHaQqvaY+sVStfyuz+CyXBUiYvVJWu/xHbX+OOITwd0CugpCgpA/F8ywJhZV0WJkKqZW8UfWjtnrp7SduZGlZmHJMKR0mVeVwopyvM464LWczQQBVnWmMyEMo6ni8Bb31lQRMsTSLqS16RnjVBuplngVb+OAJsi12bWco3pHOU+VBLBFQeotBBStAwaU8asFphVRXINJmvwXsoRUCwPvyIeXuDiQSKeKZDjQDGG0i6FNzhNol3mhNYJ5gZoZecCNzIlyeFxjJmhGL6+77kePdkZbC7UJExdsKnnstEccmGXMl1KpGl2oVgZhgwxUTS0xmKmyESWQ6mGpESwkyW9YK0m5UykYJYL1EmDGlbCRisS6bl4fME0jXTdQVyxaKZxwmjLq5c3/PPb/xLvF6yXb5HCgRgzGoNzBq1gnCJTLDjrWa/WDP0eFT3TNN/zaHJOHPdb9rsjmYQy0o79gx/8Dd7/aODf/MkfkqeB84vHrDZPefH6ht/9vT/gz7afcHV1R9cFlqsFRme++eZz9jfvsIodLmWydTi/YDrezAjGCYMMXPIkHGvrDLUunDYKkxMVexGzAjgmktLYMrLagFEJFSKVylRNw3rpqGLGWnGTGCa00yhbC9tKq3mPYmbXsaSC9Nxqi0qzM0o4liRp0S5zycWDIPDgjs3aiUm15Jl3rOfrXkS/okRQVwn5OnPBWJoGeMCe9N8wffp6XocMhUTJo+zj8gPvb2agzgOTPPNHysxXFEegmvc6Bq0ToSQyhrtD4PPrDpsSH5zeSYFcnubobyFOwoQsOZBCptv3+Fw4MZpjMKhiBKFgwWjZL8vQSIaIMSaiRCywxVBywhWDslqSIEoQFLlAHAVvUkbhvHpvSClhQ2boZM+mTUIT8ZUllYSqwNlE66EboNiIsZZlMXhdCJNsjh9vNHdD5O5QeP/5huPhyM2h46StOPbiDHI+cxwDbeWxFl6/vuLq1Q22ciyWB3b7QN+PpBLYbBpsTiybBZsmifinNI2rWDXvkCf45uUd1ige8DaFCVUKS6+59JnLCi5by26EbrLcHSaWtRKOYeUwU0GHxMVac94rvroTp3tloXaFdy4MVSnc9jIEyRmMM4whY3yFMx6nFWclETRsh0JbaY77gYUR526jFUOCiUieMlYVihE3eeVXnJw/5f76axbNgpOLd8lFEceRPIxY5+fBkgySfX+H1x3ZdJx4R91UGLdAW/MmXaNm/A9E9DwolDPNvOVCodJcnJcG8nig60f23UhMmW6YpKnbwzQmvFE0NhPn4WUSxg4lxjdJJ28KRs9rj35I7IjoJwVKGZXnEpz8MKSEUtIsDGbBagnd8g1LL88i3kNKRdzu86BYPSQW5kGWVMZjnRUOZxIBcrNeM0090zRS+1nY1oqzpSfHwnEsoBRjkBREzlI4o3OmsprLhePuGAhJzmxVZfFG03iNKgpnFSkWjr1C58QxKFaLzDAa1q3j9W7ii6sjm2XNh89O+NnndwxDJg+JMfRo5DWb+fmVS8f+xz3f/mBJsYpq2fKLr16wO2SSllTjH/7JH/Pq6S3vv/1d/uf/2f8K8LhVy+9tB7KaWJ00+KJp1icsm1pctUaSaQ/IAYiEODJ0Pf3xwDAciVPHNHSoOOHViFU9/e2WwQSq88Q49NSlJ+jIEaTYyyZyjOQAT545VEx0Y+K+S5wsEX5yA32fWC81h0E6JFuvmSZh6E4FEppJZR6dVUxjZChw7DsWi5qiM6fLikLi0UbOLUMvYrRqPMY6lIG7F59y2Ee2w8QwdvSTILVUYyBOczlHRhXoRzG/3PaJp2tNnLXr/SAmiWVtaa2W5EgU5usQC6eLipwCl0tNNxRao1nVNcbXaBRPljVrXfCl4K2maSwqgVX/AbToKm1mwUJuptp76sqQw4ipNW3raOqKtq1YrmoW9wN5CjR1g3OO84sFF+cGpTTDWPHO+SlGw+mJpZTAk03ND99/H2sdx33PsR+w9ZLN2SU5O+63e15rmBipK83x+hXd5SO216/4ne9+wAfPLwipY91q6spTLTSh0/TPT3G+IgVNU3tyXpBzYLHI/N4Hlxi9QZOpKs84nhLiWmJgRuN8gzaO3//gLY7dudjDQ+K33n2KsZ7lOpLSPY/+1jneP6WpVzh/YL/fUY1H1muLsRPrZwMUWCwsq8Utp99dodSB23xk7DIqblElkqaa1eIdDnc3HA9bzk4fcXd9xVtPHrNanzBMI4fDkW67pz/0WCfsq1wK77zznHHoCcPA7uYan8FbSzccuNttef78HVKK9MMkjCvnePRoRZgiH3zwAT/9yZ9zff2CzeaMJ4+e0fcd3fHIarXi8nTD+fkZV998TsZSVTXf/94P+ctf/IzDYYf1AvvcnCyZpkhMEWMNfbenHxL9lMV1kiPTKOfdcQg8WmshDRfQVhOyKOcOgzKerLQ06s6TqJDnhi9vmaY0N0dqtPNUvqWQ6VPElEhKijELYLefNMYVrJHJy3vf+hCM5t/8yR/xwx/9Ho8uL/nkFz9l6Q37l1/w9Ze/xOSJy/NzniwM1kIuiRTjg07Hw4mozNN9mTyLixUjMfYppZk3J9E4bRwPEFZr5JYU98MKY2usUeQwUoIcvLSypF5zfu+5/dNP+eXtK67zge/9/hOahbgdHkRF5YSVI3XvBa0LyhSyioCa26TUryP2Wja4WhuUSsQ4kmJHTj1az/BUHg7yc7GOSuiSmcIkP1aUGKAu0ij1AHvX3pP9Cu0rQkoYo0laNuY5Rzkozg2iD7GPN9M2XZONBZ1I/JWyjyKbcLQmpUTMgdJHtK2wtUQAdYky9Z7b6VIpaC3tWtrIdKcQ0VZhieQ4slw5jLGy8c2GZE95fLbi+1PiV7/6JR9//Evu7644O3vCtz74Aa+vr1iuTum7Oz775KdMQ0ecBsbujtYr9gtL00gz91TAGylBqXFM24EuF2y1oFquyc2G/duZ0k4sdQ9NlgKhHMWNqDNYiXweUuL9P/j7fPzP/yU5w/4worXCeXGRGGSzM8WAMvK79wYWtZfzULaEmLBWMfaDOOpoYBp4ujA8XnnKSUVlDcQjKUw4ZSUyE0ZSDm8cpihEYNdGIqJa/RVBQg5eD3Ft0ijMFkSkgEIIAqoV1p7E7zNAKiJAzK6Nwsx2MTW6XpKnEeKInjrS0Mugad7yZZQ4OZUIUApFChll5+/B7Gjd34izbuoJIXBImZjmMl3riaVwGEZMjQwhlEyZjbWYEkQ4rAv3eeQ4JF4dOjanK3YxsSHPZToRZWZn3fxnKZGc5+mnkoKgWMQBnSICt1fye2duss5FRIecZgj2LLKbPEIYiWPCOCPR0KJIqLnjQ+6DVIwwKjHkLNN1YyzFZaw1eGXmiLdwWjOJiKUf4bjLZC08ISgQFSE4tFWosTClwjh0XJ7UEJK00Bk5yP/O98+47gOfX9/yyVcd0SgWS8/xODJOgROrcdbQjxnnLdbLJso7xbpWWF0YkyQ9+63gDdrW4RVs+4ExCsiblGiaRp6ls4PRGsM4ZZxReAfHvjD2mc3SMyXNoSu0TU2XFBXQzA7si1WFiZG6MVQELhaF+7stavLU0x2L+gVBgY33mK96WufwOmOyvN9KG9Q8/adkki0oleZbwSAN04KJEOEozwXo872SxdX5a97eHPETbQeFwlgDGayZI+2oXzcoK0M2CZ01SnkKRgyfWs0inRHh7oF3WYzExeenvIhxgjlQs4u8lCwDlPneSVlc3MYFVBaxmtrjVCYoxavpjBdhwYXPPCeCjmQMriR0vmOaxOnu8jA/SCwqRFSMTNGiTAE1UoxGYdEpyrpjLMMU6JMSt4SGYyxErQgxEGaH0qpWpCkzlYIaBm6D4Ze7SOU9NidiiizOa3xVSWwUGcJJORZS8oGi2Ipo19jFhqSk+GwYBhpX4VdnjBjcz7/m15F7eP36Fe2ixTuFs45+GGRNUwnvPCWPHI977u9+Pg+tCk5r4pgxtcF5J+7zUri5foFSisZVNEbYgJWvWS+XaC3MPK013ld467i7v+Pu7jWmiOv8V59/w8nzl2xWS/7oX/4xVy9v2O1HMuCbhqrdYG3h9uqGxVKjnSbFiXGUZ3xKAW09OQXM7PQ02pBipK1aWtdjU48tBe2BMhJNAqVZLDPGZazR2ALegt0YqoWjSjXKmF+nFIwRHqFKgBXnoJ5d4EWhShTOrzEzjzjP4lWmMPBwc0jCALBudl0mSplQRaHn1uWHa7joAsW+cagqKwgKYWDOKQdl5k2eONNJGaUm2ROl/GZtyyVR5tcjBmuNLoI7MFaJMyvL19VFHEclO1KYyBFeHo8UBV1IvLq+57RyGDfvt1CopAlkSvH048hxtAwhM0XHixFebAMlaz5/1bMIhcebkWUjRQE6iDvcKENIBaWFpVZmzEmOhawUMQnCZ8oJ9MwKLImSFMZq4gTayvuwOwiDc1KRkOLsIM7c7QLOCCs7V4mlV+QyUa8da6sxthC7UfYScaKxNScryERqpzn0iRA0JhvSpPG2oHShrTV9Eg5h4xFmeqXo9ntC61lsTjnuDtTGoguYcuT2m5cYA5WHHDNNUygETpcGHwuXNXywUZzXAeugsYXbMXG7g/seDkNh3WZWFdwcFa92iWlUrBeGMSRQhoUz3B3gO2eyRhkUj5dwXkn82ylDMYbjGFjWjrtgOFu21HXLYfda3GTGsjSFNDu0jREcT4wFZy3rKlK6L2niDcFKRN6bRBV3LPpbFv2vJAmUetruHjXcUHJk9I66rnDOo2xBGUFpMa9LKsf5vkk8sH8USvAOSYD/aRrIITJ0HV0f6MbIcZw4joEUE1PITAFOW8Vh35GzYiwQUsIphCVapAxuXSsWLuENItDPo8sy42RyTm8wB5RMSmlGVIjgJ38vyaAH80SaG3FLeSOnUx7u8SJRZ8yMFyHPCQeEn1/mP6HgsD+gtZh0tBFxz1lF6w3FFXwu7LrAECR1ZSlYDetGc7puOZsKuynx1U1HirLO77vAawqXG8u+F6vsISu2IzzZaO73MhDYLOQsaC3sB3ECn20aDseJPhRSQJBPRc2N1hFlFVklfvLxNcYUNicLlos1d/stbWNZLhwfPH6fv3H5Ee80z2iePGPZLrCLhmkaUU1Fmc9eSckzYMqZGDLTIENf5v2i0jWL+pR1o9HWYKxFW4txHmMMiUzRwsQ3Vs9s34xKE3E4MPQHuv2O+/2ObhiZxh1p2nPsDqRhjy4dfehJ/cCgeupK4ZpEiImans2yoXKFioxxmttjBK05X3rSFLFOc993jErz4pCIRYuJxylO1gtqAzpP5Bw4XW9YLuG2H7nr7xlKYZiP5vs+opXirsuc1orGFxor+/79kLh3hpQUumSsytRWroOLlcHExPmqYm0zlUoMY0dE9pwlKw4hc36+xC1WLJYraGvUcMDrgqVQW03QYNR/AC26P/xww3eevs2yttSNpa4UbatlAffCQrNGBBmtBrSuMWYxcwoy1nSU8rnEkJS4GET7eDnzvDJGO9TDVNpIYUZKN6Qkkam/8723yPkpFEOMmabd8aP3n7NoLK29QuuEQtwPqSjUOvHQaKUlYyCgXZ1B9zhtIHeyiVE9vv7/kfZnMZqmaXoedj3v8i3/FpERuVUuVdW1dfU67ObM9HAWcqTxkGNSXEQSBm1ABzZ0JtiA4AMbEHRkHdmA4SPbgEAB3mhJFmBqGYo0OUPMwuFoZrqne3qrrq49K/eMjOXfvu97Nx88b2T1CSUCHUCiu7IqIyP++P53uZ/7vu56KTUFY4WcB4XELhM3loZS9iqglAQ2UdDmPllmjIxIvkAErl01vHltXtsN92oLFkMpW3JZY1baPvz6NW1U/AtvH5KyVKHjXV59I1Ew5PyMz61uaYyFyHqXiWXO4wc7hsGRUua1z93lnlE2yPuPH7NaLLhz44Ab1w6Zhj2npxuOr8zwduLBJx/x9PlzYi1NmMbActZzdHzE8vCQB/cfENPIYr5gGAJXjq5ycHzEYnWgzcjO03Y9cYrMZh3Xrl1lt9sRJuWdxGmipEDfNOzHPV2/ZEzn7EJgCuoqilkvYWSDk7qoGqGx9gWHgipUZSyhWDKGKSrvQKwh1qYnyXpsG6cASevVc7GErPHPUBIh6qU4JGG/3ZCGLe/82R/x2muf45UbB9x755usP+k4sCO9PCCOZ7zcFLxMNNsHpFHYG0/KtdlXzAv2EZXBk6lih5gXrjRrXT0sX3ItLGKU10ERSpoQTL0QBuJuINbWT7WTG4RI9paTg4G4KKxuGVZ5RpZz9nttalLtKyNBL3AiFu8ckoUc9GBuRfTwK6J19UkFFd8VusNjdhcXYEXff1kvnik7jBSsqQ0/2WgE0vcaCY2FYies9cTo6GdzTLdAok7+cppI1cVV9s/0ElmjxDlnRNQVkRL4piEb9beUvMaiUPWSIFtH6VZaSV8KYVSwbgnKApwKuMGDQCqxpjk1vuzraDIJ5OIAh7OWIsrGm3e+ik4G46C1MzZ5xQef3tcL43zJzes3uXJ0hYPVMbvthq61PPj0fZpGnXNxGrlz5xavvHKXRw8+oBAooq2kOSv/RqZCqi2YXdcyjRfktGe4eAjFkifB2gbjG/oWbIEmJIokhhQZYuZsPXC4eY7JlzEOfd2c92w2O1pnXsQyJenl21pH4yzG6yGpbxqGaY+1KhyIRXlzzmDRA1caE0Z0mpzLBJWjYy4jUjmpU8/oBEsVb1R8ylkFZWNqLEJdqMZR3S7qJqLRr1UjWJcXN8DU0HkKJKy2ytoGEUfeb5A4YIuu79rBoYJaMU45gEa9UzFF9J0EpAjJajkB+xqFNMQp4iUTU+bZPnARHTJOjAQa39EVQxyDHuycowuJhXPcPTxiO+1YWMvB9SXXDw8Z9iP3nq7h+gGHOdO1hhgitgI0U9KYieqWllQSxQlThhwDFgWt21KIUdiXWCe2KshagBwQK6TqSCziMF1DzkELNZKCpbMRkMtWSD2oYFXYF6PrUUmWkGE7TOxpgPrnTaa0mfUEF6eBXNRZG0Ik1+fXW3T9LhljWp6cJ3IyZLHEEhmHzL6MvPPgHvdOnrCPwpOTCSMqtGMswwSnW/DOsBkmjfyKwRRocuKwheMeFjOjBWPOcLGPvHchvPe08HwQpbhlcK3Q+oZ5b2E/Yp2lqYJfIXK4sEyxYFFEROs9rsCQEiPgxNAZz2YEvLal761F9hmLU/6biyyaLZjEfudp/B7LSMnq9LEWIIKkaqgIEAXnTBUjamvt5UfU9wvVlQCmrvl6KQI9hF8C2dXhWgcdIlriZGqc2jqSdaRUlLGXgrYTplEHPtnUltHqhb5k7eVUhfRa/GKMuvlc5jMu6uV/py23EV2P8b4y0dSlrY5SwcWN7lvuEhWQMWGPCYmcCueTXioPjBYwSS6QsjYwGuo/lxdOjhgzSSANhkF61jEp61ASYw6Ia5k1hSf7QIiZtXWcjIU+B8TB6T6w3Se2Y2HRWcVE2CV+1tF2deBVCm3TYIwhiWPKDg6uEsfCLk9Mux279SmkEUS4ePwx0Xp2F0JJUlmb+nPebdfcunmdN998m08fPOL6zSN+/O53sBJorCEEyy4VYtBLmzMFb12NczlCHQbmEnHWUVLmaLXENJa2mzFv54R4waJtSRg6azl9/oiuy7x0vMClK3z48VOmzXM+/dE3OZkfcOPGqyyPLrjYPGSx9KyO7/CVL/95Shlpdk/BTpAF38/IaYsTYRqzpl1SpKRBF9uccSbjTYKwx5QRL9ogaSUjrQ6UrDEYb7Xx0IA1GTqPeGidUWeoqcNIkeqWa6sz1EHZo/edS2dpo+8HeCFIQKoMPR0S6jOdyHnSP0euCYm6v4itmIP2xee6RIEUzVmrC8ja+l4xZCuIeErcqRhoEmXakfOoBoCa5lADrX3xXi45UojkUiPOxb8YTIIhJ4GSON/Du493nF0Ewr5gUuLnXm3oEYzxGISweosw7snDKcVdYM0FQSKlmxH3E2LV5fdkY5g5Q7LCdWAZE43RdTpeOvmKULJlTIUhZcZkSE5fDeeU25eLvs9LthhvsDZhvEMM5KyRdVOyrjXGkEpiuXCIeO6+9AYHV25wdvouKe5Y73Z0vTBtB55PEI0jSuD6cUsYErItPFvDmCJTFHwpHBw4YswMU2LVOfCJw84QysgUDE2jP//WG6ZhZLN5yn4/YeyAxXKwPOD4yoyP7u+JMeOMIZO0mCIacjLc32jy4KC1rDwcN4VXbjp2Y+TeeeFwYQhT4emkg7e7B8oSvLdWDMQ4JnpXWBXDomSuz4WLmAgTSCM0xhNTxljB+zkyWKztKb5lPluwaxrCbk+aJoKPeNuQQqkcYzAZhIDbPqK8v8WXTB8hPXmfvDhgfuWQVXxGsz1BpkEd/GnUgSZCNMpnLqgbmrynyO7FnUprqComNSsu5ZKpV4KK1VOcGKbMNkT2IRFTYQyZ/aT7yGYXtYhlL4wGYojsYibnjDeoGSNkMomcYHSFvkn0NleHurr5dIikbjx1wKafEPXq7wEpvpDvSAViyi/Mupc9GS8GylRsgujvSXWdX5ZJacGRnmVzKTResJJprCOnyKz1tF44PR8QZ1nOO8azgcbCmCEijLkQQ2LROb54U4sqfnx/yy6oy33Mhe2gLlxnLesps7tIXAxoNPyKsN4Xri46ng+Re89Gnm9HnBVeefkaDx6dsd0P5Bj4wms3eOPVV/jBu5+yniJXDoXHJxfcun7M07M1127f4vOvf4WH9+/z88ev8/PNDb7ys/8GhzdvUOZzpHMEEmY+w/oGlUN58VpdEgsvj/LK1+WzqHbOLzAVKSdSyYSobnhNSyVizoQMcSpMkyGmHnE93cFVrh5qYidbjaFb4zHOgzMvzBdiwZFJcc922FH2p4y7DeP2lLhfE/Zr5tsd437PRgbiboOkHWIniAPst8SY2WFwxnO2K9gUuHrFc2W5YBwSYb3l+cWeR0/OGYfM7SuWVRexGJat5+Hpnv2k94dri4LLhdWsqalSxwZLM1hWncGLcNhacML5LnB0ZGl9IYXqQO7qHhNhtljoIMsqC1qGwLUrrQ74nCNP6rb+aT9+aoHvzvWAvTYiZQcCjXdqu63Q5ZRV6QzowdaK1brvrIcFyh4Rd+nHAfTCcclwsgJWpmrfLS/ihHooVattY9WhgQimdRizY6a9Bvogog+Rmo31oTTF6GGitimpRT9AHkjRUcqOYnyNhv1E06hRXpre/5Nu0jXSohfH8uJCrQ4tbdJUseUyPKPTvBf26Ky8AS5t0Zo9VHahNS8Wn85p1DJJ4qXjghAoZSCuAojw+VstJi8QwC8LX727IkbDr339NQRbmW4npBB589YBOSdSueCNoyO2w5Ln65FhLGzWW0KAfbjgii/cmK946eY1vHNsd3tmfSGnJyyYmNkZY7vheGFx4rB+TTxMLOyKO7duaNtMbzG+5d39M4pfcrbZst8qiWcqlXEgKExXMvtx5PqVmYrCZKxYYsik1uFNbTcTwzhlVp3HZkPTdnQFQhgZY6bEgneWaVJRzZiGxkOIe3IwgCOmhK2To2F3gdtl2vNA7wrzsmURwIeISQqMNUkFuZAM0VV8kRGIekBtnDZe5VKwztYAh17SrCjvR7I+C84aPYNmQy4qhF+WXui35188Q5cMNU1PGUq9dOXG6tcg6rwopvrP82VhR12ojSgz48VU2yjIVwxjKDU+rU25sTSsFkdMyYJrECBMGectdn6Vl976JcJmzeMPvom1jsXBMVkcMUXlntmOuD4hbZ7QmwHJkbzdQ9xAGrEGMh2z/po2UJUKdC9gnKWYhn55xLh+TuNURCl1MmdFyCXqkdnMMd2xRnVKxFiNDOYUldlIIdfLtbWWlILGhqub8oWwYvSwI+by0q0H3oKQpoIkSzI9z3c72llH2u7ZT4VXXnmrRtwK+/1zzi8eE4YNrb3OteMjhv0ZMe05PLrB7VffYnv2lJMf/6k6bURXohQTOU517Sv0bcM07clS6NuZthS3K46uvMVieR3ve9oCZtYjuy3f+9M/ZD9+xMk771NyYDEzmNp8jORanuHxBvY5MpVMYzypKM1tmCaNLRtPrqEGZTlqtHqaBkZn8fKZIFqq0CBOlH1IjVaX+OLZh4SU2nBoqE41PUBgq5iQ1ZCh7rrLr1tfiZTVGW5qxOPyQmZcB1mhyjmudS32HcU0GtvwTuH/grYZpkhO4cWa7NCv34itd8Ko4kUV5IWEpIlUCr1tmLeG/Xqk6zpK0YPLxWai9YL3YGxR8L9vaaPhZn8F7lhWfsXKz0jOYRpD03mSaxhjxouyVvRirBHmYpsqeqvAn0PQQ7g14C+f16Dlw/W1GnYDloL3ekglF6LUSatBiyKMFvykHGt7X+ESTh/HQCq8aMJOKTMGyF3H8311YUghxEJIEZ8zFxNsY9YoWpxorUZqWy94Et4ZxhCZpupcE8M0TWDAOW1MRAzWO1obWc07xpDZ7UemIByK0LlC3wrZ6cAkl4Ilsewtq0447Aq+FLI3TKXQOs/R3PC2KTzaOS6CYb1T4cR5y25IGOtpnZb5hCnRtLCYgxRHiZnOFFqXaaTgm5YQDNlCNkmdZV54aWE4C/Dp84khapRofbZhkzQ62ixWRBFSsQrmjuoUQqDYBNlira1CnV70Spa6lmv0Voy60qgiR06JeoyqZxeDeE+FW+p7hjrMQS9JSTS2TYi4ZPFGYCz15qbto5+dO6p/tdTPXktuijY1Ubh0k6OIBOGF25ZaAGNMgwRtnc5FC2CMNRqfrIOmw95ylEcwAzkaKNpIHcWAM1xZWExJlNxofD9FshFKbvQ9XJStp37wVMU/XatdMRz0FkrANIa0Hfj2+xs+OAvsY2I/JU4uhOed4bWV4/qB55UjeOWawfkGccrsbXAYG4nZ4NTazBB3tE2Hm/VgLeniRAXpcaTsd8j+nGGzYQhJI5ECMh4p28qq+zKXgsFycnrGzd2e19/6PK987nWsbXj25EOODzqsFT6595hHDy4IOTHve9568w2enTxjsVjx+OSczcWarulenJJ3w4hLIw8ffszx4YrNdmAxiywOPGMorHeF5fIG16/d4fGjp1y70jNOheePH5DLE558eo+DmeF8vcU0c1Z9w4N7PybFPbfmYOaecdjqzzkEYgmUaWSc6jCkDlH7tsU5R1sizkRakpZi9MrQU0aUwdjLPUPAqvid/ZxiHD73FOt0byn17Cweg4P6viW3gEGMNl9DqOKEnocKRvl2edJBX2X1Yh2G2uKOobgZxei5RtJYeahG31uinC4jhpIj+BliOr2V1AiuuFYFkBQoJWjrqGiphanMW22Z9hjT1DbxhNhYzzFOETK1qExcS0oTpayZ9hs+fBR4fJEYgyFMibOZ52LMNE1DkZbBXiMffY3h4XeZNs9IsWGSFXghRsfMTiy7kYIlxshHZ5kxQYiWazNY9JftbJ7iJlJ0rFNHnt1klzzbi3OG5EGK8nxjJsUMVjBOuHJD+PxrX+RnvvZv8v3vfpP3PvwuFxd7jIG2FW7ePOD68U26xnH16Aa2PaRpjhH2nK8f8/qtL3B2+oBnz08IE4x7cFienGyxrkHwzL0wX0LnE+sN7PZC6wpEoW8cEyP7mPWiHSOLhWfmPV1nOTkf9Cwgmc5Y9uNICmseP/1Eo67ZMGU9Y3grbMaoyIS55SAm7q6El+bgMZiQebZWJ+EQG0rJHHaJr70sjKMOSydrOB8LK2f4mesNX75imTstcZvlyJOzlnWBNul+nKNjkgNCe4U7X/lrtN2cx+/8MX3rMKln3go3rrScbCbGtKdtPSmMFFOwpeCNxTmhpIzJiXnraLzBO4/s6h2WACVUvp2AOGzJSM7ajp3qXbOiGkpVdqTeObXspVBSVAdfTup6q+vwNAZK0eeTrBHd3TixbDWKPEyZRqA1hbMxMmahl0JrE/tUaE2hrWcLoSjjoorvzii7jDoIz9Wo8MLZVzKpFPILxx7q8CvqjspF7xKZgnVq4LhcM5VnLtUZX6pjXs/e1uiz4azQdoXWC61Vxp5xjllriClw63rHbg8pJrw3XF01PD4byBkenQdCiNy+sWI9Kovw6oHnk6cDORctsTCwC4VEYgwqjo/nE6vec2VheLYfuXLgWXSWqwc9m3HPFAr3Pn3KfN4SguXm1YaXrgDDfX7tL7zCzZvfoDlc8fDJU371F/4i203i6PpNdjHxH/xv/pd8cnKfv/vXfoE0DEwnj/BhTiqZuN1h2p7QteAszqsbT6xHrNPzuDFaamRMLYTTAaMxvDh3OKmpq0Yw2BfDvRe/jKtuUb0vJBEd0BWIMTBNA9MYmKaRYRjYD1v2+z3jFFmnwhD0zBWzkMsC067oli3Lrudm19E0nqaxGKNuYSQR88gURj2HTSOSJsZhw3D+nP3wmDBuietzvMAkjzDGsugNV1cepsz5JtD7zOyqYxNgmApnm0xjockZQ2E0mcfnkVXvOG6E3RDY7QuN0/tKwTGFqM9wLuzGwLxtOOwaDpeHdPOl7lExcGXZ0nX6GjtvKcXgcvOvkt3+tT9+eg+gyZCCVkFDtbXrxUy4bBQyegEZMsWp8uaMrZZ5anOiwvhzKXowLnpOLQXEXQp9IKZGtHLBXCbta7xFt+nq+iii9lh4sdAZozDpyyhAQXk8Bd2kM61uuLHVF/4SBo+CN3NdK0qxSON0ElH2WNEFU+rCc+lAKdlSco8xC+gb4vAIU0as1D22QkPlUtqsAoNUO3/KSU0sUlswc8KIo21s/T2NLHirh+pctBnIGo+RiWFaazSgJG02xusEsagNV/KEKYVVW1h4uLFwNWKw1HbLAojgnKekgG8aMB3eWZxv6os70Hz+GO/VESAl4twVClfwxpKygrEtLa9fPyaXwP1PJ9758Dbf+sHEFNZMSX/m1ljIQsjK8rJSmDcOkwVrNWqI0QupFME6T86OpvOsN3tCnJj3rV5iEHKyFZ6dMMaTYiYnq5HeIlWgsTgrzFqHk8R0/pi2s3iTyKOQvWUIgimJyWoMyoi2NEVj8FYfCuesxkDrsyJBnzAjos+cMVgrdRKM2p3FUtNS9YCpDo0iaofW519qa5x5MV2SIlhR54ExVi/qYnUTRFTQrqJ0rM+UqVGaF8UF1lYB+xIcLnjvaYxg4nPibofvZnSzFdhr+H5Be3CHbnWNxeqQOJ0x7i8IWR0xYbwgb57oeyCOWJ8J4usBd8A0PYI2SGIco7HI4hqIvslzLljvkToR8ssDiggRdfHmkglCjRRmJG9Jw6ZGahLOVMeX0Qa8VAwpqSuYXJQVWB0oYrTRUcRgJdaJu073rPV6gA8BaPSZzhvy5BhKz627r3Ltxi32mw2b83NOTh5yvn7Eftxx6/ptzs63uEY4XB7x5Mkj/sv/5v/Dl7/4FQ7nPa6xNHSEYfcictC1DmtV9E0pIQa6bqFfN575+YKj/g7Hq8/Boy2uGGQ2Iffuc+dRy8df/R9TDoWPf/M/Z0qGnIoWZjiYQmHWaAtoRh0SRgwhJOKUuRgmhhhAAo0TOqfiREkRUzJt36ApDhXLjNEiGWNq5Lo6VrOAOKeCQFGhwdZmcsgvylZFskLSa4xQxKursrq4Sm3YLJIhKdRejMbysqh7wgBt0+raWQTxfR22ZExJFTye6yVb95qS9bkv6TKSWNlLZH0OrOjamBJ+PiNbQxNh1UK4v6N1ChfvvWflWhqXiSJa6mOglYgpkZurJYezuV5ik6WdL7FiqnNRXUnGGSQVFDOv0Q+MvtclB2XR+YyvAGcdT1dB2BSmOCHO4TqvMbEqoti6B2ZUXPFJh2gx7/T7lIxvDSXtycUTpTBNVhsX6347kcjTHsmZ7TiBs3TOkCThHVxznuNxpLUT47hjHAf9+0rDboikoNPILIK1WUHZKSLWkMMWcYmZt/TW084bZCqcpz1u1rCfVDBwVui9YbnQdXMYIrZYegvn+4QVobFwsID9kBiKcL5JPN7Bg7M1Q/QUHMtZQ6puSeVOanOks1b3ypwwuTDvGg66httXWuZGo4gPzhKp6D6Xy8hcAi4XmtyQE+xSQ6KwGSO7rqHJW6wZyN4QadUdTdb3hbF1PS9IDhhp9IJf9tX5KiCWkrWlTkrQ4Yw4TKttyVp8oe8b7bxIVZTL+nBYHUiYbPX3jT6Xmg7In03gRf875auqoKiZcR0E5azvBSmVByhaRJaLnuazuXRZW7LpyLZBpBBdhm6u5zzbkisDN9oGkxKOpMKLPSDW0g5J2rDtUh2MGh0ATEmZe8Yaii0Up9F0Qd1CanjSAhZNdhkaI5Q4EYc1y8ZzvGh5vs+s5g1SMo23XJk1HC891654Ou91zU2RbBusWxKaFcYnwuNPcGGPs9WNlSfK+gyXIqF0NF/8y9j5VcYn93Gnj+m25yRbyOOaeHFKbxpeeeUG167fxrUtf/SH/x0pRMKY+f73vsPn316T445f/MXf4Iff+wPuffxtjg6u8fLLL3N+8iNiyMSU+OiTT2icMLqGGPUym+pZ0dvKmYuF9dlTpmGk6y1TDLSuIUx7xnHk/v0HvHT7dbrVMc5HHj9ec3YxsloI4/6MhxstPDlcdJw+ucfh4ZJZ02KZUYzFtDNFg4ghh3pOLUmHJb6jiYERR+dbWjfRNZ6ZEzqf8N4pyJ9Y73gOY4oKzralyKRRLn34avwbfZ4plDTpb2Z76dFRga4E3a9LoBRLMR24vpbNgDGeIs1nQ9FSC2CKxTYLivH6OpZBRbqUEJN0bxC51MFrnNAjdq/OIirfa9posUspCB5ypqCior43NPaXUYHPZC33KEUopsO1B8QUyWGH5IkwbohhIMTEydbz6UWiaT2zolzSiyHwybMJa1pa54nNnnLvj8hxQ8xaJBfFUGxHCBGxhb4RpuzJ3rLbDXx6lgkFHq8F7w1TSsxd4fq8rQ6ZgfH8U0Is2Jhp2xWN9wxDULeyT7TzxJXrhcYXNsNT3nnvD7h+6ypvvP1v8fjxY4oZOD9/wnIxYz9kYghsH3/MPnyXrr3Kcg4hW/7cV/4yH3z4Xbr8Bzx/fM5+nek83DpumfXCk7M9pSSsd9hZJKYC0pKyDgqHmOgcILmWNhQMmZU1HK96OgsnF5qI2QQtdivTxC5f4Jww61p2w0ApwmYbNcVSL+CNc1yEgt8njvvC850Oqbouc/sKXO0M+0E42RRKUIFwGDX+39uG/Wh4Ps7J/QoXZki7pFusCGZFsAcUmVHcEubXWcyPaQ+vEQr4l2f0kmj7OaYEUtkQHtxnPp6xcANlP1CIxGGD7+eI78A0uJJpvCHnQM4DkwB2VkXvgJGfKGOySd8jlWsnkis+RQ0qBSqaobzYH0pJpBrdrXV2ikrqWoZhRBpD5yyLCaagEewQ4flm4jyCc5ZdyMQM3cySSmQshs5ALlFF25wY68W6av8qpNehVinK4pNyOVyqd+ca9c2VJalGCP2zl+fNbt5jGksKmTCOOtCqn5fLe31NhoEgPnHloMVKIQa4e3NOSpYHz55jXIP3rqIBEreut4jT0cHMG2YNtF7AeR6d7MAJm1EL67rGsd4Fkqi4t50SKdeBWlaJMZXEbswczA27oDzTz930/Mzbx3z06RbbZm7fus3mYmS5GNmvRyQLN45mvPud3+bnfuVv8OU3v8DB/IgH97/H6f4R/+Kbf8ppHPn/nZ/w8b/4TZa58Ct37vCrV+/Sn22Y1ls2EpkahxGLw+HF44zFNg4aFfyMdVoa6fRMYnuP7VplUnqP8UZxCdaCtYjV+K54p0NN59Qs4hxYr85mo2mfxhh6HKZvkNmcUk81pQqxGfQcmQsxF0IuDKkwTpFhGNmNA5vdlmfP9qyHgc2guLExJWIpFJQt7huLcQekvMTPXqc77PC3dYB+6+4585P7PP7xt3n84Z+SLh5jjXAxBLwRZg4WXkX9o4OG043iHYZo2EwGsRm3MFw/UIH4oHXEjCKVjA6ah1hIWQW8o87S2Y5SLA7h5pWeZZuw5rMyPGVN5n8NAe6//+OnFvhSTuQYSHWiZ8RijdYbq8iSX7jndN2ISIJUHRvGVMZFchiTsZeiWk40jae1sSp9M2bzI3bDlpzGFy+AQtoByRoDKMqLcFadIZJc9TcnsrHqRnAWclT7sgDF6uQCQwmGxi2JYa/WU1GXniRe5PSNcZRRKOQKsE/qQsHUNkHBNp4QJpA9Oe8xW3AmqkBZymcH6Bc8pVhZF3ofTKlgrVzSzjRiZSzSLBnDoIt90wL1YYgaX6EYopko02NSHrC2o+tavVSnhCRo2gP87IDh4iNIeqmxopExXevqIRx1EcQ8qviR1VYbE5BGvXiYTIiGOKCvDeoC0MmQug5UfO1Q1lri2pUlXXuH7717nzCoGVhKZtYYWt8yDom4G5kvHSZA0zmaAsVoqUMslbsmme00QAM5B7z3DFN1dGGwxqmqbx2xJH3tjUbxpqCHrtnhMfOmxZVCGBNjl3ASSbYwEfHB4KzDmqwXviS0jVXod+W1WGswqLBtrToCdH1SPpKrJQF1e+LSjyel1IgGlykpsNU2DhUCrWJm7TZEKNqiy2WUSP/8pVion1K5dqZOtksu2Oo+jVEbNnOFpuqeqYJfYI+YwrA5AQRvDRdOT97Oe9zsBsuXvgqzWzTtARYPaSAFjSltNyeQtkDBiQLFo6Aw33xpxZ7ppm1KLfvgRTV9CPo9gzocLaJwVwPGVJHbZOU8iL6/KWBB+/Eun4vi6tS8XgayrdM7jYSVosKRvlfVBp1K0ZhoicSo8UORgCkTUw5QGs4fPed7f/qIvm95+PAB3azHekMqE8dHRzx8eB/nGsx8QTdb8Orrr3Hvk4+5eHqPK7NX6LuW/fqErm1wzmk8uehQw1ZnYduqY6CbL5H9jPKdB/zBH/5D3v4f/V0O2kOarmc8XXP/wRPiR5+wPbrGaA9J2bDdRl2TxOCdYUqRkLVTMEXl5MSUcd7gTOH2lUPOt1tCTiSSRtlBN99isHVtKqiTWLktpl6alFtpjQWxmGJfDE2Kvhv0kqWZq+ocqpUsosUqurplihVIl222NURbG6UvHawmV6dEoYq6+pyQhipSWJJpKQcLJGfyfoPNEbGNrmc5agSgRJ1QO4c1VfC4dFRkR0GfxWKVk5csDHHPsJ/AGGbHM660DUUghoSQkeIp4nDWsfSZIgllrY96AM3q8FEmYX1fVp6epECZNPIrxuIqqhDJ4FsdKrmC6SxNMXjSi6k6xZPiVCNpugY0GGLckdIIRBoxGK/FALnswBZKHGm9rkv7ybKOjn2yhFJjm8ax7JR1OXOOSQYayci4Jce9Dv9jwdmWkAthDGQKOUccSTEEJKY44p0jpkBICcmFw67j6NZdFqsDvvfuJzw6t5xsBoYpkFJmCIVcAvsh0zf6Hjn0hkaETizPNkoELBS8t7icuHUAV5fCz9xd8t2H8MHTwGze4R0sG6Bo+cwUE/tJo8sxFxrrdcDlhWE3spfMQSssuob1IIQQaVpLMImzIYJkjVSOGdtqvHBrdvTzgu+vkGNDkUBME9MUcE1L0+rP0NqGmCcdaosO2nQQZ9RdaQNgKFYd3aWgzEzMi4uXciwtxTb8ZPt5AYwTYtHXvrxIN+g+9AI3blxNB+jB2Zi6T+HroLU+l9ZRSkOuvFsj1aFb44WFDHkiBW2rKyZBHOtAZSRlZXFlUZF90oYKKFkdAkVIWUC0edIImLzDkzBJ1zAjKozqVd1VERNSiphaxhHHWJ219e8Lytj9wnXH2zePsL7BN3MwBW8V6J4lUYKK2qnpwC8p8+s6/D39BLN7ji0jzpo6hNU1KZWCNDOa+SH54CrdwQ39WQ0j3XzG/uk9nn339zGfnpJyYDaf89YXvs6zp8/44Mc/JqfMNCQe3HvI+elznj5+ypPHD0D2TNvIrbtXWS0c0x5m/YzGe2Biu9twcbbDitDNPF6gr63rFKFpWrb7C7KdY/2CgysvY9tnNP1znC88efwRF5tTnj18QhgKKWvLYO89IelJJE57TEow77lx51VefvVNzO6C5uIR4hyj7DX5kEBy0WKxontMs1rg4kAY9uzDiJuJci6twzYN4hbqlMwbbNnXQeZnbbU5jlAmClldHqUOocXWQZCtcXVd/8ljXSAVVSIMlKRRf0BFC2oTuJ5g1YKaMyatX7Q/J3pyexXjHSVuEecwzpPTQIkDyFCdfEWZf/WcVC5dUbWVV89QpTqeJig1JZHXxGGjsVar95mc95RwTqbHEAnjlpQmtsPEegx8fGK5mERd0/tM13QczzsW8xndbMl8tiTLnjyd8bw0JAyub8kIrp+xY0sZCzHr0NQiNM6QCuyCNk42UjhqYNEUGkasFLwrLMpEIJGcIZiIaSofjchyWejmhaZ1xABDCLRdxxC2dPGAz7/1Faa0Zbc74vTkgsPDq/zgnd8hpYHNOtJ0Z8y6lhwL3/rWP+XBp+9z9viUg87jJBNSoSuWk2eB4FoWq8Chb9jPBLGBMWiscZoi0wBdo3e6tlcGd9859nng5Cwyayy3jlriMJFioRVhaR3JFM638LnXXuPH776LSKD1jXKloyJhzvaJthRMFDoEP3PYHHh5AadnEbta4mkxfsnedATpuPryAdn2NPYQuiMedld44g+wtkdbnS3FGBViM4SYSPvEeHbO2Q/v8e4HH+q51neYmlowRnB+xnz1CrdfOmZ5aOi9mmLebfRc7q2jiMH1Pc55vBia5W0te0BwGGwVwYzRs4yzWgnj6hnCkDCXTbYlQb78FSs7LZKj4pVyGGEamPKGJIFo9hSrqBm8YTYv9O1EDLCadZxuBqREPR9kgMAu6mC4k0xvqxkHEBKXCIqUIFejQs6lDh/tZ24fLlN4uZpgip7ds7yIk17ePbcXW0JS3r8OdOv5vzr5Lg0V89kcS2Y+zyzmlsZYxijMOk/Jhps3bnD3zl0efPwBY7gg5sIQYBwHdtlhnXAwM7TGkHIkivD8XNmWcacIg0vDxjZXtjzms5irCGfbREojVyfDjSPP6SbQ7jMxbZm3iflqzpuvvcWbX/g5fvBn/4SLkwcMm4kfv/MuYmc8ePIhX371Lf6rf/YPuffgPX7nD/+Eg5tX+fzX3uLxo+e8/8F9yjjw9QXs1ud8+/Fz3n/2nBKyFu0YIVtNU00la7FO0YG6k1o45izeODpj6L3HO4fzlqbztN7TOi1Ma42lE4uVeucTo8+ob2j7ns61tMXiixYoFefI1iDKctC12DfgHbbxSOORxkHfIrMZzOeUbgarK9Co+7AYQzZCNtp6niSRcmKYJja7HefnFzw+ec73fvQef/Cd7/DRwyfsU8G0DV03Z7E64MbR57j9jbcJn36Lxz/6l4S4Q1xmP8H1Q8dR71j1GSeWB2cTrYObC2EfC+f7zOGh4dDpPS6WzDYK8wZeWjjGVMidoy+ZO0tPt1JuddM5aKyyzJ1R5Fmjw+8qGPxUHz+9wHcZd8vVSSC6kDhjyfWAeSmSW/eZYq2LmEMQGueU4WNand5YwEwMYWDEakwrF4YpMIWxXmhKjfyC9xX4WC+Uep/TF+wyKpRKpkRHEQipkKIels0l3wyLlUJmT0hrEhNQKDJQSBrbkFKBzxmSwdgaGX7BqYgK7ZdESgHXGCBC1gl4sbUVL9WIg8zwpmMcn1dRp+gBux7aS04qZlAPwxRyHBAmrANrajOWqKvtUuQsJRDyxH4faH2i9ZeMJdBF9IQ4rTES1ZHm6qGkyAtnS6kHoVwy4zQRYtDYG4ApxKhcFbLWxMulu/GFDVoXWXs5ni3aiokxSFKI7hdev8qjJ2fso5CN4HyjMFpvaO3EbYG9KK8xFY3cDjEi1rKf9nTOM8XIPFl86zDFQdNAnghTIGXlMuhxsDCVolGbVLC2wXbHfPFnfoX9s4/ovMUauHrQs+wMzoIXddJYC42xOKMtt87aWk6hQGijVaKVGVlqdOpyoiyq5AuVMyk1qlVjR1kZYaSkDo0sl/pG5dFAoVQx6vI1VuerGH1j5apKXLbs6sFWajutfp3KRjJ4W/UDMeTi9OdshCLaqJku471Fox0SAQNh2mOngWHzHHFLXL9g3A/sh4EhaatTS6DEAQsECSruGv17LQ05G7LkKgAYZWIYjTLpPOCyAVKZ1dTvhCrsGWOI6XJ4AAn9c5G691ffuJhYXwGd7pWsLi5TYwC51EPCJWhXlElji5BC0FiVaTG1MVGHfntOz0+4WD9hfTZqY5ZvabuO+49OCYPCmZdLwZg9rkYrx92O0LcMY6Gv00lqw6I1lrjf4Zw6i6ZxgBTxXc80JdIP7rP8g+/xJJ3xO3/2W7zsVlxpes7Pn/DbLnCjmXP9zWvcvXmVpm3oWv3+O98wm3eEacRXR5739TvOhZgSsajY1vcdPkTGOJLQuErjLH1nIRdtdpaiTXxW2z5TFn1fG4sRRzY6kSt1wiumPn+2Oo+A4hxiO7KxCmk3L/Dm2r3ZORB1X+CcHjDHDeSxHlJFY3lCjQx0ekiqUadSG8vSNKDcVn1+CvGFq0msR+XgS9RDvZjV96CpDdSSDcHB/ZM1uxE647i6sFxdNCxanWh6KxSv7pJsvQrtWbkuuYDvpIqgCeu9HlTJWCy5MgVLjpTauqXO3aIipDRUmzKmQM4J8o4QRt1nhRpdtZQyAUlFozjps10ZVyWrQBvTiHGGYkHINLYgJZGGpPzUWSHsajzdFxXua1TO2EQxnmAzu5yQ3pFjoGm9RixKJHtHJuqAqFXWYSkZGiGTlWBhlQUakiFsE7vzc1xMeOOYNR1jY7XFGeXfXTq0Wg+9N8yd0Aq4prDoHDcPPNsp8Gif+ehM6FrBMvLJiRBEncn7adLIP4kb857zzZ75siOnEestKWZuLxwv9wm852RneLxR2bk4EOMhRZ7tCoeto82JRecxe5CUWYmlLx3WduxiIe62CAFbIjkLi26mDpSSMWbSKHUxGKsCiVDqM1ewbv6ZqCGGVETdpaZGsKUyQq1Xfqtr6wWobhIUrKvoERHgcl+HUhoKBSpbS/l6gkkJCYOeWYr6NC7bC3PeaFN0VkagBVIM9Zzh1HEXIUuu5UU6aVez4OUAzimCQJSZWChV6AMyyiIm6NAqZcakJVA5hRdOk1zfl9TomMZeL4dh6LNJQ256XK/rkctRWbKmYdpvGeNA0zhKcUTn8W6lXMmpYIdH8PwdzHChZVZ1ShazUJIKijFGYgGxe07/xf+Dfeno+rkOtcag+3UaCOdPCPtjnj07ZYrfYbZsefnuVR7c+5T9bsBIYXOxZb1es16vscZw99ZN7t65zfn5Mxrv8Thms57GWU7PLlSMSpGmbTAFWu9YzWdsNufM5gck4xnWG2S/ZdYVtrtniAR2uz2Nc2zPn7Ffn+EwXL+x4sNHFxwfX+HOzTt874c/ZNiPvH7jVfruiOs3j3h6+pQrN17m9de/ztkPf5fdyQl5HPBWyFlxJzkrw1oB9IXFvMWVAUNQ4SsWFZrSgO0WSLPUoUfaY/KOF5Y9C9Y0GJlVDq8WOvhi66hIOaqKIACNH17Gbwslhxcs2FJRNz9xavislKlaeop43X/EU+wcMbP6jJ5DGSFZUtxBHih5xKCMXI011nZ3LqOMqQ7Ci65vkuvAStl0qVxKEa4mcXSgnBFSOlWOWMmkCDE7crHsY+QiRCKWW9dn+Ayv3TrmuLdVOJwYtmeEMeHckmINpXjOdxvC/ozHJ2tSKnS+MDOFxgqNcbQu05uMl4wTqYJIZqqDgBDrELU4tkEInbA81qbdIgVx1U0TDfNZy81r15i7I771vd/jpZsXxHHkvY9+jHeR05M9R1cveP5sy36aNM2VhWm3I5fIN7/zhxwvHfNVwZREwuF9JoSJcYzMes/ZOjOiUbfeqlC1XDoutuUnzAOWacz0Hqb9QC6RcRyh9yw6xxWX6HvHbkgM6y3OO54/3fH07D6lZPoFzBvLlCLeF+a+0Ha6do2TQNdwre856w25vcbR3a9z43Pf4PDqa7TLW9DO+bptoGlxztQSLauJgxd21Hq+oLLjsrrIC5V1HiL/l//4P+G3/vnvkLJGSp0xOKOFPL7p2D445Nd/7S9xcLjS4riaBCqUWiyRifuBMQamUV/DcYgM40SMQRloKZPCSAwTqaQXzbapiA7Xjcavjejg2xqHdR5nG4xb4KzHmgYv+r35xmGPqqkhFtIwYuIJF49+H8NTXNZh0JT1rOikEKKwTcJhCyEXngyGzgsLG+ikcjpF9w8rFTeBthCHymhPWRn6uv5X53fJNd2n99vLFNyL4uwM++3us3Xh0nxhBOcsbdvy67/26wybNQ8ffchms2d5fMA3Pv82R8sescLVwzu8/vmv8OzkMf/4H/0/OX32kPV2z+GVGfef7lVItxZj4Nk2cjZmYoB5r3yNvjE4o83mrbM41zCFzDglHbShe+JmiHRdy/B0xIqw6IX8bMvywHHTe6SZkZLh6PDz/Oidj3h2cspuHDF+yw8f/w7/8gff53s/eJ921vCFr7xNdj0//uG7PH+yJYbCv/PG5/jGmPjOj37EL/SH/J1yA997cuvITsj2M7GtWKmIkshUhJASY07sc2YMgWEf2KWBXYzsYuA0JfY5MaWoCAcRJitEI9AaXNfSNB29bzh0HS9LwxcHy/VJ2cCXznzFHWjpkQB1Ikqx6NdnHdk5iveIa6DrYN5juw7p50jXU/peOYOzGWXRcaPvYdbBrev85Vdvs/m1X+ThsxPe++RT3rn3Me9++pD7J0+49+gx72fDq3dv8ou/9rd49/d+kyIXyKxwvNTiLW8NjTOKiiqZW6uOS468pEhA2E4TAcNmSswaA9nQpgCSWVJI6zVpNxBjJgT9pfebQgqRjDDGVG/CP93HTy3wbXaJMCRab/BG8I2+AI1TN4KQaQwY71Vw4zM7rohaEnOKTFMm5EYdBjiKBCDXOJMFAphE2142AlZgrlQLfNaGIlNdgeoOSojNhKBCVc6BXARrFXJpcDVaGfHGY2yrPKJ4oQB4HNux0brvmOl8gw2BpoqJJP1hFAQrujAK1Ops9JJmsrLASoEsJLTmu+CQsiGmdY0MqctOHY8eMYZpB40ZMVadTClnPXgbXcSm7aQta6VUEUm0XTZljPd0/TFWMjkZbXrNUmeaiZJ3enG26oozSLWESp2wZ0RUACpZYzupxOpySsraytqEilxuYqhIU0WpaiNA2VwK73a2IVqNC3W9p+0du3O9OBjriFNEiuHZEPi15cDFOBDEsGlbzlFHQS6BlIRoLh09lhAi47gDOzLz+jrGmGlbFToEjYnkMaKg+Ybj47t8+N4nXFtOOAOzRri66pi3onFaEt6KxuWKCh2Xk2fRx0svPVnjiqlu6Jfcu0tLuTpVTf19SCFUlc1UYbC6nZDKgNG2MWMuOVSf8SfNT37eVMXCS+5EdW1QL3mlpPpeuBQz1GWo8etEKaO6Xu1nXMNkOsR21VGkkUzftli3wPRLfH+A9zMwjq5rCdOa7cWa8+0EjQf8AAEAAElEQVQWlyHFjhymOoXXinXNUtVDstE2xGjKC46PsfraGauRIXV31bIQyTWi1mOcft+mtKR6mchV0L9ka1zSB/UAZFT09/p3ebPUNG51bllnVGwviUYyphRCyUiGKWmRQcoFFwvHq4ZvfOOX2A2FkkceP37CfH5ASPD2l1rG7YaH99/lwcOPKPKcrpuTAqRpwDnL7TsvMTy7x+pwgSVX67aD5IBIFqswb28xjV7kwxAZxy2/ZjyvnW6YT2f0bcN5yTx2QjtrmU+F19+4y4++1QJVZJbMfrenbQ1ta5lC0AOkFRpvK6OoOq/H6uLMhb71xJCwJZHiqOUkvtfAt7NY3yCowGRzoVidnGIbpO20GRYVCHTaYxHX1YuNDiScBHKJyh8rqPtOHHnKGBPIJmHiTwxLXEuiMjxsFR1rNFEFLHS6S0AQfKoDCqOTQCkaU9Qj8aXLuSjU/fJ70VXvBZKgUHDJcGvR8Ve+3NNaz7IVGieIU9dtKUbjHcZgxFNKVtEz6z6TUBeKpa0u3HoprZFIHeNqlL5IfDEQKTnVgYShTJGU1O2SRRDTYHwPxVbB0JDzXmM0xiH28j2X9ZJqDaYWSyg6IhFRJ6LJQu4Ei8NJZrZsFHhRlH8mJPI2gBkAwzZP0LekUbC+IYSRGAM2JULR4cOUNHpDSEgRXOPIOZOCRucxl++3wDANbGMmGYuQ9fUU4aBxLARs78h50ohwTJwPiTLzSCwK5S8T3mWuLhVg/mzI3D/NXJ03bIJn1XZsdxdIznSt5ajraBEuxoTrWsaQwTlKNmxjYJ8TWTplklqDS44cLcVDEsfZLmAoHLlCoJAdTGmDeMf5MLIJiYInsqeMgXm/JI8D7PYIGe9dTTbohddZLY0xxmCNxzlLQdeiUtczYwopFnDa6I3xpKxuPRV5QXLCmUuulpDEVlC5NuMq+kBjwaJaBOI7rNdIOtNEruU6RSmclOrUkxwhRRXu0T0uR43QG6POwyJOxWCpcWFTyMlg2pbsvTq04la/5pyRbBTA3jR0tiHFHt+7WgZTXrgbok5sagOqIKVofLmM+MYRp4zzAjnRpomchST6lU47bcoeS8Z2DpctJVrs8hpusSIMA2n7CLN9SJ62xBABbRAEvYAiGjHNGKYkhNrUGqcnEA3jVp/bNAVCDJQccSZjOIAMz56e8oe///tcOTzga197m0cPH/HRR/dBBGcbpnFiPmtoW8drX/w5Hj96yg+//wleIilONDbTtz3OzTnfPmPWN8w6R+90/ei6hsZnTi42iBFm8znztuX8/DGbvSJzZrM59x885Ox8z6pxzD010ufAdlAsve+Yhj0vv3KDr379F/n+d/+QD/7sD+iHNe20hxiQEiAH4jRhG4s2iAdMirTjCW0S2ibgTNIhmhNMYxGJkM6Jmy3G6PpTKkpArBDWz/B2Bn6PwejzIUbLY3SC+dlzWGPeOnusDz9QTKnPbeWoGseLJ1kXdOrSS5FIZFK3cXlOvjinEEBm2DQQyx6xEYh1yG6qoBBVsUMdLsrr9WQEXAvY6j7MFGo7enWiSp4oUeH/OUEql5xBdXQVPDTK+1o1G0wYmKbCudJZ+fDxI3Z9Ztk3mGeZ3VjYTpk7x5Zhv6NrJzo70eaR1ZGKYoYEKZBTbRNNurfFrM9yFgd4RDxTQSN2ObNLMBTYZ89up4bfaVREjDqsND5/cvKcrr/g6MqKadzywcc/4nvffweS4hDcJ/foW0/bOcZpYj8FFYN9Yd5pRLr3lvV5Yr2FRePYROH4Ss/ZsCNOGX/kQAxtY5CSOewMZ6cTt64aGheZsKwjnK0HDuaezgie2tCcM6UEilVX+ThazrewWsw5XZ9quyeZzS6RDaxmOtzPIXGt7XnLzHFlzuPuq1x745e5eufPIaubL8wKIRvsPoAMsNOzhDUNueKn5DIRYPV1T1VQy5cPQU7knIg58flXb/EPL044P9+o+JdSTYQJ877nL/y9v8df+ZVf1HKaouu81KGOWKNIBVNNJgltQzfUO5dU4bnU+2MipkQI+muKkRgDqf5vmALTNDGNE9M0MQwj+2Fkv9+z3qy5OL9gvd5yvl7z5Pkp9x58ooJMvYu/eSXxb3+pZ+YNrStMU6J1QkqRbdT2aIDneyE7YZaFUTydhblLWJI6xirVxKLFfs5cDua1yCUlbXqeIsSkn/fSICN17Zjypcb6mQ3q0v/Q9R3TNBFj5Nr160wx011Z0W5X/NKv/GV+7md/kdu3b+Fcw6LrEQvrsy2r1TX+V//+/47f++f/nD/8/d9kvX+GcQPDPjHGwqyBIQpnm8gUCptJnZermefKYeL5eWZMiSFoasjaapDJ1WxA4emZ3sn6VjBOh5Busnx0f83427/N7dvv8Mqdm7z88uf45MkZj9eFmHZM5QL/9JTl1SO+8MZbnO4y7333PU4eniMF/sbrn+Pnp8Kjd+7z945epguRb8Xn/OFux5NcmCSTACdCi+CBmRhaI3TG0mOYYZkZT2cMnXVctw1Ns6BrHa0YGjHaBJtr/DvrIDrkyDBlhqFwWgKPx6f8kYx808z4n86X3Il1TzBF16VLsa+iRrB6PzEJNQkhaOnHpZBuKx9QU5j6r53yjZ2heEvxDroG6TsO+yWHiwO+uFzxN+68xvTlP8d20bHpOp4nwyYb3nrrZT7487/KH/2j/zOb5z8k5YmC4r6cFeatgOnY7Ca8h2EUppDp24zVFZgrvSemxGjhaHXEuN1x0BVctEg/xzeNpjKsY5r2nE0TYlvaENiHQvTmf0B9+x/++KkFvuOVxc61GdTZqo5nbVwUEaxRcSdOCYKpm6suUAb0Ao7gLbR+BkYPcYi6nMQUUtZGrxz1cnIJAKeoqGhcnUKo2KtNnVlZRDnC6TZzsNQDdGOVBaLNpnumqdQUXyCniVB6FQyHno6GhRWF93cZYaKYhLVFL4WmVFFGQb2p5jCtQBaDxVXxr8NYKKjym0rGGamcD3WgeAc5JbK6/6vLLGu0i0vHleBEEKsrVdv4On1POtGo4mYphlJGst1hK1C+9aVeEApkjUKnCDldxoylCilg2hXONRAzpUxYK+QSCGGk6a4QwvmLuKNTqIHGpavlNuYRckHQOGgql04Do82LITEl4eGDLSk4ukYvbb0XhgLbXWTlPGUamadIkkyyMz5Z9yxmM7pGY90pB6RYhmkgJMvdz73O08dPGPZrOmfxfUsYE1Y81hT2MbAZM8YvuH71ZT73+ps8enAP7wJWYDXvsVUgBeVujZPazkvOWFdF0KwlGrY6b4w1GPOZC6hoEwqXArwg1YFXMBW8zmfGiwoQNzodFvNCREwp1ahJqZ+3VIFK6jNR45O1KEaZaJXpVyeIYqoNXvQSrlM6/XeV6oegU74YLbbRBq4iDYK62ASDdQXyQB4zMe1wzYww9goXdy3SGJxtSTtwTi9MBcM4bCjlglx2mGYCGYk1xoKzSM7KV8GRSkJwKthRRVGjryDGYJN/McnGaNSzmM+celWmQRkj6sDQvDuQChN7LTYRdSKkkKuYrS5k55IKQ9mAOKZByHWqlMYtz09/zEefrpktHOP+gv1J4eHJGaEUTCmkPOIkM0yBi/GMVCy37tzmlZfvsn3+FNmtySHTdg15nBAKbddipNPGOqCUyHx5RLe4ysY+5+zaTZqucPNpwyQG6zsaSfxG0/HgypLz/pC3Xr7DPzMeW9C6dlH3FrVcJafCdMmjKZnGFGxruNIvmB10zPqODx/c52Szo+s8835G1zQ0TVsjTZmiPZVoaVBRZ4VYjZACkqLiBAwVkK/ct5JHhSPnQkyXsQhR8c84XWeo3FUrOCOUmLRkRrSBMNeyDAlAKXpJysowtE7dc2piLXWjv3TuiXInuUQi6ARd0L0lVFD/pbBnjCVOiWISLmUWwNwre8pkC9lV7qleiNTdATASgUGW7M2K0TiKtSQRpERMBpMzQqziSUJywmaQEik/UZRQpFCM1b+HjuJbjDU42wE9wbfkxjKSdLKdMrnompUrp4uiz7u6YRVgLSVcpjMh5MovK0gq+CJ4G2jYsbA7DvOOshuUIxf1kJZzZBihRJ3cSyxI9vp50qB7U137bFNq/CSqcJMTkiGMtZUyCzHCdkjsgrDZBKzoWmOz467peDTsyY1hmnRAsOgbUhYaI+TiOJs8954NzGaGj04mYhGcgbeuwo+3lr4RXCjcOFqynDUctI5VY7kpjkTCZJhq/H+TA10xiGk5mBm2MdGKZ2EtTRkJZSIbw3rMjOtAYsHSL/BlYp0hi+Vkp1BzIwHGwMn5CYt5pz93Ufe5KVq65axgq5PfkLFeQekv4vAYbOvUCR4zKVlc6/UsFOsgxBWsNJRYyE7fV0MKWGkUuO6VZ6v5QL1UTmXB2B3gi0FG3XMsnYoykklF0SmGiBkmSsoQLTZVB0qZiKGmBibApMpAqs7dpA4YbxO7GMgCXiAOk8ZRPOyio7t2zHIeIGwhFGRMxJi1BCxo27aVCtW2HqHyhYueKydTXjwXOtRQZmeMkMtAANJ+RErEdwYrCcmetPmIUjJTHfghTlnQRUMWyQqleGw/Z7Mb2O4TcQoM24mYgpIfihBipEQduBYpxKRfm/eW5c0lN27e4OGnT5mGwLOnTzE2sDo8pJ+3xEmd7Va0OfXjTx/y0ofv8bmXX6NxjjDuadsWZ9RNvt1eYLLecSwZJ4YcJhazlqZvWe9Grvct825GzIb9LhOCoe9b5vMG37/MGD7Ghh1eCjmqyPbk8T122x1Xlx2zuKdsnpD2G9564w3u7R/jhif1TG8o8fIckyhToPWCc4VVU/A8p8FiS8EmbYot1pJcg9jLfTGDtOq+JmJth7UNOTlKDsqjE0U2UIfD+s9Si76sJgZNp4u7eHIzU9eyFIx1ZDej9AfEGDHdnBQzppmTpz1kdRSL8dr2XDrc4grF9sSze/jVbdKz+7B9rI6NrI2MtA3WeWTcYIpifkrJFGMR01KkJ0c0lj7uVdDMkRhF3YUlkqN+/8ova5nEk0wDxpLdnEk6chrYbc8wbeDqQc9sBqfrgYuNPqf7TeTWFShlojWWZVOw+ZSbPYgMlE5Z3rGK8SkVkgGSRrlHhGScJp50rIWIU7dYzkwhEqqQMveJicJu7RCnkfeYCsbBwcoSQubZ2QVPnv8BRhy3br7Ok3unyOhJJWOtFtRvc2QMhcVMOFiKDmcFcgoMA7QrYb4qjFPm9Dzw4xPLcq7mgzFmNg/XlJTpnKN3hmFv8b5h6TJlAt82nIcJkwSTYCaexmVFFVlh3jsaItEVko3MfMP37+/Y7GvBnS0Ym8mxEMbC1DgOfMtVN+OPT4R3h0D79BH9d38T538Lnw3FN4pbkEJjLL46RE1ruHJ8jS+89hZv3r2DFXj27JQnP3rIcHqhbFWUP2zqsqVMXfC243/9l/4KezFMuZ5JBFIxWHHc6a7zO//338TmSGesIndrI65F1/gignQe5z1WPN0IwRToLaFtwbfQekzTYnyrjjxr1XDj9CzsTKNliAtNJMnlXaEKlUbAFv29YjLfe/cd/rf/wX/IbgrqZs2JPz7N3Jpf5WdvaUGDvoOF1ljGqMma51vACG1KTLmoocbr4NZWy50zpbrypMaM60WppgqsKbiS8Q6iVdFlSoVYhKDXM8LlALnUeWrdW60xhClC0vvTydMn/O7v/RZ91/G3/87f5Td+/TeYdXOss2w2Z+QwsJgt6Oc9uzIw7Uf+6l/7u/z8n/8lvvmd3+E//r/9fUJOlFSwRRiGRIw6rJ2mTAiFKWnDc987NjstcdNUYXXoV3OMqZpFSMpOz2IwaNxzN+1pZx3l0X0+/fRTvvH1rzHr5zz76JycDP2q4+6tO7z29pdYn13wwQcfcP50Q5oS/8Zbr/HrDvJ37vFXb9xlKHv+jxeP+Gd3june+iJ+Odehr6vJmzpoZoqEKTLGQAyBFBMlQBkDZox0TPQEXNCmZaYJP2RcSLQh0WdhWYRDLAdYbonj803Hry+v8VfSlj+JI//w+TP+nUXPYVLskphJ11nTkJ2AM4xG2BTDKBq/lQKuFDoKTQZXEjbnz+6NCEhQ4wxSxcICl3pZMRSrpTfFNnSzOe3Biis3rnH71kvk27eRkxOufO0XefOtL/Bb/+D/wPvv/BO2YWIzwaLVUp+zYWKMhdMRxlKIMTPLhkUrNAamGPHeUvpbLF/7ZeYxMj3673BX32D+xb/ElGF25ZCymJEuBlIKDBku1gPZNFyE6V9ThftXf/zUAl8h6+SqCCHnKghoxK7ESxkddbg5VTXU7Wb10At10uZoDr8GCMPZnxDDCQWDc1Q3XsG7z0Q1kaJnV4EYRR+KWvWtXDvlQoWcWe9KPTAVbAe7IbPdb7l93LHsDNYackmEEokhMKQGySNuMRJS1Lrs2s5o7WXzXHWPSI2c1UNJJhMnrXiOWGJ0WGmxlxfJUmi8xRlPDgqlNEZdc9nZyuKyeiDIlaGedbrhKp9QjOgk31iKqRHonDWOrNhcKAtSanHG6kU0jyCOYsE5IWeDmx0jriHlrV6Mi/4+dkZKlu3FCcuDwrjfa4uqOKztK7h8h3ctkiYswhj3ZCzOXcVIg3E70vQIkjofjPEMU2QcdlBU+LyyEl469pxuEiEI0xDxjWfRR67MhdFbTBegsQQEnGCs0LSeGAYVILB6MA7C7nxLY8D1c4YwYsKEFBWy5l3LLkVa31LcnDe+/HVa3/HXf/7P83v/5D+nxEyZAuNo6mtkSFFhtKmojTqXWpqh1lF1JVnlu+WaG9IYbmU81M1F3Yy6aYasglypz7C9bG9V5Y5LJhzVFaMxOXV7XH4OYzT+ePlxyVICwVhd5C7juxrxqsKtrcqfmPr3A9R4tm2wXYdtekwzx7ZL2vkVmtkB7ewA362wzQLje8R5Ss4M+z0xjDgZWfQjcVjjWJCnLdO4JeeRyIZiBpxXoQx6DFLdtwVTixlsadRRWpk5WfNf1EpVBI8RBbNaqxNTRFuL9QClzg9TULcH9XaJrc8bGGvJWVvyrHHEnHQar1dqxDaUMiNmS3/lJuM+Iq5Q0ghnAy+91HLzpcj24pwxCEfHV7n7/Dnb3ZrHn37C6faC3bgmhELjhcWqp/MN67Pn9EcrTJzwjajjA0M0LVIsKRsWizldN2O/2RDcDVZXXmX35QWb47dJR9fojOCWPYvlCmcbDlYLrh/MWF6/ysHxisZZrjSeq4ue1hqQzBDVNXteBsUFWKsijFpOSVI4WT9n2Dpl3GRDmQqIpe86snHgHVFa3RCx5GIxTgX2XIRMwVpff24RVzRmbcRAiBRrVGQQISchloL1VtsHw0Te7xCLYlJLQUrGFsEWqY47XUtNKTjb4L3H+gas14OtVHilsRgTNR4W9aAfil7CTY0iJWNUnBOdhBtrMM5B9fcVYzTaWwRsRqSpbvFCFogm6ekxj1o8UAX3tVzhB2c9f/Jgy4dP7nN2sWG/uSBOe2wMLLDMG4/3hsaAbxzzpqXtetqZx5sG5zyucYqtKFbjeLbFdT2pnTF6YWojMW0Yw56zZ084ffqUNGzJ00ieAjkoTyhndb7nyqfJoHErqjha9+ucDaVYsjX4fk7T9Nw8aPmFOzO+cmxYlBNap213uTOclJd5/2TDgdvw9nwCo2KxM4WcJ1KEUIRpGIhROWv7kBSrYGAYs0aLC+Sx0IvlXCzdlSVXb7zKOgolCjYIQwu7FFh4i3GGYaoH4LbhWttxMVj2ySNjYt7PeHy+52QXOJw7mmxZOU93dMCxtzSuYjwoODEMU9TLkVWQuHWWOGjskF0kW11/u97RW8/pphByJibYl8SWyGFncc6SomFMmUyPtT07Mv3VBY314LWMKk4j2ZYawRjJJlHGRMoTzmRymHApk6MWk/i2UMZtdTt6ShK6zhHDSN84mLS514jHFU+yWV04WBpfMGbEdw6bBPFCwJOCI8wPsKvXGfYXNG3ERIiTOsbTPmDcDPoFYbOmnJ/BFF5cRrNvyNZCa8F5pGmwbYtre1zXI11fG+wsziS6uhfGYU+egp6ZpLCSWnZW3dcmJ0qMuBQpY6CUQZGpKCNKSkGVu1hdsHqWsZ2K1jnsMTmQ04AHMBGTd5hG99giKrJkRhW3orIbtUgysZ80lTBNsTpZBmK6oBhNMWhpjxDqYEOyulBDymSj7FqRTNt7TEkslgvefOtVzs9OtGVSEnfuvs7dO1/gYv3bPLj3CSFO9F3LrO0YpoEPf/QdPv7xDxjCgDOOlDJTUfdVklbh5rVMKqRCY5w+K1PhsPPMl565a9iGgXFmeHwRGfZ7cgj8xV/6q/zg2nd554/+uRbsRHhycoZPgbsHjuNlQ5ci+/NHPHzwEV/6cz/PSfenSNhiKOps90IKCdeALVEfAck4Ep3XkgNBlDFdMiU3pHFSRmEVCxKVKS0FSXukFIbBYWYLRGZYv0Daq8j8OvQHSH+A+BnilwTfUXyv5QLiqsCmKAdXGaPWtDXCFhHna6LBQI56T4AX+BNQl2DOyifLRXTgIhniBCUicfeCuR23J6T9BSXuyOszpmlH2Z0hww6Z9pS8g7QlBC1Zy+IoLmPSQDYRmR+Rjt6A5Sv0i2sUDNvdwOLwCH94BCExXDzFffQ9zr71Bzx68B6OwmHnuLUo3DloOOrAGo81YIooTkOPnIofMoXmJ4vFSsE6wXpLZ9QFb4pgJZNyZIqDiiU5YWsRiK+oH4siiEQsjdWBrVQ2bE7Cdj+SsqFxmfv3P+b8bK8sNkpFSBiaJtM6NVhcbGA2g8Zp0+6sh641WCM0PRxdTcQRxjASJr2oG2PwjcHZTJHMLhQ1I9gG3wrRQ0xgvaFzMMvCohO2UfA24slYFOcQo+eD05GYE8bBehNxTug6LcrIVVw4z47/9L09H++EXNZcNZbXPncbvyhMxvAzX/gK7eIm7//4Hfb7gfPNnmmaOFzc4OWf+Yt8b/2M8sN3aZ4/4vl33+ELzLi9nOEitYBFTxo6lNCLW6lld0agGEu2DcVZsvck7wibM0081OFJoVCmCHEiRx2gRUkMCKfRcm8q7KfEr3/1ZQ7XyitX0au6sy1qzaw4lVLqOlksSRRhEH1HMI7ialQz1RRX1Ij0VCLP7n/Kr9+5zmaauJhGhjARi+HmK1/lla+/yebkEc/uvU9an9E1kbwLxBLZxcRi5mhJNJe4nJI0RkzUe3rSCHwUtT0YqemHmlIyaCGnqQNaSqJzGud1BnKpzOZS70T67q+cYL1fadKlIE75ql3b8MU33uad7/+IG3eu01nPex98QJHE1SuHGJv4Z7/1zzBM3Lr9Gi8d3+VnvvyLfPGN3+Hb3/8+q0Z4abXg4faCJ9ugDktjaFunezWOvmnYTyrE53ovTSW/cMSrE/Mzx2GIMKXMGCecc3zwYA2Pzjk+WnDr5IS7n7vDn733iHbVc/eVO3z+C1/m6WbD+x/eY3+m69FXX7rB35EV+x/8kL9y6yZBMv/R00d8+xtvsXz7DkXA9x0pZbwTGhF652ry0LCJiVixGKrbtPgidFJ4fTnnpcWMKQ5swsAQIwZbGeYTKUbWU2Q9Jr5/vufx/VP2957zpdMP+Y+u3eBrF5FPzMQ3o+OXcTR50oG5GJKbGIB/nB3/rXgemKxlmbnQ5kyfCn0qdMCyFFYCK2NZiWUlwqHAFQMHAvNs6IrQJcFnweaEQaPBSEEuzuDZE8qn9zDvzknXr5Guv0S+/RKL117nN/7Ov89/8w9Oeffdf0ljIrt90MRCLqxmlouzwnqIXJkZ5l4xP9kUQhaa3PB0VxjO4eU7b7JbP+Po1s9z8PKXKz+wUXa47dByQE3QTVPUQsqf8uOnFvhigBhqtXwpIAFrBWcs3tbpgP2sjfaSfWRERThbAco593zrT39A18Lt666CMdV9oBtLIaWs7qoqfoikyvDSDLOzprqStE8XIzjrmOKOmArLWYcYmM0dVxfampqzVzEAaGyh7UdS3hGLIZXA8xzxDhZonKkp6GS76MMmmMpVUFZRLLDfazyrdw19o1NHwVbm4OUPTV4w/HKBLIUUJ6ZSKEXbMDUrWJuEjOCtft+I1qIboxfgKXqMu01JA0UU2I94UonkKDS+Zz9ksp3TH1wjrB9R8jlxf0pxHZI2QFaHjfGMZs7JeEwoSx6eN1xxpxzZB4iJpHgB2RGLo2vnpNQh3pPiI6yNlPxY7eBRIe9qGCyYlHQRaTSqE6Jw7XjFB/eec7hombYZv2iZrLDdDJxMid8TYeUsx51nN2Q6A40T2lJoDhzjpFN+I8LBcoGQ6Z1hP8JstmA4P2U/TWBhSBkvlq7piWJ599vf5q//zb/D8wcntaQF+pmh7S4P0xmxVfytjaemtuGmuknkVGq3m27gleuswlz9B2tNjc2V2nZbhd46tQG08CHmKkAlXeyLFnRIdehpjFsPbVLhp9Z+1ghKdfip69XqZas28GpxjUKvsQ7bdhjbYfwM4+fYbkk7O6JfXadbXKXtDzG+pwDTtGfcP2fYnrI/ucd+d0Ecd6Q4EseBQsHZTIiR2fyY/fYBOW3JeSDmHeIDmaBT/MsJfSkQwdim8nU0glxKxjFn0R1hfMDTkIY5D//sCeefnNOUEWe1pMBiceJw1lMadX8Z67HW4K3HuhaxDmtbnO9wvqGbz7HzGa7pkG5OYw2+WHJpGR4+4ZPvfpMPP/4TZnev0Vz9VKPUZHxMiHWIa1iExGHO9IsjFus9B6Ghnb3E/njFdLznh598yEUzQg9P4pbVDDqjjp2Dm68xPzjm8PpdDq/eZHlwjO/nGOsxtsE6q8+da7DG8srP19IgV6P/1e0MVFFLI96X62JIyinNAl3rmDmNzHQiOO8JKIfHNAbJkfXpBceHh9w9OuZoHEj3H7KfIikVJml5PjVcFItpWhrjMVnjXa14BTcXdbM564klYxq9SZnaqJ7CpCwNo67jEmphUNnjGqeogSrImpLUOZrBCbS+wdUJnLGCNWDrwS6nVAe6GiEXyep0wiDegG+goEKuVDdIBizq+qx2flGdvh65qRzLmuooRj83RdmjKYCo4CBSiGIZc8+Dbct/8fsf8Mff/jGzmLg9X/Jaf8DR0TWuHl3h6uqA49Uh8/kS37Qa1XQ6bXfO1SGRvk+NqKNW75UWUWge954/4B9887fYLxuK6YmPtrzy4IKfX12hnb2EW3ltQK6RnVIEH2ssXooOfLJ6aqNEdUTmRMyBfYn8aH3B//V3/oCTzQ5TCv/1zPIbv/AF/r1/6xvM5zvsNIBEwtrwwd5xM2153Y3Y1pHCRIyZYYyEUEhZmIIQsq5vwwhDsmTjiEUoldcYnON4teSlay9z++W3eOurf57/8v/7X/Dgd3+XDrBGaMUh4vDGME0TrQhOenArGALzvqHDsJh1lHhCKjtOtvDS1TlXOmFhLddXc3LQaJ8YwWPpRF8nRKf5RgrMG2IqWGNZOmG9jbhSyEEjTIFMEnXHTzmRUmIymSk3nOwyO7vgePESRSLtjZsU5wi54BdLdQQ7ddA0xuEXB9iux0SNmYoppP0O8S3ed4i1PProh/TzQ40rkulI2Ok55fRT2t2GnPc4a2laR4mJxjcULNJ0GDzFNeBW2GYOdol0K6xfQLvCdi3OOYpvseJRpp66TsW4KsqrMF+kuq2NXrYkgUwCUTlLeg2osZnLhjC1pXOZphF7+X9qLF6xNFyWpJUi2KSCfrEFMLUpuILVRS9BihJQt4gyzSZyDDCNlP2acPGE4el7mAffJO8+JI2FErUj3hpDGGqSICWkOEJMxKxrUzb1vCSGZIsyraaogrNpGIJo9Nx7cAY/07V6DInQWHaxMEbLo5M1IsLh8ZKHnz7TweJmoO9blsuFFsB5z7zvuX58zKcPH/Dg4SM+//kvM5+dk4Z1jT6Xei5Q15h3VhvXxbCcL2k9zDvHwnuWS0vnhP3keOPNL9JeucP9j77J+vEDHv/gd8jnp9w8aFj2mVVv8E3h1qrn9lIjjdtxD7s94ck7PPp+xq7v0cwtNgiYQGsVO6Bn+4w3ueIWCl4MzlXeqggkIeeBMBmceMSoyJQEEi3GzwjtEc31t/GrL2Kv3MZ0PXZ2BZlfAd+/cGRjLxEstfAtf1ZKJfXclCtyAQp5yuRsdK2nspuy0dRETZBweUaqTbgxX57JHMkaiun00e+OdJvNGbd8mcbWvSapaUGKuqgkKiqipECaRjQwbEkxIMOWYdiB64lNxzBMuLbl4tljnj0+4ch3ePHshglxPebaF3nrl6/j/vC/4uXlj5mbQG+Uo21E3xdyuZ8VU6N9gjUVHWMyuXHKhKWrAsaM/WYN4YJYOYKkjMmFUI1RBnVFyWVCBHC+YKy6Yn1nVFQriTBFvHe0wDAmTtZrdXU7NXCo4UOgqGur5ISPosPcmXB1teD61SPG8Zxr1z7HanGDYb9nHE45Xz9le75mmgY2+4D30DtHYxOdLWAdp1NCJuHJbmKXMs47NrusvL5giDFzGi1XXKFpC0+HzMmQmUIhkujEYmaGYUrkLMxXns5ahMSHTwvPzz22z9y6dZu3v/RVnj99wHq34+7tt/jZb/xN3vv4E7717X9InDLLoyWvf/5tfu0v/y2uXrnOP/2t3yLeO2f85rf5c/NDjleO/XBB2kcdbFaXmlQxT8Tpnm8LpmgCooIj6zMPjSlEY3Qob4qWFmCxKdVYqkZ0MYbXrId5yx+XLf/1P/19/hdvHNOVpLFGgctCsWIgo8OtgtQopUphpkaApFz+t/WQlM3lAQqs8CUr/M03jsA3FN9S2oYyn2MPjrD+gPL5l9l95Zd5eHKfD3/8x2w/fP9FSZ5NyoW3JJzLtKJlH/rCKBta3Vj1vquzDT0boSiQqqTX18kQK4vP646iInU1EahWUHD2Mr1D/YYN3jcM+z0nz0/5T//f/y9m8zmvvv4qr966w7OTxyyXc7Zi8c2C+58+5bvv/Rk5/S7Xrx7zCz/7dWItdFz0LZIijVXHnTOV651hseghC3dv3eTsB8peTdW9qI7Iqo+UoueSKmbGqLzuJAWSlr8kIk9Pt/yT3/02bSMka7nz+qu8/cUvcH4xcO/eA04enbG/GPji/Cr/88VrbH/8TX7txkvkbsH//v57/NHXX+fG19/ifHuu2KoSsVZoW8fCCEeLHqGwFzg735Ky07trVNNKlIJrLIuZp20E8Z6tBIwTTSR2lpYOKZm2sSz6GY92AxfXn9G8epcP7j3hP/vgPv/ecsnXw4bf2m/4+myFCRlrPZI1Ffn3neE/mTfkmIhTJuZE67wOt3ImlTpwrygGQe9pxjiMeDywcNBKoS2BeUlcy4WXgFs5czvCS+I4FsuBDLTbDebiGfL0Efb+Q/LHV+H9T2nfeoNv/Oz/hO9890/ZxB1IIlB0iB1h1iiSrm+EzkDvhOdj4mKfOR0CH59/zNXdIZLndCw4GdZcG0YO5yvm195ievNXCbtTwn6HE493gt2cs5oW/xoK3H//x08t8FmrEyUjenkSEbXWVj6agVpPrRc9b4QUM2QhhgnFEjqM7HnrZUcuI5DZ7/VdLELdyPQym0WVb2s0EmywiNM4n6HgKltJ20UtYxDOdwmxwqL3kCe8s3jrsKapEeEMJurZsQo7KRaejpE1a+YihKlhZhJSQeAiTp1P4mjsZTzW4HCIV15OwWOdVfGvFEIcwK7JBMahEIogNhBiYbMNHF5Z1Mm1TjwTiabRS7pvGr00hQKppUkH+BTZbwZwDQdXO8b1J5S8AXuIbzt2m/sYhJGGQKQUx7h9jGVCCOoWmF8lp52KBAUKjvM8YmYtB7Lmzz58zG45sbx+Ts4Ddih46xHXMW3OMSYwBEuRhJieFDKZpHD24mjbK3TzG+S0IcYJkUgKE1NM3JDC51874mwdcLZnu77gyfmE7wydqHAXbcP9IbOaLZg1LTFmrq0cI1HB36VlvROufe5lQs48/Ohd+rahLRFax7hHo5hWmyzLGFnMO5arhn/+j/4xQ56YtSNThO028fTZHud03pNSpmnU7WMr9NNa84L9VVBhz9aCi1IKzmkpjEHZedYWxKRqeb+M4eocTz+kxntNFXq0ncjUg7G+x5S55a1OeagRUzEW67Wq3DcN1ve4ZkbTLWm7Bb5bYLsF1s8xbq5MMlsjf85XcbkQw0iYdgz7HRcPfkyYNsSwZZxGmnbOsD0hhRFbBWURhfZaEjHDWCZCKtgSGfaPidNAJuPnK0q+oBjqlMrq4mtq47DURr7ksTT4ZLDlZV66/QtYMtYuuf/dp5jH7/H1r36Bl155Gd93OO+Ud+kd1jcYp3zPClPTiBfCJadBVPNXm7boQSZX0R0smx98wO//5/+Ie6fv89Kv/iq/9Lf+bVwytUmsCpAhYqKFYGAclKVoDNiG4oMe4Eri9tU3uSg7noQLfvdP/5i3v/p1vvILv0gzX9D3C1zbI5eszsvDy2UMQXjx9Zaizcc/+XHZvq3sCeVSgWDEkDI83wXW+5FZ45iNVp3H3tZ5SGbReFpBHQ/eYnOhtSqwXV0tsOYWHz9+ztHBiluvf4HZ9esMw5rjG9fxvsN3M4zvydOkJrgKhs4hVM5jxjhDrI6tUqO0Ygw5JxWerWV/8SH9bEHBV+bphIkDcTyj5IlQovI+0eGNLaKO7Ip1UAt+VGEw6VpvcGRRhpyhIBlt+M1CkYSjYGKhmrzVCV5FQP1Z6EQbUy+AWS+tRem/FFqy7wnNAbE9IneHJFkx2wr/s7/5S/y7f8vR4XBF23mt0SgB9SAtWVtktZWxHlzRCWI9iSIp6aFVF2LMMLE/fQ7DnrcO3+SdTz7m4cmncHrGF29/gdujx4yFLAGTNrUQoTYOagZF+UCU2k6NrmNWXZRN65i3MxbXrvEf/u077BpDuIzUkXkWbrOazbCrPTad04XIct4wPt0ro3UIlJwJsRCzIWR1Nk1VbC1+SWoXzF96netf+FnW24Fbn3uTYj3t4gBxHdLoekQpXOssv3R9zulWuDVviJIoIpg8kaaCk46F7zDRsWgsR/Men4UpJsqqJ+bC0WLOa1dXXD9o8LanMQmlouh7xxUhOsHWQtloLBbl1dEIufVMAr4YTJmIUWH7i94gY6FpGi5Gy6ptyDJxEVqCazHtEbgl291jOLtgiANiLP32VPmS1pFipJv3LG7cpZ8vCXsFwU/DQCmR5Y07uG6JFCFKj1keEvHMF0vS+hllfIZfzGjmC7zvkd2Ema2Q2SF+cQOzuomdHavL2nbqtLtsbC7yYt+5xBiYrBc5vUTJ5f9okRho6VbWAgzN3e2R8y1lu0PGSJkiJmp+9NJIS1HEQomhClXpM/4k1KgiVVVX1yzGkIwhizpMCnoJVWLg5ZouYBRij7V6EXIW4z34BeKv4G+8weKlXyS+/tcYn/xLpvu/TRmfEMdBn1fnCDmTnLq1XS5IzIQQXjhG9ttJ3cpdbZ4WmErGH3XYeoF5errj2Ung6WZkP0YFrEctCQl2xBweslxe40F5xn438oPvfZ8PPvgROWW89ZSc2O8GpkVhMT/gdH1ByZZF37MdN7StVbSGOEKC1hvmjbDqWg5XK2XU5oDPiYNZy8xFyrRjli22bFiUU7IdmPlAFz4ixh2rLkMJ3J0bsiRuzBIHnaUVq4wr55Dn73N69iG9TFjpaI3VtuOScCWRc8SS6RodVjtJWorTWshBEw9UhjYqzu/8IYO7w8bfZScHRL8gmjnTiSc+TZjpXUoYldftRC/pztA2TjER3ZxutmA2m9PNZrh+RtvNyFhkmiiPnmDPz5Fxh0wBUqLYhuKbendQtmK+fKYu7XymXq4x6pSoDfHOOi2tk6KcyqzOf5xg2oYcC75rYAw4Z3BOv08xgvOajCitw5kOs1zRHehenQukhTL8jg+PePX1t0ghKBolB8ZxYnt+zlkuvPXFX2X9vsHuP8JLwvtGuXEiGNNSpMG6hhQSk9Em6rB+RkkjsVvRHL3OmDy5tqdKt2FmtkzP3ydNWhpjS8Rm2A1Jz0Ox1IG1ILZw7Y7gbcOjBxNNp0kqb3Q4PU6F/V7PwtYK+yniosM3Bt/Ws64rWCm8dOMqXTvj+Po15oueZX+FmzdvMU17np895dGTHa++/DZf+tLP0zQdn374XR6dvMN2N3H1xudYn77Hs3t/QpMLfTfx+Hnk+bnBdZbOB0yOrOYebxLJwLUj2A4e2qyXfeux3rGYT8z6Q968ecQ7H3/C2V4RG7utUFo4XzuenWayidy5eR2MsN4OvHTrNb78ta/z9a//m7Su5+G3/gU/8ws/w7z1dLNDfvEv/CoHq+t8+50f0J5+TPj4z3jFwdFRz29fnPH3f/AjzvaKsOAntn0jaoJx1QxjjcEBJidMTnWNrqt1RVV1xtAZgxNNYnRk+pLpBVbGcMM3/NyNq3zt+gF/Nu15tltzJDo4AUhiyQWeTpnTcWKXVHh8wfeuJ2JnjAr3RvDVkmKLigWuaCGCEYMrouI5erY2rSV7R2oc0nW0qxUvX7vOjbd+hRu3v8L3f/Av2T37iN7q2a0xiU4Svu7zqWgqT7Ie0zICVdQXIFGbZy/PzHWPohQMllBdm7pn6GvmvNTzHjVqrAPQhLrld5st1himmPjW976Dc44P77/H+fkaawuz+ZzbN1/mS2++xp1XrvL+Rx0Xuy2PHj7lH/3j39IzaIbT9cS1GwtmreF40bMLGSsRU4TnZ1sMjovz94m5Cryl4jjEKJ5LIEwaUbdOhyYl67PRt46DRcfV69d5/uwpF9uRzTCBb/nSlz/Pm29+ifXFlnuffsz62Sm5FO72S/7dlz7H+r1v88sH1zhwS/5PDz7kv33lmJd/7g0sCfGObQgsrOH6wZzbi56lCJHENga2Q8QY0WcBxT85o025c2dpjSXHxC5EcrHV8eu0ECUlrLV6l5XCZpzY5sCeEXe05If31dh1TSxD3rO1hi4VjBeIcB/4z5wDZ/mLv/HXOWjnDNOeK1cOSTHx0s0bXKzXDOPAerPl6dMTht2Oh4/ucXF+xrDdcrbf8Ph8S4qBKUy6xxktXu2blrlzzHFci5k3holfyvALznOFNf7kFPv4CeXhE8qDJ1z/6hd47fZr/ODen7EOwrOdOmOXncFTyBi2E5xOiVlbOJo5jDc8WmeW845rh0fcfftrPPngDxknOH12ihSLX93kxtf/NrZxjMOIc5407Th58AHh5OxfJbv9a3/81AKfxgxVdDOiNliq2JFzfrG4/P9Z+6+gT9P0vA/7PekN//Tlzj3dk8PmxQYQIMKKAEQQgAyIJinaJCVZdtmuUtlnrlLJPvKBdaAqHVgqqyRTKibZtEhZJilCIAgSXIQFsHlmdif3TE+nr/uL//iGJ/ngfr+elWVWUYa7amq3e6a7v/C+z3OH6/pd6YINpPXg65cGUX6flUFh3wrwP8vAQ7Z3cpjIQlmsZ8bI4WOGMA2FGayJwtSS/77Akzmdb1itG2ajiqZbsTMeY1WNwYPR9F5hHDjnKIwawLeaVgXmoee08/hCsVfX7Ex3GVuZKJO0wLitIcZObFVYubCVoguJxAZHh48tOQtgM6tha52gC5FkBgWkszyZPyFnSbVSWkJKSquxWuSrRml00oQmczZPrP2cdtUxmYx4dO8YVwdCtFS2w9pAyhETg6gCrKR12SKi4obSWNkgeCnM0rC5SzmwOruHOd9QzAzXx6dMak/bCkTahx5vFSZtMNlgTI8nD0DQlqwlCaZtAwlDyAWuFsBvRjaP2tU4tWFv+4DPf2Ybn+DtDz6mURuu7kBdjSk0g9TfoJPGKAkRCEERuhVaB8a6kg+6UqxOP5Y49tCQHMxXHeSErUYU9RjHhk0fqLKldiV7s5K1PmO6PePxmSgNl12g7kD3crk6O2whc6Z0FxDXOMyQtHAstCIkSe3MWROCGD7FNWiJSiTnxlo0Rv7XaIyxGGuwzqGNxRYVZTXCuhJXVBRFhRsYMNY5+d+ixLga7WqMLbFFKayCnIbtmzCeUvBSPCZPv+6JYUUkkMlU9ZTF8X3IPX3XoAbwdQw9KfuntsOUPD45JrPrnB+/RU4dbgDeGytsM60VZenYbNYk7airS4ToUUbsY1o5mt5STnq0K0VWrzTOKWkBjKJWV9ipPsPW7AUqtUehtzF5MhTNBVe+qvniVzx0HaoPA1g+D/ZnYYiRelSQzeLTZf0gpVQD2Fc2PTJsIQRMyPRNSwyJ7sERn/7KT/Bl/RPodY/6L35rUHhl4VIMSdxoI1yekaPdLljNSqIuScoRRyW+suTLlxlnw3Oq5OXP/AR97ElLx/TSAQwDW2l2P7F1X6Qfq6wG/uLAcmTovVOSg1Cp4R1NA7Zg+NQGyDFkGh8J2bL2AZ08k8pRWGHlWTLF2NJ4Tx89TluWTUv0p4ycMEpVjjhjKEdbTPdvcOPqZSa7+2jjUMpgi4IUB64bib7d4Nu1MIcGVp72Ld1qQYodZE+7bgQ8rgymKHCFp93cJWWJh8+hF1WOE5ZVyj2fjPLSJ8mbOaC1Hb52YLVDK1EyiFUDtBIYddZaLJhxYFImUeJZpXDakHwHscdksbypPBTZ2qDCMHxWmb48oJvdgksvk+tdQraELpKXPXm5JK7WpGbDed+Tu0gOEQkAuRjkiRIHJanjWplBgTr8oyTQhwEOXWYYZ82TJ4cc33vIk+UT/HrN1jrzYx5SaBhFcK9/i8O2RaWMCZlIIuaenIPwlWxN4Syj8UhUvMpCpeknjlgVEC3BQ9s0RO3Y0yUHhYXCka0Ba2k/XPLeA894v2bv5nVKe4KNh/S5wscVPrRkBT5pOh9J2RF1jT24RH3js1z+4s9gx7tU0xmmqBCOLMOOXaDm6UIN13ZMa4O/rDEJwsoTcqLrPVNbYKoJPsPWxDCbFKQQKF1mXBYU5YitpYzsZ5MxV2YVW6WoHrTJdEmg4gDGQllYfOhlu58RUDmKwlpSlORiWzm6mDldiT1bqUxdQT3RfOnaDrtXd2i7Gc5sM2nXpDxmazZms8wEwK89dVHSBwlKiV1H6DOrpuXhg0ek7DHWknFUOlLUJbOj+0wmBaO65OSjj8nzilRfoqtGxNUJ8ehd4tkCrR2Xn/9xtm98Hju9AnpE5zP9kSd3x6Rh0JGilxANH2TwAcOyRRQfWlkZRCslnEjEhmMz2AQmJlxQlH1g88Y7tHfuoxYLbB9QQeyYWiuUTYIy0MMgBQZ3A5+cW0qG6NiLBbB5OoAIIeJLhbs0IZYF2UrwCMqQtdh+1NM/Sg1Dcfl5UlqsbdaQTQ1VAaMJZjbDVb/AYvltFsffx5WJcrZFzp7kIYRMyJ6279lsekIaPnIzIE5iJGmFmzo0UpM9Ocu88bDhwSLSpUyhInt1Zn+npFl21Cmy6TveevMtppPtIeU6kFJitdhgVCkJfDEzm20x2T5gt3Kke+/x9luvo7XhpWdf4OTRhzgtg/Ptcc24UFQGcmhpVoGqLCQsI3b0TcT4jFESYKTOf0C//oBJTLjaE2LPwUju65wLlLEcrxq2yoLSWionoSmVNVQu42yDQlM6sDqjs8FE0AT6hKjxUiK2oJzDFi3OSqhJGu5Xq6agDR/7A/7BD0ree/KQ8/Udlps1PvRUo4qt7RnOOp6/9QwvPf8Ck9GY0EY2m5a+71mvl/RNi282pLYh9y10Lc5nrk5n/Nyf/BNsfft7VPceipL/YtigJVk9DaollYK4J+TaJWPkeWFQCiEDbAnA+EQxSs70ShGkQiKiCHWBG1XiADDiWsIVqFKsx9YMHMGiItW1BAsai65HGFugxyNU5UiVxbgK7RxFWaJHY3JRoqoJ6tYLhNsvsfrUVzl877fpTr4P3Rpyz2a9wRhDCoE43LkOYY4bBbmsZKBejVk0I7Kx1DYR8oww2ccU24RH3xOVXi7QOuNK4Wgm1eNVgJRxlWE0yoQ+cOmaIafMeiMq6KrUZAKTkWW9VrSbgBncW70PooxUUGlNINP2SQY1J3POF0/ou7e59/AKX/zMz9F1Z5ws7nP3D+/w0YP3+fmf+/PYesRoa4d5d4+cO9A9rtb4vmPVeqqx47ktgy0Cp2eZHDOVzdQ2Ewi0wbBVBWLU6GrKfj3i+tZVPFOwU7IdsVw+ZLQJNJ0jZcPpSnN0Ji6pnUt7jGdb3H7mFj//C3+O69duc+ngJiom7j18hxtXR1y79DK4Mc/efJG97Su8f/8RH7z5Xb68fMT2g3Oef/46b6zO+fe++zqXXrjFtcqKz0cUAcSQ6WPirTsf8+VXnqGuLDmJkjkNSmelMiFEAfbHxHy54euvv4dRiqow7IxH+BCEA5plFdJ3gT91vuD/tP1pXhg5DpuGyagYhmSJZfb8tQ9P+K8fnHEaJJFWKXFMmEFQIW6hQbCDwinhIhdaU2hNqRSV0Yx0ZqIV20pzYDTXneP2yLFbOhnS6AyPDuH99+G732L/2os8OiuZZoNVPYWBiYmUw3uUsvRQTgtCRNAiwn/MWQ2sYVH2x5yGAGuZLqikh/oHvJI6MA4D1ZwG0QV54Nulp/V2zoINMO4C3SP4qmbV0PcdfdcxX6x58OiQ9z98neloxBc/8wU++PADPn70iE3jKQtLgaK2Covi6mTMV3/6yzw6XfFPvv4NspYZQ9ME0blrGTAaI8IQaw1KiZJSqSihcBGyBVcZYc+qyLrr6R4eYl0m68TOzohXX3mFl158jeOzc+4/POT+R4cYSmZr+N/u3cDc/4DPTbe5Xe/xnx/d429ODFe//Aoz4zhtVmy6lu3ZlOuTEdemNSWZLnn6LN1iXVguObFwxwG5oZWmVJYSRQ6BVit8GMItUiLbTKEMUQlHsTaG3kf6PrHuPS0JW8Ki1PgYqbSmDp5117HT9/S+x5U175rEYYIf++yPsbt7iStbYzZtw9HREa+99pos4Y2B+Rnj0YiXX3wZozXf+t63uPfwLjev3+TBxw/Q1rJZL3nz9W9zengoLrHC0bcNJ12Pyol30Hx3OubXRzUvz8/5t3zkJ5WhOD9Hn8/RiyX0gWf3XuR7/ZugRC19MHEkP9T4QOc1520moGReYAJdF8mrhqPTj/nW7/8/2J/t8NVf/tdw4x0y/RCIp5jOttDbCmsdi9MjVqakcMUfdzz3xx/wgfB9ZDAgNF5zwckjowxDESmDOpSWkAuksJaiMg3BAVIg6CHZ0xozNEUDc08Ly41BrTeMpAZXiBJhbhLOUMo9CUXEkZTiwckKZRyziSKljpQMvpWk0nKQlPusCIgaZ72JjIPF2Sk5dOQ+su47Oi8FGyGKqNBofJD4caXBZw9Zkz3sTLc4bRo2XUdIga7vJU3GZ0qtGdclRSFbRFSkrAphL40tJmucLbFDb2sVxJDpomJ7dIXZpVts/Bl985jlEgKWvplLMlQJOmg673ApUugRuYL7D0+4dLkkdC27OxNC36FWD/FBAhJGtcInz9bEo1PLehGY1SWlKzGjRO97jEn42LBuBz5Zp7BJoMtK0kWwrsQaCcHwzTFnvZdEw4ukI+soKsfJyRk+BmKsuHJtxu4NQ+okQUqZnpCCJKD5SMpK7LjBUk8r2bRSknPFaGdKyiOxgNx8DutKTCk2x9IVMkjxc07ufY9sOlbrltKe8uytEqUiZ2vY252xuz1iNnOyHSstpDRsaCVoRWuLtTKYU8oIf4fBPu2cKLOMxRYlylS4ssa6GltW2KLEliXGOJyVjaw2CpIMsy9GUiHIM9lu5pAjOUYiiT5F6AK5XZCZi7JMZUpX067npNCIjj1LOZoG6GiOwg2MqQelKMcHrM4/JvvmkwAPI9vhEDxaW8q6grSBZGjXR7TN2cAkBOfsMHiP5KjoW3nujSnJSRGGwVFM0C6XPHp4yqUbmvFWMQwfGopO47sZN/RXeP6Zn6ZbWxaPO06bJT4dk5pGknijbJVD6Ai+x/eemILI20MixgBRWA95aFA1okgT0wqQ5Usl/KQ82BEUO67ilckV/HxJd3JCuzhjsRbrcQwbUuhkGDhYgLySBYUoLSE7SzOdcLa3w2Y8pq8LQlXJMLawFK6mrEaUswljVzH/8AOe/cmvwLh6GkwBF+q9QW0mHfGP/Pqg9ByUnwzb1vSU0yFSmEymdpqtUuGdk6IvpeF7pfBZ0fmAM5bdoiL5Fa4oIcKT+QZnOyalkzO2NDw5fcw3v/GP+PjdPW4/d5PZzi6FlZTxspa0b7HiBHJqaTbHRNZkgli1BhaXMW4Y7FlU1GjrMKkk+TUprYhoYVnlXnhBSYJRlLZDcvhwxg6qV60MIUm4Cqqgj2JZGYCO6CHYImUkZCAbVBT7lS4tMUSigi4rUlGR4wYToTYjSBqjAN/ikKHI0lziW6+f887j3yfWr6OVJQ5yJTMwDKMP9G1DErKyWACzIuREGsJwGM49WXJd3JXyYAoS74JdZLnarvnzoxnd8Smb8wXt4oTUe0pV4eqBsWkLeqvJ00I4VykRUbTB0WaxXiXgGR/YXzf0RUHUgbtW84fzIxbn4DMD/H1QgWo9sCk1TmvKwjGrR+zNdrn8aJsnh9uUV2q2trdYpR36NKcU4jeqmOD2n8Hu38ZsXWbvxS9QH9wA654OovNgO9FA33W0bYvSmqJwrM8WeO+Z1Iqw2/Ps5ZoXG03wCSjoV4pVyEQqJmUpPL2ywJKYTSSdtlCOcbVNVpaygKoWVl3TBUKCNmWcBp+E5eK0xseAtZYuyuw+58SoLvBBmHt+LWdjiAmNwelM0zWM1484ffCI5155maJyKHOdS/uvkU2BKR3VqAJToG0J2onyZhjOkyOkgB+SJWNIkgoboixWsid3HTdfTBjjSWZCpCXHRGF+kRg63vngIX/tN77B4rfuEGOgNPapZU8H4TPZlDAxCT8yQ1IKD4Sc8CkMSIn8icUlD+rsmNGDalmHjAW+jOPPtxPKwrNxHZsy040ynVF4NERHVFE4jEkTsuYi6DQOzWdCSYhHn+mRJGJQVNryoiuYnJ5BWzK7dlWQH9oIn0qZp4sNxbCFHGoidfG+JTXY2kUVoQa+FMbi9i4z3vtTLEf36XmM1pr1skGbQNKONJoy2RuhVAEkur6hLArMZJ9sDH27YHH8iPnRKW8cLrm7CEBmq1Rc2Rrz/PVtCqu4Fw7Z2p6y1o4H9x5i9GNSilircVaUtNYMQPUIp2fn2PIJt2/dZFKPacsGbM3+9edZnT2GsB4s4wGrC6zRkD1loSgdoBSNz5C9BK9YecZGdY11jtR3lErO1y5EVGVxbkTpDdNxYlqOpMbRBfV4hss9dakxucSoQFlV6GKGdVNSG8AvMNXAbXOQug6Qui8l+3QZm6LoNM+y4z/9nUO+9dGpKOiGxurTX/gcly9d4fzsmLoY8fJnPstzL73K9myboqroB+V9jB4fAk3f0TYd5+s1D49PaVZrHh4f8//6zd/mLx2fsdSW39mccRI8PdCDDGuVCPpdTsMCVNRJokZRGJUxaAqjkExZUWKUOeGGZZhLSRRMOTMJmbBasVZQlvL5RKWI1pKcIdoSZY24GDEoJ24FNViA9RB8I0O/Qri1hcFaiy1rdOUw1Rg9maAnY4rJDs/vHxCufJlHT77D6fnHnJ2csDWuKQsDIdCHXupSLCEHlIr0o1us3XXsbIeiKOmXp5gayoMbFDdfoL76Ksc/+Eek5oxERekUm25F7DIBx9r3tF0ixMzBdcO0tBw9DpQjWUxFD+MRlKVjOoUrl24Q4oj18pzVevk0VNH3LeNJQdtGZrMpi9Wao+OHbG8ZVFa8e+f3eP/9uyzW55Su5sr+ktPHD/jm9/4JXp1gCs3NZ16mX1juPF7hcmRWWi7vWlSquffkmNIpipGhT5FV45k4xbTUxBxQhWOZW3I03Lt/j+xmNL1nUk7wWEo3onCZu08Cj04CWcGV65eYTce8+srn+LP/yp/jYP95JuMpPvY8Pv6IR4/v0LQNO3vP8NxzrzGpZhyfLfjBd77PS/mM+vt3ePbaAcco/tqTM+6cr7lKpDLgrKUsHMY4UtI0beB9DTl54UprI1x6ZzFG+ltFfsoHJQWMkXCP2aTildtXpNZPF4E0mqNVxxv3HrLoe3ZLxdwHGXQNZ+VvHwf+9mnP6OazPDue4IwZhvhib71gN8YkIpQYIzFIuEKKiTZGlilKKEsIhCEcKUorwgjDZ2vNLx1MeXVi0DkQUiQuM+H0lOOlYf+lkpAMUQv3MGRZ/BQ643QSd4aWdxWkoI85kq3UDzENaKQs4Y0xQQqyMHyKQUIGzlobVIxEP9TMOg/qUj2gjBRhCDLUVn6PU5bFakWMgZy0pLOTma9aqlHJvcd36aIw6UP2jEqL7gI6KYpCs1h0/Gf/999gNBmxahPWQl04goftieN85QlBBoMhBJq2l7mIzSirxAYbh0AyE3CFoaxK+tYTVaJPmt39MS/eeokXXnyZs+WKjx895sFHjyjMjL5Z87/auYrz52wZ+FS1z6+fP+Y/igvKz32eXGjaGDher5mMK3ZKSbo/XHpMzqIcVBAHdfPFQtYoRWkUIxMZGRg7y5gGA0yMDPUTWezg2dENbiOCZ+PhwcMFzUkYuJGBFk3Uhko56izGKK01KgZQkdMUUSFw4+oNtkYlGMPhk2Me3v+Y6WyLejzi7OxclghNS3Vyyv7uHjeeucWdDz/g/GTOi8+/yNHRMaHtmJ+f42OQjikEsZ4WCl1YFIrz5YLFyZz13h73XOZ/d7bma0nhNg163WBC4KVrr/LStTFPlkuON7BoEkYZuhBYdBHI7E4to0L6T50TV3Yc664nr05J2rM3vsXig29QjLaJpqQcTSmKEZvU4rXGuhFGKw5uPMdGP/wfNIf7//bjjz3gW7dAr3BaErcurLNGq2GgF8VuOKTKpqeeeAFKCkMAlM04M0ws08DISImAwNV1lJSSkCNKy7RfBoeRp+wARPo6tISErOg2HZuNBw0PHi/ZG4/Zn4wpHJRWie2CSMqZzveEnOij/FmFMXSbjlXfsNk0tL2nKgqxKoqOBGUYEt4UMQU6H1EYnHasT54QI/guUThNZQomEyito3By2BdG7GVGifXV6ALCwCAwhRxuWuKrU+ooy4zKczbND8lkyhKsMxJKsGO5YWZARdutSR50TsTcSWKprgnJ43NHCNC0HWVpxYahh+m9N/SrhrIuiDnT9RswFalPxNSgk5PU32JLimIFJC2w7aIixoYU12QSPgbIhQDencJoR0yaarxD7Be0aYG2GqsrMhWKDltonLHkNMLYGqtn1PUuZXkVV21Tllu4cko1GmPLmqKoMLbEabGqaiM+zQvhllHSuPbrOW9/r+bo+A/YrHuapfB2VN9CLrj97AvcvPEM40pS20wh9s+MbLVIHdZqgvfC5SNSjyb0/YYU2kGpI1uhGIMwFPo1dEvi3FPVE9pmTo4C+xYV4MAdylneFxLozGx2QNOsJN04RBliGCWQYGMhivIn6UBZ7NCsVjTrUzRh2FLLAM4oOZhVHlJtlZI0zOaYHANkM4QsqkEeASl4wnIpagY9orRZhpdZFLQpCs8IBRgtyWwp4LOmHM8o/RSjDESxY+/vTjh7fMJ605CVx9iAyWMefBM22x1/47/+qzSVwRtpUrIxkh5lzKCck4EiF9/Xi/NCi6UnIamnGPX0cycpUQ+HKKoClQcouhIWUNfwc0eBSx9+i7un73Mc12y0bKm8Glg0g9TfINyJBNRIQ3klJg6yIZYTvnF1n+PdbXI1IhlNdmLv0YOH2yTFyDle2LnM5vSUT/3ZXyYaLf9+GOYN2b/DcEiszBc23QsVMxfWA/kNA4fok8Jmfzbi1euXaGNk07Ws246MHgo3aWQUnj52lIXDd4FRVXGy7Ait52yz4WA6wqlIxLBc3od4zHrxHqWtGI9KnJEGpSwtUfWgErZMKBtQhaSB5qTE/mSyKA2NHnhHCW0KUZGkHqWDbKtxoD3oNAQRKSnAtJFwIn2JejzFFVOsGuOKmvH2dYybohD1q6DrMr5v8M0C8oa+OaPbLACPJtE2p8S0IZsk7FMdSdrgJrvYegyqJBqLth4ouHPX80+/e8zlV7/Kq1+7jq5GwuA0kjaWtXz154s1ZydzUvwk+TFrYXVaq7CDYkllCZhIMRHDMHiJkdh5mk3L+XzJ8eExp9/6JssH91Gnh0yqGfPpLue558wG5kVimSJr52m0JgBBZ6gs5/NzxgczmuwhRD76/g/5SzuXOVgXqHrGoqr4u+cnvDcRXtIwVZa1QkY27llCSkKM9POOxfkCGwI/9/xrfP78Gfy9gvLZCY4RJjsYj5ne/jH0pZdxV1/FTA8kcGGw/z99fuGpBTQEz/n5GePBcpdzYjyZUpYlD0aZ6XVIpmdvplltOnLyVFcnNJseHSqUcTx5sqEa14xLy7g29MEzm1ZUIZCV4AySSpKUqOQZbNcBW5f0PpCGwtUZw6oL9FkxclLDtH2g7QPOKerCcLA7haUoU3d2xvResz17haPFD/j+937A1YO3uLT7GeJsi+b0CZPJmLYYkU1FUU8kGc4atJJSKwQZ+igUUSd8H4nOUhRi/1NKY8sKV1iUKiSsK4jKCmV4vIG/9Rvf5Cu//BeZXbtNwsqyKyt873l8fErIHq0ukozlnE5DIrm1DHDyDEkStkOMxBhkWB2EV9XGRJciZ9//Dvf+4d/jfTb8o+4JTyYSUBGTqJqiGVQJKFGEZNAq43LGIUoeneUc1QPOAmsISkJezvvI9zYtv1qNiJtIGFs+9JrvhZ55Rv4O4sVJJ4NxpQYmn9SPOoti0KSMSzBGsacNny7G7L5vaMuC9PNf4vov/BpWR3a9l7vZlGQUth4BVqzpvsP3LXayLcPF2DF9eI/R+RE7n1rQtj2+b6lKS+0KxrMt+rZl+7kTrLU8eRjJ8bvEFEV5kgxEUU161VBaSS/t+8DJ0SNU2nD05IyY4TNf+Azz0yPG45puA7lZs+k6RqUEsY2spe2jhENhUNmStSXrJCxgI5eD71tUSmhlqWpHpR3oSNuDUwVbRUU92pHEU7fNzsFtmpOPKApNbRT0R5hiC1vt4EZ7ckYrTUoNtA34DbTHWLVElxGjS1FGhg5HicfxT17f8O7Jgss3rnF2MseVlluvvMSrr32OrdmUFG9x9co1bt64Scqa0WRCPZ6QBnYe5AFtIEP2ZYSjN97mXJ+yWa545qzhg9Tz9fNDrmxXVMoShufCK3luMpqkDEFJSFvMmpAUPkZ8FMtxzImQEuR+mEQnVIqfKKNigrbnVa351dpwulxRJlHrdFqx9p4/Whu+m9csciamjFXSCymlBmtjplIah9gftcoUCiqlqLWhNpqxtWzbgv1JxeW6YqssqaY1blxSXp3gbUEI0EWLjpLCLOiRgC1nqNCxouJee8Dxh0/YdB+wmS/Y2r/KT/3cL1I5x2o+Zzm6RX/zZ4lP3sT1a5q2Y50D6xjwA1ohYclJE1YGUslnX7tBSCtCNBwfr7CupG0zD9YrJpXlxu3PcuXyNdplg7MVT84O+cY3f5PTszNgzdHRe1SVpagd1gXauOCH775BDLC3V9A1nuX6AX//1/860+2SK9ev8ujRfU4fH7O/9QyX93d4+PCM0Il69/pez4GpWa4CpjDgPVu1pSph7T3PX5pBMGxyYtNp1ioydpobB7dx2fKdtz+i6xpONhUPjzOFK9k7qBjPxvzkz/4s/9LP/BrXLt1Ca0fXtxyf3+Pw6CPWbcN0dplnnnmZUTWlD57vfOc77KeHXHn7PaatQ19S/Oajx2yu7mN+KKGJEiI38I8VRJWF2RgCXe9xnfDqk5YFcllYVJJU7pw1KYuoQBwpDJzThDNKeiwtyxOjMl5DGwMVsIiBnAVDg068sW7Zu/kM48mUwhqcVtgcsCSsvnBwSe2aoixrfbcekFQy1L7A+mRE9Rpyoml7mj5wer7mG6uO737Y8JcPJvz0npPQHeTP+/SkxBtH23VobfAtGGUYu0ilBN9l9YUQaHBA5IsqXBYHZjjnDBfDyDxwhuVrIL8WsUMNH2N+Wl8PRfZTB83FHEIPoWtZwWbdyKIofbJg1xhCn1isWk5OH5AGVSCt4nTeUhnN6TqwaWC1CSybnsXGS6K8E+s/WoI+r4xH3I9LuhAH8YkEbuQEttCCs/iRpWsmU48koC0mj3ElLzz3LC/dfonlUtSFh/cPySGT6Pnz5Q7PlInm8Jyfmd3mD5dP+PcWj+l+7NNYB9lozpsNGMNYazabNY2FKlmxfyNceZ9lfuKjKCcuRFprrZhYjQ+aZDIlCQsYq4e+SZGVGaAowv0uguLmdk3XeRaLTL/YkLoITqFNEhVyzihnUUQwBpc9+MD5ySnPXL/B+WpFXY+JSbFqWybbO9y8eZvz5ZI78w/JKvHD999je2ubm8+9wLs//CGLxRmZzN27H1EUBaFzwu/2idwnspaaXDuNmTl0lzg9eUy/tc1/WJfcXLY8Hz02nZGcpXzyHE5f4fBsThcVhIwxEZ8VWsuz2AWZdocY2BsbLIFpofn0lYpnr17jmWsz8snbxGUpQgA3plcWOxqTXM1oukcylTCBV/N/wSncP//HH3vANyplmGeeMlOGQUFmgGoOARIxYVWUF1floUOXrQVaAOx9lMGZNQbhEknSkvdBGj8DdhBsmAuLmhJOSEpqUPxJeo3WYIJEaWsNVaW4dWXCqIr4tKRP4L3IfhmCE3L2RA05G4L3eHqi7qHQxJxofYtSmeRFtdV1WUDNDPaTmKldSWE00+kIgyTx6dkwD7mA/tthn6gsWgkhKHlJkInRk1Mg+ERQHUrLhkIOIQFXp5TEDpsTxkoxAQhXoI+UVSCpFlWINa3QHmUcBzuGkCri9hRNyXg8Ezu0kWZXKUeJQeUaawrZhKGoRpfIuiPkJTpmVFZDIZNIvQIzZ7U5J/eJoBNVdGJFUT0pbUgBuRCyKD66zSloxcGVZ4WTZPexW89QFiXW7FDV2xSjGc6MqXRFoUp0NtgUwYfBehTgLJD9ktSfSOKfF+A2vkO1HaqPqK5DhwZtNc+Oa/TkRY7UW+i0YdMkUjWhLBKpecz6tAWn2aw2JAL1qGK5aphMRiglTCtnLT50GKup6m3mi1NC2MCglDBGPb0EjVI4K0XnbPsGShty7mWrqzW+b8hZBm99iBL7nnoKbWmaJb7bSMZMFhh7jALMNQO7IxMJZUfTtDTrM0o3WBqzQulITPLfAsQYSERc1cvAOwU0QZiCOUoxagzGgpjMtKiOYi+D52HolrPBWIe2lQR2WEdRjtGjK9x86U9S3Nvn9PCHOCc2cGfXTLYzRT1Gu0zhEvZ0Qv/gMb9RnXPwZ36GcS0qF5WVDM+VIuchYEFWeKL+yZnV+RLf96Qkw7tRVTDdmiBSvUEyksWWaZUeEqfFutp4mLcBf3jIp86e8Hj5Nt+ewNtR41MmyfH0VO0irlcZ/AEoa3nBFVTzNdsh05SW9qtfoNq7PAQJKbS1gw1TBrhiz1rwjfc/IPzmkhuffoXJp14abLVavqdaMPV6sLPJkDgP6cjS7FwkODNw6NQFn28oVsa14+alKcYaUSBlxH6bAm3fs9z0ZBJGZ1xhKCLUheL2lQlYhaJnZ1bhjAw6xrWlLuSitkaS+nQWhde6aSjKjHFZ1KI5k0MgqozWEkpDSOjBGqGVG1ILwRpLVGIjRVnKomLdzrFKDuqLxFpSIOLY39nhfH5ImL8lG3A7Rp0Kd9HamrLYwtpdtrdv4+oDZttXZJCYhPNiEO5M6De0m0f03WP69SNCf05mTUhnnDdHOKSJRu3w1sf73JmP+Il/7a+gqppeCV8QlYXzigR+pJTxRcLuVZKGhoIo5i+tMqORpSpFsRBzFiW3l6FLCEkYZZPEbG+b3SsHEFu22obRckG8tM+vPz/hw50R3hRU9YiqKrBFwcxZto0laWkecuw5/fa32Xv2WTrf0c1X8MFHnG3mpLZCmYKmKFkUhvF0ishdRTV88SMNaqicMzZnyrrGVDUP7j/gH773fa7okht6xGLmGI1HFM/+NHuf/wnKG6+RTC38LSOMRS6syfJW0vswKK5lSLO7szcgODLBR4qiEAVxglJVzBcdcQSj6ZTlao6rCnLMxBxouzmLvicVQTiOOlJNSggJY82g1rF4H+lixMc0KPM1bZCkWsgElekSrDtppLQ2olyhByJYTXlwwCVds72nWW0atHPs7LzK9de+xuL3zjj8+ANyb9DdY3T8J8RmRdjaxdotTAGpLPBerLGCZjB4nwfFgAzzUUaUs1lhywnYKbbehZQI3QZNwqhMaDZ0o0v87d+8w0/82f8JN179FAELWZz/TkWcqrh9oxqQKVJnzdvAnaOFKAW04tL2iMuzevjOiK0pDKwnpRStN7x91vBw2WHmDVdO5nypi9xN55Sfu8l+AVknNMJG9hjCRRiOypQ2MqvW2LCmTJrv3k20AWL2pCz82jZF1kmRNh1fnu7yrA+credMnOHO2Rl/s9jldOcSIXlBFsj4kAu1clZq+Pt4qoaV8AXISVQnZ08O+eLje/zPp1ewOI7/6Xe48kt/CrNTYnImey+ukeFzj0lI8yoHXBqcJMaRYmZ8c8r4ZiKEAEpLgIIeeFBR1NJXVCKmzPfW35IEUKtFlUnEJ7GClc5hh8VPJuP7lvlppCoLsimJ0XDy5CN0WLE9u8xy0zNxBUU5xjlF7xtCAh2NKF0ILGNFabapC0vgXLhTypJ8IwseWxG1QufMeunZpMx4Z0aud/HJoNyIJkTceEY128W1c7TzFDsvUMyuQDagIsFripzw/gNM9NjpBK2duBC0waIgR5RyfO8w89v33uEzP/5ZPvzgAdt7M24/9wwvfe7LbM92mdQjxpMJdT0mJMvewT6qKPGAHZakKQ6JvCozHlUcHS0Ag0Oh733ISyryuydH/OLVig/6NX+QC5qhBAgX/wzHW+KC8nDBU1XDEE5U6EoJjzarhLLD52NEsVagMHrCd05abjWe61pCdqzKpKj5LSz/0BbY6YyyrEFrXGFo2w1aQQqRGAIoYb7pwXIpKtNBma6V3CsxoY4XXF4/4hdHNa+MC+pCYT52uC88iykqNm1Ps05YJ/w7Zy2+8SgDq2j44O5bPDlfklRBHwObNvB7X/9dTo+PufPBD2ibFX3T8lOfuc2nnrtNWLb48/cgR4yTgJKoSmJX4FtLub1DXBcczQvK0YTx+ArPPv9ZNpvIvQ//Hh8ffsS7H9yjLiXYqm0DfUzEHPBBlpTWJXRq2RprYo7okIakVM3ZeU/qFV1zRMyeS3Gb0EbquiCllq3pLT73xb/A/u57+O6cwsLN2y/Rdoq6HlFNdpmfPODj9/8xcTOnC5n76xarJ3ShohztcHv/GsZMqMptNs05+5emvH838+A4UJaOvct77OzN+NKP/ww/9VO/yLUrz2Iw+NBzOj/i0ZOPODk9ZXv3Ks8++xrT8Q6kwHfffJu0vMdzT96if+OQF155lt9df8w/26lliDKgCErJFSLFKOKAlIh5qM1zpusbgstsbV3i0t4WV4pzJtojV4SiT5p7MfNPcibHyERF/tQzBqsVp43h1BfMo8PHBRlNlyKlughpYDjnNDsO1IATSjFAVrwwTlTay6JAKQ436emCHQW5G+7xFLhIYMkpSZCmkbRa5WC7rtgdGTZ94s7DOX/10RljVfO5qYRKRq24hOZB3mI282w2LV1WTIqLFG7hSKMSJOmnB8Py0zpXZgKixhU29pCVoUARhwWx9MhWyeJbRAkDyzWLAMj7iDaKopSQs+l4wqpZD7Ws9FsMKkAYQgyzZjnvuVAR9E95yog4pg+s2n4IxZL+T9Tmmk3TUThN6Qz/5l/8Ff7Gf/Xf8MHDc7zvpT4ecDw5RWF9DmGhKSaqyrLeiNtqe2vMy8+/xIvPvkrImYcnx9y795DU9ThV8lVd8pNbU87ufMT/aOsWb/sl/4ezQ45feQk3G7OYr8jVnND19CmwdWOfykLqIoWWRVpC4UOiTYk2Z7okIVVIdUtpDGOt2BhoTWamMxOrcMGKA8GIE9IbNyz+DOdt5rjxdL0n+E5cnDmjYy/fr5RQtgQCeOmNr6fEmMh8fs7Z+Rn7l/Z4/OAxSim6vuPeg/u8+NwL7O3ssre7w3vvvcOD+QPGVUFs1pKe3W04Ojnm6PAhm9VazlpjSVFccrYs6WJDzIFsMm40ogBW83M+3Nvjv1or/tcepj6iFwvMx4+YPXMZr99D5cDGi+tIK82qUXQJFj4zKjKTQuOzIvmMJbFbBG5uj9jbuYEab2HH2+RBsONDpFmew2bB6uwBMUt40Gb9xzfY/vH/hCQ8k35oDkS5oJ8WXyomdBwsuEasSJmMMYLiVYPlTHhmQI6kHAaZrRZIrMlDRPNgcVCKpMSOaLXFOQskUuyGXW+m7xLrNnGy9BQFOJ1Zr9Y8CBt2t2piTE+tIyiR6vbeDzw1aUaMTRRZMylLRrZCaZEdG2ewpsDMZE6tdKYwhXzMg+XS2lIKe62x2kkjJiMTYoIQIyG2ZCSBUE6riyRWOZAUkFUSqOrwIPSpJymxieScoRNGWBwYYykoyuDkxVGKkR3jmBC9RaEp6y16b0SNoz2bvkMh6bs6C7A9K0/GPGV/+T4RdE8XNrKN1pCiJvaKoigokiErRwiBPmUMI8p6JhLwaoui2BXV3XgXV+9g3BRbTCmKCrQVZV+WOHbVNxA849YzPnyIPj0lnR4T5gvaZU/fb+h9i+87fPb0StOmglWI9CGTg6JThtZogrZ4pTApYVTiilUcXJ7SvXiV3nXodgGVbAWz98yPT+jKQaVmklg1M/RdRhtRhJl6BLEnxAzVjLqyhG5QdGZR94BwhYw2OGukYFSB8/Mn5LAhpyCbPC9HZ+GEzRVkDErvxqwWc1LsCD7KMFsrQpDNkTPCHPKxx+kxhkhpZQOmtJMnR2mMMkMYh4LoUUZTWMWoKMVubJxYeS8GR9YOiihDUU5w9R719BLaCLvPVdvYcoYtJCgCo/F9S785Z7M84cF7v8d69YisNqTcDs20AIYrWzAajXG6YPnmCXevXOXgz3yNkVG8eLBHbWQY1KRIqSxGyc+fnJ8P9iuxYvm2xTpRSllnqEfVkKiYJEHUZGKWJKuQE7uTioOdCTFpPno4Z9GvKRcbyidH3LEt39sKHCoZDsQcifkTKL1WGp0s7z884/K05v7xglU15mUFgYCKHZumQYeelJRYUkW2J7aFgfVhi4LxtSt89/W3+Mw/+wM+88oLImnP6Uese8P2a+DrDcfnUGSIfH3YncigZOCnaKWfJqVmJwVR6Sx1YdmZjVBA03V0SVQ6Xb/haSK0SjibcUVJ33tybNFlQYiephfkwqQosClBF6UxX55jHGzWAVsZlM3oYdhc1FaCbFAY5/CdF9u+loFsVmD0mqwiiYg1mvUiopwmeIU1I1EIW4EjJ7Xh8PC7EnqjskDF240MG420/RpHVU5YLN6mcFvU9TZkQwhLjAUoMMUuRbFHVe1STV9lsvU5YuzR+ojV8TuE9gSVWlAV33u/5s5mwpf+5V8gFxatM1MradrqYg2c5M5q/XBKqzSkZg8/VTKMtVYN6YfCdCqdobSG1brD+54YEyH0ouQLAbs44XONZ+xb3r95lfjVV7ha1MQgRafOw6ZzeK6M1mKL0BlXlqzbNU3f0bUbinHN4ek5XVaYboN3JdYmOt+LOjQpYPicBkbaj4pEs5Ygn+2tbU6OHvGNR3f4n+2+wvrDhzwZK6pf+R/D5Vs0XtOuF6zXLddv3Hiq3BN7TxQlrpJUNPnzLxS4ovYyVu42gNF4itveZ3vcMD+fs1p7cio4frymaQJ9n6lLKG1mtTrF+w37+4FRKpnWNZUr8H1HUUDXSmHa9DJQa7Mnec20GtG1LU2IeK8wWVErOG16coLSGrFAlpZqe8Ti8QMoarZvvsj2lVeYXn4RKHj1q3+aZ557ExUi9dYeq/s/ZLk6xpmeUbnE6il9koTanJMwaGNP7MXKnQY1eOg9tjIUekTqV2SzRmNI3TnJt4SYKE0GM+X333zM6OYL3P7Ma2it2CugKvJTBYAmk9Kgdhie1bM2YFzBSJVoFamcKF5Tluon5UQkUtrElUnFOhq+vUksO0O4/zE/fv8DdvKaHxSeYwx/5/tvy92XZGONEn5TRlwAV2aa/83Pay4VAhb/nScFl29eR5koKddpWOQqzQ/urPnWg2N+vBjT9xsiBV1oWW1bDrYt41GFM4OKWslQURkZxkrTKcrgCydIzND2nsdnc1Ta44/O3+OnmiWfshPUk0fM3/8e9c1dwArzyVq87+V5DUEG7iK3QymxvQuWVuoz40psUROG5xqlh8WzJmlLzoaIJHkqlHycemg+jcIZKIwkuxamYjypqArD4+MTLl/e59rlazy59x42RharDco4dnd3uP3Ca6wXc1bnRzSbNes+MN3ahtCyZka1dQNdaGKjya5Dm0w2mq7x2Hqb2e4+q2XAtKdUpkJvHbBs1sLv3BzjdCJXM3b3XsKFFUZl6oMbFHu3ccbhN3M4ep+8ekTDOca0uHqGrWbChMsGo0HZkrced/ytP/wmtz79Evc/uoNWmpdee4WDa9e4deMm1y7fZGd7h7Kq+fj+fVHvFgVlXeBsQR+i3EUyd2VrNsOHwKpppD49PuJTh0+4e/SYL20XPOp6/nqTOa1EzZSkNB6S2Yd3IkoYmLrgTSI13ytbip+8GvA+kHpYrxWrrNhkQ5MNTcyscmbdZmYuc2fdcxUklVmJG+ADq1GTMZdu3eJLP/lT7G7vMRoLG7osHKH1+BTxvqdv16wWC4KPbDYbNqs1bWg5Pz0lbFrOTk5Zbxo+nFn+r6cn/Fpb8FIBeg6VgdU1RVJgsJikUbqn0I6YWglkU2teuVTw2o3bHLcl2Mz9hw94/bfepAmevulx2rI70tTNIat7G2JKFGlNWYCyBT4k+qyZn8DyPHD+eM7+1NPoDO6cqzdH/NPf+10Odne5fOMmN8vXqOs9ruxfpmkXvP7mt7l3+CE+KXKbKZxiOstMppq6DqQ06LGKBNGQkmbeBFZNx6gyPHg456Ts+Mk/8VXevvMuTRv4l772l/nqF34ZlNS8ISZi2tCHNX2z4vHxPcqdy+R6gpp5tvae4fq1T2P0iMl4xmZ1zmpzTlVUnK6OOdsUfHgE1Uhz+folZuMtfuZPfo0vfennuH7wjAxwYuBsfsL54pAnR4+p6z1u3nyZ2XiXnBN3D5/w1hvf5k+6U9rvHvPCpX3urh/xm6NtompxRmqAi4BIZwU3JT1sxPc9KAtZs1qu8UR2rt3gYP8Gn/W/zrbr8D7T+kDWGlc1IhJRmkJlbk2EedrlzBvzyDIZ1lmYbT5najLBD31iDKAMr04tf/feGfV4JO+Ajby4o9mz4FMkotgykXUMTEtDQvF2m+ljxscggVdKScK5NnjvyUoPdar0r7XJPH9lwuublr/7ZMPz9YQRklQ+xpPmLevc4UNk5DRFzqSk6BjqmnTB3s9YpbGKQbSgUSoJw30YOKEuXB95cLkkkua/w/n90UX4MHGTQRR5qIEyRVWS1ytiysIXzxIgQ8oXJQvWKqpRQbP2xF7wFsM0Qv4eY8gq03s/zEGNCA30cM9rRcjwj3/vGzw4XYM25OgxWg3YG8hGDeWlp+slndcojSsUKTlu33yRl59/haoc8e7duzx4+Bi/WpOz5SVX88tXb/Lwh6/zq7OrPEo9/87je3x8/Tppd8Y6BlZ3j1idLXCzEd2m5VFhuX5pG6MVy7ZnNdS2IWfOu8CiD3iln7JKndWMrGFNJhca6xLWKgony2qnDN5YFtnQGTfc+Z57Jx1vvP6Y2PSEZkOREmUI4ugcVJU6Z1LXolVGacs1D8+nnkcP7nHr+eeZvz8Ho6gnI0bjMU3X8uT4iNKWTCZjbl67wagueXz/IY8ePODDOx9w49pVNqu1MLiVuINSkCRxWbo6CJ2Ey2iF7xtMYdCFZbFY8k9nI371pGWUMraPcHLM3o1r9EHCtqZjzfkiMxppxhV0m4z3MA+JEBVGRepCUVrD4+NHTMKadnGf2f5tyq0rZFeydeNlZleeZbuYDMpRT4qBFHrO7z/+FxzC/fN//LEHfL0feC2Dpx0yKXoyiqIQ0L7igvcDhZVgAmdlq6i0lcY6SeKMGWKi40XyWsyoFOXFVQZjpGkKw2PXdC1hYBCFmOi7gI+iXopRExVsTy11aXFGLvnz9ScFBFwMTRTb45LaKJxxlK6ArCl1hVYBpxzRGswQWY22Ax9KHhylZIAmh8vQ5CRJrAoEyHGIqZcNg7ALMikHcgBlJJAkZy0FZU5gpLjsYyJ2iaiFhcAnfP2n1rCszQCoz/RRycEbFFFvocOSzAqTFPSavl+is8hwrXVkAjkqCjMiq0gfG+yF3QxFVWuwEKNCmwqywrgJxXhKUWzjzC7V+BKmnjEqt6nqGfV4C1OOMaoiZTkQUxRuWorSWDRNImdPxj8dOFlTUjdrPvw7f4dHx0cEpelQrJSiLUtaVxLqfSgq6vGYYlQLXFhbYT4pDQm2trdR1rI8Xwk8PXvmzZyP33yXW48aisvXmIw8j9cdXScQ9KwTfSeXhbV62PYk+lHGuYizlryWAV0iovIpTbsCOoxWdF0SBpvTNGuPsxalOmGSdJbgA06XkCRUxjhRi6SY8KnHOSPA8b6hMBofzWCrMtJEmAwpCQjdaJSu5Pk1Bu0qnNyGhBgkblwBOWCNNB7almQSs73rEtJRTjCuxBVjimpMWY5EjWeEJxiSJhHwfUsILZv1EWH+EX27IvZrgl+RUwMqIEnRCbJYZnMMhBhQeKyp6Jsz+mbFpLvGt7/7mOpf/7dINvPS1cs8u72NTolNjJx0HbWymAw+y+A/q2GDFDM7u9tPt2gZKcT8sJlru5627YSrkSGqxPZuyXM3t0gJHp7MiTGwu+kJ61NOxop+nDCxAW0IQYShPin6Htou07aRxideuHGZxXrNQsbhRBIuBMzpAr+7h3VWhljZkZPYKYw1xIHxYcuS+WzEB9/6Li//uV/B7m/Lu6wUblAQa81TdEFGwhmEP6qe2tGGdJGnAQEoGQI2vmfZb5iYmrIoZMnRN9RFyaiwVDiMUfShxIceSTWPKBVJZElYIxN9wmpRBdjaEIwW1SZy1lWlIyVFzjVx3RFVwGoBSIcGtE1YU6CsIwVRWhUjh42GoEUtjFFoLLYwODuVFEvriakhsCGHhEtGbGfK4QMoJRgD+fwFipxVJKU5m/YxiSHZzUyxxYgUGzSa0u2zs/sq3WZOVzzEKYexU5zbpqz2KadfpXKndOtj3rhzypsnji//K1+jMxmDAO2NkvcuDQPXNPxjrGJnu2K+bvDx4ljO5CxKskGEDlmsWTZn+pBoug4fI33XE3ykDz2b5Zz01rtcW63I45J3b+zgqzF9L3zJwjkZdMhDIsOxCw4gjp39PRQJZw0tUE0nPDk+osVSNw0qW3YKy8MYJYmaQUEwKHeVutDsfmJdaduOzveYc8dHy1OOd1reeP1t1ntjVivPWBlWyxVPDg/Z2t2VBVMShs9ms0EpUVlAYn4+pyhK6nokRXGONJuGqq6HgWNis1mRvMfoGWVdsm6PMWrCZHeL5vCcPqxRJrE3LUm2oPGeEDaUbkxdOazVFM7IQqKAclpg6syqj+w6y2oN87ahaSNNzlgjDYRJmT5E0oAqUIXD+MTi8SGBLYp6l+2rn2Hr1meEw7h+hOpWbG1fo9464HzuGV0r4fD7+DbSktg0x1TTMdaOQY3QtgA9g8JgnCVsjkSbpgBKdLmDrqbY8R7ZbqPcFJUT48mM0LfcP/X8/p13+LV/+98gqYwzgaoU3nEQkJE8nwp5U5WkvGWl2JtUqARaRSaFxmpNG2WZ0SOLkG2ngcjddceDTUvTJkY/eJO9k0dYZ/BbM45y4vGiwYf0NJyDYZGYlTQnq1bzjXcLfuXTEIhYIpm1KI6UJfiewmqxKBWBTUoDZ0kQKeO2YxIDX/jCK+zWntg2bFuHToE+azov6bxoQbjklAnBDxatRKJgMs503Ybj2ZRvLM55rjLYtebJD/6AUT5Aq5F8Tr2oqqyJdM2aFDpC36K1xXuFKmTB3LWdLMfqKVU1pfM9rnDEyFA/ZTrvsdbQrU7QKHw/qOIdFAYKZSg0zMYjqmrCF778U3RtR9MuOT7+OqvTx7z57d8ndQ1t33B0vKQqNSdhjQ4rsU83jQwznaY977jx3KcZVwVhc8L8bIOtepiO0ZOr7Nx4GVNtUc/20EXJgbZcOT+j9Q2UW+js6c6O0Nrjg2bv8k0cET9fM7tyGzXZJ/qWwmpM7ok6YcY7TN2X6Bf3MfqcwpX4GDDJQznig9OCv/obv0eoJ/S95sXPfoVAYDae8dzzr/GFL36J2XgLYwzz+ZyD/V12d3dxhaGqxLLkl5vhzofRqMLHwKZtJUHYKR69/TY3Ts850YGxCvx6E3j/bE1Zexarhpz18C5ITzKuHZVVrJtASLIkK5yEyxyed+y8YFFxg28VlyaGe23N77y95PEafMpoBaO64EbtWChZHkaVkJRgzUGCD62hi4nXXvs0N65cwxhF4SwxxsHamIeaJLNZrRGDIwTvSSrTbDx971kt5szPjvjd3/06H77+ff7+asGvUjINkenDE5559SXsVEvKdjZ0XQshE1IkYzCxZ4uO5OcYXZCUZbpX8tL4Ep1p8atW0jANuNzTN2fkkMh9hyei2yWbPpLtjFE5oesafvrWNV7Z3+b3HzzhW48fkTDs7R+wM77MbAz3H33Eoul55vYz/Jlf+iv86X/5z/HWO3/E/Ycf8ubbb3J89gGoSNvJQH1n22ARHu7JSaL3ibqwOIS/1vlELhPfff27HJ+u2ax6XnrxfdbnZxytnnD54DLaOn7w1m/x4PAulw72efGZT3Nt5yZKt6yaluOzj/jg6A59u+HS5V2ePLpLYWoqM+Ot9+/zg/eOqauK3d2SupzwxS9/iS9/+ad45sbz0lOlxNnynKY75+6994jZcvu5T7Ez28MqzaZf8fV//Jt8frvDfvsBk3VHdUnxnz6OnF4f051t8ANaRlriREiZqqpE9KJkGP0LN28yHjne0XDz8hUm44rx/m1GDyI+tBATbki+BRlWm0HdVRhFR+KfPoCHXQlK0/cikkiAUokUB4zBYEt9bWqZNHNyTCRjMWYIKdQ92QeKwrFTaUzrmRpAK0loRtwoMWWs1iR9MVTTRMSlohAsiYRVJPa3Kt4/nPPmoufLM0FsWQKT5YJmpFBIPbUO0AV5LzORFBkW2erpctsMbgCjLFZnbI4SrEPAGXGUSZieqLwvPt+cGIacUoPJ1Tjw/5Oibz1Kw5PDJ/L3K0UIEVcYUozCJs9ShwefWC96tFGoC1w2FztLYYWTFEZbuYSVDBF97ymso9CaiS3YLHvQDkWHNpZ6PGW2vcXJ0RPaVStfR6txrqIoHH0KTKstnrvxDK+++Br1aMaTJ8c8uP+Q5ckcTcHVesqffe4Wy29+n1+a7tKYzL9z/yO+u73L9pWrLHxDMRph+4A1YxKKqi44O1mxNavQCnofB6yafF7LjWfZRfyFSpIMJrM0mi2V2J5okkvE0tLkTIlnVloW1nHWG1IBZVXQ5MCjo3PWd++T257Ye+yoYqRLTBR2ds4QuxbfyL2ayUyT5os58Ncf3OPk5IRrBwf4GGjXDZvVmo/ufUzpCm7duEXfdvSxo28bnr/1PFuzLZzRfPDeeyxXK85OTymqWvi7XTv0jxHfdyK5SolSW+q6YNP1VCPH5rzn4QR+oOGWj5QxwGLJbl+w7gwbH8ldYFQaSpW5tG0obebeqaeshG3ZhkRZaFZdZLP2LDgn9x0nD++hbUk1mtKd3KW+9Bxu5wblbI9qsoMqphSzyxTLHxn0/P/44/8vKbopBpKWFtBZgxkUBjEBxqCBykm4hlYBlARGxCxFZx7gnn2Szb7Y2yQxxwzJmCiRjq7bNEA+I2LPlar2IpK5sAUjmyitxQ38J6WhdAWKiHUGqxTWOAn50GpgBBoJ8MhKGnSpiAWEjkZlOwBtL9hCSQ4SDNH3oDpiFNZXVomUg0DiReBBzjJ4QaWnTbUwPiJZKyCKiu3i+lcXwzskbAJIg4g2xoQ2Q5M7HLQ5I375nHDJYQw4N6O0t+n7QB+W9KsPcdWK5aZD50IGqVEGNArFdjVBuQLfG2w9o64nFNUWxXSfqt6jGO3jqn2qehtTTTBuLDYNbdDKyIZ0+L7HGEX5hyenSIhhsCUqtLZoLDj1VD2Ws6QcBjLf+4Nv861c8Nyv/UWUsnQ+0jYtm66TlLuUiRqKuqSsSvx6jU5IgiiJK9s1+9sFT86XzMZmYFkYwrRi87zn7FHDzFu8rci+xzmx0QoyUg5nH6N8n+XRk49ZaTSGfMGAU1DXIyn0jaYstMi/dWY0cpSFQ+vhkjJixSFnslcSAIEkRmt1YccErRMxib2xMqWA/xkApCoTk0IZh3Pydc5atk3a1hgr/KlCGYwT9V6mxBQVVVGijUPbmtFoInY6lYhRuGzNakE874ixBdWTUkP0HTF6hIQpwfWaPBQpg9VtYHUYZfCdQHW1u1BVCLNs5CSYorAl598+4eTZl5ldPmCbjv1R/fQQ8kPS44WUKKU4nDHSPIrtsSAPw5YQE76NOOPoe4/3UkRfJDkqpbFKQYps2sSyy+Tec2XT0WzmHM3gsIFNLmg2mfOVJO4pDRhN6CPyWCp07hmVhpWH5YAHsCkyPl9xPEjt5a+KGCOWY5PMU1VzjIlqf593373LT7xzh4P9H/tkIzp8rOpimJc+SclNgyJ4OALJ+ULGNxgehyIo6siGFZGe5y9f5+zJY7QKdEng+YUbQYwQIrVzkvqMJ2mxKUyMpQ+BNgZKI8+PtoZNaPGdRycoTUGVHaN6QvSivFK2wGlLigGjNWPrqIpK7Hh1iVcJ42Vpk1Qm94k+N3jT40OgH8J0lM6YArQW9aUPooDJqoHB0oQeBgtDwrqxMnxEO6xVpBTpwxl9OMUYYc/40JNOPW27ACJ1OUJRUZcTxlVFpUpib7l7vM0/fnPDz/6lvyTb5OCZjcZyHseLjW++EEYNw/OENrLrGfITRRUeB3X1YCX8kduS3idRIIRI8IEYEqH1HN/5mK8cnjPtAovr+5zfuIoxJUZnklHDwH5Q2smNNKin9IA7uIxvNxhtuLJ/hdXsgHfufEhQCd+u0Rlu+i3u1WOme7tDAIC8eVpdpJwqYpT3WikB9i/Wa8rRmOVqwUfNMc9WM95fNWzmK4wr2L10ie29XVarNaenp5R1RVlVjMZjyJmua9BGdu7WWSmOM5ycnNG1HUVZynLDOrKGPgesKWi0YbJ7laws9cELXH/uWfzRR/SrB5i4odms2J0ZLm1tUZRb1IUhx1bOwNiTlMdkhaajBi5tOebzlrMmc3YYmK8zRhlUTAQsOmd2p9vk1NOGnoXv2J9eZm//MjmtWD76FueP36Sa7DDefR43uoqOD9nMHzG2Y0w1Y3vy4+As2m6DX2LKkpwMdnYVTYGqJqBLCh1ZPXgHM9ki+4Z6Zx9MTVFNUFbuiBQ6wGOLCYt1w9/8W3+Tr/7Z/ym5qoDEqBQFbhwKZPLAO8xDA4Owv/YnBSg9rOqkGfIx0kTPhU9A50RtNKuQ+e5pw1Gb0cenfO7jDyhX54TcUe1c4jgNqAQty9zCSaPunARRhSB1zTfvRn7m5RqbW5TSdL0hZE1UCqUMKkcZ2huFT1LvmAx9iIxDoNys2DQdte5JwXO8bri6N0X5gDPCfYrRS29qpLnzIUrdFCL7tWNSGbZ3t3n9fM7Phw3TZCnViN2DG+Q+Yqyl7xOurPHtCSav6TYeWyRS3BCzwuQC36/QocW3nrw+I5iCxq9JOeB9lGASlWh6j3MF7WKL2ok61vtEEt6A1HcxgWnJKfLWd36LV17+HItNR+00lQrk9QmhD2iVGBmNjolKG6qwweiIqhNVUVCUBZPRhLZ5xLi+wv7tVwldj9ZQzAzV1gHj659h78bzmGpQ62hDFkI9PkmQHTnhfUe/XpKaOe2Tuyh6+mYhXGitcLMdykvPEmcHpNBhiOTTq1g/J3VLcrvEZ8WjteE//Pt/j36yw8ufeoXb11/iyfljjpdzPv+Vn+DLr32R0pVyb4eAKwtu7O9KiN5wxycydSUhUdaU+Bw5Xy4IfY9TcPz2u7y6Pub48RHP7xbc9Rt+f9HSJrFC+ShnMgyCfzLeeMbOSp+RGZAdAassqz7RKUWlBW/T24J/8G7DRwvhceUsNvTYRdbG0KEHmLwR5ZDKvJR6vt22HD96wIMHH3PjyhXpCVJGG0EQXdwAKSVmsxkhSjhCKDwhBsblCB8i00nN/sEuxXjEPyPz1rf+iG93nq86g5oH4jKwe3VG6D0xQJEyqq7EDuszPk8gB/roKX1P2yYqnWEMPmjiZIIPLVobUihJyhB1xBoZlqtC0pKVgkltUbnC+p6Z9ZzOF5ycLGn6QMZx65lPsekWvPaZT/Pyi1/i2uVnyFGGO1/9ytf4E/YX+NrRQ+4/fJMHD484PT/EFYkbly+xtXWZlGGxnPPhh6/z4N77PDk+I3gZiK7XLYtlS1WUnB4/5G/8jX8fNyrRVeTawS2++pVfpW1P8eEBdz56j9g9Zmt0nVV3hHYlJ4sPOHq8ZlxuYWzDaj3HmpaPzxq+/s27ODNiMh1hi4LPfeln+PxXforr11+UczdHzuZz2rDi0eEdmo3n9vOvcbB3FaMMje/53T/8A66plp1HR3Q/vMOzz4z4Bx8d8tal6zSHh/R9FJ68UhijB66cDOgGIymVV/zKtVfQly/zartm7+qM8pkXSQ8attvEsmJQN8ni3GTpJcUIJ+flw2Xg400t/UhOglrIomzWw1l4gTBQZPa04Ytjw3c3K+rZNiElQgBlpS8rncH6KDVzVgMaSthrMUXhrqZMDBGl9VMnmlbC2EvDvw8hMKocXiu+ed7zY5MCNyjrLsWGu3mKVlGUezHRK2G6ZngaiJfyxc+FsZeHjynnjMFKD68slclYHSmUZ2QUzkiPkvj/GI6owfnCMDwEnDXDUj6DMugh7FNlOUa6wd2UQxA8Tk4QlCyrLEQ/9LMKMol1K2pgBjej4LSgcIp/9U//DF/8zOfZ3d3nP/iP/xPeePsDrCuwGA7vHqJylN4TCZrLCXrvuXJlj1dvvcDLL75AXU5YbDa899GHHB+dEHrP1a0r/JUXXka9/j1+pq5Iu5l/9+4jfsdYtkdT2rNzQmzYnU7ZTMbkJmAmBWq7RnUBGx197uiDYFtikKwDHxN4UaLLMllBlGTcg0rz2ihzoCO1A5syBVDmyLrRVMGQSwmao4fuvEV3gdR5TAi4rBjHiNEyFB0aJ2IUdm/OkRLNj6XE/221ZrlcMS9rqqokJk9VFTx38waPDw85PXsCWYI7FqsFOfesV0su7x+wmi85enxIjpF2uRzuhfz0gXBVQeg8KiW8FxblqCqJKmEMtI3n+87yp3pPFSO2adjdJPZnE06OjshISEzXJrqoWXZhYGEall1H4eR5tTpjSoOtarqQ8WGDM56+bWk3c9ydH+Kmu4y3L1HOLjG9cpvx5RcIbeSP++OPPeDTP8K8k42FlJJiU8qQPShhEKmoiCqDvmhmBdxJVug8yHGVbAraXl5ypaUvBRlkWFswdg5TKtnAayley8LgDGiVhrAPeVnEnigPr9LC0pMQBGF7eR9kYJAyympyYthKyCHhniKFZOtw0QilLPmDPnpJqYsSdR2CWNFC9DIUUQmMNE0XQxIGRpto/cTinBUoY4eP5eKQU4SUB95Y5uLoEs6AqCVzTsJ1iBltHKVTaBWxBko1QrNDNd5Gr+5wslzTnwVyzlzaL8g9VJNd6sllyvEuk9k1ivEe9XiPcrxHWW9h3AhtCrF+quGbzIV46EK1KQeSyJYHewSZmHp88NIIqyz8RBUIcUPvl7T9KW1zzmZ1Tr+Z0zRLQtrnvXcXXP7CV6irEZ0PVJXDJ/nqhWEzGzPQ9hQp441Fk9iuS6pSMykMR2cCA7ZWoKshBkLbsXN5l9OHhq1lRG/NqIolpV1TjRTOaKyW9E6tRFLfh4RSgdoV5OhxFoyzeB9QucV3G5GOKyfDPaWwShRwZVHjCjskmlZkJSytFNLQqEf0MLzVA/MlDr78GAJK6SGxF2KI8vU3FaPproSfDONgrQaZEBfS9DiAXWVwGliS4kosSF1mtRbllqgnIyFIYAIotI1oFSXkJclGzmgDVrFcLXHOSHCDliFeTIqQPSlmqrpi4iTeuzA1xhRglMBkc4LFiN964232/9Ivs+48Nw+2GRmDyQIJ9zEN75kUKmkYsl48U2KDHv5dkkG3GoC8Kafh8L64cOXXDJBjYtV4NjERN2uurTes+zWnGFaDoiQmD2TKUpSwMQa0FQpIzvL1r0vHcRdZDfBbHXt256c8bBr00DRFbTBG3s8UzWBhknPMjmqOTeTwjR9y8Ce++JSxd8Hje/q5/cjn/CMvG94LM1EUOhd8PvlamDJTbmc0ng+O3kBlTQ6JMhmsctRWAM+m1IxGFYUuUVnT9Ev64FHGMHYlW8ZKM2hLlu0Z6+jJfU9hFGu/YaxKNpsGq0o5e5OlsohVv6wGJVYQW7rTOO1Epaw8KpXCPhnwCG1syG4YXIaADzL9UdkIANd05GEhQFIkpQgXDHYge49xXnh/QdhKErYkGxWtJCV2ubwvZ5hKtCFAmtPHhzS9osqas/lt/suvn/GL/+b/kqBl8z2pKzSIHXE46xm+LxcKUhjO6jS8eZnBMghiKbn45l28mUpsLWmwBCZ599arJf17d3n+dI1ymXu39ygOtuQ+8QprLGXpJMl4UNxZo4czQ6Gd5fqlfdarBXU5QifF+uqcH/43/5C1T6jYkvrM5XWBbTqMFmv9hdLzoglgGDLHKGplZy2FM1RVxdn8nA+Wp/yS2ePw7IijDz/i2hc+iytLyrJgPBpxcnLCBbTaWoNWMqR11jKdTCQsKINCM5vO0FtaFO4+UEwdxdYVzO1f5PaP/Qo5eo7f+RaqfwDugO0bX2DrK3+azXKJyQ1+vSCsz3H9OW71EOUX6BAJfQdEXD3Ct0vqWrhdWUvK5yxmJlPFh48iywUUtqC0lq3ZDFVvM9nZpj39iFk9xox30NNLhH5NNa4o3S52+wqXnv88090rtIvH5BQoipHwVWNPUgpXT/DrMxh4MypLg5SNpXCO9uQBxd4Nyv2bqOSx9QySJ3SdhCc1j8GvSP0Gbyv+26+/w+zZz3Dw/Av4lCmtLExByfKQdEE/hixcvQuFrwFUFrioqDmGRmVoBFMWpiRZ8+aq5zsLz6bLzH7wfV44f0hdaJZdZlSNWHXp6dOsFcQQ0EZQCRpROrVd4HQTeHSW2C7EzpVDj7aOmCI+ZLK2bLpI0xsJPFGSmphSQvUde03D0fGcSSVIh0eLObORQQePNg43KLrTxfuXE5r4VPlcac+lScFR6TgsLO+kns9HKFPBdDSl0x3lqEStVmjrid0GoxvGE0tK1cBK1NiiplnO8e2CEBtiF9EmEYJntdrQtmt6v6bre9ouYgtD37/ArBR3R6/l3dqZlNjBZVKoSBGg7hKP77xFUoZb04JJbVmtG1Y6UBhNTmpQpnc0nWJSFVilKBXUOVKlhiqv2Goio1OPHu9R7TzD/q3XGO9dQtcTlDY464Y7UpOtLN3sgItRZFxZU9qSdc5Mb7xCe3aECmtMd4aKPbEuYecmerKDHe6o0dY1sRumQPYdHz96yP/lP/oPGN24xZd/7PO888Ed9DixbSb85I//LC88/xoWTR4SbV3hxMbKwMxS+um5WjgrireUWa5bVm2HSpEHj45Zvvkmz54+RjmH74/4Zgw8agfg/YW4W32iriHL+a01OKtpfX6aVq+NIUSNT4kqQ1FZ3l+W3DtfPhUUXCw6jDUkBVELDiMmUazqlHheJQ42Gz7Ulrd/+ANeffkVlNI0bcvO9vYQgCNOBK30gAIKQ91u0EmsnJFA5RxWwe0bN+l/9mucHj3hzXff4lVjUTly9uCESy+CiRts1pQlhNgTdYFzEJQElDkv/YSzGR/FJeRI9FrJEo0hdMdaNq3HYNBe4X1HpTLrBKtOnpXSXqjRpRFvW8/DR/eYf/3/iXWGS5cOOHnyhC999qfRCq4/c5XDJ0vKSnF+fh+TLb/w83+BUVXJcpzAZnWOcSVlUdH9+K+yWp9x9+N3eePt3+OD93/Icv6E1SbSt56zUwWqx602OGfpl29zevR/pvGePrSMRpauf4/Z5CFNv0GhuHX9FvnAsTzvODp6gtXbxLzD977/FuOiJCvFdGvCp155mZeefYFXbr0sS4IYWazO6HzLpjnl4eF9Ll96kdvXn6NQlpg8H9z9gOO3f8CXZgXzr7/BF3d2ePf0hP8yGg5PH0CUAd64FrGD1Re9MMNiUOoJHRvWb73D4vERV169zXOvP2Bx8yrFc57u5CXM4+88rXFDhpQk6VcN6n1S5uG5KKz0sKoJIRJTlFpZLh3hug09Nhl+7qDiDw7PKadbdCFgTIkzcg/n4NExYHLGZJ4KXC4wMtLvXpwd4lhQCDezdIaUZGAtlngRTLzVeM5D4nIhX5dJnxnFRF9Ieq82wh+PeRAEkWFQIV7cWfliCCTFMUllugxNVixyJkQF2TIrEnsjRakSffrRxep/98fFHRai3ItmqOdTykPPcyG4SE8VfxK0qJ8uyVTKOCUOHTlJRc0Yk0EPQZ8MH0PbZH79N77Bb//2N7m8M6ZDSV0sxj7U0ONXRcms2mJna0arIgeX9rh6dYvnn78O1tHEnjsffcThg4es1z3X9y7xr998lvToAc+0gerKjP/9g0eo2y/yf3zl0xRtT1y3/F6/4qNRSTtbUCiY7BxwpBuO5gsWiwZbDfMDFYVbbhQhqUE4Yp8uhJxxFBZ2x5mdIjFKAUWmTYrzIVzUlHB1llhaWCSxfq9Di58WUEDuFcko6ihD6adMRRIxR8BCSNiseSFmXtaJO+++w97ePlVhiFrR+Z6zxZxN58l6Tehbdrd3ICe+/e1v8/DhQ6ajms2mwbiCejylWS5JKQzDHOnp+s4Ld1fLojxGhGfoDK4ytJvAu3XJZp0Z54Tznq3VOSMzZtkc0/rMtT3NqofTJuFTJmRYNjJfmiMO1MtTzbVnPs2t5z+PcY7N6UMWh++SuzXrtseEOcVmweLhR5h6xuTBe1x+4ZiVvvTPfYb/RX/8sQd8MUJOStgKOpOTMMOMsuLVN5IKKT57GU6JxsZAGlIxlUyOpXEV61HhRPJblNLMOKuwWg9bwCRNtAI1WBzJkH0mEOlJw8GQiMP2VJqvCykvcskPyTCyGRHeFkqR9SA5TommNxgzJSsLqieHI8LwQCYjIMxIhhTEKjJc4iJKzKKUikY2IBRkHcgsiWqA2Snkz4oZnQQyL03QcIgaCVQgi7pFKUMe5NAKgTdbLemVlbGUTsswFYNJt1gsztna0ejcsV3vYgvNpNpitn2Dyew5itk16u0rVLN9bD0dhq5ydGcuFHY8LQifnvTDhlSlgX/wlL0Uhmj1DqMCJi3x3QNWy4/YbO7RNMe03ZkwsGhRKbBYbzAUjI2hLD7N/u3PYeoZ1jpSVmBk2DaqSnJO1NaiMfiuZ1e1rKsRYw0MNhatKg62p1iln25S4pBOZLXhW6bi9HRJMdbU5ZS9rYi1tWzwYkTbYmjAoSqsXDSxl1RMHaUo0xpCoBqa4hwiY2twZS2NLImiUIQhkMOqANoycppkLOVkCmQ2i2OcK3CuJASx+XjfoZwhxUTpnBx8hUVpi7GgVIsre1LqpHkb1KSZJGpPJYOxlIKw9C+4mEZsJSHIUDsmSV7Sth/soYVUyWqwAuaEypLal7KiGBUUruT89JTpZMJkPEEri9KZPniMVRSD0iiRUMpD1GyCx+aK+79zRHPzOfYO9imUYn80ohxA52ItH3iA+ULBJ+/xUP6TUhYLc0x0IZBCeho+I4y3/LS6fzpoVpCSku2K1qj5gt2m57HJnOAZj2rInoywmLQRO2XbJqxCzhKlhgRtQx96FgNfM6fIlcWC1xcb4rYogRUKY60M9rQmZwdIY9GT2WxN+fCtH/KppkONiqfFP/AUCmy1JYQwDHflTEwpPbVSoj5J+YoxEmPEuISr0rAVS8SccUqjiYS+ZeMaIY9HzWpzSmlH7My2KUeWIo6ZbF+lW50Qw5rR7AaqGHF2/4iUxJagrcVoUQoqAyGLCqIwFcsYKGIm5DGrpiGGhpErGekZzdkaXUVIHVktMVoah2AD3nhykC2oQdLXVVYYU6DIRA/JiG5ZWQNOIu3TwMpKxIGZCuSMdRXyk4RWmsJV5CTKcVRE5wptNSl5cnKE0LJSW/zt3zznx3/tf4HbGhFSFu5eVaFSon2qCBm2vxeLmUExFWMehgzDUibxCWD5R37fMEcTpVGSJVMYFg+PHjzgxfMlW8s1abfm9NYuW7MZCZhMx09VwzaLGkREe1qGn5lhC53wfY9OmdPTcw4/vs8mROY+YhGMxWwpATECd4a267CFG9iCUszHJDzBTMAoxbiuWTiHsY573ZrGTVBEDj/+iNe6jj5GNk1DUTh2d3fp+h7vvShXrKEsPlnmdV1HaSqxrFsLKJzTFEWB0hpTjimnY+7e+QH7N7/AC3/i1+iWT3j84Zs0R2+Tu1OSKqhGJVkbTD0lK49fJvxmgY0NWskWvTKBbtPh6ko4K5WlKBNWJ4z27G5POTrRdF1NUoWwYbd20IVjPHqFq5/6Ccbbl+m7jr29LZyr0bpAO8uT+29xfnqXy9deIERLUpGuPSVs1tTTLfxqTbteQOxQygqvLrTknOm1ojm6QzndheYxbdfiwgKrK+EwFpawfgJ+hSJy//CQb/zwEb/0b/9l+gjGJlxhCTEKCD4lNj48XQ7kC3uSGniew9BbMaTMDvbHi8EuKVFYzXnU/P5p5Lh3lIsFl956h2qxZILjickcG0sTeikarWFrOiGnSFUVGCUK9qQ062aBDwmlrWAlVEFMhkenkbc+XnC+9viAFOcJXqun9Cgmg4Irti3Xuw2vH53SXR7TxcjZJnH/8Tk7LoGxQ8gGQ+M6pCimjE+BEMH7nrqQRMZ6OuXbx3NeM5r13beZ39uAKmgN+F44d83iMW1zhrU1vReZjNJyxvq2oe97ST92FYXdYzzdZ7V5yGq9ZNU0bLpA08rHobczt/dGrDY9xaREhcDupV38ekPf95hS4zLsTAp82KCA3aqkKqAKir16RGEQ1bQdDcviDpMSpTNMK8NWbSkcKG3ZGWcmrsH4R3Aypzcdhf40k/pFdAx0q7ksBIpqWBAalBr4gQPjqW8f4U8/prDQn97Dzx8yOniOree/gtcFsfNURYW1BcoVwonOGWMdT54c8h//jf+czcTy4z/xE7z1wzeY7m6RsuanvvRzXN67IbbWLIMN62TomPOwqB4KyoFgKkPnlNj0PYtNy7ppMUrz+j97g08t1qzfO+S1g8wPQub3V8giBeh9J8nZT/Wr4mwJUc5fMwxaLuqITKaNEEMCa1FknmwC4Ud6m4wo/pRRdECPuI5SRuqbDDWRL/mWx0z44fe/x4svvsJnP/s5yPDg4UM2mzWTyZjZTDAhvQ+0bcvOzjYqyF1mtKjP9cAZL6xjMhpz9ZnbHN9/wJ2u5dNacfRgybOrmtI2ZCU2JxsN5EDKARMFfUHOaOdwSnjCwYsKvO0DPke8F85k8hscQdiFUbjoKQqeRvkeQ8bpCDqhrbz3fYi0y46YeiKZ+XzJ+3fe5zvf+z1yUOwfjHGVo65laRq6wJvv/h45Ovb29ri0f5lbz3yB45OP2d0/4Pz4jMlozO50xhdf/Rqv3f4pvvvmf8ubb/0RwWfaLpKw+BgYj+H0PHJ8tmIykQTSrlUEH2g3HfWoYGtmefDwHudna/YmN0i9ItkZf/j9D9nZv8GTw4eMpiN2b1zlU5/9HK+88ilqVxFiYN2sOJufURSat975HkU14fnnXmFaT4jJczQ/55/9o9/ix7cc7vtv8WxwJJf4L+4teTKq8N7jSitBWlGWZlopCT0yWpJjh9p7ERMffvQRP3Y2J98uePjqLvlZR609o1f+VZrf/IBwdEoMkJQS9fMgqBBXQU+f5IyKQxiFCEF46jwi5cGBolHIUPnVieVKOGcRPXVhJdQuS2BGykOcUYyYUgY7GeHeqQubrBZXijWiZg2DukvDEAQnBcqqi1jjOOk9H20ilwortVPKjEMkl8MALYOTHT3FcI4nowmDYtGpoeYadDqYi7dTQrlCyjKgjNCRaQIkrfH/vUnFReMqb7ZC5hZoQVtIwp4i5YjO4qgx+WJhrNBJZhqFc9RFybgsGVUldVlQWcOYzDgrbkw80+tb+K5Hx4jNkSJnXJ8Yt4F6fkYwmU9RsEbxyBjyzjZXleI6iltmhzu3rvJHJ4/IJOaN54fv3efWzVt8fPiQD979kNWi49Zz1/kLWze41Qfe//AjPrt3lX//8UP+oPX8J0XN3ne/SbtZ8/7Zhu8UnvKrX6XSBU8+vMtz157l+uQyP1gbYpvofKSLMrvJJBmwpownE3UAPTyDBkKh+KgH5w272jIpLCkr6mqECcId7QjMu8gyeU42idW8pTCWVIAPibIqGW0CigtRRhZ1eZYleEyZHCI7IfE1m/n+/Q8Jmy+gxjX9pmG9WJB8ZDYdsV6t0HXFxw8eUltL6Dxt19BuVsxmO7SdZzzbxhrH+enR07pnkEcB4IxiXGpWG2EJkiKuLGiWPQ+peaI0e4gr050tuH5zm7K4S0qZVSsDvVGpOZiANqAMbFqZAZVGMbKGSwdX2b38Am40ZllvE3VBqWH+5CPC5pTe9xjjCD6wmR9z/60/ZD598b/3FP8P/fHHHvAVBrRVWGsHqb0mZQmpTynTxygXapIXSWtpWq02FM5gjXD5zEjUGxdNrMoegdN5UoTGyxdYXtJh8itdPCApvUprga8P2wqjrdhHzUVqrZbGCNmE5EHhhIace2JoQWlC6lHqBref/zPs7L/MeOcZ6vEWMXu+91v/Lu3ZO0P4QkcX0qAK7AcAukZpwwU4wViD0j0x9ALijJFshn17FqaCUmJh1HoIRsgKo+RjFpsjgxRYo/VQuKshDUxrgXFmg9GOcVlJw6kKNv01RlNHpTIptuwfHLA1vsZ4+4uUu88y2t2nmu2QtRpsvGKN1hcLE4Sn9EmakOJixicsCIbPPQ/AeE+MnsppHIecPf4D5qdv0HVPiLEHGlJ0xLzBZI2KmvEysHuqKc/WFMZx/EpNUddMxhW7O1vSdPqAURLD3YeeFALdcsH5esHdxYK2aVmt1yzXS2JUlKVhXJfUVUVRlpR1hbNSPGmjqHa22DxYors1ZEXcNOT5+QDFVeAMKUjBlbIoLgvriG0g6Yh2FlJEadlCWS1Sb5MyRrcYp0nRk4LwxJQzojeIkc25DOpiUTEajyizhx5MURK8lyHU8LUutEb1ConOEyioiorMDEwk+xMI/QD4F2lzzlKQxpzJFahaki2TvHzorGTg03SEoCgqh7Zid7W2l6wXklzohkFNNzyJpiKFjr3dqQxzc4MyJTGJ3VcPLKUUhcOpvUFlacjcYoe3vvMxV/+NP03QimlVMCkuotWhSwIHdoM8K2eR7cv8ewjO8UGSmJI8byIZFkOuQOPV08F4zkiilcokPGfrDTkG6uWa4vycpDWH/ZrGeJSWYVLO4L0iRLHqSqqqvMebLlKZCh/XLIsh8CJnrjVrxqfnnI+Lp8y8nDLJDirKPKgAClksuNk2Dx7cp3l8THX7qvz3F8sANUB7sxSEF7/GYOONF9tUJf9flJ/C+Ik5kEwv1v3BVpyNDGuriTBPrXFPL1KV13RmQ58MZTXFW8uaY7LtWJyfMZmMKUcbqC1JJ4wKqAyd7wnKUFYF6EwfYDJ9lqqY0cZIWzacnS9xVYvtl7IN9g5FgNxS1wZtLNrKIsUYUewJr9UQgifQoWISsbOBbCARJGk8Z/TAcTXags6oNCANfP+JxVop+r4FtISyKIXKHtUrXGEpDCi9y9/9R3D9sz/P1RduSupiSozqCpMTVil8zLSDglqmuoPVcbiJwrAUvKgdL+Z5F8uQ/CO/Rr7ghv2/SfvPWM3yPL8P+/zTOeeJN9/K1dW5p2d6ehJnhrszmzNBrkgtKdIiQUu2KUOABfgF9UKG3xh+J8OAaRiCJHtFgyRImWmlDdzlhtndSTuhp3Pu6q5c99bN9wkn/JNf/M69PSRhQfBcTKN7qqqrbz3Pef7/3+8bpYQnhMhiUXN88xYvHi3QwdNsXKTZvIjRRoiS1LfyJk1Iof89EzF4fNsyn8052D/g4b2HzE72aRZLbr5/i/p0wVpQnHjFCtCllqI5ZXO+wb1FTTmqqJuasXUy1PXfoyaj+mdPSDBDThHrHHt1zYwaFzJHDx6ymM+hLHHWEWKkblqctZSlKDVTCjL0G1EzlJUoPJWS9uiUE9YYckYiGOYdzckxIX5EXtwhX3iawq0yGK8wqFZZHh/TLHZgBqbdQXU1qV0Q6lPaxSkqe5yxtMveGqwMObbU3RKLI+aGpDKD1TWaTrM52KTLj+HdiC6WLE7f5PTeR7hBx9GffRM3jBgD1aCkKNZQZsrKdIOuPST5Bac7F2i8x5qEtS0peMaTLVSoICVcsUqOGqVLYpQiK6cVodkhqjWamSakBcVgSFVcwoeWXBnC4pjcdbRR809+9w6f/fm/DoOSLicGGoyFNspS10bJ6D17/35Y9StZTP2P5YTJmRDFGSAOBVHBKQ1vLRPvLRVtq6ke7vHC3iNyvaTLLaXTnOqKdjk/n/skR9lJ/isCKM6XDa0PFCnSNOBNoAsNt+87Pnw4p/Z9TnKQjGaDdOP6LCHXEUUXA1dDy0t7exwuL7I8PubotCbWkWYkakhtLM70hGPKRHLfppjxKeFDJMSEs4rRaMD7jw44NIm1Ww85uTvHZ4UqDG3XgHEsT09oQ00KsoAkFGXpRMHrpYm0C4bhcMBwFHGuom2OabqWRe1ZNIlFIxmAmxuK5y85mqUCDc5ZrG5horFqQGmdKHyqUpTiKQgh5j2b4wptC3ToUNlQuSGoSMbShYx1hmGpGJcWpxW2cJRlphwkSB5jEra+CY9aujxHr14Vm5kpGK5ty5/Nd5iypJysY4ox2VjcykUmypJCx8r4Imkp4HRYHGGGU1IKxFmDqiaU4zVMMQSlqOsF/+3/8++xtzjgxR/7MV579WU2Nzd55onn+fzzX2R9uiFWLy2lLmVhKIwAUOeZsoha7yywPvRh/6dNw6Kt6XLmznt3Gb93m+LeLbaZc+QNr2vFTtPPPNi+zIDzc0ud36tnzpJ+keyLWRSZpBRdtHibUCkTzto2OTvnOSdmQs605sxqHiVeqFdKfZrIS3XN7aMD3nr7DZ579hmuX7rIyfyUk2XJ7Y8+Ym/nIY/2DqkGQ2YnR2xvb7F18SIZWC4XPNrZ5dq160zGI0pXsjqdMNnYYO3qVT549x2eKyyL05b5YUex1cp81yWSD6CsREMkJHc8CRCekGiaHCM5a7SyFFrsyp3PJKVRyhJjwuQgc0MSleWiDtgcUDFi+l2jGpS4qGnqBQpYGZXMFktiozg5mkHWHBwvGE2gGohiM0bFux/+Ec5YijKzMp3wpS98yCuvfYdi4LCp5Mb1y8Tkefhwh/HwAuSaQVlyYWvEzs6C01lL3XhqnZiOC0Spn5lMSskV7gL7jxoubGuOfKAaOMaDEZHEwD7Fu7dOKMotDuZzBhsrPPXEY3zqU5/jseufYnOyRfQRnzsOT/ZxRebWvbdYtDWfe/aLTAcrdF1LnVr+h3/1RzxnPReOT2neucPlJzb59bfe55XBCvP5IdEpcYeh8VoEK/RkhEoCKOksM3gM8LVV+NZmon7vPeztIesfPeDitQHXn3+S66Mtpof7ZxyGkJpK9/u1Ap9YMQkVewlL70I7H345m1f6hxgFOTI0mh+fOv754RFrFzfJIZJsJniPKw0hhJ5QlhmY/jOZQAC9M9JdKxof5DkEWh/O55yQxR1srKFJiXeWHZ9fKbH99zb2Ea9VP89YUcxGmeEUEsWjs4hnQspEJedyG3NfWpR6V42o77QOVAUMrEKdqW3Dv51flv/d/5dltzhznmnAZI3ThrXxCpc2triyscnWdMqKspRdxDYdLOboxYzidI7eOWTYdZQ54nSm0ppKaQYYhgoGOVOmjMsai6ZQCovGWkuuHG8PK+4dzxg1Cy4kOHnuMi/FJSsrY24/3EOfnDCtKup5y9HpjLEdc+nFp/hxb/kKY37r9a/zH27d4F8ePeC/P1ryxLikeOMNFrM5QcGDlFmslBR1C0njlzXvvPIqv/pX/gZfePGrUhjqDCpFchb1ZRck2qeLAR+8/BWjCJhSIOR0nrF+mCQP95jeTdMGOt9Sp8jRfM7hwQmmydBGWh+wXaIYQJGTFKqks0f1nCXHFhUpZKoW/ryP/CMVePv1l/npX/oFVtem8pzExO1bH/L+++8wXhmzOl7j6tXHSDFxtLNDs1yyw22yUpwe7p07pc7dP1midLQ1OJtwui/FQfIXy1KwgpOUuG8Nz8SekJoveHJ4nWcvFMzmnkfzwMAopqVmbQKHp5GmDUwqTeUyE50pcuTeB9+jyonp9uN0bct4bQulSybFhNSekJaHNCf7xOhBa+rZIW3e4Uf9+pEBPh8MYSkLvoQ0imRVmSRMUFZUVmxzThuyzr3TM6KQLKI6iIw8pV5irBSoPovsbGlXwl6oXiWTCSgD2vQHmRLVFFHLgoeR9lSb6XyiKDUp9oomRH0WkcwA57RkjWWpDs8qcun6L/D8j/3HEvIeFb4LFFZz5Ym/xuzl34DUoPMMw5HUkyuLKzi32umkyQS0qdFKMSgqUsxYq0CPhR3IGmOlCRKCFIhog0FTKKEqtFG9FFrJ760UXVCETgJbp4Oyb/IVNYTJkHQg6Evs1walA7lQjMarrI8eo1h/jtHlG6xdvs6yCSwaCW42RkvteT9oxV7hlfPHmTu5H6KcM32Wiqi7YpBDgehZWR2zePQn7N39I+rlrmS64c8zFQqjqfIqrnRMv+kJv7+DPmipY+A7tGz/R5ruuQmLvQPuti1t09C2rQRptjXLZkHjPfV8xvx4X0BS3TfWKUtRDhkUQ3II1Msldd0Qjk7xIaBUkjKXpBhZz8lJ4t1HR1TzBnu4wDmNVVqaq3LGGEtIkbKwFOMBXdvinKVdzrDGYKywh0sf5TKLkbIo0E7UfSrJodIZJYA0RuwiTiThc2sph7ofwBCrk9Eoo8/Va87Z8/uZ0oFR+DBDWUOzfEChgyidIrRBAJ+sMo3PjC8MKQqHKwpRHKaW5bKhXihOZpmmtkyngemaQ2uHJcnnDlmirHGiHKVE+A5HNpFMe5630XVBWMKsUC4CgZwCqBWMkrwYFRLd9w44vXyNla0LNMDqqML2DaMRxTx0Alj1n0uNoosekqgTUxZ7QEi9ZT/3QBq9dTf17Ww/ZCdQaEKINJ3npG7p6iXbpx3d6RFzm9kLHcezJSZn2lbY6zp6ATdTJqiI6tW9py1sji0pJWorcnxFYuhrnth5yMtba8RC0PEUEzqBMRYPAmIksdLrquDIe07u3KO6cfmc9TwD+s7sunB2lvBx03HPLKIQhWBK5CzPvtWixjAKCiuXV8oBtKPrAorImUrRuQJnLBqFVQpXNDThFsXEYI2hawOwYDwtGCZDzEEANSNFMZKTKnZyU2qCnnPiT5nXB8QcKVYSqEasgjbTxYBzJQZFqyOFk+VK6b79WEH0XoiRnPomYg0u9eBBXwahjTwjEmhDj0ajznNAFeizaABRymlj8L1KUBEgaVHpOcvLr1v2Tjb5mZ/+It5I23bSMCwKdH8mFtqw9J0oUM7OYc7YPwEszsE/4Ny+q9S52u983hZHCCn2xTo+svPgIZsPH7Gxf4BSBQ82xqTJgOhrmrpmUTc0pzNODg85Ojjg6OiY44NjFsczTuentPOauumITWB9c0pRWk52DgFFrAYcJM/VDB2RQa65Mp/zwcEx1fgSwQe874Rk6v9sHyvABPRvm4blckkmU4fIA1UzTpnZ7i6hC7Qx4WzAWWlQjiHStp0AfVWJNWclWqm3s4ArHCfHJ1TVAF1V/fOuKCYjymqV5ZFitHKZxekB0S0ZDTdwow18q5msXCHXR5wevE8+vovJipxautazbGqcq6jnHZNJQdd6nBV7rl5GvM7YiWMRlpx0LYftgmQS25e+BH7KaPp5is2nSH4Hv3xI5l18PiL7SBMczlYEPySoGqcSy9MsOZsqo52w/T4MMapCG0vZrYgwwLj+2UnUvpPnonFiW1QN3UKzNBWJlsZaTCzJneObbw1ZjJ/ixguf5DR6olFMnSFFT5ekOTv04N4Z1/nxGtMTob1NyPTP5NxLnELIfaZvjnhteXXmmYWMDoHhe+9ybT5n4KCd1/iiYL9cZ9k8OHcm1MtG3BZWIig+th5KAcDcWy44x2Gj+cFHp4AshWfKY61077CAOoFWps+wzEzqlvH+AR/dPeZg/yHJRw5MZqeSSJbSGoalxSLAZTwDd1KQZTcGsZkbQ+Ecc2f5MAauH7Qs9hOt8UStaDqxVLe1Z9l4Og9dCFgrrbDOOpaNp/aJzlsmw8S0i6isODqZM1skOm9ofaIJ4IOi0PDUWkStipNCO4WNUcwaRqNyTWENAyfkC7ovbvBgdImxGlKB1mDdBF2todOSHDpUakF3uKKEnCmswZYFaLknMRpnanS7CweeenYfTEG2A5b1ZdRgFR8CLozk8dAzdDmgHIwpVy+QUyA0NXG4grMQ5kfExQEoQzAr5LYhxkPsKJCM47/59f+a9+/f4os/97N88OEHFIPME09c44WnPs10OBV1kfKorBhUJbZX6+ePH9IeBIoY7fBRZv9l0zKra5quYzHvePCd7/HZ+T24/xGXVgZ8I3l+MI/nC1vrO7Ge93Ed5/Lp/lMQY+rjVyT/lH7ZizFz0sDUZYxKQvooUNpQVhWra+s0TUPXtbSxpnVGlEFZooZSj/5NcuSLbc3RZMybL3+fZ558ko2v/gQr0yl3Hj7gzq07OK2ZTFdRJB7t3Gdv9x7htcxkPGF1usrpfMHpyQnb29vcuHadk6NjBqOKzUuXuXn3Dvu+40JMHOw2TDY6ed06saU7qyFD1wkQmVPCpwjZ4ENPfipDCAKOxRyAILEXQWacotTEUILWGFNQDQp0AOtkH0hVwcr6NmW1zkfvv8H8tMa3iaaLotbOlkTAN4p5gq6RDUshjgQfMt5HunbOb/3Ob6KUoawMKWZu3bsFSTOoHCvjOd4H2q5mzISLWyuMJqfcvd2homO5AG0jo7Ej50jsMqSEVRqtDFVZ0NSJ8WAVky7wjT99FzfcYmV9m6YrePqxazx14ypXLj3F6uQCdx7usrW+zvHygC42zI4f8P4Hb/GFF3+KKxs3MMqy6Bp+/0+/yejRHb6wrnj9T97mpy6N+fadB/xhZ1HTgtFowmhlzPGjR2RrsdrJ7nQ21+UsqjSjiEmz9LBfR/zujDZ4MAreu8N4ZcILt07Z3nT83FqFTg0qBBqC3NBKy3vsG54YZdY03FtavPfoHijXP0xC5gxK5sRIRsXEVzaG/OatJb5r0G5CVgJsS9qS7vdzydaPSeKkNPItyq2i8D2QnlPCaEtCo3UkxcysiQLaa5nH328DXUo4BVkpKp8ZOU3Ihhjl99Iuk5ImZEUXems5UkaJVoQ+rqrUkvHfhUBhYdCXGJWFgii5fqce5j+E1f///hL1okYxdAVPXbrMZ68/zrMrK1xoltiTGfnwhOL+LgPvWekiY60ZOMegsJSTAW5S4XrnkQVc795TWYjnrDJ9XHl/Lgnhgc1kp3gytKi2ZsNr4sXrfO/J53nj5T/jZL6HdSNWqoq8bLl7fJ/5bM6TzzzJc+WIXxuv8YevfIsvjdc5rDv+66MDjoDVLhEXnQCuKOZOCkBd21JUlunaCgc7O7z21quU9+8xHI9Z39hkMhhRWMugKChsRVlZlJGZW2sRRqFl+lVZ95FhSf48Wcha9UPPecgSudT6SBMCi7pmOVvQzE54+MFr2Pff70FvOaVVOhMeCDmj0LhkuO4jXy0r/sFH7/Lam1dJOVPVHQp49803ODrYZe9hxtqCnQf3OXi0C1FY949jm871Vh87apS4I5XOVIVi6BTLJtN2iqIqcEbm/zpEHjhLiK0IaeqWZ+yEP//4BrO9PQ7mgSZksoY2BazLnCpN18kDqBzYmNk/2CM3f8zVk3tMtp9iuPYkzlZYp6kXjmK6ScgFNpziFyc0dYN3y/85D/H/5NePDPBZrXClASVZaxKGKZdGCAENNH0ddUqILLd/MM7td0rKBc6+lJFfL4266jzoMyCXqjYZpUVllJwMSak/UJQSYC0nDWhphVQa38pSeJY1FEKfJaAUdZAN7Mzhp51hMn2Wt//o28T7t1i5/CQXv/LjzJvAhad/iWL8Kb7/vW/z6PUfwM23yZcLimt7JB0g9S1dxkB0FNZirMEZTY5QOoMztj8sxT7sTIXOEtYeQoe1lhT77Ia+qMM5A8mwrDMTMyIXisJojMl9wLxIsMFRVpsYe4O4H6hywyA1jFafwQ43GF9+jI0bz3B8fEpd170lWspMzljU1LOZOQtgpM/QbxRVJVZSH2Lfihtpu46ubVlfWyOcvMPhrT8m+DlVMSAmS+w6hqUVhQ2aohjiGKHev40/adgdjng1eb4bA79WZO7d+YDQtiQnYf0J2fc1EWMF9JqMR2Kf5awgxWC0xdmKsiwoq5KqLKUKW9v+kErkHKhnMxY3j/mtP3mT09rzk0+MUW0k+USrJD+wMJrsO3SSA2zRNjIouYK29jRJVAw5Z6LPWGvpgmeuOzSKmDVZa8gdqCxAijIoIxbAnBKFs1grOUUxSVuTKwzVsCCTCJ3v7b5ykWYDg1HJ7t4jZkvFsFBMVqBrIgezwKJTVM6wtVZyMPOUR4Hrzw6oJp42RFK2LGtD6wdUq59l68bTPLr9ZzSLY4xqCWaOMR8XF3SINUMpsZcZ5VHKkdEYI43WVmlsUaB1RNkOKGhCYO3CX2Lj8lc53r/J4k/+mO+99RKb/8Ffp7WOnDPjge0LdBRNTiy875ubZUvNCgFl+5zB0OeRCLPeH9xKXkeNOv/snpUaiJUBDmt472FN3VqW8yVXFtAuT7izkljGRFk4UidKI5WUlE9I2AnWyu8ZQ+Z4GaicMJZzBZ1SDDLoHHnh8IAPDw452FrH99mjMeezvG8UZ83GkmmxcAWnd+5ymS+KpjsLWGqM6W0C+Rz0OMs2PYsSyP3rc7YkCyiTGI0KtjdHOOUYDSrJxIwCcnU+oJ3khUg7ryxWKQVaDyG1WF1ATPi4RGsjoEzwYGR5jyGJolP3wFUArSxGR7p0l5QN47ElZ4WzBdkorCl6QkUGTIycI0YplCko9LRXZ/a5qCoIUp0jSYnySy5/hVUFDt0TBf3Zn+XPnsmifsqxVzWe2Tp0Hx+RULlgkCYUaojyQ166lfkfv3nE3/67/yu8k9B0nwPjaiCft6zocmLW1v2g0A9t6uNiFGlHTGdp2OfLq8pZwIek8UnyG1OS71ORpbkwJNplw6P3b/Gr84CdLYjrG7xjAi998zssFif4NlDPl8xOZ+zv7DI/ORXrT5Zz2hhhQEOfJRK8ZzwZoHvbSTaaAyWgidTkBDZn+0wOhzTbqygNR8eHTCdTrJGyldxT22e28Hoxx3etPA8adlLLJ5Ti5PCA2CxwK+uknOh8R+clt8VZaZBsWsn7K6uKsiopi54oyJnpdIrYihtOjk9whePRzqs8uvf3mQy3eOOm4ur2CprI6vRx1hbPs3HlC9RNYrx2gdPdVY53X8H6hO88MRQYXXF8soRc0c49vklgIuUImqaBKmMGgWU45cR7ggKjP+LR7sv4psKWG5TlNVw5JQ2uErslqT0kqRarO1KYk/OIqLr+3xVAHa0wUZS1OTdoDCZaPAd9bo8CLVmjvvNytwcnK5gO/efbY4zCKIdjyMHJU/zhm5Ff/E9/kVorupDQOlJp+YikrGijGApNFkJAncsSxJQlgL+4AWJOLHyg8R+XR4k6P3Ea4W7b4VPG1ic8/uFNysUpaI+Knt1yRKsNbdP1qmZFUbj+GYF53QES04JKtFHx/n7kuC14+U5NRl4roC8eU5Ip209AdYpyz6mMTorQ1jy7OOXrJydkU0JoqEPAd6pvsO4ojKdSMHSiaCuN3J9GtmqMNgxTFqBuNOSd4zlfmnsGe4p6pWUZEou6I2uND5nF0tMFRd1FCieh8UWRaQLMWlGyhpypQ4NWinkd8b7P20y6D2HPWJMZD5Pk1CZZ5ly/GEk2rsJYsCrIn1mfLdZW8hKNgCIoUDZhCg+hk5iBbMhR9b9GSFfjMip5lNNk1UpxTG7J7REq1CRVoLQlLB6S7JikLGq4RjfaIrt1xtNVuq4hWodzJbYsMc5KBvF4SwinEMAYnDFE7+m85zf++T/hB699hy/9yi9y+4P3OHn0gC/+1E/w2OVnWR2vodC0oUMZmA6HEtyPLFjnfIhKdCFijMH3z3JMmdO6FqV+TNx55S22HtyjuvshF43ivVTzwdBye8/L3acVJllinxssGXy9El7JTJ+URWspqEvZyL0XpGxv3iWS1hgV2ZoYCqsYr2/085j8Pq6wdPNEKKFDUSZF6ts7c1ZElXgued6ol7wVIrfv3GLn4HmuXr7K1QtXMZ+zfPfPvkUX9lksaiar67R1jQWKouTe/Xt0bceFS5e4/dFHEAIn8znNfEFlHeXWFnfv32UrZg53Wy48GcVxFMFgiT7hM3QZUaBkBVGe15j72IgUSbkFE6VtOnak2JciJEPGgnLi9sjQtnLWuH4XO91f8GBvhi6Omc0WKCM55CFlku5nMA3KJGKScwEyo5FEvbReSOy2Df2uJsowkji+INB1nqtX1zg+DFgH8+UR7RJsASsbjnopAFIms5h7nEtsbxdYXQKKo705sRvSNJ5UXGP/1pwbVz7NbDnn1pvvMhgNma9e5mDoOLz/Mne2PuKtm3d45vmn+MrPfJlHD9/njdffYDJap14KMbtsFnzvjTd59/vf5+9sldx+5Q43isRxu+T/vbtAbV/my598ATca4pymrZfowvD6W++KQt0ayF4U1anPmsuZFDJtUswXNVorXDRMVqYM7IBbN3eZhYt86VOf59JwgfYe//1XJHecjE+SET3Riq+s1/w/Xl7StB1r0xWGSkm2GWdtsjIzRqVEMUXiSmn4XKX51uGC799LPDZUVDozjp7jJtDlLKBs1nRJSHVtrJD1Wmad1O+HCkWOMgfFlFkERYs5t8MrpdhtI6de1IMqZ3SbKa0TK6zVqFIaq02vJq37skoyIshQ8pp1QQjpLoCuHJURB1mbFPNGZr82JBYdzM2/qdj7+OsM4OnjYLLm8cmUv3H9k3x+OOTSac3K6S4r2Utjry1xVSXONteRlajYUhdEdZizOAG1JSnwRlyEWlmSgdQ7FpXVZFdAaVGVIw8G5MGEC2i253OOHuzxuz7w6vE+W9MVBs7QoXnmsSdYXV3j/sND5s0xl0dD/tZ4g1tvv0H0iU+tbfN/fPcH3B5PqaZDqllNOFnQZkWdE77NtHXLvfdv4icDfGjxXcM7r7/M1eee409+93soZ9BFhTIOqzUOhSod1lqKoqIsB5R9UeNwOGQ4nLC6uU61vkqK4JTBOne+f2kjeI3s3FJOORqMKKsxeWODw4/eZoiBiDQ6q7PG5F5g5D2EiMqaQez4qZD5zTLxzkt/xubFK8xOTzg4OGR2+Kg/aDK+q3lw9xYAK9MV4nLZYzz533jbz74UCpJkJ8pXwrl+j4yRqEA5hW8jD4yTPNyYyKHlYhu48tmf5HD+G6zqRFMnAhHnNGGcWSbFcZtBa3yXsTmzWERyO4f2TTYOd9hcHOBWrpBdJaUqRYkbruDMCnMsQ7tPe9aw+SN8/cgA36Ke0y4PBGCKYLXBuSytpH07qNjNpAGRnLFOFmnbS22UVuiz7yQLkJG1pgui/HLGMHAGnROtlgv1LIg39dLnGITNVSYRgzTZaiNshkFJmKLQcyglSj1jRC5trcZa0/uvNQTD4fdeZvzgA1byCW7/iHe6Ux4ez7lSOr7+ve/zL77xDV4cZr687Lhvpzz5ealpt0jmlzOmX8BC36SaUFEKEHRv6TWG3oa3xBgrWQgaqUfX0mIWcyIERRNEYZiCQdsOpQOuqGSpVZKtZsyIoIZkM+W0tnTtEhUX5PEKShv0ZJvxxmW6xrNYLOX9Ueo8zy/3apOzw1pUL6LmAwEuybnPcDvLRAt0XQcZytJxcPtdMBbVKXKQjDhFIscGaxUxK7xf0qmW9uc3eF1Z/nhP8/bshIkd0lVj9o5O+MynXmRt/QKj6QqD4ZDBaMC4KCh6NahOWUK3c0YpJ1JtpdBO98pOAf00GixkA6qXfXdNzRtfC1z8/jcwJnM6D7THqVc2RCalYqWUqutMxHeq398TixgJXvJrUhZmPvqEtdLiq5Bl4KBTHHeBx6cWmyLORErbj545g84ULouyKmeMFaVRUUBd1wQvpS3LpkUb1w82kcEgMG8dy6y5fxAZHIv6ps1DjheBooTB+ojOSS5S3YzRgzHF+CJrF59nML6CcxNcNaWqhqQXPktROlJo8fUe9ekDqvGQTAEpkGjwXYMrSlRSKGNJsem3SQHGcgwCyqeW6Bfcvb/Db/yz11i7MWE7HbD97iG31ze5fuECuXBMDAx7y3lAcdp0okJDmgMzGaKEuENPB/TNpD2U0i96PWtEJqpM7odR1RMKVlsenQTqOlCVFfFgxqXZAvKCD5Oh6zJDDKOgKZ0WwFUZuhg4ji1nmYaQWXaRR6c1MUNNptPy2VbAejvjxdt3+NPJmLqwaCXqTYz8u2fH9KAcYK2hLS3zuw9QIRKsgHlnl6Io1HpQgI/BHPJZqUavVvkhoUJGBqIuQZdbmkWLybLkO21EOaLF/qyylDMoJYSD7lXHJltMFvVxUTicqbDWULdzpEW5t+sbeQ5DaNFaYXWBwYn6RJeUgynj1cu04RExzs+DdDMI6N0DdNJa1iME2fTZLmJ11wARklZkEiYZbDaUxtHFRLaQCWCSNPMSiDqD+eFWN01WEl8Aiat3L/PUh5+kKAfsrGT+T3/023z53/8rDK5fIFsn7JwScDLERFCZrvPCeieF698Xee0TOkure+qLCuifzIwAz2e2+BjTuX0spYztB+4mRHYe7aF3HvKJWU0KnrBWcDMldj96xMnBI5yzOOPQy0AZLE1QtFGY06x7EaMWe2NImRhEJWqsERBRaQ7OcqcQOGXYzXjq+JDfeWuBt4a6WVIUAy5duszm5gbW9M26PXmRSbR1Q4oesmIvtTyfKsJsTnMwx42mPTANAvJk2q4TILRnflvvMcsFZSGkiytcr7aU4Xc4HNC0Lcp1VKuBo/kO8yZxa28PCORHt3h88wNOdt9iOTtkWFZ0i5rlsqPEETw0XWA0HKInq6xsPEXIikJ5jnY/oOWQYC3l1NH4I9oKyqrEpY6UEj4cgomkeIfl/PVzRZjplyVjNDFKM6GPc2KUxUliM8RtYIzMNIU1GGX7hVejxF8uXxG6NkEcsgwbmLKlcplQn5DjEmcNpbGoNOI3v9Vy48d/mWJ7kxPfklBMrRBxJHr1n5FQ7P72tr04ICGK55giTY4sQ6SJwqrn3Ksuermf0/AwZJZGoXWkuHubzx7uY7oZWdfM0dwfjDlNDdm3/XkPs2UteoTUn8kp9WVCAix8/QO5C6OymD4TFvqQ9nyW59QTPElsgGTVx35ErjdL9P1bTJ/7JMcHLaHP5dG9WsQnhSdz6hO2rplWlvVK4xAiMqUkbeBaMRqN+PD4lKUPbO46mkoxbwPLVpQHrYfGZxof8Umz6CR/UnkB+FqvqQaGJhi8j7hC0waLNQPGK1MGAeYLiUcYD4cYIq4wZC9tfDKbSR6qUrknzUCpeE5WGG0wyoBK6Kz78rIZ+DlaCZik9Vn26xKtJRNV50zGc1akoahRUaEQwl3pQA5CoGhTorPHn1Z0dp22uEQz2cJVQ2LqGK1flMzoEFHjFQajVYpqjCkqYpDG9agN/+q3/xl/+t0/5sd/4Se5//Aj7t15n8996XNMBqtc2rhKzDBbHDOqKtaG0/MivNyrP8+KMEIIUtYSIylGrDUsWlHMpRhZ7h+yfPklPvnoPu3+Lmat4M3S8uayJvTPSk79WtkLAc7PYOjdKPTROSCmcNXbHjNZG97aE2BhfZDRxjIcWILvaJqO5Xx2nr84dOY826sinlvLEgmVoCLw/HzBg60hb7z8A1784peYrm0wLCueefJpppMpJyeH3L/3gOA9y+Wcul5wtL/LycEh9XzB6eE+2liOD/ZY39zk6uWLvH1yypXHrnPvwUNeoGN2FFguDcomvAdjEjl7fIIuZsAQokQF+T4GIfW2/B8mP32I/X6F3LvRknNLVgW52BaRkZHiOYC69iznNcp2vYpdwE2jDc4pcSc5RVEIyFc4TcLI6xkT2mRmC2mZlFiGJOUIIYFOOGdYWXXUfsa8W6K1IrSe1muICWMVg4Elh0xSQvaWpai5rIbOZ3HPxIqL5hm6O4rPrTpune5gvOLZixdwxrB5uMOjgz1Ou4bTCxeZjEa88odfZ31seOejN9je/DRPPvYkdZu5ffsOr7//Ft/+3vf4m4OSwcmS3Q/v8uVrU/7Ltx9yUI7Y333Ana/t4qxDa6jKko21VZoQyCozGQ1AxLUYrWh8posdp8uWZdcRcmJsHWMF7fExxjrGw1X8acdvfeuQn/mJJ1ksl3xwtEEbDiXOIihmtSZZ+fwHH89Jaa1UX+gh58rZ7HimpsxkTFb8yqblmw8Sv/GDe1gVsX3Wu9WKgTNMK4ezGleVDEtpS1d93njK4iyJkgVDpJ8/Mny4c0zSBWdqQ20MsxB42CUulj1h2wWUN1Do873Kmj66xcmwUgHBe5SWzN6YFcZL2UNuvcxi/R2mk5JsXaPQIVEOLQ2TfwfUkYe//1sGnTVftBX/ebHKF0Ji0gYSiuwqlBqQYkurGrroUUFcXckoUlGhnBMBhzEoZ6Eo0IVD64psjZDhhSUPHFiD0k4K5YwWcNHI3RhVyb42LK7d4PLslKcOD/jJr/4YelazNJFJWVJSUWxcYL2puYFCHezyT+7d4j/71Jd48849/iBH6qQZqYIPdMM7dIxToFNCRrgusF93jAqHLQustRzuPOTpZ55mvRowW8xJXcCniCodsY203kt/QVZo9DlxooDR2gqXnnqcWBh8GzBBSfFkCiIkN4aYE9oWuD5P20iuELnrcMePWHWOHOTX9/oqmbUzqNaLTStlbDa8uGz54niV39nf4cqNp8nJcO3aU/zgO9/g9PTwvPH87A0/OTkWoRkI4/PDD8L5P/ZZ01FRN5pRIYUg2WqsEbdKwJASHJaOFiH6lY/Y/SUfPthi8/In4fZrZJtQbaLUmpFVrBSKbSclsG3ILGOiTRlnpVDm6GCP9viQ4co6G1eeoli7iu8SphiiygHT0TrL413S8n+WDPV/8utHBvg6Am1qcQ60zaAT2YkUNSuICmlEzNJ+k3KmOZOvZmlDVQqyl+qNM9sdWpF1n9WhIqoBURbIZqP6B07sbf1YK1ro3s4lb2yIIp+snEElLVZi42Sg0lJWQUzoDNZayYNSBQ9uv4aeD1kfDGk/fJ8PXvsXzMspZlLC0T5f/XTJlUHmwmrJpQ2HUbWAilleA6XAYMiqk6B3FMqYfjHIOOfOVTkywGmMsdK6lAw+eFqf+kZDQwyiTnNlhbOittB6iNIJbQaEbkFyU5QpOD49pGGLum6g2cdtrxIxjMfrlFXF8WwuBSh9i6eGc8Qg9Xl6uf+h3C+kCiUhu13fGpzl8khZQpG10qQYKbSS99I3RBZgvABhQEwWUok2FnIkXlzy1F++yN5LC+ZvHnN65NncvMTf+pWf5sbly7iYUYsOvfSoWYuJxxTeo4PkHeokQ7KJmYSTZ+3MoqFE/anQKOMIpaOdWPJqwWRlysXtLf7m5x/jeD7jzx6esCCjXGZSOiqdSCqx9KIy0NYQ+2U+J2g7yaRQJmFdSVSWkBI4J/ZlIpubI8paoWwrNt2UUK5/vmMSW4X5uKmozQo3cIQM2Wra2tOFSJhalLXnKq7gDFmXrK5scnXtMuubF/DNjIhhdesyZVmyeuE6piil5TEcQ+4Yr11kunmVro1olTHGk+IpZeUg1eTYYJxjuLINOhF8Bz0r7qwFEj4nVK/kNMpAcgyqikyBcaW0WpcD3MqCX/8nf59851/xV9cq3nrnJhf/vb9EqyRXcGs6RaFYdJG67fBZS8afUmL3yklsv0lYli5Io1oKZ2o9UUQmdA/yCQlgUUTVq7jO2iJjws9OOHxwj9H9Q6q9h+xXlluxY62o+E8+/RW+dPkGVWUp2g4az/zohL///sv8892PJLeQTMgSZp+ARU40VpNDv7vnyAuHe+x8dJu3nnyMaCRpNZHwSOZYSorCSgFRHlYc7h4Q6xqzOumDxTPG9gNUrx74eBhRfaZQPj/3zu6zM0Xflcd+iu2Lj7Gz+wb1/BGxOUJxSlKtABBaGGRtpLFPoTHKERMCjirJ0VJR7BCkDk2FcwJKnjUaS9mGvLYpRrJe9mSLZzgesHX5BV788t9hb+e7vPKD/wbv54DCWShtgVIWKOSb14ocpXVVciR7e0gPVHgveXAKSCHR9VluOkPGYAtRk1pXoLIUGaE7Uu4IKYj5WyuirxmcGsr3WxpzzL/MHzG4dJFPfv7zWG3RPbC/OpyikoAlXQ500EcpqP57yATVr48504bUDxaph2MlR4YeXM29ilCpTNtGlnVgcbrgZNlyeHDMzocf8pmTBeXBHjYlbpUFuzFifODJYsD14QqXy1XW1i3llUyzmPG1m2/xWwe7dCmJeqVvyoyxE5Wo1kxXhhwdzsnAUf/dxR4EMkSunR5yRa3xUqrRVtN5z917kik6HI5YzBfEEBiPR8xmM2JfIIUynPRxb7GuWR4esHr9CiFEOcd6xaXui6ykAbBvl46RrvPUTUNROGlddgVaK8pqSDkYUdghyTvCArY2puzsH9MFxaByXH78K2ytvcj+3XeoJmuoapvDd3+PbvaI1QvPsGwCJgRUN6NuHrBy6dOsPv7neLIasKzvs3/vjxmM14nJcDJ7meAyRye3McUCWwYUga7N+KYlQr8cyQUdY+5ho355kmA7mVcAoiw8WUPy0kZ3llOksoIIJKS102eOmy2+dvPPEVzkxkrDZ1a/xrSqSTnj45hX31tlXl3jS1/+PKcp06SE0pmRK6UpMWcRD/QrG1myxZJShCxn1Xl8RhIiJPX3e+7D0lOSlmmtMnfaji4mhjGw9urr3JgdkNslwQbum8x8UPDg8JB5u0BpKeES61Y4V66d5YVapQnRczTvmE5GDAaKxbI5B/nPy2r6oVwpRRPjeXa6zqK6C8sln13O+NajR4xX1zk63CfiSBTkHFBG7Lpd1+BDpltE5l1gqzJUWkhUo8TOO6hKHlrLgxi4uh/ptjVdLsjZ4iNEpfCxxYcg9282ZCO2QlTF6tom44FjNJnKgO8yXdZMBxPK4ZTBZBWTxdI7a4/h0RvnERtn50P0AWNSX6hgkH52WUrPluWkpDzIKIlpUSrK0ntWeIUHpLlYKZkzUYHzSPmkyMmjbRZSJnVgSvl3U4RUkGJHzIaYTnl4/JBoS1Rbs7oyINx4gb37tznducv1Z55huHGd6fZ1co7M9h+hNx/n7fuH/Ks//l0+82NfYu/RHrfefpVPf+6zFOUKN648T1SW+7v3WV1Zp6pGND5i+5IBUfGl/v4Ssl0rdZ6xTE6ErmNoNEHD+9//AU/cfZfjRzs8XlS80rYcrE+4e9zymRc/x5Xr1wTUUZrDo0O+/a1vUtfzc0KNDINBwXSlYjabS/5k38iZe1DipXsd378rajWlZow3tojeUy9rUYfns2xcRVLySp8R4RLbkNDJkFTmqeR5ebHgZoy88/prlLbk2uXLVFRsr68zKh1bGxscHx/z9rtvc7R3zP1bt+iaFntWXlA4PnzvHXYejHnxC1/gqScf597d+9wfjpgtPW4ZmJ0YipVeQBTps9Bkl0q9XT72QH7OUkaQs7wqurc6dCH3ZwNixYziFkm0xIFHKSkbM70TQhRUicIaEVQomUWMEntv2wSKQvdFJxnlIi5rmlrIHqUyo0Eh3xeawhrWVwasjmF901EVmZX1ilJb6naLQjusJMZI/EGUHUkDSXUYDSPnGA+mrGZLaDyqcYwWG8w/OKAuaroQeGoE+/MlxeVnOT6d88tuwNIEmmw58qe8uXfEjdVNbn39ezzynp33X+XNV94lBo/Tig8fPeSvXVrnc3XH1+/c5avrY/7wwS7fDo6LqxM+OjlBeykNQykWdcNsNmO0voLRiscvjRlUQ4rJOiuTIXV9ym//wdvkaMnARoCi6zgtMsPLl7j+iWfoOg9KU9cF//ifvsJp23F474CqGmGGI2Zd5O/dHxMC1CFTDRO5blHKiAqfj9vOz3chSfIlZ2nZfXpo+HzR8bU8ZjY/FqdS6KOw2szDeURp2Jhmrm1McTpjVO5jY/pCGCPNwiELOXK46Hh4cMp4PGEyHoEPKGPpQuBuE3hxbDAZVAysjK9hn7jSK+AN2lq0KSBnlLa9047eqQGS6S+OFB+9nGdeHB8+CAgvq5+IL149SJwHrvFDB0L/mqiseRHL/1k7Pts22MUcpeReIXdEB8oVVGYFMx0SVjR5UqKKCbkq0YMCXTqJTSoLsi2krMcZlC1QToO1oJ2QUtoQrQWjOSs50jnRWcvxd17lM5/6EhWRn+6dHjn251iKKO/RTYc6PCDtHvIP37/JFy9fYXXR8PLBfdLlS6xGSCHwzukp/xciP706Zj145jFTKI1uW+rDjmS1zM+d5+Y7b3P1+uO88doPRE3rDBvbF9A+0XYN86ZBo1meLhmUUgI2XJsy3Vxj9/59IThzInYB773cc50Q+toa3GgM2mJEV0y37AjLhqc319hyU/R8BjESoSdMehKo8+fqSJM1GzHwF9rAq6tjPnrvbYpqhGQ6D8inH88U/+a7nP9dgLd/js4Wq9C1GDdguQwcKkvwCus01kQSmjoKi7PoHVuyp0Xi4R7vfX/Be09P+Pknn8ffe5dm3smu0WNJJNnxrUWKNZXGa0gBjC7wsWNxfICfH1EO32O09TiTa88RjUaVYwZ2zLSJ/KhfP7pFt0y43m6BUvgYaHx/KfQv5hlrZ8wPqVGkqkZyl8iC+PZtqWKpon+hFNogQJiWDLPcD0aqR3z1eekEAv5lcFqasawzlNqhjeQ5OSWecmflv6UwmEIxdKUocoyl1Iobn4+kNMfZloFSfFmtEJLC55qVqLDa0/lI0GBMI/kn2kheWFT9gJ9QOHJ2gvizisoRrU/RdBhte1VO7MPhI+CofeJ0AfuzKTcuOQZjB96StREwMGmUM1i3KkyonxFyBzFS1/eIucCYStidHInZ4WxBUQ4xRuO9P1tNzlk94HwRSP3ArpU5//BIU13vuk9nSpWzy0P1C1xCVdcx+kMKc0TdnuBjIGtP8gqlOowJWD0lJUVlHeONGT//c4qf/8qnuLlzlc9+5eeYrF2k2ztkdHjCZPcE2oBuArmdQdOQssaphKlr4tFc2mGLAp08Jhuy0qLmUoaMZDCZQlM8c43TT12n4ZTx1iUWjz1OEQPD+ntMZ7ICF0banUJOmInp30fJ93CFFBgMsu7bmTOqnHL1iS+BGTCcjlkuP6Jp9hlUA4kCoAMDFktKTX/Byiuv0XIBuIKUDdWgIoSE1pmujdiyQpuC0EWKUmGNPQ8GraoVxpNLbF5+nHoxR+lI19ZyOdVv0ZyckJoDgj8mZU9zatj5QMkWqhWlk5p2KRLJaAeGTIxiCU/q4wUQBMjSWqTyGmnMVlmBzuh+PTMGMJrFKezv3aLrSi6WT/Lq5gqPPfMUMyzETFN3vL97LObbrInZoKIsJTF3pBjIURZT7wPBR5y20uRnJNcz5UzWmaQgh4DTiqbt8Muatm3xbcuyrunaSOgCTdPy1YOOdHSfnTXDQRt4oVrjk699RPz2m8xSDclTo+gyPO8svxlh3g/48uezKNURFXTacHb8akDFhq/eu4MajLj3xHWyHQgZYSXGICVLWHh81zFbLjluj9DzJWp1inHmXN1wlrV5Npuc2+ZzPr+czjUK/QWWyWxeeI7HbvwFDIEQlywX+9z76Nu8/eZvsjh9jxhrUZYlGeKsyGApCmk7J0e6KCSMzg14cMlilEV5UWArpdBJ8qmImslghdJdogsNOiXGay/w7It/CWcLtrZf5Knnfo2bN3+Ptr7NMgRMbqWIRBdondHZCBhkLRpRIYvtXcDNouqzl7U5b4uWV1ufN/kqDXVckLNGaSsbgUpoB9knKUwxmThOdNUjPhrX/N69O/zEf/i/41hBWAYUHjcoyEbTRnlXu5yIRhHOsvSyAFcRAflVSOR09nNizyQLkZNUljbPLtKEiA+Rum45Plkyny1YLE9Zzk4I9+7wY6c1aXFEHqzyalxyMvf8eVvwv77wDOutQS8aaBbouiHNW77i13gz7fO2Eru4QRYxVCaERFlaVtfGnJzMQcGix5fOnpkMDHzNF8KI2zqz27RoI/bLt2fHUnLVq6HX1jc4XSzOZKWyhPeDtOoi/tFBTxRJHmNMCWft+YAldk7d510JGyn5Sh3OSRSFtQbnhHAbDi7z+JVfYONTE+7cfYVhBdkMmWx8mavP/jVUgnWrgYqtx7/EY5/+WfxiH7/oUM7g2wVHd97g4XvfJBeZ0dqU0fo1NotPsH7hOSgKxtM1umZBMSjY37/J/Y/+Gbdu/wFaLzEZJis3iHEkOb6pIqaOlA7p/EGvljmbaUDrAoMoV8VWH9BkjHYCoJsCnQsUVp53DDF1NDsDdm+/xTxCe/kKn9tcY1K16Bx5uLvFS3cqfvp/+UvEckAdAz4rShWplLQwivKmh4gyYsfTotYJZILqcztT7hW0vWoWcTLos1bEnAg5c1J7bGvQDx/xqfdusVKfcj+3zHzk2Ba0gwkbW4/z2c1LGGshifJzd/cuO3c+JHaNNF0raQOFzGgwEGIyJnwIVFVB14X+TOuPLiVzYt03qmZ19pMKT+SJxZzXdu7g17cYDMZcfPwpnnnuGe492GU0rJjPFrT1ktnJEQcP7zNv50QfWC01Y5OxKjJyliMVUEXJezHwhaMW2jG5UmSj0KaQ5bY5YTDQLLuAtQ7rCpZ1ZGN1m62NbTSZsqwwzgrYbR1VOWAwXqOoBpRlidIlzUFD6p0Z9GrYHCXCI+VAyhqdnQB8quujT5DzpSelfeqwSfJQnRKFg8qJrDsgyPOlKnR2EDuSSujYE1qqJcUAeQBUKCIptRA7ci7opZ08PEx8/Z2aypY8NlaM8xqHdxS33n6P/b1DnD/m0tMLVOzoUuDk8CHvvPE2X3/7A1744udZdIE3fvB9nnz2BjpZnnniM4xGG7z21itsbm3hrOP27g6LtiOHxOp0wnQwOHeNgCL2+bpytiKKIW0ox0PefvUVRt//DisH++zNa7DwjapgP1t+/Bd/BaMNu4/2JR80ZzY3N7j62HXef+ft3hHhUFoxGo958OhI5ibjCNH3gB14Lw30ZFhGGI1KRpMxe7u756T1GQkfYiRqQ5vFHt/3TZKUxqIICsoceLae82g85gff+DrbW5ewVjOdTtF9VEPb1Bzs7tKcznjnrXc4OTxg++IlBsMx2jmaZkn0Hl8vef2VH/CVn/wJpuMB00uX2L15yqQLLE4K8lAU5DF6mihlUCmBj7EvPuiB45AISfX2zkRh5RPYdJJzRn+G5KT6TC1xpISQMVZmjqQkIqWsCiFonMY4RVIRpQzzeUAh2WmDgWIwtDiXKQysDSdsjC6wvbXN9voalyZrbK4OWB1bhr263RpFWp4QlSJng8kW2yUSLTou5d7ymaiS7IBtwGZLSYHqCpwP6JjBGczKgPziBO9rSBEdHQvf8UZ23HcTbly9jiJIxEK2fCFm/uxowXpR8EvXnuJk6Tn1S45y4pW9Pf7qiuXX4pLd1uP29lHbJf/dvmdrukK7OO0/t7rfTftyKq0JQNSGP3hjl8nQsr6RmFYOguftu3OO2jlb2TCMmUOXWd3a5qnnn+N4MeuBKsOsrqmqEdPxBlc2rlM3rWROdklAWd8xHBim7BH39s5zxlJ/5kc+HhKVMmT68ketKHLir2xbXn6QaVxFiF1/Lqt+3xMC5mjpibZjWDhKqymNuEIKLbOH/Jk1dVR8tHNMiInlcoGzts/I1ETgQSt5y6BJUeFSxdYTn0bHVsifXtUtRWoJ385JoSPHltDVspuHlhQ6CJ6cPKGVfSpFT/CSu6aUIqaIX6zSIzr/DtCjsqJSil82loviR6c7PCCFkgdDw8Oti3z6Z36KycUL6NEaqaokj9xojIuCQShRgKkYRdRjlIymOSNvviIjoBdRQE3diCOR1AsQQub9/QPW7ADXNSirRBGYFVFXUqiHIZsGFWaw6Ng/PeXtkwP+86e+gts/pR2UPFUk7p4s2O9actdyOwV+b6DZnmxRacv1csTjZSU7q9Y4shQ8KRiWBdNPfFIKQ2PHomtpuoBtE1WjCCFSYUlNh9J9ntyd+3gvYqacelGV6QtFO5m5Vy9uUBWGk7qmco56dkpsI1VWlBmuTyao/UNSigQy+owQQ9T3pIjQYGCT4cePZvzkE1f5jf2HNCny5qt3+xK9f0vldgZn5H/rB/PZpiR/V72yL4UOXTi8Nzzz9GfYf/SQk/l9fJJzHjJeKUKvFs0xY0/nPHnpIv/9q7f4i//F32bt1p/y6KXv4rQ8iySI0WJsJEYnpJ2xdCj0xjbjC09wdP8eeX5A180JsyOa+RHh6CbVxjXs5lMU20+ic8WP+vUjA3zzFk4X0iZ1roqkz89TZ0CXsN8xnikmz8KWwRpZah0OjZYGV22wJlMYi06qR/k5t/sqJdXjTpeYLEOQtQZtpMbb6gqIaKuxFPLGqEBhnChIlNgvU/SS/ReEQYxK91X2mahCb/ttEKf2HEzsQUlF6IESpXrQy6vzA1VGecnNIQPmAt9/reT9W6dsrE355Cc+x9XNhOHbkBthc1TXW4MMOTt81sTUsVhkrAJnJEjZGLB6jNEV1k0hJdpmD5TGx47WNyzbAZ45xFrYgphQ2pJC7A/Bj5U/uQfz4IeQcJm5zpdC1f9Y52Up8/7s0lA4awnO0bQts8WCydqzjGYPWHQthW7Q+hCfQ1+ekrEafLtEqwHZGAEVsGxf/RyPf/GXcHqKv/8Q3yxJx0vUzbvoxRxVL9A+QBCWOiZFbhKq7UTFqKWJFpXJvV0FDEkbUg+mLSeG+ORV8tGCUTFlvPZJdu69jqoyaip5bkl5lDG9HVFa8JSWBSk5TU6GwlaAwZkRyoy5/MQTlOM1nLO88/aHYBaEPMeUGmUUShmckcZmW5jzoHGVEyk3ZCQXJaAknyF5qrJfqIHCikVBgbBEWaOCZb73OsuDAhCrhiS6C6scYxSVp0myYPcKFLFeG5ogn0NjJSMhtn2bobJot4I1mpxr6IsZFAIuizqnt1SpiEjxDU5HQvakZkGZEk9dW+XuHUM2Kzz+Uz/JYVCko2PmO7s8ODjl+HgfR2JoK8xgAk6WlapyLOsli/mc5XzGyeERi9MZWilWN7ZYu3CBYjREawESjDYEgJjxXdeXvQgLFpUh6QpVaIb1Ec8d7dKlU95Lljol2nrJq0e7VGRKpKRD4B7FkhKnBbpMfYisKGVkj+qcPvuo9GQGFKHmix+8T3t8yt31C5SDEltarANnSozSFAqur6xyYXODplkw0uo8y0RsB5x/FlMf3qvOmoFQ53ZP+fzJj+Xcv+1ZiW3PTJisTPnU557g6U/8Iu++8Xu8+cY/oW0/QhlpYm27GrSmjUrsnKnXVmiNX0q+Zukcg9LK4mULSjsiJUPKLVHVHLcN2hcY57DViKgaXvr+P0aphtjCdLKBQUpflNZgQKkEqQVGmPISo9EViqKgbvaYL+4Rw2Gv+BX1gUL3ZzZ9Bp7Be0VSTQ8IixFLK5HEk/pG96ykNEhrQmw5Xj2G1cT/7e5drv3Yz4Iu2Lv/CP9oAc7QWMWd0SFtTJRlQWGhKDSL0zn1yZzl8QkqizJrOFlBK0cxGlIVjul0iq0GhBgJPpKCZB2eFdHkLMB5F1pylibo0/19ru7u89jxkln0zI3itg8sDuY8fVAz3bkHviXQ9YC2IWTDxGaeso63Y0eKiXQ2aNPfqYi1VAQyEmCtejKiHzeBzObpIT+xcYF/nZcstfo4CDqL5Uwbw+LkGKc15WgoiqSm5bIrGAZFGSLN/iNUSr1yUpoWO9/hnOttWPn8vnHWEmIkK1GId90S6yxlUdA0LUppxqtPsjG+zsGDP2FQPc/WxXXW155mbfMThHaXvXvfoJg+wY1P/QyDwTqhSzBaxxnNfHbM8d5NVi8/Rju7g68fEecPSaOS+axjvP4EWWvqumV1dZt6MWd7/Xm2V/8u08HT3Pzgt6nrB+TiAuHoEM8+ygxElUcjsRVOiprEClmIzVW1REQpZ7JBWSN+LGUkXC15UhJQQStHJrC5VlPZjmWYMvMNtx4aNi44OnuJP3yz4LEv/jILN+bOG28yW86pLl5huDqiqxucllRSMmg0Kiessngtz4ILMieZ6QBNpOyVzH1yKTlb2hBZ1h2FUSSjmIQhF9rE4uXX+fHTIxaxJqC4nTPRKh6Nt/jqL/4qD3b38B10bUvdLJlevgpac+vNl8lZ7gKtFOPRkLIsSDkzXy7Fwn2m8usJijOhvWTw9YqTLIpE3S97cb7kJ0cj/of3XmP901/i9sEBT9iK7cvblGQGhWU0eYz93UcMiiEPd24zO9mTO6CyjE2mcqJqcWXJ7YUnLzPOKzrX0XZyr7uiZGW6SlWMmXeRwihqHwgqsbl5gcpokoKilMK1oAeMqwHlqCImGeiX8xnaDoip61veI87aHkyS7C2jpKVP6yESfC9gDGcK4SSLeMpJGlHlJZFMzSgzqlYQ6bAmYbJEtegcz4lX+bUdSrdkbVA4UvDE0KFVQQyZGCLNvKLQFn96yonSdO2QaXvK6nSF3Z09gk/Y5MmzPWJO/OC9PV565310OeCdl15l3nSsmRJTF/iDlm/87tcZTn7A9RtXWS+nLA4PeHR4yur2JZrcUUeIi7afueXO6nwLMdG2DaSE14ajruO9ew9Y/9rXuHbvHoddx7M+8/sqcDiZcm/eYPb2eLR/gO4dMUrBzu4OVTWALPb7yWRKXS85Pj7pW+U1KiXZMbQmhoTv4jmg4QrL2tYWOSZWVlbxnccay2K5JJ+9rj35l2XcIGdEO6mUVCDkzFPR8+rpCXvAD777bY5Pj3ni8cdIGZrG084XdMs5f/B7v007n2OsZn/nIcpYdFFSFAXrm5vM5wuODg756IMPSFGzbFoeZHg8KZrTTLGlaIPsVHUP1kkBX6/K60UPPkDMitYnyeruiYGmi6LsE5OD5GCdqXr7PGCtAtqeuaOEbCVrwGJtBi1zgtWaRKZrROEX2shAFfz8F3+GX/yxv8CmH7Lz6ve5c/t9HjeZYmWIwtOd1HhXkmNmOBqQCyiGBeV4BWmj05j+86tLURNabVAjyfRU2kpeZG8BJ2cMBh0DsWvAKpS1jBcNptE8PesYrk0xZUnWiuAzyzYz2PuAxzZWGJycspo7ynrB3dmc6eKYf29thW6+5Lsf3eInN8f8s91jTk2BQaNthTELzkBSUi840YZCAlJ46a2DXol1j1FVMJqMSE3kuleUXeJhEWE0YOvxy+zu79K2HsF5DD5rln7AVGms07TdkmpYMZ/vMxxPMMrw4O595osZMXrcoBJSucdcUg9sZNVn02eJjMlJAO5nSs2vThb8o1hx0jdSy8/oc3zEh8S8SzQp98Sz7KBOwdgZhhJazf3DBbO67VWfUrZ1VsaW0OwEyfIzWj4n/s57HL9fYpInxa53jAg4l2IghUbUxiGQY+jvLpmJU+r/yiICiEmA+pyl1CSmhG+tzMdaMRhWNE0j/EdWOBS/VFacAO81gbXQceIUv0dkfP1JfuGrP8Z0ZQWO5uTdE1KsUa0h5Vp6AFRfKtqD4rlXxWolbo/c9wyIFEJ+7Iyql3lWdmeU5vatW/zChavY2TG6KsjWnjsUdTaQA7mrUadz8uEJ33l4iy9fu876YEy96rlRl/zFoeP7quBf36upu4iKYBrPf/LVz7L21Cdo11ZpUqbtPK3vaNqGpqnpmoa6rmmXKxJH02fqnyv+s+pfM7FaY4S8bn2L9+LkO8v57GISkLDzNMHTqUA771BtpI2e2EYKa/jkM89wfdnw+Po2+oMP5T1F4VIWZ+WgIi8aCL4fVqVkcjNnfv7BLjvPXOMbt+6S0xlgnD8G9ehR6f6f5SXWpJQpBxW+60ghCEbQ/6qcAvhM0AP2Tk556vk/xxs/aGgXM0itELbGnGeKptThlnO+eHmbb18Y89sv7bC2/lmKx7Z56vA7XCg948kWTetJfokdTMjVGr7raJsZeXyV0eWnKTeeJ6SOeHiP9ugutjshJE99skucnbAaPXnwGD/q148M8IWY8UnLUEmWgHPyOZCnsqDQOsvh7KyhcharNIWylMbidEHWCqUi1mrxXhv6wRCssuSs+5ZZLaUKMUv+k0OUKRkJwETe+JhABQWqEZYh5L79UEoPuixwXEr9x7APyRYboCEaYTokJwoBK3tFGEmBsn0eTEalIABKr8YLwUOQ9sjWr3BSrxNzx5OPFcSYuHf3Dg8fTBiUhu2tlsIEykJhsFhbYJTGDQzTYcCagCmE5TLaAAWKjp4oJ+UOqwuychAzIRq0WSMHi1Elw3JA087RixO6rpG8A2uhaXpwL5H64fNjtkdBkqU//5DKOcaMMRlnjbRU9uxVVUk2TOdbFrpicPnHSbGjOFUsa4M1p3RhQSSRfSRHWfoiYF1Jsfpptp7964QdT3rpHezuPuliQVcp4t4e7uAEQgN1S/aBHBOEyEGoWRQO22VGsWXMgOg7UdfkREeWqVkn1KUbtJ9b5+Dv/d/ZSAW+2uTC1irqhc+j9r+PEToWUCiTsUlhtEVnhzEFg9EKFy8/z3T1OmvrVxiONiirMQnDysYFlouWFFuGq2vcv/1nPLz3LbJakHwfhp8lb8i3RqT0BJTy5NyhTTy/OMmGbM/aW0WqbguN0QXWWBlStSHHTob/M6qtV2n0vIRYQdOZvB1Ao5TGGln1dS+L1TqIZTrKEGCsoSgMMctCnnIjatuoibG3nCmxMBsl2XhKZRkesiHVmaZ2/PInPo3bHHDdDQnHHeXBLfYffsj1C9s0ynDoI8dHRxyezFHJMFgbMV/MWBwvcdYxNoa1nLmWIyop5nHJw3de4YNXOzYvPcbG+ALJKJHU4wAlA6LWvSA8YyOEvvHuub1HXL57i5s28MbSE0js28xLGjaBSQaXpRxBKcOpUb3tPAhBpUQ56BRoHwnOStswQtidLdCVn/Gr9hrFJ15EjaZQlVBK4D1ampexCmUCtulkINA/lK+Xz7LP8sfAXu7VV/mHPp9nd5kgewLi9mzYmdosKYVxa3zqM3+VG49/ia9/4//Knbv/mpS8kDBWhmZtVF9cJPaGsleqah1psidkTZcaWn8qpSpGk62m7iMEfJdhCbf338VYsezkIDEJ1krmVEbIlmF1lavX/zzXr/84W9svMhhsgjKE2HJw+A7vvf+POHz0dULuRA2UPImanDU5Wpwt0c6Rk5ElJEb6Ai58AGUCObWQwPfAUlEk0hXN/6ve5/54jen7N3nwg5c5aJasb2zQ+kidFdee/zSXn3weW47Zu3+L2cEORaE5Odjn+NFDFocHxOjJ1mGqAZOtC6xfuMjlx55gOFnj4hNPoMoKl+QeUOZjq3hOgZQ6umaJqmsO332bX1l0FPMTEok9Hdlplpz4OY/2Zxw2LUWfmyPa2jPbq2LahwGnmEkm9c9EH6YeRJEyKCpZNDKUvca26094D7gUefxon7947ToPVlZQg5LKGirjqGzJwBUMC0tVFFTWSHMphi0c8aPb1K++Qjw5odCKFgm7VlqUqKIQB+usNEorUfjJgiCssLEW7yVYvSxKUf6liDGJRdMxW+5SDS3Hj26icsS3C0aTi6xeeAZnJ4BY7AqrabsapaQpebb7Ds4umGwNifVdDu/dZ/boda587j9i+/JnMApisySnI3Yf7TOoRmxd/lmuP/UL3P3oT8ldYm9wh6OjbzGfv0MmgO2t0NpSFSNSrFDqbLnrG9CVEE8qeSnGIpO7QNSK6DPZiD1DZ8UoKX7suRX+6R/dI4aalw7mtNdG3HxUsywe53q5wYevvIktHYcPP2Lx1vtc+eznWNqC0hUoFYkpYo0V1enxKfffusnq9gZptuRkf59rP/5Z3PYGw8EA1+eV+Rzosmf/YAGmQimHTxGfE3p2zOVv/RnPpMgrzYyFgxbNadvy1q0PufsPf52mC4QuEENLCpEmeibjSmajBM4YxuMhzkrGVtt6uhAYDwbkHEXNf3Z+ISsQRtPEPitNicI8k86tXJOjY766ZvjT177Pxqe/yM0PP2QwsIwqx+mixi6W1LM5aqDZuLjNeFAyaxfcPznmgknSWK81xlqOU8LHSNF43EgTjCy/FnDDCUO3wnBsccaye/CIYlCwMhqznB+S3YCIoSxFmZjDgju3PmJSOdqB5dH+HuPxkGhHuCxqRmMzOXiUEaWqyhmtxRKplJZMvdznOJFJKWBNidainIq5I/QChRyVnOcqYU2mCy1F9mIH7+13kYgKGZUN2gmRkzshcNTZOeQ7dDK0p5FBY9ncGFKoGttpqDUro8QXntlkOhmTFye0TYfPkW7vIReHqwymI0JMjFcuMFaWR4cNd45uUww22frUZ1jsLPnGB3/IzoO77N//iGeef5FP/szPEQaFENRZ3AEBATFV34SrreGDvRPeO5px/M2XePH1d8hxyebJklmG3y8s685hfGY+m4u6RclcnlIkxMh0dfW8nKtp2vP4GLGD596WrrHOSXwNffSMM1y9epWjowMGwxHrGxuQ5b8jF6+o96OxNKqPFep/IijQSWbhqBRVTnyqXvAn1YCbb73O6ckR7WzGhYsXsWXB/u59vvavf5euabh45RKPdh6Sk7Q+p9DRtRrfVlx97AmsMxzsHbG+dYHtSxfY271PGzvms0DZZrosggAhuERoYJTuSVwtSiEk95o+P82HJJENWYGWOT5GUVkZJAs9pkzTBVQhhWEhB7KWnOmcQRcB5QRc1Aa0TmQv5ZW+UTw/usSvrT3H47cM4f3/kcMM4+R5ugI9MRSziHUlbjoBHamGA7QbkrzC2AItDlVssujoJN/MWSmQsQ5cgbJO2smNqP6VhmwNEuauMCmLg0dZnLVcKAaSy61AEyEHMAX28JjnfeT6T30ZOx6jO4/uEub7f8YXP7rJ8Hifm0f7DJdLhgPD12ctZTGgbQNd3VEoTdMLJ9JZLFC0LJcNGY3SQzKarpthk2FsBowqT2tOWdrEwiguXbjE4f4xy5QYlQMOjo9ouwZdVqxtXuDgMLCc3xcF2ZFCpcRy1uKGTojaDGvrG1TWkGcyGCYE8M294KFPlTgnWhLifPvVjZLbbcOfMqD2nuA7KU05d7hmuvmM4Nx5XIAxhqANTduLDnJgZ/9Y3GtAORxx5do1Dg/2aU9OyAqOUqLLirIHjuLxKfXObazrJNMWCCETQytOjNQh0jeF6qMmYgzyzMYgmdwiPSVmKYySnTKTYsaH3l+j87mq/Iz8fKyw/AfTCb9TL3h46SI7D3b5bvbsXlznl5sZ5T/4LZog50pn+j4BDDkruv7confUZNdnRWuNzr0LxWmJ2rIaowoRLGF6F2JGGYU2hmOjmLURVy9JRoHJEjN1lqdo7Hkjb0bUubfnx/wvvvgVsqtwaovh+4b6wQET3/F8U3OUM1Xl+MJkwjP7pzz9whj7iU+gL1zCjKck5wSjPxMHIO9h7MHTECK+bWmbhqZt6Gr5q5nPqJczlssFzWJBt1jiFw3tcknTNATvyV2gCYFlFlIhZcnT7mxC9+Wi4XTG3/rKzzB+9R10T4RnrbAhUxgnStwYIUUBzZU9L637Sl3z4f1HuE9/mm+98x4P93bOcyDPsYszBerZj/b/cBaZcfbn/vhXSJN4yEv2Htzk8NF9yPKsmSyRI+vDgYCe9C7HtsPcvMc78yNeef8um1eusTpZ487kp/nb1w5Y3bhE4zuK4boQLkbhRqvoago50QRPu1wSfKa68QwpZZqTfRYP3kfFhlE1pFq/hA1jftSvH92im6cM1QbOLrAWqkLKIkxZUihFoS05Jcnn6rPxnDMCYumBhFCriDKdsA/Y3l6rSSn0gKHulSv5/P1RRhFzQ/B9mGhOZB3oU5pIqkEjWW8hCNsdIsKqn4U8Zc5b4SQHSnLystaEGNAaYcYQcZSo3tJ5ngWqI+tETpKNgpJSjJwQxgTLnV3HhS3D49cSQzeCGCkGA1AawwaDEgpbYk0WdkqnPo/MonXCmEpwf6VABWLsyNGj7TbWTWjqwx5kzXRdQ4pDnN2k9plBNSCd7rCYHTJYmZGDWBersmQ2n/cPchKWJfcvLH3Ol5YDTvVB6PJTGd95iqJAKU3nO1JWaG2oygqvVP9jlsljP0/9cELY8fhs5fCiE0UUlrJaZeQkB6fS17DfOcT8s39JuXOXuDhiMF/SffmzpIOG+r33YD4ndzVdtyD5juAKdn7+V0hbG3RNyfi9b3L5O99FpyWaSE3kRGdRXBjN2qTk3q+/wuYLL/DBVDFcm7F95y7j9z3FE4FQyiRtjUEVWgZtLKvTiwyqTep6wVyfspy/y4PTt8V+bSR41WpDCgllch983TJaD2SvSb5f7Ow6a9vPsX31cwyG6yxOHnK89zqH+y+T4h6Kvk0xiRVRGVGO5b48wdqOFA0Kg7USUm8Ki1EOlftcjB7UU9r1+SsGheSxWGs4L6lQyDOrQFtNVh5le8swHW13jHQJi6Q+iw8WHcUWSwCFIWSHyRWuGFK5KdXwMqOtbVz1DP71lq2fukYZl1yaLWnuP+KkPWbURvS0IqsJha3oNg3N6YK7hzs8Op3x5aefpTIlGAGZ5CIHHzxNV3M4O6I+WbI1bzCxxQ0GDLbHZNtJa1JM+NQQukQTwKOYxY4r904JiwMWI8XDrsPnzIdhzgOruDJdZ6gLTJZWTG0VylnGx4+YJs161FTOsJoj02LEFQ9b8onvQ+3lbDhT8C7vvYvffYCxA5SxZGPAGKLTJA3RVcTBkIzhsRc/RdT9wtvnZZ0twPS/39nVdSaRFrXLx2rblKUAowtR1NKqz9VEBh1NZLL6GD/3M/8Fv/MHMx4+/DoxBIIP5+UlKYmNDK16Bl+dZ3RaZYg+Yq1C90C0VmB1QUDyRCXsQPX5jQHrNCFA8gXWGEpXcfXSV/jCl/9TVqdPoFXVq1V6S4mp2N7+DJOVq3z328fs7/+ZAAlRyJrWC3itjcG5Am0sBoPtyQ9rjAxYeSTEjxkzcJuU5RrFcJOKK/ydv3uZNiZC0+LbBff3DqgPG+bLmntH+9TzmvKDd1h2HVWzhGZJSpktY9navo659iTJR/Ye7HByvE/z3gc8vPUh9Ycf8PjzL6AvbdI2C1FuE0UaEROuLHFG47oO03R0D3cY3f6Iz0VLF+cEArvJc9jWtPWSl1lyQ3s2s8EBsX/SsjF0RtE4jdMFzlqqqqIoC7EIuorYy36uXVjFZcWXpte4tPAcPXiLlHxv15Xndhg6rt27x2e3LnPx+U9RaIvpOkLbENuW0NT40yO6eolvW3zdcKetqbsWckveucOwnpPHY+rwbz5HMUUIkmubUpYFuc9xNEaspsYYQgjUTY23lpsffp1v3fv/sHd4SlCRFByXtyo+deMFxoMC3x4yP3qJtmu48PhP45xk1vouc3KyYOvaC2g6dt54h+XpHRbzO4w3nmC5+JBbr/xX5O4/ZuXip9jfu8Xh0W2uP/klxuNLVNUARWa8foOTg9tQvc2lx17kg7f/Pirvofu0PSlwcZhizHi8gW+OyXgK5wgxkPwJMXVSSpUSVhssFqdK8JlCV5RuilZD/vxTltfeO+TC9iVuXFjh/t4RJ4sdtg3c/dpvsuwOJdQ/Jg5Tx/H7b2CDJVuHLmVGUFn1mXgQm47ZB0PGwwmj8YS7f/AdihtPkq9ewpgShcHbDMZQmKHMXdkQk6g3Z9/6E37t4ITjsE+KHXes4SKKImua2YnkA6Z4ThqJjSZjp0WvAs9MRhIBIvNSZlHXFGdV5OiekKCfZc6OsExNxiv6RtSzY06jc8Z3LY/NZvw5DV//wZ+wfPxZyq0LiHrbEaMntB0h1vi2w7cdnfe02fDRooMUaJuOpm0ZivicYhHRU4tRmqQVbQiEpsXpwGg0pm2WtKFlOqyYzQ5ZLo4oqpa27VhddTT1MTsPbzJrZqwNS9quZtE0OKNYu/g4WzqgtGTN0ZcnOa364pX+frcVVmdizFiXpKjKZqyTz6/Wiq6T3OPYdiiT0QRp9CajUkSwfGkgVdkitswgkE+jUUGRloG8jNgs+aYuOQam4tNtxbNlQWoiw2qT7tYBbrRkxUCpK4p5JscTrG1QRvPv2wn11NGVit25Z2CmXLv+JO/c+4jbPqKGA8aLBRvrF7HjTfaKITM8Dz96iz/5p3tsPv005WSNajJlZTyhGDpKU1D0RFROidt39njrtbf5mx+8hakPmPuGz8bMf1nC3BbkxZI2wHg8pj7Y78mP/h7UorAU4sqKMrRueheROr9HXTnAFY7lUiIrcobV9VVmi1PZIWLg9OiI+WzGbDYDMtVwwOb2Fik21D+kjpKIoEzogZ2E5Ag+GwPvHx/yYGObg/v3+P5sxnR1jaZesnv3Ll3TsHXhIm0baNuOlMFaR2EKsIrFfMatm++xdfEyo9Up9XLJ/HhOozLLlJkvEitBn5M7hVEUVtMF8WnEKAKJszzqSKLoSZaQMqEnsq1CZhOg6yLOGazVEkvRu6SMyf39nFm74Gh9oiiSACheyOSyMlRRkVrFlwZX+T8895Nsrq2IXKs0qFGJqUYUdgClJZYBZTVFzpimAw15MiIXI8gWlTgnq8/PCvJ5O6z8T0gv1av8RQ7cK6aURRkrFvl+9spOyBClkB/XFeiScm2dJ595UpR3KaJMxJSKJz75SdTRDuHoiFd2D/nqpOLR0YxTpem6GofsPr9ixzTtguMcCVZiWw6tY993bKyMgZaYFMVAo0gcHu9iYoCB5M+awnISAo3vsNqxPz/BGkMxGFEUjvrkmJTBFYUob2OkbhqqYsj8sMUHKdk4OTyitpqLWmHQMq+foxuBlLQINnpl05n0dYzmf3t5SLXT8vW6JK5sElIixpYYRBkXU8B3kZTCOVie+2c/Z/BdK4Ia44RIbD337j2U5mZkXoOA7m3vZEXuEumkI6xESImQIilkfEhgOoxK0tSrFQbISXJnSYmUFKFv2dVI7lmIkvOZUfh+ZtRao7KmbcV+rJDYr5+eTkBnhhvb/Nzf/+949IMf8Oo//odw/x5vHT/iiQa6fgdWqsAohdZgTUlpKyl6NFqKK6NB9wInjOAIKokEzwQFhSIVJdo4sHKuaytCpVZ5Lk4vYj/5SbDy+UxnBXhnTjQgE9AE5kdHTPZ2WB2Megwg8asvfI5fnp+Q2prjB/e5/2ifZTFi7fIlrG/oXvou+d4t7MYmdnWdonSo4yVUQ/JwCMMxDAdQlaiqhKJAWQvOkoZjmK5K8ZJRZEN/Oef+M3m2TKpeQR6JvsMHuYdDGyRLvgnkxmO7yNq4ZG33EeoPvimOOQKpd/YVGdSilh0YsdHGHM5hyEmCv3xwQv3Wm2x99rM8Ui/wzt277B4csGwakvcfKxD7YtCcExqI3Rm9fYZzcB6VBbkvohLHjO7JEMh88sYNNpoO98N7Xg6kh/c4Xp7CdMyRKyAEUpzwxvUb/OxkjXy0j65G6GwZjkaErkZVA4qNa4xywoeOQiU8BcWgomuWtDeewS/nsr/ZisH837If///x9SMDfFurz6JHm6T0JlUlS5cmCnuA2BALIwo+bS1dVxNjR6ShZd4XPIhKwRqL0X0QJPr8Ayxta7LIppjQuT+wsuolwQ5jK7ARosfYhE1OwCdV9jYJsalkncnBynZurNgkYhDpL3ysllFJAEYlGYHSwiuMVgaMSmBEmaGVtAVq7VBaUxYSJq915sLGAK335ZAwDVopnD4B3YmtMluMjue/v1KSvUJOcjllj1ISnCtKnYymYFBtoOmI3hNRdL5lPFqlY8jhzgmoim5xQkFLjobQzMh+Sdd1DMZTyYrijNmUrISzlpyznJSz11tZI8Gc/We7bTuKwlGVhdTekzFaoYpS7ArBc9JqVq79JG50kdN734D6Nk7NUEoCgXVxCVE5zAlvv0f8V2+hVwzvf+Yqa5Nt4u//Ie5f/x5mbjlc3KbNLdLHKzlHXRwwL2F7qOiOO+YXtuiUp6Al4mmRZ0RrCVZW927zkCNWwzXi9+7hnrzMzoMD1m89wF8wJCdMYNJ8rILSkcPFDqo5FFVB6ENqzxyTSEmGhAgbTNZok/rRI+BYYXP9ebY2n+Ti5RcYTK9iy3VCiGxsPs9Tz/4MBwdv8sZL/y3N4j0BZ4wwjxL2Kq3AMYm1zWdPzp6mWUruBwqVtOSW2B7a7pVmZ61HKSSyUhivcWVBzJGYReWqNCjfW7SztHwp5FJUuhRptnJoLDpbrB5RVBsMRhcZDC8znl5hXG1i7QqlcpjsSNox/94dYquoLm2D8gxNwfjTL7C1/BLdR/flmeo8+p33SDsPaYHN7cuoq5cxQKEtyurzLDCUQpkB6CmZi+SYUHXL6f0dfFKsXdtEDSq0rch2RKoGqLKQJtuTBWn3Ead3v8YbzAXgSfJ8OxROiU3ZWkeJZhANFZFJ2/CXh0PW28gog/URFT2ub2k90tAglrIzPkj1/xRzQHWn0C1ROJLSKGuJtsBXA4JydDpz56MPubysYVidL7//Nrh39rePReX8Gz9/BqpIo7XvW7GlVMEqAXYLBbdu3eTi5ipf/dJ/xm/9zrss8w6ZKBmGvR0MJUOUDxnViBVRK+Q8VVoYWiO/93hgKC09KByxxuFKKXxIOcltjSzRZVmwMr7CZz73NzB2k6OT+9TLGaNqgrEl9XLOspnRtQ3WJrKfU7lMsmLPVVnLWZ36VpMsqk2rRhRmhapYZzjcZjS4yLi6wqDcwlTruHIDrUa0S0/0lukoE1MQBazKPLv05LoV/cvQYbMht57QZzTllKXUwGdyQAaSFImxo+s6mm5OExa8/cZbBBLV/Yfy2e2JwiJrko6U0yHrK2vUyGdEVVPWP/FFLn7vOzygJirFUWrQ1ZjVcsq3Z8fcdZkVMkYlglJErfA6k5zBXL/Oi4MhlbasjkasDCumgwHr5ZC1QclmMWJTFUyCYri3T/fqK72NvLdpfvxk4XzDwXe/zv5L3+q/b3mmQpZn4szWm1UPUCCD86CwhNdfZv3Rfbrpc7QofH+P0C8BUg6AtNCmhHMO772QIkbT+YBzjuClib0JMw6bPU7nmflSIjRsbrlZfBdnW2LsqPaGPGUHTLeeYzi+yGw+I5NZ3dwmA9Pt5+ie/FlOPvhDWr9Ds7yD0pmD3ddZtv8Vaxtf5sLjP8GTT/88ygzo/ILZ6QNOT/aZnzwQpWU4pm2WrI7XIIFBQqdNmUipJsUZaeEptAHlsW3EdIocJ1g9xNoxRVFBsYEr15gUGxRui3K4QWFHKOW40UWeejrQLDoSLffefp9yO7I5WEXVmbaU17LtEn/44RscFYnnbjxPmxJtFhDRRwhdpE0NTTvj3u2PWDz8iGMfsaMx3aObrNx7gqGZ0mVLsBE9cPhqhCpH5MEUa4fUjz7k+ne/xmeKxHdP9lBW8zAnnuoSR9pQLxbgxHJ7Bszl3nreNh1VNcRkL3chYvVb1rWcsc7+0PnIx8Vmvb2KrKhjBOX6hb5PC4xJzsOY6ZanPKdgZTLh6++/wcGH72CV7YmMjOkVlC5nbBYS4syiX2hFqWA0HfH0ZMzF5YJHtUIFhScQVabuMhOlCN2Ck9OO3b1dfPCE5oSQLU5l9OyEbEraxQmzZs5sdkSXIsvZjC50gDhPRusBPUiCIeQz+Z2UJlklNJBSTs65FChslgxULSCP1bW8hjkyKDVaBTw1ypW4HMih68G8KIHmncakEVpVuHJKXlp0A+kI7KlGNZJnbU1GGSAZkoKhD4yDFBkZ3TLRjtJptM9UpUaXiVgVuOEARgO0lffOpAFxEMldg7rzFld0Qm9fJlhHpzTUM3xegFXEJ5/g9QH8i9de59qVLW5ox8H+I/ZUZNcn6mRZZEPWCj0e8Oprb/LVRw95YXnE98eGq/dqOlPyen8W113EJ4UpSnl2hHUnpUThLCkGdBbVdgpBnrjztyBjXUFVVRwfH9GPeBhr0MYQQ2Y0maAynJ6c0jQ1RltyFtXpyWzOZFpxpFXf46ewPaDnVZ8XniXnslCZH0+B397fI65vkOuWOwcfQIpU1YDxZJU2ZI6P9nBFRVVVLBcLjLGUpoKioJ7N2O1uMzpdpXAFyhl04aBtCcuETorViaFtM7aUP3tlFV1SOK0wBmJSLLtEYRUhZpadAM4hJAqrcYYzOQRmYNA54fo5wPTKmDM1aecTnU4MB4r5Uhpiy0KRMT1QHXnGjPnfDyvW772HbtdxkyFqskHQmnj0kC4FYlVg1y8yzB05R7IbECbr2GoNNRqhVCGyQGcE9NCI1VykTD2+kEXipwxJn2l21HnJQvwhgc65jS9nVJSSOB0kz035Yxwel2RvzL5DNQ25aeBgH46PeNTMWA0tW9bSARetw169hG08UResDCueOj6lCR6sYqgtt1Nix40ZDkpaL9nouc8tz701MyaFJGoiUTI9OJV6FVo+y/tF9rMQYg9jKsJ4DNpIsZ9eFYAlZehqvtzssm0lp89wttf1e21vMycLcJoRddiayvxvLjg+O+v4/b1H3IwVtXFEU5KNzODn+ag9z5yR/RAtr3GKqb8TzsrFBCROKVIf7fCizYyVOi9TSjnjT2oYmv491RLllCVGQltDF5LMXilJvmwQMUrnJVeyMAJcZ6XwGQiZkKAVaxgvfOUT3HzvLsvTBe2ygQQTV/CYM/zeoyMGL25zevIRm194hr+g/zJ7v/4PWBwtWCSYaMmCLMoR4+kqVTnCGkE3+oZLcfwp+XwolVEaEQppLRZzhexzWpN1z4o7UfhppZjXHVfaI9R7rwkgbd3/l7k/DbY1O+/7sN8a3vfd45nPnXse0Gig0WgAJEESgziINCGKtMSkJEVShYqVOHGV8iEquyquSpx8SPlTquJSyrHjclxKWbIUSaZokiJBgiJBEgCJqdFANxo9D3c+955xT++w1nry4VnvPhcQUxUbX7xRB7fPPvucs8/e613ref7Pf1BExnrNJsj2Tlgd5N07POCiK+D4JJ+dIClS+hJpW/aGQ4YbU07qDluVmKrELma4A8HN8U5lHwABAABJREFUFpjhgbLZ/+Ql7H0daCTb91cWfIFUBVI40qCAQakKpLIiDSqkLJGqJJWlYhPGKYvWa4qwGZaUVUFVuPw3e3Al1hRKFHIWc3gAL74CZ0sYjnGlo1ycsbG1y5ASE6NSgTX9D0PApNyPE7hK4FeP5vz2F/6QNy9f5Jknnqb44MeR0QixmvYbJdKmQBsa6rqhDurD3jSBNgRWXcuyrWm6hrbVWr7pWpq2pWk7Uoi4wvH80x/g41sTzBf+NePsD9hZhzWOcjzCzQ9ZzhaEeJv5yRGFc3y1FD733NMKWJMYbe2qx7y1xNNb1M2K8YWrOsgYbTEYbFIMhpTGMr38tL4nKerQ9Z13/5ye77/f7YcG+FJ4h7Z9A7EN3UonRymj6y6nvc5XgjPKLnJ5suRzSIaVAUXhKKxQDVSS5BwkCZDTVzslEqlJsYkY4/GFpzSWRjZ541bB9u4n2L32KCOzoLRnpNX7SPO2psnFjiApAyBOZZPG4SgV+DMCPqr/i0l5IpRUUofTQAGjLZLzys6zGUSxRYlVRwZMfpyzQb/fRKzVQkMTjtSEUEgY8cSgKLVx6rdmjHqKiQTd1OIqAzEqrzTG4Yyj9Jfw1QW6+pSY1BfI+ZKzZszJactqsWA4nZDCCms6INLUC2JXUy+XTDZ3lO0Vo4YVJO2Ze28Aa86nf5pWK5n5aNYbfNcFvPOMhhV10xKNgElUpsQ6SwiB08WS4fRJ9j/8MPN7LxHuf1lZDqYhuQ3utbvsNe/SfO9NTt9fsrAzzr5Xc1gmbp8FPjUT4rImyJw2z6oTCY9hEGr4+p+yePSDVLVlPHsH4gkdgUBHQhjRJ3FF/I1X2RkM+O0vfp4dKZi98y0uBEPpKkLYo7NaAIjXwAeK7EVl1dtNfRHMusgwvRcSmQVK9ooElaI7y5W9x3jm+b9JWWzw5a98nu9+779if2uH4+MzrElsbm3x4ed+gitP/AKvfec6dVrmBirh8nTMGqO/O5u2x5gwPidW5iRNg1mDYdJvhiZ7+JVO173z1KJAoVjW8k5rVV5lrVLQnS0h6RTUm5Kxv8ju/o+yt/8809FlBmaiht4tSOhglU33leOCkZqNxy8iV5aYuzfVHDx2SAMSwCTHzTsHEFsuP/c0o09/jKEt6GUmJga19qOvmkEnRrpA+/jzhGNTPCSL6QRTR8zpAjk9hpND5O0D6uvv01y/TnP/LvPVIQesSC38jC2YITwmwhVfsjFfMExLvIAT9ZTxoqE8xERjc6R6iJySOJPEWRAuod59338zgCUaT/RDqIaE4ZA4GRE3prTTKWFjQtjeYHTtCm2IlOi6+kEgr2e4GK2o1k2y9K/J+SM5OrrDYnmfGGtGw22uPPQExhva5Smvv/ttLlx4iu+8/CVWZ3cZDZ7h3v3bRHRCXzlHYe3an8JaS1WqX2PCkGJiONxkf3OLk8UdkhPaJJzWiaYVYjQUVhiVnulIPR1N0MLGIDRdog3HfOlP/wuaWoipJoQaZ1QGH9qa1K00pTku8NUZuA5M0HPEWLyFygwZ+l22pk+ys/URtjaeYjy6jPdbGDsEU5KsB+ORaHABbDIMqaAQsIJNxXlztzHC7liCBG698y6dwOb2JpPxiP5BPRgmSX8WSRMpTVKD8yDCj3/gQ9l/L3smpiyXDxFnE4uDu2y8e0C6eQDvvEd3420Wt9/l5PQmOjMs6Ezi3t27dF1LipF3nXoKOmsZ+IJpNWJvOObxi1f4zMd/lAuDKRvG4dtAWM2pZ0fIrUPq0yPi8RHt6Sk3F3NiXdPFmuV6Eqo9r7Y9VpsAUHZdBgATEFBP2ZjXtLJWdEyWktC0IPMZ3LyJf+oDOKv+T9bquikLB8aQJOFNgbVkX7KCGAMhxjWDz2VJ52hQ8sjVTbY3ZiybjtUyMvCRs1WDx2KdUNc1r738BbrZlI9+8n9B15zRdZbR1kXa1S3O7r7I6cGLLOavEuWY+ckxxg0gDpF4h3r+He68I9Rnb9DUgWVzxP377+B9wnQLkr3I1v4T3L31XZbzb1AUKyZlQbfyOF9hsveLlxYrI0bVJpPqKuPdpxlNnqYc7lMU6ikqviLZEiOF+vORsCmRmkQhlmklpFAT4oIPfnCfmCxRYNAEyCCVs4YP7m/x6qsv8ch0i829TSQEbSCwmDapb3qb6B79OKFriaHjWFb83uHbvHnrdf69536K0eKMRVoyqxPz1SnzYLhbwKE3mLt3+DlbcW9xi0DHTDwWR5kZBeofVtPbBlhYeyC1yyVFOSDVEUkq8Y8pUroB5aDAe5/rLsPGYBtnS8qi0HAVKwzbhivRMAgqk1+J0OrxQmOcevzERD2fsdcE/uZwA5mOGAwHWYyhCI41aGOfIiFEHWx1gSgdEiMSA65teb2umW6MKIPDelG/Phx1CJTtguWyY76YYZ0jtBFsQVF42iDgEsvQ0nQhWwJEUowk0StLoqiaInR5KC26F0kixpA9qQTQQV1/XIh0ajuTNKk65dRka1w+9xtKU2JMh3EgjaWdVXi7w4WLH6S0l3FxlF+0BaE+I8QzksyINgdWdUkTnq1hZCy2NLjxEFMNYDKgqAaUw6EGew2GUJbgLQavEj+C1g0MVOqI1rilKcCM9LHOkKRTQ/yiJETDcPcxHvupR/jyd17kk7/wcVxR0DZLVqs589WCdrliHoTjW4f8ReN4wnZ86/iQUFmeiYbaCQNrWdQtbSuYwYidzV3u376jPmsCJiUGwwGL4xNK54lNhyShSKyb7wTYlFgcH+FSwpvMwjOGZrnCWctsudT3M4d/iGg9TraEmVpHbT2daSliJFn1ZuxrqiKRP4fLJH7RBP70+B43qwGbgyHJWAgtqV6R2pYKgS4RmhWVMchiRr2aYTAMgW5+wtn8WMO9MFzuOjZzHzUZDNjagPlcpciNCFXh8W1g4JWU0AXRWsZZYtABbhuF0hq8g9JZFk1UMHbNZoGidDzz0BYbpQJiRhxbWxvQrOhCy6goFVwiqSxXEiNx/M+KDdzBGdfjPUbXK6bbGwx3d3GTMcV0jN/YwUx3SCPP4tY9Jj/yaex4yKAvbpIADYQIywBJr93sPYEJnTJdY0A9PxPEiIlxHcJl1DQsl0f9sFTW5AQjspaqqreHHu4mZcZ9CEjbIW0DoeHG7JSPffJ5qlHFNV/yE994na9XUx55+jFCF3np+lv84r/1GT7zwkcZjsaYssD6QtlXoj2LxIDJPiIpBAiRFLPkNGoSrMSOGIJawmSme0xqgRKSAmghB85J/p5IRMSQjKOTgI0dz5sVe6xYns0Zv/gadvMSzpv88+IDdWX/Wqjn6QaRz24YfvSK57Bz3F91nDUdyxBokz6H0NcGxugAUDhPbk+JLule3fujJRGCNYx3J3zuwh4j2wO0kExi1gqx1f7bFwXJKSMb42hCpBO14Wi6SIiSmbiJto0kDF0SUmEI0bAKqjbTwZehsUAxZDid4EvLvZs1GNguLM+lkjeKAirh8O5r3D++zfe++Lt84PZdvpYi33CBAsEnx2i+oloeq11Y4fBWVYlD5xh7z8g7Bt4zdgUj5xkXnkFVUdoSXxRYN8B5rwEUJdiyUJ9e66hXLVf3LmErrwC2tVhfZABR+z4FBQBjOW4W7BkLq4WCXtbpfhUSThy+GDL0K4TIcrXCDEqKqtL1HwOpWWLLArs1wt4+xHRxPaijH96tfy9gzxPEtR/TL4ikdcqx9if6PE1mMapUXjLL2al9hMmBqsZiiGoRNdnFE5kMSzZ/9NO4JkBT68KKAZJg++s/ipK3UuJybPkbdc2t02Ne//rXuds0NBIJVoc1yTmkKPLwxoMvM3haURQVtqpgOEKm21AMYDBAqgJTDRDnSQYqDye33+Xbf/xFfnFZM8KsU+BTNWDnr/wiF37tX/DOvft0zQJjEmY44s7RIafLllS3xOaU1bJmuH+F5CcUl68R61MWx3cxxlAMHgEZsjhb0tZLhuMxxlX4osQORphq+G90l/99bz80wNeEBW07xzmdyqvZjDakxihLSM1RwZQeQ6Qonb5pJLyNVNWQVQspzrTFCEHR/2jylCLHDxvLsPLYlKhjR2OH/LPfucv1A0/hfg/jLZujCRcu7PP8hx9nr7rFwN1S8Mpqw+5tRVFZnOtwrgEizql3IEkTctTVQg8QZQ6eh2tY6zEkjITskRVxRgMNjOnHG7oB2exNppNmj80XikIAgnVuDc4ocyKqzC4DffTCNyN5ul1Q+l0Go4dIMdLWZ1jnWK0CndlidtzRrMDaQQZbWkRaHIkYW0K7outanLNZRqUuu0lEsRSThzSGDCjqARijOnT0YSmKZRtN7EqJQVXR5bTIRKQwJdYoyLdqWhpjGF/4JNP9p2kPv0Vz+DK3Tiv+5ZcO+NnFe/zYjbscLFpuGEtcHFMQeao2XI4lThZMUZe1/CrgSVSyonrjK6zefxFDwbRpc0tqKDFMKXB4yFOwhpanmo5HTgvmRctWV+G6wMGwQYoRRbGnhVCmelfVlK3NC8TYcLp6X18TNH0Iqx5/ClKbvPdlU//MYvDOMeuu86WX/u/4YoqMI49/1OKkZnzF67ViAvfm3+Ro6anLSyRWCiDYQBvjmh3Yv94G9RMyJv9eq5tt/ztVEqSMGcThnMc5r1M1X2nQCUqzV/m1JvL2Q1Hn86ZIwDnLVHZ5/sLfYaN8FHO0Qq7PscsTDTZZBVLooFNJOikhRDVjHVooPVQVUpVEb8FbpCopbcnVwuNcYjj2mBAwVpOGxYAMPMmjaciibAMTtRizXcTUHZwtsIcnpONT5OiEeHBIOriLHN6nmx/TLeesmhXz2HIoDadE5kQOEQbJ8GkJvEFiT8B1LTWw4hwyc3ljXFtV5FtYP8awkVm70RVYX+JcqbKrskKqijgYEqtCk7EsJJt0Irs4IS5PqO856jt3aX7pc5RT9VoQZF18PQjlnQdrCPJ9zyhDfQKvfPvzvPzq7xJD5MKFx/j4j3yGdrWg7e7x3nsvsrf9BIdH72OY0zZzom7MhDpQeRgNNKEZE0kp4ssC47zKNo1jVE6YDB+iHOxy6/BNOlqcLZkMdZ/yzmERVl1cA8feGaqyRMSwWM5Z1N/K14tg1cARm6AcOKzvGGBVVWMtGK9yjBiRIFysPsjDl36e/f0fY1BdAlvmmkS9WCQmNcWNHc2ioTlesrm51efAaMBHLpgiBpNUUiUGvIWHdvcxEhAbMfUctWLo34ee0ef03wzCayMRcY1QLjrkeIYcHBHvneLvzWA2o2lmnBy+x+Z336FcndKGU4LMWRIIKJBWS8el+RnPWMN1K3zQOj492aLc2GAoloEkvDUMg8Ffv0l4659ws6l5p62RkC0bclHdg78RZQj0q6TBUmSxr5YpfShUv677/+njY/56elAGhzKEHYZKPDYGyrNjKics4zmTQgcMujf1AQKIFovWqneTd54Y27x+M9svX3Nloa+zd4lRWVCWHhcco8oSmwmPPfIpdiaXePOb/5xkOgbVHuXdjnsHX+P09CXatKBp1GsXDN1qTrs8w57eZTC5Tll+lcGNTYxs4s0G95bXOZ0tKSvPwLW8/eacojI07YrCG5pSqJIwDB1lEDbSNXY3PsDm7kcYb38Qv7mHsUO8LVV2niJ0Hf4oILMZ5myBWSzh7IR0/5h0eJ/u+ICVq9j47E9TXNyHwRbGe1zoMINGC1tT0hWezb0tfvS5F6B0JAl4AZ/AdoKNCrhKiPi2xc4XpHrJQ3HF/mDAm6P7PHLxEsPJB9EkIYPUkWJRk44PqW/fwB22rFZLfn1xwH6EG86QSsdhAYeVZb9w2DawSFEZMwIhtUgKbJL41ENPYRaBMjoKEYoUKXCUQOWEgRdKnxhSMBTH2DmGw5LKOSam4pGy4PjNb7C4fUZEm5aI+iR3Wm0hEU6SBvuY03tEa9YSJgVxLNFmBjvaTHhv8d4ycNnWohoz3HZU4y12wia+WPJOeJ8kiVosEy/UdUsQwUlSNpj0YIFQmJ6xnS1hBDWsz/SWNkhmSgliM8PCqDQtRoOz4B14Z9Zr0+SwOVIgpoQXVW84Y3PdpSwNrY0dXV2yfGfI1cGjDN0m8daSozsvEk+XEFsqDLYcUu1fxu1eotzcoJhMKUYjisJhCo/x2ngKYGNAYgMp4EJcpy/TBWhF/UUkkEIgdF0eUKOqgmzhYnOAknhLLAr8dIsmJGRVM/aOsrD88keexy+P8dMp5WjAdOS5xAbp7JBw5zaOY+CUrx/cYFEadpY1WxaWpuGXN3f5nXKErRxyNmN6cJ2fv3CZMigDw4SOWM/h5JRPb20RkqbOC1FfXwzJKtMnGRBRfycxWSFgNVE5DQpiZgRFgS57ii5SxMaWvyywtI5oLSVqeeJzrWAQrb0wmOzH91CCXRFmTcsqRVrbe006UtFTomxmRJGHtdpHiEC0niS59kuCs5ZCIrEFJxWVb0iVpW07sJHSgq+EKEok6KwwQIdvKel5XAfJ0m6UQFFm8CuhXrudsvpXbUuZOgxjuhT57Cf2KasRwpACQ4gFq0aYrRpm9YLJvTkP31uSbMRbT01DWs2Qo4Zy5invFRTlEP9mQd0m3N4ejEfayIcGiQ0SWwgRG9QjOFrA2HwmmfV1yPqcU3aqvoV2bSVkbHYWywWcMRlYsOqDrIB1Zlj1iok8GJcYFOTrgiYUp4arj13GmBIJ8HOPXebGV77O7bdfoQuRy6MJz5mPsn9yzCRG7GSC9QWmLKEsSdahpK/cGxodzIjrg0HyVgDnwE4PeAoakGHz813XIv1jepBFn78QdfiTElsxMt34NfxPfoLBxoaqejLI2NcImseXst96fl0lcQ2TX4+8x/Xf8wMDaPWGywno2TMtxcysjQETO0xokabBxI6I5IF/5Gx+zH/yL3+bj6Upzz08RkqPwVEMLCkViEQcAScW2gaftNaKyWBTIqSg1jTVCGcqimbOqp4hxlFWHmkrvvPFP6GJqmpxmXF3obAcLGacVQVPXXmE6fY+B++8yerNt2jbyJcJTEk8IYbxGB7ebmjbyGFn+eOF5euzQIcSDmz24VMYC7yB0hgqYxlYy9haxs4xcY6p90wKzRwYFZ6idOxsXOLZq0+yala4GMElxSEyAIiz2MIqu85YjhcrPoDD1G1+3ztMXWO6VgNyouCNp7KeMF9i9raxA1UwOiLeWCQmZGeKeDBNUlZrrsEATFDloFgQp4QKg9GgThSc7nvSHjAwRsO+yL1OrDzROd1vM7uzN/O3xkDhkNISTKCJhiEW36iHO9brNVKcW3vQW4RhwXpsUTH2hqeM8GToCG1NV69omoaubem6mtiqn2QIHV3XErqGbrUgdh1t7GhipA6JJkWaJLTI+V5roJGECS1/OcGHcYysUws1Y2meeAI++mEe+eZXef3GdVyqCBiWISC2pHrsY/jFAW19SFo1+I2LuPE2g619IgZiw2p2QhsF13X4cghtq8PZtiUuDcNRR+waftjbDw3wjQYwsZoqYxCsFWzyRIRAzKa3nSY2BT1cXadFjSawtPjFirYu2djssDZPyLMnWJCATUr5bEOHi2AlEs2QN96u8HbCI5cKDo/niHRMhh033n2NS1uOnYdqNi6A9wHoVHJoI5KP5J6T0HtN4XQDs86r75hR2Sb4LMM0IBZrnCLQapqmKYekNcBnst+KtSZLfG1m8PWAkLIE+/3ZGLDqRL9mbvVAoLEOawowA6pqn6q6iHMVq5NDmrZm1Rqiv8Dt2zXd/AixW5RVSUoJ29YqlUsdsV3RtStSyr5xztPQod44uUnOB56y+DKlO5HTIBPGOH1MZi+CUq1Xq5qqqrCVo21bnYRlMnZP057NlxR+zNaVn2f34Z8iXb9J8bXPc/idOVvv32Vz1nExGQZ1pJLAQC8FEpYib6DyfceLZQoMmg7Nn1Wj4GAUBFkR6GxHYyKN0ZSzKi4Y1zCqhQZojOXrbshCIjU1XrL3QYJmVbMICwBCXGBdUl8dRVp5wPkjN6iOLpqcEKdGxsYuEe4oE0oiPgN2SdRs27oSi9XkWuuw9GEOer47Y+jTwWzus/WwN2sTZWPdelOiX08C0CGhwcTcdgeTJ9LnNqQGsNGCURq8tFB4lYWPpOCjg19i+40Cuf0NmC2w8xncvYs5OYXVAts20OWAjWg1Nj7TvY23pGqADAfY8QgznmBGQ2Q4wI8HGBu0OCsdpvJQFnrIZ8+63i/FC0jXIacz5M4x6d1bmBt3SIeHdPWcrpnTdAtmaclJajmUyKERTo0wN0pqKJIwEaEFKoTrRphjMu0aBnm19spr8wMfPegRXEFTjSmNZRhhMJxSFB6pa7rYEZs5LE5IEjGiISTGOKLzpMphiwJXeYqiwI3G+MnoAQi6/8363uiB2//b+6YAD1wBvaxXRBhOOnYvrvR9kNf4+te/p5PbFBiOC+7N7lKNHGVpGcQOb0e5KKt0XxIwVCQJOFtS2BFFUSlb2RrK0nO0vEsi4MsK70r1KszyEaKmpukg0uKytKNrWoLV/U9Nk7V2kZSwNpCMVWaGNWC0IXMu5dRIYVzt8uyVX+Hx3V/Cu30F5eqICQkXBdMlTBuhSZgIJiZKhEkXsIe3stRPsmTCkazFW6/7tBGtH5xBvGiB4slgs+4jyQBJDZRJnU4Yj2e4gyPS7QPk4D7p3iHN8RH2+ARzNoPVghU1K9uxjIk7LvHUPCFpRUfLUi3m1+92NIaJdPzNINy1hoG07NQr5N6dHlqkA5oH1mL6c9Zo//O6oqSbjOkSmGVDYw1tSphudb52vm/VSR4+9WvQEtaBPecBCKlff7l5LryHkQYo6BQt9y/ywG+Rc5mRc5oQamweAOZzEtEgonZlObzrETOlblZgIrb1THa2KIsJ+1tX2dn4EJPNZ4hJuHf917h/57sYpxLH+XLJybyhw9AFQQgMSsN0UlG6ApMSzdGCopgBtzA4RqMRlkhlAnQdTQOxMcQWsI6mVmZjaQfsDT/Io4/9CnuXPokdXCI4hykEqfJ7Yi0yW9B8/XXSK2/hTw7xXc9IRkEpnxBniJcvUj39GOGpS/jBBvgS8QpE4BydTWr43iUGoYN2BYsFdrXELJdQt0h0JONxztAOHXE0IF4ZkwZbGDwX49NcWdW0h4eYm2/jbt9BDg+Rw0M4PqWMDUMSXVzwJ/ffREJHIZbSw7u24nsXtmmHAy7PTvjcylJXHlOUDK3DF57JcMil8Qa71Zjh7oCJU5uDwhu81+Q9YwQTW2xqlNnRdUjbQdshzQLqM0LbQlNjywFXn32e4EpacRqShQIfyVvEJIoILkRMbDGpwWXmjojNg/5EIsviokFSpEtCJ4kQDXUyzO+dcDRf0W5XFLsDglkiUa1Hui7grMdbRxdbBlnKFsVSoQmNURIhhJzqbXE4gsRcJxnmtcrsdF0LTrLvmUBVWcqcAqlNp6o+1C8KbaAAUPZO76caY4uh4qtfSTz9RuBW9xpehMIK3juVfhmhsAWlEYYx4OYthWlwTaI4O0N8qTJPm5BGBwMmBehaUmjVS6uLNAItBimGmMEUmQ6RjSlmZxe/sYEZDnCjkcqUxgNMMUSsAhrFoMA6wyglekOAZNT6xGbrmbvfeIm96DHO4Ed7+CcvI5dO+e5v/xo3xXPlysN0b73B0Al0iZ+qG16eLTnb2uCp3S3S0W2evvQ4P/nCc4hxEFXZoWONvD/l4AvJe7+gsjnTS+fyMG0tYTRktlrEteq/bYzBRiAFBtYzKStC1/Lyt15l+tGPq6hgvXPKOuyht7oRZ0lWh5MaeqDFWcom+qYPiDAmr2EFjkmSGVBB/44YSV1DaNSSJ6wavj1/Dzu/xch2OCMMSjXdsQje6PrzTv05LYlgDT5EXMrgoWSPO6vPR+14tNav28Dt4wV+YsGW3D1Z8I+/8SZN1zEaFRToc6+qislwyOa4Yrr5EF+IDUNzws78lCsUbIUMfnaigE9YIiu4ffeQ7cUxRXNfAYTsa+5C5LBesjg4Zpgszo9wF7YZbQ5IXhv/3gKiV3T0PZVdA3jqNWl66aHtU0sVJNHX3BOsJoJqB6gpwDbZrOLQ0IwuRoq2g/ffhRDxoeOJuuY//MA+q7ZjvlxwupgTf/sfc1CNaDemjCcTqskYN53iN6fYYaVgRe9lTp4Lmnxy9/f1p3rebzIFJM8BzDnYl9eWgnKJFBIkssJE63hSAmco3rtFJ2ds7G3oHqrtqu5NSV/3lK8X/akqL1WpY4+cFlqwrX+3OZef9jVDD1CLWT8vSUElz12DhJbUdcrADAETIt3xMS+9dhvTGn72pz6FGxqSWEIyGDfWRNekfmjRWLq6wZqW5WIBoaNtWsbb+1SjTUI0zI7ucHjwDgFL5UeMVl45REHfY5IwLAc8tzHFHaxYpUA5MJSTDTY3L7FnKw4MfMQl/tbFyKPjxDfbMS9c6ZjExGn0nF0v+E4x5tJ0yuZozEZZqGxXRGXfbUdqG0LbsKobll3kXoy819TUi0SXEg2JTqAT+A8fdtR/+Ad0LuFMZsdbDWEUqwn31miYHNZyfHKXyeUrCDWQMmCboIsQG1Kna8gg+PkcGyLGa5qwXvOifdnmFDam0C0wdavvF2pFohJRLeLEqfQ2WoeJAbdqMqib10bKFaSJulYDLAcl/8h1vBIXNEl0T02JUuAxX/BL1ZR2OKLd3OLywR1WTU1s5/DHX0GS07PJqKRZXAY6vcMUFlMUiCszeF7BoMQUJa4o8cUOw6H6bRqX1+i6oeurZgWk19Vvv1ZDJHVBPfzamtQ0SN3AakWxanFNp2d9AtqW08mE9ObbfODqZf7AWB1Ixg5TFBSjEX5jl8H2HkP0WkxG8QFxChIKIyajbZCAwZCMZTrazAMztX3Q+viHhud+eIDvdB5ZzWo06EKAoEyvfh8+38MU7BL1sevZRRgl/FUVWSpYYsRSRGWMFcZiTclwvEG9mkE+jEgV3/nunE9/7CkOjmaUJvDEo7sMCsvkwyN2dzp2xoaB8VipKMo8WSdibMreAep3Z1BZnkZYa9HWI1jGlCB5OiQK8BnrSUTE5LQ89KC0mgiSLSLUnw0MRkxOELTqP4bKL7AG77xOSLOxpFrP6GZrTQmmoCg3cXZMYkpyI+rlMfN6xSKMqduS41v3CZ0hNjXDDUeKgRhqjFkq+1GEyoJ1angeOpVF6U0LnZ7Fp4eIMtJ630L1hMn0a7Rxt7DuKAWom4ai8FRVRdd1hJDWYGGMFgiEkDg8OmVeloRym1A6vnu24vBowV7o2MmJSA1w28L7BuYYWpO9oFSWT+fM+lCJSf2iEoGIozWGxkFl4dAZ7ibPZ9tEtEJwjoeC8ImcsLR0cHc0pUuJRT1HyKy83IAu2lMFaZ0Cr+YBSpcxRmWIyPkUsH81rFlPRASVy0r/PWQvHHS9OKMJqzZbPTpn8hpUI1qXD1OX15+Gr2SQWc8tzsNWtQVXEE+yub3DWK+WjgZEceTMxrRYsUjS4sdlI+Zh9Hz07Hkeuttgbv1r7HyGCQE5vgt3bumbEfOkX+xaJqyLIk9crCjEa/JUxhU6GfIm0xhsnk56NXX16k1BWWCKAVLqfTig6eDgmHRwxOz+TY4XRxylFceu41QiJySWVveRQgwVjiGWrWQYiaGsxnRVwXsnt1kitAk26WfA+lFABtvObwp16H1L4Nb+Rb4khqLr+CvlgOG9u7RRk7stgkagqLdf72mpyvYMH/qKVHrCaEC7tYnsbCJloVNSemBf1gPc82dxvrT6/WV9RwZ1rYuURYcd6h6bYsIXmmxeFAqsOR91mp9/qik0ZTiL/bBiiAmcF1KqaWOroFu0nC21KcCAGN1DvbdZRqYJmtZ6Kqd+kGouL+qbh+CshiEBag5uISUDEgkxQFDZBmiIh7dQuS0+1P1VHn3padx7X4HFClcN9B1bLjHLGpoG06X12heLBsZY0T/QVVrkeDXdVsq+FgIUXr1+SoMpHVLqfSpT0OvGitPrfH5MuncX7hwjhyqBnc9PWS1n1PWcRVxQx5bOqLhVbKKxUBtLESxtamlpWKDBL9p2RRzCWAxzY9kk8XAumjwFBRM0F3mV97deWnu+LuV8JQDQYLj/8DWKJx5ntyso7xzwdgrI/AR38zqj/O7ncp6eDaAGFP31kOhLxUjUvVfOC3oxuYna3+bkySeoQy6YJPNLrZ7RhXFEegqlAr8xRi3aJeKssrx11/BsTEdsPHKNpjtl0apBvrMtzhzhmbGqF9ztToluwcb0KS5c+yT7Vz+BMYbQLqmbExarGct6yaqulSFoGm0gwwpoiQJFETEmMKwmFKWjLEZc23iIEG+zOLuBNy3DQqf0sV0yajZ5evjvcK36JNxd4t6/jRQn+K0N0vYQsznETIfIwMN0m/JnPgk/90lt4oIoQyqCT8pylWQxXVRgOgZSChAjdlbjTs/g7BSOzzCzGVIvkS7o/jkekDamMN1ALlxCyiEdBbZu1Cf27h3SvSPi3fsUB8dwNiOsFhSrJa7tcLGDria1K0I7pwkdMQZeZ8HbccFeMogrmACxazkh0sxnjGanfGrvMXY3dvHlKCdXR1IIyOmM1BwQY8eiazkLHSG1hBgIKSAhqq+hxBz8lNbsEKSXg0NrLZ133H73dVwxpDWOgDLKOisZsAvZckUN30NSQ22JojIxzn2Ucw9Lv0EG0QbUGUM12uDXanjh4kUG0pKS6DVLluEYnz2eC5xxKpMLgVUSKl/Qtl32QhYQo2EfyWCM1kurNhHzUK70CriYeF4HJA/JCdamXAuj4IwxdJJwzuCSXkMuW6Ocrobcuzng/W8vqFczSoRSyCnZQlmaNTtycnbE8ug2G4MhhR8w3r2C3b/IwnbcOzykqRf4sqKcjCmGQ9xoip1s4ja38Nv7+MsX2Liwh59OseVQ69DUafhBUssN2ha6FlkuSc0SmrBOCidle4IUsVnu6jIwIDaxev0NzIUr2KbDLBekegEx8ujeJZ6cjHnjxjvY/X1GDCixbBQNf79r+LWU+PL123hJ/J0PPMuF8ZhyuomzamCvPUeuyUhrgK/n2YCs/Zy0QX4AlJBcTAX1YyNEaDuoG4hCXDSEe8d0Sbh0ZZdie8L+7kVluYjkAWrK+6DW+IKufdOzwkJQIG8NLvZnff43B9jQ79BGvbjEChQVjMCKINZz523Hl98+4CceszlQQBNyMeeMQFCAO1lDF6EJ0IREG7Q/8ZYMKgpBLE1IxKSwbDUsKX1DTCtiUrDRV8qSXS4bZfgsa8L9I3xyNI/t8L03b/DYQ4+wt/MIo7hk++yY57qOF7Z3mAwrBqlmWNcE52jqluLsFGfye4GQ2sg/u5P4xeWcS15Nef54OefDj19SWZ3zGaDNoYO9dVEeIGq/kftNcw7sKdinp1A0Jd9zI+77EbNoaUSIvsxhHXAhzvmUP6MkUa8CZQzQLJWpmxLWeU0m95Zh4RkXBe2ixhIxq4Wel80SWS4wixl2YwKFy8/7fIxGL318oE8wZFm/KAt0feLmJWtSf9JnEDglDUmL55/3jDxESPdmrBZHpJ0heZnrftkTOnqVglKR13VlD0T3j+uvqjXQiMnfktbyTumfJOdruPfOk6gDvtQzBVPi3tmKQWjZuX1KOdmlGltwBWdHRxQbm+BGpHZGd3JbiWGlxZsSb7WfCPWSwcYWxWCDkGBQCjHM6JrAaPsCw4Mam0xWAikY1dUdVUgsASuGkTMMbcHNe/cpT465YQ2/+Bg88bA2mt29inuDjj86grdGH+aRX/0F/uGP/Aj7Fy4wHI4pvIKhep0ZfS9CR2pb0mxGPDqkvXefdP19lu++S33jFos79ziuaw6LxCerIX7RaHiXs3hj9UywSYmcwWLpMEZ74LqtKUKEuFKbjKiWS0YgterjLzGql2YbSPePMFsbmLLIzNiErGYk57HbE9K8w7Q6UDI9WNy3HEGlsdJ0SsJIQmpDruFtXieaHmxQZl5KwrtG+Adnh9w1BrEmB44p0GdXZ9yrHI8/9wnMsy/w2D/7Z1xczCEE4vER0ptn6mLT8zsD3sbqoE8DwTNj3FnEe2X1eQ9FAb7AFB6KErzHFAUUfh0cgvfYwkOpX7OFpnSbQYE4lwlda3BBwdPQQdch8yVmsWJ8/xblP/91nn7mSUrvWYYOmxwxBubzOfPDI+LAU3jLaDKhaRv1CHYFPajvnCWJ9uXemXytF+rVKBC6JrN5f7jbD+/BFyWDdvqGW1dQZN8HBxRGwzMqV2j6oTWUWtFQVJYUW0o/wFeFmudnBpPB4XxGndEQjSF9Y2OwNvJ3PrfPqLyHf8xRFds4bwippSgtlhO8r7Dsk6IGElgvpBhxptAmxoT804QYgi7sJGsgEpMbHVGgJEVRFleKOnV1di0J0SYfLSxzsdAfOCI6hcNoIEi/cceY6FIDKdKntlhTYO0Q4wYYO6Vuhdg0NOE+G5Ndjg6PWa0WCuwdnlHZQFguKaoJvhhgpKP0nhgMpjCKGIsh+ZJiuEGMQoidMrXWo0uTD/rziYwRBYr6O2Ls/660RpSyyiRPl9SXL8ZEVZV4mwjBEIzBmqiAv0nEFFk2DaumwVUF1y/u8c0b7/FclkpiDBMRvlxW/N64YndcMQ+BVV5nTvQ9jKJTj8Y7Yk44NiEXk8ZQOMe7TeC4C1wuPfdSJBUFjyRtZQXDHYFFNcDagrZN2Y9OsF7WYQV9wyBREXw94yT/24PA52yc3tPOWQukNWPOOp0o9BJFEW3xNTcgYYI+LhiTQT5lgEVRaYZk8/7e2DaKMpycc7leVUDVZT9HhzIonHNZomDoQiCFVg92Y1AhnsN59UQaF2OG3rBxMObm77zHjTtvsxsTW8C2JI4kcqddsBGhjAkfwGUZucUSPBhn8QjDBkoRSjzOFViKHCKi4Am2f/1yQI3pF51BCqcS36JACkOcHWPunbFazvlqd5cbA0Ool1iEwjq2YsV+0gQvZYpBJCm9v6p45H/z7zEoK27+X/8jBl3NReAMcv7gOWgC58AJ50v7/L/v3uKJwYDTGGgiSIz4fC0XgIoX8/oQsL5icPECG898gOrqQ0TrODs44PjubexgTFMNFPzsf8d6ettDIucw3xrUkwcuuv63iVDXgdPZUiWnzuCtwXa6Pui0UbQWnO09N8BYBYGNsTjjKIpKwzSMFmb9e2NMxBZdhoGceqvESNOI+k4KKoezNgPRgiuc2haIJvJiyCxhtSIgXzPe+uzXq5Lywju8tQwGBfvtk9z7b77FtHmP8f0ZG+0CN68hgPRDEcmDFmsgJ4MqmJ7vswOst9oAOgeUiNchjXFqZIzVg7+XU2Mzm1k0yAkRYr1iuVhwL8y5u7zP6eqM6KAsPJNhwUgcEzPWBPlkKZIC98l5KnEsywUrawkIJlXqpXV0Hem0OdBYqZhTc8nDlQpjNhCZ5xXb9eX9962OvqXtv/a199/j5fffzwzjRCHwgi35AMpkjvmd7GeZ/Y7YC/1bYIVQZ0kbGHyCEkGtGvSaX6aCt0479iiyJxPrMA1dqkbPzfy1lOVya6G50ftcLhKXi2OObr2kadjSpzbr+vEOFhxjuUmzPKDdeouz03uUpWG0cRkoKf2IcjTg0oUPMti4ijWJrj6iq2tKX9CFjnIwYrlc0LUnLJsjlstjlnVHOXY0KyF2iZAaZscdVRoyHI54Qj7FQ9/YIb3265zc/jZH4RhHwdAOKRlR+Ao3mWImm5iNDfz+Fv7iLv7iRbiyi+xOkVGFWIdNUf17o8GcrUi371LcuE68f0jXLGlLj93dw+5cxj70KGZjrI1qaAnzmnTvDHPjGF5+C3Nyn+LgLhyfaPpcpwqHIgkptcTU0Yaatl3QtHOauKKVhns+Mh8WmBQoQuQ9EToMhcKPVF3i423gz7pbeGv4ZBLef/cVbmOyN1nifPf+/lFE//GDN/N9/23W39+he3CT9Ey8cXRITJFoDNGcc0z7nVHIDjByvu77PVEQXfO5HpF8pCTTXyc6kApJeHux5KlVzfa0pKgKVl0L1uGMpoku22a9v6YYdH2bTpPkk9Z+KamdSohJBx3GEaJQdyrxtDrhoo6Cs2CNYIMw9AYpDd6pF3VfM7q8/xfozwQhOYjJ8r1bnj98sWW8tcVy2FHM5mx0kU0TGSMMAnQ2sUrCshFOYsNo1TIwZ1zsIm/dfZ/36jkfeOJRHv7EjzF9/FnKq9cwG1uYgfpw0YJZraBeIPfuITffI61q4rIhrlbKbGhble92HaZVoM9EBfckoWBDFAgBE9UiJsUAWRbaWuGkE/baSDo9IzYLYtsgManKR4TTwrG1OSXajsIP+M2bd7geWp5IwpaBcSGsXvwKb775IoNqSOE9ZtkRzhodAiOISevBWYoJl3+2zQPsNfspgxKs6zpDYZQlaiWrKLK/dJkspXXY4YAvfOFf86TXZNKAEMSob6kIAfWtFvTcjSk9sN+SgxbMA9LHnklmvm9v74cm6/0S9ezGWU7LAfe3I+3jAkZDNDRdVLJSRGsgSVq3NgGWnXDW6IUx9CbLqyGFlFOyNaQgiWE2X9GUKrNru442qWRdy0+VJ2NgOC4JraEcjrn00OMw8Lxx/w712SkXL10jfOBZnvkrv8Tm1UtQrwhnJ2x+9yXqP/59RqsDbK98QgheOFgu8IVgB542WQ7rQOgC1nntC60SP5Ix65pXgb6ovWPuuVhLdrVo7/efl+qONypPjEtSpymxxnvKPHQ+QeiqDmciTd3iMzDXs9b6fctLiSVhh1Ang0RlfSbJaqe2xixEH1OVmkS63hwzaWJdYKYHSz16QC0VpQLS2Y+MqL1kygFLCb1b/cnSelMMgA8dNnasVg1dbYCU5yoZ2OslyZBBPFlfL6z3+Af32QxCSwb3RNb+p9//ddbnw/nnKn9M+eemlOhCx9Vo+HC9YH5wi3bcga1IXUsYjBhs7xBlRbQ6NBmORsT5IWGxoBxtYOKc5mjOylS4win7KaygbbHtgsKY3JcIgyQ8Yhzb2xXVZES8v2Q4qti89hhzDIvFkmIVaJLlygRc6Ul15PCg4bdvbfPxX/27/JVf+Z9QTkf0Yml97XtJp4XC5eofXW8XL2LM06qAwWAF4mJJunuT5utfI/7+HzB68108wmvWM332CarDOVVoGdQ6JHHWUyAM2pqQrRNc15BWKt0UC7b0elZkINY4h3WWIlm6oxNl3Q2HSNMqSpGiknuGBTQrHdLEkAHlvPvkHt/04G2nUl6SqnQ0eEj9JiyZAZd0v53S8pOV4+zCBtsbm3hbUXpPFYTfePdtvlmvuPHqN3jxm1/m75+h9lvS73BuPSTue6j152uboizPN0IiaQI72oP38EVutOmxDf2w6+GAyfJnTdjOA39fYHyJ89oXKDDoME7ZgmYwxFYeRhUp1ixu3+buqlvjAr0tS7taMVvNkcWKwkS6cIG6jVjv2dzeoagG2YNaXy/vC0R68hkqdRbRJOKuN9n5H377oQG+nbHDFBXOqfeDGIuzYIxX2Zs1FKZUE0ifZYWiwRAmqgWjxJawXOGcw1oN6iAfJNYkBIeVOWWpUxon2gxPyk4ZGSJrjz0FZzSIQVoBW5JigVihjQKpwGgJhbFKzXbeahOSABMxPr/gRuXC1ikTrcxeeeuwBUmIdBgveERltmT5ZO4VNU3YgShroQsNiE5uU9Sm1pghYjy+mNB1BcFAu2qI3X3aCJNqTJ0qusMFJ/M5EgQTltTzM8rxLt5ZysIT7RCXIkkiQx+JhRY3hVH2RL2qmWxAs1pRVIN14wWsC5wkid4rEPTasMYglnVap8n07f5gxp6DfSKJtmmoyhJfFbSdELLcIZiQnbANvhA2phO+N9rguw9f5Ktv32BphZ+OhheahqtlyStnHXdPlwrEJH1uqutXKW7vXdEX8iK9jYXBG0vlLNtFxRfLks3KszsYcHLjQIFE4MA4nDOavmbUPNzmKbD+aco2tXliZewDr4n+5drsWgU6FMDQDUcVAhbnegA8e1KZLO7N/oaqyHIZKM4BHkY9I2y/SQHeKEPKWbfe4NRT0qr3k4BzRTZkthRO2aJiyHJyw3hk8+fkvVwlDEpMNRjUMPzzf3KXl28lPvvzP892NeD49m3MH3yZYxv5707u4cVQWEueR2jBg9UpFoJPhqEkRiKMLLjCMDUl084ysp6h1WmVw1JiqKxl23iersa4CMPg2GkGbLgRqWm5fu9lpsFwl8C3bYPEikfsAFdUlGZMUY4wtgDvSE7Ni329RLIs/b1f++fYbs6oa6jpAZReRN4XKOSG9c+/VcATkni0bQkCkxRzQ9nLx22Gja2+V5MNrv70X+DyZz4L011CUZJIXMbSnZ3wzne/za1mvv7dfYN6Xujlhvb7Pjff97X0QIGVkqEN+saGTkE0a4SykizrVj5W4UWBKzS8RxOVofAW0zQUGRT2zuG9I3Yxe+tK9gJRunqZ8TSfk2VSCiolS4LzjmSUu+WcIUah8g5vVMKm3kK6B5oUweqa1UY6kixIrHnvvuMTf/d/Ttza5f033+YP/pP/givScMl6RikxsDDAUmIpBCqj9g0WweOwCUyssZ3FUGBsREwH2U/DOkfyBkpLY9DUXmsxSfAp4ZNggvBOmnOnOWIWaiaV5/JgwDPFw2qkbx1pOMZMN3GTXYrpFm48garEupyoZrQsmUihFgnJkuoFb/7mf4l0dx6AO87ffn31ljg7RmRDJ+DMEML3Pe78X1kDzZ8OkX1jeF+gE+FxDE+YjoCKO7p+zayvBUOJMvbmCDNrsNWIyXBMVSow1dQ17dkxgxhwQCwKKAe4yQZNFLqYcL6g37G80zO0LJXxVBQFIQSKwiuD3DliF7JUUYuw5Txx/2ZL7t0ovFBYg3eJojRYJ1RFIvk5M/MOXTen6wRjVrTdMXUb6MKAwegq1egaIpGuOaDrjmiaBTiDL8ZYO6YqBnTdEcvFMVXlaBcTynKXyc4VUnuPNC743islB6clvk3svfx5Vrfe59b8XVbG6bVuYjaPtjivw7RBUTFyQ8Z+yqAYMSw38Jv7uIcu4556HLO/h5iA3HyX7v1bUA7hsccwn/hR3O5lvLXY2X04uUd68y3i7fvIvSPS4QF2doptWgVOuhWhqemaJU1X08SaOjbUqaVOHY0EWiItiTqDti2JU+fZ+rHnufDMR4gHx1z/zd9kJTHHUkESSzKRR1Nkt0uMDOwkXXlDgTLvkb2lQf/x4DCk//zB+3rW8PpmHcFaQlkQBIJ3xFYN8x25KVz/PG1E+xojY2LrWy9jVRjQKuOpB+ecxSbJ3D6brTAMldEq0CTB5zPeGU/pDE2Ieq6nBFmu1ycnRlGJLtZhxFAWnjY5jCRMWeV9WMWSLrMXopgcPqf7YUoJsTCQflCYQZqU1gC4zTVWGyLWJuqQOHUlD/+lX2CQPGa5RGZnvH/7BuHgPsXpCZPlkmmKbAAbwVIYDZP43uERd53wy/u7XJs3yKvfxd86wF66htnZI6YFslwg8zPicka3XNL1ctDQkGJLCpbQdcQQSbFDYksKXU7PPJeXSsoiKElrWZOIEK2ygeam4H0/YHJ6pvWkSST0dTWiAO1ZWdJJYNN1JOOZti2PpsQgJfasNstN01AUICnQegMhsbx3SDvvzoHhvjDMVgCxlx1mUM9mMKIHhazRny04GmupjWFlDcvCkUhsREMj4BYN74uQFjVVlrd1QGd6gG/N38M4S8jKlH4IIyhTaw34/cDHeuC4BgDzGun/JsC7Bdt7O3Q4DRaJkYhhFTTxXkR9vI2JpGipO2HeCLOVAsuDYUUxnZLqBdI1pGXCF466aRmUnocu7LEzVFapGZRsjLcIIWUpmgbJQMKKpVlFlvUM48aIKdi7eIWzyrOxPWTeHfHlF/8I8+0KqTs+9tEXeOoX/jI89BDd//sf4CUow956jBgujOFfLMEutLa9vLOFrQaIUaKCyawya893HZPywCFfx9rXa6+goFq2O0qw27TY2UyBWwu2jJhkoPYU4plUFYUraULHYr6ATJBYs9ZMb4mjfaD3FdXA0LWr3A/l9z4GTLDIaqXrzWfwsWcI9Yd3jwmtSz9dn9KrgLqQGVA9KB354ztzXmsSVQ7ksdZRi9o7bPiCdmj4+GqBN4lVl4ihWwPFir3JmrlJD9b1AJ+sUTkyL++B+9df4kGFUg8MnoOF/e8g+0crgN3/zkSiNom3rfA73vChw7cgFrlPTqQUNEAnLEmrQ7AFXdsg9ZkObJLQrY7omoBYn4kOJamdU4ymbOxdYdjOKBA+FiLPJ6F57GGqT3yUuUlcv/GHTJKwuX+Bsfc0XcN0NGE1WzBwQmgtyy5xw23ws//7/xMf+Qs/jRMl5CTRmjUaNVlxRgc9Qqu9FErmsFaBP2vVzssai5kOcdMnmDz5BPZzn6P5/Bfo/qt/yN7BfbqjE8DTUDCcVjSPPoF5+llMFJa//k+Qs5mGvIWQQ6OSEiCSwRXFmmhlog5ME2AWNen+IX4ywmTGsnMqtxWvvnnqYZ3HD5LlsSnqKW6UEaznqFn32IpzqyS8D6rp1+6FJvIfNJbvHN/lVrrJ3EJrNOX4Y064iOVDMfIxN+BTdcX9MlDEPAA2FnJq+Tmj1XI+wEuQyVe9dZEVSEYU7ex7pu8LLMw7Z09r7veCdcWsl5zJSia9qcJIJf8GjD9n+hUVqWs4TS3HRaP2PpG1v2WsG07u3iR9/ZtU92+x86u/yvTyw9iioKgG6s8pQtcEfGHpujZbIRm6tsUXCjIOhp7yfwwhG2IMKao/inPFAyi9lowFnkirL3AwFM6qf6JkgKJQ9oh1QpIV1npFbR0YIoiCL0YsRgo1OkRRamW8NPpmx5zqQ0JaQ5cgMuBkuc39xZQ2RPY3B1yaLimLGT5762XEEWPBF5nW/cC0Ri9UbaqcjfnrhmQSjmzM6C1W1F/I9VLcfmISyR5sIDLC2RIxasJqQyKKxxjLatUQThs6WSDUJCkovCaUHdcbtIua1Nzl+OiIjfEmZVFROC0yvTF443LxqQvfNPN1YRtjg49LrG1w3lI3DePNTd0I1si4+b5/tQ7qC59zuYuI6GZCD/Lp96w9TfIUsm5avHNUZYXpOpQ74jTtCktFwbCoEOeYDyyd9bxZOfbEsj0eUg4G/NKOYWUj0iZuNy2dGE4DFKWnKjR50TmHeE9hBO89J8kwC5HP7O0wsSUWw8w5GApLV/Jr9455TSLiHbNL2/zoZ65wqzrD1iqpkZy2rCBbZjEKyjzLU1dnbb5fMC7LMEXTbemZaGgRIiRNncvyHESp3M7Z7HfHWkagDNBcVGVuXI+hmgwQdl3KB4cWik0T6IDKF9gCQhScF1ahW087JSlbSpVemvBlMvvUWoMrIEZDlBpJjvePOn70L36OJz/yHPfuHPLUE4/zysmK+++9ypOjIabrIBlsghQDjTFU4zHjrQnHsyUi6uH13eN7zEKgC4kChysc3gaM9drIGuUPFabj3766zVfbRHXtCQbDEdXt+zz++jt8aL7kO7Jgn8SZdWyMh1y2IwamJBYFy7pjnk6JqyV129BIwCIYERYonrz/zrfZtY4LgwGH9YrmgZXeN6Hy59z3g02qxVLZkijgU0OBRhAk63F+gODwZUnRNUw+/Cy7zz3P2cEBy/feY1G3rKJQ2ZLpcMCjjz1Je/+GmpWvC71+dvUg0PfAXisP3pll3PmxhReGg4BzBon6M6x1GtQSdV+rKs+0qIhdYGlakIAxToNlrAIVKSq4FENk1aCG1Xl/7Acdtg9ySWQmbS60rcGXnrKw2QMpGztnX0rvNWoo5oCKBIQuYLqASRZjUwYFPVXpuHD1GcrLexyK8O7mFv9qY8B9U9PFFttFyhgZ2SzDDi1DEoMAwyiMraESqEgMMUxMwdBa/aBgB8tDpuB7oeXNYUF3cQ83nTKoCvWtOz5l696MH0lw4DueGVxi1AiFGyBbF1Vitr+F35gg4wpTWkwrdKtAqJek5YLmbEZazoirFe1qQbda0cYVdbNkeXbG8eJoXVQ4kTXwLJCFrSus1Bg7RBgiSaW6Pwju8QPfNxb4hAgfXd+vw6hjYxVMyXt8tvDHoeDeibG47U1+5mM/zlOPfZDJ5g7el6RkWMaO1994ma//4e/AcoYrK0YXLzOebiLG4bwyVcqyzOBewntH12nIlPpzKiidT5j11zTBW9b+Ub0VgrNgnUoYHf3QJbBanBCaxdoG5LhtNJTKCMQls5PXOTl+TQFwazOLGYwMETtmY/o4bVdj7IphucBIR7uoGY+UQercBf70xcjv/mnNT/zcv8WvfevbnM7e4mOLW5RiGEuFSQZLgRePwyG2Q4jUdHSccM8c0JkGYz2lH7D3xg6733qIcneX4DrClYcofuIncLuXMXVA7h4j33qJ+M67mDv38csTUlixqiLt9ibdyGH3K47vH7P65new9YJGFMBTkwBZszP7/25RNkeNejgeY7jlDH/58WtMaJit5nSifrQdJrM4hVEGfH2KjDAMMyZSknM6+H7P0h8E+Hpg7oFWdg1cGGtZXbjEW8OK20nYfvQhvvv622AiH6s79k8bSmtpRUi2N/POvy+fk0nUN0tN28/XuKCKgUQvxdQnrqewPpfKesbGsxWFkbNUw4pkAtEZSmOgsKzaBkP2UAVsYdRHTIw2VqJLLQHb4wlnq46ycjStNppt0FTJQaE5FV1WqascR7+3LCxd9ozr3VIEBS+7mIeqqIVCQUmylsoIq2bFF770Z8zPzrh47TKf+synmYplYB1hvuDo1m1uXb9OuH0bM5sxjeovedk5Xp6f8UY7Y3B8l4ErefTdt9gaFkhIhPaMEFqWsaOJQhsidczJmCmogb4krWt1t1eGR9IB4YPgbd86mUQGzPTNF4H7JI5T4Cz2NgAq+3Si4WjJWIL33BLLZpfoUsskBUxMNBj1s0xCWjTIoCSWCbEeUzr87oRVc0LsenBY1441Zs30WA/FMvCAgO9rJCOIcVwfVLyxMeIEwyIK3WTAeHOT1Ts3CfM5T9PhfMGxGEaIgriol2o/9hMkM7R6ibD8wCvUXyHnF8s5yHfefCb67+9TzRWkqYIQzgri5CmcW1CfnlA3tQ7RTSJEKJwhxgYRTRlddrBMKht75qf+KhevfIj52T3Ojm9x9+592jownx2xZMT+tnBpAinOubI14q9+9jmaOKReKaMqdpFVvWI5b1nVwnQ85I++/RYPX3uEzb0BN0/vMyxge2vKaDSicJb/+h/9Q773rT/i3/9f/V3mp0d44ymTpZGS6x2cNPD4has0YQGhphJDaSu+dRgJLugrK3oWuHwRWlTV480Dw300fd5aleTbfq0ieHHsGRCrQ0HJA0u1nUiYZDjIb8isS8QS2mWd3w/1CiSD1j0D03qHlULBjjV+rEojabUON6I+arJ+2x+oLtcHei4Ee/BM2vUalqj9VQjCNw+OeCWUbJVjtTdxiVXb8NpszuVhwacvTZiMHHWrbLkUe+VEBj56aS3ngF0SofeB7IN0lK2XOf7S/135sf3TXa/PB3+O9DZi6/o09ft0BvgaYzjxJfP9HZVfhg4xia6dYboFbn6TmC0drFGgJ4rB+g3i6ozVcoaIJxEYeEPdzkgpMplcxQ/H2HjGLzbwLCXml38G/4kP4wN89/27HG1ucjafcSQVwyWcRM97iyWzDlZ2ROiWfFeu8cL/7j/giU9/SgHFmAMbcqJ7iB3z1YrCOSQK1aCiyJLPqiqVRVeUGQQusNZjnaoZsRbZ3ML/yi/TXtzH/kf/Z4pvv8Kk8Ays+pebt9+g+6MvEnzBoF7ROktwBglR/QnbBtu2yMpApT6Juucqo46oAxMOjmB3DzMaILFRbCJmi65hhcxaklHpv+5VOtDK4zFlQmeFS69KFMme2/3Jvwb9AOe4aIRJ9MxFmEVhRqIm8dkIFYHh/ZYtCvbslJubA0ZZO5IyC1cQtXOKcc0kPd9BM/M1M3QlxfMBYI/hPbC19nvwg7tufxGudQEia4l+L083Ihm4M2DUQkXqhmTOiIXn2oUttrc3MbcOMCas2cOruuU/+0//H3xuFbk8nxP5pzzzH/9fNK0+YwDOl1TDMX3SdP+0igwGC7nWMf+/6Cb//99+aIBvMH4UU1hie4+CM7zp8BnBdlYnHapOFKwkrNEm1GQwyBgF8VSeC5aoITLGZiQc+nQfayCGNhvCCsa4/ALpcrQ5hlmMxXlH6WtMcZPRxogokUHhKcuYtdCiSHWmE3sLMQUwXUa0VX5BSlgniFiIsqZZp2xGqT5bHmucfm4KRXWDoQseW4wxbkpV7eKLAV27oEsrwqKjbWr1Rug0Nl0kUVRDktnEl1OaVSAsaxbzW5QmUlQjBmVB4RzeGQrvlS2J0LV1BkwLYgjEeEw0NZ1JFNbSzE9YHt9lcilRN60a/TunseQZGFXfsKRJecD59XDOllMLBZUZRZP93kz2xMhFjSTdIEKMtKFjOKzwvlTjyp6qbRLT0rExGnETyyOTEVsPP8Ir0vLf3TxA2sQuwgd2RuxPYVemXAmGd+rIqRe2xhWj0hCN46XDGY+PHTUl3717wtvHc7bKkvfPVtq4lCVJAuPhiHcNvLi3zZMXdtncG3F3uSKVCqAZlHli7DkwK0on0GI1o/ohCMnmjSedbyzW5GTkvKmkFNXb0AES6ROX1HvPZ1mPWR+Ixhqc17Rla/XrLif3IDr9y7hivr5U2Oeceoi4zNozJoMxVtN6hbSeJPWO7yKiNGEsJVX2y6uoigE7FwoeevQJ7p+cMdje5KQxlFce5t7r3+HmcoURYSAW6y2u0JS2ixcv8NLBPUY7e8rinM957rHHOGwb5iLqydQmqs7QDSw+X7e74yk/XRbcv3GD4lM/w8Zzz7O3u01dN7zxpT/hvd/5Dd5LwkMCjxYFl8RwOjvmPQnaxBmL857KllTVlJEFkwJ1s1Sfplxgb3zsx7n0/Mc4/S//AZ5eXkYu2/p1rumeIao/mMcQkwIqDqiwhBhwVtaMEW+MpuIZIRJISVgWliiWl158mdtNzZt4uqvXNMEwRbaamquvvs2FvUrl5kEbhrU8Iq+TPxfl66/IXFxpurgmOC5rwXtDWTichdLrtDmlgLFQhiGffOQnqbuWbx9+lWhavLeZpKJrt0tJQ0KM0QPdmVyc9dIKIQZDcGrS7L0yoPX7C6xxdHWXpfKl/h0SCdJSJw1iwei1pLJeXcsQsCi7JUmkbbfpFonX/ug3KC9e5asv3eazn/l5Ll97GF9WUFjEecQVDAZD7p0ccnLnNu3ZguVKbQwOz2asWk0PD11N03QMBDYKz6ePZ3x1NeO1D32IH/nsZ7i6vcN0a8rDjz3E0A1YtA1f/+KX+Cf/6F/ws/M5IzfETCvsQ49jH3qcZB3x7Jj5W29TH91mcXyH5uw+7XIGdaM0/BQxEokkGjoi0BARHPULP8bW3/tfc/qP/hH2e9/EocnrfRmi/xWQtMC5CmsLQioRWnqPPPg3wZQHJebugccY+mbbrAGPnteZgBoY7Gzx13/hV7jy0NOYoiQmoVkuaVcNJiWeeepD2KLkj37n19mYTEibm8TMBI+ixZ/6zsp6L1KgT6+pwiuLzxeepu0IIVCW5XlzK/mcyXtq3xjEpJ6KJoLB0ZmksuygE2iX1EQ+5QaoDcpEdk7P6Q7JxutL6tURs9PXEdGc4L7e8B7a5i7GJbpul9/6Qslf+tzf4MqlPQ6mY74YZ1xDOKtKvlMahslxIRo2UmBHhCmGQSxwqWIkXr31qIFAagMH9X2W8xXj20PKnQnGl3T/7b9A2oaiWeFXK3zbUDY1NB0HJnH2lz7F0SdfoN421Msj3jlZsboufOjuFN48zPYCZg3o9XYDAUOL0GBYGf1YWsfSGcRZ/vi3vshWNaCZzSmGAwRDGSM0NYnESAxTeqanrMEshzJEHRqAJhlu7r/2IJjX8f1Mvx58jiK8enTAbwsciOBv38RKYk8MM1dyAYuRoF5jGTixVlnSSQSJ+n4G+qRUXTzJGGKOzHaJDETpiVsbZVBBZBlXLNvIxWHJvlFPzoFXU/kYA4U1WGeovKdbdioFBPWSM5FBUYCztAlK75kOR4gJ+LJkWkXayrPC0LSZFZ3lkSGzjmxSCeWqFVKhEnitIbSZLpyQEnhv9PpBg5K62FEny6Ju+eCzH+CNl7/Dzfff59bNO3zx979AVQ7Y3LnIE488wlOf/SyX9raYnRzyjc//HsfvvMe+wKOlZW+7YGNQ0AT4V2cH/NJp4nKrqYLLlJgbYZV0PWlYlIV83iHmQaIEa8F9/rz3MjdIHshLFmwY9XAyhiNbcj9G7ltLkyzvecMdhIu+4OEo7ACdWI6ApYCkqL6ZNrN7JDPvVg1hWeLKEamwWGdwGyOqZcPicM7aq9tAjEGJGFYburIqCF1E8qA6rhtA9UBcpcBxEzi0BccixLOa5njJxa7jl7xlLJG7klhYYRBFUdn893vTx8Hp392Ddn2RKEaZhImeEZZratYcFXrmXt+QrtlRJu/fFlyCjw22eWrwAqsP7LElwmy2UjaeREK7Isaa+bxhsTijKiuenFyiSx0hOMb7L1Bu7bIx3WPJNsu7r1BsGc5OEssQefH1G5ztWZ764IQ7Zyf8zhs3aLuk4Q2uwFlLWXqGZcl0ukFRwO7WNovlHHO/Y3NrRDn0nC2XrOyQ7d1dru3vM2lm+MmYSavrYSGelw4OmUnNFiUjLFtGA+2SE4JpkYh6RVuHrQa4coD1Q0zhFdTLQD4hkWJL09VQ17jlijJFCsn9p+k9vBRUN9lURVN3lfkreFXhGEtICYkQmvaBXex8bNHXYMaA954Yukx4yOdyjFgRYqvDoN6Hrz+v/w0Zojywh/aN//ocNGvg8K89ssXNsyVlmukZHeFIIl/eKdiPDT9VDhh5y6rLrNp1Gm4P1D3gtyf971Jgul9v6QF/vvUem/pKIh/Y6z04r9DUvy75r1uv48xKzfVHwtCJMBhXXHv8ChQFxSAHadYnpJQIoV4r4UIU2k4VAiKGFGqargMrOOtoukhdt7TBUs6PmN97A7No+DgQP/EcH/vrf4vR3g63Dg7Yu/IQv/PdN7jx9vd4+eWX+f/8y3/Fye0DnvvopxgNJ3xp3zPanHL1k59j/5GrrJZLTs7m3Ll3l+PD+0y3tpmdzhkMS9o2sLkx1YHDySlts8pQRCR0LYV37O3vs7O1zXg8pRqO8b6kLCu89+pZ/RM/zuTf//e583/4PzJcLBRLSA5nLFXbIU2tvbUz2peHzMTzZcYugKjD+X74hS8hCb4siW0HJye4cofQdYjVM1KMID6z9IqC2KFMVhRUM7GXvxtMiA/4h5rz1OcMCus6zT7zCWxRMLYl4+TYlUhNol67MavascTjjKUFpqr9UfuB/gpIqkI6P2V6lp/24BITGA1lNCmt90hy59TvvVkcouvYnO+j/To/v1q1pgg2MRt6mslAyTwJqlVk1AYqBKIgXcfmxoS9izsUrxWkWsPrbD5Lvvr+bcq/8FM8+8jjPL2/yRNYygfAOpPVeup7r9eLINjkfmCH+eFvPzTA92M/9/e59vA1lke3uP3KP2f+/m9APMksPgGXN8+okwCbzU+RqJTqbDAo+X7vbEZUgQyQGKOsJ6wCFeoNlRknkogpqfeY1d+hYLN6RhWl4M2JpnMKRJtoYvYhS+rBAGTPqZzKZM43M2OcbnBJU37A4+yQlBylt3hTUBYl1o+wDDOnpwA/wHmdUIZkaRantOEWbdPkJEFP20aqwmBlRFVt0AVPDI7V6pCufg/nSugCHkthK6wpcU4XROEd1gSVuQGFEVzpla1nZ1DMoOrWMkpXljivE4QuJaWDek/ddgpGxfMFb0FZO/1kJjMQ+zTdmBIE1iCuzcDT2oSdftyjt6YNjIYV4+GQJTUxa9aHwxHD4ZBXWsfWlQlXhh2H3jMyV5BiwJe/9S2+XWvGVQqRoXXM25ZhVfEXp0OuWG3svn68oo6e5CKj8ZhxE3i77Xjj6D4Gw3gyplktSVEorOXa449y6doFDu/e41u3A4MNrbLEZH+fSA6h0BThHrxUPLjfpmw+lLMhqkETikLMrE993UvvsveXrgwR8LbQA7PLMsmokrUQdernnbKqnBWizYwXMTkYRQ9+59Q4WV/mFmcdzhZYUcPh3l4sRkFys2tTTljyyt4rygrEY6MWH4VA2xqmGxtcubzHoGhwyeDLIYffnvP0aMDFgWfZrBQEC0I0FsqK790/42M//Qs8+fRTHB+fUEXLd37v93isPebGwXVG1lKISqcnK89Wa+gmG3gT2Ll1l9cv7XDp4Ye5+ug+u7ajuHSRt+UneflbL3H03hkveJ2Q3pmviFg2TMGF7YvsP/lhdh5/itGVhzHTfXxZYNqaxcEtrn/9D3nzO3+CNCsW77/FQdNBfz1w3oD2zWkC2hhzsaKbvj5OZdXJGIJz+Kqk8BXFaEQ13aDc3cFubeGnm/jJFmng+cdf+DxvvfcG9dYFrnzq53jxa1/i1lsvE0JHVRQ8euUhfvYTP8az//S/ZTyd8tG/9Tewpc/Pr9/eH5jmPvj/D+B+zqm9QNcZFitD4SKNDZl9qqxki66Fge0olnOaVUtbd3S2JdURkha51tnMNs3rXXIyrXUU2ey98k73bGOJSe0SbMiJfI36QrZdwvuSqhpQ+CFNc4YvtZiQnK6bkpC6hLVCYRKlS3ir2dkilr2N56iO91idfpdl1/Li177F26+9jp9sMhgMmRhPWXrGwzE7jz7NeDxh3w0oi5LJdEq1t0OSqGE0zuCJ+CAMnOGZGzXHv/d5/vONEZ/+zF/gaHbEzZO7PHntEvsXBjCcsDy6x8NPXOAbT1wivvIOhCVhcUrz0l3m3/gi8+UZXb2gi7XKihESkd6psNPTBItKl/v7A4YOYelgcXpKmyIbD7y764Yw35NYaUKaK0imJIkn0a5XiMuNx7oJfOBsfvDz3ncPTOYNpcz40ltblPzbn/hJHrn2KLHrOHjtFd757kvcPbzHIjYqTSqGFBcusv/kB1md3Gd45RFSOVR/MmcZlAWIntEpanJ44QtCjAqchw7nPSkm6rrG54Q3ayxN26g/bOCcNe702oxJmygn6isVjK4lQ0LxxAji1M80BE0TFOiidkwp9RPelAso3aO9E8RZYhJKV2Gdx7nAzQNIbpuPf+rH2dra5ruvvckd7+iscGQiL21f4awwOCPYLjBoWtxqThVbxgITge1UsBktW6Zil5IL9YrTUHNqIy8vZrz6nfeofUHhLGNrGfiCTXH8TGX4QLHgteWKN8b3+LObv409PGVjNePuHXjWX+JktWLgLMF6tTow6qFauAJXaLKfLxzeGEIRwGp4l++CAruxowuNQoNWBxfgOTaeBXqelaCMqryuMq89DzZ0VQWjLEEj38/oSw98CFpkrstbEZ5sA3/LGE6AedQGfBeYJmXmGHr/Xz2TY2YZ9gBhMKy9drEFySpzr8vsMqwl2XS+jyYN52iRzDoTdsRwdTTiZkzgtZ4Sa0ixpXK6LqsiBxGkSGEtZVGxMRhggtAtGy5sbnNhcwpmiS0808GIo2LAUjT9MOYmKYmhbhPOK5soVGRPKsOqjXQd+EKHG+NK17tNKHsA/f02CSEoWLyYzXnokUd4fv8apvTsXrzC0dEhN66/y/vX3+UPv/xF9nb3+YnP/gX2n/sI37lxnVdD4vbmNs9evUK5OuPKconbKPmtG6f85balTYEalXZGp6w8rEPQ/06ch66JMd8nI+1vVjLXLGXGlOmZHboTWTEU3vLQaMBG6QnGsuEdT3uv4eWdJsKWxiBtp7iZ81r/AQU90zfXZHULbQUDcpCSY3hhg9B2dLVaCVin/I6eERkRNV23RiXUkoFjUG9FES61DaO64T5w12pDe+ALGmDshQrDFqo82rI9E7EHMbKPntGKQiSD8BnEi3bN78t2LmbtF5kw62stZTAkZpBUgGiSspjEUjrHP3jvDX7l9+5y4X1D5yyr1hFdxXIVKcuSLlbsP/oC37txl6OzIx59apvNnW1cXPL6qy+zcWcLX3jmiznDaUWqa6abE2TZMSgdjpYkiVXTcnQ6JwTBV1ZhMaPWLxf3LjE4OqPYLPBFhS8Liqri+lvv8vTmBYyrCJLY3tlmb7LFdHWkFhVdoAnC4bJDbOJDBiTkRtsatQOxERlVDB9/lslHfpTqiadx23vY0QRTDTDO00vu+pothYCsVsSzM9ob79O++jLti1/H3LtNkbnrum9k+1168onW9BEhGk19VuDdrsGsB8/l8/9SlFZVNZ4+aGXN3EyoR5nNBv4mcf7Nmacp52e1Wdd8vezY6fnVD35F2Kk8G3tTQvatDEnYbxN7CbbdiI2ywKaUQwrI1kEZeBPJgAIZRHmQ3Sd5vSqgyPo+yaBdBqnl/PmsXw7JbNPMQpQM+iDZfzIzs5S1ZKmj4f7Zkm+89Ba/+pFPIGNPjN36+jHGELqEKzwpBZpGlVy+UCVSCInhZADJMJudEtpA3QmJI2anZyxPh3gMXLjM7dt3mXaJjZ0d9vcu8jf/t3+P48MDbt6/z+QkMF+13JCWjUL4TqyQw8gHb9xkfzXLa8sy2Njm0YtX6UKLVDNu3bjB4eF92qahsJbRaMhyteLKtatcuHiBS1tbmCTUi1PeeestqmFF5QdcuvwQ081NqvEEZxxVUTL42Z9m+PrrLP7z/ycTo6Y/gp4hGO3FQSgyC1DEEQkgRgklNpNSsMpmrpwOXkJC2oZ4+x42+wQar9Y0hIgZVRp2GDpISW2aJIf0yDmYK0nTxSXjIwqWna8PHlzv1mEGoxx8oyE1XoRxPtdTUWKcxa0anDHURA33Sn3PlUHm9bnS162Zp5dE/V7zf+s+qWs49WuPB5573vuR8zPgXEqff3qWKkcT+LOdDX79kcsceO0SR0XJtfGQj63mfOLrr7EXEykCoaPy+lyt0ZoaZ9UXUYTDOnJbKkbTPTqgVNTxAeBuvWutsZbUh1Xmr1r3PwIGXzIFxm8xubTNBy48wdtfmnD72/8Zkto8dU/Z2JO1tBXp7bzzH2FSlhwmYoz05txi0lrXrpMPm/c+IVkgtkQTSIgCIgYNg+j6Q1ebjJASXUyZ5huRLEvDmLWpYcwyCmv18Ddo4+GcNsmF91hbULox3o7wbkLhx1gzwrqCTgRKCKFVv4CkgFLXBparjvksMJkkvHV0nWO8NcEXnmq0xXLesDw7Y7lcQGgZVobSq32/uJyySqEMSOmw4um6JTEkTJEovKEoDCmeYu0C3BGMW0pRX8C6EaqL15heeowu6ES0adpMqc7gFn3zkwFWc74AJWmDEFMihMz8En39nFHwyDmbgcHvL/x6NtJsvqRtWjYmY7zzLBc6DS+rCX66zb+6cUJ8/20WbcD6nCwaOxBHE4S6aZkZlYHZquTl+2d8u23YmQwxFr52b4FBKEpPipFbh4f57xKW8zlRhGE1wlvLe+/d5L133mdet4wGJT/95MVciRpigAdGFKRA9oXMvgrCOoxDC1j1ynPWYkXXk0ODA3QTFmLTYZ1RX41M91436NZlQDnm6yQXC0ZZb31ylrIKbT54UY/JDECn3p9QBJ/ZqdaWYC3eeApb4mxJYUtsvraKosJbTxJwxuILR2kMpmy5enXJ6vges3vH7Fx7nGJjwMky8pXbdznrgrIFBcoUSAYGgwrZLSAumZ/do6trBpRsPfcMZ3/2Z0q7ThbB0IpGxy+byHG35Kmm4kbXYCdXmBSGzanntT/4XZrxBR77+M8wevhR5PqbPFdMeXupksYLvuTpD/0o137+l6meforCVXB8jLl/C24cI/OODfHsv/AzXL72OC/93j+lPbjN8cHtNcvFcA7waQOqcExPpR+UFeV4iJ1M8NNNiq0t3OYmxWREtbdFubGJLUr8YIT4ipT0mlrNV9y4eZ1vn55wI3R8+IMf4rsvfo23X34RTEdE6LqWV956jZPFGf/uJ36CXT8gLGvKYkI/wflBOe76v/qa6oGvSxKqUtieWrVJiFGBPZO9IQUKJ1i08Q0h0HbCKiV8qetXUsKR6Dplznivfn5qLaEyYmdykIazILq/iwVX+ByEYJEYKL0hxY5m0dLIKU6tNbBOGYYug3yuLPDFAEuFL8ZMxxcYTHYYDndoZ5u8f++IcHqKS47nP/RjXNx7nDpGbOGYTsZcvHqBohiwvbFNGyPL2yfcuPsui7srDg/ucXJ8zOzsHm1XI0FNxPdsx/9tOeA3Rh3HV57l9ltv4YfC409c5OHLE+qzQy7t7vLWd97k/q3bbGwPabuaVw9uchCWVG2kDB2Co8KTjFBsbjG6fI1yf4/B3j5uOFVHiqZhdnif2Xtv0914B2mX9OVb+vpXOP7mV9nIklWdnT6w564/OlKqScbnlerJQq31AObB7/n+1XL+eaKPFhLkgfxcA9TGcHl7n2ceepy0WPLqn/wx33z9u9zd3OVw6wJnhaHuWqKBDYRrexfwF/Y4nG7w0p9+hec/9nH81gjQUJcQAgaVpqSU8sAiqGWBCMvVCmMsvvDrBqJtlS+mFhj6vI3hAUm47sGFL6gKp2tNoqbXmwLvx+qJJzO8CZn5B5LtK5LE81dD1DuKnKpqTKBrG9quxVjHnUNhPN1g/+IVfFmymC9p25bOlZw6qIuOt2an7OxeAwud1AwmE9p2SYmwCitWITGshjgHz9cdf/1uwiXL92zH/0tqisef5PK1h4ldYH56xrVnP8RousXqj77ItaMzLhaWV99+nyubQ+xJYOMs8fQiMrj/PrI7IlRXkEboukgbDS2a0iltQ5RISJEuBlaSaIy+mD4mZTQnffcjMBJDJcIA4SqZLf5AM6trpAdHeqDFrPeo8MDjHmSTPig3h+9n+BXAvgjbwAoFw0cYfA6fMnlzLo3BitAKtBi6/odbz6Iccrd0ROcZDjfZHm6xOZwwmWxQjIY4a2m7lvn9+5zeeYv27D4udBQCU1fwlPc86gtWVUuDWgWUpacOlmFZYZynKoXVco4pC8RExuMNJqXDdmr6vjmaUHjL9nSArQoG3jH3W+w98gKpnmNMpCg9crZgfnRKTImq0Nfd+IJkHE3QdVfZSNdalVWm3gtZE3UFHYS7ApoI0+kGb770Vb73xlt86i/+InUb2N7eY3B5iCCcnpxwMl8wqwO+CUwHJWNX8MxHPspzn/gY83de5b2vfZknfeJg4rl54hiFyJmzNGXJclAQrYWUcDh976yG3hWgvr/e4A2ZDW/W55EoOqCgO6LJjSEyeOQK0Rc8nRxFEgbLBSa0uNBSGGW2p1TQiaU0joMwp/Algsopksj3WQoYZzFZ7aCpitrspmnJcHeMPV7mvgF6QkCSXtppcwCUEgRMrrlENO3TJqGQwNQI16KOZjsnRGcYpIiPUFrD0FjGqN9VckYlZdYQjNYTImQUydE1ce0f3TeXicxwzNeOslBzZgKioGAG+LQk1d/ljEo+5xKYhY6drkZiwnaR1SwhybGqHYGS6291LA7uYyXyylffIMbI1f1tHn/yg1TyGAdLfZ1WjWE0GjJwQ1beZq9tteswxjDdHHF63BC6yHDg2Nnf55d/8W/z/OVHufFb/5B3bx3w2MWHODyb0bYBKEgCZ4d3Kea3qO+VQOCobWibRoMjWpifHHPlyTkXLnfceMuzPNxgaEuctxRPfZjdv/Q/ZfT8j2EmE/XjWldIfJ/8rgeTPecN/PhDz2H+4i8QDm6z+v3fZfF7v4E9vANoX9kvDy8li8ke1bVH4M3vgLQZ8FJVU8q1/oMn7vlu1v9rc43eg3jZlxL1ILYx970mV5//xiRujYbn/qu/vx+xPHDWi8EZNITBCGKFkTXsCWA8grIjs95QB3prb7yMyyQ5/9U90PdgbZnSGtQ7BwT7v4k1W/fBXk97vzwQ6r3SyIOTvMh7cCb0xIkUaAVC6kipU4DI5lc6RUJM+YyLPUlT/RiBtmmySixoqmqI1G1D2y6JDLjw8MOUl3apwxkn7x3jZ5foNiZYX3Lx0ae59IEP8Zmf/TmstbRBh0DOGiXsZCXX2dkpKSVuvH+D3/zC7/PNb36Ne3du09a1El36FyETg5x3VNWAvf19Hnn0MZ5/7sN89CMfYXtzHxNaXnv1Vba2trh89SE2d/a1/ysq9v723+bW915j8ZWvsuH9Wl5kjUdIBBOpY0eyCVuqZRnJQraVkqihchLVG0+SZNsBo4D34TFuc6wHq3fQRazvz2yhp7X1Q2CVPJyDZBgNnIv9NSCJTCl+4DG5cqhr/Xo/wA1B967hkINSvVwfMjrQmktkIE69jA2Zxdc/k75CRSU/EjOrT7EKkZiH1CnvmRp4FE3KzPtzOA2TyRqidhA2/y6b6w1L4r2q4D/d3ubL77yj6zCD7VVh+NLumP/44X0mb9zBimBjx3hQZla4yaoGQ9d2dCHQdCsiHaSwHlj319v6Kf3Ac3TkwMwekHzw+f8PvP3wAF9OGkxRiKZk49m/xu3XP8/8+GWcjTgTM5Bn9CBNPeqrHmQhajHjvcFapZ9iLF3oMDZP5MmgSv6+lFH+gBBFAb6QwyFiErqQUwKTFhnnzZB+fz+Ttq5CRCjLHinXdEWf5XKCwVVDSldR2IrKT/F2DEllLfPVCuGItm5puxYhqC+ZxBweop5HXRgiaYj1JVs7l1kuG4qy4vDWAbOT9whtjTUJE2A0KnECRRoQC9EGhkDlNPEqBsHZBuuUwWJMiy8asC1JDjFuibg6+2ZZOoGiKiiSAzuhawKT7QmD4ZA7945ysa9viVlPZvR0OceSyQeoydOEHrxPaDpNnt6umWvnngz5KEYE2q7j5PSM7c0pk71txqMRG5MJVeGpJlNOu8hycUyqNRrcGKgDWUoBjz/+GO+9+z6z2YKXF0tlzx2vqLynDlFrqahpyMY5hqMBMUbaruPa1Yf4X/67f497B/f4F//8v+H+4W1wjslkRFNHmpjDUUgamuE0ZKd/DULQ90LBuF5WqFN4jKXrHPMTS6yFEGGy6dm56PBVwBJzuIjFGwX1pAdJcySg8wrWWWMzVVpfX/WadFoziMteIx6THM56vClwrsA7j7WO0hZUrsS4QmXYxlE69fPzVr3RnPMQO2xsleXRtlhvqIqSQs740BOP8cd/9gY/+fQzSNvyjd/6PQ7eeZNHr+7TJShtkc3eI4jKjo6C40+/9HVe+NGPc/HiZexwwBtffZNqUHJ6YYtj6xFXUcUAKXEsymSU2YJy1RGOF9SLJSezFbv7Fzi2AybDITvOsWcKtk2FT5FNSp544gWe+qu/gn/yaXjvbXjlFbh9k+7eIbOzU+q6Vcl7LCh39vnwh3+cV775+4ROfUHVBdJibYEvK8rRmMnGNqO9Hcb7e5Q724x3tim3tvEbUzVXdZ5oAl3XkGKgFgjLJeHslHrVcHp8TFi2eFvwtZe+we3FKTuPPMGgKrlz6z229vc5PTvEZYNckcTh8TEnF3bYf/JxWiOUeRq2PgT+HPbeA2exPlL0364TFquA85qI5aJZA+7eOyRCkRLSdRQWJmXJarkkBZVBFIU2l8YYrM90e6MybMSolFdUsqIsawX2BZV+0gpBOpyxlNYqKxCb/fSU8eiLgnI4pqzGVIMRw9Em4gdYHEEiTTPnbDXn/tkN2vv7WP8YYejY30585w9+l5ffPcKigHZx8RE+6n+cy9cusLOxw2ZlGFcbPPOpj9MuEj4YZqd3+LPf/K9p33+DsyZwLwV+rDZICLzoDFPjOJkd8uT+FZ64fIl61XL1sUuE1LFanjL0wiB1dF1DaGvOpANjeCwX4vbiBR76yR9n69lnscOhMm46kFhgYiIZy44z8BM/w9nt27z1hd/i7PqrIIkxQpXi+n19EHTuATkBCgTDEqSPNyiQdVnTD2XkwZ2adW+QP9N924JTM/OBdeAdzntCVVGvZnzw0jU8Ja//6Vf5zbde5ZWdLV6Z3+f4/ju0MawLd2Mt+ze3eOHZj1H9y1/jqVVi45du8sF/569p4mLT4otCwbykyeQhhLXcZrlcIQJVWWqim3MslytijKQEXXdu++AQNVB2+spY6ymLIYPBkMIXiKhY06BnrpA9/bJsw+ShTWJtCKSVgFG4EywhGZzTIC3rBGcThVsyOz3m5PiMsrA8/dRjfPsPK2KYcWwct+ZnmMEGH//M5+iawOzsiBQaVs2c6aDg9PAuL7/8DarJmOQLWHU0saa0FX/sA3F/l+effYbNzV3qtuXN+QlDaXn88i5bn/oxXv2td3h41LD8s7eRFy2TpTDqIi52tCkyNxAsdAYaazJ7FKKcy3X767LMDI0q6f5yVVTKu3CW+1tT3LXLTDbGnHz5RU5iYkhmbbEu20moh18fztIhFJkBmh5Yaw+u3fQDX3tQQtyXtR4YAgMUOEqioTA21wtd0o/awqpvLG3Ba8MJB4XnF574CD99+TEujHcYGTDiSGKIRCR1WmDvPcrqmU/wyvU3+MYrXyHWSy6Ot9h/6ArmoYtM402GzmNLbW2a6JkOh4Q20MXAZHcb4yxNkxgORmxXhq2ywnqhaxPVoMTGgjYZ/KBg79ITXPvsLyIxYq16sh7eucXt6+9iTGI8qhgPSrY2JhiBs/kZ85N7pG5Gs1xR+pq2qQmhJYVT0uqEFM6UoZnrm7NY89SFDarBlMoG9ve2OT4742R+QtcERqMhzzzyEOONIc3yGB9b/HSDZ1/4cT7yiU9yQwzHL73EcbNkOCk5Pp4zFoe/co3bGwNaM+BDjz9JvPf/Je0/wy3LzvtO7LfCTifcHCrHrs4J3UCjARCBoCBSAAUmidRI4AxHoihpZD5UsMcejz3P2BMsW5ZFWbLkka2RRZoKFEmQIEABRA5EowMaXZ27crx1b918wo4r+MPa59wCRx88wumnum6qc09Ye633/b//sEWxdpO6qelS07UNpYwpOyl2dgbRn0H1+ugsQ2kVzgFj8GWOGQ1w+7vo/QFNXTHodchVH3PuIXw/DECi2lLvDYido1MXpN97ju5wQIUmECh02+wEQHkSZCbwICVCBwuTwJxrmR6RRnZT/KDENW0tKALLaXJeTlam9W46RJiwqYR3aCEQ6DDwlA4nPN4bpFPgJlJOKJ1l7Ewro2YKfgS7m7ZydOGxWx/6HOsD27RGYbXGaoXQeuoRiHX4pgYbghGa9sAXbb3tEHhhiRQkxtHR4IMzEZHQRM5imwCwRhS48gpH+oq9wlHnFoPAFFu44Q2G1RY722tEccxoPOZG3lA1nmzpQTAWFZoolPasLHTY2y0QXtCL+/zMJ3+BJw+dhS/9K85tr3F5nHNituTcUsJmVTNzbAUhNKWtiX3C3MIhFnp9dsb7xMaihCJHkgvL/ffX9I+WnNWCt76X4vuLzH7iZ1j42E/A7HwrzW+p3ZP3egooT5huTBOSVctqQobE9/jIceI//5/QefpZBv/8H2IunJ8CVE6CcYLbO7usiozOBLdof0fwFD8oukJd1AIbUyJAe+6KELg3CeUI8nUfCCnWBdBbHOicpvfpD6DDg98yRc8ODvV7P2hrRdGyliaqi/AvAsvWAlELpPh7wTjvp3fvvu9XiekanvrvuSAnD2eKCiBSC3yE8A+H9Ad9dkiIbtNQZVBqWC9xWuG9xQlaT99QvUgvEd1F5FwGXhFbN31MGBNeImfIajO1x0JIvJRY1w7ojQ1DhMaEIYo1CDHPif/Vj2FMwXPv3MQah9oc0l3qIJKIoVCQ9akWlhBRjE5TojQh6vQRSrK1eZff/cxn2RkO6XYTvvD7f8DduxtM3x4CK3JynQdAV+Abh2kM4/GQ69eu8vWvfoU0TVldXuInf+In+ZlP/iRbd++yfu1K2C+XV0jiBL24yJH/4n/D1v/1/4bKK5yzRFVNYip8UzKyJU1pGa+skJpAgpIy7C/SOTAGnGmB8/B6YAzStMOTvGoxOwlaIGqLHeVMnZ/bfvZguYkp0DR5ruF6a5v6gybkYFm2+xS2mYwAwYfhkMdDU7JoJGJiXSMFYynCNXcPLnTv3U5Z425SPYRQpgklqRCScmYWc+Yk4uwZ9Imj6Pk54iwN5DDj8FWBzXPc/oBme5d6cwt3Zx2/sUEyHBKZ0DO9rQSXbInTEScefBjpFcVoRFnlXNrb5PZKn+MyBEhiLLF3aBWH11RItA49N0JgvMO09b1s61k48NSfDCTuveJp9xYBIGWLR/xgtx8Y4Ntcu0A1vEE+3mSwfYPR1lvIYhMnmwCQeBeotgiUD95QtNPa2tQhvEBJSmcCwh9mRlhCcVcb13pUBJaea9saj29lHO0kwINuvcoQwa8M3wYxtMw/Lds0RaWRKuLF857HHkxJ0gC6aBmjlCCJU7SM0CIKCScEuUVRlNRmJ/gNeU/VBKlvJFvk1TuslSA0IpolSrtk8TzoPmtr20gcW3evUlX76BiaQkGqiCNBFEW40hBpi/IOKXKMdUQqQiuJMwUySlDKgXRtYqoFDb4ZIFWOkANE1KaCSUnVGLRL6XUO0Z8/gycmjiJWDq0wHI0x9p5CRIjWaF9Mi57J1uUFreSi9S5rvUzagDImOD9+suFNkL0DUGJys86xs7fPwmyfldVV5nvd9j5VmyYbmhTVsj3e9eTj9DpdttbXefqZpxk9/ijbW9vsjYYUpsFULkz+lWY8HlIUZUhnbAsqYwIjcDAu+NznPsupU2fo9WfYvLuOlKrdfMKanBR+E9axa8MKhBMoffBi+MkF2jIYpRJI75hfkJg6HHVS11hr8HUIGJBChgQ6KUAHeVEcRSipkYTmV7UpuVpGeCvQOg7vcytfl1IGWbs48H2MlEI6HRhRMjCshAtM2AiP8gatgtF80wTA0HqLNeaekBawTY+7a5b17ZK9wQ1eeWGDTz54lvzSTZqvf5l9U7Fd5FgRpKq1t0jTYBwIJVjuZazOrvDyC1+lG2dkseaBIyd48drb7FRjvIRIRmgJwtipV0TcyXg8jri4vcdg7TaX30o4PDdHHEUML7/B4NJ5HlEKU3tmRQJxyuHHn0LGMfZ7LyKvv01+9Qovb+3zzvwRNk+eYdzU2LpipfE8WHlO3NljefYYN/a2MLEmm5th9sgx5lYP011ZprMwF5KmehlChiRi2zJ/67rEFgPqsgoAoXNBZuhD0nVVVTR1w83r11maX6aocy6v38LFCQvLS1x453UOnz7G4cNHaMqKjfUNrly+SJ0PMU3Da1evoo+s8GhR0uv37rleJkDfwWQVYOrN8sduQgZgJLAbBLSeT1rKtvF2IATWh/1UOOgmiihRxDpCiRDO4WTQfUsZZNzOWlQUZCpaRWFi1Xof4gOTQAhBHKVonRKpDjrqEKd9Yp3R6XTQUmG9oXEjcjNiyIid4RZuv8A1RfgdSQrOkGZdFsoTHK9WufrOJssnzlCN9zg0v8xunRJ1e+g4JunOUe1tczMvuXrxbTIvmI27mJcajvRnWT1xlJff+i6vvP4mibcUUtLRmmdKweuRI5earq8xpmJubpazDz7B9RtXuHnzCrP9lHI0YL43T713kdTWHKkaDiO4Kh2pkIiHHuD0T3+SpNOB0sO4COzfhlA8VTXNZB9CEcUpj33sp3nry59l/doryFayL2HKgnL3/D0BSgweQYVwOb49ruXEXU8G8F9rhdQROk6Jk4w46xBnXaJOB93pkiYdZC9jkEg6nR6dOGsBOMteXfLZP/g0Z+aOsHV9jc+/+SLf6Hd54+4tyrq8dxWGbd05Ngd7vHLhdf7MwmEe3NuifP1NxuOcKEmJk2TKCABBY4L9AECe53gESZrgbPDmq8qqZe8JrJWURTsJlwRJow6ej00DjXbYpgYX4eMY0AF4JqS7O+PBJeBNCPny91YLLTjQSqmEtMGQXYc/UaxIM4nWihPHY77w9R0uvfkmJ5cWaXKBrwWJA+ckhfHUrmBw6zIznXkOZX2c6CGT42T9ea5Eb+MvvEluHBE1fSEwUmCV5ZI0HD6ywolTR5ldWCTf3+fqJcnZB+/n3P2nmDl1jItf+wL3i5pTmwV2uyYKsgVEu1ZKL8i9oElTunGfuD+L6s2TdProNAWtQuJiWVAMdxjtrIcUXhMsCiJALC3w2M9/kr3hPifuO4a8fpvRjQ1i74IXEtM6FM9kOh5YpjW+hQEPgLySgx50snYnt0mZapnAqkytQyImvmUBrDTO4h1UQVhBDeQOqlYWeilNGEQd/vbjH+Rp1SPZa2juXGOYF+S2pqnKwIqzNcY2OCQ6STk6v8jSoz/Et975Lmt1zqJVxGKBWA2xUU1HSaqqpNvp0ok0XkmGTUwnS4lFDf0u2cwsohyh05SiyIlTQuqggKSbUVrNxtptvvvl30RqQa+Tgfds7ewxygsQgqXZlNX5HnNzsyHRWadEcUYSx6gkoz+zgrEaIWNykXD+5RfRgzXyQU0jSm7evMGJp97HfjFmtLXOA7LD1StXyHodkrRHN+3isOzubnHSNtimpiMgiRWnj60w3+9RHj3K6kyXKzdyDkdBLuec5dadW1y+A6teEN25SVXV7DWWIYLZ1VV6H3k/Rz/wQWbP3k+0uITOOsg4nvoOT/zEsBaaGjPYY3T1EoPnvsn4hW9ybOMdNu/eZkRMZ3kRt7yMmV8k669itGZ8/kVU02BEsM+pjIXW046JrFJK6qoGYRF1AH1EpiBqFRJ4jFLBI9U0eCnCgBXRDvzb5hXa1rHd21oPKe9FOywAvGwlhQE0sTZ4MXsJVrUkA9+CKb6V2LaAyEE1CQZD4wWV1qijx+jf/xBH7n+A+WPH6C4ukvT76CQG56jGY0Z31tl88w3Wzr9MefUSrioxPkhHhXVB0u8EZ+OUnlfggxe5kDoERYi2N2o9s4z1xAo6maCswVnD5uYdkjihqXOqWpNXJbZxbVJoE4KwCPfVGMP1G2WQ3XlQwuNcxMbFayzn+8yieEgoXt28y54PqqNjnZShrBjt3OXU2g1miwE/3oU7cxny7jq+qigGI8q8IV6eh2ibOIo5/uijxD/zy0QPPo6TAtdUU+lnY0M972yw7LEu/PHt93ULSKRpQhRptI6JtEa3A/DowQdZ+Jv/e/b+8d+jOf9COBtckD4fTT1ieBuraD34RAslBID5QPYH01Gcn/h9TfY9Edjn1k/7hKmbcptyetDYT3bKafcE/uC0vff2fRDAFCCYRguE77T9iG/TLCZnRSLFJOiU6Q9OrlNgqg/34TqY4CwGhevPw+pR1KFjpMuH0bOzyKyDiuPwMJoGMxxit+5S37lJffs6fnMtADyyVdtJx0SWiziQ+lbWY+oGygq1/jquqFuSSSD1OBcY+MZahFQUpaFxtKQS8C3Rp64bahOIFnVjcZLg13f0aZLjZ6jeepGX33iHr5x/hQ+/+1l+6t0PsDjKiTa3qTd2KEkwnQ4sLqCWDhHff47z12/we7/9m6AiorTLyy++QGPMtKa5dw+ZvictBjEhYvp7+t+qKrl56zb/6B//Y154/kX+1v/ybxFFGdu3b4QQytl5XKSJT5/i8K/+Pbz3KA/CW2Q7lM92d3ni9gazD90fGCbOBpK0aRCmwTcGUTf4usLlBRQlflxgx2P8aIQfDKiLMZQFoqogL3B7Y/z8GJGXiNog6hrR1AhjENYES6dWnhsWRgume4FwLbO8BYKFaKf9hIPbC9cud4WXLhBZjCemDnsoDoskV4rUhL20FRbfU3FO+YUtIiRap2qLiRXN/Q8T/+SP0//ohxAnjyG6afDpFGoKTHgCS28KmgOiMbjRGLuxQfHCC4w//fvIl15mGElK01Abw91bt4OdmTUY0xDpmP1M0UhJ7DzSWHpp8CEWIixcKUWrxAtWGsbZ6bU1ue6mfd3kmmzl8dYGpQveUxtDEid/TMX1H3b7gQG+l77y9yjGF1HCoIVFaY+QBiEdWrYTAmiZXe1mLJhquK0NRu6TebEQkyTQAHp471uDXNDKo1TYkKSQYZrgA6tAOEGsIyI0ENhrOgovWCSjKRgohELKCGtitjbHcG6FuV4QToWHZAIb0YP1DXlZ0djAJqxNSI4xzcR/bhatUuK4j446qDjBWIOzNd7kKFcwGl2kKARb2xW9TIXiB0fbbyOFIEsjJBYjDdY0pB1FLD3aRnjXgA0SYSEMSjmE9nhyjM8pyn1Ku89cIpFReG2aOoQFzEZzpNECMj0J8WF03GH12BF0lLCzuxUALtG+7i1gOk2One5SB8EigvBetBgtiDA5Uu3zkGoySZrc7kmpAe49uAbDEVmSUpdVSEtqF4mQktn5eTppl82769RlTTI3T6fX55Xzr3P71m32R6OQUMXkIHVIKXHeE8UJWScjS7Pgx9ftMTMzR9XGzW9tb7K4tMTNG1cRLYgxAegmrEGl1NRHL2qTlX2bXqnagjN4NQYWnjAhlEFoQxy34RdComJFkDFLFClIQRTp4HgkNFqqtihoATyhUUITqwipgxGqlmBtTZv6MY1gxzUHIIuQAdSU4CaR7EjqWiKFpZGaWCkgBhGjlEQnQSavpMa6iN/47C1KdR/v+cBP0T9mec/cLd587RaPrcPPLz7Fx0a3QTVUSUSdwFBrnBWsRXDV5twe7VPuGw7NLtD0OywsLvLym28yzoccU8FAVHiLrhq8s8RSM2MbSm1YX+hzaDTmu9/5Ig/5D7Dw5DMcTlM2//APyNZv8JA+hPUxM/E8hR1jbq5Ra4GKHYNRw2+X8J3TR3nl5nVuXdxglOc4FxKvV9IuP790lp/rHuO+j30C301JlucxvQ4YQ9WUlHWOHQ0hH4b9SLQF3YQt4BxCBmPgQIkXGAdl3VA3hnycU9chSWl3e5PbVRnYDVHK5t0rnH3oEXrdWZZOrnDm3COcOfMAz33jDxnu7bB9Z4PFyuOmUYt/rMT7Yx+Igx9pv+pbyQWYxiEjQRrL6RxMSRvWm1RIG4oniSDVEcg0eHqYQHEXQhPrLniJlhrhI6KsTfMmIol6aJ2h4xTnAxji2ymt1gJjK5wpaJp9cnOXvaLADwtMUyBkjdCBXxQm7Z5Ea1Id4bFkqkJHktnsCc4c+UvYt+4wf/urFN/+Cuv1LuVwyKBqGBAS2JABNIuTjDTr0un36c3OkHX7DKqMS7uXSBvL6qn7qUzJnIOjquaRwR7/o85ZOHQYkUQ4HHEk6CaaIysrvPy1l9liyI2r15h78FHymzeYq4PdgUKw4ARyaZXTf/pPksUePxjgjMOMKravrnPn2g3W97fYLnNqY2jaDiBC0Z9b4cHDZ+jv3CYf3A0F0j1ljOdAyhj8ToLkOopjonSOpDdH2uuRzHSI5np0un2Sboc0S0miDClihA7NnjMNjW0wZY3JS0Z1jt/dY+vmOk1ZUVQFRVlwoxrRqaFTRTz/1h/xciy53tT05xZQRY71lrosWq/a8EittWztbnKp3+XMQg89Gx6LUKIF0URovFyQ7DrrKKsKKSVJErcScEVZ1VR1Hc7oKMJ7TVVmzM3PU46HqFbqpFSMcoI07tFJl1hePUevN0c+3GU03MDamjiJiaRHRIIy38NT0tic0XiE8YbGmOkwS0k/VaBoHQJBOh1JmsZoEXN4SdDtjvn0Z36Pn/qPfp7CNkgNMolpZETSmwcBs0JwXESIsiHKOmyWnshVyP0c0aa7We/pJjOUcYOnYuRLTmhBZipWYkXVTehozZGFVc6dOstge4f88AnyuxssdgXXKlDWY5E0CKLODIfue4zFc0+xfPwcM9kcSZQFyNcWeNfgrMFXDVQN3taUdcGt25f57sufJ99eZ9F7yu0dipdeY+nQAsWr71DkRWACtmf6xPPuwBXmQNJtRWC1RP5gLGbbmkD+e2rSe60QQjKtIGpXvm8bUKRoewCBlx7rw+9ohMArhXWwqTWbKuKX73uGh8uYptpha2uL3fE+26ZkzVTsW8N+ZMkVGKkRWpAODXP71zmqupyeWeG7m1fYvfEOrhmx9COnGbttllaX2FhbZ3Fhgcg25EVFN0rw1tDpLSC78/QW59hfX0NIRRpF1OM9vBKIpM/i2Xdx5PEf4qtf+zJ3v/Vb9BJFPVLUxjOoKsoapHcoNyK2+/hiCyF860upEN7hbdkCig4RL/Pq5izzvZOsPPQuRijeU5S8c/0i189/HYVg8ehR9u9e5ujhRba39ygbi+rPEcURnZlOGHLjiGSEUxKSwBYzSQff6TC2BhEr8iShNpZRE2q9JS3Jd/cZIyi6XY5//Md55M9/is7pMxCnSBUGir6VzZo22GuCPTgpkUmGPNSjd/g4M+/5INXtWww/9y+Z/Y3foL+7h7ryDo33FEpghaZRmtQFEwGng5y2Mqa933YQLQQNLahjHdIHKWvaiSGKAnvKuallSdM4vJQB4PMTMPqAWQITj0RAuHtA6fYM9i0wKA7Au8kgv5KK2nlKB161gWztv5ywn4JnpMMg0CfP8tB/9Bc4+UMfoLO8itAxoq2tPZMmGbrA0mNw9k/8KCbPWfvud3n+1/8ZW6+fD019u3FpKdFSEAtJZWhZ9w5jPZOwBNey6J0TKGFJFFgFTnjGRU5R1S27uaFqLIH0E8ASKTWKBu8MxsJ4bGi8Y76XMt+BF577Kh/7sb9M99QJti6+TPTct1i7scbRH/tJ3vfYYxjnefudt7l78dPsv/Q9km7KbCo5nkL1td/F64S9uuDauGH06ZSjC6c4+YEfY+4Tn8LNLVA5jzU11lmKqqGqKsqypCwLhoMB+WhMURTUdd02yCGwKYlisk5KGkcsLszT6XSZ7c+SpilpkhAvrzD3S7/Czt/7b3CX3kbK6bQ+vI8TxM6HoZFy4f2chmNMATbfntmh5zpgcolAGnDiHjBKTBYGEyXZvQDRQVLopMATbZ3npv3ZBAs8kDD66d8CpozGcBfBw74xDh2pKcB3EOZxj6LNuyC9dR7rwr5rj54l++jHSZ94CrmwiIwSEKpV/LY9d0AJ20FNYPK58Zjm+lVGX/sC+fnnoR6H8EDfxiR48FIirMMaxykFT3lF5MrJisV6h2qVZFKIwA50Ye8ULcjkWw9d4SXKmxB84D3OWISWYCxaQNZUmKjDXmUYFRWff+4brM4m/Nzj9zN++xqjV17GVJZGOTpxxHbS586P/Cj/4g+/QhbFpB3N+e88FxiQ7RsQmG0eoSRaJ6RZh6Qben+hBFWZ09QFVZ7jmiaEgU4ssJzg+Ree52/97b/N//G//K84d/QQm9cuc/Tc/ZhuL3iN6gjRoj9SJ0gdhQF6p8exuTmqbi+QjiLdYiuBbORocwvu6bFl+z4FrNG3wVWuBfBa1l9jgmyirqFu8GWFL0p8PoZxjh/nuNEIRiPccIwbjvGDEX44wo+GiHEOeY6oWnCwCeCgsA3ChOc+WbOhXw5+9B7BSIPyFj31mJyu4On/PUFzKQgsUic94wfPkv2lv0jvx34Ut7gwLZpty0513kyyJMN5JA6uTyEkItawMEe0ME/04EPM/syfofzKV1j+5/+Eczv75N5hy4LSCySOKImJIs2oLml8sPpJjCeeBFcS9gcdRXR7/QCwW0IgmKlwztCYhomtoZITcP6AnKaEmF7vUspW/n3vmPQ/7PYDA3x1U1KWIyIJpQtT9zARC3/HkQgHE0Gma60A5aaaZCkUwoCQIjDZhKCTtP821igfIs9jHZJjlQyeOniPjnR4YVrJpFQt68QFRFVIQWNCIIFSga4plUbJFBFnRLqgGDW4OsXaBhEFs/mqakiTGGctTSOQsocSKd20S5b0KEuDTBxbmyUrczHOjdjfux0AuFhhfYNxgUiKMiRJh5ksTIVUBLFSZGmErSS9jiJTNZGMyAkL0ZQGfA1RyFZMdUgQ00pjaXCywglBI3KGbpM41Viv8FahRUo3jeglXbTrIeNjyJkHiPpHWFpdZXZxnhu3NkIzqeQUMBBCoKfJx+G9mV5wLbgXmIHt9dQeWFKCngZt3MP6mxZRvmVzHyQ34cErSb/fDalsk1/WLvBDq0f46Z/+s9y4cYON9bu8/uZbbG5tIwSBWWVtoOb7CVNkcsB5mroiSWJmZ/rMLywSxwlRHKO1pmkarGuI4ojZ+Xm2t7cwTT017NYt0IwPF6eQAteEyY2UYa16z9QcXuuUOAoyWSFbhqgI0tNuZ46mLrAuPJ4k7QCCqhwhfEhiVcKEJliKMJtw7ezXK6wPrFKkImrZeXiFVip4sAgQsg1l8JpIx0RKgQ/pygKFSjTCO4RqmYYuRKRPEpKMsRjvqV3MO1fX8TPLiNcvcGRpiXPHH+G9W+8w853f4zeKt7G9Hv/x/OPIosANChpKam05m0g+kPap5ufxOiHPK24N91m7scnMuOC2z1isDSdqw5zLmXMehEKomFmtqYxlo9cw5yOOFjX5C88h336bYjTm8P6Ix/urdOlSpJZI9RhZzxvvfAeupdj+LC9K+O284uqlN6jqEaYFGFxbNN0pR/y/77zBA2ee5qmsz44ds3vzJnebnL18jJYw0+uQxAlRpEAoVKRBtCEqzgTGLyG+3mNb83Fo2qTlcV6g0wShJRubG+x4y3x3hq2dPdK0QzfrUOY5m5t3mZtf5KGHHyLf3+K5P/oaTV1iqpraNuESmJxq91wW//5P7rmJELbQU1mQZNuITpoRyZh+r4+OEyIlyJIYYcAbw+zsCWaVDMbYKkbpCJAoJZCirSbbQB3nHbUtaWzJuN5BNDV1lWNdhRAG3CT5PDTwYbsK+5XWAhF5EhVhjUQmgQUopcDXllQrpJY40RCbPsd3P8DSkffgnhkzFkvYfzmg89pVfhzLD0nFWGhKLxgjGDQNgzqkBI52Nhh4z66xDIQLUj3nqQUhDU9AhmLXdHhO1+S7A/pCUy4UbG/vcOPSRebm5jl15iH+4HOfZk46xndu0dnYYqGsqQlN3khqjr3vUdIuuHKEM57B5U0ufOMV7uztUSQJdSdm1JtnH0dtGzTQt2BHe/zR28/z2MJh6sE2Xmd0hCCSMsgEsx5zvT6d7ixJb5Z0ZpakP0M0m0Ivw2uFrQ1VVVEVJWU+ZvfOJvVoTDPKKfMxZVVR1RWlafBNSPDFWxSeSrTgKKFRbqRgzdV8UC8xvn6Zl/fWuDa/TJomZN0Zes4SRxHONuzv77G1uY41dStfgmt1yWhxlngmo3YhrV0Igr1GW6g0TUjLDcEPEbJtmOumoakbnHVEkQ6M89Kxv2/J8wFKODqdlCzSLB4+x4njZ5lbPEJ3ZhWpOzTNgNlFj3ASawWNKXDeBk9MZ9jfvsPu1jrWjjC+IXOtMF8rRuNdbDnC+gEjs0caSapRTVN6SGJEZ4kjp2fx2Uku3b7D9rVrOGq2IsdR5Tky2uKmM6w9/6WQQK679LI5VNIhW12lX4ezaq7bpzIl6cY2VAOGSUbjQlJ7NrfMmUfexdXLl6kdbO3tYuuGTm8Wv3yI7VuwkjquSUftPXXW49xjH+Xx9/xpZvtzyPE+fn0Tu3MRv7uPyce4usBbE4aU3uOxIUxACE51Z1g8+V4+w4ts7qzTNZbdr73AmgweS3hHn9CAEXa5ds17NGIalNGGygdnCcHUU3LKRREH5Xlg/tNKWHxrai/xIthRKKmwUoCMIIsD4K8SZBzh45CSiVYIF1Eaz1d2b/MMPR6SHerhNrujXc5XI96KoFhdoe4vIGd7NJmi8Y5xVWKNQxpPbCo2R2PODQwnn/wo31X7NIcW6EQZM6agGI1ZmJ+l281oTMTC/DxJFJj7VQ1lBfmgCI50WuGiPvHyWVbOPMrs6ml6qydARni+Tl4FqXdVNdQOcuPCUFh4ytoxKmqEM4FN7zyxCgI44QzS1xjlGKsZLq7XLO+/zOz1y8w+8hhzDz5C58QRRkVOvrfP1WtXuXD1ColUnD51EhlFbO7scefObebzWfrveS+Vgp6XNJVhsLXL7eQWxf4Y73VovHRIsTZCclsIxt7RwZMrwf6p+3nqr/11Vp59BpckwXu5zFvJpKWqa5wLKfBShJopiiKMcagkQemYKIpCoNfKCrOf+muoeJHtf/T3IR+S2OBn50SF8xVOhWbJIPBe0ljAN4GR1gKKAWw7aLad82hnA5NFRkFOi6fxgQUqbLBu8SKA7e3I7p469SCR3NOyoEJBHN4TQtBF0zbHViki7ymdw/gQmDRtTl1g2XkvMD4AaU5r5j/wUZ74K3+N7MQJpJIh1dtWbXhd23R73zZ4LRtGhFC11fc/y4+du4+v//2/z81vfimweqRk7GG9qYGIytig2vDQWEHjAORUNty0MuIwRA7XpnGAC6E7+ADS1pYWHPUgJ6EIQckipMY1hjSJ6OiC6xde5v915+/xyZ/+RT704Z9l4dFnefzF77Bw/0Mcv+8sUmuu3Fjjqfd9AJnGVFVBPt6hqnNm5lbIDq8yuFIQDxwbg5SFj36C5JOfooxTXFlQmYZhEbxPB8MRa7dvc+v2LXY2t5hbWCKKY5Kkg1YK7yDLetTWIrSiGBRU1Q5Xbt4C25BqzfETpzhz6jSrC4tEyyv0PvVX2fvV/wY53As9imzrvYl2FwkygCd+AgC2PVAQ3AQ242QhhZ9p9z3vWgODCcOvJaO0IPVU3jit3ybBk+26btuQScjCFHCerFQxCQhoh75MBZHB1soHUM3i0DK+57HdU19OAjegDU8ES0L84R9l7pN/Fr+0EliMsgVOnJmu8Qn46GEqIxQIZH+G6PEnWXjwYbLzr7D7O7+OvXEJT4P39sDb3gQG5lkDJ9OwBQVUJJB6kK4N2WyvR+ExLQA5DemcvHSijeARspVOu9AbCkHhJU01JLcGKRXeeV588x1++Owx5hQsdHsUVBgNkdSMH3iY3/vGH6Hx9Pp9zn/vlfa99FPySRTHZP0ZujOzoDQO2kArRbffQ+CpvSeKYpqqYHNjjeHWJq6sAsMZWLt5i//yv/7f8Xf/27/DiX7GaHONrjiMSXtoa9h+7uv4tTV0lqKzDnEcc2lnnxdfeJEnhCPt9Dn1zFOks3OIuItMYkQSQZSEwUEUIaIoWBxEGq81QmvsRLGWHlgfTOkEbdDDFEuevsZiChwqQPuwp2ItojFQN1BV+LLGFwEQ9KPAGnSjMX6U44c5dpTjRkMYDpH7A0SeM6qHdAbbFIlGVSVywh50AXTG+zAoDQ+POhbUn/wx5n7lf4E/fZIKhzcVtmn3Te9x1mPaoEtbhwEBUqBVqzSKdSDwqKQFrj2y3yH+5Cf46LNPsvMP/zF842tcqSpqoUJyuAXVFKzOpTjCPuuERMZZYN213qBZmnB0aZHN6zEdX7J4/W2Wb77D6OFTjPo94rSDkRLhQjZCFCetF2jYF7QKpBtjLTqKKauKH/T2AwN8SeyRnTAVRwS0VbZU4QlNVUUTHyCBzEITqWRggAgg0lFgS7VvhJICpEWLOHhS+IMkFOEcXgSk3zYmTJyloqkDW0C2clypQpEgZYS0EUpGGN/gjKBuDM4FaVjeQOUtQljqwqKimKyzgqRPmqbtNK6iLgrqckRRbOCoEJVle7tCStXKJX0w6W6Ckb01JcJBnKhAWfYRWofmOoljPA1CxzgvSNIFhJdoNyLPC2IVIbREKBdYNXGCNQW1L2jEkNwOaWyF8Y60I5jpxERuhghFksTEXiPpQHSYeO5JormT9A+tsHz4ENu7I8bjEEEu5eRgmABYB+/rxHR1cuDbyYTH+jZhmOmh1ALnIbhkOv1sQT3nD9J3rcPYABoIPL00oa4rrGnjYL1HCUm/12N+cYHe7BzHTgw5dvwwu7s7jMcjxuMReZFTFgVFXpDnOWVZYIzBu0AHHw32ubi3h5CSOElJsw7dbpcsy4jThDRJWFhYYGdnB+dBoolFhhaCqAU9Jqw9500A6OIUgSZLE+qmwDQ5kfKt104VQMJwXCIcVOO9wPrwFt8I8lqgRJCoCzyJVNAIdKRQSLSK0TLIXbxQKKHBBbAuTAXDqa+kBAdKh7YrkrJlTjsEQS4kjCdgf2GTlK4t9hB4K8FLlI5QvkEIiIXn3PEZvvzdV1i/+Q7KRxwTkndvD/las8H/JxV8bPU4n95cQ3uYkSldocl0xqwXxLUgpQWJ6fLgwhKPd9JwkOsUZS1GWOK6QY/B3fcYWglGb32D4egWqXQgKh6NOsgopaoleRaxtbjE5ZkOjY4wUUodJ4w6GV5m5FXDtY0N1sY5V29doW5y4qxLIjV1VdI01RSI2DWWT+/d4dBLr7BxokfaSbi4cZvSNhxaWCRr9566MahY4JoGoaOpLYWSCivCa9ZUBqmCCqNpm5vh/oBOv0NTjrm1s0OtFL3ZWW7eXWdmYYGdnW2McZy+7xxXrl2lyFd44NHHee38Kwgds3LuLCtHDt8Dik8uIz8t3CZfP8D47pHues/y/CH08SdBNlSmbNkMNZUZMa53sZREUrOULKFtzPr2NWS3CclvLnhOhlQuEYJ81L0Fo8U09uA6N8E7LYla4FhK0ihBIYgFONEgdZhuKecD28AJRAT1JGzBuMASNJIoiaisp1xXrP3Gv2Jm9S30o4/Tue8cyUc+xUy0wuraG5SjbUZmQNFUjJwjZ+Lj4nBeUXrBwEuKJKJRglq2TEzTUMx0+Pigw86oYhBpXGkZbQ/Yl56tKOFmPEN9/DC22eWRIzMoW3D+i9/lmUbgipICRwmMZrrMP3QcU5coK9i+uskbX3iOceS5vJjxzarg4nCHwV4IOGiznEiBc3GHH417bA/HaNXj0J/8cRYXj9FpPOX+PpGLSHopphgFsG44YGdrm6IYUhZj6qqirEsqY3DG0AgXptcE5oF3wZDdifC5bO0qpAwswUp6jJBTT52SkGJ6xHmuD69wJ40o44Rub468LEPR5yGOY1YPHWdp6RAX33mduinw3rOT5+SHNDqOEQiaxkwZ0IG1V4Y9QWuiKAC7pjE4F8KnjDEBAGiBwMZ4hqMaISq0luRFTRYL9nef58LrL6OTGe6//2FWVo9x6+Z1qmrE3OJhet0lrl59nVtr10Kz6gSNqYkjGdjNblK0hmataSrwFikdgpo0Fiwvx1y6swAnf5Ynjn+U9/2pGe5sX+IPPv2P6CN4+F1P8bs3bmJ29sic5ZxSzApBiiFrtoh2t5iTGrHxDrXPmevPMB6MqU3OkvF0vOWuK4L5s6lZ6abMLaxy2EDa7XD+4mVmF+ZYWlyl3N9FNDkzsSPGY5IO7/vgf8rps++Ca1do1r6J272LyHNc1WDrgtrWlM5S0lBLS+0tjQfpbDCFRpNkXT60eJpvVQXVaA/pPcoFFmlESM61eDTBszVCIKQmbod4YT9QOCGDPNyHwSxtLYGQgd2ldfC/ijRKt3+SkPAr4wSVZsg0I0ozZCchTrr4+Rm0lCRpN5x/KKyroahodnNurm8wWLvCh5ZOM9y4TeQtr3QkLzz6KLtasru9w9U719i4cJdxOcTYOqQ7+0nqqqeP5C/oRQ7Lks9svMnMbJ+jP/UnWO32aOoR8zMdtAxhCGnqaeqGvHRBPqkhXVxBHH+UhVMPMrt8AhdlbO7ust8Y+irC+wBeFk0If7GuTc62AuODfUJlHeMmnM1ShjqqUWEYrPAoZYic5/ULVzh/TfKxp5/m9a3bHP7qt3nkrSvEJ88w80Mf5e5yTrK6yFOf+DkGd9bYfPtVtu7cIhKSZ596F53ZGYqqoaNjukBZGt46/xaHj53GlzlKKxolGHrHnHVU0qOxnJQa4aF64l184G/8CurkacZNjW8qmqahKkuasqQuC4p8RD4e0dQ1xtRY69E6AHppp0OSduj2ZshmZun3Z+h0uvR/+mcYX7pM+Tu/GZ6zt3ilSKwAF+S1VQumWOfxQiJw4Rr2/gA0JgB93nma2iKtDQmQCIzzGClpAOklE6/SqcLO38O2mxyhLQYS+hYxrWEnYPeECSK9x3lFLQITRQgxBYEm57QnAJJWx6z+qU/y6F/8y8iF+QCGOoMxNVWZMxwMGI/HFPmYqqwIIYNhEN7t95idmaPf6zE3O8eHf+VX+Ho5YPTi8yRSUnmNrRtSIRg6QWkdxga43biD52sdwQPNt2qqMLfDtE88sF4ExgWmX7A7AGMCIOO8xfhJBrtnoRfRTaPwGoxG/Na//U1uXHk3P/PTP86HfvZhvv2db/LaWxd5+t1P8O73Pc19Z/8sMSYoXKxFGodQChnFPPHxkkebGh0n6F6f2lrq8Zja1IwrS5GPeeWVl3jt9dd48LGnWVo9ye2NEVffvsbG9Svs7+5QFWPqlgUOnjhN6GRdDh87xsOPPcZjjzzCoZVltrc3ufSlr/Cuhx/k4YceQR0/Te8n/xzjF74DxRhfVQHY9A7hQziey8c0QlHPLwaGdNhIgr+fUK3/HZN3foqKeAJo621gjga8uA248i2ja6JqEgd+fRN/84Mib7LYWyKDPxikeA82zdAqxu1vh/dn0r+1fpNVPcR3kpBKHKh008cnW38lZ1uwsN+n81O/QPz+H8ak4STAC3zTWh05FyxcjAn9n3fTaY6UtMo4hdYarTXJU+/m0KnTbP7rf8HoO18Kv8Pa6fOtheCMg7PdGC+akKzs2x7Fg3OtF58QeNQ0IdW64N+otAgDB3fgE1g7gRYCKxRITXLyPuqbF6m8Q0gwXnJ7tI+dS+nMdxlLD7EEpSjOPsbn9kbc3d/j9MlzfO+7L4b+tQVtVZzQmZ0h7fVwQuCShLQ3Q1kbrI7Iuv0AOqcxK2mEMw3G1iwdXuXGtTtsr9+i2tpkklx8Z/0u//3f/T/zD/7O/4XR9i5xnOJ7Dpkk9JXC3LyEqCo0AukMN+5sUe/ucP/JI7CzhfzyHayOQ3KrANATnKh9X0Ltg1agI0SUQJpBkiKSBJGmkHSQaQc6XVSng8g6iDSBOEJEMUJHoDVojdctOCglXob7JE3b39V6PLd7qLgHUBaTjdSHdYmz4bqxBl2VPHPrFt1+LzAIywafF/iywJclrighL0Jw2LjEL8zT/xMfoel0aJqSqglWAtbW1KMR5WhIWZQUdY0HhoMBu/u7OGcD+aD1bJ2fnWP10GFWVg/TmZ1H6yjgUStH+en//H+NrgvOf/FLlJHASctMFHNfZ5anhk1QhimJNQ03Lt2hKEqEkjjhmen3+Cv/8c8x+LEfhrpCv/A94jfPs3PtLYbVPrGU9JYP4YykajyduTl0p0+cZTjniGJNWRQoHREnHarxPj/o7QcG+HAhIdM5T6QCgy9WAukFOgpG7FK0xbX3BKl2APt866bp6xovJZVzGCXxTgSzeBE2XaUCiy+Ydk82FIlzk4CHUAA44fEuCEBUmzKjtWrBJROSyaRAiBitUrK4xLHI4vwZbBOMxMflAHxDUWwyMiOsa4i1bpMpAwBkrMc0HmMF46IIHuDCIkRIMe2kKUJ02mRKgSJmPGiQYdCAQhHLhEJAJCJMUQemIp5+lhLHKViBFwrnCypXY8WI3G5TyYqRGSORzPe69PQcWdQlFinKCmgEkeoTxUcQvYeQs6foHz7K4aMn2BuWbGztIZWagnnOu6mP3oHcr9WFu+CZ51xIznUtyDehaMvWxT/41IX7mxoNT/+dxZg2ubM2lHWDaWq6WczOzg5VY/A+vD+T+PW6LPjqF7/A7u4ue/v7FPkoeJ0ZE3zsfBBaSClRWtHv9dqUY9n+Ua2pe/ijVDCUj9rDR0vN6vIqp06eYXZ+luXZNVxdksRRkGVIh7EFjWknnHVJXY9RSpBXgjiSdLRAex9GGvh7JlnhNZAIsBDpJEg8vSJAiRItFdpJJArhZEjgMaEYjZMYLZPWjVzga4dUQXIXfoFCCI2wNpinShWo6TIwMq0xAZSpBQKFlBonQyBHeN81UiXEcRZYrXiUhHc9ovjSi3f4+I/+BA+cOIP93htsfeYz/IF25PEMXxts8690iUSh/QBXGXQVTHzTOEaPoSNiUmLiQtNNEhJpWJARnUQTdzQLUnHKSz74esne5gU+m+zy/OMPkSczNE14P5M4op9GRGkKCDSCxhsq31BbQ101DHfXGW3vhYK4Kanrmv7cMr3eLJ1uQpqkrK/dZvPuOs4F38Pz4332ugI9N0OkFXeHQ9IkCp4zYhIEEKpfhQh7jZLIKMIr2TICg+G20hqX19imnspG5ub6FHsDbhU5cbdDFCWUVcGRfp+l5RWeeea9LK4cYnt3j699+ctoeYyjx09y7NAKUbc/9Sm79zat8+7V5Lbf+eNf2Rvc5eL6dxEyXB86kcE7w0MUKbT0QExNFy1jqroi7lXBMcCHRsp73Xq4GIQN7BKl2vTBFvxWIkKnOoRtaIv2AZwWXgOO3BYEXkNIqhPWohFErQm7Fb5NVndIgkelqmsSKcj3Y97Zu8HMxi1OvvwlpEzZVoK1yJOKBK0XWeweYdZKUuGIPQivaKSllg0FDbmraGxNbiuGjaGsa2oH8bjmKTHL3bmITy1m5I1DWkdyd5vZwYC1N97itkopY0fT1JhhxbFaMDYR35ldxiAZCsn1boeX394ljWpmG0/54hvMZJp/Vu/xyk5O5SdT8vY9EqHgMcD5pmBoarrKcM4p1r/8hwwcxK712hMReCi9p5ChgW3aAZ9rvaCMmGToBkYKtI2umEzkg1uJu2eVCBeYCbl3REJjhMAgGUtB4gTdpuIdO2QnncNHmrKqiHQ4B4rxgHwsmJ2bZ2ZmgbP3PcjFC6/hvcOYhlpLfJZiW9mtwFNVFb712FNSEMUR3nlM0+C9oKobmqYhSVIA6qYmThJAUdWhZjTGU9KQS0EaK+KyQopNfPVtrr6pkbGgaAy376yxMHOCveEOw8EeUsgQzISlDIa/GBOAgQkzdTK80loQqyA5zYuGre0xF67+IVl6mDjr8YXf+2fU2zeQ/UXmTz3IycefJc767O8NGIwGbNzd4tbWBsXuVphUl9ssU7HoJI81NXkvpSdmWdq+S6x65JFH+DG7O7vs7m7j6zEd0dBJFXbzOrdvzmHLPaLr11iOFXHZkAjFfSffyym7TPWVL+F2b2HLfZqmZq8u2XBjtpRh2EsYzy5gZ5fw/RSfxsg4Jq0lvqrIrGFub0h/K+fJYw/w5pVXSZqKjgjeN4kQSBXjtKMTZXRlmHQTJUSxJM4SZCdDp11UliGzDJVmqCRBxDEyiVFRBDpBRnFgQUsV/NmUgHaCLlRY0AemHQZpBU44yjvrKNXQlCOK/SHbt2+wv77B1tYWL4z3iF3MnHG43R3uJprnH36YP7zyGjdvXKZummD14TmQtrVAkGktUUbC8o4Zcaax/Px7Pkg6m9I4T41mdnEBMBRNuLpq01DUFV53sOkyS6fexZGHnoFsnuFwl92yZr47y/zCIlppEME/2AO1FYg6DEalCNYhzrWhZ9ZTNmEYB62fWRuaGKmgOHHCYxpDU1i2qxIxs0R1KOXq3XW6Lz/P8sWrrDz+EA888BDd5ZO8uqf5xM//Se5uXWF74yrNxbe4+ubrDN98naV8zKpzIGrW//CzvDzYZrYXk0UChGaQN6RxwkoW8yPOsldZBo8+zpO//MvkWUK1uY53nv39Pfb2dtnb3qeuarozfWSWkmQZ6dwMoqnJoij41BrLqCy5u71FVZQIrVlcXOTEybMcXjnE4n/y86y9+j3cO28ENmcjMdJOGTjBgGsiUAoNvJj6wkz2w3AthyCEUEvR+uFJoREiVN60w44pccrfw06ZAjItQ2tSFE9pqJMBSQti0+r623SpdCZGE3oK71oZLwKVxPjBkN7jT/DoX/rLyLk5PFDWJTvbd1m7eZOd7R1qEyTEKg5p4kJKrDXYxmC3tijrmn63x+mTJzl78jQf+KW/zutpyvzyEirtsuQzjrt1Nu58G2e2qE0LBrnw+ngR1pP1k5AR2SppRHCycn4KqHgv22F+sNzJlAlBZCpCCA2Y0N9EMPZwZ1gi/CYzXvOt577EqNjkxz/x41w4/z2s9Dzw4FlWV5dpmgqhQEUxTipEFiNkcKBVcYpyYScITBvCvuEt+7t3+c3f/C3mFld57wd+lG98/ct8++tfZntzPdhF+NY6CDntOQIDL7yFly68ybe+9iXirMO5cw/wyZ/4CZ555t1cvPwOpip51yPvQj/5Xub+xI8jbKitvbMBgHDh4zQv2L54mf6jjyAjfcCOm7JumGJwU9ltCzSKlmwgvG8H8AckBu/slBjBdCdsK757VEkHcOFBNTgh9Anvpu/xNBzRBkWQMAYz3GXuwmUWH34coSRSBGJG6O0cWIt3NoSXVA3qyGnEfecwIjx37x3GecqiZLA/YDwaMR4OqJsaYxqsNW2IhkUKSRzHdLIO3V6ffn+WXrdPJ+ux8KlfxDrD4FtfxE/Y2zpC6YT5bp/VlQ4yigCDta4FikSLB7XPS0q8FIzLIJnvRUxf54lSp7GwXVgWM0FjA+CXLq0gn3g/77+4w9LKCe7e3WOYb3Gr1piFw7j3fhg7KEk7c3y9Knjupe/yyONP8vqr56mbqt0XJDpJ6MwvoJOUqNOlKHP29raxG2sIZ8E5dkUAvnSUkPRnWDxyhBPHT5BlKXPzS6zdWmBj7TZb165iihzpBW9fuMD/8Ou/xt/8uT9Ds7ODlhrnHerIMezCMvHmHWIhcSLYtBidEC0dQuzsEkkRUmrVBFiT7d428clrJbi1BddMQ2XC+gkTz+BtGQJLGiHwUgYWtVQ4rfFK42UA+4h0APyiOACESQeRpMgk1BkiSZBJhki7kKUtgJgGNqGOAiCoFaJNrxSRRviYheNH0TMzIPUBME44A8S0VmtrWyGonA32M3iMs9R5ztrlC1y7cpXaS46fPkNvfp4oDgFG2fIS3V4YHhbjMfs729y5e5e7e/vUL7/C4SNHOXPuPpaWV8myLlF/lo//5/8FS7XBvvgdIiyzCLKioBmWOCUxbdLzxvYOY1uhlEAjue/YaZbnFliamaEpSuZmF7n4zptoA3PzS5jxkNGNS1TDPVw55O5wgJMBk5C+Jo4ExgjSXp9ICe7WEXziJ/lBbj8wwNfvgJchqTEMcQXeBv8r29J6GxtksgLAyZbNF+QaWkUIZPDVEAZ8BMIyGDtEFBD7sJnbMCFsJYqxjvAGpAogj3ch/VQKiCRhMQlNYyQIhbEJWveIO7MgUkSk6M28w2h/m/GOwTpLUxfIyONbOUknkRRV2EzrusFaSV1XNDYckHXtSJIO3SwYvFprEdIBDdqLVoomieIM1YU0S7F1iW8kxkBXKJQVxGmCwKNdy45xhKmlcBg7oPINudul9gUgyJKEjuowl82S+j6JSBAGEp3gZQehDkHnHPHyI8weO8bC6hG298dsbO+38oMDtp1sEX/nfWsN6Noay2Nc8PSwbQqUc62gwQdJtJ7IGFq9++Rwcj4w/QK4F/yP6sZQlg1lWbIyl2KrEddv3kY6w9FDh1mam0FJSRTFpElClCSsHlohSVPSLCQnpklKlmWkaUKSJMRRHGRfSocJoZStN16YKExYb4ID+fYBCBiAP+cdX/zsf8fO1m0K4VvprQBhA31XBKBHTwIpvEBbGXwi2rhCqYPn3QQUwgf/SYFCWR3kiy0lKiTNgVQgsAHYkxIlgzTSVYbKOZwNwLZ1wVsiSRO0DimBURySq5WKwCuUDI/VGhd4F96DlxgLnV4KPkbKkLYbzFEdTV1BHAefKFtxfKVLP+vy1jtX8cOSuf1dxt4zRGIQDLxFdPukNlC1XeJDWqWU1FJRIxlaHwBALchSQd04LAW6AlEYImE5tDfkqfWKi6nnm6eOcXFzk2rvGt67EBkvJEoESb3SGqHC9MjLaBpFblpD0jTWvHnhVZI0JdIxwnvKvAInOXP2AaRSrN+5Bd6xUedcx/JEd467+T6DoghsTR21k+5gBCykRyqB1uqgAXBt9q6XCNnuK3VOYyxFVWN1YGHe3dljDUO/NxOAjSQmSmLOnbuPN157Fetf40Mf+ShHDh9iY/0Op8+eZri9xc5wP0hDDigAHFD27inw/tiAd8L4894jlSdJZbtmFdZ5klhjbRiKpBKk81S2JvY1OgmWB2GiH15z2QIrtqXuSQl1G6QSqYlni8FV4fqOtEZ4TxrXaCGJtMT7BimCV5BSMdZXNHhqEc4EL8MkVxI8U50NRvup1OROYd/9bi5/5zyH8k32heQfxJKXdEIsFaL2dArBjBDMG0VPembQLBKxoFNmdMys7jCjehzVMf0sY8YotHP4qqQe7xCPR/yEU8jFU6RHz0G2RCwiRBqFxixWaB3jogxkhE09Mm5BYOcYNzX7oz1ubK/x+3ev0108whvrl/leXYYixU/aUjedtE+6Si8E17G8RMUxoRFVSYFn3HIAKhmm5pUQNCIERHnrgjfZdC22CfEt0Pf964GpdMa1TBSvDkKTcqCLp/GORjiGXrDoPM6WbCjBXR2j45jGesbDAc4Y0jSh3+uxv7cDwPLSCrs7h9javIMQUKca+mFYUNUV3tpwRkcRkQoBIMa08h4kZVVhrCHNUpwLiXOBKe+nSbpSymBX0DbyZW2RcfCltcZgsFB6ikpQNTts7+weMM7bgVMwy2zBFX+vvMe3DVo45wUCpYJMOlINJt/lped+i7xoKDav452hLEfMzSd0M8nW5i0OHT1OOpScPXuKLJmhLEuq2rE3HLC9ucl4d5O9rduMNq5zKi+YsQYlFVFjmJeW9Vt3+eqXv8Zbb75FXeXsrW3w7H0LnP/yv+NbW0P+3M4urqfIC42WsOgVg7deoh6vM7B73HIj1vspw6OHkYuHGPT7DIxnc7DLRjFgb2ub/XyAaZowELOObqR5OEv5Ye1Y2pacPnSaaKlPlGpEnJImPeJ+B59olBXMdrNgWZBofJqi0wSZJCFRXAcAZWKO7FujZRcWXkgJNwbfGFxTY4oSW5aYqsTUJb6qcVVDU45xdY23lropKXZ3EVZSlSOKYcGtzU1y77gpJa8LxQdmTqLGgbH/zvwqX7z0DjdvXqLyDpQmzVKiKEFHkqaqKYucui7BB5DGCcEF3/BUOSKbvZ+y49HGoTVkWgCaKI4oq5xhBWrhPo4+8iEWTj2ElwnjsoBiwN3tbU6cOI0QMWmaThv04P/mqJ2nDZZEq8kF2kpMW/lmmw+BE0H9ogg1Z+PCEEl6gUeyO8rZXV9DJBG9/jyHz5zGesnt1/6I/hsvMvvoa/RPP8Bou0s36vLIB3+Uzoc+SjEYUO5ssXP1HQaXLrFx5TIrgyF71y8jj8zhmzokWXfnuR43XPGWTSGYm53j4Q9/jHeuXqP2lrzImekkbN7d4ejDj3HkwVNUxvLWW29w5fyrXL1yhXycU5UVM3OzWGNYXl4iSTJOnTzJ4cNHOXz0CP2O5tbtmxT7O5y87wEWf/GvsfWrvxqSZD002qOQSBUSN5PKks7PIrVCSwE6MG2EjgJDVEmU1AilSLspqhMj4yhIS71npjBYI5BR+HkZBZmaVAqlIqRWobZQKhizS9XWji3ZRIrAHmwH3kIQGl8pccDS1i6zh1Zw1mCrGjMekQ+HVKMxu/u7bFx4m8f+3J+Hudn2jHUMxzl7o5K4v8jo7i63b93m1q2bjPOcsshpmmBlEGnNzNw8R48dpdOf4eadWzRlzbNPvYdn/6v/lqpuoG44UWWYco/7Xz3KK9/+l1hqIhXicMo6JAhXxrfJrgHYaQl7tOV+O9APsuIJyaafRTx7bp793V1wnk4S88CpJWqp6GclnVjRj/bY3S+5O7qGilPe1o5qsMn+5h121tZxo4r73/Me7jtzjNXVBRI1ptvpEHsXauE2WIcJocBZHJ7hOOfa9Zv869/+XZ565gNsbm7zd/67/5rt9Rv4SXBYlITeqvWCdG2onDGmZQgFzqawjnI85PXzL3PlygXe+/4P8yv/2V9k/e4OFy68wbkjp3Abt1FLSyF4SYf1o1tvcpWVNKMx6dJSGxrhp/3ThHXHRNLdXuYTb7rA0PP3gCr+gHp3r8b0ntsB7jzdUabfa7Mppj85kU36iVz3nomvcI4Ux4kjp8kOHwu+3OGFbjHGe+4XgUWEde196Dudp6gqtre3uX7lCnfvbhBJgdQJUZrgvAgKM2tJkoi6MQGwrtcY7u4QxxHzM/Pcd+YBTp88yepf+MvMf/CHA6Akw/X281KHAUi+ixlcYnTz27D1Fo5wVgfzh4PBJd5TW4dzgq6WLdGklbgTAjlzA7PWTRn7xlj6p8/xc5/6FK9evkFPJtzYvs2/+cy/5eali2RRgvQhhfbu1hqPPvY4W1ub7LW1jlCKuNNlZnkJJ0Ogx+D2jVaR51qPO9Eyg0M0qKlqTD5ivLnBnQtvs3LyJA8/+jhnT55gcXWVC0mH7WsXKXb3Ec7z+c//Oz7yvmd5ZnaWyDjk8hIqiZH3PYCqxoiqQipFnCU8+sAZynxIqhU+SRBJgldhqHoQhxzYlZ5wFgvr8F63JBM/TeOmVZx5H6w0VPCYAqlCfSRFGMyJYNbhTR02jFrASLQDZAm+BY5Ng7EB7HStUmK6NkXAYJQMPnVECWQZQyHYK2uWVlYRM31UohBpBkkW/AfjDqKTwfw8am4uPL/2jDV1xf72FhcvXEIkGSsPP0leVXz7/Cu8+cbr3L55g52dLZCSmW6PbrfHyvIKi4sLnD57lvvO3sfRRw9TFznXr13j7Tfe5r4HH+TY8RMkCyt88L//u4yuXsGMRoimCQB94xBFhaoNrqp4sBrw3s9/nlfOv4IXgg9/9CN0e31G+3vMrSySxjHdOGZuboFqYR7bH5MtH6UcDsj39+mqg3Ve7G1Q3LlG3OujZ1bRWiA39v69+8T/nNsPDPB577AmTAOEl21oiEfKiflnMHutDdCm0YqW1eCcQ6tAHbbWkSiBlBalBFWtcDWBPqmCxDCL4yANi0Pq49SLTIRD24uQjqt1B637xHEPKRPqusS7GikqynITY0oQDiXG7A+gKjXG1CjpcDZM0eqqJpcaawUOg3UhjTRSinTiB2g9s2mEcA1KKBKVtEaKwesvUgmR0iiZoF1NNbIkKiZCkkqHjCWVqxBl0Iw7rUE4qmqIkRWFKKhljhcVRKCdZLbfI/UJCT1inxG7DFVrlEhRqouLlxFz50hXH2D5xP2k/TnWNnbZHYym00tjW+PKdvN0bYE+OcCsD74bE4DPucnPhEJHTsI4xMFZNRl4+jYqO7CEQxGmtSSONd0sQdJjuScZlilPzs/zrscfQ+lQXMnWw2kyxTngHLcbKX76GMNjCofRdGLpXUsfbyUYvn2OtB6BLQAYfk8AASWgvEN7T6RaM04fmtRIhd+qo6Cz98ahUEFD70Rg32lJpCK88SitwFtUrJCTIBUEwgtiGYe1P3ltJjR9Ac5apFI01ocwBC/QMkErTRKHxx+CP8LjDrK2UCQZ06BUkPE6F2jICNFCYaBU8OML12mDVhHGGJQU1GUeDNmFY28wz+nTD3Ntc5s7164wYy0PRZoIaBAonZJms8RFAcIQtZu31IqmsQig20lD+ImzVMUwMD+UwhqDV+H9uNMUbFFwI+qybwyD9ZuMBgOWex0en58PcjEvSGyMEZpF4yhJeSdRDKUObEUH3W6H61fewlrL/MIiWdYLvm9aU9cNe3v7nD59jrIo2N/bpraWS7t3eejuHmXckDcli7IbWKnG4aMIIeR0uu2cB2+DQWsLvjZFAKmtEQyHe2xsb3Bz4y5dqam29nh7ax0jJCeWDrG2v0unP0NvZoaqqrh18wZCRezv73Po8BFu377BqeOH+NgPf4jHn366HUg67tERTTbYg7128n9/8PGkYHN4nHFIrYJPigdnwvpq6vD6d3VKbRuMqXAEXyghguTbWIcUHm8D1cG0iWSINpXZe7SWOBcahyhRWGPRUuCEwTiPdMFyWekkJHD5sM50pNsD37XStZCEB6CVxBpHaWushNNPvR/96m3yYc6r0vKdWBItzFFHEWVt2bFB8usag/MhsCWRCshxzT6yMqTOModkUUqeqjQ/FR/npO6jdUbPeR7sn0QcfigAm/tDhDT4/VCgeTRCp7i4Gxg5sgYRvEF8bXB1id3d5L7dHXwC/zTZ5ZqWnDx+lqSTUZfBl8qYmroq2d3dxZgmTPMRWCF4UdS8O445VIUJKoCRMCKkpxnhwxRaimkR20yGFT4AfFbABDbz7deY7GdSBk8s70EonPBY4SmEIBJhfzdeMvSGM1Yy9iVbWjNWGinBVUGCd9+5czz++OMcO3aMt95+hxdfeInRaMCJE6fZ2dkkkpoyTijjiEE+JlGqZe1J4igKbOymCZLsNmgDIEtT6iawJrJOB2PDECgMmlpAvfV69W2CuWop4t6HusF4hTUhZc96RyvEbH1J782ADWFIE58i0U63lfTEQhJFhAEJlixN2rOmwRf7zHY7JL0eZVHzud//PTpZh/mFZeq6QAmJNoYqKXjzjYt86MM/xN3Nazz51INk2ZPcvnOH1753HnqLvFiWmHJM09Q8kXhGpmBnsMvW2i619cRqnm/ehv1cMjAJvz23wh82NY0do9KKk8PLrNBlZgbudFJuLR1jT2iuXr/B+PpV9us8eC9WFSiBa21NJr5lE/XDbSHQaZ8PiJQOMxxefZDVpx9FphkyyaCrsMLjhjkdrZGNCXu3C+FfbjjANQ22qoK/TVlhmyZ83NQ0dR2+Xxtsm2RurWmbijC8FNjWHwqwYV8RUlCamrSbUFc5jYG9oiD3ln1gQ0CkMxZJsFXBnmt4Ke5we+1tbBRz7NgZ5ueXmV9ewjtHN0vJhzl1k3PjxmXWb17HNRXSw47wXB7vcn9R0MzO4uKU+MRJom5GPdpHRZ7Vw6dIlk7SmT+GkIphPmQ4WCdOZzh06Bj3zaxMh4mh1gj1a/D49VgXahaJaNNM/T1Ne2BRWQ/C+6mhtpKSxrl2uBs4acGU3BLFmjiJ2d/bZGtzg26vz5mTp5lfWmRz+zZvXzhP1F3ih5eOcOTUKq+mCyyce4jZXsaJj/0YyU/2SXVKVRaM9zfxxqCAT8QJabdHEkUgPMYFBpXxGo8Msu/dEUY2NN7w1S99nS9+/V/y9htvsre3Gxjik5sQcD2AE5MYAe8lURS8qd791Lv42Z/9WWzaYX1tjVPvfTdL//Afk8zNIpUCF9JunQyBU/1rtzh+9kS4b+cwLTvJej/1rrPWhyRVE9Zp3YR9NqSrtnLX9vvGNGGtWoszJvxtAxvE+6rdLyb1ZQBU3MFMDS/a4LSW0ediz/7uXbSOwnPvpNDv4JWiU9esnj3L7MOPBssE7ymriryuefW11/n93/0dbt+8Hq4tz5T9Nd2xWokdQNbr8MgTj/PBH/og9+djXvjSH/Ltb36dxloiL6ltRafX5eTKwyTD23TTiuHedhjwehve0/b+PLRKqgm7Nfw3GRRN43ScoxyPiVVgJp69/1Ge/kt/hd/89X/D+fPP4YnI6xSUoalHlMOcSxf2ODQfIaiJ8hFvvPQcz99aY2V+ll6/x0I/5fDqEovz88z0exxaPUSWZgQYW9LtBj+rC5ev89kvfIkP//BH+dLnv8A3vvKHmDoPoR9JFIa5bXKzbAPlJuqHpqkxxjAa7lOVRZCEEnrU8XDAN7/6RWw54m/8yt9gb3Od3bhPZ2cD8bu/gYgEMk3xOgYhUCqmKCqawYD6reOhIpMEAFmIMKGXMjCSWsuCe+RlARwW4fUNP9/2MmLiyyemQ78JgHVQ6/nJtG76+eSjSdjMdD+59/GIAM44IXBa0XUWMR6idIQzhqk/XVszGAS2P4M8fBTvo1CHeE/V1Ny6dZM33niDbm+G3sIyr732BleuX2Pt9hrj4T7O1Fhb0+v1yTo9+nPzLC8vs7gwz/ETK5isx8Vb17l64wZPPvQQJx56tH1eYe1J3JT04+y7UHefYv33/g/46i6mHfRNQiTCqe2QwpLEUSCotEoyO7WQakiUaHvWgPBpIZBRzPLcLEdm5xiXFVtbY67e3GVsBYOmCEzLsuTQ8mFm55d48fnnWsawJOp2iWfnMd4z2t7GG4N04X2SUpJlHWZnZ8myjKppGA2HjEeDwDC1lsYa1t5+k92NO9z3+FOcWFngiafexdUs5vqFC+Rb24zHOf/yX/1rHv3P/iq9O7dRcYLtp4gjR2luXYa1Nbyx1HXD4aNzCFfhUSGMI03xSoN3IfXWtsw9F5Q7ogXOPQHck0Jiv6+nboFB74NHpJysIxHOKdGub6kQSgbmactuDsGQMtxvu3sF1urB384TEn5teHw4hzQNGINzDVVRsLqyQppvQzMCJUEHz0hhA0jfWEH1yGPMPPUehA+ksboYc/PKFda3t5k5fJTzb13gM//Pf8Jrr7xCPh61rFIxBcSn2ME9+2uSJMwvLvL4Y0/w4Q9/iGNHjvHCd1/m6uWrvOfZ95FkHbIHHsA3IcXZe9cGtUkUYBw85Qz/8Ec+xv/9n/5TXnrpeZ55+mlklNCdnQuKxqRLtrqMjzOiuWUit8h4MGR26SRzMihllJJIPL18QH1mE6FT0pkFvPfML23wg95+YIDPtkyvCZPE+XAogCQwqQPWO4ka13Ew/k+iQBuOtA6+LhpiFRKydKSZjwNjacK8Eu2kWOsYrTOkjMiSPlk2Ay5ByST4WzSGxhSYasgwX0dRIRU42yCkYkLOaqylF8PObsNoNMK5GuODDFcr1bKFHEkSmhbnBFGk2mAKT6Z7jMscYyT9ZBYpLFoF6VokJGWeo4XFWYMUlrhq6HY6ZE6iPHinQyPsPUiFFQ2N26VkRBM1WFFjZDBpzxJFplJSNB3ZoStniX0P6RMinYIA42JMdga1eJbZow+ydPwslRVcvr5GWTctsBUOlHCoiunEcqKZnwBnvkX5VdsSuTZpShAYf8GIn2li7v9kINWuhbZkmh5UWkA/kkjhqIhQrSxBCdmmGk4OroM7nAB6fnqffirRFSIIXYKRfKCfT6ERPylY2gO1HXAwke6Iyf0HiVJXx9CmNxsrUV6gXUi3017hW0aeMCFZ11kbJLY2AJre+sBMEoB3wUuvHdopIanLpp3oB28iCegoXH6qlfcQqSB3dBLQaK1QOkgnlAr+Ab71QwOP0gKsDCwtJTBNQ106lJI0jUWqKBQ/rdxXSUnZxnYL4UOwgvNsjGq+8PI1Tp17F4+9/z2kkWJ3e5ubn/8W8zdGSGuRVYnfteBjxtWYJA6HjKcKQKmB7f19FhYXqMtxSPMsQ7qZjmOUlqRZyjiKGTBiQ2mGRUNZ1jgnWJCKB6xCRinCOGwcU3nBTxZjrkaWgRCMpMAZg9YZpi4YtJO24WCId4JOt4uKIoyryIsRWSfl9Jn7eP21IaapuFQOKDLFuChoquD90giJsYLaG2KpsNJR1w7vC/KqZL/IGRY5g/GQYVEgvCLKulhv0NIjlGe4t8uX9q9xtRhyJltkcXGVV9auM7u8TNNYHHDi5CmWVw/jgSSOkUKwubXF+z/4oZAg6ibUetqr5n8K8E2W8QTYm1wfeKhrz/4oeKB1E413llq4NpwFVCJorKPRButrnBAUpcX5kAyuZSi6pAhs0kgL0vZxGW/xMjBJ4xaMT3QUQom8w/qQIh1LRdUYjDfESkLdEGmFaHyQ+niLF45YxqEObhydOEFJ6CcJaV/xyhc+zVN76zR4XlER+0oz04LY1tTBOBgDscC70BjW7dDBxRGVgT0j2Wj3jZdkxfXiMv9bf5I5GVOXBezexu6sQ7VHQ8m+gBKJ8IIZq1jwmkQkeKHwqt1znMf5isY1DFzJBoYXuym3lmNOnr6PYlwFtjmCSMfM9mfodjs0dc2dO3dYX7+NbVMZd5zjTWVZ0AJng9ynVlB4T+SDobtFYLzESqY+pgjZsjBC8eRk65nUfg4+DDJaj1OLx4kw9Swk2DaPzOAxIgipD3vNPg13dUrpoSMleT7i8JHDHD9xnJs3b3Dl6hU+9rGPsbW5yZXLVzh29HjwNZ2Z5cUbd/jEsxlpkqCAWIdJrbGmHTAomqahruqQFioVjWmIIo1SociZ4NoTs28pg3+gmDTZPrA1wkAnnE0NAjOZ4PsDA/MkjsnLBo9H0QIQIsB/SgTGPwQwW2qPkMGiQktBJyMkAaMwBj7w/h/hF37przDea9jYWmNvd4O12zfYvHmDvb09dgdjerHC65jv/FFOIwTl2wUzs31ef/Mi12/c4mp3ix/9hZ/Hd7qYBlaV5LALoLkQCbUQiNrQwxJlMkjqjEVZS14WjIb7bO5v8/qty2xevsD29UtUd28zGg0xxgaAbLIfCCbabBCi9dea2HAI9oEv1WOORIp4sEfy6muY4YA4S0CAzlJkJ0VaR0NIkquKAlOXNKbBNA2mqnDGhPOutdYAT+PaZtpB1cpclZgwRELTq9oaoGpqcmPDueEFcRojkiAHcspirWNQlhQE1umuhyWfkDhPWdbs0vCm2YMs4v77n2Z+bpUyz7lz+zamzvHeo1VC1u3y0MNPcfTQMd5+/XuM9/do8FxqCk47i49StsbwtQsjPvCRp7nviWP0ex1EnFE3Fdtbm8zNzJBmPbq9ObKsR6g4RMscOfAjRkCcBODBtUNOR2tK7oMUNyzRdiApgiz3oI9vWSnOY0VMFc3TWzQMxyOSSGFcEySC0jLOh7zx9mu8JWBhfomjx45y6PAh+O5rNC9/gxMf+1mq7ed57eLXGAmBnV3h0ANP0F88TLy8QG9pichrZpygyGviFGRTgk7JRzXeWKgbmtGYUZFTdDW/829/k8///mfIR/lUOkcLrMg2SX3CFPYTMom31LWl2t7hS1/6Kuvrd/iFX/ornD5+ml1jkaJh46XvILpdvEqQQoSBuICyGJNfvBD87wQhBKFtKicNp2gVGYjWOzZKw8/I1uNbyOnn9yo3RDu0mwySJ4CamDaFYurDd3DmiunMwONpmgato8B2aUG6SWDGcDRCehe8rKwNVgZNzec/9/t8+rf+Lfl4fBCoNvFdEyKkhE6APudACorxmBeee57dnW1OHD3OqQcfxHc7jKoa7yyLS3McWj3CxrVL3H3h3yJMGdQ1KrCgg6AkBMbhQcq0ldyG4YgU4I0LvnLWhGGndzRVjVLhrInijMX+IsdOneb1N14lTXv0F/uM99cp85TB3gAlYL7TY986Os7RjPbYWY8YbdxGKY1Uog2bS9FSsbi0CEIGL8ei5Ic+9EO856kn+NxnP8czz7yff/Prv8Ybr34X5x1x1iHJOkRRIHhMgLPphUdQcekoRuuIuYUlnPdsrN1kPNib1lBNXfHcd57nyKHf4C996hfYuH2B4ytHwNeIW7emQ3SPB6Ep84qq8TifB/BhshbE5O8W7OCATODbvTfUcgfA6cSP/mDwdPDZ9F2f1n4Hz+6g1vt+EPbenuugRJyAN4G5PxgWZGkXqaNgVdNao+AsXoLrzCA+/GNEbUiA9SGg4Nq1a7zy6qtonfKbv/PbfPeF7zDc2wMOyCCTXzwdR4vgk6+UIk4zTp48zXvf/36e/chHee3iBeqt2yz6Gi118MskBChUGxtUo4JmaQnTXcTnd/EE78jaeLQMLD5rQzCBluF31dYFa662ybJ2YidzAGbjg2egGOyw98V/x7dMwzdfeIlyZw2ZpjQyAVuSqISHHn+Ub3/1K2HwLCQq6TCzeoSmLBhu3EXQ9sPec+TYCf7Ej36Cd73rKeIowRmIo4jKGtZuX+drX/8Sr3z3BcqywAPj3T3OP/8c+YMP8NDjj/PsB96Pl5or33uZejji5ddf5/z1W3ykE2GuX0GePYlaWMAcP4PZXEdbS16NsUCjE5IowcUxotfD6ziQq5wNAGRLGvEu7CHetQFOQgYmnRR4FeFlYP4J66f1wkTJJ1wI7ZkAdWjZ7hmTQKKwaicw4QQbCK2vm34N0ao5nQfrEabGNzUgsFmKV5J4fi4AlFEUUInWCsE1NWp+Fhd16T/yKNZamrqiLksuX7jIsCgoRco/+j/9HZ7/zrcwdd3u5SFITSqF1NGUfMYklbZNOC+KkvzWLW7fusUXvvDvOHr8BD/1M3+GZ55c4HuvvMzjjz9JJMCOhqEbExFWKJSBSFqqIgfnmel2+OW//tf4tX+RMdsJ/afP0jBkLyt0NoOwkPTm8N6RzswTfKEtaVu02caSzS4hj9+HAEw7FN+tvr/3+w+5/cAA37iAKg+Nh7PhYtM6vAg6Cs1iEmu0aE0ahZtOXZrKoZWkMZbGeNJejFQdUAotU5RKSNMOWiZ4r4OcDoUWHudqynzEaO8akGNdSNuCgFRrHWNbKWRVBrqpMQ1aQpZ1iGPNXN9x6WaB0oJExcSJJI6ZLlQhBFJHeBxB7mOpXYXzMMy3sWgSESGrBlc3GFGESHAdkdpwgYWiwtGNArioIh2YYS74TpTNAOMMvlNiVI4hbFRaCSKp6XhNqjtkokMqOnRkSkQfZTKoHSQdat1Fzp6kd/hRlk4+TNKfZ2Nnn529IYIWRIXptFm0YF+w0BPTvmCKjLWHlRATIO/g56Yfy4NLe1LYTW7Tg6udSk3Ai1SBkJZBJRAqIp4whCa/o30807lVK0dj+tjvubWg3yQefnIITg67yWCMFkScnpj3TNN9+5/yEmklisCei6I4+JaJQFmXSgZ/kNYjRfogoRGA8qKlPk9YdgQZiAgSU2fbg6/1b4SwCQXALjBTpQhSNo8gUjFegGkLrXyUo5SidAFAtjakAimlWoN00crOIgQ6MCulRqUB8MP5AI7YwFRTKmzFTd1gbQAD5zsxxxfGvHrxJTZfm2dlbhGlDetLS1xdu8x7ZMKftSlRWVJKR6K73D16H+/89Kco8yHCe8b7Q5q6oClGFLsbbF15jarJSeOUUT7C1A6fGwrbsC9jtrP5cFw4wqTdwmhckq8uYpKaRgmWxoqBF2z3uwx8kMDjLHGSsLl2DbAkcUKvN8MHfuhDvO/9H2BxeZkXn3+eL3/5C2xvb3HoyBFm5+bZ3lznTpGzsXmXtWqE0wpbNQz2dhjYbUZVTu4MRV1TO4eKYjppl15/lt7sMouLRzgkBEVZ0XjPfllwe3eLvfEwHKK9jPsOHWb+6BnWyjDhjHRCJ+0inOTI0aMsLS2zu7eLd45OlnF3Y5O8KOlOAG4Oyj9/zzr/vmU//fLBup+k/slIBc87Efw0pJJkUYR1JoAZNkw4vfQ0xuGUI0qiEPIiA7DQ4LBSoPHUxpJITaYmJvo6gNuNRTet/4oGJSMwoL1EuADgJIlG+4TIa5wLkfLCiTBxtp5IKZT0dFWXVCuiSOOSGD/aJjENEsFdYfCqixApZWHxtce6nLplsXrviBKNd46qrloDZoiTCO8FtTHYKOaPfMVXyy3+NMt4IB9cpqThrvB8VsN5BYPWF+i4UPycTfghI0mJUEbhcTQYSirGGLawrAnJ+ZmEZHaB7a0dpAqgqnNNG0RkKKsQILSwsEQSx1y/dT0MoYB3fMO7ZUzaprvWQlC0gJUVgkYE77CJP9TkPXctaDJhmASwgTb1UFC6kCgWhjnBRN0i2JeeWCt2vKHGUztPjmVGxOwKz1oSwhGalln3nvc+Q1mULK8ss7e/z97eHk88+Tg3b9ygrHIWl5e5dfsmnf4cy6uHg8RVqwAsN3XwJcNTlhWuHdpNvF3TJA2sljIw+lybejed+vrwnKyn5SETPDJF8NeJlGj9YQlNup80R466CgEgB0GF4QMlw0R/0gBFSiGFI9ICFYWJfCfRxCp40mgdEcsILWOGVcVT730v9XiIUpJYKCrjub25yejOdW5ev8KF6xfZ3t5hd+06pXXkyRJJt4/yFVe/9WUSHXE2TlHdDibt4qIYozK8ixC6Q91NcV6jtCRR0OQDzM5drrz+GtffeZtufxYhYjbu3pn6j0kVMT+/SJJ2yDpBPVDXQaY2HO6Rj4d427SpguFs3fGeb9qSVZWwN9pncP4VFI5UJ8i4lTIqyUyW0pi6nVw7GtcOAbF472lMYAbIFmROOmlgfzUWZxxeSBprgq8YYK2dgqzG+cCMRuIllM6RKU1eWyyC3NSMTMMIwT6eXAhmpUZ6y9jm3JrrMkzg0Px9LMyvMBxss37zGlU1RuCIdIRDMtiPGA32OXH8GE88/SyvPPctimLEjreMymKabh7ZkjNnTjK3sBj2US8gkhw+chLVNg1tdGYrYztowyeA0STdUSJDk+knKy80nEqFrkvJCawHCDcdslobbDaElwz1IU49/cN873OfI9Ka+V4fLwVbu7tk3W5gZRvD/mDE9Zs3uXHzBp1OwopLcc0A/Rv/I8XqYZY+/pHAyG0E2xsbXHj1NdZrw04RQCDlHNvjin6/Rzke0TQVTVWSxhHWwdPPvp/3f+Qj/O6nf4/f+53fxtZNsF5IU3rzc6Rpl7mFpbael5iqZLC7zdbmOk2VtzLjcEg5b3njrbf4ype/xF/8xV+kRpIurXBoYZlIx22AQRi2IjR5PiTNslZRcTDYunf4+z/v9n2n6vefp1Ng5Z4vioMz9uC7B4PuCXHBtz63QAvoOIS3dDtdAKx3NM7wpS9/gc/89m9RliUqihHOEiUxSiuiLMP5UF82dU2xP8Q2TQvMBZb71Xcu8uu//i/4y7/0SzzxzLNEOkZLRSM8wliqvS3GicSMK6QIiY6yDr1H3Vi8DP6Xne4h4rhPU1dt2nnwe+xkHfZ2t4i0CUSFdlA92VrjyPOuJx9l7eZl3nnrdWxesLC4TLK6wqVrNyj299gdDDEtBDXvLbYYUAKyDdoxTUk+HKCUZDQYoXRodHvdGY6sHuHXfu3/y31nz/E7v/NvePP8d5E6Is0y4iQNabltnRPFCVEcBzCyZesIwFmH0CHBNO52mVtc5M7Na9y5eT1IFAU0dclXvvo1Hrr/IZ4+coTdl77J4pHjmM2bCGfwLkjBnbcY2zI+mwJhdVgB9zCYDuw4DkC8yaBlOnTx9/Qwf2z9HXw2+bf++77np3vN96/gACjee03QPoJpk4PB46s6gGNVALKdsaFW9WC1Qpw5jj5xNpiJ+CBzXl9f43uvvs72zoDf+PV/wNbGHfAieHi3cneBDKxbPHhHlY8xJoTaGWMwoyFvvfEaly68zR9981v89M/9HIk7RP3WV5kfDlFlgcDhvKAuxggdMe72KJf2iNzEh88F0E5KGieobRv60f670PtNQmQEtQ17qNOiZfkGYoWzljjtcny8TfbGZca3LiONwRSWyCuMq3Gx5OWXXmQw2McDUkfMnjhFUwzI9/fw3qKEJM06fPxP/wQf//hPkCQZ3/j6V3ju299k9ehRFhaXiXXMyROn+Ku//Dd589XX+PV//k9ZX78VgkLLkitvvU0cp3zw2Q/wxGNPsnt3g42LFymKks9985s885M/Rby9TmehD/15xNHjmKsLyN0d6HRQaRfnLb7TQaYZ9Hoh6dgGQA7bYIsCmmbaR0sVbAl8FLVsUwFJitMxwhkoynZRBQDQO4fAQdPgqgqKHGklImnPvNZrPqQpt8Be60EqwgQBpG7BQtcSisK5KOrWPksqRk1D1OnihcZp8FIjCf9GeovVUcCL7n8Qp5LAyHWOK1euslc2nH/nKv/s//GrbG7eBUTwG+52ibOUJEuRKqjcbHsNKSmpygJTVoyHQ5oyD8AfYQB688Y1/sk//FW+974P8Yv/6S9y8+Ytjiwvc/XX/gdm12/hZBSCiXKHUoZiuI3QGbtxj/lP/CkeOX4UHcVEaUpVh4CvOE1JDx0Ca0m73SkhyjlH3b5HTVUjtEdrHbAQIIszBBDFGT/o7QcG+CaFuFaCOA6yBa30dAFoKWgqh1US65sAvqkMJSSSlCidJYl6xFEPSYxSuvW8qqmbMWVdIfwOzozxdhQWgXNEWoHwmCZQ8iOZhqCPSGPxWBMSbsOkVBCriG6sUcIjRY31jiwJnkndjkQJh9YhzUcoRUMrBShL6qbGC0djLSFxUiKcJEHiqwYpPYmIwBuElygftOamsaiIkLxFg9cJ1lfktmDcFAzrAhN5ko4n6Qp0Iol8AAaTKEK7mKjpoE3ETJYhmpTIdFGiC8SINMNls2QrDzJz/AlmVo6zN664ceN261copibPkwmTar21hJg0T34qi7LuQI7rWgBNtD5FEwZgGHCGg3YCyME9Uyp/MH+a/GySRmRpzNZ+wagMB1LYa74fSJxMGadMQph+PjnwJuEdE+Nq104Z7j0c750yTSZyYhKTRrufHVCgUEqCFy0zMIDNTcm0URYiyBy8c8SRQreSp2AaHph0kZqEfIjphSylJFJyehBrHeFMkO46Zwk83gAcmzo07sNm2DatgQHrfJCnyHbz1Vq1/nQK6csw4Wyjv6cXtdJ4H7wAhWpbZB/8LIWUNHXTHgrBR9J5w7P3KU4cO8QXLx8KnlbGsoHnmlLsVEMedQU/XmtmkByOHc9LQfXAOTqdGJ/nODypjtgf5WxefRvx2nc5WTYkZU4uFFZHNFLwYhqxlVg2F+boqpr5uQWSJGcQx5yPNEU5JnYWJRx7nVk2erNsuphKJWR45ExgfJVliRCaNOvxvg98iB/+6I/wxpuvc2d9jXMPnCOOFZ/5vd9lf3+PpeUVdrbvopWmm3ZZVJJe1uFOU5J6y2yvR9pfZC7ukyY9rHDUpmJUlmwPx9we3qFwHh1rZmb6wf+nk7CYHWWuWUUg6M/0iZKEzf0B57/7KkmWgZDEccJgMODY8Qd5+eWXuHTpMu999lmybpeN9TuUZU2axEgvp+vGT6u6/z8akvb60MKRyjCRj4UHCTqO8RO/kLYwbYyl0aFxT+JAu9dKQCu3FTKYb1vhsC144hsbvKKERDiIrCSVMY7g8SGsQMso7LNC0ChBJiOE8ERt8EvkXWu3ENIHvbOkkQ5FtbQ0ziI6MXImCn6L1vFnneDZEup6yHjxKOsnDlHEjv2qohwNkd6yUw0ZVYZIp5S2Do/fC5qyREWKWGvGiecP6n3e77vMixjnEwyGEZKXI8X1Xoe0k2EsbEcZX7+zxWPGIzFIBBZDSUmBZYynAjaiiL25hcCOloI8H2KaOiSCA0kUhyZaK5I0wuI5fuwEN2/dwHnLHeHY15LEhYLVeo8RkLRAgUAgnacRwf/Ptql1jgDyWTkB+MBLj8ViCAb9YtJlyOAzJbViNopJ2iCZSgt2FOybkteiHjuVZ10Fz8Qqr1hcDJ5Eq4cOoZVifmGB1994g0cfeZQjR49w/cYtVg+tcOjwIf70J3+KRx99GEkI0VBSEemYxgS5FIBoQ490HGGdC96s1h6wHYTAGItvwUrhw+DEubD/Oh+8d4JqLQxFjLlHaiYkSukg13Vu2oxPGgEQgW3Wnh9KBhZjYB7R3ocIAzhcMM6WkAtL5Q2zHcXu+m3Kuub1t17l4fvOUVrDzPIRThx/P48+8x4+LhryImdr7Q431zb41194jrIoqWvLt7/wFVItOD53mEc6XcSMJo5iZNqjTmN20pRvDoesj3OqqqAajxiPBlT5CO8cUdohjuZYu34zAEoIOjPznLn/IXr9kDZfFeMQFNaCojrSbG+tM9y9y+3rV4NNSbss3rIVV6KI2cawpBT7VcXYWCgDm77IJKtVFaoDSRuwBcZZvAjp4cHeIixAJ8GlAmHawYFnGlDlfVjfVVMhhQg2Dui2KQ+grnGOxjqqvEIIwfregH3vA3tPQCJiuiiEcwxEw+35RVyiWFxYIR/vsbu1TlmOyDodFpeW6HV6DMcjtne3GI93uX6t4viJkzz59DO8+J1vUXvLdlPRQTO3sMJf+IufYmZ+rn02oV6S6qA0ts6DsK0UKYQpTIBiKQ/A9wn7CgKDQk5UCfhWzkvrtdtChF4gUGglA/tfBnBhp0l56+t/RNM03P/oE8wkKddvXmFuRlCXJcZbrPB00oxkdgFjDIP9XZpeik4EcneLrb3/H3P/GS3rdd53gr8d3lTx5JsDbgBwLzIBEIkEExgly5JsJYqS1XKS7bZ7vGZ67DVpTX+Y7l7dXuPx6vbYlqyWLVlUFpMokSIJSjRJAEQgMnBxcz45VHzDDvNhv1XnQpJnja0vU2sBJ1fVrdrv3s/zf/5hmd//3G+yGitUnDA3d4D5hQXe+8QTnHrkfQgp6PX6XLt2he3NNW6u3OCtd97h3KuXcUVJlDV5bGGBL3z5j/jy7/0uwnqkikm6s8zv3Uej2URHMVmSYCqLVJK5hXkOHbuNSEvOnX2by++cpRyPqf/peCd45tvf5o7Tp/n4U5/ASYFUCosLDSC1wsSbSWn2Z0CM+pv1+bjLH/oLzsq/EBW59Yfi3d/+M+DKhEn/7jN38vihFpwMsCcPgw+DiCiOQaraA9Nx+dIlfu83f4PKGuJGk7jZIs0ykiypAd+JXZFE6gglFes3b7CxvBwkxCbYGL366it8/emn+eEf+mFarS6lrwIrWoAWHu1zjPdYJ9GRop0lbI/GxJEG4YnSBTp7T2IsCFeCs1QmDPnKUY9i1CeOEmKlGFsHwob+zpbsDEZsbG8zMzfLxz/xSc5dOM+bb7zN4aOHOHjkECvXBSrOsN4RLy7QyhrMbI8YjoYUxRiTg9ETSW0MMsW5ioXZWR5770N886t/QDNNuXLxIq+98VpI1o0TkiQNNbz3JGky7Q9NWYSBmg2rx7rA1CnzAUIq1KBPZ36OQ8dvJ8kaXD57Bm/DkGh9Y4uvfP2bnPrJn2Bw/TIz8RF8awa3s4msyRde3NJrlBXoegmIWoB+C0lA1Nd/+FboZ5y3U3XFXyhxugWo9pMLZNKf3DrU9ROywq6l0n/y5sUEfg7yvyQJlirU/Crvan8mhegsoN/zGMRJrQBwbGxt8/o757h4+Qq/9R9+lfFoSJw2SbIGSdokSeLwHJxHKEWSZDS7bYSU9LY2uH75AqP+Tp0q7SnLkgvvvMkXf/t3OPD3/xGtbJb2yjLaVrWFi0SVBms8uukQ5QhPAOp6I48QCuUcxgmMnQzqZF1DhD3DektpHJWfqBvCmV5Zw7WbK2RZQjeKiJfm+UCVc3A+4ysXL/LGdo9BXoR03XHOytpauOaFoLmwiJAKMxjgqwqFIIoz/sbf/Hu890MfYrS5TWEGjEYD3njt+7zx5vfJ0gzpJZ/5ub+Lq+7kvvsfZOmf/l/5F//8f+bq5QvB5iYfc+Gdtzhy+DB3HT/O+RMn2bh2lao/4LkXX+DSRz/BfdZibq7gW13UwhLy8O0UG99hZzAIfYFUGF/LYE2FrXt65wP5wTuHzQtkrMPeMRrj8UgdIZIE0gaq0cRpjS4tfjwO4LeUUHu+y9qWZ7IgXVXspjDL2galZnBP5LDe7XrfO1PubruTvRKBq/1wkYqtcY/52RmMreo1GQU7C2upxgXRnn1Us3uRc3sxxmKM5dq1K2wOhzz73HP88i/+G4ajIeiY7twscauLVxoVRbRaLaRWTNSDzhiEc8TNNl4IWpVhuL1BMRgw3NmsgT5PZQzf+fY3GQx2+L/8t/8n9szPcuQDH2fwq/8SMd6ipSXVsI/SCYkp6I0GNBsFrhxx6t77EVIG+6soCgo9AWJmlsFmj1mpwzDUexCSVEfggyK1Kovd4CCpsLVPqf9z+8Z//u0vDfDFiYBSkkTZVN+Pi1EqIsnapLUPXrMxg0ejhK5ZS+BcgbUjzHjIYOcKQozQuqhrfos1ZfiHetDaESsZNgMdPLGEgKwpwWuk9KEa9Y5Ih0NAR4HVEDzaatNu5+q0KYeWiiK3jEeGKKrYGZUgPUqqAKrI4K8mHWipyVREJEPQQiQ0hZDEXtOUEYlOqExRBztYnCgpKfHOUQqDbRXsqD7OGWRqKVOLkiCcwHmDQ2GtxCIRRqOspiNbtN0ckWqibBoaJaVxvoVJZojmjzF3+AEaS4cZlRUXr69QGhsSLyfyrboLVFLcAj7VhXkNjE0Scs0t4Jmvgbop6YEwFZksOuH9VO4bit7ds2cy2RLe0WrGzHSaDPoDJMFXKpTGk95OTP8Dv2v8Sw3oTZh6k+c28d6zDutdLSm+xUB4CmbCrUXc5P4nB52vBTLee0xpqYpghG5rT4LpdD5SRDr45qRxHAzZI4Vwu+ChNXZ6SFc1JTqKI0pbImpKsJDgKktVhUlUYC3Kqd+ElvVUTICsp/06CkykqHbqDqnEFcUweEylaYQUimFpUCpILnQd+OBdCL4RUpKTE0URUaypKkOSpLXERNcSYIkXOYtRTjOFan6OclwSNZos9I6xdukMv8KQnajFXSZn0VS8aofMDTdQIqbXHzM70ybTsFnmtFSKx9A1BZ3CQGWQaBIJKk14faHLeitjtjXH3kOHiJQMDGpCkivOYikpnGMjLzFlSVXkVEXBKB9TFGGPUFHK4tI+3ve+J/ne89/j3Nm3AMGePXv5+Mc+xtX77+eFl15icWkJrWPGRc72eMT+xSV+aH6Gl9dX2TIVa5Uh3xpC1Q/si0iTdBq02g1mFg7Sti7In8sSvEfWYSDNdpc0jnFYljfXefvM65y/eBFjLVHawgtJo5GhtSKKY+48dZq00WTfgUNcvXY9XIPWYiqDUipM2cUuEP2uDuTPjm8nV3G95oXxRC6sE2E8idaUY4MTIGRMWZZI7xiXJZZGCHWr/Xm8sWgCc0oaiD0oHUPliJVCudr/UXpkJdBCkaomVTlGRZ7KGowta5aQR2oCK9lbTCVwWJzXVNYSq4i8yFFSkMsYW5RoLXClx1UVvSilryWbpiS1ltOFpKEU4u4H+f7HP8mdT97LtUvXkPmI4fWr2N4mNy6cY7iywvKV8yyvrDNAMpSa3tjjEsiSlHdsyfP9TZ6igyYhoqLtPS0vyeKINBbs5BVJGmPxlEgsCkNFScEYR4mvE2wF51TEllPYashgZwtnLZGOSeIGkU7QSjHKe5SmZDgakiUp3e4MMzNzbG1v0Ac2vGVBENLVRXCOUxJKHEZISi8Zy9DMW+8DQ114vAwOm0orYhWhpSRWEi01SoQBgI5USNiOIkpg6DzXqpKesGx7y1hponQfX9WC8aBBf2uDtpOYqmLvnmPsWdqDtYabN2/S6bQ5duwY+w/sZ8+ePZx55yzvfeRRfuAHPkWcxKg6FCOKQip1WRR1ul1gGmsVhhOVqYB64kzNWKl9TdIkmSaRex+YL7oGOid0PClk+Blhr7d2kjwZEtV8QLdCQSsmCWzhbJL1GeWo5b+Ec1oKj1Ih6GChE3N0X8QGCqEs5c4Om+9cQkcpenEGY0sOHDjKxvYOmfKsn3+DrcYcdmeLhQOLJJ02B44dp7l0EPX0C4HloRVjU5AXjv8gN9i/OEssNDLP8YMepiwpTUHSaOMR5OMB+WiEKXNCUoOk0WijhWN9+QpOSvYeuI1Tdz2I1BEbG8tcuXwOZwpMZYl0QpY16XQ6HNh/ALe0yP49+3n1lRfp93fwHobC831nuCOOqaSk0WjQG+Uh4MB6toQgy8MQNHc2AFVeUFkT/F6FCJ5HOsAyXiqWt7YRUhHJELbmfFizwVYiXDM6jkFIdKxqyb2lKIsQlCUV1gRW0c5oRAEUQE9qGjojQ1LZitw5dpotRuNNuhKWV66ztbHBvgMH+aEf+RFO3HGaLI4xpeV7L3yHp7/xdYrxmKtXL3Pv3feyNDvHYGOVsbEgE7qze0iSVu35FJhmYSAoa3B5Avvt+l6JydoTLpjzM9mzJ3VVqLduBYCUFDgRDPydC7YNesKM9jUIjqR0jmvXr3JluaI7t8jOsOLAwTt4/z2PsLa2zM0L59hcvUI+7BHCMA04z8F9+8hEihxrdFYhhGQudkQNw9hssbO6zdZKSmtpH+956gfRWpO2uswvLhFpwU6vz+P9HX77936bF7/zDHedvotYSr7xlS9jrcVLRXtpL635JdK0AcIxHmwz2MgpizHOGoR3VMaTNVssLO3lwUcf5+xbb7G+crM2+YfNjW2+8bVvcN/d93Pk8JG61goWP9KHAAvBrtey8P5dx9/uwTf53N0C+P3Z2+43/S6lt765P/c3tzid1c3hn7vD+r4mjOO6zkXU4XOBDaeiCGttSHY2hs///ufoj0bEzRbtPXtJG03ynR1MXuBVYIBaa6jqIbvUitk9e+jMzXH5nXeweQ6AKSteePYZnnjsMZSKiZME6YNqxBebeFMidYQUJgSW+EAWSBONcYJk9gCNzjy+6CNNzni7j6hGuGGFyXukQEMlREoyqtkk1lVgS5I0ozUzj0pTDh3cz4MP3MMfNb5GZ3Evr79zln3yMGMp6G0NaM4tsu+9j/Hz84ts97Y4e+4C165cZWd7k9GgjymGjEyJkI7NcsQXPncFvODA/kNcuHgWUSeXqih4+modUkSDf+quFBylA/PnlgAMV/uFVvmIzZsFRWfI4uI+FIoL77wZGJfO8taZN/n+O2/z8SymWF5Gd2awOxvgDFIQWMcQPBzLKoQGTUC2unnZbcDrfWHy9aTBca5euzXJYNqT3LqaQ8M//VownfBO+qt3yWKnj3YLEDj90wnAB7m1NHVUe7CFQZe3Veh7tELd8xBiMVjGOO8Y5TlvvX2GM2++xW9/9tcoypJWd45Gu0OaNXDWgjPgbahDnKUcl+SjHaTStGfnOH3fgyxfu8L1KxfwxoR17TwXLr7DH3/tj/jUvXcwD8SVQSqBszmIUCsaKly5E1p4JIPcEMeaRFaUlZ16wUeRwtZKFEmQuRsbwmQQgsqEa+jm6hq/8E//j7SSiP3dGT6zd5HOzDwn2g3+6bFjvHzhPG/v9LixM2Szyvn+hWEA55OMzuISW8s3qawJgLWM+chHP85tJ06wvbGONwFgO3XXXezZu4+b1y8zKEo6M/McOnKEqqrItGTt5nX+9t/8O/zz/+f/xNb2JkIIRjt9XnnjdfbtXeTYbbdx/o1FNgcjer0eX3vtFW6/+w7k5hbiyhWiLEMfOcHWuTex7hKDwZhBorHOoasKt7OFI3hSS2uDP7kJH3WnGcA3qZDOUQ5z3M4A0j4KkDNzVKMhbG/jKkvcyEBrnAiBlBiDMFWQ1ZoKX5mgMpqEi0iFr+s1KWvf74nNgTO1WoOQ8uts2NeMx1nLOK6wdUaDr6r6jHShZjQVIs2osgR/8EgAB51l0Ouxvr7NK6+8yi/+m39FWeREacri4aNU1hM328StDlJJ8vGIYqeHrcrg9SglsY6I0iTUma0WOlKM0ozu4hLLV85j8zFhKOx55ZWX+MVf+UX+9//1P+LksTuJTj+Ae/l5hICo0cIh0WlCWhSMVYTTbRYOHkMnSfB+rc8tvCdZWmLQ2woDbRuGytYGFSs1cK90hNJxPQgLr0sIAZV/8QH0n3H7SwN8WXaQuaRBFncCwEYAHc5fWqccWKJ5qNyY/tYyuBFSGaBEyMAww7kQYlCbZyupcFagtUfKENethEIqj9QBbZI1WBXM4SuUBOstWkU1aBJop97UEhETfKZKD0LoifCJNAlb5WavJEtLpIIoCvKxRKoA5MkIhSYWMcIJkkiFJt8pIm3qSbbGurAZWG+oRElJQZmVoB0u9iAMXoWwBSFBCz3BI1EyRgJYj3SSlm6RlW0aepFINBFe4X0EcQOTLZEu3cnCgbtIZ/czLAqurW5QTtgTUjHxhvFMAjEUsvb68K4Wpvo6HbeehkzAvYmB8USSqwRYERLoJswSMQHpJgcdobEPbkB1yEXotSgrx8r6DqWZHHa7B7SchqTUoJ4H71zNKNz13ZsAe5PP7eS5Tn/upofdrdJFOQUTQzEmauNicQta4r0niTStLEHJIJV1ziB8CBUIr1koXL0LpsXC+zrULQqJXqmqY8g90lgQwedU1oh+eHyLNx6I0FpT1MCG8CG0w3lFZUIzpVV4vsaWRFOkXxPHEYIY39BEcZBzKKEJHlWh+ZciQjqPUGBtaKa01lRFHsJqIJgPO4KxtRMMtvtEMVSlxpaGLGlhiooIyf7jt+PLgrwa8Y284mkzJFOKphD8iE6Jk5h2W9Rm5CVJLInSiN9taLY3d3hq/gCP5Y6RN+hUsoXn7X2z7FjL8ttnyIsRCwvz6CgO1G6pUBPGUl242IlLuwhBJu2kwfr6BkpF3HXPfWxtbbK4sIAxx7C24ujRo0gJDz/8EM89/zyVsczOzrPT22IHS8da5psdTh5q8PrGGkmakba6NJptrDEUwyHb/R12hkO2R5t0Z7p0Zxc4vLTA0duOsH/ffmZm53jmuec4f/E8e/ft5bP/r8+zsx028jhJcfVBNzPTQUcR33vuWdIk5djJ22m12wwGPRqNFOctVRWKx12PoFsA6Rr8ubUenH6Yfu7RKDIXmmkpCNJsBAZHXpUQOyIBpddUHrQXZERIJ1HOBWDECSKviL2ESuLdJNUvsPO8sAjtKSuDKfpYX+FLhxVQ1iEJHk8iFMJCYQwqCptc7A2JVAhTYJxBKIHwFbZytd+aoxlHsFdxbU+TVzcV3zBbxH7Apw6f4qFH7yHNchqRZe7oIo20xfrSHMIJ2o9+ELWyQfuPfouZz3+Vpo+5rgTrwrBeGtb7BTves+lG9HxECkTEdCk5aAVX4zgwHJzF4Uh9CCGqcBgMBZaSUPA7HAMheL2h6I+2yXe2SKKEQwcPc99997Fv30EOHDiMFJKzZ9/k6T/5Olubm4zyHOhx4MAhhqMhxpZsCk/QpYWiqu9LRopg6K4VWmnmfFqDJsEmAF2bahNMkV3NNLB4Kjy5BBNHVInGpTGy1UKkGT5NmIsSfL/HzWtX2OwNaCAQWmOsqVPPHc5VdLtd3njtdR54zwOY0hDpiOFoyBuvvcrC/DzWGPLRGK11KPbqYUVZlrXUMLD4hQz7mKtlN96FQAwhVc109LXUerKeayb2FOO+tXEKcjiJCmsxVI+B/eUcE4K2rHf8CTtw0ngjqOWQwUNX1edipB1ZAlkWcezwPA/dfYD/8B83WNUZ6XCTr/7z/4FkfpHbGl3u3LufPffcSTbTJJ09yMZgmzyKGKmEzbUtDi7McPHMG+w/cjutOGI91K3hsaVHK0vkKjTBBN3LBKEjVBUjdVSz3kRtl1EDS1FMsz3D9uYqSgpuu/M9fOKTf5XNrR6vfP85bt64hBKOLE2DtNI4BBWmGHHz2nWSNEXKmFN3388br77IcDjAA2+WY87rmLaXtFUwjC/xSK0ZOsvAeYqyoBQhZdiawB6XzmCMxXlPaYOPjy0EXimiSNYNZT1rRYQgjVpqKJ3DlVVgmBeBUVgYQxZFlMMxzjqMsVTWYoEcyL1nyUckHnKfM8qa+Nk9pNsjylGPnY1VZueW+Omf+3kOHDzMt//0m7zxyou8/8mP8PiTHyHrLvC1P/gS+WCL5eUbHD11D28+86dIoUh0i8GgxBOYZLL2qJysuUkt4fwk4X3CoPGoSE/rn93JpmD3rZuEekEcyeBZa21I2ev3AEeWxMGn2Rk8nihWOKDTUECJTGI2dzb5zvPf5fBtJ7n/vgd4zz0PUtkBr7z8AlfOn2NrbZVBb4eV9XV2Yo2SGuKUQTGi1JJKOGQEqXSoKKLZaVEWRWBA1fWasJKZbpckTVmY3cvhoyf5wIc+yle+9HkGgwEqjuksLNFZ3AtaUfTWMcUIW4WBl3PhnpRWaOkoh32unuuRtdqcvvd+tjcP8epLL4ALUrd33nqLP/2Pf8pP/fhPIkWCl7sBamF+5aYD3j8Hur0b6qvrM/7cbXcW5qfg67v+2r/rt3b/bvr9vwjdq8cC1tY13eSxwhMILORQ9032t7Nnz/D6a98HIWjPzRNHCYP1FWRd003rcjwqCoFlrijYXrtJ3Ghx7I5TnHvjNZwNgVXra6usrq+xd++hEI4iA3y0s3IF5wxlUdBIYpJIUxYVc90WxngQEVEsEKM1GK1geivIyqFdiVcShyNLFBHllHEpRfB/1sLgxn3acYwUGutgfs8h2ot72SlKtja2WFtbRQvP9voaB4/dwZ88+zwRivbMDAf27+ejd7+H2W4b8JRFyWDQp7ezzc5wBCqm2Z7lO9/8Y8qyJI5jhNIoHZHEKUkc1b2HwxlLs9lkz969LO3bi45SBr1tlpdvsLKyTFkI4iTDOUeR5wy2tnHWsbjvEGWRc+3SObz39Ha2+e6b7/Dk++6DtctQVdi0gRyNsCqcUROVkDXBFsfXVhKT1wcp370yJnuGAKEVvmawBzJBWGp+CgzWUJwQBMrgZJ1O8T1uVUXtLtlbpeT+XY/v63WUW1NL/qhDGMCXZZDoCgFLBxF33oPUKtglOM+FK1dY3ljl93//dylLS2d2ke7MLEJ4qiIPKjkdIWubIO/DkC54PRo2l2+QNdvsO3iETmeGt17/fvC9R1AWBd98+iscWVzgZJJQjUcI67E+DH9LU5DvuZvKG3RZ4IY3iGRg8lofAg2M9RjnEaVD4fC1ZZb3gWFtfTjfbd0/yihm/uAx8vGI63lBD4PuDyjzisFMyoFOi9v27SPfGfFH1y7x/Zpy3V7ag8VjTI6tgoJjz74DfOAjH+f57z7DW2++wmd+7m/RardpLu3hgx/+CL//W5+lshUnTp1mtjtHVeRcW7vOL/2r/4X3feCD/NRP/CS/+Eu/ROUMwjhuXrzI978/x8MPPUy72WSzXjff+M53+OlHHibp9/DXrgKe6LbjqGPHKF97jVKBiWMGQpDGEWZkoLIIW6IRmDIEYEk8yoX3x5nghYyQyEghgWp7B5EbhCkRVYVKUyoZ471CNRv4OAYpsUUO4xG+KsNStxYtwn0GQ2Mdhl31iEPWILKzFVLU4TNCBo98CZEWeG/ojwY09+8HpfBKTNc6xuLKCtfqwtIBVKOFs4Y8z7myssKllRv80i/9K4qqJGq1WDh0GC90GGynMf3NZcb97QAa1nXfxOJ0UNeYUivSVovunv3MtdpsrlznwMnT3HjnTap8DIRB359+65u89+FH6DQ7zD/xUYZXr+BHO9iqwApP3GyiewJhI5KsFWyKxG7/5vFID/H8InZtOVwz+GkuhQmsJYqiCFZd9VWtdERc2w/8f2Xr/v94+8un6OYV271lttxFKpOjhEM6ydqyDhKt1IG1qMihdQixsNagRJAVGk/NxtIMRp5Gakl1HeBQU0+NdSRW4Ww59TdRWuCcAOHRUUCWx0UAuVQ9KbXeBdkKtcmkE7XhokQKFTYg77AVNNoRsRJIoWlFTSKvUDaADWhPrGOq3CCdQKkwOSgqh40MuR1hpSWPcmxsUSmhLfTBe0jJABQ652qZZ6CjehsmLhFxMJ4XEdrGpLSJoxbYBqgMkga6s5/m4Xvp7DuFT1r0BkNWby5jTJDf6QmbrAb2lAhGw8F+7laGG9OEsd2P9UHm3VTeNZHN2vpAo5bTyvCSB2CzLoamvnl1+AXekyWaJNbkRUVe2prdI2t0ehLwMSmId8E757kF0LuVoReS6sJrWE/bnWMa4nLL/ezS58NzCXX4Li0q/PbklA6vlawlEq4yTBJzbFUn3hkfPEBsuC87MuhIUEofploAIky3at4j1gWfoigKTZdWgXEjVYSqjZ8h3K+Oap8yFXyqnHVoKTAmBBxEkaYYF2gd5H9Kaqq8QiqJl0GW5SpLFEcYFySDWmicD4ycPA/rzjiFswZTOuIoRTU11gkazTZx2sT5ebaeXUZmI7a2t2k1UpRS7Dt2G+1WyvbNm9y4eh3RajDMx9j+BqXsYOIIa0PCaOZGZPvaNJf2sbIz4GvK8fa+vYziFqmy5KONkEacNWnNzrN+fgMvNlhY2hM8O3WMkILolmYqRlCWBSWGKE7w3lCVFY20zZHDR3j15Zc5dvwoD77nQV5+5RUOHDiI1ppOp0u302E46NOdnePq1jo3rGVve4F3XME6hp4Q9HrbbF+7ynjYp9Ppcu999/PoQ/dy6NBh5uZmaLaaSBUYkEkaJA2xjvno7Cf4mJSMxiN++Vd+ha2axSJl7UU2HuKdYWJqbU1FnCSMx2NWbi5z9+k7cNZRliXOa7TSSOneBfL5W66x/+QeXKcL5oXFK4/xjigKUlgHEAXJt/MhWKEwRbA6KOvD1Ys60McQK4cleERaLLkzCFeAr/FX63AEVnSFRfjAakMF8MT7wCRVUmKkQIkQLFMYh1DBB87rsDenSiJiRekMiVJEiePxJxRXIsnKuT1cu+CwpuBSGnFYxaiZNv3C4ErDRn8dLwVWabIsY2d9k6gVs6UFx0eOAyXgy9qzTuNEypa2XKHHMRIkigaKO63nuzs79GKNryzFeIWTThJjqbAUGMraXNgDFZ6LOuJ8LCl6PZppi4994pM89vj7+NpX/5Dnnn+Gv3nfvcRxTKv7AHsP7uU3P/sb3LhxHSeCL2CnO0N/a51trSBKEUqSIrhddxA2sIYq7/A4Km/JXcXIWcbCYayEKEakMTrLoNVEZSkiTZFxQhLFpEphEZTGkpuKndGQzc111ns91nd2GOY5SSOjsooqHzAYDpEqrlmxGq0kb555i8cff5Sjtx2hKAsunD/HaDTkoYfey0SIGEVx8FSzhsJUwRdUR1NJEZ4pg8vYCZOgLmSUmjL+lZKBFVt7pdYnEEopGkmKs6NawOfqFMvAiKpcYP46grl2kD8G9l/w4fM1w6zeouuzS8ngWxoUkZ4k0WSxQguBGw24fb6iN4Tmni7DseGlM6+zrznP4nefY+33hxgrWJ5bojG7SHr0GK2772L2nlPEUZdeEpMlafDDFGHF4Gzwo8GD9DhRD7uUxLnAYpuoC3aDpEIzqJIUnaTcvHGNpcUDvO9DT9EvCi5efJudzRXSJCZtNKgqG65ZV1IUBufGCJmTNGKyTovedsUdd97Dqy8/j7GGIfBcMeZQLImFIIojirLAO4Vzjt54hBOCvE6iNN6hbQgUMHVQRGTDHu1FCIqKqygkO0sZrjvhEah6QCWpHCgPQlQhEEuF93zCzjNesDUuKZDkWPpCgFB0nUAriykrxo0lbg53QAmWV67hbcUH3/8ImAKlNds7O2ysrzG/GBqtI4cOcvTUXZx9+XvkoxEzt53iiSc/hN/eYVyOePTJh0kaSeDz38LICUb74auJv95kwj8ZFIaBpJ16Ik4Yo2LC7vKhzox0hPOBaVGUIfwq04JmGmOLMZUjhI0pBZVlLnO00oRmI8NJiasqLl45x5Xzb3HfsRPc//CDfOLjP8jmoGJ79RqXLr3N+TNnmeltUfV2UKMRelxhfETlQx1W+XzKli2KglaW4r0nL0p0GmMqiy0L9sx2yR54gLW1Fc69+SZRnJLOzNDes4Q1FfnqOqYco0RgZ0olEVIxUXtIUSeGC0NVDDn71uucOH03733ifXzv298CoMzHvPjiCzz14Y9wYP/B4J0ma1hNyqlXp78FuduFNW4B4/6CT26F7CYgoZh4AU72pVvPzumU7M94PE/v99bvBoAvhATFtXcodS8Z/MeUrgEV63DW8tIL32PQ7xOnGUm7RW9jHeWCysgZi4hi0iTFe1cP6YO8yYxyyqIg3pOw/+gRrl84Dy7UCuN6uDIJenOuIt+4ShQJxrknlgItBEYJ4qxBWVRI7zC9KzXQXlC4QH6IlUZIjyAmjkTNrA81RHDPlFSbl2hd/w5bPYcYb2CKOawp0QpkHNMfjvDWMRyPUHETGTcw1jIsctYunOfixfNEOgr/pSlp1gjDZicwpsABjfYsqzevomtGo9aKRpYRx4GhXhY5e/fu5ROf+CT3PfAwne4M46JASE1I5oatzXX+4Au/z3e+822U1rTq2m886LG+co3b776PQX+H7Y1VpBC8+car3PjoU+yVNxCDPrI7j59IyqckgvA+ht7R1SE6NdA3mUwJMb3u8fWw6ZYzUNRBZq7eU7xUoAQ+RGnX/dO713VYVvVgi13bDf9n1uQEwJicmQjBeFzQmZupA6qC/NZXBhyIRONuO43TaZ1ACyvrG1y7fp0/+PwX2NjcpDs7x9z8PEVRMM5HxFFMEsWhxvfgrKm92gK4JqUkSSKqYsTG6k2W9u7nwfc+zpuvfZ/RYBCYa4Mh33nhJd7/4HGSahOpAgu68p6BF7zsZnnlzA3uv/02bm+UyNEmAovzEo/CYaks+NKTaI8PBwzGOkrrcU7UzPGwNxd5wY1LL9Gdnyc9ciffrRw/MjOLHI3prS8z7g8pbc5af8h3z55FJyneGPYdOcaFc2ewVZC7KiF58oMfZFxUvPji97h59Ty/8m/+V/6rv/P3yJot7jh1D92ZeSpT8sQHPoZQCWawye989td54rFH+daffIOf/1t/hztPnebV118NeIM1XLl2jRMnjnHk9uNcefttsJ4bN67z/LVrPJVKtDUMrlwgUwa17whLR0/xx9/8NoeaDZoi+LlL51DGgvXoKEJEEa1mQqwjskYSah2lEEU5DZARUYSPK3RaIU1FEicIC7IKqdNRNQ4BHI0mxBGy0cJpRdrtIHyoV4S3CKUhCr2QUEHR5BDYsgJb4aqqZrDWFlj4OnnZMrx4gcUsoxIy5ABIEdZxpBHJHH5hL3J+Ce+hKktuLN+kPxry7/7tLzIYjkiyjNkDR/BKYT14V7F99SaUYyRBYhwuCoGFOum3/lZZMtzYYLCzRTY7x9yeQ+SDTfadPM31M6/jygK8pyhLfu9zv8OD991L58gJ1Km7ca89B9Lhqrxmd1pUu4Ntdak8IWGZMHDyNXhvWx12Vlc5iCIKkpTpvjBh7znrQuCmkIEAxS0ktr/k7S8N8I3ydcaj1XBAWo3WoKUJIETpKaq8DtvyFKUlcjIU/TL4VTgr8D5IPsalwgoY557IeLCeKA6AmrMGJcKBJKXC2hIvJcZ5iiIAbs4FsMtZR5qEoIqwEQWPHmcDWySSMYmOibKURA+IfYMFHRMrBd5AHlL1tAjNs5AeW9X+Tq7AuArjDKXyjHWBaFpcZPCiQiuFEwIlQsJqopsURRU8mn3wsPJWgkrJREQ7Dmm4yscIH0y9nY3xURPRmCWaPUL38H00997O2MDNXo987UbN7BHTAbIjsO+kDGCfnEwt3W7DYO2twJ6fylyDnwi7LIi6aAnSpvqouQU0CwCfnz5+fa7UAJ6nmcRkiaQsDVqKkORVV8t/Ebg3AfW883X8+S4rz/kAeAWJrquTFH1N3a0lWLdQ1SdT9qn5+oRhGB4sHMz174apMVSlwZQWUzpwHussUgtkJJBeEsXBo0/VRZnDIUS0y9QTYYYbJSneicC0kwTpqw9yXVNPUgTh+WeNRpC1SFA6gKWmqqYR70olBH8eFUIopKKywV9P6QThkzoMJMV70FKhoyikUGtdS9Qc+HAoCynrjc+jdYL3EiEUUZKghEYmKUM7x+LCkGvLa4jKsHx1mdXVm3jrufe+ezhy7DiNRpudrWVGwx2+8Cv/AiUkrZkuS/v2E0eavUtz7Jubp2Edh9sNrm5s8paFmaWjFEKSy4jRxgYHjnSYnZ2j3H+QmzevsrOzw8x8gooFk8QJNUkNrYstXR9SW5sDnLWkSUQSKYp8yOXLF7njzjs4dvw4zz77LM4aPvTBD9Fut9i5fp1Tp+9ha2ub5zZWuKo8rflF5uYWOXL6IPsPH8SUJVJ4Zma6zM/P08yaNXPTsrK6Tmk8RVXRyNI6ATQwrKQQVKai2+kGAFcGlmSWRjhruH5jmazRoN1qkjXa6CjmxrVrDPo9Dh48hDWWkjJI0XVgQSjvd6+nyVT3zzQmU1lY6GLIrWerCteEVB7tLEkUEpYVhqhO+yutofCOQVkxlq5mMhE897yjBAppwZbBz80FdpnAgwvMVawgijWlYWoCHmj7YdqKEngRwhBCcqYKE21Chy8JqWNlZcI+XIVhhPOeVmfA3R9e4LKeY08vZ21tja3tLYZXrzN3cj9ZI6PTTSiqijzPyQtDkeeMiiGxEHw20TxrDHtMGXwJHXS94aCXzFaaoYDrvmI/CYqMx6yFoWejkKQWDlnP6Zp9kWMYY7H17mWBMY43k5gNYwZRGn0AAQAASURBVFEq4sn3P8ntJ0+i44Sd3oD19VW2NlcZDIf87u/8Jj/7cz/Phz7yYb7w+c9TFCW9fp+52SWGO9sM8awVOVpKKgFF6cm9J8dTRRKTJrh2g7jZodFskTZawUcliXFKUTlDaUr6ZcE4zyn6I/K8YJiPGeUlhakY5GPy0oSBhXcoHXxK8rxge3ubyhikVMwtzIR91jriOOa9730vxhqWV1ZYXFxifn5hymoy1uCcYzwehwTaSBNFesrAlqoGiOvrZ8Jo2g1E8lNPPghee8aYOpE0LGonPNZa8nJMIwqpkKoG9rQWKCeQvk6CgynjvH6E+hwLRZJ1E/ABYMKShiyRtJoaIWRoHnyTzoFHeKSzTqe7Tb9MeTMyLCzs430nH6DTg05iGPdu0NkccH1tmefPv4b5k6/zsWiO9v4OBx97AvfBLPjniijIpL0Fa6cDKWdtbcdQBzjIepBUJ9JOzjGJpNVoEEmYW1jkzlP3oLzg7TNvc/ni+TCp15qs0eLDjz/BnbefQqLYWNvghRef48yZV1hZuc6sLWlmTXJTse/AYa5dvYjznrPOctUa2kLSFopER2wZg5QRhVRU3hPpKEir6+c6SeTFWdy0MQ31Rm4NVoV6rkDgRJ1jrGu3PmvqoI0QZGGqikRCb+iCx5v19MucEZYxgp6QpLpBQoSrUwxH7QwrK4S3bG9tcfzY7ew7cJjP/rt/w1/79M9zz713s39xllRJ/vU//x/Ys/8ghx96grNvvBTqDpvz1A/9CJffeJ0P/OBTnDh9R2h0hUBIPwXtJkmrk7oiWB2Id6em1ueSlCL4TdaTe+HD7yZKB59RIUhihfKw2RuxMNugm4UgoypSVC5CiuD/m6mIU/sbbJWGay4AF0nSwCSaoszpNhqc+f7LnDnzFs29R1mcm+XO46d432MfJrZQCsn40nku/8ovMTsb08vXqLxDK0Wq25w8eQftVhNcALiTOKYoSsoyZ/nmTTZW1zl++x38zm99lryqiJtNZvfuxRvLaGsLV+ZEShFHEe3uDEcOH2F2bo7KWNbWV1hevkE+zjEmsMlwlnNvvcGR206w78BhVm9cxTnPjavXefvM2+zduz+obNwtYN6k9rvle3/h7c+Q+f5TEOCt9eGttwlYcitQ+C6I8F0I4i7ksgvEh/6A6VpwxCLYFVS2YtDf4Tvf+TYO6M7NMdreDiTsKELJiEefeJwHH36E+fl5Iqno9wecOfMmTz/9VYz3jIdD1m9c5+DRY+zMzDHc3sI7GA1H9TAtPPZoew3Xu4GwJUkcofCM83HY+/IhzZrNJwkgTxQp8sIgZPg3ShRaSJytBygiAO9hu7QUoz526w0ORJqPHFK8ceN7LC/Oo8sxzooga/U2XM9ZA2uq+toJ9ad3Hq8EZWUoqoI8HyL8JBlesO/oSW6cPwN+EkooaDVaAYCMIvLRmCef/CA//ZnPYBEM84Lt4Yher8/66k1Wb1wmLx13nrqbX/gH/5Db7zjJr/3aZxFS0Wx36G9vM+yFoKiTd97NC9/9E5y19LY2efrFl7j96AxqVJCpGBvHqLJAIOv5sq9DRwTGV0wIdd6HYDgAZC2OnYDTgKcmNdQ+sMGL1NW/G+o6a2pywi3kg7CuxfRxqAkME1OJPwdPT/8k9DmlDxJvL8JgxXkRwD0f/ON9o4U+cTsqSzAOhuMxV65c4eXvv8Rrr75Kq9liZm4uAMnDIUmaIAQYUyE8dGa6LCwukqYZ4/GItZVltre3KcoyeIxby/L1G5y8404efeKD/OnTX8WakJx6c+UaV/T97BWC0gXg3TmBdZIbG1u8/OZZOu0GJ/Y0sH4D4RyF8RgXOifrQqBDaQS4CimD/39pHU6EEEtbWy8ZYxj0t9neuIl95y1uHj7MONV86uB+0qyDs4p8OObpi1dZHg4xpqLZnSXRoY4xJuy9WbPBPffcx8uvvc7G2gpKCi5fOMdv/Oqv8Ff+6o/SmZnlb/78L7CxusG99zzCxvo1/t2//GfEWvOzn/mnHDl0G3/81a/wvic/zJtvvBYUc3lJURquX73K/MIScZJQDsdUpuKrzz3LR/76jyNuXEY3I6ruIp277+ejR2+ne+wEzz79NV49c5bR1haiLIkRSOuI6ho91iF8MVIiWItFEQ5BmiQ04phGq0mj2aTTbpNoTbOREjdSlIpI4xgxHARVYdqn8sEXDilIul1EnJBkaRhKLMyjGzFVniN9hRISm5eBsW8rRGmQUYRKYmykidMMU/sv+6vXsb72izYuBIEIsFoj2h1Mu0OSZMGLsd9nY3OLr331q5w5exa8oNHqINOUYb8fiF29HaQPXoBaKGZmZzl69Djzi0voKCEvCnbW17h24yprG6tQ18LjjQ1Wh0P2HjqG9Zalw7excvEs3oYgmrNn3+HZ57/HwblFOnc/zPj8a/ihQYsEbw2VThAzXUSWUVoT7I4mZ4UI9Ip07z7a3WQXI5Gy3vfC3qtEbS9XgxLBiy8As39Wmv9fcvtLA3zGeRwmPEk8XmiKyiKEw7uIoiyRypEACEFVgVMer8UULIp1MBdvZSGcw3qPF5b+GEaVoN1W2MqANxTaIggyykhLhIjQQoMTeOepnMUjGZclSRQAklgGCXCaNNFegg2Jj85Y0kRgCog8aBy+nq5bW04nLlVVgXIY4ehVA0bSQmzC5NF7IiuI64YfLwPAhsRJ8AWkIiWVEdIHCUimYyLVgEqhqwQlUoRIQTbwcZe0u49s6XZae+9AZHNsD0as31ynqkwdCEENYO36zkkVpl4TG+iJ1DYwQYMEdwrqTcEyPy1+xC1HSD2Umk6WAnAnpuCfkhNvvrDh7ibsOlpZDN6ytjXC1pCWrEHA4AMopwfVLmvPByaGu4VpOP2+m3ruTUE/G6QQbpJiVVPnpyglTNHvSUpdWH5iWsRN5DXeO/LcMxopYmHDQQhEQqOEpDQVVS2n8FbUZr5+6pWCC1JzY0BIizWGqirCa+ODP0hZBZ8ha8P0XhCxuZUHDzzhiRMPUtNodlA+JPRWZRX+/UbUwRqKLE2Dl56OQ6lZJ7iF51MhnWRiMuu8CzI/HSGcJ06iEO4hAkiIUHgLwnqq8RCZ52TNBC3rtSV8oFp7yzgfMRz2OXn7XfR6lnzlOnv372dnewcpJf3L66xeOc8gH1Mai/aCjX4frwRVVaFsxfhKn5m5edIoottpsr25TndmlgMHDlGVhs2tDVrtWeIkCQCRD4iRs5aqKinyHK0E46IIYByedrNBu9Om3e2wsDBfe3REjMdjhoMexhriJMY7x+zMDI8//v5Q9KUB3E/jlKr0nDvzDlkSoaOYa9dXSLMmkQoT5GajQRwnYQKmJPloTBRHdSGqggxcCpb27OOVV18JUiznMKZCSsWVq9f5+Mc/zvl33iJpzmCM5/VXX6XVbnH0tmNUVTW9FvE1cK3r+xWuBsJ31/DurQaq6yGEF1DgUdMSsDa+lRKhLEIKnA1ShlJYrBDYulGPVU1tqmV6Bo+WQd4oPHhjiSIZ6PiVD+xgU+8xAoTzWAfSelCSwji0ChR1qWV9aInAJ5SgpMNUrt6XDZ1mEtLOtCQvhjSyGbqHj7N3cx7VvkH/6kXWvvLb3HztOc6cPEnn9F3MHD5Cc3GOTrvB4mKbzRshjeuVdsYzSYmyMWWRo50j9ZZ5a3i8tBz3lhVZkDqPBmLgA3mQMguCr4tEMMQzxlAxnaFj8awKxRuRorKSffv3s2fvAn/0xc/x4z/z8zz66CO8c7ZNVRW8+formKrg1Zdf5BOf/EHeeP1N3nr7rcDSiGRIo/OCQayoshifpfhGE99pkTWbZElCpTXGB++6raqiKMcUgz5FZSiqkiIfk5dFYKq7EMYjlGRmYS7ItaynNTvLXbcd4fTpuzh44DCdToeLly7xP/+zf4ZxniRtkKQZjUab/mCIcI5mI2P//gN4D91uALz37F0C53n7rbeYBCA559BxmEDiRZAFEQZJxrpp0zFp3qW8JT3cB6mbtSaEY9hd2wVuCYZyziKEmg6CRL3oZRTh7G5CoRST+xdg/XQAFUUaX1VBtlN7sSgpiGJLHE/Od4O1CqJ59t35UYY7fQ6etmxXKaceWOPaC+donb2G7hWIxGOPHyC5u8G1jW2eeeMsK3lJ5SM+fX2V+Ne+xNbvfoH9d5zkahIRRTHeB3m1EJJiNCJOU6jPBi0FcRThb5X9CTE1kO9trLF+8zqNdou42+Gdi+e4dvU83pQ457njxO38rV/4BS5dvEie5zzxvg8x6u9w772nee31V/jt3/ktbly5wvz8As32LPsOHWdtbZUiH9L3ltdtxYwQHFYSUXn6wrFTVjRFGLgV1lISrvnceSpRexrHEcZLDJ5CCAoFRsqanaLxWoEOxtLI4NWHs3XdUCcfApUNjW7qC5pVQSo8IyFZE7CJYJ+QaGsxrkJoxWB+lkpWDDe3kB4eevhRjI3Y2umzubPJieN3MNtu8sdf/Bw3Lp5hdW2Ze9//FHML82wvX2Pc3+TeRx/lqR/8QZCultOI6T4rJcGEvt5wbyGST4cqYV2HH0gdgM9Jmm7w1YNYKfYsLUCVY2wRPJFdAEI7jZhUheRvqRWqdMy0m7gqJ4kiZjptnjot+fpFSy/TDIclSavJ8Tvv5K//jZ9F9Xd489zbPP3ya3zlj85Qbq+yf+8+rIw5snc/7fYMF+bm+cGf+mnuixSJN4z7O+R5zm2330OaJDgTrj2tFToKoEy72eDw4cNcuHiJ82ffgUjTXVhESsXm6hrSGrI4odPu8MlPfYoPfPBDCKkoyopWp0tVVdy4doU/+dbTvPTSS4G5XZR4PNevXuaOu+5mbeUmwleM8zFnz53l8ceeQMZJGMzX1/K0zqvBs//Uzf+5L/4CFl59Fv75v/XvuoNbv574IL2b3VcPHmww+AlSwHBmO+ewxkyDzoytQHjefOt1Nrc3Q5PrXG1IL2lnHT790z/D7adOc/H8BTbWNtl/8DCzCw0enZ1jae8+fvXXfplyXOBMxeryMnsPHeVCbwfwbG9sTtetx7F8/iVc0aOqalsZL2tbBGoj/lBbx7HC1inXSmoq50nSYD2UCoeIU3LXIGouBABYCISTmGHJ1fNv0J6ZQ3rF8UxTnfsioldAejzYWTiLtSXjoWHt5nWiNKFORcI6h6oZu847jCmRPtQbSdSgco6dzbXw3gNZIwsAeZJgipKPfvSj/MSnf5pnn3mG7z3/HIdvO8aTH3oKBFw8d4Zn/uQP2Njqs/GxH6TdinnqqY/gveDXf/23SNImZVZSjPpsrlzn/gce5uzMDP2dbax3vPbGq+w88GnaW+uUvW1ko4sd3UCisDa8v6asQuBdHbTDZE+oh7ATrz2Hmy41b3ctZqbeZELgax8yoSbDLqYqpFuDOyZgMtRYgK/VGLW37ZRuMSkC6+ZsVBS0OjMIF3obLyy+KkLhLyXi0Al8p0uQCzo21zdYX1/j6a99LaheZmcxpmI46JOlaQAqjOX48ZN88gd+kJN3nAxnmpA4C2U55pWXX+LLf/AFVldWgoJOSy5evMB997+HAwePcOXSeYQUbKyv8fKV69ylNZ2yqIMLPcQRIkoprKPdbFCOxxTOomvVnakc3oUBoalJPIIgoa4mfa7zoCaED2i3O3z0ww9w6coltjbW2bx6nW84y/rGNk/u3cOsFFzvj3hts08caYqyoDs3S1mUOFt7DeLZf+AQMm7x9utvURRF2AO8Y3VlmX/zr/5XHnroEX7gUz/EydtOMhr1+eZXvsD5s29xxz33MCoLrt28yeWLF/iRv/6TJHHEKA/2TyYvuH79BseOHiFJM4pRkIe+8tqrXPrrn+bUI4/TWpgn2X8QlWUk7Q4f+9Ef44kPf5yd3iabyytsra6xdvMma8srbK6t09/ZIh8NKMZj8qIg8h5shbeGsYD1YoS2VfDdEzV5x0GkNKlSGBtcppUMJKzQc8bEUUSrkdHIElrNJq2ZLrOHDhHNLaKEoNjpI8ucqtfDjoa44QitJSrL6B7Yh2rN4NMGTsLyygrCWcqirMMiZSAWKYHI2oiZWWi2gi2Yrbi5cpNBPuBLf/AFvIe42aS1tIfhKLD1hjtbgRCB4+CBg/zYX/tx7jh1N2ub2xw8fBRpofCefNjHmpLrqzf4ype/wFtvv1kPoXJuXj7H0v6jJDOztPbso3/zerjujeErf/wVPvzQozT2HsB25hH9HiYPoSNRlOL2HUF3mpSlIRJ1XT8tGoAoobfZpyoKhAg1fzEu8IThqRCi9sMPJDQpRB3wtasU+Mvc/tIAnxSeSHt0DZ44Z4kSiUkFo74lS2OELojj8PvGBPNQ5wVlKTEOOpkIVE0RUFAVSaSMmJsVoWmRJgStIPBOkcQR1kJKhHASjSJWMVka0S9zlIZYhUQ+rYIHmagk2idIn5BECVIojHK0sx5DYzGRobA5xld4HVgbBkeUKqqiwikgMuTRCBEpUGESHUuNAGKd1L4XlsJ4pPCkSpHpBFElxCpDWomSEu00VAolM5yJkI15VPMA7QOnae69E5/NklewMuhTbi2HGbkIfzsFx+qIZykEWsvphu/rwsPVH60NBpfG7hqT3yoFulW6CjCh5Hk/Yert+u1NgzrkBDirC14CMBfXCa9lFQzXnbFQF89S3ZISyi3g3hTIe7fP3kSe+27m3sTfbzI9dRMkcjpf3Q0p2D1AxS2H8qRBpAZGIYDOReEQkUCh8Qi2ty3WV8FTLgqMMgsBMKtZSxOfFVOK4AERukis88RpUic9By+8KGnQTBMcGq0bpGkKLrA5tFY464mS2rfAC5q44GOFCO+hsVPZZZ7nSCCKZJCqGYOOwoYcSYWpQoKCNw6cRnhPZV0AKR2UGLSKMHmF1FD0czyOqjdidnYfGyMJaputjfWaBei4fvUK165eYVSUrKyusrJ8AyEkaZrU4HsAFLMko9loU3lBFCvGZUW/t0OsLb31ZXyzQQ6UlWXY22JmdoHFxQXA0t9eY2d7PbyTPoCocZzRaXcQDvr9PsYUUwBVShiNR8zOzXPk6FEuXLzA0aO3sbS4SD+JyLIsAKXOYm1BWY6xxuKKCLNlqYrLoTlTbspENZVFRyEkIcsyGllGlmY470NgRpKSNcL7F8cJcZqSNZvs23+QOE7C9eIdVVmRNZqsraywtbXBhz/yFMZLzpw5y/kL5zl54jZmZ2cxxuwWeICPwnUZgjwmLF1xy3VKfc2JyaeBJu89sZRIHa5T5QUYiRFVgP28qFkbkjGWKBKUeMK8owbjCPJGACMCgOmMDR5cZQg5Ei5Mn7UUKCIqW00p+JGS2LrmlD7sUUIKnLE0soTSOIQIa15IhY5UYCGpwPJL4xgpJEOb8t1n3qQ3iMhLy5vecX39Jvv7G8QXX8d862vYZgvZ7ZLNLjC/sMBsI+Fw7f85rEqajQziFkVVMrIV69axrB2PGsWcsaxWY/Z7RYsgnglzTphkURv8NFTD4TEIDIJXkoiLWhJrxXseup8r168xHg+5evkSSZpw8NAhsmaTQ4eP4GzFPXffw+zMLA8+/DAXLl5kPB5irSFrNMArtuYOMk4znFeUGERlMFs9xiZnXOQUpqK0VSgIopg0bdCdmWNh71727l3i0G1HWdyzRJIllGVJZ7ZLs9lCKMm4KMkaLRpZGpiiRbifAFw3GeYFOo5D4rs1oeFHUJQV/eGQBp7ReMxLL73I3XffTZZmXLp0Ce8D03XCvlNaAcH4ehK7NGGrqdrDMZBywy5d1alotma1TYG9er92PiTk+fqatDZIozW+9uaUDPOCsqpttmsvJKUU3tvadD34/k0m8bHURCphdqbDTHcGoSoGvctASBkUHnY2zvH81/4labaIEy3u+dQ/JJsvuPbsJVpaEo+3MYOCeHUZM98gvuc4at8+qpU1nk0i5g/u56G1HeavXOf4cMwr7TZ2PObE7adQCnrb27z15hvMdLsM+n2EEGSNDKVjujNd0kYTIQTOVIwGA/LxkDRrUlnHAw89grBw4+oVinEI5zh1xyn+0X/zj/ijL3+R3/6t3+THfupnOXXnnfxvv/gvWV2+xt/+e/+Yn/mv/gH//pf+BWvLN2pvq5SDR09y4cyrOG85Jy3HXUVHaTLhiFXCihZE2hNXnvEtyW9GBBDPCUmpFV7WgRtS1qnOrk7xDA2/GRfYWp5M3eRHQCoEqVRkSGYczErJnAFFzI6SFNIQYdnvJQecJHFhkOWEYqAUpS0YDEdIpTh+8nZuO3YHaRqRddsUZcHcTBcfJzz4/g+jszmSdI7Z2X1s31xmUBiGwwFiaWHKFgplzy0ew/W6m4B6068nlVIoKt5tgi1292MpJakK//VHBd12k1h7nIH52QaNJCLTBA9N50hjRyNJQUiSNJzRi23FJ054rkvJm8sVfW8Y9wYMBj1a5RrD/ipjZ0k7XTbXV9gcjFnbvI7BEm9tcn1rjV/85X9N1mihpCJLYuI45k9efzuk7yZxfb0IKlux3dthe2MNHWdcu3odhKTVnSVOUgabm0gJjSjh+LET/Mxnfg7wfPbXf51XXnkZFcX84//DP2FuboHbbjvJoUOHOXb0Dj73+d/GuB2cDYF5vZ1tjtx2jEvn3qEc51y+eIk8H5PoGCcmsAb4el+wdY073Rz+gtvuOOvPgnihtpsAd3+O+XTr92uw5l0P43f9/yZhKWFwZ0nSNDCOvavVJWEvayftGjixWGf55tN/QlFUtBYXsLW8s6ESfvInf5ajx07ya//2X/PsM9/hkSc+wF//yZ9he2udK5fPc897HuKTn/pRfuNX/21gJ5UlsVa0uzOMettcv3KZfDym1Wgx6vdYO/MsaSSxVhEJGBWGygYvce8d1ipk0kU3u1BZGksHuOPuxxBxGx1J8p1Nbp55Gdmc5Y4nPsb5c+9w/rWn8XIySIed7TGbm1dotVqkzRZZkvOeecX54VnezCxZ8wCDKGF7e4Nut4WxjqIyYXDhwTkTep/ahsZ7Exhhcwv0N9fxtgonh1akWYPAc/McOXaMn/j0T/O5z/0eX/vqH5GPh1hT8PB7H0H4cFrvbPdxVcnbr36fzdVVfvyv/Sgf+ehTnD13nhdfeplmt0s5HpKPhqxtrHH7qXt4/plvIYFL169wtjdgrwYxHtLYdxS7uVJLEcLwoaqDC3EBxBN18GOQ44aaQ0yCPqbrsf7/hHfgPUG+5UDIYM8kJtXGhFThpnvRZFl670IfNm1eare9mqgQmrN6AOmhFDqoIapAUPETZpFWWKHwJ04TxWkIUCortre3eP3119je3qbZbKOkoN/vk2XJVD304Y98lL/2Yz9Bfzjgpe+/xJVLF9npD/jQRz5GZ2aW+x96L3ffcze//qv/nldfeRnvw5n69ltv8MDDj7G1uc542Md7eOHtN/jEg3eQmRKXNDAzCfr4CTquSxTFtNtt7FZJWVqMqkM1vAiDkFq5VXqLEiHoonQEhp+USOWnPoOLS0v81//kv6MsC7a2t7h+5Spn3nqb5158ni9dPkeWj9nZ6XHqnhO8+P1XkSpi6cBBlreGIdG8vuYPHjrMzbU1Llx4Cx0lDAYFhw8c4tM//TN84+tf5wPve5Qv/9Hn+PgnP8aLL73Fk489xo1LF7l6c4V/9W//Nc9/7zlarZR2Gqw0BsU4JNEXOTv9AYPRmO7cLP3NTTyCzZ0Bv/X01/g7P/qjzKQJ9sx5lo4dRKcpEoHMYjpqjtmlJVxNapKiHqLbEAhjnMFUhrKsKEYjirKgyMcU4xHFaEwxHFCUOW48oizGdYhMQVmVFL0+eEuR55g8ZzQc0K8Krq1sY+wkjFKQak2iJEkcEwuBcmG4oLQiUZJWlpFmHbqVIG2XdBdmGSvP22+/yZ379jPq94ikRmcxQhtcqtHOY0tL3J7BCcnG+hqVsfzmb/wGvZ0doiilOTPLOA8Ej8HOJhpIopgnnngfn/nMz3Hm3Dk+9+U/5NLVa/z9v/8PacUZsVKcuXwBYw1z3Vn+/t/7b3j66T/mC1/6Ar4qqKqSlZsXOXD0ON29+xn1tnDDIXjBmXfOcu7KFfYs7CE6cjtu/TqiHFOOx6Ajys48vZ0eX/jt36M7N0NnZpaZ2Vn2LC6wf89e5pMM3cqgLIhaGU4Imu14itMIamWgdUgVhqe2VhD8p8ZV/zm3vzTApyNABzmsMw4VgSQiSiTeS8qxx2tFUQSAQoqaYURgG4WkJ4nxHlNJjIWsAYkKabnKe7SMSerGWSqJqCCWCQ0aRCowrSI0iVVoERPL+nG8J1JhOoh2SBGFhgSHtyU4T5ZqhlVJz5QQWUrGEAVmgBQ1GNKs/dmEp0GCksHMOFIRwiqUqiuFUhFXwVsv0jEZCS3VRsoEKXSgZ4sIgUYkLeLmXrKlEzT3nybq7qdfeFbGY4qdDSZecnKiT59IFuoiVKmJnThT1pubgmJ+GiU+kbQ6t8v2mxY+t9xELd+clkk1uDD18avBPaWCbn7iEzYpnZyHcW4ZjgZ4GQDJCQgY5KG7BZi75flMQTy/C+5NAL13+e7dUmRNpLu3nJ7BP0fU01e/G2U/YZEEEHLyDCYHamheOp0E0YpqsDDIiRqNmllRl52RVpRlgUMRxxrnDFZQN+oBEI1iXfvRSKI4qiWb4eJVUYLSwZfSVCVVSZ2O68jHFWmiKUajIMc1gHBEOlDFqypsqnEcgwgSdeEt1idEOgpASW1+a60NQz5n0UJQVSV5XiC8RAtFnhdIIWm0GugkCW2zUoxGhrlMcHg24fr6GGMzFpaW2NpYRghBb6fHxctXmZ2Zp9lq09/ZREYxQutwcPV7jAY7ZM0Wn/n5n+Pll19hNOzz6KOPcePGdVZvLnPlyiU+9vGPc/LkSTY3Nrm5sswXPv9FNjf7aCUo8pLhcIwzFRC84O5/8HHuuvte8vGIV1/5PhvrqzSaTXo7WyDCgOG2246Spil7lhbZ3Fjn0UceIY41o8GIQb+PFLC2usz66moAMWRYd0rpEEBSVSRJRFnkgULuHHGUIKUgTRPiOGF2bgG8o7KBbbp3337a7S5Zs03abDM3O0eWphhTEkUxWitAYk3FmbffYf++A+xZXEDh6HS6nDp9F1pHTHybTA2GT8BpVU94wx4gaxD73SBf+LCb1ihwQbPgZZBoYFDK4yoZZKbeoxOowoaCchYZSbQIfjCx1kEGqQVFFQzRPYpE1vbzXtDQEcZaMhSp1gyBUKc6Uqkphcd4S6I00isSIdGJBgSNSJJGGu8t6JoV4S0aTyQ1kVOBuVY20VkLl1cUVcHGoMdKVXJuHBKl21mB3N5C3riCVhId6eBrqiJ6VYHzln6/T5I20HGMKwOouK0F39GCY36Gt4oxUVnQ8pbMOaJJPENNnfd1w4mQlEJQKMUgUtxoNtm20Gmk3HHyODOtB7l+4hQz8wtsbW+yb98+tre30VHMp37gr9Jut9nZ2eauO2/na+02o/GY0aik05zhem+D9d4N6PuaBRmkqUKFQYmQgsPHbmNp7x727N1Dp91lae8eGs0WjWYLIVXwYJUKay1p6hkbx2B1O3gtScGgH4CQqqwCw1sI0jSl2+2SV5tTqZf34YwzpeP8+QtcuXqND3/kw4yGQ86cOcPW1haf+tSnuHjxIlnWYG5ufne/dEFuQS2xnTD1bvUQCexxU6eGu3oY6Oom2YYzy7qpLYT3wMRH1wtwrvboUwFwtb6W7Mhpaik1y2/C67NTQkVgnzYaLYrSc/3mNZzL6XaquimT4f7MiLWVVxBqhmZ3nnzU45mXL/BSb8jJuMFxKRiJDFzBzN6TqCgjX3kFipKBiPhsf4dvxh3ef/pOsk6L2YV50qFmNNgBHI19LRYWllBasrO1xdryDYbDIZUdMjs3j9IRo8LQbHfBB1mUdY4nP/gROjP7ublyFWUriv6Y+cUl/u4//Ic89+L3+Nzv/xbtbpP3PfkYf/il3+Ol57/Dgw89zMz8IrIxx8c/+YP85md/la3tHWYWEuaX9nLtwlsUpWPTOjaUZMN6bpMxs15woj3P97xhrRxR+oLpAT8F7z2qKlEuJ/aOBEEqBA0paSBJpaQpNA2VEStBZhWpFCRAhifCoJFoBEpUYaalNIUQlEpgkIw9jBCUlaMwhqQq0cTosqK0Jfk4Z3Z+jq2tdb78Lz7H+5/8ILMzh9ne2sAYw8d/6EcoK0MzazO2kiTW4AKInRdjKmPC+exD4Eo9HtwdBE4qhSlV59ZiafKz3fpnUlt5D5HWzM92kLZkrtuk02hgyiGFM8w2EppReC7CgDeWbqtNrEL4myQwocu8Yi6CGXmFkyc6XBpKVgpJJjW93hZSCYSOaba7tNsdjPMcve0kVy9f4MBtxxFJCnGMiyJGeUkvHwcQ/9oVbM36ddYjnERGGnRI4h5sbzPs9RFZRtZuMxoEO4wkTrj9+An+7i/8A55++mm+8pU/wNYhdj/48U/QnZ1HSsHG5ipCSB577AmKMucLn/9dRuMhkVbcvHmTQwcPcfnCOVxVcfbMWba2tum0umGJ1Uxe8LdInifvzeS1fnfC7Z+FVCafTd6bW0PXpt+bACQu+Jz6+u5knQYOTGXCQtSDZO+DzUFNzJrUrM4arLU0sgZxHE+H1Otra1y+eAGpI5I0ZTAcIz08/uQHuePue/n853+f7z3zbebnZ3ns8cfQEr72R19iOOxz33se5vTp09xzz328+L1nEUBlcg7ddpgzr25z7fpVvvG1rwS/1WKNmXwNkTTRzmGEJ4otwgxJkyZq7gi3PfQUs4dPI6IUKSVZu4uTmp1en0aWobXm8MMfr5mrEnXpcl0HKwQaiyIvLFmqGY0qqnJI0mzipWHJj/jJezJe3/KcVxmnDh5Gdw9yfWvAYDjCCYkvDZU1YfBTX05RkgYT+kaT8bVLRJHGGEOSpuAhSiKUEPzYpz/D66+/wdPf+CqVGYMIYHG32SRuNJmZnWH/4aOsrq5y89oNqtJSWYdSkh/+q3+FN958k9I6oiRI9ZZXbnL33fehnn8W5y25sbyx1ueJpUXs6Dpu1EMvHEDcvEzkKjaRtBwhgMsHUF7U0rmJVVF9mE3ylJiyI/zuqp0Cc5NgLUCIEEg1YfiJyZ1Ouazs7rn4qWdt+Nv6h/VjWAl960h1VKufaqDA1TZMOMyefSR7DyGUQKEYDnfYHvR59tlnkFKRZCn9Xg8dRUFxZCwPPvQwn/zhH2F1Y51f+n//L6yuXqfZbKKTBniLs2FgorXkb/7dX+CX/80v8vIr30daiykLynzMI48+wje/8TW8h6trG5w3CfuSNix0MQcPs4Km3NyhmyUsRAbMmNKB9EEF4Ahe/WkkGRehn0WEPaE0PmgvnMO4GJTEFL4OQPG0Wi2azRYH9h/gkcce46c+8xl6gx2uXLjMyvIyV65dIZ1d5MqFKyzMznNtvR/8/ULqHN1Wh2LQ46984mPcduw4W5Xntr2LdNttPv2Z/WRZwp6FJb79zW+RW89waZ5HnvwYP7Cni8srOknK+vYG3TrEcbIOTJFjbZveYERV2XpPCjXxd156ng+fup+NL75CNNvlxImTNLqzmGYbtGac53SaTeIoImu3iKKYLGsQJQki0cQqJpUy1HZ1PRYIEaEf1kLhvcLX/bL3DmuqkOSd5zgb5PZ5WVBWFUVeUBUF+bDPqLfDqN9n1O8z7PcZ9noM+z3GwyHleMSo38cNctTGAJ9fRb32OgaJiTX9quQjJ0+wOg5yboQgSkOAyqGHHqYRSUSjiY5Dj7E92GF7e4tnn3kGoSOiVhOdpZiiohiPg/egjnji8ffzkz/1M3z3+Rd4481XefuN16dejJV3mHHOlz//u1zfWOFjH/sUx0YneP8HP4Qxli99+Ys467B5xfbaKs3FPcwcOsHWO6/hracoc779vec4fewUS4dPMXzm68E+KzZECwuYfYe5dGOLb3ztD4MiwYGtDJFWHD50iH/wt34BvZMzGg1Jup0wfJa37AkiAP1C1BZzUqEnqsj/f2DwVUZQGUFhHM64egFZjCnBJwhkCBiQCi1D42JNoKoHo1WHt55ISpIoYewEKYKk9pKzRhH5CC0F0nkSrUOTLjSJSIhUkD620gZUDqWC6WSkNE46rLF4KShNiVQlla2wJrAyKudoNgT9EnJdgapI05BQKoXAmoooVsFQ0VqyKMIZRywTkjghUy28i5BItE6QDqx0aCeJZRslMoSMsQKUTpBZC9WaJ5s7QGPpNKK1j9Ip1gcDyuUt8MGQUtaUuSBH9dNCQwo5vUghAHu7MtYJsBfAvSAJCIzKiaRqcpsw8qaggWAKKIZv12DehK2naube5CAS4WCLIkWn2yBNEkbDnMEwpyirqXY8hHLsAhO7YRpMmXu7UuJbGXvvluaGxF87bQrDzU/vb3pxTCZctRxqUvKF5yt3P58U7HVR3hsYtgaeNJXBqyZJEEoSJQng0bEA74jTjNAOChCeVhyRxBGVcfV7Eya8UoT0XFxgR1lniV1F3q8Y51UwDlaKNIlRUmONYVx5pI6I44TCjJBCo0TwMWq1OoFB1tRUeU5ZlMRKY4ZjjB/inUcnEfggjwsEdvCmoqoA5ykLS6QVDod0Aj+qaHU69CpH6SXtuSVGMqORpsSxwvVCok+r06Uc51hrePHZ/8j9DzzK8ZN3U1RjSmOIhGN7e5PV1RWkinniQx/hkz/wQ/zQD/0IEwdgrSOqoqIyIaHN2WAonedjTt99P+O8QEhBb3uHmzeXuXzhEiura6xsbrAwv4ck6zAc7tDrbSNEHTOuYkLQkOe5Z57h+InjLC4t8sdf+UPe+96HePjh9zIajxmPxiipKUZjvK1QArqdLr3egEajwXg0IEsTRqMRxtlglC0ERZnvXiwIhoMdBr1toigiTjJGwyZrqytkrTYzs4t0210O7D/IpcsX0HEylQRmScza6grf+ta32LNniaqsePzxx7n7rnsQLkTMK6XDXngLyA2WiQefq8NrJjKyd+N8k+ACUfvneLwJpq1aaEpXkgbv9toH1IUQEylIZfCWiVSQn6axZlwZEilR0tesakEiNKkW2ErQ1AkGizKOTCcQwbAsSIiZS5sMqxGlh5m0TTUqaOsM4YKZbFlUtESDRqOB8WOMMOg4JsKRZQ2UiohiSRq36TRitnqOpNFARwm2KnHWUnjHsdsPsLC4h5WVZYrRgHycMyrGGDtEKBXYsQisKSlyj1SaKEmoipyed7wdKzrtDkVZYKsKb4PsgnpSHtK9JULVtHmlsMIzshUqaeIHYxpZg06zxezcLM1Oh3fOnqc720FL6A16DMcVw/GYr3/9j9na2uTHf/yn6M7MsLaxibWWD3ziU3z7G39Ab2cnNNt4cJ7KljgbQinSRoMlDzc3trm5sU0ykYpLhVCKKNLEURwYETbsoVGi8TjSJAXqgABZ+98JQZKktay9y8r6OsYGz85GI8WakrIw3Lx5nfc+8igXLlxgOByxZ2kPp06d4pnvfoeV1RUeeez9HD5yNFhiVKZmdcvdFOi64HY2nD+TAdNkv7dTLzpX7+O7rIUwTwkoy0RuY33Yc40XGAda6uBrJwQhQaNuyqcNpJoyCYUIr0vlYH1rCykDYzSLJUpqJA7hQ6CHqQipbFH4m7wyvH7hKhc2NvgfV65zPOkwXwoWu3Bw9SbtIw/S6i4yEDHXzryMLQZsKM3l2T0cEUssLM2StdpsbW3QSEKppXQYGs0vLNLpdjDGYR0orcI5EUXgbWDCqogjx++gNbcX4z3r62tsrq8R6Ygf/4mfot8fM7d4kNn5A7znvY9QOc23vvUntNotPvDhj2Iry8V3XuehR97Lt/70m+xsb2Nyw3C4xl1338+rr76EFTBoJdzsj9mvG3SjmIP9HrqZcjNWjE1EJCBFkDpoOEi9pVlC5gVNIMUhDSGNU4dEXqkjlNLEOiJSGSrOELFGKIUXjlJDHgvGXjI2loHP2SlLVvOS81ubXOxvs+VKjrmIJ/UMN1XBBZGzunWDKonQKiS/3rxxncsXz7K0Z5EDR4/SajSY63TY2unz7Hf+I2urKywcPobQHhHJKXvYOIdwQTotfTjfnZAT+9fpMHCqCPDTD9NjYaKC8B7KMhiZCwGtRNKKNc4UtJOEyObMdjts06fbSmlpsEZSCk+72yFWHleWFFURGLiNCGUKhPPMthqM8w3ub+zg98GVa2d58Z0NZmdmaDYrykqTz+9h5eZ15uKUg0dOsnbzBt3ubLiUVIKKJaYk7GU6ng6WiqIM+4cIidymKhkO+ug4oj07R1k3dlGk2be4l0//7M8RxQnbvW2SRkIjm+H+Bx7kA09+EJyjMjn/7pf/NTqO+Rt/42/zvifez+XLF3nmmW+HgYWpKMuCbneOrc1VjLMMRsPpK1pW4efgWb55k9nZWZRW0+Hy5Lxzzk3DBXaR2AkYSwgDqP2erDEYY7AmsJfLsgppzVWFdbaW5zsGo2EYFlgbbDPqQR8E4NF7RxQnvOfB92LiajcUpUYH2+02SmkqkxNFMcs3V+j1d0gbTUaDIc5BpzXDQw89yDe/8VUOHjhAtzvHocO30ep0OX/uLBfOnefHfuonwHniKOHBR9/Hiy98D4Fne2eH244dD+EawE5/mxtXr/PhDz7J8SefIokTytEYHUmkKaj6m7QX9zF/6CREjUB2mMioQinA7Nzs1JB+so7xtTSXMAB1Drz19MaWzAoaqqLMC/CWuJGRRJpZPeaRuZyTmeBAUrHJBr9fLeKEDnuBqxiPcypTy5ttCD7UjQZaS/Iyr+0XJHEcjPu1Etxzz70cPnqU/+m//3+Qj4aMx0Na7TajcWA/xZVllJeBsSg1977nQT79kz/OkduOY63lwIH9PPDA/XznmWfRcYwoCqrxGCkECwsLrK+vYsqKy8tXWD10mkVuUm6t0TpwFH3qPjq9Hm9eXuGNrT5FWdWkgNqmiEl/EdRn0oP2EFFbq9Sh90qEwJNI1OFQhF5OCTmt6SST/uqW/ab+PUGwSQm9zS7LddLLIEEqSSkFeV5xaqk1HZx5Z2uvcovxII/fh2y0a/Y8bG9vc/7CeVZWlmk0GlRlGWwjIo13jj179vKDf/VHsGh2BiNWlm8wHvaIoogPffQTdGcDw3c47HPj5jp7lvbwU5/5DBcvXaLX67G4tJfhcMTefXtIsjZFPqAqC94YDnno1AGqSFMIh9Ce/TOKH3//cbpbrzIcjgOQLqGqU9Vzp3He137nopYtCyrnGJugHsktzM3OsrG+hSBYfVUmAMtS7IakzHRm6d4/x90+9NA/bQ35aMRLr73KC//n/9stybNBntyc6XD02GFiFA2V4rFUznPu0jXysuSOu++l1WnhPWSpxl++ye1Hj5CqmPtPn6byFaNBn7Iq66FFeH+ds8iyII0CqURGGp2kbG1v8Wtf/yJ3Lx7iK3/6JaJE0Wi1EO02Mo5xStOIYrpZk0YjIdOKVtIkizNarTbNJKPRapCmMc12izRKyLKMKElIkhitFJFOaLSayCgiTgKgK+OEJGmgtMZYR0fJqa+/FLu1ZAgukuCCsszUCjNTltiqpMqHFMMhxWhMVRZUtqoHt565VgNXVYx3+uQ7A9rzDVTcYPHE7chYopszlNYx2NjCevjiH/0hg9EYFcdk7RlGoxy8YzwaEOuIg4du40d/+md55a23+cMv/j6XL7yDM5ZjJ+8k1sHnOC9Klm9cZ3P9Bp//nV/nQx/9AXT8CB/60Ee5dmOZ773wHNbm9De3iJpZ6MuzJmY4BA8vvfwigx/4YWYX98PsPoprF3EoRmPoDQ3PvvgSw+1Nsvkl0nYbgGLY561XX+Gz//6X+TvvuQcxHk3DNXfD5kLfNskfmJCeRA383Qro/5fe/tIAn7WCsgoMEClDBLgQEqVCKm0kFJECsCjCxiaVrKemkKYxWEckJdIrZpMkNIReoJ1CqIRYhcZBaYmOFETBkFl5VXvdhaSxcDA5nPCUtqC0FU4FLzEjLEJ6ClvhkmAkay3sOxzRGkGcClQUI6UJXYX0SByudKQyQkdpHdse44xEiRhRxiivoaovVh2TRk2UjsFnONWAOCPtLJHMHaO973ZENs+ghLVxTrG6DfipVMRPfejqN78GCW6VklBPcnYluLsMvVsBvskUZwLtTRdNzWz7c0PpqRSQmqk3AfiCr1GthK0PHE+jkdJsNajKitXtTcrSBgntBNCTu+Cex4dkGT8B9Xb/nfYWQ+XJxz/L4gsMpd2UurA5OnaBzknq8nT3DOEqamJEXE+BxW6M/XSUiCdtNmjPzaDrKXYUx4i64Y+TqGZIhr/NGmlI1sBhrcU4VzPzJNYYojjGVBWRTlCKOlktwiFJsoQ4EXVTLHFeooQkjWOcK7GmDAdSaZFaUhWhifUUSOnJt0eUeYk1gq3+Nju9Eba06EjRTBK0qgFOr9GRQJiSKndEKmJucR6rFA4whWNzEKEWDzN74gTZwiG6e/YjGrMcIObcr32WrNWhKMeAYXtjA+kcRdHjxRf+lNm5Reb3LAKedy5dYjQaIoTgw099nJ/6iU+zvdWnqiqKMmc8GpKPC3Z2euR5TmUrJm+J0oo4TkjiFC0jWp2YU7NL3HnnXYzHYwajgrIYs7bVY2FxDzOzXdbXVgOIICX94ZCtnR2KquTmzZucOnUne/csceXaVQ4dPsKlS1cpqoo0SXHWkKYJUqrwniiFrSqUlNiqIo40kYxDaICU2MqgdUQUhbS64SDI5UxVYY2hGI9YWlzg5soy49GAzaTJkaPHWF1fp9nq4lwIF2i2mjQbDe46dSdZo8X8/BwzMzPMdLtoUQeyUBu61xM85wn+iLIOBhC1yfKtn0+/DvC58hD7MJ2TMsh1hbA0lEYiKGtGZKYlqawZuFoEbMQ5YgnCGpL6fmI0qi40Iy9p+IiqtEReojwor4m0phyWdFSTTEZ0fIeObJJTkRoNokFTNqmMR1chZEPkCu0bpLoD3iDGEm8tcZVhfYXLFFHqmG95ruCIdETabJOP+6EI8lCMx9x73wN899vfIVKKLG0GqXPthVRWwb8yAGKaMi9wXgTPDGuonGcrD8VslDXDnuB2eSIm9Psh8dR5XJ04qOOMRqtDfzBkdmaOq9eu8du//RucOHU3h48c5/y589x54gjeGba2thgMhmxubtCd6bCwOM/c3By8cxaHY3V9g5vLyxT5KExQ613a11LhLE1JkpizZ96amndHOsJU1YQLgI6CPYSUwb4BQGqNFxDHEUpqsrQRpObNRgiG0TFZs8HhAwc4f/4cWgmssYwGYQrvvWVzc53RaECn08Z7z8c+/gkGvR1+57c+SxRFnDx5B84LRnkegmZq+wUhbxWO32JG75nu85OzZrIvWxtAdVN7gk3Po/o/WfuBTsohExA/rBMBkHGAUEH5pMJow0+4FF7UBIcg+JIyyLEDo08i65RdY8FjMdbQ7raRUVALWFPQbHUxzjKWlhcGq1y7eg6lPI8eP8lTsWU03iY3nsV9+1i9fp7KlhTFFm9e2eCY1uw/fJRUJLz1xvfZv3cvzc4MSivyIqRk2pq96KVEa81o1CdSOni47dnPkaO30+jMceniOcbjMaWpuOvUaRppzP/43//f+d/943/Kf/tP/juyZosr16/S6szx0IMPcODAEb75x1/gy3/4Rf7G3/4HPPbY4/zBF79Ed89erp55mw9/7P2cPfc2VVWw7iyHRADmEqloW0+zP+R4JJEmNK3KS2IUOgrsdNHN0FmTqNGCLELEChsJcuXZ8ZZeXtIfl+wUlm3n2C7GbI0LNm1BrywZVyVjayisxXmB8aF+OHDoAMfecy9L2wN8b4f10Yh/ff0KA+GxQnBAOUyeI5UkbbRYWFogjjWPP/E4Wzs9ynHOzOwcufGcOfMWSitO71ninbffIs8NSSciSpIa6AmAqtSyJnzUQDmTegKsCWsygD+uBvGCv9WttgkB7AmDtYMLczQVxM0W7UaMcpY0iskWuiSxoKElRV6QJBrvNZGy5MKTZCmpkIgyyBW1Fth8TCok3pQko2V2+tcxcyd58eyrXHrjRZqNlCRNOXDoMOPxkIU9hzBCsrlyjU53Fik1Xhi8CGcmMoAsOEeUqKm6QkSK7ZWbIRk3ibF5SVUWqDgiVhGf+uQnmJufR6P4yIef4sLF8zhjeOC+B8nHOTOzGc898wKvv/YK8wsLXLp4ntN338f73/8Bvv/SC+TFCIdnc3OTmbk5NjfXMCZYAUgdErWDz63GmorVtVW+/a0/Jc3Sd9V5tgbb8DUzRYYGaQrI1QitvEW2r2tGdBQF0DmKogA8xxFJktJsZizt2Uccx2iliXRMFGl0pFE6QuuIOI6J44gojqd+i2EIvwu+GGtJfMJwNOTll19kVBTMducYDAakWYM777ydM6+/zLe+9lV+9u/8Iz7yqb/CYDyGKOHipcs89fFPcvz4HRSjETptsrD3IO1Ol53tDSIvUFHKY48/yZHbbuMDH36K+fkF4no9qnoIn0bR1DJh4tY2rS/YZac6Jsms3PL9Wgkz6TGsxfnACGsnkGqHFDAalHgniIwhTiKU1qRacyCDZruL800aq5YRwctXRQ2kihiOxozzPJTo3tOZWWLUH7Lv4EGuXLiAVEE5MXneH/jgB6mKnNOnTtPMEjY317HeM7uwh6IseefNt+mtbfDxj/4ATij2Liywb+8+RnmBlpIk0jz00EN8+zvfRUdR+Hfaiq31NZrNFpsbaygpuX51jd4Hl5hvXKPcHlGt3CA9fDtZe5aPnWpgpKRyDmdDMijOYl1giDtH/VoFRY8TPpzlxuGtBReuPQ8gQwAkxjJJt53aE9VvjIdA6rB1rwT1exeuWTfpocLBj1DB/ijVEUfnGmgRgC3nBT5OAI0bjfBJhDx2grzMiXXC9nYPax0vv/R9nHPEaUq/txMsiEQIAnjqox9DxSlCappzCxy/8zRvvPw8Sdbg+Inbcc5TFjmf/dX/jTRNefz9H+SuU3fx5Ac/yO9/7gsMxwW6O4NVbU7deS9vv/kSSgnOrW2xfN8Jmr4gpqRbbhKvX6AabGKqAUWRU9kwwHTeUxkf5MsOnAj2XtYarKcO0FI0I0FuJBSjemBSUdlQRIcheeinJ76Z1CCLcw7vIE4zpFRkjYzNWhEmvWB7a4uicoyMQCcxs3HE1sYa333tVa4ur3DHfffyS//qX/Jjn/5Jzl+4xGh7nXsffC/94YBcabI4RnjP6vo6w9HElz70v0JKVBQzMz+LvKjwBD90Czz/ystc2XODe07dweXr1zh//SaluxG4n0FCR6PRYG52lmuXLoYrRiq0jNAqmqrusiRFyxCKFClFOvHUazZpNZrEUUwzTji4fx9JFNPudFAqImk2SRvNYLUlIYkSOu1mGBJHQfmkIhVSeIUCqVFxDFKRzc7TXdqDkjqQE5RAqWDnMQmlUjVSLqYBklWdTi3JRz02t7YZjnOef+5ZoiQmbnXwSuGLkqocA54kSfgrf/VHMZXnj7/0ZS6efQclQkJ5lmYIwBrLjRvX2eltIYQnz0d899tPU46H/PCP/hg//CM/yrlLl9hcu0FZjBluj2gvphw+fRcXv/8CWM/VG9d46+JF5hsNGu95kM3VNUyxg290cXHCq2+8zMy+Ixw5eRcyzchdxXi4w7jMef3N11h/6D4WttZYlLeHvcD7KVvc1/Ww1LoOjbulVr6lvvgvvf2lAT48SCdJRBNvQCUaZ8BYTRwpvJHIUiGlQzkTpqaAFhIlgnefFjGJiAJCjCTSAQSUMng1xFEdw2wsrgrUfS0FxlRoqUCEuG2Pw1FiCf4dTnsqYTGixEiPigRZK0U5RdaIqUrDrBAYZ3DShJmM8QipiVSMUsETSntQNsLk4ESEEAkIjRQRUmpUlKJkFDyrvMRFHeLuATr77yZdPAHpDIPCcGM4oupvh4KgBu+8Zzfp9hbQaiKHnb7MztW/Ew5fcwsQZu0tQFnNkpgsHCZAgL+FvVa/b+F3AngmlagNHkWdrFk3RFO66GSwFKjo/cGYnd5oCh/iQ+DGBNR7F2uvng7uynHrQ9FPknB3mXzvZvH5WzbhiSfKrVzEW5ZhXaDsGtpO/q1+2izibwH56hdh4puhpMIbR2kqrLUB3HAO4WOECIWNQFGMx1iTo6TAGsdo6MiyBFPVQF8SJOH5aIyK64mfBCEUZe4Q3iBcxXiYo7ygzCu2dgqMj2hrT6cZY6qCOIkQOJI0YmxtkIeUHuEUpYHZbsZMdx6pJJU1ZGkWjG9FSmvxAFGzg0cjoiadpb2k80sk7VlklKGilLjZRqUtvAyeg6YyVFWJycc89t6H+crXvkakNPfdfz9VUfHWq6/ibIkxBWur11ldvR5CF/Aopeh253nwvod44dkXEEqxsbkFOLRWRFHETHeWNAsedsaEtMjKlIxGY8bjEWVRUhZVPXEv8TYECRhnyTozLK/u0G61WF2+OX0f8zxnY3OLvfsPMNPpsLyyznBU8OgTj7O4tJ/Pf/4PsLZibnaeOJJomdQympDMa0yFUF0SrUEEWYetN11JeH8bjSZFUZA12/ga8EUIRqMRQkXMzC5RVZZGs8PC4h4O33aCuYUFIq1J4oisGWSizUaDWEfIScNRX2sT30hfT7AD07Rev3UTIcS7Ab3pJQdQXy/SQgNJQ2s0si76Nco7KufIYkVlLU0V0VKKKFIYDM5bnIBEehKVYPEkMkLHOjBz8xxvYEa2aHYalGWB8Qa8pClT9rT2BIBURcgi7PMtoYgcFNUQVzkSFVGMgiRMYrHDQe3v5/EWkjTB5oFNEbJDh5xotHg7i3G+ZG5+kd7mCs6GwuzyxYt8/ctfIo4TTFmEJNhJ45bE5Ftb9Hp9pAyS3jtvv5P3PPQIb779Dlsba0gJ7W6H+fl53n7rDDv93tQUexrcIx0hZVqD1ggpaKZNYq2RzuBR5KOCweYmGMdMu0V0aD9ZmlBVDe5/4DCNVpeZ+SU67RbOC3r9HkoF/76zb7/KcDzY3SO9Q9USKeGhKivWVtfCoKSemk4bS1+DuvUABqiTjgkJ2krjfQgGiqIIIRSNpEGWpaRZRpwkZM2MmXab7f4AKQMDqTvTZbseoHz3O9/mPQ8+xH33PcCli+f5wy//ARubmxw4dJi00aDX61Mag9a6/k/tnhlTZrioN+YASAYZbu2vNfXfC+1cYMnUbKp6zUspkd6G10VqvLA4F+RI3gevUo9Fotgd4njwss7SCx6PSRKAzSovUWrCuXBMbf1F8Ek1BvIcFv4/pP13tGXJdd4J/iLi2Guffy+9K5PlfaGq4Ao0EEgQNCAkAjTyhmKvltSjkdS9uqdbq9fqNTNrRjPdM83VLc6oRYmSKDZBUiQAAiC8K4fyviqrMqvSZz5/7XERMX9EnHNvUv1PDy4XmPXcNedE7Nj729/+vt4KWWkw1YRer0tZlVgpmRRTKgzZZMr33n6TF65cJ223GU3HdDs9llYOMhoPmU5GGKO48P67BKFibfUAr79W8NabL9Ptr3Dk2HEshjzPqMqyubdB2mG8v0ea9tCV5cTp2zl4+AhnL1x0YMhwgAwCHvngo3zrW9+gGG3xzPe/yef+yt/h2s42hw9v8PN/6Vd46MGHeOfV5/nmV/8EW2W8d+4sDz70CF//6pfp9rtoXTHd2aXT7rC9k3MZOLmyyuDkLXTXNqC0JCiSSBEE7npOZcgoChiaguloxF41Znc6ZWc8YX93l0GWMypyJqYiqzSZ1W40TAbo0mnVhlHQFLZCOUBRJE5UuhcnSAKKQvPauxcIjeXIiaOYSnPu2hUEljRKWFhe5fLlSxgrybKCbrfPxqEjpK0uadwhz0ts2KKzGPHzv/I3OXv2fQ4fPMbLzzxDYDWtJKSdJAgEVWWwtvR7SDiNoaJ0upFh4POvOYkEOWOJ1WCTsZYwcJItAkijgKU0Qpc5C+0WARVWSdfsy3OitOVzhxxdaaKo7WQVjGWh36bKJsSBJJ/mxBjywtBpxQipIC+Rl1+kt3aEcpqzu7XJuavnkUqSdnrOXVAqekvrCAHZaEAiFaEM0dIDlUJhnc2va1r4JkExHpOPR6S9HmGcoouSpN0GpTiwscFdd93jcmIh2Vg/yIce/Sjnz58jiROy6ZR9YfnqV/4UlGB5dYX9wR5lVXLg4EFWlpc5f3FEGIZoXXLo0FHeP/cORlcM9vfd6JpQtNIW0l/HwwcP8fiHH2eaTR2b1ed1sjE0kb6hMMtN3XnpGMTuns1Yl4KZZEvdSHP3sW48zE2UaMMMgHGxappnTLKpl8lx7DarTSOqHqjAP5dhNBwyGjgGSlEUTKZT0laXEydOcuX8ObR1Tdnb7r7PjXwi+PDHPoYpcq5fu8a/+zf/mp/7zGdZ3DhCf2GRrc2rxNayvrbK3/7Lf4UkTglix8aLPUBrcXm1qnt2PqZIP6bn+lVu7ZraqKEBTn2jwxjfyHcREqvchImBUCpaQQDWknSdBt3+MGcydmzGXjclUrAz2cSKXQ5EB3jt6nUGu7ukccLi4jLtXo/26hJaW4psipkOaHUWGBbKa/M5GYba4Ozo4WNIA5/8qU86lmxZcPX6FUTgjJ3efOMNHn74AZJWTCkDDmwcQFvDmXfeZXtzm7vvvINDhw7RbbcYDoduJRhNkY05cvgg5997B43g6tY19oIQsbLGZGcHJjnVhQt0TpxAGoiH+0SmcjHAgrHakcylxUqng1ZJjRYW488tGzoNbGuscysWTZmEML7uE6rJ56RvSAk/xtnwKoVEKNUw44XPEfCv5YCdAGGciZpRCtHtweETcPA4amkZOy1cM3ZhEW0NRVZ4N+MJ75x5i26nS1VVONM4J/dx8NAhDh8+yMvPPc3d932A0XjCY4//JNeuXOEDH/wQnd4S3U6PV158lnfffIO03eLkLbeytLTEww8+yFe++CXGgwEY6LUTPvfTH+Sdm7ukkWA5jVjqaNRom/LCFfLpPpPxGKug8A2fUkMcCSySUmunM28rjJUUlXN3LbWgqFzuao078Z3HUwBKUWqD8Rq7ZVFQFAUIQV44IoV0AZ1arxfpGg2BEGghMWgunn+PO8sp7VYbKTTf+tYX+MaXv8hgZ5vuwjL3P/QQn/3lX2Pj4CG++uWv8OrzT/Ld73yHhz7wGD/3858hCCOqrOT1N9+k1JVjsPuaE61Z7nR5e5T52CwI0hbtdpdeu8XK2gZ2aY2Hjp/i1umEJ594kt2tLazVlMIS93rsbG4RJilaKWwYoVodgjgGI+j1u9hAEXfbBEjX9DeWQms2teXyYIwxu5iypHP+PYpiirIGW2mkcezFOInJJ1OW+j02FvvkCNr9PkmrhQhDlvt9MIYkaREnCXESEwQhnTSl1+vT7XVI0gQZhMgoIkpioiBwhhRRSKQCpllBGEksAWmaUFWGSVnx5jvn2NzawipBf3WV4Xjqzqp8SoTi2JHj3HH77QRC8ZM/+RNsXbvIzvYm/V6XleVldD4lK3POvvs6ZZETqJAwiNHTggtn3+HSe+9yz7338/D9D/C1b+1AUZBNRnT1AmmrQxAklCYjKwueeOlJbu31OHT6FpY+9Ytcefl53s0sz/7gW+hEUVQhZ6+cp3RwCtnWVSY7myghCOMEnY2o8il5kZMVBaFSSAH5ZEJVFVRlSdppo8LYGcYIQZlP/jexjv89jx8Z4GuFMVHcIlExRgviJMZWBl1CUEI/Dem1BMpqrNGESYTRFdKACIRj5PkRFSkqrJUoAdqMERK0KSlt4AAq5RzdtNXkRhAECRpBhQMCtLVMREYlDNpaikw7p1MrUIGlG4YoAUJZytLp22SVRipBK4xIgtBXD65kkFZiCzdiGMo2kYqJVMsFcCGRBEjVRkZtgs4y0cIh2ivHiBYOU4guk6Jibzyl2N/24KWjbNcgk/bOebXjVc3Uaw5er7l3g9mEB7y0wQMls3FXY7w7rK/+5wG82kF2hgpbRxmtkyZVj+XSFJINo09AEAjSJCQMAvK8JC+NG2+o9KwYm3PUxYN67n/zZhozVt4MkDQzgFLX2iam6WBZW48QzDRVBLNk2+VsLmmt2X403/NPUP9Rc11F/eaQUhIlIdJ4+r2C2qRCWKgqQxA6yqyyEikDpuMJSRQjpKQqStBQlpp85EYAiqIgFJLJOCNQzm3XaE0SKZQfRQjDEGsMS1GK1pAqCI1FyJBIhEhpCEyILhWtdIlkZREZJmQlRJ0+/dV1om4fK0Jk3KK/vEp/9RBxf4Ug7biuiXRCuY6qju86O7F6rQ3Slm5/KEUQxLSShIX7+qwfOMgXvvhFhpMRp26+FWMl5868ST6deH0aZ6rRSlKUUpw6cRPXLl9yhVEYEUZOMDdJEooyZ3PrOli3Zssyx2nfaPJ8QlmWVEVJnhVUhddJyibUQv233HE3eTbhltvu5O2338Z4MMQYw6Url/nkJz9FFIa89ebbnLrlNm699Q6ef/4FLl++TKgE6ytrSOFs1MPQde2LPEcoSZqmVKVz6o3jEF25cUljBWGUkCQJOzu7bBw4iBCua9Xp9pwu3/IKMnBjk6EK3BiILyyUBzqUUp6J5xJx6RP6WsNS1vqUzX6bB9Rn/9cwUf2arsfgje+0p6FkMfTOnAhCFdAKQzCGvemEWIRU1tARAb0wRpuKQEUYqx3bs7B04z4ibBEHgnw6paP6HOgIsqIgjd3+CLotVBCS5xnTyRSJE+ankkShM0+xWqOFJJu6sbfAO05V08KNXGoIY8dc1YAtYDTOQQiiNAIrOdhJ6Ldhc2eX/uIS3YUV9neuU7N333nnDP2FBZaWluh0OsRRRJZPuXL1Crs7u41ZyPFjx/gv/5v/hhMnbmEwGpPnOUEASeo6m//qt/8VTz3zNKPBgMl0itFOUNsKEDIEWRdu1nVGlURbw/7uHhsbh7n3/kf48OM/zoVzZ9nd2WVleZmFhZBz773HkeM380u//GsoCbrUbF7fROuSdidlZ/M6wkPJCDe+47kTIL3OlI9XlXFjU7WJRQOg2TrGebMLKf3vusK0zDXTLEMIyWg0RknpWCqBIk5iup02+8MBYJxDnJCkrQ6jwR55lfPUk0/w7A9/SFk5tlOn2+fkrbdhhOD65hZtr/+SJDFJEhMGjtVZr2drZ2xzcA7kM40rz1poxhAE7SSmlaQIFbCysoDOpoyHu4Rhi6TVJcv2QVRYUevHuFJIScfckzgdwU6vy2Jq2RtlpO2QyoAWihOLESMCdvb3fBNcOIMd/2RxJEnCmMlUEwrB4Op7dOODtNOY7T2LCCJUEFHlE4oso3d0iX/4j/9zPv+FP+XlJ79PMR2TtBL6i0tUKEajfV597VnuvOcx7rjzPp5/7nsM93YZLiwwGjtgVXnwSAUhxgzJRwP6Kwe4+Y6HOLR6gOFoj1DBMBtTZVN6vR69lXXOvvsmy/025y6/x1vvvs6Zt97i8R/7cR584H52hvt86Ut/StTu8GOf/iwf+vBfYDoaIzBkeUGcKpLFDsdvv4v9p7/PqKx4KbK8duEM4v03SJMEay2nb74DHSTsT8bsDbeZTsdMJlMmZeXM0rRjsjuWpEs4rHaH6EOPPkZRFGSDCQpJe6EHUnDy5HHuvvceet0um9c3WT9wkIV+n7jdZjSacO6tN7ly7TKjwYh8mjGeTFHPPYtQFhHFdBYWiHd3EVYzHo3o91bo9tYxRpIPhyytbVBU8K0vf5HllUVufeB+glKzu7VFVVasLq8RKKf35Vt7ZHnhcrPAxXDszAjGGQHh8xFXCBrPNK3zFRepDVIK0iSi31IguyhrCLGM85xAaJTViLIgzyuGgwndXhtbTcFa4kChsyEKw3CkSSUE1mtyYikmBQhLO71Cp9ihFVrSJKHodBju7VBMRgy2rnL94nu0F9c5dPwUQRgxGe6RtjvEIqYqS2oDM+Fz2Mqzt3e3r9Lpdkl7fQZ7jskTpy3KsuLkqZOce/cMQdLixIlTKCl55JFHuO/euzl77j32BwMOHTrA2vIKaRrzzjvnePSxx0E4hsryyioXLr7v4pq2jPPSy3YUvPf+ebKyIglDN6bptcykgChOiJIEbUWT/85G+WtZl1p32E9UVJqy9O7cpWOF6KpCVwWVrijLkqIoKav6X8cgLqsKIUSTU9f5oWPiu7yzKkuKomCaTVlaXGR1bYO003GGW2FIFIXkWcalC+/z0vMvIsOIsqwIo5gwTTlw4BAfePgjHDp2mu7KQQIJxWTIu2feZJpNOXHiOP/+d3+Ha1cvOT3gsnLa37qiyAqUsHS6Xcey9OtP+9FyiZcj8M0U4QEhD0cjrJvoEXOJ8Hw+7VJhx25WQrKYtoikJVKSUji96LISJFFIWZSUunKkDSsoCsNoMCUQliQM2JuMONTt0U5alNGIwc4We5vXMKZk9dBRFlfWuXrxIkKXfOov/hpPPXm1oQQYrQmUotdbII5T1+z1n2tvOOAPPv95lpaXOXb8BJ/8hU/x9A++RxxKnn3lNX7lV36FL//h1/jqN75Jf22dIPhV7r7jTlqdLoPh0J2TWjPNCtLlFbcXhCUfXefd65tsZQFHjt7NYb1LmcHS4iGSNKUlJWY69ka0nhGm9eyM0xXGEwOwxtVcukQYZ3wgrKGefEJ7eQrj6lhjavkVB+SJWmNbyaYYCZIUEbcRQYBQXuYgUNggRMQJQgXIKMIKhewtIJM2gYrQusQmEWoxIDcKXeZobciznG6nzbe/801297Y4dOioy8+xLi8k4K577uPb3/wW3/721znynW/z137979E9eJCPfPRjLC4tk0QR09GQr3zxPxBISyBh6/o1BoePsnBslbX1dd57/wJJknJt8xqH1DI3Hwmopttkw30Gb46JVIAupuyMcoyF/kLEOLNoBIXWLhcXir1Mk4SSWNW1CwQicCO42hIKidAQSck4M+RT4ww4ygplrIsJlZPZKsuSsqooqsqPl1aeqWowQrC40Of6lRDKHCsll69foxoN2N65zss/fIZvfvEPKKcTlBCu0bV5nVs/+EGyccb1y5exxjKdjvnh009RaMvnPvc5xpMxzz77nD8jnSlGECd02i3WV1fY290j6nQJe13uues+bj55ExtLy4QyJGolICxWCR585IOcPX+W5595Gl0WyCBgnOUYBdkko6icrIiJIowUTMuCKEwphKUUltJp7rhJxaiFXJSI0CKNQaIITYnEEqkIJZRzFK40QZlzaWuTty9cYby/Rz4eo7WTfErTlCBOaXV7tOOENI5oxTEry8u0u13QpdP2DqVn6EEcxUhrSbtdojCkysbEoSQUAe20w8bxm1k/cRP7e9sIqYjShDBOqQajhkUrleKhhx5BeqOa+x94kNtuO835989x8eIFOr0O//Jf/HM+9uM/wWg05dStd7F4YIPTN9/KnbfeSn9xEaUE02nGow/ey/d+8G2mKsDkGdPJhHaSkiZtdJ4jDDz1zNM8fs8HSXf20UmH74uULz/9Hc5tXaa1vsbaocMEccxwMuLSa28wef88Uhrk8jKT0Yhrb5zhwAc+hLGCJE6bHDmMBUYEhMoSxikISaVdk7Gs9P8W5Pa/6/GjM/hKiSgDKqORSIrRhFCGxCqgG0OIRWhNGAG2QlpLKEAl7m8CASWGypRok1FRIKShEgalXfdDGIsVCiWgMMaZOFgLcuKMiYRzNOu1O4TGoIICaQOq0qJCSaDcKLEUzsQDYyis9XqAgjK3SK2RoaItWkgdE4UxgQpRaUggY5y4d4hSbaxSxJ1l4v4RkuWbiBYOYsI2k0yzMy3It0uM9aCecEm8bejB/iC1LnETXpdQNuNNM0ZfnUBqz3RzHeOawol3lZ2x5Bzt2DP15tzh/LMyY9rVYIP0oN4M4KvNMFzvxB3w/X6LditFa8NkUjjLeJ9wuedQ7lDzL1Pz7G4E8WbCxMwxEedHdGuh9do0YPZ903wtpHMMqgFLK/BitzTMrj+PZTbfa4C+mtvnHlEIeZkRp4lj8eXOtUxK6/UiLUILwgB0UZJPJ1R5wWjsBP11VflRjZAy01gNSSKZZG5UUIYBCksoBKp0jLd8fwIt1wG2lUFFLegv0l4/xMZNt7C3swPW0l3doL2wTmd5g7S/SNTqOj2jIESowLGipHRAiXbXsDCavNBI4YDMUAXNqLcKApfc+/ujjXEuuBivqWUoy5xWHPFTH/84r732GhcuXyaJYsbDfRYWl1yHejRE64p+t8vjH/0xjh071iR+WTalqir293e5fm1KUeaOdp8XfoTSfV1VBWXp2Hq1BkGRly6slAWBUg5cQHDnQx/m2rVrHD56nO2tLXRZUlUV29vbvPTyy3ziL3yCH/vxI0jgzDtn+M53v0NZlBxYP8xC32mjlWVJr9tziVmn04zqpkmIVAFJkjAej4jTlDhtk6RtWh2nqdBfWCSOEkcXjyJ3/TzbTgrHGMKD4Q7Ac+w8d6D7PVfrWNb7TNQQj99zcsZ8rR+zxJtmHzSjG/XaxnWWAyHRlWcZerfySkMiI2LciGloJTI3hGFAWEgi2cIUmiyrsAICCVYYQkLsOGdcGkSg2J+O3ecQEmRAWVSMRhVBUJJIhTWKIITJJCewCqvdSN1kWhGFAWkHpkPB/jBjmhsWF1qsrCYQtknbfeLVPqrVYeHACURricX+Ctefepm9L3+FwXDExqGjTMdjqmKKH/pnf2+Pwf6+d1GdscNq9mMQRnz6M7/E6so6W5tbGCHdiHVp2NvZwVQljz50P3fccoLpdMq0yCjLEoxL5N868y5P/fAl8tIxUdvdNsI3mAb7exAmPPyRj/H8D59ke3OTu++9H6Fi8umYy1cu88MfPstPfOKnuevue3nz9TfIpxl5qVk9dIrda1doe01Pxz13TsbCz2XXQK8STqNHKOVNiyRSKaRy43Wq1nCUEhWGDVCM/zuJwODYqmXhdDAn2ZThdIy1kEQReVkhlGQ42Ke/sOBc2UxFUeQkacp6t0MYhnT7y6yvH6IoKifFIRVRFBHHsXP8FqIplGsNkQbQq5nl1lCPjEVB0DS4jDZkZcmkMqx3YhZkyXWTI6IEGwSMxkMCKfyIgx/vD2KsKZ3cglAcObDI3UdjZGiZGsHmzh6D0nB9WyPDhOPrbc5eGzGMQlqxpL8YEacwGmuiUPgR7DZpt02eVaRqwO2nH+UbnQ6DyI11BkHA1O/vfDKg32nzwYcegvE+7717hquXzzFUASpKScIQwpA333yFI4cPcOTQzYynGSpO6UYhW1euYHVF2moTqICdrWsIIAxijh87ylJnkRdfeBchNJPBPoGwLPW6hHHCyFqOHr2ZBz74Md54402OHV5nf/sak70tbrrtFu649x4+/slP0D12mnZ3ictXXyWKY8rKjepH3S6//Df+JpQV58++RYag10rp93r0F5c4fOQIH//4J3j33Dl+//Of58L584xHQ5+3CLQpnSGCdWu3ZkEJobjz3nv5S5/7HAcOHEBo47Rl44R2q40KJEXuxsxP3Xq7WxveQa7TanNwfQ2AMIqpSs2lCxf42tf/jP3BDkksSdsdlpZX2SwyyqLgwvn3+NVf+1W2Nzf5g9/9HX7+L/4Srd4yrz37fZJI8kDSJpKK0WgEUnHs2DEXFyvn8G2VdQxNCxSFG+P0+mpCSX+eVk38NaZstPZ8oGmKRgFURUmV5QRxhC41pdKkkSINlTv/rSbXmiCKSOIIm+cYBEkUYKoSISyRNCShxFi378tKY5VCSEU23mNJX0OVOVpXCBUSJglVwwYtGG5d4s3tK8gwQgpBFCX0FhZpdbqoMCLy7rnaa4KNd7ep8pwTt93NpcvnMVUFoWMNBoFgdXGJ3//3/5aJNdxx+13ccdsdDAcjbrnlFpaWlzh2/Dhp2uKv/42/Q6FLvveDJ4iiFggJxtLtL4AQaGMcW9vgJ3QcyLe7u8vG2hpFXvD+++fY3t4kz/Imf9NlQVYUvknsc0HPwjeeiV8Uhftd7XS3K28AIrBUxjjArHJj4LUZWTU3+VJWznlyMh4zyaZkWUaRZeiqoqxKpKTR57PG6ZbGSUIYRLS6fdqdLmEYMBzss3n9OlmekfQXmQ4HqDDEGMdELqzgwQ9+jHE+JZvsMdrZRKBZWOrz4osvcPbdM6wur9DtdomiEF2WTv8qCglbXTRuDBwxG0OuCQOyHk+2OEkcYZvYWycMTu/aQ3w+Ca6bYbXBXHthjY9+7v/I2sY65c4lpsMRy4eOkPQWYbTD3qVz2GLI7sULdJZ77L7/Ptl4yMJyn0BaloqCXBjuPNTiyX2FjAKqSYHVmt3N60gZEgROD3ZxcYGlxR57W1fcRI919zSJY5Q0jLMpW7v7TLMMrTUnT5ygKHLCQLK9ucny0iJvvfICB5cWefrb3+RPv/AnBJ0+9z10H0kSOJmoMJgbW7ZURtJbWGax30drwzSf8OU/+yp333EfT1y+yE9+4scYb09584mXGAx3aLc7VNpdQ2nrs82zzJXTmJc1E0LMTKaCmnnn60BXhMgmx7MirPt7TbO3PruVmj2HGluEmvr7K5occ34NKF8LKCUQWmMpyauKVpKSqBAZd+i2AlrdPiurK+jc8K1vfh1jNGEco7Vzn6/bbceOneAPf/gMK8sLbF69wPtn3mA0HNFKEy68/z7D/T36/b6XRoGq1IwGI4R0+m395RXsuXNYaxgMxrz+5pscs1ewqoQiB+10WzUBSlmEESBD8qpCi4A4DknaKZUGlYdYpYjajkE6yZwcS6oCSl0ATjJKKsmkqNBWkGs34WOAoqp8jNYe4C8oS7evq9IRCrR2cWF1eY2z6fvoIgMNWZHx1qsvczyM2dwdcN9DD7N7/Rrn3nkHbQwLvR55llFWTk6oJlXkec7+3i4mzzl39l3eu3DB5Uy4Jm4Qhpw6dgxpYTidYLEU4wkv/fBpXnvxWcLI6/y32oRJwkq/z9HDB1k4eIBb7r6fEydOsrayTFVp2u2UbHePoszYHuxxfXOTa1euMRnsMRyNGZ7fIy9zxmXuSDnWTcsgHZhvjaXd70McYrQbfVXKyROESYKKQuLlBbprK0QyIJtM2b1+nf3rV9jf2wO7z871Kw41EBLrGc0qighCP1FitN8PAhUqqlKTJk7vDwzLy0tObkUb7rt7i0cQfOkLf0JVaZYXlym8Mce0mDryVRBy6tTN7jWlk2JYXFpmZXmJwWCAxRIlCVubu/zcL/xFPvqxnyRcXqCKFK3KorPcjX+birXVVRb7PXZHQ0xmKLKcTBtuf/BBrr57hstXLnNta4v/7n/+ZywvLbM/mrA3npD2+7TW12mvrGJUQFFqAhFwaHWNW++4k5dfeZ3jNx9lYaHH3jPPowtDGKeYsqCoKqRQqKRNmnZ8oed0Y5Nugi4q4rTFj/r4kQG+XhIgc6f7oISjrYMgiCyRsKCmaFGQW0EoDZURritZgrYaZZ2egAQGZYnGEMSu2I+CGviSRBJkqFAGNBVWQhTHmKpCCk0gFUEUEWvnfBsFEcq44lJKR/mN4hhTQhgGiEoRKQFxSBhERComDbuEREgilExAKmSosCIm7q0SLx2lvXgC0VnFhD3G04rdPGO6lSFE6fM9z4qz0jsGWyqjG8aZmGPw1DqEQFO4126yNeDRjOLWYJfvxOF/pz6ka5v2mkFXMzucSKZPBOrxKTHniFuzihpgbOakG0cBvV4LAWzvDMjzkkrjGXbaix9LaudJ8AwU5ll7+IPbzhV59s8Be/4zakMzzuv/u0Hh6tBo7OyA9N+VXqOi/gzgdFHq6zHT4ZuBfM6i2oGpo70Ru9e2GQdOd8yVLIJYAsaBGtNpjjFOKNRUBomklSTuIA4Suu0O+WjCpNIII4kqaLfd2JFVMXHSIe30UEmH1upBkoUN2ourpP1Fku4SSXeJtL9IkKaOOYQzN6lF6p27HJTGUFqQGmxVuvsIhEGICkN/b5UHeG3jBmdxCWpVVdTOmbruiktJVVn29/eZTjL293YYj6eMJhNaaZvbbj3NqRMlt992msoKirzwI2Mj8rwgL0tef+sdz6xz+lVlkaGLkmw68oYVhqrI66XesCrjMCY32o8maILQOenV45VKwf7OJtPxHgcPbrDQ/SD/4Y/+gMQbnFRlydtvv81oOODQwUOMhgPOnTtLlk1YXVvh/nvvo53WDsPOpShJU+px73arjZABnZ5jLZZlRZImqDBEqhBwxivWWj9KRAOSa6/DpKRL5Nw19gCGsJ6J4BIx1eR/fv/5ven9BJoYUK/5GuCf/dDFFunNh2pmrPtcFZU2aC3RpWFSVFSlgbYgDhWYAD21BLFCWKebUU0KstKQmQIlFa3OInEYYUpNXlZk0xwlJe12i2pUMJxWZIXTOQ2SFrmWjEcB07yg2wlRQQhBzGQQURUZp267ixP3PELU7pNNpiQ95yY+HI2dZkwcsXLkCDLpEEYtRqMpVikWlpaxwgHRP7V0hDfefovv/+AJWv0ljp68mfNnz1CVWaORaazXuvGXqY5lcZLwyU/+LDedvIXv/+C7oAK3b41F6wJtHeBlqgJtNcU0a4qIMneH/3Q8QUlXiMRRQBq78QJlLflkwKuvvcqxE0f53ne/yc233Mpdd9/J888+x9tvvcHPf+YzfOXLX+FPv/Qn3HXXXTz3zFNMJ0O6nS6Hjpzk/GvPYHXimLDzgJzyToZKuXWlFCp0OkdKBW6fe02oMIwJQwc4h0FIGEeE9ciscomVFMrHEMfmG49HDAYDBoN9smxMXpSEYcQ0z5lMJ2hdsbi6hpSSTrvFqVM3MR6NWF5eYml5jU63R5y6cYwojolCp1tpvVSEA/S8kLhyRkFN4eLBPO1Nq/IaDPSxWVtJaSVFUbLUCgjafbZ2M4wu6CQBReXO+TQOifs9dncGoEKSWLC2uMD6Ypt2S3Jpc0QVxWB7rCwELHUrBCkykNx0YolVa7FmysJyRK8fUOQl7dai02MzuLG5CKr8Cv1YcvjocS5cvIi1hiRtMZ0M0HnOtctX+G//6/+SOIxYOXSUO+97kOtb17n1nvsRKuD6xfNk4ymT0T5vvHYNKQKStIOJXEOt0+uDrtja2sRsFQSh4p4HHubUHY+wsXGAOHCul/2FPm++/hKmzGmnKQeW1vjcZ36dm289weGjJ/nON77JqROnOffuW7TaDmz94GMf4P/2f/nvGE4LfvqTv8DJk6fQxtBpt1BCcGh1jTtO3cr/6Z/+n9kbbKLimH6SOlf2KKLShvF4xF1LyyytrfO1P/sqL77wPBfff48inzYFKcID08oxqntLi/zUz3wKJQS7O3sYC2mrjR1PmUxzB7wHgTeycbmHNpU3XwFdGYoyb5xbgzDk2NFjvPTSNtJarl++wvr6Qa5ceI/FhR5P/eBb3HrLKd544xW2Ni/z3W9+lU/9wl/igYce4rUXn0XmI5568ml0VRDFKafvugutAZwpnDHGGTkAQeB0kLTWLrfwaxnwY+IOpMqLgthrsYEDlbIs92eAy8niMKDy+Z7WmrIwJK0AYTTWVMSRGzMUwr22Ma5IsbpyDCE/YSGVe01jIXBkBTqDd9hYvxOpQjdlYFwzAwRVWTqGiJKYqqDShmI6Zry/45p9SUqYpEjpmLa6zCimU47dfAtJf4Hq/FkCn3djHWAQhRG7e/ssH1jljdde5tabb2ZxcQljnWPwYDAAIIljDh46ys/+/EHqIYmqyH0OJtBlRSUU09HQjzoatKkYjgcsTjsoIAkk29evc/bsWfb297BYqqIgTVPiJCHLMlqtFmEQMh47iYMwisBCu91GBQHtdoc0TXn11Vd5+eWXnBNkUXgmNl5PNXLXOAgdsKENVVE4Y5GyQAo4fPgojz32ITa3tjj37jtIJfjAo4+xuLjI22+8wdLKElVekLS6rKyu8qUvfYG9vT2GowFJp8fixgHy0ZAgDJyJVBhjbMG7Z95lkmUMtjZZWegQJymrBw6xtnGEza1tzrzxGtoYismQwd6ua8QkEcePHnFFsqi5ebM29TzLv2npz1IHb+I00yBr8mLr3FZnOTa0+svc8uDD/jmdZInWlRtfl4LDd36M0AOtURyRDQdoWxFGrngFS5VPObw7xPzLf8cTTz7BXu4YbsV0wrXz7/pmqCCfTtgfTV2+4xnexgOupTb81m//L7z11pv0O20mowknT93MX/jkp9jf2+ep7z/Jx37sca5cvcaDD3+Ab/7ZVygBneXsbO6xtnGQMErIfWPZGoOWglI7hvbjH32c4ThnPB1y6ep1tneu8Oa5N3j9N1/h9jvuRZeaV195nrzIUEHkgT2acVn82eW2imPp1bJLf77eaEbBPTPUMl/TOV3JOi90uZ7PCfy5Wb+eYwna5rkEON1E6005hMB4VruFhrEfJS26nTanb7+HxYVlzr13hpdfecnprEWpG+9WyjerJQsLS4wnI3Q28fIbThLrwYc+jBKKl158ntdefZnP/upf8ZMxEZ1+n8WVVaJAEcWRu49lQZ6NCQ5/gO7ynVw/9xattE1/eQWBZOnAIfYnJa3uMp3lRW6REdlon+nmdbpLS8gopiiNayIGCaXRnHvjTUKve37gppvpLi6ijaHKK4pKs7O5yfkrVxhNnIRUXlZkReF1wd0en2RTiqKkMpqiKqkKTaELVg8coN1O0dMhNnNSQs+/9BynTt/JXffcx/7VC/ytv/JX+fa3v8t3n/gBBw4dRhrLaDKm1JaFlYMsLK5w/PgxPvGxj5GNRnzlK1+m1BUoL50ThHS6bR66/0FefOYZimzaGCpMayCYWd5kreWsVPxQSozXrxPWTZQoXwe1koR2u0Wn1SZtt0jbbdbXD3DTiZQ4TlzeoS1RElFUmnw8ZZxN2N8bMJ2OsMB0OmIwGLl4OR6RVxVTj0lov/6s9Br1SrFw5CgqaVFNp5S5azhZM6v/qzwjFLEzLRJQla4GlUqAkEwmIy83prl44QKhEBgJ7125yOf/+PcYjoZYKeksLLK7O0RIhanc1GMQRvS6fd596w1efuMVFnpdDh8+xKFDx/jAox8mz3Nuufk2dvd2+N63vs7Jm2/mxOED7FNSltoRz6yl0hYbhKytLHPu6hW3ZvMCC4xGU4Z5TtTtI0zJaJozuXaNSobEi0u0NzboL6/QSlsQKbJpgVWSIzed5p/8vf+Ucxeu8Y0/+ypvXtviyvvvcdP773Hk5puQSlAMB2xfvcKBw0cxQjIdjZBUmHzEtd090v4Se9sjftTHjwzwyaDCBlO0kFRWO9fZokJrySgLiDqGOCrIKoMSEMUKqw2lFoSJ0yYRymCFIYqcHlQYuFE5pRRhANZIilLR7yywGIZk5QQjDFEcUhZTotAVv5EKCKQktJYwjNFCE4YhgU2xSYgSASpRSBEQRzGRClE2xCJRQYggQIYhYbxI2Fkn7B8kXT5K2DuIUS2Gk5xrWU62lWPtJiA9W042nW3sbAxVa9sU+E4TSzVBuAnSzMTIG2ae1yOq9er03HPCHBPN+u4drsCqg8HsmPeMG2b6IzWwWGs21cxB4YEFIZyDVRQGVGXB9WtTytKCZ43gAcBmtNDT6OaBvRrEM3OsRWPnTDMMTSFotJkzBbH++s0xGOsRrrlrBf74rBkvf47BVwN79fu5gb3XPGrGo2E6LpkOKnaKHKst3TSklYTsZSWjsSaOBGhDt9dGiZJ+pwVGE7dS51omJErFRMuLLBxbIVnaoLO0RrqwQW9xlVZ/ibjTJ0o7BJGj1CNVY++uK2djn1tDnldgywaoUMqxdJxovnIMPGafr3YQrq+VwOlNzP/MXQe/xiqnGySEpCzLBugt8oI4dkVLEIb0Fx2wWBUlVVUymk7p9fuUZUVRlBRVQb7sDs0iy2ZrWWvCwCXMZVEwGe8xGQ3IsymVdiyHzc1tlHJJQJ4XRHHkuutVSSBbVNppNMVh2CR8186fZeH2ezi4vsL9993La6+9QqAUrSRGlxmXLr7HtauXsNqQZ1PaaZvHHnuEtcUVwjCg3WoxHI5IWy02Ng5ggCCQxHECOEAJz0qyxjS6Zw6AkU5Isd52fq9HMqQemXTjGgZbi5aLuUU696jBd3e5XNI9P7LuAHYxA+PnDnnjC8VKO1MCWxeBUiJRVJklFApdWEqjmEwkuTBERhKEkklpyayhmFTEJqDIK8IwwlSGyShHBU40O0lbxO0lZGuZdOMo7f4iKwQk3UXG21sM9/Y58dAHCcI2Uoa0+n3KqiII4+aQa/UWCJIWpbZMhkOiJCJOW6wAQRSiK02opB+bMaRxmzCKvcWEpSgrer0+v/Eb/ymLC0t86atfJu10OX3PPZx983V0kbkupNE+epm5Kyy4/74HabXafPc733QAlzVk0ylV6cDpPM/I8xxdeTfFwo1q4A9+p+sXEiU9WkmLbq+FNRUL/VWUVJRVwfPPPsPd993LsZOnOXr8ZiaTnO9973vkeUa7u8jPf+azbG9e5+KFC7z4wvOMJ2Me+sC9ZLtXCQNB0O14xrUfkQ9DojDxgu6xAxaTlLTVJmm1SJKENE2JosQDfG6cpy70moaK1u5//mtwQEMQOKBQeq1HJf1YYhgipKIovTtk4NKCwMd7FYRYo72Drx8plcqvTdMYbCgVNCwD96q20d2rdUUcc0S4ODbf5NFOvDzEIgJJFQRsdBfpmD22CwEy4EC/zXI/5eDKImMjsGWGDFIWQhBUFAZyA/3lHnGiUGsBVluiwFC5IRSEiEmkJgwthBVSV3TCCTqbkhcVLRVSCte0muxdomu2uOeB+3j2hecw24Y4aZG2+gzzTUqdcfbMWyS9VfJ4AXP+CkncJlEhb71zhslwm2rqmMrGOp2axz/2UTaOnuQ73/kuvW7KuXffodXtE2KIooDz5y/xic/exU2nb2fn2haLy8ts7u4joxSkRGvLTYcOceqm23jn7Oucf/sVPvLhD1Dakp39MXfcdy9R0mWSXSIvLFcvXuLSxQuUpbsGQRCiTUGvEzPY20KXxjGls5y3zl8Ga9nb23NuqlKys32daTalmEw4sLrKdH+Xwa5GqIDIu+IWZUUgA4JAsrK0whNf/zYvPPEcC4vLxElC2mrR7rYJgpAkcWZlfuEThK75IqQgz0uMcevI4vKZNE24+dbbeP31V9BFxs61K9x2+g5arS7jyQRrK/7oj/+QD330xzhy/CRHjhxnd3fI/Y99GBmEnH3jDS68ewYlFUdOHSVt9RmNJi7OxZGbrvA5SBh4KY26EEfM8hTldZr8uao9aO6gFksSx75lpIhai4ggRNkcS0XUSrCVppKgy4wgbhGIAGE1BJI4iijzDCksSrq81wi8NoogkoZSW0ScQAn57jbtgyGL62uMtjad0UTlNDeldOd6WRauKRC5hoQpKkQYc+zOR9g8f4bdqxe8o7rioQ88Rm/jIDujKUYbQqk8M8m7gwZOKmc8HBJELQ4eOkK3u8CZt8/Qaae89957nDh1ksWFBdYwXL92lVa7SyuJkRLKPGtyYwssLC7QSk/zzuuvcP799/jDz3+eW0+e5InvfJetnU2KsqLV7tDrdknTBKUUD3/gUR548CEXtwLPyPL3SUmHfNaAq/XN29vvuIv3L1zg3XffpR5LbgCuovANswyEIM+8o7qxSCXZOHKMv/9/+MccOXwUGQSURe4b4G5dfuTxjzVAWlFUKCV56qkfcPXyRaqyQoUBVaGdIZVw42mb16/yhT/8d4xGQx569MOcvuMutq5e4/KlC/TXNmi12/zUpz7D/Q88QtpZZLCzxf5giBWuKXlgedUBVfP5RBNTXTpRN7vrb2qtvUZfnXNwQx7tn+SG3MZYQ1YU6LJCKicGX+nKGY+FAaVxxn6BUlBMESIiCFJKY6ls6F46Con7EX/jr/wyq2urfPlPv8T1K5edw7Gu3HtSAWkrYWFxga0r7yGloCgLkrTFzu4uxWTC8WPH2dvdZrCzye7OJksPP8jBo4eZTDOOHj+OUIp77n8IHaR85tf+Glu725x56x3uvvMuTh4/wc7mDoP9fcqiwFqNFCGLC12EAqKEk4eOEyjJI3HE6vIyJw4d4o//+Pd57oc/QMoQKaDdahHGaaP/WBu81OeZ0RWBctp1ee6A/jAI5mgIUPkxUGscUy4IQtrtNuvrq1hgb3ePzc3rnDx5im6vw3g05p133mF3fx+La5bVOaCr92akBZp8s/5aewd7Qz6deGByG3n4MEsrq1y9cpUXX3iOssxZSJab2spqi5UWqULSKOHokVOMdq7xiU/9HIdO3sYbf/h7/O6/+VeESYuTx48xGu9x8fIFHnrkw/S6PSfBFSi0rhgPh+71C0d82Th9H/d8+DGGewOSVtcZNeEY34tTNxbZSiMnD+EWYjMhM1/TWjQLp27H+hpZBAFRGDbAZ6kNtrvAIHTNZAPkRcFoMqGsKkajMZPJmCzLyIucvCyccUdRkRW5c5kVgl67TxEmTEb7TLKMr33tT/nUZz5L+/BBzl+8ysLqGvc/+DBLyytMJxOkDLj/gx/kw499iG6rizBOb/oLX/xj3j/v1rbB7bNOu8PpI8dZWujzwhuvkfT7M/mBOj7VmWy9Z+sfaY315JeyyiiyKWNr2bUuA3aSEZbZn7mGk0R6fWZJEEaowDUdkiSl3enQarVpt7qsrx0kimLXLFGKOE0AQSAVlSdeZHlGlmfs7O5xNYzZ290hKwsm08zJWAWSm0/fyt133sWdt51mtD/g2rVrdDp9+guLvPnWmzz99NOcee8cpjIoFaLaAbrIMVXF3u62G8OVAhVFLB44xCg7hylrIyVIpEKGAU8//xzf/uqfYISrAxZXDvCf/L1/zHQyYLnf5olvfY2F1VVW1pf4N//qt9javoqoNDbXtDsd/sqv/TVU1EJEEVIKKgtUGp1NiXsplTFYYalKDbpCFLlbi7qEJCIKA/RowL7xUwBIgmiDc2ffYnV1nfHuJt9++SythT6be0MOFhorBGl3iQNxFy2cQV57IWUyHlAWLo9lOGjGj3+Ux48M8I1tjkhypPR6cjJARC5BEaZExKCVF6tFkpXWJddCEwUhrXZERYlQAalyFumtKPRIbeScQY1EqhAZBCghSWWKNgWKkLSdoKuCMGqhCLFKkKplAnAaBTYiQGIqgyAiVAoRCHRpqbRCRG3CZImot0K6eJjW8glU5yA2aDPNS7ZGEyZXRhgzaEZaHYAFUnqGmRBOn6UGtHDdqVoEvWHsMAdSzTPy5kZujX/umvVmTK1D54PwDQYa+F1Pk3zWoJ/wAFFjwa4kQuIZFaIBGut/ndCuJZKCbjsmChWmUpRGMJqUFJVuXlfWr++TCuNQCkA0WoA1iHGD5h7zo7kzlqL7vmmSL/d32n+0+nOb5gCbgXgOuGqGHIVoAuVM20I0AGDD6MO/thsuopsGyE6CRWC1ZpIVpEqQtFOSWBDHMa12F5kk5CaktbjCwvIqrYVleiurJJ0F2gurnonXR4XOWch60LG+r4U25KV2AcZYR1+WyjHVAjcaJDzwWrMb5t106jFtuBEUqpeC0bOkrQaKrF+LxriR9DANqdmOxsTN9VdBrTUGRWkc7bysKMMAa2OSNMYYjTG19ojPr+fcBI015HnJdDxhOBwwGo8IQ0ESJ1RV6e8P9BfX3P1lbiQb6cHBAIPrsgZKYbWmyHMMcOnSRbq9NqdvP83e/oDJaMBgf5fltTWm4wmTcoQQgoVel7vuup1+p8/REydJ0zatNPXFgQ+anq1ad0itdQlE7VAmBEgvSO4Iqjdq5EnhhKtrYN1dAi+E3KT+pmHauS74bN/PHrXOpRObr++lNoaqmo0POCF+V/xGcUyrFczikbUoAiLrzIFkO0aOp4z2ChDQiWOkTbEqRuUZ08qQBAkiSlCLBynGYyiHJN1VNu57jKO3P0AURuTjMe1+n8lowGS4Q9xqsXL0FEIoov46Mu4SJSl5XlCMxnTX11lutdy1amQJYHF1dRaqfPJSJ7vGWoQCW2mMNownYza3tsBa8ixnPJnwwAMPsHH4IK++9hrvvnOW1eVlwIFwLu4KgkA2wuICwbXNTS5dvuKKCUfL9WPTFikV1jrnuzqRqurGgX9/2hh0XpAVFeutHtIK4k6HgoAwTcnHQ7auXeKbX/1TPvXzv0BVVURxiyhKGQxHlIWh1Wqxv7fPv/jn/xNbW9foL61z8NgJXn/uCaI4JUkSWq0O3U6XdrdD3G7TaXVJ05Q0SUnShCiKfWNINnpSRVWRZTmTzI1cWC+VEAQhYRQTxDH9dptW2iJNEtLEmcuEkRvZq12/Gw0nD2ro2szHWOdoa2qmAFAD3fVarQXcfYPLWENVVjdIL9TNJyFqN9t6RKxmcWsqP2pfFCXL/YCf+8hhVvotykqztLZGOz7INLcURYYpSozRFPmE5YUuVRFiLd4cR6AiRSuK0SbAVgVBVKGFYG+sSdsKoQxSWKKk6xZmOSaIErIsRoYxSWeZsLNIt7tMlLYJ0z4y7PHBBw/xxov38e29TYpC0V9cocgysuke2hRM9q9z7pUhKhAYU/HsU99DSsgLB5ggnPnJT//Mz/L3/+E/QUYpt915J++/e4Zf+8u/yuLCEv2202UxQmLTRfaykt3BgElR0er0KY1r9A2ynN3hlOef/AH/4Q9+h1YU8w/+yX9DbiV3PfAgC8sb7O4OOH/+PH//H/0X7O0MWFxe4Z//5n+PLjXjvR1CKdjf2+XlF5+jKjR5llGVOUVRkuUF1mim47HTGcqmaGMIrKETR9x262mKsqIylqIoMLpE2Jpt74DkyXibbLLL/s4V4iSl3e6QtFoEgTNSqyrjDXMM0yyjrErSljMjCqMYIQLSVhsZKKI4ob+wyOr6OteuXCbPRuzubXHillt546XnUDLghedfpiwDPvKRx2m3244RWfW4fO0aLz3/rIs9UvLwo48xGk8oqopO28mOdDpt4igkUIFnX4OQijwvmngrhEBrC2gfn/3X/myv8y5rLP2Dpzj8l/8rgjBgOtijzDN6KxvunNEFZTZ2RltCkk8z0m4PFcYoYSlG+2ANKmkTxk6GIwwU+WAfpCDpLWEJMBgODqaotMe/vXSJYmvqpC7qOBBF2EqjK924AGMgUgHbF8+yd+0iznbagWMPPvQB3t/aJbu6iSf+owRUZUGSpBgRsLSyRn9pmcd//OOsrh9AWMHx40dRQrC6ukIUhly48B6vvPQsFy5eZW39AB95/HHiMGJr87rb89pS5AVLS8t87Mc+x5/8we+xtr7GJMuY5iV3P/ggq2tr3HPPPSwtLRHVjrWIuUmQWf43l/5ijPGj1m5kWgBr6xv8w3/4j/nN3/wfeemF53zu1CBZNwBergniYujS6ho//TM/R1Vpzp0964XjnbRGECqMsUgccGehaQxFQUBZlA74spYwcGd7UeSgS0aDPa5fuUBZZPTbMb12Snr0MGUx5fWXX6TbXeK2O+/l8MmbCYTihR8+QZbnxGnqwKC1VayuqOyN47mzHFeg3XjP/AdDz33QGxrdc43GJte2jmAwnmQILNnIOX1Pp5ljk0t3HbA0OpbaaDfpIgWTac5wOEKpkMl0ynQyYm3tIJ/4qZ/hh888xZUrlymyDCFAhREYzc0njrN19Tx7m1cxusJYy3A84r0L7/ORRx/l2ad+wPWrV5FScerkSUxRsL6yxMvPPsMPvvdNfvpnf56F9QSCgF/5q3+d3/2df8O9d99LKANeePEFJuMx0+nYMVijlAPrB/m7v/Eb9HsdjBboyjpzQSW4euUyk+mEvf197nvgAfrdLu+8+47bVyrAaE2RFwghGI1GFGXFdDLhwMY6Cwt9dFVw//0P0Ot0ePXVV9ne2SVQiuFowMrqKkvLi7RaHVZWVojjmLWVJUajiTMvqyoOHjpEECimkynPPvs8X/zSF3jp5ZcpihJdafIic9e9XvhNrlmv4pl8Cz6XVVLS6/X5+I/9JCbPGQ8HpEnMnoUoaWNFgJsVdo0/KwSj8ZjP/fKvkRUZi90Ok0Lz0cc/yltvvcGxEydYWlgk6bTIi5ztnS2yrKDdbjmyQFlyfWvbZ8IKbcAWGYGULC0t+5hpPOhf0U5D2mnvP1qfwufPsz65+1kYxhDOSB3gXcwBFcDG+iqj8ZArwwGVsYxGI6Z5jrWQ5znDwZDJZMzu3q4Hq3KwOF31OOLAoUNcePccBzYOcPliyWQ64vKVi/zJH/0en/q5X6SKIvanOQ984BFKzwwsy4rl1XU6rTbdNGG8v8fv//Ef8eRzP3Rv1FhQkHQ7dFopn/zEJ/jyl/+Urc0tj+Q5ooUb+1bIwEmvBCpABsphH0Hg5bxcA0YhCPDGOsLjBNq417JOogfjckZjvGa+qc+FkvFon/3dLXTlTEmbmk64ZrD1DSBr3Uix8nJcoVLEsRsfjuKIlZVVoqRFFEZ0uy36i302Dh+i0+lghWTj0CFOnDyBUiFRknLLLbfw0z/1SX7w1BN8/vO/z9b1q0z39hyTlbl4hlufrbSH0YZAeUAdizUV1WiXUASuvhauSRgnEeNsyhf/4A/42Z/9GX7ipz7JexcvsHNtk3deeJ4zb7/urnWY8NM/9+kmtx0XZVOf6Koin06hW1FlY5J2m1Z7ifFwhLAGhWA8GHDlzNtcPfM2EtBKeGM3uGAtT33jq/ytv/Y3+af/9L9inOWUBlpxhIpi6inJQIVUxqKNRQpIWl20tsQLgkBJ5N6QH/XxIwN8lbCUuqSbSi+MK1DaHXqL3YhKl0ipiIwDmTSOtSdRBNK5OdrKHd4CSRJIMJIkipuipSoA5YAkY53LjpIB1jqmkK7cOIIxJcZqBJJQRuiqIpSCUISOOSUiIELJFsnyGr2VE3QPnSZqr6NVi0mu2RpPyDfHFPleo1smpAPrnPOrAD8O2xhl+Kq8Hp+rNReEZ7hZa9B1oW9nTrF1YtI4y/qfAY35hAP3AM/aEtLpbc0o2hJvudQADdJrUs1GcB0joQEbZQ1IWKx1AtE1AFZUmu1dpzNjretU14G/ZuzNnMi4IVGy1gN31mJqZpJP/Gcss1pHZabJV4+RuuTCMNMcm/19jSY2LEXrx1tE02xvku/ms0Hzt7Mu0Iw5WY81jDNLTgelIsJWzMJyQnflAKtHTpAuHmBxbYNOf4G0s0iQtFFh5ADZ+c8DaGBagdBFk2Mp5YTt4yT0a2MeKKrPrRlYao3x2j8arT0w5MU2pZRUfr0FgZpbF17boGbYQDOKPbty9b2qnZdd4q9rkWrrEkNr3N/GcUQchdSMS+EBsbp4L7xYdZ4X5FlGNp2Q5y5JMdaiAsVCv0+/13WHh6G5UfMueCCZZhl5ljt3K6+14zR3nHtxpSuM0c1z7+wMOXnTzexuXWc4HNDpLvDwQzfT63ZZW1tjeWmBpaVlJ2YqJVI5nQcxu+BzgLulMaHx91D4sNiMTDRFRT1G4dc7ePcumjU7r59ZA9g1WO/uufTOph60tY7FWumKoij8eJi7a7UDcasVNmL8woOr9b5xRjcVeQ5Z0cYS0291EfGIuB0iVYfVgzdx7M5HkGFItnOVtN1jef0QcXeR9soGxXjIdLBN0l0kbXcQQlCVBZ3eCt1en5UocFolMkRGsQNiwwgVJ1grCFrO6TjwQs/1lm2KMN+5bJoW2lCWBePxmMCPnmrjjFOCMGZ1ZY1p5jquYRyS2pS11VUeffQRbr3lVspsysTrPJaVJs+mFHnOeDRqRNSz6dRrKBXkee41mowfd9N+Dbp14ZzTnN5WXuQ+uXDrI8szjDCoJMHKiK3dHVYOHWVy5k10lfPCM08yGY35ib/wF7iepPzkT36cy1cuoYucL339K3zpT/6Ira3rgODI0VNsXrvO0aNH6XS7LC4s0u8vO4flOEIECot0uk9FTpHnTCb7jj2htWvQKOdu3O20abc7RElKr9MhDJQ7MwMFUjVAswNadR2gqSOj0VVzftVAX1VVYC2BkMRR2LBAHBruGAiVB2Ir42K49iNcNaBbN08a4AM8y9AX4UVJlufOTSzLqaqyAbyjQLC05Jp7rU4bm+eUQY/u0hqYnMtXNpkQki6vMA5iRFKyd+08vbAgUAHDsSSTXboLK7S6S8i0Rdrpc6S7TJy0UKEiDGJUlCJVSBB6/cIgRgQhQRgjlGP6WzyDwAqKquKnf/qn2dy6zjNPPMU0q2h1lqnKAl1NnA5gYdGVbMY4BcaBoggQkoc+8Bh/9+/+p0QqJC8q7rjtDu649RYm2YRpXrC5N2Q0HCGDkP664tCRo7z79lm0tXS7HVpxwlhKdne3OXPmbZ761tfJh7vc8sDDpEnCpfevsbHSY3d7hyd/8B3+6H/9N/zlv/33uevO+3nhhZe4dOF9ojDg4tkzKCM4++Y7Tj6k0hgtyHIH1iE0xrputS61G5/1Z0ZVVn4NVE0TD+vOkjqPcXveNySEZDoaMNzd8tqjChUGc+efdcWMVFBNCZM2ZRgRhBGmKByLO20RRhH33/cw39z5CmVR8M7bb3LvY4/TPnuG0f4e3XbKGy+/wDtvvETabqG1ZTQaY3SOFI7Fesftd5J0uuwNBkRh6AxAsozhaES7ndLrdkji2C1Y38y0SM86r3OOWe5Tg01N3K+ToCCmvXYALKTLhxqnxroMnzWD6vyk/j4k64Jm4gLhn1uQ9A66GlG7dxVIweGO5SfbXa6dv8TXv/oltquSMs+cA6KQHpicadYZZSgnI3bHw+YckSLgxC23cv+DDzJ68hkuCgiV8gzxqjEVETLgH/xn/4Te4iIqiLh29Sr9Xodz597ljdde49FHH+XggQP8y3/xW1y6dJF2d4H/6r/+p3TaLYaDfa5fu+bHcTWdboeDBw5y5213cvd/eRsoQWEhDYQzudIzveVpNgMt68a506R2MchpQLscsHajBpezV1VJnmUYY/jkJz9JmU14+623KMuieS7q898z3oSA5eVFHn7oQWyV8+brL6KCwGtSudw7SWJarU6TjwVByGg4RgWKbr9Pb3GR4WBAkeUUo7Fjd8WOHbK9t809D36Ab3/9z6iMc182VcX3v/tNqAp290YcPnKUuLfAYLjL00/+AF2VHDt6Kxurqw6Qqlw+bqxrtLq3Pj+1Mgf41IQu5gDR5odzUwQ1VuR/p6o0g9HINXyNISucYcnOzjYWB87vD/fJ84Jub4FKO/01YwquX7nE/v6A6XRMHCeURUmeTZlOp4QBHD1y0GkxG2f489pLL3Dv/R8gL0oMICpNXhSoNOGHzz7H5z77WT7w2Ie4cP59Dh87zuGTN1Hpit2dLV54/kk2r13lS/+h4tf+5q+zfX2Tm0+e4h/95/8FnVaP/f09vvbNb1AWbgw9bqV0egv0+l2+8eUvkCYRQoQgUuIkdnstSfiJj38SIV3swRqO33yrk5IyttHFq690EKrZtZS17ACgDQ8/8hhlWfkcR6JCWd8yj81JJoUhbvdp9RXWaIrKNEz6Bx98gLvvuYtXXnqZz//hH/HSK69gPRjlzlg9iztzN7xuEtf5Zre3wN/9e/+AX/z5X0DIkOvXrvOP/tE/aMgkCIESoMRsX5x9520eeOhhpApot9qYcp8vfutbHD56lCMnbuL6lWtcu3qNb37tywQqpLOwys9/5i9x4NBhtq5fZ3dnx8UPCYEKOHXTTU4PuCEogPXzGo6mNmOdzYP39eeaX7f1P2Yurt64tl2ukdUmOhayomQ8Gvv8MGeSZU7qRFvCIKLyxAVjDO1eHyEs49GQldUNLl18j6oquHr+PL/7r/8VDz78GA8/8kH6C0tYa4jCkEQpjq2to7TmpRef5ctf/QrnL110k2vWTUz1211avT4f/+RPcXnzOk8/+SRUpfvkQuB6Ma7mqOqdW+dgNRHHxynx52pJ5swxQczVC/XvehwjDFBpRCRbbgpDuLpRa+P15F38lX4yrsE4PBDhvjZMTc5kf4qp3ORLpWdkBvfLLvcMPEgZRREt3+xrddosLy7R6XU5fOgo02lOkKSUlav5msayj+8rC31kGKKziZP0sJapKZmOB9x35608/9ohrpy/gDSSjzzyYU4eOcFf/xu/QRSCMRW2NCgl+YVf+mV++3/5La5evsD6xhoffvyjqDBgPB6yN55gtZldU2sRYej08qdTUhmSSkleaA4cO8rO9U3KMgcv/eTIQjjmtq5AKg4dP0mhwcgQFUgqazBZhsXJgQhrGQ6HBEoRxjGV1kRxTJZNXT5e5vyojx8Z4IsiQSeOiaSgLDRl7phJgXQutHEYuzFbXRFGrpALgpRQOBZBGrdoWSirHBU58G+aZRjhEuVsmjkwpdBOwNF4pNSAwo2sSOnQbGFjEBFhGCFpEcVd0mQFGbRoLx+kvXKSdOUoSW+DopJMi4qtLCcbjTB6AJ7dgYUwCn1iVndrZyNgtvKJrHRjTKIec51P3jzw5Sjv1gsC2xmY5/W3aq25eeZeDZoJz86pCzX8c92wsanBKj+q6gVfndDrPKA3AzGamy8FrTQhSVwCoiuNQTCeFEynGca64kx6gGPmyeX/NbYJAjd8VuuAw1owdwZsuiDQMBf1DMirR2FqEMV4fUEnEu8fDWhgPQBZw1f1z+sRR6eFI2tdQmbJuZ3rcBqf2dz2oU9yYGPDGVgECUEQOQMLIbEoqqoirwqKHEQxRqkMpaQfqQuJw8h1VFQwu9bMwLU6CXMfybouS9198gBSDQQpJbHlbARXKeUcpqWj8kYiasA7asC1STduvDcz1mTNMphjlNmahVoL+9IAUrXeX1ULVpfegUq7LmL9nNYfXEma0mq3m88ulWP31PesZnVWfmy3KEuMNq4bqTVxq+VGD/z7qrQrJhtWgpLeyTkgCiPSVsuZXXg30CAICYPaYED5FVOPkivHODQuaMvAOy3PKi5n0iIlzdVslpTn4jWgu2OWgpzTv7wRxPvzuphBoEAELm5YN4pYlWWjQ+acrx2rKgxDkjRtRq3q92HtDFjVVeWYlaVzNq1ZUL31k9x+x92kvQUUTkslaHUIkzZpmhCnbax2h6a1NagjKKYT8sE+2WCfMFAEvS5WRkRhSpy0qXTJzrUtAhXQW10jn47Y3d6m21+muxRipUJri67ACAPCOIdS5UZH8zzzRbxsmMs1KF0XSm494Ua/i5zxeMRkMmE8dk7KVWWI45QgiIjDxDGMsimTqftfWTjdJKNXKPPCAaWVWz9V6YxcsunEgX5lQVW6MSdXJGpqt2b3b9cVkb7RoLVluL9Jp9VlfX0DFQ6ZjnpEYYuyGFNVJa+//CJnz7zF6voa62uraFPxpS/8EdevXnWOWDLgyNETHDq4yvraKmkYkcQxMgjRCMZFxc7+vh/780zbMCRNEhZ7fbqdDu1OhyiKSNKUKIqRCKLIjbAjwFQO6FXKNQGso9Z5x09XlAnfHZ2dIaCkh5OtiyFV5dzuS+3WfM0eNXWcqYtB8OYmNQRoGxDHSIuoKvKiIMvzRthaexOgOiaGShFHnrkswLZOo4pVymxIb2GRMOm7ETEpWFxeY+n+FTorB4mSlmtmWEMx2WfzomNY9FcO0ur0idI2QRg5nTclfRyeO/9uOAfr/7Z+HMaJ8jsnbZfMGq1ZW13iFz/9iyx1u/zgez8gLy3tTptrl96hzCeusWh8Y8v/X62HeuzULdz/gQ/x9e9+l+FoghWSyXCALiaehWrJpxm6yimLghOnTvO5v/2fsLK2ymDrIisbG/QXF7l+HvIi46nnnuDxn/gJtq7dThEmqEBxZL3PP/u//rd8+ld+jfX1FaTVvPrCs9x88ha+9tUvk01zQqXYuX6VB+77ANNMM5mMKYsS4fOPPM+wtsBo12gwWrsE3o/o1WdGzUifO3gbsEDO5SVGuGtY1YUcwKz31QC/zRryBjLOeTx0eVwQEoQRnW6He+66h5dffpHd69cZ7Fzj7vvv5+nvfYfBYEAQBFRasLe/hzHOtRrhzHHSVoeNg4e5cvEySZqStlKS5CDD8YiodONdRVG68fcwdOeYzx1AzlWac2Wm/7x1vBfWOzz6EUQAY2bn6ix3qptFNxanbk+6X5BKNi9iodHlkkL44t+5sodhwK9+9jMcP3qQ3/39f8/5d97BVCX499GcX0IgkVhJw1CWMuCOe+/nEz/7i2wPJ9x8yy28feZtrKg1fCXWupzlvfff55Of/Bl3fpclW9cu86//xR8TxRGf/eznWFhYoipylhcXuXLxAredvpV+17EuXn/9NfYHA18EOe2kI0cOcv3q+2STDLz5Vafdcm6x3vCnNuSxFt8Q89I12lAURVNLTKcZWDdxUFUVg8EAJQWT8Yi93R329nbIplMCpbn19El2d3eZTCY+5rh8v/JaoEpK0lTxztsvcf69N9y4chQSxwlCKGe01Ok4DSqhnK5eEDpjliim2+8zmWYcOnqcixcu0Ol22bnuZAKyvOTts+/yuc/9Ktv7U5LeCnmlyfOCKxcvovMJp24+zXS0j4ginvjed7ly5SIylCTtNrfdertrfOrcuaWKWc1hhW0M/epu/3xtcOOj/v48C3L+31oqRzAeZ37KRDrJiiCgKCryouTyxStcu3qBKIpYXF6jzCv29vcxOmc03PdmVpq03SZttZB+DQSBotvtsr+/T6k1V69dZu3gAY7ddDPn3sicnMt0TJomPPvCizz24Y/w4Y88zkJvgdVDh0m7C5RFzrPPP8vO1nVMkfH+O29x7fz7bBw/xWg0YmV1GWEFf/jHf8zVq1eZjCdIoUjjNkeOHOH6+TNceWdCZSRpElHLe4ShYxirIEBXmiAMkdJp2ho/6oy1JGnqfq4k1BM4ystaxCHWN4wD6WQ36tpGSddQUT62qCBs7pXTd7Y+LrrGAoCtKhCCB+6/B6UEr776OqPJhNHI1asNADR3Ltu6XpOKlbV1fvYXPsORU7fw3ad+SFW4cWKp3PSQFII4baG108+2Aoqy4OVXXuTBhx5kfX2N6Xif//m3fpMXnn+G+x54mKO33EpRllx8/32SQLC7s4U2kKQpQsBLzz1FVWQ+3hlWFpbpdRcpS03NMJxvbMyW6Z8HoUWzJufrvAYKtDUXau7v7OxfKUQzMox1gOjAszkn0ylVWVJmGWWekxU5RZa7RoTVtFdXuH7+PEvdBRaXV9jd3qQoC/a2r/Odb36FZ575AasbB1hZXqbbbhEKyc7ONucvnmdra2vW7NIGJQOWVtc4cPwoJ48e56ZjJ/h///f/PVZAmMRQ10oe6BNAI2tvZg2P+hxxOIFutvMcP+TG1Gb+stn5q4oz/JgDgi0+nxOikSSS9USZkI3OuJASAoEQztgtakw6HetQ1uB3zbxuFLYsaM2wHLNzdYdzF86hi7LJ1Y12Mjo1CcRJvoQoJWkpQbfVZj+beI1qKHXFq6+/yoceeIwPP/IhvrrzFfr9Je64616mgxH5dMz/8M/+GZ1Om1/9y3+VsjKMS/irf+c3+P/85v/I8ZO30kpaBEHA2QsXGGUZOi/c9ZfQX1zgo4//GD/+kY/S7Xc5efwEgTG8f/4So+kUhKDd6RDHidPlzXNsINnbnxAEgsNrKzxwzz1kugShnFGSVEgPxNYj5e1ut7lWKgwBS9LuMJlMmGYlP+rjRwb44kARGkUoQuJAeHFw6UFcgQoc3VCFAozCxgAaKQOqUpMVBSC8S5Ef16k0bj5/pmNnsUir0UYSiHqkIiASLQe0tGLCoE9/9RRhe4nFjZuQyQpRuoSVCTkBeWm4NhxS7W95MEB6y2Xpg6JswBa3N514u1KqMZXAQhCE/nB116AO/HXCV4NcNXBVa+s1zDU7Y+o14Je1TXCqk7JmTwpcN9eDBnXiZ61jiGHdmJv0zK7GSMMvVr9lXGInvHlGt02n0yIIFVVZMZ3mlJVhOJpQFFWD/lMDjfMniHtDM6CI+pqJ5rNTA3vNNZkBRw7UnOmAGA+61c/VMPoQDTtu/lF3FWqQr2bbiLrL4QGc5nkattTsea01jSh2sngA2VunMJYyrwiqilBZJy6rIIlDok5KEAaNuxXuHVPrpc2AM6i7weBAaonrQOuqRAiaTY61BEHYAHuhCvw4nr9jbrk1CT5z/23qa1y/k/q1oRE6rW9V/YMbxqaZMW2co5wDCLTWboTKOHvqZiRVCVqR08ORKnBmGnU7sgYXayCvcmOllXad9vqaK6lQaULaShvguX7v/mO4rrxSXqfFa4/g9lwQ+tFKO3d9/Eaw/vWxLpDOGBC+46UCwHfNffd7Nt7i18RcwVaDas26dzfYHVr15/JXvz4ARW32wmwUsXYvrSrdgMxSKcIoIg3ChnU5n+fUDEBdOberyrt9uXHGsmHL1MBZFIUsH7qZE7ffQdrtuo6xEOiqpMgm3hmwBBw7K01jkiRFW3eoxK02vY2DxEmLIE4QYYSQTg5BFwXdxVXiThehQpKkz6H+Boh69UMQhgQBM3fguUeSprNPZhU1C1RI27A1XNNHNN3EIAzp9vpu7/tOta60B/vc2HJR5lT+67IsKfOCLMspi4xJNmY6mjIc7jMaj8iyqRulKIoGXHXalx4grbTXCHWghtbekbfSaF2SFSWTbJ+yzIkkhNJw4tQprl27wmQ4IMsyptmYixfe48L596gbDcsrq7TbXW49fQdrqxtk2ZgojGn3+rTT1GkRGku/3yeOAsIo9LooiWMzBiHaurF1PAAg8K7NSjXj4Vjr7mMUYa0lFl6MWwgPUmqM9Cxj7UejtW1YNXVsFMJpOWphG8lJibvu0se5GihTUmJxTaGiKJwmZ+41OcuqKc6dEZNjF9YasNbvJWPNHEhdsbx+lDvv+TQWO2tO+T2kVIjwyZ2q46uUJL1Vjt2x3jgpWxcA0NZ1eq2uZrIH9Vng12j9/42tQRr3vsrK5SVF4YxJdFUi/GjKqZtvASl44ns/YOf6Np1ul/7hI4wn4wboCQJFnKaURcnagQOsHDjEu2ffRSjpxf4tVV5A5YT/BW6MqipLgijg6sX32d/bp9/tUZUlppqysn6InY1DXLx8mWeffpqPfvSjHDp5kn/527/D/ffey3NPP807Z97i6uVL/IWf+jnWj93C+uHDPPP0E7z3/jnCdodxNqW/0GMy2fVjtFPXhTYaME3zBg92M6dva3xh4cBgmnhbO7ILMYvDs2anZxDUT1KvITu7+k4SwRcWCH8WabAl02zizgRgZ8cBfkeOHePa9eu88syT3PPAw9x9/wO88tILDHb2sNKiVEC73SKKYk7cchNhmNBqdUlaXdodp+u2sLBIGEbOjCZ066rSlsk0I8uLWdNWzNb7fHO0idVzRVN9/mmv5+f+zrp9Vss4+D+e5T3u+zWLtgZSG6M2D8bnWU6lS4yF/f19r1dYMB4OSdKUJE354COPkcYxl947z2g0pCodY7l+x/NFoIoCHv7gh7j1znt5+Y1XsNbyoUc/yMbBg1w4+xZlVTg2ttcJfvvsWfaHA/r9HoPhiG98/cu8+srzdLs99na3WVpaQgUBt56+jc2tLX7u5z5Np9sDLD/4/vcwOLF9EUQcWFlluL3Jc5cv+eaWW2ZxkiKtdXiq36O6ckzr6cStg9Abk4xGQ8dQwcXpyWTCdDLxZ6ObSJhmU6rCNXisZx4LLHEgCNuJi4N+BDCIHKjrWKo5VZmTeZq+UqrOnJFKEXgGapI4baokTQjihLTXp9tdoJ0mXDj/PkEUMR6N6C0uMR2PGA5HdLpdnnzqST79S591zLZSMxhPWd44zNGjR7nnnnvpdnu88fILfP+bX6UsCg4ePwwCTt9xN6NJ5mOqY8Y4mYTaWKpeYzMXeUGdnzVQ7xxyMJdt2Pl/Z/m19qZsKnRnsgoCpoMhxlhW1tcYDneoipyiLAijmCRRXLqw1axzi6UsK/b29rFaEwTK6TrnJRZBq9ViNB7z+uuvsb60zpnyBVQQUhU50/EIm7T4/f/19/j1X/+7nLz9NoIwQpcVeV7wymuvk2UVSdQmSVKeePqHfKi3wOrGGmkQ8cU//RLf+v53GQz2KKrCsd1bXRaXlnn9h69iPEvOGkMcR3PXw715pWQD7BljCMLQGxYKH5MscRj6um6WX8dR7JlrjolfAx4g0Lr0UjhOO9lJiqjmDJ/VPq6Rm2vHqCqK0u3/SpNEEmxEHC34BrFn0HvJDaVUU5fEUczp225na3OTL3/xT4jCiChO6Hba9PpdrDVkkxEL3S5CCMqqRAVOtmdz6zrnzr7L6TsSfvu3/yWvvPQiSRSxc/0qh1YWaC8scfbNV3jxhR+StLr8zM99mpXFZbavO2aaqRxYUumcm286gRaC7b19oiRxzsC1TJSt1+ZMami2Om29kGZn+w2xd157uV677jeUlBxcdfqGZVmxsbzCZDplOBqxs7/H9v4+2zs7DKSg9DIGZZEzHU8cYIOms7jEYGeHdsvJ+4TS6SqWRU6xWzDc3+Ockj4nE17uxLPdPIAjpaC3tEi/0yOJE26+/Tb+v7/1P7OztekM9vxFqPM6MQewCTmbBLTQmJEKn6/MEE0zy6d8rV1PEtVsuDrnoq4Tm9rxz9VQuCmmJjsS4oadUX8PaFyjmzrQx20pZrrkCIHwdYpSypEXAkXYTog7KW0pkE7LitIzUqXF5d5lhUQQWMuxYyd4M8tIi4xyMkbriu8990M+9MhHeOjOh1nsLtPpdNlYWWMyzXnh2e9z/er7bErFn37pP/A3/vbfJS8q7rz7boq/XnLl6mW6SRtjLc+88RrZeIKoKohCjLXcdvIkH/vgY8RxTJK20FoTSsmpW2+nMTsM1Nxa9gZ5flJtNiWJz2/8NbazqcX6eebCDiAoigKlFMP9fX7Ux48M8LXTkMSmSCsJA0lR1KwvwWRakleGILBIDMJKyswdrE6LxfrxP4XVQOBEFA3CdRmwWG1RQYxCkUZt0qhPHHSI2ilBa5Gkv0HSWaa3cQtRZ4OwtcJgPCUvC7KsYLpVYMx+U3xLUaPLAI5FZ03tqGooa30AUVNgrQdi1J9LWt3DjZzpBjSpR1eMnQFbDWNvDgxzid1sdG8egjfWompUvQ5wc+CVgObgcFRcCObZesw5y+IAJYEliSP6/S6ddopSkrLS7O4NmU5LJtOpA/Y8cCLEHAPKXxv8c1pPs56N0M6ASv+D5jrUiWt9CNbJ7OxXZ51aV+yI2ThG4+5FUyzW131+HMFiHdPP+MLUuo7mPH3dGI2Y75T418ZY4iSh2+3OnCvrICtq7cTZGI6jMruCxZrZyHBNl4/C0APD1jnD+vsbRRFCOvMSp6Mw32mdFUQ3vmd/bRqA0v1sHkSx/m9r0d16GdmaJWlqwxftR2Vrlt6N9H4hBEpINyqY1t0G1WhtuZecOT3Xa76qR7OaEVy3NlWgSER8w32q/74uCK0HcNybrmFaVxQJKR3jzgv9I2qFgxmYSn3kCzlbF7Nq8wYAbnbNLMLOii1rZmtvtn7rjtmMlVcDdlIIhBKEyo/ZWrw2mqbMS8rKGWDUo/tBWDPzWg14Wx/as/vs9kudUFdl2YxJVd79zVrrdWAUIgzcCEKWk3sdnKTdRsWRMyaK3KhTZSyFhrjVQUpBnKRujwQBMkkIpaKqNFI558bKWrJpiaoEaTt2Lo1RSJR0mriFdDFTNfFR3LCGZ2BeE7ZmuYiob6VTb3exxaL+nGZnZBIPwukGzDSeCu8Kj5KoihowSdgpZV46R67KIKwiDGPanR5xkjbFijH+fPHAktEzgFt7ALaqKrSpvG6JdqNeRUlWFOzsXCUMUoo8YzB02mZLK6sMhiPGo32mo6EzFUhbgODAwSM8+NBDDqADjh47xOFDhzmwcdCdJz7pcc63qmkK4EGFIFButNgfD3URao3FVBVBoCjLgtKvETCebY4fkbVeJH3GkJ7h1TPQ3QHanmEpBNJnerLWnPKjgkbrho2XFwVlWTkWpAcf6ySuHQVzSZ77TM0osB/PrqqKvMgpCwfQVrqit9ijbtS4vexiQxBFfv97cwNhCeq4IixIxzrESzbU+q2NC1010y0Vwgm5Yx0jGBxztKwq0jTFGMP+/j6j0cSNzZclhXdhLIqCOI45fuIEyysrZNPcjXdHMXmeA5Yyz5lMRxijnS7oeMx0OqHIC5IkbjRXdRwQpJG/R67oKyYZ1lYMBzuceeU57v/QR1k/eJT33nmXQydvRkVdFJLRaMhv/6vf4Vf/2t/iyKGjVNqyuzdAyIAiK9BG8uEf/yT7u1v83u/9W5SKsJWlyDLWD6xRFd5BsCrdWEq9Z+txUlkDBDO2s6zXjD8n6nxkluCL5qybZ0sqpTzg6nRe3RoJsFYghTdaKqumwYk1TgeyqgiDsGm+TiZTsnyCVAHHjp9if3+Ps++cYePIMR7+8I+RjcYcPXqYvd09Op02y8vLrKxvoKKUVpI68fRGQ0z5eEUDOrtz1THj6n7O3InTnC/zoJ5glveI+gn974o6bZsDtYUQjgkrnARHPV6qjfasYZejOGaakx0oqtLlseMx02xKlMQMhwPKomA4HCKALMswZc4tJ49x9MA6o8mUwf4uO7s7LPSXuHrlGnmRNWL0QRRx+f33uPT+e4hA0el0Obu8wNGNdV5upeiJdYxGFWGtYXdvj69//Wv8/M9+iie/913efON1lpeWKIqCSxcvcPjQUUBwy613sH7wKKtrB2i1u3zjm1/n3bNnnU4osLSyTKe3yNb2NsqP62s0Bst0OqXSGn/13XSHddpERVk2TQBw+aypdNMcwOLO3XLGPAXbyDVYrxFd18Ou+WcdS0VJH/frPLaOjaaJIRbrmyqi+dsgcAz1IAwxQtLpdmh1+qysLbGzs03USimmIxZW1tjbvI6Qkv2diNdfe53rV67zEz/xcQ4fOsjS2jp//df/ngMNJiOefvL7fPtb36DIJgRRQJSk3Hb77aggYDCaNOCzFILIj5DNa33fsP+as9nOgX1zeVB9HWrgxM7yniAKadFyeoaeURZHEe00YXdnh06ny/qho2xvbdJbWmFva4/tzS3CMEB51m02zajKEiUlQRJRZBk097L0QJThuae+y2f+0l/j/XNvc+bMm2A0o8E+WHjnnXf5n37zN/nMZz/HylqbaVViUBy+7XZuf+gh1hYWWO4vs3rwILccO0K/1eKPP/95fv9LX2R3Z5s8m5DECUqF3HPPfbz3ztuMxxNnGuX35XjirmsNOAeBG1NvzghrwZNNAm+eIQXs27lxxrnzpQagLLXJIYQ+Z5tnPzf5kXB5XeGBptBP7Lh178akZ9rrklYSo1QLmjPQM/N9XWmFqxGssVw5f44rF99HyoC03aHd7pK0UpdbS8nu3i6T8YhW2mIyHiCEpSpy8jzn+098j1tuPU0QJhw8cpTJdMLm7j6XLl5iMS85efImltcO8ku//Jc5duIWstGQL33hT9je3cWUJQvLq2STEffcdy9be3u+Dtyn02rRaacEXhteCdmAJOKGKzP/33Xu0vD35tZt/dV87mk9kUIRBQFpHNHrtNlYXkLbI5TGUpQlk2zKaDhiMBqwu7vLlctX2NvbY2dvl9FoyEBryiIjCAL6i8sknTbXrl4lz6coKSkKN40kfP3ibokLJP2lJUQQ0FlaorexzunTp/l3v/Ov2bp6FRWGni3t8prZeG29KPwHq7enZ/Jp6rVgZjm2wAOEniEGiMATKIRjcjL31B6FcHWOcfWQNQaN9jHQ+Jer83Ljp/XsDAy0IGpiztx1xz2zK+vEnPlmDXH4uOSUzoSbHKk31FzMcsQZSRiEvHPuDHfcdT9vnz1DEKYOHC8rtne2+co3/oyf+OBP8uhjjxFIiSkMQgneeOtNlwdqzWuvvsKZM29zz70P0YpSHvnAo7x39h1aScqzb7/Kuxcvke3uInEGM0IpTt99Nzv7u1griJPETUQFAUkU00pT4jgmMiEmtARS+Ya3iymBdzpugKK5PNhSx4rZ/ZitchcRW2kKacrm1av8qI8fGeADmGbOsauwwoF2FeSlBT+miQBdgRWWwI8gIir/4RzzT9qIQDqL7jTqIkVMq7OMokWnv0KUdugcOEraPURnaR0RpRiVkGvJ/mDMdlmSXZsixHmq2r0Wt4jq0UEQGB/Yq9qp1jPzlJwDCYTw7CHf+ffMhTosN8DWnNbQPJBVMwDt3Pdn3TH3HHUiMQPtHLAloencYuuN4YX0G/DOd+7EzJnXGVLWwJEfUfS/k0QRCwsd2u0UJRWV1uzvDhlPMrLMjbQZL6Iua5YGPkDYWUBtmHamTpZudLxtnHCZAzRrQMjoBvRzl24GgM7lzM24Y30f6hFGWU/KiJmgqtNgmYF8MNNlmHcdru9hzeiq71cdkUI/Hun+3gU3pSxovGOYKxCVlG50aw4gU4Fj2ljj3O/qkdp5Zla9fuo1OQN35kddRf2t5mvhr38dHOq18h+PPXvg0ScD9Xhhw4i01u8B6TUB48ZJWXpthgYanAMTbQ2uGO1ZqPOgmUAGAUmdWNYJZH3/m/U+dzDb+vq6tdAkQXhKtgxmh5KodS7N3Ptx98wluLIBWZtDwReo1s6ck+uR97oYq9/cPHvUmjkwvtbAE7O9pgJFIFR9c5pioyhyN2Lnn0upgDAISZLUMx1nh3b9r/XXs/KMNF1Vjp3XAHqOlh0EjgIfxBG1QG5ZFEwKp1/jXFRDOh3H2JvkIyojKSoLCkAStrpErR5CSh8H6/3tHsIaMDl5PqXVdi62oTYNQGsFqEA2QE3d9GgKhlnZ2yQ19Va+MYWdXfvZup2tk2YdG+vBGQte/8c2oJ67TkVZkhd5o1dYaQcyRVFMFMUsIBpACpx7nRuHrhqQW9eAmAWtq9m9N64ZU81pitWu02XlWJjD4ZCDhw+zef065y9cJIwTllc3SJKYyxcvcODAAZaXV9jY2GB9fZ3FhQVWV1fo9rrEYeRZwb6RoDxDCuvG0KBZMzXz1RUG7vUlFl2WFHnp3BF97GtiCF4yQkjnnGlrUM9goNHPM541hpTedMN3VoVjHFelM7aZTnLKyp8Ppha49+ePlLSSyLF567EMX9xY3Pt12pBuj2S5v1+e8VdrZgmpHLOy2Ud1nLAegPfx3+u6VLrCCoH2+1NY7Z3GJVZoB/h6kCUMQ6SUTKZTjDGkidP1dexFi2u3OsA5DESj8RnFKR0ryfICpSqCIKIsSsIwJY5bLCwvu2s0tw6do6tF6xKrK4o8d8z4iRvfrSrHqMymBdgKYyqqIifLxhR55mJAVaDLkrIqeeK73+bO+x/kQ5/4Wf7dP/9/srd1jVOnb2OwfZ3xcJtzZ9/mX/zz/4nPffZXkSrlvg98iP7yGvc/+ADb25u89/Zb/NmX/wRhDVHk9IROnTjOQq+DKQtsyzZs4Nk54s81zA37dcY+myXftT6b9XEPHBtdSmcY5cBT3yATAiudXnIQhhgLURQTRhGtVgukcwmNo4R2u0UYhKgwJIgip5MUhiifozlNtJY/Y50wvPSvJfw55xYOHhivGfYzkE5S/8wFoBv+rk61jXWj5sxyMXf+zhVWc3vPbTPbxPV5x138OdKsb/93SrnXVFKhmUlUyLnrLaUb19+eTplmUzIPTpelRoUR08nYuVwjCK3CkRBKlpYXWVxaZDrJOHHqmD9nCqbTKWA9wFtRZZqtwYAXnn6Sv/q3foPu8hppe0xVFGTTAlNppFJ8/Vvf5MSJ43zkI4/T7XR4/tkfcubtt3nj9bd45NEPu1H0kycI44Rup8frb77BF770Rax1oHcQJ3SiGD3Z4dz1gTtztSEvHDtRCrf/ZmmEY+Fgb8x36rzGXWOaqRCgMdGoG5r189TAh1QBs9Fy929VuAaZqGOh8nIBRjbHWy0rYLWXKhDCs5Rtoy88qipGgxFpp0+/22Z/d5sgiFjfOMzaxkE2r1xgMhqhhUTrkt/6zf+BgwcPcsvNNxOnCfu727zxxqtcunCJ2lAuaS2xsXGMW2+7m9E0Q+FAPYNzvq4q7QC15nxXDcOs1g53YF9zSNNMLMxVls1eb/IbQ5E77dqyLP3kistzwzghjlJaaYeDB2NaaZvBYMjS0gLYIy5XrLTPQQckccTOzi4W11hR4IxIAuXYlbpiuLfN93/wLR585MNsbl5jZ/sa6IrhcJ92u8NbZ97i//X/+L/z8Y9/nA8//jGWF1f41U9/Gm0VB9c3WFvuE9iCHz7zLP/sf/0DXj/zDtNsSj4eo2SAChOO3XSa4XDAe2+96sxYvCs8fk25qY9ZXVCDJo1poryxAW+MbYDVWiuzBgzrHNbVJ7IBPmbyGA54agza5hoA1lomc+wqUYM/fgxS+PF94+NE/RpCCMIwaPaJQGCkq2+dMUtOmWUMd/cI0oh2u83CYp/NzW2G+9usrG/w3ju7FNMJYRQzGAy4cOkyTzzxPX7j1/8O7547y7vvv88Tz/yQTAuiuMWtt9/Bb/y9/4xOf4nJaMSffeWLvPzy89iqBKnQpmKpv8jGgUNMplmTk42YkBc5YajA4ORpgoAwUESBG8usayN3Prtm/0wSZI5tOgcA1rmkxZ3vNQDucrk6D3UNTGU0sYpoRwGrvR7WbtQHAsbLAGRFyXQ8YvPaNUbjIcePn6KVdnj7rbfZ299lcWWFt998g4sXzjMZDZkMhywtL3P9+jVKrUnbfcqqZGVlnV53ka98+WsALG4cpp76we9bgbihZjSNoZNv1lo30WitwVbOIK5pgnvpAlPp5mtjNFVZ59Klr4sbBKOpb+oaByy2ZqLJABXMGgbzcGtNwzAex6j9AJoz0M7F6hqYrskTzfdntYIW/3Et0bAaraUAnnvmCe675wHWVla5WhrswhL7W9eZTif84PmnObJ+mHvad5P0++TWMK0yLl+7AipEGMtwOOKLX/4SN52+A0VAYOH0Lbdy/vIlvv7EM4yub6LHI4Ikhspw5NhxTp507P+6ZpJCUJUlgzxnf7hPWVW0W23nsB0ERHFEIBRh6Jr1YRDeEJtnRIjZ2V6fQvOAdV1Cz1VWP9JD2Hkaz/8fj//uHz+GzN+tGak4K3KB9WCf8oyqAMdcCqRElAFBKIlkiBAxYbqCkn3Wjt5M1Fth+eAtBGmfxY3DSBliUEgZMs1LxlnOYH/oWAR5NgOkpAeD/KVRygFUjTC4MU33xc4FUClmyV8QBE0BUzNt6p/NwDqfQNTAnqnHb61nnImmGDLzl3bu63lAxzLX9a5H9WpgqgYH/Pfr9+UWjR/19KDe7P26v1NCkCQh/V7HuRsFEl0ZBqMxw+GUvHDFV2McIOUM0BTMFqQQ/iDCuSHNfYYbAb8Zul+PqNTdpxrMQ9QMvtnzmOZ3Z9+vnUHnE+t5TbK60px1fABBwzSbH4mZdResp8TXh7Ro3itByOrGQR+AaA7eMnddRqWkG5tTyhXWyunf1COSDiSTvgkhmt3Z3GMf7GrGV72lZ8AzzaafX2sNq8kX+7UhhvEd/+YQnLtGUrmDwzkuKa+PMAvWNz7q6zxzd61Zgy4xlA2YVou61odgfRtuYHDWa6F+LusOyzphrddLndTUAEUNztWft74/Yu46zrPDZttqthbrvVQXWrN9Z/11ss24p6mZjPX6ot5HfjRLzpiejhWmqbQftdWzsf2acu7s59V/dI2bZKMG8rzWRFmWzTh0zUIIvUsWOBA0zx27yXWSBVEcE4URYRQ6iQAP/pZlyWg0JG7FnL7z7tkh4q9xzV6UPj4gZuvSrTc7F29mLqk1YONWiUB4IWSEmBuxm8F4N96P2dezvUazPpoGiNckbMC1Gszz10vryrNbagYls89Vj3g0ekQu3iDmgemZYU9dlNdrYdYAELO1S3021HEPHzdMk7xooz2zyzHPkMKP1kvSNCWJYuI4bnQUta6QDStYULvY1gZINWgQKNXs6Uab1TqnYKzwDEZ3Tax24/N1dHNupp6hq7WPs6YpgpvY4AvApilQVRRVSZ7lDSDn2ICO+VezrVxjwOmryD/3vmv2o2P0ec09rxNZj1sa60a16nVW+DHV+uxWftzs0NFDnL7nASrvpq3UjcWTEA6wtQZf6PjuqaibFbMzSjTF+vwaFs35bufWaZ1waqzXILToUjPN3fhZXrhCdzpxrCprHUipjftcRZ4jqBm4DqB3+914QLkerXcs3yzPMNqB+TW4p6uSeSa7tYIP/+RPcedjP86XPv97vPrKy2wcOsp4f5sXnvom+WRCGESkcYebb7+bkzefIggEVy9d4NWXX2Jn6zoqCInTFmU+5fixo3TbbUIP4mKNl82o3PUwvmhUsmm6KBVgrG2c/JozGaBm4jX5iDMzkng90SgmjiJaaUoUhbTbHdJWSpq2iKOYOEmdc7xfV/X5YvEMa+kbOJZmjK0m4M83GnzkaiJQUwjaOv7QJNM3/iZNflefu4j/eBypPovrKqcBRPVc46nJCw16usfxE0f9r88V+XO/69IAi67c/qzPyZp5aqFp+EwmUwoPfhdFwc7OFtl0ynQyQWPZ3dlBIUi7PSbDEbrMGI/2KUqn55hNp+R53jSwi7JoPkfp3TjzvEBbwU/89KfpdHr80e//Lmk7YX8wpN/vU1UGGQQs9np85tO/yL133YOuKgb7+4zHY1ZXVlwzKAyRKuCpp5/iD/7DHzLY3SWfjNCV5vjp21D5kPHuJkVV+vsqKYvSn0luzxhLkxfUF8P6e9owlPx1bKRS6hy9qYxEU9jXjVgpQSkH+Esf86UH88qqbHIzJ/viGcse+KmbT9rHTJp4M8dSti5PRyqCKGZ7e5/xJCNJO9x059289fLzYA0qCgnimChJAajGE7f/bX0CuSZju99l9cBBPvLRj7PQXXSxzGtmh2Hg2Khe1iWoGzTS535qVg/UudWNjbn51T37p97bg50d1g8ewmDJ8gLhaxsDTPOCMi+QyjVmhpMJWlfkk4zReMRo4Eyh8szp3kZxhDWW8XjA7vYmSkCWFYBlMnVMunyakRUFjz3+SYqq4jvf+DJFNnWGMUoRpglxlICUdLs9jh8/wamTx9hYX0NJwcXLF3nttTc4f/GKc5ifTCmzKYEUJGmbhZV1br/rbp782hcpJ0O8khlzWgM+RNSkhhloX+eCjtBhGoBDSNHUkQ3vzINuzNVhs1x6tk5mdYivP5mvcWY5cQ3WupzZNTca+QCpkGJu/degotZNnmNxeUSdlzbSUH5NRFHE5tYOKxuHufvBD/LEd7/KYHvT1RBxQqu3QLfd49FHH+FTP/UJVBgyzJw2O9YSRRFFkbO9tcsX/+SPeOmF532zzrC4ssJosMMvfe7XuPfBB9Fa026lBCqgLAo3zRSFVGVFkqSkSewZ1oo4ilBKoo1u6mI7F0dn2HRdR8+uf/3Dy5cuEvW6N2q1++s/zwGs81wpPHBo/PRXnScK/Pqf/cX8mVHf1qox/REMBwP2h0MuXLzkGKTtDtPcaT8rwApJXhZYKcizjDzLCP3+nY7HrK2tsrDQYzgcMp1O2d3dY3+wT2kqKq3JJhlFWTKdTjHGgXyirjH9fnb1dD1V6GqWWvdNayehgnHTUliLtp7wZGqTC3+F5xKlur6qX2SelDJXrPk6w5M+ZL2+507qpiT376/Ow7EerPRNeF1LRcEtd97L7Xc+yKtvv0lZFOxfPs/e/hZRu81iZ4G/+At/kUfuvZ9KR1zY3OTds69x5223IjSoKOE7T36Xjz3+MVYWVohDycWrl/n9r32V9zY3ufTKy6iqIkxidFXy6U9/hvsffKhhWLZbLT9pEzbxtZ5WkUq6uiwMvaGIa8gFc03zeeBWqZmE2vyanC/N3XqUnD3zFh/94GP8KI8fGeD7L/7OI5jhWagsoVRYBVGgUMIgZEAchIRCIkRIK2yhRIQIWnTXjxB1VyHsc9uHf4Yo6pC0elgLlbaUWjOeTplOM3Z3B1TGubqFQd3toNnwdREmvV6GmAOSnFbVTBRf1hApeOFI0SQK4IPybDdTF4QNGwqLNa7QgBmYUDPR6jn4OqBK4UZx3b0UNwRw69977RImfUJbH8z1Jgk8S8915Owca88HPN/prANVHDtgr9dtIZWkqgyDwZjhaEKezzSSauOGWm9mxjCrl4RoPje21hD03XtmiVb9O/VmrAv2GqypO6rzoBVzf1f/jWNX6CbRmE/UYTaaWr9fd6DOOq31fZ1nyNUwhKAWshZN4Vvfu9wYVlY3KArXrUziuHntwLP76o5ovTlFA87ZWYCrg2Jddgg5F/dEc//rc8iBqzSJaD3upj2TpAZHYfa5hA8YQeDAuxpkUr7Ld2MpUweQ2Qhx48zMTHRf+AJN1YBQg2/VBVINvM2AV+1ZeLPxR1/4+Hs7c2+u2X2+IPPrHWZi4k2SVP9u83X9NmpGlmkA2BuOeV+g1wzGmkU7/3V9qNS6B8qh4w04VCd0la4a2/v6c7lRRcdKUcH/j7U/6ba12c4DoSci3nKttYtzzlffUpJ1JV1d6SJbdjptyZYtIZLEyRhAC2hlg59Bh99Ahx4NBoMejAF0SHKQA0wqhZww0saSVdyr6rtffc4+Z6/iLSOCxqziXfvIRvq87j3f3nut9VYRM2bxxDPnrLT7FHSdQAMR7ZzL47IU6UUprcyEJFmvqkC6ZCV23sJMPgcC9NquQ9e1FGAHT+mN80wNJi6U/jfPVDPq3W9+hF/85V9RGREDYgXaDXyWYLaUFPnAST0Qb2AzYOlqb3uVzEhZrhvmJWAbIYkL9kcD2Uq2LZ9GQbzr3S87Z1Z5cuZR4+rR9J4E0HW5eA5ds+y88Gmkrg0y6whn7B9Z+wJqkB53xeVK59GpvRFAW0ZVWIYEKCXejSeQoNQHtEsrdS1XXcNS20vWtZf59qYfHYhpQAATNb2gOo4rpIu2MVcMrCYHJmhtUZmzNUbMXGdvjQRyLZzCmpHVJiZkzNMCONq4keYJnlMZqqoytmwGB4MDvvndb+EXfuVXAUDTM30ReHnVu15CNNIzECcSWvvFbIDZCl3n4NTsZMCKsCRXTpMndtHMQVJkv2CrR+E9O9kJcVmZzcPpgcxYnOdZO3qu68KNClbbZec5XRaqs5m4IDgx6gN+/m//ffzir/xt/O/+t/8bfPGXH+P20OGzrx7w53/0rxDHC9yasWZqK+QZhHeg9PfsKuwPPX76p38KN7e3gLAXqhpNUzTy4U3CaaY6nU1TM5s4ku0LHoebGw5MPbquRdd1DNod0LYNuq5D1TRo6xpVqBm0peLStgFjYFkW+8T3q2vXO2kTwMG1vS+hmYIUTkx+EbyJD8B6JGcqsGHMFquBh+J9CQ7FhxN2ougYO8DsFZ07aaAOOKzDA7773W8BoE0juZacXxhU1DWcQEzZ6MmgAGBdVx2reVlxuYxsk2bkvGIaRrx6eIXj8YRxouZB+/0ej2+owYTzDuczpYlTR9cBmcHnZV0wTRPpFQ74nfNU99rX+B//T/5TfPzJx/h//s7v4PMvP0dTBdzeP8M8zahDha5p8Mu/9EP8xj/6x/jg/fdR1zXWdcH5fMKP/uxP8f/6vd/Dv/k3f4B5GjBPIy6XC77zt76H2/tbfPWj3wfSQoFzhrFVZMMhJy4nZYxkBwNAVGVnmXvbHBcWirhkon81EwIyp9yQguUrgTIelIUMq88cE/uifEHxezQls9D3IiKRWeBV3WEYF2QAzz/8Nk7HR7z89GME77T2aggVnj+/x+nxEVXT4ny+IISA7//wV7AsE9774CN89K2fRt90qEOAbyi9v2upjlld0++BAdGmabh2q2w809gJu28jwPoEV+OaMx5fP+Cb3/4uUs5YU0aOvAEBYIkR4zhiHAbkDETnENcV4/mCeZlxPp8xTJTSOI8TLpcz4rridDrifDpS07Z5xjQtiHGmDZRxxDJPGOcFf/fX/jt4fHiJ3/vd/zviNCPHiOSIfRmaBqFpqB4zkzGcC4g5AuuCcThjGkZgXdHUNaq2w917H+GXf+Xv4F/97j/H6eELSEVFuMy+XSCAhMdDfkqJHws/svlEHEvmwv+QmFQ38d1b9BXrOSN4mH8j9dck7vPOqb8g8+eCpw2tEKhJArzZNkfp/9bMMWLNsunE2SJp5drRTm2yq2osMeEX//av4XI+4V/9i3+uvkGoGrS7PbrdAc+fP8MPf/mH+Nmf+x7u7p8hI+PxzWv8wb/+1/jd3/kdvHn1UsuFHO6fwyPjo48+xH/3n/0nqJoGl8sI7yt88MF7SDGhbWiTumtaVBU19GnqFlUgQGXXdxpLS7wrGybClMyF4KZMzfmco5r/n336E/TP7ji2t1RREfmSHEJzKHYg6XxtiDbZ6mqXuoh+etU7Tt83G7VxR6VpGRkNe5/VjDDGIL6MxCTzgqZrsMaIy/mCYRhwPJ5wPJ+wrivOpzNSzvjk08/w6tUrxBwxDBccj4+YxhnzNBEzMc6QTfAyfAEDbQ5is2RTv1Bu/EAyluQblnFlEYvJxnqSsk5RfXEnNndNnE/MJcecpyohjje91pW6hmcqY/If//f+R3j5+IjPPv8Krz7/BOv5Dd6cT3De4+7uDr/9a7+Bv/8f/BOcpog//KP/L37mO99C1/Zodnf48z//E/zCz30Ph8MO/+9//d/gP/+938WrccSXP/4xxpdfoet7pHnBz//wl/Gr//DXkdeEbrcDvEPXtqhDwN3tDepQYdeL/qWyH3XToK4q9G2LUFVouPmm6WHLoDKAz6tMQ35e6eM/+5M/wT/59X+Ir/P62gDf//w//TWk13+K1nfIcAhtgFsC7m7u8dHf+iF8f4vnH30bzc076A/P0d/co+p71PtngKs4vWXE5TLgeD4hcj2WYZy0EKfQp0nJemVhOXGO1FmiMZJaB7ILYrtzDJD4QpmWvps4eYVTdl0/Ds7pYhTnH5B6aaL4Yc6mTh42ylj+luvIThtgacVSH0nYN2K0LXWTzkw73NRA4OZmj7vbHbyn+gDn84jj6WyAhThWzumYOQh4BD2vOr2w9Z2ypKwI9daCdwCWxsk7ANJZVGpbiOKQgErAVGM6mnNFfkjW4BgCDPExUhuFlD14sRhwJYGcnbNkkNmOekoJqGt8+I3vGPDEgY/U4ynrt5lvZA67OIYClNHcsqIqAB9JS40psaLfdhkW50tSZyng9tSVmkEeY73ZdXTsUgZymaILvUdRLsLqU7mUwKhYCDmLks7bOmUx8k4VrTk4S5eWen0SwMg1RYY8g4cyjuXNi4yYDAidXOQQOj5Sj04YX1JUW7rw0vw63V2huhTWPl5kROQurpHBtUXlUJR0VdUETDCIXAYaOUv6KK0rYvqt2uVW0t8cW3wa+wopEduJ0l9meHit09c0Deqqpi6pgVIclnnG+XLG6UjNImKM2k24aYkt1tQtUuXwsz//fR5TYysZwFrs3sual3+O0qMIhHHyFV5L8tf1KwPZ2G+SfpZi1gBN9IR5QvRDwSjnoeyCwr4pCOBEVrYAmz5D6aRJ4JKL32FOGcpA/onJUyUI0Q/CfJRzidMmtU90jHJmZ9scQmRw2k3xHXYgpbFH5mA2Sl3ACGPprSuzq6Luuqoe4zR7Lc7Nzy7M0GWekXKk1HFmmxLjgJgrAuLRBkHgWlLG3kg583qgNTFNE6Z5wbxQmu7EwJXzjhlITu1tZCevqmvexawhNWZSztSMY56p+/HlQp2NxxHTSNf6u3//7+FX/+E/3mw4OdYTDgLyGEgico6ss4Fisiw9n+2ZAIoyF2XpDGX7pMw1LIUJQXZN1jb4edPKnfn4e1mMfhK7A56TWecxMhNrYpCV0u4n/Z2usWBdiNknx77/nb+Fb//8L+Ff/97v4F/+1/81dnf3ePjqMzx8/glOrx8xrwuAhOAI6KubGi9evIfd7oD7Z8/w4be+gbbt0NQtkDPe/+A9vHr5ipp6VBWqqka/66lWaEdpsvQ+dXtuWtqhFnCVwFbohpCOPesaSpt0HHtJkFx0tVcH1/SKBkUOVMNXR99kwDYTjbkXo5T0KD4vNhPEdpiba+wElRgRmQIcVkaNbJo5trlXvgoBdOL3ANPpS3zzW98wn4Ht7Ob68lSlrmNZIv+zqPkaArNxI6cWJpWXeVkxzwtevXqJ4+NrnI5v8PKrLxHjCuoQy0yUdcVwGbAuE6Z5QmKwb40rRs5SABwu5zNu7z/Af/9/+D/FJ599iv/z/+n/gJxXxJzw7P4OyzRRCRlPqXTvvHiB3a7HOI04nU54fHzEPM9wIDbeOM1494OP8FM/9TP48R/+f4D5QrWlc6YarI50mAIlvJZJboSlzGPoGZTjyTAwJbOutRICKEAXYeumlKg8UCZwMXiHuqoZGLBaz1VVQVKsl4VShiUNOMOpnxJCBR8qTNMI2SQFHFbWw3BUQy1UNRI83nn/Q3z2k49xPh6xLDOqukFdNZjXGRkJNYj5Cu/xre/8NN79xrfxwYcfod/v0Dc99vsd1mVG17a4u79FThlt26DvOgWKqcGerE9h4ootso1VHahsG97yyjnj9OYNvvWdnwKcw8Jd1cFdO7PUiLxcCNxlf4yaXA3E5OayF+NAAO/DwyvsDwf0ux0eXj3gq88/J7b3OOB8PmFZZkzjhBiJJf2dn/4+huGCf/Uv/wWWy6DxAgBAdBAzf4lVT3rTgzrXhqZFqBu88+E38MFH38RPfvSHmB8f0HctHMBlMqiTZcVZOUrs4LIWpOsJNLZ63mIjxQcog8dSDW79JZFT9R9FJ8Cyjrw30FljXk2xLtJ0C1+2jAeVpQbb3JYu8BPXuI1cGzqmjHldjV2/RhxuX+D7P/y7+NM/+n18/Jd/qvGNDxVcVaFqO+owrmBWxrpQ5kBOCcs0IWWgv7nD4e4e03DBb/32fxvvf/QNitcT1TB89713gJQwjROlNVYV4jpjmiOeP3uGZ8/ucLM/oBMWX6HfpTSVg5Sxgm6UpAyqB85T8urLT3H77osNeUdl/+pVTlc5cy7TZqUr3hUgV2N8iTcF9EpZz5dzEVeXVyjiSS++uoJ9tiEJCAmDziMkorLBmpJhHG0Wix1blkUzvZYl4XI+Y5omvH58xMc/+Qn6vsO6zHj58iUeH9+g6zp89fIrvH79hjaDxwmJ2cTzPFG9VLZPKQPZZdO/PIi2kZfNvsF8VBkUWWeZYziti80+LyS+SxGJWeYpJdzd3OOf/JN/hh9//Of46vQGLz/5FHEc4AIIKEwJ3/7gW/inv/5P8TN/62fR9i2WaaWSVBXw8aef4L/4F7+Hnzy8xpxWPH76KYaXX6Kraiwp4Vf/w/8AH33zOziOA5ZhRN3UABz63Y4a09zc4LDfY7/fo20aykRoWwb7CNRrW8pcaMQHlsYi3hrQGujnde7LeRaf4M9+/Cf4rX/060/k9a/z+toA3//if/bPcJsHvPvTvwRUd/jw53+A/d07mIYLPvrZX4Sve1RVTYYyJZyOFwzjgPPlhFevTnCgSfVIGoRId03vpIumsNtIIMgJ4sLzoTBa9lgaqAZOWRSlqnGcHMLKSg6PkmZbsNAEmBJn0AAqqGIt0weeOoPGNtRdgQ3tuCj0HAoAEgb2aVcaNtQWuEMNdV1zsUcH7cBpjm7WwEmZf+rMWngk9yjKo3RAMwyMcYDubpbNHABziMpGG/JPnYnifOW4kDFl6rsTR9ixIxJpLmWWZUctlw6iOS1aW6BQlvZsvEsbI0K3w4ff/M5GhEqwSEAQAYw39XpYyWstN9DumRTT1U6hGqiDAyHamapChaqmndmmrjXtV0HhYpfHAhIeSw1mjNFaFSAeAaJbUO062BHHSXb9lJW3cnpkSgDvFApAqAxKcSCdMWZCCKTsxdLqPGMDrEuNLeSipmUWBpzVOSzTWKVWGkfp6vhQ3aegYJ7nRa6gYOY5WZnFsHBXWzhWwLWCqI5ZvQbk8T1m6eIalZ0nteEipzdqHUse/5SIcbesVOw7xkTsr0AdUxs2EsSekmLftBt3PD7idDxS+m5dY7fboWk7bjpCNayo9hUwTTNc7fG97//A1jXM0RQ8pATH7If9V+dAxCVnDrQMoBJR2gDCbKBJL9n4EWuAWGVXXs7GYRbnmBhv5gBLynBxlN2fyC/rINtYkLWxDVo0OHTmNLvCIRfQQPS5BJJe5cBshMr1NXCAQteJg13UeIwFs1OAYa35mLMFtDDZtqAWBSM1as26LJtZPNG+WKcheGbCVRZkiI5mBz/GRVl40jxjZgAqMaCfM5cycAaYegaTqlApsxWS2sJB7jRPGMYRw2XA5TJQ4wBu0iFpb86BnaMWP/jhD/BLv/ofqv0s3Gq1qzlfBVi5sKkc5AJix2ENIWAbNVIfTsaV7AD7E6BpWNfIxaLNgZVNBFlHMv40tpJOkqkZgJPUfEs5dxyUSOq4bDjN84rIGwykKyakdcX5fMIwXPD6zRGublC3O3z+ySeYhws+++RjfP7Zp/jgww8Rqhoxznh49Qo/+OEv4+HVA5Z5xv2zZ3jxzrtomg5d1+Pu9h7vvniBZ89ukeHQdi0x9FxQmZHAjqRfHE4b7zJ4VUdehbYMbrdgTBn4yn9lJesml6xV1geSli8AVErmawgrOwlzQOUgK8PGKnub3fVOfMutc21L2wCn8ne9Nzj1a7RuofiJOSGNr/Hd735HZUbGcwPowf4GHyd/a9mTa59U/6b7kk0356gJzjgOmKcBDy9f4vPPPsHj4ysMw4DH44k6h68R3pPvOnNH8Zio272A8yF4XIYJod7jt/+j/wG++OIT/Of/1/8L1mVCXQXc3N0hZofxfCaGUWDdmCKQCCiTxmgxRrx48S6+9wu/hD/9kz/AcnqFpgKnXwMZyZjw/Ares99E8iCAFfn7kqHiuEkLyUjT1AhV4ODW7Hbf79DUJN+3d3fYHw54fDyirivc3d1hmRc8Pj6SbT3c4O7uHsNlwBIj7p89R10Ty65mUKNuampqNU548c47uLu7R6hqXC4nLOuCZ8+eI8NhHEe8efMat7e3yCnhMgz46suvkHImsI+fre973Nzc4DRcAO/Q8vwm59D1O+xv7siX4NS9ygXA5a0/WIAHtrbc5u/SWgKF/8frSje/is+G4xHf/ZmfvQKqODDn2sfrKqnPXO4gUTmG0/FIabU8bjlDM1/Iv+HNjXnCm9cP+OLLL/Dll1/i+PiIy+WE1w8PPF4erx9ek43KCU3X4Hw8Yp5GvPvuuzi9ecSyzKgbSgFeWW/UVYNmf8D9s3dQVx5ffPwXaGuHd168g323I53lQZurLFc+eHzw4UdIKeLLTz/Buk7Iayx0tNPU7ZSSsvLFFsi6FPZdFr8JonvE37X4K5dzVsyd+HeSki72xRf1qSWWk80+IpPTfQSOh8neEAt1XlZcxhHTPLEdJXt3vlwwjBPgyL53t+/gOz/1s/jxv/l9jMORWfYJwVccjHEJIGbU5Wx131wIeP7Oewh1i1BX+JW/87fxwYcfoqmp8VvT1Nz5ucI0DljXFXd3d6T/4oqYgdubA+7u7xE8xUL7XY+2qQFkjBP57G3baByhNpvLjiSN7zxeffkp7t4vAL7S/jhbJ/J3OVdqt3TtGDFALRh/R31Yjnmu3Fxdc3IPmxi7+M6mnFfha5cyohubrvBL+QitxyyKEVkxiDK9mbAQerJlWRWspfFcNFthnGaEusa6LLhcznjz+g2GYcCyEkD81atXePXqFdq2xuPjIx4eXqEKAcuy4DINxPIdJ5zPJ5onZxhJ4vqoUioEEk4DmtmxrivWeUFarX62ywkvnr+Hv/drv42/+LM/w1fHlzh/9QXGC/mV7c0e8BTD7e9ucTjcogoVkBLGdcIlJqRQIawJrz/5S+TzCbV3WAH83H/rV/ErP/wBvnx8RNd1qCP70TUx6m9vbjibgdbdYX9AzhmH/R7nyxnvvvMuurajdN4qoGPgr20a3TTquIO0ZAFWIajOEIaf+BreOfzFj3+M3/6Nf/RUoP4ar68N8P2v/1f/S3TJ4fv/4NfR7G/RVg3mNSE0AcO0YLxMeP3miGmgNva0Y01ps847VAFACvA+a10iMdairFZWtqUxE1BDhFNSAgX80vQpSbfItvjEWdDugMI0QVFjpQCeMqyungKCIpEbVIgNqisVgoBTVv+tBEMyUKC6VvBSn8MVi1UAJ3FKU9bvA04NEGDsucwUZ0sx5eBJz2s73xtQQ4Nn2HjI82VpkpGegoASYBd1+aTgsQbjxTlkzCWYlcDcCuAaG4zuLVmtQtj82xwkHSu6XDLmAOz+WePTvFYt3v/oWypblgZmYImeXlmJBfgUJa1OisRnDXa0S2ZNTIm6EjDKdt+uryGFSy0FT+poSK0jC8i8yo5Tu6OgacFg0M63Uu9MwALe9TJgwxVriOjuJG9eGaxPmDRl4OKYyegMhNZYXOowFsBEXBdETk21BiFZ16jseHp2Lmhns2gO4mDFdzNTxpM1pZh5l5GcNAIi6pqKt1Mh2W1tR2WIJLChiVoPTlhRCmY7BlYdyd26Une4mQMqqdPUNA2qhhh3xNSrdL0u84xhOON4POF0OmGeZjjvcXO4QbfboWkadegCNzRIKWFdiMUxTtTx7P6d5/i5H/xQ18XGZ5Ff2KHNEHadtWwX1kxZnqDcZSprTVI9IFqvmkLr3WYcUcghyYXpHX8l885ZuQJbZ9fBR1HMPltdT0lhl11t3bQo1+yTe8owHWgyprpE9EKpS5OM2VbWleXHlxBGOQFoHEBzMFQyJUqbpfdcPKus0bWo1Ziz2Aqn9XhKPUDgOhiESFjXRWVXakDOXP9xWVatuTcvC+/EZ06PSCpEGQzUOqCqAwcpXOg7MQN2oS7Dw2XA+XzGZbhQkepx5DGIVP+qqtB1Hdq2467BnliwKWKdF3z7p7+L7/3g79A4y3pEaZeSrldJsw/OccovsX77vqOyGDlZ/RMn+lHsqQABJXPYflfA6ApoEb2fUt7YI9tw4+8p6GfHC8MoJtMpknpNoCcxq6ZlwTSNYPQKp+MR0zgiAXjzeMLD4xFxGPDll59jXhZ88I1v4t3334f3wO3NLb717W8hxoxd33PjikYbuohzj5RUzvjmxByqbRUPZgvKgfWdFMOz92S8jH2gkm42H0VmAINzso7lfemKSux3qQ3Lc/Dk3HIPBuyUNuepv2g+W7mxmLOVWMkAkMTvA1Imhqam7QNC8qFnUl1GMjCdvsS3v/3NzbhsgJgroK982YaBPaduVPD7AlznXPiqkg3BPnJcF8S44HQ8Ay7jzevX+OrLL/Hm9QOOx0c47zAMFzy+eY15XujenMcqbPY1YV4T/t4/+HU8vH7Ef/n/+C8QlxlNXeP2xTu4vb1HQsLldMRwOWOZJiADbdei3+/x6quv8P777+Nb3/4uPvn4L4A4ow3kz3d9j9u7e7Rti2Ve8OLFO/jwgw8xjhd88fnn2PU9DocD2zxPaXfe4f333kPbdjidzvCeWBX97ga3d3foug7jOKq/FVNC1/eoq9rq6TqHnG1jR20k/8c26EWszTeVWEFkywCCrOfJMkV8dLmpLqfTTdnCRxbB0Kyh4rtsDVS+RWeJrFhAo5eFgNAK7ImcqowVh21iF4t5zo9v8N2f+lndG84ZmjWUy4HjReZgwINcy0nsAx1++c2ARbb7ZNvI91uWCeMw4PT4iNPpTLqR2XQL1yn97ne+i+PjEafTCe+89x6G8wmff/klpuGCtNKGdEoJl/MJwzTg7tkdvvGNb+LuloDd4XzCNI7wjmLLb33nO/jWt78D74Cf/MWf44svPkcCWKY8PvrwQ+z3e4zDCT/+4z/G65dfEfPIEQv15u4G+/0BcAQ6vfvee8jI+Pgvf4LT8YicEu7v73G4OWC4nPDZJ58gpYQX776Hm7s7OAcs7PeN44S+3+Pb3/0OhuGMH/3RH6PtWpzevMHx8RFV0+Cdd98DkHF8fMQ0Dui6Dk3bAQBevXoF7z26tsE4zajqGsuyItQ1bg57NG2Hly9f4XQ6IbI9ff3wgE8//RQvHx4Qmh1efPhN/PmP/hjL5YRlnpDSCoCA54mbrqzTBOcIMLp78S72hwOOxxOapsFv/OZvomlbVFVAXBPunz+jerF9jx03JRg5ZbTrWvR9j5wzmraG8xXqUKGuK7R1pYzBZSV/KFSUzVeywauKNjmmaQHVFqzx8svP8Pz9d7SRmW7U8aIoRX8D3pnS1s/K920d2tmc2CA+wFapXcH0v3zJ7KL4HXJpO5rvbHNd9iUAXeelfUulHuHFK9iGpewL2GdposJGF3vtfNAxk8w5i8nF1ns4R/e/pkikJWZcLgvVIn751UtM04wQAl4/vEbVNnj16hU+/suP0bUdAX9I+MnHH2McBzyeHvHZJx9jnifykyI1M4wxIi0Lcox454Nv4B/8+m/iX/7+7+PTj/8UPmVkJJweH5GyQ3O4QX1zi7C/oQZcOQM5wi0zxtevMD48IDBJCT7gg1/8Hr773e+hTQmh7eAYM1njSmBd06LricEq8tpUxtCTevc5ZTx/do8QKAPs9vaGy2hV1BRMCDhSx6/ANaRUTsq0seUA/MWPf4z/6J/+Br7O62sDfP/Z/+2f46OPvoGqookblxXn4wXzsmAZL8g5IdT0UBK0lDvoZDeS7mpAUhpZRGNMBoQABro4y1cPjIT6jaCXDRVQGPCtwy4dalLh0AMGRmg9PWWolWqC/kopawDh2Hl74lRCAlxsgjqp62BsJOsQSosvbwIT2a1wHJBmNrS06IwVoGPkpCEHd2wsnM0Mc371ma6czOvfFUDUnWZzXJApYHHOIRZ10aRzlM5NTPr9kg0BWAF0x/dyXR9R57iYW7AzKCOdUtyMuwQKqqSlnk9mx6rp8d6H39LnFwdc6cNJiqVbd01pPCIAmxTW1J9VhVBXCoyoKyjPrONmrcmzKnqrs1ex8tBGGYWx4EffzkPBdNO6fgLk8ZxoCpwnMC4U9bbKsS6NkivkR2oZljKsx/ARFIAQe0XABOkWqw0nclIDIumCzoXivF7TRsXIlCC0zk3kGnbzwtT0pHPSdi2qulUdoe67gCkSxCfuTLVGZS/FaL/nRPT04D3vGidqKLAsXI+GWQc1dZKsqhp936NtqXOq87QDPA4jpmnA8fGIy/mEaZ5oh75qsD/c0O5RXcOxQ0tpvZaSHmPENE64DBfuRlcjxoT+7gY//b1f0HkWoNOCaDbg7NRJrabgPHwVmHXo+KcBx6KbaFY3XgrLsnyeN7JgtSo9HDwglH6YjjQAxOaAwFVjBCuwZ5Jp17lythIzCSXw2HatzgxIel0zZXq8/ivAOnHAFNCQZ5cALGeVkXi1zsRxEllWG+WdRnHCUl1XSc+0RhReAF3uyFXW8+CoTV+SIi5dhdeZUnKWdVGmzsrpfLJR5fg4cmSocVCKyVIJgkddN8jsRK4pY10WTDN14rycL8TM4zTbWVixmUDCqqJ0z67v0batdrBMOWEYiE0wjiMV5Wb98PO/+H38zC/+Ctk3AB13kPaB09iljklTk+PkqWkX1WNy6jdvdZgrJdeCVBR6E0VKSd7WwgUIbLINB7A8Q9Eg8iGkAQg3KorkwazawZnLNEjAzWiS/K6NtEKlLHFqCkYBjIJLziOvK2TTBwWAkZDh8lW9IQ5cBFRzTgJsWqOV6m4bJR0P9YcKOCPD1lwWDUrfSE5Y8sL6pO9LqpDUVCp9siLkUbDe/KYCsHeywSXf5kiquEc6pzQ6ixKyGbBerFvdgCw2IpENngBfT9esBEOOwDywnBPoZh23h8fP8c1vfmTyiGK8xC/Teze3xPwVY56LnxijpShufEpHZVwEPJYO9ZE3yMnHSnp9YRWJPnx884jz+QQAOJ0ImD++eY3z+YRXD6/x8U8+wbN33kNTVfjd/+q/xHA5I3LH8hwcbg43ePH8OZZ5wcOrV+j7DnXTYBwu+MEPfhn3z+5xy6lNTVWh63uMlwEffPQhbu7usOv36Hc72rSTkXdORWsTtLptwxJGnei7EsAW7DZVcnnLzhSvXer60tBs7du1fdpsIIt9sC9uYorSF1P/2bnNxpmyT7OtBbvDgjfk7I43G/AFAFCCd+Ut5vIPiLopNs3UBplcyd/j6Yjv/dwvQDfe5Cryn0LHmP8pm1PyRSM3yMiX9y8W+elN2xPp0GRKlYSztQEO0Ck+svjJ9L1TXee9+N2WNZX5AlnuNiX17xwPvm3kks12ILsudcIla0FlkudDYkbxn9S/1zHmxlHcXMiycKxswcqkCAOIs8ZNZTfZlPLGd9fMGWcllaxWcL6aB6jszhOxrb788it89eoNXr56ieF8xldffoE3rx+wrAu+/4NfwhdffoUPPvwIf/QHf4BlmdF1Pb73/e/jcjrj5vYGL56/IICTBVc2TCvenG7bVjPI1GcU/8zb3G38N5WVYsNJ/aAs04OYmCziHF4/fIl3P3ofoQryNY6HbY2jHIuruKy0DchbYF4Hb3MuiePpP6rNnW2I6qiLPRM7IHZ5E4AVKyNb9pmuDlVlTu272OeNE6Sncwogyf2WPjCpMmexntpAt1k/ImhOiUU2drZui5XN58iZUoslhzpIuQQ6AMjEAM854dNPP8X5ckZm2/f5Z5/jR3/yI6S04Md/+iP86A//EDe3z/Bzv/CL+KM//kN89pOPkTw1bclrwjpPWJcZgKNGGdpoBZTGHwLWnHD34h1865vfhu9azGtEqGosa0TDWSkueLRti7qq0LXU3Gi/36PvOv1HYDoRN/qu4w1s+rvm2vhN06j/XslmPG/ISw+EMsYQIPXjP/tT/Me/9U+fzOVf5/W1Ab7//f/xP0PX7jAMA6HyAJASF9PmzrbCBGGZoFSBzEqUWjxLYUmxy55ZVFb0UphorlCq5rxuALUsO5/mZElnV3Xw2PEEF0IuF5HzW0CvdIwSA3/yfVX+brtINzvKXE+PGmkQ6q1FfQvDpKm4cLCuM/RMdV2h7xrs9z1YH2JZIsY5YpwmDJeR0gBC0GPsfLbmJb20bOohDq6NI1Ue0IYMaavc1EHOBuBlNmISnMn5UkqQDsckGjaW1jwBG6Mqc80XK9iYW0aBnLvcsRT2hARAEpjpTofscPB5Y4yYUeHZO+9D6+XJP1Y4Mm5ENa/QNo0W1pSOOmVKWXk9eeXMAESyNC+h2NfSwEHou748bjvu+jPbvWph/jXp+EmQRuBCpbR68HyLUySyW9UVP0MZfGQNvCTVXQy2OqgctCcBFxZiqKzcjTNxYV9laTros2qdMgetoxMkZZY/dzyniXd4iX3EdarmiVP2Kchv2hZ1Yx1MCysDTTXlFOSUEqcUJQVWUoyIK9UfSzmh8lyvLFQAMqZpxPl8xjhNXF+M7jHUlIJA8tGgqhquDZkwTxMulwuOb95QwWmmwFfMZqrblhhNNdV7KPWOY/04C6gyDBtZyxlo2hZ91+P15YT7dz9UGQmeOj3XnA4cQoAvurcG1gOCN6lz5URuLDD1pQMtOksDYLARB8T513EXWWMHS1iDpBekYUQRMOUCOGajp047r38B/6TrtlzXS/dAYbMWur6s0SgpZLImQyDgWDrdynUcpOucpNRavUcDA7KyGks2ngYqhVMoHXAjg4E6T8zwDaFiJ1hspehp2VBhgIiZdiuzGZZ50bSnuK6Y51WZuhlUqoGb7VEHO5Z1sUlwQB0qrWmk6bUjdZAdhhGXccDpfMEwjBiGCybeUQWojhXJ4A4tN1/wnJIwDJSmQXX8ZkjzAmoiQOw/SWtJMeLnfuHn8b1f/jvcHTKg8gwMc/3RIJLihb3LoJg41GIbjNS+dZwKpp0GFs6p3BFYYA1WJHiPWUoDEIMzpUgdNaNt9kgtviQbknod7kztpY5SKMowMCOTnePSRm1YlMlAawvtdYmpr2+vXOh5uxdkcnCliDW9V9aAtYWhdjXnzUU0+MnQAtpi58sNUipZkSDwn6X5wu7JWTAt+kZtqHfKZM96XWZoowQmwO+bbczFfSJnBWjLUXJwWtNK61s5sM/p9dy02SxpuDbnAliabqA1jvkRP/Uz3ymCt6zDB5aHbXDp2Bcxm691lQpbXEDUJAcMem02/NT/zJvri0ikMnDNNqkS+IVAjFjZPB2nEZ9//gUeHh4wjSNCCHj56oGbxgx48eIdVFWNUFXouhbPn73A/f0dkDPu7u95I58bNGW28WoPruAdcfzLZy3s97WEy/ul3Ercqk9WfJYLuyRjZP79W/wrO9L+uwnu33Zf9kTq+xXPRecofDtZR8UY5MJ2SCC+kWVZ1/J9vUaRiQNRX/a5/C06rbyegE/y3fF8wvd+7hd0MylDdEgx1uqHOxsGHRNrVLCJiYrRMpCh+F3iD1y9+A3Lqir1Sjb5zxQvJdj5yhOU61Ce324gY7PGctZTlHNfAtGsknWK9bsOti5Vh4vetOPLSz1939ZnBtsAHmv9vowX+0FaSiob6MUPqH6a+PvynjagK4Ai0hUsHykiORSxhrGKKUa0zRh9FpiutVRSG0yReza55mvqfRlAK/ZBY3C5ruovbMZViCdvHr7Ce9/4AIE3yUrbUvpmOsLF+MvYEfO/yLAQf4Hvn2yflRTYbhgXtZp5DLQcV/ms8lCwZxX/RNVg4ZNerw0To2xjDPmRSyHY6jX39HrlubVpqICcKcMVXTmEMGVjVpCWOI4t773cbMs5m88jhCSOl8C+vIy74DYy+TFnvPz8M4S6wuHmFsfTEf/mv/mX+K/+xe/hLz/+CyzTjDcPDxjmidZDpMW5rtQcKOWEUFVo93u8eO99hLbD4XBAUzdUT9RR07aqpmaKoarQNi36rkPb1Ki54cbhcEDf9ZSG27ZcbqnBYb/TjrqSmi5Mv7quOY4uSl55q/svMZXM60/+/M/wn/z2b+HrvKqvdTSAzz/7BLd3zwE4csi9o1pYjlRtZsHIOQIRWNbIdG9jcUmqalqL3UYAPiQNeJTKCAGVeMEXOyAAOVCJd2MUYOL35Hc1pA7IYMAlgx1BS8Pa7JplUVoZJAIWHIDvTJU6y6Pt7ABARsU7R5payYurZEAZmp4RgsO+3+H2Zo+bmx3qQMFCShnDtGAYzlSgnNMsqKOg1SWU5hw0alkVOjn2FLjwr7YQ5R8rPSu+ntQx29bAYU3NNcqgBsDpPEiqImAmS3fvBYjjMUKmzlbXxl6AgJgivPda74zAWlH+AookZfrReEmBYHMiBETLGThfTsieWKXS5bFtW9QdNz7ggpkCAiiYwQZcxEDT8+KqAY/3wsQTEK8tQEHb4QQYKEsgpVQ4wiK7UWvRmVEBz512qWQQx3x+E0gF+fiGpW4H5Hn4maSAv2NHRdZLSplYbonSUamo/6L16BTgLc5RVRXapuOgu2CA5qQFZlveCQkcAGQG8mLklFeuGbQwg7Kua9RNg/3hluZFAD0ZSZHhmIo5YWajAD0xIiVKUVzXlYycd1QH0bdUXHaZcX59RGIWosjA4XCLrusR6hpN1zBoBmoiME04vXmNy+mM05lSbpFp9+ru7g5N26FlpoMAzHJ/zjlNebxcLsiZGhNEDigD7wj1fY+m7RA81bw4nY4Apy3JTpEwnCyFH5C6YNkBOdNOVnaOSwNcM4gLJz6brOsaFidGpdeCB6ldI+mMViePdZR3lKbuA3xFTo9zHNDDnKZ1XZUdY+uWay4yy0zWu3xfdRPfZ1nItvIVnGsLXQe9VowRC8t1TFGb4khquADPdd3oQGwdYptH6Ywr9yPps1VVoeOaiyEY0CPOfC7AImLhUaFkScdOOWFdFiyzMEzXQg9kXnfUXbBtGhqHptH5qeoKO+lW5hwxXtcF07xgPJ64MzMx8k6nM8Zp1PRd5z26jpyh92/eR7+j2rouUzF6AvEmvH7zmvW0bQJJJ/I1EfDfcPFi75zWXF1j5KLxTaEXWegys6nF+WYfwrmkQJ2m4yrbF2oDzfZIQEB2fs1iJyQAExYUbSaIHY5R0iJt80ruL/iAUDe6IbnxVeTLqovFXhb+BQuSOvVw8FVAQCiC4Mx16VSr22K8CpgMJOBZFxufpNYNrTOLMSq1MwL2lYGKbHrROfgzBtlEZktGiPg1Ve3gXKVrzxgLFiDZ/TPrHtZJOmdi7ZDdSfq+pMpqoy9ZgxD7z2B7CHAeylIXHYNCBgw44OeOrLPionpnXakGWCzKW6wbti4XgC+aj8ipCUSUZjHmLAiIK6nvBobQU1RFcAeVtQJUUHl6uqGM4vNSTCTs3gaAIiNybqt17ZxD0zS4PdwqQ0g8YA2rC0TDxlNYilDwPsr5i83d8n7L+9/cstyh+oLZboDl3hU+uMW0uXxsC+CzjoIFjXI/0EcBedGw7zlsxllBgeJMdj25F3sKCbY15uA1Kstb5sKCfZlbvcR2/fNzeO8LfWJ3U9piGb+yVq3ck3W6x2Yd5UyZOL7cKQE0ZdfAEpPL7c/t3MFtN+E3slr+zruN/ko2hP0fdM6srqpNg4yNAerF8MmgmczgChwENjJj62IrV+rslwvx+lXGhaW8SjySc1GvzU5SpuMrQAOuha46DJt71xITzhU+sLGoDZSie8pX9ywlRnKxNkx2EzJvtFhDJRkPZnQ5G3MdvizPkPVsFF87lF8021fo5KuXbEjQ+JC9jDlzORN+Jlnxoo7AGUw5ATGq/RIfUrPtIEQip3pZAT5erFGBui0YL/e/2STiv9WWF/G0AaRF7XTgyTl1PAol7h1tyokOsNiMPhd5pvFkthxnqcm5rjM/HBzHAYWIyljmDA+q5e8rvkneJLaxMRtH420A5LIs+h2RZVk7gpEQYSDYmHmuN80XkWwzuqgZn+AdPvjgQ5Xptuvwa7/5m/jHv/Vbusl9OT7i8XzGy5cPyr4/nU/46uVX2/N6h+ioIckwDLiMtBGNnKlJRlPj7vYO7zx7jufPnqFtWzy8fo2H14+Mc1FtViq/FdB0DW9igdaZY/kIlImmdsmZTYns92QACYBzZiNjwfr+m76+NsAXeOcTYEOcgWVdSFGzsC/ziphWSFdSlxwbC0k5jXAIqIIFpbLwJHgpC1xLPQytj5EKIA6UDkLfE1beCrGPMUZdvAJAifItd3RYb4F2o+g9UgzWGVQYR+KEpcy1vrzVBxAQxTkpgMoCLgHrxsJwm+/K47Dv8fz+lmoKsd6OMeF4GnA8DjieLrSzzGmkVJNImDmcIuaAsoul2IyEIvWB1cSmcQbK5gtSxy2p0bGuYvJ5wXoQx08cGa1xxLX4WKuTAItTn7QQpXceVOTGjAcAnXNBvMUhSZmKNVNnR6jjVCp1OHOGBVQxG5xxe3PAex9+wMyvYG3ZZdyKIGlJ0rVrVRq9zDkFspSKQp26wtUcF7vtsABYZTwLEJW01lsZwIPlidJZOe+fp9c5o/pSYGHOnuyWiBwrQ0rZTmZcLYizOROQbY0ENgiLwTnr/kVpqDWlljFgL+DVvMxKOw4hoO0aBQCFAbMsK4Z1UZAschqEPGvb97hpWwIVJEjS+bVu2qn4mYugUJh6xHZaaDMiExi+6xoszAx8eHxE4qA+BKqb2PU1mrZD0zZcLDhw+lnCNI04PZxwfHzE8fGIaRqRUkTbdej7Hvf39+i6HnVNLdQjg19U+4iEcBpHrOtC9fTGUQPrqq6pWCsDmk3T6nycHh8JYOV/7e2tAl4is8Sm5dqmnH6rc88BqYMFpeIcxFzUkgSQI7FFtCadyu1295JsLp+T5dSHgDrU8JXQ0B3V+8uUSjat08bxUYfEG2hT1bWy5Czgj8wCNPkPgVrXi9Mg/owA4lJDkRimUZ1gQADOYCBv22qpBBkLumZUEC8xwCYvafhSMnKJ9ao2XfX8Gun4ZV61qY2kskunXerELCxT+o68UkzW9ZibJEhKv7AZyS5R4fo1Ul2UcZxxOVMR5PPpjGGUgsgDXS9nZpe2uH92hx3vVIaKgKB5mTGME8ZxwuM0cH1V2zDp2o6KojtKi5Cufd57VKiRahovcaqk4QbpCa63BPEruKSF8/CBd4e91Kp1XPxSABTWYplYi+Qksn3JBkYLw1x+F71Om0YcSLJuyqyvau6C5gMVGy/bfwjwsGGoiV4Sd4IDVwKZ7TgUOln+sMDO7I549xYMbD8X9o2UFSkDWwUkxG6KE5+sfi7VZ7U1X/7TewTZk1B5eFhncud5PFQnGyvC2Lm5CPqsbhz9TptaOUPfLwFGC4zZbxK9wgGnD1LLlmuCchCZwWBtlmY3pqviFUC3MphfAuxW1w7qhzjemKg5JdwFqeFKwGJKCePjZMBANpDAgVgKrngeFdmifIEONvuUxeBrgFq+nv4tM0UnsY1MDiPkOlcyIm/RmHu9x6x+ismdMqn4+0UoKScxf0LHwmTdgBVnz1CMSWGO+G0NZQlsLJ8X25fb/EfWh53LAD4d5u26Lf7Qz1z5PT5e0lQ1YLZzlyfQ99Q33j4bNDDOKL64Wdt6unx1hZx1TGUGsvx0DkHWsXMEiBT3oKyalJGdBOEyn0UB+KuxzfyLjZ/5lqJbnCkyPs5tfHk9ryvP4oq5s+PMby3+NnVpv6S3rYUisweiC00uSkDSAQZAXQmVAen04QZo3szHv+09V4xZKQfbGMMOkvngd3J6yxqyjUqRvxKQVnYeoCmzb3ttrn1lY1IpN4W86/3BYvRyvSA//X4p/+VntiKLz6/kP2eKmVMGPAM+JWjo9BkzMqMrnuMyYfGXcpPlpLBOtGBSxvVmQ1m3d8PA5v/kDN0ExBrt+WDZBZ7jQ8tIsYNzLjasZHNcbbDVJE/lWDpoHKQ6HAWpiJHc7EBM+4J9R8fIWBtoLP6VGT1bG5JKK3ZdgECRP40x5XdXrjQbEQdozCddnGVNOR1juRcbb+veDCSdZ/ELuHYd+8Bt9x6evwt897vfVZ2f+eZ0DenzMHEF12WB6J6dPgT9kr75EdaUMU0z5mXFmgxPEmae+CaURVUbDsD/0/JvTmrrA64gJb1dJ/zNXl8b4FsWCow9s0loV0l2v4HKU/cn6Y6bODB2sNpwCuoBgAiIOnhZW1VLS2w4LswKWP0brv1WOhYCrhkrjZV1Uk1p7LJMbKvE17imoJoTnTSgFA2cckbgIEu+L0wvAj8k2OLrOFvk4m95AG1b4/b2gPvbG7RtrcK1LBHH0wVvHk8Yp5kZIuSoUmBKyLZztlgk+9UXC0AYMgKq0WObIx95vAFnjCIFykwJyftlUGC1dcSBKNKaMznP1CAgmuBm6O6+7TaZQyb3QAwSTl2S7wrrEUCM1DGKnlHm+VqR81wlumdJ/86ZGGFt09DY5WwtxlPGpqkCy3BdE5Cw31sgbzs/kKtuFKC8JGDXJhPMfhOFpUwQVnChcLQEOJYdI6nNZ0oa+gyS6itpsQLEXd+X1D2gWnOkdCntb0WMxtigdGhmZ1SUutrUDLZ5Y8hGTvFzjppLdG0P54PWCorcHWlZqBD/sizMRIJ2X+v3e9R1g6oWZl4B9sv9y9iV6X7FPFNx1pkLtNKOUtu2aOsWbVNjmWasccH5dFIl3bYt2q5D3TbK4pTUSThHjQOGgf5dBpyOjzgdH5FyhHdUQPy9999F2+2J4s3zk1LGukTESPe1rpTOPFwumKYRy0IsvYZTv7uWWF673R7Oeeokt644HY8YBgJiAGhqsQdtHlTMNFMQxEFBPBoXAet5M8JBd7RyIkZvCYiSbjPmrnV0Y+YSF5itqoCmabmQv9VFEiBsXEaVe1n4WoOCqexUhFb0J6+VgqWT1oiIokyDrjlm8bI8SLdiaU4ha1ycEKn3WFcBITQ6XuJSSyruuiwGGnMKOtl5ql9YhQpts7PUejjVX2D9l1JCWmdjF3LDCUlhB+uaZV2RGfADqMlUysTQ8yEQ2FtVANtKWhcBVdWgrkX/0A6tAJnStXYYBozjhHGaMY0zRgbQybmKmip+9+wWh/2eNydqpBQxTzMu44iHN28wDhMW7qwduEaJ9x5N2/LOaVSd5NaFAEG2I+sasazE8huHQTfWSMZ73sl11PxGmmLwZpXAac5LynQiOU0J4FIfTs2J6IeC0S8SJ3rTOW7WQ/+qUNF8yjxuWPdQmy92PueMBEufFVBJdGPpbJuD5vT+aMMx6bEQmwmg8MH5KJanq+CsZBPJz1ycQOpDCVMEOWkn1muwRo5XGyGOaBHMbAJpPtTYtll1RYx5M04Cepb1i8Q30PdgwTNt+nhUddA5khTmsrGHOOw5W4C7Sgp9kpILiVmk9PPaTxGfJHLNvpgiN63xqJrKygNwwJN5xNQvzLAxzpZ6JOtP5s/YFg5wccMeEQdflF4JZOjfxRxdv972XjlNNsdO/v/kG27751vP5sRPFR13dW2TmSdH/pXXtQtvovzN6wmQsl1OG7/qbSfJjGqw2y0hq37vKQAhx8nn/K10dQvl5+Jv/lV/F+e7emINZCF3mU2HPbkWr9kS8FAwPRvYI9crnhwKgNgdgQVY12W6DtxTpqAE2MytbsCVE+ucMQz1ezAZls8KKMcGxG3fE+e/HIRrsSnGxQZqO87EayjGQ+KKt5xWZlMAxM3tFd/VY65Pcn0yJ3NXPPaTNWYxj87dk3MV8Vy5TEo/OJvOl+/KGMp8Usy7fWo51mIWk6NN3LSZN4fsyhuhKzpAs6N0bcJkxYBpk8Kc7cKiXUWmtcajHLexIbZuBVAufy/JGDmDNxedjiVypnsFihhS/jYQScHhK4G4BlpVRUkg74wVCXmfryllhsrxM/IFyUEIRUpxoR/s+tkY5+LPi4+apFRI1mfQe2AdLWtyA2JmIINBrSsUUZc4j5V3tLGFLGm1xaaT2MkrABAoCDcANz5hGb1aGyoRMqeZu7IjipTY3V2NkTaaZKaP2GmRQbeZL34+B4RArPlyrE2XyL3I73QXh12v95jyNsNRxk5qxZT3+G+zt7qplhnHeGrg/tqvrw3wyRhO06iOpjgEDpS6ZIsho64l79gaUwAgEIEHP+VY6G/eiefvLYyUxyINVBaX7M7Kd9eVDRn/l1gPXtlp4vQL6JezgFrcAt5Z4XEHLuAZCMwIwigQ4RJ6eTBmDC12qx8nqW/mtGc4D+x3PZ7d3+LmsGMWDj35OM44Hs94/XjGuhLDQYrnO6nnQ1nRKrDq/PP9bBxrFnTRUCSrBn5ayouxHZQVkKz+Qo4yfjQHZX1DexGIJh1TBRSUWhJm2Kzrrcw3n5wVntdmF2V+usy7oueOAmOwMi8/F8BYOi3mLIxQuuw0zXh8PHKdHVIUoaLimE3boKkbBS+EKVeoAgUNRdAEmIjM9lmWpaj9Zw6HghSAAieyA1Bx0K6pk8xWMMCQd+hS0vp4WofMCbtN6igkrPPCwQ+zg5ZFA/MyvVFkSMDGpmkQ6kbrhEkdtXmhOjwxRepMW9XcHbNiJSX18mZlJ83zzMDJSuBA16HvO7Rdh6pqiBEBEWZ2BhigkYYhMa6qpMHzGFPiBgCTsgGrqqaUv76HdztM44BxGPH48BqJ2Xm+qtB2HQ5tqzX8QlVpDa9lXnA6njCcz5hHBvbGAZfLBeMwYH844NmL59jv95Syy137Eqd4rssCtxLIMY+zMqUmZi0J4+yw36NuqX5ZVVGn32VZME0T5nnG5XKhlBnu1OQY+KWaZz2891jAID8ypdB5h5SBGOlZIgPWkmomdekUNIlJnQJKSfVEU6+pA3RTN5oiLC+Rm2VZMQ6jynuZilVpamutzDZxuGS3Eqx7IkgWCdgW1qGZqJyzguLTNHEH0lUBT9ErIXi9ZgjG9FGp4sBmjZGaQa2LAvkANiB2ze3uPXeoLdOH5DwprljiNm12mVfdzEiRxkhKSUgzBqqZNzPgRczBlbur1nWNrt/xfXAaAAN7EtTJ+h0uI4ZxwHC5EKh3HjBOI9Z1JUZpTvChQtM02O92eO/dF9jt92i6Ft47zDM1z5jGES8fHjBNlBI/TlMBulRoQsNgVlCGh/Meu77n+n0JyzIjZ9rhPJ/PmCZiaNZNg7bt8OzZPcnrulLH3TOB3POy4Pm7z7EuEcCq803xBAc5rPul8RY7GBZUOi5/ERxqBo4FANVO8oXN3gbFydLB5drONkjgqAagNHeB6GGx4+W5+O0tGMJ+DjJcDhrQ6XFZn5BPX2wMlfqe1Lql3CHrRpQBnOqRwkFq8XoFzeQ9vCWAUH+gDCJlZztlaOdq3SyQ+ntgMNECkNK3cOx4EwjcFB3RAzPh5G63QIWcW2xXSpEZ1olSarUcAAUpoh/ofpJuPuWcqSwA25jAjF1p3kS7+8UuvvpCUFtE+tEr+5Ga4/D9rMYc1800J4GbyYD8rqBJ6fy7gk1RyI+c5/p3Aw+2c+ie/PKWz+QqV9/ZBCIwWS6BmKuY7O2vUn7sTftckkc2Mcw2oNHrFDpAN+jfek05Z8b1N8r7eBo4ZY5brn1YehUYB7mX5Rhd5zw+eSSRIwMa89Vn8rtGf/J+cS/XQ2UASLZzip8vfv9bwI8yayRD1nPBqgXZ2CVG+CSMuQKkBuASkJzJjsq2DgpvGECAjuK7gLJ7bLByKcxUEqR8cP5le35j/eh7Ms7Fengqx8VAlmDW1TiXx71tDq7VpsleecyVPMtzZei4XIVM9D6DcTqnqtevzlNepXiv1J+AgU3ybbE9amP4nsvvb5/frv9EDov38pPRkvsv33Y83blg322vacfzWtC60EK0Mfursn91Y+SbOIsVITEj1M/daLEMzQCTsdvq7e26NLsmcYqNNLnSBbBT+Cmk14sUc5SyJo2ptnpBvyd6h/2YKgQATvGGkhmowH2RHWMZYQlr1ActZNqpL2N14Pm8iYlB0v5U1lm5llGQSxx0cwyONsRLsgGvdNVLuulW6i0UbEpXyDHLgGBPED2gegQFVkA6zBebFSjuYCM0xcJ3+lwOluJ0NWH6zHYC89myfa4nx9VvT072V7zzN399fQYfBylgAZIWv+JUS0tgqV9DRpG2xGIqatA4684pDqwAcshQ0A2ABkQ5S+qmh9Q6EsdSOgQaC8zAPQGVNgbdGWgkyjvFeOVQkYAKyyCzQGkxTttkhoOxpmynxAS2rjxuDjs8u7/Frm8hzS8ygMsw4dWrR5zPI7EmYuQglpzSiotYep+VcSAOoRoOUShcXNh2+QCwEVEQDKIE5TgDVcXBp3G38TeDIO9J0Xup/2BsNV862UFShbh2TZE6VM6HKBthWBrjrqhZCNEfmVl8JFubHVPnNBjSrsqFco4ss4ebA3dj9AXI6tQgZPlfipxmY6mCMSat21UCHOU9GBsPAOgaMhZS20865RrwDORkjL3yn+20mTFP0dIGCVhcKb2WQTbqXJvV2QSM1VSFCqFpUNXUodIz23Jdicl0Op2REjOoQoWu26FuGPBxjhhWkVg6Zd28yHLUNDWapsPh9gZt02gNMjGL4mxE7gJsHSml7hWDptysYFkWzNOkRqBuWrR1gyp4ZnGtePPwCgCBDZRaFbDb79E2HTXk6BplSEau3zCcT7icTzifzriczrhcLkAWwKXD3bNneP7iHTRtg67vgVDBgRjEa4xwiWRknkbM04RhHKh+4LLQrrcP2O/3aNoWbddrl6aUM9ZlxTiNGB4eqHafEzvhsOt3VAQWwA3LKoFCLZx3+OrNG5zOg869pCTnlLAmqfHHmxTOoamJmVjVgTv9ttatVeWQz7VGnM9nfcbI6a1g2akrAp/qqsKubxmUCkpZz6wfYkqYl0kZT5LWbt3vLOggsHDFMg/UEZYBaivKy7qwqghcDaFovMAOCjsN67oijqt2wWafQ5lobdNxUV2v9UslWFBnLhJbck2rrisrsJ9gDMUi2Of35XmE6bQsxDCqGBDuuw4hSBq2AZOSNpqTMWPH8YJxGHG5kGzO84xxnFTGUk6oGbh+dvcch8MBO67ZCE+sz2Ve8Hg84uHNI4aBOt4D1PxGAEgXAvrdTjc3AIe2bXiHmQYoRpLZYRy1Bp90sQ577tr/AAC4/ElEQVQhoO97HA4HSAOCYZxwPB51TQC07nwgOYgp4fXxZMFkSgYoOwZeme0JB1Q1NeKgupnGBBWfTF05Dmojl1SI7BBKIwlK85RUS3Ok+Whz1NXmiX1Xb9B8S6eLlr9P59AdXlgsq0E/X8cCvHIH23bny806ObkAVLKxYw27vDr9mujm9Ib0PGLDy7R7CQzofoxF++S+UtLvKzvAe1S+1vqSwsKTtVnaVKk5JdkAstEQ+Sex7yyNmo6ha69r3DyLZ5tFbMwG3kG7gkuQIn6jh/maAoxmiC9hvpOUqyAQj4DElVnTYv819ZfrNrtCv6igwOlzl0wPkvJrd16AjO37CmZo4CPBtTooFlPDpvr67BaUQgMpd/X5dVCuv18FNk/eevtX3v6SIWCfzABMC8Cux6b0w58+1NX5r0AQ+dqTv/LbPrPjZTzgtx/pCLm3HszAiQWk5XESE5gPXZzz6n3SHcUx5T8UZQbkGD6PbZyxr65+ugTT7NNHrpNd3EfKGdO8bgBnmS/dILmKi2RRb9g0sGN4VDSGsuMtcwe5ZDRlBg9ELq4BIDlv1p86HVdzL+KS9T/yRnFOvUdsfrqr9+Tvt4hXcYG3rTo5n9t87Ap5z9uvlu/qaUz1b+8qFwc//f3qjPn6sxL8Lr5ZxMb56qFLmyV/5+IEdqzbjJfEwoXmsnjEmX7TdbAd9eKa5ZjK3DtN33Qwf4FO7TZjVq4ne0a7dyHI6G2xbQgFK8uOd/occi7dwCnP6SzWLV+yztT+8BNrWqpNyGb+I29w2aYYHal2xlnaaF1kvBh4BR3vUq/EJKUzzG9JKSEV967gG99sCYQKmxSpZIRmJRGY+SuOh5BbnD73RtZ5fjKXFJB7ZwVTSNNb7KmoEJYR0xQofitW+pUuMLm3zdcSKNRxgGMg8e2GL1/9cb2W32Z7v+7rawN84uw1dQ2HrAGzpBMC1N0zBGJzeV9MvHPKxFNHMxdP7hzWmdKWHHjnPnimRFJaHCHTFKCI81UCSilROpimqKa4aZvsUDSegFOBVrQ5Q7uKyU+h4HpmzEhTAw0YyvqBLOBSV7CtK9zd3uD+/oCmqZX5F2PCZZjw8uERl8tIqZLLQlioI+quMAkp/c5Qax2yLOxFeTZSKFIwnDOjiCnJ9xZT4dA7bym4mn4L/jzy+PBY5azOQblbIE6zCLkEVj54dZhTErAtwfmKFbJZYeeFFShiYMpZ2HjeWUFuz0xBVSZZ/A1SVoHnW5zyLXMjo64rNE3Fw0byqotcHHiA2WIEeBijwPI3tEujg3aQq0LQulaeA7FQV1wnkmeJA6AqWG2hilMRr2JNct4ExONUT+l8KUVGhVWVc9JutJJuVHGNsLqmMQncnCOuK6ZpxvHxUUGiqhYApcP9/TPUdc2S5Qn4W1dM3GhjWWesC62/UAU0TYfd/TO0HdWQUyaM6gyp0ZeZ9cQslCT1D0BGZl0xLwvWdcbCYKOASrtdj+AClnXB5XzG4zjgfD5TnbyqRlU3aLse98+eo+0p7Tb4QOkKma57Pp0xXM44H0/EfrqcaT2HgKZt8f5HH1CLdE7hrquKjJv31BBjHOGQCZBDIlBwGJBTxLJEVE2FuiYmYb/boWk7btRAgeSyrnj98ArDMGCaZtQ1sSSpcGulQbEPFbpQodv16LpWdaYE8o/HR7yZVqXHhxBQhwpNTcytvu/QMoBUVRUCvAIHy7pguFxwXBdNp7TAHcTQDBVaZrPuDh2x8epam3rIvEpK6zhNahh98Mzkq5RRl1kPEKuRgCFhKIu+IoMf9NimaTQ12AcLhLWO4xyV0SmbAZIGXNUVA5mV1lgTHUGgIqfmTot2u13WBYnTUqXpi+jWyLVWHCjNXYAJ6m5L183Mbl3XVdNQm7bF7kBNJ9q2ZdatzDPdz7ouGIeJCv8yw22arBstpbXTfdRNjbbr8OLdd7DrewKPa9I9mhZ7GfD69SMezxecLxcAmTuEBYSqRhcqZRvWTY2eO4MJ+5JYhVR/73K5MLt0xjTNkI0aWvMk5yuv2WEYMIwThuHC9jlyOnRG1+8sZbqoHTjPk74Xgge8R1vXqKuKNwlqDQKtMSYZwDXSXJHDmNUPofIf1kTmSR0dWKBVgnlqSYugMwNaBqIMtDdAy1sczTLoSmygZPNsA5hJAJbNjsmOuqRiy6ZK2URLDURxeQnKpKOy6FYLTAQI2Bbh1/cktRVmnwkQDXCOOz5LynzREbd0XOV8tEbXDXAnnbCT/iyae+QCgHR0HwLChuDRNlTChBoz0d1JwwG5T02n4lItgUvEyCaXbBpTHb6S6SBMZ6ndJ35LZF8NCpIIaCjPVXGdzlwCGc4YFq74Wz8Tv6WUvUIGJQASYG8ruYWsWXzJxLJCyMUnUnl/KqbqgxWMBQUkroLPzS2Uxxavp/f6V7+efOPK77GI798RAMmiKQMlPo7UvQVr8iOjTPOHBeXFg1wH5fIFAUn1vvjPciNZAkL5rqb4Q4Lrck1u35OAMsPZepTrcsgqvnx5rM6Vkh7kPEXQLvcnbFVmpoq8K0OHgwbTu3k796Xu5PeSxu58/DUoW35WnGcL2tk8mZ4rweDtubb3kzfy/eT4MlAv4rTr88o8yzlUvK6+9lTjPz1XGa9t9JTemV3MQJvNLfAfV/Ip57z6Tn7rZ0+/W+rrt70P2eAprru5N36gDfgDA7H1XCq3xe+6fES2S9tqMqvnTtu/NfVTbAZ/viZplBWL+J5e0tis3BB7Kp42K2WsKIQFXhp2DpnHjWIVe88MQtEDUj8rZ/1Bv27Zlimnp2U7CjAQzsGDfQFA7UQpY3TuhJXLv8gGlsae/ODiF8EBNceupZ2SMVaPQH2fouzFxn4X2X+if9V+sF4p1rb6GA4AZPPuykZqnXln98Z3pHKo8iOzKHrA9COPpPordh5rzsbDKYO+nQP95G1ffvvryfIsz1faVZ3cf/c5//95fW2Ar64D2qaBByHUDjBHMQoLjIQMziGuSReJGmJ+IJlE+S7EoCljj4rTJxaqMrC0WnPSca3YrUq2W0vO2Kq1vZT5BzpfjknrPImS2ixoqZEmLDJ+PmGHee+5PpAg5QQAdl2DZ/e3uLs5oK4DC7XDsiQcT2c8vH7EZZhst1jr6zmE4EB1CwMcsqWJOWHkcC48A5tyXwLK2W5f3Ai7tqDOgLAgrYFGtiLZvNjE6K8xmoJO4lDAnAheaM4LFblczL5gHuZNdzAz7vRwpleMlWcsSzMoMUYdCwFbY4xav0catKhiEFCAFX9KmVPqSBEKcBdj0lRWYorCWKmsBAMzVqmIqqWBEZuVinFXcJa2xE9VVcSekoLhm1dmxhN39Ss7ykoh/nUtu2gmle3AdewUzKi466gPgHOaRvf4eOaae9T8RlIB9ztilzVNTWuHG7msa8Q8X7SpwzzNOv6SKto961BXjXVN5CYFqvyV8Rg1XVtkBQBSJGbUuiwYR0oxdMFTg4uqxq7fkw5YJjy+eYPjmzdYloXruFVouxY3t3do2xZd3yEwaAAHxHVBXCKOp0ecjkdM44DL6agdn6qKgJL3P/gQbd+jbltif2QCsiXQdA7GUJwmbghC6YYAuI5ThWa3Q9f3aJq2KLTquUHGEdM8Yp5mZX1WVU2bJGzA+r7F+TLA+wrPnr9Av98zS5ho79KgZl1WDJcB6xrR7xt0fYemppbtFQPbKzOA3xxPWLmRSUwJaY0ArGNiw6DTrt8RQ7FpqR5h8CAKQ1ZZyzlhnicsizg5pEc8s+LqUHFKMen7ZZ5xOlHK5rIQSBW8Z3YVd9V1AVVTo6u5O1VVaUF7AHyujHmZsQ6r6jOpNSl1EyW99pp5JUDKukwMjCeSuXWxmnvMfnRsz6QpE5mjpE068kYuHNV6cR4OHk1r917VlaYnB0/1VeDJkYsMpp7PF0zjiMuFfk7jxMy8EeuyUr1EAE3bYH844Pb2BvvdAW1LzXxSpjGZphFv3rzBMJyRUsI8zxguI9qug+wy3tzckAxzzdqqoiYmfd+jYTkVgO5yvuD4eCLGXdHJt6pr1FWNu7sbeE/fP50veDw+YhgIjJR1T6AmpZ53bQdh80pDEtkxdt5jt9vh/u6OywGEgvVFOiIBGOeF7axTgCdUAc5lajIVyjpy5oCzudw64BLYFQ5WTklTyKTLvCplHkNxEkuHTEIIdTLZqSU/RBjvXLe2LHgNp2teawM6V4DQ5ojS+d8WJG134IWNk1Jitrkx7iXYL3fm5b7L8fJa8sGYuGXajgZuDJgRMCDdo6MGQ9K5XK6hvlkm5lyKWRtCAcy6KPSl2kbHPqQ8R1Hzl70HVMFZJgJgaUlrUjkTu67zUmQnxJx181OOzeV7mpJvrCnxY+u6prtYJonbNLXMhKV4Xf1dAgTOlbJq8UXJXCvlQp5fgigVy/IyhdwL1qHnewJCPL2/63vZPsr1l992CvXmNp9YGPz0M/uS+Qh/5THlWhVgofhZvq7fy2857vp7BlTkq4OMiapA2pOL2XF6vHtyW+bTij8NK0GT2c5psAxn8qg6pyhNAxQs3C1AYmAx6UkFHL2HZ+GNScogFPLlJCzLWqZGzwUGLoT5lAFw3VSprS7PaM9/HfZyTVVXHqD/4XFxEJ+lGDgYuYHm7AnL04mOk4G3sF7OqYBfeWi2eEQXNt+LjOHm9RYRpuuYLsib9+Uy5b1tT3UtT7n45HoI/13yC7FL9njbY/FUhm2esh5Tgl6Agde5+M71PYkN2i4hsUnbdE39LixzzDZ+bC1JRofck9jHdY36vpTG0hlXMaHak5vBYHlX+XYSs5K0l7Y9JflpfmCpl9UnZiwhBF4xV5O6qXMtzyey4AyDkHt29gD6M+vU2XxrirwDvAsqS6EKem0HqyWLRKVRIozRaz4OtjaD35bndPBwTGKxM5uuSQUwW7KIk9wzfy7ToetSpivTnantUuHK29rHPAfaHVnu5Qpr0jFDhgCuJbhago9vt0l/ha18qtKevHR65Y/i59tsx9d5fX0GH6cdueCp9hPnn6fEi0oUSgYvRhJyAQC9c7ajzQ6hL1NrE7XYEMaWc07ZWsIWISNFL8fnAX8u7C2ZXNvREuYVgS/BEzCk7aWZZSLgX3AltTMXnXn4b++Q2ciVnYAP+x3un93gsOs19TPljHla8er1Ix6PZ0zzyoElOclUYFxSODMz9igFWEFUFAowCyuNwB7vAysNmoByB481p+6Qw3Ggup1VbaABGMtPADFbHKLsif0nIKcEsaajzPGmsWVHIcl8SBqmMKNWfh/6mVB/Tb9k9SVECQjz0DnepXFQphw5PRxQ8AFiEI7HI1z4gmQmUgF8agpSGXBQtcguay0vresUAgIHRZfLhdhlzL4KwRPLqUhXulo9DDJY442Vu7nO88wpirPW8CvB24rvjZocUEMKYTqJUYkpYRjOXDtuZBCsQwgVAUFNgyoIgEJzR3XBJozjwNcnRiAxLlZqnNF1eLZ/jqqpCVyTFMtC0a3LQjXzEqWK8gRDgGdpLjJPk3aeJZmv0HdUqwvMcLsMAx7PJ0zjiKqqkZ3TzrqH21t0bY+Gu80GNjJpXRHXBY/H17icjzidTgyEEUApjLp3DjdUA7Cp4XlMY8qUQqhdkjNyWimdcRqRGOQ0Z8ih2+1xuLmlRhktMdwcgHmeuP7fBdMwcsooBbxVqKipRkVpzxnA4eaGgZcK9y8MSBZ9tEwz5oUaJSzzgnGcMC8z6lCjb3eYxwmn45kbjMyarisAdNu16JoGN/s9+r5D0xCYKw0uUo5qWOZ1xhJnIINTyisGMAOCr+A5MJf00xgjhmkkMGimGoKp2AwIWr5BNiQCur5ldhZ1SKZGR6umpE7jpDX2fPBo6gZ1U6MTZmgB4oH1Rc4EYse4aq27ZVkYuCcWkTTgcA68/iICl11YFmHrSdAFTfmlOIjqnzZSW5BB3Kqi1FoCK505o5nSEwTUHUfpRDtSJ9lpxrxMBOalpOy+Fy9eYH/YY7fbo2laBE+2Y40Rw3DB6zevcD6dOX2eSyFAnBIa336/V/3XdY2u37Zrac5TxjATM/DxeMRwIV0hbMoQApq6QXfTowoVsS7nCefzGa/fvMY4EqBBLEWa135HtWT7vidnS1ioXK5DWPo036QX15UY+cjQOmpl2qUwgIMX4I9cMuc8NzgR25/hgtO5KxGJnLP6FRK0OmcO9RM3jp24jdMt+iAXDLeMzWaFOG4il2Wqqq8ptV47rpUgi9xD4d/LfUvwTr5w0uDGgh1o8CHAlwFhdm/KBvRFQx6WZ1tL2zGT43XjKyV10gUA16AsZWhaLx8LDtDILyJdFnxVbASVgYMxkuRczgdIUK6+mc96T2TXuZ4o1xjNvOYEeKRxkwBQwD2wzivqCGarSSYSIWnijkE8kw9mBHJzqrhaeQ66W3f9dQVtRT51tHUc+LgSXCkCwg2zr7gS75RevVugEYX3KufLmvZ4FaFcoYPKCtGP3ebrkjKl5yplslgzyBLwFVkUhe6mHwll4FRiKvpcZYCc7eBNwGQjo7EBrj7X47IFouVwyOZzeV63+RAKIEgQrqCughTbjBF5abYLB7Zy/Zy3vinKe8rb+1fmUbbzU6M/3nTnDcoS9BdfXE6YivsTBh9yRhX8Jsbx3lljjWs5RiGXzuQgy/dEgkQn8pd0n0Mn+C06uCjHI1OmKlNjMpNr8deug/JSZN4Srm9fFn1v3jYNZAw1++72+9tA/WmkLmCGyLJ2uRUgh68h+kHLVyFbB+fNU1k8WMqN/F4+jh5ZxHHlrearL5Zgnq0T09f0RV8cl7fnK5+/+FttVvFT9LOeW577bTZ6Yyf5rhwPprOsOVlLZZxT6mInzygyrfYsQ7oz52yfgX0aKTFHNqmwX4XtBTJSYmB+tZGTzTyZc4krt3PJ0ib+h8xpwYwzAEqen30OtZ+0zpw3PyZ5aF38J5uIfD7P8pn5XMqCFPnMWTcchDUJAKvcp+qGrY7wzsFXoleMMacbBLJhyE8kG4ilrG5sYOE/5UI/bmXbRlbuwTHeY+NnP66X60YPbw2jfl5Mv87H5rrbU0KwlPKZ9Dxqa77+62sDfACnxkTrYkLzm6yuQ7GrJEy6qqqo1hbYWQRsYXAADFjahfceaY1cG8zqutGaJZDI+2DtqgEOHKgof1UFGsCcNTUo5aRMvJSTltkwOaeHcXAKGMlLpk+YSrL4pbba7e0B9/c36NtWwapppu6Gr18/Yl5WTPNiRZpjRF2T0xuqCuDg08HqWSjIVjp+ECVqdQUl1QcAcswwo46NsSclBHV4CTyNxXnYuU9p89ziIIhzwANIzD5YwxEBDqOL6iwIAKcOUbH7kRLNgeeOq093LrhWqbMaIzYMZA4F9Etcg1GcEUvNTbq4dfwY1BNl13ItOhIB0uJ109CugIdaFamDVlXEVnqutcDK+zJjSkw8ASAWbThBXWsXbcwgB3qu2eecQ9M2CrJ4BheEuUSsuhmPpyPGYdJ5kPS93c0tXrz7HmoOLnPi2is5YZomxIVTM5eZumtGWmcVAy83uxs0XY+6rnUnyznbeYrC3GAWVLmTDHYc10iMq2maFNxzjhoL7HYd2rpBjBHjNON4OlEtL56TlBL6vkd3f4dQ1Wi6HqGilEvP11iXFes04fjqFc7nE84nAgQFiKuaGje3t2i6HvvDgdhtYMfVe62duHCacVpmBVlPxyPWZVbdFUJA3TZwoULX79DvdqibluRzjRjHAafXD9wxlJiWsnp8CGiaCqEilso4zbi9fUZAKb8n3Uhlva8MdI3TiGEgkGgYBnUCUkr48nTCn33+ElXwqOuGmXg9utsObdug5dpuwgr27JTEdcawzhSoBG/NMLQbL+tHBp8HHpd1nrkxw0SprAyIS9Au7MGmobptdV2ja+i+6rritD5H9eziivP5BAlMhAXYNDXqnr5faf1KQOoxUnMLSlNfF/pHoF7kAviLbpjENXINkMSsSdJDVNZBNBtpzbqqdf3RPIDTaT3qtlWGrNRilU0jAQ7nacayUArrONCcDeOgoOuyrMyQ8GhbYl2+eOc5+q7Hbk9dbH3wSNwJergMePXqJc7nM4PWFzSsj+AcqrpBWrhGa/CoKq8gXs8p4RWnMqaUMY0jTscLLsOAYbhgGEdNnw1cv+/2/p71dcQ4DDhfLnh8PGKeqevvui7K+gzcjKVpWqQYqVmND1jWlWoxMhurHFsA3A0+bVKfZVNLG+7kBMCzPeTNoMzNjlCaZAuMSPcQGx+gfV+x56VOFt1q9tPBgKVt0K1OtjqOFjCL0yjMf23G5GwnuQRFdKNM5FnrZdkutwRCkmZaBvzqvOarexMnP8sGl+Pu1NuaeAoiFfej5TP4d9XjuWiEk435JjaQgDIJOLKxEaugQKIEsRrMlmCD+DNFYAUJxMB2Pi5IbGeEDZhScc/KtMt8TzIenMXA3ZblfNeALaU/V+zTGaPTMwOdmP2cnruuLP9UVkLY6PR7Qhe2dZxLCc3Ff4zJVAJIErXpxGwCpU2god8pwwQLKoSZJc9T3MHVbRWRosTG1wEOsq01ATSKheTKEzq5+lteV0GfsmKQr55Hvl6OIzYypLagCKg2gBygzRp8+fgFgCLXCs4+LgNEuPLZCwAwK2ZN8oYC8IEdr8NYnpNvVzZ7Q3AGqmRAcu2cK2vvFSG8c0xozKDNe+arihte+MXKTs2FToEBfrrumeErgHjOnBUjvi4ycvL0nFJiyRM/iOaR9DMc4LIABuabWBogbUBBwE0YiGVBMYq1YWMHVzKZZDRycZzb/pbzBkBAthTjMgbfsOaKdaJgEJ6+ykPkfrPYqb/GawOkve2zXP4NFIJgdojt1eZ7hQ2R5S1yvAUB5btvv26G2Sq1eoUOkuPEPrFVhYBjujmma2Mbx8qc2j+YXbm6T6nLD7bX5e/yzxpyUcwc2U65Ys0L4MxDdyViTn0AL5Lk7NlKH0B1qzdZI3vGMfCVfhfZtVgeamNlXEQfesUUsl7DqXDbvavaVr9A7pUBTak5D7LdYL9AiDQAA8dqj23tlIpXsQO2DSIjOZnslLrc+4rtwpXtQ2mbM4graC8nX+RjHZ2Y9HPhu8lD5/KZs4GMdj07cTl86mMVX9zYYMVXRB6KZ5FND7kPoCCCycVF+sv1CNO/+jX91O5V7+cp+P43eX1tgE/THJzTDreeWVg0oOa8Ge3TYVlHU67OWTqMDpotRiqsL0wQ8AKnovE5ASHQ+8uyqAALkwl8D7LIBATMOSNUFQeAEjA4TUORdE/AGZhYdqPTYEDq20VqVBAo3S3GhNdvjnidj9SpcV6wpsR1yqDINAA4z4XCXQZn1cMVAi2dMzcBhwOBd4JEw9JO1dmGpEcCAF2v3G1U5p4Yde5evKaFFCSnfUqh3vIaBJQ5LlzukHO0hZehNbZ8CMo4EPaA53PCOQZZubaOC7AAzWRH2By0kCyNwXZnbMHmlLiwtgQBCYnPowuRnyfxWDkXNEU1hICmqTEvM4IPPGak2YKw8qqKA6eg8ix2b40ReZUCxgTurEUH2ZQk1XZR1pqo+Kqi9FqqP1XZdbj4fYqUrnu5XPDIzL5lXbhpQo1ut8PzF8/R9T13PA0KHqe44jSeEFeu1RcpXWxhML2uG3Rdi8NNj7ZtGAzytkvDchgjzX1KxJJKnFKunVN5/uZpogYxXDfPwWlX0rbtEEKgTp3jSMBFXDkglrp/O1RVQNM22ojCeQ8XvHZPnIYR8zjg+PiI0/FE7LoYUTcG0Lx4do+7u3vULdWtk91AAVpzAhIWLPNM4CPXMRxHAtACM1t2+xuqRde2aDsCTQI3IlmmGceH1xjHC5Z5wjrPtF6zQ90QAOJ8QNP1cFzfLEbqLPq8bqxGIghgR+aGG8PIqZtnDOOIZaYmCjFlVHWNfd9jt9ujqhvET3+Can+ntR4r3ggJwaNyEuQwmp+pxmDwAVWwYCM70qHDMFBDB063nGdiDaaYuFMviKlYEXBQhQpVRXUCAzNYm7ZB33bKsktcGH+cJlyGC5xzqLluW9e2qA8HYqVyAyHRYQQcz5iGlQC9daZxSAIOSfMMsg+Uwr5ocX5ifkdt2pIzlOmac2LGAwjAdw41g/sVp4nW3ME2hIDggnqFwlicI9WjIzbeiHGiOZumCeu8GmDuPeqmweFwwM3tHofDDXa7PdV0zAnLknC5DPzvK5wvF0zjgGmcAAfM84K+J2bc7d0tAEeAPYCmadG1LfodjXddN6RHY9L6lJfzBcM4YZpmzEWaa9s2eP78GZqmhXMO87LgfL7g1asHXM5nxBQxzzPp/kx26P7uFl3XEfOTWahgHSZBqXR605IFbBesTAbVK5ymCSN3RG57KgugHY89igZWFhxo3R0ADrYTbY5YguO6bRLM5SxNr8whlPBNGw8JyJEzM3kj+xGZmYTMzNdUWm/XhgUMb3tJsxSI/6JMrzL4Jta9bHcil+m95qiTy8TghBdmrbd73HQjh51fmW1WK1PSzDfjmi0gYK6g+vzOFR2unTV84sPUrZVmNkBWNoF48OLZiO+hNW6TNQgSx11q4TlYjT6aL2epshLUAGrbacyTjmNmexAqa/ghm3cCfGcG8iJvZiQGPGRDqgxEy5rEOVvzjSQ1nzRQoVQpcfJlA9KBAKhSfiQsEGghJqnvXKRBQmRM/itRni4IHRPxBVEcxRHa5privFBwR98Rf0YDYPXj+T6zpXlqICzCXQSHsi7LaEWZSPIExf1cA3q5eDAJzspXCVro86hwbZ9PgvTyAhq8v+W4cug21y0D0NJPz9t7E5BPAf3ib7VvGu1tnsiADYh+KmuVo0jLLQNWZ5/R5UxmdU2y/OZS/8g9kYSJjyFlaegxGSyJLNPe9JDzUi87X+lD1cZwzkoCZVD2DQrZEc2xGVNGNSiscBrPUKkUyegqN2Kg/t1mUEu5hTO/vxhPR8YLAhrZusp2HzKner8y3klmbSPqci8b8S/Wx1ZeZN5LUkOC+KwbgYDcs9RlLF65gAacyYAcZeMmPn15C8yAl+8W55BfymuWS11jILs7lUOyJ3oHBi4Xn2v91CyltZJm7GVgUxZB/pZ71PUhp8t5A3qW/oL3BpinYh2LniJcwWmKLulssqWbDKxCN23sjYqNjAJ0Dm2sTC8JQagcObLFq36z3ByEK1KOnaAFgKQRb+dDlJfcJ/9M5bq3GoblxG/l2H4hPeY2WLbdnuhYsd9QmSk3NxyK5prI+jybMRDSl8gBbDOwfDl+djgi9yhD+OolOlLXMIp7g9gf9iFdAdbxKxXH2jwVayReH3HNdJWxMgfAOVnzhWBA9Il722P8tV//HgA+C55KQEZezjms67JZHAun7DlHrLzsQG3XWQjIqXfq+PliC06AITFu3geuw0WBGqV4WVqaAzmikq5b1tzLWTrvJngGlwIL2yb1iz0dYaEhk+NryLeH7navwBpH4JK1UYQsJoAecY2R0pW0aYd1/XM+w2W2ovAbgRajLGCf8wZc6o4GWNjEoHKAS8Ae74LzzZSpzqXilrEHHAfRwsC0IMAVQFt2xS5Mwa6kNFaPtBZ0YBQGx7SAgkAlY2/juGmaETaBEhlEMgqeFXMu5lq8hoxki9MxfTsDy7rAhYbA3pzgM6VoUmdOSgmUelBiRAhsoxpmGpRkFA0uZmXnlXW9Gk7bdN6hqQPquod07a3rmhS2I2ZpXCOGy4XqYc0UAANAVVMtq93+gK7rCEDie5cU33meEYeBGUWU5rtyHb+KWY39rsPucIOu7TVVDrAdKYBkIK7GzFu4HljmwEPSn9e4Ut2wZUbOxMbxCOj7HQ53O3jnsc4L3nDNvIVTfxtu1NDtelQhEOOQUzWrulYZT5z+NA1nDJcLxmHA5UKpxxKUVVWF3WGPw+GAtuvRtA0c17GSuktxWQFQAwoC8UZM04h1mgAkqiuYkrKzmq5H1+80HVgc7GWaMA5nXE5HzMykW2Y6d12XoKyHk+erG4SqIWCQWU3GfHFIccU0E5hGABH9nGeqF1c3LfY3N2jaBoebG4hrsiwrz0dAHQKqQOw/6VRcVUEdjpQllYxqOE4zNW4Yhwtde6Iaj3AOVUV11pq2QV1To5DQMrjtHdq2VZCvrmqEmlhaGginjHGa4KYZoaK6dF3HtQHrivQR61LS6xnTPCFyCvU8T8popc0iMrDrMm/AkpSiAp8Oorel5gowrSvJU6gQGo9Q1fCOwLaKwdaW07tprJwCU5LyB9DanlYer4maTQwjsSkXbrpDacFUdqJtG9w/v8fN4Qa3tzdoOW07pYxpJgDw4dUrvHnzBo9viNEtm1htR01YqrpCt6uI2e2cpp83TYe+32G/7wlk9R7rvDK4OOPNmyMuw4XZlQR++kB1wu7ub9A2nTpdl8uAYRzw8tUDzuczpTKnrE2CnPe4u7tXWaIUegIDZSMlZxhQWtWsb9nRY0dtUd1I5QfWlepCDuOIeZ6pZiKDajnTJo1PwJpXJAHWHLQGpThcah3dlumuPkLh2ElQjcz2NkMZp9IcTDrqyiaeK1isYpuUzU+eofywlN0ikBYRlyBb3thsSvEgZjCTHlJbF2qrLEVe6uOVvoETI8lrguud8kYMAVXsdAsAxk6mbgrCgiLnKBW6qq2OJfm/FigzslCk/vBzMeDqneP6Rm4Djkm3XAEUSzAvIWvzGnoOS0sDqM4lOJhLWdj/ScFfB6d6iGw2+XTC0iTfhxrkrGtETDOkM2652akZJUUgKkxG7ZCdk7J/y0ATHspOF5mJLDPOOdpshPm0JSCiGTDyNAVwZ2Cd/S1lYVTQbFrJb9b1YDGPgCAS5At4bkBHwZSSAFhjJhtnOAEu7UW+jQRHRTpfhoIhcu92PwLgXAdIIgPGDEu4Chb/ba8i0JV7L8ET+VTPVATsJuOAk1Tc8roZIGzYgvjyljaBv/isRfAuP3M5t3w9+WZZ10/dZD6HAt6iR3jWtZbXE5BbjpeAkq6lOkHl21LvqXxOUgAEKAr5qx4UGQHLiOhKV6xJA0gAFLrUZELJDIU6K2MBwNIDnQyDk9pf+ljFua5Sd5nprqcvSA7lS1nERXBN64tBhCLstzVVXNyMgv6U+E8ezuTKziPAY/k5/W4xs8me2Db6Wgi2xlGABeWmjHxZZFBSS8sxF51edj8WObEnlPmS8dvqHZuaqzVaDJEQT+Cgsbzo6FQeg3LTwM4h5/Vc35FsuUPU56PU8BKQvy6NpECYyozpCe/FpzGWXuIBLjca4cAdda9laHtOGx8ZwYKUAk5zLYFlJzZBGoH4zTmU5c+2Orl0dW3R1+a3wBWsQAAINp7OVWpjS/1GsT77BaLDpJYvyrW7efrCVtjYizyo31A8CxwRi0TetuxdGotKfZ0rRm2hp8tGYsXdqGzRvRb+W/E3wOuQ5e1tusFqC7KMsf0tTMbmvqRurG4UyXdsCPi6xbgXNlHu4+u+vjbAt65JC9V7T0F/VVcM8jk4cI0Uri9EKbaZFa6horRbTulQqwJSidPnsg4o7TJaqkhVb3fRy/o0AjTBsxKIUlh8+9jWfKFQTixQ1P01qVMvqKug0JLCmlhCSkc+86IgZ8rr7q2kr0k3P7mm0FwTGGhE4URcCWPiVFpJzc308GzQneYQiAO9MjMog8EwZjqS00+7UmLokaX5CC8I7oBLl8g8lkkDCUl3rkJA5sVD88a7frzQJL1RFLsAcrJ3R0FSWSOpMCCJlbowczj9WndkHI01vVyRFsnnFE9E5I2DaQcKxu9ub3Xhex/gA+/uZ+pqKSmcFJhSM4hlXrBGAuCQrb6TzKUAOfvDjmqMcQH7HBN8IJZVXCkF7vH1ayqqzyBcVdVUJ69tcXt3q6wi57m+XFwxzSMuwxna9YxTbhdO93WOgZi2x93dHXVwZYaSxhIcMMW4EAjGAKE4e+JYgdd3XCmlcponLqZOYGrf9TjsDxyU0vo7nc44HY+YJ+qMWdcNpzf2CLfE8qLaeUFTZROP7zRccLkMmIYBFwb15nHEsszwnmobdn2P3X6PfrenOnpVVQQw1pRENh+WcWSm3oh5HOG8w7pEtC2x6G7u7tF0naZh+hAQF5r3+XLBwKyqeZ7onJ7WTh0Cqr5BBoEwa8zoDwc0XYeqbqhRBTOKpRZlXKnxBKV0LgTqLZSGO08Tdf0MAbd3d+j7HXwVUNUNNcyICcFXyHCo61bnuetaAofjgjePF00TnSbpVDtrAweZ16YloIu6oLbo+x5VXaOpiWlZNw36vlUAUcdW69qtWKsFdazRtS26tuH0UWL20boWR4GC4mkesTIDdeb0dEmxJWZM5k2ajMyAT04ZkeU6BOpgLE67MMjqqoI0nfE+YLffYc9gotTsaxt6JqmvabVFsKkZOS/ELpvGidNsB6p9OM/MPiP9Qg1mWjy7ucfhcMBhf0BTS4OTiGUlJuRXX36B0/mM4/GMeV4wTSOoyzXJbNMSu0+aXADQWnxt22K322lNO2JgZUzTiMfXR+1EPM0j1rgSON022O93Cp6nlIiddzrj9cNnOF9GDJcL5nnlrvJkt/f7PdXmrCpNtZV0cdqE8JudUie13JwBOYlrZ8ZE+mjmrrsrpzeKU+M9pRL3fU/2hbwaMl2Og1TnkMXWwLqol7ZbnVAUwVS2rurauCKQXlcWttT1CwHiskrqihObWwRxIisLd0rW62Wzz+rMZfMBAGvwULxpG3aOQTxPDU+Cd8zGK+rUwe5Dxs/Ybtw4QrICsjBBePxYx8s9SwMoAGhqWjtBa26RD6A1j4tnpHulICHBgHxxqqVxknTQyyjAxpT1XsXnACwdOrOPoLGcAg2J3ZmkwaMPQZ1+76QMhy+cfSqHkaQ5Ff8kpl7JAiyCP7Zx0mSMOjLz5ibo8YXt6JxDcBV87bkchlPfxHkqHO4yp0FlFM1JOADhki0WNMi8UNBs5WecNSqTzIdCxvS3AiApJaX0GTdBTuZUS5nWnO0c5XfL4FWCKfUbWIwLwOYahCiD7E05F1iQU8TZkMBJGUvOaYaDPJv6I5vjNjd5FWzZXWx9e76JDYJQPCf/oeMj91oElfLdJ3FYliDt6mZkbfLZtNSMA4r8N2VRJQ0Gc3lqPUeG+fvOba9Fx2/jENHN+j/+W1iy8p7oZpERjdptiArZkDkjsEO0MBJU/4hOUhDHOa3NTim/xlhxzlG2r+PvibzybYhGMj1rc0vxQxmcc3gdjbFG589sIuS7LK8FOCAPm/W+03Y9QK5VTq9lGBmosZ0/PTYbIxco2VZX8uLsfKoTYDK6BczKuzeWrMpnts8ovdvGTpbFdcfZcjRU1ot7zLm4/3JtXIEVJegnTTRJzxXfVyCpZDFmfUaxl0rcyNiWkACnvYLWjpYJkmcQgEf0qj6DXU/HmONWAc3EFrnMawEZmYVK/EgFt53E2NC/Hc+tgG+2gcJjo3MJ1WElW0zk2gcDpy2GzzoecLLeI9Wxy1tWrYyDbtKUn7FsCagYgrNjN3oRpseyyFGR9i9rW2x6Eh0F0700VE+urfcLIlHZfDuWgVI+ncqNHOOYvKVrdWtgWDbUESrG3W2qXWRn85aLy8lJyjHd2OScrcpEoedYEmzdwsZJ5kz8NlsOT/XGX/f176EGX1ZFRyBI5lpIXOfIe+oayAsgJaPMGuOPQLhZUmzJQ0JMkdNkeaEnXxxHDnGKkX8y/ZsBp5hWBcHUgVGlQgoieM+ggKTryKSxkwunSlPuNcjxyAoiSdprLgxBTFZ3jq5Lsyg1w4SxRwtMFrKJk+1UeFMuRUdBko3E6SDWZZbOIo6DM+Fl0ZKd6nVZCiXCnWYBZR/QTp4ZqdJhd8Fz58+ABA6QinnNmRggKa5qGFKUVJ2k3TWpYyF4gdpYlTvnGZlTYcu6e3mzS661GHkAnKfnDNIFNWW4sL22c466fDHjRsaYAD0u8j9zjbyFUjiJeWINLwRE9sFzKmnDHVM9Bcl1QwW41wXjZaBaatx1VTsqgoL7vu/x/N130LUdNcxgsCJxXa9xGLljK6XbUlAXNRjLmWS7aWocDsTua9qWAnIGLGX+5mlCSpFr1M3chGCmYvUMngltep5mZvIRQF8xK7OtakoPDQHLMuNyvlAaJwMydV0DmVIeb/sebUdNPQg84BTqSKDzwp1Dx2nC+XTmmnMXjOOo67nrOhxu9tjt3kfTtuh2PSQxRFi70zwrEBS5UYrQ/efhgmG4AKB72h2ormDTtai582rgrc15njEPIwOEND7rNGNZCVx02cGHGj5QEBxqAtt2+wP6mxuEqoEPAXVVYY0r+wMZy0zdh2OMmAYG8+aJgT6Sza7rsOt36PqdsmgTHKZxRlgo/ThwY5R1WTExQPzZp5/g9eXHVLNtGAoWNW8ueG+Mu5pYeS0DmdTtl2R3t+NmCtnYKsPlAgB8TIdd3+Nw2KPlGmzacRzQ45Y047xGrjs3YV0pzTdKKluMOr4yNsuycP1Hz3aBQL6G11TXtmprhHEnjkdVEcuw73t0HcmbdNSl5h5OnWQBPOaZOsNODDYOw0AMvXEoGt1Y5/GmabA7HHC42ePu5hb73Q5t22qq9jTNmOYFrx6k+cUR8zxhngho9RXV7Dsc9qhrq4lGaZY12qbB/rBXYE9YbQTmzTgdzwXQODGgQs5N2zY43DxD1/UETKeE8/mMN28e8fr1a0zThPN50LkKIWC33+P2vsJut6NzNA2atlH977xDXRHrWECwzM6NZxsgwNvKemoYRswL1RmkbrzEbHWeNi2apqW1z3VIS0bf/naPZaEGS2DdIMGVONmyqaY77myvPW+WySZIXbeoeYNF2HkCksDxzwxlL2nwGaMGxPLSTT3nNrZ0A1hoPR0LSsrusaX/oWxI6VIbtrvtOYOBMjBwJ0w3BgmzgYOlo43ipz5PBtfTZJa2ozIIsslWBoLiPXh4CzYo6kPOnJaaZc7Nfhlotu0GGNlPSskiD9uxdroJRcAYbRJqJB/8U7aiOvkMwnG91LgmrOtEjFtmHZRNciwFWOZWam9aACHPQj6rBIKeCrRxYJa5FowF3Bl13WyYUIhzMY8U9FQ+aAAtqeuJgT5fBNcWNDjdXM10g4DzlFJWYACStSDNMpxzuMr2efIyAI2DiGQZMXLfT7/LwaytiOKrufjbbc7xNKgsz78Ji+SCFngX39Pt3hIwYZ0s8r+N44pI9+rZy58ogi8D4+R65Xn5b71+ORIlWPL08/IyefO7Be9yP+TTej1GxovkQzbjr7JXeP3GlA0UF7nO2TbmecMscmp55LWQImVQ0aaS0xhuWhYN/nXjW/923MzJdHDkpnzOmY6l+SyBEpNxAqszXJS1pmGajizY/y9L8YjuTjlpmjjdn8ShAiSJzpZxksBf1pToSI4FGPRTqSv0aLl55K4BA8VWsv4tx5cBekbalEcyGSjPtW3IYgCPpfqW9wb72HSUnvItQF0BAikAW3wkP/Vrxb3IWOgkZYk0OU6V+YTFwGoji8ekQ0kGpLxVzhmQFGyXDRTJtsGUi/sXeywRM+HQtMDEv1nYVpTEDjuFrAOYbnFWOy8DRXZemfqJYu5sLBPPk8bTAtonBwG+bY6LTbMEq2lZAEa+2BByrtgouVJ0avcLlSpgXylbb51HvhepiZn1MxoVxR8YjKQ43Jh0JfCnILnKA8mH1sQVo4uCUbwB4rFdK6pnZQ1bF2TpmLsxH4Ufo+MgrZWyiKzpJJVVL+Uvtq8SS5H/kO4t3n+LJbDxfWJ6bA6KuZG1IAtZQP+tdfh6r68N8M3LiohZJyylxCBYRFM3iDnD5axFvJFXfVitMeKcIuPiaDkPhFAhZe6uyY0XvA9Y44pKdjbhEeWaPEC62x8Cs6WCGgrtiMYMLXHC6W9TstKIAxm2k4WszRgAGMU0ETgmTqU27ih2EASoIN9VjCZNZiArSfcBp8VsRahk0aS0qofnnEPMZDRikjp4hZJhByjFSKyvJEJEwVLMplTUMBbsOIDS+cTJECc8p4TIYNiycJMFZa4l1f/kMFBKjhQJJdDNq2Mv40IKhQGJbM4u+U6m0Ur2nnbATJlAJk4DL3e/tROwcwpcCsPAF8Hqssw4n06Y55m6kjLbhDquzuyUQwOxtuuwaxpK/asCNQBA0JSqZZ7x5vUjAwWUrltxYf7dboemvaG6Y1znCw6IqwTIF8QjseSWeS6CO2jQ7bzDru/Q73q0LbOuKgJ+JIhJKWGaF2VQRE5zXRZiHYZKitiDAclWHUYCaAjc9D5wswNiD62RmGdAxun4iJSJwRYTFdSvaqrNRYBLzZ16a1XA8zhiPC+4XC44n08YLmdM08gsYHBh9oCm7XB3d4eb21v0fa+gD0AsuRQz0srF+T094zIRWJYS1a/z3mMcRzRti6aucffiBdfPa9G2O6PH54Tz+YRxuGCdJ6zzRLLOqenTTB1rm66lJhndDhV3n/UhoOupJp+vCOij4J7qbS7zzLUGL8QeZAaddCZ23qHf7dB1Peq6YQ8rwHtizMkmwaEiVvQ0jxjGCZdhhPfEnNwf9jifTvjs869obTgyzFVVwVfUBbWqKuz6HXa7Hbq+01p5sl6IEbTicr6gqgho3O979H3PadMVAyWWWreu3Fl4npkNtmjDC+neGZltmhKxt6ZpQs4E7q0rgWf7/R5d12FZVk1jpxpfAt4mVBWB1Pt9j5yBvqeU165rucssddelOmkERskOZixqYY7jgHkaMTDrTUC8NSZIXS3PKcjPn7/ADad9d32Ppm7hPJ1vmiYMw4hXrx4wDAMeHx8xTiMxEVfaeAneoa4pXfumbeCcV4C7bhrc3NygroT52BHwEAl0XJYZbx4fcRmoK3HiOmBVVaFuAvY3e3RNxw2ZHOZpwul0xquXn+J8PlPKNZeu8IE6zb7z4pkCvVr7sCFAzzuHVTqQhxJ8DGrrZYNFmoksCzMdub7ouq4MSlma7YFrXxIzkrtnMwNUymUQ0ExydRlGc/pRggZQmyyAXctMSe+dbqx4Z587Djh0IyhmJGHJoNxtJtdU7I7U5BVbZGmsdpzYIgLcjN0n9sk76qYsXaerqgSqmAXHAfkqaZ/MGAOA0sks3GD257dOc+DNm6qq4ABlVJa1gyUgi3y/Mibim5cdNOleIrT2jWz+lQBdzgpsmV/NtifT2heHnzYKbVNX7K7nmrZSP8hzkx4FPBjAXleuZSmbglnKn5hzrim2MLakfF/8mJVrYZbgT07kQ4U6IAOoa0DAOcmMENaPbFSmnJhtnLGsoj9Id/RV1E0IaYKVRd6SZAuy35gpyIMDPNs+Y1A5HSuZpKyMIWM7JQkUORDVoFgDaAvmyiBHvnMNxpXB2tsBO5PIEiDQUJnvAVffFVkuIx+dPZFBUGB9FccWv2U75ZOgvTymuO9iXeq8yvfKi2yiqbx9W8Z8E37ZN512JnFFmrsAATLWdDIBMSA+enFtsXWZh2mz3gBlwQpmohsJG7arg2RfACjYtPI9Cn7peE6R5CwgiWNEbkRfOUBrfUtzLNHHQFHXjNMCVebcliEk59IUOQnYCx3vZOze8hN4ynrdfoYruWBChF7Dl9iUnV8Pzlcg4/YacqyMvwMKiTDpKA7cnCfrWGUrUSKfZQYq+QKyVvL1heUKzjEIRXch8yngBYFodA5JHRPWkAOoCzk/vACnxkKDxpJleqsxE+2JAoOWAJSdKVlaobA/xsKz1Ea9++Kcjm2D1e/bMrao+YzMWoaQc9Qe6nOSPfOiH7lmLIG0W8AZNkR6TfGhKWY2lVPes/gWNPvWvCoXqcu6XmV+Kail2nmq92jt6vUK/WrXkfv1V2JVFsODPYT+Xmgr+VtkTG2NdEB2hagZOFra440oZpk7OQcKf8sxSSQjyMI2SSrYxXn7D3I923h1eu+qilVX2PdzcQ2xdQAyE6j4xiVTEc6yqewc0GcuB1Hek7mW0hQbkwEZ281g67qUWyz9ulzI+OZcYu/z0yv8dV9fvwZfTrSIXFaHTIC4aaHdzAwyEAqO5awd58SZWZeF61YRSygyECNsuBwoaPZ+S6cVZ74MAFJOtGuaEgKzJjIyAzHQgAZivFyhpp2BichQRwswwcjIyDGrcc85c5qTGVoRdOeono3udnkHSjEW54tEJovxp6nXdBtfLERxNLW5hXOIWZqPFDnzgDLuAFCdw0L46Nlkl9vJm+QAB2JFakFLFkyhUwdumlFXFc0377pLQXIBGgNT/Nc1IuStwCooyacnNqMo34IJCEtVkDXnIDvxrGpz5nM5lUdA1nPmbpQJGw2TwSwX2q18+eVXeHh9UqfKO6pB5quAfXeLqmawqm3gANQVd3QGEJcFx8dHDBfqSLnGCMcMvn63x/Pnz9H3O6s7ljNyXjFPI46PEzVlWFeqUwinwfGyLNpRue973NzcoGlbAjaaRp9XWDTnM6X+CaDimXEjTkMoAk3kiHWhtbiuK3XObLgOWQhwyJjnBagrjOOIuBKr1hzHjBwjdrsdvKdup857VBX9dJn0wbrMmMcJby7UUXYcBmawrZjnhQCc4NG1HZ4/f46mbbUDrK8bOFDwWzPLVtKt5mlBFShdeJ6ohtc0jUCiFGqarxZd3+Pu2XPUTYe6pVqFwQXqZDoNuJyPWLjjKZ1rojREAGlNWNYV/X6HfrfH7X3HKbc16qYFHHUvrZpadcq6rIhrxMyMRErxJFbYssxUAypRfcfDgeazbls4T0y/tmM2WCT9iUy6b5omSnVmfdp1Pe7v71GFipthDJjmGfM0U+fUbsegYUcyWzQDSDlhXia0TQvvQOBSv0PXtvCV47RaWiQpJcS04vE4YllXzNOMmZtIzJyeu/BO/7rSeo6R6/hlaAOMaZrgvDCJPKoq4HA4UNq2dKx1Dg2Dj3XdoK6otmrbNqi5s+t+v2OGK7ENFSgQlndKWGPCMlxoXCZKrb2cz8TAXRasS4Swj6ijcYN+12G/32O/PzAzsYOvakgq8rrMOB6PGIYvME0DLmfqQDtNM4bLiLatqYMmp2I3TdBOuMhA29Todz32+wP6vkPHNfYyHMZhwjRFHI8P2txEUuQJMK9w2O8JlOX03RhXnC8XvHp4jZmBxvP5TOBKSui7joBxrtHZdlQvkZ5Zml9QHUpxYrz36BjUkwBEFPQaqSnPsiyY5kUB6nWNXHeTbagPaCsCjVcGVZeFWO7zsqjulxppK7ORF96ICE3AMIyURsvMRl95BgEbBpkJuNZNOOdUvmlHmsqBsDdlgYo4Z14aQwQGYIzxkXJCjpJCDAWlrEh31uiQbLlneSbGNTXZClqPUM0N25VlLYAnCchzCbYFSAvTxLZJasrS9YJ26G3CtsGFnEeDRJ5ZaXAhjqYDkIXNIx1pc1a2s3ogBUggL0uzpfQjeS7dUCsCBuetfh/5eqEITgqWPiQ1PmKdZy4xkNQHERZzGWjI8QLkSZ1gaxzAgQMDYsGTra8r1hnqdwYNbrykGOas9xC5lvOyrFrPNrIvoaBKpmCa9okSkmc/ynMB9KIMS0oJEZl9VlCmQQbDEFc1qNTvgkT0OnZyPv4LtFQNDBEQSzdJxfdx+lsBUEABBbFj9qW3BxiuaMIh8yEsNg19rgKdTezpiq84KMip387g9LcyaCsPli89vT+7TnkPcl6JEp0Bic4YlMIC2pz2CvExnzTrifU48V+LII5Osd14v24ykIrfde2V720AFEs/RHF+HRvVXXZ/5eBnSBo6fU8AQKlbnmLihZ2QczEHKWvKecpEzBBgUOId78tZNiBEbs3B1l4ZUwnoguKWpQtqmV0jWS0ZvMmfigZL+qhyfo5NtbupxBa5iGeSAgUGIPzVxfw1K0plqZB7R12r5bsy7NdTkFnAjaVk35Oa6OWcElEhqpzaIGW9hczPQTIim1FmF+TZRUZl/MtmGeVcoLhM2VxAZZiPyYU9NNZe2sif2J0SpM4Q3exUx5fr0/4Gs8CFpcr2Kxff4e/HbOUTkIg8FFMCEskVmVViyDpIOSwaXyIHGQ5Qpu9qI6aUVCfJNYQgINlO8qzemY42Vp5X2aTnikoccq6sv2oguCy9MnZ30Y5Tv6bQtVqzT55H7I9IGg/g2zS7zpmsMZaRa1AdzBhXVNTZPcrclorbanCaTOs/gAxhGZ6r/Jouk0ysDCjpp7SXYmVEF8uxKPULnRzOefWtZMS39kn8k4Ri4Ri2AL1E4ZcYY1X0kto3x13G5W/GLfRZi7UJfl7N1viar38PNfgisiemhu0aUxeYNUaEioAvsJJyzqEKfpOvTaw/2klKMSFzmm7gYIMcZtthp/HhndyVhLWuG4h1FiSclHICbwuQQWIUXRoxAFlZfQSql7RvQ+CN/l0YNQbrACDOUdlVNN80gVJvD0hwUK9YnYZS0YqwOCcpvsy0YwmQ2nkplg6C3ZMWwWQlIgCbKGgxXLYTyGOZ7HyJU42cGMDMzEQWQgUWEXVR5pQVhOHHUDDXDLoZd3k2Vcis8FAoOl2oPNcSeJJz5iBdDiX1Wc7htTOeOAFZmSKiAIXiLwFAXFfAreg6Yiw1HTV6ELCH5GzFfBkxjmfM44Dz5cyODdC1Hbp+h3c/eB+7/YHZRkG76E7TgMc3EwEj0wQqRC4p7WXNByr+33Y93v3gA/Q7YnXJGFFduYhheFTghNJiE9eYqtAzEKBsRjZOKZITF7xHU9XUlZaDfWIxEWtouAwAKOWx5dTheVnhQ4WmrVC3NC6yZqSBCDUFORH7aJqwLBPVupsnCOAbQoV+36Opa/S7HUJVoWkaZF5nVW116oR1mHPG5ULsN0rpjVjnhQGGVR2/pm2Indf2qJsO/W6nqWg5ZUzjgPMj1QNc5ombY1gw3/Uduv4WGcR4ajvqRNy0HcCdfR2ofqey3pAQOb1zGim1cxpHTMOIaZ65YHzmAMzjxbvvo2k7rltW67myc2hhDOiYEsZpwjhM6nDVdY3b/k4b69R1g8v5jJcvHzBNI9quw4t332M2U8WNI4h92fU79H2HtiV2Za0ACa3dmBJO5xPVA2SAaZomHatlIRA6cs1F6QadmckSeHefOksTMNS1LaZpRlXV+MY3vkHBQ+b6krwp0/c9d4J1BEYxuNv3JCN1XTPL0KnBFB2zMiM1RkoDHsZBa+VN06RNboTxE6qArm1xe3+Lw+EGNzc3Wm8uBNIl67JgHCccH7/CZRwpLX4hBubKafLERiQ9u9v1ePbiGZV6CJUytqqqwv39PdeX6zTApgYbCx4fB2L3ckfreRL2MdUNfPb8npiMDJRN44jT6aQgvnPk+FKqPa39m1uq/1fXNddRpLUk9neNEXXVaHc4gDpvQ02RY4fHMctO6nEuWkcvrlFr64UQEOoK+6ZRWyZ1GZdl0Z160UVwTtcr1bBL2o01p4x5WVBXFQ77HbN/K2OQeA+pT6vqPiXq8Kp2kMM7Z91dhSlPaR0WgFIH7aLxQxLHTQCbZKAaA501d1mvq4rq5HHTC7LhxsaLKXFjE+tOWwZrUGsu7qQ0mAJyXnTDsgoeriI2szT8ECdB7L0EBuIOJ9aZyFz+wElWgdMxkuA+qeNsjbasuRZUL2qzM/VD7HkJiJXNyy2oVwYS0q1Xm04lA/A2YARgdbDE6RVHG1DQTfwy8XMkcKFNVQPsxI+juS8LrRMTXZ47xYRpnQzUi5QenYThJP4RQ2IEjJi8OQ80vmE/I+o8J/b7mPukekyDP9ijyh8G3gkDBxt/iGJMS/dREEE/szRFdUMd5EO9iIPMTxna8FDKhmz5XYvlZKXpb7TRLdIs4dLTl9MT5c1Du+LcNiD0QS7eks1vO5+xPW0cSpZREVQCnGZc6Atu3GHMSMUr6PckgZyAHBzAwnzsLGNQghMit7AUWt2kx5ZFmMv/ycXd0xFMxfXKNVr+3GweyPez1cYShrrIUEoCohPgvyxU+sWlhHlNcD6rb93UNVxOGu+EJDEZ+eVajgQCkFBpHVr7Uf1RRPPnBSwpWUBXYqpy5pyjLA+ed0h8wbpdUm1LBhrFKVIXbytfJUNMZEmu87ZXCZzrzSmYACV6PBV9WbclMGhr6BpqubYXW31sx5aHZWRoRmIWCd2mZZZ6VuRfgJNNw0TkJ98lfQ89pjy3An8F4GbXoJcAwLGI+cuasBmmv6Q0VMpR17CunwTOyjDWPOA0DnNXzyx2/3pOjJlN55cYSViqpn6cnafcqMlZa+NunrfQD+RHrerDWBNIvgbbAVGHm87rjnwwinEzx8XG3MvZ7Ecmhc3rZPugSQaMRVXXGnKxdlDoeNbHilk4BC8yR7pAYnCZR7k3GSdZwKKDZTTKDT3Tp+Xa4/twJWNRAFdmp8Prtctz2v2B2Z2yLovVxfciuoIGyPS3PP5G9oENozwI6Mq3K7iNECdU/iRWgehgkXVZO8Vaca4ok0HfMNYnvvbrawN8GaA0xgzqhMsOaxUqwJHTX1c1qP20x7oucFkcY6s3sazEWsk5Y15WSg2SCSx2ujMyciTGnOzoUJfcqGBaxWkfIixgJ0xqdVHRcFFmGWDASZtWZK+7KQaeyc4HtPaey1R7Qhaxd0ZL9YWycE4MB02wBDyyO23sMyuwvCkmXigSAQByzlaLwoHqsoGXRObFHUFj6Cw9RTq/0XMYeBnCFZ06AcuyWDdFOGQHBE4Dkvo6W+wbNM+sdHwIHGRnS0XlNF2aVqJxE1BH11+zNQABzBmQwEBo38aYtN1MVV50w1zPK0CCy1ARa8SRRtUxeOfdd3Bz+xzIjkC4YcQlnqjL6jhhnkfElRh1bd/h9u4O799/QzuJVqFGjhHzPOF8OhFTbZ4R4wJkA6pyzpr+RuPh0e163Nwe0DU9dvsdFd0Hdfqblxmn44kbEaxApnSlELzW6dvtdtQQokh7gDqBGRWPFzUEiThfzgAoxbFpW03lCaHiOmwNmo7SdXd9XzBeiAm5xgXj5YJlmomVNw3cpXfRefaBgErq+HqggJ0DZFkrsjNHjT2I/TUzO2lhdp+w6pZlRRUCpmmi92NE3bVo+x43d3do2x188Nw8hDTjPFGH3MvphGWakNYFHsz29BUX2+/hK49pmgFfITQt6rZHqGrsDwc6JzPMMmd7pxgxTQPOp5OmX0/DiMvlgoTINeaohNjds3tUXDMvVDXqtkHOjrsmt9pJN0ZKyR7HkdJWQeD0btcjg8C9pPpHjB0t4v1hj2cvnuPh/Ij6QIDeYb+jbrWBgGYZ7xgjjseJ2WzUPILq4y1YuB5djlKYfuH6kVRXUY4XtpJnGdrvd5yOSAwmZKCq6D6ePSP2ndSn7HpKr5X6Y23bom24DmDbaJdYC9YSAybEzJTuugOzQUdOyRbgCACPbYNu16PvO9zc3GDX77Df7xgsJ4b3sswYxwGvXr3C4/GEM9fLi9xowzvSlVVVYxgGLm6ciBXZcL3Niph5fbvDfn9A2zXc8ZbYpdM44XSkWpKXYaCNFZ7Dqqo4Ldujqj0q3yLFjGVZcD6f8OrlSzweT8rmC1y3sqpqwGXsdjsc9rL2uesxg4y6ccLOTFXV1DAjVLpppsEx2woaw0z1/aaJ0m7XqKzTnDNc8GirVh3kzOtBaucKOCVOyjSNiDFx7UVKYxSwPyVgHEeyX56aoDR1jaap6b55XZSbROpcceAnHW/LphksOKwrE3JeYbXXzKYU+ASxVpxTQLCuK9RcW7Guaq2TJ/ac0pAzpmkgXa2lIET/2qt0ZEmeyT4GZkpXVYW+63jNMxApjq63bqfyWBKEin6PuQDtmIkjjqYAClbDMCkjQwAAOOgGWDk/AgQ47xmQZ4CKU51YA6nDHmPCGkn30d+RC54biOoL2XMc2XjnsGoQS2w5GbOYJDtBGDdRp62qKvb7yiwOtwlmJPCUNS0p0Np0o/QBebaIfOCRcwTYh4yZfEaXM5fByKgAfcYYE9n7FBGaqI693oPIXLL0xuyy/p54DI3ZQGHtNm2Qnk/qPVmABwtWs0pc4Q+pMlWQS4IWOWgjsxlWJFzPlnW+CPuTQab7LIHf65fqmfJDCSSxDYjlx9PAxoJJBUUyjWHpfl4DXrLOdT3IA0KCqS0TxYA/2D0XgIbcl9W/LO/Pbpp0lCsWCBRoyJt7LVgmGqyKTs78fsEIzAVrJRdBczYWrsyokGvk+84VKcAZ2lgjRkl5jzwttCk8LYvW3AreY14ZvHNUAiCvssHPuoMzQoI0pwPHVdkXsiuNY0RebDOgBDC0mSIvZ2gsZzJVCBCcAyqEJ/Is5xZ3iUJBAfplXKypks6fft3pPeWr72xfckTZaVek244r12kR75e3AwFfTIa3V1Ligx7C+gGiZ7YHZBO44nM7N5cpf7p2ro73vojxGHTSmmR8onR1LfkscFwvep3+hc01ZTw8p48TkCfxfuKmB7wWEzEFvdgGvmMHAuzFxrlCrsROSYxID00xLRJ937NOEKBJpoceN6kOLIE9wxjob6+yB22sxxCEjZ8wwbJgAZayey3jCgRCnt1qpsoYe+ep429xDN1L2RhUpFHkWtjqFi8j09p02ZiAtoZK6c+bX0WubGNJ2Gyir8s160xm5LKic5E528DqjOo487GbsX/Le14xEzneAOtS55JfJPcga8PsldpXtgN0jqTfkeEQ26jyslmbNm7EOStYfYUdoOPop5V+KYzH13h9bYAvxoiYGSCKSZ3TZV0V5c7qhDpNX1HQQFMqacdVOvZJ1zMHBoW8dB4L8JU4PlmNigyyGKVyV5rSkSJcZcIV/LZeW862CyndWbU4NCSVCRsnVYCxnDJ84GKcIIfcA1b7RoyTI0AjX6H/MRbdfkRZlwKQbRe+RL1VsSczJLHYmXaQeoTiLBS1hPRZbUccAO9e0xL13muh/RAoZU66axGbUBaD589Ik0ovkLgugHM6p7KrHiM7zLDFpHNZBd3xo5eHLEoBRCDPxUpanL7SgEhtxk1diCyKBMU1El6+fInPv3hJRffnhYyH9+h3O+x2ezx78Q4H9R1cRSBxXGacT2e8ml4RyDBPAAcR5sxRwEPBfIe2a7HbHdC0VAutknNxXbvT8YhhGLk7aVRQkupldWi4oDcBlyRDVaCuliL3km46jgQyzuNAaW+e6n7t9wdtQgAHSh32gVPgapVzWdvjMFKq6TRSqiOn3VKaF6WR1XVNNcXubrjeHXWlrRsC3NaVvrdwUXRxaAWMW+YJ5/MZKa5IkernCRMqcCfW6ByanhiWddOh2/Wo244YJADG8YLhfMQ0UN3DZZq0fiEyEDMQ2haez7+/vcF+f0DT7Si1sG0BBikMqEg81yumccY4jFg47XaeZ6wLAZsKcNQ1Drf36Hc75OzhQ0C/p/OHKnCXcCoKn1PG5XTGzPUMq5oaEBwODaQw7zQN2nWUGENBx3OeF3gfcP/sGeAcDocb1Jmc63GccDydGKgh1ujIrLZ1jTzOiWt/EZgnZjmuK6pAKZFtQx1cXSZgv6oqTv0m/UNNdJyCfn1Haai73Q41sxO7ruMU2qyNPJqm5uYc1Qbsl1RNamozYRgHDMPArDwCU4VhLI5L01Bdy9vbW9ze3uLm5oC2o9p0mXX5NM54/XjapHOfeeypG3TiHVNiTOWUKCV4t8c0TXj+/BnVLmxbAgx3PbqeuzaD6mfO04zz+YJ1jdyxeMG6MHuVZflw2BErt6nJuVoTzpcz3jwccblcuNPsoru3dV3j7vYWTUMg07wsmm4LZLRNiwyoXJTpGt573YyBmiGvtjVy8x8BTpdFAD0CWcRxqetGnbTMOmHhdFthtTcNsZdmrvtX6g9J3VaHH5nrMGZKmQfQNA0xclPCMM3m2BU2QUA8+QdYeoo0OMkc5MqmiqZnMeiljRwAVKFShmHf92i4nqowDoWrIaDQsixc0sHsDjhwVcc2S5dY0m/BOdqI4XIJbdOTzq0qINtGVunUl250SsaoV2YF2zT5KTavtPmbIDAlbXImzqnYepIRts0+EGNdNiu9J4c0W1pujBFpich55SL9luYL9UOylqIwcMFtNunk3om5SPcrvpRkR3jvUXP6rMSkVUM6xbPOKBuQEUghOo1YxnIPyv7QwIU3c5EgXXij+KsRcJWHSx7K9IBX5u7MtSZp3ROjFYWsSHqv9w4uCYBhAYAQKkoo4KqACAuDfcEV61rRCokUuCi9fuwoMBYnsmQeKbgnAZsGL7lYo1dBbBGEO4uUtWa0dYuUrzq7TfcUOHDFc4lOoe9yraurAMnOSG8mJDvoSQaT+cFZfykAOb0PO3tkf0SvWYxJoYj0/mU+wCoAhZzLd57Wl6JzCFhP8sgBnYBe8n0wcMJyswUrnc61pJdK8CrPJKB+5M0kWxsRZYp9zmDZpWtR2q+UFwLqitLqdcOt8DG9qD4vzB0PDwGoAYAysui5OHtH01cZEOHrQsd8O9tKrJDPs3xfIQGt16ZBciE5yqrJLPf8kcRSciVdKnyGa1tVRuQlEGInKNYQivdLHVyE+7n4CwAK0dS1Iam+ufiP/u7kObbnQfF33v7nyRosATU4kTf53BV/yxhku3cB9eSaei9y7qvr8LEir4RbWL3IvDkHuDRV0r9lc1HmR3SsHGNsLK4smdmXXCPmNSFg1XjMe1o/VD7BmsE4QBmlOueFTnDFffLFLIWWa1JKyrHZcvqP51q+gNjfZPLmLGXZodC5LGhl5loZI8sFPFR4dezlGZx3m9JV16Bk+bus26znIV9GZdgVeAMLqWXEPWUylmN1JaVbvcrPaWC+A7S6iWE1gLDajK2Zi88yxO4VjGBtIsNzr7pDLrE9v26UiA+VrDSIYCqlr3INxG83cIq1IJ3S+ZKiqnNhU3TdAZs6kSjG9W/6+voMPhaGGM3Z896jqSqlpa7FYo5rQghkgJwnYx0CKeMAb8CL413bGLWIdPD2eSmYxGoKRJMWJ805VNw90TsHzzXQVAcXTDn5O6bIhskmXthlIivEauNtD04bCoF2/6nWy1vqKECoo9aAoxRWuZ44wTavtrNHeePSbS5T/TeuqVMqQau3kyF1/mTXDtG6z4oginNHYCsZq+AsPVdquQlrDshbQJJfWlg1BGiH3SSpROV40LOsa9T0n5Kxty4rD9i2C6gYWBV+kBOwrUViTL7E6buiAjYsP35OcXqGYUDd7XH37B59TzXXZOdH0leH4YLXr15yIEwMM2KGUNC3rlGbSnRdiz13su2kbhtV7yYm3bLi8fVrxESsv4mZSM47ZbHc3ByomYSAVMiAy2ibBsi0rgTMu5zPGjyJjEk3tLbvcf/iHTRNh12/R+DmF3AOjpVp5l1cSi8dcDqfiXV0oa6d44Vqmu32PdWdqwgQuzm84DTEHg4e8ODi4wnz5YLTMWpwR3Jg7I1pHDGNA5ZpRIwUNFUhoG6pk2gVKm1c0e8OqNsWbb9DqCsCIpYF0+WCeSLQbZ5HpNWaEazrAuc9+t0eTdeh3x80BevFBy12B+p2S+Cvsa6oC3jkNM8ZyzxhGij1dhgGpJV2vne7HoebGwzjgLsX76DtqJZeBtC2HUKotFZY5HlZpoVSb8cBcaWOuE3XKQCUc8blfMHxeMLN7S26viWQxlFK2TxTigrpuwrBQw3t64dX+PiLlwpixRixrAuBeSmyrESt51LXlTK7KG03MHhSA6oTaPOhrisaz8Ih2t/c4LAjZpwA2IFBpZa79TYNrQcfLD1NDPw8z0iRGkjM84QL17C0xhfbNMemrtFy45XDzQF3d3fY7Q/o2pY2BZi9NM8TXr56wDBcMFwGAt0Y1AWoG20ItCFBrOWsNRufP7/HMhMT4fbmBnd3lMbb9QRYOlBQtKwJ5/OIcSQwfhxHRAbqnXPouhaHQ4uuvaO6ip7ubxxHnE8nvHl8xDBM1NAkUHH/pqnQ7zp03Z2Ce8JM7PqemZCt6Tg4roea1R7K5llZfxUsL9RBceW0WwLzSD4ip8yCA7qA3Y5AZgG1KC2XAqMqEBBEG0dRGYYxST5bkSpW2Eyq2xRQ+wqH3V5Z6Mr8ArRZQagq7TDrvacmVKxvp3HEwAGClpMANDqSjuvBe6zcoCuD5Keqa+1u3TRtsfFE40mbLYuxFtlmSade8dCkXhVbUE3fD96jqSnlWzYQASkxwswsDZgtbTZxUEP1r+g5lX1VBOll9KmAAzugFTPLcjYGn9rPJB2GA0IwkF6evwQmUkxISJhGKokgzDfZ0LQU7yKodpJ2wnaEgXrzPdi3SVIqAxpUkQ9n5TPggAoVnCs6+PGjSA2myDqYmrpkbugFnTNJbRLwj1KjHHzmTWTecJENv5QzEKxJWlpXAoxBNWDFt5WSFxpg8rNTGRQBAVwRH3JQCirMTT9l7GwUPaceSUCVsSmdrvMsgTZhDCIIHBypeJrPWabfSmCWwTJkBxTBHd99CQryMxoIApOvMrB0W4CliHP0fsCBMN8QBNjJgKUY2s3r33oa/r7jg3L5peJVstw2d1R8TzaJynsR+5aLMXFyvnJ85XcB6UpZL89f/G4dUrf3pEwS9vGRsxaCl3/ib9vfpn8MJEkG0AnAnqJej8C5bP5Izsy2ozgisw6PKSKkhHVNIMzDUmejk1qgUjIgEZHBeS2jpew7MJjhDFCQkEEbHcr7KjxSXkk+ewpQPAFRYKCcxfNO5V2ESZpayKayfqeItSSAl9I+1pwIqo8dDEjguwBgzJ5y4xrF3xuZstPaer0GBwrZ0ViRM8xspZUyXQBQztIH+SS0joo4nN+2dcCnEvk2wM5ktJRpABu7IN/Vc8CYfshbEPxJbddMsZsy9lT2aY1JKQ6J4yRNV8ASlwmoz3oPMoZWlx4AYgKC84gxM/GHxiJ4D1/4AbrBtXlZzEzzAIjt1pp9GQVgTA+WvMT4UiKE5k7ShwlGcKZnHBj0pVhfsuzUzxEgUuUTfL4tMOTAKaWwtaNAEg+cTn3x3AYsOZUlHQEnMld2qQf7jgJEWjbj9XykYlNSxisVVqosN6J2S+aDMSAvTd9K+yDYB89JCdYVS4L+qzpHxoUtJY+Z0/rJQcco8NiKXU880SX2AI6VrkljatBcsd6KO0pcByIJoMqvt623v8nr30MNvhXJkbMkbAxJXSUKPQu/yIsqsgSvWKqg6E5BOOpqyHXycubOmVG70QE8scwko26eUoDbFBUJhuxqURovObLGdDOjUHaENU0sacAOxCYQI0eCAVUIVNTVlKYvBMOh8OEK450KxUx2V/K1DWjUBQk6PsVI/hALqzyDOAKkOEwxrCsx5iQtUgBBgHbul2WBc1x3huvYrSt17BVW5KooNhkKJx0+Hdf78bagaf4Y7M0JUqs3BAp0Jd+ROpWK0reU6OADVk6l9i5wQBUhG5uS5ma7d5KunHXhpkzpqaUxFjBRaiOQIsz44MNvoN/dIueEcRrx+PoBw2XEsoxc04gcGRpTu1fP3UYPhz36bo8dp0YGDtrjKg0SztoEIbFzJffivEPbNOjubtB3PYDMde0ifGSQOlBwtC7EGotSfy5T4Jp4p8cHqgVWNy2qukLbUpF9qiVoSj7FFetCTJzhciEwZLjg8fENxuFCioHByt2ux83dLUKotHB/03AzlUjnmscJ80wsIJpnGv/gHYgFIrXdaDzjGglUTEDfc2oed/SsuxZ1w79zSmUIFdZlxXS5YBi4YcI4IjP47l3GMjOrKGfsb+/guBOv8wF1U6OqqcNtqGpmlREAHVeqGRhjxDoRW29dCXSaxgvmecRwufDcBzx7/gLdfqdgwSGSXAobhgrh08YCzf+IZaVOoxQkBjRtjcPhYIY0UwfTx8c3+Pyzz5EzsD/sqY5civChQkZm3eM5qMhamsB7j9dvXuEv/uxHxMpipp5nxztUFQFkzMgL3JRC0qkpOIhYFmCaFrhM9eW8d3xMg8PhwN1ue27eQHLedS0Cy7AAlYW6R84J00SNKqaRutcSmEep3VTAngIW5x3XfmxxuL3FYb/D/nDAzYFYgU3TauHfNa6Y5hnH04lkeBxwuQwKls/TiAwCa3MmlmlVVQQIhoCbww188GiaGvv9Dn3X0zruKe1V2EvrsmK4THgY3mCcRmLGLkuRWtpjd9ih7zpKQ25bWqvzjOEy46vPH3A8HnEZLjidLwiBnJWu7/HineeoKgomaq6NCIDYr3WN/X6v4ynOc103ypKX9GsAuuuuteAiA3NFs4uVaxaucVXdHRg4pGuQ3iaQntZyBgOgqCmFExnn85md/gRpmAE4qikYI9c/lO7pDv2uh+dabSllZcHNM11jYX3W9x3Z0TUiIWJmPSmBieP7uQ4atREWB1HeB4SaxrPmzRX6jjnti4A4zIgGto6wBH/S0Mmx/QghaAfqpq4ZiPTqQ5A+onUnDEdh7qwxamS3Zb4lAxE40lKAD+bo2Y6xU+BSjCvVF3agbu5eOwo7DsYd20JjzyVMbI+EEaggrYAoHOwKICjpUyszd5d1gQO0S605y54Llye2hVnrIpIj71mXOZV3DQLFMc9Z2cupYOaJ3Zduw7J5FKVECX8m6VFiG6lLaNKGHpHlfI2rrZk1qh+VYffhXVWMvTnqznnUlUcVamiQ4Cfy4RSiM+CAZ5fWjgNctiZqxYfs49BRvgAk9AyCaADQ3AWiKimIoiekQdkEVnRKDUNVWzvkMvu2YD7ZhsE1s08BA43MyvMWL8eRq3yPg7Anzwa3ObwEVATQKMFriL9bRnz66fa9XHwCWIyg7wtoX4ARCg9kAzQAehQbzyIN7XpcdLyL8zHAYUGc05ikvE8JKLWWsvi67DdqbMBz7JyB9kDJcLVOu5LVYEBLNtCVzxVTwiTZOpAaZAbseWe63WUg+Kx1G30mPesdpQgKQCgMGh0zkTkeTwIGTY+KmEkQLunsTgYUZZCuQ745pwF98lkJPkJFVYE+lWEA/uq7xbxslpi8o8vSXb0nsm2whch0uVay/sde5TadgDXAVYkNoFgPEn85eGcxo14vWLfUEkST40Q2Rb0YGA/4VABnWYcIgIP3AlCYL5IB0F4b144vYvLkjH2KTJqS0m5JL6XEeggOyWW4lAHvkCLFjAFggpBTxl8FYY3TGEVHcmubg1QCzAkw5hzHk1QDO6YE4XY6R5tByGlrQx1ghJWtTbY4U2bbbeZPSDkC0DpnWk+UvpGNYL7KlU4tN/YEfIUzJjDJUVI7Yz4NYAQnx+tSdBbHhTkDyc6jgLcrZNoMD9T6FPaFyoBsj5V7CCFwCi2dR6/Jx8rGQ+nnlOzCa6ahDLfMWS6eDYDZ4MJmaD3Sq7Wja91vV7dpLNM9QcYUVu8fKEBO7zfrSuamzGhQ8kJxLXlGW6P42q+vDfCJoanqig1IJIfNEc0xS+qq7GjnouuMTiYpsBgTfLVl1qWUlD3R1JV+33OtB3gpfG81+whBtlQToV1q/SHWpqIMHQiMEUMqhs576OKW4IEYgaw8ZCdKu7GABKBAcROjuhkZecN82ypLYZ1pHUBHSkw0tBj/xM0oHJzWKJIUZkOUnRbuliAsMmAq8+K9vLey85G4i3HWgFhWU04ZNdfQk0YfyMYGFCAw56yttK/9TAdgXRc1VJLOLV8Q5SiLRJiAiXfxgg9c+1AYYUVarwta2wiw+9IgqjCGUnS8DBZevfwK6xcvMY4jwKwPPozniMCVuqrRti32ux0ON5TqWnFzl3EcMFxGvHr5SmvSSaMRAfM8p4J2ba/pjpQGvYACC2KxBW5+kVPENM5Y1kXn2DmuN1XXaLiI8b4n8KNuGk659QhsIGJMWKcFMwMs00TpsMPlgpmZFk1D3R8P+z1ePH9Gz3g4INRUP85566w6T8Tyu5zPmOcJaeWOqQut+wyr5zgzcBaC41qcxP7b7Yih56sKXd+j7Xo0TaNAgwTFcV1wOr2h86wrlnnSOjMAdSdd5hlrBuq2w/7mBtkF7G/v4LmjpbDoSE5J78Q1Yr6MWOYFyzwiLiufn4ExTwBt3bZodj2ev/seG2QPFwJiJjar8w61XoPYYNM44Tg+ckfdFc55AtfqBr4jZ2FZV4AZufIwVV1hf9jh7tkdDvsDdvsdAKB2Da0JB0hn7eA8FcAGqHNyXPH61Ut88dkn3KSlw35HYxqqGnXVGBPZOap3SpEbUhIGIzW62O8PnMbdoWuJjUqptZxy27aoa0qdrop0XeSs6anUmIE72F4uuJzPmiJcqASa86bB7d0N7u7v8ez+HofDgZtEBAUi5nnGm+MJ4/QVpUkvC07HE+Co+7p0tc05YhhG7HYdvPO0Tg+9Aj1d1+H2loD0ruvQtq0CfxkEOA3DhIeHN1jXFePIjTqQkCPVwWvbBje3t7g5HNAKIBUjhmHA64c3uFyoPuAwDIgr1wXk2oLvvvsOdrue1gNvVhH4TjXonHdcr9bSEBwcb2px501OKaSi1qLvrK7YsiyaGis1wmQzIIRA9RBdB8B0rKTMCrAhDEICVqhZ1jTPpm8D2eMcCVjKGYiJmmw1FaVfB67/KKDJMi9Y4gLAaWp45sC06zp43tR5eHME2P6Lr2X6njcBuZEMpYCTzhBGnnRqFlufWQcuc9TyBhrYSDApMpmpnIU0PpJmH01do25qlXXvvdbakbp94rjnnLHGRf2IuAENth1nCVzIarekOZgEPmZvyQlPOSvTF6B6jA6Ab5uibp7bBPBxXhQki8nATA1KvDHsvfPKDFsXYuzO04Ts3CY1XmrfCUO+rEEsAX3OQO3rTUq/lNjQHX32IQQQXtdtB2MBSEumTcrCvuB0awct58DGHgJwr3FV+c2wjvNUgsUX7AueD/Hb2JesqsBZHQGVq8xfdJIannXdrVxjsm7InxLWHiXcOWXpZZnzjP9fe2/XK8utZIktkvlZVftDUne7rwE/GAb8///N2AP4dTDd915dSefsXZXJJMMPESvI2mrAcGseRkAGIJ2z96mPzCQZjFhcscLiEMaV8HhIatelmPdEjSVHAhzN8CSaY9AwD4f//Jo7iMHHpQFoaJ/P2K99UzeP4XOWAExLvNrn4nfvI2ukSxT9K6X/qRtvtDgWXwNLTfAltLX0dE8dqKL3wtfZb78kUE9djO3ZtqYvvado64e3rEu2+txtz689J67rrywOphxkAkmX/PVdUZksAjDdUF731xLkpsknsJzBfneY3z0OPaypteqhzKHrJeeMOZgeqTX3iTBwzzVC4QBfCjxAaPepZAhBsD2Lvo0JOvOkAPscnz/if+dr9A/Ow24+f5lDnqA/PVkfOv8d/W03VTXfkpbD8PMqddfwDNboZwa66DafbDdhQt/Gg/OwvZLf+2VCu4+1bP8JPGpLpGmnSTfm9k/opZh4PZ4DCdlOXUkx5Ol7ALR5D7QyYgNKBPADxRB0Lj4RYjrwxAFsO5Dhv+l72tOgFqQI/PAUtVqpuX85JFA/sr2X96oHaKwg0MZiFbpH8xCJeEVF0+6rNfSPXP1NLdpXANp0hjFuNDkw5qrOWPOS9O7AJrTn1K72yyEMx7jzR7rfdWvhy3rwt3Zzqc1dTmoAwVaL/ara3598fjd3AuD79Vfgq/9svpeVBsHiH59P3bUc3ZXq+lcmMa85WUwrYnCcPLOQNb7lumkVYG0dS9vSAh96V+IqfR4Pjwv7teV7R+ebveqRc0TaXue3ZM+He18PgHvcAtUFFP1Q+GO0/7wxqv2bBDIP5cmv/2ftj5foVmllHICX5A7giZcuVtfDAhBDSyRgQWstbaD4sHrh1QBtfU3wIwBAbDp6tVYMRt+sNiHSkJpQN9rELMYOq+bYSYnnazn4zjAGXHcixubyCZhFaR2hgAYikbLJidNKUW3S2ofr4IvdOxle/FkBtmgAAgBLmrhIxZIKsmD05IFlnSkl3cx75y2tZBVoC4dB9jgMyEfW7+yaYnAhRwvUhzSYWHUFTAutnbCzRLaVHscQTMA+eHmuBrt0ZJ22nq0aBg7cWAi2tiYoYqf0yv7zJiXdnzFEHPXwIAKwsQwBRYD753fcrSTpOA6Mk3aiXJYrXl7ecLmoZl4aBqACx7HjsW34vP+iTTn2DaUc1phAS3WHlLDMi3aNnSZjTGwaRB0bSs3W1XTFuk4GLlnHyn2z5K66Dt04Dc5uWtard+3k82ZQWA7BdjyUxbTveHzerQTyw0TLlbU5jAlv7zfM8+KsrGTlwdXAYNXw23CUTwf2HsZq27cHIBWXVVlP06zdJQOAx+cd5chY1wV5z1gvKxCia9GlNOD19RXTsmjjjZSsy2LBx8d37I8HjryhHtYpNZuWo4Giy7wgpgGIAcv1BYjJSnhXDJNpCdpc4ily3rXTrRjwqP89bPx2BNtQS9GSyLcff8C4LFqCCGBeZkgRLOuqmxSUvVxyxrdfvuGx70a3rhjGhHWdEcJqmn6DgbSlm5MBMJ06lmKv64q//OVfYS5ANfvMT27WbIQMSDJyVA9KcLne8L/8618sAdXrK1VQTSOQ3zvPC9blgsv1gpcXZYhdr1djtkXM4+g6b2NSgGMcR+iJYnXfse+qD7g9VJ+xdbF9eHdYB4SiNf94fcXLywt+/OEdr6+vuN1umObRgiL1Pdu24a9//1TA/PHA/eNuJfIPZAPSaq142PdOowK52j12xtvbK67XC95e3zGkAS8vF9xuOs+ncVQfUBXAOMqBX379wL4deBh4zNLRYYgKdF9vuuamxQ6RtDT+4/NTAb37Hd+/f1eG7r6DTRqu1wvmSVmTyVjlo5W3AwHzPHlAQgYcAd8hDg5Uce9qnRD1P2UfqZZeD+RpB9fiwBCBTV0PFnQdh4GxD/fVZKQqsH5g2zf/zGjjt227AychBC+NTCnpfRqoR8aVbdzql6xRSwzBAOIZCnBU83k7DjlwPO4Krpn+0zCoePo4qc7nPI6YRvU1MQ6eDHHf2Pbcic33ybQlO9SOq+VpH5imyYFJlpVLrTYObR8LCN4Jr5SCknUfJSDGBIX6gD1gyL23sTr8ESHGiP3IrunbDil13qQY1eeFpj0oPidg+491NDemoOEJHoS6bwi8Lk0sDmfKMeBtZd8hKZipmpqhYyHqXOkrKsjS5H0CLeFk13PO1cpqAqFuIB+G7u+qvdokHhISJLVyKO5RGns2tqoInPlHrV9POAFICBjnWaVAnOFUm65jTJa4mowMLMa1pgTqg5URq+CIMaJMIqCOaIm0g64W19WgTa0QXCOIYEWDPZlgWmmcJ3ihJf3owAr7HYFbLRcXT+QY9/I6noA3AlghmMh3K5HUeapXw/gQT7pGbXx1X2iJK+f47xLIoFfddx9kpvOUGPu8pf+wPwFb232i21hInj+4TtgzAPD1T0+8v2gk9bGyzxuy3aT/ZPt3CuMFq5zpkkjGqgRH/D6e7rUlmc3HNx02riECAT3zjv4GaMAGP5ProUprMJNNukUAZ7RWKcjU5AVzr4AEOBlCr4fJeQDYXBCinRqO4npkNeh7gj0Cso0pL8H3CT/HEmeWTPbPpfej+t7QEnq05xatWkTfV7/M42DDKy7NxDVOPxlD+46efcXr7plQ3NPsLj33E+i+0jRIazfnq3UVFp+j/Xr5Oh+53v06/GCkK7FEu18eivvstPno8j4diFRq02rl2q6lxZT0iZROaEz02u1f4tfpzQfACjg9fPGqgv7vpYGN3AP8WXV+UKwxEqDV+w561wa2FDsE0tviXmDAuAGDEcrUk1raoR99JpqkhwgPD6N/T4gNzOOe3eaiGAhaPd7u5be4fyO0OUt/+OQHSDSx8echjj6vzreFNs+4hjwf7gA7tw6Aepo3Aj/E06nR1hsPzTiWfnjDa7Pr4HxNpiXc7xv994sEfyZkjOu8sVkqbCraKigCtGcCXw0BEmUMba147CKcC4r59F6ZMUU0lidsD/Vy6g5n0EdInEavjVVT/M7QzxuCcR1G44e2dh9SGad14yLoxs/2ONE5JlwzsN6oEISvz/Q/Yf9DuuiScUcmCB12YsBnYAU3AKWYm6ONLYCgg0CgToNgTGNzRSKQGnwh1KplwPweThigBTc6WRogBHOGZLQAjXrPLlMpRH0ywtNPlgFBW8Xb/eEpgDJjHaloZ1Jqt8QAFaWP7fSbZWAxRu9yy+cUDAxr99lt3ra56WQPrk1Ta0WQxsTQQB3+HRRXjykaSBAMeBVfuKpfowkiorJWmnOtBsYaCBmKP0+yAl3rzk7mKPTZTjuZeIiV7HZAXW0BOZPafvOJBhQ7WwB0mtwo4GPfnyjknFGhTFDV3tIuyhWarGz7jhAHvL2943q94Xa74bJeQBAn7zt+/vvfFaA7WpdRal7Ns7LP3t7fENDKarZNdbY+Pz4xjhPWy8VKJIN3h/3lH39XJwBlpfaB8eVyxTjNuFyuWnKVFCiweNGbVhw5a/KdMx4P/b7HdlfWRa1aArwuGMYVy7riertiXlYs86zOVQR53/H57Rt+tVLivO9ekgjXIhEHUn766UeMo3XUFJYVV2OnJdxuFwfcFDSdMS8Lhkk7qwa77o/ffsN2106j2ToP73vGbKzCgITbyw0I1jQgRuyl4PL6oqW844g0zu5TBHYtR9H7eOwohzLK8mO3556R84YYdS6O04x1XVGLlpOO84qURhy7sjEUXNVS6ZoPPB6bduc9smmgJczLgtkaL3DDKqUgWYdjOTJCTMjbjnHSJiTDMKLWgo/vn9jzrow727jTMOCo1rzh24eygqq4zmMxZso4TkDQzUAbG0XUkk2Tq2JdFyzripeXN6zrisuqc2CZtYzbu9zauAyml0fwJR8HPqwBxOPxMG3GT/+7zsEWuI/jgMv1gn/64Se8vr4qK8862Y7GpqzW4OHz8xN//9mAwccD98879mOzbsJ670dWEGkYEz4/74AA4zTisq746f1dwbw3Led9eX3BPM9YlxXjMJpfVN+fd2X9bY8N22PD/fGAiKhO4DxiWWYsi84DZX6O1tVWtQv/+svfsT02/Prbb6qhaIdKy7Jgmif89PqT6Rrq+JM1CAGmSeeAghbip8nRdEuVcZZ+t/55KMaELx/lqaSZ+nf9HjykhGRMWPWtunTJpg3ctwI6UCM6KLI9thb0Vw0Mt33zROqwAH4YkvoPm/+qw1uwb5uChFbOy3+/XC5237BuyNlK4XfVMdx2TMuIMQQF8qxDeetimzxYzKVgLxukPtzvkF1C8C1YYsbr6k+t52XBOl/Mx662XQvGcfAgWpmTBghLa+DAvZBJT3E2GBnhjAcaI1/HugVr1BUmuDqNnB+pdb5GeJoLXIuuPWh7KIN2xpCBpbBCt/0srM9mEsoWtyBWNBkZJjYlqU/sXDKByOz0JI8HigDY9Zjfp/ICLSFjUsrr67vBiliiFYInlSz97tn41I3knt6zPvRiNZEgiMl5zUNOnesaf07T7GwFrgEyS6uIHbgpKCmV7D/GXJ0uojQmAWVbnuOWgITYdXhmssLkAUC0g6guQXEQTVoCoc/JpEXs3wjeRmdLwRM06b6JIDU/j2Nr3+QxrbQ3gxfsjAmP4xS8aclLAFx43lMxKHbYAWXdHNA9o5Ux98CBJ7yCBuYI/Ien17bL9Nc5/gN019MS7D75ZVLVDUlL1qRdc/tES/L9czQh9xJaaUkh1yg4FuH5evp1SRCuPT2x7yHDQ/wzCeKTjdTWwe+1zlwvsnIeaMdNfvfBcvVa7cCoYByiAn7m05KxbkSs/CwyxdG5wJI1diENwvymNfpzGYVuboh1p/bpJ2RqWjmf5zn6J/dPvdfaynYDARTOyTagVcQaK5BBK0bwiG0vdODBgIvUdL6qUK+wu040KSf9XLHfVft38Zge8nVuw6+fwJCuS51jz8+IudSzzFS/ptoe32YOJ1Fjn+rHu/+SBnj43LUZLv31CnXL21zl/sDAounjtd9zzmmOnfy56svsdbxliykg6qOqNeNkN1zuJ9X9fAAqUEBZizbPizNoxdcS11EAbD6zVBQI2hrGx4rr1dlf6A7rbP3aQ+oY4HydaAmxDU0MQUt+QwBK0510aSj6XsYM/KzOt9APscyVslzqt0hWqj638MXf+u+7eds6WPuUs3nXfIYfQHJ/i19Yc8K4QLQoSrpcvD7rPKK2XS34l7afqUGHbu716+BpPLp5m+wgjjv4U2VAbevPD0qKzXFnPnfPPTw/tyeTNp6Ieu+RMgixe4n5XvF53tYa569/JOM13jeefbfLGfThwH/S/gcw+AqGYVT2EgT1aN3rUoqIFdhzVqYOAATVgksIViMfnZIbAgysQ6cxQUAnIg5GGY+q66IJSgsY+npvJrjVAENI0z07qorphxStQ6R1dK0EZ2pX4tuhrg5jw0rlLABHN6HRnAWdYilHW2FVoF3Zmt4GF4xv+KSkipigaAswnAXppxGqURSHwevnG8OgIufSTvbMQbGzIYRJBMBFxeB1sG62KjxOYK+dvrtotgXfMUWIlfGwQy5Lo2FXr+Ok46EaiLYJxdRKkOm4bfargHU74eGmoWzLqCL1vIYYvcOjO6WqyVVluZxppPHUP6WI//Uv/xvWyyvSEJGzst5+/cc/8HjcFRys1UTTE6ZJ2SO32yumaQbEtKQg+Pj2HSEo40LLG1dM0+ib3ffv3/Dx8c03jWFIxkTRYGOyhgHjMHpjDoGWRJWqnXYFUCDsOLz88cgZ+67NA6IBodfrVcGdecXlsmJdL4iDlYjmjH3b8fP3f+Dz4zu2+6cCGVW7q5J2Po0j3t/fMS+rMe8U+EimCdiSG3iyl8ZBNYnMSc2zNVkIutHv2wN30/pjKXOwjSSmhOV2w0tMNsYGjqcB47LgcruBgPZ6uXmnNsASMLuvvG04ditJvj/8+ZB5NC0zrsuLdopdV5jDwTBMmMZZ97UgiIOVzNWCvG349ss3HEe2pgOC2+2G17dXANo1XGye0qGzBFVEG28IAtZ17dauaHfe7WFaicroq6VCasHH9+/4/FDga5wUIL7eXiBBtJQmDRjGdoiwLBdE67q8ritebi+Y5gXrotp7szWAIeONTFqux49dO9Vu++7da++fd9Od0znHRGswYPD2csX1esH7D+94f3/H+9u7skFNL/DICuL845df8PH9A58fH9i2Dff7A+U4cL/f7ZmWxkIOyl5clgUhBby9vuF6UW28dZnxcr3idrvq74YB46RsODIStm13PT7vaGvARooR8zTix59+wPWigOc4TSii64r6gNuW/RkIlOVErcj3n37UhgUx2fhWZ2LO0+T7yWDSEgw8UqSeSwMgWozVOtw6SOJlt4d37GS5LX1ZNFYsk9Vqz+Aoh+19TdJAQU/bd6oxUEV1KBkoBmOuaWmj+r0hDRYYBqwm1cDrPPKBKvp8IZqMpJicEch97SiHg3r3u3WhPg6Xjqi1Yl1e8f7TT6AgOlnrpWTU+mjJBVog3ZhNeNaSgrLLyFBls5oYqdPL4FcByJDaPi+i62vv9Pn60+IuVvPxZbynQJI8JY/w96hP8K7HsQN0PRjAExOPcQSklbhwb/SOv0I2gWgcZs8zWkzlf7e9YRi1KQ6genoxtk5/AWSUaolpjBGSmvwJr8XZo7XNV5fEEDt9ZrITAxgNRzuOp04ty/vITOXBBdmjvT4nEDqGCMz3tXI0NpzRKgTt4D5OEyDAshiABThLtxayWbPNMz14EM+RxcvP2EhAjNU3pOQNz4AGNqW4OUOmSkUogBjTPgpQgh0aIyIIS8ZaOSBzSEZNPeAVoiZ5QZi0BT8Qj0E1eMk0YFzn84tsA/DQukvi0ACCGDWB9tUVCEB0yZaI6vOFBtBxbbZEqWUwfczqIKInQfidNdDWvKNfI/xZPGko8Strd628BLSkk0kYkyumhCHouXx//R7PW5zMyyDg14C8VnZFmKQH+/oDbH4unwclKDi/3Ll0IEUD/cLTd/NQ4Sl5DgFRGjBSzCcUA++EZYtkgVuzIO67fF2NoYu9jJVcK2qKiKXA2sKAuqYE8fNRMY3NJ4WgQKGebcSnXGdI0V9XunEZosbz+3F4PqehZEAtB6ebH0JqXnc8AXBBAqocDqpo2RtzSQC2r9TQGhJxfamPIesNDrQcT80ONF4UNHYmE3rPe0Ibr/7AzlaVA11PoFL3Gv8eoJEwntaHNCDBGFE+730u8vX6S4I3gN5P/3kqJfUfldeq0Wc6q680nbcnGQq7D8YTR7a4mCBfrZ7Tcl4pIASI+WEeDOoc1ptS8ET8WnW5KyhLcIcAX60VqQpGi7Xsi63xfYQcFVUnCppuqZXqGkhF0pBru5tWfBqiMTQbYEXCTTQsww9z6GNBTfpgGnR0TRYD8LPsdy0nb68TrnEbc7iPhGMk/SFmA8Wae3wGMtvPtqDa+nEfLmAPBbJeUbko7Bo6UNGBdttj+MUN4G1//g7Agy83HYvO15II9R9ZMGceDJtR8K899wHGmiVmT/9Y2/wupe0P7mftOXw9IKrd9Xa3+PR3YisS4LqAsSsHZcxQURsT0daFNvDQsS3/M5Tolqrd+aRCwT1bGBq0VRV5NzF3NQ18oi36YUyYhxnbvnlgKRIA0zyqwsAA9nAUgKi1WgJuTD0LmktRKq4CPcYSM9Q2AJ7key19DK6/B1jSFUS76pDeGcMTeMhJqU6MJ85doiFcCwwgNGkiUAMEZ89pcNEC8mdqvrgjYULFSVfq4c9DRFDzoYlZp7WHfpFAnW0aBiDoNaggZqtx1xJaa0RijBGeSudDWUExBMQ02DjAE9W+HCbU2k73BVa+IlDyKazstzGddHNV5lDrzqPO78i5nZLUrjGKvcZLjUMradWNU08b876bfpI4WEhBbnaq/Lh/xy+/fcPjfse2PRQ8jMA8zXh5eTV2j7Kzjqxda3/++89IKWKcVLh/GEZc3l7dadZakLddy231YjEM2mUxGINwGFpHx3EarYvp4JsbgQmx0unHY8P98xOfdwVKyPhIKSnQYqXE62XFNC9+elaOgs/PT3z//h33+wf2rEBOOZSJSE2rcZrw8uMrlmXVDc5O1LZtRwza2VIbR+yYrBlGiMpiQeDJp5ZADUlLhY6c8du3X5H3Dce+WRfhjMnALNSKNA4GIqqW3TAMKFUwXyfcXl4wTJOVp0UvD2ejkbJnbSCQDwUpc8a+PfC4K4Nx2+643x+4vdzw07/8hGGccbletXzVAoN5niHQxiKQiFAEgort445tu+OxKbgwxITX93dd80xUrTtytHLbEPR5RxsXOu9hSCZVIA5sAMoael/eAQnI+4a9ZmNnabflUivW2wVvb+/2DJT2Hq3sE6KHENeXF/zLX/5iDL8RlysbP8yYhrE1a6ja+fTj41NBlrwb4HY3Vt6GPWu5OpNvsgZf394MxHtV1pyVvqY0WLfVjO8fd/z1bz/j8VCdRl1TWwNZjSl2WABfasUyL7hcL7gMA95/+BHTMGBZJlzWFdd18W7U0zxjHAZnd+v4Ztw37Qq75VYarMGWntRfX1Ysy4R1uWIeF2VTVy3z/fmX3/Dtt2/YrBuuAhithPZ6u5hGXPDyzWolrSlGB2yoUaRJMbVfdR4MDuwFC2ZbAihVlD1xNOYbu8n2AAejHzaN6NkbCihXbV5joME0jqim13ZYR2IvnZXWUCFEbdYhaF1seUizWFdl7XquwHbOqukmEGNCjS5FMQza2KKK+vjNQPVspdebde89juyAAw8kiumlfX48bP/TvY7NIsyFOsCnpWXq5yMEy6z+eTJ9yHHUgwjKS2hwxeCsdVUElA1GAKscBPSavAbfyyCbez8sKdUYo9jBlrKpCCKO4+DJuyd6GsMh74fPA0pdBNv32S0uERBO0f+doAAPn1ynz25TZR2Sa2jx9mNKlrAQPGxlxzE1hryuz4qjHu3QTFj62iUTlfOgdeXtEAd/XbS9hPOVifFhXc9ZPihQ5lwaBmfMBdNPImOmD67zUdyvDSm154zgCUwpxRi8u4Ia1KY0zd6eEVMdaBEb29RE1g2M5fvIGjmOA3vOmMapJadVXKeZz1eF45VNFADEYIy/CtTASg0Fhzl3IMZsjNolUhNOTQIoawIDvATw0ktdEwRTAKA1X3PQtQOKA18MaOyNllg+JS1m7XNbbM55G7oYlUlTf6DFuI3X+5TWESzja4SAenW/Kr4O/fKfwBBejJgPImMG3Xfbu55ibAcdYT/3wIxokqlrrbGgFYxpSTUZRQ1k7BlbDbQUwAESBzn4e/s70JgyPWBTu88SwGRX4IeKPBSQL38HrKTRwBf1H6ovS3Bbx1PXsq7HYPmSkhtGQPU4YY3zoGxAkaKSCkmrDqLlJCny3hX4IABPGadQO0AiavOE4yiQoPO0Iqj+GULrGm0JfC3Kzud+V3Jpc9SBmQY8tdLegBCqz4de0xNk/oTGViKTrZ8LnPNNh65fHNTVM73kGCGWyDOPaYQNzhP4ZHY8oVs/3G/7dcLKGQdN7D3co8TvvQHsnEts7NjKzvW7pDvMAlpuVaWxePGFaQppYAwBuLZAm5ZZnzPzOwh0gACd7QHCvLZf29Kej/BxV8v+gx04mFRWCroP7aU4w2uIEdGA6dDJfPk1d30BfHwdaGoNEWsVVBT3n9HINOCccWBNmk8MgU72GSASdsi277V5D6GubTe3bDqwuq/NIV5p23rpv6QYk5bAYHc9glbe2+ZuY+brulK5Lzxdgy8yW0vwuewzUdr68XnHSWqv56/8oAkwmQiLsfy1xnLtsJd2uS2ODjoNUKR4XOtLyK7E4xEASKFdtxHG+Nwaw7Sx8hhE9uuNgG4PrD7tcd21+ZuEz9H2aLs+j8EJUkvHTv8D9ocBPk1k9GQ2GW1VATzrDjiMSINp49WKIUXUoMFm34hgGAYrBxWMQ3I22kgNnMpTFgUB2XFQAUOxLj9aluKNMgzUiib6z2CjFu0CO1hgw1INDabhG0RDwmEn1XqiBXQLF3j6k00mBDphS6UYdXeSSOcZTGslAN4SOzYKcwhGVTZwkA6XejCDlbD4Yuc12cSuXcAkUr0klptNzoffo5bkGlovYh2LBwddGY1wQQZA7ycpK2+wxFssKaqhdd89rBy42GdyAxJ75rzIYqeMMcUGaFpicOTjSaiXAR8ZFnTATLz0vXrvtSjwjABIYcDZNCH//te/Ys8VLy83vL2/4nq9qfaTbVrb44Hfftu0Q+2ojTYul9V1mrTkbFM2WogYpxHTOAFT2wSmabJOmSOGaTQmnHVgFE08ctbOjtv2wPbYcBwF989P073L1mQjYJpG/PTTT1iXFevlguWyavlrTAoE3j/x8fEP3D8+sN21vHLfdwBNs43lmtP8hsv12kT17XmWWhFFk7N5mlFqwX4cuN1u7vxLrRhCwjSvGEcFG/dtw+NTdfTyrsBONaBiGJU5Ng6zloQNA9ZVSwqrqA6Wgv4DbpcbpmW2AwNlZeT8wFEU1DusuUTJBw4DjtJg3RkheHl7xbyuKLkYeBhRoU0pjlIxzvrZKSWECJR8GAMwY3toI4cQI5bLgh9ftFQ6CLzMvUIwT9rlNwS0DqXmz1gCoAGAJrD7Y3MQpvlEQd0ytsduumeqDaWlozPW663rcmpaUEWcmUI6+u32gn9OU0vuLWD7/H7Hr/uvyHnH9tAOs9uu5bWP7YFjzx4wktl3uay4/fiOt7dX/PD+A15eX3G9XTFNE0JMWrq6Z/z27YHPf/s77tShe6h2HsEalmxO4+QgzfsP741dMw54e33Fjz/+iHmekfOO61WbbEyTgTSxSQbs247v3z+wb1mB4g4ESylgmie8vb4qM3OaMVhpbN51TX377Rv+7fNv2B9abrxtyloNAV6aP426TtmdeDLgPUYtCxhMQ/KJsRJg8/m5oUCMkyd1BGaq6cYcpuGloFptul5fggLV8xw8Sday8Iqam1YKy3zjONjeUlxE/ciqwXjYYY1tb0ixB/WUGRFTwmWeXffoOA7d96oC0sruavpCg5XML4uWetKH7QbkbfuuoF7OKKLJJqKuc92HC2qpuBtTOo0Dhm3T/diC3n0n26oA0O8cUsI4TbiuNx2bEDAN5kuhgFMPPHCMgGCMyN3BHUjTsAp26EUNJY9dLXbRstqm4TTaWqMGoR5+JX9+VQT7XiBy+EEcAX8CUTztTylZZ/rgzzeYHwYEx9Y12YLNt3HAaI2WWP6esx7YUB9nMCZtv+cOGFDQZASaXykdUIGmE9XFQiGwbBbWTEkj1mEYPUlhkkO90FKq6YAW7Htu1+KdXMmmDN4xXpN+eOk6x5SAYRVj5lcDVUSbeBUDC7m+yFbS0lsdTk9PQ9d1NAQkiwUbAyk0XSqWndcW9CsAmTBNxjSttZU/BvgBVggKhGicYsmLxbSJEjXCEi023jD9saqMqR7c6mNOTeCs6ZmIx2o1tKYdFKzvSxqPSkAkOOjYx7Ge1ASy+OAJW0wt4fbXd7Fnn7D9R40rgvDg2nyjXYeDE1/ukawjWg8i8ACbCSXH1kG32kA2Bq4OEqL9nddTzV9zzfOzvFzR41V5uqam89gd3vh/TBYrL8DBC4Su5EtaZQ4PLxRYsUqgWp80zOwL9WodsEADnuxAUdl5xWP4GIAisCYyAKRCYkDO1phGEh7HgVgpH6Hgx+4SD7C5p/vJkBKqFD3Yt3kco7JWIroyQhHEKIixYyTb8+QBhYMOomB7hDxpGqp2N9r7g94Myxs9n2mzxeaBzSV7Sp7H2GtrKS1/0hc+g8ZAm6ddWSHApfCc2PNeXCg/9Dlj8NcjKITR5jxTV3sNCSQO7okCWbwHDwK6SxJBxVdGloEZolxK/Y7mewmkcY5yHCHWJMCev1Q409EBDDSGHq8RALwhIxpTL4Wmfc/9TYFD8Wul/qiODXNhY0sHjasZe1Frr99bpQpgcZVqnqpvDCha9SOM0VqX6OYrQyMUcYAQfO0QpPa1KQ0c59yhZBbHR6VaOg+qGNjzIQvnPd8HdAcg9qYQ/D08sGFs4+uSa0KAMLT5IdyHbLzob3tfFro5SgAU9Hddnv405zpMgLgCq3D6ueD+qbbvDuiBLCUTBMZHxDQCnvYQxl5P68H3xu5wxpYdS7v7dUk/wWXW9gL9uSeUKURkPrcrN/Y4HfpsW9zeDhcdiO6M64xP4PlZ2f8YR/3+7f+/7Y+X6Iqe9oYQIFHQ6/oEO8HJedcAzQLnaJv8PE7aGINryEC8Uqsi7jFCSkWVoIygYINnC5zBWRAGiG1e6OSzE4iDXaQqEqxUylZacmS+PWgKy1IXz7VFYkA76YoObrOEpPBExJ+OnfYXMv1YXlD95MiDNgsg1Xnr51LnCSEgl8OceNOgy0e2clNlZCQ76UYw/Rf7RgHayYnVzTsQQacNdXSZ95d4StWduFgprm8AtrmK2Ikk9f1M+427lXeFtcCeJb21VKQQTEtsRDnEN8L0FGQrAHyYBtFgaLeX7giclcdNNUCTnafN5DA9n5yfnOJf/vUviHH0Mr6Sd+StKqARNIA5alWG1b65J5hMNH9eFn1+UQVdh2HEME5YLqN2HZ2axlIf9JExpA0glOm0Pe5WtniAyerlcsHt9oLLVdlEl8vFy/+0eccD//jb33G/fygT6/6JvNl1iiZw87Tgcr2q/t56ARwsVe1MEUtuoQ6q1MM36BhHrJerir0PybWd6KDztuPj8Ylj37Fvd+R9QzAwMYSIy/WCadQySJ7arZfVtEUiXt9/xDBOChoYSxT2/iOrHuC+PZy1V/OBvD2Q825zJeH28orldgOsHIoC1OMcLRnWpHBeVw8YFEDYsDlzsyClAfO84Pb6imEaEaxUnYEyGU6zAyEVh2lvlKLgxjRpA4Ft262kUt+35w0hDJimCft9syYHwDgOyuKIqjl6e33FvMyWbPfAtzIkU2gCrikGiOia+/j2oaCasfIU0NNmIvuunYirBR/jqA1bbi83vLy84PXtDa+vb/jhXZvKkAGV84E9H/j5H7/i8bjj4/sHfvvtm3/mvm3mR01aQWDM64p1WfH+pp+3zgvGccTb25t3TR2HAeOQMKQB67p4mU3OGftjw+fHXZ9hUfYYQZkYEkYrM/xhfcO8zNYEwHRGj4rffv2O/diV9fqw67QxmifVbHz/8R2XdbXDqeSg3jAOIJjVdPWqd9vlAdZgDT5Sx/ABgm/4pTbgxJthVC0DLId2daW+F0HBwcAZ+go9zKnYH7vNh6bLGhAQh2SlVbo/tEYGVsoaWZ47cEtCOQ7fJ4dBG2g8C2wL9rw5s53lnfQVzsiBlp7ko2DP2iCIDTNKaeLR06Sdxo9aIFD90YM6fEXZfdRl+/j8UIaSXew0DViXBdNqmpGma0j2cwC7FKNr1mOsFDvMYExBIIj+u/r6aUG26hTqzxz3lPQwYlkWDfoM1ON7+NxyKSiP3cae5V/VqxrYkIJzpc/j8qHjW0w+QwQGWGqixGsQ0TiIe3uIAVPSDr/J9hgCnYAyXSoKmlxI8TJiJqbuLwGEoD8fRdcbg3ivcEgRU5qcieM6Sca4263Zh+7zTSuMoEQclF0RQzJZieQsjxB073R9HcaGaIwF18UDWtMXdnKvB0SCjyPjQeGYAT6PGVc4W0OYw4n7+ioVJZukiF1jdGDctKIqG1IpQzkuRxfbsYqjIAobFFhVgzB2LD6OCYlpCwBlXCFoDAxwrIwpbBUSKudSnUH8BLQxcagN7uhZFQ1AswTTY5PfsxGeABVpySxjZdjcQfuxvQZtDIOvSOdIdQBJl3Q5SMA4si//RZectvd+1dN7ygkIvJHl2N+bvb50ZVvgXOi+sSWK8PzC50wHAPBdziSFPAETXAtkiLApXzSGENepxszSyskEHTOl75Ztc7G7p2rSPXxPqIyLo0mxFGd9a1yjIHw+smn8FkiyZ1YqSgiW/AYHRIQJeFHWnWus+7ywUbZ9gElr8LmkI65AYQN4EDQ+C/4n2afhaU4RFHyez+FpDflndvMqhOa7ewtffucgFzylBJlsv3vv1/Xin9mupn1Hl6e26fX0uvbqNtf6ecPrEREtTRdpcwLmzLpraoy+VqJIRhrj+B4AcaC8Wy/SvYYvfWqgQQBE2trpy5Ad+LAYg9fXa+wRKKyiJbcQv1E7QBEjoNiBWWiMs2yyTVIKpqBkosB5aq81fEh9r2nJIwYEI6GkEJBiY+ZxTrf52u7dDwrCF8DV1qJKkrExFZw8xHlx1MN9Yz9PowHzzKF9notAwX5+jIDsQn6vHoB1jUhtPMjMJaP/yb7sfdwbdfx5GMl7F1+HxGJ8ulvYwZ+bJqVee0W/z3SzPdgxRuFg2zqmr+su1TvN20VTy7Udwugg+b+jj9Hgn895XLq9UdrltK0Fdjn0wRwji30YN/M4uV8nzpSljw7dOuj+rQ1D2ze4l/xR+8MAX4oRaVAAJu+7B0OGL2syZEGtagYFK80SFw8l04v0Uy4sQE8LY1AKZSkG7kjToGBpawzBQSs6C74mxagC8iFpEBKgdOQhqeAqTESVpxehMRxgC0JBkK7phQ1ackp78YUZAvy+deOOnfMj0iw4rPMLxVbRfXbwiUyWWh/kZl+ou5VMhRCx58OeebFTOl2AdESlVAUTrDxmnCYtjY52gmgi/WoKTBYb42LC8TkfqhM3jhBvoNECP2VMmoMQTUxUgzEZrd5OLoSlTdVKPxtAx3Lgw0o/CWZES1wEmsjqySGsfE5LfkMMwAGNo6k5YRsQk4lhtHJF0STw+/fvCFHLeIekLJ3DytG4MLXDqJbjjewYaewydslc1wXDOKoOV0oOPtaiGlrb46HlinvG/aGAkv7ugSNrYjgMCeu6ajfQ201Lfy8Xu64BpVbc7w/s22+qFfbQ//ZdGWAMlLQD6AuWecLL7QVA0NLgCkRLNI9MwfLdgJQDl8sV8zgjAloWOWnyKFVQywEpgu3I1nwge+dhBdGrdd1Uf7BcLkjDqAllUlbj9faCNE4YDDwFNJlUXUIouFqKglM5Iz92Wz+H3aeCVimpvtLt9R3zesWYtFPxvh3Ih3bunS8LIHot0XQcct6w76b9tu8oUjFNqtM1TjNgzFaWsUGUORagzTbINNNrNwDe4pB5mjFNM0QU9Nh2nT+qb1iwXC6Yxhm/ffsNKSa8vr1jGgcICkIaNCMLWj6YTRetFgUTkZrWpZa2MeHREum//fXf8V/+r/+qQfqWIUZVV53HAeM04vXtBdeXF7y9vuHt7Qe8vb5ivazWXEA3u2174B//7b/jfv/E5+en6djdWwm0le6uy6xrMkRcLlcFdWPE+/u7slXnBUDA6+sL5nHCy8tNy9xNSiGl5Cep+77jl19+w7ZvEANDCdLHpA1OpnnGPE9Y1wWXVUvI62Gl6x8bvuVvuG+bdwzet133jqialtfbTd+/zBisAQZLM8nwme07UowKRIABjYKWaTAwz5hW1NBj8OnAQG1dC3lI48BEt2krQ3BACJM33GBQzAYaPKkudqClTCl9Nnvekc1v9FEbNd4YkDDor6UgWdntOI7O3iulQpx9Gg2MGpRpGU2zzpLvWjUpVOA3Yy8HHgbqsbwsBNPetOA27wcQxDsNE/TM+cA8T7hebxAy01LEOs9Ylsm+35JDHjiJtPuzn+u+e+BUXAMPus9XAUsuUxo8KAym03LkYsC5zmUt603GFIwOaHK/rbXiyAV5z7qnVivbC4E9EZz1QhCQrEdN3A9PaAKCNS1pe9UwaHdadmLX+WLdz0PQKgfbV2ExFpl0ZNbt++5MYSZYbFTFwNz1CmFi6B4Eqz7WPM2eLLimFKy5RVX/TBBMD3mVBUrWULDSyMHmmYge/m7bhjQMEFHgdxgGTxi0S7U1WhOypbX0v1YFw9g9l4lqM0sKFAdoB832nMi+pPVMFb0POKPWlrR9h5bsi/nHVkKv2pXUlTyMjboMwfbAaGwli4Ngki8Wy9UoSDANaJvbHL+vLCOBuH6odoE2sKVb9kEseQ1MygU4RGMTwgEdQPD01DoQg/FfA2FatqPAJVSjjzlnkPb5XSoWYMl6Bx4iNIBEMS9N+iA9kNYSspagdtfevc4Pn7vXPFsbXybQZFDwWsX2oK+gTQ94ePJr3/msKSUOPnkibJI8Lp/TAYfPZY/NXxDU4zW3/MZmAN9fGlvErwnwtUiwj+uDsgz5ODwvEtGGBDyIz4ce4m27xilincopK8H/goENycAOBP47rJRd/x64Dum7mQ2GxtJhvqNzowdvBeg0KaM95+iNWeA5YlcEqLuTT/Pg88511XuILhTP4gnYErxhCSVj00CMycvEu/knDTDRTyfjEp4n8lr70kzOm/Z3eM6nc6xL+r/4OGfb2XX3hyNfP8/XTK3+rNrnhU7br4Ee3hHXwbcG1PGe7O1gl+aeuQaw6aM+EYLmzl4FD0f0JzL4NP0s7iuKASS6n+s8YXURfcdhDZFao0ge8khjTBtQjEDmnl++/0X0hZY7295Yi+WqvWSUlocHRAUCSdiwHB4ilOts84/jBUD4GlFCHElKJJr0IK3GPMk2IrgvdhCLYFBoa51V6LWWti/YZ3Od9B19G/BNjxisuSjgcBPXWm1aoL0/0r8/r0bY3EyU1pI23v38JG7RpBladZ2I7mluv1s/NibBOu6GAHREr8YotbjQwMZoEhz8vh4YbWsSdt3dYRmv2+aZOMsQ/hlPAB2aH3SQ1vZrAfcEqzBgDFJ1/nCPOjrw8T9rfxjgqyJ2IqxIebG251IVHKJeUJvseoPJyhvDkHxCJytzckDH69afT+8QbNJIC05cuy1q1zKWAA3TaCi0Tvwh6URgSXGwB+qjakBQtkSWwQfb1H8NehtllEEA3b2ttmAMxxgVIIE4oCZowpxi96KngsHLZSiGWmsTTKe+UwMBAVNa1ZP3GLvTyOITq0hF3Te/POoGqS6TuGh0AFANLAVagMb7L8eBaRiw7btrUWl32ugltbogleERU0Q+VBtRmXjZqbopqr4Tkw9SoAHBOI26CZg+UQwRxcoVVO9PQVQtNVZmCgHMIVnJN3QxHsfhJXRVxMEtEQU9Qxo9oX48NgiANKrQ//V6gbdjF0GIA2JK2hV3mjHNkwXSuoEoy0zLdrfHA58fH9j3Hbt1HhVocpBLwTjOWFdljN1uViY4TRjHyQONfdvw7ddfFZTK2TT0DivjzUDQsXt9e8Pb6xtSTFjWFYOV3dai4IWIIG/GZorKpBlH7Vj59nbBME7a4TVY4FCrAo+Hllc9Pj5Ri4qS7/uGKmJAj3WDnGYMU8K0zJAKTMuC9XIBEDGMI6Z5sYYIumCOnDW4q4K8673lXUuT87arf4AC2sXW3+32gmH8AeOszyemAY/Hjo/8wDIvmJcF1/kF4zDY9R/4/P6B+8cnSs4611LCZCy9AAU8NThQtmccBu1sGeyEc5l9fbEzpvqEgHxU3D8ext5UX7BcFvUJEZiGEfM8GqCpa+Of/umfwHM0ZdwOfhjA+Z5S8uTs6VTIklue6h9Hwb5v+O3XX/GPn/9meo4TrpdXvL6+4vZyw+vbGy7XC263m+oMhoiSC7Ztw6///u/YHhs+PlUvj+wqft+RM2rV8vhlWTBPOl+vl6uz8N5/eMdg+nSXy4oYonY4niYDVVSmIB8ZHx+fzsRlebtKEGhnz3XRpjDjNOJyveJyuRiTVtlN98cdv/6q3XC1gYeCtT2zbZomvLxcrTvwrACmbeJSm1baMmsXZt2wxcEdsr1SUnC0lbYGLyli11Am/Ax2AYr1W5myjRdLpwfq9Zm2HDX2uE4peJ6sfDyl5OX1IhXHUZGtszA7iksHMll+pHPFNG28ZHUcEdDKVAUW8FiwOY0Tqii4pCXkwdmA+75pSXQ+XHbhyAf2vCMkY+qNehhwmL/IR/XO40cpfl0pRkzjiHE4rDw5I+eC98sFl+vNZDCUrZlC8v2U/z+OA9lKM1sy0YJ27cZnXQ59DwNK2X0Nkuk2TcoMZBk22VQArBv34QkEnyn3HWovDmnQuTMMWspZq69jZce0RMuTPiv5HofBGIgaYLJ7LUGxaIeT3BMZsJejNfMRA55a0Nw/Ddu/Y3CGOkEIQPeNKY7WobIF8vQ1D+u+XKzkmwlz7ZNtWxcBAcM4eKMrvY+KaZpRpeicvgzeYINjwQOLrewOINdaGnukNmCCayyl6Hw3hKblCF5LaKUyBNhVpkR9t0uAWELaGCbw+3wG54vPY64BApGuMwVBQPKk1bWvAMiQkJyjp5lmBSsVWvLLMXdGsOgaFTCJ69gkgTHmc1dPn8cOitm8ILDCcQNMu0p/VyEI9jlfwbJgQA4Q0HDSYGx+JvltrTVjMgVL3NvM/B1gx8SNu6MQtGFMze9pYBt8vf7+elvSyN02+B7x9N02R3pm8u+sA4S8+a/leEWqs6j6ceec7YFlfj9JEAQHHMwLHQhYn/XO/LpFnFBQu3Whv2/3JhDs7DYNPefu57U24cvItdh1MPGuxuxSmEQbapDRFHFYvuMl8/y7lT+yY7OzfplY22OMJDSADPPG7vORJugQ4/OcDQ38JYmAe/JXwAL9633Zdd9j+4M2CCRDpxEK+kMy7v8+B+25V1uLLAW323Kg3AEx/lNtrCz6HK4RLiEHerhwOjCFoAMPE8WulwdFAAFjrVbQ56+5dvHPCQhBZUL6Z8Rx13lVveIpsBqvUjNegEpAssWlziBFAEIDMXgNKnNl426xBeep+j3bD0yShWNRRbCZtANnSM4Z7l3t2ZHZV2rFkCq2rGXmvkeJdBrOBO2iNc+kI9PP5B7A+Vilohag1IAAq7gwf6HxpDWlCvS/DfihbyLoRGZa8zcCVPj9a4wQES3XdckIIcu1rQcQT+nmG/XqNBYU4lYWb9qz5rhzHSK0GOOpDNgXZHPF/ifnbwMdOUScw/2a+boOJTRQlePKOcHYuH9f+FLzWp7WVvu+ViIdudBNG5q5E3ytc59wCQP4H3afbd/1VVi/+AYyKKvNZXtmTVOS8+C5hBfmI4PA5pJ+N7V8Gbv+EfvDAJ9q/ahp8KQOd0yDIrgMvqx08yiqXQVObInGECPCqiAX2X79adYwaHMCYW1/UAdSqvgJdTSWlgYjosyAoAwgMi5CMICIKD3/HpSNplGbIJhIeTmyn6b7qR27yxjQ2CPj1RxZT+EUP7XQjpuDNaQgTVcEqIc6yTQMOtBW9pKSBvl7zq7XpOVDxZyo3quyDJWVBugkGoekoOswaPllLZ4Y1nqg2LXX2oA0iDF/htE2CW0GEAAV+4beI0W5a2jOqj/NoTh2tPIibexwYBgHf47ZmjyIlavF/jTbAhFN0JPfL8DmH8GSYXMi4+DfX0vFlh9+yjKMyiSrUjHG0UuaEQIe2wP3x3ekpMDO9XLF5XrBMA2KsNeKZZms9HZQfS9qCVaWX2bkXRk1n5+f2LcNeVctt7zbfdu1TMuEH378Ect6xXohiDEa1bwqKPj5Kx6fdxzHbvp+WsqWc8Y0UQfwgh9++EFL7AYFhKhv5uuzFIQU8e3bN8zzjBATrsuKcR4RTAw+Z+tCJoKy7wCUrbXdDdDL2hxDJ1XF/fOO5XrB2/s7AF0zKhIacHt9w3K5kAyLaZqRRtWLI/vs2JX9d5BpYkDPYc8v7zuQIoIE3F5esFxXKysOOHLWEtCqJfTzMOD6tlqXbp0Ped/x+dt3PO7Ug8vaoXe54vL6oiWDoZXDBSuLlCpIYwJCxOP+sDL3CMSAcUgeOOVjw+PjDpGAbXvg4/uHBULA69ubNp3IpqmWBNfbDaqLZs1ngjYf2m0851U1FNmROqWk93qwpPNw/TaW+wmqJ5z7ceDl5QX/+//xf+L17Q232w2rdXBOw4By6PP9t//+N+TjwP2uzDwCzrrubU1ZIDEY0DUvM9b1imEYsa5auvv+9o7b7abdoqf5S0MDC96k4tPAvHwoc+vj8wMwACmEgHVZVEdyXfH6osD2NE6Y50nZYVm72v7yy2+mTblBRJsLbPuuIK4IpmnEP//4z1jXBTkfGIcB8zSqtuKhz4xaZKOxd5Ppl7JMLwzBWVczSxx4JBoaq6hK1i615kvY0a3UYiUGyohgV8vLsqJph+pnHrk1UGEZKcc1meZsOSo2a9CjbFvq5LEZkc2HYBISDEgN8AmR4KQxEcnqETKZTSMnERSYPMMgeJePouXSOZvO6A6yh2rRfWqOswZoAxwI2bbNGns8dx/OhzL5aiHgAt+nUmonoBZ5QcAu6sFBI95HCNEBB8/YwMDVgl9LavTQUMuM06g+cjA/yUC3WLf4YrqDGvS2IJpl3Cq3ELxUk8885wOPbQebnrDDt3eprtWaMenhEOcug1cm0Ix3Bvt3AoUOFlr5K5N9AE/BegA7Hrbf89rT1EqEgQYYKCvx4Sw018CzWEznvUmiWBfYIQxWNt80ctg5exhGsLGGlsMJpA6gtm+t6hsby8jipUJmDXOtYHENpdJNMzUwiTRGkAFCzraD6PyW1qWOwFSp0nT0qrhcSi1Wvuxl9MUZt2TuNeCFh74GWKSoMab0h714Ku/ymR0aUME4p4YGuLrEiAGp1Ch28AV8vyUJ9j1cG1w/DtJ1iVYDu5//bDhp+JLUtfXZ/uyAri/3xWfTfOfz9eh8Nj2s0INdlui0vPQpQXawsqVPdg3Rf6ZvA6it2WL0do/KKAp+t40FSn0qZ2PwwMj8KQxU8YS8c1XuW8FbDj6WCKlj3DWGk+/zgD8DaR/ggAm7pntZv3QkA2nsFC31PZxF5cwi9KW/qsWXs7JiOaezzfvDWNV5qribJEQ7EMBT9RRCA/4A6pjBWX8hqJQIQTqBlfd2e51+bmnlbqGBheB8LbXFFbY/cVtGNZCGJRQRfnjHZ+hgB+D7sK8bA4VKzgCUnUVAgK9rBI5uLUs7aOW1tokbTJqq6Z9DvoDGVWWnSJzg+mnEiNjAr0q2dqsS41rsGyL20kTO6vsKaPvcaMxX3V8acNxrk8PAl2ogcbCDM66F/jnxefefr0xmHp7r/srcvVgH52pONJuM1pFLI4mEfm4XXbu2J3GP47UyltO1GCARHs/oNZnfZndmW/MK8NlemYwcZDgEBlbWweOLfo0eBkDV43Bf63PfqjyCzfvga8R8tW0SvE8x39TPUwJLDehXgDKIaaSHr3qBRoqy+fqEhwV/yZPvpp8D4ACYlyT1sZTP0wA/avV9hCXC7TCnnxMOpqEd3BCUl2DNTv2aNa+HyPO9ibSus939dpuXFWrw+wJgQCzskESvs/tIY8yF/rmA4+Kj3WIc+13PDvxqvhuR6Bo4//RaC5l7Io001COLNuEo8fFH7Y+X6KaoKDn0BJ+Bu0hFRcRgpweH6OSstSKFqBRVc2gUdw9G9w8xGZtGv4OnublakFkrigF2CCboGgdlwxUFSQrslNc06ggYAhYoVXHtJDoJsun0R7GmCcEXmy5WC47N0XHys/sef6fdfFMD76Qx7shCIMIs5odCCKr3djQBZEC0xAnwssGUknXqNEdp2ndJ9J6jBcjelTboMzz2o4n7l9JOHmxzEGlaP9VYLCxTZKBdSgWkIljpHAj2WQLF6wpBGVqChphrV84GIsAcVDFReL32Tl/RTlV3P72Bl8+yYQdPULQ8NUCiivcf+bAkI6pwZ2mff+SsjVxsM1rXK643bWRAkKNUQZKAdV1Na2uwEpnawLY9Y9sUxHs8tJnFkbOXMg5DxLwsWK9XLPOC2/WmwOE4evnXvmd8fv+O3w5tgsAuvtudwIsugvWy4vX1FZfbTUGzmLyV+ziO2kXatBUhgu2xWYfAiGWZ8fb+A1jKDBFraFOVii4V9+8fqne3PVAOLZVENSAql6YrOC/4l39dUUPAME4YxhGZ4xMj5stVmYDjaCxaZSZlK2XaHhvkOPC4f+i452xrScH5eVlxe3/HNM9IUTeznA9j5CRMk7LjllUT9DQkSBHcP5UpuT1Uqy8OEfM8Y7ncLOjUjYONAbZtQy0F6+2KAODbt28Y0oDb/OIB9L5nDCliiNESvh3fvn2HiOD6ckMMwBoXbxowz5NuAKYBNk2zgRStW2bOh4nBq38YxxHDqExVntYftuayCdQzadJGO+yMp75GGXsz/ulf/hV1WFFKwePzge+/fse278glY99Ufy+bThpEnzs7bS7zbMyygGVZ8dOPP6pOnjWMeX17xTxqp+hhGKwZipYP11rw8aGlseXQMh8G48UanwxJ1+GyLLheLvrf7YZ1WTCaOH8pB+73DR8frdy8iuDxUAkBln6Pxub74f0NL7cXjHZYsMwzUlA9slIKhjQAQZAmZT+loXVT5/6/rIv7pD75ZQBfcukYEV3nVqEuoiZ+5ThMKL0aw3F1MJh7AZmKXM+6dyaEUbtTb9uGLWfTWgyerDOYYGmmgmY7gMbagShTPo6xdYeH7q/7tlmQLwY4tBJcEAOoKlR9ZGUV5z1bx1st3QK0w/Q0Lf4cYlT/XkWwbeprdgPhhnHAlJQxTP29euhhmjb7SK00BQZm3h9YLhdlkxvoCYsj2GCKpa8axB4osH+PyQPVaRyRj4plmX3/T6mdrAP6bL0DbSktkLN1TyZnQGvCwHFjfFPKQ9ksR7aYJVrHRNg+peuE8Q0Tk3YAZQeSPACUlmTlPTfgq4qvpydgxmKFPnFjfJMQfL8iW4BA3VEKjscd5dCEQTtpNmYXpVSqWOWEaOwQ7XnwMHVejKFLMNz2/1oqUoKDkbVkO4xpnZwb86ADZoI9awMAYlDdoNCtSWdqxj5gfu4MSqYl/53rVZNENt1o5fPKJtbnQMBD0LpwstupJjTUIRREO5gWoR4UVAaialdslo+y+ViMEblmVDI/e1DLwCuWOep36XiIEKi1pNPngF1TDO3vgc8K+mQdFNGYU0EU+O97XwTY57uWurTv4gsCGXviCZgnU/ZRuo8VSGkML4FAOkaqXkMHViUDaaUxVLi/NUDN1o0dgjbAi0nqE574BO4pGERQtrFNPImzhM5LaqUBQJ7K1fqUjHEu8vr4zJpGd5t7/l28VvoVG2DOyWr7Cb9PRGVpNHFtPsg1Vt13m+6o6JX1ABQrrIodRNeqWmWlVmQ7LDiKMqn1wPCAGPgSouUSEIQKk+vRBogIASGRVaxPdIgJ6PxZNN10PUiKDlhHS7RFqmtJB8CaHza9V/p+sqWq7bsxRZdV4L1yPrjUDwEEY9bFTraCMiOAgjBHBVS6qQFpAtiekRr4RrDMfBIBWgfHANc+j5QEEPHSUlb5SIA3ONT4IzizEvIFmPY5j44RJ+YX4pNMgVTVrWuMPIC6ET144fls8JXd+RCOjXQl3wR5bF2FgJD0XrmGuJZ7/657p40rgRTLSbmH8TCYz3EYud8Gk2pRv6+SRy3P5gFfABtZWkWgPXNYvvkU1zkbVNnTUlWTv1huj8KmjwZGp4hksh2h/87QWKD0hWIPkc+dkhV0njEoUzAYXkGNSTb4hPtm+mc6Ls61TuOZ42H7n7PLRHQKmxvh+PZ7p88VEQMe7XAY8iS9APfz6hcJ9HMu9vfVzx9ebwzRrzN0tdG/Pywpze/3+3vt9h/OFRFIgj8Y998wEFRs/cQ2Pi4vIqKEptIk47g3EazkM/RtxJ+fPnU9WGajuerPjj7f9Yil5Wzo7uvp84U+ytiDaAfcYj7DG/T8AfvDAF9rIAFIITVS4MiWiCd4KmKZ/GSVZUq1FpSiyDpPa0qt2pEVMGDNAkxj45SDG2CyznFNTFxEtWx00yhtgnHxxOCBXH8Sw5Nkgo8tIAlWutJOOTwGihzsjqppJhBP7oMFjHxeMQbrUKg/c+PCYZPF9Pny0Uov6OgAuz4LLKktl+VwJw9hlzktHxjG5CcJQKO3MgFl4NWXw9IJIgZj9JC1Z9qKklCKgRdBEJ3dUTw4ISjG9a9J3mGdbaMnP4OdzMO+M5tIvIK34Wmh6kcF28ArjmpMFvOKOe9IacRgDv2xPSyYGN3xpki2owY/EgTLumJdFysfGxxNP44DeT8MoHp4g4GHdSVFaAnMsix4e3vT7rbzjGVdMRuAQmB3u3/imzV1yNZxEqJB1ePx0ECiFFxfXrEsV9XiS9pYoNiJ4sAENGoTiG3bTLdEk4p5nj14nqbJmEbqkqpUbJ8P7Xh67E27shTrEppQJQBpQEojpnWw+7ggpUHZnDEhFy0NvL1eMM+LgodBk6Xtrkn/Ydpcj/vd16yUooLkKWK9vWCaZmtaYXNOBPvjgV0y5nnBertq4wMJngw97nc87q0hiUD1ni63qwI3FijeP+7Ie8ayLgqMJjbbuPjcKuXAza4Dpqs3z1omzcYeeoKoie1gjLUQACkByzy7jgJF37VDsIKRh7FVptEELoLgMq1YZgVMjkrg77Bg1RJ01x0rYKnPYayq6/UGJNsMjgM///wz/u//+v9YU43NOhdrwM4NTbux6hqZJgXs3t7f8Je//KuV306mQzcjgg0V6KcEj21D/v7dTxNLPqCgacLHx4cHg8MwYJlnXK8X/Pjjj7jdbgrA2Zgwkfj27QPsHqt6lJsHgvueEVLAOE64Xi+4LAvmef5d0wuCyDnvKKJd25dFn3t/1qcArK7DZPtR30CosaT0YIduvD+JZNmtPk/1V2y+QECITYS0AYCCBywdIZOZ5JZsoua69nR8x8lKJSPBitJ0LmsDesZR2cZ9MM8k8blcMxhjjGBXA6yO48BR2SBDG5mw/FeTLAVlee/5OJSNbM+pFJb4aMK1WqmpzrvirDv17RF2poJ93/VQ5P7QRNPYgWu+It7vHkhRIsPFlkU7bMP26DQOxjQfvJxdO9uOBk4py4GsHSZ7Cpa0AHtMw5NuIROVXA7ItvmBm0uJpKElrbF1BWYyqnGNhmyMD0oh84Zgix6gkDWme64F8FJ9jukZZuvqBsA6KQuWedGEm1qBXcKWj4w9F0942WCHh5sMrEJQAIEJOEIry05RGXvzsniSPduhme7TBBAOVAr3V+rKdEwQaevIBcMD7KA3tjI8Jk+uVWQZhyUUTDjK8UWHzICM+rQOxP9jcxuCGj2QV600h2uIWsv0wzEkm+MBZKQ6qFPhpcuZXXuX5DFTtATWNRwFCv6FoE3k/MYIWhqzBwRzjY0oYo3kVHfPgafAZ6sxt+bzllSQvsFDc4uN+qRewZngPqVIhZTGlBJjbfKrAHh30uZ3pFs3LblrGAUP7aNPYSY6QGNG0Ncy1uXnic8dA5UCwCYJeh0t2aW2EtkkfgWWVNHfM8YQS+x7sKMxy2za2RBxflYDLCS0ZIy+BYEgO2NTeZqnDUQJ1uSifQZvpnZ70lMiLK30l39yT7D0vPl/MqOksU9LUWa5gnv2eRDko5WbK8OqrS2IoBRtREQtS6+0QluPAvWjhzUtkKoHyE8ldBXaYVoCYNUCMUTtdFqpV96Scv45DcEbbDGnqCKoXayk5XzVpKI4N3XMqPN+FD04IlhA5l4DzYPGaR14EIPu2ejGKZjPZMzAtaF5ZWMI6gFg+z6OFx9YTxyR3MghQFtX/dztAeVKQEAIOrLDer++7Tq6Jj5iHZhLbePs7Cvzr5VMvSr+zF3+RMR/z9c7mMzrQUApyoisVUu8qX/WDmXYwV1BaR4aIgY9NBYepjbwnACOiOnsBiVhaM5eIYimO2tyVmvCUQVD4jGiaUFy/7GBC6E/SIIBMHrgWY+CAwdSsW67dngaDfDjwU33cU/+EAY++ljYfhYlAsLyZ72er40xqoOywXw4wdwKgrDBYgnec7B19gzctipIHqaR1FRK038lGNVtSU+gm9hY+jXbumdpeDtYantFK0UODuxxr9N7Dj5vfb6DgHDw+Qj7l+ajuYc41Nf+3V5THEjssJoQnvzBM1bzbO3gShyo1HEhO7a7Z4sNeW8J1uuBY2n5EqS9nzk+n5gwnoL4MNSvF/WfsD8M8M2TtloPEKRYMQZ2kCmIAkCUJSYFIFVNRFllBynWoQE4gznwGCPK0U6WOXi+cIylEexEIAZNYEpWx7k9DAgKVt+M5rB6cXTS11NiQw6W6xprwASsY9BAgAkSYIvLggUi2XSWjv6SiUH6NO/FHTjgq4oWWhc4LV9oVGs6Ti6cYkwAiC5WlghR95CdgmKOVpbKsoDi96InKqYdECPqXlrJEICc9fm0kxL9+W6bgTs1nm7BylY8cBYM9n7eb4wBdW+6Cy2I/r1mBRkt/ckTnSnQnoOe8lULyncbN004QwjOkAkxYNt3/+5pnrAsF5s3n9ge4npJtRZsu7L1cs4ejPDkbRgVhBjGK8ZxxGjC4eM0AlWwbZ+4f35YowITg+/BYisZ0iEMWK9XjMuMGJKeLA1Ru6LuFXFrJ9jKjLMTi9QafQAE/aqNp+kPFJZ6Hti3DSyLpgYJE+RiAOO8rBjHCTUNQAz43DM+9191nIto2eo0I8WonS+NDbNb441axRmcnugkJuQjZIxAjHhk7cBLkJsgozKwAu77A/FD12K2UsH7/ROPxx1SBevlimW9aPl+EfzybUP4zpI+nR/TOOGx38GVpsk5GSnFNiBjnRWevEXvftonHaVo0nMUBYGkViR7vixbh/m0GFlqoYHRYOXtMUXET/WF+77bCa8FEXYQ8sQkK92asE1/2z48sRCpOPZPDLJjnALWYUYICqiN44AhKUC7LKt1QdYyurlrOGFOCqgH7t9322itBKEW9Ewg9dMDpGbEmLA/Hkg4cLnMeHv7AauB2tVKf7//9jO+A11Znt7G/VO18/KuzRYO09JcDESdl0lBhrLj4/uGbRs8MGbHcJbaUg9NN1Gx+zLtMgIHzatARO+rgWLtwIMAE6ppmtKXW4KRjK1EoIN+jjpf1FChf3LNMbRgvFiilVJ0sIkgA32mHj48H4S0zqI2ZN38atojDKRiAzONwcU5XKoKr6uO4a66NeNooJK+XxscqM/gSbozIJI1SLKDCzkEe9YmW64zxKddDhyHgVlVGxPoaWtGEEHEgXUKSJIh+3dEAhddsBOcATIoWx8ByDtQAo4dyLYfbggGhpiwd9X9ONqc9ZJkK2V5SqYsOWYwxuWmjHJq9GmCN6QESQkFQP7UOcX9tg+aGdf0zAb6cIIe3GuBxtIiK0XssI7dDpNpBcaUkO/f1GfbQSGZchB5+t6+JFf3B8Yqqj8a7FmXQ6UahmHUdWVrZr8bEFKr+sVK9lv24NxLtjheeE6IfTwJgtieAGkyJj3A+pTg2t/7Dou+kp3dwmTROih3DW4oY0IfxvfFqOxsJnr8nlL14IK6aqUU9j9C8s+siAAGMZ3LUIEERKmojw/9jhAgIaBo5ugxYg4wvSaCa/D45wkss0SgZ+45iBtakoHuT2Yz/nOXFEH8R/OHjTUAtGSufX5jEqL7e/uVjR+TQ/A7us8BvoynT47fvaa73Da+Is+/9B850/oYWn/fJ4v99zA2f8rm+lj86/f2PzNhFAJu7WJC9x6CGBBxzVHO/e5i1c934EV/vdJ9lghLwlo5sa8Hiz/U/1f/uQoBP/H9SACEWjBUAexQO9WKKAVDqCihooaKmgKGWpA/f/GxSs785iNT0IvMJkFXqmt/sjs59SD54J8ABWl62wjB9PvU5zVN4hbj87t52OmgjA9l8OH8j+ag+prgeQFj0/b6L+vGxq7P59oYdq9/mlO2ToQj3haeA8/dawVdbCcNbO79nn+GdNcVGqBHf9Hr8wHBgTlArIqqm2do/rQHmHu/26aseIzxxHQS8bkG+7szhTn/wH2g6ba2Ul47hAFLoRXg471pCeVzTOTrIbSDKs87DXwMIpA94B///t+0CgitPJaSGfocjOWH5ocJXn4d6n6NE3ijDEd4ii9tzoZ+HnS+ubkb/W3vVDufQ9/LPYHX67EdOut8e/sIzo2m7cfPbdfQzR/+a4c1+JrxOc6xBmCSEv0z4Z89LtLdqe+xT3sW/TvnGldNCF/mZ/D3twije89/sFTaoUo3lviyH3Wf78/DYkY+I14iwWh/7IF5I57M3Ub3PbxSvyegm8+tBwPLdhGAx7ff8EctyNed7LTTTjvttNNOO+2000477bTTTjvttNNO+9NY/P9+yWmnnXbaaaeddtppp5122mmnnXbaaaed9j+rnQDfaaeddtppp5122mmnnXbaaaeddtppp/2J7QT4TjvttNNOO+2000477bTTTjvttNNOO+1PbCfAd9ppp5122mmnnXbaaaeddtppp5122ml/YjsBvtNOO+2000477bTTTjvttNNOO+200077E9sJ8J122mmnnXbaaaeddtppp5122mmnnXban9hOgO+000477bTTTjvttNNOO+2000477bTT/sR2AnynnXbaaaeddtppp5122mmnnXbaaaed9ie2E+A77bTTTjvttNNOO+2000477bTTTjvttD+xnQDfaaeddtppp5122mmnnXbaaaeddtppp/2J7QT4TjvttNNOO+2000477bTTTjvttNNOO+1PbCfAd9ppp5122mmnnXbaaaeddtppp5122ml/YjsBvtNOO+2000477bTTTjvttNNOO+200077E9sJ8J122mmnnXbaaaeddtppp5122mmnnXban9hOgO+000477bTTTjvttNNOO+2000477bTT/sT2/wJxN/jVXJaYOAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "processing batch [3/3] with 3 frames\n", + "input of current batch:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAAEYCAYAAADBO0i/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOz9WZNtWXadiX2r2f1pvLtNdNkACYAsFsmyKlOZUGp+i/6PHvQz6rVMJulBZmpMRhVlosACCYAgkkBmRmZE3M7dT7v71ehhrn38JkipqpgPUpqdaXYzIj2uu5+zz95zzTnmGGOqGGPkGte4xjWucY1rXOMa17jGNa5xjWtc4xrXuMbvZej/X7+Aa1zjGte4xjWucY1rXOMa17jGNa5xjWtc4xr/8XEF+K5xjWtc4xrXuMY1rnGNa1zjGte4xjWucY3f47gCfNe4xjWucY1rXOMa17jGNa5xjWtc4xrXuMbvcVwBvmtc4xrXuMY1rnGNa1zjGte4xjWucY1rXOP3OK4A3zWucY1rXOMa17jGNa5xjWtc4xrXuMY1rvF7HFeA7xrXuMY1rnGNa1zjGte4xjWucY1rXOMa1/g9jivAd41rXOMa17jGNa5xjWtc4xrXuMY1rnGNa/wexxXgu8Y1rnGNa1zjGte4xjWucY1rXOMa17jGNX6P4wrwXeMa17jGNa5xjWtc4xrXuMY1rnGNa1zjGr/HcQX4rnGNa1zjGte4xjWucY1rXOMa17jGNa5xjd/juAJ817jGNa5xjWtc4xrXuMY1rnGNa1zjGte4xu9xXAG+a1zjGte4xjWucY1rXOMa17jGNa5xjWtc4/c4rgDfNa5xjWtc4xrXuMY1rnGNa1zjGte4xjWu8XscV4DvGte4xjWucY1rXOMa17jGNa5xjWtc4xrX+D2OK8B3jWtc4xrXuMY1rnGNa1zjGte4xjWucY1r/B6H/V1/wH/9X/83fPXVz8gyS4wRpTOiqRlDjjaaQk+o7kBmHZkOTNNMXubkRc7z8zPzPFOVDWVZYq2l6zpijGit8d7jnMNHOLctRVGw3W4BMMYwTRPjOBK9w2hNCIEQAjFGjDFYa9FaM44jfdtR1xWbbcM0TSilAIWbIj54lAWtNcMwsFqt6LqOcRwpigJjDMF7FOryu/M8Z7vdkuc5h8OB33z3PUVRAjBNE0VRUJYlIQTmeaZparq+JYSAtRZjLAp5zeM4Ms8zOr2HoihQSl1+93JNrLWXf57PZ4DL352miUBkGEeenp5Yr9ZEIlVVMU0Tm82GzWZDjJGPHz/y8PCA1pq+73HOobUGBXmZAfDx40d+9atfEWLEec88zwDkJqcqK+4f7gnAp0+faPuOmO4HpTWRiFKKEMLlPrm9vWW73fL09Mj5dEQpRV1V5NaiULhphhgpq5JAACU/0XtPnuc0dc25bTmfW4bJ4bznD370Y968es3tZsvQ95f7JUYo8pIsyzh3LT+8e0c79Dw+PeGco8pz/sGf/DGv7u+JMdJ1HdM0sd/vub29pSgKiqqmbTsenx75+PETbdey3W55+8UX1HXNX/yrvyDPc3784x9z/+o1Lmbc3L0mRLmvIgqU+q1nRSmV7juIIRJj+vcY5c6KERSX+8xahVaRTEWMCsQwoYLDh4kQZqIPzG4khIBShmmcCBGyquTvfvkLHp92fPnV1/z5v/pzbm/v+O7dO/phQNsMrRXOeZwbIX1ey2vx3uO9J7OGb//un/PLb/8KpaCuS0KYubldY43Fe83x2LNd3+M9DENP01Q45zBG4YNnmgbKKiPPLc45+mHAGk2e59R1xTgNjMOIMTlFUXA+t9RVwzTN9P1IlmWsVg3v3r0jyyxt22Otoaxy8txgs4yhH/EuMo0Qgkr3s0JrhfczqEDTlGy3W5RS8uyoyGazQmtFXZeMc8s8j5RljnOOosjIsgzvA3leMAwj+/2Bw+FEllnO54Gqkmd8GPr0jFcoFZndjFKKoZ9RCrLMUpQZP/rxF6hQ8ptff6TvPZnNsNYyzTPTNIACrRR9P/DwcI+1mqapeX7+iMkiVZVxc7vBe0dRVHgXQCmKIscay3q9Yn/Yc9ifGEeHczOvX7/GewfKA5EYI9Pk2G5uyLIc52eOxyNGGx4fH8nznBAiZVkDmnEcqKqM9aYmy0HhGbqOuqqoqhpjDArNMEzkeYm1NftDx8cPO169+pqIYhpHvvr6C7SBcegZhomh9/zhH/xD3r76in/5L/87ilLx5ds7dvsnpmnkzesvmANYDW17phvP3D/c8P0PP1CVazarV3z59g+pyjse7r7g1cOXVFVD06yJpHvbgwuaYfY4p5hdxIdAJKKNIYaZc7vjz/6f/4wQes6nR3797S9Y1SVff/0Vf/Znf4b3kf/yf/I/54//+D/hJz/5I4Zh4od379gf9kzzxJ/+6Z/y/LwDFD/65sfMLsizjybw8vzHCFyy5G9HjPHy57f/PsDLcwkBqzQoOeOC+iyvoCXvRAghvnwfGhfBxwDolGcUSsHp8IH/zf/6f8Vvvvs7jNGEAG070fUzMcjfI4JWGmM0zs2X16SUxlorz6CJROQ1KaUwxrycLTP4GAleXfKfc+7y99K7RSl5j5+f4VoblNIYY2iakoAjBof3Hm0UD6/W5IXm3B1YbxqGTvJIntV8/90j0zjj5kieW6q6pGt7lNZoJedonlumecIYzTzPWGMx1hKjx3vHPDu0BmM1WsM0BVarXHK0kixd5AXRB1ZNTVbkdF3POEQ26zvatgMNm+0K5yZQAe880zzSNBUAzjmm2VFkOWVR8vDwwDD07HY7YgStDN4HvA9oq2iamr4fOZ9bvJ/QJoIKZFlGVRV4P5NlOUoZqnLF4+OO3fOJaXJkmSXLMrSOFGXGw90twzTQNA0xRMZp4nxuCV7qirqpyHLN5AZi8NRVhdaa0+lI17d471BK7ptVswIC3dAxzzPBO8oqp6oLmroiBM84zrRdR2Y1xhq2m026X+Hx05GundEqAzQxwu3tDVVVURQ5T8+PdN2AVoabmxuqqmC/f2aaB6o656c//REhzkzjyOnUUjcrPn14IkbFze0K8NRNTlmVdK38naEfmUZPnlcoZYgxUpYlMSqcm3l+fma1qgnBczic8D5QlRUhRogwzQOb7ZqyyChKS1XnDMOJ9aamqQvGcaAocozR5HlJjGBMxtPjjnGcWK+2OOfIC5s+Y0+elcRo0BS0bc9vvvuWzXrFj37yJdpE7u7uCD6ilKHvR9q2JUaPsZAXmjwzGKMI3qG45c/+7G85nR/ZbCrysuDj+2cePxzxHoiaqmy4v7/nfJb6eLVaU5Ylh8OeGCPn84lhGNBaX+rjaZzQxqKtudSOm80GiIzjiNaaGOUZXTUNmSmY58Bhf8Q5jzGaosjIiwxjFCho25au7yFGrM0oiopxnJmniRAj8yxnaZ5J3RCCo6pKZjcRY0AbOe+NldzmvCcEqVvLsiTEyDRO1HVDnhWcTi1dN2BNhjH28ixaa6nrmq7r8N4TQ6Cpm3QPPhFR5DZj9gHnPV034pxHAUa/5DitJW9J7lBYbYgqME1Tyn9GarZpxmbZpf6S+lX6H6M1On19+blLbabU57le8qfU8E7OZKUJPhIjbG4Kqjqn6w646DHacNq7dMYoMlNQ1SVlWTDPE8Mw4n3KwUZqKGPkTI0RtIa6rlFKeqHD4Sh1p5VjJ0aoqgLn5UwrqxxCoChyVqsVRlmOh5b2PLJeb2lWK8Zpwlo52yDi3Mw8z1Kvp89ZqXi5NmVecX93T9+3nNuWPMuYZ4dzAeci3jvqeoXJNO154Hw+E/E0jTzPSkWqusRaxTAOFHkBUTPPkXmOHI9HpmlAa6mvVk3F/cMtNtM4NzGlfij4QFGUaG3oumE5HUHJPasNRB2xKrJer6mqkmHseXx8YugnZucI3lOWK2KI+Djx45/ckeUWYww//PDukmPPpwHnYLOpeP16w6v7n/H/+Gd/w/PuCaM1KIXWluDBWksIHvBstiuKIud0PqUaJBKCJ0a5h4hSrygFIXimaUIb+RlZlpFnBXkZ+eKLLxl7+P6795xOZ4ZhvOQ24HJeai33bAiBorJA4O6uYZpHpnlgtWoYhpHgI+ttzt19gYs9N9st3nu6rhM8IRiIlt3TjsIWvHp1zzw7QiDVrPLc9H3P6BzDOHJ7V6O1pihymnpDcAbvI+PosDajqWtslnM6ntM5IzVH23VondH3I/PsMMbS9z0xRqq6IrOGEJ18RnNEKakZhm6kKEt51k2WaiAoy5Lz+YxJdXlZljzv97TnDu8DXddhjCHiL+fxT3/6iqpxzPNA17dMk6MocrbbDVrluFnz9Dgw9VAUNXVdM44jz8/PjOOU6i5LZnNihMxatNF4H3h8fJQaJ7f44DBGX3JGXmTkeZZqIE0MgWGc07McCT7gveAOq9UmYQ6Q5TkKybd5XqTcJTnOe09RlMQYyPOct2+/IMbIf/vf/nPavk8961JLvtSxoAg+EkJMNaZJfZwjsxprNeM4EUIkyyzaWOqmZr1eS13S9ekeCeRZkWpIRfAel55ZrTXz7D87i4rfwlamWc4URSAvDNvbNUVeMs+ep6cdzk3EKPchRHzQ+CmiVMRmFqKWM0GBzeDmZsswTIyD5AOQz1tp8MGne0anawAxBryf+S/+8/8F/4f/7f/1P9gz/A+N3xngMzpSZqC0F0AneLyfKPOaiMIET7XKyLMMSwQ1ME8jqCUJCeDlvQfkgFutVrRti3OOcRzBGDabDcaYVMhWcvgmIK/vWhRcfo73Xh6e1DRlNsOsVmS5vF1r7eVmDJGU2ORAq+uaGCNFUQBI8hhHtpsNRLkJs0wac2vl52mteHh4wIeI0ZosHdhFUXA4HMjznNWqoVnVF2CurhsUmmmamOf5UlwuwOWSeIZhIIRAVVWEEC6Fx/I6l0ZqmiaO5zPTPHF/f4/WmuPxmMCKghgjzsmNvzRWzjnyPCfGSNue2R8OHM/H9EB5tNYCsKbPBhAQwmq6rqNqGrmOIYDWv9XAab3csIoYI58+feJ4PDLPE0orYvCcupamrLjZ3lDXNX3fE4CAIniYp4ksz3j95iuenp6YHTgP2hhs+hyGYWBOQMM0TRwOB262txfg1M2O1XqFT+DGZr2myDOmaRRwOEaGYaCqKqy1fPvtt7x5+5ZXZU2WZbx+9ZppnsmKnMfnJ05dx9u3bwnAuev4tz//ObdPT2y2r1A6Z725JYaIMtKkfNbj/3YD//eeoxADWkWsNZKolcJqJTBBcNIFpfs5eI8PnuP+ACpcEpS1FpRGG8Ovvv2W2QfaceD5eOA8DsyzgwQGL69HPttwKUqXZ2q5V+bZS2LSGoUUWc+PJ2yWYXRB8Irn5z2n05nVekVRZFIgaJjnmX7oQVW4WQqHYRwoywoIbNYl3gT6IK+nbQeG3jFPZ7IsY7vZ0g89z8/POOcAKMsCYzRZZpmmEVAXIJ8YGccZ7z0hKGkeiDRNzXa7vuQHay1KaWLUtK00pEVhUBjGwTOOPX3fS8NgDN4fUt7QfP31W5QyvH/3xDgOnF0vxVKItG1PWRlub9Y8Pu0JwROCFOFNU1GVFafjhDGWiMP5dIBXa+r6NdoIuDdNk9zX88Qw9KzXK7JcgZJrEEK8FA9aaUKYKcqCaTb0fYfzM8MwoJQmy3KmyUkjYS3TJNdnrjxtu0epyGq1YuhHNpsbuq6j70e8V6xWK+Z5JssM1liKIkPhyW0mDWRqOJyb0dqkfDEDkbquMCbiQqBqMiIzRZEzz455PlPVFf/dn//fGTqPc4GmKZjG1zw8PHB7+8CXb7/mcfeMVpHNtuYXvzrw/uMPGAvOjXz48D2b9T3r1R0uzKAkv7Vth7E5MWoB9KInBi/NTuo+lAKNR1uYxzP7/QfGYYfRnqKA43nPbr+iWW0IXuPmQPDgZ0ffdWhg9/iEMtKA/eqXf8f+sCfPNEXZ0DTbC7j/2SNPjOGSEJaG7v9TLMXPbwN8yPAk/UytZIggP0ujUBeQLUb53ZKC5HsiHmk/QirMIsZKkb1eNZxPHW03XJKTMeYC8Dk3E0JEa3Upzqw15HmBwlPWkoOmUc6uaZ6Y03WL6Mt5sJxZy1khrzWk97d8TbMMHWKU3DhOI6t1wTiNrFcFZZVjMtjt9kzOYaxDRY1WGcd9KzkYgzEC+g+9Z5ogzw1Rg/eBvh+pmzK9j4yuG4izw/n5t35/nmWE6MkyGPoZ7+U9WKsJswBqfQvT5JkmBcry9LRDa0XZlPTDgCKQZSbVGbDfnRhGAdekSW5ho4lB4WaP0Vlqpg3eSy6OLuKcgBbD0GMzgzGWEB15nmGtSZ+T1D/LP4uiSEWxR5uMssh588VrVnXN/rDDB4ebHdYaVquaeQ449zIQIMpnPU0DWZZRVgWowG6/ZxoGYlTMk2O9blBK8aNvviLLNd7LM++943xu2WzWrNcN4ziwvV2zWW/57jc/pGFEkCMOKbqBSy601pDZnLpSOBeYp4nZjQzjQNudsNlaAFk3EqLHZpph6LCZIUZptlbrmhBHTqcDx0PLMExoZSnLgizLyfOSDx8+0nU9t7e3ZFnOF1+8TY3Dib4fmUaHc5Gu77Cp2dhu1my3a5QJtO2e2U14n9P3Mpz0ricSKMsZazOMkfrLaMMwDPjgCQjoMk0z5/MIUaPImEYneXm9ZkFO+q5nmhzeR2KQujXLMmJ0nI5nfJjIc4Mxmrps6IcJYxR1k6NM4M0Xa6wBNyumMXJ/+4bj8Uzfd5fadsmjzs0JxFWXenRJTgvgp1O9e3d3yzw7lD7TtR3jOMj3YslMxLuQwHouZIBxHMnzjLzKeXh9z+FwpO1aiDCMAyFEAgHnHUpL3aetwQWP1QpjNc7La0MplAFl5F4tdC7nUXAveWZVYU1GjIrNdk0IAgYt7zuEQNu2Kb9J/e6dJ0T5et8PlFUJSjGOowCQTsY58TNgT6chd5ZloGRg4VHpOY4JgDM4F9BGnmE5myec82nQHyEGQjorQgiX+gxUysVaGlEltY6xlqVhdt4BiqLMePX6jmnqCLHEBU/08PDQME2B83kgRGjbLvVLgXkW8E8APAFovJ9T7udSMzsXUg0AxshwP4RADDAOE5MTgFFpRWY0fTcSo0EFmKeAMULoaPueLMsoigxj5T2N40gI0svt9we891R1iVaRfh6w2jLPk9R/xhKjXP+yKjmfOubJ4TJHQL/cx3o5j+X6SQ+oBLTx4QXAnqQmjtFjbUZZ5dRNAUqA1dlJfSZ1aEbE0/UDwzBRVeUFXFuadaMUq1XDet3gvfSdm82aGI4p38607cA8e6o6YxxnDscz8+zxXoaczge8h6Yp+Oabtzg/XUgXWZalujD8e41FhASUZDRNAyrinSPPLTHC+dzjZo/34bfA6RjDhZySF4Yst4zTmcencwLnwqVXebk/X8AaFJSV5e5hg9HQdm0iDeQopcizHKcDQz9j7Ro/DRiTYW2eBusTZbFF0xC9ITea9XqD93J/1nVDDIphGLi9vWV0DucmtAnSR/rI0DvcJGfL7ARAjnGS53eYiFFDBB8iIUJuCzabDV3X0yUQapomAZJUpChytFacpvZyD0XFpU4QYNpdhpRdJ/d1lgl4dj6d03V+ARaLMkdpuZbeB4LXDMMMGDabFd6HdCY4imyNUpGiLIkhcDwe03MSyfM89cCSY6qqoqlrIpHdbpcwEUtVVcxuwiUSQpZlBB8umAPWYG1GFiJzGjYstcQ8zxwOB6qqYr1eY/TL5z9NU8JncsZx5HQ6kWU5AL/85a/Y7w8YY/jH//g/Zbff8/j0xOFwSLnm85v286F4TGQRjVYCSMprti84Rrr35tml96hxbqkr46VvXHpnAWJNAhCX/s5fzrYFP0pMG8LgYHcmy+Q6e+fgUqtKbeEcDH5KtZkjhlSTp+vrvWcYpLfNco0xinmKoKWel5AauGlqGaZ4g70MwP/j43cG+Nw0EH0PQWGtgRAwMeB9z2Z7i1WGvutQygpYMI6E4DCZvQB2fd9RltXlIktzEsnzxKK5NPFy4dq2vRzIy6TMz/OlaVpAq4UFGNOho1AXsGoB57ybBRRRL4lyAbastazXG+p6Jjh5bQsItwBIwjzMqCqF1ksBHy/v7e7u7vLas9yS5znee6ZRpkBKqQt7sWkaSU4hXG7M5SYchoHZzZcbdEnu8zwzTVMqDmbW6xV9L6DINk1Elp/Vdd3l+5YkpJTiw4cPPD4+CtC1Kvnyy284n898+vSJzFqZyKdrba2l7we6rufc9cxuvjxkJqHlC7i6XEv5LOV9O+8hKozR+BA59z3GZtRVRVSaYRoxNqftetq2pW5qfvHtb2i7jiIvmHwUNkFdst/veZw+8XB3xzCMDOP4W5+9cw6bWbKQczqdyNPn8XB3R241Smv8POO843w+s1qt+OGHHzjsDzgf2Ww2hBi4ub3l5v6eY9/SdR2/+PaXFFlJUDC7mXcfPvDxaUc7dPzJH/8jyrJGI0WfXDfDbzXqqXmXIiqmzzliNGSZFGsqRAEhYiCEmXkaUAnZb9sT5/aIUZrtzQZjLVobvv/hHW3XU61WHE9nRjfjjwd8DPTDkCa/BqUVwcuk1BhFjPoCDJRlCen+JUrTJcWPIQTYboUFOk2egML7mFgjGUSZfCotTAIQxkJ7GhiGkaLMKYqKvpPmyvvINHqIFqJBRchzTQzC+AkBuq7neDykpgBCjNRFgc00IM1NnhfkWcX7d48cj8dL7qjrGhC2bZ7n0hRbK2zabmD3fMDalD88xMSdtFnBalXTtmeenp4pihznPEUh7LZ5njE2EobANIxkmeXLrx4EdDCSq3b7o0yJq4KHh1tubrecTx37XccwjmitpFGdM2wmz9jUjRwOx8vkdBhmzu2JLNcUZU0/TrjDLI1GUVIUihg9Ec84DvT9Ge8CeZYzZY6+H/n06ZHD/oQ2mlevXhGjFMzPz0dub7dUVckP371nvdlibYHRjqLQaaItgOPbN6+FaTQGyiLD5jkxLCBw5Hg84WZPWdYYU6JNTlVnZHlE+0BeZMSYpugxkBeglUOpAZsL60IbmXD/9Mc/44svvuJ4PLFerwmh5/Hxe4bxCAqyLOd4eOZ4GLm9ecU3X/2U1aqgqizeCTv55vYBm5VEJQDc2LU4H6XgUDBNA9Ea/ubnf8Xz4/d419OedoxjS1FkROB0PmFMvlTIdH3LOA08Pz2y3wu75Y9/9odoFYnB8enDO/73/7v/hv/qf/a/5A9+1ghLDkOUKj81T/A5W/bzWAqSv/fV3/rvKr2fC5PBWJTWKC1MuwUMizE1/1GI0BrQRkCzGAPBe7TS6MSWyKxMq5UOVGVBcC41OemcSDDhS2ElbMFxnC6N6bkdLjl3KUBjNDjv0DqmhudliLD8UZ8RnRfmodIQfUz5A5QO1E3B3f2Kw2EiREfbOqoqZxw8s4scfIfRihBG5ikwzwGtpKAty5LT6Yw1mhAc1uYyALDCTIwxJNA/4vwsjNtCmLzLEMH75TV/xtBJINxmvWYeYwLPSZNxwzgN9ONAlpsL69i5BUzLCH4gBsjLgnlyF0B/HOV3igLAcz63MmS82eJDYJ7H1NhbaVR9YBgkp1ibJXbGTAjqMhDUOpJlirLUNKsCayIhTEQcCo02kSyXs0FKI2GqgKYfB7QKiWmQc3/7wPl8outaFApjLG52hOgZ+omyFMaQ1vD+wzsBdLXm8XHHNE+sVjlFccv5fKCuK7R2HPYDPjhyW2KMxtqcvhe2gzE2gVhyv+a5ZtU0lKVBG09Z5szzSF5khCDgiEIzjTPH4xmlbjkedzgvg7xXrypOpzNNs+F8amnPMtDx3jEM46Xe2W43vHr1mvO5xWjLalVyOJyxNmOzblBaWHc/vPuB1brEWoShM4zEHIoiQxvNMPTEqOm6nhA7xmGibQfqeiVA1zRQFDXOeU6nHucCX7z5mqaWM2yzXaGVYp5mvO8oilIARpPj3JwGLFbuBz8xDDNFISqRzBpsVtAPZ9r+yHa75usf3aNCwenoeH46MYzj5Z5ewJ0l51RVlcC4KeUgYXb4EAguXnLE4XAkyzOGfvgMrJefF3yEADEuNXJE6xcmUV1VZLklBvl54zAypaZrAdqW3JhlNtUtFmN0YqKkZix4VNBSS6iFgCyM+nmaMdagmJE+tmC1XnE8tITo6Yd5mYYQ0wAkRo/zE8HDkIbBZZEzzT4BBEoYS2giXHqSGCMRGWgaKzVg9AGSqkBrYT0FD9PsmFNjKP2P+nt/krBD6d86D+T3hEs/Y0wu9bdWhDCjtQyL15uKtj0xTjIoRGvwmqpc8eHDE0QBaxZmv/fuogywVtMlxURVN+S55XxuE1MuyvBGGit5jRh51Xp5zWmI7DwahHnpSQOqZeijcN6Jima25NaijVyzMYH71lrGccDoiqZpaLuWaR4YpwHvHP3Qs91sKIqM0/nMNA1stivWmxXntsWFEW0C1magpH+Qe1nqS6XS8C8I+LYMp5VW1KuSzbamrksZXs5BarxMUeRZIot4YTlaBQSsVYSg8UFy42pVs1o17A/PCMNppqoq7u7u0Fqn3qOhHwby3DKOnmkIhKBQyuJTDV5WGTc3K1AqARpSp2sjNfPynl5ChjP7/SHVxSEBqPECTsrwRljdcqZI/2wzw93dLbe3d/R9x/PuHe9++ER3FtDRZBoVlsHj8ruXe1Z65fuHLXf3Df3YEdDMTtE0JVpZ+s5Jfg8uMfEM+92BsqyYxpHZTZyUZ72CqqxQMVwIPwuIJGeP1AvNqiLLhCmfZTn73RHvRtrzzDiO1HUh7CrlyfKcRYyQZQVt23I+dQzDBDGToYW15OsM5zyrVUPXtwlsMpf7tshzirxinufEMH6pbbyX1yv4hih8zl17YdVehuMz1KuS7U1DiJHd7kw/tOS5pcwt1liC93TdRHs6UuQ1zsuzOo7Thc07z3NS4wWsdYm8Iv1R1/UXDCDGQgYlwZPnWVIgdYmUodFKVIPTOOGjgGg2s4RA+hkhkZIE+DydTqm+OjKOE2/fvqUsK77//geyLOf29pYYI4+Pj2ht+Oqrr9DGiJIs4QkyFAhyLqgX3EApndig8QIeL9gKJIKYl2s9DKMoJlLdrJROjON4yaTGGMqyTGpJg7X6ovBcVCUvfzREea6myacBpADedVOk936WIW+qY4mJvZpy9cKSHIYh3Ws6vXaP83IuLphWkJQr+AipBw7/YcXP/5j4nQG+eZo4HvZsNxtykxOUYJLWQK4Duc0ZCMLa84oYZDpca0NZlHgfOJ3ahKLKG+r7Pk21jACCkCi29rcag9MpNcPGYPI8TXvlhun7nrIsL0w/mySo3gdB5LVmmqSQCzFSJknFMAwJlEsTVu8x1iT03qTieZn29OS5oPpNXeFSoRMTK3GaJ+qqSui8u1B+p2nCB8/hcEApxXa7pWlk+r2w6pbEsLCtfGrK8qKgrqskGdxzPB55enoUKWGRUzU14zRirDRXIUSOj48Mo9xkbnZ88cUXF2T/46dP7Hc7obQmqd+vfvlL8qKQgkMJk+d4PMrDMM0XqW8IAZ8okDaBns7NrFbLdNSxTDWmJEE2xsjEJB1aIcLj8zMxxNRkKbTNmJ3DA+eupxtEhtr2PVpprFaM0wwu8PbNG27vH/j5z3/Or3/9a+5v79DGynVaCYW5HYTyba0heEHgjbYMgzzYc2q4ZufJi5Kb21uhKCNN8g/v37M/HWWioWRK2U59Oj+jJOEw8u33v+Bw2vHw8Ia7u1fU9ZphGHn16g1GZ4ASoFm/THz6oacoCvLMkhnkPo0yvY1RWApunvAJwO37Fm0kWTV1gzYW5z191/Pdhw+M08R6dhzPLaObhVmZGj8VRQ+llU7U4ICPDmMN69WKqizJrADuk3fCurUao83l+kmjBcTIMAirZ3km21YOJmMMbp4uQKvWFpgBRVWWFHnOOMl7i1Ga56osBahOybaqa5GKJGaHUlLIB++lCc8LIDJNY7oXI0pH6rrgfO5QKjKOPc2q4uHhjrzI8IkpODsBG2XiNQIiSZtmKZqtlqlOlllubrY8Pj4TI7TtSFnMbG/WDMOZ9bqAdUFZWYx1OB943p1xszCB8yzj5maDsYZh6Om7kf2+ZxwkiXsX8EWgLCvKsuD8qcU5f5nOC2uZy0G83tb0vfwda3PmObDb7Xjz5hXT1NF2J+7vX1FkdQJt5XdYm9N1A8+PMgk/nXrc7JhGz/39De/fP3M6jfjgscagjWGeErsXcGEmzAGTWZyHYZwospyY8uw0TVRlLfnLT2RGU9cVNvP0w4m6vqFrO6Z5YpoGuq7l669+wh/98R9gdE7b9nz48MRf/OW/Zp4Dm5sbQhyBkX7YcTx94nx6xmYZ42CwWc5qXfL+w695//Ebtjc3TO7Eu++fUapGG0OICHsvRn7962/513/xr/kn/+Q/49tf/Yqvvv6SZlXz87/5Cz68/w0/+dFrCvvA3/3iWewSXOTgj/zomz+kqTf86Z/+KfM089d//Zc0zZqyLPjpT3/MH/7sD3jePfL49JGbmzVKQVXnfPjwjlevvsaYjIS9AVxA9L8fC7j39//b53ifStJ9KXoSKKZM6qKWvxTQiY2OAqMMJk2aw6Vrh6h0EhEveVien6EfiUFTFgUwM01S0Mb0/Qv74ZID0mvMsgLnpHH2niSllCJH6xcmPXAZFC1An9YqMa18YtcKWyCzFh9mQgwoFWhWhrLSoFbC+JoDq9WKaQx0zy3aaL5485Z+GHn/7pEYlAw4fGAcJ5yfidGj0WgDKsle+14AIqVMGnaodB5Y6qbE+4m8sDgvDZVWApYqFclyRWYtzo/kRUFeVbStgFIKJbl07AlBMU1B2OtqyWXC1CnLnFev72m6gvZ8Yrf/hDYiI85zw4cPj4ToublpaNYVbXcmJPapzI1CKuRLnHN03UBeZCLtdbM020lqsrlp2N6syaxhnHq8n5inAZtnMiXX4BNA1NQNTVPj/ExJjs00VZmx3W4IQc71+/t7xnHE2ozHxyeOxzPaQNef6QfFNA0cjkeKPA3szo4vv7rj5qZmv98nOeSathuxmWa7XbFeb9HoxI6SYaaAKSJRX69rUJ7n54+Udc43P/qCEDyH4567uxvGcUjym8A0j5RVRojCTqybbVI8DGw2a/p+EIZVnHneCeOgKCwhCMjVdR2Pjx+ZRk9RVEzTnJ7pZElQyKD1eDyx3lTJ2uXMOE0M/QltFLe3t/T9SNcNGGvQWoZUgUCIjr4fyGyBtYGu7ZkmaT7maSKrM7LMMAxndvuWEBx5XnJ/lwHSDGltyHNhLLpZ6j1tFFlW4kPkzes7fDxxOH2CGJjGER3PxDDSj3KWrlY1o3WXOnNpGBdGxEUyajK0dmgd8CGgP2tUu67DjOZiNaOUSlY0huBkwC65IhOgJA0rxKpG6iLvPVVZCuCs5kt+0VozO5eaMGnsyrIU+atTkOTVLrFcF0DeBYcPApwpEkgWPd5F2mkk+phsQNIAPrM8rLcXGW2IEZvJM65MZLUStu/p3KG02CJoQClD/IyL4b2w/qJ2KG2kto9KmGy5xXtHnpWM48yYGCyfEwOWc0CpF8b5582e/wz8XMAaqUQddV3SdSM324Y8z1Da0J5P9IM8FyhNbgsO+5aum6R2TVJb52e8i3gvNYdIPKV2FOajgEEufZ4y8BF7hnn25LlO/RGXM2phf1mtmOcJo3OMzhjmAaWypBbxFyaPT59xRAZJ3gepQa0iLy2bmwabK/qu43TevyCJKtD2Lbv9M5v1mtU6J8YJH0ZgRmlhMGkt7DwQmwC510VVIcMZacxvblZSTzYlRb4oskqp2ftRbAeiZ5wGFCZZ0IRkAeIT6BnQ2jKOE+PY49xMUZaUpaFtW6zJqaoqsbwMVV1e6uihnzHGplwOeZVRlBlZZnl+emacRrarBKKPQhTRRogEQhpYgCSp9ZdnyQ2TKOs0TOMs18HYBFzJe//yqy9oGlEwbbc3jP2WDx/eMfQie3Z+FgDIyz2fWYU29qKIUmhCDOx3B9rugHMjt3cNX375hv1uz8fHZ2IaxMQY+PB+j7XQ9R3QQZT7OssDw/ARjcJozfF0ZL1ZCSvXuDTEy5ncRHQ9dVOl/tLjQ8C5keMpyX0RSfI0Se3frCtiULStDNQktxdJYqwvRBtRvphEDhIG9TzNFEVJZgvpL9vuYse11DYgZKBFzWetpa4qplnIPRflYgiMw8g8iTKJqLA2Z73eEIOla0dCUBBtkgSfidHgHRd138IQFFKSgLbCRAucz/uknHNk1sr3RLEvkOdL8uqi1AvOURSlSNBTrtXqZVXDwvqbZ8fheKTveoZhuNR45/P5AmjFGHl+fr4Qp8Zx5G/+5m9ENZWYjjGkohSNNMcLSJ0sDlJu01ru2RBcum9IPZ/BzQE395deVNh+RshHxMvPWZReMgSV3tX7+ZJ75LN7sdFSvDxHC8B3UTm4maLQzG4iRMGWjJVBk1Yilc9zS1Vl6dzyzDixB9IaYzVDkhpDvAyGlVquXWAaHb9r/M4AX5ZlaMTvYRqFxh2jwkaDDgqjFFopXGIE5LkcFGGOuCgPojGLZHYpJBaprSDVJpeJnHMiTRHGjUxbYvCYImcep8sN3zTN5dBcmvg5uMuhIY2HfHDGavCe43EvIEhKzItsx3thAfrgUiFgfgsJjnFB+HseH0WGaozh7u4O7xzTLBr33X53AcoWGcSCHi8SXSBNq0Q++jnl33uPtpasyMmKgn4cedo98/T0dJEkYzRPz8/CVhpHzm17eS2Lx1yMkazImb3jV7/+VpgbShGI1E1DkWcUuVBr3TxzOp/FtyjR70HRDwNffvUl7969Ay0PmmjZc7q2Y54mmbQ58TIw2hD8Quf3iW0iuvNIAgqd3Avy8E3CekH0/845eXC0Zk4TRh8cTltQhm+/+44Pj088Pj5TZAU3NzecuhN2StJNgsiZMsPT7ombmy339w9M00TbddTNeiHqcHv/ANpgM5hmzw8f3rE/njj3HTF9HsqYyyEaQiSkf1coDqdnjucd3/7mV9xs7smzkvu7OxRKvMe6idvbW0IMzH7kF7/4d3zzzdcYrbi93fL08SPr1QqrNcfjJ7rzkeg8dVVAFN+QohB2g7aWbhj49fffsTueeNw90w8Tz+cWF4Owh5RKU4gZhQDdmZFJqfOO0UXu7u+oqpI4ewEQtWbTrDm3Z7QyiYEIdSPgMtEQStD6TN8LywNgnpcDcWGHLhN3R4iOsqq4uW2Sd01kGFrc7NLEI/C8e6IsKm5vBfD+9PgJHxzaCNMwywzjNKO1TCWzzKTiV37vMAhAr02kqi1FmbNeVxgLIUyMU5/AC3+RA1iriHj6viPixIciU8xu5P7+js1myzg5DvsTRGnsslYO/6+++prVuqQfTnIYmowsy8UDA+jalvuHG7Q2/OY3PzCPPk3CpMg0Jsf5if1+l54fmRIv+cX7mXGaOfywx5jIl1+/Ic9totWLpNnaLDGIb5I/n+f5eU/fT2gt/jhVtWKz3qC1pqosdd3w+PQEKnI8nZnnwH5/kjw2jomBKVNVBczziDbgzz3ZzYYQAnXTELxIWLY39wz9iFKa87mTybp3FGWO1lFYEFFYoFpp3r59S91UzNNE3uQUpeL16w23t2vqteG7939LdCPjfGaeBwITWa6o64IYNCjL7a0UQO8//IKytHz48D2no+Mf/Sf/ZZJICSv7dDrw6eN7Hj994M///F/wk5/8iE+ffuBf/L9+QZYp8lwxzx0fPrynPbe07cDt7QM/+tGP0cowjB1ZYfj08R3ndocPE9bmPO4+8Ed/8lPevfs1x+MjP/vZH/K82/HP//k/4yc//Yd8880fpSYzXHL7f78s90XfImwliQuzT8Vkh6AAw8ICXqRVIXjx9UjTwSxTGC2Fe4hRmDRxMUEAqwTca9uRcRywtiAEKcR8Yucsfqov8n25L7TmwmJXiT0jOT19X3r9L1P9l/chjeJSegSU8hSVnB/SWMoQ0KpAUWnqasVqteZwONIPwm5TWjFNPV9//ZaqPvD8vGd/2F2AOqIUa1KYTcLKUQofYmIBZAIqOAFvsswwjgbnPcbE5InpUCYSmdjeFnStMI6tTZ+n8aw3a96+/oJxmDh3PdO0nJNafqcWCR4xMk49ApCKX4/SAZNF5rkjxJFmVUAUL6NhOKN1wGaRMiuoqxxtAlmmKApDjIaytCgtbKEQfBpCvlhDhCg1182tSHvKMiezliwzlOWa03GPMnB7u+V4PDCMHUoJa3KaB9abFb6bZfiUG8qy4vl5R4ye2TmMNtzfiy/Sw4N4D4fgGIeZcRqTD5zIEZu6piw8X3zxBu9H2u6UWEkCKG/WixwQxrHHB2FoDr0wNnWMNE1D3ZR89dVblI7s9p/ouiOrVcObN69STSj3nlhFDKnJsuz2T9RVLWxhbdjt95yOJyKwXm0Yxp7NZsMXb77i0+MTnz49kheWYejpOpHthcBFtrmwsE/n7nI+Pj2JbYPWhnl2bLcbTseeeQ4icRsmtjcbyjLn9euSjx8eWXx/Vqt1AmhHYlTs9k9Yq2lWVWKS9knCK96Bq9Wa1XrNNI1Mo/g7zvMACNtVKyMelG5mcgNWG2639xityPOKeQ6UpYGQMQyecepRGLSu8F5q7a7rCKFK9bJmnkJirYlPpVIvzJ3PLXOWZ90Ymxo2nXyfJG+8AP6K6CNjPwqojREp4uzRShgyJrOMw0hdb0CJPUmeCzNS/Pek8kIp8AKeRiWeozFGCBqVvI5VFBmcm4XxQQCtRR673a6pa2myx0mUIFopqYGM4r7YkOU5T487YmIoaaWkJkT+2XcjWaZf5i1aYRMgTFRkmcjVvYcxiMew+0yi9rkvqXNOhrOpTjZmkZ2lrBkk31urJAeoibpZ8/CwZn9w+OBpu4EiL4Vh5mCMM2Wy+jmdWuZZBhFai0dwiCSwTyxQ/MIqcY5hgLLMiYiPLYm9JT2TnFfS2wUBEJJnqEiyDTfbDUUu50vfTlRR4eYI6FQvSQ0oAyeR1Oa5sPmsVckTGea5J8vAbiqiFzVFBLpe+q7NtqDINSiPVoa6zjF2xTguZAvL807sU4YhUBSWLNNJWTLivdTyZSX+fPIc9MLqyiwhymDcGIubRD21WW+JEaRtUheCSdf1xFjSNA0hwGq1RWvFNI8QVXoNQzorhcEaky1ClucXJhkqkmUmkUlgmubE+JZBsTFyZhLV5fsXIkpMzH7v0jN3kTrqdB9FYlzYS3J27J73TOPEOE386pe/JrMlQlrzzK6XoZv2NHWZzo49EIQAERJAHRTDODHNMlD79OHM08cBow1F2TDPE24Sz/D945jYw1zqF2Nhe5MxDUJW8cpwPJ6Z/cjDq1uKKjLsR4Zx4nzuuHvYMs4dU+uYp4ALDmMzXr+9wXmHUYtn24uPqFKGvpsoy4o8rxlGwReckx7VGENVleR5LnYR40BZVNRVIz6Wx45hGLHGQlT4EMgSCelFXWglNSXZp9FaGHE+JJWfBh04nk7pGdPc3K7R2uJnmGeYx0A/jHRth7U5RV4yje7izb+weGMUlYp38QKyjeOYem+wmQxG2u6cMAXHOAmYXtcV0zSilb54T2ojgL0MRyNKK/LcXtiCAryZf08lOAwDeb4oIGQfgTAJO/q+F+9xIyDhML2w55b3sDAhl4HvEgu2FCOXAbL3cm2sNSzWLij5uuRUfcm/8yxWRQvDTwC+ZFuT7v/ludAqgI58xreBqKiqUvLgMFFWUgs7D4XN0UaJYiAKXjNNMpye3YyU7cLeCyFCen1FIflT1B+RefaXZza8tAD/0fE7A3yLrG8BmUIUlLUoiqRfz6jLiuN0TAhoRlnK4oiFer8U/Ivv2zzPF4lrWZa46C4g2OLVJqb2sjDjfDqTZxl5nl8kq4tn3UKTHYceAGOKC6K+AGx5nqPt4h83X17HIhmWxRflhWG2HMJN01z8AN+9E3nkarW6yJaKokhFW0ee5xfgbvndVSVT3zwl88WPb/nZC2tO/LQURVmgtOZv//ZveffuHcMwYK3l5uaGPM/Z7XeUqxW3t7esViv2+z1v3769XLuiKC7X73Q6vdBytWa73bJqGmL0gGGaZ1brNcM4Mi8AIlJMDdPID+/eCZqf3tcyQYjJt8Bay/39PcMwXADNYRS2lNYmmb6TmkdFMFKceV4SlvwFEl0lFW/JSSp1Z+xOR7pp4Ny1vHrzijdv37JaregH8ZQZx5EPnz7x6elRKP/GsjudQH8Uf8Qs43g6cXt7w3azxRZSVP7w/gOn84l2HJi9F68FuIDQYSnjUv+6TFtTqYZzI999/0vKomG7XXN398A0zWKGamdO5xOTn/jw6Tc438rE3lq+/faXfPnllxgF+/0TdZHzcHPL8Sjyn6++/EIObmCYJ/7d3/0d3314jwuB01nYXbHvMVmOJuKj+G9lmcioFMLyaVYNRZlz7s5E5xm7gbooGfuB2TmyaaSuKy4eL9pekqvRlsNhl0xKTUpGIcnXNf3Q03cDZZmhLTR1gWeiKEDpGRUcTZOlyUlIYGdLsxKj+CwD5zuq2jJOkSJaskKjtAAIJjHEnp931E1JmB2gyfOMzY0cSvevbqjKXKbLrmcYOpQST5a8MCgVGPoBm1lhoyGsD5nk51RVkZ7tyHZzwzwFmmrFfn9kmjxdP3FuT9gsYk3Gr779NU1dM02e3a6jLDVffvUGH2bGaeDmZsv5NLLbPSHgnkxtP6fWN42wLsoiJ88tm82arjvjnBbPlWlATHlJ8khFWebypxLmZde39F1P30/keX1hHxM1796/59XDK+q65s3r19TJcNrodxwOZ+Yp0HWzWAnYnIeHe5S6BTWzO3zk7m6D0ZbJjxwOB7RRVFWNd57t7ZZf//o3lGWDzfIEzM8XzxTvI0TNbnfk/fuP/OyPhPHbrCrK2pLlCjcHzv0j7bePbDcN2gSIAWU8ITpmNwGWu9st3ju64cyoOn7xq4HV6oE/+Mk/SQykDq3LBIQFvvr6Cz5++p6yLPjZH/6IX/7yl/xn/+QfMs0d//LP3vGzP/wpwU88Pz/Rd3s2m8iPvvkJWZZzOOz5xS/+hv/z/+n/SFPXbDY3/Kf/6B+zvXnF3/3i3/AXf/Ev+Cf/9B/RtS1uHui6kbKomKeZmCbZn5+V/9/OUXiRvLzIdf8eqy9NFImRmNjyLwyQIF57IaZvk6KfENAEgpclFTGBcdPYoXTGMATxjsMyz6MAhGFhBr7IFl68bcOFmSfFmVgwLK9/YZgsLJNlALC8T2sNVVWR5xn90BLVTFVb7u5WtG3H0Pb0/UyeG+5f3bJerWjbnrYVMHqzbhjGWaS20eH8hNLikVnXNTFEjocRhWFOnilK6TQgjngH1pLYepGnpx1FYanqDGOh6weshaKC9UYWNGQ2QxGEieEj1qqL7UTbtZwPHU/7HUbnKLLLeVDkOaumEXsNaxjHQewDmoIvv34gLxQKxWqzJbOWsZ9w3jFPs/hzWRleRAS80kaWdmy2K4o8px/aVCdEQj+T5TllWaQGMlWKxGQvEDidTmitqeuZfhguHnmyTKdOjWqRgBx9sVTJ8xXHw1EsL/KMPI/JX3gEllpGWLyHw4F5kgHm4i2njfhQDf3A7PoLKPb+3XuMyeiHQZqtqqCpV5RlTpE3nE49MZKWlgmLZbWuBWg/a3a7AyDLnBYbBmMsdV1R12KnIgsjXMrtGcfDidPpQFHl3N3cM00jt7crbm9vGMYWpT1v3z5Iw6NB6UCIEyGoJN99YeOWRU5R1uk6zVTVKsm1Al0/4+YpNcdKWBlRQOfD/lHOUiNsnvV6K8tDSvGfDj6SFyKxnGeDsYbz+YzWls1G8t/5fLioTECWGKzXW2EztR1FViHm5BllsaGsSg6HI9PoOZ1arC25u7/l6fGAc1OSQteI7540xKvVCmMMu90eN3vyIscocwHMl2d+adIWBc3CUCmyHIdPS8XipfGaxkkYjUIxveS7zFr6lCvGaSInDQui+ItppVitag7HoyzgCC/cOa2XAb0A9zEx4XUCAMMcliQqMlGlWK0q1uuazXaN92nZVTK+F0m6SYqbCRulgayqEu9GlDL4IKytEITxL0zriLYW8ZKbMDoZ9pPUGyFgbEZMdh8LSxEl4NDnDTsqyYATI25haBZlSV5YQDzPjVVUtSXLNVWTM08zdVXRNCuy/Mz4YU+Mgbqq2W62tOffCDM2RJSWRVuS7SVXT9OI0kLO8KkRFoljSEPUNIRSM2ioao0xnrq2TBMMPlxY40KqCKw3G87HlnlyTKMM/2WJUEQrRZYX6SwTUkaIgaYSiexqVZIXBu9n8jyjKHKmcWKe5gu7cZ4nUALYOS9esiYzrPKcZpVfLITsOTJPci/YrECR4byojIwWECTPMyAQmVk8vtq2IyJWBsJ2E1BgGEdRPmjx3luACVm6phL7r8L7wDT51N9mSQEmzFHvl2GQoWlW5FnBlBjfIXiGsaftz2RWPCS9jwkcDpc+dclJy9B7AdGJnw0OgywCKAo5r8fUky19eIwwDFMaakypri/Y3ubcP2zZPZ+J0bPeNOm58/zhH33BODh++XcfGPqADzMK0iDKo4xmHhzj7MhzqGvLlz96zeQGnh6fkr/gTMCjIpgMttuSu7sVwyie0H0vnpzPz2fK2lBUa9r+RHcWT+1+OHM4evresW5WVFXJ4jnnnKM9n7m9v8HNYsMgfqgWMOSZWPmM8w6f/KvLsmC9XjNNM/v9Xnzfs4yyqBj6AaeFIdc0K/K8oG3PCbiNlzy42EV5H5jmib4fkgRTznxrbQJy4XjaYzcVWSa+5tFrhn5m/9zRtqJgy2yGDHaF3VYUxWfMPRlURKKQbqLcM957XGLrZbmVZ9po6qZknl4Gn0tOIYrt0PL1LMtkyZEbKcqC1bpm6EdmNxKDDHEWS4tlseliNbbcW0VSAy4KRUdI+ZkLoCVEHAEMbbIFW4ZEzsl9aPQy1A4orRLb+MUCK7PJ/myak7WHScP+tPQyvtjkLGfWyzMjuM7yLBmbybBaCcsPDVVRsFqX6ZwYeXi4T5+tY7O6YbfbXwhikscjxmqmSdSXKI/JdPJJhLwQkolSy3UQYHkp+f97+AD/g+J3BvhikOUQy4eotUqa9zpNJ6DI88uhL8bDIfmJ+Iuc6sUDZL5c5AUV9k5kska/SAAWA8xlY07f9RcAbmGlAQnsK8myPE1MZENU1wkAVNf15QH5vDFZQMYFaGyqmqqqLv5/i9/GNE10fUeeF9TNSi6qtRdmnSzYWKWfLzpzkThFznN3mcqu12IUDbB42C10/UWrnmUZP//5z3n//j0gXgkLmLd87euvv6ZpGn7xi1/QNM3ldxljeP369cUo03vParUStob3vH37Vq6niuz3e9q2ZXaOqqog/Z0Yo0gPEI+KZVnJ8s+lyFuWgSzGnQ8PDxfGo9IaH0mm95G/H4sPC3zO+Pht+VqqCQla8en5icwIhTrYTBLtNJBlkmj2hwOPz0+JmaSYguPj0yc+pY26y/vq54nzMEhhESK700HkkkQC8WIourwWo4SWuxykSqm0XU+mZ0Zpskzjw8Rf/pt/TZESufNOCkytBDgMgePxKTEnLO1w5pe//gVlWTCNA37VYK2hPR75h//gH4jE8niin0bO/cBv3r3j2J9xQaTtMQhFeXm2SLr+7XZD8J4P79+xXW/kswmBKiuYxpHS5tRlxddff823v/728hmKbCAwjo55juyff0iTFMlEInswLD4sVVVhM4vRmnlOBum54k9+9I34h2lFUWVkNmN2M12bNr4FAI9zA8ZElDFkmeL+fpMmU/J8vu/OdH1HZjNWq4p8McIO4GafiqqANYoQfVr2YOiHlu12TVGW7HfS8GWFYRx6yiLHeQEO87xmvVkTo+fp6QnnAnW14ic//glKSVP6vHumLIU59/S0l82ZoyczgXMrMvwf//gbYvQcjydWqzVFYdg9H2hWBWVRUVUN8yTm87MTGZr4HIHPoOuO7I/P3N6s+PLre8AxTrIUIMaZuq44Hs8J5CxA1zg38vr1a/rVwDjOaJWz2x04n86EAMF73n94J4y/skz5QExhm7pJm3DFf0VrjUtsxhBFOuWdT5K7Qvx6wpwOY5HYFEVO17fkwYtsxWZ453je7YleYXTG+dxzbsW/q2kW02mRT/SD+PsAfHo6U5RSyGtjuL2/43A4YoxinAcQuAWtHVEbul7RtnvMG0VR5syTfH4fPr3ncHjmfHzifIJ/9n/7v/CTn/yYv/7rv2Seew67R/7qL/4C7z1NuaKpWzabDXlm+fbXv+Tjp3d8/Nhwe9uAD9xuKw6Hj/iw4rvvvqPvd/zib/+aYZwZh8jd/Te8/eJrKXycFHPLJF0tg4Dfznh/7/+LmUe8HPRx+ZL8gAWzUS+y25BMoklSAaXESzIGhWcmepnmu3lEE9PzPDCNHdEb3KyIQTwMnROWTqLGpFf4UgTJy38xVV5YG/Dy3pYz6++/rxefnkDbnpjnXEB7bRkHT9uOIgULI9bI0Gv/3HPY9eLsExQ3NxvyLCOieHo68P79Hu+CNIdBsdvtZQtsKSzYaRbZkDTVBq0j1miUER/S41GWUigDNlds6pKvm1tCnNje1MIiG0eKbMWnj4ckX8vZPZ/YPZ3R9Hz44YCKJi2aClRVMnZ3DgyXOoX0EfowU5Y563XDNPcCqkawuqHrT+R5kTY8Gm5u1ux2e5lAuzE1/DLM0FqW9zSrnGmcRSacWxmyzSIHqevqIpGZ3ZQGiY5h2IMSf5pWdZccK+wF+eC77sQ8j+kZdxiT0dQrUJFhEEmMmM3blJ+51EyLpUJR5GR5LZ5CZUnXnTkcDzLIsdLMSv3x5lJznc8dz88HqmrkeOjThN7SrG54/fqWceqZ54GqKnn7xRthJyT5Ude3IjuME4tPm4C/hn7oeN73NHXFN998mSTYkfGpZbWpmOaOoZ9ZNZvkWeWp6oqyKBmnma4d+OGHR6wuWK9W3D1seXjYkuWKDx9/YLcTAG6/P9K2I1WVFhNpWQ41DENiJwbc7Nlut6xXazabm7S0APLC8rwbUJEko17JcNmUQEZZVpcG3jlPXhRstxvGsZdtnFUlNiQoOQOSJGmaR2I/AbL1fL26SZuYR7Jcc3u3Zr3aMM+OrutBBZSWLbqLt7Sx0iROXUcI/iLF/RzQ+1xuKjJX+bqb3Wc+UBGlhbmV5TkuBMbk3bfZrGmamsXDCrjU6yKbFzuAaXzxFF4Atpe8E1E6JC+4AOncjqnBtNbIQooY0yBYZJVd13I+S+/w8LAlyyzjNCG+SiIhnJ0stKkaxTA4dNTExK7T6VpkWYZCnnOdmORVXeFC8toDCF7Yc0oLSLjIoYPkWFEKLR6DAa08WW4pyuJCqBAJvibLc1arkrIqOB5OTOOA0jotolG8enVLVVY8Pj6xPx6SJFU89oQRHxNTz7/cW36msHliL/XMs9QyeaGpm5xxmChyYQ9WVc5qJRsrq2rF4+Ne7AO0vjAmT8eBoX/H0DnaU7JgMlAUAkp479Fe8oVS4ocq97+jaRqKwjK7ntkN+DChdKAfegEGC/FhVqoi+BXn8/kiUYyQ7kEZqMboublZcTp1FHkpTCkXMdFQ5Dl1vUrqBXkWba+TR+N4OZu9d4SYs6oa8rwQJpVeLIpcGqDIluG+74jRMwzTRfq8PE8qbUgHRwgehpg2S5vEmloW08jCsHGYiLli6GXLp0+Kqs+XVC4L8l7O6xdGrQzolQzUZ/HN/vx7gUuvuZBSvHc435PlObe3d+RZzvPzLvXY4tF4OB4gKqbJY6zGalHQPLxaU5YZ5/PAp/cneu8Zesdz3FNWiq+/eUtVZeJNloVkE6E5HJ4S2ChLUJTSeOdEReLh8fFMlinevL7F3YldzTgFHp/2iAeixdqMzWbLp0+f2O+PFLnm/fsf6LqJzGTc3t7SdQNPj0fyvE0WTY4QZmymKascZSJKe/JCFETjMPP9D98TQqSuS149vJWzz+aSc3pSz5Ml1t4iJw0Ev+QoLvlwdhOZM0m5UGB0zvk00/czq0ajVMZqtWUcDwkXEbatMYa8yLm9u+FwPNK27aWODNGjtEEZ8baMRPFLVDC5CT94iqqgauoLq3rZEaC1uqjErLUcTkepH6ylWVeCBUSIKkouG9wFBDTGcDqdLuf/cp8vZKzT6cw4im+fSfiNWJlwUYnpJBmWvP5SS0zT4jf64lMtoKBYUYyzJ4S0eCoqFmXL5xX18oXPa9QXQC9ezo2FUY8iDTEcRSn1TVkWODfRti0+OJ4enwWUz3I+fPjE+dQKg3IGUwgb0PsZk1iOyup0VsaL/9/SE8gCtmWpjuE/XEP/j4/ffYuuXXTSpCUQstpYaWGcaa0Y54lpnvDOYzOh4C9bRkMIaGOp6vqiEV8onp9vk9UofBTZqLGWIqHmC/0zy3PZDlQUaK05p5s+z/LUNKrkPSCyEO9n8ZyyGZGYzPIzVqtVQv19eqjEb6ZIIOYCXPWpIFlMgOu6JsR4Qa1XqxWLn8myHWuenAwig9yAx9OZZaX0nA5XOeCUmO/Owlx06ZD78OED+/2em9sbWc9eyubC01m2mn7x5Zdopfjbv/1bzqcTX3z5JcfDMbEG5aZ53j0zz/OF4TiOgzxE48g0z/j0Oa2alQCB7mXD28LaCF6meGlceQEiJQS2c078k2IIfPz08UJZXphwKknul++BZFSZOlgfRD7w8hO5HFqfb2Sc5ongZRKsgF/++tdYo3nz5jUfHh/5+OkTU2JlKnQq6gZAi7lw+g1Pu2c+Pn7iouFfZMkAStZZX5gswbOoQpavxcR2We5Xeek6gcaOECesMRcKvRtdatDVBTBz3ifpych0kmmQVmCNpesH/vYXv+Tjp4+0bYuylnPfczieGdzENDsBkH24XNhMi0SvTP52CthsNtRVzd3tLWVZcLNe8e7dO9ly+MVbqqbheDrydNjLNQpBisXJ07UD2iAMryxDJ9bMPE8XpmzXCb1bilT5BAXgVkyTI7ogn2dZcDgcybMsbZK0cLtmvz8QPTLNUAFjFXUtlH6bKbJcCl4fpEAxWjPMYwJQZPtwRHE+i+HqPAklenYT2+02TZYmtlvZyFVsNjJ5d3A+H6nrmq5tCVEScVEUHI57irxkvd6wWlfc3v0IVGC/36UpJxR5xTBMNE3FaiVDj9P5yOJLmWWG9brGGHmOfBiYZmmuYoQ25Zumqbi/v+PNmztmP3JK7JyiLC+yyNPpzLJF8eZ2xWpVozU0Tc0wdESEVX08nnFOpm3j4MhyYTSF6Oj6ng8fPiY5To5SnhgnqqphKZKed88YG3l4dUOWrWi7M8ZAiPI9bvAMwyx+ftNE1/e4AGiDm3rUas3sPIfDCefg9f0XbLf3vH7zhpubW5yb0rZikzzcBDC2NuN0OjCMfZIkv3jEFEWGD3OakotnmGwqlOLMx4Gue+Ljxye6vqfMYcgD3/zoDT/5yU/5y7/4K/7qL/8cbaA9HZknzy//7lfcP9zTdR0//fFPMHnO/vDE4+M7NuuSh4ctxwN8ePc9WfaWDx9+zfsPEedmds8fmcYWKPijP/qn/MEf/mO2mzumyV3Yx0uxsWBm4qWX7vHPIl7+N00cUb/1X2T3r2x9WxZtKATciwsKuCy6jFG82mIgBieLGRKYOvY9w9CL+fo4Xpi4RbK68NEj1gkxge/+Uoz4BBYWRUGeZwnoyxjHkcVKYmFULJKJ8EJ/vky0tdZM84y1GgK4OdKeDqBloGetQU9wPobLFbDGcD7uWa2EDdG3jnFcTNF7opcBo5ypAR8nttuCr776kt3uQJYbttuKiMNmhq7teD1XIuON8owarcmKwKpZs9/v6AfDNHp2z++BjKqu8E6kaW6eGUaPigajFMro1BSRlmJNVHUtDZQS776qKtAWhrHn46ePlKWwcM5tR9+dZOiYVeR5Kj6VZ72padsOjfhhySIOJwzfvmO9rvFVTIwB2UAPYEvZDivyQIvqBWWOAaYQMVo+48zmNPeyVChGhU5DobIouL27kSUOSpHlMkBb6oCmFrZZVS+TdamHmmaVjNClRpL6Z7oMXufJk2div7JqVsmjauB0PlFXNatVgVKRutqw352ZZzFKP5/PTHOL0oGvvnqL99IwzPPE6XRIagTJ9b6bKMuczfZe2DL9wH6/BwLDOKBUpO1OFEVOs6qQjeMVxJZzu0fpSJGJh07fCZu07yNFbhlHYXkcDhGlHWUl4GXdCANy1axxyc8VEHlyWfD0/Jga5qQM8YE8Ly/D28N+z7ntqOs1GkNdrchsnX6WIjMVCkP0HqUsZdUIo86IL6mLI13bprpoxpoS7wLj2Mk5ZAJZniEeV0EG1uczzWqLioqmqZJvs0sL2Sac8uSZ+N1am7Z1eo+b5bzPEzN0iQWUW7ynpmlKQJ4skzLGMM3ihWs+G0B+PrQHRZ58IefZXZQBzjmGfqDvu+T3JfWHgAD2wniIeDK7eMmKDyVIHaWMoj236X0iG5eTqb/Rms1mRVkWNE2TSAAW7zz73VlsDpyi7ydCVLKsAfESjEnLZZROW10DMVq8n+l6kXEvmcwkuwPxFxXw4GWKI9k/z42wkWNkmjsya9jerCgrqcW7rr2ANA+vHqiqguPpQNueQUFT1oQgtVrXdRyPZ2IU9mGWW27zEqM7QoRpHEHJ0qYYINMC+qFmlIlo64guMjuPzTVVlfHw6pYsgyzXF1/PaZwwphZQ2DSAZf985LDvCU4kfkZnGCXMKaW1LLXxDm3S4iIjFgvOacqyoChEIeTDeFkKJZ9/h7GW9WolfUX0cnIaGfCJVYycO9M0J6/lxaMLmqZEIf5iuTV07YR3E9E7VAJoM5sxG8swysKUkJh5RZ5TV7UAXN0pLUiRzzaEmBYhzWSZRqf7Vli9hmlaGF7m0mcuvoWLN/syzJYIaCPSyHMb+fixI3io62VYtmxTfmGOfS7blHN4ATVSzx094zil17Swp5Is0i3nt7DM6rqm7Qaen/fyzAV9Iaq4xD71cyBGnc6FwM3NmmZleP1mw+xaVpsNb9888KtfvGf3fKZZZ6w2JeM48u7dB9CBqglst7Xc80rsfPb7EyFGXr2+5c0bSwiCIxxPJ4SxVTCOR1l8UG95uLuhHybaU8cwzIzDTFXXvHp9i9E+AWgd3in6fuZ07Jgmh3OtnINFLsCeEh/DEBxVbbi5aXh+PvPp0x43xZSLDPM8sdvtKIqSzWbN/cMtx+OBEIRBPSTV4GITpZI0WiXwyBhDWYn/tmxalU3APogkPs8KFBqbBpogMuBxnsiUwUbNw+s79LO6EHVCeJHLLr9b7DnKlH0k/1gj+Sqm4YhzHqPFl7IuGvIio596lPJii2TE59Vo6f2ybc4xntBa1IqLEg8i8yyy6uWZOJ9Paa+CsPjnWYhWIcZLLby81hB0AsmlnlhUisYY4RYrLkCw0RaUxoVeGK0JXJc88oLwfT5SX5iqSi2fR0y5OhLCsvBCrmOzqgSUzDVGi7pzdiLzjRH6OIvC4iRe8W6OCV+SPiXPc7ougbwI01AlRvYyoMtyIz7dcbF9kBo7s4u92O8WvzPAF2JAGYWP4vtgk1eAsZbz4YAPgbquWa9XlzXuz8/PCXgThptSimkcL/r1xeR3kcDImnbHPIxyAAh1ijIvBBk3gahg8o7JObSRG3UYR/JS047iVaWVJqjIPIxi3Go0KE3wnu32JgENgj7LZiTxSOj7XjYB8yJHkBXm8qdtRW5cFAUkMCEviguNVinNPAnCPE0zyzbhqDQqmQyPs8NYhR8npmlMCP9MnuWUZcn+dOY3330r25ceHtBKVoSfTifxcFmv2Gw2fP/ddxyed2R5TnDCvBmHgaqs+O777+imHm1UkmpqVk2dXmNkHgdUUNysb2QVdr3GxYAPnu/fv2eYJ2yWyXQ3BgIw+xnnAiZN7PM8IwbxhggxIf2jMH2UsQuUJ1NDnTylSOSUBWVHYS8biV8YJItM+PPJsdaKgNhhtk5ovTrC9PhJJiVaEZRGmwySgaZPjFGMgRgvsuiYUkGI8SIqkw2V6TDVCudfPveFAvwyLVvAR5m0OOfwMcgh7wPj9DI1i3hk049DazHN9skncnYuTTYU/TAyuSdQitPTJ/zHH9L7thegVWtZpiASEJ18BiIZYuJbFAWH3e4CxLfdidWqoj0fOe2fAdhs10xu4tf/7jcM08h63eDmmTwv0SYT/6dC4eaZaRJ/zCyTFe8xTS4X09RmVVMUJWWVk+Wa0/nEMLaU1bLcZqLvO5HaNo2wxILDGkvTlByPp8tkaRxHprmnrivc7FitanwIFHkJUXwStVZJ1iBslWFsUapkHAeed7LNNuI47Pfpc/Yp4YpP1zxLsSONn0oSDfFFWrZFOT8xTq1seIseo1ViKY+Xgq0obAIkK06nA9M8YK1MZj58+AGj8iQ5i6zXK5pVQZE34rPhRIJU1zl932KzezY3W06nHZ8e33N3dyc+OYkWf7O9oe87mlWNsZrTaY+10hR0Xc/z85G+n6nKgpubNY+Pe370zY+xNueHd+84Hk7C+kgyIe8jq2ZNP4zM80ier5jmkbrJxc9pGhj6kfOpY7VaU9fJy+N0Rilp6FabLW3XMU0jfhZ/tq4b6LuePK9BwXq9RmnH8SiyMGsz7u4eMCajLDL6fpQiIi/p+km2Lycpgmxs9sIwSYWtUlqWu1jD4fjEv/35v6IqN8hG0hGjM7788mvG6cD+8MhXX7+lb2/IMsO/fD4wDiPOzTx+emKeHHVizJ5PO27v1tzebNkfnui6A3WT8d33vySiUFpYWnmhGaeBVw+v+NP/6X/F5uZrZpfjlg1zMW3oWxh5Sz77jJ0sLD11yT+XkUZILV8CBl9ku8tfEzD/kjWTJFmlIYlK56afJ8a+QysYho6xF5P4ZcAQgoCVwsRdtqA7lEZkSLxsyItpcYksIpCz8nMWjxRXOk3g4wXcSm8DgNkHTJLJueAhCpP5xeTYYnTGNE44F0Vih6Ja14zTwOOHNn3+CqutWEgQcc5fzMHbtiN4aQLaU4sx0A9HJrcj4tlsSiKeZl2ilOHDpx4Vcp52PVlu6PsVMSim48x+3zNNjqbJKZqSWXmMmSnLAhVnhn7CxxkVAyYzzP2U3o9NjZTj/v4Gs/jLKi/AgxKfxKrK8WHGuYH1ekVeGvb7R2EsaWnytYVMSSMbgmyxPB5lyFfXqRA1huAj4+xw00zUUOaVDFtzWSLmo2OYhgSQlxRFRdOs6Yc2FeSBOQiAszzXIlXTtOcTsk28vNyCWluGfmKeZIuuSKN08nQ0aVjpEzM+sVYCnM4dtQ8YramqmsfHJ/quTyxqy1dffUlZrPnw/omuG6nqnPV6xWpdopRPjDJD1/XM88TNzQ390LM2KzKbS97OZePqOHYCbClPVRUYY5mSBcXd3S3OSQ13Oh7oukkWfST2UZ4X5HkjcqLJc3ureX4+0vUtgYmqtpzbgc2mZp5kO3wIsEkbPOfZUdc149jTdWM6J0qMlkUi+91OZKFRnrNX9w+8evWG0+kMUeFcxJocUGw3W/q+ZRgHwjwTg/i+jtMoqgGrGcee0+nINM08PKzZbracjjOjHwmzDDKrusAYWZhACJwPR+q6IYYZFSOruqRvB1lO49KwMMvlcx1GVFRYZVFB01QNNrP0XX8Zfmqjf6s5GSYZBudZhrKKTMkChxAdISpU0Mnv2l82c4sSSAb8eZFJTe4dbpY6KXjSdlzxQ9NWo60mRpd80sS/LHhPSIPgXOWs1jVZJgbnJvk4BR/o2pYZRddN+JU0Y+M0o1Jt6b18FjGI+iQkH7oQPctm3GWwq41hHMWcfxnoohQ202i0qJdSvgwxpq2yL5IsrbVsIcenzbsaa6VOqesVJskDrcnRyvL0eEwgZkSbnCwzWFswTTPv3z0mBkykyAuU85zHSRhXc6CqSlarDff3dwLo+pGyshSFwVhZSnBuuySH81RVjrEqMVpElXI6HgghMg4zh8MP5HnBdnMnA2GlsEYLm92LRNTrgDLiMeWCZ5xHSlMAAtgqLcCkDPw05/MJaxR1LdYGeS5y9aKQBU0LS6iqRK2hrSLOcmiqqPAuMIw9XduxWtVpM2mURXPIsrFhkMGVLBaJdP1ACCJJj8OQ5Omy/EmGkGIHcDicgUhe5CjA2pwYYZxcYkVnGJOlXvblzJ+StDgkwBHEGiZLfvMCOgScF9JKUcjysNy2rNYrVquKpq4uJIilD3nxt5RwbmbxFhOZt/RWZVlcag3ZZK7p+wnvAipG8R8eRJ1WNZqqrNhubrE24/7+nnfvPnB2w2V4KRvcNcZatLKomPHxQ0uee2b/ifu7O372J/c8P8lAfxwDu90zfTfiXMSNGbnO6E4DIUaGTlhSznv6/kxdV6w2BX0/M3uxrfr40V3AEu9amnVNs2rwswzef/jhkc22omruQM1kxrBaN/SdQ1Hw+nVBXbcyhMgzVGJens9ndrsDxii++PIVeakpqox5nmS7sY/c372lPQ+JoUlidznatv9MXpqluigxzpRcn5AedqW1YA7WkM+Orj2LMsZ7rBFljU7+9SYx9xabIpF7zzTNSmqGIud4OMrSy8/65aWHEoa13AerpkbFSJ7ZS8UpYFdIn7sM22Y/MY1L/k/ScDenM0ExdOKpKAsbZ9bbBq0UXTdfyDdZbjFK6rCiqpgm8XkPS12s0qKlBKAJ41Fq0sWvtSgajFZk1qTFPmlhmZaN6/M8XdSX/yESUFAqLUNaQO5Fvi6/YxlOSh6HiGN7s+Xh1S1tm6XdDjJUWzU1XTsk5q3m9avXgOI3v/5BgPHgUFp6kvO5ZQF2I+CdDJaNTSxzFvusDGLATaL4kHrfJXLZ7xa/M8CntbpM8JQSk8XP/fOyLKMoCppVI+aW00xZVpfNaMu2mizLLmDaIvddNnkteubPvQYWBpr8XplcVGWVbhS5MEprDocD0zwTovjalWUJPhCVxl4kvyp5A5aXCYgxi3n/dDmIlyUVwtIT6vDnr9Vae/HdG4aBSExfs0yjS02ngAjDMIIxF6ai1ppzd7pc177vaZqGZi1T8nfv3lHXDW/fvkFrzel04sOHDxc59N3dHcfjUfwDKknYXdddfArfv38vD5wVMClLzKllIclyXW1acLLf79NhKSutrbVkl7XbnRiXZpmAVMHhnePV/QNNXXE4yIa8Lr2HYRxRRi/kEplaKjHCjCpC8vtZ5LLSdL6Y0y+08YVSK83JZwh3TLbHl0JJ7oHFG1Ck2/ryswBc8hVRSmEym5pxWJZ+RKIYNYeX+2753S9TgiRlTJT45WeL/+JCx/1ts/wXGr+Alcv9slCFF8p9CAE3z6gsE7AxMfzm2Sc23niZRuADIZn2Lj4wMXK5BtZatJFDPYbAelVT1w3vdnv2Q3+RFMzB8fz8zJA24K5XK3a7vbB0dE5dF/S9FP4KhdeRaUjMRnJiiJxOHTEq7h82VHWG0hHn+tRQWJqmoutkst80Ym6/3z9TFCVKyRarshTzUjF4HZm7gZCWG2xv1kyTQ6dppEqyfpmIe7QpWK3WnE4HrLFkJhNvj8S2vL27E7AqbS9eGKyrVUNR5BfJudEW5+aLR+fxuE+MRZu8+UT+tF5vcG5K01rZkmes5J1hGFiv11iTc3fzCu8Dm60w12IIPD8fONMBOeMwpGvc8PaLO6q6pOuPbG8ETFu8H7uu5Xw6ozBUdY21inHqWWT4y/1WFjn3d/es12s+fHjPF1/eUVaW8/nMzXZNXVcE75n6gXGSgj8oiF4RUgEV4sx6U7Lf72Voows8DoXILhb5BDFQ1w2r9Rab5Xx4/4HM5KzXa4y2HA9nfHDsd4+8/eI1eWE4HHbJwkGkZFVVUZU1IaQJ/SRM7qKQAvl4PKWJqErMMmSbeD9wPp1o6owPH78jz47c379it3smBMjzmufdB2yWEZxnvz+z2dwRg+LVw2tub+9pz2fevHrgr//633B/d8fkerY3K169/gl/82//DR8+vkOpSFWUTPOUJNc5+/0TzjusrYhR8fh0oF59g0hcgcUjT7JS+peFqfH5nzRZvDCW9W8V6su/R5UM3JW+SA50OngXGEwMWPyloGFh3SFsPGstFMLo9U6GPItH6jL1X7xxl4ZA7ntpUkSKM19ymSy88pRlyThOTFNPCC5JyzSfv2Pisnk9XL5XBfH3VMS0rVdAvhgMWueoOOG8mBXHCFVZ4734ADVNTV4UdH13YRB7H2TL2ew4nTtOpxPj0LG9a/A+Mgyeqjb0nWN2jq6fubu94csvv+DDux2zED3YTz3TKP5lwSu805yOA+3pA9MkA4Y8zynLjOBU8n7T6bwxWCveNc47uqHDWMVmU3N3txZkkygSsEzkGnmeYa1KdhczNjMMQ0dR5mRZTo66bH0fp7RpjWWgaplGJU10IA2sZBjlnGxqneeZqi44nMR0u67EH0o8+DwfP37EOccqsdkA2fzdd6xWDUoJgysGnRgr4vkm1idBchpSzy3G2GITIfLYYQjsdh3DEMlzWK1yskxACB9OKB3Z3qy52d5QFCXeSwN4Prc0TYG1hqenT5zOhizXrNc1WWbJbEGeiRVBWcowQinF3f1tsjzQlwZguVe7dkggl5VNuomp3jRrvOtkUdA4JYa4bKk9HTusLUBNSdkRL/Xiar2l685p2ON5uH8gBM80z9SNDHiPxzPGKLbbNWVZUuYVx+OJaZ7JxgytNbe3t1R1LY3kNDEME8fjme32jqZumCaRMjXNCucDWSbXJUQn1hY2qWcUF2bf7vHAu3fvyHORWy5qi8Uzs64bQljqLXnGtFG8en1H2VR0bU+eVwy9WNuolFsEuLCsqpr75pbD4cButyOqhZ0cWJammMTGsFqjiLh5SsxmL8BZFK+iLMtACeA2TaIAIcrAN/iI0ZZg4oVFPI4z1iRmYYTgAj6K4ma7uSHPrTBMq5KiyNhs1vIcbNcYa9nv9/S9PPBuTizmtATweBB1TV3X+ABdO6GNJTMW78c0wBCZWYxiHyAsDBmyyKK+Am10YskIOBjVC6NKq2SlsAAzqdsOqdY7nc5p4JgTg+Z8Ghl6l0gCM1kmzb40xj4tz8k5TD1lKXYfQ++Y56XBHC9LdmIkPcdn8mIFaiQy4HyPDxnnbqIopZZcrTWrZsXxKNekHxzPzwKKrJoqAeQDfSfAa4yWtu3oO/FIzPMCTWQaBbBRUWFCxMUZYiQzBu8cp2lkHAWEa5qSssgBAa6ruiDGCWOkrq3rmjzPLiAwqOSdJj5mZaHoW2FmTpPUynkm7NXFumVynmmUAeJ6Vadh5MjhcEyAjceYQPCw2WzJc5vYsP7CTs6T/VSe5bjkB5aphe0uALlS4cKG/9wGyiUmnLCRZCGJSDx18vkzjKOAjrPz5Jnh9ZsbYfvNogBZQL3l/H7ZTq8vQ7mF6SeKFFkGEIK/LCCK0cvvNeYC8Cw9UIyecYgMw4l5FsVbVRXp/lcs25OVcuRFAyg+vNuLqiIGvviq4u1XK8apYyKy2uR07Ym6usHP0DSOYXDcP9xyf78WZn1/ZLNZkReGvm+Tt51PA2FZymSs5OZ3756ZJ0VVQYg5w3Am+Ejd1Dy8Krm924jEdfKM/TPEjPYcUbEieLFFUsrhZodN+UIYacuCwMDHj+/YbBt+9idvcIOiPTuen850nUMWjiku23YTsCakGdKilZjAJ3epfbSWeu10PIoc9nhMrC17qfsEf0gyWGsT81kWSFljhY1rLX0fCN5TlYkR6knLS01i6xlZEmptIllJVaa1DMBQ4GdPcGKtE9TSGxtiFM/QGIQpLQw9JwsDfUBlmvWmYb2usZnc31lec3d7x6k9Mg69EIlWK7Sx/PD9J8mJk09nUVL/xcWz+QWIXnqZaZxQWtF3HpQQEoJ3Cat5AbVjkM3pf3/AJLU1nwF48rOFsagvAPc0j2gtxKPVOr/0rVVVsHj6laXYe3z88AnnHfv9Tl5zslIIQUwwFmKHl8Xlcj6l15lnOcMwMo0e5zq0HihLy2pd0PcTxkbyXFGU/3/A4LM2Y7vdXkAV4EJJ3mw2l0QjSzdmtA5o9XKTL7EkqmUS9jl4JwdnvAA9C8Cy/B4XQkLg1UW3HUJgvV4TQmB83hFBjGcT68YHRUySA4Dz+UTT1Jf/773neDxyOBzktY8TS5IMYTnIX16v0J3VJeHP80yWZ3Rdy/F4IrMFQt2U5ul0PpNbSSjicTPRtR11U7MsqBAJ7cjT0xNN07Ber1LhN/D+/fsLMFQUBfM08e7dO+7v7i8sqWWxx+dmkqKBl4eqKstL0bv8nEwLwwykKDieT5eNZgJorNGRi1/OcRKAVqdrNjthXs6THN6y2IHLJHVJgJd/ovALcy891J9vbgRAv7D3FrP3zxl9C7tlKZyCD4k+HvncN2/5syD9L75IKUnw0lQvX/v7fpCfx3Ld4DO2CqR7YWHy6X+PebOAmTIRrQA4nU9igKqXLT4KlT6Hvh+ISuOdp5+mC6inkxF2CAGFTmwIMa/vuvYCkratLPHYbtZJYiWvabPZ4KqCqqzo+p73797Tdi0hvX+TGFJC7zY4F6nrAq0l2YUk/8vzIhWxAWMU8zzS9R11syXPcqo6A2ayXCcJDhd/yHmeLhJikWDWlCVMkzzbywr2aZ65v7vHWmHnCADnL+yRzHo2G2HOrdcNq1XD4+Mj4yTLPvIksVXAfr9Pm4h7YlAX2f0yNGiTzCnLbQKS6tR0SgE1jrKdMcY5+dXJlslh6DmeBVg02jKNnjM9wSm2N7dkRujqp9ORu/s77h9uKPKGx09n8ZkyjmlqeHp+5HnneHi1hSjbI+d5ph86mVhGz/PukdW8Ii8sd3e3YjngPe/ev6fIC77++puLd1ZZ5ZRlxeGwk2LSWvwwCBv4/i3nc8f5NPDuh2di0Gw2a968vePufsUwnvnhh+9Zrw1tK/JmYdUJk/f+7gYfHNPk+fTpU9pCatM0s2W93vDjn3zDYX9CRShLQ7XKUXrN7hn6fiT4eJF5d21PiD7JcsXfse9HzueW/eFAUdQ8PDzgvKc9txz2R2JU9J1ju41Yc+b9p7/DO09Vrdlu31IXGWWx5d37d9xsHyiKjE/vH9kfTuIv0qwpqpq27+mHjmE8M849VV2SFyXT4Di3pzT9N2g1JK86w+nU8XB/y/E0stu3fPNjjQ8vzZrit/1AXgQDaoH2ZAovpLsE4H3mNQKpgYSgXkBAmdLK/182ihHTf42ybXJyA10rAJdCtl7iA/MkjKfbh1uGcbhIvQBmJwsllkVR3i/WCfKa5tmheFlAtfjeLsOwxTfopQF+sTaI8UV4vHy/VuryR6Q/wj4WWXtGjAIgx6g4HdvLVkW0eD+CLD3IsoKiKDmfW47HTyxHR0iveb8/UhQFr1/d8v79I22UDbXogNUjN7dr5kkxDuDnSIzC3iEo8qzEmHT2e0eRx5S3DcE76iajbjLyMmecZqZxRJtchhBakSHb00AYGff3dyilOJ8PkAlgJubSsqV7Gk9stmtGNTKNc1oKIsCDbK97GTSA5Pe7uwfZYD86bm9uidGw3x/SkqvkjebFqFqWcmUJlBqIUbaWLtIXYQmbyzkxz1JMaxXTZj0BKLtuwDmXloRlKCWSYhmYWqY5eTAXOa9fPzCM7ykKzRdfPDBOHQoxrJ/niYeHO25u7vEu0J57jscjSonH8DDOrJpV2grsqOuCzWbDPI/pjNNkthBrDSOso8M+2a/4SJGVomgIwvKcRnd5n/0woqKm70cOux7vhVFQlTXb7Q1t23I6HTDa8vi047g/U9clzeqOPNfM85jsBkaqqmS7uSHLCrq+5euv30pOdI4sz9hsZXmIc7KetOs7cpsxjgNZntN2ZyKeIq9kyUhR0A097bBH20hWauq6Ic8KdvuDyO6jxUcnbAwVyPOcu7s7tLHktubd8EieZ8n+ocY5sbmZjTS33kMM+iKTLcuSU9qsLqqULedTjzYx+TAayrKmaWq0snRDy+64EzZF2qitkIauKAr6tmOcZbmZ0tJkGatT7eoJQWq4cZxkaQARkPdRlFXyt51SI27IMgEXvI/I1l+xdJCeQRbq+OD54YcPqSH1EBVlVdB3PW13xmYGa4QqcXe7pTv39LYTNtt6hTaSd50v6buRrh1xLlAY2Yqp0bgoKgCigCCylEbAzcWmR+poATrGUYzfXXqNy1IN0pA2xEggXJaRxKgwSiTM0zgzDSGdI+LhrE2G0QXz7PBTGp5Hxe3NFqUGDvsDWgvbf9XYNJRZ+iPxrIP24km+2+1p6iJZcxxYrXJC76RpjSIjrpsSbSzH845pFmn1NPaoGInRpLzuOZ9HzsdksJ9XkhuiGM0P44AxAmapGNHGoBLoFoLI+cfBUJUi0W4a8fwcpx6tFX6Sgb3VWmT/aSO6LLgI8mxFB1EkgotXbFXV0qgHAYqcc1RlBSGS2ZJx8InRJ4PDEGOq8aL4hKbt89qIpYKcmZa8KGQQrzRZAqkX5pRzwwV4W4bzy7BL8pa69CzGGIyNjNNIBIzNiXHx6BJ2kfcT4yR9g3Oe1/e5MME++wMyoFs8SZf+Z+lXx7RxG9ICSivqFCHJlLh5YUKR2FkCMGqt00bwFms14xiwRqyyYroebXumrlZobRgGYYD3fWTVbPj48R1WKx4ebiiLNeMgm4aruqIoZBlT30+8Wt3x6uGefmwJXpaoOD/T1BXGSr7NMqkPm7XFZrfsnyNWV/zqFx9RSnyPiyJn99TT9QM//YNbikJxPPQ8fjxzOHjmsQc08yRgJhrKIEOfGCM32xU/+cmP6MZdUqLI+elnTds6xmmmWW3IxpB6P3m/y9KLS0QuIJbYnaS6JxUoC6Fpke1Lryr1nEqMfWEAL/9tYSzKAp/g9oKHKI3zAnyVRXWp/TNrWa9qeQ6sToSS+YIJQEz3a4Zz6WcHqVUUFhUNCpP+KffnPE5Yk7G+XScGcI1SsogDAnmR4eNAUVick/c1uYFVIRvkfdB436OVQSTt/u9dl5chuFYKs5S3Rs6piBI7ASV+kgRh6mr126Dey/KM9Bwh9UmeSz4oSlmCIvsgHMZG1uuKphH/zN1+fxkajMMoz3ueUTcNdVMl2bERtabNCWFP8Ao3CwtY6YhRL4N2uR0CyjhsLgvTQhAVbEB6yR+9uUEb2Wy9Wr/gU/+x8TsDfE3TsFqtLqCJ9/4C/ixT9cWAV9hf/SUBzrO//PcLWJOAkrIsLwDWPDucE5bHwrATI9wH9vu9bMqDC6tq+XnjONI0Dc/POzGxtBnGZmgrCeN4PHA4zeS5RenI8Xjk9vYWpURG3HXdBYxxioSij+x2O8S0NX9hIih1YRIJe1EkuxGIITIMMvWtqip5270s1Oi6Tvx5loUAvWy/WdhyS7FUVQWPj498+vTpApSIF1LOu/fv2W5FWtK2LcaYS+O2LLiIBB5ePXA8HKnKktVqLfLjvqfIc5pVQ6YzzuezmOum6cMwjqzXa9quozufmZPfkkYWqMzOoRMjzs0OjaIpS0gAU0QmUD4EbGZfGJby1F3iMnFK/3+RNiT1wSJcuzSj/yEwbvl3kOZxuVc+p++iRA7z+abkz4HOz6nuC+i8/L4F/JTJbfhsUvaymUdks5I0P78fl89k+XkhyCG3/I6FHZpnOWI6asT0ehjRKt33CMVYii6NNib5FYoxs7A3wuX3Hg4HYoyURcHzbkfwjlNmeXp6Zh5H8X/RAh5WRckcPD6GJI/ziaFKOmhkgrLa5FRVyexm+nbAWp8W4QjtnChLSUKI3Nzekuea9x9+gzFiRrtsl5qmmdPpyGZzg3MBayPTNKbDZqDrenwAo7Vsokwg0P39HafTmRjh/uGeaXQcj2eenp5E1twPNI0sB9lsmstBBrL58XA4sl43aTK2+F8Ml/tgYeU6L2DDkuTneabrzgAvTJW01Xf5HWM/MeuAUp55kk2lWln06ZD8TFr6XvLZ7c0tD/dfsnv+2yRBKcjynLpaYYwnz0qUUrTdmXmaWK1X9H3P7e0N3snQo64rhqGnqkp2u2fu72TC+/T0Ce89d3f31Mmw/9Xre8kdw0xRWLY3DUZb5lkTfEZRGNqzXGOR1NUsG7aPp6N4SvQD0bl02OWExMAbhpHjWRaKbNZr7u/uAPEGybKMrj1jrWFyHTdFRZnfk2cNQ+/YbDa03Ynj6SDFeCkbvm5vb0CRJsrS1P3w7j1tNyZmQ0VZrVFoyqoE7Xnav2dOk22lDfUU+Ef/+X/BPDkeP51QWorSoij4z/7pP+Uv/+KveHp64uc//zn90Im5Po5A5Ntf/Ybd7pnjseXcnvBupiobgldstzccDyeKfM04Bn70zZdsN3fMs5fiI4ZLvlrAMaWW3JbkrgKlX3h84eVvC4iiuAw/ojgFvMTnLMEFBUwmyd45xqHFTwPBzVitOLc9h/0OFSNv377l/uGBX/7yb6VoTcugFpZh3w1sNhuMzuiHnsXXRZjK4sm35EPJ5So1IC/sBGESv/irLO9/Gc59PsDTKX8uDcoCKslbegFEZdOgpij+38z9x5clW5beif2OMH2VixBPpKgqFNAgVhe4OCHZJAf8t7tJrMVZNzEggSaqgKpCpXgipPuVpo/gYB8z95fgCIkBPVesl+9FhPu9ds322fvbn6jTmTKTqWXTPdN3U/LbjdS7EghYY8gslFXJbrej6wau55C8jqAsNV+Gnsv5o8i0gsKjpR4ZDSEwhjH5Hio0amU8Oie+TFoJM8JkgU2RMeWR6MVku9k2tC0rqy3L8pd6pISZpFJy9+12Jc8tNisIQWNUQfCa9taS52Uylbcc9nu2uw3eT+k59cnKYBZf2Thxu0rab1Nt1n5KGCcirxVWGwm8MxRlmZgupKVOlVhB2bpkmb1Ldeflc5rmxQ/TUBRZ8hCCLK/JclmGaBexmeK3v32fQBnN8HyVJnbzwPPzyNPTkfY2UlVb+m7mw89PxGjIsxJrxdqg73t2hxz6wPPxxHZbJgltSVHUTNNIWWY0TZ4WoeOauJnnJXWErr0J+yeTpa2czRmZrTAajs8XbJUzjjN//OFHiqzkfL5iTc7tNjDPgbu7DT7MnM83ykqCGKZp4nDYp75QszE1l8s5nRlX9vtt6oknpmlmHEZicGiT4fxMFoV5Nww9XdeR2Zzd4Q6bi0QLHMfTE9frlRikrvZDhwu5nB1VRgSmqcckRsjd7kDf90zTxP39HYe7A12SvhFFHpjlOc7B2EnQSj90aeES6ZJXsdHJBN5kWCQYwLmJus4Jgwx0v/nNb/jd734nPodpDliWyyEEvPJrvViUBXIPyXOdZ2Kho41CxYg3AZTUm67rxfKjtMk+52VhvSxKtdar754xirYbxO7BLEy1QN91+ODJ8xprBeD1buZ4vBJRlLVY1cQINoHiwsYWz6p5mjFKCAYqJYmrbEmPzKWXgrUmhujJc5lviJrZe+m5bMbCkvXep+C6tOhRiz/TMoBLjTdavEoXoECrjOA1KkpwhPeyRG/bYfU1DZDCbap1KZPnJT6ExDYVGfpif+GmEWUUdb3BzY7xNpDlYi9k1MzDwx7FyDhE3Kxwc6QqhalijcXqAmUF+BT2Skq4jDH1yrDdNZSVpHQPbQ/KE51LywWLMWI4vwSMZCnNdhhDmrckUVhmLUWZV4kdDhrD0DtJ0A2KaRTF0mYrSqUQZrq+XefE6+1G33YYMxGcsLCMls9rGAYhJQSIagGkHYvpviII49rYpPKJKZSwJs8LbrcLzk9pcWLIlCGGaSUByDloqMoqnYdOkpqNpG16L6EK1qokV450bYfzQWqJtqJQyew6E8vnm7Pb7dbZZRznNH/LPCJAlDC6FhsqYdsavB/lntYL20mBskRUsjYwaakzkWUqXZ/l3JdnqWtPL/OXVnS3mc8fO8pyizEhScszdtsNxIzbZeTTpyNVeWC/2TO0IwaND47b7QZKY7C015ZqU9P3s9TPcSDGUsL/JkU3RobWJxAHhnZAW8Vm57ndWoZOQywZhxY3RwG2XQrACLJwaTYWFWG/bVA60rUnprlnt9mhtKLKa5yOEDMy29DeHNOcCC66YmFCiz+oKNNiiPi1DTTCTtMvYOyL7yjrfGptnnyxFVm29E4C9EovlgI4k7zTOSekndRbDcNIVQuoNaegDednyqphCUGVWX2WNNqkiJN7wCXbrJgsX9T6PGhtqKtK7KACXC9XvJ+wVsmC7HzF+1l8TKscYTILRuSC4+npmO5Hed3zJL2a1YqgDIuP9C97xJcwVZWwAKMSSzqI1Y1PC4gQkmf8qzb5JQDWMY4t1kBVZzzcbxnnkb4f01lkqGpRf1lrOB6PYtlTCRFFLOVm2rbn06cnxsEl6yDPMFzSvG+o9zXW6LQIE4WY0mAzRVEYikJmxraTZWwIosQoSvE91UaWqXler33Wn/P153vwJRBnAS2WVJ7FHHFhWvV9z/l8IkaVwjhMoi+/NMyvb/phGFbJ5nLYLWDbMAwYKyBhWZb4rpMiS0hbRLUCZ3XdoLWVm76xfH165uHujqKsaHxgnk9cLy25yciylrIsaZpmZSTalLY1O0mnyfKC+8dHhn5c02Bes8cW5pzRhu1muw4fBEU3CBtvSSACVkDQOYfzbt26LHLQZUAex5Hr9cKXL59XAFVo6jm3243dTkIDTCnvO4TA4XDgy5cvlGUpEri6pCwK9N2Bu/0hNSpCkV8AUa8CZV0zjiPb/Y4qeIpeGFYhNWtN07CYpJvRsclL+nHAREWViyFz8J5ts2GaZ7QzON8S04AU0SuQswy7SkmKl3MOkxmRY4QgA55SK7vu9aZquX7L4bY2RFH+nk1A4J+yReMrKS68SHp9kjQt9/Dys5YGcjmcFwbnC1NlOdCkuSxLSYFT6qX5XGWk4UV6/vp7LqO/1WL8SwTnA8Mw4eaAtsL+cM6TZQL/j5M0ZgIOBpQX4+aqKtYirrVmt5PU3HEc8c4JazIEMeueAjEc2W93lFXD5+uFh7s7/uLXv2G32fD3f/u/pOsyrQeN9yDpe4Zmk0OAcrehrmo+fvyc7t0ZooBtw+Ax2hKjMIRyJfdaWRZkWSWFWon08nK5kuW50LKV4v7ubk2CvF4vLAb+eZaTWYU1GUO/DGqQpfQm55YI+wwfPMPQcbsJe7GqildN0QvguLBwhY6tSdCysATnFpstDAI5AGPyV5jdTGbFsy/Lcn7/+y903cT9XYWx0GykuTwev3J3t+P773by96Pi6enIMEzEKK+rba9MTlLCZt9Q1QLgW2u4Xm9smgbnHVmTSWpfFH8rYbtJwy7NgTCY7+4OXK9nsULwkhD9+PiQaogmzw139o7gLzw83BH8mcvlhM0C43Rlu6vT/SngZ1OLDMD5wONuj3MjX78eyXPZ4HvvGadp9Z56evpK1/W8e/ce7xxVuWUetQQBxIKqqhONvaAoJEExyxWn49Na50DYAk2zRWG4XVtJOg5JBqqE5brdNUmSMbDf3xHmin/1v/nX7DZ3tO3ImzfvyPKScZ6Z/EDbXymbgnffvaOocuCRW3ti6Hv2d3dcryc+fvworA9rMTrnt7/9C/7mb/6GP/7hj3TdSD9M1NU9VbXhzZs3aZhZbAZ8ou4j8gdlWZOFFjnWItdIu44XyUFApeFoqXMqhf/EsJI/0m8HVAQdJWxoco7oPSGx0Meho+1ukoqcmo/r9SqSuqhQGPpOmtJFNtZ10rjGJC1bku5tZvHRr8+KfOn0OpK8NsnkXtsOvK7ZK5tPqXW4WZYky4C9+AZZa3BKrd8rEJm9pygzZj9jbYaeHcHP6QwQME3rF39UazMul5a+mzmfeuZZ/PH8DKooKAvDZlNxuXxNiwbpH8ZhWgHG2QmLIrNmXb7NswAlLkScn7BeYxJrJstLNkVNxHA+T4AlBEPfDYh8T7zYximlvucZ4+CwJmccZub0TM9TYJ4g+JlxcLJYmRf7iSmxJkoBVpOHmdYhLUkmhlEkubfbJ2FBGb1u6YWlUeB9ZLc98Hz8up5RCztwGIQ5I8KTkH6uT4b5LzYTSgkogjbM88g4DhSlJFfmhQYVEtg003U9u92O777/XqRT42cUcHM9l/NI286czwPzFNGqY7dreHzzQFXlHO42uDBQpHCHcRBgFxXoh46sELm3814GSWOIg0jl5OxNn32EySWG6eSJYaS9DbKwmITlF6OiY2IcPePQp9ofuVwvKTjE8fj4Dd47DoeDMMjwzLO81zzP+O67bzifjwhTQlEUDVr3XC438qJIC+WXIJKlTxjtyBxmDocHCDH5MnturiUGnRgfnvP5GWsU85STFRrnHT5J1iVEzpCXlmHseXqaxDdylSmBC0HsShDvaJG9G/Ig7OrrtcMaYUOWRUOZlS8S4rElKEemC/quo65kCTYvoF5a6r6eFRbwaunDBMiPRGNRVgZiAbyzxOYa0/ItPYfzvNqu1HW99nARkXw1jQTevf8mTynAN9q2W/ssG4VhvrBm0Yp37+5pb60k87o0Eg3yzPfdhFJ27Y+nWeRiFotXfmXn6ORXmmU506STx5rHuxdrGKsUbhKAd+1jl8V1lN5NZp6ltr+kSVqTSfhRej5DELakTn2VLF4il/MNbcQHMESXGGyS6K6QgBtJbHYpsVXoMVYbbGZptjXbzY4ff/zA8egpyojNNE9fOy7nH8VfcAiS9oum7+RM8bOEXAmuETBKJYaol2fPyZkQtQRzaW0QW2xN1dTsdntutxt91yHec4F5FpZ+RF67ADsSvLUEMUYlyyCxeBHQyU1Jxh1kHh0T0N93Pc/HZw6HPTETECHPS4Z+Eo87bbhdB7puSKSSC0rJzEcCFaxVLMnNXdun6y6/t5yb0zRxu92IqRe3NkcpuLu7Z/EQnqaJpq6pqko8i70ErlR1kVQaM9M0YbVYKGhlaeotwzhyPrXCYCtfnovXy7FpeqkjAvOGBBh6FsYWUaTjMn5JLTDJwxciRVHy+PjA7Xbj+fmJeXYcDnvevHnghx9+FMDHSF2Xz2vpX2K6L2UW8i7yh396YrNVfPvdA30H203G16dnjM54fHwU8E8bLucbxip+/vln3ry9lz4zTDw+7kEFXPDEMGBtQZFbnPd8/HDleoRx9BAlNOdwqNlsSw4PGdrK/dZdBy6nG0MnYSdv376hrhrO56PYJ2TJcmkhKU0DdWNpmpr9Yc/5dGSaHOfzlSwr2B/umeczPnYQDXmxZQlnyLJM1IM+8vx8JEaxTLDKitd2+lrITAsBasE7RD2UpcUOv1DhCRirV2Zm1/cMfc/9/T0Kzehl6RiQ17IsuWQhb9O9N8riQmlhj/lloSDfu6xKghdWsjzDgTyXBdo4DQnoXpYZgePxSAiKTbMlBMfd3T39cCVGCCFyPJ4TmByJ3kgoi1/IPwvDTaX5IayKg2Xpu1yn1yE8C5j3gr3I39epkV5Ic1Eo6ivBRhuNmz3DOKdzQOpTUeTMU+CnHz+nZbXMdloFFAEfHMfjlb53aCXPW9+LCspHmMeRcQzM84U8Nxz2DfVmgws94KkbYTVOzlMUlqoObLc5ShmOxyuoSDeMuEmeq7oueff4cq/813792QDfgoC/ZuAtNOUFwDgej6sXWJYV4u+msxWlzfN8BbmWf4qPWZHQ7ZchfAEEFWr1+8uLHJ8ahwWsyfOczWZDnue8e/+O8+XG9dbSNA3H1V9Os9ltKcoCHwLTJABcURTc39+voM88zwKMKEVVVWw2G25GWDV1LQNwlzagS4E9HA4AuNkl8M6vksNl8DDJg08kETN5Kb4oYkIqqXFKqVX6tEgDBeEV+YrWmtvtRgiBrmvJEui5SOReS0Stlet2tz8wjiPn04nMWPb7PV0nqaPLULUk10XFmhK8fJ55lnG+SEJoXdd0w0BVlHINguf9+7e4RHttypIakTd2U/KtSL4/y3BrbbayprLMSupteAmxgBdJl7zGl8Ps9T9fIt+leZqnSUxN089ZgehUWF7//dfR8iBAxVIUFpBv8a2RezxfG9al0LxmAy73wuvXvEjMF6beci/H+OJlGaP4GJVlyThNODeDsYQoxfRFzmVRK/2eFayVweyFrViWJXd3d1wuF25Xx5s3b7i7u+Onn34iGM37t2/o2laCCvKcWhneHu759Tff0Xct8zwlQCsgvhpA0HiXhlrtscaQF56265JJtrD35tlxuVzY7Rrqess8j0xjh3ci/StyzTg45imS2YzBeeZZCvP1OrDdbGRbre0K+FubpU1Ki/diZNu1AvhnWYZ3InESI1iRXk3pvovRs9/vkzwFIdFoaJrNL0DYeRZw9zUjd6HeZ1mGsZJMhQ9UeYHzEz5MzHNgt9/y7XczRV7z9s1b/vjDHxnGjk1Tg/I0jQChfT/y+fNXiLKtvrvbkuU5eW7JC402PiVxJ7l3FOmTUoY5vZ/FE1C236xGzqfTmbqu6LpOtvnp6/7+gWn8wvPzCe9nNr5mu93Sd1M6ND0BSdvdbreUldyvt5skg03zzMPDAz///IHMCKg8jANZpnn37k1qFiRd7Xa9cr1cMErz3Tffcjjc8/nTF6ZRUiUzY6hKw+xmpgQWLefB7TagjWGaB7pzxzgJkHO7dnTdlbKs8A50KaFNMXqGQcIR7g4HMptjdU1WH5inSFlVKcl75Pe/+x1//PEPaG149/adMBGeRpwfqauMD//4E/McOTy84y//6teEqPn7f/g78kJqVFmW/Pjjj/z4408Yk/H48I5/9lf/iqLc8z/+T/8jTXPP//F/+D/TbHYYK8bxIiHQInFEhrcQWS0lXvuNKLUEcKTa8aqWxCi/pwCdVDeBiArLf4vrMzYOPdfLiePTV1DJlBhhkFljcJOAV6+tNZZwDDE69iuI6FM67VLHXi9aZLj8ZV1+YbSy1u4XXxq1MsJeeoj/slaSGNYonUA/v27ahRGDDD3Nlsc3b/nw80dOp1N6jh3n8w1rNbtdTWYLVHRAISC3FzBMG7hee8ZRMTvxNBsGed/WapzRBBfSZhyWlDhpeO0K1AXvyDLZzDofyQuDUrKc85H1HCsKSQ7MkkQkxiA+LB6RuY8BrSZAQplsWvQpZbi1PXVVkecVzo1kVky1z+crxlgaW5BnJQSz+gFZa7lebhAR03gPZV0B4j2T57KwGMchgRHLssxzuZxRSnG5XJJf74Y8L9huD4zjwOVywXvP3eGQhtQeVKAuSmYn0kjnRrIiS9v6mfPlTNM0PL65F9+h04WvXy5czoMwcIOnayeyvMZoh0OkaNdrz+w+02wKtruGLCspcmG7jU6Y5uJ3acizihhlWz+l0CSjFk9eCXC4u7vDzZFpFG/npqqYg6NtJ0LQ7LYlmTXMc6AsaowOqNijdAR08iSsabsr2pIYwz4xRMUndLnH+14C2KzJCOEFoCqKjCKXYX5KSa/7/Y6h72lbYYc3TUOeZUxRE8K0EHbFqNtoclVReGEMah2oqpwQxefp69evDEPPZtuQZbl4ovWtJAImm4uyrFevprLMkRbeEZXYleSF4c7uMCZLPo4jVmtspsnyMqVZQpZpvnwSD0c3if+jzTKiimhtkxTphYmx9EyLZC3Pc2yWMQ7DujyTBasAgN771AOLn9vy9198kEksVJlB+qGlG2/UCaRWKv3SBvFkDEmKOJPngc1mQ7PZcL1IOqcEMEA/TPTdRJZBliWboVGYbzazxDmutVPeT04IE9PkCM7jZs+ok6TUZvSj+BcTXwfFxbWuqJjOB6S2SzlV5CksZJm1fKp/KIU1i5efMOQiHqUzttsmAZKDnBMxMo8z4NZrJ9YrIS0lDPPk6G4jz08/cz61AmTNIqGtdiV1LQx+Nw8oBCDzQQKDls91Ud1YS/JnEzDVKLFacm5CaYPzo/QzKJSOqy9yCOKNFYOwvbwP5IU8J+MoYR9jlJDDGOfkXyhSN7GHMIAmEqmrZj1HY1BISJew2lCZMKF0RpYJucDoLFksLeQDLQuIQVJErTXEKAs2bQyzm9AqiiVHlDPSOUnHlJ7crMog8dxOi+yk/HHOc7neGMdezhcTKZRG6Uhd1LKcMhltOzCNU5oLI+fzIKnKm1kAzTSnLuD5GhoYXwCSpbdY5qBFqUTqR4gRFz0qRrEh0fD16xe8dxSl2DN9/PhJ/N+s4XDYJzZZoCw1bpb+RXrmgFg2KLSJuDlwPQV+mC/EGLi7m5NKLKMsJMhv0zRsmgOX6xkQe5vn45n9voEozE4f5M8ao9jtdvz880eqqiLOmnmSlGtjNe+/vSPSE5X0kYXZ8vWD4+lLhzUGa6FrO0xiKWaZ5e27N3S9WBlFrciznKbeEaJjHALOydKwqmJaSg3YDB4eNzT1DoXl+HxJVjlwPp+pq4bF/z0vcvHff9XjLHVs8Vxfnp8YI+Mgy5YlbHQBuWKMya/xtdzXSKCc0WQmwyPqSa0s9RJsOA8cj5eEQYziVWuUBNpkFu8XNpkjYpN3qMhIJRRxIissYZyxWZL6zosnvASODWNPWeYMQ8c0yn0QI0wuMs9gtXhgOjenOf1F+aST4kutdS+FXij16prBEpDxGgBcFDJx+UNIXxxDIM4zs59RWpNbuU/FZujFTs5oyxjDWpvlmkpoXdfOYilgNd5BEnWsdWWaJvKyQFuL1i6FdOUorTifTpJG3A98/XqjrCRN2QeTiCVyLjw+Hmi7iaenQd6/U5zHga6d+HO//psx+JYishSZhYW2MNYWsK4sa6qyYuinxEbKVr+AhT0VY+RwOKxNUpZlYnb7CsVdftbCdloAs+UhWAIWlgaiqiuuN/Hz6PuWaRr55v17APa7PToGhrHjeDxR1zVv377l4eGB4/H4Sp6kfvGaJFF0WpmKwhaQS9q27Yt/2CSJZ13XrR588+wIMabD37DZHCiqYv1+Hz58kMajWcJJxPR5GYQ3mw1lKVur5+dnlFJrut2ybRTfFQnZ2Gw2eOdXgPHTp0/UtfhZLdf8fLngozTDx+ORuq653K4QwSTmwuvhLC8EKFmSEpVWDOPAOAwc9nuIUvAvt+t6oCzJscBa2BY2yHIdo2Jl0L0G9mKM62cPvwT6XuRirA1CiJGwhmzIn82yjGmJd09b3eVniZeH/gWY96c/YwEJX5g3amVbLsDeQjH+U+BwuW+01uvn8toHUCkBrZe4b+9cihIXBpMUd52asYnM6FUOswAF07SkCgmY1/c9z8/Pq6FuVUloAkBZFGRZxt3dHdmdpElvNwJ2nW5X/v2/+3+jlMirbPKj00p+pljIRDabRsytvSd6VkCuLEXCa71IPLSShFSilSI7OWIQH4wQNUGLiasCrpceo7PEYJkxW8PX85Xn52fev39HluUid217xnHg7u6O5+OZy+XCPDs+f35epenD0GFzQ1VJk+JmlwyRJW1PxShyy8sZkIEiy3Kcm9ehYrlPlsWFSNEGST9UjrLM0/MMITgeHraMg+N3v/9HnHe8f/+Wosj54x/PfP1yQmuRYH36cGToA2DY7bZ4B8/XC3kBdw81f/zhJzZNSV1vKIqaps5ws2e3u8f7kWHs0Toms/UMa4vEHMkpClkEdJ1Q6/tu4Hz6I0Qxit3t9sQY+fjhK2Wx4XQ68fR8IbOGu4MwDEOI7Pc7brcTZZmz2x2Y55G//Mvf0HYd2ii6vuXNmweydFgRFV++fMHPs9gK1MIcHsdemABPX+i7xLY73BODeAyeLxN1LWb+zqfaoCQFLsawXl/xgoTPn44QLfvDnjFt467nM26ayPMCuy15/+ZA1x75n//n/4nT+QshRn7/wz8RQ8Sokmlo2e8eiBHObuR86aibDWW+437/jrv9e3a7Z7777tdMQ8s4zXx9ekI9fREw00l9+/DxA+P4M//yX/0Nb968p24sbXvid7/7A7/9i7+iKmsxmI+LCCH987VXX4yYpQ7EQNBxVeGiFDbVNELApk27QBoQVUQFj5smrpczQ99zOj0lxipstxuen59lmFSKoe+Zp1GsKdSLbHatQ+uyQV7rAu69Hgz+f3mLvl42/OnyBeIvaujys34BXir1qlayyu/k96WR1Uoxz25d/P3440/keYkYzcMiCwkB3BzRKoeYMY3iPThNTszuE+OQGOm9RxnH49sDdZ1xPl8JwVPXOUM/rt8PJIBAaY2xik0ubF6jc7RWNNuKJoVU9LeReYpcrpK4VpWVLPmmmc12y+3aUlY5IsMSWVhEaufCDLe2IMtKuq4lhoG63sjPMxnzFKiqLT5A8JrrtcM5j05+dEpZ8kxT15HFLzLGRfKt0r5bmBsxaLyPhAhxScjrpfZppVNfJX6rVWVSvclRyiUlRvIdUp68yNjvdsx+4Ho9U5mSaZzIs5K3j+85nS9MY4c1GdPoOB5bYdUR0UZRlDXnU4sPCqUzsYuKsii9XGa+fDH86lff4dxMexsTS1YRA9wd7jB2ARqEzdz3EtTjnfw3rTOMyXk+PUHy3psHR9PU/OpX39J3M9drnxh1kaETKY7SKUW0Lrm72xHjTFkpskyR59sVjHHOJ0kojOMgXpd3D1irabsbXSdL28PhgKQNT0QdGboOncCJw+EemwIxpJ/T6e/sAM04TAn0GpIXHiglS468WBKE8wSo9wzDyGYjbHBZoLRrfzNNI+Mws9kIcGps8pEbRJa+2VR4r1CqFK+3kICkBFxnwO12w08JKCyEIT0OM8bq5Js1rX3WorqR8LoowHiMDH2b3tO4PmviifvityzMmimBOApt0oCeC6sjz+Xc7tsRYxV+fgkoiDGi48vi05hMQGkk+XJZurjJCRveGIIfcUnyDiL3WhYM0cFms6FrO6Z5+TzmlfUfeWEsLjORJKaqlb2tkuxuWZIsdfV1PV2sD6QWLxnpslzTqYbq9HxKryg+VZOTEDwdHGVVY2zGebxInUWuZXvr07Bu0YVNSoLAPEWE3KXwiKdURCSNy+tcBnCjDYGYwjWSzEybNAj7tNROyy2t0FbSeTNbkttMwNCoxCc6MfaF5OGZhoncWJxyoNNrUiaBvolRnRfre6qqMvXPUcCNesP1ek7fD8qy5u4gM8jl0qZ+2pBnGZnNybOKPPOEcGGePUbnFDl0/RKUINdknh1xlgF98Ufuuo6qLNdFsc5KYVIm9Zi1JIBHFqk+eMIYcN4TvCTWWwvjGNjuKg6HA5tmS9uOnI49x+eW01H8CwmGGIyEKbwC+F4TTIB1Fv0vz3jSDCP3leJlzlHIgq/vO3xikC0WWErJHSikgR1Kab5+fRaCRr6ELwmDWYB6jZsjMSiCV5yOM0rB7XZEKTDa4f1NrIw0PDzc8c2377B5weXyxDh4bmZEmzOoyHa/pb1N7Pdbht4RvMIoSwgz2kR2uw0+9nz9+oU37zYYXXE+tpzPn2DOUak38E48PzNrqZsaCcvM0Qaevg6EIFYB8yRBSX03J1/DdLYEIfxsNrX4npcZSln60nJM4HOIhq4XVm5mcmKUeh0Tg3Lxx389Gy51blFkLQQdY/TaI8hnLfOrMN3kbB+nEaMNOrGTQwjkNkv+qw7iC6vYOY93EyZhL6KgCGgjP//+bsfsRtr2tmYb3B0eQGn0u3uCF4Xl09MFpTTDEFeVl/M9fa+ZZ1aZqnMCrGfJts3NKVmYgPdiZyC3qkrswCydDRmZtfg0A/jEKlyYjC+ztgBmISLKhFc96TKnB++ZAaIs9fy8qE4ztMmIQYxXX3pcy7bZ4v3M7XZBzeL7WFcNIchnIwCjJvhA1dRo4+j7mdutZ5p6bGZT4JtHaysez6NHKc31OpJljsOdZbdtaLuAm1NPHCB4WPxp/5yv/wYAXwJWYsSsOm4JVHj6+oRz8yrp7PuB4/EoIIfR5PoFNLper7IZRUztF/BDDogX4GRhtMnPFvDOWENI/kDOibQlxpA2VElepg3393ecTkdmJ9rz0+VMXUrIgU7mwUoZPn8Wj7tvvvmGOslVX7aFKWHS/dJTJMYoZplJGmyMWWXKWSbpbputJ4YlhTcZoSdAT0A5GQZ+/PFHyrJkt98RfOB8OUOEshRWok0JYMfn5zWZZbvZro1UVVUrKAjSiGgtB+fsJz59+kyMkevlyrfv3v8C4Ho+ikQtsqDbYvS7eitZSXWNWjFOE/0woBNjy2iDQvP0fEwJgyXd0HO+XNZrvtBnlzASkINoGQpFUvBLz7vXw+JrL73XA+biM7g0Q8v3ft1kLQCt8+KTtdyra9LsK8mseETOrwbSl+FTtmXyoAK/BCf/ZIh9Dfa9BgWF0VEkuZdNwCnr93thswprTuQEOW4ccQtzNAozx2iNUYph7IGcPMvo3LwCjy++gXJt7u7uCCFwPp8wWlHXNZm2EALX9sapv/Hz8xfm6FMq9USeG7QBMV327O+2bLc1ZVHy+eMR78WwfJHrZZlsrKpSp1RCg7EpAxwlEk1Sch56ZSX2fc84ztzd7SWsZRaAvCobdhsP0dC3IgMyOkcr6FJc+zwJdTwGGPqZeYqgAsbmEDVGF4yjk1QuZEvjQuDp6Vn8PoirV8lms5UGvutkcEqMWTfP+Ci+VcrkhLAk2GVrYMrHjx9lkKks+/0j+/2Wjx+e6G4zWgXG8QZR0q/a6ySDZut5fHPHfndH1UgYhQw/cLv29J1HGcP1fKKuc3wKI6iqiqLIULw8p5KuK6zDYZSmsql3zFOXBivF05OAoLdbD0FSsd3seXj3QAgzfd9R1TuuV0n5ur+/w9qMYVDMbuTr0xd22w2PD/eribvU8VbsC5KhNjpgM0WeFxSl4eHtnsvlxjBDPxZsd3dSz86RYehSSIyk50WjeHyUxuJ6HbhevhKDFqnKMJBlBX03cL1dyDNhWTnnuL8/UG80w3hkHs+cThc2G2ni371r+Pr5IknCZUlwI8bmbLc1Hz78xGF3YLd7T9s5js8ddXlPWZzItEUx8fnTR7ZbYXwYk/Mv/rt/zr//d/8Bj+F8/YZr+8zf/t2/k/S7aLi726MPb9E2w1phLEgY2RLqkzbtvGwqY1w0Wh6DYvlXpVUS0EhgxjJKSsPn6bsrY9/StVfmSQyPnQtcr1c5CxNQMiVm8Nu3b9datLJilE7+mSFJVrSEe8S41rulRv2XoNyyjU2J6IufSkqSFN8cGTAk/XNhAIqP1Mv3+yVwCC++b9IEirxdakhgGltspl8BkS9Dzel043pppeYrLcNGeGmkYvrnOMwSoNBU3N89irQmCHt9v9/TD0tqYsbtemOaJ4rCkBcW7ycCgayoJNF2EPb6MCxSFoPCMk+eum5ws2N2MygBt8epS/cAWJuL9D7A7dqy3+0Rk2stMr0g8jbnAuPgyEy1DgNERZFrplGkvLtdjbU9t2uLbXIiivPlkoYvSUzsug6lYbPdUxQZwzhS5HJeyHkqnkDTOKG1pe+7X5ytix1IiA6tAzYL+DCw22+w9oA1JZ+OX+m6lv3uwNcvt3WQGYfA2DusgTHMGBsYp4Fx8hAtRVGhy4wsU5RVxmZTijdS1+GcDF2XywUbDT6KHGkcJXgjy7J0dkl6oVGiviAqfvr5A9Mk96c1IvUKQeRUX79cqeqSqqy5XTuqukKSLSVx8O6wF4AiL2m2OVkmHmTDMND3KYHdyCJ2AdAXWdTp9Awq8P3337LdbWjbm0jcAlT1lmn2VIWcVfPkKLc1zvnEbHLJo7FgfziIasM73DSJcD3OoD3aKVkMujlJRi3jGGjbXtgE3UAMJNAm4F1iwXc91iqarBLfNae4HC/JKiNDIX7S0zAzqcXzSLzzoguc2xbtHMZkoBYZlcNimL08DyFGPJ6qKdEmXxmJ3juCkHXRJhfz+OjS+4os/t0kUH7xMa6LSgK0CivLNl6YxtPoUEoG9KUOiUfeqx4SI2Fe04svmkjJwLuZcZxRUUE0Ev6Swreij2hj6doB7yOkOuZ8pMhSXxkW1cArZjKKxcRf2Hj+VY0ToH+x2Vgkc5LwnBbMK7MFYlpOyPf5JcFiYQYKYytDkfHtN+/w8w+cT1dIf2eKDudEMVTXO9p2ApXUErMw68RuQfopsf3Z8vDwwOVyxTuPzSzG5HI/pWWoIqKUeFJpA6U1a0psVIHdbsdutyc4z/PzhXEMDINjHGe22wqbl7S3G0Ve4n1kcqPYo+Q5ziWfNcRzDCVLiL4f0dqS5yXhKnYqCglIynKLQnM736S+lSV+kuVVVEGABx/IMp2umTDGoo7rgmdhcedFhtLg3IQA+i8pp7nNBRzGiI1KJmeiUVZSSlWGMhqNZfZybo/jmGZATV5YDnf3bDc7iHIvEi3eWYLXTJPDWMX9/Y7FD1cnr8LX89DrxPD1BA1ia7EsmrquXVVpKpEzloADIV0ImCtnsoCbwjZ2wMjHj59pmjrdb5DlhhDFzz5En0IOlUi5EyAvZ7IhJFO6+RV473zg558/s9/fi3KMjH4MnK8Xuj6wP9R03ZGyypgmn1RfNUPfcrirKKucZpOhTclmUxKj5/nrRRjaZU079VSlQUXL4XAQMko/cE1qvzIX+6owOSCw3W2EOORFyXN+PnN3t2d2EwrF0I9MvaNuGvwK/lQ83Acu145pmsWeIs+JEQneSgQXhaKuKu7u7lYi0Is90EstEiLQTJaJSlCk3BKcMU8D3skMKTkGAuqJmshDXLzhpd8yxhC9sNqCjziXGGRaAFIXPN6LbP98lvAd5xyxztg2W+bRcbleaDYS0uGd5+6woe9m5mkgzwxNXRKIKxHJu8jl3DHNogrAqjXlXiHhEks/+MJGTCAfMT3jEtK1sFJD4BVpRidmrCbGxZf1VdcYFi96+XfnApJdnCWgcLnnJS1YRYN3Mz5GvJ/SmWjSwtWtBKLlehpr2G133G43nr6cUFoWpWVpCT6gc0PXy3Lt4f6BT5++cD4OjP0kNhle8fGnG89fRqJSzJOwZ8WXNq7PyZ/z9WcDfEabZDxriB4mNyUttacqKkIuTJ4lYttaqOuS9tYjhAS3Hs4xBkxm8X5mmoYEOplfeKLBC71VJGmekDbR8qWSjFHI7taKsb+Kso2c3Eg39czBc207hmHC2gyfClyz3TPPA//0+z9yulz4y7/6S6qmlgKoXphbUUvcuyTGmfRzpWCLZ5ZNA0G+Fs7tpklAYJZCCTLmIudyuYi8yjk+f/mcvFoyjsdnno/HFTyc0qao73u54WOkrmrKsqRtW8ZxXANP2rZdi+flcknBIFYSzaxNctrA7SYhHlUlPmfd9Ubb3vj++1+JVPpVIlhdVpyPJyAyh0Agoq2RRzGBnyJl9Hz6nDy0rGWYHEobmroBRTJyTmlgST5Rlrm8Zi0R38vQ+dp/cfns/7SZeT2gGmMgRBZvujyXgAHvX2jsMQQwMYFyBucE+Oq6Yf2eS2Mj6LsUE5EcyP0Uo/z3F2nuS+O4FGmR+EpjEIIc6H0fViZY3w/SaE3ipbGwVmDxMpuZ54hDkVnNpiqZjSTRGmnPsVbT1Dl1WeBcvXou3N/tqZLHR9t2dN3ANHsulytFUawM2XH2FCnNy4XA8dbiloNXq3VTMs8zpc3IC83sHG17QylP13apKEsSo00G0lLYNgzjhDERHxwPzX1KhhR/vcxYbKKC3y5ndrsdRWbJrKGpaoLzsv2SUCfqakt0cDyd16Y/szllWaMbg0EGlTw1Vl3XS/MdAm4OTGYmRE9V1ozpsDQGrtfryg7WWoB2ay2bzYa+H1LDl8JNkIOwLDM2VYX3E+fzWXz2EBZiXlQYm6OUgJ7X9iOfPpzS9mZgmBxuihhdoI3CezG9Px5P9MOF3/z2GzKbpc/uhpjoDwKgKghohnGm6zua2bPbNHTdiHMij66amtk5nBcpkneB4/PPXM4jTVMTw8jsHFkmW6PL6YpOBuG39kbXdiht+O5Xb/B+ZrttkFADGeTHceC7b98zTqMw9zKNsTlPT89AYLMp2Wxruq5FKei6lnGaKMqCqt4kpkXgfD3RpiAfASNHaSb9yN3dnn4QT9TrrZXhSFuCjvTdCCjaW5eGEJIxeE/wM/iIGz1j6HCzYho71O4NRd7w5r7icnZ0Q8/9/fsEIs8cqi0/f3L8x7//T/zrv3nD3/z3/5Iib/iHf/yPfPj5MzBgzIy1kYeUUgfij1JWJW038OMP/5kYHd5Fms0dl6vjP/yt5f/0P/xf0aZAvAaF5RqUTzSylzRdUBA9UTruFQhUSderlMIqlfCutMX0ATcPDH2HIrDdVEQ/Mc9jakY11uSJ6aGYh46yLAjR4twsHpUrU048uTL7AtyJp5QwgqXerTDkeh6H4FZmcoyR7bbBeS8yLBVfFi9B/r4PwjRBqdWDRanlcsj71Ypk5vwSjLSwAImJeZa2uVrLIGG0JaaokoWhJ4OJSinYr+R6abAR+b1IVoKD/ibm/PPsyDZlYjvIOX+99SJVdDOZTWnu2tBUBcM4cLncBFwrapF9jC0hZhRZzjQ6QnTCOPBB2ADJl0opjTXJd2wYWTxgvBcA6lff/Yqf1Y/cbleqssB7SZo9Hk8URcl+v2PsBLAS8/VMvO7aZ0AzTR60SjYiMqiJ7UbJOHZAZOh7jDUimouyTBLAsIQQCUquuySdBmKUc2oYRqZpFF+yLJJPivvtNslYLddLx+XSczoOXC9OGHR26dNmsRCIomiomxJlApudhO+AIvolTMFxPp+p6kLSyi83isKmnlL6r+u1Y5zGxDAL5Hkh/ZnJIMoSZhxGQlqaBR+pyhyFZ0jeXnUjDAiA/WFPnpcoGhaT/bLKcbMM93f3e5EmDf0aBDRNkureNJs0LJ05n88M44A1lv1hQ4yR8+nCOPWymEFzu7V4F9DKMjlHVTUCY6Rzzto8DUOarmu5Xs6Mw5DuT+i6K0VpefP2UQaSIGDcfn9gHK/ChA5KAJAgPnBZXlIWUouHoWf0nryQRPRlmPEhYrWEcUwhMM0TMYhX2Dx53ByYfWBMrJEi12gTRaIbArOf0QomL/UuKkPXtmy3ksCYZxnXy4XtdrMqeZ6ejux2W6ZpYhoX24AFLA/pdU2Mo0JpR4giMVZKcbvdkq/SRFU1bDclwzgyjMPaI0ZEWm+MSfVHasfyzPk0r4j0+0WWL3avacHAy0Jisf+IMcr845UwtJZahDDvloWMfi3zUqRgHIU2BUUK85qce1lrRNYZZpHuRgVBgY8B75clUPp5OqXTp0F/GL5yPJ7wCewMcT1tiBFu7UAMimnyIm2fhCGnQsQrYVkKa8dzOt+4vz9wf38QK4TTmdxK2MN2u6FtuwTcKoYxsenSmaeiDO/D1KNbkceipQ74KMuN4COXa0tVVihj6Z0sr0xuMJmFWWNTIJSbPEs6/DROEOCv/uqvyHTO9Xam6wayTMDZWz9wOl6FVVTJMzbPE3mWU1YKH+DTp094L9CCdxIQ0vY9xlisUkIkCZGqEMY2UeYTu9pTsQIRRV4Qo2eeJzlbEnnBheSjmNhIwrbWZJl4aoYQ+fTpi/TOw8w0hsQojngvUuvj8YYxaWGPMK9QkRiSF7fSCbwwKBXJMgnuePdtzW7X8OnDiX5wWCte3LLgqUXeO5E8d0M6I2TBMY4T3stSSkg9Iofe7UTtUdUl0zSkNGQBkGVe0yxhYyEKG1QrYcELQdCTJ8b+MDm+Pj/R9wPt7UZIfck8tZyOLb/+7SNd34MOKRU6JgZlpCg1dW1pNiXTNHO7TQz9tC7A99/vaW8D3stcptDk5Y4lSNCHiHNiW1JWNU9fn+m6dvV2JIq8sywrlI5YXQjQhEiuhVnnuH+4o6xK+l48jcdRQkGIjizTWFukeqOZpxHxq+1XjKAocrIskUuCpLAaBdYoQpYRjZEaqEh2OB6lpKYt3qVFoZKlwrQqkoRxLzNsELkdpM9BRSP9R25p+45rOxA9FIVFxRk3XjBW0XYdRSnLWGGnwvXarkxsYVKLZVqMKp3hRmS/XiVGqLAu0ZJ0rbVOVjU29ZDCepwmudcgkOU5EWHqBy9g4XJ/yXP30kH/0homwqs6rfWS9xDSZ+YRn3z30oAqkXcI0/2amOEWEDsCq0Kq5wE/w5evz8LoBZqmIAeUMagoXug2t2RZxecvJ758veKDYp61AJd5QV4Kcet4uhECeBUgCpa2eDD+OV9/NsD3OsXqer1yPp+5v7+nKIpVjhqWpBoU+/2OLBN2mxtmtJEURq31aibpnMgiYKGpi8/cdrtdkd6qqtYN2TRNkPzNjLEoFVLCybwCO0rrZDQvjd61vVFUJUIz/srbt49AZHIz2kjhOp5O/PDDD/z617+myCTMoigKtNZkZpOYCNKUSCqVWkHHRW68yFCVgtlNKz0bLTdOVZUQ5fe/Hr8CsN1ueX5+5nK7EUPAWEvbttRliU8eC0oJ4FjX9coUvL+X7cenT5+w1vL4+Mg8z1yvV5qm4XYTs/j3799zPgtIUhapUBmdABoJC9jtdpIoGQKb7RaQwphn4kV1ul0TuOUwadg9HA58/foVpTWTm3He0U0DxljqskihIGL+Pb4CsjQv3nQhTcGvQbuFTbckLr+WwS4N1iJrVUpB8iZTSlHXVXrv19WYt1uMfJ3DuZRCyYtMQgDiBUwU6cHCKnkNOC6A4sI6WVKUlv+2vL/XQO9rSv0wDOuf09ok82XW1yM+ODlhXhK8Ak1TkWdGqMgBisxSFjlGa+ptxWL0usiqrtfr6gu03UiS38KObdsWk1l0l5L6FGkwl2uZ2Xw9zLe7HGOXbZulqTcEH5jcTF1WODeAEsp3DNBeO4IHaxVFaQjOy/YvaqzNKVkYIiKts9ZSFCX39/eAyH6yTPx7xsFzOl3wPnA43BO8ZkymxDF4iCNZVgpT1sxodPoMhX6utV5Nu6uqxJgMazwmL6iSMXg/tOshu6SL3W631dNkniUGXg4L2SBPLrLb1Tw83GFMxvEs2+h3b7/hH//hD4AYqs6z53T0EoSgIkVeEb1IzKTZgKjzdH8Fvn55Is/fUemM67WXeyGAzQr2hz2ZEeA6z1vGceB0apF0rJ4ssxRFw+UsCeDTFNg0GzIbiGGgyAuImvP5jIoWo2G3FwPqoszZbRuqyjK7AecG+r7jzdtHvJ9Xlt6tvWCzhXUVGMeZqqrZ7bbcbi0P93cYbWQrnYtE5XQ6k5cFh4Nn02ySL6JimDuRwyQg/Hj8QlUWHE/PaK2Y3SRyYFXIljiB6Xkug3VV10l2PzCPHU0ljSYx0oaOothh7ZJemWFNzfff/YayqJPX0ojNNP14lYRkHfn22+94eHhHVTYMY8+/+TcDDw9bbOaY5zYNQxOfv3zF+UjfT2yaDV8/f8JkGe/efcPnz1/Z7B549+4t/TCQ5U1aFEhgkFLCwlgWU3EdABfzdWnaiUu6okp/Kq5NofxFz9B1xDBzOOxp25bz+cjpckZpI3LOVDu9k+ZknCZJxbOG+4cHNpsN5/NZgDLiWndDCKvn61LHFnnWC6MubeNnl5gA4MNM3WSgBES6XC+0tz4BLD7J0iNGLanbnqi1DCtaLAGapiTEyOlJZPzLllekpvLzdfLUWob+BZCcZ0cMkcXjZZ5E2GZtzqz9et8ak6WBSBr4rhXgI6TzuIkam0m4TT+MKTFWPMemOdJsCqm3UXN3d+Bu/8Dnz8+Mg6PvxUsvz3KmYQlnUmnj7aUmeo3NhJ0SESaK9A1GGPy7QwIePI+Pj3z+8kkGZaUEKDMlRud07UTXSQq4TtLcrr/RtQNZJsNwQJIDpX8xZJkAvGVZM00d0+QotRVGV5klRowkFnvnCTF5k7lAVNLLxQR2TJPDWpGbbrcVMRr6biYGx9hDDDnRO7rbzP6wIc+MgGWFpK/HqNjtK3aHhma35XQ8ow3MY2TwMz4Y3j9+Q1HkWKswVvHmzZQYEgXX64WvT084L6mlm6bCWOn3nJMQADFPD9zd32Ptja/HY+oNZ7abOrFgI9tdTVHUFHmDm0n3rbD0jBUW2LVtqXSRJFbCVi+KkmGYmGfP5drKgCefuvjlZZmw04d5tcu4XG5JxeFW1Yf3lwSSB2bv2G22FKWAe13bI4ECBU1TkSVGvDABFU2zTf5QjmGYqUoBLi/nq7B8sNT1lmm4MY2SRKn1jNaWoqgJYaZrZ0KUpU5VbXj6emF2iNy7KsAF5jTYLqqHy61PwPKLZck0iEwWgvQBRsCGGMVrsteGzBisNsQow1Rd1xRFSiHeNHSd5ny+Ih5TYjVRVTWmMExTSAu6cg15ud1u3G4tIUBZyvxgraXW4Py89lmzE5ZnUeTs9huMFnnqPMm9OCknbA9tXjKRElsM0pCYlsUvC2cBfEKyJ1IglgxKiahWSR0XgN0ConKS9k8ka/MkvZB3iTygUnKulvoUY0qIXOS8QpiWax4DqwFEUMmDSicZnMfNDqt10mOSGOPyv3FwBD9glElAMCzeVgQBcpSSZNPggvhrEXCzI7iIyhZPT8s0WdpuQPNiVK+0IS9zitzSD4vNT+Cwv0thMRGVFjQhJNmp8VzmlrousZkwlqdxFhAweKyVQX9OgSVv7u7I85Kpm9g1W4KfGYaOeZolJCOdtUpJSvw0ymesiHQpff18vuBdGsxtlj6bhRUu73eeJ1AvfrV+9MzKJ3abSLRljhAp8Tx7ikISRcc5MI0O1IuiqKoKSpMl4CwwDDPEwJcvJ26XnrZ1zGN8IbAEmFVMSawvjPplXmC5B+JiWRQSiz4mxruwC+ta0snls5j59vt7Tscrp2OXlgkLcUGtMlGBC5ZgTGGqvnnzKAuXq9Rsme/8qyWc9Chyhr+85hcgRq39bQzw5csT2gSyXPPNN99xOp24XK7MLvL5yxOHfUUbe7xzxAjjOK99SbN5nxb0V2IM/PrX379Y7syezXaDVlla6Dt0ShOeZiUWPTHSty2fPn8WVYySM22326bPZiBiJQAjKEAzjg4U5Bqu1xvGjuRFwWZTcrt1aC3PuNGGoqqo6wajDU/Pz9jM8s033/Djjz+m4M3Fkz3inRBgFpsG7z3TOOLcnJ5fnRZf0ktluUUFQ2ROQJmlvd1QyqT7Oc2kaiGTRPGdtAKy2cyw2Vbs9k1iFusUyujFGscHNpsGrQUwV0ll0DQlwyCLrSl53ostkISGLfXO5MJKi0lRpqMQRRZVn/RvkhMwjGnh6gOjn4QxvZAvho7F2w+We0yYzkYFWaQoJX6MWhbIy7O2ePEu53KInuhfVCdGL7O8zJaLajPPcyKyBFPKSBjSLKGuMUjopEkLoywzOD9RpLT3tu8ZBsftNuBdFHavk6e1Y6YsLdYkdUwkLb6Xx+K12Pi/7uu/iQdfnucMKRTCvkrE9d7T9z27w36V5jonxQVS6hoqXaQlmW5OKPQSsCG/1zTN+jOFASJSo7quZVvmXyjiS3FaPNuce/n918EewzCQV83qVfTw+JiKmhTFTdPwxz/+EaUU/+Kv/5qyLOm7DmMtMWm9i6Kg67rEMNQriLMw/ZbEr4ho5qfpJULeu5CkvL0AY9Zwf39P14mUbgGFFiDIWklYbQ6NhAwkMLRM3g9FUfD169c1YORwOPD8/Lx+Tvv9njfv3lJVFXVdE6OkjPlUvGzdcHd/z5wAoMfHR9oU+LCAlza9R5VZLrcrbvSrp8rlclmv8TwLUKoRgLfrusRuzNLyQBgUuc7xkVfXUB7KRYbBq/+/SKWXIri8r9eSVrlfFvBuSWuL6z0UQpCUTzenYenFn2/5kmEyCtMlnayvo8QXkO9P5cLLe1/ARmA1l389IAvwMqV7OVu9K15LlkOM+EmSZttxIHpFiBNKa7JckWHpOidejIXIa/cHkZKJUbd4hs2rPwfrweacsA+n2WEieH9bnxeR9QrDBDRlWWCsZhxnZidNzMPDge+/+56n5ye+Pj3x9HSCIGDxMDi8lw3ePM0Enxo4Fen7Ubwu9ItPjWwvDbvdfr223377Hb///e/IMvGpGEcZCoyxKAzDMNH3A/f3BzabitPpxuX8kabZ4Lxssvp+IM8zmqahaSp0YsiIIbq8N0gydGMo8mr1WVrqkFYGhcHoDOdnrpdOKPKZBnJshMeHB5S2tG3P7fKFDz9fOT0NjKPDWJHLjeOMSizMvusZxolpdMxOUeSWohAPkrIy4uthxCfkeunIbMXpdMbmFj/OqAghysEsIJGwaqqypCxkQPry5ZmuH1BJKnULLXXd0DQ5X76cKTJhAR2Pl8SALIkEitJy/3BHjCNtf5EwgPqwMp66rl0ZKvPseP/umwSACEslzzPevXuTGHlureWHwwNF2aCNYrfbkOWlGJi3PcYUFIU8z1VeEsqMui5QKlIUlnEaGZKf6H6/RR0K2pswX8Zp4Ha7stlWeB/JC4u2mk+fP7Ld3KFVxvPxxrv335EX0pzu7/ZYO6ON5dPHjxxPXwXMN4rdYcO1HUB53r69p21fmpb7hwN39xv+8Id/4POXj6DEAy/PNbvdI+/ffYsPmv/7/+3/wfnYU9VbNlvN4XBH/ordttaYKGCaECdTo67CglWlYZK1vixA2jAMdO2VzIiv0efPnzmfj7xP130cR7FomCbGSdKlf/39rwnO8eNPP+D9xPVy4fH+13K/O8fbd2/TxvK2npnLOTaO4/rvS21caury+qS+ppoXItfrjUiBzYRF//h4hzGRqq7wLnI+doxDxIkpStq8AkqYBNtdgTGesqpQRNqbmJwPQ0CSSlXyhkus+kXrp5Jf5rLRTQN0SLYYkQDaE9wsrOPocVPyLgqJjegVSzLm5SzKApspZufJCoPWkboucbOjvU1oE4h4Hh63TG7gcr3hJ9lcS29iGKcOn7zt8jxKg6dy8rxmHN3qcSTSKk2eF2w2Wznv1Mzlcub7778HBV+/PrHb7tGq4POnZ4ZeklEzK/YgmZVU3K4dmKYZ50KqbcLqWpaBLl2Dw2GfzsAgoFTw9N2YmmQILibD7OSf6x1TSkpdpGVVJVLJeR5RZFzOLe2t53rpuF1nLpchyU0010vLBU+eK/LCcvfQkFkjS5LMEnXkN7/9lp9/+sz51HO59ASv+OGHH3l8vGdJU/dhoq5L7u72eC9BCeM0cne/A+W53a5YK2l0WimqUpZHwzBwvZ0JYabeiG2A1hKO5L0nszlFvuGaFlRVVfB8fAJgu5UBZ7vZc3cv6eRV1UDUaGXxbhBG2ySs6Ty3cs8oAdX7fqZpHF034NzMOE7JpFzM6n0CS/NcUjerogIU8+S4XM7Mk6g2jBLf1SVMTSlFUVQ4D3XTYIbIOFzxM1wvV56fLwKYtRdisGRZiXctbdennsYRfcTmBqUM0XuKvCbLcpomcDq2fP36RFGUbOtGlo4hYJxbmWjTLOCLMpCZxWA/yTJHjwuR7bYWg/N+ZBg6lFoSIoXp1PeyJBc1ys+Qet4YIlbJ4NaUOXlhqes9IUa2mwYXAx8/fuR269KQZVelxTgO5EVOU5csASe7zZb9XhY/eZ6nRNSvBCcy/mUJ5n0yXkcnX9LU1/+JD7RSL6zkpT4arRNDLqWKqnVqSwNpslkwYKxK1gECeAt4EJNiKKLiqxTyNTAEQNj/IAC2LDUS0y+kYTFKAMfCuDYqE7j/1VkkzDNPudmI7/F8Y/EB1anGRgIa6YeulzYBKyKJ3mxlwfz8dGGcRibn5PjSkkS82RbCdvOyhMpyy+l44evXJ/ysUl9naW9jui4SvrYskqoqx2jDMM5kmYCAwYslUGYziiJfLX8ulwtVVfH48JZPn37GE6nrLW4mPWtyTlkrrKYsyzHWSpDP7OWaBZFvLyxw6RFFOi7n45QYoCnoIAY2TZPmOVk8EWGevNTJeUYru3rbCoPLCLiBsPIWto6bYmJzZjSNJcaBUc94H6ibiu2mptkIK2233fLzT0/r2RG8JLiHdB/EGIg4dLCYaPjhD184HVuszWiakrzIeHjcMruOEEfQM1mhcCk0xVjF7IYEfMtnrY2lqivyTIgr0ySS0DzL6buBuqnY7x75+vRM3y3ehfJ8xBASUWJ5ThYGrDwviy+oNpHtvqBuIrv9A9a+ZxxH+r7Fh5m7w13CB0aOxxPXa8cwzDw9HfF+RgF1UxKC9J+Pj2/44x/+mBYwjnEUeXMIkFnx+j6dzgmUF7uOaRJp5fv3byiKklt7RetMZN1BFHV9P3G7XdFa03Ejy6QXuV5lnrJGeuuysKiomP1MP/RkNiPL7Wpjtd/vWAKHFgIICT/RRgDZ4EPCFZagFjkzmk1NZrOVyKCUTsznFOhpxPZIGy3KOGXYbnfM85TIJOLdKTYiUQgkhWXTNHx9euJ8uoo9SJb8jyeXZNqRPFfc3R+STc4No4V4EkLAu56um4WlZzNZcmjS7ClEIW000+KnufZpc5L7p84wBnxI9VTrJG2PqZIK83mxPFDi5Ct9S3p2JcRH6mdIyFkMi7+0SixpWVYuiw9h6Mm1sdoSlcJmOXqWZUFd17RZx/XW4rx4jrrZc7v1GCM98rapUEoxTGIHJsvRtBgIEtw2T8IejDGwP+xQdGvGgbWaLP//Aw++cZq5tUkyqjR39/fcrleUUpzPZ4wxnE6nFbxYaKOC7MrQUJbl6p0CrFvAlwQinSQSYWXsLUmyeZ7jQmAYX6LBlVJcr9cVfV2kqlErQt9DkLCCuqrBR/nA+g5zPkuzmudsd5JoVpUNf/j9H8nzgt/+5tfUTZVuE5WKckyvf3lfLyDiwt6DhHDP86o7F1NIAaF+/Okn8ixj1+wwmQRkvHnzhq7v+fL1K5qUlqk0VV0LAIcipOYiy3NUjHz6+JGqrCirUlgiOlJWBY/ZA+fTZd3qTNPEMAx8/vwZ72XD9HD/SFkU+GlOprOW2TnqpmbTbJhd8j2pa/I85/bpI4RAkWX0XUeemIDeCXtCW8M0T3J4RXmA87zkcrtyd9ivASYRUJ410CDGiE+v8/WgCb/cZkhTK3Rn8e0zK9AXQ0iyHdbBdTlMxnFMh7Rd76fla2milntGQhqG/+IehEW2ZVba8Wv/l9eJ0mIUHdYi5JxfveaE/fSSqLa8r4VxKkleEaPBaCtee1qjrZXGOEnCrYHovYQbeE8E+q5jmCbZvKbXKFLVmfP5ggTc5KBlCyK/pFhZK/4m8yyfx/39lr4X4/HNNqesNNf2K8fTE85N4jtixRh1nmdu155lixhjJJ8zDne7dQOa2QznxXtJJXAPIsPQc71e+O677/n++1/xww9/pK42bJoDp6N4u8FNZA2VRSubwiOuDMOMYpSUvShME6cd4xgT8C6HvlIZwUeKUszI81yYk1prqrISQ3uE+k50Sb4tJsHeqzScR2YX2O53DKOTWPqQEaNFa8vxuWO/39JsapwXD5dpnJhdoKosu7sG7yLzHOhaSbabphkzV1wuN0TW6Oj6W7qXdGLizFzblhAcdV1hrTS40zCle1cA63G4Jvq5AKjOifzgdrsSwoyxFZtNw35fMI0OHxxVVXA4bNFaUuu2ewkGud2u9L2wAff7A13XJU9RyziJV9/PHz5Qljnfffc9WovP5TiOKa2xZ5oc290uJep5rA1oI7VstztwvdxSbRrZNDXBe5SO6Z4b0/uUxr7vJCBpnoRZapNkvSwL9vc73DyjR0nizjLLw5t7mqYUNuA88uXLTzzcf8uPP/7M0/NnQvRM/YC2sg39/vv3oByfPv/I3/3df+I//O3/ivMtSnvO52c+f/6ICwOPj/c0m5IvX38isw19NwBiL7HZbvk//O//L/zqN3/Nfv9GWGd+XlkRxsiGUcfEDEm1IiL/voBmWimUEZl88DKsfvn8CaMjI5EPH36mbTuyzPB8OnO5tVxOZ2G1ApnW/PYv/oK//Mu/4u/+9m+TN4ssU56fj+wPG67XK8EHDoeUpP7K9uN1mNVSmxY/3OVrGVhegoykAb6cB5QGY5YhVHE5tWijyIvE7Ow9bTuIpiylKbg5crtObHbSeD88brh/kCHweLxyfG4hGPaHLT5MeOdxbvFzEellTGBfTD40JotYm5FZMAE2m4IQYZ7keZ7GWSwjeBnYs0yYyBFJtDOZgghZLglzu6bG6MgwtNw/NCg10/UtxgasFsDHGgOzULIFvJO6nWXihZRnBS7OnM83FBHnPU2VU1cV8zxwfD4lpm6BD579bs/lfMHNYpDvPaleS6DCYi0AinkOzHPAGoXTjqzIqeuGfuxW1UGeZ+JfunjeEtjWYiMSUBgU0+RSYFfy6c0z5lmWQDptvJdEYQlF8iKn0YZxFHar+ISJ5Kco5XzZ7Wupe3NPZkWhkZeWgPhF3T8e6PoxWRh4hmngy9cnpsnxcL9ju9lhrGIYRmIU39GI+DxebmcyK6y7ppFQtzJJn7y3HA4bNq5imieMDrx9e09WWK7XS7IM8Tg3cHq+4oNcG2s1m01Nnlu+fH3mdDpRVaXYjlhL9Iq+nZiTiXZVFTw+PlCUGTEm5s87hTG52GTkG7SayLOAViN9GCjynP1hS1mW1LUkKErCeBTgJy3MlwXdfn+HMZbHx7corZjdzOl4oW9HMlsyjp7D4cDlsqfvJoqiZDFp32wabJZxu7WiwEjsGh88fT/z/HTBZhY3CQNvmmaaZsvhcMf1eiGEQF3V+ADb7UTXz4zTQIwZKmP1YQohUDcFJjN8880bbJbx5dOR45NIkq6Xfq0vs13YtBY3y5BTFgXzOBIysMamUIg00BqEqZnC84yRAI+iyLBZRohemJFaUyUVirA/FOfTmUikaWput5a+G3FOQDofIpvtjhihKCbatmP2MowFH0XCmNJvlRYwKAQZKhdmizB3FEvYoAAkwmJsNjWbTcE49dhM0fcShKJ8SoN1ENwCDv6S8aQQaZw2sNlUdO1I3zsZgGNMQV+Ldc1LaMfCSEFptJElePDCztNaanp7u2GMSooZYX+JosGtP38hKCxAQ1SK0/MtgY4iwVVGGOdFYQkucLn0acFj2O4yumGkbdMga3KKImOeBFBcvOXElzUSujH1+QY/iz2IWB1EDJEyt1RVxeV8FmBMy78XeU7TNFy7jqGfOJ0u6xJHKUNVSSDZ4s9orcFosZrSovFHKZ1AdGG5Lh6OwrUXEFJYRybZP4isTkDSJPEG/BywpUnn4RIEKeeJKJiW0IvA7AJGwzhMbDd7wGJtL4B/VXI4bPHB8eHjRwgbFkbdOjul+3RVH7GchQGlDX3rsZmwjr0LTExoo6jrhiKvsbrlfOqxNsNYg5sdknwq5zNp6RM0zG7m06evoBdfcoXzcD2f6FuxgYkv4gMWCqU2GmtMkkNHYYkaxXa3odlkvH3fEBkZ+zORjDfvvuV2cxT1nmkauHU3dAbaKvLSkk0ZcwLAIBLVRF5U5HnJ9dJzvZ4xVqMQpuphuyHLSr5+OWLIUDFQZIau6xn6RLzILEWZcb2dmZ3ItEGEFT7RtlyMBAXjNLDbbRK7LeJDoL1NRCtS6e22JDcF3SCqi+fjUdi5wPPTE35eiCisiguIFKXM1OMk0mEXxIZDRfm+PvgEenmR+RqDmS3WWJaAFCAtaQVQm+eZqKDILYtdSVlJgEiMga4dGHq4nVuGYSZ6nUIvFV4tMnHLPE/pWRfChNIa58M6q0iYhyhp8JHMmpXoNE0zuTZimxJGfJjxIaK9qOmyTJYxwQtOtHqZes+i3Fh9TJPV17JZWcA8HSMeOTeNWoJLBBxMYt5f9HvCtNbp+7wQfsQmbLGHk+ue2ZzHhyrVsHnZJ4sdUoC7/Zbd9o7T6UwMlqH1uJmVCYl8J4IikZ9G8rLk/mHPMFT0rVh+6D8hHv3XfP3ZAJ+1FhcD/TSy3e0hmRd+/vLEp0+f+P7778gSxdf7maKoyXLDu3dvOZ0utK1EKi/gzJJE2nXdGpLx2qx2kQ6BHAbn85m62RBRvzBYfp1s6/1ENwxkmcg3nJ+5dT277ZaxHwgxgFbJUFUMU8uqFt8OImjNh4+fePfNO7ZNTfRJJmrkQ6+aGucD3klDAdLgLIm1L5uOSNQKbXM0wnD58YcfKGsxlldGcUnFKMst/bGnSI2S0Zpvv/12BU3rumbbbERuGYSJV5Wy1W02jTDi5pn9diu+OS7Sti3t9YZ3ji+fPuNS0mVTNVQJzDKk+O4Esm2qmuAcdSEgrIB+DdZYHh4e6IdBQjQmAfMisN/vRZbdBqZl++Ac1+sVa3TySRHJRFmWjJNbQa8psU6WpuK1n+FykC2f65K6tfzZBYjLkkw6K5JZvBbQ9Hbr0naENXlM/P9KFk3/Msi+Bg5fJ1QtTD4B81R6rXPaTKWNc4oCF1BwXoFnEKBFwlAiRfEigX3tIei9JzpHnlu8myhsRtNsMGo5xOT+2m435NYwjbPEuzMgkp2OECI+iPddiAI2kw6ncRopygISldl5h05MOrkmipgo1D7MDEPPZmvQ1pLlsNlZnBt4fJfhncZPoCg4HwVUks/hxYC4aTZkNocIbXvFWscwdGRW8fhmzzRNKV1Qks6Goefu7p7NZotWWWKDJRq2tuRVnj4bMUv1LhK8SoOPw6QNfj90eG+53VqqqhSjZKUYghio5oVsSAUcFip5jCqBv7JtGoaJGAI+eMqiJGQ5RWHQJuJnzacPR+Y5cLsNPD1dJa1zhtPpJh4wuTRZ+0ONNYbHN1vKRliMXz+ficwMvXx/m1u+/+5XNJua4CbGqVuNei/XG8+nJ5HR53mSIEUulwsgi5MYhUa/3W3wl6sMZfmGIhMD5GZbMEyR2c083D9wOt5oUmjPNHUURUbbXQlkHKodZVUwTh3DGJLcu6UoCu7vH7leznz+9JG+7ynLfE2TE0B8Js8L8W2JgSrLhI5vNPvtTpp0LxvI8/nEbrdHUv1kgBWQel6HjbHvabY7ukvH+dLS1Dsul2ckFVMMqA9376jrnOPxBNoQFEyu59Iexdh7K0yf568f+P0//SO/+cu/5tvv3vGHP/xOEhejMF21GvDuxo8//j3/8e//XxyfPzJPN/72b/+9DOquoyg1m21BVWd0bSvNn/J8/92vyWzJ/vDIv/jv/jl5sSO4AMrg45wABs8//dPvcN7x13/9zyEFE2khXRCQoAtrdCL2ydA2DANfPn+ka1tpcm8XxDskMk+OL1+eEoNDQDVrNN9+856/+O1vaKqSMfnj2MT0dm5O0tuQBgLN/f09pxQuEWJYh8PXi7c0Yr7qAGKqZcIgWxh/8jxptBFWRIji8ZRlklDn/MSYDK3jskdNNdeHiPMdfX+laXJ2uw3NpkbpwPnckZeGx7dbbrcjWV5wu4zp2Zd0+YV5GOPy2uUsyHM5i7f7Shjd9QM///DM87NIrMTzLyawA2bvkv+KIURh3atZkWfyeTSN5XAnbAoxHPe8e7dFRYt3Gbd25PZ8k8+JF4a3JPLldN2IshC94nK7olQktzqF+li2uw2Xy426bjg+P1NWFcMwCbN1nFEYrBGvUDHglmtw2N9hbYE1Ocfjka5rESZizsZuEyhXClCgYRhnYvCUZSUSudkl83wBzyVlNJJlOcrJptx7VoamBE5JAxujYpoDWTKgzrMymYg7Hh8fePPmQRZl0XE+P2NMAzrSTzPHy4WqLpMvUuTtm0eKvOb0fEGh+PT5hjUCMvdjh5lZWfa3L1+YppG6ztg0tSR3DwNvHh+xxtD1Lbf2LIucWu7/3It3W17aBJhtZICZRXqUZQVdO+FcoO87vnz5wvlksJlIU7VSfPrwibquk/RT7mejFc47+r7D2AqQ5NqiKHBz5Pgscvi6keAbayxv37xht9uR5xlfn7/Kc5QZqrLEKCVS98skMmUjMqG+77i/fxQfUTfTD0NKtAWlLM5FQhbJbEEsLDaFeSmlqJoNf/XX/4zf/e73dG3PNM0CeFoBp4feYybx2xI1igwbPgEiMcbkrR3SfZe8rbROIWaK6GTxmZeab795ROkJ70b+xb/4Lf/49z/w4ecTYFYp1OIht/h5VnWJm6fEaLDrL1HNtBSmwM2ButpQ11cul2vyGM4oKjHad85TVVUKRhCWi7DqRWpZlp6iKJkmYV/lWSl1I8qy8nAQL+MvX79KndTLDCL9XgwSLrgkjC51bPEulp5SAD6lpE+9Xq8o7aiqjLK21LXIBmX5VdK1M9frmAZ+k8KBUmq6hd1+S5ZF6qagaQo+fzpJ8rxWTNMS3CTPpLEC9MUYQS0JyMmKIS2RtBIPwRCDhIpoQDsyo+QeSiwZBQnoSWCEludmSYYNziUWqEp9S0a5sWS5xrmJ7V7Yl9e2p6wzNnWNcwpNjptnlJZrqlP4ojESeJZnxRqK0w8TbXtFRcemKcmsJh9GfPDEAMZYpnngdD4xTTN9N9A0hawrlDCcqrIGE1MwkRA8qrLh+++EMPDxw6fkvSyybAFpl7C6ZGExxZUoEANpURUpyoyybGiaBmOklhe5yCSd98Q4rvePNgLCZSqFWaV5BG3Ii4Isz8TnOBNAUhs4nZ8JPnA63ni8k8VsP1wJPmMK4o26zNALIEda9C7n8Dx7Lucr2sg9sd1WlEXNMEwpYGHC6EWlJH3xan9ESv6dxMu870ZcWMBMxenUElbbo0heZKANc3BEkqelNAcYnadZU2GV5nw+0feGqrLcWglGq+uK4/HI+fKMtTWRmIKD+rRIduzvcv7yrx+Zx56qFhuQqipwztO2V27XDq0Nw9iz3VXcH/b8/NNXyrKgaTZUVU2el5zPF66XTvpB3/PmzQOfPn8i9DN1VaGNoesGdrs98yQ1sWlqvM/ROqJ1wCtP3VjqRgKmLudWAkSrSJ6J1DOzYskxTCM+4QULuUTIBksgyWJ54LF5TlGKoonopGc0kevtzJLE7XrxxK7rSu6vFBjovCcAOlh8iKBl/s1zI4xHFTFG0w8T3a1NbMqCvh9FwmvsCmIpbURyHWX5F2Mv8nIvFiRibzTTtRPBvwS3eB/pukH876OktIsvfQrF9OCQeT+zNpFpxPtUWHHCxvsvZasLgJ2sb4Ja1Z5d1xHUokyL6XxZQtxi+v+s1z+ka4PS659ZpMzzLESI8Xni+HQWPGv1AXzJCNDA7dYxDfNKbopxlu8dF89pvf69GMT3tb11gid4j0Lh3ZIw/Od9/dkA3+Qc//S73xOBU3XhdrlyPp1WoMbmGd9/9w2bzS5t/wN5nhG80BWXBKAF2FgkcgvbbNkCvkiVpAEQ6d5LqIRNrKbX24wYF/BGfqaAiOJZpAKr2f/ldEEZgzYa5R3jvOi0tZi3O6GJXm89m6ZZmQrLVwiyOW7qzS+GotvtRtM0wk4LQYbRdNMsDDqbZex2OyKRtrsJYFnXfP6UDhkUKsrQdrtcyW2GQVE3dUqtFQlrWZa8efMgYCVQ5CJX1enh3TQNbXvjcrlwvYofncSd39E0DVVVcb1cwNgkh9uvA4k1RhD1IN6G3jmaxCR8ONwxTzOXrhXQCGkCj+cTs/coo+j6LlHpC0QOMK9AWggBH1+CM4wxkBJ/l4bsT8Hd5QB7Mat9aToX9t3yZ+XgDyuFf2Gl/KmHygLeLffYIi9cfBFes1gW+XUIAmRl2bINUeRFwZiA3dcMQGCVGIu/5PKaBSBcZN3TNLHdbpMUwRODJrcakxopkfZK4ctsRtf3TKOEdUhi04t3htGGQECFJRErUJQ5L3bPER/kmVNWiTF2FB8qHyQhbSmy5/PE/q5Aq5yxl23gPEXGwbGpDlzOklorvhOLN4RLybJR5ECpYes6SWmqq4y2Haiqms2mkbAZbbhcrmlDrvHO0w9Dei8k01tZAFRVxW63T9Iyk/zyRqxSqxw7LzKcE7DfzXKN+75lt9+QZ8Ku1Fbe5/l8ERmP61BRPB+WhL0I5IWlMOJ7FPzMOEhjM02Oz19OeB+ZJkAJMyjiqZqcvFDYDOrKYLPIMNzQRvP4doNSkU/jjSmBNEM/UzcVY98T48xuX7PZ1EQU+51sMB8e7xnHjra70mxKgvdYo6mqmmZTMvtxleJFJpTJ2W2FrfUv/+X3aEram2NT7/n5w0es1RgrqVphlHrcdX3y3CzJrJgs324izTmfb+sAIc+peHYsP/Pp6Yn9fs/T1yPjODEOkqB993CHNmLIvdvtCMl3aJpGzucTQz8kqn5gmnseHu6ZZ0lm7LuBoix5+7ZKkryMqq7QRid5Xs+tPYlXz+QZh1bYHSnQ53o7ErywUba7A9fzJ+YpJkBatnR5Jkyo6/Urnz9/gthTlor9oeLjpw9oE9huS/EpiRN13XA4vKEqd3z7zfe8ffOOu7sdwxD5h3/8Txz277i/e8tmu2caZ66XC7fbhX//7/4tb9684a//6rdonSGeBcLA0HiRsd4uksxXZJzPFz5+/JzM2EVqL6y5FJARF88b8TwKAaptzePDPZkVqY21kipYFAWHuz1lnrHZ1IgkrqNPYEhZlHz6+InoX1K/X5r7FybJMpSH4HnxM31heoD468Xok2n7LINqVNTVRqwlCk17Ew/GZeNsjEg/bC7DRN9NWD2K9OV25eGxxppcnqNJfL7GeWC3bahrAe5MplDGiJRbK2ymePd+jw9DkrZHnp96LuefCWj2+4LZzbgZnBPQq6oN2njmSUCP6EmqAWmYrYqcjy1uI8Nn1zkyq5mmEcKEpkxgpVvr8SJ/zrJMjMTbG3kp/jhFLpKposhpml0CHXp8mIXpYze0txZjTAo2WhLII13fs2lquu4m7PxxkKYfOftAMc1TYpkkdqgRKaJzDjcHmkaSt6fJM88zRVRsmi3NXSPMLufJky+ycy0xBKYpYK0sicoiJ7jAjHzOPixpehqbacpSwmy6/sbHj184n6/UdU5dF4QYuF4HSfILMAyO56cn3r275+6w57v3b9HG8KvzlfbWcbnciMExTC75W5HOU8jzYk00zDNLnuXc2gun01H6rBjZ7XYoFcUQ3num6YUVN02OoZtTCIeirjfU1Ybr7ULXik/rbrfFaE2R51yuF2IQiXp0M0YLuDFMA9OcYUyNUpam2XC9trS3czqrX5jk4zjRtmJ/0PYtbp7Y7zfUpmLsO1QppuVlWaSll1nlWuIFJmwjYVUZAf0Te/NwOND3N758fuJ4PNI0dQLiB3766YcE+Mm9pI14W0/jzPXWMc6e4CUpt2m2KAXn00m8MxObd1GEGGuxWUpvjRHJOlvsQcQ8/dadE3iQM00D3k/EaKmrJi1sJbykrmuRVhvF2GuqooQoiorD3QFrNV0nrL2npyNV3dC1Q0ph3ZIX+ep3vdlsMCbjcjkTgqesJHRjmmZRqcwhybLL5COqqepKfFMRwGi7LWQYf/ZrT6q1nBuLamepiVIjhe30wqgK6yC5DHFt2+Oc43icuH/Yst1taW8dTdNQ5CmNNGiGXiRrMkR7wpz6VE2yICkAkfJpbfny+UTXTmht2O8bAZ2jLJFTfARuTmChAWNkwZIVYsFjDLgwsrMS7FKVG+Y58vmTmMkvb0MpkVIqln5YQAvi0qdrgheQ1GZiGaSV+O+iIn52lGVDDBm368j1+ozskfSqeJFFRIb3gb7vsbnYLc2TS0znOikbYLfbcr3c0nIkp22vjMOM85GhFyXL0vuP48hm36wy7tv1Rp6VIs0cJ1mWJ6WYeKYvsvmFFRUTg1mLBD2x8QBiEEWISeQP8QyU9+MXpmryUDdpWbYsxBf2UVEUyStcrKOytEiJMZJnFjKoG7E6muYBYyDLFeMs/n11syEG6PsBYbHrFTSSsDKNeHpLMvPtOhHDTQgWo0erLEmYbfoeYqOFYl2ej4Pcvz5I6rCoThIRwgsDTmaITGSYQRaXKjFC5V7SGGOpipwYRarZdxN//MMXnJ9pr1YsZKqYltxX6qokGvFN7LqJw13D+2+3ZHmARphleSGLxr4Ti5V5DjR1TdNk3N2VDOOZcbpxvQRut57379/z/HyU+rHZY60mIL3N27ePzLOAsm3bUlSLzYAocpq6JMszjE3zXCc2IkUuzM+mKVcllPOOGD15keFjZGxbkdArI/JWxKNUa1lw3G639by2NmOza7BW4/1ECBEb5XN1s5NlqSJJxDVj8hmV+1D84cZhqdM6yXArnBMcxScijFKLD6ZCYfGzhH8aLbGOMSUeLjWvHwZ5TU7A4OAVfdczjRKKtNx3S32McfHcUwk0E0b0om6TYBqRIMuMkRBqFiuXF5ur13VVbA0kUMu7hP+ExMpDJV/R5APLi7WM1jqxslOadNQi2FV6rXXeL3jSSzo5MYGO6hW7Oi2GQ4DZxzVHYhxHFqbtAlBKjoMW6xebEYPidmlpuyktKsDYjD/3688G+M7nM3eHN2RWzNTHeabe7XHXK24c6ceJp+cj7969o67LlRI9T3OSKcYE/Mmw6L1f/ckWk+9lcHjtrTfPM58/fyaEwP7ujin5NC1Az2IAPKb//hoc3G42PJ8uBC8NwNPT08rwESDAMYwTeWIlOOfwMfLHP/5IYS13+10qlvIlUmGhfIun3rCCYa8945TJcEFYfkvgRdOIJObL1y+YTP7s8/NzYiiJhLLIc+72e4iRqiy5XC7crrdV1hpC4O3bt3R9T55n6eARz6llQJsn8crL03WVRnXH/f29gJyXi1CqfeDu7m79fEMIxMQYDCGsnoJlUfBwf888z9zt9hRlQT+OqEKSOCfvmOaJOmuoipK6qskzkWZeLt3qG+icxyeq+uLBQELcX/ydfhlasryuRZZr1iCThSoe1g1g8LJxMqX5BdsPWIFloRP/0mtPKZFOLJ9djC/ejwvbdLnXli1LlmUiEdQv/m6v2afL63vt1ydN4ryCgC8SYEn+FUaqgSiyUO+T+0AqXm6eEgvHr0Dki1xTk2mNX4qX1ikZdwkPARBvheAiQzekbbQMbaTNyjxFlDZcjp7racD7lsNBmse+m5m2PUS9mqCPPqz+NkVRpKTFSbxxknmtbDgjVVVSVXLQzPPM7XZhs9nRtq2kRU8i71JaYbUEhDSNxMYvjN13796w393x008fuFwvOC+HhHxewibTRhLD3OwoihJrMrr2Ra6d55Z+EOm6SZuv1WTYgLA1HUELG1Ubk9JcNVXZ8M17AVvHaWC/33J3v09+g8Ku7fsWN3tOxws601RVji4V33z7nqenP1BWE/MkstTT6cY379/w8PCOae6E4Yl4mDmvOV9OtO0Z2VlF9vsdm7pOAHtkdgObbU6ey/t6+3iPzSxlZVOITeDr02e0KgnRMYyeQ7lLmyXFdnOg7a6vmlMZfJ3zxCD+nDYT365hHBgHR1lVSUY6Mo2Ojx8+M6YFyul0kuWJ0clfdQ8orpczXdenRcM9fiObsq9Pn9nu7siykhA8XddLmqOd2e52GA1v393x8HAvTXOIXM4XLudb8k+ZyIuc3f6ezaZJILVjngeMyVDGcWuPDIOmvXm8RwKYwpW67sh0yf7+nkgDaiKvFIGBee7ZbRu+/e4tsxu4XS+8fXePMY4vX37gH/7+bwkho64OnM7/Kw8P3/HP//pf8c/+2V/zH//jf+L3v/sdNjMc9luCn/jphz/Q9hNFLglnKNjvG5T2/Od/+ntut5uwerKKaZawGQHDPHluJcGz73GTW1kBJnlNvnv3RuTHU892V5MZqMuc7aYmM5ZvvnmPMUvatDCbP378SF3V1HW9ns0vyxNYAin+1Od2+fXCmPcri6VuKkKYcU4AH2ty3Ky4XHs5z6qC+4c98zzh3CQyLy/bfu+R+26+oq83ptkTvKXIZ56eT4mpOCNJa5pu6FK9d6tHnwwZOefLmaoy3N3v8D5wOg5M40SeVRRVgff5mmquFTSbjLLWPD/dxKvUkK6nLEWsRdjo1xl/9CjTU1UZwTuRPJWRh/t73BghGtws5vkgy6NxHPE+cj5JArfWAlo4N/D23QNFkdP3N6wR4/uu77hdW6qqRnxU4xo6I4uTRYYizK5xnHl+PlGWFXVToke1evJlWSYg3HLm+ICECognpMj84HK5pWsSln13YoOAD5JUSrSgZfA0VrynFu9T2XyPhOBQymKt5nI9pY18xPuJfgxoNFWdc7l2TFOgqnJ+/ZsDRhvarqVtLywhGFVZ8+3399RVg05G9ufTCedGmr0sxo6nM+fzibquyIs8gTsB7+eVoV7X4v1HJnYWt1uLUpq6ashzOSONyWjqrZj7G8U337xHKWEGTPMsZ/TsKZoCrRR3hwMRKKpSElQTs8K7yNDPPD9fCD5QlcIYkeW2tDzGKEKYCX7i3fs79vut1L62k140z6nKWoZPH1b/amHiqnR2incaCfATb6kTeZ4J22tTUhZirj97x+zlPOyS52JR5gQv541PS20fnPQHicE0zSOFtWlxLvdPXVfYPEsDeo81KSk5iLfwMDjaLsNokW2iAmWVsds3jL1HaWHRaS2hYrIUZFVQGGVSiNMO5xyfP31NIVwZ10tH102Y3LDdbmmaRuaJzmOLAq00p/OF2UmvnAVJVy7remXoOyvm5zFqjscznC4rg7nreuq6YVNvuF1vv+gf19Ck+DIAvoB8Lx7Ni1R2UaLMLnnwTg6bKc6nKzE29P2YJO2k3kuYoIs4VxthlozDgHPw8dNAVWVURcbhfktVVsxuTkBnxbtv7nh+fqaq6iQXi8l/TUD79tYmkMZjreLufsM8j6Bht2voOwkpvN5uaBNpClHGeCeLJmOl5+u6noiACcIaNGmWkxCLRY6LctzalizPktfnGWsK+l6AD+8FNLU2T+w9kQp7L+C3maXvqKsKhSzwF7B+nHqcdxhjVwDJmIwiz1d1w5JOGqIXuxsj86G1GdM8it+YknC5LM/X3mYJfVxYjNZaCLJo10rk2MFJ0ZzHEasFvDNWYZTG5uLdPXvHErCHChgrUvKFQVXl2boAyhLxQyno+46ua0WSmbzrSNdbm4jzA7bQ3JU5fTeJVzc5SskMuHwt847ct5a8sPRDT99NuDmmmSpLtiFifzAv/oHJLkkrs55jWZbhh5GFdWktaQm5yMFlDh/GNM9HkSksIVay1wzMbiSzNvXcEz5MbJoMYxV39zuM9Xz5ciHLNbMfmZwA1l03yt/NHQ8PB07HC2WVYVTO6XyW2SEKQDW6gXePB+Z5xBjN45sD3t8SE23i17/+DZ8/f+b9u2+4XE4SqjWJzyRqsewRH1uf5gIJTpooK0mQFWa9KNrGbEaRQSzws6a93rB5hs00wzBSViV5lvP0dFrvOVlOif+qkJ/MOuO3bUvEs93K2RGiMMR3+y3WKk7HC+MU2G13HJ+vKeDIrESXhcE7zSM+KLFHwpPlls2mYZpmhkFIWUYLa7YsCvEUdp6gQgpLFfC6ros0A6hVpXg+dYmpJvOr2D6FVWoq/1/uIxdkeSSgndTSiNwbLIxhtUjqpfeU77kskJNkPDH4FmayzMwSZBqTdFdUGaxzrUoA48K6jumsJnnxLdDeC8YjNisxsC635O+/AHwvr1f+m6jyxMcxxoElHE0AUnk/IYXQCMEgMk4+AYcQAxLI82d+/dkA3yZJvJaNvrESuGF0hjFy0U6nK//5H/+J//5v/hWZNWviirUZ89yv28jl4FzCDJaLVpblKnNcDtgsy3j//n1ilPlV8rlsyZdNyeLTR6KpLwX98eGePC9ws9BvUQKYzLMn04skSTMME2VZcbne+Hj8zOn5mf/d//Zf8+bhbsGUybKMt2/ecL3eVu+/JSjkxbstgtKcnk58/PSJpmnY7/dijos0/9qqddjKsoym3sjWxmYM/bCCTV3XsdlsePPmDU9PT1hrqesa52cWzzppHhPzIunYy1IasaVoNE2T2ATiobjZbLDpYRVZzbwChDEImLDIZ+dZEnC01nzz/j3KGr48P+Gc4+n4zOPDI5++fEZpzf3bO/pW2AcSof0C5t1uLT4Kor0kCUWlV1B28ZJY2X7r8BhXFkuMi0xEhuQQxGtuASSF4WRX4G6aJnRKFVqG1SU5Spr/moeHhzXdaAESXxdLpfTqsSigYJZYpBPOzev9+zqQY7k/Fw9J730KH+m5v3/AOb9+FnIYS5OeZTneiy/bkoAbYyRkpAAPt6bBOufJc5G2z8kPcWGcqsSgIXkGCjBIKsoBTyBP11xS32IqNGIYfusWnyow2lFWOXUtB9uS3mosDF3G7domObRm6HvEQLWl8hV5niWq+cj9/XYNvxCp6IxzkiqY2VKaoQjWLFLdCWt3FEWO95K+N44zP/zxJ6wtmGe3xtY7J6/ROYdJh4YA75JKOM3i3zCNLjGMBYBY/owA9X2SVji0h0oXYg47TWRGpFFFuSUvLT7O7PZ3oERGcL1e+fT5SF0Z8ZlxM+25Aw2bTU7fOcbhyF/8xTf07YAi43Ts+enHI26e+fjhEzYXc3KlFJ8+fWb2I0VheXy8I0aHSSwNeb/yXB8OcuiDMDIOhz2oyMePF/GMQnN/v+dy6qnrgmmck8H7zPl85fn5mf1+i9GG3X4LUTH0E0aLsbQkrwrQsMg7FZrr9UaeV1ib0ba3VD+kUd9sNhz2B6qy5Ha9ChjY9zI8a8PQDxIGQGB/uEuSMIM1BcEZ+mHk8c2G4BWZybhcjgzDQFVVVPWGrhtxTmw6Hh7eUjc1VVkQoviTFEXOZrshsxatA2/fPbDbfce//V/+P1wvHdPsaNsLp9OJtuupPjWUZcnnz5+o64rvvnvH7XpiHHs+ffgZmynKKufDzx94uH9D349cTje0zjnZJ96+/Y5m43H+yP/z3/4bTscT33zzHu/gb//uP/H27XvGb95zOZ+py5qiFAn909dnTpePHE+fGMaOYcx5+/ZXzHNGCFaASuewWcXsksRBnu7UbBk2TU1uDU1VIkrfQJZpDoeNyDBJjUNiUzsnYT1Dkvgd9oc1aGZhMjsn6dxLYJDUTQGGFpbzslxZljDzPNG2AjrKZzMnjxsBzed5Ji9k+1+WOcOQaquxaJ3Tzh0hiseRC9DdPME7Jiu1fhoiWknTW5Ylu6Lgj3/4WQYu5XEustmUPDzcMwwdT1/P5FmJsZrddk/0A09fb1wuA3eHLVXZgIpcbxf6oefu7sB203C79fTjQD9MoDyZlSHHx5isAyDLIc8Ktg8HtIbu1kmozH6Hik4YB65DK9mkD6PIX0zyLh3GgeBntpvDWq+LokhbYM00DUzzxPl85XC4Z5HXylkkv3Y7CYqIYUlAFnYPSOJvvHl8P6O0pE7nWS6s1dyQWUWRa+ZhIrqAymC3kTrrnAyzSzvc9z3ezTg/s11Ap+ipigJjLEUhA3pVl9R1wTB260JMQi80l6t8R6WFXS/XoqRtHadTS1HMDINnvy+pCsPhsMNa6Qu67so4thRFRVNtQHmqqsRaCSxr6prdbkNZ5lyvIsvN85xxlOXk6XRa7WCcJL0QggwCsYTtZks39JR5TpEpMm2piy0RBUEzIYzL27UVC4kpMXCUKFS0yRgHWWLebte0COsZB0f1ajAKIZCpjIeHe7LM8unDBzKrqKuMzUakSod9Q5YVqYeU3tgrUYwIYyGnbQWElr4xJze5LALTmde2N2TZa2jbFqVGxtnz6fNX5slTlTWbw5YQxAs2LKwcA3M34hU4ZxNwYxEjd1Ej+HSvZXmG6wZQkd2h4vtfPVJWmg8fPqG045tv3nO+fMGajKqqk3zLME+BfhjJbKSsKqqyEYbMIP1AkVfJt0hxu7Xr4q9pNitQlWUWZZNPrVrmBwmSWTwLo5Klo7U55aYCJQm90zwzjj4FCZCAIZt6BTn3bVaQFawpxX52r3qq18xmnVgePtVi+4opoliSVyGXYA2EDWNsDmRolWGU2FIYKzJ8kqRyeX5ktgxkuRX28jgS3MxmW/O161DKczhUHO62TNNIjJ5p7nF+4u5uh9EZkvztQDl8HNPyTYH2bHYFeVGTZYbzueVyvlAUFfvdblU5SG0SgFok8gs4IMwTYdw5FBFv5Tr16d5QCvLSgILMQFFEynLD/mCYhkAMRkDOdA+62QNelrZuptLiJT3MI5tQEmNSaXixhZAgDJE6juNEvoDpVmO89BRFWaC1SgF1BQuYZdKsE+IMQbPb1txUJAaxtnBeZHd5bjBG+uOq0ExuZvYzdVWz3x24u79j02zohxbnJtziGV6W64JgnHryImO3a9L84n6hIFpmm7qW6+z8RN9POD8zjCP7Q8WbN3va9kZVv2WcrozjSJFveX7qmIYBeDHpfz2DhCDSbWPEx1o8QpdwOZdAC9Y5VAKSFoLC4oXvV7WUd25VRMUQsen5iUH688lFjDILEQvDQowQKXle5NwdNlyuEkjy69888P13jwzTBWvE236zbTCZSWnjoriZZ1k6f/165XhsKfOMw2HPNM08PhzouonPn5/Jc8PD/S4pGaTHj8Hzq1+/46cfPqdr2+HczPlypGkqitJwPD6R5TKnWVPQ+5m+l7BGrSTVeRpHlAqMo/gkLuSXcXRs6g1lsafvHLeLLB9JJJ5xnGWxom1SX8SVBCH38ShAtDEsYFbfd2IjkG/I81xCE52ktO/2W56ezrx584h38OXLUaSwKVCkqup1FnJuosjNem9dr7dkX+XTcsYy+4ncZtRNyTiMAIyjJy9KHh8fyHNRooXo+fTpE95FDvsD4xC4Xm8oJWo0Uj1b2KvamFX7KEFnArSJolslcCumv/dy/3ofVvKJBLql/gdRI4iNkktMPI1JoSVA+hkCWhNjChWJ2Ex+dlllMgf2EtAiJMOERwUF+BWElAXOold+8c9fvEMX4E+eM7HmMMlH2weX5hrxip5nEmiaQPiwqNcXJuCLSvS/9uvPBviMNuRZLtKU5Bkxp2jlLC+YXGC3qTmeL/z+jz/yF3/xa4Z+YJ4nxlH+Kd4AsiEUTXJYWWYLG2/xW1u2YEvggfeekDYKy9fSvK2R04kBNs3ig7RENTcp/dVqTTvJTaO04un5xGazocrFiFTMcQ3OR/px5sefP7DdyhCttfhYBBVxfibLLW3XEeb0aaUb9tbe+PGnj5yuZzbNRhLjkGHmpx9/IMszVIB5dBBELunmmcPhwHazpb21bJoKa0Qe0HY3jNVsdxuyzMrNPgeUsuk9i0dA34vHmPMTh8OOvh+Yx4lpGJiGkSKFXUBKbw3SvIzjiLaaZtOwaSShbuomQvTc7Q9oI35RHs/1chW/oqJgnj1tdwOtsVZLsEiYk5Gnleud5SttOwBZnqGTDNj7gFZRPKiiHKJGy2ZoYQQVRYGR6QaWrVYMTOMkA5F3ZAlYFcN5+T5+GinKEqJsz2QLL0VfzMPnBAxPXE4nMqPxmU3eGPIzovfSRBpDZjTRaMjEgPd6vSb2lzBUi6JEo5idIy9z8dQYJ/puTNtUQ2Y1VVFQV6WAhkYA2rLI0dbg2pZukNhwY3NMWDYGQXyYNAKQGkOcRV8WkGaSEIl+JnWFUrC0SpKi9Cux+YSfIYwXo5VsJlXkzfuSc1/w/DShjfgu2UxT1prddkPTlPTdhbbt8S5j6EPadEeMltTbeZb8ImMkvn2eJakxyxRlUSUQIU9yeGFxjcPMl4swUDbNZk1azXOLsUtKltDKh2HEZoYQHLtdw+wdbdulrcxSqGUBoYB5nFFRUvliDPjZ8fTlCaWlEc+svM60b0jSU4OxEhGflQVFLszRN+8emOdRGq1SEnFRis+fPkjK1mXEeUUxLcxIzTw6rPHE4JlnOB6f2e8PZMay3da8//aOeRSvxK5vhV2RF5JCbTKaUlhYdS2ARFkWfPzwRJYJ0NrUDXVVkeU58zxyvpyw1rDdNpIkNorvaFYo/r/M/VePJEm6pgk+IqJcjTqLiCSVVYcM0DOD6f//D3axwGKBnu0+c7rPqapkQZwYUa4qZC8+UYuonr3Zqb1oBxKJrMzwcjdTE/nI+z5vnhcURcb12jLPHYfDkTQVpcD5dGaZZYtvZ4tGNt5tcyFJxJredR1lWTONIy8vJ4oyo65zktRwLPZsd3v2uyPn8xtD3xO8I8tyFPJzD33P+fyGaRrqesvDwxN1smGeR87nM307oShYpoWXz400x8j77sPC9Xxiu7NoZSiLCmd7hkF4ZH3XYxJDXZe3YmGxizAclwmTCHeuLPb88svPhAD39w9iwYthR84tNO1EnmucX9juarIIeh/6hlRnOLuggufx6Z40zTmdzsz2xLVxXK8fWeYApCSvHmNK+r7h++//N5a5ZxwvGDORFxu8c0zzldfXv3JtvrDYgSTLsLanrh4oigM+TIzTQJLsUBQ4H4d72kRws2ceBy6nM493e1S0VRit8NYxDoMoLXSQEKTYoK+DPKOTqLod4+AuiXa6mG44jbfmdr0zVsbTurlfFyeg4rY/wWgpyn2Q8zhNM6yyeK/i4KNAqUQUJEgA1WZTURQZaaoJwRD8hbZZGUbutnjKUvmzP//lEyBKxqoqCGFhmkZ+/fUTa8rg0Ltb8I11XpoOpTmfOykaY6hDtzim8ZXDsebp3QEfHJ8+faSqK7ZbSbG/XgYyjwzJCoVzEybJwcMyWz5/PBFcypcvF7TJQCmyXBLp5UbyFOXfOhSkMZ1kGVJK8uv5fMEugePxwGGvMDq78WSTRKDy4zhh7UKZZ6ISNgllljItI8vU8/j0HYfDlk8fP4paJqa4KiUp6XWdEJzF+ZnDccfDw6MonYqc6+WM8KdlEPDhu/ecz2fGUTAJ221F27ZSw8Vtel5k7HbbWIOUNO2FcRhjgqzlwwdJxL17uCfLU5rmwjSN/FRt2Wz2tM3I//6f/o2uHbm/e0IbyIuEzbbmTinyrOB8OvPx4y8siwy22rZns6t5eHggy1LA8/w6kGf57W5fXQDztAjDMU0FqzEsLM4xT5b9PvDu6ZFhEHYhBJrmilKKp8cPzKOk31Z1zRwXekmeUW+2MswbBl5eT7K0NRIUcdjfUZVbklSecWvn2yJ7WRba65lxHHj/3T33DwcJJMlzrpcL47QwjTNVtcG5JaqaJMikHySxOE3lueuGHvzMNDk2dQZkGJ1wd9zgQ+Bybnh9OTNMVpKdI3M2iQ4cpSRIBRT9MMiSUPxNJFlKti7K5/kG+qhqWZCnicEkEmKT5eDcxP/8v/xjvMcagteYLEV4b5Y0E55cP6SMg6hSZ7tQbWqqusY5x9jP4EHbgNdiExdruidJDfcPR7wLjIss4pdlYRojuD3aY8Ue6W7LfUlPzbH2JMs7R6w/7W2hOs9yzmgjFq62bVFa8dNPP/L85YWuaeUzHGsnrb/aqSS4QsX+A6ydbwOJ9XxUCOe4KHMIjrbpANBpQpJmcTA4kRcJ1aa4fW+x/3qC8oRo/x8Xz2+/fQGlogpOYyMeQ+qm9ecKWDfHYBpRUKWZODgEZbIwDC0Pj3tCMOx2O7pWUp+n0ZFlKbv9lnEYbnZmbTLevb+nbVrGcWaaJ8EtKFGwoUSpYhdkqJeK8vnufo8KMPQTiU7YbnJaP7NM/mbIS4yhHYYbQ7osS/CONUivjCF7zskg6u7unr7r6boBUORlEXsaGaQ6bzGpEfuotQx9x7bacLlc8dazKUumaYhPtWW/vyPPRZmmtSJxstjthwtZmlCVBWVhCKMl3RZ8+PABpQzjJC4QH3xE4Fissyx2YbffSB09STpwlgnrNM8L+r6Lqc2K0+kch9M7uQ9v6j1RFZkYWmCXQJYVEuLlE5p2IIQ1DEv9d0MC+ec0FSVa2/Q3VX0IgcTkEERI44IMe1bWm/cyBAzRFZYX6W3gESAGIMThRLxDAwHvAioQOY/yM6RpGl1aghHwfuHxXc2P/1CyLC37Q05ieiyLIKa8xjq4nC/sthuU0vz2+zN2FieD8ookTXh82gGKz59fSVPDbrvnw4d3GKPI85RNVXK9npnGObo+msg5t/z881/Z7XYkiaLvG7x3DIMoGKtqQ5rmDKOl7UemUe6CLEvZbLYsyxQt74r9/o5lmfn08YVhnLG2R6uM7aYW1IfyzPjoxhL1/RoGpjQsbqFMhdFr2xGdBPIiuXHIx3HkelUicLBwOrUkRjPNM3238J/7/0aWpsJlnRecdRSFEaZsklCUJUp5qiony1I+fvpE3/Xg4f7unq4TfFHf9xEFoNhuha9dljlFUUrfHWAcRk7nNxG1LF7q3JCw3e5ugp1uEGXt7Sz2a3hbQFT9cu5672NJKQM0E8/ItcZz3qG8QytQRnN3fyDLNePUUlalBDRee+ZZcEXWBgm80glBSQpvHAeigiAO8jwlzZSo5a3j9fl0c+gFF2517be2WknOdsIvRf5albwgQ20fbAx9C1KbG40xniyTJfw4+Zia7qM6PsTZE6yKbzmvFX/v19894JN4Ym5DzWEYZHBnhd1xfziS5ylZmvD8/Mzj0x15Jg3g+XxFUhdlQrzKHVeI9yr/7KL6y1pRHqyDv1WRl+Y5SUxFXVl864BwVRWIKkmRGLHFjqMEEmSZbNCtcyhPLHAyvnz+wrvHR7pOCulxmkAp8qLky+sb299/58cfPqB0ICiN0orD8SBDiGtG07Y3WeilufB//Ou/4hE14v6wv9mHP335TJoJdP/0JoO2sigpy5Kqqm6KPZMY8jyL6ZQmBpCECPf2DOPAmjq7vm6rIm2/33O9XjmfTvT9yHa7xVnLPE03G+q6aVy/T11LUMc4jbjYTBVVQZGJ6jDPc4ZppOt7fv/4O+M4sdvvSKIiMGio6pppmXk7vZElcug47wnoG7ukKCuJAV8HurHZDEHgt4DYXpWKVjYZPin1VbrrrROaRZTUPtw/iC1yHEhJROG0WDSw2+0Yx4lxWbher2JbTtOoRpRtlMoDbXuJr2NcPIXAPI0ApEki9qggqhaj5ZD23qFjUpezFqu/Wm8TI9Bha2Uro+L/193dkb4f8E6SuoqoHDN6vSRFrusIsVD0t+d5XqSw0UlCEyPpBZC/wMIt9GSVSDsvEFJJUAtYQXdJsRc3D9qomEIsQ555Gak2UJRiz3h4PJLnkmjpXY8LHpMYxmFh7FuG3jMOMyFo0rKCwO1SEBvS10ARguJ8vmAS+Zxst1umSd4Xef63GJ1EJZGoZ7SBaZJtW1HkXC4NUmBLwdD1Le8/vONw2PDLr7+Q50bsV0kSB1eKPEtJ0kTYfSFwd3fH4XiUYjkqNoMKEhLhZCu5cizX8JR1mKY1VHVJUQr4e9163h3vGMuRZXoBJdYGVCDPE5YlcD47jkfPdruhLHNeXl9QIQhHzDpCkNTa9x9+xC6WoRvp+o56uwU8X758JuB4eroXq9vQkaY7sfP1lrreoBUUec44Cj9EQVQDQFULk6SqNoz9LFZKK/blcewpqxLnrKSdxd8pSQyuXbfYWQT87zi9nWk7YbV45+NZsKFtGrg2XM4Nl8uVw2EbN8JeFI3LzG6/l02gk41XmgoIuMhLCFfGYSbPaobBReZqwtBFvmsiFpVxvFBvS7TSzLNjHJebiqIscupqwzDMaO0IfiE1hoXA8/NnEqPjsHHD6XRmHGbKyrE77CI/deJ0euH5yxc22xrnFmZpzzge72maK13bMU8LdD1JmsXhwsyytBiTUW22BGdIU0ES/Mf/7X/l6fGeaRoIvmOcesrSM0095/MXrs1nLtfPBCxmSuL549DGMc09l+uZPP+eNDtIwaJSNAK4X9l6WZrGJqQkMQllWbDYibAE3r9/x3a74S9/+fPtHh+GIZ5TyY39Ihv9+bZIk8+Yu90x36IQvr17ViX+7d71gdk7GfapdXMvTWZ7HejbEbjI9rvM8cEyzwPv3t2x3VacL2+A5sc/3HG5iCJKxYCV15crXz5fSNKecVjIc0O9FZvL3f0G62YSk/L8fGVxgbfTmeDFQrLYQJoJyPtykrAaH4g2QeHI+WC5dq9kqeb+scLZwDA2lJWhrHPhnB2loG2ajuAVRbqluUwMfWAaJoqiIiD3w2Kj1bSq0AbmZUZpqDc1fpkxWhZFVZXH8AZRva2W13GYKcqcru8oipSiKAnBx6RJT5FLKuXd3T3GwPPrF5Zl5nT+TJ7nbHfiKsjSPc31ijGG/X5HVZWcT1fq7YEffvgJgizj8iKjWArGaWCxM83lKpbPKicoSfPWWnM47EnTlPP5RJpmXC5XpnFiv99GTMrMNA84J5/N490Dh+MBa9fn/o3tbsMwNpzPF16fe54ej2gD4zBzONQRZyHPpjRVjnfvH9FKrEht13F3fyd3nVvkvM0kXVgCRPxtoDaMI6K40syTnLdZYsS6m+aEoKmrDSaC+UMInE8XLpcraZozjh04z/39E0Ve8OXlCy8vb4zTgDLCbByGSZwBzqLURJZnjMOI8/IaOOeZZ8swdqQm8PTunvfvn25ctWUZKcqc8/mC8xJMJRZ9sYMusyUxYrmcpshIznLsAmWRsNtuIFi6fhBguklpG7Fvz9Mcz/ECYwzDMEY19tpYSC2W6BVrMrP1YplXwGIdLrojFh+kPs0yNnXNMAxcr4osV5FB7JlHT13Je9N3I303RtaYpqwPnE89p9cOk0kSs1KCS1msLG/mRdQVx7sj4LlcThKk48Uu6kOgadrYlCmmUV4P70JczMnCoe8Hsqxgu91yd3fkehWsg1KRxRS41c1GaQKB2U4so8P6BWcteZYx3oLfYv2kvio7xPUiS1YXualpKknTq5LKe7HcEhRJIoFgsoT1ODfhvWOeR9LUsCkS6lqaWBd5yhLOFrCjiBKSLKXvZqYxAI6QSjPdtRNVnbLfb9lut8IybST11nuwNlDXglJZrKXvLGPtmMeRYVzY7Ta8LY2ojseZqnI3Bbe1Cy4sKOU43m0oq5JPnz7Rtr0EI9UlwzDQ3kJ6EvJclIvBL3inWGbHeWhYZs3Qr2FqYJIErYQ7udglDks9zs6EYFE6cG0bUKICv79/IM8TrBfRhAxMNN7L52SIi62yyHBuIU2L2x2ZZyk+CTw+PjFNHePY0U8D3XCSHmu72mZl6GyXmU1dsotJy5dry939I0VRk5gCa9cAPceXL59Zlom2b2MqaIGzM0WRst3WWDv9zedOKcU82Tgv00zTQpqKk6eutzRNQ55VaJURMIzDzPU60rXdTYTinboN0GJqwO25TNN1qDLf1Lqr600WRqsSX1KRk8TgvCjl1hAQ54FpDR2Rp3792deZAGFlpq0Vhrz24uRZebAB5xU+zPz+8Rf++I/3pHlgGC8Ev9ysqGW9Ick0IVpKh24kTaSvcd6hgrgW+k5qmLu7PcMwMk4TeSbK3mHoMUpjF8/12kfl9YI2OeMw0zRDXOKLqut0urDMC/vdgZeXK48Pj2iVMQ4d0zjE9xeC1xJC4YMszxfJn6/qDc11pG8tRbHh4e6Ovm9J85wi5GSjLI7bTvj0aZpSJCkm1Wgl711V5/gw8d33B1AJnz+9MQ2eoV8YehsXpsut/8yyMtpjM7JMcBk6KujyLIm1dwyvUwY82MmSmoxhHgUfUVW3ECNtNPvt9jbbSdOUtu15fX0lz7OoxjeACJLyLGcapSbsuo7tbktZ17y+vt5caT54whLTk1UgJQZTLuFm3daRleeswwb79XOxLPFhg5eXV/aHijTTOGep65KylKCUsqiZZ8f10gOiElfrMibaYhNjBC2RQpZrqn1JYjzXa0eaFSyzoMRu/MNa8AdaK+bFgRX8gPc2uj+DIN5MHMCnqSQHpxqlPSEskgOhDVW5pe9mTqcL07gQHLd7BCWvS5Q08vd+/d0DPgK3IZqP1tlv+WnjNKJwFPmOLMv48uUL//DTHxmG+WY3lI0cN6mjd3LQ3JJJohprGAZpAiK/bbfbxbSxFBs3dauyT2vZtqxqgptCwXxN7fLe8/z8LPDaCK4NATZVDc4xjuPNZjtbi/YiFd/kJT//8gtPT3ekWX772VfJ5v5wIM1SzmdJlz2dTiJbjkO3vu9ZYfTOOUZEIZEaaeaKoohJe8nte5dleQue2O/37HY73t7eYlrgaj3MBewdFYvGmNuH649//CNfPn/BGHkN7u/v+eXXX8mr8ub1z/OcspRLebXLTtNEkib0fc92u/1GnQFfvjzHRqNg+eZ1T9KUtu9uB39VVaRairQkTen7ERf5GXEtJZDzG59CVBFAVG1lt6Ji9fuvXysfCIgWccPDw8PtdWv7LipTNElM52q7lnFebupOFYdp8zwzjKNIz1eFijE41gS2rxHdIhPWN4svjpuVd33WkiS9DaXX12IFU2fx36//2ziOJOar5QPUbRu6LD7aH9ZIbykmnfcsw0CWm9tznyTp7WxQmBvf0toFZ6X4k58pcgQQuO+abrTameZ5piwLTi+rRX5gV6Uk2cAwWao6IU1yimzH0Cqay0LfCqdClA2y5ZimiSLP5bOlhOdWFjWPTwfsMmKMsKHKMifPC8BwOOhouxf5uQ8LyjiqIiHNFHmRMs2jbAt14Hg8opThfD6JGqI7s9tveXjc4axlfyhpri3TvLDdbanrTIZQu4J37z7gI6NQChgpyosqj3zKwPn8SpIa9vu9WCRjU77iAzbbDXmeyRD9fBLpvHNM08h2X2Ayw93dXoqQYeB6uZDnNXle8OXzmX/7txd+/MOW7797T5JKgSSsD0c/nAhecW2EQQLSEB+PezZbGRK0zZWqqm58TAn+OLPZ1IzjFFU0os7Y7fbxeXAcDxtAo8nZmlRgvdNEngowH69YJkuR5fhKOEmPjw/4uF2X9OORt7cLShvqqhKAb6aZxollceQ5NO2V492Oh4c7pmngcmkpikKWHft9HAxJyp3WoJOEtpEgljTJWBZpZEGSWLVOIQg/KtNJ3IJn8kyHEa0M292W6/WKUinXS8vb6QuH44bjYSupml3H6+d/Q4cdHz9dGIeoGh2fyfOE77/7wDj1KBXYbjYc7/ZkWUrfXVncIkNbnbDbHrg0V6z37DZbgRgnYhcaxwFjHH0/UxUH0kPGf/gP/ytG51g7cb48c758JMs1eTajtGdazvTdG8vSU9WFKHRdTz84vB+YFss8t/RDRp4lKCI7FoNWCdvtVhh/dqJpGu6OOzTw4/ffcz6fKMuan376A9frNW76RSnUdaIgcdYxT/OND7ueK39z5Uel3ppWv56j69Lt22Xcel+smIo1QEwUgWKzWAN1pDGXpYkLirfzhcUNmCSw2ZT0Y0O9hd3+wDIrvny+RFaoZ2xH0sTEFLkMnXjKEvJiwzhOPD5llFVB8Irff7swzxaTpGy2YjXf7FIUnsNdzf39njQD52d2uw1JYvjzX35mHGaGQeEd3N/f0Q8X6m2F8wNNO7LdHAkupW9nkiQnS+XzY3TCEm3+Uiu5qGg3PL3/gXkZ+e7DOwxQlilBiV08BBXVlHL/yQDDME4d9w97vA90TQ8Id6Ysc1Dwxz/9kTzPabszZZlwuCvFcpNneCdKrbxQbOo78jyjrEqSJOHh4UBWVDin6LqRLEsxBu4fj/z884Vx6hmGFmsTEmPYVAWbTcUwyHDCmCJiJ0SplyaZqGm9FQ6qVgxDL3YXk/Lb7x9pm5ZhnEgSzTguGJ3Q95a31wG7GKoqx1Q5nz+dGKee413N8binbVuyVJT/xihSnbHdbSXBVWtJA48hC0liKIqSPJPQK2s982Qj8wnyXGxRyS1s6cK7x3dYOzHNMwTY1JLorkKCnQNlvqFpO/5f/8//RJ7nVJtSmnQMwYNdPCokaFKWOfClO1FVwoSV10PqsFsiolYxbKPFJBbvl1vtezjsmSfhBC9LLwsoD6OzFHlJCNB1Hcti2e825LtaFPVuxi1iP+379jYIlc9zZBjrQNc3t89ikhjqWkI9sjRjnuT3F8V0IDdJ1CzMWL+mC0b8SCpulWmy/PLzF+4ftoxDDOrIcpZEFjjT6BlHGRo4J4FdXScKvq7rY7CVwiQC5c+zXJTFaco49Pjg6LqewgkuAG3w3/Qh+/2ePMs5Xy5xeeTAQ1WWOCv4liniHZbFynJGCWPTLo6bxSp4fHAoLzbyXEuie0gyjof9DVvgnBf7dqxB/5ZLKsM96TfsDXsTD1K6bqAsC4IXd4DXnsHNCBxfxYGeqCrTTMKmpklC3PI8RWsXg1MCiZl5mVvwwnPyjpjUKmExXSu9iLDGPdttzvk84r2jbRv6fiH4QNeJijogZ/c0O4oy/QVRPgABAABJREFUo2slUVsJ9Ye80CQpNF2H9TOenu0upaxFZeWZqDea3WFDlhs2mxqlNX3bo0LKMiv6rmGcHVNvCUHqdzkfNP3QkWZZTMUUhmaxKdnvHtEayjInTRUmVaRRzWeMJmQGuyxcLmfSRJ7lw3EjVtf4zDk3k2YGk2geHu7ZbLaIvX7BM1Dudix2ii4P4bgFHHlh2G6KWK8K1P/+4Uc8hrbpebm+UBQVXWeoqxJjglhDDUxOlIR1VTBbCZlZ7IyzYmUdhkmUUHaMgoA8ojN6tJKBZ13veHm7cDpf2VRn0rSk6wdQ4jjJ05K0EkWeDJyk1v+WBbku5laW/bd99vr3r3e6RxvFGlASgiBzJJzJRhu6viGH1u+rFCTaQHzN14Tsr//fsWcOEIJinjz/9l+/cHdfUNcytHFlT1VtxRVDTGp2DpMo6qgaHuPgeZpmSp1iZ4XSGV3TsCwj2x2RFyqutnnyaJWRpQVlqTEmo7kKg//h4ZEsF4VnmuR8+vSFrpvIYgDPNM6URU2eSZgXYWUTK6ZJAveaSy+iEy+DWkLCdrNhs9lwOb+xuFncelpRVSXTON8SuxWexOubjXOzy3l4OlJWiiyr+P679/zv/+nfaS6SUOu9wZg0Ll1NdB7JMznPsvyoS8H7OGt5uJOFdKIN07RQVzWbzZ5PX55RWpY8SWo4Xy44Z7m7eyRLM95eXtjstgzjRBOVyyvuKc/zeA6C0SkPj1vGcSFJDIf9Hp0Ii9PaF7F6R6ur8z6GjggDfa0VJd3bo8Mq9vq6cJFHKKCVFpfdtY2nVGCzzahrQdLYZcS5QFkJ9sBm0Ha99MSa27Cv63p8WOiHlCJX1FXGw9OOoizRKuHP//6bOM0yzeO7HZfLBZMYhiGqFVEUec7xeGQYR+wiKl1JWw/UdUqSKualJ00VWa7p2oXXl1eckz4vzTQp0nu6KCQxhjir+h9AwWe+scyiFEscqiUx3n39QL+9vbLZ1jfg/uXSfPPGrsEA3IYmq0JgbSaWZZEtU2QGZVl2U57Z1arrvw75/vswhrUhWW0aK9Mizwt8mNCLjTBtw7zMZInBhSD7D6W4Ox65di39MDCMI4ddzfXaUJe5RNErjeOrtTjLcuZl4eeff6btWnRimGaLc19DP1a7SN/3bOoN4zBwPB7Jsixu74Upsw7c5kqm1MfjIQKIv6r01jThlQFYluXNprxOwMuqIk1z5mhV/f6778hLmUwPw8C8zGj9NeykLEu5BOblq2UrDiHfTieu1wtVVVPWJV2U9E7TRFkUXK4XkqoSO2s8PKZpJM1ygd+W0hzaGMYhB2YEtzvPppbfZx0Cf2U7fbWDfdt43uxhyOGhtIrx7dHK7T1VVdE0rWA1Y9FWFIXYbOJ/K2lyGvw3IR4x1XdNUgJwXlGWxU0RIM/x1yLT+q+FYlVV6KheU8hAT1Kdv4KY0ySDaIEEAUxP4xwDSGSzWRTr0HNNIl4T3YxYxeOAWgryBDlPZbA6zw5WtW3c6uV5RpYXNE0j35dwawDWZ+ZwrPm3v/YIsyDKk508u3038dfXv6JDxTz5uCkxcZoZ3ztjmK38zk9P9+RFhtZKiqo6x4eZvu9YlvlvhouLXXg7vbHd1Gij+P77d5zOb6SpitawnCzPePf0js1myzAOTFPCZpvicMDAfl8gsfQZDw+iHtvvdyitaJsrx+MT280R7zVpIulLl8uZYex5fvnMCm8V22kVP2+a490dwyCq4re3M5fLlYeHe7FmrKE8kRnz0x/fc/dwIM9TSa8+XXh42JNmOd7JFunxIZClGV3fUBQmpj16jBEm4affPzPbmTwveH195fsfnnh4FA7XOHYyRI2JzWma3ix7nz59IQTYbjdMkwSDnM9XDocDd3d7lmWizGuWaaFtztzdPcnP0fQC4J4cOlckJkfCkGVg4VXgem3j56HHOciMhKpoLXL4oqy4v3+QS9EEdrucx6c9hB3LvJAkokZOUxPPuTluHDUeG1XYISouczYbuFw6+ZyjMSYlSWUAMNuRvht4fHqUIn5xPDzcs1oez+fLjU0p4TWB4DTBO87XM7vdniyVhsA5AerbZWa32dA2Jc0yU+Y50yTPXfvSMkfFjKjOakyaE0UijGMvEn6lWVxPllQYXctyRYuK93J+43T6SD+8MYwzIVzZH7dY12ASx2azsnccXXchTQuUEgsZYeRy+cw8zux231EUYlnLC2FQXi4Nj/d7SQQdJ4oi53DY8x//438EFM/Pzyg0291ONpIx1GotuNehXNd1OCcWvW8V4evZa+J7vt7V69n1bWH2bRDHenat6usshkQoLVtPQXMElHLs9xmHO1EdLovjl59fUWjef9jy2y9vTJNjt614fFeRmETA4CGgDWR5IM1gsynEVhQsx7sN2916Timev3S07SSKJA0//LCnKKUpS1NN014oCxnaJ6ni/n5L2zR8+LDBOcXzl7eIFRG14NArlmmiuV7omolE1Rgjiy9FYLECd/dBFMTzPDKOjqxIGaeRRCu+//Cet9OJokzp2o7P3SeEqbnj/v6Bqtrc7vcQPGmiQVvev3sviirryXTKDz/8QNs2mGSPMZ6iMkyLKPFNoliWHEKgKkvyLKMqS0lsCxoX4HI9cz23MhToRclhjCJJNHmWxIFZzryIlXixopJ8eZGF5el8pu8m9rsDdb1lXoQzm6UVywIvr2/0wzP7XR0RBhaX6mgnD1yvI0anFPmWxKT8+c+/49zE49OWMt8wTTOfv7zw9HAviJhMmH/jOODjgFlCW6xYjrZ7nPW8tWcgROu9E8WGEVVLWRa3ZzVJSl7fXtFKYeeZrm159+4Dm2rL+dQwDQt1vef+/onXlxOn84mmvbLdyUC86weUljRCraJK3imGYWFlItrFxeZ7tQpJyvDnz884tyPLTVwUaKapJU0KjBE3QhJrhd04o1XCMMzCIi2kgT+dX2XRtj/QXjrGYb4p5g6HPVobpkUazaLMZXAch0gEuefzXIZhK2uvKAry6DSZ7RJB/HxlK2lBkxd5gdaKvg+MvSfPUrHMWkeWabp24HI5MU4DWZ7gnYkDxhTvEggLyyJMw7Lc3JRLblkYpjEibzwuBJquk+XAjZkn7N1pmijL/OYASbMUvcgSUynFMi+0oY28q0CaCUrERTzIqnpRChY7s3h/q2O9suRFQZnnXK8NClGte+8JClF0QGyA/Tdnp7vVqGufI1YwUeVKLxQZfSGqrlRgGhdeni9czi3ei8I6L3LmZSTPNR++fwIcp7czRZnwpz890DQ9yxLIsxTnPae3hl9/+QRBs1jLbiehY2mW8OG7TVyigvMNyywhIOMo+IRVVX3Yb8nyjuY6UG80213J+w/3KB35rsc9nz595OXlwrIE+tax2+WUlSiL8yJlsaJALYoN+JShG+PgSqO1J4TIdAximw7eYyKOYX/YYYwM47/77gN5luHcxLyMNO0pfl5FgaW1pigLlFZkaQzH0DIwvVwubHe7aHRV+MXx448/Iu6lHp1UpLlHGY9nVc9He6mCIs/IEnEzyEJa45wo25MUjHHMc4u1jtNliVzUmYBFm0AIDhc8eZ6QZYZ5CQQ8v/72CaNNZEAHQipDn+v1ysrna5qOEBRGZZRZQneNvueYcpuY1RK+8k5LmkY+I2tgnPSe3Hpsuc/F1bP2Vl//9xDt1jJwNWhRWSGulTwvmWexcAcCOiK25AxJuaWOIn9+joGA4nwxN4cAIeCWlGlcuLxdKCrN8Vih05H7+4W+f0YpRb2p2G63zPPCvLwyL45lCSwLtO2CWxI+dyfBOeSSoL7MgU8fX8jzlCLdkmU1zfWEdw6tcr58fsUucDhsqGoZ+o3TjHWWqtwQvJgw53ki4Pnhx+8py4qf//oz0yQqQaVC5HoH2m5GAhY8Pkhi8eJm+rHHZCkmDpiGro9ceoWJ54WKBdI0DsKkVTmbuqLpPnE5n3h8+B7CwjD0JDqXwC1vCc5iNORZQlFkaGNIEkVIM3mvqoq7u6PMQ1xgWmYu11fyLCcoxdhPHI8HYfZqYezWZY23jm4WRFSa52R5Lr1z8IJhi7VlVW9omp7XtzOXpruF8FjrSPOc7XbLMIw010Y+S7dZj5jx1z7+K/olOs/0Vyfn1yRoEQN9TY2XNHC7OObRskwL8zKSJqmgwKZR3Dsq4PnqZtMqEJy4gLxd8IlmmgJFnlKVKS8vZ9JMoVTO/f1RznK1DsVn8kKcH855xqkVZ5STu8cYEboFZvndp5n9fsPl0kZ3oqYoKrbbNDo/WqZxoszS+Nm0YqnOvjII/69+/f0KPrgpluZZDo8iT5lmx+IsaZKAksHFIcpCQ1hTQqWgyrMiQjqdbDNViNyr5DagMkaYSOsQZlUF6NtmIfD29nZT+K021VVttqrm1jSkdchWlgXVZoNuGl5exSI7TTOKHBtZaElqCErfII+SlOP4l/9ypcwSnp4eb1vYVZI/TBO/ffydcZ4kqh5FlmcMg7sNnJa+Z2XKrVDvw14SBUOQ9FeQIcM0z5zPI0odEP/6aqH6Oswsy5I8z3l7ewO4qfmKoojNWBpZhFIQHu+OtG0rB7IxpElCXokKcFVgbLdb1mTgw+FAnklzQAhstzue3j3x+vZG3/eiqtwfGCf5gJnIWzBpynfvP9A0DUmS8PunT4zDQpqauAGNzXKakpkUN7vbBZTEDQDoKCf/GrIBXw+BdXM0zzP//ud/l/CQcWSa5bDe7/dczpf4uzlMkghnJUhiXGAN7Uhuyljrltg0Soqtcw7rlttQcDGyvXZ2HRqL1jYxKRZLwMsWWgszwzmLi/wQUZ8phnEkeAnESJKMQLRfuIWAgH2VMShJIsGz4KzGBUkfBsVsV/vbynbxTIslSQSCOsctnUkS7DKjgjwrEhG+CKcwBLRZ/3xgDVexi6NtRFnRXV3c1AXGqcEtQbh6zNT1Hq3g7e0sRW4QmGmWGOZpoOtFlSBWMsSGVmaUZUKaabqu5a9//Su73Z6np3fs93tpuoKF4KXpKBK29RalpCCfJst/+A//M9YujNNAnivSXDNMTZROi4oKJjbbPF5G0tS9//BH7Axvb68M3cx+f0RrQ14mvLxdWObhVtDleUJVFaBgGDoJnkCA3NdrI8O9cYrPh2V32DGOI1lhMKnh+fmVruuivVeGbNY6LpeZL58Xfvj+Trbs5ZbF9jE4Rwo0pTQ//fQDYr/wDMPEbrdhGHtCtIiv29PtdhsHLTPzbFkTnYZeNsNYhykriqKkrmuGQS7MvMi4Xq4Mw4AOmnmy7HZ3VGXFOA30Q0sIooge54lr2zAvYgM+HO45HO7joGhknkdREgV4e31lHAfu7vY8POwxWj53zjqUclGBIBZ8a+U8btuGYVqwixOGUFpCMPTdxOXckiSG3XYr9idvhTtW5hRlRvDCbdtsdlwvFwlqSVN8CNzfP7DZ1HTtFRUUd/cf0Gri99/+QtddMVosQItbpHlYJhQZVVHw+vIZrUQBYv3Cn/74Jy7XhsvlIvfa4YDWhuulQetENrRKFLZZVrK/v0OrnLvjO7xX9H3HtT1xuXxhWa74MFK6wNupw3sXlZpi6cpNBliUCsyzJJqOU08WhMXWda/U1ZY0rYRp2A64xTBuStK0jLwlGbDt9wculwvn85mH+3coI/aKbwOAtNL/p/M1BG5LsnVhB7I8W+/Rb8OP1j+7fq13sY92OqXk+z29e4wg+EDbSPGjtARwFJXB+oHFOpRKqOuMrrWc3lrGUWyKd3eG/aGi668URU7TDKAUOi64nJfUxmmcMSZleW15fRnoGo+1URGNWNxELTvy9npiHIUVVVUl8zKhdeBwLMjylHFc6DvL+WRJUhi6DoWokoZ+iOmMBpNr0tQQlGVZJtI0IxCTNH1gmmTL/Ouvv5EkCc3lwp///S8cDiX/+I8/YRJDWRbR1iZDmBX83zQXGfSkhqfHewKyvBnHkbun4y398NOn3yirjCTJqLZHwYmEyMBUGr8sotwZW7RK2dQ7sUEedyzLTNO84kNgni13xzuWZYxMLc9iIcsNVZ2jdKBtB/7yl8+8e7pjmR1VVWKt5Xq9RKyCpe0G5sVRV3e8vVz4+Nvv5DlUdYJRmmG0gGeeAvO4MPSfYh2zUFWiKvzy/Eo/dOR5SlVto5LYkhcJXd/dVPFaC6vTO7HYzPNyC7xwNlqBtKRMXi4XnBO13/F4T1lWglvwjsPuyDhMjMNMljiSNGceHKe3V7quZ7/f4rylrAux788z3334QFZUtG3Ply+vmCQRTIWCohSGrPfCw+y6DpMoTucRFTz1RvHyYvnhxw/sdofbQlyCTTwow2azE7aVls+uOCsM1+uV5+dn7OJJTMpuF+jHmfOlEU6SB5MOZGkKRlFWBcYotttSFo/pGo4jdmCjElQI4D1VkZNoxdgPTHaJ/60M/a2LQwtbcChKlBZrbggKgihqV3tqXdXc39/T9x2//PIzzTLgAbtMLMuEQoaJu92W3W7POI68vLwwT9NtcS3WKsNi7a2mWwPP1tp+WaZbPZxnwjqDwPXaIEmqkkJ6vTYQWXgP9V207M6sAXV+BeAvC3aa8c5TOBcZdCrWSdHCSGANNliXt3IefmWEr7XV1wW1DJqEq7gKHUJURcp5SbSCGWPwSkLBFusIYeHL50+kmaascyQkcOTDdzvyombsJ3755RnniSobT5aJeu94tyFJ19T1hHEceXyq2G52oAw//+UTwyguirKQIJfNNmN3SNjva+o6lwXjPKF0xjy31JsMpSR1evvTgabp6Mcu9jA6LnAMQ9fTtzPddcGYMr7OYkuVBG8RVsid4ej7iRAEG4PyDMNIahRZbsiLhGnub4Os4/HAbrtFKY3VjnkRd1SeF6RpxuPDPRLA4uPyq8Ba4Vq+vHzBh4mqSsiLNLqzhP9VFGVU3AaGrqPre9q2Ic9LykpYo/VGcAnny5mgHCYJaO3RJpAkKjLkhXuYFzkBR1FkWCvJ4dfLRJ7FkACteX19i41+yvnc8PLciIopKJY5UP3ThxvOSCl1C3/zs3Drt1tRTVu73JRmKqaYsloW40AlPp23u1tFJlgIoqw1aIyWBdh2u+Hh4Z7n5xPjMAn7N7rXgpeUdgkY6qXfALFaL3NEAanYh8scQClwVpiB8yiJvmtKslGK9x/2zPPI6dQzz7Dd7nBO01wHht4xj4pBeRrVxyAlKCtZzG82GXlumKaR66XHzgttM6KUJTEZd8dHnp7eyYB3uJIXJVVVkJqKs+l5eX5jnMYo5lA0zYXL5XRzQSXGkKSGPM+ZpplpsnHgK6rlsiyZ5onz9SyqzDTFO0eWpuRFTuJkKeGsBGMmSYg1kmeeB3GMRJHLNHakqaKqEoILJEmgzHLmWVEUaXxNZT7hrKUuhZ+/3x+Yl4m31zcu1yt1VdL3A23bU293lGUtXNIsx7mZPMsjbuMabaWafhzRJmG3O9A0LfM8YZ0Xpu7iCF4xzcKmXQUkzrVki0MpQ1VVjMPIHDn6EB1vsS60VpZEWml8CCQ33Is87+vztTpG0jwjMYp5mRAmdxLVpAlZKsiYIs9ItKfIZYm6LNLPryiqxOjYn3tQnq6T163tJZk9OEWa5rFfm1Fak+cRtVRIfb4sE1YpWRQrhUlCfB/FZffyeop8ZnEsejvwOnaipEyy2wLFJIahH6RvcA5lPFn+P8CAb1WryCGaU28eeDufWWwLyjBMEoGdZblY8aLKwDthcGktkMVVkWaShFSJJXdNSXTO3QIzyrIEVl5TGrczX+1C68BnnmeWZaGu61sT0jTNzXZUFKKGKcqSMsKk0zRhnBZMksnAMQSSVF7k55c3VLyYtU4wJgXl+eWX3zjsj0jSqTRK//bvf+Y//8t/kaCKqAKzdolWlPgzqq+NFRAhsgUhbvu7vkcpGcQIWB6qUoYjRZHz+vpG0zTsdvvbpnq1Hq8N/8qxK8vy1nwJbH+DdYvEymtD8OEm5QVujMJpmui6jizLOB6PoirrBz58+MB2u6Xebghwe31Xu6kC6qrkpx9/5OOnT5xf39hWNZu65hphxYnWUZm23FLl5EuRRejrqr5LU5Hfj+NwAwevycFr0uOqIrHWEhD+nxlHSXeLqoJhGGTjipf3MEmkOHXuZgMWMCYy0IsBHQG5MOdR0gR98DEFWMWUWsOaoLMejtM88jVNV7ZeYoEcUUoAnuM8yqDbS8MKnnmRRFxB1Pnb9tikMij3wRNIMKmwMZz3sMSNsYuDwXiIOS/AXuFkKSFbxnTcYehuz59WKqrVvm7uRBLtaZqJaQhoFej7hTzTJEnG+XWIjboMK5cFaWLVgtKesqji85hwvbTRjiIA5DwX+4x3ln/4h+95/+EBrTWPjw/R3iDpY1or2u5Cmhk2Sc3xsCdJsih/9xyOR6ZpYhxHfvv9Z+pNRlEkbPf3ZHkiSWVZil0kRXmeZ8qiiJeEJUllcDCNI00rF7nY/33kpS0kKWivmeYOVCDJFKfzG3O8zJtrz2635/6+pusbkiBQV2sdb6czYLi7P3I+vWCtJ8uiMgNNexW1WGpK8Ir/8p9/Bmbef3fg6emOy+XKOA483N+RGFF5HI5b5mmiLIWV5z0cDjvmeWGzkeS8YZC/gv+qEnZOgP5FkfP8/MxutyPPqwiz9Tw8vGMY5gghz/n08QWtDdvNBueR98s7kixjmSPIe4GXLyequpQmRsnz1PcT49jh3cx2V/Fwf5QUzFQQDFmecj5dSNMc75GCTulo68vFjutFOTsOYmXRJiZkO8c8D2w2e3bVThh8c0fT9mx3Gz48vKNte/qhByQgZbvbYJKU/e7Itt4wTwu//vY7dkpI0oTtLqNpGxyLDA7qgqLK6PuWaRr405/+iDEmWkUCDrnEy7Iiz4XXIYFClq5t+P7778mLnOv1IqqLJOPp4QcChrbtmaZRNvqpRy2WRAXa7oIknws0fJ5lK77bimJnsT4G0MwoA9qA0pZ5vuJcxzBY+mFC+xRdVsLxVAH97iFuhwNGa67XqyxKCPTDcLMKrs2oHH1/a40w5mvq5/rfrUO+b//+rbpv/bPA3wwM5Z/1N8WaFVtMLoljzvnYuBnSLGWeBsbR8fBw4Okp43K9sNunoBzHu4prc8EHi9Ip9w9b+n5ksROoIqZxzgyDY783bDZbyvzAr7+80jUL5f5AXefkBdR1RpZpPts33l6v5JnhcmqpaoM2mrbp2GwlhKS5jiwLuEXhXCAxMI6ecQgkKRAsw3BF3ys225y+GyhLUdZmmaRWv76eABvtTo60EHZimooyxDjwfokLzrhsidxR54SZ2bUt1+sVa0U53bUjZVaIujUxHA4Hxqnlcj2TLaJWktAILZ89a3F2lsCBRRAOZb1hsZZ37+/Y7UUVLAEeI0p72Za7hQTY7ff0Q4fSgbJM2WxyXl5OSEKlpm0brB2xznK5tJxOA8GrqAT2JGmgPOTs9zVlWfLl5YxbNBqxSmoVG6IksCyONEkpi4rDQdJ9h2G8YQnaTuqlNI3DZlRURSmGYbgNizLvmeclsqIFXyCL35KiKOM5JMmrbrG40uMdnM5X+n6myCuCUhiTEnzg8emRw92eNE24NheOxz2Hwz0vbxeaayPp4IU4ISTtM4CGaZziMFsY1HWd8fRwjw8TKI9WKeMwC2LFuviZVdRVLciXJI13eyAxI4mRZPp5nkhNKctCH+j6gW4Q3mWhDXW9JeDpLgNJarDWx3ta4fxCYmQQFpzID3fbmuu1Jc9S4aM6D9FWLwmGBqwlBEFKzHbCGEm/VTrcHDNpmjKOPcM4oI0sr56enkiSlGvTcjo3ooTJcu7v7zDGyGAvNo2bqqKqqtuCYYWy13VF2w63ZfZaS6+4H0HbZLTdFUnFFfFAmkmDbYwR5pm16KJkv98zlzPNtZO6MM2iCmeRRSmKy/mM0SbWabHmDPJ6fKuAWhfvsDouvg761j+zihCEq/h10KKiI0P+WgeCAa9CvA8Dm21BUcq58PZ6xblAXef0w8ivvz2TGMN2l5Okkmya53m8ox31JsOHhcNhF9EmojYpq5zLuafebJimjrafmCfh99YbTV1XLMvE6+sgi2qj6FoZzpaVDHaSNMF5R9P2NFdBqXRXF63/LtbMGqNSSiNWbOctnvU1M6Rp9jeq8L6PYRtGRVGC5YcfPrA/bnF+ZrutKQo5X4mM7zTNCIuP/Z70n203SqIvir4beP/4dMPyVHXFNDmctzTXgSSTwSPANA0Yk9xwTqI6NJFdm6CMhJSUVU5VP7Islr4fuFyuLHbGB1HCj9OMTkqmxdN1LYfDMX4+EkAUYWmS4FzKdlczLxNt2zP0wuqyS7Q5KkgSCXqQz6UsR0JM5ZTUehd5e+o2YJ9n6XVW1t6qMl17agkZkKGfcKaFYaoNFEXG4SCYpsvlzNvradV63J7p1SUzTTPzNGGtE3WbD7c+fp5trCXWJaK5Dbe1TnF25vW5I0k03nVcLyPTOGESxdO7lOZyxi4px/13FKmlUfLvg5dQDxs8Y2RR1lWCdwprFb/+8sq7d0eqaoNWqTDrkECT4+HIw8M7nJ84vb2hyCmriiQN3G8PbGoJO5mWhX6YuF4bQoAsS3HBRvSDBM+sAWMSoqRF3LFYEpPE80bcKatqvG07SBSbXcG7d3umuefj788c7wUNc7oIJ7+uSo53lqqqaNsZ7yBLFUVRUxQZ4yhnYFUVgmpaJFSibaWOHceJqiw5HA+xv9SkWRYxZCbyFjOGoaNtO6wV2zERTZXnBVoljMPE0A/xDJP337uAMVkMXF1uNuz1mZrnmT/96U98/P2jfH7j1zqvSdNo146wgxD7UqWUWHt9uA2zQwC3LNhFlrQSPmVpWxFMZWmG1kaEAX0nro5Mcf+4Z1kW5mlBGPNawm8Wi3eRSeo8w2VgnuLPEcU4NiJWlkVTFJKUXFU1X7680vcDeZHclNx5kcaEdwl8gYRpdJJN4DVlUTD0DcFLIFQ/DLFGFwwHCi6Xlr6b+Hu//u4B37qNz7LsJul1zgvfwsI0DsIiKoWFIcwNCbIwRoZdq+1xnhc2WU4So6kF/ivgzHVItXL4VvvkOI64EBinOTI1vrJL1kbDGEPTNFhr+fLlC9vtlt1uFxVKMiCaR9lEaCWSXOcd16YBHI8PD5KmFS1jPgTyoiJ4y+nS8W9//is//vgjr68v/Jd/+S9cLheRhCuZPDsv6qo1WUuiqi3bWuTxWSaXmXWW7tTyhz/8gdfXV65XYWtt6038wIjSqmu720EeQrjZc9fmah1qXi4X7u7uqOv6Zh1eWQrLstyGU33f8+H9B+ZlZgnLzeLcNM1tS9m2LafTiQ/v3vPy8sLPP/8c5bry1263A+B0OrFYy6aq8c7FbZri9eWFNMtu/C4fnxtjDNbLkG3dxGqlpGmJqZBfiybZUIXg2O/3HI9Hmqa5KUjXosmHQD/0tyJOKXWz+n7biApbbvkbXtS6hUoSg/IhwnnlWVtt4d57Ep2yxPdxt9tJg/Lly624W6HA36Y+rxbUZelkOOecHMRBDlKlTFRkrirPaA/wq6UDcBLuYWd7uyDTOMQZp1HsHXFIKaJkUQr6+DMkRpMmssXr+0GeCW1YrEDJ5VCVwzRLE4bO0beQZnIBd+3AYgfCLdJbM8+eooDtrkBpx9RPwnYqS2FEOGjbljwvY0LkzG5XUxYJm00t6U5F8Y1CN2OeB+p6g3UjVVVQVSWfv3ximma0TmmbiT/88A/U1RbhFB0YxgvDEJitZ16UqB9VGa2uI13XMgwtoISvFwJ5oUhzzzD0ODfHswnmJUSG4ECSKPlZ7IJ18PL8yjQGCTZQhmUWK8U8DyRpyvPLCa0M++0D51PDn//93zHGkxcGRWAcJpyDoffMs+J0ammuPeM4cTikaDJenk+0XcPDw/F2YSVpyuVyFjVVZJt0nVh07+7ueHl5/Rt1sor27SRJKcvidpkppbher4DmejqTZRWPj98RrGyR9tsDd/t3/N//b/8PPv3+zO5Qk+diYW6uPfPo0cbgreJ8lvQ8pQMoT1HkeD+JMiAm/55OJ9mKlzIgS5OC3W4fi+BR1KsmZ+VxrIouCNKQes1iL8BMVuRs9wV5pUBP9GNPVqQ83D9xd3+MTZKoA4XJmUQLqjRRTdORmgyQ1zNJDWmSY1LNdleBX2i7C7t9RZYn1JuKw/7AYhfmWaxm8yKWxLqSxVVqUs7nixSx1snZqBx5WvD+fc08WYqyvp1fXd/QtGfQDutm+v5MUebkeUZiMojAXg2MkwxqlTY35YnMzRzWjWRpwuX6glJbNqkUdiYmkMugcGa1Fdio8uz7nizP+fz85Xb3rF+3ECDWkIzVbvaVr7cO+L4d5N2Ge07U6Svv52ud8JUnsibvDoNsqMs65f5hQ156slyz329YFs/L85lxWJjGwNvrmbxMoppuh0kCWR4obUJgiYmDFuc0yyTWCq0gTx3LPEpROkx0raXrLIuF4bLQNi1prvjxhwe61jINAWcV12EdFmiOhxqTKHyA63lgHEQJYYMjTQ1NMwug34OzMvzN8pTtdntbvE2TpHzK8H3A2gXQ0szFocXjwyNPj0fu7+/49Pk3jEljbSRDq1Upap00BSub13vFNC3keRaXNAJqtlZShJ0fMalYkJSSYKN5mmPNJsMaY1JOpzP9OKJ0VOdVJUondH1D28ahl3MkiaauC/q+iaq5jMP+yLv3nr/++VNsJMUmCcKHs4vHzcKmI0hzWuSG+7s9Qclg/R/+9BOX84hWVxQj02ixsWF5/35PnsN+v5Xl5OLj9l+Cg6Zp5bkKS7iqK0Fh5BnX5npj73kfqOuaLMs4HMSWdDq94b0MEcZhiYNBUf5d2462HdludkyjZR5bnh7eUR0qrk1LXdXkxZFpmUBBWRZcrx1lUZEkGUVRilIwBKZxwnpN7mMglw5sd7KkrKoiDq88333/HmMkqCQExbI4hnGkLCqyvMDohHGQNNRpWtBqFJu60hidopQMrWS5IPBzY1LujpLyfbmcuV47YcTuajabDGNE1SD1QMKsLX4JN+RD3/c39f08z9/cLZAHJWEb08L57czxcMdut2UY+3j2BiCT5fUyM88JWS7hLm0jTMHHx0e8ledYliDT7b2sq+p2L1hrY8M6xdpreztb1gHaGnIhKvkry2LJixRjEuE/Ww9Y3l5OUhctlknNzJMs8d+9eyLLMn7/7SPGJFIfLfPNXZEY6S0kQMSJ9d18RQJ9ixtah41ZtGB/ayX+WxVf9IDGL60UZcT/gPz3y2yxRG55pqk3OdPcobVht6t5fe1pm5lpWug6R1UFnp6ObHZpDBkJtG1PUWR4P5HlKW174XxpcNZHsYXnfFq4nHuclQTNuipYbLS9JSl9t/Dp03Vtb0QFoxSfP07s9iNZbhiHK+PowGtsUFgr6nA3S9KvqBInrIXNZkO9EbtnUZQURUWWfk0Kl9pY3ZBPm03FdiPD2M1mi3cLXS8K567rKIoKH4dJ2ppYE0d7KoLDcU4SLMWtJVa/JFF03czU9ySZApNQVWXkKzfCBE7TiLEgKlQVLy9vAtVPNfMyoAhSnzmpO2QGLgEVh+OOJE1o2obFLozjQFGU/PTTD2y3V/76l98jCkbC3eqqZr87Mg6WX6dP2ElwGlkuwQnTFGIPrm/DJRfDYlYUwX9//654IkFfiYtJx3teGwB5rd9/eI9dZi7XE+A5HvcYo7lcLnGxYtA6uSnGkySJmIEvt+c6zwWfkKQJ2sgCZZ5k2LnWFfKZ+YoFkoWi1BJ9ZxmHWV6ffUnfdzx/eaO59pjIJ93UOzabLUVW0Pct1o4UZcY0DXTdhNI5dbnj6e49EOhCz7L422xB1IYNTXMFFZiXCaMD3o2UldRTb2+vKGV4O185n1uSJGG/35NlBufjc5VmeCTBVdwjCUor6qRis9kyjaNwoSNfLs+yW8pylhl+/MM7qgrSvObde0lSX5wMo6uylmV9KkrN3f6e66WVYamzLIv0ND72rNY6NJp5mglpQlFUaJ0wTQNaGx4eHgkohmkizyWc43w5RaWwIngVMWOTMOuj0+zh/pGqquj7Pr5/xP56gSBosq8IF6kJz+dzVM/JZ33FKLjwlQF5W2JEV6eJz6xC4xDn07cznQC3enRZ5HxwVpbQq+IRZMCsonPIGPmdTEx5dtbFhZaia0VsI2zElHmamGePCk7wWvEzT1DstgeyNOO33z5FgZkMt6sqp+s81i5SS/VOzj3t0KpnnoVZ2XYLPiiqIo9LSoegO2Shk+c6LvD5u7/+/5CiG26W2WmaJEjBSER4UiRoPAoBovtMIMPBB4qiJEn6W+EwzdNtELNK8ed5pm3bGxPjWz6YtVZA0m3LvFjyKMeHr4qBuq5vW7IsywR0GW1V0zTd2C1rw7sm3WllCFGifDlf0ErxcP9A1/csi/DoBOCb4peZ//x//Cv/6f/9n6OFRV6XLMmoq+o2kBT5ifjvjdbU2x3vnp64Xq7CQikKhqlns9mwLEvcLmsIcYBjTByoSPCFUpr7+wfqur7xkuq6vn1YVmXTOti6hT3E5mye5pjWt5Hwk+cvbHdbSc2N/L21OPmXf/mXmDoMXdPEwaCi3m5oLpfIF5KBmXWOcRipipLr9crT0xNplvH6+kpd1+RlQTv0fPz8KVqMF4L6uuEsy4oiLei6jnmeo1JOxwMjidZSKeaen5//5v1ef3et1q2CJa/rm302Sb5uV1auYwjhb54b5xxLCASvSDPzf1IJrooou/hbY7w2u4fD4aZ0yVKBn67P69eNRohW4/gBTBImJFVvHEW1M80TRhmsl6Lv2yZb0vLi/46+XYjexwTd+L1FJcqNqQWRk+nhsJPnxNmFJSZbZnkGN2aMuSlNlxmBiyNy/VjZrH9DghSk8PNOs8yyJVRqQl6ekbZtsdaTJO42ILDW8fj4nnfvnnB+ikMISz9cbs+6BO0kvJ0uETqasd0UzNOC0Uv8HKwqWxlodN0AxnJ3t0cpKUYSkwgk2fmbRb9tWrIIy333/oDzG9qm4+XlDWdBlu8Ces6KmjTVDINYOo7HHX/582fG3rPbb+j6XoY1y8w8e3759SzbvTQRO6H3PDylPD5tSdOE15dTTI11TEPg86cTSaIxSpqSlf+QFxlaJVgHbhqZZss8zRRlIRdqVKkUhaYsa85nsdmur2WapDi3MI4di3UcDwfu7u7IsiwOXAvKcsM0OqZhJk0SBqBtGrbbhMeHB55fnuV17UfGYRR2xGZL14tlrCwFgO29xSTSILRdT11lwqbTCefzlTw3bHYV203N5GaclTsgz6s41M/ouo4QDEM/kWUppclJE/n8bTYFD09bHh+PFGWGNp6uu/B42HI4HNlspNFr2xbrZOAvjc+epjnjnFh7xnHmOnYkRrZoWgeU9uS5DNeba8c2FPF+kOvx48dPaC2bN60NWhmxJYRAOzR0nWw8fZAiOM1SsjylKGq8kyWURqy5zsG0DIzzQNc1LHbGJNJcr5Dwlb2ltcJ7JamcypCmilTFMyTAOMlQ2C6BsgBrtxRlSV0XaKMl/dzImXc6nUjSlMPdA/PieH078+XlBZSEIAmkX4owZ+3fFl3+a+O8nmFrw7CqTiQoK0BibkoWGwsvlAzL1681Hfz5+Q1jgvCZFhlyLXbh9XWGkNF1M8Er8tzc1Bz1JqfrrhSlQWmBGCczLB7e3gaCSxj6hXF4BjxJmjANirHvMInB28D+sGMcZi7XiX5YKJXhfOp4fWnl7AKIaeh9a3G2JUlFnT30jmkSgDJohlGUxgqx8jkrA4Bltnz6+Czqq4iYeHl5Q6t1UOGBIKFpwOIsf/3rXwneMk4Dw9DGwdqVut7EO8zT91f6buT15cThsIuLEVHhlXnJNA28nV8oy4wk1fR9y25fCx800TFIa8M0jhFBUmBUIpgU6xjnKSZoez59+nQbABsjzdSNaWwUl+tFtt8efv/4O99/9yNGG37//TN1tcF7qQ2/+/A9XTfRN7/jo6o9KzRZIU314uDl9YXj8YmX11fmJZBmAi43RrHZylLscDxwvpy5Xhu2m008ywrcircIljQ1sfGEoqgYxoG+l7+mecG7lek8s9sJfmS32/H5yzOXcwMh5XA4st/tGIaBT69fBFswWvKsZLGWL59fqKsNu/0+DtRTMiXJrW0zxGXNLKEeqTSzNi4IMhLs4shzw+64ZbfdMs29vL77LVoHur7j948f42KplpCyLGez2ZImmbgYCkmZb9uOcRALeJYmvHuqWZbA9dJitPAhUfI5vVwuJImRRXq9xTuLWzzntwu73Za8EFWkQuOtpACniQTgzbNwrwOBbugluCKyvxTyd09g6EeCfyPPE4aI2bFOUArCdusZx5FlmajrmrKu6McJ7ySZV2x9i7ArlaYoDNoY+R6jY54mxkFq0aIoWRYJ0FsdOysD9+uQTdJ1ob4p55MkvT3XXdeBUqRJQoh14cuL1Krv3r/j9UXwMz6I40hYbjLc8asSzRCdOiuvLfKgYz8j6sUxLk/Wmu0rWkitb9LKQGN10mwoyoQkgXEaOZ8vUk/ihdFl5L7ou5n9ruAf//F7zucLSkFdO6o6JS8MbydBF1Xlhs3mIfJzg4T/LBLy4mxgtzuQpQWJsfTtTPDCQgzBs91U7PY1RZ4xdA636Gj7lVXy3f2WbS0/+Tx4+tYxT0owBUHhFs/sXEysVpIuiaIsSna7LddrE9Ei0pd13RLxEvGc/AYdEQJsNlv2+4MooGP9fT6fJU352sXlchIHORMhXMnyVIa1MWBms6nJ8pSua5htSpKICGNeZop6g12W2Ecosqxg6PtbKnOWSSBcUWZigfYrtkKWwt57pnmmawbuH+7Z7nZ4byPewAqza/GM40zTdtTVlrqqKcuMPCsJKKZZ3EjOej5/ehO7qwpkuTwTSntZ6rMOO1TsZ2NY1jxHhdW36vlVVb/e54YkYlqyVJR9bSt97untRJat9tNBekAFShuyTGOjgn39XrfAwW/mAvJz6RvCSvrI2Iuw2jMtdZ2J4jKEOBRZFa2BZXb85a+/kke0hPMWOyucDlyvPW0j/PiqLEUFn0kQUJaVaB0Y+olpsiyzE6TDEmHJipujxznL29uZ7XbLdntgGCTBPE23OBe4nAZOpzPjIudSlhWYRBAnInaIarPFySLYuVtQZVWWjOMo7pNpIjHCKV9icOPj4wPOzizLxDB6dJLx/Q/vef7yTNuM7DaPBA+vL2eGcWS327LdFOx2FR9/f5Ok7GqLJGuLdXgaZ/DgPeRpSlXdEwIi4lnEur5if95e3kjSlM1my/n8KortPBdBkVfU5UZEIz5gl+XG9LtcrrEPkQG5OAlb1mTmZbFY5zFJegtys4tluxUeugtfWfpfB8LSWCZa4/wqjJHP5Xq2R48dX4PZFrRREAwqmKjiFMtvmmYsbsI7zThIfeAsomr1hiVIiOfjozgDFjsJAiDNOJ96vA/Mk6coViem5dOnE1WZMYwWrURJPYwTeZGS5SrOLMCHhr4LcfEwYW0QnIoy7PY1m7oiSbkFF5WV5vFpz3Zbok3g6d2Gv/fr7x7weS/MgVu6rVlZadKAV4WADhe7MM0Tx2yPePCFbaeNTKTlgoWqrGJ6leiPfIC8zOWgC54sz1icgHAXu0iKGgLxVFpi7ddtnyRATbepctMI5LGqqptKLcsyhnEm0Qk6SUVmGYDgZeu539F2LfVmS1nkcdhopKnrRPqK9+BcTP0iXt4iAS9jwqxdFvI0u6Xj5lmOiUO/h+Md9/f3vJ7fGIaBv/75r3jvuH+457Db3mwJq3JxGAb2+z1pKgPOZVluKbvrAPLt7Y3z+czhcMB7z+fPn3l5eUGbhK5rb1yKxTq++/47kiRhGAaKovibC+HX3367caacc6RJwvVy5aeffsJ5GVoN48j+sI+pmgO7zYbjfh/l6ZJ+3HUtRVkQhsA0jqKUDGJ9nZYZrZQk7ljLwiygXQLWSQGy8puKIr+pF9cE4XWSvxZVEDCJpu9GxnFgt93i3HJrIoG41ZNtQJYKKF4sy3HbOk/YBdbk3FXkopTI/79u8TzTPMUAERl01XUdgyMsfd9HJqSoDbwLCKNALL3LYuNAd0Zpc3t2XDwkpagMcVMccN8M97TRlKWoMrpOBgwqKhBRYh8O3slFFERyXOQZRZbF4ipHz6ulF/n+qwUhfh9JWHYsizzfYvsUNsIK5nUucHpruF6EYaAUeC8A+69JU6LqWAeVbdPw3/7rXxj6gSxTBBzPry8EL1D5ut6I0mSeeXu9ooKoYoZpRivDbnfAGMXb6ZmikK3MtbmQpFBtUnyQYfFaxJdFQZJJInZw8PnzM1VVk2WJQFKjVc0kUpRPs2yWjndiW7leT8wx6Ge/3/P4aPn1lxfA31SnwzhKUWs0fe+YB+GBFAXstjnWDRwOD9zd/YmX5wuJGUj0RNfOeK8psoTdLme/r7i722AS4Wm8vp6k5FeBNMvJg5LPS1RRnE6SFlcWJXaR99vaRgC8Sp6pTSEWp3Uoa20gS0EpCfkJ/oRRmjzLaXppULf7mjTXbPc1v/76F9798UcO+zs+fn7m5eWNUc2SwJlmwvHIEgHvz3JJSpFm2WxFHbTbbanKDW3XMU6TwJJny/F4J+emNiiVUt1vUBjO54bTm2zJglK8e3/Hu/f3GBNAOZ7ebblcLpzOz0zzgHdwuVwpi5rzSUJAJJQgYbsTOLPWKbttHVmRoHRgv69ZvONyHkEFinxl14hF69PlM0pppmKmrisu12tETsx0XROLDmEmZUXKTz/9xGG/p+16hn7CqJQvXz5xPL4nK0qcH3F+wnpJP1VaS6Hk5TXIc0l9a9uO7XaH0ZlwNt0Sh0guYknWACkLYcQuPcnuHutmnJ3ZbmpWGPHb24nD8Shpltbx5z//lZfXE9kaPBOCDKpDTPRynkAExN/uenndv6X2gMIkJm45g0CklYlnlxyS0lPEQi4Wip64bPICyM5ziw2e1EFRCCz8eNizWCu8l8hNy9KEqi5AOa7XJmItxBZRzobPHwf6Vob9RSGpZd7DMgXyIpBlmnGY2Gw25EXF58+vqKAYh5jQvgZ8OVFRCkoClNZMo2eefUyCn1BKlIogdYcwiyTYxavAtDhRZEarvInvs7xnMdHUWVFLOs/Qjfzy8y84K+D8NEko8pIsydgf9sKiQXF//8ivv/7K6XTl/ftK+C8YvHayvU4ViYWsSDkcj6S55tycUEbz8eMXqmrDYb/HBctsLUN74Y8//QN7rZlenmVAoQzb7ZHT6Y0QFKfzJSr1t9Ik9BKU1jQDu10d1cUn9vsd1+uFNElpu4HTqaEsZz59fMUuC1muyVKNTjwhOD5//kKSZWx3G9q2Y5llAVzVYt/33qL1RFHmtN2V33473/iIl6sMM/K8YFkk+bOqCuHriFeau+Mdh/0dv/zyC9MkGJiua2Uw0reMY4+1soA2xjB0C821g2DIkoTj4YF5mGNz6Mmzgqra0ncDb6czIeyi3S3w6dMXUXfPCwotFi8j7LHgHUoLW6quS3b7iqouSLOELN+QpokEOiwjWov6Zr9/oChK3s6n2+JbVPgZ8zQRgkDr+35gUgveK7K0wi5iN2qbnjQ1LMuEVqIUcc5HxqijHSa6pmWzrVgmj1EeHRJR0BjQyhGQ4UaarBY6YeQ1TYddhBUX/Mr3+spDXqyKCe4zWlfyfA89bddSlhkr3zdJs6jCXOi7iSVabRVitVoX4iYxjMNwU3x8ixL5Vk0szaacN/LPMtBYnRhr2N6KsjHG4JyjrioCkqwI4K2lqiWx2XsnNqr1HAz+NtDXWsckZ3OrS9fa9L/nQwO3wf76s64KmG8XJtpojJHgr3HosW7g/uFAWd0xzQNlmbGpK6Z5ZJkD0+g5+waPBFRUZSYOJRNQylPVOcviuDYXiryK6Z4Z3stCVqsERaBrR16GC32/KmZEidRc1wY38Fs3MI6WeRLr+sphbK8zRZGI7dsFhsHF82o9+5FllU4ITv5skmi6YWT58iJBd86jsIzjgrAM1Y0daFBoLfX29SqM5La9sKkLrJ+xdr7dB8fjliRJGfoeu4hT5tOnT5RlyW63u4k70izjer2QJBodO+GiLMEETKrpupFhmHh+PpEkCbvdLta2nrYfyNKcw/GBcZoZLhdAFNUhQ6zoOkEnCa+nUwxvkgHWtWm4Xhq8B61Tqqoiz3Kct2y3MqC3s6PvxhvLSyH3n0lAG0eaa5JU3XrwdVCWZZkwRlldRNyGKLfBs4YkDVR1hnMSUlNWhYgnSOn7EaVgWWZMkpMkKto4NdO83Ib+XbRxap1gtAw/It8oLinlzNhua6z1cfnsSTMTB8wrtx6sXW7uqPUzvN3W+DBjrSRcL1aslKt60sQk13pTszUVbg04GmT4Y5TCh4XtrpK5gnfC+/RiEycEUptQFDnn8/lmdbaRG/f6+kqW5midcrk0zPOCdT4qsomLBhlGilo3lSUBMWA0nvt2WUUZ0QI6jvLZUVoCgOLi9JefP3E4Flhb0rU/i8ORHLck0nuFlHnsuNKxzB6xfkqirjB6gSA4MK0TTGYoi5LECCqNEBimmcWFKMSSe8taSzcMoAK7/UGS46MDyFsfucwQPHR9f3NnlGURVb9LXHi7KEZR8TxULM5iSKiqiEqLybvOWnxEcK2LEa2/DqNXVx8KkjS9qfd8CDHgSf67xTo0YGJAUfCybEUpAmCdCE5k+DgBCm0S8jRBG8M0DSzzQppuuFwv9H1LVZXcHTdsthJ26p30u7//9sz5NMvMaxZ7sjEyqN3vc0ziJcylKKV23xkeH0seHh/4/ddXLpeBJeKIQvCczyeq2vDwVFDXeQyGKpnnIc42vjpr/q9+/f0DvhCY5plr0/DhwwdMkuCnmcNuKxtT79A4gneM88jvnz7x/v0TIIdgCBJ/bhJ9u4AX61DaYN2E+sZmtawBG96j05TFOdI8I1UKk4gKbl5mmfAqaLpWLnatydLsZvOd55ndbndTiZkId7TLQpFl0fI7sTLl8jTlfHrl6emJZfZ8ev7ENM+4yFZT0QaptTBjQC51HRRGJYzLRF3W5Flyk0bv9zvyVBIVm6Zhu91Q5iW///o73npJtcly1uCOcZSh3jzPbDYy2W2aa0xy+srpWFmDK2/w/v6e8/nM6+sraZbxdpKhiVKKwMzn5888vz1zOBw4Ho8USg768+XCx0+fqGqxUG42Gxkg2oUkTUnzjF1ZkmYF1/OFIi0xMRGrrirWQBOB2/ZyuW5rrPPMdiGsjENjxBJrJNnYO8cc5OE2Rj7IyzyJxdhoUpPHQZ2/bY2+3YiusNkiz5jGgTwTNobRijRJmSa5kKwV3kxRFMigbQYv8FOtRT22vk6reg9km5aYhIC7JZFtNtWteQB5nkMAbYSbN4zTTWUnF6yJl6io7oqilMY9yO/hnVjlQhwKquBxDubFEkIsblHCeluB97GZDmHVEou1QwQ0HoKjKlIO+y1D38cPrzSYKxtDK+HImHiAOrtgDHE7A5GMwMrzgLWhtV8PBKVlCG7S27ZVbMhETogMCFSArh14ezlxf78jzTVlmpLlOVmSUuY5/TRQ1xK7/uXLK09PD4BmWBYO+5rXtxf2+x1FcY9JFO+e3uHCyOIGLpeGy/kqm6laNjMgYTU/fvcHsizn7e1EkpT4IIoB64Q156zi/v5B1CCpDNkW65hnx7W5YnTPH//0vSRVas1iR7bJlvv7I6kp+G/T78zjgA/CfsiywGG/gUQGLZvacTpdUConzQxJJny3u2PB7pCy3RXCK+xbnp6eKMuKprnKRdoLqHa73VAUeYQ/J7y9CQ+laTuOB7Gu3N0dKIqCt7dXQNN1feR0yOdu0inLNLFMjjSRZcim3vFP//w957cTm+0OpQLd0PCP//xPgBeV4iLD27LIxCKAw+NIrYnpfimjF2XF+w8P5BmYRBS4TdPy5fkLWsWUSW14fXlF61Q4ppa4HVe0TUvX9ZRlhTGG5y8vODdy/yj2BecsxqTMc8c8X8nTUnhZpwt9NwNrI5dSlTVKObSS1LiqqkmTgrreiMqahDHP+PHHn9iUBfM80zQtjw/v2W2O/P7xd5wLlGVNkZecL6IK7Noe5y1pmnC8P1JvN4xjz5e5j4rkLbvNFq09Wlu0nvF+YLG9XOBqTZqTDXySaBa7yMBIIYWYVozTRN8PpHlBnuUsEfoLgeBnFjtAWCgyI+waG2IKbpAt5zxLm+ADl8uVpu1EJagUZZ6TPz5i3t5Y5gWtpOldLcGrHWJNy5RPvjBTPLIQWAhkmaHeiE24a3tCkEFfnudstjllmYhtzzrmaYmDADlnXl/P5KVGkdAsA3WdsdllWBu4XqGqM6q6IAS5B5ZFgjPSNCXLEjlf7ERZafI84cN3Ow7HDdfzyH/7r5+i2shQllu8t7y9NrSdDA7TRDEOC95Jw5AmCUtsiKz1uACLFeu3j4mJBAlm0hqMVnGpAjoRO5jCx2LbRTSlxzsflShr8rnAmLWG+7sD3jrquuD9+wecXxiGjof7+5tSPElSxmFkDGNcGknRvcyOeWrFWpinnC4nlD4wLlKbpUXF8XiP1vDyfOHLsyg3i0LuepVOfHl95uHuiSKvOJ3Euij83j1N25BmGf0wUlWbqACw9MMog6lFFjmU0A8txhgul4ZhmFFKAs7KImWeFtIU0iyw2wnncrOp2B+PnE8Nf/3rJ5wLFGXK48OWw53h++8+0LZX4VsVOc4tOCfKpXHsmZeFuvqq3GralkMMOVqVq/vdkT/96R+4XM63GiFNE/qh43y6AvFzlqTcPxwI3jCOC90yUBUFQzdFdeSCUglLbBimaWSeRjzStCyLx9qAUcL3DT5g4ibweNijU8gLw/c/vGe/r/n85TPX5gp4ttsN4zhyuV4wGu7u7glB8fMvvzGMA2WVS2PoA6Of8F5sVCCDMg9YG7CLZre9o20Eip7nWeQLB9agtSRJOHUnjEkpC8O22nDYH7lczoTgMNpTlDVVKTVPmqVM00DbtBJgU1QMwyQ8MgCvUITImJUlp9EGoyUt+nptKYocFevwLBOW02I9XS/BRHZxzNMgrNk1KEVp5kmWp8e7A5vNVqyw/mudq1S05ipZ6vrgI4c4LtpjKbQmnq+LfecdJi6/nBOGljFGwOvGxBAcS73ZRtWeDOSc87JcXS2PQaE9OIRntjZv4tRwf6OYWpV66/5cBqLrEDLc/rs1XfLt9IbWDpNK8nNeJGRZgg+WfuyYxoXrZboNOa+XRpwAxnG9LmyiEiRJEvp+wHnF62vLMsMyj7y9NnJmacM8eT5+PEkvg2GzKSW0LJs5vTVkac48B9pmoetmslTq1JvSPIB1inEYWZzDeXn/BMkUZNGrTAxyk3CwZbEsPtrrVRJrZo3WaVSGSa2sUVFMEOTc9dITzOPIkhnmeWK7rVFBlvOJ1hilUQYInsoUDKPc0yBs7a7vqKuSoszphhaU4BamZZTvl22oannv++HENLV4r9hsJNnZOUu3SEhOWRZM40zTdIIASVOyPCPJc+wirNtxnEkSqZfmSfAMELicO05vPQ8PgliwznK9DLTNEgUNOiZqa9CQZ1BWiqd3R77/4YGPH1/pYz0/z+JqS7MMrde+SEcen7/9c5an/PTHD+SFR5mAMYF5GSnylL6Tc02Gz4o8zSiqjGHouV5bnPMkibhHbHRDrYPc9dlf+1/nA2li8EwsbiIoi0m4qX5XtxOIxVh63RVdpMnyhPfv36ET6ZHHSVRw0t+JaCfLE+7v76QfvnY0zYC1sgT1XtRjZVExTQvGKHwc7jnn5N4O8t/leRGXDp7PX17Z1OJsWaYRmOJyQ5FGdxO4GCwpYqU0TcWGrIFyHbLpuKSTgK1hGiVpO8R+Lfgbl09caTNdYzEqoLRjGFo2m4yyhK5vOZ+vTNPEdlsx9rBE+oH3WnqUeYmulW0M+KgkdAUJTnJOFKHDJMgSk0TlvrNYZ3k7n8jH7BYukyQJKjLiV5xX1w0UZYGzs3y/IP2rVinWdrczrCgKuq69vcd9L3b7uqpvNaTgq76iDr5FunzTUMahqvw7DygfYhcZX0cUwQmj+quaUvrWgLshqvCKEAxgmDwQZqx3JKm8foVOokDN8/vHL+SFwbkJZ4UvbxJLmqubqyTPE9JMkE4S9tay229omwljNLudhBGZRAKshL3X48PCOM0EB2nm2O5zlFm4NjOXSwcxnHMc7P+X1+P/t6+/e8B3vV45HOTDdjqdOB6OcWgCWWrouhHvHXVd0jRiZ/rll1/5p3/6x6+XJERLlbyJy7JQFGLJlXRGSRH7FvK9DrOWZSHNcqy1t4TAzWZzY59tNhvqquYSfeDSEGQimfVSdAcU+8OephVlSWJS8vjftEaRZxlT3/Hvf/43KewWsaR6L49ZYmRCnUSpf9/3soHMM7TRPD4+kqYJdp5uNlrvHb9//I0//OFPGJ2RJJrPX54jEHpHlme3D8dqrzVGktLKKPkdojVjtemCNGJ935NlGff392Jhnme+//57Ce7QSVTUddSbWi6+b+C/WktU/S+//8q1bTjeHbk7HG7DUYF4VjerM0G2AUrHpoOvTMbvvz9wPl8Yp4n9fh8DMqQB1EZLcm+akvtcbJTLcrMAWWtv9mkfHEkqB2FeZLFAsjeu3Zq0vD4b8ySD5f1ewNrX6/Umm82iiusWKBEZf/MyyXArEZWFYi30phsPcmVMrPDk3W7HmlIM3IDA5/MZlL4NOUUd6LF2vllfZYCZxAtRhsNxqcsaWqOMbLCXeYYgG81vwfXeOSb/9fBb+VlaK6ZxJATHpipIFNwdjjw83IEKOGvF+28d1rnb80X4mpYp6soU6zzL4mMh/TURTiTTxMHlV5uycx6nVuaIun2vEISjWRQpZZ1z3O8wylOWKQ8Pdzw/f6EsH0jTgjU9yWixE0mgRM5aHLdNx6beRN7RhSRRbLZVVImKZaosC37++VdJNfzuOzabCmsd13PLpb7eFADn04XNdkOeVfT9RFVueDtduFzO7PZbaUK6kdOpwS6Bu7s9aZ4wjg0PjzumUcJqXl5fybKc5vLC5SzW4awwUbId+PzlDRsU+11B388MndiK5H21LIvHe0hTw5fnF67nke0uJ3ixSuW5bIC11tFS7knSjE29wVnPly+fuTYNiUnoh4E8T2maK1mWsN1ueH1943RqIBju7h4pix1d19OcO4q8wlu5uD7+/ompXyhj6E6WpSTpnn7suV4v0oDnksJrdIbzlqEfyX2C8xpjQuTJKcBR1QVtc+Knn75HaxnwGZ3SNMIWq+vNbaDXNA3jsJBlJQpJxcrzknly+GnG2kDbTFyvv7Dd1eRFhl0cw2Cxy0xdGYpyg3cTxsA0ipphU2/w3mEnASF7K9ybt9cX2uuVD999z8vrG27xDHZkV23Iy5K+f+HL52e0MlwvbbQD/E5VCV+LsLDd7WmaC3lRRCtLT5qKMjdJE9JE8Xb6wjxLsM2Pf/gD89IiidIphJRhmNFKlF95YtGJBCus/Br57MUURWcJcXjufcA5SZ7Msi11lePdQpYYglb0/SBA5RBYrCMvymjJrYWH2rdcrw0vL6/c3d1x2O/59OkznnAb/ix2YRjHG85AGu9oRVNBhldKeFH1pogFs9gqiHbeeR4ZR0tWFuQlZEozzwnBJ0DC20sDQQDZRZmR5ZrNNsO5BaUdd/cVWZbQtgOXyxgHLV/PuzSVxuVwFOuIUop5WejHE9aLSnBxHmZRZ4lydE0d1xAMQ29FKaREiZQYjYzw/I1fpeMiyTkX+W8OPAQvDU9QAt0GjbNizbeLI9iAtrKwMtEybbQkKb5//0heGH76w49kiSFLE7y3/Pb7L1E9LRa/NM3ou56u7cnLgk29QWmx3OR5hneew+HI5XqiruqI5lBsNltRYqfC1M3zkr4feX5+oygKnp4eCd7QXnvqcqKudlyvI36eeXm5ikq8KNCkLHambXuSRNO2PamRBMiunXBuIEmMAPOdYxgWmutMlslrVu9KUBaTBsoq45//6Q8cjjuu15a3kzyDwuF17PY5u0NBYnKmuWGeO8qyAuV5//6eLCvJ85K3tzdW3MO6pDrs79huNizLzMvLC9NoudLGO6Hil19+vt1x4jgY2W633B13eAdFvuHzpzf6YSTRCTOOsqhJTEJiEtpmYFMfCEEC37bbnQQBWQ9Bs9nsCCHEZkuawizPKcpoJ881bXtBaStWvugyGfqJrh/p2pGiFJVcQKD8x+ORDx/eSVjY25lpXAgesWW5gHOBeZnJspJ//If/CbsEPn1+Ic1Snp+HOIQJkRNU07c9aZJSpMIGrKsd3gbs5Bingf1hH50sQQZzSssST6XgLFmZyGB5WVDxtdRaRyukjwwtGWKnaU6aSnJ9UeQRGyFJk0qLI8M6RxIUaRrrDhMH9pHZ7ZyLKfU9XdeRmjU4Koai+RCHh0lkcEttZCMKQO4wUeoMwygD56qUAVAcwH4b0iH1ekrbylmxokIERSPK6TUtdz23iAgWpUJUTamb0kgpompQnBnEekhqplW5J3gUWdr4Wz0X8CReSY3lY12lI8PPw3Zb4LxYPXFBEnXLgjTTYhX0liyTJYjROUPX0zZLTCOV92VcJJQg+CCJ9IVgcfIsjQMdHc9cI6F8DryWn0kpRVAKFo91E3iwHrRK0CZlmUeC8xj9VeEZVjsj8VdVGh/icjoARpwrIQQZ1CVxEaKk/ipz6Zd2uy3H447L9cw49rceZX0e+76n73p0Zqiq4tYDKAI+8mh98DTNhdlauqGLv7+E1IzTiJ0sRud4Z3l+PnO9DjEEJmWZJ95ezjw8PrLbHRkGi58X+n7hdOpIM3lG5knEDM4FpmmOyyjBqyQmEHRgmsSpZLQkkzsnr4U2AZPAn/7hO4K3fP7ymXlZKKtAXuh4x64sXOmbXAzkUkrFflMGFas7aJ4XPn9+JssD9w977u7Fpda1J7pWQjZWp431EuzV931Edaibwts7GahgdPz9omVbrT9PwAWHdT31TjNPiraxKDJ8WJ1+8hn8OthbGb+B0+kioVq7nMNxw+EgoRcyL9CSdptprBuYJ09Vy9nSXEWpJYx/Yf7XRQX42zBUaU1VlmgFl8uFcZzI0oJl8fTdiLNwOTWYRIaM8ux2YBR3d0ckzb694Z1CQFJyi4LEzDTtJQ7+pN+eYujL6sZbZssa0vLw8BCt4UvsaUuqqsLoApiZZisBYeWGz58/cW0GEu0wOsdaJ8ErUbFZFAXb7VacT29vcbDn2GxqwV+VBdYHXt0LwzBB+BqepgI014Y0FVWp9PE5eZ7z+vbKNEt/a7QmGMP5ckGhuTseqQ41aZrS98OtXlyXB9a6aOWV3q1ve7IsJ8nS22u39nbrImQNaNRqdYsJc94oee+8c3HRym0B7Z0IVFRQoDxaE59lIOjbz+K9iiIYCVO8v98TlGUaB0Dx5UsrbpEspWlGunYmzw2PT3s2OwmMyfNMQuG8w6Qa1CTqSycuxhAkxXkcZ3777UpzsUyTA6XJMnkuQVHWgaoW7NT13DNN4bYY+e7xf4CQjSRJ2O92bDaSZLLMCz4ON7TWVFWN1jUAWZbRNFd+//13/vCHH9lsNjw/P98GdjomumZpGhVRJiqE5q9DCLgV2QJYXEApsrzAua9DHYCVmeaDJO7KtkU+PM7JBL7e1ISg0Cal3mykUMhyhqlnGHuapqVTEgfvghQMRmuCc2gtMPI8lYHgNAzYZeF4PLKpa9qmvQ0Sk8SQaHVL8b1ez/zDP/5IYgJt29K2mpeXF47HYxwipbeh5+rnf35+4WvcvEj5V4j3CvTtuo4kSbi7u2MN1Vgvvv1+jzYyDBMWT0maSMBCURR8ef7Ch/cf+P3zJ55fX28WtzIvWJYIr65KTqc3/u3f/j0OrwzXaxMn1nuSNL29n8Mw8Pr2hkk1VisyLUEQp9MbNlp3F2tBcdusrsm5a7ItcBvgrSqStemd5/lmr10VZTJQEpXbGkBQluXfDIXXEIx1c7AOg4XvJ3JkraRJ10ZHm3cqH/o8E2my0bc/vw7dVi7ksohicByn2/PqZxlejuOI7Lu/TVDOSNIUO8nWTuwfxDALTWCJah/NtwO+9bK1Tg46GYYlopo1gfv7O+62GwpjuNvv2Gw3/OWXv3KN4Sn+NtCL7BHr8MFTVfJ5zfPsdgmLNUEgoKvtRRSJX816ctDCsgSSxN2KcO/dzQ7/8HjkeLfl4X5LmZWkqeF8fiNJDc7KkGO73TLNE+Mkds/Dfs/hcIgWdBnqbrc7lmWW8AC7cD6f5cJPE9DSDO+2e748v/Dp4zO73Sba2kteX9/48OE9h8ORTx+feXk+kWYZdb0h+ASj+2gvFvvxPDtCkOL0chkYhpmVH9I0UjD7EEhTScrabDL6XtREVW3Y7guKMuXu/pHrpeXP//4by+I5HLfsdxv6ruHu/o5xuLDbFiSJorkIE+319Y1lmWIx6nDWst1t2W43GGNo25aiKPn+hx8wHz/FZzLcVAkvLy9IitVCkeU0zcTl3OIXw3azJzmUDN2Am8X+W+R5ZN9AVVVU1YFrc+Hzp1deX9+4XhuyrOCwOzCME0MrTCWtUgJQ7EvevTuSpZppHinLjN3uO/q+5+PHM0liOB7vqGs5g4q8vhWnx+M9XdrTdzNVVRA2CZtNwuV8jZZ1TWIynE/Ikh1jN2CSHBU049CSJoosFbvRMotFt20bwFPXGUoFyqIAD9PUE/yM1hnN9SIDi7RkmS3TZEnTnLra8vNff0Wj2e0OpFnGPI+8vr7dtrbaKOp6SxUtLmmxRStPWexYrOV6vYjVJi0wyczl+pFxvJImRMaObHKVUiQqwfmAXyzjLAX5an+zsxRMChN/J4WO92BiHHVdUW8KprGjUzn39+8IAaZJPiNtO2AXx/l85dOXLzgCLoTIBpt5fn5mv99TlRVd18clW0FRFIzTdFu2reeW2A1lea+iNUSYnZY8JroRz1qlg6QIMqG1MIzm2TMMjt2uYLtLKIoU8BSlwntL8DltI+iC7757oN7UOKvI0pLLpWWZpflFDWjtKQrN8XggzTSn05mm6ZhnCE5xOOScTxOJWQd0S/zBZSCVRH+WtS7eX3LEJSYBFVhGGST4EG7LnVWGkyQmFqGBebGM43SziKR5zm5bMg2DpPwphzKeNE2Yp5lxsnz+8om7uz3/+l//laEd+eGH9wTvmOaRqip5fn7hhx9+oGsbnPNx2CcDC2ujbTPa8odhuN1HK0N3GDuGoePx3ROXs2zUCRKM5N0S8QAOOy08qzeqassyexJT4P3M8/MbaZagFJSx8R+HhSKvaG2HXhl580LX9Wy3G6qqQt2nlMWACxaTOP7xn79ns8n51//6fzDNM4trsS5lGBo+ff4EKiHLE0ySkqSaIaZwa6X48nzm6VFTVvJapmnG9XqiiqzAtpXfS5qSlNfXE23bkCRGrEGz5ePHz1RVSZaJsuAr2xf6buR66bm/f6Bp5N+9vZ2leSg8dVXLonCa6dsh/v9oNputIEa6Ga294FjmBQ/s9jvsMjGPYu387rvvyXLDxy+/07YD4yRBK6IayzidG5prT56b+DuJLfPOyPearZWQDuuxiycv5Hc12pCmAgPf744EL3dommYopeOfkeYoy3J+++03NJrUpCRa7uR//uf/iS/Pn9nvDwx9L2rhoY/pojIcEqusPPtdO0Re2kKaaRL91S4rC2lZsEqzCiub0rtAnpVcrmecG8jjEjvPU0IGzor9CeXwTsUFqAUlS+s1EC1Ps1stKHWfpISjNMaksT7St5/HLQ5nDEFBkqUoO6MTBZq41DW3z7+1cueqiKvQOuF4OECAS9OgVXTtqK/J4yqqsKV2C7cF5Rp1ZrQ0k1JvqVhvwjzLICNNUpT2sZaSYss5i7UhLnyFNWZ6SZvMck3Asd9vKfKceVnEGbApMCu2RQfGcWXRKvb7HdYG0mygqAz7Y8l3H44URcXpreW//utvkja6AHlC24z0/Zssd7XGBug7Uf2saBCM/E43pmisEUMAowLBW4RVKBVjom46RcFQrNZRL7wut3i08qS5hETpiDJIEs3xbk9d5zw93FMWhfxVZozjcKtXpmm8LfDl3pMhSl1umJcpKjHFeliWBXle0PfdLTxEeoANTXNFJ47gBX9ikgSCMLXnydN3C1mKoGumniIfROntFEbnzOPEtelZbYdKK+7KPfPkIBg29Z5lvqCjytUHyzLPgs0pC6Zpod7I4Giax3jPTRSV4sefjhIw4wcWK+ir9U5a02lXBf7Krb8JJbwsQ0IQ5eB2l/P7r6+8PF+4XK9Sa3hZ2oMMf4Wvb29Ck3WoOy3Cei5Keb27tkNp4gBG+gql4XhX8PR+T71JaduR338907fCNXM2BkMGH4f5Nj6v4rpaFktiDC/Pkmqa5Z68dJJIX2XAzDapmeeJeRTxgTESEJWmit12Q8Cx221wdqbthpt9PstyUNzCuaR30zEsTtF3E+NkSZy4YkCRl8LdE8WqZ7OtEAeF1BXjODMOIuLIYurttq4jpmpi9hNER5O1Xrjz3mOdo8zKeHaJ1XScBpTy4iRberw3HA7iqLleOrKs4O3tEoVPik295enpCWsl8O9ykVTt4/H4/2Htv7YkSbIsS3ATEWMWpMiAe7hHZGREdmVNTf3/N/TTgJ6qrAQBHJipKRLAmJnAPFxiMYvqeZmO0rV8OTJTExVhJr7gnH3Iog1Ya00/jIQAu90eZ0/X+YTMD1ZElHwVhYQrreFyq8p56MdYC2Uss/xswgEWNIAymmkYyIuSLM04nS4ssS4JBHzsrefFSnp2CNfh/1Vyzep00Cg8aSJn/opoWJaZEBWkysgzU37311lACDKkqzel1Hx42nbBBxHwaB0oigSTcB2EVlXJ7a04/YTrGnAONpucojDMbRfrOEW10bEWVoIICgltOzEMslQ2Bjb1Dd9/t6Hfe/7y50dx9WFEoJAr0tRSFRuMcmgtqboEcfbZhb/76+8e8OVZRlWV0UttMEYUQuvmeWWmzfNM07YEL4O+x8cvfP/9d2w2myt4E+I21n9NhJUbcrwOu1YF1TxLam5ZlpgkiVBe+UBXa+VdtLe8vLxQZPnV478Ow8qqRBvDvFia5iKbKKPox55xGljszOxEnpokmixJ2Ox2nE4nFJBqOQQP+z12WdjUtYAkrSXPC07HE9M0kSQJ4ziSJZrHx0eMMfzudz9y2Im8fMk1Xx4fr2Ejh8NBGHTxgp7GCa0NXSc8N+dFgXdzc4O1jmmaabtWikvvuL29vQJOp2m6svmc9zgb2O921wCO80WSdqdlZhgnjpcLT88vJDphCRatdEzMqXDO8vj4mZfXV0xiKCtpBvc3e+q6FkVeLgmJVVUyjhPjNKC9qIqyxLA/HCRIJPJgvHYxWTe5Tu59fOBnWRyMxkHROuwkyDCtKHLmZUY7zZqeLA2QiWmTIqlfi8H1a22CViizMYaiKK4DZYCAxyQKg2YYPCqGroTg8Yjvf2UHfMuWW6XIeSGf18ePH5imGef6yOCQaztNc1AKu1jZ3CxetnaoCBd1eMSSKyR2AbWvBaX55lAL3jNPYocCT10VlMWOw65mk2dkWqO8w9mFoirphgHnhB2IJvIyZNshqiAbG6Cw1ptrPxsL/gxrLX0/fTPgDFRVSVkUTMMkPC9l2R8qtIbjW8/5YlnsyOvrK3/5s6fMttzf3TAtnTT4fk0C81zOZ5I0YYX1ygEdroe2tZZlkTMmz0vZdCcpl0vL+4/v+fz5UcJ+RGRD24zkeS3F5CQwdO8lxEDrnNPpwpenN4q8FC6NFlB5mplY0APxfpqmNeIeUbG5hWlyKKXZbBLSzJMWCVVt+Kd/+oGH9wemaeDpuRWmVRSY57nh7r7iw0fZLl60JihHWaX8w+/fy0PYwadPn79R6AqwuKrqqFq+cD6feP/+gT/+0z9yOp2i2ktSo3799VdZRChDmmc8FHvGQVRv83AWxpi16CDWpzzJSZKM0/HE6SiKPZOkvL1eeHk+y6ZSi6pWrrWSus7Y7Uvu3x3YHUra7sgwrilrhqenF7abCtAcDjdXLEHTdNzfCYsyBEWayqav73ucU9hFkWhQKmEYOrpOUiOLouB8GpmmiaIQ5WHfLdjlwjz5eN3IoL7vB4J33N58j0kUNzdb8JbzxbLZFmINNjltN/Hl8YXj24Xx/Tt++7sfef/+A//jX/4du3i+//5HXt9eSNOEqpKE1GEY0EpxuLnl7u4GkypcWEgTUT90fUeWGPLDBpNkTHODmRxpGpgmYawRUihKUSjE5iMgRbS1Yp3I8kIaAK1FFaAUdVUzLROzdUzzzDgO9H3D2GmMLpntxG9/91tZAp16nA/8+S8/8fTySjeOjIu9WmzWRvVyuVCVNUM/XpcXRVx6SGDC1wANFV+jjoVZ349YN0f7W4hnmWxPk8SwP2zYbjRd3+Gd4bDf8/byyDieeP+uZrcvyDJDPzQsNvD4+UxzmaNS+UianclySUR8e52xi+fhXU2WGpalZ54D53OP9z2vLyNFbri9qQlKNqI//PaWt5cWQs40zdjFQXBstxsBUjt5BnnPFdJvnRVO8Ko2CTI8UdcDQf6eZdmVGSxWKGKzL4PQepOgU0mWvrvfcH93x7/+y680zQR4Hh+FCajQ/PzzZ5TyVFWOQvPDb36U5aTq2e12bPcwjBPLMtF1PUabq/q773tRtdqFvh+4vb3h5fmNS9ugk4wkyZmniTRd7aSet9cLdV3Ttgvz1HDJRBE64wleo1SCIsEuC5P2kX+3ZZ4HtBJLtvAoJ15eXnCuEbsuYl0xAcYp8PLyyLSk/Pjb97IIXiZeX78QQsof//APKHL+/JfPaJ2gjWMaZ5xfMFqUrM8vJz68T1j5jtYuMUCnibVAwfl8ig2uiudfwjguOBdYZst5btgfdnK22BATMTVtN2B0wsvLK0Ve0XcLKxj+cHPg9u6Wx8fP9ENHQLiA1nlMr9nvb7h/eGAcRj79+on7hwduDre8vDwLS7CqCMHz+PglJg+PGBNIyyI6SjLSrKTvZ1wVk5tTxTRZzueWh4cbQkDUGLMlSQqqTU5ZbmmbjvbSkyXCTZ7mieP5jTQpZdEFaKPIs4SirCKnOROUSjBMw8Td/T3zMvPp0yfWcAfrXOTaGgmHiMnreS4InCRJRC0RPCsPT5hMFfMyXhmezlnWYLMQEoZhJkk9wSusl4YmSeWcrjcFRaGj4kW4u5pEkiiduqpC1uA3uR0DK2g9xNTN9bWsbgutNdY5tBU1YJ5novJPjAyGvGfxS7Tbq6tqlvjzZlkuA5q7W1EpWStBJ/MsNsDwFRDvgVTHEDYvC4hwdR3J4GWzlaCKaZJhpkIGe/WuZL8rQXsJI5kkmdtFRdE4zmgNyS4TBEqWkmWGc/MWEToZt7d7np5ehIO9qxmGkc22lvPLi6Lqhx/vSYwMGMZh4dK8MQwzzq5q64Wm7Zkj61hrCQhMtPRYX3sxhXfiwvGIWtIrmeAl6uugIPg48VHCxPJBLLJWRWsdoIymMAUhcczLAlh0IgEd1i5Mc+D5eWaZdzSXBoKIKm5v99FKPVOUOfPsubnZMY4DwYutTpsE64Tf7ZbIlPUBh4/uj5QkyRHFYskyO47HC6bpubu/R+sUFYwMX+KSt7kMVBXYRZKQn19OUXEowWneaxKT46P9MziYJk+uDEmSM4wSLLnZ7OKy3/H29nZNxZ7nhSwz7A87jKkgBmuAJc9EYTnNo1y/uLi4yHl9FUyL1OzqKo5ZQybXGn5ZLHbRtO2E1tC2EgCwKpuLQoLNxC4tzzhjQGlPkYv6SM6Vku9/84E0DTTNiWW2HI8NSknK+uFmw2J7sizQtCfGcabayM/rgifJDMsUMEJYlLMvSUnTwGI9WQ7fff8OY6DvWxQeZWbePRxECe8tWVKQpzsGPTGOE9u6Yr9TJElGmqTMy8TQNcJKdp7Ndi+LvETUjss8x4RUJUKTYJmWObJ7FalJqbd7tNa8vb0wjBNaK6ybInZAIRHEkhCeJRkGRZFl2GnG7DZgNEUuoRLTaAlIjacTeb/byKe/ub3FO0fXNYIfyROSxOC83K/TtLDZ7EhMweXSsKm3FHlJCIp5crRtS0BclWmaUpRZXJiIm6PreqZpYYwMSnGOfQ3gdE5FOyuM48SXL1/IsoztZkvfS5pv8IG26YTTF/vttm0jBsJzf39HkmiO1mG9sNbtinYJ4YpnEoea5CYoH74ZQn8NUvXeR0v+N70/X3EL67kbwldb7tq/K2QwWBQldV0SSOM1HER4EyTwqNpkolhWTrAc3cj79w8Yo2maM5ttHXnuKUpZnBN3KTiKGErVtxN39+Io805jZ8vSieK560aObw3zJDWHcjPTHOj6gSyF+/uavjvSXCacDQQnvZBCnmt/79ffPeDTRpNlKcMwXpVTY0zPEuWUfJh5nnNzuGGaZoa24XQ88+7dQ2TJfPXjr4y8rhuutov/GaS7Dv/WcAnrBEC+gm5VnMyvijZnHVbbqzXXOotyooAYxpF+HLm03XVwIsEHogxKtMakYqm01nG+nJjmkTxK7sUqtERvv1xgAiFuaNv2atvM0oT9/laCLPICbx1jv8RNrGxitE5J0gwr4DXGsWcYesDQdz0qSUiyjOPpRN93DON8HVp2XYdW8Nsff7h+Nt57qqri9fWVT58+8fHjd8zTwus48vHjR4ZOrLyfHj9LYxkCx9OFJEkp8hKcoywKHh4e0Drw/PxMtam4U/LwTJKUpm3Ii5o0NVR1TZLKdmwNIqm3NU3fs4wTaV0BYJeZvuvQSU5elBgdWKb5+rlmWcGm3gLgbJAglriBWBsvpUO0Ppg4HFtTowLG5FR1dT0sgOt1862Kr6qqayO9qvi+pjQvcSvr47Yvw0arFnHwqhTkeXpNNU7TNCoTe7SR4lSGo4rdbkfTtNdrLO56ZQPqYV4c/ThiosISrQk+MmSut2mUliCbCo2wBVSQQbsLHqNlm200pCFQpMICWpxj6hraoWOxi7AEE0mnk7osSDGdSlOw2Dk+3KVZ1Rr5//H+BJHJa23i65KQgWUZKWvY3WyoasP3P9wzzQP/j/99Ypkl3UvrhLLYYefAr59eqDYp4zxxu7/l9uaW8+Uon40xbDZb5mmMit4kBiVIbP3hsL+ChIui4OX5OYLXNYSEefakSRkB357zcQDlmceJaQzkeUHwCc5p7KK5nAfGVIYeZZWRJAXWzoAMMrJcUaicaZZk4LvbBxQRLG0tXd9x91Dxx3/6kV9+/UksZLphcYZ+7Pjp58/Cc8jkWi5Kg/UTUzcxjRM+wPaQMY0TWZ6KkiE4Hh5uGMeFaZSQj8PhhmURVe88LSRJxvF4QkU4+6dPjxSFpMiKoiqlKgsUCWm6oW9PonjMN2zKit3uBm9lkSGNhCZJclETz46mkcTcTb1jGsUuPE0jeZKJcq3KMFng/u6W7a7gcnmluTSSLIjhfO5ompYPHx7oukHssM5y2N1EmGy0IwWN0TnCufJ07chuJ7wmgsJZmKYFu0CaWry3zLPD6ATvFM5pptlKQ4HG2pksTcizlGkeSFG0raWuMm5vK/I8pap2zGPC0MPlbeTCgDEpeVnFwbxcD217kW1/mrLZSPNUVVG1vjiMSUmMIiyO0/FMmhmKIidJvy4QnPM4O8WzvRNls3Xx/c7QGmHYuq+N46be4FFMy0wel1T1JicxGYtbyNJMEmHPJxQZ2/odLsxcmgv/kGcM48TL8UjTdry8nRknCbNYA5I2m/pa5BVFibWWw82BthV+rdjcwvXeD96JYk8pXDxbJUlSM08CqJ7iWS4p9ZplGWkuPV0Mv1jcSFm6eKYYyipDKbH3bOodwY10vr82TfMYuL3bkWWa86lDBVGKjINnGhdma6kqQ2ICy+yZp8DYzyTGkJeB7b5gu0mxNuH56UJeJAz9HDmryzXVkBhgtNpWMPIMFZW7w6twLSCDD6RZEnml4KNiIkm4PkdQch7u7zZ8/+OeLA+kGYQgLJd0lOHVbrflD3/4A58/fUKjePf+HmsX3l5fOB7/wg8/fE+RF+j43GjbN4zREAQEfzjs46J0YFlUTBWdGMdZUiS7hbfXC9vthnm2GJMR/IzCiP0k21BkAsFu2xbiEHez25KlMeBsmWmngbFfqDcFJpEhbpblKKAqa+pahjtt21OUOX/4p3+kqjK0CQQ/0bRH2nYizxKUkmFjnmWkScXj51eObxeSNANtqauc29tbXl5e2O+2ggIYena7PZvt7tqEZGnOw30el8KezUae6XoYr4Emyyzp70M/EkKDNoqhn3CZ8GO1ksTpZXCCCEgLSZVMMm5uD0zziA+Of/qnP/Du3QfapuPnn3/m0+cvvL6dqaqS+4cHfvzd70iShJvbG/q+o20tzguP0B5PZLnBa4tSjsCe+/sHtNaczpKMrHXCOE4Mo+P9+y03hx3TNDJOw5VZlKUp1gZRhDpZfndtT55l7PY7EqMoiox9ZO3e3e6oC8XDhw8si4uIhITzqaG79PzzP/8zzy9PjONInsmSsyxyYWJHRZ3FouLwa1fssMFHF0ojgz79VdnqveAFkuiukbAldR3CSt2QxXNRYbQMn/q+Z7upJCk4Henagb5dAfvye9JU+IFiYXLXvxKTxTrl6/25Lh7XYZRzEniGKijLAqMViQGL1DaLjSF5GqZxuSpBlmXm9e3I/f09P/zmN/z8088EHyiyHDKBwU/ThPdzbFyFSSvBZoAOEIdNu/0GpT3OS6JwYA0JsXTtGegoqlQaTq1ZZjn/jSEOamCzLdjvZWgsg1YoNgWbTR3P3Dwq+0V9Mgxn6k0aB0E5t7c5SgVeX5+ZJ8swelKTcfeQcTrOwozSCXa2MkwHCViQDXBc9CQxiEDec5MmwreLDakPAeWvqXRoJRxcrTRhseiIV9DC84mcshz8gh4WskJxe3dgt9vz80+fOZ96gje8HU8SVhHVdo+PTzL0TAzb7Y6bQ0WRl2KZDhqTGqZ5YZp7vFdRDDGIMKQocNaRZZJOfjpe2O12BO/ou4VpbtluD2iViN0VYYV7B5ObSUyBVhl2XjjN3TWcSbhwJVrLwtp5UUhfzh1cIE00ygSS1Mh97cAk4hrLMhEsWGd59/6ed+8ekFZA8+XxM8c3WWDkheY3v/lImlTCjvcS0Be8ut4DK1JoFUes/cPaf4hDUcd2wmEickKCr/wVXbQsA6iF2/uKLN+x2USHUiJ2bdSEsz2bHWiVs7iB49sIvZfB3NjTdaO4DbxgKjbbgs0mYRoCQy9nbggyTHbO4sPMdp/y8G7Pbp/iw4i5LHjn5FlXx/M5yyURdQafQ1lVDP1AmmXs97t4BqV07ZukM+d5VAkmkXEOh5ubuBRIOF9aLhdxB2glYpXb2zvKouLt7UjT9FL35ilVLT2uNsIb11qTpzljN0WkTsrlfBGXWS5iCa00eSGBN6ti1HtH13WEEK7uPjtLHVUsqQg7lGeZZ4Z+oqpLirwizwrOp9eoLl9oGnGrEUMib253Ek7mpS/uo7vQB0nnlmDH6apeXDFPwcXaTsuizDsweoSgKPIS5xx1mWH6gWEaY9quXFfTNPH58yOH/Z67uzu+PD1fv/ff9OEqsIYUof52uLee3+uvd4TIoHdfZz8hROXwV0eZ9PRf+/vVvZjlGfO8MAwXNruaDx9v6YceDdzc7EhTQ9t1UbFsSRJheCvtSRIJaamqXP49TYS1145cLiNFEQOvRsvL04RJBulTFrkX314GtB4YBx/DGVOm2eG8pe8dWWJw1tB3A027kJqM4EWxLZ/H/y8m4f9/X3/3gA9WlkTc6MWByZoeaoymjsq2b62k/dBHqago4tatuQzWBAgJKl4g5jpQWdV763ZiVbmleXZV+K0f8DxLgVJWJYfdXr5XLDxmK0XfsblgnWNx9jrJXhsZE9kCSZKCl4S6RAtA2XqPczNZtP4aLQq/qqquEeNJbOyUUuRFwTAMNE3Dfr/ndDrxsrTc3T3wemwoqorT8cw4z9zdSRLifrOJP0PAOs/NfiMbbiVKBlETTRSR/7Tfbq+H+jRN1+12Xdf87ne/Y+jlz58mmc4750gyec3H85kAjFNHvdmwKWXAtw5zAjJom5eJm9s9ry8nQODtt1nGy9sbe+fY1JUkEw8i/a3qmrfmQrWpqauKeZpo2zZaJ5a/UYOsYHetZSglw76MNan025t8lfIao3F2/XVyfVgnRdeqyPs2zWx9CK8273mer4fUKkOX60oswkolf6Mi9V7SpVarMBAVo/paXGltyLPsysFYN85ro9+2nVhYnGdeLEabuGGNm6wATiLKrq9Xvr5urn3w0mDHn6/IcwndsAshOLq2ISwj0zyQpSk+BIZpZFrknlisXN8BH5WJ8vP4CKcVZowmMYos01dlyspHXO/XtRnU+qsist4l7Pay6TufjzSXWRQFAcqq5OPH92RZxq8//8q793fc3Ox5eXnm+emFcRi4ublhcJYir2jaRj4Pr2h6GcL/8MMPvL29sixiHRiGgXcPDzgH59PIsjzx4eM7LpeLcGd6CRS4XHoOhz3eWYbe0ccHa2Iygk+kaNOJJBoPniLzMqBuzxiTcDjsBVB+PInsfH5kWSTBU2tRfDZty/PLL+wPOYebD4xTz+n0irOB3//+A0bV/PzTFxki5Rl9P0QOqObt9Yxzju22iLZmjXNBgkaGE0VRME0zb29H2Q47H1W/C9Y6/vqXX9hsazabTVTuippnaXraZuL25gG7CKB9GidwhjwVNWZzbmJy457b27u4oKnEfp9kHA53TNPMVEhgjFsWrJ3Z7w8cbjYcL898+vSJ4igPrDTJ5b14+olxtBSFQqtXbu92APzmh+/ZVDv6ro/pmY48rwjINtIujsPhgT/+4T/xL//yb4TQEoiK59mSxe1mWCwhzCyzJbAqMBqxv2nY7/ds6px57kiSlCxNyYuvS4jFTgzjJMPMKeF0HHh7PZL99AtaOfb7A59/fSQQ+MMf/pHdbn/lj9b1Jiayz5gkYZqF7zTOM3m1xa1hNCtbRCtRbgRH3w+yOPIWa2cWZxEeZyBNhPeFiWNzH6g3tfAunRO+Vy4pn8u8snVkaJgmHWnSk6a1WLW95fXtRNuPjLNspcP1LNHU9YbvvvvI6+sbELicz3z33ffsdjt++uknxmmMG3w5L9czLVmtKtfCTcJRVquNqKblzFgWT9sM17PYecXQ9+wOGVWtmRcZTLWN8OSkGUxYFlG9ATSXlsNNRZrK0sMucHob0QaqKkFhGAYJtiAYptFzfLPUWwm9+OufHnl7ESZcmhjSTIZ2SzOwwpkTI+yoq2I5EJOBNUlqWBaPUfpa2FtrwXy16rlvClTnnDRvUa1zOi5M88A8OxKd4p2hrjdsNjXfffeRgMP7hd//4x+oN7Kcent7JU0Tfv31E+/fv+N0uTAvLgaYeIoyY+hHlDLc3d0DsNgpbrsDr69H+m6STXIzErzGedlup0kew5EUp2PHbrPlcu4xcZk29CObzY6yEJW+tSvz2HK5dCSJWK+fvrxQVSV5npOYlKzMJHF4Hnh5eWSzKRiGmZcvF9p2ROnA/f2Gh3d3zBN8aV6Y5hf6bmaxUgPkheF07DkdW5JUUZclZVmJQiEIGykExTgOpJkM8Debiv1+h/OOaRzJshU9IUzdJIj993hqyLNEoNdVEsPRQAeNDZ4qBvo4FyiKlLfjM0Pfc3O4lbpmnOj7ibYdmWdLmsFiPcfjmbKs6PuB//78L3hrRdHoA/f3d6ACl/YMISEvCnbbA5v6QNs18f31zLMoOiUsOTCMYsNTypNnldSBq9pfOQQtA8o78iqh3hQMXU+S5sJOrDJ84kiMZZoHFLJ0eHs9MU4zdw93OOX4+dMvQpVLU2HTIUmxoHDWMbn5qqCYpoVyU/Hu3XtR8LMGS0DTNFEBtA77PMsiC8T9fk9RyPcep5HtbsN2WzMMHU17keCIbuDp6UhiMrw3LHbGWeHrreoivlnwr/edMV8xIWt99O2yNsuE2SbQ+zQuXYlcNuH1mdib2CWmDVsnz4Zjz7wIz+rm5kCe5zQXCZJZmVcucozXWk0SwmUZvIa+zfMSkS+BuhaXgAriXhEskOFwswM1k2UJaMPb65HRLJRFyna/oa5F/dV1LWA4fzoxDDN2UTTNRJrKkORyGnh5Hcgzzf3DJiY4K6bB8vbWMI2O82lms8l5/25DCJ6Hdzk//Kg4n0eGztG1UteaRK4JUXSLCnGexH0jVkWLW1bWMldlpwtroJz6ioFRBm381UYtXUVc+iyw2xS8e/+BcmMEC4AiSSUQR2tDnmf84Y//SN91tE3HYb9juxGFzdvrC9M0RedPhtIJLgofvtr6HMvsqKuENC2wdsAu/joQbC5dVPt67ALHt8v1mWeSBGMylsWKDX6yFLmw8sZxvKJ5hFlYRDGJWOqBK3poMfIzrc6sPCtIgzT2WostnCDhQAqxAb++nOnaKSpUYbNJ+W/nX/nH3x/Y77csduF0bOIwUHqStddehTCrw2kd8K3CmcTIfSZ8Pfn1Q99LgGAqNc0PPz7Ia7YDPjhMAtM00DSCZ9nUcg7V1YZ3724Zhifm0XJpurggS6g3G8Zh4u31gjGG/e5AkgRAghqCl8ValqeMc4/Shu2uwPsJHyYOtxlGezYbhbUNyhQo4zkfG5KkoIgL2aY9Ifx0xX63Z+xbCMIRDEiqqjYJ8zxRFnnsVQcI7ooBUDpBGxEv9X1PWebixDMpOjeMg6XveupNyW63oR97IC5pVQpI2EWSZmSZ1Pl5kQsGJiujRdfFBXLAGH1N3e77AXyIDGxJDx6GgXke2WyFIz4XstQuy5Jpnmma/m9mF97Ls6QoimsA6rIsmOi2mOeZqipjqnGIARQxATxeO+s5uqK0QpCwtFWdXZQFJk2unPlVQd53fQzVkvTY8PxCN4xf+1bvCXGot5ah3y5m1ufMKuhSIAqY6+uKGIirKvBrf30NlVSCnEIJUxDsddEyTbIoMUbR9S1GG47HhradMFpwOH0/oBQUlabrLWkWUEoC4VYWdVmknI4LYz+zzIokCeSlX481pkl4qUm8jgQ5lrLbV6TpjLUXQDEODqVy8BYXwlW1tw4w/96v/yUDPjnYHPNk2e23ZFkmQ67jUSTxRR7DI/YUeY7yjr7veHp64vb2P12DDEA4YtMkPnEBUouEfVUQrEOelfEHUJSFALGvltTsetFJ6pEcaC4O+1a75+Qs3dDjooR7HRomSYIK/noYPjw80JxPkpT3zdc6eV4v0DxuKN/e3iiLkpvDgbe3t+uvb9uW+/v7uO0MfPf9P9K0Db9++SKJw1am+Gma8vnxVz6+eyDPU87nlqqq2O/3fH585HK54L3nxx9/jGBLgQ/rRF+Hd6uleVUUvnv3jk+/fiJN8+vQrt7UjMvI+CqTfAfkZSFF8jIzdT3TJDf3P/z+R3kvUwkUefryKn+mMZwv5+vPOI4j0ziIyup4ZH93K5uJcZLEu03N/nAgKIULmvP5TFkXqCC/N8sEGL4OkuZ5Rhv+xj67DnCB62eZxsNGay1JXZHrtw7z1kHbqgJcuY4rdHVl8K03ovdfH5BKSeLg+pA2a1PnQ2wQ1mGjuQ4W179W9aoEUfhrMei9wjph09ggA0LvRHlnbRz6Ea6vTUZpXO965xzE16aVKPmu4SRaS0Kz9xzbixRKOiHLs6sScexH8qzGukVk2d5fB61rSMqaKCdKHCMDnkng7XmeRaWr/WaTgjTqF8/l1Ii6yqQYVZGammIb+M0P77i52fL0/IkffvuO77/7HrtYhnFgHmfGceJ4OmKMpn1+4nzprn+eXTw+ePp+5HCI6i+ER3k8Xmja4Qqc7ruFsXdkeUKaVPF8mmkvI3lWCf8xLgOmScJk0rTELpZl9kxjz9APVGfZ3pjUMPQTSRoDKBBgq3M9t7c7fvu776I1fOF0fqM5j6S5JsuqqAZV7HYHPv36yukkTI8s09zdHyjLnLZt+fD+QZhoU+Dd+wcAvJtZZkeWZxgtVlVUxmG/p4+NoXcCaV5soG8ndvsdzWViUxfM8yUOjC2vr0cIWqyvqb4mOhICx9MrXd+x2WxomoaqqsjznI/ffcfj4xOPnz8LTHq7o2u72NCYuMk32AVcEBl6npUooxgni3czVSmLHqVTAor7hzt2uz2n45ngFeM4Y0xGksigtSgKBi9MqfPlEtUrGUYPpEmCSQxFIVbxaRoj+iGQBo13ko4dlCVLNbc3W7wf0d7x/t0DN7cH0lSWPE3T0rYT2/oDl1aKpNSkjPPCPFvqMmO3y0QNYDRJInaE7z584OHhgXGapQlfRK2htBG+T1EyzRNagbOSvDnPFpMmdH1PVdUYkxKCKNCC8uRlwhgDj4QtmrPdbAnxXCwKscrO04xdoh1fEZVzM+M0AAlVaaM1CC5tz+PnR9qmj4WDbOxVnDjqAG+vr2L1jDzHtXCaIndvPWv+Z8wB/G0h+G2xZbQh4K8LGwAXT7DgFT4YyjrDmECWpRR5greKvh1ozj0yr9SRoVbKmTp41E1Gmmi5Xy4DzhNVIyllUUtq7qXDu1NMxnUsi2caRs6nGTsHEp0w2Yk8T8hLQ5oa8jLHLTPOesZ+oe9j2h8RWRCHLsYoEqOvyaTrciHEJaRW63sUWJMll9nStTPNJTaKJmNG1OJ1VaC1wXnL8/ORvMjwQdIlT0cJU9BG4Zzn85cnyqqibbs4kPRobRBQe0rfjxFEb/BeURY1bdORJjnGiB2n60bqukKFhK6VxDvnA4v3nOw5ft6i5kxSGWbleS7WzFkYNtrI5yj1uQMlQ9BxnCKLZ5El4M2eNM3o2oW//uWNrlkwSppbOyX8v/+fP2OMoqpyLpdJAmCCiunKFvB4b0mTguYy8vLcyALl9MLN4UZsxPMijeWmENyKgsUt0aZs8X4iSQ1ZnhBUYLevsX7BO09WpCgNWS7Jh3mWURSijGjOLc3YY9OE+7t79vt9VE17ptnS9jNNN5ImKXbxJCZwfDvT5yMhLgOddQJGj+q+pm1o+g6TiL1+Ux9oGuEqD8MSGz5hUNablDyXoeU4KeZ5QGlFlsiCsW16QAmXNrtBAWVVY91MXoiSeLup2dQPfP7lz4yjDLm7YaBtOuwSreZG8//6P/4PjuczRhnev/uAtct1EWqtBG0ss6Mo4nLTWpZLw+FwE22QEkCxhqKtCgpZbEjTrqJFsIzp5M45+m4gz3Oc8xiVMvYTU79I4JKaGLpRUphRpLkMjZ1zEngTwv907jjWUIbVkbE2imtvUtdlrE9nEIMEWSYBddIw2mi9s5hE6uaqyunaEUKgH3qsXeJgIvl6PuqvNeU6XHFhXc6u55PUfqfjiaISbpUwn2SIipLlSPCaefFczhd2+xvyXK7FqpZzsChTkqTi0nQ0l4FhWPBxqbnb12RpKs+PxcelkmGZZdjuvGW/L0ltwjQ42osn+AXvezbbjKI0GJ1xPArrM8tzrJ1IkvhcWMT1sXIYlYohCbIFQRklxkMFHhXPJh1V6aImC07cJsAV9SD/5NB5gtKaZbG0z7JA0ypjmcX6nSQJP/72N9SbgnFo2O0qPnz8QFHm9F3H89MT2iQ8P7+KewcZNI7jyDzZyFkUVuDl0rLbHYQ3usxonZLnIi6ZxkGcDkbTNiJSqOta7NLeI49AGQZO2SQ/b0QKeS/KpHmeycr8irKx1pKmBuFCiiJLqWg79BY3xEAYLyKK7bZmU9eM08TbS0PbyBCBIE6yORMWbtcu7A8H2rahrgW/NI7TdcjzreNt/foW8SODzziUDu4qFlh7YenBM8bBcfz8ivMTaabY7ytubnb0/US9qfnwYct2W7EsjjLfEoKiuXTkRRbPsZJ5tjxPC3ma0TYz3eVFXEg6Q4VVqWTZ1BU//vYH+uHMz3/9hWmZKQrF4dZwe1szTZ0skxItmKxUsywDdpnx3rDf16SJqEHPpyeGoScvUg43W+ZZ1JVFUfLlyxdOpwtFnmKMoWsHwPHxw3usVXz69UmGgj4wjhVaK8qiZOxGTq8N9aYgUTnz4KPNW4Q33TKhkEF7XW1JTM4yL7E3NbE+8H8j3FgXtM4JtkUWPg3LIgNC6VPEWu6dzFu6aYhLrvGKTRD+uPRsEiY0sN8LPmtZhME9L5a27eg6cXV5uDoDPIoQnSMhDoiBK2JMnGpSDyYqYcVcAVFZmrPdbOi6gXme2RbltU9eufoajQ4ar+TZEtTa03M9R+XaDaLwVeqKjkhTCaWUM+XbkJaY5qzWAR+gRYVqbcSlKGGemhQWu5AaCXWyypLnCUmyiWf6ghaNDUWRsttVBO8lARlFVQk3VvkcdVPxuW+wiyVJYbutZNF1sdg5du9GU+QVJgksi+NyOTGMUp/bxdPMPUVRAYLmEiyCLNj+F8z3/v4B35qYtcwzeVHgrEUB+92Oru/o2o55nuPgShgqfdugtKG5tLy8vJKkkqqaphnn8xcpVtMMF+1460NQtigiGxcWW2CcJowTNtA64PA+IAk6mmEYMMbQD4Ns/xBo5jxPTM6yWBs5GV83fsqHmNw5kiSG0+lEeznL1oPV6/2NFUdeIdM4MowjZVFye3Mjwykl0vDmcuGwE/WKc56mkQnun/70J87tBYJwA969e6CuN+wvYuEYx0ESj7KMt7c3np+fub+/x+ivQ6vVutBcGrTiOozKi/w69BzW9CClMGnCOM98eX6Wojk29Je2FWtCbFy895g0JStLZut5ennj7v6exz//RNMP5FmODZ5+HMHLIDHbbHh9eaYoC7q+Z7SWZuhItKYbejzC4NDGEIK6chAS83VgK1vgdQs2ErzDEfk00Xu/vv/CEVCSIpd+BXGuseuiOPk6uFrfj28DMlYl6Ap9TlPhqq1F4rc2cYjy4RBLk0USftM0Z026NEZ4JcaIdd25IJaycRK11SI21RAUy7JaSRKSRF03wd77OHgL8UEofJM1BEQ2Np7EGKoyJ88rbLAElxKcqD6TJJFCygvleJ4nYTt62RolqWFeJuqqvm5p0lS2q9baeNis0FX1TWFL3Dwl14JB3pcAaKZBscwJSmU4ZbFLC2Fmf6gjGLbDM1B5acgJiraVpCnw9JPcd3lRSsT7tDZAszQJ08Jhf2CZHUZBXW5FMWoVVS5BOcfXhixNSXTOPPSSprkEzlNLVTnGYSTL88itVGiVUJWG1sk9kKYCP57mGWMCi1uwy8xmU+P9EgGznjzLeXo6R4UWnI4tz08dKMXNTcr3v7lD65TzpeHnv/6Vy3lgmiRFs8hLvjxe0Eq4S/e3v+F8OZGYlFRXOO/wzjJby2F/Q5IaNtsSbWCZZ0wqaizhFvXYJXA+t7Sd8Aov55ZptJSlRLXPs3x2eVayqUuKPMOzMPY9+33Ff/2v/xWjM3756ROPn584HS+8vLyx2+/5/rvvubu7Q2vDF76w2dQcj0d++uknnl6+kGQajEfrgqouyfKUphEgvl0kiTRJF7wLJEXK5XKJw/WErCwo8w3eKb48PVEWNd5rjsc37h/ek6ZJvC4lWKgosghD9qSZZrPNaS4XlJGhCogaq6oMPgy8e7en3jxECb9nmjzNpeP5+ZUsrdB+4njsSEzFOPfXQkJpw+l0JEtSdvsb7u5uOR6PdF1HVVWczmd88HRdy83tXixXsUnJ0kQSyq1YgsdlxnjH8XxCGVEnKISNCIgyYpYEuyTNMJFlt55PzhNtHQpnLdaPGKPidn5iGGaWUrGtF5ZZBvF//ctPXC6iqjFJinIegxIrjhJLY9PKMzjLBDUQPDw/P1+bk29Vw+vXt0ut9dknm9YQk4QnVvXKN1QB+T0EvF/oWsuyaPIso2966qqmyKvImpnjZ52wzA6FZugtn349iqXPrsEWUggN/cjj48L5LAEt1rqYBCk1wjI5vBOsASFBaUeapTgvVtkfftxR1wXn04XzcWSaJF3bhwDKkGcF1gWapo3DTsc0yVbaWRtfiwItg70sPkemaSH4QMDEIbFBIT+T9x7vWvpRlE/g2e+2fPr1kbKq6buW2VpynbJ4T5ElZFlOQHiK64CrLCvmeebx8Qt3dzdorXl5eUOh2e8PlMWW8+VM8KJSmXrLGCxKJWLzVWKVtktUAGiNBlyQ0JAQoCwLqqqSIXKIycIukCSKuirJ8pzmIiqBrpPhU1078lzTd5Z5coJDCAG7TLy8tigl4UXT5JDgUxmAZpmo2K2TRVWa5JzPHcHDblvL8niCeRG28DTOmGRhGET9SVCMUTGQpIab2wNlVXA6nUR9VsqSQWtQWlJ5bw43cejvaNuOsspxQZRci12oii3TNHM5N5TFjrbtaZuR+7uKcZxpm16eo3XNw8M9ZVlGtd/INA1cLmdOl4ayFB7tOFj+9V//TFHkoDR9N0Xem8P5mcN+Iym6IXB7s6ftNM4H9rs9fTew2VQyUI7W2DwXvmmWFBRZRVGIFXueBs6nns+fn7DekeV5HABDXddM03h12ux3O9b0a+cEcbOGF1hrKUtDWdTkecXT6zN2sTFBUl8HbbvdLi6Pw5WdbJ2wWMUmNV0HiF3XRSvxjpubO8ax56effooqMIfzDklAlIXBWqM550i0OCEk7ESuYxd8bECVJPV6ecZ+Pa+kZxhH4dIJ0wzatiHLUrZFHc9Sue688xRFRpbnTMtE300kJmGaZ7bbHVk20jQNru0gJsReETAIkyt4+VmIPwPIsHQe7XUgmGUF8yyW5GEYAHF1vB2/oDVUGwH7e+84vjXRcVBwd7PjcvpyXWJ7JwP/1CQYLQy6vluYxwZtPHmhGAeLsyPOSt8w9E6GfA68Hfn8+TN96yjyAoKKz5dZnGKxhhSVsgSuhCALgvVsV0ruuRA0qUlIjUEbIwilJXy1sUY+1ldHjWceFzoGWcTEpbPWazBLPIMXy9vrmwSGFUW0unle394YIncdDU3fk8bAAGt9fGa62CMKs3kYpph4Hlm3i8M7TZVX5KZgXiyLW5iWCTt/VYRK1y21sF3cFR90VW57T1hmlFGYGCz3rfXwWzfPbrcVcYsNmADDNMAiKrwsLTns77icRwgzVSW9XNf3DONMWRvyMhHbbrB8+PCBLD3xl7/8Rc5wtdoi4zJPy4AohBATpQtsdK0lqRZX2mJlgKsQayjgneL5qaXrZ8BR1ylh70gzw3/659/JkMVZ3l6PPD1duL1t0AZ2h5ynLxfyPI+Ilob2Ir1Ymin2dc7t7Z5ffhGusVYe70dG27KELffvM0y6x/uFoshIU41bZqZpxI6eMZGgpzEuuYuiYlPXbOo987TQNi3zPFAUEXvlLPM8RmGHXHsSQCTXewjClctLWcKlacI8yzm03+9Z5pnz8YL3sNvuKYuC28MD4zTS9w15LsPsuq5F2Z1KUMjr60mwVXVNWdaczpeo6hROrLPT9XpeUSda6a9KNKPjIsSRZbkMyqy/uie8dxgTqMoclDhcgvf4oOKi13G5XBhHQYMlydeh8xpiIUNeqdEWK9eM8p40Scmy9Mrzb5qGsihIs0wGcnxViK4DvMQYykLuVes8u90eH87iigpyJq7DfRGsfGXnycDua1LzWstrBUmy3mNS8ydKscwuCnzEdQEKbeTM0EaBWt1m4KznfOpYFsGo6MIwTQNZprh/2MfeNefp+chun5OnGc7b6/f1HspSxEeHw5a+m+mGju1e8f0Pd1SV8IgTk/LrLxf+fHmOg0XBHikly6UQlXlGaySoKcjCToUocEBqX/01UPPv+fq7B3zeeexsJakVSTE0ZcE0TWyrirbrRLacZbgAQ9+SFiU6zZiWhZ9/+YX//F/+mdfXZ9puYLaOJMviwMTR9R14T5ZnnM7CSRCLjFxcaSbDl2Wa6YcJpQ39JM27dZI66bwMQpRS9ENP03XSaISADR7l5ZGjQB5KKHCOxMiWYBx7lNFY72BxrKPV67Y+yKHsrPCJgvecTyfqsiLRRuShOmOz2ZFlmSTCePj8+MhiLXW9iaEkIokep4EqL6Iy6UyaZXTDwOvLGyhFlqYYJVHRT8fjdYqepQkEUZiZRIIt1DpYc45lmvGI1fHXp0d5ABE3Q15x2B1YnGOYluvhstnsmJ3nv/3rvzGOI2+XVprBeQFlCIjtx1uPUglJktH2A+Ni6aeJOs+4vbvDLgvLNNMOY5RBy/aqKCR22gZhtBR5ETlB5np45IUMna727m6QZjcyk7SRhN4QHIuV4Yb3XxtSUa98ZTxaKynFaxqPc46bm30cAoL3y1V59y3rZR2oisJT4Z2Pr9GRJCFuJIg2Qcc4zwSl6MdJhnlOHuQBjQuKabFYL4VRiOBX7x1pKs2gdXKgKTyJUddgD5MYVBCl0u3tXeRcLbipo0gtaVWg0AQlVlxPIKgYbxYTpTd1jXOeqqgk+QqxX4jNQ37OceqZF1EbCr8o2p0VuCDWXq212F69QF4J4BxR/Qje6fjw8FdrctdJIM8yHOnaEZ0YmrYlTVKmWUJp5CES+UleBo95Zthutry9nbDWcXPYM3YD7aWnrEoebt5hnaMfBpq2ZZ4tIQyMw4TSomJITMq8OILSzIuAt9M0px8m0lRLITk7fLCkWYmKyZcEF98TsYMqJSltRZ7x/p0ws16eW16fW5yNNoyy4N/+5cg0Wfb7mradCCQEFIuD03GUzzvxbLY5T1+eGKeFNMm4nP/KbreLii5RlO0PG3b7inkZyPJE0kkzw2xn0iKhqGtM2tN2g9gQ84y8zFi8pcpy5nlhv98SnLwXu0PN45dfKLKc25s7pmkgTeD17RXrPImT4UmRV2RZwcvLG8PQc7lceHs7st/v2OwO9EODDQIe3m0rDoc7np6fuFx65tnRtRMhOPJCUsfO5xPzMlNXW2HFmJxplKEpSvH6+sqm2lPVBdYu3N0Ji2uaJtJMrtGiyNjuNqAsaabo+y1GA0HH+1HUkbe3NWVhUCrw9PSE9zCNljwvqYoD1iqen98kcTVJCFjhlJQFdVXx9vqMyXI+vH8AFSiKHBeH685ZPj8+0rYXUVZq6MaGwERZSQO62WxIkwwT09lCUNEKfcDOM6soblmscCeRZcWyOKztyJKEPM9wQXgtotYUJldZltS1bA2X2aNUEPV7LQ3f5dRgvSdgUYkhxt3KWaA8ISxX9k7fL7Fg5Go5ck4Cr5T+utyQ81SaHUk4EwWxAlH8Kk1ZloLaWGxs5UDCheKSIgbp2Cnw5dczKM9Q2ZiAKAXYPE/YaKsxRliFw7BQlhmH/Q1pNgkrRxO359A2AwrNbruNW29pUoxO2W4l2XocJ4pS49xCVuT0fc9PP//M7a2kSU5j4Oam5r/8+D0uBF5fLjRni6AxpBldIlzdLQ6lZX9sjBTkCthua5Is48vjsyyGrMdowzI77CKwahOZRLjIn3SB15cTl7Rju99cHQE+KvWsDZwvF7SWtOC+ExB+03S44NnUFV03yLKmlzN0aCXYqSoqmkvDze7AZC3NpYtpmIoyTRmnCadlseW9RxtDnWfM84RGBiaLmSEIGiIEwYTraBNyzl0Dzd7eTjJoSFJR5Rqo6oppkJCvoAM6DXz//R0hBJ6ezpF51WMdBAxVmkVOWuQbOx8XK4q+m1HKCqvNJKRJjlsW3KI5HTs8ThLYxz4iNkR5Lq4ASRPN0pw8psNaN9P0Z1QITJOkK2tt2G5rnp7eeHp+Is8b7g73nM8NXWM5n5sr208hC9ubm1uMkSWK0Ya+7+jHgSTRWCdp0IsVrEEI6/10QicyZE3SjLxIcV7qytPphEkC41TT9R11VXI+v5GlBZut2KbbVhYodb2VVFIn903XT8zTwjRqum4S2xeI4FIl1HXNdr/j6fmZJEnY7Xb0bUdVCN/MWkEIrGF1q11Ka40KQVR0KIqi5Hy+RFeApYzXqwwKpYYxOokhWY7zWZweMlgJ9P1IVddoI4ifNdhrHIVbnBcG0Exzj/Dg4rIhNoRJIrV/FoP+lFLXIfwwSIKzZlWASENtrYR8yIA81pxlzrKM9INYELe7DXlaxCbd49/d8/T0FtmzM8W24Le//R3/9m//xjjNokzTmoCoYri6RjTK6KhyJS7lwQUrfUIQK521TkI5grgonBcO8vZQU5RG6trFczmPTOMcaxmNs2ItNkaWCQo5a6qq4nScYlKpoyglOOHmsMMkCa8vxzjoDRJOZQPN2dI2FoJhURofopMFcT3d3u7RGuZJeKrDMIp92oqq14WAVilBCTRf2OWpiC2UhGVcHS/xrEzT4upq0Ua4VdLKZPigsFbFoe6E9Z5ubEmi5bderCwZTBo5616Ul16Gy8aIwsc5CRkIsf7P85RxHBmGge12Q57nHI8n7OLYbbZUVUUX1fyEQF1v5FkV+WVJmkRBgSzLVZAhJnHRrbSO+BR3FaSs6ChjVjyQFsYycs3v7nc45zmfGpQW22wIgePxDWcteZEwz6NwYlUgLzXv3u25u93x+OmZssxYlon/8n//z/z66Vepma9hqPLMV0r6AUFmTJwvK6/cYEyBc8LSL4o8LhSXuAwd8U6U6yZNQDtQokJ7fXvj5elI8I6uExVZ0154//7ALz81vD1PjOPA4bZkt69Y5o5p9BRlwm9+W1JUE/cfbynLCjuL/d8kmjRVLMtEmgtjUqkFrXN0mtC2TgZcS+ByeWEaLPvDljxPMTowDA2JSTFJoHm7oFUQ1M/lwjTJPZrnmjwvwIeoSJVwP7m/bRQlLZGLLPXM5Sy4q/1mh3WO7WZDYjLs3IHXCILS07UXijWhuWtFbZim1xp+HOY4gDVoFa95u1yRSN4HdCLuBesdafCy8Ot72q4nMQaQIMk0TVnsREAT1IxSqbDYXRAOMoFxkKGmD8LnJKpmQa4z68PVqSa1UrxwgmIYJwl5y1LyQoK0iipDG4N3nsXHEEyT0EYr/Jcv4t7b7/You1BVJYHA+XQiTcTlIZZ4FZnGXy26IQS0SePgT5juWgrOqCwMVHVOVZf4OHCcJeKAJNHs9hX1ppRBrp3lfF0SgoepnyX8dZKl9S7bkeeGqhJcx+n0xm63YbMpePdwz9PTK5fLyM2NAjzjII6lskzo+xFtAh+/25MkKeMwM4w9T89nptHTd54kU8yjzCGWWYK+QnSlyjkRP/9oUU9MiqAxHM6JEnq1Jv89X3/3gG+VwKc6jRDgjEvb0jTNVVGXVxXjOHI+S6xzXVXstjtCkOS+YRii7fMnuq6VDbWWyPO+69luBQrZ971wClZo5eoLjOPnLJOACmstxMGWbMWkCdhutwzzTIgP3OkaMR6iL1sktFmacXt3K1tDhSg11qle4CozN8aQpfLBFFENtCofdtutQDXznLIsr4DhLBN1xrKIejAr8mgxTdls5IEzjqPYsZaFpm2Z5pnz+UySZbFhcEzLyLQstN1X26+dJwIi253mmX4cONzckKUpbd8xjhOvpzPDNAmPYFkoqhoNzMsSi1V3TUD2BI7n05XnsDhHEgImyRiXC4vz6EQzzjPLMPLy9oo2iq7vOdzekBYS9d52XSxcZGg2W5GGq/BVFSZcgOrKMVottHncFnSdSLPVN3bUq1UW/41335NlMX0oWjTW7dn6z8JBPOBcoKrqa9LwWtCu2+LVjrv+vpUJeLWKxM9Tma8qtxAC4zAxRSaYFJQi77c+4OJBFUIQDqSWmz1Ea8n6OpVSBKUxkRGURtuxCy4+dAR8PAwyVAvRFiKb/XXzqq52edn8LNct6jQj4QQhMA6Wsqi+GWQmLMtImsjBP04j3suDUTYksiESy4EiBCcKjzEWIUF4gssyXd97eX2aYRAVVvAz8ygg+LKuAYVDNi/WBWw/ofTCbr9DAX2MuH97O8o11fTU1YbzuaHvR9IsI01le9M1ki6ZxcNXI/ZkURLMXNr1wZtEtaaLBVhKXdcQPG3X4Kwl4FHWUZQp9/c3TNPIpA19N8X0uUBdex4ePnJ6/StGJ2wPNU3Tcj73VLUECByPF6YhkGSxsa5KFiuMliJL0Drh8+cLRhtubivKYkPfSXS7MQnD6Ei6ns02KmGssCOtC3z87gPNpY0pWQOlF/h/CJ7DYcdiJ25v9jFxC16eTgz9yDwP3N/dUOSFQPrbmWmQtK5pshRZhXOKx8cnttutJLV2HUorPn74wOH2Bp0m/OWvYk27v3vgw4fvGbqB86kjeEXXzdHmkpMVaVTgzqRJFjeHkmbnrEICZgLKeMrKgFpYbIdJRB2ysjC7rsO5hWFsyQvNu/c3/PjbD1RVxuV05vHLM3VdsdiGy2Uk+A1aa6pyS9sKCNcuGpUkBC+Lknnu8U6GJ0VR8d3H74Q/R8AFy1/+8ic+fvxAniaYPJfn1tgzjh3LMnM6nXHBUtY5WV6x2dSYRMJZylIYtOO0xIJS4HplKVy90/kNpVJR9OlArlccgdw7eVEwLwveizUhz8vIwjHxrJwwprg2NkVRsP5u50IEFccUZny8Px0hzKzYAh/VglpBVVXc3NxwPp9RkU/r4yLi2wRL55yk6Cp5oK6JfUlURqxsLkLAW8RuodYhn0EhTDetFfPsCcHG8zMmTCqxgpk0w6sFVFSlTK+izA4KRYK1kJsUHZX1knSr2W4OnM8X2mFCGeFvzbOoCLQG5yaWxdO1UOYBFRL2O+HMfHp8pSgKDjd7uvaFtmnJcwMqwdkggTuHhCJPuTQ9w7hy/ERJr5RmU4kicYmLBBttXPLeSKPrrMebhEQnpKl8fmJj9mSZNMb9IIM6YxLZak+iUhzHUWy/WUJQkjS63+2kqPaBruspisA//MPvse8E+3A+X7Cji5vjVtTpOnA47Jmmmb6XwdgakELwDEMXQwFi0x88BAkia9sG5x3pJKmLhxuxaD1+fuOXX16RBMcUkwaSTHF3/8DdQ0mWK+ZppqofCC7nX//9FwpETWCM3AdJIoXu//bP/8jz0yt9O1MWwhhNdMI4zkzziPOWPB9xbmK336JVDmGhKDb03cCyWA57uRbmZcYrB5mEk3358oUQHO/evUNrSd22c6Asa96/v2eZPW9vZ35pf2FTHXh+fiVNCopCLJ/zMpFlCVkmavZpnvDeYpQojcX6LrXX6XRmDdVJ0xSdKIyKdesS0NqTFwV5ntK0YwzCCdzf3iBBN5EBFiSYYZwGxmmiLGtRpSxOAonQjGNPmuxZ5gVFrN8WT5bBd99/x8+//MLKs/Xes0Sec5KkYmNlVRAIgP7u7p6bmzv+/d//nabp2G5Hdrs9bdt9rb28pFK3bXM9J6qqoixzrLWMkyj4pM6Rpd08SU0yTmO8xhWHw06OFOcxScLbSZ7xzn5lMI/zjI6hfnaRAWRVldzf39N1LX3fC4zdexEhWAnB2e/3kSsseIfWthKi4izTNDPPM0u6sEwuDp88aVpQ15K2PY4jNzEJXs43sZrJ8DtcwyjWMzLE/yeBU6DQGGWuIUqruksrWbTL9xK4fd9NpFkhVn6lCX4iOINfhD2dr0osaxm7idNbH7mcC96J6gRgngKX84S1cv1No9TfaZKx2AUVkrgMFYyD96LkNYlG4wlMFBUcDlvO5wWP4ubuhnl2kVelUDolz2reXi/ijsERrCjCx3GUoFE0SidXUfeqYOu6Hh/Aeq6cOzkm4zMEsYZrbbDeM89igZvGhTTex8nVeTIRlJfhgYeq3rBy5ZbFYZdBhjyZpKmLCjXgnaXrWuZpYrPZ8lDVEsyQFcyTPN+ts7FGltef5zkmFXu6WxVPqblaO/3i8OJZIs3UdUHknGUaHUaHOIyWQXZRpig0b2+n2Ld+MzTEsjvkPLzbk2aBLDO4INON8/lMCKK832xqzqfL9Z4MhFgLrmr7ry6htX9an9veh4jLEsyHaK08KEtVZ+xvCsoqAWVp2gtdNzOOsjxJjOHmNqOshF93c1vx9jKw3eV8/HhPlgf6bqJrZ5Kk4LA/EHRHCI7NNuPl5YXZjtS5uHqS1DAtPYnRrGzAefB0rWWeAvM8kBeaLCIChnEgy3LpObwshPLiO8ZxoDk3pIkRxSrh2g+VZc08O2DmeOzp+zmmay/Ms8M7QQP9+uuvUqfnBVlScihL/vjHP3I6vbGpN7EOFCWf89IbjuOI0qKWzrKSqW2YxiU6uwwmFQUsSmqhdWkoPaeca4kRl5e4wKSOyOosKmc9RZmy0QVFaeJAcWaexD7rvcGFcOXvFUWBiveRc8LwM8aIoysKN9aE8nmeo4raE7xmHKcYJHVPWRZcmkuc+1icF87zWq9+XexotNGMsSYp8pzX1zcRQi1yJvto8FivwRC4utVi2RiXiTInqOqCPJeFh4sp5XFTwmIXmnYmqJGs0NR5gnMKpRxFXjFlEvopDGdPVSegwhXRME+Kvre8f//umjh9dys2dGst0xRwTuquEDxZrlFkaJVzOjURqyPq17LSbDYlL89DFB0kciZ7cfKhFVVZQnB0V850iN+b6zDTf+Oa+b/69fcr+LyP/m/xik+IlTZJJIxifZEr6DTPc9pGmEmbzUYGH4uVLf4gaZk+FjPOOcpSAK/G6Gvh6b08XKXRc9TVBqMTtDE0FxlgzV3LOH/lCOlFMy0zxAHR4uz1gl4tv8IdSwjeX21YL29vV+XX/2xTkqm7kYSbYbyqBE2UqXonf3bTNHRdx3a7lcCRto0XaGC/39M0Ir2/u7uj73uqqqIqSv7lX/8Hnz59Qhkp0DYxZWecRqqixBPYbrdXW2VZVQQvm9L7+3uSLKUbehbveD1fhI/jLDpLyHwgMQnf/fAbPn/+THc5k6uCcZbBoZ4nsZwFxD5SFnTjwDBNksi6LIQwS+MZPGWag45BCKmhjXbcxdtrU7c2k6v8dH3ArBZjAIJYeJWV/5/kOcPYXUM0AKqy4ltr6LdQ5RWsvfLyvv1/a1IufPX7yzXAVWK8/nopdhNWpstq710tEVku25A0TbHeoXXKNPVMcVq/LA7rAgG5vnwAF8At9pvraLW2yrZCXWX8xG2fwvsZrYU74LyO72MsCL0060kin7+PkP7rexHT5jabjQyx5kks9EpsemVZ0HUrUFc2wdZK41YUOSE4bu8qvv/NDmUsu50MqR8fz/StcKCMTmjbLqblGcoyw06WeV7+RvWz/plaS3y9UpAmwn5Y3/+iyDl1XVQxprLBmMWOuswL4zBiTBKZhoFpnCmLkmW2tG3POM58+PAd+/3h+tA4ny6czmc53DOx2B/2B5RWDMNAmqVsqy3OLfhow13sjEfStrxfPwfH+XIkyxI+fnzHPFtO5wtpIvHwv/76CessVZUzTT1Ke7SBu/uKelvz+PnERS2M04IOimmCohRuRlWn1+b/7m6Ls54vj89UdS1nmzHYaUDvCqyVxN+uW2jCiNKK+4cSpQPaBA43G9pGAiXKMme3r8mzlCKXgvZ8bKnKHGcX2vYijbxKaC89w+BIk4rT6SKcwn6ibV9ZloXxZuLd+3fkeUFR5DTNBWstXXMSzmpZ4tzCzz89SrPrDdMklg+l4OZuw/t3N+SFDAGOxzeSJKWuNkDD+dxR5pUk2QXY1BsUmqrY4kn4h3/4HZ8/f+Hl5UVCDxLNMDZYO/Hoey6XhH/4hx+oNwX/UP2A1mLxneeFt9dXNpstkqQXsIITYxpG9rt78kxjc8jSkqKoUUoGsGWVX1mETdPy009/5f3795SRmSEqkoxlaUlTae7T3PDw/gEd01RfXt94e2sEwm09XTvIn5PXFEUuqpvFYsaFLNe0TUOappHTJ1D5fhiYJ+F0GiVoAxmw+ciSnLFLwCeKLmnohkbYa8rg1iLSiIpRaxOv/SPz0pJm6VVV4D3XJYZwbuT5nQSD42+Ze9fBfWzXQtyyDsMI4yRJikpJ4i0QopJm5dCsvDeF2FF0HJxJwFbcJscz97qkCTIwlQ2dkv2u9SxWFjF5Xl1DWCTQxJImJUN3wc2OqjRXePi79weCguOxYRwXltkw9gq8xrqZss44nS4M/ShWxbhEKquczTYnSTx5qtgftgxDzdtx4OWpixBqR5IoYcRpRZJE1XNiEHSqj/WRNBBiCXRXC5wo3BFlSVSkGyMDPxVgnia8c9T1RtKznSw2lNGM48x+vycE8LOjKEsZEt3fs1oVt1s5Hx+fn5imgXkZaS5NtM4ZSYqc5jgIVRGhEthu88giiwEqrOEvip9++oxSYmP57W9/i0Lx6ZdXZjtyc7OlqDbUm4LttmCee5r2hPeK3faOtvGCLTCSvMgiAWjlruL77z+S5yXPTy8E7yMLzKETUUilSY6fAsGbyFANqGiFHoclDp4kGGS7ueHt7U0YQcvC5dIwzyO7fcmKtFjmhbaR9OgPHz6S5YokTXh9fiPPE/aHDedTJ+mJiSZJcxSe7a7ihx9+YJ4n/vSn/2AcRn7z8TcUecFff/or+5sbnHO0bR/veYcJiqDFgrSEhYA0hOM0kBfxvTcSOFBVBXaJbOJFmsA0TRmGmebS0Cq59qqqIsszytpwd3PLp78erwnewhTa8fryijGGu/t7mqbh7fVVAuFyef+CF2D+OCWyKASqqr4u+x4eHq5hbmvIRAgyUM7z/MqFXhZZoEvKeILRjiUscZgkauGVRbq6AUKAtu1IkogusBa8lcYuE8tj342M4yzqYqVIgrkOLQ6HfTyXvzpbQvC42WGVpchyirxkVU8FHFVZMgy94IZw9P3ENMxXi7LCYJJczjY0x9ORaZy/CS74eiauLo+1Z4glLakxGC1nj4v16VofKenvWAc60vTKosNo6FtR5G/qLTg5Q7quj/XoGP98xfMXwVTc399xOGS8PEtwkolqkbaZpO4ryus5rDHglQTE6ULeV2cxsd/Ji5xh6nl9fcHanre3E+PoKfKJd+8OfP/Db+iHmafHE6fTCeIw2TnBqvggg/1EK3HcaHlOKAVd32B0hPR7RXDS2C7W47yoorW+zktZ5iBLEJ1AXJ4r7QlE5qmXZVSiEohsZoXFexcHJCJi0IkRR1ZcqFdVhUZe3zRP7M2B+/vbuPRfeHs7sdvtZIgz9lgvCCDBUymclUTxNPk6EDdaQ0wirescrYNgZJyo5+u6oqwkePHz5y/CTzWGH37zA0lyx+OXpxiUYLi/vwEdyAvB8Ti30A8dosCXc3AcR/7yl7+S55LG6yNLd13crc/cLMuQHV/4xiK9WgKJQ+E42Ftrd+PxQRBcWabwQXrx25t3TNNE3zbUm5I0E0TH6XihqjX/2//tlqrcMU0L42iZZ7de5vz5Tye6vuX2LuV0/Mx2V5FlnubSRmV4jdHQdg0KqVvKIqNrR3b7HLvIvbPb78jSlDmeUxKgYzidz8LpU4IR+/jhhmV+pelm3r2/Q2tN13Q8P73w8PCOPCu4XAax9ieGTZZR14JKyLMcMOigac9DxHs4/vSnP7EGC4YQ2O03lKWgmJJUQiF3O3Htbbd7xmkW67QLqExquyIvZB5h5+t5IUITcXWkaRI/U5l9lEWOdTNJRFBttxt2uy1KKZ6fjjw9vTKNEkpoYhZBmqZRDCDiHbc4nPKrtvN6g63iniRJqKoSu3xVcWqjItte0BxJAj4oUactkOcZ8+RjArH0kbMV3p8PgcN+LwrqRZbcZVFiovBoHe5drblelMwharbXBUiR5zi/kBgtIV8CE0HrFJSiKFKqqkAbYV4Oo2MYxsjJ1RxuKjabgoBjXgZ8CEyjoF3G0UWHhdiE00z44i/PPdbCZpsIOsgtKOWws6j6zqdX3t4kICU9ZNzelCglytCPHx94e71wOS0ssywmXEQOKBUYxhkfPCqsA3jhyX59jvB3f/3dA75vJ78mRp4bDffZfdwuFqiogpqsNO7ZIcMtltPpRJYlOBfoh+5qixRAKrGIKTmdBtmixcAMa0Wlt0Qvea1AJYbT5cLxdMLGQceq8rLOEuLwSbgXGSoyzbz3ZGnKMo0opeSwj0Oo40W2NiCtiEgKQIdoS1Jfgb4mDozqugbvrxPzl5dXbm5u4lDC8/z8LOrGRODeK3T4/fv3nE4Sg77dbnl+feHnn3/m/fv3zHYR+yMxhCOqk1zw1JvNdUCmNIzjwPaw59K1hC7QjyOLd6KiUzraC+XK+e1vf0tVVUzzLKq6JWG2FmWUJAOvyWVKkWaSGDbPc3wt8uWchQBpJQPecR7RqUj706g4XOYlSouF7bJul9bh6zq8k0ZOkrgwX9Nq12HqdVgXE0TXLxujzyFEa5mN11KGc+a6Kb0qPpHDbLvdACpO7N11yLiGsqyHzbrhWgepWmtMKpZsF+3A8zLGYZnBB5hny+ICaSafsTHZ32xVgVUpzarUiXZ/ggeDIbBQ5gm7fUaaKbpmYZwXUqPRagWcaqyVh5tSYqFKUxnEeS9WKjm0TQyHgGEQlUaSarTxpKkhINsrpVIBvVtLloiF2bqRPAukeSYDjyLhy6eW1+cB72MjElWp8ywDLBmOyQbcGOHxZLkofCW5OJNNZxAw8GLnqOQco+pDbBrOeqz1wpqabORtCJvQWktZVd8wEoNYM+9u0VrTNA1FkXN7d8OnL48xFU62pUu0eJQ6jRtOOWtAUo+qqkAS3qRwnKaJerPB2oV//4+/UJY5VVnhg+fTpzeICsU8T9He8uMPt+y2JYebknE58v0PO374Ycu//dsXhmHCGBniohTaSMP6j3/4DU9fXjA65+b2RgZJQYJb+mEkSRPGcSFJAmmWMQ4tm03F8fVN4PK5JIIdDjvKqma/2/N2fOb15YntZhPVUoYkSbm5OfDyeuR0OtElI9tyT3MZIHSoyK5wTs6K777/gHdeuIVZyvl8Zp5HrFvop4F5sZzObRxuLKA9SarQieHdw55xktTBvu9ou5mb2x3TNFKWJcPQUZY5CmFgQYhnMKRJIkWF97y8PEaQ84bDYUtiNOO0YV4uoBeKXJrjp6dnjNHc3Nxxd3vHNI545whohmEky7ZkSUpz6XFW0TQd3inevXtPYnI+ffrMZlOTaMPpdGFbb7m7v+Mf/7HmX/77/0fUuePCNC/M88wwTmidxOs8wXlH2wnYOUlMBKJ3cbB8h1aGLM3ls1WgdcKm3GFShdFQV/toQS5ABWy0b3grvJW1qdSJ2CBFxd9jnUWpha5v6PuW/e4GpUGtqblBzoYkyUiMol0mlrnj48ePHI/PMihSEsbTdR2Pj49yPgfh5v1tI/A1Pfd6lEW2iA/2aj9dzXErMHitE76FgMsQI0MeI9L0J0kah2TJdamyFn8gjYl3sQRUcr+OgyVJCpyV5EGtNd6JwmG15C2L2PPGQf4cbVL2uwOElq6ZuZxHxlx4mGWVkJiMy3mQ4UQiP2DTdCzLRJ5r6johzYTLRfz5Yst+fX/GUWyfqZGggDQ+U5NEXzmx0zyS6EQ2uASqTR3ZSOl1uaSUnFn9MBGCp0hztJKk68UJc2i3qVjGkf1+T5om3PzmlqIQ6+76+kSxPjNNjg8f3rMsM5fmxPnSMAzj9bOZZydneACw6CSQZoZ/+uEPPD4+8unzr9zd7yPkfOK3v3vHNFkOhz1Ke96OL6hk5maf8/E3e6o6ESbR26dYU3iaZuKXny94F0hTru9ZQGGSlO2uIi9SurbBuYWAj+e31BHCr1RsNluC94zjhEkqusuFEK3EPkgI0PnY05yn+KwVLMA4vFJUGTc3d6RpyuVypqxKEm2Y7cI4Nrx//xHvPR8/3HF8u9D2F6zrSdOCrMy4v71nv92SZwl5KoNFreT5t6kqkiTlxx9/pGmEaefi8AIFygmbLVt5T9Zj7UJZayRpVBjTaW6olYC6x1lqpMN+R6ITNMJFtHaF64sqabfbUhYpSbTHohTff/8dSktCclCB5+fn6zlc5IL12G639P0gtdAkzVWeZWy30kSuYRnCmBRlR9/3wkOcJtq2Zb/fXm2y67J1bVqyLL+GCa1hPhDY77dSswQvdrS2jY1kSpbnHA57sjQnoEhMz7KcBJnDanWdOZ8v1wXg6vaQIC45+9YGNs8zglrTW2eUMhEnIYIASVL2jGMbgw8MalnVdp5pUuTp18HmKhBw8Wf8ts40sS/ScdmhgqIsKqZ5Yk1dJQgnWZptaWq1knOra2eUCmS5wXupyadliYEPgnDJspTE5FFhYjm+NcLrDGtVKazXNNFRvSSvNy9y8IG+7WJ6piivl2WOrLpMVMbO0w+WLAskOufuRvAN51PP21vPuw/31HXF+fQCJPJ6UkOWafIMqlrUQs8vDUMfVSxEm3pUYaJFyRSCRut1Mc/XetvIMiS9LuRFYWS8DPisk3R55+319xC4hqEkaUYRuA5t53kmTfT1eijznDwTd0SaCMtbBisFoOFGxQH3xKU90/Ut/dCJSs8FiN/TxXA+6yxaSYhPVWXs9lv6vueXX36VvjZTLMtIlil++PE9Pki9kySBL19eZKBWam7varaHFGNEnXhuG3mWe1n6J2nCcOoZRy3LO6WvQXpqsQQl7Md14Lz2U+u/r2mmsnxHflZieMpVh6DJslKSbpH331rPly8v9N3EzU3KNHfMi5Ie1ikOhxvyLOPl+cwwLIzjgvWBvND0w8g4Q1ZEVXEhPX1eZDhnsUvg+elMXWd4L/V3xH0SNFg/k5UlWVaQFbmopE9nkqzEBcXQ97RtR5aLZfX2cEPbtHjl+fjdA1kmNc48D+R5ineO77//wP39LZfmgneOJEl5ePeegKLrBrxXnI8twzTxn//LP/Pl6ZFhGsmzQvBkWsewiinOBUSEpLXYWdM05f7+AYLmcrmggjz7FR43z+hgMCqFKDwQcVNOUZTRFbiQ5Rn1dss8DYRg6fuR46kXB1OSYW1AkRL8Igil6EBbzx/r1nRaeW3fFm5i+w8YpVBBbKVyz5UoA2VRRJvxQFUXHA5b2rbBpirWZmJNX5xclwFZZlkfOJ5O+CDLwJfnFyyexTlKVV2fDxAXut+EbiilUQFhjlvLy+srVZWzWIPzMpAjiMI3S3O22z1ZCm1/Ypo8282eNlk4nToO+5S7+wNpJlkH06S4nDtR+M8yABwHT5I4bm93eO84NS1XI403dI3U/AHLdlcQvCMEDd7QDw7NwjQG6jqnKBTj2HK5CNM5z3JC0Chl8c7Le2MdeOnbYzTResPJ+fcNZuz/6tffPeD7VvGktb5un7I0vW4MRFmkOF1eqaqKJBE2StsLMPr5+YX9YRtv5Ix+nK5TZID72zskGWaQqGedxJumoCg0XmkufcepubA4KwO96MMRGazEtQelxGYa1WtyYUsRkcTQirXwOB6PLM6uGgOM1mTRguy9x8UCUhlpxrx3VFXBdrNh6geMkRt1u6tJTILzlqwqGE8jOtNM8wSzPGittdei5JdffuHu7i4mDN+SFTnNa8t2u8UoQ5lLYWGylDqVBuj5+Vk2Mj765eO0fphGumFgdlYsAW6JQxBptNqu43Q5M09TtImIdDnPcmbmmAT5Nb0W5CE2TROb7YZpnK5Jccs0CxQ8l8Q+6xzBwTD1GK2w8aG0FnrrdbNugddrSN6LBJNopmmR7xNC5Ol8jcQOwcUDNWDivF/SVlO6fiLLE3xwpFlyTanT1yFsJQe7X7dcHuvmaAcIkZX1DWdKqagi/Tr46zoZchqTREuDkoGQlwZzcQGUYbEO58G6+W+Ve+F6A7H+iwdU0BgCdpbEqrIa2RQzIVhmowkqERVeKgMEa5frg1qKRa6NsArycJnHHlUk6LQghFUVMxOQrYeEkXi0TrBuisrKBecM8+g5vS5UdUpwIy+M4DXHt+E6oBAgraglpmkRSbUhFhsmKiU1iVFMs1g6FitMpzzPY9OWRUuvbECVMizTKHYBJ0WXXLf2aiPrE0OWGhni3d5FhpS8rXVdR8Bvg/eeerelaRoulwuncxMt6Toe2HEhoFJmv5BmiQwOE03TXrg0A/Um5/b2wGItff/KMPTsdjW3t3c0zYWuFYXEH/7pI+iBvFAYndI0b3RdT1nsyNKEKd5jxIY9SQObbcWHj/ekZsPz0ysBFzewhnmShk7rHO8SElOhEIl9akSN5r3YhDZljU8Mry+vLFNgaAeeX55R2rHf7dhutzw+fmFoLVW55ccffqDvR3766y9M/UxqKtrmIkNKlUSFY7SfYXF2oOsHVnhzP/T048Dr2yluG3OyPMcFTxo0mVI0bU9ZpGRpzuVyRGlHlstn5r0MMaZpQhtDf5bGr6435FnOMEzM85ngNW/HZ8qi5vvvf2SeZs7nI33fYd3I3cMOkwSenp45nY7c3T2gVMIwTrGAlzMTk6CMQZsMFzr6aSa0I3d37yiLmjTN+fD+Pff3d3x5fGSe5is24fn5if3+wHaz5dI0DH3PbBeqqhYrxOVCWeUsi+N8vrD1NQEZRDRtS1nU8nPlGbe3tyglhddmsyHPEtq+oWlP5GWG1qJ68V4WFcEjW/kQsGqJ9r4kNkfuammtb7fCgtNeFAFqHbqJ3S3gGCOPVQVPcLI4StOMspRn7TKJWm5Nav92uLeev397NgpXhXiKBUSFdmW6KC1bShWVx1rqA2NUZGjJ/eqcxwcXbdvuatUcx+lqiQrRthWubJI1rTM+u62jqmoEBTAwjSNZJmoPIp/KeUmp/dO/PZEWmrzICE4YhssM1o4YA7OdsU6a6LqWBnOzkTTHl5ez/LleM/SNJPhhcNYDEky0hiCBJFiHGIyxhjYty4K1wndJ0oSAhALc3t9G9bnw3VYLyZomXNeiul4tKkpJAqz3lrIqUArmZaSubuMzUxYw8jmn1PWG7XZP27Y8vb6wpubd3t7StBfGYQ1IiYWnEnXnMHaMU0uaGh4ebtnsctJUFF7j1LMMMtyzdmZZZr7/4Q6w3N5t0MYzDA1tK1bfsqgwOuHduxq7nOm7ie1OVKtt24ryK5Um9PnphWkSPuVuU3J7kNAirY2o7bqOvm8YpgWwKB0bResYx4ndbi+qJGtYQqBtLxwOEsr08eN7dvuS7a7mcjljTMJmU1N9FNeIXNML1i04BjbbjP98+0fGQexmwcl9eXM4kGcpx9Mb0zRzuDlwfHvj06df8d5zOl+4NB12mqJtFAkEihZ1o33ka0FeJORZQlkUtF3D6dSR5wlNc5H08Dxns9kTvCbNKvJipLlcuLndC4s4Tdnta5QKwmgFkjzj/v6OvMp5fX3h7eWV2/s7fJixdkbrmmkcSaqU7W7L+XzGOc8aHqDi3+d5hgA///wLWZZSlgXbrQTHSQ0g4T5aa/Z7sdmO43R9XqRpSkocXI7DtR5KkiSe+7UE25mMshTkh1LEZOuXb4Y+YmG9OiDkAGEaJ56env6maVwPJiWRjDHsY8CkRhSzTjjX8yyD874f0Crh7uaWZXY0TYvRJp4FKxxfs9tt6boOLCxOFKfr0v9/hqP7EAhW6iIZZinWMMD1bJJlovDjQvBxcbOqODyKhGXxLIun70ZRFqrV/QBLcKzBTdY6nJM0T5BhzDRa6k2Jc6Ikkc9EUcSaUIbjX8/33X7Hx493WB/PQevpGkvfzhQF5EUaQwctnz89M42r8kSG8GkqFt80g7w0bDYZRf3A02PH6dhg7eqoETbrslg0BqPTuNCQn88kUjuuaa+i1JR0+hWzsiyR76ckLE3FUCNrlzhA1uSpistojbee2U2km5LgHEmekqWSqLzfHfA+XBmUeV5SVRV9N0gwYmSyOW9JUkPXdwTsVYFNiGEjWkd27cylHSjKlMNhR5JITayNkh5zmdE6oa43WGc5Xy5stiUP73ckqedwU9M0Z5wX1NE4LVSlnPdplrKG+slCVt6D/f6As07SWJ2/upm+daGJqCFc1WfayOuWHsIACd4FApY891QbS5oZxpHIQZUhllhKt2SpWCCtVZR5zTwFmssRrXJeny9sDyU3NxnNeUCpRNJpe0/fLtzZlESnTMNEUdR8eXmjLLOYfiwceKXFIrk/FBiTMo2eXz99kXBCoxnHhbLeMkwjp0auL50YqiShG3owmrzULK6nTFIe3t9xTg1HL3bT19c37u5uuEsPTLPYlMexI4tujePxjF0s9X7DpWv5H//+b8zzLAO4KCoBromx4zCijcYuC33XYbKUu/t3PD+9obUk6opIwTMMUxQEre+pXKdVtaGqCoxJaNslhoLIwq8fBppovx1H6WW80/TdGIemKw9V/pq8lzmEc7GfUNelwrq4dXERI4gorsiXRBm6rpeljxIxx+FwwLklohUShn5dnlmyrBD7/Twz92IvPp1O7LaiZpwn6RXnaboiudZzM66EpY/1cvZde3IHQ1xwyis3IlCaZFHy9vqG8CFFLPT63COCgYSqkqUEM7TtRJGXbLcH8izw+dMLdnEkqbmen3ku/aYEJQkaBhaSRJEXKcFr7ALOKVkgB2gbsUjbxdOnltOpYxw8WSpuvxAkOEoWlZJx4K2/zgFCfC+uAU38/V9/94Bv3QZc1V6At5Y5fGXkiWRRprLDMHD/sOP49oaKFsLPj4/c3t5cL/wiL8gL2cAtyxITV78m9I3jKNYQH2j7jvZyZpwnGcglWqSjkam1pgX5IBuroRNIPhngVsuDRQDJYiO2PgYTBDEWZYnh9uaWTS0sJZDLbhwFYDmOojyq6lKUXklClqR0Xmy+S7SxBsK18PhWvSag16M8WHc7/v3f/527uzuKoqBtWw67PUmycjLkAGnbVprKsrwmoeVFzv6wl5tYKY7NmSmCyp1314IiSRPGaeKvn36hzHJUoiXJKU0o81Ref5FTLCXH4xs6kfdEKSV21ESSjIlJPtZaXJAD1UWrljYapTVZljONA1p/m7DIVcW3LMtXrt26XQoxxScO0yRiXF8PK9F6BIosjRyir99jHRKuwRPeeQER58n1zyvL8rq5AkmJ8zF+e1kWiJbXVdGXxmH1OuxbFtlGBe+ZrfAnVbTXLMtMPy0sTqC/KIWVqXc0635z7/C1EFyXrUYrdNBizUk8iZ6YpgYfJvL8Hq0S+jGQmIzgLURw7xKvDWOMKN2WQJp6TCIA0jQV+e8Keh6nkToRJatSJjZr0pTKey3qMpOIGisEw9vrQghiOxNNa3K9lsVmoyjiRsxZGxVNsySELpbFclXQhhDYbmrKsqDpWjlDEsM223xVS2pY5olxmISHkmcssyh78zyjqkuWRVTCJtHUdYlzgWEYGAaxdR8OO5q2pT331yH6x48bjqcj4zAKJN874ScAWZoyLh3LpeV3v/sNm12G/Xni9rZmGFvGceIPf/wOY8Si9Pz8hcDEdp/ym988UNaKcXQx+VEe4M4F/vznZ+zySqIDOhN2T8BTlJIkmKaGt5cXQnBXq+Q8j3ErJ/apoiiZpwltAssyMU4dabYWw5pff3liu92hVEFwCcempbmMfPzuBjC8vZ0IQa4H5ycWO7LbVfzxn/6BZfT03cLp3DDNC0VeUlYZRZ5RbzJ+//s/0jQ9//2//QtpmvOHP/6Rz4+faboWlOHteGZZPG6YUDqgdApBUoDTJOd0urDZ5lg3kGUpu11NkqSR2Qjea4yR58OXL49sN1vsslBVYi8vK41iwvmBS3Pm5fUL58sbt7cbssxgEoVzC5JM5eO9LlyhebaiJlEZKirGs6zk5eUcm8mSpm14/PyvcTmyXBPDhmkkHTO2uy1ZKoq5y+USBxuzsCjjQmNeHEmekWd5PNdydrsdZVFT5CVpaqKdXthCYolLaI4XVDBU5ZayzCXR0wofzsalzGwXuaeSBJwn2AmFhE/UdU3TNHhnUUlA64APiyQkBs1qj5U2Up7D/dgx2Ym3tzeenp6uKnCTJMzTfF3GfPu1/vu3Z6f34bpUUNKr/p+WODqyQIuiuJ6pa5Lb1yGiVHQheni0luTN4BGYuxJlgdJxeaFF/STqIHBeMY0Wu3jyvBCYcggyHAxfbW8BAbHPkwDxrV2oCgldGPQExEY9JLhFrCN9t3B3X1NWOUrJMENjGAfLOCwUZQJaobWkHK9NaFEUkrarkEAO5LmIshBT7lZ8gkZdObA28l1X+HYIgbbrSBNDXZXc3d4xDgPjMMpnZgSiv91scMsiCprMxAGJKBCmaWGz2VAWdQx52fN2PkVQ9cKlbckyQ1XnaA15lojqyTtMApgcrQLny4lhbNlua0Y303cDdbXj558/MfQLWkNVl5SloSiFlTzPCwRNkW9R5JzPZ6z1bDdb/vk//ZH/+I+fGCdHkmrqTU7XSUhO8IHRLuAN2+2BRGdXm5BzC8PQMs89sx0o8hTnFfvDhizP6bo21gKeZfZMkyV4KIqaYZxhtCSJKLKXRfi/db2JqmqPNnLdLraTmsSJ1TFJYJ46zm9HvDfsNjsuSuqZv/z1T6IqL0qmqef1Re4r6wL39wdub3dM88xkA7/++gzKsVgZ4KM8boK8TCmr8qp+L6sMrWUAU1Yl2oii+3LucVYaHq0lkXO7qwUPoaQxtm7k97//R56fS/qh5en5M/M8YjJFWWVk+Q3H40lUmD7Q9x1ddIpM08g4DrEmg5eXF5qmYRiFDba6JPb7nQzM4rKiaRp8DDqQZX7CHJEfdV3z+voKU7hae9ezRJIkBTDedSPjKEMscWqEa1rramFVrPzfrxZORBiKhE2E6+JLqa+cJ2apIXf7LT64+NoTsrRkHGW4Nw4zTdLx/v07qqrieLzE5YMkH5ZFyXa74+XlVerCIMnT/psz8uv56L8O/ZTUl9b56xJE8DVfIfPm2oRLPacRBhtoljkq5IMiSczVaTRHBbGOaj3nQrSSxXPaB+bZovvlOhgXhciCnRTSkhhRoiEohGEYOZ9bwLOpd4zDTN+PjIPFLmAXRZbLwnt19Ei/J0O+ZZmZJi8ha0hS5GKJCj4ZTIoLRc465yzTMpIlOUoZUUTp6ErxDoLChhiWGOu0uq5YYt+w9glrDbw+p2RZzfW9ldRRCeraVpWo4ayn2JZXvuiKuhG1vGK72ZOYlLIs+fz4mdnJkFiCSDKSVDBNSgUSowkagpczxDlP8E44w14QLkmS8HY8Sg1pch4fn8gL4ctv6pLNtiJJAttdwTgKe3yJielKLRyPLd7BZddHpM4SryVR/s7zQlmUzPPCsnzFVEmPLu6XdXi/BkVKzxbEPrwxFEUiIT6ZYn+z5+Fhg7OKX396ZJocZZlRlAVZonl7FSZyWRTc3X1kmmY+//rK5Txyf/9AlmXXJeQ0i/17HBcEmeJwywLWo42jrAJZWkSMj6JtWqYpsBKcpmmmrmvaZmSzKWibkXInTpe+H1FKliBkMRxqcry1J7bbCpPA7e0WrRTz3JKkmvOlIzEZu23K6+sbQFRuVniv6NqR06mTgY4NlEXFf/zHfzCOI0UuwoJh6ON5jdiwvcwGttsNWidkmabpOvZ7GWqXZYnRBhc/B5lVaNIsZVpkULaeA86JOnvlwjeXhof7e7wPbDc7Xl5eImOvpOu6a/Ls6oYchoE1MCat5Rq2qQz7kkzwQmtOwcprl1rPx6NDztFlWUgj8zPPM15fX1FacXt7I3gXd0I4kjmpzqiqyC/uR1Y0E0Hs8Lc3JZ8+fabrOhFired6+Ko0vXL4fNS1rWrTAMELG10cLqJ8dyrWGTFYTe53qDcZWR7Vt6MsqNpmQJtZ5KBBzr081ud9P1PXlXzWZU2aDszjgg0qLqgVxuRsNzuSJOXl5Yi1SOCKc0yjw1kJiZFgDYVTCqUkjCjNUlxYuH+3k+AiBdM40zYDl8tE344xg0KRZX+/R/d/CYNv3VgtyyI3a/DMEey4bu8JgaIoZeps7dWykyYJzeVM3/cR9BwTLyEOz0ayVKTZ66G03W7xwTPNE5fLhW6UCb3S+iqNNSa9NhHLMktaGZLgByLdzkyCUlp4at6TrsEMozwAU2Uos4y6qri7vaXrJO773bt39ONw/T7GGLJchhZd25IowxKHTl8vWi3R0d/IUdemZ1kWXl5eAFi5g8YYDocD5/OZ7XbL6+sr4zjTtSLTX5l+SSKpaEmSoI1sl7z3klK7hgekSSy0FqZlYe7kNWR5TlpIwb04S9BgggYDRZYzOE+WZhilJQ3Re/I0o6xKGY4EJFHSZ4QIRDbaxCTbeIElCUssRFau3WrrTqMFaQ23WBu+PJfgEYFipnG4OV+HyNZa0iS5Pth8BLyL4kM2J+sgLq1SjEkYh+nKTDSxSF6tnaKo+mohc1aYMauNYC2kvkKRlQyJEWVfngZ0IltD2cJI2ImPFnBhgaz75m8KwKiCTxNJ4lqcRRHE3qgWAiM6GRmmV3yYOBy2OBeHhouoPIRnoljhpmmaXgNJsjwlTTU+zPHXOXwYKco0fg6g8IzDhDYpdvEsdombG4F1b3cb8jxl6D3z5CVJLIkgdCVqG2sXkmgrHIaBZZLwFWNiwagkFjxNZXhsnSVJUrxf6Hsrku7g44BGFJFzP6CN4f7+Fq0N5+NRUrbiNV5WpRRsVhpXkKCYtuloWwlRWVl97969Y1qWyLRy9G1DWeYI31DHwYthnma0ClGGntE0F6o65/vf3AMBa+W6+vOff2G3q3DO8u79A7d3NSbxmCRgl1bUu/0cuTYJu5sarWaevzRoHbi5OdB1PV3fxaHWyLJMdK3j5nBLUdTs9zck0dZtradpzkxTyzC2pKkiy9P4mpdou1sYOsfQH+najvcf7uPPfs/93W1Usvbs91sSLUmJeWHY7gqSEfJDya8/P7PdltSVJLN+fP+R/X5HvSnRRhKm8yLFaEO9qbh/uOXu4Y5Pn/93KWxi8IpJFaVJZFvlLS+vZ9LME0jJchnEqL1hU2+YppHzMqENFEVKCAseS9+1zPG/73c7bu8E3l+VCZ8+nVhsT2Ch2uTc3R3Y7mpANu/GpJJ2WBT0fUfTXJjnhU0tCwajM1HDFAXTOFJWYmO7NG9kkwzl7h/ueX5+Ylwswzyx32457Hecz2e8gqzIcAqS1KB95Fc6y373ju2u5NK80TQndrs9Hz8+kChRpVorfA5nHXNUt9zd3TNOMSClLrF2IjEC6J9myzD1aKXRWlLlQkwLDkpFbEApaoMiJ88TxqmhrgfKvCbLKgGgR/v2ssz4MOLIsCGLag9psqy10Qr89YySrerfPu9h3TBLmqdbvlrlvv27nP+GclNcB1ld18tWOE2EvzvHIBsl515VFXKuDpIkrDSkmaIo8yuMXzAG/tp0x6ki1spZdF10zGKXMUqvh+91zOm9WCSnUWDwazEtA56YULypeX4+scyeYVj47rsdx+OJ/W7Pp19fCV4U1/MEJlXR4hTQRpwLWW6iHVORaqk11mCixCQUZSY2sxgAYq2laU5opSjrgnGa2Gzyb872nCzNubu9ozmfeYnDTalxbGSACnPv8fGRxKTyLEvSq8pSIWmkTddSliVPT49YJ3YcGdLUpJmmKFLevbtjnieqWtiGl8uJv/z1r5FdJxbDaZqxVmxZdvYM48Q0NmQ53NyWfPz+lqrKCEHz8iwJu8dXS1mlKHI+f37meOqZRkvWj5RVzm9/+yP7/Zaf/vpX7m4eIBhZHjAzzwu3Nzfs73bc3G5EPd3llFWBMZJauiIpZAufkmWaJJnk+YEWpl0pCaVdL42eUnGhq2UBEoKPqYPE4WRJke349acnfvnpCaNzlnnk7uYe78Hamd///g9UVUHXXnBRybjd7ZjtwryI4ujSNJybHuuF0bosC9M44Jxls83Y1JF96W1sEOHL44mP392x390iaZsdbTOyWC/DiVyeM3aZybI1tdaiTcbpdOLnn3/BJI7NtmB/kPtwnGRRnabijOnbmd1mF+socURcQ8yCLDWSNRF0Xih2G4Zh4Hg88uHDR758eWRZBOmwJpQKV7dAG0HXOGclpGqaeHi4j+FdFm0UKHG1nM8tzaW/DiEkRdNfG8H1bNFxAAQrc1gs/ZnOroNyGbbJzyK4Aam7l9nKcyJZ7YlRzVZITdF3PefzBaU0d/cPeA+nc4PWYgkXu9jLtZa/Ms74P3NKV4aU/DewQTh03y5AVuWG0l+t/dJTyeAlS3IZcC0uLmh0HPIJGkK+z8q4E7vl/5e5/1qSJEmzNMGPmQWLQjNzM3ePiASV1ZXdM3MzPe//CEtLNLvb3VWVlRk43KAiwcJgL34WNc++7NyLNaJIj/RwoKaA+QfnfMd7QYDI+1rCiJwN5HWBjhiGeXJYFZWFyDkqD1VzOY107SM6keclTVKCk4Z4Gj3eTXQtoAOztSSJEjZpqqjqiq4dGTrHNBjGXgJjkjTFexMTc5HlS1QEaa0jn+z9LvFeqmalwGQJRZJJOq0WFNQ0zcxuCW0RV4QsCyWFOC9SbvZ77Gw5n5uYpG0iAiMnLTJUCGR5Spal0Vbe0jQtdpZFd5bJ8+U9cbhR8PZ4wHtPP/TkZUZR5BRFSmrknsqKTN6nSobLbddwPL7x+OWRqi6uQ9HgNUol2Fm+33EYefxN6rt6rfn8+ZayzsgyGTycT8KQv5ygLA1ZVuLc6Sshjbyf50nYfGVZyoIwqjuXG9A5y8LMvQ7IlSfVhvuHPQ+fizjAMLSdMGqfvrRolaJ0glIOa2WBmpgCbw3jYMnTjOY8cz63dK2naRyX8yME+Pzdnk+f7/ny5ZWXp5OcmbPosNpm4ufxFWM8D5/WQODt9QQKdltBdN3sV7FOybicZ+q6YrMtScybqPDDTN8OFKUMZ9xs8YkMiMVJVERUVgYKDm9HlFLstmuOhwZnfRz2pZSlYp47xmmSYEsE67Pd7Dkej3RdJ/VBVWHthFheDV0nQXfLmTLPlqIo0UbTdF3kfMprlKQpWHft2YyRz5/0pO+95uVywTkRrCRJwvlyYb1aCaorTTmdjgzDQNs2zLMlyww+kaXuMPRiA46p2ItIJU0l+TbPcqq6BqWkro2DvOVcslYcgQuaStwgnsPxRF0V5FmBs0543M5RFBlVWUcVrRZFv4O3NxlmX5oLq9WK+4d7zueLhMN4D+o9kO39rIy8ZS36ZiVXBMbEhXXkUIsSfFFOS0DZch8s6matE1arkjxPaU4t3o54q0Ql5x2JTklMgqRuB15fTxRFjix7Dah3xIS1nsu5lVlGKmGLCoVOE9LEYLGxxkMW1j5EFq1snxZ27qVpqFcJ61XB6Xyh7Tv2txUf7rc4r/BeUa8K/tGvf3jAN44jfd9fbZYuBFSQAreu68iamK6R4d4HUatFa2pZlqRpyuFwYLNaE1JJHD1dLldunZYIJpTW5EVOYmRIcHh7o+s7dCLDEaNFlu38u39Z1AE6XsKyQdfI9khCCGacS8E7SeMKHh2IcOOU+9sP18Km6zru7+8py5K3w+Eql10my946SMUffh3neI+Ov//L06MUPHFqP1tL+/rKNIkV7PX1lTzP2e12bDYb3l4PvB0ONF0rHLtEWHVlXTHNE6fLmXNzvoYsoGD28gG1zjE7R14UmDi4FH7hQFEWaGNwcaC2pJolSRKTnt7B5qvI+Dufz1e1wDROoGTiL2ouruq7hYuyFIc+vi4mSa7P1yIJXn6cJtnuLODm5etr3tMwDFfw+5J2LA2GpNhZa+PQMEOpEJvZmXma0IX5u2Hr8ucunCezyEvj96GNJo2suOXX53nJPEvTOU1TVHuKjN1qR2ZSXHD04yxqmSg3/rrZXewYi5lNa0hNQl5kMhiZNSp4lJrYbkrW6wTnB5z1zOOEm9soRy4JISd4hw8WrTRJkpJmhvDV86ii5WFJ/JUds79uSK2dSBJJazZO1HXL+0RrURNezgNta+laR5pK8pqKsEDZSivhbqaGgKeqciZDZGQpAiYmNmmKsmCeJqq4vbezMGOKsqSqRXWRJFoUecawWm3wznF7c4eKqZDTJGl3VSUbl7TMOR1PoEQOr7VscUURK6Dauu9Zrdb88suvcYgoG+PdboNJxHq3220Y+h6lPcO4pWkvPD6+4rzl/uEG71xUyta0F8hTw6UZGMcTVeW5/ZBTZaATzTQ7Pnx44PnpQNN29P3Ed9/9ARUMT8/nyA5McSEhzWTgMA4aYzKqek2eV3JBJZamb8SK1l3IcgN6pl6vuLnZczi80fUjSq1xM4yDbGBNknI6XahXKXe3e6q6IATPfr8jTROyTFJgnZsYp555GvB64g9//IY//7nm8cuRth3Ybnasqooiz/jtl5+xs2ezXvPy+sq//et/43g6cWk6mstFUvKUxzqP9jKET2KDsVrlVLXh4eOOt8MLT09HijLDKAN4stRws79nv3EcDhcuZ3kfmDTj9m5NXct2/Xy+YJ3hw8OGooSbu3+6Dmqb9kSeiWLqfH7hcDhemX5JYthsdqzqmiQp+fL4Iv9NO/IyISsVP3z/E0UltoW3wzNllbHd7ai958uXR+bC0vcjKNnOdX2DSbJ4f3jSTJqU3778xvGUoo0nzyWVuSwK0iQDDFolFHkliZGoOOh2nC9n+mHAJAqvQrRejPSdqKTEbilWpXkWHt9iWWvbi8DHE0WaStANQQDdRZGTmJLNdsPb8ZWmmaNiYwnTEAWjc07QFrEZXlT5yz0mymqBHy8YBmkUloZUGs+g3pvbd4XJzNPT8/XXaP2+zNFayRAMSXJ9eLjneDzj7FnUazisndjtUx4+fuZybnh9PdNeRqwl2pKk+JI7RxSbdS3JokAM+nhvqoUR6KQwDDDPMQZEL8EejnmeKNOKJNFio2lnfvzhC30/CSRbqatCe1EQLWgEbWT4MIwN9aqirisOrwemURLGUeD8zDAK5y7LM7yzzPMg6pSY7FhVBVq9D5z+0z//ieADT49PDMPA0EtC7Gwteb7GzpYBuffyLI88riM3t3coJdiRsqxJsoyu7eWsrUrmsywpJUF1oKw2rDc1wTtmKwmDSZqw3qz5l3/5Z87nI0ormubMly+vKALDMDN0AyEOHrwNjAP8+P1rZKlJQy6Nu8HNhubieTucGccg90VmyLOSvhvpLh1dOzINT2RpJYrXoqCqSk7nA8bI8FiZQL0qWK3FEt/1/dXymaQJwTvGsY9qoKhIDIHNdk9RpjStjfXYyOVy4fZuzzTNgocJmqEfsDMkWvHUtTz9dmTsAzCRpSl5VnFzs+NyOcWhYMqUJ2y2paggvWOYDc6lFFVFVqRsb/Z8ePjI377/kZeXDkUMD4js0NW64svjr/T9QNdNrDcJfT/x9PRGnuW8vp6wEyiVkKU53ilOpzP1qiAvUqydGPqezXrP29uRru1RRpSY2gQObwfyvODm5oaXlzcgYbWuWNVVZOkZ4RrG5n+pkVbrNUmacjidSBJBK1wuF373u99zPOZ0XR95UZZhGJinmXm27PYbiiLj7e0t8ozB2pnttqbrWlEDesswSGKz/L0m1muLMlgawUXhK5/35KocDrFeTNPs6g65ig8im4wQCErjga4fWa/XrOJQc8HkZLk8fjvNtG0TF0E5xThf2aBd13N4O0Rb5Hx9nEug4KLY01qjvBJHQ0yNjIiz94pwefBqYRnrePYmV+GEUkiqqQrXmtI6T+KNqNsQa2AICqK6ZRmASv0sDbP3MPRTDBPMGONjX77k+FqaZVFPeg+9nwmFLJiE5xcIQQbls1sCU2TQuN6sMUbjrGOeYRqkvwjKRz6dghBrYBVIU0G3+CALHhdl4CriHxSQZoKBCcFH9XQM1Jhk4KW0LDlSLeqihfmcJAnb9So6TQJt26OdlsU4kf+qNdM88fT0KEKAYUAGLQV2tlRVIE1zhmGk7VrSPBXlkLPxzlcYoyjLjFVdUa1y9je7yKWUxzwMa3bbNafzMT7fnnnOOBw6nB2ZJ5inPg5lxZqoteOnH1/QiaIsRJU3ju9Bgs4qxt5Hnup4FYt4LyKScepjwEKCtWns/URZnmVik5dEeRkqFUVGVWd8+HCD9xe6oaPIcw6HMy9PLdMYWG8qbm9zpjlFK0XXDfig2dR7qjLQNC1vL89cLr28l7wESsQPMH3fMk3RNePiZyUOlbMs5ZvvbrlcTlEcJMOzfpwpyoLd7oG62KATiw8DxgTs3FMXK5RKmNqRfprQJiPLCmyYyLKULMu5nDtOhwmjR+zccjo1jMPEp4/fsl4pjm8t0+RIjOBRLueeru9IjMFbUbE93H/EmIzX/pXVasWHuztO5zPWzlEwMtG13d8N6PM8Z71eiwip7Vivt2y3e87nhiwLV+fdbrd5t8UaQ55l1/fvwukUB4Mod2WJ0gEVzgVWKwlke+fVZzRtS9v10boufZ/1VgZWXuOcxVoJ6inKko/3D7y+vtKFjuCiI8uISCZzKdvNButEnT4MPX0/MgzSP86z2P4VJoqQ3ujaEZ0kskyPCvQlaPV4PMbv92vkizDM/+eQIsX78ubKjFQi5pAN69K6y7B6CeZQSjONFm97UpPwNrZ4b2P+gohXnPMyywDGSbAwUl+Loq5erdhu98zTQdSB8f0qwgrLNIpKuiwrlmA42bAI+sAlga4bCP5dKeszhwqKy2Umy44Mfcbp2KGU4nzuKIuMqq5Yb7aUZco/+vWPh2wYQ73eiHqqF89zludkMY44zzOOxzeqOHGWdLuRPE1Zr9Yk2vD5m2/p24Z8L0kxfdeRaEV7OZOkKVe2T/AxMjxgvWe0M0EpnPdkeUk/DgzRZrsMb5TSpJlmnkYJwtCQpyng0Siqqsa6mT4C+LVT6Cjpd1aSQg/nM29vb7HArGgaufjHSRRpWZqyXa3J85yyKHh5eaVarfDtBecczfkCSFOzWq8Y+oGu666cF7GH1FeprlKKtu/58edfGO2ESgyTdWRFZOd1HeeYIAyQZ571bsulaehPZ3Ri6DthECVZgiGq61TCw8cPbDYbfvnll2jVmyMfDnQED0+R/0XcKgZkEKp0tDiFgFaavFx8/o40NdcGcNlAm6jUkyhyeU6Xy6jv+6uKbpEGLx/gaRoimwK8t1celbXLRlIaW+dmiiK7pgRdrQpaNi5DP6FVIqBQtdi2zXvxpd6hs2I7cXGLCFMQdQJEJWAim5xpFOu3d7J9lgJD0fSSkGq946vxLqk2kTPgroWoCqL2qApJ1wphwjpHVaQEJAEozyZQbwTXMU8igbe2pSwS5jmQmQyrHJOd0MnEelswjg7nA0mq8cFipxGTlFFV6UgSCTpI0/dDdJpkuGti6mOaSDGUJLL+GAaLd8LqAy9cH++jvT2Vwi1uWZ237HcbijLlfBJAafAK62dmF5jdTFVVuODk+4n/P8tSgndsN6t4YAfyPOU//fOfePzyyOVyZJ4mLsezWMBBPrO9x2eyra+rFa+vb1RVLcDn05EkTVlvdrwe3qhr2QzKINnEQVdKvc7Zbdds9xVd66nqnK7P+Zx8ZLPZ8PL6zDSKIvNynnn+ciL4jB/+44IPM56RooCmqSnKlO1uw/PTgXFomWNBdbPf8fOPTzw+nRl6yzRaVpuUf/7T76nqnO//9lc+3H7GO1GGjuOJosjYbO/4p/tvGIae41FUGWm6Fpm3s1SVpN7JsMFgkqjyCjN5LiD/YWwJZ2F8pGmCNoFxanF+oiwKxqklSTO0SrBYfv3+R45vLXYW2/dQ1+RZxvPLC8Zk8b0PL88H0jTlZn/Dx4dPdMPI5dLx65cvgAzY8yzBJI60yEgzabqnyfHhbo8h4XQ6UVUl+/2N8PIG+YykacKnz5/IMjmfskwxTg1llaI1fFrf8rs/fBZukreczg193/Hbr184HhtWqxqtpdBJEs1iKZMUsQbv57iQcqxXK4rSsN5VfPr2E2E2DJ3896eXV8ZuwihN23VopViv1xAUb29HIKagmoSyKmnahiRN8GHCuRnvzTUtbx6luKirtTQP0/siQAYyGXl+g0kU1k30XS+M1OMh4hWkKQZFlqVYK3arohDg/dJY90NHmlywM2TZGm0qNusdzk4EL5vEoMSGmBpNXuaUdUk/9EzdJEO+gKjqFm5AXErEeT5lxEE8P78AgaDkXkaJvdXHgZ1SisnOhDkO+4yOi7d3O5X8mXKG5nnB8/Mrh8Mp2rIkRTHNYBgvHI6eqhIbZZIk2NmKko9lmGiu59piO0mSNDYbf88hUlH1p2JRKA22iVxTH+HLFm9dHF4rzqeexX4IRKeB2MG9DZgkxWgFXiw2JlXMfmYYOrLMXPl/y7PqLFSrAm000zSQZoayKNhsNngfSLNUbMbeoo3m6fFXUTePk6i+lbqmoqdpQpIZjqcjq6rGeUdV18yzjQMDWZwkJhGrZd/JwCIOWv3so3sCijKlHjO69kLAcTi+xeXAHucs2+0OpaUpW683jL2l7wL/9m8/M40Txmg225q2u4CC7XbFNAWcl6Z9t6t5e7vw+vwS6wlJ5HMXi1Idfa4I3lLkJV3j8JkwxcZRgjbwDp2omJgH6/UKpeFyaVh4Xsuw9Xg6xAEHoERlUFYpPliCV6xWUndN04z3okwxxnA+X6TA9dB3lixR/PTjM1hJG10YVK+vb+RZRj9MZHmCs5BnJdvtmuZ8IhAoyxKdGKmDgthR//rX73k7nEV5h8XNjvOp50f/Gw8fb2ibnstlRBvFOHgu55HgFc25x86Otp3p2pkPdzd4b6MtesU09fF9nonFPw6AdQyvMAmsNjW3N6IG/Pa7j3ir8FYTbLSfx89RluXXhV9ViWK9rms2a7lLq6rCB8fpdGJVrzgeJCSuLGuAuNSdr8Ofm5sbwDPNE7vdNtp2c1COYRppm4GyLpltf7U3hWiXXOhMUruZa6MrC0uFMilKG5JEhhpJ0n3VREZVXTzDgOuCeLXasDCJlZLnK0sTTOwBnp+e0FrQBSGqhCW0ybPgCHxc1qogYXtE1fOSYroM9PxXp+nXSugk0VR1FVUjSyhaQj+IBVOQVMJvEjWvKPdcPKsl5E8UfNaLWktEXbHpDe/La+cl5EVr4ep+PSCVOWNUx8T/F0LAz47gRxmQRiWL0pDnCVVa0jQN1s3RAmdwXjFZj04SrOsJSgas1oNRwswOwUfVsCYg/OLgPdM4X1VH8qItPGdB3OSZ8DXHecL5QFXHZagKFEUu/GCtubu7Y7vecTye6LqWfhAF1aJ4zMuUIQZtjMMo92+ScLw0VOWKLJM+R5xle3xwwlXTmjRNGKcFHSR93TgKXN8YGWBMU88cnUZZlpEXGRvWqPi6iGorZZ49by894yADBDmnc3wYmSZPodNoiQ5oFciKNC47e45HCRpKkwKj40BYBepViY24nbLK6fsuWnUlKEnFXscHF1OMs8gyHHk7vFFVomh6fb7Qt4Fg5ffgYRqkrprtxKpeczm1/Hr6QllWse+TN7td5i9aSfialYXLFD9nSQrTGOLBLCzz5jIyjI71esM8L1ZXz2q9QWnohwuPT4+M08Dt3Zq7m5J+6DBazt+gDDqkGJ0wOzi8ynvJzrLA6dszTdPhrKOuKi6HgWEcWK225HnJ5dJE9MoQl2ryWdzv99ze3vLXv/6Vuq75+PGjLDDmkVHpOIz0FGUlyIV49+z3N2y3O3744Se8DzRtx2q1vi67FuFKUWyuTsOu62VmkaZxQByiSt5KzacUh+ORNEno2oFxEN68JOqKoCqEnrI2jLM4FVZlRd8OsSb1kRmnCMbgvSTz3tzsGIaO8/nEvAz9A8JyvHQor1itKwnp1IZEaeq6ouuaqzin70eGbuR4OBOCwfqWPKsIylwV1cfDMS7/xusMSXp5QcssNn/vHVoZtAooo0jiWWF0xCFohwtE1a6cVst7Seorwbx47zkcBTuRpJoyBq6FIEPCObr3CBoTD0Ln5Mzs2wnNOyt2Kdy0NhhDRAOoa41VVRV2mhlGizLLgNLE5YynLAvyQtF0gp+wNuCsiW4dHecjlvPljafnE/e3/8w/+vUPD/iW8IPm0nA4vrGuK4o8vV5SaSq+7/P5jFfi4QZNWRRX2b6OCq/T8cgf/vgHnt10bVjSRLYqeVGgEnOVuJ7OZ+k2oqzdB3+dECslSoxl2rswGq4/ekWeJdzffWCeLS8vZ2k+QkAjdsKgFPf393GbqIRfU5ZXjsgQE8KSNGHsR4ZkpK5q2rZjtVoJxygEpnlmvdngnOPt8MbheARgnCeSLL0eGHaeycuC0+lEWdccnp9RxoCHc3MRDlMstoqiIGhJg0nTlP/tv/wXvjw+8np4w3pPmmcoo9GpwQUHXuGm6cogs1ZSUvP4HBO4JqMtBd0V0Gn9NYlsGSgu/v73CbxDaSXDrCiDV7GoE4WLu9qM3m2uX4E1o0wf3tUfyxt+eR+VZXlNxFok6cv7a2nqrlBoJfyFoigim++dEbk8hkXxt4ScJKm8B5PI2RqGib4fvhpA2tgITNc/x3kft181k+slCQyDiypKFxWLWiGqUgBkGFPlGWkCCnl+dfDU1ZosK0GJWs/NI33XigU20Tg3YrKZstLgJ+ws280QrWpZppnG7molEQmzJJ8qNOMwRGbVRFkWUV3jrq9BliWMY09mMpQhqoREBSfS4iRufiRxa5pmdAI6SWMz6mOymCUr5AICYU2J6E9T1YU8Bj9TJjnb7erKT1xvVrRtGwf0M//x7/+Kd5JStqpqjuaEm4XVlGcpbXtBUVAUFSaCX6Whl+ZDCrGetm2uCtBh6CVwIDimuSWoiu2u5Hw50DYnfv7txG67Z7vdc3u3p4xw1mFo0UrRd463lykO7wQCrbXmdJxo25njoY9Fd0aeyfP1y08nCTuZwDsJFFFknC9nDkfLOM789tsjiclRZGy3a7RRXJojzvWybTae9WZFkee0XSNy8tjYGQ1KB9brWjaPSiy8Dw+3zK7DGBmaPj3/Rh05obL1M7hZ0pu0ypkG+Mu//YRCisbPn7esa2GI/vk//29UVc7r6zPf/u4mNlhwPB3IsoJxnnl6DAS9B63pushNzDLKQp4LUNze3EIIvLwc+fTpA6vVmr6fObydGEcvQ3ktG/qyqoAkDiZFmZXnKQqHtT3OTlg3U5Y5WiuKvOL+/iNlWVGW0rg3TUPXdQQvNpim65jmkWEcKIqcskxITOD3330iTQp++P4L/SBhL82pka2/Fubj6XQAAllW8OnjZx6fHgkByqqQ95W3bLd7+v5CXkiQT8DTNhfGwbJeGbQaaNueOgYKLAuHNM3o+oYsLwnBoJC0RX0jKfBd16GUjj8uyj9p0Ha7G7Is5fX1BWuPuBl224TT6Rmlcrabtah6xiPOTjjXQ5hAydncR9bWwqnTS1Mcm2HvQ7Qbicqt61thySGLluXsXpYl75D5d3NvCOGafJ4kyZXXtajHQ4DX1ze8D8yzpMlmiSFNFWWZsL/dYO3M8+Mr0yhsS+sknXdRZs/zsuB5V4drrej7UZYxLAq9ZUkkm/Esz2RLnEoCZ2JN5LcqsiRjshMLx0m+F3WtK/Jctqx2mvDThFWKokzjPWdBQzdPooxHVFRyXwVCXHroRBqzIs+p6gKlBcFQ6AKlA3PESzw/P1JkGcbkrFYrSV81mjRPqeoMpSybdU1RFFzODVqbuEg7891338XaZ6Ztz1f2VVXVNO2Fosq5XC4kOiEEOB6OFGV+DawQxe+7xSRLU8axY7fb0CQdaRbYbHKOBydLAA95BH03bYdS4coQnqaZaRQ2qXUO78T6k2aG5tKxTRI+fVrz4cNH/vJvv9E3M0soUVGUfHy4Z1k2KR0Yp0kGN0ExjhPTFQWiKEpRK03TTOEEG+DczOk0EEKN8/N1EBOC5nJu2G63ZGnB29sRb2GzvmHoQKucrneksXgvi4KX5ze6pqOsKrFH2YB1A+fThWkceX5+oVyVDONIP4x8fHjgr9//zMvbG1lRYH1gvVrjvGMcegiGL79G+L5JyBKN0QnnU09ZFJTliqY54GNTdL60JEaYcz//9AWl5O4ry5KhtzKE8hIGlyUFq3qFZ2SaY1hSkIAZFTISXTHNI1VVMU02KnstSVR3TtPE3Yd7Hp+feH555MP9Lat6RWrg4+fvOB0OKDSJ0nHBr5gnTde2HA6vrFY1m+1GmMbOin2/KkBb1tuKqhrRuqVrJfxjkWdc+ZtKbNdL4EIICxtKFEUm1v7WumsdGBZKSLRLLqpEhaJrWxTRpZJkjKMVjpVzrFdrlIJhELVJ4gMQ7aBBi7IkqnF1VNf4JeghPo6yLGnPopKRVFIZmmm9cHPlPCrygiLPcG6iH4RZVeoSY4T7tWCOTKq5ubmhKgveXo/0vdQ0sx2pq5K72xsOJ1EL9Z0kNsvzZOJzpggoxmkmzzPyXPBAYiOW/7ke3SHahaMN2jqHuj5+Sfm1biaPd69yiuATnr6crq4c0PivlNwhOIJ16DQTWXVU0QlSKLDZ1MyjpG8u3L2A1J+FKTCpEcupdWJpjwxn7x1lfUNi9HWgPI0Dj92vgo8IiuAceLlXhIWVkKaG5nyhriv5ea2pqhK9BKAl2RUz1UcmpTi2NHYWVabSAWUCJikYp57jaYbgSLKEl5fnmCoutXRVFiRZirgaVrJcmAI3+5l/+x8/07czqZGAnWkOdMOIUjLEnW1gmjy2mSgKR9fK8HZ/U1DWDqO1MOhsDKkyIJPhcMU2TNNIQAbD3okjR0QeFj/OzFaCFY8xsVjq3okgxwg2D4yDZZobQgikqTBru3ambU5kmaGuV2iVcjx2wtszkaWGosgLfv/7b/mPf/+R7baCkHA+txB0TKe3FFXKNAbGwXNz94HnpzcuJ0eeTHjrefy1YbXJKGL/uV7XJKbk8DYyz2Jl1gqas6VtLXYeKasKrXOydE2earq5x86at7cG6yzzaMWWOwpaTPAO0ieXZcVms+HXX3+VGUAtTrvj8UhVlhHDk+KtigsWyzDI8my73TEMI+M4stvtuLn9gFKKm5sbmuaCc+IS6/te7NR2vqJWxlEGYtb56KyaoyvG0HcjrZc027KsQUlA5ZcvzwQCea4wScZqvWK1qijLiq7r+fLbC103AOl1gD4OQ8xDUNczKwQVlcmykEqiUhqU8DujEMj7QHNpsIttPk1JjIgMpsnGAbaoswVFEHCR5W8SQ7AhnilcF69fL33F5v6u8psnS5qkZEVJUDEgMWbbeIgc/ThgRkLNJB1YPgsqGOZZZguiiJXfbLS53hXOExfUOtpxO6z1i8haBoNjzAeIPFPnZnGPzoE0LenbC3NcdC61aFVVfHy4QxlHml84nRq8TRh7ea9meUqayOJxtZZZR9e+D0H/V7/+4QFfEq2XKNhtJU0MFEUhNrtAIElS8rxAJRm+bWmaDoUo194OR7I8F5n2ZGm7jm4QTkdZlsx2xodAP42kIcVqh/aBt8OByc4QZaRDZPctrLQsz6MabMLOM4nR0VKqCdaRGMP5fBZmn47pqdED7pxjs9sJo+a3Lxitr1DgppFhwTiKXUuGV4qiLHh9fSWEQB197QFka2oMp/OZYRzJi1ySbeeZTVWB1jgfKFcrXo9H+nHk5e2NpmsxOiUYBzpI+EIiaUeTHVAmoBP4/O0Dkxt4eXuSQA2lIIIylTYEH66quaXoOR4PFHl+HbzlRX5tkpRScQgrwPthGKiqijzPpVEO4erJv0LS4wcTpIle/l0A4dLoiNpO+ErOvQ9j36Xj6jq4k2JbGHfWWqZ5YqVX17CLr5V4C0h8GRxWVXUd5n1t1ZA/V37NMtSTxxveC0bvsWG+8q/SNL2+nxZb8PLzLowkacrNzY0M6DpPZgIq1bhpIjEpKB8LIUedZ1hncdaSIDaxPHI/CKKAtHagzDNhSyHDzb7rrry8NFMkmSeYDhU8lhKtMsZJvsc8rwQ0H5VjSWKuke9KqfeiHpELy1Awuz4P8v0pAjPOBtIoi17+cc5fLws5uEXpl+XCIpDXOCFRijmyfOQ9kMQBqRXu3FIAVyVoxWzfrSJL4Wut5dAdKIuCLM0JkZ9jAuz2W9IsIXcpq1UtDXxMuXt+fuLjw0ecl8f69PJ8LW7yvJTXXcPUj2SFsBJeX59JM02eGYahp43nVQiau7sPjFPHMChuP1RcLi3ffqf5b/+fn2jPs1gwy4zj+Yi1AnUdhpkQRrabFc4G2svANFh0mjCNHjvL+TFbjUkgS1Iu5440laRr7wNFmZBlBkJNva6pM1Emtm0Tt10Gow2jmzicD8LTsUEsyXVOlklyd1GUTFNH0zZRFVujtabverROOR9PGF0wTw2//nwgMSV5JsytcXR88+mGtm0Epl9n7LY1RSkAd+csH/Kaqq45XVpW62/49O0n/vu//pWu7yMDSIqG+/tbmqbh9fBK1w7c7Gr63lHXYqsTaLyJFnuFnUO0piZS3Myeafb03VmUI97FxYMoiL3zbDYS1PT6+kbXjfztr3/DWssf/vAHNrstx+OZEDzb7RalAmVRYAwcj6+AbOz+9X/8wDR6tus9/eA4nS7s94JMuDQnnp6exL6mNC4Eyrgk0EYxzgOXyzGy5EoZphJQeF5fX2ibkW+//Z2wP2Z7tfAsjV5VlpyOJxkEaU1dlBR5gcPLADCeBYtqA77CHSB/xhAh+PM8MQwXxvHA05NYtw+HZ0knZaS5vMZCbKLruliI+KgG0V8Nwd6tNEokfVGJtpzfMvBairLrgu36e9X1rFnYq1VVXDe6LtrXtIZxmCNg3KB1wnZdE4JnGFt++/WNJDEEr5gmH7f/ioW/soQDLWfZckdobVhCg5bm9bqRVYAOlKVhmByrdU6WZnSNx/s02t4E8eFduA6CXExwN0bOxDwrCFb4LbO1oBwoS1ATHk+eJqDCdVm4cHCcE5uZd6ISTNJYr1hJXpNAqnBVLG03mzhYm5ntyHq9YrvdYr2ox4o8o8wLeX+ohK7tCcEJs9hLoIBzwo4q8gLnPe3psDwprNcrQAIWxskKK0xDXUuK4dubvAYvL8/SXFc5Ly/PktY4wzB2hCA2y3HsMZlisy3ROuPh4Y5xGjifWqqq5vDW0NqRdZkzTrMo/3TAB8U4SktoEnh4uOPH/lXUuKkiMYbT6UhVVYBnGDuct2SpNKQazTjOUpQHx/39B7Q2HA+neO9PeKTumec5BqeYq43GWktzabn78IG724yX5zemMXBzc89vvxzFCuUdu82OLM84n4+Ch5kmHh8PuO8t67Uo2A5vB8ZpIssF3+E9nE5TDCVIaJtRagTEqeC92MUl/CmQ58LtbJuR/W2FMSmXS0vb9qzqFVVZ03cDzjken55EjTSN/POf/gXnxN7oo+1++fy1bc/thxVpImrK2VrG6ULfjmyqPFq/J6pqLcqjLGO72zJNMy8vr9zefWCaJ+4f7khSTdNcGPuO/e6WqlpxuXSx3lYkWXodKMjC6owPMQXVOca4ZNEJHI4HvFPk+UacAWFGLJrL2aIjm1lFtd3fp9WqOIhalh76GnrjIzaAvzuTlrPncm7FUlXm9EMf2Z+CFCqyuBD/KolUlBdzHBqKgylOweIAMVwXltM04omKngBBSVCL1ioqFOV5aLuWS3MGFUiiKGEYYoCONnEu6FmvVmy3G07HA8M4EBAVllKBcWqYXc63393x+nLk7a2ha2R5uEgItdYxCERF58YSmKRQbgkjsej4vIryOd41QTiIgZiM7gNDNxOcDEQ1BhWb4hBE2UKIiekLaseKE2eKih+dyN+d5zk+iPWZEFiyQViYrig8nsykzOMQF5QVVVWQZSnjKP2RMcLgwsP58AZosjSnKGrqqpaaJ0iPIPb5mSTT5EUqaqhJVLKn5sL93YfYh4iKb46ccPkcpRRlzpKIKQp2Rd8NzLOhqou4KDN07cA0WvJC7u+6LlnswV3fkpic4+l4XaaP44w9nEhSRV3lorRPE3b7Ladzwzw76rpCMeC94uOnPadT4PXtjdnOMhB287UH4vqYtdwR0SUk7DIAQ9/NsmSxCZOXYXV3mWUw50V1n2UG71Lh7fXRlm0lj7AoiphCLe+tu7s7jLnw5bfnWKvCMMykacHT0ytplvDp0z15WvGXf/+JvreSih0MhIx5hDzbcHidaC+Ktmko0i3BW+yU8fI0kRcd9Z/22FkcV9YprFckWtF3I+dLF5PGM7JM0t6naRTXXSqqKqOM9A3e8/b2Jkq0NKEuyqtl/5tvPrGEgU7TxC+//oz3nv3NHoImSdOoFL2glZaAj1iLlGUp/xQFFuHiLsq8LEuudUrTtKzXK9brNeM4XDFXSol9fVXXMS2+wUXRS1EUmOjgWHp3CReb8dagVMLp0HM+Djj/RPCSpk2QzylKrMfzPOO8ZxiHqF5Pot2XuLyNi5p5ZhgG0iwnBKnZTscLISiytOR0OmHMxP2HOz59/sSXXx+ZnUeG/PZabyUm4fbujr4fZIA5ySJnWbxe+/QgDhKFbBNCXDIP08gUuf3iJExidRqudbRSCjeLyjpEVp/cFyneha9EKvJ3Cm8+CsDi0otYubuo/l+E2CoEPA5lEnxUKhNnIk3bo4ISTJ1SuMD1DOm7kePpTFYkEBRlsaBIWsbBMU2exMg9qTV0nWcc/vEc3X94wHe+NNR1S5omEALH8xlCYLdZk6eSHjsMPdNssTEeeTl0gvfM00TT9jJJVY56vWW2TvzfMX4+zUROPcYgBTvPKKNlaxRERTgMI/iAC2LBWxInRSZtyNOUIheb2jRObDYb5knSkBbpvyAsHNpIcMU4jjw8PKCI6VfW8vLyIukvXw3EPn7+Bu9ENp7nObNzdEMnm3jveH17k01WktE0PZOdKYuKLCvohp7Xw5FwgLYfCWi6QeKjlZZGLxDIsjw2TyHyKuSl+9v3P7AEWMimT7b2ItcWfs8y3FuSaq8coljQLoXSotBbrMMA+/3+2rQtw9yyLGN67Xsi8BJ+sVjOgHhIpld1hKjy4j5HvdtEv1YNLvJm62axP+epqFWcvwaSfF3YLZyCZfC4PCZr7XVAt3zfyzBx+W/L91yWhXA8ZiuMHv2+SbDWslqtGIfp+veN44gKge16RfCO4B2JEtl/nuUwD6w3WzkgjYSOlEUpMfdDLxtxFajrgmkCrQrheSjEmlQmDL1iHkbKqiBJPU0jYPPVWqGdJzGBeZLh9DQlcoEm/mrlWA7IvBQViMDnZRgi0mVhHoiiTzYSWZ7IACBuWQJBEoqsRysjVh89R4WgFWWiCzSNBHcIgNthwzsTa0mEXBK8nJ1RaSrNsZ2ZlTBOFOaaQGWMoq5X+FwKIWGSKO4fPjBOE0WVoJPAt3efwIlt8nA4050vpGlGVde8vDzz5ctvtH1HkmSRnyPDlLwoCBhQ8v73/URZ7qT4VtJEdd1IWa64XCRdchhb6lUhm5UuhuUoT9t1tF1PtUqp6hTrJooi43Lp6fsOaxGbsw3YSSz40iQ4rNV8+rzj08cP/Pf/9gOXo0NrUbh8/HjPx08fUDrgnCgazueLJEv243WAscChy7KgbXryPCFJNE1zJkkDyajwfrzaeaSY2DDPjtPphTwtUCqLA1qxoAcvQ8bffv0iXNHgWa/X9L0lMSnBG4aYWFbWKy6XHjtpDm8X/vIfP3K6dChl8EESon7+6Sl+th3Pj8Ly7PqZ87FlHEZCkI3t8a1jv78hScUOud3usHaOao6EofW8vL6SZic26xVNe44Q4JzLpaFpJh7uP+Kc53B4imzTNeu1cJaWcyJJDGlkkG7Xa1FUIJaRqlzRnt/I70pmO0aLzo7ZeTa7PefDkcnO9MNwBSJLirijLHKSVFNVBWUhCcQoec/tNhvmCZrzmbpccTqdrup3pcE6aJoL1s4SLJHKWXs6HUEpCdDY72mahmkaBd6sxR4wDBPj2OPcLEmgiSbNNaiZS/NE17/R9w3WDmR5AnrC2p6qupGGdnIkSeTiBNlgLqDgpWmNft3rPdK27fX+W7aUy39/Z0cpuOZLcr0rplgsLvwoHa2uJtExYEozDD3DOLBZr/BhlvAGa6+oBB1VEVKYvStPlr97eUzTNCJsF756XPo6WF2vc27vNjy/vNIPHeMw0pwHCAJYd86D/vrvU9c7zCsl91TkZS0DUjd7BjVR1glZbvDzHBeJ5lpMSoEL2+2auq4Y+oG2bamrmqqqCF4Yh7OVIV9VVez3N3RtJ82BDxyPRwKBb759ICsTaR6dpyo35FmFtU/84Y9/4OX5NQ73nKj0ImgcPF3EqvSDp65jeqt1VHXB+XyJQPECHcSasixzl8CUt8MbbduTpRlVnbLdllzOLT4EdjcrwQiMPdM0Y0xOnnleno9Mk9w5wpzJpQGbJ+pVyXpd0HcTP//4ig4VVSWJkInJ4/tOOKzb7RZFQt92UCYs6sDgJHFTLEaepEgpq4KubSnKjGG0sckyOOvxXniXzvmYpCuNuVKG25sPuFnT9wMPD/c8f3njD7/7E6D5+aefabuONF1zaZqoChhp+5EiL/AkKA3D6MjSnDRLIBjyoiIAtr2glMEFUft/bQUS6DdoZdjvt+SZ1GB1XQKBDx8eGIeZNw4SgmZgmga+/fZbsiyluTSs6pUsg7XDeWhax/1qz4e4tJpnaeg23+45vbX4WSzbMogXN0aaZex2e15eXpmmmbaVVOGmaQjB4lxgXVb88ssv1+bQxKCTJTTCB0+SGkA4XUuIR9O0nM9n8qLEI/a+PM1J0yHaVWP8g1GxNn1XyX29TJD6Qv7OdE6v9a6coSEysd+/5AzzUdmorouiPta01z/baKpVjVaGc9MwxM/Q8jq9K/eWoEH5eWGcJTRNg9JKBlYBlsGi/Ph+PooNOSadKy1KFJVECLzMuZz3WOf49bcvdE1DbKMIrifPNXWd44Pl+eWFvp2YJxvrHXX9fp1zhK8UMVrJkmJZjsr3sSy843PlHSqqdgNBBp9FSYgDj3l2CPdYQgWW0CMVLw+x28ZBYsT5TOMc1VEyCOv7AQluE2Wk4GyEw/fuuJmZlHABi1yYccvSQmstYX9BvseiLLBGnt9xmJnGgbIsub27FSuzjjzprCLP9jJISYRLOtspYn9kQdK2LShJXBcmvJO7y3mUkfedEouO8B3juZimabS1B87nC/mY4vzM8fjG7Z30VK+vL6JitpAkgbISLliaKLJCk2YKpQxplrDbbSnLmte3A81FuNxaw48//IbzE4nOo9vHYXQGSGiJnaXGXcJF5nmiqgs+fnzAGOHN/fzTF9q+j4uOZTkX7/24RJsnCffxPuCsIH2csWQ6oaoLVqpgGh1t0zNPMbH0qlJVDO1EsAl1uWGexBrso2fdeSvoLQ9u9lgU4zjTNi3WWna7LVWx53y+UNWKx8cn/vKvZ3766wmTyGuw2payFM8LpniWZ2nGalXS9R03N1v6oWMXFyVFJjVjkidUXvN2OAp+KUmYrdS79x/vGeaBp8dHnPc83D9gmQlB6rO27Qi+pFoVrDc1zk3MVmqbzWbDOI40TYPzjsenZ/IipygKbm4+8/zcRxGGDNNA0ntvb2+u51BRiNCk6zpSY6jL6iqyEQfVFJn+MrAfe880B4oiI0xKHEM+sCj2AiI4CTrIQIxwDS/yCL5siIMzOaakhp9mWRJY79lsDQFoLh1pmpGmWXRIyPvm7XDi7uaGf/7nP/O3H39g6Mf3z7+CIvLVlzpSaX1dpC5ncwjLQnk5I+U8Ch7myN2TBUlAKxdvCQTtyd8vfpbzdlmML+e3tT46T+QcFIeJzFuc99FxtgQ4xR9ZlIVimU+zlKKQeckwCD4nTRJ5ZhXvjzvAOFoeHw/XoBDJglDxnHfYKeC1uBien844LwiXf/TrHx7wDdPEl5cnaZxMIq+CtwRnubu5ASBLC6apJc1y5q4nTTLSrEAnOcMoYRABsYr9/OsX7u9vybLymobW9UNUckmDNs3CLNNGmisNVGXBOE3gLM7OOCvKjzxNqauSoshF8TIM3O53sVHvrkOrLJUP02W6UESr7GazoZtabm9vATgej1wul2sTkyUpZVWSGEM3jmS5pNIsqoS31wNozanvZaDkRjyBui75+PEjyhhe/voiGwXv6brmmuxVRHvEPOk9s4IAAQAASURBVHuMTtDK4IIXYK+XuHj5YECa5MyTjYEeOqaZIeDpCMCFdwXbUsR8DVNfNpTL5sd7/96AKnW1popN811BRwjM40gSm00VGXqL3RfKKLMVCa13HjuOUSXiSXSCjkypRaWVJgZlPXmaUq5L+mFgsDPezQRnMRqyNInNiEUHmK3DE62z1jFOI9cAlPhljAw/vffUdf3VZF8CJ5RWAkWOikNR/8nATGq5uCFGNnbLJiPLErJMRfaXJklv4sEtnLmyzkkSjTIpILLbPNdkGRCgLipQ0UqGsDNMMsXhjqe7XORC6Vv06UhZbbHEWHufC0wci8NHW3uKUTAMI4Uiyq0txhC5N2usFTbUMsCUQmWxR0uz6qyPS1QdLfMRFu3ddbDkkQNwnizbnUDpL6cLWntCMLFAs7St2IzX65KqKmkvF8ZpFC5UkojM3Tm6dqSsYL9f42ZL3/VkacHpdOF4OLPdr9nu9mgdSBODSRPqes3r6xsfPtxhY6qT1prL5QJaNiIheA6HV5zzMiApRbnYdR1FmfH4+EhepFFyb2jalsNBFCtZllDXFS9PR15eXwlBo5Awi763pMmSyOSp64pPnz7z8iJKNe81fTeyWlWkJqVpeoJ2cYsP4+gYhpn1qqJrBOxb1yUhOA6HN9brmmke6brLVfEql35LRE6y221JkvSqDJjnKdrKJ9IYduSco+ubWHxmbDc3jKPl9NZw/+GGNNFMwwXtU8ZhZrNdUxQZT49P3Nzc8Pj4SNs28UL2vLw8czodWW1qhrHn7v6Bn3/+jXPTyvJBeTbrDdMwoE2gbWb6oSPLKklSnh3DMHJ7d8v5dGGeZsZx5nAQ/uB2u+Hxyws+zDEl3PD6euR86uiHng93NiotJrJs5nKRc9u7LxxPB4q8YLfbcXt7e7VBrNdr5tlzOZ8jUD7h+emJ1XrFbrtnv6v5i/sF5yDLS9Y6l1RON5NmooK9e/jA8XTCOsvpdMLaOVp0W7FYFmKZHseeohTZvR0tZV6w26xJkozddh/T0RxZlsRzxbHZrKVIenulGRscId4DjnkS+8Zmt2WaJuHFTJJy1nYtwyCDmnEc48C3QmeK2U44r+nHE5PtmL3B+QGlPFqn+Nj8LXeEUaK6f1crLAMzSQn2caXp470iTfZ7PfA1ZFrFcz+EyFnzXNX2Wi38JbF7BSl3OB1P+CBFWF2W0eolQP1hsDgrdYJwtlK8l7Q3dwWtvds93oNCxN73PvxTcQnC9XHUq5JhkGGnNtJIznZEK7Psh2EpPqMN0hhN27VMcem0sGTRAqnWKqMqSs59tGsYI4OqqFzJMhkcgidJFfMo6IN5niQtOUAXLeJqr2U4X6/FwhwkmbReVaS5XCQ//PADdVmx/9MH7j98AiWwe601m82eYeg5nS7XIZ5bhi9JQhLxJ3meRWj9SPAyhBFWriFEr9Y4jdR1xe3tTTzfH9lttiidMPQTKAmh8mHCeQFaf/nyJMpmJ0ufeQ6samle5I0H9WrFPA+8vYnCuSoTvvm8pihyxknuTQlOEaVy07Rx8QreK6wNKCXK+ba5kOey1LlcGqZpwHnBoJybkbZt2MXPUh+bW9nudyQmibWT5XI68PnTH/j150fSpOD/+r/+T+bJ8cP3PzHOA9ZKU1cUOStdk+bJdWBwPJ6ZrITz3NwKi2icZzEPGUVZ1Xhn3wcucWAlqncJq/PBUVY5n795IM8N5/OB27tvyLOasij59PFeFNl9Q9e11PWGt7c37Owxpuf2Zov3Df0wcHO75pvP91RFgQZen4SZ+OH+gbqqmQaF1TAFzzjK4Hq9FrxMURQURcEwDBhjaI8dRSHsaaNlIL/f31PXNd5bsf0iisskM+SlfDZeXl4AeZ9VVUVVVgzTRNO0HE8Nl5MM5I1JosJCmullOaPUe1KtfJYX14fUUotjY1nuZlmGj2gX/uffa5Lr57jru6sqZMHDiP03Y3Y2Dt64DhhDCNcgiBAVKlpz/fwur6XWIlBYFtnLGbkM+NTVNrws2WVRXdeCcFhqUK3lLDDJUp/LgriICnetEqbZM3Qz4+iZ53f+3teKanHixvPdyOOz9h2Zs5z3y6I9RH53vSoYxoGb2y1Gp1xOlyuLdGH8EVNZxVIoC0WTGGFUBU+Z51JTAt6FWO9CksA4ibVSL4NBI/2Jjcy8RfmoUwkI6GNPtVqtCIGIz/Hx/aFY1ysUYPQEGC6XhqHvKIqMuw93oDxFVeBnT1FUVKVnnp55eNjQNsJHl9RnEankpQSVuRi25r0DF1BxoRqWYS3Qth2JkUGhiyomuRfE3WWM4eX1FWul9ttsaurPFdPoaC7yZxeFYXezRinD5Xzhb3/9Qc44FyQoa5b3yuk4k2WaNIVpEtukSnxUmH69aJPPxjCJQlXcWRN2EuuvJBu/D/fkGpehtQxdlaTeBkEZyF2hKUoTn4/AZr3BO0XTtNelm04U2hj6fuY//vIDaSbhB4nJOJ0ukYO5wk6ethtIkozFer+ciaD45ZffZMEdlgWdLE4YA1mh2JqMsiiikw9ub2+Yxpnz+cw33z7g3Mxuv5blR9syTo71qoKoshR7acLHj5/Z7/c07ZnL5YhJAtUqxXtFUSZos6aL6jMfF2aHw5ukSncNl8uJJXDhcDgwDsP1zjeJ9J/GyBL4cmmoqkoWDEEG694HNps13tuISphpGkmc3e931/48SZJYJ3n63vH6fIx9v2EcJoJ6J34u9litDQEZqGn5T9fFSZYth1cU/OhFaPOOXbHWyb1wrb081rprwMvpdGIcJh4fnzEm5fOnz/z22xcYeRcUzTOPX778nYNOFgv6qjQVlr9wApfFyTJwdnaxn8ca76sQS50s/Of3xY/Ueu/nmrhF5H75GuslQU9i5xc0gI/l5LKwXuq/RWUYsLONQ86As9P1598XOcvQUnIMvBMPsHdS75kkvQYzxQ8qicnwqSLEBdk/+vUPD/hQihBhhl4pkbvnNWUlh5MopRyZzfE6kSEdcSM2z0zWCoQVDUrTjzPntqMucvKioO97mq67hlqMUSo921nUS1Zsj3VdEyInws2WWQ1kaUaWylbyfJBCua7ra1HX95L6tQy9rLWYxGC9Y1NVvL68orynyHMuTSMb8yDQ5MW2uthGp3kmL3JeXl/Z7XdM80zb9UzOSmE/T1KweU9Kyk+//nL94AxDlKtG2XBA1ALy+2xUH8l7z8ch2DTP+MjPm5QS5VkSE52qnLIoUVoxjcNVfScx8AuEWRqSLMuEjxjVczLEWwoSUeIlqSEwYRKxBylUtFH46KGXw07BV02VqN3ErqAZpwgo1zI0HPuBJE2wagID2kDfD+x3O+bRYjJDkaexWJwo8vxq2+77nkWNVpYV4yB8mzwrCF4+9NM4kWf5lQ+1bAKXf18OShfTKL+29NrIhVwaV2nEJWQiTTPW6xXBWZTy8b8VEhARAuDwdgKTUFd53FbOzG4i2Jk8FWtdmihm22OSgDFS8Hg3MYcJpWYm26B0gJhC5b0oQOZ5JpkGshRWdU7bWtKsJC9ytIayymNykjSQzk0svKKizOPweSmWJXUzzd6Zfcv7YhyH2KTFoWuaU9cyCCVuIUTNEQM54mVgzPL3hq8YMJ6yFNaVSUSRlmYaNxHfH5ZxkJS6thXl6zxbDIrbmzuMyQhes15tMZkiSROenn5h7Cf+87/8Z+7ubsmzgufnN758eYrcjITnlxdstD54H9+fQSDTSaJQOqVKc6ydGKfAOLZi+0i5cnwWW7I2mmHsGHrLdlvzuz9UOKd4eRaA6/3DDWVd8PZ24L//979R1zmnU0tzmUlTLbbLJGG7z7HekqSG7bam70Z++/WFIl9R1U4aIxVo2guXxqHUPWVVErxmnGW7K0wLzfsAWpJNN5sVTdORJPm1oHFemm3Z/HnW6y2JyZlnx6reUOd7xgE2mx15ccJP8Lvv/kDfdzx++U0SIs8Nh8OBYfyJ3W6PdYGXlxeqqmB86/DBM84v9INFqYS+G0nzLBaQEhrTThPT5CjrnCwtGEdJSZ2mkculwTnF7e1tHCJbfvv1N7JChjN/+tOaafDMEwy9Yxgcl2Zit9vw/PzIbpewWu1lUBQUm7WkscrCQD7HbdtweHu7qgfO5zO73Y6qqimKUp6PKqdpe2bnqKqa18ORNEvj89ey2WzIsoz1Zk3Xd9TrCmddHB5Y6tVKbLc4irJiGmec9Rxfj0yD4/b2M7//3T+xQOynaSJEu6CcuYGua2PD4tBRfb0oZpxzDN1ImomlaJokQdnOwi70QRKJd7s8NjrCTJvmHm0sqQpMc8s0d2JLGi4sQR9LkymDrHdrQQiyZdZak+kMp11U/X5l31XveAVp7ML1/3+ttFn+fQFxLz+SaLJUzvppskTEHUkqqa7CXfJ4J+iG5T7LshStJKFtGdYti6VlU7sMBb5+LPK4Ze/btCPpoRO+1e2OPNM8Px04HUYpyAgYk8p9Gx9vAMZxpF6tRLk+i0tAQlBkuKCMNCnTaCiKyOSD+P52VFXGal3R9z3TeeT+7ob9dsM0eoqsYBxluCCLNWHLbVYrrHWs6jXOCQvycmlJ8hznJ9pmoDl1rOtHxsHy+PjI3e0d/+f/+V95fn7FGEPTNIzjyBhG+lh3pEkijCVrGUdBcoiaI26fYwBFUWRYO3M6ytDv8fGZ3/3uE58+fqTrOl6en8iykt/97oGX12esc8yuIckyNts1fXeSICgXcA66TiD3ikDQ0gg7Lxa8ssghwNvb4VpHjuNEGLgu1PpO2JTWWfpu5sOHewCaeaJtZoLXkTXo49C7ZLWqWa9XjOMQ0zEn0rSlbXoCjrYZWa1S+m7m5vaGofccDgfuH+6xs6OsM06nR6pVRttpnE8xRlKRsyLj/tMHTqczv/zyhWGcsN4TtGIYJ6nnrLCNtFkWro40E+tkYsz1dciyBI8XNW9iBDKuAjc3O7I04/nlGc0N3kPbtmR5ym6/g6C4vbnBOo93hpubLfUq0DZnNts1zg0cDzIIIMjAq2066jLymMmi8lH4S+tsxevrga5rRUmSST2V5Rk3N3tpWOL7ZBmIDYM4b5I0xeOwQVioWosdUwIWDFWVyI9JidKG87mLtbCEQIjTIFxRH3JGimp3sVbJ8iAGpH115iz1rhGGwFdqP2l2FVLnyHth+rvf672nbTt2u21cpAlYXpa3KSq8p4QrdFSwvaNghJm8JJf6q2Ll7xWH5noGSj1OVORn1HV17UeAOOASdVdZlZSbNc45VqsaO42EkPLyesAkGmMKgtexUQUQJfBy/i4DvuUxzdbGCeMChZeBioTdyuJyva64uV3z/CKLRucCl1MLQZFlpQgNQBpW7+PdEYdL0ebmRovyskwX67WcrfM0k+UFWZIwT/LaJyYRMYN3176k3laURY4i0JwbnHUSauOsDJ+cldCl4KmrinEcqOsVSeLj6yN9W55nZGlGP3W8vDxRFTUfPtyzqrfIIM6KCthCXVW0bUsXe6YlYVdcGJIyqo0mMUZs+E6EBbKQG6OQQlTb89wzDB3TOJLnBd98/szh8BoV0hXBKULo2O5liD7ZmZfXNxQ6qhxn4l8vC6co7tAq5e31DZ0EghckD4kmiynqaZpc70Rr/dUBNc+jJIMG+YwFLz3Goji6foWv/0WGmFpDluWsViYq6GTQ9fz8CmEZbEuNnSQJaZJzaVrmOVDXFTf7O7xTXJqBJMnpmpFFwSrKNUF4LEzfYejpOrk3ro8miCioLFP++E/fUtU5j08/c3d3xzg4umYgTTVJmhOwsceB17c3QV8ExXa9ZbPe4b1nu1lzc3PH52++4X/89//Bb4+/sttWFGXKbr9mHCzPL9JbNJcL0wiahP2diDp0FLys15vYY4vQYLVaY53DnY4kJmHoBx4fH/nzn/+F77//gaZpKYqCpmmiI0TQWGVVxPv6lbYV1bNWUEZFonPieBinntfnC9aCinZV5xyIOzv+E2u1IEiBoGRoKz3v0qfnomoOfVysSB3z3mPIkKtrOzbbNbvdXsJr+om6rq7LzbZtmcaJ19c3yloQIqaTs2YcZ8ZhYJ4u8YyIRgLeh9AgZhGlFVppFgXd9Y0Yz+er4g8EzaYCSZqSpvI6JEHH78dfz6LlnNValjPeyfkrS+RwvVeu6uUgM0+CQmkD7v1cW0RczoW4jHI462TgqGRIGK2h8j3GoSGIUtXO4K3wRJdoda3AJIqbzZbzpfm7xfn/6tc/POALEGGzCh/g9uaG3XqDHQQGLkO0BKM1/TgyTCMy0VFS/Kh3SWWIdpvj8YjZ7yhiKITznqGXQ2DZhKVZhgueNBPgc6I1Wim0SanKKj46dT0svPcxRlz89nkuctlxHP9Owfb582e6ruP19ZVxHPlwc8OlkQZXJu913FK+Kxiaprl+MIdxiIVQxjhNDLMo+3xIOJ+OkvbqLHk8gJUWDoqLUdAoCQhB6WtQiHcTwjLUGBzeOgxLow/TLG/OJFX041mSBhPN0A9Y52Jqz3Qd7C1ptktQxpJoGEK4hhxsNmvOZ2EGgthGjVGMo+ArpbDy8THGRK1qxewc50tDlokichwnnHfX4mZpDtMsZb1ek2YJxkjTmGpPkWqCk2HcNE1XjoFzjv1+f23e9vs9AG0jKsyyKCIY1dL23TV842s78rJBFVbVcP3+p2nCB3tNpFw2CqvV6hrskecp0yzJWSZR6MQwDn1swD1Zqq9cKu9nCKKeWBpoSTByVGWO0qm8lolimoWhM/aDJAQZCH5C47CzNFxKK5LMyKmgZJurTUAnliyHcR4BCU8oipzzSRRsZSkXR57Lx3xRxkyjKA60XtQaS5qaAvyVayiqMK5qCQgRSg7GvG+h5X0r8eTa6Pj7AtMor6vWis1mTVGmHE9Hsizh0/1H5tFGBUtKVmd4L/wahRzuokzo2WxytBbO3+Xtwmb7R7rWcni78FP5K2DwHt4Ob/zX//pfeXl+ZZ5njqcTQyvcjXGc6buePM9Ik2gH907swUougzGqpNKoOvDBczieGaeeDx/uuL+/A+2oqzIqVeDuvuDw1nA6H3l6CcxzoG1GmnOH9yKTl7vDYceeoDxFlTH0owyGnKOuUr75vCVNEpwVlZIMTg1dNzL0M207CJ8OjXMKSOm6njxLmefA+dwwzyPWTeR5yuvbgXHq2GzqaGuTW8vOIw0T261mHGa8hdubb/j+bz/x+fM9Hz98Q9tMnI5H5snR9yPr1SoOfgtZvqxWbPc3HI9H0iyhrMtoI63IVUD1Op6n4fr6T5MwlcZhZrtdURQCW08Sw3a3psjXlOWKn3/6hXGSkJZp6vn973+PSVLOp5YkLVAqYZpEqVOVW0J4pWkG9rs98zzRNGcePn64Nl1lWTKMPWmWcjqdGYY58scs/dCw2zyQZzmr1ZZ5NvzLn/8T//f/87/R9R2//Por3gfSqOhYFA3j2LNaVRS5oAratqGs8hhcIhiF4BQqbsWdDWw2ex4ePpKmAomvqvp65jpnmYJFqRCXOZKQrpMEZ+UcnMYZguLwdmQcR96OJ2ks0pJVLRbktr2Q1pIYbueJLNMYk+PGiTRThDkQ5pk0M+RFgVaLQvvdwqqVIXgf7V2ifPv7JaP6u39fksTeVXPvCpevf93XA76vRDQoJUBvYSmNUV0mjfLl0go7N0+jtUFdawCxh4llN4SA84E0LuvmxRK72Iuvj1sWYLL0SZmtYhpGHr+cMIkiyS7stgV5VrLflUzx/e+DsKOc91c+1TR5/Fm4WVqra8MegibLUjxWsAta03VyfxMbn0U9M8/y8/UqZ5pHNLDb3tG1I8bI8HKz3jJbaWL7fsDNliTJxZrajzw9v7He7vntywtDP1FkKT/9+IVxCGRJzuXccDn/hapakaYGnRjmvsO5EAfEWuooneJcoG0Fk7DZriEy0CRgZXmtoa6KCMuW16iuK4xJGEeLMRPO92z3BWlqxHK7ueV8nBmH/+B8nBh6h8LGwhcm60gz4QF997s9nz/fMQwT//GXn2jbhiwtKPKKeXSRGZsw9g7vZlF1OkeyykmSnGEYaRsJq5gnz/FwJs00t3c31HXOMLZUVcnLS8vl/CQNZivLrCzLSJMcO8tQyU6BPKsY+5nz8URZVcxu4Hd/+MzQD1wur5ybDuvgm4dvuLnd8+nTJ06XhpfXZ9pOalatDPM8YoIk/nkvUPLgHc5OkT1nqKoSHyyunTCJJk8z8szQNGe6Nqf8sCMExzB05FlK3zeYJBFVVWIgaJpLyzSP9P3AZrPm59cv9P0r33zzke1uw+l0II1q/LpeMU0zVbVCo6mqnKEXNIxWkgD+3Xe/4+Xl/xEHZpa+75Z+hKEfSbTBaMGovNtb1fVzjfL42aFNCgTyImee5HPe9z1plmNMSlmU3N7e8PT0KuiRqMSSfySUwnv3P50rXK3EOlq9lsHY11iWhZ/toyfQ4cizTFSL03xF0iwK+aUZbtueeZKAF2XUtSEVmz1Xd4PRcjMsy0xr3fvyAvV3Z9DXCAEgDvHe7b3jOH7F3oy/NqqQhY0ldtW+7xiGjv1miw9Q5BmTddg5QBDFs1JgPFHh+pVKL55VzjlMWL4vsXQuacXEOwGlomVV3h/9MEqYkXIQDNZOaCUJxjI8JCala1GpljXj2OGi38xoQ0gkOM0Yg07kXMmzDJ0V8fXzuCDhS0otTHBPP3TkacJut75ySo1JsNaRJmlM5hSF4MJgX63XpElO03SUZc0ppmp33cjz04E0uZAlFfZWcz7LEPrPf/4zl9OFvpOhf9M3MrRG/Z3KU2rqwDQL5zJLjDC4ZlEejmNHmmSUdR4V73A6dfT9j2w2NfubDbtdwfF05O2locgT7u+3DINCGWFUKxTr9Q2//Xrgr//xyDTKNF2xKN9HfJgIVrMotpb0UBm6Szig944FyRSCqKTsLK4eE1lkKgpFFF9d0CwK0+v/E4HG0NO1EgqgtNgc88IwTxKatCiRJTTLotA0l46iKGjbN5qmoe0HGWA6FQf5y+dqsVVm8a6dv1KWOowRhECSJjx83JMXmktzIMsSrJt5eX3lZnuL1nlkm090fUfb9tdaQQdByigy7u8/stnseH565v/1f/+/OZ8vDN3IxYA2EhAqars6WmN7ympLXa6jE0g+W2ma4T1xtlBeZwxJkvDb45colEjoujYyNkWwMc9Wwhn6jiVoY7fbUNcVzt0wjANKwX63Qxtxf6EdXd8y2wlURBktqtsAeOFWLj+/DNblOXwfmL27ghKM4YoD+Hph8vWX94IlqisJuOn7UXroGHC2JMlaa3l+fsJ7RZpLUN4S6kRUxsmp+XVNGetEo8mzTAI9rsrjIA67r9RxS+1qjGK9WpPFBeQwCKKsLIuYlzB/9d6VkJ2iyJmmmXmyyGLRSpp5WVDkOYdjI7b/OJPCW3x4P799nOPJnaej8GhgsbUv39+CcVh+Xn9VJ19jNxcrshLMRpIgwYnv0/X/5a//n4RsLFvx4KRoSxPDqWkIdiJNE9brGucDx+Mz4zhjjLAcbLDXS/Hry2/oJ07qzOa7b2nbhhBkOPf69nY9iMZplK1R/Lv7YUASZGQouCi3pknsaiq8Dy5Wq9XVGmK+uuzSNOXp6YkygisXa4B3nqouaZsubrdVlNrK4Kiua5x3vB0OcSPakubzdZslA7WBoiwIcciWpIkc+kFsTwJcl+dUBg7RRhtkqJOmCd6JtWqJEJ+dbMcW0KbzljLXqGAFSOrEF76o6sSKkwhnYBbG3VLQLAV8nudxoCbWHS8iQUzcBuSpXKRJKjYmbRR5LhyA2Y6gxBqxpN9qrZnmCa2FIzhPltk6Pj58wjvh33g74qaJskhxbiTLJcm273u6rhPLXAyDMMbw4e5OUun6nqEfr03lEshBCNH+KRav/3mDulgIXBx+OmeZ5vHv0iDLMgfksHZOLAbWzuR5gvOTDKG0xnsXAxzyuNkL13jzpaAkEB9HwCRxMBrAOwEWz3bEWuE3mkQGa5fmHAvXBGsHxmAlETAGbszTiNITWZHgCUxjLwXuPMdB47s12cXUWBPEIpbGi1OGmRJ+IWzFAqW4FsdFXsQ/4X3LYeJWLkkyrPXSxBoZDCqlhGMyTHFzIXyxojTMdmQ4tigjF0zXdRRZSZpkNM0IiQw3irxCkhd7Uq0jbH4mS0v+9ae/sbvZ88P3X3j87USaag6HBsVvrNcbFIb/+MvfqKqCgKcoUt6OI7Od6Luo/J0tWSGFh0Tdz2w2q+t2UD5zHue42mHGceaH73/h2+8+cH/3QNN0/PLzmaou+MMfbglM7PcbUAnr9S0/fv/MX/7tN4Yh4CyM8TMflLwW0zyQV5oyT1hvCqZ+5LffHkmTFG1SmlaUEnVVM08wjyNtO2Bdy+3dDdvtjuPxQHOeCLVhu03wYY4KV1EGbbf/hNgSNVrnnE7yfmqaQaxWvWO3u+XLL48M/cTDw0dW9Yb1uuL15Q3nJ8qqIM1SgvJsdmuMSZjszOnScTieGMeRxKWiIHKyINGJJklytBKr2sLR0dpiEoXScn7tdhv+/J//iWFoKKuCzXoPaO7u/kvkN8Hx8EZVlzy/PGJnRd/PopTOC4JXvL4emSaHVgmXS0+WatKk4PB2ggBVXaLNeOV2ffhww/F4JksyynJDUeTc3mxJs4Km6Whbe7U0Dv3AdrXisWuZxgE7jXhn8bOmzHPeupYiLyiLgnkcr4Mba2MTTKCqK+7vPpDcZ8yzbA+nuOHfbLZkWYqN6WjOOS6N2J5Wq1oSn2ex4sqGtcAYyzw7EpNiZ1EsXJqLWIhyYTChFV3fkecJZV3QTx3T3JMXCUlqKI3Y6IUjJIWQ0jouG9U1Qf5rJooUe3x1pv19gSVMk6+BIbI1vdYFXzXlWuvrYmW5l0wisGutJDHUKcE1DL0jTQMoaeIJy9/3ruJZhk5LSIIog6oYVrHcf8tjl2S3qiplWNB7nJZmXOsMZwPPTyN5Jvwb+ewopgiiDiG2j0G24taK8jwx5npnh+BxXja5bhjo+kBwnrwwFJXYucZpJi8MfT/Sdw68J0tnbOo5n37FzmB0ymaz4XQ6M44T+/2W9cMd3jiGfqSuhbM0z5bv//azpLCODkIS/+yJopBgrMPhjdvbG9m871egPefTmYCLqAkZ9jkv9rpxnElj0vHpPEeb3KLUcuIWMIYszWiajre3I84G8jzl4eOGLIftbkOaGpI05ctvP/HzTwc2mxI/G1argvOpQamU/b5gsy2Z3YV6lbFaZexvav7H//hClsv5T1A4P5FmojTEQTcIJ9FaOJ/FEvbhThSuwUOaZLKI0inOSg339PSEUkEUW0oGU0olpGnONDsUCUmqma3jdG5EfRWT8hRKVK/9BaWlMf79Hx+4u19RFRWb9ZpAwNqGPAv88Y+fcHZkmGbmKZCogIpsMZMqFJ5cgudJs4SqSsiKgMKQmJrLpcEHzWa9RWuxGffDhXpVs91sxZpIEFXQNKBmQ54XWDtzPh+ZZkuey5Dvw13FNPc8PX2JtdkRhcaYlDzPMEbTdy3zJImY8+RZr7b88Y9/oK7FMXF//4FpusU6S7Uq+Vg80LUNXdNidEzf1lr4kcEJd3uSGlNZYVUuS3EVmx7nAsYGpnHgfBYFy/39LedzR/DCLRxGUfI4L3dHYsy17XH+ffCg4lllrWUYhqsqer1aMVtL37fRtiqKXhk+im2tKHKmWTHEAIflTBn6uJ2T8uZ9CRpZm8SaWOyji0jgaxuuLEgkcT6m+8Z+YEFqqJh0KktzGaa8K2beh4IhSCrkNI6Mg6RS13Ud33OegMHN4s4Q1ZgEAyptGAcZqGql8VFYckX1BCU2PK2v5+vXggutE04nUZWbJGO3r1DA8e1Me5Ggh4CEXMxOwq6W5ynEOlxFdI5WUSUWEUNGJ4KZQRwsJlEYhGPnRsGYpGnCalUx21mQI0YCrJwVdrPY8aRX2u12DEOP1gnjMNCcGz58+Civzez44fEnqqpknuG3X15kkKgdX355IbgkDp1Hvnx5JE8l7VYrsHYSnIEXTndAUkpNItx5a8UxFMqcosgZxhGsnJGCe5DnxRhNhrw2KEVz6WWxNViKXFPXCUpbdjclJn6faVZwPvWMY0dZaBKjmScRVoQARR3oBhF/TKME9Wht0CphdrKcWpZd8rkzjIO434xOUcTE+bj4UjPYWZRG8aKLkr6oQIpoi+A8fS81jfPClq7rEqPFvtlcFk69i+rJgiSVhWXbtZIAncgdNtiJ4AOTnWMQphHWs5sJQRGiUgrl0CaQ53D/ccfDwx3awPl8IrgJReDw+obRsFpXHN5ODIM427QWVqKKdUmeFWgSfv/7P5KmOX/76w9cLs0VnSILq5nmAkWVsd1WrNdbvA/8/o8PGJ3SnKWuX5YIUtdcrrOEu7sPHA4HPnz4wM3NntlO7HZrlNY4O/Px/oHT8SIDoqKQ/iqX528YRobhkaIo+PzpM6ggjgUN3pdi8TQfOBzOJHrgy29vEVHBMueVBUSQYWgamf1XlVlcIMgiRpYv0zhKf+phCad4F368L0vHYeLl9ZXtZnOdnxwPx6sgZ7fdxpRgmX+43mKtiT1WiEITQGmxCl9rSRX7W0VVV5zm09VhFxTv4T/I+04tbGWtmOxMdxRmY55nTPOAx11FWEvdmqSGj58fyLOMp8eX63nnnQLlSBLPx887vv3ujsPhzNPTATcr2m6MA7kQ68JFge2j0lQEKZI+Hn/d1xZbRRz8fX1niURQKUUSEVnTPOPbPn70/v/AouucQ0drbKo1Go+dZUjjCRRlQVlmPL684EIAbfDOst2s5VBMDEO82ZZDyCQJ/TByPEvyWTf02PZyHQQ65zDRr14WOfNs6dwcgbbyj8dfh3ibakNRZEzjSNf3OO9ZrVYihY4gq6U501pzvlzQAQl4yExMItPCOlOinEPHuPU8YZwHSaRxM2joh4FL14GRmPgl1dTZGa0MdrK0/sIClVVKDmzne6wNFMWaECxaJ0izJLa1RHvO5zea5kSSwHb7EWNyrO3RRnNpXwTOmu5wsyLYgEkDaaaYRmkMx36SOPOypCwrPD7aWIRrsCToLpsFkYNb8BbUTJrmlOViAwgERpybCCFFq5xx7GUzlBrGsSfLcuoyj8BjB34m0ZCmnm6+MI89s+3p2p67+49XNYhKDE2EAicmFeWBE+XZOFvOl5bZCgswzSQ5aRriFh5hCvVtG/l0AlrOsgi+DwETWYJBAyGQZxkqQGo0dnK4WT7QickwWYJClDwqBHAeHRkvi/ptUe+9w92nqyJTxYSvLEuwdsZ7Jdsb6wh+lsM7N6T5jEkc0zCQpgmb9Y7T6cjxeGa/38ThgJWkMDRpOqB0QpYmTIMH59AqSDqvdTg7s16vsE7ske/DRx+VeJoFYOycZZrUVfkoiUJiZRHniYBdnZNwj2nqAUmg0onCGJjdHAHBCZttQZporPMCYS9y2sYytZY895xpOdmerptJtKGuZOAhjB74mDxQrlcYk9A2Lat6j/dwOBxBa7w3DL1jVSf0gyPNHUpn/PX776lXOfcP91Trkpt5S9cNtF2HCkbUKNowjZbZBmY7sdloHh4+8vz8G9bPcsnhJCFJBayX5+18bnl9PZGlGet1yf3DCkfHP//LR3yYqeqc15dXfOipV4b1qqBrJrp+FktFoqjXhmpl+Oa7Ld9+98Cvv7zy7//6hTzVJDpHmxSFJTU5RmWMnYQodM1EWZfkaYWdFc1pwM2GcXC8vryR5ohNuMwZx5YsK/j++5/QStQabTuSJBlZUqFUwmzBWUVRrqMtSmNMR1WV/P6fvsXjGH/+wjC0pGnF7d0Nv//DH/iPv/6Nv/30I9Mom6/JWoZxZOHTaKvjsGGiKFK0iimvQZieYpEeSVMlnLorZH+kubRsNnv64cJqvebDwy3z5Li9ucU6+O3XZ0mras4x5VhSJ8siZRgmmmZiu1mhdODx8YXNpubjp3u22x3ezzw/P7PeVNzf3l+DCrwXLsjlfKZprFj785TPnz9yPl84HQ+s1yuUEs6GKjLyvIgMT+HB7Xc7mu7CNM0cj4eoOshxNtA0PT4qYNMkp65Wwis5H5jnOarXMtBQrWpWpbABj6cTX56emMYJO4vSe71eo7UoEZMkvSbDia08xbqUoWuZRwlbuVE7pmkUlXBYFHTQDxNt21CXlbw+LHevIubJk0R8gfcOFNgIbPfBf1XoLNXk+9f/bMkF4r0dG4Zow5Gff4cYy+815HmC/2ooaJ2DUeyxYod756wYZcT6EDzeWYa4oEqSJNpbowrkulFdHiOR8SNqnMC7pZfgGUc544QHE5isixaLcN3cSqMv39sUAm5eCmdBbugE8jJjXabAHAMoNlSrmqfHZ8Zx4OP9HYfDBe88Q+8Yu47LaWZVlySJ4806sYsFUTH827/+hZvdjvv7j5KYN004G/AOqmol/CY34fyJEODG7Pny9IT3jn7ssceJshK8yGwdPsjrej5fMNpcOZNlKQsBlLBw8jSPiIcM6y06NRR5RlFUFHnBMHQ0zYVh7Lj7cEeWK5JE0XUdX74846znT3/6jtSU/FIe+OnHR/Ii8Of//ImPn3eApe3EXfHzT1/44cdnFIHvfvcRrQzNpeV86gkhZRgD8wyKlDwraC8dfnZkRkLUpnGmLAq8l2T6xGjSPIsuhplxGrnNCrK0om2PaC08KO+gtyOZS/AxyOzSSuI7QQZ949QyzYbcO6pNzX/5/AcIgcvpBEExW4fWFuVhv9+w36+5ND3VhzXtWax+SgWc92S54eb2hsPxjYeHbVRWadbrDa9vJ/qhZxzFsp4kih9/eKNawT/9U40xKYfDIS5CPeQy6HWuwwdhU6tZ7PIPDx9omhcmGyI/2cbAtoTEZDRNIw4UDGlWcF/vUCrB2QB4fv31J+w8Ya3l/v4DwzjIe/j5C9ZOJJkRi7eSIQMQeY2O55cn6nUZz3ypM8Z4vi62W6U1uUkhgJstAbj/sCMEOJ8uaBXwSlAZKmjCV4vLeIhAeEcKvP/0uyKpqkq0gvPlLDy4aI1WKmEce/I8Z1Ouado2frZlyLbwkYL3YmtTCo2KLL7IhjNi4Rfen74ua0Iciogd1cRBnotLfWEr4pcGlaiakv8v96W7njWJNmRpjvUz1lmIlljvREErj1fsY0qL7mN2M7YXvpwyMqQJKqCMYR6nq9pSfSXPWhQl73WsKAa7thenTGowmWa331Gv1kDCPAnvzyPp4i4ysTRLOIMMSdM0kYZXKXRIJHQvMXisLMYJkqKLfNPCvZZzu2kbnJOlg7Uzh+NJ7n+l6LoR74mBFh7r5PO1KmqKXNAG3osIoW1/ETdK3zP2omZL6oyA5vB2lAEKih/+9jfyLGW325HmCbd3e06niyACYtiUj8slsRFLD2DTlKKsGSYZrGktSm31lcJT3k8yRJunQZRs3cR6lbK/2VCvcooijYzZhNPpwuHtjbJM+cM/feTH72VJgYKq1uzvC3RisFPClKYcXlsRE2jhxo2zY57EKZNojVEJTomSSmsJGksSxWa9YrPdMo2Wp8dXuWODl+/TC+rEaBnmLa4orQWd0PeecbTYuaFeFaRpHi2xBmOkh5pnK9Zr5yhyUcd33UCeF3FfGIMSvNhHjVbkK1G/PT29oLRHG6irjO9+/8CH+x1FKe8HZ1OqKqOJXOKHhw/kuWGzFcVmVQnHerstIqdQUVclu80tX778hnMSJvny8hIHdmJ1NcpQlAVayRLG+4lpsoI8USnznKJJrgrmEAJVtcY5SWq+XC6AuDXGccT6mZIcowJd0/DpT59Z1yteXt5wkxd+q5FAhskO+OBouobtbkPwga5vAKjqgtk5DsdX5ikwzYYQQzQUGhUUQYmlN02lvpztJHVSiHzgGH7jvRM+pJKwEyC+Z5PrOSTjmXD9B6BvOozSV3X0Uk9N08g4D5jUUKqCaRZF4jiKC0GFyAM05qpu05GR7pwnz8WRcblcmO18Ve8ttaWcLVqGhBJ7wWQt4yzfnyBpRLHnrXwGZcnnsW5gs17jrefx+MzpeCaJqbWJUaA8Ac/r6xO73Z5hFB6m86Ikv94HX810ZFHl8X7BPIiDT1TR/oqNCSGwhHZoJW6Ua6BSIuppHftu70Tpp//nu+5/4esfHvAJj81Q5hmJCpRFyqou2axqLpczs3OkRcbpco4qO0OeaLbrFdltzsvLG2EU9oIKgdQkTDPMwXI4HQEYxv7v7JXLlm2xUI5zvESyFOcdXd99dQFLmpWLKbhJDFroQ4jbgr9nbywT2SRJMVoxTi3OzeR5xXa/wc4jJgly2U4Oi5Nta7yNffB4PCQwW7FaTPPA7e0dQ9czTVaSnIiR5v598HK5vHA6NXz33T+RJhmztXinsU4aj2k+0bcnnL0A0LWG3eYhvqlb3HymD5IeFEKCMTL8WayZi0XU2iEqHCxFXVyHVHW9ihtEf1UjiEJBy/fsRoahIzE1ioQsleZqnnvqekfX9MyzpOgmmUEbCZpITY5WGmdHFIHJDpxOz1yaV4rMoFTgl1/+Sl7l5HlNWQg03BjNGCWwwsEQVaIi5fbujstFUv5UUPgg7CZ0wM+ORBsm7xAmhMSXC8sk8iuQYZhsiqN02dtod8gRbgF4N5MneVS3KLwTZonYKIj2bHXlMcK70mVJ65Wtqo7MGHBuoutGjFGYBMoijc/1gPcWpSU6bZqsqI8iBy6oPsLHpdFHyWFt55HgFeMgirosMcwhoBNNQJrc5WBeWIQ+BIn8jkyb5TMA77Ltru8j1JyrrS54cLxvrpJUEyK/JU0VRZmSaMft3QptPHla8vT0hveB29sVzWVAKU0/zMyDZxw9++2avu9pW7GO7fc3zLPn3//yN+5ubvjd736HtTMmAedgs15zOgWaoeHl9RQfo1yw50uLSeHl9YmqyqlXJc570kwK1tnOvL0eosTfkOclQy+WPueVbJU1qJj6FAhXO09iNKdTwziKWnizrVhv0mtgx/lyYug77h9y9ruKv/7ljSTz3K0K/sv/9gdu7wtO5+fIwxt5fnrm5eXEp083pElKc24Z+k6WAbPnMnV4J0rI5jxwPDYUWcn+Zo93iiIvcS6qDq4qlUcgUNfSBBMMiU4JYUIj9lDvAqdTi4oAfD9PJGlCnqdkmaKqNDd3OW8Hz2a15k9/+hMhOMoK/vSfvuOnX3/m8csrAY1zApuVLdjCvHB4K9Dr3X5FtaqwfsYHYTRutyvatqHvO0xSoqL6Y72pGaeWuw83ZFkqTZ5tmN1I8Ib1uub15QB4+r4TK+bsqKs11s1cLmeGfmaae+pagllMYkgS2O3F8iCst1GaEidqqGGwqJBR5CVlvuPwdomFySxJn1V5DZVpmob93R03Nzc0TUtzubCqZBDdDz1d10eLqWa12nC5tPjZ8uHuA9oYZjuROIPymq5rmeeJ1XqNSQxlZM4eDkNU2DmaiyhbNluB53ftQNO2wmMpi7idzajqiqLMOZ6kEHTW0g89sx2lODdfp+MBEbaMAq18VPH5K9snSQ2ZSrDe4vx8tcHFU0A+G2EBcL+fHUv4kjBXJlG4GHXdWoqFbVHyqLhhlfMpy1KKooyFRWAJF/FBtqbOutgwS1GFiuFRsWgFfb3XiDYjrQ1qUd7FO0V4Yv21gnHxLAwh2p68k1JZIw2pkrPgql6MzZHW6tqEKqWFJ7cEMmlR1I+TI0uVYAGC4/HxEe8UXTuBa9BKs7/dkphM3svFyM1+z/nSMoyiyr2/f+Djx0/89MMPPD+/iZLEyp2QZzmrqqYbJwgarVOMSfFB0baiZvnd73/P4fiMn2Qx6b28d6bJol242lSHfkRH+HQIntWqRKei3NAGyrLG4wBHlmf0bcccbZTD2LPfbzgeTnRdQ1CKMq95eZk4vJ25f7Cs1xX1OuH3f9xTVTUoz/c//JVxGDCmkIAPlZClEmJye7fH2om7uw0//fgz8wypWfPTD69Mk8eolP32hpv9lvVO0od/+ulHILBer+i6hnG0JGlB1/WEoHBzwDvNNM7Ms7x/Bt9LomySIEx8GVyLK8JR5CnbzYos1ZjEkSQWrSeG6UiwoioJDs6nI9YqymrLt58/8+H2jqbpuFw6/v3f/4ObmzXb7YZ+HFhvS7777jNtdyTgYmMjqb/NpWUcBXFwOl5IUuHabjfraAML5Pn7maREFn9NSvZe1PBZlktYgJ/JM0lBLctC0k7VMsQR1X2eV1SlAeXphxY7SVjT6+srLmJt/tM//4nj8UTb94zjQN93ZGlKlsiCRjAkC0tOanGlDQb5nDgrTdw8W8qyoqpWMpAt5TN/PJ0YB6mBkiTh8+d7hCuleXx85Xg8oYGyrFi4ikppvIoQwKgmSdP0unAdR+kNyqqg67vrckGYfgnaaLzzNLH2eFfyywBDlg3RWmY0Gk1wi5KZq1VzGbIt9Z+csbIEsFYUXD4srL3F/irn6NXe75fz06B0Gn9tdN0YhbIqDlzkPL5cerJM7o2AF0ujCljnsXFAO02D1N7Oy58R1a0hRJaVkrCRK2IheIpUgrm6rsfaieBFiQ+GebK8Pp9Ik0T+SRO8m0TlHHuGJZTI+3c0w5VHFy+COfKb0TEgY5gJOMpKeJ3aJPR9R/ABkxiaZhJlH4qJma4bxI2RV6RpTtv1HA+nq3pq6npWqxWgIotPAnemyZIb4cL1/Ujfz3h3ZLNecbPf05w7mktLsltzuZxIMhlEiqMn4KIFexh71LQkfYqTbbaO4/HENMcQQi09Q5Fn5Jn0YUki7ysJ29C07YXAC5vtmvv7B5SW12noB77//ieas2V/s2K92eK9Yhg2vDyfKCvDap3Tzx6Uo6oT9rsVbTOKks/1KKUZR1kOGrUoKANGJ0zzggQxlGXKel3h3MQf//h76qrkl19+YxxcVLyZ2LcsLgwJTnG9j5+lpY+Wgcs4iW1UUFnyXHdtTwjiiHp6ehFurvdMozjxBDtkAItJHLtVQl5orBu4T2TotlqvyLOc29uKJPXMcyfJtE74rJvtms1WmMTOzYxjS1mlmCSg3Mx+v4lpvZq7m4/88Ldf6duJNC14ev4CiKNuHAapi3SCc3JfrlYrnLOsVjtQW86nFjsJ/79tGmbrubm5QylLlqZst1u+fPnC6XRhv99LIExRoRM4Hg50l4663kQsRHK1MmcmQScago4YLk/XCmc2EDifTrHvMtF1kbDZbjmfRbmulkxZJUPoxUW3DKOUuprwr2IUwVVl18H+okYOUam8zF4W4QdB3kNDPzDHhOZl3pJlBUs4WxFDQg7H07t6m3i/Kq4L0RCXxsLWNZgkoYnOFeFUS821MBmjiDqGccS1sVoWzhrnxS6fZ7kEsl4xCEqUvU0nWKvgcRaSPAp4EuEwO+d4eXmTvAGlrgg6wruKcVGCm3h2Ls/P8hyHWJMGtVj5F+eLfGaSVKzdCkk9NkrCx3JVsCS8L4q/f+TrH7foxk3Dw8MDfXPifD5jY+jF6XIWfpAdqaqacrXmcm5RBMpcvM5tnhNQ2KgAGfqB2clQYpomkXh/NQV9fxOK77lrW5x1mGiLXJRTyxvO+4nJBzRcf967GY26cjmqqpIPUteiEOZDZhL2NxusbXh7O4t8uKi5XI4onTJZj/UzTKL0WjZXSikccpk7bLy8xZYmCVkGHzqmuUXFoUSIG8WmbXk7fGG3X7Fd3zPPorJRWtF1Pc35hXE8o7Rllef0/ZGyqEmTgmlu8GFABcVsO7RKSdOK1BTMFpSfcX7GZx7re7lcQwIh+ua/YmVZa2Pqj8YYh8HhXMswnKIcOWcaJ9LUMI4NPswMo2a2in4M+KDJsg3Oij0hMwnTPMXNpkR1T/NAP0hDLgrJkcPxC9vNDVUldikfRmZrmaYxNiUVwiCTgnNJH3LOkix2au8wcSK+vB4Cd44Q3HHEOhsLMwl8kF/3bp0VO7BsWUNknnw9AE7T9BrCIOoesV8s29s0Ta9FG8RYbG2ulu4kNXE4JwenNjIo98oz9j1Df0brEK3EM1VdgvIxragkS3O6bsC7liTVGLXBzbM0QGnNNDlMYqT5jgPJIksjUFmRR/Wh85axn0m0ItFphBiLVcXNE1VZyzZHLUM/HQvQhSET8LirOmLhSiWFYuh7ec3tha6bmUYBhydJwn6/JU1SCLKBrYs1zaVnHCzOBTbRgtS3HW3b8vb2Sl2vKYsichAzhmFEqwStU7RK6fsRbWC323F/f8Ovv/5AkmyYZ6jqijt1w/HYolVCc+lpW9ncOwvzNLFaC1PN+xmtPevNKg4QStI0w1nLZr0hTRN+++03ttua1WpNczkwT9B1M//2r09stjmfPmdobdnfQprD7c2GtBg5HkV1sVmv+fnnJw6HMwrNH//4mWkcKauKt5eGxGSczxeasyfPauqiIjhY1Ws26x1pkrPZbBiGniQtKUpDkkGS5vSR97WqUyDheGgoilrS0sZeFKzxIjqfmzh498LYKRVFbkFl/Pk/f+Z//99/xzw52rbDO8gyz2QtHz/usXZkGgN2lv2as1L8oTxZnpFnge1uRZImpBncP+w5Ht4IYUYbQ2IMv315pDwlfPr0kfW6ZLEFDEOPJHUnDEMnyeU+oSrXfP78wOFwlMa0E7vxdrvlcDhwu7/jfH7DO1EmrSv5M+t6FYN5hLPRtAPeQdd2rKoteVqSFxvybMUweD5//pYiL1h/sxGmZ3dmvV6TZUncRkqq++vrK/ioENMy7DQ6wasZhaQnA1RFKaq4xEQbx3txJUzMkTKtIQ7NlYKua7mcjtzs96JKSxMulwvDKCqHLE3k/ldSeA9DT5oZ6nrFOEqAVHO5kBWJpA379yJkUe3YMpNW7LrNjVxNFFpJ84YLhNm++wr4yjpwVd+9h2zITy8Q+nfm3rL0WO7x5S6XM3VmwTpMk6j/i0IWJmmS0Xb9V8Xd+yBRGuiIAlCLxe09WGNhy4rER4qsvu+++jVLefjODlx4hMuAx3sfm9u/Vycuw8IkTcjSJQ034L0wDj2efhoxSuOVou8nmlYSQpvLIIvHyxSV3RN1lZAYw8OnD9jZU5QFWV4QgorPy0RRFnz6+MDDwz1dN2Cjpcl7SZdbrdfxrpEBaJqmbHcbPn685+3wBZQW7h4Gk34NsH4v7MUGOJNlIVpylQRRZIa2HUgyRQgz49Szqmva5oLWis+fP3Jzc8PlcsZoT9f3vD2/oki4vbmJFqKZh4c7bu+2fPnyyvkkgPG+N5xPF5QKlFVKkkCRlxwPF6a5Zb9bs9rIwnJd71mvdzz+2rBZ3fHh5oHZjhzPz6S51Heiysqi/VtTlTWH8yvWWozJ+PWXR5z1jIONw5OUNI2va9AkSklgHJ6yzNhsK3bbNcFP7G9WZCkYLbVlYhKmfsJ7Yf617cA8QbCSkrddryjSlPL/+DPrzYaqKrFuQhn5/Vm2iiytQFXWnC8df/rTH5md53A40beyZEtTUYY+fnkk/S5Fa8PhcJJh1iR17Ol0jJiVAq9FeXY6HskLzzB0KA0f95+ws+f56YU09dT1SgJGggz02rYneM3/l7n/6LJkS9P0sGfvbfpIVxFxdWVVVxUK3RBNcoFYGBD845yRQyyiudCNrspKcUVIF0eZ3oqDb9vxSGCG5IBeq9bNG+HX/fhxs22feN/nLcsV8BqaZozmt/cfRD1cZkzTdK21szzDWYsPThieMZDlGTf1Ddv9jsenL9hpvl6r4zQwTTP39w90XZeQKBWbzQo7jzg7s92uyUzOx49faJo1m/UaZwUnEr3HOptsskFUlryeL1qT7Gwq/Qw+BXxpwTZoRYhe+FUIUsfHIK8d0vJAVGjJK4U2whc2y0DRyUJflCcyvFrqw+s5mWy3IXict3yNIvra+nZtWhH1jLC3FnvZq3pEKU2W1I4k+9k4OVCijtGkGtYHSaBEroGQfgxZWInqapUX9P0SuKev56TR+joUWMJCFiC+BKhroge8w80erS3ee+bE3E2m4+vPKQOwdN7GiI/x+nN6EYeTF5qibtDKs1pX7G62SYHd8PnTZ6qywaQBMSjsZOm7SUIUs4JpsvTtiPeB25tbjMl5/PyZl5cju92O9WpH3w8y9M5LNqsth9MZRYZWBsHgRNquZ5hk4dasVxwOLzSU5BQpXVzjo4RKzNOcegBxeSzPC3EJyT2+qKTyPEdnOTFKbxCJWDthbUwK04rtds37Dx9p2xZRfTWMY6TtLC+HR/Y3F7a7FfcPO25uJdl6ta54+sWiKPBhlkCjXF/dOktICVGhspyiKK7c99nKoNt7T4hGlFfzzP5mzfPLJ7RJA1gVidFTVgXNaoUPM1ppymrz6mAK4JwhBIuICQKrdU2R5YyD43Q6St3d9hyPZxanXkyK1u12TV5our6nKAzNWtGsA7/7u7doben6C0VZEL0izxvqapsGP3kaVZW0bUsMmr4fMFpCIyIOow0+zLx9+0DEE4nkec0vv/6JvCh5emy52Yvi+/Zuz+PjE5OSQC+UDLfevHngzdv0d7Oc+be3b8izETtA9BqTFdfzZ7PdstvtGIaB87nFe+GNHs8HEXSk8Mfj8cB6vaMoSzJjmJ2cqaTB3HotCbvPz89UyQVnTMZmu6G9dDJoHnqGTpyHZVWiowig8rK4BmrKsI6vzhoDV86yutY/S/jbYpVdliHXYDIFJsrnrBtJgx7GQZbR6dzz3nE+n9ntt0zTJGFxsilFJXv3V2tiopdrQBsRR6mk5gvxNeNgqSXl9cpSSinQaVhGfE1X9z5QFBllWVEUuXCLk1VYa0Q1WlXkWY6PsNuuKcuciKPrOz5/OpDlslSyVhKmlyP96tz4qga+8lVRKZTtNQCE6/jxqzNQpTN+XRGCpesTw9IohssoWBDzmib813789Qq+NNUdRrHBOWvphoGXwyGlJM78+v4T2+2Wv/nxR7ZNx/FwpCkLnHfcbDeYtsOFSDcOzFqxrpqUmCsW21cLj7qmAC0R0iGK3FOUUtKoLhPnoigEoBvlZo3p4WKMbPUB3r17R1EU/Pr+N2Iq2vMiQ6M5ng6gesbpgu16Ih1arQmzISsL5rHHmAybIo2vyi0vB4lSCOsl15JYRCGsLNtyPH1ivbqlKApeTi+s1ytOpxPKeM7tI3leUha3TFFS4C6XE31/xs4ds23Ji3syI8yG2bWEKCEaUz+hdCHNbZBtmgE0Pc5bxkFhMrFnGG0kVCAX6bSo4WCeZqyGqiqpS4WbZ6a5YxpPFGUOlARvmdIAta4LYKYsC0JQoHKmcUSpXCDSRooppYQBoLRiHDtOpyc0smHVxvFy+EzdFAxTydg7nIsUeUHfjQKbNxkgaYVlUVLVJdM4ExIo0JhMtpMpMTXPM2FTBbFr66S20BpMssTMsyOGQFHWmNRwKiQRVobMAjwWxZpC61xYFdcCZhn8eUL4SwDo1QLrPZl5TXvzacDonE0gWofRAaUCeWG4nGckLdJQNxKEMdsR6wKbzVYGmlkGIVIVJRKmnA4QDVUtUfPD0FMU5ZW/mGfCIsxzgbsWWUZZSPKZBJRIwa5iYLWqKbIMoxcJtTwEhCNorj+bRqDy8vD0OAfzpPjy5YxCQgYkFCGjaz1ZHjDmwmZbU+YF+92aeRTVqXeiLPny5QvTNHJ//8BPP35/HcxK0QvjOCS+jCbPzVVNVJU1d3d7sgJhxyUVJBgpDoNKVhvhDxmdM40Wk5UoROXZtue0uYO8MIxjj840ITpO5xcU8PDmlnfv3vL4+EjfdZwvT+SmYLPa8Pj5Qt9/5Lvv7/m7v/+BcZjw3nA8Hjmfes4ny3YriVWrJuf2bs96U9Lpkbu7LdZdqErDu+/e8S//6ZFpCJRFzb/9t/+O9U6GjuPYcTwdeXi4ox/OXNqB7b6hvXQolRF8xDvFPIl1IsQxqaYi1qQHrhK7BTFSlwWbbUlkBF1S1wUmm4lxJsSZzbrk8fGZy+XMZnPDf/1v/4ntZkOeVXz5/Mz7396zupXEwc12xY8/fsulPVI3ZeLQSDryly+fsXbi+HJB64B1E998e4dShr4fuFxa1usNxiisldQ3hdgwJVXtTFRyfRdFzf39Pfv9HTFomroRkL3JaJqG7XaFdRPTONO2PUUpzwXvAkVeEzSMOuCd4uH+DVW9S8uGgX/4h39EK2liL5dLKppnQQIoldQQGVXZ0Hc9eS5BUN55jMlRSu6vYRjY72/IioLZWpYRmWy8uT6nLpeOnQ/UTcXU92SZZr/fEoLFOktVixrn9u42DZtUUrIr7u7v6PqOjx8/ENtAWeVUVcXN7Z6qrvDBXp/RWWbIspzVas2q2dLUt/zpn//8F8sLkupiGSrlRcZmt4WIPB/U62JM+H1cU7uXD++X7Wb+lXJwUdnJ0Gixr8m/kwZscnZOo/BV02qWRVWef3Xuyn+41CBLw/C1jeR100oCGmstVsbXAd7/tpqRnyMzxVXNYvRilUiqnWsiXSQiNv/FoheCJ8sUTVNhg6Ooc+ZRFlvzJEmI8rmlqAysAxwxdkSvWK02DMOMs55xnCWF2nmmyfLxwydub/airO57np8PTKNY4/MiI3cmLbwUDw93GKNou5aqymm7i1i+chnwhQiFMazXa9p2YBot8+yoyjpdW1EsZDYwzSOXSyuDyM5QrTLqOkObZDMkcDpdxMriA0QNsWCeLunZG3FuZr+vsc7y4b0MbLw1dG2AAJkp2e+KVNt5hmHmX/75I1WlWW9zgnfc3jbs9iu8tQzjBZRi6Ds+zR/RGmY/8fT0RIye1XolDV8UW/E0W4ZhZhg6FIZ+GFGIRbRpZCHmnaMs5VkYgwREZLlw94rCkOeKm5t7IjPj2OGcEWZq9Fgbk9KlJPoZOzl8FXB25Hw8AZG6bsgzaNsXxnmkqjLmaUSbxA6eHUZfZNChM/6Lf/x7fv3tN/71X/4k3MYpsEmq4NPpjFKKl+cDTdNQVZUs3xK03RhDlgbVfT8wzxObbU2zqhj6nmkUm25VCe+2KAuaao0xBWUhNU6MmsPhiPeR/X7PNAnLNM9z8iInxJl+6MiM2PystYxjT1OvKMqCtVrjnefStoldLGrCpmlYrWu00azXK7Is47fffmWaBlarhvVmJYuMcWSaLrTthdPpwma1FfXjIKFGiztiuW+XGnZxoyzqWaM1Suc8Pz+mADNhtR0OB+E1FaXUo+0kqhmdQ3QJRZDUWUbJwlQJM1nci5oFS7GcW9fzJr0mUZ6kugyu6IGFCf21IkUOMhnK9H13/bPr0iG5Kpq6YBwHHJagAj56nJWgo2sIUVQprzEFaFybUFHLLazSZTmzHMIheHQhA9vj6cA4yoIqLEO55YsgSkdRPF+NvVJfp7ciBiTdUiskpGepiRFlW+KiSZjGa1OvlMJZx9PzgeAj0+iYhoOkB1c1ddVQlgV921MUNc4HUIbT8ZJq/JzNegfWM9uZN2/eimI1iULyPGMeR+ZppqokCMiYLA0ZMuqm4e27e6wdeT48EWLA2olgkmVaL6gLcXqEINbIeXJoI4ijoswJswRcZHkaOhVKAh+GQQLzQsBa4ULf3u4lGNEUxJCJiv+lYxhnNpsVfTfy8tKDiimk7IbnpwPRbjGZ4u3be56fjgzDouIiDd/k9xyR1/3KIJeaHSKZyfnu22/JS8XT4xe0tuxuCr48RuHDImGAu13Dze2Kw+kZo4UXqLVhnhXtpUNrCSLUGm5udmx3W2LQfPr4xPnUpkA56R12u50gc2b5ve/3a958s+HT51+Z54mHd1tubleUlTx/QhyE0UuOdyOXswQEgThyustFgmf6mfNJUmD32w2rprkO9rLcsFo3PD49XhchfXdmv98So3DltpsNf/s3P3Jpj0xTT4iSpL5eVXjnKfOSl8cjznvevqlZ1SvG4PFOM44p9CsvKMucL18ekZRVzzAOZHnOOA/stjc0Vc00TFckWF1VOC+imqIS9MrkJhn2pmGbD8JQ3+93lGVFmVdcLi1dO6TnQY7R5nr/Mfavv/MIXw+elmtiEaYtIYNZnsl1rYRXGLy/Zhwssw2NSgnKGy5tiw/i1FgCUiS0qUKhOR1fUl3E9WsusheV1M0Lu05UeRE3i2NPo4lKOOjXhaxZgmQgKlEIhyDqv+WaF4b1muAsp5O4u5b6U05E+ZxmVRG9T324o6xyIgofIm7y5JkBMpT2qBDSGf+XbGrSQkVrQQzEEPh6JvdVSXwdpC48ypubDZfLmdlpQckFqZsjIKhCQcL8tR9/fYpuFD/y6XQmukiRl5zHM8FL0pLRinkaCbHn4yfFw+07ylISZp2VAV1Z5ti2w7uZ2YrCygcHUZIulwnzoiAqy4qmacR664MwCJICzRjDbKerzUQ4JZHciGXAz7OkE3qPwdCsGtquw9mZGFOU+KQZXeDhYcs4XximI9N8wjNws/8blI60/QUUuNmhjSjhFEuYgrletIrEuUARw4QyI9P0Qt8/i20iZnz+/DPwBmtbrGuxU421EzF0RAxKOZS2WD8zzSNiy/TUVYMPU9quOWbrmK0lXs6sqh1ZFlDqJL+HbE5N9wpjSrwfqesc5w2zHTC6QOtcbjAt03a5nQJZ5ihyKHONcyPjcMT6QK4zsSUhg76b21se9Jp+CHz89EKWVZhMM3grtqfghDSiI9M0YmeL9wMPD3eslebSjVzOL2gVmWeH94aqXpFngZv9DaeLZZosIVgpvGJ25QYsgHgffJroR7kugth1JdnsFQBMOhQUSAR28u97F0icZNnqZhqdhnM6M1deSLimHsuJuihSxGa0qEw00zRdCyvZQrymuUnqm2y9TAHRW6axJaSAlWnqsHakqoW1E4l0bUdZJM5FlaGUI8uq9D1loJsXGm0y5nkURV1WM8+T8AunCZQ8eKybyDLDOFoiCWAdPUUpDEPSxjVEMEZszT4EciWMuhAcRVVIsb5pqGvhg/lkPRdWplhOgg/YORKj5nIeRZFZKTKtmCdLcMJRtPYVxF3eFXz+/AXnZCskm3VJ1RwGhJcX4eZmT9uexRJvGsZRGlsgBU80ZHlOWcWkEvRJ/SfhD/PkGCfLMI207QWt4eV4ZHdTkxcQuo7tZs35dEoJV3tJJ85rRu1oqozTcUiHt2EcLC9PLZdzz2a95o9/fC9bpaJGK8/hZaKqDEoHPn86M/YOHyZ++AHefbulKAzORv7+H3+iPWp2q3vyPOd4eqGosqvaom1byqqgzks2iYs0DhPOBp6f/oh3UoQbLzYcY9LCQb/aj1dNzcPDrRRsama3q8kLhbMDIUSCj7TtTHfpadsJTUGzMvzjv/k7hmFiGjpu/90/8OOPP8qgOlfUdc489zg/sVqvGfqJw+nC5y+feXq2yToY2e1SEu0w0awkDTZGrilswyQJWDFAkedSt4wzIfqkuGzIMsPl3MtiJm+EDxo91o3CrzKGaZxxTmxam80ePCgy7Cyqm9Np5OlpIHjY7+8EMWBerUVFXuJ0SmYMkkKdFwVlWTOPjqEfqRuBMM/2mfV6w2rVXENc8jxncnL/+rQ5zXOxdXsfsLPlfDoxjT3b7ZqiyMgLQ5bfYWfLMA4cjy+8HE5Ms0XrjM1mw26/w2RZsv5HxmkiL0QpHJPlY7YTRku4j1g7nagZdI5R87VJvhb/CX6+FC7ayGYyL+R7GmNE/ZfSKhc72pLSJoD3V5WdqJZf1Svyvf6y2bgGZVzrGYVCzl3gyrF1X1lFrue4UmQqw2tPtP7659dNK6CMSiwU2TCHmCwQSwGlxVQGKdXyqyWNFKHy/qnEkrTzfLWh+CCLjbLMmWaPD462a8mLgt3dFrWJPD0+Mk8RyFBkV9ueihqlwbvI4dByPPSAYb/bUTcrrA3JiuaJAX764Ue69swvP//M7d0d3//wHf/yz79PfCuY7UzTVKxWDdoojqcDzmmOx2R9VjKQc5ar0mr5PYLY5rRKrOEY6buBcZ5AGcRyJwMSpXRS1Djquk6quQkwHF86AG5vt5RVye3tLRGPNoFPnz7zpz9+5vnRcX93z7rZ03YtWsNqVTOn8JHNes08tYxDoKo0bk7cRbUM7AZO5xkTHdt1Kt61I0MG2FoZiqIQ5S8ROKegDPnzYZjToNekgWSg60cisF41eG9ZrzdEZpTy2HmiHwI+jOSZ/N6nQULB+u6CjgWbVUNTbWBbUOQldVPT9wOn0yP39zfc3d+kBQQQxTZkNGQmo8xq5mng//0//0fquubNt29laP/pE9po3r7ds7/d8v333zLPA4fj89XBsoRK5HlGXmTs9huUMuSZqI5ub7c4JyrLYRgxWpTAm41YkYZhhCi/+7YdRf2vc/72d39P349pARn4+eefubu9RRnhUkVEQVc3DXZyaWhQ0qwatNZUVYlzjuP5xPF4uqZJLszTPM94fn4hBLEn931HVZWS0ArJwid3cPCirnBeuidhkQpfzVoJ0llsYsu9vyxzReEsrLSqKhmmkePxwNu3D5ICn2fUdS22rXmiLPSVDei8IGG05gqDJ9nCilyWDZMd06DvL5cc1w8V0xmiroO9r9UfyxkoC5DFVmv/YoGsUw2lldSMeZazXq1wzjFNcwqlEpWfMQZJQQjE/90iJOFp4sKQerWUaS2sQGstbXdhnubra1z+uTTS8lvRabGq0p/LeR6/Wm7L95QmPc8NuRF9X0gqr6osmJzUMqLE9pyOLedLjyiXJQTE6Iy+mwlOY7QsX4qqJDM5sx0ZxyEtroX1Nk4TKM3d7b1gnEbLNI3X5ZQpDFVdpmeOcL+0gWke5dmbZ3TdRJHL/5ZBp8KYXNA/fklpTqqnqMFI8vY8OZSaBNXhnQTQKUfV5DSrAqUjSmcJx9Eyp77AuYh3Yl8fBglK2e+EzXl7V7JKlviunXl5Hthtd0COd3A+jrw8T5R5jbNTuhYTeif1Jc55yl1JiDL4lN5kRilJGG/bIw9vd+xuak4XjdZS7ytlMFlkvTNEc+HtNyuqsqLrJPF1tS7ItCyG6rri/v6eGCMvLy+Mg6U9X1IfH8jyHJS6prQqrcmMoVpJeEte3ZHlkbI0DENL2x1xfiKGwKQd0yCKxm+/eUNmVEoInqmrEhfEoq51LsztriVGx5cvgbdv37Bq1gxjJ8KhyTIOE0aLlf9y7vAuijNnU1NUmvVaWM5NU/H45RPr9RqT5aLYniwuKe2sjRBztDEEF9CFPINOpzPzPDGOA0/PT9LjaUMM0HUdRVYkjrJFaQiJDVpVwizNECeaAuq6xroZrRampCwVd7s9p1OHnXuUEv7kwnJbFG1KgdJgvkpGFl6fug7FQpAzx6eAnGVQFmOOIqZkZXV1N9Z1zTTP2ITPKsvqOm8JQTFNlml6IaRgNB8iKkoY0fU1BK71pnCVJQhmmqar+04EN5ElOdekM0WqM32tHcU2LGWb95Hj8YQivJ5VXzkzjBFRk7UT3tk0U5I6LMtyrAvC4HdzKg0NWSlsYmtlEffKlP56qb3UnktY0evZ+rVTRGo/ObfzXM7x4q7CTZbj8cw0vbKcv/76/0c//uoB3zRN5FUlMGjvmaaR4C3jdCbEjtkO2Hlkvdpg5553D99IJLrR4OF0EGDqbCfy3NA0NX3XE6OosCREIZdffNqSD8OQoMLCyhOLrMPZQBbFFir8hzShTikr3gtnpagq3CTJSH/++WfmeSKmAgAgOEdZVUzjQNsdsLZlHC8onXG+nFmt5KAU3oiAi72T1yugx/wah+ysk2IgBpSxDNORcXhhVWsu50d2uy1GzZyOX3C2pb2cUVGzXt9T725wDkld04F5nsjznKIQsOU4SpLvMAhPyFmxSBR5gXMjZS6R3oviy84XmpVhHFqUKkDlOJcTvCbPcuwsFqK8yFNj55nGmdUqEoPBOkOcPV1/SQ/wnLKUKOrZTmw2e9wcsLNi1VSEIMonpSLWTxgNRSGXXBEy7u/uxU6cKZy1VLnG+4ngJ7SKmEJBHFg1NXke0rXlqOv8ynXKMoH5OudoGpE0L6DhvCwkbTIdHguXhfiq6ChKYeSZLIjFMDWJLgQmO1GUJcpogncy6Ev/54LDTY48y0U5mJOizwXQuiTpLknMogacr8M9UXYWaB1wdqDMDc6NZDrQNAWnYwtEMm2oipKuk1SiWMCqXlFVOdM8kxczWnmILm1BAiCbu7ISrpMEaMwCwU4DSW0U82ivvJz41cZ6mkbybM04jayakqoyLGBWKWoizarmcm6xdsb6mbLKUzNh6c4deV4l6525Hn6SGgfWek6HmYsShs793Q2b7RrFhdOxY54sxIH6u4a2vfD8/MRPP/2Oqlrx5cszVVXyEuTnbVY163XDpT1yuZwBx3ZXS3K2QixRThQLfSeW70VuLg9XCTyZZsc09dcmoqoM3oHUJOr6oHVOmJughMORGIXffvtA06xw4QIq8tuvX+haGPuBVbPny5cDTeOpm5w6amkoo+dycZxeHHf3DZfzxJtvCopK0TQlv/zhC90p5/zcs9nucHFmtgrrZjbrLSF4Hh+faVYlEbGcTZMn+CiFJoaqkjCdc9tSZHnqUbSo4LKKpqmo64ztpmJ3c8s0tYxjj50nsqzEz4roc7SqsePI89ORGAxjPzHPlp++/5aqlgTpcRK+aNe2SNr3RBscm+0NOsv4b//9v+PTpy/85//1X3HW03UDh5fjdYs+jrK1vL9/SKrNkZeXA7c394nfqiiK/GrbXq8swZ/wTlFXNc5ZnBMLbYwhqUlyxvEsnMSYcTicOR0uVEWDd4rzuedZ99TVmhgjnz8/8+bNG7abHW3bslqteHl5ob203NzccjgcsS5wdy/hAkVRMgwdjdai3PGvi4SlmJACTSxsY4wU+SSpuDojz3OqKtL3HXlmmMeJ4EU5VxR5Stp19H3P6XRmGCZCjDw+PbHdbllvNpIiF6UI8y6CcvLa1UrsY7mw4aJPtgeS9U6bq7ViacoynV85fEuBOM/ye8kyYQctqmj5HHnIipV1UTlLYapT8eR8kMYmShKaSgXd0pgbU6QFjFjNpKdULCm2iwLFJ5bVkggn6bsywkktszy/wwKR1vInSdaQZcJ5XODMy/b4eGpx3gujyEtBHHxaEiXejTHIIK/KmUwky3PyLBNrdJ5xdy/21NPpnNSOAy46Ns0KO0eKTN4La8OVC2aUgLzt7K/NcvAzeV5eLT9FUcgQSc38+c8/8827NxRlyd3dPVVVp2G/WHXLsmS/3/P27TtO5xemaWS12lEUlaQs2kHCG0ZLxHC+DCmJ3gIarQIuMTTLKr9CpYmJQwjY2RFDlgIh1hBlWZdlGSQV0WxnyloWXZ8/f0FppLklYx4042AZui+UVcHt7Y5pmunaiapqMFnghx++5+5u4o9/+JV59rwcWpp1xnodGX1HluXkOYQZxmEgqsDf/O5Hdjc7fv75z0lpCnle4qyl9T2b3YZh6FFKEhqDV9jZczq1YnUapW7YrBs22zXb7YZxOksidVVS1TXTMNC3Dh+gu3Q09UBuCpydmUYNXnGzvxcmKRmrZs1PP/6Oss5YNQ1tZ/Fe8c27t3hvUwic4cOHL/zhjx85vPQc9MinxwNZqclzxdu3e0ym6bruutxeAlGyXZ4UWbKczIwgBMpKuKHRw+624fnlwM+/fcJoQ1XWPDx8Q1Ov+eWXXzEm53TucO5MZkqyTOxiwziL8sgYqQfSIkBYRRm+LCmKkmmaOR1PbNeb69B+cc4sKtjb21uqqhJmarKLXS4d3gU2mw1VVbNgTharvNaaIs8ZikmGDFp6AJfUgqvVitVq9cqEyqQelPugSKoxORWsFWab85rVqkJrQYVUVcUV8ZJJaqa1M1oLqiSkZbHw6qTxUjGi0cmabIgq/6q5S7fLV0vktNtnYV99vZxYhn6Lm2P5+N/avxaV4DwLs3jBo1w/RynGaU7hQvl1uGa0ScqSeG2AF6XJ10uQRZ1DlL8bhgGNcM+uSp9UM4krSZGlZt15n5Yo2VcL9nSlpEVJCGLfjUYW6aI6ztFGU5qCgox5HNBGaq55mDGZJFw7Z68hK3bucS7QNKJY9f5CCAo7h4TOmFGJLXu/l+d3CIHL5SK9kVZJzaUZjj2gaZqapqlBRc7nI95rTscD4zikhY5w6nwQd1hVi2pwHCX8anne5WnZ732kvbwy01SMqUeBEKAszLUvLYo8KV8nOYvOPQrFdivX9nq9TuGEE9oYfvnlA4eXo9T0tuPupmQaNMfDCTtrpi71wFl2vf70NSV95tK2afkm17xcV4kvqTzf//CGLA/sdpvEcR8BT91k/NO//Z6oW4ILGFNwOHjG0VMVDWHVEHxkvd4QQkg13Buevhz49tstv/76IaUbG2ZrOR3PoKCpG5pVRdf2/PEPZzY7TVZEhkEWoOMoZ+Tt3Q2rqqSuPDe3Obe3d2itxRoaZwKW7W6F1jnv33/ieJwheFxKXt7tdiij+OX9n9FaJy6yQpdypszTjNI50zTyuT+x3lasNxXff/ct682GLNNkmfRSVVWx2Wwoi4oYM7JM8/TlhLWe9WrLP/zj33O5nPny+XNiP0oqbFlW6d7WadD3ymkvihLnbBq8Gpq6IQxpGZeES5IXIEsakGdoCB37/ZY8z+k7seOWuQTZSaL314uEVxfk4jZEvZ5HizApM3lStteoPia2qr+eTWVZspRay3W2oKfEQcAVXyXfO9VzUaX+8nVotaiX5RpN562SlF2fhoOy3NDXM08r8EF61Vdcipw3YqsmORfD9TwWx5YM8UIMaRGc+JGZJCB3fY9YskGCMpaDz6f/3qRnoNS6Iu4R9fry/mitk4JPDn11/RlfX2NUMgD98P4RpRRllVEHxd3NLUoZLpeOcZoJPlyXzn/Nx1894MszSZDJck1WG86HlhAmFBPPL7+R5Z62e6Eov6VvL7T9E85n6cJZVHeJ3VUWmPTv4rcvZMNXS2KcDAkMMcom5soxSpNRrVTiownoUqklCVBkpEVZkOc549CLsmMarxuOPDM8PNxfrYtFXjCNZz4/DXTdSEwT3H7s2ewgOiuT5ghFXuIV+ODFzqNErSFDEc809RS5wtuey/kFZx3ez4QAl/MBrYUL2NRNauIGZtcR40RZ1TjvZAOFJoZwlZ2WpQxYl4PCOQ9KYWfHNA5kOqKVwtmZ4B15YbC2I4TIelUwjxe8q1ExI9iMwhT4GMnyguAlhU4bi7Mj0zgkBopsDFerlTRrLKoHz/n0RJHvmCcDsUg3oWy2pmEQoK+umOeeaTqDElm7KDw8dV3LAeEt0zihtTCY6rJinkditORFJcDmxGkMUaxxoNKGXJHl8iAJQbYj1s5kqegJyT7trRTCKiois+wmVYHCJ21toMhzjNby/kVPZiSoI4ZAnhXp+y42s/gKBY0RqNIAWngmsjWQIq4oCmbvyXOxKthxxrksjQ49q1V5VfuNw8QwzEyjZ5wmtttMFKTtCZ1lhGiJoUdnET97lF4RvNisY5DXtFhXXLJHx6CYrb3aNotCAN92njGZKHjatk8FjE5Mg5LFZrfbbVhvVsQYOZ9l2DWNls+fH2XLNAYogti8JlHnSMJe+v+4WEmkOezKgeAVQwLvglzXHz9+4ccfvmUcJ3a7HX03XLdiRSFb9h9/+JHtdsPHTx+u2+L1ekPXRUK0PD+/sFqt6IaJtu1pLxNERdCLVN1TFNnVYqZV4nRGTd9PNKsGlKeqK8qquFqu27bny5cLeZHzu795izGQ5TJEqeuSIq94/8sRxcz9w47bmx0SXjMRgme/27G/qTmdBj5/PNK2PeezZbOTsJLRtnR9S9cWFEa2x9ZbdrcCWvdekRe1WJedFJUxyINSKS2/Wx/R2pHlgaG3hBx2uw0+ODbrLWUBIc5cuhPKjAQm8kwsMpnJ8E7RXUY2Tc262TOvI3WzpiprXp4fBc5bZBR5LcqSl8+S+JVYluNg6Z4u/Kf/9Cd++PEntMmYRoudA3f3W8rS8P3337HZNhwOB+bZ0nU9xpwEHB5VAqojW+O+hyCb0PZyYRoEAG6MJKhd2tNVNVeWOd988w3aGA6HM/fZLV03ApFpcnz6+At1ueH25g3T5Oi6nqZpWK/W2NmldDgZCPzTP/2X/If/8D9zOp3p+h4fhHcWoySjd0OPzgz1qklg+yHdNwWrVZMKoGTJT0WR1ubazBpjuLm5JQTHNE60vQwo1+vVVd2x3W7J8prT+cI4zkzzzDRZisKy3dzgnOXp6QvDcCTLVRq2y/1bVTXrtah8QwwM/UDXtUzTQJasmiCNcPBJBQLXQkYnW8PS5C8LNli2sJoyK9KzOX6lppH/vtY5zqnrve2cQxwdERdmjBJWmgo6pXeSGiLpSgNfqa4V16/jfZAt8VeF3NJUL+oMeLUsmczQrISzuV6vGMeR7XbLDz99w8vLgXGYadtBNrhKnlurdcNuv+XSntOCJrJaS+oqyrOEhrRtj6QKFnTdiLjfAl2YcBbmccAv0ERkMYU2hABLMEGe53Sz8MmGceTStuRZzmpd42zgfD7z7t0bYoQ//OGPknTvkgorFcC/+93f8O1337Le1Hz58lmU5ibHe5dSdiHEBC1fC7T8EM/03UgwwuDzISR72VJcp1JTKVABrTPW65WoosqS1aqhrlfkWUFVHZmmkc1mxZfPL3z8+ERmMvY30oi8e/cNv/7ykWmSJPauHZNyIcfaQIwzWn+kLKq0qHUMg+fTx+OiOWC/u8dPM4fHgWGcyEtNXuY8Pn65Djcul47NRiyd2hhi0OR5iTaaLLNIoEJI57lDK1FPTbanippL+8LsBtbrmvv7G+qmZugmTseRGA3zpLkcT3zz9ju6tqU9v/Dm/i3nS8/QD7x7V/PLr79QFDm7/Zr1aoVShs12i50HolKUdc00Orp+4suXEyBDcVG5eeY5ormQF5qqEkViWaahwDSglSxwiiK/qh/G0VKWNafjCa0C+5uG27udcH5ULumAo+Pl+MJsLYXKMHlG201s1ivyokRpw6W94K3UL9Moi2VtdHr/DPNlIoTIPFuKshT+kxFV4YJ7iTGwXsmQQmtD23ZXJIyzHuqkikpsqb7vWK02jKOktvZ2JIRIZjKyTJqr5Ww6nc6iSipLcRsQyXOpUcZxvL6Xy/sCMA49eb7GZBm//fZLCjrIGafp2kj74AgxJ/p4XV4AKZgthfEgXGbvHXlZsFqv8M5f6zthQX/dnL021zFN/IzJyEwmi9Z5/oovlVQgvDawX593KoUP9b1jaSR9kNTnEF85hIuKMaaGdAkiivEvm+zlYxFCoPRrurwTFIW4YxJqgVdFtdLpZ5KnReJtF9elw6IIFu649Gtaadw84wPM1pMXGbe3d8zjwOl0FKWilkCPuCiGTYbWwoKcJ8c0nRGcUs67t98QSo91gePhyDw72kvHt2/fYbTheDzx9u0bbm5u+Z/+p/8J4MrI1tpQVUVisDsRB6icaZ5YrzeoXs7pEAIqQtt1nM+9uAh8UjHyitrIlrC+qFAqIxKuQ8VptORFRq2zZE8XXuqiBJKvF7HOUdeysH1+fpJlSSFCCu8idtIMfWDoOh7uWuyssVYUzsvCemGeLc+mZWDeth11XaXrSdT2znp+//s/sdpodm3J+/czzsI0eWLQhKDIskKUjLOkJHeXI1VdojUYnXM4n1mttmS59HwbnaNUTlmtef/+C+NoxUFTisLSJmuqJMRHBuMJh4GuN6y3NauVwWi4XIQb6pzlchGu6npdcbm8MM+WLMvSeehAzbTdiaqCv/03b3GTx7nId99+jzaK//if/xPKRNYrCWOKTuOdWK3rxiS3S6Co1/zt3/5IVWV8/vKR4+mQ1GUy5CsKWUbMdqa9nLEzDMOMVhkmU+z3Wz5//igK1ark3bu3qIQjmOaJ0/GIs5YyL67PfK0N1s6cLic+fPjAdrtmGsd0znh88GSZ2KrFWUU6e2cRYdQrdtst0zwxdBPjOIuzwKd5xHJ/q9czRaWJ/9dMUNJIaXkGrdcr+l4GdotSznsvS8dBaifvPV++fPnqa5DOrMW1GIhJfbzUdddTcbHeprmN98KFl0VvuA7mFtaj9xJ+ttR73r8up6/nmMjC0rG9vB5RZWfJ6enS71oYppYI4vTLTFIik9TS4lizXtymWpsUliTvvzbyHnon6kvFwhpUX/18wt42RtBido7CJVTyfAnR0fdn2uMgQocso65UEjT8/8GAT6HIjGaeB/puQGnL2B94efnA4fiZZp1T1ZrZnXE+57f3v2ddf89msyaGgA/CmAlelHk+rYlckn/e3d1yaS/XQ+oVYvu6CfPWXTlZMr0lFf7Lg0qsWoQovvJMM08jzy+fudnfkGclRZFxf3fHhw/veXo6st9vOJ6ekg3AM80TtjDclJGuOyf4rGXsOtbrXdoyLu+KbEaisjg3cL5IWmxRGFDCZpqmUYqbLNK2A1VV47ymqbfUdUHbvrBpbtjVFSFA34qyqbucKUqTEuYCRSHN4jR1tF1PRMkkPTjyjLSdkiI2z8WC6ZxjGHvaywt5vqNptlTNmkwb+jFQ5jntPGKCoqoVL09HGZ7ojDIvqErZfBKjpH2ezuRFpCpLyETVFl1MF/WEwuPcRbbkNGgd8GHgfDmyahoZeM09vRMQs7Md02xROFStpGHOkJh2O5PpjNkjEeYo0KSHTZCiLloyZeVwiRERJKfD8bqZNUlZONL3F2J03N48yEMqagot6g/n5NpU6Vxx14m9pIZqren78cpTWQqsLKl3pmmiaZq0IZ6uG9YQPBFp7Pb7HcGNWKexLpAZ2QhezhdCkEHJMAibqChmuq4lyzTjLAmqTZ2x3TUytPMzzqukPhO2AwgbxDk5nIOPGJVTlRnTNEBSQMaokCRGSd3MjBzSS3KfbBtn+n5mdWlTYIChH+YUxrH83FHYi1EEgz6d6lpLGE1I29CF/TBOE1UtTE0ZjIiU/3w+Mc13OOf453/+z7SXXt5npLhar1f8+OMPrFcrpmngX//1X2RTFBXjaBmnjqKQ+6dpVmJDVx3HQ0tMBeky/M+K/DqgUEqllEF5OOz3myusfRx7buo9MSoyk9O2szRU5zN//OMv3NyuUgpyidEFwzDx268vVHVGnhuUkgfn81OLzhxv3z7QtQPawDA6jseBqirxPvLD9z/yaCzd2dK2Fx7ePvBP//RP/Prrz5yOR07HM3W15tye6IeRm9sdSwpgkZdYAvPsGYeTPDBK4aTc3G5Zr2t8GJmHmc06J88LLqeRrm9FFRUM62bHMFj8rkSrnLv7d2KXLQoe3nxLCJbdbo2IVi1/+3c/Ye1EP4wYXdL3nl9/+Y0///KRX359JisyfPTc3u2E6XKz4x/+8R84HJ5YrRo2m4wiF6VH23asVg27nXDHyqJMSptRioUYObwcyPOK/a6Q5YrSaGMojUFpzTQnK2294nRu01BCivU3795RZRVv335DVTa8f/+Z7WbHmwdhsp5OJ9brDafThV9//Y3Vesvjly+opCwxJmOeW46HF0IMXLoL/TigFcneIEqz3W6bHvRimcmLgjwTe+7ClVytVnJ/2glrxQ6kTSbpholZVDc1QWl0pmnbAdOPSUGXkWWFFO/VirLOaZqCYbzQXlpu73bSYKOJUVgz8zyJ3VaV3NzecGmPYpU0BhXDNRVZKcXQD9eU7EWBo5RKqZ/xWhhKMJEA5Y15ZS4pHairkqJYQ1SSlB1EVTxNspApiowYIrOVBjWmzbP3PgVWvRaOywBH1PFizxO1zmt6r1weMZ3ZX9ncMBwPF7x3jIPYtk7nM7v9nnEYE69T3m+Vhq/OO8ZplOCMkCWl2qISzLBWkn6nYWC9aSirhvYyJ9SAQ0ctTMxkScmy/Lq8ke20DA1ECRwWmQ3rZoUKcD6fZfsfLXkmbNuqlCTU0+kiSvAsS8FRktLeXi6cTxdWzRofPKvVhj//+Y84L81vjIrt1rBZlehtzjjMDMOYVIuBhbl6ZRxrjVEqPbPkPZlny6k/09QyOD4eD2RZwf5mR9cqHh+/cD6PBK9xQTOPQNRYO1IURsJ3MhlMXS4t0+QZR0eWRT5/PGIysc/64EDJNj8zPatmTetOHJ5nvMtEZQNcLhe6rr0yZ6dppsjl97Br1pRFxZfHExF/beizvMLOlqYpCF5hCqgbw/2bPUWZMbuKui7QxjBNFmNqnGsJTlHmW6Kf+MMffiXPcuq6IWBoVltCVPz8y2/4oNABYjR8+fIiScSNhBYUdU6YLSFq6qbm/s1WEsCdDMVdDGzWDX/7u2/5wx/+lWGY+PD+A0VpOJ5eKMuCpllzubRY68mzEusceZ6xXu349PkDdSm2tBhHbm/3gGKaWvph5uOnzzgb0VocB8aYpOhYnv9iPQwhorS+1jDOW7qu43IWyLtWDh88/ThSjGNSyFwQ5a+jH0d88GJbrhpx3ERhaOV5QdOsOJ9PeG9ZIO9FUeErUEoCr8ZB4PP73R7rHJdLew1/kKRXe22ixIaZQtQsabC0LCIM0zRQ1wW3d1uGYcLbSFnKsnYZjCxWWq0NLsjXu9YE6GuXWhRFsqeqVLesrwPGry1vy9klyxxZcqo0gAkhqaB55RovS5IlqftrvIw0kPE6CFtSyAMSdDX2A1n+muxIjGTGEJTGRUvUKUVTLeqXdGaC8EaNTgofsdtK+jeSjJqCIBUGZQwqQe61Eg+z0lLjaa0oypJhELZyRETUq1VDXZUcTofrELQfLByOFFmGd4iLBo2zPi14JIAxWQ9k4YXGJaX8bB3nkyiojJKlmp1m/vzzz3zz9g1aK3GEsQx6lSjocwkb+/7773n37h2H4wtPT19AyVCzrlfE6BknQQ7EEIU9ttEYPdL3E3YWl0Qk8WXTQEJe7StjlriICyJ5VlJWhhBE0CDLyApjMnEZENlsNnz6+MjxdGGepG9brTasVztubmCeTrJgioroDfPo0Maw3e5SbzmnBVlSZS7PzlRvX1voKOm4p+OAD5qX5wt1n8nCs7UQM1TMODz3/OkPn9nuNYfDSZiF3qK1BGWGkDNb8EE4sFlW8MuvH/nw4TNDP6OUnC1t112Z+UbrK3IDK/casWG3uSMy0bUjRhuadclmU6Nx6T4RpIR1jufnR0lc1oYv7y8UBRgjIh5TaNa7NaOd+O1Pv8pQMZLY9gVPX45Mo8fOYHRBXig26y2/++kHTBY5nh/Z73csAYkLyV4pw+l0Yp4dRVGzWa/56cdb2ouktD8/P/PlyxfOlzNVXfPTT3/D58fPjNPIy8sL3juKTLAHwm33SaxTUBYlk51w3pMXwlG3tsfOljyr0Nqw2+1x1nN7K2rJ0/kksw4tgVDrusaHHUplHA4n2rZDX+s1CQbSKiMqEccIl3LBtBhxgCkJqtK6pmlWDMP4laVfarwsMwx9n4IbUyr2MiRckpfDVyOq5FDg+ici5FrOOZYlblrOqlTjz/N8Xe4ui4pFWYxSSY2cvkH6GXQmfawo6DRZbpI7M14XxyGdzdYGfJjJclm2xoAgDpTcX2pJsk0OW5OGfN5HFDHVcxJMFha5dqpPI+Gq9i7LkmGIkMWrejNEIGiid4xuxs0aZeY0t3qte/+aj796wOe9JbiJ2Z4Z+hc265xx+sS5/chsO3bZLZmRQYKKnn56ZtW8wRSKj7/8wqU9c3/7LUpHYvBM88A4zpRFnaTYhnEU6bUAmxP405gkMw6YPJODWQNhxCjP7CRlEzSZFvtIVVXYecb5mb5rmecLIdbU1Q6j4bdf/0DXnVmt9ljbUxSKuhI1VdsOwExV3ZDpgtXtgyTcPH5mVddoI1vJZVKOcQzjM+PYMc4XsqymoErb2JLL5cJ6VVHXDUXeJ9B15HLpZLPTO758/sBmsyb4wDQOzPPMerPFOmGVae2AEaUVVVUzW8/xcKTId4zDxFQLDyJPgOCiXHE8nRAVFSgV6YcTVSVDNVVAlpVX+GsIFh+EiRiCIyISWq1g6MfUMMvvZLYTTbNljKLqMUaa2nk6UZUQ/UBd5hAFfjkMLatVQ56VdN2A0XkqiGDoBxRGeINBkZsCrQzb9QpFzTBOyQqQy+BWZ4RgWa0EXj8NPZnxuOgYZ4/RlQwFlKg6tIpkhSFi8fPEPA0oZBKvtVhrk4mLvu9TmmMuBYYCnZnEg5PiT76m8JggNcPOpqHeeJX7V7Wo+px3whfwgXEYMZmDIKqccZoI1lJWDXleMs8OZyPzJMyPzBRJ+aNRytP3LWUphXPTKIrcMI4xPQQlpXAp4lx6TcvPBKS/f91yWytcpSwTvoG1Djv7pE5d7kFJs9vtBLja9TPjFIneUtVRNq9KXbc2+itGTVkUiYEnUnUVhRmx3WyI3nM6nSkrGR4QIs8vT6zWK6ZpZrInyqKCKKzLsryj7/rEcvTkecmbN29T8monar9pYL3esNk2NHVGZkrGUViOV0VjCnFYEgOzXGz3JoBzgXma6dpTYqKIhXm93vLtt+94eTkyz5bzqWOeIt0lUNcVZbGiroeUWqmoyozLZcI7aE8tWaF4eeo4HUYuF2FKVpVsy4KXjWyZNfLg1BCUR+nAn3/+o1jVkWAj4Y9KQaBVlsDpjqL0hDATvCLLNWHw+CB2Bh8njucnlPLc3e3ZbGW7+vHwzOXoyfOa56cD3393wzxp3n94SkD+ibIoubu748OnT9zc7JmtoyhkwDZbRySQFwVtO/If/9d/4edfvgCatnNssjINIiRI4fn5keenO7LcpHNdGj/n/NU+dbmcWa2FQeLcRF1XrNcbnh5fWK+2TKNLykiPMRllKWehBGpEuq4HBX03YoxhtWpQMfJwf0dTN2gCsx2RRMtcmClPT1c22a+//iLKA5MlhXhBlQrzeR6TUliGeUE5+mmkTJvWxdoqMG9RlgfvGd1IVTVsNmv6fpAivyjI8pxh7DB5jvMzz4cXlJLAn3maGWfLNM+cji3HlxbnZMgk22XhoUaEaZvnJdb216FX1/fXtPbgPW62BG2Zppnj8cg8y3LFGENdiWpSkoeRwR8Ay6BsCZQS5gsKefbpSJbJcqBM4H9rHV3XofUGozO555QElRRFxps3D0mdE3h8fKaPE/PkWJTREmyRGmRet76k17PYIECeu+a6ZdNXheSyeJkmUd7IUF84kJMNzPPx2tDnWYGbR5yTIeU8imK9aSrWm51s2o/SYEUEWUAE72HoZ4Z+Tr8XIEb6Ts7VxR4XdBT725JYB5RVLdwvFCqKytw7qSXKsqCqJIhpGDt83HN7f8fj4xNLMtwwioXyd7/7G47HE0VR0rayeIx4rPX0KU3OOmnAL5eOzVqzWa9omhWXc0+MS3CA2K2VXorVkJY/wuS0s5z/Shu0MoQYE7pB7sP9zS0xGk7HCZVYOSQ2jdbw5u0ddSVq1MullYXr6ChKQW846yQ4gIAPkbLMyEzDPGfUVc3L4UTXzWS6RusMP8t1vCS9r9cbDocT1glGxbkIaO7u7nn/8ZdkYZKhUF6I8rquK96+u2e1blhshdZOKOVxruBy6Zh6zzwG9rs7+n4kyyq0mRhGC2rmt98+cD61aZBruL+7o1nV3N3sGYaW55cnAnKPzJcJrRQvhyNKK/7dv/sveXx8oRtGmlWDyeRrtF3HODqqSvHl8ZnttmK9XmGMZp6EJ+W9gioT+2Ity6FxtChm6pVJAWcpLEZ58lzLGZFJ8mJZmHQ9SnBAVVfs9zteng6AomkWha8o7IdhEBvWV2DwaRRF3zhO5KmB9T5yaVtm67CFJNlKkqdlvS5RSnE+n78KQFt6inAdMmotwWnex8Qr04klbL9Sq4nCY1Fmybkh6lofBKRushS6VmX88NN3FHnBP//nfyUGUbUv7KRhGMWimvAEGkBLkML11FGLdTPDBbGmTfNMnuUUZYXSGRFZmMrxmIZluUkIF3nOa016TrirdXKpH5drUAZ5Kp1ny98tw8GvmmWtUVl2FTcs9rnlnI6JZaUXbEE6PV8HkKC0Zr1uaNYFITqKQurevMg5XS5XVlkMojgTHEykSCpGSYYdZeFuDHVdpIRlh3PyTUJi3lkrzzIfIkqNWGNw7lX5579CR6j0Wo0JKKNlOOeEQ953A5L83ZNlOVVREYwMrqq6YRgHng8Hxo8fsW5BOglfsa4bdrvd1XYpiqWOqqoZhkFU3ZOgVPK8YF3WlIUiz0q07nl5OeBDGnwoueZC9JIUqpdB6WJtTsyuCMMw0ncXVk2D1op5njDGsb/ZMI2T3BPDwNhLirF3YkPuotje61pQK3khPZKPDoKkbHsfsKkPheV5uGAxRJm9hDEoDJnWokDymm+/fcDaLnGoYxqSGILT/PH3nylrRdeNcr9JPhtZJtdnXmQo9ZuooJRO4U1zUk+/BrUoY5JrKt3rATQaHwzn40CRn2UJ0Y+stwVlSm/frnKcC5xOzyhMYsWKYGW73WJywziMqNQLGlNg3cwff/0Za11igBqCh37subQd0Rm0LvBOWHtlUfPzL7+y29cUpaHrzhhjeHh4Izge61BpIdK1A2ZbME0j7eU9l/PIw8Mbuq5nHMYkmvA8PT3x5csX1ps1fd/j/Eyx28ssLMYkFvEoIkWRU9Ulzbrh5fCSRBYZYxg5Hk883N9ze3vH09MzRivWKxEc9F2Ps567uzu0MpxOF+qqwtxLzalIgaPDmFS6Kg3KjPx7TIvTGBNvjhTmFqmqMoWzLcNoGYwbIxZpebYKr/1al8VkDU/XvzJLwveral70Qa/qwgUTcFX+LcMypdJZIGdjOgyudZ9faj+WMLdIWSYkyTRfv9c0WyTFN4LRaCRUI3pxbgUcPkSil3tVpUHgkti7nJiLKjEg1vYsU6nWDkSfkqdTrafSOQDSXw/DCOn1eElqks9BoYk4Lw6wVL6yhAT/NR9/9YDPaMizQD8c6Yf3ZFnJNB0gCkeNGAhOmqGiiJy7T9TNDYfjiskf+OMv/x/68cL33/+O9nxgni907cT9D3/Pal3x5elRrJBap8muub7h3nvmeabKSrSSB4CbDoTQEpnpR8t2+xaj7/BBAZ5x7DFGMfQXTqcPZGZmVW4pcoWbB7r+GaOlSTqfnpjmnhA9RSEsq+At7eXAZt1wOZ8kGMNeyPMN3g0SjoGnahRKdUzTETuPjCbQ1AXzPHI8HoGIDzPzrFnSdLq2pchzxr7DqAaqGe9b5slidBTFQ2YwJk9WVSiqmgVgvt/nqCg3UnvpmeeZu7tbqjqnLMWGaKdFJWdxdmIaLaeToi4rwuwpsp00Lm6iKBXT3DHbmWFsE0emY7aW3XYPKsM6T5/su83Ksll5IpYYRnwIBH8WbpjtaFvHbrdFaWmUjc6YppnLpUu8CcMwjpR5w/FwJMtL+rZnvWowxlPkAQnYyEDJtivPNdMwUVYKowbO52fcLFvaEBU+GPK8AcLV1o0KKGba9ihWseASCNSjlU0HQJbArbJtMzonM4oYXodhIMWGVom1WOVYO5JlGutHkXSnZL4QAy54AoHC5HIIKoje4eMs11xeEnyOd5ZpmFBKUn6ljkvx5oitZdkqex94fn7kZi9Ni6Ki7w3WOopyGYSHJHsW5cwSBCKJeyVLMjVACCo14TrJwB3jOKWmTzg/NiWf9b2ksxLSeeRg6uV1OSesPqVIA2axedjZJu5YJUP3UorYtr0wTxN1JRs4ax3D3FOUN9y/uefnP/+K84E4z+h+4O3bt3z7zbf89ttv3N3fMgw9Dw8PFEXJ08sTwyhNn3UeM86cTif2+1uRgjuRvAcvB7pXAZUlo0mI6BjFOp4S7cpKmltrxVIwzgPeB968ecu3373j118+pHh7iEFDTPzFUvHjj+8IASbb0w8T3knRH0Lg+BLITMCnkzwGeXD2naFpNnz69MzYQQwZRZ7TDS15lRGip1nVPD4/Mc8zzkd29Yr1esvHT++xdiTPixQwBDE6vvlmzzR3rNaaH358Q1bkjEPLdr9Ca0miy4sGZy1+1tzsvucP//oRpWCzXbPbVrx5+w3PT0/88c/CLVUpGatrWza7kqik6Y9eCuLdzZ7yyxFrRaF0PLREFbi9fUt7EVXj6XRmGDtOp2NKd5V4emt7sf4TKfKaT58+oHRKpNOO9XrNbB1VXTIOAsQtygLtReVnZ2E0ZrlG1NRwuZxRyZI9zR23d3sMkvTW9xfGqWccJ3795TfW6w3r9ZqbmxteXl44XVqKvGC73RF84HK+ALIZ7bpewlyMKILc7MhMjjEOpcar6leSd0uC9Qy9QL/rqqasSrI8k5CYLCPqmAr2AWOkGJtFAoWzEzG6hCHwdOc2DTYrslVNnpXMk2WYzjg/sd40bDYN4zxKalgm23NrPfPc4ewr7kIpJbYLJ9yiGCNNU1+bLcETJCxC4k6J8EcRtRWvqZLUSucmsqxitRJo9NPT81XJAJDlwikN0XM6XcjyjLour8NaUR/oa4qbSYuXeC2KuQ4FvuYNLSo2UQfLMkLuSVHzy0kV8Q6CBrQsdpRWFJlJDWRCMaQmOvrI5dTjrbDOgluKYkOW5/ggKm9p2k2ygojKWyv1ikCwwin2IZCX8gxwMRCsE7VQAlfnWSYBYkFscJvNmqap6dqOd9++4/HxSZ7DzgGeSmv2+z273Z7f//733N/f0zTrq0X3w4ePybYTqes1dVPLkG4KHP2Jul5hzCEV64t6UtQfKjEQs5RWLirMAR8mVqsSm8kAJfjI6CdiPKHUheAjZVEyZBajFc7NOGepqpLj4cDT8zPNKufdN1seH4/0JvK3f/fA7e0tH94/8eH9M31vU2J7gZ3lPf/5+QttO7Dd7sjynBg8D2/esF6vOB5fknorpyhzDsezLMSIfP7yhTyXlHYfHGWTYVSkaQpubrfcP+zZbtd8+PCBy7mj6ydMlrHdblDKczp2PH05M3WR+7vv2e8Fp9I0a+b5hAswzhb7fBR1TlNyPB0py4LDzS3Ozwlv0mDdkFRsDX0nqjdrLfWqwcdI13dApOs6zuczLoXQ7G/qlMC3o6orPn96ZDx3bNf7K7jb2prD4cCrEm2xhSuGQeyFxpSsmoYsq4hBM0+B3e6GMaVX101DUcoCcJ7mpJzuUSomld8SWiYD9Jv9HUUh3LquG1DANFmaZoVtHE/HJzlbp17sh1EG0wuXahwHsixPFt6Jsiyp65rVqkFwHvL9FoX/Euaz1M1KwVeYqOuSPctzlAXrJgJQ1w23dzc0dc3PP/+MyRR1tWK/uyeET1wuHatVLcPTeU6DqDRojp7ZWWnGtBJLbmL3+RAxWYHJDTYthkJqbIWxl0lIR5QFizYKraVmN1lOqWW4Ly4JkgJGXa1xy+Baa3VtghfLcJoZLaJCIho0uBAJVs5RHXW6rV/PXxBEigJUeq1ZZhjnCXueUETyPGeeJ7a7LevdRpxE3UQMijFB6ElKNcERGUkbTopJ5z3aGObZMo0jbp7JMsN6sxKUwTBibQBmqkIW19Lfp/TdJJuR58zrwMx74cdqkVLT1BXB2dSMp/dEBax3NOs1pii4dAMo4Wa5II33/f090yRLuJfDy3UZfrO/5dfffqHrRryXBU9ZR6raU1U1VdUwjfPVEfT6rJDaTp6VitcsYwjeCUNxntBGhgELWslaWbw3q5rVas08LxxD0jUuqafjKCE9D292wmpbFSyyyhijWIdDuC65VFqyLyp2tLxesRIaiBnBO7ydKbKK25uau/u3/PD9T0T7v/Cv//wk95pR4DKmVuFGQ2DpxRWzi0Tlmd3ifHEsuBul8+uCTaVhzevQWQYdQY4U8kyGsi/PrQzH0ZzPEoj1Tjc89heMUdSrjP1uRwzw8nKiaUq0Dmw3FVVhxE2lwWSaTx+/JO56JjiDUgQ143hBREIZdbVimkQB/f7Xj4Q4sd78gFYlZVlKuIaRkKrPpy/s97eUZcXQSybA8rPc3NyyXm/xTn727XbHOAz0XYcPi6Xf09Q1dV0yT7OEHObJfp0yAPLMMI2jCEmUIs8y7m5vmOYB5xw3N7cYbfjy+BkIbNYrnBWFcwyBT09PnC8tMTyx391ye3cniuvEoyyKUmzy3svzM9VFC1s+WCuDJ6WuVtkQPdvNltWq4fOXL6DEEWWdY+hTQrUyMvRazpOk1tOZSjWE9M5BLcy9mBZ4QFoWhOQKjEQJCIpSq4W4BGmJWljuLUkLX0K/lFrQLIF+6NLgMjnHogzssrT8qaqaeZpISR+o4AkJq4ZalLfqijWQ+ychY5YbM0pSOz5ik1vtGhEcQYfXwKEQAuM4yOJaviXJryHuwoRAeT3D5S//ev3e/w8GfESLs2e86/BhpO0GikLAkrvdmrY9s9tvkUjtmba9cH87YYzw6R4fP9D3A0UVmeyA8wPWR7LSo40jRCvqviTTXqyA3s0SS17nKC2/CG0izg/EMDDbDu8tw1CwXYm0f5gHrB3I8xqdzRRVxmwH8twKTDszPB8uAqoMJZ+//MpsR5q6ShBbgw8W62b64UheBHzs6IZn6kaDHrG+Q4DceZLqy/Z0niZeXl5EIZRlDENPUWyuDD1rZ25v7ghIfLc0VYGuPaNVhvczd7c39MPIpe+IMXBzu6PrOspS2GDRx+sgYolrn+aZuhF5rguR7XZ7hRWP48jhIHLj3XbPblegzYx1lhgGtC44ns+M44hScDwdqOo1zoUrcLLv+yvgtu8HiqxMLD2PcxPWzkyTyMKDj0yTJSsMqijSf+uuD8gYNc5aotY0qw3jYNlsNqJA6VqyXUFRluKXz7P038wURSAz0CeulHcjRQEogw8z2mxTMbrA5SWZrapyIhZt5LCZ3UidaVGapPSmslSJbeGYrOVyvrBeb5JdLWCMqN6M0ZRVsrloCFaSO5cie9mYkArRaR7ZrRvZkKViwPtI3TSM/QWfoPVayyG/2WzYbjdsdw3H82eyLFJUFcZwbWQ3m21iBNXCzlIC03VOBpVZniXGnIR/ZNkSACIBErIBdEzTKytLrGOvtt3NZs35ck4KBzncy9Jct4ay7cmuvIYF6qrT1miBcHvvGbrxmhjXZSYxI6BphBNSVQU//PgDHz58FPu+k0bHe8/d/R3D0PPy8sy3334DwOl04nB84Xg6pq9ruL97mzh1gWkYqeomBRf4vwDdLvYPpSLORgqjr6qftu0pCyPXd5HhXcDZkcPhJVm3DGVRMA4CVh6GgX7siNFzusggKC88N7cVnz8N3NyXvH37lve/fqJtLbOVh57Yt3PGQRM9PD91lFlNUWjGaeDtuztCdGmzL0nHYlGSIezQD+z3ez58/FWA0zoI10EHijrnH//pb1lvVlhr6foLBMfl4jEm5/npTHu0FHpLXa8Yx5n1esfxeKTvRp6eDvT9JID3vODdT9+x225pmorD82cOLx2rbYEPM3XVcLk8U1cV/+d//9/y628fUCZntVozTB13d3va85FxmPnjH/+M0sJ1BMXT0zMxaqpilZiTW4xeMfYSLrLdrpOyRhqprhvI84qqqggRur5lnCYpJD10w0RZGsoqY7fb8N1372jqEqUieQEqeKpas9uv+fTpPZmpeXx8xJiC9XrH3/3d31NVH/gP/+E/YNYaO09oJSqaiNjXxnHimqYXFeM4MY2P7G+2UrQltawxGX03kClDU68w+tXyKbzNAZTAi41RzHOZrKGiyGj7ltmOKBVlcOYjY/qdaDTTKOqy+4c9Tb2iH1wqcA1NXVPkMvhwznM8nHBekWWam5v9VQHVdd11ozvPs5xXXxXmyz0NXG1j2ujkbXCEqFiA8fNsubm5YbNeYyfPOM4s9rOyzHh4uBXOZN/SNDX7mz11U5JlJ4bBCi8uqYSapsb7cD1XhC+48Jpk+KiUqPQl6bdPnxvQERYLyNc/hw/huiVVKhLcBBGapsFkhmHok01M7Pp29vTpc4wxSKiEPAeJSyKb/L4WlqGwX7LrQFQplQx60iBl2iBwZ49NHC8FzM5S5DLYjzFyf3/Hu3dveXp6FPv+Dz9cAyJALD6//PIL0zSm8AbF4XCkriu0Eut7PwxkWSG2Ka24tD3WTdze3iEJp1Yat/SeknjI7jpk4JrSPI4deW4oMn9dRIk6MqQFTcBasfBXVZ1wIoWkaRYBk0XevbvFe8fbb1eAIjJSFCMmk0GIBFUJB0qwD5HuYlEqJ89q4fPWOWWZc7mcr7zOcZSBeyRgMs04DKKoVJHdfsV2v2K1rtB4nB+pqoyiVLTdidn2KWBEST3ipFnJTE3wrbhGHKz3G46HCzc3dzTNhufnZ5wNkOzXnz99IRIkEXi0jGNPVVW8PB+xVkLJslyTZbJ8rVeOw+mCc57T+cJsk+IgBLyHIjeUZUnX93TDhf1+Q9PUBL+lLNPXnS1FUbLZrPnmm3cQG46njxzPZ25v7zAmw9oOMNRNyTzLMLG9TLx90/B1KIJSiiIvGZ2VYdZsMUahM81qtUY9KC6Xlru7O9brDc/PT4zjSGGW6z1wOp2p64qH+3s+ffqY3A4+2VkNglWRYIg+IQeKoqIoSkC+/mazEx721CI80YqmEZ5f1/XJ7r6EmE0YkwHCz9RaSYqpi+x3e/7Nv/kdITo+ffqMqFMK8kI4vN5P1HWGMZLoW9clRVmy2xfM80w3DOjMYJTBpVCbGOHSdqhkMXPOyjBPL8gCGZLFCMYI02kZbqp8Odc1VbXGGKmhBGMjjoKIpywKirLAO0GZSKpkOrZiUirK/7wqYUhniwwDk8oxNdyLXTNRuJLaJi1Sgly702hREZSeUTryOB84Hi8p0EijtHm15CmFmiUgoKyEOSuK+YFpdMxjSteMMFsZfLYXCcvwVsZN82hleaJ1WmJzHUopLUnTcq46dGYo85LohRlNlKY/y4pUf2YoBeM00XWCkQle1H7WiqI3N5a723tub2748OED7969Y54kVKxpMg6HI6eT9GA+QF5UxKBo2x5FhlYzTdPw8nK8qnVeVc6k4cTCO1xYWzBPE5cLgmvJBPGzDMqtdTw/vcgwL4riKsvFuWZMJn1RlGCOtjvTtpbN+i1/92++5/f/2jN06doyabBxVTlpjBIOuChjRaH/7u13mMQ3324qhumZyymimBLbTBZwmclp1hWn0+l1MPcqaUq1gISjZCZLP7vC6JCGFvE63Fue04uqFEi2fIikxFUvrNzNVvPDTw8UpSOEjpv9lmHo8d5yPp9lKJpnaBMYpgtl3jBOST1vhKFZFAWbjWFK4Wf9MCYmYc6PP/yAijkvzyeauuZ0OtH3HTqLvDy/MM8Vb97eJWb/QN+LQi9GScENIbLf33A69qzXDcGLKMHZntVqQ5ZlPD59FgWcz65LC+dnirLkcrpgVsLrVzpQmIw8XxOCZ5iGhIhpENeEnJF13UCM6TmacTwe2Gw2FEWe3pdTGvRFnPUcjyeaRlLNt9ttWjS/Bv8stZP3YiUV9bwEvmR5RlQys9lsVry8PJNlGbe3NxzPkj5eLsGFVpZqeZaluiiIUCBtXRSkoSGUhSiLffAi2EjIJrlg4/UaYTmvvrKpLlfdEt4U0qBeVNEyKYyR137OvIZwqBhxafEbnMcoRV7Vsoz1XpZqSoERRanCEJRNbt1loPiXr2epgdVXC4kFdxAiiTE/Xd1hwrCV8FKuQbmJw/11wjDLvOuv//irB3yBDhct43zAOWEbiLVvZBzFrrYMErwPlFVF3RiOp0f64USIlnP7yOPzL9RNyTi15MWKP//8v1KVK5wvqco1Ub1Gu8s2J1Joc2UxoDzT2DHPF2K8MNsebRTjfMboJ4pqDSHQvjxSlHtQI237QnX/wIdPf+D+/gEGzzi2FJlB6y2z7a5JSpL8GxmHns1mw+n0kthBDqMj3o9Y2zPNLXVdME8yHDmf5CEjyohZiqCi4M2bt9eNqgBDc0KUQV9ZCkfG+oHj8QWR5zuGcaSuN4zjyDCM3OkbsaSOk6g8JktT16w3W0JwXNoLobfc3mzp+g6FYr/dobXm48dPVGVNngsQXpvA6fzIbrsnehjaA3W1I6Ypfp5lVNsKpY3EZKfDtK5XrNcTWndkWUaMwh+0bsZ7S56LSqdtO+ZJHvDb/QogpS5J4uA4jikpTpIcJTLeA4au7akaAe0qLEYFDAq0NJMRUTHFaNHKcxnOlCVkWUGIEwGRlWdZxjgu2zFJdvQ+0KwqtFYo7eiHE81qjUaRG7FSNJVBmcg8jEQsXX9gta6JeCKysapqg3UD1g3C4EJsxHaO5Hktk3sjjDqlFNvNmhAmihyyxD6Q4kka0HEYaNZrmqbhfHpkt9uRZRld14niRKnrQzLPBXBvjKTk1nWF1jmkIUgIkOdLUt3CCyG9HwtfQVMUZXrPuSqOxO7jyHNR9A3DQAxSKAjcW6VhmgypZLCoiEkRpLWmyLLr91ia3mEYr9voZVCQZTmbjbB+vvvue7z3/Pbbb2hteHh44Hi6IEVzxvl85nA40DRip5hnSz/01HXF/mbP89MTpG07yBD208dPbPeS2Hs4nFgaAZCi7JrqZFRSjkBZifJBkaOUpyjWMmxMrDvnHEZLat/Dmz3G5DLY2N8wjMMVjP7djzdM48D9m56qhm+/uWGzKflP//EX3HmWrVHMGPtIcIEPx094D9uHhqapqKo9TVMzu5GyFtl8VZVczp001M7x8eMnsjxyf38DOLIcnJ+4v99xe7fj9u6GD+8/0HWDpPj6wHZzg1bQtTOfP50otOO/+q++oyxmgj+watY4N3M6X2gvHVpL8tzL4cjd3Z2ERhCIWKbZM4xnmmakawcZYmUF333/LZe2lwGqVfz+X3/PMPRoDbt9w3a34rvvvmGaZs6n9zirIIglgyj3f4hwOBwoS8Nm27DdrrDO8vPPv3A8PbFebSmrCm08d3drJBkxp2keqBtRkm23K3QWaaqSqipkOz+MhDhxvpzoe8f59Axonp8PdG3P3/zud1RVxcPDA/0oNiAZqA7cPTyQFTmHlxdIhUCR59h5xlon6tsgasYsk+tHRvmBspRhzjRNFEXO2mwoypK+b5n9TNud6boLu/2W1UoWJov6vFjVaCpihLpqMLpk6AcgJKtJTr1asdk2ZDJbROsMm9QC82zp+p6yuOHdNw/4MPPLLz+LIjepD+W/kcAF718DNZZ/vvLuUnGSrGNKy7ninXDunvyBLBNIflG8DgW9D8Lj8z6lvnsevzxSVRXb3Zr9jSSdXi4dh5dzSp7laiNetudXaLQStYxz7lpQyRmmiF62wCq+JmsuH0uaHFHUIwJa16xWDUVeCgicxVri03kV8V5S5+JXAxGt9XUwKj/zYsdzV/Vvnou9ap5lyKZNhjGyZdZarEc+CvaiLArh5Q49ZflNUuat6LqB9tLx8HDPly+PCHNu4nQ6c3d3w/39A09PX5jnKdkfDeq1fiQEj4rqqohar9ccj6KklTCVVIgmSHyOIcsVWgtYOs814ySb/3me6fqOxbLY973YeJDk3KZZp8ZS4fyINmJfFIXdZ1nSVhVl0TDNGb//l/c8fh4lnT4zYn0JMFmHigGFNAh2npmnia4LXFo5q+/u7tPvQLFaSdrlZrPmdDxhvePt3RtMJkFWwTus78lyGCcJrTAmY7PaE2PG2L9IWNUgCpr2MqCUoa5y2raVEJIso+t6fvjhBxnKzjO7raSbf/r0EZvwDH3f87u//R3b7Zanx89M05hSLc8EB/mm5uH+LZdu5v3735hmKyzPXGxoWgfyQlR+gZm7uw37/SbViZquHWlWOXf3N2zWFUTP6fRCXYB1wm8VLEfGZrPFWRm0eyfPdFGpyHV7uVyoqobddsun94/SlOiM2VlWuVh3fRoEfvfdt8So+POf/0Se54nJq651Rd93WDuR5ZFVXfHyckARMWWBmy3ZypDnGU1d0/dTqlUkXGiaZrpOBkGbtSQgL0O5+/s3ySI2XM8TGbDEq3opz+X6gUhRbDDG8PnzJ5pVzW63xRjDy8uTDKunFudFTbZZZ9w/7FFKwokul5bj6Yh1HqUNWZVfQ4natiWiWNzFMdWVV8YZKt33EKOkVJuULJ5lGUrLdXw89VRldRVBGKOJylPXObd3+6TWU4QXh3eWkGy8aW9xHegQk1IrKWEWBZfYfkWBmyUFpgz4xP62hNe8pl+KYiymJMngvCy2tEnnb06WizJSIWpGGaRPknJeGKbRQcxSHWXIY5mG7sJmJCKYmsWKi7riZ7yTQbA2Ss7FTAuyINkJp3nGTYK7WCzZEvKRy7AlBla+Yb/fJofQ5fo80Frjgufu9pax7xm6nhgjVdXw/v17slzT9z3jaPFRgjyaVSP2zKgZe0FI5EVBkRfX2jcivEcVFFEtYZAkOSnpXMrFDRMtdZmn5YigPKyzYqs0sugfBmExF7mklkagriR8o240+9uZb7/fsN0V7G7/DX/419/I9IqnpwPjOMuAJOpreIdSck+s11v+x//b/8h/99/9DzgXWDUrbnc7TB55OXzk//n/+n/w9OUDtzf3fGkuMmRa7Ioh8qoCXdLuI2iD0fL8F1ujLP1i8F+p97gO+VRclv7Lcs6hVApVSAGK89xTlVvW25xIQUSYvaTFbVE0lFWGzsAouFwsT597vIeyNoRgqeqauhY+mlKKYRiSg0ecREPX0bWDKPyJfP/TO+7uNqw3NeM4cDqfmacJ7xV1vWJXVvz888/UjagsP395pD1PaJ1xs3vgd7/7W3777QPb7ZZff/2NruuuVvkqYTh8cLRtxzAKmx0UdV2nRaEsp4CULl4mNnpgHCdiVHz8+JGyLKnKKlnfJbtAWKmw3W3x/ghRFm3TNIm7pK7ZbjcYnUu4jZ3J8hzJKJAQxLIqiKWojYs8Z55GqRWUIS8E3/DmzT0+eoyWezvLDUM/peF6kZR0Hh+dnFMxqavToFdpSerVRhOjhO0sSt3lOllWEUsirQz6Rakt12Jifya3hAz/l8Fb/Gp5ke7LsKhc5ZywdsYoEoYqBcKh5IyPYAqDQhx2y/f9+pgF6Rdfh31puI+Emi6LMsXra1XpHL5afhXCLJU76Vo7yvPME5X+39Wq/0c+/uoBXz+eyBnJC4U/S3x4nquULCUbqsUOOI6DMI6eP1GVI5f2hYgkmrWXE+OU4eNIXXraywu7zQOomryQRFw7d9RNelCEKGD+aUosFS1Jq8y4MIC2RHKmscWoF8raME49bfeIyQasn8gyhXeWtjuQZTNV2RBSI+WCpR8u5EVJlmk2m4au7zkcHnFuZr/f0/ezbOZDpL1csHbGziPGROq6hhDSBl3TXi4UhcDZh2GgaWSzN44zTbMSm5m2fPnyifv7u6QEcuRZhSKy2+95fj5yPktS5H6/E6m6EVWWc5bM5JzOF4q8wNqZ8/nEza0UK2VZ0XUXTucj6/WW9XrNMFiqqqGqarRW9H2LcyOZrnh++URWOKZZLlCxKkjq6zw7np6e2e1ucK7ldDpBhK7tWDcr7OwZ+kEOnuiThU0UGcYsiaWe8/nCbrenLEsOhwNKKe5u3zKNlhhmjBH7Xz9cuGFDP1xYNZqu61mvN9cNQVnLtWi0FvVZsqKGNGwsCpXSXA1aZQhXx9J2J5bQkaYpMVlOVRXEaBPoNGddF8yTxYaZee6J0UmxpjPyPBLCiHUT3jdYOzLZkbyoCX4GArmpsOMsnKkgwS9VUUkqmVIoFdLQzDLPPeiJYegYx0lS9qZZXqOdidESCfSDqA6cD9TNijzLOB7PlEVgvXpD30kzWhS5sObsYleUTbkxyCYpL7DO4qxP3D3Dzc0N82xTMqMcglpDDDGlK321UVGSLO2TaiPLJC59CdVYAkX+4nN94HzuJCo+6mQhFdl1JHK+XNjtdkzzzJuHNyglyoUPHz6x321pLy1lSkwEePv2J6pKUra7tqPrWrRRaWuuk4JJ2DreCV9wu9lwOp1RuUYrkfMHFvu2bNi1DsJXyAyzlZWXtZ7n52MqdqDtWjJj0EVGsyopyyqlukLXn6iqitu7hvUmw7oDq3XB/cM9oHj/60c+/DYwT3ManiZVlDf03Uyel2RGzs3z2ZJlAk4vq4LNdsPLy+PVNlVVFfNkiXhWVYExkc2u4f5+Tz+c09efOZ2Ost1SGhUVxlQoCrzTaAqKssIEkziHitVqxbt33/Dzzz/Lmas14zBzeDmAlqHpPE2sViusk2dA153JjKYoZeOY5yVPLy/4qHl8fKFsUpKa9TSrIrHpLB8/fWS320qBHjKC15zPF+7u7kAF/vbvfqSqI6t1zjff3BOixWQlm+0/8PjlwOUykBcFu31Dnmfc3t2QmYyyLGi7C6uVWPiOpxd22w23NzcpKUvON2HHiAUiBs04OPph4Pn5mdWq4Ycff+Rffv8vjJOEfGSZpEkaZ1itVuRGAPQLtFgpCcoR9YU0NKvVBu8cdpqvzawMpjLay4Vh6mnbM6bIOZ1fqOsiFX8ZeS7soqIsqPKG82lgv92wXu95/9tnaYCVoqwyur5HmcBmu0JYUIg1KNkd5nlGLHsjyo98/PiRvh+uQ6olCXwprOB187585Hme1ClJP5KsDd57bAqrAI2dnTCbTFITGFkCEWPiaImFZkkcs3Mg+BnvpZGKUTh33s3Xxtinxm55D+E1yRBIwz+I0af7SpoJRQriIFyLRSnEXn8u7wXcPwyjNNrxVQ2zyP1S/4wxAl32zqKM+osmclEJLu/ZwhQDGbARVUpkk1ARRwqFQlRCRmXoLMPOE5uq4vn5mZfDgVWzIkZ4fnnmdDqhFNzc7MgLuY+22y0fP36QBMaUtKyULJeqqkqKJ3nftNZUdck8jVRlxmA0RZ6x3la4IAo4VKAqa7HYegtR4TxoEyT4KouUVZXYap6uc6zXcs06FxjGC94H8qwkzxXDKCq49jLjw0RZyu/08csnvnzuaM8OUKy3NV03M8/yO4whKemVJtMLzD3ZX06toD/SkmlxBWitqKqCscoZEktRuUBUOdPUE/zI/cMN59M5JbDKoiXPG6bZYefAOFrm6UTfTwzdTJ6VPD5+YZ4dNzc37Pc3vDw/UxQFT8/PTPPEfr/n5u6WdV1TlQVlWXB7f8d+v6epxULrvePhzRsZNuUmqQ40wyiMSMEWRkwmw8rdviGEmU2z4ptvH3i4v8UHz+3tnsPLmeenI0UO83Rhmqwsp/ItSkfqJk/L2JqyKFFKM3QepXOyTFHkwjud0n1/OV9ou07Uuoh1s8hz3n3zDUWZ83J4IYTAPE/8+OPfUNcVnz595Pb2luj8lec5jSPWzuRFyWq1JoaIyTR5IQP/PM9ZuLf393fJyjSxXq9omtfUxvPldF0M9sPAp08fiRHKsvxqoC/2+BCiWCeVSvWxQRuxu14uLV3X0rYX6hQO0zQrtM64u7uFZD0MIdK2PZ8/nxNfMrGnjSy3VIxXhdeizl6UeYuCZDkH5FkgIWZaiY3Te/BBUCWrdUNskcAcLfWQ1kqSoYuMaerFpVNUbLcNxkDfTylt/HXJuzSDMQ35FjGE+moBgpKgkSLPCT4yTzMqLhY4rqoRwbOksymdlUprQsLTVFqGsm0ry3LhO4ul3/uZYYgsIUKiGArXs9ToHKPSksjaq8NJkBaGGF1SXuZi/Q+LwmcZmi2Qeo/znsnO6Ew4zsu5e39/R71qODy/MA4D33//PfP0p6ReleDB8/nE+XSUa9B7QowM4wBDEBZaVdEPHVoZvBUFIDEweFk03T/cUVbCeVNojFpaemSgZ2RolBkRB8QYqJuSYbDMk6PKc8ZpTiIAqd36QZTXxhiqukgp2aXgfaxjnHrywqCNZ7uuiNHT1IFhnPjpb3ZMI0yTYt2sCMEwDo4sq/AOrA0YnfHf/Nf/Df/+3/+f2GzWPD+fOB3PDG1PUWaM48RPP/wT/8v/8p8Z+pEYNHb2jMOMVjlBBdT/RsG0TD7kd/Sq7pdnX+K8qdfwFnl+O+F3Bo/JPDf7nIeHjTDilMEYxe1tye4mo+/FWtr2A8Mw8+7dA3leMAw9wyhDvGmyPD/1DFO6dodZVNGVcN3LjfTgmdFEL4FU6EhhclSc+P6779nfrnDqhMksReU5dz3n9oLWGd+8+467u7c8Pj4yWYexnm6YaXtLVdaUdY0Nlj/84V8JQZauzlnKMqW2qywthuV3fTpdksIrhRqpDIXwSLMsY7PZcXN3m8I8ZAmsMJxPLZkpKYqKshT+7DgObNZbul7Yfy6MaTlRYEyRnpMZIQSenl6oKgkGaerNq8W4qUGJ80/qpMjQ98x2AgIRCQbshpY//fmSAhEnEZt4QRhIFSWhN9G/qnuFZ78sV8Fby5ws6UUpPdM4DtdFyHKvKwXoJWX39XzzSTEngp2vek6ZIqZaSxFj9rqIJnH2Qrwq7XwEP7nr92MZrgUwyqZhoHo9O5NYRLBYyVqy3AJx+RJyjfvoMQZRpMYo7sUg/9QqYjRkktkirL/0zHhVYKeQJf7/YMA3DD2eKW0TFSYD5+brVjsvMrpOVCwg8OlxvBCZ6IYXmqZimhxlleFjZGzFFhR8oOsvzPOF7W5NVTVYe8ZYiRZuu56i/IZhEF7J3f2awEBeaJTPRAJqI217ShtFAUI72zL0ExAp85zLSVKBVqsKF05i5chEjbKqV9gQOJ7PNPWaqlrx5u07gXbWNV17IRI5no/J9ucSZDXQdi3HwwHrZNO7Xq0pcklnPBxkSCBsPVEzxSDvW5ZlvLw8o7VmtWlYryQdq+t6np+f00CuTHavnq4LrNcbVs0aa+ckzT3SNA15UbHZ7mj7gaYpMJlhdnMCH3varudyHiVxrpBC9HTqCaGl7Xt2kzRNYkOUgikqKUxubu6oqpqPHz6yWUtS44cPH9luN1RVgdIw2wnvHVVVymE0zDR1JTwfLEURaduWYRjElhE1z08XgrdkmWzSxP4zMs+iWBmnlsl1FF6iyjUKZfJUcHY4b9luN8x2pChymqaEKPyqafYY3YAKzPMs2+Uso+tGnI3khQUkaXR2MzrLcd4ScMRgyXPHPE/EkDENhvVqzTx59tsVzln6rkWbgJsVRkWCd2R5gExRlkYCEfwEOPp+ZLM2zFYGbgFJJyTY64NQ5NFrurbj0l7Y3+woi5IYa/qho6xLaYqtw82OzTqnyDUXLwBvZxXOykZ5nCylNugsIzMRN/dkjVi/Y5SNrk+snxgFACAwZRlmuRgpM321OagQcDrI4E9J02rta2rcoqwBObSn0RLS5sfFwBxsGuoJSyFEnaxqAaUNHz995niQIVnX9bx//56u68jL4mrbnqaRsir405//wJcvn+n7Qb6/lgPy4eGeaZLGTmtDsxXGXJFlwpUymu12xex7QoyYLFy3bHkuCdDeOwgSAJQVxVWlMPQDs51Z73dYK5JwO4/EqLi5ueN4OjCOLbOdiDTMc8t2X3E4nrmcHY+fZ44vgaoQxeM8epSKyT4fZBuGEuacUXz+PFDVBqXXTJOhrHI2saHvR5qmQtgTPXWzp6oy8izj/fv3bLYrnHM8P3fCrcpKyqpExZzuPHI5d2R6xeH5gp08eQl//vOfaZo109Rze3vLu3fveH5+ZrveUFQFv/72C8HJEL9uKv7p3/4XvByeObw8Ysye0+lAiFBVipvbe359/4njuaPrBgIxKT8lLbnvB9Roub3bkWWRN+/uOR1bpgHu7wV6X9fybHn79o7JPoMeUDGiVWC9Kdluf+Sf//kPWOdomg03N3usm3h+fsFkYtmyzlKWYus7Hi50l4FIxGhFrivmWQb9ZaG4ub3De3h5PnA8HIBAO0hQzuPzM2/u7yRg6fmZzWbDt+++xTnHy/GZMI9UlYTpZFku7DhNsvuIgt3NlnEcWa/XwjJJSr7tdi8Js9Hzww8/cnd3g/eW2Y64BIrebDYSLGM7nl9a3v/2kbaVRPYqpfHleQqSmZ8p60yaxTxDxcDldGKaLHW9olzt+M//8YMoUaIo5ElJYotCL4bXwdkykFyUc1lS5kqRJ4WJ92ERxF3PAmd9agDlPNCZlyIMSRC21iGMVIV3Dufn6xDduZCGsBKGs4SfiEVOGsnXja6kKC4LxbyQwjn6ZCuKiAok6KRqWMxuX1uOltctg0U5wtR1qCefI58vtlSpaUL4y+ZmgeUvasMFzSG8JSn2XQqmiCriXbJw6FT0p620yQxFWVI1DefziRAiRS7P6vV6LfiBYDFB8e1373h4eODTp0/XdFWVzmatTRo2yP0HitVKIPR1XVOVJXVdiH2yhNEqUI6qKui6jnEaaJoak8lG+/ZmRVFk5HmGdZbNZk2RV1wuDS8vL9zd3bHbrRjHSUJr/ESYSVB9YWmG4Nnu9ngX8SFg58B+t6WqS1CS3GlmsHYmepMsOfIeF4WEyqC8KASUKIcWtk/VlKw3wk/a7zfknVjn+7FjthO3dxu2m4L20mNMwThOzPOEVjlaO6bZcTl12DmQZ4UgPeqc2/0N4zAS8ZRVzv39Ledjy08//fQXlpzNumG9WdNdLvz22688vzyjtGYeLfv9Pi3CPJeu43Lp+OOf/8zTyxHvhP+qEmvIWofJYrJBBW7v7lg1K+ZpZJ5GyqJmv10RnBXrrDKczx02KYsUwv8qSwn66boeawN9Jwm10+Ap9zUvhxemaZSFRJDnv/eOkNS79/cPlGVB3VT4uOfp+YkY4fPnT2htEkM5p+0HprT00UbjbRAsQa7Z7rZUdSVDiyAW7r7rr0unsixZrcSu3fddsoKPr0phY6grwdG0bStKNLUoHxbgv1wDziZbeSahLXmuRYnlLFqJuqppVnKehXh979r2Qtd1TONMXVcsOZBRCXPzfL4IxTO+KkVelx+vad6kP1+QBsvANoQgnM0oqJRV09A0Nc76xFsOKYiiluHt4YVh6HDOUjclN7db8kJC+YJXqR6LV7VwjK/KkkVVuyxZQZpJ79KAxaekWpSoRuLrsDAmJVZI6hJxUMoQz80zdVmy2+xo2zYNp9P5GGQo+LU7Y8HUyPsgLpZlIfN1ANXyXon6WZrleU6D+UVFA1+lUKZ/+gBGp3AUSSqvq5rs4Q3nsmUaZOg+TXMaDsDz8xMKuL+/Y7vd8eHTe5ybhV87jsLX0sL19d4llI1icZpUVUXXCydVluBJTa7lISLqbk9earIMSYxVryGMIQacn1O9Kz+Yd9JXmsTcU8DsBrz3VGUNBJwT4YAkbUbqasWbu7dc8jPBK9ZVA5S8PF3ou5m2s1zGiTyvuNnf89//9/8DSikeHx+pqhVZJQuqYejo+57d9p7/6//l/86bN+94fnrin//ln/n85ROPj48i2EjP+teEVLlGInL9vAbBpKCmNHjN84KsMEkFD6vNCq0jLrT83T+84/vvtjw9fsA6y3q9Sk4nyHODNgXDNLDZyHJrmiyn48jz8wW4kGeGm/0tdhok7RnNNFnGaZY31kFV1hitQWVkmWLdbMlUycP9d/z623s+fvkTD982PLzZok3k3Tf33D/cYnROnlV8+PArz8+HpLIXt9Q0OfKsSEtLGZCt19urgt+6QGYytNHXc0VSzlfkKWwoL0vqVcP5eLouK5RR+FGGUlkKLFqGS3me0zQNw9CzJFFrranKRga540jwERDb7G63E8dfP2J0jjB0e07nM0WRpWs6pHtP6mHiUvdILWetcCOlfnHyPA7mGoTnvb+6uYqigGDEUWjd9Zw0X/WDUqflaJ2lWkSSo7uuT0xxlwIruZ79y7mUZQaj5UyTIbonRUqnhaScczop4PK8IEQPzH95ton2WtygiS3rEBzJnPjdi+PMaC0DWURE5J27roSvZyYiUFn+QiFsPWMylF7OY0Vu5HX3w4gHdFzqbWEuLoPAr4eaf83HX2/RDUuqlksbViP2nHGkqTdX/7t3nqZp8N5xvpwoZ1Hi5bkEQ3TtGaU1ZZlRFBnzPJDnJE/5iCYnhB5nI+M40Lc9+82WaTwLU80ZzsdnlJFG2HvhnK3WDc8vj2RZicIwjheMadLDTdhjl1aA5MrLTTrbyG59w+3tDc+nI3WzQ2Hou1aKmPbC6XTg5uZGXn9KQgrBkRcZMcjX8emwCz4kDpgA4Ou6TsmfUBQlp2MLCAD67u42Mcocp/ORGKS5OB3P2Nlxc9PQNKsE7ZTGpu8GLucWZy277Za72we895RlzTx7zucTt/cbJLUrJ8ty+r7leLiw294wTok1hDz8xDYmiWfzPF+TVvM8T/JzjSKDqHl4eJse4FEGa8keJQwSJVD64BmGIzc3N2iTcTl3WDdT5DlZVpJlAe8iZdGIZTQ1SEUhCpG8qNnvb+Q9c8L68cHi3CyDLAfeWcoih8mLrcUUSXkmcm9hswS0LkRJMEij4WzA2UCWebb1hrIsMJnCBJsOL0eeZ0kqLQmIywHufYLdT8LLUSoCQSxVeUFUHq1MaoQsSnuKHFHoDWKFKQrZVnoH1mWEuESyLwoUjw+Oosyk2Z892vx/mfuTJsuSNE0Pe1T1zOeONvgYETnU0EAVuptNUASCBbkAwQV/N0QAilAa3V3d1VWVWVmREeHh7jbd6cyDqnLx6bkWyW1iAROJjIzJ/Pq1c1W/4X2fN6hY9FLUObbbjUi+vVgF8BY3vTas0ziTXNNFB/JU0bRnktRQVwPTnKIdRJFYfrtWlHnSO0uBKsofOcMkjGkO221YakgpsvXrdsg5IgEgYWfwWg5jYSFGRFEiKr6wEFlg0mW5omt79Dgxz32w1ciB2/UN5Srnw8d3JElCVdX0vbAsPWIpWeTOcRwF5pfAvQWcvuXb775hHFtW64xh9FgMSaJx3vHy0gm7IhLQ7G5fUhRJiJoX6D3c8vz8jLWWt2/f4qzl6emFYeh5OTwAiqbrSJOYw0tNXii8i4ijjK+fH8Bpbm5S4iSh66dQ4A+4WeFmGOdRgLiRKAKtm+j6gf3dhtU6p6ouoBzrdclqXQg/w/WM/cQ09RyPwt4ce7lonI2pLgNdd8JEKUM30NUzdvZM45mqamnqke16pm0H4jjh/bu3vLwcKIqCaRx5Obywv9lxe3PHdrshTWJW64Kbmz273YbDekVVX3j//h2b7RYTxYyjZbKKp6eKKNKYfgIfUa4K4enNLfv9mr/+V79mtcqJopSXMubx64lxtHgGjqcLymmKIub+5i12HtAKsiIDhdhaxxZtMj5//swwjNh5lqZaydVvrWWz2sp5f+mDjV2HrXyHnRW73S3r1S2//c1fUxQr6qrh+x++p+8aPj88gJcEvdPxwmazomtasiTh3bv3tG3DpToFRqEUZUuar/eSNruoDJRWtE1LXTeivE1jsjxjv99zd3/LuT4SxcJt0Tqj78Xustmu6fqWYeixfgIm2q6XwCUljM27uzf8xV/8lv/t//O/YCLPan1PmuREMTR1jbU+MGQ0eXbL/CcBO2EI5xdFyi+h7FxVX6K06a93n9Ji8pLhnrpy6JYm7som8kto0dL8aaC9Fqlpkol6uBXbeWRiLBNLa7cU0YuV7Jd/vG5aF35RJImOgCbCoZYOlGma8cqhwtnm/as15JcllfqFTWLZ4i7/X5hGobAMRd3ys5bX86dKB1lATaJeUK9sLB/g0xAg1B6INCAp60oLwmIZRiwVpCTFRYxjKmzjquFv/uZvWa/X/Jf/8vehzsgCumPAeinQ4ySSARrw8nLg7du3JGlM1wpLKC9SmuZAkkKaZZRlgfM92qTEsZaE8FQGH0WRCVIkE1t6dWnQWp5BCWw4BfutsOO0SoiDxd052bA3tSj10yQjSbrQBFsu9YU4jbjJVzx8OYtFjyWhOSIvMiKjyfMwmAyL5UVJtTRju+2eNE2Y55SuH8BHopYfPNEuZ7NZcTwdSNMsLKikid+s1xgVcTqeSVPNbn8nYRJRyufPX0hSw2aT8fXLT7x7+w2rVUlZlvzLH/5AliQof0PfNtzsbvjw8RuMVpKCjaUfJhkijSP91PH4+EgXAPnyIxaWpwuK/2kSnt12k/L89IybW/b7kmkaqfyF/f6Om9sN82Tph471umAaZ+YJnIvwLgZv5Fy0immUkBmvZFhh7RQW8sGaNYqaaJpGxmGpIwd+/rni/fu3zHZms9nQ9yOn05nbWwnZMMaw2Ww4HA70vaSWj6MservQsAqypQ+BK5n0AGnGOElzu5whcRwzjRPOepyX2qttWxky64gsy5gmGVwXxSo0u6/DpKWeLlcF49gTxTKEsXYJ5lDB6TJJkFgnNrbn5xdJoo4Fy7Bebzmdzvz08+eAnRF+06LweA0MENzHcjYsat1lIfKqBgk2xNlj54nj8YIxEUmS4p2WkALvsLPjfK4YR1ECOQeHwzE0+Pn132+bnqpqwhJTY0x8HZItZ8yyWFjOpumqPlmGkov9TMI4FoSLiHAkmAHlAyJLMQwT43i8qhdfFyAhIfOqdJZzUF7Lgn5xmKCI/uX7tLyP4qIIysTw/aZ5DkMvqTW9A28VWhnwBq1jjJYa1MQxz0/PvByOFHku7qqmpqoveDxpIqp+H3rS9W7Hp58/8fT0RN8tYXLicMnyLKgXVeC8K8qilMFb3xEZQ5bGRLGmXKWgvIRhaUeex8wzQRDgsXbCD1JfR1FEHCs26xLrZvJsJU6nuqYfRtbrTXB6CU91UVZJ+vtIHEfUVcfl0jF2AybS3N/ds93saZqe86khjVO+fjnQ9zN5kfL/+L//T/zNf/tviGNRTe33K5yDeRKOoTGK/X7HOM58/Pgdz89H7t98oFztuLnZ0nXChfvd737Hp08/crlc6LuefmxxyuEwOGuvz5kEyWiMFgslius/d96GQaWnXKXkWcY//eM/Uq4Ud3cbrOuom4k0KUPQzSyoLCdLyLJcMwwVbeOJI8c8ery7MPRzcGJI2M/QD7x5e49znsvYMI0zZZGglJGaSCc8Pjxyc1uw3u3IV2BdJ9x/pVhvZKk2tDXW91wuR9arW6ydQ29sSXO5f29v7jEqwqgYO4+kaU4Uy0DTes84CdLDGMPlcmGcJPV7vd78QukvC8z20qIiHYbfYrOXwaec8XXVcA6iIsEzaeIYmqalyHOidULfS530S3SIKH6FdT+NswyUM1EC6shg3cw4TbhZBDYmUuRFirUj63XBX/7VX/Hzpy/8/OULWVoSx4Zh0Oz3W6ZpCk40qam1FsWk8wqNE1tuqJkWLvEwTHTdEbwniuMwm5CBqKRXu2sNKniT6Bd/vWCdDMsg0tpl2RLONuXxiCI4jiVsUnAzizru9VxGK5RzcoaH8R8IR29xpC3BY8vwfVEoivJZ3EBLjbYopt+8vWOcOtIkQWlPpDVFUdAPM6fqgp0s8ygzCHetn8X5GsV/fkTGn/0d+r6nap54/+GDcDyGgTgWnpf3nrzIcS5mGPorZ60s14DIEi/ViTRKmUZpvpMkD1vQnngP8ezo+iOz7ej6E+e6IstSrO+pmmc8oqyZ55q+u4CeyLItzmrmyZNnhsho+r5mGkeUnsPUVn44XQBS17UkfOE1ddWRJTNGy1bFTjNJnLMqV3gvFkscuFm82/M4X6PpvfVMVg6IIiuoqhqFp9gVLLD0RWGw8EI2mw3H40GisO/vieOY4+l4tUFppbm9u8OrE+M4cjqdWK1XYRM2UxQFiyxfwhbWfP36lXGaQSu0tsSpYVVkrLZrplH4SOvVhrbrSFMJBEnTVBJmxon1ao2dLafjiSRNr7DOtm+DnTPicDgFoPxAnMSM40way9BAQgyCAgyFnRz/8ofvefP2Lcpoum5gimQgI03dQFV9oShybnYb0lTse4ulVz4Anu1uzdqIkmocR0kDNsvWQSwUwzQIX2ua0DoGHWGnM16leJSkaBkJZUmygroeGEKB7ZyH2QUllboOOS+XGoVhCs3l8/MzAOvVDo+j6xqUcqRpeh38eT/j/EAce6IkEsZRrHBqYr2NiBMPapKCwvVkeU5View5jmKSLA8Fm77aXbuuJ4o9RVmKQrKWy0SHwmwcBtneo8MgUA7CrutI0hTnLXEMUQJuHK9MpHmegtrDXRteHwpX5yQt0zsw0WuikFitpbBaDj1nw2DSvkJ2Z7hymOAXB2D451cbTLDINI18Jhdg+2q14nwmKIaEIaa15v3795xOZ5qmJi8yWdbZma4Xu2EcxSRpQhwnHI9HjInY7bbCI4oMu/0t/XAmij1ZatjsCpq6YZpj0lSRJPkVll0UeWBaCDNzmnpubm7pu4HD85FyteHu7g1fv37FzqJY2q4lmRA/o4jpW0cUQ1mmRDrFRD6whyZu7nLOp5F2lAGYMQYTQbnKSNNYOGwMpGmMczNRrPC9pSjln4/jwH63o+saJjsxDh1xnAKycMjSkvP5jHUiuU/TjKFtaceWNFlRFAkf3r5hs9vzww+fmKaO27sbmrrlw4cPRJHh6fEBa2dW6zXrVcnT0wM/f/6J4lOOc2LzzrKMth+Y3YXD8cIPP/7M169PLDBmrQ3TPGFmhXOWNDN8+PhWeKZ2pBs6bm8KprElMhmamOOxx86S5JlmGVm24XB4oa5akixjs9lwe3vHjz9+5XCsiEwmxeuoyHKxN06zpW2E9yYqBChXJaBZ5xvs7Pntb/+S3/z6L8GLtX29WXF3e8vPP/cURcn5dGa325LGCVmasNmuubnZCb8kjVitCrpBwlWcd1dFwdJQCmQ+pg3sqNnOeK2xOPpx5OvDV9IsYXYT43kgjiP227Wce+sd4ygb9DSN2WxW7La3+O9ifv7pkZeXCl3GFOUapSOadmC9zoGI4/FMkqqrqjBNJbCiruWsWYryZbu5DLKWonPZ1f+yaV0sskDYUC5MvsDr+cVmcwnZsVaaP++EcwkE9R5BkTsEW50MEWfmoDyTrm6BHC/n1HKGRHEsS77QAMzzxGpdkqalhNLM9rqYEsuzDhzKiaGfJUhBLXfIkqK2FG6viIHlfVmKTFliuOvmdvl9y/sov29rffi5y7sh9pGFaaivi43l68oTcxa8ITIRbdvx6dMnsjTl3XfvWK+3/P73vxNVZkAKkEFVn/jjj9/TdhLCFceG2YL1y2BWkkjzPGIYB969e09R5BwPL/KetGeGMaUfK5SxZNka5xx3d7cYYzidD8zzyFCNjONMnn2krrrwnEfgDW1bkee5AMUny3N1wtqZth3RygfumFh0FBHHl5YsSyUxWidiKdZwf7/m4zff4lzC0P4jdTXiHSSJIc0MOvIM40DTVESxIUsj3r67I8tSHp+exRKpPdvtjqqqwvAOjEmIjEPriK7tGYaGpq1Zr8swCBQelFaO9Tolz2+IdEQUx2jjGOaab3/9XlRf+ZrHhwNxrPnjH/+Fw+GF3W5LFyyVdp55en4mSZNgf4Xq0jAMD8zeCetr7K/KeWvlDwmgk9BLbWRA7pyn7yecn0hixzA0stSZZ5qmIcvy8Ln22NhhjNSOl1PHOApuoe972qZDqwTv5NzZbNbB8i730jiMYTEhy7t5ljTcsZ+JjKEfBk6XM+fzRexe6zXzPPP8/ESapPz2178JNZDlcHhhtVpjoi2HwxOXy4XNZo1W8jlcuFEgSq55thyPUvfm4XtL2E3HMPShBjLXumAZxmZZyvn8yjuS5YKXu1chNuQoZZp7lkCD5XzK85y2OdP3wkEDaRrff3jLbr+nqTuenw/yvUKhM4dGbOEl/3LIJ0tkUTe/WvJ/Ye93PqhTpLEchok4VhhNqLNilJsBzTzZwOaSUKJluVFVHc6BnXwYwvnrUHMZFiwDvqvC2nsUsgSK47CkjkPTP3us0OTD6xLVO+oX8IJwLYR4IOk3JgkVe1UMLmcg197GzrKgkARgGa5KcJsoh6ZfLJj0L0KTRFEE3kvi62zlA6IXdltQVC6hJqBIs+RqvZ5mS1VVaGXCmZcxzyLAmOaRNI25//iRLM346fITfS/PhtxPHh2spXhFnMThZxrjQ8jJZrNh5Qt22xUe4YArZbFooliGgtVFBtnrTYnSGXFYfseJPBdlmVPXNc7LQnq3u6VpWuq6ZbvZst/dUBQlh8NRBsLWEZkEaz3T9JosLGIOCeQqSK8M63fvLvz9f/kXximiLFesNxvyrCBJJB26qirGvkcFLtkwDPzud//Mv/t3/1f+9b/+1/zd3/0dbduyXhe8ffuW7777jn/zb/4N8zzRdS1PT0/8/d//PX/3X/+O81kUaEbFouD08zUJVsRgouiaponIGLpmJMtS2mrkh395YJonxlGz28VEcUSeJ2SZsIclTMdQlCumaeZwONG2DUVhWK3WDMNEVbVyP6SrsEw1zJMgw5yVPsXODlzHu7ffEGnDH7//nijS3O/u6ccztpnp+ouIUuyAc4IVE1WuZ7MtWBUZcSRnV57nTNNAHKdsd1vmfqZtBTERxxlMUmsrJXMSySGYieOE280uJIWvuZxr4ViamMg4hnHEju6KOkizlNnKAqYoiuA+k/P48SBKVBPCDaMkxs5ecDB2DkuVGFUapnHEWrG6C95gus4kCGdIkiR4owXJMc9Mk6IoUv76r/+Crm+wdmC7LVitdqRxwQ8//BSWDhkmEmdTlmZM84RyonjzSl/PiOUsEhdCyBoYRQkJiDpe+dAvLoKPxdnAdWHvnZchpAn1qYKFiTxPYg9XSmOvfGTAvlp4lX/FG1jrr7xIbULqdUj0NkrCNZYkexUCM39ZI6vQ0/4pjkXhUFSXhnkecJl8JsZxpCw7bm5vKPOcem5BSVKx9Q4VXh+a8Ov8eV9/9oDPWnuVUa/Xa86nI85CkZfSqHsV0vB82AJcKIpV8NF35HnB2I+kWUY/9GS5yD7HqefLwyd22xua7kip1jTNER1Nsu30jqp5YbO6IYocw1QzTh0gw4V5nPHWMfQdqyJnGgfmuWO9SsWbP8Pp8IizmjRLKfI08OKaAPS+JYoT8qLgeDgy9JY0tZSrMkyfxwDbt8GeQ7iARzyw2+7CB3EivoaMyEMkIFlpVNqmQSlJw1yYInme8+H9Bx6fvnI8HtFKYNPGCFNgtdpgtAqqDdnQJUnCHBJRL5cLWhtubjYhAc8xjRO9ntjvDNYKE65rxco5DANZHon8uR9pm4FVuWHhHw29FNer1Yo4SsKAsOJyrhkGKYqU0qzXa9nWN91V+t8PE3VV0Q8j7969Z73ZgFKSCtb3KKXouyFsiUVWnBclXS+hIArDubqglGKzKdkSMc0dhJjyfp7IVIz3Fus04zRxqU54NaOVJ8linJvI04zYKKaxpRsGvJ9JU0lEXa9X9EPH5VLRtBdu9tugDDvTDz2rckUUS7quUlKgOJeG4s4Sx4bTaUAbRZ6nVNVA246kSRwGV5McNCaI2e1AkhRMcx9AnzPzONA0PSaSosYjG6tu7Li9vaOpG9pWGnJtxF7lsHSdbG+3603YlhryVDF0Dq9ka7pcqt4KwFPFoiCY7YDRGau8ZBxnumEgilPiOEEpGUAYQ2giZburQqMOUtBpJZDbUA/KYM/KZbFAnr0Oh6/neqgqXq0tRutQ9MZi+Zommrq+snnyPOd4esFEkiglNrKEf/mX3/P8/Mw096RGhnnTNU1MM0yjPGvWEkcRHz58w/H0IufC0FM1E3EisPV1CCEpyoy7u1vqpqJpWtq2Y5pmNpstj4+i2FuKrOenC7e3dxTFluPhJEOKfqaqevIs5XC4YGeHiQxtM9PUE1pPaBXTNB15aShWhu9+/Z48L/kP//6fGYwGZYKlKCHL5fN2PlesN+lVXWWtp+8GmuZMWZbkeU7TeJxVaBIk/jTCztIkns8VeV4IB3XoiPKcuzdbSZL1Ee/ff2C/vaEfR379m3f4GcaxoWsbyjKnXGX8wz8+Mk+Oj+8/0F4qbu9uWW+2ga/ac7k0tN3E4XTEec9Pn75gZy9cQi1FklycjnH0PL+cuL3N+frlgXnq2Kwzmrpnt99wf3eLc2InuH+zYxwcT08PmHiNUjd07USSxoxVSxTn7Pa3/PjTE0pFXM5teIZjIpNR5MIoUd7grApNUYR3mrLYkCY56brg44dvJaylaTifK9JUlE7GGHabHdMoSdW//u67UEB42rYRnmUSi2UnFHDrcsOy1StWOWkmjcfQBehxmjHOE2ma0PUtaRTRJYYki69BEihHP0xBpexIkqC8bPuQ1JbRtjNJlpLlE+/fv2e/v2G12pKlBcoYur4HPVKs9mS5QN2rRs6MaFyg54tKDhYb7ev/virRZFApKu9lGyvK5lcrRRRfjWuh6BLVmJ1FEey9NPWLGneeAy/VaXRscH6xmwWVjJIiSyn5d5et9DJUk0WdpB0qXtlRddMIh+bKABUlrNJOBgdGY32NVoJo0OpVuSi8qMAV8pKUvPzeF2WyvB8S+LVYa0CsIcbooKQWdpMMMSSMxDvQUUwWANdSG8n21rkZrbTcEc6SmpjddkvbNTR1zXzdwluGoWOa5bVkaRaCv04oHO/f3zHPM1Vdo3AkaYT30tR3fSd1VpqRpzmn04nD8wt3dzdBQWPErlvKM/j09CwK04DZAEdkNO008OOPnyTBb1bU/UCZr2nbka6dmKaDqHi1Qasc62a6cSBPxdL0/FyRpgl3d/d0bcfQjWgto2TnZpw3DH1D3zahZrLEkSGKHeNUo3SGsxqHZ5wmUJ6u71lv1uRZRpYkaBPRtS2XS0Xfi8JgUVHgF2bkRJanJIlYkdM0YbvbYALn73g8kWcFH27fY6KY4+nM4fiVN/dvabuzLO0SQ3s8cTi+8Fd/8Ve0VUOWZjxXz5zPZ4ZhoOlaylLq3qqq6KeRJE1k0RKwDHGkSCJFnEhd53Ey3DYObWayPOXtmy2bXYpWM00TOHCpqC28czR1x3luRKWz22KtZp4UddVzqSrGwZKlwnwd+oH1eheGZDlxLEtba0fO56M0YPpVeQHi7uh7QZ4URc7T85MseOOY/f6Grus4HA7BhpXi3Mw0yzljIhOargksQekLwzCSZobD4SDqllHq2CzLuLu7CUFaosa9nCvatmO73VIUJV+/PlwVw69qOX4xYPPkSUEcxTgr9lw7O/pWliWLtbXrOpTSbDYrPn78gFIR33//PdWlvQ7P/GJp9WG479y1hoGltpFewFyZcosqNCCYkbPMe2T57a0MWPzyvQQTIwsQc03InMaAMAjnhFJR6AvmoGRc7jVYlqPymsLg0b82y0mSXgdu3nu8kbNKKVEWynI22M0WtaIPKj5+cVUs/7MoFNGoUHMunCwB2Hvwola2swXjhXvnwsAu4AsUslR2yzmsDUpd4ybl13IaHxTjy7LHe3B+xjoJkiqLkmlsiINbabHU7XbbsHydidOUN2/vORxPNI1w3pI0xntJCHbeXQchq5Wop/uho21bPn74wDyP9H2HtRNpZgKHuyPONHm+wkSaLJX7d0FQZFl5DTwA4a8bndL3ElhoXUuRl2zWBeM483J4kNDKGRE4eBmqSv1tcLMwba2VO+jLly9h8Oqx9oRRBf/23/5byvKeu7tvMNoQmSQgCRo+//yFp6cHsuDW2u22/NVf/RXffPORolihteb29ob9fs/pJAmtm82OzWZFkuSU5YZ/9a/+hu9+82t+//vf07YtEgjR8ennH7BuYhqHMIyWQVK2zojjiHHoGcaGJDHMU0Q/aLIiwflU+hQ38fhwoKp6qQWUBd8F8c/MzU0Zfu/CSS2KiPWmJIkzjNashvi6KOi7ma4bUXHEzf6W2GgeH75ijEcbyzBW9OOJNBLExzBYijzDmJiuO+CcuMvWmxUaTd1WbHc3aGX46afP6EJsnNN1iCX4oGnq5HO8DPy1xiNhUHd393z+/JlPnz5zf3snKrYoZrvbk2QpTy+P9ENHd2nJp+yqwtNGkeUpVaVp24FxmIJbJCNLY7SKKFa5cN0mQxTHYXg7kiQRdd1hlHB0lRKRlfMOo2W4FRmNV16cYsry7v6e1arg4csDdVORZxlaZ2SJASzaONbbktPhhPeWsizQCtab8pqc3Qdshf+FsKOqmyD+kTNwduLGE8akiAB0sLguQ0hRX78uVkBqybLIZFmKCKdcIky+YRgwWpNmgsqZJllw2vkXS1kvyxfPws0M1asSAYsKqmIflHvLnwnn5ZX37JDQDK2JjQgZlIKm6bHzxNjPSFCu5zI31HUnbg0fpMdhJrKEzzjLtc/+c77+fA2g90zjwMvTI7/97V/I9HaawqEmyUxFIalTaZIz9MKd8y6ofRyYKLoW/y8vL0yTZZ5mklQR3xgcDf3QkySOcXzdInk/0/ZH8ixF4YOFceJyrtnf7Og6GSIqHeGcsNMWFk4cC4iyqoRJMowFUWSEDRBFDNPApapQOmPoNdPY0TYT8yQXelO37HY7SUCaRvb7HcPYcbk0smVciw1iVUoDfDxUJImhHzrSRFRyiwpKLK3ZNQmvquTgy/OcJE7oupHn5wPb7Q3n05nWNhRlwZt3ksQrUGnFdrtD4UNynmxJrbMcTweM8aQpPD8fxAoxW5IkoRsamSAHS9XyIfj06TP39/fsdjeB0STDPpRnGke8V2xWa6ZcLE/D0Iu1VBmGUQqn2SoSY9BRgnU9660EgzRNIwqAvMRaeT7k9yAHzuF4YrUqOZzOJEnKai0A1r6feTmc8W5gtSqIYk0cGbyfKFY54zAy2xETGZpG0mwVIySKSbVEkQVm+q5jnDxJkoWhqKauapSCt+9vZJMbDogsS4hizSoqwiAyJk11UJINWDeH5EV/TT0qy5Jh6JjtzJJuO04jzB5tPbMdyY0oHHSUBsXQmWE6E5PQ9YPY06cRpRKen854qzlfWopSE6cmJMcqmspSlIYmFVub9qCQhLYkjWi6EecgjmK0mknSibyYOB6fMSZivRIlaN850nRN38/M80iex5KIFhuKIglp0qKuGcdX+bfAp4WNMAwzzoraz1lRljg8SZz+YvM0yVbZSRiKB2JtUMG+9+bNnVh8ui4AyQ+0XSIBJEhTUJQ5WZbz9eEr613JzZutDJH7ARND7GNQiqquaFVDuVqxLkou5xMvTy/keSpJj9qKxUtpirLk6eGIZ2azWYCnjihwi3766fP18n++nNis19R1zzg8Ms9ws3CVXCKLBiUN6dBbhmFkvSkpi4zHx2dMrEiSmOoy8u79htvbAjcbyiJh7DzeKkxssb6nG2ST79zMMDfc6g239zdEsTwXMsjS9J2oM6ZZ7KB5VuAsnE5HtLEopZkmSNKIvFiHIYZlvcnDNk1jVU3dn1nvtkQmw89QrnOenh/5+7//e969e8/T4zOrck3TNHz5+iA1d+AGPT484VEM08QQAP9Lmtw8ywU3DI44lq2eNorTucM7RRxlNFWPMY62rVmva+I4RZGQJAbnZ/JVwTjDl4dnGeI64WqNjy9ME9zfvuVyHuiHCecCK04N1M0gamKlAvtDsyq3mMiEtM6Iu7s7LpcLDw9PDP3M5SLJe/v9nr/927/h558/czkf8Xbi4eGLqHQjSYFMkg1xkpIXBbMVdEI/dmRZzjSPdD1L58UwDGijSfOc29sbPI7zecKGIJ3T6ST2w5BImqcZcSyBNFqlZPmKYZ5p2w4YORwqqqolL3L+1b/6a4yJSZKIf/1v/jV1c+Lh6RMmsgxjibWIJTe8HBnWi3pjsZkaFcwLi5Jtsa6GQbnWhIHWorwLRVHYatqZsBRYZL2h+fWWOFlsD8LWMcbI5lIQXFg34Z0EOhlDKLo8yaKO7EaaWkK5pMmW1yVq8aU0AxA21TS3GCWq4zSVUKthGGnqlrqR4b8mCU3rspF1V8WU96FpXUwbQblojAnKbmF0LjUFyGdehaZViuewQVbRdUiYB+4UyjO0Pf0gxS2Bz7IMKuxsgwpHcCJZGNB/+vSjDLxic71fzucTdVNjtObmbk8/dIzW4PsZ5zUmSoNFRZTwfTfw5fPnwJCSz2gUxcHqB4qEebLEUcHT0wtv395gjOJ0vJDnonzt2oG+m9hu99R1Rd+PVJdBFiVFRtf2zLOk3Y2TI45TJMl1DUR8/vmFoTuw2axRSCPy/uOeNNOczi+ihp5kEeks+NhiYsV3v/oWnObz5yd5FvBh6DnSdz1pmlEUBVUtKc23N3d8+ukzOI+O5Kx0bqIshAlnA/Px5uZWmG3zRDs2FEVBUWbEUURVyaDOORlODFNDUWxJ85hiVZCcLuRJilGKu9s7CYRoGp6fn1FhsDJbR1kmoCWduh97CTRCGGgmlgWXNhK+JcOIsEQzUg9mRR4USj1xYnj77j37/R7vFU01Mk6W8dLy9PRMpG+ZJ8swzAyDqCZv9juqS0tT93ggzwteXp7Jc7G1bzYrrFW0XU2sC/Iio2kakgR0pOiHiro5syo3tG1DXVV4768uEmHGtfT9QJalZFlKlEbc3N0wTSMWJ1q2gDRJspSuG66fKRnKidV6HEeOxxPv3r0TFeE48fJ8BBR9P5IkGTc3e87ny5/gBMSSFQdrqxNL6TwJA8+Ka8crz2wnhupCURRsd9tgV3ay6G06Di8ntJbUWDy42f7JObGgCcL8HgmLXJwNE87ZMFSDeVYsvE/hK4L8F69KkmtLRWi8rbsOO+XcEVfSNMrg14XzWy1ZjFe7vxcrmQ+zNw9KGRmYITihNAz9lwRJ8FjvyHNB78zTzOzkXBVUxi9eo5JfcwHro9T1jNRe4/SMLP3lD+dBKzlXZ+uwblnS/OI1z2K/lZ2KD4rvOQwe9fV98XC11/0p+1BeQ9u0jMOAcnDzdk9ZFPzctqIK1wqrFaN35FnCDz98z+PLM7MVNWMUxXR9F8L5JNV8GCa8r+W/x/Pm3TuGaaI6n0iTmHGa8EyYSF67VjHWqqB8zcnynL7vGceBSyVhPdpo8iynrhsu5wZCqNI0zbSVJMWmSUYSCzN6HFx4HbJ8sosizTpOxxOrdUKSZAgKqcF5TxyLIrlrOm5vciId0zc9ykaku5ybzS3ffRx5c3vP3f1tGEDLIHK73QYlrebjxw/UdXcNNhz6ib/7438hS3KU1rx9+4G8iPnm/Tc8Pj4xjj1lWfAf/uP/zqdPf6RpLszMYREPqU/IsxIfW6Z5IElyztUzysxoHdP1Deeh5XRuaRuL8jFxbMhLSRTOMlE9Xu3h3hDFBU3bsNnlpGkq/eg04rXn6dhQFlt2+y1v7j/w7u17/tN/+jtJs20uzPNAkjnysqBtGtLUMAw1ddWEe0qUY0uwV1t3oc85kaUrFqadCA+cqNSVZ5qEB2+0Ybte430e5g5ynvzww4/yzHrIgrCn7VrO9Yk8l9Cqqj5fw75Wq0J4fn5RiEV0XX1dUKzXqyt3d73eUJYrmroiiiJub2/ZbbYcDkca36IM+FnCMQi1nfMW5Q0mivBErOM1aRKRlSU6jijyDGUMfd9Snc/kSS7Lm7Gjrc+sVhnzNIizZHfD5XLm8fmZrpd7J01TGbivomvg0exmWQRoUcl5ECdGCGeB1yHXK8s0YDoSUe4Ow8g0jhRFgbOOyYmdH+9JYsM2cF+1VtR1Q13N9Nb/Yrjol5Ix/GnBsCxnevj3wiHvVaiV3XLmiLjJ+ddvMjvH1E9BFRn+fe9RLrjfvPC4Iw1xwKZoo/GJDpZu0CH748/9+rMHfOv1GhO/Z7GICufDipUwEvjuOE70/Ujf92gdXW2mC8snz3O01sG2atBaUa5LorD998T0Q4uJIiKv6IeBV2h0SFfDB87axOF4IMtT+r6XaG3UlaOWZcJVOJ1OYXiRkxc567WotJqw+Z/mGZSh72QDM08WHylOp1MY6LxalSDCI1PmzWZLVV3kohnHKzgyy1JhTMVGtqJK0nw+fRKV4q9//WuxnAaA+MPDF0w04nEYk1AUBUkcc3d3R1VVIcjEXa2DwkJs8c7Sti3zbKmbRhKIg2JCGCUCM+6aMM2eRE489I42GqR4HXq++eZbbm9vuVwuVzZGXdfs9mKvVmhIYqyDqm7p+/76IUzTlMPhEJSd0ZXXtMi4h0Gg8jKELIiimC9ffsBay7fffkuepwxDx263Fxv3+RI2tLLJjYwkHd7cblE6JYplC4ByIaDCkKYJWZaJNVUrSVKzo2wTpp6i2Mu20llOR/n+aZYERoBm4QhGcRR+BppLdSJL16RJfoU/73ZbUbgZGIaecRLpsFYKZy3laoW1IrfWRrHKM6Sws+S52D+jSFKzPGuEuyeD78mKlaDvaiAKxZdjHiOGEMTgneZ8rlHKkWUFm7UiSTzea5LUYJKSfjhirZdhe2loqhfmeSTLU6a5JTLCl4MIpWKUsWHQtQ7MoyTYg7sQ1+6v8mkTK7QJB7NTuEUxgwpcHgnaWWwjr+BQ2UQaLYWvDlaDuq7DszSTJDHj1PP5y48URY73EoCilOf5+ZFp6jEx7NcbhqHBY5jtRJbHKAxd2+G1Zhx6TqMMm2QI9wpw7fuR7W6LnSBN1jw8fMVaz+3tlvO5o8w13hmqqkOrkdVqxTS29J2lvliybAaveH6+MI4WVIQipSxKksgQ6Ynj4Ujfdei3GUW+5XI5o5Xnw4cdl/rM734nSVjjMGLdRJJEZIXi22/fMA6el6eaaTZhOzpwOVdiuVivOZ9rhn5iGGaapg8p5kn4LFj2tyla26vNwNqRzXaD9/J8//DDJzarDfvVBq0MTavougvvP+x5+nrg7u7DtVDfbjdsNlvW5ZaXw5HD4YWuH+jHgc1uh1cRzy/Pko6VFTgnF5YwPD1xEmMiSxSBNw6FY7sp+Phhz81dyTQ0XM4ntJYETs9EU1cyNNIJu5tbxmmmuhxJ0wytLEMvwPXD4YL3EUZHdFOHVibwalLsJPL69Vqa0CIvuLm5o6lrVODDKaX49OkTz88HmqrlfKkYhoG/+Zu/FSC3cqxWOW3bUVVTaJIyVqsVT0+P/Phzx2pdstvtOZ9PWO+wbkIbmOYOGxI4UfJ5iiKxZUVJgnMrxmFkv9sRZylNU185n0Pfk8RrtI45Ho9MVtQIs5VB/OHlhboeudmn/Mu//IH37z8QJ4Y8T3h4vLDelEGl6cOQH1brEqMj0njH97pigUSDWBAgWFKXoke9cvWcWxQVr9XHLxVti21Vhi5O2EVMJEnMdiu2kXkexW6dxgyDoe1aGfIpQ5IYstyTJGLDtG5gtUpJM0NUa5I0o22lcJbEX0fsZZAu6ppgmwvtJ1rUj/M8hEZbBoN2CWzwo6j/vGX5Db+yA5fuWLOkry3KvsVus6RAinoxIU8TPGK3SHRKFMmgTFJDU7Fl9j1LUjHOE0fy/uso/pP3HBRPzy9EkWa72+K94+Xl5WqHv+IgoojT6UgSS9BX29UcDocr56wocpROeHx8DhbDGZygReLYsNmuAyZEarT9zRZnDXXTChtHZxxeat68EXVo1w54Z4hNAQrGQeojOw+i49FattGYcA7Lezx0A/WlAjz39zv6buTh64VpkGckKw2n84VskDJ7GCxDb5nmiSRT7G5SomgGWprWSWOlonAXyfDi8+cvFEUpQyMVMQ4zyke8uX/L58+f8dbLwmcj9/B+d0/TnkNAh2UcJuZ5Clawz6xXa7bbLY8PD1R1xWZTiv3G9YyTRquJ+nzAO8t33/6Kjx++JU1SHh6+UtU1aZqyv7vh93/4I/0wsTMReV5QNa0Mphkx4fMl9ZKgMqIYsixlvV7hmIkiTxRl/PH7B4pCkWSW9Vqsv01zYRotWgkzcRwcXSs87HcfttzNKXVTk8QJCiP4iO0t1no26x1PT4/MdiayE9M8go/kbIqMuCBS8MwUq4Q4zknLW/Jsyw9//AkJyhF0zTzL8tRZWd6BZ5waJq9ERREp4YLmKxnABzRAHOxa7969C+4TjVaaclUyjZbq0gjv2hA43mKdd9azv7mV+vwXIQ2/ZLsBdMOAtZYkleTzOAQWxCQ4J4D327s7zqcTLy8vFMValgw6voaKuQBm/5Om6zU3KPxtCVkw2oSF+Mw0+euASqPEUuYJZ6QJNjNzPVfk3w08zsB0XkRyUq8uoSIepWSRrpUBFRYCV4W/vdbpy9LAeUc3jFIHOEeaxRJ4F4aSBsiLmFVZYmdL3fS0rSyIp+n1fNTqFypEJy9OKXlWXLC/oTU6MijvMYThkXc4BQYZWqN0UOy6q0pyuVucBx0ZDK8KGe+8jIfD5FJFCgHk+8AjM5JSO44kUUQehuGznXFOYZ0MG8q1hAUdTgeS1LC/eSNuja5FG4dyPgDvAzvdzmFgHDP1I1VV0bUNyc0+2PkcaZSitLBRh36gqi+yeMtTrJ2Y7Uia5HhneHx8IYkFlaGIJe3WeKpqlKWN0vSdDD+SNMUToyN5X5IoJoodp2PNMIg75HQ6yeK7yILadcAoRRwZ3v/mN+y2HyjyWw4vJ4qy5JtvvuPnnz8JlxrP4SCcZfBkWcLpdOLz50+8fXuP1pr9fk/XddfwmVW54c2bd6RpSl3XvDyfAcft7T1d11FVFVla8tvf/gWzrRldzbsqp+trlPKsNwXeZ8TxPUVR8PXrF/I85v7tniieabCkxmJyaOqZw1PHr7YZffgcA6HHDSEySjMMYsH98nKia0cZxqshvB8df/Gbv2Kz2vMf/+N/uCIJxC008Pj1wO5mi9fQNucgWNAcjy/kubBV26YTK6eXu2az3uGcDn3VHMQAEbNthTPsRfjy/uN7xmmkbTuSOObN23cyzAtsxd1my5J4bZ0N/6whzzOKoqSum7BQnUiSmXUpvNEsS/HehbAqF0IyU8ZRnF7TNAbx0MzlciKKEuI4Ii8zppAyL+9DFCzeyVXhC4Slpebx8RnnLauyDMxdYbIqLQuP/X6DMSIyePP2nrqq+fHHP6KQ7AGQvnO/vyWJIg6H4zXZVwVFo9RVi8BoSbZdlhomDFgXbIUXJevsyYuMMs55enrhfK6v6LWlHjBG4fxEXUuoqjFxCGqp6d3C6xXeMRAUw6LWU2K1CCo+T6QNLpTEkdaoSMIRTQjDkqH7L7nTy6Ugiwfr/uRvhktDnh81OeI0DUzDHu8sflmQ/5lf/wco+EQOvzA+tDYhvU04a5eLvPFRHDNeLqxWq/DwiAWi69qrPWIJd7i9uwkNaIpHwLtRJKBgvGy0mzak/my33Oy3jMMQilkJ8ug6GXKN48hmLXappUGZQ9hFmgqvYLuRFNjZyrZMBmcFx8OF06lG65jb29ugTJSiWWuxOzVNIza6SbgE1lpubm5x1lOWBcfjKRThJUWRg7IcjxfOx5aub1mvN9zc3DBNM8fjQaDUaSoJNQuTA1HjLWmg4zhye7cX+9d6QxxgjOMw0nUjfT//gsFhiRNDWZZsNiVpElPXNcMo0edgaZqe+/sbymLN5XJhtVqT5/k1IUtrsRDHcXQF5g79iNGauumoqhoJxZBkw2maroy8xRazvK8y7EuvTIJxPAculDQ/8muONE11lR6XZXltpNqmZ+hbbu9kUFKUhjjOJAErBHw0TfNa9CslPMd4+SBbnBuxbmScHJHJieMk2EkmqqoCSoaxlWYzywJXMmaz2WJnGKeecpUGlceMUvKz7vsBrT3TNFIWOWmyEhWfkoGjMrKpWPhVsXm1vaZpQts2NM0gfBwL0+gwZuS7X30I77Hh8HKmuQh4uigiogR26y1JoknSGGUGtjcrLhdL2x3J8h1JEtG3MuAaxoZhbHF+4uX5K/vNLQaDNiXj5LFTxO1+j6THirJ2GIbwc7W/GO7Jxj2OIxRi/V2VKcakIW1LcXNzw/F4YOiHwJCQRmZhS8qm+5VPM88zx+NRrFs3ogqZ54E0TYJaSsJepBEaSDMpUKrLmdPpTBQb1pucOMk5HeViVJEU6f3UkSQZeZ5zs9+J6qXqmGbHXkUcjhVpFmF0QlNNrFeW/XYvw1OMNGGREYvE7BnHmXlyDMzhHJEkxmGQQe7nn1/YrFO++eYtWZryT//0hZ9/fgEPSQZKK4ZxoiwlUfPp6UTTTqBgtdEkGUTJTNfZsFDQwbYj52rXSVrW0M34rSABjE74+vVBtkpaoLRGp+SFoe8H7u/3oMQydT6fyfOSm5s9Rkf88OOPYqd2PjTIFSgpILXRbDY7ynIl6YhEpFmKA/KyoJ8teS6MzsenZ4ZxIk5yQCwlWZ4EGLDCMzHPDu09UZZws78lLTQwMbmOuzcb3n/4Bu80XTMQm4yXlxNd15F1woyMopTj4USeSwjJ8XTh6ekQzhXLNFrcLMXY6XTCe0QNGAY17969Y7/f8/L0RKQNVXWhqip2uxu++eY9v/vdP1PXF+bZcj6Lhcdascj1Q8fQ99cUs65rpXkxokpTGm7vb2XwMQ7hzhhYkuW0ihi6nnmQoJC8LNBK8f6thBXNVt7LJJGh+hwSztGeKIkZuj6od4Wnsr/dM81Hprnn5fjIr379LVmm+enTP7PepLwcHnh8fOHN/S1xvJehe6SJTESWFujFskiwH7hX6+v1ig8DvCRJQkDCa1r2ohJZ1AUCuQ6WK+3xCGOpLLPQ3GpMJOxYT8TN7YakkbAjvGaaR6JYsd8XrDcZdX2R5VsUcX+naJqBw0Fs6Umc0XUTX78ecc4xDsLpW6xkJhL+Fl7O3SQ2xHHYDmuFc2HgZ8CGBlahr8oQFWy7v/ySQm6xFct/o7UAkbM0CSEFPXEUk+U5Td0yjYttTZagxqiQyghJFL+6CtLoyl0Rha3YRsqyQCGs2iwNhXqeX5VTEgwmzMgkWfP08oRDFh1pGpFmCXXdkeeJnLdOESUJYz8Qx0U4Sw6BE+c5vFRM00S5EktZZDKq+sLT45nVOqOuO4GIm5goMozjgDFyLyapIooU1k7inLiyXT1RJGqlcexoO0NRpCSJQemJLNekWcRqlRHHlmmW+8+5mc0O1uuMD9/s0cYxDTFffj4yjY40McSRLPMu5xoTaYwWBMs8zxTFcmbW5EUurowZqsvMepNTVS0vLwfiOKaqL0RRJOEkzuJdRF0NKCqiOCYvMrSRIUiceJQa2G4zUJbz6YyzDY8PB7IsFgXlPLK72bHZrkmzmPOpomoqikLO0XNdCcfyyrZc2Laicp3ngXFyKOMx2nI+VRijGMeIooCbm4IoiRjnUezr40R1GYCYDx8/sNvc402LtQb11DFPE03T0vUXtDKU5R5rHXlWSKLnLIPraRj4+OEuqD5esK5hsyuIIlGm3tzsOJ964UsrHZwKUmeNYx+seh7rZ5IEIhXxdneD0orz+Uz1dKYsNux2dzx0X8OwC7777juGYeDr16/yXljP6GdZ0iZJCCXLAy/NMU4TfT9we3vL6XS6nlmyuOv/pFnt+55xgrIowx2iUdpze3tDWZZ4PONsyfKS1XrDy/OJ2Tpma5nHMdhNRSW8qDyudi1elyALekA4vbJYMvpVnfLLA8UY/YvGvJcFYfi+S6K28KH8n1jArpaxcOZK/e8Y/mRIGGyz6vUstwtXyghmxvcjcaSDQvT1fVpU9/0w4JXGxDHTvCgFA8Mq2OZf2boqNNgRNtS4cp+J5dirBCXSF1FVGwNhULm4Qa4hMyi0iUji+DocnedZGOqeoKb2V6XzIipYQj7meebtmzvGqef55YXRSv3uFOhYXl9TX3BOBqR5kUnoknHojpB+mTDNYQiNhP3ZaaZve5wXNZfgckwYtPRsdyVaaZI4IjYiTJClnqbvZ6ZJ2InOQhuSSJ0Ta54EMMqwKE0jIhUzjaLI08GmqPCYlaFcFRgtYZR5nhPHnqenpyA2CH2zXe7jjFVxS2w27Lcpu+2W0+lE27a0bUuSxvzTP/2Bb775lru7W6LI8PDwRXAPSpOmLb/61W8Az+Vy4WZ/S1muSNOUJcDF2kicU6GvWbiYb9+95c37NQ8vv+fTl4HTeQznf0uRFWw3e1arLeuyRCtH1Rzw1pFEMUUpdumyNMTpRe6ZaSCJU5Ik5eHxBbwhS3K6vmfsNS/PA89PLV07E5yxlN9u+dWvfsX5dOL3//R7mQkMkwyQjQpDyhb7cmJ3l7O/WTPPHR4lVmuVXBfoEnwk4TzaKH7+JGeXUobT6UKZlUzjiNaKosh5c3/H27dvqOqKYei4XGrySrA+eS5875ubG+rqIrWp0mGQZbBBVPOXf/mXQR0t5848zQEnoFiv19zc3F6HdUUhzEERWEnffXOzl765baV+yPPASRdOcBQcLYuSeBwnGfpbi7MTcRIRmyTgtILiLM2I44QsLdjd3jHPlsPhJP3aorhzwvorihRjIuq6BieDOlkMLExSUfTKAvX1rPploFuoQmUZMFq08syBUXdzs2e72aJVc12aLqiCd+/fMY6tLEW9ZbfbU+Y5yoAx4nx0V7SLD1gHSTefrUUFxvzCW71qxJUKgz5zPesl9DQosu3yGtT1rL7+Hn5RTzrv8FZhnWDd1puNiK+6BhvY1H/u15894DudT7wcf2K/37Pb7SVhzanAd4to6pbVakUaZyRpRhTFrFZlGMR03N6+oe+ba8EryYaKLC3wOPquk2ACD1++fGYaLLd3dyRpyhygndMkoGF5yAuSNOFyPrNar64PzMKDMCam7zqaZkmmm6nrCuszAUBPE3XVMAwTl4tYSZNEB+VbESy/hr5rqapavoeGabQkccbgO3wYQkqjo4mihM1mxdPzI3NohrM8JUmFNbS8xjTNaFuRQ/d9K7bGYWK7XQED49DRtiLLXa/WDNMYVHETcZQwDlJU4DXTOLLdb/F44sQwThN13eCLjOPxRNNcyPM1xniOx0dQA3mRMNuRtm358uULu92Ovu8pi5WwS9xM23QkaUIUCQcsCs3GPE+0bcvNzS11Le/Nfr+TzaN1kkY0jDRNx81Nwdu3bwBhijR1T5GvsLPn6elRfPxaUnv7ob9e/tY6ylKg813Xc/9mRZou6syJhcOyWq2oqvN1s5XoBDtLxHycJNzc7nA+Bi9b2t1uG1QVFh9+FkmcstutQzNSs16vcdZS1y3r9ZrNRmK9q/pCHEnjNAwC8134iuPUgdc4ZchyAaX2Xct6U1JXF6wdybNUmHNNR9v2V1XCPEtyblFk7HZ7NtsVnz8dmUaFcyPjXKPNzHaXsrtJ2W33IiHvzhg9UpR7rNcMQ41WijxLwY/g5PCv6iPrdUnTVhiTcrPfMrWSPL0uC/phoK1nBOgrhZA0aC58TqNgD4VpkAK42JTY2dF1opq9XC5iybUSbPPLL5HYx4GvYDBR4OXkOWkqA3/rZiIdy8WSSFpSWa6oqgqPsBOneeTl8IzWTuy2RSrFdGzZ7HPGTmwydhIDn1Lw/PwiHJBpQEeeP37/GesUq3UOJAz9wJfPJ+7ut1zOA0WZBlWBYhiFVzmFZjaOFcPYoc3ChJAzJEkjpnngcHyhLNfkRSK2qGD9k2WDFPTOSlNcriS16uM3W+I4Zh4TXp4fmSYvRV8kUP7Hx5cAKxfGzDRZrBVbflGUkohZlnjniCPZ2BmT8unTI+PYslrlaJ3x/HgR5uDtDmNaLucjNzcb0kwRJTNJOmNdz/kkjVxZCqfp509feTkdefPuntVqw+f/7f/L4Xji7u4uBMXUVL4myxa2VYdSDUqJRfj+zZ40ixjnjrYZ+frwwn4fs97EmEhzOR/lkh0VWgtsuesuwsNZb0OojKZuLmxWGz68LwKQesPPP3+VYV/glU7zjHdKou6tqF6nWbhFZbHm7u6On3/+CaUUu92KONaYyBOnYN3MpTqw3e7I8oyiSLE2E+7lNFDVVQChG1bbkslOFKmkjrnQfElqt9gz27anrmuapmFVFFSXiiiO0EjjW5alDPNC4TzPs/xzo3AKtrsd/STogaoSm3yRrwCLMZ43d3ve3O8FKh/DZp3gfcmqlHTL3X5LnCQ8fP3K0HfEZn0tDq/FlBeO3HIX/7LI+uXg65V35UPDp8MZIf9tnBjiJGaawqAtVpI4PgmDUFiVYmfOCk0SC5cyjmG2A13vsb6j70biKAvKNR8U2hEPD2cUR9JMhi5pGhFHMR4VlISIqjmNyLIkBIEswScaHcXCPZo9fTdTVxblXWhiDUsiGyzKkdBUhoJN1IbxtW4ZB+HnuVkS84JERVLhZxven9ewC0m+i8WaiyzFHJY4ia/vtcCvRaFqlPBdiyKjaWrq5ixNpkvI85yiyEQdaZVY4CdFnouqRSnLbr+maR4Ioefh5xYxjjNVfaHIc4oywznhiDoP4+gCb3YG/5qELoEaUNc1aRZj3UxRJvz1t7+hriqU1lSXhurSMQwj8yy/VhQb0qREGzieTry9e8evfvPfoI0lyRB76AzPT0fyvOR0OjPbmcPhwP4mRpmWtpv4w+9a6rOksHsv6p0szdAKnLNcLg1N0zHPliTuWJUbTBTBMHBzs8djmSZJH23blmke8V5YUdNoiSMt7EutMAaen0+kmWG3W2Nti7Uds3WkqUDSH3/+St8PKAqyNIRHKCjKjMn2PD63DGNLlCpZBs8Db9++wSmxg4rNMmiXQgPgHczW4/wUgrkWxhx0/cAwwGpTBdV6T5GXrIpdCJgzGJ3SdS0mbUOQ1NI0WbbbIqTE3lFXjbw3yrJarciyQhSa3pMksjDSCqIoxRgoVynnquHzz0/BKmqws2VC0TYN4zDQD31Y5oja2OkIZWRYcjy9yKBSH3j3VpA6XdczDKJY3m6XFF5h4t3f3/1JAmyRF0QmZhjFQTGOA1GUXREgv2yoxBqWiDgAApdJVIoyiBNr22wddVNzudRoZfj06Qt9N4bFAHiUIEXwaLRM2q7DRBmoLQyoeXai+rOiYJVf14uiHoUkTC41v8PaCWvl+xVFFtRmwQWiFdMkWAeColqSRKW+8lhwljjNubm54Xyq6doJ5wz4iAXwr4il9vGiap5naajn2TFgiYwmSaLg8pkZh4sok6wDFQVu7etw0l1twCGUaeHg/YJXRai1CAt/HRTXkTFERu4Ca324J6PrvRLHccA7LdblV1VmnMQ4KwB9o1+HAbJ8niXBVkFRpmRpyvF0oqoq4liTpgl935Ek8bUuXdRBw9jxcniUXz9NQl9muFSNqLGtLIkmN2G09BurdRmSpFvadgTl0SScThVxJE4Y7yPOp4bbuy2rwlA3FdZqlIpJEgOI3VbeL0uSENSS8vuX9/I1xNHhsbbCWlkqJ7HUOGmakiQSZHk+n9hutxhdhIVnR7kq6FtRjb28vIByYfET8/PPP1NVF96/f0OSJpyOL/z9f/07osjQNC3/w//wP2LdzNu377i52ZOlBedzxU8//cjz8wvV5UKcGvb7Taj35JwoypTZNvzDP/6Ol+MP9MMZE2nSJMZNE26emYeR03BAa0WSyOJ2GGu5H1UsffY4ozUBsSHBOnXd0fXCyTudey6Xmmn21M3MbDVxGmGniTRP+fjtNzRtw/HwIqrPWFShXdUxz44sS9mma/q+o65aiiJFNKbSww9zF3qaEWclLE9nMV1X0w8NeV7StVID2MDGlbDHFcPYc7lcSNKMOM5wrpL04V5C28qypA+MWOcsWS4Ok77v6fuGJI2vC8VhaMnz4jrANlESAmr0VbG8oHDGoNBTauR0gru7W9brFS8vZ5wFrRPynKA4k/rNO48ymjhKKYoU5wfGfskFsMRxIg4QHQQqk2XG4UYZbB0OB06nE1mas9ls2Wy2eDQ/f3mk6wbsNJEkSVD1hSAktwSnuYAaMX+6XP1Fzbn0X8Jx9bh5pO8Gnp8W3quoCOd5CgEhVuY6Vrj+OEVd1bRNT1EW3N5vRUgze+bJcTpVVwGXpPzqEMohr0mhiIzcAyoM6gSjMOPtHM4lORcXBA68LsAXVfIyrlQQ/iIkm089wzhdVYjCKv/zJXx/9oBPpKPCEbHh8AWZjAu7I6GqZCgVR3IAtE0nH/Y0paouQXElPKNxFCBkVVUoDfv9Bjc5sYY0luPxgDExb9+9wSZzsPaO10bl5eUgW40kpSxWFEVB23ZSvCvNOIyczxfOp5o0XrPelBgjRfl2uyZJZFuSZyu6dqQoVmRpzvl8uaa+eDy3t7copei6juPxQJrF5EVKWRZi57zUYQCi+Pjxo1gglefx4SEoNU1QGg703RjStBLyvEQpTxxLMqZz8OOPP3C51GzWe7EtjiNtO4ASoKl1Fpc4mkbUhgLjjMizhDiJaNqKobMYPLUbqSpRRexv1lSXgf3+Du+FJQjya6/XayIT09RH4igV5Y7WDGPP+SShF1OIdh66gf1+j3XzVfEndksB1Z9OddiqdoA0NlmAzp9OYslcrVbc3t7S9R3Hy4Vvv/0mcJoUdrKs8y1FIerP6nzGWSmitVGBQygDPpEsz1fL5zzLYPD29gZrHfM8AYZxslyqju06YRxl8JYXOVGShgG0MBKnydK2ojbcbnckSXyF5CZJhNYRaZLSdT0vzwesndntdpLuF8FqtUYhMOmua2m7Bm00q9UaraV5qpuG+hIajqa7boPTrMQYw/n8wmp1w83thm444myEdTnffHfH7d2Wqjpj3YA2YZDpOyITU+Q5bTOhVcK7b/ZAxelUkaUJkdnJ1sE52rrBcEKrHfvdinGSLXxVv8L3oygo7gJ4foHKG2MYe3mv+n563aqirsyi5YDOsuz6OR2GIaj5RBGqnSS8jeNMW9esVjlZllCucvquu6oCJISmIM8zxnGQpEGtSPOUJJXhDMqx3WU8P1QAokbUGqUNTTfQtS3rVUmSyrDfOhvAvxbrPNZqaX4HSfa11tONfWBeKeJE8e137wFZHJxOFZdzh+0mxlFsDpLCm2CdpWlq/uZvvsX6CW1mdvuM3faG8+UksOZOlBVKW+7uMuJ0Zugnfvdfv1JXE0kk71uW5sSJWCXt7OmnjvNZBrQfP3zk5eWAQlGuctqmETCxrLzp+gaUDxdSyjAMlGVO33o+D4/EsWK/35MkkGaO2R4pViV5Cs+PPXXV8x///R/wqicvUrJcCsTz5YjSjnESW/X93T3DIEPdadLgPZExzFYSqsdh4uHrgTjROD/y8niUBMVpQGn4+O0d3dDLragSqtOJyKR89+13zE7RdX2wZo6UqxVNU/PmzVuKUs75rjuTJODdjDYe7SS11XlL30+s11siHQv4vqlZrQo2mxVd33K+vDBNE3f3a25u1/zDP/yOujkhjdiaLI/J8pS8yELqp0GXMoDrho6ubSmKJFg/wXvhnCZJSlU1IQ39VjZ+40iCMImmvg9Jn7IFX683LIB4HRksjizNaBq5K9u2o++70Lh6yjJju1mzWReksSaKFPe3O7rhRBTNvLl/I5Yq5+jahlWxwjlJcFx0essgT2y16jpgioJ9dLHALV+/LMCWTb4MRGQR5JzwaKJIAnSstzRdI9zDNGV2Kixscua5pe066mYQNm4hqcRxHNG1A1+/PoE39L0wMwlFlgzIffhcymBKbBbSPJtILBr+qrix3L9dcTicUWYijTWKiPU2Z7ONMCqhukxcTj1Lmq51UribIObzIYnNBuD+q91OitYxJGjPfqbrwvdBhyHFq/V2CQFIwvAhiiLQPjQJojhJkkQs95FCJ1LERlFMksYBdTHw+PhEWcp5OAwd2kCcRIyTp+0aboudvEeJLA/OpwY/WzGOaEPV1HgUk3UoFYkdZhZVgptFybIME4q8pCgljXKappAKZ7m52eL8TNOcmWZRMRuT8uH9B+qm5+vXF+q6RemIN2/uKfKMz58/8/0ff+K/KT7ym794g3U9Dw8/8umnM+eDY7PZ0rQXPn675u37lM0mZxh6tps1Hz/G/LGvwItidhhGZjuxLgtubm+5XCq0NsGSOPB8fLk2BwBFkWNtzPl8ohsHURsqKd69cyTxhDEJQz/KvRqAOE3dUK6icPZF7HYlXz/9TNcrmnbCTiNmH9P3I9PcsN2tuNnsyMuC27s9//5//6/0fU0cZ2y2a9qhuyounLMobUgT+Zw27bLBF7umVSoMMB3Ki/L0cmnZ7TfEsaiN0DqA9FOapmeaDO35SJpZtDZsNiWbtaGue6qLDDjatmW72dD1tSwTtOJwONFUHZGWz5+wIxuUhuOx4dI01JfhejeCPA9t2+KtRcK+Yr799j3FKubSnPHeBZVaJ0vBaeLTp0+kaUbfDxRFyU8//cTHjx+J44jLZZKlSNeCgziR+7QsNygUl+rMEKzu0zTz5s2bq4pvnicZAhlDWYaasT4HNZtYe6dpIM9TXOB5Lry7eRqYpvD8+9cBng52WY0KA71lwaGvTpHZ2aDAXM6DV6WKYFtkaCffM9hu3cwwypCmKItQM1miWJPlKc5azmcZpimlUYnCmJS8iFFaFjtxEhEZjzIpWWHoWqlV4mjBI83YWUs9ENQ7sowMdltNsPSJ1VeUeQF2P4UBpH9d0P6yAee6UNF4L3eEYxk0jHhvr2ejqGtliKe1AuVJI6n5FmX4crdI7W7D0FAF1m2CMRnOit1X6k99HYqAoywKjIHHp8cwpI4oipwoMlcbqtwbjv1+R9O0vLw8h4UQJLH0pW0/kqYGpZLrwt4FdVAURXRdH5aHonpFKT5/fmYOIhOPwyjBbVh3ZrcrqKqRJPB0ozDM0FqGYUrFRHHoOUbpwzyidlKhzkxjCfMYx4E4ikiSONTDUmOIsrsIz2WE947Hp68o/++52X9L21rO5zNKw3pdcjof+P3v/4m2rflf/9f/hdnOZLnhx0//xM3+liQueX564j/+h//M7373B+7v79nvbkNtkMj3Up4vP37i++9HPn78yN3dHW3bcjg+U46WdjiQ5TEYYcitVivevfsGO3seH1+w8+s5NI4dOnJh4RGTpgl1/RB6x4FhHHDW0zZSH7f1UdhlHoxRZFkOShJ6VZbw7t0NX75+whhFnmccDy8kScY4ymBpWVQmUYKJFE3T8PJ8oSgTWajrWFLOnZKBuYMsK8izkq5rBeU19eR5wTQNaAh3dwKThIrGTUIyzVd3otaEYZTi4eGBm92ev/iLv+B8PnM4Hq/BP1336nrabjfMcyRWTyuflXWxCs+Poq4riqKkKErW6yEIhGSxuKjStNZsNiUe4fIWxZZh6K+qM5lJvLo2IhMTFYosy4TtPQqrd+5nNusC7x3ny4VhnCUgtW+Zppm72zUfPnxAKcOXr0/UdRucIdB3Y+htNQ4XGMX+qt5bcgCWM+D/f1ngnMONcna6MBh3jiu7NY4S4e8h2KtFHbwsF+ZZBudN3dAbCbZxVhJ75zC7ksHdK0N5WbRbO6OUkcCe8OxoFD6c40Yvbo/FdKyv6uNrncgvvoJS+cpfCPf87GaUDq6TPz9j488f8N3c3NAN8zVmfLNe8/XrY0hVPNM0LW/evMVa4cZMowDMy1URPmAR6/U2yEMFktwmA9476lpUDVEkUPEszSmK1TUxVjaFms3mDXFoRpqmlY3vfiuNiZ15enpkv7sljmO6bmSaHOv1hqZpKcuCLDfYkGIVRRH73Y5xXCC/Z8pyxX5/EwZ3F8ZhwjvZIK/X6yDhBKU9VVWzXpdBhWb45tsPgAQraC2Xa5GX1HWNtZbNekdVCQzzcDjw/v0H2rZBknElPUcObfmgC+PQkecZTVNhreX29vZqR2hqGVgUqxyPpapkA5EkCUobxmHgw/vvmKaRPM+RdEJFksjDVhQlm82WPM+4XJqQriYg5CzLiExMskqQqHRhDUZRHJIJDU/PL1RVSxxnQVVgmSfH8XgkiiJWqzV9NzAMPd9992u8Szif6mCXcteJ+jgt8dYJWnmOxyNN07Hb7gMUfJLDQ0V4b4Pdd6Qo8mtiMd6FxlO2FTI87rEWTCRN0WwnZjsx2YkcYUEKX88RWRVstzKwjOOINA1KiVm4IXZ2dFbCMN6+/UjTNlRVC34KluXABYwNSRrRdl6GxXGC94MkynmxEakw/BS2l7CzUJbT6czT44VyteL2dk8URYxTxX6/DfL+mao6c3d3L2meTcdsB5I4x9sZoxKSOCQa12f6vmOaBtqmJs8KvNMUxczt3RrvIuzYSVNxZd1A3w0sthkUIY0uQFi8DHLmadlOL1sIdx1WLgOE5TBeLldpfG04qAv6YSRNJCQkyxMUDm3kwL9cGp6fX7i93QMwdoMklKaRqKYcZGlBP4kyMk46+rbY9ynOAAEAAElEQVQHIyraKViU8lyey9hk9H5AeYVSkroqSq+OLJNhvbUzwzhKA+At79/fMM091vWYkFIaRZ5vv33L42PN4+NFCrAk4u3btzgHf/zjZ6Z55t/9979hu485HJ75+vgjP/5wZLve03WSkPv+w45yleCsJ0syvvkm4V/++Qkfzsbz+cJqVbLb7iVk5OsT3iv6buRwOAbbdIzH8fHjt7RdzeVyvhbKzsmgdRphVe5o2ybYcC0+j1mvEvrhhI4NN3d7sjji55/+mZeD5XLQfPz4a/JiS9OeuL3dM4w1Sk/c3e+Y5pluqFmVGz5+854//vFH2rZ9bYS8cG3mkK7t8Whl8MrTtY5xGjDxzOPDEyaSC3S/e8uHD+9xLmLs4fnhgSgWawhqYbZGjFPP4fCC0RodzexXK25v9igd8Yff/5Gum68y+GUhEkURv/71rzBG0Q+QFQaY2O4z0kSCjW7vSqrzwGZbhKF2T9vW5HlK8vYNs/VM44Q2BncWaPE8T2R5SdfL9jaOY/K8kGGalgXTOE0or0hyUbRbPWBMLFvSOL6eN1opdKRxXpTNh8MT/diiFGR5LumDScT7929Jo1RYnX5CeU2WGaxXGB+h9UyaJSid0LYjcZpwuVTUdR3URupPbbe8NnDL5/SXzZf8WeDxcu+462JsvsLlZTDogWmeSRaAsxPAcRIbdK4pioTTSZTym3WJiRSrdUTfNxLAYR1tK9zGcmVQeiZNDZt9FpRGjrYb6TpLloqFOE0SlDLEsSEyDs+Mmw1xYqjrliw3eOWCKkBR5ClN7Mjiktubgh9/eOTwUoUGXV15TPAa7GEDX0bOsmAjm2xI0RUu1pXhhwoLzASAaRoAGRLO/OK9NTBMw3VrvVjWlgGq2KtNKIKlMN5sVuS5pMi1bSvn8CwcTxNpdvs9w9BR1R2r1Qo7G/pmYBxmskwGOgvYfhxDXWNisYx1EzqkunbdyPlcMc2CCem6ijiOKQpZiLVdxen8AijGQfiakRH7sDKOYhVjDBwPL5y1pu8nnIPLueH77z+jtITtXM4jQx/z2FXkmaepurAsbtFGc3g5oHXOh292RLrk5ekkA1gtPLqXlyMgjVg/VCFcYggLppQ0i3FOmFp39zf89NNPeI+c9c6GBXDD/f0ddh4YJ2l697sdSo0hiTUNWIVHkizm7fs1jw+fcU7x8PgFrRV5YXh4+sLPXxz3b3YkWQJ6pu1r3m83NK0oi4oyRStZUi+WTtBkmSRELinLkQYVaaJIrMzbbczHjxuKQjFOLZv1lpubW5pq4PPXrxiTonwqjpl1SZ7lrMo1VdVhTMH97YrTsQU8aZYxu5Hn52fquuF8qnCTYhpsUDSkOKcYuwkPJFGBMS4sQZc0QWFI6QAWF+Wh3Ec04uCYpoEkjrCzl+GpncIZLgiOrpOUzDTNrmeOtZY4EpXqgvcQe3EpSpbArVpCPqT50mGgKMtswfaIEiyJE9brN2iteHx64KefPstC14N3wlVSTFdFGigiY66SCx/UmTIoWiylDhMleCvBf0uyorhQNUp5TGSIjL4qwOQDL0nsxhiyLMEjuJelmTVas14VKO2JTCyBKWOHNo7djSjKh74nzSRAJ808cdySFYrNags+ou9nDi81XW9RzuA0GONAOcCiEfTH1fpLABUYGXBKii+M/RyW6nLeA3gXEieDCuc1aVKUv4JriMPd4vBOQSTKvSk01BIS4FkS2UWFI6olQu24zBIXhabRoqZZkBuv95KiH3oiQ1CDroPCrg6qHBkaFUXO5SL9QhSLik4U55o4kST4TSLJ3+M4oZfk+IDUGWdJ5E7TOKiaosBEl/dnGCapK7oRraPrgC5JkhCcM2KtOHTGYebd+1vev//Ay8szdhYn0PkkuB4QaL/S8gxuNmsioySdd55Yr+/QOqijruyymDhKGaeReTrj1UCSylLgXXlP29T88OM/8/D4JSRxT/zh+/9KuSrougu3dyuiyLHd5Hx9/HRF8/zdf/p7siznzf09v/ntb4njmNPphbo6YyLF7/7pH/n97zXWztzd37K/uaHcfMC6ButGkiRGOPmKKI95fqyomgZrR/quI0kMbV/JcDoWhiCIQliwPCMKE9TvGmdFiRrFhjRgYOZZ+KOrMuN8PlKu5G40RvPhw3vO54qmaVivVxgd0TQN02TJ8pw0luEP3pElOVU1cjic8c6QpSu6biAyEiAzDAP7/Yq6aUVgMjXERpYzUSznubhrZqIo4XQ6h4CpjTjpfC3nUZJcF3pv3rzheD5SFBmXyvDy8hyCPl6Hgt7LcqTve1CKl5dD4CO2TJMMl+/u7kSpiSwOzuczfd+z292C9vRDK4iU6/BMzk1ZztowjNTstjIEdE44qfPkaMISp8gzuq6nHydxNWUZ799/ZLfd0zQtjw8vXKruWsssX1IjykJLlsn6ukBeXoP07K/W/OV7iL03nL9hYjZ7SVxWavlnonwTZ2Ab7olFJete8xTcFGALWtAFYWDow2JeLbzpEGIiasdX22wSJ2RpFqy50ocoo5iGGa+VhAgqc1XjWTsheLDrt7iiHpZ6elH64V7//p/79WcP+NI0pemcWMrmSR4A70O8+Fp4AOGvm6alrs/CcwsNQZqmDJ2iupy4ubkljjLquubu/pZp6q8XNbzKkft+CArAhN1uFwrOS4A3xiEG3sjgLDak4TWUZUmLDLbqqma73YldsWnY3+6pqortdovSmmGQ5nS1WrFsqY7HI+KvL/j5559x1nF3d48LSXSzlRSZpQnS2uCsFTvxLIfwu/e3eK+Ioi121nz69DNKaTab1TV8AqDvB+LYMM/C2VmtNoyjbMX6vuP7P37Pmzf3V6ZhVVVIep3wm/qh4ng8MgwTq2LPNHm8GuTh7SactTRth9Gecei5nIWFWK5yPn78RtQI48hut6XrBs7nE7vdDW1bgfKsVqUUIOt1sFl0wqubJpJUFCVRjASOdBVpmuC9IYpSUbbEKevyhqZ6oSgKgUt6Lz/P2nA5NSSpFHJd04i8WikOx2esk+2a95I4Os0z/fUgcqSJPEPjOGGchDX0vbw+5x39paEoQ3ptP7NebwCo64qVzsiyjJubGy6XE13XiioiNsFOKil8olxNqeoeZzXv7n9NlCe8PP8eayc2m5zLqWYcHWWRoyMTLOKLZ39mHFvyIsMF5WOaZqHgUazXK7JCMU49ShnhQPQ1eWHQkePNm638vbEjSXK6vqFpaiS5eqBpPNG2QGnL2LeMY0uaGbIsoust49iz3pTc7PYkScH93R279UZkwdqQVI7jsbt6hqZpvhZT+rqZEMWDVgKlVctWgiXpyYRLYwqqDhOgxTYwUxb7htjp5rARtbMPl3iCMYSfraMsRW0lNo4pJHDOLOm+6/WaoizoTwPjNJLECWUpkHe5KGRzPc8zaRzRdl24/Ak/E0eSyqZOQhskqRIPaSacmyzLSLzhfL6IYtkZrFWkCUE56sJ23fHw8IQmxlvF2FsOLzXHU0+SKP74/RMvz5bD0wNZYhiHjg/5Gu8lWOjx4QXrNfdvN9KUt9O14blcavp+lKCEpBD+0jSjI02apaRpjLUiNV+tSh4enoiMJDRO48jxWCP2aCUg6FKz3pRS+GxSVusCcNTtmWwldt1hsnx5+IKOHHHsuNSO+/sd3/3qPbOf+f77TygFaXZLFEfc3d+IFTPwA5M4vp5vSmkp9rWk8E2TNEBdJ5bw9XqFiYyECCjPMA5UVc+lqchSS5JmIZ2uJY51YH7GKBx/9ZffXJmdwzDz3/13f8nD1yNPL2eUj2UDPg1s1iVazeRFwstzC0o4JXVT43xBsVrxm99+5Mc/PjDbEe88XSetjdaKtMiZ6hav4Hw5YSLZEntEHZAkBhMRlCOKLCuYZ0kvNUaz2WzZbYUdK8+gDG6yvCDOlmLOSiCL0VwuR5ybKYqcprW0IaTKFjM3uxvyNKZv5Xx3XhSV58sRYzyrMkV5zzQIfuLl+Weapqcsb9FXZpQ0T1EchSRsfd16isLIXQstGfotDdxrMeK8KJIlzW8OllvNaGe6ToKm8jxH0gpr5nHm8elAnsXcv9ny/v075nlkGHua9oJ2hrIsaJua9VpUU+UqRQemVVGueXmuQtIiYQsrBZ630HUNSQxJooN12HNzW6KNxXlPmpa8PDd8/vlIGmcc6gNDf6Cply2tDtys4JBTBOuhrG2XIYAKNttAicEoE5Q6r8Xt8j4VRUHfQ93UpEkabDbC5lMe5sBeWe4Jsc0t8O0O552A3Af5WUdRzDRbnJvErdB1oB1xHJHlKU3V0rQN/WCpq5FphEineC+NR5Is9jorwwtMAF0LBywyCZHRaBUxjo4o8iSpYb3eMk29KPaN4uPHbxiGnuPxzDy2NM3E0+MP8kxFivUq5/37t7y8PFNVE21n+dV399zclLwcH/Cq5/7uhv/+//bf8k//9ZHPPx1xsyfLE7SyJJnH08twaGgo8hWHlyf5mSjN0He07cBmvQ3FsiLPcvAeowzzNNG5maLYk8YJJjHXYf2i9Oq7EZwmTQ19P74Our2n61pWq4hyVZBkEV5N0hzMnravefd+y+dPNTgNDlEOmIg3bwrWmxzLTF5oirwkLxMJHplDWE+Sys88pOtOi0oACRrQRhFpCWiIYsNuX/Lm7ZrIeMahA+B0OHI51XhvWK12ci9NEY9PtajAE1FixlGO1ilv7vZcLhWHw1EWyomhbRrBvSQRl7bldD6SpSuiyBAZg0o03TCQZQXGJDw8PDBNk3C0NiVd13E5nq7284eHLzw8WGZm8kJCCoqywJiZrp0YhgmrLCo881mWUVUVeS4p023bSj3hVXD5SN2RJPlVASvOIXEaZFkcHBw2qFZUCEs5CirF+QCtF+vq5VyhtKftZMHiftF9LSq7X9YzeF7TFL2/nn/6qt7gajNblCg6qNaMMcRmqYlEJeb8jHMzKEecLN9fM86WYRyZx4G+TYmTOCTHgokitLHM88ThWMuCo2+pLg2CTZG+6sefPpEmOXixguZZBN7gVUiuXULpkEWHWHRfh6rDOImSBIN30GjH2E/EsWEaBTPilWZJonTBwux55U8ti16pG+X8dQE279zMZC3jOGNniVF3TtA7cl4aIr0kSge3TqgpJeRD3uNpsmQ6vf6sY6PBCDt7UaAvA4zD4YWqqiTdNpMgvyRNiGIjNbjVrGK5X6JY0A7VpWOeJyJDeEYsdd0AIkgwkSc2hmEI96LW1wXQPNsQlpMRRzGbdSm8NyuIkDjR7PY51o58/foT8yyOEa0Nb9/eMc+e07ni+fksLhctKdfeWy5VzeXSXYcj2+02vB9SY03zhFYSKrDZpoxThXWKH3/6nv/4H/4D58sLaWZIc0OSKJTvaLsKlOXlUAdXUsfxcKbvR96++0iavSGNV/zP//P/m3fv3gHwL//yz/zn//KfeHr6yvv3e54eX3h4/Mp26/j69YXf/OUbsjTlcHogiWOSWNABwhOVMDytFFpbjEmII4ezlm4aicwAXgeFo4QgGCM4pgX7kecpXTvQ9V34qBpMrKiqC9Msi+ObG1E5R5EsF5I4oW3bK4ogjhOqS433iiQpcNZzufQMQ4vWMeiIuu4Y+on1Sl+HNEmaUCKzjXHqUS4iy3Mik0jQS5JQN5IoPk3yMzocDpzPF7IsY7fb4cPy9ny+ECcJ6+2avh9wzrFer8myLODHJtarzfV5VldbrvRNTdPgvbimbm5uePPmPqiJJ47HNjD0G3b7PXEUX3n1C395GaxFkQFlwYsyfvk6nYRZ6b2jaxqOWpMV4izabOR1lWXJzz9/DsNFsVjboNIjLEoXBV8UmWDRlYHasiBYvsQJ+Mob/WXwhlKE4LylBltYo1IrcR2qObxv8Z5Qh4hYaOgb7OwDl1vh3RwGe4uS0AbXj8cH/jwLP8+La9CDnAuRLAYkMMuRF1K726DMs86ivUfNHu/k3Fp+m38SaIf6k9///1Fff/aAr+8GulZSUbTyNFNz3YgKUDq+qnYEDC7F57L5atuO6tJyOBxJkoxh6INVlOtAYLsrWECuIBYLUZ/5sCGDvu85n89EJr4W09M0BptnFMIx8mvT4rwon96+e4OOJsp1yfl8ZppmkiQlijT39/dEUczz8zMPD4+sVxv2N3u+fn4QVd9uH4Zrl/CgbynLHKV0GE5CXTf87d/8LT/88EcpcvKI06HmeGioqzYwQWaxEkRGVIlKBbvyEDiBoZBQmnGcuLt7w/l8oq7rwIJrrgXRNM7sb25Yb3KOp2eMdjhnyKIEfCdWqEtPmiY45MM8DD1t2wV7b8T5fGa32/HNx284n8+kacqHDx+Q2PhW2GhRhI0cRVESx2ko7o9SDLctRmuKUrZKm80GOymUjinLkro58Bcf/5K7u7dst+94d7nhD3/4Z75+fWC73aCjmKZpIMh4CbJ4kDjvrmsoyq1M560Mc6y1oqbzA+u1+PH7XgbJ8zxeG+gkSVitpJhaNmtKwX53yzh8xc42JBQtNlSJrHduCs2YoWnrkOKYY7QmS3I261viOGe/O/P58w98/fpMUWqyADYfplEarZC+63DEcULXdcyTuxYjfd+LRF95TqcDXd/hrAxwx94QZ7Bep+z3nkt1YBx79vsNRVkwjh1FkZOkJhxSM0kc0TcDbVszVxVt13I8vXB7s2d/s+Xl6Yk0Hbi5vcMrkcs760jjmCzY814tJ8sB5K7F9rJeXYoo511gCb1ycJZkTQG1viZyymd0Cqo/c+WizPMUkhpl4JbnBV0vMvHBzWgtlog0y6maE5KIJXaFw8uRphvp2pm6GjEk161hmqYsnLEpyNeXrY5HhVCKiEWKPY3SZKVJhpoHwGLdzP39nbCCXk4cD2JfffjyR4yRYcJun/P+wz0PXw+cjgNg+O1vf0NTnzicH7i9S/lX/80HXp4n/uE/f4VZOFLV2eHtiNI1kfFY21MWBW0zYbQ0fX3f0vcz+/0OvLkqEydrcdOAnQciUwgqIDK8HAbiRLFeCRi5bTppgixYq9A6wk4zyktKrokHpnGkbXvSNMZECflasdrKtlNft/gTp7MlSiFJQRvHdltSFKLINcGSbYLNZ+EyZlkhyo15RMeGOBVY7919wpt3CR8+rDkdnthsVqzKguOx4enpSJHvMEFdq40hz3ecz0eSpKBtRIm4WRfc3GwkLS+WgdDnnx+pmgr5tDvmaeJ0eOawzfntbz+Q5xHTFHE+X3j3fk/d1hyPzzg/oVTCdl+iSTkez8GCGjOM45WdNU2SCHtzuxf7aaIpy5Kma0QxlCYkcc7NzZ0Uos2DfC5ig4k0iYtkWGYCe815uqYjyxK6vqZra2Y78vT8SNs3fPPdNxgDaWpou4FL9cKqTMnzFGU8aZaicAz9QNu0KD2z3axJ42AJs/I5fH4+sC7fhsaf67JNodDKX1Uv4zgEawN/chYs/1/YmmJHcX6+3r1ijdAMwyzhQs4xDpY4sqRZzipe4dwUCi+xUZ2OF15eDjgmtBGVzzjOrDeZKJdjTdc1nC8165VwWlflhiiaOR1b6svIMHiGvgvJ3wI8rqqRolC8eXtDFDmiWN67H394ZOwjLqcJb2eUj7FWIWhMKXwXRTKoa5PpvaRQyhZ6GfzJHe2VDK3xr82ynI+vKnPvpYB2zmGUDgwrzzzNIZRJX4eqSSyqj2GYcb7HmAiTJWJ56YegXsolgc86XOBFrdcrtNKcT2IxahvHPBmGroNYnkmlzPXuMVqGeFopRj/hcSGtLtj8UQz9xDQ1lGUOYcBrtKJpOrQ29MOAifKASQDrRpx3REnEZrciSuDmds2btxF9P/HlyxdeTgdu7wzffPOW1WrN+dRwOld45RgGy8PXmsPBcHdvWG+hXMW8/7DhZv+Gf/yHH3h+rMmTFZqYtmvpugZj0qCCdRRFxt3dLeM4cL4cKYNd71KdqKuKzXaF1oq27RgnGU67WYZscawoykyemQh05Om6hijKyMtUbHgaLuczh2oiziJWSUJTSxDTZrXGGEc3NlT1iW++2VJkG6qLsMAeHyvsOFH1I5GRuyc2hiQsA2Xwk2EiUYRYK83S+VLRj2fS3LHdGm52WRgUet69/8A8x1zOPdMwkucbnp4+0bZH6npiu93wf/m3/w58zOPD85X7m4WU22W5iNW4WRoxrSOcBaUjIiNK8KVBPR6PGKOvqpI4ltCYNI1JU0NR5DhliRJQiDPDeUvYEYaawl3B8efzmSSJrwM8a2fmwJkawqJvGCZ5nas1WmuapuZyuVDXzXW4KEgRebavZxaey/nCOI6BAfzLRtBeB3OLanlRzCxDXmtfVfAyGFgQI6/LhaUWWuohrRTGRERaBwXTax9kTCwMuijBuRiYUZEiVjEOR5LEbHZr+mGkaaVu1MZSFqWkXs4RbdtQ1y1aifJ/Vg6jFWWZ422C1jJUEdt9hI4iGXi7GQLDT2mNRhbXUSRYnDiyaKMwOiJLS3abLeM4URYrjsczT09HcGIxFQuau9aFWoV7wjm0MSgtljxhD4v11NqwGHEBoODBKMJQURh2S8iR8FMX/JN4aRfFnzxDMpB1zuM1V8VWFBt8F349J+eY83OwRYv624QhrTKGPEspyxXDMAbnTkSRl/R+Zh5nCJbZZWDgvTiFlz5BYZgneYaiSP6dJWyl7UbmSUIQhBkmog65xxuqegqLT800OlYlTJOnbVvSVH7P3s+8vLwExeDixhhR2obBqLs+995b0DJs/vzlC5vVzNfPB/7hH/4JpT2bbcZsR5JEkRcRm3hLVV3k5xUGJEmqJMQwH3g5/YE8vud/+B//R/72b/8mYEIGttst/8//6f/F169fOB6P9J2l63usdTw9CMe6XBvydEN1OQYhh7y+NDOsN4KhUFrRNOfr8PT+/pZ3H97yu9+/kJmYyc5sdxuMjikKwd6czh3jIMOw2EdgIc0SxmgkyhKsFbxSnpU0lYQCtW1HHKUoxLKtjSB8tIZ+EL6+1jHeQxJn7Pd74dReeuZReK5S44hSP44dfd+gmUi1OACHQbAOUWLZpgmHw4nNNiNJ5BwviiKwxlMOh+OV3zvNI21bkSQyXNY6QylRo3vv5L2zXPFE+xtx8jRNi1GKNM9RWvreLM9YrVY0tbj88lDPTaPl/fsPPDw8vC4hwtBMfj8RqJhx7BjGJljgNVFcXm3Ik5M7vyg3fHj/jqqqQlBVzThMiNBtQb1wta5e51dekAMLw1MWDmKtxZugWl+WyYTafVHsinJTBuHymqWflEEhyJLSO4cPvNGlvnXhrNEqwmJfzyCkflvqWu8lJGRRIkNYMCglbjI0eEc/zqhZsVoVJFGEw+KtYMuM8Zgooig2QaE/c65rhl6EJHiZ57z6dl8HfP76Xv2fgMEn4QTiT16tNlwuwro4nc40TYNSmvW6JIpijJFkTec8XX9BopE94yhQTeeCRDPOyPOUttMURYbW8jLjFC5VwzgmJKlYLU6nI0mcEsc5STwTRakoKbxFoanqM0kiyoGnp2eSpBRb16AY+gM3dxvugp1XeUVbN0zJgNKG1TphHB03Nzs0LRrN5VRRVw2r9Yrbu3uiOMZ5xzwN9G1HmeeM/cQ0iA2rzFckUQ7OUFUNWR4xjhNpkmFzyDLF6XSiLFecAvzVWst9+N7TNDNOElqBTYgTUUDEcSIHspbBxf3dG6wF63ouVcVmW3Jze8/Dwxea+oKO1pSrlFJb8Ev0tDRYm21JuSpYfOB9N9IlPbVtARnCnE4t+/2eoszlg67B43h8fKAs12RZLg+lEvsdytO2TeAApEzDyNh3zNPIPE1cTheqzRmlIprqwnqVMOxTktjg/EAczcIVyDNaDW/e3NO2MiCaho4sK1BaUaQpzvckccJy6C6bhtvbW8ZpCE2VFFois3VoI3aNpmnQaoTIsFpv8H4E52mbRhKRkIGXMjo8zzJoHvoBhWK73qKUwWjP5XTk+fGZabBYP+GcqCv2ZUnbduA7JMFsRNKuYryfGZXDzpPwbLwmSjRtWzNMHUmcBWWOZ3Y9xoYU5H5HVwkHcSpmXCqv83Q4s91upGhTliwDvcvIs5hLLRtUEyVcmoYoiZmsJzeaYeywriZNN3jlSBLPf/e37/kv//k/g/xYCapo4VfgQiELIA3v8nkmFMULh0W2uCZsZILy0olqztpXFoZCCR9tnun7EectUVwyz55pEh5i13fkRYGkN07LSp2iWDP0MlSfB5gGwGr6cQwbfwNeJNmLKkIZAeo7xFosz6oKYRqe46GhKFKUliFWFCnGYeR0OjONE8akRNGMd1LoeQXrTcr+JiFJHG/frtltV9R1zfc//pEodrx7v+btux15VvDHf/mCtYqhn6m7mUs1sL/VvHmXECeaD9+sudm945/+4TNd61mtCvpupupHusailVxaqzLj/m7PNE48Pj3w7t09UaQ5nQ90XcP79+/AG4ZhRGmI04x+GFGBVRFHwiSy1mNiWJUrdFQQR5rTuUdHGq9rkizBzQnTpNnf7EgLT92KyvWv/+ojzhqa6sw0znRtiwtS8yRKiPKIabbYeSKOFGVR4rFESYQ2EkrR9ZYf/lizWce8vBz48vWJ/f4NHz58pKoGVuWa1WrLMMoQsm87tPJc6hNxbCjzhKZtcG4gigX0X5YpbTkyTyPaa3SS4Jzly5cf+PBhRT/0lKuYcn1L07RYO7C/vQmFiWa0PafjC0mUMzNzu9syjMKf6QfhBuV5xmRn+rEjmSV0ANx1YIxXdE3D+VxLoWFnmuYiqqs0Ddaf14F429b0fc3NzZayiLF+whjPywGa+oxXHs9InCjsrFDGsd4UjFESGtqZl6BWkAHmTJQkVKcGYxR39zfUbUs3dozDLIr4kIptw/Iry2TLvUDAl8+oLNSkwdUa2cR6h7NLSJYMtnT4PINGebFjKxR9P4JyZLkwN/NMzuAsSzmfL6FwjLm93YXfn+HpseL5+SUs22rA09aivilXGUmckyUxtR+ZJ8hzzWaVYZ2jazuMll/3D//8lZvbFUYnXC6jqJyjGO0VwzRC4EXJHSbnmvylf5XwXdFTso113ovVQwnAHsB7DUuBGopTZK/AaIUXLIsMi9dIOrfzUtRahTfLUMHRtXIHJ0kc7F0z4xgsI7Nnnh39MLPbbUH9/5j705/NtvS8D/uttfa8n/md6q2qU2fqJpuU2AxlUoMVRZIdOJFl54MTGEiUADEC2EL+QCdfghgx4sSgFFni3N08Y03v+Ex73mvIh3s/T7UQIAjQ+pACD9isw37Hvde6h+v6XScLeI8dFIfjAQIkSUZTNaRpTvCD8GEQVpcxMcMwkueiMh/Gnta2KBSJSXHBEazDTY2tHS2mtyjtcSGQRxF101I1YhEyKmF0klqdpo62bQQ1omKG3rN9lrCty6s1n395RQgWEwX2+x1NU1MW1/ydf/9nfPfdO95+vxNldXA4pXn95jNMFPBupB8r3nxxweZCIOcvbj9j+V3JL//iPX4cyTJR9A7DyBdffMHhsMVoT5FmKAN+HJiVOdY7qmND04g6UKsIr04bess8SYljj9Z+4hYGmk4WCheXlygNXSfv59XFK9pK89e//MiulcTcxWbNxdWc4mDY7fY8b+8xOhP1ysTxPjUTI7KQ/qRaCoy2xQYzccekffHe0Q+eJJehQtNa8ixlNisYhv7cHERxxNPTkcfHiuDh6uqSl7evybM5d3eP8ux0MtTxIZbfsx+4utoQ6Yin++N0Dsr9nqQJxsu92/cDm80l19c39H1DFMuZ0ByP5FnGajXHOrEtLldzokTR9zV919G3LcEK13IK7SYEWRKM40iSxOdhuvd+UgbLP8M4EDp5hiWwTwLVFIL/kME4ZzuVmgLLBiuDgKxIZTiPQ0cSGiOf4xNf9NfPOwj44M4q11OXemI8nxIomRSXwZ9GPYagA5GKSKJo4iZaGbRpI42sl1TOMICfQtWiWEM8ghKVn7MKOypMnE3unJgkjSTDB7GGlflKFMVOQzDEcSq848kOl2cFUZQQxxkmPuFSHCdmagjCWA4B6vowKWyiaRBpZXEVRZOaWbFaXVAUDzT1wDA4CVlxA+MwBeLxa3Y6PamNvJIAkfDJGqi1PjOsIJDEKVGUTk1+wFk3pVcKZgEvPyevNGGy+BljRBE4MfkklEAGzn3XIYMF+Xd5nqFVxDiIRd/jGeyAMqJUdAGquhU8QW/pWktbS8hTbyU0Rerq+Dx4cC6IJQ+F8ydrtagmFWI3bppeBrqRhKDZccBMZ/xqtWa93tB1LU9PO+qqJ3jFhw+PUz8MWRaxWi8oy4Lt84GmtgRnWMxnEhySiqOq72XIdxpaDMPAy5tL0mSOUppXr6748stXtF3Fjz9+j7UDQQk2IMsSVusFgSDqPy3iGtMPzEs5V2bZjNuX1zw+3tP3A2VZkmUZP/zwI1dXl5PjRoIh6maPD3B/98TLeIPSgSQ5uUuGc5+mVGBzsSQE+PjxA5dXFxhtcH6g62pev7rlWG3Zbmu0Dnz++WcYE9E2c6Lo4cyXPBwbxlEYit4Lq867IJxNH9jvjjRVKymxkYgrxPGlyIqIV6+vaLsDkdHc3n7G0+Oeth0AzXZ3JIpSrm8uubm55cOH98RRQt8PDEMv57KC2bxk6D3ayCKmLBPi3LC5XOBGwzd//QN1XVOWM7zzEwZJBs4+CNs80opxEFxFXpQEJQuBNImZlXOGvpehbxyRpykvb6+pqz1RpJnNZrSd4AX6YUCbliTPWG02gsvB4CZxyXK9Yn88nnnyzo6MdpzeFwnQ9N4TIi329SghjjKpRdKc1fqa5WKGNorD8YEkLojiiHHU6CiIDdZ6Ih1hnRVny0k97NSnGgpR62pz+s9TcI+flHQhwBRKFHxgsON09jHNluZYexpwnzihskAyWoQusrT5dK4HwhmTcMIsaCMhHie28gQqOC+H9PT/o4zC29Oyx+NHqGgoyuw80PRBFrdeBWywpEmK7a0EyWhDfWyxE+rq1x0wsu+Q7z1MA8nf9M9vPODzPvD09EiaZqIeSpKzSkl4cY4sEwXfYrGQDb33oCyzeSlA2CQw0zlRHCiKBWkaczjsOU19RbVSEwisNwvq+oiJFNfXV2JhmmTRWR4TvIQ5HI9Hkb8TSBOJlHbOs9seOR6O2NGSpJqTF1ySa+Sf69klWVESCDTNjjgRZlfbCDuurmriJOXd+w8URc7T0xPzWc7V1dU0CTd0Wi6Kz774nDwreP3ZG6yvubt7Jy9i4zkcJMXtxBa5uXnBx48fz/yi0QpXTKFRyrDbb4njhOAtF5cX+DAV5lpj3UiWpfgA1o18+PCRxaJE6wSt/aSoyEiSfFLrGXkIJ7hzYuJpuxGjdczhcDx/bRIwsaRpxFKa5wvClAb26YVgso+1CEg0ErVLP3B/90wSl/R9RUBz++KCwVaMtmK/r/n+h2/ZbGasVkvqqqMsc0mq7FvWqwUmksZyuVzy8PAgaalZTN81DIObBj3SWCWJmmxinmO1BzhbOkUB6knSFBPJNiBLM8pyQfCRHJyZcLCOx4bIGFrneXrc8fL1S/I8Iy/kkKsOB5LEoCPZ4G9WPS601M0zxSylHyLSNJ2AqS3NlLwZgme5muN9jw8S2NK2NVXVEqcF3ktzYq3wBNerKxZzCC6eFEMjV1crhkFSn4axYbFKybIlwygDZGUcWRpDgDxPuLm6IgRD3exp6p4oytntnri6vGa5WPDx7gPj2FPmBbPZjMgkVPURO4oF5hN3S0xo0utKAwJqajpOjC44dcGi8gnT72AaNESilAvhlELkCaeE3RDObMqizBh6R9uOk4LA0zYdOo6wVhiaSZoQDvJ1VFXP9nk/DZoVfWuxVp4J74WPRdACTx0tWVqeL7G+70Wlp8A62TQrFWNHy9AHoljTeUteGOpq4HAQlbJ3EeOgmJULnG2nAsugVUnXwv39AwG4ul5y9WIGWAZ75OnpjvlixpdfX1DkKd/86pm+k4AO7xSXlxeUM41nxJiGN18sWCyleF7OX/Lf/3e/ojmOZFlCnCjqqmL1Wz9hsZjj3cCsEHXzzjuKImMYOo6H0yJGM1r5vXk3cHExJ8tEiRNw9P3Adjuw2SwxaUpsPIfDPa+/eMGyvOGvf3nH0+OOYYx4sb4kKwIfP75jHGq8NyzX1zw9Sapk8BMLaVLzFXkGKsGHkTgWddc4tqA0+33N6BTLRUISlUSRYbGYSRqX97R1OylEMoFLj6P8u2CJdERkNG3X0XZHlsuSq4tLymxOHGV88abgj//Fn7J/Htksl+RpTFEqAj0hdNNZO1I3e9Rkx0/SnOoozE4fpBEok1Q4azpis7lkHD37wx5rLR8/fmSxmKE12LqX4Y8TdEORi8p6HCTUwkxcJutGmsES6wjvA0UxmzhEAAGt4OJyjfM9F+uC227Nh48f2O6eSWKEJ+Y0JnIo41FGoSLDcX8gKLGDDmPDbrdjub7CeUeSRlzfXHNzc8PQG95+/wuxpicSztS7keAcXd9MwwJ/3uKetpsnW5z3niQ1LMoZduLKiSq/B3Xi+MmmVmuN4pQe7el7j3UKhWw6j5XYSCQ5vCT4hKYa+fjxCQjkWczD45E4MmRpLAMFLHmeYXTM/d2BU0KswK/Hs8VD7HpSlLW1Zxha6nrAWgWhl1ZsKjLDucCaClzCxN2azkEtTb/09QYlHb1skzHCa5rqEa1Om+rpeJOK5lyvnCy8YZofns7K8+cK8nefilNN10sNIlxZGTC0bUscJ1xcXFPkcx7un+h7hR0j+q5niEaMyhg6hyJh7AWpkqTppMABM6UKR3FKFA1yh8oqmwDEUYK1oJWoHIMNU4Okcd6SZxkqVgyj5/HxEaMSUTWalGE0fPPtA/t9y6I0LJYzPrzf8ebLOeVcUZYZ4xiR5zOUKmjbkS+/vOGrr1/x7sd7olizWgnDr24ahq6nyC2LxZybFwuiOGY+m9M1Hd/+taKtewpd4LXiZz/77WmpPJKnb+S9s3Le6wgcfmoINZ3rQWnO6fCjcHPm84KiNBSziN3uAWf9xDz6gNKieFutZ9THih9+fMQjiaRV3fD4ZMlnnpcvr7i6XvHxwz1tg7B8rZ8WY9OVqYQZrYMizQSpYK0EFsWRqNxDcATAOaiOgSga0CZhHmWCP0GerSiKWKwu+PZXH/FW8eLFNev1hiIXPnRdf0fXtVhriWM51wIWlATZ2GFkGFvGwVHkc4xJ8VbhrRL7qJMU79vbF8xnM6JEkArjcsViIZzs7e5pYpPBOFjm8xVxLEEvMrzQ00RMo/TJSunPuBZxcYAxVlwmbUWRF5MK3PP09EjTZMRxNDl/LH0/TO+9vHPDMBAnEYlJJneB2JxBkaQJ1ggHinB658O01DjxRYNgQPBoBWpKezwN/4TN5M41jzjETuw4OX/w+uw0GkeH0Yqm78nSghAy7MTUjslIjSJKFS49BQYZsjSimM34+e/9nJevPpPAvnBK1xxo2x5vHX3rcV4aZmstw3RWDONA04gDIqgwcd7k5xWCm84escaiDUqLLVebFO8NiY9RPpblBB4fEubzG2azyTY5BSy5KfyiGzqc9UwIw0mhd+JuOUY3njEA1g40TY33kKbivHFjwClFcAMysPJ4J6nGATMN309KOeGxnX7mzgnj9lg1jNaSpTHBK7pWQgfiWJTdrreYROPDxKyLRTHYtXYKDnSMvWdoLVZ14uyYHqqTovPEr00SceIELxB/PAQnieyRielbSSFPU4MPDu/VZBdVHA8tARGj5FlBdRzwXp2HsCDoj/k8F/biRcJsHuF9gXU1IaSAoq4PDIOk6zrnyLOcy9srlsslkREOWdvU1M0R5wdMdFLSKmHVRqIo9CHQDu00pOuFC9tZ4jjniy9+QlkscKObQjEGNpsNFxcNZTljHC1XV9f8wR/8Ab/61V/y8X7Ejo6qauj7HbNFQtNW1HUtQQddx/XNNRcXlxijSVJJWU2TDJRnHDuUhlt1zWeDBO1pFXNila/XK7rOcjy0cIT9vuP+riLLNcvlDKVlwfehfwCvOBw6CIosAztYApq27Wg6R146luuE+bykG7aM7ii8um7ExAPzcoYd9FmVH6ZLPUlSEShpePnqBX/9q285HLesViXW9vjOkOXirtvu9iglDEphw3bgHXVVExAe5/HYk2aa9WbDzYuXbHcV7z98kFr9cs5ydkXTxASvaeueL774iuOho6rbCa/SMjpL247YMbBaL5nPF5yCJJqugsqJC7JUDP2RLBe3Zdc7TDTDRDFZLqGaJySIVpJ+DUbOa6VIkxilAq9f5czmM5q6YWf2JJGkfjvrGGxL19Yyi1FAmIbiQe4zUYt+qnmZ1L3OfXKKnParSRQRtMIFyyfXhCQeC/pAUrZl6SoKZaVBTYKSCbAz1WLubPf1wZNmEloz9CNN06HNSanLZIuW2s35T3f2qW5z1skzqANmYlMrpXDjyNiOHKkkWR0RkQU/hRup0wztE97g9Hf/ruy6v/GA72Txmc/n0+UsCrSu6yaLlliWJG7ZcnGxQWvD4fgwFVBi5zU6Yrd/oq7rCbjbkGbCHIhETS9Dkt6x2x5wzrNcLri+vmYYhimxN2YYRCa5WIia0Dl73sYOw8jxWFE3FRcXN9y+vKYoYsZRUgzv7u6YzYTflKTTpm/6ZQ5jy2g9SZwSfEPfWfp+e4YsOpdMdtaENE2nWOlIthFOWGWHgyTxDoOjbSvyPCPLcgHoH/byYmUZu92OIcuwo2zBlsuSOImxg8i4k8TQdTXb3TPX1zdcXV3JUJVAXohFZLc7sNvup4GgYjZfYIw02s7Zie/zKZb68fFxSlRbs9lcsNvtWCwWXF5eyoFc1wJcTiKi6ARel4dwv9+x2+1YrVZsLi4E2mxlA/bx4z3eKV69vCLNYh4e35Jmivk8x7qa2TxFay2AWW+ZlaKm/Pzzz/n48aM0EVEqCkYAHCZ2aOPP3A1Rkxi6ZlIhGU0cp8xnK/q+k8s3yEVZFAUmirBWn9WS4zBOm2yxbHrvmc1mPD8/kiQJF9kFz0/PRHHMy5e3ZFnGzc31xH6xLJclMKK15fp6TZJFaD1DaUfdHIXDkQrLKMkMzvVo44kjKaSyPKUsSuIko6qOgCQiKy18CTtqjJHEzDBt5qt9Lxy6Ka24bQuOhwNKw5K5yImVZjFbUxQZPkjxvN1t2e53fPHFa5q6RinLbFZSNxUPj+9ZLucU6Yzj8QnvkomPcbLjygEMcGKrSJqQbHxPZ1L4dZDoufA6bcilcT5ZHE6F8mmI+OvQZa3lkqiOFR7hNRgMXduz10cuLtakScF+fxQVgo3Y79qpMRY2g9GysS2KQgDdTtLsolg4dUmaEnWCBPDOMfRWpOpoRq+wI2I9M2Haclux+keGMQQ+Pu6Iop48S0jimK5R/PIv7tgfemaziPki4u5DzctXM9YX6RRvL8DbplK8uE348ssv+eab74iiiM0mI00FXVBVB1YrxWozY7ZUk5J4ztu3c37x5zuYUj5vXlzx5Zefczgc+Pzzz9HKTUP2mKxYcKylgPb7Fms/AXvt4DERzOYZRRGRFVqYkl7RNLIRM8bws9/5irK84Jtfvsf5jiSNqOsj9/cjP/3ZS25fXlDXHW9/fGSphZvV9z1aRYgFXqysUlgK/2ccRUVroniy12jaxpKljqbqmS9yoiidWINq2hbPCV6Ki6qrBZIdKVbLJWWRst098Or1C2azjN1Whvt19UjTOoZeUseXqxlfvnlNXiqSpCegiSNNNCq2wdJULXd39wQiymLJZ29eM5+tOR4aHh93tG07pW6PzBdrRjtyrPZ4f0qZDWfLaWQUdhzJ84Km7hiGjnGUyzxJE8qy5Onxjkgb0jSTBY23RLEhSxIklXBAR/J7WmUFaXrL7csLokTUyEoprHMkccni1RVX15c8Pj0wDCPDOBJFEWmR4bHEiaJtOppqx2azwawWZyaUWN1qnLMUeXoejp3QCPzaEN+5kSiSu2Q2z0mzmHEUNZ9YJxoJQPK/thyYbPrWOarjSBRPjbaTIaHJBMg/jpIQ//BwoO88i0UMyhPwzEpNkhqSRKwkTSOhCCZy5AXEUUTwhigWO1x1lDurLJdoramODc7KEM7ZUSDxQdTmRk+WCQ3KgPZgR0nQ/fVi66Q2UZNKfapZOSE0hBE1KZXVBJ8/HX2TYub0jySAjpxSxk/JyScFTRSJqlISJgNGG/JMmK2iArRYJ+9S03QkiYQmeScDhBC0wNYHN1lVFJFJcC6cOWRRrJnPZ1JUe0m1TOKYfhAlShwn9ENHlsWMdsSOlqJMaOqOyCuslXNWwhsSmm5AERPQJFmBHRxN7RgHsEOgCZ44CtRNQ5z2/OS3ruTrjEuSeMFf/uX3bLf19LljiiLB+pH9oeJ4hOo40DYD3h1YrQ9sNgsWywUPd9/z/Njx27/9NXcf9nStJUkUm4s1x2pPlud8eHxAG8VoB7ENOkeUCLPZmFGYQQ6YhpfD4On6nmEE3WvK+fxsu8tzGWAOQ491jg/f/cjdh56XN7e4PKap78lyzeXVktV6RtPtSeIEEztG2/L99890vXBt3cTqUVqJTfH0/IRTAms0WR+VQP9PCzQDRidEJmUcPW3viIym7yu8M8wLj9Yx4yDL5NlsiXeBb7/9ju12S57nrNcX04CiAjUyXyyIYmj7A0pZ7KgYxpE801OK7Qx1PND1Dd5LndL3HVEMl5dXELspHTfFe8cwdiRJxGg7dtsdL1+94ub6BXb4QFW3EOvJtRNP74LHhxFn5c44BWYIi5uJbSZoGO/DWXFWlhLoIuewLBRPdYtzVobuqAl+L8PIoshpW2E3e+8JLhDEHybtu5HBxziKvVMbWZqe3l9rx/MSYDoOZLijT0N6qXGcdWhjIGiKfEaRF5TFktVqw2K5YjaTv1utV6Sp9ABRbIiTmLZpSNKEn/3u3+DNF19KHROZSbEmhc7xcKA61AwDkz0sIstlIC5NKQQvDgXvpMEeRkvTCdurH3qGruVYVQzjyDD6CSfTMg5iy3PW0tSVLO7gHIThvWAvRjsSaflZJ6ZkcMIjVtPZHUUKwsQKNk6U386hcFxsIrFFKhmMhclKJ/sRizEe58epjwpY5+jH7hyAkSQJo+0hjJLEKlIg0Hpa8Co8Bh8C1kJRJMSJoRtaced4UJGibwdGa0njjL7rp9+7EQh/cKgpmfnXQwnEFeQmRJAjMqfARj2NgAwShCb3jYmmtNAInIXn5/2kEA3iVFMJ2sgdN/S14KxMgjYpXddOLoCR6+s164uS9WZBkvgzgmq73XJxcY0iou9H/vzP/4SnpyNlOSN4y+G4w4eR6+tLFosFeVHwZ3/+Fmstj4+PrDYrmq6hbYXt2XcDKji++Oz3WS8+58cfP3Jz/RlKCRczTVM2k1VUaqMjs3nJ3/v3/x6PT1/yi1/+GX/2p39CP+xYXxTM5hnVsaJpeop8jvJzNouvhdu88USx5/7+LY/Pd1L76BPHMibLZOi0WMx4enqcQlMMO1fz+eefCfbh/QN9L3y5PMvwzskysffnZ19rRxR5kkzzxVe3pLnD+ZrD/kB1bLi8vCZJEpJEloORSejbgdX6+ox5Mj4wn82Zzefstnvu7x/Zbndsn3fs99X5/k7zlOenR3784QN974mMhCcp/BSK5bFOFhhZHpPFKePY0nYVx+rAh3db9ocOhaU63rNaeTQxSsUslht0tOC3f+sP2R8qhlHcUnYapIMsKbRR5Hk1cXsD/TiiQsyszKhDi1EJcWynUKREVLdGT9gPy1h5jII4Etb6MPYoHegjyQmQ0NOJETlfkWdOePfeS4+sxf2k9JRWPjoiI/MR793Ef+a8AOj7nmPViMPB20lMJMPVYeinmY6sS/eHAz4EssnZ6JUM7bOsEJ56EJt734+TshYio0E5UA7rHIZAmnvKQtNEIAF+cm4RDNrIeWcmlZ9X6pyoLbN+WVQHF3A4LHwKzDoN7LycSdN+WBTX/Bq/NEBQ/3ZI5b+LP7/xgC+EwHK1IooittsdRZHR9wNpmp6LiBNI+qT2Om09nHeMQ8v26QgKqqri9vYFSisOhwO3L2V41bRysRTZHDfUrFYXzMoZbdsxn8+mQAqZMj/c30GQybMxMZvNJU1z5O7uI+v1mjQVRsF+vyNOAi9fXZNlhvlsAS80Td3w/LwjShJRja1W7HfVxFLSDF1guVzjgVevbwXYvSpp6+rMD1kul/jgGQeR015evaCqakZrMYapUM95eHhCKUnJ7bqOqn5mGAaqWrYcRVFQliWjHRhHy8uXL6awAM9u98RisTgr7KqqwjpHmmXMFwv63vH0+ETwRoYFxyNJUgKK6+sbnp6eaNuW9XpF2/aUpagBF/P1OTBDtnWOoswpy4LjUQ6uOE7Y77fMF3MUmh9/fMtyuabvRz5++MgwDqzXG9q2RuuEi82G5+dnZvOUr7/+kuUyx9qRxXLBOKhJSivcDH3a5ExQ97puWK02jGMtybCJ4bPPXmAiUafVzZGh79EmYlYuqCp5VqLITDyKgDECeC7LUraMznOsaozKWS4v2O8btErPz6YkNnXTNkyaq64f0IOlbftJYXogijRFMWMcxumSD2y3B4axY7XJSFM9Nb2S3tn3A4GEwTYkiSFPE+IkZrNeMfQjSRajTTEFPjiiqOB46KmOA3cfn4TZlWjqxkyhHBEXF28IelIqJnLBQ4RRGWVZkiQRaS4BByaCr776nI/3CU1zoFWe29tLZrOC7fMWpQNVvcXbnrrdk0SL8yE0ve2//ubLhkMJ/PvX0zbddPIZYyZWoYSlNI1EqcumMTmrVk7NbTQx/2T7PJBmyaRQDQI99yPj4GnbAedl81oWJQRNUw9oHVPkGX0/yvbMSeMuh3xL09TMZuU0kOjPTVMUCZczy7PJKu0mq6SVkJeqxxmPsxDFCfu9vB911WGMFPBKiRWzqT19F+hbYEoMHceaooi5vF7QtQdW60sOO8sv/vIDXeMpy5JyHhNHmrrZ0bSyIGlrxd37J66uWxbLjK55ojo+MJ8t+Ft/eMv7t3d03cDr168kIGZW8Pz8QBJpqrqemhA7AYYdSvXC/EHWU8djQ1AdZbkiTiyLRBLBxVbScTzWLJdrrNV88+2fYnvN7e0tv/rlD7gwcHF5KSqqIgHlWC4z9ocdb99+nKT10rSK6lOek7IQnohzlrxIabqWcRywQVTG4+BxQRFFKUqJxXUcnQzcylK6WhTj2DMM0mQ+b3c0Tczt7TXjMPDdt3dUVTUNMg3Pu5phMFxdXpEkcDg+cWwGXr1a8/Bwj0Yaxov1hjRt8WHL7iDWyLIsqJuKelIQBqc5HCriKGez2XD/cE/TtFxeXnB5eTEVFW5SRgSUli1gmibM5nMe7p/Fiukh4Ll5cY1RiiSWbSjKIcnN8nOra0cxS9BGUsHTxJBnBb3tEUC6pD83Vc/26Z7xs6+pjgcJqxg7xqkBrZuaumqoDxV9nlNkEXkRU5aFJCL3A9b16Kl5+ZSOeWKTfAIcK+VJ0piyzDGRPi/BjsdKGioHhFPoDvIzUGAndMI5XRM/FeMRzgn8WqsIbwOr5YI2GfBhwGjN5eUKlDSUWolacxgtyzwlBM1XX37Fu7ePpElBkiYoNGMf6LsKO8qWtmsdkoQKWkfn4A2lpibVydJLG1Fg+RDw1p8LOTVZdE9FnZnOr3AauEx2MFE0W7wS242kpIvlwxhRkVsbJrXmJ6ufFLFyH56GxG3TTbZFeZZXy0uyLOXd2/dip/YReE/fBtpELLFZNud6OafvrSTixanUB6MVtZqV368MQRRlMSfg6YZKgou8Rekgg85EkZoEbTR5IXVKHCVoLYzgvh2FM+stx2ODD5rIZDL86qzY3keLNnpSoUnwVpzCYrngcAj8m3/9PXmWkaUHHh+OtL2VwAlXMVtoXn0258XtFe/fPnL3sSUxYif80LTYIeXh7pHdrqJvIUscCrn3Ly42bJ8lSVEC4OopjEzeyTg2rGYLdvuGvhvO6tSmqdEm8ObNBV9+dcOxuse5Fu8teS41weHQcHW14vr6hq7vqSpZAo224f6hAuVJ84jVuiQEx263RSnIspSbFznzhdwV7989sd126CkYRJoiz/HQiIJyen+iWJPEkkLtnMdMTM2+twyDKNi2O1kgz8o5RhuSNGW5KqiaGcXEfMqLgh//6hcT60ozDBVZmrBc5+RFKbgEGhbLlLHP6RqFCprBdsQuoSgLslzOe7FGtcSxLH3ruiKNEnE65AXjOIgTwEGUZJg4Jk5TLq7XZGXCX/3Vr3De8+JGlsJt2zH04/Q9yTLoxLKU2kMGdJ/4nxKmkKaJqBonIOaJiyp9lMfbgNJeLFZKIOkCQ5cGuO8H+k7UYs67Sc3ncG5AKTnPoygWK/0wTnwsc8a9qOnzBD6pMhRaVK+jZ71e8/WXP+H25Wtev37D5fUNZTGfUDuxBGBNfL7TWfr+/Tvevv2BF7e3XFxd8P7DE+8/Pp+ViSHIYK9vO5qmFiSAN+c6NEliumFArK/xlGAuSmxjErIsxcQR2uhpGJJQ5DMur0qSNCUwLXBBQoNkaokdHUoHvPMyABxFYTragW7CZrRtT9d0jLaXQfk4MaAHK5gBwfNJEFbX4IKffncw9ANuHFH4yRouoVVay/8OymPdQGwS5qsJvaJk8Ku0k5A21xEYUXqUJUaUENmYSAtXVAKW5uR5ybGqBEnUjFRHUf2liXCZRUWkTvut88LrFA5ntCyjT+m51g0EOHOsZclu8EESpodhIAxehhlB7vmiyEiTbErFVTw/HQheFGraJDin2T43fHi/J3hFkSckacL9XcXVxtM0NbvdYULgRGRZPi2EHA8PWyKd41zP/f2RJDHsD89Y2xHFjtF21G8b9ocd2+2Or7/6CXcf70nzhLqWXm+0ltSk5Okl737c0jQtjw8H1qsLnp+faZqGL7/6Ah8saRbTtIGxG4CIq6srZrM/RGv487/411SHVgQY2qBVTJ6u+fz175LGG/b7PQGHdR1P247D8cBsnlPXlQSuZYks1ZynPh4xJmK93pxFO3keowhcXs6pjh1NJxiprnM09Yh3AR+UBBkmEdZ25FGM84itVBfEsZHz1UJZztDacHGRMw6Bh7sDs1nJ08OBi4sLTBQ4Hiu22y3v333keKj5pf0lXSPYoaYWey/HHus8UZQxDhN/3XnqtsZo6XlP7/zLl695/eaWunlmvsqI9JzEfIYdxaW02awoSnEerdeXrFeXE0tXoYJCnQZmdgTliEw8DYxOzgFDQNG2Pf0gfe04yHC+a1tGO+Kcpe1q2q6j7zoZbHvw1uG9Fev7MBCCFYeCCvS9Y+gGrLfY0aJQBN9Pw8Yw2bE9AbnjnNW4EXrsxPws8JONNooUWnvK8mrCHojDQ85GCRPTRpK8A/Ix9YRP8T5MNZlYp00kNdf+cJDa1AeskzPRRIbZLCdJNf1QUZRGxAJhQVP3DH1g7CGOE7Jcgk72+4P0AFqCvdzE5FTh14AuSs42rQXjYDQSyhUUdgwT33ka8jsZU54dHcjSUfqlCf3wG/75jQd8VXWcDvvuU6pIHE+T9iVKCaevKHOi2PDtN9/R9925GVJKk6YlWk9Dv2mjsl5vPnmnPTw+HBgHmM8XlGXO/f0dh8OOODEsF0uOhxo7ajQ5AcXYH4lLSd5NkpSrKbFmuVxCiNltK96+/QG0JN8mZkZkZOsXxzEa6PuW2Hgu1kuKbMb2+cD26YHq2DLYkcVqRhwr8jyZtjyeNJeEx6qqyLKCYbQTLFxeIh9kw103NdvtE3lecHV1xXa7ZRyFa/Dy5a0cpI+P08+vPau1Tum6vR24LC6IIn1WYERK+CxGa9brC3bbo3C3VMBE8mIfjrVMrY2m7RqiSrb6UWwo8hnjOPL5F28AaW6bpuF4OHJ3/8BivqBpLE17oO874kQk53leUBTFeWJ9OB4YhpGLyw3LpZcLv68xkQcV4xUMkzUEh1jBJrvDOA5oIwrFoR9QytC2NXmR8fS84/Xrz8nymL6vJiYfzBezyXaszpDn+/uPaK3J8xwfHHUzkOWpNCXDQN87lsuCcVJHRLERMDED49DS9y1uSre1dmS1WjH0lqZu0LqcUmXjKfVYEycRL+ev+P67d1T1gf2uZ7HImS1KImM4tBUoLSw+5WjqI8EJZzAyiWwJXEuapVP4RocbYb+rGEfO8t1haAkhox9qhtHSjYHVWjgKwSvGwU12KodWkMSeoX/m8fGJx8fvqZuWIi9491hzdX2JGyM+vL9ns5mhI8fz8yNuscL6ATfUJJmmXEgSrFKSOHc6pEII2ElOrc6rCeSymaoisX5Zjseevh+mVG17VgOBOqfypnnO8Xik64dpmJlyeXnF1dUlf/Znf04IHd4GvNMMvTsnyZ5A2cL7EyvhOLjJDigKCOssIYx0vSLNlxP7QhMGyzj2hKAI3gk0eypWvC/JMnlmhrGj70biOCfPcna7I9aelhWGvuvpOz9ZUxRJLEmjfT8wW8SsViV/8WfvOOwbyqJmHDQP9xVuVJi4ZrnRXN3kfPXFKx7u97x/u5+s+YFxaBm6hLo6Uh8DQ18zn0kqcJqmoDy7/RPOzXl8vEcFN8GkPcVsxqxcsNtWOOeJI7HfBxzrzYLf/p3XeH/A+RbnHXleUtdHiDTX11cED4dDy2634/b6M+7u36FMz7xMWK5n2LGjqhqU8pSziLZtePFqSV0N7Lcd6sQqMnIW7/fHCYDrGa1wkMTuHEjzCDAoFbM/1DT9SJGPDMNIka+42NxQHRvSNGWxWDCMEuww2gzrJR13vVqQJDFpmtG0HU3XcXV9wcXmGu8UXXPEFYHL1Zrt7oljdSSdksnyPKfIcxYLGTJaO3L38YG6HtnvavrOslhsiKKM5XIFSOKv8yNlOSNJY/qhQWtpsBQKo1NMFPH4+MhhV3NKRM2ylFlZ4HyPCp6mOzArV2R5yjg6xr4T1bYdqeuBLBM+2tB1hODAeHQERSGMp3xTgs9IYk2aJMSRwYWI0fUcDnuKosC7EWcHlEpxY4cfe9pOArLGUWyWSWzOX6MUntNwahreKzWFp0SigG47O1mzPlkapMCRwlXpU/KsJJBHCkwkwx5jEtpmZPCyOCHoqVEJLFTg9nbDsT6gVDgrzp0VleAs3/D8+IHIzHl+OtAcn6iOHbv9lsgIu9eOlr53dK2EYCkiQGxUwl0S/p1RmjyTIRXBk+YpeSmN0gn+f1Kr5FnGbDYnTRNiE/Hjjx/YH6aEz4m/ovQnK69Ie4Dgp+Zbagy5Vz4N+E7DhthkJFFGrDMUGZGJydJ8UlIaZrNr8rxgGO4gpEyTYpwzKJbcvrzl9uY1i8WcqjqKknOyhp+GIm4UsL47F5MStuXsiA2WoXeM1gojzkmTjAq0bcWsdMQmJouuOFb1+TmfFQlxJEtMRUQSJ+wOj5RlIEsUr17fAoGhHajaHde3CxbLGGMyqn3Mt3/9Hu+fIEQEldCNA8Us4s2bS168yoljQTvEsaHICwiOY9VwPA4YFRFcSt91tPWeNC6I4oQTI/bu7o48z3BBoU1EZAxpGqEN06BGtu3Bh8n2AyFYDscK69ZsNkucS3G+P6cGowJ107LbVQSk8Z6VMcE5FitRo724WZPlEXd37zgcD6xW8txEcYaJLM71JJkmKzX4GG9FOS2KMs5BFMFLYqcPI0kkX59WU1jUYOk6QR5UVY9zUOQLFvOZhKHFltefrSjLFQrNbveE8xZj9LQIs3jfoaOeKCkwjETBEJCF4HyRYwexelf1ARNJ4xEZsT72Q8swdLxc3ZyVqD/5+qf8+PYHlJKFUDmfcaz2dL28n8tViYnhzRcvsHYkSSK0EWeCs5LW3DQSsnZSS52nLIhKTLidmQS4OUfTtVhnieIIE5mzek+WKRaCItHx+WOM1p6XyVqL6rZXPSA1jZ/SKa2VQLnIGAhe7pvxxBD7tedFB/DCm5PFnufzr7/gf/z3/yFff/XT84JzGBy3L15Szuaf+FNaeKSRMVjn+MUvfsXdwyPlfMF2v+Pd3QdcCMSTu8Fay273jAb+9h/9ET/9ydcoII5STJxJWEtkGEZp2AVpJQqTfhwnS7rDW+Gvdm1HW/dsdzvchw+gFXVT07c93jns6PEukESxqJQjI+GF0Sc7eBwnmEiRJClxknBxuZGAFjMNwZxDBQmRIGiUMRKQEDz9MNC0tSztJkb32AtnVwKNBBnQD/05bE3eCzct37tJ0ddjvcWNGu811gWc66XP8Blai4JGhcDQC5ObIEr5oRvlKHXQtv35TJYU4U/ohNMZmkxWX7nzREyg1YjGoMLpDAkoHaG1xU+saDu6aUkU4Y2irjrQGh0JM9g5CN4TTUmjwzDCCE0lyZ5ugDgxON/z8qbmizeX9P1J9Su/i65tSZKCi80FUZSTJgVPT1vhhBmLUuKoa5qKp8dH2l6CH7777juyLCWuY1artSinvOb2xeekyQzXGyIzkKYR33z7S4xO2Wwu+fjxI8fjjsvLS0AWm2ka0zQ1x2PFT77+LVYrQQjd3f/AaDvefHbB7Ysv2GwuiOKYKBZEUkD6raIoCcFOd77DjiPlrKSujoQQ44Io4KIo5tWr28mBFTOMBogoF4am6bm6nvP8VAueo7XMZjEK6IeIOI7Z7yqetzvh9i4EWVEUDqXMGV2w31VsNlcMnRc8mDGMY8f+ID1738tz+/T0TGxyTqF+oLBWgpKKPBIkgxNr6HwzlxBSHXF1dcP19Qs+//wLXr1+RV7k5LmwhaO4IInk7Pjuu19xqA6yUDEZXTv1kSFQHSuiOMYYTdAQgjv3WCeXntExagq9kZrOkKY5RVGyXm+Ik3gKVULO0UmpHKz0NWpi8/X9QN+3gk7r28kWLxbq4/Ew4QBGmrYl9NL7j3YkKPBOEbxGK4PRGjs2Z0dXkiVypgCxgb7r8d5N50skqmXlp3dLwpCiCafhnLgLj1VFUaQkaSlcPa1Z6oTV+oqyKKZaLNAPPXEcTW6jZmIABsbRYocnvOvwfmSwlv5wFMFYHMPQT8xsUSTK+6+mxbAob01kMBrGQe4TpeQu97nY9r1V9J0E70ionYSbhhAYJrafOl3+v+Gf33jAJ6BJOSCyTPhk3ssG5Hg8YoyEbGy3z1xfXZMkGY+PT7y8/QyCY7/bsts23Nzc0NU13ss31vU1Skt65uPjE8FrqmPN/f0TV5dr8iIjzXKMNux2Wx4fn/E2YujFzliWM/a7LU9PT1xdb7hM5lg78u7dW+pqpCzn/PSzn5KXCU3dcuy2HA4HXr16xfXNBV3Xsn16ZrHY0NS9bAG8XJrP22fWGzkAjUkYR2Fb+SDJq23XEsexXJ7dEy9uXqGUpq4aifeODOMwMl/MuLp8QRxHLJYL2vt7GUCdYamBuq746qsvsdbJz9NqfBB+4cXlmsNB4qvjWBgjm4sNzgY+vP9IXTWghf/yW7/9Bcdqx1/94gMBYeqt1ksiLRJySW2s0cqIosZa3r79nhAEjppMjIr1asHhuEOShzTLZS7ptU0j4QdxzGxWkmUxbVtRVw1t19N2NXkeTXaePZGJGPoeN8rWMk5ilssFoKmqFhNFzOarKeBjx82LS25urjBTIECSxFgnL1BVH8mzEu8Q5UovB8N6sxJFCpKofDgcOAU95HmGHR1DW7NcXKB1wjC0oCzPz0/EsSFLM3xi2e17+r6nbTpQnsurS8Z8hrUjx2ODAtLXMQ8Pj7x9+471RSbpU4nw3vrJ5nqsaharAqXCuZnQWjEMLU3dMLqR2WxBkkjKUl3VxKkoKG9evEFrzfPzHXmWofUVYeHRpmIcG45Hy36/55RoB7BeTglfwXI4HOk7YQ89PtbUR4cKR378Yc/LVxuaZgQa8kw24daNxFHGepPxWz+7oSwWtLXlF7/4nuOxPYv5tAalRQWnlAxq9LkQH2kagd0K+FrOBZCGRYoSSbqTxKsWYyKKssTakfl8zuXlJWVZ0rUDdgyM1kKIBOzcW2zipiJbI0yXnsiI8k8YNT3WClTVurNzY7JXawYnRcSJt3NiS0KgKKVYvri85OPHD8K/GgYWy3IaXA6UZUZRlFTHlhAc2SLlxYtrylnC8/ae0Vf89LffEMdQlpf8m3/1DT98c8QHLZYto4Cey8uCzz5fkOVSHBiVnodH1bHl0bcYneJsoKkbquP9lGQoz+Hzs4RdRJGmbSRVO88lxdaHwDAOaB3RtoMwi4YRazuUctMmK8f5qaB2EjDiXUApSRzdrJcMY0dgwMSe65sl2jju7h8Zx4GrmxWv3lxx9ULx/GD55lf3k4VGuFBd02JHi4SqAEqA6ToyRBFk6cmCZmmagdksE6B02rFYrFAo+e97TxTHHA47siyn6yrKsiDLl5KobUe22y1KaeIkIbQtSsHbtz9g0NzevuTyaoVznSRUT+qBPC8wsaZuGg6HLVXVcjwOpFFPli0hGIJ39N2AHSxJFNPUFVcXl+x2z7x7+yN1s2C1mmNSTd/L7yDSYnOHMKV9C2frcNyz2pQkkcYoTZYV2LEjzQuyPGP73FA3e4LKKFSK81KUBRXEptCPpHlE19aEeCSNDWmcYxRcrFd8+eUXNN2O/eGJuhErzc31C/CB437H8/MDTSND8aqqJgaR/v9gf5wSEk98LKUQy5cVFaZzJ2i6NBjeB7HAT+mVSoeJSRLIp8Cak/XQmMleNY4QFMMgKIs4geOxJs0Ms1lKmmv2+4rnZ8txawkBLi/XjF3Ed796ZBgd3jcEJ0uOwXr6TvhdTJZaFOgzFzBMKdIj2jnSxJAYLQB6pUgLw2weoVRE2ni6VpKbvddEESyWKUmScNwfCYygJn4K6myJMZEUgZJPqeT88zAMlizNJntRSllmbKZt/IsXr5kVS4p8TpZnYrVLM/ncweO8nVSsgZ//3t8+K6g+fLhnf6i5vL45B1oEL8tQZ+WdsYPAt50bSRcJRTmj7wZOqaFBifrJeT+pZCEg7LGTZXQce7yzZ6aNdRYdq+m+EZ5W17ei0oxirrqacaxJIgmnyLOcNm5QuiRLFhy2NW3XkiQX5Lml66xYd5KY4AdWG8PFxRVZojDKENzILNey9Bp6TKQJsWa2mokL4qLHWY130ZRUK06AJEnop/TKi80Fdd2y3W6ZzQqiZJhcEWKRc85NvztN1w28ffeOr7+6xgcZ9uz3FfN5zquXNxgd8/x8pKpb0izm5ub6vBDUSpYvdbMnBMjynLru6IaRssgZR/jhxy3jGIkyzxmCjvBBArySBBDUF0oFdAQm1sxmMqj3bkBreY/abqBrxSq9nC/J4oSuaVnNDS9erhitIXhNlpY83O0YrVisTORBe2F7bdaUs5jtfsvF5S3HwxGCJ04MChgGObettSSZ3McnfmQIgd1uz2azITIRUZxwc3PLr371K6yVBNj5siAJkmg/DqI2m8+WNO2R5+cnAlIXaySVtixTgpckURPMeeh5TqoFcZkET9t2jBOu4OQEOP1OlVKSEmnUWTXlOxlsFXl+/vqTRM7p2WxG1w0M4zBZfv1ZSWmtWKqV5pzOeKo9ADSGOMqZFyX/+H/6P+Mf/cP/gPlsyV/91S+4u3skBKl/ttsnbl/eiJpuUqcwMd1Cb1mtClbrn0xKReGdPW93WOfEUtsFiixFEXj/7geeH+9Fae0VNgQik0x9rLCu7KTGjqYaPgQoy5JZWZLnCUWekqTZ9LPSqEhYxZEx6CCKYlHSS1iVR6x3J6dF13bnIUfbdZL0PAxYO9L1PW0nfD8/epxVmChBaUOapGR5OjXHijRJKMpcPrfWGKVkKZlIoGLf91LfDg7rPX3b0rYNfd/TDx3D9DV0bUMIYinebh+FCTslX3pnCTow9gZn5FwxCsZQY3QC0yBBVHr25K1Da33GKaRpSpqmhOnMO7mNlJahiTZm8hfLsMujQRuyPJ16xBHrIEFsvEPX47xnHE7PlCyKsKJoFDyDfAtaQ/CWOJa7M4oisiybuPeg9Yh1jt39PfPZisuLkhAC6/WatqvI8xxjAuUsJ0nE7fX0vEVhqKqGcexRylOUEYvFgsjEWKvohi1N78iKDOsPvP7sitXyGq00dXvg+fkj3//wC7z3VFXNH/zB3yJJEmazGcHD5caA8sznS47VluvrK+I4pesrHp7eA562qwj0tP2WzcWcJNGCEZoWhMFLryBiEDupLGvW6815mZOmgmBI0pS8mFFXPTcvFjRNx2Kp8M7QtRaFoakdh0Mjtl0FfQyowIM78PRY0dQyyP/s1efMyw1/9fYbdrudpNZGoiIDWCzn1HU/LYmzTziMKMKKOoOyFPSXs4HFYsXPfva73NzcUuQF8/mSL776ivl8gf614VueSzjODz+85U//9M/o2goXpH8yukObhHEcqKsj1fHIP/kn/zEXF5fksxIJMJnESlOAoB0tgxOsiR0tbSeii3EYGcZhqgWPjE7Ov2Cd9G5WVNASZBkRJQlplqJ1znq9oihT0kSCUYpchD5Sh2hGL7Z5e1L/tU74tdbSdz273Y62k3e4aRv6XpSDQ9ejdSAESf5tm5qgZMGS5ZnUkT5AbydsRn9W2HadJU4kOEghCkPnZcBrJrXcMEpPH/DEUUSSpiSxIChuX6yJYsNu+8T9/T27/RbhicrPM0T+02KHKVBO63/r/omMoigM1g2ME7M2SxUoix9PQ1RBU/S9pGt7L0pEWY7/f5u6/f/+5zce8GVZxg9vn2mamhcvXnBK2mtbYZ8VhVgOnR/5ePeR6+tLPry/FxVZZHlxewHKEaeWcV9T1SOL+Yb1eo3SdrKviHVJa8/V1Zo0izkcn1moGYfjjvm8ZLVeUB0GDocjzkLTRDw9P3B5uSGKYrqupSgkCKOu3suWIUuZlTPsEKiOO77++iekacrhUFEdj3SdJfgDSklR4qzCaNmsdH3Hw8M9r17dEoKj63viOD6rF/NMlD7z+WpSuJW07UiamemBFOWbWBxiirzg+lq2oNvt8znYQviColrJ85xZWVK3R0mJ0yMm8uz2z6gQ4/w0YGx79vs91lnyzPCT3/ocbUYWy5QvvnhDUWSMtqcsSuqqYhwFuquUKFmapjm/LFmWSQhBKvy6qq55fn5GG3h+FgViXmTCxeh7dBTJNstAnGg2l3OOR0kXzfOcONZY22O0Fv7gBC8ZektdbTkcjnS9SHVRnuVyxmxeUtcN5SwmSTL6/kgUJWgtVsu6qmmbnnGSHSdJzu3tZ4y2JYrNpL6YJMmjDHd9MCiiKYVpxzg6Li/X5wFg1/W0bYPzI7PZjCwv2ardWblioohu2jLKgChwOG7ph5YoytAm0LYNZVlwOEjqahJL+lmSJRTlFfMyn3iIwvGBCEIkMmcV2FwsxPaS5qJkbFqW67l834MhShzXL5Y8bd+hVcxnn30marNBkoN3ux2zck6alChiqqpnczFjtUxRoeT9u4+YSHPYd/RDze3tBctFStPK8xZHGeO4ox9aDoeK+jhOXJyT5VKstcqIlDqKIlQsTa0MijzjMA11tMYYKZSF3eglMVALf+Sc4jnxO4VPZbm7u+Obb2our64YhjuGoZ2g2MKRGq0ljsRqIqEm8ZRwJcmgRVGcLT55nrFaLUmTGGcTrPMkac44iKLhZL2IU3kPTGTou4HVcsHt7Q3P28dpIKcoiow4nqLdVeDyag0ekjjjcNjiibm4zAlacayeeffjEU02qSw1AU8SB7RxLFYpNy/W5HkgTkShVBQlj48HnBNGYmRSlssV0WVK348oYh4fnifgtmI+XzCOPdaOrNdrnLM8PD6xvthIupuz522TdYE4jkE5Pt594Kc/fQHKMY6SELxcLri9nTMMI+/ffyBOYlbrOVmac3m5IASYzQuGoaEferKsYLs90g8dkUn51V8/MPQx680aN0LTCLdHaUViorOdKYo1eZkzX2RipbQ95SzFWdjvK/qhY1bMmeWzyQovRcfYDZLSi0VpxWK+JMsiHh4/8v7DB5Ik5d27D7y4ueSrr76myAvqquLp8Yk8F95UCJYkSbE254fvv6XrW25e3JBlCa8/e8mmGbGj4e7DgeViw/b5O0IQW6MUOoE8zdhut8QmYtCauqpwfuD6ekNdH5nP56RFzuGwl+TlUWDbCiZsxHsuL2csLpYUuYDjd/tn7DiSFTnGlDR1hXMdMEMbGVBnRUaSzEizmDxPCLL2F2aICswXJZ9//gbnr6ibF3z48I5vv/mO3/1ZyuvXr3hxfYEbR7zP+G/+b39M23bnJhetzoMqFQurxI6STCnvfZgUe/Kc/rrCL5yUu1MNcLKsgqIoC/IiwY4DqDAN3zuslWIphEAUCX9usZoBnuoonKVylrBabrh794G2cWgV8/7djigyE1tKTcoxdebYwSnJkfMGVU0Kb0l6ZOKeSOFrY0WaiiXJ1kd8GMiyhIBldB0RhqKU39Hj0x1tM4oippezI9LC2xUbc5Bhp/KTmlmUuMKlGVgsNnzxxdf85Cc/5WJ9yWKxFJC1FtaQQhrsNMsmdU8MgLUjcSSN9vX1a969e8fx0PPzn/8hVd2x3cv2XDg5Yjn0TpQOOkCWZmSFDA7dOYBIzlBJEdXTADZM9jSxssRJRN85IEWRQPBoAkkkdsckkjPdJ56ymMhTxmCUKPz1NBwWtTaMrsOFnnilGZxwcy9XEkNurXB4gu/x4YgfAvvHkaYeOG7nBFeQJXPyRMKPZmWGHVraAOvNDUan3N09EsUJISgOB1kyV1XFarWi60d0ZOiGkXgcybyd3AdaVOD9iO8ty/WK6+uSptuhtGG9vGB32JEkHSFEVFWHUh1pFuG8oR9bul5Cyaqqou0GijzFjpaynGEbUfzluaIzA3lWioI8KLzzOOtIk5SXmw19358ta3EsVnavHM5P9y+iLpKgMMFkJIkmy2LyPGe5WDL0lqfHR/K5xBJ459E6YOLA5qIky3IOxwP73TOzWcHl9QKtHU0ni2nvlVjgeo2zgk/IUy0LPG24uLjk6enpbJ1yTuzhq+sXVFV1Hirs9zuO1REXBvIiERvk4KUeSmMIKev1Dd5ZDscDerqHZ/MZcZxx2LeyoIvEoh4Qu1gcp5RlwdBPHEslJvjTsOWkClFK6nWPn1JcZbnaNo3YrJyTBT2KyEggGkpR5Bm6LASq7jxDP0xn1KfgsSjSaB1xArenccbLF1/wT//Jf8r//D/+J1xeXKEjzU9/9jW295j4pBqWBOBTQ6gnX+9pt/K7v/P1NJCLiIwMnD4xjCVcx9pPyxXvBDEgOBA72ZSFL+Wsp+067JQqXNc1fdcj6iLLMDTYKfV0GMZzmvBorQwqAsQmPrsktEZ4pUacEXlWkCQpRZHKImBSw5++9jTNJvvcxM8bBU/Q98KIFYV6PYWB9PS2Z2jEDu+mgYhSAedlIKCVIcsLinJGkc9Js1IGd97LWTapAfu+o+9bPv/8ay7W1/SDZbt94HjcczweOBwPjGOHdyMKiwqjJPQGP5nBpxTciQUtg2BH30twY5ImnHjdZ6WUDxBNVu2p3jkNApQPmCgmzXLazmKtp2klHTWOMvpGGONJrAheQqxGC5FWZMUU/tD3WDdiYsfFRclqk9K1EkQhKiZLXQ+iyipFwXQ4bulHScU1ESgdsVrNOVYHhn7gebuj7ToW8w0XF1c8PT2gtCdNcrSO2O13DP3A09Mdy/kl7RCzWV8SZxGDe2AcLE9PW/qxYX+Q8yDNEu7u3svQpmmZzZZkaSGMYRuRpwt++ctfTSFqCyQQwdMPR7a7e563d9RNzosXwsILQZBK49hzcXHJ8Xjk+XnPrJyhVMzzk3AMmWqYhVmSZjk//PCe3bZHqw6jFX3vGTpFUzuckwUjynGyH8SrOeUs4+PH+yn5WInD6vM5fed5uH+mbXt5T7xjsZgxjo4sM1xfXzC2soQ+LUuNjsgSMy0vYt68+ZIXN6/4D//D/wjvAg8PT7JYMDIc+uzN62mpI2gf70TQMAw1m4s5+JKmFTWitY5+sFgrjNM3b17y7t33vH37LVlRANOyzp+ZAURRgomi85xCaTOFwM2IopgkEQyBjg1xkpCnGc5axolfNwyyGBlHRz/IsP14PE44oZZhaHk/3E9930hAsDwBjzISLGV0QpJklLOUssxlkRnps8giiiKC83RNT3CevmunYNMjVXOg7SSYFCW5ASIIKaYgzQEFPG+f6fqGumonIZHjsHumn3p1wVeIexRlcE7T1iP7seH56TjdQR5FoMhXpIm8L3W9Q+uREKQ/98GfBS5q4i2jFM4NkmKsHFEMSnsiE4gT0BHkywRjEvaHljSV3vzjhz37bSe/KMy5XvpN//zGAz5hxcgPOE3TKdBANlvX19dkWUrATjJiRZxEXF1dMI4tVzdr4gQurr5Aa8N6U7A/HLl7vwc1cnEhwRCbyzlxEvHFF29k2LCviKKlpGNNyi+RPj5ze1syDo7tdst6vSbLZKLedT1JnLBYLPj884S67qQhcwNmYnNstzs+//wLVqslz09bmrpFEZGmcvHbUS7nn/70Jzw9P2NMxH6/F8ts105KBbEkX19doVB8+PCOWblgVs65ub4FZWnbga7ryIslBPj+++/ZbC4BmM9L9vvtFNaRQAg8Pj4gQ4WcJI2wrmc2X9B0R9IsQauE6jBgnWz0q2MDU1GdJKmoSVLFOPS8fPmC3f6ZpqmYz2fsdlvGwVMWM5yXgceJA9N1PYvFgrZtKcsEbRQvrq4JwVJVBykqUkeaifXh4f5ZLnjEoZSkivlszmJRUB1lMHh1fUFAcziIzbdrPEWREyZQd10PDH1EnGjyXBq4ofPkacnrl29wtuNh9w6YoZQUurPZAgioQppO7xRd18n34SVwJYQg9uYoIU1z2tbjHGgVTXy2hsvLFSYyXF5e8vz8IHDxJGO/39P1Mmw+VjvyPGNWZKxfvRKOSC/WgNV6wYsX1yg1oLSiKPNJsptRBy+pr95yOLTEsSE2mjiOuLi8oD42tK1nvzuQpDGL+Zy6qSnLFV0zsts/07UdWS5Msr4LeNewWL0gSVJ225rDsTrLgsuyJMsNqAHvE9brFcZodvsn4mhG19XoKOCDJYo0V1dr2rbmcNizWq2FOWMi+t5zf7enPopdWiwK07scT9aECZCqlBTJRpvzgM0ZT6JElu2NkiH5xOxzU9Hpgz8rfk4b+iiK2W53XF9fcXV1xfPzXuC20YCfIKUiGVR07UCW5nS+x9pugqr2E6S9ACYOWm5IUsMwdlMKZxCLUBpPAT0C+dZKMfSWyMvwoh8GtDa8evUZVbXnZM3se1GBgahT+s5yf/dEOcsJXiLPN5sNznd8/mbOL/7yjt2+ZXNZyFDXWtabGVfXGXlWEBnPt9+85xd/tSW4lLGXQoQiIgTD89OOoix4+fIVdoT9bk8UGarqSJpF1PVBOIJeLv6AZbQdeR4zX8xp65GLixnbvSSpffH5NS6Ijf/yao3RMV3nMKagqjuCt1xebthutwQ/kKQFz/Vx+r5jgvdcX19zf/eE0lAHUd6JUrBHK/DWsFgsuX1xy3a7o67qM/+ibg4MrqPtxJISx6k0vEER6ZjFPKWczcjSjHEY2NdH0lSWEqfCWZg4/tdsuzneh8mSB3/5i1+SJjFXmw23r14w2p7IKbI8wzphxV5d34ByLJZzjtUOpRLs2E1K7xw9qRyrqmUYW7H7BsdysaCpG+ENDSM+aKrHJ8Dx6tULirIgOLi4vKLrAlt1pO+GiQ/rMdpxdbWkHyq+//E9WZYRRwkXV0vyPD+HiITgsF7SbYehlYFvFE3PtZ44oZISrrURZaQRK1FxccGLmyu+/uqAmfyzSsu546whMqJsC97Tte30bnJe1Ck+2W0BTglyfgoz0loafIATf0rUNpPFF3duZod+nBrQiVkycfqEl6qJ4pMtTkI8utZzPIw83LWsVo7F/JLm+EzXDRM/78QqYbrDpbEKCCPlFASlQFR2YQrUiAwaJlCyInhBQ8DpHLK0zUDXSRpwlgk3sm1E9es99J3DDmJ/C0Hjg8Mgn0+GwDFOeSJtiHVM31miKOP3f+/n/N7v/S1e3r5hudwwK2bEaUwUaZwbqesK7z23ty9FeaQ1khQHyTTo01rzx3/8L9Am5g//6I/41//mT/jw4f7MPrV2L2qrccSPls+/eMMf/Xv/HkU5l2dAPgoBqVVG6wguMDjBgIyj1CgCzx8YvWMYR7q2F7tU30vhP7GeBjt8UhA5JwMJO6XYTcpq7yR9wChNMDnKRMII0yWRjgnT86pysTobE0CNeCTJOYng6iKfzv2As5OayIl9z05has55kjQiy8AoRds1lHlJlm/QWtOFFmt7Xn32E7LU4INlPsuwbkffdhRlhpuS15t2ZLO5IPiMp+ce72OiaAFBU1c1/VARRYb1ZsFFeUHb9BOvueDl7Q3Hw5F62NN1B7QxrFZL2raXBHfvefVZiQ4FP36/p6k7mnrP4VCd7aVKBToniclxKknnaRpBgLYZKYqEokzEroTYf8QCqMmLEsUCr2u2u4a+c7y8XYAaadpnUBlFGZHlCxaLOXESqI7HaSHvOO4HdsOeNJnR1APeaVHTGUXX9dzcrInjmLv798JyRYZ8th/4wz/62/LsBc/9/QPisqgYrXzteW45HmusG7m6lGVUnMZsVjdYZ7Gj1LHeB3kHppRaNeHQglaUpXCcRzvxvb2jnwI0JMArTKpMWdS5wU5s0154dUGsmFKv96RJSjv003MLbnRTOqymLGd4JxgXNQ0SP5E3ITYRWkf8zb/xc/6L//1/yR/+4R+x3x95//6DpO5qYX/pUQZjoQ+EIINECecRFaybVIdxFGOUppyVzOYzRisYkbaVZtc7Oy2EOVt7T19rFMtyYL4op/NDUts/DTvFIRC8ODWCd2fMinUSZmKto+9HAkEU66ObegJL33UyPBt67Ghl0eoCbVfT9z2jHSeln0UpgzKRcPsmBIFCT86rCBNFEmJ3MSeJL8QJEkfEp6GHB2dPtrzA0PdY62m7nm+++Y5vv/1W7iJOLg75WQrjvCCEwH675fPPSv7wZ79DkkTihKqO7A87Hh7ueXj4wP39B96/f8vT8z11c4Rgpf7VntHIc6PUKTc1oHQAPlkgT5gFE00LEmSZGhlR6mgTwSgDzuVigUJRVTXBKZyXXjk2CZhAEgv/NY5k2Z1nwuZNUsPnl5ccjs8MY83V9RyUZ7Qea2tCUMRxQlHMmM8WoihDBjDOe7I0xblRaoxpAHWs9lRVhYliRmvZrF9wdfmC4/GIHTzpYkWRRqhQAwMesXN3/Zb+B1EiGV3I0nr03N3dTWFhGYfDsywblmtuXlzw/HjgL/7iW4oypihlieX9QN1s8X6kqg88PT8QRZrlasFoO969+5HXrz+b6hEJ8emnZwAHj/fP8m76E54nsFjMcF5x2Lbstz22V8SxlqC1wTH0ogqOjPSswjI3aBXRNgPPzzuGwRJHKS9uLnj58jW3L17z8PDEOI40TUOSJOR5StN0DGPLZrNkuVjxzS9/wI6gVEmaxNNCIMY6x09/+lv8L/7T/4zf//3/EUUhw9qu7eDkeoqk3jLRxCcOoBFXwddfvRKhk5q8UeoUXqawo8dMQoMwuS3G0TGOToRV033up/e77RphZg4jdSt1q7MdXVtzPMrf22mhYK2gVyItPb0Lwj3PsvTs0ljOcy4uFtKbTeFgMpT9FOQFXjicbUvfDdRVS9v1PD0+MdpBOJsKOfOtQ9J2wCDc2dlMBsGnBbzSWmYGIZBmCX3Xsd/v+e6HH6iqin/wD/4h6816Wng4uolT2nQNfdtJcnIrPN5jJRbn4+E4YZykFm67dlque6IoYb1OOR4PEjqjxTasplA1CRGcQksnxXccR6SpE1uwnoJdYglmapsTMkWx31WEEE3LaX0irvw7+/MbD/jyPOf16884HA60bUue5xyPFcvliqaup3TXgVPCbnWsubm9pa72bLd75ouc1bpAKcVqU+LDwHPqZEOiRJa/3QpEtG5EhWGt4+Liir5vOMH9+77ns89f0HUDu21N0yRczi/Z7p4Yx4HF7CXeOw77ioeHZ06W2iRdcnm1ZLSaj+8faOpfUs5S+sEyWsduv+PNmy8w1cjz8xMvb19xcXHJ/vhMnqfTgGnGOLbYsccHw+XFJVmR0bUNPliaVtL7Hh6eyXJNFGk2m5WkoR4b+mHg/v4jxWxGFCsuLy8mKLgw2ebzFf0wkOcx/dAil4ulazrINGm6wKwyjlWLdwpJvwxkhSbPY0JwaJWRZ4bLizXeD8zKHK0Vr16+oq5FMWW7cVIAHkni7Bx9HoI0YYfjFh86Ao75osQ6y6ycUZY5aYpY8gxsLpY0TSX2HyxpYghFRN9HIlsPCu+ECZhmhXDtlOLmesV+u+c4BlbzAuc6ds97ri5yjocdTbUiSYUxZYzh8fFBwk+SSTIfBGrfHGuet1viRFEWKVEUMV8UOGc5HltCiMizJT++fyBJFmINyDOc68mjmGGoJZhiGNltO9q2Z2MK9rsdaZYw9D2qLNFaIM/b7ZZxEEtrkecU85IoHkgzI1DyOOL6xeWkqnumqmtp2oeRi82GtpFAiGGcVJBaT9HyI5GRC9lZi7UDSVIyDBVNs4fgePfuPZdXCxSGp/sth0PN1fWSLB85Ho9kaUbwDXUzkuaax4cDkdbEcUZZWPIyY3NR4pwjTeb0/fhpK2lgHAJ9K+ljbjqwZZvp0XriEWHQ0VRUK7EqoMAj9goVlLBFgifEYm8R/kx0Tm6K4/hsqxGlZwxBGHZJKszKbuhkm+ocQTGx+9TZ+mtMRJEXtLREUTQ9y+2UIpWSJBFJqqd0bAfKT4pLBcREUYRWeuLvOIyBoRe7c56lJJEoiY7HA8djw2q1pChK4ijh6XnP2x8eGHpL+LhlPk9J7qB4GxHUyIuba37nd7/ir3/1LX3vhIvj5R1o25jjwfLd9/fs9y1X10vskPL8eMS1jroOok4NI13v8P4jWVagjKLrOzIVkyq4fXmB9yP90KEHuM7nrNZLjocD640CBvphT5LKxrRpdlxeLSTIp/dUdUs/jGgz0jRHxnHgYr3hxe1rtI55eqhwHq6vX1JXNYd9xdPTB7K0EOWkidAq4eWrSzZrxY/fP3OsB7rukV18kItbaZwP1G2D0opZkZGmMX3fojTESYIxoCc1VwjCZvReMwyBaFLPRXFM1/dTgINlt3viUO3Ji4LZbM56s+H9h49EkcL7kf1Rkc9i4iim7iruHj5wdX2FDjBfzEVNahSLxRznlCTcPe3o25b5zDCfpbz57DXD4Ln7+Mjnr7/i7uMDWZpzdXnNt99/Q9vLs7R92hMbw8tXt7Rtzy8/fke174l0TqwNcTAE67i8WLHZLHh8rOnaI27sWG8u8H4ghIgQRryyWDfSdzLYW69XxFFEmecEJVtrPfnOFYpIJ+ACzvYY43BWo4hYzApZVDtQv1ZCrFYl5m0AP1npLdJcTUmQJ7XKSdklll1RyHnvMZGZrHCnjygDGCl0PEZLYyfPrzuHRJ0acWPEypikwr4chn7690xDOXBO8fxUU+ST4uXX+Hbei2IlnpQj3ntwYRr8CVyfgLTjQfhGIViCOjG6PMLHk81rkhgCARMbVDgNMcXy2vQddhiw46TWYBpQaj0ltE1K5CnIy1vPqAIqMqR5ycvbN/zdv/v3+cnXv8P19e3Ebop49/4t33//LXYU9Ymzlrat+L2f//40MHN4J/WTUoIq0Vqe1T/903/Dw/1Huq4hTiQhdxgGSQ/sOvI0wSjLN9/8FWmSESdiRZEmwZxVJmb6+SVxTJ6lXKw3nBLNg1boSKxnRol1brSSGmmtWFx98PjJQVA3NcEHuq6j76V+sMPIOFj6YaAdeggC83bW42zAGBlYWOtEkTX9fsM0UPUBSQefQkpU0GiVE0iJk5g8SgS77R3zxStAvjatFUlqxFI4DsyXjoAljkrGoWcYjijVMJ8ZjK6p646ymGNDRVXXjOOR6pgRtD/zCJ21U8BJYFYWZOmcpuroB0uS5HTtyPb5HYdDx3KeMpvPmc8X9H3D/f2Bprkjz2U51vWeYRjlTnAKgpuU4QplPJGBKE1QGsqixBjhYvZGFEVt01OW8TQUazBGkx+PrJYXxCbiYduye65p24HD/i8py5SLq7kM1E008bHF4nc81uT5nP2243hwlGlJpHOa+kiWLSfOmAz7Hx8fKYqCm5sbksQImyoyjIPjf/h//Q/83s9/znK+4tWrz/jLX/4F/VCTJFIvNU3HMFiGfmToTwOUadAfx+SZ1J6zMmK1hOpYs9vtqap6GqAneKHKEcVGGM9dK0+LjhntcAavy/MttYmeFpD92MswenRkaUps/PR/T8O9KQxQ1KQBwvQxlIz2mHiNRstgL0kz/uE/+Mf8V//8/8hivuaH799yeXnB7/zuTzGRMCqVUdMCRuonSbY9sQUnbud0rkqBpaZnXYaJhFLUZd5PA/MpQXs6T4MPZ9tbPw50vTTv/ZRM3LYdkYlZLGbTAN1gopjZvGS5mAvOYvrUKHGmGq2mBUbATBiC4AVtT5B31VqH84Hg7FmVB6LgGQbL6Dxjb+m6VhKphwHvhL9rnSjuqmMzcb3Eau19OKvAVVAS+jOp5ow2lOWcxaKkqnb4yRrrfJhwAxLUV+aZ1I9Dz3fffUtR5szmM/p+kGtKaS4ur7m4vOBnP/tdur7D2oG2azgcdvybP/lX/OpXf8lo67P9M45i4ljLgEPLcunMmp14fVqD83bieiqYWGNOacZ+xKeyzA0+SOCZkqY+TaSXNEZYo3kqXO2uE75xPzjevnvH5mLOcnVF37XUamCei1tuHB031y+mfnnPOIRp2BLTts2UZh1T1XvqumGzWWOMDBizbMH11SuyZEXfBV7efEaezymKnCyP6Po9//Jf/XdSE+sUZz1DG3j16hUvbj7D+8A333xP1/V8+PhWlHFIoJDzI+v1iq6vuLicUxQZTXvAeUvbDVRthzEKbQJKORkSZhHrzRITx1T1gePxOAUkiugkBJjPFjTVA9VB8CJ2tFgnS6m2HdgdasYOFBH1wcr7FmKc9RityDLBhQyDZbWak8Qpx0OFc1KXr5Zz8mzGOFiqquLx4QE7SlhGmmT0fYc2gaJMWSxngg9yPT4oBhsxWywlLCVJ+Ud//x/wn//n/2uCV7x7+0GCgbLsPLiUJW2YwlhGhqGT52N0OOc5a7m8xzqHHYbpTJMaLUpinBf2uqi5xXKfxhE6S0jTVIbPRoZIBEVQ4iogqPNQX+5eN7mnRsZR3mFxS1n6fqDrhskSP9DUtTDZa+kX+0HsqKdQVaaBexRFMriPhdW5Xi25jtNpmB9LrTXJUM1J5d+PdF1LXTd4J4KtP/7jfyH9JHJ+RXHMfD5jsZjz4vYFX7z5kv/6//Rfczwc+O2f/YyynJFnJUmSsVyuYQpctNbT9+10rsq7be3I0A/nBYacByOH/Z6//uZX1PWR/XLHMPT4MELQeG9p+l7UoyoQwoAxiBAryUjyERUL2xgUx4NCq4TnpyN9N+IcWBvwrkfCpPTUX3vE/v2bj/p+4wFfmqb0Y0KSJHSdSAyDh7ZpeXh44M3nr8jygq5rpsCGjsViw2wmkPShR1RbQ8d8PscH+OzzlygV8/jwgDHX5Pkc50Z2u8P0Ekg8ct0c0JGi60cOhwPWWY7HPWm6IE4j7h/vubjYkGYRu31FksaMzjGbz8jyhCyThv9Y19RNg0dx9/jMfMiJY8PgHGma0I89dVujNaAdu/0j600pgQ5RRF6kVLWhaTsylRDHmn5s6W1LuZhRzkuOB8vj05ai1CSJYhwV1seM1lEU05AsTxnHnvV6RVVX5DqlOtYYE7FYzHh+vse5gdkik0NAScrUbv/I9fUtJtYcjw0mcpQzuLq5wPoBTysDniTl7u6DJG7ORXXZKYtzLUkacaxqrA2TbTinaXu6fsD7gWN9oOsaogTarpI0xzyjG46YXpHnMy6uFhjjSdKAMakkpo4NvnMsFzPSbEMImhAMWZaT5bGwJRjJy4xiFihKAy4lihTD4HCj53B85OsXVyjdobRhtVpM/Kwwqa4kGcsYaQBn80I2tcgWtm0bslwYhVmaU5ZzukZivWWS7oiMIgSRV5ezBOsd3dCz3R3OjULTNLRtQ1HkU8pqwzD0PD4+8JOvFFVd8cMPP3D9YkY+C1gf0zYNV1eXGAN9X/P0+IhzgZubG7QKNG0nxZSJpzRX2byMk9S761qSJCbLE7QRm1c0NWPHvSi6qqqhaQecM3gbQ0hI4oLgNWmS0/UNzksIyTgqnvdHvO2Jk8BqkzGb5zw+bqmrHXlqSOKU1SpBK4dCMQ5WNqMJYsObmnlzZk0hENUQGMNI5zuYjA6RidBK+BsnlleWiWJOq5i2ayab8sQpPB6n5Nd4uiQ8HtnwDIMAk7XRojwZLVkmqo1haJjP5whPMsVOwT/OebQRWDhKrBFRDF03TgdxPLE8JpWAVmgvhVqaZtJcusAwCMewKAtmswVPz08TxyvQtQ1j7+k7sTIGrzjsRziAUiNRrOjqBzaXHdfXG9I05/37B/bbFjsEHu4a2sbR9j3X1xeiNu2Fj6F1QfAxdtRiUxlGtO4ASZJs2gZUjDaWwMBsVnB1dYu1Xqz9UYbLJfFvLAytCgzWQXAYnfN419BUDq2hG0ZQOX2nGIaMPFsSR1doIpqqRSPsuo/vDuz2R2blktXqmnm55O7ugbsPW9YXgfkiI4SBrm2pq4GAwUROtvbGkKYxcWIwxhOnXpKzjDRm1g+isDKG0Y0c9keydM9mc01ezNEqpmmOE49DBkbL2Yyur6mqiqenLXlRYnTEcrVkGHrms5yuPdK0Fcvlgq5tuHu4Y7fbcX21Ic9T0rSkaVq8G6nqht1zgyJwcbHkyy++ou0G3r974Gl7BAJFXnJQFY/3D9x9/CjhC0lOFCuMVgz9wPfff0dRzFmvL1C+Zmw8JmiUjqmHiv3umYcHQxwHLi+XwsSZzUEHjAmYGLpjw+55i7eW+bwkz3OUlyIVY6ZiJzk3kkaJBSPNZJkSnCd4K9tXZTgx6E4hOFkaMSti6mqc/m7i8E21xb81uJMWT+74k0Im6LMl7gT6NsYwiV8nda+XBcFJ1edlyxzHBmM0aZqgI1BBkUURkqKWcvNiwTgG6mrk7Y9bjlWFRuDuIXw6T06b41OzdWrQCWraiAY0wkUSG7NY1c9FpZJtu/BTZOjlJ4VGlsW0Tct8viSJPG7oSSItA1gCpwQ0UQoqokiSq5u6JYQpkCRNWa+uSLOSp+c9P//9gvXFgovLDVma8eXXb/j57/8NQnDkeTotI2KiKP5kMQY5b6yokv7+v/+Hk5LtP8A6j/WiYAtBWGF2lG2885YkMpK02w+MVlTtYvEL0mjbQRpkO1n/rPCz+t7T9QP9FIIVCJPdLkx3lkErxMwWfUofXi4L0jgVm3KA2CST/Vjg+qO1aCXbbDcFDQ+dMHGsGydL4ShDq26gqiuG0QqfrpdFKl6ClOTstvSDKHuUkrCqk+3LTcsoSfYTNISofBxRnJLEKZtNhLMdVbXll89/Sdvt0PFAkltIDYGTGmIkzyJMooiLckpftbz94Y7BBozxLBZzosiw23YUeQzBoJWhPtbUTX0OqALBMUQmQauBcVBE08+mKGOKIsOHAW2YFlLChs3zFK0j8txMzRoY41FEYhvynrppiOOcdHFJ146AMBz3hwPlYsNyteRYHehHxzA6nh6P1FVP1yqO+5b9c4MfE+YXFywWKz5+3OKsR2daGixt6Pp2GkaUzOcSWmVMBFMYzV/+xV/wN//m7/Hq5Sv2xx33D3fkRYxSUFU1SmmKssCOnq4Ttt0wenTn6DtHVffYcSRNM+JYYP5PT0+0bXdWelksdSOYCJSEUPgguJk0TSX9VcvAxLmEYQhY5B6y1qLR5zPCBocx0Vl5wnQ+gthek1RaJXmWwOiIgGYxv+A/+1/+r/hn/5t/xm53pGlafu/3/4aEX8Gkhhvohp7RumngJsm22oiK1pwWFMjdcQrNUw5OCxZtJtuo0ugIiCNSJef1p/OZs6vrk4qZT99TQNTTE19OAnh63r3/wHq1ZrVeMrnMCEYWInr6FHoacnkfiERGRBSb6WOeqMv8219LkMG8CtO4frozZGnjJxuwxVlP18nX4rybFEgSZtJ1HX3X00yN98ku3Q81WRFTVRVYhHOnAqO3GDR15wjO4bzjaffMOA6sNxvatme339M0nSgJTYpGsyrWxElMliZEccTv/fxv89/+t/8X/pv/6/+Ztt1Pqh1FUaTEScQpWEojNm8/9Q5xHE3LyP78sxB2owxkhl6Yz6cASmvH811mnbA7u6YnWBkg7vcNddOTl5LI3TWK2BgIOfNywayMSGJDWZYcj0fCYImihNEKkzvLU2azAuccUSTKwCy54Hjo6foWaxXLxQVZWlIWa+rjAZUWzAphC7/98QPLdYYfY96+f8d6teEnP/kZL25ekSQJH97fc/fxifv7PUlasF5v+OUv/5KizFmtX6O053Dc0nY1SZrys9/5Xf7Fv/zvef/+e6xrKUoRX2it2O/3HKuG1eaa+WwmLpvpmTkej3jvhXdd1cSR9NmjtdR1Ow2FhXUXRzlt7xmnAETvnQQVei+iAA3ojnxmyIJBG0vTDpSznHFw7PdHqqpiPp9TFAXv3v3I23fvMFHK7YsL8jxntA1xCmkG5Szhxx/eY6JpCK1ifIiZz5f8s//t/46/9Qd/yG534M2bz/jt3/ltkjgRB0QkNlphF/NrzolT8Jw/vcgQPjkQOL1LTobEIoQKBKcYug4X7NRHyrnT9S0BUfBZ66aBosfEEXmWcnmxZrUS/n1AeISnc+P8RgdBaHgXcNPyw9pxGqxK/+S8Yxws7cTkHAdJ3G2aRtwbVlh/u92j1CKjDNvdNLgMAichjmRZmucZaSo8+pevX3H3cM8vfvlL8lT6O3EcxsRRxOq7HwCHCoHdds/D/T36RtN344SIk5CMgJqQTubsVDxhCQwK70CbjLLMQMFqfc3Ni9dYN7LdPfL+/VvevfuR777/FW27x/uKSCus6/CIQKVtO5x3LDTkWUY+W1Idax7uj8RRih2NoEC8IgQ97XTUpAwHGe79/8mAT2uIokAcK4EZuo7ZvCBJE76YvSKOArMymjYgjsUsoWt2OBsRGKmrnn7ISLOYttXs94/MF0s0lrp+4ljN6Pue56dHZrMVF6+uROLaNewPhixNGMeGvq+IYyiKDHDMForFYkOcROR5zDB2xJFmucyoqpb5XBRsAbEELBcL7KBwoxSbm80V49hMiSyaJPaQK8bhSD32eG9JszVFXqJUTZoGrq9XvHhxcwZCBj8SQiI/n0ixWGSs1hk+9HSdsGmKopwgjQprW/JM0TRPFHnC9fXtZLntiCPwPiUyBUWZ0TQVgxtQiWG+SAnUeN8zm8vw4/bVJXkuCZvj2HM4PNN3BuWFSTLLU5q2wo41Wg+sV3PcWLM/jCjlGYaWcezZbNagIvq+wtoBozPKQgajcQxaR8SRJ02ElWHtwGFfE8cJWks6o1jdNZESJkdTd2SZoSxSsqwQ2HxiyEvN5U3Jn3985FBZAiNJYnj1Zs1ikxBUz/3Dnvl8SVN36CllMI4i0iQiLxIIsNuLzUWGfhHOwdAHZsUCO8JisaLI4PHxGaUHinKOtT0hdCidMctLlJk4Oyhub29o6pq3P8qmualb9vsDcSyXe1EUOKdQRJgonsCZB7LcECcxbdeiB8XhcJCkIi/21KKcSXOrNU3TYa3wgKIomgaINQ8PO7I8oyxKlssVcRxPoSPXJIlsWYt8hbNHDqrj+mbD4bAlSizrZUndHFmtVvRDoGvuUcTEkaa3MrRyFva7I7cvbiFkPD/e8+H9PcNgefPZ6rxZV8hG+Qyp9/5893TDQF1b4hjSJDoPKk8bKqUDOnBmTJ3Ull3XToVHdLY5+AkIPY4jSRLjvKfve5wTG+Y4uskWLNavthX1qXycjsVijrWKpjlMnAmL1hNEt+9wXjGb5ZSFDHo/fHiSZtpEcgGOVp7pOCZJEtpWAl3USU1kpYk7xkeenrYc9pX8TMLE32JKrJuW8UpLatJx72jbHU/FniJP6bqRtrVYKyqhuh4pZwatEu4fHtnvBA+AdyjCdCmVxLGhOjQYLXDnYZRUriQ2+CRn7HO6OiNNFrSHB95990xdV5NdSSC5gYhuaGiOGq1z2kaz2VywmM2JTIqOMrq+J40NeIMbPBEdcaox1AR75NXNl4w2EJuUsUsIVhHGFNcn+B6SyBNHR5IoxTqDRlMWkjoujDIHaiTLcqJIiTJ17EmSSIoYP5KkMwwRfScqUkiQTkcUU3YcWV/MJX2xgWEMZNmMw67hcOyYL0suL1coLSqDu7snVus5y2VJUXzJYb/D2Q5nIY4W2EEClMTSoEiTnPl8Tt+3aB0xm8+5fzhCiHi4vyc4T1MdaeoDFzcbdAyXVxs2F2tJZsbz9Lzl490dQ+OxPcTElGUuarkgNi/rRhaLOSFIGFBvO0ysidOE+XyG7XuGvmO/21LkCWmcUDc1OlLkWSZJYtPzd0qyTOKIECyOXysIcSjMWfWOUiyXBS9vN3z/3QNtJ02Mh0m1/em9PH1crYUpd1bFaEkr9N5NjYo0nGKdDpNS79NA8JMtNuDcacvvcYMoapWWQZIomQNplvH4VAvHJFKAI9JaAjnONYghjiXJXCHWW+eErdd1Fuumwc6k/JOGWZ0tfFqJ5UOwDoE0idFRhLXqzObsOynavJciUtIv9fn7O6l8FBLOMAyyHJzP1tzevkJrgX7/3b/3d/jbf/tvUZQFu92Wu/sPVFUt+IU0oa7MpNmRYeSJteWdJ1gPGLGNGNmKhynQTKw9CVEcT8MCZFkRGZyKSEzEbFagI02SptNWPZGGJ4gqJ3hRL8lWX8740brz19H3I8PEPR36QYKORlHGnXiowzAQvKVr+0kBIPwnrRSjsxOzXp8/h9ZiQ44jYXZlaUpRJMJXRKymn+bNMgSzdsRZUciM1p3Dj/qup2kqxrHDuZ6u72i6kaenZ7GKnphrTtAFzo9EGpLIsF4uuVi9If7thD/50/8HJgloLcNAgdwbnOvPNjcQC570QJ7DvgcFzu1Zr9ckaULT9KRJQpZmbLd7np8r1puSm9sLAj1xrEnjFco3VMcfGPpAkhjiOALlz6EwsntS7LYV42i4vl5SlhneSer78bCnrjvm84wsz2S4paPJ2jlg7cBmvWD59Zw0k5p3Pi9QKib4mDRe8cu/+oHtUyV3DimRiZjPNlTHRniN3k6DIsvoxGXQti3DMHDz4or9ficYmwmN0fc9P/74I3/0R3+Ew9EPHWmWEEWaspzTNM2kRAPrPKMdcYPDGDW5XnpZGI6Bcaw4TbrjOCGZ7G/OW2lIjUTZnHAFzvkJGSKAeQkVYXpfRYWIPzXRdvreRNFovSU2MeEULmHUpFoME4rAS2KsSdlsrvk//Bf/Jf/0P/lP+NWvvuXVq1u++PJLCIrn5z1//Mf/kj/50z/n7dt37KuK0Y50k/pG7LSTu0Yr0jghS1JiE03Yo5y8yCdsg7AV5VlKiSLhnBWF9FnGGAl0MhEm0qS5JNkWRTn9vZz5Z6VxULI0zsQ5tXaSFp8k8WR9Y3rblIjuz+gF4bz6s/JwGgJMiZYTgXVSOqpp4QRh4royKb0DEAMZydlyKNa484dF8SlUxfswJeKOjNN5OI6Of/pP/yPatqGuO6qqYbvb8vD0TNd1dH0v78VebHZX19fM5wuWq4ismLHbHTHRpwRlUc9J2EnfjWhd8Hf+zv+E/e6Zf/kv/++i5NOCaDLRFLQyCqLhZCGWGlGYboJ6kHsomtJIvf+ErwBDWeaYSNE2NcYYVqsLiiLHO8/7d3c8Pz8z9A4XoHseqeo9cXSY+kXgdy948+on5FmODwOLxZKmEcXhzfUNu90O5yRUbT6fyTKYmH/8j/4pT48P/Os/+X9SFk5UghiOB0uRrViuSu7v31FVlQzhB81Pv/59Pnv9NYvlkq4d+O6bOxnqWKirgLMJfRgo8jlv3nxJUaTM50uGfuCv//oXFGXBZXbB/eM7sjzis89esj8+Us4ylDot01Jev77h+uqSYezp+nESOXQS0ND3ZFnO9fUVCsN6vZbzaBz5+PEOUMxmwjTrBosdPX3vSLMJHYFCG0+ex3z10xdcXJY8Pm6pjh15YSizVEL01muW85UsTg3sD1tC8Lhx4O7uniSJmc1jkjQXDl31zMXlijRZ8Px4wA4x89kN//yf/1e8evUZT097/sbf/JtT4vfA+w933N8/sNsdJMyCMLH95f7LspQszeWZjKJP73gUkWcZJopkMTktF531RLHBxEawXkyhD1MvIv8jL5cPIkpAe7TyNHXD/rD/f7P2p1+3bfldH/aZc65+7fZpT3v7e+ve6qUqNQYLSSCBPCACjAR4JMHDZgQHJ3He5M/IC8dJTGwcGxsLMAgj5IARjkdiY4LVlai+u3Xb0z7tbtZe/ZwzL35z73PFyKuUnzFO3Vt1Tj1nP3uvteav+X4/X6yzzGdzuef9fr0hm0W5rl+ooQ2Q5hFKpXsdhwwg5SgURa8LywHj8SOMg5egjXFg6AeatpcUbWcPSxBhCoqLo6lr2q6lbXu21Zbrmxs2240wO60VHAmawYo1FqVQWJz31FXNZr3h0+98mraT+k9F0I+SjuytWLxDcwooTAgSy7L9+yc/NyiKcgbKc3J2h9defxulYFet+OD97/Kbv/lPef/D7xAn0PXNoV/uu5HrC029bdjtVqLIDJxipSLwI1pF4e8Pzzm7d8f8T/f1Qw/4hqHG2h3G9OQ51PWGPM8Yxo001W3H2ekd2qbj9KTkaHmH+WyO9xbne6wdmEyLwI0aOJ6/FkC28NpLJ6RphrUDfX9H2CWBdZAkc548BsKW7mRxhzwvBEQfSbS20SkeyzA2Aj5uOuazJX035+OPH3F0coZziuvrDWfnxxzPljR1ywcfvsu9kwUP784pSlEbferVe8QmxhjFaHv6oSPP0jDNH9hupwKVzVLaNieOI4yJGAdFGvWcvnSGHV4hzT1pqplM5gceBojdwiO/4ig+fNBKGfBiBQBpZlarFd/9zncZ2hXGaT73zttMyiJM8iXQ5OnzJ9y5O8MDm/WGN1+7j/IaHMRxxDB2eJ+hOEVpYcq8fP+UuvZBhivDrLIsqOttuIkdeZGgDWyrFV3XUBYziiwhihSd8jTesWkrvMuYTmbgDM4pdlXDaAdWNxucdSRxTt90zKdLkiih63c8v7ii6x1R0oE35EVJXmqms4xh2FGUS6azkr4dGAfHRx88JU0zTs9OUEQ0zZZxGKSpG+XgylJhRNhgtxiGgaFvmE5nvPnWPWEC7FpeevkO/VATxzIgrXc77pwfc3Z6DGokMgVRpIV/18lmMUkkrajrevrOUhYLJuVMosN9w0m8oChyhmEI/JSOqqqoqobb2xUPHt6jKDOyIMePopg8k+Zms9kyDMMhnTrPiyCxrxjGjtvba5JUkSTCk+y7kfPzE8bRkeUnON/R9y3D0HBz63j86JL1qqGpZYgwnRcUZc7yaEK1u+Ub3/g+sZ7gqTk+KUgzTRTvtzhhU+Rl+7G3rcl7LMmgcUzY8DoG60IAh3AKlBIAuAtJYd77AEV9sSlXSgf2lgzXRFEnlq+2k1AWD8Kqse4wYBhDU2mMcP82G7h//w5xHLPZbBiGXrh7fY8yVuyAcSrb9G5gHC27XcPR8pgsyehoGXqLNtGLxF9rsWMfkrMgzVLyvOTi+U0I8OmwQcEoVqoEgKIo2GxqmqYDIrp2pK4dm3jg+KgMikLZrEexYrPt6X7whHKieOut+3QtXF90LBZnzKZHRHEW+hzD6clJgMESwgY8RVFwcnJM2w48eXSBG3umkynLuaGuGzwRSscoFQcb5UiepxyfCk9pV4ulbuwjYqUDzDcmigxG90RKMz/OUViatkZpEwZVmuNlKfaHaCSKOsCxmLzD0MV0nQ2MNY3zPd6PdGPDaFuU7jAG0jxmV+1k4aEVF88es+ssx4sjsmzBOIpyxcQRSWoZhprp/BRjFLtdw/OLNVmyIIoysjSjrtdcPm+5unjMfBFx53zOw4fnnJ+foAKH7eY6IzMyuOu7kbbtmc9OsdaTZzMZPhChTcI4RtRNTRxP2VQVw0T4coujkpPzN8HA5fVzVqsL4thJwIi3TKcldoBH1QXFZEZ120DtWS6PuXvnjiSQpYqmFVtGVVU8ff6Etuu5d/8BRhlOT8+YlHlQuwmfKYyRRTGnDBCFAa4WpZIXxUccmTB4k2JFfUJroYDjkyOqasY4Wm5XDV03UgcI+55N23VyX6Zpcrif98xMADoJaHAhGXw/aNxbfPeW/33oxf5XHIktbLvZMY494NFGbGxKO6K4Jsti2mZgsUxJ04RxcDin2G4a+i40m8ri/BDU2xO00kHB7en6jnrXBHWtD42cQ5v91lzhAi8ujkWV7bxwn/JSVNWz+YSuFVan0ZpqW6ODU8F70Fp4pTjoO9l0z2dH5PmEyWRBHGc8ePAKv/TLv8xP/PhPcHtzzfNnK4pyymuvvkIcxWH4qAIjzwsgW8lgEhTKhy2+26MSpPjeK2PYK3UGgWJ3XcswDjjEktIPPU3VBtWrpx+GoNgbDqpHvA+4C2kiohAGkKYJ88WCo6M5cZJiohj+BbahfC5yvlrnUN5jx5E2sEbtKMPCYRhpO0FSdJ2otEYrhX3b9Qxjg7OOtrUCOt9bEgOcRiFBKXJtapI0wytDkacs5yVKHRMnosAWLp8k0/7Wb/02v/k//pYMjawMJq23EMXERHQDPLtYcXJ0xJtvfY5de0k3ruj6W+I4oRt2ZJmmLDOiKGHsrajBIwlyOj45pm5qrq5vuV3dMJmUZMsjLi4uqJunDGNPFMszdbfbsViUjLbn+e0FT5/VgUcrDVtTd7StxzMSRYbBSrJ5HMkAoSiEiby6XdN1I5GR9EijI+wYOL5RTqS6cNaKsq3vWwgq111VMynnnJ/dZ1Kc8t67z4gjWbgak2IHWCyWDINjny5sR8uAMJriKMJ6T13vSLOYNEu5ubkhT6RezouMm5trLi6e89JLDxltz9e+9jU2mzUeUYua8OydTKZEsQnPBc9ut2MYarF9eVFyip3fBEtmSELs+1A3RYcFwt7muG/QlBZlrh2HoOYzjN6TprGoWLQijgx2FOu+0WEp5+Ds7JSm6djVlSTKa2EJa2V47bU3+bf/8v+OL//oj/Ptb3+Pt956i7t377KrR377t3+Pv/9rf5/vf/9dysmUo6MlRyfnZHnBrtnRheC8s9MzTKTY1RVN3VC1I94OdL2wLuGF+s45F/Q1HjsMgkJRwhDbN/tRFIlaLgwz06wgL3LKQpTfx4sF9+/d5Us/+kXeeP3loFgEo4VjXtf17xvwiYXNhwATDoM956SZF1Tk/jwJz6PwbFeEBl++0f4/cJbDa//kb/nA3VKEZ5mSAJkgEEQb4WVLTwReic15PzTcP//2taoLiuS2kWWLMRFt07ParPFIyud+SaSVDg24YxxF8dS2O4ah4e233+F73/06N7cC9ndeGLRRjNRAaIpyQt+Zw7m6792ET+sOC7U9QmL/z64bQvCFput6nN9yfXPN0FmEpymqeB/Ozb71jFqB82jj6Tt4cP9N3v3BV7G+xhhCKr1js90GzIxhGCxK9SzmS7YMYuXUcVh0OVmI+JRqfU1fiF1cEXHv3h2SNGd1u0UrTVnkFOmUze0l+BxCzz6dHHF8dId+qDg5mWNiGVo+e/4MfMtgpN7PspivfOW3qZuatq3QZuR2dUFRZMzncyaTCc5bttstq9UN5aSgLCecnJzw9OkzrHUvMARZSRQn5DpjGETJq0NgzXq9xbqBvIhAWZLUECeGxXLJ7eqWxSLl9GyC1g5rGxbLgkk5ITI6MPUF2STpwVvqeovWnlH5cM1b0lR4+NvtivPzM9brhqb2JPGEt954m3/z3/h3yPKCrhv5kS99mXF0/NP/8bf4x7/xj/nOt7/LZrNFhwCdNEsYxoE8zULgzn6RNUoQYCKqUqM0k+mEsiiI4ogiTZlMJsRpRJJlkoqdFZRlKQFvaRoGhhlpnpCmokwzURzOGsNisWQ2m3J5cUme5RgTUr0/4dxw+2erFZfFHp3CJ4QM++teIwpEtFhtPQoi0NqT6Ails8O3fqFmlzpiP+DaD8all7SCcuhHtlXFxfNLmqbh6vqG29Watm24Xd3StS1NvaOYFMRRwunpGWfnd4mimKbrefL0CYNXaC2LEKUjWdhaCXlLws+tlT48R7x34c/YsNiwOKeJjWJSHvHZz/wkD+6/wq//g7/F17/x21gLi+UkLJnCz+cT0lizrSoUmnonda5zCIpIf/I92Ks4XyxVftivHz5FN9UcHS9IkxRjZKKapUngR4AdZcP74N7bWOvAG6JYo5TDRCneO4a+Q2vhN6FK+T7DGCDjGm1S8mwuyVDjKGk8zlFmL5HEGfsI7f2WznuLTqWQd86BilnOjmSIMIjq7OQolw8TOF5kpFnJrh64vHhC311R70ru3T9nPk9EVeI8xkjxMI5iTQBQakBpxXwykYPWGLyXAZ0SLTCRMSznGVrdwatd2PhYlBqRmzmSdCQjXnytR/bpasIKG8KATyypaTTy8sNj5tNEEhdjSxINqMB/aNuWMtUo11Ptap49eUIaG5aLOYmRhn0YTQBpSlpMeSoKkpMjibBXn5gswyLwzGoePfqQ5dGSowenEIqPJMlJ04JhkASpO2dL+mEkywp2VcdqVYHWeDtKNHQmKTJlkYLz3L2zZHA5j5+suHN+xJ3Tc9Ik5869U+JEsdms+PjRLUmkODk6oW5G2mbg6ZMneDdwc32J1kfUrWyFs7QkMhGTMsVbQzcMmGDBHceOcezoux1xNJIvUpbLCevNNc5Z4hhW6zVxnAX+hWK9uWU2WVKUBR9//ITpZMpkkkrSYpDAi+VUtijr9Zo0H9Ea4thQ1zvGUaT5RV6QJRM224bLi1vKsqCc9IAMy8pCEo2stZycnAX1jAt2cEPT1IH/IZvr7a5idVNJsaBrJpOCalcTxZ7TswUmkq3jdD7nuIlxtsKmHSdnGacnRxIc0Hq0Txn6gXISs1jMyAv5+bUBlDRzdgxpYf4TRR0SmiHKHoHduzE0pUoHLoRsv3Ww8O35Dta6Q6EnvEYVts3h+7i9ZcyCgSSJqXcNwKFQStP0wC3suo62bUnTiHfeeYfvfOe7+BBuUtcVaaTJsoI4ThnHltXtlkk5oW9v2ay3LBbCiGjqCu0VfbcVCw0mqFHkOTOdTkiTlL4fQ/M8gPekhSJLY+7cXXDv/h0mkym/95Vv8OSxwOv9XrE1eDZVgzKaJNM4C+d3Fty5VzKZTCjzBafHDzg/fwVczvHxfeKoJIpzJJhAkrl2u0aUCyqSazeRItM7+PQ7KhTkHJ4rzoMKASjbzYZnT55zc3vN5c0lfXcbeF8yeEFpuqFHKQmxiI0hiSOSWDhUXdsyOrE7JUmKHa+loPUDcSxWxb5NwUfC8rGezjqMKfE48vQIZRTONZhYYPd5PjLJJ8LZefgKJpKkQuts2J4L0gBVMJlqsjyh6xpWq6eMPcyPT4hMQrO9ZJIds5iINbhur0miOUV+n741jK5Da5hN7zK0NW2ryPMlNzfPGQax03z40XucnJySJiVd0wIFjx+vubpcMZ/MGaynqTekac/RcUmSZRyf5HztG9/k8aMK53sWy2PwntvViq7vSZORJBFWWG89TQePn1yj9UDdNDgXmFBRjhsVfStqEhMpyqKQxFxvw8L0xdBOBkAGrWXKHhmDGvY7WBWul/9f20HFzfUNT58+ZRxhMsnoxy17oLgxijiRdLI9F0SGdbBX8YpaYa9Q2P8eQXkWwNCBVyR//T6RkNC4im3XBW+YtpKgrrSm7yxt0zGdZrz+xgOU8dxcr1jf1mS5Js8Sul42wEoj1prdDq00o3Mslzl37x6RpEcyXOqkIL2+vmGwNiwMPUkU0zSNcHkUrNYbTKzInMFECrxw25I0I09z+rZHEmhlATGGYYVGlnHGJGR5yaSccXxyzjvvvMNf+F/8Be7eu8eH73/IbD7l5ZdfEZg8wjl1bhQG4fAilXH/Jfa4oJ5UCh3pg4pSOuDQQEa8GOBasceh/WEQeLDdqPAZOBma7ZlRNiwb9uFUwyB22a5tubm+4eOPPsZEMa+++jKL+fLw7AaIAltMXAPS3GslaoH9H/NBPTBaj9GyMNrbc5y1DNaF4n5kGES5PQxDUAYOB7XG0PfCCeqHYHu0jEND22zpOrFrtm2N9TD0FqVj2rpGLLvSwEZRjHIa6zRt50hzT9f33NxafuInf5rprODy6mM+evRdrm8e4f0Fg93SdRbvRhSGl196ic1my9XVpajIjGaxEM7XOHo6b5ktpzjnWaYzokix2+148viKq8srdATTckmRp6RZTdvIIM8OXu4BpcUV42TIYUdxIqw3FR5hysrn5ul7GK3HtwO3tzusVdw9n4ua3inyLGU6m9M2DevVltubFnc8YVJ4nj15RKRzkjgXJ8FQc3Z6jyRJAc98Pg/heYKEkaGLZlaWVFXFbrfj+PiI5XLJ7dUV4zgGNdiE995/j3sP71KWJQ8e3Of3fu+ScRzDUM6yXm1ENTOfURQFwzBIcNPFBZvNljjSWPWiTnDuxXWhgvJrP+Cz1h7UcXJrhKbMKxaLBd7DZr0iNlFI07VyD6RGBkBdJ2pWJwOJOA0DFoTHHCcJUZTwmc9+nv/9v/N/4OWXXuO73/seX/ziF5jNl1zdrvjPfuXv8g//wT9iMV/w5jufZXm0PPAtR2sxg0WPinv3Tjg5OababdBxSpwJv8qOjngcpd8IKuE9T1QbGeT1g3Av9+rSMVhdBU4fOJUerPc0jaWqN/T9Jd6+hxtHfuO/+W/51/78L/FH/vAfIjKGyMhweBgsnzwi9sy/fTJ603Y8efyMi8uLYJXWQT2YUJTiPMkzuf+zNA3LVGHQ7Qfye4tkFEWofXfrQm0SaheCsOb39bhhqCcabPlz+38/POAAvCISbgA6iSVlW2agaA337RGbdcuHH11wfb2mqnfYUI+O40DbVazX12y3t6zX19ih587de2y2VyiGg/W2nCSUZUacJOAidlUjymgTHc6+/Zm3T0uW3u5FR2+t/BBpktO2PS5wCJWX4DipF01438J568N5gDxLb26f8vLL92naFberWxlSDoJf8E7htWIcHc71ZJkly0R8IgrpgSiB49O7KHLK3NDs5CwbekdRTlndrumHgSzNZXmw3qFVQmQcu6rl6OiYLBOGZ7Xb8OzpChNpFos5p8cPAct2d8XoKp48fcz3vv9tuX7tyOnpjDjWzGZzRisWTvDhLM7Ybiv6vmc+n3P37l0uLq7o+4GbmxsePpwEdJIWh0UkAoE0zWi6mrquiOKYk9Ml19cr5ouErlujTYd1I9dXz1kuZ+RZjDGetpOwzKPjgjhJcdYxTWasVzVZFuFThdtKkKYxjqOTKWWZ0nQrjInB96RJyud+9Ev8+T/3b7BaNeR5xoOXX+XRsyt+9Vf/Hn//13+dxWLBvbv3eOn1tzFRhAfyPKGuaxaLhTzLnAucykEcSp04lLq2ZbCWm81OQnacoywnVLst681a+iAv9Z4kvMq1phFRQpJmnJ0d8+Uf+xI/+7P/MnfOzkTd5kVc0jQtk0nJPrF7/3x13oVBmEYrhzJ67xo+WIvl3z1OiatMHW5Jf3imOCd/1/43QykSbmQpGKSHBB1FaAW5erEwgBPeeuvlsG144QjphgE7SMJv0/YMrSWKY5pmYLVeYe3I3bv36C0SGOXECpsHRr4Pi2lnLWNwaTjrDgsOEa6IBVlrcwg4MtqwXJ7wsz/981xePOfRkw/xTlGWJU1zA0oYmhBQNVbOk31fJu+QC/21kntcy9Y4GJV+6K8fesB3dDTh+MSgjRbYspNX1Q8dbd0QRzHKD4z9jjzPcX4gzxPh6CADLpfGh8NZGvcXGxCtCXDNXdiWA8oEOWuOIqLrG5quRRvZxh22d8qGwc4e0iyJOsPQk+cvNi6RKdEmZjbPOT39PMPwKUA88t77MKRsyAtR/uyhkc6JVcbKqBbh+MQM/SjDilgeOtoI4y2KtEy0lQk2Nc04SuMUGY33SrZUXtgOShsio4P8VIESe4Aqc+bzGQ8f+DBNl038MEg6y7ScMCkmKBOx3Y48e3pLkmQcLWdihXDj4ebMskyk9JFht9ux21UhEUesIvtpsjGeLNM8fHg3DDkK+q5nOptgdExkxHZonWO1qthstty994DFIuPoqMSNSgp743F+QJEymwvQ+/xuwe1tw93zIyaTCcvlkTAQhy1KaeZzOD56mziJRSWiHHkW8847D4J6TK4fFQ14rynynKYOvI6hBSVb3CxLSJKcIkso8pgklkFxPw4UhSZNSrx35GlMP46UxYTNZi1R9G6N9wPO9hijyAqNHT1gKbKEODIM/cg4hrCAOOL6+oLpbII2RiDDbUueTYCIatfx/OmKo6VYQ+JUkcQ5VVWH9z/i6uo68GQSjo+P6bqeNEloGrEXKC0b2DhJ2FYNZycLprOSk9MZzy8e0zYVfa5YXd7y0aMVtk+ZzWdk2YTFUc5mvebxx7e0reXkZMbJ6QzrWpx37KqGPNWkaYRSDo8ODyyxJSQJAjo3EW5/IOh9wS32EyeiEFBOrrkAJSbY5MSKK6wk74WtlZg0gPhlkLhXERkjIQvAQSEUx/EnCiYftpc9q9WKx4+f8NnPfpb3P3if1eoG56CqWuaLmQzmBss4+JCKK8qKuq4xkdi42rZnHB1plhJHMfu0Vu8FYiwnlaftepJEc35nyvndOfcfnJEXCd4NdMMtL79WsjwRht711ZbRDsSx496DOdNpzm7XkCVTzk7POTs74mj+Eln8gCQ6xZgc0Hgb0Y4K1dvAp5N7Mi/KIN0XHlOSJGhlZNhuHXv+CF4aMmstT5485r33v0dVbdlsBF5uAac0fs9wanYorZkvFnz2c5/j/v27MpwNfLZxGOkHAXpb6yRts5c0LOFoWeq6Ickc2kPfNSglTESlYkbnaDqLSVPGIabte5wf8c6yMTKgsQJNIcpTYWR4h/U2cG4SjAbr2tDMPWQ2eYizEcPoOVneD2okQ15EeHZEiQMbM7QGz8hge1zrwPcMePpGk8YP2FXXVNUGrZc0dcLNdUOsp4x25Oqipm01SeQ4T3Ly3LFcjty7N2e9XaNVzr/0k59ns91SNy1ajdw5P+XevYfsqpbf/e2vcrPekBcl86SgqmtQPSZydJ0jy3PW6wqtPMtFjB0H0jwhS2OSSOHscOCjvOhoPqnIE3WJ1hF4ffg9o2XxYIwRdYjdq0PkPFksjgQ+rmLqdqBthYOYFyl5kaM1tE0b2HeKse2wVtTDokawL16BVocGPBziaMfvg9175yX1UZkQegHeacCGbW8cwnfkbN1ue95771FYPkzwfiTNZBubpSWrVcXtzU4Ghb0wN4siYzYvKcoYE1siC0WR0tQ9Z+dLnl9I8vN8OmW72hDHEZvthjRJSbMkODcU1spAxWhD3+1oa9mqv0imDM376MRep2PyomA2XzJfHPMzP/Mz/Kk/+afJs5wffP8HvPHmG8xmC5xzbDc7PvrwY771re/w/vvvcXV7TV3XAcosn9s+lS42Rv67MZR5QZaLsjsyMWmekea58PuyjCLL0MYQxQlJGhOlYt1NIoOJY5JYUioPXDwlf5eKo2A3FkuO0Z+4toxYfuqm4aOPPsZow3Q6levIybP6ELKEx3qP0uYwMPzkwlAhDT1OunZtIqIoJtOiURL7274G3Kc4y//XB/bOGDb8zjnGwEgdBhl0DGNP3dR0w8DQjvTDwKuvPODsbMnj58/oh4HtdiOhJnWLHRz90GDdyK4ZuLre8vbbP8K9u2/yxms/yqa64lvf+S3e/+CraNMy2hatPBcXV1S7iqpqSdKIphu5c3ATjFxe3ZDlhpPTI3Aj3nmW82VQLfaU5YS67lmtgrUnDsNtpcIASriZKC/XXAxlGZOlAi/Hi4J3lBU31a4/DFhRAnj3O0fb1ng/omONHWHsIybFCadHr1LmR1w++xjvDZtNjYkMShteeviSND/h79inauM51PrWyiAvTqQWfvWVV7H9gNaikKrrmovnW77zne+S5RlxnPDWW2/x8ccfk6YpWpvQlInVN01T1us119fX5HnOZCKcQxMspjLH8QFNMUjoi3kx/Nur/JRSYbgnv/pekmDjKKIs89BkjRRlTlNV9F3HbDYjzfKATJFrrW0a2rYHJYvr+WLJv/Qv/cv8r/7SXyZLZnzw3kd86UtfYjKZ8vGjZ/wf/92/wu/83ld5+NIrHB0d046Wx88uQBFs15I2erQ8YrFYUlU1u7anH8XKLkw6J/ZzB2avRgz8YsYXyhlp4uWZq0yM8mNQUPuAMFEM/SBWPO8xaUlkkKHm2PFP/uk/48d+7EssZjPRCCsJGdkraDgMpwzOea6v1vyj3/hv+NrXvkG1E0Xj4AR9oY0hTqROwouN2RiDCcumKI7JUnE7pVmCjjSz2Yw8TSmKgsmkDE4VCcwTZ1QmyqVIhoNic9UHS61og/bPKh+eM0FOFJbEbr+I3iuMggIpS1POTo/xTssQxTZEsaHraz766AdcXDzC2ZF+bNFeGvYkTej6FuNlGBCFtFOtNV3rhN/rPGma/gtqPfns9wPoPe5iHyDmvajunIWm7lDK0NQ9exqXicApRRxL7zqdlmRJzrOnlyjtGewtH3x0E9SpGUVRsFzk3NxspffWPggCoO968qwgjjOaRuo14w0317sgnniJO6czJpMZ63XF82fX/M7v/A737t3hzp1zVquKq6sbymLCbDYnSeTzapqGm5sbLp5f4Zzl9PQE5oo0LUTskObYtiLPY37sJz7HZnvDdruhLCU0zBhN1/eY0D8Mg9Qod7M7PHv2jO9//xHLZclLL92nqiqGYeTp0yfMZvNgy5ewlm1VMQzXjOPIZJZzdnYOHu7fP6eum6CIawLuw4hQyDuKomC328lwNagph96TpTPwkGSa2XTK6fmUm9sb5rMZx6c5fT+QJBFdN9J3lp/+qT/ML/2Z/znPn97y4MFD7t57wPff/4C/8lf/73ztG9/ltTff4e69+xgjAYDdKMum9c0aZ0eaQZ7jCogObOIY5TUxiiSfBJWyBOqcHp+itWZbbVnWtQRijlZE/4TZhR3p+/bQm13ebPi1X/9/8PGjx/yv/61/gyLN0Mof3EqyONkHkIlaehws6/Wad999j48fPxYcSBqTJoKDyDL5JQnKKWVZkCbxwe1lAoZDKQkbMtq8UP6Fqf0+mVzqD17M7PdDQOTP+qDi37NB5RkZoQqYzabsV5xKy+vv+ntcXW147weP2FaVJJUTYSIT7PIOP1q6AwtT3v++F/Zw37Z0bUM/dIzjQF03sjx0UgNEcczdu6e88cZnefLkOdtNK8vIwQY0zX4RLwrwJI4PykGPk+enliwLhVx73o9h1vXDy/j+J2DwebxrGa002M5JsRspTVkUOGtJipQ41igl0O++G1A9KC1sl6urK7q2RRvNcimb4aLIybMMa0dp+KwNiX1gVCSbTj+QxGJDGowmil8k7PkAnhaboAlTZQ1Oo7xwrbRW9L2kjUZxTDmZ4uxA01Tsk72yLCOJY6ptQxKLHSNNM5TSYvtDIMpoJ4lwPWgkhvzi+RVawdGyBB+hiUGHAowRZwe6tg1w7+iw4RGWlwpbpz0zCfZJpEoLT4OwpZQC3ZOlSSgMZazu0GhjKMoCY2LiSOCeQy/8rvligVZKLKdNJ80hEdt1zT7hcDotZHi4tyCGIcB2vSVJYvq2J4qgHYdQGHjKPCE2C9zQCRMkSTBZLCqeoRGOxiiWkySG5XzCYpbhORM2k5OfwTsBmStjJMpcQ5TGKDcwjo5Pvf5Q4JlagPyYiMvrFdttjXOw3dZEAVyfFxlJLOrRIkvJ0xQ/CsOl71ryOCJNNFGUkCcxoxPWVBrNWc5L0jSlaZYcHxWUxYTlTOTMXTfQaDg7mXJ5UXN2NiNKSurmmm7YiIJOa7q+xVrLs+fP2KxbFCnL5amoVnTC+dkZcZyw3W4PMvEkiQMYPMKO0hxHccL5nVOyPCEyGms7bm9WZFkaDr7n3Lk7ZzabMJtnpFlCaQ1F3mEmBbfXN8TJlPVq4OZ6x243EMeGvEhYLAt2zUBRxFLEGENdjwyD2Oa0UqJixRNpQ9+L8qaYiK2y3u3CoMngAh+nnOYYZRjGMNDr5cEXRWGj2Yt1T+4jub736rw8z0nTmNl8hlKK66tbgEMRnyTJ7yvq97ZBFwZNwzBgtCaJUxnaNQ2bdc04CMA1zxS7XRs2rbIJV8qQ5Rl9X9G23WFrqtQL6GnbyjJhvijRRlGUEUURE8Ww3lyy3Q2c3zlhmkek2YxX4oyhd2TZq6IQWl2xWl+g9JrX3zzD2Yzt6pbb61O6rWVajsxnsFjmxHEq10gUYZ2jyMV2k6Qi69/tJF14c72mqraA4o3X3iJO0k9YIj1ZlnO7uuHr3/ga/dBSNw1PL57QdbJkgRcFsvMWg+etT73Ga68/JAvq7CQWe54KSYr7YltslUb43YTNNNIQOu8EXru3aFrHEJrybhhpml2A9I5sNrf4UQIYhranHwa8kWd00wgTtOs6+m6g7URNoo2i7yRwxWiN9uBGi/c2wNVHoCeKPCqS4kIUjyOxUWhGksSgdUjXzJZofURiUvrGMysmeK+4ub1lMX+JrW4Cj0ss7MaAtQ1j31BtV1RNI6meucLaDReX12w2O6qtFKBpYSgminKqSLOIm9uKNIvJ8oLZbIZGsZiJRb5u1kRxiXcd5UQS0kYn9x7+E2qtwyAvIo4zvFPEJhNVnJOB2tiPjGoELWeaWNvho4+eYO3Ig/sPaLqRpu1EQTXKfTT0vViDs0QsncM+ydQfmpeuE8ujMWKv7/s+XHNZSMN+Acv23mOS6Pcrd4MScT+y1FqTphlJaiTkohm4utpwfdXR37M8fOk0KKNbvDOcnL7M1eWad7//GLwoisuiYFc1XFxcMZunNHUnSt6dnHODtTTNmnrXUO9afFC8+dCwJmlC10pTYILtuO/k3PJOM4QArn0QRhxptJKB42w+5/T0nD/+J/5n/Kk/+ae5uV7x/vvv8/nPf4FyMqFtB7797e/wa3/v7/PNb34rBEctOTpecnZ+X4bkvTDuNtsN600jFrzAiPL7wda4bxjDaw+waO+EQyZKK4NVUizG2pBkKWlwQGRZTpalxHEiTWyUslzMmU+nHB8vOT0VG/lkOkWHNXocp7z66ss8+vhx4B2LTR+UKH4Qhak03mLdRp4qwX60r1mC/ka94EHaoAgV14X89mg92snzJfTxYqXR5mAdyvbNQ/h91N7AHizNToaBP/WHfhLrRZnYDS1N29LUHfVux2a9pt7tuL66JTEZRbHEe0WaTDk+fsirL7/DN7/1m/zTf/YPcW6Fp2WzvWXXNEQmptmNtJ3low+vmc0K+sHjvdxnu2oXEnt7jhZLJpMZFxcrnjzZERkXhuWS0BlFiTwTR4c2soQ2CmzbUxQRd+4eU05k6TYOA9ttxWyWIknVkiA5m01Js5S+60jTiCyL2VYbdm1FZHK8zXjt1bd4+63P8vTpM9q24/HjJ4frIE0yjo6O+L3f/T151oehxL5R0Xtlh5MFQd8LP/j8/A6np6dcXl4wjqOoaZqG7373e3z+859lt9sxnU55+PAh19dXh4GsXC57NewYru2R+XzGarVh6GWBLl2PDKNkaaUC5oaD6nWvljoo0cIjsusa+l7hfY5WirxIyLOY+fSULE04Pz+j7Vqp+7X8+aPjnChK+eiD50x2nj/yc3+cf/0v/EWqbcPF8yt+4id/HK1jvv6N7/Pv/p/+b7z/8Ud89vNfIMsnwnEdPWhJZ0dpHJ7ZfMZsNqdtJcCttwPd0Et97bwklA6CRHA6wvrx8GwUFpYoe/buiP1ttN/6eTzd4LDDKHW08ugowqm9pR4iE1Nta4a+BT/DOlGDicJ2X3+FITyarrf87le+xgfvP0ablPX2gq7vRdlDQB3oBKNMuIYlBGkv79nf93Kv7wf3CufGMDh+0YZKnRFLrR5FnxgcZBRFzmRSMJ9NydOM6aSkKHOKoqDMS/IskwCvNArDt4hxlGGJ8559GNIwWozRxKl8/81mgwcunj3n0ccf0rZr4Zt6R5zm5FnBbDrj2cWKVBuSJEUpUdZdXFyTZSVlKepXkBRNpYxY4lG0NKHu3TNtR5wTtm2aCgc1ilK6tpYaJiiwolhRTDRxGtPbnvM7M155+SG7Tcvt6pJhkEVZmgmOpqqEpff2258lTaaM40C127LbbSmKXNRHoyMyiXw0KIyJOD46p8iOuLmu6Tt5f6ptw8cfP6Wud6A8jx5/zMcfPiNLC8GyOMdLL73EdDrl8vKaspyQZWsZJPY9H338MS+//BJJkoByDL3HxGIJPj1dMJ2lgGM6Tbi4vCDPC2azOev1isurC4yJOM/PAcWdO0ckScRmszkodPfLhzzPw7LBoZUhzyLSVBA082lJtauwtuP0dIlSEsAk4h/Ns2fPcdYTmwRvNeNgqCvHrm7oGktiFgzDgHMdbefQkWc61xwdp7TDNePgWS5nYDN+7g//LL/wx/4MH37wnHfe/iyz+ZLf/p3f5d//D/4qHz55zqtvvs1keUzTO5JUMxJjvQx6TJJTZqmwe8dRuKBDjw5oFOVBIyKqKDJo7zk/u0sax6xWW6qqkaV5bwWTowyRicVqrVOyJA/3msfYkSzP+PjjR9xc31DcvReW9BISI/1C4PU5sZl+/90P+Af/4B/xwQcf0vayWPFK0twJwzYVXAFx4ADq0J+V5ST0cQlZljIpc+aLOdNSrMRFnpPlMtAvi4IkETX1/nMG/WKp/YmBvSxxpM4wmsPB7/ePfB/49FnE+cmSoXF4/4zNdotXirZtZUk4jnRNy3q7ZrfdsF7fUtcVTSMpus6OdF1zePbuF014UfwrpVivVrzx2tv88698lYurx+KyM0FkFuqQ/Qsb7V78FRHHLzjOUWQOoa0yxB6YTDJ+2K8fesAn0mPLMA6YKArNjxSnWZZB5BlHSfKqtrUcIs4FrlhMHKUs5se4qaRfZVkeBl46gJ2lyZYBmBSzTdNidIxTg1j/jDRLMhDbK3rE0vrCK+7ZQ8CVFiuI0cKZWSymKKOIIogiTZbPQHGwR4LAyJXykvI4qnAYis1ImxfA8X36p3Oeo6MFSinSJDsMEEziDo2Z9/tiVV6zDBXj3/f+yt8fEphCmICJwhY8AC0VDhN4OSpI4KVgatlubrn/4A5KjTTtVjhBfU+SJFjboqIIpUfiBNpmCJBW2U6JXLqlnIhawDonlrnAsBmGnrbZgdJkaUkcJ6RJSpHnh8GCClt5lEVpRVnk9L2h2jYMXUtUKGIdwJweKUiMAm3YVSPD0FEHe005KSiLkjTW4Cxds5X3Mooo8oy66+lbATLLA+WEtmvp+jp8tikKOQDSJGZUYvcw2pOEYqlvG6aTCYRDtsyNbLqM4e75jPv3puzqHdNywjg6fJHiJiVl4Zi+ekQx/RSXN4/YNYa6ySknBePomE2n2ALAEJmMOMpZr3b0/cB8EdMPDc715HnEcvlAtl6jsDhWtztur3c438kwaaIocmmAPUuGfqTe9Tx+dI1WlsUi4fh0hrUdq9WKOJlwfn6G1hGLeYpRCVeXa7FClilt0/P8+TXaWN546wGRgWfPLolUFwDbmtE6ZvMSY6BtGyReXNF3I4OtJIhDifri9OSIvEwYx47drmJaltT1GIpwS5pGiGrPk2SGsdf0ncDihZfowrNFwieEwzSSpAnWdSilw73ygu+ltQz38jzHI0nZT5485rXXX+fb3/pOGNA2tI1A342JqNvmYMmMImEKZnnCfDYjSws2my3WjoyjPMitGzFO4MhpliDMM8+9+8dU9YbLyxvO7kyYLzJhSTlRPZooou9bnj67wDvoh5abm4o4iomjntgUNLuEZx9d4N0a59+jyKdMp3Pu3LnHvQcPef2113n5/gPsKEoV6zpMpPjw0Xs8ffyEvu8w2jCZTEkyzf17p/JeBoXUYC1lGXPn/BdYrW+4ubmh7X9E1IxdT9s2wkTUGjsOzOZTjk+OSZIImSc5ur7Bd+2h2RtCitbe+mmtw+yf084dhq9aS6MaawkuMSFBMFEQRTIEkuvnDkZHKDSxidCRwaMYBovzEtqilcZ5UfhY5+j6lt2uYuh6bFAVdm1D17chNEEULF0nidd9P9A2wlpyozT61baXhOKuoRu7sKGPUcQY1RKnkvycpkfcOSswSvH8+TdZLCxau8D6TCknM0wijI3V+pbZfMrDB6dcXl3x4QdPie4d8e73P8S7nmHc8uzpFkfHYjHh5PQI6yzHJzPaes3N01uyQiyjd87vMFqFG21oAFQIR3gxdPYIesLoSIpGkzB2NeyLkrAwUqigwBzQOqHvBy4vL2iahnIyPzTd47i3eKigoJV7JooJ7LQQsBDO6L2itihyojii2laHIs07dTj/XrCy1GH7fhgeKIV3inH0VNsaKsdkWlLkBeenZ3R9z2a14iqr0EYWW8+fV5Tlhmk5RWuF0ZLUuasGhrEXi+MwMvSevPBYq3DaU5Yl601F3TUoVNica/rehlCWEWMU9W4gSw0DI9W2RXlRzCoFOhfo9Tg60qQgz6ek6YQHDx/y5//sv8ZP/dRP8+EHH7CrG770o1/GxDGrzY6//2v/Nb/+X/069+7c4Q/+wZ8iyTLyoghKD4K6KSwQtaZrW5y19K3Yw6JwT5n9ckOL2t9EOtjcbLgnNaO19HbEjVaGhl64NqO11Lsdq7VwbG5uNmy3FbuqZuh7xqEnTSLu37/LL/7iH+dnfvYPSb2iBQkggUej2O/93l4n96QMlgXKvd+Ej9aSpjHeigJMOMpRuL72ASUyqHReLOIusPy0VmB9GCQi/599DQUQbOv7WYc7KAml4JfCHOJIEWFIIkWWRcxnM1AGnAQ2KK8YRo8bBD3StT1927Fer/HO8sUv/DTPn13y3/33/4C8HKhby9WlY1JatltJIlfasttWpFkqTg3tWa13JBF0nePJk2vOz4+5d+eMy6stzg8URxnPn1dh6SWLk6LIiUyMdQNt35EkCqU9SsvwcxxGFJosE8aaMTKsiJOIm5trvHOitMhSul4RxxMZ9DhDbBbcvXtOFBnapuH99z+grTuKvGQYeu7ff0DT1jRNHWy6Ugt3fU9kYqIkpuk6SYg2jqZpGfqeJ4+f8Nqrr3J1dXWwBRZFwdXtNberNXme88EHH3B8fCyqt48f0ffD4fvbcGbs2XJN05IkCePQhuGuJzYxaSIKVMV+sOex1oVfljQNz0cdBpJaBd6cYz6fcX52Sl1XjLYnz0uc63n67OMQygV931GUBcPY8/ziOY6IX/rlP8ef+3P/Jo8fXYH3fPnLX8Y5xT/5H36T/+tf+Y+w3vPFL/4IRMFVERkUTpiH3tN3PcvFkpOTE/quY7vdCrvZDowuhOhYuWbjKMYjCywbnALhQhblivMoEwJxQnOtw2BIeegO5zJ4pfBYLBYdabR3jONAEk1Eccc+5XyvpIY9C1J54dx13cCubvBKEScpWTFl196Q5QXOq1A3TYN4oxE2b1iMeh9SQiEse7xY4cbhIE7wrj8oVnyQtRktjbQxe+yIQ2kduH5i9TNKwpKSJCWOhF2dJRGz2YzTsxMePHzAm2++xYP7d8UJFXqu/QJyH06yD3Vr+57ttgIlOB1tDJGJ0Fp44Epp2nZgMikAI72filndbA+2O2sHuk5seN7b0LeNePdiER0+TAmDciN1U4ceDvq+ZjpJWCynLJY5RydT8jKl7iq6fkeStVjX8NanF0zzjMuLS0a7QxtNWZYoNM+fP0epmJcevsTLr7zEkyePePr0Cc5ZZpOZ8K/DoGa3W9M0DZNyS5Eeo3TPdnvF1eWKarfh7GyJcyPHR8ecHN+jqTuurq6o64pnz55R1zWr1Zqbm1uUUrz11pvkuWCzttsNdV1TVWsJQJtE7LZb0gxQlrbdsV7fUhQF49hxc3NJHCe88sqrjOPIZr2l3jU0zcjJ6RRjpEdr24Y8L5hOxZEWxwnH2Yymll6vnOSAJY40RZ5hx5FqsxKRgpFzSKFRfmS3rdmudyidCHOvlmf/dlvz7Nk3OL9zxN3757RtTZrGdF1D21r6zrJeNeSZ5hd+/hf56Z/643z88RWfeedHSbIJ/+Sf/ib/3v/53+PZ5RWf+9EvMV2e4lWMNjGjFUeU8y5Y7C0mjonTDG1klmKtOFi8C2m6Rpa64+A4XszROpJwrlaCAwcrcwVlIsDg9v5OpcQpgbDXnfPgLGlsRHgRzvB+GJnFL9j/eAnCquuO737nXZ49vWJTtfTjyF4SaoKrab+ZNUrTdAN+Ux9cc95fCmccEeJEOoR1hPsaLynncRyRJjF5nlKWZRgMFsymE5aLGUWespgvmJQlk6KkyDPi1JCkkYgMlGh6RXVo2KcRE/YMRZkxKQt2VUXTdWGwt+O73/42z54+DuIIh7U9SSKJ5lmekWYyLM3zVFSLaUqW5YyjY7XeEscxH374Iefn57zxxqe4uLwE3IsEZCXuBam995xBR6yE4Wy9zJhMpFHagxrJMgOMcg38kF8/9IDPWYd3oTjueomqd+5g7xxHK0mTWuyqy+WSPM+keVD2IFuO4+SFbSccCtJAc7AJaK2pqpqbmxvG0TH0A1kmtsPFYv6JB6ghTXKGQRo3hcerYAG2sk2LgvUPbdBOYWIZA+8llS6o5bT4fWVbrWR7ProOo+NgDXVSaGgY+h7tpNCVCbOkMUpzKpPcvq9lG+08zstBsk8VjaI4ME5C2lSQ2Ppw8iqlRbnQil00iXOMEbXVfui22W5pmpo4ThisBUaUcmSZ4fr6KWen55wsFhI64YWFMLoB6yxRajg9PWYIktw0KAKbpg0QbvDKkSYJaZqGUBND3w94r9jtaqpqQ5anJElCluY4BFQZR1LoDL2TKOxYUoGSKJWL3olyyHkZammtWc4XtL2ksY124I454+h4IfZlZYgjF5KsxNaw3WzxDiKTgIrp+hFNTNfu2LkKO3Skx0vcMNDZMdywEZq9okWUJ23XkKY54zAQRylae9q+ZbW6JE4ClHlosIMMjJeLE5JoROuOJB44O50SRUdoo9lst3z/Bx+QpRk3NxuyrKTII549fY6JFIuyIE4U3nWYOAU/ShT5KEEky/mCiJznz65ZHi8COLbm5uoGZQaurm8o8gnnd46oq5a67mlbz9MnV5yfi7Juu1nz9GnN6BQPH5zSDS0OaDuH0QmLRcZ2t6LvBp4/vZJCW6V4lzGOtwe5sfKGNInEJu81Wg/AyOhElRvHimHwXF/fMHcl9+6fcHZ+xK7aEMUZXdeRJ1qSucYhcEbAZAmRybm8uGVXdWilaJsRpT1RJM1u03T0XU8S5yivUF5jR8doh2Dzs4GFpfjUp96kaWsuLp4ynZXcvXvGuz/4PpNJIVbfbgBfsw8MsNYDAjkfx5GnT59ijCTnjmMnA14tDWmSJNy/f5ckjen7hqracHV1STc0HC1n3LtzB+dbcBaPpq5rvNN0raXZKW6ut1hr6bsM72OUK7Cjp1oNGGUxRh7sbd1yeXnJ+x++T/mNCZ/7zGf5sS9/mVdefYXXXnlIPknRkeKN1x5wc7uha3uy1ATFr8aOXdi0yrMojw0qSXA24t75Es/rwrnQGr1X8KGIEmHmGSODNBu2ZaP17PkRLgDAhdPVyz8DB8gHYP84SBqWC3aBtmmJjKGpO7quxYUC11mLHcQi3fV9sHvLECtokEIxKhbkvYonTTKSNEFrxXyWY/REErUTSSEUDtEetj0wWsvQd9gwhNBK0dYNNgyohq7j5uaaZxfP+cY3vkXbdhKq4z3NMFLVI1q1pHHFcj4hTUuq+pYkj0jSOdlkwXa7YTY7p6oqLi8+5vJyy7Ona3nO65hxsKSpZjYtmE0m2FJR17CrtsymhVjDIrG3xXFBGhfgMi6erXH2Gm08d85PyBdHUizIyQOIXd47CZvwOIQVo4MyQ8YfUiwGO63X4PVha1tVDeuNhGyM1uG82FONkTO8D+mPeZYTmYSuqTFByTeOljzPKALM3TkX1PwytBf2rixwnAtpjAeJDewrxD3cvmvlXo4ijfIDdSUqnsmkYGgN731/hTaO2Vw2wl3X8nS7C/yhXrAZSmzP4yh8qXGUpVicCnNnsVxwfHLE8+cX4B1DP4KXwUo/9IETZZgrw2bd0rcjbnASVKUNOoKuqcmSiEk5R+ucPJvxxpvv8K//L/8Cn/vc5/nBuz8gjiN+9Ee/BBiePrvgr/1nf5Pf+8pX+exnP8edszNBiCA2Z2t1WCiMB3tGFEVMp9ODKm4YhoMl1oYzyzGKBVcnKC+FtAxAxDWBMgy2wxtZ2lkGDJo0zZnP96gSxd170qx3IaTD2ZGqWvGrf+/XOb97j7defx0dBRWmjmnbniwLgPogsBKrrqFtB37rt36Tr339G1xcXUlzrnVYaiqiKCEOFreiKCiKnCxNMEYf4OpZKna9NMvI8pw0TomNpNRHUSRpwWE5KsN/gqooTCqcl/c22G7wDh+eK0oJowzvgqVH6jzZRShiY/BegzfMZiYoy3J+8id/jn/+1a9wdfNtJtOUe3cznLNUlah+sjSjqhqaRtwLXSfD1rLUdJ1wsS6vbpnPC+azI07OZjz6+IKuGxgGcFbse055BjcePps0SbDjwNOn15wcT5hOC6pqSxJnVFVH321FtTKfim2sbWjqHfcflMTxESbSxEmB9zFdYxiHlq6tee+9d8XBYjRJavjCFz9HUZR879vflURtK/VoGpSe3oOODLt6R9d3JHEig2iluLy8JktT5vMlVbVlHFuU8iRxwrOnz7hz9w5t2/H8+QUvv/wKVVVzcXEhiejjSN91sgzrZJBdVRVHyyPapgv8JlFgx3FMEsd0XYv39tAky/NKhjVxHIGVZbEK0jWBzIu6rmkbGeA3jTAVleJ2VVHvapq2YzKds1wsmU7v8af+5C/z8z/3J/n+9x5RFFPefOtTjKPjN/6b/xd/9T/6T5jNF7z96c9IEmQItrG2RykfggZbZtM5JydHDH0jATh9h7MOG7h3Rkc4LcsYHeyce/nh/sxTcHAuHPir4WdTKLHnKsM4KEYlz/89DFN5g3b+ECIyKUuSMHDDwzj2xHEcVLGCTMHrA+fPo1lttuRFyauvvcHyeMOu3tG2HV55kliC4uwgC1aU3H9aCzJn//ptWC6MoxjLBe3hpOYPC1uAYRzBi9J/DE4b78eAHPEYpB4RMY0kx8ZxjFEQxVd87933idOvMl/89/yxn/sj/OSP/xhxbPB+rzSWnjJNRSHYdX0Y9omazlkvyj/nSNOM5fKEx08+ZLfb0DSWvhel53Qyp9peCMs8iEKGoZegIhOz29XUdXdYEGsVAmHCcBOEQ6s1lNOIUhkWswLvR7bVmsncoLsRrQem0whteorSkBdTyrTAmIhd3aG1IjElXd8xDI4sK7m6uuTi8hmbzS3GaO7de0BkJuI86vtQ/3oUA08e/4Ayv6WqWiKTEkclbpSAuJvbS9q24qWHr5MXEW+//Sbb7YrttuPZ0+dirzWGs7OzwMOWkJt9sGBkMoZx4ObqmuvVBWd3ZiyPpgG7I/f2MHT0vViU0zRjtdqwuq3wXnH37hlxog+DoNlsRp5PaFtBgM1nR/StJPoqjVzbSSTXtDEsZjOatuZ2dY3xHhiIopjlYkGWFjT1iLWa9bZmvxCYzlKOT2ecni8Aix4MbaNp64R4dsyzx5ek0Tm//Of/Il/+0k/w6NEFX/jCl/Ck/MN/9I/56//536BuG5ZHSy6eP2NXN2TlAo/0ECaK0MYIfgZHs9sxmUwo8oRh1DS1FfdWCLOywwAuYnl8TFmWdG1L23aHdOF+6KX21ybMDuwn6iwl/92OGCT8qsgXlJOJCKRQjMNwWOiKGlIs7uPgaPuR23WFdQplEjkn44g9csWOIt5RgcPsvSz5hv7F3691zNCNMmORCUdYyEnhoMPwXgdBhN+r9LwD7zBKeNB44XtOCrGjn54uOT1e8uDhAz715pscHR2jtMxb9snV/egYncMrj/WOuhFHxOPHj3j/g3exQ09kNFmekaQT5rMpaZqRJilaKW5WNyhFSIGXpaS4OXPSNOVoueTq8oKXX36Z3/3Kb9EPch5GsQnupr0QZTgss2WJKYsM55wk0I+9OPMiEbgdrMk/xNcPPeBTSpGlmVjFugafpiig71q8E7tOmgsDBhKabkuSSbLqMPSs12vG3pLnObPZlNVqxTA0QY2XYJ2j72uyA5chZT6fY62lLMsDh+uTfmWtYpJ4gneS8GudZ7XaiqUs2G3ywohaRGmJneZFYyoBAJJUJzH1CUqFTRKSBmfimH0qn7WiiKibhnEjN1yaCXBVqRjrIhYzhzGxDJ+8oht7mrYTSXksCaMSJCUPGOdH2fwNojrpuhbtJeml6TYMQ8v9+yXW9uDEGuUVzObTEJDQ0u5ayknK48cfU9eKIs1kkqw91bZlvd7S9S3VbkucGt568y38ICqIxdECF5RrSgkcuus7jo4X4U3W9ONAUwsnL0lSZvNpkJ/LZlFHGqMgURHWyuYlijRd+yJ0oq5bLp5fkaSavIjQRsv7PzqiKA0DgYHR9ay3G46aGWUmIP44SzG5wtHjvGIyTPBE7BrPs+e3gRVnKIsSO7Z4a4mNITYRaSw2F+ERyhR9r0qsKpnMn5ycMp/N8N6Tti2TIqfrJORiUhZoLa/fjhKSEceWSZHQdhbrGlxv0c6yXa94+vSaPJ8yjJbN5oY8z1gs5xRFynZ3QxwZHj64ix174thgIsN61XN9ecGu8qRJhO0tk+M5Js7Ybm/oLNw9v8cwtLTdLUo7+lbx6MOKNB85WuYcHU1JIodmyrbqWd3ueH5xwzgosmRGZDRNsyPPU6bTGbtdS5kvOTm6TxxPwT3FiQCX1c2GqoLJNBUWVBEzn09Z3VZUu0a2JYOnaTvUxrNcLIjnKVppJkVCHDkMjjiRIJQ8P+XmdkUSJygVkWVT0vQuFxeXVJuecYwxJmNWTsB5hnYNTodiUQmP6WDzcWRZTFlIqMfF86eMQwfe8uabr/Ls6SO6rpPDTwlXAiVbz+12J88y7YO9QrFabUkSRZQYjJPGdzpdhATqAevkc3r1tVd4//132a5rFJ7FfMpoa+7eO2GzEQDvdl2zWfdsN571rcXbiMnkiMnkDO1zhmHkwYMF4+Codzu0ikFF9ONIW3d423P3/Jgvf+kLvPzyQ6q64Qc/eJfbdcXeCmuUpqkINsnkwL0ax/Asw+GdxXqH7X0A5RqJrR96xnGQzaKS+9+xDzoRy9BorahSgooniSXZywNREpMVBVmSEhtNYgz5fI4xEUVRBOu0cKR8sHeIXSSEqFh5jd3Q40bL4D6p9lL0w0DfdYchvNgmpbEfx56+HUSlOEoq8d7mDbCfI8VxQmQUSkcC4A428SQuyMsJaRLzymuvc3l5xQ9+8BFdP0rjYTTO78MMPL2tWDc3zOcJbvTcrrZE8YTzNCEZNM7vaJsb7j84pR/k9cRxSpYlnJ/FTEM4yN17Z3gczh/jnCdJYpwb6YcOk2ScnGREWlEUwrGZTkrm8yllnqGQIKm9sEMOjhGvhmCB8ozDIMnXQfGINxwGaWpvV1J4JWrp3jqGwTFah1IGHVL8hpCCaowspbabnTR8DhrbhvNEhkVxHNM0NdvtJhwRUbBTBAV9OEGlgfwXqpdgwfBOXkOo64iMqIK9V8hsUpif4+BoYssrrx6jlOfp0+dkqaJtLOtVL+eiV4dfcZRgjCJNDCb23Nzc8NprL1NOHrBZ34QBQ09RxCiVhiGbZhgcTSXjf2OMcOMAox1JChqFUTllseRHfvTL/IW/8Bd59eWX+dY3vsl8seDV115lHD3f+967/F/+yn9A1/b85E/+JB5H07VkmWAGZPCpwiJTsQdcWzuy2205sLG8EnWrjgJXNhPlo5bG1Y2O3o0vrv/AIJMAoo5utLJ0s06G64eQC+H/WIcsaZFBznJ5zHp9w6NHj3n7rTcFbh8agb3qZ5+wLkwbGAbH7/7uV/l//3f/A88unosLQwmza5+EuW+IjZbEPhn+Ct84TcRiKUpFsWMKVywijlPhcEZGUh2LgiRNKYqMyaQgz3OyLGMyycmLXGzIaUoUxQeusDGRuH28KPysF6QLeEbn8VYf7q0oivGJxtOhrGKxuMdP/PjP8M9+8wbrbtjtKqx1TCYJxWTCYr7g2bMLdlUtYS9Wlk52VEwmKWkaCyKhbanqRzR9Rt/pAzpFeLCWYZD7UAWFY5RoTKyJtAsD+UoSQjtPpFMZ2GPZrNagR5LIUJxn2NGx3W4DP7PFWk2985wc3ecb3/wqm+0t73z6NYZu4P69B6zX13zlK7+Fd5osLkiSVFhqShYsXdcHZUMqfLxI1FhRJM33x48fUeY5db0jSWKyLKNqKq5vrjk5leb0+vqKZ88e8/Ch1C6bbRWS6keiOLQkwQLsvSNLEppOeoJ+aIliReojCTw4qM58aGrD0EJFQSEj95EiAiJWt2ux+21vKcsMDZTFhGpXs90OtK3Cuwmra5hPFvy5X/6L/NS//DN861vf5/z8nNfeeJ31quPv/dp/xd/9L3+Nt9/5NK+89irXtyv6UQQF4yi1ZGQEHXN6csLJ8YmcsYGVPYR/34PdxX2jDj3V3ma8P7/29to9303scJ9IDwZRoiJoIRPv1fPCTfVAtBcaWMd0VqK0vEcKUWXHcSxDtqDekXsa2kYGCU+fPWd0ngcPX+LV114XVE+1xY6i7txuK0hj4Y5r0KHJ1lqLGjAs70ykmU5KCQXzch/qyBxQCF0nrp39Ymkcejk7AtPKjYL6cAGIv1cry/1rsYMMTdK8QCvDV7/xTe7evcdLD+6yx4vgNbGWoVGe52y3W/I0oyxKnG0ObgHwRMZwvDxmPl3K4rJzSDprFHBAPihvdThX5XpcLOaUZcnFxSXj6MOgNAw/UQfFoscSJzFZkZNlCYuZsN6urivmuxZtPDoeSbNY7JtOgvNMFHBYRrBP26qibdrQ41as17dMJiXjOKBUTF3veP21V0iSjHv37mO5pKoyml3LkMFudyPhDm7HOAgv2kSeNNL0wzXff/eak5M7bNaGprUoXxCbFJ1rJpNpGDY12BCmOJ1OUQqapmMYIxbzU46OJ2x2z7h4fkWeJ0HkotntdnjvwoJQrtM4NpydnxyY8FrDkyfC3ttVwkQrioLttiJSCYvZEdXulu1mQ1GIay5NE5q6ZrGYkaUx/bALuDAtlmqnccPATbVh6Hta1xMnEfPFhOm8RAU152QypUjvkiYLIpORJ+f84p/4ZV5/7R2eP1/xhS/8BGjD3/kvf52/9tf+OsNoef311xndwK7ecXN9hbvZABJKt1gumEynqEghN4en3e3Ik4QiTfBDT9fKQGxfP82nJdOypG17SffeNWIhDs6VKJZANh9C0uw4hkRpqRUlqGUAazk7ORFGIy/YkCoM97yXWsB76IaRumkZrAS3RElCnOfoEGzknCNORJW3rzf203wXFqfeW5QWpI0gxHxAAYhwxI6WdugJuayMTX0IGBrGHu8s+5Ae6dMqjIKyyHj3gw/pu5ZJmfPWG6/zR/7IH+bHvvx5CIu90crPb70T7nDIaOiHToJYIk1sRCiQpQlxJliEcWgZ+444TsA5LA5rTXAlRYdnWqQNJ8dHfPDB+7z0yissFgsuLndSawccwR5tcXDRBBWvc2NYLMqfc85T7wbB0mkJ7fphv354Bl+Qh4ukXpg1cSzS733CVZLmwYLjyLIU7y1RJBa3+WyOVpo4kQIsz3Nhj/mQwDY6ikXCdFqGhznMZpNDAyuJQNJA7nYV3kNRKFbrp0SRATXStHXghEjKX1FkFMUxXScMqDhKyMuQ8qR1sMjIxS7/m/DC9omEkZEpLjhcSK3KogQT7wH9csi1bc3Qe+yg8XdE5eisNFpRFDGZTIJKaKRpW1CQ57IJc4EbswdYOleSRJnw89ZdYD7sAhQzkiGkfsExkkHbSFZkvPzKQ8ZxFGWDHbi93XBzs+H2ZkM3jDx79pw7d06o73m065lOk0ODHcfyuXzzm99gHEdOTo8FehvsHsKLECWOyJhT0jRnz0LTRt7HeteFh41M1e2o6PuRNNLMZkfEicinnR9I04SevXUy4tVXX6XudrRtRVO3xCrFu5EocqjIgIpk4FRGDKPhdrVi6D2X11ecHM+YlgtOT845Oz0+FB55msjBGivyPGO0I7P55KC+fMFz6wGIU0+iNFleyO9r+RzLUmDRu2ZF0ynAAj1GKbIsZ7O5RoNcvygSE5HlCdvNhqatuHv/hDQ1LJdzJpOC2MxwbmQYerSWzd84DAE6PWE6m3J7+1wi2KuWcZAh7Hx+xK6C9fqSo8WCO3eOuL68wI6a6XTC5eVTVqueyaTg9dfeYLVas91siSLH/ZMjur5lvbkhz/MA188wKpYHq34B/jY6oq0H0tRDokmziOlMkgLbrhWWgInI01IA4usbshTiGGazmEkhPAbnRqZTxeLoJMjHB15+7SGr2y1xVrC6caxWnqEb2VaroNi1KGzgq5iDCsgYw8nJksViTpLEXFw8Zz6bcH5+LEWEGzg9O+LJkyfEkbAgqrpls6lYLpdk2RgGJo7NZsPZ2RlZltL3NW996g3A873vv8doe/q+o9pVRJFiMsmJE83Z2TnT6YwkNmy3DcZAvRvpOk+aKhQxzg10LVRby2w6IUlLwLDrGqazJVme8/T2Kd1uhyPCIwD/6aTkD/6BP8C/+qf/JA8e3OPdd9+l6Tru3LnL5z9/ijYRkkcR4PbOhQAKUTXspeoKH1g4Cj/6A5Mm7NUxkQk2KU9IOpADehAYcz+EICHnA5NJGGBt3zGMg9gn17fYYRB1sHNYSwChG05PTzk5OSXPimDHMWSZKET2VgUfEhrHfaqe2sOqZaAkQwtHyD8IqqcXm0rrnCRqWRdg+xKmcng9bhSAsu1DKniHG9vDWTa0Ymk/Pj1n9J5qt8Eri3eaPtTlSZRibcx241ge3eHktOBomZFEGdHU0DW3JAmcHy/Jypyb65tQvI5sd1ui2FGWMaPtGK0864ahJ0kK6kaGacMwgIL5ZEIcx0ynU1EmhGZJCmAV1FLhM3QxWsVhIOIY7RjUGCAMPPZiP7wWxYdYZxWegFE4qCI0JorltfTCe9LKsOe+OesOKW3Ci+XwzNxu68CylO+tgkUkSgx939OPlk9++f0LCxY8SY8PvFwEAeB8WBjpFxti6wQM7b3HRJ6HL92hrlu2m5qizLi92dHUYwjEkmJL6sOILMlZV2u+8Y3vcno25cH9c9I0omlaHj16IoXuwWqqSTMDTmOUx1t575IoY1bOKIoFk+kJP/VTP8sv/dIvc3Z2zte++nXu373H3fv3Udrze7/7df79f/8/pJxO+QN/4A8QxzF1U7GHrQOHs+6T2AGpA14wSfeKntE5lA/sMueF5ROmAVI829DEitq2bdvAJLWMDhnyh3tmsPYFaxRAaWo6tELsNH4MxXuw2lkfhir+oLzfW2tFSa0ZBisbf6/QJmGwDf3Y0/UDJooxJmIYJWnZyCZXasi+B9UcnB9pmgKKsR9JYkn23iuBfEjWluVuwEMgCgBJdVYhSERwI2kiHC8B+OdM51MW8yOKSUlRlMwXU6bTKWU5kWVuYPy4gA7RPkJpRZqWvP7aZ/md3/3HdPUts8mCarfDjj1udFxdXYPyTKYlRkdstxVJKgvoprZcXjYcHaWcnM6Jo4i2rygnOZPJyM1NjQpsI6XkPNr//eOoSDJNPwwoPZLEKtRRPRrN8fKYyTRhvbnExJpXXr7P3Xt3ePf738NEOV3TUe8qxtGxXN5hdXPLt775DTwKa3tOjk9ou4pnz5/hfA/e0HY1TdPilTS4bVujdUSepyyWc7bVVqySZS4p8wGnstttSeOIrrfkE8GUdF1D0+549bVXWK2vWa1vSNKI2WzCrt4dlhZjPx6YSkZrmqamLEsso6hMgHEY2GxW8iwIKs1Psngl+CNhGDrCBIlxHGX4gaJpmpCGKinfzoJ1Gq0z8CPGpDx8+VX+0l/6y/z4j/8Y3/j6t3jppZd48NJL3KxqfuVX/g5/+1f/Ll/4/Bf51Dtvk2QJaZ4yDsdYZxmtxw4yrPQKjo6OcSEFc7PxgVeqGO0o16cSHps2JqhLQyp2cPG8SF3k9z0TZJgZ/lx4XmnlQ4p9fIDZ+wDLNyFMzGnNcnkUbMv+MDDc86VE8SoKEwcHRvc4jlR1x6PHT1hva46WS6bTCWVRspgvuHN+Tt931O2O2AiLq8j2/ZwwFkXVLQPhosjFbo0M2UVRpqjrHWPXc7tas7q9EVWaHWUBMY5YpTFZFOD98kwchlH4Vt7jrSWKDCfHJ6BkWfTs8oJXXnrAPpAjaIeC8lGGflFkJKBvJ9eNVhpvZTk4Dh3TyZLNehfuy46+d8SRuIkEjO/Zhw3VdcswXDCZlMKh86G2GQJqRIuSeTYvmU4zlHbc3KywdpCfwY1MpzHT6YTl8YSur+SUtioM7CJ5vluFZsJyccSuXmN0xB75ZEzEMHRyBgZ0yqNHj3lw55rtZkue55TlOdVmR1kWXF/fYK0wuY1JqHfC8FORIjLCs79df8ztzY6z05c4WR4BMW0vg9b5XHqYi4sL6loUeU2zQykZAL76+tuUZcTXv/n/4Xs/+ArOjZyeHoMSXq/UNZq2lSHhSy/fwxjD8+cXYVEa0zQ9eTYwDC1FUbJfcJdFKcpLXzAM9QFnJWefhCTMphPyLMe6gT3266pa0Xdwc7ul6y3Lo3not13oaUe2mw3b9cDxUnHvbsHLLz3gj/3cL7Kc3+HmZssXv/hlusHzN/7W3+Sv/82/zb37D5hOpsIMjDRJmnJyuiRJJ6ASGbbHcu165aW2CTbOoW8p53P0pER7T99J4Mjx0YLzs3PaTpKcm7qma3ucl6C/yMgCTFLDQzXnXwzbUOE54D0aePjgAZExeGcZ7R5xFB4weyW811RVQ1W1dL24qdKspLdWFsrh2bF3RUWRLM8k0E8WHV6Jc09j8EbQCc55tJHXogAde1I1OWwzIiM8dkkS7g+ZAh5PH5YiOjLUQ1A46pSbdcvXv/UuSTrhpVde4WQ5w6DZOzL3WJv9s9MHFa/zlthonB2om5GUGO9jdBKchSHl1o5WVMWh5gJzwKjsrf5aa1566SWeXzyBMDiVXueFy2A/5JPwJ4cekXR0I+e54JD8Qfn3w3790AM+j6frOjbbDXmWMZvNwge9V7ztbRvCBNFaBSudwXvDZJpAsORaazk6XoQLUwCL3oGO9kmb+8mvWFe0UkFSnVBVFQBxokENWDfgR/kQptMJZVkgKbViU0F5XJCM1vWOfnQHxZ48EGO0liZGeF9iHRZb4AhDkJUemH/q8HMnyQtrMT4iMiVKKbq2hagnS9ND883hQBfL22a9ZhhHsjQDRfB8Z3RdQ1218t7AQYZrjA4R5sLsuL4JaoShY3SWpO/lwTE48GNI3PI8ebphMV+G9NgJi8WMofecHs1JkuhgtdofzNYKa2W73bJYiIIyiiJUEmS9gUVoTBQs1zKkVcj2oSwLnNN459hVOxQJRT4lzwsm5ZLRtnjfhcjqkJxnQWHIsymj89hRU2099VasIODJs5gkLUmTCUZndN2OvoPjozvUTc9isWSxmDGf5VTVhiSNWMxn1E3NaHuyLBZ2jZOEH1EMi5rTIEoN5yxGKcbAi4pMKocRwgDxvkd+UtkOZFl0eJDM53MePnyZ3/7K13BesVgsmUyW3Lt3hh0dw9hx5/yEu3fvkaVJ2FwLC7Gua/K8oEkV5+dndF3Ddrvl5vZaGD1Ryu3tFevNLWlqmC8KPvv5B1Qby9X1NU3VgIc8z/jc59+i7+HdHzzmu9/5gHJSgAdrO5pWoTBMyhnL5TF3zh9SZEvieMI+sdZ7UTzlWcEwdjRNT9OMVFux7o3DgPIwdKI+6DrLxcWaLIdXXz3h5KQkijqOTmZMygnOjaBsKCYM63WHdRVF6fEqoiimlDPP9VXLrmpwaObLXAbknjC89zhvSIJ0/+TkhMvL52y3FSYSS0SSJHz3u9+h7zvu3r3DOnA9ICTbIYXQbtcwn0+IYsMP3v0YUCjt+MpXvim2yCxns94GLlCKHQ1ZCpt1FZYCiSTiZjFGRxT5lLqu6fuR6XSKNhllNkerC9K4wOsU68XC8+YbbzAvpnz80UcMoyhJlIGyyPn5P/Jz/PIv/xkWsznf/ua3WRwf8c6n30Epw2g9TSMbtr5vaZqO0Y4MYxcUyIbYJJJcFYnKD6/QSMOZJBHea6wfSWIT7C5aNu9RaDZCcIKJ7GH4jfOMVmT5yxB8pMLzW6EwKgIvHCVtoOlamrrho48+4v69+2SZ2Co1ckY4bFAMEAZ8TooCrQ8qsL3yS3lQoQOM44Q4fpFU5TzkShhfsv2S55Lfu1K9cAMdL4aCGhlsujAU7PueP/iHfoqr6yuePn/Mblezut2y29XSJFcV49CyrVZMpqf8wi/8Am19yzju2G6eMXTvos2W9fYWjGW+LDGRqGiS1KBnhiTVKOWYL2Z0bROezz1FsVfBNcRxzGy2oCzzoDSRxjUy4UzUOiTPytJJ6QSjU+I4DW+XlyAmwFkZ4sl8aF9saJwyBxXB3ror3/cTgyUtKd8vIPsEZ1jgpu3t3NYFJkx/OLPiOGHoLf3QMZ1O2e12rMYNzv7+VFUfnrl7xcqe97eX58hgz9I0rbxeJ1VrEqfYEardJiTaxbz08jlxHLFaNbz/gwu6tpfBl/d4LzzTm+tKlB7OEZkBP95QVVuyPGG96g4/pw7BXEVecno2p9l11NsOpWLKckZezDk9v8/P/PQf5s/+8p8lMhHf/Po3ef2N1zg/P6cfRv7bf/xP+A/+6n/C/fv3efPNN4N6VbNYLMjz/MAa3jsG9gEDexeBC5b3/WtyToZfewaitdI4Kh3S4/j9A0LsXpk+MHqx3VgvBfz+/Y9jI+rNsH3XUSwMLC/hRwp1sMISmod9wIVSGuvGMISQVzCMYi/UxnB+fs69h/cCB3PAAXXTEkUZxhjGYaCqKwkos0kIcpL33XsJNBKrn5y/NgwuQeyNKFF9Gq0PCidhk4XnB8JXfXHNhsWBDkNJIIkTykIsOffv3+NLX/oSb731KYz5BJNIy89mopTjk7tMZ3f4+je/RpZqhmFEKctq3ZCkEUfLKV3Xs93UUvtMMvI8oZwIEH632/Hee1dMyxRUz2TqyfI4qBgDNFzvaxGpecUWE1I1nVzLeIfREVjDarVlu+3xvuXO3SPSOGFXbXn/vRva9lLCNtKUl15+mXHw/PPf+zpt24EK1kc/Yl3P8ekCbaDadrhhn6huODpasl7XGGNJ0piXX36ZR48eoZWi7zqapg3PaFksk4lSelutZemXaOp6y8nJEYvljHHoqKpb0jSjKOMQNheFpY0L+JvgZmFgdB0OqSujWGy4IhqQy8E6h3cKExLlo0gDUUjzlufkMFi2w/ZQO3RdD1QMGUSmABKSJOG1Vz/Fv/WX/jLvvPMOX/29r/HWp97i7Pwe623Ff/yf/A3+wT/8DX7mZ/8wL7/8Mk1Ts9mtZVhNcPwow2Q2xcRir9da40ZLkSeUZc5sPme0jmrXopVmt6tou466aYQP5ULiT2ietZagvPl8Tp7loMCOUn/vr2tpaRzejRS5qJeUg66X4dxmvWEYO5TKaBot/MnwvPVBLey9QPWttezDClFKWIDOoU0kqmUdUVU1VbXDGEWeZUGYkRCnMqhIk5jYGPqhl97PRGE5Lr1bmiZERurksRcmlgs4osgYojzjflEwKQu21YZu6Ng1dVgw+TC4F1SQ0UYYel3LpCw5Wi7p2oZ6V9E0DU3TcHt7S9f1JGlyGO3tv/ZLFsElZTS7MN4MSwudxERxwny+5NnzZ6Asyhu6vgEXkSailLVBgAJ7tWvD8+dXYUEmiaJxHOG8JcsSJpOS+WJCnID3I6+//jKbzZbnTy8Yxw40bDZrdDRSFAlpnOLsgBt7WtuRmoFpuuAzn/sy3sH7H34tcIb377mEeFgroXPWWqblGbPZDGM0Tz5+wmZ9SWRijo+PmM9npGmCUorNZoe1gsU5WRyhjeL2ZsV0tiDNInbVFd//wTWTyRHOJcznp0xnd6m2Fdvtlvl8gXee8qQM55bwtZ8+vQxoh5Q8lzTZpq0ZBvnfTk/PQm2aYEzEdruj2nacn5/gnOP05Jy+74Xvt9uRJAl5XjLakaqqyfKY6XSBDzXebrcDNGMv6bK2t2x3GxyikE7ThK6tmc9zhlHOfOtGJvmMPJ+icFTOUGSaIlvw4P4r/NQf/GmSeEJVNXzmMz/Cru7463/jb/HXf+VXiJKE1197ncVywRCe9dZasc6SghYxkldewuW8ZbQjXstCwznHZrtlUpRMJhMq77Fac+fOHbRW1Ldb3CjcPOuEgZymgquw+7olcCWLoiBN0jAEV9i+w/ct1fqWs9PjcAcIk3mPzwhH/GG5Ve0qGZK2Hck0C/XpEAaHKuhm/aFOUUajCW4aO8qCX0uC+N6aCtJr7wd3+0R4H+pSk8QkUSyCg2a/xBALfmZlFqSVx9uBqtrSdz1awabacbtac3t7w9F8+vuG7jog2STMKgbvmE6nFHlBkae0TU1dV+yqnmGIcJmlyMtDiFPbdahhwCiNVcI7POQqhJnPZrPm1Vde4+vf+Of0fcN+o67D+y+WXHGv+nD9CYZK1KlSt41kmdyDcj79cF//kyj4kiTiwf17B2DpIdktFJmjk0n0HrwYx8Jv2T/s8e7AnslyTxIbPLKlMLEO30tjR0uSFEync7wjbPEsu10T1HbhUMITx2nYFlnG0WGMxpj40EQqxJJnIoFFCkBTUhq3222IAE/IsiwUCTLxb7uaLCvEQiRGFvkAlShewrUKsleUxgpQ2pHlEb2zWNcRxQnOD6Lqc548y4V3V9fs0wh9YFPUu5bdrsY7eWDHUXQIn5jP53ggzVLWIWXo9OyMTbWjqiQAA6/Y3K548uQZaVqwPDqhrS1j4Vmezjg7P2YYJKa86xrGURKskkSUjLvdLqQVDTx58pi2bVgshKWokESjKIplCDZK6pcN6Y1JmlAkqSgglQ5qGs/Rcsn5+TlpPEdHPev1NaMVBZ5ss27Is5LZbEbX9Ty/uKVpR4pgw2zbDu9HwBLFU4bRcbu65fmzS7pO07YbsWXpiJubW4a+oiwkTajLUtq2pa4rqq0UkXFsyMvsMKw52MqcZc81M26vhtqngckv6TkCAyIMa7UyeOdCcxxsIFXLs2cXHB1N6Xu4uqyYzQo26/e5uVrxI1/4DEfLGXGccHS0JM8WrLKRi2c/wHtI0og8i3jl1YfCzUkiJpMS9Sji8eOPWR4XRJGn2t1iR01RZqAtxlja7pYnT65pGknxsaOkcd49v0NV7SiyOQ/uv8LxySnnZ/e5ua6IlAC29/xL5zy7uj40nnJ7y70eRWGQjygktVYUk4zFomA+Lzk7O+LOvTm274OlQTGOYHTGMHRk2ZRxcCRZRBQn+KljunDcfxhRbWu6Fi6eNTz+eEPfyiApiveWK3kYXl1dEUURd+6cU9fVQQXrvSXNohAQM7Bar5lMxXq93W4PD2gXUqNAMZlM0MrT9juePbvk+HhJmmViuxwsRsfsdh27XY11I0dHC6YTGbSXZclmLeENeZ7S7ByeWJJ0U9k0jk4SmE0UkSUJVbWj64QFkmYZi8WMf+WP/gJ/9pf+DFme8L3vvMv9hw85Pj2l7zz9UPPue+/x3/8P/4yvfvXr3Nxc04Uo9/3PbUxEnKQMYaOtVIQdB7JEbGvSDBkcjjxLhCuqE6IoxWhNVqTESUJaZIJHCDa3NEqJ4kiYFElCkkoyZ57mpFFKnknStDEEu4xhMllQ5lMuLy84PhalhQ/Dcxdgwnh1uIZA4ZUUhoetG2DCtatCkJAKmz3rnZynIicLyuGQMvoilBNF2BAGnocMLeMDwN8HJdnp+Slvf+atcK8gm0IlzJhxGOgasTwWZcZ88pKw2c4bHj36Pd77MOJm/T2GoSJODMPQS1q1SSjmGVkuiYBKG8axpV1XtF0dUgJn5HkeQjQ0VbUlihSL2SIoyQd2W1FKG5ME7ESEUcLHsmFY5JxH6/BOClBl/+bI2RQ2x0maEMWiwk7jFBD7urXuYItRvLAKvFCTET4l+Ty2Wym2lfb0/UjbdCFhVoWFQBMWbBq1Byx/4nu++LVXJ774e4QlxydYb7IoGgfF40c3mNjRtS3lRLFarSkmokhcLBPGIWOzGmiajjzLGQexQo5W4bzi5qpluxLFhtEyFNfGoPA45dFG40ZDEuWsuwZtUmazE4pCAnB+/uf/KP/qv/qnsaPjW9/6Fp/+zGeYzZbUbcff//Xf4Ff+87/Jy6++wiuvvIqEh4ktru/HMOxTgSW2h1L7F8M5wiJT7632+zPJHwaBTdOEja/cy/oThadSChPsfiYyWK8YRkc/Diiv2fOKtU7lPQ9DNaUNRsunrpWjqYw0l06WDwc2ULDl2j2g34vlux9eWISHoaOcHfHmG6/i8NRNy9Onz2l7i7UjXesoyIA9h9CCcyHcQdT1Qz9IMFiaBrWDkabajYdBpdH6EKIzDD0+hPIoL0NReRaIZb4fJYDAEZRTwDqR+uXy8pKnj5/wR//YwBe++EVRACmkYfSWODPkk4zPfvZzPH78dYGiDz27Xc22qnHWcX29lmeO+HHYVa0wpoaGxWIerjVH2w5MZwknx6doGp7qDXaUeiJS++RUWawpLYPNKNJEWp7P3dAhXIyevhtJEk9exGw3FY8ePeb8PCWJI8r8iNFCnickccHV5XOG3jKbTdhWFUrBze0lXdezPJqzPJoTRQnXl2uKMiYvSrzq8AykWX5QgzrnmMymHB8fs16taJuacWzZVg1t2+C9C8M9QxQXou6qt8znE5oG6maHiRxFGZFmWRiKdIcAADeCwOgHklhhshRtDHYcmS+m4D3bbRUUjqJKVQeWswvigqCQCQsfH1jVzvchDTzCjh3GaJKo5DNvf4F/+9/+3/LyKy/z9a99g09/+h0WixNublf8h//xf8o//K9/g5/+2Z/l7bc/RRRFzBfTA2usbyQ1NUkSdGRYLBYhiGhg6HraXtJy26aXM+bkGGcdeRoxhOXSar1mu90Gm5ahLEvmsxlRvFdnj2i0DMF5oU6JYlHGYg22lyGhLJBHsjylKE9xVljC1zeXHB0dHdw14zjS9gNpmh0G9dKIi0r3oCoHkjTFqbBzC0/ndhxwnWLwlhwZ3o3WstpuSVpJhkwCY906ewi80EqJWjxgCVwYZGdZSmwkACBJE+bRgk21wStI9kgmXjT9aZoKT1C9WFYpHzMOwodsu5bV7YqqblgkibCF4UBwAEkkjkxEkReslTookz0yTE0jgfwXRSFiBFQIceoP9WO3H84iC+jJ9Jh61+C9Z7k8RmvFarWibRvSLKPrB26uVzhETbpcLlgul0Q65urqEm3kTBi6EVUU9P3I0HVsq4ooMUwLx2I5Ay9K9zTNODpasq3WXF48ZzKZok1MnAh7sGk6WaxEEav1Nd5D07Z0zQ1dV6OUYjKZYkzEbHLMKw8/Tds2rKobrq6usEPEel2xWEw4PTnl2996n8dP3mO5vE+0S3n//R+glCxM4yTCOuHBdV2NMZr1+pbLq8fEiWE2nxJFXhRa3oVFv2K9vjkIGx4/fkaWlrz+2huyBA1nYJ5L4MlqdcMwDOR5StcNoMXF0Y/2UEtok7BcTkii/dnomJQlVSt4qmKW49SIN9A0Y7ATW5pnG25XJcoX1JXipQdv8qk3P8cv/PyfwJiYatvy1qc+x2a741f+xt/mv/jVX+WNN94kyTK++93vkJclKEWWy9I2z0uGfggsYI0yisXRgulsGtTe0svkaYJiv+Q0NHVNGmYRXdeRZ5ksvrqW3W6O95DGCWVZUFUVSWRI0gQI574JgzulxF0z9Dx/Iv3lPsSqC/37YcCHnOX7ZeJ6s8V6h1NQt+0n7hsO7j2MZvTy/NVKagQT1HpyPqvD6xCsizk4FgjnnLPizNgvtrz3xElyuA/3oZ06sDdNHDPRhvXNLW4UvMXV1XVIs5a06kOVqmRJqZTUjnuW6W63Y+hbGZw7Uev1vXCc00TcYvvka1RQ44WhpDHmoEpO05T1es39+3eZzWZsNrIw01pmTygOykU5i0Q45qxDBYGKtY5+2HPT/0VO9f9/Xz/8gM8oolgLU0VDmiRhs+wOU93VesM+kXY6neKcpetk01+WEeO4ZxXFEsHszeFDkYYiItFHpJM5eZ4xmx1xefmE25unKDMwn5cYI1tNEw5y9tYu74MNasB7x2w6Y7Q9Q9+TJClZts9Y9qRpKhy+UQrULMuwVgInVqtbjk+OZNJai6RV0m07siyVDWIoSAUaGkDhRuFdi45G+XCxYXOQ0/U9dnQ0bXcYPG53VXjQTgJLS2FMTJKmxEa4hWN4TVW1CUoPsVLOpjOKIhcez3pH2w4Uk5KymIoiy+RkecFiMeeN1x+SJIa2azBAnuZhkMVBtVfXtaTMmoj79x/QdS2bzYauGbATx3azI8sK4iiVQnbX4JUcGnvOVpnnpEmMdzLVX683RHHCanPF17/9P1LkUyI9ITIGo1OIIkY3cnI8wagMY1I0FUWW09RrNpuaYSg4OXrAblcF7/wcpTXTiWI2mVJvt2xXFVWzBt/y0sMTTo9PmJaShNwPHUoJ96ptQ2w6nmYnB5G3Abw/jJTFDK0j7JCQZTne9/h4EKWdD5ZBFYEy7Pk5CmmWjJFmtignOA+rdcVm3dLsJNVtOllwdXlFlkVoX7GrdpydnIDqcT4iTWExk00OwPHxgqOjHE9HkcV8/70f4LwTtqEuubluOTlbsjhaksYF69UlIFYm72A2nbG6veTuvSnTaUGsRd1njGJSHPPG6++wXJzR1B276jnayAbBBHiqUnuLgQp2GB/kxi8UL2ma0HSSdGu04s7dJa+8ek6Ry8BzGAe0EuB1nmc07Y5Hj54yny2ZTY9pmwHrOkbbEKee0bUUM0NW5ChVsN10XLUtWV4Sx3tlj9jOm6ahKDIWiwUAs9mUxWJJ220FPN7JwG06KWnqBjfKcFJ5QIsVpaoGtI7p2h6tpXGIU8WuqYiMIUl0YGmGDZOVhqyuWyZlxqScoYloqhY/5uw2isprkkiK3jyb0A8eO3q0inDW03UjT59eAjHFRLaYf+oXf5E/8cf/Ffww8O1vfJu33nmbyWxJPzh+8N77/M2/9V/wO7/7u1jvKCcTkizj+OyUODEkkaHtOrTW1F3HOAg2oeuES3ZQJUeK3krzXLeNKGatKFKqaicKPi0b/iiKJanWWiKlcDj6oZNteOCTTiZTDJoiyXhw7yE/8ZM/xo/9xJcFO+AtcRQznc5omoYsz4IScAjPHOkanBceGUqedTKM0mHD5/FalIZYGVxpJUMFH+xFAG6UBk+UCKIys+OLtF9ZzsiAYj/1E9WuqKD3tgmlhI+hlQ5J6aIsieOYNMuZIawuSbdVaJ/zqbd+gjQt+Mf/zycU8y2zeSZhAMQksWG9uqEfWtr2lrJYEodGzej9PSYqEFBsVzXKtMzKAu8Uwziw225Zr7csFgvmc3lmaxWhiWRIqoKSS4nKac+6ezGUc3gsHgXeBNtqaBJNxBCUYYfawqsDeF2G5eG7hNe6/+dBOWXD9tc7hqZjb0nA+2BR0IfPe3/W7O1hezX8C7VgUG2iARN+pv3rhb4b2W48WRbTddA2onq+c3fG8cmSvvRMilPms5FHHz+l3jU470jSGAbLOMQwasZ9KJYOz2xMUM+AdyNdN7KreorihMjkZHnJvXv3+aU/80v8/M/9PFW15YP3PuALP/pFppMZu13H3/nVX+Nv/Z2/zf17D5nNFzx5+pQ0S1gsFpRlSZLGQcXvDj+792Lf2263B0TE3g0gKI79stMfBoEyrHBSH4QFaxxFlPFEPpcgcZLPTmEdjM6G+2sIXFIVVP+9cHZMzKBEEZTEYmmcz2aMwyAqAy/fIzMm1FrmMEHfM+M8sFqvGYaByXzOrq5Jkpgiz3nllVe4vlnx9Nlj8PIeCNjbC7dXBzWCF9C9jzSC4RD1IRoc4r7QWh2afkmNHYl0KWqdJGHPMlR+r+qCm9Vaai8rC59h6MUK5aHrtoDhO9/6Fp9++1Oh8ZHhnlgEA1D+9B4QMwxb8iLi6PgeT59eSLhGGOTuByNRpIkiRV7EVNWW7aanyAsmE1H3fvTRU1a3LZEWpfX+LJXbWepZbSwq8PfabiRKCpLcYMeB6TRHA1keMZnk6MhT5ClnpyfcXtckCaxWtzRNjbXCR0tSjVOW+TLn6GhBmiZcXV1R7TY4N+CdoZxIIvdskUmyfGZoGkfX74ijnLbdkecJ15dXnJ6eCmvQDVgnAUt71qa1sNvVaK14/OQxaaqIE5jFWcD5pDjnD6EZeZEEVX1LEkeMFrzSIdwtC0tkAEVepOANu13Nnom9vzdkmRzqFS3PdOsHFOBGjx1kCaK1JotSvvyln+Df+kv/G46PT/j2t77L57/weWazJReXN/xH//Ff4+/+2q/zqc98muPjI9abFWVZkmUZZVkyKUu6ppWBu1ZMpxOGsZcmzntR6EQyUOxUJ+eR7elaSSOeRAVaa46OFqxWK54/fw54xqHj+vqSKI4p8oxyMgkDX3WwqNpxBD/iR4UfR5p2R1s3dH1gcCHPldhEJFHEZr0iL3LpOYIYo29a1Gwmy6H9RgwJ2TJBaTcMMggxRhQ5hM5J2K1dODs0utqF5ZIo8KMgWEizLKhzRfXZ9R04GWJFxoAXVZNSisiEGgUvbiLvcXZE+5BQHMdMJrmgUQ5IJ2H29XYIqhnHZrtmGAfOz87Zbitms0kYFuwXAwK0T9OUemf4/zL3p9+Wb+ddH/qZza9f7W6qrzqNdKQj6Ug6trEwtmyMESYQgwnkgoGQZFxGbu4/dN9kJGEMckdCCGm4QDCNEV1MwMZGli2rOzpdnWp2v9pfO+e8L575W7vEy+i+uEujRulU1V577bVm8zzf59ukac4oudVoAjIYSLJc1EaTku2+Z7/fx/P4lsWjtaRwj57qm/X2wM5OkrWodPKMDz/8kO1mG+85j7YDSaK5uVnjXKAqKu7du4tNNN63oBy7bUOamdiT9ujEUBQlu/0N3/z2PyR4ubtn85KiSHjy2sMDK2sYhOlblhmTakFT79ntbyJrLsdGT+KiyFEqsNutWa9vuFldMJsuOTm9y6fefJu6aTg/f8bN6oLdfsfR8ZLN+hl932ATjwSGSN1xdfWSJHWkeYF2PUorrm7O2dZntN0VWSnBPaUpo+WOBEEII01CJ9984w0SW/LRRx+z329xzrFYLNAzWXt5PoJnhQSTWbHG2mzWVNWE2WzGzc0NWWrp24auEfsp7wXALSY5u/2GzrdUswLnUR+jegABAABJREFUA5PphNV6RV037PcNibEslw9498s/yR//2i/R1I7Elrz92bdYb2v++n/3P/C//u2/R1EWLI+O8AEmkxmeQJrnkWGqqSZTrMnoWmHDzubz2NOoCN6LX32e5uK737YYrZlOJlHB1xK8hDG4YaCu93gva2s+rdAElvMJeZ6RxefzXt7PNoYWpbnFaUWRZxwvl5FBB/u6FqJQZNGhNEEpXAi0/cD1zY0Ed6lbsHBk8EktKGfxQYGRpPi6lVo0enyO9gl97yItKoywCxCiRF8JcV0FPBKWNYxDP+ScDozWIUHAUmWwSUYba6nNfs9qtaHpO5KDx6U5jLa1ivYrTghbzjvaRqxyYPz5Qwxh0hS9KDq7viVhVAh4jE5EGRDPEmMMXVNTFjn37tzh+uoF6AGUR2kjjD3tD2xHoyUBuK4d+72oRiSQKMf7HmM1WZbwoz5+ZIBviJHOkvyhGFwXfxhIUkOCYepK+qEnyzKapo3TZZHIaa1fAdqIgIEAJ2PhaVROObnLg3ufwuiEurvh2bNngMboLKYsSQLqdtsQAhRFKZTOPI8IaoCQMAzxYDcJNrHxQJJfSt164bwqT726uubi/AprCrIs5/RkSd00h2JbpK8wuCG+D/YwSXIMMRV0S9fXnF+eyUE8XYLq5fUES5Zn+MChMc+dY7NZ07WONLVMZwUm0SidoHRgNpuRphbnOvq+Fd9AoyT+uXXs6ob1tqbuevL7GUfLKdPJfSaTSqbbWn62PE8xRpg5Td3FabzIQtbrbZySGZqmZjabEYKmaVvOz65I0oS6HpjP5my3Wy4uLsAoJlPxSEyShJtuHf04Mvq+5/LynLKqmE2nBFp8MDTdFi3xdVLAxUu+7RRukOnOw0cnLI8ltOXxg89zfPSY9XrNanUG2uF9T14kLJcV1WTBxb/5HY6Pj5nPhZXXti1ZIgzMzWYl5pqJPRQIRkNdSxG6Xm8Rn0grX5dpTk9PmEyW3Nyc07stSjkG1+Mi0KCUpI6Jh8oYAQ7apjRNz24rBejJ6ZzpZEaSarLMcPe+AKcP7j7g+PhOLOhFJpmnOd0+kKUFWVagNeRFKrIaHFlmWG1qulY81Narnnp/SVVNud5dcXIyoyotm9WO2XzObFZx564nSXKaeofSirIwVMUp7d6Q2IQsKbGTlMcPX2M+P+Wf/NPfPDClRC4ivwduG/vx70cfrsHL+tImsNttOD+He3cXDE6RJWPz4w4U6qIo+O53PsANTzlaLkF5kiRQTDVpkQkw2EvCnk30oXFtW2EBj+BF00gSUds2TKcVTdOw3W4oq5TJpIi+egNJmrKJqZuKW/ByNGsOPtD2Mm0X5p8hhJ6ykuHCzc2Gpu6jHN2LR8sQqGuHDj2DayiLjOnkLm3ruLmqoUhIkoy+dzR1g3MSOqGV4vvf/wH7uifNKh7ff8Sf+7N/lj/+i38E7wfe+95HfO6dL1CUU9rO85u/9Q3+6//2r3Fxecn9h49JsgQfoOt7gpaET5WkTHKR2DtlyHNi8WYYnIDTIUihoZSWyZbW5OmUetdFWWVP07a4MIi0LgQ0Ah6YCHY1bRu9vMTzM+CxeJzv+da3v8k3f/8bbHZb/uSf+A/xKAYkKbzrWmF+xYub6FvjvXjxfPN3f49vf/vbrFYiq5FUdVDKkxUFWSJ72hqLTRKUkQK9LEqhuxthPhRFQZqk0TpAvFOLPJcpoBHJcmqlGBopCUoZAsPhPSJoVPzeo/kzSvZnCB5xrNMQWSNJVvHkyed454t/iG/+/q+SJDXzZUGeT+jaJjbwntXmihAURVFyfLJgv+tQVpPnt6zZPJti0xTnu+gZBf0g7Dq5+xKE+cRh2ND33QGIG39ppaXIGZlxURqtVEJT13RdB0Gz2W4JXh+AI2mMLSMbf9zn8rWxwYvfY2T0an0L0I0SzrHhlq/Rh/f5llEYxaVqlMWOHrTSMJj4+Y2DhtGsXSkt8fVYAeVbGSxdpx1du5aCsl3z/JMrirIgzTL2uz1JUtC2nraRInOILILxZwyBKKdKImBqQWXkxZQ8nfPgwUP+0l/8C3z1qz/Dxdk5Zy9e8O6PvUuaZ1xeb/hb/8vf5m//7b/Na6+9xmx+RNM2OO/Z7fbUdc10OiXLU7JUpLDjJHtkpCyXywNLemT1jeltzkliuUghIzDpA9vtVjx/9O37nSTJgdEnjbtCa3tIwGsasdzwseAdnMjwQhCwXHnHfCbNQ5IYJIgsSLre4A6SGq2FWelDiNJX2SMow2a34ma1woee+aQiKyvyvOL0+IhJldE2jYQJNTV921DXDV3n6AZJve6dAHlpoknTBIjp3i7aO2h1GNppbbBa2AJ5JnJPYyxZlksgRd+JH6Q1hGDpUAcbAO9VTCr03KxW1HXLy7MzHj98hCKgLfjBo5Qwo5fLe9w5fcizl1es11vW647tdk/witl0wWQ64eL8nH1Xs98LiLJed8znBa+9fhfnB64u1wx1F+9AJawkEgJiLeDCCP4qtLFoI3s8RG9UbcDqQFFq7t05oiwzfHB0fUOWK5I08Mabr9HUN4TQY21gs7litsyxeZD33HW0Xc3gO45OFsyHgeubFV3XRPPxQD9s0Lbi+HTK06dnNO0goEcKdb2habZcXjoePX4EaiDQU9eautnhfA9O/PWM0TTNXgb4ylFVBWkmzb21ht3Oo414Qu7rfUxLlqagH+QzBgkYGFzPbrsjeAkwUUoaIgkoEWbjyHIdJf9j3dAPfQTxDcEn5NmUn/vZP8pf/b//l0yrOT/43g/4wuc+T1nOODu/4r/6b/4a/+Af/RqffuszPHn8hMvLK7r+JZOqEnAvDmBXV9dYazm+c0rdiDx7GNUOg8dFL9FyWgibO884Xs6pqsktWyMETpYzlrNSpPhO+ofR/F7kdg7fO/adsMjruo42QjqyZnz04RqN5h191+N0T400wrPpDCL7LyDs6CQGB/q4fQMSuqO0Aq2xaUJQIwt5THkUn0hpnmV4NoxJ7QaMkTqj6SUkbxiHbiH6t796lyB3rBRjntlMkrRRIgPWCqzRh9+tUQx9ixu6g71GmmbRz0rT9R37ei9MJOdo+4G6G7BKE2NJ4t6SmgEQxlC8s2RAiAz98DEVU7Na3TC4jjFAZFQKgCJJbAThPDc3a5JE/s3V1RWr1YaqEmuhtu0jG1kfVC9d17Pb1lxdrCjynLzI0Dpgk0CWa8pyym6z4+p6T16mzCcdi2lK13uaZh+/bxN9oU8oipLttuaTT57TdwOz2TF5LmutKDOUOSJNDDfX58I61ZrprMCFht12z2bXUrdrLlYvIIjc/M6dOzx58i7OBc5erlnO7/PsxXNenn3IpFry8OFjIGVfr1HG0bnN4Xy/unlBWVm6YUNlZ/E9gzTNaJod6/WKrus4OjpCKc17771HYkuur1f0fUuaJqzXK5LEiK/dyQkAL168EM/DrmMymSIBGvsImB/Rdy277ZowtDSNp5oW1H3H0Af8IGGYVTnBmp5+6DhJJ1TVPZQuGLqUu8ef5ad/6qusVw15OuHB/dfY1w3/w9/4W/ydv/er0pO+9oQXL17QRC+6vCxIo90XUaGiVUKaFoeE+MRakhhK6oeBNEnwToKSuk5sTUaWWdM07HY7Ls5eyveJAJSxQrA6OzsjNYbppIgyVEnpVUrFoBoZivRNT5pIYKlWY/0me98NIqmVob1gEU3TSK1pxuGrnMdj+u1tHRgiHiQsyIAM31UE8EZGoaikPH6Q2n8cCB4SnZXCxP2X5SluPxzszEZGXu9lKK6RuzzNctwg7FbnwmHPexWL0wPfWIhfWmvavovDJcGYptMJxmQQVUV931HXNefn5yRJQt8PUakXZbZGnm/0kPbR93q32/P666/zybMfMIQtqAFtPN4FTCSFjM8XgmYyKQ8McKmBM1F7ppkMon/Ex4/O4IvJQeNmlUI+3P6d1swW1aEwl/TJ7CBDTVNJ5+tiY5LoRNgSfmwkJM1vPltKsaAGfvf3/jU27chsQiDQDzVKuQONXEIy9OFyB3ADFEVG37doM16mY5IRdF17+PqRBTg2NKenJ2zWLWWx5OGD17CmwNo16/UlTd3RNJ7edQy+jQlS+iBVDaEmsRln557N+oaz82cEr0kyRVkUFGUaL6OWi6s1N6sNCmg6j/eGph6YLUpMW3N5taEsMhZz8cnb7lZcX59zeXXB60/eZDafUxQZ3aam6xzbTUM1ySPV3aJSRdtvca4nTS1JmtB3UkD3nQCzIcB2uyPLco6PF7Rdx6Sa4NxAmmWs19do5RgYGJwn1yk+dBgbmExz2bIRLNlutzT7Bo3m9PQ0JhV6hn4nEks7wWOxqRg9D4OjXq1o+4H1ek1ZTLDGkqsUa8SzYnAJ+/aCzceXEAyDGzDa4FxHoCfJPEEPLJYVm02HtZaiSJlMcpJMY2xOkmjaVjxjNpsNZVEwnco01ofh4HkoQQ6etm25uHrBxeUFVVXEIAJpaINXDMERgvhcWCvAsUgTFfW+4eLynCy3nJzMyLOK/b5hXi4oK6HEW5Pz4Q8+4YP3nvLa48d84Z3PMJtNQCnaek/XBbK0JM1Er++8ommamHqm43S2wg0Z6+uWq4sVWWrRNJwNNU+ePOLH3/0p3vvBDxi6DYkpOTk6AT+AzwlBZEJFMWEymXJx8Zyf+ek/zHz2kP/Xf/XfHg5vYeGqKI8cvSBvWTwyYQmMyYfCiNvx7JMGrTx37h6xbXcYo5lOp+z3XWRpDTx5cp/NyvHBBxfUW0lFni4N82VBllvq/R4VcrrG4R30vSSPKRUYU4cIcl4kSYqx0hhvNmvK6pSj5QlJmrJeNTT1y0MzTzQ1D6OZuoyQGKVRT167y5PX7qK1ixOXmrbbs1mv6HqP1SlZJma/XYsks9mS4Cyb9UDbOKriFGUTkXb2PUEZXOhp+l7AxJfn5GnFvXsP+At/4S/wR37uZ+m7jo8//IhPv/1ZbFKwWjf8i1//P/kbf/NvUZQFb7/9NsE7dnWNUorptCAvxE6gaWrZ033P4HqsSWUaGcGu5dECReD8/CKGuWhcCDR7T9t7kSo0zeE8RIkZsFJa5FMjsKstSsslbdJMCm/VkxjHw4d3OHtxyW//9m/zC7/wNYqsiCb8KkoN+SETcB88Qwi8/8GH/NN/9k95+vQTmrZhcFLAmwSZOKIwKqHve8pCWA/SkIhX2NAPcokbRWITtBH/LWslATVNZX9mWSom4EVBmojEx9qUPC8PaZxJKoVfWZakiSVNLNpqaba1ML1kkBNQeKwWWVGSFbz16S/x3g9+m767pO8cWeZj2mdJ08iZCupggN13AZMImHZzc0ORlxTJAwI3BIY4cEjI0gQ9n5NlIpnUSkfbACnMzs/ODuxDNwjzzdhc7lOleJUFB0n0fpNSy7koxToArjF17d9jAY4M3lcfI6h0YEke1AWvsvFuhx9jUuxtzaAOzzvaHIjcaZwMh8P3FqZfOJw9Qy8gdN9B38Gl71hdi+WH0mBNShk0p3dO+Lj5hHrfoI3YTwQXwyP8baF6eE/i8OH4+JSTo7sEb3j06HX+zC//Wb76M3+I87Nzzl685J13vozSKS9eXvM//I3/iV/7+j/hp37qD6KNZb0WlrkPQdSU3nNzc810NmHopBAX4EoeTdMcAq52u92BrVQUZZRuSzOapVkMYJnE/esPbJEsyw4y7xDrLmHr9Sgj7DhjDE3TUBUlXdtKE9H1dH0nYWROpHSb1Zqj5ZSiqETlTWD0/B/N+Z0LcW2puL/Ff6ftpB5q2hazC3T1nqKs8eESrS1VVVCkmUjJ9BE+Jnm3bU/Tduz2G7Y3N/KeRFZYYlMBRFGkiZHGP/rzJTZFG0Xd7KjrPUPXMSZ5G50cvAi1TmTgq0Tar23KZCppi/vdhtAPXF1fcX52wcP7DwSrHDwqsok1CVky443XPsvl5fv0Xc/N9TaGiAXOz89F0hbXVlVlMjCpHcHvWBzlaDNQVpbpdI5zA6ubLX6uIRgx9O4VTetwjmghorGpxVgBRpLUyqA2DNjEsdleEih48PAhRXlKGDpUcFRZgXUZyfExw3KKUopqdkTvJHX54uqcvq9xvqNta6bTirIoI6PSRClwR9/vIQlYKw0UBGbzKTc3K4JqWW9rdvspWW7IuxRjIUmh6+QOGlxHCIauC4Rg0Aa835O2lmpSkqYpVTXBGPG/TtOeoRelTAieLEmjREoCoxIr50RepvGz9fSdqH3GWkUk36LcKUoJ12pqGHo5h4zOmc2P+bmv/gL/xV/9LynzKR++9yHvfOEdkjTn7OyS/+6//+/5zd/8TU5PT3n08KH4FtLTdi277Z5ysiW5vhIQXhlee/21wz7uB9lLbdexvpGgMJskFEVOklgSrajKkul0fyAFJEkisrF4L0tg0q390NA7uq6PZ/Xw73muSeCc8+KXaxMLQeO6TiRiwdG1LZMypSoywEf2eojJ8lG+JrtbmNMj8K8V02pC1/WUZS42DjHBNoxn9eAJyOBGUiCjf/Mr57qLVgwqDgHCyOSJZy8qkBcZWZpIj5IYksQcCAluEMauMCMdSTLEQa2csWl6W6tmaXZIWa33DUJYkpFcOLDRo21EtOSxxqBi/ya+8fJ348CkKqdoUglcikOtsfeVIWLKftcc7icpSl/12RpD/Ayjh7s8h4fO44aGoXNYlVKVafSyhTRT9C3UO8+kPEbKmoTV+hznavKiYhj2tF1P2PW0nTAEu9aTZRV5UTD00g+fnZ3RtS1HyyWL+ZRpNeX8/CVt4zhv17EmyeiHhq7forz0Nevtnu3+AqMz0rTk9OgRn3/nU3z5xz/H9dWaq8s11zdr0tSibU3vGvrG8fSTj2XwR0fdBuaLiq7t2G62pHlKmsoQvesGIR80HUVeorXl5mbNxcWaLDOiMNMIK0p5YedlGVU1JcTBzL6u41lSHYaCOsuYTmZRhtly9vKKZy8vuVrtxS5ncEymNdXEcu/BCdvtBpNo0qTg/uPP8gs/9yt0e4sm5+6d+7x4fsbf/dVf5Td+4zdxzvHlL3+ZpmtZr7f0weNR7K9WZEXN8dGCIsuiD12KUuI7eHZ2hrm6krRaxuvIY41is13z5MkT7ty5c2Dg1XXN5eUF3/vud/jud78LUa7edT0fffiUpm5467OfQqkjVL2XtVpVJNay39e0nXgRu67nwZt3SRODdwMe6LqO0cE3jPsQCZYYlZdFUUbwD3rnIDJxx0JPVvpYo8l5ELzCxPOl70UC616x4GH8mhBQ/jZbwHmHsVLXjuEjI5FEXlqIKrkQ/XcNNs1kUK0k9EYZjcLHMEE5Ysa+1BjD4JwospKEXVszWnNpA0F5hj6h77rYTzX0vZy3Y4+fpUKOGPGuvhdi1m634/Hjx3z+819gMO+z29WcvdjQtYHpVAZBfT9QVZp1ZPimqfRnCmEDF0UiASNj//UjPH70kI1XEOBb7xiZAPuox1aRFWetiQyFmBgSJTnaaBKSw0FvtB4D/4S6mio+efE9IKDNQJLV2DQc2AIpORDIMs/oFTbGzstiVTKJjN4wzg/xz8aGhUPDMjb5MgkXL7iX5+f0g+PjTz4kK6CqKgjQtBv6oZEmwiqqfMbZ2RnWGh48eIgxFh2lm94NUpwZzWqzQZ/D60/eIEksSqUY67GmYVJWtG3L0Hus0dw9vUOg5eb6mqcff8Bbn/40emnoOknp3dc70sTxyYuP8cFRxuTFNBHKaVFUECxXFzuOFjO6phWZTkzF7LuevhMj2iRNSWwSL5UEmxryosL5DoKj7Tru3l8wpl1JEIaYFZdlQlEuEH9tQ5Kkcml58eFyzktxUM04Wp5QlAk3qzOSJMPmBa4PXF5ccXOzRhlDHwHKNM04YkpVCrOg7TpqLx4W1qQor+j6DqUDzrU43wApRWZpdj2TsiC1WpI/vUErxXQyochSdrstvda0XU1zvhc/RiNN42RSxRVoMDohhBalHT4YjBEmQz8M7LZbUIqrqzM2m5WwM7KcEAyKlNWm5vz5GXmSUyxKumbApxlnzy9JM8MwXDKpFuiQMnSO87Mtv/vN7/PkyQMSqzm7aMmzis1mx+K4upWN2oy+G5hM5zy2M+7fe43txvBbv/UNtNoz9B3G5BwtF0wnx5TFAt/nqH7GxXXDlWpYLkru3i84OTmRfan2cXK04PT0Pm5IMTHhZyy+BNxzsSkem+OR/RoE4DbQDwHVKzabmq5V2ETR9gMqtMwmFX3vyfOUJCnIsgFvNS9fXDAMLfu9p947VmvN04/3IilKNWky0OzHptKR6Szu3RSFFLaJupWP7HZb+n5gMpnyne98H60tV5c3BMS42nuZeisTE/xicuMor1JK8/LlGZeX59y5O+W11+/x4ccf07U903mCMSmz2YLr6w1DJ2E9eI1WPZPJnH5wpGmBTixtJwySLoj8sR88Xhl659Cp5e7d+/zV/+w/54/87M+wXW348KOPePtzn8XanN2u5e//g3/I//lvfoMf//F3MdaKufd6xXq7xYXA0fERNvqYGBO9u+Ln1nUdu92O/X4XTZd78Y3JErLcMjhJyW3ans2moesDXWT8AKjorRWCpx+TuHT0UtNj4h7gPToMVEWCTTPu3b/HZr3DDS1qNP5WctlrI1J8H4S1J5JRTV03nF9ecr26ETbQ0AqjLjINEiNAolKBXb0W9hwa71UcBg1C748eTArxzBBoUK47rQSkHhkEKIWO95iywjZWUeIQAuRpeph4Wms5OTrm7ukpDx8+5s03PyXM5sg+9N6jvYT8fP7tn+R77/26sLe7Pc61tPWOvCi5uDxjNo2MzqajbVv0MBDCOrJb9yjbc3HzMVnqeP3x62RpSp6K76m1KXiFCoo8K0izCfu65+b6Em1AmRx0RlFMSGwmTAxClM9JA5KkFVmeUFU5fScBUn2U4KdpFsEzdwBvRkBH3jJJEX8V0FNRejsaG6tRMu1jalkEiORulQRLKRV0ZJKMzD8fmfU6MjdHL8ZbT7rxOfveRSlc9AQNmrYODNYfzieTaTablsnE4Z14oikj7C6ZJHvGsBH5WUQ+X5UT5vM5WVahtOXNNz7Fn/uzf553v/xlnn/ygqvLa7707rv4YLi6vuGv//X/N//wH3+dz7/zedq2Z3BS9B3fOWU2W5BZqTGePn3KdrembSThMM+yQzMiTAobG+QO7aUAv76+4eZmcyuTQdb7yDTU0U/TWnMIIBjlQcYarE0oChVpNgqtDW4yQZ/eQStF27SsN1t2+230DRtwg6Oud6RJFlOVwwGs7J3HQ0x8vg3YCXGvjfVUWVZkUT7lBjFtdwGcq7m+OJefOzUUWXbwPDZJKs3ndMJwfETf9+ybhrpp6FpRPYwpiGU5YTKpcH6g3ovvW2pStoN4s6m4/tI0oSwlwdusd5ydX+PCgPMQtLCCtE0lAXAIvLw4Z71eR1BJ2IsqnoUaR5bkzGenOGdxg8aaW2uKYQh47w5qkKKQOy5NBLj86INLjk8mFEXGbleTZZaT4yOUMnSNADgjo3kYBgbvo99sVMUkAnop7anKlNm0IE80WWapKvH1FLaawcgkRYa5gwdj2NxsmMzu8Ct/8S/zd//e/8rvfuu3hQ1d5JLUqcSbWkAQR2IVPghbL9BjjCYvLGWV0g8p3nXkWS4gWpbRNFt88FRJxkTlrNcrmmZAqVuJkg8ykJO9XssAvizI0imJrSAmvu62O6zxJNYdeo2uazDGMJtVGGtQwUhfkAjz0Ts5kFo/yDmJYr+r6TuH0RZrMhQpd+8+4Rd/8Y/zK3/+L5PajA/f/5gnT15jtdnjw5Z/+1u/w7e/8z1W6y1vfuotynJKEwE18VaOapdBGMWP33iNIq8Yhp4Q1MH/u6lbrq9WhBAoyzKm0DuMEr/TJMnwQXyw9vuGly/P4l0tUsWRRMErDbWkGadkeUHlRtsUe0g7l7NXzuwR+AfPxcU5d++ekuc5wXELdI1p7PFO1MbggyLgCN6T2JRJWZAfL5nMJuRZLiyXfY0Htts1TSvnsPM+svlCZBOlBwCzjve/CtLcizRX7hVjpMmezSbM51PSVIKWxpAhrYhBYaPJPYfnNjoCu97RtZ3UVwhjeWR0da2ct8qHEcqIflzxdSDnfvCyToPyIh0MMDhPaizz+ZEERu1dlLyLN5eJvew4TBmlzoKrjAFW4MOYoByo8pzJRNRtbdMKSzMGCklAw54ktRAcXdOSpAKeds3A9nKLCjc8euwjEGrph5ab1RVZZmjbvfgr9or5THH/zSdYW4jXu1dsNjuePf8BaZpQZDlHx8dMJhW73Y7Neg8kdK34fg5hYHA7tNZUkwqvWnb1iub5mu4DSapfHp3w+PUnfCq9T993vHyZ8sknH/Px049o2hrvGwJSi+92DaubFdvdnnovASLzRcm+bjg5riiKEmvTw95Ik4yqzLGJ4fmzG3Z7sYxYLo7Ew9spsrLiWBtubmQdmiRl+/IF51eXnB6fYKx4FNskIfWG+/cXWLvh+YsLri53vHy+5+69JZMyQZsF9cZx8ugOP/+zf5IyXfLs/Y/5t7/9O3z3+98nK0pWqzUvzy9Q2nB+cUHTtqRpRprmUaY7EemxMqAkfNIHfZBNt12Hi8P5caBpjebmZkNZFsznc1arNU1Ts9tt2W43vHjxnO9899viF1+W7HY7ttsNdb0XOwrEdsNo2Sf1bk+N5+zsTALvlCJ4uHf/LsbqiIeMA005W4ITGcb4mozRnJwcU1VTZnPxh1/vtlytbtjv93IG8soAFgWuQ7shBn+N/nOvYEP8MCDIgeUXg22cqEyC8eLFGeQuSkarKCnspTYkyLkX63WCBObhHGFMoQ0cPHHHwXKE3iNuNUT1x4BNDTaxjCE+wrbrCaGm74eDhZt45Uq9qg0R+LPUTc2j6i59P/D87Ozgrdj3YnmW5wXb7U4UXMOYqK2jqmD03xPLu1Ft+qM8fmSAT2mFtga0XDAG0WRbY3CjTEQTJ9GRLqk8JjYIAAQxFIfoi8QoDZIiX2lFCCtZGlqRZEQj3QjIxeZAin8TPwgfL7uRoqkOv3t3KyUam5YxuQc4TNDbdmC3c1xd17QNTKaK86sX2PQuWZJxdDzBuwKbCP1/vVlxcf6cpm5YzGYsFsvIdBIvmbKYcn3h+OSTLUnSMpsfcZLIlJRgmFY5rm/pvCezhjt3TuLFPeHy/Dl+0Hz88TOOT44Z3MC+aUAZbGpxfmDf7AghYJLpAf3d7/acLJeSSuM9dddKBHU/xslbFvMJZZHiXGCzFR+jgGOxmHFyuiQMAKPMKmDMWMDK4t/v96RpSZrkaNVjLWSpwXvL0Pfsdlsurq4xJgEduLx5TtkX7HdbslzCDZq6ZnCe+WIutOK2O3w+OI0KGqMMmxtJLd1t9pSVMBWSzBA8MVSgpG1gOlWxCFQk1hPcgB9kKtB3jYTiBRfjsXf4AG3XorXi6Og4pl5FL0itxGB2fUXdbJlNj1htVpydvWS/37OYz4UVkWSsNjtKF0issIIuzy85e37JfH7KZ998i29961tsbnbc3KyYTKfce3CHt956g9PjE9q2YbW6xli4uj5js9lh1B0+9ekv8t57v4dWBd51WG1omp40m9P1ht2mp3rtLbp6g9UTylkGqmG1vsYzELTm7OKCLNPcuz+h61KOl0eUec5kWkmaZ9vi3R7nW8p8TlnM2KwHlFHoRPbZ6Dkg00lPlosvQ79tyXJhowSILIyBrnPo2uM8PH/W8/LlDVYbism1eAUpAfyXy5LTOwsev2HY1jVt35DkKbtdoGkUeE2rI4U7MgS1IV6gkUnl9xAUSZJTVSVK9bERgs16x+A9l5eXUdZr6AdhRI3yuGHw0cNlnIhDlgmDU2uYzguSPGM6yzGmEA+l6ZTpZMH19Y6+VWxWHZqUodcMwZBkFTZLaPqO3g84BJBwAbr4fmb5lLc+9Rb/+V/6K/zcz/xBbq5WfPL0E97+/Ntok7LZ9fydv/u/83/8q3/FT//MHzoYzTdNzWwxY3lyLAe5FR/Outmz3+8EsIhUe2tBa896vSGxBrynbmrKPIOYSrpeNxjjCKFBfOeUALrqUApLE6AUXovHpDS8EBMy5IIKmn3rubjeUaXymrQKGCWeGuOZH6Is0EdWjDR9AhwpNEmaMvQti6MZrz1+QFUVsg+9J7FGJP5+oKl3bOuVXO5eC5PD9XI/eOi6wHrVSEqzi35yEL3IAuBQIYivYGQT1m2HNuHATF+JuZ2AgcHzwQ/eI7UJR8cnPHr0iF/6pV/i+OhImpYQBGwMJY/uf4Fnn7xP0z+l71f0bk/dbLFa4/vo9RY0RmucqzHRbNc7h1GOdvg++/0FR8sHJKmNa13+p6PvCcHQNgNNfU1QIKpShQ/SOLlBxNHyZ1JAyMAi0HaO+bykbjLquidJU6xt5fXHBntkcohUVEyXOTROcfo71lEHUO8W3JOlYV9hTEiSq0yDR2BFHSQgYxiCAIa3LH5QB5ndq/c2KILT4CUkQcUBX98OaJ0TgLYN0Da89/33488UQV6lMTbE5mwsuKQIz4uC+eIIazOKcs6nP/02f/FX/iKf/fRn+cH7H+AHeOfL76DQ3Kw2/Nf/zV/n//j1X+fzX3gHYy0vXl4wRGlOklWcnOSgZCLeOSkQu6an9g0btTswXqqqEiA3z2NQGNhEobRM6/sYEDGyLGV/96RZRp7LcGL0gHPuFbZmGCIIL3/Wti0+CHhlrEEHxaQqmc4mspc9JNay3W5pm5oiF3DMR/3eMAyRUSsNsNWazrtDSp62lslsyjAMHB0fUxQZhAG8Z+h7GeB5kW6FLrC+uUEpJX6dcLBJ0VrHIJ9U7DSOhck1OBdDA2IBvRcW09C11Ls9YZBmxQ8DIQ5uxLNMU5UlnTuP3pJRfWIMSZKRZBW+H9jv9jRtGxl/5nathTHJx1BWM7Qu2GwcXedwfqxVb8NQ9kNL1/dMpzlllYJy7Hc9nzxdozQUBTx6fMRPfPknUEpz/vyC6+traUasZr1e4ZUwicbhTZJaOdONoipzZpOSPBWw1xpPXhQ0dStAV/xltcErUbdcXq0pK8ViccSubnGEKHtLMVaaxK7rIhMMqmh34/objPYs5nMSm9O3NRpPVUlARtfXaB0kvC4SfLUBkyjSIDYmkmBr0Ih/3ODEbUnVA4EBHcPqrDFk2YTlUUwk3mzoOklvTFLLMPQkOqPMC4xOaNqGrh3wVvoCaxPyXmSbRluUVnIvqoTJbMK0WvJL/+Gf4Vf+/F+ia3ueffKcT3/mM3z3u9/n0eNHBBX4jd/8tzx/9pJ613K8OGY+nTIJE+q2ietiZGDJcOGTT14wm00lIC94rm6ucU686/Kyoipy8qKgbRrqpqcdWpIspY2s2WGo2e9Fxt91A7vo53gA+ABrhPE7dP1BVmmNNKKjqb4EL+nD191aJjh08JwsF2SJRZyuoOu7yFTjFtyKg3qlxPvWuZ62rdntt+zrPWkid0iaJiwXc44XM+q+5eLsgqDl1pjOphwdnYhUUNvIWpMAI4IMB9q6OQQCib+tBAj2fYvGHqT41lqqIpdUW60OIRxdJ4C/hDKKsqXrevHZ9YrrqxVNXbOpNtS7LRoB7YIPEWSMDXYi/uM+OJI0Rbf6lZrGRemwkbpVqzhAFNCUCHLEjhhxPZT3NpKh0BryPKfIDcYGktRydHSCMYZnz57jvfTHSss9P7iO3d6R5WLls9uuqCY5VVkxm52gdHZgM2aZKAic31NVOScnx2w2a4Yh4GLi9NXVFUlS0nce73qub67Z1yv6oQHE1/D0zh3atubBg/ucvdxSlEdkecZ+v2Nf7ylKix8GlJE933U1SebRZmC9+4T24wthIw6OR4/e4Kuf+ik2m3c4O3vBJ598yHe/+10ZJLogainvSBMbQRRHcLBZj2zLgMJytDxhUi1o25q2a3jttXvkk4J635BkFZPZMQq5G4tshppP2W63XF2s6bpa7sV0yaRcEoaE/V6Cgur6BqNTJqVlv00lAPETy27VMimn/MGv/CR/5k/8CkZbHj96k5cvt/zzf/kv+eijp7z2+pvkVcnNakWW5hHk9/T0uCA4RN+2lHlBngqTfr9vMTYw+gyWZcluszmAa0opqiqPvmue9977nqTgZvL+t22NVp7Pfe6zfOpTb/C9732P999/nyxPaZqG3KQYLQnsidFYBbiB3W7LJx9/RJZlZGlKWZScnpwwhun0fUea5RJeFC1zVAjRdirg+p6urUms4ehoRpZlnN5d8mZ4xOXlpYTYNM3Br985STRXRXJIvFdE244gION4Pnk/euT5yJyV2jYQJHxCjYnbmTCa41lmrNgo6ahIkZFiDLPAMfS99BIj3IR4AeogwKcfZPgm6cGiOGiaPX1vsJ09nKNKj3WmeMZrLWw+5xxtV9N1bRyejn7hnpubK5x7glawv8noh02sV6F1nv1OlI9+CIARfz431hUeh2flGrLMRPuZH+3xIwN849QZXkFxVfRjUWMy2m1xf6BmhnFhm1e+Tke/ieG2gGWkjMfGZSBOOWS6M8ZaSzqKYuRtqPhVY6KvTMJuQcX9vhb9upUDZkRmR+RaGgrD4APr9Y7dztG7ijJPaZeOaZWh9S09e1/vePHiOcPQM5vPaJpG2IdG3mLvFb6VtD7Rxys+ef4CraEsp1ids683XF6eoXXCRE8pSqGd+jDw4OF98Wra72jqhq5vmc9OOD15QJrKFKvIC7SybHeS1JXnOQ8e3ifPU/q+5eUHn/Di/AWTScmbb36KMsvxThDvPM8JQXF8chqp/p5+kKAJa2XBu+iHM5rXi8eNZr6YYm2KdwHv5fPcbtYoZXFe0XaGxM6ilLbHphLhXVUF1hrxI8oSfBAabFEUHC0lsQpgs9lxdvaCvhcfx+VyEcHGQV5DZCnIulKUleZTb95ntdqSZlLYqSaNn6uwiNJE9O+TSUk7iB+EMhyYD37oub65ip4PCWkywSZiyr3dXnNzfc16vcYYw83qBpQwRK2xNHULhcUYz71791kuHjKb3OHTn/o8vkvIc2lSyklFUaQEhvg9SvKsxKaOpt3z4OETjLnLbHLK2cvpIUG57Rq6ruP58yvOL3fUO8vjRxu++93vst6ueXx0B5tO2Wx3XF3tmc9PwWcs5/e5s3zEbDKNxaHh8vqasxcbppMZThVst1sePfgMaVrSNGdxwi5rPCAHttaKrEgOE/PlUSE+K42wv2yisYkA9WmaYo1n8E4si72nXXnOzhr6NpCkmqpKePRoR1WVVJM5Sk25ua5puxrdBWFsBKnGJIzFkNgMjYAYAjzKFKQqKx4+uI/zDdYahsFx9vKay+srRpP6MURgLHyFyRsnp1FanefC+OiGPUqLRGa1umG5XGCtlej4tmO7eU4ICV0D1uZ0bcB5RV5M0DqlG0bZ20AbQcW267FpTpFWPHn0Ov/Ff/5X+cqPv8PV5SUvn53z+Xc+h1Ipl1dr/tGv/TN+7Z/+Uz77uc9wdX3JEAsCrTV12+AhykuleTK2pCwz2rZlt9tEP8vA6ekx0+mMl8/PDqmdw9BJEzs4XG/jXh/BO0+I4RIoxeAd/TCGNkRGHx490mQYxzeKIWj2bU9uNUki/qdB+Vjtjpf6eBsoAioCBwprErq+Z+gHjpZT3v2xz5FnlsG1dENH1zvSRGPTHqMkYMFmGUpDmhgSmzI48TuSwlxxcznwve9e0HZGfK20wSMpvcE7dAQpR+BIG89iWaGjp13Xxc+vrukaMW/vnfietG3DN77x2/z8z/+83Doqmg77hDI/IksX7Orn4vmRKY6Pj9muNxDZfrtdHb8msF5LaFKSWur9Fte3GBOomy3ODwQC2kuThBF/E4U0cl3byXsc2ehGW5wP9N0O3xB97OxhzYtcSs7cwYk5vPcRpA/6MJ20dhy+cfBAkX3k42BMv7KHxk/0Vn4r7eHA7YAtPqKRu1KGf1/yO8p9xzt4lDEbo6MFhooeJvH7aY1RtzJXa1V83lFeJaxA1G1AkEkSjJZCMUnFtFkrT5rkVNM5VTWjmiyoJnO++M6X+fP/8X/Mp998k9//ve+QZQVvvvUmKMPzszP+2l/76/yb3/gtvvTuj+GD4vLykgG5D1Cyzup2T7Pf8eLlc26uV7heDOPRo5JAMQRP00lTn1iLD1HapQxt19HUkkDOK/tHa42KDDez1aRWWLxpKt66UoMIu09qfiniy6pCaU3bNfS7Lt7phiIrBFRQmv1uR1PXlKWksYZI0xQ5UYjJeLevRUqv6CSXJLImkYTHJLE0+11Mh/UUZXFb38S7o42A2giejKye0NToWGdWlcjNUOL/fLNdsVmvGfqe4AYSYyMwJwEDgxFZTddJmI/obRNUfO+878WvJ+4jmyQMVlJN67qmaRrKspIjzo+NRyDJEu6cPoSQ0TQu2nbEVe7HMzKuZRdoGzHOPjpekmc9ddPhXCcecyHw7NlTHj96zGw6wfciadU6YJclg5ck1BACeW7JChtrz06AgdASfJRe64Lteh3TBpF0+EE8q0av0vlCwAWRGqVkaYa1MsiSoLWYXB68SKw7hdIB7wemk5y79++zWe+ELWITkiTn+vqKpulQqiNJA1meM/RD9HUUVqAPAyoYVGxcggObZAdWct/Kns3zKVlSYLUlTVNmk5STo5iUO3hQ8rq6phGGrjGUudTvdbMXL9Q0l2FNXWOMAjSzyR0UliKf8af/1C/z5/7Mf8xuu+Xli3Pe+dKXuFltuLi85sGDx1yvVnz/++9T1y1VNWEYBn7w3g+YLRfcvX+PoihomubgjSUs+Zr9vub09BSQNPExaCWEEPdm3IvxuJxMJqRZznZ3Td87um5AKXOQKidJemCCSpiEJ7EW1w9x8DGeA2Mi5S3bevwlZ7awYHa7Hfnjh3IHRvTJOUdirID/gejb1zNSZbSS8LrgRULWdp2EKPU9ag/bzQZrDeWk4P69U6bTKUmaEryn68bQpp5gTAyQEklqcANFkWGtqGUOab0+kBjD0PfiH+gGlGrFTzQyt71zWJvSdx3KGPx4rqcJuIHtekPTNKIGi0ErbdtH5s3I9pb9quJgyFr5XJII9o3y4TFp2Dkdjfk9TWTcSf867nkOKZ9By2sUOSmkieXhw7vMZhlZFv1wlYTPLBYTzs9q2k7Yklma4n0gTS37eo8yCVmZ4JUDqxh8H0GyitnkDrNpxtn5M4psgZ3ceqWN7M2Tk9OotvJMpzOGPomevoHJZILWUBQFm42ESfbdQAiWO6d3oo9xQVnW+FCz26+wKnqwhkA1yfF0KO0A6c9WNzu+/97v8vTpU6pyztHRKcdHd/nyF3+KFy+f894Pvs3Z2SccHx9hjKGum4PCzznHzc21hGZk8prqWhjCRluqaioWK4sJZxc3PH++42h5l6PlKUor7t99Avc0Wpk4UEiZz+dUVUXwAtakaXoYJI418H7Xyjney0Dja1/7GldX12zWG7xP+Uf/+J/I9tCKpu8Ytp6+65nPZiSRpW2MISjxoJfeVXFxccFqtSJNM8pqCkozny1ifS7e89Yazs/PQXnu3j1Ba3j58iVVVXF6ckLX93RdIx7xCr77vZaLi0sG37M8mqP1kiLPKcucPE8pUiHeSMiUeLdvNjfUxgoYf3x02BO7fY21SSRLyYYIQSSzstZ7Ls5fMgw9bbMjzVJsmjCdTplUFarKGYaSfpiRJgllOaGuxfKjrmshHOx27JuWECBNLUUMJcrzEtD0QydEnSQ93MtdJ3X3WF9eXFyIX/Aoi9VjPSm1bFmWFFnCcpKigiP0gZBqGTrrWEcZhXjY3gapWpvgvKN3HT6YW8A1KkdGj01jDMPQI9kQI/DvYXCRqT1grFgEOTdwfHLE997TMawqoSgyXpyt6YeWWNqitJNz8bYZimcj7HaOtvv/A4mu0rdG+/FPGN908d17taiPh0+MdzdaPoCxUPdeDGHbtj7451mbiMz3lYtq9OEYkdFxKj/+/S2t3R8WCIxm1ckrctz4vNEXiiALJ4kpNOC4e+8uN6sNP/jBczbrho+7ljt3TqMpoj8EBtT7ht2uZjE/4vj4mDTN2O32TKdi+umcY71Zc+fuKfcfPsANjmAcXdtTFI7BtYQwkOXiLzOflwyuBeVp2xrnJV3s+GSGUpqKkvl8yX63F1PbYNAqJbEpioG62RLwdN2eVjvyxHJ2/pK2bbBWc35+zvF8gU0SiM2csRLa4ZxQiLuulQZwaIRun4kPnshvIxuhEznC9fWKvhvoB/HoadtB2ClGgJL5vKLvO5yTy3O9XpHnCZCKd1mScHS8xA1OPGaSJBaVnixLuHfvDiANyhj2QATsXGQOjMxLlKdpOqpJTpoZqmpJWztJG1Pi3fOqb+QYd71ejWCeRJJL0VoTApyeVDy49wbPn78Ak1BVR1hbUbcrvB8o8pI8L4U9OkiBmaU50/tz2rbHsGA2PeL4eIE2PSYx4i8WegI9zdYxqU44Wt5jvVmxXe8YOEPpmjTN0KlhXyuy0rLZOvZ7TVenJEqzvHvC6cmCD95XvPb4IUdHc9mD9zSJNbzx5E2Cn1BNKimSTMK+9dS14+WZ4eIycHH+ff7cn/1zfPHznydLC16+OOP65jLShGMjF03fZf9JAaQi/TpEGdRo8h9JEbjBUZYZKBf3nabee7q6hWDpGo/vBz4aLknTlTSQUXLJeOkgxqwALkjBSZReKqUxjEb1sN/v2Ww2TGc53nvm8wWJLVht1hHE8JGJIgXqyNJMkuQgiQEO/lZZvqCuV6R2QhZNUr3XmFBiyWj6PSFo2saJlNUnFMUcpVOGwYm36JjYBjT7PUU5Iy8mPLj/mP/HX/mrfOUnvsRmveLpx5/wxS99AWsSVtuav/v3/z7/5Nf+GZ9661Norajj9Gg035cQDE+tFPv9XmjeeAE6q4IsXbLf7jBWkdiU6XJKkRUHj9IQBq5XK7bbPW0tQ4iyLKVPj/LcfhjohiEa1spZqUCYhIgfR+di0T+y8gZPYoVxRXjVm1WNPLhYmIvB9AggW2vJi5w0yXDOc3rnhKrKwXciO7AyrTOqx3UQtBaPHiNJl7jAQEOSpuSmkP1Fx2RmSDJN0ytQiTAQ4yBIG404i0RZqFZYO3D33gm5jWleXsAPjWK93vD8k3O2qy1N3R2kE5fXl9w5PZUBlFyM2DTn+OQuV+tv43wg1QKebfc1Xqko5eniEChweXlBnucy3d3tOFkuDkV+XW/JskIMwr3C+VqmlEaK2YE+JhJqdDB4TJRjih+T85KgOn4OxmiczyNTR/wB20aS8JJEk6ZiFN7UA24Qk3elJalXvPkiaPbKvXt7/6sf+nONhlfCN0aAeqwRAkTAUAIMXk2zz15Jh1UqoHUqE/PIjBFIWUUJ2CjtPXx3AcuSse4YIiNXx6wPCSvqe2mmlkdLqmJGUczIiil37z3mi1/4Er/8p3+JR48e8b1vf5dpVfH6m2/gPFzfbPjVX/1HrNcbvvjOOxRVxfnFFU0XE+Qii2bwnvOzS7bra/quRcXkyIDIzrRWEiahoekbQhfizwyq0wcGWdx+8WeJvyvi2ZVS5gVlkR3S11T0UDPWHmoeouxcKYUyhjQdGIbsUMTqVwAC5wN1s2d5NCMg7lX4aNMwTufVuH8FLFVaakJrhYl6fXWDVYquLum7DcYKS9H7RAaqjFKbUQ5qyLNMwnMiI6ftOtpWCv56X6OMMImdkzvdDY6h7wjDgIv12LgMxuGkMREsms+FQZoY6qaTcLDLG/wQCInI832bMp3kDIMYbYtHIDglvjsoQwiaspwzn50ICBNGD+cIugRNCDqCEeIN+fL5FoLm5HRKXWu2W7G0uFntSNRzjpZHZDZjOp3ig0Mph00UddvIdac9aSYD1cE1rNeteJENCcTAocRkTI5K0Jquy1HbBKU0XTvQDR1NP6BVSZlXIntKDbP5BOf39EONH4Y4kAmSVuwCzb4RFoZoX9lsbtjt9yhgX+/pVlcs5gsB80MvvsiYuLeGAxCilME7i+sDk8mU05O7nJyccufOXRbzo0OTp7X4oYpsfmQQ61fOlVG2GemJKvqvDh4f5DWaOAjseknw7LuW9XrD5cUVX/jcO/zyn/5ldusdZy/O+dK7X0KbjO32BV3fcX5xwe/9/nd49uw5bTcwnWdcXl7ig2ez3/HJ82c8evSI09PTCKQbylLWhgBzomTI84Kuaw8DwSZK8kfboCQRBUHbSkDAMNwG+43n6ejRNN6h1kZgTovHLCoGssTAN7j1RR9ZfGkqZ2bbNGy3W2azWWSaykB8BNR/OEFXzmYiyHp8fCxG9E3DdD5DKcN+v5MBO4ph6Nhuhih5lSR4ay37/Y71dnf4mW5JD+Fw54+2C2NKpiHE4exA0zaiVCIOMo0AaFppnO/p+4F6I0EOo//o0dHRIa18MZ9ycXHBfD6n945uZCm9wjL30XdQFB0SpOG8EzZqZHQ7L4zwLIYjCKEEPF5qg6h0cE4SwW1iMFrY6uLz7Pnkk2c8/dhxcjLn4aM71N2WDz58SWo11SRjOrNUVclmvWe/b6NPpccNirqX3tAoYdtvdzumM8+f+IX/J4GGb3zzX3J58xFNu2K/X5GnS/b1HmN0JH6YCAoWrNtOFBBK0/UiTez7ljwvMGZP14EKmsuLNUmyY7dfsa/XFKWmKFPEl1zsk4bB0Q8DZVVQ13tUDovFkroeaPcNe2Von9dst1uqaobRis9+9k0+/ZlHnJ8/J0lSLi4uqffyfJvtGmsNy+WCvgvU+471akuXD5RlTgjQtD1ZmvHj7/4M737ppzg5fojVc6yNLG2F+LhGENa5gbZvaNs9QxdZdkaIHj44plOFOrEHcO/tz3yGi4tzyrTCFYHNesMHH35E7xwhgqajD/DIOF8sFty9e5egFXW9Z7vb8vTpR1xcvCTLcyaTGUH13L17j7KSHsomC5GOdz1J6tnutrw8F/m/UoF6v+PiQtarj96VXgUuLxucG0itSKuyNGU2m3F0dATesdvtWCwWLJdL/s1v/GucEyYziWK5OJaBVQRp26ahKKv4/KNWRwZ5WgWKIufi4pzz83NevHjBbD5nvlwAsN1uD8PY8T3JspxJWVLlGYtpiTF3sElCXdesNxvxAtRa+lDXo7SmyBKyRNixwirsMTohTUwE3TXTScFmu2V1cyODrrJkv9+zXa8F6J7PGfqGJAwkScqt3HXsIaXGDyM2FURJkCZJZCgPAsgzkg7CQUEwhgrKvXLLinZuoPceH8MibZKjdKBtaxaLpdTiTpQwR8czju7MePr0eRyESU2QpiYOumUwrbVGq5z91kd7tx/t8aN78PlbHx6ZHolvjmiejRiQvzJpkn8FENFVpSGMRv0aow1laTgYdofxkL39YUfQbmRkGSN+c7cTK/lAR/r8mMIymj0OUeYyIq9dJ4VSmklzIaCGJ8sKAQMclGVO3XTcrK75/vd/nxBeF6lH19N1LVmW89qTN8jz/HCROSeTae+DhAIkCffu3iHJ0kPBbkyg7+pYGCxIUykmrq8v6YeGoijI8zRuICkI+17MSK21cpFYTWIT+qHFGs1kkvGFz73Fdr+nHzqyzDCdVLzx+msoBUWZk+e50E6VOUjLjDFsdxvWa0nv3e3XWKtYLGbMZzOZghCi35EcCNambNZ7Xjw7J01LUJbBQwiG4IUR1bYrlHI4P5DnGSF4hqFjcJamMbiyYjIpsUrk3IQQafqyWsaGEgQ1b7sQWZyyIdt+oOu7Q4pinudoZaMHhebe3XtC/Y4X3jCIJ1maCtjrPBTFlMl0ifOOoR/Y7wbms1PKQoqfk+NHzCZ3CXcLum5Hmg1kpwltu2a3vybPp5TF9ODdtt/X1LV4YrRtg6bnzumWur2mKAPegQs9fTsQ1EBiM9qh4OrFmr5LuLqy/ODDl3z5x54QwhFpoghhSlMTmYEJD+6lgEhZppOK0z/xBQbfy9pX4tMl/lYx3ddImIJTgTa0dGrPxy/O8C7n4ZMvcXU1sG9jsewaBt+T5zJ9GD0UxulG2/XQObJU2BDT6VT2VLdiCI40NTgnQFSaFLR9S7OXVDjvXjGAduD8wG7b0RiZXiepJUsLkjQQNl1slgWSMUZSnccCXv4sIUmSeFkOPH36jKKwAlB7MdDvYqH86NEDjEn4wQ8+OEg8Rmq6iRersHrFDDfgeP21t1guZ6zXK+rdlsXyCNfVbG468mKBc4Ew7AkkFPmcxJaSAtm7mChn6FoBfmfVETbJeePJ6/zlv/SX+cl3v8Tm5prvf/8DvvjlL6FUztX1nr/1v/xv/KN//I95/fXXUVpMu1/1CANppHWQM05YZio2OMI8SxNzYDiMDf50KumyIxunmk7pOke9Hwhemg7nPWEIhylzPwy0QydG9tqKDw6S3LtrWnZNQz+acwvBAq08NkjxrWMxHACl5FyXdEB78MkYp81Gm5geJ/Iz4WT32CSQWJHuaiUNFD7QtHuG4HCDyD18B93Qo7WcNfiEPMtIsy1h1x28XQ/VPcLeIYDDYSKj3Pc9WI2mR2uPMQFjDfN5QZE84MMPP2Gz3aKc4vzqktXNint37uHoCZFJYU3B6ekj3v+oIs+nFIVmsSgY3MDV5RVXV1dkWcGdO3eo64Y8L6O8aC+DGqWZTmdkXRabvAEfpKHrupa2F3ZoPwxUZYXRWsARYw+fuaRvEmUIzYF9nQQr/mNRdlmWBdY4nJfwE2Ok+E0zA1k0S3dSOPsofxJZv79l7B3YXJK0ejuUMxjzwwDfDwOCUiyNUu1xujre868Cd8boAyCcJKOE3pJYg/c6mjmL7AMC2qQUeRLlybdeoj4IiDafHUmh1vVMqiWz6RHOaSbVgh//0h/gP/rTv8zJ3SW/983fZTKZ8ujJE4YBLq6uObu45Ctf+Qo//4d/nvc/+Iiv/7N/zn6/ZzKdYkyCTWVY1HWS8KaNpahSCdmJXk1aObQyJEbWdBqluoezFg7hMmmif2hgKn4y+iCzdYgFRzt08rnEfzqeF9bYCOpICNFYH40gr4xNbgE+rTVt11Lk+WHYMoKyY1V6O4BxOBdQSpiWeZLw+OFD5pMJx0dLqqpg6Cd0TU/AMbSNDDkJpEnCpMiZTSq8C+x3e2mwjcFqRRscRCWIV8Ntge0diTHcv3ePxBqcH2hb8bN0MRX0zp07Ug9oc2hCQlAcL+bsdnvyxBC8Z1+LbUdVVPhKwMnNast2s+Xk5FQK/BCDgRRoLEanPHjwmN/7/X9D2w0xyCbIuxjLUBffqyEqQy4vV2y2a6bTTAbBmSXLPA/v3uX4+JhJPqFvO4w1+KEVVYEaCFpYVc51+ODo24Fm12FthtI5ZbUgy1K88zS1F9mVSmm6Dh8CdUzM7Z1nvd5yeucNQtA0+5ambvCqp95LmEmaReYYKa7d0bUb3NYJo8IYTC0JjooEo3u0djRtQ5blEBSpzbExLMI5CD4T5r1KydIJP/ETf5A/9rU/yYP7T/AB8kw+n74bIuvV4CPTvuuEzd0PAvD2vfg4dn2HUUrAYSWgV2J9ZOUM1PWeer+hbmq2uz273RY/DPzhn/vD/LE/+gu0+4YXz1/yzrtfImC5ur7m6bNPGIMgNpsNbS/3xTDIXi3KgizP2Wy3/M7vfIO+H3j77bd58uRJPJ/1AagCAZfr2kU/rpS+FaAqyzLyPEVpxXa7lf0Tz+LxjBx9814d6IknlHhs9p00pzbNCGODHQcdI1laZK+GoijEs3u/x7vAfLYghDHNXNG2nSR4+pj0yy1L2zuP1p7Fcsq9e3f55PlziqJgOplgzSkhBs6NR/mY/rzZ1fK64jk3Mr76XmR6YmukGYbd4eccB/TTqmS5mKGjd6gxAhoLkylgtSbPChn6GbFl8m5g6D19t6fet+RpRt91h/uui///MJRSCq/kDNMxuEFruWsksfyWQCLNvIu/epz3EkoYiCfmSFQJDL2n6wZAi2pFj+z5aPcDFEWFtSm5yrl7b4bVUFUleZ6TZxVtM+Ccij7rLVoJ4y4w8Oz5JVpZirIk+MDlmeP09Jg/8GNf4+X5d/nO936H3banyA1FMYv7Q0UWpWW323Fzs+Po+Jjd3tH1bWQq70lTCbg4Xk7Jsymz2RHr9TVtp+N9myHBYgNN02JsRreXmmTo9pRlgQ4ZfeM4f3FBVc5QqaQ257mia9dsdxsgkOcZiU3Yb3fC4A0yhJ7deyhegjc3dK2ja3oyO6XK5hgtioe79x/wsz/9S/zYj30VRUYIlr7OcR6Ru/e37NPBCdmk7WVQOXgT95So7/a7HXXTst/uuXN6yjtf+AKrzQaT5hwfLbheram7jovLS/GbPKxTAV+rqkIpI71Bs2N5fMTy6Ih9vWG1vqbtGppWPAeV0lxenPOZz3xGLA26jmHoKYsC7yrKImUYPDc3qwigyuA6Sewt43wYcN4Jy9Va2rYT24XLSz744EOMCgxtx9nZBVdXl2w26wOT1RYJd+7cRSktBBygblqSNJP+glsF5sjEn04qZtOK66tLdtsNTbunaYQ0cOfOXRJr0CYhhFTsuuoN29XqcAYWRclkUpFmKYvFXIaexpBoyxBBS5skmDiYU1qRZdWBzd914l03noNJkjBfzJlNpwC8ePYcpQ1JmnC1vaHr92L/EwZGy5ix3wjBv1LbKNquQRsdBxxOQMfIzBP2LXKfZWmkxHrob/2hGfd/hLfEJ1oAVjnzC/LC0rQbnn7ynIePT7lzd0IbvXp3u4GhH6gqIVx4WtwArhcLrFe0Ef+XH/8/CNnQBG9f+W/xuBuLQaP//Yl+bBaCQsWJaNCjyaMsLoUW7y+tI1BoI4oqzyEo6jj1lzf2VSahFP3SMEqzIJ5xI0gRgiS8jiCiNBMcJKDyuuUivbo8Z7vfELRivliS3zmiLBV13ZHYNE6jOqxNsTZhtdoAkNgcrS3GdrEQF3bKdDaLQIQwe9wQ6PsOaz142VDLxZI+JtrhA1mSUmR5pIr3dN4dtOSiM1dymQ2etm6pm4YAWKOYzRZUZYEGHj1+cGgslBJZ0jC0ECT8w0d23GIxF/Q8eYhzA7vdBmNHxlv0Q9IJITZli/mcxFguLi64uLim7QNt16G1hG3sdlsmk5Ll0ZztdkXX1EyqCh0sVVFQFLnILlwn0ddGvBPls5ODWCsTwTfHYnHE9dUVaZaSpgajHcrDtJzJe4asDUlXVXhnIExpmpqscAQF8+XyYGxpTAKIsX4IAZ8NzCbLAzMthECijwh49vUFkbtG14q/19nZmukscHxsUMqhNAyuo+9rrM3xTouZbZkxmRR0ww11syUrLF3folVKVU3ZruDf/c4HvPXZn+LTn/sDfOknfpGj5RFaWx4+yhgcKMbmT2OjLMNog44eiwEpUEU+F7lJ/nYq03svB5b3dM2O7bbjaCnhMJc3Oz7+5Jw3XnuI1Q4XwRhhvkpz6LzHaovrPV3rCM4zX0xpWvFi1IlC9eP+l73btgNN07Hbdfjo7ZRmKVrp6DkmE/a+EzkpwYCXw89YRaLsofk32mKtyI8Co4xPkWVZlJ5qdruGtpXkQUnSNGS5QuuBwTc03U78ibwlKE3AoPRwOB+ca8myVPyC4tn1nW9/j2Fw3L37iDI9wfd7vNvRNB3r9R6jS4p8RmKl4A4u+tI5UYW5AeaTJUVR8vprb/BX/tP/hM9/7m02q2s+/OADvvDO51GkXF02/J2/9/f55//iX/Dk8WvYJIl7O3poqdsJfUybuGXOIQwspSQVPASRe9hUZI5JNBxvmkY8qUxC7wa6bqBppJnKs0KGKVG+IgCtBe1JBoUfAt5JkbHfN9RxMp8ZizVWJpNGU+U5vmt5vt9H+fzI1JbGXKbdAvKNAL5WMs3P0pTBDVJIDw3Bd6RpRgD6oWfoGxmIRJ9W8WWURkxrK6m8PhDCQOd2oKYkqY7TO31g78H4W4j7RJqZvm9o2ppJOSVJE7xv0dpjrfiAaqV47Y1HNG3H5eWKi4tzXpy95I033hQAJD5xwFIWJzhn0Tal6xtW6zXT2YyLy8sDuCIBKHuWy2VsWKQA2Xc7bD6hmlV4PPvtlhBlBX3f07S3PiBDZHAEP0hYUpJggsX7FpC7rakb+kFo/0VekCR5fJ8UbdMdmkyvFCqaEo9TxZHtoa3BO8/Qe5TOaJsuBp2og/TJq1cZEuLjNN67o0x+BJz9oQlKI0AUfQZl6kTfueiZKw3noGXtSNK1xRiRp1mbHpq3fmhjEFEaBzjSvBkrCfFjM26UxpiMMl+SzhOMzUiTimxa8NWf/ln+b3/uP2K5WPDNb3yT5ckRr7/+OnXt2G7XfOMb32S9WfPuu1/m/oNT9m3DdL6kmksoRFACgCdRDgSQGrEfcUOg65vop6fp3BAlSVbYSK+yG6NZtLCDDIks1wMreBxoir2Fw7tRsXD78N7L50kHKpDGyfbgHWOwCSHQ1sIkelVi3fcdZSmDThWBK+fkM1DGRA9NouRk9MRB/ACVwvUdeEdmFdNqgdFG9raLTP3IThoL72EYgWiPNiK1Rin6WOCPhvvEe81oRVkUAm4h0rmu7w416DhxJ77Opq7Z7Xe03cDg5Cx7+OAuNknpW2GM3qxueP7JJ+Kz08u03Xl3qOkDCpOkFJMJZTURe5K9l+S+yDQVRFQaMWVAW7kDAmATqCZi8bK6uUEZsTNIM8sum8T0b0ViLYtqxq5ZYbQmMwlJUrLdbUhtydFRineKzJYU2V3apqdthBmd2gytc+r9FV1To6wRiSuisLBGvL76vsUY2UsexLtv8KSpeC2nqcFqSd/NsyAD5dQw9CrKEg0KQ5qkpDbHyXyRoQ0kaoopFZn1ZMWEo+Upf+infpZf/GN/EkVC28qa7VpJ6x56AYkH39EPjr7rYmp9J3fO6M8ptz59HESl1tC0e65vblitbri+vmG33UdAl5iumvIf/OLX+ON/7Gu0Tc2LF2d84ctfJARD03Z8/ev/nMEPTKYT2qFnu99JAJYyXF9f44MnTVKyXDxw8YFPPn7KzeUVSZKSJOIlLWemlcYfLQEzJiVPC4YsYyQe6EhIHHuUEBRaCYO0LMtXeplbAoWJqbRd1x7Og7GfupXiR3Z03MMidFEUhSe1Cbv1hqqaMSY8q2gtUxSFsIODYmRTo4TLkqcpJ0fHvPHGGzx7/hzX9SiU2BwYg1bRnB/o7IBvW8IwxOGmxvkQ2ULtAbjP4JAeLiSLjtF763q1Yr3dHNLAR7ncaK/QOUe9XskwOEmE3ND/cD9nUDTWsNlsIoiqog/8mJg73voces+RfZ6kNrJHRV7rg6gS+r4lTS1lHJDeWjrdmvcbY8gyJdZH0a8zzzPSzMYaTjxw9/s9Qfc8fHiferel6xr2+0FYUT4lOIP30SNVi9RU6ZSr6y1ts+XEQF6kXN08p6w0R8cVjx58gcTM6VvF1fpDkkTTdU0c5GgSo1kul1xe7Dh7+ZLerUB5ttvNAQgpioKmbdE6Y7/fYhMNWtG7jrrRbHY9bS0BMFVhY63ek2Q5u62kbadZQp6Xh94xz6doXWAtlIVhv21pdobj4wXlElbrDUViydIpaSJ2T7NyS5oUMry3YwBTRZpMSIsphhm/81vPCALLiERdg3cSXONwBC+fgfhIC9tflFk3nJ9fsNtu2e13dF3Pl7/0RX7yKz8ZAX7H3XsPJC1cG5q6Zl/XNH3LKNseJaTvv/9+/Fkdm92G9EPDg0cPYwpqdyvvdD1aCaP17OyMvBCp+tD3bDYb+ZyNjXfcEL8uo287dFAMgyRnawPWSg3log/t6vqK2WzKi2fPGLqOvmsPxIXROmVQntzB8ckdBh/oBwH1+96hlWXoPT72DqMVitEJTx494t13v8yzZ0+p6552Fz3KgcRY7t29S1mUGK3p+o4sSQg+HAC67W7F9c0Fgxd1hjECVpoYbqitxSapDO6N9B1jem5VTTDWMJvNDve+DJQDbV3TDz3eD6RWk1jFfrMWr+9RpcHobTeeoyAsPhfxIEnSFSXAK56Z8UzqB+mhBpeSpnmsJQKDa/AOjMkFw/Ly3MMgrNCu6zgtjplNZ6zWl3in2K47Nptn3L1bcnxaYozm8cMF77//MbttHa3pxM6D6EmYJre42f/Vx48u0VUGpdKDZkSkH4x0DUaWHRAvnegDpAKo0cttRFohODEoJYKAY9PlnHzw0oSM5oiOMTFKBWkCxnjzEeCTQ1dFqqd8zXa7FSlGRJCFUp6idIjpgYHNZkvfOUIwLJen1M0F5xdXvPboPpv1mpurM1577RFHR0dMp7M4Oe4OzAOQCXKaZRBBpLTI4gTlBq11NIQV8822bbFamEOz2YyyrCKrwsSCRubrbdvJZHiQYna/39MPTjaNtnRdL3JFrVDagxsQA1aPcgajQFmR/LRtLRs8FgcyNewpihylDVpLM16WOTomjY7yAmnSxLeCEJgvSqrJQ07uHONism7bdkJ7Tx5SlVVMxZJpf9f3FEVJkliGoaPtJCDEmoIQLFpbnOup99IAW5MxOM9uu2U2O6ZuGpqupixziqKgyMvD67KpiQmiir4THxjnokF826IUtBr6XmGsZbfbY2xKkiZ07UDfd6xurl9ZR477d1KKSlM3W9no2uBVT1FZTu8uCDhc2JGlIhVNUk/ulbzHQ0+Wzhh68VDKsooszzCpZsgGQkiw9ojJ5DE/+ZUv8uTNd0mTKUrLRu+6jt456v2eEDq2u61IVr1MG/quY7fbC1ASm7/gg4BXr/x3PwhoMp/NBARqdlxdveCzn/sFymrCRx98wHvvf8BsVnJ0UslRGINY8jyn6xqR1jrHdJbhvUwWle0p05RuUHgnQIhzUS5oNG030HWeMS1TGLKyh9M0k1S71MRLy1PXHbtdS/DExESZYhktxazSmiFK9BKbHGQo8QA6gIDOiUF6kqZkRcBaaNotWhkCkWU7SDGQFeYVxpGwhCaTirKsODu7kATovMBgqPctwRvqBrZbjzELJuUcYzMUKjIN4tS561BBsZgsybKCz3/m8/yV/+Qv85m332S9XvHx04/5whe/hFIZN6uWv/+rv8av/ZN/ysMHj0gzS9M2GCOTfploy8Ta2mhUboV1Z/JoUhvlIMJk6OM5K8VsN3RRringkDEpARnIyFk60NR7aUCQAznCKcIcHgb2u+Yglx6cxwFBKWGKZTlWGQwQ4s/ufQRzDumqRBmFQtnbBD1tZG0oArPJjOAcXVuDL6JkT86OHoeyCQFhB3f9QGJ1lGPJVD3PchQBFTxlYdhuG6AXqQwS2BMOoBMxGTqAjiBgCAzdgFWKPLHomMLt40We2AQzsTx57QFN01Hv97x88YLdfsdsPsf1kihKMGTZnNde+zzXG7hefUS73XP//jH37z+g3Xcopbm5uSFJEkCxWq0oy4qqKuhauau6GBygNVglZ26WJSSpZhjSKGtTrG5WbCKL2VhDno3n4q2/kXcO573ciYkjy/JDoEGZ52itxYdSSfK83M3Rc8SLJ59DJFRpqklSJTiGD+JhMvg4lPGHamn0lJKGRYD95XIp53ZRUBQZWV5gVCK+ccYwmgCMxW7XNZHFE1MsI8tCRTlZkmSxMBUQQPxhhfUigN9A3dTMJ2IbUpYFxydLdvsdaZJLiJOWxuSP/+If55f+wz/JfD7hW7/zLY6OT3nw8BFN6zm/vOHX/49/JUyOYaDetVxfb/ngg6c8/fgpD5884fj4mPV2E73fIgCeZfEG16QZ9H6gqqa4IbJMjI3DUglE0EqjDQy+Fcmpv5XtAbes3MjEHSE9bRLE99hJoIWLg4vocam1BTMcmErEWqtpGpq6lRTqAHhhymgNk+kcEJm2DrwyRAoQIrClDSrcAudVKR47Q7zrfWyuiiyjyFJhTQ4Dfuii/5U01cponNEEPxAGzxCi16KKd0Ve/NBQ1moZng1uwA8DaWJIkzKCLRxAQfHc8nKHNa2EfzWtgA2DJUkNWWnJ8oztRqEJkQlWR3Cbw1BUfDqFFXPn9D7TaoELNYPvokxZoYgDgeiJmOUKYyHPZXh5eblGsSFNNbOFJc0VxnqqSUrwgRcvnqE1rDcFTnVkuUjVjbYsl0uW81O803inUSFF+ZT1/grvLNNySpYE+kEA1L7VjLL2spyQJSWz6QI/pKRZgdaOYeiZlCV5mh0CGwQoknRHBVLXdS2YlqZuCUFAdWMyZtM7VOWSrnYEr5hUM2azI2aLJYvFEUlakKUVeVHxO7/zfYZBmjV9WIei+vEuyL0S00QPrF+N3BXEzzVILzA4z8X5cz7++GOuri4jeGYEMNOiBFosF/zRP/pH+Pk//FW6ruX9Dz7k7bffJgRDOwz8+r/6P/m1r3+dn/3ZrwLQNi27/V4YJO2Ofmjp+obpZMr+RUPTNSyO5nRdg3cDL589w9gEZZIDwDeZTA7n6ma9iRYit/652iiyLKXIRU2TJhlj4itw6E1G8GtMZg0h0A9OAItOo7SgzjIg4zAcIrL5Ei2g/KgoyvKcsiwEf/YBIrHh4Jk6AooRFJc0yYQ0LXjrM5/m/fff58XLM4bzM7KyJI3BGBAO4MS+bnBeLJgklC8h0BOiDHiIygltRI6vjAV161WoCIczrO96bGpvGfdBUoubtqNrRXmVx3vLRGJAkiQ47WKtndPsGwhjmvAQWeAxaOOVM3UEVa2R/qHrhnjGuggaSP21WCwOnlzjWTT6H452EiEEetejjbDq8zwhzzMZeICkrWIZerFGydKKNE25uLgRgaAXpu10OsXkOcPQ0PUNk6rk5OSI+aKgqjImk4onTx7Hng9Ojh/w5LVH/L1/9F/z/ke/ydBrElNhdE5SFT8EFlfTBbv9hvv3HwpwMTj2exloSG/YkecJPjgZunjPdDLhen/NarUFDFmaY6ySs8grlEpp6o7jYwn6AKn3ZjPxTX/x4gVFMUernNROmU7mLKaa+eyULJ2TZnOSNBf1QJocwHBFrDFVAjpFq0SAX8Tnvx+6CObIGusHF6cxArL6MLDd7fjud77LdrNlcI40SZmcTnn06CF/8Ke+grGWs7NzXnvyOiixcBi8Z73diR9kZMludmu5U5Xn6vqSyaRnNpviXMdq3RKeevqhZ7vdkaQpRVFKinteMPQDpydL5rOZ+Fm2LdvtlqF32EjAmJQlRSqJ7l3Xsa8lHT7PRE3lBmF2+ghAa6U5PT3ltcdP8P0gA7SogpCzYxAfemU4OTmNwWvhENglUmsBn4mycKWFPX96uuDnvvrTfOPf/RYffvARxqZopWj2O87PXohisK0pi4K8KKii92BZlrFui9YadY0nhtxFANAFT1AygHGjwkdriAOZ+XwudUSRQwhMqwlpksZAi8DElswnFd47Pnj/fTarKyZVKX2iV3gda3yZ9sn3ivWAKEbAJlJD9b0Mg0T6P+YPNISoiFIKhkERgqTBK2Xxvovs6tFDWs6gzWaD9/dI04rnz78H9ARA68DNpaet96IeyNbs9i0+pnqHwznkSZJXfa3/rz9+ZIAPb8AnB3bG+CIPhswjekqIdO42Fkii4xXj7lH2wSEpUJ7k1iwbojFrkObiVXBO/NiksDLGHMBASerxB4ZI0zSxYJNXeXR0JNp0IARZjE29RqtEWEUDIq/UUFY5s/mC5bxChYTjoyd0ncjmhA0jJvVpmpJlmXhI9I4sLTHGcnl1xe78DOcGzs7OXgEWC2wSmM3mLGbzaIwp06CmEYlu3/esVivqWqYx1iZMqglZnjGdTdBKiQSjG9B6ejCyFfWz50AxHwbyLJWmJ6bDNTF5V5JDA8vlXMCDeBmH4NFxMu1DNKWMf962DdudoNxJIrKw6TSLPiPlganRdQNaGbbbnRiiR8P02XRBkqRcXZ+RpgXDMGBtIs25IqahgvhCCX39JisgJGTpjLLMmc7KyDJRhwLD+T42ADI5GXrPYnFKoKUdzmOz7jAmif9/wOgQEzZlvU6qKd57pvNcil2fUu8Hzs9WVBNLWc0xRnFzvaHvG4oyZ78TX7myrNA4plXK8bLC2hzDkvt3P89i9pi2ayjLgjQvItAauN62/Kt//SFPzy/4xvf/uTDkmpq2a3GDI9GBJPUsZxVVVXF8fESVy9r43d/9Paqy5NOf/hRd2zB6UtkkQWnDvhbJHyo2mVpJUTZfMJ+lfP3rX+drf/Rr7PY7Xrz4hDffeMTyqIjTFKEwN00bZQzirZemNjYBAjBmWcJyORW/ocHTNtK4NvsmAk+aNLWMpvrAodgVD5viEHZzfX1D1w4McY9Yq4VRF6d5eVpI6lYgsl3MK9I9hzLiNyI+npokOGkuy5JFNaGqFtTbc26ut4e9JjJAeT3jFD3LxBPozukd6noLHjKbi4Fs09N2kCYzptM5eZYx0vbHom88e+7ducO0nPL44WP+0l/6i3zuc29xeX3B+++/zztfeAebZKzXA1//Z/+S/8/f+zs8ee0R5SRHqYA2BSF4jo6WBHU7JdZ6dIEdGwY9QiKRFSWfcZYmaK3o2lbYNomcnRIeIUBO8CbKkDo04p2XxM/defHkGaK3pB8GeheZrUphbIJOUlBK/IZURlCKPggwL2xDzeh9CLfsLSmSvaSfosELoD6pSqwaqfPyuQYnv/shMhi1IVhN34nRuUwRLXXd4IZBGC8Y8iQRxmiagG9vmd6v0N9fDYqQG0uYS4Pv6YYgxVaQ1L62dRA8aW65d/8OL19ecX1xw2q1omlb5koGISiP1wNBKZbLh1zevMfF5TVp6ri8vKTIUxKT0XYN1cRiTMZu3zD0Ax9//DHTacXpyZzJdCq3ofd4N2CyNPqXFhRljlKQZcIkz+6m9IOjbRth63U922F7MIAWkL47BBnsdpJ8JkwXRdeL/4tIuIkmx+rAHBFGMzijDk12mqcyPOld9OdT0qQP470jxb/ROfPJjM+8/QU+/alPc+eOGHhneS6emkHgL2H8yQQ3xEbHexc9kJC16HpsnHbHsjACpLceg1rJwGq1WrFer9jutmw2W4q8pK4l9W3wHVl2xG63heCZVFP+1J/6Jb72i3+UxXzK7/6732VxdMTj1x7T9o6bmy3/09/8W2IOrsXHsO0anj97yccfP+Xy8pK667hz9w4B2MegrRGYV9F+IngPLuCiP2KWZRgrAKh4Lg14kKThyEIz8X7zrzSUB6lz3FiBWzbv0A94P0TWinzfEdRTRh8+U6nBXJSwebxSdP1AcAGvRRZflZNDjSYWDUqGBhEMkJCaUb4rUvY0TZkv5ux2NW54SVkkIkVKxDJlrDHatsH1cVALcTAhe+zACA2Bth+gFomjtZokldTkLnjqWsnwKvjIlnC0TXcADCQZVFaKd06M9uM+9z6wr1v6QVjq2534lKElZU/kQcL+EKBRo3VkYSnDyfF97tx5SFr23Gxe0vfSAKSZoqwSqioRKTk9SjnSTFOVBXkZcINiu20YfEeaw2yekqQDbdNw/+ESYyQg7Hq9xvkssrYSVqsVIWiybMLQKZRPWc7ukKcF19dbjOlJ0gqtLYsjhxt2rNZrmrohyyuMsUwnC7yzkhbc7Oldj7HiCzm4QJKKOXvXtCjEK24EusIAdT2Q2oI7p/c5PX2Nu6ePmc6WlNlE7nRlAbmXAjJsJBi6fqDrPVrp6A+ZYiLLV7zMopRR6dj4eW5BGIUK7vbPg3ijvfjkKVZr7pyeMJpUymDPsDg64gtf+Bxf+tIX6bqe977/Hm+++Smcl9f10YdP+Z//1/8NF/0gFTC4gd1uF5kwwjrzfk+SSCiRDwObtSh1bGIPMr3eh4OfXBclnF3Xsl6vx9UHSPCHDNg0SZIwmUxYLo6oqilZJj5vY08x3vcgNh3b7VZYpVrjXQweifJRjViZjLXVbDolMYbtdoMxhv12x/27dw511ngHy5pVh5pFtrM/gIIhSEjEg3v3ePfdd/nff/Uf8PL8nGoyoaxKlAriB0hgXzciCd9LEJxCCSigTfSBVYyhFSFIaFaSJNgkQ3tF1zZAEN915+Tni9Y60sPI4OY2JETRNB3aGsoyIStSqmpCnophv4/93YEB5H/Y+iFE5t7hLFVy7hqjcK6DNCHghWE6dPS94t79B8x/MOPysj0MOkafL2GhxzptDFWJfoLeWx48uI9NpJbZ7/d4p0hswXazIU2hKmd4r1ivdxEUlvdEqcBkUlCUFVma4UKN8z0fPv0N6u4HzBcL+m5gMql49uIDPvro+yS2ILEJRTZltxOgRdJ1JcW1dyKlvHPnDn3fsdlssTYnzyZsNzXb7YY8F6XTfL44SK2Xy6NDjxsCMiw7PuH6+ophcNzcrFBqQ1VWaGXRKuXmaksgsFm1HB+d8BPvfpXXnrxJmmYcLe+SpQu0zkBZtJVhtbGRgSqpTigVzwcttl6MUnStGMMPRpKHc0JqGEGwMTDo5//wzxyGgKJCsOR5xjB0fP/773FycofBBYLrefbsGUTgU2stLFUl4UZjD+y9p6635DEosu1qmqY+3JWy5hxJWrFYLMgSuQe7ruPl2VncI9LH1LXYCYBI3cehct8J6Mp0QmKF8LHdbun7TgLxlOLZs2fMpzNUrCeEIFQe8ITnz5/TNA3T2ezwHjVNx21egT4EGfLKQCsE+Mxn3uKn/uBXOHt5Th0D+kLwbLdbPv74I05PT5lMJkwmE7Isj0w9E9msGSZJyMoi9tuibpKkWyEQtV1HG61mxjXWxDro5uZGnidNubAW5QNFnjObTqKXr4CZfQwgsVaGJxIuaGOdcrtHffB4f0sCS5IkkpfEK3YIQxwQ9weWnzHuUAMoFT2I8CgkGCYvMrFmQ7Pd7qMVmKUq5wSXQEwiHwbNzaVjfdOCgr0aUCqJfbDYygScDEW0ePj+qI8fGeDzHqHlx4dQu0NslCIT71W2xAGUFIaec+PFh0yilI9Ryj8sNRk13f6VA3U8sEExuHGx2h9C8kdPtLYVFBk4pLPutlv6SJHvuobRB6iqpmgjYQwvnz+lmEypSmkgEuMoylwS0SZHMZFHAEQxryQyBcVrZretGZynaUROtd3Kwf3w0UM5rJR4qlkj02PCLfAxyle01hRFSVGU0QjVRPlpwFp5nyuToiZ5nDaLB5sLsNu3Mb7akWVpnI75GDgQwzWMYblcyt/HDTE2BoPrD0wIkM8viX4dI7AXkOc4SKsIJImh63r6yGYZG1GR2gV8qtnt9oTQoFVBCB3L+RFpUvHixYeM5pbiO5JidUmezUntkiw3lEVO0+5wro/TmpFCGjBR3uIGjwbxHUoStrstTbcmBJFe2ESYaeWkwgeRCxJEBppXOaKpl41+vFiiVMLp6ROStIdQoJRhVhXMF1Py9IhJtWAymTOdLCjyaQQlJyiVYHQGQZoPYmpfPzg8mu2+4x98/e/zz3/939IETTFdsN/twMvh++677/KVn3iXo6OKSZ7g3IDVBtfL53r//gOKPBPQTSmyaPwclOHps2d89O8+omk7Hr/2hM+9/TZ+cCwWC7Q1dF3D9c01l5eXPHnyGv/2N55zc3ND2ywOU3sfjfVDCJjUoEnoWk3btmw2DVmm6RqRQQjwBG3TU1UFJrN0rSQoBUROXFblgVEwXjAhhFsPHuTSShJLlgmAN368aZpgEkkItdZibCKHuAr4SMPvWlmbQQnDqxt6yomhqmZMJiXbTU3X9YcGEgW5ybl37y6np6fcrK6p6x0vX1zgnMeap5RVwf27D6idI2Do+5bJdElRzVBaEuh0uL1MlBImn0ExdD2P33rIX/6Lv8LnP/9ZNps1H73/lC++80VCsKw3Df/yX/5r/uf/5X/k5GRBlsNuf0NRlGLC3Yk8iAhMiTykF+N1RGIs/zEGH0TPnij3zFKLDiLJ08aw29cxLXgsTHWkhzvQFuUd3eCoa2ExaCs+nV3v8CFS3xEGRVe3DLtaGBVuYGfFRzMxhnq/Z1qW8Zx/xcPR6ANQMTLDAkP8zBOW8wV3Tu6Q6gSFyEzrvXiEWJPK+RHPuTTLsE4kmsZY8rwksZa+a9FWYYxMTo1qIOwOZ8SrjAXxk1eHQZJS4l1YlBlZLiyAJEmoBpF/73c1+B6lNCfHC87PLrhZX7NaX3Pn7l1CnPgFBS4EsmzGbue4uV6xPMrI8gWLxQwCNPWePM+4ud6y2WwYBs90Wkl4iLWEwTGdzcjTDFRgdX3Nzc0NIVwLCJ1nLBdH6NyS2AyjA2VeopdGCqauPxRq2+2Wq6srOR+TBGMkCU68TcSvc3A+Mq9tBIE4pNsdAiwUOB9i8yap8PlsQlMP9H1MOfTipTmf3uXBgzd447W3+Nmv/jxPnrwRjfddZCLKEE7uYc8wBPpO0hNFvibn7+BahqGnbmqaWvavrHMV7/mANpbBi0T06vKSb33rW2RZFj2RHNVkGoH5gTTPMSHl8uqKboC7p6f8qV/6D/gT/8EvUhQpv/fNb3F67y53791n8HC92vI//s2/ye9963f55V/+06xvbg7Drr6TCXnft3zwgzO+891vU1UVXd+RFwU2SUhtQppYJlUJSh2YmAFo65626yirSlgmwxDTfRPQijzL6IcBG/eNBMEI01HAq8ici4yFNIbtdL3DpiKZGQE5qy02pqmmaUbfCwO1yEu0Eo82Y2RI2TUNmTVkRY7zDhOZwD4qBg414DjYEEoF1oh07rUnr/Ebv/mbnF2cYa3izumS1VpTFDlpKr6piTHRDkE8CAfnSPzAKDFUWiS6Xd/TxwbfxzN26Hvwwsrtojex89GChDEUQs4eF5mrwuzTKGNjvWYYfMAFaPYNLjYY+BB9fdvDuQXqcAbLWZVitOH46IS6fcrjB8sozXOgB5TuyHIl0idCVJI4jBl49PCIZ89WQGA60ex2N1xdWYq7D0hzAXSNNThvyBoBFYvoJWi0SKs2mxX1fqDeDdS7hpOjB+ybNZvtiq4/xuY5Vu2ZLmfcf/SIwfXU3cDleYexGX3vuL7a0HWOLC8JwdPUkkI7tMLuaJuWqpiR54bETnEqxyv48S9/hbc+9Q5HywcU+QlZXlGWE1JjSVJLmkiKc5JYlJWfRdgZwrBLrTm8pwd25KHuJzZpAlYbPZ7VRAkTByBrGBw/8zM/yeh/NNbiSkGaCdhjkwTvA8+fPWU6nVJVE+q6o93v+a1/9w22ux2TspT1EhliXdMw9C3eS00hbJhG/KKirMu7Ae96Xrx4TllOKMqKfVOzj8Fsy+WC6+trLs8vIuDDQRLW9V1sJMUbeVJNKIqKJEnI84I8fxXkk0NXGnu5w2SITgScVWQ9C/Ax+gC2bcs63uHL5ZL9fs90MpGzXo0DcWFvjuC88yGyTW4tkcY+KzGWz779Fs9ePONb3/p9QgiUeUGWC5OzaVv6YWC12ghoGBkt/dBixteLxtoxFCkc6kBjiMQEjx/6aLPhCMSQLkW84wVoV0AaE4ZVHHBKYEdC0zSsV2uMMTTbDfVuy7Sc4AeHj4OLg4+xun2/tBYlgDWGsqgYhvYw0B6tiUIMeZO+cqyEbocIrwKFsXPF2pSulaa/rhvaVUO9b5jNJ2RpJfVKKmffaMFT5DnTSsgb1iaYBLSRQdd6s+Hy+gqlKi433+ZyIxYubdsym83Z7SM4qBNOT4/Jspzzs0s0eUwuvRSJsBJZ9Gp1w2RasVjOubneEoLH+YEkMcJobrakaU6WVSSJxZpwCNOrqgprNU+fPuX6+ioO+HvaOmDuFQxDx2I+pyhKnn1yxt077/Dj7/40n3nri0ynU/HU7BVtuyfoLrLMhX2rjSjhiGiCWBGJd/eI7ilFBHyF+TSC4v8+M9PahDzPmVSTw3lzqzRr6fsu+iBmKAV127Gra/I0pWkaAfmUrDXvHSGMLFk5x/q+I7EJWZKKR3UEaYxSZElK6AOX51f4EFivdxwdL9luNjJEHxxKaY6PjsnTnJvVCqWhd56urQWMV4Hddsd2u0Y8tmOWQKxZtTb84Ac/oCqqQ48fCJSFgHzX1zd89rNvMZmUh/trrOfEMic2QlGl4qN0v+8dVVXxta/9Mb75O7/Hb33jGwJu1jV52x4yB0YAXeq69IAZFEVBiGrKrhV1oUk0Ot5lXgW6vqdp23gmOrr4mQyDw7UNnffsQsAoec66rqn3O2EiA5pAnucsF4uDf7eAuhJ86LyPyqXbgXA0MTgMk/vBMwwNw9DFune0A/ES5jMoiIN7Ua8IaUAyEvIY7CHnw37foJTl5OSUopjSNCu0FvusUQ0gCjsB89R452ki4SLQ9zEx/kd8/MgAnwZMZHepWAChRg6eirklEVmPbLKx2BzBsBAXmgKRaR2Q7xHMczg3ekPI12mtCPRSTHklNEyUsGzSNDa7AZ0Y0iyLiy2nrmuZ7CKJvUopAdbwlNWM9XqNc/0hxfVzn/sMwzCwrfdopSnzhOXiKC4OzdXFFb3r0Ap2ZkeaWmaz+WF6s9vWoBR93zKdzFgulmSZsGqUDtT1LgKPiZht2wwXRJYMnmEQpLksM5Qy0TuDaMjexSm8FN5a6cMUw0eJg1KiC3eux+j8QCsXCYEwLxOTSkLYdi3TuEQumb6X9zezOUPvomTLR9p6QmpzBlejtI8N+miULlMPYyw6FichEP0NBbxZLk9o6kDTBMrslCzL2e3XzKZz1qsufi+HsQ3OtbT1mv1uz27bcnxyHxjw9HTtlu3umuVigXOGJBEvNq1Sht7RNR2JFmkaXpHYEh8cbeMIykLrCUrYjNZkFPkxRT4jSwuyrEShcR5mkxOmkylvvv4VtDZU5VJo4kpjE6GOu8FxiBz3ckn2g4DNBH8oAg7/HRSth/eeXvDrv/Vt6pAwmc4xSYL3OynYMDRNx0cfP+P9D1qsGXjzyRPKPOeTjz+k7xtJHYqXilWKR48eMZ3O2ey3/JOv/wve//gZ2iR898NnfOs775NYS5IkfOUrf4AH9064f/8+H338EZ/9zGfIipyrqxtW1xsmM0/bDjgX4vvaApau9zjXMQxdlHfKfuw6+bfaIAliPmCCRvlb03iNZuiEMTL0A2maYHMByZ3vCE6a9kGLV5+s8yHK1Bz7Zk+O+B2gLMYHdJRajExhQmS3oVHakeUCOolURuQ7zgvNe1yPwWv2u47vXr3HeiMgsKTcGfI8YTLNcGEHoadrc8rihPn8CIxQun0QPyu5Iwf6rgHnSZOcL7z9ef6z//Q/5a3PfJrdfsv33/uQz7/zOYJK2G4b/tW//tf8jf/pb3By54jTkyVN36Ktpmn2AmCiaPqakcI+enq4bojNro+MEmE7WmvQaUbdywXc9aCMpm9a6norn5OPHBYlHmZDLxHvQfeHaZUOQmE/XEhB0zu5+Nu+j0EiA87LmeOck6ImvhYV5eD8f5n7r2fbkvy+E/tk5vLbHndd2Vu2q9EW3Q1PgAAIDi1oQDOSyAlGSBNShEL6VxSKUGhinmZEMYYPFG0DBDkEMKAFCAI0aIOq7q4ud/09bpvlV2bq4Zdr7VOY0Qt7HrSBqlt97znn7r3Wyszf7/v7GqWw3k02CqgxnfYmY8BPbMTlfMmsmFHkBUfrY6yvacM+WVd7rrciaV2tliRpjE5E3hRHUZiWxhSzgshISMjgc5Tag7pC4yepF+HfLtD3x3UZRzFxEjObz8gz8atTyjAMHqM0szyWpoiY1bKjKArqpqYqS2FfeYvSGquktU/SBavFGcprLp9dcPt0xpYxaVrTdT1pmnD33m0uLi5ZLVc4OxBpAYLcYNHJaDrfTeeilRhdrPcMg5yTaZbKcMdKKIFSEX0vSb2LxTLIqeQ+xPERRfGMZJ+CkyYcL0FUbZDBWmuJBh3MiC12EHaO0bGwdGzYo4YIpXNWyzmr1TGvv/4m9+69TJ7Pefnll3nnnc9RZDN22z1RHDM4y+A83b6UNOjBhYFQT9cNk4eL80PwfJTJqvcuTDqFoY4S6Y40hMIMuri44t333pNpatuTBH8XO0gTOgwD27ISMCoxHB3f4q/+pb/Iz/3sT5EmMe+++x7r4yNu3blL3VqqpuWX//Gv8i//9b/izq1bdMHmQSkJoOmtZbvd8OCTjxgGS900PPyoFK/X1YGVb+KYPM1CcyQm2VVVMgYDxEksQ84wdJNGwpNm4r8bJzFjYzOfz1ksloCwhOazOXmWi+WAG+gDQKUj8YxaLhbT4DGKDF3bMVhJfNttdyRpwmK1lJCGRqbpSgnIaEIz7ryAujZMtj2e3jqUPQTyyJZiSJOU23fv8Nabb7PdbHny5BlZqsnyGb2zpEMEXuTI40DKGBlqJon4T1k3INJ6hfWDNCFa/L5Exik15yjJavuOvu9QyjPLZ2RZEsA9TzcM7KuaWMfM50Ee1fcoIpRz4l/oBjyKfhBJWmwkGdgN4jUrZuI+sBUDkBnF3Ll1iyR9mTsvCNMtS2O220uenT9gu92y3ZUslzEnx0uRJvcdWQRvvHpCfbcgKxLyNKXe79ntr1gsligjg6s0i7l1dkIUx0FmKIneWR4zn2d0/QBekyUFcVyRLjTnz6+p+5LIH6EV2L7m4uqK2bzgpZdf47X793jllfv0ruHLX/phevs6Zbnj0aMHVNtWwPW2Q6EpiiXLxRGPHjynLjX3X3uLn/6ZP87nPv8Vbt+6w6xYCliuhVU1DkzGoYL3TmZPxkudHur/sT8Ya8Ox8Rp7B48PDb74eKvxz9FTA3f4OatpP5/UP7I1MDhP2/YMXY+zjuPjM6qype16mqbj6upKlApKAHLnRJGw2+3CMx9SV7WwBWPig2+TF6bshx9+QJykFEEeZoM9gPJ9OA96sJ7lYsXp2QlPnjxlsSgm9VBZVVQBiNJaYyIBv/FMoVezIqeqa+qwL0ogofgmxnGM9Z4sSXHWykDcyL7ftQ1HqxV1LQPj47MTdGRCsymMFvHKk+feOhnI+/F2hHRs73oJ65vN+NEf+SrPnz/j4aNHXFycs1wuJF3WRNy+dZvl6ojtpmS73U3KLAnmkyxuozVRFFRZbgjXXqwxijxHI31K27Y4J8b73vkpPCpLxY8XH9IvPcHX0wXvYXmOum5gsyvpqmoaUt30HB2fpYN/oSSwaoX0aKUG5SaAbxgcRSEgYxIlGB3hrZ1CCp33KGOkxrAer8VvM4likmghdULbcn29wTnH6ekpWsV4Z4iigkhb+laC3YzXZFFMlmagNE2/o+526Ag8Pdb1gcDgxOvbRMRFQlNvMNqT5hH7cs9260mSnDhRxGrGbDant3VgogpjqBs8Dx5doNDk+YI4MqyPF1RlxcXVc8qy4fz5OUWx4JVXXiHPDM/Pn+C9oyxLmqaWXsBZCeGy4MzAwwePSZIZaXLMCy+8RGxOmBUnvPDCG1in2WzrMKwN6j0THXAAo5kSyUPvoCY4VYsdhFKAeLmGcPMA7E2pB58Cbw9BnQdLMHk2LecXF8RJQtVUwe5FwnGePHrId7/7ndAHZER2YHCWtu2EKDKSE3oxH42iKDwPUrtppUmjlKOjE/kzlPggW4SB3AvYj1eU+5LPfe5z/PZv/zZxnFAUOX3fkRcFw9BS15KmPu6xQk4Q5WLXNjx9ds5s1pDEUVDfDMxuDC6OT+Q9jEyruq6IkyhgAgSASvAGGyTOVVWxWM554437/Pm/8It88NEHPH7yjGHomeU5eM/V1VVYO3IW5/kMbQx121LW1WFYh1ioeBf8d+OIOElweLHWSIT4oZaiAmnbNtiQlQclAqLS6waDryWVPIk0cZqSW7FyiiOxHhKXGBcGkLI+URqlIpQR/3VpXRTWh8HGqE5x8pzo4LunjZWhe5ySphlZmgbMwGC0RyED6yQ2lM6D7ykKw3xlSYqItrF0bY/yQlgZvUmdc/IsmwNQK6QGN1lX/CCvH1yii0xKBTUnsCAODAkNwfwdvNchhv1ApR2ZecDkHTEi84IyI6CVkmJupMtaNwhleqixdmBeLEiSRMyV8RDMNc045Q6SUq0V/dCJ0XAkcqQ4jkhijYmUSCcTkbjW9QathRpdzNIwQZX0tN22ou8Hdvs9db3n6PiIIkspihylCM2VQhtou5YsS+TnFAVtKxti39ZoLZNdO8j3zIqCyER0Q4kwoj49iRAvI0vfi9Hu6Gs19JYn548Zhp7lcslisSBOJLlmTBFumoYkiqcgEQHhFG0vsuU4jlDqEESSxDFpeswwdCjTT1MvGGWCEa6NMMYHUFIay1EuOUqlxr14nK50Xc9HH33Iblsxnx9j55Ysv0+k1xTpKXn+lKbds9tvSTMJq1Bek2YRSVII82ToQA/0Qw3e0PfIlKPcEmlIZrmwFVQysTpX6zOaekZd96zmR9x74UWytBDD2NmCPF9Q5Gtms5VISEyCdyYcBsJM9EDfiax8ZPz0fQ/eSwhGFzYiNTJT5dnFa8YVIbIhoY13Fr7x3ntsmgYfZyTFgrraC/hqhQb9W7/1b/nWt76F1h5Fz0t3z/jKl79EZAhTXkOkDbN5QZFlQUriqZuW623JYnVCH4rXTx6LRDlJYl5+9RXu3j3h9u3bfPDBBxwdr1ifLLnYPObBA5gtWoxWtE2PtTJB61pJwoXRmwu61uFsOFx9CJYwOiTHKkkmDRMlr0UmhR99YQbaJtDEtZ8KQkmQEqmk7BPBVF8b3OAkAVoLSzMyKqS0SuF2mPnBYp5x//V7JKmhbWtJWh6ETl+VwwTwNU1PWT4FCFNKMSF3VmF0xmJ+Qtd5mtqyWt1ivjhGxxFOORS9+KH1PbYXiWTXd2RZxtd++Ef4a/+7/y2vv/Y6VVXx/vsf8/Zn3sL6iLKq+d3f+11+7Tf+R167/zK3797GOQkAGsOBlBbWjvceF9ixSnlMJKCLC7XqCAY4q3Aqom2Db4oNEe5RxDCMlgY6rPFBhi2ux1mRFbnwrBsjh31fizwg0jHOK5q2F4DXe5pOACc/smKU7N3WitwuNpq8KEKxJgwfmWPp0ESMxrdhaKMMWkXMFkuSpODyckdVtcyXMhWN45w4NswXcy4uz9lsronTmCzJJXjCSDDSar2UxDcdDmif4VzEGE7i/AHe8zBJfbwLLaeOuHX7DidHK7xvQxhMgmKARJPEc/qhJ4pynI95fnFFU3eU1Q5tHDiHFQgTi0LpnOOju9x/9Q2SuGa5UDRtQ1m1zGYz8f+M5Wy0donWiiROWK/XHK3kXOvaFu9kUnnnzh02my1oTdO0tO1zvPdcX11z5+5djo+PyfM8rNHRL9UEdkjG6E/rfUIS5yTxLEyRjQxp9IByImmxw4CzKnggSqM1hHADdEQUFayWR9y5+zL37r3IenVMni+Igum8d4qryz3f/Ma3MUaMxq0bhH1FSHHt5Vn3bgzNcoFt5cRXyqgw2Duw+yEwx7wPcp1Pyxn6YWB1vKZtGiITURQZ1X5P05QopdnvtqRFxssvv8Iv/tk/xU//1I+SZynf+973iOOEF154iboeKMuaf/3b/5Zf/vqvsFwGqWpYj3LOD3Rtx26zYehbmlom7t6K71zf1hgt0EOaJizmMy4uapRStG2DUrBar8jzTEClOMIOlmGwXF1fhjqkoqwrOZOTBO/h4uJC9sehRQFZmgtTALFCGYBdVYe6SrNcLjEq7Lltz9mtO/TWcXFxTl7k3L19K9QVsqavrjfkacqPfe2rxJHGutG7UdIh+yHI55ysIh1YK5KMGZQQxYyf+Imf4MMPPuTBgw94+Pgpp7dukecJTTsQmZgsSSefQmV8GJZJPaONAm3DEEIFuT5BBhcTJzlD72j7nnZwdIM0+EWekmYxcRIRA33vxUfJeRbrFdpEVPs9VVVLTeoQpnfbEkWauiop9zuU7dnvNkGqrlFIKNxYk0XB5/L05BhHSmR68iymLq/p2g2rRcyd2y8I0DR0Mq4zhrquaLuG+TLjheUpVbUnSzP80LHfX9F1FUdHx2RFhoo9RnuGQYY9SktCYBTF6EhjYh9qrT1V29F2Aybt0FbjbELbapxtsR462/L0d3+H7cby5/9cyhtvvMX11YY4cZyd3OXVV15HaU/bVrRtTVVWDIPIDvPkFufPOl55+bO89cYXODm5R5Yv6AdHs90HVYI0VJN8PNSs2uiJETY21jcZVIf6lht0gAC6Tay+cYA9BplILTX6gzL93WY6h8YBTh/8N+Xv11Ntvq/2HJ+ekKYxfd9yeXUJCvb7SoC/8F6ddygfrAJsH2oUCYGxTpKNEwxdU3NyckzTNnRdw/X1pey7WtG7ju32ivVafDfLoWUxX4T6TfH02XNG5leCpevria2Khzt33iFONO0zGTJa6xkQEKTrOwbrqFQpNaqDLElp2xptNHmWcHV9wcnREUfHqwBIDHgfajkvdPO+tyFMRqEC414H1poP6bpJmnB2dsrP/9zP8iu/8iu8993vsdtsmM1m6CgmTjPiWNQq+Cik8EotYQf5O8XnyzKGefggrY9iaZCjNCbPCvIsRkGoXQTYRomvZNu1AVQhrMV4eoYE+BCmbRTHdEoFC4kbclp/qN+NGdl74/MlyqEkjZDQsghw2MFSlw2zWcLx+oTN1RWxikXhcuAE4Zwl0hJA5Jxi6B3zeQFekaYZZ2enAkwkGV070DR7YaehcG4Macn43DvvcHK04urqim/8we+jowgVOZEz6yOy1HB9fYXRIrldr5fBemMHyDO7212h9B5jYtbzYxlsNCVxHKGjgqreUFZbnBNfxH1ZsloeMSuWzBcZVQ1ZNkMR8Zm3P8/rr7/O+9/7Du9vPma9WgFwcrygqnfiJ29qnNU8efyMNMk4OZ0TxwX9oFmtb/G5z32Z47NTGTwOLpzf/uAbTgg1EZYEjIwnfBg0C9NsDNQSX3iHVxK0JvdUTaDxWPONv3+TKTwOSlGwL/csFnPwYv2zWs549ZWv8uTxPR49/ITjoyOqqkUNfjpvo3xGmsasj1bcunUrXFuxAeu6IEG1FucU+90eYwx5XrDfV5I14B1VXZJEEdoY2q7h3ffeJc9z2laYZPfu3WW1XlLXFU+ePKVuW+I4pmtanKunz9APYmHRDpblfEaeZcQ6RtR4HfP5nNOTY8TKKgRONS1xGtP1A5rguaoMhOG79566cmRZSp5n/JE/8pN8+OFH/K3/4W9T17UwmQfx+b24vKRtW2azObduB7DcGLxKSE2EVqLeSpMUo9Vks9a0YpsTJzFxkkxraOgHYhOxmM3h+Jh9WbKvano7iG2LQjyzFUHKHjF0ojYUkk0YE3kEcHbgrQKviUwU6jg3PRd4dfAR9iIHj2NDlhnyIhLAP1ibjOrCOJJna/QaBYsx8nx45ymKTCyMBgtKVCRjjSTPog0AdxiKBZawGgkSf6im/c95/eAhGzpEs3Pz0D4c3H7SxntJFMMFtsTYho+1+bj4CN8nAIkKMeMuNBwizZDFHEWGKJYEl3H6poKxrjFjNLhIrEaQyzlHEsd4pUjiOCDgThpmDUWR0bYdTdOyWM6JY/meKBq9Kjz7/ZbLq2uapiUvUl44vkecCEtoBLmGQfz4kiSZ6PJluUMpj/MdbVcRxWLImOezcNjnGKMYgSHx3vB8+jUWMz5MTQg0YZEeR5EmSdIJUa+qekK/5/M53robU7UO7zUmIhjOimx6/Pokk8b06vopHhNYgTqwqVqclQICpYj0aLgs8t04Ek8yQewFmb7a7sCLUXPXdzRtC8YTxVDkP4TvE8q95fn5OU17Jc1E2TArCpq6oW12xFFG24t/hfcdwyATuzia0XeeSBUcr0+5e/slqrrDW0NeHHF8co8sWWJ0RprlxOmMJMlxTmEHYdv5cWNzYL0KrJgeOPgt4Ec/SaYCcJR2+8Bi1UZ/6l7dWC3A6LMkkreLzZZvv/deSBkyXG+2eDuCWoYkzUgzhYqisCYiHjy9xnzzXf7Cn/0F8iCH0ShQHtv3E4soMpJvKbubyBVtpBhsg/aK682WthXj+mEY2Jd7zm6d8dH3v03XrWkuLhi9yuxg8frgMSKNmMYiEo820ImTzGC0XFNhLVpJ1Qwj97btQxEmz/g49ZGrZad9Q9KWBFCSCZBh6Ae08sSxFukuarqmN7BnmWbGEZ4ObTxx4nnhpWMWsxVXVzuuL3uePN7c+H5JKsObQ3Ku9+JR5z2z22u8l2by5PQeR8cvoJTBMWBdF0AkhWOg3Fc0dUeeFvzoj/wYf/Wv/FXe+ezbdF3Ht//gu7z11ls4UnbbHe995z2+8533+BN//BeIjPglWuvYbjY8e/48UNYdg+slhStSNHUV1mdg8qaGKBIPL63MNKUUsMCE5kqYJkNgk2olgHfdiAdhHCdcnO+wbvT+ihGj8gETCqVIaZxS5GlCHOQkIEb8Iqe0gb1oMdrIFG3o5WCM1HT/J1muFzacHHoCHNlBnPHzIkcpzeZ6x263x0QJUeQn6nxeZNzN7nB5eUlZluAUWQZJYAK1Tc92Iw3Scr1GRxn7/U4OaC3FR+fE/2MYvZfkjAcnAOWjBw85Xces1znaiEfpMAyTJ4wxkbCqYvEV6bqWy8tLur5FaUPbdQj5Q2F0wmJ+zJ07L2LMhvOLD6jrisEqqrqeHl4ZssjU/uTklEUhIRTejRNuGZ6Npui7/Y7ZbE7TNFRVTRxH7HYS7nDnzh3yvED50Z9u9JmUlSbnlJzfWuupEpAiL0JF4RRORJLmgaEHb4W9vVre4sWX7vPSi69ycnybPF+Aim+sKUVkBGYvd3t2240UclE8sc3Hybo8k5o4jYWtEb5/qgfGYYn3REZLZRAkl8L+14HRoUFplssVSRrz/OICBqkJmqamb2uUypjNZ6zXc+6/+Tpf/uEv86UvfJ6+s5w/f8D11ZYvfOHz1LWkS3/84BH/8B9+XawlApred11gfESMKZibzbXYKgBd3woAHAuLJk4Soki8ILtOGNdpmjJMgJ1jPp+xWM5Jgol113V0fUPX9UHCkUkfjpzVRAG0HUxgXkLXtsRJKvuRlQRta2X4tLm+JInl/iiv2Gy39IPl9OyU5WLB5vqKtm1Ikpi6rqn2O2IFy8WcJBTj4mkk7AWjY4be0Ts71Wxyty3WChvAWcfx0TG/8Md/ga9//R9QNRv2+z3r9V2RA3Yd1dARR5Jgn6iIoe+lRvTiyWaHQa65G703RV4bhb3g+eUl5a7BeouJFIH0hQoWJ4qIfblluy9JspwkianKWvwS6yYMnQ+DZfnrpDEb7CAeuG5A64SJIa49Hhuk0hlFMeNWvKR3T9mXz6nLksG2QM9uV+I9LBdL8iwPAQwzwJFkCV4LcN00DfP5jCgwba2z9MNA07a0VR3ALWFPxlEkoWVpAl5qXaUkVTOKNWlqUCqibTIunzX0fUtZd6zWa6nHzUCceuLUcXH1mIvzh1gvoPtgB6LIkOc59++/xksvvUSez3jzjSOy+DaLxQm3794LKbECwDk3NrLiGxUW7bTnj2xXpcx0naf6Xx0YfOPAkFDL6OnBCjLeG3uC/NFBiqeUNEXO9xOISIiIss5JUqE20wDBOUcUR3zhC5/npRfu8Ju/8T/x7W9/i6Zu2e5Knjx9SmwSknk2hRqlScztO7eYzxeBLHBgSkdJEtIwIc8kWG8YOhQRs3nG5qqmb3sefPwhSinquqEpS9IsJc0y7tw6EdCxrEKwnlgVlFWFtY6HDz4Rs/5IWGO9H+iGgRCvxwhqaKXAaLyzGKUo8gw39PSt+D4XWUo/dPRhwNp1HVGcBDaJAF/eqqmeckG6JzLEPjxnOa+8/Ao//TM/w+PHT3j8+CnbzYYsz8lmc0wUB+9VkTVqFfxGvQwPdrX4VNmQcjra/UhPJ5YE86JAK0WRZWR5xm6/D0mWhsVyweAsZVnKfsfIzJLHKjImgCs9kTZTEIgxRrxs3Q1VjT9YxQgYLX3OOBSdBvneyrBamwA2xvhBvGVffPEeOk6JAhtpGBqR6od6N4oUbWPZ7UryWcwwtBwdrYkiCUW8uroiiVOSKKJrGxbLjKOjOwxDQ1laslwzmxmUmTHQ0/Y9q8Uxi/kReWbxviFNU6qqDrYqLXmRk+UFg9f44B/sPaGO6VmtVqA6yko8zlDSA2MdVb0jTgzKquC1lzKf3SMvEs4vnlNXDS+9+Iow386f0fc1dbMNoRwFUZ7wyqsv4p3i5PSEoiiYFQvuvfAK9158kdlsCQhLewRcB3sIlZkUCtYG8oScec4Gn7LAXMPLcMMFBc1Yv4xqFsXBe3ECcsY24cbgAAgenPJ/WmmKPOPoaMXJ8Zr7r73Cb/7mv+Rv/s2/zbNn56R5FsIBNXFkODlZsV5JcGEfQKbR116biChORXIZ2LVVVeH8QNfVlOVdulasu7yX0CDvLDiLsz1tU7PbiBT61Zdf4fL6ksurK4yC0+Mjrq6ukKxqOX1neU4cGfCOeTGjqvZoDYtZwfHxifSrwe92vy85zk7pewmEct4KxDQNYuT6Xl1dofUJWVbwZ3/xz/Dxg4f8m3/zWwzDwPHxEevjI5bL5RQq5qz0ABKm09GE/cPomDTNSJLA2o+EtT8EWW4/hFAbB653RElMEmzLdBSxWB/hgvdfWZbs9oIn2DwnihRu6EkSUdWNarkxGG+Uz44t+RhCIkqWmK6TOnQcPuVpRp7PSFMdpPGibIpj8d0zWhPHkg9h9AFGG+0HUIGVq3IenT87AH9ewMmDf7JsWs6JL7NSB9LbTYu6/9zX/yoMvpuvQ+LeqHf2eO0Ob/YGiKeUny74yL6Rw92FxksmMKOJLKggsRvNDkPq4cgWDAxA7wSZreuauq5ZrdeYKCbNEpxzFEYi4du2nSYEknAlNw4EVGzbhrYVcGcE6qqqIjIpJ6frEAphgsyqZUzzHKcDTdNgjBYkN7Da+qFlsA3d0LKvGrbbDVob8myB1pbBSmSyMQcmnRvx0fBAjuy78ZpeX28wRpKKBBmXosMG/zgFpEFG4Tmw7CRlTJgTKkzqxuZPpmY9l1ePRXapNdZ2kyHvMIicKklinAtppFYknVEkbEW8p2tFsiTXVdKwkiSmH/ZAT9v07BhwNufZ00vuvXDC7rrhcvOMoiiIjaLcbUmihDRJiaOctrdk2YK2bVmvzzg+usfZyUss53dZr+4QpTlZMcfohCRKxVfACdBoh5DANijxU3OWwXYImCxyM/zo34Ow75QwzsScX+7F2Gh5j9DsAyvP4yefBpkgBE8YCCb04ivjvaZ38OTZOY8ePZYpgHcBZVChqPWi7Sd4jinAGwyep8+vKKuKeX4kzYhEH+IDc9J7T54XvPLyS7z/8UNipUEbupCs2g8dnzx4wId31ihlqRuZEN279xKffPAhTavIinwC9GRyYWRiFsAYFwxopTASrz7F4dlxgSKtPWGy7gMYeqP4116mvRPKEqawVtYxPiQ0YnDW4jWkOqSvKo/WAs6KSXvwYglx7B7PcpGSRDG7bUNbazZXDQ8+eUpZVZOPj9EaZXKRZuQF69WK+bygyHN2+z3L5QLv4f6rr3D7zks4r9nu91RlA178lcQ7xWCihOX6mC9/6Uv8jb/213nt9Vdpm45vfvs93njzNeI0Z1/WfP+DD/inv/qr/MzP/BTlvmQxX3Hr5JRX7r+Is4pvfuvb/Kvf+teSnmg0eZExn89p24K6Ee/JcRCgNEITVw7vA/OP4NFpDFmWEBlDP8hzJ9PriDSbh0lUTLVrOO9qHAZtwA49ycRkDJJ/pYiNwg0DfugxyoFRaEwADwhMCwHR6q4Kprpj4xamsR7x8RIdd/BLFi9RrRRFnnNyfMyjR+/z+PFjsuIWmdIYJaxOG5gHq9WKophRVw1ax7St+P6kaYG3Cuc0faf5/ne+y363RTkByYq8YBYKi+vNNToAlWOzitPESYY2cWA2DCL373tMGHCAYl92PHxwQd8PXG82XFxcUJYli8UKrCSde6dQXhMnBVpntO0lqIir6w0iiSnQWtN3HavVCuc9n3zyCa4f8CfH2K6VaXs4l+I4eJJGMaujI5qmYblcMp8vyPOMOI6oqlqat1YSj4+OjqnrevINGotga8ekuZBsrMe7IPuIDsO7JM6wVlG5gaPTM955+0u8cO8+eT4nK+ZoZUiSFKUNeZoFT5KIND0EThkjU88xBTqO43DOyFqOokjkERpuAgPjPijsVPHjUiFd09mxORz9ZFRo4D398EWargMUJoS89H0L3k0gy+p4RVakKA9D23F1teXFl16mqnv63tP3lm9881tstlvSJKJrO4yWRGU9Bn2FM6Qs99JQJgnKyAAkkAxQgLPim1NVlYB2SrzoyrKkt4pPPv5kSrc0xlA1Yrjdd31oeiRcII5i2q4NvkPC3onGVGo0/dATxwkWhVEqhHc4kjgK5upzPNC0Dbdv32G9XnFxccHTZ884Oz2hqWth1ziR288KCfnxYfDllaLvhSnlprCdcW0H8MabUONJHfbWW2/xR376j/Ibv/FPKPcVjx494+hoTmQM+90epRuyPKO3ESJ7EpsVHekwKAwBWIHJYYLP68XFJQ8fPJJm23thtsVjUqfl1q3bRJFms9szX644OT1lNp+JTUtIXXQO/E0pmBZwUGtNEwzF+6EjzwoBQXxgl9KDssKq0SlJUuB6mM1T0kRRVRFxmmK0SPDjWIY3dujFtyoWsE5pQ5Ev5AyMVACOY/zkHQRVVVPt90SxBLWkSUJV75jNZmE/EKPuNM2ItSZJPaMi48nDjn25oywbHDCfL5jPM5JUkrfT1LA6mmEixAKlrEiSlCzL2W42/MGupKwaujbmj/3cX+KLP/yjnJyckGYFhGZRgMFQS/UBtBkH7tOwP3it+pshVIcGZmSVjCtm7H2mr/Cgp77hwMQRUD98T/h6FQz5XUg/VUBVN6SJ+A5K4ycN8HxR8NUvv82P//iX+M577/MP/sEv89u//TukacZiuSJJ5frGUQTecu/uHY5WS7QxMuzRIYwqHHDiZxpP++tIMhDDfBniNlUVwuYMV9cbSWTuWoZQi/ddT9t24MVd13tPtavwg5vY8PMip6pbukFsC6I4RqMF3HJQVxVxIl6Hw9ARx4bbt04pwsBolOONQVb9JIG7YZmkZE1rJQQKkcD2oEQS9/Zbb/Mn/uSf4u//vb/H48dP2G635MWOxWpNmuY4O1BXNVfXl3R9R7nfUVZ7bPBvQ0ynJkBHBRaWURqNMOnScJ40TT0N+JbrJUprLi+uiGJJKZ3P5igtZ3WeZ6KoyguMNbSlJdI+KD0sY9t7k/k5BQiNPZdTKORMxDs6JyGFnW6p6o6+s8RxwRe/8CV+6HOfo+16Fqs1m92GPIuDhBN2uz37/YYPPvweT548JdlDlChOTk6EpX11hfeONE3pm5Z9WWF9y+XlDG17yiRm8D3GaNJZhk6UACmtsHidEzujvu9YrRYh0TYlzVKqqkJZ8TbNiwVFlrFYzkDJ19++c8T19hlXm2tkLuwnNvG+lIFaP1hmxQKlInpbMSuWeNVTzAxPnj4nLyLarhTVQZIQx4YkNaSpsNXabs++3NO2Paenp8wXC4p8Jr2Yk75mXPZybo/e2OKnacMZL56XTpjknaWzsn97oTag3AEgnNjD4sA+DQdQetwqGFmj45rFi4KjD71EUzfI8DkiTQt+9md/jqJY8O9/7/e5vLpCm4iiKLh1esyP/OiXef21lxj6nqatZeBa1uz2ezbXO6q64fpqK4OzqqKsgoKvb1HqVFh11oES6fzYSzsvznhNU0rqtNasVgvyJKaqatq2CyGcggV4O9C1NUVyCLBSShGbhNNTGUxY69BKGI+9HXtFua7aK8Y4KjXts2Cbgd1ux+npMXfu3OZv/I3/iv1+zze/+Y3guReRpmmo+2KSJAUUTd8FFZEL9kHCUB4Gix3EU9s5Rzf0k11almWT92g79LRlP1HBtI4wSYSJRNqLUiGQzPPk2TOGtuXO7TuY+LC+x4HRpMCbakmx3RCgLmE+X5BmmqGvGEM94ygVVqgeGKwQHoTxKbJo53QIgxs94xM0mvU6w6gUrXqWi1MWsw3WVQFkPwwTDgOuA07g3Kiu8Z86H/9zXz84wBdSSSBCEYUL4BDWk4AkymtGvyfxPzr8t0zmAW9DoahQXjTZJhK5hzQH8bQJi/+QmNwKec8z0huFDi4LuChyslx83ySUQn5eWe7xSNJnmmbYIcZEHuW6kGoTTayiwXbMZjPSJGG321PXFdDIRD6WUIquawPQ5RiNnaWQb5nP51g7SAqZHei7jvPrc6I4YnNd0zY9Q38OGBbLuSQkhSk7foxtj/GACZRQhchjjTE0TcPz58+pqpqTk5NQ9EWSlNsN1HVPkqTEkaKxIgkaQzrGgA04pCQ6pDi73lTUVUOWDgy2J00j8pmwC+wgE7coMkhCzICONOiMbrdnu63oe/EsqOueYfB0XcW4lV9dXZHlOXm+pK56FkcvE+kVZfMBuzJlt+vYXEkzvTg9Y+g6FoslSRwzX8zRaoHDsJifsFwec3b6AmcnLxCZGYqYwQ20XYcdoBlkc5H1LZ9tZJgIuDsahmuUDwh+mCjiAX1glTF6P3hho+LlqZONppfpepygQpKkD5ulsB8OgQKycSuq3vKd738Y/I4SdAgIGcZmFS8BNZ5D8asQNqVXPL/c4qzneDWXyS5eGky0BA7kM/70n/lT/J2//494fH4Vit0w+fKO7W7LxeU1cSTSqPff/4A333iL2WxF2XSkxXJaVyBrSlabD7JF8XpQWi7JgX06mkAHpiOHibAxsbDSBkdkDBotiYahIbGDnT6nJKtC6wZQA8468bUwCgJ41XbipRcnhtlsHsIDojARzlnOjzg9fhmP5fLqiovnNV0Dx6tbNG1PFCXE6Zyhj7HWcPvOHeqqYrk+Y7FYgL5AR4bXXrtPHEU8fvpMPMK6FrAT4KCVIw7R7vfvv8Zf/qVf4o03X6NtG9599z3u33+JfL6gLFuePXvKP/j7f5csTWkbSTz1VorbW3eOsV5TNz1N3RNHCXGqiKIBO8j6XcxnDEODDwDfKBkTbzCPiTXr5QLv9QQs9F2L1lFohhXWDqSBWRRFEYtZRp4lDFaHZiV400QiXRG5kCfShrYVqZI8+wIIxVGC7aXo7AcRD8VxYBBYG/Z/maQ678OadIQFKSWFEllWluXcu3eX//j7lsePnvDSK8cM1oEWTzlrB7JUfHpMmmKUYV82bK53tK3l7p0XyHMpZobeU5U1syKl7Rx1U7PtW6JEzJRjrYhHFrKJsF5ju57dViR8fbtjpOsaEzMoaBvxUHv8+BytMhZFwYO2Zb/d0lY1y/lKzkQfkg2ByMTYIeLZ80v2+wvKfcN8NqNrZTC0WCy5ffsOeVHwyksvo8YixNupIBiNlY0xzOfz8LwtBXw3ox2CD42ZNNdpmn567fpDoy1ngDCFTWA9CIv2YP0ARlhNLub46DZf/uKP8cbrn2W9PmM2W3B26xYnx8upsEuThFFGp7W68etYMNzcC+RXF4p9H35vAorGjWD874kJFHak8UtGhEmNYBqSR+YAA2ZsIW40E0qBMhIcM1hLVTdBFjajqlr6wVE3LZ988oCmqYmjgvl8RpbnEyNAQMOeumlomnpKlx0ntaMfrYRIpJSVJOTNZgVlWTFfzEmThOVyzq1bt/Dec3V9TVHkXHzve7RNM/l0yXuWwZFWKhSoQ/i8ozphoLfC0nChhvDIIDROYrxzpFkmgLX17Hcl+92O7XbLKDXp206QFC+hWOLVq+V6TWzd/lCoIs3JwSOJ6dqMIS0GzVe+8sNcXp/zt/7W36RpKxaFMCnjyJBnGVGip+Gqx5GGEI4syzGRrHmUYjabMV8u0drjlWG5XErzGVKDTYR4wSlD0/XE3mCiiPlywWo9p++t1IVZStt0wirzIyVMbCekrlF4pyYTdLQPXmTyeUf/Kh154kQGhpnJiYyBXLNaG+bzJX70+QKq3R7rdvJcupw4KhmGHm00aazxxgVrBGlGvZPG//j4mMgottutWKp0FjpRDqxW62AMrwCRIRLCTlACmDss/dBx/vw5bTuwXt1ilCVLwyWs47opyYvgf9aVpGmMUobjo1vcufMq77zzGc7OTpnN5zIsDiwPn0Zh2Cm1jvVOwgyCTyLqwMhxYdhzM9VUWMWHgbXsCX7yRh199UbrB8VoB8FUb3j0FMaBcih1ABm1VjR1R5YWgXku51aSJCwWM5SWxNkv//AXuXP3Lq+//gbvvvtd+n5gNl+wWC5Zr1YsFzN+6HNv8+qrt8O5Kn6K4hNV03Yd282Wvuup6lqSu7eikhiGnroWmTCrOTaAFqv1UpQ+seybHiZQXylF33W0TctgJYhIwOkeay3b7U4YWeG9CNgqZvZpEnN8tA6MmoHTk2NeuHeP+XwWromcFSMAKaoAxehfplDhbFYT0KodWO/ofBsAyoiv/PBX6Puev/0//G0++OBDLq+vmW23KKXZ73fstzvatp7WtRAOhFUtEmsz7SVjqq02EdYLyNA0TQAVPXQtgx3YV3uEIdVLwBkXYX9UEzmhyFNmxYx5lpEmhsjMBaQdDwIECJYU4tELeAT8xAZgGKz4i1sY+gE7WLbNhqqqmM2XfOVrL3Pr1m22+yoEtzQM3cCuG0jTjK5vOVofs1ouheHU1JT1NYt1YIBFopRQSogWUZyAV5w/v+b05Jj5yRnGDVRtx6bak5OSqZS0SIhTTZxq8iSjLKvAGoL5POf8/Jyur8Vf0fUorRj6nmiuw0C843pzSdNdUVY79uWe2SwLwzGL0uKNWFc79vuSpilZLlf4sqXprkmjGO0iZrOYum7QxkugW1BfzGYFJqQ3F7MMBjg9OSNJgkfs0KOC2iQawzRCzx7b8DyMfZITf8XR133oe1ziiId4UlXIs2Om51h8zW7WGiNYMhKNXAD5pK6q63oi5Yxe39eba957t2U2X5Blcm3u3btH11qePz/n4mojZCat2e1rPDFpnjGbLTBGo0bxnddhWHFIu3bO0jQdu7A2NtsNV5fXbHclu31J23aUZcn19RbnHfNZFuonjVGee3duCfhqndTb/UBT1+z2O+pGPPjaEHgzX8zR2nD/tddZLBf0Q48Pg7fB2qAOcJJkr7V4tjrpDcQeQMg9ZVmSJAmz2YzXX3uFv/KXfknYhbsdSUgGlhASRRTCb6IkJoljTKgnFTd9EJlAfgN0g1hkbPclcZKQF4VIfMPXjooJM4iXZhSnxIkM/4okpus7Nt2F9Chxcgjxc+PQ9yA7VrL9QxhQ6lBD2R7aVgbbQ9/RGWE2GuPRRhEnWVAMymfxIncCNHGUgzeslmuK3FNVDVpH/NiP/iSvv34faxt2Zcnl5SWffPKxYFBOSGVjXgQOus6ilJ1qrh/09QMDfHFcEJkEo4UaKd547VRIe4SxJItKCkcXEIubxfrk0RUKhTgxONsHGrcOMiN52KTR6fF+ENZdFE3U6ZFVB8EIWRs5+MKhOBYW4JnP5vLQ6Ai0w7qWyEQkSS7yyCTBOfF56LoeYyJOTk5DiiyTtLHv+2BeHVOW+5DYI4i2FIuOrm9p2oar62u+9/1P6K2nayGNIq7NNkS9W958400Wi4V4sAUPI4cwL4ZhCCwLA14Hc9aIF198kc1mF6ZdaUiCiti3NXXd0VSglWa5jsOk1GOdFBA2TFJFFtTjVURVtdheoVSKtcLaatoWE0s6pkwnJYk3ig1pntDUHU1VAWnwKoKqatlsdgxDP8nEdruSNF3graYuFUrNefOtLzEMCmUUaTZjPltzdFQwX8xZL19kNss4Wq+EPRnH3Lv7GY5P75CkCzQJ3iIm222P9z0EI3YYhd6M48hDERlwOqF8H5rOwyGA7ALh627+2djYjC/vDg2Os1ZM74MJOeGZHrtLuX8apWJ21zXf/+BjQltKlsVEUcy+66fmdcQjoygS74Hws9pu4Fd/7V9ijOLP/olf4PVXX6Iq91w+eUIZNsmj5ZqyamSj9JIyKQWeHLJd1/PxJw/5wuffIS8ueP7sHKMNR0enPD//hKVbCpjGgcU3sj9HECFJzSQREm+Cw3Tde0KkvUb5ELShNUo54mA4q5D0N2UUq8URx8fHHB2tUVrLVCWRdNSRiWKiCKU1WZpLwT64wGDwoYA7MAGM1qRhDXp6BjfgrKbvep48fsLHH3/C8ckJ8+Uxz8936Cih6wbKaicsRR9j0jneDTx4+ATvBso6GBonMUkSH0AzFG0/8Mabb/KX/+Jf4M3XX6eua771rW/zyquvMlscsS8brq6u+Ht//+9ih56v/sSPSbNoLX3fUe63XF6fU1Ytz8+fc3UVmkFV09tz4rhgNlvS9xV5HlPMcrSWlEh5NgYUPSZSdF0zMRWUhtgo8IbI5ERREgosGbzEseLevRMW6wVV5bjciHGydQIMJnnOarmm7+H84orHT54QRdJce6Ppuor9dh8SVIVl1uJJY1jMc2FzWof1AyBA0mAdkR4I9VfYl2SNxknMm2+9xe3/cI/HTz7g+bMLXntjjdFDGCY5YeJaizExJjKcn1/w8JNz8nyJG55ydLQOASMDs2LGbndO0/RUZYlSitwXrFdrfKLBH4y6vXXCUIxHzxBJmh4GSzc4bGdJopjrzYZqX3H37gnbzR7tPbvNlmpXEd0Z/bqEXekdJHFBnh4xK9Y0zTnL+ZosFb+x/b6k1iW279EO8mIW2KtWBl+hEJ3NZrRte2DjaQG7R1DAhq8zkRSrkYkwSrwnR68jEHb6KL8QZoycJ7J2hAlqolhYRV7T9Z5IJ3zx8z/Cq6+8xXp9i5dfuc+rr77EYp5LyNbE0PE3aDcqTCUPjZNCTbKsg9xu9LWDYRrQ3WSRHApyPYIXyN+jYZKWTfuOk8AHh9glWEZPXx8K/zB46cS7pus6tts9RTGTgdsgxfi+3FPMsik1vm0bnj97xtPjY5bLJQBlWXG12XB+fkFvLV5rtDKkscIhnlWgaIOHnvOeuqrp2pauaQFFXdZcnl+wWMxZFAUu7F1dJynp474/ArGjVHQsWLUg4+GzgyUEjvnASNFgdESUxcGzcaDcl2yvNhyvV9Rlxb17d/CDxdoB28kaWy7nzJdzSesNz4vWcv+8VpPUR8q5cA+5qdBQk4QxjmN+5o/+US4uL/i7f/f/w5NnV6TXFbMiZ7m0pGlEP3SBBRJR1w6lWpzbSjHtx/bbSahDlNB1lusrASeTJGE+n3FycoTRkhy83WzwbHB40nRFpD3t0KFwnJ2eYnRM17nA4Bt94xx916KUIork3o0gyAGQElays47YaJLEULWOfT2gnKXIV6ANm42lrEqU8qwXC7RKGeyeOIoYvKGpZFA0DANtW2MiUXskqezPYtsAkYqZz1a89eYcO1gePPqQut5jB0e5b1jMj+TsUz4w4qXe88oEwFWRpCld30JoTKIoZehihh7qumS3lzp2vV6x34v1yW53xXJxBmhef/0tbt2+LTYwIYxADN+VoPJB+j89m2N9FViPI0tKzqpDwyXPsKzhMal7BABtqKUOTKtwVvgx4fAwRPBKMYRhQCCGScNuLWLuLgy1UWZKCJ67vIS+l0AWYzRnZ6f83M/9HCcnZ3z88Sf0vcXEIiF3wG5fE8c5ySwex8SfrhdRE3MXZT/1Obu+n8C7tm1Fft02tJ1490pN3XB+fsHl5WXw85KhsqTWuymFWzFa8whb2Pay6kWRw8S632w3NE3FSy+9zGfe/gxpmkmPFdZoPwj5oOvH5God6tOpuj0MvZXAfc4p3N6Rz2dkacKP/diPYu3Af/ff/b/4/ocfsd1uiUxE09R4O+AJdgrBwkZ6Wj/1fONoYDw7Bt9PRAaPZrBSO7tRbgl4JXvemLKrkPPaaHC2ZbstKXfXXGvFrMg5OVoRx+M+5g+EEw7P5hTqiMZZKPcNnoEsTciylNLWOOeZzxbMb99DaSOkDWcpFGyursmLnKqsURi6zjL0Nc5a2s7y9luf5w/e/Q8sFnOMjri6vKJtOrTSdG0HfmRJDmIRlS+ItWfXD1xe7/HlhnSWMp9lJLFG0TJPFEkaM9iei4vnJElE3zeyV5sx2NLinSbLEra7K5qmoutqPn7wEdZ1FPN0Clo4Pj4JrCSxtrq+3mLtwLNnj1mvj4njmiGSgZUik0BGFU/kmcGKDFu87GVPn6cpoLm8uGazKZnPFxgTiRIhlhCn0c7KqANQK+EZXrzQCcyvOALn0a341To37skh8dRa+k6u5TCMgNpYPxDO4FFdKPVF27aBCSe9/sgc7NrRYkESWKuqpixL0ixjvQbrByIT8fjJU5aLGcvlglmeSjhfLKFvY3iU98L2MnECQJI4jtZHwTeQqX6bGOIhdbbterq2par2bHc7yv2ezWbLbrtjX5ZUZU3T9VT7ivV6TT90GAOdmNLTDQP37r7E22+9QxZnk+qBibohA3q8hBVa/MR8HgYJn+x7YVVeXl5OdeiP/MhXGYaOX/mVX+Vqs+XJ4ycURUGe55hBVBJe/GwERJxS7GXF+7G2QwD9vJiRpjnt0FOWNa5pQUfUTUff9WFwGhKWleAmxaxgNivwgb2+OlqzPjoiiuMbwyI/3ffpWQh7j7Vi/6GVoS5bmiokCo/ENBW8f40Ejy6WRbDrAKsc+21JlhWsVyc0jWW9WnF+fs1ysWZzvWM2n7HblqyXtxiGnqIYuHXyMndvv8x/+I//jrLa4/yAduDcyNojPIMHK7Uf5PWDp+iqmEgngZauaNoqsO0CiBeKTaVCfLWWlCiZTIuM1BhNmsYMwzDdhGEYwgFpGazo2aWRl2m0SDH6qWmxoylsQOKF4iuBHE3T0HQd3gnbJQ5R91ob6qqlqq6ZLwqKIiWKFHGUkSRZAAulSJ3PJXhjvOgSoS6SXImKlsbpYPwqhozODVjXS3xzZPjGN97l8rLBeYPH4mM4vbvm8moLquHs7Jp8loDr0T7FOYK/VqBuumDu6wfaRhpmpTTHR0dikrorp4J3vT7i/it3ODt5kQ8/fo9uuApAD8HQNIAhXgokSTGKibTHYpkVM2EyKpjN58SJIpoA1kEYU0mEUjHPNo9xVpEmsSwcFJvNhrIs0doEObDj+uqa5UJjTErXW/I8Q6mYru85Wp6xnK+4d/cV0rzj7bc/yyx/kXLfEicJL7+yZD5fYswM5yWYpOraqfKTZDABy6S9miotkekizeJhThxavZHgcYMJIqj66A3nAuuNG2hfCD8YgWkvfiV9302o3Fhcd50kLCklgFPf9QxYrjc7nj+/IIoimq6jKFLGAfN0IMHkcxlpTdeGpg/FvpGEsQ8fn/Pe+x/x+OEDmqoS7yI7cO/2bV56+SWK+ZLZosEjDaKJYoa+x7uB6+uS8/MtSTKjbZ6y27UsFyd89PGHxMksXBcC02eU3w5oE2Eig3LinTIW2kqZKVhF1qPBEKPVGJ2ekuczlos1x8enrNcnHK2OOTsVRlDbd0RxRBQnArBkRQCqlCRMjxs0hMZPMbKVFB47jMnS8o82GvT4fAR/RQtRdMLVlaPaScOndYq1jrLaC2MkpDJeXl2xXi1xzpPECfPAQJPUNjGGRsX0fc+br73GX/jFP8ebr7+GVp7333+fe/deYL0+ZV+2XF1u+JVf+cd88P77fOFzn6XIZdoqid0GtGYYOryzdH3LBx98gPWey8tHmHhHms1Ikowk8ShtJ8mjRwrwLEuI44HlOsIoSJIIYWQdgnyiqBAJaWgYZrMls3xFuR948uSa588bPvr4Cc/Pz1ksFhgNs6Lg7PSMqhl4+OgpT58+J45j5vMCEynwPWVVstuUWCtUdaM1d2+fYBR4N4SmLLB6AmgzsmTH26WCL5tRmltnZ/zUT/40/+jrT3nvvfdZHd1nfVQIWJZk4iNppBB99uySjz/+BFzK0I8mzPDkyVOePH3K0+cXNE1DHxpIBZhrw7NHkoAshtopbnDs6yp4OMKLd2fcvr3AGAlL8oPHotntSh4/eszduy+IVUEnU726qtlcbxh9sfyY1qtEarheH2HSu9y6HTN0LV2zZ7/bEBlFUczQeIxyDH0LQKQDeyIACzrSpKmEEtR1g4l7Yh0JM9cdBg5930tCWpSEABLxDRntLcZzbBxUTCwwPYYZRFjrwUV4IrQ3vPOZL3Pv7n2SZM766Jizs1MW81xkmgRwdJyaTpvr6HEjIIpMKf30PeO+Ocn41KfBvWnzUYQ0M413EtIxEvv0uKcHNrU8QwYH2AA8HfZsKS3H5lXYRvKe66ohjlKquiaUEjhn+aEf+ix37t7mX/zz3+T82TMuzkuePnlM2/aBwa9pupa2G7h96y5ZnrFaLIi0RscGrRVt09K1HdZJWmvf92RJLOB6pLFDz/mzp1w8e0KW50RJTJEnzGcZTd3gBiX4a2js5bMJsDddO/Q0IJUzPawDFK63VM4RtRHz5RqtNFmcsFjMqfZ7ZlnOLMup6h1aeZpWhhizPGOWS4L0eMFH9YQxkTTZATAVEEBAVGd7WevBG3gEafO84M/9uT9PWZb88i//Kk3b4By0vSUyYF0fzOdTkflrkb+It6jCeUld7waP0j3Pn11wfnExeVTGccRsVpAmEVrLEKvve5arJa+/cV+YPcUM8SMfMFEa2N7CRlosFsQhZOP8yWOUd/Rty+hbKAy+wEp3Gmfl/RmT4P0M2y9pqx5tZ1RNRzErQM3QRnPxvGS9yvF2Te9atBlI0kx8y7IsNN2NeAE76PpOPNacJY1jsjSn7xTea87O7qGU2KWAqFOUdmHwNukGAPEq3m53zGZHLJcFt2/dweiULC2wNqLrBbgZrV8ePXpE24qsqu8d81nNj//Y29y9+yqLxTFKCVsPrYIxuBC99MgYHOuecR0b8H5kBIuP1vgam5gDyOduNOx+AgT7QdhpXsv+MbJ9/TQ8kJC3KfxCIfYPEOTaYuPR9114vy4A5Jamrri6vArWATI8aNue9XqNMRFl1TA4N+2hVV3z+PE5x8cr4siQpWNfE+A+HxgLsoMTiUAGgDTlMPxQNyXJYRCHQhs5l21ItHXWUVctZVljnaXtGqqqoqpqmrrmerOhaWq6tqesapE9BuN7rQ137p5xfHzMl7/8FZqqldAMJ/FPHqjrhtliIb5yKjB+A3Q5ApjjXmvCQMY7JyoeSoq5qK1++qd/ijRN+e//+/83v/+N/0jXNRilsKG/EJKWDnu0eLE7Lzsy4yk0DtynQ8EFT8xDHT8O09FGhj1hX9dKEWuNNiIrVYjKoBks3nXYoceEJF20DZ5twsY9DFFGWyQATV11KOOItJjsx1GMTwyvvHKf/b7kMoSogAxZ9+U+2EdAWTb0/YDWsYTyKU2WLXn55TeYLTVPnz3m6dPngA/khx6jtACJldSYkYmDvU1EWXdsr3YM4TmJtOeN+zNOfuhEFA2ZgG1t25DnGd0gCcpeOdCWSMNuvwtWDdKPzGYzqlquRdMI67AoFhgVc3V9RVGsuX9/SV2X2BDMJ97DYsNkraWpm8lvPk0LklQ8ZbtuAG8Y+p7l2QqtDU3dECUuWD7JdfPeT5YISktittYiNR+v7ehhq7SwuCItAHQUSXL30A8oJQQAnMPGwmozxk51jrWeoRe/XMKwygbmu2AN48AqSNSnc8sehkuh/xNcQYEXy6mmafjkkwdkWUoSG+KwlwhDU5ROWZYJbmHkfEvTOCS+CgCotA6f3aCdAROTJhkLCIELTEPOaa0Gaa1zTsJa2oZ9uaepK5q2pe8HitmcKJlzdX4l15DR8zCMQ8QwN7TI8vwffNFV8AgOnrTDECTlnvl8xk/+5I9jreMf/5P/kQ8//JDLy0sB+YKSKkoTilmB6wPzuBd7JzdeXIJdjNHhHktooleaYQATa0x08C8kKNC0gr7r6IZO+u35jLYXpUOW54EMcyj75P3LvR9b+FGhItLhcY3KXjPWp3KeBcWatlirmc9jht5Tl3uytCDPZ+z3JUdHZ1xf75gVS66uNsxmc549PSdJErbX4X4MvbAgixWvv/YW3/z27wcW31i3+qBqUeE+/P9ByEY/VFgPthWmjmzQA84PgQ0wvnk1NQB5mtB1DSiR5UVa5CVRFJGkwc/MD+IFZS3Oqxs3xYem0E0A3qhnnhqMAPiMfzYrCtI8nxL4uq7j4uJCDP+R1JVyX3F5ec5sNuP05BZxIqey/CxJRjJGJIkCVCSTwfZut+P4WNB4YzLGGySgVoTzYtZqbc9uW2F7z3y5YDaL2G93dH2L1haU5sGDT5jNI7IsZpadEpmMode0vSdOisAolI2oruvwdxkW8yVRbFgmC4q8CJNQRV2XPL94LICAjyQ4IjRZMtUUZlfXNlxeXnFydoZznqOjI5SK6LueKAaUFMsubL5FUYRGUpiRm+uaJIkp95dEUcJqdcR2u6UMjJmiyEnTlPXRkiLPiUzOcnWb5fyE2WxJEmnmswXFLGa9PCPJBp4+vqIbSj7z5o9w78WXgq9AR9uNoNo4HQ7yAi/R03pibIyL/NDU2glBu/kaK61DwTDKBqaptD8UGmMxOj2L8q/Q3I6UVPlJ+33JN77xDdI0487du7z88itcXJxTLNd88MEHOOe4desWLy8WpElGP4AbRI7jQwCBUgpne3SUksYRPpLmyirxofvGN34f5YL5rDf0zUAxy6l6xwcfP6DuOqxXQXolMl4Tx2jnafd73nv3feLYU1cd5+fXnJ3c4uT4jLPTO1h7YOaMkxxjzGRie/DTCxMxZFqlVIRRmihKOTu+xcsvv86rr77GSy+9yunpGUU+I0pS8qxgNV9JGIeHfugpZnMcnrbtyLKZAHwhCUm8J5nW5sh+s4Fd0jbigdF3LUMo6IfJiNfhlXgtrtanfPnLP8L3v/99Hjx8SJKnOByXVxesViuMMZyeHPPk8UMuLy6YFzmr1YKimIFWwTNC0/cDbVvx9ptv8pd/6S/yztuvERvNu+9+h9VyzdHRGeW+Y1/W/PZv/Vt+93d+l9iIZEIkOz74jgFK0XWWumrZba7pu5rlak0c3+H7H1yyxFHXe7LcYCLPIbFQCqSqajBxQ9sb8jQiSTVJqoljhY4MKvJ0rmKzvwoHtuX8SpMnK4Yup6kUH37whAePLlBKY5Qijg1FlnN5dU1Z91xdXTMMA1meMpsVZFmE0Yo8y/HWc319ie070Ablj0hi8dUSM2QFyqKVgCceNyXaEhgHSktqpEfx1a9+hYvLx/yb3/4N3nv3Ce989mWW65RuqIWVYS1NPfDuu9/m44+f0NbSdK9WK7I8pSwrFssFr7x8j/ff/34AFEIRN6jAPDLUQxum3o6mbcB7kiTi/OI5qB1xJMWa0SneJjx89JDFasH6eIl3JgTamIn11bUd3gY5vFKgZKARRcXEus6ziPioYDhZTVJZKSSdpLLudiznc/EhDQwy5x1KK5HnxrEAX1qS1cf1MMpHtYoYekvjmuCDF09SbmMMaZrifYJCfO1MGAr4weG0SIpNVJAla+JoxtnJi8yKFavVmrOzM05PVhJ4EVKxI0afRhMAeTtNymWvFragDJZsYJGM5zqMgPNYdI/nuTSjftpdDoCgTNnxwYLBjR5d6gbA56W5nChlY1M9yn8CM84Y2m5gCB4/owSwKAruvnCXr371y/zpP/nzvP+99/mn/+Sf8du/9dtU1YYoGliu1ixXBYvVMWNaZJqmnBytSfMEEylsSAkeP9foJeWVvDcfCldnbWDBQdu39P2rIv1rOmwwrO76nq4fZGjZNmIOroJtiXXBMxUG208FrFPgladIc/Ikpmdgebxmt9uhvEN5ixs62qaSBjCOWS2X3Ll9R/ySBseg7HTt+34gilOGfhCmc7hmkkQXzM3DvYyjhNiYAAAr5rMZf+2v/XW8V3z96/+Ium1o+540FnDKDn6SwAuDIzR5cSRwpQm+gsBuv8c58TN0dqBtB/quQeMkbME50jTBKMV33n2PLEno+h6HpmrEjzSKMuIsxxjD0XrN2ckxQ9dgFBRZShpFELzK3Mj0Hz3mvPjaWp+w2cRsrnOuLyxXiSVOMsoSZvOcoe/pW0OsZ+y3lsU6YbZq0U6YgRJukrBaLdjtNjgvlgcpTlguevRAk2FNbOIwmIjRStPbGvEKFommdS6A+eKPtF6viaOMolhTzFKMysmzHJC0+vmsoGmacIY70nSB0ppy14Ra7ozttufp02u2W1FjmChiTDYWtqNY6hgzppGqCfg6MPr9VGkJO0J8CUcGlcjsxn1sBPkgcTfkbXb8fR+CykKKpB2wNoB3oS4YX2KnIdIzo9QNUDEM690gz/IIYFsZsmitydJ0kgp7PGW554MPPuTZs5wkjslCCq74mpopcFB6BGH5TwEP4fdlKCZe0CbI+s0oXfOSMa+NITZAAkU24+R4+mMB0SdwVd6vUQrnQyqju+H7rGQ4XNeWZ0/Psb0VGyLtpO7vLTOEueI+Vc+JsgLlsa6TAbkyE+jnsVjf49zAbD4jSmN+8sd/jLOTU77+y1/n13/917i+ug5kj5CSTpBO+nEIMQLRAv4d4GE/1c9jQOPosGjVWPxZZNQhssJIQxob8llBWZbUtXhkio2TDDOKogjgZI+dnjMV2KDh8VfyDqwXlYy1PcobkrSQ969ckADuQ+iWDjW6BIsNg3hBC+tX0zY9bdMSxWLbtFisiOKeum4mr1xjIrquxjs4OxE27hgiFQWpPl7JQCEEBYic17DflcSJp6pKkiRivpjRtY1YKVnxJ1PGM3QN5/0zPnn4AdZ1MgxOj1jaAusPXmmRicmzFft9RdPUzGYFRSG2T00jNVLf9UBHbGLm8yUnx2cMg6Vu6uAvaxgsaB0LC3w+l15JiyTbuYM0XIgPChOJL6/4xLsA5mm8k1CrqqqCHU8IDgyMLgF6xV5CT3uPXFNJUxW5r7WewRzUdtZpDoMEeaaG6SwNEHcYno0DRwmM0XjboUcmaahLBEAUZZIMLsAOLSObWalt+MoRDwmKJ22IIk2UJMRJGq5DIim4AfiLTCRfE/bcyIgcWxMRhw11VgCs8NyW5aNk7yzrlvOLK8okFqaek6H6EKyNZDikpvU1ej2LUstMhKuxtozjWOoGpViv5/zRP/qTHJ8e8w//4df57ne/x36/p24a+YwhrEkx9mojyebgwR7HMSaO6NoWE0UM1oqiRBHILB6sQ3uPHQaiSDzDvR8o9zsefvIJiyJjuZgxSxOyNCWKoqlnDZsFUx8fgMLppeS6Og/K+2BfMgQm3XhWyF5zfXXN6qjg+FgsVUwgskRGau26atGqIcsyrq6uwzMlORCDPeRClKUEiy0WS66unk9DUq0PSoLRaucHff3AAJ/3A94Jk0xSSBxojwrTtDG9RIUGrus69vs91nbM5jkYjfUa70Ue4jphAiRpFILzZHObCgMNYSfGmPjGiEkWow7o/k2E3hOSlcKDKnHOM2YzxTBIKotzkmQniSoNqDg84CpQgeV7xQByTOo1gcEnk+DDhiDvdWQ8WSsy4f3+mqOjJXkOu32D8nD//jFZ6jk/r+h7TRzN+OD9hySZ4pWXDCdHL3Hv9me4ffo6m/0jPvjw21TlBVp7kiSXNC+F+FGZKDCsugn9tVTsqwpjRAzprGe/r5gXS6JM8+DhQ7quJ4pTnEvZl1vaRqLglUpQKvgeIv4HVoENJukAcRSzXp4QqTnOdTStpDkuFnNunX2WumnFm6LvyLKMzXZHluUU+ZIkUszyRKbj1lIUM/b7S4qZQRnHbj/w5ptf5IUXXxI6fN/Tti0euc82+C9MFDzpIKXhCKvj074uB/mtGr98/D7gQNsff9woMTuwUiYQ2TIBfKgR9BvBJ2mylVbs93sePHpEURSoKGa1PkXpiKurHR99/JDFYs6f/wu/wK07Z3z//UvqTvN77htU1bfJE6Gm68DIjIzGjMxQkKhwBRqLtx6jI0yU0radgJsY2l78KcZp52gMjUd8u4oZduiwfiDJZjx8/JhXXnmBxWLJ40ePQiNNAIjlGowUaGuH4NGmGANuxNPIEEcZ9++/yY//2B/hlZfukySFUN+9omo82/0G75GEM/2E11+7z/3X7ktxbS1N3zFY8a9xXho/EIPh0XR+sJIYPPTd5Esjm3Og4E8OvuEmhfukwvudLWb80Bd+iFv3bvGd73yXi6tzZsUMo/QU0f7i3Xs8fPiA/X4fmihPXhTM5nPSNOPps+e8887b/OVf+iU+85n7pHHERx9+SJKk3L37AvtyYLur+Ma3vslv/Pqvo4C27aaJmFy3MJBAMXQ+MH4a7NAwK2KOs1s8efKQ/a5msVzQ1ELDF8DCT2tUYUH17Lc1SRwRJ5okiSiKFG164giOjtfs60YaJOtR3lFtNgxdw6OHVzx8sKF3EUPf0DUdJ6dHVHXNUNZcXm6pmpqjE2Fc5mnC1fUlWZqglQQmaASgE1BMT8FGch8OEgqtx9mYZ0pLdeCDtF3Wj+bn/9gv8Oz5E/75v/infPjRB/z4T36e2UwTaSmkrq5KPv7oYzZXkpDqrOLyssPj0DrC2Z4X793F2k7S/JwMA1TwB9OBBZnlCfuqJDJeDhllcb4njmcY7Rn6lrrr+OD7j9jut/zET/w4xogpMxMEJWtiLO4lVVKhnLDJIj0Hn6F0gvct1or0wERSuDsrLBPxdaqoyh1nZ2fM54twfjr8IGdMHCcoo/HB11Ca55BwrcXX7DDckICJcVpKYHl4FfHzP//H8L5huy25vr7m6bPHVPWesqrpGo/SCUmy4IPvP+CN1z/L3bt3efGFOyTJKIPw6CiYosPUKHkfheZzBPjC5DQEDAUy32F/DSCfn/Zce2D4hMaLCQyUzyVejuNG7qfG0ftBGmEtcsThsE1PAJ8PvqHegW07un4IZtUOFfzW4jhisZwxnxUUWcTx136YN994k8++8w6/9dv/lrYdOD65xWK1YrFYcrReUczEq++lF+8xW6b0XUtT1yEFXry6+q6l7Vp2ux273Y4uSPWqqhTLj8HSdQnWOeazGd6J36jcPzPVGdb60OQjAEfvMCZi6HrarmGwA10w7O/6gSTNsd5R7kt22x1FGnNy9zZFkbHZXOFCCMtyseC11+7z9tufYb08QitD13bTmuw6S5p5AU4CS1UFCxYVEji9k0AwN4zphgaTiOfUrCj4r/76XyNLE77+9V9mt9thBzH/lgR4kf6OIS/CfAye/AS7ChS2b1BeQEYVQAAdQE0TGCHKO5qypOtq2kRqN68j2qbFWTCmw/kBE0U8f1ZR769oyz27zRXH6zWod0LTNuCsCmfYgbWP0vSD4fLc0vd5kEYZOutJrEh7yrLGO8PFRU/bKJrOUjUD66MUp3ZEgLae/b5D0mM13igB6QeLimR/7G0vQTTBkF2F0keriDEIzJj44G2JpsgKfDYGHw0kxhFHhkjFgeVlybKMxXJB17XsdhuxZugtxbzgzu1XOT6+DcTs9jX9MO7XirE5BxXYNzqwnUU6OjJPxoAdqdH1JDU34etGuozRZqrdpUnXoW7zYS+xAdQPMt5B2LDWObTVoRk1DCHEwQfgf+gH4sQEYMdPddxofTDtKD4ARoT3woDRcuxPoj53UBN550Jq8FgLBlbIRDo41J4C5Bh0kOyNQUfGCONHVEWH35vOU63CddLTgCZAG4yBFMbowJg0U/3qRiJe2B/E29TS9q0w5+wgA96mwQ1WTrAbACyBORvMqhCv6jH8Iuynk7TMMmNOluX80Duf4c03X+HP/pn/gl//jf+Jb3zjG3z88Udst1e0TS3e4joSL2vnpkAPrw6AiZ/uT5D0hg/kQ41E+DMBjMLm7rUwHNtW5Ka4acCUpDEvvfwiRZHLsHFwuJC8Pg7rJRhG9jCvFL3z9ENgy0Updd1T120gVjSU+4pRJKSNFgYQGmf9pNyKTETnapwfaLuB6+sLFjbhydOPuLh6ztBbjAngk/USiqg8d++cMc9zkixipgwmsIpwyNo1ZmKcJklGnPQkiSjatrtLrLUU+YwkScXY33mcBR0P/Mf/9FsyxNQ91X43gfRaGU7PbqG84vTkmKP1gg8/+g5pInZUfd9ih544TmmdpW06qsFy794rvPjCKzx5+hxrNYqBJBZrg67rGDob+nRF1w8MNqTXBqa5JFSnHB2tOT05JsszCZYLQTVjknbTdZRlRV037DZbrq+3VHUd2MOHgeAYNjXuUbKedOh5pAeQc0FNQxMCeP8pSeQ0SPx0H2mMqNT6QQbkMigU9UZkojCAkPNwHG6gDsDNWLdIP+PwfgzLm+yow14YJMpKT/tkmqYysDIj6GcoZtlUG4z7i0KLfN1D3w0MXY8wEZ18biQsNElG/OTASpwSpeWK0rsDwKeAVoGNIrbIEDxNU770xc/x2Xfe4Jvfepd//W9+h/e/9z5X11fiA9jWRLEA1sMgoLWE9ghLta3lQk+DfhRxmqPjlGFwgcok70VIIBGDG8jzhBZH1+x5ePGU51HEqy+9yLwoMCDMvrCZCcA7euAHJmC4594jLH6U1KPhV+ukTxFrlpY4FiZmU/d4F4GPGQbpa27dusPTx8/J87n0r0MnZ1jwLhz7gW7o2G6vZW+IFevVCdvtJtRdYisWdvYbO+EP9vqBAb6Rpg+BRaVGMEQQSZn6ygNurQu+EcIaU+HwEE8eGw6z8cO5w8OmxgUbGoWwiMcCAP4X0HYtAGDX9ZRlSRQooMYEVFmJREBrw3I5p+/7sHhETqoUwdA8mt7D+LO7rpuQbaUEdBhZESYsNjgUEeNUEhy3bp0RGUlojOOILO+4un4qkcxxypOHV6yP5qzXp+w2FVlckZmS/eb7PHj0HarmgqwQ/xAQo2Cl4OrqkpOTE7SOUMpIUd/1wSgZYoS27K3DKOi6gavNHu9TLrY7ZnkCFrxquXVrhTa9gIhaPD7wEVr5P3SN5UDru54iz0ElLBYpygxo3eOcxlUNbbOVexkKpqrciQwx2uFdghscTb2nmHnOL95nsJfkRcJi9TIv3HtjAvdGHxW8SBjwXszoJ3aEbAIjS29qiv3NopTQD8pnGMGHydtpHBCO984dKLtKj55CVq5V+Dnjzx0PCK1D9+hgsCL19I3i4wcPqBs57Ncnt7jeXHPr1hnG9zz46D3ef++S61JxfbWVqHM3kCapJJRqPW363gs1vmob6roWSWnXY3u5PpE5eI0Us5xZMZuMxRVhQ3Oe/b4MM1MFKiJKNM/PzxncENLOauLEsFiKL5K1I5NBaMXjxCwy4pEpl1SDM3z2nc/zEz/2M8TRjO11Cyp0aMaACv57StF3ljxNuL7e8v77HzCEddUPvXjUBE+s8d7LFN8ibhF+2n9GaYkfJ7xagJrJuN2D8iokJSsJNIkk4OPu3dscnxxxfX3NditpqPv9nrZuOFofYYyiqvZcXV2y220pihlHJ8cUsxk/+rWv8if/+H/Bm6+/glFweXHJ+cUln33n85RlT1V1PDs/55/86j+laVuwwvgDNU0MR3sBBcGTz9G1DcPQUZZbsvSEk+NjHj56iMLQNo7dbiPpuZE8D/hxbY40dj3FDupA/08iT5JuwLgAdChiHaGcRxGz2bS4wIIdBiiWM8q6o+ktu90eZxWnZ6e89NKLZGnGxfPn4vcYGaqqxIepnxmnqsaQZrlc836YEJWhbTHx6CkZ1haS1jf6s46G3HGa8Of/wi/x6PHH/Mf/9Fv8q3/+H/jCF19nfZShgLquxYzYGbQSJlzXtaA1moG9G/iDb39TQMoAABttiCNJk/POYoyA54ShlPOWoeuwtiVODLEGqx0Xz6755JNP+Mxn38a5nrreg49CwEshsrq2ESlQb7HDeFgLI8KYAuVz+lZjtSVLhHXjQwepDcQ6Io4j8jwDRBqGPrAyxkJxHFyJZ1KYNFppaJyzdN0hjU6m+6kUPVrkwFmW4WzEf/jd36Hr9iRpzmwx5/TsNsvl62RZThKv2V57PvzgCXfvvsjdu3e4d/c2s1k+seVkzU0jtnCmi4eccwoTBc+bMIQRj10btlkJgRmsCwxPjx10+AxwkIZYrINhuJlApicm6DD0DIOkTo4+nT78XaggrwxSfh3KC2XU9He0bY9zIlsZhj4MfjxRpMnSiK6tiUyOMZrFYs7P/bGfZ75c8b3vfp+2s8RpRhKLvYJ1kuDZ9QMvrG6RJWHgGAhFzo088RH4DNNlF7x3ApupqcWbSzzzGqqypG5qmkbAwt1uR9P2DH3Pblex2e8YusBESlKSPg7XRoyctTFoE4kUPchAlfdERtP3LdebOc550ixjtVpx584dfu5nf04SUgdhDWotvkl98IidwqMCs00ZNe0r470OBBzZv4dO/JKjiHle8Ff+0l9mOV/w9//e3+Py4iI02cKkGsESYejJc+asBCb0TvyFcAPKDxPqq5WaQm1kG1HglVwDL8yaOPYSwDJ0eC9nl7ctXg04DFXZ0tUVbVtydT2ARoaZ3oXn0IcmwOFUYFx6xWZTohAJkPU9cZThARPFtJ3UllUjdWOzc3RWU8wK8nmPsyX94DiE0cj7btqGtusoiiKwTixpGgcZ54BR5jDl+5Q0lOn8TxJD2w44eiIUfb8njnJh2rqe2SzF6Rki92oxkSc2CVluaGs4PjkFJWwhaXa6CWg6eOP5CbAKlzzUKlKLxLHU725c16FeG/2QbKgbjNFhSCFfb4wkHI4BQCNTamTkqpDc6ZwnCh5G1lp6LenSQ1hPwzCQZsE6xt9kqQwj4j+dv4RB0+in7OyBvQICRInXd49REYO8kfGJn+pjHZhEEJrFANyPvREcwIORs2CDbcW4x0UjUBqubRTHIRRLWD5xkA2PDMqxHhvDbbwScLRte66uJBxC9gMt90F7hj7sm6O/nRoviWNwVj7TVEp4HAIkj6Wy64UR1/Udx8fHzGZz8jznKz/8Bb721c9xfb3lkwcPefr0KU8ePebJ06dcXF1xdXHJ1WbD5vqKuqzoezspohyeru+wQYooe8nI9lfBTkLjw6BaKWHc1W1L0wWFk9KYYAt19+49fuhznwsAn8M6qRN92FO6vsWLqa802l4GPPP5ksV8RlWVXJxfisxXG9q2Z+gHIi0klCzPaJsGY6Tvms3E59ApAgAtvvTOy7n8/Plz6roM54Fnt90LQ1RZnj5/wst3Tnnhzi1u3T7BX+/wfYcKA3WlDGg13S8JIJKB0WA7YMDoCO+HwCaNAE1SpPRdx27/hG7oqaoSpaAsa4piTp7lwnizmocPPgblWSxmDENPluc0muClLAdZlhXgY+zgubras1qccby+Q5pmbDZb+r5nu92R5ilJnIU1pwVcdp5Ia/I04fjkiOVqSZ7l5FlKnMbESRzsBg5hOnmeURSZrMMX71CVLc+ePufps+eUZTVhBRPBgk/3ZuPeONYn46vv+4kFOypiZE8b/3V4qTD7tc4K8DXK2cP55v/Qz/EIY3cEbialzqd+9P8cxFFehkhypR2+E9uvqm7CAPMAxhstbMDRI33EH3QA+/rA/Jd9Rno9YzR1XbE6WjEG2xyGrKPdAtjhEGoaLh5DUEb1XUtkNKv1ijSNyfOCH/naD/OlL32By8sNT5884eLyOc+fXXJ5fcnl5WXon/b0XY9WEXUjuQTjsyzrgQCImeCdHy5KIGtIb+FpK/FnTLSndT3KwfF6ye3TE5Q/KETkWz2DtfS2o7cd3dCitUfGGqBiCTEVsHcE/h1xLABmnt8iTUVF0zQVWbpAkzK4jiRNqauOLJvT94Okz283JEnKdr9nX5YYo3FecXF5QdsKUz7qFbN5zmy2YrMV1ZDCf6oGGM+pH+T1AwN8Dof1PZNZqhqnIhbQDIPIDOM4wXkbkq7kIDYRIYHtcNhBeFi1wYYDBsLEJvwZ6oDWj2DK6MMCTItckneGSZettL4B/gjDREBIjzEpo3/fzfex2+2o63qSSSmlWCwWId2pE4PagPR6L4DbmCB6kM5IHPqjRw9p6pauu+L2nReITIp3KfU+YnttWcxT1uszTk5WLGZHdE3FMDgut+/Tti3tUJNkOhzaDUkSM5sVwW9vzRBStqpKvG2MMcFHUFPXraRZBf8MYwaur695frVls9uzWPT0dceLL6wZOqh9TZzEKD1QN4o8m+MZQtPK1Hh1XU/bONJkjvgjanAa63u6rsW5gX6QxgOlyNMZSZIHA/tU/HZ0RJwqHj79Jvv2I/LM0w0ZL5ycEkcpzrnpGsv9PZhd36QPTz4vN5h6Y7H1h32dvDv8jAng4+aX+E//XfjQKHr+0L7/qa/9w5NhFZ7HphXT0F1ZEkUp1lueP3/Co8fP+N1/93vs91c4N8PFEoIR2QaHZTGfk+UZ8/mcLMvAGLxz5LEiz2Z0eZgku5gkEu+1m9PgLMuCp1HwWAx+Q1orzo5WePQkawHH8dGS7fUFQ7fnvT/4hgRVjCBxnKD1CHyHg0SPUzKZMsdRxosv3OfLX/waWbbEKDHY9SgB+LSZNtGxeGvbjo8+/kT87BgBUjcZ7xPMtCefP6QQNVF0mO6gg5dHmHjrIF0NTAJZu2EqDSHsA/qQ6mfimFtnZ4DIhPf7Pc+fPmMYevbllvlMAJehlybv9PSEtz7zFq+/9jq3zk4odyWb62sePHjAO++8Q9sMVGXDfl/zjd//Bg8fPiSKtVDjA0AzWgyMjelgLW3b0HWtFGDAbrsVL8u6Bi8yXEn6bOiHnsGJ6bU0JQcKPHYIANBY7oAODMRxUKKBSMes50uyJMF2Djc4TBzjnGZ5tKapa66ur9BacXxyzLyYs9tsKdWWy4tLuaV4mroSL5Y4wYXno5jNyPJMGClhvanx3biwZ7tDirVToy+PnAtGazQJJ6cn/O//6/8T//f/W80fvPef+Be/+Q1efe2E1TLn6dNLulbkf16J5YAgKiLNxlnOnz3DRBFjuuTkU6YE9I11hFbCCLZDh1eOoW9o6oq6LNkPDeW+5Q/+4GPSNOf4+BjnLGXZ0TQ9+/2OyESUZU1ZlbjAXvLBpkKmwwp8Bm7J0BXEyRCUAg3oCrRFuQStDCMLXPwTCb5DZjpXRkmJkiQJOivDDzsM0+Bn3NuMkTTz8fm3ztI0TVjvKbt9xeXlUxlgBfDQGIWJEr78pZ/i5OgVjDnn7OyUk5NjTk7W4QwPB706sOtvHJxhaCA1gRl/NtJUjs8lXuMjg7EO7yOpGwLYF45wxI9XpKc2gIGDdUGeZxl9cE2QvY9hD586G5w8X0oxEp3k1zCgqeuKOImp6jI0rwGAsHDRNlycX5BmqfgCRSIZvX3rNkPv2WxLBivJbVEsgTvWebb7PZcXO07Ws4kxPDFVvVy/m/WS0h5RWkt9VOSz8EYPg6qx2SY0uuEoC2zmQa5P56bgkL7r5JksK6q6koCWpqUsS7q+p6kb6qrEDj13756JimGx4o033+BrX/sKxmQ8e/KM/b6WKbsLA57BBi80G4YJck2c8wJWh08n/69wYWdSXgUw1+GThKKY8Yu/+IvcOj3l7/ydv8MHH3wf5xXO9xym7TcfqyDrDtdO9pND7TiacIevFhuLcZjnPVpZmbrrMbVRWA1pIoBJ17V0bqAbpFnWWgLD4jgSHzg/moSLFFTunRWbmViz31UybMFjbYRzYssiwUCS9BfHEW2raa4cJtpz+wWH0TK8SmIz3VNJHJSaRORzPWmW4BEfx6n25QYT+obUrK5r8OINnecZSRozMoycG5CwOgnTUEmP0rBYzCiKjH7osFaCmWbFksgkuACUiuVdsDmYavOxwZRBX1ZkzIqcxWIW2N1BWWPU9Jw4K8yIpmnY7oWZ09R9AP1E4j0y4cSmRxpQCcULzD8vzNCbjdCNkEYBD52j63pyl0nABqNPtz/sM0F6NzIOnQ3MMi+N3jQ8mTxRB7qoD8NDFerHAwFB9uwDeOiA0SvwxptjHNbIz5QDWZ4tORuliR+bVBcCtw77hkKYPlJHcAMMPATxKG2mWj0KiZbj/ev7Lgw9ZM85sFqCPJ4RNBYQW40hIt5P+/NY+w7OcnFxTtu2rFYLIp3gkVTJ9Q+t+eIXPhcGMH4CXdu2o6or6qpmt9mx25fsdju2ux2b7ZaqFKbx5dUlu+1OGFxNQ1lWMoyxLlj21Iy+32PtbbT0dy+9cI//zV/5L/nyl384AE8Wa8EH8omzHq08Q7Xj4pMP+OD997m83qDjiOPVGqfAolBGWIe7XTmBId4LU8jMFWUlTCVJYZXnO5oYqOKX/LnPfY7HTz4JYYBjvxCUZlrhtUepgfPzCz7/zlsUs4LyahOSTcdgGbk3BKAsjlL6oaGpd3g1hLMwwgbWUhylpGmBhFpYZsoQJcmkIinLiqZpiSJRZA29gBbjM9q2DX0vZ7nW4t8tZ6PIUff7PUfrMyCi3JfU1R7nFN5FxFHBLF/gvRhRei+1eJakrJdL5vOCNE0ogkWCNiGUQuspkXU6BG8Ablpr5oucWfESd+7e5oMPPuLx46e0bRve9jhCG0+CMAhVXoBdfzgzhmGQwJexqQu/Kpj6/fFMHntJefYGqRVCb+kYe2Km9yjXyU7nlbqhNHN/qE8cv34cXhxShCfuMCODXp5z6e+7vsfaIQxSIpQawteKvYXSMvIa3yPeobWjHwS7aNv2BuP4cMZOgeTcAPh8WAuhxrq+vqbvW1ZHK/J8Jqx5NLdOjzg9XmPMZ1AousEFFmsn1kRlzXazF4B/uwmhIRs21xt2ZU1ZtlRVy76saLqGvuvDIFHOLq8cymsipcliTZ8YXn7pBX7+Z3+G27dPGVPbx2CiwUlN1DZ7+rak2V9zffmcfVmRzmbk8zlpUZBFMWmaECcRTV1htJ5Ug9vtnqoqpZ+Oc9pGBm6r9YztZkdRzKmqSgB4pKe9aTWx2e1pmno6s0FhB8dysWK3e45UDX5SFDnn+F/Bgu8HB/isH2htMz0E4+EjU/BAMzcRBP8C0IfCLyTfKMWkm1Y+yBGCPl6ACg43LRxcgKCeSk3GmWMD5IPB9Oijo5QSc1I1SoVl0dyMbL4JMN5kYimlyfN8AupGjw0f/j5jDLPZbGo04IDm3/yZWmtu3bodro+EkKSpwXkFPuXN1z9HmkkaaFVvefToCbfPTuS6mZYo7jg5WxCbNLAE5BqINFiuQdf1YsCp5T0pJU1P27UcHx8Ho31hG3obkaURRWZYzE5Jkpy+GFgtV4Fa2qAri44GIrNg6DrSXNgJRss1sLanawfmM0OS5MyLY7qu52rzjCxPWM7XuGHHrbMlI9NktTymKJZsNpuAxq9FJuUazi8+An1JWStevP1F7t5+KzSl7kYc+iEN5yaY56fNkE/93s0JxP9Mnjtu7B6cukHPlq+eJhvWuokZJhuemyje01f/ofcmU3/P8ckJP/MzP0M3dBgTs900PHrynLZt+eIXfxjvY+bzOSZSGDOjx5IoRzwMWC3JsB6C+XgyPX9akBUhMoRmK4lidGSwXqQsYyDHaFwuHpIj0wdpiMO1AEizlJPjNZfnD8gTxxe/8Cb/9Ne+BwjLTKaOYyEfHcAppYN0Bu7ducfXvvZTrOZnRCbFGAH4nJdzV2sTJise7RVaC2tJG5FjmWhkfymSOJVJlJLDbPw74ygiTgWQR0myswpTK2NMSK6WCfiY+Nd3fRgkiOxFQMMwUlMiZ3JT+ORh7YoXsyc2XgpjrSWRMtJkufhH2AF0YfDWc/cupOmcsqwl2bnr+Pjjj4WhZP3UmHjvgxFw8LUxYRIdvFcur664vr5msVoBitVqzb5s2e+riS1snaMbWjkMpCuUW+kOstcJflHgvQ6NAwHd0ER5yunJHfqm46LdhaIxYVaIH0jV1Iw+ImVVcn1xSRQZFvM5bV1zcnosqaBdJ4VGFNMFqZ9MXWc4G/ySvDs0YyMIY11ohEKiLnpav9Y76DzWGY6PTvg//Nf/R/6b//b/wXff/RYff/+al15OKXceSFBo/GjgHgJyvA+MKoRBpUwUGmcpNpUX24IkAMXeW5T3QXrbU5UVzx4/5+LyGc+fbahrxUsvv8puWwbJK+z3NU+fPqFtHHXdUlalDLW0wSmZxip8CMqZs9tqzi96ipl4aS1WBTou0aZHOTHaneRtAaR2o0QnrENnw74VZM7i12PlXnuN88LaGqwMV0agr5jNGL1JZJ/q0UZPKalaEVKzFcZkvPnGOzx/VpLnOYvlkn6w1M2ANgkj02PE+lRoTgnX1cM0sfZ+lFkQGtRQvHumQVR4fPHG45w5eGk5MU4XSYusG+skNX305BK/GEIow+jb6yemPfrApL/p+Tg2sX3fkSTxIWF37N70WO97mqph9IsShqukFKZpinE+yDocVVVRNxWbDWyuLlgvl8SRFi+uYFIemUjsFozsRTJglP0tirSEU2AOQ41xqjuuaSXS45GBCBFRHBMnoDMZdnsPUTQCiDcGUDfONh+axMmTRokfISG8qO/dYZiKMLCGQSTokTGBjeEmwECPdL0R5XAEQG7COvAuxK4NGoz41/zkT/0R7r3wIr/2z/4Z/+7f/RbPL57RdY1cGydI7Hjb7KQ9HJu/sN4D5DQGpKgwWRv1JIoALoYBgNLC4OyHHjtYFNIoNU0T/NcUi8Wce/fuEUWGfVUG0NqMKEzwuepwTljtV1eXnJ6eyDtxUqcKGyFcc2cxOiWKUvCw319z3GlsJOyhrpVnPo5j0jQLz1ci/rImDib3ShhIfpSjH/yIx8tijISJ9G1MFEPbWPqhE3UHmkjJPtx3nUjcnEIZjdJRCO2R951lBfPZCmMinLe0Q080As3h+oLUwYv5nJPjY2aLGXmeEschaRclz4dSIVyJ8P2afJaBX3IakkOrsuTq4prNZit7WgA0btZ2wuo6ePXdfMka+bRaQ0DWIbD1PCNjfkxSdaEAsl7UPDoMR9DiC9YPAWz2wlQd15GE7Ii3tsehOTTp6ubzKaVGeH/qMLwZfQeR8AphG4+9jfxj7U2B2ngtR0WCorcDQ1/LsDNIEWXQGgIknEMZ6QeiEIg2lq3eK+wwsl9HH7wgix3fp1xBRIbvAkAwAnyfvvZYRV1VNLVYS6yP1mRZHobNChN8yEVhEBEbQ1xkLGYLbgJzY18zElKddfT9aMky0ARl0jAMVE3LdrtlX+2pyj39YNlstrRNy3I+49bZKW++8Tov3L3Hdlux3ZYBbFf4MDCybmB7/oTf+ZVf5tG3vsVQd7gsJTo95dYbr0Oe4YCqKrne7rCDZV+WwX9PErZNJEEPJoQuOWex3lJWO9q2wXlHXqTcf+11Lq+eB7a4PwzKxhoNjx0cu33D9fVO1GazQgLnTACh9fhcyz2bz1a0naPva/EEdQbrRSZ/enJGkgijruta4iih6TrqtgsAf89iIb7S0rsqkthNTMpyuyVJYopiRlluqeuapt4SRzFZtkRrzdX2mu9+79u88vJreHq6rsE5RZbPKGYzsRTQMcPgQYsN03q5ZD4rgj+l2DZoI4EV03E07RUjo2mU347rQ65DmiW8/Zk3ODs75dvf/gN2u/30PI/PldT6PuAOoUccwXUX1C7e3dhPRmKBgF3TXjI+o6PEOAyKTPBJHIYeaT0O33Ng2+mpvlBq+nDTZxx/Njf6A8b1F/ZL/Og7LJ/rvfe+w3e+8570Y6E/XCzmHB8dcXJywtHxKUpLXTdhMuHnTsnwMBENprBCfdirP23FMO5BhyFE3zXs93uKQrwas3yGR8DfODIB9APtNXmaQ5qyWhzxwl2N0kxAJ156WOs8g+1pm579vqOuazbbLftdSVnu2ZcV2+01bVPR9i0GuHv3Dp/97DvMixlN04ae3eO1ou+l7yg3G979vd/l43e/xfOHj+mtpfdw943XOLtzj8+89TZXl5d454hizWq5IAoMyKurKzabDU3dcnx8QpKkoabX0z4r52VO0zRyxjgXWLJSh+62G5I05dVX7/PCCy/w8ccf8uDhx0Sx9K6jEGFSKU7Pxg/2+sEZfM6GTZNQgIYDTiscVmRXXsAZEwrOwbmwuWlQWhIru/6GL8U4YQ1JW97j/RAagQObzwN2GBNKD2DaKOE5/Lc0EcBUTN+k3Y+vITRDI1Ao6UAysei6jtlsFpJ8hcU3vsam1TlHGTb/rpODqCiE+rxcLjlJ4sCqc+z3JdvtBUrFHB+vMdpIkIIRIPT111+hyLNwaEMcZWgVoYhIE4PSB0qyc54sK6YptHcQxzlpltA0JUlv6LqKKBLte5IY3GBYLWesVwVRFJOmOdY62q4hjjVHRy+Ai3B2xuc/9zUePf6Q55fvMwzVxIjL0ozl4pimtlxdbdhvW7TO6boYozVdZFA+IUsT5vM5TdOSpjldN9B3lsYOFJls6s+eP6VpSjw1x8e3WC9eIYmPA4A1yrVdYHQM0737/wXq3WRP3nwOpmfkfwGcu/lzxufPTYXYwW/GB7nPzSZjfB/jJj2EBDwTJ9w6OcUF49jVEorFKcokLFcvs9nu0MZhXYdWOU51aNcTDT74RAk4EMcJ778vTM4oMlxcXHB665TBDpyfn7M+OqFuagYPr756n1fvv0pdN6E5GhPppNhLs0waMsCE1ihOUyIT0zR7nj97Qp5H03po225iJRkj11aARj9NmpTyHK1O+cpXfpyj1S20yjBazLhVSFHWITpeR5o0TkjjmDSOmM0y5vOCJEsxOiIJqVNZFgMH9os2438fzIb1DRBhrJP6YbyfAiDeLJHD3Q/y6RCKgkziUIfyQRoA8fBReEnDmwoHKYbx0DXCYrXWs9vXKCLqqqVtZcLT9S1d3zLYHuWlabS259GjxxTFTGLlg0eIV5pucOx2Oy6vrukHy9Nn56A1+6qmbqogER+Yzwt0pKgaxNtmPHjHBjYc3s4N+IBUjF4l41LQSoCzOE7YXG5pmhYfabQdiJM5T54+o2kkPCdLUkleVo71+kjSPZEE2t1+dxiKGE2SpAJGxzF5YI+NbMM0SUJTGg5GN0z1mqxJM50h3nl612OcJUoS7r/6Kv+X//P/lf/2v/l/8q1v/ic++fhCEmytsL+mQk1gL1nDiJzHeSkyPMI4FA9PN4EohKm0swLcKKVo6pZ7916hbS0flufMiiOapuXDjz6iKGKOjlZIGnhHP1j2+x2bzUbW2+AwOg6gqrCcpElfUpUxdWlwfc/p7Yj5UUYUO3CDBIyEQnAs5rUReYtCMfQunItWJrRKQm0I7I0oFmPpNEnIC2HDDUNP2zbUdcdsVgQpkbC8o0jOAxUCeJyzeGc4Wh+FvfqKxWJJluVY57ne7ukdU7Ph3cgKBcJeNcrihbkjLaqsWzOZyo8F91TEc7OgN2FVerQSLxuTHIK2jCdIk4Jdgvd4FwevtiE8b8JmsFZM5e0gJs3j+h6cNKxG6amoGkFOwW88knGkbnj5jqFOBNA0QusB7Q9BRIRtyPaeel8TG0OaRLRNExr98LyNeMwIgky/jAyUKOwLamrcTfDvksFiPA33jNGoKHigSYUug7HBTEDmuG+7kQWkFCbgVSNAOwKDIz7XdY1I2weLMWNjaSd2pA0DWmMCQ370sQp7o1Ijk8hNe6p3ganrXJAbJpgo4u23P8M7n/kMDx/9It/5znf4/d//Tzx69IiLy3PKci+Kib4Nz63cxbExmA7rUJd4Jz4//sa+772bhrx4RbByw9qBi4sOYzT90IeBkCeNE1588WXefvvtafgs93a81yOzq8P7HhMpCXPynkh2XHl/zkuaaD/QtT1adXSdeC/1laOpDMsjMU3v+oEkFml109ZYK82BNkYk+2Eo1HeSND/lMvhRwi/NjBnTJqMEfEeaJKH2jm5cd00/dNRVT5JDXsS4wdP3HW0n/yRRjsLgXGgChxEsF6l7HEcUecHx0TFH6yPyPMEEkFppwqAJvBptdw7P9/iMyHrQZHlCkSecnKyp9jUPHjzm/OLyU+DeuP6npNXw2T/FPmGsB0b2m5qeWY8/1AocZHx+FM27IIvz8jvjc31TOSJ/jwDPIztEyUdFu1Hiqg+oHuCU/9T36mD3I6ENKsCDY7PrprJSq8PzO4bvjP+77zt+93f/HdebK+I4Jr6hqMjzjNlsxp07L3B8ciLS9tC4a3VILR76Aedt8KUlgNJyj6w6gJQT6Dbds8NrrLOU4LgoHNu+Z3O9wURxSMc0FMUsWBgFXzUVAkeMCmdJYBqFf0asQwCVGGNidAxJOm6UY90m4CP4MAjxGDV2f2FQ0fbCaO577DCqHMAPDu963vv3v8fjf/uvebF3JIPl+XZgnyry7DPYRMB47wjSQgnLIKz/3vYMzjI4i+6lF5Xer5VrbAc8wnxNkpTV0TEmSgQuDWtVhzNRQBOIMsVmv6GqSpbzmawpI7Xz2LiM1/2tN36EfXnJ8+cP2ZeX7KsrnBNZ8L5sME3P1fUVeZ5NtX9VyZ4Oh7OtLPfM5wv6Ibx350KohrA3nYP5bEmRay4uLhiGkuW9E9757NtsdxvOrz7EmIjBgiJlX1q22xZtYu7dXWNtw635iixNQj0gNe8ktQ5gpx/rcj+SGMIzqMcjUqSZ3su9N+H8PDs75gtf+CHeffe7XF5eMlpyyIqRdXV2dsat01P6fuDjTz6maSUB2Hl/sDfxh/3jgA8EZm/Yf+I4ou8HbACllNJEWuPdwKhEED/3cc0DYd0p/lAv6mU4NapLrJ+e7ICljWedKDBkDcr+8e9/7/f48KMPcU7CpOI4RivFYj4nSRP+9J/+cyyXy7DPMJFOnHN0fU8/DJ/COqY1J7Hq4xsM1+EmIOlDeJfssHawtE3L5no3eQSLX2BMksj7GslQOhC2pvM5/IyxMtcoYhMT57CYHbxMR/GXd4R93E+qumFwDH3Ps2fPcK7G98LUd94zOLEQ+J3f+DW+95u/Tnp1xcI6rILSKOwiJTo94c7tU+6/+gpKqcBgH7Bdz6NHjwTPaVsiYzg7OWWU6p6cHLPb7YjjmKZpyPMZTSNM3qqu6YaeONLUuwYPfOYz7/CjP/qjWGs5Pl4x2I7zi6ekaYqjnp6zGw8HP+jrBwb4CM3UCPq44OgqKjsfQD6FdcMk1VJ6nIULzOCDV5YLsrxYHRL1rB1I0uhTk+ibzfqhSBZfupug3YSkh6s2TgRv+mSMC/ngIaIYQzRgZBY6iqKYfubN7wF5X/v9nvPz86khEDAkJo7T8BBroZpGcqiniSHP5lg7YIqIODbEUUGWi7moUKYP4IYAKiPdFsSUUY23QD639qHYF5PevvNoMvI0naLOy/2e9DhDaTg5XREnQZpmRQZm4pg0y8W/cLDkyW0++eiKZxeXbMoNaTIACVrrME0bMFrSNJXqGAZFHM+wg6XaN3gGmnoQ8KkfePbsWUjBUcxmSxwWpxyPn35E215wfJLhB0UcpdLoaf6/zP3Zs21Zdt6H/eacq9nt6c/tsrl5MyuzOlQDUARAACJQQhEiQyGSCjWmTQYDjLAeZCms/8PhJ/tBDjtCD5YlhMJ0I1A2IQdoEgWgUFUsoAAUqkFlZVZm3v70u13dbPww5lxrn6ySHGb5Qbsi6557zzm7WWvOMcf4xje+D69kHXycvffx5Gs3KKd7vzueu8vg+x9Cx6Vw0H0iRFARPIjr3SksgwZjEulNY77yYxKau7ZDaxm1c8Gx3XhCyCmyPfK9ktneEc5X4gTrDG2zYjqdoDCUeaBuaozJWCwW7B8dYzIR0H/90ZuMR2UP4GV5FkePhJk60ob9oyMZmQyeuq6o6oos6raAMN+0nJS4kNFsGy7Pz7G2wwVPF7X2QAo8ET03aKMYjQts1E0hBKaTPX72iz/P4f4p3uke2DNZRh41GvYPDpnPphwdHnB0tMdklJFpCfoqju6JIPAA0KZ7meKBtUJdDj6t/uio5+JaUEAU8hbtr3gY+CCUl9gFlDpURYH6WLzpbIgsgTjOEoDk2CZJQCqAk618QONsoKpasrygaiSZDARccLzyygNePH/Gk48+FJ22tubli5d861t/yng05vDogLIcMZ3NpTHiPXXd8trrD+mikC8qsHcwx3nR7ZtMJuwf7uHxXF1eYlvRpWq6RoCMZDaiTNQ9i/pHDOv59PCEV197yNXFBZc315gsp/MtbVNxcyXXcjQq2d/bgxCoFdy9e8r15SXbzZbZbIbSirqu8F6YHJPJVEYey4J79+8zn8/7e+cDJNOFxBJJBY0UxAoXGRN9bEUSzKAkFj96+Ij/xX/0n/C//z/8Z3zrW9+KIt2mL+6GVqXkTJoEuqfi3xJMJmL+MZsLIdA2jQgSRzkBpTVPn77kK1/5Ol0rZhtvfeIdRqMS5ztm8wnWClBbVzVtKyOjXSesONsGnBOwiiDnnfWOLCtoG0Nbw2S0x4tn17yS7XHn7j221QtMJnogdbXBhxaUQxsdGWwDexoyTDCRheSp6or5fCoT8GiaVhpvnW1jVzZDIxqJr7/+kM1mzcVFi9FXGO12jA3AB8Xd0zs4K1qf48meFCVeHFSrqiZ1mr3zuKgBiROwT6fGhJKELWlEai2aZwNTJXbQd8T2tRb2ge7H8KRTqvuueAQA45mYZDVCUGgvGi0hBPLYCErMcZcFvM1ER8gPOUBKbrWRgkCWRAKzJF6kP1UEgoNPDKChWFURZNLxPQcU1lm22wqjxwJ6qgQ4DABD/7lUAuBCHDdL2nNhGM3qx3OSXk48kwT/jaP+kWVvoithFGSX0UYBAYuYcOtdUf+ezayo64aqrnn58hzb2Ai4JoBV8qi2S0LSCOM57LJ60lls+3vnfSA4YeAFpfDK90yqSW56EOGNNx7xmc98mr/9t/9tmqZhs5HRmJubG64XV9wsbri5uWGxuBazkMWK9WYt7tWtjPwJc73rGZxd1/XxWCsZU6XPo6Sw9mnqQ8t40r17D/j3/v3/gDfffJMPP3wiZ70W92PR5PU416JcA11N8B2r1Q1HhwdoneG7TmDNEBm2Ssd1q/G+JXiLC471pqGcOoy4JGDjiH2uJccqyynOWppqy3aTNFulMMuznCwfBPe7ThgPs9l8yI9CdJkG8iyjHJWMsn3y3BBwZFlO123x69QkUgRv0KpkMj4gzyaEoOlah9ZWwGMNk6mc47PZjLIoyPLkYjk02lLDjCHrGv4W95gAcRE4iuDXfG/KJ95+xNHxIR999ITVak0C/wdQ9+NFuAB8SRYAkMZOGvn3chYPgHp6P6H/t139u3SOyDUMfT4H4J3FKZGNGWktSlxB9GMFy9yZBtm9BrEB4HZMmeS1BwbdbgtR4kp8H/1ZKDnN+fk5f/Inf8Jytejvfxrx05HMcPfOPf7O3/13Yu0gjZIsSrwopbDRtMXHeCa12XCfhms1FPj9vex/LElvSAx0USeWAF0n5wfA9eUNyqScTtBLYwy5SWB0Fk1FMon9JuaaWhoayZwlnRUqiGauUgpMBPZMRiJ/GCX/5qxlu91wfn4u0hTeCEgQ3XNt13L2w78kO3vJnbygDI5RMeIjK3lQ63VkZ0uwyKLhokp3S4MPli45psbmkjKKtmlpuhpQHBQjQtDs7x2SFyWdlXHSntCC2FSmO+2sMFqn8z2ZZIiSJv0kkZJG91/9ub/DqBzx4sVTnj7/IR89+R4vz99jtTlnvd5gsprxdILJTCQMeMbjCSGoOFKoWK9XvHz5gvF4LO7dozFlWXBwcNjXOJtNg3OeBw9eZTqZ09SOsiip6y3etyxXlywWa6azI8p8n/v3XudTn3yT+/feYr2pefb0GW3TEOI4OSoQFFgfqBYrvOtwnZzN2iiKsqQsSyaTcZQYKDEmyvrIaESfu8kqVBwc7PPFn/0Z/vRb3+bi4orhcEzhRbHZbBnYz4HOdjsSPmk9/3gtGQJJSa+PLymnSU7Kokkr33JJUkxH9h0J0B9i34DlxD0RmwKexPIbmNoK4r2X86luZQRU3NKlSemiTMdiucAYw2JxI9JWwVGWBUdHR/15lGJEIsD0+zpAYDC/2XmTw7sNAYeSM4vBSd05S2g7gnesV8uY08S7oJO7saEoSspy1E9bZSaLI/Uio5ZkGASTQc4cpaDVw/tUw2SDc466qiKOESDIGH7CCZrNmhd/8afsP/+I+21LGQKtUTzLNb5ZE2xHFzRZ3kn9FQJtZ8UUra5p2gbnLXmZUY7LKJnhQMN6vWEynkRSV4MPns42sUEnNUFVV7z22uv8/M//vJjjqY6yLHnj4UNW62uS0ZLScs0HmbifcPH/f3z89ABfTEyH8deB+SJIcxRPj7R6rYbxG5AOapabCMTIjTOZRnkwpsA5DSqi1yH0iyk9dhlbw8w8t75PCKi4oHtAJhYACdjb1d5LX/cFwi64GF+r64RxKKK1IvYuemcypitJczYwB+NhnsYFxNxjL/7sMGydGIK9UG5In+N2ihRCzOrjw9o2Xgsj19jDbHLK8cGbHB4c8/TZR1i7YTu7oig91q9AOUKweBeotjXaFOTFHnhN50Sc/fn1n9E0ltXmiuPTMUVuaJqG8XgsxaD3tPUWrQoxLjBTvNW9LoDcUwlgk4kAh9Y6bDr8Q41SjmIE4+lEus16BEHE5okJ4K7m3n8fwLervberbbAbrPvv/wSALwGCYh4yrIVdRqA0zuIa/9hr7q7rIYH12C4CgcHQtB3ojLarwIiJi9KKclSiVMl0LsYwIeQ0rkZFg43ju3c4ODmWglgr8liwqQjCKUVvYBN8Ykx4oMVoxf7JPgeHr1GUuTgCZRrtDTrAZttyeb3ixdmlOEhrxMJCxaSZOJoandhQGW3bRGaRR6ucT33yZ3jlwRsYM0FrGV01WSY6kfMZs+mMvfmUBw/ucO/OYRxLkZ1BANuKe65zg7lOCEOHR8SRfT+iJXp67JyNWkSxg2gsKWXk/Yfb6yY9l0nsYRfo4kgOtH2ciZZK0VhGGEfJyKO/12kdKo21sKkq5ianrqvIdpN78ujRG/zCL/w8H/3oPf70z/6U73znO1yen1NV0YXy6gaUIcuuRYshwHQ84eTksDcMyDJBq6yTAzsz0s31IXD/3v1+TEBnMkLWNk1kXWaxweL7TlvXyXjJwd4+mc6wXcfbn/wUXSdi2SqXWJyXpQDwseM3m07F9ck77tw95fTkhLbuIsMzYK1nu62ZTqd88Ytf5O2332Z/f5/lYk3XWfJCHHWd9Zgsuh7Goiug8DbsuGkNsa1zIY7CZHhnuXv3Lv/Jf/y/5L/4P/0XfPUP/wDbiYD1UIgkIEjWpord4aTv55ylqjZkJkfFeLbcrPt4T2QUZHrMei1aoij4zvf+gtFozGuvvsrJyR18brHdMzEg8cJSy3PNaFRS1xuqpqPISjJtYuHnGJVTXKvAFzgXaJqM508C905ep2trXNOCtmy3jqbdoo0wpOq6xXvFaDSGoDBGWK5Ka6zX1LWjsyv2D+bSFAqAMriYMGdZjmsDi8WSH/zgB0wmM5wtyXKFzhy+s+hMACPvDSen97BWOtoiQSGjbW1rgRYYHNfErGQAuBKjIh1cWgkzTuKTvnV7gw+izeIszrrIfB60GDXDVMDQmIt6iglSig0Ok5JIrVEJtIoGG1pDlmcUeS4JYQR/2rYVXbY42pzGCZ2T/d0zYtEoH/oYL+9DxvhwbuCUhJgca4Uj0LWWuukosiyOP0eJktRg3DUsCKm4YPi3HbaSgBDpPyJ7GhlN14O2JUHcmfv4qZQ0PLyXeBbSyC9xRLg/AGUHhSAgmBK3akVi2qbRnYFNr4IUo+mMj+2T+P6jELyOOYnbaTIoj1OSC3W2YzwZMR2PIZgoXSCSJ2VxxMnJKY/eiCM9sUhK19BZYSBZZ2mbltV6Q9e10RF2xWazYbVeU223VFXFZrOhrhrqpqFuWjbrTWTcSP40Gpe8/tqr/Pqv/Rq//Eu/QF17hqSLHaZmYH19wTf/X7/D9eMPycYlpq3p2ppyNMP6OF7qHc56EotHXIgbnK8IocF6RdM5cC1loQlBioJCqEooDXmRkeUmsqnL2AwUkNU6yLLUFC4oy8g+V6EfJcMEttstK7smLzKO9mbRQVf2dmMbvO9QISfPxviguHPnAY/e+DT1pgAvBlveOspxwXw2ZX9/ThH3U5YJw0jpofgNO9csbqEBeFOJoaViz23I2VN/xhjD6Z1jZvMpH334lBcvzmiaNj5nv9v6vTGZTDg9OaIscxaLRTReCrStjayPn6yDl8b+Qrj9HROp/yYThshu9i0NQ5FAKfK8b3YEQCXwIdXHyUmzf8kQ91Dok/rBljD9l8byTH+cCcAQ+W1KUVcVVVX1dcxuPhyCMJm3VcVytcRZx/XNJQcHB9y/f18K/LgOtVJRhD+5mw56zLujhkk6QxpnOyAHMmU13LtYb6nb8kdKRdOSBJq6QNd0NOrj1yfFowAqNmj1DvCn0xiyXOYsMxL7IzMwOYmmNdh1LZvVIurOxvsUhtfpmprN5QvmBYR2i/OB6cEe3tbYuuZyWXOzWLGtKuqmjW6gHZnRoisOYmgVwXltcpq6Qc5HG5urcO/ufbTKsJ0jz0qC372Csfbom1eiW3+zWLA3GtFGcwtnnWjYhmEKbbtpmE8P+eQ7n+Xhw4f8zOoLvP/B93j89F2ev3iP1fY5dbOSGtwbGtviPXFCZhQBvzF3797Fe5ksW10sUUqxv78PDPraZVmQZyO6VogkTdOgFDR1i5mMCT7j/unb/MIv/gYP7r/NbHpInpWSO02+w2YtzZq2rXHe03QdVVXHc90RvOvvvTCBBegZjUYcHh1xeHjA3nwW92b4sXUYQqAsR3z6M5/mu9/5LhcXV1KvIIDu82fPcVaYayYa1djOMh6NboF+6X7sPnaO4F4j0AUv5IT4LnYJRMkUIu3zQBwOVv1X8lsxDur0e+xgGtEWgyAsYJVipYI803z5179E5xzWtqLTvZFG2Ga14vLqCqWhKHK+9713eePRG31sqKN0U6pd0+CzRtj+DMpFEXPcCY6KYX+yC0hpIIGFicUvhK042xPjgKWuWgKr3afsP3OWZeQ6j+aNapBu0gZtRF8yy7PI/pRcw9qO9fKG7baS3MgjDfF4D1YX56yefsBDX7PvLLm31BiODg+5Cq4n72yqLdoYttstbd3gOou14qZbjkoODw9J00je275Baa0jLwrW25Xo99XbXv5gs61RKuPzn/8CZTnCOcdyuSIEz3w+F7Dde7QxZNmgZ59lGWVZ8NM+fmqALwVVSMmix4dOknktNz0oGTuVjnHAhAgEKgiJfRGEJSP6SB2TyQStNTc3N9GeO78F5KUA9/FNsfvoWV3Qb6Bd9p4corr/XecceZ5TVRVN0zCbTTFGDrbklLsLAimlhNHhHHt7e/17g3To7YKfAKkwMP3vS3fqNtMMErA0CC33gScGtd2kH4idWDDKoNQIyMn1Abnep1oXfPGzf5OqWrFYPGG1ueDpy+/R2gusW2NMQVnO2N875ujoDc4vnrGtrmiaipvVS+bzfU6mJdPpmMloRNs2VJUlz0qargGv0JkUO8Erlsst4zIjm4ixiqcTW3FlZSY+sh98gDt37uPdMNJX5AXT6RHjUdLmkOARGLQN0/WQjkka4b4N+O2ulY+De7E5+mOP4V4lJ53bv7cL6A39XG79zDAKq0mdH7yMjTZty3KxYXKQMZlOyMsxk+mULBc3w0k5YjbTrFZbbKfJc0eRC9NiNDJ9otq7BWq1A4OEKKhKLEiJ1y8CWtpIAQ/RpbWRDmPTsVxVmHzE/t4B9+/d50cf3eB9LQyCUcZ0JiYdQuceNCg0Gq1yXr3/Fg/uv4lSJcYUmCIny0UXKisKiqIkyzVHR/vcOTmQjll/L5JzZHKCRYCrqKNFZOoFIvtDEFaU8rgo/C1AYQRcQ4iMooFi7tMhn/4/DCMcLtC7YYkmqOqTxxACKiBjk/hbDYReAzJ4vBfy0nq7iULWSQfM44Ln5OSY4+NDPvHml/jSv/FrvPvuD/lvf/u3ef9HH3F0dMRnf+bzTKdCqzcml6aClgTr6OiQPNN0XoCmqq2xnYjVNgZDW3UAAQAASURBVHXNdrsVAXhrWa3XkbXiWa2W/QijJLodwXm6tsN3HuuE0RJsYG8+pzguxKVUpUNdRdfZjmJUQmxqoF7FGEWmNZnJaJqOk5NTQkCMf8qc09MT7t495d/8jV9nNjtguVj345weGfPTQUebeemL+hBicXQ7YeuTpni2KOUZFWOOj0/4D//n/yEnx8f8zj/9HdabRc8cG7IRLRpgQYqmVMRJ/HGEyBpfrTdS7GgdC+NMHAhjcmbyjKIssF3HZrvle9/7Ps+fv2A6nbFarlAYCA6TmT4JXa9rnK2wQWEDUTurI8sVs/mE1aKVLvhoj9VywdPHN3z+C7/MZnPG+eWH4C0KGf+rti2dDcxnexRFSbWtZS0aG0EZg8eQKcVqtaaqtsxmU/YP5uJ62rVsGzGKsjbgXE1dN8A+WaYoCt0zKILXFMWM+eyQ5WJDkRWUZSmjq8HjOkuI2iQSj5FrHPdriGOCeZZRlBnz6YTZbMp0UkZGRoxMRqdGbBRPTu6Ujm1VsVpv2G5EgF2c+3TfQAQbAfsdqYadGLwruq8wPSCTUvFdVn9dC8Oksx14i9YqAlERuEQYpP14fgKygpiHpGKT1AgJSLyJ7qZJs84YIzqQvQlFAsrk3AmJE+J3nesCA1svARQMRT/IOI2KwBOiKbmrHbjbADXasKm2eOcoenZMlE/QSdJCADkTR3ZFw9JDcCjEpCXLdA/yOW93zsJBukL3DbGA9Q6FjwW2eAqCxBrvLF3X0DYVm/WSPMsG1kZRUETxdxdZBz64eHhHxqnSaJOLtENWMp3M4roatD6ljorM0bBz8VKM6yTGOC8jskVZMBmVtK2n2jbSiPEJTpbP4ELHt7/2R1x+7V/yCmAPpky9ZXF9RX6c9/ncpqqwwRM6MZBo2pYuNnlD6IACtEaT0TmL6g0e6ih3UPRab8bIVEdZjKibRkbre5A20MTCTfalR6mJOP+6jqIosUTA1eQQhgb2qByDGuHanIw93njjU7zxxjtMp4f84AcfsKmWFHVDmM3Z35sxmYzl3pR5n/vL3lcEzcfkT9JZGhduauxFYGsAoaWJJsyLASwejUa89dYjJpMpP/zhD2maLu4f3T8/geh4WFBVW8bjSTQ82uKcRRHH83fPBjUASWrn3whD04AIpEgjrffM7HMq73VPEpCYMICYcffKmD/cijkfbzqn3+/fSVqnyqHpD+QIDsorTMZjfuHnf57RVORWmqairmvquqZrGq6urrBewMgsz7i6uurdmIkxLcWlBG54n9wsdxiI8Wr3BhseCQzs1l5qiDXpnu5o+aUxUMm0Yp4eP0/PsI8tkt0cW2siCzM2EZDzRisVXXBTbBJnUwI9EyiQ6rp4z9O9D8JQl3zPs14tqRcLTk1OhjRAHIquacm6lrOX12yrhnpbU20r9GRM23aoIhNtvdGoNyrorGWcjwhBHGfrqu4nS2SSIRlDJemYeE2inlv/XiG6CFuatiEzWZzioK89QXLQ7373O5y9POP09JTpbMJsdocvfu6ET77zOW4WZ1xePefp8w948eIZV1cXOG5oumuUakgu1aPRiMykOmNMVVWsVkvOzs45PT3FOWkQHh8ds16vKIqS46NTLi8vOT29w1/+5Xd58eIFs8kd3nzjc+xPXgU/xjqNyYTJ2FqRWZnvixnkciVyJtvthmfPnvHeez/k5uaGupZRxf39PQ6PDnjrzbd45ZXXWC0WnD2fMN+fc//+fWaziZAIYq6a6ojgRTrq7bffZrv9c1ardd8gDN5Hdnzoa0MfmRzeWXoA+GO1XdwBfZNCKUWeZ/Sj/1rHNa5jDeP7OkJiY4TmVQDv++eXuKCJXmmSe/bxR6YpNAkohAF0F3b+r/7aX2cynbBer1mvNzRNzXq15vLigvfff5/9/X2m0ym/8Iu/AAxsvUROSlM9KeN2Mc7JvhyAd48SjW+IUwwRFIwgoDS9EpAa4rTxzlgziSSV4q1cJ69izFSRBOalgdz6Lr5+GAIuKp7hOupGR0mlFK/CUPeL87lKxw1XZy/p1ksygrCv4zV+9dXXsJM9GUfvatoQ2FY1V5eXOOsYj0asNxXbqkGrjL35flwvgdFojO0cWW7YVhXTyYSmqcnyKVVV0XXiyLvdVty9e4eHDx/KhMF2G6+/nC3z+VxqEufxSkXZhMBkPO618n+ax08P8GklB71Oh50saGMgjV2kwKWU70cth6AetZOEcS1MmRBYLK9F58l7VusVk/FE6I9tFx3BkKSuLHuBSUnSBFxx1kWGEUCga9veoUQp1YNFo7IYDCqcY2/viLZxjMcSSJ2zfcKxO7qbDsak39O75sTv53lBcg0ymYwu9MB3BDR9DDjGDMYJCc32TvSh0vhzMjIITjZ5KizSYZhlOSEYbBeYT49xNme9XvPs2R/y4P4jGbvZeF559YhxqXn1nubZy+9Tq4aiGOOdwtqOly9e4pxjsVhRliUPXrlLWZYCErROrK23DV3n2NvLWS/XHB/fJc9HONthnXQI5rPI8HOiGxMI8d4n/b6SPM9Zrzdk2TXeOTqvwGneePUuWud0XUNeSofUR2ZXOqRTMZRMA3pRdjcAerc7kOwkbh8D+Pr8SQKJ3IdB7H8X4Ntl6+0yw9L3Ewicup3EBE1rQ9NU5HnBZrvl8mqB0TnT+YTprOD+nWMODkZMCsXB6Z4YN+gujh2ksRHiASKfy2opsqL0WP9ZhKmmyFRG8FHbwTma2rJYLFlvtpy9eM7F+SWLZc2Li0uyvOT+6V0evHLM1fUey02F0YrpZMzd0yP5zD4FaUXbWrTKuPPKa/zar/5bdK3BZCMurq5Yrjfs7x/w5qM347ixZ1QWHB/uxX2QRmljRzgETGZkRMHL3vJ5dA1zqcgN6KAH1lBi++oMG1y/DhJYEKIWlIR/ua/WdvE5h6I5icBLQeoJYQiqyRxAJ48jHzXblBzooS9ik/B+i4uaLMK0lH0vbtRiDFDkOW+99Rb/wd/7e3zjG99ks66k46wNWV4yGk+itpe4Hk9nM06OD2TUyiQXrZ2ihB3nyMQkCGmv+cgeEaBMhRDBQScj2J2nrSphTnUtVdNhbce2qqnbhqaqo7B1Q10L7byxLXWzxXadFKWtRSGCzRCYTEY8evSQv/k3v8zde3epqrbXckyFkW0bjFE72kySUJAczqBnEvR1UWSmtrXDdZ5yNGY+2+Pv/0//AW8++gT/+P/8X/Pk2Uc0TXKqMr28Qf/a8RpJ3HY9qDSMZ8Tw4OL4tQIVAWIf2aZaa/K8xFlYLtYsl8uY4EvS9ejRm8znc9Tzc4K3eNXhPQJE0xDylsms4OK8wijRaykKxdn5c1arN7l3901W6wXXN1e44ATo9oqm7hiVItjfORnfDK1o0RljmEwm5LmhrraUxRRrNetlS2dr0VgKYFvbg1VFkZjwjnKUxYTMoCjR6pD57JAXz2/IipyyLGOS6bCupW2h7boYa1OxK8XhaCT6Tyenh8znEykchtBFP4TWX/BUtEQ5jBAYzyYcnRzTNS3bzYblYsXN9YLNusL6AGFgjKU4n54rJfnp39N+VgIxyde+Dx9UdYXSAdt1gEd74r2WvnYqSBNrSEDkdHqIULomCOP5Y2dFKt5c1xHKklRY9weOSmeZ7GiJV/1Cja8wvNZugypdUPl5RXI56XOMnUcI0DaWv/j2t3n24umO26AwLsuy7Fkcb771NlmmSJqrUfUhFu/CFpJcT8brlYlj9/E1dfr8KvT3XKkBgFU9yKIHMAXpwneNZ+s9N1dpdE1ci/Msi82/HJMZsjharKPwvIAwqh+VSphIYiYkNsSwJsKPnd0g52aHE8H6TvQFnz1/xnq9lmvrBWi2naVzW1Yfvc+DquK+D1yOFYqO7XaJOjwlyzLR5YqNiRDfm/M+Co8bOisM0yIvyFVGYoaJsyc411LX8p8iasmF0H/mEBR5IewlZ90tYBsU3o04bxdMJrkw7IoQG2IZ3mvaTqYLvHIoDPfvvMmd4zeZTA7wfgSq4NOf/Syr1ZLlIjWPrIigtw0m11FXNccHqGrRm23qSvRc47pJJllaC7s5LwpGo4I8L2K+JGtY5DR3zu7YbQohcHx8RAhv8f7771Nt62iElZax4vrqiptrYexYa1HakOU5nW2l+Nxl74XdHUe/BndH53b3spwh0bTJ2ShaL43gYf2Is+OwW/nY86fboujdofsmtOu/t1MJR929ZLQh7DrZZJrj42M++alPMpmJdnZdS+HonKNrGi4vr3j69FmvG/5X/+pfjQ1a18fJtusYTyZ9DpMO3x4c/1gsCbc+Ff31GTKR3Z+MsS3GX9//7PCEKv5ymuRI91Ou7QDIoWT3hp1LlF5NBQMqMi5DAm6Gc0biTxhuvfd44shlgPV6RbtcknuPjh/PdhYFNJsVF2cvUKYgOAvB900nxQjvHNPJFOucuHR2lqL04padZWhjsLZDa8V4MqazjbCqck1RZuBlvDfCO/RNHeJ1UzCfz5nP573J3k5HXyaNQmC5XLJcLlBKMR7PODk55uhkzunxm7xy/21+5tO/SNVUvHzxgmdn3+f9D/6My8sLFotr1qs14/GoN+87PDhkf3+fu3fvslyuaRphRaU6nCDrdTad44Pl3Xe/x3qzZDQuODm9Q1N7PvrgKaa8QkfjKLQ04rXSLJcrqqri/PyMr3/9a/zxH3+Tq6sLiRdE5nFcCFkm49vz2YwvfOGL/LVf+CXeevsdFjcL7t29y+mdU0aj0c7KG0geZTnmtdce8t57P6Rp2vi8IWoUp5xFNCi1ic1nd2unEmEquSNR+1upqD+aaWwr8laepHEZnZnDcPYFF0hTgOkwVHyskZDefWrgEcH+2BCH8GNGPV3XcXN9w3hScnCwz53TY5Q24ANd1/Dee494/PS5MNwZDO7S7+Z5Hs+/OPbcNzdC/HOHJNJ/LbVaYs7tjirvxoYQzQpVQtgY8hi5BANRI8TXiis6/k76zInwMTRNiDIqg6EeERQdnjOxc4N06bk6e05pO3LfvwIBaNYVqwb23pBpjNX1gu9873tcXV4xm0x57bXX4pSHECiUNlEDt2MyHrNcrSiLEhc66raR83FpqSuZhpSpfs0nP/kpyrIQqZA4OZLyq/29PfKsYLu1dG2cLHXSWKzrlp/28VMDfFW9ZbNZkuflMEMdOxMpEU5FeV3XO2LRJo64WoLvcF60l0xUDrZOfJuUURydHLFZr/EhMD+Y45yMhV1fLchzEXGdz2cCauTDWKyz7lYil+fRCtx2/WKoail4tVZkpmC18Gg1I7CgaQZ3YNBst2IwkcS7YWBspZ8TIVnDqJxBKLG2xrot1jrG432UyunamtYtAXF0MqaUG44cTCrqZjk3bEoCUSdvYKWlbn+WZeJwGkZoxgL0WUtQDUHf8KPHX2dv/hGvPfg0i5Unz0vyYsYbr/8cHzxbUzfCYPF+jW3O8c7w5hufoKo2XN6c01S1gAXOUxQCqo5GEujnezOc7/CNbPembXDBU7c1OmuwboNSeTzIDMaUOOeF0WcDnV1j/fusN2smYyhyxbYSDSnrNhQcYHQuQIUnFloCxIR+XDd2Y4OS4tzvFEMMSX0KSrcT4fRD9NWRaJT8uLhy+AnBeJdBGkLSFYtFV0gJiYxBLJdLHr+85Dvvvc96ueVwfsi9e3fo7IbZNOdXf+WXuH/vlDzPJFgET1GOcY44QiTjeopMBGJ9R1bIKLMxhs26pm03lOOcUTFjs6wim2fOwcEBV9dLvvEvv8mrrz5gvV7G+9Bi2zU5NVcXG3KzxVvH/uSELMuZT6Ysi4IqMlizyKiYlGO0GvNLv/glTk8f8OzpGZeXl/zwvR/hg8LzIe+9+0N+5Zf/Gu986pPcu3vKeDLqk/eUoykteipplCV4yCJg5jMj4HqQEUAXDT1cZO2FAEGDyQQ0dlZGeJWP458+jhnHsTYZM5FRqf6exXFmGzPNW8AvSg7GeOZIt8qBcrHgIup3iIB6sDLiNyS1FuUVTe1YLALbzYZxWfZslM987rM8/uApbefQJiOgsMHHIlliwOJmJUVRZNxok5IIH9nFUe9TawYheElSRQ8tQwVJbADKbEQYJffAZLISi180Qcv19vIB5HPEglwZCFE7yzkLXgtrI8hhro0izw2jUcF4LKPFdd1Qt7WMMwTRNUzGCIoEtMbDvj83gjx3GmVQcU9HQLDrpBmTzAd+7Utf4gtf/Dzf+tYf88d/8sc8ffxEdAm9o7NdjI1SIKkovhwQIwwXxXhFX1LYRx8HiFGKpukIwfXd4M160HJJ8eTBg9f4xV/8RfJMXCe98jhsLHccQVuUsugYv0yZYb2n6RTbbcfjJ+ecnJww37vL1fKCen1GAFpr6YLj4uaCshzF+ANZUQobR0ls8EmvMUiyWRQ20v4LKVBRjMoJRWmwrkbrHB/WgMU5ItvFYJSjrhrarkNcsIf94pyjZUhSCB68jKjeuXOHu/dOmU6L6JQtnd8+8UKKrYRfybGW1h4DCBvHmvJMOpx7sz1OT+5weXHNxeWVjETHvdqzasMOK0bR62OaNAKrhmJbRSaZUpILEGKjDCcOr2kthgEEUHE9WJdAizjOEhP+4Ab3s3i14rOIVlfRtpjIxErsYtGvc7euQV+IxsND9kfaB1FkO7HJEpCVkvMg7BOlGBjI8T5cXV3y9W98g8Xy+la+0q/hOC3wN//Wv8WnP/Xp/hwbjUb9+amVEpaYT8xgL+9FpQuc2g4D4JeKJDkmfX9d+zM8pM8pu0TY3R4Xc0I6qFIpkd4HqR6RF9HRxEnF3NFkBp2JM6NWWowztDAYU1MozrDLz++YrqUx0NViyWazYrNZ07N/Pf17a6s17uaMfbVl0jq2YUIxHWMrz2qz4qA4xOOxnRSunRUjJh8CrbUQHE3TUlUB32X4LMSxHzEFciGN2Ppe+9FkWW/ocnB8zGQyoqo2XN9cMplM0UFcC7uu650wF6sNVzcrxmNx7zVmxMFeTl6O6ayN49CK8XjOG6+/w4N773Dn3gP2Do4Yj8fCxM809bbhBz94l6YRZlLXdaw3G8rRmDzPWG82bNbrPndKbNs0LpzyfaWiRpxSTMYTTk9OmM5mTMajflw8kNjTUoD6mNPt7x/w8OEjfvSjHwnw0CsBpKaNpWnbGPukGW+7tL9FS3IAUnaguAgA+fDjEj9pusbHyRMxWBsaRwM7LebuEixScLsN7qFicyHmhyr0jEcVx99VYqEPaFfEJiXW7k4w7e3Nuf/KsYC38YxMbvXOOt5//zEvz87xMWb1uSmQaalneoAvaef1IAtx18V70lf4ieEzfLYeCI0MG6V83J9p2qX/wZhiCxCaAJM0sjigGKnRF//XP78arkv/9yHOpZ+Sc8f3ryvSsHFKKwLIAYVTiuVigd9WFEH0C70KNJsV+d4B3nnqakM+gizPmU5ERL9tm2jA4rHW0TqHdY626WiLjqaVQr6uWkKQcdiyzOk6qaO00XEstMM6qVOVUlE6QabetFIcHx31+slFnotz+c5oqsQtJ7lFiFqfm5b15oqPHmvJ+w+l0XZ4POPRo7d5+Prb/JXP/y1ubhY8f/Eez1++T11XLFYvuVk+Y7NZUdcblA7kuWjgdV1DG/WJ264hNIHtdML+/pTpLOe0O+L8/JLjo2PRcXYNXWXxUV8/1eSiK7jiq1/9Q37v936Pi4tznBNDkKRzqyPARDRM8d5xdd3wld//Cl/72jf4whe+wG/8xm/gvWexXHH//gMODw/6+D38BycnJ6zXW957792oW5om8Excm6lB7z+2UROzWM7ZEIZ9G3qykiKLDQ5N1L5EEVRk5cd6VPpYrq9bldL0VUYfhmI9FIbX1WoHXAwpE40AWmT1f/Cjx3z4+IkYpWVZBDuFzLFeb6UhkBzH4z5ViHxPUZb42JjzKr3hnXo2fsZdwkMyxiB+Zh+n6xIQmCbWQqJsq4hHhwTWxXgSP5Pqm527dAV6E5XdT42K5CelornGcM1Spi65gQQrH5Az1Hsuf/QBc+sZOU+uFE5B5uHy8TPWRydMg6ftPJeX55y9eIEKisbUcb2u2VYbRiPBaFQIPdi+WK4Ep/KOthWjU2s7UXeylrpumIzGPHr4BrbtsG2LAkxc10rDqByJtUgQQod3yWzWpE/+Uz1+aoBPkbFZe6rqgnv37mAymc/XUewaQv9nngtjIbH4QhABZIIw/5QS5kmel0zHY0pbsNls0Br29ue944tzogcgOYC4RjVNQ1VVAOzt7QnrAFmwedTdSTPo/ciOFhHevJCFrHXA+xrvLU23JY86AG3b9eNAolcx0OzThhC772Gctm07clNSVaIPZTLFZntD8MOCNmZEZnKck4K8a2qUCuRxrFHrjOCTw00CSyW5Tlp/Iq4s+jPWWmbTjPOLx4QA5WjEbLbHaDTh5csXPH35Lerakekx47F0UDebDdY18eCRjvBq0fDDH/4QbQJKy+iH9+IufH19LaObZVzw2lEWhrbZYrKMttEEl0dQToQmi9Iwm05Yr0WbIs/GHB2+wo8+eo/Dw8Dl1TUvzp7z4O6M4HPOXl5yuN9BGveJtPt07UWvQQJdEjYNsaDZBT/TIyWXzsm8xO73/r89Pg7uDQy+0AeVj7+mABT0750QWCxv+Ojxe1wtlkxHmsnkkC9+5jOstys26xbvO/78O9/m/oMv88//xR/wz//5v+CdT73F3//7f5/vf/9dfuu3fov5fMp//B//R2il+N/+b/4zJtM9AvCf/qf/EXXd8b/+X/1nrFZX/MN/+Pf5qz//S/yX/8f/Hd/85h/xa7/2a/zmb/4mVz/8kKPDU+qqo65b6VpsFnRdg203ok/lLUU5juum5P69e+Rmy3qzZrFaoJQjzzVaFzhb8OqrbzAqDzk9zVht3kdpzSgvOT4+jg6qjsP9Pfb353GP6x3yTmTwxcOBkNz3wGTC2EuHtfcCfAUP3mRy6EXAT8x5HD5TOK9BGZwNWGexkUnpPWRReJ4QC62mpbPdADL1Rio799vHMbUEqDkfhdABdD8+0bUygmVj8SbJrICAzrsdIwojP+8swSvysqBqN3hnsY1HNbWYeyBjsMvlgtXyhtGo6IXxe5kAY/DexvFJSVbKsiAZFOgoYiuNEx3BvrhG1QBaDqC3OFwm+NvEzp4UuBp8HONLo8yRep/w8lRktK3Q08FydvaStm1EFDv4CPzQa7alN5EEhIWB6ZHmRxg+W/wZH68r3rNYLBiPJhiVsTfb59e/9Df49S/9DbbbLZvNhvV6zc3NDRcXZzhn2VabfpSh6zpWq/Uw1tR1NG3Vu+1Z22E7KbhdLOR2gkJkUsoaNlrz6iuv8pv/6B/xyU++w8XFIurTDMVkCIFqfcMP/+SbVJsGZUR/0DkwEXw9uzgn8GlO795hXZ+z2DwhyxUmz1BGY23LttqITkle0tqW0Mm5tFxGDcEYM8tyxHw2ZVQW5LmJLKtYbOcKbUYQDFlWstnKWtam4HDvPq+/+jlG4wlab5hOp/25Cx7nOrqu6cE1reDw4IA7d06FaZAnhmk/0DbUZErJOopFm0KhzJDGpKRYmF6y9xKQk+cZd+7eYe9gn6uray4uL9ms13HcwcR18nEGnYADhEA5yiVWWIt1g7Zf11ryIo/d/NvnQopLktT6fr0mR8sgAU2Yojr0LGqp8WVUJck1tG1LqXV/TeTzxuadSi696nb8iQWpvAMZH/MRnByKa+Rap18dkDWJUBFUqaP+3GazibcixDPTx0Rc9t752RnvvP02T548YbFY8OjRIw4ODuRahiBjKFlOr4M21Aa3i3mG81hiETK2HHaMDIgggIuFk4IQdCx3dq5TvAJpBDJhnr14uU8xyfX3BqX6WAOiXxR/TX4vJdkJiN5p1AEo78WMSiVAQExyfDRr6KoNvq4xQQpzllv2S8OZd6yqinI+R8e8oG0aMOJKn+d537x13hJ8SdcqunaLUgJotbZFa810PJad5AQw0cagIwPj7OyMoshEk9U7YMtkPOmveV1XKDUjBFhvtmzrLaNyymwq+abz4jDYuQ5t4ODglPt33+CNh+8wmc/Jipwsj27MLmC9SBdMJgVFWZDlGZvNhqvLC9brNVmWcbO44emTpzx58hHn5+eidxhH4MfjMfP5nP39fV555QGvvfY6p6d32K5FC/Xw6JCj4yMm03EEsdKovItbT9iH49GYBw8e8PjxY7q22QGNhClTluUt4MlaR1nINfcRvh+YeXH/JHHz+FwpZ1MxzpssQ3cZBNnLwbsEOffkgRTrVYp5aU/s1GjCNEkcklSsp3gVx9Z2mnSCsulbz5sMgpx3vPvDH/Lk6WMmkYGV5zmjURH10WzUekomcIHd0VunFF2cYpKcJWUCQwxJeUa6WCG+JWLxnPZx+jrTxGkC+X3bM2QDJgrl9w0f1cMCkECMBET0+7+/cv37STHmdpTbzct9nAsMt74X0s2Of3fK49BcXZ6TWUsWTZrQEgsLo+mUsFOdE9mIzXaDUtBE7cWUf9a1NL+ts8LYS+BukNE7kb/QrNcVTVPR2Za8jI1XH5vGaMlvg8P6Oo7P5my3sodEniCCJvFapvojxLVvzPC1UorVasVytUQbqZdns1nf7L977x6vvPqAuv451utrLi6fc37+nOcvPuLs4jFVfc16c40xAlxkmUyEiLOux/uWqrZcX1+R5yVHR0fiXOo60W0miPSAMXir6NqWxeKa/8d/+9/yrW/9SWycOIapGdkzWoPJRJYgqDRVI/dsu93w1a/+Id//y+/yG3/j3+RLX/oybSsGSvv7e7dkrkKcmnrllQcURcaTJx+y3W7jiKTcJ4D1ek2R5T1Rppfc+FiTSkgbfjhbQjQNiw2pwMAMV7vrOMStFXRk/kZgMa57MdlKgHbo94K/pWkbOxkqjnGr5NKuCFa0r5v4WYbxbcTsRYfIbPf4KIHjnRPFvNiUTI21tM8/LgtG2rMm7teYj5NG82/twYGRp4k5kZI6SEZ7palh1CDtQMoRFD24H2IzcLfZurvrUz6Q8p4e2I3RwntF6zx0Lcvzcw68okSTJWkPB771UbbARqmOFoIjMzm50bTNFmtb9vbmFEXOdrPBdS1ZlrEdlcKCblsypVlXG5RWVNsk9yMkq9PTO+zv71PXNVVV9dNW3gsYmWfiEB6CkskqT9+Y/B8FwFdXHWcvn7BcXVGOck5ODmOnyEV3J9OPtSTb+XjrCUFEILUyONfhoyhz09TUTUcWQTNxNVT9qFdai6NyTFGUKCXPM51Occ5Haq/ZCX6qd8NNOnvWOrxTBB/d+nzA+RalG4Jq+udIneoQpFOcZTlK0Y9i3hoBDcmZF6azEVoFqsYLQht1NUymUKFAqYLZ9Ijp5JCrq3OUWVFMJngvrsHy/r0UcUEOzvSaiaEo3VcTi5OA9x3b7Q2dFeaf2KF3jJsDytJQtzdYX2G9IbQ5NHkcY5NEuW1b2rrl4vIa5xR37hzJeKFS/Qj0bDbri9eyLKnbtdDTG8vEZOzv74tGhVZoo8mNjNheXS4xZkymco7v3OX66galSvYODmm7S6azCflownh0TJaP4tJM/0kHLRXZIc7BC9jr+71/q4MDw0gD9ON6uyw8hv7ArX/pAxrc+vndf/M7HcKPF5ZDgJTn67qWq8UVVbsktFeszte89olP8/2//DMm0xlaZ4zGJWfXVzw9u+B77z3h29/9EY6Gi4tLnj17zocffshkMubs7BxnFSfHp/z1X/t1vve9H/D4owtCgLMXl1zdvOTFi3OuL1ecnUny/fTZU87PL3n58oxt1dC2NUUpYNrZ+UsyA9cXL/nc5z7P4maFyYRlNp6Mefjwdb7w+bfwIWNxs2a5fk7dXrBcVrT1jPF4jjE5k+mUtmmFIt40TMYj8IH5fI/pdCo6P9wOWr2CoJyapP8POo4f+NCLEevIXgla2FZyj1LyJgCUtQ7jUqxRFMFEfUaFR4PzpLF4ax1FJgwq5wKdbaWDH3ZYuYAOCo+N7nAe2w2C1s5ZbHRItlb2YtvKOEBae94nbUDpynY+RGBTBPKLWEhZK4mpUqkzpnBBUVeWYBvsdNK7xAXJ8mLXPY2S0oN+gTCMCfhwK071aXUIAzNEiWmDUgqiU5lWAjCKmC1oJfpPSkWwDUXSEpVx4pSMhf4Qu7m54fLyUoqSIF0qoxMo3w9MEqIcgbzFpF25O2Ijy8T3+0ySWxsd8oJ3zGYzvJf3N51Omc3m3LuXinfZ/0J/d/Hah+ikm+6175snXdfSNG10XPX91877qBnW0TlL0tPZm+/xxsM3ePXVV1ktazabCmsdmRadUe8d2nZ89Cd/xrN/8Yec3LvD9PiAKogrNM7RNS3X19dcXJxTjGu22w1lWbJYXrJaL2ODRfdJ7GKxYFPVFMWIpmnR2uCsjBMEYNS2NHWNjorJtmupqi1Zrjg4mHFyesDh4RSl9hiNAqcn9/j0p36Otx59iqOj+2TZhCz7M84vrnrtS4n7OoLFijzTnJwcc/fOqWioZlrWwRAZIehe03EAr+I+D0MMDoltqxRpkEJ0lFwEfYmyFZrDo0NGkwlXV1dcnIn4vocdp10BjjzCMDs9PeWNh68i5io1T5686McunfcYH/pR9iE2RZ2n0K/SuHdCDyqk80gkNBSWbjh3QiCEwVCsbdteR7hPQuPa/HjBGhVWd1iHMYYo+2MJdj+sH3ZHFtPXKsoKiHPuO++8g9KB8VhYGWmkb7vdYlsxnMhzMYSxrmVbraP5U9Tr0pqqrpnvlVI8qHhdevYM/dmpYOe8DVgrlc6PcecDvZ4WISb8kUEkv6p68C/FtPQaybU+gcL96yMxHzXoIIX4c3LZxAUzsQWVDwSd7pWwvcT92UeAS+5zcsULIWA3W+y2Ek00bURTtPN0KtCtN+xNKrLMRJa8xShN01RxPDd9Bk/SQYQMrT2j0Yimk7iUF7kA2EocmZuoExqQ2N22LbPZhM62AqT5IOxh72MzSZPluYxjBYlrXdcxnc1w3kVGvqXrKow23Nzc8N57H5CXI/JRQTkSbWRjZMTOB9BGU9UNq/Mz2ralaRree+89vvrVr/Luu+9ycXFG13Ux5uoebNjVvM7zjPF4wiuvvMLnP/c5fu5n/wpt9wqXV5fs7+9zcnLMaDTqGYDp8zgbcB6m031OT1uePX8q0juaCCCBCwIiJ7adFLFZHJU0wzrZKeCl8I1fkyRO4j95cSFOLsU+FeLB9WDV0DDWkSkWAaUU5GIeuHsGKxIQkIrS0K9d+n+T+DesX8ltErgDgfWmo662t2JRAq2dk6mHdA8EJEifeZCyESa21AGhf38RCIvP28fVAb/ra6t0RdN9Un3+titxMzAdfQShdDwfFQOTKsXC3Rx6CC23Yb3dgr7P+VO8/tjPEgaHYs8w/rw4v2RsNKqzWDxeQafBamisJSsKbBtYb7c0dU2WSeEuepcyAWA7MdnobEddV6w3a4zSUf8yxNqzE/1DJfvSB5HZyLRmt+kFGuUsd+/K+Ony8pLtdtuvsV1ZgcT8S803Fc/P9KfWoEwGCAhZ1zK6/fjxY6bTKfv7+xzs77G/f4ejg1d482Fgtb7ixcsPuFm+5OXZRyxXl1xdP2e1fMpmu6LI8+jG7MlyzeHhcWyiZZTlRKbMovCkUhC8xvqGqtryO//0/8nXv/5HdG0TQU3JXSUejJlPZ0wmE4qixBjROOyspa5rmqbGRe3wzWbD//X/9n/h8eMn/Lv/7r+HMCnviktsXAPeD0SOt956k09+8k2cc9R1Q9PI87Vtxw/efQ8VFLbrWK6WNI3rGeogdX5mcrIsj2aYcXcoQTG0Bm8Dznu0SfJBaZvFPDzGAZ9Q/90cIGn1hegTkOC8SHgKUTu2Bx3TWg+idytMu3jfd9e/klpg92xU6Yx1EvuFERy/kw7cOBacxnal2RpkqgKHVyn+pDwrvV4C9Yb97GNdp0nyITHnDwn/Gc5sHwJKmx1Ac8hrbrcN42vGOqBvhoRbWWesuzzb9Zp2s6EgoJwHF4RVqRVtrqhVIAsuxmGPMbJvjFG0bcNyuaSqthwcHDAbj6UuUkL0CEqA63w0Bi9TUlqJ2ZUw6D33799DqUDTbCMRIkTH4x3NQiW5baoLVdrn/2PQ4JtMx9y//wmcbylHaUY9gXhDgM9MRtO6vivqnCSIzjtBbfH9YZbleXQHy2JwDOR5QdPUbDbrqKXlaRpLnsn40dHRIWU56g9x0cqSThckQWEVA58wJi7Ob2gbz+nJHVITK7AVkM+rnpU3m816ACGN+QozZjBUSFpOqYOyXq8QwXbRvBAXOx0L7oy9+V0O5m8wHR8xyu/y/OW7+LCiaTbSFdMugoI6bmDdaxWmpMI5y3LZxOJKDp7WNkxGc9o2IC65LT5IB6jZtHE8wrHZbimKCRllLGwtm01FXTVM53Om0xl9gNI6irLLyI7WGhsL3YCitRbrQnSmu8aHnG3dkXVLrKsYj/YoiilNFchNxsuXz2m6ijK/w3R8yAWXFEXO9c0NmwzC/pzVckVTd4wn0lZLot0DkJfAmsQUUf3G/9jRLoe5i2lU+EmbZkjwUjYWArcDSw/gyetbP2zQW8BfXAM6unG6AMv1hm1VYV3Lp955RJY95/rinLprKUcz2kacuVq3ZbHe0rSi43Z1veTqSkbSqm2D94HFzRKlctabJT/64Ie8PHvCav2GMCVHkOeK5eqazfYS6xu2TcN6u+Xi6orzi3M2W9lDq9UNo1HJG288ZLm85qPFe0xGU57X54yne5Epovjgox9R1WcopZhMZuSZp7MVZVlw5/RVAnJYNE3DZrNlOp1EQK9gsVhQFEXck5Da2UNdn7re3CpQfQC104hNAK7vK950PEISfFVaXIgwKVmUA6KzscPuQzw0Raxcmg0Z3gszo/MZPo6u+ZC0kETvzVuNNy52XEx0+rQoLSCPR3TRMpPHNZDG90P/meXQU7G4TKsuoHWgyKWRYEzU9uu1OCSGdUHTGkVeFD1zDL+TzO9onCatm/6ahsRwiYBZBEtgSKL7cRulcFGwNlHrewAGLawK6O3phQqf5qTkgJJxYROLH3ZGHuN9UkJfhxANCRIov7sGVE+7j5W9PLtPoxSRwh6SnX3NcrlkNBoxHo+jMH1Oaib1TuZhYBQlMNEYQ56XfaIsxV3onXeJiYg2ZigkQojjyghQGY1gFosV3nuurq9JJknBBxlhbVvaD5/x2taxt9iSHx3xo64FZdAqAzq22zX/8pt/xGtv7LNcv2BTX9J0leg6Wts3boQ5ZzBGs9lumU1nFOWIxx99xGYrIEI7GpOZIppkjAUAdFA3NWVZUuRzDg/usFnk/JUv/ut85rNfYDo5ZDrdh6ApyxEHB8e8PLugrjZkmRbmXoDZbM7pyQn3795j/2AeG0RxfQc5q3rwLhW1ih7EIYWCPp4P/w0uykS5BVnrAuTHNCwEjMk4ODhAoTg/v6Cpm+hon/ZDNF/ynrra8tGTpywX10wnU7y3MjKuFK7r0EUhuceAOg4xKr0XGMbW1aBJA5IMZ8bI+FJcH846jBZjCq8DzqodyY2QtnDcp8RjJ+21OO4bdduSAlUaS5YdpW9NAyRhwcSSkUI7glRk7O3t8eUvf1n0gON4WS8S7hyjouTy+krG2ZTinXfe4Y1Hb4nbYdv0527bCaDivSWdpzIyq/rrsptoy5+eNELt088mAH/nOg6MgN1zHpJLcwIN028NzKk0JzxcnQEZUDv3VIqXYOXqJ7MnWS6RhZ9OfYWwskOa1vA94KexrJc3mGgMtwUqZei0pwkWF1q2bcNMjXBWtM7yCEaKFm5N02xxoYnM7rGwbxCjD6OkOZqa0T44dPC3QJy0WtpWcuE8K4WZ0rp45mZ45zk9vcN0plmtFlxd3uDsDWcvX1IUJav1irPzM4oMkUvpPIvFDSYvQRu0STqIKgJ96ZwX5+H33/8h/+yf/TO+/e1vs9ms+ntCELkG61wvoh7RYAGLraJuttwsrvjOd77N7/7u7/JXf/4X+Ot//Vd58OAB6/WKO3fuMpvN+7jsnKOzAevkDNjfP6BrW97/0Xus1yuybHD7zPOsZ7E3bc2oLEgSM/1m62EsFVkmoV8uCc7fXZtGqdj8c1EOQ/KDIo7oypq29CZdt3LKtLylzklNDEJ63eHVog1F/JkE2ugIOA8bJhAIMnuK2ymy+z0Tf8o5KVqFNTeMIu6a0cnXGt0X1jsxmNg4ScBFAhdj/pbybZW2L2miZjcXH3Jn+VM+m3M77O7dy08EAUO4ZdZzi0zB7bNikILo31b/Fgn0GqCirx3fmw9sr68ZaYXV0M1nNLlmMy6pplNcZjg8OebZs3O2240wjFBY2+J9IeHZiB5tHt9T23YRbEyMR814MsZ7R2sbaUjG9ayVQ6eGdbp2wZNrIU9cXV8R2o69PWGnOWvxaqgxEsCX4kFvXLm7HuJ5ZUwuQv4RvF6tViyXS54+UZR5wemdu5yc3GEy3uNTn/oiztWsVkuurq949vwDPvjw+/zgB99nW61RyrJsHMa0ZLnGmEwaQyGL8SvmPjEndK7jX/zeP+dP/+xbUfbK4awYWk2mY46ODxmPJ0xGwvKdzfYioUT2StN0rDcrtpsNq9WG65trrOv44z/5l1xdXfGbv/mPoo5+y/HxMSEEMTmAqC2oYvM3MJlMpLaNWuCiZBM4PT1iOhvTNA3bzcB2Xy6X1FXLer1ms9lIc7dzFEXe5/lDHHEEZ/vdo2LMCyGe0h4SM61fqPF3B7A/yO9YCGKb2zc+kza8bD/Z+5IXpX3Z7wbEwb7fKf3+C3FqMTH2EmOYuC4SyOd2NlLvdeGHM3Q3B1IgchLxPfTAv3zwGNPU8H6C5DLJtdclgC+FgR195Vv54BAm0hXfYUvS/74nXXPFZnFDqCrKmCu1StFlmibP2RYZNi8gQqV7sxn3791nNp0BcHV1xXq9wntH13Zstht815HvH9A0Nd456npLESXSmq6mbVohAnghFdy7d5e22/YTpG3bYm2LMUaM3YiydEo+j4m5hnO3G87/qo+fGuBD1aDXjMoR3ovgMsreOkBMZvCxg9NZh446Aj5m784L/df2lHGP0hlN09A2HaPREVoXNK3YGJsgo25tsxHGkTFYe869e3coizlGiWNf223xvkMpoUIm1sf19QWXV1eMiyNm00PaRmyOX7xc8e6736coMt78xH2WyzUhBI6PT5lOp2w2WzJjGI1l1l3YHQ1ZljGZTHrdkx68jAFVwL20BDXaeBaLF1SbQJG/YFst6ewKWAMe77N4+CmKMiOJxDdNQxcdhWWMTMDRqt5QlmPKckqRF6xWMvYgeh4Z6/WSo6MjlIama+KhJ6Mwzjls56nqWsxFJhOyrIAQoslFiQoGnWVoJSOFyojOy7apmExHGD0iKAH8RqMC78VC3RcNeeHp/JrtMmMynrPavMTTsncwoW1uCL7BOnmezaoB5PONxyO225q9I+kIjqYT9KWOHXTfH3KKqFGiYprUJxUKkmbAziOoXXHvnWXcJ04JhEpPeqsijX9V8Z66W+scdh3SJFlqWsumbdg0DU0L12vP2c2CzsHR8T221YbxaMzewT5//p33eHF2zmQ+5Y03HzIbw83NEqMNrz98xHhUsK0aRqVmu93wh3/4FSaTCVUte+CzP/NJ2u4N9g/2WK0XfP7zn+e1119jPpuzWCx5ef6S589fcnp6yutvPCLg2dQVP/rRB0zLCc8+eMLNzZLxbI+Z2mNTVTTukto/kUSwHqN8Gr933Ls/7T9zMhvwzjEalSyXwjoyxrDZbFkut0wmIwn4LhloDOL8aT+hBj2+vuhNFVdM4hKNXn4tdaH6uw4qsctMvweD3x3NGWjoWgeUi3omWaCLrC6vojC6geAzghcQ1lphJhs01opxR9t1NG2NnmhcMkDoQau0rkLUgEvJ7kC9z3NDZ6Pxjw+x+JUESbQkZMQPPZgEpeslBivD2JtS6jY4taNHucs81Wn0JyYIIcSxm6jnYneeL4SkqaOEyehCZFR3qCAC10rHjnwrzKkkfC+S1gmYdXiV0UWmnNIKlwr4BND3DEf690WIjIO4K3X8XP2aQZLe1WrFZrPpAT0QZmJR5PHrwXk9gaPytYqMAkmIVWSopXpi1/VQxplAGY3OTCwUZB1bZ6m2WxbLRTRfUnhEo1EFy7ZaMncNfr2gM/ewVZKkKIRNjqNpK26WFeW4Y6Q0rVWsN8vIIOkoy5y9vT0Bs4zB5KUIR2PZO5ihjeLk5IjZbM56uaXZthgjRi/7eo8XL19wc73k8uqacnTJ6ekvUJYnfPTBJcYsOTg8pChHzGZT0Ir7Dx7EdS9Cw8F7jo+OONjfu9XsUkr3+pcyfSFjfdZ2tHUjf7YdNmpZaR0VnrSME+d5Lg7UWYaI1xOTzWHdSn4xaGF5HxiNx9y9e4/F9YLr62u51po+BocA19fXnF+eEULg6vIKaz3laESWy4gjajyAQLeKyQHgTVt5N4YMjYnErjeEII3ElKh532GCAR3PLiXrV4ZPGACm4YQa5B9UkDiWClJ81GYzMduO4F8q3hUR9IvP5CMjILL4jo+PePTmq/GM9tKtj2fpqBzhfOC7332Xq6sbOm/TYBAJnIeh2O61D4nMhAAGgyfgIrtgwDhuFxnxU/ZFYIrbSbtHsIHhPviYHButZSx6FzlJT7gzE5maNIRwa++md5KcCpPukyNIAyjdW9K543c+704B7R03N1dMApTOYZWnMQ1L7QmdxzSKZlMxzUuJa35YW52VAlCMMVIhlHSqO7quFSkFlOh3xjWcRPDF3EqYdCbLUEZMR8TMpYUAtqnp2pYQKsblAePJMfv7c46P7nB1uRJjGQV1VUvO2sqUSA/2RIMm5UXE35OhjThNV1spdL/2tT/iv/vvfoezszMCLgK+DDmZT4zaHX3JuJr6aXcljbmzizN+53f+Kd/61p/w5S9/mV/+5V+hqmoODw85PT2lHxN2rpca8D5weHTMz58eY20dRxkbttstVbWlqmqs7Viv19jOkhmDMUOOlkxcBAjUO3t4aP4MgFRABU9uFK0LtxqBNjpSxrq8v58pf7n1iMDfrtSEOGcCKp1vKQONBV5kJvZPFRv+AuxJM46eKblb5soLpqmpEFkqJu1ZL+eWNBRjLR8r+ZRDQWzIRZBIttlQ1oe4H/TOrFzcWYSQJCwQzdn+Iug+nibbI9WvjtjKCBCc6z/J7vh8Ag0kVehbJPLb8UV8/J4PA/gaQog5oMcbaTxubMt6s6LMFNN33ubks5/nRst1ePn4GXXMNdu2xnkZOxU2qxV92syI87tzvfmP7boYK7r4nkVvz7oW52rabst4nOOCIzfQdjXOWYpRiXVR4sVK0yQzhlVdk+c7btWJQKB1bODEMekdc8H0c8aYqImp47KQOK2CNGyl9vZstlvWP3qfDx9/RFkWHBzsc3xyxMH+CYeH93j0xjv8az/3JZ48eczV1VM+evp9fvje97m+vsDicVZqxdm4lvUdonFPUHjr+cvvfZ9/+fWvs1otACGTaA0HB3scHO4zmU5kfHg6oyhEtqooctEAzXLyQkg8rrM8ffaUF2djVqs1m82WJ0+e8l/9V7/Fb/7mb/afeTKZ9ABfCIHlciXNMR0iaaiIRnaei4tLRmXJYrHkM5/5FPPZPvPZ3rBHQoAIqnatZbvZslhIrXN9fcNms+by8or1eoNzHW1bo40AXhodyQRZZP+FOCC6Gxg0vXNKSnYDKUDKfooAsGeHcRd/Nq1vn8Z8o8ZRSPp4cVMEL3vOeUcbG3YiWTU0BfsQk+rjEIbdFcG5dJLr+P7QaVycvq7erUV8BAV33yuxzvBxAiGB7wl8HhiLw3u5Beyla6N26/X0/ob6PQTP4uoK2zbsq5yTz75NW4zwezPq6ZjJpuZqWZG1GmMdB/N9sodZrzM7GOghOBKBoDzlpGS5WmPyHKUkL1c66YrGvNOLXMR8PsXalqreUtc1zjquby5RShoFRZnhgu2xBKUTEeNWlvOv/Pj/A8AXMFnA+RqtjBS6qUBPB0TXYpUi+LTIwbWuL7J0XISpAHPOCYq+bdmua7w/pyxHTKYleZGT6ZLpdM5suk/TbnGui0Wc0OMXqzOadsV8Ppdx3Di2qxCL6B/+8D1mk1PGuaDwSluquiIvNJkZsVpU/OAv32P/YM7JyQmr1Qqjc8ajCefn53Cz4M7d054pkj7HarXqR1hlDaZxTVmigiko6maD99C5DVVn5HtFwNZDMQmyAdsmJV4OFxkydV1HPTqFda3oEfpAlhs2mw3Owrics1pf4YI45iUgEu37cWXvfJwj7yiLEVlWEBBtjul0ijI60qPFIWY8HqPqBq1VfD4DQUtHIy8lNgVhV6AcJpsQfEeRH3F65xWWy2u8b/C6Y7FeMjL7NJWi3t6Qjy2gmUzHdLZiubpmMr9HCOLwlpKvnwDNkQr8VBj8pMducQbsjAh+vPsRfy5IoZ8CV/psIRVfqTCJkejHhcsVKEXddVwuViiVE0LOs5dXjCcHLF6cYbIld+7dxXvPd/7iuyyvV1yfX/OJNx/x+U9/EtuJG92DB6/yP/n3/54kgcHRNA1/52//nd7W3Fk5zH75l3+JEMTMZrVa8/rD13n9jYeR2dlx5+5dmkY6/ufnF9Rdh1eB2fEJe2VBOd/jV7/weUaTWVzPNyitsd6SaQNYTCb6d1pryqKM47Ke68tL2rbFO8vV1VXU3BlAgKZzqNjdbNtWRl29F9AgxBE9H+ii+Kg0qEJfvAbvbgFZfdCPxX8qxIfIqFHK4GMiaq2/dV9S9q4iGJgy2yw62KaEKe1ZrZIOhgctwJgx4vyngsd1HSa66ikSKDEcS2l8VXmh3AevEF2MyHrLdO82Lb8hnTIVgTEZe5KDWEdALSiFDqpfj8n1V/mdQ2/nkCYEQtKS00PBm/ZNYi7e2jc+jRMI5f7l2Uvee/ddFoubqDUhWjFFUTAZj3n11Vd5/eFDEpMxqMjyC6oHF0VYORUWETRUoBKLJnUk1VAwAgOLNyYwIkcih3piAiYdxF0gIj12R/TTqFMiRMr34/XwqhdkDoFeUzbFmZ5JnYCXHigR4FI+ZxwDDkEMGLoa6oqx7RhZg/HiLq51Rlt3OGtp7ZblckMxURRdw3SumExGvP32JyJbuaMoCsbjcVwhhoCw+F6+fMHh4YxXXjmlLAuqqubOnUNWiy1FUfaaqZNpwfX1FZcXZ2Rmyp1PTch0EeUnMqp6Szkq0AQ+/cm3me8LOzCLbpermxWPP3oamcUrtNaMxiNG4wl7B/vs7U1oNqJvuFptxBDDtkNDJgqEkxjpERBKyfl4PGF//4DpZEZZRGHxkDTLZMTae6LERiB4GYnYPziktZb1ekEIDhccJgzAUdLBcy5QFEVfHHnr0Bh5LtI9TYnaznkR2YOJcezTucAwGlwUhTgMty2ZjmPvsQa11mOtJ0f3+jrCPpZYNZwboU94FZIL9ROEIQ65OBdL4RgoCWK+EICYI6TNLTFIwJfzsxesN2K4MC7LqNsl+lBKrdhsahaLBW00JuiLR03PXunZIz1zKQWpdD5CUF5A+JToh2FzSQ8nXrcd04DdmO59iunD+ZoO6EDYARkCLkhsSmNB/UhSCASlbo3CyBP2t20454en7/+t/3qHka/S8ymw6w2zxjGx0OkMr3Oqbt2POrW2ZbPdMG8PhAUZdYxD6KiqLSGI7nEfn7SGIBp7JhNtyC46cGplYhyWWNNYYc2XpaZ2kt/leU5ZTmibpPWjybKc5y+e09klWsPJyV1ef/g6rtmLjSqD0RkmE0F+rWUfyDULGJMKr0BVVTIxsrjmt3/7t/nqV/+Q7WZDmrxJrDOlhBFUlqWA9lHXyhgTQZdwqxGemA2dbXj67DG/9Vv/JX/xnb/g7/6df4dXX32Vtm05Pb1LcqwVYXhplJvccHpywHSayy3rAeIBuH729Iy26RiPS5q6Yltt2Ww3rJP+atVg7WAalM5jqV3EBVTAvzRJM5yXWsUReFJeKk2IJHlDjBSynJQYB6S1nPZ+AsXCx3JQUjtLcprhFJOG2S7Lf2gyBxKbeljz/WKPDQUX96/vi+XETk33MEBfsPYAW9wTib0jAF98p2qnGUhkGseYoId3EN9jktQJO07XoX+N5HD7kx6Se/v+/SdTlCjiEsHBlA35Pgb0v+sVSePTE6g3W5rViqDh+F/7Atv7r7OqHU3X0V6sqddbnJdGpJhEyIht51qsKyhGIlVACBG00tgge1NpIqPcU45yMSL0FugYTxVKF+QZdF3AOUNWllS1p1s7TBxxziIpZbPZiB6wF4MOkb7S/ZTCUHskkEdioEyt6biXo9O4lnHMwWhqMO4wRkwvLy+vuLy8IjMZe/t77O3tsb+/z6NHb/Pmo7f5mc/9PJdXlzx98oQXL55xdv6Cy8uXGH2AMSOJyfEeLhY3fOX3v8LV1VVsegaKPGP/YI+D/X1h8Y0nTCYz2sZSbRdkWc5yqSiKnLIsOTw6Yj7fI3h4/fU3uHvvPh9+9BEffvgBK7vmBz/4Pv/4H/9j/sE/+AdkWcbp6Sl5XvaMqYuLC7bbrVyHLCMvyr5m/973vs+rr76C0YoPP/yIR289lJirk/alrCyjc/LxiMl4ytHRcYw3sha3m4r1eoM2whjebjdsNxuWyzXrtbguN00bG0q+3ysq1ijGCHlGp60V0qRZBPZSTPGQdERRIWr6fUzXVyWGn+y1XYA7Huryc1oc3ZWgV7dq4L55OQSj/k+lejhSkHQGtl8666UpkJ5TGp3EXF5rHUkFA6i/WzcTP40PfoeZTL+uU1NU1nr63JGA0D9XxFBcYH15DdZiTg44+tVf4qMWmM9pvMWeXeD1JRUyM2E7K9NCzsURfBdfWyag6qaRuiwIK7+MUz11vRV5KqWinI286dFojDGK9eaGZ8+eUtU1WmnqetuTtAIjOUfivU7pjjHcqk3+VR8/NcAnB64wejwOY1TUHtlZFRHlTxpJu3pyMu4mDrdaZbS2jroRilFZslnXON+xXDVcXnpOT+8xHmUY1RFoMLlnu93g3YRROaVpG1ara5q2wlnLweEhWhlx+IoL5tGjN8n0lPPza4oi43A6o21r8tzxhS9+hu224+XZ+1jbUW0bTk/u9syZo+MjFIrMZLeE1+taRp9CEI0bF7ugCXhKlPQQwFqiCUjA+wqCZjo5wCrfC74DvTkIwHQ65fLmkiw6hmotI6DTcsp6s6IzHl3LOHBeTBmPx6zWMB6N+2I36YqJtpQAcUZptBYAoSgK1tvqVrKTxkTSZwvBs902/X0UQEOSuKLI6VoLlBAKXBcYj485OX6Ty4slZ1crypGmyOdstzXH92Z0/oqgJCntOkdVbZgVwtJrmhbbQR5HK9NhHm6Fn6HwSgLE/Xd2C7QQfuzvP+nr3UcClGShh1vPEXaKmgRi7eqapGKs7TqyLOcTn/wMn3jnM6zWa66vrrj/2haCaH8ppbl39xVynXH37n3u3btHwAHi/JRnY+qqIy9M1AgQjSYfr0ti0KTXNslcgV2XQsW9e/f54he+CER9FMRxEOUwOlAWJV3bsd1WvHzxkvPzlxQmY1JORPfQB5RRKJ1R5nP25kfkphCtgtUCFQZnaaU0e3t7KKVorayjrnV0nY1CvS6CMZ3oMzlP0IrgbN+D8V7GVvPYHS1HRdTG1OjYGUvJVUpy2rahaVrqtsW6js4KAOp86IHJ3Xs1dJsS+zgeMD1DRR6q754NQtIJQJLuXtd3/FTsln6cXk6QzlV/YEYQ0yhFpk00FkjA224nCnQErhLzQEVAxCvZESnODhyA3SQ/rWcB1Tzh1rpOJ6j8e2RcKOLXCYyApq748z/9Fu+//x5VVcUOOf11CN4zGU/5t//tv83DNx6ijaLebmUENiZMonHXDYw8v7P3EtsjeDHl6Lt4EQhIB358S8P17aEZWfOx8CAIWwrAqzTyHfo8J3UY+9GlyG4IXmHtkFCoNAodQRQNBCXF0u3yJT6Hkvdme3aqx2MJyqKCQ2mJvXW1ohxNcFZGyOU87Ggah1c1QVnA92PHRGZkYiB6oOlaxhPNa6/fEW3NTBxCq6qhqhv29vd6593FYkU5Ujx689Xohj3BOZFr2N/f586dE1599VUODg6YTEbiRqoHJpZSIo7ctQJkzuZ7YiThPVXd8OzZC771rTOm02nP+mvbhuvLC66vr7m8OmexXFI3Dd7BZDJhf3+fvb09Tk5OOD05wbYd2/UGkATp6OiI8WQscQqiXqYTtkNiLQQB046ODqMRyRrVJ8kDcCZjP8O+EDBWCmgXBqH8XVA5btu+cKTfXQNTZ/dc6BlniIQHu+s7uEFmgKGxpFTAedXvs7SidRjW9a0kPRawyVAl/byM6A7g2xDf4m+FgFsvWa93knSGGCEgvyaN0CX2mYqOPIphZC6BCgL8CQWoBwVcZECns2fn/QevBOCLAEkaOR92MbcAPN+zfBCZDQ8BewtoSXwgKW6E0R8gslduFxA/xgbafYSd9mHYAS3i+kljzUEHVuslk+AIJqMeFWyKjKYFRyAzHnDoTEAoZ21sQCROpKyffvxXCQsapIkQvIy4lqaEoGiamrxQveth0nJ03kXQSTQSy0KM00ajsRQQzZSLcCNF6LbixfPn5NmSe6f7BO8ZjUTDej6dMCqmMSZLvqo8BCMacMmwarG45p/89m/zta8JuJd+UKmAyQyj0Yj9+V4fr2R0r+gbQD1AioDgm82GxXJBVW1x1omWc9vwx3/8L3n8+CP+wd//h/zsz/4Vmrrj9M4dAjqe43JPsiyPZzX9NU2xMdey9SaTKU1zg+08d+/dZ/9Apg58EGkFH1lTddvQRH2uatOwWm1Yb9a0Tds3uZsm6VZK8Z00lXzUM0wNfWNkLDCBjkkrciCcedEti06hMvo2yFMMkHP8t9QkS5GnB71TbgcJxN9JWeI1SV/sFvnExsYA2Kf1Lns2XtS4j1Dc2kdSrad4JZnq7lREysdT+0F9/E2FsENaul3cp+dOTdJ0LO+Ce/1zeB9dNeXvXqlh30aXYm7F5tQ0kZjUrLfY1RrlPc04px6XeKWxtsKpHBtUFN/vorHK8NoCVsnZF7RMppl4fiulh4nv2ERs2w2ZduztF3R+TtdtsbYiy4Osazy5h6LI0JHZK/qbMh1TNzXj8QiV6f56Jq3jj8ex23+P+U8EcxIcmkzNiIB2CPRTY1JjGDrruLi44vz8HK010+mU+XzO/Qd3eeXBq7z2yhs4J9p1V1fnPH78lOurJcqIaYhS8P777/H48UdxikHey3w+4+BgnzzL2d8/wJiMthZ90LYVICzPc4o8jxIGnvVmw3w6ZzKZkOc5b7/9Ngr40QcfUlcNf/7nf87v/M7v8Hf/7t/l8vKSo6OTnjCUNBObto0gp5w52+2Wi8tLTk6OUQQ++PADVusVk8mY0agkz3KKUnRIiyy/ZaQZDz4ARpMJ48kUFUEZmU6I7GcruVLTtFEaaSl/rtesV2vWq60wRKM2tInalH1dZ9SOoYXuz7rUHFdRDi2enPhgd+693jGakkfCJYiEihBZrmmf7v7X75uYs6hIdoj4orxmZCEMkwRqOJdDypUGJn1fUcT9HINkvJyhz519cFEvW14ymQCGlKOH0L+H3c8Y4r95J/nT8uoSrGWrAleTnGo6wZqSdVXTZTmV94yDxzpLP/IcBsfxISZ6XLC9Hq51Hcbm+CC67EVeEDT4thXTsOAoy5Isz+gcWNtSV1u5GlF7dzIdyz3WmvG4QClptqXcU0hrP93jpwf4vKGpHNtqRV4YDg8PaFsbDzkJztZZQbhVRpblUSxcOqHGGHSecXkhYtlHRwcYk+NMQPvA0dE+3musheViw831An1oKIuMm5sb5vsTinyKUiMe3Psso+KA11+pePzku3S2IjOimVXXMo6wXq85Pj5G6ZrpLMM5z+MnH7B/MGU8njIZ50ymGad3PjcwDLUmz6XAyPM06tv1SH/6udTBBlkgA/DicUn8XxvyLEOFjKAcWaawHazXFo04+WkjKLx1LiZ+cHl5SdDizptlhrIsaZqWAIxGY7KswNnUS+y4WTwnywUkE2AvJuVakkxjMpxrGRVlvI+CSi+X68iS8BAc8/keSms2qw1dJ/bwXWeZTGWsqesqIEOrqh91k/GMjO1my9HRARcXF6w3KyYT6XCFACpMyPMRVXND1SxpmprZdB9rOzrb0rRNDGKDW3G/2YJCpQKK24f4bgLQl//p+yGWS/33dpKK9JW6fWh+HOBLj55ppQbzl93nCKiYSFkuzs7pOsf+wSFZZjg5kcMnzzRZbuJhNiI3OUYLOKd1RlBGRP1tizaKrmuoa9t3g7za6bqGBDg5nO2wzsUcKIhL3cER09mMLNqmWyuJi91ULFbXbOp1fxBOxjNubm5i116APY1o8vhgUGFKXpzi/Zi8GMk4TGcZj0Vkd7Y3I4TAdDomMxnKh+hOKuBOW9dYP4BymcpiwuRxXphqZVlweCDuu+NRSRndQJNDmYpASsRPJNG0TjqdAbrWUtUNi9WazbZis66omqZnd6k+eA9jHoOGpozPSm6t44EVmTJaoaIzpxRpO2sixFHgdFiFCCr1DfDE5JP3q6POYcBjGEx90nMNjsOhZ44YbyITQPdjLJLX+v41pe2ob5nMSG6fCv6BETLUEkHAh/hvkuenwluBF72J58+fCaPZmP610tqrqgbbWi4uXvLKq/d58fQlV5dXfOpTn8Fkpk+QXQRFiZqBcman0YK0M30Pqsl7C7GllZIJhsEflVgMof+c/bTSzvZWO3/fgUVIY2TpOinT/61/L7v1x469Tv+aMbfZ+bvcfBWkCdbWDbapyYuMNgRW2w3K+whOB4ILtLahqq4pJoZQLZh7GU1pmk7YsJloc4Xgo94sBG8J3mJUYDYek8d4sjebUW0tKmSREeWY743jWdSgNHgnTNqu68Rowdp+pD0JAevoQK77hg4QxZCTw2NT17x49lKYQwTe/+G7vHj5nD/70z/lww8/lO696+SzfgwMM1pMO4qy5GBvn9dee41PffLTfPpTn+H0zl02mzV5UTKdzTg8OERpI2w4JyO6eClZHJCXE05O7nB25thuVpA06+Kyvt3UIbIxI1CCGkw14p7ti/S4XwegWZJWSUZ1v36MUgStY6OrQ1ruoW8O+hBQPdtmp2COoypKx/US32D/0klb89ZCU6SxPnkrEVwLDHEtARAxiQ7IeZCag+wATsN1iaM9yOhd3FVDUh7NBVTctyrFnPg9VETS016L13gYSg49IiPvZwBhfSzs+4i8cx8kjqo+3t2KU6nY0DFBj2Bp2uM+gaxhpwEYY8rumlBpqaR4s/PoWcFAaFva1ZrSKOrXTrj/i3+FemtRv/cHuM0WgqduW8quoWmbWLAauk6YUknn0xgRlxfNOAEGbGQJGW3iPhwkCJRS5HnRvydtVJSDkfjXNE3/e23bUuRzMmOYTg4w2RFXl9fU2y0qOIJvKIzizukrHOwfgS6p6q4X0Q8hEJyAvM45qrrin/3u7/K1r32VarMWAXAlLtp5kXFwdMhsMmU0GlHkJZPJlMPDIyaTKclIJNMmAkby/M45rq+vePL4McvViqpuqOqKEDxXl5f85//5f84//IeeL3z+i2idMd/bk8LZQcDRKs/1zQ35xvR63cbE18qERXV2cUlTNZRlzvpHaz7x9iOm0zFGZQQdMBry+H4h7IBwad0PjLG2admst1xf3bBYLKNDsDj1tq00FpqmoW62Ip8T95aJeZ2Ac7tGGMTRS5XCQL9qh/MrOWxHdhaqZwzfKkBTTGE3DxW2WuDjDQthj6u4V0PfLOih8iFnRgr8wf5CDedcij0fA/2TpMeuNuCQx0v+gY9SImmbadVP1aiQJDmGYv7jD8XOvo/7uT+iY0EeoI+bw4kdwGu88WwXV6huy73pjD0Cna0xFKKj5qTp5jsxZui6jsxE86Od/7pImhCtQ0Pwwnx1LtZyKpPpF58RVCArVuztZ5hsTleXbNaSd3c+oMjQjMjRFGND6xo29YZtvSLPAqVSKENkLoLR6T7/D7Ee6a9hiHXgsBaGM03+KmO/rnN0vhumprycXavFkpuba54+e0yRF5ycnDKbzzg8POTRozcpizHfuPyTmHda2tbxve9/F+u6Pj/NsozZZEqR5RwcHZFnJXVdRRBMiCPOpnFF4VreXF2Tjyq6Vpi/k8kEozRvvfkWeZbz/gcfsN1UfOUrv8frr7/Oz/7sz2KMjPimXFNp3ZuFJXOlpq5wto1ahuB9y8XlJfoqys4ohVYaHR2qp1MxACmKkrwoyPKcMs97/c9+7N9okSFTkQVc5OTFiNl8xt17d4a1GKc4nLVsNls2mzXLxZLVesl6tZIGQ9cKwOy86OdHSQGtDEGLqZkOUW4mxpAEyKWR+yEJIroHi9xBIMjz9HWB6tdTihP9fgsGfLou9DWMlGOBFKdUUCgjTY4sEwKR0iIp4ePElvOR6OTEkX4neWZoykYTovjehPQlPydlyqBHnOLSbjxSQeGsp1reMMJTZhl4Sz7NAAMbD9ZSaE2GJihN0BnE2DoAfEk712Oto4yafc4Fui4yv12goxMmMwGjpVbPC01na6xtUUrM/0IQHcjxZITRhtX6hrathI2pPamxOnyun+7xUwN8m82CrjtnOp1A0NSVMMFUL24uN/Ngf4TR4l6ro3ujVrCtKrKsE203ralqR1FoinLCeGT65LjrAof7BzSNZVQcc3R4yqjcRxsHypHnBevNgu22oW03OG9BEQ9aAeLOz8+ZTqf96EBRlGQm487dQ9FTQnJPo93QUQ1EZ0pknNdIoZPlMmIkY1ldZNeYHhXPsgyCoShkXGG1WlG3DZmRAixRQK3tyPMSY9o4tiddyvV6C3im04kc6iZD5URtwRobOkyu8S4jy0Z0XY1WxFGmFue6Xq+vdQ3ERG1UyihtUzd01tE2aURSRiCXq5qus+wf7JNnBk9OVbV0LlCMpihlKEaiK1WMChwbtpsWTU6RzTg8vEvblBwe3KVqoi5S6FB5hzYdyjqqxlGWBzx++gHlGHSumZUzVqsls/EUrQ37+3PQDudrMqY9wNd1Xa+bkgDVVIYPh73qiw7S99LfQ2T87fz8TnyhT7bC7SDXgyH9Q8dDYfd5dlCAIEFGo3Bdw+L6knff/cueuXZ0dMTDhw8B4tjdhCIvefLkCV/5yle4ubmmsyJIK9iFFDkGqCpJLMV5Oh5Y3hGQg0pG/6L+QVAUxYi/9ou/zN/6m38rgnADa+3x4w/5b/6b/zvrzRptNDZYfuVX/nXu3DmV7nKQYJbpMaP8HifHn2Fc3qMspyhmOCeGMoeHUnyvVytMJodpURSEqLHpO0sIHU0E2n0QVoB3ns7XcvjiOTw84O7dYw4O9yiKLApEqx6QS9c85XYhFdshJisg7q9lgQeOskzG95qWxXrD5eW1jAg39cDAigdkP+qi5YDRUZBWlk/Uq4hJtossRe+CuG5FcBVS0ioB2qvh8BlAZg9e45DRulQKZFrhomi2UipqUklnTEbzLNZloBVaC4cnyEqMBfHOfvBi1qGDHtK5IAVEEpfv90r8cwDM0vcio24HlDg6OmI+nzMeC1hknXRdXRxVUUoznk7pnGO13ZCNCkwpDq8GJbobSkCEzgV29diGgsIPxXgqquO+VakCSEm7GorylMze/ryxKEqJbl9M7SQvanjt3a74sJ91z3ocxpUUhFSw78SeVJQk9CEWNU3XQtuRuUATEGc2t4lj0RbvO9EvI7Btai5vntN+5NjbKzk6OsRj2J9PwInOpQ/CdFXRTMpaizKGumthFF00jYlaphuc94wzcaxPAF6eFahogKOUYbFYYcwzFoubPt7KuJGMwc5nM0RzxJHnGU3TcnZ2xuXlBQDn52f88R9/kz/4wz/g/OxMQBE5OSVxj87D8nri8uZROB1omorV8obHTx7z9W98nb35AZ/73Of5hV/4a7z11ptU2w2rxYL5fJ9yNO33mDAwFWgRO/cK5vsHdF3H+dlznO1Qmj4BV8r0BbZ0rmNn1vVId78ogg87WFUgpbLpKEjdZKUGh0hFEPdkrUgmaAMDbFe7LmrqBNWv0eCCQGtxAff7MST2lyR+IaRCW+0QCTzJkVJ+f3hucaaVqXxFZIJhESUqkFMlMhJ3P2u8HFqwRGFCd0knNL61HhRIZ2xfUcT3LWdID9jvjD7vFhUgr9OzceJFHth8cY/2sWt4D/GqELzDe9WTklWKF16et5dPiL/jd/AFtcu0JF3vVOyYuE9jodK2tDdLQpHz+r/xJS5eecjm6TnBZP0ob2fFobi1HZ1z0CUn1tTEcCSNP+ctWiepBsVkvMdqtWZgqg0j9FmWkRgG3gUUJhrNeZqmRkcG52w2w3WB6XjCenXBweEe+3sH1E3g1dfvYUyHVpbXXn2dz37mZ3n2ZEXXejITMDEepoaXtZavf/2rfO1rf0hTb3HeRhdexXQ65/D4gNl8RqYN+/v7ZEXOKB/H5kRDnmd4b+mUYlSMhZmgJB999OhNjo9PePLkCS9evuRmcdMz5ZbLG/7r//q3gMAXvvBzsTiaxlzI0bY16/VN3ygcmvGiWZYXBd/5zveYTSaMRiOUCmSF4fXXX5MxxzgNYfpGWgKv0nqUe48CoyA3OZPxlDund3oRdGN0v6a9EwfOtuvYrNZUVXLsbNlut2w2G6qqoqqq3qHdVtLg0SoBAyrGRh3X0tDkS+9PEXWr1KCfJdskMeDT+vZxI6S90nPq6LoGQogmh2lQNqXJO+ec2mW1Dvs6bbxbuyakuCFjy+n8yMtC3FEjC6oY5TF2SXxq246us1RVRd2ITpW1O6OnsdmZ4ko/TtgDhPF9hkSsGiqC9OcuiOG9uIHWqyWhawidpf72DwlvOTo15vJsQbVYCugYwNuO2PGQdIzY6MDjuxblHK5tcEVO8B0OH034pDGYphWyzJAFw7woMSrgRyWH+3Oapu311RUGvGd/v8SqmpvqmqA7Hr5+DxuE4bqtK6y1jIpbPGx+/LHbuBwaoCkX/TizUiXAJnDreylvlWfMCNZRu5onjz9CYRhPZ8znM9pWjK5MnB56+fIlTx4/xnup+UOAg719Dvb3Ob5zjHXSlKjrltVqxWQy4eHDN6TmVYHr6ytWNysx6+kszXZLYzJyYyBKTBwdHlLXNc9ePOfmesE/+2e/y1tvvYXWWd+gJCR2rB/yRu8hiCtv8LYH0fGGgIogVOjPHJRmtVr3eXkC87JIyCiKgqIsKYuCshxRjkryTAhNeV5gjMYYydfS+aOUaCOX5YjpbC9m80MTSPABS9OIHtxiseTmZsl6vWa1WtG0Dc22wSBaokOOo2JeOOQ5KjYFrRWwNURDII/q987u/b7NfAelHHgldVBcbloJHjEqSvb29zg82Ofw8EDkGYo8fmYd34ssIWFMy8THcimf4+ZmwbaqaKP7eqpj+nWZeH/B4dB9jqF3csvA0Mgk1oTOdqyuLphYB7aDpxd0ey3OTNCLNevHjzEqJ0RpHZtkYJLES7y3qa5w3oHRdFZiaGq4WNeSm7wnLSRG5XQywXUtrus4Pj5GNOFdlEeQutK2LU29ASzOdpHIIBrpPgwTov+qj58a4BuPxxweiq29aAPITHnoN5VCnAKFYlkUcoOSJse4LGjtktnkEAFNNHlh+kRY3INip206ZjbLMLrAs2E0RmbIFShladprkj2yMRqjBF333rO3t8fh4SEJ6JLaSzav0UKnTR0LEPF9owSt7ayAaYme6Zwws7z3vVaT95BnokXUdTVt17I3P2C5XOFsw2y2j13exPGZjjzPepZjGr1Lh48Kuh+NAjEp0QGy0kQEnghmGKzvcLZBaYe1MdHRmuAsWgfqpibLMmwck1yv1hRF2Y/xZHlOUIamdlxd3RCC4fBwH2MyJpMZ9+8/4PnzJ7TrazAK7zrqbYcUBQVto5mMD9BqzP78hLwQAPL5yw/Ii4DSDZ1tOJhPMVnG+cWCLM+Z701wNvD85Ye03aq3Id9sN0xe2afIZwSfQ8hjkIbRaMR6tULcCOPBmUT548N73xcFPYaxU1AkoCD9zi4od6tjocyP/e7tnx/0Wm4zQxKQs6uF4vHe8o1v/BFayyhz07T8vb/3P2MyGfdAb5YZ/vzbf8Y3vvl1vOtwwfZdCx2fT4chYHsv49NN21AUGVkGSovTqw+Kqm4xusBZy7e+9U0+97mf4Y03HvWGEwEpLraVjOg9evMRP/roR2y3G+A0AlwBzZi92SvcvfMpRuUDuq6k7QJ2uaEoSjZVxWg8oShLAoHJRNyoRqNRBDQtnRVAu207rEtFopP1jufw6JAHD+5weLBHlmdRgW6HSdHnljuirjF3JTLhlM4IqovrIMTxT4VRmrIcM1cZeV7SNA3r1YrV8oa2aWV8QA1MLLn/CqfsUORqZM8mRq5NmnxyDZObqg9Jw2ensO3BpZic+gRQ+SiUrfp9bqwhWCtC3D70yQA+jfi3jNC9GzkBvFJ9AhV2rlfnPNlOdzdpow7jYnG9pmsby1+V9HmUsGpklCwwnpT8yq/8snQw81w+u7N9cXP3zh2yPGdTbdlWFW+//XY/kpsAOx8LDTFZEQbiwOeJ7/PWaOXOqGHc5gmwSL/md4tzucgkAE7qm93vRz0Q0vl0C9aJ/6Aj1Cb72AfbJ8VyHWX+a3fM+yc/Bsambzp0U0MqqDoH1kVtLot1rcR27bDeMZ0X7OmSUVnibGC73ZJnkGUugvdGusRiDQ3B9tfaWhHqL4sxN4tLrLW9JIS1HdpolHZkueLpkycEp/jiF38WvIoNH2ks9GsiiEQEIbpqGs1qteHs5RkBz3K54vd///f5/d//PV68eEaIUh3O7WoghoG5FQIhim3vgqshhMiIz7iyF/zeV/4F3/jG1/mZn/ksX/7yb/CJT7wjXdSyZjKdC9M/CprLyJ2LZ3/GgwevcHi0T6Z9HBXueiH+LhqGbLcVFxcX2LaNeyMCYXpwrAuB6CRqhoRZAgQqilgPn1H1o+paCasw9HtNCyMqQOg1ihNAFs8LFYGt/unSd1MymdZ9+h2F700MlLyGcj0w1Cf3cnF3ind63dIIBew0zBLXbqcFFgOExLY4Vriz3YjXo98GwZH0cVJTYbdgSDFdK/UT904gQhGpeO8/9+5Y/o8/QkjNn5BWrjj7BXq23i6M69P12H3h/hH1oj0kR8IEOFTVFl1X5NajixFkBQoBq7OsEODaBzwy7iySJ448LwcG+U4TSZjrkgM4b+kaO+RnEdBL2lJlWdK24uoohhIVTVNjTIZ3kc1rMuq6RjHt5SRsJ+ZAD+7eo8wMl5cvqJsNr77yBm88/BTnL75L8Ka/zyo6lyulePL0CV/96ldZLG5wTho5WabZ39/n6OiAclRSFiXz2YzRaIwPgaZu4nppJNf3EkMn5YSiHMnYvZGx3sPDQ8ajEfsHBzx99pSXL1+y3chnu7y85Ld/+59wfHzK668/BAJ5XsiZEyQHT6N9zjmIbOO01p8+fsxrr70W9cgCH30kxhsJBMwiOyfPckxmKMqcssj77xudagLVs5hRYDLJz+XMFeAtKwwZUJZjZrM9OX/0TnzzxMLdYp2lrVs2my3b7ZbVckPTNFR1TVM3bLYbmqala9vYvBXDHaNNb2qV9vfACJS8IslSKCWMYhWTJTnTiMYRrZg7icDXMEqb9klvdLab26o+V0nN1tRsS6wwrWUs+nD/gJPTI2Z7M/KyoCyKqGUrzZjdPZfyD2cFHG1bS7Wtubi45OZmwWazpm07kvTLAEDtJAFEhk+/jQcwMBnkyO8nbEezWVyjfUPhPY+/+Sd88J1vsxztcWUz9PEJxcGBnLFI00br4fWapoKwH++Pp20bVEi6d44kI6C1lka394xGJVXjCKpB5zo6M2fY1jMeZcxMGY1LFKYApy3OWE7vHvPq66+xWN6wWC3E8MN7ZrMD2a9+kI/5WETsr9MA2Lmd63f7Z4XdH9Ix3Z/HA0PU9LrT7ACF2+1GzGys7dc4Cq6uLmjaKmpcCvNuPJ0w399HKUPXCrintOZn/8rPcf/efcqiwFoxxfnEm59gVI75wQ9+wA/ff4+2aamyKuaeCmc0RZmztzfD2lNs43j29Cl/9q0/5Vf++l+nqipGo1Ef4402uCCj1j54rG3pulZytLhevBsacAPQDUENeqk+gko6na3x2uyycrXRMq0X5QmyLKMsS0bliHI8itJLMfbkRQTnpKBRWqF1RmYyTFkwmU44OjlBm9h07GNex2q9odpWbJYblqsFi9VSzoVtxbZuo9yDNAu01r0WrLM2mnXF9thOHtuzg9Ne6mPcoM+aR3D1wYN7HBzsMZvP4udgJy7F506TZijIBAOaTMYcHe1DEF+E9XbD8+cvuLi4YrXc9PXJECAkP4oe2H0+M4SoRPAQQoN1gaaqWC+vONTQnF/wnd/9f3M2HtN4g+8CC2vZ/+QnCV0XDYdkUiI4T2EyTo4P8N6zWC0is1zk16QBJfn6qIhnkYpGU8Ej2AjkmcE5TV2JQctms5Q1MBrFGqrk8uoFRoPTQ26GAqUHHdOf5vHTA3yjMZPJZAclvj3qJkBMi3UBHcW8FZK02E5AKWc1nfdR7NnHcTTZREYny3tJppV2+LCl6wQtdU50usTcY3C+SjplIeRYK0mP9/QMKh3rot0kVH5O5p6dc3hafGjxHqyV59NGxcJ3CH5ZljEeTamqLiZmAgKs1jfyegHcpuvFfOu6JstyiqLsQbnNZkumNVVVURR5dElTNO1GWDsEOm/6kWD5PUF8Q2S1EYQ5qQGjlRw6ShO8wlkYlTNc1wERZDAKZy1ZWVDkGYcHx8znls46MlNyfHKPm8WK1WaL0Rm2c0LTNSWz2R5N3XHn5BVQhu224mZ5Lglqq8nMmGA9qJYQApdXK6xr+uCx2d5wsH9EkeeYTDRj1us186kIyKfsqWs7ilGBj1qAoPqDNjEweohOpUKCGJQ+3omIndbg2WUS7H4vsSMSGPLx39197FKad4Oj/Lz8XxH1+ZKGxdHREa+//jp/+YN3kQLC9+utaVpenr1kPBrjXE7Ttigt4u1lUdLUW4jUYFk7UpgeHhwIM89LgZA+ez6b9od5Xdc8/ugj7t+/j7Mh/nvSwTqIblCXWOf6okIbTZGXaD3jYP8uZXEIYSTgZ1SPv7y8Zjab0zSWm5sb1utlpLLn/fN47+i6lq6ztJHWLEmhJD3379/jwSt3yfOM1AXWEc3xCckjFrFqSOv8x+Of0qBMTPc86EyCpNcRgFNkpkCPNXlRMJ6MWS2WLBdLrG37+9x7u/UAogT2d95+m7LIsZ3j5cszXrx8KQYAaUQ7rhHnPBqNw+IJ6Hg/EpsvLVAxzI1xMoSYQJnoWCqOi0pp8uiG5vF4G8idMBsF3/MRhNIx4RoSLHH/Gi6P8wriCFeI7MW0PrRScuDL1ZcDOUTQ0MvBZ3TGq6+/zp3TO+hYfEq3UIrg46MDJtOCP//Ou6w/fIxrhw6UjkCOj87JLgzjuANAF3aghXjbg+6/lxLZnZKc6LQR4/6A2PWpVw8GJsZf+tmoY9mLi8c15QEG0WofXO9AlvAQb+NYgd8tJX78oeI9djF56Lxjox2+kIZLtzP275zDeXEKHY+nWFWCy9hut2y3NfoqcDU2HJ/MmM9lFK4sSpRKDSKRbUjvVbTotjI2bTuOjqQJVzcVSqnIXjfYruODHz3hnbc/ycHhsbB7rQBladQzFbupEbWMXVdvPd/93l/wT/7JP+EHP/heZBQnbU1hs4ZA1PkZnGYHHUxh8upMHMmT+L7WHmslqXPW8fWvf53vfe97fOlLv86Xv/wbzKZ7VNst0/k+o9EEa9udOO3xwVKWYx49esTJ8UxuW2wCp/Pfe896teXJkxfcOT7CWsu22tB2DdttxXaz6Uezuq6jbVq6+LuJLSr7JuUm9GdzAoK0EjDPexFbT+wZFVLzAQHGYvGtIjjVHzMqnic7SewO1iU/m5qoAXmNhIIrWeEDUyOChKlxsNMdVkFHZkqE+4KV2KKGLrVCdNOM0VjXxcZq0qdRcdTvdnE9PGzcsxq8MIV3tXiA2KAI/e9HLrSAtoR4A9Xw7P1LSBniI6uwZ/UPYSOCMDE2p39WQ9wJgNm5Vj/e1IuxK977zWZNaGsKZ6FraLcbmtWa0Fpxx3UR4PQCdKV8MGn4eecIxiF+VTLKZxQyYuwE7JPXFdH75KB7fX1NYtSl3DMJ7UvukxGi9IW1ljJ3kqtNZuQmp8g0rrWcvXxGlimW6y337r5KtWkh7OQ7UdsM5LX+5I+/ybNnTwTcw2Fyw8H+Pvv78x3tvQOUUmw3lTjRO9czSpLsRJZl+NahqwrrLLPZLAIiUrTdOT1lPB5RZDnPnj0DoGlbnjyRKYPf/M1/BATG44msQ+9R/ZqROEuIWmzIudW2bX99vHe0TcvN1SLG/N38TZaYjPdmUetXGJN5Js34sijEWC/mNibLMFn8Wqu+MUB0YB/AqLhcTdRHznNKAtOZ4ujkmNRs3R2NtdbStZ1M2nSWuqmpa2lMbjYbOReiW3BVbwk2AT2KLIL+OjOYLEMjbB7SyGUINE1DUSRAKcYShqLe91MeO/lsjDMhDACfjtJbWZZxcnLEvft3uHP3mMlkHMeSd4ASJfnOMCEgz2nS9TeibT4ZKQ7397h794RqW7PdiFbai5fnLJerWNzrfpoivq1bUUfypfh18L0aQYh6KT50VMtrMsSxNreO0dbTtCvG+ZSQ56io4ZY+Q2rg+qD7pmHTNGS57E/fa58mYYOoKqICeW5QWsxqdFaTmQJrA229wcf9YTuEzTWdMRqVuC5QNw3HR8e8fPkCkxnm8zlt1xAIjEajfv3uXNCf+NglMvSNzY/FuT5635IsCb0po4CjPppBGKy3mDwnGSJJbRUieBS4ur6MsVAmiw72Dzg+PmY6m7HZbGhbS1GUfPZnfoZ7d++yXq95+vQpN9fX2K5jVBbM5/t87nOf4+HDh3z9a1+nrRuqvJK4k4/QWrS+x+MpTd3x7Nkzvva1P+LzX/gCk+msB8ClphDGmgCXUgM7a+OaD/TyCWoXR9itA2NdIAvsx/QlB/wjQKeAFqj7BpvSwqzbNUlJE35lUVKWOZPphLyQJlGWGbShB+cyk8wmNVlWkuUjxpOZaFZLwMF7abq3bcN2U7Far9hsttxcXbNebbi4vGC1XrLZruL5p6O0geilKkWkwaZ9Jee2iiPvSgkL85VX7nNycsJoXESSE4AjKBNHBULcWcO1UTBMPQQl6ZAWrbnj8oCDvT2q1xvOzi744MOPWC7XOOsik/rjazyKBsQYkM5okgQAHXW1RtuOUivKDpp1ha6k+R0cArYmp+mYVyX/gcPDA+qqpiwL1ptNbxQVnKeuKrJMcnMd77dgRDaO2iqMVpRlKY01NE0tjYuD/SPKsmQ8KciynKapGE9KTGcJZDHXkU+YtP1/msdPDfAZYyhjkpG2QGKIOOvwoaPrqjhGWKG10EltJxeyLEuMEYaAUtC2VgKCFtHaZGEvD98nz96HXo/EOQ9BiqYiNz14I4k8UaBcxZ91/ftumkaSV60w8blSAdB1ljzLUSrnYPaQvekDgmq5Xn5I011h4rx0SmA2dkVdtaxWC4oiAyxVXYvzrFLoEB2Pot5PVW3puo66bvqCR+cZk8kIGAAoHyy+i9o/tpMiwigppnwQhpU2EEYczB9gVM7VzQsJEEYOpLbtOD29R9e1LBY30gE0Wt5LVrBcXZPaaM6LQHDbWp49fUnd3YjArALrPCdHJxhtGI0LnF2w3qyoqhrvPUWRSUBQOVluaNoNJnd9gZP01epmQ2drlstF7Lh3tG3DbDajLErqeol1G4ya0Nkt3ovBR3JylBFT+iD83/cQhqUs8f8+Jt5PZN8RkGaw/ok/F3+6T96Gv6cCgVi0yXh3/C737t3DOcd7773H/t4eWZYxGo2Yz2eU5Zi2bXj0xhscHx6hTdEXudmo5OrsJToP5EEcdiR5lrWelwXBC0NEoXnn7XeYzaeIWJyPjnsj7t9/wMOHD7GdFCAffPA+28rzK//6L/GHf/AHbLZrppMJDx8+FM1MrTFZQVHsMZsdkpkp3pfM5iP29qYcHx+R5xnbbcP+3gVPnjxmPC4lUdNZ7NwLg6brOppGxnOJY5l7+3PefPQwjmPrPkBz6zBVfQB3qdTsi7YYXIMcGGk/uCCAtnUhCrbGzmRftEr3tCjG7B/kFHnB1dUVbduIo2dkVqgEwPhA2zQ8e/aUru3I05ryrmeGGK37QB+Cx+FjTZqAPEmCjIrxUREluhKcBiRXuJgkpriQANGgJa5a15H5/w9zf/psW3Jd92K/zFzdbk93+6pbVbc6VBU6AgRAgqDYSKT4JDr09CRSYYcc8j/l98F+cihsRzieQ6aeSD62IEUAFIkCQPRAFaq9fXP6s9vVZqY/zMy19y1QDkvwB28EgHu63ayVmXPOMcccQ/eFgzjGuQ0IRUyqTZ/4xhHkTQkN+OjcFdgAoTiSYKfxSEFK1MZzcHFxQVPX5FkubIc8xxi5d8vlknVZcnh02jNQRPjeB8H78FmcRXkZyQb64Brfvozzxc+BvH74yUZZi6eBPDZrBu/7z7m5JFv7N4J5fgsY3BLYDbeC+Oy+fwYfXIs3NUr/6j91PggrwoWEpq5L6gSGt57l6qc+zd3DYxrtiWO+YkIl59XBwQFXbuyBSzg7Oyc1I9LMs1yeYLuaPB/0MTBJEol5mSJNBHxGKZq6JjGK0chQVRXL5QIQYfreGKZrmc3mLBZLMZhhs4dikqu1IUtz0eFxnvOLGfP5BUop/vZv/obf+71/z9HRkSxmFRtnItLtPeRZxmg4IsukU50YMQJw3vbmOABN2wh7pa6oqjIYTTk671FGsyqX/Omf/THvvPMO/+Jf/A4vvvgyVdMwme6Q5nkfvzzCPvI2ZI9e+CwRz/JotIEkUUx3MkZnC+rWkiUJt164RV7kQfuH/uyQBkUrzUhrey2uOFpVVTVlWQk7uW17l/vlchk+h5xrTWPFGKAvjoPTbi9+vllnEJPivhO5tQ7j76pNWa6k6Awlhvyv8vjgqhdXsszBCnu4fx3v8VEzLATWuHflLJI11YX8w0NvQLUZU1Y9m9pvidvL8wSNr+CO44McwEZDS+FcKMIC40zOeGFDKsJzhAKp/9w+/AxDF4oz53wfIyzxqeK5sSnGNgz+AIQSxwB9/3MbUB8XmMZRX73rWtqmJvOe5uSUthhwMTsXdoQxIrEQWMqd3TR/uqbBW4fR0jhAWbJckSRBs8u19Pp5gRmAB2tVLxgfC5Dtonw7R1EqGFnIn5LqESrzgMSqdVmzWp9xdjYjGwx55WXZ50ma0NSWKDMRr/PJyTE//vEP5b0H4HE8GrAzEambnd1dRsNR0KFre83nnk3Vm4QYxoMRTnVQi/RF17R0dcNgNOy1PifjCS+++CLGGB4+fMh8saBpW37yk7f4m7/5a3791/8h3nthJIe1uq01218HCBpXbX/GxGZdjE0RGIpnv/KEBnwTYusm1kSgwGgTmmGiNaUDCFiEEb00S4JOl5gEGK3DVJOw7ozRvb5XnM5QcW0GQF8pgpZqxng8Br9RZgJQ2odC3lI3YgLSNaLj1VQNq/WaclWyXK2CU3BJ3TZ0lTRUkiRhuZyTpwmSHyZh1DhkW/212bBeCYW+XC8VwH0Beg4u7fPSi7e4fHmfNEuCU3q4Fyoy5kPeFn7Q583K91P9KsRj1Z9xMBjIuOPu/h7XbzzLo0dPOD4+YXYxC0BduIc67gnZw7YH5Onzxc1rOpztqBZzhsaAbXAeXKJxtkNljmJQ4LIs5MAapT0ei+3kCNVBL9PaFqW96GSHUfkolaOQkX6tw1h0I2P0qquEhGE0tmuJxmZZlpMkWZAhSoTUTUKWDug6MX2xtHgl8jdZMFSIeWKf4z1V08RtEusVuSA/zeDbPH6KqOMimcWFvRbWrdYR/oFARLC2w6RJ0CcT/XDrLFmasb+7y/7OnmiWtRbnPC+++CKXLh1w/cY1jg6Peevtt7l75zZHh4co73nttTf4xMc/wTM3bvDZz36Gb3zzmyyXSwEdiQzJgrZdsbs3Zbmcc3p6yo9/9EM++9nP0da1uNSaOE3hQj0azs74GcO1inn403VfBKfYTjw3MSqcEhEY/Sjzqv/SA07TdZEAVfVRSWuZ4EnShCRNxMgwyxgOChn5zXMx/kiD0WBi0NFwTanA6pUXkum7lNFowuUrl7feKzx+/Ai8IzMpZVkxm80oy4qL8xnr1Zr1ekXZVKEJKJrPUc9wPJlw6WCfg0v7DIoCZRTWO4w3eOXFqMxrNGYrL+9XIj5oZ4Pvz4Vwwfp1PBoOuHXrJpevXubBg8fcvfuAcrUmlDgyJq/CdBehiRKusWAhHqdkim89n5N2LUZZgn0UTnk63+JNgs0MPkuwSsyxvPfkSUrtpQlujO7Zem3bBo30MNrsN0zKtm3wxOY0JEqH2CCfSwxbcsZNy3A4Yjgq0ErOjK6r2D+YghpgXUPTinSauNxrftbHzwzweeGVoI0WJgse50R/pmsrtIYsm9KEwO88pMhiE7evRMCjoEnRtqKZQyfPPRqmfUDe7mY6J46rGzZAAPSMiDoqJYeO0VFE0hJZgLFDtimmfe9cG5kKSZJiEo/tEgaFsMpOjs+Yry7o/Jw8Ew2h1WotTKUwYuG9zHGDdNBa2wGKui7pnBS7bdeQpSm+3XQNkiShtR1NV4MCY5TofwX03HaeRBthhHQObRJBixMNpAyKfRS7rNcdxoyp21NQirqqSdOcqpKRB2MCJOAty/UKB7SdRWkXdLQKrIWqXJOlFhgwnYzQWui3XbemaYTV1zQ1eKGhZnlC0y5RqsBZQ54PaO0SqGnadSjwAiil5do09Uq6pDphPC7Q2tN1a8p6hnMtynlsG4qFIDLqwthlj9jT53lbgc2FURjoOtcfvP3PAw6wHQy3g2JcE9tuhE+t+bC5e0cl+asedJInD5BDCIR4eP2117h7+w6DPOf1199Ae8iSlFExFOHYnR3+h//+vydJ0sD48XjVcftBye//xQ/5lU+/yAs3RiS6AhRN1+GVIkvFse7b757xzR9+wOu7z/LCM2Osq+nC+xQB747btz8UsKyzLJZLynLN3t4u//S3/ykg3ZTlcoFta5IsRZK6hKyY8PyzL7O3+wyXruwzGOTkuQSYhw9PePzokDRLUZXCWkcazACiUYcEfwF2xuMRzz93i+s3rjIeD/rg04M3PhzcQXxebpna3OdeHwO6TpINj4yJtsFkwzkCe0pAdWd9YBcFlpZHaPCJZjzdJckzzs9PuZid02t1BGTAO8963bBeL6UwR9F1cp5kRdEzKqK+mBQd/un3H5Irt7V2dGDIaWJRIo66aZLQNjbG5ZAMbIp+CONyMRnvAcJYsMRE2gXm3GbNb11lSdKUQmuP8l40w3owISSFYeyxb8Z1jsWiZe59SJg2hbxJEjobqf/xWQQwlYJLmIMqqM3FkUMx/IgPu42abZVYrn//vcYmEEduNYAWrbxIEng6xdi8gozmPV0UuiDb0HcDsUQakFeb88HHm9m/xafPhv75vJc4EACLdrVk7FIOnn8OXr3J/NFDOu+gE+3MCH6AIktz8sKxXlUMRwWf/PgXef3lX+Nv/vbPeHz0XTBzYV97J27K2uCsjDcRWGT5YEAa4lCe56zXJUmS9l3/OKpRN7WMnvVaI5vzDWQfNp1HG2hWJRezc5Ty/MWXv8wf/a9/yMVMWOqyAzuKYhhG7zJGwzGDYhiE7xO0TijyIaPRKIBsiXT/PeJiWddiyLRcUJUlbSdgmffQtg3OWn7yk7f4t//2/8S//Je/w2c/+3kWs3MGwxGDwZBw9+TaW8tqtaTITOiWbxqFymjQGmsdi9WaYTGgqioWqzUvvfgCWS45htFgMJCk5GlBHJn3znPlcqxUQyka2LI+sBe7tuPs/ILZxZyyXBMnEqIZwmq17IHAtm2wnaSgkkPI2SOd+42ujjHR9Mv0hbiEQxnpiQdpbzijkG56iJlKsZHdCzthc7Zss/0i8B1YmBDMylrSLBPAj8B+DQeOUjF5D8wGH88qHRow4Zt9ob11nnuH7Rq0MmAUeZYxGBVMJlMGeUFeDMjSNIAnAnxprYNzuaNuWtZlJc7RZcX5xVyaNZ1oonkPGIUJ+9LrDcvRE3RAlRbWeNgELmhrWmfxQTdahVi+XMzxrkN3HT/+i7/i4cGUx1bL2JfdPK+1Xa9/iXNgZI8553BYEoOwVZsaT4e1XT/SJ1IO9LIxZbnGWhtM6pJ+LUW5mSzL6FqHD5qrbdeiVMtrL3yScj2nLJecnR/jVI3SDqfkja6WFW1raZoa5xXWyt5QTtG1lh/96IecnZ2F2CZ56nQ8JssyDi5fIksL2ralLKUQWq/F9TKyjGU8bR+lPIuZ6GlpbXDrNU1d0zYNXdeJW2UYP06ShCtXrqCU4s7tOwKOth3/+Wt/zSsvv8LN557vAbenJi/UhgGntxZ7L+Wydb71mm4BxO8XRH+wP3222z52CxDlfOS8ye/2NYfaaM8lYTTOmFSa/lqRJcLaSdOUPM/CqFbSS9ToMMYaC3e/Na0SzKzx4R9JBAFH4/A78a37vnlogwusaHk1lKWwk3/847fZ3dmhqaXxWpUVTd2IVqyccngPJjAYtTLhQwrImRcFO9Mpzz33HFevCvMyyoTgXC9DsKnP6IEGeZPhd7cAp02KIvHeE+Oo/FcnCdeuX2d3f5+LixnHTw45P5/1wJPE9HDP/dbYoQfYsClB0bqOulwzlANdci8HSepJU2Ez1R7apkErRZqmIi3j4xnhZSTeW7wzouPlZY/IRw76mWH/uq6lbs5ouznaNbg8RduNJqzWwoQVMFpjO0fXOrJ8gEeMHjKV0jlHFycH1La+WgR3DHHsWinRW31qUW89YtNge+Iu7oHtZqfDYdvo2E0PeBPMuwSgVYGwkIfxRTGb8V5GlZM0ZfdgnyRP+zPi5s2bXLlyRVxsleLGs8/wxhtvcHx0SNM24OHKtWtMphParuO5559nuVrx1ltvYdloNMbPYIxh/2CfqnrCj370Qz796c/Qtp00fWyYDPHxLNgYiVlriW7mSoPq5TQio0+wBNWfCZ4eqfaheeQ9Xtv++vUA/mZgPtQFlu0YG+F95+j1O3vwNcSbRMv4bpIGDcvAHo7SCEkmYOCgyIO2qEFpE9yQZR0aJQzSpmm5dvUKaZKyh+KZZ270DQbrLU0bm5YNs/mc4+MzVqs1o+GQ/YN9BoMiNAMCyzGAXT5007rOhnwh6deb5NSq33ubQuVpyQy5RPJexpMBL750i0uXL3P3zn2OHh8G7XnX1x3WS75njMbG+sWDVh3Oei4uzsi8Z790GFejkwTjPakqsFqRFDnJMGe+XgOGuqlZrZd0bcdquWK5ErOTtq0DRtXgfIEO5A2j6XXyYtNcCB1WGPnIOkvTnEEheUvTNMznMzwtbVtjbcszz9ygGIpj/WIxp6pKyrIKZK+f7fGzu+jaDPwOtvN0bYvD4lSFVxU6tyQ6QzmDSVIGwVHL2448h6apaRpB1I0xtG1LURSCmAbQab6Y92wlAc+6XltL2HMyfqvUxlbYWR8o9jokVBvqdNQ8AXrXyjjSFvVdJIHy2M6zWs14f/53JInop1gnCZL3ivl8TlmWHBxcYjgo+gBb11U/TmqtPHeSpDRlh9IEXQBH28pohLUCbOa50J2NMRLQQodfGBUepRISndF2LW1tGY5G6CRjta6ZLU55eHFClozIctd3xvJ8IKBE0BksqwpjNE3T0XWeurFYa+haj1I5MiaYsrs3IksHOJvQ2YrT4yesV+ekiWc0TtDGsbMzZbmoyPMU60TbKc8yWpUFhmVCWVdhc0jy2rRrLuYXNE1DGbTfnr1xoz9slTcsFiXL1ZrpdENT9V4ozj60WrZ1t54a64vfUZEqvzlM+2TwI4FuO5htd7aeYvT8PYW8DWMoH32ugOzh8b1DZZpnTKdTXn/jDTFw8bBcLgGoypI7d+7w+PHj+CycnRyzXF3ggHN/nd3nfhGSjGIwAttRVQ1V3QiDQmnq1YqTM8+ynfL//I9/jpu9g/E1aZIE/cmDfgz1c5/7XDD4EKHqtpXvS7e7Y7Va4b2nyDOcS8jSITvja+A1s9kFbVdTFDmT8ZQ0zVnMRTx6uVjKffKeum44Pj5Ca91b2+M8zz37LK997BWuXb9GYkTjj2AmEcpQCRo2dMaUOD7Vtbyv1XJN08TALG6aKE2aGNIkxaEo8pwsyVFaS3LShTFJF7WhkOAZilDnIR8UHJjLWGuZL+ZEww62ApMKoHDdtWHUJqHrZPRedEddXxh4gj5a3/8W1FGCeih0UeJU6aS4D9wYEmOEaGN9YAuEDnIcF9AbjGsbptpm/vTVc19Ix3W8XcaEBM5t3hvbjKGQsMb36wL7eIMm9qlLD+DpwCTqD8OwBWPnVxg5gLf9ddX96PKW0YePn6iLz04EwHxMquIL+AgQWuJIQWR1KpmPDgDqRpspJhT9Xg5AgEb3Z0wPAqrt88Vv3kpMgHswbMN+sE5Gcj2QaIdta3znUDqh9I66EadwrenfY7z2omFVCQiWahQZB/vPkpgRWheYrAYstrXU1VrGN/oxGg1KQL88LzBG0XVZDxRFQCnLcrTSjEdj6t2OJFVyrZXo2gkQE8e+xWF9uZxjbctXv/pX/P5//D3WqzU+aHI5LFmeMh6PmU6nZJk0KQaDgt3d/d45PM8GobEXNazk3ixXS0z4DGdnpzx69JDT0zNmsxlVVfYaW855Do8e83/7v/9fqeuaz33uCyGuSxEWE62u6yirFWenp0E7S5akjKKkJInEldu377C/uxfMfBxpmnDjxvVeINootUngfUze9abQIWrCBCFprUnThCzPKYYjLl++Ig28NBqGyZnmw3kUx5kjGFVVNXVVsV6XVGVFVQvwWTc1dVWzXlfUTdM7DfYbUHYSRqmeDRWPAVmXMU5FwG/zp05Z4tjdJg6G9Rg+pbUdZbkOrBPLRo8qbPVoMKRCcysyXbeKHKl7NyeWpF1yvuxNply+con9gz32Lu0HwED3YKYUA8FNl8jcC197L5o7dUtZt1RlzcVsxnyxZD4XUfKqrumcRQM6CcdSOM9VSMw1esP6CVWX61yvFSix3dOVa1LA4BnajnS+olUa2zW4MK6nEfHttjV4RLNTKxWmDxzWiwZaURgU0Nk43utIkhTvCe6M8nx1XVGWJWnaURSDHuSLjNw4liXuzQEYRPHZz/4KWsNyOWM2P+X4+IkUEFXFalkBOet1JZ/POSxaGI3as1zO+fDDD8Pek7x7MhkzHIzY37/EaDhmFbTymqajKitG4xFvvPEGN569Th618pwTDTatKdcVb7/9Ex49etTn/DHfEIamJmpb7+3tYa3lww9v0zUVR0dP+OpXvsrv/O6/Qnl6Y7z+Ec58AmgsrMJKfhQASu9j89ZtxsKjoUoAo56CRPpYERprgZ0Vwad+XUTgPIC7SkV2vGJjbkHfbFVK92O9sXDfjO4lZKmM7qV5RpamItujtej0ahMYhKrf58CmqRXPKRSJ0SQmDaOi8nnqpqIYDrh581m0V/3EUteJlqGcOxWzmeyd9UrYysv1mrZpGe+MeeGF53nuuZsMBkOUBosAU3oLiAQ5avRWOrKJwfECK6JlsIxQBnZOyKHiNXbeiXaqR0bEd3cYj0bsnp1zdHTIYrHYqgk+Ug8oAalU2Ng+EByqcskEUF7GAAdKU3qFcp62aWisp6lbtDGMRkPW5Tq8L4Jml6WuaihUGLv3gQEr56ZRcv2NlgaibQtGgyt4X9E10gzwHtJUTKxkH1c4B3WzItEDrG05OT0hH+SYNMEkYnTklMV6YQ11pvvIWR9lH+j11/o6N4Kp/mnDp23jKR/y4j6niIsrMPmi5EDAMPp7hPYcHOxxfnHGqqzRKkpTePKiYDAQwKLrWozRHBzsMxoNg6mKyD68/MrLLJcLlssFjx8/Zmcy6RsZ7777Lq+88grHh0fUXdTadn0d1rZi8Lm7t8ODhw84Ojrkxo1n+72BklzXW0ecFGq7ms62aB8MFdymad2fAfheUqOf3NjKHeljw+bsUETtyxjvoi53nE7Z5Ip9Bh0ogs6FCYo4jRD4Z1TVZp8HNnBk8Sml5JzI097pNx8U5Lk0E1KThOahSDl0VmS8Nlq58s7TtCDPR0x34NKVK9y82XJ6eirmiakKTFY5X8U5WrS+tY8+BptrEj+7rEt5v/KjzZh4PCh8KExiM9238oPRaMgrr77K3t4eH7z3PovlItyT+BI+GKoKmct5K467HmbLGbapSQ3hzNRkicY5BZ3Eu8ViQdV6TCJs3TyVsdrZbM58cUHbVHhErgqPmLbh0CbFdp1MkfayJ3HSSYqepmnCeu9omy5gEMLcN8azLktuPvcsr79xi+X6jLatubi4CA3gFZPxPj/r42cG+G49/wt8/nOfwIWLde/+u5xefEDZHKLNSpxhvSfL5ADr2hYV0PckSfoRlvi1oOkZWWrCpq97IC/SJEEHhBhAbdDTrQIwIvrbxZfZ2gxAL3jsvTAUlPOsViuyrADVoilECFx3tLamqhuapuTgYI+27aRjsH8glspFTtTGi+BDZFMIWzAJzCEXWGXQ1jVFPpCFleeAIukPXEn6bCfjhV3rSAcDBoMRzUzcgtvOYpI8uGlZxjsZygldVCkZx6qqEqXg+PiYNMswSSYFkTEkSUbXGpxTDIoJw9GQqmko8oKqbjk+OaEqOx4+vsN4NOLypQlpAnmuGI0HNE1kQerQUW8o3YrUDFCIKHmWpTRN2xeXzknRVxQF0+mUPM+pqxbnOpraMh5Mee7WK4yH4jqT5wlRzDzeLzlIt07TrWCuQjG+zc4EngL4+oKoBzI2idqm6/jTQF8c9fjo9+Nr9Z2wIPTplei+zOdz9vb3mc/mGK17ULBtpXO0Wq347ne/y2w2k9fpOgZFhtYrvM2o1zMOhpAVoHSHUZ680CT5IDAwW0ajjIOpIrFr0C0207SVxbeOs7NzZrN50NAhdHOFwVNVVR8YI6NEKdUD7U3XkZqM45NzFLt4v2axEF3M0XjMaDRisVhy9coVppMRJoFLly8xnozI0pw0NZI8tg2L+YwsyTg+PpYRkbwQ5mKSkhciNJtl4uzZdXLdDo9OmM/EWCUaOsQatb+nhFE27yXwhZEYcbBKyIshg2JEFNPVWvcsQKWEhg7SrT64dBljEmZnZ2y0OoU1I18r0jQk++F+xwSjZ/CxDQpvOk6x0SpxX0peG0BBpPUkoV4psiylK0spY5WmbxwrL0L6JumbiB99yJjaFiClQpcQvzHU2/pdpAQN79n1BcJTg20RLPSb1DnqasTue58UqX4gUJKTAPoSEiWjjXR/+2QzFvA6vF54t37rM8R35EN5v90F3VAX5C+9DyO2Hm/D6+K3Phd4tUna4meFWAiwBSDy1JkR76XuP6F09jz0TDWC67MkfnKvq/UaZy3D4ZAGRb1e41qLTzroonaaAKhFkTMcKdq2Y14tqKs6gCpaCqZQ/CRJSjRUiHshgvgurMck2eggiZudCaNAiTDRrl5hPJkGZnxcq/L7AoJJIlTWS9qu5jvf+TZ/8Id/wGI1DwWZaOAOhxP29nbIAzBTFAN2dnYYDyekaSosn3XFWot+jjCV0iAfkPex2piE69evcfXqVY6Pj7l79y5HR0e9+2Tcc01d8Xu/93ukacZnPvPzrFcLGWeD0IiTDVOt13TO9eB01AUDYTGen52JwL4R04fbt+9wdnYWWDUJWZr2SXRk3kQ302g4kiRJAO18SF7NBgDrdXMQ5oUPELTWQXNKEaVWFAo/DTVvqHsjOO+cp+vkc3RddJ2saZq6Z+U0TUNdyddVVVHVa9F6bNtePNw6K5pcJhifqQ1LrH8XKrKIYmyT70v88EGaQMdfD7IHcahOST7ChiGFcvRNuAC+qGCGcvnyJW48c43r168xGg/ROoD84TNHk4L+/UXdvLAHrPdbI18OkxgG4zFJXjDd2ReNsnIdXAhnwaSr6XMEYxKUF7C1tW3P5jAm6c+T2Bi2TrTyutmcQWcxztN4TZfk1E27AVoUaCU6srZrybKCum3RWgWJFmlem0TRtA1J5klMSnR1F8aAQasE55o+4Y9TJ/2IKVEzaMNkiWPGkoN2XLt+k0sHl3GuZbmYsa5KFgsBbk5OTvFeMZstQ97qSEwYf3aKw8ND0dFyohNYDHKGgxHFcMTOzg51MLeoqgprPS+/8jIvvvgiw2HBpcuXybMcozUffPABDx48wJiEZ27c5Nd+/dd58vgx3/rWt4LJVRCtTwzFYACIFpm1lul0yo0bN7h39z6udvzoRz/ki1/8Is8//wJmS3tKKdWft1HnTZrobQCfNzmexDyLjEb6fn27GDM+wu4OyRxsxDToo4rfxJUYXOP4tyUCLps1K8W7gLxdH9TLgI2rAPxFpq7e6Hb1+YxoAKZZRt4zJA0eEb7PgnB/FO1/KpcNwXwxX/cEBE9gfBcJmSsYDj3sSnzUgaUTcyVrO9ZlhXWO1ESNZdG3U0oLYK/DOebVU9jFU7J7vQleRF0+0ngLoJ/zorBt3UZeRWlBAVRo2Ozu7ZPlQ44ODzk7PaFpG9Tm4OyjeNTMi6/p2gasJfVa9JK1olGSCQkgmjKv2wBO52R5Ql3Xvd6yfO6OrmtIbBoaNU1fe8bmhIxmi0HZ87c+QT58jqpcsVrNaKqa2eyc9WolNRtxasvTtQZlRLqgbR15noiuZV6QBhF/rVJQ9CPxmxgaURYVJktCzhKmTITwYfr9EBsXIrewkWZQW9dQoUAHwgobYJB+HwAOTJqgtWI+m2G7tjemmUxGKKUCo25jeqmUFm1RdhkGDepPfuKTjEdjfvjDH3L58mXaVkCmH//4x1href7WC7z99tson9O1LXWQjjDGhCk1qUXv3r3LtWvXAnk66MSF+ybgsTQCN2CUAKFqWzvOx3j8FKK3lU+qzXkRAWwJGiFUuXBNN8CY2gK4JLfUgXH80b0hZ4nrNy/xTgjA7ANrLezktmlYrSX/ELb5RgYkSxOOj4+58exN2s5jtBJ2fJ4HAzGZwDHa9wxQmYJYs14F9nhq8Ba8ChJEOFrVgRMjurZrcW2H7Wz/+XTILyIrNstyioGwlvucYKvpJ7JAm/pOvA4U+wcHZFnG7du3OTo6Eud5toC+0CDSYY1a5WlcTT7IcKsVHbA2sDSxJpB8bzgYogeGurF9HIpNPtkzm36odxaco6k70ixIuLjteLGJPy7UL97KtYqEHwlXDmtrZrMz5qvHlM0jtPG8+OILvPLKLbJsQJYVXJx9JA79Nzx+ZoBvNNpnf+95wLO/B9evvUpVXvDeh9/mnQ/+BuvO8b7qOwR1XZNoj9YJXRSnx/VMLWstzhqGxZQs8TR2hvd1n5hHJlgMsfKIY7bRuShhuzux/YjOOjaMClgnTLquaSjynDwvqKoa7zuyNJHEOtCTBwPRCxRHJ9FMEKFzCaJRP6Vn0ISkwZiE1apkND5gsTwXi3qgyESXbzQaBfAyoyhylotV2JwSYCX58sxnc5YLGWvN8hDYlegDKWWYjDKU16zXazyOpmxD0Sd24XXV0LnN+FWRDxhPLoUZckdVzVmtWh7dvx8YlwXDYcLVy3vk+ZDhcESRe4qBoW4qnCU4mklLMy9ytE5pKpkhr7sak200IrIsI0kTVuWKNBWq9sX5BaPhCKOz4MZbkGcTsmSITlJAQOHEJL1gcsAKNuCt3iRb/yUdio8+ngpu0CfOm8L26eeIf/NR4DA+tsd6xShM4ZSwcS4uLjBJQpKmopOkVM9Imc9nzGYzHj9+RNd2dNaxWi4EADYtaZfiWfKTb36ZR++MmOQNiVrJ+KnXOBRdcDZqyoSjtYfmFLs+Y12WMnqE6Tt8sBHrHgwEXK6qitFoSHS/jvuyrituPq+o25rlckmWXDAoJoDHGEdZrsUEJE8ZjgYMi2tMp1PGkyFpnlLkcpCDBEqtoakbmkbG8NtwqDZNx8XFkra1zOaL3nVrtVoDqteOPD4+5snjx5yengawXQC/NE2YTnbY29tj/2Cfg/0D9vZ2GQ3H1BUs5guKwYi8KMizAh90pFwoiMIwiDBlMUwmO9i2YxVGsQSIehpsioCJUgrbtqhUXAw3vxIgtt7MJYBR8WmillTExOSbxA6zsDdCZ9iGUTklwJML55vWkS0XOS1hjYa3IDBZyHWRv+0ZjE/p3EW2jQIfWXDhffktrQwiEBbAvj6Dl3cdX3dz9gZ3vr6wl7OMALgQusXWC8Co1aY7vAma28zr8Km8YuMCGq90AOyUGKpsG3dsxwn5lsKpDXD3tGZK7NBv/mRT0hHGcsIYMARwh/7ax2aTc1smB97j6oZUwTvf/YE45C0W2KZBeEAeoxwoMSOYX5yTFm0AGXzfNMqTjFQnKAxVVeK0OLP1rOEkCVIXvgeC1uuONBXdt8QkGG1CESSg9Xi6Q5YUJNpI8RJGLEAYm9ZK06ptah49us+f/ckfM5udh8RRo1TC3u4ue3t7wphXoqe7s7ODVhKLYpfdBo3QJN3orUWwsRgMgqbjgLqWYuTq1WvsTHe5f/8ej5884eLiIriG1lhnWa0W/N7v/b/Y3z/ghRdeYLlcyAiyf7qbKud8KM6dC+clVHUdWPuydmxYu2dnZ3Lr+waQ3P/IsNFK9d3zyLgxSUJi0l7PKk2zXoA/TZIw0qF6QWsdnPZQAhuosIjinrQ27KmIkaFI0wTnEpIkZzCAnZ24pOXz6iiO7j2dDeyOVsZ+uq6lLCtWq6WM4JSVgIBVKaN5tYxDCyNZmJIohw5Fl0lEy3E63aFrQw4Wk3i9hUaiEBe50LiIwMsWKG+UZm9/n5dfeYkbN66JuZISUCH+STw/4g6HkPQTQfpNEh66DLhoKhSKWaU1WZ6jTCKg1N4l5vMLzs9OWC5ncp3bDhPWctdarPeYMM7nvRil9KwPL8VNtVwyJCFxJU1qqIoBZdmFAjKcjSHnadsGbYRtJ3HVSjNZKfI8JUkTikJjreb8/BilrORUiCt0ZOfFtScacTVat30M8h7SNGc4GGKN7fe+1oYPPvyQum4YDcWldnf/IIAR4vx5enrG22+/TVVVwqbPxfDJK8/p2Ym4hSKOfhLbx1y6fInWWsqypGtFk+hTn/okzzzzDEmSUNelaA0aI2tTKe7evcfjx0+YTnZ44bkX+MLnf57f/I3f5M2vf52zszMxnktTVPiMRVEE0feSnZ0dJpNzGalfzPn+97/Hs8/e7MEMGa/zeGTMyUXjCC+jvXEMD2Let9kzmxLBs9Gh2K4bNuD1NivsqeZaWLQSs9xWtIjb0W79Wwo8eeaoVKUCMOhRKhocaZTbvGc5HqStRK8DSN98AB/WcdrrncYmhfxbmp1FkXH/wRNu3LjOalmTJmLo18sXhOYcTmF7wDqAqD4hTTLack3rW+g10sXYT/JdHYwIEQ1QKw6SddNJztu2dDZOBkhtJMYmQaM1kxgl1yPqGkcTnSSMhQqwYT14p0jTgsuXr1EUQw4PH7NYzDBmM74qjTzRHNUorIeurPB1I3tdZZQ41lpTonGkOOtYVWus78iLXBjeKgA0AfLqupDd+GhIFZq9WtY9WrQtTepYLI9YV0ck2ZosMwyKnCtXrvDii7dQ4b15l9FUknejFA/vP0C5CQYLvsC5imbdYFJxP/XO4KzDYtGa3tROAL+w99yGsRdzKu+3z9hNfRZ/Fh8bQoMPwLOho/tIbRXPfTmZ29YyGk7Y3T1AqwytUrLUMx6P5D2EvOzy5ctMpzsAzGYXvPfeu7z00iskScbZ2Qk3btzgN37jN7h75y5Pnjzh+PiY+XzO1772Nf7Nv/k3ZFlGXVVEdqfrkPirU6AlzRI+/PB9PvvZz6BUAD7DHrVdF0zjTM8UjXmic1YmSmLDSmtwqm9kqZjbK7GQ2D4HemDw76k3Y9H61LHRsyBFGy7GPNXH9O1ce6Pv5wisXa96/dGoxiv3M2b/4TVVw7xtefz4iGIw4vT0HK0UWRpdfCVvEcOPYPxRDEiMYbkQB2uFoqktPgugtfJUrqGaL6jqisV6RVWV6HB9rHMoZ4nGY7Le5N+TyZTpdMpkMmYyGTMeiywYagPqRYkM58VjwXlPPhjw0suvkucD7t69S1PXoZkm56f2ssu7zuKVp65KTJLRqZSkdehGkXqDbhJaJfdV6wRnpb6o6pouSN04J1rhzrkwDRT0bV3X3zvnLJ2VJlecDDVKBy1CIfd0IT7HLeO9A9UADRezYzp/xvnsjMViwfHJfUbjEWkyIDUDdqYv/D0L6b/u8TMDfE3d8fjhE4pBynpdk2UZ0+kOz17/BLdvv8+Ts0O0XtB2LcNREQ4ZQ1uXJKELJCp+wVlTS7DIBxpjBqiqo6ps0IYWqn8sjDcFqqVt65DoZH3nxFpJcuImcNaSBCcUZy3las1oNMV20v0Qt1mPUQloYdylacZgMCAvMlbLJUVuqOoSKVAMQTNekuZ6SZ7nOKvozUQ6T5EPKNeOxXKJIiUP40taFyjtWZUVWTagKkV3azSa0rYV63IFIJ1c5dCJOO/I30oBphMlFHMUZbkCNE5pqrJmtVqTZhl4TVEM2dubsA6z3fPFGW3bcnxyyHw+I89zEpOgfCoJeeeEJqscWZLhugpnDc4lrFcNdVNhdBpA15YsgJVlWdM1CVnagLI4K06pXScjJM5CnmakaY4eJphQINZ1i+80t158jcnkJnVrOdgZkKUFSgvbZLlcSpEYC6+wBjfjf77X1/JsHb7hEI//wUewIzJfZD0Zk/agXz/+tPXYToI+yujbsEgl6FkvTnTeeRaLOe+89w7j8ZjxcESWZZRlyWKx6GnLi+U5trM0jQ3vx+KdpfUt3lccPzzh6LGWDetjh9gzCG5lTdugMZBkpEbGwFGa0XCM956jw0OKQS7GLouKO/fu8LGPfQwTxILfeuvHAsrWNVVVYYzh2Wef4YUXbzAcjkizjLKq6TpIak2SpgztAK0VOzu73Hz2Opcv7UqxFuEqExKJcK985wPjxeC9YjgaCIiFZ7lY8/DhY2azC46Oj1B4jo4Oefe9d/nJ2+9weHjIYj6nqetwD3QflgmFsNaa1KRMJhP29/Z45eVXeeXVV3nu5gtMdnYwS3EjHgyHZFkhxUSYrfHKB1MgeY/T3R2cazk5OgzMUbeVNIakSIm4bVWXDAYZLhgR4D/a8UMSZLWRyvbuKdQsFAgSmH0AFNPU0AYdkBghlBItKSJ4gd/gVsQz8enqQxh94W1ssRBkfEbJevKq1+3b/m169gEbdNJvgAf5csNQjMApsaDf2oOStAQNvgAC+h63k+JMwEbXXwsVAIP+2nj6PbpBS6PrbUiapI0ma1BL8ZClqbh9aY02qbxOaAZ0nYzLxgK817CJPcJwD7z3woQK72GbTRNfPwr9uwDY6JC1LFdLMJ7qyTGP3/w72vM5zuYCdnpQpgPfSaNmOkTrGU1dotG0VYnrGlKTghUx5szkdLbF4RmNRz3DTT5fgussTXCt7pzEN9u5wBTyrKqSzAxRKawWizASbgNLSBIyZ514QXeWpmn42tf+mvsP7uOsiAmbJGFnd8rOzpTpdBJAFUOWZuCgrCsxslIblr1cpo2rbprKWVM1VdDsqiiKAcZIA9BozfPPP89wMOTu3bscn5z0jTTrOhbLOX/0R3/Iv/k3/wdGozFi9pRJ0uw93lphJkRWiJV1rOLPrBVAWG8lzb2+zgY09wj7AITZgpd8ZBuQisVuXPuRhdO7TQeXyAgORhZgkQdgMEnR2+xArXtBd20MyVYhpgKbRQhbovvrndtyrjQkiSbNoPBDeS9Gyd57KncKYHAr974OLMCu66iqivV6zWq1ZrVcUjc1g0Eh5giNjDbFpljc+/KGExJjgACE6qQHmPd2p7z00i1uvvAsRZEH4CTGWtFoxm+uYwzyzsUoQp8wx2LAOo9FGA0OARw35Y3Ed+fk9Xd2dhkUObP5kPOzM5ZN08uhyNs3WK8gjkC7wD42YezfWepyTdFa6ByptqSdpQ1C+s77IDGug06rsNFjbyJGQ6014+kOaTJivVzSNh1do1HGo3WKVhmJzqnbRkaBhylKWcqqDBqPooenEKA4TYdk2QBrxLE+SXO8M5yensi4v4a8yJiMJ0wmU4bDEXmec/nyZSaTMd/97ne4ffsuTVeTKJGKWSxkPN4jTODJaMze3h5aJzSN7O3lasXrb3yc69evkySaqlrz8OFDvBdGn0cxGAxJ04zVasXjx4cslyvGkzHPP3eTf/Crv8JX/+orMknQCLPSBIfCWHxWVcX1G9eEieosb7/9Fl/60pfY2dnrwS1pmFmiFrdWMkput6Z0IosJ4jm0WU/yPHHMvL9NbEBm/1Th3oMcEWQO8SiyNORH238Tn3TrOfAbQC08nHS8NtIcagMa9PvEhjx36w1tmLZVOHciWKCC3IDsQa/g4YNHdJ0AHGmWkOdFaERIjExNgjbi2ilmfQalJR40bRM0xh2dE1kCtEc7eQ+dddjKsSpXLJdLlosl5XpN1wnAZMN5q0KDZ7tpniQpWV4wnkyYjkcyDj4sZF85icPiNh/NzBQuaIDpJGM83UFpaYQcHx8FJqycIUp7tBHTMYdnfn6BXTc4ldJoT6laWmdolMGqBBPAnrppQLkw+RRGwJXkJXXbYQOzegO228CyB41F+RajHE2zolnPMWmLNo62XZPotG8weufIspyd6T5JmlOkY9IsYW/vgMtXDsiHOZ3r8GGyqywrvBMDxyzLggN9mAxrW4xx/Xh/XB9xWmM7N43N2O3vRXC8z2niKd07mqvNme/pm83WWbSX5tbNZ15g9x/v88JzL3J+cc5sucB7kULZ3d1lZ2eKc47DwyOc63jnnXe5c+cuH/vY63z44ft8+OEHZJmQQCbjCTjPfLbgYnbO+fk5090dDg8PQ90uJndem17qKUkMjx8/ZrVaMRyO8FbY3jJaLUZ1rhOd9zja3utNK92fFfF4Ed1Lacaq0M7eTOXHFnP4uj9bPpKbxxNAhYb61hmEtz2DUsLeNsFE6nCttxoBcew/xPK+Wo3nnIpkAbmDp6fnjEYjOQ8R4Zu2bfF+3ddo8X5qnTAejUUmwxDyfQ3eQicAWFXPhVUeCFJt27FaLjk7P2M5XzKfzWiaGqM1g8GAyWQssXcwYHe34uTkNEx6FBxcOuDylStMxiNMkghw73VoxAojT0yFPCjDpctXAcWD+/c5PTuibWSfp73xiDBVm5MZRQutylBG09BRo6mzhHQ0YefaldDU9XTOBa3PIJ3iY6M7ar2GtW7DOde53iDR+Q3ZQ/kAAistOpIBtxJ8IpCSgk7fujxjvGtxlEx3CpRSrNcXOHdBYgqy9P8PRnTLsuLhw0cMhzn37j7k+ReepyrXzGYLXrz1cWbLBzTdHKU8ZbkgSQ1KZWgtm72tmjAiF0TJnUebjPq8QjPC+wZFLQHBGNHc8hIMus5K4NKiNZAkKdG9jFAY1nXHcDigrRuquhTGXRDRj4zCuqooBiMW8yVdK93Dg8uXaZqW+XzeAz5dZ0nShCwTbaMkSVivWoaDPZ577kV+/NaPsLbF02G06Kh4Zzk/X4ISI44kyciyEaPhlCzNOTx+gHMNk/GEajljMV+RFwlKbcw3RI8jkcSu6/pung/ipyJkntJ2ns4hYBlChR0OBxSDgtnFjNliwXK+4PTUYa2Aco0VF5hBUaBDp2M0GuKsEkfgPGFvb4I2ntVqQdfJvRLXY92LPzvXyXglUrh1XYt0OsQ1N46OVFWFSRKKwtDWHUU2oG07xuMJF2c1xWCMtQaPYTDIhRIenOiEqRiDjxx0kSETu1NWqA8b8C8W/tv/2eAUfYCK9/ijzLz42B7n7bqu/3f8m0iLj5160dOS7xlj6NqWhw/v40L3qOup/l7uQ1v2oxBJkqO1oSkrVLDbtnWJ9R2tUygSBoMRP/fpT/P6668xHo8DgNqGEbws3AMpdt955x3+5m/+M4PhgPL0JIxarEmzhJ/71KfQWvPv//2/5/DoCXhPluehOEykA5cNUSrpwRXnBCCvylL0M9qWPBO2UdSKUaHjBcJcARl1EMaTjNh7oO067t59wL17DwIlfMG7b7/Nf/qrv+TBg/tUdYm1YJToK/jI3IogLSG3x+OdxuI4P684Pzvi9ofv8dd//RWuXL7Gz3/+C/z85z7PdDpltZqR5QN2dvdk9DYGYReSLS+swL29fWH8dG0AcWSdd60Uwm3bUduaxXIhDIs+iVJPJ0lqE6jjiLYPxZ7WOozMBW0eLeClAuk4JoauQxySYwNEh0I9dLOF/RPAOMVWQNoa3eoThw1LwXkfRl48rh8NcOG6bhLBvjaVBS73tAe1NnqYPRs2/o+P90n+HeE6bTYgY9TSivs5/DLxtyPcKGLRji3P4fiX8hmtxSPud8PhgNF4zO7OLsPhmGIwYFAUPbDcWgF6Wivack0jnbuqWrNar1ivSparBVVV09QVGzbYFvQZrsNPs4VDEg0i9B30DV3dotuOrHOouqYtS7wB6zK8NiTI2hsMUpJECrQ0MXRNS12v+5jlrGNQDBglA87n5zRtTdKkeET3T+FRRpNk4mS+k+/RNI3ofnY2NL8S2raiQ/S88izHthafOGGjKtW7f8fE54MP3ud73/sOeBccozuGgwGjYoBWksQNhyPqWkb2orlOTLifYkwrF4Au0wOKddNiW0ubtdhOip3EGGzoAF+5cpmokffg4YNguuGo65L33n+Hv/7rr/GP/tFvYDsbElwjwy3eB00o3Rf1cVU/Ndr41ELfFJ7SwQ3pcxx3UkHE32sp6gXZCpiy6wt+r2KBUOMlZQ9PszH7AkgC24y+qJdmU5YmgZUTxlsCCycJIts6MaRGi86TSdAmwaoNwKC1QjmChIckmtvsobhehfhqyIuUfDCAKZJThY67c5bVuuS1N17n+rWreCt6y53r5Awsa5q2Yb1es1yvKcu6F4qW8U3HznTMC88/xwu3nmcymfSmBM5tQA633YZQKgB4RJROPkMAcGxobjgv+9jawM9RhO9vcrZ4zlovZ6tOMqY7++TZgNnsnPlsxrpcyd7xCugA11dNUoAHc4iupXVNLy5vU02nbGCFhCWkjGiFaSNsJWXFIM1K4aAdpJnm+Wdf4pOv3yJJBZwtqxV1I3q26/UaY1LqSswP2m5FZyucbSmKgRQLXs5Eo1M0KXXtxN0Qw2q9JEuTfmzJe0e5LinXFcfHpz3wUxQD8rzgypVrHB2dsFgs5L54R91U1EEoP0lyxsMR0/GUztmg5dlycHCJZ27cYDDIqZuKR48f8oMffp/z83Ou3bjBcDBkOpkyHI0Ayc8WiwUffPABP/jB9/jd3/1dXn/jdX78ox/TWZEOScKZ2jYN48mk1wLb2Z1SliUnJ8fcv/+AnZ0dvBczrtgoic0w0d7tAqM5ugMTYngspLcSxc0JvhXtFJvmlerHPOlzyBj3ZPVKE29rKkQWzxYY4sPfqrCu5NxAbYD7OKbq8eJeGvfrVv4pRbh66m82v6NC42nzGm2rUErO9dOzc5z3nJ6e9X8f87W+kWBMGNeTRu6gKJhOxwyKvHclFkZ0aNSkCdY61us1s9mM8/ML6q7rAcGqrChXK2EQrwXws22HDozm3d0dRqOxaA5mOadn5yRGiv/pZMJ0Z5fxeIoOzSlQwXVe0Vm/dSZ4sjTnytVrDEcj7tx+n/n8gsi2cc7jlDANj45PWDk40Qldomh0Qj3MoZiQTPdQeUFalXjvhHmdysh+ZLv5sJa9D5IQQb4g/tDHhg8O6yo6u6LrVrSuEcmndh1qJd1LJHRVSdUsqGtHV0NuRswuFhyf3qMYFTjlyIoBOknJ0pzRcIh1to+vm9F9OVd9cNmNDab42M5ZoiRBnLDTQZfto/3pTRUFfqvhGa9H27b963Rth0KzM93lF3/hi1hn+U9f+SvOZxeS+3mCjmhKXdU4b5nNZqxWK/b3D/j4xz/Bo0cPGQwEwDw+OeHWzRcYjycsFgveffddnrv1AqY33HR0bd0DnXVd0zQtbbtmNrtgPBz1ayROE6zXJU1bY5RoWnrnWFc1adD7l9gU6w2JRUmcdlcxN1Vo/5FjJOxfvbX3e5fueObIAtk6I7b2fshXNk2v7WZcPJ02ZBKtVZ8r96dTHzTlnjo8i8WCG0HrPqKCfetC0E2A3iXcOU9VN+h+zFeAs9n8VHT1gaZtODx8wg9+9CNuv/8Bh0dPmM1mNE0bXNc3kldR1mQ0GnP9+g1efOklXn75JZ595lmWq6XoLe7scf36DSY709CgEcynbeUscQGg9d4xHo+5fuM6w1GOwrIul6xWK+paJC2atsUmKecmwRc5udUsTUI1KCi1Ye/aZUZXrnEBeC2u7l57LB6dGGyQB5CiKQKrirYVQ1lcR+dsYCOHO6CUgMNKoU3Culz3OstxMskksr/m8wuKgWI8KWhtE667wZMHJ/oS1NOSYP8tj58Z4FssD7lxveDk7AmNnXH3/gznOvb2d8lyR5am1I1CqeDugqZrCeMmwg7IE3EOOz0VVNfjMCbDWY9RFqjJsgRfNyilZWOrSOHsmM1nZFnKYKBxVsSLnSXMlRuWyxXlek1RFNRNE1zyHCaVXutgOAQ0w8EINVDi3ldWOC9jjNF8oAmOXyg55IwB7zJcl/DM1U/z8H7DfH2bNBM2YV1V4obUedK8IDMGozMm413qqsM7AWSc05yenlGt1mR5QmI9SnvSRMwqlquSPBuE7nwM4ob1qhIWUtehlMOkGR7NZLJDWTYs5ktOz84DCNeyM52S5eJKnGXSPUq1GFloIx0YGyyaAcaTlMEwI8kcdVWTJIa6bhkMhGFR13Wg68JisQgHckpTN6RmSpINabpKTAxyAV+LQtgEVVlRNy15VqBUQrmuGQ5GNLVFjVVggk5CR0IYG3Vd90E1noqS0AWXzgjm9XHWb31vU2DG3Gz7ezFg/ZcAvu0kKjJ2ogtV/HnfDQsBIWrGpamAXuPxBIWnrmtmswtAgk1ZtSQJdL4GPE3TcenSNZomx2jDpz79KZ48fsiHt9/HYZlMJtx64UUuHRxwcnLC8fFxr7Uir2vDe5XvWWt58cUX8d5x89lnODk5Zn9/n6qs+MEPvg/IKJGwLSSxkgJAcWn/WYbDCdalaK04Oz3Buo79vX2mkwneWuqq6vUDpcsuI6Ye3Y8XFXnKtWvXBBgWOi7z+ZwPP7zLbH5BUzd8//vf4y/+8i+4d+8OVbUOCQtIL1S6hyLYvAGX6O+pwwKt29wno1NUteLe/Ts8fPSQb3zzG3zxi1/kC1/4gmhr4imGIwleSSIFO1GkvyFPUm69+BJ7uzsMR0OSBAnWTkYRuk50QR8/fsRkPCbRBpNIQdw2tj8v2rYRp7qqCaCHpemacJDLKJ2zDke3YYU6YYFGbanIdFFAVVUyFqiTMNYaNGm0Ikm0jI54IDCMJJ6HUY0eHvMhSfV9s6Mv+vE/vRfUJiHZjHw8/TubPUJ/X8If9/8WM6E8dDElePZgaPhb6bo7CI6Q4lQqhVQ/kheLLO9IE83O3h5Xr13l+o3rjEYjBqMCjZYCwLoAGSIMWQUuUfhWRNejVEOapQyGY9yeuF2t1ivWa+lGLhZznOs2ALPaStY+8vk31wlh8nYdrqyYkKBpyZOUzoALxgraJKGzWpKkA9LEkCdDVNrhg6C+MYbpzo506q241iZpisaEZoGnKAYbk6amo+26wGgKbqypgOtZVmCyFONHJGnKzRdeEPaTcz3jLTJDHeJM/c1vvcl8fgFYjIbRZIfpdILyMBgW7O+L3pkk100Ad8q+GDWBSVkMcpSRPVRXAgClWWjkeKjrhq6zFEUnrPIkCboqLbu7OwGkddy7dy8wijvWqxV//dWv8bFXP8aNG88KiKOc9FfCZ5FRdtPfF/DhfA6AIJu44WyIBYFZAZLjqajNgrDGgF5HUgUNH611SJaDnpLyKCfMGSdoG851sp5DEr9RcNmspjgKHPdb/AUB/0wABJGGgdZBGzAXN84kJtRGxrODDmCa6qBRqsizFB3yiRg7vd68lvZaGh8BAFyvK4rBEE+CMQpISICigPF4s3f76x0AuAjKpZnpx5fxUfGoVygK+0caH94pXBCgj+Rl76I7peR9bdQW9OADQOLsRpOos7bPFXrmPTqc8VqaZMWILMuZjKacnh0zuzgnOn5rpcFInocXcNRZD3XNejHnSp7QWMMsSVkpaRxY6PVcE52ACg6DXYdOFc4LwGe0wmg4fHKPtnlMkonTdZEXDIcjlErY2TkgDeP/Low0drZlNj8lSQ3DwRDvPVVdhfcn66KuKryTEUCtxoRtHAp+wv2QM6JtOup6BsxQSgVTC5m0KOs1bVP2azTNUsY7U7Isp1kvicYMN2/eFD2+uuLi4oIP3n+f+WzOK7/+Kk3dkJmcRCc8c+MGh88+y3IhAOa9u/d48eVbKK155WMf4/j4mIePHknhHNwHXBLZSGKGF5vV89mSd975Ca+++gpa23BGxPiwYbx7L41Ia8NodCjkNLZvOHvCOHXE9ZTaOse3m8HRmRc28g9bh/3fkzbGmNNv7rjTQwzbYIRbe1BFPTqCPIb66NMCYYR/C/TbjFuaTX7UO9XKWaQ0XMxmodC3kjvARocs4J4Qn1umlIbDoayL4aAv2E1o0mlnmS2WXFycs1wuaYMu48n5OXfu3Ob9997n/r17nJ2eUJYlbdNSV2XP+tJaURQDhsMhk8mEy5ev8Morr3Lr1i2uX7/OerXi6PiYPBtw6fIVxpMJWifgRO6hv/7Iub0u19L8cZ5PfPJTXLu6J1qXTcN6XbFclSxXJSc3b/LKzZtc3L7L4vAhrFYkgwKGY3w+4mJVkaY5iU6xXYNtNyYVEdyVfMD3MaS/1cr3eYzk1OC9AJpeE9hBYX22HdapoBst54g0VjxFkbBMHFU9Q2ctJjeyL1cObRK8T0OtEWLRR2Sposv0RiPasd30jSP/saaJIE4cpfzo+vLxANlabxE029a3jyQHa624D3eWNMiLWBOIMknGdLLDrVsv8fZP3gIvgM50ssPNm88xn8+5fuMaP/rhjzg4OOBjH3sN5zxlWfL48WM+9sbrPbtXQDvf607aYFq1Wq04Ojri+tXrW4SKsJdD42w4nnB2dsbu3i6z+bxn82lNrwkep/FE6kT37DiiXqbWH5kWC42pCAZuko6QZIR8NvyPiv2GrbOGrW2/lfKGNqHv171zMUeOG1dv/iYY+JVVSRI+S9RgjPmHMPP6F0ZH8oV32BCDOwuuqmnbls52tF3D+++/x99+/W/50Vs/4uL8XIBO7XsgzAdmJAGfELMKWCxmHB0+5vvf+y7FoODatWt8/vOf53Of+xxNXXNxcc7BwSWuXb3GcDiGMFpt8WI0tV6hwv278cx1Pv1zr1HkG7PUprY0Xce6WvGPfu2XuXj0mPO797n7k3c4vjimRtMqTYemTXN805EYcKolxdHYBp1oTKJDLhMuZtDQc7HrqDb1TwTJ4x5xQcu16zrKspTr7kUKxNqWNIPDo/uMJjnGdHiVhP0v8i0yfacoBvnfe/b/1zx+ZoDv9v3vc3z2LdJkgKfj4GCX5XLJvScVxjiaZo33ikE+wZicqiophpIEr9cXMktfiyZQmqakSUbVCMW2bCxNW9I2Isw9Ho9J0hTrtOi8tR2npyes1yVZknL1+hWKIkNbUNpRNQ1JktDUDV0nwEmSppRlCwS3MmfRRpLdbbZXHeaqq2rjwoX3rFcrBoOBjO2l0QEyJc/2GBS7HJ81rKulFDRaBR0eI91Fr1guFlRlE1hrQ5LMYn0to6r74+CYt2Y4HOCdou0cWVqIC0uiAkUUVGIYj3fQwS1xPp9TlTILr43pE+QIImRZQds5nJOEyXUtHkeWZ+zv76NQtF3Xj5/VVUle5EDHYr4mSXLSNGc0nqLwQadnc7AXRREsuhOslURrOJyQOUdZndN1QhkXqq2AGkki4GBdNQwHYxKTc3Y6Y2ew5taLLxIFYp2Hs7Mz0QoMHcweTAgMqOh+JN98GrwD+o5H+PFT+dh/SVcPnk6ePgpobFypdG8AEt2KI0Mo6sno4PCjAuBXFEUASOX126YmdlxQhulkh9FoImBQ3TKZ7vLssy+QZWlg+KXcu3ePDb88jpbJp5MDPjBDwvuuyjWDomAyGuM6y5PHjyWB956L2YwkTWUsI3T0RL9lincjvAOdau7cvcOdO7cp8oznbj7HZz7z8+zmhRRdbdubdzRNAI9QDAYw2NkJI+uSkB+dHvPuu+/TdR2Hh0/40z/9E7797b9jsZyLUUBIkvK8INEJeVZgEt0DBdHhswtBRwqgjqauqKum7zS2XYvWwsK5f/8uR0dPeOutH/Nrv/brfOxjr1M1NVmWMxiPieOrseuvIWgMBTaPRFS8l/FEpQ0mydg/uExdVtS2Y5yPObi0S2KSIEjs+wDuXQwAQddObcY74uiA85a6afFWLOtXq5KLiwvWq1XffUxSaZbYtusNTKwV4KeqG6wVdp8KxXBkxmklupAxQdsOSiLMG0YdQiK3SfLieord3Q0Q+vSeURvcK7xmv4/CczRtQzEoQk7hwKk+OYrsvI3coQ2dxo/uSdFJSYzhyuUr3Lr1PFevXpUzKJNgrzR0bWBt4AKApISGbwWYEdaPAI2Sd2nisEWa5kwnGaPRhL2dA5aLORcX5yyWc+q6fqp428rtnv7cyqG9MJBpWzKrcBjaFhqU3LfO0vmGtisZDhwmaZjPT6gbyAu5J6kSbbTpVMww1uWCtq1QxuAQV7osyciLXFzhmoYizbFBMLltGnRhBCxRCCuwrVA+5fquD2eT6Aa2oUhItOrPtLv37vCTn7wtshfOkmUZo5GMU2TBpXu1WrFcrmiallW5pqkbTJLw/HPP8cLzL3Dp8iWmk2kobD1pIsn5k8ePefeD93n86FFfkAjA3oVGVBb0KCVB3d3d7ZOqu3fvhXWtWa7m/M1//s/8y3/5OzhjwjG4GR1VUch66zzs2SguMFJc0OTs44jq40MPWKuYo/s+4YusCXFJDcWej4y5sAJ9YMl62Zd+a3NEprOP+4Q4ZqgCqBDeR1hfXdMG93TC78RRviVxDC+O7CmtUQhD2CQBBDCKLEmDZqAJOlg6ML+TUChtjIqyLOPifMHlqweUZU1m0qAx57eKStWfNc73qBxFkZPnQQ8K+rMlfl76vScMvmgmgrWBCVhT1w3leh3GsqVrHl2Ek8SQpClGJ6RZ0Y93o4g7G6IRgJxQKKf6Ii3VGjNOSIOBytHRYSiIpDBXIc6LVpPBztdkjSX1iibNqJMRXuXU1ooGmYujVKFB4aXR1wZJFaODi2SSMxg1qGRFR4u3ntWsY74uEP3/wDj1m+uapgneCoNA4mgaRik3zolFMWB//xK7Ozs0TRhVD2OR3ketVtWbKEhcEgZhkefcuHGDO3c+ZD67oGsaEqNplWI8HjMcDmm7JhR/nul0h6tXruE9LJdrnjw+5PHjQwaDER//+Cf55je+yc7OLsfHx1y9eoVf+MIvMhyMuXfvHi+99BK/+iu/wmQyJU1TXrh1iwcPH/ZgRBr0+Jx1DIfDwCzUjEZDVqsVt29/SFVVQYM0aLT6TbPWOtENVCYCKhKvlDYhh97IQPTOtjowcrcSxKjTq6A/F+LJL7FO90hdBOY2KFlY5WrzV/2uj9IXxFgdAufTienfm5NCzEs3r7UBYTasj76mCfnyerECH2J8WNPb71OHtyvrRM6QxCQUWYb2nqZugntngrUeaytm8zkXswvatqNpKt597z3efPNN3vvgPc5OTmibNshxOPrcNKLwXmMtNE3NfHbOk8fw/nvv8o03v85wNOLZZ5/htdde49Of/jmuXrvBYjEnTTMuXbrCdLqDR9O0HVVdh5qiochSxuMhxhj29qYc7E8lXzAmnMmb+2GtxTYt85MjTk5OOTo54/HpGRezFaen57j33uPw8AlVWeJcKc0e73vXWBVGjHW4nrEWkGsoF1bALjmr2q6m8yXOixGICQ2AtulwRjKKxHjausW1ipIavGhQJ8lE3GWrVTxaSdjt90rbtht2od+MPW+vl5g/hojIxkRJPkfUt4+addv5Ycwht4kMsR6KADzQkx62Y7nUAAPmMzF2coogz5VSFAPwivF4ysc//kl+67f+O370ox9ydHTC4dExs/MLTo7PeeXWK/zWb/0Wly5d4oMP3u8/6zZwJ4adMj7Zdh3OWk7PThAt4VZyWK1Js5SsyGjbhtffeAOjNfP5knJdETNCozXaaFZlFfIhQzTykIaCjLGnofmK0SQ6aCMGhn+vmYmSUWAVx3vjTSFMGaher9l5BzqM8Krt5l58Z35zpgTAT0saHTZ9jMca7aW5fXF+zng8xlnLZuIgnF39USPR0YQzo+3EDMokWtjcAUh99OghX/nqV/j2t7/FyempGP550SOMrP8kySgGGUZtmKMbbWrJxa3tWK7mvP/BnNt3PuCv//orfPGLX+IXfuGLNHXF6ckRV69eYzLdwXnV19F7OzuCX/iOLBfNwMQotJKcL01gqGCXHa5fuYb5xMexVcfF+RnHx8ccHp/y5PiU5bpkvlwxX6x48PBBwIpSlJemaZoIoWVbUVVyQ9szubfNruI13DRARLN4uVxycHBAbO4kScJ6fcbZ+RN29q9gXZDE2WLaW9uF/fXTMmH/tY+fGeBTugU9Iy0c8/k5x2cn4QDsggqqLMnWWRarGV3XUnfyYZxPqBsRcq4rh1IpXatoG4dSQqlO0oKyKqnWFpMYcq9pu5bDwyMpZL3CWYPtFI8fXbC3v8NoVJCkCV0X6PtkZHm0IVcYI3oKq2XTGzeIM1XKdDql7bped0sOU0eaiIi+dDmlAyhMBN+PqeZ5hleORCekSY6z4iIkryGGCMUgx3uLSTWtXUFn+qKiaRta25IkhqpuURja2oLTZFnOdGcH60QnTWsjZgOVuAynacpqvZQOcZLQtsL+UdrQWc/s5IzdnR0pMHSH9x1pGpyUnDBNYtLsvWMwHOKdZr2Saybi8oqyioegiF82Tc1wOMQBTddRr9YkehcSx+VLl1lVns4umc1moRuiqWvRXSqKHGuhyEfgRgwGV3n2xss89/wL7O0dEEU2V6s1FxezHjCKTjmReQEbwC988RTA99EkadOw+Gmtvf8S0Lf5W98HcJEF8SglBanSYqriXCwopAgrigKTGFwbjQUivVoC6DPPPBME5Cui0+3xyQmz2QKtNUdHh1sBNKG3XMcF0c/4fg0+FEnWdoH2G40LRITZuY40E5DMhCLNiziAHM46CBk7h7dC0x7pAQphfYBldnHGaduymC945plnmU53cRa6NgApbIJ/mqaMRmOKwTBoRzoePLzLwwePqOuW73//+/z+7/8vPH78SCjxYSx9MMwYDoXGn5qMxCS9EU+eF71GVyzypAYXV+D5bMG6XPdgo/cuMJnAupb33nuXBw8e8Ov/8B/yy1/6ZXGltC2DYojWCdZ2WGfBebKkEbOSxGCM6hOLWBiAdPTF0ERR12fUVcvBpYMAgOutex0ABJTUfyh86NYqI5qF3nvSPNxh79jdtVy9ep3VaknbimHCZDwmHxThfvpgKiHmAbHDZ63HdQ1d1wRGoYxwV5WwrATckPFjMXzxtG10ROzorIySx2xS1qzeSgijg6GOjco+uEkCEqWoAeXCGScAJqh+nLR3lwraSAox3XiKtbRVxOgAPO1d2uPVV17mheefJy+yrX3r+/E/2d+BwecjQC9Pa13Q7ApFXvyvaK2IK1g4bTA6ZXf3gOl4ynK95PjkmMVihrPtR86OyCaVuKCVRnlHXa2xVUViFcqktEhH0iRaRmB9K46QRjGZDjBJZDqK0ZGzlqZZU+QDhoMJLSU4RCtMZvXAG9rW01SdsJ28xJVBMQKvyNKctm4FAO4U+DQ0XMLeD06MGz0dOaO6ruUnb7/N7OIC6zrSLGE8HvVremd3F2MS5vNZGHsR3aKbz93ks5/5DAeheSSO2IeUZcnu7i7PPnOTPBfh/xdeepGjw0O+993vcX5+jmiRrPuioyhyskxRVRWDwYCiKHjuuedYrdbMZvN4MnP7zoccHx9x+fLVXnNKcJyQPGF7A5bY3QbfAxzOSXIdF0kvNRDWSMAMQ7Hj+/UWH9a1ATzZxKO+nlQIIwdk1D6sZwG349jX0/pIeNePfeLVTzH6PCqkWJ7oVKsUAYySR2Qd6QBe2PCZg2T31udUT41qGW1I0gSlBOR7/OQxq9WzkmskCUVeyESGFgZsEvRvtDZbzyOFgk4iqzHstXBuxELVI+y7pms5v5hzdnbOcj6nXJc0TbsVj6Ozpye6xxIKbZDmZ5KkJGlKmmdMJ1MGgxFpUtC1Ld7riKJusSqk6CqKAZcuXcUkCY8eP+D0+FDOPB8dXhNMkrFeXFA7z0lqSBJohwWLdcWqbrDJxrVUzOIcWiV0TlhxClCJIssgSTxJ2uGVxO+uazGpom4X8j61QetEGirWMihyvGvQWRK0k1oB2zovv7OSOzqdTpgvFO++d4HWe/zDL342sPd8yFlCSyM2cAigh98ULAeXLlNVJSAOo4mR5nqaJX3eVdcVzzzzLMORMAnXq5KjwzO8M1xczPmf/s//lq7reO2113jy5AllWfLxj3+cf/2v/zWnp6fkxcacbrWueObmc1y5eo2jo8MwTu3ITIqzvndpFRM90Vg7OnrC2dkp165d7yVTwibEWksdjONifhPjBs7hlXzOCM4bb4gGV9poKcX6bShN/L5noxTK6y1RfBdhq7BR4z7c0HL60d6w3voDIR4Q+OA8HSHouNy3wICPPkRAt6+vetDcb1hcbgvM0Voxu5ixu7Oz0SQPsTW+1d4tMuwPbWSfiySDR/X6szLNdHFxITqdZcn3v/89vvrVr/D++++zLtcSS6yY42UBrI0NgzzNngKP6rruGzoxj5nPL3jrrQvee/9dvvq1r/DJT3yKX/qlX+a5556nrksODzMOLl0hywpGwwHG6L4p0nWNgCxG7qk4xCs5S3tDjMAezjSDS5e5Mt0l27/M8GLBfLbi+nzOs8/eZHdvyje+/recnh71OUQ0CIsGTS7kMh4XzOTk9WIcqOuSuqko6zlNV9K2JWmWkAZTO6XEXbtuW4p8gHeGPB9g25blakGSiMRPU7fYTiQ4rJPpkbZtSZO0j9vb9UzMj01gcMvPo+gx/bkgaazqvxflobZBwvjv7dHcbTAjGnmBnCPRbFJrLXV7ngvTLQDmYuhQMB5P+M3f/Mf883/+zzk4OOA//IffYz6fywTFcs1isaDIxEgszwt+6Zd+iU//3Ke5/+h+/75kzW5AxXj2miTh6OiQKMURG9BZngW931zYhcYIQJoY1usVq9WS+ULiT2flOlstdYZ1TsAvXeMBE7R9UUpcw02CV9FMS/QsY24sUiFBIzcAe4RGXW/dEjvkPoD+W80DcP2963WClceqmL0GoDk04INZLFVVc+XKVYlHySa/ic1Ewr02QTTdOXFFAEXTtbKfnOO73/02f/D7f8DDRw/kE1iLGHF50ixjujOWSQKTCTkk1KoRgE0SafTJupUao6pK6qbh8ZPH/C//8T/w7W//Hb/yK7/G5z73ebSW+3X56jWKoqAsKyGRNCVai4GWszK1pdVmrFzJZUGatuBNwmhvH1WMyCb75NNLXCyXjC7mXGo7dvcPeO+9d3jw4J7UUEHT0aAgrA0xMQu1fbje3kcpOFA4nG1lYifk1V3XcXp6yv7+nhhteWFP/vBH32M0ysSJF7lfkUihlDQEq6piOtqKa/+Nj58Z4MuyBOcb1tU5SepxvunH/aTAz4Qx4SWw6kRSqi7opigFRZZTlaKzl+UJWToiMSmtqhkMJxSjDNsWXN6/Sd0uWa7P0OY8JKACVgwHQzyO2WImIuqVLB6lFINBQapNQPhbtNG0TcdytWQwGICHslkxKAbMZo8oBhneWfb392gbx3Ip2nxZlmNbj0lSVGpIMs1yUTLKs54WnpicJAVvpUtR1Wu0kVE6dCIOvCGzVRqqqgtOgyLyv7+/LwDHYID20OVC/1yXJWcXZ9R1DUrYKU0QJe6spbNNKKA92kddN8tqucY5KAYDdJKgFdRNLS46+VCMHGwXNOQUIjTsyNIxaTpif+8ax8cPKJsZ3otLV9M2AgBYS5plNK0UugIUODrWaL/k7r3brKtj8twzGBRh0bekaYK4wZUkyYDJ+DLPXHuD/d3n2d094MaNZ4gB2VrH0dExdd0A9An0dmeg1+GKHVw2oN5T9PKtR2RjbEAat/k+PPV8Hw1ykreFURI21u/KyfUTIxBNZx2ts0yn0z5pk86MsONi121vb58rV64zu5iF8TZJkMpy3ZtKED5T3ZSBJeJCB2fzubZ9G0CRBgHaNMkhgApKeVwFZihgg3SUNHmW0XWW1XLFYDAkSRJZO12H7WpQIvq+Xq9ZLESXsiiGmwTFCqDcm0cocSjKs4Isl0CKUjx+csjh4WPqquEv//I/8eUvf5mLi7PwjqEYFBRFxngy6o1bjBwaAAwGMsox3dkhSdMARtrAunM963a5XLJYLDg/P2e5XPWaTdIhaZnNz/mTP/4jLs7O+M1//FsM7Ai8GOIoRCi1a1uWqyWtbTg7P+vp7Tp0sSWxyZjNZjx5/JjBYEBiEhaLpbCq8pwsS8MYuybqZUiRtXEg0bFY8OLoq5X8v4wCabIsQWsTkiaNSXLwGplkUn3trEIbTSlE69QXfQIfR4y0Ub0g/9OjtrK+nQ36kH0gbrAh+a6qmqhLUpYr+dpKQlXXFXVd4ZwVN6pODIO6tunZInVTM58v0DoIVseVqmW0QowEUrwKY3JxDNGYvu9Z5DkvvfEqL7/8IpOdMTHaeuiZFz4A7+LuHYA+S+iiW5wNPL3ozhdXX2DAhrSn1/9TRtgh2iRMpzsUecHZ6YCL81P5zN71yb6SwyRCkigtcszeikZXozSls71+onfBtTi4Ub/00i12dzXW1ijlaZqaNEtJUs2w2GeQX0LbBqOEpeq8RRUyCtq2HeNBTlFkeO9orSVJCrJ0JIdD2uF9A0lgQCYjKRy8JvHSkTZBtD+OItd1xYcffkhdl7Rdw2Cw17O6dnd3MYkA7U3dsFqt8Erz8z//87z88ssYrTg/O+f4+IijoyPOzy9YLBb88i//Ms/dfEE6sVguLi6YTCb89m//Nt/6xjd5/4P3Qal+3B8E8IzMea01eZ7zzDPPUFUNdV2iFKzXC9566y1+9VevEDW3NLovLFyfRkuh1zaNJIBxDxBGanvAN8YRKeQj3r0pKjYxow8vPeNhG4hDEvatZlMPDXoC6E2vy9nHrJjMhzWJD87M8bmjNoxCQHgigKD69x070OIwTQ/cRj3A8IpITI0HSXwaATxmsxnOOQ6fHPaslVgMCIiqt9gNKSaVgnI0GHD1yuWQqMuOEgmWDXPAOcdqteL8/IInRyes1oGpHEavz8/OOTs74+TkhLPTk8BkjswRTZ5nHOzvc3DpMvv7B0ynO4zGI1SpWFycobVhd/cSxWBAng1B6cATDqzpkKR7L2PXHs3ly1d48aUXGA0K6qpktVqzXK2omo6VNrz2D36FdnZKtZwzGo05efCYcV2xbGqU9nhre5fu1MjnjkCk0lJAT6ZD0lwADwDrNLZraVvRuDSJANLC/GxpW8twMMBoFYwEMnE8djKGmqQ5Ck+SueD4WZMkcYRoU/RLAah6MGXD4I7SIp7JaMIbr3+CK1eu8bnPfo7T81PuPXhImiV0K5loKYqc3Z0dnnvuJt57EiOTOFlW8KlPfYI333yTF2+9yPXr15nP55ycnPDmm29ydHREnufcvHkz6DgrLi4uUEpx/ZkbnJwd45xnPBoDirqSnNLohKZuQ7HladqaJ4ePuX7tWmgEu/7ziR6xmPDI6LrE6uVyiW3aAHgEgELJlI0wr2Rsz+Phpxp5ARTtB8tjuNhqeMWdHQDnCCRvHQ1xk8MWMLD92M43Y3YXmwHybtQGH9zOaSO+uJX7ylkhDMG6aynXKy5fufx0U1ttGLR9nuslRxUzvAwPvZal8p7VYsF8Psday+3bt/mjP/ojvv/974VxcY/3FmM0o/GI0WhEUeRPMbt0uDYxBheF5CmE4rZtW9HuC8DfbHbB1/76K3zv+9/jF77wi/zCL/wiH//4J3CuQZucJFECNvQNO2ESSUwqEUZW0O8zct5FiQOvBJBLU8PefkaSjcjzJXlWkJiUz3/+i1y+dJkvf/lPuP3hu1Sh1ukZo1FkINwPMUcITeWwJhfLBUlm0alHWanFksSQp2kgOgwwqcZ5SJIM3SaMirE0r5TIG1T1CpRnUAzAgLUGkyY/NRq7DXj17xN6EDz+/nbds20WuM3oi4De9texCRDX0Pb3tuukLMvYJlAkQS8vrl/vkaZBmpLnYmR5fn5GnmdcuXKZslzz3e9+nzQRDcirV6+xWCwDrrCJwzEeRWAvsvIjwD6fz4MpZmg6IXs+jczUQpidxiQUg4LRcMjB/gFN2wiYg6eq1tSNaPXXtciPdMHATCv6Md2qroFGNNgi408rEqUDg970GndayVkT5Zz6fbh1RmybbmxOEdcbOXgFRAJxPIM8qGj2ozXL5UqIR+HMEMO9kFmEcW0VAVuTSF4QGkGdFQmZrmt48+tf5/d//z9ycXGOd134fHLdDg722JlOQrNPk5hsY9qpZOLHe5FqadtaJi5TaaBPJmPKqmSxWNI0Dbdvf8jdu3f58Vs/4l/8D/8SYwwX8zlXrlxlMBj2DEDvoVytaOsKZy1GBfNGpUlTOaWNNqit/ZHnBQcHOSYpSC5mmCRnsViCgp8bj3C+4/3356gEjJG1pZxkR9Y50LqvIeU8DNr73qG82TqXXb8GV6sVZ+dn7O7s0jY19+/dZr444xO3nkWbMpwZMoHoEKynKAq2MsSf6fGzu+g2Fcav8Y0L2kAqILUC4pRlSZJkwYpZ07YyGx87AM5ZXOv6OXfvDMVgxLpco9DiDGg8rrMsVytat8J5G2iPoqdSlhV5kYduRUpZCeJKYC+tVjV5mgltN3Q0tNKMJ7si7JokeMR9bDIQHSNvhUHXdZa29WidYJKcrqvxbctkPKSpq0BXd3Rth9E5XSuLWeFIsoThYIQHqqrF2Y71ugYvHRoJOh070yFAb1FdVSXWOhaLYD0dDuOqqQPThZBMSyJd19FBOKULYF2W5TStxTpFlhZhbMHilDAF67qmtZbMiEB6VVVCS9aGYhCdd3PKdUldN2iVyli068iLAlyJd5Y8L1guF2RZxng8xnuF61JsW7NaNyjTUtUdg8GA6OLUth1ta0nTHG8hP9hnb/c649E+N64/RxY6Nm3b8uTJE5bL5VbSs6H7xoQhPmJAiTnUU2O5W4BgDBA9IPgRcC/+/kdp6k//7OnX+Cgw2ANydS0jusbgG48NQJQJlvZRH6tcVwEkk+dr6iYAOvE1XA/wxWCtML25BwSNp17IAUhycUHSHd5GTSdPkRXicuiRgjYEEtGMsywWc8bjiRhxJCmJCcYYiaz1LJPCRylFHtiJkW0Tr4dJDGlwRQNhqJ6cnvLo0SNs1/KHf/gHfOUrX2W1WgWtqIQ0SRhPRmhNADWSIMafiLHAcMTOzi6gSFL53EkS9Qs2I6VVVQUwH5bLJR9+eJsnTw6pQ1dRWJKKpq148xt/y3K15J/9s3/egzNZVoRxVmi7lvJizUake9PZjGYWq9UyaIFYEiPaog8ePgDY0siTIlcb0fRQWuGVwqAwwR07dnKENSGC1yaMAmySJ6jqCt1K4Oy7fCoEBC1lgXWWyCSIHWvJ4n96T2yvd9AkqSRnaZKhhuOn1rew47ZBc9WPp8Qky1pxoIrJozQgOgFd5wuGgxFd29E2ssZbKwBi27TUdUvTVHgngDHesW5XTCYjXnr5Fq+//jFhhWlx8HPQJ0Y+mFp0NuhxWQH5OkvP5BPWonQ3O+t7oC2+7/jeJb5uzhfvI2/Zk2ciSj8dTzg5OeJiNsO20oCIswoqgOneO+qmpMWxzJSw87Sj8x3WGhwdXmtMqtjZmZAkmrZt4iRpr1s2m83IzWWmk0t4o9jdG9G5jtVaxnW7rqWuRVS+GGRBUxXSpKAopiRh3eVZRl2tWJczmlrhmo6qtahKdJqG4xEgoIBzluPjQ45PnqCNxzhFkWakxrC7M2UwGAoI3LV01pJnOa+98Qlef+3jOGt5+PAuTx4/4d69ezx+/Ji6aTg4uNQnMM7Junjv3Xc5Ojzk05/8FF/4/OcZj0fcvn2Hqq56ICKOPFgrsSRJEobDIVevXuXBg/tEfcT33n+HL3zh873Wa0xoZY3rfq0rZD30OyCcs8pbCGPoG2+cAHz5MPTZu65GKDiwUCMoF7LpHqDbYu5Jwv50Ud8f2LFhExZgzPfleQmgszxPD/1FXcotMDC+cdU3gFzAArfiWF8QEvS1N58lFmFR4/ji4oLr169LdztMZXRsdZdjcRELEq0p8oz08oHc47aVa6+EYeNCERwNE05OTqhrOQdm8xnvvvMOP/zhD3lw/z5HR0fCJvPCSOrfl9uMPyslpmtpKnIjzzxznddef51XX/kYu7t7nJ48QSnNcDhhMt6R5qk2eC37f7UuWa1WoBSj4Yjh+IDd3THDQUGWirlU21naTkaR6vUS27Us5jNmszlvHB3z2Xt3efMbb/L+e++yXq3wyNnlbYfGY4NDttYKZRy7eyOyLC4HhSERF8wsA3RgggDWkadpvw6apmZdlXgXR31NYPVbOttSlqoHPhNt+jN4u5kTmS4fBQR0zGsCyH3l0lV2d3apm5rzP/ljbLcZ6xwORwxHQ7Q27Ozs8uKtV/kH/+BXAKiqki9+8Ys8efKE+/fvk2UZN2/eZL1e8/bbb3Pp0iUmkwlt2/Lo0SO+973vcenSJb70y79EUQwoyzKA+AU70z0uLs4BejZNzDEOD5+At0Saq/MOpcVgqNDQtDVXrl7l7t17vPLKK9RVQ7la9utewDtFEkbOZR2J/EXUC9exOI+MJbUdi1V0+EKhcEqa6yJjofq91O8rs2m2RcCXzQn0U+Xc5vzY/q0AKPmnmcISfzcAf/xNQmF9fn7Ozs4UOXefHs3sXy/GOyVrKAsLtGk6kWcIWtiz2Yy2bfnOd77D7//+f+Thw4dEF0ljBBjc3ZlSDHKZrkA016O2W2KkYRlzKBu0aMVkbUmaJgzVEGlyR7Me0a3+0z/7Y9588+v8yj/4FX7rn/wT9vYvU4TcML7fKJNQrdecHB2jENMlr5Q4/grNTgAWo/t7qk2KdQKej0ZjnJV98NJLisOjJ9y7fxvVNZu6wktejtrIfCglDDajk36f1XXNaJLhG00+nSJu7p3ICyRpmPDR1J0YuA1Mxo3rN0hMirWOvf0JqzLDaY9VMkUl+ehP7+Ftph08rcO3rau3bXy1ff/7PC/shTjhFp97u96KfxMf2wy/frWGsfjEpP1Ug3NOgLeqxNqOui45OzsFBR//+Mc5uLTPLza/wGKx5P69+3ziE5/EmETYfEVBmppg5AE6NHGtbcXVtYvXZWP+sVgvKdJBnw93bUdbNzi7MR1TSuG6jjzL0cawmwu5QGmRK2nalrIqexKLtdLIrqtSmttVHTSIGzpn0TqAZpGijkcbyVmN0mhlgja76lnwMt6qUaF51t+/Xmsy/itMHSDndSSdSFGLyMwq8F7yxr3dvY1cSMwdIuK3nRspv7UuoO0kP3/zzTf5X//XP2Q+nxF1ixNj2NvfY2e6w2g0IMsSdqY7DIpCTJ+MYDMuGNMJwJkEbAiWywWziwuW6xVJAKpXqzVNKqZ33/3ut3n8+BG/+7v/is9/4Rc5OjpiMpkwGo3wXsgX6+VSTKjapj/2VJgcSEJdHc+cNE3FmMwkdFbuwXA43DRsPbz80qs8fvyAul5jEU2PpmuxQc5A9XW45HRainPJSbwAr85avIpu4bJv7ty+y87OGavlitnshJ2dASZ1kiOEe+F8NHOK5+T/50nC/28fPzPAty5X6HYRNr8U9UKlbKQwDyYVSej0x6DSdQJEGZ0Ku8JaVJqilCFNB2SdNNHarpGAm6S0dkHTrgFHXcvMtAuOXkdHR1y+dAVFAn6jIXN0dNTri0Sh0TzPMUYF7YclznXC2vMy510UBdobFos1dd1hdMb16y9yMZ9Tl+L6u1hVONuI24tvRN/P5HSNLGxB0zfOPdpkDAZD9vevYq1Hq4y2aZnNZ3SdiPA/OZxRFIJ+W2vRTgcwRzrpogsojk5d3ZLnRbBHF83CtpNiSzrSDUVR0LYl6/WKvMhZzJc9XVnsxR0uBKSrV66yWomDpHMerRqsW3NxcYg2kOdj0XkaZnS2IstSnGtEU7EYkOc5WivqWsYblVFkuabtxdPrvosj90GhfEZRTLGdZjLe4+WXXg2fvaFpWk5OTpjN5k8BEX7rmm46lU8Hmr5QYhO0tpl8UXB6+2dPAXShyNoELGHkPRUcnXQ1JakxT71WLMik054wnUxItA6mKxIwdbj+OklZLhZCNW4keejalqos6Q/f8L9KK1JTBOMZz3baB7GAVfELFDKG662i50uFzxdHW4VmHT/TBqyURMswmU4Zjyas1mVwPNvnypVrONuShlELGVkQjSEXBOa1F20klKFpZGzvyRMZNf7zP/sz/vIvvhz2sAiC54HtlmepHMaprJXhcEiW5YyGoiExn81pOxk/VsGFTTpJUUPKBLfJtAe6d3f3ePLkCbfv3OH8/GLrPokm3A9++D1GoxH/9J/+b4iOa3leiBaGDWvNRdCW0B2LRbALwt2hKx26yF3d0NlW1hFSCMQ15nzorCNutJEBY53rf98YcdCMa1lrYVZpJQCB0tINNHEcLrwfY1QPCColAdUkYiaktQ5JxqZAUcE5T6nAWHN6kwREECCsryiKLcnwhqXgImCOJMnapDJKF1ap9TL+PRhOuHTpGqPhSLQ+5IL1e9EFrSzvXViLIgrtXMulgx1Gk2EPqvZLPch94cE5sE7RORPYwmF0uRWQoaor6qYRsxPn8ZZgchGMm7x06kySSHHngR64CBBIyOKNEUcwpRVJnvP48WNW6xUgIy9Rh8t1LYvlilrDsoA89SztCmeEiWZtjVcGnRimuwVVvaTt1lKUaNHgK7tzFosZXZpwdv6Ys8X7FI+lOJE9JyYbovHomM2k26iMdFPhSMBOF8Y8vcPToNSQq9NXcR6quqFu6oAKDYNQuOfo+AnrcgFYhoOC4WDI7nSX6XiK0YbWt6KD2VluvfgiH3/94+Dg/ffe5/TsMU+eHHL//j2atuPy5SuMxiNpFDgBiMqy5OHDh7zz9ts8evCIL33pl/jUJz+FVpqfvPMT0fdxDoKDemT1OudI04zd3R3Ozk5YrRaA4uTkiMOjQ567+bwkv16hnMOpTbMmJvq26/okTABgca20ThhD22s/MjXimHos0gXY64PTBpQjrMutU1r1//v3AHz9fQm5fQSt4/NGxk98jhiv4uvHr8Oe6H8mJw59pOz7P/J5tshdcoap2DAQYGK9XBPHd8ShPsaXrUYSAmTLzJ+M8E7HY3YnU9Ex7SK4FZjJ3nF8csLDhw+D+P2KO3fu8M1vf5Mf//gtTo+OqAO4q3TQDEOc1AX0Dg0RfJAgcNR1S1WVLJYz7t77kL/7u28yne7w6sde49Of+jk+9rHXsbZjsZgxHI6YTKY4gu5UkrK/vyPNWh+A+XgNI37kFHhN3TZ0KkVlOYO9IcnogHx6wJVnnuOFF1/h9gcf8p+/9lXef/8dmlqa0SiHx9G5FuMTstwwGGqsq4PGZBrAFY/3SfBokRxCa4T96yTnTZOUPMv7qYEojC9/b+i6FjBhRCrtC/2YL8W9s51T9fc/FJY65D3bjZo0SVmX6/68VsowGk1kSqWsOGmPGY1G5HnO2dkpf/bnf4btOi5mFwyKAVeuXObdd9/l+vVrVHXN2dkpt+/c5vvf+x6PHj3i1q1b/Hr2az3TS8TJc8CHolo0tyMb0Rgjhl9WJiZcKJKMThmNpElYNw3D0RClNG3dkiSZTOH0TB8p4hLjNss6AFw924eNSZExEku1jkYIAhKhN5MdJpwtaMnHNEHXD1B+o3molEJZhdchnvt+a4bGne//07P2AnivIsC3FY9Uf2hE8FZ+X2otz3q95tr166FpbcL59NMFpLMumPbISGVssFhncbXtHdK/+tWv8qd/+idcXJzTdbIux+MR4/GYLBAVksQwGhbkeU4e9D09wcwBYdikWYrtbH9t12XJfH7Bar2iqmvSVJ4rTWVcv2lqFosL/uRP/4gPbn/A//Z/97/npZdeoa4rJpOJ3A8P3rqgC1gTzRzjuaeCbrVo8NKfY9ZJbmadSL3UVU25KpnPzsnSXMzmgv6n9zbkhKHW6C+/CrmWHB5NWwpLVznyqFOuAwgYFl3XdTRdcAZ30rw2WpGlKU1dc3rSUNsK6xx1K/HWB+Ckbdtgvrhh622DfvHrbSJArxO79fgo8y/GOL21BmLduA0Mb0gKTxt2bJMj6rpmMp6QJGk/7rhYzLC2Fcaz8xwfH/PWWz/m7bff5tr16/yr3/1XfOYzn+HatWt84vU3+PKX/5w0TfnSl77EpcuXhHnlvGg4e4L8T5QZCFMsJuH4+Jj33n2PG9euB7fccJ441xsbPPfccxSDgjQwVpXWZHkWWJYZ4/GI0XDE3t5+/9nbtmVdlnSBkeY9gQzUBjCwpq5r1itpBskZ1tKFRgq+payrzX5XiHu1loaCDmPVAvZIk1cZ6SdEvbnYnXNeepABEuzvQ1sLgFoMctEh9UhjAULjgXB2xJzDY12HDyB517T88Aff58t//qfMZxehiWpJE8PBpX0uXT5gNByzuzslTQ14T1s3NE4wiMZaMZKL8lJpEhibOXmWc+36M6Dg/OKco6ND0lQwkdVqhXMdh08e8W//L/8T57MZv/kbvyXSSdYyGo16Z92mFUfk2CQQHIqgfRvZqYroOu68GHQ1zlJbR1XWtG3HYr5gtZqjVUJV1pSrii4Yt6Rh2q4n87igOfiRMzSuefm3sO/bViQ4ZvNT5hclaea4fHUX51v01l4DFZoDUZ7O9fX4z/L4mQG+4XCI9VnQUBD3SWs70jQL1OwE58XRz9oO76T7FzsLApJIApcVOdPplOFoyGw+E7aT7zAmZTAwvT5PpIIqpYSxkOekaUrT1AKAJSlKeebzWRg9bJFksA2HQcd0OqWuK5SCohiDFiAnSRKyPGe9nGNchgvv9+jklNlsTmsr0kQSL61kJNn4lHVZsrd7hdRMxMEudYyHQzorI7id7ejalkVXs1yuqKuW1tZ0XYt1NcNQ9IKiLMUZDW9Jk5y284L6a4NXHXVTobWm6ZpgZZ+QZTmttYEZhxw6KOpGxgyfHC6wzmK0Zm/vgN2dPXZ2dlBeDAWatmK5WuKt6Ia13ZrFssR5z2rRoFTGwf4B2SDl8HAhGlbBtU45ca0r0pwkkeuskEMtzQxs6aVFAe80TUj1lCuXb/HyCz/PrVsvB9BQErmT42NOT0+DWLLuAQp62CACLi6MpvqnAu1m322YRtb6nhmDV0F4Wn5HoQKKvgEMZIQsFnbyhJHls7FN2iTPEXjsv28tx4eHPHr8iEGW01QVXStjlviGRBmM0swvZtLh8lJkaRRZkhBZISFXwzlPGv5fad8HbenmSYLpAotJBRAign4SDzwRNGmapncXbeo6AJKaRKm+6E3TlN3dXV577Q26znJycsorr77KdGfKdDzm0aOHon+mQeHCiFO4nlrYs+IQC+ezM9brNd/73nf4i7/4c9quQUbB5ZwYDgchoEkS5pyjyAuyNAMPy8VCxtP7expGZbUWcVet+kQyS1OSLOvHBACef/4Frly5yo9+9CPuP3ywNaIka+fb3/4WOzs7fOlLvwzIwW3C+JRouG3G+2IR7L2MY9kuMoa3QKCwLgiAb5yf9l405kKVhFOyDgUsjCvH0zYNhAJDimkBBaWjp/p1avQGfMJvwAaJ5SpcG43pu9SiqSQueEBggSojiYbRyUa/zJjg+Bi6YTq4dobRgggQyueW9acJwv/axENS3pCGqmxEELpzNFvOc3F8UByK5TNoRGBdKcdoPKEYjPr77v2GKWWdjBU7R5CC8LTWUdcVq8WS2fkFi+WS9WoVNBltP+IXwVkXAPc0SdBJQp7nDIYjxsMxRkkH1eFCcyR2TIOmSpIynEy57DzVg/systt2AmB5R9fUnM9XMN2hdUM6W3F+fIp2gO9INXQGdAb7l4agSjxNWG8Z3nlJDG3D1ZuXaLs1Jm1x1GgS7La+TGA1dp10t531ONXIe/UeVII2MtbufUeSwMXikCLPQGk6q5nPRFNFJwbrOo5PjymrNc47RuMRWZGxs7cb9GuaMJ7dsLu7x2uvvcH+wQFd24lrulbs7+/z8NEjvNJMppNePL9tRQ/y7EzEj8/PzvHO893vfpfhcMgnPvkJDo+PuLjYAPJGG6pKErII5kd38rJcA56qqrh37w7P3ngW71Wve5okCS4C1kqFcRG5zgLEipOkdKhBGFgBZAlAqjYGccBVoTgToE3G6kOhHs6OqHMWz5I+uQ5jeX7r92KsimCd7wG7wLKJca3/m3gMqg0I2AcdH0+Dzb4M8SwO7MZXE3GLvn3U/73H9+Pus9kF+3v72K7bMhTZZvBuitzYsCjynJ3pDnmWSzEc3mqaapbLJYfHxxwfHyNGKXf50z/9Y37wg+8LQB7E54s8xRhpGsaiQCOaypFNZV3XNyzbtgtaXpaqkXHy07NjvvHmOd/5zre59cItvvjFL/HKKx8jSa6yLhXD0YT9/T2st2K+49qAUSa0bUdVNbR0KIxosmLAKRKV9J/Vm5TJeEqeCni0v3+J5597ji//xZ/yV//pz2lcF+RTLNp4BmnCcJIxGCUoLcl/1N0FYUCho7Op3I+2EVmTaPiWBlAwSRLarpF8a6tIEMfYjmTo+0wposauz3lCnIogtFJA91SBH3Nt6zxZKtMccSF6L9+LBgJd19F2NU3d8ODBA2azc27cuMFqveT84ow3v/H1oC0koOarr77MD374feaLGUrDYjmnaeo+72iahtOTE4xJQ+FGaL7J+0sSw3K1lBEyZ0OTyYuwu4GiGLCzuwsEVoWDnek0ADQdi8Wcsq5FBqWRiRbb2fA52gC2WIllGLS3WGdQVuN9F1i8GpOkmz2k5FzQWqMTacglEXQJ50g8I6RBqcFuNQLCmLBXm/FHH3dqPCNUVOzcnBl9Iy4I/BOBekUPlkbTNO8jUzk8v9qAO3Hv6yQR3T27GeRvArN+vV7z53/+Z/z5n/8Zi8W8X7u7u1P29/bxeAbDnL3dPZE/QgrVrhEnTRvONb29xsI6SxKJDXt7B1y7fp066PydnByTJild5yjXa+bMaOqGt976Mf/j//h/5Hd/91/xC7/wRU5PTxkOhxR5AQEijWBu27ZhHcW6gV62JV5YqV8tdSexqVqLYdt6vcJZx2g4YbVYgPKitRWZ2SqeywFiUcL6wrV41qTZgCTJcWiqao3WMBqNGBaDHjjQQZeurVqGg4I8Sbl25QoGzb1H98CKFnCa+DAkkAUm8mY1xMmeWFtvxnflmkeJJN+f45u6ZrPvN+DeRrsOesPDp0CMbdMO+t+TqbYItgh4VQyKnuCRJJp1uWS1XjIcDrl//z5/9Vd/1U9rzWZz7ty5w+uvv85nP/tZvvN33+bBwwecnJxw5+4dfud3f4flcil5HPQGQnINgi5yAMDquuZv/+ZvuX79OpPxmCzPyNIs5ObChnz3vXfJ8ozxZMJgMKQoBJQejYZMJxOmkymj8Yg0E/JNHvCGNElkpPfgcl9rdZ1lVa6p64amqWnbhrZpwpivMPzqqqYJDayyrPoz1HpPmmhsGzUQdZ/jKA/KaEwqOunKCBAY6+KYj6gwwuu8jIbnWYoNDSKv2Oj4EkoQbfA66Ma6aAYmja8HD+/zn/7yy5yfnpAYsEoxGow5ONjjYP+Ag0sHFEVBU9esl2u8lUZA14oUjnUh9od60IRcsSqrHkw1iWY8mpA/m7NaLVktV4xHI+ZzYQmX6xX/8//8/6AqK377t/8ZF+cXsv58lEKRpoZzgn1YJ7JXmgDgx7otLPW2swLANjV121GWFU3dsF6vsV1HtazoKst4OGY6nlIHuScxu6nkCgdHdml+bcdL2T8mSNyslivUWH5W1SVat1y9MWY4FqamDQZa0YgGPFmWEWXntk1Q/lsf/z8Y0W2wtGRZjlJi851nGYvlDJSiqoW6GscirHMYLwEuumXqNA3FmuPJ0ROcexTstWVhjkd5cJ9dkySJuAc6z3K5FhctlLg1hYTZdR3WesbDPdp2Tb4jY3NVVeG9ZzqdMBjmpKmmCW65JhONvizL6KwwIOquo646mg5aa6majtFwIsCW7TCZIkssiozlesHVywfs719mtnxAVZecz05lM2k52L2z/WZzHryytK5jNBiCogcktDKYRAr5xCTixuo01nuyLMF7y8VswXi0i9WKyWRI3QgrRSnFbDbHWTBpRtPUzGZnJGnKwd4eo3FOkY9ItBFdO1+yWonGYJIMsU3DweV9RqNdjo8O8T5jOMhpbcvx2UPQMsqpdDAQUIayElqyDW46o1HoSBtD21SglNBjFWRpTp6P6TpNkVzhpRd+njde/5y4KeGl63t+0Rd8RsURORFOlS82HVeI4MfT0F9fEYWHbMCol+H7Of6nGllB06h3l/OSiijlRetqKyERJsdP74cYXONaHA0GXL10ifQTn2B/d1fGqZ2nCyOffac8dOATk+CRhDmaHPjIDHmqENwuHkXrUhs5cKx1YURWCvf4V1qHzqKSg2QynvQuUHHMqcjF8Xc0GpHlKddvXOPjn3idtm148+vf4YUXXmA4HPRaSIkxsqa97QEqbYQ55oOb4nwpdPw7d27zh3/w+8wXMxJjGI0G/bhdkmx0bvIiJy8GKA9VWdJ1G1fNNE0lSXfBZTIkrtpoyqomzzKKPCfLc7Qug8ZJ0e/9T3/q06RZxt27d+hCZ0mhaLuGb37zG1y7do2XXno1rB+5z1IH+X69SEIa7g0O27V9130bXXZBrVuJSjgRbJbRGRnniYtICnEXRk5DyeAJEnNS9buQdEmtFnSj4voNJhjbawMgmp7opxI6RdT/UR46WegBzNowOZRXoDfjDl55kgAC6pB8yLXYaF0YrUn01vdCgpeahPPzcw4OLoneqgrMxQiMKCUgo9+A2t5aTCIBczPOJOu9a+P19aF76mmalvlyycnJKScnJ6yXi6ALKHtsvV7RdR2rQO1XSvZrluXkRcFgIIndaiEd0sQISDyd7DAZi8aId6LV5ZQPY0WeqqywzvOx115nb3enB+Sbpsa7jrZc45qSrqkpV3Ouf+tNvvPNN7l79y4qrMHRzojRROPUAtdVaJ3iOiejxo2Rzmk6BBLapiYZGpp2TRtcnp2ThD7Pc+pmGVjqBmcbAf6trI+mVSiMMDC9RWtHZ1d4ZzAmB6VZLE9JkxyvYLmao7ViMh4LQ6fI2dnblTH4OgCZKD72sde4dPkKg+GALEn50i//Evfu3eVb3/oWeMkTnjx5wjPPPIvRMjpireX8/JzZ+Xnv2Ou85/s/+D7Xn7nBZz77Wb7+9a9T1WLs1FmLciqI7RN0yDryPAvSFmu0MRwfHeG6ljTNqTrfa9zpMPoAqr9/0WgjxpSulckCb20/yobToekQXXMDE06FIBG1WUJx5JwUYV6pp+LBU5HKC5jtI3VHxUHiELk+ElwEiotn/tNJK1t/6b3twT183yLoY0A4euSfOo4vq/6wkaNAzoO6Fl3kNE36ZD3ymnz/ej7gCXJd0yxjOp2S5XkYbbEkodi+uJjx+PFjFqsVq+WSL3/5L/jKV/+Ki4tzlPKkiQksblnH4uKehnunpGERAEtxR88E/FCQZ57d3d1gVlaL4+RyDcj41nvvv8Odu3d45ZVX+e9+65/wyiuv0FnLulwzKHKSLJORfQ9t01GVa9FG9bq/7nLNdbywYq/g4zJwaGMYDMccHFzhl770y7z9kx/x4NGdwOICbTyojulOwXiakaaOJIwqrtdrnO0oMvncOk0RR2EZh8JJzI5Fq8QXF66RCrInTc/OE/ButQlj8RP0Hc6gq9VrkD5d3G8yKZHyiOOPPoDOIX3BOU9VrinrMhhzQF5k/Oqv/moPCJydnWGt7bVpd3d3uXz5MnmWh+un+lw/TVPRfFUi51OWAgiifS8PEUHR5XLBar0S9jWREU5wQjSBfZGhlaEqK7QydEHzdDSZMhg5YJ+o9SrrX0CQthO2WFmWVGVJE7S9RKNW3Cg7Z+naOA1Dnyf0exOF1rFhJSO6xiRyzyGw4fXW/wetbgTsE91u1V9ntHw+t+XtGPMDhUI5cARH4LDnjDFcXFyws7MjOa0Tt/T4HmXsWPVrREWQ2DtcJzqvXWep6orOtnzta8LcE6M80eSeTqfs7k6ZjIdMd3YoBjkEYBGE2dt0ItWx3QSPAJAw1YMWXpJSVzV6pcmLnL3dfUbDIYv5gsViESY8hOxRNx2Hh4/5d//u37FarfjiF78Umu+ECRnZnL2emO2I9GbrI9i9LS8iuXNnWzpbY11D11a95tilgwO6Zs18fkFZ1iLnEJM0BKQ0SuRVwPH/Ju0/uyy9svtO8HfO468NH5mJdEAiM2ELgFgoS7IkzCKlUnM4klrU6qUXvXrmA+graeZNUy21SMpMixJJUTTFcqgqeCABpLcRGe76x54zL/Y5z72RKM5Mq26tWgAiblzzmHP2/u+/0WHDYL2LjgqiKKWxIbNZRRBo8nyBaep2LVPKgNVoq8mSmFAr5rOc8fERgdZ0u33yMieoFLW7XgPPHPWru10Ol71azYe8SW3t+yDdAnYeXFp9+B5n6d3pgMsVhuASJKQFOnHXSl03K4CyBQxhpOkPekymYwIdMJ/PmU6nPP/881y4cAFrLH/2X/+rpOtGEaPRiG9845tkWcaPfvhDeoOeDDK0sNuqqqJxYHXpWIH+/IFtfZE73Q5hFPLw0UPnde/Of+P7L0sSJSRpQq/XI8syIRl1BOgb9ActgSjJMvr9PmmaMhwO6Xa79Pt9B1ZJgrl27L90kMrqqeXeqqqSslqQLwqxpalKilw8gMtKpLCTyZj5fAZNja1qsIraiM2DbcRyTBeAZxCHugX3/H0UKo0P8jgenbC7uyuhnMr1BkHQonvW9RXW9zjWYJC6aL6Y8Zd/8Rc8fvTIyWrFguXMmTMMBwPOnjlLGMdMJhPKPHf4i3H7UEXT3t9u3zaWunJ1WKAIyxqtC5cVUJGmMRvrG/R7A8bjE6fIijg6OmKRl/yH//DvGfSHfPOb3+Ho6Jh+vyfeykrW3MaKRVxtalTjBrAOQEPJ+za1dQOcGlPX2KrE1gWmLlC2wpqaMzvbdDsxdS3+n4v5gsPwiMlk7A5bTVFWQmZRbl22MlRrjAyejJV+pSoLqtJ5T2rD5m5Eb1hhTEFRNq4uNa0ct3SkDqUaV2un/KqPXxngE3mXxKanSYwxtg1dqGtJA/FmukEQEgYySShLWUDBUBWWTqfbLvhhKAySNE1PLVhZlolPmAuqGA6HAOJf5mjeGxsbBDoiiXuEYcqTvXt0OkswRqa9JePxmCgM2yK/trJxN3Uh01qrwGqiKAMbEEWKfr/L5uauSyFcsMiPqZsFxcJSVnMW+Ql7+/co6gPCWCQZCiWx542fNssJjXRAlKRtUEYUxERB5G5+ubk73T6T8ZSythR5TpoF1JWhKGryRcDG2ja9fh+lC07GYwHB3AJWVc7kPwm5cOk8mxsbVFVOFMF0lrMoKjK6RKHG2oAkHtLv7qCs4szONhsbfTAZh0ePKYocqwOoZYGXSYylKKSgnE5npJkkrPa63ZaGXc1FpijT5ggdJlgb0ZQd1odneeX6t7n64utkaYZSisV8wf7+U44OD1uZyNIDb2UjUUsgbbVgWMp2PZjinr7SaPlHy6rg9Mb4LL3dv6EMX5c+Nt6c3TeBq/4Wq9fs2d1dtre2aC5d5u1f+zqevl43DaXz41t9/9XP55velunkCtj2U62837PU+SAQz5Hly4opuUgrfXvmJHtqpYFh+T1qx2bBCiOrLEviKOLjjz5iOpmSLxaycawmlQJBIAlqNdIwF4uc8XjMn/zJn/D48SOiKCDNkjZNLQgUtfMkiZOEKIxbj7a6ks9QFCV1XbeG2d4sXiF+fbEDNMqqoigKJ+2VNCd/HXkJ8JtvfI0w0Ny8fUtCb1yjdHxyxI9+9GO2tnbd2iINnfJo25KYLefe+VEZYwgUYMRnQ/lryvgJkxQ5fiJPe06lgPesP9sCge457m3ld/6adBIp9+UFX1iCAzLNXJ3MAgjLVbkm2XiMzzUHPrDFaMdEVTX+HvLSIx/6oawFsxJE4K4xL21SvsmSyYbIg913Gh+PmE4mAil47yIl6XpBIDLVOBRZgrLC2Op0M3q9jrActXayWpEdef+Rqqo4Ph7x8NFDDo+OsEA+n3F48JRHjx5x8+ZNHj9+xP7+HkXuWNN17UB7AYqSJGZtuMbOzg6XL7/A2bPn2NnZJUkSJuMjOp0e/d5A2OdBSIOXaYj/6dbmpgwxtCaKhSWXRLGcj06Pyq3/GwrOvfASv/73/j5/+d/+G3/x53/O3uwR5y+elQAqW4E2oBqRYlgwWpoAYwxpmnAys8znM5foVq3Ibxqaxp97AQTKsiJJkpZlU+YFSokpsDGGl17+NUIN+08fM5mOSZOIoigYjcfUpmE6OsI0Nbu7FwiDhF6v365N/v9ra0POnT1Hvy9+jWUpAO4Lz1/hzJlzXLhwiXd/9i5pmnDt+nUePHzAg/sP2NnZaQt27Tz2iqqkKCs+/fRTvv7225w7d447d+7IGu/WfWENVtIQOy88pRSz+Yxer8fR8SFVXYrcBg+2G7yPpgwLKubzOVmWifzUmpbF443gfTKb3zu0DloWm2fGKaXR1kqoAktwznuVNUa14RnyMND4+38FcHdgv2eCnFoL2nuN5TpirSP2+k3MLxu29elrZXstgLjcL/w934Jz1rl7+TE0MB6PnXduw6pQsGUUOyBIueYhCDTdrsj0AMqqQmtFY0qm0xl7+3tUZcXdu3f5t//mX/PZjRsY52XT6Xbo9TooZIgZRRIAFceyRyRpQhqnwnxyPk5BILYGtWPc1LUk80V1SJYl9AcVk/GYxUJ8a6uq5MaNT7hz+xavf+0Nvv/932H3zFlmMy1qBh04BrySIDFn8m8cO7tlPbXrujAHmqZxDaWhqQ2zyYzxZEJvMKS+X2FMTRBJWFKnE3Hu3DZoCSrTQJLERFGI1dr5lTaOtZgCRbunhw4Y8Ps9iDe0eDmJdNQPwtr9p2UILOujth5q/Ubl9Zep0bTn18s9vY+wNkakxA4cyLKMu3dv89c/+EsePHhA3dR859vf4ezZs7z88st873vf49at25ycHLNYzGmahl6vx3PPPcfX3vgat+/cpp7Ubf0UujVUrVyrTVOvDK6WEsD5fMF0NqXX68s+jKWkZBEsRM5tLKWW4Vvkkg27na6zABGLD88GjSJRUBgrvUldCyO0dLYp8jmkfrcORF7MF9S1qCHmee6GLQKMG2czUdUNYegacquoq5K89eUScFo7dY6sZ0Fr2q+dZ6P3xfMBEYFbY8T2g/ahfW3C0iYmz3PKspQ9wLFpl9WfAiNrV2u94ercxknMZD2Xa/WzTz/lz//8v7phU0AYxKLm6PdYGwy5fu06ZVWy93SfxtdurtYtHIC7BJMcaOQM+FGWMAgp3P0dRhJIGEcRnU7K1tYW3W6XyWTceo8fHx+zyEum0xH/+l//b2gV8PY3vsHEBQuI759y67ChbmqBPa2lsT6Je8latQ4wauoKU1dOmVGDbYijgMsXL3D2zAY3b37G/ft3HJGkRhO4JVYDdTtgGQz7rG90CIKKqskxpnYkDvF79wVzVZXoABmqGYupDbYxHB0c8OThI6J+RtNoyrIA26Csq8dWw3OsbUE7oPXc8wy7Vdbdan/jQTj/81WWXqsMOLV/LR9e+usVEf5n1hWu3u6mqEqspd0XAKIw5M6d2zz33HO89dab/NPf+z0uXrzMX/zFX7C394SNzXUOj48Y1H2SNGFrY4MoCHjr7/yaKLuapg2DAwnQqoullNj/PwxCer1e+/2rqnIhPJXYQNTiyzyZTphMxy3YHoZi79Pr9uhkGZ1ul26354I4BHyJo5hOp0On0yVNMtY310mTjLW1NdI0Ef/yUPoOFWiSNKbb6TnQVdHUhroxrey9qgrng14JjlKKCk6ss2YUhXiLW+MCwzyDFOMGAxqMDDfG4zFlVTr2rg+/CLFBQBgEbn11a4V4ymAdFtI0Dbdv3eTml5/7Tpo0TVnbGLK5ucH6YEiR58xmC6dMlONZ140LrrJUtazZQtQyrapM/PBisIYggKKwTu0ie5XYQK2Tpinj0YgwDHj69IhFnvMHf/C/s7a2wYsvXgUsaZY51p5cv8K6luuuBS+tEdmxA/CtkVAqY2qqWoDWpqnkvjUF/X5Gmuq2DmuM4cL5S3x580v29x9TNTkqgLyQfVk5Sb512I7sEQHWRlgC8nJKmsH2zoCdcykqWLi9JqSqfXq4Is8XQi5zLNzJpCEO8q/cc/9nH78ywGcaK14/YULTSFMxmYxaCc1q8p0Y9GeC2pZVG75Ra9Ui6nEct7Tl5UIjBUbTNLJAKq+7l0JmOHQ+YbOZK1AtStccHT8hjJCTWdWt1GOxKFBogiClqgpJv1ECMkp8dky/N6CuLaPRjKqsUWHAyeiIo6OnGFsRRyFKNShdYRpJOdrYWCeOQ1SYUJsZ4FNma8I4QBO6oAKHKJ+SrMaURelAM0vTKAbDjKKY0h8MmU0PqMuE9fUzdKKQNCw4s30VpSyP9j5FISk++WLOcLjO2loqt6+SIqLTSTk8GvP04JCqrBkMtqSIIKOTRvQ7uzx37kWiEJ7sPeDo6DGGkjgJCMKYg+MxOogIdMh8PqesFgyHazR10/pt1LVIGuIsYzwetRtEWVRUhSLsD0miDc6ffZ03v/Ztnjt7RcCDpmF0PObJkyfM53MiR/FeXahP+T5AC6y0gRNKrRQPpx+rDamwg05TX/2Gt2qo/5Xfq9MGssticxm6cHqTW75GpHU7UfMbcaQ1QRS2f7sKHq6+xrL4OP3P1c+9+vPVY+D5GctGDLk3FG0BvTRix00iTh05mV6XdVvoay2y2wcPHnDp0iVhXloB8nCTQaBNuyvyiqap+eijD/nkk49RgSJJxCPPN6Baa+IokTQ1x1CQNUAkd1na4cKFCzz33HP0+/0lsGsNk/GEu3fvcjIeUddyj3fSrH2NJE4Io9AVPyKJGgz6vPzySyyKBffuPWhl11pbbt36ktu3b/K1r71BVUridgugKWlmtWt+tJIj3DTiOWmsIQ7EAMLYBos/37gJGSvvAAEAAElEQVRz41igSH1ujXF+fMvr2lpvos1KMSrzhkC1bQ+tvEopjPETVSfxc3SCFvRzAKFcx0sfLf8SS9DaAbwrbYD1KbXuR0vA0oN87p4xjXxe5TY8FNbUMqXGMpvO0DpgNp3KZ2zNyVde03lneCZtEsecO3cGjaIqG5paQGQDGCPN7GQy4eHDh2LUX4mn6eeff857P/8ZX3z+uUg5rBje1y5pT6RU/nwqiiJnOoWDg6d8efNzfvLTH9Pr9tndPcsrr7zKtWvX2NzcYjwakaYZg7UN14gGdNIUHMgoxK7YecPItxL1cQAB6FBYeTpKGG5d5Pv/+H/izW/9On/63/4dOpqAmjjAMcE664MoCjC1pq5LOllGmnaoyhqrqrbmns3mpGlClnXcHkjLiFFKOfaN3JNY8TQTQGTOG6//HS6cv8xsOmE6GzGdjzk+OuTxk4d8+eUXJEnK7s4uu7u7jEYTsiwhzxft/W2t5ezZM3S6CdYNxqq6RrmpcBKnvPXmW7z22msYI5LMTz/9lCRJODw8ZGdnh/MXLlC7EK3jo2MCpXhw7z5/5823uPbii9y9e7ddP1fTP30T47+rtWJNcXh4yMnJCXGcukAH5Vi/DaY2bTKcW0QJ4pBiPmc8GTvz7qWMJQik2F824bpdrzWqld1ZAO2DjJZrs0I5abCAJ2YVt8Nd624YpQLZmTyY7e8PDxpalvLKVYDNA/6yksgdZawVD0kah8dpl8q3XNtZuf+Xd6PI3Ju6ZrFY0O/3HZi2TPxr1yvrrQukSRBzegkVq1zNJ2v4nCdPnlAUOe+9/z5/8Id/yOOHD1BaQpq6nQ5pmhCGGq2lhux1ewwHA2In6W8tCM0SVPTHHmBtze2ZGMaTCePxCVr7cLXKMYDGNHXFtCr50Y/+hkePH/O7v/uPuHr1JUDsZpQO3dol10ue5zS2kULeNSHL1EnvVVe74l7C1sbjKdPZjKaqiAJolCGOFWEAOzvr9Hoxk8kBSaSptQTJBUFAHMZYZLAlwKVcLDoQ6RdN46Q78p2jaGlB4ZOtl7I5iKO+MEeC4NT1IjV1IOCkSzvHg8ru2Iqvn2uUlNhfyCUuDG4CCcsDy7VrV9l/+oTj42OePHnCnTt3OHv2LI8ePeK3f/u32N7eYuz2536/z2uvvUaSJHzvN7/HfDbnP/2n/4OtrS2XpuqDqbSzrKmcF6BZ1m9KrqvFYs6TJ4/Z3m7QSgC83IH0Hii01nLp0mXCMCKJEgeGalQgYYBJKD1BmoqSIElTCelIM9bXN9z9Lveil3tKqJ3IjcuyduwN4xQ0mqYR77f5fM5sNmU+n4kkr26crNx7Hcvx1jQoVWMRQgCWltnerjeuf5fUTmHI62AZwNVaZhgHJqoAAs3BwYEzk5d72gOkPnTHqwiMdUCijlxvJfJVYwxVVXF48JQ/+9M/ZTadEihF6EL1er0uw+GAjbU1nj7doygryqLANDVFUVE7r0ij/ZDF9XVOzqidf5z3BA9Cp7Bx4Tx1VLm+TzyV19Y2yNKUkyQBDHo0Eb+zxZx/90d/QK/X49q1l7C2QatMJNsr66jft6SGWAK2sKyDmtoxpoz33zbEkWZtvc9sXtHtR6Qp5IuKre0B29tblGVO1dQEOiKMFHEScOXK86ho5ELoDGGoCcOM2snqfSCbfH+59lQjdWTTyNqTlwWqEQarMKmWMn7Pbvbgs5dzrvrlAW2f5JPOZUBWnHq+30tXCTZLOf8SbG93D7sa8LHa+2i09r25afcWi2XQ7xNHEbP5jDiOGI9GfPbZJ6yvb/Daa6/y67/xXc6fP897779Hv99v67s0SQnDmDffeIuLFy7y7s9/htaaohDwWux+/PXtLCZoUFrYcScnJ239UDeyhgRatyEnxliC0Cm1XPBX3VSUs5LR+ERYfkkCyJpx8eIl1tfXaGpDmmZ0Oh2iICCMI7K0I8zhKGbQ79PrdgQU7HXZ2JBrNwjl93GUEEQJSZLR63bd0NuCFZ+4PC8c8Fc5XEB6qcViwXQ6paok0Xc2nzqrmZq6NEymU4oi59zZc8L2dkPAwIX3Ka3aoBsdRGRh2FpwGFtTlQWfffop88VC6tEwoN/vc/H8JdI0aX31vLIqL0q5V520OO12uPzCWXZ3d9nc3EQrAe3n8zkHBwfcvXuPyXiCxaCtjCxMM6OuS7qdLgpJOB6cO0e/1yXPS+rGcHJyzB/90b/l//6//D/wigqUBDjKvoFjvYuPoHbDOGNPA7/GNkK4agSgx9m0hIEi7MZkab+tMytHqNLagdk2oNvtiX2TEh/nuqyoaqlJdQBhoGiaEq0MSWDZPttjc7sBPRF1XSB+pBJik2NtQ5IkdDpdh3mdZsj+Ko9fGeATBkbUToMFiUwII1kgAh2SxpFjcmhMI5tlFIh3VpmXLlBAueYmIozkuUkiiWLj0YROp+OkWnJSBalV6DCkLCpOqgnD4Rprw3VufnmbYzNjkc+JIk0UiadEnERgQ3rdDkma0Ml6BGHIdDJlPJ3KTV3WzOc5xycnjopfY22NyQ3T2QnG1nS6MUHYc9MYabAnkzFh0CVLN9FNTZMXKFVxcnIiev0okmLVeUFUlUzFRGYk1H/jqP9VKQbAjx8d0tTCuFNaYUxENz1DoHok8YQsWePOvZs8fLhHd1gTr6TqBkFI5HwFnj49YHQyZjyakqUZa4MecdzHNgGWmO3NHTY3d9l7cp+qGlM3C4zNiWKcv4vG2IYyr6iqhm6nR78/JI5S0lQKmv6gw2IxE6ZVVbWbR6QSIKSpQtJoizdf/w1efenb9LobcgM1OQf7JxweHrYFXN00Ev7gHs+y73wa75KFZ5/ZfORncn3+ss3JnPrdKsi2CuJ5uUW7SVkPoPkbcLlh+td5NtV39Z+ngD+FA6q/CuA9CxD+9z+kg1vyueRfnl04lrARLLlg8vPcTbE73ZS1tXVu3LjBr/3a19nd3WVjY4OqroiiyLE8DEqL+bl1jJi8KDk5OeSv/vIvKPIFURw402QJAAl0QJLELcu3LEtJU61Ksizj2299i+vXXqLb7bUg7XKabsleyHjrrbcYT8bc+Pxzbn55s/Uq8scxIXHAumqlQmmacv3aNabTKY8ePsJomWzl+YJf/PznXLlyhW637/zKhJGjHA1eEDvPlJFNrVHNCsvgtJHxs4XRssN3HhGOEaMQaYFuIQbnEWNp/XWs9ow7LwWyeKcLH55hHdNOKd36eXmBoLE+ART3Gr6wFSBEBx5s9gwfx1RqZ37+ulqCCZIa6+8Xy9LM34HOtiEvFmxtbjlg1oKVv2mRQ8QTxR8JrQP6/S4b60PCQMz15f6zVI1IYx89esTdu3eFcTYa8fP3fsHf/PBvePzoIXVZuKQxSxxHhFEsn9kDn66B9xM+Sb7TrkGrOBkfczI64ebNL+j3B3zta2/w1ltvcenSZfJ8JkDfYI0GmbQGQeCYa5ZKe3N17by7hIWnlHZejBprNVbFbO2c53d/5/d49xf/idF0RBjHKBdA4S+1KBLvt8ZYOp0e3d4AS4xFWBZp2sGnmHrGahiGLQPFrynT6YQkTqhxgEDU5eGDR2grfl7d7oCtzV2ev3SNMNTM5hP+6eFTRuMRn37yCf/7H/wB2knyLbJXJUnM+voaWms+++wTer0e6+ubJEniAhQW/OzdnzGdTel0MxaLOfv7+/R6PWazGc899xy/9Vu/xRdffMHNmzeZTqdsbm6xtbkFQK/bo9/tiU9WWbSrk28URd4nxvFRGDMej2lqw3gyZm19XWSU6NbnMk4FBNEldHpd7t+/j7GWfrfHYuaCHZRfh1ky4ZRtJb5ejeDlbNoN6axyzZFu+SnifRnoFihoWXX4fUfudmMtthE2W6CVMCxxjalFJuzutl1RVbZLibDwVu/RlfXGArYBx/JeptCq9sm+jxOGmmE8nZI6+wR/rFdu6ZXvYbGNeBBmmYDdpUvNDcOQyWTM6PiYRb7g/fff43/9/d/n8PCQMAxJs4T1tTWSWPaMTrfD+voa3W5HgLSqYpHnwgCw9tQ+C6frAqmxpJxNkoTt7V0XojahLAp6nS5xFHF8ckhRyvV7995tfv/3/1d+93f/EW+99Xeo65os7RJGkZw3B7YUee6Yhv68LkHZdu3ErSPG2VU0jZvq12htiGNYW+vx3LkNIm0EeLAGhdRP8/kc5Xy4fPpfY227pqNEahwEYRs84PdD35ifOueI1YIAj3X7ecFiTI0P5rBOrilDgSXbx/toNQ6RHgwG7XBK7oGQ8fiEoliwubXBW2+9xdHREUdHR9y9e5ff/u3fptvt8uGHH8lee/0677zzDsYYkcC5sJ5/+Pf/AWGgeXp4KGB95T6bEla/fD/nt2gtaIXBEgQhi8WC9957j0uXLhFFSctUNo1cG1VVsVgsuH37NlEUtWFwQRCSJAIYpYlI8/rdviQD90R2F8exXAdao4PQ1SxSt3S7XekpgpAW/EBq5cpJecvKyXtz8eFqqqpNixfWp2ExF1ZOURRuICmBeVgr6glYOa+ebWOWcnWt2oCuQGs0gUvojOR8Ng2j0YnzGy/wbsx+YK1gaSNgFDawhA409sFpZVVSVhXvvvsuD+7fR2MJwpB+v8dg0Gdre0tIGWVF3dSUlYBHVVk6T0NhmceZAIKbm5ucPXuWtbU1tAqoqobDo0MOnh5wdHTEeDKWIBMUVmth0jY1TROTpSkEkj66tbEp0slwn739fYqqZjw+4T/+hz/if/6f/xe2trYxTUO/OwArw9GGZaKsYTWJe2XI6eoD6woOZb1PakVVzTg5OWA+PcGYgjiFyy9sc+nycyhlqI0APtbWVNUCVE5jvWxet3Ypsl7Frc2JD9MyTUMcxKJGCwPiLCGMA/JyTlk2ri+26EYA3yRZkht8v+XXSGEJufPo6lIP9HnGqg+0sdaeWudXVUzKD3efWVtOg6LyHP8eoiB2nG+lJdXVgWRbW9tMbsuanHU63L1zj+HgY7rdHi88f5mXXrrOcK3PnTt3yZ265rnz5zl35ixVVfGTn/4EY4x4dlYFZVlQFgWBUixmAhop5SXKFWVVSNgdyz3P31M+LBG7ZPgrrUAv7TuM8/2sFxVKibT+yd5jklQsC/Iy5+DoKWVeUlYNnW6X3a0dojgWxZQSv7UkScjSjCxNyDod+v0+a2vr9Aci9Q0CTRSHjnkaE8cpnU6HwWDgMAaAmjwX1rJ4dNOuN3m+4ORkxPHRCcO1dZSS0EZLe3IwxlDWMpDQzhIgzRRBXaOdt7A1lr0nT/jyyy+dYkoGxLtndhn0u6JyaKwLhqkdCJljq4bNzU2uXrvOhcvnXeimTyGXdbLb63Lp+ct87Y03GI9G/OL993jy5IkMEqyhLCX9VpmENE2EEBYlXL1yhRtffsnh4RFffnmD//Jf/jO/98/+GdPphCzptCFcorqQ4U9jawIlwR+Nu89bgM94pp0Ae2BQtkHTEGmLKucU8xknJyccjibE2YC6LsX2KZB9uNfpg9bUdcVCzYQNHlgsFWAIAsX6RszzV7ZY21KgcqwNwSpClxfhGb2+L5nPZ8RxwnwuGNqzidX/PY9fGeCL4wQdxuRO+hO5yGOwreFrUxuqUiY5PprYN3QKWYTEPyhFKZiMj4FIqNg6IQoTtA4oyhlNUzkae0JdmtasUBtNWSimE8OZMy+4iV9JksZ0Ogn5fEZR5m7abzk8GvG0OWY2m1LVBdPFhCQN6XZTlE85CgIWC4nGzuKYKFRonUBjCVKL1oY8l6ncbDEijYe8cv1bPDl4j89v7zEej5lOJ/R6Yi6+cBu/QpJwfZhAVVpspMiShMZUVKUBG2NtRhCIgXQSd2manOPxPbAxi8WEKKlI0oo00xiTE0Ud4uF6C6AYDKPRmDjukS8aMF16aZ9uZ0BVCbNga30THcIXX75HXZdEsabX6zCd1ZSlB61U67eRJAkKxXA4JHQ3rgfCkiSjLmV6p3VIUzdARJauc/WVN3nztd9gd+cyWnUpy5KDg30ODo7I8zngihnfkOAlI0uwy4NvxlNXgGXhunw8y4RrG5R2U/J/d/oPf5lcdimf9Kwp3TIF2k+gvsq+W33vZ38ur3v68z77+Nt+9rexBP3vTwGa/v+sNIpKgVnKrfTq5s2Sn4V7flPVNHVNWdT0ul1mM0lV3N09CwhY09gGnKozCDVNIw2D3ww+/vgjHjx8SBCGdLqdVoIThJo0iUkzkWh7lk1V17zyymu89vorrA2HlHnJl19+wXg84eTkxEW+S5HS7Yjvy8bmFm+++SYvv/wy77//Pg8ePHCR5f64y6Lrvfjm8znr6+tcvXKV0dGI6WxKUZUEQcSd27e4d+8uL7/8Ck1jxHsNUO31IWycdmpkLYFvlB34tpRD4cCw1ePspCkuaQ2E2iNMM/dcdy+IofKyifD3h3JMIOPBbaXaSRZGwDmrXUHpzvvqfSTN60pwiF251rEtinCKNYt3+2lbe/nvVirgLxzTHh9jRMoahAEo2/oHKed55ovpJWtQEju7nQ5bm5sM+5LWKsC6FqPtRc69+/d59OgRdV3z6aef8Md//MfcuXuHxogMJ8tSMThXlizLVgypHUNF4zwNawGinA/pfD53502kJ8bWjMbH/PUP/pIPPnifb37z23zzW99m98xZ8jwnzTLiJHFDQMt8OqMqCkrHQrdORmy1aoMLrBGZsTUGUxbMyyPCMCcM5pLIrCQsQ2sFqkEHhrJaUFcNnazLxvoms8UxdVOJn4kD82T6Hp+69sTHQzlpnJOyOZ8ai+Xw6JC6bFyRH5CkEUGg3TFLiZOE5y+9wNO9A7pZz8kTPShtieKQ4doAY2sODw/5wQ9+QFnWfO1rX+PSxecZjUYcHB5w8eJFDg73SdOU73//++zt7XPz5pc8fPiI5557jt/8zd/knXfeaZtunOynqiqG/T7j2ZTKNfxLOVHTAk2SYCfgf57njKdj0MqxPv33C4kT39hkZGXJ7u5ZFovcmeErqQecl1kL5yhhqRllUMYZjrf7gQApSmsnfV+u8QphZgTO90aKXZHdKcfE0E6OJ2uxFSCvUWhtVu45UMZJbPVyr2lZPnimqMK4NQHEI05Z20rtln5Ty72i3au0XgH7LdPJhJ2d3fa5kmir3R1KC8x7sCCKxCbBsmTJ5AvFycmIRZ7z6Sef8L/9638t1ihRwHAwYDAcEEchcRyysbHB2poAEbPpzCUzu3Roa9t1ZMmi9IupHI8wcp5rkQyTg1CTJQnZjrC5J5MJW1ubdLopT/aeUDjg+/j4KX/4h39AmiZcuXIVUxv6/YFTKziLASyKlbXUH6fV2sOCaUQGXJY5xhbk5QR0RRw3bG8NefXVa3R7IYEuicMMlK9LIMuEUeHXYOPABT8gaAMdXC0jx0J/pUbyrB2vgjldIci9Is2iv3d8vbD0IvOBeeI5amjAMe5l1UBDHETkxYKj40O2d7Z4/vnn+e53v0ue57z33nt89NFH/It/8S9aW43hcMgnn3zCjRs3OHv2LPkiZ2RGbG/v8Dv/w+9wMh5x89Yt9/1l/arqmtoNEMuybMO/PAivteLzzz/n5q1bKHQL3smASI5NnufESUKapPR6XWIXvuX9HcMwot/vkyVJO2yM4pgklkY8iROyLCPtZgwHa/T7fWH8ZWnrV+yZUTjAPgpDulnK9va2gFiNMNmqqnRWI5W7TkqMk2SLVEx8xIp8QVkWwuBaLFjkuZMWSvhHbQSkwSj3/pYGA6YRBrAVUHH/4JDt7W2m0ylh6EK2EJZx4BI7FXKcdBgQ6RiQek5bYWDXdcX+3mM++fgjqXUUZGlCv9vl3NkzGKTOo3EWELVYz+Rlga0NnU6Xq5ev8uLVF9nc2sQ7D9RNQxwmoGB7d4vsrTepyoovb93k9u3b7D15IiCWC0ysy5ISHLtMPvNwMCTLpJ989Pgxxhru3r3Dn/3Zn/B7v/fPqAqYM2stZDwQJhZMdvV2bh+SRi8llLAYDdiaxWzEk70HNCanKKeooOHy5bPsnB2wKA+JooCm0cwWU8LIYqiBxhGODVoF+ITXFmAyDWEQEkYhjQuHaBoBRKtafGZVIHXybHQCgaBtUSRyzyA8rQDCHZ8lQ9S6AVjdDkNWiQx/m+LJ/+3quvFsD+P3CX9MT/8tKMRmxSpXv1qDDjRnz51lf3+PfJGTK/HX/OzTzwiCiKqsWd9YI00zx+gsCKKI3d0d7ty5y7vvvkvulDl5kbfSVmOMC9rxnxEwLp24LFa35OVndLWrrNvLzsc2Uly3Y2e3hlojklitNePxiEePHrK+vkkURRweHjEeT9o6NXRDmDa4TcvQTlhzniUZkaYJSSKe4anz9+v1ZdjQ6/bp9HokqfgiaxWQZiIL3ljbJEljJ2+XUMvZXFh9k8mY2XRGURauJpKwj7IshZlqrPhjKyVBqJ1MsAgXdGes5c7duy1DMIpSNre2OH/+PEW+aGtLH1bkh0RvvvkW11++RhDG1HXJZCK4x2B9KLWJUtz//D6TyYQsyzhzZpd33nmHe/fu8fOfv4tpRM5flCVhELLIc9dnW5Ik5YXnnxd//pMxP/7x3/Dmm29y9ep1Fo3kMNRVjWmEtakDhamFWODtNLwyStY0N2hpRHWEhcAYqtmM8eFTjh8/YjwesWgq7GBAd0cC58JAo5R4gIJiMpu39WIUBAixoUFpS5YFdAcVo+kTku6QbidDO9JbUQimlIShYCa1JAIHQQhK0e32l0z5X/HxK79CXVeMTw4oS6H89vsDmc6mKVEoZqveuBrkphFaohS/1hr6/b5DomvxcekMmU5LFouSQAXkCiChMRHWBnR7a2i6xL0Ow7UMQ0NR1sxmUxbFCVqF1I10UmU15/g4Zz4/Wk6trCWIQnQISQeCShOmPeIkRGvDYrGgKEpmswVKKdJUmrhup+OmbXKCFouFFEIqoCzn1M2Uu/c/5/NbP6NmRLfbIUnitiBR7kYVBlpIFAZuEaCd4kVRSBTGWJ3S622xNtxmPhej+EXxiLo5dhTnhMnsEaPxiDAuBWlQjp6vNWVR0On2qeuQpoq5eO5FLp6/wqCXopThkxvv8ejhPR4+vkPWiZlM99ne3mQ0mlKWOUmSUFVFK3WQCW5A04j5fKCXG61vNmpj0Cojz2eEYUwn6zHo7fDyS1/njdffppttUVWK/cM99vb2RP7SNCCWnO30SaPEWJrTqPtywraUnq5uWKvP/2UAn3/YVRTL/c2zm92z7+tfy/8/cD4Gxi36ntL7yybpv+zRbjrPAHW/jJb7t/3+//vrn5YNf4UZ6FGa1bdzC7H/kdZKUvCODhkM1wmdJECSSBuiSDYva1zzq5X7nTDAxKS64Kc//THz+UQkhrEUkSLpShgM1gBLkZdUVUUYhfy9d97h8uXnAWHNZFmX+XzBX/3VX7FYzDlzdpeqrpnP5gz7faIkYbC2zttf/zqXLl3iG9/4Btvb2/ziF79oN6O6VmgtRZRnSRgDa2vrXLh4kZs3b9I0IgueTMd88fkNrl69CojsxSqh9VtlpXhxCVbWCrBDKM2SyFFECuB9Jzy856Ux2rrDbsQ3yDpATlkLyoFm3ufJnRN/ybbA7Ur7r58BuUX1tzyPnt0jwKJ7ritujSt0PZtHcmhOg9wy4xLwMCA4BWL4S8h65EquHLx010uusywTCYUDI/1ruJazBSc9cLu2tsbGxgZhFLl701LXhtFoxO07dzg6PmYymfBf/viP+esf/DV5IcniSRzT7UiacuCKq9MMF9WuV4G2WB0QBRFpHLdA6ng8Fu9Tx6T2Ruh5Pue//tc/4+NPP+G3fuu3+Nrrb7h1tidhTwqaunHMjXwpR9LiUWawDlxHWJeNoSwK8mICVUhIAk1NECDUf1PT2BpThc4PCCBgOpnT2IayrtEBbVPu38tP5ouyRDcNnU5HmrOmcYDxiuzLNljrvekMzazEWMNodAKIPDDNMu7eve+S4lxB7AyC/WAuCEKyLMNay7lz53jyZI87t+9x9epVrly5Qu6YKkpp9vb2mUzGBEFAr9fjww8/ZDQa8fbbbxNoTZEXYJe+op1ul/F0emqtrGuZfopPr5zZIAhaObIv/D1bBjzLKyLLhMkja6mmKEo6WVe8aQS9apM1Je134Rj30ph7mZ5xHmZN00Aj3jOrDZxSCkND5RIFV/cr5e/dYAnSrTLEgiB0Dbhj6vgmTok8T8A1dytZ/5rO01OpFjxXHswDrJH9yt+0yvtfyaLeGmNPp1OXtB2sDHz8/a3aIYRnLPt6T/xYDThp7vHRMUWR8+jxI/7Df/wPzGYzwiCg0+0xHA4ItGY47LO9vY21lpOTMbapXQJh1TLKlkmNHrCVdVKroF3LjA1RVJRFSRCFxHEk9ZU7F5ubmxTFgsk0JkkiHj58TF7IfjA+OeLf/9Ef8nu/9z9x/vxFqrphbbAma4RSBOiVNdfXF947FQcAOvDJiNxSqSmvf+0S117uEIYVW5tDlDbU1UJAuprW0lWGWzW1u+aF8eBWUrWyfjnZor/+/TW2Wqd4eZ3Wqwxpuabk2nartfWDHs/kMyjtzqtPU7VLmXiSxE5etxDgLwywVvPgwQMuXrzA9vY2Fy9e5Hvf+x4Aw+GwHaxsb2/zn//zf+Zf/at/xcHBAU+fPuWf/dN/RpmWTKdTdnd3CMKQv/yrvwIrTEJjl0MIY8WnqvHyuVqaORliOya5tSzmBVU1lSGPWh4bvyb6HsQzZ6NIZFKDwYCdrW2x5/ESXi1sSrmGFEmSEkaRNMVJShwlZJ2UTiby8qyT0R8OydKOqI10SBgnIpXV7r2igDTJUFkmsn8XLqEQxl5V1uRF5YCLuVwTbl2vHdjZNEvvqHyRs3B2CYuFSEStseQLCWE5e/acYz82mNLJc931KteWA/fcGq6jUI6787ESNmTDZ599xtHxMVppojhmY32dnd1tsWOaTuXzlZUY7BsJhqqrhouXLvCd73yHfr/PYrFgPBY5bb7IW8/M8WTEuXNnuX79ZYIo5Pr161y7do0HD+7z4x/9kKIohJnp1gXTiOeycSBdHMdcvnQJi+XxkycYa/j5z3/GK6+8yssvv8p8NseHqNSmapVTAEb5Vbhd1mSo5yxbZJBkgZr57BilKnTQkGUhm9tnef7KLpY5Sll0CAQ1VhlJJTVO6mt9bdPIO0kpJnVjY9r7s6wKwiAiCSWkUilFURWgIetmBDNNUZeIz2ZDNSsoyqVHl99bPOC/7HlWQ/xWwzWW68ez/1xVoYAPSrDtazzbj0jtaNv+s25quYaMVI0+jVcpWFsbcunSJT795FMWM0kuVTrg008/5f79+1y/fp3BoE8Uh2gMR0cHfPLxR9y6dWdp++NqiflsxiLPBdR04Ql+LZSQnBIvgfbHaPW7Si29JDu0ww4Z56GAUGuMmFTKPeOYwUdHR4zHU6pqyYgTpZthni/I0ozIDROiUIC+OHIDCKXQKmcyHhMGEASKKE4Jo4QwjJwntLcOiOl0OyRJxnCwwc7OLlmaEUYunTjNxOM+iBgO1zhzZhelFPv7+0wmE/eZAxkqlBWFS/QVZV6wwvSU/WMxX3Dv7j2aum5Z+efPn6OqS6d4EXC+MbJmGWN5++2vc+3aNYw7N3v7e+ztPWH3zDk2NrdQzTJp/ec/+znT6ZTt3S1ef/01rl29ztbmb/PXf/1Xorxy3oNRFIGfP2lDkiQ8//zzfPrpZ+RFyV/99X/j/PnzhEGMcdeysdbd45XbP4TpLGd2uR8KgO8HWTVKyXqXHx1w8OlnNCcjMiVpz1M9Q+9CGMkamaUZKDg5Oebg6JCiKB35SawFlFZknYjLV3Yoq0fM5jMmE8iylIBABg1o+t0BdVW296Yfpsk9HBCGQTv4/VUevzLAZ411F4nIZPI8d5I9QxzHJElKOctF2mZhMp65g66A0l18NYEOCKOQMAgoioYsTQkjzdpgmywTCqtSltl8gtYB82nJrBoxmj5iOhtLoaSNFFG1xdQBSRIitZIlDF0RsJAF36qopW4aajGTtob5PBfUPQsJgrg19S/yBWVRkKYZWdYhzxeO7qwdwFODatjYGBI90MRBTFE5wC4SPxPZpA2BTmhqMaUu8gqsJo5SqrKgrnMUYmZ+/rlLRMEau1s96nrBvOxy595H6KAhzTRWjTF6RBwHaNUBG4gv2WRCv9enLGs218+yuXaJrY1L1HXBvfu3OT5+Sl6OWd/ocXw8ckDMnP19Q1FU9HqSFJRlMv2u65r5YoEEMIQk/axtpAAnAwtpKk0cZGxv7jIcbPPaK7/GxQtX6HXXsFZzcHDMkyf7TKezVmqpfDPiwIHA+Rj5qcmzjDo5mysFqvpqgEb7vBVwC1Y2Mb46uftlf/O3gXurn2MVPFxl8q0+b3VDaf+9/Qxf/YxL1pRd2Xye/aC/5Gfqq89ebSzb/z71x8+ifKf+moODJ3z88fu88MJ1LGLCXBSVALrKEGjxqTJKoQkIbUBVFW1T/WTvIQ8f3aMqc+JhH5GpCcPKy36qShblQAe88/feYWNzgySJCdwCV9cNz195gfc//IC9JyXnzp7jsxs3mM9m9Ps9zp47SxBEXLx4kSiK2NzcbD1Af/azn9GYhsAoqkqGCnVtiOMQSeBMOH/+PAcHT9uiumksN29+wcnJsQMgWQmRwFeCTmqKC53wpeLS6Bx8T7zSFGtXZCsv7ZImXFg4clX467OxrbAWVODbnfZ0tdfPauPmztspwK99nmOeOlP8tkm3rqixOPNe214Vz14pVlkBNFevnJXv5wco/rOYpqEscnrdHk1dtSxd2zRY16Qv30AApU63y9ra2jIcwjE6ptMZt27dZjyZsL+/zx/+4b/lww8+wCCFfrfbodftkKUJOMmLyIn6rfeS1oEAA6wkmpvGGfRLA5WmKRvrW4zHYw4PD90aWLXr/f37d/k3/+Zfs7e3x2/8xveoarFa6Pf7Av5rCQ7xhW1dVxjbULviIlTCLKytFKL+fZWyVEWBDeT71LaSwjEIqJtaPK+sRQeaQMeoABpTOyCqbCV7QeC+cxyzyBcuKV61aXBhKNe+QqwXjK1XzoFdwW/FmHg6nTogJ6K2heyzxktONWmS4ZlUnU6H3d1d/vk//+f8P//l/4s7d+7wjW+8TZzE3H9wn2a+4MbnX2CNpBrv7e1x9epVtNbcvXuXzc1Nup2Ok1oYQidHNK0sXR6BDlrwHpa+XW2huli4tXhlfQYH7GrCICCKY6IwRtkZHef/pfygKaKVmXivOe+1ZhFGSOPkgMYIe7BqmjZFTlg6dQsI1nXjzrFu749QB9AoN/XXS4m9tViTO/BuBZAVNMBJdhVKW3c9y9qrtIZAwAuUeO4EStijgWu+fC8mx2m1gFRO0mk5OTlha3tbBq4Szb4EV901rNywA4Q1EjkvI2tFWpgXBbPZjMVizh//pz/m8eMnKGvpdlOGwwGdTsL21jZr62uMx2MWc2Hx15WEFpRlJbYlxjhZTE0SJ6hgZUhlVcvatJbW39hY55cWBIShlnq0aQhVyPpgjbXhGk1jefxoT3yzAs3BwVP+83/+T/yTf/JPGQ43mM2mpHEqa7vWKHfe5fwYt14qB5LJ+TRGDPqtKQnCgsFAo4Muxs6xLBwwKVYW4rHXyETFCjvRIPIdL631AHccJ/IdnaqkaeQYrfrM+UdR5A68krR5OW/eX88b7Mt1JqFJnkltkMBTz3hAPDXVcg/Y3NxgNBpLg1c3BHHAyckxs+mU2WzGhfPnCZyJuzA+ZMhxdHTE3/zgBxwfHbOYL/j5z37GtSvX+NY3v0VVVTx69Jj9w33xZbJy7SwWM+bzGVUtzAlfMPkhkFXWMbAFCAwcWC2AlpNluc9tHDu+aWSv0YEmjmInia1bv9/NzQ1CHcp6bCzdTockikmzlPWNLZGg1jVFPqKuK78jYjEEgaiXsqwjEuB4QKc3oJ8NSbsder2eJHNmGUkSEkUhcZI6n0GxzdBBSOJAgbW1tfb8CxNc0l3FdqFw94hnA1aUDmCbTqZoFTCbzeS5VbFkclrH5jUOkFbCpw+UHwzQDtq8jG02m/Hll1/Kegt0Ohlnzp6h3+8xn8/BgnH7jqTK18Lgfu1rvPa111FK8fjxEw4ODjg8OmR//4DpdCop6nVNGEW88847WGOdnDGgqiu2d7b5nd/5HZEGP3ggtZWBRllUJfYQjdEYrVCB5vLly0ynM0bjCUWR8+Mf/5BrV69CEIENJNDALOsyVkF769dcWeMbd7yt8+5tqpymnIMtqU3O7pktugMwdobSlfPjMnIcg0iAO5BhnlJEgfS4xoGrxlTu3MrP60oGeWEQOVlzzeHREYeHh+3QcXNzi0W5EGa/spR1Rdgm5S5rqFVWnayHVdub+2AKv2b75y8Z/8s+wF978hy3Mz4z+IWlFY0yLuQD8WG3gWpl0F7q6ten1KWDFkVBY2UgpNy69u67P5VaI5L3n81mcs6MqInm+ZxFPqcqJcgmjkVFtnDWVyiFhC7NqeuyHVzL0Nodo5Ua233BlTrXtv/za6Vnyq/2htK/ymZqjCEItazrTUWez6jqgjiIXMCkYAhRnBAGoXjgaSH4BFqSV8OiIQgrN/i2LpjHEoQBYZi6dOGYbq9HlsR0OhlpltDp9uj31uh0umRZSlGVpGnCxsYG/X6f2WzKZDIjCCI6g66EvTWDtnYqXO8vezcOH1E8f/kyDx7cY3N9ne2tTQ6PjlqGYm1kmFkUFa+88grXXr6GRjEejRidjPjZuz/n4cOHvPHGG3zt1deQfkTujxPn03r/wV1u3brJ21//Br/+3e/y67/+G/z1X/01s+kMlKKiFrsgZ88TBBG7u7ucnJxw9+49Pv30E27fvsm1ay9JiAY4KX/TWvP4Yb7v2+T+Ng7Epw3KDEPxMi0mR9SH+/QaUWOoOGKt26dwddDa2hq9bp/xeERe5FhjiaMEpQyWgjhW7J7rc/7iJoNhTFloRqMRVSVSZqknhUFvjSWJU4xtqKq5G04nGGtkmBYnLBOw//sfv3qKrtZkWcrW5ha1o2lXZenuHm/+Ggg7oK5pjCKJUobDdUfFjajrijQVxthsNmVtmGKNJk41Zd5weLiPpWE6lQQlHUDdlFRVjrWGoswJo4BIRWBcMRxUWEKMlZFJWeB8CuT9yjp3E/QAjBaDSGsJg7Qt5P3UTyYXIX5yW9UGpUMCwSwJAkH1i7Li6OiE2XRB3KmJY5EcjycnWKPQKgICCAzra1tMZ0et78v169e5dfMLicm2Ab1uj/F4DMaQJjnz/JC8PEARURaGsTlmOFwjCUMaC3UdoN3mIWbDOUkM4+NjjvbmfGY+JO00BFFJqGOms7H7Xg0noynWBKRJjzgW49uiEI14Xshx6vb6DPpDyqpBhiJuMy5LlAqpK02/t87Zncu8/spbnDt7iSTu0zQh+bxhb/8xR0eHbUHurx3whJ4VZpxVbUOHa7hOSWyVcv4nz4RKrDAk/NVnVjYka5egxd8GCP4yUPCXsupcYfCsROb/F6tu+ful/5n7QEBL4ZDn2+X3aJ+n3H+7918+GWGA4Z+mToN5K4iNnyQqhQtWsO2L+ObTG0vPZod88skxB0/3OHPmIhrL6FhizCUwI6FTVcKmSVJ8gqtsHgvu3r1Fr9uh00lRhEAjbJ80lSakFuPqqq55+9vfYHtnh6PDQ/JFwc7OdlvAdzod3nzzDf74/3jEZ599xmw+RwcBo/GYKIr59re/015PWmvW19e5fv06VVXx8ccfAb5olel+WS6LjzSV5KvFYt5KHufzCfv7e/R7g7YArKFNd/bXhFZKUpkaZ1ZuaCeJAgY68MtajLKoxk1xrXWMPQH8XK7EklG3clnIhKdZnjO3trbntYWL1co1tMouWQLbBt+g0gImBisef06GtrwalpfjKSnvCoCHdbZyq8B32yQKiywIJV29nQyvgOBGmZU/tcRRxHA4IOtI4ErdyH0/m824eesmo9EJt+/c4Q//8A+5c+c2cSIAkGdSpEns/GkSBv0+UbgMdPEDFmlal35kYIljB7rKlUJZVHQ6GYN+n6PDI54ePBWwyEoROR6f8Kd/+idMp1N+67f+PmCYTmXTxjVRwsx04JBpXKMNtfEhS86PyZQ0RrymkqyDVsJgieIMHVrKhWI2nxBFIZ1On7JoCCKRAnjgKUkS8fXRkrQ5m4mHWpZ15MgaYaZXLmEaINBLcN/a5QKx/PdlCyuStpCqKAHPhHE2GwqiOGBza52tow1u3fqS+/fv0e11UNqyvbNFJ+uyvbXDzVs3ieOYfL5gPJFGeW1tTeRsWnN0dERRFG7yHbO2lqJDeV9bS2CEtkqKs9pSIGwV5YA4bxYuyamVv6nkXNcNeT4nCORma+qGQhU0jQyWsixrWYBRHLlztgQVwyhwDZFt7y8B8WSKX1SVa7qFAbIaAiIG/ZK47H25PGjcNA3z+aL11VnudX4/E2Nsrfy+s/QFXFkJEC9MJ/lVzpNGn2YUrso6PThk3T6mdcDCWRhgLVVZuoCQJcvBWOdqaEV9gHKSZVf7GdcojycTyirnvfd/wWeffkJTFcRxxNpwQJLG7O7u0ut2OT46dlJF05q/e+akQrO9s8MLz19mZ3eHTrdLGAY0dYMxYBrD8Uj8e5/s7TnGYEGaxEQ2onHs+qqsaaidSb0wOc+fOQ9Wi8zfWcQ8eHifv/zLv+D73/8fWCysC2uI2rrAIsCRPwdymGR/koCNhqaqXRphRVlN0M2MxhQrEleDMfIcNO0UX2uRci7y3Pnshc7XsySKZFBsarEfiONEUnftMi1zFehrXGJ3HDYt8O6Ln+UAUrtay1ujiJxJu+/YplNaz/yBnZ1dHj58TDWfy0AuCKiqmg/e+4D14Tq9rMOl8xeIdEink1LmBbYx3Pr8S8YnI9I4popisPCXf/EXXDh/gbNnzzKbTrn5xS2RJ1ZVmxheVRW2MVRlJfc/Sx8tSVQ3cg8YS20rASi9QaVr6H2j3hhay6Awjjhz9hzD4ZokaDvAUqvI7WOBSC4NVI0haCwn4xkKRZZldHo9sjRha2uTJHEBc03BaHTIeHLMdDpjvliwd/AA41LOo7BDGCaEUUSSZiRJRJqmzqS/S78/IEs7hFHcSs3DMHTgQNiCBEmSkaXdFuy3zkDeGENZVm79LMmdrHfJ/hMGYF01DpyQRlhrLZ8jy9CBbgEfD/A9ePCAR48eCQBvLRfOn2NtbZ3pdCzKJHzpKj5hdVXzyquv8tbX3iKIQh48eMD9+/e5ffs2j/cfMx5NJPFTCWu50+uyublF6IYLVVVxfHLEo0ePuXzxMr/+3d/khz/8IXdu325BqaIsBSRJQqzzv82yjEuXLvLJJ59QVjWf3fiEDz/6gNde+xphqKgbl/LpahmrrFs+5frBGpEJNo0MNBz7zTQVTTmnzmcEylBXBTubffpriiBOqMpFez12sh5KwXQypXTsbpTCumGYcdertXJ/BkEsoF4j4U+LfEFIyGw+x1TyPVuvPqXppB23J1gJjvP3sFpaAX21F1FuvYjaPcmv/b53kp87goUPbWmHQavg37IXWq41bpDN0k6gHYarJbnB7z/WWrpugDuZTanymsYayqYiTYRUEoYhjfF7kySeTiYTFou8TZZdzBeUVdnuB8JurQBJJC3degEykPbDKL9f+hJntWOiDbxz3w3Em03p9nfSo8qAvKllj9JKtYzjsqzRtdyzpV4QBqFj4weoQAZhgZNfin2HcuxeCV7QSkn6buSAf6VQlIQ6RAcwGh/I4E6HAv4lEUmctWqGTrdD1pG6L8syNje32NjYxKKYTqaYBlG2uH5SK7HxwIHa0/GY8ckJQRhw8eJFtrc2qMsabZXYNTUW6/bqra0tXrx2lSAIGI8nHB2f8OH773Pjxg2Uhb1Hj1nM5jJQdnYqvV5PGJcOz/nxT35E09R899vf5Zvf/BY//Ju/oSpkWB3pCIV4CeZG8ICLFy9ycHDAyXjCT3/6Uy5fvtLaJCzD1pYdjEKGWH7Q29SVBP/Zxg18hdmX1xULW2LigLJQNGFAkSTsPHeOB9OZ2H2kaWsDodEo24hvcgBhAOcvbvP8i5skmez/aZqQprsS9pgk7tqumM2mWCs+4lUtmQXexx6l3LCmIh787RL6/38fvzqDz005TK1IwgF1vsDWmiCATtIDNINeTFk1YmAcJGjVk8UplElTXRtOjp9iWWComc+n0uDMA6xtnK9BgNGWyoROryxTp0BH9OKIJImE7otCBxHWeu8/mbQFoSwuWZaS5wqUJgpFcpgXOY1L4vGTjiCO2sJYmgWRCfR74lEnkifxb2qamsqUMm2MExq3TOSLSsw2tSRzKRRFIQj/3v6iXZxHkz0+/HiKaWRRCwOYFxO2Ntd4un+P/cMZjVkAuVB4nUlw5YzksZY4FPr/Yi4eGkVeuMamoNsVuvBiPmE6n1AWhtHJgiTpcu7cDrA0WzVGueS6HJRhMOyTZT2wGttYFyvuJcVyCSXRGq9cfZNXX/kmO5vnCLUk6h4fTTg4OGQymbbgStMsE85gaW7qC1TZMHQ7VbHWUNWnQyxa0OEUYOavRwdGtFM5WE7rluDeKpj37Ka1+tqnWHd2yRg59Xk8cOE3u5W/efZ12s/swUYjPmu0ptfWozryuVtE0r2nd1r36E+7Wy1BGJm8a5FyWdV616yOrVaP//Izt9+s3dCns0N63Q5Hx3ssFjmdrIs1JfOiwgKLRURRFAwHQ+f/0dA0Poq+4Mnjxyzmc3q9rvsc0Otk9Hv9dtpSV5bnL7/AhQvnOTkecfPmbWazKd/4xjfY2NxymJXhygtXuHbtGu+99wuiOKaqGzrdmPPnL0h6o7VtqMDh4SEAr7/+OuPxCY8fPmoLIdkEqrYZ6Pd7rK2tsb+/R90YHLbJ3t5jnr/8vAutEGm9G3a3RZBBghTaBtgImNO4RGnTniyDx2jFY83J32zj/ikx9SvQ2fKaBnCsGX+e22LOATLLFtz9XPm/9JuccuCePeUHJ826ZxW6V1AKzIo/n9JobFvw4RkB/rNpL3NRLevQX8NFWdLpdKURVb5Rpr3mrJXiK7AWFYakWZes0wEC8sIBI3XJ/fv3ORmNuHfvHr//+7/P06d7RJHIq3rdrhQqWtHrd9nZ3iGOIwqXQuabRfHpsE6i44pijSvCAoJIt+c2iSOiUJPEEb1eh043FVuBwoVWaKjqkh/+8G8Ig4Dv/ebfxWQusRQvS2mW6IsVAN4YaPyt2BjXWFQYW0lSXhBhVYCyNY2V4KXGlFhKsk5CtzskDDLSTsBkeogxNVEkUi9jKpQO6fU6GCMeVk1t2sZUa4Wp6/YeQJ9OKrfWg63LD20cGOwlrSLlc0MZdwzrpqLb2WBtbY2trW0ePXzMbDZlZ2eb2WzGlStX+PM//3MaI8f95OSkLf53dna4cuUKk8mEP/mTPxH22NYWGxsbdDoZ3//+P2SRLwREdsO2xgpz0dSWSHtJomrVAJJOVjIej9A6AisytZOTY+pGgFSfpH7x4iU6nR7z+ZSmsc4fRxOHYsEQBIGY7Ttprx9CBYFYDAgYI6Ba1j0tV8Ld61VdU1cVebFwbOXa7YdLhnrTVG74JcVzXVaSCGqalkXfNA1VKeCXXytk7/T3b4BVksImnGDb5sWvMsexfqgm8jzVQv+w9/Qpu7tnGE1GLdNxlb3uoifk2EQxURI7bz7bMl+qWuqio6MjfvCDH7CYz4jCkK2NTdbX11nfWCdNU8aTMXmZg4XCSQ7LogCl2Nre4jvf/jZnzpxFa818MWcymTCbSzOqnbxoY2OD3d1dXn31NY6Ojvn88xs8efK4BS6b2mCUSK2aRhrYohDrkfMXnkMpxd179zCmpqrgs88+5tq1q1y9ep2imGNsglcXmMYDez49GLfm00qHhSHtmIy2ABpJEzcC0gZhIAF0jfx3FDl2j4GqaYijBGuhyCsGQ2G6zOdzylIGuFEYOl8pRePqYGutU1TIniQkaesX2XZN8mCfNQbxSZXGVORask8Yf+22g6RlXROEAf21YcuOrd11fXCwzy9+8QuyLOO5557jzJld9p/uE2gBKG/dusloNHKS/C7d/oCXX3lFQKsw5O6D++wf7Mu1XhX4IUPTNARKC1utEfNypXwKoj8PbkTlP6x2Mnljxf/r9GTTnS/D/lOxiEnTzHnyxTTWsVpdeIXSAQQBi6Lg8ZMnKK3FR8vtXVorulmHQb9P2kk4s3uW585u0+l0SFLx4bLKkM9zjg5HLPIF49GY2WTC4dMZi8UCPyjIOh3iKHWNe0i336PX7ZN1OtJYpimdTm+lUQzRofjoGdu4JUcLaOnWyclkwnw+xxjj2CPSE9Uu6ENYO9Loehl0693ogMFbN28yHo0wTU2aJWztbJJXOWVdYepGfFGtMAFr0/DClRd5482v0e1KI3/u3Dnu3r3Ho0eP5bq1sm4ChEHApYvPc/bsOYxxwRA13PzyNj/96U84ePmQN998k29/+9s0dc3o+IROr8PTw6ft3qOcfLSqanZ3z/DkyRMePXlCvsj58Y9/zPXrL+ND0nDqg3ZA2QJ8pmWDWmMcA8/L7huaPCcONWE3pRovCAJDXedYDIFeDkqKfObuixJTi1JCK2GYBUGC0jVKGQdINRhbUbuhhrE1UagE9G9qFianaipAk+iALEwoGwnwAYNydhkekF0NzPAe+N632AN7qyDg8t8FfIzjqB0WeF9QGfiL4gY4NUhYDTxSyqKCEBl0NK33mf9doDVazLAF4ApCXn71ZWrTcOfeXYqqJCoWTHXomIeBC9iU81r6vaEsnbRS3iMIwjZIRymRovpgm5ZtzXKYjV8G2wJUtbWyDNlXABXr63BF4zy/VXtM5V6TS0quQWU0Rrn+r7FO0acwgfjR60A79VCJwgH4gVjZSM0RtP1k0Hr1KQIP4jrGn9bCQFaA1iEoS1GU7pilxHHYrhcyMIhIs4ytzW0uXX6eMIh5undIJ0vFL93VFf76GI9HPHr8iOl0ytpwjWsvvshodOIGcMb103Lcrl+/TifrUBQl49GEm1/e4qOPP6VpDFEUcXB4xIMHDzh37hxWi2//YDCQXk1JHWktvPvTd7GN4h/89j/g1Zdf5eNPPkQ7OxFVO7JJY1jM5nR7Hba3d5jPc27d/pKTkyM2NjaFQNas1rPe+ktOpq+1fZ1rm8b12qIgs1is7mCG65zMZkyTgMHFcyS72xw/eMzO7lnCQC6UMEiJVBdjSrQ2KBVhDOw/2Wf3TI84imlM6fCegizrCqkkl30zS2J3PymiRhPHwt6rmob5IqdpihULmV/t8SsDfP2eGDGbRpElm3SSmDTNpOGwNZPpMWV1SFkuyPOZkxApQS+rmixNUc6ANAglkTeOI6qqBGVYLGaS4FrWpGkmnkgsQRShIdduqrukIkdRgmlsy94wVoxGp9MpWof0eutMJmNMY6Rpo0F8cl0EtBWZTxzHlEVJknTY2T7jFlLjKJo1i8WMKI4JI5guZqxvbhKnKXUzFzahjdja2Obk5BAVQJpq510WtlKLteEGcZxQ165oqhums2NGo2PCMJWpLwWdtMvB0wOsKiFXdHsdZ0Bco52fYacj0xpvUC0mwkO01pwcH6FsSBRohoOYNO0CtPK1pjHEDt1YW1trJ8EiTQupK0NdiVywaSAOUzY3zvPmG9/k+Uuv0kk3UVYxGY95/PgRJyejdqNYTW/yC8oSUFtFqr1XDCs+GM/6aLlnrgBvy5vBT9ZXFnL/Lq1hd3PqtX4Z6+5Z2vrfBvb5iZj/m2f/dhUAXJ2O/jLW3yrouPxwp47MyvOXgJyF1iTVa/iX77fSwK/EL34VGP1l/63oD2OwMxZFzXxxSFVv0O2GlCc11kJdNiyMIfQ+M6Fqk6KPj46YTqckacx8MSVJxPuqP+ijFG4CLBP1V157lThNuffgIfcfPODLL77AWvjud7/bSv4Drfnud7/DxsY6o/EEHQS89NJLXL16tQX3APb29vjTP/1Tzp8/z9/9u3+X69de4ujpEVVdYmqRcAVBQOOm32VZkWUp3W6XyWTkvj/MnL+Mwk07lRVFVdsY1Y41YAjCoG1yvYxGgDyhp7shYPsIEKq+Vd5/T2O1OXUeNFJ8Yb1kygO5z1weCgIVtDII5VkbHohEu4mdcswel6HhgEHrftdKAHG+ez6Ew7jQjEA7uYU7QK7ws65ZBYNRtv19VZZOEmLFb1C5og8HIq6AgRYrMoKOSJxkf8hboODg4JCDgwP+6I/+iP39J+LV2hVZAljSLOXsmbOEkUh8FvO5nIeidCBhtSxyjRdpgA4VobNi0LU38VaOyVI7T9SQixcuMBgMuH//vniFKE3TCGP6pz/9Eb1ul2996zvkxULOhVvfmkaaIAGTFabxjqO4BOYaTE0YKGwo5zoIAmxtiMIAVENTNZTVwnmiRjSNpSyExRB4Hyel0EHs1hpLGGmiKBXWgmPmJFGEThIxRQfnmbn041mC/Gq5vihhdiVxShwnMJ+1YKUEkcB0MmdnW7G+tsm5cxXvv/cBd+7e5dVXX+f73/+H3Lt3j6OjI1648jxRFHPr1i329h/TyTpcvHiRV155hX/5L/8lN2/eBKDX6zmT5h7GGBbzhZuUQ23Fj83Ypk2db5qGxlryIm89ZQ4ODnj48CFah+KHFQVOKivgWlEUFKUAx2EY4SXISRKTJAlJFBHoQLzckoTQJWjGcUyWZcRx4pgRiQQ6pKkDy7y8ybGJg6WpfZZ1GA4jaaoQUEw73x6/l3gZlZcOyj/LU4WreBHJ3+R5TuGSxz2bMHdm2OIh2Qjjw5nT+zmPQqG1NLd1LSmueZ6zvb2NT5grrWkbNR8M4tc0pTWxaQTgU4raWJRL7csL8T56771fcLD/hEBr+r0uG8Mh62trxGHEeHQiPqVNQ1mVLBYFGGGbvPXWm7zyyisre5h4GH/+xefs7e1jGkuaZHS64nc2HA4ZDtcYDgd85zvf5fDwgA8/+IDjo6MWmGwcS0drqT2takiipAWXD4+OQFWMJyN+8pOfcPnyZaIodYEr1g1iZHTbNo9mBUR0XlvGdYvGloShJQgURijObg+uyZ1ftbLiB+sTNrthz0lDhaGVF8IO8mtigKV0AK+vMbzcrWm8/+8vtxZZ3t/qVO3hnyPgrGM46eXzfZ3k5Z+NS7YEMKrBhgYb6DapNkkSJpNJ+7fj8ZhOt8s777xDmsqQ5PpLL3P+3HkAPvv8Brdu30I5ILyqSmrX1FemhiCkqpxsUol6pijFg6/1hFx5aJyVhRav2OXQQta11bTRk9EJ0XxKGMbOAD9w93Xs2HMCgBsr4IEEUzjg33nXlRXM5iUoy507T1yzHhLFAd1UrtF+r89wsM7aYIezuxddgq+lakqKfM5kOmF0MmY2nzOfzTkZzXj8WBKTkyQlihLCOCIIBBzx9jlJkpKmKWEUEsURcSQBIZ6Vl2WiTDDGMJ/Pnf1Q4kBkWXuUSwyty5K6rKhtCUYGr8Vizv17d1nM51gMz50/Q7/XYzQaiQ9cIVYsFjBVw3A45NVXX6Xf60v4YS3Jmu+88/fo9fr8+Z//OWUpiossy4iiiIsXL6FUQFk31Mayv7/Hp5/d4M7d+4zGU8qq5P/yzjt8/e23+Zu/+RsZpq6wtZXrLcqyJI4jzp07z8HREfP5glu3brG/v8+ZM+fa61nW16XCTPoF0wJ/tm7A1s5Wo0bZhkVV0NkYMJoeEQSWLAmpTYUOQupKnhs6sohI6iO0tszmJXWjKObS+/R6GVpXNIjyzDRgaSSdOc6kFqvF40wpYfUGjgzRWOPky36dMa06aZU0sdpLLGdNS9VJ7Pz9fD/mE7uf9Q/3/601rfrCH7/VPuh0H3V6vVlliFu7fE1rxaPz8uXLjCcTHu89pmlq0ixlMZu0n1WALvms+aIUVp6rO6I4QtLHZWgG4ksqYZ+aNh7XuvAoB4au1rnA0hZDFnTZG/2Cofx43LbHRGn/3W3rZxtYZ1dhjVv7jdvjZd8R5Ydysn7nkV+JsjEIIvmnljVFKWfxEkUEoagGA4SQpJT4wsVRLCy/UGoFHWgW84rFYgbgamLX1wchoY64GX7Jz372Lr3+ANtYer0+Z87skqYxcgpFKTceT9qhcLfbBVRLmgBQWoD8wWDA7u4uSZKyv/+Ax48f8/nnX1BXDYEOHfM0YH/vKUVecHhyzPrGBmfOnGE6HTNfzClrCQLpDQac3T1LEqe88MIVHjy4z2h8QuD9Yd3/y6pCLwrW1tY5PDzi6PiEL7/8kl/7tTWWQj7vrVe1IG3LYLfIIK+uqRrpUb0/5mQ2I+j02Lz8gqi4hn2CLOXB/cdyDSlN3TQETUV/kJH1DNeuXqSpS57s7ZMXc7K0S5IoynIB2jEEg6UCkdAxwxsZylor+NRgMJBjXNWsr2fk+YLxeNwqOn6Vx68M8M1nC5pm5tDz+wRhQFUWTGcnxElIVZVCY480QaDI4pggUGgtMfdNXYuMKo5bj6P5YsF8PiGKBOyJY1k8hcJfs1jkLdDWNHKxWWdEXddS0EahPeUH2Jhq+aWDANNAWcgENIl7zPMTiqJkOBzSNAWL2YL5Yk5dibQqiqCqhFZZliWBbmjqksFg2IJjRTVnZ2eXMEixKsM2ikcPTzh3ZossPs/R6C5VPaLTTWkaYfGEYUxVSaMIose3tqGuF+hQ0piUDiiLKWVeUlRTev3EbaKxm+BWVHVDQ0N/2Gc6m2CtYm24jtYhdd0QxwFbW2fcMQmdFl2mt3EcOk+XiCjOAOXkzyJJzvMFYZCQJj0BWFXMc2ev8MrLb/D85Wt0O2uYJmQ6XXCwv8/x0WHbRPqpsl/4V/3JlqbHpzcmP8FdBcn8757dxHyxedozgvb3/rmnqbuc2qhWQTj/WGUtPMv08xvms/R4/57+b1bBPP8eSimXzKe+8lmefax+D/++qwueUqeZgst/h6ZZTilXAcjVz+FfN3BeHqvfoWnE0DoMNdaWWHLyRcFkcYQiJUxSqjLAmAiLZTY3hBGEoXzvsioYjU4IAsWLL17h7t3bQMDGxgZRFFIUsnilWcrG5habm5tMJhOOj4/Z298jTmIODw+5c+cO58+fZzqdcfv2TeI44tVXX6PT7RHFEXfv3uXGjRtcvHiRsiw5PDzkww8/ZDKZ8uWXX3Lt2jXO7p5hZ3ubx0+eYE1DpURWql1x6Bkd2nkX1Q7Y9gxDlAdRBTyrHUNR1hpZwHUQgrUsijmHhwd4c19vcq8jSdfDX1ctt8a4hlko+L75tg5o0dq/ufuNa7ZXgXApJJYgzalrWGuZPLZNqX9vKWoFyANsswzYkCvH4XfLAk6SPN1014E8p65aBX6n1Uozm07p9no0TS0WtwaUso49uBr4YtGucUmShNqAriuR4B0f8/jxY2bzKf/+3/877t27RxhGDAZ9ur0OWinO7O6wubkpYEeei5TDgXuyZjf+A7cFpz/+ddUI07sKnN9J3fqAaq0o8ooo0CRJzJntHbI05fadOywWBWGgCMKQIIz4xfs/57nz57l48TKNauTY2MZN3JdrkDEeWpSmWjx/KnTozYtrAusAFeXk0koJO13hwqsi19DLdePXyzAM22LXF9JKKUnic3I/Y0wr/cLKcKwsy5X1YykLlSgQRRjJsYrj2A2NhLGm3Tq0v7/Piy9eJY5jds/s8uZbb1GUNa++9ho721scn4x56eVXQRm+9a1v8dlnN/j444+om4a14ZAwjnj06BFVXcn0sxYI9NKlSwRKQjDk8yzT0P1aJowB58PlGMRYy927dzk+PiFOU4wxRKH4+3pzaaU1VV2RJXLNeeZDv9+n25WJa6CEwaZdumYYSsOl8GEImjCOiaKEbrezlNTpsGUGpWkXrTVRJL4q3W5XmioH3mvtEHeskyVHJJ24XbO1kzvJvS33Vu1M9qvKB1KUzhdNmGVeVuXXNp8UXRQVZVlTVWJ0jxIwot8fMljbcGbVAqgZCxiFoXZ+g/IxtGtctDbECW5IIV6bMgtoKMucp0/3+fijDwHoZALC9fpdOknKvJi3RvZlUbhwAEjjhN/8zd9kfX2dfFG2Hq2SeC1rxgcffEBdecN6YaYOh0POnj3LhQsXRFa0vcOvff1tPvrgfQ4ODuQ+Mo5dUhiMMiQqdIxNw5UrLzKa/Lxt8h8/fsT9+/d44YWr7bpq3DE1ztcO12RbY1tDb2MaLBXG5lTVXNYHrSiVSA+VXkpewzBqmXbWCmAdxjHUNVWdt6yOMOzIvR0EaIRJ6wEN5VgrMliLyfMF3ucxCHTr3egfq0may59Jw8HqcNHQwpgebH769IA7d+4ym83aQZp2oUnGxPR6MV9++SXj8ZhvfvObDNfWmIzH7J45w+uvixdbURQ8ffqUsqiYLxZ88smnfPb5DbrdrqTI1pVbv+cs8kI8GDUuYEPWyrKVb7s9S7mkkpZh7odgjrvn9lG/pvla0wMc3j9Tu9fx3r0yjI5d+rvUBWEUOAafdoBKiNYlRRCgUQRB1MpPFTAOpiuboybQiiiOSJOIbicTH600ZjAYsL19jkudzJ0POebj8ZijoyNGoxGj40MWCxfcpBRJErWm/QIoxsRR4nzPI9Ks46wGUnq9HoNBn06nS13VzOYzkjCm1+0tr22WNaKX547HY05OnB2L0ly5/LwwYatKTPi1pGo3VgabV65cYW1tDVgGNHivyG984xsMh+v84Ac/4OjomCzLOHfuHJcuXaIoBPBu6oa7d+/w9OlTAKbTKe+//wGbGxt8/eti5P/pp58QaLHuaBzTrjEWjWI2nzMY9BkOh9R1w2I+5fPPP2NnZ6cFv2XtlD3y1PDeKWcaU0mQS1OgA0teL8iGGUejRxyN9jh3dpO6yalMRRAtE2SX92WB974Mw4CjozmffHCfwWDIzm6P7d0uQeDYcGFAoMVzszGVC8VS2NCgQqkrGwxBqamakiAKhOxhZGBZV7I2+ev12R7G2tMWQku2+FJptJpIvro2+L7F+/X662I1xGO11/EPPyA9vc64MDq7ZAJaa7l08RKbW5vcuXeXW7ducXR0wHg0paqExR0G2tUeirq2rqeRUIqiLJhOpi6cs2mv2WW/tRqoo9r6d/k9V/+bti4H24J+q9eIeMH6lcXzgt2xRbn9cTnIMU6SahUYLbWz1IEeibJOgSjBm+LbvAywi+MUHYQEuN7RJXDVjQCFsvYIBiIWNZlYuihhTVoLR8eHKDSdTpfxeMLhwRHdQY8sEbbxbDYiDEMuXLhAlmVyz00mDuTUbG5utkAUSpiM1h2ni5cusb65wblzzxFFMWVZc/78RbQKWMwFOxgOB8Rpypc3vyTtZMwezLh+/TpvvvUGt+/c4uDgKTs7O7z26ht00i6mtmRZxotXr/LBB++1ij8ZXmtRtDg2crebcXRywo0bn/Hmm2+1a3xViRWKX99XMQA5LzV101A2lcNAaqAmiGN662soaxhNJ4z2jxidTBiNZly8dIUs7aIDqMyck8kjsq7kLWRZzLWXn+NkeogOajqdCB0G1Aanfggoi4rF3HD/yWP6/R7rG13yYkwcRwLaV6IyNVYJ5lRLKO2qvdh/7+NXBvjKekLdHFIUCzqdLtiQpBMQZdKwWpO0LAJFLP5BoSYMLEmcQawcwFGjtExJoSTLYjf9lAhsrbWLDpcTKSe5g7WGMAgo85wojghDJd465YIoFrDMOI8V0WmLz8lkuifa7UB03mEom/N0KoaHi7wkDGNnhCjJsYqAYlGyyBfEsQVbMZmMZQFpKibjY+IwI1/k6Kiicc1lHPbo9wY0dsyT/SOOj0/odYYoHboNp2BjY50g0EwmY5I0IEkCZ8QscpQwiEArtraHrG90mc0WyNDIUtcFZdmIKTQRWqVUdcl4NJMCftClacTHIAoTiqIWqq+jYxujyIsCpSpSII46VKVcZGnadRr2kCjocunFF7hy5WWuXH6NOB5ijWU2XbD/5Ilj7DXYRqZs2GWj6SnkrdSn9QKSxkWAOjcZMb4IXvrs/bJJNCxBQv9zv1kbcxrgW51Arb7GL5tu+8cv+92zIN8qMOaPp0yfgvazL2ndy9deBSdXP/uzj2dBt2ePxaofnH8NT+8WCdiq1+HyuD/7Xv77rH4PsIzHxxiOyNIuaxsdAefyiiIv5H4L+hR5jiJmNssxzVwKvsYynY7pdDrk+cwtzCmdTqc9JlEUEQQBzz33HMrCzS9ucv/uPcqyZDgYEgQBH374IXmec3R0jFIwmUx5+vRH9Ad9gjBkOp3SNE0bv/7ee+9RVzUbG+s8fPiQvb09Lp2/wJUrV3i6/xSjwCqNN0j3xV4QyCYShiEoqEzNZDSmXOTEWSbyViNTILmeQz8U4tGDh5yMxrxw5XkBmYr8FEtTKQU15BRfueb88VZ+Y8Y6L44lYI21rql294zb8JXGSeaeYaPqJSguJv0iX22ZfS5TQTlWzupn/WXXxal/bz8TbiomRYu1kt7pm9/a1JimIksiR4FXDvRi5TXskoEYi5erN4YuTU2RC2Bb1zU/+clP+fjjj1HK0u8N6HRSojDg3Llz9Hti+F0UBUWeUzmfFpHCGFcQKcdGkyFKFInEO89zlLJoJQOkphaPFSm4FKHSGBRlUdPUlvXhBv3XB3zw4UfkCwlCME3DbDrhZz/7KVtbW6RphjQeDY3xlj5maf7rEo2tranrAmNzmnoOaumJoz32qW0rIR5PTqgqg1KhDIJ06GQOS8BLrmVhm1Rl3Q64RD5v2mJdKQW2cY3zasor7rm1AyygqmUdSZK0nT66oTKawEnBFqyvr7OxscXf/XvvsLOzQxhE7O8LwHLlyhX2nj7hZz/7GYPBgO9973u8++67vP6113n++UtcefFFbnx2g6oomUzGnDlzlosXLjOZzsnzol3rJKCgdmCXbuWrtSv066pGpLqG0WiMGk/av/WNUNPUzrXBOuTIe3eGbG9vsb2zTaAFQI/cwC1wDWIUhaRpJJN8LZLBQEcOsBEgT6nABaGERFHi6gxhQCZxShgmBEHkfHKkKQ/CkDSRn0eOLejTP9v7F9UmQ+PWiX7fecLoZZPn136R3JWUZeEaILvi/Wco8pI8L4iT0KXr5U6yU7m9w1BVfk/Tp6bOWZbR6/WIk8QxSmosltp57H766afsPXlCXdf0N/tsbm6we/Ys86kkDzaN06ojjVKnm/F/+51/RJIk3Ll3l/l0xpUXX3SpphIi8sLlK6z132U8Fv/gsiqZjCeMx2MeP35MURRcvnyZ9eGAfrdDoODzz2/w6PFDdCDsWDn3ylmrNFSVptvtcebMGfb39gU8NxUff/wx589fIHT+obWXMbl7ReFTMi3WamGImBpTV5imxCKgvdWWTpBRlZbahZAoJWl6lfOuBT90bsjzRbsOx3Ha1kGVFRYubj9JksRd1w2FY7bI+ZF6q2kabNDgzfaV8jJuWbtrzyoArNZYG7R1gYCZywGj8izeJGExm7dr1Kp6IQgWJGnCo0eP+OM//mNevHqVF154gbIoePjwoUujzuVc7T3h/r37zGZzAq2FPVoslmnVDjiMYrHdMY5BLrX7XBQYDkRb1nd+bzntW9QOjHFBKX465QZkMmh3Mjt3Dr3/WBVFzk9M/CbDSMzxQwfkBUEo/YMS244giAhc4621JdRxu28KSxhhly8Uo/FE1k8trN/INXtBIMmV/f6AXrfD2nCDM2eewxpDni+YzCb85N2fcu/uvtj/BN6bL5Hhj2MZR1GEVp69HBGnouwZ9IdsbW+zmOXOOH4oCdhatamYjfPTPD4+Zj6fk0QxvW6H9fV1Tk5OhDXkv7RW1GVJ1hU2dhhFPHz8iI21DdIkPQWovvTSS5w/f96x7WKstdy8fYtPP/uM4XDImTNnePToMePxuO0XZrMZH3zwAZcuXeLq1atMJmNu3S5QpWrBHYvCavE+TpKE9fU15tMZpm4cw+frJEnaAuNVXZ9mamFbBYxcfyV1U2Abkc7ef3CLojpka7dLo2Yoq8RX2IEtPo1TAHlJEBdARgJ65gvLbHaCsQVbO1k77EEH1JURtk5d0NSGLO6Il1ra42R8wng2kV5CW2bzmfjCIl7AWbK0C/L34pJMsPRT9OD2Ms12WX9WVYVyg56iKNpBl2fC1w7I9UCf/zsfaCRDhugUwLbaB3nQSwaWyx7QGBlsrw2HvPbKq7z00svM53MODg64e/cue3uPODh4ymwm5CGfJF+VNZPJ2K3fXyU+rIKd2kvt3TAIteyRTtW7ygGBqK/8XhQ8Iqe0nh1snX+6Pj0s8cm7q6TixlpolufA97gaI/ahjYS5GK2oauWARvH0l3puyRZuZbuOSax1tGQ45jlxJB63URy5GjZs1/CDgwMODg44PjnEWsODB/fZ3Nzi/PnzKG0ZDodYa5nOJ+hQETSKTieTcE3vy9gs1W+Dfh+MbVn/Z86c49vf/jaHh4c8fviE2XTK7s4uVZkzOjkmL3PmRc79B/fZPbvD229/g7qu6LhAtaY0REkEWHa2d+hkXaazKUr5NVsRRqEcWmNJkozYDYZHoxH9ft9dz0W7t/trcNl/S01eFiVlmVNWNU1dMZ6MKauC2WhEURTkRcHh0RHrw3Vee+NrFIuK2Uz82Y/Hj6mbMdvbffqDAHRBVVYM1mTdN7bG1MatyxqtNJXS3L79iId3Tzi7K6zLC5fW0Vq5gBPHbGV5DT+rVvzvffzKAF9enGDVIXm5IC+O6XXX2djYluCKUuijMnFTdDoRZlFQlTWFEc+7/mBAEIiPhDKGPJ+3C4S10tAmschf4kSkSSJLkEZsNptDnGAJaWqncddLlFxrRZCEbWGvtSIMNUEg0+qmrjAGqiIXaU6cUVUF/U5PPJ26XecpYzmZj8myxKGuc5q6dJObCqVCJtMTzp19nk63R16OCEPNYC1mWtzjZFYzmx+ilFBslRZj8jhOieOBNLV5QaAttlFYl4CnAjEU76RdIKKpS8YnOZaqPS7dXpewqEmTREyZg4Rup0teTAhCy8HBU5SSQna2WAAQENBUOVVTUDcxSivSLAAN03yE1glVo9Flxvb2WS6ev87LL73O+toOWocYI2Do/bv3mS8W1HXzzJWh3FpmPYGlXThPg0xKQEyXJmatIo7DU+CZv+hXAbpVL4hngTOfz+EX6GcnTauL+7MTqFXG37NgzGm/uq8CIqtg3Coo6Jvs1eetAn+rDEK/IQoDzH7l+auA3qq0+Vmg0zd0S5r8Vz/n6md9lsHnz6FQwKWR2Nt7QhTF9HodkkzLvaZKqC1Vk1EVmiKfUJaGpgla9tTx0RFBELC+vt6Cn2Fo2wJid3fHgRBi1lrmBcnmFp4d1Ol0OHfuHCcnJ0wmk5ZBkBcFWZoyGA4xDXz26ed88flNzl84T5pJQt3R0RFFWTJcW6Pb7TKaTtr9d3Wi6YscHWhn7qopq4oaSwxYx77CsXfCMCROYlCKq1dfZDye8OTJHnEcOT8Iz4ZZBV+8Sa+wN/y9YK0DfQQbo6kroFr+3p9qpRyj0LYNt2eDtQmZOF8VJ7PSqGWxaZ2ESwkF3yeP+lf5CrtT2bZY8cdMgMevXlPy2su/nc2mdNJkCSj55D63LqgVn000REFIHAZiXKwUpTGMJyPyYs7de7f5sz/7L1jTMBwO6HZT+r0uzz33HFEUMh6ftGylPC8o8oLGsSuFKXCZ3d1d+r0hURJimoY4jpkvpBiYz+c8fPiYR48eURTCONdKgLlag7bLa2U6nTFcG/LSS9f58MOPJAnOmVTfuPEpL710nWtXXxJTd3cfS2HtAjpQSO6mcoOICmsrUHUr5wujRIA/Y1A01C5MYjabghFwsKoKqmZGGIXt+uibbklFR4ZCqNbPI4pku29Z1E5isrpmKE1r7yAMRFjkU4IgYG1t0LLmwtANnUAMlo+O2N09y9rGkKZuKIuak5MTl6S64Cc/+Qn/8f/97ymKgkG/zz/6x/+Y//Gf/I9cvnxJ5M3f/CYfvvc+d27fpq4Mb7/9DXZ3d/nRj37UMvQ8O02SI8uWxW+txTTCTLNAr99na3sb5YOgHONkmZbs0kGd5L2uJeTHGhiNJ3R7PYaDvjRdTUUYavJyQa/XY21jALZEByLLjFrGfUFTWwxO7msDjqcT0jSlqgzWhGjVIUt7aC0eaI0LXUnTlDCIsTagkw1cQyXBMUEYEoYRaZKJv04nJUkE+AnCiCh2rEEVojzIp62wCxyA4P0XI2fk7SXCVVMxnUyZTicC7jUNUSTn1O9NTSMMvrppJDzCBVd0OuLvU67Inq21FEXBZDrl/Q8/YJ4v6Ha6rK8P6fQ6lFXJdCEBDTRuEGdFyfD2198m7WQ8efKEe/fu8cknn2CM4eWXX8ZLWDc2NpwH6/vSwARiS9AYw9mzZ3nnnXe4cOGCM/SGjc0NXn7lJcqqaJl8BklA1tasNHyGSxcvMR2Lh5bB8ujxA05GkqJurG/2nEeiG25okFRxGgeM1OKXqXJUUImFrlLOVLzk5GnF++8+IOkmXL26xvqWXDvWMdF0oOl0MoqicH/nLBoc80PW/GdldAFRpF0jHrSNt7WBY5ItmSl+ABPHkcRdNQ1VWbn7wNcdBqxI3GR9l8+wtbVFlmXcu3OHx3uPyXMnEXdJmL4miaKIxsIXX97i/oNH6GBZq3lFjXbJpwBVUVLUBXmRk+cLYV5oGWw0lazNlWNyTKeT5YDWs2GsZxSdBi5gCeAIy0aUON53d/k73bLVfTPobQ8aa9rAAK01ZSF+rbh9UisZpGgLOgjcfSlrkpw/kcsGTt6rAzl/gVe0aLcHa4Wa63afFqnePkpJ+E8YR6RxTBJHaCfRi5PUAfGNk4eKj6evNYIgxBhLnosXVLfbJY5jtBtuaR0RKM36cChgfVdYfkkWOyau4fjoSCTqtmZ9XQaueZ63rPLaLIOEdnd36Xa7FEXOjRs32Hv8hFdeeZUXr7yIhPaV3L79EfN5znA4dDZCFbdv3WJ7Z4fpdMrTp0/bayTQQQvgPXnyhPv377Oxscnu7i737t9z59ntVd4j09RUdcmgP+AgOWQ2m/PkySPG4xGbmwJQla5OsKc85OR1kiRkUSywpmA8OWQ0fkq+OCTOGrbObhNEDTpwQwKMC8mSSVfdGBlyKLkn4zDFVqq1Dzg8OObc2edI4pQkES/a2shATVLixaNYu3vcD0qiOKaqSlx7JPWqqVswYBXIaK9166X1LjTNetAPV4Oy8t01tUvubRnxKz2TUqoF9pZ/s1QwiYLMtDWIf45XJQngxnJtWbn3fPERaEUUxqRRzMZwjRcuXaKqCqazGaPRiOOjYx49esT+0z3GkxkaCJWmwR+vQF7fLhmGQAvw+ep1qTdx66EfODvQ3zOmWqKIm3IY55VreFYRJuQU/zdtNa7ExkYAJdv61vkavw1za4cNoriybvCAq8kDd84qWRCld3AAn7WK0A1yPRColGIyntDv9+j2OvT7Q7duTgmDiOfOPecSwmXYfHx8zPHxMTc+uyGEqV6X6XS6PEcKShcSBD7QSXxj01TChuqqpiprlBKm7u7uLttb29y5fZfJaMTo5IQoiekMe2wHAaPRiB/+8Mc0pubihfNcu35dkoWtIo7l3sr6GcP1NQfuahpjiKKAteGA45OREAKcxcV4dMzjxw/pdK5QVQ1FWbJwQ188foAAAsYY6qakKHJmsxmz6ZSyqlnMZy7YpiYvFszznH6vx5mzZxiNjrl77x55LvVmw5T+UFObmLyuSFIFQYNGiGaeDe3vpUW5II56DHo97tXHHJ/M2T3XxzQCRhq3BsigQvog5dbXUC97+v/ex68M8KVplyBcI0vWUUputLKs8Gk8WimyNGuBmM3NDU5ORi0NMYoCF2IhyU5e5uI3qtClxEoYR90i+nGcYEyNsC8CTK0wDjiq65IgkJutKMRDJYrEVyNJorb5hobGCDg3GPQwBsZjoU5mWYc4DpnPZ4xGE4zVBFHMfFETRZokSShsQ1WJfCiOI4ytWVtfY21tg8f7D8jzCdgIY3KCQGjcsfPIqKqCyfiEwaBPUQjo1lQiH0rSAWvDTYzRGFORdUKqZkGk+2idcnS0zyI/ZDQaY21DnKREUcZ0OqWTitfHfHHCIi/IMvmeOtCghN4tUriM+SwnTLpEYUScBByfPKUyOaHusj68wO7OJS6ev8LFCy+wvnYGRUxVWp4+PeHwUHwuGqdlxzUrosM7XVzB6UWzrpdJuqubgp+qroIH/lrwMtJnvfN+OVglp/dZRt4q8LaaIrX6mqvS3VVmi/+MfjNdfd6zIOHq+/l/rv7N3wa4KXWa8Yejtq9uustjJWCoB41WJ3P+NbU+fQ789/T0Zf93qxLhZ49ZFPRlE2sCkkjT7XWZTE+wtiYINZ0so9ONebq/j1Yh81nFdFIQ6B5R1CcMFWmWYubiZxnHsbBaYwH+0zSl0+m233k0OpHr0Un2kyThhRdeoNfr8fDhQ86eOcuVqy+KGezDRxwdHbG5tcXFixfZ39/HGMN8NnPBCB0ODg6YzWZsbm7S7XaF1WK+eh68XOr4+JgsTcVqoCklIbeVUkrxlsYRaZaKpD0Sc/Mzu2dpsPK37lqtqtKtNZwyyjcGJ8PxCXh1+zvxvfReokuG4VevldOJmF5yINdZuTzf7XXmiwfrrjNLoPTKa3oJkyuM/HWgxMdIq6XUvgUd/cv6qaSbHDdNzWw2ZWNjg3wxl9dEn060VlIOGRSRjloQSgFVUbAoCo6OjpjNZvzgB3/NbDoljSOyTkqWpWxvbxMEmvFoRFVXlM5TTfzKoNPp8Oqrr/LSSy+1Rc5isaAbdUm6idsLKoqyYDgcsru7y4svvsjDhw94+OC+87uT7bGylrqGKAwxGhZ5wc72GZ47d8ztu3cc4Cu+sR9//BGXLlxEhxEW3Z7PVeaIpOoKW6CoS6wSs165FhqaGrePyYTRGgFd0jQmDnsEKmayWFA1C3TlhmBJ2q4LCzfE6XY1eTGnbkp3TVpMs1z/6roSNoAzIzbWoI2mcTIgaw11I8DjeDxib+8JQajJF0XLHAGoqoobN25w/sIlmfwbkWx5X9j3fvEef/qnf0pTi53Gxvo6d+/c5Ztvf4PR0THKwCvXX+bN19/k4MkBf+97f5dXrr/E0/19Hj9+TBAGlFWBsY2TFBeURUGonT9XJRPsJEkYDtc4c+YsvV4PrUS62DQ1WKRx17ZlA/i0dtMYVKAdc8UBssYQBSmWBqUCLl96nt/93f8rcRwynhwzmx4zn0+YTsYobRmNTxidnFDVJVEUkiQx0+lEmh8qimKBVjVBUFPWc/xwpmkMRRFjGknXjaOMIIgxBpHghSFx3EFpYTvHUeIYgAK0x0lGlnaIQllbk05MHIfEYUwQRYRB6tjJHjASUMM3BtZaBoMB6+vrNE3DfD5nNhPmfxTJ+uZ6GCwiC9eOIVxVpQtJWqZ1Nk3D/v4ed2/fRllDv9fhzO42WllGo2PyfIF27Ok4ijFWs7a2xtmzz/HkyRNu3LjBuz99l6PjI3704x9x5swZ1tbWWhDx8uXnuXfvvmv+pYZc39zg+9//PpcuXRKPulrqzygJGQ6HXL9+ndlsSlHkBIGirmrcJUEYhkymE9bXNxgO1zk6PMICs+mMRw8fsra2LuEa2Jbt6nZmLNbJfCx1XVFWOVob+oMOG9FZtAlJs5Dp9JiT0THF4gkHTxdE44Z+H7Z3d9166wO25JWTJHNDkOU+7IEI3yz79d0fd5GMeoaMa3Rx8mbjk3blLJZVsdz3AoXSkQCCbn3y38cHQxkjAUj9Xo/nLjxHVVc82dunMpJeiYai0pRNRRInxFXTBtLoYDmMFMaCr+MXVKWsv8LuW5DnYq2gAxecUIqPUlkUzBcLYS8px1Q0tgX32uPDki307EMhoVar0jzlBmrGLO0plFIQCGAm64SEbVRWBh6hFsk+SsADrZSTYsla64F269bYUAfye73cW4OWiR8sWbrKp2ZqdCASQ60EHNR5wWxF7WJtw9rahhuGaQEF3YBnPB6jlHgzFkXFzZs3BShyoJkKPTAQ0k07XLxwkbW1IbNZSl4MWdvYaL/3aHIMStLa0yyV93cHzieM+8G77McBs/mc6XTKJ59+wo0bN3j99df5+te/jmngiy++4MKFCxwfH7a15/bWNvPpjKIo2NrY5OXrL2PqJfhQNzXzec7nn3/Jyy+/KqznNCMvaAMxmqbCumsfIIoSYXdZzXQy4/DwkMFgIL6BVUXtGD5YWdOs88IdTwqqsqSsRkzGe6igYHMroW7GoI0LSvADTk2WdRx7auEGdCFRrNv+RqmQpoGyXNDpRnS7KSiW9kVuINPt9uh2OxLGtBCma1Pl5HnOvMzJOm498IEeiFTXDw/8Pux7aqUUZdm019ayxuMr/77KbPfXySq5YhWUWx1I+17IK33USs8H3s7jqymgy79f6fm0Z4fL9a3DkDiK6HZ7bG1uwQuAFQ82CdHIWSwWnJycMB6PmS9ySS4uS/KyFOC1kYGqfw8Penrf4Ra0c/9e1RW1yL6cb7as9w6JE3WHq4m08yxs7Onj5APzwBK44B+NJDZbZ7FjHeAqo27l9hWfuEwLSMln8ECbKI4UCqMVtavFK5Z7ue+dKy0Dt9FI1FMWSXdP0wyUJdGiIpBEaevyAJbnNgwluK5pZJjuA5haqazW6CCk08mIwrg9NsZUrTfsp59+ygfvf8T1a1d5+PCBhLDRdetd6HqDdcIw4uH9h6wNhoDl+OSIx08e8eqrr7Oxsc6jBw+FCGBqqqJiPBpTFQVhkhC7bIW6lqTv559/Xs5DYzBVTVVXWEfoMkbqknyRk+dziiIXxU9ZUhaF3GfzOfO5yGP7/T67Z3Z58vQx+/v7TKdTqrKh2+2RdhqSJKPXT1GqcNdYQ+QUHBhDUZVYGxCEYvkQh7FTaN6n20/Z2FiTUJ0oJorcNa+Ra0QpplNRnQy6X93H/s8+fmWAzzQiFZFEL6H2FoVIQ8TLRp1aaBaLebsQVGVFEQhTQdgFMtGcz+ftJDnPc6pGTLE7nQ4gF3VZyoUnfnKWUCdUlSzUKoAwxE2qHEtFBXi/DWsbgkBQ714vwRi36FoYDHriV+SKVa0Ddnd3mC3E2ykMAqJY2HVZ1iEMXWGkIprGp9oGBCoiTTOCIAIkHS1J+/T7AxaLBU+enLQLq2zGBUl3QDdb56VrX2dz4xyLfOGMarfY39sjjGKyTsj9hx/x4FFFWUUcHx8RBDF1bTh37jymVkxnxzSmoCob6mrhklwAnEl7bSmMwdQRZ3ZfYDYbMx3NoNmmk3R46dobXHvxLXa2L9LJOhgL81nJ4eEjRieSBlZXPh90lV3hTfSXoF5jLRjbysZapohSLRDySy9MJytZpdmuss3av7OI8e6pQk8kNf7hF/dVPwpYbjan2IJu4V392Srt+1km37OP1U3uWfbfKqC4CjD9MpBSqdPgnv+7JZgnHlmrrKlngUSlfLrmMvxj9fEsY89/3iV7EX7tze+xu7PBeDxisZhhqTk42mc6HZEXU6qiYDqdUleKNAmJY0N/GJPGKdNxhUZYIWtrSQvugXIyO0u3223lAYvFojWW96l7v/Ebv8Gbb7zJF198yXyWk8Rzvvjic0mHc6yOsijZ3Nzkm9/8Jh9//DHzuSQuysS5aL1pOp0Ox8fHBG5i67+rMbQNLbZmPD0kCEM6vQ6VKWlsinHAdBTJ5D0MQ5I0ccl3UvRVVU2/N2jPRROLp5pMvUK32bikXWem74+7XGurSVA4pqLFS4m9l5z/e++pBkvWlRjtN+3rrYJKq4Wc1orKLoMUhB3iQjcay+ql7S/pVVbrsxIMu+JDNR6P2draYjydobW8v9Za2IRKtYw4o0TWlCQJYRhjrRitCyA3pigKbt36khuffUqkNcPBkPXhGpubG2RJQuE8XOuqonJp5koFnD2zy7e/9U2SNObJkyc8fPiQx48eM1xb5+tvv90GL4VBwL29p2DFL6TXyXj5+ss8d/Ys73/4AdPJqC3olYKyrDBaEUUVh4dHXL78PNPZjIPDg7bBunf3Hvv7++ycOdv6dp2+x4XVWdUNdVMBDUo79pktaZoKn4RprEHpGmxA5IIger2uSLOKoG1EfQHrgVoBJpeAbdtwoNr7Lwj88KwWM3ECN2S2wlZFZHF5UfDg4UP2nu4zn82Jo6hl/XmgIY4jRqMTPv3kI95689daJiwY3nvvF/zJn/4Jk4lI0haLBZMw4u6dO4xPRnTTTEKswpjvfue7XHnhClevXUMFmo8++tgV0uIH6lmawjQT6eR8Nqcxxh0rmM0nPHhQ0el0SeKOCyiQYxeFYQseiD2AsNl0GLmfBU5KJ35Zs+nMFV8aRcR/+29/Q6/bo9vL6Pe69HvPcenCq0ShSDPk802ZTMecnByzs3WRyWRMns+p+5CXBRqDJUYHAhgEWoAorELpGtMUNLbE2oa8AlNAdSzJ8tYodBCigogoEO8mpUQFEEYJYRA7VlFEnCTi4RNo4igkjGLCSHwIszQlzbI2XCRw7KMgEHN+n8K8WOQsFoXzFHRy0SASUAiLDaIlyFQJCxLg1s1b5AuRX25vbdBJE2azKVUhbCKjPGtBmtBXXnuVqiq4efNLPv/8c05GJwDs7+9z48YN3njjDcqqYjadkmUZv/m93+Tw4IA8L+h2O7zx1ptsbm62UuTAhQGdnJxgrW3Z359//jlBIMzauiodS63BqoB8kdPv9SWtsZJ198mTJ1x/6eUW5JLz64cnK8NKx8Q1tsLanMPDPcJkztbmLt1hl+FGRHqoaZRm7cOnFEXOhYvnCULjQLew/eyege3nMX79tRYa4+opnq1pnL1AsxyEWmsIIlnHvbRL69A910vtDD4MBoTd6H0IwzB0NZ0Mv7Q1aAUba+t0Xs4Yrq3z4MEDjk6OpbHO83bQEEULZvOoHdZ7NpG1XgJZu/1Mkr59kyWgosU22g2PG5eS6djMSmS2wj73aOez6ofTe9bqYEX++6vPU8Eqo0dS1hUKZTVKGXBebwaLbZo2ZMbb0JRYB/Y5GZ1yXrvods+VNVe5+82ft4DWL1Eth2q+Vg7D0IV/hM4XbCmRk9dQ7RBKGD+KOJKhRBjGPH68J4oeF7pXmhKfOGxtw5HWPHx0h/W1NTY21tnZOUNvMKTT6ZKmCePJiewNgSLrpxRNSV4W7f65ZA5JaEIQBODq5TAImM8X/PznP+fg4IC3f+0bzmd5jDG29fzSWvofay0nJyd897vf5dKli/z857/g0aNHzOczPEuqaRrW1tbY3Nzk4cMHcvK09wUFTENT1YRB2NocNNbw6NEjzp07J6wqK2xNU1dtTV7XFXVTMZ/PODx6ijVzNjZS1jZ7GDuFOkAHYg3hvdXqumn73aoq0VoTxSF1XdHUUDQV1iQ8eLDHdDqnP4hJsxitXXoxtH2ReJ7K6yXdhGF/yORkLt6wgZLwG8ckDYOQUAWgrDBxoyUhxvtl+mviWSDO38vPgnG/jPHq/07297h9nn/N1XXm2Yf088LUFZ/EZc/lAUHvI+3XntU6aalqcT2PvDuxjf4/zP3Jk23ZdeYH/vbep7md9/6ev76NPgIgeoBgg2RlkmmkkhNZpsrI0qikkUxlqqn+CtU4pYlGJZVqoCqZLKVMiUwSlAgCIIBAEz0i4r14nffutz3d3rsGa+9zjnuEZJaJGujCAu8993vPPc1u1vrWt76PbC1lfbIGwJ07dwSoQ1qNq6qLEcqwplRVQVnVwbQzsPyCRMJ4NGI4HNI0DQeHBzx78Tx0B9RtN4QPHTjWSdwWjV3i323fmTXETNK14dr7I8AleCeFccEMAzkDkYfpuHwe7yzo0O0irQa0EjiWEMN3uUPTKKKMgjMOWwgbs6jKNlc0Qc5FmMhCwmmamjQJraRJ1BuWtSkaick11HKNCtACWuWDAVppnj57ymAwwFpxN47Fv8nahLpuhKWqjTAUnZigOOd5/nyf9fUNjEr4ux/9kE8++TUv9p/hvePatetsrG2HglU3pqIckwv5kay3RjS6FwuUMqG9Xsy76rLE46Qlt65YLGYUxUra9Os6dJcsKYoVZdh/kyTh9OyY/cPnLJer4HSfCuaTNmjjmKzlaNPgKIJkjkJ70XSeL6Zh7AqDezQasyhLzs8XoBxppiS2tw6VmhCvCGZWVTWDwZC1tfXPdSb+275+Y4APPPPlOXk2xtqaNFhcx80sbgRFIbpUg4EwX1566TWeP3uGUor54jxcKDSNDTo2MilEE8tBCDAHg4EEw0oTBbONNty8eYvE5Dx5+pjV6rwdGFmWX2jrBGmzStOcNM2wjW+P2zShHaXp2gEmk4kAG9ZjlGdjbYLzUt00WdRBcZhEsypEX2aYT8hzcaCpa9kU0jRhOFyTxd3DtWs3qKqiBcZGwxFl4Vlb22ZtcpU82aJmQFktmZ9rlNtkOT/j2YsPOTj+hKJoBNg0OUanpEnC9Pyc7Z01rF/RNJ68SmkCayJ+LziKosZozWiwQVU6ipXj1o3XuH7tPrfvPuDqleukyRjvYbEoODk54fT0RBLcdtGS4MarbvPAK4yhbQ+MjJxoZR83h6jvEBfzPsU8bgQR2Or/rk8V/9woDAlsZAn1wbv476h5E0Xl+4DjBbBLfV6c9vL3/29tkB041wGZfZDuMiMwjp94nP53xeC7334rAXq4LtVtkTITZVOMAFHUpekzBMNReuciYyKysy6fW5pssLV+l5t7I7IsxaTS9mZdzWo1Z7WasVjOWS4XVGXJ0fERVSmL+DvvfMTp8YzRcEw+GIHX+JAoRb2L+L3WWkajEa+99hpXr17la1/7Gnfu3GEwGPCv/uX/xPHxSeuuOZvPA2vU8fz5c0ajMU+fPuVb3/oW/9F/9B/xr/7Vv+TZ86fM53OuXr2KSULVUEt63d7voI/mgxHCaJzyrW9/hcXynPlyztHRIdYWeMZ4IMJl4WaLo65zNFHbzoPykGdDBoM8VFzBE40ALgby/TkRW+ri2K9rcQp0PgahlVTdelXDfvAUjQlkA7RtwBfnUFWV9MFBqTwvw79dCw7GNmRJGMWwqAvmw5zWkmBZ59sWCPmOGu9scOCWe6qUJzrIRvC9bWUwmmGSYtIEnYjmqKuE6TibzVitFvzsJz+hCUzPza11NjbWGQ5ziqIMmk11aI+ReXHj+g2+973vsZwtee/d9/n7n/yYw8Mj5rMZ3/zmt0OLlQCJZVXy4x//kNWq4I03XufevXusjUZsZ1f41je/ya9++QvOzqaoUFGVdUSxCi6lSilu3rzJ6dmp7B9WWJsHh4fsXr3WBmjeKzFAwOK9xjaK2tZ416B1gzdObE8sIXGQBECCMk9dW+aLObPZjO3Na2TBhVAnKc67APRKm3B8VorolBcHrKGxDVonoS25YjQcyxywELVO+mvYbDbj1x9/zLMX++F6oWkEQLG2c5OL9+Wjjz9iZ2eXB/cf4p3nxcFzHj9+zM7ODgBFuWQ+m3Owv8/hwQE/f/sXrK9tMsxztNI8fPiQu/fvsSoL3v75z9k/2EcpRd1UAuT23GUH+YC6qlBIe25VVtSuJjEptpGxqJgyHE4kodGaLE1bwGEwGHQAXwuACLNFB3dikybtOng2nXF6tiAJYKB3njTRDPIBWZ6F/T1nc33C2voa65PbrE1ET2k4ykmSlOliymq1ZLE8xzUScJ6fnyIJj2E8mgV2h2jaaS2Fx8V8Ic/VGJaLkuV8QV1ZAp4rSV8imltJpiG0aioigBDYxomAgtoEkMFIUSNLh6GzwAQdKWFQj8cThsMRaTrg/OwUYzS7uzs9fSbR6rONlRboxlLVJU+fPBaNTGPY3d6SVqMAythQREN5iqpkZ+cqW1vbnJ2dcnh4yHQ6ReuENBXds48+/rVU0/f3g+C/4fbt27zx1ltcu7Yn+lV1RVmtwl4n694H73/AO++8x/Xr1/nWN7/JrZu3ef78BdPpOYlJhP0E4EVXr2kM49GA8ySVgmtVMZ8vgjmGCe7EwqoRMKhzcDZGUdVLUCuSpKBspqzsCfPiE54dinh403impwPKsmB9Y8BgmNA0K6ytQpLW4IKZg2sLlrq3R/uLe733bfeI1pqyFGHzwWDQMvCytGv5E2M73QPvfJBGkXVdTIa97EEqumomApx7kXowIa7L8wGDoYDn77zzK/YPDigqaSsuy0rYk2nSJosRcICuQ6Gu61DMk70OL22u3gsDeblchmusaYuVSHIO0toqpvBfbJAmf/l84VRenSwFbYxkw1oZ/o3s7e1eHWT6PaKrpbxHufgTL40rXtqslWqC9q2msUF7K7RJooILterYhtHJNK6jOoKFpmPaRs1BWSuS8DxNT/tTwKbRaCSSKha2t3bZ3e0MJrx3VGUwZkgU6+vrTCaTYKTmKIqS4+NTzs5nJCbh/GzOZLwBOFlXbUOaJRLnKGn/l/sdNdugriLwIG381lqOj4/55JNP+cY3v8Wnn37aauwJMaSLu8/Ozvj5z3/Ot771Lf78z/88aMK5lmE0HA5ZW5vw6aef8vz5CxQNRml8aOMra8mJBoMReZ6gDGAdh4f7LWvO2ybETuJIXVUVq9WK6eyc/f1nHB4eUjcLrl3b5NatHa5d3yQxDmcLRM9dWvUl+KuZTHISk9PYhrJwIS8DrYYcHS345NcHUphbG2ASAROdI+RJuh0HeNGBT7xhfX2dYl6TphmNFx1fQtxktAngj7geSdzV5TNxzrW7fgswd2B3jF1aVpvSbbElzp/L+dFlckMEoZ1TUiTxsRDhW8Cxi3O77qGYm/SB9ss4hjwf2+Zil0lC8ZgOkM4HG/b0UZtzemKnShcHd62mDu/EQbexlulsKnt4nlMURWBsVdRldSFe9kq0S7tOnER43NHAKbROu6CD6n033twFELN3L5zDK8mfrXcI0zksXRH5i+ual7hQjhcWKaVEykvF4oSlampwIc4OoLBWwjpu2XphP6itaQsWUsAT0Exrw5WiEpJQyDuAUPhQeAurZcGnn37Khx/+muPjY3Z2rpBlGdevX+fLX/4yaZJzcHhMVRUUlRRvIgGhaRquX7vBz99+m1/8/FesinnAcwh6pxkmEzKS0hplVQu6pqjW9dxow4sXL3j27Bnj8bh7Vs7L95ZFKFQKkLdYzFkul+0eU5TRmCqQLJyjDs7EOoxxpQITL0sYjWF7ZwOlLFqJ9AbKY300vFEYnaFUisJgG0NdKT795ClS5DEkaQI46jp2A7gg1SaFjkjs+CIC0b/p6zdn8HmwTlFWBU1jKWtp38nzlNpWzBclo+G4nexVVeAcPH36iQBUiejmEaZl3Ciqqg5/d8Eu2KMQt5mmgb2r16ibmun0jNFwja3NLR5/9ghrpaprXYXWCUWxCkGuaisL0vLhBH1FhLGHecJyucIlnrqqGOQp1kr1uywLBnnCZJzifSXhgXE425CYIc5bmrrg/PSIQZazPt7m8CiRM1ZyjbPZjLOzCqVFw6xxBU55lquSQZ7gfY1miK1TlB9wdn7KdH7K488eiT6CgqJ+QWOXUo3AkQ+yoEco6LlJElZFycnZlPl8Ke7EaSbovPbUTUWWjMnXNlktEhK9y629r/Lwuw+5enWPwWCIR1OVFQeHB5ydnTEPri4QFuRQzcTbUEXVQZA8hh+yCBAWZ2ddu5FdXOQ7ICluJPF30AWC/UHeMocQTQK87wXDok3lgulKFATvV7CUUkFUVl34jo6J1LGULgrPq4vf3wNo+qBYe496r8uAWfwOoGX9XJ7IXYUsBlK697kOIHJx/VfyfxKbyzOS3v6LSUF3fFpgTzY9076/W1ikMnt2esoj9agNHqLge5IkZGmG0QnrGzfZ2cwYDAekmaGpakxi+NJvPea/+//8d3zyySOUUhR1jXMdcCkVbBGIvnHjOq+++morFh2For///e9TNw0vv/xyy+5QIVGJtOqNzW2GwzE/+9nP+fP/y/+Z3/u93+PZs6f88le/YLFYMBhJtThq6qiW0egDUAFVVZLlilt3t9HJGDR8+P5nNE4qPniNtzWVbTitSs7PTkMCbZhM1nn48GVMAKuPT46wjQ1uYCEAMcJuMIm02ukA6KnwbI0SsTcVzDU6LRF5FnmeMxpJoC5tGUl48Aq8boE531bofbshihuVBL9Rp0eFCp78PrLACFpbrv1sbTuXstgW19QNVV0GgFEqhxtBy2c2nbJaLnGuaROLvvtp1DRKU0mkx+M1SUoS0UJyga3tvef4+JiPPvoIvGc4GsrYyAfSutzU1NaJcD2SbNy8ucdv//Zvc35+zru/epcf//jvOT8/CwGKjNmoXRPlHvb39zk4OODp06e8/vpr/PZ3fpvJ2hrjyYQ333yL9z94j+OjQ1RgBVknBkJVaJ1e3xDXvrIscaEl4NNHn/Dw5ZdJsxwHQUNKnNy9U/hGNK6gAl0JTcsKyJ6H/U+qrQLwpVmC8YblYsnZ2Wm7DolWoyIxGUkujrh1U3VrqRMwpW2n9IrGVe3z75cH2jVIyZrqLSRpRpCsaoNHa8vgOuvoSNKSxDrn+dnbP8U7x4MHL/HSw5d47fXXOT4+ZjqdcXp2xNOnTzk/P2d6di4VaaTiXbsahVSdf/3xx3z44YdSbW4qqqamqivqpqK2cs0eRe0sVV1TlFIok8NJW7EkEJpmMSXqu2apAGFGJ6GNWQLeLMtAa7xDXJF1FLMWt1OPCmCrCSL6GqMMVSlghDFJ6677OCRhYWtkkOfkg4zReBTYcUPG4xHD4QbXrl/l5i2F1p6iLMShMgD1JycnFMWS1WrJsT5mNpvjrUejSRPwLLG2ZjAcMBwNqUtFUVQUyyWnp0sUGWDCHinAwXg8aYEXcQVNwavQCpzJaqKQZCdLA9gpbc55PmQ5X7I+WWNna5vhaEw+yElzLWu69zhbcX5+ysHBPs42DMZD1jfXacqynTvtTqfFMOTmrRvkeYb3cHY2Zb5YiJu1SchzcRWdLxYAbG5uUhQrnjx5zPn5KR999CFVVdLYms3NTR4+fMhqteTHP/57/v7vfyrnMBgym8/Z2Nhgd/cK0/OpeAN4Le3vXrKpVbEkT3K0UmSptB4tF3PKogh6ZxGUKgIoJEUTKbgUaFPgWVDZFcpUpGaMMSMp7CiPc4aDgxPKpiDNcxwVzguDWWmHSVLQCeLMfpnhEoulqk1aY+IpwHzXOihjWnfGGsr34i7Xa+OTmDg+dOUhT7M2pmnqBqUVTS1FG3ljNKmxZGnC3du32drc4Ncff8KjJ59xcnLCalXQNCWozqHT6DQAcqKz6wFvpShlXXd9zjoWy4W0StlGzFtCEUn7CHHE9Sb+F2LBnjTMFzEfRHKgYzX1Y1H5PYBuwT3CzuW9b2Na5QntdnEFcrQtv9FhvnaAGLloL4mpChph+Njd4ttn2QJ96qJUTb/oEK8pCXGyiOxHIEeF+SxsvyRNMIlpNWgTo0PBWuKO0VCANXFWF5MQkyaMhkOuX5+Q50PWJmtkWcrv/k7H/j443OfJ08cYnYR9v9NWs6HAL/pyQ0bDCWk2bAkY3iuyPOPu3btt662468Z4VreA7+bmJh988IE4su/tUVdlKExpqqri8OiINBvI3qE1wXpGwFYrc80H5qePBU1nWz2vpgoGQ6W0eh4fn7C//4L9gxfM57MQq3k+++yA/YMD7t69zmSSYa10qngXx5fBuSkmPZF2QC9beqJTMe9aHnM2m1FWSzY317h95zoqCTIYxoTirzwL78X0p6rmrA3XGA7HTNZqjk+O0V7LGuJlPOE11gamq5M93il3AUSP8ZoxpgXIBbDXgVDRaZn3jfhioaEPForGY2d2GOO4KCEiY7YjInTu1Bd1/Pqsv5hD9TuZ5PzCnt00Yc8yQOdULgA5AdgH7aOqnpFcx3TMZ8EyhR2XJhqjhfHvvGhshhlNBuRZzs72Dnfv3g3u9DVVWYlO22LJdDrl9PQM27gQa1hWRUEdmNB46SJr4+0AFOE7yafGBQAw1APiNTsdtb2RxmsrYJrUdERAxdMD95Qc1weUXaHadUqH2L+xog8b9wPnbCiEhCKC6YA+FMEwyPTWRYl3zs7PWBuPW71c+ZwYBdlGzGhu3rjFs2cvePToM05PPghFc8c//If/iH/n3/lTjo+Peffdd3GuEYOLwPZeX1tjc3OLIgDvoo1ck+XSjYCWgmZj5Ryt60gyzllhXSuPMjBfzPjx3/+QBw8e4r2T1mRP0BZe0tQNjz97HEzHaspq1c6HJjhSC0FIHqbW3TqMVxglHZtNWVElCU8+PcMkMBpL15HXliQQ2lyTg9Y0tRBQitWCg/1jjo9mjEYp29trwoSMLH081oJBUVXSYemcyN7Y0Rd3N/6bvH5jgC/LMixCic6B8WiCMQlN3dDYhmSckGfivpdlGXVdkucJ0JAkKUWxbNl+UShXBO9l0C8WK4yR6nOWSiA4GEj7rlaaQT6mqWveffdXoDyDQYY2YJwK9Ok6LHKExMT33KrEGddamM9LqV5rz2S8wZpfoygKkiRhMh5iEh00tUJFSQcWA6K3U5QrvLdopcmzEc4pnBe6dJZlDIcJZ+c1JhFhaqMVOHGmXS7nVNoxzBVK15yeP+X588/YP37CcrnohIepMcaHYyZB6zCATc7hjOLkdA44NjZGgBa9Hj0An5CnQ7bWb3PzxkNuXn+F69fuipMx0jp1enrOyekZ0/NpB3DprvoTJ4GWk+levYBKiqDxvR14Fxe6GFjFjeNy2+gXsdniny3o0Qord8yzyxtGBMb633kZYLwM3sXAOP5OgpDkwmfj5/sbVv9nfcCvvxn22Yrx+/qvz4N8EoD3z/UyWKh7wGoL+gVUUBvVuu71P9M/x5joe09g5cRFVBGFotHgENBHew2OwAb1iBUlvNg/kOAaR2I0ysgcHo3G/KN/9I/5y7/8Kz768CNWq1XbZi/BQUNV1sElNGmp9cvlsnXtEup9SVmtuH//Lu+9/x4gjkrWWkbDEXfu3OXs7Iz19XVOjs8ZDHLu3LnDzZs3WRVLyqLg/GwqLW7tGBK2p7U2YMUGFZgvae5IcnjplXsYA9PzMzRJu0FJNVhYWUVRMhpNeOcdMVyI4KR8T2hFT2RjFGZDYPYp0eVJkyQA8TlplpIF101loptraNNJwCQB6LVOztWkKCW6FgLvBlohAhQaI9U5GdeDNlmAbn5ExkKkw7tAtbe2aTXPbFv1Dg5uThwknYeqFj0l+b3oV6yvrRHNJVwIfGKVNYrGZ1nK2to6w+EIk2SBMSHfF/UK333vPRaLBePRkJ3tbba3t1EKyqKkqmOLjVRBB8MhX//611kul/zkpz/hBz/4AbZyZFlGkkhSNBqL1mNRFDTO8fT5c1ZliU4SqqbmnXffxSvFN772Nba2ttja2ubBAwEN6roCDbaJOnlyf9b8mN3tHX71zq8CkNbwYv85i9WctTTBNp6qiO130m7rnAJXocwSVIW1JVVdYhIXNnjXJpmxaq+8JFLb2zuMxyOOptIS4mxkESUtA1TWMKQCjLgGozzFqgwsGdsCPZF1GgPGphb5imVZ8MEHH3J4dNhWwWP7tPei3bIKLr2S5CoSrSmrip/+9G2Wy4Kvfe1rbKSbvPzwJbI8p6pXzKaz1sWwKErwXjRLnGOxWvLue+/z3nvvdwFwYyXJq2oW8wWrlWjtNT1G1Xw+F+a2ogX3LGI6oLQO4LnGNTXaVO08MGEtWBUmgASRzacDiB4KEWhpkQ7jNx7TKECLoH1iUpLw9z5Av1iIO7Ik9AadyM+TJMEkitQY8oHo561NxkGyICVJBmxsbrOzm3DntqEuLUVRMp9PWZYLnC8pyxmOEkeDswrbQJI6DvZnnJxM22dpAjCZDXLKchXYvNLWfHRwxOnZGdZa8jwLgCZkqeiMxvmplSHPMtbH65yfHWKMGH5M1idsbG6Q5xm2aZjPzlkszkE7NjbXyPOU1UK0glumf9j60jRhe3uLui45PT0NLbXiKJskCZPJmIcPX2JnZ7cFBa5evUJdVywWc6azM8bjMTs728znMx4/fsQPfvADnjx5BkpYPbETI01Trl+/zsH+Pov5rG1BdTYWOyypcqxvrFHbhhTpEFks5iRpJmwuD842iMN0Q1muQjvwCm1WDIYNVV3jrQeVyHhCUddwfrLi/Xc/o64tk8mQwTDBKAVIa7nstUkAyoOrnu+Kk01T45qgJRmYKDGejUXLPgOnTdhM0ib1EjMYYjGnZfBoLefci4NEc01hE2E7CvBIGLspeS5Fkp3sClvbO3zla9/g/Pycg8MD9vef8+zZE05PT0V6o5rLGEwMJQI0ahNArdDaVJZFSMAaRIsosg8vxjidlmAsEKoQf8r745oHoBHhfBWCHO8FHIgQnvcqtCS7UAxpF92uSOY6IyL5ZOwSCYBikKZQKGH4Rx0u2yseW0sUye/HcBeZVaGYp4Thp1Vs4aUX4xIAUxO0/rRoEgaDFq1kXdKhwJ2mCUkaRPh918Yn8YWAS/N5NLcTY56YayVpgtGG0XDI+sY6idEYndM0rl3/FV1SHAuP4+C2u7u7w7NnL8iyAYN8wO/8zu+yubUlumXeUzU1ddCnBUJcVTEYDZjPF5yen7WSAkrRyrvUdRPGgMQ/tSplP3GxE6crqBpjqKqK58+fs3/wXFp2bYNCUxYFz54948mTJ0zP59RN2eUHTtN4hW08H76/z2iSUVUriuUS5yR2wYf4XomchdYaZzWJTnBeur1IHDs7m7z+5j12d8cMB4bFYi5AlNKBZVRfiP1l/IMNphdGJ9jakWSyH9WuCXudfMbaAHbE8RnndBhfn9f97udIF+cV0OY0fQmbvmZ3P5fpMwD7gF5k93UdT9161GcF9nXd5M+Y1+gQtyXt+9qulVig6OVj7dwgGBwo3QPig/yMMi3Jp10dYl6pNA5Hgha5jTzHjRybmxvtOtk0lmJVsVwsOD09ZjabMV8uWj3Aqqqw3rcdN11xXbQeE2dxNg0FZlkDL4CB4WUT15pDyP33gdkX4qEgdcCFCJE255Yri2OhM1mRD1nJD2w/ZY/rQvdfzI/Oz8+5srNDuVq1uIx0FjtWZcmVfMDO9g43b9zi6dMXHBw8J8syiqLg448/4uWX73N4uM/7H7zbdv81TcNyuZJ9e3eXjc0tBsMRy2JBZoaMxxNGo5FoKzsf8hIVchIbpFUMZVGIwZzy1E3Ne++9x4sXz9oxnec5k8kE5xru3L3DyelRm3/H+yQt3NWFdTkQ2CUedgKwEjohZrMZJycVz5+ehKKdGLqaNBgk2TC+lTDNNRrrpEiWZwNu3LrKlb1tcdq1jewdvsMDYodKdEn+PwSDLybyURS/rmvKssY5KzowqLY1UpgZFutLTDLGaBd0b7oFqUugCRvGmL29GwwHIw4PD+WBaM18vmjBl+FoiEJRVatw410r8hkDdefsBQpzZFQoHEZP2Nm8QVEdo3SBtTVeeUwCzodWDrKgZbHCORXaq5KwSIsuS11XnJ6dCvW8aRhNhiTGYIN7n1JBjLKs2NyeMBhuUleW5eFSOPUDR2NXPH7yK+arY6pmDqbB2Uo2bq3Z2t4WvRNjKFcl1tK2HVnrMSYHBjSVR5Gi/YCNjT2u7d3n1Zff4trVB4xG6zgrOoanp6ccHh6wWCxDEHfRITNWd+JLezogKby+CITqg2n9qk0fFLvcGnuxjaI7towzdeG98Wd95t3lz8RA+YtYdrEC1Z/0Mrl0xMR6Fa9OGy0ev67rdtO6fG79SlcfyLvM1otVtC9+yUbQv67+c4jXwecAu4tCuJqOlXj5+vvv+yK2oiTLnXagU/17HM4xCIOLKKy0pPvQ9i6txD60kEUn67ipi3ZXY2tWQWA7Pv/lchmEtwuMMbz88ktcu3aN7e1tjEn4V//T/8xytcQYw2/91m/xe7/3e4Ftovn444+ZTCbkuegaJKnBVtLiuCwWoAzaeEmWlFDinfV4Zzg+nvPJJ3+DSpbo1LE23uD2zYo02QBvaOqaYrUMQZgwiqtS2IpZngERMJXFW2tFkiqyPKFqCrIsIUnTwHzt2q4lARfWTGJyAXe1xiQBvAsgXpKkmCQhOu2lSU6apBiTkabBaTwTwMV7WfvSAJ4qI8fQOm7oKoyxCAimvSDOtIYEsRgSWRMi2J+0phvSGusoi4LFchnYe8KUzrI0tP/IWIlaMwpIUpEVUDqhsb7dO6Lg+mq14qMPP8AYMXLZ27vKeDhkMZ9LwSaIaCslKqCvv/4WWhvee++X/PSnPw2uXFk7ZzY3N9ne3sZ7TxGqiCfB3TnPRcahbhreffddtILvfPs7jIcjCWBu3ubXv/5I9EuVVGN9uJ7p9Jz1jXWcs1SBxb6cz1kt5kzGE7wlMIUavK/bKnJVnZNkMyZDAZ4GA3mO3jp0CN69snjVqxJbMZ3J8jwAE3GuB1CvHX+SrNV101sffZC+iEmeBL3Wib4dIfmN68jp6Rmnp6fyc2vBicu9GG/UaKOCnlYVtLZ8SHgVyojpxuHhIW+++Sa3b99mNBqyvbMlQVfQ0RqNapbLJaerE549e8bP3v4ZZ6fnAYSU9bGqqtYBt67qdg+XOEMcWyWR8GDoJfMxEHZYNKpRYiXShIp1YrCo1uzFh6SxbWkqNalJBDQAVoS1VhvhMmlFGtpZW+BPqZbh1/5nhK0pLUYpOjEB7Au6ld637D8d1kUpcIo2paytCetrm6E1csBwuMFgkDEYpigNw0EGymOdMDuqVxqOj084Pj7hyZPPwl4lIORsNmO5XJJlWygU09mUuinxvmaxLGnqStyePaiQXCepaDClxrC1scGNa9cZj0dsbm9S2iFKr4T56+HFi8dU9RLvrBjnaNHcq4NJkTAGhPmcpilra2t4D4vFUoqnStqn9/b2eOONN/id736X995/D2stw+FItFddYA4rw/R8xvr6BvfuPeBHP/oRBweHKBUNFQzn02kAZDSj0URMC5QCY/DeUJZN0E8TlkCeZ1B7TJJzdHTE2fkp4/GEqqplXDXCfF4u50xnp2KypGqSbIk/L4SFtliCN0HXB8qy5vDglKqq2dwccfPWDkpFLdYapRxJmqKIbBYpiIR0I8Qgwmjwtq8LHLXtfAtad3t4SMgiqEqM5SKLxnYJN118FWOCtsCLD6BeV6iNsb4xhkQZvFYktSPb2WF3e5vXXn5JWhbLktlsxvHxCScnxxwdHQXphaWwU8sFq6KQFreAvhmThD0nCXtQSGCVXL+wTQgsFtWCfcJtDYlZ5PmpLiYTgLlLi+VdCh8Mr7yXXMtJry2aYMATWNDx+1yMe7wFL3pubTwaHBS99/hQ9IjFD1mDbft3eW6BkemD3lY4OasUWomD+sVEPAIZ4X+6L90SgRLfrvFpkgrQ1bprd46+Ssd7nbR7pOjglu3+D3B84jHPFcNhjlYeV9eo4JyqAqAq7BPpwkrTnDu3RVrlb//273CN5d/9d/9d/vAP/xH//L/4L7h56xbT2YzjkxNph6vFBLGualAwGo/Z2BCJj5PTU4bDAcNgwFWWZS9uBZRGh7HiECF+pcH4FE3X0nl6esJHH30AwGQyoixKjIHtrTU+/WRKXZ1JV4rOArvGBOhSwG+FYTIeMx6mQcNV4vgkERArzZLWpMkoTZob1iYDkjxhe3uN8VrKqpySpiMxZywLTNhPYg4Si3IxsS8r0bBvnKVydWDjVahEMxwMqZu6HdvQ5RJxHrdMz568Tws4cYkwESChOKf7JIR+btH/PpEq6Ew6Yp4UAfn+9/qQM9Z13T6/+Nl4TKUEOI9xzeVriu7gUVc/akpXlUgCiBu26+YGpl27VDDl6QOZEfjy3gfyjG47CpIkoWXfOdH4S9OUPMvZWJ9w8+b1oBkqMi/L5YrFfM7B0SGLpZg4lEVJWdct88w2to17IttP1lMXWHvhObYgdciZkUKFxGY26DqLc3x7c+UGX8qdO3kmFbrdCODcxbxU8oA4Dvvg8PHxEffv3g1ki7AWhTXo7OyMhw8S0jTn1u3bHBweUpZLjo+PSZJUxq6t+NnPfsb9+/f44IMPW3D34cMH3Llzhxs3rvEnf/LHHBwccHB4QFXDzZtX2NjY5vmzF23e6sP1i6xQwcg16CQlzVLQhAJ8yf7+fkscMsZw9+5drl7dpaoqcaWmA1ZjTh/HX/tf2BmMlvHjW4xCDBSzVDOZjKhtTVWv5JkaJ11QSkg3dS1EC6c8aZKwvjnm1q0trl3fIUktHpH1qEvRD49z3wWcaDgcBk3k/wO46ColQtwR5Iq04zRL8a6hbByJNq25RlUVpBnM5+dtUml02lLBZZGI7nyiMfLkySOSRPTknHNCHPIeTw5eUZYFOojco6LQpWsBnuhwGI9dljVVZRmORHj49q2HXN28z+HJRzx9/g4eS5JG5yvZCPGGxWJBlqbooD1QVaJxpI1UaqXFwXL//j0+/HiLxh3hlJLqupX2OWMUu5s7WFuitaeslmxsTMhTyJKMxUJEurOBBa8xKiNLhXWhDaxWC9I0wXtLlslAjiK6zmmSZEKebbGzd5sb1+5y48ZNruzeYDjYFMbkquT58yPOTk9ZLFYhkOsCBN8PWFTXJtgPjOKg71eL4isGiHBRlD8OVtf7bF/TrgWMeuBd/89uvAmTJW4scaGMYG88Zn/j+yIkvD95+htN/PtlyvplgKxfefqi7+0vovFc+xto/5y+6PziphgZhV/0PqnPdOd9GcT07qK1e7yu/vdePnb/+QkoE/TdVP/7A305vEcpRVMHgwZcy8ISvQUBbrTpV9wIbp5QlgXn52dsbW2159Y0DfP5nM8++4xHjx7x4sULJpMJ/8F/8H/lT/6dP+GzJ09onGVrc4vvfe97vPfeB/z4xz/m3r17vPnmm4CnLMUEY7lcolXC2ekpq2URAhZhwaFAp1rOtXGcnM45PZuRZA2omgO/5PEnS3DCaonuWnVTBzQEBvmQmzdvijYNDq8aFBVGebxvyAaG1+88RBsd3Ex9C07IfZexvFrWuKUEJkmateNWEYB7NcDoAUqL9oTCBGfwNMxT3bIEVah6aQxR60Zr0bbIgvZoBA2d90GPVAdATGFMGhLIjukXg8XWLIfILpHkUpjLGcMgmL1YLETywDWMRtGMSNgfaWoCeIGY9XiLrWuqoggszorDwwMOD/YZ5jlXdneZjIZUdTQVCWwHPEYbxqMJ16/tkWYiv7C3t8fx0Qk4GI/HoQX8Bjs723zw4Yc8e/68Bf+yLEMpJc514Z4XZY33iu2dXTY217HeS1vp9Jw8y3GrFVXjsE0D3jMcjNi7usez589QiP7bcrGCwC4siwXOljgECCmqFU+evsfWtuZOvgeqQnlHXYs6lASeDrQkm7ELTFiVDUYnpOkAp4oQ0KShgLaS1rbwTJqmDvNZGFGhY7NLAuh0WlrResmmGY1GbGxsBAOdStrD8Nja4RpHYcs2WOyzBAjHH6YjVqsVf/d3f8evfvUrrl+/ztW93dZJPjo+Hh0d8fz5U6azGQqp4jdVTd1YqqpkuVpQVUFvsakZDkd4L0W16XQqiYbqdCxxUnn1SlpXcL39KwwbhwtFiLgHeJRTONVgG91CBI1OQmEwJRrRRMDFaChiQhFAPZGrkGNGjTtjRCRcguekjSkSE7TwtMatCPMsAOgBnIlFC60N09k5wjrQOCsyFCaJmnmG8XhImhvG4zGT8Zg8n3D/3jbXr9/k2dOnPH/+gqhzOhwKy3i5WIFX5NmAqhZ9yDTLaZpC1gstrEbxO/NU1Zz9wyknJ89QypNGFu5ggFeONMs5n85BVWQDzdr6ABM6MVwvhtCJQWNYG08YDAasb2zypS9/iZdffpXUJIwnY9bX1hmNR/zqV7/ks8ePW92jqM8sCYfBuQa85sruVSbjddIkQyknczjcR9F9NiRJRpJJOzLWosOzda5BK02WZoFZCWjFajVmMZsynZ1SLEsGgxGrYsnx8QHPnj/h2bOnshMqS5Z5tPFBdF0Gm43tVr7B47h6bcTrb9xlY2sIdHMz7r91MPfowLp+sp5gEt3u99DFV2JIp4h6zpGJGkGdfmdDjNm6fV617OrIsOgn7DY4eUfTh/58vwA4JdLi7j1gNHmeMx6N2d7a5t7de8SiaGTkr5YL5os5xycnlIU46c7nc4qypAnafFKEl3MQzUPVutOCau+HCnNde/BKkeokPEfpSqjqiqISY7iuAOvDuifzyUUR/eCUqVChGBOKYKpju/uglaWg/b3oN/WKt/4iIOKcQ3nVzQXfi3FjLBZXHi+xXWtfHa7xUiSMUgLy6MAqxgojVNYfEZyP5h8R9I3P3pjIqpJuHKMV2qRh/Tahw0AS3SQ1WFexu71FdGp2zqOMb9lPi4WYYQyHA/auXmOQD3n45y/x5S9/mYcPH7L/4gVVVTGbz0mD4dlsNmulmBbLBW+99Rbee3784x/z0UcfMR6P2drc4OqVK+zt7bG3t8fOzk6I6TSNa8L6HgxonKOyDZn3MhgQ7WLnLb/++H2uXbvGzu4aWsP9uzcZjRLGa2/x+PEjjk9OWC4L6tJS146m8TI3vSIxIx6+dIurexso5UQuoi7wgbk3ny/QiRBVMpOiEk0aZYeMA1YoXzGfC/El5isyb0UvU0BtyeVEpqRoc1hjTFjXFF5LASBNozlZZ7LRj+EvA3P94q3E7DqMW9/roOve23fmjcfsmHb6cx1ZcYxH+Y7IjOrnTvE74rH7OWGrj4dt39f/ebfeSEzqfUdsUVpRlYXMqUvMvsusrYsAXz8H8u3cafNW6PbrVGKAOpgsRYbhcDhke2sTpRQPqgctm29ZrDg7P2M+X7BcLJjOZqEbJuowurDudEy+xrmgCx5/HrpFgha3B5zX4G1gtnb3Kf4nl+ZDBSPICoRlRe6bulA08KEIChfHC8CqWFJVKwaDnNVqKYfU0olwenKKtZ61tSH3794hTTTOVVRlQd3U/Omf/hN2tnd58OABVVXxz/7ZV9Bac3JywsnJCXmes7m5zbVrNzg4OOTo6JBPHz3itVffZH19g/feeT+szbXsAS7YeSo5W1eXEqOE64qmjVoTimaejz/5iIPDF+Faom62DnMwgsfxamUMOOdJsxwdiD7CrmzQuubVN29zdW+L7Z0tlPHMZmc0tqTxofgcigFVFQggBrY21pmsD/G+Yr6YsVzNpaDkPKYnyyDFn25ORIOX3/T1GwN8/R79oihIUwlU8Yq6kV72ysvikKYp+WCAtSWiuyAObZXtQJQ8z1mtypaumKYpCtWKCKdphglOcRooqxKrDFEUPkllEajrunXaq2thZokjVyHHMFBVDXtXbqF8ztHxIdPZGSgbBO0VeT7AO0vdlEi7hacsVmRZTtXU0m6nBLBRRjGdnrFYTEkS0WyRyrGw4larJcbI4ifApYwsk4RWBQ1lVaOVYmd3C49lYUrwhlVR4qxnY22X+eKMJBHR5yQZBABmQJ6MGI32uH3rVR48fIXdnWuMx2s0tWU5WwWB6XlIZOsWsY+T/BKO1gJ7KgYeLRAUWFihKvJFi3BcNPsVoL47KD0QEalbS3Uc2t+LU19kGfVBqi5I7f/ZB4j7G0v/XOI5xnH7vwdw9X8XmWexqn0ZuOszEvubVx94678nHvPidXWv7mfi8BoB2MtvVXSAaf/62o3X+/a5dm0/fRAwpr6x2kxbRY730XmL9bUEnS5UsrvhwPn5Oaenp0ynM+qmFj3KMHdlTnqwkOUpk8kkuB1JICr30nFwcMitW7dRSnF4eMgPf/hDfvnLX6KUYnNzE4DDw0P+m//m/81//B//39ja2qJuGr7yla/w/vsf8F/9V/8V1loODw755JNPuHfvLm+99aYAb0nOcrHkyZNngd4eAvwWnGjCfbC8+eYbnJ5dDUyphFWxZD5b4b2IhxdFgW0akiQLrR6KZblkvpyzGRgxzlrygcG5FXmm2Lu2iTIr1taHRNZe0yhWqwZjkmCA0zCbLSjLChcElVEBJFCwXBU4W1I3Z9hGXLPqxuKXAmooZYK4tQhwKzS1dRgjQaEOOofCnkkCy8gEEdk0tPrqACAKQBhb16SCrUMwKcLfWhuyLAsMC9MJ+CuFVzL2o4291jq0XUtxZjQYMNhYwzU+MJttcLUSF9y6KmnqksePPqVcrRgNB+zsbAVmd9EmzXH8Kq24c/cW+UACrt/6rd/i4cOHPHv2jF/98h1sbXn11Vd5/fXXeffddzk+PmI0GrFYrXj55ZfJhwOePn2KUYYbN27w5ptv8ODBQ9bX16nrhsVsxmg05tq1ayyXi5a5q6O2SgCwJ5MJCkKA7imWFU3tsVZJK5H1NKXifPqcX3/6S6xf8NJL9xhkGlRG01Roo3CNVO8VQBC475LYJrgQig5pVzEnJE8LqrokSxPyPKdu6sAIqFmtZC0wJmG1KjAmJc+GF8Dbdt1zno31Nd5843Wquub09IQXL15wenqKYkUVRKtjoSXq/LTreThOlkoCslquePToMR9/8lHYl9M2cJUCnCFNRBevqcWptKrElbWqKuazOY2t20JWWZYcHx8Hhq/uJcvSpEOvtU8YfZ9bYumC2whyuNDgEwYWiiYkG9a6ABaZFgTVCpS3aJSAf1rhlbTJJdqgdHS37NqYlJHfoVVg5Mdz7FwxtQ66Ol6YfUliWpduAeWzkNwCdSzkwOmpAPxKR+BSErfJZA2tNcPhmDqYsSRJyvbONq/89stiKFGWLItzptM5Td0wC3GQJGqBxe3rAKZZjPYUMWAOoGSaihTJ7pU1XnntGsuFY5CPKQoJaNu9jQAIGVBGrns0GHH75pAo+UCYR0+efMbHv/41165d4/S905CslW1A7MP+tlgs2Nu7xu///u/z8ccfc3R8AniygUMlJcOgySOs4lwwAaVQxoCuyZIMi6VxFttYDg8PuHnzBpO1IQcHz0DJmBwMRnz88ad89tnHaG3xTsBl5xx1A8qCThUmVaSpDgWElCwfs7U94tqNbdA1zhcYLTppSSLP1gZHba1DWyJShNKJCXIA0axIAKa+KYNSor/ZxRYhuQ1jP8boMQ7rirm+XUu7mKDfMqdRqRg6SPobmCQExkhIrkyMK/rMnBh4hPjRIy3ZWZowGY9wGxt473n5ocR/jWtEky+0YTZNQ1XVrVxDbFMuAxvDupgoi6ZvNhgKpqM8a5M1hoORyNjUFcenR+wf7HN6dkZd1b3Yr3O1J+iZeXyrO2ttR/nrG8X5EAC53r9b1k34u/EmZtSBCQJeOSmBWgGjQg6O9gIMSztfa83UgxyCjEZv7VJKdAO9VzjlUC4WXTuCQ6Mkxo9FHFm6QqtkEln8KsQNsr5Jz0ds9e6AnfW1CTvb4pQbk+kuZjYsFmKKMhwOuXZN9DCHwyFpmnJwcMCqKPg//YM/YL5a8p3vfIfnz5/z/vvv84tf/ILJZMLa2jr/7J/9U/7yL/41v/rVO5ycHAuwYRvSJOH6zRv80R/9EXfv3xNnXSftbdEVPiCT4W/SiigmYkL6WC1mvHixQps5X//GmwwnJcqs2Nj2fGnnDt7facGYYlWzv3/C+dkKrTQ3bm6xvZuBXqENjAeGqjIsC8njBDSUeGcwGjKfz/C+QWlLkomsR5RmkIJtWGtKR5aKJEdZBpY1CcvVkqoSLV2HMLzqqsJrARycctRNxWjQ5SMxn5Ap1/15mZEr81q1+5/3F1l4SknnQ4yT+468ESz7olwmvuRY/e6tuF6plpDRX38iG/8y6w9o16w+QOh9t861v/NSvO4b7lw+t8/nWh1JoT0fVAuWSk5vWhDOhVZobQx4R56nYR2R+xk7ZkajkQDTbHLj2jVs6Dyom5qzs3PmsznT+axt7RUiRB006KJenxQ1GmuDJIyAwAHiEoZ9L6/r/9cVboUR5kKHVQTyJNeOxaO4REUte0KcIcdeLZfs7+/z0sMHLJfh3oVYa7FY8vz5c9bW1tjc3sT6hq9+9aucn59x7fp1/vEf/WPSNOcP/uAPcM6xv3/A//g//g+cnJzwla98hZdeeomDgwM2Njb4xje+QVVV/MVf/gVf/a3foq4qzs5PURpcI6zOqCUeA2JnOwZnZDUCAZhTKC3F9fl8emEeCHO6K1DFIdHmzSbm954s06Sp5srehOvXt9jdHaD1kvkyyKJ4C8aRJQa0GCtlOiMbKDHMs46ynqOXNYNBQmo8mTE03pENhuxs77JcLjk7O2MwyNsOnajpHd2rf5PXbwzwGZOgEgm8NzbWW+qu0uLS5KylWK3aG6ywDIdDvFfkOZRlJZU3H1ld0gJgjGE4HLYodVyYYlJjbYPWmQg0O6GXS7JRSE+00gLEVVVIbLr2G0kspLp5cPCUk6M5qU5ZrI4omzOyRBgudb0kz6MFeUma5QwGOVXVBJAw0KqNaJZonwbxVhFTz7Ihs/lUAvLaM87FGcZ7qXRUdUViNMvVkiQxjPKcqipAJwzyjNPpKVXlydJhCB7A6AFVqRlk2+T5kL29G9y6eZ+rV26ytX2d8XiLqpRq6OHBU87PpqyWwiaJgA1Eza1OtrizY7gY8LUB4KVNQz7jL723+3d/E+hXfAXA62uR0Pu7aseOonvuUZux+7e7UJnp60f0z6N/3D49+0K1g4tOU/HYl48fq27912Wa7+V70A8Iv6gd93LrbHz1fyYJbAQK+xudBJjOX6yiQVfB00pYZ31WYv+clIpxePy+uOjH1h1P46oWPI3V3Xi8w8NjPvr1R0xnU5qmBiXsSmEPNW2VSivN1sbGBeYnofppbcOzZ094443X2Nzc5OnTJ0LZPjhog4GdnR1GoxEnxycMBjl/9md/xv7BAbdu3eI//U//U7IsZWPjCkopjo6OOD095enTJ3z5y1/mzTffpK4rnj1/LuygpsE6aZcX0XFxbhqPB3z3u99hPJ7gvWLv2lXRmVFSxbbOUZWliOtWlbgG1zXnZ+ecnZ1zfHzC86efAQmr1YLJJOfm7euMhwl1WTCdrkiMEY2m4NhXlSWJKVDKI8SfhizXSDunMJiFJZMDnrKpBMLwjqZ2aJXjncE2GnzeJnbOQ1l56gCINY1lVYgmVWN9qBKGTR1DkooTt0EKFj60N0STgcQEQf7g1KVDgUVhQJm2/S9JTMuKUoHZkWZZSP5zAZcWC3Z2tsWVKs9IgrNpl8CJLtuL588l+R8P2dxYD+BaJW3f7Zoh57i7u3MB6E/TlPv373P79h0WMxHof/sXP+fo6IjaWqySto2iLPjGN7/JH/7RH7G9scnm5iZaa05PT1vGkwrzfntnm1//+qN2bqRJQlPLeZRlRZanGC2raGKgqlbU1QrnLEVxznx6ytNnz3n6/AMmm5ovv/Uy62sDnGtI0o4prQPoEZmKLfsrtCMbI0WwtbVNDo7PsU4qyuJuaxgnE8BRFPJzCX5EAyqObe/j8cU1LUvS9r2OABoAJs/JswGT8YTd3V1e7O/z9OkTzmczCUgrAduciiAfJIlrW3crI4YczjckTRLGlGnbhGQ/tyyXZWusUtc1Vd1Q1eJuGFthTCKtlefnMxbLRY8BS2A8yfolFfduLQw7ANFsILKWfFh/dbjvLha92/Ra7kd3LC0/DYwVhcd4Gxh88r3S2Ac2VHLbNTywDKBLYoQd0CUZsueo4HB7UVi/ZSV4YQEmicEkgbnSCCgUfx6ZN6KxqERjMib5Xhjdrq44Oj7h5PRHZGnGYDhiMEgZjcYMR2PW1rcYDnOGwxGKyO5sWBVLbFNwdnpAWS2kvX0w4PTkiKpesbGxwXgy5vD4kMk4wTYKvDzvqpTxYYLRDa1mFiLJ0NRI222nrzudTgPQU7G+vs75+TlKxWJZt7cXRckPfvAD/vRP/5T/5D/5v/Pf/rf/X955910WqxmaIcPBmCTJMBqcV2idghLx/aquKKzDIa0xWWYoyiUnJwcoPE8PX3By8hlaa549P2CxKDEJ3Lu3yRtvvsFgKC13aSZrZkzkoyB5bMNFVVi3RInGCXVtUN5j8Rgj8z5RGme96Is24qIuGpfhnniZZxdigJCcxzEj39e15ltrIe3ign58EFuVYgzRZ+m0Sa5SAYi6KOERGfkCWny+qNu+QgIencjb42gdFAoDKKCE2ZmmEMjd7QTWYb3u2tt6Ei/OyblojW8s1tm2gGytJWukBWpna4e6aWhcQ1mUrJYrlktpqZ7OpljrqCtJtF1wS62bJjD6utjOe0k4ne/E/73rYioXkuXPFY+NxNLeyyphjMTPMfHW3pLoAGj4sBYH+Qwf5m6bjbaf61Y4+beiK351RduWaakEnECmc4i9u7ZK2bt1twpq2rFnbcWVnS2kBc3KWmiiPETKarlisViwu3NFikt1zeHhIUpJa2Z0rvzoww95++c/5/XXX+dP/uRPGI/H7O/vc+vWLV555QH/+T//L1gVS2rbBHMXT5KlPHjwgPv373N0dMTx8THGaKoqJPZecoQYEwgAbWlsBcq25JLNzTVu375OPtBYt2JZzFkszskHA7RW5APIsgHNWs7tO3s0jcxFrZFkPzMYI/p9K1eRZB4CW0gpK51dQD7w1LXFedGTlBZSKbpYG4AyxFhNgHqRj4rgSXzWWZZSVKWYGjiLTrRoy6b6c/OxP6/7466f58QcqMttulg/5j3QterGglqfzdf/fJ8Zd7HzSbe5xWWiRMyh+mCfGEV259uSX0zs5KsvAHZ9hnEEFE37vbodc/052wcJY0tk03RgYyDOhpwYktDK7kxs6ZRrSIzMDwhsSwfeW6wVZ2SJa8QcJJ5blqZ451lfWw9xt6OsSolvVgXT6ZTlasn5dMpyuaKoChprcVYMRgXgEtzABgkBKXA0YS28KAvVPf++PIOsDc7bQMyJLGJaEkl3v2j3gIPDQ27evNGZ9vTG2KNHj7hz5w5rGxM2N9d56aUHbGxs8PLLL1NWFedT0b999OgT/vk//8958uQJTVPz5Mln/Hv/3r8n47soGI1GfOlLX+LevbuUZcEnn3waCogW65qwnsp+7bxliA/sWQJjLzC88TgnBdPozh3vg7WdI31/TvRz5zg2ZL1IWJts8PDBPe49vIJnTuPmVGUJWqMTSJKwLypPahRVUTKvVqhUi8Out/ha0zQFMMFZJ+YbITeK2tlCRHNBd3jCeDxmOByyXHxhZfrf6PUbA3yS8Mkkmc8XDAaDcEM9ZSEBSppKa24E6IXZIwMyTVMa3+kJOecYDAat/tZFBpQJwYuRBbwpSZKM2nrSJKNpRHsP5RgMhu35xQWhaWpMaLvRRmzSk3Sd2zfusTbc5IMPfwUFFOU5zkpSQajyjyeTIE4tleCyrtHB9ayuBaEfDfZYLOdc37tDmuacz/ZlQUpSNjcGrKqaYl5Ja4GGYlUwGg8Yj8csl0vKsqJpak5Pz0hMSlV68nxCnm2QJ4bUjLh282Vu3XrIld0bbG3uMJlsoDAURcXp8ZQnn4kOQNOIfoAEIKC8aoPn9rlp04Ftkc3QssU60Vro9AtkUdZEwcv+wqKUaltp+otqBIhiS0B/U2iB394CLGPEtgt8pxGStJtCH8zru/B+EWsvfld/8+hXkfqVonjd/Y2tf6z+AhpBuz5wFhfGy+/tA4X9hTgG5herS93r4vhXxMp9fPUrdP3jqxAU2941989XCQIjzzYyJXvfJ8+txuHC85O2WucqDg4OOT074/TsjMVy0TJ5mlD1jsL/oCRR8aJtNByNRHPH+/Y6jDGsVis++OADvva1r/Fbv/XloEGQ88tf/pKjoyPKomR9Y52rV69idMLutR2GoxHz+bx1inbOMZ/PMcawvb3NK6+8yv379xmPx7zzzjtUVSkMKWfxvglMgZq6rsjzAWVV8IO/+6G4ZSod2ieiMYa0rOZ5xtraGoPBIJzjkFu3NnjppSFaKd7+2c949OjX3H94hzfeeJnhMGFVzNDagxeH8dl0ytnZMUVVsVotmJ5VeOUwqbSCeFsxLyq8FcOeslgFIMDjlSPPUqqqYJAPMAnUVUGa6zCWNJPJhCwbUtWeamVZrlbkWd4ynYqibvWwmsZJi4tKePrkOWcnC3AJ2g9Et0wFk49EnPmyLA2MYx2s7gUsTNKMPMtFRyqMuygUnmadRplRIo67tbXNZCLO6oPhkNF4zObmBkCbDDx58hnaaHZ2d4iO2FLtrWRXD4DOcDhkY2OjB97bFujzDj578oRnz57hnOP69essViumiznOOZ49e8ZisSBNU25eu85Xv/rV1ujFNqIVWIf1Lor/zufzdv2xjQQeJtGk3jCaCMgqydmCujnFNiVNM2VV7TPZWPL1W/fY3lsLzK7okhjWA9cxRowRYwxltNxL5NrFXTpjOp2F96WBKaRD8Cbutlp1yboxUozKslx0HE0qYuVEhmdnmqTwKK/a9oGmEb3B4WDIvdt32LtyhRcH+7x4sc90OpXk3xqqUtpovReDnMFgQJrW1E1FUa5C0JT19vReYOqtCOxXXWteWYqbHV70Gp2znE+nLII+Z79g04IKSss9i9cSROeVVi2LKGpmyZ4Xf4ck9d5jtEjHd4UQWXe1EiZrdD+TtsvwsGKiH8Aw5xSKJrBmVKvPopRGW93bgwhruiKW2JSWoml8tYCKliRRwJzA1lOhWh3OTUdGremSrMjQhA4oMUZDUYVjFUxni7APhf1AyXuaxpJnOYPBCK0TBnnOxsYaG+v3MEaLi26asLdbAo2wGpxjMr5N0zQcHh4zm86wVmK+JElRaLx1OOPBOZpa2tZAGFQW264BaZry6quvyjknhpOTE5yTMSLFB7lPm5sbjEYjPvro1/yTf/KnfO1r3+R/+V/+V/7yX/8VSZqQZUMkjXZUZUViUpqmDIAMVLaKkC5aO+7f32E82qRpCmp7SJItuX7jBsdnn1E1pQBGVw2j9RVJUpPkYIwwktERdJaxZdCo0rbumRBbcS1GJ6Bj0RO8ErA6TTXeJCwWi7CPxuJgv7W2e0XQWoCfrpjYJA3KyHk04R4raFtF4zoZ29BiHCJu6VGz+qIxRJqmF/4t47+LkfqxUHyPtZYuEovrjGoBvwvXoVQ7TmMyjPctiBj7OmSfkQyvLTgnioTk4v1RijU/6eI7fFi3I1uZwCAXV/WyLCXhXi5YLJdUkV0TGDWR+R/vXaulFcBGF9ZxSSQjMCBswVi09rH1VwkjyzqL9qal6ClCq3dg46Hi57pY0LfrWL8V+GJSG4/WMXgQgA9huMhclzZjRQQBOkaYrB+ijbZczjk53WJv9wplsZJUIQJSKFargsePP+Pq1WuUVdXGTxGcOTo64i//8i/56ds/o24a/vIv/5I/+IM/4M/+7M/46U9/yje+8TVGozX2ru3xq3d+RUC7yLOM+/fv893vfpfBYMCLFy+o6i6HEjZTx5KObcaiP+tDC+uAB/fvcfv2NSbrhsW8RFFhjGO5KimrmiwV0D9LEzyK2eKU4XBMmkYAIQnrmBjppGlCohSpFpkojwft8L7Cq1o0FLUmCQm8MM8LibmQ/V2HOHMwGLBaLQKgG4AmQmwfc4mwLkcwGSVgN/A5s8J+Ef8yaBZzjn4OEoG7y2BdC/CHuTMYDNpOpvYawv4SAbXLgEn8fL8Dqn+O/WJDXF/iuKnCOIr5nexLqn3WMWiJIJfCYxIZt/Ez/f2vD/pF8PsC61kLMyxkbEIEQJOkoUugx6GNBowSVxu0tpjUhcKVgH5tHnYhn456yCnDwRC1rbh+/ToARVkwPZ9yPpu2etbT83OqspLihG1obEVtJVaxRmIMWX9EA1dwlaaXl4fR42NR34Dp8JdWYieYL8W9OIwkzqdnHB4dMhlMAlmgIdUGbwwHB/t88OEHjCZDdnd3GAyG3L59F+89R0dHLQv67/7uhzx58hnL5RLwPH36lB/84G/Z3b3CZKJYraQb4Nq163zy8a95/OhRu941dU1VV+H8pTgnHgjh+auobdqN9TiD+qDlxTHZAdD9caq1Ik0ShqMxW1vbpGbEYm757NER+cCRZB7vDJWxYBrSDLLMoBMZk2k2wNNgbYWlIR9kAlLaBm8ta5MJu7tbTKdnzGYzDg5e4Jzs+XUtY302mzGbzVBKsTae8Ju+fmOAD8R5zwN5Low721jSzOCcZnvrGvPzGYtZiU+7HunYRlJVFUaneI+0T4QbEh1wY3tBXMSKoqCxJRsb68xmS2azBUZnbFzbwpiE2ewMj2WxWLK1tRWce2WTkT9Loi6VtRIsPH78hNvXM1575RscHT9ltjhguTzDuhrna5qmluSjtozHY4qiEmF+31FFkyQBJe5HcQBJ5T6yB1N21tY5ODrk/HzKfCGDKUklyVubrFOtamHUJMKI2VzfY22yy8baDR7cf5W9KztsbeyRmDFFcAbdf/GU5XIZ2oh86AJUeBfcczAoJJhw3gV9n4vtSRcnQO/JqsgwiIsyvQWjA8KACwCTLMYRM7zIMFPxW1XXCtJf9OGiuUWfWRe/J25QlxfPPlPvckW5r/cQv6Njk3TVqf619MG6/vn1A9j+xijvl0WtvzH2N87+OXcvf+mZxAXZXQAvL5+HUgobgYHeM+s+87/t3Nve83bTkgdmtO7YLdpgm6iX14G1L/b3OTo+oaqlutI41163AAyhutQ0NLW0jp6aM9JAOe4HkJF98OmjT7lzRzQj33rrS1zZvcKN6zf56+9/n7OzM05OT9hY3yBNU6bTqThnOmkTPDs9w3nHcrHg5Zde4R9873u89vpraAVPnjzhl7/8Jd73K4Fyb6qyRIfE2DkXtF2Cy1xsgVIEHaNOu6LbJOTnxhgSk+CtYzLZ4Pxsyd/94GekacJoPGQ0HDAaxRbdTW7euCkBqlKMhznW+1Cs0CyWS05PT8RMomk4Oz1nsZhhbUlZTxlNMjQ5RaPDPDDkgwTPiqpeMl/VJNWSxGRkAxGhdS5UnTCYpMakInwfGdHe19w22wxHQ+anjqpSDEyOVuJcnpiE+WJBU8d5onj27Bnz+RJ8YAJqcQQWIoG0BRut0Ynol2RZDh5GgxF1UzKfj8Qty9U0tsb5hqa2ARg4YDY/J0sT1tfEVr6qa6x3NM6iEE0kBQyHUn1/8eJFcCsfEvUunzx52gIFSilms5kEzgTArKxJdMLtm7f56MMPWFtbb/UCteq0MLI0YTJZIx8MWSxXKA3aK5SuA3CdoEvF1772Bnt7uxwc7NM0x5yeOYaDlJ2rI3av7dE0FV6tsDQ0jRMgyCmSdj0I1eMkYXd3h5PTQzElUSIgX5Ylq9WSxWLFYl7S4EjS6NwqwFySpmFNci3DXFzIPGVZM59Ly3lixNFNgFgJMqyPSXZgnHmPN0Bwc2yCS/JoPOb2rducnp3x/gcf8mJ/n1pVLXuoqgqKYolJDHk+EBfoYFihExMARdlMmsDUqOsa2zjqWjQE4xpqkiSI9U9ZrVbt2meMmFWgukSj7yrZAmNhv4stjkkEz8K1ulDUCluhMIp8AAPDPQBpq4s9icZLsdG7JiTG4Tj47v2eYNARJShiRT2Ce/1CTbeea01ILKDdRBWdMY+PRhyRcRNY10iLnYe24BoLai1DRxlMIqzcmPzEol2W5R2LsGV6Gaqq5vx8gbT+hyDYpEGQP2oieRKjGY1H5HnK2vqE4XDIaLDDYl7hnZK2ZeQeKGXEfMxaZvM56xsib1CUBavVkv39A168eMH+/j7g+dKXv8y3v/1t5vO5mOBojdYpo9GIq1evsrGxzubmNltb2zx//hytE77xzW/w6muvs1wtsU1DWRQh6RDGkrPBQVdHbTWL1p7d3XXWNgA3wSQjrt5I8GqJ1o7f/4PXKYqKxCTkQ+TatUJ5SxX0zlwoQDc1pEnWdqfYxuO1D/chQyF1iiQRHS5hMAoI6BpJbOK4jvtzLKjGyn/ct+RZ9Vk54pqskIIoKvZpdMyBdnwEIDLGOlFLO8ZYzkGepy2Y1S/exmScsEfG1l16cY/SGoMwjNuYrBcDdIl7F4t578F1xAHXi3fi+OnPn8tyKBeAea3F3dLaDnhNIplAYqdMqBhshrbhyGqMoudlWbFYLCjKktlcTGqKYiUyAgEAjPfFeRlXfaH8JiTSXQJKW1gX06KmxxLy7Zy0XuRDZB3uSSi0wE38O0Q9NXB0oOJFZk4LAHqC6UA8r4tgYHQzbVcn7/HO8+zZU3a2tkLuZHHaBnBYxtHjTz/lxo2bXNvba+NwrTWffvop//1//9/zq1/+ito1YazAX//1X/MP/+E/5Dvf+Q57e1dI05wvf/nL/O3f/q0YCWrNtevX+eM//mM2wrN5/Pgx3nkaGw0MLE0T264hS/OwT5Z4D7du3eHll15ja3OL09NjXjw7w6Q1a+sZWW5Ikg2SxLC+sU5ZLimKheRxDtJGwNjVqkSpstV8BE/jalCOdDQSsK0R4y8NJCaH1KHTtPdcFanJ0Nj2HicmIU0S8sGApqnFyAdhBHnlQSth+CYp1gnAI3u2uJkmSUpZlqRJ2o79eM8jcaDtvmnHwMUupTiW+gBbv322P97i2tDPMVqyAB3jrv+d8XU574nrWL9QF18xT+oTLCKzyvvopBwdpjuZi+7zvm1xjkUgkQJJerkmQde/6V1DRzjxdJ1G3oXCgu7WqzzPA2moCdcncyoJBTjvDZGxGwHMCEzGwkXbuWKtmOalKePRmOvXrwvTvrFtK+9yueR8NuXs7ISyqlitClaFSJrE9cp6165ZdRhLUtRwNLbvRmzRWtb2/j3vE258z8zjydNnvPLSyzglLsZeKTKtUSrhww8/YHtnizwfMBqNWid0EDbc+++/z49//ENWqyWR0agU/Oxnb/Pw4Ut897u/05Itnr94zqNHj5ieC4bT2IpVsaSsSpq6oWkso+EI27iQK0hnQFNLF0NnThXHblzT4hopOU8cB5FoEmOkwWDI66+/zu/+7u+ys32FYlVzeHDIydkBz58/ws6lyGOMBVUyGKtgLmfJQ9ep0hpjcuqqZBlkCwbZgOn5ufgnJKngSk7Gd5bmOG8ZDAZiBtLIHmitZTy8OIf+bV6/McBXVRWrcg4expMJq6pAG0WaCmX1+YsnlMtloPxmoc1KRGpRkIfAcrVaYZ247XoXK9YEcXba4L4sS0yiOD46o24sCo1J4Gx6xmw6Yzo9p7ESIDv5Clnw0oTRcCjBgvdYpzF6yHg8xjaOR0/e5cX+FtZ6Glewub3BcjGjrDynZyekqWFnd4eyalgWBSZJmC0WEsR7MEnGajXjxeF7FOUR6AKTJqxWc/YPXjAeT0AZcVBSCcppcBasoalSsuEaW5Nd0ixnMh5z5co19vbucG3vNokZUFWO87MzPvn4GUUhmlWxEhhbqiQwiklJH5qLih79l7Qa9M0hlIpaBtHNJ/xM6eAoFqoS4airpTxr6ANGsZai2gSsP8EiW6EPnPVfceGPm0p/ke9XlIALlaP2qnrg2+Uqcn8jiZtav822v7HERScGvt250/4MvgjY7ADG+Irv77MVtY4BbaywxnOOT647T2kRte097D9D5Vzbfo3vAlO5jtBi2joD+1Cx6SpgzketyAD2QqhEC3vJh8/EzbSqa6lqh9ZP2QSCeGwdAtVQuYnBr8dRHpfkg4G0VpRl0B4ykgijsM7z07ffZjxeY219jTv37rKxtcODl17iFz9/m5/85O8ZDAcUZYELwYaA/4ZVsWRjfYN/8L3v8bu/8zvcuHEdk4ig69//+EftRHBNZA5JUlyVonlQrsTcIdK7Y/KkAqinlQrU/H61J1QGQ5Vbh+RbxPU1rf25Dve5Bat9u7ZpLYGCUoo00WTZgEE+ZDgaYswWg1Tz4N4Dsiwlz1O0iRR7R1UVYjphK0ziKas5y9U5tSupy0IYDxhsU2BrWfM8CmsVqFClTGq8qgDH+uaQ0XiDcmeT+axhPi/Ai65JFPvFW9Y2JkxnZ2HDrkBbvA5JjhNBbx/c5/C+HWfCYICm8XzyySfkeU4+yBlNxoxHI5TXxFaBo+NDyrJgtLVBlqct47AKDp/egklSjE7Isxzv4Uc/+hFPn37Gzs4uV69eDY7LKYvFgsPDYwaDQWgXDc8FCbCdFd2tb379mxRlwfOnTynKAm1SHj/+jCu7O7z+2qtsbm5Iy6I6QykX8HABN2xTkqaW3SsTdnYztrZvMJvPyXKDMZaqOSfNFN6IuG8S2ihtqBa3samPrZxwfHwS2CIiJp6YpTCvlGYy2WRn+yZlfUJZz6XS6aRNIe6zsRUItDg9G01VutaYRcCuXJwYAzDkCQBWrwXGKKQlVSkSlYYE3WFyw96Vq6ytrfPk2TOePHnK4cGBCAkv5zgna2dddVqvIv+gg/C7AhUDaRuccjugSqFpbMPZ2SnL5bINxOO6Qai4RqaiDuYyF+ZoAMjiv6OmlgRiik4qQgXXS1kjBV+IejVh7iQ+7Gmhnce5ADSHvSToQfnATuwXd+RPuX7vZb32wZE8MnkgAM+RjRR30AsFN2GuWRvXoH7hRuFdF9QD7X2Xf6oWEIogntGJEBK9D4ldp8NkWhagOBpH12ytBZwD0SNKEtOyrPRpaE9NNEmi0dqxvj4hzwfYqqF2ri162pCEnZ6ecO/+fQ4Pjvj+9/+Gd955h/l8RlEIU05pxenZGa+/8Qbf+97vB7M2SYZ++7e/y8bGJrPZlOFQzH0+/fQRWT4QlnFjSbOEJE3AZ8znM6ytcMEdvrGNuKmHRA7VMBgpVHKGdzMaROA7yxNMohgMcxor96OuGxxQVqIdqoxCtewaiyIFr2hcIzpaSCcFxpCmoejqXUjqRQtWzC6EJRYHhcRnkpRUVTTpkkK5dFuGdm5kLuR5hm2iQ2snPWICGIx3AjG0Y0R0K6PWVPf8OzkbGbuqTaJknKiw//swjlQHYkMLGtWN6ErrxIhoeCgoeA/KaFwo2HonJhR9/a44bn0YX2EWBL9cHeYIJFmKazpwUAfQNrYqK29wqptLLiQGSmksvmUwOiuxQXsOiBbZZE1kQmKM3QQ9qLIStreYAElCV5Yli8WSVSH6WtY2IhDvLNb7Ll71tAxw5xLR38K3bb+2AReusZV3CYWIqBUoMXHXddECEj7e/5jcdgweuUfhBNrCfaxweKT9r4uhW1DQwfn0jJPTY9Yn69SVxbZFfIXJhG320Ucfcu3atXa9fv/99/mrf/1XfPLJJ6CVFEpC7FwUBR9//DHXr19nf/+Q3d1dXn31VW7evMlsNuPq3h5/+Id/yMOHDwF49OgRh4eHRPA0ahZaawPrXuZNU4sZz5fe+grf+tZ3uHnjNmkqMifOlSxXc4piTtUUzOenFEWBazRNNcQ2Q5yrcK5m5TQnJ4cUxZwsT0hTMRJTQNWUmFTj7IrJZEKSDDBJHHcCsihbkebC6i+KJYlJJJ6ppRigjKHx4IoShwaEgV3ZmlpZlKvwRpHlOVUlzyRLUjDhIfaYuP1XHZw54z4eyTIx/4iF7j4IG/eqCIzF3CqChBGM6oB/165Pcf/o50v98+qTIb7oz/i63IZ7+dpi/hlb9OP6AP3WZInt++z+yFSL3WMxDldKXQD9LpyHj6uL7JveiWFLPDfnPXVVoRAJH5OmJGS4kNN1GncdI1YIMX1mX8gBTNqev3OqjSmcUmTZOmtra+31l3WJtZZVUbBaLFnMlyyWS86n56zKgmK1FJAtDwy4oFmdhv3G2YsFhY5V2JM98DLho8HkYrFgNp8xGg2x3uKdFDnTIDPwk5/8hMlkjWvX9rp9W2mWyyUffPABTdMwmYwDIz3km1rx+PFj3nrrTYaDITjHZ5894r333kEZMVoryoLGyv7XWN/Gp86Jvp1tHMtliXQ2ZChk/yT6qQsPoN1LIqDnvZAPrHekScb6+jpXrlxlc3OLnZ1dnj87YrmwrK9vcOP2bV59/VW0+X2apuD87JQXB0959vQTzmfHzM+nVPUKZRYMBzlbWxuBOAKNg6pusAML3jGbrzB6SZKKBjJ4VsuSfJCxtb2FtZbFcsl8NsN6Rd3TLv63ff3mLbqB4q6UbitZdW0DlVgYQdLuOgjOROII1jQNMX5ubE2aJSKoPS9RdItIlmWsr2/KIuxcW2GQtiQVqmkFHkVVl6wHgUJUNAWQarr1NePxhGq1YrVaiQZUlrEqBDh0xuKTIZtbW8wWS45Ojls0eDBaw9qa+XJFkhgWRRESc6lELZdLHJ7xaMT+0UfsH/wah+hqKWNZWx+FhdJSVQ2jwZg0GeC8Z2N8h7u3X+PVV94kz7YYDkbBltoxnc55+tkx89ksMBtkQiXBXc8FCn8HZNHaLreAX3hFoK8PNLkg1tyv1tTVxUVaKSXirt5fWCRjyyh0LZ9t6wAx2AvHBdBCcI7n1He/7bPw4u+gAwQvVJx7SVNf3L1/vpc3kH7Fqf/+/ibS34zid17Wzbv8/vacY3zU+3z83v459QVcpUoqAIPqAX/9zUkwEkneL4OIcfJopcCEarAiJF+0VfIu4ZPNT+su2FNKgNz+pq1k18GHiighcSCwfebzOXmeofAkiaGqLDiHClpfAvZZXBOdimLA2jCbz7h27Rrz2RTvU5IEUFrmiRfDjh/96Ed8/etf58bNm9y9s8321javvPwS/+gf/UOKomA+n6F055784MEDvvTWl3j5pZe4c+dO0C6Yc3p6wt/8zd8wPZ+iUdS1aDm5cH4RePDeS6uh8qLPZMShtj+GjDGk5mLF0wSzCaVkE9GBVaBVABsCWCr3v9M3MiZBtxprHjUTNyhp2ZgDcYwJGBDZy9EZS+tUgoJBRp6n5Lm4bCfJGmm6zWhoSNcVeS6aeI1kCnKOOrRfuRpnC5bLc7wS5siiWODqisnaGK0do9E6i9mK2XyBSQyTyQTwocXTcP36Hkp70syRZj7o72nwknw570iSjNWy4qMPPuH09DzcC4N3msViho9Aow+FiSiSrFVgPEKSJ8iq52hsFQo0ChykA2nPVl5a+A4Pjzg4OOSjjz5iNBrz0kuv8PDBS6xWwsDIsgG2udimn6U5b77xBj9/+23+9b/+C549e8b1Gze4fuMmp6dnXL2yy2AwCKZGHZO8Ca7oi+WKxllu31nn+q11mmYqQtxrDqVrUJ6qrFBNKt9vU6pC9jhUDFg/X7Vu6th+IZPDealmLhdLXAO20WiGKEq8kmJP3UhlO0074xW5VIPo7llWqxJrV+T5ALKeMLyTRE9r2jYzpURrRFpQZSzHSnps5cjzAevrG7z+yhuUZcHZ+SnT2TkH+wccHx9zfn7eiknLuPOBRdSI7pgxYCTxV0rY/0WxCs6aTQDQDcNhhklM0NpRQatQwCZhBMq4IYBkESzToToriaATExitQwGLFhzxYZ3CC1vPE6vYQYuPrviiVGzl8S1gnBD3SNv+1y9GxSQbwFvbjj/raZ3Olb+oZ0Y4tyjmD+K2F0HLjmnTZ+W3S33IgELRQQVw8hJoGM9jufQtgBfXNSnshRTKxGSwA1FNIomPMToY9YRz0UpALO0ZDqMzbSJu7MjeYzSgxVSpWBXkgwGbW5tYZ1kWS4kptA8A3yk/+cnf8x/+h/8hP/3pT2kay9e+9g3KsuC//C//S548eUKWZXzrW9/kW9/6Fmt0pil1I63tRmk+e/I4rP8CpsUkJ+73WZaS5gkOR+1mWFejGdM4T1PWKCXtgCCtgQIgCZgJqmVqRSak8xalIQ0SB00jzy8C/KJza9sHpgLopDHtHp0YYe/gNVmetUm794Rqv+rFReCCu7Cswx1gGxPfdtzFgmcYQ/HfEdiPGrode8bgQpFR9N065kN8xTFrEkNZNl1cB8IyUg4TYtMyJEGxmGqMaBKihH2sQ7wmSSZt0hvHoICsdQAHLxeMI1Mjb4/Rsnq9F1MKJfMqyrPghSVHjK/C7wngZzuviAXThOEgDyFwJ3Pjvei21bWYcpVlSbEqKMqC2WIp+UpZgPPUZUXd1C24p5SAh3Xv3sciaWRZ2jDG4nfJWt3TAiRKVLje2hPlXdp6BZHpFwvdkbVDcNR0/mIxXeIjz4uDAyZra9SBGIDSOBXkgIznxYvn/PBHf8c3v/ltsizlytWrvPXlLzGajHny9DOePX8uoLYXLcKPPvyI7/72dylWBfsv9lkbr/H1r3+d9fV1vvf7v8+9O3dAKU5PT3nvvXcDuNfQ2JqyLKjC/atqYUE11jEYjnhw7yXG4wmPHz3j0acvyHPRT88HGevrG2TZmM21K+xdeUAedII9jsV8zvHJIefnJxwdv6AuFqyWNVXlyHMTGMkWh2WyNkA8z2th8DQSL4rzs0Jp2NnZxFlh7OOFQJEQHGCDzEdRlbRxYpLgtMdpS2lLat+QqoQ0D4L7Yavz3reMsj5YBx2b9zKIF3OHPljXB9/6zrj9Qna/80jW74sOt/E9VVW18XKcd1mWXSA8RNZeXy6oz0LuinH2c98rcy9p96D+7+UzMd6Jc7KbA/H4nbyHRJVtQa3Xei+/79qehb3X+06tUYHookJxMba6xkJhxC7i84nPIDIKI0Adr7PLpXsxoIr5Z/QfMOhECEWTyQR2oalEc1SK4JbFYsbh4SHT2Zz5fBFcfUsqG40Pa6ztdAWbJjJhY+zSabnGe1o3DU+fP+P27VvCUnUerQXIc97S2Jof/N3f8qW3vsTDhy8FkE+Oce/ePV577RWcE6ONo6Nj7j94wLVr19lYX8cYTV1VPH70mF/8/G200VRNGQxRxZE4SkAlSdqLTWNXhnQfEAwUJU9Soa1eOgzCEwlrtAqAYMJolLGxscX29jaT8YQ0zahKy8HihKPDc5SReHM0HjEc5KyvrYn808Ov8qU3vol3lvPpMYeHLzg4fMrR8QuOXpwxmy9YWxtTVTXaKBazJYnRWNdgjEObmuVS9GIXywV5nnF6PufKlSukyYAkq3FliXeXArV/i9dvDPCJnohqBTllgqvQzy694mkqWj/D4TDoXUgVq2vvrPGIM5sIiK9hG8toNJZNL1QK8zxnsVjgnGM8lhsoIJ3o/wyH4sSW5eISpZwE84PBAGV0+91RR8R7z2olyY73UNULjk+XKG2ZzWcMBsPQa58GJFyRpgPyXKizihBkJCa4/NYUq5I0zRkOhiEIaxgMJuBT1sZr7G6OGGTb3Lr5gDt37nPt6i3SZMRisWK5XHF8uM9yVQiwUzeXFmgXErFONyG+4sL0v9fSefnv1knL7mXNvP57L4Nf/X9Hnaj+72KycbFdIkIdQRCdDizrn3sE++Kf/RZdwr2+vOHYXrLUrzz3P9cHDi+z8Prsva7NpRMt7R+nW4wvbnJ9O+s+AHn51f98rL6iOn2xPvjog8B7n40Rk8bu1UvW2gC4ExJVfPF5xGeB6oL9fvU+nqNU5aqeuYjn2tWr7Gzv4Kzj4Og4iLmHqmEce97jncWgwatQ1YLT01Npg0Hm3WAQAkkN3ksL38nJMT/4wQ/4+te+wY0b1xmPJ2xsrHH79i2pXK1WouHkJDD9/d/7PR4+eMhoKLqdL/Zf8PTpM77//e8zny+INPqmbqjKMuig1FSVADbLUP1ChXVK6+B4p4iVzAgYtNdH1E6LiW9sEVDB8TJU73QEClVgLgS9oPhM2+Ck00zTOmvBWRnPFqVKeY82GCPjYr5YBYMAeS6dYLFUqqP0gQjyG7LMMByl4RiaLDEMB7uB2Txia8PgfUOSJTirSEwuQrHOc3Jywv7+Ps567ty7gzGa6fScuqnQpiZJHFG/u6ktZVGitBZnX2+4ffMV/vZv/479/f1QIY6VqY4J563qgFUFjZXEq6kbnGlQGrIkpbHSWuC9w1vHaikahVd2rwp46B3eKZraMT2fsbm5zd27np/97GfM5zPSNGvnX5qm7O7ssL21zc9+9jP29w8xJmE8GgOetbUJV67sts9CADDTAkcxEarrgvXNq4wmmtlshcdjMiVmJtahjaexHu0MWglrKjEJzmusKyTpDMlWlsWWUmlF0zoJ7WWaxeqcZXlGPkxZLBcoXWJxeN9QN3VXBPIK24gzn1LRcTOIJCcpxgiQUBUVaSqFrrpq8LQYmawtiJi+STJJIq3vBfUdK055B1qRmCHra2O8v8Wbr72J8xL0r1Yr5vM58/mUo6Oj1jksBnCNlfOXhLgCD8N8wNam7KEohdFiPmJMEsZM1MfsVeADEqB7gHqiNUYbxqMR169fx6QJdVVzNj3n9OyM5XJJbO9pmo7lEFtnYqEsxjL9tb+fEESg2vq4f0Sx/+isSVsEisWZgAl0Zkl83sE9jtVYkPM+gI/OtQ6bWkUQsK/96tpWY6OjeUU3bi++un07gnxdch8TwChL0AFFcU/qJ3Vy7cLq0EbS352dLaQwWIeNKho3aGazOY8+fcTLr7zC17/+Deq65vvf/yuKsmi1R2OiePfuLf78z/+Mx4+fsra2zn/2n/0/+OCDD0Ur1jn+xb/4H/jFL37JH//xH/Pa669Jh0Q4/8VizuHBASZJaOoqJDvRPEphTIpShqJoyIa5gME+QycDokC50QnON+jQWut9CYigfpKmhIbwFnyRhAPKqg7aripIOcRCqQt7hAKvcfpiMouXxNH4NGimIQWuwDKXAqciTbu2bflK+VOGQxhPxBgHua9RN4+u+Ngfb/H59mPKDsyUVwuO0cUpMaaKhYAIwsVibD/O6IOK3binHX9RT7UfD8bx6lwnj9K0LMx47hGI7mJiCDGn83gtpiYexMk9dB3EMqhzAt778Jkkldik1T8j6j6BD4w5vDBMkkT21zxLGY9GF2I762U/qIPuZFWKWddisWC+mFM3oj25XK1allXT2MCOlxgtyqE4J+Zl3tO6b4adFGublikk49j3YscI9PWLlVEnrb+mxSqBbz+PlxhuOp0yGU2CfmaDc1LQs16MJj578oQsz/nud7/Lg4cPeO3113j+/BknJ8c8efKEt9/+OYeHRywWCw72D1gtV0RNOmMM3/rmt/jd3/kdJpMJxXLJbDrlZz/9CcvlIgAKQc/OCrgnUk5C/qibBleJ1IO1kGfSzl6uKqbMMYnhKDsN7fSOJJEiUZpmTCZjNjY2GOQ7bN66wWsvfxVtoCgWLJZTTk+POT454vTsiPPzIxbTgvm0JMsasqxBK4/SnkGWiQh/Zjg7Xci99BptJCYwOm2NJGtVIfGba9n3RVnh8CRaBWBXMxyK431RCiFFpDUMg8GALMtaQD7OwVa2IuRTfU3zy/ne5Tnc19jrz5+LTFHaednXRY/HNkbOzToxi7gMMsY1pd+t1QcV43oUAbl4Ph0g1+3F8XPxfOTv+pIuoMRU3bVYBM+P+uXdnhjPNR6/u5/Cno5FYqVkDPmW+S7nGHGNyx1n8Trj2hjZlZEYFfPPfp7a7dUSe6ZGBSY0AfSS4ydpglcwHo+4cuUqYmxVUVUN89mM6XzKqiiYzsTQQ0xvirbN3TkbOrBCbuUsWikqhJBVrAqOj47Z3toR9nJR9PKPAXVV8vbbb3NycspXvvJVhsMRe3t7fPnLXyIfpJRFyXy+5NGjx+zs7LJcrmiahtVywbvvvsOHH3zQtqEXPXdh+S+0545Gcl+to6wqlsulsPRU16Itj02TZVn4WRzboVIZBXrCmCjLktNTcVfP8wFpsiJNcnQgMhiTUBRnABympzx69JzRcMR4MmE8HEqOsPMyL93/Ks7XrFZL5vMps/kZT599xsHhM6bTU4qyxqNBNTRNxUw3NE7A1XwAWpcUxQvp1FKSH0Q5l9/k9RsDfIPBgNHaTltpy7KUqirFptg7sjRDY8Lvg1ilUoxGI5qmYT6fMxjkYRM1pFkCntCTLDoKVVUH9o0Li5llPp/TNDIIkyQhyzPmsyVZNiBJU6q6ItWmbUdyXtp2rQ0uvvh28ZDKXoJJNNPpKTqAgkanDAcpZVUyHk8oyxVnZ1NZ6Fxse9WiIeg8zmZMJmskOiNJBuBzNnbW2N66xt3bD7m2d5fxaJM8XWO1qlksFnz2+JimPhQ34eC05ZwPFOu+YHAMvjvm2OUqTB886gM7lxeZqKUQE4z+7+J7LwBzPVDsImDkA/usE451Hmm77AVt8dyEzReTm+7ncSOJ/+6fR78y2wcWI3DT3wziceIx+tfeD7T6P+tXgPpmIF0l5/NJV6yA2Tawunif+/e7//fPg54XHev63x3fHzfDfpUnjocLDHcfq3DhMyFIVpcWif41xZaN+LP+c+4fq4mufD5o5iUJ169d53w6ReOpcUDSauYkiaEOzwdlcYGx4L3n6PCI4TCnspL45wMJdEI0TVXVTM+n/M3f/A337t3jjTfeYGtrA63XAVqdAtGb8ly/cQPvLM+fP+N8es7f/+QnfPzxx0TF6qZpggmOgPuLxYKmqRkMZP05OTkR1qoOTGQtbBcfSqUtwK66NjUVADt8ZMbFeaGJDFcfNuS4mUPn9JmG9rcIykJsx4ttVVFzS5FlWUgmQnKo+i1MEYRRQfvD0FgJaura4m2FNoYsF9aEO7KIZlYUOCdoUomBhvMNJglJik4wSsDBNDjdAuzvH5PnOWmaM8iHrVtkdNBNTYbRCWmSieZnWB9u3njIf/1f/z/ZP3hB3VRt0Ot9YC8IXVXAZuWo67SdG0qB0YrhYCj6p8rhkeM2jVzv7du3WV/b4OzsDFChOmm5ceM6Whvu3LnL48ePgkC/CcFRQlGU7O1doyjKwAxxbG1tsyxWPHz4gHv376IxwsQIukBhkrRMCqWlvbgoSnmSAUhx3lEHls/6+jp7165zcHhM3aywrsJZYQvZkMgBrFalVMNLkYFI0xznFInJmM2P+F/+9n/GJFBUM9JMmBVl2VDXDk9ktsB4tIbWaTsuvZfEcjAYhftYUJVdQK4CiB3bjFRIaOumIkllH8V0AW+aJm2Sq5XGR7gpMKK0MSRKGI/D4ZCtrW206oybJCHxgU1bU1ZVO1dj0FnXDUVR9joDxKm7KsuW9QK+dfSUPUDGaqIN2mjyNGN9bY2NjQ3WJmsQ1rOnz55Je35RXlibBdhrJBFv6rZ10Vor/46UNr64SNSCA3FPdT2WTbhHyoef48PnAzseAWfizyP47yNQGPePwLoMS1C7/se5JOuDDfIIkswIW8ETGjTbdkmjO8F1eXX7AIHFeAHkCa2YrcOwVxDE7GP7TwQFEqN58eIZ6+sTaWMyWpjdSuGVa+f2J59+zPUbN5hM1vn2t79Dnqf89ff/mtlsRjR62NvboyhqdnZ2aaznYP+Iw4ODdh/TWosu8fk5P/zRD9k/3Of1119nfX0dBXwUHLAjA0gYeAKC1HXDYJBy585Drlxdp7EznLOUVRHG5AJUI8Zn9UpkVozoHKPEtKmuhSHpnGgHpSkCPgfGQF1LkWk0GiOamA6lPNqrYEole4YJBQ5pExMjt8iUkzkcCrteNIOi9ljcE7x3ZAOJpcVULmihKgEMW155D0y8AFT7i8688d99KZJ+AtwlyN2/+7FEX1uvf7x+rNYvYgo7rouRxJgnxm1R8gGSRHRF43cao0mDppaMV937e1dMVmFCWSvmFkSmKjbiWeH4SZAhadqW/sgcigZBMQBwzsm+7Lvv6oCLOI+ku0InYhzhvccOXTCXkjnkvGiMx/+qsmK1KlkuF6xWIslR1pXkQjY6/KqwNnYabdH51/suRo1rU9Tc689550xYY3z752Uwxzkr+pIonj57zoN794TBHPK6qipJFRgl0kyfPvqYoij45je/yfb2Drdv3+bBg/u88cYbfPvb32E2mwd9w7oFNIqiAGBne5vBYMh8PuPs9Iwf/OBvOZ+dobQUYYpi1Wp9SWzXtOOnKMqWCLBcrMjzJYN8RJqkst6ZhLI0bVu4V6KViV9ydjbj6dN9PJBnadCQTVlfW2M0HrG9dZ9bN98kSTX4BucqVsWck9NDzs5OmU5PWCynVJVFO0tdC0ljMBRTJOtLjFEkaYJdFK1zfNy3dKIpSxtY6aHV3imchdWqkvUEQ92UEs+5Tmaon/PFmLW/J6VBD9B7H2LKiwWqyNqN8/JyPhDnsDCds3Y+RzAr/tlp5UXZINrz6AOL/ZzsMsjX/7t0szUXzqf/6gOHF8//oiljdD/q9mbVm5vR+dZ/7jxjrtdf5y6vdfG9IkEmHXQi+eOBTouzf6/j+hqPF4/d715romyJ6tyHPU7i3xB36hQJEFTM5SVO8s5hEsNaPmB9fY1r/hoAddNQFAWLxZLZfMb5+ZnowxVLVkVJVVYts7Cua2orEji2aVgtS+bJnCRLyDNPuaItZoFnPNI8efKY/f197t69zxtvvB66JSWvW61WpGnaFgmePHnCrz/8kLIsUAqcFcCvLAsWi0XI9WSOa9VJRjRNwyq0IkuHR5fDi05m7FQQspmQBnwoWasgIxQKWFp0iRvbYJcL0qQiMSXaGHQwyEmSBOugKmu0kdbjk9NT8VBIhESRmoTBYMhoNGRjc4PNjfvs7b7KYJiDajg/P+b09JCj433pbJmeUNZLimqGqxumZxVKF6AcWsFkPGaYXZQf+7d5/cYAn4BrA2pd4ZynWMlJukYqJ1HIOMsyVqtV2PCjfgesra0H9FjExBeLFXmmOT9b0NiqXVAEgBExxeFQkNzFYsFkMmE2n5MmOZOJIK4ge3WiJUG11lKsSvI8D+LDCuuagMjXAXmXTSpJxNXIGB3agm3rAtw00cEtCdUuaZPCDciSCcN0jb2r17h16w67Oze5dvUBg8EI14i1/Hyx4OmTM8riBatV0S4sSpkWHJHgr8ZaiO54nVZQj54dqnF11W1usV0o0AkkbgjBg+gDBeTfxtZeuOyS9kV/flG1p/2575IR6xqUNkF37KLGQktJbmwQ3xfmWxS8vgC2chFEi4tg3Jj6P7tsntFvLYkL8OVgJX5H1JbwvWvoH6t/ne09dt2C/UWAXv/9lzer/u+dk8ppPG4fbJT3dO/tjnER3OmPB5Q0momzWfjPS003gkfxvGxI/ORNFy61fZ/WmsaGz8dzQs7bOc/W1hZXd3Z5/vy5WKeHISf3TkOShARUwBirNTjPbDalrnPW19eDc2ZoK/YBKNBdMPr48WM+/fRTrl3b4979e1y9eoXhcIhCAIWmsTz97AknJyc8efKIx599RtM0pKEdzNmG2jasVitWxZKqKqmrKrRLNRwcHLSbhLehEm9j9b4L6JUCoyJT7xJDVLWEPOKm4iFUloLQfpjfoVFGXC7lackG1R4oJDlJN9eMjm3m4shGmPdamxaAjM/NhOcglUHRMnXe4+e0TA2Ua+dlTBrjOmSMIc8yOjq7MLj6CZj3HdAv4ywyglS8A6gWuA7sABxZlvDlL3+VX737C54+/UxAPgTalLXKt0CTCoBGDKqiOYJX8m7RpAw6Kd5RlgV7V69w795dfvazs1a36uWXX+bNN9/i5ORveOutN/HecX4+ZWNjnaqq2NnZYTYT0fTf/u3v8tln/y9u3b5NPhigk4SXX36FyWSdRBuOjg5bNgrOtzpe2hiMyikLxWqRoNQa0pru8LahKgA03jYoP6WoPMuVI1GyN0qCCN5lWOdpGiXBvVWURU3TLFAqYTRMgCn4OVmuRdPPW5w3aD1GqTSIjzs0hgJPVRPMrkR7xTZwVs1ZphVpJoyj+HyNJrTFSetJdGyUNgyHIYACvqvyKyUV0/AoiO2keEmeL0oPCLwVx4yw+uXeqPHnA3frbKs7GiUpfAC1yrJqgaf2exAQTQW2WhJcOMEH1lpk5kCmE27fusmd27eIgHzcUyTpLKnrqm3rr8qSVVGwmEv3QGVrCeAD+Fc3TZtUOxed64OrakxwbNBh852LZ1gycTYCOlGXL7zfR43WAGWG/7PWtg6K/ZcnwfuYLF10XO3MPcL+E3R7nZfz6r5FEVf7uK7Ea4qJRLeXdCyfpukYWgIQg3eKo6Mjrl69yub6Jr4Q7dA8z3EqkTZtnbBcLvjg/Q/46te+zubmBt/9nd9h79oef/EXf8GjTx+RDFOu7u1xcHAg+marktWqYLFcUZQFeZ6R5zl71/a4d+8e169f56WXHnL92jW01jx98oTPHj9GEjh5VlVVtuL8eMiyIYN8DeXWGGYbjEejIOOSgrY4J1IGztcsVzOqakVjS1arOXVTyHhpKqqqQBlLojSu8dS2ljkRwMxyIftxPpAk2TWeJDU4apq6wmSp3H9n5VwtmMTgGo+zkJohKMVgMGIynnB6dkrTlG2MrLXEsfIIpVPFOifC/bLptwlRP3bp/9nF282ltb+LBfqA32XmTTzWZYZeTH778VcsasaxdrmI3G/l68erUSwdCMV/kSjwQb9QOUmAY+EkibIYPhZlOkZgn4EawdVOq7h/PhdBlLgXtp/1XcG6D6jINYbYwHfxZZKIdIIcUBi8w+GQwWBAZIk72wfnHGUthVFra6bTKauVFJ4WQarIOUfZVGIKaKVQIvMyMnU68C5qmcUxEhmtffAvxqHOWWwjLcxVVXEY5nWxXFE3DXnQLE3xgMiI7B8856/+6l/zpS99mXv37rO5ucHOzg5Xr+4BQgapa8vR0QnT6bTVVc4HOdPplF9/9BG/+uUvBJC3lrISvcPodF9VFWUpIEBisvY65flITFHVpRSqAvAU2a+tU7mCSlWhyBlZPyIbpbVmudJMZwu0it1BMsbzLCNJNOPxkPH4Glt37jAYZiKPoT2NrZjPZywWU5RqqG3BbHbCqpixmq0Q7cwNYQU7j2ug9gUKQ1N5lM+wriaC+r6qgDwQX4pQBJJ9IM7TPmMvMkDjntbPf/oMsQi69Bllsvx0+U2MF/vfcRkcjL+Pr/i9/bWgDyTGV/+z8fh9Nnj8+WUAr09wid/XX3uaJrKI47Fc+7P+WtcHQ+UYqmfG1706oLs/NyIRx4Q41XZAU9CnjXOqnwv317XLYKqsC0lvTe7ytpj/xhxYio3hvAJxhhDnqzQeT2JzQ4J3niyVoufG+jre7WGDwVlRFixXK6bnU06OjynKgvl80TqLW2up6opVUTBUA4wyreNwY8XUwzYNo9EaxqR8+unHfPLJrxmNRiLp1O4bnvl8wdnZGc7ZkG/IPBWTrQDeVxVNVYlGaxgT1kmbcVGugiNvR+pRIXeKMUrstIl6qu3eAq2BnjaCVUQDMIllLRaR4FBhD67rEH+i0Y3CpWLC52yCbVJqYyiUoqgLprNzXuzvA2K8OBoNGY5yBoOMjfU9rl+/xyAfiYFIOefw6DmnpwfM5lMODl+wXM4pqoJi4djd6gpT/7av3xjga+qGJLWMR2OyLGc6FffZuEFF9l2SDMMmXyH0erHdns/nFwZzno1JkyFG5zgvgUpE8ROTkqTCaEmShLW1dbzzTMZSmZ9MBi2109kGlRjqRpwSB7mIMA/yQWgJKtjY2KGqGopiyWCYUa4qmsah9VAYP80KpRKSJCPLRtg6ivAmJGbCxtoV1tZ2uXrlJjtb19ncuMJ4PEEpxaqoWMwLDvcPWC6XorXRlG1CHOnarU6A1vhGKnCi7xUXUQm8ZUHoFgprbXD8FKaVbVzLkuqDTTFQbwOdJCEG5tr0KQC9T/QWMIhU4ItDpd+KERkzLoiYJ73EIh4nbjYgoIMN4Jry9DSGuqpIBNDayoWPla5u0PcX93jd/YCwz/LrB6yXgb54/Hie/SrWZYe2+N54nD77sH+tlzeRfgUn0rljm048l/5GKP91m0IEfy+et4zH7vrpzCBa5El97nn2ngx9hO8y81HaAAKjLQKH2uC1Ik0yXn75FbY2Nzk8PmQ2m7NarWhCcCFsG4/3iUBZNiSHWUZVVqLBo3VbxcyyLID5DlLI87x9Ji9e7PPixQsRTE+kUoJXbZDnvQPdAcpFUdBUUtkt64qyKkJgWISqbM5+mJdyG8K9jlUw53qondwj5z2ucSjlBPwLKGpkEcn9lfe3c7wF2HXLzCGwNIQlGFusQ3UpbFKq8q0ZUAwstTJynAA0SgatWpAvFgkEEAwg4IV2dQHevLLt2FLtGJI5aEzSbnYx0cmy9AKwfXHB+PziEVs+uzHNhTH/8OFDtrY2+eSTj5nNZzhbB/AialnKQHO2S7CSNEV5JS1B3rct3947yqrg7PSE7e1tvva1r/Lxx59wenrGq68+5I/+6I/Y2dnm3r17vP3223z7298mTVPyPGc0GvHpp5+SZRkbGxv803/6T9nf3+eVV15hsVyQZinXr99ge3uHk6Mjjo6OaCqpjLrQdkJYu9N0yGuvfJW1SU6idTAeEuCxWBWhrVjaNzNtWRuuoXCBPSbHSbTCaUIgVQvoYBQGcWYrl5WIPGtLsRJwzTlx0U7zIYYRWkM+ED2SNE0YDEOrpRMdwNJV0prmHFUBaTrq2s5UtxfJHhQCaS97i9MeQz8g7tZjFUAflKz9sTUmrmlR7xMuBtRt4cDJnOu31CitSJNo6qFCm3KolPdacQggX3zFdV/ju0QirI1EYEOJO6+cA+0aGJmJo+Gw1fjzLrYRhcKIF52sxjat5EdZVRIgL0UjsSgLbCOMPzEdcgGwdJ/bRwR8lbXFBQaefJcEl14qH3inuhY658JaQltBd3FcXmjz7TR6u0Qh7gFS4bPtvA53wUdNpK7IoLUKAGan/9ftG659xt1eJr+J7qXPnj9jPBrRNKI5phODQeQHvJek+fFnj8mHI9588w2yLOPNN97ixvWbvPvOuzx98YLd3d0AaBRUlSQUHsV4MmYwyLl27RpvvfUmr776Gg8fPmRtMmF6fs7BwQE/+tEP8c5SlQXWSQGw735qTMra+iYHByccHc6wTaf9mOdSwY86enmeMhoNyPM1JnnK9roYIKWpkXnftgJFZqyiLFdUxQrvG4yCppG9qK6rkGBVVLVoJUmS4ahVLfGB8tKWWNa4pmaQS7xlK8vJqqCqFdoMsdZIe7331CGpTBJx2/Te45WYn7Su0rFQakyP1XIx9otztZ+gdiBuN9/6c/1i7MmFY8V9Ib6/D0D3XWb7xdb+OhEZ1v3YCmiPKwWxtP25tTawqwWEpxePxeNKe3yQZ7E9tmpvHHcxVHd9ct3CzIrAXWTGxbUzulXH2F00obp5FX/nkWcc51a7RvpYRFOhc8KQZCnr6+uAZ29vr9XT8o6gRe5ZFiuKVcFsNhOJhGLFcrmgjEBoXbdgWlxEXDSdsVbYpFF/1HVrS6N0u/8dHZ+QDwYMcnGMTJIUq+q4iAQzJEXdVPz0pz/ho48+4pVXXuXu3dusra21YFpkyERN9Pl8zqeffMyHH33EydERCo91DVVVslouQ8GlwjsnzrXOkiaGJBWZpKqqZG13ooEpwEAN1qOd7BcixWAC2GfQRoDforAtW1Mp3TrYRxBHYjqJSRYhLj4+jrGg5G1JIkXSLMuZTNaZrN1iNBowHOX44IpcFAvRo0eKY6vVitPTQ9J8wXCgsLZitZpjfUlVC7tpPMrJ8oS6LqkqafOL7q4xP4sgWJqmFwDmy7kH0GrgR0Av/r6qKgH8AiDen/eXwbY+uN0/fsxh+sBZH+CK7+/neUpd1N2L7+vHEn0wMR63/9l+gSB2CFwmhMixZb/qs+XkXLp1RqmL87lfAIx5b9+M0RgTGKiq1/FysXhxGeTr34vL96m/Dke2X3/d6hNTvPdiXITIusT1UHRmQ9EuyD20+3hwalZGxm+apqxP1tnbvYq9fx/nhE18fHzM8fERp6enUlQrltS1yKqUy5KBbTDakCQlZVEwny/Z3NpkNJwwHAxwzoauKRmLe3vXmM9niImXpywLAbWK2LIbTEKaitVqGVymh3ilqKqS5VL2SZS/8Ez796b/M9+uqTEulDwEb9HeYxTSCt/LqYV46YlGWNB0a4ASYyinNM6W1CiR2TCGshZzuKgTaTSUzTlns0B80JClCVmWkyYDxpMx48kWW5tXGQ5HaG0oi4LpfMrZ2SlKf76I+2/6+v+DBl9NHVgQ4iaUkGCYTqeMx+OwGNRoPaII+jppmrf01PF4QlOHzcXVZGmOdQ1ZnpKmG0KpLkqgCY6JobXFIlUYLS03VdBVgaB15i3r62ucnp6CSRgMBiyXS6q6CmitsPJ82NzKoqEqG4zOqCuPtSnjwQ3wGXk2Is/GbGxssbt7hc3NbXa2bjIebpLnE8qyoSwrptMZhwcvBOiwTVu5JbDoVEB148Ie9TskLlNtMuOVEgYfXSAuujX+QrXGNrHCT+u+CJ+vNvT1GPoLlvJdS8blhbx/jD74dHlBip8XEFe0SuI5xkkTn0sfnOtTy31zUVuu78zUX9T7AFw/0Iz6Ev3NIo7N/kbSB6/i9cSFu7959Su78VzighrvZ7w38Xj9e3W52h1fFzepCO6oC+fQP/blDaGfjPafUbw3/U348s8vjw35e3u4zx2zDaKJLXghQKXbqEbDIXfu3OXO3TtMp1Nm87loHR0ecnp2SlJVlMZgnaGpHbax2OBMu1gsGAwE9F8FzZnBILIvBUhKkrQFrWNV2znHKupmKWHeNlZaNZugxdI0TStgXZRlq/UFEtAcHByyWCy6++Q16O6+mB4A296TEODHKpDv3cv2MN61zp0gybMK5jKtzpbW1DGQwZNoDToy+gQIUZHX5sMYtDWRzeslC5ANS3VrhEfcBZOgFRKfldKh1ThW4pU4WXpPG5gSighKi1h+Ej7jXENZGiIQ3QF8X1AVaMdQBBhjwtYFIc5ZnBfXyDzPhVXp6guHU0rGW13XzOcLpucz8jQH56irKiQYoTId3MBevHjBnbv3uP/gPt/81jd49513+aM/+kPu37/H+fk56+vrvP766zx79ox/8S/+BXme8+qrr/JP/sk/YXd3N+ikDvj3//1/n3/5r/4laZLy0ksvsbe3hwlB75MnT6WNuyiDVkgIPIE0ybl54yFXd7cZDoZkWSYMNTRaSYXSJMLglIDLobULYGxoqQjjrihWFFWJs+H5IWBWXVeU5UqYi3h8aDHURhKZ6HyYJCkmuJjGtUgraUUmmGhYJ61W88WS1bQLijtgqANX4xj0TsTp+2te1K6JiWucT8aYdlkRIJuQLIaqM5cKJNrj0RfWnlbLkl4QGwtEvfXZ+agjFtdWKR41TjS1dEjWjVYoSzAejGtY0C6TEwUCKBCfbGBopq0wthQXm8bKcSR6JLKkIxjY2EYS0LguhTaT+WrJYr4QF/IAMAkY6ALAJ4LW3oWWXmdF0w+Pd7SMm8ZKO54KIIBvbBgD4uzaB+gEQAwAA56+G7v3HhMTCWg3BB8eWPxZdJztF8F6+GKY844OCInf79GJ5vTsjKOTYzbX1yjqkqZxWFsFsBW0SUmSjI8//jXeO77yla+gteLKlavc/sd3SLOMLE3bRKFpHPPFjDt3bnPt+h4vvfSQ+/fvceXKLteuXScxhmdPnnByesr3//qvhcndBJ3KoPXYNE1gXjpGkzXSLMc6ReNlbggyplgsS4wOhkwuSg7IOmVCEiySBUaKTApMkjDIc0ySkOcZg8GANJ2QpQmj0YCrt6+wtbXVFuO0MThfYRKNd42wKgOLrGpKrHPMpzPKckVdCbu0rFbMZmcslguWRUFdlZTFCtvUVNUS6xuGg80LcYgPe1A/GYqut5cBtX4scTmO6UuYXP5dX4+rv1Y4JwWcTqPWhzGkQlu/btneyncg1+W4VBJzF7poerFwj1HYjt3w3WmaioFH2JPEFFAAuAigyRLQxYkKYQ73r6kPlAjrSX7fgR1p6ApJW/AgSaTNKzKX+jFgvAdeeWF0B+ZvvFcqFCXamC0k8XJbu/szGOQorxmPxnjl2b4U/zdNQ1GVgeHnKcuS+XzOdDplPp9TlkULNMv86tr8+sUJ29h2PVM0nJ6csrGxTmISitUKBTRBfsF7B0NZ/7UxzGZTfvKTn/DLX/6CtbUJm5tbjEdjRuMx1jrmc4kbp9NpIIE48jxjPpuGAm3VGipaK/qZVVmB96R5RmMty9UiPHPAC3jnrMcpiwq6yjFuss6h0FgrbfDGSI6idHRFjTIqYtDmfUrnTK/I0uz/x9yf9ciSpNmB4BERVTNzvzfuEhEZkZVLbV1Es0CiyZ5m85Fgv/GZmJn/ypdhAzMDDGcaGBDsBsliLVks5hbrXXwxM1URmYfvOyJHxD0bw4p6aEtEul83M1VRkW8934YUg/dyjOZL7R7I2wM+fLzgq6+/x7ocEJMN1Qsx4sXtJzgcEl7c3uDVm09wOh3w5s1b/PznPwfqjtPNgoiMZQX2csG7d9/hw/t3uL//iG1/wN3Hb5G3G1hZtWVGMRiuvDsHkfge6UIz7Pgi/7AKirx3uVwa3fIzmnjxXAUSeZKfmf1G9bX0/RnEYxnwLI80aUM/q88yyrn65Bqzv6j7lVLv46u2B/v36/Pxe6zFobzQPurPBT/0PHR9fM/uNVZf6TmHEFprm+rAune3bYHCZfEARLbBViuS9+YtbrcAOY694XOJHtw/4JNPXuLnP/+pl/Xe4+P9HX75X36JX/36182PiyFiWaw8eT1csW1XHE8fcDwccTweEb1Ci4D/5WxA3fl8xr5d3bY9Y982bF4tsWWr6Dscj4Db4Pf3D9j3DWXy2dv5ue/QsvpknwOYsOJ2CaJlBgbr09xOJnDvDPQvsCnxDPAEl8HVJ9xawHxDQUCsB4SQULzHeIoRyYFB66kHnK8XXLcNNT/gu3fvPZiQcVgPuLk94XQ84c3bt/j57/8B8n7GD3398Cm6MCFeSsH79+89M88EzsePH3Fzc8LhuKIUa06Mar1YLperK/UV67pY75xkzlCtxRqsPl6wl4IUj8iI2DZzKCxKZ/bovmc8nh8RPPth22xySa0Zv/7NL8E+SZezKbh1PeB4PCCFI2qO2EvAEo+4Pf4YyFdczxvS8TV+78s/wI+//Bl+9KOf4O2bz3B7+wnWxerRr5cND48P+NV33+Ph/tc4XyzTUJkPniHTyirdMef4bEuc4WeYrSXgQXF2dWwhJet5FJMYYhw7L/fW3zXzZjDyhJlVuDHaAaBFKYZIoztkGhmiEOTfszf3pkC0VOXFhxf4pC/pAcIMJQpNBQ3niNAMNPIZWZdPga/POgNhCljOSpBOqzaAVZBSDTNmsVjZeBzes/vK2U/3pwPWJ+7FYc18rlq1tw2eXOs5paDni0Y/tWXFdLHn65mUju4Hnd2u2OnTqkI0QXhzc8LN7Q2AH+HnP/85Pnz4gK+//hrffPct7u4/4vJ4xXa9mPGYV1w8gszn2fOG+3vruXU6nXA9XlsfSsuMKNh2i5DoOgnSlpI9K8JoYd+9vM6BPYuoJHz/3ff48P5jn2JY/ZwimpNP53gAWKvDaFTKlUAbwSxzeqPzOAADGRxQsMQOmSodgFAtw4OljMymKrUYyFYjcvbofggOtAKmaKIrLACwv5cYYaVkAbVKr0BYQMMerSLCsmuYmdkfO9gkYfTnYpkyqk+FbNvzVO502snNmSx0DPKOWjIqrBTIMmmyBzx6PxQDFID1YKDUx493+NHnnyOkhPPl2vk2RG+QveD9+3f41a9+iT/64z/Bv/gX/wL/9J/+U/y3/+3fx8ePd7heN3z99Te4Xq/4V//qX+Fv/uZvEELEf/gP/wGXywX/8l/+S6zratkPteJ/+uf/E/Z9x5s3r/H207f4xV/9Fe7vrVQBgQOJLMPKSi0LYjzg//1v/r/mwN/c4MXtC5xubnF7usW6HhERcTgdUCtQanAAjkBubU7Fsi5AocG8+J4Ul683eHHzCWLiwAQr3UuLGXghGd2xJCUtnHDpk9NBx4bR54Bvv/sOf37/l01POJk3A8mmN7KEDE1+BFe+ZsCujWOYLVOz9X8xU8hell26gATUZGitnq3G/rr7k0AJaUwDIarXGgBZi8i+2vmqWoN7VHPqYuK0Al/PnQABAABJREFUWIKKztedRex7wbzsCgJals0WvR9XKVLOH4JnHS4odXXQHI2eYzQwq5Qi5eWeoVCrDafZzEbJPhTo7v6u9Sa0rLUrsrcdMLln+hTVgLtSrZQ2Z8sKVDnO95pT5Y6Age69tLaBdLX38gISUnlmgnzm5DoG5SgXits53cH77Ve/xavXNqnucraMny3v2M8Zy3JATAtQM/76r3+By+WCf/SP/pEPTbN+zQ8PD57tbf2qjscD/q//l/8z/uiP/xCffPISn332KdY14Te/+Qrf393jl7/8Ff6f/4//u2UMeu+uy/Xsvbu2VuZ8PB5xc/sC58sVezEAKsJ4aVlW24do+jwGG9xm25ObfkfIyMXKemrNWOKKx7R7eVCwATvJpHQKAWn5j3j9+g1+/OWXOB4PLTvQAGWj53W1rI3D8YgK4LR+gc9e35jjtyxYVhvWEzxglkvG1VvKXK8XvPvwPT58vEPdR+cw1O4cUuZXp0egZ323Ng0YG9nPgF50hJwTkjWjT0H82YkHWM5PfWKtPQLCMwCi20YNdPDWLmUMKjR5gZ7Z1IIBlAkCHPbsGqDr8bEMWfWagYJLszlL8YqQUmEtew1sUUBiLknktbhHy7pQQJo+LqN923gOtQUVmO1IkK/ZuGW08fl8S0rW2uQ1UGsvuTcZsvukyoyzl75ezhd8vPuIu493BgCezzhfr9i8XYFlMRVctyvuPt7h1ZvXJqM+XrGsB6zr6n5XwL7tiCnhdLrFuh6w54jvv/8ed3d3sOEre9sLBoxy2XF5tKqL8/kB58dHm0r8aPy7F2sxY1PtkwdKrt3ODQEpRLfHjLQ43RQVqNFlFAMz1WSp1Tgka6WwWZa3DQW06oFAXkHAvlWUFLGGFSGwDY4NaMtl82Ct9Tw1nWg9Se/u7lHrhm++zUi/it4/tqKWhBe3L3BzusHnn73BH//RH+HzNy/x+z854ng8oJQdqBl3j+/w/ftv8fHje3zz9XuTAwJ02d53flVgWQG1eZAhaZp0S/7g+3Om3/xTeX4edDhXOc0Bu9mvUh9mTuigLlVfa77GnOWnfc3VpuBzKgCqACVtXPU/+bl5L5k5OSSu1DzcYwbyuLa512kvI37aGkHXC9Ccou1SPWlHAhbVMv4rGJRKiLU2OcD1677F4kBlS7SwrMDb21u8fvMG1/MF7969w8P9g7USCQXXs7UtWVersloOK5a0ejZpb7GSfeDK1bOIdx84lPfNqq48q70i4PbmFrUU3N8/YNsz9s0yhNswFdKP0GXk0CpzGe1vjsewVYvJh1FnEARsyRKRgVtTjXY2wffU9DxY7VSrtXYKu0Grvn9btgFIy7IiR9K3VYAmArNuaz1ezjhfH1FLwVdf/wbruuLt21f4oa8fDPCVkoHQCdMaW1rE8/HxATlnrIcV215wOBwRsOJyuWK7Zqwrlc8t3r9/j323ARgpLshbwfWytYjdejDFcbmesW8Z8MParlebLITe6Pp4Ws1eqQExLHh42K3XQT5gvfkE63KDEA4AIl7crHj96jP89Mf/GG/ffIY3rz/Dmzef4ni4wZ4r9s0mbr777gF3d9/ierngfLnAUtjNyCMoBPSSO2YhtT5E9lfvy1M9CldhbfECQvFsghg9qlecUUMDM4MlFTRDHehCR0G8GSzi3+YowJwZ18+0DIJQz1YFqYJfvQmoZ315FKFke966dxDOnqO0CKkaQ/qTwlKZUNO6gT5Ztzkdk3CnYJ7TsRuwJCW8/Gmf1Uy7DkBwS61cqpcxEN3XrEk9o33vwt4m0VnJlRpi8xnWWmV9YzZfLRUhxeZkRRnakCnQHUQcsgFDz8gDLHvgd9FKiAFLXJCcp5d1tahn0cicneW6rJ6pU7GeFhyPR3z66af4480cq+++/R6//vWvsW02Ke7d+w+4Ogj38PCAZUkoxQA+BJvAuO+b9bEoO64Xn7TmTcebNw6Y07tdvTx/9/Ir9p9BA/J++9VXrQefOemW3YRkCkGzllC1r6WX1bZpud4brqJlzkaPuLeG+pXZMewBVpsLw6wkey8guCHFkn3w6SqdIHdqAgx0cAVeQYC2knGxVzrpvccHAMuKQEAM1UrnhJYSDYQKVETjYAKThZNE7Y7Fe7T5xRvQY06InYVNtRwzhWyNWorkJQkhIsTlGR4zJXt/f4dvvvkGb968lVsWz2AKrTzib/7mP+PLL38Pn376Gf7Hf/I/4sMHywgg//3VX/0VfvWrX3kQyMC8/9u//tf4/PPP8c/+2T9rfX2AgE8/fYuf/eyn+OUvf4mcM/79v//3AAr2zSbecYqhyeQFn779EfYduFwvuLu74Hh8xJoW3ByP+PTTz61nLA2SCuxbwRV1oLmArTkcxrzO8+rQDZ83gusZrwTfovcWaSqytU5oaZxOF+fLuYHNvvOgk1tr9cwTy7oLnOjnJQ61VByORwQEzyq0bIbg5ePJAwo21bg0OrWStO5cA2O0nf2ARjntNA24E9VLktRxoONO3iSESp3jXjis+bwDV4uBqsxkaoqWDMYf6pQvltU6DCrw/wsBSHUsWyKIUkqxiK68dzwcWxAltx66xgMDIOc9xtiDyvoKP+LiZcI2gdje27cdu/e7zZ6Fs+Xdr+dBpurv1+yZQ8X5tbTvxcpWA0Gm7dG2AarPRgrBp8q6HsyFQZeuj+8f7vE3f/NL/OT3foxL9Kx+14eXiwFTR2+f8pvf/Arv3n2HP/qj/wZ/8id/D6UULyvc3NHM+PnPf44/+IOfY10XXK9n/PY3v/UhGx/wv/1v/yv+/D/9GQKsrPrucm8997bN98yy4kIw8DAGYN+unhlgDj1i8h5mpfVTSi0YF61vYTV+PV8esOQFbagBzlgXK9OzMtvoE+UrYqhIAL7+7nucrxt+/OWX+OTFC4S9WJbpHoCacQmb65ZHb0/DVii9LQqdaSM8Ouo2jGk9vMEaI/bYbbNut3lGeckNFKLjFWIym82vRfHQQKxm4/b3qI8AZoXbv5eUGojH0kbLRrUAFTMnggN85CHaF0MgllhgsKxnIPign9JotBQH94JpqCZLa/XyfJO/63oAs3+N3aqdZUjgRNluc6JdtxapGFmWttaQTHlu+2YZJIsHiNk6IKDpTOKZ/NkAjeq+QOhAg9rs5tASnKOtmxugU2uxns5dxLcyTD6jyTazrUI1e+ZwWHB7e2uyutgEXtTuE1wulnFyf3+P3/72t/juu29xd/cRey54/+ED7h/usF2vvvCKLACggR4+pX0zGl5WG350OKzeOJ89iy3QcL1erK3TxQLCNmzE+p9vl6sFPGrBshrIffaMn+rgNCV2RTawjm0FfHI3Bz0hVJ96GwygC/10aH9YP9OAUoAYjWYJntjgxghme6W0IHgWekrefzpU5Nwb5V9L8Xuazbznglwq1sWyxB/PV6BE7K+Bb755j6+//h7rGlGKlUEejivWY8Lp5jV+/PkXOK7vkC8ZZenAEbPtdIgDATb1J0gT7HWuvqCC2dqaSUtTdSp24325riYuqH9H34j6E55dzqxdON8qKKe+FDxAUWqvJqN/MwOKfK/Lyc5bLYPW16tVZvQXFMSsDizy2Zm4wu+nNAbA7Pmnft1A8y1JZ5XPUywwR1+f7Tis0vDa9t0qJjQg0WWG0Wa34ZrAMdNxAF677cQzlN6HvG7r39lB+NPphH/wD/4Bfvazn+Gv//pv8Itf/ALffPsNrvmK6/mMy6V28K0ShPeSZZFlFuzM7Rw3b+UW0NvD7Lvpa+ut2jPwYowIMliNrGvn7IMO2frG/x3A5Ajapj04hdaeyaonY+A1GGQCehDAFFGpBUhOLz53oOk38aVRC0reWmVV9OFvPDfKbsM1zJ+w4TxX3N7+H2DIxvFwRA02hbF66vi2ZVjMbMGy3OB6yQjBALuXL044rLdIMePly1f4+OEOl4d3AICaLXVyXZP19gsJl3y1wwrWjPh8BYIzIAAshwNSNqN0WayvA1M4Y1yR9xWHdMSnbz/Hmzef4eb0Ei9uX+PLH/0BXr9+g9dvXmNdDgh4AcDSkd99/4DH8/e4v7trAjPn3SdFWiPOUgJyNgZZ18WjH6UxNaONPXoXfE+qMPMcEegGDZnOZKD1/uqv0CKU6uRolIIvvs9Mpx4pG1OYW8aWAGza4w7AEA3iv+lQsaG4Oe1mWFPIF6+/j1XKrKpANGLIaHo490UBOQUdNeqhQlSdR16TLz4DhdkcQekgWwAHKnRAFMOzU9CqkO3OaUJvYtz7OphgN7pRJaZnqfccXxTgZsLsmQIzonBdtaK4E0xnC0CL4tD4obOiSozr4D5v2wZL0KntjAqyGUoxmgD1oTV6JiFG5G1HXExpnE4nvH71Bj//+c+Rc8bj4yP+7M/+HL/9+it8+PgRAGzkec3Wn2C1/hXnyz3iZr1V+sszXZsBkrDv2Zxep7NQ0ZzlZVlwvZxxd2/XX1bLGg7JrxFXA+HdCO8TccWBqECMnlHF/QpoTiLgAB8qEFIf9IKMWK1EsBSb2JZgfdOsz18v1bbG+sw+oEPgQJxHjEoNPu3UjeLqjfhFBrTz8/+zEka0c1E+aDzFO1WgIiGF4AMBHBMKwfp1VFOCbFAdHSzpgJ5ODOu0z75JNKTNVHPA1AgY9AuNHlnqsuPh8QEfP9zh9vbWIn15R647ImyNpRYsIeLu7iP+7M/+I/5P/8P/gLu7O/yX//JfkJgWf77g3/27/7VNYr+5ucXpdMLbt2/xH/7Df8RPfvITfPbZZ61069e//jXu7j5gXVf823/7b/HtN1+jwqZj7tmA5AoDWz959RohJTycr6gVOK4HXK4F13rB/f0F3737iCUlvH37Fi9fvrQAFg2taKU+PVpsJ48AuLmIUOFTv+wwei81k7e18AyL2yrG3yGbQ1tq7+3Wsu8AN6B2yxxyejZQdcyirpX3pfwtABIqIkq1MsXE6CwjwKmXPFQHHZfoPFkqUmDk0/tqhacOQG8MXhrNUHrFxY31MspIGmwxRmQk5D23YEZwXoqhg9J7Nueslox2k1obqG+YqCP3XspesgdkfODLHMCzV2hGG42+kKKXy1s3gFy6riX4kdLSyrWjDzRR2XwTbwB88sSpYkZarRV523H2ISF0ss/nC+7uPuJ8OaPU6CV6H70k2EpeTP54pp9MZywObOS8O/+VFozoQENBDD1DMBSuOyHnrZ3ju3fv8OL2FqebEy7nDdUdl+vlDGY3o1Ysywm1An/+53+Ov/mb/4Kf/vSn+OlPf4rXr183EKvWgl/84q8BWBXH3d0d/uqv/gr/6T/9GSxTE94qZcP1bD0SL4+P2LxPVwVwc/PCKw82O+dkTgFC7CWdpaKUDXvuwR86d5zUHEPAnjc4DmW6M2/YHrLL9+iORwBqaa1HrtcNjw8PNtRtMT15Oh5xWBfL4HZH93Q8IvtwpFKLTyE3Prbpvd2xMwDMAhj353u8fPVisKdCIv+bDGbPoBzJb7l5TLR32OvLdEEFamigdC3MbgwODBkf1NxbKYS4IDiQ6L4UDFC37+Ra0EvsraScuoq00x1nZlYW75Vo1yh9VBW9ZpNLhdm3ARQXIQTspUhFA7NWe2YuRFbG6GB7rMj+vC0TujXxRwM6S7VsOz4DM2Y5uZU2RYHZEAi9soPgJBBs+Ji/cs4Ixe34UrAeVre73FZwm4V9YTnJ3eQhM88DQlRZa9e2TC0Hu6zTKmpFC0jcAnj58iV+9KMfWfmsgzL/5Ze/wn/6iz/Ht99+i8fHB6BWpHVF3jM+nN/bMIrj0UG+I9Z19czyhGW1ny7Um/TctivOlyuulw3bdkHJGfu2+4A0m2oeHUB9ePRm+yEgLWsrv0vRnXQ0KKXJZgbKmi4MaPLdBo15Jk+gTU+/qgcqg2sT+3cBsCDna5OFzFxiQM30hfFPQTDV7cBLBbDtGaVckZLZ5V9/+y0eHu+RYsDNzY31ITsecNkuWC8L7u8ejL8f7/DFZ18MvoL6daQpBsPo69AHUoCOfgeHHWr1Fn02HVAxJh+MfqwCa+qv8ZpGi9nOET1IGZ1fCcwrINV85MpJ0N3X5bPRF5zBwTjIkhGA0VJ69YF4v5QijscbWK9LG95mMsJkpWY6zsNMgCmLOCas61Gm7NqzKHAHaL/8NKzFMtizg7K77AuwLgmlsPWVZ1OHTsQKNHY/0+jQ7uMgZkqtEmKJzOzDsH/H4xFffvklfvSjL/EP/+E/xMePH/HNN9/g669/i1/+6lf47vvvPQiQ2zlSHh/XAyqA7IF+xNrshpi8SqlWA/dLsSAAPPMtWg+MFBLYT7lIW6TFATQAKMFAvNWDYfS5Y4ySpe5SQeg3OTDL6eghsPqJ7TQM/FvCYgkXFdj3ihAr1jWCVZmlln6Pmm34VrDzLw4Qmr1jssTkVWqGbi+g/mGvHz5Fd13x8hObRlgRsF0LXty+xen0EufLGUDFff6Iy/WCFy9u8PLlK3z33XcmTC4WLcq5NmJ7eDijZFPch8MBKR5gKdLAQy1AtX4TASaMbk63wCEjnY54+eItYjgipQVv3nyKL7/4MV6+fIPXrz/Fi9sXOB5usa4n1BJ8AtOG7799wOX8AXv+rTfN3lvkckiFFeE3MwodesCNAc86pOLvTUftWjaJ92kfEzbwtM8mb5zZXyqMR8ERh8w2Cpjr9TqmoIaxvwGFLb+rwOAIdo3Aj/60HiPWe6SiOwY5Z5xOp3ZfXpvPx3RmXTsjIgQNATTnhcAk1/L/78AMfW8GNPWln61ucKhysTW0OwzKi4xMB5mRfE5o1LXZPQDCm5o9qIpHn2su0+00U4Hp2jG6c+LfGbIYS2mGOc9iPuMRcEQTiDQg961HAIv3iUrhGRpzwNMa5dvXDwcrU7y9fYF/8k/eWCbfhw/49rtv8fXXX+E3v/k17u7ucPfxHjb5uThQDJ8oGVEr+9DVp1kBBhuZbGAZm2ejhBBwWA3Miz4afVlWi/CkaIoketmrg/QEC1Aq1uXQDOHWkNoN6X2/tjMtpbrxbRGqyrB8rQ3CqWU0Mmh8Zm8nwIwn+25BJdzDjF7SOEoLMsCjT80lqJ75VQCWGfbhHkCQsw7VMut04AJK8amsDhBLGUrnHTrBmgk8lheZfeHRWgeslGYrvWL4fVsgxDKYL+crPt7d4fDdgjdv3pg8KBkZVpZaakSpERELfvOb3+DP/9OfY7tkl8uWkfPLX/4SDw/3+IM/+EOUUvDqkzd4/foVTjcnvHzxAl9//Q2OR5tQx35pL158gX/7b/8t/uIv/hNCAC4OEny8+4jL+dpKtF+8eInLVlDOZ8SUsO2WERkCe6ZZac6HuwesB8tyWtfFe3MsOBxWrMtqpTYwffrqk1dYkw0XOa021diMIT/LCrirYPvlIFQFUMsOpmfGGD0vpkdlIUaD9q1q5TIsM6V+CQF190EvMaGW4I5QbMCfGtuzcxGCZfYZyl2xJOMNA4nH7zObQCPwRvORiAQsW5rP0INXqhMJnkbPurWsKjRgpbWT8P9SMN5h+RVdQqNfz1irQAqLlUQH+FAay3hiACm4zDNgrkf0Q7D+i9wvNnIH3PittTnpahfo3ui/qZ/ovLBsMIQArAfc3NwMzkyT1zAQI2dra1JyxuP1gut2Rd4zHh8ecP9wbwDh9Yrr1fsH7huu14uB65klwLmtpVYbYrDlvU0g7AGz1GyhEAK++/4dvli/8J56D+0MWt/B1YeHhYRlWbHvG/78z/8cf/EXf4nT6diG5NB+2LYNj48XcIJhzhn7dsX1Ys2492xT9+4+3ll54XUDSsXhdMLpdLTBKe5UhmzlhMtizjmb7BOYq27ksw9Qjj2DLqW16/LmjNYGvtFpA6xEO6WEWCJy3nF3f994NaWEFKwBeXKA7+bmBi9fvsCLFy+sF22yLL0YPKMWPUBC567JX4z98PhqtmPqpWjBy8/nwLHaqEZCfC4HM1m+6N+JCwcV+PeqQN81NECfuiaKPjBwYUVFHfgq+i/BHTgbzBMQ6MGIbaQ/WwaSl8BqJYeB9+7QO2wDea450BpCQowmE2iDKjBQ/escAjVn9RDYA20W9FLi2X4KgfzaQSbycYo2+TFXYkgGzAGuChxYWtd+/+hZ8iE9LRccWpUUlhT3YSMMRtRq5Xpw+v3D319xc3PCb39jjv3333+P+8cHd5QT9uuOkgsew6MByYsBaGlZsK7M8LJFh2i7b7Ko+ER56wO4XW0QW4jAGth33YJ9SzK7LfkAGbiNEoKV6cYQUGC/1+D2YbPrY9tb7lMpbFlSkfcCLD1pw8RA8QOJoo/MzuAZ5bKjXL1CIwbUugKRQRz7Lu2eEGsPrpSMu7Lj7uGj87bRfUo2jOTm5oQXtzdY1xW3L25RQxY91f0Jw3lrA5+YbTdXCmmJLEtMLdtya74BdTGBMyat0F/Ua2hSBpMo9H5dJxS3m3f07CX1tYF1WZ/4rNTdsw/K9THLTe9DX7IDhN1e5dr4XDPYyfVTZjCYxqzZFlQTfh/1dM8yJL3xxV5+tpfEA/p+cjL46AcGhLAI/TKxYgfBq/kVAto0YfX3up/X19cCpCHK2TFrH33Pq9k/q5eHv3jxAj/5yU9QSsH5/Ii7jx/w7v17/Oa3X+H7777HN99+i2+/+w7XyxmP7CsXqvtiVjFUa7GM18L2AVcA5qNZZxf32+LiAJzp1YzifV2BNS0WDK/WL9om5BrA52aw2IWphcUAuh6WARjjYgkceW8yqvPZ3NbBggEmhs2PRKW+4p71UvEQbDCtSY1eSl8Tq9LcD2oX/WGvHwzwnY63+O7b/4xXr14hpQUf3t/j48cLbo5v8erlLR4ePzqTbdj2C37961+hVni0+n0rx40xoWQg7xWPjztiTHgM1qdvWW+AGHF/d8HNzQ1ifYkUT3j76Wt8+cWP8fr1W3zy8g0+efEGL15+ipvTrW/ogpwtzfzh4QHffvU9LhefWnbdPHKPpngsgk1PqgsQgJGC3j8N0JLK2hwPOlGtR08zgjvD87sz+ENhY58t2N3hVyGqhpQKXxpDLaNOBDQwgjkqEPk716P34suMrp6OrBlw2jhYwSQKS0Z5uCY+J9dK41OzNlTYqoCkUNX9AnqURvdGn2cwPuPT5q+qsPrPESAcgUQHK+TvtY6AcPQI/Jx9OL9G46I8OeMZHFQnGqhDmcnvejUHPITx37H3s9Jn1wgPn/NwOOByuTal3u5XrXyL19Ls0OoAmK6XJU7JB9+8efMGP//5z1x5Xhuvfvz4Ee/ev8Pd+4949+F7fP/ue2+wXLBvOx7Pj0CqvTG195gy5WMG05JW3BxPiCkhermB0goAHA7WHzJ4aRYBPsAARGsSG/HTn/4UX/zoC9RacL1u+Orrr/D1N984722Nn+jIsX8VDQA6fiVb7yrq+pyzTMQ0IyDvVmJXs2f5RTaHjV567BlyoQJYAfQyglLdoaqWtVS9vMgavzL7BViSp5k7ELhgwZBeXte2tyGaU0bFXt1IYn/Tlp5eVWU+DQaYMqzNE+oAhj13ZVqv64daDOC/u7/Deki4fXGL4+mE/WFz5/7anickU/5/8Zd/gYeHM/70T/+0yeYXL17gn//zf+6DWhKu1w2ff/YZfvKTn+D1m1d488bA5l/81V8jhIA/+qM/xP/yv/x/8O/+3b9DKRX7dvHS4+xl1PYsL198gsPxBAQDiXOxDKpQXK5Hce4LgPMFS0w26XYz5+T+4aFF1ilLl+UrLCnieDzh1cuXOB4PeP3qtZfeOm8amgeUGfDv+8+s0bb3rlfa+7WIEUL5hjbZmkAZAaRSihhI0QHmLo/VaeiyMCDDdGsEh0NZRluFGN5TMI1TtY1/NgGFXb7n0oBu6pFBNwU03bIsq42nEad90FdyX7tDdQOrNqACpX/OwL4IxF7mRwuylNqcyCEo5gZhijYN0973Hquly4Hj8dgzoQWQ0KxK48MyOBfrav3iCrpjo3xYa23yPy0HHE8Hu45Po4Pru23bfIhZQd58eua+4/HyiLuHextYdLng8eERed+9hO+K67Zh26z5/bbvuFyvuFy9XHj3gWPVJmJ+/dXXePXJJ7BezJdmG+z7juPR+OyyXWzgz9IBPT7v4+MDHh9ND1sJHDOJs+uIDdfz2Yb4XK/WQ+zRBlSUWm365+kEBisItgDuzNWKmBZ0gIa0UZocR83I2ZwAA+rHthFo/6rt+0Z7BhLkatlgG2zydFqWBi8Fr7otKLhmG5Dw7uN7xJBwe3uDV68+wevXr3BzOiGFBM5DJ4uEYGCJ8fTTqgC1HZv+T91WMdDZF1OrVuA+sUeMNr3fZi40nYeAc/ekgseOTKeN4JmCiQA0OGqb5m1ODDRxLMeAuRiaYzXbQQQuYkxtYBfvMwSdAW+EPtrkTXd7lg3AyhWjB/JkbX5DBwb4YkAh+loROPnbsvToU1S5Hvev1orDekAOY49DtWHbvkEyQ0gHooNDCC3jm2fN9xfPis7eyiMtS8vk4WdNDxyAYv7a4XiD16/f4E/++O/hsl3x3bff4Te//Q3+81//Nb7++hs8PD7g0ftCMugcYrXm86uBb02X+XmarRJtUrmXGMcAHNZk+jXvCJUtA4oHa63VQmuc74DcElIDokOMKG5nRAGfLcPUD6oKCOMqoOSK6sC/DUzrWZ8dBAptf7jXBvwaOLLvOxBjk2FdJZdBtgDSnoh8GAOQEq77huvdFR/uDfxblgUvXt7gZ7/30wGM4tnGJTZdMWew7fuOw8ECQZymzMmrmvDRwebQ+sw9B+6prqI+7pNcS9PDI2/WFkZTwDHnDESzBffSkzj4voJ32ttPExXUd+rtszpmEqIFf08ynIR8+pyvNvuQ9tOrg67XZr8ZyNsBR5bccm0p1abnFHCdbQV+nqXAGvRje5i5bx73QH1eJzL3ZT1YMskMa6kmiR4ufzuA2Vs/RD+XWhjEDkDyYK5nbJ9ON7i9vcEXX36JP/mTv4daDdD6ePcRd3d3eP/uPb76+it8/PAB33zzLR4vj5Zdf9kaXaWUsB5fGK+GhDX6VHMEHyLXS6hLQFtbjAmxmjasCZ6Ntwx7Sr9cob0gYF3L6q4VMVnmvfk4ltzRKkKCUa8Bjmx5pfqFn1P7gf6x+Zxq5zUEstmpGGz5v+3rBwN8Dw+PCCHh/v7RiHhJOAD48PF7bPuGw2EBQsGrVy+tdLdaKuL1bBHwrVZcLrv1JggJr199iuNxwen4wpTIesCbtz/B61ef4nQ6WZnT6S1ubj7B7e1tEx4xRlzOl9ZU/fHxEfueW5P9WrM3dO1Cn9kQtRRkBGzXbUir50tRbxV6OhGwg37mRKlAI9PFaD3TWGphAsvKfswgs2bFGoVpxoEobT6vKnBgTFfm7z0jsAtHjUCogIyRPbHCcC/NlqPy2ratCQe9vworXpsCSrNF+B7HoFN50LGbMxkohHgfnjv/pvtN4JJ7PmfH8Uye2ztz0ix7aHQ+CXihPZsazlbCpKnPBezXZkLWDLroTj8BmTb8AGNpNaO4SYeqBECFeg0900SfaTSW++/6U/eLIKw6jPKkPctC6L8p/mSDL/g3jWb5QzUBZ8aNyYiA3iMm0GFOK44vj/j0zadCm9VpQ8rQcsb79++Rc269p7Z9w166AVJKQdnR5Hjj2xhbiQfT3C1L4kUroaHiuzmeWmaXTUK07KPrtuHmdMIXX3xhIEDoWZ+lVCszOZ9x//Dg5W0ZmwPwzBDj/lvmq71yMSegZAJz7OnEDB/LCiulR+0q6NBZxiM8Ck/gzMAFDTRIc+JqV6jFi07c2aUzDpeNiMHPsXopmisjYoEONtVahoa6GuXsNNplJHvHMfpNI8S2sivey8WGbdycTvjss888Kr2jejZp9ogwKnBzs+Krr36L8/mCv/+nf4ovfvQlPvv8c5N7izX7/vWvf4Uvv/wxfvazn7nzZ/0+fvrT38Pd/R3+5//5X+Mv//IvUWtpoPPdvU2Kv5zPCIi4uTXnBhXCG8ma8AYrdQyZvN77DSItuGwZQMEZ5uwsDNS4DKZsfbxu+HB3hxiA25sTPnn5CV68uMXt7Y31TSQ/xd5bLgSXw82ZfeqQq6wgHdA5CTxaOq4FWDwTxPSAlRWU0rN0n3vFxve2tpiilSiVAjhdx4hh+jv10iDXa8HmOjGm5BmAwXvUdlCG67Bnj17m3+Ucp57xRcPZb+LPXuxXl70xRCwpovjE2pYxTL2eLeocPVzLfrzkCwYzcs0mV6qBN/t1a327arWpoYDdr4O8ywBc8p7N3qmjnaJBMeo81V+Nr+1JPbPX1lRz16EBAbECKa443MTGg2/wxqdH+3Ri3wuWvdvU6zt8/PgR9/f3ePfhAy6XM+7u7psstMDFjuv1jI8fP+LFixc4rAfrs+XDRHLOOBwLci1IcXPH0jIIGzAV+wCh4no3e8a2AY5nbNcrHh8erHG3X7vWisPNCcfTEaVW5MtmmT2lZ1cjMDi4wTfH9iQy61LouoF3podS6n2KO9/RcPfWEgDYbqXkamAPgOxZNpnOca0IoeJwOFrG4FawLhV3d3d4fHzEd999hx/96HO8ffMGh7Q0vcV2E6g2bVmnmPMh1aYivVAmgKukndKe4Wnrlx4Msv1giRWK9ScabQ6X+UCTTWMwcapiiN1Bzzm3ITZtrYAHlnwJpTtHBF80cyeXjFDHrKUGfEdmQXbbnp9Z19XLkDto2p3vDvIQ4FObUB3pdVmRBLQLiX0UbVhU9dJw7m2z8VAH22sGO3h9BViYUTlnEGaR2WrvMcsLANa0+rCu3qYn1OqlyIWdChq4FhxoWJYFtz+9wc9/+jP84//uH+Ph4R7fv/se3377Hd69f4evv/4a79+/x/39Rzw+PuJ8ufgwMes/R9KqwUupawAKLGMaAdtesO9XlAKsh6M732Z7pmQ9vkJKSIEZsAFJzyMEbxG0+Lmh0Un7z/2u4ARW5T2AoEZsOs3YxMEHB3zynpEWHywYEohcVvSgTG/fEF3P9GqYpi8dzKnVfMUQQxvUZoFen6QeOqilthbPTn3Cy+XS9B4DiqQVzWQjLSm/83qXywWHw6GBcTnb8+pwLLUJdPgHZYjyMIDW3qnZpKVih0z4LZapRdqfg/Qh9EnCmiSjoGcIAXnf2t+W2qsMaqkG4HuQg2tRX4r/Vr7Ytmu7vtm6dXhWTuI1m5f+a7dTlJdDmCsBY6s46DKyZ1vzOQlyauYi/Tk7r03sAbRAng5XbLZQ9VCXV0MtafFABHEMI/QCi3LHbPwXQfltNJwHuQSshxWffvop3rx5g9//+R8iJauWeDyfcd2u+PjRZMKHDx/w+PiI9+/fmU3gtrfRRacpk6E2EKvGfkYxrg2cQ4KtLXI4pOFN5Ec1W/Ws+x5XVHhpfdCy7FHmNntMBniE0FC9dv9lXcEp7TH1lm4ET6vzOMA6gb+b1w8G+PiqDlRlrx7e6wXbNWPbEnIOSPGA7ZqQ94jD+hKfffojvHnzFtfrjhDM8Xpx+xpvXn+OTz55jZubF3jx4iVevnyFlA4WqUmGmJ/PNk3pu2/fm7I4n1u6L5moC4BemmSNoHmgbAxfsecC7AEhJI8cFJTaM88augt45BHNOaWzy+bfxUswgNoMx+RNFfPOTL+O0to9xuk/RiBonwPGEtLZQFMgTkEYAA11RxgjGyRMOhPNGagFsYwNxOl42TmP/RVYnquRRTVuFGTkuliKpcKr1tqiPjYkYR++o6DBvIYZvOJ+qRP7u0BRrrF/l3vX05TVUJy/x/umtAzPbGBPbmecUoCmQ7dhCh6ubwZT6MYvMwb63ivY18G9Gazs3+97MgqxTkMUoPoe93ZdVpRylf2hAOzl1CGE1m9SjQSbhAQv5xDwABVl705wil1BpGgZMVR0if1wasXC0in/4u3tLRafLN0Mb7ijEQNqi1yNWau1VgRm0LhTyGm9oIFBusnlyZkjBNycEo6Hg0WNvc9ZDxqgZb61xvWwteVasRfrKZPzjpIzrl4idt02PNzfW3+oUrBdN28sf0UpGVuurV8WUH0qbVfWxru1N+LONjE07ztKzQ2Q4eeogIxZTN6UUgw4YZaa78eed3g3Lht6kgsqm8z7NWn0Q3hC6a7zBkG+3vCdwMi+E6Tgvnf6vru7R0o2VfL29tYyGauVEKcKbHFzZWmT0t9/+B7/5v/1b/D200/xh3/4h/j8889x6xHrV68+wb7v+MUvftGU97t33+PP/uzP8Otf/7IZftergcfn88Uzl6yUcTlGHH1S/HXbUK8bQlwIwxpdJ2u+i5YlFxt4gHZWRhdn0iXMaU0x2pRj6jCXoe/ev8fxeMSPv/gR3r5+g8NqssNcWi/5ilbqR9q1ht8GFtjed/kSEFCZCceesKGXsIZgwBxl57IsLXvBHMPYsnfnV5NzwaANy4ZwmRcZJfZ1i85Sx6E6ja6rlQ3FQEDQM2Frj84PvWG9fHIwxqL15p2zvec2BRykY3qKBnRqPU2jG4nR5e9131uGrZ3hmM3O/Vk8K6oZ4LC9ZUQ8ILgjN04RfE7vaNae6rzmkIuTxT1FCC2LsTkaauXCS6QbLuU8603hU4hI6YA1lQZE11JwPBxaBu/Lly/x5Zdftn3dPcPvcrng4/0dvvnmW/zir3/hINU9Pnz44AGUG+S84+HhEdu24ZTNeV2XFSEGPD4m69+VejsLTkLe983thc1/37FtF+zbFdtlQ96yTbJLC043N0AMFuiNFmiOKbDtHqpnL+W94nharQzSZcFhNX5vWcZNRikd1Va2uawrah2z11nBEdCzeIYsGAencykt2/t63UzWIji4amd7uV7w/bvvcXM6IZyO1m8uVKAN3IHJcjy1gZ77d+vDhp5lTcBXeVpfzf4yzB+BwygARP++VonMwJf+jQ6u/q1lRJWKHcUdod5WxpxaVoX0rBiz7SdwvNQWpOKz8Hdz6kcbaHje0LMOeW/jvbYT7TsanG5y1uVqrf2aAXB/JTtgDQNKY2jXSylZGwoJYMygBddvvyaE8PSM9MV3W7YUum/BgA5qD8qXLHY2neffcW1wm8OCly9f4ZNPXuHnP/t9VClpfnx8wLfffoNvvv0a3373DT68/9BA690zf80+sSF018sG9ihb1iPCEpEOq+mVEJDCgnU9uCzzMj76A/Cp2G1iugfMDelw0CAYrjrJUZPxWs7rNOE8E92mXdelbUmMCetydJ7bxTd04NsB5lI9IyrAe2Obfo7BgMgQbaAPUJteYdPyFrwLFYjmK806p9beH09pmhUs6qM1eepySMExzeTj7+pXtHtiBMTJO+RRpTHlLa53iR2Ivu4eDBN/gv2x6zO0N8uSmX+r2LrqC1vA0dcdLWOUE8bpe6OOwTLet/u00QFjtjSxnr/8PFtkLcuKUsZJ4poc01sRdL+cz8PzMvoK0NYfKsvU39V9YZk+s9z23QeUljKAqqh9GGCTZ8EC39z1md0J9Pk3nD8IrgEo4lNCk1/sPE6nk03nvbkFQg9eXi8XqwDwgaZ7tlYcV8d5zucLtj0jbzu2/dLOI+92XeqggNgyVR8dM7r6QCCr1PLPNjyHPtFIWzwHUxMdr0gpNfyDyUlNJger6KEvGixeYe0rUHE4LlgPHeirLo+4LtTsuvyHvX74FN1ccb5klLzj5nTbhFlajjZCHAtevHiN4/EWb159inW9wXHtDcdfvHiJ480Jt7efYF1vLGq+WB+D8/mM+/sztu0ed/d3uF6uHXWfAAkaW61xK2bC7+npenB0wGvpKb80bFRgFPaEtLs4A5pzGhB8mikZz/9uWtxKj/Perq9r70K2C2gKURWqCrBRgKvAo0DmZzTVGkDrycD3U0pDjz4KMmYMMeVWjTIKbwWBNNtiBo/0bxppANCyVNQQouBTxTI3Lp1BPKUBLdPi/vF51eHhazY4+3rtlPlZdXjne/PaOo0qRkb3NQt0LP2YI7BM9ef52xmOStGeU4A8V4T6mgX8bNDqc+i6dV3c0z1vOHijZAKBts5eVp2ildzp2QEWlcstc4C8OWYAUGkH/18N0ZwfVwSoDnrAI6sU3s6f1UHAWmtrBm997yzOCW1uDiAEB5aBZsSm4DLD8aTgMdKKihqt7FQNBk6bW9LS1mBKjk3i4ZlaQPC1+UNgqcARQLgZo5ykowa8ofPwtnu2H8yI2be9lcYxcyZn2+v78wPu7++xXTdzivaMPfv3BRjfszm9Zqz64mr00rFsmSWkmT1jLxklEKiSTM1KeIn0WL00GU2Ra9ltdzYJdndgJWebCGiZBJoNap9PKeHx8Yzf/OYr/PjHX2A9HHB+vGC/WIlE2StqrkAJKIeC5XDA4XCDr776Ct9/9x2OxyNevHiBm5tb3N6+aDLDJm9aoMj4ruDh4R6lZFwuZ3z48AGlZFzPVm64rge8fv3ah7tcLcqH6I5VN6RDhQ970nK50M4hoLbPpJQar5gj6ZNivWekGfjmQOw546tvvkEMAZ9//ikW7yVS0GVo14cAQOOxYhz0Uxttzhk8pMmW/SzvBW8MG9w4muX97CTTl8Kg88RhCABiL3+bs5itD8sBKa6Dc2kZkT0wRH3XjD3f1+6cQrKrujxUwEPln+ofBgEQDHgNtVq5T7Ap17HtJ9dlWWa11AaSB58w3LMXuoEdfZhTkAnluqdq9McYW8+Zpnv9PEopQ1VH0yXN4BULvQIheK80l3chBGBhGWlubQYAe0aEgBKsQTYHZwHd+WrnXpn9uODm5gYA8EX5EX7/Zz/Hz376U/zVL/4K33zzNb797lvc3z/g3bvv2/AZAwEeUUvFY7lvGcuHwwHLYtNsqQtC5NABBnctw3i7mCOAwjYLh9b7MefiPSG91JP7JXIetXpgxQz4XAr2bXOQNMg+hsZLTYEA3jqAOis2p8O+wh5eRpNr7MB/hQ0nw7JYP9Vk9Lb4eddqa6/BBgksy+Ilny6H3Vfj/pQ6OuKq20kfnc+6czs746gY+EZtVADuvAFI0bLBQw8+z5lAsx3XZJ5cm/TeaDiN03a5F4UO1GRrEqBhgC+lZGXnch/lkSaXigbHTYnxrE0e9IoQ7b+ntpwdZ7fhBvlYRxuw7Z8Dupo9xKAnACQH8jW4TZ62vxWsMboDGobga7MtCNQsT23kIXjvwUr1L9ROpJ6ifp/9mOZT1cZKCO68LynhcFjw6tUn+OP/5g/bs2+bl/pfL7i/e8DlcsXHj3d4eHhs2T3sAbrl3Xhjkb6BznmlWJB4XXqwNi023ZbPF2OEYySwQI7p4phGEMf4ugNeXY/Y3wlemyyOImEZ/PE6e9expqcSDocjXr78BC9fvARQPNjrwdzLFXspDYzymKxnuJmtth5W3N7e4HRzxPG4NloLoetUHSrIFyex0mYMITRAYtvs/gTkqPfUJ+TrcDg0H4d7orTCvZr99JzzMA2W+lmru8hPvC5t25TS4KeQnmdbQWWb6vRSrVIiVCbbuF5drA/q9XqFVaCELm9qRXFgCUBbN59LA2lcuz4z/eXnfPeZXzSRRHmOZ0W/avd+5Ar6KX/PCSzt+YsOlnTaR6fxgA7eFa9KaNVMCMS72jl1meV2AwAbAmhtg0LtmYZ8cV05Z5tgG1wHhyBDL4wnj4ejBeSOJ3xSCmy6eUSpucndAAsA5LL784nfAvN9AiIOxwMO64q7xwd8+823+Oqrr3Dxqs7iQaN9Z4uz2mhwLJ+FB8rHjFYNjvEcmaTE17IsOJ2OePniJRbvccm+0OfHMyrQghscjFZLQS5jluHf9vWDAb59TyjXE0pJwPIWn7x6hePxBqfjJ/j0zZd48/ZTvH79FsfjDV6+eIPj4QYxWfR5SQseHh9w3Teczxd8+817bNeM63Z+IjT4aobMZCjwc8pA7M1lRssoBCjMaDgPRk3oBD8rZGWsgWgnRapMrSm4FFZPgSVjCmVQ298eiSHD995CizjCo1N2PB5bKa0yJq+tkUYaBHNjVDVg+Lx0noAeTVQlqFmPCpjGGJtiYQRUQbk5e0O/r6nmCsrNghMYe7/Me6l0MgMs/G52p1xr9/lTSx6UwVWRce9q7RHnef/n79q/mc7/lI45CbW977/RaJyfcX52zVDRe6tBPRvtdp+KGJlZGJHiOG3KopFjKTv/nmJCTMmd3AnMgpV88Du6fxSQmq7eed0v4g5Py3oJYRgsUquZv6XtDZ+tIqW+D8uijW7ts4k1iv6f7SXBGzcCk5ZlMhU/WIp+14e6keYs0DGtaMEG7keMluxOxwWAO7UrOLgiBItIQwwE3btSrbQNmWVEvbSZYOHj4yPOngXNyON+NRCj5IwPdx+wbd5LBUDZM677xTKVggFFKjPpaJhBZHTPPSfFks57VpZlapZs2Ye8lsnkCJYzqKIFrH3B+XzG9+/e4c2bt8i54P7+HikmB3l2KyPcNxz3GwPFHNRhecnj4yO+/vpr3Nzc2J5sWzsklvZZ5uQF9/f3uL+/R8lsUh1xc3tCQPWsiug98eBTN+3F7KXoZ26Zj4fm1PsWtCmwTb66c0L5WIE25KRUizrHZCXmuwO1DEZx4ppmU3eedDAD1Z1eGr5sy6Ag5FOdSoeDTrCVbRG5k8/iKe2HCtRUrfSL5fN77RNi29pGg7QUm+DYehiJHA0gIGLyYfH+ml1mFs/QkgbZGOWzZi0QhOD7LTjmsoEZ9u2cwHM13rdsg56FXUPy6HVsPKby3DJzLBPWgg2hNZnnBqrebFk7tWL1wROcvrcsFpWPnrlsZ+LOpR6MXLs9e7V7G0BYu91TDbw0kIQ00B192h/knRRiA3n4HsE6nmuJAcdDwk9/+lP8+Ce/h+v1ig8fPuC7b7/FN99+g6+//hrvvv8ej4+PloV3/eg2k9Hv9Xo2RySyMX4RYqtAZC8gCwqkGLEcDtYOonpbgH0HEH2Sa2xzVzklr9s5fn3Y3w8rg8bBe7VGIGibFu6r9XTd94zrdkGMSyvNGV8O91XLQF5XG1YQYsIXP/rMgL1crD+WD7GC6/TDumI9rDgeDrg5nbA4WAnycBDbAGWgcZ49f/KMepA3taAiP0Nd2lYuNnmTM2KP2zptf/hSIKDk3Pakhs7TaqNo36zS9BxtXLWnqJcDru4IFwY9HZSknRl8beS/eW2lSJCfdk3tLVT4d4I1XDPXqvuqcnS08QUMQwCYESLPDqD3pgthkDtqgyKgTxoupQdGDeVrOnVOKkCt2Le98TPX3IAi7UMnZ148kLnE2MY7UZ/MPhL/WStsiFnsz75nC2pZ0CM48Lfi9niLioL6uT1cyTblPEbLvL5cr9iuV1y2q5UAhoDL9YrrxQbsGBhUbEDH3jPUTCbUpptiSnjz9hXSsmBJCy6XM+7v7639xuXa7UmW7vu9eC4I0ddPAKf3XTNZUFrvr8PpiBc3p+aPnU7W8uWwHhEiK1Zskjt8yFB2uVZKRckVW6vKMl2zLAnrYcW6JDycH2zow8Kp3Nchu5tgCGlV/S8CaDrEUO0GpT1tnaH2GGlRQZ8ZaFLQ7fb21km30/b1em2BXZ3Kq4ktvP4Tu2SguZFnlAcpF+iDzskwCjTSVVmWBTVG5DBWn6ldOmdCNhpnBZIn0fA+anNwPfw++RQYMQblTRuANE7unf1K+vMa5CUgaNfVwY+VSazoPeNCO58QDEjHM3sa4K1hIOXlxb8Xw+Dz8cxjjJ71Z7Jj9sH1uZd1QSgFzCq3h+znHn0YxgLxXT1xoNQdtfS9rLXik9tbvPz5DX78xY+w7bu1fvFhrgEB58sZ18sVDw8POF/O2LcNmX5O7lU4vJf5jj256XA44O3bt/jss89wczq1bMjFAypDMk71bP3Xr9tz57yjup2y7xsulzNqnNtl/de/fjDA9+bVF/jxn/w9vPrkU7y4/RSff/Ylbl+8xO3tLY4HG48OVFwuGy6XjMfzBQ/3dz6xdsN126zcrFbE4OhneD7S1gIiokDmMtUyKUuA/nX/Gz+noN4T50YMGca4aUzMQxkAtKluc4q+gm5aTqRAoAqlDjJZZEGZXoXl8XgcpiPxProHKvBa6YikBmujTqLPKqS4JgpFXTv3pvWNAFokg+vVqYhAN/51z/Q5de+64dWFmEZPFfBTWnlOyOsZk+FnZcZr2P5bmaBeL6WlRStUCSlNjaAd2poVEGugDMZIOCPE/VmqO3EaYUZ7v9jihgi5Gt+jAiQtdqCWmVuquElHPWK0uaOxOe2jfTa6A73vGUuKja5U6dnzxkFBqALp/NczHHvZCEHzUXnz8w18q9O1Q3fiC0YjYN6nVtIOL5fwM0uR/eb2hvVZ9k0HJWOcAg+1utzqz1ejAxkADC6rrlDsGaqDNrVw6jazK7U0hKCke9+10wc9XJ5lCglLWJpUPx6Pg2yjsVodZYoxIhQbdlCqlfVer5s1xnfAz5rnX3H1BvWX7ezR5gu2fUf2oR9syN3kQzXjlEYkp89Vl+HMjMqVsvi2OSY5+5CRyuhwcTlkpc0f3n/Edt3x6pNXOB1OOF/O3lzfSvv2g6XM72XHsq7YlgXbdhlKGpfl1idw3oEp8jnvuLu798b8VzzcP+C6XxEqcDwecDoecVhW5D0b6BWAtASE1pPeM3+ZvQIgwMCRGjJKtOz2bd8cKLEzbcZYAErxbIANWI8HfPn5l/jkkxeIMeJ0WFvQgKCc9W1M2K5mIFiWJMu+QuMTwPs3VmYW9kl+VWiD9F1rHfrjkU/o/FpPrNR0w2zQcwIzMxX3snkJTERiCYcbmeQBwBx6DSithwVMhIuOnocQcAwHXPdrz4gUGW7GKhowaQ+ogbku+1UfcBhEantjQ0oC5ViXpm4eGK8y+8vA79zOJnnD5i53vK0HKmoOrV1ISt6fUQAyOqmoGLLpAYsmp0SdBhyPqxmIhX28ejmgfSU4uBy8t5qDcqWX6poMJWjadZjpih6QNF3YA2+U4QljthZ1dbOBwGPYscaE480LvHrxEr//05+3qeEP9/e4f7jH+48fcX/3AR8/fMB3373Dh7uPeP/hPc4PD8jX3emkYK8WdWepTIw2YXOJi629ZOQtIy0HB9lXpLR4w/zFe8FGd/jS4GTBAUsIuGZ7kfw9Oo3eny94Dy4Hg5eUBmCsX9eVuB/FYUk4HlbEFPDFF5/j00/fIsbQ1sUSeur7EAKSg8GWrcmMNluzp+01PcsesGoXkU/M8aiIC9vLEEgTOzSMzvUTGyOwDUwwkBhoA3BmXkspYU12RqQbDQrSHtIywuigmoErtnH7drUm6qkPEqDz1Ac+Gb2xfxkbE3Yboq8hZxto1c7f71tyt3UamO82ypJ6Q/7JzBjsbwXoGsjkkpl9sBTAmG0KtYMBC/hs1ysOx8MA7OZiLTMa/7WMtNCzloyh/XlGkJG2IMHh1mqlBeVsCInJEaO7Wqvft7cbYJO+ENDkEWmTyfx2/z6YJHQCtjW5nlgX73u6rDisR+TTboGExMEWdt0KGbBQgFIzfAwmWB9i9Gp2zpLWxk8Eme7v73B+PHuGord5cjradrd3th3bnrG730XwmbIue5/XGIDT8YhXr9/gR198huPxhAao7CrHYwPlY4ptnV1WWHZRbfsW2rOW3UpKh/ZK4lOSrggupJQEqEALbip98m8K0NFvVFBMM/qoB2bbmnxAv4C+5rquDYhUe0xpXHWM9n/XBJTZz+vy+XkwUH0/xQwU7Nd9gAy4pD2kdg5f6u8Mey7/2Vn3deecG7/ElIbhh3yG2Zexc+l+k+rXsbJOKzl6pm0HF7vf5zd1G3AEA2nXdbGhWch9UI19x2UrvNdyDC14j1rB//VzqcPzKgYSggGENhl7GWU0Im5vb3sAttB3Sy1gFBEQyoIcS+MnwjfBddVtCDZNnLxWe39iW4dlBNZS8PD4iPv7e99Ps+GIBwC9d3VMES9uX+B4PIBOYzXBPDxbYYUTg0XFZO96OLXsapSKgFd43B7wQ18/GOD707//T/Hf/3f/vRO/RVev1w3n8xnv3nmzxKv1MapA6+mgUbvi5UdNcIQyMWigL+CDMkaQrzYjp6PhAJpwotFFBtUyxT3vVm4njGuN7yuKT3YxxT6Wz7YNXMYt5LW16ee6rjifzzgej+2ZZzRfwb1ZYMyRAkbOKST5/VmQsQSXRpMCbSqsNdNOjQruEdegQEtfzxiF0GzIx8fHJ6nV+tK/z8KW+8Qoswp6fkcz+xRc4pr1HmpAUlnMipHfDTEi114WaeVZfd3Wb0YEZKNTjXJYP5BZ2aqRqUpNS8tDsPKa6tFSGvPVIy6W/TRPqx0BbKNzmTIBE05KfyxFVuXMvWzZF6X2cqwQ3Hiy/ldgz55qmRa1AimtzVk0oLQD1LMh0M/SnEo9ixC6Ab8ejjYAJ4ygoCpT8sSggAWg0L21TaoyUS4AaVTcMUQcVzv3snsUpxmSZaKz2hwKOPhYVeEFL0tkh2onm1LNOEUEYoU5k7XzA3un0RiN6E47FWUHGk1RBPaRqtnbvnHYgAPxtVoTau4d3JEKQFwi1vXWQdw+sCFKSWAI8GjT0yEaNHqry2L2vMhX6yXIsyru9N3fWwN+Rm+vl6tN3rucW/9B661hfTeAS8u6vF43fPfdd7i9ucHpdPJerBfYlOVsOudywbpaj7DT6SQl5BUfPn7fnmlzEJP9wrZtQ95MyQMVy3rAYT0ZKLLb5HXrI1cNOCoG5lbPbQiA9cgRZ9Ey/SpCApboQRDf99yQe2Dbr1Y6EoB9u2Lfr1iWT3BYFsTohi86DZTas1hLKYjBpg3Gao5dCnDZCMRkvVCyD5MotQIxYHegguVZpdq5Lk47lHHMuAkhoIRgCCaAfduwpMXKLfxs07ogETQrQHZeS4s56qXWVqZBQ6uSFz2Do6I6C1c3KNEMxwKL8uZcGmYClzvEApjdaE5UBGKyslpkM65htoX9PSIua8/ErMZ3Ka1IR8vII2BgmK0buLXL9QgblFJgsip7liPlrZWUZOsl6oZviIb0sG8isxMtGySCPnMLivA7gPOo9U5DCL2cu8k6yskOmIB6YyEQWB2EDohIqLm2oI+W+pG/9acGtNThsLX1LPxmVwDWb6l6qaPLu1wq1rTg9Sdv8MmLVzatvK0/YC8Z93d3uL+/x+VsfP1wecTdh/f48O699WS+XJrcMIoxEDoti2caWA/XdbX779kaY6d1QUprK21Wx6qi8/DheMTp5haP5zNQmaUztZwYnDMCwRXMqiSoHZy+DocD3r55gzevX+HFy5c4rKvZDcFACvbFjCE22W+ZZp75mrw9ANdaqUv9zGrPgNMX7Z+WCeKT30PrqxrasB3aK2qjDcFRBhFitx0CCS8ACN15qrUio6LuTwO4sxM/2tkVxbMtrM+ZB6IFEFlWz6hjRqUDevu+YfGBO3ofDYQzCK22NCoaUG/P6XYAA7k8c7BnUtf/GuBX2z5SFrVTC81veY7PnvwO0zuH0xEAugNdTffvpSDIAAf2vrPhPp2XYzLgBCG09et+m6wwvRSWiFjoKDvgEllZYgGB6vuD6PZQoY/AZ4c33tfAswesQ/WecvTzgvWhq2KrBVtjCQmpEvQ1uWk+o0wtDsDiO10X4/UQq7dSod41Oke14NK6nPDy9gTacTlbeV8v/62t3zEDmN3fkj7LIbSSQ+tfXRBSxRLRnr1Es6ktQz83fziH4lUt1rOaMntZopce2h4w8Kk8TR+FVQkDEGZKC0ABimVFVuEFpTugl6LqS/0ClXGtZYT4j82v9uC5loITsHsu6wzAMCkdQLtuCKElgWiWn/oQs+/63Pq11922bTgcDk8SSrifIYSWBannrdmAq5dc6me4dvK8ZtNpQtDu/uqhtcgZ1zrL7F45Vd2Po/4t2Hcb8FFK9koWH/hRO+AfYCXfzABUMPW5c6Z/zGnaSi9LHBOY2t71hG7kNs3b3xO/s7ptNwdGWP6dS2m9LrnGIcuyMoHEAkiUNfYMQA3FKzZMRi7J/ThPMrDPZVuTP9fiWfOlZKzrguPBbLTbmxPevn6F6jZYLtlsSX+m6gGH5svXYno0GFBpJfepg40ecKG9i2jnlLO1XqLuo2/+Q18/GOC7Xq/49tvvkHNuzppmaRnos7fU/7nMsZSCWgKKEDhQG9JphnFtG/QcA9RaUUMnNhqzvUTEDmffc3u/ladKCY0CG8uympMMQDOf1JhVo4SThY7HYwO67DpLS9OdwTvuEwWy9k7g83W02j63rmtD7CmIlmXB5XIZSmqBsZ+aRtPVMWfaNtczA5i6xxS4FLZ8NjrO3EM6BwrgPZf1Nl+f+6Kp3wpIqQDlHmk2JZlMo07a30CFM89oVhQ9im9rJSjb1ugEReS/GexC0woEExz1T6AJPHmG6gwegkSIKDj9c6XWQSjPSq4LvTgIcF0X1/O7/q1R9ZwzECpSGAHedj30BvLcUy0L8W2CObg9w0/BaZ4BnXd9WVN1TigKjbbtOgZcKl/MSosGuDpeVffQ9Uuc9vmJccCJUkufntjpg4rXHPd1tR5p0HWI8R5DbNPfLMMsT/cMfu6SYRp6Jkn0iQVqSA33qXDD1IC+gox939zJ79Ok9Ps0wBn562X7WhaPxu8EW3gdDXCQP5gJeev9tyJCO/++hup76L2+ioP0JePh8RGX69XLYy2L8P379/j222/x9dffwKZqXnG9Wv+84/GI29sXloWSCx73B1yuESk5WBYj7u8XN5y7MZAWH060Xby09+oZiQGoASmtOJ1e+PRkK8G2jC5gScENcucjggGMVVZv+L1Yb6QQeyarilg7hm5omywoqGXDm9tbfPrmNU7rATEa+BVTMDqoBkDRkTBHvAfZarUgQBFQvzvdY8Y4SWlJSyvZUbpUPqIBQt1VqwHG27ZZOYd8vsvAZJnIMOOL302WhtbpDF3vhQDPXhizrdVpNtozp78WtwGcppreSOZK69Q4NeQJNKmzQ3lBsLplnJTSHP+0WE+WWiyLMjReGvvmGkgfzY4LESV4iRwARMmC8zXRBijFaCaiZySZwd7LRRt4BsvoRIwto7HTFmBOY0CtEbV6RsKWLXuAzhaNVaefHtTsASqCrmp/zEb4HIxU4K8FbzhR1hdIx647UFbKs2fLdD0sK9Y3b/Hm9Rs/Z+OFkgvACbol43q1rN29lBZQyPuOvFm28PV69YoR6zNcM3yIRi9b57pbYM/X99nnn+Pt2zcmmy5nfPjwER8+fMS+e2AJ3u9LbCk9z0jwA9TfAafDAbFWnNYFt8eD0b9nL5QCA/jaQBoZ6hFmu8jsW6N/BpwqIaRGl6qLGmiHcXDD3JNXbQV1hFW36fV7n0+RA8EGB/XvhDaEal2swgfoAMJT/RZb4BAVrfSNGUC8N9tvGLDpZdkY26uojcP1x5TaQC/6L7y2DoSbAZF5DzhIaDxnCWjKd+1vY9XGU7vQHqbZapB+Yin2LHjnuSWtqOhlktx7mwAehnJMfTby8gxMNhA++X4Va62S1jTY+kojKSUL/oqdEFpv5S7H1aZWu43BjergJwNGMdqgomaHOnC1BEmSIGgQuG/RBxOzYsVpuFpPRvo0+swhjPLIv4S4ALEGLOvB3+vylXRAwMH+hkGmcI2WbZ1NL3hwvHqDd9Pni9Cht59YmShQB99S+VIz6YdAugeVgtt2KKHpNJ4Xz5/7PPvZzOoDetVVSj17X31U8g79JsqGuS+62uu85/V6xfF4bM/Es9bKOKBnLSpf8x5Kz3xf/0OwrGaesZav8jOsZFM+0HvrM9B353MrLysoxs+bX4XWouh6vWJxQJhYAvWgylkNmOk9+B0+qybYNP51e1BBM/V/9aXgpfq4XZaHdpbKO3xxOCefNcY+NE7vleJY9THbhNr6SfdBbTeeh+rCtFgVTCnFSnHFP1TfWHUcwdyUfFBpKa0tFvmOLW5OhwO2zfr9hcX4PWcLUEYPMjHhrBQbzkU+KLW21jQGKqaG6RzCoa217cPki/5tXj8Y4Pvw4QO+/vrrtmjdOI7hBjpjA6Myo7DMe26RaSqITsTPR5AbwQiNzuAijQKEOBy0GqK9AWVtgotrng1XZSQ1jHgwakDEGPH4+NjWQqNTQUY+B79LYIprmgWNNktlhIFCietQY4bX4rPxHkzP1pc6b3pfoAtMBYQ0a0rPlXs6Cw9+VhWeKhK9Vvtu7cpAldEMnuhLR7LzXLm/qnQ0fVzPIZcCxLGJqjpvKiyfN0hHI9/2I6NWKY2b9qMZDFWMUDGU+Tz6b/5NjazZWNHhLXqufKki0vdTSrhuFxxPS1PqvLaWZs30SdrmvpkymIEsDDzACZ/6GdKP0e7upf5KY2YEURGV6TzgyoiTCUNAH/oBNAHegNJi2VdZ6KPtbfHITHCwRvaZYFEM1pOilmLZTQMthHbPqgrYU8tLKSghA6G0lO2IYJEofj+48VifKtbuYKFFz5e0oCIiBoLLlr4/0ykVVyvPlmisOjaNxr1HjNIk+QH+pB4/B5uS67mZY+9lmiEgZ+e7UJoMe/HiZVsjquUIXLcNDw8PeP/+Pd69e4fvv/8e33z9NT58fI+PHz/i7uMdgvO0Xbci5yvqdcys2bYNuWzerqBP7Y0+PKXWalPslgWH9eigFcv2gRBp4EUbCsOpaYbiofr5LOsB0UHAWqVrURgdHe6vNRJOqMX0YAoBKBV3797jkBJOt0c32IzOrHxOM6T8TKpNzrUzyVAgpbqQURmU3UnkWVJHch/53/l8HozYprsQ2jpUzqrDAWZ5POlFhmbYUwar/fDcv5Ue6XRmdDoNMfTpeApGAIN8q87/LJXQz7e1eUYHSw7bPUNAvl7dCIsuZ2MDEenc8Fza+cDoIS7ulELsmWDQDKPy62pTmbtchxmOhdnZGWweH0MHNXmOdh7zRHt/Tns4lD3LGYU2iZXyBOiZA7VygnC3K5SvZqemO71Sptt0SGjZ0+35Zf/NPvP+URg/ayt14CIlyxpaElIpWBb2pawILxNOxyMCrNy51HHKoF1Ls3RC073Mkh9AsCUBoeLly1sEWH/T+/t7129G/8fj0aZ6Cx89Pj66+A5tiEOtFeuacHM4IDnISwCMWRARliWrPGi0LUNGlJb9bwi0JXoAjzqSjmILjG07lpQsMzlnxGWRjPNxWM9s2w82Tq0OrnhGWPWqgyj6ttlNFQixBUdKKZa4XjogqrJHwTJ9XrW9q2drgEkAEABjOTReVLBZaZz3bb3v0OXlc7YV/61y1XrfjZkufWoqA/f295wzQlqknJjBtaUFDExuj4BsKQWJNFmqTx/t9iPLxkrOSMHopKLCK6f7QDLxC5r8jgZy5lJQY7d/uEcEeRaX/6XsA22qTU7/SoEY6kkFMOhT6TmTlhFiC5rMtmneswc7pJWJg9wmVd0KEbeg0rYGg/KTbzLw0aifjXZ6+br1wlubzlUa7z5SB3jpk5EPadfyWmEZB0100LY8oUH1z/h8h8Oh8bauhbxRGSQAwInvwOgnKS/wmasD5ArWaE85+oSa4EIbjmdM2mhn5bYh+bAF2WLvK8c95HNw77g22gyzHOA+kbbVx1f/flkP/oxZzrdnGKr8U5CQz9orA/tz8QyAbhtdLheEEFr7Lp7xddso5pvu5V7SP1c59VTWP82kJs0MQxgB7F5xoK9Bp0w2T1+T0JAHhU2/eBD7GXozPgyDPTX70JTP6luk1OcS0G99LqHrufWq7apYhfonPD/NWle6Z2IXdeWg55wnNZiCyhYITPRBo3l71t4DOcaImGwgSEJqMoN7rM+l5x5jRNyeT7b6r3n9YICPBuyM/ANj+SoPghulZbQprt0Iqr2/UEPKwwhYMetsNlxtOlqPooWQvB+SZW1Q2HJdZFJrZr805ubnlKDUwFFAY1ZsquDmstIZHVflaEbf2vYEQEsj1vtpZtpzBjQnCvK+GtWg8OD39O+zUO3MFgZlTSGpglE/B/Ro/py6PCt2ZV5ehz/bPWM38PXeszAGxrRzPkvrsxZC2z8FL9Toaz9D8JICi7AoYNqNCqM59ozSlyq1LpwAoAO2tifs99EzM1T5UUg0oBp0hrpy6nzYS5b7hLfSrjEbpTS6LHMQIBCg545qZWA68IbPp1kcg1M8KQuCg/u+t55wDw8Pw3s5b8O1uc+aUs9yc64d6GVGs+Pezqm6v1SKd5aqYtjV4Zy4L0u03kkVAn566YQZJxZVzrkMaw0xYs+d15QmmkysjEzzTIJPcrJIW0UAs7/9RPhLdzzEqVAl6Y8EwLJRImKL1O57Bkt0SUs559aaIMIuW2ttDbAjghnztdOK7bV/1p+BEfZmiIJDYcLAg53Hp0heShOfjIYMPGNniQnH9YBP3741w0X6+z0+PuDDhw94986m4X78+AF3Hz/i4fyAy/WKy+WK8/kRtVZs2xUI1Zpxrz0amvwMAHgp36EBauuyIKyWdWR9vDq40eRBDAjRenktacGrN6/x2eefW//C8yMeHh7w8PAAZrOqkaYgNWAGe4o2hfRwOGCJCUtcAQTs+4a0WElhrhnbVltwzPZOndXoDouDC2ywjND764UOlmnJCiOL5C/trarGCX/OMqLRfzCDvpaKvXR+ppHOs9fvKw3oSw0j0rBlrVYgJpSSW+lk413R30pj67q2EsjqoIg6UoA5ylbCXNvEXq7P9tRLigNaxFkN1Xnt1ZisR7aXHnDLe0ZFt5m23Rw8w/RNF/QyjyGmaToyoxnPaPo8+AyNngFI3g4EfkUGUn83MMQhxFwMJAupO+maXdHWEUbAD8DgmDV5nXvAUM+76+4E6HTU0uVBrtYX1eYe2d63LLUUscaI6n1P4ZlAtdp/IWDQ5RAg2GSrgAYxtiFttXhJXwhtMvq6Lnjz5rWs2UCFWrUdB/D27VuwpYPZNQaILdHCIBwe0daFJvyHAK/9iXZEsEnOtToIzbLFyQ4SO2XW0yF4A3UYjSDZBOd8Hfv1qYNMGpmzSBqvBGsfgEDNZRm0ebcp78l1ZK0V8XBqQW+UiphGQG++Pv+tdnN/Aw185neiD/qIsQetAbR2I0pvQDAwsnRg63K5NN+AslqdatqoXEvJXQZ3uejn55HaKPxbHaTmtYwGu55tlU9eMkaO1z3ILZAijmkZgcd931tbBJtQebDeqOQ5395m83trGrUTqKO4Jm31QlpSgCbU7lhzHZR16tSrL0cHl8GNuCzYt80Hd3W52/hV7NhRzptzzUBr8FINZrID1QbTgAEwP49ilRe13SM+ASKUrzWoZjTR7WzNeKMfo/qugxKh6WfSncpEPcdGZ/I+XwSeFMSewXjryTsGbPgsNjG8Z63ymib7OvBIO+50Og2+HfdF78lM2DnzjWfVg/vOGyEiHXrgmsF7fn7ee9JO93W6r6Rl/uQLVhgUVOT92ul7y83gVn/iuWSgOaOQz6Vyi+/rteYMQcty7UlIBqb2YWGz7CUNcn/VB55xgZItmQSBOIq2geprpC8+2yncX8CrqLxEF4O/2v1NpfW+xvAkC3agEccA9fx1j4LbSdxXzf5Uu04DBLRhlV9bf7zYh3fyuyqbmjydEoe4r/o5C+bZPumQNz17uF6n78zJubUEWCXF0zNQXmrDOZ+czH/96wcDfMoMSiwUCDOYpIbCbHgDNFLHHjAs1wUwDGQAbKOYSbZtHfDph9mdR0WK+SIB0aFhqasClh1wsGEDWsKkSodEo2XKiuxTSSrhUwlzv54zpADLClCQlHugU+1moE7TuVUhs5+EErYKVhWkVNRkIhU0TxXe8ySp58XIi353XgOfRzMEZ8GtAN18Fkqben6qhGZjgTTQATwazgExGhijz8xR6jVnlADUnFuZhwoJfofryZlKjyn9Hfgg6ETDXQ0LPd/52XkmPL9+zzES1QDzZkRXcCoqP8/rGQ3aZ5rRHGObTNscjCfGMtp56B5Q0WqqeVeWLDHse8xn6qnknDDLqFsH6PTegxPO+1dm45Qhcqvy53fRrV0HfW8wfT4G6zcRDBBVB2RU1AUBHZjnwuZ7B0KRtbnhXdiH2ldf3DivtUfMAJvy2Bw7b8KbIkrIXpZSEBGRllXS2zvwXgrQJ+Gq0obQHp7w3eB4TQbkCLx3BffcXs//rvLMTSYHIB4OzYh48+YNfu/3fmJlhpmlLBHbvtvUvZzx/sMHnC9nXC4XPNzdtx5/BPwu1yv2bQMQcTodLRslRBzWgxn6jmOYbhiNVSsrAG5ubrGkhNPpBi9evsDLT142kPD8eMbj+ew92Ay4a9kTk05YV+urltBLEAwYtsyBGBdzSDKAAiQkB7p6MIT0GKP1H8k1G+17U7dgxZ9AsRLbtFhWTUDwcsdr00HqQCm9zpk21B2qC01xP3VQKNNmB55nr3Jl1vcDrRku05y1Wq00Sg0mAEP2mRpkakiRvtVGaIC3Oxtqu8B7ZFpPKts35XsbJsBMYSvRV5ui5s5fra+VZ9MmwDOHx2xDjURXfg9eymkd8w0OLAXsv9nkd4o2ubmIUVwlOwSwyXI8jwDU6JN0Q8W6pLa3PEM9RzW+uZc6ubHtfY3DebLxOnV/CHbzSvA2BJEB7sCL7KjuVARm7QQM60kpIZQA7e1s+6e6QMHdirI/zVaLweRxrtlayng2DDOxui4hHfO/7kwsi2VfoQK1WluOZ3Wo3yvGpQVZlG9IrwwINrmrNkSt7bxoi7PPER30dV2tWsEYZ7h/dHlQSh+4xvuqnd0ABGskC8schZVP78WnGJfm1MUYkctuwa0lOKEFoPZsGb5ox8P73DELfgC7QwdKuM69bIN9YjxkdBR8bxsIXgP2qwFXKtNooyjYpc899DEs1v80QOVY9SCpB7fdH1nXdcrUqu1ZazXg+3Q6YT2swMYz7I35SUspRhyPh0GOhkR9a6BJbBl3Bmgzw0eBeaVxBn2Vl/m78WjBsnTbjTQ5ZHDvpuPO53PT0cz8Uj0/A1LMQKrF+CvE2LIP2zMnK11LydojNNs1VB9MZL9b0KaANnD1caEhBOTSB/VwWDa7CTp+DrAfJf8pa6+w0n8GVHN2e8h1qROq0YlPwa7V/gbU9m+WaM8+FMGJZQlg/3j1YQg8XLYRAFS6ooxQP5NnRtmsSSKapaZ0qSAQ6YF0fzqdGhCuel9lmVa28azpczOxpoE7oQdOKScIIunzcB8oGzTRQ+87lwnzM6qv9n3HYV2RYsLlcmk8fzqd2j2JB/DZyT8d9O7JPPysAkPqe9nnTFvp/pdcrewzdhl9uVzaviuPD2WcGJNZci1IS/Jei9V7fY4vXkcr+eYEp+aPFwvMVBhPsc0Z762ZkXDeoY+o567nE5co9pF/JggwXTHo99kvmLM2VadTTpFGtNqMdh1xhMfHR5xOp8GX0T1SPad8l3cbQFhLRVoWM0BL99HsOWOrEGq4WPAED6+aan5WgPXoRmi2v2FNPxzi+8EAH/d+NtYpKJSRgJ6dxs8wajMY9+i18aaYGZUfa+upcBVFVoVL43LbtgEIo6A7HFbsez8AXkfTkWutuLm5cQPJetOowwr0bAJlHDIhoyNaU8+1kBCVUclsmgnA62pWHAUyhc4swAcmnYxvNSiei4zwmXiGGnXie/xJpmQasoK9Cv7OgIemZiuDzgCWMvAcVVRHbAYMVRHMYKY+R3OwxHADzLFRNB1iUNZahyxSQj9zNoMC3nr2Ckx1Y3IacpIrwvI0u0WVmCos0v+YIdkd1ucAlXm/zOCQ6Dzsubn36+GA63bFvu3NkH3icPtLgTygZ1LyXBScTGlMNScd9vPyUoZgmbi89pxOra/qWTf6vBEjIKrKf3Sw3MkjGMz/5H0DO3uENgTLHIYLbASghE7rwbMZlE4BBcrMyAne5I2ZGSGE1iOslIKCDlIeDode9h97Vo4aam0wQwioxQIURy937hO3cjOi2Oi60YD85zv75H2eMWX3TGvqwAZmoAwOcX/p35+jrVoZNzPHJ0sfw4DeVJ+fst+BFy9euBMMy3Cq0/5Tj+Vi03FTRECS+5kTWh1EqnUsCZn1gf2vWLZUCHj58gVevnw5yDN/isZLpVjEfI0JNaKDOzSMU0SMK5AtjTKJ7FVZp3Kt0VADXkjBRqQNKqkGZoUUkYKXG4rsfppF3B7Weig+kSXeRwYEYMZSIJXx/I5mD/LfPRgx0hOvVd0Y0uecf6dsG2UK2tkQENKyG64r1rFH6fl8Hm0Mn4is8qNWDwD5XQzMqa1PcHSDGRjlnToupRQkBwV3z+4rpSAUOUsUrIs58GpnlFIQWvaX0TKvGSp8eqyXBKcOGLEvWna+StKmYokLkK2ETe0oPafeP1B7JGI4j5nHa+3lVkAPXpZKsMpdlCY3yTvGhHZ+ERGlGaMqawxAK+1zIaD1a0SILTuhtunBaBkG/f+o/wktus73TMFQ4cMpnI9rGSZsDvSuNFo1I91eUfcJQKi93E/3LgTPMkTnO/vZdQWdB2DM+iA/d5lQJ/3WbVobIPF8dnULOKIiIdk01Rg7IOtOTkAYJnfHaBMSO1AeuMXtfE2XdJuP9ydtE0DhWjn8SPdC7Q3Q/oWAQjA5blUMNhlRbUegDx3QagK9LgP4lCPNpgjJZUC3Py+Xa6uwUcdXHVYUf2ZwyFM/vz3nFkQg0NX4Ws6W/eaUXkquTd8HMPjjstkBrufsEg2qcx1qU6vMUn3BazEhI0y2j/o16nMt3lO21IIFCyA2Lu+5LqtxZWSfPyurB3vgNZu8k5T24LMgsQTP5LlbWTFbcpCWPJu38bQ1RESb2A69B2VGREoBOXt589L1X84Fmwx/1KSRvk9df+l5dn9zDEIQKFN9TV+SQA73kmegSSlMNKFvQ3B2Bkt4Diq3mO2qdgjpRelb/VJ9Zq5n5jvVMUrPvLben2fDNQzVW8ECvlwP6bLCBralmNs+1Fq7bxEDsgPWyUEoAnBDNrj/5N5pv3yuQ/V8yd4aJQApLFgXq84opQ6gm4Kruq8K4jbfKsDp0XRUKdUHqEXQ4CUAmXMeknnUn2pBFbkP91aHinR5I20PQsBysJ7VbeDVRMNDQILfL6IvQ2iBR+VB0jhpUvdH6VTlzEyLOsiFZ6M2Jp+p2SGT7Vpp/JMXXX623sDe85QvDd7r2uf72FoLtu2Hg3r6+sEAH4AnB6GCG+gEOBvrTVlIJOh6vSItboRXtMh2LntLadfeAbV2xJt/1ywxBde4mewPRAVKQ1QRbAqCWmvL6psbOqrg0dJjLU0+n89PhFJDqv2ljM/3dK80KjM73DrqXLOZKGiUERVw4znNxpM6iVwvX1wbhRf3K6WE8/k8GPUEDGajUY0FvadGKWYHVWnqOYU306F+Xw05TEbMYADK9UIIlpU33MvSkxU0VWUXKqaeWDNwYcKXL93X+Rnnv9PAnIUDn28W/GqM2+dpaOQmwKk8Z1qodaILdANr37buVMne6/5xzRSkM53Pgk0NXFUs47508F15ZTaUn6MJ3hdp5K358xowMAMxNOMy0Cj2tYQGUvmelQI44Ad43zV0OkzJehxlUTSUR/y3TcutQCltGuZ8Ns2JlmyFWaaq4aTOJcLT+/Y9fqpMVc7pOoDO0yqLZgcQgGcslSf0okOLlJd0De2zQNcD3gstIiCXag6lGzTkQVQHJ5JlztXQsza4NzHGHlXvuCXgEU+HKRFDBxhq87UC0V7LbgKzn4ILGQeMEAyKlTJZu1YajJcs5YoxxtYDEbVnKdlzdFqu/h9ph86VvnQPZzrhmcZsfZfWZW1AQTOIYxyMbO4f5Yd+puxjwIWfvVwuAnRhkF2qA3jdZx1eeWnQkPKPe6dRdr6nBiBLH7vD1ieoAdXKUPNYojGDkJr5x+vQqUIdyz/N4ZfgQbUS/DaFV+4z61+eV/KBBSE4OCLf4X1oRKvTpesnyTYe5p6RTko3gg/LYn1iYJnSADOmrVl9KRXX3aZoolaUXNpglbnX8izj+5orUuy2kOoInleulpGYYvL7VOFKO02TzbwXAAnecCK0TQysKJ69Vxy9o2yudUdrzgXKtw7o9Wt3UDEln4jXnigMWVXKm2AqQjCZlYLKUXjSWoWPzW08brrFgEPbn9pK7PRcU3JnSJycWZ6yX6c6KwoA2Fpqyy7ldQzEMNCSWV8xxqH0ik4hQvDJhxXbvntAQipAwjQAq1oW3u46PaX0pPcj9XzmTrdglMnzNvzG5aQn+D2xAZusoOx3fVDRZcGSFoTESqGntiWv8Zyc1VK+QvDXZb2pl+5/pOOhBeHUH+G9QgiIiwHJLN3mOR6PRywhGJAaxiwbfk4d7Vn2hxixsNogJdQYAM+03EWekzaUXmjL2/sLUrJhgtZWoN+L/MtS5BhjH+yB+mRtKsN7sL7TGsF3o/U0fIZ2agAQ0+qBvtrBgkZLxoM1qG5LMBxh9FdboFbAvOa8C2jS9gelT4h2ekghYlm6XGMrF9oeCgbBbUvl111AqBgtY3nwM4JWOwF73nurldjLWefqrcEWxFOdw/d4FtwX9W/p+816rtG3AHI8w9l/VJrkaw4Izdn6WvmmlVbqR2uATH0OpWfjq9JtmEigu/sDXEtL1shjnz+1febqOAUhuTYFVnsyQPfLWxAtxoEftG+q2kd8MYkIQHsO26++Hm3XFULwAXLdhiJmwnUqMKb0obiA+nyq2wc/YdoT9fEbbxfJ7pN916xp1Wvqi2iG6ezrkhb0vHgfPp9mhKo/z31Vm5TvaaCJvEs+zaUCoSAkrwoIrEh7GnTXveWaFZBWGf538fo7APg6+gjY5MBac5u4xiyablAAFIfbxkESPcq9eMojle3i/a7YIJbEwbIOJUJG19XRmIUYgOGg9cXvAuOEWhLVjGDzRaYhqMbyJjIqP6PAIQ9YBfFzDrj2b1DCm4lwFtT8HoUKwQE+yxxt57Oqk6NrV4NdiZ3rVSNyBgueYxBdP++h5zAb/+r48N/P3YvvUREOmXbyGT0Tjrpv13GnT2mmOnCv/QD0fjaFUEq+ah2cg1qBXg4bAHThOCsk0kJGHejELzIYX7qXSkOknRAsQk2+UYWne8XvMqO1XVOABQBeisPyqfFFIUy6U+FFuleAgOdp9HhFrea0tCEBg5BzMHBZ2oATVThqBDUQudZWjlb9zGJKQ0bRILShwQp/TncKlQb81FHhU7hrQd32XrYtCqllnQYDoHSvVXbFGL2vmpVmzrSue6x8F32IAz/Pjyp9RD+zwIErNYJtD2j4kP9LMRlNeTGfo01EpWNVUXMdDZLcy1oMcBvLp7jvsyxrZwGmsPvzltCcv4ramrTToEnBipotK0F40A1r9mUFPDumOfgc7sI8VTE6nZ/3akoaCJaREXt263O8S94krbQBKcziSAExWaZLA+xDAEQnJDy9LuVJM3xr5zX97Gzw8L0ZOFdjyVnL+0raMIIQ46CDOsg3yta2RgcAGPhp6/BJpwquKZDH6+izdDru9+EaOg32xuV0AObed5Q1u/eyS2vP9g4htIywWg1Yn0F/Agz6Hc0I4E9+JqbYAJnF+9b01gPmqJk9tAznw2dWQ5g8kYuVgtk1HUgSA14Ncs3S5lAJnk3ZXR4lCzw0sChYxmq7VqEdkFAKM4KkqXsMWIJdIy7Ow8WEotpctDlUJiuN5iz8HY0nrSxlf3IOMRjQVCvpHkTdmgJSXdZ+FgNSDXCIqCEC8DNCRQkdMPI00wbbBdf/bSI1OuzXAP4G0vesZCA8y2dG4/2s2/N5GTL7XAV/v3imJPy9WmtvNxHkOYsBSKN+cB1QAYC2c3W587Qfk13I+iwanfas1lIKUkgDbSo/NEfKdUveTT+EODqJfJGn+DvPujlgVXiSfCDOq629DuCcb2rLmmh6s1YbhrPvVh5aDXwp1rwRuY49wJSGN9qzUBkVB6eaz6D7yecNIbSSrR6msaDndu1Tyskjc2bUbCs3h9Y24kkghU7qc5nkPehPQjZ9mPMOax8ahrXHEFtWvMqZfm0r04sxKlMMwY8UCH504C+t3a+ijFMbaMxEjM2m7oHV/rzWT9btlghEBk0qWrJICNGzX8kMdaBHlp1zMAmBOFPHlCNO48mAvc439Qk/cI3MqtNzUHmvTn6M6cl7I3Dy1F+ZZYy2fVB+mv1fBTIU3J+/V0ppfScV+OH6TqdTe1YO1FBbjjJcq6tU5sUYcXNz04DfGdTTz2oAXO0YDTrONlA/I/jQmJ4FG93WBYDT4eiBLg+YxnFYxtA3emdV12iPz/p39snoo9DHn4HRvj8FebM2PzX26oGKEVxUGz3nHQEJy5IQV9NrexlLszXpyKqDutwmfpLbvlUsiyU9db9q5BnNeJ1le8MtfN3GTyyD77gNn00TQAJsyB7adbtsjbIfweW6ykjdG6WF53wN3k/ty+Px+MTm1ASS2d8vObe+oHa97j8AFbUEVFC+j3aegnfkFbUltT3E4Ff8gNcPL9FFAKq1Y66lYndF5BAJLl4ey0mWcCAQQMuQiF4qQaK7Xq9YqTAQkfN1OKTBuUCP7lAIaEkjs59I6KooeIjzlFA1tAmWAWjRA1XK873m7INBGMcxPVmFK4BBQJIpKWQJaqrjxnsqU6dk5VU6YZRCWvdwNsZV4Gi2lBpgqhD4k2t+rlxS10rHh704NMtoVpTK2PP19NwGpT8pk9/1PkCFFMD+N6VV9xBkAG2C/kxxbOyZS26TWJuxW4ESVC13w8LOnAYhsxi7sWHrMoCcfeZixTDpsIY+AQuwXgc0bGfAi8InBCDnXsYG9ClTFIq/q19EZV+BGIDiWTClR9dKrWZYYVR6fJ/7wnVdr9chbZ1CLWdTvAZE6jSl0HYxxgirmuAodXPYDgfS+I5azZGyflgOnkTLckCwvxXvRRbZKyXClJIYpCxNip4vxucBrCREHX0edp3onUY+FZJNyx0zbJWmTT5ZfzdTgNqnSvvdqQPJ8i2L9rIv4exEmYMYnDiDg30Ra+JeB+x7Rs7mQFRm0CwcyGPfO6yrbbvTP6eVKpBZq6OgDjamFJtzWiQblEGHBhyH0Iz59nwArG9FdecktKEDxj4ORjIrggYADAxvileMats+V8y181MGQQT7mQtlOtpeGo1OzlSwJ7P1mlFOBxV8/hAQqvWy2vPu2Yg2BbXWaiXBMTUDhtfXoAnBxUgDXuhN+Y6/q0E/gyak8VIsq3RnNDsAnPzYZXtGLcDxuNqwKy/pTHF1XqvIdcO+ZaQl4bptLUNxWRYUlCfGL+mS+u14PLb91Ois8tLsIKlhxn6Dqtf4jACsD1hkn8zaGq6vXkoSAZmu2F+znlSDft7bWi2jTSPGbPAUQvQMEjReiMHKFs0wzgirg9EuYxpwuK7Gm3tFRYH1TwwuV4CQ+oTnWixjqweRR53qN+77U6QdQgwtA5lgdzXkF8GnrFKORsoQVOS6Gx0D2PatB6LQAQataDDuY+ZKRkUEQkVcLcMgsymW8xEzuKL3AmyyNQCFZ0q6D7GVGAcwGzc6SGQZuQ7J2Tk0IAwtsBCi/V7y05YmJltIa31POzg38iRfsyPUbRL/vINOFJ2gLDJ2ND1fAQQHPMQsooNP8Iv9j8zuMJoMq+kiBk6ak+YSqwTe2IaLcVBNrBZo70Prxl6Y7ZlKz1RS/UO7+7CsNkQj9syNweGtxR6U4LWDqLkULIHDwvpZqezogWw+k9H1kpIBxzDAKa0W7CQ4GHIPkiUHvmuWQRmU2zHgevUWP+hTTslLZbdeTHl7ukcxRMTFhiWpXFAAgOeh+1br2AKmyRx0YKxOPKYOKv+un0E1wMxA09QCdSXnNqm6omJH6cEBod/2bPuOvBeYinX/zfvh0V7cvATW6Mz2UEFivR7XN9uuLSsWT3t+1mD4PXnOWqOYrVYrM94LctlRgT6h2q+RQsQO56vQ/QG2qDEbnARHoG3Up2ZWCqBQilFbFFCtGgJZCZp68IxYK89tlg+8Jgf3WPCjeGA74XBY2r4oODfTi/pWs32u+pT35xlpv0S+SLcq32ZZRzCEPYYvl0s7b9XJHI7WgZuRF2hPatZg96F6b0D9qf5wZvDaz6gFHnOxQIbQUgqjv67+7fwijz43YKTZsnXMbOSzNz3iOhoxYS/WM7qi627Txd3/4p7N4L+VkFtPdHhlS/KKGcU6SPvms3b5U66eROU8xuSCkCJQivOYB2wYQhc6416pPvM/mn3u6w8Irf+x0kxPWCKBGeBNe2MJQEh9SEazDUvxIJ0GfbocVBmq4BnPiTSuZ7yu65OKR15DwWQnAvNHPBt6362VCQIsGaF2vtS2VMqrXFPLAJQgNz9vIONos/9tXj8Y4Lt4tprWZasCUjBBwSgCHAGhldS2jQhRBmbs7fAUwVeGDsGcbi1XBbriUOHHdfA7Wnark3so5DSL5XA4DFl6OiF0voeuYUbu7ZrWrPZyuTRhw1RkzRBsxgSej1LwdxXiFD5kIu7ZXDbLvdKegT2KFgZBpd/TZ1GASBmO+6zGB40TJX6+pxEcGl56PwVllYZmoFTpSOlEr0NhZfdr/n87OwIlFNh2/TFq3copyfwVQ+YRUFsEeI4aaESKNKznyedJwQsGaQDFYOUIHkUARlrWZ+gKPWFZgtD4ZQBXqdA7L4wgXRPcYTwDKk3LMui8yDUoHfJa5DF+hsqbTmBKFp0CxjNDCD7V0DMthTZNCY1RTUa6Q4xt8AmnMgauqbYP+7Op8B17PKhxxLPidOVarXvTuj7tUVZrxb7ZvqZoapLnrtdUA0ANITZhpvNmtMrIJQE+yrhuSGmQQRXgcKbV9kll87Is0mQ/OKAAB6sY+GDpW2z9ogZ5W5sLjbQkLx/x9gelZ2fkPWNdFiwObFVI4EFsK+MzZm30Y9OpiYUIvRhlXXY8VZJ9H7seivTa/ZqxjEae9cfu+qTTQ7TyNMogvyf7nrXrxYiyT31h4pgxXkXRa5CJ1805t8yzARgV40ANT5XlXAd/b8/hUdZQXJZIL1Cjo4KUem86AhF2GbvWuh7a+fmhDc83Z23Mji11Kdc2G1j8bM9G6f9GtewklkhXYLiP6dmlvaf3zvvYb4/ljF0PdLlNeacOPGmg8XLqfc34923bgYSWOcbeYXbudjYHnx6YJate+9KlZHJ2PGt3xGsBm+KvzOyRrJw5ODeD/wyusudUpEFeKYeZ2RcbAAMAZWcQbmn0Rodm37ch+0LpLsaIPXt2TrB7ND50a7RKn0F7NtvbAQgIsKEGIbieddkW3Pv3563FgL6UEvbaDW7Ke9KZgebV4N4AUAipU6+vGJLJsSLBngFktuzAGAPSEju4EsbKBX/i5mxRfgCh9fFr67RPdqBLsuv69SyLKMbo/RqNriljNIDXGNkDOk0u5GLARK1Nes5lcypvIDainZ9NTWVD8uz9L6stugFlvF8tBso1Z3nqC0lEJADN+dU1AD1zK04A85ISkJLJaHTZQmCAfWy57SF4r1xxSpfVQb1NyqzctpidNrVnSzHneyub7+EIwmipIXl1pjfKcdpc2kucMpDBdQ2yzfQafG8Y9DTg1oCCUjuoYs5+15k555ap1bKm0Z8hTYM/9N7MYCk1t37jtNl59vSrFPStApKoP9kAAZbVB//JLFwPTpCRolQaLGkRv6rnVTbAo+R2/VIN2KjFmc7vYXRagdTtkaavRaZ0XuzgZpMRvrVpSdjO22DvPfes23ZFSquBxLDP7Ln336Pe1cowzaL7Xa2SgN7egzSpYMZcrcXvkFca2Coy6rn/9H3qHsohXXNBaT788Xhsn1d+Uf6ifqTOaUEFz5Zm64hYNdMwYl16Gaf6YPw9RhsewiEbM19dLhcwsDA/p15L93l+dsqxw4FDjAQ4DT2JZEl9AjG/22ygANhEVrOl9XP9vAL2vNsgCDmzdVl6j1vn61wKquAF1XVDcT0dvNclouWqFR8sWFARJ9tEh4M0fRZG/zA4gMgy/5Ssusqec0dAGPyvZndwr6LaCE8HN8701e87Zsg1uVfHysknOk72T8+WiQrEnhSnUqxC7686uPtvY1WZvYcf/PrBAF8tZWB6pt4qCt+iZLUOBrQCPQBaie1c2qogwMxIcx8LCiquRZlQv8/76GaTAPVwKew4RIIKrCvxDmryeQEMNfRAP0gqtPP5PEx74b6p4wbgyV48B+wFEQoKWvIzfGnDTz6vZkwoMZJpCP51pfM0S4jMRCScLxWOqmCoyNWg4Z6TAZ7r5UcamJv5zuvi2T6n1GxvgWZKB0bOx1JgvV6tFUjdcTOFXlrvkpSSRWJEEcIdTnWWZ6CvGxdjRKGvc9wTRr8avcXQSlmA3pdB6ZtrsnuE4b5KR3Z/eHkWozF9Ld15G0vjSi7YxOGd929uhDo7CuQnni3XoWWnSfh7AMvxtPyg7Vc153rH7k5Oz36lIwZ0I7BdU2hIz5NGBUF49reoeD51PQAITsPcryjny3swyjkrDnVCbR2QvzPy1Xui8T1myWo0a1QaXcnUbQRiTSGbkzw0uQX5q9OL0g7lVzt7dNC3ZALtXf6tKbXn39nTyw3XJRDI9fMBUIVP4Nk/fL4mJwXgVv5RGax/171oMuCZ9wfZNAH2MVpvshB11D3ceBkNEpUdzSCP3ckFurFQyji0aHb+dF36O1+zUT3KJQznGsNYlqLR35wzUuwtKvTsu86Fgy0jTejz6+dVH9CxYyBl27vDw+elQws81UnmjFvm9Gyk9V5B1bJ5o6555HG9J89hphmeDeWL0lfTtRO92VplmnALAodn+V33Sp34fd+wLlY2VdGH59RSENOKQxua08Ef8rM+yy5ZTwMYUMfs9ACbCGyOcfRs4k7fMYZhWIDuEQDUVIazUvoz2egBBp+QXSvP2wIaSn9w8E6N9hiiD8kIjSeHl+pg9KwRZg7OZ6RnqrYR6UjpVz+3LAtiCZYVHsyZtzOwzEH2AkSunsHd6UttzFptyjXXHAK8vL0/ktFa7+cJALVM6wuwskRO8kOXYaUU7KUHEGK0rKsQ0Eqz+3WsusEyB03uP2f36R7yZ84ZueYG2M36tZTilQgi08M4jbHp/ZQaAEXcpsikbpXF/M7sXDd7TQIQOjhC5emcraF/Y7koM49iiq2vH++jctpoaBwsUdFtAZXfnWyFR2QdzT9ZEiDfJW3zM8qLM71G3itGZLbqqZYRXKr1QS+1Olbm6/dn0jK17D2Aa61uY22DHtb1N3sqpiHQo3qQv6vPZjo0PnmWGJkNaWC8xdip/wyYrJ7xPzvMY0ZkaFmwyj92nYLgmVFmYvVAIXmvuv0Y0pjZw092Whz5yiqwetkrgSx+R+nN7Lrdg7Cbtwhh6bLpEtMB1QaviS3AZI7ZN9b7KI3NgyXY8oL0xWuqfULfewaSeW0GwLVqS+85Z3VzfaxSUz9H6Z1/Z6ssDtBs52cn5dnx1OmkldEWUYCIfrnaXKR9HcwA9KSlGVBVHUqa5h6SFxRQrvtIL9GBdzOqKva8o5bem3Bd1wae9TX1rMnZ51+StSMqOSMG6++8e+WZ0kKMcQhedlsTHqjvvfW4z6UUhJRMd6QuqzXg0HCDNAZ61U+jjdZkSilNfw+VUhhtR4lBDLSl+vs5f1OBXP6bNK/Xoq2h8m+2qVXXqL7hZ2cQb85+n31G1Qm0h37o6+9kyIZGt7lIHnIXbKNDQucO6ESjwB0ZmQ6HorP8/MxEypQUIvMBz0qVBgIVFe+tgzVOp9OQeZRSwul0erLuOcNQMxlnoagRKl5T94LCXI1Bvvh9zQTi9dRZV8JTgiUBaekxr8s1qEMJjP1C9Ax0PfvkZI8CrTOSOmKtMa8YE7y3nv22bTYxMIxZT9ojcT4PKi0VsPZ3gJ4Q90Kfl4YEhQ6ANnnPnCwA6LQeQrDJbhR8IQDFHRm+WoBmdC7UOFKjToUPP6OgqNHbmDWqwlBpCiCYuwPgdKbsztrc+N6i/rXWljp/OBzaGfDfpL+c90ajCt7rNVUJ0pDT7zw+Pra/21n2nohU0tb4nQYjS/xHsIH0a9F6L9fJBbVGFIwTo0LwssjUoy+Q99XxVp5W/jLQB8O+K02zD9zsdPCzWibN6zNTh5/X//hSXlf5pgpl5mV+j/yohh4Bk8vlYpExz9bhd5ZlQcRYYjw7Ju2adlM/9555VoU3VBZY5lr1860owfrd6V4NIFdAy8J8bm9mI7g1vJfzGWXBKCOf23ujtdFparJm93JucbCe+xx/tsl0Xl7NAIu+9Puq44DRoTMnvRtHzzmLGoxS+VKKlatogOE5I0idBl5Hz7KiIpTRWVX9wXNW2lS5oGtMSI3euC59XhphBCL53vFwHKKvuvfLsqAWK9/nHszAV8kFNT7NQKFeaTwQx+w83ecwnTf3TG0AhD75eD4nYGzxEUJoNhBlQq1FzhoIMcEm7/n3Y2wycdaDXUb181V60GdnXz6WVG77ZmUoYFPwMSigDtmSOhA63ncEidrUuaTgmg8CyxJJj6H1Nmw8kTybcDKyG0DjLSV68q7YT/Ep4M91Gc0xI5yA2qgLZhmeUmrDM7odZcAjQm26yrISx/JY9i+sDTiofQiLFZcO96YI6+sfZXFAQFwiyjbahqTlZdozS9AcsxIoO9OSsEQr4VSa1/UQnIv16R7RXmY/L+5ZC4ai2wlx6QMUVIby+ktcZHDJqO+ZQMD7K7+RB3LOXnLWbV51hpvuBRpgwLWo3QJYv85933CIh/as1+t1eE5eV+3ZEMIIEArQrPcGDMiLsdOyfRetp5zaWJrRx3Oc/SoATdYrn4dqmekcDlcJ7UVva+ItXigHs4OAIYSm4+mVqG82nJM44uofqXxSeWh09lQHk/6sxUVs5fjW8sBB6IYCj3pIQeAefKRcYj9iAuEZRiJhsNnns9LnrLV6C4Ouy4rozK5zO1g+2JCTfKScBhJShbVw8L/bnlUgWFk695P/lVKeDFdourp2X67pT3lGvhSM4r9nupttR/KW8j75Uc+4+y6jzaN2ttqT+hx8/tPpNIBt8znrGSXZYybR1FoHHlFgn9diogxf2gJM/RjapnPGI9ejtlCTTdWDUxI4aWsKAcfTAXnbka8bEEID9XhPPovKuSY7pgACfbWmH2NoskDXqv7CIMsBJDwPjpZiwZd9HzEO0nUberpvbQ9ZVdhoonrWdagDTaFi0GF8ZmYhs6/zHNhQeuJ+zHYIMYzf9bk5MUxtOr6GZ5hoeLYNla4BBuY803Qd22XptSYz5W/1+uEAX+jIOp1/IuvMyuF71+u1EYAqVW4KH5KfIUhIAI6f5QHRQVRwR0EkMgGZjOWwwNOIoUY7KCQpSLTRKJ9H+4jpwVPYcWQ4M9DU4eFrMFrFWFFni+9rpGx2fvQaQM+Qe06RzGWH+jlVhHNkRkECrn0GKvm8es9ZEeh5qVDhulXgqWKptfao8OQs8lwofHWPbaLmc6Wjo3BQxozRHAju79IagvoUNk7VqlbisJdteJ4Yo0/XtFIqgCV+/T5cL89j98ioZqNEKZvRbKy2XjFMqPxmhap72e9XkTMbDHN/x4hejNHsiDieBdPd27lHKTP0zyye4abZlzM9KW2cTqepD2QFkMEm9UrjALDtuwv5sXdNE6Tb1vpwNIBDMmsBuHFrJbuAGbkIHSDmtQjyc+907U0BSWZkA9AK+7DVwfmH/K4Grho+zKjRF/leaVkNsPn+QI80qtJVemmZhUpTBMW8So98CxBAYJmMKys5n3VdUQHsuYM/bBLP6/M55sxh8lBKi3f0QnuGUU6GFoHsWVpjtnAls1EpB+/NNxnl/J7uy9zYmTItReMXNQLJsDGOBoPKH5XVquhrYNljAdtBkqZSstYNM0CkZ6cOErOY+HfSAKPRqjcG40P2db4+/849UZmrNBmA5sTpd9WBnfd5NiJ5LQ3k6f2eM/Jnx6hWj9y39QXU3UpM6auZDvHsDy/bXBcr30t0IAUsCCFgXXrWe8m98X4Ay1QiWiZJfAoAeYedRiu6dyqjnwNQ7BmBGFfEELHvGzhUoRR4WWV3FGqtAziWUjIADcHbgXrGjeu30fnUwUoBS7Jpz+wz2/e1Dsb3vPaaRjtOjd5SipUFSnZwo6PQM/e3a3cItt3KdQADggz0MZAvi5MDSE8rh8dQp6CXOAX6Uh41PWTBCdp+BHdnGofTAIM8nSb5HzPPumPRbJ5o9GD9w9Sxl1cIU7eKbrPlnNF7GTgdxa4HY4yo2ySHeJ6NbyzzOaZRNzmiilwKrtcLUgxPsljUmaWeVluQWcG8N+1X3ccGdpbuKM/BY8CyG0Mdyzb1LJ4LrIzvWwDpOvX+UvrUdVOXqM2r+lpB+BBC80MYOFBZ106u1paZro7/oM9TtKqQWlHyjoSEGBLWmHC+nMGKgXUqD+Qa933H6XR64qzPsr4FEkJAkewqGxhWsRcDq5ZlQRE9Tf2loCVCT+Zo9OAgde8Xa/bcshxQipUumxMdkTN1DrAs6xO5wb3R4Pa+XZGW1QZSBQvQaEm1ZpRXi4481Z0CmikQl/Pehz+KjoEDbdTPpfRpwbU6cBgCaogI3naEwKj6VyGMATBtVcT12N+A6Bn+sRafEl2xHmwoZSkZW7ZKjcV7KROUop9LwE3tRAVhZ36i7FC/cbYNKFtUv3Pv1I/lOrRcWPle+VSv32jRgeu5N9rNzc2YsSf6RzP7Z1lA/uRzp2S9+mZdxfVRDuh3lKfm5AnKgLavPniIFSwqj0jvMfU++01W5ozLGajVbRLAAi6pV6YV+p7/O2vSNfPMLYvdgmoa4JzXF7w8NpceIOGZNHqWAM0Mxum9l2WxgSalWMBAaczS+A1g5/Vipze1o5u8g+lcTLpSbUuly5nG1d/nT2JD+nrOFp4DEU/2bbaF5LxJczHaUBTDwsbg/qz3/i5efycZfMDonFAJAHiSnstN0bRgJR4q4DmKr4j57Iy16I47Myo0SchqPHBNFCBAL8tRRaLOkman6Tr4Nwo1EsL5fB6MBWBEezUTToUVv9N6nKEDjioMaFgoMKl7pgQ2g2JzZEGFnApE7i3XSyGhhK0MxP1X0HAmcqUFNfI04sH7z47pnOGg158zrNp9MDJoZ6juBOs+63M3hcVnbrhBcUNrHQQbFYKtoWDL1lR3SQl525pBoODB/Ny6b0bXYykK12ZGVh4MCf7U66hgSmlxQx1YlrEnIL9DwA8ArtsVL8LBnQl7/3K5NPC6rZ33T73cQmk55x0pWclCL8OtAz3rlGjNHirFe2xNDUdjCK3BOM8JYFp3B5jYg48KkzyXPLus02KRUtQwnOss/Mm7zXiaZHJKCTVWILuBISAXn4+GT+MB1NbT7rmX0r7uPf9NelUHhntKflT5oEDg4GgAqIH9isbonmfS2/6EEWTUEs0UvfdGReuZRN7iPpCGLbtLJ+91QEcN5Nlom9s1UI+UUqxMp5hRHJcFFSw9sMw5nnOdSlu4z8+9rERxHFa0rj4BPnSQVuUTn1ONfDU02SvLeqkAENCG96E+U+U/nz33Zs6ImGU+1zUY07EHhQA0AL8HgtDAR+WzJ3QaRp1G+iK/Xy6XQcYNgJKsme8pGMrX7Ex0uZiwb+zl4hk6uVhj82fkudkZlnWzZ9eftQ4OXb9Pe7xh2EBKqTVVrrWXQ7bt4L32zUvzYste6p8hnYSBl1Qv2rULSoCvlfRoZTc20drPpdbmUDCYxuFmLJGvnDRdxswY5a1mHFMPpQiaLvu+Yz30nrzcC/YswmSbsYeo0ZdnTwbaQ9UyFUJo2S8xRqTFzz0wG47Dpxx4qcWyfifaoA3Cc6ss/eH/qg/nccC1fz2iN7S3nkPUIaobB7uC+1X5f7IOB1QbEILUZJbRrINkMbQ1qgzujpM18v7fN/qrYMemL3kNuExo2a1hDATTEVXdxCDPnjd3xrrtl3NuOqWVzlPQYyxtn8HrEEIvE0V3itn/yZq5d1s+ilyKE23u+95sEPoQvCa/o88ZQkWpYzahtjJRecLnGPQeqUTkwyxrZ39Ee841OVam54rj0A7T8WYvlVKxlx1xz7iWs4E76wGIpmspU5V/1YanrlFdGdEd6JyzgVxeVn7drojF+iQaLRpQNdvgDHDEaKXyIVoQvelXsf8IIo6gkvebrAQbu92m4AxpgPee+2PVWrAVA9fDZBsm39OAgBQWmCHWaTwtCSmM/brIf8uyen+30uSF0WxAWgJiWmyyOSpq7futdgNtcr70TPjcfKlMUV/IPs89HXV6CPw5gm28xuzzXS4XHI/WxkEr0ZRn+DeVBeq7UW/asJC+1/r8tD/5faVJHdyoYDCfnT6RZtDyffqcpCNNZND9IhjF/WCyUbP5RT4AaMAoaUDBFsUZ+F0F7UspzeZU3KHZfR74m/eFg/dM922tb+4MnHKdtZShAtJ8Wlh5eDQdRrmpslNtzuGsYk8QUrnX7C6/vtl9vZpL96YB8G7TMGNW358xlFpZnRMN1KtAyWgDu8jCtIdCwADkDjyEOshPpWHu33OYkcoy3ovA7Awkz76o7q/6Mmqz8dnnhCLds7wX1GRA/4xlzAD8/yGGbAT0bAeWeZEZtVwD6E5BmYhWGV03cXCA6xiJoDDgdefovwpvNfzUwVLgTYmRAkabf2uppx4MieV4PI4MPoGRXJdGi9QQn59vNiy1x5USru6fMpMKNd2LdvDSH6wJPE3dxogo8/7zuvgdVcIarVHFpeAp7z2j4vzJaz4r9MQh0XNQwJT314zCThs9Qq9GhKLy/D6f56kDZJMkuX4+s+11zxDk55dlMcNfhIm+nnNqS+nTNMkHBKV5znUCB5Vv5n01WitP+IyfVRBblWgIofXp0fOstT7pW3E8HFCyAdx89tQyBLoQVBpVIUqjn+BASgnrYcXj5WyGbYpIJSFUNIBPDXqTCWY4Rl/3sq5YwngeAcC27djEEFeAb/isCH6VKe28JIPmer02nkgp4bAeUEvx6O/Yz4m/L2lta1KH64nyFWXSQVBYxksA1nV5VoZoeQ5/0mhS+dQyBNbFIm5OE20vSsG+W7ZGjD3LNSUbzlBrz6biJD5dD4AhM63LCbRm1ApQKz9zz5lJNCtW5aPmeAa7LvcXqDYJlp+tY1nnbJR3B9Gd5d34kMbyvmccDity6eeqTp7qAtV1lMs55+akHQ4HbDl7Y/wuB7YpS6nz1Dg9HcAT8FxpZwbUGn1h5HfK3u40sFfXKFf5qg5w6DRPvq96pAcZnu8JyP1+zrjSl+rKbox1Xd6CJymiICMmL/kGpxJ2w077ilZgmDiHapHzXDsNMihS6+jMp5iQQkCJBhR249qzzWTf+Kz2XThwNdKGyiCVP8fDEXDQvbhlbwCf02h1cMl5INImAixTOViQJ4SnAbKmT6o7ILU2WRRghn7Odg11tvmstHWs74+UHW0b9n3Dsi5O87s15uaewIz8XMaBNBqwc2odAj/KX0rPYwnmCIjTOQ4A5vY23ENO0WRQanY257PvPGaghf3dwDk25g8RT/R6RW1Dh5Rv1Dmv5SlQximJw3MjNACT67Pv12FP+PDMLAHLFMXRs/9MVjLbj/o4pdSc5kFHL2NZHfeGZ9W+75NbSTf8r/iQj+o2Lfd13/eGXQaMmWKzk6U2/kwXPOAkDiODj7OOVZnDPmIzGKF+h/K1OpDqYzRZF3o7I/5dbVyuf00rwjoCK7Z/VhmiNKHygmvTfzf5Vg3gQzCHet+chpeIFBcry4eVvhkA1vupk0eXZTGfrlgZfwqLBwMrQq1gEl3T1WL300ZUmRvEbqI81/0kfSl/cyObryP+A79vgYZgA3cqPy+cUiyIyWuq76W9+lqw0QMTBLNtKvdox82B9Zk29N/UV01Oi2/CZ1a/yCqB6L8W9LTe0d9TX4kAM+mcATbSmZaUqo+o/pXyMtfe2jeErmfI47wOP6sADSthOEFXEysUmFOZMetAwPinDcXxl/oOc1ZVAybFR+Cez7w76EChKcov8iqfW1uBqb/C/eczqkyPgPdNrEhid8+ZjupvDmtlAkYIWKQaafb5NGig54NgvXhVVpIOrDTWpG1xn8Xo3TnH28GEGAaAnNVRs67kOpSWASAmrYDhWiU4EAPKPvqpPMfgtsJ8Rio79By4hyoTuVal9blFxHPBZb0+71k8MWTWEWpb6TUY5HrO1p3tl8m1+Vu9fviQjdqNKAXtWhN6ORy+GEmjU8GNAjA0aFQFzL+p8Dkej09AIDWU9IC5RnOEbZ10rvj+nH32BORwAqCA4UGHEHA+n9t6lNhoDGqG1Wy8UgGqwcj7z+CbCi1VDBqpVSFLY0SZRYlRo4BzhpC+VPjlnCdDehTo3BMFUFVQcT+UIfQ59PuqvHh/pTme/Zzpo0w97wmfR+lCf9c91x4siq6HNmnQAcl9H8rDYrRIfYo2ZRPVwLh1WRsd6bPzP1VGIYxGC98HLCshTnSkgkOBZD6zKlQ+F6c5sw+JgplAGs6JSkBBadJYMzD3HTXP2ZimNMzQ6mA97zXznQpH9mNIIaHWguJjyQsKtt16CgYEXK8bYgo4rBbZh0eqtv2K1XvaXLdrM+5TiCixIC1HAz1rz4pVA13BEa5Z5RD3XZUEr1Orl5WDCn5tIGTjjxocyI2IHg1XvuJLFUUpFQGxKQCWWrMkjf0K26uOgIgql+PxiOv1auXU1bIx2QtE5RvXZJktfT12XTOGO909zaJ4Tn7x+waS0qiviEtohqTybHHjuNYeYVVZOhiYgJcXFZRKIyZAy/bWtDZjoRvYlJVu0HqWXS1dD23b5oDfjhCBIqUeKuOUltVIU+NqWRL2PeN8vrTeg9wb0pAGTObggBoes4Okn5t/p5FY/KfRopd4Vsk6KPWJoTHLbUtBMhpIkUBbbL/T+FVjTfmG9DE72Pwu9+twPHj5utU0K20a70lmY7JMMTYitx4vY4BIAydAwM6pup6NauWkfZo1y3jV8EvJesJspaLmvs90xthDq8JKfPc9t6BoBVCrZHRNOgtwwF+atXPNKZnDVGH0mEvFYV1bT5eK2uSwXdP7yqJPoW260LNQm+0R3LhnxlHt2Ucx9v6tdDbynj372I1+9ImmQa7dZaj186u1tBYJoQTPHgit/zHQe3KRBhSortWBWIz23nO035wHo5wnfEE6sOuOfEQ6nG2SXnZq8or7DM/MiyEhHYy/5zL36uUAlAezk19KcRk/gu8K/vO7tXb9GmPAsrA8dhueM9MhCXS6HZCqo8zgc+ZsU6qT6ItlWZpcIq/RVlf5MOiaGBD9WfZtH86vXWeyAdtnAKTQAV/N3FAeJi/qWfF3oLdZUTtYnTq1v54DsBkAgO90Flmr+zHTiD5jCnEo/VPZNgM0+t3mF6DT9VwhRV1IEIU2up5TLtbDdo1rL4UrtWUxhxqsmLYUlLo3UMYAM8tg3qsFl9dlwb5nFG/ar7TDdWvAbrb/W1sXASLmYI75aFcEz7qP0Qa/1GIBGZuk2Qc59O8771cDx1LqWUvaY5P8rnzZbQgGqUw3WJYiebhnXPE1g0NKl3ofo20M61RfgDLEZB3aWev+KR2r/Gp0JnbQDOzp99VuUr95Dvzys3zO+Yxme2AG3vncavfmnNtQTQUClebVFlLfS30UtXkUKNT1zwk5qqNVFoQw9oBXe0XXqT4Xn5fP3vgRdXifv1tWn7eMwbjHrSqlWHZ+79eZsDCr3YyGNuAGMPlYRYZyj0opbY+5h8thRRSan/edNLTvXYfnvGFJB1QfBBXD2Adw5m0FG+nHWtUAAWGnqcqgY/dNCBiG2ulJezrSPjud1uF81E8mDahcn9eowSilswHMfiaQwr/bPRJiDS3oyrWorp9pzQp0xusBY5m0/vyhrx8M8HG0sQob/TkzANCzQngIjJQBY1aXOsvbtg3NQ4mO62Zqn7rG5BLxUvS+lILT6TQoZt5To5P8GxF57fXGlxoLM3GzlEAjEaqUdX943Tm6o8zXnDN/UdgouNcNuC4IFWDVDDAaG3zu3wU2KrPwes8RIb+j2XyzEFF6UYbi3+fz0OeZU/UbHU7rVcGj0VLbM5s+xM+bAR3BEoMQLLNCz3VWYvu+I9eClBakGLHXatNegxlNEQ5IICAC3tzUHXTSvguxAisPyy7A47K03jw8YwV1a63meONpltNstKoCea4/xbJ4b6dK8MTKZcinyxKH/eXUVzbOn3tWxRhx3fdmDKW0WOluSq28x0olmb4esW3X1teSSpqRLxpBycEXCleWLlGBH/z8tn33rC1rBt96OsW9A117Rkhd+RbyRrCmvCHalGTj9xVrSth2m8JYasF6OABwoCZFRKG10+nUzox8XsBUd7/Hsrix7sogGXi5S3bluq5g+gKb3KsMCYjIZTfnenUHLHq0vphcvu6blfFFGxgTEJFhz2t8XrHl3c4HCTW7ojHf0+4F70WYFpzzA6obzdowGgBubm5cbo7yguCt0gfPl7yeK/vZwEoKvVQ1BGsEnqutd11X7HnHnq10YUnJz8z2LyC06Yy1VtQmCwt6w3wCPgU1JMBBoJRsP0Ot3u8mYss9OLKsI0BVimWHMQNOZQOjbyV7pg48oycAwe/Hfj4xRCzLakBvtewp1RMKKHdZ5QY4PLtlyoSI0frLGEjw1HDmWvO+G/iMAERrIm97RDkQuyOLDvTV6llKng3lC0BAxLL2xtalFFwuXbfPMpv8RyAQLv/4/IA794ejPWnpAKLRJnxvgX33qH7wjIds5SYpRGRma8DkQq39+yZbUod8qoPssobFQX9mt6AaEF1Kxp530xWuhxm8DCG0nlrNnik9K3vbvZ3JEhCig/Whg1XVHdFaK7EbbHkDJ6EbpmqAe/Rejnv2krvam4QTIEStnj0lgR9xQvbdemKZzZE8g6iD12HxgUIICLk7yEaPPpUX1us0WKIQYqhACgASUjIAdts27Fcr12XZsgbqarUoN/Xfsi4GHjZQsPr13dESG6TW2oZUWDPup9l+Bt4Fm8Jbx0AgsyHp3M/2yu/6GxCs/11li4HifUCBiB4czLm3sbDMKN53cZnrGX/gvZw+W4ZNQSjM4iEvMeO0+lAUBfd9T+EODUYbjN/lgAC17WgH5VIQF+sBCddhDegIo42u+6N2aAwBwYM2mg3Yztt1t4mhiFJzAwKNBwpKsYx73fsBCKg2NMgcRwMlSzVASwGLuRcgMGbVKVBJnRNixHa9IgA+nbNiSQtSslLc6+XiPNwzHjXLg+dfUJpsVMCCtMEEAbXx1UbefaoqYnRZGBq4pY6iOrtqo1vZbUBFaQG1Wqv3261NxgfXw7mYbDH7KDhPWyUKhWWKCRG16QnahOTPGWwxXbpacLY8zdCz4KLJcLOlC9Z1afqOQUieHhMCxqBsNh3gvRdZSoxSkRYZKsd9rl4i6vLU1tuz5Gxt0mbBhfVzwJuCKbR99BxsX6z0NpfswRvt6aUVMqMvTf3P+3Cy+el4aj2veX/KDAVi9DpcryacKK0QtCYdkWb54r7TjiMwznNuQ5cEyJ3BIJX5ujallflv5NcYY/Ot6RNauX9GLOOAm8Y/Qpe8v2IFSkd6P+6B2rT8G/exn0mvPFPwlPsTXO/RPieFpRQRvK+sMwBONzfGk2WaWOz2VguiLFKJ2ILNlgm3HtZGS8n78fLZGRAgHYyZilbGbsEwl7GlNDCuBSOApuu4FzxLUL4VAzMtzspsdys9j4n4RwTbiLgR6HZV9t7unvHnwdBUx97/s4+vYLJmVvNMdL1Kp/ZH9xm41/JcpBkLOkTfn/HsZ3pWoNCGGPZAniY00R5W+v+hr7+TDD421NR/60Oxb5cyrX5foyG1Vtze3g5IugpO7Vmh5ZeaMstNbcouPQWUVBEBvbSLhKERBP33jMx2pTJm3PC7wDjZRjMT+TkFLhkp4JhzFT76bEqoGiEgUc+EpkaORiL4UqKnsaZEyLXypxpXuh/8XUsgVOnp+vgaGGDar3mPNWNnYEqMCmMW5NxPS9/VKGMEy0bWNbqwTU156nN34DUi1YBSvHdALQioTdgFAKhoJep01JvRw3N0R8SatwPwUptQTSguMTx7/+bs1zLsu4KRs2Gg9KZKbNuuzYi2vSIgwp9dAfC7muXGezLtvxkYy4Lj8WhnHs3RpRpg/oIZ5GYkXvdr4z2WAdl6FnOYqihfAAffWwW3W+C2eiZSMeVEgVxrQckFBWND3YaSGFZgTjSsdI50F2NEYhPfaBmDtdZhitxswNBBoMPBcpKDg3c90pQdkOx9QGvt2Q6M5tEJMX7s/L8si4MARj9LWCTTsiBF6xsTvQH09Xr2SKKd0bZtANfidFxK6eWicXGDO/g0yDHjNKWEKxtTowC1YD2svud2Fl0WLmIkd74FvESyRJS6I7R+WEBIduZ7tubT67I2F6PvYXe+AtCcUaOHDugQIAAMgOtNfTmVGg0YBLoBYFljXU5ZE2JzRjRzs4EFMWKvnAQZEL1En43HS61Ykk+aR/SMn9B5xBc/T/Si7Ku1AonybowAXncbbpNibFknvJbSapOfTZY7YObgc95z46kBXA4dBDRXpzt8ec/Iqi9THNbN8gk+w7o6eFDdqFueGvz2OyOjzH6LbW1q5JJfixuEtEsMfD80Z1ij5U7aoHebHNxgLyfVzYFnFKzkD/BlxAWpjsFETu7sBr8BfOuaQLm05d3oqsY2IKOVqdTqLRgsayTEYBF1B2uy6ObgjgBBK5bvND0bag84pWSZ5Zv1VCrIDQyrpbQplQTLSi1gv8oOLpoBTjC5yvocIZ/0d68Q0DLDFuiNpcmsRXqWWuYOgGDArDXkLg1gNeChg5WwtB0ws0+d1FIKQqyIgdUH3ZE3dlc9+NRZI611MLC2+9vQp9D2MMYFVroemh4xh0iC4CHZMJPATLxOzwY0NJIeecKzaplRQcf6eJwzTGvr88dAN3W2Xtemto7ybs4qrEBrB8Lm8FrhorqfoBPtSDvFsYyJ+9lsweDgHIOYpU8gDsH07WBfiI1YivXbbAPAqk1+1uvTFrW1bQC6/KP/wmuqA19KQW16xWVA6rLgeDi2pu9qm6k+IBhhh9bPmPZssxPEruf1S+kZ4wao+q+xZ5KpvXTZrkgYWwqpL7LEiMuVfUEToWwPOieEGrBvV88iMiA8xZ4RRt2VlnFfOWhMZeVz1VDLsuC6W5A7pdgqWvZtb9nyCJZtymnLDRDwknk4j3Fv1TfiMzO4YU/HLM7ej7mWMcEhRqAWynYD2YMHvM02sMy7bbtiWXrf+BaQiqOPNWd1jnwZmo2AANc/o72utqQG0hWQUeCN66G/oXz+XDXPfDb6Is2R/kLolS0Ksqlc0kQO4GlG4/x8fA02Uxp7+DKhhmesYN0MyvFaSxr7ts28yGeg3zCfme7p76oy03WonFAAsNbags3khV59Za8lLQgAdnT/ehE5EFNsgH5KaHZarmXALliZlJIN1SrZ+k+XYnwdqmvHEIZKSfP/ekk65Y61ojF7u8B7TAT0LEL0oATPR8+x4wOu+4IHokq2IGTH/nxvI9bFp/0W7y2fTKZkD1q2ifLVg0ClDPdVuuDz8Wy4t7r2bsd2TKOds/No5DnG5zJlnc5TxyaUTmesq2EhADJGwHv222fe+SGvv4MefKE1xtRX6/sQe9ZcRz9DS9lVdJXMcblcGqLMTB41tLkpqrzIPLrBBB6osLV3hm58i6g2whyJRYWYflaBJzILgUYVQACGdWsJwmzoaomAKkwlAM2K2a5S7geNBKE9/3xfoJcja/qrCrDnBBrXqtfSrDIFm3T/+Hc1WhQwpXABOuFTSc9KQrMcVdnxb+pIqqAmcMR7cB16fT6fMe/I0MrgHHGtf1PAeBYIM+PHwFHlvTxHlWfrjwYXaBMdNgfdDTSlG+UxdVL4rAqsEuxQw1zXYsKrPrkmjeHxOp3feJ48m+6AHIcmvE345m58614ty4LdJ+Ku69KAcNJIDs83koWfnvWNSc2uDhO/qpCttSCi95Wg0xij9fAK0aLflDs8bz0/ZqbxHnSULCvOjZFcmjNLJ4bDP3gOKhcHg0HoSuVC9LVd/XvKBwZ6GUi4e7aUGahADGko50EFdhSE0ktVagX2fQMHVMRlNNTM+WOErrSG2zSauddNHtbSetI346xa9mEzNINlCzTHIsBLiTIJ7nfKlqaA4Rm1IADVHW068rUC0QcUVC/TzhXmwAUzEnQ4hAYtctkHYE91DtfVnKxaG2jCUnB1gPTF/epZO/2c5yhlWJ4612rMc6iP6iD9N2lWDV06mHwZbcVBlgxnh643lFZVtiotz8Y3AXbtTaL6Vu+j8kGfR1+ql+dMewZadP3G5x5sqECI1TLl3CiNqQeHNBqstkKtFhRQWbcsC0LSEqXiZZxcp2Ul5eLVDA4wAXXYn1CBuDjozHXn7P+O1lMyAKi59VWDgKpqNAIV+15Qtx1LCkjR9xP2Nc0UGCoppr3VYKqdn+vgyqh+8nvtCIGZfxUIMODfaYl2Hs+Ua9W+RXZO2UFGB+A8m2ZdLfCgNNkXHEXPS6AGAXBnKfgZmw70vqHBgBzScpO5AQNoWXkb6p9gDf1LKaiREf0dJVbU2mUm+chO28rwVCdzn9sNMQbl7LM9KMF/23sGWKptVglAhF6mp/xtfLIj5zH7iw57lIxZ3WO1OckLtNeb/eB7l7cd0L5vk40528ghWJk3+UztO65NHX7KLMoaBbcaOCm0m1Lv/zfbPip/VB5almN4sk7q9Lj0rED1dQY5ie4E29/snEvJWNdDsxe6/pTMMKfVUm04Ri1Arn3647quyHvBjoyQFhTJoOKz2/WsF2IFEFoGqy0lFJMxfQ88q95t3ZhIu97bu0o5dLTvbgKg8Gy0r5i1DzB5mWRIGsm90WatAMEX8odn3vNa6g/y1WWd8hLpXJM1ABRgWReXqxbsiJHBjd/V8oeyUXRVHXuNzRUL27YN9oH6YARCyD9GP5bJZ5/rYIK+yH8suaesUv4FgMfHx85TOTce0SxWBaEaXwWz69TW1/1gD1v1j2gPMxCtyTIKAM6gS3sWsRVnAK99FmMpvfrxynv8Gz9LG1erwChb+GJ1kgJ485k2oFzsiOd8Pu6vVl/o8yp4WHMGkgwAnBJcmq3i/MGMObXB+W/UDtCWYhUFSbAZPuMgH8kjwXyxdVkBBJRk1WWm02E2RikDHUVTnN3ubjZDRc09qFg9cxGBe9ZbRQERgLVbaroqhKZbBz6M3d5Xf9PW6PIkdnuHZ6Z0r/TEc4tD0kZsPsiIaUjQMZgM6e1f+jrnYM1sC/Os1JdTudDPfATe/zavHw7wTUa29m3iw+lhjBvWHRoSxvwZBe4UaJgz4cg0qlDIyGrM87PPOU9AZ2R+d446KmHo2nXNs3JWgcH31cBR4T4LaD6PMrMaNwQduMb5PlpmzCiCRl5VKcwOFrMddG/4bPpMNFr1Pe6vvsfXnG05MOmkjFQpqyBTwa6AXct+knJUBYFmY0CZ3+iNafpdCc8C3F7d0A7BoupqeKpBzXXo8/FVa30yOSpG79EQ4jD1TI0NAKjSR4SApwpg3RddgwkTMyRiHI31MVuzDzXg36ggFRji2ShPammhOhQKYLc+OtN0uVp7VmuMCfy2Nn2uGK/L63E/AKDsG0rxqFTJWOLYT7NFWT0TSe9Pum79uIoZ1Tyv2Qjh/quMUfm37zvKngfeeKIUa8+QJJDKM9PyZY2a3dzcNKObe8RrhWClpSXDlF41I/x4PPgauxJsitEj18w0Y2lxdJBtSV2e2L6Yw20R96dlKTSqSA/Xi02oU0fQWW2IpirNWVKOGu5jpHh2kGNKWNIo1/j3dv0a6SYL3zFr0wyJg2a6lC7P7Gy7QTyXqZvDYsbWsixe+gOUmm16c+jgxQzyaa86BdsU2GZj37LvNkAmjcNVmpEcQutlonvRnNPKsqyRBimzUkqW7SJBgCd7LXKZz68/2QcxhK4neJ0mD4EBeJjlo+6r7h3vP8t40hVpjNeZ9YA6HOY8CEBYrVSXDhSDWrNRrA58CqO+5V7bZ3vmRJex6A5jHm2MBh57cCIKTYVFJi7mjOhluc1hKV1fKt+M4JCVksbkcj0mb4MwDjCr1cByvU6T6bUa2B6svKjRXorYtt1LemzdMT7f2Jx7ovI0TMZ99ZL9JS0owUAOBp9IA/oy/tayG6M/BLQSbeuLa6VIOedW3skSpFx2lMx+XR5sw+hMEpgwkBMtczE0nVGtHUToDq7at/aso7PG53kOxO40PAblKIdML/U12tdG+1NtTTuD7oRSTlDHdbof+WYEUMb9mO1afo8DivSsuSdq6/LF789ZNCoPQ/DyQ9967m+jAf/csiyoYqOQ5tQm49qekxP23jIMdNDr6N7O+9Ps2X1HqRyKwyE2xtIxJctyb70s4xNeKcUyemwKfAFSQAj93M0uCk2ehmiltaS1DgCZw72I3tl9am8pGYfj6rbXboE3dCBkd1kTfJhQO/dow89QetaSBuzUgQ0xIoEZqPXJvilv6D48B8p0XZyGM6SuVFpU2mznikIh7JlNBMiNb2KzvXeKOvedxv6Bs27Sc5vPctRt1E1j8gkH9Cj4xOux7UsDu9PSnlmHT2gSCmW6Bshnva36gvS27X2w45wAo7ymL/WLVQ48B5wr76u/QvnD76nOZJangiPzvds+Ch2pPHhiX/oZUucSNOffeT2ClupzzuCM+p/ql/M9BYK5LgaK5mSe2R7ivrByizaO7iflKq+hPfj4HU1Cmv3hsBgdbNuOIFOGrT/u2I4B8LLorQcFmz0bPKs+59aHuNvavQ1U45ngFTVhTMyibtNgG4MgA78V2D0rUPaCEkd/eSw/7vvRbaJ+TqV6i62i8ok8CEt0QAKS908ODICbHUCbmtef5Zr1F4+9fUq7FysKWMkzYmV/m9ffQYluNyzVCAZ6aaQ6fASsSIgUSiQ8FSLqOP0uJJT3VmBDjW+9lxrdvJamqvIeKjzmCLMKRd6X19TsCd5b/6bChX0F6fSQYOdMSL0+X0q4szOta5sNl/nfalRT+MznpXuvQC1/b0JKBBmfh+fDa2t2AK/Ln+r8zca+GrCzkOJ+KAA2g5d6TjOQRhpIKeF8PsMaTy8AngIEvJfRMUv9XICUCcwKeCKw1QhYgjnfqoTVEQ8hINTSeGqmXdvnUYnqT6U3Feh9T3tTen0+FX6AOVdz5it7xez7PvTP1P26XC6NB1RhDgBcLai5ttIfyoIYI47Ho/H2bqUbCTJlN+/IUvakgObghBeZ7LxaGWvee0YjM0VqtnJnNQpytpKfXDKulyvSYqVxy7IMfUe0HEJL65VnSyntGatcn7JnNj7mnimbZOZt24bz+dx4hsY9dcG6ru18Hh8f7QzS6rRoQwP2vctrlXd2zYD92p27nh1ma+ezs59iy1qa+Jlr4Vnwv5QSEoe9lIy4jFOiAz1xOwmnWfu9ycBSW2NvNiRW2R2TNmimYQ+EwCi63SEubvw6qN+ajO87ym5AhfXxASI6yJNYBuIZtnxmVeJ81WqfqZ4dUIOX7MYABhH07BW0ptyc+boW7wV59GFVNQOlZxjye7X0UqYmU4JkZYfQIuIqh7gOOs9AD7wpTVMWPRfc6XpBm0r3512XpWXUYtIfCnDqmnQPFPhQmcjvqy2h8ml2vKqvK8AML353vh6/z38/cRgBLHExQN3lTtazqLXRoma/hWhlX0AHl5rMR0Wolol52byfZssUopNtGbohuG6DGZiULU+CZynagKHiGX+iK/hTacXot7QeY9rXiP1KIY7YAH5h1IFzSZTySHNEs/FzW28IrQyG8sAFAtyPaNcYnPfS+R7B3jusK2IKqNn5Mj0FpfqroiKjwnrlmgR4+qIcCDGiBpbiC1AcMJRqPQfePSc3TJ6YeAkFSLXToIJL9j3Kt35uRusFORekUFqJbAzee9N7NOV9b2Wxu/d/Mp6JrgNWVOyNN9S2BhhU6wMdNIuv/ZcN5AwYAWzSB/dAnXnuE6+ngUF1/pqcKQW7yGO1Xak/aZMcDoe2RvUf1IYiTbSMmQAgjMMwmq0U2TtuBCz4ijEiA60vMGC9p4LQ+Hbdun4UO0T3tVYgpIAU1ie+RAgB+1Za1va6LLiKz0I5TT2qwIjtfS+lp96Mkf33/PHZNiDvqJT73j6k1Irj4dBsoLQsT2QB7TmVN6o3FUSZfS4CC5oIoXJf9SZlPmWNXkeTDWZwRvUXUL2Um3tkMldBGv0ez0mz1tR/BYDj8QjAEicUaFDZGQxJ8KpI54G8t8EG3E/yxrZtYNYW73Vzc+PBuW5PqzxWf4uyWAGTEGyoyOl0avYn91z1A3+qX6lnojpI9cYAzNQO+hOI0SQbBWU0OKA2I/d+Buj1XjHGBqLP9+Oz8Z5A71PPZ+zZlbGds9IZr8EhZUqjXGfysvEUexVQa7exF+vPFmPjnZ3TYv160e3GUMKzNNv+FgK23fyLdVlwlWfhunT/9e9mfYdWcs6hdDnv1nHuGWA2LakBzaRDrl0xCZ4l+b8BoNWD4Y0HIpZk/KbAvgKro+1He8B7yQINaJvtGS1J7vTee5jXbPZ+Zg8+qPzy1iCoCNX6mAKQQZoA4BmjZaSzwQanzmJQl32Dow0Uq4BPnB8TWP42rx8M8BVhqOfGF6sBpQ8M4AnTUzn8LiFCAuJ/mrGkBgcwRof4eV0XD5gItwoGFRAqOGfkVyNHVEAKNPE6/KwqvBkIna9LUEaFHQFDzbDg86vQVqBFjRWNuDy3J/pv3X/dcz4Xp2/qXs+OuoKwMcbeI0Wuw+dXxdscUAED9e+qlGjcaCm3RlH0ufT7mo3Dz/A7tvY+da0Z68DwPfUHntBKiEBC60WjAKcJt3WgHdJyKwENEZAonNIk93CJsWXYDc5m6ICN0iMNJN0nBf2e0mf1SHFoTXz3fW/nqEpFBebsWHdgpCtC8k5GHmhLaYdrCJKVkJKVy6KUAXhUx6nRoNBeqRV5686MAr26r2rwlVKQebb+OSp+ntnxeGxA5/l8HuQZ15NzbkZ7lL+roadyqzm2sYPomsFFuuG/2RcwyN4PwQlkxOhRLowGsPLv9XpFSAl531EnkMQPvD2PKumYUuvtQbrgmc9Z1DFFbFKGpFkRTQ62CcHmmFpNb6czgonNOaujc4bsGXiHA2JMuF42hKgl2QSWSB/WEw2xtkwqhGhDT/x3lY02lKYgLUaLsdoUap5bCN6TS7aNzr6VAbk+i+wr1uWGZviMgHxq8qHxEUbdpmC7ASOhA6HC7+3Mg4ETmmk7t5dgfyldjxrP7V7yb36ODmBww0cd/FoDKmWTnP1gCKmABYZ/6z1nQFBpdhFHk/Q6X9euF8XJRVuL8vIcUQdE7tbaBvOoDdQcp+CZGaEDrIuDnEHKznR91O37zuyZiFTYr6vaII5k8CR7i/J7j4+PJqdDD2ZyImTygRDsORUX6wVHfamG+XN2lNEOsASbSptrQdnr8Lx8Hn6vn6lFq5VG2nNuu4NPvYF6rbUNlApcC/pwj9mWsHt7cKoBPtZHaFnMEGfZEYO/AFBq183Kx12Ozv2wbC9Lqe25rHyYDnJpaw/LyCf8nTpQS/gGfRoDkmcQMoGw1ojU+lTq9N4w/BdjRKhGlxxGZIOJOrC2xAUFQAkZx8NxAJ73zYe0AJ6h2UFa5VV12PSZ5vJ6ZofyrGbbjFkh/PvcBzrG2Fp86LkB1gcpFxtsMtvrdOi0TQj3XCsnmBUCPD+NV3lebTIDAC2LTXsG8nN6be0PBphaY89LOyMAIVgrCnd4XQH5MEOjZ/pZKudSSjgcEmrtvY7nYLad7+jLEPC0CgX2qbT3LteLD45j0MxsiBACcq0IISEtC1ZfcwUaLSeMgZp2VrFnnlLG9GxhoJTddT4GWlEbjcCRyppRxowZ67pH+763Kd1zQgdfJuttQByvaevIT/y+5/zK2abkOs7n85PPaTaUZh/2EvmIBV2HKYiiz6l6T5Nm1A9Nqbc1YqmmyiM+D/lrtt10rfN+qf7lfZ+rslN9or/T95/lowYV5r2hDUt+ptxReTgM+6hjljD3n3Kd+6121uxTcC2/y5dtE+/D01ZA2PtaSjFgz+y0hJhMhiCg21zV7BLzf2oLbPOlPg/XAi+NRa2ouQyyTIMayj+DjKsG5uVSkT24nWiTPHN2MVp7G9r69HUr6hOfRoOd6k8buwvGU3uiBul2prHxmSeZG3owWXll5pl+fn0/1BcrImfNyooAmElqwVUDE21onuEVHnzF2F5CA0NtgA+DPU3+VIRYW1LB38Xr76REtwnVPDIPnQo1sPkeD0tBO81iUINHHVoesJbfkNE104yEzQwbNV5mIItr0kwZy+ZaBqGla1ZhMEeKFKxoEZE8pkXPWT58Tt0vFcga5eFLhbv+TYWjPneMsTmBeu/nnkOFvDIGP/v4+DgIY57HXLrAZydza6nKDMxwPTPKroyutKFGoX7/d5XnKmCqDqkamXo/pVWeAe+Z89OsSd6Pz6QOJwU794EKgMyvjn2LPk6GszqPMVoTd4gyU0GmQLB+X9dpCnN06MdpeBaxIBA1P586wLqfuqdzZhL/rterMCHXFDF6eXjwzInD4dANlRAR1hXX64bJNhuMgjUdEELvoUWFp2fcDcL/X3tvtiRJjiQJMg41s8jaof7/n5wl6uoMN1PFMQ8iDDDg3rM7lfUwSaQoKkoPdzM9ADlZrj5Syb8DhcEy/wRIGqUosie617uR1zEzLH4yhhTgViN1f17KQGbXcc8sOjmdVC5m2o1srRR/VDr8TuttcXpUnh35+HaupZRhAOg573S3n7u+O99/BEjg37Hsd7BEtPfZG1HpWR3OlNJQjq02BzW6Z07ShzKQ73g8kFq16CmAkPANqOzu1dRa8dhkVa+WUcES4tXBtmyNEf3uza7vTloERk9B5WnuLTB1BP/Ovw1j3o0oZoOrMZlzHr0tVe/wPFuz8qTe1t5+/Dzf0XrxbFlsYR3qweurMU5ezD5sYGSLxQjPeRol0tUnpqrBTn2stKLX1n3bZbTqNpVXuzMz9jZ4w/No2WE/la8on3C/lkBS7wjos8+fZ27ZNYI70N8dndhN7vy0/zTYU0qjvJw0UHm2fcrNGCNS7yjNSmwMoO2e6edl3c0HEPlkacAyc84ygwd6BqarDCzWvbzOawBIzOxRe4J6mnSpWc8/vStgw4dOOWNt4zHPO3hbkgMp5eE0K33TwXo8M8pVkODBDF66W2Yp7RBe1/abZ4SVd/padmkZcLvTalkEzfcljTLiWe6nNojyIumTZXTXddmgrTxpTelW7TF11pTmUTEz2lqzQMywGedAiVrjYhvwOrVWXOeJHlbwXnldeWD/97DDW/+mK/nZvfQdWHtda9uNlNLMuhc6iSGihWm3qj8BYPQLo54hTeo78fpa5sjBgGw/Adcfxe23GAgstlFCr2egDnTayvXI33zOGKOD/xg6LuY0aDTlNArJ+D31HYbs7XFk1+33Mpk2g38mbyOKDyQ5cganu+eUDWAERskZfAJ970Dz6bSl0370gJMPfmHVhtqlPFvSPc9h2K1+7ZiCDzpa5WXZ7BuVh0q3+33VXtU+ulrBoPqGvBzj7JG3AwsqkzRxQmXGomP+N39XW5p0Qzt41wcKQLBqSPfp+3mH5ZqaPMJ90cFTq0wEXq/XAMPpc+3vtIOkeqZ7EFltX91PtX9Vv5Jn1bbU81cbkDTFiiy+j9Ke6iDds/M8Z8B6AXnWXsNqv+v76LuHEEbwWPes+aRv5U2VtREeKALBQteROZuMQ/uRrlb/LiCmCWxd1zVkk2Z07j7fqBpwu5AZ/unIY/p5kCFzix3aZxZma5apWM6P+x4Mnn4PCs39BWIQPxbfAUE+t9LZ/nelPQYI1B/kMyexpZQ2ef/ipekEHmOMww4OLgtqtyF2vYvfIbQdYgaVr+419466SnEWpQujHfzl9ZcBvl05qzLmpp7nOUruuPSFFZhThacKVxFoLR1TJuYmqdFEg0pBIHXi+TuNClIRkID4XLsQ03fne6ohq4pXjRKNbKiQ+mliIp+PTPndAVjR691p1n8D6/h0CkHdLwA/ZsNx/1VhKkgCYBioLIXgM+mz8nNKP/z3rvR2x1OBN15zPxdeR8GL6XTHxWnYnz1lH+pQK4BZLqJCQmlBn0mN133Pd1A2pYTLe7JA0ohVyZ/niWee/RV0hRBsoigwGpbvz8CzVuG4OxNdwIzdQeC1Hs8X/uM//mOAfLr/mlWk+6JgzuqczRJP8vkwAkRhacZfCJZRRsXdmg9yaDbdjZPR1MhKKVlGS+uIkQBEQjw8CCHkMvY3hgk5dCnxqBPQCF2Mn7gamGo8TidqGljneSJizXCwPbLIMCc5K99pZofSFe85ouXJesfREB+gXpylLTFapO2qMxq+y9veLYON8Msur6/rmqXGXdoOwEqgh4EQZnTVDOALIw0+rACoZlFYs/c2yoKAWVKdUkRMVjrSS8OFNVAEYDgkTHfpjISGjhQzerLMT8sEaqil2L47/RFMGeCy8C+zz5S+e5D7hxW0LaWCzQVbs55EDcz2ggMvk58h19dSJA1I8FzViAHWafJ8HtJbwM+R/BgjylnkeWdW+AKEwaLGCgDEMdF2BnD4DnuPK8vsYLN76TnY/PzQRwSTunDXGXtwTPUD/20DYL7rEfs7POvT2hLo38Z1abg1ljaubUBUtuzBEu5DjjLpLdq0O4LWQEQ+Zg+kkWkQozmQtY4pkSobe8foETrOJQbLvuLQDqGDEK2sPHjZSxzZP+Y4hOpl08Em4Fo2nJUuUY4zIDLsgDaDG9wzO0dryK1TsskffEdmflNWqXP9zSbD7PHaXb4TdOvOn4BlSdDp4Pkov/ZqWXqkoZSSRPQ7qE4pe9gqxva+j3uZcW/gjHPSoMUQAEj/PHsO1y0OHiJYMGrQUF/BaHUseLa780fdppkP4xx8srA60qTRce04s+/Vbpn8NfWWOijUwQizDQP1iMp//Xl/7qEHMXUa6aZJYEHtP7XbuS/74I7dzvLNWPaIz78Dv9SrpM8d2FRf5DxPlFpGj9NBSzHgLFYayb54OVopb/eJyAizIUEtZZTj8lkUKAVmMAc5f9PjSge7k8tFntt9DaUFyhRWHZBme58VPqUUpJhFdxd0dDwfT6M1cKiWa5c29UPO2bKDF55YgzA6yZ3+zgj+eqla71Hk39Tv6vf8BILxHjwr/k3bxFD/aVknYMHAnNlSBN9oOwR8+/1PNvfumylPqO3A91P/QZMidn6a567g2vSvZ+LBOhxEfRflIU0WURBd/boYI76+vsa7vt/v0f5lP1v1eXR/lP9U3vF39CvJlyqbeL78L/03tRN4P31/fna3l/ekE5UXvF/yrOUQrY2F7XK3gTLy/CbP+8h2Vd2o77n6gmEE6sY+u91u2YtTJilNs6IGYfof/D7xj967B/BMpkeYfxeTDdUrdeIg4yycjLgXgTKrGaidgrcn6MCRMjorBHrFVSzbMsc8AhEpJ/RiJbvP8ERrZYD2tdpwoJiSZKzRvjW+N54mvX5v9aEB3z3JimdAXaXBYuUD9XWUdhXHGWcnjmLHSr/spQpw6ObqO/M7mvBwHNlsL38uzUTmXui7sD/fX1n/lim6CmLtDu4Obijj6ctrZtYurPV3yuw/gUi7gcT/K9jTWhsZQbuw4VqMJHlezUbR91LHSBFa/n03rvj8vc9+OUaUGbVOw1cFr95bCYT78lNkSx06YApLvuPucPB5+V995p/6KaqRwn2mwbg7ZDphlOdJ4IbOhZ6xRmzUyOmwZv8qzPmeKhz5THQaFNxCCAjeiyj6VLFSio/xXsvJKDRDiIthZPeFG9k8U3cO3DkDOo7jIX0sOqIH9jnh1d7TI6PezybAFUoIOB6WodNgk0HtXOhk2L3tXQF6GEZDK18xgkeaYQ8/Xk8BP7+iZ0HVhe+U5rnvdOLY/4MGoxqkPNsB/nvmS68r8BhCGGW5vZsBGT2TcAjB3gEC6ULPFIwhRPQ2Syp6sIhYt+SOaUj0CZSoI09FkVPCkY5hfA5+6N0MQnF892iSGtrNga/Q4EoenpZuDj46RpbgyoNTeegz0mAZfN+tZxzlVPBMlxTjMMAD1kjn6/UaYNLo+xcDHvlY7sV3qcUAOJssPEHk1mf5CXxv1owOIEbS93ewmzzLKVaGt1J2m5Pa+Tx9gtrBeRgAQvTG+e5gt2tmCPfWcNXTCn4Ny/VrVdR6edaDA5s54sjZUvCrpOzXtc2COqMxTsNtyOi+ls8As4uXm+lDnnCf6NRqoIfyh7yj+jUE9s3y/XJ6HoGMaE5Yd3rJKZkRpoaKlxk/3HC3a7geDgZS8Sw04KMGFnlFjUflfXWGaqyLDOF+TGOqDxoKgcMjgHKdIyNuZNJeDhZDsp5789LVyQut0jQFlsEy4yfjP3sOy7wi0Hwcj4XHVe/pSinJQJ61nKo1y7g7sgHhuyEXAoCIkRFGo133Z2bITSC/BwPqbI9NvrTeRo81ICAGoFwFMbndERJiTl4aP52UfHhWcjcDPSkAF610yLKW/d5u2HLSdQjRyttDQEMdoJTaXNM+WcF5yrEI9tNpuM4KhJmBxf6ErVlWYqkzSKXykXKuKc2Vgh6NjkIMo7cm+YRyu5QqZ+Lgduu4rg8AL+X3zIAQZ8lf94CC8RtAJVPqOVtxtI7e10xNYC3Jpz308F5mOScrPy0FV1lb1/AM9DqkOf7OZOqJ37//HPuTXbarfWvlRTOzIIQwbLhSbD+z6N0BGPcZkNN2GdzPoT8Ce44ax7U2qwfMhl3pgXY/5Q2vSxtO33HIljhb/OhzqQwloLsHmGKMno3Rh+y3YFb3IVUVtdhAo+kIO33UhpC8rBYENLrJeC+1ss9V85VoP4z/wuUVg5wGTdMGJS1SD/GctfxW/Rzul+4R+0XPAJXpYi1Fq9Xum/PhdG77ae/MpvaWTj8AqRjRuvHj4/HwIN+10Pju+CqAw3dqjUGRqQMoZ3KyShYFNV6vF458WO/SzdZXnc/7kmb4TGqfkj7KVUfZJe0MzebnXvO71PXaZ3ja0pqdtPZu17JXAhWUW6pj5s9ih/kzsS1A78BVrgGq8nps50SaV0CjtbYEClXPKACkNDd1+uWfi6se7RhBoV0v8lwsw31gSii1jixN3o/8q/qV/qmClHxPHXbHz+rzMiuPe6O2CM+Fe5JyGq1mhr9ZZ3Ao5jhaAFhFiWXUqg+tfq3y4AgUwvzGYRu5zZMd9Go+qDHFNDCA3VYavAVv8eL9QWNY++fSdn3kw/vJOUh8SMY5A/mDZt05igEJbhPT7gjBwX2gezOQ3juSV8Oc5UJp6/53B0WDA4SWNDCDxhwCNLPj4IFy88kVP1FwVgODyjc/4R0TCDV7iLbpT4AccQitfKNt+5Mcm/ZMA2BJJJSzvVt/ZcWjWiMvk+/M/qJ8ptwffC7+17+6/vqQDfQJvPywud2F/zCa5DDI1Bqd0sVratYPF79P5gKmQge+l2yoc0SmVFAJmOVUWjZANJiOMCPye/RxF/7TeJqIO40mYDXk+Y7jUASEU6JWBcnf8dosRVahTKeH19Hmtewbxu9Q6Ou76/7pPfk53uPz+SwAKvdUwYOflN4wwLdondLI8Zhls8AcTqIAk9IL31edJBXkOXsj8uAKw5me/VEsC6OhF+uzc3hm0swooyAheGaGz1RKbfybqcnv9+x3YYaqTe2zDCB4+Yw2QjYft7kz12qFu2O4qjohBOpoCPse1+YDIQ7UOg0EpcsRHaqzJBPYymzFQVM60CjYyKqr36NP5DnSDvljGHdO89d1oVcMJ6ChWvZDzghIOA5r5N3BVzTVGGFlo6UUhG5AIWkgxojH8ZjCOQANZhDFEKdSi3PCo8oXpeeRcRvjnMQL9lqYxrYaIdzvGAOezxd699I0NEQ65c2jRAE+WWmNzNseTyPG6Ct+45kQZg9Ke07P6Gszk8XAnIwovKWZfs/nE8UnpgIYqfrdf47RMhXSI3ljYPaTi8MoaL0jxYDQ9+lRHedZoFl8fCalx8GroVtZGAC6SPbdCfDUZs5Y7x21lQGexWAT/aI3Pq+XDUhJMQHNShgoMWovdgcazRHIMFAxx4zLHY9eZlmh6h0F4QArTxpG82YI1FpwPCZ/WGnsGjRSx3Q3cJUmF550oyEG64uk1zB6AwBrelzRhjPQe/dntIyMGCNez9eii3vvSH0tq1ODmry1O967riePa0YcHSEa4krD6kCN94UHZWJEgvTL6Q2tVB+8M+0A9qzzVmk2dKFPB5x03lqzptV+/Rgs2GIlqbDgcjOaVNBIDb3hOHtGF3mu1waAWZnResuUatmkIpNDAPKxTvimjh10UCwTsrpsyTEDPSBEi4C30nHkhKteLj9NtjR0pIMOsD1TQBz9+lgONPRisw0LIQydhEibBgNAT9Y0SOjW+bZ7b5po8pGZwAu/NEan7eeKhtZO+FM6iD+BK9oSI6CIhBi6O0IVz8cDz9cD7/d76nq3OVg5Yv/3jIlegb42nt95WtekmSlLe+towUDW1jF0cegOqQfLGOXnEYFWJkjBe2imMz87nYLgPUEjjvxETtUd/BV44HW4lIZSMnk2P18dNJhtAIxv89IUnzLJbLcZQC3FaOv5eA7bn4E32ph8Jtq71+ct8oO2Mu0dCxodx2MJ+M/7TeCy9++9IYddWduQY2rvqS3C3zFrUx1iOV7LVvGelt0nIwZoP8bV5geA8zqRzOO3DBXn696799kLI4vGMlOrVVAPh519WsP8vgOCfXvuvSUN6ZY/mz0zDz0Gy9Tl+dp+BgtiuNx+PGb7jdYarmp2EsuQa6sIbrvYFHffZw+cWtZiHwAGfSVebwRuw8xGa615LzibkG0HMM+uOwhQa8PxOGZWIXt1SpbhsC+7OdzBZVgP0/GPLg9VHhF4Sjmi1Mv7FDPAvGbaDp0YIxowgkjo08lX2uQ7MIDRWhs+0R741vcYTn7Dolvts/Z8OR+46mWl1OLHThDXS6DRR2n+5zoXeRNjRCttgEPqZ03dTZ6FgyQE/+w5TE6spawKuPbecdUZ7Jk+QJ0l4H2CcTtoo0CxgqUqr3k/ltSzF7bKC32+1troIT/196xoGTZZb6iXycEjHH4f58euyR9Y6GP3ddX2aU6bh1bOVbPLAhqKD9vh4Di+O7OOQwgjKzyEMPX340CoTEAJCMlkSe1z0BG/wwSHECcdDDvDbeQQAnpksNVAveTXPPIvS5YAcHlQnnLp8/kge+b98D3QgVYmONg7+tWHzOtYM4+b62jNsNSlZ6q2MN9vXzyDWtl/vo8evzx/2r2km1ptyIwmB6mtp/waOUQuKA1EHI8JWBt9mJwwf/2YASDD+QRDMND1/44MPnH6R+aAbPIOeKnSVQeaSpiCYBVq38Gg/d76Owp7OmS99zHBiCAeMI0blmfw3jQqNWuJ/1eQYgekNBJCwtS+Bnv0YRcGIYQBuu0ZjTshH8cxBoRQwMcYl3dQQUkm0fdXh4x7t0dfd6W8O3t8RipzLalWEFUz//RMh0O8CW/As6iuGcng57RUe7+mRlGmwJiKdv8cz12BSzBSsSldPp8p6ZlRyb0nzWjEofeO1+s1PksaeTwe6MEjyFKatTr2c4jJbsDr779n9qzAQ+8WdRvvgjWTVPdES2PiBljz7/qOmqnB/kFDEf0QadfrRAcXNHPA6A/+HXdAe6NlY//xfTb6qwgBfiYzDf84Djduojub67SuI5tD0bCWHz6fTzAdfNJd/HY2pVTkAPSwT6nDeF/y4XFMmh0Kos3Mzpwzmiu5mKwZcAiMSFNp2Luz2btGWtUYs8zSw7NxzFxWUB+Y4LfyLzMZe+soAir23tFpFEQFSda0edJhcAeFDf1jBFqz3j+8p8oXrslXZWThPJ6PhTf1mZ+PB3I6cJULra2p+qQjGrMqI9gs3oxy9rnoSHkLpGDKJV5TM+tIs8NgRl94xRy7VcbxOszyJS/tPK10osbFT3JVz7WBJZ+zhHaRGf27/EDAQkcqg/efn8/nIkO5NCBFGfjTWatcIr0wY0n/zrMbpeV9Zk+Q7vRslO8IMihYE0JE7FI6Ew0w4kRHK532vRmZw8waqmitjsEGyhdKkzwb7u0MbqzBEXuutOxvazYpnMHDGUxi1nqd/OzR3pAC4IGKHCNCAkq10uLjeEqWILOj4UZoRPTAVXcQoTggV8l7IQxHufeO2Ek7bucITUfPJK/lGhkadk4ODtSGjrWVhzkWwbMKHLBpHRxQkfK0t2iPcF9Is1MWmHw4//n5ERBSvl0BqO+2m/LVniWggevuDm8pxffO3qWWguDgJDPsJ21MG4XPp88zHHtfBM5I0wZmrxlbnlQ+nlP/NpziOu0UDcARlCON/f79e2QOqh2pepyAekppgL/UiwTnqTcfj8eQQbT/4iabpr+w9vhTWUCe4veVDoZM7KbnWS6724Sq37nflFHDTmttyGvuFVs16L7ug/QmH8+qjz2ZIEbrl2yJDvh2zfHO+r84g+7UL3upr9qei0zHtJ1255hTb9UvUD8gJpviG9vsD0i7eNgataP1glYdoM60f/pifwH4FtxX2Zlpu7r4NhtjtUcZUaAtzv9amd/ajialhOsjNnNOnpHI7M8+gkAheEAmsCzRn2EEM2Zrlm/01AxMZlk40BCZGNANrGZlAWlAfVGlPQA4Pyca1iFO1it1Aspqy9AmQF+HPdCeeL1eAEw+RQeUC9YWHCPjvnU4WrfYGuQbO6tZQkw9TFlr9139EwALOBKa8S2Hm5APNONK7SOlY6UZngPvexzH8DnO81xwBNpGi80ttqv6wWYbzcm4vFeAvfNZTxkEI/3wq4XJVG4PvRhndiZbVhm4n1FbHTbKkO2CHfyUuILtPoNHukUmNLiVYxp8pK0xVFZwT1W/ku5aXwNdtG3ZR7mLzYhme7AnOQAYIGDOeQQmQwjIIaL2n6udplyyjEI+9y47lEZIJ8zOVlCNdJtSxHUZsHx4FcVqg63ZtsNH3eVjnD38uJcmwxo0Qx+woE8MTLhqw54KYco0ICwybMEcNtn9r6y/PkVXjGt19IHZKJ+IOLCWU3L9tMlqsOhSg0uJQjPKaBjwnhRmAAagp4KO12GmoYJcO0j3fr9HpEAJQhXm2Fx3fHgPjXCweakKf/5No5S7E0/mJPHpZBxen++r19Sx3lpKpYJbHSU+L8+OgpTPoufE8+b+huB9e2pbzlWFuO7voCW5pgJ6NOxUcOtzc6nwIjCgThn3JucD8ciLQ8NnrNX6iEVMhc59pUPK5yAt6nvt0VTuB0FkzUAMaS3HOo5jAUgpMHQflIf4/z0DYf+sGpvjnNvkOwpzM0yFBoDh+JK3FfRWh4HgjGYkLcZczvj6+rJ9PLz5eUrL/k6jl+DqhQBmu02FsJT51lkKn9J0rBU05MsUzTKMM+MrPSZP7NlSIQRUL/c88oF8ZHRGLHsdUSotLVCDbPYtOlzmWWl0rSyfCG5UNsTEaV/BgZeG3gko2GAX2+/17CbPMsNvlqAln5DJPSaPqbwifRzJjI8luylYJhP3u8OyxdTQG0bKiI57Rhw4bS+MdzcAcspo5WFVpo/jgRASUjyQYkVrZTgs5kya02OyP+F4HINmaACSTtS4Jp+N94PJqhAsGzQg4PO50FpZdIoajpTfKmNabUhZADVgRM4JKEz55HpTnFFelzyj96NxSZqe5z2dzMmvLltbA+IaQFPwCHYai4FH/lPnXuUJg0rcQ3XGFYjd+Zo6QvWk8qdGZKmHIe/CvRh75Vma3Hvj/QkA8H7TEWoI6TGe6ZG04b1ncfjQCZauck+uk3IK/628UmeddEyQusN4u7WGnDiwAYN2+RzMqGeWjZZW2XUNZLPfMfPJQIEWHJgUOc7noBEZHGxiZsAoNwKQclr0Vu/Gu4/HczjEQ68XDq6x1b3MJCJaBk7gO1t2gVVyra07Wl2ztEzvfWZJUA/Dadudyt47rnKhgw6pZfC2NnU9jXN1EtX2iTGOgAVpkY4nvz97J67Dt1Q/GNBoaF9rDfCpxMEHcqScPAOquj3UfXL2Wm6vzqAFd6bRr3ZLVyA6mN7ghGq1D/W/yd9LnUTKXaXdHQhSG1grIzi5eMhsBzLYo5f2DG2C3jsez6c5e85Tai/aPtjPGlRTuy6J/hrvpfa/TDBXAESDEfxZ+5uuvcssi44y9/F44NevX/h8PijV6KwJKEz5OORPTECfje35rCP40vsAwDSrVK/BxGI9l2En89wEAFNncwTGojV4J42bI11He4M9uKv2Y+/dM5+ZgbiCztxzq8qx7HfNFuT+UwcQcOLe76VvDVbmezwyLtK3Gx8j+NVnhiD1gA01cfuzT/Bh6jDnEeGLGA1UGDLO3zdH49867N4+ZDOfhUvpHiGMPqflKqhhVnVd1wlWhagsJ79zr6hLaquLHWT75y0T0mxXRD6lDcvPs8fmr1+/cJ4nPp/P1FWlAnnyDfmCIOB1XXjk6XdoX7Bh8/WZicZnmYO9MHj9J95UGfd6vcYUa80oU8BceZz6TuUB6Yt8vgQfRMbw87RTCKjx+juP8W/kpRij6YfeB88h4FsrligAjdpjvI7KVuNZBkrWXnCKiwz+EDtD92HaBECO1kZll//AtLHUV+T11Ffk+fFvwbN0rbIsW/9B9qYNHb0UCwJo0KvrQEG3+TOBNKD3tJzNLltIK/T/GPjZ7Uj9ntpj/J0mPqwrIKWMGNPwo2KMwy/fP68yawcWeV5qI8cUcZ0yJLZb1mRIE1sIYZ5vzg+cn2vYUj89s+rAf3X9GzL4JvpMxJ4TaKlMdyNCD1mZQJWdOq8ErDSKygMiY5KY1TkZGxutXp3PooQxhBGmUKOw4LVUOCyOhgBHZEpNxaZDxc+wQenn80EIAa/XaymTU4FFpaClBArcDMPhB4eda1cGJFoaWJq1xuupoFRnT0eY8/147groDOPBp/7we1TYZHL9rDppanztzp42W97Rdn6G76DCXIXP6/XC+/Mx56uvUxcXIeOOmTKZOmMhmJJ7Pp9LLwjSkApX0o06wb131LJOeVOA1Qzp1cgjfcyUb2v2qefFfTQ67DjPzzCQ+Z1FGItCM4PX+kCWci3l86oceK8///xz0C4NCxrFuh88h5FVgSmoSXt8RgPKPIIKeJYHALmvDhXgeShoQ1pf0vP7BBprtczQGCNCinjkx6Lg9pLz9HyiXBfenzdyOcCMg+rPmQ9zolgmtNOSXYtyY/aa4XS2q3yQD0Yx2R+SWZQRtVSJJpmzbyDGc8gpBUxCYOZmxPU5ccIcy5gmeKSAPXk4hYzj9URtBewBsvMIWpd3mhkeOecBoqJNRc7nYyNl5Qu9LmllGnJArec4Y4IQk5YcRImUUwWtVTQv/RuZE8J/ysPP59OB1Ijr/KD1iuIDVR7PhzUEjh5F69NJZH+6nX4DnQ9mBkYCrrZisvL98+ODmFIaZU7KUzyT4bD5+ag+2J1/yo8OeHR4ZtFr8EcNKzuvGa1W41HPh2er9/zJkAUwABKNfPJadPTUsNTn2aOlarSpTjPD0eSI8jzPVul56IVogHltNgnzKhf65e9ikIzLBXMyaYRf1+XDjDpCAnI6RjR+H6Zlk2lXPdUcLGy1ejmjn0eYEXTLiP0uj5dgFsIwSjsM4A8hjv530fmOAYIJzHf0bi0IyAOWOTzfg2Vm5D0+1+N4oGO22SiljMCmng8j7daHknvfcJ0FIdtzk2ZIJ136U/LM8pHGfVrhd6YzMuiDwR1IdofLOqWz7hmHMUSUOidG5pS9V96kdx0qxmfUxSykPUCnjqm+D5+rNqOJ2jwDswGll0GfSu+ayafO7JJJHskL5gTZO0z6V1vIuWW5l9rODHSTXwgCWslkH3ZNCMz2exnvxYjS6pjUeonuVhuBvAoAl2Si6d/H2efZx0p5eB/qwWsqQFhKGUAOQWueld5vBx/U9q+14vl8+GCuGSQf9zseQ7ZqoCzYISBFy1StZfKQ3o9gfwgzU1Ttdp4N+/TRxiPYovJy7886ghjAsle8h/k/HSGHQQ+afaU8YICZf6evWZS2/wbwo3fk/LAWIJVJGQ6Hhe8JCQr0DId40zd2TlNfDZ3TOpDTyF49T8sUDqg4z8uymAHLuI9eNgsDVBs6mvCz2WjWHqe5HdpqW3qskj/4nOqrKOiN7nK9d6R0uExmVZhNIw5hJkgs3/W1+5CDVuEXiwGpe2sETMB40HOYv+N+6pRpk5NTlnD/+X4559F3lVjm6YPUJq9ggBC7LzKrBNahCCoPQrBy1BA8+7wbvxCg5VBG8pzaE7wW7R5N0lHAS98LmH429119QPLFBGNn70AOn6HvvoNHiveyNyR/qXYT5Y7SO9/HzqG7H7DKNq2E0P1WO0htJg02qW1sfc3XZJ3hewm98J1UVvVuYLfxf3S/y4rPCYrD/Z5Sz+W+pKnGPd74hoHTEPCd5oNsLjp0UV6ojgXWacr8N89PZeTwcYPZ3DHYpGF+j/iOZuYBGPblHhxTPIafq5Xp9FL1Eyk/eU4zKaW1E62vOBffhff/uv4vyODjsykjAmvzYGUSNWLIDJpFQOYaYFCbWTfK/Bqh2zdeDaTWGh55OrPqRDKaoKDDfg0to1JnTAEtVdQkLIIwek0FSgDg6+trARv1+kr0/LvWg9P4IbiiRr0CRfu/eU2CKqY0J8iohqcCUrwWz4LPy14GyrBqxPC7Cu7tBhadKc0wY8RejQzNHgFmxFeBTwpt0qMKQxqrtdpI8i7vxOcZkfu6TmXdFYoCX3xXdfrUWeJecg8YIeR1eK31zAxE5Lvt0Rv72crH+HsFtCboGMD6A42C8mxYktr73iPS+u0cx5omrXyrilyBWQJIpFkO4FADZwUddyeFe8GG92U0p975Q3ma+8vzH0GA1kZzez7Hr9cve5YYUK5rZPflnJdJYa015DjLT2mEjufuVvb2fD7dOWoDOOFe8/01GKBBiDycTTPsRiZU9khl02inRbZsumNEO6cRoeVD1ljXpsfa34HjyB59v5Z9T9n6HIYeBmhAUILXHk49ecp77Sm99e593aJmoNg5aFnQULiyB3xuyoD35z0n8kXrjWZdi4x2CCZd1+mlHwm1Wm8hzRDcp0fSCDnP0/qh5QMxGHhTroLuznNPRn8xeiZeMXA2hdWZJW9QLuZ44O09p2KUSDECrM/VLP1khzylC+6P8hT5n/tFEI3vo2BgjNFKNrvxbw8zK0Wzg6/rWrKzyE96Jnruqi8UCFlKt+QdFPRQ/lZjZg8m8fwJsKtxvH9XDWnulcol8h/vW9Hx6x//AHoffW5qLejd+ILylaUklml04Pl44Tw/aM1ocjc29d8s7xo0N4IUESkGl9UGFFjJndsaKQwHiU4a94eOtb1XRG2Xg9nsndQR0HCVar0m06yMWIB5mINVS8FHHBGerQKyw5YK3udUhnmxR88wTHv3CZQJxLPtWhkhTSdFS6hiWHslpxit5BhT15ZSrMdeqzapz3skacmfOpPg5M82Aa3WOs5qZ2fAngVQarFJmYvxT5Blo3vSuNozuh8AxgRntbWM52cJKtvpqC7/+vpabEjSktK4AiyhR8B7SdqzrUNBlA/9CpbRHGf2mtLDH3/8sVSXKPhFmWI23gPWWJ/ZSZaBX6sNn1D5TR1MGzjGiF+/fiGGWSrNz5r9xhLgGUDgNXSRr9TOHnz4gx2w6xUA33hWHWvTqT/TxJA/MSKJnFIgKEar+iB4prpu0mscvMBnJ61y2Egp1wAdaDOSL9B8qMJmM5HmLADVUTtw5APMmO/eyy3FiA5robHv8QQfTMfHMCsphlyoljnXA1ummLNuWHoHhH5VDvFMZkbY5B17hzaypfhIQwcRaPDgXQyWMdh8qFCMvHV0eVFQaa/WZlOQJaM5hIByfoDqvBIC0AM4NEJpmPysIDtlgVbysPSU92EA+PM5v/Ew6Y3XURqaOtSAewTzFUpZ/QmeCYFtzTbi9ccei3+uZ1xrXZ6bctc6wc1At/Xdw/CdFAz69euXv+cHpUz/jfStfjGz8VTuqw81Pgcs7whYievv37+X76uvq98vpeDr62sB+NX/pp/GPSBtarUE30P9m5ii0z9p1spZ5/Cg6WsPnST0r+cR4BmyYvf9dwCw+jxr8EYCKRtIFIDRmkevqftVPSt5BuZd3jsk3NCNdHofQW3ucYRlN9LmIXYy7TArR221AtXkCPeMj2n//Q5gzs9JibD4e1w8K8UsKEd1z7i/Q2f7FvZmfgoDWZq5qjyrSQm81v6zyYzkwJ2czXgGOxGtfLB9CkuvRaXXXf/9q+uvD9noE/QhoWr2hCpkBT64FgUqm8cIsy5lcAII3IjdgeR/WXZLdF6zAHlPMo8i9/wb78cIl4InJABej89LBtfMtp8cEApbGiSaHahG5O7UATNDQSMR3BMCpdwDnpE+o95LIwH6nmpADwUgToAKaKUHMhzvq86hGlbca07z5DV15LlGNfgcatiQJtTg+vXr1/Jd7aVijksYGQD8ntIC4FOeQhh0o8wPL7MkeMH78O9kVC3z4RnxnD/XBz2sIJ86F5Y58/gm+LmnRj99AXWUpifAQmCA/UwmPXMfpxDCsu/naUaVGgf6GRWGpB01HjRLgPzPcgLN8N1Lc3qnXLDsi1Yrnr9+LUDS5/OZAF5dB0aok8J90J5D6vgWl1dZjLD9THqaZVQpZYtiw4CfX8c0cux9rgW44bnsxqDuYc5pKLxp7DXUOkHZ2mY2cHbg7zovnA5WqFNq/M+MQho4fWT4aDR0GH0WEMb59QVrpgsbliFN3VNKoyFz7D8DMDlZX8NevRQXAY/jiRBX2bMrcC1rsnNqXg5Y3Yia5Wm9d5yfCynN5ztPy2x6PJ6Ikdmgs1RX9dGIgkfLqqvNnjd0jN5SaiTklFBhPcp6nwY090R7ftRWB/jIZ1XemEGLiuQNsilb9J4qR9QBoLxSAJs6hVm0vH/s3YYAbHpGZRLPU3UlF2lP5Tyff2ZjrSV8+hkFHckPSgO7fuN7LiXU4WdQX41pnoPeg3QUozebrh2XB8KOxH6naTlHAJ55uRrrKWcze/t3QHc3xpTn60V7w6avtlLQGqzEvekZzz1Qp98iy+zZ6c+FtfcYusmh1+tYJq3yLFV3VyllXAKlOSNl6fE6eshZ6YmeozmWccorBIQDOM8PynmNQEoI3afqGsif8+G8UlCbtcnQM84CJCr9hRBGqdz7/R5gkMnMMGSqAoOqx4/jYfrfAdUQJtCivKX0yp8V9OOzUo7w5/E9rMAP9/35fI7nIsBOOqFzsetV1WH6txCC9f8SG1qzCfbPUlapfQmYba0TZZmNo59RR5qfYcYNsxRCCDgex5g6q/akOiwEl9ROmSCsB+EfGTFOe0flhj4PP889zTmPSfE/AQav12uAZdx3XncAnjCerJggCZ+NNI8QRmaT2g/cB2CdmhmCZX/3Zhli5eJApzVDke/Gqb3R/0a7U/uJ2s3DIvf5PGPPgwNlpQzAvdaKwvs1e19mQapPZvSQTR/6c8XQjZe7gWmWXZa8RYJlrZhschkOCwKQv3bZrzwTgwUUaymehTd7AduQLMsMRO+IMaOj2uA3n8hJ0Ki1NsDB3gLQI8q1Aiyke8AGFrW69p+2LH3AAi1WThfiCpir3lRbws4+DnDWaOCx6DGl4xDC6HlJWWX6xGz05K1SOPDImvivdoDurdrnKpsAz2TsMyuSf9NJukrLanfw2ZWf9RrcU/XRcrYBb7W2hf9Js8wE5++5J+pXqk5XEE79XZXPWt2w2x1q+/AcNAFE5Tn9HvXp1Z7oPoUnS4sP1RX8/A7Uce12uu6x2jrqI3+T6ZhByMFPIpdijGNY0PjO9jwhBCBGpGTgYBv038b/ze/Lwx7jOYyzJ2ArfefsDGk/zb2IkTpXg7zzXXU//ncyf/cZWImg+0Weop+odvXYy2Dvze8o/aq+5320uk4zpvld5ZEYEvqgmUn7GggfuhVrNqVm4lIm/dX1lwE+LjWUKCj05YHvPekUdOJBawr6T9fUw1Ij4aeJTdywPQuNP6uAp4ChstQDYW80fpef5XPRYVbDgvfn86tTqIJZDRb+joCBCg81tBTk4ru8Xq9FQOo+aQbiT4aSZsqRwHYDl/u/O1aambQbUWro6v34+Z1WVMCqE8t93IWB9h/kv/dsMTVUeTat95G9tzMz9yKLctrpjiBUa6tC0Ofkc3BPuIaxGaZzM53lhuN4+h7PXjK7sck94L4SKLPf90XhqICjEfETmKCChXxozzdpXWmIoIX22eTZqyOutM+902EKP5Xm2WcxgKwAjNKhwYNxTozelTTLQVXhn2VNwx7GGu1meQbyB+mqXFNeVZ9CycgdM0KNzxIQOg7vaaKBAD0T0iP3hQ2aAYvQA+Zk52R7fJWCes3hJtfFDMfZnkDfgVE0BKCWguPxANDHHvJzuzEYEdB6Qa9rtiTPv9YKxLDycoijlxW/c10X0BqOw6PvHsEaTgp5t7P80MthQ1xoLeaAWgzIbldFjJ4JEDPO80Kt05mgLLC9sbItZhsojWvwwd7NMjARDXRp1coqSeu1VvzXf/0Xegvf5Cr3UQ1GjfryPUnX1G18XjVglfZ5lvq3HXSotQ7HVnlIswLyYdNkFRBQA4XBjuyZH63ZlNaAteyBfMY9URlA3ldaURo3gG1+bw9G6FIZoZ/ZHf5vBhtmFiL3bjhDrQ1nFWE2sea/CR6NQJWAyAbcRA8IzXJ7yhYu1YdqxPHnWgoaOvKRcV1zSh1phk2tFTydOgGjvJNTKnvn5HY3Knv2fPTvQA/pYWQlhO+DCjpsMiUdWnvuhrOuQ2DsbwC60Yn1lMteihORkpWqdNTRa84m/UY8jgOtVaCH0WtLbcBa65gIzV5zwwartgcMYCYZSqX0NPjHz5Xv8lN7AKVR0s9ue6h+nAHR5k7MCujp4nstAALwLaCVUhogEz+rA0GU1zQrjbSpTuburNvPNjiCTvX7/V5sb7UhBy1ugBV5h+CZfWd1SBDD8i4KCMRogZEgWUurXplgpPK8ylI9YwW2+EzmfM/WMSqraINR5kYH3WqbjixixNlOBKy9xBbAMq4+yGLneEZOCxjZLojGV5byExBzcoc5wTKHpx09HMgOnxq7ZiLSv6BsJr2pPogxwjoQcBANM9OsF1bvptsCYLz7fo/3JK221qyBfrAMl9Ism69XD0ZEy3oOsExSvnvMkJ6eU0YqLahtPABzAAnAcTxRSgViRYrwASMfpJiQH8eguxACjgeHA1FLTwCCPRCN7oK3W3gsz7DoEC/hVx/hKtbqo7eG2L8Pd6EMIf2HEKTiw1qx9A7UulbkLKCb+EEakOjdphQH11M9WosD9lNW/u/depEycKA2sNrjIViJOfmIsubxeAxbkYv8VKF92a1dC99RbRF9N/Kqgajfh1Dx+Xb/bMixYMAZn5n2ksoj1ZEpJbzf72XIm+o9ZsGqraA+JO9L+408QN9H5ZDKHT6bfp/PxgE1/Lf2+lfsQOmJtKDJOSrLeS04vVsJ/2wFpfaGLj4n78mzGtd1GaF7w1Y0dtv5DLvfoLJf719bG1U9K82vmbnOFYuO23WXnvngV/HbdE957rv9qPpttw3VDlBati9Mu3CcreAz+3NPeYfRsiDnjBCBlOY9lMZas/6GGixTYH15nr+w/jrAJ8aADnLQTdTDqLWO6LKWBxC4WvvX2NLDYcnbTgR6iGpw6f0VZNsNIgXtuNHqLAHTCeD1B+P1CaTps++p4cAUoruwV4Dw+XwujZFVeCvh8m/zKL4bhq/XC79//x4MzFKSEGYvExV+jIrS2OXfNHWZylIBWu4b93s/AyoB3TcVkhRuNJiVfpRe9DM0jrRUl9/TM1T6OY4D53XhKjNiQmNB/92AEbHltZUBn8+nfc6vPUAVsDdYtL5IQiNkV+4RG1RzT0pZsx+BaSDR0Luu02y3PjPN1JCySZezNCjnSWf2mRnVZr8CBbVXkGsa6lSkqoh4f/I1FZUaZNwb0tQUWiwbPRZnw2goDiVjezEjKykl5CMPB04dfXXyJwDjdBk6cj4cVJzRmJC+p7GrccKz7L3hvC6g23VGyVXOCKEDoeFzvi3yzpLcEHGdJ8p1IeWMcl1ovY/GruTdUZIIjGbaVykoRYwj9G+8xaAGgwEIGH09KU+OIwMwICunYwAVpBley5y5dfo4nC8g8rV51N6OtqOhmrEPzy6STKBarGdYrQZKcFEZwnmMvGdRX51S6rKvSQZy7XiXj8uNiN6s/1e5LLvOynOAEGy4SEwPsKRRjWMiOZY10FAbEHpHxwwaqTFn/a7W3ndwJ8GihhbBVxCbMkuBMAUaCADvcnF9TpMxR84I4qjWWr0h+gp2KA+XVscwEE5ZUxkeu+2t5F+bzKPTGmZfE+VR6m2+ozovChwNOdZXvlL+VP79SZepU8FrcB9VZ5icstLnBVgJAdHfBcmj1IDwxzH23z5vjtaU9danKXpWK39XivVXy/kY56HAol3w8IyThNCtD2Z6HajF7RSfAJuPta+uGuuBj54IBBrYZ+9sZTCl2KRChCkT9oAhabHDIvOaJV+blYHlI43ARUwJz/QYkW41vj2pxuRxnHacyrTWGp7POViFuieljKuc0PJ12kQKmvJv13XhSLOnzrRTrFerOky9zyxVvpvqrAkofQ9C7TYeZWaMe0nu9+oTtYMoo3k9dRb5WQI6qmuV3/frqzxWXuPiPVW/9t7Rywo0Uz9T/uxB3MXehGe1OSCZxjtN59sm1WP0jmvRADatHmmNAbpzlPuxT6qBDBHnOR15BgR0gjBI/83aJISwghXVeSwn6/WF3nG60z4CgNUa4pdzDsNCN9AqdA4xmUFjDZpQ73W/tuoFwMDngEkae1CDstKCqzNTnXs0ZCbWAYIxxgFy5JyRjzyc8pExIsADsrQd8MFh12V96oxX06jhUJud9gPtjNZon4bRzoAOvNFM8lK3ZoN4akH1jB/ApnAqvdJfUL9wyLhog7hqqyit4IjZe9sBtVk/u5QzQD2KZgDcyHqe/RZLKYjdKhVKmUEs9fl49mx+zx6+dlYNSQa17b4aaY12M89vr0LZ5Yr6hKrv6M+oz9usc6AAEGv5+U9+r4ItlDHDD8RaOQHMahbVo7xeTnn017TfxeUzuxxif1crT1yBZwWr1Ab6MZCw+dW8J/WCynTKLPbvm/7SCsZoBZXyHPXVAs7FmXiy08uwl1vDkbMHgbU6ah1sqCCr2ke1rZlofAYFne2si/Vn2945hOC28s/zCoY9375np+uKMfowHkl6aZYFm0IasosDBHVfeE6k1z0Qtu/LDO5j2PytWYau+ms8l13nDV85rhnApJvdNlQ+1ECQLtX9y/uPD2Bkve7Ykv6slUizfF38RrGDZ+KFJRSEGJBAnjT7awQWGbr4OQ7+f7T+OsDXjQDZz07r3HlAdGSYzqujm0dUrU9wzjbNyjBUSKgRwqXZU8CM4tHgXBSoKE0SDQWsCl4VohTgyuj8uwo9LTnahbyWBuu7kJg104/voISve6DMSmdRDT7enz+T8FSY7Zke53kOEI3703v/ZrgqE5E5NVoKmEH7fD7H7xQU4z5QwWjmoypBfobXZ584BbMITiqDMlKtzEohRMYf/dCCDZy4LgNbEKbA+TAiFmRoBryUsnfUq1gWg+99uapFbmPEeX1wZCtbKVfF43lAs+pCtjJHhIDQ5pkbbWrqdXAhyEafFaWcOA5mfQG9R+R8+D5RSc6spGFgD2e7oZQLGNko8/4KHJF3/DG/AdcqGDkRLoQwouXqXKpTzjPqffI4n1EBQi23Tymh8X6ZfT4PlHp502sDELIbKwqUG2/b2cecwF6Ej+OJlA2c6a3j+lgJ15EPVFcyrdaRmdB7R6vwibR5KEbbEzM2n48H0IHr88F5evYtKq7zYwDUWRFzdlBgjpTXLM3eTBFakoyXENYGhIhfr19oDjLWPkuEv75+4/Im8pBEkg7rh9ebyAfJbNGzHOeerLzWMlxJQyxP4JUtIjeaVDdzhrnCkKFAC9YnLMaAVmeGdKtmuKq8TR79TMmayYchSwGEtTn7NGYKYgpga4sjZySfIozecZUCwHsHJYuMm+zKCLB7AQG1VNQ2aY50p7yZYlroOuaEz3milQmsBQcaU06ovSGFuAxb0nfgdTTSzL+PTJk0jc5SK3oMOGvBxwfg9DoNqs/nY1kjHWjBnM4OfCvFmcB3QqmXH5Q1DE8pIXmmFDBbG7BZsAIIlMU5Z2+67AZ6716W1tFjRDwOm2UidMZ317Pc9Y0aicwO6e7oBgf+L3faIwIy+y7C9p3gntEpEEB6B3ov3t/SgPnWLMsMPoyjNwerU7QsGAYT2K7A+85YBqqVq1jkvs8eL70j5QPH42kgnBvtKQbkw8utMXXn5AWWkQbokKUQmvXTRECPBkSqjUF+jTkhmhcwQEgLHESk42llqj6cgcGPqxakbDtZqgWqru7B2i0w0wFU6pEQ8T5PBJe/0fcgOg/31vG5PgvoHWN0J3JmO/HsB3DSKpg5DvgQpSyBGM+Uat7igg3FOzpKOU0a9elA6RRqBvlqXXtrfXPOckCKe0PyJiCVnRHfieV/dK7NSato3bIW1ZkmL2lFizpIu53L/Z9AUf2mi/mupKWUEhCdBwQIV/u1lILn64WOgO60Q3swxogeAxATIkzXAEB13VB7Q/IsjFgdWEgZvbaRbf44zAG3QTIJtdo5v17HCBiW0pAPCzyV4tU7iKh9Tmo1vWwA/rRXZqDCnNOI4nZ9yAFHyjjygesqSMl6YJbrNMA9BCT49HTYM129ee9YmLRoQAgdrU3ZnEKyUvbuwSs660nAWFhWYGsGHjYf3JRjwiX9ktXn6L0Pu7VUG/wFWCZbzAmhR9dfEyxSnpl6sSNHlym1joEGKWVc7RqTjGkP8lqaRWsX8lLLMW3SMnoNzOnOaZbB+35/nAcwdKj6MaRRBWlCimM4y1ksEBocWONUXKRo2Yje2qOiI+do5cCICJRHfQbRNFjc+5rRxefgdwYAtvlZP32eS/3VfQ93AEKzx9TvUzDIZL3RGDOmaBNOICuL/b76l0c7FrkFzBJFyhrjDXv+GEzP7eCZBiYej8PktsszAx81Y3ZOA53JL7ze7EX+er1Gmy31Sbn/XDyz9/u9JDfQJmDAoAntqpxUUJNylHJOKyuU12h7MNjBe6nfrZWEMVqyhqW/Aog0mxrKpUkp9jva5811ITrlZRwAPZ+fdFP9+j3A9XNFWUAn7/fXGoL8Wvdl0HeEtZvhWY8WATP4oEDSeJ4uPbYR0LfgtO6RAm277uIZGZ1pj0mzT9Xn4/6q38j3UZtAlwKiatfyO/y8gsx6H35XeZW/U0yH76QAo/rTO/gHscf42Vq7Vx8cOPKqs2yYYUXOB/LBvtywgU+tIXzhL69/Qw++meFl/57GgwpSYG4UgSf+vPde6U7MXCo81fHXg9Hor05F26MDw5lMaTF4dudHn4UMrO+jBKMCmM8DrFlfqpgpdLRki0sJn/dnPw6NJFEx7wM2FBVXZcKf9bk13ZUG7w4kqvDj9zUDTBlGBbCCilwareDav690Q6FNYJjPpCU3P72Hnq0K82EYJWuqDADpaePiW8CiVBh5oMF+cphB9Ck8PSBmTtA0gcjyyu6Zd/bf9o0eGPXmMw/nSZif52T3nqneqoQYPdO95N/sHSb4olkWa1nAWob09fU1BV2wqKwKdP6f+0pHRemW/1aa1T5JNBQtkjMz82h4sBxggtPmkPLZS2UzYevHVGtDk4nEvNfr9cR1Wq++kBgEMAVHw2fwcph8P/akTcXFwERKaZm2N+SMjWXCddm0pg4D6bh/V7mQg/VX2ZXKyKryc4wx4vl4zmBIrSODYnmecuF4PEazXmZ1LYB8ndHKsE2vJE0O+mltGs4wMIQlLKXYoJMYImqjcYKFbnd+jl6eG0MEok+u80EAAUCvs2fM6vCsCl3L95WPQrCz5BlcI5LNSVXMjEioxRTpkZ/fDJUYI2LK/p21FQH5EMAIhLRmcXblR41qllrwOB5AnPLs215LJPy/kwMxpjGwhJkD/Dt5o7Q5VIV9EUk3Gv1WZ1DvpUvl5QBCmhkd+my8rgU3yigrI9+rnGGWLNc0fOryHNxLghjcNwKn13kh+Fmf5znKebhXmtVPgDTnbICj8DT1O2nGaCmO0nP0FfzG920y0CxOWajyGdAeK9FKanIaA0149ppFoAO5CKDDM5xVX8ZogCOdwHzkAYqQhxADQjMHPCUDKqaco86wcLplMhuQaSBmQE4HOFDh47bF6G8awuCxFCJSzLial/YG2DCgBsRqJTkxJIQ0dZjaTZYp1JYzI5/znAHX22VtC0Ld2u3FvjnbvXUPlqzZCztoz/+qPAY8kzKkUcamtt/QgX7Can/w2Ux3CrCB1TnX+//E/z8F1HTx39wz6g8NFPOdSklIx2PYU9wHgpK9AzHNckEGXtWOY3lvSmlk6GuAdciSvrZ2YdYweZqfZYCftmvKcUx4NzCzeZbUtD3Qpx0z7Qg6XjZdlZ8lrRA0yDnjOBIqLFiRfAAFJ9tXeCP5tg4b2TO1+F9m4CvwzR7YLFGj+0LefL/fE7iTs+f9eE2d3Ki+yK6P1K+Ycs0HbzXrf9l7x5EMED6SZ7lxArLYkbtfUOosF7Zn7Eg+CMj8LsvKHI45fZWReTKvpbb80H/Ce2xPEmK0BEhDVhGdZ1p3EKSDHI98HCguT8j3Kk/tPutkeAVB+HwKLqneVJmrdED+UT3He34LEGyJDcrnlBMxaiaohaHoT+ccUav7yV51Qz2nVQExxlFOqOA/E1fUB9RnoSyjraxBhJjWbGD12+36ZZHHtKf42Vor/vnPfy6yTgEzTZhhKxtm7PKeTOqgX8p78ZxVzjCxQIMmvNYuO0kv5NmUEp6v5xh4pXyn+sOTd7/55t982jCTiPjugbI1z4oz6mvSK8+hYc1yHLgHvLKsAymEkQ1If1XBq94HdAd0843UZxs6K6xgK7P1+d77wIpF1gNCD2vl4zjb6wQ6FhlKelS7RytZFItReiCN7sCb2vJKq7uNy/Oc/Lb2+FfMRPUIrzWPV1qviK8TQvAeqiuIiN4HPzHTdzxL5/0aSunL+fA8/ur6N0zRXSPwmn2lzhGAYejxZ3WO9iw7CiAegGZC8PDUEOG/gekA0mh5PB4L6MBnJnFqbbQCTPw/jT8y416CoIyg11JiVsLUzA0tEQLWstXhQFzm0OgeqRH469evYSBwb+lc6XvxvnxuzXhSZcDf63QZPhs/R4ZUguX+/AQYqnOrzMx7qvJU51edbd1HfbfWrKePRVbm5Cu9Fp+fwIAa9JZxkBYlZZ+fERYO7jjPE62YwRT93a6zeIlBRXCgyqJD7Rt4Tbrhsy2GvAC4KpD4TkqPtn9r41GCZLUWd8owMg74DErfwCqk9tL3VttihCiIQ5rV8mhOVKbiVjDB6MBSs+1ZzAlUgEsVSIzsS1HHe/I9qveGIh2wObUC95Q1OWf8OjK678+ff34BKQKtjawlnjGdmAk0ZJwyqUnPUsFXo+9qWVP2Ut+E9SMfQJiRX8ogfu75fKLXtuynypjrlMw9pwHt8ac8tUei9XeL8vGle6C0siu4UitandFmvgOvoXuz05x9xkqZaq2IEslTYxkOTjQBSgj47YNSQoRlCvWO2CfPlGI9+I78HO9FXtP3VJAnprWkQWXwdV3e+0R6gibLquB7R+Hd1hreX19AM+VO50Azynkd5fWdthCtr4tem7Sxn5U27N5BM+qK67osE0e+z0VdSr2hZY0pr60ttAzYSqrX3ko0nIZe61byqXqHepJnQ/kyHTQMw/dIecgx8rQGdVR/8DnVUdbP8Rl0rwyg9+fp3wMv9vsGd0Gn0d1nk3XlJ73+dVWkPJ1H7g95y54pDNDQsn+sDI57PYxoQ42M96K1ULD9973t3Yx5l7MxZsRoQDr3qFwN13Vaz95uvaJ6bdJH08pHLEOpj+E+x3Eg5owULAPPMho6jofr5Ma+uHn0IIUlgJm+O9hHOKPVmV3B81egr7aCXMsEmB2woNw8r89w9pkNTxmkOpz/Ji8roKj2GelOBzUZ+DmnRiqthhDQKoMIa3sS3iPnNMCJFKetpvqc9EDe4zPvQWMFYpTudZAKgdHeaV+4rhJbluCayqtGsAczq5bPo3qEe6X0bteXAItcO0bLRCvXhSPmoSd/2ktzdtrIHKKsHGXkYsuq/Ul+b2323VXni2dngeiCUnwQnWd1q46emZczO5J60a65AiNLEAHrQAClMwWVYwgzQ82f/fV6ofc+sp12R530pc+kz8G95DWvOs8neMZjCm5rx4gI661HWlQ5zXs8Hg+jiQArjwXL6jwpAbO8L6U0ZVftPtjrGjL4ui58fX1NcLianZxCxPn1tn1fAGogOWBxnSdStAFHlkFoNH2epw0TwRrUXu33uNCBOu2q4/m+3G/VcwqearBa/U7uoQId+l3+WwG5+axTdlQfSsb7cOJ6qx2IM6NMdY/KNg1GUK78/v17AaBCCHg8DsQaR5Bc94G8EvC9h+jun1OH2fXXXnWqa3ccgM+rPfPJB2oHMDigdpguDXaSF1T+81mUtvVMANOLbOlRa0U68nJO43Mm5CxYSBqR4Lf6OXr/3Rbr6APIo8zkexzHgZjS6CnNa452LKWgAD4Je9qqvM+4xw++pgXCVv6oPuWWVQJ6bly7npyycC3V1T1VP2BPhOBZEl+YAdYphxWs03fT4NVP9A9gGfQU4wxo8bl4L91/vosGIHhPa3c1qyQVKOc7a5ao/UECiO5DxphGH8Pd1udnl4C48NhfXf+WIRu64VTMuinAPGCmxRKk0BemoOXn1SlThca/K8KtTngIYWnK/36/l+dUQgWwbKq+ixp3CjopE2iJ4jBQaRDHNYIEzAigPjPvAUykWj/fW0fIqyChQtQsPvYj4DPp5/QseA0V2lQgXBTCWuI1jIhr9uX45dNNlTH5fmQqFQ5KD6SX9/s9Pq8GJI3C1+u1pJLzv5odczyO5V7K0Dtj6TMAJqjZjF6HldBo/Hw++Pr6mgonWqPmN5tlHxmP/ED257DPiVLBSgN8N15/NJ2FNSnmHu6GiBp3Kmy4pjFIelx7ACnv2HmqsMK3z9VW3OGcUW3eVwWuAlXkPaWz+fzR6Ye9/9bejPpukxY1Bdsji96zgEI8xjjAMTXsY5wAdGkGzj6fz9EDizyQc8avX78WBQEA53Uuz/fr169h2Kv8MlqsSHFV9DSqWT5c+zTWyXNULu/3G5+v92L4UDZQHpgzVie/xoDUp2PJc9gnaFMW69mrYuT99O/Ko2pAxBiHsaAyk/dT+uF/GSF/vV6orZmBj7kPy306y3KdLhGgmXVqSO+retZHigcCvI9PnY3c1SDgtYaSBxbFz/5eBv4lPPLDBwvMTN7dEet9DmR6Pp9jcmTv3TLQ4tyv3YCmfF2clRCRXKdoWwnSGOlvB65oMMSUcF4n3p+PBzF8ErAYxPye0oc69yGYM8A4dkAYk4YZAMoxIaR1aJaCBLWtdM/P7LKNe6FA2HEcXvpcB1ihTt3u3PEdyDPcJ9UFen86qOW6zIgPE9xOycpYQgSOyGEKAWhr7xbqJh0yYM/Whlwlf1InMEu5NeuNNbKKLTcGDEItNomXBOec8UgHzusNQEBGyltv0VBrsUyyhmUv2PsvJovSs9eODbRpEzSPYWSy2bN2BwkvXO4QseyPvFtLGJMbW20IdRq8OSaU88RV7Z35/qSTz+eDlJMbxf4u1VpdpDj7wAZEtF4mRQYDJK30KCMGG4RB0ISTbHcndQ9KDF3SOxCmjUE61dYRNmjJbbhShV8YELPgQykVV59DR1S2EgDhv1W2Kd3yPhrgUMfqWzP6GBDCWrZEB2KXFaPPk2TMllKGw62gn9q5C8DttnvOeUy3twCry6faRl8vOkO11pGVVNssUVYbjU7+LvfIn+RfTmRmAJb7SV8jxoirngjJgPpyOm8zuz1b6ft1not8WkH8dagQaYk2N7AOSFGbt1Yr0Y9tTgflu2oGleq4Xb5x39RO3ytu1I4K3XzN4u1QWm9ALTbwhsEg0NpcAYPWbPjS4/U0WQKMPoUhRMSQxgTo67xG5h5CH0Mi1D5Xmk0pogeAeWe9W3sItXXLdZmNUSqu/ka3hmRTf8e1vYP6hfP307YkX6ltyPvtLSy4lB41EMEzoPzQpArSIG1K1TNqR03bxbJ37Lr0+ejce2m47KXa0+rDap9GBTjIX/xsCAGP5xOpFuCjlRBTn30+H2QGjGobmecqN5UXqBfYq2+RLXHtfa97qmdF2cEhQPoZlQcEvEj7+vwK2Ohz7O+ocpIZ/ry2BlxU97JUHQF4ePspTTRSe2n3L1Vm1tpGUgh/Rx5WOlI65O/Is6FjBL/Vdt7teqXn6NVFqjNCMOA/eL1vsIe3YJ/bdyzX1aV2GuXc/r78vfoX/JviKMAEahXc033V+ysNKnbCPd8TRTRYQ1tgp1HVObyXPjf3n5iG7jOfle9Xm/U/HHLYxosvZ6EYjL6XJt6o7/tX118G+FpnryszVt7v95Jdo6WVurE0prjh6vBQae4MpEDfLjD1O8r0wATwgFUQ7w6mChVglgEzykUC4TMrkMVD1EjgT0qDz8/r8ln4O312Ve69T/CJoJASK68PYDFyNIKl9+Hf96iHMpQCiPo7VRhkcHWe1YlVxcr9VEbnPbQEUiPpBJPUsNnPjKAuv8P78lo0PE0xBVgZ1WwEHkJEu0ygJXGMSMumtKWs7zgM/EIf2Tk9AI+UBkOXWtBDA2L3PmoA+oz0qpE4z9s+xOzD1mamB89VARUqW+UDpeNd2RB44z5pur7RrJWULgoQU6jq/iuYysWSmJ/4gEKfBhDLvNWQVodqRs8zAOsLxffhfylbzs/pvd6mAfx6zb6Nmg0QQsTxynh/vpByQrnKMCx4LnQMdA9pgPA5WUJAQP3r9xd6bcjHzNJCN5p4Pp4G8paO83OOPj6/nq/hXDdp7L8rjmEsAUCwoALfnXuqSk3ll/Kjvg/pjj/rPTUYAKzgSQxeQBgmj//0OZ5lSgm/fv0SBWoARO1rRJDvOmVmGGVbBDHUeOEz8meCcsbjfA4Du0u50HtbaF73Kuc8nql3e/+AjvNTRAZNJwRUyJgG/HVdeL1ec49DR6tlTKcNCIilo4oRxLPR/VcDSPlUDRA6EBrdVR1EOnq/v9ABPJ4Pp+04Sqsejwf+/P1faK2NQIpmAS4ZcL37u3rpm+ha9OloMuKpk/IA4CzXAFn0zH8C5TTjzujNMn8DDMBSOt71Gu+ngR817nUPB413yt6G87xwHBH5mBkZdq8GG/zjfe7i1D98dnUQvvPSlONqzO96XmU//873GWWRwZrY90EnYuzHgB4Seq/L72Py/qjFsqF76+iR8gIjMzgEcwQ+nw8CM+SiZBFcF85TWpW0NdipuoD7MHgszdKkcl3IrxeAjgDXOYg4r8sy9cIsx7IzzKPkdtA4DBQ10NwDgw0O0kZYX6vVIeGz8pzooFP2k+8AIMRpt5HHlIY6DHC2/YU3RbcS6nQYyFHbBAdrK2t0H9MG1R7IHbM1hGbEaQBt5aGKlCPg2fYBwbMx+0KnKkNUdpZiU9YZmODeUNdxv0i3wzlME6wKfQLzqjsHiIu1KsH0s9myvXkbk7juNd8vJet7G8OUGQocTJA4LfYqn4/BboTZS3TYqy5fIM+ndrnqfvv3PDPyBf92OSgV08rjo81ITMNdUxtGddiujwn+7c4hbdu9j59+VwGA8f3ecX7eBmjGCSjnZJOwc844nk9c9bRBdJfpvxxNb9j5x+F3xhR9qq3Zt9d5IR0JQHSdSzDcAb0ORERkD4gpcNIAAEHPSURBVLh1kaG6FyqjLWvZZD/or9TqQz3MVmOCA89M94a/oy+0+5Mqq6kDmRyiIADpYpdx6kOqnWU0AjBAHYJl9ZK27XsY9zW/ZNp80fvpss0Jf692XvWg9T/++Mfw60KYwxNV59C2+P37TwDBfBLSYmvGt5fp+iAyavcPh20W11Yz+1IQRJ9D/676uxRrvUMa+OOPP0a7ID3XXX///v17AITc/yMlXKWOQQlcwxdJ1leUvas7TDRr6yf1cS2pAN7zeyYhqB+t76bBHtWBERb8Ul+H70K6ZtY3fz/33OSpDSU6lwEY9AF4nvRzhwzAzOwGqSkE/mC0Ha1tQUdHIeC+AYdq86QYR0/HABgIv9Ho7mOs9v3PoN/ui+i+8u9MGKD/sdt2SjPcI+X7nT71syq7+Ww/XXu12zBkPOI6cCb+8D2emUMCS6aeXlN+/JfXXwb4uMksbyNj0NnR7DgVmDswxqgfr8kN0Tp1YDWK96wiJXYepipQYC0B1dTKHfAAVkNdgQpzeiaRKIq9Rwy4uAc0PHhdjWjq3/W7CmYC+Bax4TsNYdRnVIdLM9kUINRz5LNoGTWvp8aGAoWM7ut+88wVeFOnS4EfdWJVoKrCbq2N7Ck6s9wTdYgI5OlUMH0uTvHj8zyf1oQ5e3PpGCLOz8dKEWEOrabmjwxDGrtYy+kQLUOG79hqw/v9BYugmABQAaJ7oCXWScbF6xmxN5VGJUNYowvKKwpsK0irmQHKUyFMWjvPE1c58cev/xAAcO3vpny9g63qIO9nqnxKJ4vvoFl4NnBjAvEx+vShmEZGJWnUGtB2AZHFwIlx9EVstSL6tL/P13vwqSr3379/A7BonQpgzZCjUTIANh82oVkP3LfzPC1zgIa4956rvY8ymvNzIgUzYhnZJv1zP0Kc/K3/5V7QWd0V3m7869kpf/JnBYl5fjw7O6e1YfxuLO8Ki/t0PA4DE7y8gcZ5rcX3zAaNNNiAk+BDTqpMg4Q3pc5h7fdBoNtK6xhsyOijNKEv/Ur1fFSuTxCKvOI9jTYgI4Tog1DWKPXajw3Ivj/MguAi0K26aO9jy5I1OjKqqzTzgME1voc6J+r8EdhT4LvWisc/HkOW8hrUY/pz732UhwyQQe7DUizuFfeEWd5qMGmgTGlMZe1PBqHKKz6rvjOACZbIdwmk5JzHEKjpvFtPm+PIyIf1B90da/4/JXNu+C67Plc7YQBDqAuN6D4M2dpsiNNuR/A55jsZUGv7EBG9PZntn5WyUbePnkxd5GKziL59vuK6Ch6vx+CzmBNiyOj1GsDX5/OxKaU5j9LGUguurUzxcCeLPYco98/zRG3W1iKEgMO8jZEJf54GGOexl3PvzZF1EEIAudaal3W6Ed3cAZPvqQzU5yTfaXa78rdt7sxq/8kpWQz+yCxJsxke2c7KvCrgkXyyPGwSY9pohTKSgAbLtPhcfFa1c8ffmg2R6A0eNAFQKStXXuVSnUKa2+1r0vavX7/Gs5KHNcuc11PHlDbKoOONP/kOMUZ8rs/YZ8oaBRKZ/UZAYrcVeU/aD9xHtSnMZuuj1yB5q1abLv58PBEfM6ipfomCGDFOO5MyjO8PAPnJfovNM7ztew8fNKR9s3Qv9Pz3oL/KOdKLytLdRkTvqGXahiFw0IZN8XweD8PB4xoERHfn3u2HRz4QfPounXcLLFlP0dat5DkE6/vXPXh9vT+2D0JvKc5AYyll9I3lWfP9eN7qJ4z9KnUMa0LryGkOilC6DrDedb2vfeLUFlKQTttkUNaN88yrHa7PS729POM3QEQnfmakxASU2WdSS03Vjh7fj7a3/y3oswH/fA/qOfWTUkp4Pawa6s8//5x2ififKFgyO9WmUPuI91H/T59LZaT+m2fM++n7os9e119fXwvQwiQPvhvP9n/8j/+B3jt+//499eRxwIJqs2WIbRLG0KharUzcSsr7ch+lF5M/NtAtxO8Za1z8HYeC7OBQSsn63LrsaW0dRNp7H89BWft4PMbQQdMBJwqmLW7tVjqit+4wLDwArSGmPLLGGcBlVSEAXOUaVVC0d1sz/aQyUEE4+naTboPpMrFrSSt//PHH8GvZjkxtUsUblA6UhhRM1f3eATu1mfi5n2xG3suefVK57b9toep65TG16VXuzv3Tkn4PaYQwKpD4nadkgCKsffd2uyIKff2r6y8DfCmmRUgDk0l3hBXwiWjOADvoA8wNVvBBJ8FyI7kxJBw1/vbDVWNDgZRVGIflvorS82/sMcbnVOMRmIMcdqAQ4DSiCTYyaktQQ51lOmEU+txPZQxgNVRJhPwdr8Uo4575ov8lw/C9+B5kTBozqtiGww1822/th0KGohPKZ+Tf+LP28tufp/eOr6+v6VT27yWGei67UlIjiOc/HVEqj7oAhy1MUHTPSI3RepkgabmMCdZxFjmh9RkVZr+GxUERUIx7QSDMylin8f14PMe1+H9zNGdJwM5TKihVICr98h3n0JvJSylNUI+8XGtdIuTcXz1TpSkFjWJMeL0sGPD79+9xDgRkFShi1sDlUcV8eKT8vIBjA+RDQKtTLvD5TRmduDziFUJAbR3H44lSLpve5/urmV18Xpu2HAEns5Ex6E3+F3DT6ZDPb8bmBDfP0yb1EqwZZe5pgqdF+qzwWgv41sMod+TzABj9IVUm7XuvMpjPzYwLyLOTB3ZnkrSS0gSfVKHy7NRA53Pwb+d1mS3QgbMVhEoF+QC87APRBtqw7M16r0kPlu4AgDyTAfcY14gx47pOaH8RZp9RDut+qRPM6wUHuzVzT0vkrHTT0JVd1qiBMQyYWlGu1TFVPca9WoCGFEdfRzWKSd8aaFE5SuPxyAdQyzSuEFD7dNRTSoD362Sg5PV64TzPxfHgsyogqTJGgSj+m583I2d1rBTc33UBz0TlYUoRtfelFyD3SaPglAm7obRH2vke9rk0+isaYNRGps/upNBgUz3OM9NzVFuCvZTUzgCmTRJjRAwZOViQopQy7J3X6zWyIcmnPGvbS+73BERiSDgex2i8nqINtMlsB3FKmRos0zmm9K2NREqe2Vasx2m4yqArOiMxRp8SOAHG1ipav4Zeo15+PB64PmtlgdKL7h9lNfc2wmiedHoVa1hOvmp1AnttAwjIE/w3pPcr91PtNEbfY7KA136mO68O56wDQfp+gfIf6/eSOCxKxz9VKJCGdl7Ue6Nz4qsHv9KkC74fW9QY/WHQC/Use6DxM+TJ1tpwnPn3ETQLAeWaTmJtxWitzT2gndJaG0Dh8/lcdJK9b0RM084PISyZVDHE8YzcDwVaqvfSIr2pLKJcC1LiyTMn7eXjAMIaoKbzpjpCn5uDAWKMw97t5OtuWTDDJm+rHOH3dFidnhd1jL6H+gHjWbwvqE0Ddh3mJeu9doTYR9az8RvLKQOO/EDpnpEMG9LUig2vCQ6ksfcsxIFWO/j5eFopvv89HxkhJLR6oVUDKAhaWN89ADHg8Xji+pwLvStwwn1XfdFaG/pWv0OaJW2maCXzHbNCSK+vvgW/n2JaaB5g+SZGrzq1mX7iTQXaGIhXYD16prHp57USx76fEUITvWDDkDhEbvc15/fWckLel/z3k9zS/u/MnEthJudwn9QP1YCUym8FUXd9yUV9zp+5R8PG3nxuXmsHuvguO9Ctz8U9+AlXSK7nKCNqbd7W5Vh4HdhaG4WAQ6ptdjms7/hdtq2l5QGzxZX6G8NGS7O3qibhEGinT9F7H8+ufx/n3Dpqn1gA32noVVNYi78DBOTMIVvfZyuQ70Ow3tCt1IUeVZ9rsJg+M2XHTrNKxyrveJZctLN4zR0n0WfhWSjvK4houhrgMNfabIibnq2eIX+nNjBtcfW5NBBmvulK/2zNFaMlcwBrsGdZP/DS/+n66yW6nuWkmXGDmZxIFYDahTkBDWUwEpUipSQ47UVEY1MNIj0g/p73UQSW36czo4JHiYpOCDCZns+kwokHyr+pItEeAwT3+B0FNXbDTh0HPXzdLxpFBAYVFNAsmx0h57X38yAxcg/UuOTSnxWZV+dlZ3w1vPhOKuj4LBol0ijPdDzWdxoOtDiN+nwUTrweDSUqF723MmLOEed5DcGmNPSTg9fCGulDXSckMuOT0RQVZNMImEow5wT2D6OTq+9oxt4sKSVdKdhnz34txgaf+adIcc6W0cj7RHF0NbuIynkYSGntLcPPHseBchV03/MYAmopsAyw2beH77SAAmEOSwghAc0GhsSDjqT0b2oTUKPA/3w+3pfREymCAWHv9wfXZYBiihEV60RTvsNxHGaw57Rkftk++eRgp89SyshS4Pn5D+awXzYJNz8fiAI49N5Rr2sY4Y/jsfA870XnvvWGt4OhPHc+N5fSupaqE6DanUjS8gp6Y9AGrzfkaEpo3nx/NVLiwhN8v2HM9Q50A2NDCMjwJvSdBn1Aq80+kzPYjpJABRYeSejdS/cWJUwQm06SZd/1PvdF6VMNSpUdKm+Uxmn0ppTw5/tLSunbskcqC3mfFOO3DD7ldwDfDBbEGTDTiOouc/nz8/lcspfpHI+S01pH2SVgYMjTA0B8BuU/ykjNqFno25f2OuNe8L1DCEsDeXVclTbJg0pv0zDEcMBrraPsjjpOr0eDl/SnxtMff/wx3m/aDrYPtVu/oWF8+eALu1BwQCshSu84ylneizJ3NyhzyqihLjYSefT8nDgSkPI6tU1L8NXAVnsjBOtrZ064gWvW83MGYmKwUhoFNFlqZ9MQm09Ktv5+Fvh4oPVZEYDuQ1xgvFVq9ZYCeUxRTjmjdp/Celj/R92D1pqV3AvYoeAu6cB08gTsLFM+Lns2zrd1zzySSD0CepCMjFotq94D9jwjtQv5DJNWLFO4d7WLDDhT2l/P3pMoXF8GBxKvcgHdSvWjBHNUTuy2gD7PIfypMkNtpNaatX0A0LtkpIg9yvuR54qDkDlbOdtwBAXUYFCWz0J+ZLUO5f15mW13eEY2ZaI6OwS1AOD1eg1beAaEInI+HGBreDwCHo8XarXg6JHNluIQDoABmOJ7H8fPalfTlmpoqOdsqaGyzLKpxEEM09anvDG7aAaHdQiRgl7sZdgxdZfZPc6beYKrpIPj8fAsu2lrcG8UoNHs8NbaoOnWOroP+cqZAzXCkJmUFTFEH84z2zJEU8CoDtQeMaOj4TpPH1wW0cWu33WkyrQQAh7PA61mVA7jqhVIWLKme1grOvhdBW3V3g8hjAF0wQNvVgXRLABLnzGanV1hma05rZmEykPL+aOPzNnhl6bDwP4K5COhbkAfMCup1G8gL5t+0Ymr9gzae3X1qWbShelSax3Um2UA8Vnpq57nuQA6BLV4/T3QOvSNJDjw3HKa7T4IpPGzCoyqjUhaYBUX90PtB5Vx/JnAzwKkylI7jXRLf5lyTEEtbbfAvpBKj7wPZUWIcQTwQgzojgOoTajA6NDz6COQpcCz0tYAdeIccplzdl+io14Frc4MZfUrc84WuHKfUX3VwfMwED5Gz+xss8cgaYfnpICs6hfSJrw/nL7LDLp9708HrDZyCMMyHzompLjIaF6b/qomPu3X577ubU7U59LSee4xK1yoD/V5d/t64gXTtrPPEpyddLjbWSbTDRRVMJL7z/NSWrd9Xitq9MzNIViDmcqzS2rkv7j+LUM2+GCqiICZyq5N3ykgmMWixh6wNjpXY2wXpFRS+jceoApg7VOhKOy+2TuYxki6Ohy786OAlSLWBEtam1EO3odEykwJBVy4jwSFuH8/KRJ16lR4c58BV7geDVDwVQ1TBVd2B5jX4H7ye5oFw/3i82sGhX6GglwzO3mdHYxUwIvCQ0FWA6KYDWiZYTk/kFLEdRWhhck4ZEBGXilkp3BgPyNj+F47crTshBgs02pxzjza2XxSLmT6Ue/d/w4AwRsPB/Quzrs0qiXd6z73AXxwWt+50ffshaPfWwWyRWyPY2aW0gCcwt4MCRowtRIMpPB6DRqncU8634090qc6YY/nA7WYg4M6o/1UQjxzVczkB4I1VCUDVJRIy+PxWLLvNDLVARzPxzj/65r8HoIBSs17TiC6odfbBEECrGmqZ0ccxzRKr8/pAl96npSCr/eX7alHhnoIuD6nZdCIbErJekj1NoHRHjqOxwNwFy1FK6uJ3lS6VUt912xXyjE1anYFtzg8KVqkfjtDdTSV73kPBeBL9SBLonPRcRxrE/ZarRyQSixaOguOnNG8sTR8r83ZtDIiuzcGSOEteIBgJYUpZ1iPLYx+Vcy+AgzsbfAsoD6zsRCsqXhMCQee5tymmYXaUZHSjGSqvGMWzAT/rTyfJQsKtA5DcgMuIDL+8/mMUg7KJBoo5utGHEceg3/UQMvZp5Re53Asdx06QLbegdqc7joSwhgoZHzagMf3wIUaKXwH6nDtd8RFXbXTjQbkrCwxIHHStP8cvQwpBKBcPkH1+TTbpnd0sE/X98noqtuV7nl2ymsKdKjzYzKjjbJITqY9r3M66Ml6qiUHt0PsRtahDycuwAAc1x5gryrqkyMfi7OZopWktuR06/K3u7xJ0XryqI6cBiqHaUxZOOwDhBG0jDEi5oj31xuZga9eUKoBfyknlGrDRVI6zFY43+iV5W1WTlaL9fyrLl9jjIjwSYwBCMkyv+HZjR/pFctMrOu6ELo48gO396DqxcnSLKdyW8e/08PM7DNZw56bLqfFVqy1ol42KIJOQykFx+NAKdZfrLVJDyr31KkI0fi2lIrWVwNe6ScEK73SAUhTPttghy6RegWDlW7Z15U83HtfAHt+V4EAzUYLAcYvIodff/yBFKykOkQLevQQEBysLgQIow9HaB1HymCDoJjicJ5pEwPGq9RxV7WWJrisFBvRM6eiyZvuz0lblYM4TJ4d6Kg4HscADrlCMMCi+PlxX34CLad9M53nGMOsgsDao43/Z9CgFvofDhjB7K7eu5WURushpzagykH990+O9dSh8IqDJjZAH5mevAafi3s/gC8H8hHCAPbR7f8VvucpISKiOe3W2kYWNbMMowAbfF579jmUijLGnt2yA0upLg/XQNOUwc1LgA3Mj67vR/ZTAFBXf03lNQFYYCYXmFyb+xyCA6Z+Tq13mWgaEHtEjxmAO/PYeHUDPJSG+Pfz/DhibwEgnonylp632uYauLCPWHDo8kFRBHqv6wSnXXPgHeVLKRXWjiEhZSsljSkiwXRl7glXdV8Wa3KCAg+Uh/SxCK4PuyRY6XioZdJUwNBlOR1WASNnRb4hv33OE723AVAdDLwGK08HrAfjec0hdkpzmuSi9sdP1X+aacnvEGRUHdlqRUhmc1QCdgGjzc3n88H5+RggLEE/HdK56AMw6DP3li1mBgZwnvicF45swzvYkgK9e6b5msCg2XW999FnVAG7bxljjwng92CZt4F03u3fvZoP3rwneKveziJYZmjMCa2s7Xom8J0QJduZ56Oytrq8YRAhOODYABQ5F5XJ3Ef9r8pKfUflAwXtNHlngpEzI1tlutk6GH0YVWe0DgTnOXtP6wHLz5RSUK6C4nLTaMKe60hz4JgNFQoIiGhuC5E/5t5aleDz9Rh8OmXE7Avbvf93H3Eb68H5V9dfBvioBBWo0Mi6CkJgLQMbD5HX3lHA7JlCQ0Azk9TAAbAQjl6TzKEOEBmTwoKHT2WiPf8U+dVIA4nKAJJjeT4ySs62F5/PZ3EAqVhrtUEDv3//RghzqiqJmQJUna2fFFHvfUSqfkLrNR3bFNfs16bp67we78PraEmzGrUsV25tnR7Id+PS7M792WlckGZo4JI5GVHintIgua5ijkdllllECA3VywKsN8gUSAqkafRWQVOegT2b8Sp7FQHAKaUTpkhmXwc2hyXNj1Ro9i4p1j/h8WBPQma+rpPydjCF72fXjriuc9C//X0Ct9x7KjnyGlxQpMRsGD2vNgDRGOOIAKuxxj0jjRMw1ntQcJI/R9SqsxnwOlVTHXGe0XEc46y5D7a9k/4pyLWMRQ0NpdGQbHpfwRT+vObn8zE6iAE5ZvRnX2SFgYhW5jZK0QCgY/S1eLweOK8Ttc1+OK01L/eBZ6wZHSXfD8otAhXsB8L3sO+tTgKVYy3VM2hmeSFL+MiPpDsqTC3nsSikNRY+jmPhX/K9gt47cEI65bOvTmrD43GMPRhGWsRydiYPHOBPCW0YOTDjCd4oXpQ7waNaOmroBhx62YoBn30Chu4khQj00r2vWR6lnRzE1FuzsiRQqUfvMXbg83mjlrV3C7ModT9iTKNROWmQ+8ozUeMtiAzXoBHplWXcCMBxzAExI0MnzRYJpA0dtGTy1PpxjYy8bs7k5/0Zus30BQFjcxg1oKQDmvR9ea6aWa/yfHeYe+tjavAATPw71InUAXnjD3W6ep1OGfUj94X3o3FOfaMgGPV8a23cU78HWJZuHOXvP/XRZcZwRUrMTip4PI4hnwPCakzGiJAko7dPwCA64Dq+G1bAohrRDB2162VXO2CQh7zSWhvZV5QbOWcv2Z3lp+1yXZWTl9HBMmZbH2WmKRkoe74/I1O5g2DeDK7EZOBRET0y7DjXqcN4zwm9enaS9+Js6DivCylkILTRtDv4wIhSCo7nY8gfTqprzZukJ8tYNAfTHesQceRjoc/jMSet2tTi1aHkz+QxYM0mjQizB5jqmSFfLeNHf0f5m3JGkt9zj6KDamrz0Y6ko6PZ97THaA+pM2T6Y6ScivyO3tgdY/UulTNwpy+YU9xjH3JAg8m0UweYGCfd1WJZnJRxpZWR8ZIfGdUxFr5f9DO2LJeK40h4v7/w+ZwuZytam8HQ6zyRgpXXPT3rn9lulAe0CSzzyYJBIcwSzXwcQLJy9ohgdN2aZ88HIEVcxQe1ACMI8nx4HzOvGmC1BPveakZWCAGPlK3XXplZqATWSus+WTEucpoZzmhT9uScB7C32ELdhwTE2Y6gtw5mu2s2iekdk0sE5lNcS5xJx8q3pBXbR5dT3WzWVuvYm13ett7Ra7N8uBBGsDim6CC5yzqsAIICPupnaYBmOOcEmsRzjfys837rDUd8GtDhQRDKD23poPenzJw80hd7VAGFJcgiMkN9V7MHrNLA3pVBYw2khiHDd3my61wEs53IPylFJOfh5x9PsUviop/5PPtZq09sMvw7yBZCQMO0PUgz5KmRBR8D0C1DnnTJPTyvC2gOFMeZCMKzVl9x9+EZDIjyPeplDU7z3PS+rRuoZj6N20Nul9MG+PXr1wCKW5sJQ+p/8Jmu67Iyc7VxlDeDZeofeR18w5ZCVvHTZjl/79AApT1zQ4qWsf3n+8v7280zUx7gvufgiUEhjDYb1DutNbSzDd7kHnx9fQ2fS4Mi9h6rzTHkQK3mZ4OxH88Tp+/TvX+vB0JMx87kgh0MV79cM0rVH+d782z3v1PmalYoQVpgHaY17c/qPBnQmpY4V6+0oi+eRtDAEn+YgTf74VqgMiAEt8eL6WbKbT6TyZ4KDnSbNrHJberplKz6YPrXklL4L66/DPCRH5UxKAB5IDllXOUa4M8wSLA25B1lg85I6igtBpNkztHQ598VXCDhqCAhsZVSRg+M6aiuE1/o1KmzS4Lju/Df+zsr6ACs5b28p0ao+O8kypvvqs/Od+Kq1TLJYlj7D6mDwufW3gR8BwVrVNjoZ5SZeHYaueB7qDPKqIper7U2JoDyc3RUeX4K5PLcjuOwiIv3LQTm1Eg+DwWuPUMFo3Y0oBS05b35TOpQ8jtspD6M8R8UaIxhUVBTcJlQUKfNRtbPKCLFpApXXoPf4b8phAgmK33w3Eopw1GnAOE5zAheHM9Amg1hGjpFAA0qkDWiHhYwgE4l9/j9fi8TvNQ54XOrE6+G1QoYTeAO3RyFcd6YS0vklReHcuvm8Cr4pdlGdJg0k8OctWyKGetAEADLpNBSKvIxU+gV8OZeQRSlZtrxXUj/5A0Cc4wykndbsah9THEAe19fX4M/fjI0mfrPfTmvCznZVEJm+TDgoUbh3j+VgQrei/tNntL7UoaoUn88Hni9Xgs4tUcmF2CgrwOQSvFswD5Pv/eOq3ymQ9JXR+CnxbPvvSM2gqkdvVtGAM8nxjSADtKMyqneLeszJhvQYKBPB8uB2cOPMqg1qxNPPnlYDQDKOOuT5dcI4Uda5WepE7g/PA/7zATqWrEyJcsWsAn32miZvKnBMPIP/6tnRJrWzEPlQdWfrTegrr2JlC71XqoLyUPMGuS+q8HJ/SCoCmAEsrgGsOMG9aCjvg7UqdWzd7wlispU0rWdhckB7iH3OOfskw77AOB770C2bFXu4Z9//onHS3Sfg13qmJFfxt7EMMpPaeCTT9hLS4FKW2GAB8xW7936F8aUUK6AIPYEzxbdyz0rh3hYb7fEjFsv6UG1UsMUg2eSXmNCZrAkh5GdFDbHPcaIs5ocKQ6+A/adUotN4RQeHfKmz0BjipYpMXRFhGVPxgR0Zo0F9FbRu5QBEYBhaWUHgLV8Rm2Awbfcp7BmAahtZf+3PeOZqI3xLWg1fjYnf57pWilB3tT13wEMIRggasCoXzl4GW1YsydY2qTXUf1GOtJn0SCZAuwAJDt06k+1682xDJaRjI76of1mWXr/9fvjzwaUMpvQc9Va8amnA1QJ1Z83HxlPB5nT1krgjz/+GPJ8lt3P1jC0/43mLb+MtrUGyhgQKu7g7pm0ap+H4JmmnRPZp/w4fBJw8EDrdV345z//Od7x8TS7SeUVn5M2Mwdl1GYZcRZgapZJEmf1jcrKmCJCX0Ekghlqu/Ksp38x7VLK+uC9EO3DnuVYCroGMijPRBfr1G46s+RfpTHSFe+rQVnaV/rMtAkVAO/BwJ1QZ2Zbx+oTaWKBgrMKEFC30ZFX/cd35fPTnlGa5VlYZVFaeJXPrJ9Vu4jvpvYP94HBRtN9swpK9yvEgIh5fQU4FvCuWbqQ2nCq/2KMI0Co/tMIUNNXdTBeg4MqU1JMHlSd1V77ffiO6jNqCxTdd76T7p/qwIkjWHbWAIVF16aUUMVHp122JxrRHi2lIOZ1SCIXnzeGGRBRn4Z7zXfZfTw9/xCA9/nxQNQMjqqc5r7quWvmsoJopF2V37u/qT688hv/HqP16TTcpI4WEPx8CJYlWT0LzSqPph+i9EC+i/Ju+rwz+PW9pdTj8cD7/Z7n6dfey95pKyz2DWY7MdsTS5AZ1YrBzi8dnHRttrwmRJF2eY6zpU4Tuv7eUozPWeuGI3kbkLlH30uD/+r6t5To/oS8U1glj/DuTt/CQFinCNpFppHOA9dsuR3R3jMIlKj0oH+KGCgIRgONn9Xn5PPweYFphCnT8noUUPw+94X/1udUA57gIAUbDSYuFQgqSBW8olO+A498PzXC+L68lmbSaUSZz6JZHAQkNLKiQo2OGgG/WuvSk0kNYb6DnpWe2fzdWlKsdGWf7dCedQpy6D7RAVxSuxszR2eTT1OaEjXAbM65A4e232tzZKORFXBNKY7SWfj1ipROKv2xp0HzHiHn+cFxPNC77TenV7IEZgB2fj37rGUBnucsEde+EwQHSpEoZ9IJclOg7sp4OjlhlE2SL1S4KiCoNKwG8w4yUHGOxrhtloJpmbsCiqpINKtWlZaCClzsCdiaNbuFGKHKsxMUnv3HaPCooqJjuQLHa6/RWuckNWYFqKwchmQHYlgB4AGSB5sSTFCQ5698Q8CzV8C920VhkS/Z0JgN7ZU/KcsIKHLPCC4rX1G+7OA76UQDKzQw9vMZz91sWuZY0cH1Ysje8/EEs6MGzYhs34HmFBN6sGwlAvKARdBcQhCbGzJZ6ZRyoyM4wDUHHVwXS+YMPBx0XcqIsPL8drqstVpW2GGTkQkk0SEj3RDY4s88S77faP7+ellWltOQTtJWnUcZrrKS56R6tTXLvlMwjvRDfafPo/ygwT3qON0H6hbdZ9KO7rvKE9uv2QtLHSmV7/p9YDabHg6kx1t0T2h4sZWI6RQra+Q+kVZZcteD7QkBXM2w5HNQjl3Xhecxe6de12XX6R6ZT3mUpJIONdDQehslr+QXy9J18DnOgKgduPdW6zOQQjpovaFeHlhr5iRbv8GICmsbMICDaL2qjnDYM2DlE9UFXMOhdDnATJ4hKxHQ6loeyz0LIaC0GZQNIbggtDJ+BGZPWAZu4+REeOlNMFkRwiwhjyGg9tVpUnonfakMCpae5oBP32ile4Bggkmqv5RuKQvVsdGf1XbSz/HnEaCIs+qAf6u1opdVvnzOD16P17p/mEG16SRaCeYc8PIc0+fVvtPAM/UFe1uSH6gP+f50rC+fuhqiZcvlnPF4PnGVmf1pssvuv/gDdjELZqc4zv28bBBWa+sUcD6j6icu8m9tDYhWYpVTHNk9PCPLMPTKnnyMdhCUS+oY+6aPCcnDvmGgwjml9TbsOQ1mWo8+L+muFszjXp/niXIVZAG8eu8T/GcgyDME+R70mfh5PrfK2RVcoKxYgWMACPBsom7l3b13lOsa5zB0UXCwtE+7318cOSUvaftuJwybpzeEboENK192sKdav9DAIEy3wR0BwSYsd5Pj1e1z85aN1jrf+8h4Hs9FB1N2KfiiYJL6DfwsaWh5b18abOXQJN5PbUQFktTmIw/x2gwo856qVzngBlh92xgiWlgTU/gd+gnUq8fjYVnRWO1F7k1zvcJnp2/KSqivry+kIy98Rtk9bF2YzKbc1CAldThpRatOmHHPPSEdK+3+VLWktG4+g9sQ1Hl19ptLnl3KwOUqbtZenmpfUocueixFpGAZ+Hy+lNLgEdrbmnSh2Wvk6ZQzMmkDM5hOW0LtRoLR+jved6crbNcijev3y2WtDbrIGcDalFzFps+G+B2cNtqK1vJIEhkoa9T2455xqc/P/yrNq8+jZ8T7EPyjntrtXOWDYXt2C44MXRUoE9zGvgpCiIt82q9tPfonhhGT6dHd/5j7v9tG5r8MGwTWPkdt8L+6/noGnxAVhR0Jlg4iMDPBdJH4lMh674OxKZhovKqhQQbi5u7AnWZbAFiIHpgGkAqMxSiBlL0I0q+GsUb76BSrAKaRwLR+Gv27cODP+q7s06SfUZR6RL9pPIvCpFGwO1NqVGj/P+6TOrKq3DU9Vs+O/yawRFT7/X4vEQXN8FNDl8ypBi5BQBXoCrSasz6bnfM59ynF1UsR19/VbzShgkhBH6WT3hsi8igzabWNslN+jvQy7+N9r0Qon+cENSyyrGn0dBZsT5kxpUBs797zrAePdFvEh/3PgDn1kzzXWgEwS89Y1vh+vwe9kEZ6nwrUNwG9zz5A/Js6FOpck7Z6XKeB8j7Kq6pklBf43DwDVh0xU8ho35spX2VE4UIMKOc8cy41KNQ45lkpIKpRN/btUKdTDa+h0DF7kqgMua7LjH0xEvXsacw8Xt/7zfD59khnqTPLLmdmJbDU+gIQ8Hr+QkwR7/fXwrO92xSvq9VFhvDsyZuUs6psCZDov/WdVS4pf/Pc+X4sjVYZz71Q2az7oMqxtoIQLBrc6jSgapuRTDWsqFf4PIBPFQ0GpLDsqhMo6dxfA5VppJo+Kcv58hl3WatGOzN0DBhJsImXs5Ex9173qfduJWlCr2r4k/e0ufBO7/PMJw//ZOSNwFHDsme8Lht5q2zcjSXSKPXkzk8KCqoRrs28dV9VDpCulJ7UKaXBtQOlPwEmO0Cr14rex637ZLXztOwNZjPZ/nWkFPD19V7aFPTekR4PhGbgA98rxjh6do2erxGIYQKmZ7mMlvvMMGDvrJAiQpvR9V2G6ZkbkLyW8fU6M6pijLOBfFt7TsUYvSxRwSYMGfb5fFm2odNQjtNgvzjEI87AqPJGzhvolxJCtF5Pvc1ALfub5dFGYoLyj4cNJuKeDxkjGSRqO/VeADnn3dhWYGRxwlgx50tlCeWP6Uf72bKJrb9uQ7P7YnX8FUBQOaxnt9tafH/llZ9sL/KXBpf3z045NDMd+F5DbnSMChCILQx4lUqbNjLfjxkTytdq+/AZKNter9fg8eKBDtIXz4X2/+x3FJCzletaMHSdTDqdooD39Ubodr3X6zWCl9RT+70s6aCiu41oTrjxzS5Lh2PdOtgvTYea8XMhWP8r1D7ADjqdn/dHAEQD2skvtHVCsOy32tZM6iHXOnBe5wSZO7M/RdbVhpgTcggLTVHGVn4mBJ/oaaB7s2ZVFoCKETFn1OvCVX2ATsrIR1r6LtY2KwpCcJnuQ55qa2ix4ar016wHW68Nn1KsL1tgsMWm3Y93ZtuBYHRZVc45yM7fxeBgf52Z89H7PpbzROjW5zUEA5dabSh9ZpZy/5dACKZ9qLaq+lAK0mtSBnmE37N94eRMo2W1rXY/UwNH5HNt3cRn/v3796CPId/djiKfkc9zzoPG6FMsNmZKo7UEr6nfa7WhovqU5T6qatQno42lcmvwWSkDqK1eosoejtxbvpeCqRr4UJnK66psVpBLdYQGpimPaq2A2z7ndaHWCYB9vb+Qj2NMZT98oux1WfZe7TPwvviTbkeWXnB1C0A0t/+MRrKX5q8Z3M/Hc+jW4Lxvvf7cXqltJEyUPkFk1Xnqk/wEECvgp6CRgrkxzsFDrTJoF2xAlFwveRuDI1rPvboHl8mjwJKJyXspWMqfe5+lytThe3Wa+mWK9TB5iLYnsGa7qi26Yz8xZrR2zT2M1n9e78ee4MrbRldW+dZ6RcoBqAHX9UFqaQy7UlrMOXtP8XUWgv1XacLkZIiWBYn39If+1fWXAb4sGRjKdMq8VIYEyszhsSgMP6MTBPWA6KSpk8nPDSHU1mwwBbs0gqGCQiMA6mhQoKrTSuZQAtHMID4TgSZgzbTh51QoAivx/vQ3LbklWk9BzmurYaXvuGemaYRHBQDX7qDyGUIIo9Z/fy8aOgryEDhSRbKXTinhK1BAw4iLQK0qURpZ/I4an+N5RelppFoVtRqjGu2YCopGszu9BI270Twk0q97OAHDdRiK0soUNoySwgHLqSDVOJ1RQTNiQpgC4fN5j/e2vSnD2WutWrP+MvtNko74vip0jc/mfpRa0PtjMXZIIzSOSCsj0zGsQF2McYDVAwDczkzpX8FwRqX5887TAGzybO/DCdx5lc/Bs1UwRT+38y2VB59RjQXdB/0vf08+PT+fEfXn3nCfuOc8Gz1vjdYNuoY1LK5yZt411yLp3i8QCKhl8jzv13vHVYoZ82kaUnuT7ff7PQw23RMafQrkKC9zP5UmSCMKJvCsSVM0zFSG7/KhtYaUDzzT04YPoON9vkEAne+r19EsCe5hI5gSoiUBBctGCLGPEoTGyZkRA2zpzcZ2KCjd3BDbHYM90DJ4zLMsrTzJJpAywq8Oun2nWqNmrOVLvD7PVvdKZTrPL6eERz6WQIRmTo5zfcxyht770uyemTr6fLuxmHMeelN1zZ9//vkNyAfWDGrKaC1rV75SPuXvVU4rjTCwpHrgJ8BFjdwQAjrCyLA0+p2ZWBMw6fj6+gItWOoOnt/jOEZ/ziHX2hyMAv9mrTbV9TgOhBhRupWUcQp3CLBMk+cT7/d7Ab+ZZUDdiw705k30xSB+HAYy5pR96FAYQC+EnhbnKmifGmuYbv2rZmb64/l0MMh1bEoIfXXsJg37sA2hM8ACwq3NXkS/f/+2jO8+s04UaCuljKxG1bXqDOwZCXAAg7KKYLbap61Zb1iCVbthTvBaZXtv1tDcGrVL5QcSUgJiXEFlnskKFK7govIR/6b2qu6pXqPUsnxfaVtlPntQ7Tw0vhOsR3Cp1n+Isus4Dnx9/V4GKgAzy12zd9W2IoBB/mDZm+4LeYIl5LwuAUOT3+di03MfuPgOMVrPNWalD/kVrWcfg5MKcsQYkR/HkEF8BpWp0348cBwZ11UWsEHlDD8fo7W/OB4HUrFs2uSZbOd52qRaDxzxjAEMJ558rIAP9767fWzVC9XZuCGIC0egUvmR76V7STkwsm+jlP77/pHv4cBDLz7cAwE5Wq/mWl3PxSlTckrIx4HrvEZ/M4KCPJ/aWNKWUMZ1J/13eA+1PgNF6ksoHfQ+e4GV80TICS1MWy90yyAjkML/kw75f+odtfVUvnMf9W+8v9qj+h6lnEhpzW5LSQBdrD4LbV+97g7YawCk1mlzs6cy+U75Y588Pc6hVlylOEg7ASP1Pfms58f7kzfrbUcAO4QwhuBw74b894AugSvLLi+G0/rkXt6Tz6R7onKTez/3cd5Hz0Xl4GJ/iT1BvcBzm7a4T4P3v9vQrxn4bgFI0jOR/+1wXgpzXxnIbq3ZwC7qTIQhN/ld3iOmZDldrXk7F7dR4ir79f2UTlS+k0b5swaSaXNp8J10kmJEbzB94DKih4Di/TRzzg72VhvapjIZAUwg2elbfTgNMCut62f3aiyVaZoEpP696k71M3ZasnvMvvD2S58o77SVkvVgZ7UM6Yv7GmJH7xXX5b5Hs+zjq1zDjwUkcagW9BY2Pqvep3r6oyZXHBQ8/vt2Q/9/179hyMZaAqsHRSHAg9SpM2hTYasCV6bkYTN6u4+mH85mikumAR0QMj4dTzoqfD4AyzMyq+2ncsJarfaczaR5HV6fTKMNxFUga8+6vWZcAUslbkWNVXDT+ON7jPJFAQqU0fV6/D8n2wETmFIQVR137dOgCobOlQpcBfl2ptAsSE3dVYNKATpV5lP4N1xXHQpFAdqcs095taw2fa/FyRAho8JRQWk1AOxv0zhIKSGk1YBXgFbfWzPwmM67g34DfGizJJrKTB0UBXDN4La9YY8WGtf73vH7NFh4TaPtGeHlvg+l6v0EmC1EI5lGPQ0KLUsisEyZwF4mXOxxwrK0X79+LXSlDVNrrcgpI8U4ouH8DJcZkHE452qk8Jm0bFWzKdRx1vfoVGybsddacyef4KU5EcqL8yylsbI/p2ZNDcMjz9L2vf8On7lWa2CeHweq//7z+aC3tY9maw3v9jaAN6xtB2K0jKDrOtHCmvVFGqLDRVpgYIWGAXlO30ENDwXZKJvV4GIGidIh6VUNb15rGppAuT4W2XInxkrm7R1er9fgX5UL3HulB2brcMCBZb9a1DJlm2BsE3MN1DEg1QYU6FlGb16vhorqDTVMzJCz5urcuxDmc5GeaTAHfB+UQj1DWcjvqaxRGRZjHOALz5H7S9lyXh+kFNCPafjSyaB84r7t4LiePUtz+XcFqEmbapDrGoCpOEm7XUB+U8OcZ6nlZvyZ76t2iepHnqHJX8sm6z7RjLJOg5Yh0GaYjb+HzBvngZEB1btlABNcGboLDTECrXrQK84M95isfI17T9BhL6fjqtUmMlqfP8vsVl1CekjuOEzdvg4LGHxHoCnYe1rpUkNoYdDq4/kYU1dbs8EDT4nUq+4IIQANiwzhmVJmsSy7945yrmDAmH4N41U+n4JdymPDdoBPvQwz+0ptSu7neU2dr07jcObE9qPzvAea7R3WslcudTSUP3anUh21HYBQ8EivGWMc2RXqvFBf8b5qg+0yUgHS3g0IfL0eC78zuKkZ3nulDWlBA/UKUvGe3C9+RkETPqu2hlE7xvS39W6LLvcnH5ue7d1K2yzbJo9JzjyvEDil3ZzQ3oBa2sjMS5ktgoK3NLFgTGsdX18fvJ5PGzrjFVq055Veeuu4+jUGZcUYB2CAMKdCq63P76WUkGIejrTa/LRxDOibOrK1BnhGWg8NzbNMSeukfV4jepN8PRvtc0p7JIWAmK20UHX98fBJkN16JZo8vtDRXD5baf/psi/kmYBwuW7U8lCCuKR1pZHW+5hKTSd7t+uGvyPD8LhvI6jqQXQC1KR78smkj++9yWiTkc9URgATNKF+Gc/uuihnqwaYAbJk1ScI32woXucqF9Cx8K7ui4IZ+nvze9ahj3wv6gv9edhX14V//D//GNl93CPa/bTXh92cgBpgWWXim/C+X19fAzjh2Zlekez8DqQ4/Xe1L/U8hh8i56M6Rt9xDkjUvqhTrvLaZvMdywCbSXNrb9HWGrKALyEGdOnVvAxTqA1NMt4UvFdfE8EqjQjcwTNOGbhXYFLlu9Kt+qUqKxTkoi+mZ6+6gv6b6rlSCk73uXLOyMJjOWUH3htqYwWhldKb/vB97NM+5f5SL+44kVaE6LvsvKg+BGUvbZgdi9F31cAN6Zo8FpBG66cQAjoack74448//NnmM9FmID2bPd+Xd9KAHHVea22RGQFpoXlr3fy9XYee019d/5YSXWAe2vh9CMvGcONTsk3kxtLoosKkcKDQVMNIBaKCagAQsk4nWjNtdpCIz8v/EpACsAiYiahiKsOwvo/2DjrFqNB3UWHD+1DhKMqu3+OzKQOokFfjBcAATdQB476pg8bnfj6fYzKaOmNkdAXshhFIRokJ+WX3oWIopSwlyrsC4u/5PBzIoMpSo+wKDHOf1OHX/gzA7OFoez2VB2mRSlcFB89Mo0hqTOuZ8VakDaZP/2SE0xlchfRsxklBoe9sdCrlT14ipsby7lyoMFCDU0sOdqd5N9h7n3sLAM/nYwr+uPYt5D7p9Uk7pK+vr6/xvIyWK4CvUX7NXiU4ooAEFZSWR5DfNILzfL1QalkyBRWE/O+d+1V28T69d/zj1x/jWfjcfOZhMMc4plbuxgZgmTjBHX911NVIhPMiQR4FhxaHtjWcn+n0B1hzYzVQlCYYFeQepZRwXpdlOYaZZcg9eb/fI9tCszKoOJXPlH9257S1NkobuSd7lqsGU0jTuzHA643PpITH0xyg6yroMODhOgu+2tsN6mPcjzJIwebB+92gcQP7zDv0Fj6L3OY78NlqqWNvrlrGVDgacPrMIYQ1INUayqXDiCpC8KmOcU5XfjwfllUjPMH92HmY/EjARHmtNQMtNfNVe7K2ZllLSaLDjOoyc4w6b3GmRAaQHrQZ9tfX15DrOtyG39UeRaS93bChLtGJ55Qr/D73Z8+k4Psrv6o+10Ejdj8DN2JODmqVIUP5M+X3cTxgvRavIVOSRKXRRP67Mz8CmgBiDkhBmmGHmQnfWwPSmmHO9zrPcwCP6vgxG872aAZF1JktpSBRFgUrWaOO1WBWKd5yIJljbnIjIoQ58EptkBgjGqajqZm7I8jjzhz3m1UcfAcD0m3ibXokhMDm3AA8eh4Q0KOUQfr7qVPCMwasbC+KY7nbnsPx92xB1VHqWJCeyCukM/Kb2ro8A806UDuQvKkgHL9Pmcvrq5xSoFblUSnFQAAZ8qVylveKMbm8vJbv027lOo4DRTLURhZtsjJOOrIAZr9I4UXuq9oCI4v9B8ebz6FZu+QzgqmURzFGtzGtp+lx2AR1ylWCYAQZ4DzdvdrhOEzuvV7MLrZWJ702pOCgXg8jY6wUy56udZ24+n6/8XzMdho2FAn4448/TL4ex8je0MC5tiLozXSNBiJ59rVWm/QcJng9QBin8VqrTah0+0ED+cFbQdTNMdz182rTfi8FH70A+xqcGGBBKWiebWjPlfD0NiMKXrbi/T5hujvUyYca9FaZovSptoDa7PpvfianjOaZNL1ab9Ie7YFaayPjmGez2ze8FvWP8hz5SrOP1NbjHir/Tvt/Ov/2X6uyYdBbz4Z0VcuUHdTVCmrp8/Lc+C42yE+CRnFmi/4UnLX9m33FmEXL62oQgPxIEKdBW72sVXN8Fz4Pbagk+k31iMpG/k39HZUTtVabfrvt9243KoBE2c/77Pb1+J5U26gsA+Blt8DVZoUBcYPerQLkkiw3+uIKxl6XD6Qij3vGYH7mb3bS7uftdK+8oM/KhAmVK7XWkVFGeaz0rMBnfDytRHnTXYBl8j0eDxQHQhEwp/NibY2mvMS92NsskBbIP0x8UtBMz5TPy7Pes275nJrosvPOsClaR8WsrEzZPkeAOoYwgEyetWb0A1haJum5kb/4bsNW6LOlTe9MFvu57H/YlH9x/WWA7/fXnzYhJ0Z0wMcpW5SMQwEAjAgsx2XDFWpKCe0/6wIUsjTEc69Hqqj912uV3cA+8mHIemOTVj/sEJbSFD4PMMcS995GLfkAKINHupyH2NhVM3lCiPOe7kiFODN/AEsBhTBkpGEjAGVKydPY57sRNIohWETSGRK+d9G/A4+isAcHnNCi732M1qvCysvWia8hWiSPz5ITG2j6BBxpZpvd+AvB+m30btEKS9Gv49latfK2QZylotYyGgBbbH3tBRW/NuDV3xF+1noOLMM0ZzqP+x75wPV10TsHgDHUhTSQE+vsne683wjPhNfn/hsNWp8sgnsmtPyMIwGUCfxZ/b5lG7AROwB8fSxleRhQVcuGK84SAEzDt/l5AR2f67cLQ2ZozAhtaw1nMYesfBGs6j6xmoappZ3zb4yAW1TBJtLZ5Nw59fmqXxI96LiKpWenRGCgj3dVA4m9pFKaJXPTWDNjO4ysJYxoOkuh0eHlQB4drFZezDI3GphUUFzToQ6DzpnN0lodvGDfi4OX+Ry8f6esaQ0BAf/vfyb4yYweWeqcGkAyS1YnsAOhlyAZPquBFm38o52Nf2caNUGezWSBgiDk94BZsszPk7auQgODzqX1QEnZSkMDpBwyBC8DAEq5nL/mM7Hke8oRjTqTbh0oczrjc2rrhbb1c+p9GsO8tmVNzL57GPsHpN9e5lEa/+TXXacvxygDFDCNmHH27DPif48B3teH0djZ8Hw26je5G9/srxJGVkbxCfF8Tp6f6aw29sa4Ghgv7+dfmGEH4PgcVrI1AgphXFedM8qT3hvSSSM9OJhCJ7cj+j0DJHgVrZH7VQp+/fHE9ZYSG89KDU5f4ZxACvlOo5XH51iAv1YNOOQzqsGt4JQa2jHEUSa0B2YAuJwqC4CpTqv+m0aWBvco1wGMbJBAAgpAQET3Zp+1FOQjO4jAzPrDaKP1kWFme1IHbwUEL7cwedObvB9tmxTHpD3uNxbbggGIqW/IC9Q9lAlmcwTP6KFMW0HTCeSawUo6UF3Dc2jVDfUwnSX4nahPk2efDBJuTfhsG47jATDLwmEmCc8rLEZt781KhF3WIlgpk5Vz2XNHH3pUm5Tf+bv0D2YGAZRP5s+kRdtrkwkns2OdJ0gTJvu8lNDfrft1W604zsN6uPU+7Ev489RmZYoUoK13z8hxGakyKABf1+/Ry4g6qGOCe1P2zz3kvxkIsExRs+FyTcMWvMqJ/p8VL8k04fm1plPno/daW6eC1taG3u9TcKEU64tn+qG6zFhtZPKe2QA28IvnP3WVB/B8WMMI+jWWcZp87r3J75wPaO+3hhAJ3maYjTlBnQFC/DmBdc3Uv87LaMt3Xu0aZg0O20mux/+/iwF9yW3oME6QvoODzASJEAxs/zOMEsABfsa1PNvK3axPHXk5gHZF8Odl9l9CiGHYfoG2BfjMpofIM3twk+dWa7VhBPJ9SCC7007uZgeGEJD/nI3vYwxO82tAinKd4EJz8D+EKZtpbwAYg3ii0lSYsrd3+1YiaOt9sV1RDvnU0QcNExy3gKfZOCaD5p5M+TnlloI0IzgSzQeknlVZM3hq8TcnyGRymn3JSCMAPHO/F9tbuK+rZz31nfk5//M//+fI6tQz4j1pZ1IG0o4d1xnnNkEXswdNrynfW0avfMkJzcAQ2k/fKyZaq5a1l9MITqgeJ4389DOfTYGT9E9p9SPvt9BGY+ns5Cs9QwV+yG+WVUeatfPgwBvDN7oPfYFjGzPwpdsSLrgdGL/RDe1LvmfKGTkzkSmCviLpis+aUhwBbBuUiCGfem/DR//n7/90mu3jPHpvyOes9Ekx4r++/ik8x8GVzIKfe6V230hosacHJV0MEUn8An2HJO2A1Pch/5ZSRh/Ir/NrA7qm/Jl6Y/rBPCP+g9mxfGbqHtrkwLSfW50Af/HPpTT754/J85f1Rv6833Bj0YYFJbP77WznkBHyNK3ugc94wOlsjoGFMDKUWU2kciOE2QPxr6zQlZPuda973ete97rXve51r3vd6173ute97nWve/2tVvz//si97nWve93rXve6173uda973ete97rXve51r/9b1w3w3ete97rXve51r3vd6173ute97nWve93rXn/jdQN897rXve51r3vd6173ute97nWve93rXve619943QDfve51r3vd6173ute97nWve93rXve6173u9TdeN8B3r3vd6173ute97nWve93rXve6173uda97/Y3XDfDd6173ute97nWve93rXve6173uda973etef+N1A3z3ute97nWve93rXve6173uda973ete97rX33jdAN+97nWve93rXve6173uda973ete97rXve71N143wHeve93rXve6173uda973ete97rXve51r3v9jdcN8N3rXve6173uda973ete97rXve51r3vd615/43UDfPe6173uda973ete97rXve51r3vd6173utffeN0A373uda973ete97rXve51r3vd6173ute97vU3XjfAd6973ete97rXve51r3vd6173ute97nWve/2N1w3w3ete97rXve51r3vd6173ute97nWve93rXn/jdQN897rXve51r3vd6173ute97nWve93rXve61994/S9Y1t8PDhK84QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 15/15 [00:01<00:00, 7.90it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "results of current batch:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAAEYCAYAAADBO0i/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOz9169tWZrdif2mWW67Y++5LuK68JEZmZU+s7KyHMuwilXNpppqdqsbrYYE9IMAvelvENCAID0QaqCBbkEtoosii6ZJFllFslg2fWZEZkRkuOv9ucdvu9x0ephrn3sjK1uAmAKkBPZ4iLjHn7PXWnN+c3xjjE+EEAIrrLDCCiussMIKK6ywwgorrLDCCiussMLPJOT/r3+BFVZYYYUVVlhhhRVWWGGFFVZYYYUVVljh3x8rgm+FFVZYYYUVVlhhhRVWWGGFFVZYYYUVfoaxIvhWWGGFFVZYYYUVVlhhhRVWWGGFFVZY4WcYK4JvhRVWWGGFFVZYYYUVVlhhhRVWWGGFFX6GsSL4VlhhhRVWWGGFFVZYYYUVVlhhhRVWWOFnGCuCb4UVVlhhhRVWWGGFFVZYYYUVVlhhhRV+hrEi+FZYYYUVVlhhhRVWWGGFFVZYYYUVVljhZxgrgm+FFVZYYYUVVlhhhRVWWGGFFVZYYYUVfoaxIvhWWGGFFVZYYYUVVlhhhRVWWGGFFVZY4WcYK4JvhRVWWGGFFVZYYYUVVlhhhRVWWGGFFX6GsSL4VlhhhRVWWGGFFVZYYYUVVlhhhRVWWOFnGCuCb4UVVlhhhRVWWGGFFVZYYYUVVlhhhRV+hrEi+FZYYYUVVlhhhRVWWGGFFVZYYYUVVljhZxgrgm+FFVZYYYUVVlhhhRVWWGGFFVZYYYUVfoaxIvhWWGGFFVZYYYUVVlhhhRVWWGGFFVZY4WcY+qf9Bv/8D/6IN974OXp5ghTgvEUohbWetrWYIDgZL5hNFtjgsdahZEApRaYliQAXHMEHtBQMhjl50WN8MqWuDUmiSZOEIk8YDnLqukJITdta+v0ewTsAnPN47/EefIAsz/DOIpUiBE+WaIajASF4BAHvHVIqnAsICSEElFQ4HxifTJBKEhBIJeI3FBJrLUpJnHVkWUaiNbD8eo93AZWkiADeW4QUCClxHpz1OOdw1qK0Jk0UgoDUEkL8EXXd4D0IIZFSIAjxe9D9CkLgrEMpSd7LSbqvtdYipGI+b5gtFgAEJFprJB7vLFmWUhQp/X6Oc4G6dixmCxrjMaZFJxrvA+PpnOl0gZCSXq9g1NcQHFolOGMQUpBmKd57jLGEEO8DIQVSCISI/wdBABKt8CFgncO0HojXfjDo0e/lIAJt05IkCUWRIyQ4a/HeI7WibQwISVW1SCEJwROChxDw3c9WUiFEwDvfXQuQcvk7BAjx+oYQ4m8lwDoHCHwQKCkJPn5fqSRSyfi9ux+QZSnD4YAsy1Badd8bCPFaBRGIf7Kg+3GnPzNevdNPX/5G8TVDdO9dfoyf8Bkffzt+bvc1If7Lh4CxDmsD1aJGJwrvHVVj+fYPrvPh9TtMFhV70zmFtuwfzwkSvAdrDd47tFZ4C9aDSiWmtfRSxf57/5oP77zHxtomv/s7v4kxLd/41vdpTYsgsDiZcf75q2xsrXP9g49oTcVsMgMpKHp9mrahNyhYzBdsnd2hnCyYTyY475DEaxKERODj3xsEQQokARE8SoNSkhACWoBQAoLAWR+fg1QhgseGQGsCIT6q9DNNEIG28lgHMtGo4FnLFVtbmkEemFeeySKQStheS8kKzeGRZVGWlFailWDReOZtXFsApJQoKXA+Xj0hAz44pAItFUUqUFphWocAUi0ZJIHeUGOdo609OMVwJEkSzd6J4WRs4zULHi0d26MeL187R/ALQNPrPc+v/Pbf4sH9G3zrz/+AVC2QKlCbFDd3XDg7wIQGaxq0ytFqg7/xv/zPSZzgo3e/wcHsgMP9x9x9cIQPOXmek/Uk128eYRy0LuAQJMKysd5HC8PmWs68rlnbuMLf/Nv/Felog9//vf+W4yfvc/bcOltnnuPqlS9ibcqTJ/f49b/xq9y/8z7jg5pzz7/KGz/3CabVMf/gv/0/0s8t/ewCurfDay+9wofvvs2Vl6/wuc//KunwAoOtswyGOU3dMJ9O2X98j16/YLC2xZ3bH3D97T/hW//2H1OZivWtl9k49xq//Df+MxLV4/vf+iNKU/FLv/JrfPYzXyFJU6QKcZ1Y9q+W/46LKwGBdY4gA641/Okf/2v+xT//ewwLwaINXP3Er/K5z/4iRZpy6/67/JP/8f/Gr/7mb/Pi1Zd58803ufbiC2yM1rh77yaz8QlVVaIzza/92m/ziU98htD9nOWTGpaL5Olz/Oz7lh9ZPtMf31/DcjF59juEZ7/i6fdafm4I8aPPvj8s33+6OMH46JD/w//+f4tThuBStrbWePfdt2maFiUUEHDGIZRCJwn9Xo+TkxOcsXHtkqC05pOf/jQb2xs8uP+A6WTC+PgE0xi8c4huTwi+W6u8RwqJD/F5UkoBcc0PYbmEyrj3ifi2SlN++2/8Djs753jre99lUc74zOc+w/UbN7nxwUdMp9N4pYU4XW+FEiit4/5oLN750yU0STRSSdrGnK65Qgh88Egp0VqClDhnkIBOE5TQBOIerlVAiMBLr77GSy+/yvHREbdv3eHy5YssyoqLl1/ky1/5Mn/+p/+G733nW9TzChHAOUuaZTx/6RLeWXYf7WKswxgL3pNlCZ98/VVc8Dy8/wDvPI01SCnxzpJojXWKum4IwTPopWRZivcWAB88wiuUEgglkDK+7lXdxLVFxVpqOOpRVjWtMTjrkUITpEAISJTEW0uQEITEGkfbvX4OgTUO7zyyu24eh9YaJSAEEfcFEVBKoJTCB4tU0MtTcI6f+9wXWd96jo3BJhcvnuetd7/FD955k7Nb2+RZj8PDQw4ODjB1gxKSLMuRwqODJysyqrrBGUeR55StxVnLqMhItcC5FpUkBCEoFw3OQZJKilQQhGRROgKOtV5BogN11eK6WstaQWsdHk+uE7SW2ACNMbGGM55EKhCCxlq0VgSZMJ03NI3FA947UilJU4VQ4F2gaS0+gPcSL2KdKIXo6tKA1hrnHNa6WC8IcKf3YYJz0B+ucfb8c3z2y1/hj/7F71PPpygBSiXkgw1+63f/A77y819FBs2Vy89hjOHGjev82b/7Y3rFiOFoxOTkhNYZprMxb37nuxwd7JFmGbZpMW1zusQs14mPLzg/hq6kiXVerFiUFkgpuzrLd88wJAoSrXHe4pxAKYnSEm89Qnh6vRxrYq3iQoi1rgv40P0eIlZBUkqEjM9dmiT44PHeoWSCCAGPRyrB2nBEkg948dVPUpdTTLvAhsBsOmXn3Dmuf3iDw/1jiMcGlPRsbg5oqoZ57XDekohYgwz7OXVtMK1FCkUgoLRkc2PA0cmMRWm710KcrrWxDIxrf1cOIkR8LULwcc3salNrPd49fT1PX9pn3l7Wk0KIp5uDlKffO3h/uobF9Y/uZ3d1LbH22Tl/njc++2lufPgRbdNy5uw5ts9u871vfYtyMkWE0NW+qvtbBM5aTGsI3ZlEaUm/3yNJk+5591jTIAT4IE/PA97Ha6G0ZmNzg7Z1zKYzTNvE31cCQuGMi3tM8IhAvB9ShXWCxvj4e4S4lqSJQurAzuYaSW9E3h9wuH+MygtkWnDpyhXOnX2OgGAxP+be7euEZko1P2F2MqVqfaz1hSDLNDI4skQzr+Ozl2oN0pGnoJRGKkXbNuSpxDso64B1nn6qGA5TZvOKIBRl40kTTVs11DYgpIznSBewPiCF6OprgVIC6wIQz5AI8ELE18FDWF4vQEnIC4kSAY/AW0+aKpSWCB+o68DLr73OyfEMg2X/ySF5oikXM3wQaK2QCLQMXFxXGCeYGoXzlvncYBFY7zjddJeFAqCUQCqJEoLgPSpNSENgc5CDVuwfTWmcx/l4vlkvUopUcTw3COHjHuwFaSpJlEeiaIxDasXZQvHKxYxf/uoF/sG/fcBkrviPfn7E7375Ku+8+RHJaIPv//ARrQxkWcFRWfHBg4q5EXg0vd6Q8WyGC5arz5/jtWuX+MznXufOvfvcvXGP8XTKma11VC/j0tVthHdMZ4GrL1zFHu6zPiwoJy23H50wszPsbMErb7xE2Rje/N4HHB7OSXLNbFpRpJKZcZyUlqpx2OAJPpBLiQ2O9ukCRY6gJxW1dzRBsJ5JlPBs9hK++uUX2Ts45i9+dMC8CRhnu4dddWt+oMgSpFLUjcF5h0CQZglSCOrWdJ8XOYm0yOj1etggED6AbWmNpb++Rm8w4sLzV1nbXufh3QcIaSmnEwgObKCuPGkvpRj0GK4NuX39BuOjA7SQJElGmqXk/ZztzXVmswnjyYS6brl06TlQmte/9PP85//lf8lI9tgebuCF4Y/+/N/xT/7RP+Dx/Y9QwePagGvg2nMXufTycxxNa16+8grStrzzzne4/eghZl4jgCLPybIew+0tHtx5yHh6gu/OdwQYDXrUraGs29N1VimFkvGMqyVkvQIDmKYm0wnOKZL+gLYuCd5im4Y8zxiORoxPxjRNrJ/iQitjvSIB3z2PBGToFt7u8ZBCoIh7syeQKs2g36OqKlrjUAAKagfBx/3r2e1TPH28PgYpBUKC9wE8IE9Xc37hF77Gn//5n//VL/r/AD81wed8oDWxOBn20khJBIHzkvG0pnWBsmpx3uOcRwRHohR5qgmmRaYKgcQ6Q7/okaUZB/tHqCQhSyNBZZuaSb1Aq3WGoyFVWRO8Zz5bkGYpg35GCFAtqkjICYVpWoSUSBUJIGMN8/mCXpFDt1cGH4k+gUJ3BWvbRkLJ+1hUuNYjpMS0DUmqEcTF0zvHrKoZDHqkSmNM3Gi9tZHoIjJNTd3gg6SqGxKtCR58a8BHsjCRCdZ5FouqO4DFIigWeMsDShsJNCVJ0ySuyS7EYloJnPPUrWEyqVBaEXxLmsYD2rI48j6Sq8F76kVFWXus9xjTAJJF2TCeTDHWI6Wgnyf0UoHu7nBvDEmqsdYhRfyZWii8iMWElPFm9T4WaTrRhACmbcmyhEQliGCom5YQAsdHE+azGWmWIBBkeWC+KFFKsjYakqQp3jmyNMVaR54lmNZEgtUFnHc450l0wrIKkipeF+ApwSYFzkcCOZKNfvlBhBBoKXDe450jSfTTQ7HziCDQSmDbluPjE5yLi8vG+og01aRphnUGlSaxuHqWSDwt0gJBLKm65X66LNaW7GhX052+KX78SN/9M3D6VUJgrKesW5QWiBAoa8/u3j4qU3x4/QGPDsa8+9EDTLC4tqUNAeEFQilEWBbUASUliZRY4RA6kmsoiZbx78dY5tMT/uH/8x/RhhAPutYQEHjrmL3/AT5YPPEQ7b0HB23T0NQVTV2ClBw9OaTX68V7o3GRbAkguiIjvj4B4emIGHVKksrlC9SR4R4Z1xkX10TvA0ki8U6AkLQOhv0UYRsSHSgKGKQJqQpUjSE4h3WCRAeOJ4LSWjLdIILA+IC1HiETEA5vHULITu8c0EqhumcgBIGQAq0kqY6En5YQBPT6ijzX+NZxOLEE6+kVkqJwSKFoW0dwnjzrDudSkCDJtWdjveDJwZzdvX36Rc0/+r3/gc3NNepFydqOpj/QKJGx62c0wjCZzFgsBEFZNns1f/ov/j6XLp7FuD2ePHrIZCoQco3PfuGLzPYecuf+HZzX5Dms9RX7+3MaCySKuq04mLSkSrGx1ufuBx9w4co1XrryAu3mOtdeeZnzz79Crzdi98kjFJbbH95Eyx6/8LXfRKo+22sXmE2PsdWM8SLjb/1X/xsG65sc3n3Ime199h7d5x98+N/wm//hf8GZcxsIr9A4vFlQzk+w9Yz9R3fpDfoEBmxuX+KDG9c5PP6Iz61d4Dt/9D+SpAk37j3gt/6j/5SXX3qFum3wQpCJuE4vn0EfAgSHD08PpVLGe2+6mKO0ZT4+Zu/BEaWVfPEXfouq3uN4YgkisD7scXj/NtPdx7z6qc8SgmA2OebcmbPkSUprGs5evEjRG2KMiaTV6QYfTv/79FH+CeRe+Ph7w4+9Izzz/MPHCcL/eYLv6cefEnzPkH7B463h3p1brG3u4ExLkRW0dUPd1gQfkEiEC5i2pS6r+NopiRCC/nCAd4Hb128RbsSDWpokaJ3QlA2E2JxwLjbTtNa0TXtK7hGIzREZD6dLO8Hp6hcgiEhUzRcz7r/5kMe7j+j1erz+iTf48le+yt/9P/9dFrMSBCgBLi4oeO/RgNKKtmlYknhxP3XQHS6XNTos7w2PlIo003hP1/gT5IWmbRtMa6gs5HnGg3sPePJ4jzRLcd5y685tJuMx9x485KMPfkSaJPSzPu287hpKCrxk99EurWmx1kIQaJkQZMALODycEKSPxKiGXKWUi5a8l5FoiV9YUqkwzqOl7PZc3zWeUryRtKYF6+j1M4zxOBdIs4QsTwE4OjqBAMPhAJ9ahNBYFzDWYoPv9kMwxpw2s9I8RWuFs466bAkIjPeIEGJR7wJSxsK76CUURcLm1gZKCbIkwTQ1ZTXl7p0b9I5OuHLxVcqyZH/vkM2NNe7cvsPOzg7Hx0dkqWaQp9jWkCrBoF9QLkpaUyERZEUW6xsRqIOLu44SSKmQMq7dWZpE8lJ2+4IXaCEwVlJWjqIfG5XWGLI8wzQe6bt9TwsUEiUAKWPzU8W6RgqFzhIWixrjWlzXKFRCoBRIPEkSG5HeO/JEIXVC3Zh4UAN8UDhnkVLSuPbHmgAgpY4kg0wYrQ9xznP/3m1m03EkBpwjEGicJRM9vv2tv+Db3/k2mzs7DLIE4TwPH9xnbTSiPPqQ8XzKZDFnUZa88MJL/LW//lu8+d3vcfHCBQ72d3n/nXdi87Z7Djp+6idyezx9XD7esIycVVdPdOSv9/gQD0UBgZSByGR0jfMQa+T19T5ytqCuDVIqDB5jHZwSY11nwoPQAh9crFl0iiBgjevILpiXJYkxfPjuW6f79bUXX+Lq1ZdxxjM7U5LrnNnJFOMaerlgbXNIW6f4/TGNUQQfUEJibacWCAGpIlm8sb1BWTa0bWy0O+9P1ytx+vrE10QpiZLd4Y4Q1xMRCRQhJN4G/E9c5//qCx2eWROXjSohRXfvLK/ZskPy9AIKrbn88mt86rM/x9b2FsdHJzx58JC9x7vsP3nMfDzBW4sgkOkCISRt2+Ctw/tY3xBCrGu0jkSflJHkF5BnGTqJwoimEZjGYIPAeRABqtqQ5j0G6ylCCooiZ9DvUVc1R/sHzCdjgvWkOkFKR6LjvdG0lo4JRBAY5AmBlmBrbKXYLx07Zy9z7spl0vUR25ubNNM5j+89opwdoELLYj6mXpQUWUZjahKlICi8F+SDAmNaArGp74InV4IiFbRtS9PEs5gV3bnAWbRQ1K3ETGqk8ORFhvcWYxxSCkZ9jVbQtIFFGy92kJAlgvNnMrJEUreRLKpaCFIBkrYUtK3DLWsT7xj2NIO1lMmkBusJKGYL19UFgRAcxjjm0yknkxOcD2AkvaLAB2jrGpVo+pnm564OqY3nT96eU7o2Xs8gOmI8PiZxH+xOKU8ft1hrW0uQgsOyiWING5t0QkZRS20dlbE4H1AikCrJpX7Gp84KntvJuPlEIJOWexPPuDTcfix4+E9vMA0pZTXjT9+tmXrB0LWExTEvvT5kdEbw9lszHp80tCIgsDjraeoFhIbg4f7+mLu7+/zw1m0y57l2bQvZW2ewtsbx4zk33r7F0WTM0XHNjQ9u0SxmtPMKpzMaUdBWJ/jG8c7tQ5x1zOcLhj3oDzcp55bjYJnYTljjXWzOBBgM+szrGmsczjsSqbi4NqBtLM3CIoSnQRA8JDbw4eNjbt8/YVEt18JwKt2QQiCFRApFnuU4G8luF+Jj7jpSMZ6pE5IkioqcaTGt7fZdQZCK/miDNEk42H3M8ckhW5vbNNZxsNhnfnyICAGtUppacnIiOC+f49ILV3HGgnOI4HGmJVEDnn/uFQ4O9hgNZggM5aIk7fXIpg1hv2HjpcsoDQ8e3Oela6/xtV/8DQbZL3D/3iOE19hyzo33PuDe9Vusb+9Quhpna7K1nHxPs9EraJyjWB+w+/iQ/WnFped2yJVnVhoWtaFpDbZrLoh4iI73pfPkWscGmIc33niDtfNb/OW/+wvaRY2xhrIq417TLaRlWdMaiyA2la3tGiMykAjBlfPbFFpz6+Eec+s6TiM2rBIh+Mzz68zmDbcOK9JCERBMq8hDjTLFp86vkyjJzWnD3qSksh7T2v+ZHfTjeJYKCEvV0lJE9FPipyb4QvB4BPOyQStBqiXOeqbTiqPxgiA6AsUa8jQWmHiHsw1agGkaZKIpigxCYDyeIaQkUQpjG6zz+BDQiaasGpIkwXtPmmpctzfWdXx/r5eDkCwWJWmiCSJuRMh4UZ1zLBYlo+EAoTjtpLbG4mxcPE1r8B0Da+s2kmxdAW2Nod8vuoOTIMskznmaNn6eVCJ2ul3cgKu6oW1bkIqmNbRtJPXyLI3dbe9omngje78kqGLnSgoIzqC0Ih/0cNaik3hwDUHgnKNpa6TSNK1nMqvQSiEkpDrDO4cxLYhAlqU476kbg3eRGHVInHOEIJhMZpRlA10nIUsVaZrgnaNqIiErReysKhk/liSaxazsOpAOmWqSRGOa2G1wXUcaIsmpVFQs9ooc60NUNHrPfF7Fjt+8JEvj69I2J2gtyYuM4WBI8A4lJEEppJIURcGiXKB0iAo0Gw8XQoioENUq/l+puHgRiw3rPFpJkjQhTR3GRjVCoCMCrQUl8CYuwaZuUDKQ5Rmt8ZS1oakNJ+MFwVnSLMU4R54XbG6tMxz2yLL0mQ7s04N9tz5FNcsz3d6oKH2qeAwhfKyDG5aVczyiAwLjPN4Hdg8n7B2MKfIEay3XHx9y/f1bVK5h/3hGWdZ450kSFYs177BCIZXAWUGWaoKTqNAV5lksTUP3OikcSZqSJCkmgCeqMkLT4nwgCEGiojIjeNcpYBRaK/qDAeW8jEUmUQXbVhWmruI9HNmW2B0hKmaW3V0Ruva0DAQkxnqUEiRaddcsnNayzju0jgSlVrHhYBw4G1jQIoVje63Pes9TNYZF7bEoQDEsNAUeYzWLuSWkEuctSIUUnrK0pEVCosF0G6n3jizPITjKRVTGKKVQicJ2RLJyjv5AsdUP+OCZW4/yAZ0kKAU6DfSKlKqy5JlCpRnTskFJwWBYsLHd48bNB0wrS+s0olmQJPt8cOMu3oGeeEKQjMcHNE3sOO0f1qyN1mhdS6LhzLqhn46Zm5a1tR7Hkxlf+/IXSNdHfOcv7sbutPJcu7rDyXhC009prWcxW+CD4KSu2Vrv0doFk/lDHnzrOueeP8u9R/cYbAw4nBmaxRzFnHPnzrO59Tznzl1jsK4RzZjrH9zkn/3BP8TZkldefpX1ImNjc4Px3hE//+v/C9568y8YLXbZvfcm/QK2Lr5OXqxzvPuERMPR8QGDYkhVBlqXcvPWfRbzkquXd5hPbvPmWw+59uKrnD33Gs5mHDwZczC9yYWLz3HpueejwqB7ho4nE57s7XPl6lUSVcT7LEiMa3n7nXf47ne/T1tVVPMZFy9e5gd/+Ud88Wu/zfnnrvJn3/oLJk8e8KCacunqSwRvKCvL9sYGNz66STHIyfKUOzfv8MYnP4tUOh7afuxZ/0ntu1Oyjacs08eIu2e+7nQdeZb6PyXrniHtTsnC8LG3lwfJpeqXroBPs4ydnbMsypbB2RFSCMpFGYtL705JOgJ44bq/Ka5edVUjELRN2x1gYzNMChHX6+63lTIe5JVSpGka98SuweK9J7iwbJPGwzQyHl5D3He9d3zzG98gEMjTlI2NIf/8n/5TLp4/zy//8i+RJgl37twiOIvplPkCHwk0OG0KAd33feb60CkFpSCE2Dn3ITaQ0kSTJIper2BtfciD+49QUiKDQgZJU7XMZ3OE6LrtKtYtO5trnBwdQKeQNq2N5JdSCOL7QnBYa1BKk6QZiKh8Oj4+wnpDUWgGRc50XkeVnMpJUs18XBKEIM0T0iKBjkjSSJyFxliCtWSZwtmAsbHtIpWmbQ0SR5EnDHoFErBeUrctxgbqxnTXNipJrIsnDd05BQKBLFMUWY+2jco+nWh6vR7loqZpLQoda6Km5WB/nyxP2VgfYdqKL33hi9x98ABPxmc+82muXH2JR3/vNnduP6GXF5SLqiPnMpIkwZiWJNOUTUtjJV4oTNviCSjtUMKRpZI8T8FHstRb8DbgBDgR1YV1bfE+IJUik7FOCd7QOovsXnfnHVpBkkSFtpaS1jlQ0ZUiid93uNFnVlYkKqFtG7JEE5zp1HiCLE2QREVf6FTpUgq01mjnsC4+O6f3/rIQWHb5BEit2T5zlvlsTlVVXLx4kUcPHnC0vxsVrUKgVSQJy7JiPr9PMRihioR3fniLtSRlONI0dWC0tcHR5JDgDL6tuPXR+8znUz73+S/zo3feQQTPpcuXePzwMQBt27BsSnzcPfDsogTPsoFCxEZhCK67Tzp1RMcUOufRWtFJwU7rQoFkURrqxiCEIEniM6K0wi0CUXQrugZAAOm7xoQEEVXYeZZCgERF1ZQPgZ2dM0wmE8p5RZpkfPT+e+zt7lItKlrTsrk94szWDseHh5Rlw6MHBxS5JikUXghs67r731L0EkLl0DqwsdVHScFsWiGF6g6cITa1hURKgPg7ahUJ36X7IKocZcfPRaJTahEX4Z8k7Vi+1qJ7rZd14ZK76xrJUsrTHeTptYm11cbZDS5fu4rOh7S25c3vfY8nD+5TpJrjx09omgbvbCTsfKCuKoJ/SqiK+AfFRrhOUErjutpdyY5oRZIl8axgWrqDcaQvlFA0dRMVOsNhJNLbFjxopdjcWidLFdPxBGPaSNALgdZQdTWXkBKUpAnxPnLzCrRBqB7He/cZnxzidEK/lyGt4eTgkKLQiNCSyMBw2Keat+S5RitFU1mM9VSVxzS226diY0ioBJUqttcK2trQNJ7aGLy3ZJlASI3zAq00Ve0oxxXOgZKR9LQuqvnW1hK0NlS1wzjP2lBHgcnCYkOsfUf9FK0ki8oi0kCvl+B8IM8TEmVJtcBYR6rBS0EQOtbv1hNErCVDiKIPAfSKAmssWVEwn81Jkljnl8bzg9tR4V5kghxNbR1Fv8+8bJiXzWlNEO/hqBrUnVhDKoWESCapbo8PIGXcp5WOZO5yH0UKrPMcVg33FxnTJyXjKXzxE0O0nbPzxlm+8c5jsiRlSwS0l3gn+dd/+oBBD86f7XOt1fSPJeW04dMvrvG96yfUImHr4iYnkxKlNLPa0+v12DssufPgiATB3njBSxd36KMp3JxR37GZpHzp1bNsjraQds7R7jFHpeO921MubiS8cW2N+bRhXioeT0eUkzG5naOF4fxIYSeW0niUiGrkPgK/mGNdiKpXIkH6ZDqnciGSdQSaxuMFPDGW3R8+AZ42H4WQp8+qEKASyfr2Bk0nhFq+P56h/WmdIlVc8wQC61pM56jL8h55b0CapRzu7WPbGiVhdnTEK5/9EoLArekE2zaAJcv6rA+HtFWNCIIXXnoFRcC2NXfvXCfRmn5/jaBSquqItVHGvVu38cDx9Ii333uX927eRCeSw92HvPqp1zl6csDcHHP9xh2ms5r1vuTOvdv085RHe/u8f/MWeaqp5yesp4rLOznXH084OZkQXEuiEvKsIMsHnEwOIcQGQtXUhE7wgQCpAqNBxrmdbZpywXB9kzObQ25dv0VTNVhj454rQmy+dPWrF7FOPXXfIaIiVgiki0KVrJ8x6qfYMq5/qRYY40mV4JVLPc5vb/D7/+Y+aliwP68QNu7zaM3hrMLjOZg1uBCfIynFqRL9dJ9f9mCe2ULDM3vq0+b2M6zfT4GfmuCz1sSOTwjUbUueDbA+sGgaHCHaY7wj0ZIkFeBEtFH4SMAoEa1r1trYEZYKGaBalGgdNx6VRKtI8J5+UZAXKVVVk6hIUrUu2kUJ0B8MyPMCQpRUex+VQr5TXyEE09mcXi9HKNWx6fEgniQpUpkoPbfdJm8NRZGTaIUgqsh8ELFj1RrSTq6udCwinY9WGB+ihdR6olVYdkWyj1ZS2x008jzrCut4QaUkEoBSkCiJ0rFTneQZbd3QtgahNFIKkiRjsmg4nCzixmoa+rqPNw58tJGI7oa2xuG9wWqNQ8RuvYPJeELdtEgBw15BnqW0pmVRVoQQKPKM1lp6Rd7ZnGIRlRc5ZVmjpSQQyby2bpFCkOUpQQjquo5WHRnlv3XTdocaBSpgWkueJTjrosLTO+qmiYq9PGM6nXNyPEXKSOplaUpdtbRNi9KSouhhrKVpWryPhwrvYiGkdYIxBvAd8edJtMZLqMoancjTg1nbWX1kV0y0TYsxkayRKqF1gqPjCfN5TVYU1E0LwaMbh1CC8bjkcP+ErEjZ3l5nc3ON/qD3tKsKPD3Gi64441Tpt7RVIGTXfI2rgPdxQ5USbt9/gs4yRoOCH71/OxaR+ZCyrPjBOx9yfzzh8eEJbhGLNp0msTNH7I5WHrAe5yDuyIFenlIvSgZpwvb2OoeTCY0x5HnO1sYmx0d77LaGumkYnlnjUz/3Cfoy49GNO0zmE/aOZzjn8M4R+yGRpPNBUJcdcdsVoHTdqmVPRUoF8dbuiIR4naI5z0fSD7pudYjqSBc7j0ouLX5RqaGJhHevSHEa5qXFGocKkiLTXUfH0npBbQPWGdIkZTZv6PVTpHJYYWPHPtB9nUJJQWOiIlR0qlwpYDqbo3W8VkorQGBbS79ICM6w3hOsDQQbg4TDk5a0gPWtPtNJjWkdQWtaA1YIytLgpcSagEgEs4Xj/fEhqRTkgxwRAkWa0+v3eHS0iFbsY89s1gBRXZSlmuEgJdUO4VtSKTk+3GUtvczJeMbseIFE84MffJfjuQfZsr6RMytrDveOcMYxGvQ5KStm0xahEqqmZb5o+fCDm5zs7LG5ucm3v/EB+3sHHM6fEERKWbW8dHXEJ1/+Nb77F3/IF7726/zwzZv0UsfN2/c5OdhlcjJj9OAm/9Pf/z9x/uJFGqv55V//61y7uMFH797k/o/e5cGHP+ALv/S7QMLDe7tsX7mEcjW+VZy7dp6X3Etc/8EF/O05B4cTDo8X5Jlie3ubL33lq5y98gJew/HkgKsvXo2W6WgAxwNZnnDrzkdYuyBJ+6xtbFHkOQeHByChPxhS9AfxXmkM58+eQ3nHkwcPee2lK4wfn+PC2bP01rcISvH8tRf44Q9/RLF5junkmE+/8gLrWwsQcHJyxGQ6ZbEoee21V+O9w49t1R8j8Z5u6KcrxY+RfE9JwuX3+X9H7C1JvI8TfcCpbeD0/d6zKCtm8wVSp9R1w8bWNkEE7t6+c0rmnR4muz/Eh9h2iAQfhO45FwiC89H91h0+hZSnXcm6rk/fH3xnyRfL1kUsjhGQJFHtp9OUs+d2gMB0NqOpG0zTsPd4lyfuEXdu3WBj+yxnz56lN8wZDXocHo+5desO1rZxzThdgzq17enFWDYXRGd9CYQgThUKPkSVMiJH64SqNlgbTr/OuxjBkSZpJPayNKqyhGA6maKV5Oj4iCxN2dhYp6mbWOPYlqzI2BxtMJ5MqKoKqaBpG7IsZdDLCUGxvbnB+OSEuqkRUtDWFWnSZ329z7Ruuu6yQwQosuz0etZ1zWiQk2c6rhVdw7FtW7QI9AY5vSwhkRKPwIQYYVDXJqoGuubh8n7RSuE9tI1DWktIBWvDPlmeUNUtzlnW1gdce+kFHj+8z/7+MaBJU03VVixOFoxPxgx6Gd/89nfwwPmLz3P33h2clCRpymC4hhaS4WidMzuKF154ibfeepNZeULVVp2MRES1p/MEX1GkBRBi1EmwhBBIO4VokmhSranrQNNEdVKM5ggUWUqioiW31+/hbEPTmtNmp/KBPMsokhQzX0RLHJK2NeT9HKU11jQEH5WFQUoSLamriiJPGA171FWF9dCagHGBZlHhfCR2RKcKkFLEv+mZ51IK2TXiPCfHhzgXYx7u3437/Wg4pGkbgrN4AYPRkM0zZxitr9O2nmo2x9Yl+8fHHB0aXnzxVepqwnB9yO7uY7y1oByHjx/y/W9/AyU1D+/f5ROf+hRXX3iZOzdvce/OLWQS72Xho53YB//MIeTZlakj5CWn//7YOtO9W3UnmqiwFFhr4gdEXFdaEw/JUi1bIzAcpjS1iQdp0R17RLRqxtcqWkBjjRcokhynHM46ZpMJi8WCpom1Yq8oqOYzrDVU5ZzxUc3g/FmCCFRtC0FGq/cwRwrH1FikFuSZIssEWV5QFBlnzp3h1o3HNI3Ddc+eP/1TO2JPy9NaPsYFObwP6KVlvlv/kkSjtMCY5sfIOVgq8JZ/t1SxQbJcR4M43QiiKrkjAIMAISVpv2D74nlefOUlttYGfP873+fO7evUiyqS+io6klKtaZzv6p4lSfhUjxj8s4RE/HiaJOhEkSjwLsHZeKh2zqKEiPEHPuBDdPUMRn2sbakWnqP9XapyEa3VIp7dnHNP7ykbmNYenUiyJCMEGw/3zjNf1BRZQpJKsjzFBclkcohQmhAkcyHoFxneNswnLaNhnzMXLzCfTpmPF6zlgSQJHBmPaT3eOvI06aIhYh3lXbwXW2PBeXqFQmcwmzX4IGibJnKsMsV5uSxrMc7T2tDVpZZQNmSpZjRK8dYR8Cxqj5IJxsTreDJxaGWj+CVEgkGKQJZItI61cq9zTLUGmtZ2e2VUzwUf0InCeB+FC8Hjgmc8noLzDPoZ87IiTRMeTmLv7PmdPvOyZXy4wPoKd3qPPZURCGBdS954boMawUePT6hMJPOCi826IOJaGfegqNKNasv4nXqjAovheukwxw251LTXS3ICi0cTdnqSL35iyFresjtd4/io4gfjlpdePgvllFA7ZnPHL3z5HD+6/oRRIsgFXNiw7D1ZkCDIleBg/0mMl7AGpxMeTxpqs0s+eAFlPZuyoHCO189v8PVvfogVCXZhmBjDWprw85/b5qUrBXsPx/ybrz+GkPHShYJH+yVn+xn9UcLezFH56OLIhOLaVsLRrMTNPPPWIEUXPxXZp0gW+86RozrXTycOgChesAhc52KIhk/JeDzpxCgBG1x0CSnZCWhEFPdoFQXFPp6HtFbRFeiiy2hydIS3LbatEUoxOTngxvvvsrW5Hpt0Pq6/aVZw5uw5PvWZL3Dr5m2yJGX7zCZ1NWewuYZKMqa24fJLV5hMRnz+c5/n+Wsf8fYPv8+Dx/dYv/FDXrh2len4kHfeept//s/+AQcHx/SUxTpHbTx3rCHXOkZYWINOG4yWnOsL/rNfeJkzPc9/98dTrh/UsT6p5ty9fYdLV19kbesMH7z3I0BgbTiNdTDdGb7Xy1jMxgx6mldevcjd+/e58eFNrPEY57qosE5Ystytuj3J+VhnKqnI05xhnqA8TKYLjicTQtegTpSinyiKfo5tG8YTwxuXCv6Tr17A5Rn/4nu7nEjNZNFw4eyIzSLn/XuHVEE+Ve6Jj2+Xy8dE6yi4IXQ1gVjuI886/z622f5746cm+BKtsK0h7+VEDmEpyw/YNpIvxrQoESAUFLrrdgSPD3EztMai0uhBdzZ2lLSMRVmSRvVY6HzK+4fHPHdhJ+a1iUC5qAhBRiVb02KnMwSCPM86WauKxa3W8UbpMibKsqIoCpQUnTInbr5aCbQCieqsOqrLhIuFf9MaWhPtA9772ElxkaCKm7GmrOpIKjk6CT8oHR/SLE07C29AJxlN3cRiJdWkaUqaaCQC52K+h7OW1lpAdpYZSXAWRcbxdMHxZE7TKQSKLGExj6qlVHdya98VUs7TGoMxMROmrBsmszlSSIo8od+LBJ71ccNLtCZNE7SSeBuLqNiUVZHY65SNbpldJwVSK6z30JpTKW3oVIkq6TISQ8AZ09lto+ouSROCMZ01OSFNowIxIKhrE61dZgHMSLQmzzOUD3hXYV2U3Robc6HSLDnNSVQykjIBSHoZ+O56iPh/05ouS0iQplmXdeTwUuFkJGuN8VTzktm8QWqNMRbX/a5ZrqPlGFCJpq1axocTTo5OGIx6bG6uMxgO0Il+Stp1hZn1nqPjY7a2zuCMIUtSjk4mOCmQwZNKxZPDEx4dTpgtFrz7/i2G6+tcfe4cJ5Oas+sjCluiipSbd3bZqyvwUbUihMfhSEXswGlvqZ2Pz6qLSjstBMJ68jQn0QJbt/STFGcduZScGWQ0U4n1Di/BGcPu3Tt8+vVX+e3f+RV0r8fv/d4/49793bhq+aXsPBabbbO8Z54W51JKNF02mIgLbZSpa7yIRebWQGOtp2qj9SlJdCy4uryJ086MAC2inQGp8FIwndvYQdOB9SJhmMqoknUCkSfkWjEtDUpB3QJBsThpwQuyRGCcJEszqtpQtoEilZjW4bou0DL7MSAwNqo+EyGQnU1XKk8/zyh68fDz8HGDzjR16wjCkuYZwjnWi4zSBMomUJpAIFrhAgLTerY3clKlOZrW7Gz3cNZweDRlMq2wDnwhCSHmm6RSspjWDNIMnTi2Bzn9XobzhjsPH5IWOUmeIFtPcIJcWVSuGa31aJwDlzBra4QMjOcG56ItP0sTlE7Ic8lzFy4QMJTzCTtbfRQO50u2NzKKxPNnf/Kv8a3jze9OmE4PeOOVV3jw8AMm45K2tdy4v8tBdo/F9DqmLQjzB9y8fR9hG1568Rz9fsGbf/jfMxoU9EcXaB4e86PvfR2XrDHY2uH924/Yu/+IReUYDNYQyjEYrnHr5o/wIuNrvZTbN29SnDlHXgxOCSwEaClRQpMpzTf/7E/Y3D7LSy+/jGk9N27exDpD8JLPfeUXOXhwG+dg3kpCb8BLL73Ck4ePuH57F5Gu8alXnmPvcIGzj3ntpcuoNGd6MuTJ411mkxm9fo/xyQznHS+9/ArLXT1SWT+mhfmYeu/pu8Izb/xEwu9jqr2n3/UpyfeMNbd71p79vk/fjh9TStK0DalQ3L59gzRJIlXfHXiW7cZ4f8dcn6aNeagQC1nC0wJl+V8hBEHEAlYnCqU03sUDOKe/e4TsCLYk1Qx6BV/72ld4+aWXyfI+o/U1qrpiOpuxt7/Pw3t3WV8f8fD+AxZlze7+Ibt7T/j85z/Df/A3f5c86/H7v/9P+OY3vn76s0JX1InOUrdsNizzYn1HiEa1YKD7xXEhsJhV2NZ0VqWl/TAAce8frY04e+4cUmn6oyG3b1xnNp2S6YTRaESapsxmc3SiKYqCspwjQuD46CiqnZXGGgPWI7QDb9AJCOGwrmFtkNNYS55khKUqvSMtnbWkKqVtDEmmSDv7jnUGQrQaRjWR7hpvCSCpG4fPYjbwbNEyL1us87Gm6RqjSkrSJMW0hsbauFe7eJiVso61gIyWs7v3d1mUJWvDnCtXzjEdT5lXNSJIEl1Q5BnDQU5ZzukPhljr+dZ3/5Ibdz6EYCjLBS++8AKvvf5J9vdPePdH77G9vUmvSLl77zHGlGixVD8remlGohRNG0lYkUYyxdaGXp5T9IvuwOTQie4yz2LmW3AtrbUoGe09TeMQUp2SvK3zuLIm6HhQqIxByJhP7FygrA394RqiESRFFjMOqwP6/Yx+lqCCwbUW4zobZvC4bi1SWneqGEGSJLhuvw7uYysD3jka5zpHRlT6CaKlWlcJUqWcOXeO6WzG+fOXKOsFd2+9j2trtPMgYNDr0Us001nFo91HbG1ucHRwiETgrWVyfABCcuH8WY6PDrh+/Tqf+MTrZLlm6/xF2rrhh9/7Ns7aaOc75e+W9M9Pygp+ur7IZ9Vm3fpkrUV2eddL8h/frVEiksugIBjSRNPv9anrBqlidIrzoVPBCpqmxXU2UgQ0dYvWMU8phECR5fF51SrWzQK0FmxurFFkCd56dra3yPoFJ8cT1gZDlBB45iRZVOxub28xnU3Z3tyinM7JdEaaJEhV4e2yWfn02iWJ7prJtnPRdnlRIr4mpo3nhtgQlyjd5ZYvGw/PKjkhxhNoxcbmJlVZUi9KTn2+nbJv2cwRUqKU5uyl5/ncV3+eYm2Nxw8ecv/xPqauyZWktzakWlTxPNLljceGMx2p+PTq8mN/m7EWT4y5ObW86xQpBa31EOKZrnUOlcSma9O2lIuKJCswxiKEYG1tRF1VeOfJsiw2PUwLHQnvJFR1zDmVSkY7c/AYH5s1WaIYZHB4NMd7QZEr2jpaFSfGkKcJCoXWCcfHU+Ynx7jg2BqkOByTJCDbTmGYCPJUdQ0gWJQts3m0nWYJ9HuCYAM+6JhFS1SnVW3T2Sa7PUxKXGuRSmBMQChFYwLeNbFxrWOuoLU2qro7UhsfI3CUFsigSJJo753O4zU2tolNGBOi/V9DMOCsICq3u/tLKZqmjc0sIUmVRHRZn6aLM5JCsns4QwmFUJJqGSUlBcJ3RHG3n5de8eHjKZZAZWObVCddli4C7yWpAC80WsOgl+Aay7S21G082w0LjWtqqgA+ldydtRRpQnLk0EFy/KMxX31R89y24uKo5Suf3+K4TDne9bxyyfPGz52jsp6j45z3bs04P8zYyh0vbPepjODB1OC94fxOD1NV9DLB3EgOpzV//oOP8C5wZlTw+rkNHn/7FrNKcPnCgM0tw3614PrdE5oyQbcJNz+acTgTZFget4Fj26c0LQ+flMzqgBKCQRKYlw2LFo5KQ2li7aCkQgaL7ZqJQsTaSQuJUjI2GbsIH0TnQPJP99qOQ8c0zalyNlGSLIvPlmktoVMrj9bXkEphjKOpamwdm5ZSQFOV5IBvG/Ce9Y0NjLec39lAIEmyHO8c62sDvAg82d1F6Hd5/vJlPvWJ17l99yYHj48YbV+kN9rkxauX+Pof/yu+9LW/xhuf+hqvvvpZDo8PCd7ywbtv8d1v/gVZpvn0G69jfI2rJtTVAh0Cg1RiZIp3Mp7LA6hgSZKMXi/B+jkP9krakCOQMW4rBKqy4snuLufObbG9NeBkPKfyhos7Q/r9nBv3npDlPcp5Azik8Hzv2z9gb9xSG98dN5e2fhH3+yULf1oUx7UzEInZEJJ4jm9hVne50FIihGRhDM+dHbE+3KBuKu5OPDv9hBee2+b6nQM+8J7PXNvCj6cwL3luI+fkcX1ajy+bNFrrLo4lNgFOk6K7brP/+Pb/zNf/9PipCT7VEUvOGoIR2MTS2JiPlqUaby1pmmHKikzLU2+zcJK6bkgTxaBXxEwsa2ORGmJgvqKzTjqPcYbgfLSBGsta0cc5S1FkVI0luJiTVZYNPoCxgX4/x9tIxngfswCzNEF0hw7TtpAkpxYD6wytsUidoFSU4NZ1jXVdNw5J08SOU/CRQDJty/qohxAC0wVSC0QcShEMWsZcuCzRFHkaQ2yJBUlTNySd3VVpFR/0NhYurguBjB30EDPOfKBuGoSUnMxK5o0hEYIi0/T6OeWspm4a+v2UNM9xrY1qtTRF4rtulWBe1pR1jVaSQT+nX+RUVcwJ6ucFOs9p2xZJwLYtSnV2kkDX6Y423yCWnUaA0BVwcahGlqWEJioKQKKkZn1jjfF4Eq2jQYALNF3HXXh/mtsnpYIkErHGPA0Qj4czj13ExTDLYoEkiMVbtFi32E4eG7oOdJomCCWYVyXWhC4kOG7WWggIgtrXHesfTgtVH2D/4DiqQKVECUVwUV1oraOpo4IFb0mTGECbJBJnAydHE548OWBre4sLz51nfDJmuLbO0dEJWsWBL7fu7XJSe/af7DMcDnnz3Y+YuYDwnkJqnhwcsahqqnKBs4KtRvDatcu8dm2bzWHOm9//Ee8/OmTRGoR18RprhQqBZKmEEQJjWgZ5CkLQtgbjHFpJijSSm3mWsNYrqG3LpFrE3AchkFqilSKRiro23H14wOHBmB+duUXa6zGvF4gkkqJpnuJtLLRcl+MYQrTfChFIlGe9pxgWCXVVk6Y6kq9KcTJraDv7dyIDUgZUruJwDAk6kxgXyBNB6+JgFCECeZbSUwInAo0JtMbjnGVjoDgzyinLisZ5GhNYCI9MQqfIi6cVlUqsDfSSBAQY16KUJQSLdTIS64FTxaDzHiVByzjAIxDQwjPMdQxr77K/FmVADDSD9SyGMTuQQaOF5fzFIYmGyZMpTRvo9dNo3deBTAl2Rjlb2xnX78+Ylpb6yTwGyNsY6qw0p3al0TBBuTiYI89AJwHvYD4zrI3iUIDGeuaLlmbhCOhYnAc4PpnjDZxMF4xrh5s7hPAUqaTfi+vO2Y2Uz3/uC+zsXODu3Q945YWWfi/loxuP6fd7oBxKFWxvb+PrMa33mNry9rvvcXJSUrYeRY6Qfdp2yv6JZ5An7N75iIGecW7nLJPjfd5/7yZXzm4wGowYP56zuTkgTxZMyhkf3v0BB9MarXpIFTiezUiwzGZT+kWP2+99k/HBHc6dv8Zf/8pX6WV5l+kYn19nHKa17Jy/yJPd++w9vsfW9oj5bIHSUFcNX/zSF7l14wP+8sN/xRc//0Ue7I9Jhj2mbUNvY5vXPvM5Pvf5z8UivZoyurjO+Z0Ri7rkuD4mCIcXhlvXb3TPmOVrv/CLf0WJ9yxpd0qGPUPGLQ/D8CxJ1/03/OTv8dRy+0wcwOnnLwm+jxOBS4WNR9DrFwghqMoFbdtGq303kCJJ02jJcvbUeuVsjBRYHqxPk/NCOD10LpV+y6B37z1KRsuryFKci9fEh0h2KKVxztIfFPzab/w6Z8/sIBPN7pPHvPPu2wxHQ/qDAUVRcPXqi3z+859lPJ5w+dIVHj3Z4879O1z/6H1+/x//I86dOcfm5jrnzp1j99Hj2LhbUqx++XcTD17dAS2GwksIvrNsdQVYiIqJ1nqEUEitKHopadFjfWPIme1N8Amf/vznuHTpEpPJhPkiqocWVbRxnj1/Dp1oZtMFWZZgjSZJEyBjMpmRKBnjRkTgky9eRWpB0i8YDtfYuXCFanoSbbutoa5bGmfI8yTmoxJoXEvaNQ7nlYkHvCQ++0vCN0kTslQitaBq4vAJMy2jTTQsMxIlxrgucsxFS6+xtMYSfIiB7ASUikoYIaBpSqyJNur9vTHzRc72mQ2MMGxsDuj31hgfLyjLkuOTE5q2jVEuac7v/s5v8+3vfItbt24xn5XcvHGL+/cfsbF1hmk5ZefCGYZb6wTpefTgATIkFEqRZxKwNG1LQHZN5dj0kUDdNjRtg+0ivJT0aKkRUiOExxqDVIJ+kdJYi5Qxx03pAC42VKPzIZBpTVCSujX08oQkS2isZ7YoUXqIqwzj8cmpeK2q65gNqDRNXcfBRVqRyIS2jUquEALBQ908tcYtSXTv3GlebySmo7onIMiynMPDYxCSnfNbPP/8JW5cv869Wzc4PNyjXswJeFQ30OTs9haDXp+jgyfgDHk+Ik07BwoO7xTbOzu88OJLGA/94QEnJ8eYpuHBnVsdKd5ZF7vBZUrGIQzWLc33HoI/rZWiI0ERAwGWI8Qiwe5Flxsn4rAM7+LzJ2TXqOsGR9hOUSVbj7EtbWsR+FMCzFkXHTI+nLpslNJ4BK0xIGA2m6O07gbUxTovzVKkgtZZBkmfi88/x9HRPoOgWbt8kWAdk8kEQczdc9WC6VFAJgnOefLeAB9aXn39Cmm+y8HBhPk85oz6TsW4HPQXF8JIGC+VJEIQhyiEKCaoawPYp3tER7DoRJEXBW3b0hpDlqXUdUXTVHEN1rprSMRIn2I4YG19He8M/cGIL/3qrzHY2GB/7wmD4YBMC25VLfOmZDAYMp/N4r1HjBOiU2cvrWzRJgbLBswpAbg8rKpY7yHBdM3iWB9FLYHSKooJXFSWCefpFQXnL1zk5PiIo/09mtbEwWjWEnyMd5FKkCYa1VPMZzW+ixvQStBLBRuDjF4uGPRAYhj1QdtAlgiOK9ORxILocJRMpgvcZEyhYedMweYoZTKbsT3K49rVxoGHw1HKcNSnns/Is4S6FbjgWB+lBN9SVpHgF0ogg0QGwHm8F6eEpxCKNFuq3SXOOFo8IY22bQ3Y4CNRF7k5tJC0HtoQ0Hi8DLQxCi26zXTca13XXPPBM+hr8iShLB3OxZ+3vj5kOjnBmyiICEJQ9FL6aYyMmiwalq6hSR3IExj0NI0RNF4SrO2qjKc+g8pHMlqKgNCStGtMpInEWkemUq6cz3j12lma0vGFX/8S733vA/7gj99DScgSyayBxMBoMKAVcDSbMfSWxMRzyWQmOXrPcT5d8MlLgr/9lQ1G+1O+9NIaB8dw/a6jcYoPPlrQQ/D6S0OOJ2O21gSPx1GB2dOwMwSfwMtXhnx4d443mjoo2gDj0vCND+/H86jWPD4Y80uvn2N3t8VazfNn1wjjQ/qFo0gdF4cJm5t9/uz9Ey6PUu6NLYsE+kXGwawhVYobhw2NhSA8SXc2F1KQhLgeFmmCRsWGWfe6226p9MJhu6Zb6LLrY3ZrVNY1xkRlnohNiSieCQilKfo9+v0BbdtifHQO9noFpq6jCKhtcSE6AqXWtDYKrR7df0Dd1Ni2RSvoDwdMZgumkyOUgr3de7z9/W9w7vwF+oM+v/arX2V374B33vo2OvEc793k1gff4fjkkPfffofdh3c6W3DGaG2T3/6tv8Ol567yR3/4+/zDf/w/4MqWi2c3GK6tcf/hCQdHU5SC8zsbvPHZTzLee8I/+eZ9gnXUIqVuFwQRo02s80yOD5mcHMa9B4nQCfPaYn0d92NrSFQccLUoLXXT0rilHTeuW57QOTeXVB9IHWc9LNdn6y1VG/mFAzx5Kjm3s4GvG6Tz9IYFu8cT9p4c0pQDJqXHqAXfnk2Rb+9RV4bDmWdupqxrzYuXNxjfG3dRMPF8umxsGWdOCT23jHAj1idCSsLy7WVj52l1z0+L/y8o+CRro4zpfAEhiZszoVMhefJRHoPHi2G8MCFQ1rGzMSiimq0pK5JURzLMxmy0EHycLiQdiqh+kzpuIFVVkWcxH0clmr5WeOvRLqoAFmVDaw2iBPD0e8Wp+qaqqs6eGcNuF6WlVxQkWnWZvC1N3Xad/IALgbpuYxERukl/UuKsQUkdVQEukCq6zlynUgudlDo4RqM+udZY02JdiJJVqWMYamvQSUJZLuLmCDHUvwseb1oXMwBV7OYhFEeTksp4EinopXFqnm2iCidJEtI0iTbT1kTCyra03iOQzOYldd0wGPToFRlSgjUm5homCUWWUVVltKymSbzpfCzypNZ4Gyc+ee+fydmLE03lshIMdIuWitPHRCRz4+Ex5ro5F+KURQAfh2VYEyX7UkdJSJJEK3Kaxqm9ywLOe9dZcuMhMUlTgtSI4Em1JhBl9kma4Fy8ZjJEFaMPUDctRZ5Q9DLaxmHbBpUkp4fz4GG+qKlaT9nGXA1jHK1tCc5jZhV0h9dMKYTwTKcLFmUVbTUqAWJY79G45s6DQxbzEpGkzBtDWVZkWc5sPqd9O05+KtuW1or4bHjXBahHq0OKQvrAhe11Lp/fZPdwyv74iJt7R0wnE0xbEhykicAKGKo0FhVdYemloq+XaoBY2BRJQi9NyHUc5lItaopBRp5onPU8OTiJneUQwMXiyRIYtzXTyQMEMRvEe0+vn3Px8gUOdg8YrA052jvC1C3eCwiOLBVs91P6mYpEvYRpZUi0YD3LeG5dY13c+IUEbyxGSqZz15F8CiEsWRIVn0sFrUAS5x4KgpNkqYjXXUlsa3AiKk6UUtEq38bF17hukqeFTMdNuGoN3nGak+l8HGKSFwrZWoSL+TwBj9bdwTkJ7KylnN/OCN5RVj6ShLLAtp5kEFBSc3knZX0tp3VQVQ1HRw3DYY/jckK/yMgyDcZS9DTHs5onk4r9iQMkrgnMyljoaikRwjHUmvVBBq5lvV8QQpTFhzYqfQqVUtYW4xp0mjCfOQbFABscSSqxTnI8mTNvAkcLhw2CLBecHfURMipih7ng9Rc3eG5nwOHhEzbW+wjWefe92yzmLds7Z6hMxe6TOdtbL1A1JW985jO0P3iHk+NDzmznPJnW7D+eYAeWS5e2+Dv/yf+OPNnm/e/+S27f/yEPjxv6xYjPfPUXaccH3Hz0Nm2r0bu7rJ3/FCM0dfs9Fu0hD49m1K1ibX2NyztbTMcH8d72LXsPb3DxxU+Sb2yh0IRgcYFuGI+nrGoW84qrL7zIPVdx96MPqW08OJ4cnTDqKd79/tfxpuEvv/kXvPH5X6aX9Rn1t7n54Q3uXr/Hp177FFvbl5Bun+988xux4A2epJfz8qc+Q5H2ef/99yh6Pb72i79MXhQfa8MtSbePvc2StPs4wffUtvtjH/+xf4dn/vNUlff07dP3B39abATobKiO6XzGpWtXyYd9dh8/4eDJHqZtWeaDxayoqOaOU9PNqa0wEmChU3V3VrLukL5UA4QQTjNljbcYEYmkLEsZrQ1ZVCWjtSF5mtK0LVlRMB6Pefvtdzg+OqZtaqy1bG5u8crrr1JWFRefe45/+Yf/il6vz97BHnv7h4xGa1x74Rpf/8u/5N0fvEOapAgkFy9eZDwZM5nOgOURJjYSujFYkcyS0XomBbSNiZZbnXQDQBRndnYIQXLl2ot86tOv8/LLn+fihQu89daf8e1vfZ3vfvvb3L13k/d+9D7z6Yy6apDEibL37t9na3uLs+e2cU1DGRyJLrhy9Qrvv/c+bdtE5aBz1NaxVvQ5t7WNIeXLv/xl/ugf/R7KO85ePMtkMudwPOPnXv8UL718jbd+8B32Hu/H/VkIrG1JEkGqE5w3HVHnyTMBuM6y2uUqim5KuZRkqY62IhWnNWql4z7XRnXrU/ulAC+pSovzNqoX0AQHrbfYScl8USEEVJnBrzsGwx46TambQNqmSKnZ39/nj//kT5jPpjRNzP6dzqbIRQlCMVobkaQZP/epz9D7yi/wJ3/8r7j9wXts9AsChqqK1mMpliqKpTIzHpayJKWqLfg4gVMKuixkSHSCkjoqwUxLlkZljWtNzB7qFKxNa1A+qnGUiq9RbVrKxiOE5vyFM1y5+gJ/8Wd/Rl2VCCtJc43p3BxFHgP0kbE51XiP70if0F2v0B1IEJ3K9xlyT8QHC50k+BA4d+E8Dx/FDMjHD27z4N6t7n62DPsDVCiwzmCsQSB4+PAxkpTB2oh7D+6y++hRVOIBSIExhsPDYyazd/nU57/M5778It//9te5d/tWlxkpTsPdWRJUBIrBgLXtMyQ6Z//Rfcr5pGt4h+4zl4vc0oL/TLZwCFhOhQvgfbRYi3gMa00UBggRLeEhREsVIebsho7oS9Oc0BiWdtIQQmePp7MAO4yzJDo5na47X8wYDEb41nJyMuZxqlAEvPFUixPSvMe5czvM5jVtY2jLOQd7J1x47jyLeVQPN3VDlmYsKvPMlMS4RsYz2vL1ih9THeHkvY8igk7cgFDdYJBn9oTu8XLOdU3x+Fq2TRNVHwGCkqS9gtHaGs9fvkJvMGTz3DmKouD+3ZvsPX7M9OgJs+kR1z/4CCkC5y9e4MKVS9z56CMOT8YIITh78SI6STk+PKKaRcX5X0G3jkuWasGYm5ckCYNBQQiB2WKOTDKGayM2t7axDk4ODzDVgrqsSbMUISXetDy4e4eT4xO8aTtSr7MohuWk9ei6SVNNkaXMTdspbaLoJksgw2FtFBD0+imZcWyuZawPHE1rqetu8JsQVHVNzPGKNtnD8YJFBbarI9s21pWt8Rwezii0oN/XpCoexoUzTBce5yVB+K6esAih0Co28QUS6yF4SyCgperywmLTy1jPsJ+Atwgv4hCozkUkRSSJvA8EG5vUS3LSdk1+QkBr6Bcx96+1nkzDaCRQQpPqwJOjcSTBu3gLHzyTRYUxKSKEGGvULnPJYq5tXyvODjMeHjfMfcxTPG0GyWgf9IBK43R0rRSD9QHz2Zw0hc1RD4ylMYFHD/fZ+5++yZ27T2hby3DQY6gafvFr5xgOcm7cLdndK+l7S2Vbah8QNqBxZJniuW1FQuAb35nw4fV9Eh0gZOxNAqVzKJnx+nOSqrUQ+pw745kGOGtafuHSJqOe5fhAc2akOBqkbI4yfnR/Ru1atkY9slBEkYSxHNaaf/X2I4zIeG6tx90Hx9wta/78huOgTliYhvUZ9JI+BwvDLCSINNB6sEKjQqCxHi0kBosInrVcsDVIkCj2j5b1eMvRzHYTk3Vno4+NKJbrX7c2ailjdFInHHDe4boZAD6OliZLEwb9HuViQapTgrWsra9BopkYi+siqnzbIgTkRQ9Hd7+ahlQJsl6OThIa45kvKpRSDHsDHjy6j/SB6dERiU7Yu3+Psm052Dvm3Jkz7D96wA+/8+3oBBI11y6fp25mtCaq4N/87vcZHxzw9ntvobRGFYq0SJktZlTlPA6qQkZC7OEexycnPFx4qkXJqAgUaUFVN6cN4dbYj8W6eB+YzmtOQjeoDY/WIGWCEBmhbtHSg/RP8/SfrYVPGyyCosupbNqYPRh8wIjYpPItZPOK1y5u8fDJMcFbLp0Z8MnLPT79ySscjQ0yLXjr3fvcfHAIKscyRyRDdhclD997QmWWba1u7+OZ3+PZurxbUoM//cDpHhCIhL7qnK4/LX5qgg8gLQpy5ykrSxAxh2IwyAg+IZUK2zbMyzLmCbRxWpfqJmSJEPMPVJdNYloT7RLd351qjY47N20dF/22CVR1jda90w3Ve9cdTCxZpqkqhzGWJI1Fl+86gyFEFY/PJXkWbbFN26B0HqfaJppF1US5dRNzDUSnSkPE/JBUpzGLopNb1k2LU4K8lyOExZb1KUubpQlpErMU6jaSRAhog4ujngM0ZbS82MYglMLZeKPmWYZzhkQrXIjF+XhW0bpAIiFPFCF4jOmUUioWQKZtY2ZCCEjhO9WGYDKdYYxlfW3AoJejE8WiqrDGkebRftB0GXiisyCrTrlRFFkM8A6xS+n8MqA8bs5L3/vSorGYL7AueuKFiNenKFKUENRlsxR7dFcvTgRGiG6qU0codTZaayNZF6d4xfxD72Mx5KxDCNtlLQmcEzhn4sPTHWxnNlobkiRFpxLnLIuyhJBHZaLUzMuWxlhqCycnU5q6xnoRF+UQJfNJIknjzhyLUB9ounDlxDqsizaeuq7xPqoTpVJYM40TUyUsWsuirOLgCBG7lN47KmsIQSGtj/mJWY70nuEwRyKZlw3TRcm/+7PvcnAyi3Zr66NlTICW0E8TgvP0U0mCZtJGlaavPDrTZJlguijJtGJzrY9tY77kYlZ2kyJzECoSrEoznxkkMOivsX3uHHfv3T7NtRQidkqEULS14d7N+wAkWUpvmDPvbMChNYwGGThL00LjA6FT/RgnOJzGidJZKumLOKQnTRW5lGQjyXhuKZuourMmKjiXXZnWGrQUWBNwNgCKtb5GJ4KybbFCdNO+oHWieya7zpmO60+epjEWAIlUsWjbGBYMeiPGsxmjUcr6cMDJ2HI8OaJ2NXkKWZISgidNJGVtKbSmqRq2nxtRzSpSIykk5L2cs1s5k0XF4+OGqvYkSrNZSDYGCYZAVTmaBiatZVEaEIoQor7Ix2UHHzzGO9JE4pzgZFyTaMiljZbjpiXvp8xNVFBnIZBJ8KZmfag5cyanNIYbtw5pXUpA0VrH5npGriWLsiSIhGBk7JxLydHJlG999xvMF1DbitFwxKXndvjCZ8/gReDBo2N+8Zd+m4uXX+Lk+Jhb773JxuYar732Mmtrff7g3/4xh4/2qSrFycIxt5Ktc2fZOHeZ/skThpd6nN06xyc+/+vceucv2X30NovZnNHhY2Su+bkvfRUfpjzcPyLXBXWz4Pz5s3zic1/jRz/4Sx7fv8PVK1eReZ9PfulX8MmI/cNd8jwjzXIgElVSSy5dvsC7b36PpjK89/YP2djeYD4/YfvMFnuPb7N77z1yrcmTIcfjKevFgAsbW4Tn51w4t8HOdp+zZ7dpm8fc/uD7GFMjVcov/cZvEoLh8GhMb9Dj05/5LK+88kq0T/nwMZva6WoX/uq/T4m9088NH/+6v0LsPVXsxTd/TMl3Su59XJHsfcA4x5PDAz547z32dw+YVwvwkldefZ3bt2+ymC/ipHTvOpuPxbt4eI0NvM6y3q3hUgqEjM275WE2LBlFOsKvIxrj0CyPsRapJIvZgpmfYLrJZXuP904z4EKnDto3e3Gw0mLO3Vu30Epy4eJF3vvRu0ynC6qqxDqDkNH6Z21LaywXn3+e3/id3+Qb3/g+k+NDzmyv4a1htLZJ1VhMUzE+OeZ4POHl118mS1Nu3bpLnii2Nta4dO0aea/HdDKLZKf0PHp0l0UZ+OBGyp//6R/y5PEDrl1+nh+9dZfJZEZd2m6diWtzVS548sRw5fIVtne2SfOUe/cfslgsGAwKJlPLdD4n0Rkf3r6PFp4zDx8wrz33Hj/kZHeXft7n+HjKZDrh8tXL/OZv/AbPXXuZr/z8L/J3/y//Nfv7e+Difp/nCUIFlNA0xpGlCb1eStu0OBcJPBdcVKilijRJqKuohnM+dGRwbEwC3b7eWZhVtFR6Z7t1KRbiAYeUDqU1/bwXM9dEjGcRQiCVZnNznUeP9jh/5ixP9g843D9gsVgghI4qtzSh1+9x5crznL1wkXPnLqC1Yv9oTDFYI8sSnLSYJir6nZBdlIpEhkhESBmzhbM0iw4IGSMpUK6rDQwIwbDXp65NZxOMh3SpQIm4jjsbokU2S7G2RRKHm9m2RYqEsml4/OAeTx4/RomAt568n5LqQFV2E/iEQidpnGJsmi6rKRCWeWbPkHsC0EoiZRyc4bqDSugaFN57bt26iRSSfNCntQ1FlrIoK6wz2DyNgetBIIJkPq9AClofqGcVm2d2yNOUxXzBbDY7fWbLas4Lly5SDBVtcPz8L/8ag7VN3v/B93CtiYH+RFJgWazN5zOEUpy9cJHh2ohyMX1KSHZQUsa2m+BUzbvMpYsKxrguShGbDcFHW6T3T+nByP/5U+Wg6JwWoRsGAZ0TqMujWubbxWywaKMXMq49Qmm0CDRNE+9rFxiPoy3XeU/RSyIhJEeM1vosyjiMZm1zhNQJx9MJvV4fKWJcT1W1NI0neHn6+4rlcifiYA06Ite7sBRoxvynEF00y4iFU1Kw+08IUUUqpEAsbcxKsb6xTtHvc+311xitrdNWDamSPLhxHZlqxscHNNWcD999m8YaxkdHZEox3nvCpZdeZv3MGZqyYWN7i16/z/b2NsO1Jzy6c5vx0bj7+d3UYtmpmnVHWNGJC5REaBnjhLIMXfS4cPkag/VNLlw6z/e+8W0WiznBtDErUkKeF0wnJ9R1Ex0etmvqBxH5b6XIdIJSsQnRtnGAm5C+m2QtcDYwrR3pWka9qDvFrmXYy9k/mVK1hiyN58Qs04xGEhsyZvOGybRlWgd0X2OCB6FR0qJUoG09zkIvVSCJz3ERmxbGeHQSqI3FtN0EZA82WGLsT7RHehsfDSUFeRLJeZ0sm7HQ78XJu2U3yd073zWt3dP7xkPoXCLeu/iah6cxGZH/iEIF3dM0tUcKg/NR0AFR4dfxSGRdHFXTOgT+dOCYx5NlCYN+xs5aQQiKeycl1hJryzQlURrnbWx6WEcQEudaYIGxgRAcJ+MZCyS39++hhaFfQjCeL7+6w3haksmC3/ziBS48v8Vg8xLf/O4D/vv/+9cZNxJhSi6sCTYLySvPj7C2xgB3HzTs7GzR1HPaxvH6p7f5k+8+oa9KjMgQcsCV5xPuPDjh7p0FGxuWz3zyHCLUvF+2fPDhEenmOW7dOYrOG+fxdYvGc2F7wOO9BRfP9phNK8aTmnsB/h9/HnN1jVC44HlgHLgZ24MC520Ud6SaT7x2gX4ieHz/iMcHJZtDTb2AM5llNEgZrWdMSsNI9jict1y9lFIca3ZPGhoTGOQ5ZRtt6E54XIgxP1IIUiV4/twWjw6PMcailEerBCEVjXHoVKG0oKpLEp2CN7RNxWIuEVkas/Utp6uvbQ1WtbQEBv1eVJL7KHIqij6OwObWNoSYl5dlOTLAbDahqmsODg+6BigcUfKFz70BQvH2h9dZG+S8/qk3eOHlF5lMZ+wdnpClx9SLhkQ5Ll26wtGTXc5evML33nyL1sdBPG3dMpeSDz+8EzPyshxrA9NFTZIkZHlO1Vga22KdQwfVDWXqXCAq8ix5r8d6r0/Rz1hbX6NtGh7cf8J4Mo1OPiVYys2t9U83EuLQz6qqouW/a5jEKdKiU53HYnb/eMq4NpxLLL/y2cv86u/8EpUuOHnzQ8q65YVXztEfZnz9hw8wwPNnCpLtnPdu75ElOg7mcksupIuB6RrhUeH+VCm7xOl7nvlQ3B7+/4Dg8yHQNg5vA6ZpcVqTphLVdWiauo45b1lOVdan2TdKRblvJPbohlfEKXxKChyd3DqIKHv0jixL4uFeSZqmpdfrRfkwntrHzrtWEh+ixayu224gxHI6q8EHiVSRHJovHEliSVOFsRalEvIiYWDzOGFKgtIJroyEjZRRrpynCd51G7WPGSsiKMp5E7PopOymEFoSndE2Jk7LNdE34myLkgpLLN60jnk5PkSZ6am1yUVbTCDKVSfzCo/EmxqZp93U0i5QUki0F6RaY2y01wbrQGuscRyenKATzZmtmEFi2gYfFKaNariss2mlWRa7QcQMvTityXdW5TiyW2tNomPm4fJ6hu4gvZwK67oQyThRK5xOTM3z7KlCUsRpTKHrNCVpSlnXsdiLu14scES0P4TOtuxDzCIqegWmiQRgu7R4p5FEzLOUPM8o69iRlUJhXbw+1sGsdIznc3p5wtF4wXTRMJvVJKmmqhusMegk5hAKBMN+igxQ5AlJEocQLMqKxhiSJGU2nsVFW8pTC0VrY36f0hJjLMZaWhtorYkLsYhqMkR8raWS9IsUZ+OhqpcoBjoOhkik5+TomH0bC6+mqXEh3pNaRVLMBY9wloCmalsUgbY2sRjB01aOPM+RzlJkmoX1zBY1QQg2NoYcHB7TGkeeamZVeWrVTXoZ1164xsO7cZKSXaoQQpyS4VzMdxMIjvaOkVrS68epj+XYxnycVEZCMASaNlqPWuO7aXOC2kaJeppKFIFMQS9RnN3IOZk2jEuH1nEy2KyKhzwpE5rWMcg0WnqCUPR0zKswFnq5orKO1gRE93OQcUqy94HgHU0TSLRA6WiRQAROFjX9/oDnntuhXkzZ3j7HK68/x/e/8xccTi1pIjmz3idYS2Mc40lNGEqSQvP4UQWhJUskttRoGxi1BidltGxlmo1hn5NpzayytA4WTaCqonTbh4BQDkFAqRgfIFGdAsKjgqJpA1JHdeWkinlFNiSMjxp6hSYXkiLPkcHx2pWzHB8e0O/D/r0F01JQutg5t67l0pk1TOsYT2E6qyiShCxNmS1K7j2p4wAepRgMchatYP/khLLxeLfgzPYFnjzZ59yll3j/g3e499H3efWTr3Pv8T3WDyUbg4wz2yPm05pkkPIv/+l/x+Uzz0N9witvXOL9d96hPdrj4NEdFkf7tAvLmY1tjo5OcK7lRj/h9vUPMa1kMp/THw6oq5a6TRiun0fuPaa1ntcuv4Q5PuGtP/w9posFn/7Sr/KJ138OHwwiSHppivAJFy5cZPfhA7bPXuDixU1u3Ky59uInuHL1BR7dv82ND3/Ib/31v8XuvGV39z7DfkG5GFNPD3l49zpa9ZgePuKFaxcZrW1hguTNN3/AJ35OkCQFdVlx9fLVzvL0ExR3zzByTz/8lMj7OMHXffTjDb6fSOydfp9n/x8+rurzIU4Rb43h4OiIG3du0xsUHO7tcTQ5pG4s0+kE5x39fo/ZdNY1tSTBi+7nPnMo7Ro/S4WOPyXlus8J4VTlIj5Wz0RCxHjTqZi6KeJdAbQMn47TeOO0zODg6PCQxWKBlLCxucG9u3cZn0xJ04x5uaDfK0iTlI3tDY4Oj7hw7izWtkxPTvhf/xf/K/rDHtubI3bvP0JnGbU1HB8foRLJ/bv32drc5oUXrrH35CAOWuoK4+l8yvsffsCjew/ICs1sMiZJB+yc30EAzgjefedDlFBxz/JRtQ6gtSbLsu7QL9i5cJ7dvX2SRLC3+4jRaMh4PEeEaE+x1uKFZzqpEEnCR+9/SKrAtB5jHeub68wmU77z7W/xeP+Qs2e2ePHFq1hfU88bejbtBpiESCy5gNaKqmwwzlGVLiozdCTwtE5inIJQtF0DVBBziJVMEcEQgDRRpFkWG43OUTUtxsWBKhaH6g7qzoWoxExj5l9deZp6DiJw7vx5vvT5z7O5dYGj8YIvfflLvP/Be3zwwY+4f/c+Ra9Hvxiws3OOH775Np/7guRI7/HWmz/kaP8Q5S2zWUUvyxAhuiaEUmjVTXuU8UDgvMVYQ6JiML0XnizJkCKQFBlaaZq2xbioUjPGx1gWmRBkoPYBYx0qTXHekWcJTQPWRHdAmqQsmibaaYMlUZpeJukXcY1WSlMbj7EB39R46ygyTb9QLCrD3IQu3H45LEJ2gxj8x56fpeItZtV2NiMBVVlC8Fhb0ctzBBnVYoHvbOSnz2aIJMPOzhbTqeTxw8coqbh06XlMlyNmmgazqHlw/QZnzk0YXH2Zv/Mf/8f85fmLvP2Dt9h/eAfvXBd0rlFpRlNVNLMxdz8ao1VUMwXXxV7Ecp3Q/a7L5ntsBEuWBBZ0yjBibR98nArvuwb8clDFaWMiBtqxdOGYNtaTSumuqb+c4B3rTdnV8UmagkjYPvccOk2YHR8yOd5FCUWWZxSjHkf3jsjzhP5gjRAUeR7t9DqRZL0CIRP6YY26nDLo96iqGilapIyZa8sm0lOrrSRJFBAnnnrXZXwT6Ny/T5nAbj2NqmKBTqJTxQWPThMGayPOnD9Pv99nfTSiqlv6/SGP7t/j/u3bbG2u82RvF+ccuVZ4IL844Pz587HBZWoe338Yzz3eIYRiOBgwWyzY39tnsZjTmJbRmS2Go3WEUJSzeZwknQhGO9ukUrL3+AmLsmJre4cL55/j9U++znMXLzA9OmA8nXH73j1u3fyI2fiIxXyO9I4iL3BdM77fH+Cso2zap/c3Hlwc6BNsIEkUSarI0oTKlSQ6DhgI3qHTBG+hbBqyVBBaRdM6DidNzFAXCSJIpIZ6XmFMjHKyNtbvi6phKgM6lfR1FqNWhpLZ3GJsQCVw5tyIfq44Ppwg84L5PEYQxUN5HJ5B19pa7n0xpSIqdkaFYnOUYk2D1qCTlPGkoSwt89p3z5DongO/3PBjQ8r5bj3ptkjR7ZOd0rdp/KkYYjyNedSBgLHxHtrZGnJ8MsUhUFLQ6xU40xJCdH4Nhz1qYynLmlnZcL0y3DsqUVHfupxjR9MajLTI0D3HPq7vOtq4ECEQgqQ2lqnxuCC4fH7EwXHJ6zsZv/GZAX/6Vsndo8B/8/feZ0MLfvNXX2Gt2Oc//U3Njx6OuHlf05OWc2uOT1wK3HkSWLSe8+cl1z8sGYg4ZPLmnQk720N8taCsLeV0wW4pmJ3AhVHBi9ckxwdTtjJNWcGTmefw6ADpPZtrKSLAeg8+e6lPJVsoJS9sGMYipSwbTIgW5alpCcJF9a+SBCFprKFxAZ0nfO1XvsjapTPY6QEbF3Ka7z/CVoJPXsw5l5U8qDVntyXbXrOoJeNbgvvHgb2jlqYjxxtjsZ0iL4TYlPLE7E0vBMFZ8PGsJaQmdOrpjpWNMwtsjKWQxMipxWJGYjJ6eUYrEuqGLhJC0+8VTOazOL08SynHY0LwccJyOWdjfZ1EJ1SLOWtr62ytD1jMRzx48IS6ruNZXinSLGcyNxQ5hNawmHm+9Z23CLLHlatXWdx6iB31+cuvf5cbd5/weH+PXt6j9TfZ2jnPfLJgOp0grMQliosXdzi3scmDJ09oFgvKqqWxzVN2KwRSrVAyiYPypCBRUYT1wsuXuXTtFQZr59g8dxFTHnPnzk2OJxXjyey0ASVEbDarbvBnbJbFR8p3qliloipediRrbFB5ykWNqeO+kvdT7p/U/Nf/1z/g9sGCNMmYzmdY23Jxe0TV1FQG3rp1QC4C1qs4PKXjNU77d+FpbbtkYZ+GIMTn13dNHtGJUZI0jUT/6UjKf3/89Aq+2HKKk7SEwIZAJgRrwyIGrBZ5VEaVdSw4haA/KDo1X0vTtNGOGLopfcSLkugkyruDJ1hPkiq8d6RZhrEO52CxqKAooh8+SWJuRWMQMpIyWRbzreazml6R0u8NmM3mXcckbs5V3VLXMRclURKpJINBL3ZIqzr+rER35F6CdZ6mUxLqNMV0GXWhq2iyNAEpKZuWJNWd5L6N+RAh2mIEgtD9LULEYrg1bZyaKxUhQJaneGvwpDQmcHgyIwiFECH6/FVUOOBjxlmaZYSqxZuGRAnwHq0kZdUwnS1IdMLmxgiJxzRxyk6apngEdd3EASR5RtINWpACQoidSNmpUYoipzUt/UE/knTOE2SUdSsdJyPGMi6aUZJEoYnFuJKKfr/P0fFJN/lMEMVnkizLEEJQlmUc6uCJxKIPaCW7g2DoToqRSDImqs/yQZ+qqqg7wqysG7RQaKWYlxWLRYNOFI2JC2SapRyflExrw3hWRim8iLkoPoCw0R6b5wlFLydNUrxt6WUKZxzWtDGIdlGBkLGQDwbTSa1MbTDd5tq6EOXxbbTEReuIp2otUsT7Pe3uOWcsWgpyFa3QtrMtz8qGaW3BO1KVoFPNdF7GzpzWkWgmjrFvugyYSkCeZAx7OYvK0JSO3qCHcpbpeMYgS1nMG7x3GB8Hx+hSI0ScFui8iwcoPDYEjo8P+KN/84eoboAOQT7N2aLbh1ycgovsDn51G5UePlDbqAQtMhnv+0Sdduc90RIWCX9P3cRi11hJ1XqGtPSLGCRcNRatNKn2BBE73YMELu8MmZUVkzJON3TOx7I5eLSKKg4pFI01gAQRaK0nEYJExulgXXRCHERiPbce7FLkCZmGef0h+b3bWDMnCYFcKpqyYXOouXLpEjduPoprh0hJhOFwEqXy1jl6Ccyb+LcVWlLWgsf7M2oTJ70mWYpZVFgnTjM3ou0sZgI+uxnEPFLZHYgCFk+CijZz60m0oEgStHVsFZLLz13g/IUz3L93zNi0nNQJpWuYLmIGohSKh/tzgvMUac7WZp/ZYobFEoSmaQRaZly4sM3hwSF3njxGaShShTMVLhzxaO/bPNr9iFwJ1jYET/Yfcff2HutrOYcncxoX81Tv3ttDtp7Z8R5ne4LBXYcwBknDrY/eoUgS0iSlKmcsaofEcue9H6AVlFVDaxw7wwGjUY+Lz13h0b33UF4wPnjEe28v+Lf/9p/x/LUrfOIX/iYXLlzAu4rxdIIgocgzykVFmg94/uqrfOErX+Odt98kHcxQ/U1Eb4fXPv/LVHXDy69/hvO1487d6ygcd+/cw7Zj+rph99b3GA5GbGxd4PkrLzGrPKPt53m8+4gQJH/zP/zbbGysd9drad56uk0+m40X3/mTCT6e+bqPfT5PicFnyb+PZ+49/frlIdmHODygrGomkwmT8RjpPed3dkDAdDwDIWmrWNxpnURl+9I6EWCZKdV1oDpbZIxZoGvyLHM3l8MdnlX1LLEcZoCHIPzpge+vdDbjpyAFWOuYnEwj2ZRqZtN5HMwUPN7HdbMqK6qyoixrnLMMzQiRBiaTCbuP7/PkYB+B4+7NOzFyI5XsnDvHCy++xK/86l+jVxR88OF7/OAH3+etN9+iNZb19TWOD48IITCfzFhM44G0WpzEzDMfyTHhNbaz1cQmAiQ6jcW4SgjC0lY1h/sHbGyMqMpoTT04ihl3QkhciHlOGtjcWOPay6/w9W99k09+8nUmJyfce/CIsix56cWr3Ln5EXsHT6jqmq9++Uu8+uon+Uf/8O+jZVxPrQnUte0OKw5UHKih0y7uQUWlmFlOZuyuH8HFMHdiQ1XJSAoLKbHWkGcxViQO8/CY4MkTQZ4mHdFaU1VN930FCM+gp3juwg5SpTStJ+8V3H/nA+7cu8XaqM/45Bjj4l7ucXznO99mNl/wrW98HR8c5bzEthYF1F18Rq4S8PFeMl0m8DJ+QilF8J5UC6TQOOdJZQy5VioFCbPFnCSNeb+miU0Ab8Eg/l/M/WfTpduZ34f9VrjTTk/qHE7GwcFBxoATODPkDEVpGCTRY7NkSyrKcpW/gD+Av4Ff+aUtWyqrTBcpipJMUpQoTRBAYgYY5AOc2Dl3P2nHO67gF9fauxtDVbFY0AtvFLqf0/30s8N9r7Wu63/9A61CzO+ROmvwkX5wWCv1pFORSZlTjQ/53Oc/z8c//yD5cvUYbWXQ3YtthLZWFCXacTgqmOYVL1aOZed2DG0f3W79b5N8XwXniS+lnSEEJrMZ3gW6tiHGyGgykhbBe7wfGBcZuc1QITDNDcfPnnJyekzf9QAsMsuXv/IVbF4wHk/xePzQcvvOPc5OFpy+eMD+9Cp/+bf+Irc+mfHg6UPWyxWuD7z35S9zenzO04d3cF1H77wMf2Yz2q7D9V3al+JuT4iIGiRBBKmZEjBPh0hIigif5MCSJCxMIaUScy+BeDp9HWNq1hCCAFHAbK2UJEvmFpNZ8rKkLCr8MHB44QKXDw/Jsve5fetTlqdPWa6fplCxkrfeeRujKz769GdYNRASm39vdshv/+Vf55/903/C40f3cMNAnhl8cImtLJ6dcYtxRojRk2cKpTKCSZ9HkOZt23Bu9+gtZ3ErMyY1naPRiEuXr3BweMRqveLxk8c8efRE1vgg/o3nvkPHQPQuMZgV67NzVosN68WSKlcYIpvzc3wCkz792QcMbqAoR9ii5ObnPsev/c7vMju4xKyaEnrH4/v3ePTgFu2wotssuXnzErP9A4ydcv36m1x/7SZ1s+ZPvvtdXjx/wnq1Fg/PfiA6scdo2p7x3pS+F19zlCIvC4ZuSMycmJhHsm92fQpocI696ViUO8NAlmkmJYwLQ1ZkrJuOpo80QxAGm9GUmeydq7ZJaq9KVFAhMvQtZW4wwGxksWFguQwEJRYxWkWaNnB61nDiHThFO1+jraYfIp0D8ZkUv2YJhgm7VNQYIj5qlm2g7hOBxUQ0HdElBZAR32jv4u4+VulcliNVpWGasH5ePb9hG15HIlLERI5IPwtwXc+0LFm1ck8uVxsUilGyoqrbXmxt2AZjQdMHMg2jUc7KdYQheRg6YTWRKKlGQ2Ez+sEJ0KgVWomqbb8qsMDROEcBf+9/esb9M4cbOnIyPv/WlCef3WV6WPCrf+3XuPFkw/Gzhn/0P33En3284OKB5c5Tw2uvX+CHPzvmgob/9b91g2FyyH/7p7fRTcPN916D5pSLexk/vd9wf97x1Xf3+bWvvM53/vRjnrie+/MCUx0wzE/5C5+fcOe452BkuXZgeetGScxGrJ8teP1qzjA4rIGqyumalkmuhRiBxtqCo1Gg7QJ2gP2LM9771W/w048+4Wffu09bL/jVtydczh3D6ZILF6f85EcL1g86TjZQ95p16+iXnsxYtHL44JNPn5E0XZTkXiqBdnoHT14saBG/UwO0Q5dYyToNMjRt2+OcJ88NozLHeItVChMd4/2S4HOGITI4UMEzKkq6thWmrRYGelPXwuo9PWUynRFCZL+Q4K1f+bXfYDT6mFu3P2O9WuGCeCC+OK+5eu0qN996lyrLuHLtKl94/0tcfe0NNkPk6dN7PDhesmp7rl25zLXX3mT/wgWuXbvBrU8/pF3Pcb2TnASleT5fsVjWErAa5H4XVp3C+YE8KyRhOwSuXLvEleuvUdc9Jrfc/eQz5uufgs2Yn52wWqxw/SB4QrJsct4Tg9uRnrZ2MVoL+GmtWEJ03jHK4PLBiLp2nK579mcVymj2JyWjqeXRPHL36ZJ53UOshYAFnC09QZANus7jlOegKsjGY0o3Ynk+pw9p30ggnTEmpU1vswFeemHvBtmkoFLvttXyv1Q//+s+fmmATyu5QFVWMPhIW7eU2YiqysmznPWmYQiebugos5wyL2mblkBM3g/igVLmFhUio3FFRAIbnJP0OmutFAxa0w/Dzvy7aTvKqkQjEgeVS4hFCDKl7gcnN/3g2YQGiMwmI5E3bs0QtUxV2t5RDp7SyEFs84wseYKMygIQv7xuEAaVRLzLjRSSr4JKRpGKSFlk6caLSeYUKDJLUYhPYdd25Lmkg202NXkhzLOtT1zX9RglKbSnyyVBaZzrGFU5mdZkRg4FN3gyK9La3nXk1soUuesk8TV4ZjORMmtE8jGqKrwf6LsON3iKLIMQ6Qcx8laIhJEErIUtc847Dvb3iERWfUr0RZq8oNQuUEQKsIg2kel4RNPKzz07OxfZbyaJilsfmhhEygu8Mh2TA9oYTVmWSRYUsDbHBU9TN/RtRx9b+sHhYxRQtBFZkPOe9brFu4hvBdVfrHqavmG+2hBR+GEArSgyjcJTZoYy11RFlSTdAde1ZLkAnVlKpfNKJn/KymHZt31KpxWj7c4Ln995ke32g/gxbGVP3nuywhJ8xGpNkVkGa2TT9568tBgMq1rSumKQdDKlFb73tF0CaKKEKoQEJpnMSBqjUkQtoGGRWQTIbpgVBdYIW1WpyGRc0s43aAWrTUPTDpKgmFmiksYzz/M0UAy7DWprZiqH1HYyJd6bRhsuHh3wG7/26/zpd7/LolsSo5NmcZCU2zIz+KDRWvwWiIrWJZPgID8jooS1Wnt06JmNcvZGOetGfta2SC4Lgwoe33vKQoDDDI2y29AXC1G89bbeJ0aJiToKjBIwGqOpw4AbXnrCOBdwg6dzS6yOTKqcvMzQKrJuNkRy6v4hFy8c8cUvfJ4f/PgDWtfQdOJhUuQZXYRnpxu0sjvWgrWWIhr6LtC0Pd4LGKLR+NQgGWMxSHrddvqTISzNGAM6gDUZTSPGzVWmmJWWaa4pRoaispydnXL/0TMeH9dk05LFcgAMoyqmwzWwagL705LcKE4XK9rOYVKQ0WxquXllj2+8/wZ3bxdcvNhRNxuenSxQSrFoj7l0MKUwFZnO6HzBgydnrDYdT89WGAw6N+JBWioMns+/vk97NufTj29xtm4Y2ZxxWdITKAvDpCioKsuTZ3O6vqOJkd459qYl89WGC1cKMQ0eWvZmFZt2w8nyHFMpbr7zNb70pd/i0b27PHZQu4bp/gFvvvEOxWiEyiwXr16mGE34wld/jYPL12Q6PBh+8uEjAmN+8MGHTKf7/MpXv8yDBw+w9FR4Hnz4E1aNZ3bxJmZ8iWcvFihbMQyedrXmnXe/wBtvvJEQOJE5voT5XgJ8aYb158C+rWRry9Ijff3ngb0//z1/DuQD2MljE/AeRGb07PSUew8eYGLkS++/x+H+lG45RymTvn8LLuvEiEpJi96nhiwVSsaQ2Yy+F4N5nRjWwmSJOybSVpb7Cw/10usnqoQVbveR7QBHSYO7TdsMITU4SvZg5wJKyXR2Npskf04ZUsWo6NKw6vj5Mef5nNH+hPzRPb7zre/gemFe+RD53Ltv8/WvfIW33vo8D+4/5uHju3z7W99mvViyXq2EWX+4T1vXdG0vrLygk69uoG97siyjLEtq3yBtkQYlHrL7BwdMqgmjUcbz4ydMphWPHz6gbVs2qw3WWvwgvmER2JuMKYuc9fKMs/Nj1j9tsNpwfj5n6Fr+jd/9HX720Sd8/PFnfP7dd7h15zYRxR/88R9C8KxWG2GmpFR450TGZq3YgWTWSOhZUkQ4J+qALQNKEcmylP6XPI0jYkWgEV+z5apDKWF6EHX6WQGrxQB+VOZiDO8iSotE0mYFl69c5ZNP73Ph0g0++fgTlHKcnz5lcS7DlBtXrtLWG1arNcPgGYaBvm0gRrrBUeWlBDxgmU4qjA/U7YCPjuAdmkhuc4IWVlwIERc9SiENf0qQzzJFXTfCBNeiBOk7uXcHL+sky7IUQJWn5M9IlosPXzd0BCX3QFkWrNc1fdPghp7RtMQ7R6YDmfIM0aKCp8wyyiJj2bSsu0jdq90a2Y76X0p3dGL/6t1sf8eDi6TpviXiiFpq1+V6jRt6JlVF6HpsBs6JvHYIgUCgbpoEuEeqwvDpRz/FR/Fi1FbWW912XLxwiQvT1/nJT76FI+P9L/8Kv/pv/B7/1d//u5w9f8L89AnvvPs+Zab47JNPpebxns1qgzIv1/wWmNiFQajE4IsJ1E9qGJXYE9ronRfby61iy0aMO0AIhbCJpfrY7ZnaiO2KD2KXE4lcvX6Tr3/zN7h1+zZ9t+TJvQ9pmhZjcoauFuA4SMDNpu755MOPKAuRbl++WAFw++5DzOPnPHtxxsN7D3BDkJAu7cUvWHkUmtg5xMZOJfmz1ETeSfKvPF4avG83bfUL54PUKwqpf+v1hicPHvDo/j26rt3eBfRRhqVbQFjp5NsdA0YZ5menYoMUNR3igbpVHxEVfXCMJmMuX7vOG+99idnRIV3r+OgnP8FqxeWrF+jihrY95/7d+ygDly9d4PzkmBBPWS1O+OyTH+B8ZFOvWK8kFTw6T7upZfgIxDjQ1jU29SZFkTOdJsCvHwSUHYTksa31Sa+3rlsJRiQFgWDIUpquVYq9iWUYpDfM80wksYWldDllZRkiNJuB3Comk5xytCU/eKJVmEyTWcVeluFRLNY9zgsbWylDPzimpaFtuqSkknMxsy/rsUiS7cqbpR8UXklNZaxO/WEURqmT81lmYS+ZRkRSkuqWlf/K/Z9+2Z6N6tXz+JWaYtUM4qWuFLFby1TMaHINb17b48XJkvMm9aivnOMxRqI2DN5T5hqfFXSdT4P6dHfqBErHKKoXBCIMUcL3Vm3HptlQjcYcP+3oXcRmFvC8eWXEfH7Ocq15eCvnJ89/wl/97V/n4NDwzRvHvDOreF7n/MmtEx6cd0ynObPLFnvtkGsXD/gPb7zLo08+5Qtv3+SzW5Y/+/4DHi0V543Hm8AHHz/hrZtH/P3vPODeJrBfdnz5jYx3r2o+fhB4/fqYdy7D8fGC2f6M/ZHl5tUZHz9ZM+8aRqbh+lGBC4az9YYBw4yBNw7G/PxRTV/mvPOVL+B1xc033ub7f/oBjTM8bDI+9/VrtA/v8O1bjjtDhnvaiD+cUhANxIjzYjtkbKTUkUUr3vUi7t7akwVc9PSRbSQWLgq702jNaFSCUmzWNd5FdIRCG7paet6+d9jcMgDTKmc01ixrx3K1RmfSnDabjfge5wV929Gl+2fh5wQFg+vZ2zvgwYNnvP65d/HWcOujD6ibNU2z4hvvfJ2/+e/8r8h0xoc//4gvvPdeSvUemI4voG8Y6nXNZvNjpqMRVgsWdDDb483X36EsCwKyNs5PTrn/yS3ccCxqhSj2CiEqDDCqSmaTMV03UC87nj09p3OWvb0xm01Lt2l5fnyKC9A2zY6AtF0Mu3WU1kaML89ZmTnppECEa9OKv/43/iK/9Wtf5od/+G3+++/f4QtfusFf+pU3GY/2uf3kmDv3T8j29/joo3ssVy1EwXl6D1lR0vZrIbVhqKqcw3HGp8+W2NyCg8ENbKc+2iiUySiKkq7tJDMhrUWbWcazGa0T0k9mLZv1mv8lHr88g09Jw6o07E0nlFlGnoufiLaafBhou57Dg31cP1A3kvpijEKFJMk1ErCQZwbnJFHJDZLkJhu/FJjVqEoHlrDoiqJgvaypqhzyrXmpdA4+CshSjUoWq5qIaNqDC8xmY8zg6AaH8sI+ckqzXLUynVYBHwRk27IisswS+h4XHNZk0gApcJFUEEc8gc1QU+Y5WWaJQQCS4MFYCN4xdB0uyIHRNh0ms2gjHn3KaDHcRwAprTXPTuYyfTOQR4lAt0p26xC8yEZyi2sGDJLIUq9r+n7AWMuoKmVS7F0ymOyJUWHttgET4KrrB1yQGGcdwk4uHKJIR7WRYrxt2uQ1mA6qKPKjJNTCmOSfmAqzoXe0yX/Ce2GdDV58FkMCrZq2oyiKJG2IDE4kSSEViXXTyKQvyKTWWIuxFm00VVkQ1htJni1yYohkNpOQF5sRrGG+ajlfrlhs2sQQjBRG/IcaP2CUIjPSAFmj6HtJYrZawl2sVvio6V2gjyS5bQTnaftBJpZNLwbbXjzQBhdwwUvqpIrJeypJMbR4DPRBZEJuGETqEgKZFWZM4zxtSpBzQVIMYzRYazF5JgnGSjw7ghLDeBMjWhlmoxJtMopMizeP0TRtL2E1RuGcTD+no4q26QVgG3ppGqwlN4bSKobgRarmJHXXE3ZG+oHtBEIak10BrjR1N/Dhp5+y2mwYQiDTAl5qInmu6dpBQFAi+3sFbdOiQmTwyOfihjTpiBRWJG/LLmDo8FGLQbqSAcHgAvNNK6ltyfNGmHgpATizOCf+RNpL8m7TB0yQKVFQmkllUYPHkdG0kkRp9KsyDEm2UiGC8jTDQJ5brNbUmwalzvjBD79L3Xo2G1kvMWrqxqHaSFloSS50AR0V00nBzRsH1OuOedemEACdfKJgy1J13qGjSYe/gPPWQG7FuyMtOfZnljeujJmf1Qy9MCMfPj3ncFKwWPfMZlPKqSSnWdUym+2xaQbmq1YSTZ0XyV1QtF4l833FctXS7FuePXtCZhxlFpmvA6v1wN5khPeKh89OGXzk8uGU2w9O2HQN7737HrfuPiDPC6ZFxl/+3b/C4dHrvHj4jBuHLWf3P+Peo/tczgv6pmfT92RA00aW0ZPlJahImRWo4DicjFk6x8m8ZvHsHn/4j/5T/LBis5qjs4wrl66xf3SJd9/+Jnlecvzw56wXS5brFe997ZvUzZr1Rtglz5+c8JWvXmV/b8azR/c4mo25cTTjrRt7nHjPe2/d5Hs/+Jh337xGmRcsF3NmswnXb77JH3//x8TJmm98+ZuMZxf58JNPcEODMopPP7vFH/7RH/E7v/O7yTPkJej2KrPupTk7uwaVV75vC8zx6t+8Cu79edDszz9eeR4fAk038PTFC56enrBcrymU4vmzZzSbNYeTKknV5QdrraXA1+JPtHudCa40Rpi0wlCWpnv7ml8F9mLcvok/x8rjlT+PL/sZkehKY6iJTPdmjMcj6rphcb4QkUAKZIpKgoR8EIncbDplPKoY+kFSYFOaWlQR13U8uHWXWx9/mt6fYjIb8+777/Nbv/NbrM5W3Ll7mz/6wz/mk08/Zr1aia0FAhLd+vR2YtOaBIize/1KpcFJ1zIEh1YCGmWZYjqtGI1KCQXLxafrs8/uyOc7CDPo9ZvXWK5qnh+fyxmaGCHj8Zi2XtP1HWi49/ApmdVcW8w5nS9ZrhraH39MNRrho2Poak5Pz0RSqyNucAyDpCnaTFNkmiKXwdvQB9xOThgp8oxhEAWFyazcpyFIqqUWKVA3OPpeACjvxItW2FJp+1FiIXF6vsBosQgJWpjhIUbq1vPDn37Ezetv8Xf+zn/M6ckpH3/2If/wv/oveXF2Tm4zLl26SoyKs9MVbgiEAFkGtsgpygl93+FioBpVHB7u06/XDF4Aq8wYOTPdgLUZgSg2E5mkCROhzHK88mw2a7wXQKgoM9q2B7TYttg0HAOKoqDpelFCKJG+OucZlQVDiJytV/QvnnD87JH4d/nAphHGUZUrCmsZgsJkCtd7hqGjC5HGgUOnhL+AtDUqDZS2YQzbZgRSpG5a9zLMOzs9RyxQPLUbdutqtV4TIyx8jzUS7NH0jqIs5Pu9xxjNcr4gzy1D33LhwiHr9RJb5FQGYrvhf/qj/4F12/C5z3+D8XSMcpGj6T6xXrBZHPPRBz9gtVyjtTRnO0DPC2N+G5ghDWzc/feWmQ7i4/YS2JTzept4+wvWLsmLW/zOIhax+YhBQMHtcMEYg4sidAoh0Pc99+/ep20cPkRms5JRVbE4PWc6Viw2G2F+EthsHC7XqDhQFRuawXMcay4djSisNN53bn2czlWpiawyMiS0MrjPbJLReTAG8lxSZSMB1NZqJ7zcu18Zfmwhnd01T3ukG3o2y2HHbDaZecnut1K7uEG8M6OKEANaizrIKJ0SfV/ZbwPy+SBemT4Ebn/8Iet6jQoe5x3Gwufef4/FYsGL+w9Zns8ZTyqetC3ESFaVxNNjDo8ucrC3z+lmJcofYwRAGAaaukGFLZN4IPoIIUiAWdfRD7JOZ7N9lsslLjhpopQ0+tsz0Sf1SxOg85EBOJwaoh9wfmAyKsj6ngsHOctVy3qzprSQadisB4YAE6s4nFic72hURt14qlx6j6YPKD0QvYS7NK2sj6pwXL1SUWQi89v0kdV6ACRtPKRr8BJAUGkv3P6Pnf+6FhkULrBbE9tB2JawHrdn+vbab79UpKA9lQgWcuZtbx/S/TKrcvFP63q551TExsjFo30Wq46oLJOR5my12f3credlH4KEjShhJ1eVhDO6V16/VhKy1bkhKbmS4slJ/e48rNdtslKKWOU4ymFxUuN1oA2Oe/Oe0X7FjXdvsDhe8vv/wb/HRz/7M/75z57z1XcaymDxhacajfjet59w6cKaTx8d8+TRkh8d/RwXIg/mnrO15uZRwbWLYz76+JwffNzTe0s+OLIM3r5S8eR5y6yC05MF69mYv/Qbr6NUw9nTBR99ds6PP62JwLvXD3n07Iy68Vw+GvH8uOfCQeTnz5Ysh8i7X7jJN3/1ywzG0LlANR3h2jWLRc+ffdzxv/8P/32W/+SPWW0esN7krNaR3ESuXxjhPDw/a+h7x+WjkklRsnm6YDtEVUSIwjhTSiwbYghEIywuAxg03gUGFxKzW86tppWhoE8KCBsVDJGVa9F7OVmZETd1CuoRQoE2BlsVmJCzWa8JzqMHCYbpjeXg6Ihv/tqv8+z5GU0buHTlCrn1DH3Hs8eP+e/+8T/hrbfe5cc/+oD1puHtt9/m8++8x9e/9jVWm2MWTx/h1j2P5gs2dc3m/JSTp3dZrGpsPsGWI8bTitlsxnw+p+/6l2CcSvUfmsE5Fqs1fe8YQsQ3Le7ZE05fWLHRSHkCTTewtSza7qUvob3Eid6yyEkZD8aikIHAZJxz82hKaDv+q7//zyjDwN/593+XvpyxCIHH6zGPVguebzSPHi2pawmuInn9rlYrAfh9GlxpzePzluAisyxy5e3PMdq7yE9/8jN8V9N0PSbPOLx6lXe/8jXiEPnht/5IrDVCwAO6KDi8MGN+Oufg4hERMNkvD8/90j/h1Um9NZCPpTnbNjDlqKSqSpaLFc9Wy0TbjymFKGISPVFnhqiUGGQ6uTGdFyCwSF4azjkBrlKjIRMGhTZCPbbWpgZfJtYgpsZ58kBzzhC1om57RlWJzjRt4yEavNIoa+h6R55b8YtQirIo6LqBpulwTjwIBESSJo7k+4ESTy+lNTa3lEWeihyVmIoiJzHGYKwROYHKEivRQ4yJxhklutzCalnT9APKpwZHqeQZoanGJc47+q6naRtyY6RRT2w2eQ7wKRjDJGZiXuTkucFaMWGVCduQ/E8EtETJdXEpmUwp0uRIwKEhTRpjSg7bTmR18u7bJuB4H2j7gSyFd0ymY7qmA++JSj6DiBxkMQaausdmmRyQ6XlDYiVoY1FJ7rAtJNu+oygs1hgxxm56tILlYsVkVGBszsn5hsfPzml7J7p+BXlKqC2KjNgMFNbsDK1lz1AUZY4GvPNyELqB9aYFI3KlPiVTtX2Piyr5+shnI2Cp+B2FxMi0SqGMFPKZAh08WWIqeu/xAQork4DzxZpNL8BLVVhcECDUuZ7CStovahsaERLgbFAGXIzsz/YoM8vT5RyTjPJDDCy7HhUcxooHweVLR8QQKMuKumv52Z1HRCL7kxH74xG3Hj6SRCO2+6WiKguautmxytiVLeJQEqJnvdlw+87dNH2ViHKffDGD9xgrTBGtZf0ZZckzQz+IR4u1RgBdFL2Tteb7SCRgTURFiZfPrEWpyKoRNqnRRlgdUYEXtq9NidTRx9ToyrQ4DICxLNtI3bdyYAZNjColYAvAl1sxnJXrpCAGCqOxWlhuUjA5MJbDvZy2HchilgYfMvHVNqdvOpGXVYbe9Wz6mpjWV1XmrGoBeVVqYogBw9aTzIgsQgVsClWJUaSL0QjLcTEXbyalLKMqoypKLkwn2GzB9auX6L3mh5/c48rFCTHUBBfofGQyydk0kbpx4q/oA3mZoYIEhASdc+fpOauVSMXXbcBFS90Lc+fKxRlf/OJrTMsxJ8sl71x+nUfPH/Hu22+jbcHdW58AY65dvskkm3Lvw+/w2huvoQrPyYNHnPcdEQlQ6XpHpj3RDnjfYquCK0d7HDjNz+69IDeIDHCxYFRYvvG1r0IYuHvvEy5fGPPRn/1TvvPt/5ZrF/Z48PAWb33+V5hNDnEuMqpK2rbh+o2LlJnFFpbrl/f58fe/z1j3lGHN6bN7LM9f8NrVq4yn+xxevM73vv9jHj19wbXX3+add7/G7bt3+N53/wUXL15jun+Bs2bN2+9+mbfe/TyTvSnrumZ/up+KffUL4N4vsO12f/avQuz+1Y9f8N1DWMWd85wvFtx/9JimrhmPx7x54wajMkf5SHV4gUmhd01l5CVIF1PYwi+sbbNNsB62Vuzp3FVJWpYKtQgK/QuvbcdUiVswb/eX6V7eFmry3ZvVhiEVgYICyhmDJjHURNbQdwPLuGI0GmGzTPbkVPdJUFSk74Z0TmTYLOOtt97i4tEF/uQ73+XH3/sRh7N9Llw6pMhz5p1L615j9MuGKiIBJYn0K59HYjqGMJAXOWVRgg/0g3i+dk3DanA0GyuBVyhJfXeKzGpOzpacni+Q3AfN6dmSiONgVpHnOb2Tfb12A94FPvjZR/ReE3XGEAJuXRM1FLmhLMaJHSJBTjYzhM6Jf1VWSshQMxAxO4mKhB14ijSclVCVSFCaIXp8BOcdXQpYMVYGjkMgydS2x5BKoQCRoqqAiM0MsXcoK2dXoUc0Q8ede3f55KOP+flHPycvK2Yzj9U5jx89Y71aYVSGiAo9l65d5W//7X+Pn/zox/zwR9/D6oyhb1ks59gU9KSldEzDYg1e6i9lNFFJY1MYixsc7SCAaYxQ5iUW8YwOWDzyXrPMUJU5pMERAbJc7/wMc2soy4LCWHAOCExHJXpS8OJ0jY9Sv16c5ViV2HM6UHtNGHJ00xP9NkH35bkao5xRWktN630Cql8B91Avma4hhp2dg1wE+T6rhAGY2ZzgO7RSNJtu15yoqBMI7hiGnrqueeP1N3j+4jmrjYRvXLpwgD+LPLp3i2eP73N44TIq9GgNXdfg6oEYJEhPQA+SX7LcC3rL0g0v64NdanAaFxijUzia1DEiyU3Due16E2wMduzGVIMgzEV4CYiGEJNPmIYodZUfNrx4fo8QNOcnmqMLe4QYOJsLQFoWOf3g6X0kRgNK5F2jMmMyKokuUJUV82VHWWQYE0HppOrxYh1EEOahhjJP3t9WYUykbdP1S6w9YWDKXiZ/HHf7H0itQdhCRPJmQwhp3cln6IJPYSxCoHBDK0FICQxVvLx3Ytw+l9qlSpLq5s1iRVu3gh9bw7Wb1/naN7/JcrmgHRqePHrMZr4k+kCzabCZY//wkP3DfebzBWWR8+TJU+Znc1zfozBs1IY8z/HWpSR2qX0FkHNop3Y9hhucBJ7IgUBe2ARyi3etC+JduCXguMFzdjZQb1qOZjmjkZAnZiOwJqD8QOcUo/2KwXl01LgQUWXBqDBsVpHFpiOiGY8MuY8UNifqQO80MTiM1WmYk9E0A8tFkxp6TWYNwyCkB8GyXyJsW6m91eJ/FyN0g9TzOtntbe/jkBhHWwbg9syUaxcl2VxBZtP9ggzqtkAhCbjdHp0AvfdsOvF2NwSKMidHMZ+vaLuBawcT9mYZynhOl7JnZXlO03U7n7egFF3bo7Ts3aOyRFKNB6aTMUorCUxKZ3dmrQzMtUIXGd55TKalxtaBq/slReYoxhnLNqLOhG35//5//UO++t67PH30kHXv+Y/+49/ju9/+AV/75q8SVUt3esrgzrl/+xZ/7W/+Jg8/e8wf/g8/4vW3DuFE87mjjJuXLC+eLeldxrNlw8FMpJ5vXfLcuKzZKzNerDsePQ2MZ3ucn7xgOtrjxSbj5w86jp1ilCsencx5vnR85bUpPjpmRyVu6FFBY7MGh+KnH9wln0359M5trA70/cDZsOD0h3P+y+khfQ0xN2RqxNivOZzBlaOKj++c44LDRXi+dLyIa9oowUs+ulRPCPHDJDKB0RqvFC6KEizESN+Ld58MgeLOo1RrjTaWqtRcunTIarlhsWroTkXFJTZlMjyKiNS3Go2pplPemO7x6O5t1vM5/SAqvkcP7/Ps2VO+8tW/gDaBWx//jNuffoRSkfniMfV6yd3bn7JY19T1GYv5U7rNCeum487De3z03R/T1D31sMa5ljduXObGlSN++OKUB7cfg80oC8VoNObkxTmbtsP5gNYSJhhiJHoJm3SDBLtEBS4EbNAoLeGrWseX9jH9IEsibgPfXgHHowyCtVIpSVpz9fIRSmuWqzVBaR48P+PBs1OuvX4dGzLO/+wudx8+58XxGcX+IatNTTkZsbc/I9/UtKs13ic11Q48lGqwspq96YRl0zAuLHHwvPf++2RFyU9/8H065zHaUoxGHFy9jOsC+WTM0HX4IESV9dk5i/kCfODJeimKRf8/k27+r/n4XyBkQxGUGOOn7Ut+3U66I5ydzTk7m8vmFOIuYUgSQFNylHdoY+TgSl8rwFi5gG5wLw24lSLPMgbn6YLEbVtjUVHkdspoSKl/Kgr1cxkaYS8rMfOPIWBzzagsiRGGJFvpBynwu1YYARHEV815UIYsk3epogBY4gFCAtEsKE3fO0ajEUUhE8k8z1NRIEWyQop8kaB0BO8oy0JYdYDOc5Z1R+cDeZbjY085ysUMuxtAWUG5B5EcjcqCtmmkqdGa6Jyg1WnztSZdZqVRAVSIhMGhtWG1aRM4E0WqGlwyngy7G1nOlgQ+xECRF7RZ0r7vmsOI1lvfFDmopSkLlLmVBL+oaNpBPA8EZpe0HCTByhiZAhmTZttWJMxZZhhVFf0g4RQmpeU0raeuO7l+aeqvorybVRN5enrM6aKh7QYBazJDYY2kQ0XoOrebAsfomBXVS5mZd2J+aSyLRY0j4pD4+qYbZCKuNXXby7S8HUAh/nWvsA8zayBJC7bNKbw01hWGhzQ1hIGugy4x7LSCUZUMN32qFogQPMrmGCWJbcpYCq0ZCDjXYnNN9MK8mJYZRvcE57A2Ax/JlCTmtl1PVMLaya2mqnJWiyUXDqe8//Zb3HnwUIr31FgQoes6ZrMZTbrfhuAxRmGNTaxPqWi0tWgG9LarSknLUqzK1FtYBpFRIcCgx5MpS5Ubcqtoup7eiWSJGMnyAnAJYNZyOBorUtreMy4NaJNCfzwhKoYgh6NzHjuytCkhOsuksSozK+mRiflnbYZzAzF5nJgsE3DbWOrBM6sMmVV0fUBbRYyOVd1hlGMy8ozHhn45sG4FGJ5OcmGdKoPNLZGOw70ZTRMYOo83GZaI1XL/huiJTgq/PDciN0v+htZmKKT5zqymyiTkpB0CmwEuTC2jUSGpTd6xXNVsNi0n5wvm85a+b6lrx5ULU3TsWTnNatMyDIo8t/jgsVaR2cisqlBB8ejphqH31IPIe4kCgg5Dz40rFdcvWJYnZ9xf3GE6KXj95hWuX3qDv/0f/J/45O5t/q//l/8zjz79U5YPf0o1nbA+e8K3b59wYZYzGWsUGSdnHUUutggmL7GZZT50nK6WxDjgjEmFqGa+rDEqMJsYaJ/y9IUkXj99fJ+6v8u6brj49a+yXzlu3rjCowe3+cavXme1WjCrJmw2jvnpU6Lv+fQnf8awPuHDnzWcHT9mv5rw/Pk9rt78Oras2AyRX/+t32bz/BPuPT3mi1/5FTZDzacf/oy63vBXv/A+IcLR0UUe3n/Ab/72bzOuJrjBia3Ergzfgnu/6JH3r6bjwZ/nwL3K8oi7/37JfAgxMl+tefjkCfPlgq7uuHR0xNVLF+n7jr29GTYNV9r1nLi9tzLZF7cyMq3NDpzcBjdsvUESyVQSSpEmSP1LhsAvi65fnK7Gl4ADW/CCX0gcdoOwzUmyvu0cwRhJMpckQmH0Nc6/DG3ajoQTqBBVZLlaY4xm7QYuXb1M1Iaf/vTn3L//gL5pWJ8teHj/oby3SEotjQK4WM3+3p54vDYtW1Bzy96ISC0jNUHg+rVLzOcLetczmY7YrGo26yVHF46YTqc8vP8cH6VRr5sO8ZAbyIwMKZUyqBjwUSbNmUmpbOmjDUPDKMskBbaX4nCz7ijKHBTUjSPPLH3fSzFsNAYvQVpKPn2fvHmN0dKoKpWsDIQ5H9AMXj4HFyIgdgYqAblimSEg8eDBa0/wMuSsCs10klEUBVFrlpuOo8tXePr8KU+fPeQ73/kWFy9exJrI9WuXIV7hs0/vMww9wzBgCkM1HlGN9rl+9TXuPXxKNZvy+//bf4/l+Rl3b91GDR39ck7biAdi1IpAIM+sBJ7FSJlr8bUKkU3bUhYZkUjX9kQsOvPQB6zOCFF8+Kw1zCZjSUnteqzJKApDXW+IQe69YehkyEKU8y1TnC/WGMRaZZQbnFOs6o6j/QrXthR5Rt04eX+ZwaqAG16CWMSXHjwhBkzcytOFze5SDboj+Ojkd7udgKa/M0YAPBUdrm1R2hDQjCcTsbRxLUqBc+LZq23GfFkzmq+oO4dz4id0tlgzqiacnp8wtRVDv8TkU5abhoODPc7PazwBVEAb8YRtmmEHSAgQmQBkFbEpyVil9S4+dNLEqrBd4mnvks4MhUpev1t5r3rJLlZbv05ZgyGpYYwxEET5UmQ5qCh1QvRELCcnZ8kT2JNlRTpPDVpbYhS/xqYd8NoxUZHGKdp24Px8DRiMlVpOK4+PwkgryxxrLHXTi+1KbmUQh5a+gIDJFIXR9F3AGCirHJsVnJ2tRNYbpV/RShN1ELP97fVGUlS9D2n4wY45Za3I7WUwHaVuRow+dqF3SeYc4hZUBhUjvu+FpWsN5XjM+OAijoLnL854ev9ThuUaG8ErqbPzqmA8HbF/dBGVlewdHFHXHZnNRJYbJeG173upyRK5wlqb0tLNDoxVSpHnBdpaRuORKCWAwbV0TS0hMiESnJw9UUlvYZSi7gJx2XNpX+H7gTyDvUqRHU04XrgUvtOJ0sQqYnA0fWDTS4CZ0pGyGlNZ8K2n9R6CZ2+S0YdA23lWm4G6NQxDlD0zCkvSJbUZUTDbLfguLFVD2Jkwbs+5FKii5LVLtkayRnnlLIRIZtkB1SYFRQ7ek2VbG/4or8fFtNe+rAOGdC4XVnM4G9P7wKaRYMvxeETvPXWrGHqXzm+5F4wy+MSIIqbOItk6EBVZnstZBzRNi80tRV7ivGc2m9F3gdGkoFkvmBrPG1cmPH96TO1gM3jyLBK95cUqkOeeh89X/PjDEz67t8L1Pcve8+Pvf0p3vmBv7xInixOyxWOuv34ZBsXDO09Yna/45pevYHLPG792jUDHw2c9P/r4lLMWblyYUBSBKot86S3NGzdGmEuKD+7P+fx7l/jZJ8ccPyuw9jm3TgLHa4/ykY7I6SJwswJfNxzODJOJ5U/uQh8jX/7yO9i9Cav1gqlSFGjoHEcHM8rxmPl8xf27TxhVOTfe+wJ7h3t8/P0POD5e8NmHJ2iviCEn146qiHivaAcheqgoIt0dszkEjJXMADcMSYqtsZEd0LVlcOZacflgwuAcq2bg5vWr/Ju//2/znW//Cz788Ye0nSMOHpsVGGMSiC4BaH3T4HygKAu+/qvf5OTpC2599glh6Dg7ecE//q//C3724x+wf3DIeDTmq1/5Gvfu36fIYDwuRKLdNeS+4YPvfZs//eM/QmW5yGUXSxSajBwVDXduP+L85JR+MxBdYGg3TPIZvmnxQ8eotHgDQy8YivOC7VgjjPsh+WdqpYWVn4Au51UaqCQykZH1tE21VkpqG7/dE1OBXBQlru3Z9C2buiPEGmOE1b68/Qg3BPpOej4fBqpBfEI36yX1s2fs7+0zOdzn+bPnQqxJLHOVLDWGENg0DU3TE62hfvCQ23/3P6cscrQ1XL95hWePnvPo9h0WJ8eoEKlXK668fpNrn3+PD3/4Q7rTU8Iw4NP5HGMk+v8/CNlY1y2L5Zq92ShN9F96AAEsVxtOTucE53eHFEqCBQY3oLQmMwaiYVyN6IY+yWaFsjv0bSqstoa7MrkTqaksnq4dyKxBaVkMwuKTQz+ESJ5ZijxnXTeUZUEWJBHIZEWSgxiUEu885zzBCnDnlKTJDFsj8URMiAGUsWiV3lNwIslF0OhhEE8caw15XjCZ5LRtuwN4vJfAhRgD1lqsD+IVEyNKW1Z1x6ru5EbWMN0bo2JIKbzisRIZGJclw9CzWa1IljoCFJEMOqOYpEqysHjB7YBTY5K3kExEcwOp4kApQyRg7JZOrlJBZHeT374X02ZjhG2FSZ4pwJY2q4y8p+A9Vy5f4vx8vptakKaxbvBYq3evV0UpRIwWQChqQ98PCXjxIsN0YmIdo6YoKmymGE4XNLWnLCcsmw2n5+dskqecNZrMyn2moqcfevn5xmAyxF9tWjGbjlmuNvgUIhG1oXcyUeydk6RBFG3v8D7Q9S1tP9C7gBtc2niSvCQVbuLvJ/JOk5gFAhxLAWSMpm5bjDWMRyM675O/TiTTFucjzntyk+NSoIZBYWNkf1wyGVc07cAkzzhtO1RUHC+WmBBxfU+fWXT0OKVRQZIHX796GathsaxZbHq65pyDwwk6QKYzVuuGF/M5dd9JcRJhNJsQHIzKnCvXL3N6fMJivmScjVhtNpArDkczxkXFi7MzWtczKjJuXL/ByYtTumaJiZoqt3TOE02k6T3DICle1goDD6S5HNqA0ZFxZVB9RGdavBeTlCKEgFPguq203ND0jt6nhF4ncrQ8MyJ1sJrFpk9ybChLSQcdjSybjSfLxE/Sp2YkN1Y8MKPcPwLiK4IHb8BHTdt2FIXBB+iBbjnQ9pE+KnwKbYlBhhNVLodXlef0fc962WMzy6re0OOxmcZmYsrsfMCjhTGkoCwzht4TgwclTM/gA4MOFLmw++YbMQ/unKNrPaPKsjfT1B786QKbZbz3xj6H+5rl0rPe1PhBMwyRogCUpyiElagVGC3p3tNqRGVz7j0/QRtLGGBUFYwrTzUqWKw9Qzdn3W14883L3Lp9n0uHb/Hxh59w1ooh+YvlOR9+8glfem2f65cPWLxoOH2+Jj8as19UxLGm7b0UC8PAxFqslRRLB8xXLesOtLFYGziYTLlybY8X5ytWtaN3ltN1S9u1HE4qNps5jpw/+8FP+Gt/64s8fXKLRw+e8Mabb3N4uMePfvB9lqen3Lt7hy9/7Rt8/su/wj/8L/5zXpx/wBvFPnY0oY9w9cZNPv35j/nC5z7PECx3PrlL1IqvfvmrnJ6d8+GHP2U6PeDpg1uMp3sE11O3NdF7Dg8Pxdhe6TRN/fOPVx32fvHxPw/qqe0GL19vo2nj7hdCjByfnvLBhx/x/PkLvvLl97n6zudQXuwvqkzDMHBwOKUsCp53m5R6KcOYLMvoh2EnGTIpoCaE5BCzbWpeYdHI874yBNi+txh3DdH25cu8KPmMpVe9Y/ZtD9fdu0k8QMWOjWLs9lzSZCYTL18fiXr73OolEIJMyTUatPhhtk3L/Tt3OT2Z0zUy2ApEUH537pCGWZFAnhdcuHS0k6yenCzp+gFFYBh6JuMxfd9SVgXvf+FLXLl4kaoqqNcbXrw45kH7gGGIrFc1fvAMvcMag9EwHVfs7e3x8NFzYXApy7gqmVT5LwaXREXveoLNCVrknZ0LtM6JOsArvOoTOCliamUGsgij0jIqM+p6IGZpiKoEvPVOWCYuSo3jlSIahesDzolPoTE5LhlLhxCS5QFoBspRSRHELqPvoSgyqhKuXN4nBM/5cklZjfnbf/v3+eGPvs+Dew948uQhtz/7hLzIORwdcfv2PZaLhbwuDZNpzt/6d/867RC5c/cWm+UpP/vZh1y6eMR6dcaFg31WtQRM2UzOf2G4iDfVuCxRVtP0PXXd0PUSyBEiZFmGyXM2mw4I9E4CLYosYxg8k1El0rUg8ietAhYrjHkiVZmjjSBsMXknuVbO4jxXVCqwP8oYjcYsNw2LVYvzCDscswufEnaO2CGgUsmVAJmootzraW1lWU4IHWyTANOQ0DtJWVdotFFYqykyQ9u0TEaakYWu95QWXpzMRTaZ7qfRqBJZdl4Sw8Dx8QuKrOTC4UW6viUGR9sFvFMUxYjT+Ya/8m/9Lu+8+yV+/qNv0WwaQAJKfAgMfSQ4UZZEtixcUgMr699qk8DM7VoX6d8WlJckYbGFED9IvVNqxJ333nYP3AKbskuY5OWnFKJgCIGm7ykyKyF9PgijNdX7MkhQyc9soJDClyE4PIGuhScvlhR5weCVeKs5T1CBzIpFhtGKzEqzOewG6ALEBeWxGGIQc/y8kOGZUj2TcYnNNKt1K8wuhGki/sZJvrdlhmz3sK1f487PQDF0geCdDKq3noRK4RMTdOd3yLYPCGlQk/Y4LUb/0cDsaB+l4ZOPPuD0xRMWJ2eYBCxuk6kNiuV8TlP3dENPu9lgFHg/UJalNNRR7Gi20rsszwGY7e9RVZPk9+UTqUMG00VR0DcN0fUM7UBwUmtJwi6Y5DkcFBgta09rjVcGZQ2ZhXGpGdqIsoFRlWOU5TDPODldoFzHps1ZdlLbFCaj6yLLpcjpitIwmiBrZ4jUuWGtLW39Uk6tjWEYvAy5YthZE2yHXxKyEohB7ZRFW4B2q3qRW1ZhDXgVif7lmS4Y6quWMBGd3ldRGGKI9H2UmnaIbKXeWW53/bZScOlwH63g5PicgDCPt4mcT+YddefJs4wQJTV8e4NshcPbkz1GhNk6bADougFrNZPxlGpUsVg26KxiUmrWizn1pmG2bxn6mlGV065bQllwf16LzYSyXDuqmM3GrFYnPHhxzv4sp7SRg8pz9eol/u7f/yecrSIH+cBf/lrNG5cv8+FPP+DwwpjLR0f8yfceMq/POPeGpodpWTFt13z93Zx7z5aMcsvrN65yevKCTx9s+ORJ4N23ZjhKHs97ygxm4xy7CQypVqiqnF9/N+fJc8di7fnkWc2zOlCNLbqouHhwlU/vP+DOg4dszmu0h/2DQ65cucb8/GOxymh7Xv/c+3ztd/4Nvv6bv8cf/eP/mh//8Q/RIdC1HbPS8PaNKas68PGDcwhpDLoF90jBojFKqrtKcmkNe6OC3sGq6QnE1B9ZdKYplKUbHKvzM/7g//vfcXJ2LpYDKqK1JctLjI7UTZ1k1U48bbuOe4sFQ12ztz/j+ms3KIuKu7dvM5mMMUbx+OlDZuM93nz9KtPpiNl0xntfeI8Xz844Pvkhdx8+5ea1Iy5fHvHg4VP80KOUoN5KaTQa1w10tQxNjNL0wHy14ehgwsUL+yyXK6YHU9wQWcwXxJg8g/HpPBAyUEz3n/OOrZVpCBEVPWVuyLJ8ZznmBumnJ+OKYXCs615UWUTatkd7T+9ksNQPYguglMZvOpRSwhoOwirfrBt0CoYyRrNeb6jKUuxpnN+tE5SozLoh0PcCpvbLGm0UxiqR4OoMry35dMbIGtanpxil8BFGe/v89t/4t/nC17/JP/7P/jOOH95/BfZ/BUT7JR6/NMDn3IC2Ohnlhh1qGiO03cDp2ZyQABs/RIzViVK/NYbVBCUJW4v1RiR6RuSlXSMUdLRGRZlID8OQ2BEvpyjrTYvNLFmW0rpCFOZf8uJTQJYbskEKkxQsJ81snrNat5RlLlM0JKEzt+L/pxBGmfgoRGHHpN3fWAtRDnYfhI0WfSDLM4xOAQWpucispR96NptavLZQ6GjIsoymaXcSjbPlhjpJhaxKUoK+kwZfi+eMSJEDbdvR960EOKCJMQFHxiZQQposFwJD79BWpLlFWQAR3Q/o6MiUQacCIISXVGApQANeeXJjcYNIYIP3VFXJerVJRrN+FwgSiMmPSA6ywQU6JL3UJC82Qee3Xj5yr4h5uxHzzRTEYYxh8CEFrnhIxtIhBHSWkeUZXS8ecmVVsThZ8+j5M5reEULyTlIIvT5E+jAAjqLIya34Fe6Nc/GNtJblcsUQRCptjWHdtixrYRw2yZuic462HaS4HQZh6iVPokxL0Zdl5mVTmqRneW4lWKUsiEYO0Sy3OO+xmd0VqV6ccKVQ00o2owghOvI8wxjNKC9wQZqqo6M9nj875dLRDN0MHJ8toB/wVpLk0Bk6ydQvH02JwMHhjKHveHrvCashoHzg7HzNpu9w2nDn8QtuPX7C+XqFeBwLS86g8GHg1me30iTc8KWvvMfzx88Z+p7XXnuDa9df4zvf/RMePXtIOzgeP3uG70MyPg90fYc1IonpNOIhqLUUyjaxhoImywraoYcoYRyDR/7cGpyXe2x3SKbJtM0svRvEMDlNf3uHmB+HiIuR2ThPXpLSbA+LlpCYlzGIBDYqg0ZYtt4HlEnmqoOnMwJ2GJ2j0SINySXh10dRbtVDQGnPuLD0rSTBUUSsCYxLg9We/SulJAb3mq7v8UHkXVVmJNUx+WECuMSWsUY8FLUWj47eexhkL+0HUKaUvdIq+gjrpsX5wCizKNVxZX8fY+Q9XD48YPV0zmySY3Mj7NpmwDmFCx5UpCwzCmO4dGDJbMV4NKHedGzagdYFFqsWFS3rpmY8yjk5XfP09AXaKL77J/8APblMnls+u3vKF167hqPjg5/fJzOWaZ6z2bTETBIxnRNmBF6xWbcEJEm795rNYNj0PUFFtPI0Xc+Lp+cs6g0+GJloe884L8iyjCfPTzhebPjy1w+59fPvcO3G5zh7/JDHd+7w5W98k2s33ma8d5Hr7/0qN268zmQ0wfWa03nD8fEpN98ruHbpMsPQ03cdf/Iv/jnf+NXf5srlC4yrkn5oCUHz0U9+yBtvvEVRjTg82Ofxo3vYbMRkOiXSc+/eQ4pixOc+915qBOSxBbBUAtdemq2/LLZffvUqELgtx1+CWfK34tv5+NkxP/7Zz+iGhtevX+Hq4SFH0wnnp6dkZQ5WBl1FnksRlYCkGCIBsQrI84JIFBaYEg+gnXWEjBZfSnlfOQu3L3IrORJAUGRLPm4DlF6tHLbv4ZXEnKQBeBX825bC21nmeDSi7Tq833r0up0lxO7TiWEHXAIUec6Va5dQOnJ+PmcyKnFdLw2yismfSl6TyHMtRZXhg+P89BznB37t13+Nz71bcOHSFf74D/+A588eU1U5+3sVy9Wasiz4+q98g6tXr9KsVvzo5z/ldHnG2dmc+WKTuj2ReX7lK1/EGMXHn36KVh4XHCZC38MKz+HehLZpaToZ2AhoosiyAjfIgCp4mXgrBS6l4VpjiTEwnYypm5q9vQk6OJx14o2HFdZN0+IRYMI5Sa13IQirPJ1/SkMMAZVkg0qLxQRII2pyS1839I0wPnun6Fct/vELstzy+ptv8/DZKf/0n/2PnJ+fgBv47LM7jKqCPB/x/Nk51hqRtQXRf9R1zz/8r/8xUYHVMAw3ODqccef2LXKjWM3POZiOUdGjlCfTBQEBhghy3dZNw4AMSIxRKANDP4jHYGoehj6ZX2sx8S9sjusdg5Mk3MJqSXyPA4WVOqVrUqCbsfgA3vWixkjy5lGlAcdyPYiRt1HpnNJkmWW9crggDYO1woKOg9ux0wa3rblUqolf8bNT6pX1tWX7CFs+ovFBGK/GGlyEosoJsSU3ySs3sae8gqzIMNawqeuUOqyoyuT7W/eEXJHlBqU9XddTlTMmk33G44KjSzc4PzunTN6NTTsAAWOhd3EHKm1BDVmHiY5IsgOIUk9HhHX40g4gvuKtK6CFiioNevVLoGu7e6R9RyefshjSatfggsd4GBJTEC1M3M2mZnADubWs1msJstKazkl9kecZfRtYLzuUGV7OUJSMG7xTECI6F6WJcx7vlQSTKRmkxyjMLb/1I1QQ/UCRa0J0tC10rUs90hbQi7vdcCvf3Lpay3tN++XOrgBIfphpm02MD6mDtgMWENXR1jEhKjlT8zwTeX9Voo1iaFecP39Bfb7CD0EABWO3uzlt0xHqDYdHlsIojp89oSoKprOKPCt4cXyGIiPEHoWmyOQcXq3X6LbD2ozei6/2ZDoWBUVRUFUj+rZhNJnQNjVukN4tzw2ZTay1EJkUhlll2J9WuL4ly2G1GlBFxrobaDrN0DvOVmuK3DANsFeV6Ex6rirP6YaBwTt8nc4nBfPlQFkqDvbE8snGnkwreuPQSQppDEQvoWeNl+uilbCsrdGp/5G06O35GHdrNV2f5C3oY9x5lKtEBglB+mCvFHmmmc1yMuPQRtP1ga5LoUHDVnYta2wYXFo7EZtlLNuOetMQt+ymCE0vgYMhbsk1cs8qSB6R6dxUil0gQdyGACXfVS+BkaBYLltme0coY1hvlmw2azJtWKwdm0aIDirAWbvBB4WOkcIMHM8HnrxoUD4ImFoPRK/50588ZzotmIeM82ZNlZV8/WtvcP/WIx4+6/nOhx3GLDmZtxSVJmrNG9cv0m1q/uI3bpDbjveuTdGmZk+d8LUvX6ZtnrA3cXxw+ymH45LXDguGJnJhBvePAx1i+ZUR+MmDNRs/5koVKIuMAx+5eOMSXfR88uAuRTaiPlngO7H92WwaTk7Oyaxis1lz4Y3XaZqO//4f/ROuHBzg+57RSNE0Cqci8zbww1sLAhGXLBlIbPgsM+jM4to27Zk6SbGhKjKuXD3kxemKTduL8qywtJ3nfLEit4aiNNRNQ/v4CY6kAAg+3a89XR92JBmtNF3bkuUFfdfx4O5dsaBSmiuXr7A/HeFD4Pnz5+zv7/HmWzf57JOPuXv3AWU54WzR8ru/+7t4pfjRn/0pl69c4/nxc3x02ExTxUIYis7Rdi3jwjKuCk6WG4IOss9YzWK1QUWF6yJGB7TVVFVBZj2xloRhbbbqNpfUDmmDMwoSMzoER1CRwYt1hPcCLoYQWW/qtK8mrIFAMwz0bqAsip1dxHZYJFYlwpDWuz9P9WciJ/l6w3qzSQeBSr+H1Huq5IefhlopcNJgiCpi8NSLc0YHF3n/K1/jwacf8+zBQ0aTEQ7FyfEJeT7ia7/5O/zku9/i+NFD8E4UkPzyj18a4JvNJswm4zSKBLYNR4ycnqXpIYo+yKTYGI3RQZpelUmi2yBmwVIYpSlNAnRihJikpyEVQ9sNyRgrbJcQWW9a9vcnAq4MYni8TeV0wWGM+OI1XU+eV4l1kEwYraFuOnluo6mbniK3jEclEGmVeGtENNH1MjXNJKXXOy8SCInCRCsxr87zXNiEQyDmuUhbdIHWmr7rGVyKQg4CaPogAGfTdGhtya1QtZumoaoq0J6+ayT4wgXWtZimqgBERd/3RCSp1+qXLkgiY5CDPYRAnluatqXvJQEtz6wUyNGnBNPko5fSAre+IT4BuQqNNZZqPKbe1HgfyLZTN6V2IScq8SMU4F1gvampJhM2TS/MsnTNSVPC4AOt97t/75yw5EIUZF6SY3MyYzC5Jq/KnXegi5anJ3NO5w1N10uRbKzIqJPszMnVI7MaTSAHRpOM/b0RTeOYr2vaXlJe98YVQ9vRtI51LQEOm1a8wupWjIJFGiGefmUmU358IM8zgnOSoNr1hESDd170KH0/YLIMFeRaDZ2wlEySu26aNl05kU6hZTq/TSzOsmx3nawxPH5yTFnkjCYlV0cVy9WKX3//Peoh8P1P79G2HTbPKTNDX/dM9kY8ePCMwQ9cvn6B9cPn+K7j/Xfeprl1l4dPXtCva1wMZFv/PR/om5Rq2AmrVAFVPqI5b7l++TpXr19meb7m+dMXBB+oyhHR9wxdT6ZzrJamUWkxHd6Z8htQ2u7ku5eO9jg5PWfV9NLYB5FCOxcxUdLEBiepRCYGRnlGMclZb1raIeCVZgjiJ2dNJp99olRbLR6bZZ7t7tUYAkWRpaZZ5PMhiAy2H6R5NUnSiIIiy1CEFOKiaLxlcIHMGNrWg4VSRaZVSt4eJJxkvnHsjy3aGsa5ofOKxjkW605CXELAOWHkGSXA/OBSItsAKhg8gSZIANCk1ImeDnsTkWvn1rBeN1hjGZcZGscos+zvFfgYMN6jcATleXzasm4CaOiHSF7kuF6YGDrTGJ3TOVg2nubZuVgw+B5UYOh7tC1ZrBvarsWayP5Bznq14d03XmdvXPL46W0Wy0/RwaNcy2qxxHeK/YNLArwOLYdTRbdqySyMMk0ziI9r70W2oHXGvG5ZbgTwy60hzwyGSJ4rDouS1UbS6saF4dLRjOPTOct1h4+R+w9uMyqPOJpd4eLhIXZygaKacOHyNaIdc+nyEZVVeD/noPRcOZyi3JJpCb6rMSqjpOXm9Stcu3LInTv3UEPOxatXuXzzBhcuHPD9H/yA0XQfZTM+u3WbN975PK+/8xYnx0/44MMPybKSt958W+TlyS/kZVrky0ZOv1JY/OJDv9LqvZz8x/gSEBgGx4vTc+49eEC93nD1ykXee/M1Lh8ckGeG/OIRi9WaPM+5dPECQ9dxvphzcnaaiiGd/FACzkk4U14IkywGj8pTwMy22IrsGDbsWAqvgBAqSVyVTv5DmtFYgE+bWRbnC9brDSQpbPTy+076oH4R4JS1CigSmx4GL6wJpXWS18vzhx01ZssKlH16Pl/Jc6rIbDZjNJ5QrzcS9IROthRJVqxE3u+95/T0jEjkn//zP2F//4ArV58Sw8AwODZ1zZXL1+m6jju3b3Gwv89iMWezWfJHf/AtHjx8iEY8i3xKOXcENm3LX/rtv8zz0zPOVw1GWXwU6eBoVNEOA3XXoZQMuRh88lwTBt+Q3ndR5ETvZYBTGGyZMzho24HgIpt1TW7k3IjOkeU5Q98Dgem4QinNYlnjknQMDN73aKspikyAQ4QN7ZNkzqVa2/lGwiJQKVmuYzwqaHrFZHbAa6+9zW/85u9ydOk63/vuD3jy5GO8c6zWDatNS9t0aDQhCOtdwJ7AZr3GZBlNHPj4o88wiPVKtJqIQ4fA3rSU1NhBws9MFqn7gU3bSF0XAlrZNAzxFIU0DsN6IDjxOfIKipREn1uDDz3jKgdUkoAP+CEkBj5UeYEG+r6jSmvDB09ZGrE1QUC9ug9i32AMVSnMrcYFeh9xXu8GXcELUy2k0C9p+kUK71Mt1tQiCxf1emTHHAhb6EUliFzu3eBhUztcN2CtwistMlSThmEBFvMVVWnRRExeEJyjaRo2mxqrX7KVLl+8xHK1wDrPRz/8Do6KvdkeV69ep9msabsapTXj0ZjcBZwTKXPYpdHIXhcSA34rQdTaCCibWPE+nekWqeljAmxjSjzc/hwfU/aklIcvgc4YxZA+DeMza5M8U5LA43afAKpRSTdv8AlojXi0McyqMc63FDZj49aAomscJjNUI8ty3UOQ+sSHKHuQ04k5IgO4aCD00mArtQ0PUfiQ3oeOuC7gnCYk2xABJl8GL7362LV36uVv8eWxIezHLYC423dJcv64++8QAraw2CxDZ4ZqMqYqC+rlhnFRsjo549n9R4R+2HlpK/Uy2ViICAJkvXh+nNZsZFh3sD/B7GUE5RmPZ9jcUq9rmq4RhU8Uj0JtFLkWO5EYIjbXuGHg7pNbuL5L0mIBlUKIeB8ZVRnjCSw2HZNRQWkCZR5oXKRdOw72J/RdTesylnWNj3A0GzGe7hOHCGFBRMCSpolok7GuXWInekZVKfY6znI6HwgOrLZYq8msvOaQQu8yY2lah0KA55D6GkjnIGntpkmR1ir5Scp3ba+vsIPTv03ocUhDh61H5TB4+s5TlRltC4OXnzG4l7ZXwG5tbHvl1XojXt8JJO8HhzEZ666nKAsCkbrzbK12lFIim1dicbAbuCl2IIZOdcowOIKvKYsJhbVs6iXr+RznB1yM9EoEXGLVoRhiSg+O0ps7Z5kVist7GZmFW096JkXkwoWc8waez1d0PtDPLP/Pf/B96jMIozGnw5yxshxMDLNpwGQZz46PuTazXBwVFDkUZs0Kz4cPDPPNwM/vKi5MK/rGU+rA/Wc1b9ysuPFGhbvT0PmeCyZw48KEroGucfzFXy35g496HjYNFw8qegyf3rnPMHgKLZ5q665l1XZMjy5zeHiJ4fl91ss5tz5eceXyddZGsdm0eKNoXQ/KopTDBSWD6cyik4+jzSyXXr/Ia6+/xkff+4BN0yVQX+yc2t7x+PEx7RBR2pDnRpKfowRijquSqiyZr9a0vfiPFyYj+EhuNYcHh7w4mW93jZ0yoe+6HZBlTUbXtTx+8pAyz9nbm3F8eszp8XNePH0q6985mvWCR/db/uHfe4CKMPSeu3cfMF+f8tY773Dzxg269Ybv/+ADFvMFuTXE6MRJPPnETidjur7j4MJFzo7PGGKgS2QuUQtpUQs6GfJEwKWaT1vL0cUjrr/+Olkxosg052dnNM2a8+NTFmdz8d1UEjyEIuEpsg+mmRI+Ruq2k6H1dgAVSOeNQeF3asXtcBmVQL80PIpR+u6tAkW9Yq0Rkf5SW/Ho39pUDINDDZ6+fcJP6xpjM7oQyGNk8eQx/+g//U8IMXLz+jVuvv159i9d4/mdT6nKkqIc/Uvnwr/u45cG+IyW9E/5SLZeD4G2c7S9bDL5Ng1Ea6LrKPOCvYM92lYaP+eSWXfaEHwQ+YlN3jRSGCQjWqWENajlefLcMvgoCU5tj1bCTiAFbyT6DSrK9GBwmsH1lJmVIk2J14lX0HSOvBD2XdM7qlxT5JbpdMzgAk3bYcsSgoBaQy+3Qte2ZGLqBUTKstix+wRseik/KlLCrvcp9ctJmu/p+QKvxBg6N4rgeoYonn5tL0l3ZVGwXq6EfeEkfKJzonNXOlIWBXlmiN4LuBnTQaCkcMvKTArdwaFtlvwelKRx+S2Yp3bXMKZCQiHApU1G60Pf/8IEcqfpSncBW2KHigQVCD7QrDfs7U0wmuQrFLF5RkzeLM65FK7ATvKQZUaSaL0crPv7M1SMiOLNUGQZJ+cbztcLFusa0BJCEEPyxevoXY+0IfLajVbsjXIOpmNCcMwXNS7AYtPsJnDuPLBa1dRDoG572rZLFGjF4DzOezJlxNMO8VbxA3gCRimaPhAQ0+4hCIA9OJGWZmhUlAO8LDICgbYeGPxA3Wj6KNcVJ4WuyXMyFbly4ZBnx2dYIGRS0I7KPMl9IvefHsvk1GQMQXH5YEapI6vk71iNS7q5JDw3raPuB+4+fM667lkvlzw/X7Kse7peJp2DC4kJECUFTcnVVREODg8o85wyq/j8+2/z7NkLzpZLvIpsugXXX7sAjwdOj0/J8pKrV68zP3vB0G0So1aa+iwzqXGVcJPgE9gRpWhGC7um6TwKRWmF6TD4SI7INjxwumzonMNYi1Iaa8W7qveOnbQfkeN5H3CtSI+npWU2zulcFNmHFsYpWiVPCCP2Aem+3krddYgc7I9o+p52Ix5X1gLe46Pm8tGYMEiaX5lLQR8VVJnhdDkwPsoojed8vSEiMkh2bJBAZiNtLxNhE6EqNXUzpJQ5GAboLFRWMS0z8J7J1FKYwGivEDP4QhPRtLUjqkB0jk3b0CrLJw9rGp8znlRcuLjH6cmC+aoVCYiOHM0mIudUsFqvcd6zNx2zGTxET1ApldOJLObS0YhJZdDBkqP56Qe3Wa48Z6suSZMVz9Y1+zHH5p7f/9/8Bzy48yl3f/xHZECuDaORpl/2eCLKihx707QUWc6F/Yqs7xlPRxA9m03Lphuo+56mDaANRaHph56rl/fIipZAxnh2xNtvvcWma+n6wDs3b+I3j3n6yWPuP3jC8tIRFy9fpK5b+vVzCpvRrVd8dusTXnvrC5RFKb4nF/YYlqf49YLbtx/y9NGU0f5lLly+zjd+9Td5fnzM48ePee21N9g/mPLjH/4IaxUvXrzgr/6bvycMXdhN+V4+XmnQfoHd9uce23+TmBxb3xKlDZu64bPbt9g0Da7vePvNG7zz9hvsVyOqItu1Tn3fU5UlfddRNzXLzUqu6/4+RVUIIyAKayuk4YvR4nG5ZQp4H9iFb7zKUkj4njGW8XjEZDpmf/8ABRyfHrOYL0QmFzyDi0xm43RORA6PDqnKgq7rOT2b07UtQz/8QtKg1ioxkbaDnxQclJg1Ys3h03m0HTG+bIT6bqDv5kQk8X5+vqCqKvIio2vCTiIYVSDLLQqR2IRdw6tZLWs2q5oXz56KrYbK8ENgtdwwm+1x/OKUP/qDP+IPg8f5gczmWBWpypLoA13XMpvOGLznw09uU5RjXnvtLR4/epEClDqM0fRuoOt73BDI8wjRUxZJOq2kgbKZSf63KhnsyxS5qTva3kv9hAy+3CBhUDFE2nULSljTeV4yuIGisBgPvhnE80WRpKIBVCQvbGKMbKXaGg/0rkMbxXRcUpU5zolJ+6gquHr9Il/66l+g2jtiOV/wm7/1m9x/cJnvfvdPeKuaMBqN+Pa3/gXniwU+BLLMMJuNGU8q5osFxlj6rsO5AR8iVZFRVTlvvfM6m+U5e+MRlbWcvjhlvV4xdEmCaBU6yNmooygiggo0Q0ceNcZm0Hs0BmsCuRZ5ng6OsihYbhr6AM4JWyq3AgLlZQbRiw9viDLUNQpLYJxbug6UMeS5Z2YylptANwTqbiDLcpom0Ht24S/SUAsa431kG34A8tkbq4WBnnweZQsQhofVGqe2zbja2lSy9eSLCVDKC2k0dmEkibGjVKr/tMYo6In4VHuNRqXAaTGggmJcTciN4vTZQ+o28NQYrlzcR/uKrhljipzlYkPX9QL8KCGLidw0pGG+TvLQ9Dq1TvWe3ylmiAqbSd0+DNtBucJ5Wb/C5FPbd4mx8nN9EMmn8ykERysUjjLLcV6jvUZHGZydnc0pK0tmMmL0VLlFZzmj2QF9uyIL4qOWFxaTK2zniFExmxaYTLNetMmf0+OcSuFvqalEXqtKQ0ujBVQ1VqFU2IWH5IXIVkNUDCkBOV3d3VfbP4yvnAfC8uMlkpf+zS7Ubsu+evURt/dFCvrKLKPxmL3DA2KM9OdLNi9OiH5ISiV5QmMsMXoGP2AzSzUZk5kM0OR5yfmLYwgOR2C1rmkG2ev2ZjM2m5qublEo8iwXGyKlCRg2Xc/hxcuMRhWb9Zrzs1P6vsWk+1K83+T+bDvxi5uOMkqlaTcdrYqs2o5ZZdnfLykLxVkr4Rn7kxHG5rgYObr6OtPpmCd3vsfp6Yos2WMsmw6jM/YnFatNTds1zMaFSFJ7L+mkFnzTkFlLnonHd0Tks0qJT3XvIiFolBFOy7b/EXm6DCuUFvRgGx6VMLW0PtM6hHS2yLULIdB20HZyhvkoyqChTyz7qF5hwG9HfqLoijHudpStd6p4X4rqo6oy9vcmnJwuWK1q4iu9W+TVr+WhURgdOTyYQNQsNzUET9+tOT7uGPpOvOOUxgVHIKCV+MAOLgrJRXnKwnJprDmoDNMs8tpexu3jhixGLo4DxnfUG8ijeHJ3Q83d04yDHOrOsz/SvHYl5+uf22e61/C97695/NShZpHZuCEbck5ry7nWfOXzB2jXMK97zjuPGlle1I4be/t8+SZ8+qhlrygx0XPzKOfhi5XUA2bEzx50nK4CVmlePH/O8UY8GsPQ421gMqoYnMOWlmFYCmaAwiUP88mkoO1WzPYnXPqNr/Enf/QD9vcyDoqBuTM8O60ZFSPWbUcRNbODMSY3nC/OxGMvXc8YAlkCm/rBo2KGMorBR+LgmU1Kgg/M5+csrUZrwRzcsL2jBBC7fOMmdetpmo2wup1PZBTZe4uy4J3Pv0tejrjz2S2Gvub56QmzyR5vv/N5Ts7PWdY15dgTh4AKgbpucYPsee3pC/LCsD/bxwXD8/M167rFmJxRYSgtoi50gbbvGU5PGYK8xqMrFzh5fsJ6Iz9P7rsB5z0a8bSPMQgjEaiqitfffptrb3wOpS3NZsX5qqVdbiTnSk6cXb2YWUs1KqDuaVupkXaAHJH9yjDKLMerHqcEYJyNMmKwrDetrI10zueZEVJY0yWfU7FBIYH5xppk9ZBqUi1BkjGEZHWkk41KJOJZnqbrHQLLs47V+TloqR0Wz56zf/EKF69f560v/gp/62/9Ps3Zs395X//XfPzyObwvx/YvJ/tA3bWcLTZkRnylzk/Psbnl0tEBo6qi3qxf8duQZC5tJBpaaMxxJ5vTiW2zTRy19qW3j0Y+bo9iva7JjCbPbfrekDYz5PBA0N0mec9pZeiIaNcn6YT4vWXWEhV07Ya9yYjRqKAsAnmW6PhZhVHQ9YMY5yfT1cwYymrMNtpektmy3SelEkiiUejMApraBearNf0wYJQmK3ICgbKqJN2obvHOoU0uHinbz9g78RhSYEsr6bBWplNKKUl1MkYS4pwnLw15YRk6oW3H4LFGpbQWQdoztW2LXl5WmRYGdC7JqzFI+o22GmUUcZC0OKvlM1c6TbO2gSiCD8lCHxxFXtLUrUzIUnrsNqnXGE01HmGNYr1aywJMst+ISINHowrvHW0PJ/OGp8dL1u0AUXx0+sGncAboOmErGGsxGjINB9OSo9mYrpdU3FUjm7RPASAQma8bmm5gCJG2HXDOCWNEiddbrrWwJLViGMQMU6bVkbYb6IYBVECZjKYXf6Q8z1BAnluRa3uHKTJ032GNpXeKzdAJ20zBbDKmaVoigel4xCzPeWGE4TZvOpabDZumxZiCGKWRWNUteZHz/PQcpRXluGI+r+l7T7WXc/kwZ1yVPDmZc75Z0boofo+rltXPP6bunYBNihSS4neArd5SaIDz8zkAR/sHPH/2lOfPn/P4+QkDwsTcJgw6Fwix5f79ByjlMHgBonOZTiqEEdcPTsDgaHj85JRMq8RyCMK2iyIfa4PcD1GJZ0JmNZveE9DYQgyAh+QNKdK/rfiF3dc7hqr8EfvTknXrWPchsSk8WZYaAUTC530kSweOj5L43XjPuvP0A4wnOVZHRsqyaQNt1+E6GI/A5JqzecTYIFKsruV46fjiW5e41Bp8zHn+/JzxSNHmwsjwURGCWBH0g0dbhck1rpO9UWth1WQaRrkWn6jQ04fIZCQ+U3UT2N8fUWSGUVYSlCMEzYvnPd2QyTQqU6zrnvNlQ0QTtcLqyLSAC3sFj58vybXC2IpAxlkjzUDTOBQi681iYFl3uGDZKwsG57lwdESINc4FJpWl7TvaocFHxYvnJ/y3/81/wze+9nWMyThfLAijnEorTAau9ZIi2sneajRkREYamram7aAZAlo5sQLIMlZNR79oOV81zKY5Rin+xu/973j3q3+FH3z3H/PsxR0OJ/v88MkPyLNANXuNo+s3OXvxiMtXbjI+2qOh4PjFU4w2FFrunaHr6fuWp4/v4JsV43FFoRoulBVtt2C2/yVGF9/gtfcyPvvoJxgFDx49Zjybcfr8Bf+H/+j/yMXLlyAakVqqxDyBX/Cw2/7FFgTcslZ2f/dKGxgi3H90j03dkGc5t+7c4vGjJ1y+conNYsPeuGB9PufidEZU4hO5blr29vYp85zlYsH5/JyoYTwZ8Su//iuM9kq+/6c/ZOjF9zWmYmmb2Mf23FIKZTIBAZ2YyaNBW82FS0ccHB0xn8/puo4nTx9xeHDAhQtHtG1Dvd6wCutkAyF7cllVrNdruq4hy3LyIkMrmE4nNHWN0orRaIRSmvV6TZYZ3nrnLb7w/nu4YeD23bt89skd6uVaPhslw4NXfYV0AhS2kj4VZY8a+pbDw30WKqZCMJLnmUybuw4GJ8bLSV619SFUgHdDatrFONulkI/Bdygl7NIvffELsi8+esx60xJCpO162q6FCJ9++imjUYn3wh4RWayhbTsxUlc5GkORW3yMidklKekCmOjkNyxMfO0F+MuNAivqAe8VIUidEoJ8NsYKX2a+3KA1O1uEapQT6w6i3UlYotJ0QwpEMDoxfKShtcZSFJYQxG/YpXpi/+CAW7ce8J/8P/7vtMPAwWzKdDai3rSslmse90+o6zVNU6OIzPZHXLl6g9/7a38dgqIsCtA9/+Dv/z1OT06o654sOrTO0UYA7Xq5JDqx5nBbb7YQ6XrHqCrkDIoBSac1aF3IwLmtsdZSWIs1Arj0TQt4nEOArrwkEugbR9CGoA1N54nBkedSZwUivXccTQy5DngDLvkhDk2LUYrcaDqvOV0OLJsUqMHW/iSBeTtkX6X6UO2GrC/ZvlpYrtGjVEqQTgmJKF4yaQEdFFbJwHGSRfYry6lSFIWA0d6Lx7JPKQHeiRdXUeSURU5ZZIzGFQY4PLzApSvXefzkMcfHT2m7BdVoAlGxaTx7e1d56wtf5F9864/ZLKWWj4l1YbcSbxJwlNhqxmQ7WxaV/MOIWryVnSMGtQvS0JklzzJ8UnJsBwnCwBDEMsvSEF1+DMZEqlFBZmWY4Lf3vBL7nLbrsDojy3OChtF4yle/9k0+/On3aLoNe3uHTIYBnRcsFjXrxTnD0FPlGUPpaFu3u45K2V0wkPgnCpNSKY01GT6IbFdrGdpaI2s5RkfTDWgTE2gjzBXp9GToIbeHgPmSShxeOQn+HNtPxZ03ONsk3rBrx4QxZw1GKYauZX0+l4a0b3fqnhhlcKu0SKG3/nvW5iilmO7NGI9nVOMxbbNieb5CxcjQOfrkof20fyLLMJ0ZVVUxmx2AyRhP99BFydUbr2FMRr1Zc//OZ4TuCNd1tE3NcjHHuZ7Cbs+XyKb2SUUkLORmiAw+4GPP1AnjZlKVBO+YTkRxcPf2Ha7feBNHIQqeCKNSszdkDL2B6KkKQ4xpuNv25PmITTsnpkBErTRdN6CUxTnogscH6f0kV+rlRG7LBtLGMPRJek3cBeVI2Ezi6Su164dk7b4E9sNWYi64P3Uz7E6x7WeqlPjFk6S+1oqKTMBtk5jvcpeI1ZL4jrnzNeORF3/YTSN+7bIB/cJwYCvvFol28gUNEhCIgt4PBD+gYjr7gaLIBWTyTpKLFRRa8+aFgqH3AnzjqBvFyg7sTUf4k44LM83lCzNaauLZhjdeK3nyouPCQcHeyGNXG37jm0csTjZcyj03rs6Yvznm5PkJ77855drFqxxOS079CbH07O8f8l/+d3e5v1BsBs9i03MwqnChZd2MefJ0TVVocmPJLUwrI0Pi0PKjRxobI1mEk/MN6056ZkOkyCzRecrMYGxGaDc0/UCZ5Ww2K3Se0bQrLl+5ho6KYThjNFGMCs/nP3+V6WuvcfvWCR99cA8VI1cvXqWaWM67DXVTM5qNaVqf+nZh/l483MPoyPG8pu96dFCUxZgyy9gMGwnX0wa0FkKJ64XVjyJ6x+MH93G+Z3AD2iiyzKLDdrCj6LuO+w8e8I2/8Bd59/0vYKzl7t17bLqByZUbfP23/wpnixXj0LGYL+hcz97+IXdv3+L4ySP2phVN13L8fMHwZMnxfI7VFjeId93hpKKoco4bSY8lCut/cAND5zm6cIXeP6NtVztch21tE2SwqDJNnpRuj27f5+G9B6zrDX034N0g6d0x7uToMvCSnmS5lKCeLcNbbm/Zm/cmBX/py6/xrR/e5emiocgN+4UwfVc2sGgitXdkiP9xrhVek3zV5am2MUhu8DiGpBSRcI8Yhh070AUZOgfZCAhpradymqgjOAhugCxQ5XD75z/FFiUnT+/y1S98kV/28UsDfH3vksn99kiSV59by6aukx9bwBvNbDymmozF4wnD4AaZvnnxz/JOEsNCiDtja2u2cl2RKmktJrcibwi7NNOoNE3bs6o7JpDYf2LeGNIBphVkRtGnlKIys/ghgE1myZmRhJq6ZTouUxJcgzKGcSUGyiLD1sTgmYwlzU68WcyONNh2HWUpaZBbaaXaFnKJIhtQdN3AvQeP2XQdfvAcTgqqMmNdN/TDQNv1YkobYFkvMFlO8GFn1Lk10DXGYBQ76aZKzMeuH+gHmbqHCNU4YxgS4ywVVN6FV1h47OQgMXoBXfUWWHWgrHgylBl916c0N9imdiklz2O2C4o0jU4JxYv5ktneAYvlEj/0kpqcAle24GdT1ykwJYUvZJYQpPFcrdYUZcn5suP+kzOO5xvq1hEGz2wiRfvJvN0lxQHkWSYJsWXG3qSkKjLqpuN83TA4j0fTdy5N0HoG7+naAY9MIcL2sAwhpaiJ50XwPvnjSfGulcIoCCpiMkuWG7ohYI18ryZK6q2WBNYYt4WwwhgJmbBasZcXTEcyWdRKmrrBORZNQ5YXIuENkcLmaODiwZTFes3R4YyhP0NZAQfH4wkSQpKhVeD89JwLly/Q9h2rvudksaHpe5Gyx8im7iXgAwHMI0EA3BjFpyqCVtvpREAZzXy14tHzJ1y/doMHT17Q1hvECHkrt1FE5/FRPCWzQpqV3keUUfRDoEjpxkTx3uu9FKwGBUGJ9yLy3ErLxJEQMJlM8XsvaXk6WBEaRJUYPYkNoRRZSpEWjykv14TAqnU8OxNpQ4jC0MtN8lEgkBtNkWWsXZJ925SKrSx1F1h1EFHMlx17ezmRgFae4DVlDhcORqzqAa3E66geHJjA0aXLXH/zXVyxYblo+OJbF2nbc+48nPPkxZCSf2UNdX2k7QWA2HmlxJTemRi84zLg+8iLVYu7oGAIjHKw0XPp0pT1pmXoA60TIN/qgdO5pxs8w3nNbJQzHsnE/dLFCVbL/X794gQfPc/OetqupvceqwwqQje0ZFYSIosy5+DgEm+/9jlW9Tmsz+gfP+HNGxNU6Bl8ThgGruyP8N5x/PwO3/nWMyamRwfkOgN9J0EbE8Ci6ULkybxhFQ3NEMitRWtZl8ZYotL0vsd5RVXI/nu2aDjaL/n+9/8HPvrkR6wWDxmGDXuvXWfdbti79D7f+ObvkU9n1D/4FpVVRAzvv/0O2fopQ98wVXOWZ3d59PQJJ08/Ym+aEfo116+/xvGzR/i+Zrk8Z2Ybjh/+hK/8+u/x9o3fA23R1R5FNaHIM2aTKc4PgiRvi2ktHlsqNavAL7L30nR9h+ul32MCptbrFX/2/e/T950U1c4zqSroHLNZRe8GUJp+8JycnGOsYTqZsLe3T9tsWCzmci82DUPX86M//SHZyPI3/52/wR/8s/+Rpq53EsEdI24HSIjHjgxjxAt2/8K+hC65gdPTYxaLhTTm3vP46RPyvBCgDDkjQrLWUCjWK7GZiDtpbmKw5yJpnU2mvP25t7j52pvM5wvyPOPixQscHB5SNy1/40tf4fZ7t/jTb/9zzk7PaZrt3h+TAuqVD1GnJE4iykBWWo4uHfL622/ysw8+ZLOqiREWy1UqOLfJnXItTAIziSLJ0FpLCttiRQywXm4wRnFwMOPgaIpznocPn1HXDueEGdP3nhiljtnUG+qmwTuRCRI0zaYjxAGUIc+yhFtFuk4GPxIqIYOrorAEn8KnYsRaRZEZTCFJrnXb0fc9AbE32HrC6ujJjCEER5ZpfD9sYUthEMsminOBYUhgEADbEC35PrSmcx7v/Q7o8DHy6Mlz8jyjblq6vmVx8ojpZMJ0us/xi2esVi0xpTQGLF/92pd47fV3eOvtd3j68ClFZvnRT37O+dkqeevIOblqan70k59SZoZxZim1oQ8D3eCpshJjNEOQ0AOTZeQqEuKADwqsxYVOPIiNorAa5we6rpOzjCAgV5njUdSDhCoMLmJMhlIGHweSSQsxerIsUmWK0kJeWuomCGMmz3BOjLydt/goHqFauTT9fwnsKdH7vSLRTBBOYjURSaEJKbApynNsAxniK82LNXBQaY72KoJz5FbqDa2EyUdUaXDuZe/RooxR2uB9YL2u6bqBppOgjbP5insPHzH0DVWZcenwiFUfmMwOWaxWPHp0j2cnLxhVJVlmadPgePv/iLCItpLAwYVkFC9nugz0FUZblBUrkF3aK6RgNbMDOY0RoDBGhQ/SEGdWU5UF1lgGL+fQeFzS1BvcMJBlErDSO4fJFDpkOBdo2oFqVLKcn/H9736bstTsTaY0bc2Vazf4S3/194mM+Yf/n/8bD+9+LGFPYoX8ctAZxWcvpn0rszaxsWLykY4Erchzkz7vyOA6tBZWYEQ8uJQybFYtzbrbMb220kgBW7aSzi0IvI1QFcWUNnoHzllrxa+6G9L9JXeUVRqLYtg0dOtaGDIoCVBDDO23/n/SD8h543pHjIGn9RMUT1EoXN8naCcFKvogio9eLGyMli5wMT9ns66JgMlyVFZwvlzy7ntf4NPPPmV1fsrebML0aCaplcawOj+Vz897QlAMSUKnVKDKMwwRgmG+imwax6wyjJWjjoEnL06YTEZ0refRXUdlW25cOeR81TN0DVWZ03aOum2ZVYoiqxjahsO9imcnNQcTI2cUgboNeCcYyuAHBuEPyJVIlhJhd77I5SgLkUgKGBd3uH2WanzvJZ22Tz1TDIgqRiVCRApHJK19AWkTQ1vLnjweWUaloaosfdtTlYqqGpOvV7uhnLAE444pJM/t6bqOPgbKoqBphWUux3oCwYHMamLUdNHTu8jZosFqxXgkljZ948iznMH1ECN5lgORtu9SzR/JjMLHyLx2BB9ZtpFHS2H73V1pKrWh1Jqug8fP1jw9adgfZcxyT1vAarGgbSKXqozzpx2P7/VcXhlGtqU7ixQqcHgh53j9nOLCjKPyIv/gn/6cOy+e8OA80nSQF+If2QfH02XL9z9tKApD1/e8dilnVXtyHdlouDTVdC0cjjSPF5E+GDI8yhgm1nNQOFoXyEzGKgxsNiuic+hMUm33JxPmL044unidpg/4ruO1t25w69Z9/vnPl9gHD7h29SK2LHnv81/meNmj/FL6oLrGx0BZZSgruLHWAaMdKCHniOWBpesFJG3bjqO9KVVV4lzLahXoDUQVGGK6jiqwPxvTDx3j6ZjxdMb5fI7uhawCkfX8jB//8LtUs33efe+LfP0v/CaTwwMOj464+dobPHtxzIM7H/Hw1m3mz58RvaPILV/66pd44613uf/gCRf2Ztx47SoffvgRP/3Tb/H02RznA5WxdK2jXrfiC5oCaoa+B2t543OfI8sNn9a3RDac2H1KSc+mjaGqKmxu6Zue5WJO5+S83rIQiUHyGV4R+Ifo8U6LBZQP6f5W6fwwZNay7gI/vfMclIQXXjyYEJoGG+CNSzOWjePBvKFupRdetwP7RYG1mlUzsOk9JNb51mf6ZbicEFFI+8gOeIy8PNNfOelJa1x2U8WLx0/puo52uWRYnvP6pYv8so9fGuAbfGRd95S5ocrtbnMaFQVHB1MWqw17kwmTyRh8T9dsUvw6LFe1jN6UwfWe4MV0mASEqCg3fWaFhmmTyXNILCeVgAQdlaTF5hnrTUuRZ9iUrJZZI9HYncMnAKrIMjZtT+88RSYR7t0AcXApyVNYOxDpXGC1bjFaMxlb1HZSYjU2yxi5UpqvEHDDIBIM72mblqLMsYV5KcuK7CY8IUSePn9B3bapAIfWRegkyCG2Dft7BzRNzaZpBAnuerSc5ik9DImlVzKJZyen1bjBA1okR1pT5iJ76bpuB5wOfc82mn13o20Hyqlw2RZowYtvYlSS1DUeVdTrRqakSkCuiBeQV28LPVAqgoY4BNbrNYdHh1hrcL1J01xJGRVGHylJTbzHYoh07dYoNlCvazq34MHTE5aNp22a3XTXO8983dJ0A1aLF4sBMh2ZVZbppEIjJpzzxQaMxWaWZlOz3nR0/ZD8HCVlanCSlCdsSIkttzrsvJm8F+BYE0VOCmK2iYRt5Fm2Y4MNYeurp3FRzG+nk5EAhkYTfceF6QwdPRcvHXEwG0nydJCDVhNAGSZFuWNeRm04mE54/503+ZOffIBCcXE2QZUZVWbZLFcQInuTMeUo4+x8zfRgxqMnT9J910iSoPd4SCErGrz4CSm1vS9SIpvaNhQao0WGEqPi3oNnnJ+v8b0YLG9Hx0ZpQpSGglSA/v9Y+88mzdL8vBP73ea4x6XPyvLtfY/p8cAQA4BckcuIJYgNBsVY6YW+gD6L9EKhL6CI1YZ2uVwxlmZFgsAMsBjf09O+u7qqulz6fPyxt9OL+2T24PUgIyaiu3qqKvM855z7b67rdymdYlxUcjoX2XbGOlIdkDKJChzpsD7+2UkSt+SJhNb12+b+2YlcPImWgJZondKa7iqlLdbgAUJMXLTG9ZYhHZM3HRgCy8aTqMh5st4yLhRaCGoTrqwWCEnnPEUSuU5RwRIVs42BIAWdDQySmG6LgCSN933XGSbDwNbmEO88+7u3+Af/6F/w5lvf5PWTZ3z8wc85Of0N87OaeelxQtN0hsYEMjxFlmJs6O9zUCIwyCR5qvC9QljIyARVnWOoFToRDIuoXD65WOAAreM7cm9Dsrc94VopqFtPWXaMxznDImO5WLNaV5RV5HpsjTN2tkfsCMFyBVAwHKY8PjonJSFJFc4Jdne2eOP1r/PKq9/mb3/2n3j69BO6zkOwbOUCGRJskCTC4lzDxlDhTUXjPKO8iCojH8OIqDsGeUIboK06tiYF7bJjaWLTpHW0Gq1WZWxMtI6bQSPJioSiyCjLmsfNQ9LiCXmasZivUQS2Nyak+ZDxeIPji2POjz7jvWrGrTuvMFEl1fKQrXzMh3/7n/n80SNefPM7rE6OWE4PyfJN1g+e8srb36e++ALjD3nw3k+YlR2hKxmMdth57m2ee+uAi9mcG9evYW2FVJHFGC7rfgHz1YwAXNveQyFjCix9oIEQ0CfN+n7I5p1nXVc8efKYj377Gx5+9hmjjU3S0ZAXX3ieocqjjdM5ivGYm7du0zU1xXCAlIrtrc3InxSermvQicIaw8bmBkJ6Dp8dkuU5P/yjfwDB88uf/4Lp2TQqp69URpcMoGinR0BwgeVyiU4UVVWRZkm0tacppoy8kbu37/Dw4Ze4ANlAI4XEuMiDc+sGb3suUP/e8MH3DBuYTRd88vGnPHnyDOc9g1HBe79tsc5RVS3j8SiiK5KEd771DnmRIQSUVcmDLx6yWKxpypo8U3gRcQfWGPJCX1kbx5Mx168f8Kh5gjXRanFpFbvUs8ve5u8vLZMicqogLiOHw2EMz9KSsmrwwXF+vsKYyK4Tfaqm85Epm2UJUsbfb3vFUhAeZCBLc7yP/FUlYu2QaoVwEkforVv0ibZxkyFF5LE6G4HSDk3bLwVsiCMC1Svwkp7R27YGYxyXIQ+XKI4kiYu1uu5iE3tVk8Z/kTIqHU3/PAb3VXiCRGE7g1aOWzdvUFVLpAzcvXuHk9PzuIhMNUU+ZjgaUbUN9x885tGjx/zkL/+KF557gaPTI24/f53bd/d5+vgZwzxDK0MbQoTda9mHc0joDBuDId4Qm+sQ+XdaSgaZwnceITS16bDWkWUpwguKNMd6SdMZTGdIUklZ1Uglqdt4Xg2LlLznIK/XDdY5RCoYZNFyWuQK7wxFoQnGYCyseyWmtdC2gaAU1hkEsYYIPaoB+jq3H7rGhiUOsGKwjUT0voVL2/xleA1E54kPvVtCxvZGCUiTaMVfN9FJkG/0H52PAwal+2GTlv0QpWcK9cNv6zzKWkKwdN2KNE0ZDRISLaiqiv2D59m7doP7X3xKmkVHiEpSdne3OD6bxrCeXvVD/+6IdUB8h4QAe9f2mc9mUe0E2D6sREpFWsRhY9fZePb299XlzxmXcJcDE0iT+PNoDd5LvPGs52tUopFa44hMZKn7YcfVcNvRtW2vEGwxJqVtlly/dQO85f7nH1G3cP36LoPsNT54/wus6776PPCR+xkuGzTRBwlGh4a1IT7vLqorVSLjtVKSwWDM/sEt6spRjDdwzvDg/j2cc1Fx5kWPQ3FXti8lZG9tVkilGYxGjDY32NraRgjB8eEzpqenUT2pVXRe/E7zaJzDVc1Vb3U5MLTO/c77nV6l3FudBT0D28cgOB0Xe0r2i1Z/yWD10eGjLgH4PX81hHjvK8FoOGFj9xrZeMR8OmWQJdx67RUSranKNccX5yynU5ztrnjsPjjwPbJFxDTNNImDDg+UJv4Md/fH5K1hpVOkzNjdGdG0DcbFIdO66vBBxVCYzjPSmq1Jge8sqsiojGE01KRJHP6XncCcW7ouIkiSTMcwvRATM+mfwf51GH9dwHpd98sfrpaz9IpnnfQ8WqGvhr+X5weX91P/KXy1UPtqGCBlHOx2bSB4G0UNweO85NbzByxWp5jW4UPA9VgaKWJdcXV+IcjyHCkljVmB43eGFIEgIo7DWIcKgtDz77VWDMY5ZdlcDTO0iGrx4Iks9RCfzTzRaBmZ62fr/icSMQ+mUIGucWxMMkrRcbR2vHM34/PjwFbu+d4rE55sWo7PSo7LwGAzQxeSrR3JD/7wJo085jsbm4yKY67vBgY646/+4kvOLx7R6JStPGX7bsqv71XM14FEarbGBdrB1tBw+yDlg3tLMuFwWaC1loFQbI8lawzX9zY4XK5oTIskUOiUg2HGKJUcdy3DIkF6RY1DeM8f7G1Rofly3eCD5eb+Dh98/IDhqGDzRk617qgWHZ/fe8JqXtMYwe3tu7z2whbrky84P/qS9XxJCILRRo6to4NuVGhMU1E1PvbD/RK4M5bF2pBJQdtZhCh545W7VBdzztYd885wsmrxUrAo1zgPWa+CrsqS7Z0tfAjMp3OCNXRNQzmfolTC9PgQs9ny1rfepKos9+5/wSefvM+jD39Ls5wTvMXalhI4P9tAZ2OOT+dcHB2RhjnXhh3XNyWJH+Fc4Pr2mOOyo7ELnBMkIulnEobZ9JwnDx9S11Vvff+dMKG+lsmSBGc9ZbnC+xAFVL0k1nmHEuIqAC4OsuM54YPrnxvZnzfh6gwxxkQVYaf44miBDzAqisjSR3K+bjlrDdJHZbsXMEg0nQ+03pFISZ5KXHCY36nFlEr6+ik6RunfjX/n6+8+zn/n63Lo55zD+xb6s950MVX89/36vQd8gli4rsqOrlM9vDlu5168c5PpasXmZIP1aok1l2mzfbJY1dK1ti9s4jBIyTiAIwREryAQ/bbKhwhPjJvQODwRQmCtR6g4ZXcqYbXuUBtFPIxd3CRKFW1BIogot04cZdshRI7q03YTLa/SS+vWUGRx2Fd3Bjtb94dVfrVFk0IgkljAtFVN20Y1lDEOpQJKa3QK+tIeJOJL01rPl0+PWc5XpFIwnuRUdRvTck3LcJBjkcxnc2yfJgMgvEfqmDarZUycFSJeJxkCyMgMcv4yHTFyEIQk2q+EjKpCIbDG9Fvhvsmgh/72Um0pZWw2nb9q9ES4tAjSD7liwyL8pf1ZXm2WhSAecCGqKa2EtmmpylVvwWp7XkQsdpWQcU0mdAS6O/DWoVL6oBTNsoLp6QmLdRtVnV2NSBOM9SxWFhsEWb9JlQKKIiGRjq2dEabzTBdrHBE+jQ+sF2vKuu1hu/4q+MH3xYvuVaN5ovBK4m1siIyLBUDcKkuKLMHjYlGdpuwfTJgvKxocnfF96nMcMo0GEp8plNJU6xpvHZsbIzYGOda0dE3HEttvegcQJDpNmE1X3Li2xWrVkKSK6aqkc6aXYUuC1lzfG6KHOcE6TN0xGY6ZL2eczua0XeDzh4c8OjliUVX9RpE+MVVe7mPREO2oIiGVkibA5bbWi956IAVBBmywJCphXZYxPVnquHEOEPrUqEB8CSspaTsbGTsEnKW3lERVbWsMzkOaCJo6pi5bF0h1DEyRTkZFo/d9Q+lx9rJ5TWLiqrXQqxu0TgjEBrtto6rHhRiuIqVA+Lg1aYzHOEPS3/tap+QakBEbEHlWUbVoZCzCs1ST6sD2OGG29PEauoCVltFQ0bSGItNIb8kSj0gShoOMg/1tXn3hFc6ffsy/fu/fs7O/xXR6RllWzJae+dISpO43d/QA5Q7vZQSDC9G/ozzryjAcSKyD83nHeKDZ2xkjhQc082VDUaQUgxRvWqrGkqqcquzIcslABKz3lGWDcXAxb2hNYF13BBFVBIuqY1YZtDRkWtF2LW3l2RlKhoMRWSJYVRWhnfOrX/yYzz6/x3R2RKJTqiZQ1p6hSFhXLWvbkumWjTRlt0jRhcMZF0M1Gts3ggKldeTLecs4T8hyjZCaVetY1QalPAUJG8McLSW1cWhkTAr2Hh869sYDJBkmWLrGk6gI/58ua8yDj3nh43c5O3nAtiq5s6OZPXuf3777Mw6P18xHAnTKf/ev/hnpeJuf1f8T5arB0nH79gBTXvDs6VOOj5/x5kvPMaDl0Qc/4c033+TsoeHOSy/RLc44ak5YzRe8/Pb3GAxGsTENAmM7PvnkA7xU7H3/j2JAkRK0xnJ+fsH+7m68FkBtO6qyYnp+wenpCV/c+4jP338PpRKuv/oy29euc/PgOlujCW1T03Yt+9f2SCWs6prRaMTW5iZZmuK9ZTFfcHE+ZXNzgxsH13HGErzn9OQQIWGytc1zz93l9t07nJ+eItBcliDicsPaq2wuVduXwzDvHF0TIcld26FVVPV8+eDLqOYVgSRNUUrgG08xLOJSrLOxBriq8uJb43K4uVqtKddltJP1liatUpyHcrG6Cue5mE5JkoTnnrvLm2++xng84t7n95lPFxxc2+L67Vu88OorLBczPvrwY06Ojjh8dsSzp0fcvHkz4it6nEKsCy+5RpdqHXc1FFRCkqYK5wxlWdF1Bqk0WZZQlTWmb+Jig9oHqfjYSCktyTLN9vaE+XwVGXRKURQJe/u7nJ2e47s4aPT9ssv22I0sSfEhDmbyPAccxlqcCzRt5O6FIGi7hqJIGBRZdAI0HSHE8JzIKYuhFqoPIYp2rnjmS7hSeIGMqIYQv3etFHmeRyWZtf1yMdZInniW+2ARreXhg8/5zrffYTga8vTwKVtbe7z48pucnk85fHbED77/Pfb3rhGw/M1f/xXvv/cheSqZrxacnj7lhefv8uJLdxDe05kVk91dVmWDRuDbmmq6xAtJ01mGgwHeOkxrcc4iJfggSZMUZ0FLgVexNkhVRjEaMJ/F8DchBYlWV9dSCBmDaRSIYAgmkOcSYeP5U+QgpGZzklPXJbUL5EozysHXMWnduKg095csRGfx/fLL+xjqQm/9vhICib7GvbznLocEl/bMXpFzqdC5rL1VP1wyXtK2glSJiHW4GoTF+ycm/sblXMRA+L7xj0swIfVVGmGiEnw/yJVBMByMmM0XnJ4ecXx8xCDL8C7wje/+AZvbN/nxf/qPpLrE2S6q2kQMgVFKgodMp/gQMSWmaZiMhiwWq/jcSNkr9aCzBi0lWaaulCaRmxwHrULFBZqSouc0ExetTvQpozbaFm3TO1EERhikDIgQnSJZliIbRdN1NG0X61cpuX59n0ePHnPrxk0e3v8c71ucq/ijf/TfUjb/iU8/ep9Lu/El0uaycxMSnHFIqSgGkXPaNhYRIgdXq/g5t52j6Zasq4colXOgc+q2RAjP5taA4WiDuy+9TjbZoG1rZqs1o/GYQV6QphnD4ZgszcjyAeONTYosJyBYLed88emHfPybd7k4OUUmMSzm0u4dgiMYEzml9nJw7P7O/SekQussBvwlmjRTOKnZ2tkg1ZK6rJldXFy5tDrT4UzPvpSXAgFBUeToJIkhWTple2eHjY1NstEGg8k2UiYooSnLBcasOTs8ZD27iKE21vVD0cgpjEK4eBbiwfiYrh0X55LrWwU39gYslg0XJxVt15L6iIu4OPO0IUHiUAFqY9BSUdYwLyPe5GJVEwgkwM5OgeksMiQQTK9GS8AJtAbnTawZpSAE2Q/ILslnvUuMqLa7DFpxqMiMtlEAIYTte4zLz4WrRXQ0ycj+WY8uqzSNwTTOR+GD6/8seidL01ouDp/RmQ6lMwaDAeVqhe0sXl7aruMg1zp7xaxMevFEZJvHv9MHqE0cHMb3elxotdZwerbol/VRSesJ1G2H8xIZ911xuBsCnXXkSrKZBoRSKAWFhvO157Vdwc19zS/v1SQoVGgZDHLqzvDyc5ob1yxVW7BeeDZ3x9x/sKAi8O7DOQktL7xk+ME/uIWxFeVcMRptxvlC0XH7IGdZGT7EIn18a3YOJqplMxekIvD9N0c8elaSqwTROW7uKBCeWeM4ni9RwTHWktYLlApkqWK6qAlSc7wuSbIE3zl20oybo4QH65bOe8ap4tOPPuTw6YIXnpvw5Mkh1cJQ5AXXtzdoRIHe2OSd7/+QpRf85uljEpWzvbmDTjLW8xkizajrEl91jPKUxDl057D9OaCVZFhoijwjyXOCqThb1Xzn22/z5MlTTk5nSG9obKB0RMxImmFMS9UaVJqws7uDMRZTNwwHI/LhmJsvvMLN5+6S5iPOZnP+y7//D2xt75JnOaYsmc9naKKCNk0zHj54yNHxCd/5zncZj/b45ItPePTkMUUTUVMqgbppKJt4YxhncMGTaR357+sVD1df4JGYLj5nHq6WxoTIX7ddEwMqhKAqq748jDOCcFWHRvyAJs5cEhXt4o29xEz1zxhR0Rqs4+bOgMk45/7xgrZtWZWWTAsGqUZ7wbqNGIZcwzuv3yTPM/73d+8zqy0iRPek1opEQNUZQoiOMJFoTBef7yB6JZ/oVemXZzyXCzmuQnL6opevQuvCFb7nSsj9e3z9/go+Y1ktKooioXJRwbYxHqIUZHnCtXQzAjkJiDRD9B/aeh1ZAB4JpiVNolXPh0DXtb1CTaCICruYviViEy8kaaKRKm7JnA+kSmOaDq0zyqYlzxJGRa/O663AbdeQpSlcRSjDuu3YKDQhRDAyfYpYZz1dB2kiWbVR3XU+b9BJQpHF7WtvGLxK47S+l2j36aOtMSSuTxDtPyzr4cnhCRfTRSxUpMa0JnJCUoUMAm866iZCfZ2JAGStNDqVpD3EsTNdv8mOBeplwdF2Fq311VQ5Kh7jz2pNTEiM19hcAZBFX6RcXpSvuGUxxTRu81zcouUJxaCgWjf9VL2XlgvZF4iRmXg54Lk8+KIq0jOdrrh56zoXF/NorVTx93ljUTIO9aSOEH/ZMwJbC8vKc3RRsW4anDGRQ5AokAKVaZyLhw0QAzwUjApNkeU0VUtZtXTO44KgaWMgS9O2NJ2NA9qmu+KbSUHPVOlZF1LSuA7jY/R4ICrSrLOoTBGC66HKsQk1XRsZM0LQGYvoOY2TQd5bryTOW27eusF0MeN0WbOqG2xruHltQghdTGYDhnmKo1dOYhkOEp67tc/9Z+dMzxd8+Pkj8qJgPluQDTd46eY+Xz58ytZ4zN5G4Hwx5XxRsixrnljHar3o2TSXBUlMefXEJl2F2LB4CYXUrC6FBlKglCDNNF3XkeUp1sB4UHD31k2s9azWNU+ePOktRP1wr2/YjTWg4qAzXBbKRLu6854i09Stx3TuKq1OSRXVnqZvQEUEp8dvx/fhONE4NZyMsQTMeo0gHiyxyb4Exsef1QZPQrREex+bkOBsv3VWPbsKEikxPUcwSQRCxGdqMJBY05GiKXJNkgRCUKzLDqUhSwOjYcGkEAyynDRLYgOxPSBLAx9/8jEbOxu8/Opd3vvgA54+O0UgeXJcYazC+g7jJLLnWG5OCs4u6lgIChHVCUIwGmYkylM3HikUjXHopmPWNIyHGYNBSt0FFmVFliraxpNIw3hYUNcdldWczDssCRrNYlUjZYLWWWw2vUOqlOmiQUkYDSWTQnNje4OLeaAtW/ZubtOaDhs089mCk3kJzpHqhOv7OyxWi/7w7QgqStwHMiXYmNCc6IRF1fTKZg9ZgneC81VkZTlr0XjKdYTtDwsdIbbWsjkaRhSAtezsDskEpEJhg2YyGFDVHfPFGhskRSqxnaV1jrdfv8nmcMRpM6UtZ1wcPmY2nXL/4RNmpWNaNbx493nMYsqjex/h2hnD4YDj03NOho+p6jU+BKrW8+h4ilJQdZaqWvPJ+/8rZydPMF3g5a9/m/m6o6Tgna99gyLPUSpjVZVUTUyg9AGkjkrz89MzzhcLdnf2Cc6zWK94dnTI7OwE2xrqpmY9m6KwpLqgyAs2RxP2NjdIk4S2rtiYjMizjIuzCzYmY7a2tuJAxgdW65LOGA6uH7C3u8ugKJieXzCajHjuhTvcuHWbF196mR//xX+hXK0ZbUyiZdReLoK+Sv+9fM1qneB9tJvGRV8Mw7lSKQBd6MjynCJNaZo6gom1wrQdw1HOeDTh9OSc9bL66uwJ8SwSIVrAZBLZXUroPnWyZ5t4D1LhHcynS7RWLOcLPv7gI1yfhD0aDbj3xQMWbcve7ZvM5jMeffkE07YIITg42KeuSm7cOGA+W3J6fNYPYC4HmeCDjQpmfznkjLw1JTXWRD4bQtItotLeedufn5dKB4dO4iAsSRRprtGpxtgO5wxpInn55Ze4desWP1/+lNI6gop2xojGiO9DH/2ZcTHRxITV4PtikIg5iVB2zyBPyBNBrhNSQeTMetef/V1cThHf0c5HzIGQEWkRX/iCLNVkmUR4R9106FTHBYp3DIosFrHhkiEWVWA6GZBkGikD7773LoPBgESnDPItDvYP2JhMWFyc8umHH/Jk9JDhOKofvfMsFjOmswXXDvbxKuHNr73B3vYmSig2Jtc4PJnhXcPnH/+C+dkFxhoSlTJfrhgOchIl8UIjZWTz+QDj0RDVtQgT0DLQmpr6bB1TsYi25jh4k/117peOBEapxnUOUomScQmtBYwLibAR0n++bFkbR6Ykg0RiTbjiz+Va4tJA3QmEUj12hivbc2xUeouc6u2oRMWOVJcOiN7CG+KvAXjVD2FFrEFlryhX0jLMEhZLH3mOlUEpFQM1ZLRk9p7SXlEUKPI0Ku+uws4MKtHkWRzKWeOwtuuTkzvqqqRIJuxsDvnsw99g2ndZTS9wtulxK5GZPBgVWNORaM3O9g6j4Zi6bfDOsV6VV3ZSTxwkEEuM6MgRceiX6KR/p/RKKJ2CjoF5Sa8gklrF0JMswdvLQYbvr51CI+MAVwmMa+P1VnFQY13EX4zG0YovhKRuGr7+1lu8+7OfYVzF+x+9y5/+kz9hOn3GxckcF6KCzPeD/5gO/FUv1DY1442CLI8Jut4Lgu/oWofo0QyhHyA9fPBxbEzTJA7q12sM8OYbX2dnb5+q7SjXJVpqdna3gUC5XFKVK9brGR+99wUoxc27z/OtH/6IN7/5XWZnx9Eu2yeZK62p1itm52dMz885e3ZIV8cE7GIwYDyasLO/z87Bdbb29kjSHGEMbbtk3bR0LTz3/F0ef/mAX/zNT5idn/Z4n3iPgev7hAiS194jXaAzNS6UNNWKi/McqRLyYogPUJYVxXDE3RdeZmtni2ePH3N+9JRyMScId1X7xAHkJZqkT6RMFalWyBAYDlJOZzOshUzHGrOqwYqEW7dfJBtuMJAVjz5/Hydz5tMSIQXLUpAnMMoywFGkHmsDVRPo2oYi06SZoKo8TRdZ0FIqguyVmkIQJBE9I0Vc5FwqkaRgPEyQylM3YIwnBHEV8Bbr0K8GD/FNy1U3L4QnTQXDQYqUnrazZFL1jL2oLnLW98rOQDEYcmdjkxeef5lnz55y79OPe+Fc4DIF1AuwJv6MMpMorSkSTdN0OOuvDvT47amIrOmXd/h43vkQUQZd6/rvWEW3F7EnSpTCWdsvRwIvXs+YzTrqIJhkivN14Li0LJ81kOVM24Ync8ALTivJv/+LGW/clHz/O1voFxWfPsl5etowW3g+fjDnR9+bMNkOdNWUj96reXxu2dqe8MrNMS+/cYN5NSU7XLI71EwKyaNFi21L3vnakO2RpTSG566njISk8RLlJWkRWHSOl28pxqMBWaiZ1TAtLeNC0HY1rZRUxuKAnSJnFWqWwfNv751QOYHXGdZaji8+wYaEY7lisVjiO09nodiY8Kf/1T9nvHeH4XjA6dEF1nQcHZ5QlyV5niOcwxtLcAInAvN1F51hNoYh6bRPWxeKnYNrvPraazz+/B4/+id/zCuvvsDww3fpfvwXfPMPXmBRWd59UvLo2Rx8TGJ3IbBczAFIk4yVKZlsjZns7lA2FdPZjPOTDxEI5odPCHXNC6+9xcbePmVdkYsOby0mOEKaMZhs8vwLd7lx4y6nT2fo7qjvW1q2x1scXyw4qRyYQCYSbIiuRGc9NvgYjujMlTtQEO/RS5u57Rdtl9iAy6+4YIkziyCj2CRLozK6QaJUSmdiUjDhd0nM/TtESVrneW63YF1WnC4N20VC288aBoliWXcROacyksk2Lz+3w68/eUjdxHmIdTH/gP48dT4iUy6f5zis+2p014/s+3435gxEbIaNNXXfg0txOa+5vA5/D9M9/l5CNujh9CreSOuKujXs70zQWsWBiU7Y2NpguaqiaiAE2tbEwQ6ePEujVdDHQA5jA0kSL44zET6p+lehUJHP47xH+l6KrCL/Je2LEq0Vi7JGJ0NkiF7sSzuk9VHdFdUwinVtSLUk1RIEpErR9kO1sjHkeY5E0FqHXTcE4bl9bau3DV/eRIIsy1itIxSTXmudB41kwFehG/Do8SHTixkg+8GeomsaBsOc4XDE/GIaw0X6gYbWKtpq+lTemF5pYthA8AiZREVjP0hJ+sTiyL6Ln49QKqrsZGwSIuPQXyU1JX16rXcOqfvURID+gL16xi4n5kpeJcrSB2tI2W/9e4Wi1n0z1G+dtZJYoVitIihzPIkF39Uwl5h+J4hqBKUlwYIJkuN5xaLs6No4hd8eZzjraK1AeH8laQ8u2jB1IkmloEe7UdUdjXG0vfV2XdaUTUyC6qxFya84gLLfXKVJHCJ7a/De9uEN8uq6QFSrxC2FI+nVmR7BfF0T+g267K1eSaaZbA7pOkvnovov4DnY2+TJ6RwjY/JY3bUUaWQ5HZ/PWC5KhhtjsiQjiDjkzYuUItcIrXjx5Rv89oP7FIOUh+cXTC5GrKqag4M9bgwG/OzjTzhfLKmbhtY6gndXm30lJJIoZ78sVlIho92vM+CiQjTRAp1nDPKUyXjIcrlESMlrL71MrjKaqmE0nDC9WMZ7JvR8kT4EBqJi0nrbqwgkUkdAfJAJkPaKAh+HbproGcZjrIh2aR+VaepqyxkNdKaLoSZNd0roeSKXCdBx++t6Bmdk1chEEHBXzcSlxVuKmL4clTPRnqJUwsZGTlnXNC4giYq5yWQUJdRBIDVoGRVtzjSk2jPZKNgaDUizot+gWra3RpxNz6PipMuYHVYcPVoymWwgNVzbUcwWLXUbyIWKW7Nc9dbmmIQV8FeHoJJRebNuDSqVyESiusg9HAyi2nS+7BgMUhaLlixVTMaKoshZloazWR0Tg5E0bRP5kLpflmSxea/qDonCK0FVxwLv4ckFmQ5sb6RsbYw5m82p1zVtbRiMFFubm2yMMpaLBZujEUI4CArpPCJLUd7hfMAaT+c0yyoWjLkOaA1d5ynbr5Iftze3ScoVOxMZt8GZYiMdkmlYVyXZRkplW0ajHN9aXI9IMNaSaMkwy0h1oFCKgQQWx/z2x/8D6/qEjdEYHRJMXZGlmkkQaC0YpR0PP/xJhLLT0fjAc9ev4bsGbEtnLCpNWTUdmdYEkfLzdz/GtSsUhsW64ejokDd/8I+5tr/LYjHF2TFdt+Tw+BmP7z9gPJmwXJUUWUZZlRyfHKOSjM562q7h0cP73P/kQ4zpmGxsU2Q5eRJYXFxw5/lNUq25dm2/D6wxIGMS5Wq5ZjQaMhmNGGQZSkrKtqIqSzY2NxFEhXxkRsHh0RHGNzx+/Ji9/QO+/s2vszEeMRpP+Ouf/Iyj42esy4rBIMfbwOb2Ns+ePKOrm8gndfE8VzoGAHgXm4JLVorrG4WubaNix9qI6xDQdS3g2N6dkKaK5XyFd/QWptgwKSnjkO+S5yW+GrwpxFdDxxDTTZ0NNK7tlfiS1XyN0pL5dM5//o//G6nW5KlmPCg4Oj5msVj0Z3dJkqYIFWLoRb+U86Fff0jVs7F6xY67tCr38HVvo80w0WQ6YTKZkOiUuizxIboUsiJnNp1TVy1tc44MmlTHZunTT+/z/gcfkCcSIRRCxgbd9ba5JEkw/dmdJvpKoeRdIM+iUkJKjRVRvdwaSwhRcWxsPPtj4JgnL3JAUdWR4xjVe5Cm8TNsm/jcS2IC72iYogAv4xCm60IfYmAhSJI0Kqxkb/fMspxikEcm2iAhKwoGg5wiS5lMhtTVkpPZU+rWYpG0XRODpzqLFLCYL9nY3OaLew/41XIacSvGsV6vyRTo0BFswPZ1iUCwWtUMsoQiyzCuI9WSpA8CKdsY+FPamixPkSGQ5Toye7yk7iLqwNnIk4psN00iJcop0IJEJ0jrYgCK9dhEUpaOsg4onRCCpOka0kRSCMFIK5I8ISwDZeLpQjzPMq0x/SjPex9DxnrOlrMu1hQEskz351xvA+wH5lGdLvvaQsThMjAq4PZuRiotVRO5cxvDhPPFVxiTWHOEXi7hGOQpaSIwXcBby3iY46xF4DAmIjFkomnqlrauETpnkGU0VUnXlCBSQoCNSU6gI1GKdWnwQhC8IFUZ+WBE6yXdquTi9BRno1IUGUizpE9aFaRprDu7tovvDRfogukxHVGFGDDI3kVgTHxPJCK+Y4zpotJfaXywPX8sWrqci9bZzlp8kP1z5Xq1YlxsHh4+i+8Y1/LFJ5/irGNvb4t6eUpwC1557QV+dvrLS/FVn7PQvw+uFCVxsNt1bbS2eovtYiqzUgIpPUE4HJYiLzBdS10b6jralJMO3v/lryirhuu3bmGNYXp+zGI259atmygBh8+e0ZmGYZExOzul7Truf3SN7/3RP+LOy69y+8XnI3NYxBC7NMuugjqkhKas8M6SKkWSpCQqZTAaobIcdOytvvjwt/zlX/wto9GQsjR0Zs1yNufuiy+wt7/Pcr4gzTKQgvn5GfPzc7xzMeG5bbFti/Pg8bQBqlXZs7yv5NGUOmFxccZ4c4u9vX22XnmF8+NjTg6f0fVJvLGs7+99cVl3xxCmRAlOZw3tKDDJJOOhRmWBZd2xXpyxfX2EBz65/xjXdBjjSBPN1nZKW7ckOqVIBZvjgmEBh+c1VdOR6RwhBZNBQq47pouOFk8wl0mn4YrvnGSSJEmoyy7e88S6NQRHnmqyzFNWHmtBu2i/Fkia1kVFn4y856sk9J73Gvmu0TXiHNjgIptNqciU9yB9/xyhSdOCLx895fTpE7yNfNjLBRmIPhwphizE4QmkWUaSpqRJwNoozJFIZBB9bxjfS4nWuJ6JH98doufqAyJyqkFEtI8IOONpSfjVl10UeAh4vIzK+NIIpHCMi4AKgg9PHNZYNgtF5Ybko5R6ZkCv2d1c8MNvSc6m8NqLE67v50xPKqbHnsczxyt3BmxuSVZzqGdLxrng0bxlmMDzBwmbc0ldBg6Ghq+9PmRddrTWcG1DsmpgvZUx2cy46yyTTbj/yLFVOMo2sDmIASx1DUiLEI7NIkO6jiLNKI3jvBOkOiPXCca1rNcNQipmocPYGCY4ygZsvPw6C5Hy8q27/PZXf8X9e4949NknVPPz+FmZyAV3zpIVkp3dXep1ie0sRS7QWYFxjrprMUgePjvhs/uPmIxHdD/5JYtFw87GNi9//Ye88q1v8uTZU/7m4/8ZHUBlaVzCSo1TiuHWLqYzjLe2cKbl4uiYzWsHPPniHk+/fICSgVRq1hfnvPurX/AP/uRHfO8HP2D25At0mnCxXqPGO9y+/QI7B8+TporvfPvb7G9ntPWSi+mM+bRkWjWsbYnQKbmSeGFItKIq2+h8Ewm6v/dDiANk4QO2770TpfvU2rhE8T6iQSJeQeIEJJkkzSI3/FLZ09ruqi665OP1b+i+L4Qn85rpB8f44LmzmfJ//eevMNqd8J//+hN+/MGccaGg7pDC8/4Hn2GaDfKNCcsQ2B45xkXG+dE5yzoq9eiVd6Ffgl8uqS8nQzEpOs6y2AABAABJREFUPr66JBF15sLlAkr2Pau8mvlcfv3uP/8+X38vFl0foKrbuFULgbLpuFis2dkYk6hYVKapZlCkEDxVVVN1lqa1SKCWceCU9KwM7+PVSJS4sorYEHA9C0HrS+B+HEq5EIustu1i4SMFdesoK8Nk0CsAVWS9Rctg/AAiWFSxKDt2J0Uc+IRo87Mubttta8hSTdc6ms7QLTxFVnKwM443aH8d0jRh2Cc6/S5MWeuYousCPHp6yMXFHHxsiIK0ONuxv7/Lcrng9OQE1aucBFHBpFQE9Ybejhg3QIpEpwQfE+4uwy6i9DqmTjnrYgqNkJTrqp8SiyjRtabf8sRGyVgbrbwisuwuVzpRTiquoM7ehyuI+Xq1JgBSSXxvA4kK0z4eWlzafMLfgcnbznFyesH1G9c4P58isH24Sq/8ExE3qwIYKzldVpyvaqy3pF4yTEUvdY9y/iSJ/Mb4ucdrkCjFsEgxnWHVldTG0tkYKlBWNW1nevlvbw0nkOjID7F9w5rohKZu0InEu8vtVkCFWCz61mKsQyeXD2MgzzK899RNxWCUkWl1pfqIajIf4ePGUgyHlHVLrlJEiF7+qmmZShhmKS5Ey7eWPT9NCZIk7bfGUardtB3VYk6aJNy+ts3PP35AVXdMZ2vuPXxMWdY8Oz+jrCt8P8i0QpBIhekHswkyDkZDBMFrGW1PiYdhoTgLgs2tCcONDTYHG/zoH/1DPvn0I95//wOm8zUH1wo6BL5t2Lu2jQ0mgucJWOcZDYccHBxw77MvML5/ufmAjLLAaL/ui+GkB/V6EwMtAuC9gBDl/+5KQen7/xabXeN93GyGCGiVKkEhCDYW+Tb4r+z+LlAMcnABF0wfuqHxITI+Xf9MGedAKqxzZJmm7WJ8e9sZWgPGGIy3KNVvL51BYti9MSJ4g3Ge/Z0xDx4+4tGzObfu7uNsQ1s7dg9SSmt46ZWXODp5zMXFjBsHe2xtFayWDYPBgPWq5HxRczGv8E72B0ToJeEKYQ2ibwabzlLkOdZatsYZGkHnFVkRA3HaumVrkpKkmuOzJUjF9b1hVIvoCCJvbOD+szmtESzKFUmSoBUIFaXoVRd5kAiPUtHMnaznFKOU8caISd1FjpBrSXTOIE9ZlStM5xgWikLFJl1pyHPNRiJY1oYiF9QdFEXKMMtQrqGYDKialjzLMAGq3r4dAlgtMM7QVA2d9zHdWitcgMYaKmNYXzTsbG+yNY4WRak8idBI0XIyO8a5owiGry37+4rrB7d52zs+efiQrnP4dgnNBXa5QnmLqTsGIxgPB8xnLTo4su0h68ZSVSuGwwFaBZ678wJPjp5R14YbtySyOufpZx+wvX+Tp63j2o3rPHnwOcMB6ESRZJquMzENO0lwpsGaltVywb1PP+Loy3ukxYhiMGaQ5ywvZmTKo4NhlKVkOireq7pmuVxhnWd7a5PNrS0GeY6SkqqumM/nKKUYDoY0TU1d1VEJ6R2pVqxmFYv1GUdHJzz3/HP8wR/8gL3r13nj7Te58dx1ZrNzJptjTo7OODudxu2pFojQbyJ9iPYmKftzr4fR994E7yMDRRAxBWVZ9Q2fpcorQgjcuHlAkiimFwtwsZlJ0zxuR72PCk+iAklqRZ6mtG1DcL3VMfzO5rTfBkvoQ0405WJNuV6Tak2SJFi7Is8yRqMRb731NX7xi19wfn5OmuUYLKLfAF8OUpI01jaj4ZCuHyQ7F+21xhmyIiFJNVmacv36HnleYI3nsCmxTeRKWVvhbHQUhACp1FcAdiUdUsSQCC2hyHPatu3VE/2Ajqg8Vkph+sHcME9IE4G3lktcilRRSWW9w3UxuAbpe2V/VDz5PhRLSJAqgAUlNE4E0jzy5wYDjdSSXGu0kDgRC+2qibaxhALvDJORJk1Sus7Surjg+Ff/8v/M7edf4Oc/+2s++ORjvnjwJTvb10i0ZG93h5PjM4wLbGzvkKhNpucz1usKFwLCGLSCcrHgyZePoR9KOtNREtgcDhDCMchyZJJibUcSBEUaubrZICPYGiksVbOO/11rFI7gTVwQxy1SZDP3gW7eWYZFQpElDBKH8A6pLVJL0JFHq5REKU8t4GLd0XWegQi0zvSOCgDJuu5Y24ZV5RBBoIUjJBrvJVJcNtDyq8HQFbcn9HWaQfRxV5dpm6J3tTjnkXGOjiCq2ZRUrEtL2xiEUBQDEDIu1BDiyoIN4L2hyBWDIqHrYkqtVNDWNVppNjbGdJ3ButiUFHmGEprOw2hU0KxLkiRhWa4p65rxYMx4OGJzoyBVCU+OL1jXLWvnWdcNnTX9gD5iMVSIvDwyxWCQUZUNpnMRfZEmPT86so4D8fqlWdKHhAS8t32tF5WGbdPie4ug75VlUQXm4vPjAq1pIu5D9gqsIqWqY0J9WZaMxwVVVTKfGZq6Ax9I5B5pPuLRgy/Jkpzrt28wO5tSt1HBZk1ECwilev5dHFrGJXpUa6BjoJhWcUEV2ZUxJbVu+/ATGdOCu64jmI4v3v8lDz95jyRLGIwyFvMFq/PHuJ4L50Qg04q0vyfm58f89mc/4dGXX+BcYGd7E9taNjYmXL97l62tXSaTCXkxYHOyHe35l7y8OFnm/OIUGzwbW1s8fniPh599ejXEfPCpZDAaM5mMGY3GtE0LKsWZGteHtCkp++FPRMq0/c9JLxYI/Wwv9L0dziLqNRflmvnxIVoprDW0TdMHC/xOhym+wv54HyjrijRNWFqDcbB1ULA1TkFKlqXj2cWUp48NxinK5YxEx6FBkiZIERgUCWVjqDuP1BEl4kNCmirqOg7MV2XHaJQyGkg2dcaiMqxXMexREjA+DpaT4CjyhNp4ksSzv50iBZRNfJZHuYzBe0JT1hbj44DaOoEjoOXv6IxUdKMIYnillFGUAoE0SbBdvO/71wQhBBbTGaenJ2xub/H8i8/x5cMvWa3W/ZkZL3yqY6qzDe5KJdTUUcGulEYnCWmW473HtD17lagw9qFfZl2NLCAQzxIlFcpatAQjekZh7w4TCJzwkZHdKxZ9iAzzVR37LhfgWpEy1ILTk4aNr414eib55YclaMOPvrfF/vVA0gV+/pfnqCTnueduMTx5hk0L/s0vp3RlxtdvGv7lv/oGh886vps2vPjGBn/1QcUHHy34+tef48bLe6ik5aO/jhiIzgqo4O3vjxkNhvz6/TO8XTEeSNTcg/dM1w2tEWiVoKWkbSy+H8KliUJ3FoKj7t8VKsTF3GpdR7Z707K9D6+9/CKlCfz6b/4DJ0+fMM40r9y5zqJQnJycEwiYXkiBlyxXlvW6idbsEJBdjQSyPI11gIuD1lVVc+/TB3z4m/cZD4c8//KrPGoyyqamDgkbe9eomoaDm7c4uPs8VmW8/ubrfPLxh1TLBcvplHK6pmlqyuUC17VYZzBSkqQptw6uMz8/4vF8Ccbw8ltv8Qff+yO29w84Ozzl0ZMvkXbNk3uf0JULDvavoTPN9/7BN3DB8uz0jPv3HnHy5ClN26BVxmSSwGqFtQYpE4LQeOXIdEJnTOQVX3L5w1cYhHifCiZFRll3aC15852vMTm4wcX5OWkqmT494vDLZzGnQMmrd0Y8IWPd4r0jEPsOKQTPVpb/8tEx/90/HvCtl0d88HhGmgw5WmkQmq29fSbX7/BPf/gNHAn1+ohPPviI2bxGuwqCiJihft6CF39HvRf6RUDold6C3w3UoneJyP5hvnIoXwmN/j48ur/3gK81Nm4+Uk3wMWyjah3zdYtAsrc1RMdxP4Mix3Q2yqG7QNN5culxqk/6sY48S1BJErcVzkFvUQneRXuPiv/zQcQEXOJLyrqA8QHRH/BpkjBbrlFqghJR5aVUBNgLESPtg/cUWUJjA8vasjnsgx+kIOktriLJGPQJKj7EZvpkumZYpEwGef8ZxNffxmSM0orFYgUCtrY2rwDWT54ecXZ6gRBRVmbblsnGEOss89kcj4+JwZfqPQTOGpI88oZ8D+gWInJxtATZp4fJfjN/2YxY4yiGBQJouo7BsKCqmj5FNEAvgffek6QJuMgqUzoq7qI9OhZTUsYkYuCr4klKNjfHTGcrutaglOghuH2aL3B5mzsPIkQbodZRjTWfL9nd3WZ3Z5uj4xOM78G6ItphfWdpheRssWbZOGxnyZJAnolotUPQdbFI9l1sMLWKCovIcIkDGWM9tbHUraWsGoyz1E0bt2SiV5n08GbvA10viXbe03YRchwj45OYdBg8WRqDVrrORoiplLg+4bVragbDgo3hJjtbY44u1lTtMjJoRDzRUq3QqUYnirrt2Ll7jZ3tBcu6xfsoD56taurOxENUCXZGBaY15KnmMlWsLNdXkuOs0HTGMV2XPDo75tHZGR8+PWQ6m1KbFmNisqYmkCBJpMD1/bcH3OXLsFfbJCFwbTRgNNA8koL5dMliXTJNpvif/Jj1esW6WrNazhEyMMgz5tMVL7/6CnXdYNqO199+jSePHrFY1DR1hVbx88XGZxlJZGOKaAvSIlrHVSLxNn5vurdEBOH7/28A4XrLfhxAJSoe2G3PowSPVIrxeMTiYh5tcn3BjwxYb6g7S641RZHSmY5xDloGEApBtAvjNAmCqu7Ic9VzFiFRGq0T8mSENTU6jVaJykZJ/mxpSLKUNnhWXzyNCclJxtOjKXkmCSHlZ7/+mL3tCTeubbFeLaiqwLpdMFtUeCfIE0vbGaqu65vKgA5xeJ0nkOrLezcwlAKdwK2dhEILUgmZlpjGIbzFtZJhmqKk4ui84XzWkGWSjWHGJNcsVkus0JSNgKDJdARSiwBb45y9vQmfPzihbj1VcLFREXC+8izqKVJAllYMsoRhmkSGY9BUJIzHY0TXMsgFvu0YDjV5JpHG4o0gl5KNAvCOIlWYrmFzqJBZitbxWTZtS2sdsypao7LassoDwZqoog6ghWK+tgyLgs1BjnA+Yg5cPFidsQyGQ6y3LDuHsJ6B1uxsb5LlGWenS45OzsiTlOAs3kqq+YpRnvRbbFAqUJYVo9GEIQ2rakmeDlgoyyuv3GV2dk4iIdE5aSKZnjzh3r3PufXC1/j+f/V/4OHnj/jNT1vm0ynpaMI//Rc/JNUJ1kWGWKISzh58Si6gcbA8P2WQa/ZvHrC7t8PqYsbs5JhuNaO6KDh5+pjbzz2PDAVSS7a2t0iShNFoQlEUpDqhbmrOL6ZYaxlPxkA/aJMiWqC9x1rHdLYgyTJ0oinrkr/4qx/z/KNHbG1sMJtesFgtODw8IstynnvuLjIIjp8eXbGootUAvPWXJoW4dOqbl7puIXCVsOiMJyjJZGODsmxiY2GO2djYYLK5xeNHT9FaMRwMQEBRFOzub/PF5w8wvVpOiYxBXtA0Ldb6fghyqaq/XAJ8pfaLkPI2comEYGtzi6apsdZz8+YN3n7rLX7x819gnScr8rggCA56dfO169f45je+wWwx5/DwiP29A/b2rnOwd40sL5hsjGm7mocPv+AXP/8pq8UzvI2KBmtNP5yIyW9CCfIkY1gUlNWa0aBgZ3uL4aDg4uyc1XKNt55UaTpjSLQm0xrrPLYPQXLGEWQgiCTWSSFgTYuSgSRJEcGhJAzGBcHFYJM81VjbsjGeIFDMVw2V6TDWMhwOKZKCsq0QWpAXWeQMthYpQ+QCe4uxLXu727zx5ttUdc2D+/ewpsO5jkGRUAiJloH/+X/5/zDa3WM+uyDPB/yzP/8zutrw7PEjWluze22T2bLmtddew3aG+fkSiSYEh0Rz79N75EUKxmOdofae8WCA9B7vLIVOeyC1JcsTbFtTdyWhkSgtGeYRhmW6ODTXKg6GOxs5VK11JEnkdEoRBz+RE6kY5Ypx4rFB0NpoCdRSYoLAhpSybilNixYKlTq0iGdy21pcUDgEZSdxOJSWqDjZwKBpurgAjoV8r/rx0X57CcOPXLnevitjLRVCTHm/VAx4L/owDok1nhZYmIBAI6Wl8OIqD0CpXsFAXOAmqUZp3S85ewuvEvG5ShXGBzySum1jU6QEaZpE+1RT4Vxgc3eD1lnWTceirMjzgpPpgo1Bxqsv3sZax7PjGca2GNNcLZFMY+OzKT15UrAxHhNcYFW2tF2LknF5qYLDO9En78aFse5Vws4F8iztHT5RbTEa5bgQB2imc6DBWrj0OauQkGUKoWOASZ5KlOiictIL6rImVRlN46jaOYRAdb/h+ZdfZWuYIYThne98k5PDYz7/9CFVVZKmol9sJL0Kq4t2ZhWiC8BH90PSY16cA60SOtMrcXWGo3fVuD6sIkhEEvChRaiAKX3k+sjIGWyaFhC0oUEpyWg8QgAP730G9+7hvCdNYkq5ShKGkw22Dw744Q9/xNe++W2KRLNez/no4w9oWsNrr7/JRx++x8//5q/JUs3u/g2+/OIe3jnaMqaoTjY2KWdTzp4+7dU18SyWQiB9ZG9v7Oywt3/A08dPyQcZr956jnRQsJguePLwHuV6GUNeZEqaJCRZSpYkzKczTNthesaqc+5KtXppX6NXn/bbbZrWYL0nSTT5IMEKy7JqMV6hneJgq6Cxgvl8xbgQlE1kPRapIsPjZawpE6VZrj1VY9E6vg9aF10SxgXaRYeUnpGUbI0UKnhWNTgX78FExbAzqTyq9bx4e8z+bqBqOqoaVpXCuCjISLVA4nBe43NH56A18al07iuYfmROxqG0lJEbrbUi0wKfxkWvs726VoD1nqZpOD0+xXaG7Z1NTNdS1k3vrhI400XRLqJXDX21EPPBYG0vjkgUaSrxShKMjYpT7xEhNgsxpMVHbrCLrFGhJMUgwaxNH34QSNIoCsm1Iks0q6olVYLNFO5sJ5S142Lt2BkrTpYdRiQILWG74JvffZsu/w25W5PIEiECXmvuvDjkyfGK//Xn96hNxudnDQ+PAttDw+4tePDw16xWinGiyRvJ6mTO6y8d8OjJKb7xNO2MYTbmpCtZOIUYBD65v2R5cUZj4c7NEZ8+nTNO4WBL8ejCsewsxUgxSBQ3JprRJOPZvOXiYoV3ktEgIUtTBHGAWpYd6y4wHmXkeYYOluMPfs266Xj29Cn7+9doXcvmcMR3/+l/w9/89Y95cO9eXPbpOBherhZxwSEgSEVRDPnat77DYHOH3/ztX7OcnUUBShr7EKc0bee4//AJTw+PefWt1xls7bC9vXulKDt8dkgyGFGWzzHZ3Gdj+wavvb3B0dMjPvr1j5menRKci8xVpWnqhvnpIQ8++S1ta5E644v7D7n5/Af84A//EE3g3V/+ivV8jqlnvPjcbY6XK548ecx8ecJkvMGt557nzX/5B9z/5CP++i//I+WqIlEpWZLjfUPXmb5WdJheBZ1GGwLjXLFuAsb0yl2iGjVTik7EPtIby9nxObUJbOzu884fvsb+jcecHB4yvzijXi1wnSHgGI8KbOcpqz4Isncm1l3gP/5qxi8/e4+x9KyMJkk6djcG5IMCPcx5/u3v8vK3/oTB5ja//vXf8OQvf82ibmOvmiXkeUGuU5q6oilrLikYl3O8S84vSiJVghSKYmOLJM8IDrpqTbOeIX1013kfl9tZnl25MX+fr78Hi24Enhpr4xBDeHSSsq5alIwssp3JEK0iXDhJE+rOUjYG7xwHO5PIo1OaPNPgXYx6txGKejXQkxIXPJ3xhC5KIi/Zc0L4q5QVqaKKTSbRNzpbN+xtDfopeZw+ddaRp5GNZU2HFoFZ1aBUTq4EMtVoH2gCrOsWr6PMue1fisuy4/B0QXErJdGXIlAQEsbjAcPB4Grj5Hzg6dMjTo4v4ktbR9XXQOexKGwa8HHIhPcEGS0/iZIURRbTD7uul5vGAyFuTwTFIKOsIh9HCBVT0bRiNC5wwfXWBYt1PkI3hbxKCaTfCjtno5S7H+gFQPU23cvv/6uv+LMmaUqSOLquiwBcJ3r1m+8HlfSMv0sVVgzyCP003jvP8ck5d25fZ3oxj8nDPWXTOo9DcrZYUXax6Mk1BGsRmUYkira7TLO1JGmCVv11UbIv2ALGwbrqWDcNTd1hesisczZu83W0znbGYonAWWPs1ZYYrXruY6Bu2pgSpqPKUQlIlQYlYgKwFiidkARwxOZoWGRYN4MQyPOM+bpGa8m18QZnvVXdaklnOgQBbww3rm1Rtx21MzTGkAnB7miD2zdu0DkoBhlVYzi7WHIyL1k1loBkVTYUWUJVt/z8/c+pyg5JZEIGF+XAXgLu8nDuYZ6IfksrCdKTIMkIZEnGRpaT6VhgeR8QxtHYmk/fe+8rZkDwPHv8BIVnMpnw2aefR/7OZMR8uYpJTpnm/PycW3duMxxscXJ0xsXFCflQkuYppu3Ay2jNN72dVghEUISejZDnGmOAyxTLEO8hqSFPNEGmrKWhdVEKLoVA+8D16/tcXMyx3uNMtPcM0jSmWbpoW93ZLLh9MGCYSo5PS3QqyYpN0ptDxqOMzz9+iPeBna0hbdswHKbcuH2X0Sjny88+5/hizmCUMR6PGY02GY0Kjk8OOTo8ZndzgFAGZ6Mdzg0UQXj297e5dW2L3e0JCvjs/jOSNEfiyLOcndGQron8JCctz84aHh+WFIkgVXF4ITXc3B2wNVCYrmJjDIqC9bpmc2uE8wuykCEJbI4HHM8a5itPYxVdkLTecXTREIICFYM6rAelYrJ4ZwJSadrWIJxnlA2iig6HIzAvKxIFu5txkVAkKdd2dvCt5+bNW9zOEy5mJ5w+fUZlHInwCByKFAjUtge9y4TNYcqybAnOU3YNoo4A50xIinyA1CmDUUbTdDHxWGqWpqMgkEuJrR1Cw8q1ICxJonA2QBoTrTOtOF2UBNexORmC95xfzFEhZ6BPKMsK00mMCWiZkucTbj/3EieHj7FBcXBwDRFg98YdimzEoy8/wlpPY2qc1Lz78Ze064YindMKyLOcNE3YnAiGA/jkvV8xnzaERCOV4k//yT/ntTfewdSRJwqB1dkJn/7ix5w+use1515DBUdZteAVo9EG1WyGb2sSKVjMLrBNSZ4qnDGIIMjzjOFoxGQyIk8zuq5jNl/inGcwGOKtp2or0iRFSsF8Me85bnFIkOiUPMvBC7qu5hc/+xnXbuxz985tJmHIybNjns4OefTFI5yN6mUpFJdNg3cxOfMSRxHgSoVxqU6Kr/hY1skQUQ6mjcVsaeKwbTgakaQZdVWjdMcbb73Nm2+9yXq1YH6x5Hw2Ax8i5P2yKZYiKnV8+ApiTPy7Ln9e21vypIi8rfPzKd456rrlX/+P/yO7uzvcuH7AfLkiKElXr/GdB6FIdE5whidPnnLnznP8+Z//H3n11VeRKsMZR7WuMcZxfnbK8bNTgo92FCVFz4jRJFozGg9w3hKEYjFfgQjcuXODVGmef+ElXnnpNd7/7W/46P3f9EvRPnZBxEFH09ZxsKEUgYTOdhGrkao+nCY2ycM8YTAYIUVgNBiipKYs1+hEIBgyHg3JkpT93Q7jHU1TMxwUCCu4KGFZNiCgaSymMgTRUeQZ42LAaJjjpGaxWCCVYjQcs1jMMZ2gaTqEgtYEWrekDZbheMJituRv/+ZX5Knme9/5FlJ60uSIi+l93nv3fdarJbhoZVFSR1tOv28aFAWd0RSDjFQrxnlOU61oXQTlW2Pomi7yjHVUSWkZUMKT5/E5kDLiB0S/KfeXSfR9M59kKcF1ZEkS0RzCI5ExQc9Ftk9oRXwn5kRURogLZ0ts7OwlD9J7hDBkmivuD8HhSFg3FhfEFV4ihN+1gkekBKJvwoODPoyDfokcwfg9AytE7hcyMoBb4/sFawxC25vAziTh3uMYUCN7y2b8o0QMkBLgnI0WwiSJA7MQYqKwUP1wWdG1EQkjASsic7N6XDMcDrlz/SZ13bBcr3HBcnK6Zl22bIwLdreG7O7dIdWKs/MpdduxWq3ROiocjbFcTGeRayZB+MhlaLs2LlYSjXPRbqtktI+qfoMc1RGQZWnk9aYJaZ6zWqxIZFSv+hC5kkiBR9CagPSGNAGdJuRFgko0TdOyLlt0muBNdMrkqeLGwTa2m3P4eIppLDsHnoMbNxlt7nF6dsbJ0VMuTi/AhZg+mgjyNLJ5pYi2Z+c93mvWZYsQqh8ORXu/c/EdGNxXIPYQiJgfGQN5fIi1dFN3CNc7bAIIGdEw1bru+5iACFGN2XSGNEkxrWG9WrOuK8rvvENnDavlgg/f/wX/4T/8WwaDIWeHj/j4ow9Yz2YoAfc//RSCjBZcHUNrmq5l79o+zhhOj0645I8jBIOtCePNDfJiyO3nX6RsW7b2rvGNd34QQyG6BpklnBwdcv3gGsVgRNc2nJ+eUa6imyDJFG1dA/3Quh/m+j7lV/S8SCkFeZaSac1gIBgXkvEQWtOh04QkKNZNQ1p4BlLDKIWkY8MWFIlkmIuormphc5hiHZxcVAihadvoIsmTWA/LuBMnhJ6p7j2bY8XWlmaxajAuDveGBQyKhLqVBBERK2UdLfGjQWzqEyGRAoapwgdN1UlaA+vK0bS+DyeM94WQ8T2VpCqGR/Z297LuosJJRO5khPmDVL0iG8/5yRnVMEenmtTpqDAlKv2UktEJ43unFPF6SnWpfI2KS62iarBQKVmuonOttr0qHwajASJ4qqqJji0paeoOFyQEy3iUROWtFwQnqL0jl5CpwOZYc2NXcXzukOmAQnuyFTS1YdVJ/m///VP+L/IG73z7DR795j4PvnjIzdsJ7bzkbCH48kzwyUNLl1g2RzU39uD7b17jj35wl8f33ueDk5KvXS84v5jTkHF+eMYfv30dVdTkQXB41nJeOu6dGNpOkI4GCK2ZTc9J8NyeFLyw4zlde55cwNZAcudWjmngxkSQpoKmlhT7I846T14kDLd32drd4dHnn1GtHYrojBBIqmXJl59/RjYco4LD1kuWzYqzo2PmTvPOD77FydEj2mlM4jU+qiOjkEkjdML+9Vu8/MrreKmp3niFLz61NHXL9t51NrevcbC3xdnZjI1rN1iXSw6fHrKczsB6uq6lrSus94w3N/mLw8fsXLvO9t4Bn733Ljfvvhit/kKSbUy4+8pLbGzs8ODTT8lTz3y2RMqAMQ2rheWT3844evqI73/r66TScHb8lGo1RbqO5bpmtVpznk3Y3dth3XV0acGr73yPk4szfvHjv6KqS7yLw2XPJVc9KjtHRYFpA0I43nr1Np89fEbV2p7tGcPDrI1qeuMd9z75nM4FvMo4e/qQ63t7OC+YbO+wfXCAtw2nzx5zfnJCPsgh86xrc6VglUTW31BItFU8qw2lDQgtyesFG5uB5njNg+W/40/JGF+7xef3n5EMNxHpgOFYkY8GrNcloYtLVaO6GHB6OSkRAg9Mrh3w8ne+x50XX2J2ssCF6N5JteDwwX3mp485e/yQdl3GGlXJK4fI7/v1ew/4IgckYI1BJJqyNqRptMPWTRy2KCHZmeQIGcjSBNNFK0GSSKbzkrLxaG3pumgdkFweeFGp17Y22uasxTpLoiJI2bi4xZFC0nXmSl2SKIk3UfG0rjpWZcJoIOmaDtEXVG1n0DpBSkWeBmonOFvUXBsmdMYyGhUo52maDiOTmOzSS0i9FFysWnbWDXubGSGIyAZC9FLLHjBuLI+ePONiukCKyLkbFhnjyYjzkxm+ueThAX3TLggUiWKQ5Sid/E6CDEgRSJVEJwl1010N1JRWpEnG5YAM0yBVQmscWidUddNbFRzGxA2Z7lV/qMukJs9lEpaxDkIcmgYbFX3GxYok2m8lZ+fTmL7no/SV4DC9ytL3abvIaB2Kw70+0EPG4mS+WLG7s8He3jbV0wbbRtmWQzMrW8raYKP/GKFEVKTUXSyIROQlSiXRIh7CSki0iEVB4zxVY1iWVRzguWipoGflZUkE+JvgqTtLiLPhaPvulX2ZinbWqu2inLxX8xECk/GAQkiarkUnkjzPaTuD1JF+PV9WFInCOEeeF/0WOQ7ZNsYFj0+nJFpR5CkXsyV13ZCnGgWkQuDShEuU7d1b+1w72ObJ2RnT5ZquseQ6YVG3NM7w2YNHPDmb8/AoZV3WNLbDtB2JDASpsSE2tgOhaUVLjUN6f/WSFf1gOVOS7bxAeNuz2YjDnTi6jvd9cFd8QoTvrTKK8dYmm1vbJHnBZHvCF59+wf3P7uOdxXpPmmeMNjb4b//sXzCdLfmrv/zfuJgdsS6XMSnScglxRFwqdWW0NxsfhwlFmpKqWIgRPEkqUAnkA83GYEiaZNQmMqOUUgzznK3tLbrO0LYdZVlFxltraKqa3Z0BWeIZppIET56AcZb5eo3p1sxmc8qNlMlEIYUmyyXRbW+Znj7j+OkSR2CyMWA0zmlaz61bt9ja3ebi7IyNYY4Ljo3xiM3BDienS158aZ+6rtjcusbNW3fYmeTU1Sd8/4c3cU7y+N6XjAeOcS45O1pRV3FA6tsqWr+CpGk9aWK4vpUzTgWmqfEI1pWN18sJVut1bPaCJM0ErbMsyhYvFUJHu5MMnsoK9rdzhoOc6XLOMFFcu7HF+XRFVTrWq4pyHQhCYwkMM4VKBUI6FJJb13cIoSPLMoZZSvBRxfL46Bml6Xh6dIHtHKm03N1NcM7QmsjtTKRACxU5f1r10x9JFzzBiZhEnsQNddt01MaQpwmTQrFYV/HdJgJ7Gxk4R9DQmIDSBZU1tI0jCUCWoJwEbyMgfzCgrRoG44I8H7J363my8zPK8hwv8sjVG0Qm2+HpBauyQ6eGQRK5ave+eML5xQKpoDGO42WJ6Plw57MVOk0Ym4BvVuzv3UCLlFs3X+cb332F68+9gGkbtvZvsTi/QAZLPhzRlSXHn/2WxcmXCFsyGG2xMR4hgyNJc5pe9dJUJbPpgizVLM4POXz0iP0bt1AqpchSRkVGpuPS6vTslLKqGY9GdF20NSRpgpKS9XqN9448z2Maa4C6rCjXJdadMBgWCCGwdctvf/UbmqZjd/8atonQZm/p01PjCEpJFTEMX7lyr1R8kbvUv1/xV6oi7x3LZRlVSYBKJMVggFIpg4Hkxs3bvPn263zvu9+lrGouTk754z/+h/z05z/l8PApxrnIir3kxRKblct3dUzn1DjvaDvLJS/LWkcINg7G+oXfvOvouo4f/OEf8vbXv8nBzZtgLOcn53zw0Wd0Xcsbb7zE21//Jts7ewwmA6bzKX/70/8fD+8/wFYt6+Wara0JR0eHrBZL8iwlL1IknvF4hOkasixluTIsFnOcDSzsiixPWa+WHB2f89Of/QIpYoOXJpq6LIF4rQDyLCIa8BFUXeRZHBApGZd4xpKlaVTedQaVZiyWMVzFeUeaabTSzNcXxOACyHNFLgNmWZGnOamIysHaONoucquUikOntrPoEBhupDx9dh+tcl566QUO3Ab3v3jC7HxF1dYYvyLPC9brJQd7+7z+rVe5dv0Wq+UMnSrKuuX6jZs8fHLIxVl8liDeI2masLO7STYsIq/O1JydnmOMpWta2rImi55WnIqDsc5GG2eGQCUxNdKjolIqSIq8QARHCA7vDWmSkSgwJjpOlIQiLwi2Y7MoyLME5ztsU5OkBcZC6DyDIsGlivWyo2k90hhUAGsEMsmx9Ir/fsmZpprlOr6XWxcIKAg21i/9MxEbAnEF1lY9j0v0g+jQD/fkJXNPxFAeRFQROWcgRKzJfGUY5orKOXbGIqq9hIxsyFSherYXIaoETYj1oJaR6dgaSxYjMTHW9qp5Qdu0uBDrrOAMiYzhZW3TMh5v8fKrr/Ls9IJqNaVKSkbjEatyyel0ybOTc/Z2dji4do3vvP4qZ6dnVKsFs/mUk9MTgh/QdIalaqmqNio5eqeO8z7yI5G0ziAkvdVVECoTE3NdX5/WjrppCM5R5DkiyaD0ZGlK1xq8ha7rSDOJVgnrsiHNcq5du4VOcp4dH+Ftg/NrjIl/xmq5wFlH3cXPyUtY1i3XXniDP/zuH+KMZXFyRLNc0jYViMjnnZ4dc++zd7HMyWRKXQUSDVmmkCJhVRpWC3Nls4T4OSupCMQwBJ0omrpFKotp4nAncoL75UWIHu3OGy5TzZ33VxZ901kCILVEdB0PP71HqgeUiwWfffwutlnTOsezB1/QrFeslyvyRKPxbO7usL13jdFkB2dqpucXTC8uGA4HICXZIGMw2ebtb3+bN9/5HvsH+/z0L/4DP/urvyRNE1xb8/ln75NlA86nM67feZ433/kug2IAwbFazNm/saSp1swuTjg9PGR+dhYdSzKGq1jnaPrhrhDhCvmzs7XF1958la2xAjvl/OwpQmS0raEzhnXn2BxmbI5S0rqjGA0YpJrZfMXmJGOQC87PLSZA3XVMxgohFFUjaGxgPFTkRVzkt41BJzlSCLIk2tmNDwwGWQy2EQGVKFbrlkQJfFAsVwpnI2+x84HO+hi4UXcoCVkSGGYpmQoMU0XnElalY7HqaBoPKJQKJEnA2WjlFcL1TrB+4Hh5dolo/ZZ9f0Hf116/cY3JxHF2ch4TtIWkGBSE4KmrOrpiehRN5Nv2gZZKkqUZnjj8aFsbkVHCIEQ8f7I0pVwt46I1EewUCUJBt6hBBCy+V9nHlCOZwCATBAvHq8DpoqFQgs5HHtuNjZT9vF8OSvh//Q+/YPHHr/BPfvQ1Dp/NuPdlx4fnHbMy4GtJ5j0v30oZJIHHRx0ffHLM63dXSDIu1muetBWzecqdbc/3/uE1tg8Cu7sv8PDjT8jTgvE44Yb3PHi65P7xnK+9tMcLaoCxjtdeLtgvFP/fn50zSODrL4xpgqX0Az57eIHWcY5hnadZOhLhkE3Ls4dPccZTFCmtawkYAopVE2cMda+8vZhd8OZbb6CuC45Pn/LJew2jUU4IAduz9bcmG5R1Q5EXtDagVeD48RfcvHOLb33zLS6On/G0vUAXI1564w1eev4Ov/r5u3TO8ezJE6rZKU1Zspydc+PGDQaTIY+ePCXViqZuaFZLqtWcsy8fsDo7Jh0OsMDOcMTBzj5pVvDCiy8w3NpADR4wOz9hOT2LKfWmZXlxwicffcidm3vcvrHJYONFDp8eUdfn6CJn+84d/vE//qf8+r1f8vGH72Nt4NZLr/P00VPODg8pywpnXL+MdP39m2B9rNuKVOGRBKVBKqSPZ6rF07lA5/tZgo1hF8E4qrbk4cUUKRXZaEw2GjKZjNF5QTEaUzUtKliuFs8QZzY+sJfBt28WfH7m+WJpqI2jcmBchRAwK7/gr//N/5vp2rB75wX+8E//gOOju9x/7zc0pcUZT7NexjCa3tFyqTqWqWL79vN840//a557++usT485eXrEw08/o56fx/RpociziE6hF3BFBedXdvrf5+v3T9G1nrKOB3OmIrNOBINUMSm3KBxTES2zG4O4HZhsT5AXayQQegihMZZiPCBLose9rJtYZDYdXsSY8DRLwTmsj5Y9Zy2djRdZKUlRRGivU9EOKoIjTxXTxYo02UCnOp6LnaNzgcRHjzZKUujIgjqtLdc387iVIDLhPIIsEaxaC0rgAlgfOLlYMso3ydMk2oh/R+y2XK959CTe0AKFD5bNjSF5kXL07BjnBUmaxnTUnquglGBve5Oui9BOWzVxQJIkcQiTJehEx+/N+8gx6YMfJLHokxK0jgOnrjNxU+jjhtEZ0x8KcdgYB5zg+hSzyDiL11X0qjghRfx7QgAp2NjaZD5bsi5rXJ+WGNNN+wLDxGbE94WltQ6pdB/oEItsIRW29ZycXfD87dtkWU7dWRoTC6jO9ZHtNn5+kcUoaLtoHelJMrERUmlUK1qH8LEQqzvLqqypqpokSSJ/rk+l00oRXLxvjLsccsUCOyoA4oHpXBy+Khl/LV4LSaJl5HT1Q7Iiz8jThLJuaKuOfFjQWEfnHFmaUVYN1lnSNGVZt9wIHoJjd3eX1WwGfoxOEqo2wvv3djc5na9jYSAcxSDB95/lel0hkWzub9A8bCnbmunFilnVgIuNYdd1UaEgJLK3ranLhqjfLIW+oVAqHuqJEAxVwlBpGqJ9dt0ZJA5v4++RIjI9tNRkRQEehG0YjHK+/q1v0zQt97/4InJ5qorbd24hlOLxo2dILfj03mf8P/6f/3d0kjCbXaC0om3iFv+KNBBrXZzxGN0rfYi3XtVZnBL4IHFC4HqLkheW6XIKDlobolrPx/Thzx/ej8VZqkiVYGOcMypytOso1y3npiMVAW8913eG7O9uUDWG89kKHwSF16RJtHvNFwvQgrJ2jAaQItje2mRdBT69d0wx0CTJA46ePuRb77yGzgc8O7zg+o3bjHNJpgekmaVtW5zP+OY3fsTTJx9ybe8WeqApsl3evP0GH3/61xw9fUJTtwyKjEDLN14cs33hOZs1jDLF1jhnY+CZLUq2Nkb4YDlf1GgVGBcxCKSuPF3XsLVdcHjecL70eAFtZwlSMtSSQitGCWRKMCwyRgPBII330KoyjEZZZKOmgjSV7G8V/UIiHkDrVYkPnrq2TN2CzckI5SWzo2PqLnJDjGnY3igY5QkDkTNfVVElS4RFD4c5yyoOuNPkMnBFsHZdvziwbAwEqtPsbRXkKmGgBJO2Y5BrJqOc04s5y8phkAgMwzyJ1hInCcZjXGBnlLMxSNAe0mIAPjDMiz5N0bKqGublEi8k00XN6cmMJNMEoiXIVSWff/w+TecJRA5KqgU3tyaRlaIF8yJlvq5IkoS33/46W/s7fPrpIc7WMdxkNmfv+nWqekE5nTLZGGF9y9GnH3L8+c/JhWGcpexc2+diOsN0DXmWopWksx2jyRhXzpiMM3ItWE2nPP/SS6SDIZsbmwwHQ6yxHJ+eUjctg8GAto1WrizLIMStbppoimJMuVpRrqPlTohAXhQ0TU1Xd4QQOGxPSLSibhqOnhyiZULXmsgCo3+f6q84fMCVLfeSNXKZHHmJBIrzih754Bz2EgPRWIwxfOOdb7K1tYcPga3dTaaLBXfu3GE8GnPt+gHTxRRjO6bnU7wLdN5cnbuXmrfL1MWuM1f24WhnjEUY4qs07qj6i79bJxnD0ZjFbMWtGzfY2t7l5TdeZTgckhcDkiSj6Rzz+RpjHV8+eMRP/vN/wXUtpm3idZHxumxtb9I2dbRROYMHzs/nlOsWYx2D4ZCmrjl8dkaWajb2hrzzzjf5zW9+zWq5QNCSpBm+7aI91Dik1FyqJBN9CWI3NK3vP0OBkrY/hwNVU+Hx/fnocV6gdcR2GGshxGTZzWHGznjAYmVZOxebyhDY3ZogBKyWa9quQ6SBLEvZ29lEyMDu3g3m8xUX84uo/khgoBOUHpJmBTpNkEGxub3P3/7s5yyXUxItOXx2yI1bN7h15xbvfP3b3PvsE5zxnJxcsLG5wd7+Ls+OjpiZFtnjMyYbE7zzrBeLyETU0Q4WdW8CKTXBW9omkKWK4DXrytK2gTxVaOHo2oZEaoZZBr4DJcBDqgX72xu4rsN2jlXZEDR4FElvsQkaglKcTcv4PnCe0VCSYslkTD9c1hYRwEmBtQ4h/JVSz/VKPNVjJ4QQPePqK97Y1bAnxMF1VHTFcz1yfPr7XMTE3cuEeCn78C8CWouocnCaxRouyVnGWGQWg9lCkNEeKAQQFQPGmDj0cyEyl60nlboPX0rpnCN4H61kSlNWLQHHyfEzTs7P+fo732GWCNarNReziG4YDQd471ks5ywXM54+e4RzlkExjKgLmbC5u8V0OsMGgQasC7jgqNuoPvI+XsMYlBUXPgEZFbkukPq4KN3e2uqVsRc0piGVGXmWkqZpVLCu28gdtkBnkUqyt7PLredeZnP3gDe/A7/52c+pm8+wzjBbrPogIomxnjSXOGNIfEu3Pufp/Y+ZnUzpmoYXXrqLTmC96hhv3WH/2gs4a/ny3q/xoWM0ShjJhK3tHaraMF9c4F3/Puw5mErHIUvXxQV8cJGtHaTA2+i6cMR6TkpJcOF3eE6hdzYERJ/SaKy7whM4Y/ns/d9yfPiYelWipY9MTWOZTWcspnOqdQV5gUokq9WKJJ9w58U9BkVK3bSo2YzpxZzB9g7vfPcHfOcP/4jtvZu4IMlyyZ2XXubB559wcXzI/U8/IssKisGApmnp5ueUswNu3L5DuS45PT6G4Lk4O+b85DAuI5Qk+JgW2naR53vJroKoLJVBsF6v+fLLR3Q3dklES9lYjLFUbQxLHA1GZEpzOl8icZR1dOwsG4tQEu+HlI2ldl28161ne3fAxkQwnVWkKQwyycG1IZmSnJwuaAI4a5lMIr91tqhpWo9VHqlSlIxWfy8C63WLc9A6gdYxTMJ5SdsFnBWYQrFYdmRJfF8ZH5EySvZoiQDWRCUXAbwNeBlQIYb6eUArgQygRKyPk0T1524815aLMvaBSVThBgmr1RohBeNhjhCS1XrdCy/6dHYhaDtHZ8qYOk1MDJW9Qy8EsN7GACahYxpqgM4Hmj4kJk1ibxScJ0tUtDr3FmOpBE1jQUOSCiaZZH+sWZcdeSp5flvxxt1tbFizm67xcoLeu8tvf/YZ984FN/YVrzyXcn1zxLv3Fjid8I0DyeakJV17/uaDKfupYkcF3nptk5eeGzG5fo22lXzwi/e5fXDAS7cU//Y/PeD02FCohI1hwSS0vPyNbUZFgQjQzluu7+3wZFbz4FkM15vkmoO9MZn3fPelIUfLkuN5i000j06nJDIl4DGuY29nwDCP4STzRjBd1Jiq7msSwXK2RkjDZpFx/PgRTWvIBjndak1W5AhgXVXkwwHf+trX+O4Pf8jd2y9zfn7Op59+zI2bN1jVLRcnT/hP/+4JPy0ymiaip7qmZjTIEcGDdzhrmJclpuuYn5+hdELT1hhjsMZwcX7My9e/QZ5o6vWMD371U4IQ2CDYuX6T28/f5sWX7vD0wWMe339AMhmSJorJeAPpPG/cPqDYvcXzt55nJA3H05ZXf/BHhJDwyWcPmWSKB/IjXnnrHa7fuMHF0dMeL3HpX41Da2Mt1hgUCt84fv3+/fhs+t6V1y9Cyj4gxoWAcZc5AnHBHJwnOEu7WmKqNcvTY9Isi/xEF0VBUqmIO+gPZaUlDYL75xV5qpnksGhqBBLnuj7MzPL0wSM6D6auee7uc7z9zT/h5OMHXHz5KWW1Qnh7dc4KKVFphlSa0fYud195jdX5KX/1P/33HH7yAV25jmKN3rVoO3v1DpeXOL5+LvX3gOD7/Qd8sfyQZImK/AsvsMFT1S0iSVgvKlwQKAWDdAMpoSorfB/xqoRG4NFJtBstncQsy8jJEyoCgBN1xVKSUtJ1lrj27W2lQiGVwtsIHNZJTLOzxjAoEoyH6aLi+s4QcAyyBOXCVaHV9Bc5kYqys5wsOjbSyJJBKtZNlMUjYjqZUgld17GuFWXjyLIk8r9C5IkdHZ1yenaB89FykmhFnmcsF2tW63UEDuOxxvT2CSiylDxLWa1qlqsSqXQfHCGRIjJwtFJUTdcrrHwMKhCRAxIBz4LhcEhnLF1nYwNkDMbGibmzjixL4wcnBEor6rru2QoQwZSRTSjjh/sVFNeDTuL3dHY2xXsRU3qF6B9GcEFhTDwsYuMUE9Js16KT3rbgLOMiKiKni5K9nYqtzTFPz5YsSkNtLpPPHHkio6zdO7o2AsiVVighyLKkD1iJHCkXAm1to22h7SirKjZ2xKLaRiBLHIxaT2ejVTlPEqyPw8JMx+LIOYfpWTeZTlBa0rUdMkQLdFnWhF7e3tQtWmk657mct/sATReZFL5vqlU2wnmHcZ40S9FSMB5PmK1KJhsD6n4wd213i854VlVNmqRsTCYx2KHrmGxtMLuYc+/RY+Zly2xRUlcVnXHouNeIqYshSsVVELT952d83OQFEwgx/BflA5M8IwmBvIfFd9bTtB0rBFoGBqMhb33zHe5/9gl1tSbPU/7Zn/0zlEz4zW/fZT4/53//339OZzrwNr5wdcJ8sSBLc6SU5FlBWZWcnp2RqARjo7JACRmbFBkTMQlx8BMTbqMqNo6w40AySBnTYyGyIhFM8oQsEZRVx2QyZLluaU0sDrMsjS/QAG1lKWWLNR3GBGbLBqFha5witOLL04b5sibRAiEStADbehZ1w0w7tsdFhA8HwfH5ivE4wc6XJCKhKDI603KxXLJalSzKlj/78z9nMrrDcDzh/qc/xdkanTmeHB1xsH+NL//NhyQJ0K1YVx3f/MYfc/udP+Vsccb0fMHpRYlPDZn2FInihR3YTnU8BFR8BvIkY7FuGQ5T0qygrjsm44wnZy1FLrhzMKZuOkxn2JxkzJcdidQIFxiNNNs7Y7YmCfeezCgyyeY4QQWDFkkMQKgsg4FiMsqxtmG2XNN2ISZhJZClKVoEtjdTVAKtd9i2ReqUXMLmRLM9GjIQntYY6rYjlQJvDCRxa9V2jlXZMsh9n36oqYzDAVmqSZRiVEiGg4xCeIRtSAnIXNAaw8W8ZtHAog4E5RnlGSrJkG1k6iAFrXFMlw1aS7QIaKkQIbBaL7n32XtMp1POViWBOBy2QfDON7/B8ckR54slVV1zbXOM8o5Ua4KQbGyMaMqaRMQN9qKtGSUJo80NDm4csLm9x+PHD5mfPOXsyYjNO8/x1svfJ83GpCpwUs6wq3NOj9Z8+f5PqOeHKJFgu4qTw2OqxpDqjLaqqPUMW9VMhiN8ItgeDdnZ2aZZzzh8/ITnX389hjpYx8V8hrGGyWTcs10KBkXeb+SjIncwHKC1ptH6atuotcIZ24clRGZPcIHWdmiZkKUZIsSFgO1V3d5HBYNQkoDro7P75HBFP6iIjYruG5DQy7iTJP7doQ+zyLOovv74gw+AyGLZu36Na3t7zM4v2N/d5fr1A/75n/9z3vza2/zbf/2/cPjsGdrLq7PZ90MRqWTk0l1+iZhYioisVq2TGDRFHEgqJbHO8vOf/5TDk2N+9Cd/zPlUYVzHF/fvgRC88vrrFPmQRw8eM+9tgNd395E+DoAJl9bgiGSwnaFpOtIkZbGoqeuGuo7XVQrFCy/c5dmTEy4uLgDPfLHk7PSM0XDIarGgbmIwRAiCrjFXAQuRsxuXfqG3cCitrpRgQkqqpqNtLInOUElch0klMJ2JFj8RbaemDyaq2kDbrTE2kA4KdKKoVgvmpiEg8E5dDXONMZydzViVa0YTw5/92f+Jf/fv/yNfPvyA69e3GA1GfH7/S2azhqwYcOtOzutf/zq//uB9Ts7OqOsSLRX3vnhIkRecZqckSpLlGda3XExPuZgexaCk3m6dJJrd3V3OTs/w3hK0QukUZztCkKSJiEpDkRJcdB9YK6gbi3GR+ToZpqTpZRiMQgSNTiTbwwGmfzacczF9WHi0hQSPa1uCSLEmULY1zjqMMb1S1lGJqLoPwTJIBSFolm0X7zMZbV2tUNgq8rSkUsSysk+d7m23of9n2duxnevB9P6SRfbV83MZvCERICRCSrSwjAtBpuKi03vB9taAJ2cGESI+RUoYjwrqymBdzPqLC444VJJKQ4g8ZS1isIwWcbjmbMAhcQisM1cw9OEox3rPp+//mrzI0TKQSE1tDVVTMx4OkSj2drcYjnKePX1GuV5ibHTsdN6RpoobeyM6E2vX+XpFZn0cFgjV1/txWCmJC1gv4wJaChmXyFKhs5TrN25wenZB10X0yaope2VcP1FD9iECntY2PHxyn72m5O7Lr/NH//W/4IWHn/Phuz9menpK05i40Ao+qs3LirZpuTg7o2o8CiirNedPP46L/CD46N0fY52NilEXFV9ad1gLq/k5xsRltE5CTBwnpjnLHjEQfEy7tvhenRxTFuNn3/dcPY/78v65XGIgBQqJUkmPLIjs8aaOfMOurUgTTdBxSDjZmMRrVXfgRBzUGIXpYL34gpPDp3gbh9k4i8oy/vhP/hk/+m/+jNHGFsHUfPbr33ByeoISjtHGBm3TMJxsMjufMT09BQLP6oqT42ccPXlIVcUBw3I+YzwcsjneoKlr6qrC91Zn0btp4i3fs8D7brNuOr748hmPD0+5tTvg4GBIWV6QSE3XgZSWUDuq0rAxLlA63is7W5sEYXh0OEUmUWiSJwnV2nB6VmFc5G4HFygKzWy1YGOsWSw7GgdFqrFW4GjpWsPBdsaN/W2eHa+4aBtcCNgel+h8DAis2hiKkSpHXmS0jSMgUTpQNiaKFxJN2USenVSiX9RwxcqLO5240EiTeP9mabTw6d5xlBfZ/5+5//rVdM3T87DrSW/44gpVq/LOuXOensAZTiA5pEmRMwwAIcuiLMGCAR/4jzB8ZBgwIEEAYVGibNqSQEoUOUxDDmeGPdPT3Tvn2rvCrlwrfvGNT/LB81b1ENCJNDzwahR6Y3evWmt96/2ecP/u+7pxzlMP0fq2aTEmYZzksL9H0rPV9X1CQQ2InqcicXzSVkpKT6iEl5iMJ4Tosa6nbTqyPE+lem2Lj4Ftm1iEuVZkKrI7BhEjmRQ4L6k6ifKBLFO8dMHw3CXFx190LCvPg9ajgMU2EnrLC1e3fPUrkqsvXWN0bsp3/+yf4tnv/Ayff/Qxu7MchWR1WnHp7DMyu+W5556HeMjhyhOY8OKXp3zjK3OevzRHuC3et8z3L/PG6y/RL0/pes+oyLmwK3n19X2kmnL14j7jUY47PkWRccJd1s2Gc1PBV7/8HMeLU5pl4PlnDlgeH9LlgvcOI8duRP+4QhvY2SmIIqPrekqp6JyjbR2LraVtkwmmyHMyWfLgwUOMEXzljZdopg1VazlZbnHecXGUYULPfDony3Im8xmogofHp+xMZ0x29/jZV17imRdu8dH77/PRx59wullR5AW+71ACfN9T5hnjyRSlMlarE4wcxNbeYoxBhoDJ8vR91hUXrl6jrjasV2uCTUaT07MzFiePeOGllynyCZevXeHypfM8uH+PxdEjKqN45sLXuHTtWdZVxemdm8x3z3P1yvP8zj//pxw/fEQ3MsRgufzcy+A943FJ21q869PZK4CIaU0PBGxwycylVSp4kgnrJVXa74UI5GWGNAYXI33VgHtyzhvatn0aCvmhUGY0KpBakY8KpDLU654gEte3GBfsXxqz7iweSYtjMh4Rg8BZOwiB6cJpkNjNhrd/559xcOEF9s+f5/b7P4Hg04X0iQtbS6YXDkAbtqdLPvnJH+G7BnygbxsIMR2TGVANMQ580eGPEGij/u0yjj/Bx59Y4PPOQnA0rcO7gMoyrHVMRhldgE3lOFxsCUIyKzN2ZyMWqy0RgZfJxhqBtnf0IjVPBZcYKaNJhiwV621DjIPINzjCpJBY25PnhsyAUSlqkRTfBAdVSqIizEc5Z+uas3XLrMyRMiKFo+ksJtNEEqtplCW1t3ap2vz8SJEpSdVZbBSEIBBC0Xc9mQLrLI9Ol+xMDpBCsl4teXD/MVXdoZQmBE8IDl1miSUSQ2LLDOKSVAqtBJPJaLgIrBKYNysSdHmYyxa5RinFcr3Fh3TIk4KhiMOTF0lgHI8nhAjbKm2iPiS7p/dJwJQ6ScQhCAKB2NrETpLJxaWURqt0uUeEdAAZDqM+BPK85NHjE9bbJjUjDjwY56F1nqAyvJd0NsWltUrTzzLPQAqqtiMi6LY949xAlByeLsnyjONtR9cPG7xIMZfC6KEGG8JwScukosj0AJhNfIAwRJOtdbRdR912qR1QqmFa4ei9ewqW9zEdm3TSkNBK4YHWOoxUqZUwDUHIBg6MMZrzuzPW2ybBaMsM5xylNoyKnLztaWOE4FIRh5BkKlKWOSo6lDFDBX1ESc3ybMm5/V2yNj3L4/EI13W0VctslKONSmUBPtILx3QyYtF23D484Wi1ZLGuaHqH79Lhtw2ObDh0B5Wag4KzqfJ+KG95stErBEoIptow1wYffeK49I4Q02u5aVomowwENPUGLyVOSDrn+a1/8lvpAKIidgAeF6MROE9bVzR1g7ee4BZEoFpvEzxZSjrXoYQgKzQ7s11OThYkXyYgBZb088xGWTpYDKKQlpJMpXZd5wMX90qu7O/hXQtVgxkV9M7i+wYZJFJofO/xzpGVeZpyeottYdNHhFSUuabe1pRFqmVfN4JSQ5ElTlzddCkKGAVV7dgZj5iWjk3lqeo4NHIGTJFjt5HjpSPXOVXb8o/+p3+A7T3nzu9ycvIYpQOvvnaREC2ffn6Ty+fP80u/+A0+fe8d1nXNu2/9Nof3b3F2dMTd+8es656iyBiNFS4Ktk1LYyNt55mMBZve4lyKFRutEDGxWY4WDVJqtIKusTgbeOnaLq0LFCImF3TwHJybonTBo+NTTlaWICMuCop8yvk9w3KT2sPHpcZ2HcttR1EUZFmGDKmJOy8kk0mJ9R7bBc62NXXTsTsrCb2n61umUwMykCPItGRnXKKGRmeJpG17DuYjlFL0QWBtHBh6KXpUaMNeOUYbxWJRU1mPzA3LbZ/YOcGxbTxGKUZlRoxwfLaFGAlYcqXYGWt2JhMgULUWsMymI7Z1xd7sgLExPHcwZ9tUPD7ZsjPbQStJtd3gQ6AoR7S9p/OwqRuEkaxXa1SUaKXIspzQbwm2Y39nxsvPn+fd937IyekCo3NWR48YZTmZzilNznZzyuP7NxH1ku3ihKObH2LXC/YuXE6OqlnObGfGjeuP0DKxW3R07M5GrIOl73qauuHq8zucHd/npdffIHjP2dkprbVDycbQjpdlifM6uIGeOI+LoqDabFBiaFb1KfKQkrYS4rD+w+DSbIaLcmrITSywCG5wQcskbyFkakIPHqWGdc053AD0F0JSjEd885vf5MUXXkQMR5DpfILtWhaLUz777Do3Pr9B17Z8/uFHTCcj9s/t88xzz/HN73yP/XMH/Cf/6X/MP/vH/4hbN26xWK5SPE8m0SIOrDExWOPjwPWMIg5RiCHyJSRaK4SEtm1p+466aVkuTunrOpUpece2qnn1tQ8JMfDZpzfZ399lcbJESUnTVmnoJyUEiTYaULStTUxRZ4lxENYS3Z1I5OOPPk0thApscCw3G95+5y1Ko+mdTTxEMTBwhUArjTGSpk+FZkYnN0eZaVxMoHbvUrzPu4iUBh8jTd0Tg6PIDZLEIp1MpnQ+0HVpTY4itapHFVmuthiTYXQqOGnrBkTAZIrltgPgdHVKNjKcnG148713+Ma3vs5kCtuzU+7euz2IK5rlZsN7H3zI3Yf/d06ODhmXBa+/8ipvvvkur73+Go8fPWS1WfPSiy9SbTeMJ4ldWdUtrhWgk5PF9o7r128wG5fkeWIqAqjU1IR1lj52FMOl1juHEAYhBpyDyYkhRbrzMk8FT6KgyDKk1HTeUzuHEBYvHJrARGX0HqxRVC5p1yF6igwybVITaufxPtIIQZHBtNRU257CQJ6lQjAbTHJN+4ASCheSgyHENGAOPkUQtVZordP5VZDaWGMStZxN+JIn77FUKBMHESBQmp5XrpQI19MHMFrQ1R22s6lq5oljMCb0QVZofGN/eob3w1lZaezQAJuZ5BYlphiR0dC3LWFYD4pMM8kLbG/pXcdkOmc2m/OlN77Ku++9TdX1w5C5Js8M9x48GMSqJ2d1yXQ8oneObdviM8dkOmV3NsJkcHK2BdLFVGQJdyIGrEiMkTzLiMHTW0smNMvVEpVpptMZ1565ys2bN2n7PgmAPkXUtZYobVBCcPnyeXpv6W3L3sEBz73wBteuPc/3fub7XL54hX/xW/8Dhw+/QAuB912Ke3c9IQqCU+AjO/Mx01HB8uwMZz1KpYF5HBITtvdoo8i14md/7ucYjWb87u/+NihPOZqw2fYsT21iKw6Ou0F75Al2ILk605gzsUbDT92c8clsI32eCOBFINoeiEnkUQqTKYSIlHlG07Z0XXr9ttsqPYteEKPEu4TbCS65OPuuQUqRXJCjEa994+u89uWvUi23LE5Ouf3Zh7z3gx/gvWdnPuWLm7d4+dU3ePa553n7xz/h9vWP8M6BlBRmStv0mKJkNN9h9+AAozRd06ZG2m0zJJH+eANmMh2oAYEBA8s7BqSDrm/xfTq/K6EoM4FSga6PZEbgnCVIMJlBiIHnN2CcysJQ1z2RxPOOyRCL0oamjzSdp6pTM3bTpZZzERPHS0jB40WP92uMSoJEve3RWTKdECHXgq4FadK9K7jkFB6PJL0VeBfYVC6V3UUgRmLQQLqfyHQtQ+iU7EqO7Ug3oBMQgt5FjNJsbeKyBR8J+FQWJDST6Zi262ibPg3MIeGXSOtPGq7JIbiY7pTEiDYaY1Ij+XQ+YTQecXK6wLkFq/VqaAsd2r49GBn5xmXNq/s9l+eB0XTE8cJz81EkysRJv/vIIqRiW1uMzHjjEqx6wcMji5SecaE4XFisvETXzjn85IiLz/08X/7mS1za3Wf/2ldpqhVIy581GaE/I4sF3dkCYSI/l4OY7TAr5oj2DLm+Qbf4hOrOKYV5nkfrQy688FWuvLjl6790gSuvfYXox0yLMdvlPTh/Qr1ZsxtW7I4bhDA8d3UfQ+DO6pD3bx1y/7Tj9ls9q8pjhcTFgA+Rk9Ml165dosgytnXNqra4HpyAPoH1aEKPGe7RCM3h8RnbtsUFj46er14y/Mc/t8u5cyPePfT88I7m1ddf48WXXuSHP3qToniBtqp52Na8+PyLvPzKSyz+y79DtVqgZWK5G5Nh25o+BNQglsfA04GsGgZ0eQh0tsPanuPHdzm49hLPXXsJoyTNZoXtGuqmYjQp2d3dRwRFMUopksOjE567/AxvvPoGz1yYc/TgET966z1ufX6LL/3cL/HCcsGnH75NqQW2a6lWW+5+fh1he7repXtxlkohpZKImKKp3qXBVZ4XzOYzjo/PiAHMpOTV7/wcL7z8GrnKkDJjfjBn4xpuvP0un7/9DjK0BOtZryqiSoMsJXIm+zvszCdceuYZutqTCZ86DdqW1sLB1atcPD8C72i2PV3fsNm0NFXHo8ePqOolpYg06yrxontLW61564/+Gc+8/CrTy1dp796DBO9KhqLMMN2Zsjhdgm1ot126c0uZdBg/rN1DyuQJf/dJ+sSUJbMLl5idv8z5a8//L5Hi/mc//h1EdP1T5T/PFT4mB1CmM0LvmE1HnC0rjhZbRkYxLRNbrmo3KJsW7kmhUtmAgFJlSeQjUjUtxsjEMQspYpgVCTJt+57xcHHPdFq8tNaJRzKION6HoVyhxxjFYlshpcKISDEyaJ8aiYQA6z0yeqT39FHglOKk8VwpDKNcs2gSD6LtU0uVMhLbbFl7WE8N282G48UihTpEmqgH57h05YDTxZpqUz2dwkshQEJmUrwABOvNNgUSReIZYiNKRsaj1EJcVR1dl/gawQdMYVIbIqmpazwukUJyttrgfBxKKNK0WQ1sIjk0psUQE08jBnxItdhlkaF0cuBl2RhvLZvNFoQYuEWSqu6ouw7nPH3vsTE1y9WtTcw40WG0TDBn9QQM3rPcOIo8o+9TiUUfA3XTMx2VdCdbztZbtk2KeTnnGRcaFQRGKeq+Q2qFdSmvnw2Mv65NUFgbQgLed/Ypo9F7R2EynHVpgfOpcCRTCh8EXd8mZl+WhBHnA845PAKjhom1TVXwdiip0Co5TJQUTMYF5SiJCZMso8hL6r5jVmpeuHqBs02NFIHSFJxD4HzLtk7xMOtt2vCtJwQ/NCL2QGBvZ8rlS/ss1jXt2ZJz5/eJMk0ty9Lw9o073D06Zt1afNfQuVSikQ2rROIHpuIMTwLvEtNrKsIA2jWSLMLUGHZHE0QItE2Lluny4UkOj6gEXgg26w2ff/oJKE1uNNPZlG21SdOq6Zhrz16hzHKUNty5cxfbSjzJ8ah0chdILRFeJDEgJHee6z0+OMzgtvHRI1WKGxChaRuMTC3FO6VmXBq2bUeInkmumGaCc3slR8dbYnT0tieimI8KuuCxNlCUCuETb25Upgnsqnasa0dmJBNgOipACDLh2ZmNEDFig2PbWpSIzHLDtede5fTxQ4pRxt44sfgWa0/VAMFhu4jroep7KKCuHcenNWUuaFxL01hMJrl3b4VwnmpbM7mk+P1//YfcvbdCFlPGuWS1/ZjLe2MuHkzYqSWtDdx+5FAyvS9diEzGBTZ4kJG8FMzyKettx3ZwjTSNZ2cqsF2EcUagZVKOmHpPeaGgC5LFFj65fUrnIlmWIzOYTHKUzDlbJKv/hfOjFDER0FSRXEmyvKBuW4Tv2JvljEtJV1epfa7zrBuLj5LTRUeudarTkC1mkqfWwEyzaXv2c0WGxLoerRyjLCMiWXWBTdcitUYPokxrPbZzrOuG4zpSeYh1yyiXbNuGKDTn5iXj0tA3Fi89Qkb2x2OMEnR9x/5YcXGvpKkalk7iokuxruke585dYjKasV4/YFttmU7GdG3Lhx+8CwqUyfFRppbHtmNv5zznD6acnTzAtZYeTXCe1vVELThbr/jtf/UDMKn9vK469lxgNhpjlCHLNNE72vUZE9VSZILxSBOnJbat8Mrw4MbHTA6eZTouMCqigmd9/IA719/HdRXVRpBJzRc3brFzcMB2tUAKkb7/+Q5aKkZliTEZddNgbSoYCsNQqShKtNYIAb/2F/4cf/+//285OU7tbMTB8SWeNNGmoYQUMq2nwNMR5BCdMEalOHbvQAoiyV1r8pyd+R4hOCbTCdPJjNff+DIvv/pKKqmQGqIizwvKYpTctX2HdR2/+zv/infeeYsP33+Papsiog8eHfLpZzfQKuMbX32d+XTGb/7V3yTLS959/30+u3Wbtq6wbcVmnRwh3kcIA2dICkL0Ty/jiIiPSZQvVIFzaaBw79Z9iEm8iTGitODzDz+hKApcU3N4f4u3STSRUpKbDDfworyL1H2HCHEYPPVDHHhgh8WI82m9ys3wPDiHkpHMSMoiYyQNfZcGppnOiFKiM5mEMxHpvScMe5x3iXMafUhFE0oPXycx2AIJZ9BazzjPgEDdW3rrkELSDW7NEOPTBkspAwFPVTW4Ib7t6+R8RySnSVhvOV023L17n9/4y3+Jr3zpm5w8PmTbVIymY7ZNhz09Y7M8Y71c4l2g3TbY1uGt460336HIM4zJeP/9DxmVBW+88SpKSz7/7CabtsNZh9FJuBSZprE10VtyUyS0iI8UmUarlCPRKuKdIy+LoVhDMC9LjAS8J8sK8jzxJUd5KnKJ1oLwWNszHpnUMO9BGIVCUllHOwy+pApkeCSCJgSMSWJtrqDQQ5xUK0QISBSOiIspGSCkxEZD3QWafnBFDaUaSj8RhodoXhBJUGJgXQ685MTeS44GISP4SGYir1zO2C0ip1uYzXOqqmfTO6o2DT2fwMy1UjjriUOZWPDxqfAnEPS9Y/ALDvy7lHqI0eNlTG6ggfcmpEDnip35HnWTeEWP7t9luVyhlSBXGqHTULazHTEmQTbL86fvm7ZLZWB5lmHxHJ4u6B9agtS0XSqpKbICkynq1qfSgcHNmHAjaT17EvlqmxbbpfOf1hLn033ASMV4PEEoQVN3CKU4OjxltjNnNp0RbODSwUWmkznWR778nV9i/+Ay//C/+y/54tb1AbGi2dmd4LrActVjbWCxrlBaYG0qynDOImIqvPExRW8jgdZK7nxxh4NLBwiV1qAnBYlPfBrpDiWeinUhpJSFEILRuAREaj7uenrbUZYFxmSsl+vkXBlumDGm94DSKSJqjMBkAiEDQjqMkUipCSFwenZGU9sBwTMYHAfHYoxxaHbWmGLMG9/7Pr/4536d8+cuYbc17731Dm/+0b+hPjvkwrldHt46Yrs84d7tzxFEuqYeXNOCIs8xSoCMCB+oVxvm8ynKSNq2Zr47h+DYrAJ90xB82qvi4NBMUby0RjnnyIzgyy9f4KXn93l0/wbTEkaF4fy5It01jyzjcYbRkkwbpJScLc6Y74yZjnKKXBN8D3l6r2cqY7PtUUIyGedsq3ZwpSchPcsMRiYRLDdp8LKue7ZVS5kn7IlSmuCSi1cVOcuqIcslEkOMgdYGWus5q2yKWcdkjFA6DXRGxTBoaiJ6KK0qC4UZyoGsDXiXYswu+OE9kLBKbd3hwuDoJb3PYohsNpvk+owJPxRDEn17l8Q2SMMGISRapvG/UDAZ5VSNw7qehw+PUKSvhUgDiSfGmXGumRQa5x03jxpWjebqVvLl56DrHC9d1pxV8MEdR+0Unz70+Cg4N1F88xWFOQ0cacEo73j+2ZLJqOOdN++yuLjl5Ze+x+b2+zy+/h4fffgWX/2FLdtFC2rG1//0rzF97mdxvsKslmRZgcoMruux/Qaxcx7EObyYkO33tN2UV1/+RUQ559vPPSZoQ7l7ic3jI9abFZvTFlEL7t5+yKP7W7bWUIfA3/+tt7m/UjzedCw60LrEWksXPEGEp8JNXuS0tqetey5duMCjRyf0NhUz5rmhrpskNquAloLgAoeHK7yP9F1ax0ZaszMac35P86vXnuV+vWQ8HrFeLXjx+Wc5Ozvi6uUDetvSO88LL73Ot3/25/nx7/8rLuzt4n2gLMccPe5pO0fX26HQ4gn6gRTxjgHvU6rHp2IDHt++QbNeUkynXLl8jfHoMkLBpatXGBUFXb0F9QrL0zP2Lz7HyEh298/z7qcf8uMfv0tVr9m7uMdrrzzDR+/9hHv37uJcj+9btjFyePsWUmk2VYNSknN756nrtGc0dUuzbQdsSypDa/ueKCBKRTGd8/Krb3D52rPYzoFQyNxw+eI5fJ80iv15zny2x+Gdx+zvTzi4fJFF7Tg8O+Lx7S+Ieswr33iNZ597DpSiW9ZMxiN2L19BaIG1jlynlMJ209K1PZu2pe/XbM8e8s4f/oDP3/sAu9nQ1R233n2bo0cPmV2+zHq1wq42xJhc+K7tObp1l77rkp0mDOz6QWx9koxkEMgHOHXSS0YlX/lTv8bP/PpvMD9/lfjg+p9Unvt34OCLsG6TnTG4SJ5JgojUvWM0NOaWhWbVdDw4WXNpb8JsOsbHBZmSiBBwNrmrYow0XWqCE0RmY0ORj7F9i9ES0IkfJwRG5YM9HerGDRP7tPBFeNrKal0/RFIkZZ6xqmou7s2IgzDZdhalUsOW0ZJxLnFtYn0EYFF3zAuFCo7WDhHW2GOrlrkKTJE8uHd3YOoVSaTqevIyY2c24+joCOcTt0+LwY4qwgBSTXGDuuno+9RU5r0fWnIlxoBWsFpXOJ8OkwzT2773Qy9BZJKPyLKcw6NTrE2TYed9ig7BwE7RZFkC4btgaeqa3d0ZIWjKUZEWK6UwxtA2KeLqfYoCKKWIQrCtG3of6fpIawWNDUO9PYgYyI3ESIlF0LX9AJGO5EUOpAVGCFBG0PeCTdPTdh3bzg3NYqkwRJAakqumJaDwLjm8tE6XTB9CcizENKXohzhUGBg2SiYLu3ND+5NKk6onvEbnHEIbIhHr3FMRyvUpxpoKmVMkOMi0OfoYCUIwm4+o6xaJoBjl7IxL+s7y/DMH1NuOV56/wmLbcOf+A2bTxCxrPDRtz+58h/V2BcBoUqIJXL14DiHgzvES7zyjMuN0uUVrRbWpWGrN0ekpW9tw//EjNnWFTZ0m6RRIYqLJCIKQmn99JIqAJx381NB2lQsolebceEzwDikCfRzcnSKxyHwM5FqmBqAwxK2JCJ9aat0iHVBiTO692ze/QNqA7z1WBmRMTENkeg/NxiW78znrzZrVakOM4mkcZbnepIMbQ0xXKcosp7c9zor02guR2ny9eyoOIgXr2nH983soE9m2qcHQZJpMgAmKaBJbKxMa2zvaqqfyPX1QWD/wB6VKESUHSsHZeouWijwXGAnZKDk8JqXhVHacLjc4n3Pp3IgQ1hyve1zUFJmk6SImOkZFhlKCMh9zstrSueSAbVrLxzdPubg/oWk1H987Jboe5yWLx6eIGHn9xYMENqdiMirw2za9z+oOqRPDclT6xKuQis4JHp2t6Z1EyMh0LDBKMDaS+VijM8HF2YztuiYATac42loOT3uyUUY51qw3NTt7Y7rO8vhoSVmWtK7n3LlxahrUGsPuQJ0z3PziHuf3d3ntjRchOO7dvotUOa2VFJshehYZmtUto+mIs82WnIBynpgpRllqeBMkF7CSnjJX7OucUkFRlKkgxwca19EGTxMCVYgcrR2ZMiihEw/TOoSBuu0otWZcQFh1TLQAI/FRsqobBAt2pyWzSUbTeLIYMUIymc1YrZacLTdsW8vZpiXPcqZK0NqOqmpAOjIZGeUFbdNwduIgpmn73v55tq7jrEoOXiUk0Sr60LFTmsGBtOXw3nUuXHuVUVnSbk45u/8ZaneMs5FMROZFho2J11bIwLjIsLWh2rbsTEbkvmGmPHJnRo9iuVhx7dUvY4zi6PFDuq5j/+JFMq3J8xSNb9p2QBNErLVIIdnd2U0RUufYbLa89+M32a6XQ3T2p9CPpzjimGwi3iVRLLGz02UiivT/C9GTZwYpEhJib3+PgwsXuXL1Grdv3eH05Jhnrz3PX/z3/hKXL1/i9PSEzz+7zgfvfcSFC1f45V/9NeITnMVIo9WUv/SX/grf/vZ3+K3f+kf88A9+j822wjnPUfsQIWB9dkhvHTe+uMuv//n/DX/z3//38SFwdnLMH/7g9/now08wxnD/3n0Wy1VaZ54yVTWjUSo/quuKtm3RJvF7nxRzpF6LVHbgXaCueob0J3me40VMkeeYmGeZyRI7qu0GF0oqCAsRfHBkxmB0eh6CsEQv8DEyyjUmN2SZQjhLiIFSKYRROCnp2kF0USm+EUOKsuR5nprWgkdqk9YNKcmNRktJ0/UpriyTuKRkiqwiItLHVFYV0yBw2/TDvpfcTghHdD5dEkJi3gxj58SuIZIZxe50zKQ0/OSPfp+r157n1//8rzPeMdy5/QWHpw/ZVBU70ymPHh8RQ4p+nZ0uEltHKERU9HVy6kYHi9MlUkm2Vc1oPqKtHaPCUIwmPDo7RYfAOM/QQ3t9DGn4OCoS9D7GhAKQIhKVIDOjNPAiojOdiqxiQISIEYJsJNBKUNUNQbR0jaf1lroPbDPJOMupO0/TBvI8YzQq2a7Ww34hmGSRYOQwVI5UtU3oECtoQiq+8EjWbcBG8MLTW0fwT/h3ad/VSqVEgnMobXAupPdZiEQcT7iSQiT36XDMQSuJ0dB5WFvNg9MOTisEmtpKzttBIIkkYVCkRIOQib2Y5Zq+S23tFy6eZ7Ws2VZVcgrG5PxAJBHCGIVQ6Wdqup4Q0nN/tl7hBlfpaJTRNCuklFy+tJuapU/XINOQUQmd4v9RDc24sDcrKUYjTk43rKotwUeUTjFHo8BoSVFmmEyy3TT0PrkZrbNomZyAWiXWcyQQRWAy2wGliMsVtk9R4XIyQUlJHRqQEuci68qyuXmP05Oab3zvV9nbv0ImBePRiC997ZtM5xP+6//n/4P7Nz8i+sB6VXNwMKe3nqUdnF99wCiD0MlQ0DYOHx1Kx/SeRpIbyb37d3j48DZC5BAzDh83tK1Pjt7BqfmUYzqw85TWBAJZkSGExBjDfCftV9478sKgM43tXLr3DJdFbSRlmRFij1Se0WiEEJLRZMreuQuA5Mb1W/RdTfThKaInzYMHYW1A0JjM8K1vf4dX33iDwzu3uPH+O5weHdFaR7M6Y3F6zHZxyqgYUZgcJSKnh48oMkWeZTRD/LZtW5zzw5BcsTqM9M5jtGGlNX3fEbzDO5ccujGtv0WepTIZN5RCxECICVX01ge3meSKySiNopy14BVdW6NlYFQWaC1Ynq1RUg6CsKBpOy5fmNH3jiyPHJ9VyeVsDNE7gu/RUiVDgdE020CnYFJqgpM0XYcy0NeebZMGCZ315EYwn47pO0eZSYRUrFfpuQyA7cE5MbjJw3A+TaU3Uij255ImF7TDPaQsBdZF3HDvDINYI5DIkIwiTzBTAxU3uYgGp6/tw1BSkkTMKCOd7ZFKkklJ8AIvkuqglKQYFXhvBxNHRBvDuCwZj8cslkuqpkt3LJ9i5OVkRGkEq4XDKsOmhsdKc/v9nqNjS64AMmosWka8iLh0ceEPbpRUW0fdO/I8cvtBzy9/d8Irz3qMa3n46H2IWxpf8gt/+s9w585nrFYVL7/yIqef/x6yfo7j4w2FMhTaE+yaR3fuIULHuStzds99Cxsv05zdQkRYbjesH77H/ZvvsvYjrj3/Mvfu3CEYwc1b1+l84LNHG9qqYT7POdt66iawsYJtF7AerG8JwSOUxkiZ7t5lzrWrF9luG6wSKF0glMHLDi0N49GItu3p3cBpiwJNcrBppVHS0fWOtx62/F/+0RdcmEtm8yPU3jVuf/ox2+ZdLlx5hh/+4R/yF//iXyS4SB88HsWXv/x13vvRH1DVNblRONtT9YmjrwVUtklnEdJApGk9SIEQmqLU2L4bkB1w8vAhQQQyHCek/oQ7Nz7l4sVLECXTnX1CtGydx2E4vPOAs06w//KrXMKyvz9jcfiQW7fuYZQgm05xnSJGjTQlNljC0MXggawonp5Nk5CfBlcueKquJR+Vw97t+IN/+t8TAjgb8FGgy5L53pw8z1BETo+2jEYTvvOL3+e5Z15HZyPe+/BHvPWTP2Jzcoir1piuQbYVcbzDzmzK+cmYD9/+EQ+OzxiVJbvzGdeef47zl6+wWmyZj8c4NwGd8bVfHPH44UOm8xlCKBbHp3SnC7arLflsgoiedrXhCRe33W74aYnlMDgZ3psxPt2OBxf28J7Nc5795reYX3iWt37w+1SrBS/uz4D/w/9qbQ7+HQh8iHRB18rgfWKZ6FxzsqgYZRolBOV0xHrbc7Ks+Oz+CdfOz4gkNpoSMjUv+VR6EAfH1KjMOTh/juViiR6m7wxtvSkGJPADo0IOvIIIyOGFM9LQD+61dBOJKCEQRnK6rtgZlRgBVqfIbRSa3gamZYYFqi5NWFeNZ5JrJiNDY3tU6KBt2Sk0I5PcR0IbyvGYTdPSNQ1lmTOdTlguNmyrPjnnxPB9yEieG+bTGev1lqPlAmOyp5MWIdOkf1QaMqNZrWs6m9TttLkFssxASNbw+WzEbDbl4eMj2s7hXMCHNLWNIm2MUko665KTiySUIUSaQI0K+t5jckPdpEnrerVGKkH0EZPnNJ2j6S0uCJrOs647Wh/RWiOFQDGwGwaoeQTEcPgySoEPBO+SlV5KfExctLpzNJ3D+Zi4DzrBYru2R+bJBSkl6fIYPDF4XCpnom4S9yKESNf1CapP4gSmw3EYptTJ9ei7VJHtfUAPsduIJgxAWBtAS4kPAR3l0/uMUjKJxT4OIFmDnqUpaG8dWhtc57h88RwPHx5TVRv6LlCWIyKR1WZLqvr1bNoWnReMZGKFXTmY4xxcuXyBk03FtMgpspzee9Zdw7qq2LqWD69/wd3TM1Z1jesHcPcg9iohIaYSDCGSgzbGgIpDSYqSROcojeZgVDLVyeGxcYGma1M0gUjvLGGIvmRK0XWWwqTflxps/Mn9ySA2KaILBJkWa4TDuZ4Y/dP4iAiRuqqpm5ooEvgvk4Io0jPgrCMFzRMnxANNkyb3uREQPLkxtJ2ljdDZSJanDWtdWxoZyTPonKIY6RSxJl1ghdbkWU5TNWRaUEhJjIpMaexoKPhwycHZ9g6hoDQqOVWb5EA1IqBE4LMbHzMZKUa6RAmJ61ouHxRoPTSbDQe4iTPECM9c20UpwbpKzAWTpde8WjjOFh2zUcmjwzXTaYkSoDVc2J/ifcudo4aHx1vKvGSeDc2L0rM7L2jbnm1lsUg21cAjdaAH+uPK9VzaLzEiICO0lSX2jhgUJjcsqpq6D8TokFGhI+xOStrWUTVJ5axsx2Q6o+sc26bnyoVdnr20x3br2D13gWkmULnAtj13H55ge884d0ynJbVz2N5TjAtCsNCBbZNDYDovKWVyKC/qnhKYFIZcJ5Zb10f6dkuIEZNLru5NOOvgbNOANrg+gusojeZs61k3jlEBSgS2tmVS5DgXUTZgZMm28djGDy3XOU4IlnXHdDJmKguEczSbJZvFEdG2QEQaQ+8qigJGecFkNOF42aYW8txwfndCaNN61VpPtNA2HYdnZ/iYQO4ueMbDhax3kbHJ0NFx7/P3+NL3/jzR9dz9/EOWJ/e4evFrlKMxjxxslluUzrl4dUSZw+LoIXt7BwRbc/zFLY7vXkeTDopBFUxmU7JMUa3O2Dt3QL1S7B9cSO9frYe1fmAzAUVRMCpLiiJPZQXVltVqyXd+5nucu3yV7XrN9Y8+4vTsBGkEfdskcYck9KfiofDUwROf7P3RU2YliMh0mhp7jTJcOrjIN7/+XX7ll34dZz0XL1/g6OiIH//kTT766D0+/PADJIb/4//p/0w5KtK+HUVyi3nPyfEZAsPf+lv/CX/mz/wq/9Xf+Tt88tHHtG36XS2sZTyZsN2s+W//v3+Pn/zkRf70L/0ibd1gg2OxXLJ/bpeXX32Bd995P6FSQsD5iJFpiJXKQZK7r/eWKCJKqLRvRjusS8DgAo8xuWTzvEBPDCdHZ2nQNDjWUyFAckQlemgaMsQYQSaekpQKpMHZ9PqlyXvON7/1Ner1musff/rUkRNjWmuftGNqpYHEddVapVXTiwTiJxUsxIFfS0xuAf8kgBUSbynFPcUQ53oyTBa4kJhiMULV9MMJVCfBb3BKJU3KU5YlZWFStNPkbKo1VbPi01uf8vqrX+PCxWt8fvMTHjw4ZTrbo8hHHB0uaOoG691TBxcxNZ5755nP5nRdz6PHjxBKMZlP+PZ3vsXeeEJezLh3ekaRCe7f/pyz48eURYatGoIPdJ1lVGREF5kUI4qiTKzd4DESJmWJtTXzcRJvm8ZxtqkwGsYmJvHTemzQbPuYLrfSMxtr6Iam2wh1lVqfjQIXepo+IpQhegEocqMwAryKaWgJ9EFQ96kAKsrBMROTCy0hZUQaKHr31BGrlKa33eDkGphcMv3+wgDGF1HgpaTt4P6JZ3diyfOM5aZhZxoxWYqJKp1i8YjUkqtkOqspKQkuOXaFkCyXGybjCVW1wfuYsA+Dw7APDt/49AwondYYo6i2NUImtpP3kt3dOY21TEYjgm2Zj0vqrUox8CyihiH+umrRKkWp2z7Q9C1d5xkVBVXXo4aURu88dDUu9uzszMi0ZFs3dL2jyIok8kqPIxA8jEYlRVHw7e/9IiYr+Ke/9Q9YHh0igme5WqCEomsdOncQA1/+5s+TFwVv/uQP+OD9t/jKa29gvWMyyjGm4KWXv8Zv/o3/Pf/N3/6/sjw5oek8i2XNfLdEKMnipMP6QC+SaOW9x+MZZzCf5RijqVs/gOlLorcEFNumoWnAOUiSKU/PYUncG/5bglGGum7xPpkYlEoxUCEC6/UKbUCQkikxBKROJTOjMkWsiwL25gXleIdrz36J85ef4a13f0JVtUQvhqG6ZjSapGK+tkUbhdKSrMiZzaYsV0e8//6bnC5O6VdLLl65wv6FyzzKNQzrSrpDBbq6Yb1as1lv010Oge36IVqb/KGONGhAquR8CZL5bIa1HU1dpxZ0lVrQGYD3KcaWnscQJJ9/cYLRkulIcGFP421gu23ItWYyVZg8I3hP1fVooyiKbHAsdynp0NnUCB8k0SekVN8nLnqepWG3kBkBSdc5lpVlVEIpNLXzSAu7swK3tsks4iM6KzhZ92mYFgUyREYFbJpkupA63XdjjE9dn0pIjDZUrcN5yDPJzkSl07AUaRigJb0N6RlIl6t0B46J+R6GBm4xnNGN0enfx/S8pGZmNygNkTwzzGczpMlYLlcQBc8+/yoXr17izT/6N/TtJrmOome+N+P8xfNsqyWxGob3CKIQPDpdI2JIOKYoWfhIk+U4K6mjZGstkp48S2LpwVTTdI5JIXh41hIGhvxolNF3kbOjhtGrUx7cafg3nxxx2Df8+i/9DW493PLDd+9yeQce//Ax33npGvLhm7xza8GrX/8WO0WNXZzBqmLv2kWYTfBTTX/vATfeeoe7CzjrHE234GS9ZdUb9h6fcDA/z40bd6hCy7KqKE3OeFpS25beRwSBTASKLKKDpjSa6aRIYlWU9ELTWzhdnTEu95lkht2Dq3ihab+4l5xg1XbYj8VgeAl0XY8xeijwlCgEfes5Gs9ZbSRFr5j0DVfyirPjQz785FOCc/z+7/8uy+2W5196DZWV+KYlWsfh2RkS2NZdWtNFQGZDWi8y3BFTciDTRUKoTUcURrKpa7o+lUAak6FioK4b1mcLvN1w5+Yn6GzE/NxFvvutb/Mrf+6vcPHcFaSAYCNeWByezrbc/OAd7jz8H5nMpoxGJaVRrNc1u5euUG1WNHVNnmdMZnN669huN+yd2ycz23RnxzPa2eHaSy9S5HN29i8yu7jD9Q8/4O1/+dv0bZvSEEJwdi8y3Z1zcOkK5WzK2eKM89WKbXfGdv2YTz75iOrkBFtXnNYV69MT3vrRT1CTKQcXz9OtN7R9z2pdoaRgtjPjla9/kxdfeZ2qTfzWzz/6CE9gb2+Pum64cvkKuwcHrN9+j53dCacnC0LTMtvZTSgTmxjXCYPD07P3oN48/ecnHzGmAZ/Siisvv8wLX/4S7//e77C4cwfnLbvf+5n/NYrcv/Xx74DB55NrJzjGhcQ7NUz7JVEprA3kASa54vHKcuvxkos7Y/anY7bVlkJrREgPYdU2KK3QWnLp/DkWyyXeh3SY8THx0IJAqmFqoZIYJmLKXaf4UIoVOZ+EEB+h6yzGaKxtKEepsfVsU7E/KxkX6SVwIcUS5DBVWbsej0IgOKt6ShVQtqIMPTvjDEQkSIHJxwgU27ql63qKvGQ0Lnn48IjgYirLGP4To0cbw6gccXJyRoikZt8ntvhAukDFgBKC5XJL5xJrgWjTocinwhItoSgMuzs7PDo8pGtTQ673YWgaI122jMHaJK4JLdEyXVr6PgleIXqs9ZSjkqZNnKWQThuAZLNpqXpP6yK1DdRtTyC1BGUyNTk5n5pxldYYrSlEulo6FwcxMhCETNBbaVhvN6yalqpp6UPEW48kQJRE79FaPHU/KCIiDmUaPqa4mQ/01mOde6qUJxCyTMwjGNx5w6HCOpz3GJkiG1rpFGB1Dm10goe3iZEYB9EwGyLFISbnipYSrTTBe4oyY72piQhUbtjNNF3V4HuLkIYYOsoio607VJ5YMcgkJGmZDrrzsuDatUusVzUipO+vD+lrVV3g+hePOF5VZOY4RSlsj+06tMoRMU0zjZQDaD1dUmJMfD0XIciIkRIVI7nRnJvNCc7hEKmB2kcQSSwzSiQYdJbEWoNgOp2SEu+Dl0dJhFKcv3ABKSWHDx8nJyRQ7BTsXtnjwYP7dHWbwKeCdAjxqRlP6uQELbIM7yKtjYxHBvBpkhg8MQYyrRjniZ8UXYIU2yAxRoK3KC2QJAeRkIqyLIhNWljb1lEUitmkZN31rLue2nomSjNSgsJkVNZj8EQ9cIlCKk5Z1T0ITTtUk2/ajr1ZRiE88/mU2STj0eExhUnu4Vwr5tOc45OGpreMco3II0YWrJYduYmMsgT0jh2sqy61noXU9rQzKdEafG/ZmZSUWYbt/RBbTczENihO1y0xeM7LkqrumU7HrFYprr+/q3h2Z0zoA4uNY9U6ehcw0yQoTgqByTTbbY+zqbnt8rmMQtQYkxzCZ9uOVRXwg13cR8m6WhOcZ2d3zKPHp2xWG5yTlGcrNqsVy1WLNFmykUrH1kWaxYa2ahkVOa2vGBvNuDAUuWSuJuzkhoNJiWtb1psttU9A6/k4RxEQBKaTnMYGeg+m69FeYGRksemwbaRUmvEsp7Udi9oS+lSKIyI0tmVUKAiRTEZm0pDrFGWdlAW+tzR9T+8s56YjkB5lAu32BBE8UkWcS4DiMjeMi4y6spRaMxkX9M4RvUURsC7S9Slen+skWqsYyIVI8Z9oU1xSSqQXPHi0QozucXr/Huvjx3z+4ZucnR1z/OiQMt/BKIMxUIwKJLA+eQylY+PqFEV+eIMsbBGZoqkbds9fZn+Scfv9H5NPkqChi31e/9o3ybN8iJUm3osb2KOj0fhpwdJqtWS5XKQLg8x4/qXXkN7y8gvP8O777xIl7O7u8ZMf/oSz5QIpB7Vp+JAqOdtMpvAYytEYgPFkzqtXrrA4W3D90095dHjCX/7Lv8nFg8sQPPfu3eEf/oO/T9Mu2azX5MWYxdkRjx7ep9pUZLnh+PCYK1euMJ/tMZapxOjy5Wf4m3/zf8tv//a/5F/88386OIwCXdPS1jVSSW7ecLz88gtc//g6X9y9RdtV3L2z5uDggHI0oto0iTUYkgM2HbjjMN1OEBSdpbINN1ym08R1cEyReLfBB5bLNaOyQEmJe5JdimAGAS4O3Dwh/1ickkjv2sSeFJJylNG1HW3X09uWd99+n/O7OxAF1iUxr+8tWkuyLA1WUtl9mp44P/BFs4woEotTo4kxFYFpY9K5qfcDYiM5YxIiRIIMBO+H+I58ejAVMSRXoTG0rUVmGufTZRyZzmFV3VHVaV06PFmS5ZKgHnK6aZjvXuJb3/oW9x/d5xvf+CbWd9y+9YCu39I7B1GitGZnb4c33ngdlSk+ePd9Hh8foY3Eh8hsZ8Kv/dm/wCsvv8rje/ewveNqlrGzNwfvGI/HnN+b8tn77xBcQApB2/eM8tTu7mMa9ErpGRUSSY21FZvasW4sfZC01hGD43wuMEoThUIbSXQKnRuElPiQitqKUYFQAteK4YIdQWRUbYPRAaMl0VukhqpVVH0aREap6PqUotBKpjmzEAgNWqd990nsTShBZgzdkwK14VIWRJr9i2HSz+D2EiKdV0WMbDxs65ayMCAkk1FOaBomI0M86wg8AYF7TJacpM6mYXyIAR/ScxPCimKU01UtRmv04PwQQj5tLE5nSkVZpMbt5JwD6wNN2+O8Y1tt2Z2NOD5Z4mPAyMR369vUttk2HdNZiZaaECy2d1RthzSCUVHiekemU1HEbDwiyzTTyZhaCsaTks2mIpCG61IEmq6hyFMJnVGSw4cPmc9n7EwyRuY823rGZlOltIZIgq2S8PmnH7B77jzEjpufvMnf/s8fcf7ay/zyn/nz7O+UxOB55trzHFy4xuOHD7HO0nYQVpHJuGRtero+8UetCwnLUmQYk343fdtRby1bIpNZznSSHG7BOUABHhHFU0dHwiMkLIAXkWAtwvlhfUluytS6KDEmsrc3YjTK6boeoqDveoKIFLkhzyVSJjB911vKiSZ4yfvvfMDnn3xO39qngrJ3nqwwZGXOVkfyskSPp3zjO9/mxWeeY/fcBS5ceZbeWf6n/89/wd3bN7E2sDubcppluLanDxatNafHpykNZDKEUgnb4FMbZiQJ1FKkMqAoYTQZMyrHxBipq+ppuZMcivFCSG5WIQRCaZRKRVkCRz4kropc0nYOo2BnLjEhiXmbTUIGCQ2ShDHY2Z3Qt30qgYxpuDGZ5rR9xETJZJwlniqwblrcUHDR9YKuEQQd6RzkRtM0Dp2stIQoqLseH9LdLYY05NFGUkZD3XraLplXkplDDGioNCAKMRC8xrqIVqmB22QS71LaSWrJZJQif00PPqbSqBg8T/z2QohkXhjKVbRKhgnnQmKtC4gi0rUdK7ZMd3bQWUZTtVTrNY/udvRD6WJCWARaZ9nUNW1rUQiCEMN6wJCYkgihk4AbPA8eb9MQIQik0Wij6BxUtSfTgtpLlq1PLejAXETGQtA6z/0zz/XPTzleSC5fuMAlUfDszhEnj09488MbvPjyHl89yCl1z/TcRb5/7jXKKy8hRxOEC1wKkrpZIJDULZz6KW8eKm6cbnj46ITpeMqzz36FF85dYT7ehX7NbA3Lx5+hMo0XjqPFFkUypezvSM5PCsos54vDmioozChnVYHrHPm4QGYll65dYb5/kVUV2btyhUvPXOHxwyNWy2Xi2kuZHJsxvWbWPknWpUJCkxc8c+0ZvvTNL3N87zZRZrz+ta+zXK24d+8ep0cn5Jnh048/RmU5ly5f4Sc/+B1s59mZzak2W1brdSoL9anY0lpBURRE5BAP9UQX8TadbbYbl+7B1jOZjCmLMuFJvvgChKRtO3SRcfXlNzi4+jwvvPwGv/idn2Fn5xxaaGIMCAPIjCgEMu5w/uf/LOPdc/yd/+z/xtnpKUWmWK82HC2WiODp2qRH7O7t0faW4+MjltU2af0icfCVjZy7dI39/StYr5Mg3g/lSqRSxtQmLui2NUpLLl27wmg+o25q3nnnTYRQXLy4j3/9Nar1GQ9u38G2HQGHtz33z06xQ0+AUY7vfv15Ll3c44Nbb/GP/+gHMLD7q/UKIRXnDg7olmtuLZZMHj3GaMXV197g2aD44qMPOHr4IJXJMezJwzlZxOTpAp4WcCKe6uzE9IMThSTLMr748ENO7t1GE4cm5Kef9b/6408s8GljiDHSdx1dlyI841FGYdKm5RUszlaU45zJpGBVtXx6/4RrF3e5cWfNdFowKko22zXjcU5R5OztzmiaGut8YiiQ+Ba98+kg6oeFTaQWMC0knU1ONetStFJqnaznMWIymTbWAAyNPr2NbBrHJE/lEq1NUd5NVZMXBYqAkxIdHG3rsX3FzAgmkxwpJEEqdFbS9T1d14BUTCYjpIDHRycQ0mQ0HfhDYhtMRuTGcHJymgybg01MEMgzleKLMkEo19uW7bYnCD20A0ZUlCipUVKT55KDc3scnZyy2bZ4/2ThSAtwUzepSVDI5FwjRTiVMTg3gJelou9SBKRtOiBdCJROENiqS+yIbWuxMeJDirqOjCTGAAGCFGSZGiJC6UCY68RJdCqAEtR1AKGo6g6kZbluqNuh3Td4lAAh00JUFJLe+SF6IZFEbN/jIlgX6ft+cHsOTCCSy0EMSri3Fo8YIOJd2oxUumwF71OL0B9rqzImueuMAmkMPGmS8klcMkan2Iy1KCMpM8l8PqVueyKRTVVTSMFuOWMyGad2xugpFGytxwkSk8coZqrgwv6Ys2363KPjE4TKmeYjotGsqoqHJ6fceviYRydL1lXiSPUhxY9DACU8yidHh1RigH+TOFMxRblS+2AChe8UBSo4jBCcWsum7zhfFIn9ESMipMIJfIoo7I4LpirHegc6PI1s5KMxRmvqTUXbNhASuNU5z9nRGYvj0/Q8RxBP3R7DwQzHdJLzp//Ur/HqC2+wXC546+2f8PjxDfAdnXVDE3MY2gn7FD8IAVxyUfYuQbJlhK5Plw4bEvS4zDO2TUPXezolmeyNaDvPyaamtallOeYKg0QRmJaabZMiQsEm16sxWTps2ThswjHZ8mtL3684XXjGowKTR4RSrFc1m7ZFakXmFcFJVBE4f5BxemZ5/pmL7J1r+PD6XSZlxjmjKTNDJhVaR6SKWO/IpyVt0zPJDUFlnNmW2SSj76HuAkZAViYG3ygvaPsk3heFxGhJ11p6n1r5plIyMpE8E/jQIXVB3Tu23tP1MMrg3CTjwqhgPjGsGs/RckHdRbI8hxip60AQkKucuoKVb8jy9BrLusO3gbpTxOCZZJ7eBlrfURjJ/nxMqTVXrlxgZkqs76i6JcI5suhpuxoTIufmYzrvGGtNNtjau94llxORtvWUM83uNMeuoeodo0lG0ziEUux1Mb3/RcRkBtcnsLbRMYH3M0nqog8YDSFKyrJACUOMHuctk8kEhGS13RBspK0tOMdsUjIuc3zbYaRkmmuklqjpBA3EkPhVJi9xrif4mvlI0XrJeFRQZDlVs8XHgO0si65lOjJ0i3s8+OD3WLvA8uwLpjs53q3JTE6uLGFUoEYF1gtG4wJZBE4f36aODh06ogQrJbnWuGrNrQ9/AqMxX/3296k6y3hasK3WmKIc1opA7y0myxiXJdqk1vHVesnx8RHWJgfb3Tufc+n5q6xXG557/hLZzYyPPvqEnd0lr7zxCu++9R5t0yBE8qlGGcnKMjkDvCczBVVVo2XGl974Or/8y7/CB++/zTvv/ZhzF3b5/MbH9N2GG599zp17d1mcHUNM+7gU8PGHH3D86AgpJVXd8Ad/8ANeeP5F/nd/628x39lls9nSdHDt2jP8lb/yG0znO9y49Rkfv/8hfTdEZryj2m65e+cez730An/0ox8Sg0crw8OHj7E2oRq0VImBHn4ac2SIGYvBSWytIwysrycg5Ccw5Ccz2RAiTdMOd+7kYNFKYzKd9pwhcZAZlZ7pYSCpVPqZQ4hY2wNpnxuPRhgtqber1LpqHUKm8q+6tRgjybPkNg8xDPHJJDY6H5Krc+DXKi3ToZ4URbM+Dm3FyT1mpEYpjYwBM4DAuj459pRIX2eUpfIvg0gAfCRt79PQVMjkWgzpn9OQJSfXGd5Zfvd3/yUPHzxgNhmTZyNuXb/NeKLRuSR2qUU2KzN+7c/+CkWm+cEf/JB6cDlkmSHLJVrB9U/e4+aNT3j86BFCRfb3zvH4R48Z5RnbswWP7yWRVqs0ILXOkZtI7CNgyUvobIO2kk0fqG2gYSiDQwxNy5rOCpRITmDrXXpdstSsrpRBihaJxzY9befxUhOSrxrrU7NljJ7eRWork2N+EFObxjIqDMZEqiZR84tc86TsJs/y1L7pJNbGgXc4tIbKgY03/L6f8NnSkfZJu+rwXEmZ4qIhMCsEtu6JNglJT9aCNG9TGJ3RW5eamYcB3xNOU9f2ZEYnp2hI7v8kBj/Z1+XTZ2213qZ/LZPwb0wqE0kuKUsXIjLL6dotyDS4TcXWgTI3OOuZT0f0fWp+D2JArth0ZiNCnhuarsUFCUufBvVaMy4nvPDK61TthhuffcKkLHAhpX8UkQ/f/UFqE+1bLl17jt3LB5w9fsTJySMIG6JKr2m1PWO7XaC14uj+PW588iEvfnXJ9372ZzEx8Fv/+B/SbRYoHxjnifXYtZ7gNItlTW+T60oMSSI1vM+dI7nXpEQIg3OWausgRJRKg/mmc0PJyk8jXE8+nvxOCBAIT3/vT+wfYnD6aQkyWkZFGvC2Jjk9tYLMpDbxEAxlOWaxXBPEXW5/cZf1YjkU8SiUSq7W1XJJPirJS83V557hS9/5eb72ve8z1Tlnp2dUbcN0NsHkIyQS37SpATyGQbiL+GAZjQrG4zHIFPmv6zrhekIazsehYIbgkUhWiyWb5Tqtq96jRHrmQoyDAKJRGsaTMa++8SXOX7hIoaHfHjKbSPrtEXVdsd42TPOAyQyr0zWT0jAuh8ZZH5BohPYI4QhA30QCjiwT5Lmiarp0lxWJsx5CKknx3hNlAAUhKCKRcZHuauvK4bzAqFS+0/QRZ1Pxj/OCpokIHTAqJZSc/en7GqHSaxciQaRii2RIifTdkORykeCGeK5NbOWLF3OiDyzXlkkpmUwndH03IJEifW+fDqZ8HOLX/7aqkJisbY9frJ66ve/fv5FYmNYRQ/o9pAZ1z+p0yWw2pZJbus4PwrBPrnuZBlgSMTB1I31wyFwzne9z8fwF8ijIhafUnuVqxcNHRwQVqJ1njeKdow4dPOOpoG4lnz6OfPDgMVd3M67sReK649tvXOLc3ohXX32Rc6/8DL7MaVd3MNJwdtpz98bn5KZkua658/nnPPv6q7z57nt8eOOQcjLm8WqDmszJRgWUE+48uMni0Rd0bcOmWjMfaZoqDaa/8sI+1XLFbFKgfMfaWrZt4OHGwrLh0t6YvYMxzzz7EmJ8kWx8jgePT9jdnVN1jk4IDi5fYVtvGeVj2qZltVqnd+5w7hCIp0LyeJzx67/2CzTB8NH77xGcZfGvT3l4ssCTChEnkwkxCm7fucvNTz/Du57ZZIa3FqFUuufE5PplMLwUxRgfIlZCcCBdEn+D7VFeYUVydQbrUBNJ34bExpOK2f4B3/vFX+eNb36XYjJlPJthRvM04CJhnZKjPBlijNIYpfjql7/BX//r/wF/52//Z6xXS5ztaW2P7y1SGJZnS4y5l4ZCTUv0CSvV9W06wxw/4qM3f0i17dlWFZmBZlUNaIeUbxXD0Mv2lgc3P2d5+IjRzj6YnPMXz3Ph4gGrszUHV67y0q/8Gu/98N/w5u//AN/36d5PisTLaHn5Qs6rez2zkeXDZsPq+Azv0vnmCaP20TbxRCPQdYdkkwmHj0/4+V//y7z6sz/HD37rf+DmH71N39RDQ/tPP0T8t117T9AcUcTBpAIiBu5//BlBRoLtiUISnX+KbPiTfPyJBT45HAzb3pEVyc3QD1FN5zxN3ZEVOcR07wohcPc0sVl2JnPGo3JoTJQQfSrOUIqTqkuTG0hiSozpgq5+mmVOUwRB26cmTylT72xe5GkTicmy7H2KEkptaK0jyw0xeE5XPfn5Ka7r0hQlSLwNSO0xAqTrKURH5jy78zKx2BBk5YQIrNebBMdVkflsymZb0TQtT/pvn4hg2iSnUd86bO+SWu0HQos0IJKjSspAkedY69hsO5AqNa9E9/SApmQC5l66eJHlesNiuSHZ2H2KEZGKT+JwECQO5QoxIIRJogkMDbf+p6LM4CBUMk3D6s7SOUnrwlCkEjDaIOXANwwRaRRGa7y3KK2S+1FrJqOCzbZBK5EYWSLgvGdRW2wIeOdpbIpoaiXJtUjtbzJS6NRgWxhFOwgobdfjA/TWpQ2XYSJFej7kUKrSWUfbdumQFdPrUBYprpYZRXAhHYwHIVVnGcEn4H6Mlq73aKXQ2oB0WBvJnwqCYmjUHDMblRypgRHoA5s2UJSWPDNsW4eRGi0SkN7ZHi0S/zGLgqsX9lhtHtF5y53HC4zK2Wy2fH7nAb0PnFU91794wLLa4t3gDhmmnogUz3IDa8YPFn8lU3O0kWkjNxJGynBhPkNE2DSW1nW0bigdyeJT9oISMBmVFGMFwqNFaimu11U6iAzmHdtb+qoZ2t6ezAyHw2gYDnkkl55QgtlkxnQ0pe8ss/0R00nBuZ093v30R9y7/Rmb7YZedgSbogilBOvSYSt4Qdf6NM006TKbG5ncpSESfUSbiPOBxapno2p0ppHK0DiB1IaiKPDbhiAkdT8c0EVi+hBDalwFpmWGFilSsKga2t5RjgxjlVG3jjwT7O7spAbK2NH1HYSQol9GsekF2nj6rqVrDcvFhmjh6PAUoySvXdun6Vq+9ZVnePv9+1gnefHZGc5vyUcTjk4rLl+6zEhEFqsKf+IYTQqCFqyrnsk4I8bAZtOSG40KiU1qQ6RuA20MRAmTAnZKgdaCbeOQQnB8Z8vObkkIgsWyQc81nap55sKcUS6pWoFQBVH2bNuO3EjyPA0QnEtFOFEIemep6o79+ZTL53ewzlH5jr25oe1T+9/+bMTObMS1a9cAuH/7DmfbNbVtyaSgyDSr1ZYdpSlMcnabXBBEoG46ykxRGIMxnlBI+uA428Ky6tl0gc43zPKMpm8pZOBgVmBJ0OjttsOMM3rvid7jrKCTEaSjip6mCZR5wSiHMhcEKek6T9VVZKUkVzkKRSY0jsCoKBhlGXXdo7VkMi6TG0t6nIcuBHobKEwaPjVVRVZosqFRTmU569ZihSfLI6NSkxnPh2//Nj4vca4iy8YIOup2Q9u3+ACh63HBUNvAzhxy4YhYRPT0ztM3aU2VocWFCefPXyUQ2SwOGe/upnId11O1HVob8swMzpYU1zpbLTk8fITrO3pr0Urxyccf86Of/JBvfPNb+B6+8rXv8d57n/L44QNC1zKZjPBDtK/3FpEZhE5rMyFxp4zWCBF55+2fcHryiNu3b7PZrMhNyaTo+Wf/9J/w6NEjuq6j6xoynaGEwfaOxdkpd27c5fzF81z/9FPOzo4ZT3I22wWPjx7yP/3Df0hR5PzGb/wm588f8Ff/+t9gtV7xd//L/4pPPvmAk5PDNE0W8PDxAy5du8xzL7zAw7t3n3LmtDZplCoioUsihBgaKcWw/0GKGj45N4B8GrNNjq3kOtE6wcm9H0RKNayRBHrbpa8RU6tzEKkMQw9tvePxhEsXLxII3Pz8C7q2Z1QWPPPMNeazMY/ufUFmFLkXeAtWCayTQNqTbEj7n1EaKeXAII4pzhZTsy5xiCK3HT5Y8ixPe5o0WGdxPv2sYTgraJ0iL4m/KogonPcoAkan9sZMKiQOJRPrr3eR1jp67zGZ4uVXXuDq5Yt8fvNT7t6+RbXa8L3vfp8vfenL2BiI0nO8bPD3Dgm2RyrLj3/0Yx4+fkTo++TCkxIhA6++9jIxBu7duTMUZvlU6tS27O/u8vjBfaT3dHVFmRfprNf3lEajYmRnZ4rvezpfIYBl1aGVISLpLUTSeVEoxSgrQXQolc5p295iXUTGjtHOHOs8xmT0rkMIQx98YsCFSK4EZZEThWJRWTqbLgNGB1QIjEcZJiqE9MzyJJY6IDcJtm2DoOsdrYtYl1zucYjxCSGHUpyfBntiGCK+T55P/9NnMsaIUYF5KTnYUbi259w5w7hI53MpkjARgmC1qodzuxwcP4bZZMZ2u8FZS/CpjAxSLF2SBGk3xPQTHzpx6qqqelqCEEKksx1FlmG0oO86mjYVQ4XecXFvRtemZnVTJMeCkQJjDOOxYT6ZI8yI1bJiU1U0bYfSBhEUtmsxsynWRnRecOHCBR49eszJySOCh0xntH1DlJb1JjGmp+MdnAusTpZ8+eprFDJQZD0np5Gm7YikYrYQBD4GurpFCcHx/Rv84Hf/Ged351z/4A+5du1ZvvztX6D2FcvTu1RrS98mN0yZP2meTRFMhjO3szE54qUHJFrnBB9pmnRuMblkZ9fQ95qmdggMIKibamjQfSLkDmLu08tgGrCng5fERUXVpDb7QBqs5ia17bpgKbMMgWa1Ss5164+f7gmNbwdRKT1jpsgYz2Y89/JLPP/iC+zvjwnNgsP1hnfe/Am13VJieHDjOpvlAt85FqsVIgR0ZvAuDEK7Z73ZPnWleZ8Y62KICz6JHgupyIzG2tQw7uPAi5SJGpYSOBY5OMdNUbCzO+LCxRHHZ0ser1rMdJ9i71muXh2R68jJ/Q/YLI+Zj8eUucIFixKB3dmY07OaEBxlZmjriNSCUVHQ2+QqVQK8d7Sto+uTEOO8GBrjHUpL+tbT24QzgEBVW0DRENAqS6Ve0bPe9kSpcG6IMWbgHU9/b4InzdkCbRI/UimZjCBDbDWEofEeickFZZYzLiJ1k+6Ds5lhOjFokzGdTejas7T2x+FeJAYi37C38fS0LtKgyIchVp5crTF4NlWNEJJJmRN9pPeO9XKD7RNDTyqV2GgqSyzDbcWzc3jl2oQvjmoeLTwRQXQCVY74U3/mr/Lqy99l8+AGLhyx9Ete7O7x0k3LW3eB5UkSnghcnOeMpWS5tVwYF/T7nnMXSu4sJV9/6Tv8wvQSX/ruL/Hg0TEnlDz84j7XP/uC0eiMbV2hjOCd967jxZjRdMTv/P3/kbv3jlGZJjy8T2E0n92+xd17D4nZj5mXkIWWK3szvv7KyyhqwtKQF5KDC5rWzGi3K56/tMfbd1fsTies+jVKB7768oxvfOWboA+4v/TcPDpkbzLh0dF9Fpst5/b2OL93nvvFPTZVhbM9PsSh6DIl08LQwBtFYLWt+a//3n+fhjs6ubcUgq5z2JBScGdnS0ajEQfnznPl4AI3b33GUVXx+te+xvzieVbV+7BtUvN8DEijhwGPp2saEBKp0h3d2lTgJZUgywYWfYhM9s7Tdi0XL17m53/5V3nh1S+z3LTcuXWT8xcvcGW+m84Ow9AzxGHQPgyQYkymj299/0/xwUcf8Lv//B+jtSYnDo55T/RwenSEDxHX9yndNwxXve8pyhxf1yyPjunbnipVyZOMsmnPMplJeoMSuN6yPFtRVy1t3/Ho1meMJmPatkPpnAc3b4BM6UXbuOHvSWJ6pgXTkeHewyWfvXPMF0ctvR2Oe0ObdwgpOvGEkRrxBNdzfP1DfuvhQ17//ve5/OJLPPj8Fu39anjPxcEtm951fyz88vRDiNRFkOUZwQf6rh6eCz9AG8T/7Of9L/34Ewt8be/ZdI6sLHHWkxWK3nr6rmc8G+Osx9me2qemIYmkD4EvHh/zxrULnC3OyLQiHxVkRcZsMuHh8Sk+FYCyqVuQqR9IxIjtPTEkK3wICeotYYgEJiu7cymSGuMQXVEa7z0qS5tH1/ZIqRFCcrxYc/XiLv2ypunSIbeqKoSLTKWgLGBazjBa4YmMx2O2dWJFxBDI8xytFScnJ3ifoqneu6HYAfIsYzydstms2KwbyrLE9h2I5HQEhfeBrDAURlM3PXVjU2gtJO6CFAGjkpBjNFy+cEBVN4O4N0xjYprm++Cx1mGGoo7g0wU8uRAcQqRItNSCfmjFUyKm6MzApqhaj/XiqbPKxz82WRYCY1K+n+DTpF9lZMYQQir2cH6LdRHRQ5Ybgo+0fUdvA02XuIg+DNh+ISi1xHaWzEiMSr+jJIBC1XZ0TZeEhs4O8aw0sQwxRZmcd7RdEkRdiCkaJ0FJ9VT4yrTGi4B3DlPm+C7SNA3DPJQ8k8x1ElC1UYxNwfHpilxr8twgIvSdY7nccPncLoXOcSagogeVouOTcc6DkxUqeq5e3qfc9ExmOUcnFdNJycW9MYvFmjw3rLqOo+WGvjmhKBTH254uRB4e36Htup9CWRlKZ2IqaUnHP9BCoiQphhX9UEYhkQHGo5xicNhs2p6Ns0SRPkeKiNKSeT5Gk8oQlFTImEDBplD46HHR0/fhqQDsux6G2Dsx/nQSwRP65dDIR+Tg6hX+0l/4TS7sXiG4QGM3TMeC5154hdb3/Jvf+9fcvnOT7eaUs+MjQt9RaklTe3oLzvoUkRoi22rYFFPEWTAtczIV8RHwApNrvICmcdRR8MHNB5RFjhcGHxxd61hIxywb1hEpqK1Ln19qCB1bJ5LAaxQheHKjGJkMHxzXnr3Ko8OHnB2vmJSC2gfaKjLNIc8Sz/Hg3DlOjtdEr7l8bZ8vf/nPMJ4f8Nabv8Vou+S0Frz28ivs7V+hHFk+++xDnNV89dVv8cZ3/iwf/NG/4uTkR5zbLZCq5PhwRd8ngSIzEqUVUSZXX9d0+Cjo+oBRJCt8TJNgiNRNnyLCZQ4+sUenI43ODL1QPFhUKCJ3zgKH65bOxsRUjBqpBZs6CddGZSlyX2hisDRdy6ImXSKMppzu0C2OOdjb4dxkgjaR1dkZN+89xEbLclsRvBjKlDouzkYYKXBdj1EKFyVtZ5mURUIgEEALlFHkUXN6uEUIjZYRk5th2igpc4NvHcFJQt8xHadG2FAFylGRnkPnmexOEDFQZhOKLAORIjddZzECpuUU8pLT5YLe9WRlhncB21saIVk0DfXg6ikcnK1OEkRfpFifa3qy0YRxOSLPJZvVlsPTMzJTYmMkhsB8lFM3yfVysn3A+Qu7jMvz2H5OE0sOzu/QbEfIIFA6o5hNqOseW1VE22Ndj5GCaD1GCZxMbcaz8+eYTXc5vH+X1XbBRZVRVzW3b1xn7/KzXL12jVxnKJGe58VyyeNHD2mbhhgD0/mUvu1puo7HR4956+03efnVN7j38D5NXaFk5Oj4CKk1F565SJFlbNYbNtWWrmsHNIfAxSHSKqDpt3z86Yc4Z3Eh8vyLL3Ll8jN8+OEHrFYrXJ+i9Naltt2d+Q5f3L7FydEpd+5mbLZpyv3Frdv8vf/X/5vd/T0ePbxHU1d0bc03vvFdvvaNb1GWI/693/hN/qPz/yF/+7/4z3nrxz+i73tuf36DxcnpH7tIiqEJ11PkeRrq5IpoQ3JUpJJQxAC8S3f0JLCEIZqrdRI1QgwD/4oBbyDQ2mCG/63tGkymGE8mtE2PSYszRVFw8eIBl69c5vTkhBgiR0enRC8TD6d3PHx4yHqVM59OkLHh7GTFKJvhvKCzHcYkAcBaOwwxU7lEKuIy+D59vVwrbG8REcoipxQmOdhJZyPnGfhP/XChFtjeDy2kcnDFJgeLEkOJg4qE0CIFQ6wdcqNACbKoOHduB0JgNJnx3e99j+PjQ+7evsticcKz167xc9//OS5fe4kLF/8N//pf/Av6dkXXbzh8cI+6ahEItExoj69/4zv85l//69y6eZMP3n+be/fu0LiK8+cO6FvL7dt3wVvGmWZvZwftUru3lUmmMEawrjd41+OjJQgxnF/6FDMWOUJrpB6cLK5Dj1Lnsw2BKCR5rtidTsl0zmK9GS5hiqp39AHKwiB9EunqztNZT++AKPEx4QXmpca5hKxRInFiM61ZbpNL3kZFU1saF6i7QIwDCN0HMi2f7KZDhDxN+59EvJLwM8R1pcTjCcEzKSTn5wrftUShOVl71Cj9nU9GoTYMorSUKRKcG+bzOc12O8T1xdM/TwbBQsmBvfmEQxkx2lCUBXVd46wnz1OZwhO24/kdw3Q05rP7C6TJkEDTWkJwCCSZUYxHikk5Yj6Zcbg4I/jAyETO7xdMJoKjk8C66cmMYTwuiC5wcG6XTV1z585tyDLarkEISTeA5a3t6HGMypwQPEoKun7Lzc/fZ//cPmWZsX9+Tm4K6rrl0eMj2q4jBovzknKUE/o1v/vP/wE7kxHnL17i2ssv882f+XOcNQtuvlOzO/GsVmv6rk9FH8ax3Xq8TxdPBInfGRle+4iWGQJoeof0gSwEtDJkw1mrq21icj690P0UC/D0QwgglWk9Oc/3nUOLSI+nHOlU8hEjZZniU1kxZjbb5eFhw9GDQ+rHS7RWZDpLMVxjht8rPPfKy/ziL/8qzz7/Kr/zu/+Y9978fUbjGcvVinGpOVmc4hvYnYw5ODjg6PAMJQTj2RytDZv1lrzIaeoWa226gw38R50lQbfIS7J8TEQw2dlNw3YRnrqgFycLfJ9QIlmRUBNtXVNVqaXys+s3eHj4iIvPvsAzr36N+XTChQsXeObKVcpc8PmHl7n7yZuMi54Hd+9QZIZRnhA1WkV29yYIoVi4HiGSQDDPC9rOMZ0YqtpjdI5USZgMXaRzlt6mGKzWiqYZqKYyOeG0SnHI46VFyaS7t/anbc8hBJp2KNPRAmUik3xgZktF13uChBBSQVvT9igFO6MMGQNaR6alRGlJ3QWqCmKUbFrLZGtZr9as1sunwn9aL9Ljoo0iy3K6tiMOHFeGxywSadsurQVPNYm0NvgYQUb25zu0zuN6y2SygyzGiPlF9q68wIW55vH193kxP+WvfVdSN/Df/Kjho9sNUkHfbvn0+jt8cfc6Lz+7z6cf/IhpOeLnXjngmRf2OH8Obj0MKOswdAgbOZhL1t7zeGOYXnqeX/lzv8LexW8wnl3mzoPP+eGnD3j7zXfpbUvbdrS95/7d63TVCmUi603H6abilVde4eHDFdvOEpuKMlO8ePUZbj54yNFyxfPPXuS5i+d47cplcjpOzg558PiU77x8ha+8eoWmr7mz+Zif/YVr3Ht4woWDHd5+8ICLuzm/9p1rXMkCxfJz3lve560Tw3Hd8OLzr7A4O2KzXuO7Da995Vs8+9KrfPzu21ifnpk4JNXMsNb72INNqbyTfovOPPt7c4qs4Ntf/wq3bt7j4eExvbX0bUfbJC7yZ9c/Iy8UeVaAMmxXG8o8x5CY0EIkHIQP6R5VlEUq8HQBhRwKSh2RoZhI5bzw5a/z3EtfYrPZcvHCJUYHlzlZrfjX/+y3yEYZuf42zTPPMX7CdAVC8Gy2SQDe299DSoMgleT92p//97h+/UPOHt1DWUnXdCADzvW0fVoviamHIZDSCDGmVutqWyNjMo45XHL1KkWMkdGs5NzF8xTTOdF5Th4/ZnGyoF6n1EwXI+2mSexB0/Dpe++mCKwW7O7uYK3Ddj1KRF6+ts8oN3zyYMXDhU+lR8h/yy0thXiKciLGNJxr29T6vV7zo39yhMlG2LZFZobY2qf34qdvtqdrePqjBlyBEIlv/SQlIhncvTEM2LH/P3DwhQHqr5Vhu6poelKu3GiaphsWC0UQgmkhOGcKHi1qlq1n2zsKk7NerxhPR1zc3+fx2YK69ygkrnfozND1NnFOhASZJvKpdGP4HkhtrYiIVipdBIkpviMkTe9QUmCdfxrbVQJGhaaqO+qqJ/Yeb1N0UkvHpNBMRhnFaIwQmrzIEUjOVmuscxRFyXiUU1UV602Ddwk8OhitUnNtkZxEZ4slbdMSkVRNgxmYbs6m6voYIzJmdL1nW1lCTFFX793w9xQpiqwFly4eEKLn8PiMEFJFu/OB3vZ/DGCtnl5yQghPHQtSpFIApeRQxpF4EVIriIqq6tm0FhflEMdJD1viZ6SYiBRphhjcsNE5jxlcdpCs5dYNHMQQCU0CEVdN/5Q90fWO3jok4Wl7cvABJ0ivJVCHQN/1iTUU4mAJfyJUpt+7EILeJu7FEKpKFnjSpq6Gn18lNi/BO7IsicxFltFhhxhKalB+/aXnWSwTM6CqazIt2ZmNEQKKTGOdZTIpmIwLLp7f4XQlubg/ZbHu6G3PtnIE78myjNW6QxlFlhk6t8bUDX6aYYOg3m45qVqu3z1MfDoRWW83iWXok7si2UKeOPd4CoNXJJ5DHIQ+JUUSuRCMjEFHmeDqg/Oq6x2zsqTMNJNiRAiWGCxFloNNRQ02+tSEHT150LQRqq5PmBiGb8X7YbH6aQNgHC4cPx1XJLFvvd7yznvvUppPgcCdB3d49upFvrxd8wtf/z5/4Rf/AjHTjGYFb775E/7H/+7vEvslhe7ZVI6+C7hBPC6yjNxIuoFr1Hsw2iEB76HM1OAyS9BuB5yESGYb0Jpg0wWq6uIAhnWgBUWW07WWs8oitWTbeRSRSSbpbI/1glIoMql4+62PcHhKI3FWomIqpbCdoiw6Zrlibzah2VZk+YTVYs29e5/y0u4V/txf/o/59Ee/y/65i+gMyD0fv/sDTs/WZJnmtWcL7n7+PieHN9mbT+haRduQIguFSnDmYe1arVNENcTUAuhDgu3XvWMkFHUd6WTHtJQUhWJSijQBl0N8PUDd9FR1QCnDw+MeokbH1E5lbcR1Ee8GRmVMjhUfHJmSjMc5rSWV7PQrzk6XFCONc7BdVZQjw3pRs+o6MKCkwfeOYsewUxqwgabz7I1KMhHZVi0xRHwU9EqnFtJGE7RjlEl25zOWVce8yGh85HjZ4tBEHSlKQ4GmGSKMMXrU2KCVTzEzYVBCgJ7w0mtfpd6ecbZ4xKbaMM41CsnObM6i6mnbjk3bo7RGCM1yXSFmkqpu8US0zujrGq0y8ryks20SxpWi7ntC6GlWDhssWa7YmU1YNS3rrcVZTyEks0zSBo/ygkvPPIfQe2wO7/O4vst21aJJgPTgLLapUyy9a5AyIEnO6SLP6F1ExMj65IhOznjtK9+kvrHCrh/z8KZnU/e8+KWvk+dFYuYQOFuecXR4RIyp0MG5FJdTamj5tZbF8oS6OSVTOZNRRtelwqWuaTnzx2QmQwjBzs4OXdtydnI2nFckISRG6unJIk0mlWQynfPpJ59hVMlsNkcrQ5BPGEQR7x3b7RZvS5yzqT1eaqxz2Lbno/feJ5IiV5mRfPj+++zu7rLeLPnZn/8FvKsx7PAf/Yd/Cy0iP/rhHwEyCXwykhnD7v45AorVassoNxDhwuUDvvS111mcrfnxT95js1wSn4LK1U/ju0MyUQ8cob63OO9SbGMQX2y0T/lpRVkwnZb0zuKDRasCYmqrffz4iLOzs9RKHqGu+hR1GlpS66aiLHWK5gaPVJrNpiIqkRhlTiBFhlJpWNa5xI+JIRL7HiHS9+psOm+Vo4I80ygFdd3gPAQp8UMxVxQS39vkZC5ynPdpuCnEwHQlMc6CxKWxctpXjRyQHhYfE7JgNh9z7tyc3/u930NrTV1tmUxGvP/+B3xy/QZf+drX+W5myHLDb/y1v4ZWnrqq+Oyzm/zTf/LPqbcNSmvOXzjHyy+/wO/97r/kwb2HrFanON9z5doV1psNEc0rz7zMznTKxx++Q+d6jBC0TY/1Pol5sUtFCj4gQ4KKR5mOuLlKApWKMJuMcTYQXYf3kcaCkjmFiUyKVL622ixwwdO7kIaGSrFTJtdZ4xw2pNHgdGxww9A5DsMwIxOPUciIjEmE7L1DRE/TgbU9O+MSrVJUsbGJMybFH4tnpgjIcFlPje+QHLNCDA7TGAdXV4ponVQBGRVNYylKw7RnuJiks9yTOK+SEpNn7O7ssdqsGOcJQeJTY9RQcqAG8096HR0pSgUplXF8fDqcrxJqQqpUJCdF4NrBHlMtOVtmnNQpHr9YW4oslR3YEBlP9licbhjPMibzOQ/u3acNHk1KXsynIwIJrUD02N6zWJxRNU3a/5oGZwdW35BcyIsRyVAbWK4XMDgiZ/MJ27VguT5iZ75L31vK2R47LrI4XQMdtq+x2z7Fhus1x/WKohzx2SfvsTO/SLuqKPIdzCzSti0Xzp3jdLXA+iWdDcQuErxLZgQp8c6lGLuUg9gokVEio0bEdEbOckU5zpAm4PpAs/X4AZ+TjFjxqcYXYwCZHOtZpilyA7hUWhdc4kVjh8RMcvotFx3SeKa7M9zdxwQHLga865I4LAWXLl/iG9/7Hj/3i3+ayxevsFmvWCwOOTk+RB+d0AePHRdc2D3HyjTsHFyG6Dg5WzMyGu8cm80GP5S/tG2TBilGM5nN2Tt3gbbrMLnh4OACBMnpyRlReGzbsFqsyEYlu3v7vP61r3P56lVsZ+namma74v7t22yrimeefZbv/9IvM9rZZ3c+Z282pShyVqslh4/v8ej+DY7v3uQrLzxDkW149OAhxwuLnQgOjGdcpvK9tgsIqcm0QATHJCuxTY8Gdic569qRG0kTAyE6opdolT1FiCidmm390HQdVcLiOBvwg5P1SaT6yXs1zzRCBCSB6aTAiCQkRJnej7lPd6wsGxq1CUxLibXJEbdufOIRIulspOnTPtr1EYRkOhvTd5Z62wzFCmkB0VkGQ/nTE/EvkAY7T9iPzvunB/nEZ+Upe1yrLu0FIbCuO77+5e/zwhtf5cNPPuX6mz/m8kTwxVbw99+37HPCX/mZy8xHI96+sQUN2/UjmjqDqwX/6X/w73P+/B4HheLh7Ye8qpb8Uq5Q2YxNGzk322N9dpvxqGRsnmdy+QpLWdBUNe+++0f88Id/SGM7bB8oipKP3n+fcjyj2q5xzqZhgwejI8eHj9MADEkuFc9dmrHaHNHbjoPdc0zKKQ8OV3zja7/CS1fPs/r9f4BrPfdPloznJcvFMa9/4yUYBx5/cJ+6clyZzci14xuvXOT6m7c5C5Y7csSyr2mbLbduXWd5esx0NGJvZ0QxKfGAyTTeK4L0aAGZTC4061MJU4zQdz2YyGRUIgV024p33/mAtkmFWEanUsDeWfK8oN5uqGuYjMfcv3WT9bZCSclkPoW9PdbbitV6TQyRTEnyMuPgwnlOzk5ZLiuM0RT5CGNSfH/nwhVEEKzOTmm7huuLY16RBYLI9Q/fZLY7x6B58YXX2RmPh3Xfs6433Lxzg/V2w4vdi1w+uIQsSwSSi5ev8at/8Tf4+3/3b9M0y0HH0KmQJtHACHEQt4aYL0LQ9h12aVOScthPU1zfE2Mq1zw9W6GXG2zXUW8bbO8Gh91g9huEMddbvE2FPnpUpL1E9PS9pfculaK2nkenLf2AH/v/sfZfT7alZ5of9vvMctvkTne8KY8yAKoKpoFGu2k33TPTTXI4QwUlktJI5B0jFCGF7vQfSKEr3Ujk3YikomMUQ3E4bDfA9HQ3Gq7gyvs6/pw86XO75T6ni3flqSZDNxImcVFAoc6pPLnX+szzPs/vecKcH4YsxoiZScrGhj05Cu7EWCvR41CTW8vuM09x8ugx68Xqc2HvXHQf/qc2ggdJSYo4zpN0op1YIbOGgfX7b+HrF4/oDpHO0ShnNJH6Z6WiFDtklsxqXAg0rcNiUcYKA89HHh7P+eozVwmpZ5QXrNYtp4tW2rOCxCpDisNCFIm4QaSSy3qmB+WG8xiqLLBpOAhpI2Zvo2VRSwM3RsCyDmMsRZZzcrbGNQ5UoKws26OKMjeMp2OsVWBz+r5nuahRxjIZjfDes65bmrYXhpmWpthh9jownhT7B4domwMy0Rc3mMYa+b61UownY9q2Z7GsAUvveikTGHgNMSaS1mxtzijKjLv3D+hcoOudTOzPIzY+fi6+xKFtNw0P1XDJd86RlBmy4uJOUCZnuWyp+0AXhmjGcBFLKZFpMwiF6Um0Vxsp2ogh0nT98PNP5HkxXEqE2aORApPO+YG9IRFuEIedD8IzCmhckJONDxIJTjF87kCM0uwWowgb3dCQLC/leXRFNrKUIikYovcoI6BzYhoWNok8Nq2491SITCcVX3ntRVarloPjMylGUdJEF7zHOc/mbMSlCzPKzOJcR2Yi1y5vc/PaZS40LW+98wmjfEyVW06WNcfzNX3XMi4zuqRQTUfjHD4klk3N3vGck+UK5x2ZFkBvSl5AokkEPh89mTJi6+b8oC5xjDTYvAf2OYU1ZChMNrAGdcaoKLk4nTHKDSEIUDsaS113AukdFp+m61n2vdS6hUDtA8uuY1Rln3MABr/xEwvyIKgCTwDgCfkI1os5P/nhd4UxoYXp1qwOuPfwDvff/4x/9w9/lzd/9Anf/N3f5dd+4/e5ceka/8V/8X8idUdMYiC3hmUT6FpNjCJg9b3HBz2IwWYAJ8sFqHGBVZdIWpqfXQzCXTNgMksKns4ntAvMioKu9yzqHlDULpCHhFUJjabupJTAezhZODbGVgSApDBW09WyaSqlcSRCb8Al7u8dkpIjzz1Ew9vv/5Qfvvk2X/nK13n6wmWuPP0s737wM956+4fEbk5ZjMjLyO3bb9MGRd+fcmFnl8VyyUvPP4WmofGa08WaRR1Y14m2VyK8RfVkQ+x9osrFjbxqPUolei/xrt4FciPNXVZHLmxv8uDRCdrm5BlsTUes+pYGRdc7otakqKXdzRqSVvgQaF3H5qhk3cjEPbOacTWmyDMigUXTElPAW83GhW02tWG5WgOarWuX0LmnWxyzXqzYyY1cypOi7oVzeNa2FIViVBiybMrzz32JO5+8h6Wm0KDzCrfupAnUwumiYzQqaZ1jvu7JM8POpKAogDA0aluo8hHTzV26pufw6JCmWTMdWfJMk9uIip7QtVS5pYtwNl9R5CXT8YisKNjZucCiXtHWNRbQtqLppWHdxohJCa2k+IVoyZABSNv01IsWowKFUsxyy2YRScpgTGDdzp+4b3wMjKqcZrmg0hUWxfZsg9A34DOSCvRtRyRRZCXVKMPHQOt6pjmcHjwgNQvS+pSVT1x4+mXWyzkb0wnJZixWKxaLJSpJLN/FSFFWjKcb1IslmcmEmRoVZ0en7Oxu8+zzT/HOW+/JAEopurqjS8JIWS1ryqIQsbFzw4FncPEmWaddiJwcn9LVH7L38JG496KUIlVVJaJBl4QH1vd4JyUQo2qMstJ8roCu7/Cup9yaoYGf/PAN6rbl9PiIL77yMqPSUpUlz9x8jo/e/xQXAl23JqSOohAO7Kuvvs6ly9f42uuvsjGZoo1lY2PGdDbjBz96g+/8qz/l4f273L/3UEpJnDQ+aq0HxpDgCWIcYnIw/Hnlrz6FobQoilg1FBB0nRPumA8oHanXgel0TJ4VTMaGrlmAEQ6W1prN7S2uXL3I4aNHWJVx3C7ItKXMcrQ2EquKgsswmUUbTds1VFraIjUKrGAnei9YjDxpxmVB33mUzaRZe/hMrdXoGKisREdjZlFGOL7SaDcUeUSPQaEHJ+Q5VCahWdWe996/w71H+6AzTk/mWGsZjzUueE6PDnh8+Ij/+//t/8rirCbFxOuvfZHedXgPs+0Zm9sznrp5nSy3/Omf/Q9YWzJfLhhPR7z00gv8/Odv0q47drZ3uPXJJ2yMx+A8IXT4woKK4jYP0iypvEerJJiJJhK1IcVIWeVE7+Xs0wuyRdlcPssgMZzcGoIXVuJ0OuZ4vhAh3FoZDvWe3mmMMhjdYzRkOmJMwGQygE1D6YoxgqghszQhkhvNxtTSe3DKo6MjQ1HlBhcSfUwDBuA8yhg/d9cwNNgPZXKyDwNKYuRaafqgODiR6CBJ0fjAtatmcGHK0FshTvA8s2xsTOn7Ft/39CoNEWmD73uMMWTWoId4nzYaPeButBKXqFdQZhl5ntMHRz6UxYHmzqMTLhSBp3dGXL0y5bMHJ5zWka4V8Xm9XrN3cEZZZNiiYr5YkOUFnU+s1g0b0w167zHGsFxJpDh4KQEryoreBYo8o163pPN2yiA8qfFsymIxp8pH9L4bvi/HweEjxlWOznOeuvklLj/1ItOR5s0f/YDj5QnL+QkHd+/Td4GyqGj7hunGmCw5vv3Hf0SMgZPDQ6o8slou6VonrsogaZJz40AcLm4oLULK8Gn54DGI+OdcQFkFymKtwWSBarciRcPirGG5aGibdviM5ZnQVpFlmul0hAZJu2SKpm5R1kqEPyRyK5H+pg4o7Vms95nONhiVOd2qJflEMkmc2dev8Qf/8N/hl7/1G5TlhJOjR/z4B3/N2f5jjLb0q16ibX0geVgcn2CznHZV43pP2/ekYV0vypKNjanEzXpHVuRMN2dcvXmdet3y6NEDjg8f47oO1weOj45JviOmRAgOFSPR9zy6+xn1uiGmRLNeUWSGi5d2KcYTjudrNi9cY3vzAn3XUa9O2Hv4KW+/8Zes5/fZ2Sj5+MO7rNcNh4se5zX9AvKxYaMsWSx6Thc9KMPW2DIpDH27ZjyyqF5K/NrW0TjZz7IsY7GU90HpTFzfQWjmcv6WO5I1sj6HII3EmRI2dYqRItNMJ8Kmd56hBNEQU2BzpsgzuROdn+kMIuiv6sCqjsTBqGGNofeetpNnX/YDeOUrX2fVrfn0nbcxth/ux1JY1zftsC/LGV5pMMrIc3oefRzO9ikxON4jagjurNeNtLVrQT/cvXuLrZkmLe/SLI7Zbx0Xr1zkvbsnLLrEnWafy1sTfuuVgt3ZBD0uaGLB73zri+zMtknqIv/8v/8ON577Aq9/5VepSoVLkX45Z7x7lSM3A6C3Uw5P1/z1D7/DvU8+4fHhEQfHB/iQ2Ny8yDiv2cgt3vecLU5ROiNEcazN8pzV2QlN77k8K3lqnPPVZyb8xQfHqJCoyoxbd+9xYTbj+z/6Pla9yu29hxy0ibxNfPq99/jNrz6P23vEvdM9urbi+3c7TtaB376p+fhv3mfvLOetesXk+Stc2JwxMYbjRUPb9xgS+khzpV5R5pKQCs6SbKAyGVqB82KsCFFErGSEY19lGaF3RJ94+PiYiKYsczZnU6zNqE9OSL2TYU+SPd9YTbduMNrSBg+ZxxY5N59+lhA8h4/3aZqG1WLBZDQCnYMy7Fy8wrMvvMx4NOPuZ+/wyXs/Q2cFeVkQgqfMRmzsXMO1Dd3KsD49YX56Qru7g7WJrm354P33efeTN2nbNauzM8bf/A2yoiDFwK27d9i8eJWXf+lbfP/P/xhrLdPRmOA9nVsPhiz7+b2dgSlqxISUZBsjDYOvsszpnSN0nuXJQp7xAGlg6cdzWS4BQwnHk7IzJc7Gg8f7iENPSnHuHKxRAdEd9LkzUTjTBj0UZnyOMzk3s6gEuR1QJkVGsoZkLavFXJjsVYHrJKVJlPfq/IxsrKQq0znTQSU5i9lhDfmfNPD+ol+/sMDXOY8tFYfzloxIiErsn0pjE1gdKXJL7z21gyJB33iignnt8Fpx5eIFtFJ8du+Apov0QSZTJia0jwMXzWCMtOOGEAhRWAZmEJyy3EIUJ1tKIjymKIeSIsuE3RYTIfSDyy0j9kHaVTRYmxhXho1KM5mWbGyMyOyIRbOmXqzofWBzNkOpRNdIbT06o209Mcm/M0SJBpdFhfeJ+WIOWBEcoyfPcnyfIAVsZVEkyqqg6x2LVYsPCWOlFKTrHFpZssySZYpLF2bs7mxw68596lqEIh8iIYF3Ti4fSgSpLM/I8nKYAEsxRVHkeOeHSK7whybjMSYrOTxa0LQRHxnq4eWxSMSBQRGIKaG1xYVI7zyFzlmvW4wxgxgHVZXhfE/nZRLZO3En9lFEPj84EmNMYIT/0HqPRxwdfog1E8LQhhyfRKe00dKaG8Ul6KNEkss8x7nwZDKVWYNR8ntnmTRJGi28nL7rpHmwEKGvrErqdcPGdMKoyLn/8ICoNNEFMisv+LldMIZAmWeUmeT/T84W2Lzg8u6MFD1lVTCuSvIicXC6ZFV3XNmZcfnCjL33b5EVGXuPT1h0jsPjE+4fLaidI8YwgErD0CbE0Oash8VKIpbilkmkISZzfhmwWpFrcZDlKWEyTZlllHlOco40gNnjIOZ5N0TqOhHDGu+Y9x2n65bCGAoL86YmDO7B9CQuwucNgsPTcc70UFoNwnnAGHHWyhrAk///9HDO6fGCSxs73LrzgA9ufcjhf3/Mi888R64VVy5e5P0P9oVVEmFjo2SNp+kdEXEbhZCIBHyS5suyyFk4R+08Ns8xNpMoXd8ThoW7j/IMGgxdmzjzjjyTuBoqSZRcwXRU0LSd/LxjIiWD6zoOe0duNDYzmCZgQqJTCk9gPMmZLxIrHVn6xKSAw7MTbFnS97BsGn72s59zqzC8/8nPuff4iMw4vG9p1w2Xd0aUU3B9x4XLG2TWs1rU/OzdOzw8XpFnBSRNbgzed7go09sY5QKZZ2bAMSnWrbTvGiXsl1WnRfyziTIDjML5nrIUVswzV2f0Tty7y9tzJpU4K5xLNC4RfaDILVZZ4VM1HtWJW1urRGYU2zOJDfbJs1oHzEnPdFQzm5aMioLT0zNc5zCFpe9a3KpjOs7IjKb1ni4lOifN0zYZFo1Dh4ZUTlDFCOsdm1szTo/P6DKFOBYUG0WOVrBf99QOVq2jCxqdHNsjw6XtisVyzahU1Oszjo8OCNoRgmO1VqiRJeUZJ6sl2mZkIWM2KXBtz3Q8Ynd7CxUVeVniYmC5Xg1MnYDvA31MNK6hyius1qy7nnq48FitsEoxnVQUxYgienTyqJjItSb6xCeffMRJq7h58zk2tyvC0RxtEio44TuWBe1awOOhD8K/dB5jc3A9wTkyY2iOHpBcQ5UZVssVZb5NVZXs3foI5XqqzW2arh84XLK2Z3nJxtYWWZaxPD6WeD6GGODhvT2cd2zv7rAxm3J2vEQx4BSSlHq5rif0/ZN3XoZtBtJQfpXOD1qRpl5T1+uB8yMHrb7tMSbHaIPRhkuXLvPg3n3atqV3IooppVit1tJsawwnJwtZhqOizAzf++u/5ORwjwf3nqUox+xevMT/9n/3f2Ayqlgt5yQV+fTWx9RNy87WRb7167/G5cuXhAHYOPYfn7Juepp6zeuvf5l/79/9e+zdP8CFnp+99VPefvs95vM1MXp61wsLOA0FCkP4QuKSQ+tlTIQQaDuFstKYrhRkuSGzGVeuXWIyGXN0dMLp0SlGK7Z2pyitMEbe77ZpeHDvEe26Yz4XNERMMtRC6Sf7nraCBXAhiKNeC7NWay2xUxdI0aPLktlszOZ4wnKxIiQo84zWBbCGel0TvUMrKRjRKsDADvRKLq8hCoMts4qqyCkyQ+ccTTOkDJDI0XLZUZaKsqyo1zV7j/cp8pLOB77zr/6KzGSooTDge8slPvT4CHXreeWlL7Bs1uzdPuT4+IxMWWIM1PWaermmazp87zk+OkYpxdnJKaMcNqcFrY8QBNavkyIpSx86jIqUZFRlho8abXMUisY1BOco85JoBxHNGDamG6A9rZPI2sZoxLqraTsP2pAiNK4XDnFSFBbBigzihh6KzDRahsSFFI7VKOo20Flx6tRtR55nuADLHpwyUmA2wLzP9/gQ5X9rO5SZpSSfhRqGvsP+G6IMBAUvKYVbKSlBkqhE8F4GNQxNvQh3qaoqTk/PQMkwOsXIxmwDrQ3Hh4dPXApam2FIBybpoZ1YFEZlJOabWSV8UJ8wytC7yIOzQD2xjLsObWC+9gQkJhlCQidNvV6T2TFt53nu5Vd5dOdjQrsibVScLdZkuZw1OxKrukclQ45mY1ahdaTtOqaTiqoSiP3JYonvOsouo8yL4bMQXMtqucLanOlsk6yc8Mu//vfZ2bnEWz//Ltu7O3z561/jj/+7/xalEm3XoY048D79+GN+6Ru/wsH+Q77y9V/ixvVrjKqCx3v3+eyjj2lXHXUbCUGarn3wg7CjMDoj6TSUyA2OkhietMiaZNne3uH6U89wulwxnU5xQ+FXDJHHD+9ydHCAUuIOVkrhnZwzt3e22dydcHK4h+vdwM4Wt2DC4Dys1h3OtaAUJ8cLWa80ItZYRTku+fovf5UvvPgioeu59+BDfvDG3/DTH3+P0K4pdIYuNI3rwQUeP96nazoe3rmHQuPaSPC9PAsoyqISY8aQYGrrlscPHrA6OyN4z7peE0MUl6XJuHjlMkWeMT895eT4mHq14uDRwyGFI6UxioTPDH3bcHZyxuHDPR5+8hFf+cYvY03i8d1b3P30PbJ4iu5rlqcd2bhguXIoFZhNNH2XODrqYDOn6TRal8ToyKuKcpLjF2uKiWb5eE3de5RJhDoSlKIoDcqIYzomQTOcCw9KKVTSQ5piSH5lRu70QwJHaUVeWBicSjYzWJNYLiO9j3Q+UmQwrqTUxjtYtVJyaK2i7QRDkwjkuQiJSkURCn0iJc3rv/7bNKrAecUHb3xvEJjPhzDCJjcDY1BpQ1GNKauKtm1ZzhdiEtWDo+/8oD/8vUjAhch0PMaawFduar52s+aFDTjambE9VXR6k7fmB2yWYzY3r3J7/5SXZoEvbQeq4hTVdeTvfJ+35g03v/JNRqXnyrbhnY9/ztHBGQ/29jg8PRKGWh24OMu5+fRNPrz1gIeP9oi+oW4aluslRZ7ju4bdyzusWPPZ3YfCnndDjFODITKqCjbzyFO7GTdnOZPijC6swMDR/JB13bIzm/HhZ+9xdnKHrYklKMMHd4/RPnLr/mNe/HLB7vM3OLi14sqp59nLU2bjlvcOOjZM4ve+dJn3lxG/eZFjlXG0bDHW0vUt01Rx+vgh9fxEyhurAt84Eud3YmQorAznUQFlDHXnMSrR+4hDxOO+D6wWa2xuybNcmKF+SEqtGpJSZEXOcrmSd1HLecEqxfbuDl09YnnW03SOUTnhtW98k93LNynHMya729y//Ql3H9wlhp5mvcaVI7QKPLj1LteHsoduvWK1PGJ++IDuxjV8GTk43uOtt37MB+/9HB86lsdzXvniq2zu7OCi4/s/+C4xwctf/ibv/Oh71GEoOjOWMtdPyjDPhTmthGc8Ggm2RLiFojuoQSSz1gi2yMcn/OFzp90T3uTfUsbMwClmEPt8jKCk+yCzGT5IiQ1KNCvUcK9GS8lM8pIejHJ3flJYk+QcG0kom3Plxed5/vWvUZqcn/z5n9I+eITJ5Y4iJSKitwQvd9E49B3IUEgwMiLsi8B4frv+t/H1Cwt8wtOwqBSZTias64Z1K1XNMQaysmBZd2gMPkA1gnKSc7yU6fxH9x7z6198lsPTBWfrhqgsXefJCotJCqMsuVZYo+n67gnoOgSJ36YgByLf9MJPk8q6QXgS0GvyEZUiKslh1jtPV5/XpEd0SlS5YVqWXNgdoyYbdOs1x8eHBKMobUZVjul8JASH1Yb1uqZ3iZgEWoqWNl6tDeu6EVVYCZD43LYeQnwCKc6skU3de87mK2KS6EzX9iQ9NJSGiEUxHRVcv3KR+3t7zNctRlnatpUIifO0TUs1KkXoMyLIud5jrTgFxZFmZNJWWCaTgouXLnH12jX29g55uH8KZjikGmHJxBClct05sizDDm7JGEVUdF6cdtoYTGZkAhcjXdvjoggwPgRCiHRe/rvzT0iz6CQCZT+4MSXSkDAoCq1EmHTiphIHq/wevQsSjWt6bKZRXqC3ZthcQwhkhYh8ZZnRec+olObjlJmB22eIJjAuc7yPtM7x/gefUXt5bq2Gzc0JZ4sVcfgzlIUIsSlGiqrElmOOT+fsPT4mL0p6F1n1PU3TDyJmpMzh7v3HrHsHRnN8NufEBY6Pl6z7jhCEA2eViCYyh0hEFVHxfPGSA6NW54nZhCKSoakyy+ZozNgYtiaTIYbuIAZCL8UsvQ8C7iUNzVgRZSwpgUvyM3ZOWqdj8NKeqxKZMuTaPnHsna9tsvsPfr0hmau0YnNrk/l8TgxO6r/lU5aDZVSEBJk13Lv1KT8ZZewdHDCvH/CT7/1r2sahtETkC5OxrAOrtsUYRZZL+2XXy7/bDO930poueEIUETf6RO9b8sxQlTlN4+hcB9oKJiAJyDnKLYWqzFg3PUYJS6Xz4NLAixsu8SjDgESm6yLRB7bGitoZjFL0raeqck7nPZ2DOLYUWcZi5Vive1qvWKxPGN2csffoAYvlmhvXtjg7jaSQ6NqOtiy5MJlQphF7e49JxnC8apjXUOWB3OpB2NQCYY2y3kUlaO7cSsNuboeLXZGJm6gNpAJcG+nLxM5mSd0GYnQ89+x1djZKfvLmQ1aLyKjK6L1iWuW0rpMYCxLZlZiJTNKsTWjkEBGi4uCsoSpywNIGEf3qtSMPGrJIpiyr1Yo8FGRaCpKMsTgfWNUddpQLo9NrWhfpQ0J1a773w7/k6qykUIbFWcfRfMVSGby29F5Je6VJzEaWcZFR9w6foO0SI6NYrQMuaE6WK0qd8N6jM4koZ0VF3Xgeu5oyT2xujZhNphyfnjGqCkqr5DNctIynwuQLQ7xue2OD0DmizVm7HhUgz3KMNTRuIWtABK0FjOzWLdNMM8s1sQmUuYiL1eYY9hfs7z8iLS3XbWA6GpENYOTFckmWGZwPWA3KZhBBD6N1rdUQs2wI9QmtGkHZkG8G5geP2L//Kf16zQtf+2WKPKNtO/peBMKsKCTe6XpctwaiwMytARWpm5Zx15MVGecg5ScuEhNlEKH10Jgen7DcFJ9HgWQuofApPgHDnx/AYoQYxcF9dragbaUJV6vPJ5va6GHfFqyCGf59KQ8oZWmblsePHzPbmjCZznj7nXcpqxGvfOlFmuWavcd73Llzh42NTX7vD5/hg4/f5Y/+6L9B2YRrI1eu3eR3f+93KTdy/uSPv0Pyjq985at845u/xpe/+nUODg74N//q33D7zkccnZ4QU2R5uhjEbQVaD8OzwT0Uo7iJE6ShybYaZ4yqEmMsTV1zdHAojdedx1q5PJVVjk4QvWJRz6nrDu81MTjsRNottZEDe0gCqxcYXhQh2GYoZUB58syghol4lhtGRYFBc3R8RtP1JGVEiHGePM+FvbYWd6r36QmSIylZs8XdLRbGiKEPid73AtM/j3MZieI99cw1nnnmBsdHBzx6+Jj52Yq28TKEjeXAJhZ32XJRo6zAqzc3Zsznc1CaqqioigrX9YMJTVGvW2ySghCQaT1KzhZd50lKGL6ZlubN4MLwfeU4Hykyg03SYqy1oswrdCGuyJQcWWGxRppqy8ySI4Pnrj6l7iM+KoyBvpU9zZqMzvVEDDoo2XtCQmvIjGHVBlJStCFhVESb88bNiBtagptgOFxHWhdJyhP85wMzrWWTVWpIIUThDOthu42Dc57zaO45EubcWSq+UoyGUWWwWuGGyKY1hjzL2NzZYrlYDs3S8ploBWen8yduH6M1Vukh7hTlkmIUnfcoEjbTwuNThrK0KHJpGFaQVML5yOGip64KunZN3QcSAaflOcuNZXdzwsaoZDqe8dyLv8zhwwcsT/a4dGmbLNcsm47JaMon989IGqILJDR13TGuBFmDUmiVuHjxIpiKpjklhiCDCCfDFhdBusoCB6enPLd7hbZtSEbOPh989CmPH97B9kvKLKfuW0ieqxd3qVvH/Tuf8fz1K3z6zs/YvXQZfeEqX/vlv8dqvuazTz6UobyS4ogYNTEFEXliIIahoVgrQM4tMQWCk7Ps40d72KygGE2ZTiaczefYXHPl6lVGI43rG4lKZjlFnrO9tQMJXL/i8d27tM1a7kAE2r5H5xlFMWK9rolJyb6njLRdJmlqzcscbTTPPnuDyire/fkbLM8W3L79CQ8fPuL09ASdQKNlwBgDfRPIpjOKcc7ibC6CVZSz2PnTu1qvcV7QL5m19L1DR1iezHHDGm6tJfkBO2QSs61dtnevMd3cYzU/5nD/kOjdE4g/KhGDpq2lZHHv3j3u373DB+++zUZpmOoek3uqTc2F3YrReETfNcxSTlHmjIqKo7OGxdJxPJe4/MZ0RN8FQg/3754IY9sHyrzEeUeMPXmhxLzRizu/68WZSpKiKWPE7QqSBEsqDY6cwRk3DH+MTkMZl2JUyrs4GufiNF8mnDe0fWLZiOhQZBqUlBi5QZwngfdyFhPXoCR09GA8WNQdnc147dd+k8XpMXuffUz0A+KH86ifMA6zITpeN/UTlnrXykDKDPt5Gs73SSmUlbt2OSp45ZkN/vGvXqae3+PKpW1uuyVffP4iV156md/4tWfZKeGDTx/y7b9cszGZ8f0P7nBj07DZdfzZ/G10PmJj+w4vznY5e/gp91Y93/7rN5jPT2nbFhcTs41tNqZX+fFPf8qj/VMW6yWj0hJ8IlOazXHF/HCPHz9+SFZY1rVDJxhlhmxgsm8WGhNbvvzMmK3CcXm35KlL27x0Y8Stw8jdxyeopFi1PTYreHxyxuJMhGznA7OJZePCJX788Ijf+fXXSZ+9yfHJAp0HLsx2UcUZ45FFj3Z4/cu/Qjd5lu9//y8pijNsluPamlGWc/jwEcu2kduDsbSuJ2qLTsMwZxjEyJ03EZ3DKUM0hnYoDlLDeX9VtxRekymDySwxJhqfQEPTdjgfcJ2Yd6wBY2B1esZysWA6mzDbvczFK0/x/Gvf4OKNm5ycHXH7s0/xdz5mfXzC2fEZ1gi/euvCFVbzOceHj1HKQlR0TU+zXvDee29x4fINdq5c572P3+HnP/kBbr2g6Rq8SxyeHHLjxjOElDg63uPOxx/zzNMvs3PhMvP9h/R9xyjPsUpRZXLPUkiKr46BlAzWFNSh/7xMarhjdk5iuOVoRIpyd4pe9tv0tzKw5yK1HRATf2skKztkPD++yXAryxKziaEyIqCf1JH5UgxUQ1PpIFmoJ2YfGDjMgO49y7uPOJ5s8/U/+Pf5za1t/uK//qesDo8Iw1pGlESlOH8Hfv2Tet2hiTjInv7k+zz/9/6CX7+wwFe3jm7eMJsWEgHqPLPplKaXF8Z7gZRDoigL1nWkdwHXBYK17C0cTR8xNsNHBoFh4KiZIU6lNSnKtDkladVUQ+TSDfG5LDMUWSatLCniXE8KcRC4NCF4XOfpGicAaWuHGntNYWE2m6Czgi5Ad3yCbx0b0xkuOaqq4ux0LYJU3+L6gHMMMVERz4ySB7ZvZZqTWUuEodBDHIhpYNlkmRIQcEDacpUVZT8O05eoUCrKtG5a8ewz12k6yZ5nNme1qOmdwwVP2/UsVyuapqEaFRS6wIUASWGSKN15njPbHHFhd5srVy4yHo1IxqC1cClADRGH4YAZZcHXCpLRJJXEfqwNxsrBTysYjUpxsAzV2rF1hKHVuO2FVxRToneB1vvBbg4qCkcK/tamEj2ltRI1SjJtVhrZ5H3Cp0jb+8EGb7CZJYaAVwJTtkPznNYaaywJx7iqoG1I8ZzpJqJpSpFxVUl+Hjl0rgaOTGEMeW4orWGjKhlVJegekxlWq5rZdMqte484WzQEralDYnm6Zrlu2T88onWRSxe3WdYtDw6OOVq0HK5qHp7O6Zo1J11AB5m+h6E1S1klN98hjiO2Y1H1jZJOZg0Uw5+zsAXjsmBrOmVSlQTn0EScizR9Ly66lFAJfAoYjDiAtKb3AR8SXQi0PqCiJzOGPASKoVV4lBWolLB6WNCGw/RwcuW8ee38K8bAyfHhEB8eDt7I2piGy4pAxAPzpuYHP3wDYxXlvpbG3N6jrCUlTxMdKcp0SzpgEuMcphsFad7TdcIK6r1C60RCo7VlZ/cSB0eHtF2PjQKCt4OgtIoSD1fJD99TRlQWmwExYHSC4KkyeUfLwlApRYha+FVeEAACSs7wfUOeSTGJvF8a5xJ1Dy4KM7Isc2IT6bxjvmgpC7hxeYfke5q2pcg1VVmQ5TneOJbLBdElxlXJsqm5tltiANdH9leOEBSuj4M7WTYBFRW5VlSFRqUgDL3kkaLPSOilLa4oFJVVjAvDF29cYzLWvPPxY46WnjYotjcMzdozHVt6pThdheFxTPJsJrmgWy3OFB8CMXlp5OqlMCMrNL536Czn0sVNblza4vh0zsq36EKaHTOdQ/SyJ+iIVSIi1DFQe08XHRkGndZ0yhOrkqP5mnVIrLQ06rbB4lIiNp5xmVNYRWEMVWlZrRKzUUWVy3NpdGJSlMx2x2SjnL3DE+q6ow49ejKiLAWXsDhrKPKSRi9QtmS2c5W236ccVXSPW7I8Y9XU1CcHlDYntYHOO7RSdM6S6cTIGPRswsG8xsXBHdsFVPDMxlO0VTiVWDeORwcHkBVcubyBCY6kM85B+6PpBBsjy6MD7NDW6mN4MgVUOifpRFCRqizx3jO7fIHL159ivjhkf3nAwcPbXLv5HMvFimo8Yr1coTNLkReMqhGu7XD1KUeP7pJCfCIWeB85PTqjXXciIgdpDVNaD+3tBpUUZVGAkr0NRACQs9jQPJv4Hx1iPm/zE8FA3MHiulqv1sPSop/s+3HYE86bAM+FxqZpRJiIioP9U5r6A1796pd5tPcIpQJ373zM/HRBVRWs1yu6ruG7f/Fv2Nqe8dabb3N6tuDpZ58mac8Pvv99vvr61/nDf/gf8Ef/9f+D77/xQ9587z12L17jd377t/jKV15mNrNsXbqMNoY3vv89Hj64iyGj7XouXtniys1nOdifc+/WR7SrWqaxMZJnhtxaQU8EP+xnoDEUmSUqQZps7myzs7NL6DxHB0ecne2hiEyqksxYko4S8xzek3NMRmGFIam1CHpBKfq+x5hElmcyBfeBunXyXJmCZDTOtwQMURmaRhIDKs9RKqCRfcHHKHzexPBzBx8cbZeexA2N1dgMlIlcvX6J/+g/+U94+unneeON7/Hppx9zenLCyfGcg/0D+j7hnID8lcqoRgWvvf5FynKESoYUNU89d5Nvf+fPcF33xPGdZRmz2YTtrRmnJ6esVjUxRKqiIDcRrRO99+RFQfKJcV4IqiOKg53YS6TYKFon6QmlLWU1ZjYe0zdrvA80rmFjLI6HGBN9dEyqnJO6QSkprsJ6tM1YrHpqF9FOmmnjUASWkmdcGs638ejlXdbx/OIvf6ZVlzjrPG0/bPcqDVw7ZO+P8ckzz99y1KR03uannpwR1OCmUyiMMiQVIWkY3te6C3Q+yrBNiZuhKArmZ2cynB3QKwYgyZnK9dIyahBBPwZJUaiBK2etxNXLIpdfq4SBujGZYpRn7VpxwCkRtFqX6EMkBmE/Gq3kGXMddZuJS3D/Af/yn/9XbG8oTFbSOcVzL73C0WnNannCzrznbK7pEHGx6zuaZk2WFRLT7jqWqyXPP/8iXb/FwcG+iMYp0vQeazJUTMJ71iOi77n92bvc33vAl7/8FU4PH/GzH/w5zz51HVuUnM4bYmyYbm5Rtj2Hh/s8uH+HK5d22ZlaPnr/DebzhmpSydk4SVqBqIZiKoNznw+yURGjM3HmDYEQ6UaVO8rDB3coRhVdd4zzHc26I/UL+jawu3uV608/zWRzh50LuxzvPeDdn/+Q4Ja0dU1Ksk/7kFAa8rzgqWdeYr3tef/dd2jFY4tSCavU0OCZKPICg+KTd98lJMfjvcfUdY3CQEjDfUmeo2o0RmUlv/0P/iG7l69x66NPOXz8gKNHDzg5eCwMcNfQ953wEGN48myHEMBoVJL4vA+ewkhx2e3PbpE92ufytRt87evfZL1a8OH7H3D/1mekKIgmiV4PTNAYaYd9Yb045QsXZnzhiqCQ5osFo3HF2eKYulVMqpyRNejgMDiy7Lzg0dB0DVppDg4X9N5TFArTBcZFgXeQ2ZykpW2TkCisojeKtg9PnNwpyrCyyIWlqLXBDa2o504/nRLGKHRUrDvFuNJsjTWgiWPNYt3JQCuBd+rJXUjSEfL7gh7E6cHVOJRk6CGtpFTig5/8gIvPPMO169f5zd/7u/zZPzvmaH9f3i01tC5HuQdEInmC6PuB754kpYUlzzNCMlLO4D1FmTPZmAGJVb3i6ETzs/dvs1o67hw9IDORT25/zG+XTxPShExvs7M75X//n/82kzLnB9/+M9rlmoPaEZYHvH7jKj95721GG9eo+8iVF19kq8o4fbwchi8ZG5OKpBVtW2MNRN9JoqTpmY1L6mZF2zaEBHUHWlu0jmxNK7TzPL9t8T5xMndszRJlCLQh8On9B5wsI66NKDxlUeG6DpspLlSGLz9/gb2jmjuPTtmcTfjJ+w+4YB1fvfpz+qMDnIv0fcOdg55nNwzXv3CN5sqrXHr2Fd67U9MGxdPPvSCR5tDR9g0+akLfQVK4tiezmeAblMYYjdVa3GsGyjwX12voCR5KFKW1lKOKvutZr2pIWlKKSRxhNkrMflQVIiC5KKJTEGasDOIieZYx2hxzfHyI+vgtDg/u8fixOGurckxf9xigadohARVAG+anpyxPTgbmYc5queTtd9/m2rNfQpVb3L/zmKODI3A12mpi9JzsH0h7uutQyXN6+IC9Rx/z0stf5u77b8u5ITfMxgWXt6ZMxxkBxcHhGbf3T1i2gs4SU8HgbOS8KV6Bhi5GiRcMznTOOwaeDMCGvRQxmDGIqU8GY8MpJiR59qvM8szVDV6+YkBZ/vLNA+ZL+b3OEQtKiaA/2RhRrxt8lCGaMYaIwq2XfPLTH3E4P+Z/9k/+U37/P/6P+ON/+l/R1zV93RC67vzbggF1kfTgBobhfiX3fvkH/20FdP8tCHx9FJFPj3JS07LyPTYU4qBJidwaUtJYDYZEsopKG2yraF1k2SVuH8x56doWRVWyPlsBEZ0UVgUm1WhwGSFtj0aYF3lhhwVKCiCUkqkiwyKZZ5bGNXTOE/rzDVd4fIW1aCOxB5vlFKWldR4VEn0feermNQFP12u0yth7dELfSzTKWCsvvJemWmuHzTsltjZneN8JF8NoTk/m6Ezafr0L5LkwCasqpxyNePz4mHXtaNtOXGhW4g9WG5QShf/yhR0m04q9/SPyvODstKZpWrBaft3goqumI2KIdL1HJzVwskouX97l2WefYjody5RmYCapFFmvGu7ceyxCk2KYfsqhMwzTA2u0FJfESJZJmUYcTiptI8UaIQks8pxN1PeBrnOgFH0vVd8uSJ5dqwGaGeRgEogYnSitItcSN/bxvN1XGi+TEgZj76VNOMEgYkYKnUkszlr6XuK4wl1RVFXBecw4M5aEp2kYgNYaf66mR5luXr96iaPjJat1TYw5VZ5Rty1N5zmer9gYFZASi7pn3XuysuDgaM5iWdP2PePC0IZE17X0wXOwWHGy6ll7T+d6+q6l8YkMSAjUXAVHwA424vMLQ0ShMSlRGEWWFFVm2B5XjLKKUVnKRTFEXCc/r/NW4pgi0Quvpe8c2hha56WkIjgYfpYxQecDhYLCGGyZkUIPCXJjiE7iguOqYHdnk947btx8mrPTOWdnZzR1DQwXiEHUU1pD8KjBsXFuaTZKIkpEsZwrpdAOSJHgo0RuvSMzUNmMxntSClibE3xg7QIhdE+iBzEkyAyZzfFJY1XiwoVdopbygaTkQiUx5YBVkR6w+vxAHuk6uXhnxpKbSJZlrNpO2CNtZDLKKUpFsxDXUq4MuRVWio1qcDhovEuopKgKS0pBgNJZTmZgOrKY1lPmitlGwUZpqXvP9sZUnHnRc7pekXTG7saUSxs7LFYNOjmuXthgMe+593BBphVVrgjRsmh7ceYO7gW5qMmfleipckWWJ7xPVEWGNYnLGxnXLm0wrkoKnTg+WdN1gS+/dIW7j+ZordgLDSkFTheNsB+tYTopiCHQtT0hJlzoyFTGqBgu4ONyuOQG8iJD65yqtKy7Je9/doaymiZ0pGUiNxk3RjmZ7ymrghQzrLbUjWPpheG5U06EKRo8yVv6rkMnRwFkPrI5HXGy6geXmGWx9uSZHMJjGwk6EpQjKChyuZDqrKf3moOHp9RBWkh3NybsbEwZlxNUEBeQTg6FXApXy46UDPV6SVllrFYrmaspjVeKFORQZkwS51Dfk2txeu6MC5peWBrlOGOrMliccB0VnDUdjUu4puazz+4ztRa7PcNu5tLcnucsT47xXS0NtU4OI1YZQoBiOiLVKzJl8N5JDKetuf/Rm2AUmxeusbUhot44JmIc+DoM+7DNWS7PuPvJBxzu3+PVr73Kul9xfHhGVNJA39TCO3wyRBxYc8KFlXXFOSdi8xAflWmpyFgpfd6+nQjnZ6sn4oV+4g5Kn//9IU6RkhLelLXDwIvBacTgSpHYhgyGAh9/+BEkz9nZnGZdY5TBdT2JyMnhMWfHp2xuzeiGdtmD/QOy3PDJh5/y6aef8o2vf5MvvPQl3nv3LcbTxKcfvs3O5oTRNOft999Ef5jz9V/6Jf43/9l/ineR2WyX6APTaUHrAm+/8x6r5mt8+0/+nL37B+A6FLK3jccjuq4TnpmCTGfipqoso1FFXXfcXz4khkDf9pRlgXeB6aRCpch515I2wu3S5/tnkMi3iLJBCh2UDD4zhkNnSrR1h+Q2FcmIy206HYtw43uMEhEnanFbogw+SGlFGmLXYupSwxIv5xNjDHlhGU8L8pHmo0/f58c//zGffvwxTV2zuTlhsTzh4uUtvPPcu7cHwKXLF/n7f/D3GY0mrFYNl65d4vGDx2xsTnB9J+5QZCBbVRmvv/46v/Hrv8Untz7ib/7mr3n0aA9sYjIZ063WMghNEusxQQbIbR8HR7OUskn7sWZcjQjeoVVk3azESRQ8uY3kBnrn0MWUuF6iomdsOlyemIwSTnucLTk6cwQKei+NysELLGhjlGFVQmYhCmuEtbNuE20vqQiTicOvd8OlY7hz6OESk4ZkRAzx88a+YZjzpCztCUCfJzG6FBMBPzwnSkq4YiAZKUjJtKbILMF5mmY9GAQE9K7VgPjILEobdCZ/T0Q/cREkJVxGopU0wPCfmBJ105EILNctRVZiMkuWebwLkhhxUgAnBRxy1fBBxIWzZUuXOwIH9N7h+xFd40jJEJLFO83lay9izZSHDx9ytlrjQ0+KibqWhEtKAedlOHfr9sfMZtt845u/yU9/8kOWy2NcLQOSKhdx1+oRVbHB+2/+DVduPM3HseHVV38ZYuRg7yF/8I//HX72k59wcP9jDg4OpYFeG8qshAjvffAexWhMqT3rJGkJ4SNHrElYq/A+YU0OKLqufxLJOnf0Wcvw3sm5ITcGvKOrV3gfWC1WfPjuh+xcuMju7mVUVDx+8JCHd+9w+Pg+Z0d7WCtnJz2I0j5ANiRwjMl46Usv4+m5fesu9XJJHOjz+WjCzRee57VXv8zO5oT33/4J7739Dn3fCQd14BgWRcW6FxPB7pXrLFYdp/Mlz31pl9945gWCCxztH7KYn7J/sMfdD9/k7icf0jUtKUHbtKAiSWs2d3a4dO0aKcLe3Vssz06x2gi3tK05uHebvz455uKVS9y4fg1D4vh4n2axEof4EO1Lg5PcqMhTl8dcvlii7ZpxoaHMQAsqYn/RE5TFWIXvWya5pSpK1p1wz/KsQCkIfgXayv4YAk1KtE7hopgzIDIdKVAZmQms28iy9sSkiQEcEVSSCGwEY6ykZhRPPpcUIlkm79rBaYfaycm1Q6eMTCmCFZFwvfbiBNWawsp9K4RekmFJoTUUpWZcZXgn7OjcKsZF4rOP32d+esCoKtie7fLCq1/j9Lt/gWvWsm5z7laS/dx5z2Q0pu1aQgyDUKGHtnCwec5oUhGdo63XxChDplsPzvBtx2RUsrF9ga+89io69Xz3rz5hc7zBp3qfm89cY7xZUe1e5R/8k/8jXi/4p//l/4X+QSC/WPHK1etcefaX6LIR/69/+d9yejzn0taErSuX2T86wRotiQkfiMExm87EbbfoqfICUJSlQilP23qqLFFZw8sXcpqFZ2cy4nCx5MVnNvDR0PmMly5MePrK03xy8pBCrZiVmqNuxunpMUkpppMxFzLPg3rJJNfYWHNy2jLbKbh/WHPSWqaTgpeuGn7nd27iu8DfvLOm3J6RDpZ8eusTDvb26eoz+rZlNpvSrBYsakfvFeWooiwL1vNWCqu0YC9CFDa5sRadGVrf42NCE8iNJviWroV1Le+mxODV4OYPTCcjktJsbW8znYzZe/iIum6GRnGGosCEWdcYm9E6T+9alltbPN57QKE1eUoom1FUOanvKJXl7PAxWhk2xhPOzhYkFelDjVoltkZTDk/2GD3cYjKZ8MyLL3D08C6r+YLSFExmMyJJCrwCuLrm3Tf+kq98/Tf5td//x4wnBfXqDBU9yfWMNifE5OgmD7gyqthJBpMVhKBYHs6FW7u9zfbFC4w2pizXa2rn2N6ZYbVicXTKej7n8PCUdr2iXi/p+1bOO0+KKmW7PDf5PdHOBp6tUor9uaMYaQ6PzjheK5TOMDoxnlimszG+j5weLSEKY3O0ucF4NuW5L72OyUaUleHs4IB7n93ix3/xHX7/f/FPmJ+saOYnzOenvPPXf4VfNZ+nW4Z4sVJ/64z9RNs7H4br4bv+xb5+YYHPoaltxoNVYLuEk9rz2DXU656szLhc9YytHApcCLheFr08t7Qkeuf45PEZL1zbpMiFMZDllnFZsGxafKrl8jC47WJE3HDDocgaccrp+PkHKjBGaUc02pBnuTgLtERxx1XGdGvC8dECpTR9CJgo4OnxxpT5fIm2WoSd4/nAc7Nom9O0nYhvAxMwJceozLCZQBabxoube5h8atLA4tFYq5lUGdvbm9y685C2izSdExaPVkPTrQg9WWG4eGGbza0pi/mShML5yGq9wifoB8Bw38vBP/mAVpGNyYiLF3a4dPECV69eoiwtIUYWq4bDw1Pm8zl5ZnjxCy/w4ce3WSxrfIhD5EIO15CwGlAK5z0RRdN62j4RFXifiOsOm1k6JxZh0Hgv3LWudXRehMd+uAgaLVHDwDn8cjCGxcDISJzEO49PEuZJIWBzIwwpk5FlBmvEnRR6qaTPTEaVG6xS5EVOVeUQE+MyJyb5ayKxWtW43onrDzkw911HGsTLm5cvMR4VJJIsEFoxmU1ZnpwJ0xFF03bMqhKiTEsTitQ5nAJrNddmmyyWS9re8WC/5uHZkrVzrNpOsv4qEb1McMTBBHq43ApYM8pUXityBRu2ICdhdUuWai5vzijKEq1yKbbpHSkm2k5AyOdFIyEFhONjaZzHdZGkNE0n/3xuJWrgvLhijFJkSaZ2UUvsTA/8Q0Xg5S+9yq/9wd/lL/70X/HlL75GHxXzxRHf+bM/oe+7JwsTwHljc0rynHA+aTRSc34+sUyANUom+8bKxDMqiNA7OWD1LpCiTHADCTpQykjE3Wh6F3GhpR9iZe9/8Da6yCly4Rh474m+4/JsxMbYsj931H0HRgkPU+dPqtltlvCpkzZAbZiOJeJrc4M24v7zKZCMgbwgrD2LOrC9maGdp649eQbTccaoGNE2DdNKnEqbGwU3r25z5cJllvM5LnkmI41OgbqthePClL3Dns3NDbrQsvaKD+6tOD6pGevElVnOg+OeqsyonWdSFsxG4sZsO2l6M0CZw3QkcaHZzohJYYUv0ntU8LTdmnnrIcDupGR3nNFslDx4vMC5QJs6zlZehNUY6J1MlUZFgbKGddcjpUXC+zqdd4xGVuDlIRGjZ1U7emvoXGA8K1BGgQuysQbHyIqorYDkE4TAuDK03qO9YmSFzaZNRu8Tpc2YTnJY9/S+4+IsIxnNat0zm1RSbBQC2mryLGd/vmLmCgplqKpEn0ecWzGaVhRBk6XAxa0xrgsslzVVUXL18kUWp48lwh0dhwd7WKspCytO0M0xo7zAec/pfMG8drhgyTT42JARuTgbsWx7CqXJSCRt0CGwWWXies4sXZ/Yn685a8/b3Ts2r2wx292kyjTjQrh4vlkRCSQfyIuKpCSer7OcLMvogOB6uq4jJkFG5KMpxeZlqrLi8OEZO1F4hb7vKYuCqKQ5PDiH61bs3fmUs9MTHj86kBY3JQMYOzgFjLKk83f53F3sQRtZx84jBz6dO8zk60kEYYhYydd51EEOqKQk0+vBXSS/TtzMMnGVZnH0OY8skWfCWvU+SMSCRN9FHt3fG3AdihSMDE10oshzrl69yqNHjzg5PBWHvFLMz1YsjhcYqzg5POTTd94ieM9ifsbZ0WM2N6fs3bvFum84Pj6hXjek0PHeuz9jPN7k67/yK2gMNniq6ZSz+T7z02M2Nir2jXxmwUOIPV3fklJgd2eH7c2ZNLqlSN02PDw6JUY1sI4iVZYJWiD1UizmPX3nSEBhcqy1oHvyIscYMwing+AHBCcYBec961VN6/2QTshEcOzl3OI6eRenZS6RIu8JrTSTOi+CquBN0iAuSbQ9RnF6WqPJckNIjoih6zr+9be/QzUqOTo+4uZTN5hMJuxcCNy/94CmbemcCNy9b3j/g3c4PjpluVxSFDnW5qChbxuG/MAgdgXeeftt3n//fZTVdK7D5Jamb2k7Lc2UQS7RbmgsdW1A20KaLbVBG0OeGayJ6OBo+gbjkwxaTUaRw6hQdHWPSwnfn7E90aR+zcWpYbOK5Bm4QnPvbIk10AdLpuRyGfXQfpsihbUQepSGzke6PhCiRJsnRcaydYQk+6AaYkXpPMHwtw788o4Mb835e6Qhy+zwLn7uihUnfXoiIqmoUcOw1OhEnmlGVUmW7eB7T9v0XLxygaODYxarNSl6sqxAqc8dW87LZ5VQg0avyIsSFyMp+WGgrqiqnG6xJiCICxU8BEnrjIuKmMQJagfUjDi/HT4KJoekWdWOmNbkmebo8Axjcpw75Tvf/i4np0uqjREKRWYzdna22L6whVaKD975QAbH3hMG92GqO0I45vH+I6azDfr6GFWWZFYxmhSs61Yik21LphS3P32LN37w1/y9v/8f88prX6FZL3jnzTdZnM2Zn50yXy4ZFxVo+VzqthfmoXWcHe+TUGzOprh2idaezVkBaI5OVjgvDhRjzMDf00QdBmSQxmgrZ7Au0mhHXhpOjhcEnwhOWN4nR0esFguC+5CkpCDJGjCa4cIPypphEGoI3tE0ax49us3p8hRVWnavbnH8OJCVYy5fu87rX/8lXv/KNymynKOjO7z/3s8kFeDFTR2SlyIGbcjzAo9i1TpuPPcUH7/3U/bu3+b5V76Eiop6uWaxWpJUpBhXTGYzuq5ne2sHZS1103Hj2Rd4/Zu/ytUbN1Ex8N5bP+XP/vkf0a2WnD/BwYvLebE8Icb32drc5nf/7u/z2Qdv8vGHn+HOn81hQJFnlqNTx18eH7Axirz6bMaV7Zz1yrN2MmBumo4TNDcvbjBScGtvSQtMKs2qWZMZTZFrumVAZ5aNScVq1dF1HmMVKXhmGyNC4elbhx4ZCqMoc82qCawbT+/k/UxREbWknkDJvcRKyQZJPq8ySzhnOFvKwM25FoVilBm0hTxTKCS95b2H5NkYy0AuAVUBO5sZo8KyXp+XOiop7blbc/TgFn/9L4/58jd/hRsvvcTd+7d4/PGHw4AoDelCI+2dKNZtAyEOAzYZHsQBp1EWGcZalnWDSpJuymxGkRVcf+ZF/r1/8DvoLPHe229zcnDEydmKyXjEzvYGKdPMl3Ou6auElLh1a49/+Id/yMFrt5nOLrE6O2V24SJvf/hzFienPHtlixdefpnGB1zfsGh7jo8e07YN88UpNivITUGIgb3TUwqrKJXh0oUNHh2ckVKi0JoLo8DB2vHwdMGNjcgXr1pOzhqszRjlgaVbs51qnro05te/+Rx/9J1P+XEd2ZyNubIZePVGwa1bLRuXp1RF4nKRuLizy8oZMr3mP/zdG1y+OOL+Uc+P3qtpxs/yzZsvcvvuLQ4PH9OspGSidx1+HTBRWJp5XnLlqWucHM0xZwu5Y58PcYy4wFGCmAJNmQnqKRlLPiqIQeF9C0qaxetayjd98oNr1+APTqlXNVorilEFWcaorGiblsVCGLbOHWPznCLLOLi3oF6v8Er0lK2r18iyglU8ZdGsBfOlE2U1YjQu8c6TFRmb2zvY3PDpez/j0e1PcP0aozpBIlnDRjGisBVni1O65QodJH22WpxRrxdsbW4wb+Y8ONhjdXrC2fExeS6mgOsvvsjv/6/+MdXmppixdE6/qimBcjRlurNJMapo6pqT0xNMlkmBpnMUZcHp2YL1asnJ8SH379xhfjbn4MFdzh7v49tBWFPCUM7yQu7RWlNMx1y5vMvmbELsGrqTPXS+xNBy9VLJs89dIpYbvP/WLXzwNJ1idukKN179CpefeZYXv/o1aBK7169welzz8OGnnN5/mzd/+Aabm7s8vHuXYlSxc+0qh5/dQUVhDp6fVyWyK7v4cCz+W9fpxP/ocv3/59cvLPA9XHUcGCMgcqH90oWa4D3lCMangYuF5eY0Y0NHxkVOaTQXxoZkPG0TOGt6Hpx0ZFaaiialWL1dBD1AjIuBR2CNRiW5mGuDbMBeopm98yyXKyyKDCXOrszgvcfowKSSRhqdWZaLDu8iKIcxGSbLyHMBoqJLjo7mrNYN3gXKMiPLMuaL9RMbvtHC+Lt69RKXL19kuV5y+7OHhCiiRjUpYZi2G2MBgeVevnKBvf0TWidteGVKsuiupS3MGoPNNBd2trh2dYembdGZZrlYs1quQGmUSnjnSUh0a3dnm2tXL3HzqavMplMyo5AmmcTp6ZyHe0fs75/QdgFrE1/+4st8dvsBDx8eDTFaUFrT9x6bZyKGWfl5SmOuOBBlFxPbatQy2fU+DuKjNJ2SxK3nhjYmcQ3HJzyBlIJYbLVEUEeZItMyrXZB4o0pnTsVJDbqo/xaoxSZMSg7tOURmU5H4BwbGyMg0dYts9mErm3JrWK1XOKTxmSaVd1RlQWu65lMRuSF4WwuB0zvOo7nSyEFpYhrO9q6pqwqVo3AhC9c2MEay9ndB7R94MrVS+DkAtO0iaNFzUnT0fWO41WNS1Hag2NCWy0sOPX5ZVYhLcM6DqwzwKZEaeDqZMw0zzibf0K9us1Jm7N18VVGs0v4EAdRFXyKxN7LBcxIsQIponygi9D2wvLwUdoekw/kmaULPXluMSkMfC/Oi3IhBqyWwB1a8dEHn3IyP+Vf/Mv/Dhc8XdfhXfdkDXhSLD7c18/jaPJk66EYR96bzGTiyAkRZcTdlyvoYyQqRUyQDdGCc0BqjAkXBfYOgxitYZxZrFbUfeDalQuMyhGxazheLDCjDN91ZFniuRvXeM5b7j56xKLxLFedxHczSwie8TiXxtCkcB6sVYRkqOueUWlwTpHlGSoETk7O5GcfYbEEpTyb03JwrXaMSsVsarl2uWJcjsDD9Wee57lnX+GTW7e5/eaPaWrHjSuWi9MRfV+w7kd87Su/zsZmzk9++KcsO8XewYqxNWztltze7zhcQ1HJoTL6Hh0tuVU4f+7Qks++rCyl0YyyyDhTwjHD4hSUJqMPHqtls7v36IijhbTnbm5VvH9nTdNJ0U9KsFw2oBQhyyF5tJFo9qJ10mqYGZrO4XvLbJITokwkfVREpfAKNiYjMqWInTSlijslUuaZrAelBifPWwzisDZK0/cdXe/Jh3hYrsFmhkdzKbQock0ePIXRTMeWiGZZt4xtRllYpplB4/Fe2I9aJ3GqKgtJDc7nQO96zuZrRqMZNq9Zrlp2N4UtlmUFPi7pXM96tcb3AWM0Wa4pRyWFtpyeHpGPMvoUsbmmWXcUhVzkM5VQKdDUHqcCDYJFmI7FCWw1BAUmL+jXpzReoSOgPHmRYYscqzMWyyUYaR/ve49RAZ8cOimKYsRsXNCkhMkn1OuGxemc5eJsaM9M2DxDa8N4VMog6izh/RqyxN6jRywXC5QW7IE1GV3f4fp+cHB9Hq+VEgfJFaRBnJL3XQ8MKolQPYnXnkeEGMQKzt145/+/Hkar6UlZwBNWSRx4fwoya4dLylAsZCAvLG0nbe3SpP45EyoNnMrJxoSNesbhwbE0HgbhQoY+0neBtu4ITjAiKSXy0pBXJYv1ApIiU4Yqz1mvFkymBSr13L9/i93LF/joR+8SFDg8b//8HYL3ECOj0YgwwOZRivF0zHhSUVQlrVozP13TtQ7fR/KiFFZrkWGNZmMyYVR4nOskrjUUWDE4L4TBCbVrGZclkYgykc4FnAtMRwVZZjiPNSutcaLOARIdi0mSBH3wtC6gtKLICxJaUAlanBLO9xhrMdrQ9U4a44ziypVtvvWr38LHxN17t9jY2GDv4T7z1RGz2ZS7t+9xWB3SrB3rtThhM2PwwXN0OGd++nMyq2m7FpNpjLLiQPdhcHbK+aauG5rVimpUDfzMwKgoCGloNVdaHNVK0YWATtJuHr1jlOXMJjldW9O7ltrLsxZSkIGwUrReWuunZWKjDASt6ZxjYgyUkRgdkxx6F4lKc30nI8sU+6eespD3qu8HZEzwGGVoXGAyyvAd0rBtLcvOoboeH5Q4OJSc8WJS9MNzlzhvXpW99AmCQQ1lG0McT6tBaFXqSXOr0kj8VEFmIM9gNtLUa0dhoC9ylstT6lpasB89fCTvilEkbbC5pW06uj4MnC6osox4zrhGWlGjEtcsKVE3PURJybR9eLI2aICg8L2nGFUYLcy5NiYZxAzYD4PGR08k0fYynAk+EoPjdNVQt9Jo2qt2WA8C3rccHz2mcRJ/7L1EkrMsQ2louxalErc+foeN2QbTScVq1ZPlEp3tXEtsDvj4kxUvvPA1nn3xW9T9CQeP3+ezD79LpqBZrzlbtFy7epXq5Jj1qiOmIEVdvaRZqrJkXZ9w8fJ11IEYDrouslh4QIoShJcm529t1BOh/Nwx4n0QWH6AEJ2kbs7F3aSlmCHCerWWSHSZY4we4l1mEIal0dUOdxHvE9pkzE9PODo5wSNt4V967XW++Oo3+NLrr3Nh9xLtas1bb/+Q7/71n3Dn44/puh6tNZlRKCvJod5JJP3551/k+rMvU41nvPz6N3j/nbd5840foKJntVzSNjXtuqaoClzbkVRi5/IlnvviqzzaO+DqtetsXbhCUoIxiiFH6UyG4wPvWmmIfS94HGvp6gUHn77JljnjC0+NGW2OuXNnj52tCSdnHculpLm01oSkcUpx1ib2T2q8V9y8OEZnmq4NBN9Ra8EiZFlB13cSodeRMtNMxiV1Hzier5mMK4oQGJWGqig5XrQ0bcQ5Ye6BlJUpBcYouh56rzAB+j6JYzFGkpZkmdUKa4Qfvq6dcDSVsPS00owmluCEpVeUUJTZMIBXFFni4u4Y37eMK43z0HSKvcOWhCElj7Ga3SQX+Hq9ZrVsuPXhR5jRmKvPPs/RndvEpuOcqWesYTwdC+d1YIlLPBAB/g8O0HpdC24qiMCgURSl5bd+4+v8vb//29y5/Rk//+lPODk5ZbVo2Nja5crTN3h46wFdtHjX8/DuXa5cucHhwSFffe1VXvuV/zkBxdGdBzz34k2a1X1eePoGLz11gWdfeJnv/+sfcm025ksvv8zB3j5vn75JqTOU0oKAUYacxHaRE2IUZncKXJpVvHxRcWm7YHHc8NwlxevPFZyc9Xzj9at8dHeP2dUXeeWbv8c7H/6XXHnhOtde+xZ/cLZmOtbMa8frNwpMd8D13YxV9Pydb77Mw/u3yLTnpZef4Qc/d/zNz24x2djmZ58+ZOuFr/O//Cf/OadNw1vf/pDHj+5T5EBVoscj5qdHeCcoqW7dcPvjW4Mr0T0xKiUVhwFapGk8rk2URSU8Zy0szWbd0ndDoWKSs1HvA/hAlhv6viehCSbS1Ctyo9Ha0MeAb1qyPEdp6HuHCgHnvLTIJ9BJ0aeedb1k0vc884WXyKzm+OgArdKQ1onYIh8KORWha1mcLegf3KXIKxlCpojNDReuXuHC1av8+Id/RfvdjrLIWK/XTDcvcOmp61x86goneydorWiaFfuPH0nCZDzhmRde4fpTX+Cjjz5jvZpz9fIuXa/wLjIZW/bvPZa0Vg5t3TA/maO05uxshcksl69foaw2mGzMmEw3uPrMF7iW5Vx/7jnuvP8up4/uo5Vi5/Jlnn/5Fa499TTbO7u0Tctka8b21jYaTZZnnBzuc/f+Le7e/Yx6dcDBg30OPr7P2eFCIv7G8vxXvsL117/O29/+Cx59+DZlWdIGaJctTdfgVvucHpwwHk+o12u6ukUnYdjaosA7MXSlPGe6tYUKnvnhCaF3g6NvyOT/W/r6hQW+0xD56KwBH9A2x8ZAyizaatad4zTCqVfs+8hOAddT5GJhGSvFdpGx1zjapueTewe8dnObuw8PWLcC3JcoZcF0nGFANvXhUqCVHOSl9U0xXyxlypWUsKuUiAA6SYnBzsUJeV6wqju6xYq+l8OeMXKgBE9RlMSUeLR3SN9HYhjcd1nOfFHT9Z6qzBmPSrx3oCxHBwtWq5rFYknTRrSxTDcKVssVMSbKosBoTVXmXL2wTYqJ+bIhKsPibE3XtpgsJ/pAbg1VmTHbnbGzuyGTnM0p9bqmsJrJqEIrgzGW556+wvb2lN3tTcq8ICBtmsF7fC/FEAcHJzzaO6bpA33fg9I898wN1us1t+/t0btI38nhrQ/CSwmdk8UpRIILoDXRe9B6cBeKBdgN8QU3bNRtJxNVhYhOPoqTjEHYIwkDLik59JVW2FVmYP84Jwc+a4QrI5BaRbSBvnGkpMhMRkiRfHBijqoRm9Mxy4UA0GOIjMqcKrM060DdSUNd0zaMxwUbk4o8Mxw2LXXbMh6NRdS1mtVqzXhSsW46IhGMpiorqumUk/k+VAV37u+RW4vNLLoPZDqxdp7TpbQUHi0bDmu5HDfOk/hcuDNPxHiRvVCggmygdmiA0kRGVrOV52yUlhRrkp8T/JpocmyW0TQNPjAAuEUrdeesnxhZd73E24IjDBbgEM4jRQEzwLtzq9EqohOEFFE6iv0/DqKjElfo2dkhb/zoB+wfHhH9OdxXD9OGc2Ds33LuwIAKkljAOeQXJBIPCDh6UBSdk2l3UnGIIg6skThccrS8nyomkpPokjGG0kBlDatODisxwcbWNlYpeneLKo/0ucJmloOTBaNyymtfeonDx3vcuX8kDhct/CrnAoXJcbbFmiQXyCBO4S5I02yK8nz5gX0RvDTmjaucrc0Rx8dLUIm2aagmOc264ebWNpMiYzE/4KMPPA/27/KFmzdYN55JseDCxQplb3D52V/mxZd+iaPDO5ifvcEzVwu2LWxORtw+WHHnOND6hKs7igzKXDMqpNGytIoyV2QmoaO8K7ZQ5NOK3ifa3uODQ+mKrpGmr9NlRxstq8WKy9sT9LKjBhiYJmng+mgjZRZVKS2ayijWTUeICFuMRFFmVNOCqDwR4WFqYxibjGXb4FLLVpFjQiIYQzCGPECfIPqIVYpZmZFlmlXX0bpA7MUlfM6c7XuHUZrSynvTOQgY5tExKjJGpaXKNX1mUPRY65hOMywZ3kWyXNNHz6rrsBj6LmBMTmUtZZWzblZ0YcRg8mY8GlPXnlZZfBeJaOZNz8Z4g75d03Ytxaiid55xNcJoRxcSrY/UIZG8R6Wewio2phU6SfTMaMtsYvE65+D4mCYEUnLcvveIZ2aViO2hx8cAURONQReRoswg+aFsR3AERiW002hjWSwXNMGwc6PEhY4yU2TdCXufvs/O9Wcw2UymvT7SNGv27u/RrFoW81pcFCFilEExuCXOmSWfS/eD62bwXcg9dMg7DBDjIWugtBpcA2podh1cR5z/IxLf/Z8eYWKKA+tkKNhIauCTiZfYdx0pydRZXGwareUZDEHiFtbKrwXhA7715jtPYqXCX5E/j/BV5NJWr5tBRDT4LvLo4SFlKaUEMSZGo5yrV6/wpS+/TpFtcPHadaaznLe/+zM++OB9PIG2kShebrNhGpvIi4w805CEA5wXlrNlz9lyRfTyM929uM14POXunTuEzuPaI6bjMdGLA8BHiXq2zhG87CMxeEZlPjjrkzBVvRRHZXmG7524nkwm5UC9EzZUDOKUVoqQgoDbQ8JauQA711MO5QXeeZSS0qrMqidFENrCeDrm6tNf4OZzL/P8g3s8c/MK9fKMO/c/4WD/mL/5mx9wfHKE84GoFJLQHjhxA7bB+0RRlGAiLkLQhq3pCKssfSdHvKqy4josc+pujRlEATu48swg2Mbz4RRyUc2MCAb1ogftCFojGC+PQlM3kHQgzzy7o0hBj8o12ju08UMpRU4i4PtIFxKKwNjAZm6pC8tqOFcYnYuQo0Wss1bYXJmKZFmiwTGyke1xzrqLHDuPJxPOYZBBp7RXymCcJO+BUYPIkwbYvrZD1FiY1Gk4V0mCJbE1MlzdtFgCpMS4SvQTxWwMj0/XrFbLoRgpEAZ0ij7nQIU4FKKJS9fobHDdS0O7Mhlt05KVOXnSMtBNUHeOMpeyKXHoSZOsygx954VHZRTTcUWmeokmo7G5iFNd77FGrh+rdUsYuG1NG4lJSnVcLyV5VivaNpCiI6gMoyN5Yci0AYWkGM7XlBSZn50xGVnQg7s+z6nyQuKSWrOcP2Jn5wq/8hu/y3e//f8k14nD/b3Bm6jY2qq4uH2TDz96wHK1wHtPWRaQFCcnczbGGScnB1gUwXkiWkQcjZQfxXO+UkL5iDZyBpaBhuBLzpsUQ5ISEKUhMxZjREhVXknD47BuOi8CaVnkhCBsXm00ZAlswgeFHs6t49kuz77yGl/7+jd4+fmXmG5sUZUFi/kJf/VXf8Kf//kfUy+OSC6iMylKDF7eDzWczzJdMJlskBcFRwf7LOYnhC7y4stf5MGdO/S95/lXXuGDt95hcbhPVY0gROZnc9p1S/KOn3/vX3P3s4+5ePkavvO0qzOK3FAnUNoCgZQCmc1RWjMdK77+2k0m05LlQeTXv3CRjWnBw62e7d1tfvLRIw6ODU3v2Sjgled3SXHNfFGzWRquXNhgY6SpO4evREz5dK+jzHMqLXuUNYoqz4nJE3D0fY8PmrbzmCzHp4RLsKodCYuP0lqQFSJ8khKlNVgdyc8Z41mSQdO5AD8UVqik5B1XyFkzOVB6aLaOmDySaUM5FKmVpSUzSliqKlBNClbrhkUNTQfSn+e5dLGgrTv6LrJ56SLFKGf/0SHt6oyHn36CVTAqC6LrcUH2aK3Vkz2kKHPaWsQjaeU+591aYpS1q5paMgTF8tu//mUuXNrkX/yL/zdds6brA3UTmK9axmPHZ+9+zNUbV/jpW+/y7LM3sBqiLTmb1/yzP/kOv3q65ovP3eDGtSssjj/m8M5dJnHBq0+9SNPtc3nL87BN3Nu/x8HDR1y+sINSER8jddOTZ1AVGTsbGYvaE/slz+9k5FniuQtAP+fKVuQLNyu++OIV7n52wCuvfZGnXv0W5to3aLKKGzc3efml59D2OV7/jV/ns+W3+ey7tzkcdXztV5/hZY44PKw5OjrB5Rf42UcP+c77P2PdJVLouBJHTKcjdi5f4rOH91iuPFsbW2y/UnF09y5rH8Sxj0SebZRhuPdSWqiNEuMFcoYzehhuoog+0scG5Z2glqKjKnKSSnitBlTJOaZBzjGFtTgXcL2jGO4nPkQpUEtxaNcWlMH5wFQ0ABnIRsAqw8njB2xv7/Dqr/wm77/zJkd79xkZxWxnh0Ti+OEj2rqhb9dyxrCW4DpciBSFZWtnl9/7D/4zXn75df7iO/+Mn/7Zv+b69WvMti8xnlYcP3rE3c9uceXy02xsbXL12nV++qPv8uFbP6fvOw4e3eXx3kNOzub4vgrx3O8AAQAASURBVGU6HYujPURMZqU3oeuJBKlqS+cz4YQLjrtvGbQtyMuCclQxmm1y9anneP6Vl3jlpX9EpQ1bGxOmW9tsbu3giTzYe8Cnt28zizX3HzzgyvXreOdp25pLTz3Dxu5FvOv4+IOPMMV71CdntK2D5Di4c5t1XfPo07cJvmU8qjg9XSLIhITRluAdx2cnUugx/KxjSgQnZzOdZzz15a/xK//gH5Hnlje/99d89MYPWB7sk1IYFIL0ueHmF/j6hQW+JkROvajEefJMMzW0p3qiSoy1hZBY9ZF10NSu47HxzCxcqQryKqfvPeuuZWdzxDNXdjle1FAVrNeNtGX2PcoqxlUmnqcEZW4FVNs5lqslKURyLSJGTyJpeRJm4wKrYd3CydlqWICFa6OMtMxWVcZkMmKxbFitGmmdGlpNiqri5HRF7wb2T+NZtwuZRCpDokOvABTG5hgDi8VqsGHKxp4Zw2xjwubmBnfuP5LSibqjdz3a5jJ1z6TgYTQu2JiUIl7mBTbLGE8njCdjbjx1QwTJpAgkmtYxX9bsNaesFmu6rsNauHr9BsfHZ+ztH9F1YeBTRG7euEKeGz769B7rOuB9onMOtKL3MqkOw4VB2+HBdBJTOW/YNZnE89Zdi1YJ50TM65w0sErrqDD55H6WhhdSnAgCkYXCSqw6xETnwuAQEE5b0koWrsKgEeeezJMiRgmQtapy+t6xXtWYIQqslcJmpbjDUpLJszZU4xHTUUbvPH0XPmc++cRkPKGue5Q1WJDyja6lax1127OOC0JM9K3jsOnYmlTYBJMyp28bFm3H4XyN05rFqmbRypQwhUQ0cF7lHaM4GQMRpUSQUjFIK2wKlCQ2y5LdjSmljmQaTo+PWS0P5XPVnsOjA8bblwjeEINcwsUteS6ciaOgd/7JlDeG81CN3MetMaQwFGsYgwtOBDd1XsoinL4Y5bB7+9Z9zlZL4hA7Of/zyBN/DjDl878ahl8vC15CD8KfuAG1hkxpci3HSRfF0WONItNSnKIRnhAoApGoEeZdAk8k05pxlrE1HZFvJOrHpzzae8zhsVyQSx3Y2twmr0acnJ5hM8v89JCT032m4xHbGwX5eMa6XtN3DUonovdok9gYF+yMC7rWs2g61k6z7jzGANbQOXE/FNWYEDqyTHM6X5Pn0hI3KhIvvXCNSq1Q7oRsdp3H9+7QhlOWreOlr/06zzz7Kn/03/yfeXh8yIsvPMMzN7/EnU/f5eHD97h2vWSzLPkkej65dchnxx2tjxg7TH7LjKrwJANWKcY2URWG3GpGOyWTyjIeafrW4XxiMs7ZKEdE1zNf9Vy/tksMUB+3ZGh2pmNyn6N8R2lbCqsgBjYqzaSyeBfpIpwsGnofn7RtWqupKktZ5jStJ0aPzTQuRmyWuDDJ0L2m6Vq8yUgaWufIosUBvm2xWjMqLBqYlBmZSjQmceYD3RAnbyOYmCgLmCrFOIeV1lgjLqCYaYwBoxxlLhegpAKtd5AEogvSXJgwQ5ufHsDvFkfP0fyEstxklFnsxpTxZMp4ZGm6jjK39OsGpQyL9YrkOvK8pK47YoiYlKhK0FaaH+frjipTXJxNicGxbiTW9uC0pleWzicatyIvS7Y2K9r1ks8ePmKkLlNsZFir0EENq6im6XomZUWIHSHAeDLF+5rOSYuoxOwtWxsb1PMj2tUJoau59/H7vLhzk6J4AWtzJuMJxlriaoUxio2tLaIy5IVENUFJM1kQaLhodgP/i8F1NzjDzm26aWA7yTlVPRH105OL7MDx4jyeCwyOvr9dIHAuCJIGKHxCmHNaYYzBu0gIg4qjIk3TYYyIDQzDhXPxMLODaJFkQJeG3zPLMsEQDIKQGgTKFKWBPSZpwi3LnI1ZRmYT48kYjeHylU1++tM3sCbHfddhC8Pe4TGtE/eLSkoizUGTkkErhe8jRV7gvWN+tmK5qFktW0KvhzOI5uGjA3Y2O6wx8l4hMTTfy/eZFxnWZjTrtbhQvThfVYLOBUwmbLNMJ/LcEAc4te8jffJkWY41OcH3cthUwmfLbUEKHqOkTKvvJTIfekc0IgKOC4lu9k5EdG0tKVOczuf86f/wz/EhYmzOc888Q1WWPP/C8/zDP/w7fOnlV7n74Dbvf/Ae77/3EUcHC85blJUyZNbQ9j1bW5f58ldf4rVXXmR5tubiziZnZytWK8+FS1f4/hvf4+OP3xMHU1ahk7DLQuiJSt5hY2FnVOLWDc47TCapjogDawbXZiKFoWW8ygkhYFWi0ImNSuF6xaLLCAF0skxK6BpxNhI1fRKRs2sjtQu4GIfGaWj6NJgjE0ZHpkXCEshLcDFSGMMsN5Q2MLbi2G19ZNVBj6Y/h4BzLqeLKCHvlly+pQ1QYvL+ifuV4dKoB7EtsGwc0ywwLpTgaoK4lM6Hb8n7J3u6VopSGqZwrh+aetXQjq2fvLNy5stBaeqmE6ZxEvEqpkjT9VRlSeoHVxoOVBoEZ0vtPBAZlRklmlFZAIGmD2Sjgt4LTsf5SBraXl2Qy68I0gFtFDGJUE0KdEFa37OkQWuC7zFa470iRmmV1EYKsoxStCHgo6fICkJwuH7N0fE9ysJycvgSV288z33vKZYLVssl0SfuP3zEtMp56uZF7txrmeUlq/Wc6WSL5XxBbRKlXpHpyHSaEVbiPjXDwtL3cgE+/znqoVkXDYqhqGo4T4EYFeQzjdhcUZSK6ETotVlBiiIgGWMIQdG0Pa6XIrq8MCgdZU2xhotXLvEbv/V7vPbN3+Tyjeu4Xhp26/qMj997k7ff+j7N4ojYi8A4yiyjKudoLtFWifRH6nrO2z/5Kea9dyEmopfLaT+/ydl8wbL2PF2MefGr3+CDn/yQfrGmbRv27t9jPN2gbhoe3r/HvTt3KLIC7xMQUclLdPk82ZHUkEJXFLnBxp7jvTXLZQAW7G5pRlrxcO8YUuTZmxOKwmCdY3fi6XvFKN9gWiU2RqCjIbanqEnFo6Vi/zRijeP6pQFzkAwWha0qVs0KpTW+i6w7TxQthphafBChJC9y2t5JOsEYuXMOxTlVYWhdT5YJn7YotZzrkWfWmvM9SwohMnPehh4wxhK94KGKPEcpT5EZ8gyatuVs5cVp3QuvfGejpPdwcNpydCwogJg01ajg6NEjgnMc7+0xPzzEABd2p9gMTs7W6BQ/T1uloSXbGil4CwHvnDjIc823XtvkG1+9yPalGcQNDuZw++5DfvTGA47nLT505HnO2XwFwWOMp66Pefy4p+7WPDzYR0VYdy2f3nmIyQy2iBj3IuudGVvhFrv6Mf/rP3xd1qbNG9zf3+eZyXXe++w+tiiYjAxtX1LXTlIxVWKjUFyaZORGU2WGqzPLbKx4+lLk3oMFz95UPHuzpBhv8PSLFW1xgYu7N1C7z9O2Nc+99Dw2SwS3xNqC7QpuXhtBntMWmxzM73MSNP/iL++xvTsjpQzXNUyLnC89c5nDumF64QWefeVb1F7z/Te+z7WLu7gucnR8RgqSwmvbltLIXtUP4vV0Y8pZWuI7aSzXgysbJZFunRTjWUVRZHTrjoSnGhXE4AAwmZVnKkRiCozygiLPQFlOFyt8ipQmI4SI6z1ZlmF1JiYnhiRAivTeSenGqBT3eAiE2PPg3meUs12+8mu/xcfvvsH+7U/p6zWjUYk0J1hJn3kt0W56glJsji/wd//gP+SXvvVbjEcz/s7v/WP2j45YPLjN2fERdVuzPD1ivf43fLp5gde+/jUu7l7He40pKkIz5+jRY1kblKRAVsdncqYLn3OcIWGtFdfycGcu8wKSJrSeaAJ90zDd3OTv/O5v89WvfZOtrV1sOSJpDcmRFRn16Zx33nmbn/3sDS5c3mL/4Sk//IvvMh5vkBUZ+48es3Nhh9FkzIVrT1ONx5hi9CRV6L3n3vvvkT78YNAzIm7VolHyXqdINS1RWcY6rWV45weTjwIGNEeIgeP7d3j7u/+KanuX0dYO3/yDf8TRgwd061NO9vYZz0pGs63/38S4/y9fv7DAF1E4BM6bGcsyevoYGCkotVzeOhPAGHIC66Yn5BmLlJEGVXZcaqLWHCxbfvXrL/Hjtz/m1v19aeGNkZRljKqSpAQon1ktTWfzNSfHJ1gjvJXl0OCVa0OeZWRlTuPcwHyTqJ8xEm8ww4ayvbmBQnF0tKDt4hPejM01O9tbHBwcU3dyOIohYsz571HIPzfwBN0AT04xPGkVrKoCNSz02zszsbUOBwF13loaocotKURG45zxRkGRG6YbU2yWi/Cgzi9b0NYtx6dLFuuG+aKmroVhoYEiz3j62g0e7e1zeHiCT+LySjFy5eIuZVnwwSd3Wa17nE8DcycNE3A5CPvzn9XQ5JpZ+f6TFiCzj1LY0PUOrSNd30tzKIOzi88veioNwlySSZVVidwkrJIDQ+v9AHcdnH0xUY4NvQfnHVmmB5cmKCOg8nFZCI9Ka2kJBHJrKXPLbDZhPV9z6cKOuPYmY45XLU3bkymZzJWFkRIR5ynLknnrWB+fMplWbG5tsW4CrvfUdceq7SVinWCkDWhL8JG+7YkKHhyuOXOBg/kCbzK6bgCUe2mWDfDE9Sh12RGNwqjBDZkiI62ZlTl5DGxPxpgosOMm9jh3Rrs+o+lrYghkoy1U3KLvFJDjY8INn1lMYIZYtR3aYOXiGyFKwYQxWhx8gB4icClFtJILgU4ypYjJD1N8S/SedtE8AYKeT3kZXATn9/Y0KIhi4ktDhOgcIi7Pg/BI5Nf7EOiGiEkaHDUx+sEJaICItcJXBEORZ/S9cJZQhs4HTpdrvBWXHkjTbdP31CHSPjghuD1GhXDLtjYrpuOS0+MztIoUKfDUMxdYrI7onXzP87XBRc/WjmJ3skUIjkXjODqrJVoSDeshPtR0sJg7IoEYJPY8HZfsbpXcurvH9UsTfLNivGO4dOU6R8eBrEyMJyNuPvsVfvvv/j1Ob/+Il778Teh6br3/N7zx1g/YyBV4Q+0Su1s5Fy7PuLu3Yu+4ZdV5JkViZ5LJ4ThKGYgx0LuW7c0xZS6lE4+XkcYpqlHEWk1IsLM9IjegMnjuWkmKJSo05EVgwwa+cG3M3nHHtNDsbFQ8PG355LShDV6ctTphjEDrjRLn12LZPLmIGY04nguNtSLQbE13SMGRKUNHT+g8k1xTFSXJO8QFaORd95bgYVRZVl1Lj5ZmTQunTUNZ5EyyjEXhqDtZF3V0eGeJymKIpCTRsuClkT23EoVxLqGMZjTKGec5KlTi6OlauhToVnNSnlFNpjRdj+9aRhslVWUoyhllK23lphgRUqJuHYTEaFLSti0qerTRjEcFExPZrDRGlRytpXnTGI0xlm4tbattU6NV4OLGhMyCGufEMkMlcW9lVuKLyv5/WPuvX1vSNL0T+30uIpbd7tg86SozK6u6XHe147RRGw6HJEiCgKTRiDOUNJLuBOh/0bWA0e1AAjXQDEk0QbLJ7p42LFZ3V1VXVfo8mcfb7ZYL81ldvLF2JqkRRqPiBhJVyDxn77XXivjiNc/zexyLoxP63eVVsUZU2KrGoJkuj+h2HQDTicPminZtWS4nhGFFyYXFYs6kaVAoesQesrx2m2Z+TNf+iainUx6h3kgC236Qp9XIvi1X21OtFOiRnznaDOUOkmHgmAO6F/VdaQEVUtTuQzNAhk5oUTLLcSLjjlIyJcmgpDCmjo48IV8yZrQQyj/y/uaSxsGVlWZYpHKiACZROSdKolFwuA8lMkrRTCpySRhbuH7jhBhafIhcnm/5/N4PiCmxPFhy8fIC70WdllJmOZ8zmwlaJIVE27ZXjMp2t5KfrZFhJAqrpVBVaEqEs7NLqspQ1xaynCVKa0qOspX3A3XtRD2p1FVwhBUME8Y6YhrIJY4YCzM2lgofB4HIK2C8J5y1OAttzBjn0FlU90prfBjQ2VCs2AlzTvTBU1cWqwtFQ9e2GCUssz5mzk9f0A2B589eonLgnbe+wmt3fpVf+s63efTwGX/43/8xn9z9hIvzDf0QyCheefU2/9v/3X/Jq6+9SRpaPmo/ZnF4zJ//xQ9ZHh+y/uyUDz76Me2uwxSLaqBuGm7eukH2A77d0bdbfB/RIeG0AO+tEfZqSBFva2JSpCzLoUllqE1Bu4KzGp1rUpJU7t0uUjVi8z/rB+a1YQianMM41HZEY3mw7ul6hXNy/W+98HmlnpOhYxkCjZFnocsJpaEdChNXuDXToApPW8uTy/SFjV1Jwjx7u25WY3qyuno+5isFx3htFFHlW6PJVJyuIzunsTYzcTB4hdqAaxx6PwxXVhYIiqsEYG00U6vpSaQEqkhAhqg4Bb0S0z48TQbaKWescYQQCCHROLHL5zze3zAGa4BPBfpEU8kwxGjFrG4wleVsMxACwnLu41h7j8meas8nsuNZIoNHRSaFzCb0UutbLRZ+Y0VJqBSNs3gvzwc3DsQVkLNiWlUczuZ0qxd8/1//I7Q1xLDDdz0lKtpdy853mBtHfPXdVzDNlMoOPH18Xx6cacpm68mpp931NI1hgQzXY/DkkYEsZgWFcYrKGUStJr+bpKWOumilQGemE8PhgeX4uBEnycbz9MmOmLSodbNcC13r6bsIWd6PNCas15VlOT/k6PAa5MKje+/z0Uc/5NnjlzSm4Ic1zx7d4+zpYya1pY2RzZiyXUjEoVC8sL7QUju2m0tsb1HoK/fFJz/9iSylleMnf/JH1Islu/UK7QMWSa589OnHolD1GVK4CubTWlTBOcWrTbBWRizBMfP8LPOnP3jEtK6IKD59dMF/8ltfZeYC2/WaW8dHnJ2d0W8lpV7ZCcu6QhdxHK12cH7ZspzVuGLoe1lst8PAkCyLRqOiZtdt0cmh8zhQC/tAG0vwaewpRNWaR3yAMgpDZj5TmNGp1fpAZTTT2omopeSRNS73UEHua6c1xmrB5CiDM2LPNgaWixm7NrIaCkOK41KMcbCR9oY1Wt8RfSZ4RRc1aGj7zG5zxm6zIZMZ+pakDc4q6sUNrh3OiOkJQ+cpOY6sPVFHKa3IfU/M4JwE7dy+XvH2DTB5YH2+4f27G/J8wt17zzm7lB4zlUzdNEwniagHvB84Cy33n58yP7jJarXi/OKCB48rnl+sef2V2zx88ISHJ4c8+fQnNOUZU+U5WL3kzhu/grnzNl9d7zj94V0Omwo/raknGWcys4nilZNrPHtxyvG04u1b8GyVmE8zt+aFt1+zzO2E+Tbxze8ec/14zvHN67iDd2h3gbP7P2ThF6hp4XBiaRp4/uwveP+zT/jpxxdc5oqnzwfu/r9+QBl6bNOgK8fxQtHttkwPDO/cnvLG7RNefvKS4xuvEXPF5vwlphSePXvC/bsf0l+uOVgec3h8Qr+9JMZwxWGMDHSnA74b1VtKuO9GiUjHWQnY6LrAdD6jmmmCHxhipqprjMnyeaHG2kzstgpoppJ660MGbaidIZPxyWNLGUO5CiVFtJEU86JAOYsxsGk3iG/sgk9+9D1eefMdXn/1LYbVjqeP7pFTZrFccnB0RIwd7XpL9FmCpJzjxs2b3Hr9bXbdmlISl4/OGS47Xpy+pAyDsEZTIfQ9u+05j+59zItnz9mu1gzbQdjgRdxeezSLGnv7iHBHS5ElpNYa46wsIxVXQ7cyWsynywXf/Y3f5Ou/8Nc4f3HJ9uKUdbfl8yentEPgq++8weF0wtnlS57cu8+zB5+wW+3YPH1BqMQ+3G7WrJ8/JRdFPf0py+VCQj97L5/XqMLbL5611uNOenSYlUI7otb2KLdiBM2lAa2NsKcrSz+s+fQn/xZlLUOXuPnW1/mtv/t3OTy+xumDS66/doP49O7/lFHc/+DXzzzgKylSsmzq+sEzn1ak0IMp3Kkr3p5XnHWBymoa68ixxqnMUGBXslhv24zJ8PB0x9ffOOYbb73Cru05Pd/gnMU4R98H1KTioKmYzqdcXKx48fKSUoxYSYMXT3gzoaocIDDalGVop9We/5GptOLGtSNOTo45v9zw6OkLcpb0uZQD02nNfD7n5ctz+l789MqMUmeVmTU1x4saYy3z+ZTDk0ParuPhgxe0nUcZuHF0xDAyEK7fOKSpHevNluA9i/mEHJMc6EWjSmEynTCbNaIwOliwnM/wKWArSwyBy4sdu13Hat2x3nqGOMgwCZH+TmcT3nj9VU7PLnnx8lIaWg2FxM3r11nMZnx09z6bjfAuQojSIYzsPR8kHns/8HPGoDQjMNiMPBFN8MLu8Un8BTJAVBQSjCmHygnvRqUCqmBG1dW0rigpiK0o5SvYpFaj8ixFSrH0vRcLiR0L0wyVNSgKzjlR1USPMWYcKhmqWthBqQjz5Pj4kBgiw9Az+EDnJB3HD5HJpKFSmslkwuNT4S0tjOX56TkXu46UC5erLTFFZrYRLhiyRb0cIm0YQBsudzvWQ2QbEyWVq99JI0WwWFXFsrYP1FBao0vGIbLz28s5y7rGhwF0Zui9BIxYz8vnn7PZrIhR/PnJn3L6JFDPXkdZiw+RSPkC1l7EBiI2i7ERV5rKymDPjQO4XKSQL6Wgi8Czc45oAooAxZNSwbpmP6qVov1KZzA27FqsRXt7Hcj1oPWeG6TGBcwXAHFRHgkYXitDiPLnKTJAt8bgx2FCn0SurBX0YRxUGodRBj8OUklaknnHhGil9slrmZIiIRa0yYQSRE2z3nHz5oKvvH2Tod2JqkBbbt16g9fe+g7T5TE2Rw6XUx48vkcpa16+eMEHH3xCUC2JwHziePuNW8Sg8L6w225ZrVccLa8x+JYcKl5cWLY9rD96zJtvvM4vf+NdPnv5GZvLl7SbM37jf/YP+H9+do96esj7H/wFL15+RPYbzgdLY+cMYcPyxiFTC7dPlvz4o4HzrZEGpxSWM4dWhqGNaKe5cdQIxy4ULvvEqh3VSnbC6eWGlBJvvHqN6AdygoMDR4oao2F2pHj06JJGBV5pDJNKMdEJ3wYao7Gm0EztePY1osgeAlVtGdpIQlNE1ELqI5V2tOseZQtOR+Z1RbsbMGVgXjsSiqgUWluUs4QSebbd0W4jGouPEipRQmZWObEwVRXKOqoQubasuOwjqky4fjRhWosqdWIlvX1eL1kcHjOZTbGm8PzxPVADF5sOZTSDT8xrK88MU+h8JPYe7x3TCMtDaVCrpibkTN8PbLYtoKgmFQrNbKKotSFGj06ZISeqHLl5csBho/HbLV2U5dLBYkEzgZerjum1JfV8xoMnZ8QIXUikrLh7/wn65gFHRtg92RgMiUpbTk8vsErgw9Y6+k4U8mh3dXdqpRl8YdsGrHZUrkHhsG5C7apx0VAowXN5esbBtWOeP7mQ+yYmqsqRVJbGHoB/797dD+WUGrlxEmA0crxHlZ6oe1CiJr6a8O1rBfZDQtkK7JkjEkU1ogIYlWZFvoeEdKsv/j57VdK+HJQjyYydUMyBTCSNheEe6C+8qoLWgiwo+99vfAebRhZExslCJuaaJ49fEAboey91RNzSdhGNAMuV1oTgWS5nGKPYxkDdWHKUYUJOEW2kKAeFtY6UElfJmknsiBLIBbU1xFTEEqZkY8/I0Qve01QVbedxunDtYMqu6xliJKlEbaTmSSWjncFlRfI9lbP4VGh9JGeNRZ7RQ8ikoWdiCk0jLCqUFhVLSiiVyDmOllDow4BDs5jMOFweEGaCzbDW8OjxE54/f8wf/sGaP/9+w3yx4HBxzFfefJu337zDN7/9Jh988Dk//OF7HBzN+Yf/+T9gtb3g//GP/pjLszMuTi+wVsKR5mcLjo6O+O3f/k2+92d/zvnLC9LOM/Q96/WG+aTm5GAuDzEKIQknGFVQKmEoTJyWJPisGFJAObk2gg9om2isYVrXgGVIimbmyCRUznS7mq5PWC28NZMLOlWshsiqt/jeYkKiqoRt6uOXmJJdIVpLrzN1pfBk4qgUTl4ChrSGzR7Sr2XZm0Zbn1YKq+UakFwbCXdSalyrjcqPoiw5RXIqo51/DKKZOto+cLmRt2e2y/ghjnWtfD+nNM3EUNeVIFp8IPnApKnRSqNzGhUmWlhBylBKGO97MEaGVIMfAHn2FgE7Efdp2kpdWWudsQwhEKKE0ekxdGOmRUWpJhV9iBQnSdGxyP2HNqJ2w1CKWJrldcl7XnKirhwZWQY3jaVyFd4POCv3TigFN1qRu6EXe7ep6bqebdfig8fVEyqnuXHtkMvTnSw4Ncwax8XLZ8zclNPzS7pdRzt0JKUYQmLTSsOeyaNl1pNKoK4aZJgnx5ZWIgAoUpARo5xiOckgsBoVeyfHNfO5Q5tCiJ66VhweW7bbQtgkVAE/xJFVKNeD1nsES2I2X/Jz3/gazXzO97/3Rwy+Y7NZ0XWBShsUiVI800lDCIUYCjnCphvYaS8BcCiyEkyK1Hd7vM5YK1qDqSRROMfI5vyc1fklJSXU/uA3mqHtCaPiT5ia8jwFUSuWLOxS9vVqkefAMEAIsG5F8TJtKn7w44fMqszBwYzZrCIpy/JgRt95HjzZcXI8Q6HZPYsy2Kgsn532nCw0ORoWiwbbe4yq2LUDKkfqphJrdBKRQ+0USluil4FpUQqrjAhHlCJXllIiy6nj+HjG+cWWpDRmUHRBluPzibt6ZhnlSKXQh8jRdE6tNSEmhmAIKY/ptfI+V7YwO3RUVtEO8pwIAapa0zQTdl3PbhcJEUk2VzCkiBoFGne+/i7BWk4fPcIPw2jdh6cPnlFNGk6Ol5ydrvG9LD8ZYZ8yHBYUTlKKwUaGZPn+h1sOdg293/LoSWQxb2h3iXXveePGEutmHCwP6Xcdusy4ce0Oz58/5/Ryx2ZYMfgdPgSsidS24uLiDKd7njy/yytzy48eRS5fXjC5foejNzaEu/+M55+84OmjC7S2zF2hyYqjeUUxga/etLx+dMD12vLrv3DMv/npA27eXFAbxde+eoPP33/Aqzdn6EHht4W7zz/k5E7F4Y3XiO2KRx/+Ec3RjPsfvM9qveFHdzd89uSCdRR3iCqJN24uiblnOOv4L373q0xZ8/7HhfMt9MMlk1u/xj/42/9nNjHz3/3R97ncXjCf1Tx7/JJryyXPLzesLi9QFqaTCd0mkmOSVGBEFDGbztitd+MwS1LO1dioKQqhH7h4eclsOWW2WOD7QdjAOUugxFjtZArt4Ikx4IMEaaWUGfpAHsNAm9qOCeCWMoZc5nH4XCjshp66rtFZrm+dC6uzM4rSvP3O1/n1v/F3ee+Hf8rT+/cYuoHDSYNXkZ2B6awRfmwa2G3P+b3/7v+OOzjk9p073P/LH/PxB3+Jq7RganShrkRZ2G5bPnr/fU6u3cQZhxiF8pUcKJcCSRa1McnMZS9SiUUCLaumYjKdEkKg972o/ApQNPXBHDud8eGnn/L87n2M7vjgpz/i6aOnRDTv3b7Fa2+8yvl6y+nz57Trc3zbo5VhO/RYa1BZU4Ik0g9+w+lqI/fTGEjJl+pipQHNeI7rq2FjHBfIoPApoLSotLVzLK/d5PDmK7z69W/yylfehqQpqecHf/IvefHZ+/zlPx/4+d/+27z5rZ/nJ3/xHof9xf/o/O1/7OtnH/AVcLWjpAAhE4YBO/rGdYIblWWBYl5b5qowlEzVVDy9jLwIEUvhYC5DlM2mpW0jJ4s5r988pm97dkOmFI9SGa0tTePY9Z77j17KpjEGHIHZpEYbS1XV+N4LuDelK2vpvgk4WM547dUbGK149PgZF5ctESVeeV1YLqZM6wkvz87xXvgkuUjKrtbC2Tk+nDOdVKwvd/ih5ejkkMrWYxqhpqoc3W4g5shiMeXwaElMgfl8Dsrx6WcPSTlhlSTcOmtpmprKWQ4XC5pmwvOXZ1R1xXodOTu9YLsb8CHT9YOwGEgoY1ClMG1q3vrKazx+8ozT8zV5PMdLSRwfHVJXFZ98/pBdn8hFCfsjf2HnVEqPXCLEtqOEZVO0JAmLoUTRdcKWS6WMIQ97dRrkoogpSnhEKjiEK2eUwmmDM5CiZ/BBwN+MTi8lE3vf95RcaHsvFosCPogtYdZYrN2r3iJNNaFQcE62ilVd0XcDCgGR7vp+LJQD1hp0EAtxU2kmdc3y+BCThfHQ9wOlKFYXG5L3DCI5RJWRiVIU3nuyhm4Y2PhAGwZ2Q6SPkVCgDwmrk9h1ikCgXYaiFUZWEiOQXuOcxaXEsq64MZtxctDw4nRFn0S9QY7oUsjdlsqKZdaYhM6ezfkTit7RTI/J0bCP0s65YJUhxIxTmlprhiSfT6XBIIN0q4pYYJVUAVpJWm6KA0YlVAmUPIwWYkln3XOrRo2nFH5KX/072ebqcQMjH+jVYTjyt4SNhdi69P6P6RHUCinLgE+UJKI+TKWInVl+jAwBR8m2UQINlgdEpkQJ6IhR+DbGCJjWVZUoAnIh+cKjZ+dUVkJ3PvrkgaSFbTccHV3jzlvf4Tu/+Lvoasp8amjPz3n7G7/Mv/i9f8zXvvUOr9x6l08+/BE/+eRDlLF89uARTe04XCw4OnZoO8WXTDcUFkdHvPrGV3Cm8Pzpcw5uvM79l+d87Tv/MTdefRfnFNEHfu7bv0CxkU8+fp8bN17lzvGEo5tv8f1/+xMePF5xvi2s045YMtt2/LxyAlXRh8DMaU6OJwzeo3NhNwyjvQuODiZYndhuO2IsLKczttsdSitiKHTnkVobjmeOi7MNB4spzcSxXmRkQhH45ttHXDvf4qPh+GRKrQMHjaPbdATVUE0c56uevk80DiZNw3kfOO8SviRMbUmpJ6SEqzQLV7OsK/BiaepjIvWZSW1ohwFlNbpAHBKLuqLRmqNZTVaK094TtGKXEoTIvFFiPwyBbc60fRBIfuM4bComVcXpy6fE1EMciLnQxcLzs46TZcXgV9RNJapaZahrGaT4mKhdhVOaoevZ9YFuSBTtaLuBNg6YXDiaT6kag4+KxcGMqtuyOJ5TO0vbdgQKviS0czx+eYbWltrUqEnNk9MV627gYD5ns+uYT2ZcnzSYYqmqCl0iYRhwk2ZU3YparKlrEmK3SX4AFdiNg45kFEN7yXQxZx0982s3mTrozx8wLC2DbtjtBrp2RWwv+OzH92nmS0nETZnoo9hNtTTy40xNbAVXzDoZ7hkjGI6c8hVfT+3BfOM9rfaK3i+dIF/+UqPFd29jK/vnAV8MDPcpokX2RHyR1TsWu+PWlzIGOanMftIsYeGynEpFisVI4EpyPCqQtd6D8gPaztBG8+jBSy4uBdNQuYYUGBdZWlQeIWGKKIatqRj6QIp+DDkwTA+mlKLo2halFFUl6u6+89jKEaMUsCll7LjRp0gzPcRwZZncPyNDiFfnfAyRrDKzSS3F/npH5Ry1rVBlDLcyYnEkQzPyG4M29CnI90i1LD9LRtcNzlo2faAfBC9hrR3dDoXppBYenNJMaosxis36kl03YHRFjIHNakXOhWfPn6GKYXlwwG6z4s6rN1hvtrz22uvcvnmDv/O3fhtU4ZNPfszL80t++IMfs920nBwd0Y4q1IvLFffvPeDtt9/h5PiY7Wotyy+kRmn7Hl0is8oJrzUWKBptMj5nagW2COLDasektsSUCBEOpktK8fS+ZxcGnNXUdkLKku4avCgfrXHMGui8DGwPJpZhB7UZ6Ik0VnAqPTJAKiVTO40du2tjNCFkNknhkzBTe6+oLRhrWPfxygafS/7SQkxfWdZFqTcqFMo+CVP4aGX87/uxeiwFyHSjCjClTFNZCVBTakxvFNusDMpq5ssDuq6n73oZKBKZNg0UGbwYI8vBXNI4dJJGRis3Ll4DZa/XjWIVzeN9VsYaQBeNdQbqQt97ep9ZzBx9P+BzoXEKS2FmNaoyKDPhYuPZ7IZRsithHCCYlv1yIYzhMDpJora2EjJROXH3KKS+rZzFOU0KAeeEbZaJEKF2jlIEb6E1tLsN165PMZcDk8mSO6++Tho2zCewcsK9ns4Ul9tAyOLUUFhZjCuFMYqmmpKz2Mj3XNIUCkMHxo3OISNnj641dW1YziuMlfT21aUw2kqRQBRjFbN5RVU3xBjpdnFUpdlxUAhaF6xVUBIP7t1jCJ7NZo01ipg8OiEcOfLozJBAFd8riGPwTix8mYuqtZFwwhTHYZShqiqyMnz129/m6OgGn378IWfPnjC03dhoi8I3+UDUo4o+yzlmxkThwfsv1N7758Y4cGK0hqd9uIOCbdez6zIHE4e2E9r+JZtNx7tv3eazhy/ofKEPMizdhcy283zleElYKV6eBU6OppQy4AxcnG/JBWqnmUxn5BzJBLRyVM5yud1QVWJ39l5CXyorBkWlYNI46trSDUHCD0xhVhUWTR6tt4WDxZQQIkM/YCuDUrU4WMbwqfm0Gd8nQSK1beRyHSha1GVVbQkps2slWfVivRNkQ8zEKA/Npq4IphBCoqChOK7feZ3KWrxf8+Lhc/o+kLYtqt1R0pTl0YxhiHgvtvsyvh6tjIRU5oIt8HKdeXoZUM+fY41i23oao6knNT5l1jvPcjGH2NO2LW0PH9/9nItNSx8TZtiOCCZHCom6NpSU6YeBR89O+e6v/TwvLlak7hpnveNP/uzP+LmDQhwWzA4quvNTGmpuXZtw3MAbb93h7PljDg8z33qnpl095OuvH0vY081DXpw+pE/C2z/OjvnJaxxdP2G9esR61fD0ZeCjhz/l2eklJSh2XcuTbWEbIwVHReGNVybMq8Qrtw5459YUxwU/vee5+8KymFW8euOYk2/8Lpf2Ov/mR39C0QOb9RmL2SF+6HG60PYt7S5iHSxnEyrrRgZjwlpJZikJrDZjSKgM/bSWVFVTaUzW5JDYrltm8xnNdEIfIz5KwNW0qmVGMdYvacwayGV8BmRIQ5KeeVLjrChI5zOHMsLr7odBRBA5k3wQWEop9O0OV1X43YYnjz/nu7/1t/jdv/8P+fgnf8X3/vCf0/VbQj+MKnCP06IAfPn8KS9fvMTUjo+VQ4WEbzvSIEiOIYviWxtNCYmqtnSbSzbbHW3fUsYAt305lktC63EBMtaGe7xHShHfJ3KSoL4SR6eIkvdwd3bOv/3n/4xqOmMYPG++8wbDkJgaS9/2PP/sHs8//5w4WtTJBdEkyf0QYsYYhxsdFmVUS8oDeC9sUezBeHuURtqvijWoPIp4kHpd1IVSJ95686v8zf/N/4Hp0TVePnnJqt3i28DhbMqv/Md/h38zrPn8/Z+SMdTVhM3lIxri/0fd/D/162cf8AGh3VJbSR86XDScrjomOhM1fLJuCVlRhcIsJRpXuBYSU12YO01ISgZyizmHS01JsklwTcONawc8O92Qc6AoS6UKN68f8/FnD0UhlQKVSrzx2i2u3bjOo3sP8SPc2Q/CAzFK2GITp3n19jEHS4mQfvT0lF3rR4WaKJtOjk4oKfLi9IyY1WjtFbuhs6Jum84nvHh5gbOW2jnuvHqDum54/Pgh7qroDISSqZqG6azBDz3zxZyhjzx+9IxhtKqUFHGVY9JUTGeWO7euoxXcf/RUJN6rHW3X03uBFoc4Jp1VNWYcqB3OG15//VUePXrGs5eiClEarC68cuMmaMtn95+wayPGOjKi0hiSDM/iaFFSgC6FxbSm7Qe6vkNbN6rt5H3MWQkzJSGQZGul8NNQUhqVYQWdM4YxJbcyIyTZ45OkykIZeUHQVDU+RIGjl0IsorQkQUJeY+McjdPEIqDmksuojpSHu/eBWSWgflvpEcxqsdbQNJWoJBXcOlmy2XZcnK+YOkXonaS2Okvb9uicqYyRBrYU2mGQzWLwGJXY9j2r3uNzoe0HMuBHxovO0p4qEJ4cVib8OaGNvBabIoumZllZptYwryuMLgwpMYTEMLTUFkpM5GHL0HeYyrHbDvgYcL5gbMRc3GO6fBtl56Ju1ApVEoGM1RpbMlkhlnajcUoUiCns7bcFcsRoaQxQEV0iZC8KvpzElp3HB8r4tS8BpXEW1eBelXPV1Y9Moj2nX3p0aVSM2RffGWPGh5MSZWApclCHLAlz+xHwl6GqJXMF7q+spao0daUpRgYxKEUmUhmYVIrZRArhnDNd1zHEjJtpdl1iiAKYt+6QlB2f3f2Qpy8vqauGd959m+V8iT1smB7PsM7wla/9Iu+8/W3ufPR9/uiP/iWzytH7RNetUdlxtKyYTCt+cveCy66jz4rf+NXf5P2fPOTNXc/xjTfwYUJoM3rp+eT9H/Hhez+kWRzz9/5X/0c+/+gvuHjwl7zy2tf51TzgvUB/29aTgZ3PLOaOhatZbzsWiwqfIqnzWKWIGFbdwMGsIceA0QmrwTmJhO+7DaHI8OZwOWHTdmRnSdOaykxxlSGUwPrinJPjI4aYcCZxe1HRBeg3nYRsJFAJZo3meFoxzQk9U0xqi7OO6Taz8wPrXj4HbTXrXYdOYGeaBigeFBFXWVJKeJ8pg6IyFVZrfBpYDwN9zgxdx2I+ofWR50Ng4wtDNoSSIbeSIFmb0RiqWcxm3Lp9xGr9gm17QUyFqXPokmmcYTKtqSuNy4WpdYQk9qHaGlxlmLiGycQRBmGU9EOkKEMXA7ap0QVqUwipZ7WNdKFgY0bHzHY3sKFl3XkBzmNQBY7mE7qsuewTL55esukzVVUzn1oaNNbC8mDG/NqRFG19Rx96TBVoSFiryBhShuIHUaGpLMpdY5nPJ/R9T3f6gE0Q2POpg8Yqnr3/x2ye3+P4zXdx1Yx7H3xId/6IMvT0jKyxcXi0V+JqI5vJcnVfl9EuxxhuIaq/wl7Pu7+H95q4L84Dsc6OrLxxaLdfAOxDedhLjoFRdj6q/L4YbEjjp6+qjn1xWMYGMcWCsYyNix7/nkChcxiT28dnhyRR5qvXEGNhuwnc/+xMOLtRXkfOhqEXgH+Kid2uFZtFzlAUShuGQYYH8/mMtuvYtR2lKNquxaCYTCeEMVVPGGh5TIYXliBK0qFJcYSzS4OdUsSNqAVQVFWFQeGcBgK7tpOtfVGSNF0ypiSx/qUgDZeRpZjKjFiIgrNWVILaUGKRoV5KqKKZVI1wmpSiHwKlyFlcBTmvhz7gqiDM3JgoeUAbqOsayGw3PVqJSj6EwHDvGcZoTs/f4+SvX+d3/vpv8a9//w/4kz/7Hu0u4EOmRMPF2UYGx7ownTb84i/+Mrdv3ZHlm/c8ffoUZypRDGrQJHo/YJTww3SWhadWBUehthW5hFF5ZnAj3ziHjC6SiL6JHp00vQ80taFymUEVcJqjRcPqosVHzcZnnAtYVzGziZ3LxBSJWuzhmjEIakww3PoigPVoiAUwhstVIimxEgoxQ4bQ4lIwo+K8XNluc/6SRX5Uz+4fr2XkYRakYZS0+UxBs2szi1pzMBMUybRWrHde6ikn9auPhdPzHZebFg3EmNDKEmIQ1aKzMNp31bjsnTQOvED6cxZunraaGARomYowq2vr6EMY70lNUZrBD1RuRGzERIiJunZ4n0ha0teHoWdICR8D1shnnDOgyxXX2eJIuYz3nShRXFWNTCtBk5QykLNnMbdiBx07R2M1RhXqSc1u3VJVFTEVlFM4a7lYXbLbdkTfUzcNB8tjrh3f4YMP/pwnT59wvDwiBUXWwlXMdYVRYl0OKeFcJaq0UNhsBnHPjO6NUhDbp9IYq7Cm4CpF5TTTSYXThtXGk9Jo4TcQx+Mq5UBVJeYzxbUbM2aLBRcXO54+2bLeiLp3MtFMp8Jxvrh8QU4Kq2WIYLQhRTnntNZUtkZbQx4K3sfxTP9SDTeieWJKo3snoI1msZzjnCMWQwiZojXXb79KM5vx+LO7dJeXo/ImwcgtpxTBaygZbg5+II1BNyh1NeCWQ1xdPR8g40zNtKlIORKCB+t4ebnlrVfnLGYHrFYrColtH6m3otgMMXB9OaPRjmVVuAyZ3Z4vCSjrKBl2w8BkCETfU9DYqqLvPJWxaAVNPYEC204CqLTR6KIwSrFuB0KQ7VdlMl9/c8nr12uqGk7PWoLXuNqxbcG4ir7tmC8mtH0ghZ6jE8tu09P2kUnj0EQaZ0lYPn/Use1k+ZqKIkRBF+Vx2a21iB7a3pOiDIgohfOH9/Cq4CYVbbdP2S6klDBYhqEwW2hef+smu12k73radotYpKHEIIiOArs+iKpvVKDGHIlG0wf5+Y8fn7M7zoShYtdmdn2ia8OIw5BwiNq68fUpCjLQclUFquZ7P/2Iv/nrX+f3//TH/Nf/7fd448aMJ2/MuXnnBifTNY/vb6m159aNBaeh5uzzc7pd4s03C4cnR/z40SWqqcl+xfz2bf7qfuThc8vl1vM//93rvH3tV2m3O87Ccz7/y084v+i4cXKbhOLZk6cYZ3n31Yr59Bo//egxh4sKozpcMLSnPY8jvPd5x2UyvPpazVTPePdv/Z/om1f43h//Pj+4+wG7izO6rufwrUOuXzvh4mIlw34lLq0cIyElrDVEP7IytSb4hClczRrY90UUqrqirmpyTHS+p2+3XLt+jYkznJ++FFZezKgiy0BJ5R4rmJzQKiN7BlG8DTGOSx9QSbFYLllMp6T1mhwitavk8927GXJGhYC/XPH+j39IfXDMG29/k9fefIvyO3+dZ5+9x0c//jFx5IpOFg2zZkLfdaQoYp4YBrkWRoFGTBFyRmmDLfKM9IMEfqVUME6QSzkLpo0sSytjZDEl4S9SN+7P0j2HcD8427emRimGbcez7sHVlvjy2WNM5dBJ1Pghi+VXIUp+a8WFUSgYa0Wll4VxiBrDyBJXm+59vbn/Z29QkXpS+JypJLSR31+NL1xpTUmF1dlL3v/Rn7PdbXjy/nu06xUheprGMTu6zvr0nNAX7v7ghzy9+zkpR/7aL/wSP+vXfwAFX6ZPkI1m13Z0KWCVEo5ChMe7nvnU8WI1MKscrywdxhlKH7juDCuV6TA87QvhWced6xu+3jicNhSlmU0bUnFsW0/Smh+9f58XF5d0PjKd1DgtyZWffXqPmDJ+hBqihOGllYQyHB8uGGLm0/vPGKJYCX2SbaM1mtl8xvnFJTlJ8SqskYJ1VhIcm5rtdsflakvJCWstN26ccHx0yOef3WOzbkmpELJHI4Duo6MDGgt1NeHysuX+g0e0bRCmybjZrysZVNy8cYOuG7i83DCERN/1AMSc2e06sT4aK9v1McDj6HDBrevH3P3sAacXG+GwKait49bNY/wQeXF6StdH4bTFOLIi5CDIOaNyxmhD3VSEGEY7RZJmJET6MADSJKQsBV43eFLJkKQRNMWgikaVhFOFiR1toQpiDOyGLAXFKFU3RpqaFGRDGEOUAaLaM3NEbeacpbKKo4Mp1sBq1zGdzujblqo2YkvrZGNeO4NFDgbvAwezhsv1FlKmcprlpBE59emalAPZaIrqZXjkA3o8hGRjltgGz3boIFpKTOikaFPiot2hjaPP+WrwZLWkJtlRVeaMEaVayczqhkZpJtOK5D2zSUPOiSFIylHcBXovW9WUEkNO2BLYrs8Yuo44BBrnCCETUkRNHN3uDPQBy+P5mNYGymhMKtTG4MakJWU0uiSMKpicKYxNTxmDN1Qhp4AhAomUAiD2VpVB/lQZNymFooSPJyDuvYKzkK/+DFcJnEqrLx3SssUwWpGSQIMTZRz47flDklp7tUdWYtNUKJwWzpYQF9MIL5XAki5nameoG8f5ZodTMKkMs2ocBPsASg7eRmk0jvNNoOsD16/V/NovfZcf//gjtC2cnj/l+YuXPH12nzde+zqffPoJP/nxn3Lr+Bo3XumYmgm/8N2/iW1u8IPv/XPe/+Aj5gtZajw9XVF8x7uvH3B6Ecn+ku/9xfc4uDZD6YGnT+4ybwsqGj74+DMefPZ9XHnOUTYsFzc5O7vg47sf8+TpJ9hKlJgpR3ZJlgvZRC7WHrWckLVm00YGU0aVZGIxKVhlqV3F+cbT6Ii1FZerFmMdPsqA/GjZ8PjFFuc0t05q5suGpqk42+woeF65uSSmnlnj6KNikxSfP9uxaj2LWc3CKpYTx1wrzp6s2e16Zo3m+lJxuRu4u+p52WfctGIIiVAyi0nFpLFiQS8KbGQ+qdAU8pDYdQGT9agMjsQEIRZM5YhWs40FZSzLWUMXW3ZpBLxXhtmkYTFzNM4SuoFFpXn88BFRJ7bbwBAzaZKZOjiYGJZzw9GsxlHYDYE0pgz7wXPtaAlIwuN0PiWnSOUcm+1OzqoIy8USpwvJCz+qqSw59KAtu9Djo2c3BJqkaAwoDKEYnq06XvaRPghXqkTFtg0srzWcn28kcX615dDCtdkEA8QQGIaAqhQJw2Iyo+tWaGNwVUPKmpAjfS8b9RAizhpcbXHNDAr4iwfknLj++lvE7ZaDBj5+/JjtdsUrX3UjS2SvIJN7SgotM24hR/7LqMYWFU36UkOmRqUdX7IxyJlkFFdqtEzBWSfDiJSutq+MRekoxBvT5hBFsIK6dhJ61eW9u2hfeIyngSjxrFakXMaBnQxBxPqfRgiyJif5OXkcS5b97zqyVfso4GRRW+crzEBMUYaGeVQwKiNIgqxkyD6yw6raYRTstp5SLDEnfOyuwi8Evi7WmqqqmEwawQ/0nSAotCKmQI4SMKNRGGfpfZB0Q2OFpWodylpRWSOfW9aFSWVZziaQJXRBCBkGryLTxqKcw46BBJWVIYjRCaUt/Rh6M2kqnDGsNhtChu1uoGykUVdWgxqAyFffuc13f+kbPHzwhHYXuP3aHerZhPt3P+P+50/o+0S37XDOoK3ip++/x4/f/4CLswtenK4hicp6r+5USuNqy9HhIe+991OePnpGTjB0PU5prJZha9JQNZrpZEYqSTAm40Cj0hXVaEU3WmOqmqqaoIsfHQRGFLClCOaj7bHa0SfN1ComFdTFYEokpEKMhd5nNltIeHyUYp0Mti5QJKgsKShR2HmlWDqfsVaK61rBkAXFgjGgDEaJ2tS5MXBFLle0ERUfKl9xo/dqJjM2OdZZxPgFJSlkQTdiVbQhh4A1GVsKy6nl5UpjxromhUJWGq2lRo4pYSsn9wUw+IBFbLx71WDKCe89RjvSWM+JD19f3ffKGEJCuJBa4VOCmClWAtiMgso5shaFNEUCCkoSR8F8PiUPSWrfPmCdkVCylHD6C46x3NPCM0tJrJE+J/x4bshg39G2XqxnRjGfO2pnqZtKzhdlWe8GmtqhlWXXdvR9oGTNdhsZYs+2vc8w7Hj24pQhBK5fu4mdOHZtSxpB9c5MpY4sHk3E1o7NJuB7OVNyEWcOFEqONI2jqTV1U6gqsaPHCJebgXYngTlVNaJdkDpJKeHf9X1htfJos2XSZO68MqU+H+iHgtoHuY2qS40oYXIeMShao0Yup9aF4CEOMmjQejzD03jdFVkKhyDqTFdJkmcqmco4HJoHdz/m0WcfjqFVMPQdqqqYHh6xvHaNk9fe4NXXXqekzNPHj3n55CmLSSO2zUazOz/n2cNH+K4Xq2/J44BRXT03fIy4ZGU5Uwq7LrCYTbl+MmfY9Tx6seHOjQm7tacPkWvHJzQTz2a749GzMw4WE5YzK8rnNJBx7Fov3LxxKFg7AeN3vqWyjmlVsx08Oz/gvdhXs3JgDY2BkhNZGdDgjGI5M2y3A89yYLIwpFQ4X8uzf+sLhYgD0mlLOwSuHzl2yRN9IRbHsAkMg6bvM5hIN2T6TpSMMUnwYDOxdF4cRotpLbw1n2nHJOsYExerZ7iJY9cN6CIhQyaL2jyPS6TTl5fUk4qTa0ccHR8zdDMOTm7Q+x3nFysuTy8Zti1hDK3aIzQkuRy5HkMikdist/SdYb3z4xBPGM/zRjBOQ78PtdqDfYqcsX3mh8/P+MotzbtvLnj/4+dMlzdYlYI+fYzNHdutRy9qfu8P3ufxaeLdkwm/8m7Ns82Wh+9d8sPPNRebpzQ5wU/f57KVa9MWzePnPf2w4uG9j/nk0QUvTgcuLx/z6b3P+ca7b9F5zXa74Wg+5aO7K+4+L9wsDdO0o8RC5+Hg/IKjuvDN2zPe+Pmv8fqv/e+p7vw1/uJHf8GT00d0qzVnLx5x6/oddpcvmM5qTrs1h4dzLi97jhc1u92GpApuXJYOXhR4FMXUjRiNPZ9dS8hKzoXsHPW0oV7U7HZbnj1+QlVXFIT3Jkp1+SxyhlKiPK+rGq0TLmepa5QoRIvap4trwvmF9HHKUND4LAsaWzlMEXJ+yQWfAv12zU++9yd8+lc/oJ5MWc4XvP31X+Xajbf4yY/+nOeP7tGPOLSSFT56dOWomwn9kEblZkXsBhJgShkZ3YYUA/jI0bXrVM4TuhfEuK8bZWiplaGoSCnCIpYlyZg6npSw7vYCkvF1i6NMCUfeSMhat95SKEznNa++8Sp+CDx/8oLo47gzk+9tnKGZNAztILiKLMM9Y934Xo/P4ixJxmWceaWRuan2PfDoVksxsG9glVKiUDaa9vKM7//j/0a+/9gPowu7bke32gFQaXGXrV88FxzaMPz/Oob7//r1Mw/4ZD2c8UMPGDY+YhXUZG7PJ7yxmDFvKj72Gy6sYfCZTVQUA3ObuT6d8NFFRwgdXk34w8/PublYcP1wypNLi03w4slLUkm0uy19H4g5oqLHYKibKds+4X284tsI4HdMtzMaZS1na0nCDTFJeEVOMrnWELPi/GwtzcxYDCmtseNFpI1luxU2m1MaZ+H1125w48YJjx4/5XK1E8h2ErvFZCaJOItpRV1XPD+95OXpGUMX9s4D7AhInk4qbr9yk9PzC9aXa2zVcHG2xjlLDBGfEj5mXFWjjcH7Huc0J8fHWFvz0ccPRDYeC0YVlssZr9y+zen5GafnK3xA5PxKEldjHG+2JIyA2hlcZSVNLUuqbhgtHSlnUtGQ01UCYYqSqZilsyDliCqZyhmqDNPGYsZGLKYoUvRBDgRTDLqokf0QhMcS5bDDKHTOaA2LaYOzhm3bY5WoFrptS/QJJqJwKDkzc4YSDKjCpGlwRrEbAlVTi0U3ZmpnKRSuHS+k0dIKnaWYTVoaSVO0wE5DxKdIVprtEBiKKPDiCBBucySUjM35SnGiKMycw0TZYJcSqbSmcVZUhKUwMRZlFZd9L7yZIpHlmxTJRTP4KPHnGdKwIZYt04Vjt5liYsKHlqISzir80KHJHJ0oiB6DxWcZmOrxGlBkrMo01grDIA0MoRe7tBJbq1JF1JaqkBiHvSWRy3gAJrHE77/2LD5pvuUhzn6wt1fi7EU4So3/XuxvWmu0NmLry/vFrRIrOXkMyRntGnuZcx6j5YHjk0O2q0tiTjJMRD5Xowqu0rQhQ84cNlaGjwgdrOsjzoxcm6QYhkzbDSStSQqenl/wT//FvyIHw+OXT9GjpXdiCr/5q7/Af/tP/jVPLx6xOj3na9/+JrlPXL/1Kr9z5zX+4vv/jJs3FhzNa6ZN4fU7U54+usCVxNbXWFNx794jVM4Mw5rz1YYYP+Hr3/pFvvntb/Lp3Y+IasDlZ1SLiheff86H919w41rF0IPyoKwh5EL24xBMW16ueppKY8ho4xiGQEoRa2rmleb0rKWuKupKsxsyqx6UlqXLPlV51tQ0NSit2O02V1DgYcg0E8tuZ3l23vNilbjcwuUAylbsogxRcJnusqNrBya1w0XNyy3cv4i8HCBqgw6QEIt6OwQmlSNpjS9F2CRWBi6bIWCVZdt7rJHhibOGmZsy1wqLnNlZak5eOT7AboXl1zQOWwwqRJqJIykvTKEu0YaBpnKk0ONL5mja0HcexqJ3HSIha7JSwiwzimldo0pFPT0klYj3EWsUy8WMaVGs1zsuV2tyKaLAcA6dE8MwkFXGF7jYJEKGwWTczHKynNFvA7PKMhTLrNLshoSPcLEJdMEzqx0pJs4uBw6vT6nrClcsB3NNZSakrDDaEWKk61qCHygFbF3jmgUpDJS8T3CFpqmZTqbsVpdcvnyEXfWc3HybpGq2Z2cYPXBykCjtmTQyZQ8Z1yipHsdNPmI9UOOwPgsMuZQv3ezjgC2z//ejGnxUVMpzRP6s9+HqzxdV0KNqF0RtIgq//WZbXYU/pZT2UuDxdUrhVPbrXfYvVV+dP7mIwjHnNNqL5Qwba+ArZALA4dGS87MVJivyyFPJo2pCj6njBa7sZPsfmff1Q0ikKDVISaMiRglzT8ToI98qS1KuKooYZMuPkWHUdDIdgw9GoLTRoiSPwkTMWYblWlvmzYRh8HSDxxoLWRNzofWJflhhSTSzmaSOD4H5xFC0pka2y5tNTwieoqTA3U8DhpxI/UBjFfOpsHbaPmAqg48JHwLKiPpxCB3f+vZX+YVf/BU+/Ok9VG25/+hTTs/PWW/WkCtA00Xh6X5+9xEomE4bjg8P6Hc9XTuMajWDUorQw+NHz6lqw9vvHHB8dMJyueD9n77Hk0dPUbVcAyFFuiCNki2grfCv2uBRTqx0e2tMCdIcbIYBdCLEQB7tilNnCAqUSegM/Ua4gsVokjHUtSH7QAqipmoaQ53BFYe1jIo7GYbHmPAporVFKxlYTBcNRhlMSGIpUoxWUUdOSbh4Ra7BVOQaMqPSTlxBkkQ/n1aYInVg7Yw4UmqDHzLFwBBF5bacKCqtmDSW0Aeslus4Rml8hiAsJ20lDVGNCkCz/x4KYozY0b4qaz2NNQ6fxvczJyrryFljnMLHOIZuaFKKVHZEb2RpajWKkMEWaCrHECJDkHtyWlckD20e5N8VJcgPCnXtiEnqw1L26mDhNWktd/rgRfWqFKQQr+7zrCGEQFVrTK9IIdIPgcrJIGY2ndBU4IeO0y5QVQ3WOLa7gbkzdLsV6ML5emC3G3iPz0AVhkHqjsrK6+kHWDSSVA3ymaQ4cHouyjFZLgpgfegD1lhqjFhkh0hKhhQ0YVQvouX8tlZCd0JIopgrivPVwLbz1JWWYeFE00w0bevphkCKWYJ6ioSAKWVQRtjYMUaGoEghk6IMD6WJ1RhrCD6OytIyLnRk4L5XpWAdr7/7Ld74yld4/OQx9z/9lPXZKX5oefNrX+e1b/48t177CifzE6yrSAiT78133mW1uqQxNdv1lqqesF2dcveTD7j/yYcM2xV935OiLDXIokzLCdpuGM9oGRz37cCzlxdcWzRM6wld57l9/YidV5xfrlEq40PCakPre47mNfOJYxJAmYb2wQW+ZIqS81b4h3Z8bwQH0/eQox6ZnoZ+iFLfLyu61hPHRZfVmpTgyWnP3UEWQ9bI53K5koCEw+WU1WpH0zgW84ZPHg/E5FGqSAq0lmddVRtKUExrR9tGQsgoLUvzfojiCBu5l9bKgMZ4f/UM7vuBs/MLtLXUzkIpzGcz+l4SaFMsdG2h63qC91itGXzm4qKja9cMnR+tl3KvxrK34ktQFDCq9aXy3nYDdKIsrCzcuXnAtcMpbec5u9gQTR4XjTU5ZXZxQK0yu3bHpJny4X3PV25NOT455MMHT8mftHzt9pRvf/WIr7+55J//4JSXl9KXHN9e8qNHp3zyeOC0e4CeLRlaz27bMV1WHC+nVHjqieHgzmv86fc/od8OWArfvq3pj29w98ma+w8fc/888jtfu8auHXh+ofn6axUq7zBVzfGyYjmteOVgoAuJb/3G3+Po5/8LyuQGZ5drnjx7wnq9ZWoVb925A0Xhd+es14Gz58/JWTObTUglXg1ao9GoYrC6EEMSJaje908y1MqjgtYaPdaQcHSwRMfC0PYMuwGjFZW2BCJZy0Azx4CzgudKURYoGLHCxiRJswnhSVIySllx6KQsaAVtMBiKEYWZc5Uo2zphfc5qw+bsBafDwMu6Rtdzfvfv/S/42m/8Dv/4//Z/4fm9z9n0vSzoVabre05u3eK1d7/Ok4fPIERef/eI9W7H6f179G2L1YqmsiJiOr+4CnaDPQt5P8Ach2Vpz7blqsfMo5vEaAlWKkAK+6GchDUZYwSpVUCN+KjZco7ue2HeKkMuIuJSgK2sfJ7ej4GoVjAQUZyGrnIUCmHwVyYTCuS0F7XIIH1f/+6VheNujjQu6AByFDt8VvL3rLai1s4RYy0xxau+uaQvldg/w9fPPuATXSqjcwC0ZmoK35wrfuVYcUMHltcOaWzh9552fBZrHp8lJo1i1gVuLzRRZy5CocTIpxeKf333OX/nW69yVDc8fXCfw+WM3g+cvmzxov/l5nJJbTRDJ1y3XDJFy9ZBI9HTVolEfrNtx6joAkUTwwh4BWJEhlRaqIlmbA4mdUUMcvjtwkDlrBQ3TvOV125ytJhx77MHrDatMOWK2JfquqKqDNeODzHacPezB7S9R9KqNJQk8OFKM60nHB8d8vTZcy63HSWD36zEBtENRB/ISlGUSNdjkL97/eSEtuvYtBt2rUSmG2M4Wc45WjY8efqEbevph0TvZbJfjGHPU5IizVBXhpzADwNpVGCkPKpoYiYV6H1C6UwO0qboIk2TIuOwTKzDGbEcpCB23+A9eUyoZLwschGbkzGQAhQtKg5xiMnBVVeWaV0zrR197zFGUtx23SAPIGOIQ6B2Fq0U02lDzhARMOetO7dY9R1d23JZIqvNhsVyhlOKbrOj84EUIylkNBmFoRkTD5OGddeOvhRN6z1ZZ3JRdN7TKI0v+WqwWRdRVoXoqZA0rtoanHM4o6n2lgUFQ/RQDF1MDGWg+FEKr0YrXEpQIipHYljRr+5TO8tkIkrItjN4n/HBs5jNODo6wuAhtqAqlLLCeFAaZ+RBnWPBKXlQDsETcpBtb5TrRRkjKqEsP5siPJsU5VGesyR5wpdk5TDac7mSmO+/pPgv45+TwzhESXjLWay3aQQxK4BUSErkzTkV0IxhIJrs496PhFaKy8sLORhLQRmFMppQMq7WHB86vvPqa5yeXtANA9ZmtC603cBZjmzageliQqUKoS/Y2tEFacBqJ9B7ZaAoy+X5lsFD3H5Kt/2vefrSc7aO+Pkp//pf/B6oBb0qfOW11/jut36JP/zD36dPhecXK37ura+QOoXPkd2zHRcbj1aW2WTCpw8uOFtvsPoSw467H/4hKRZeXu6Yz+Dep3/Ooav47rfe4u6jx6xWA4tpzarrxAbhM7O6GlVWAiMvSuO9fA7OSYq4Nopp40gUnp0PtAF2ITCfGSbW4myhqhXTpkblQEmGqA1dH8ViExXrHj641/HwNDJEefzGlGlUxS5G1jFythXFrbPQxEi1K6yHnugMuyTqlKwyrhINZkqZtu8wTUXjptTWMbUO77fUqhJF1zg4Kkax7T2LpiGoQlOLanl5MKcriiFnbuBYtZFV15Ojoqkbzp+tiCUKDydk6sowcRLuY0aLhFKKLorV3oeEq2t0MRhlqGrL5W7LzeM7fO3r3+LeZx8Ruy2LaUMk8+x0w3rnwVn6EAltptI9tdYcTKHtOjpfiBjZ2ho4mCsBGhvNQQNYTTVpaKPi4fMNvk9stwVy4WheU5I08E4b9BgONaQBY6dUTY1xRuwuWpEjGNcwXx6yPXs22ikzISiKDvjtlsrJeWnMmsfv/TFmcsz5+Zb27Dm+v+DanVoWYEoau1IkWEn4b3pkfskGUwoavjTEl3CIfVH2ZXGdnPkjsPzLdlyZkskZMFocvrBASMEURmgxjGy8/ouN6P5/REiox4VA2W8MRn7g/gXq0d46ApLVPtl3r3qV7xNTIpdM3Tj6rh/5YulqI6tG1bLYyOR9wojCT173nlkn6varF1nKaAWRZaHA8cdSVstyxYfIomqoXSXfOyuMtcJYzKPNKQsce6+mMsagS6KZThgGyOPb4jRU1ciqzeFqiKQr4dEtF3NyLmw2Oyhy5hcYgfr7UAQjXCalCCHhs6AYphOHjRC3PUYZ0I6Xz1v+m3/0+9x45RZ/9YP32LU7lBKFUMma6VSSJXUxTKYV3kv9MgwDxlqGwcuyJ3PVTPohkFWhGzLvvfcBCpjP57IQSwFXWaa1Y2ahaztKKLi6GpXjEWssxghDVOHphkjBSuBCHLCVqORVUZAjQRnCuInvjKJERciZqLLY8H3AOY2pyljvaCKK4BO108wmjj4imBMtjRo6U1kNWbPdDqJgNRZXaQxmXCjnK4u7oBLzyLYcg6pyRpUxbGZsrKeNYZKKKPAzNDaycMIPLUUxm8giVuki9m+g81Ge50VJIx/k8zTGYIxj6wdMTDjrJNlxDDaTR7gMpPsxVdQaYbJpbbDW4aM0aHpcHIWUBV9QNzTZ4lGiHBzv/TDyJpuqoh88ISlaH5nVknI+qSraIY6WfkXKiq6PIzpgtGgp0HpcUo8LBxkASSiPD3JNm9HOqMbQN6v0ONgBbaCqNMOwgyLOlco5drueXGC17oVTtfGsNgOb7YAfMseHM9bbQC5wdNAwmShyScwbJ4261vjouXl7wbZdsWulJ5GTSeO9KOhiiuPQDlL2WOPIWRZnMYid2LdegjlKQltwtcUk4R8OfaHrxhpOGVLW+E5C61SR+6EfeppGs1w0KJUIMfP8eU/oxiWFQuyyyoIWpSNWFt8jHvsL5rU2NPWUV197k69+4+d57avf5ue+u+bep+/xwQ++T4iKZrHk2p1XKN3A3Y/f48HDuzhVSEPLdrNCF+jagdliiXGWkgo3bl7D3jphvVqxurhku94QhnB1RqdUIIHRcHzg+KXvXMeYgW47YEtms03EskMM75ohSHJt02gWi4a+a5ktJ4QcWSwMr9ys6LJG4VjWipg0uz4TQqbzMnTOWcBCPkpKOQXhnReNqR3bTYsxknbOLuGMpY+KVCwlabYXPUOEnBSnlwNtVyRYZTVwvha+olKZuk9cO7BMGksfAjkKm3I6nXB+4QkZ4k54stoU6hp2u8JuN1CUGh00YuenaFIU5VTsB6wzdP0gwZByMlJZYW/uNi3z2RRy5uL8bBTE7M9gueeNMiLQLftnch6ft2p8/uuRqyap5cEHPr/3nIxFO0umR2kR2XRDTzMxErQzRCYTxfuPt7z/8IKZNcTguXn9kK+8XvGNrx3zr/7Vx9QloXOkqTWfPN/yyb3ALozW9tQLizBrdBL8zLAZ+Bt/7bt0XeGbb3yLy/NT2rO/Ytf2dM5x42hCs+35/rrj3spyYCK//k7mV37xFt/76Tkfftpx1HjytOLWu7/L5M1f5tpbv8rTnYLUcnF5ibaW6zdv8jQObHcJkzUnt2/w6N49JtbxfL3DEljvPAmDtYhLbhzu1LWopI1WKCXnfI5JLJ1WUzc1fYxU1rHd7NBRghqLkueKQaGcpY+i5LdGjxw56d+K1jJIivvzcKy7lWEvQzHGCjFViyKukDGIO0IwCg53FYixJcdAt+2p64az5/d4/vBjbn3lm7zz9e/w7PP7cvZqhTOOMATOXp7zxle/ze3Xv8aDTz/j2s0bTNsV64uXovJTUoPVdU3bdgzDiKUAihpRTOMSX+ooEfGULxhN0mdqKz3lvi4da780Yi2yvYI7SW+dod11XJydC2d6X58WwQl4L64baUkl8G2fVp9KkYWXNbhRvJNHpFsZayPGod6/s/Pe15lI2WhUoXIVQ/YU/YVQRhKBZSYTvKAtrsIp1b/3Df///PrZB3why8pstCTqkrjjHL95OGc+1VxcXtBdbqQpcpbLKNJnPcgA7pN+x0FVYZuaNif82vP9R5GvXD/gxqRiMpsRQuBwOef5k+cYlTmaLbBKs+k6ch5tHko4M9ZIFLuAwDMjtm1kEyj5YMeJrTVitZEDk9FSCM5V7HYdWheMFig2ITKbVrz16k1mTcXdzx6z64IkpY62AasUTW155eYJu67j/vML2eIVULqQVMQYRWU1x8dHDK3ns/uP6PsB7RqJwB48SQm3w2qJtlYGyIFJVXH95BrPz87Z7Dqyrkil0FiNQhqTzx4+k8CLITPEEbrtxuYmS9iC2IHEAuFH5WHKmVgKg0+EFIkhEXJhCFE2vqPSwypFNdqoZs5SabGJpBAYek8YWUMph1G5sU+XiVfNQ8le2C0pCEekmaJ0kSZFK9rdhiEqmqbCWbE7pJionQDDjXJMm4qD5YRt1xG6QEyWp4+fEobAtusZ/MC268QKrB1xGNgMHWiDIWM1KCOe/s57YlDsghc7aNKEKBuTQManiB1tbFYpamtQPjJxjqyVJPfVlXCOimxsfRgkWGK0pKE1cXz/U9o3kMLMS0j6nyaRQsdme8Y6C8tBoN2KkhNGaULoefH8GSc3HE1jKHqBqecYnMwmxTeN0YWSAzl5SvaYEiXAoIzph1eHk6wKFPkK4J1GBsu+qd7bqPTVtkW+JtOJSJVjHA/qqxgO6eX3B99YaEiR/kUW7744zymL3c1nphNNrYT1kkrGWIvWoFTBZC0bTSS9LOoM60R8+JD5ZMZ0MoO44drBhK6Sa87VlvVOrkWrhPnZB48PmSbJUNkaJeE1pRBK4rwrrD9+AbqCBC/OA7ufPuCNO9f5y3/7+7x49Bq+7/nWN77JenXG02c7nr284HQlD8RZXXh4GglDxEeBfTdVQ9u3rPsIuVBXhuN5w6/+whu8dvsGVVa8d/dD2q7n1RtHOKNw7Yzd9kIaRwzbtuOgMSxrjU8ZVym0cqgM/VBYNo6iCi8uenwW8PcExcG0gZxYLGZ0vWfbeU4OGhKWi83AwaIhxkRUmrPVwNkm45PYHpu64nLTs2kDk0ktvKUM2Sh2XcR6w/WjKZ0fZCtmRCESlShxJ5Vmu1lTNZZmarl2csS0aVApEIYWS2ZROwKWkjI+5dHKH4lWiXncDwybwibCNiuStlz2mVxPuNisKK3Hx4KyikmVOZk2HDSWxkX8kGnqKVvv8UVhckaj6H1GjRDt2urxQV7RNA0PP/+Mi4szTMn0PnK+umRIhqwyFs3Jcknbd+xWa1RTkYsm5Ew3qqPnsykhDLSDSPlz0mxzYZcyp7tLQoJrxwv6bWDTJixitTiaLcdwiEQqgd4bGqMxyBa4lEJCk7OlaRqUq2nXW6zWzOZTrI/kFCiIXWu7WVFyZOguefFww43X3uLkcM65gemionJRktcqg1KOMA7W9QhIvypeyhfDvXE8d9W8foFm/1JQhhoFzl/21F5tP/frTTXOzKSByKNyVwYWX5wypajxLJLzZc+M0kqNti5ZlAhvjnEgMip+lLpK9ZUzRxR3sugbB2ilcH52IbY6CpNJjY6Rru1kAzsGde3VfoxqRqNlEywDHDfWEEUGCtaiUMQQRS1T8pXaqxSxVIoqUgY2SoAJpCx231gy9TgEtUoTlFjB+74fuVSZuOlxthIMc840taWpHKTE4mBB2w7S9KHpIuRtT2M0E1ezrQIzYwgpUjmDm1Qko/F9uEpzxViC98SU8LljNqvQ1o2vWzP0kU8+fsLn956QSxI+n3M4U/P662/w9W98hW9+4+eo6xnNpGa92fEXf/6X/MEf/Anr9UaeDUVCS4zWpByYLRuu3TxitdqKlXJzyWa9wRmxy6RKECDLkyP80MtzNor9cV47ScFLiUmdMdrTDgGvEt1oadMo+kHspRMrz1RLYuLkyabrRMoyPGqcYbDiTklZ0/aKXRsIHWKDV2CUYC8aZ5jOKoYus5hXKGN4ctpKo6LMyPYRlhZ7TEXJ4yBP7g+t9Ni8GKxJxFJGe6UihcI6eo5nGmfG900VplOLyoW2TRQFbZ8IWXhhPmoJnbNOasMgz32xnH8BDy+lkGKWGg+xJqlx+R1yJu6tvFacHimKukGP17I0ZnrkhGlSFMZTDKMawckADw05ZNyYQO2juFNycRigMTBtanY+0LdBWNpFKhMzhuTtaxOt9vxfNSawgjEOKJIujlxXTpuxfkxS+8Qow+rKokotKBUrIRCDs+A7vM/0IdP1LQZLU0mt8fKspW4c202H7zyTicWZzPTGgjjEMcglU1RPXUHbqvGsE15ojJl+kGspRTU6KzJehyuWolKCKNmzrmfTGucKB4tGFD4Y+i7je+E3ppjoB8RSOuJyqqgZhoIqkepaxbUbS1kGDi84HXbSNGdRRKckimzFmAKtFK6y4zUSME7T1A3dds0HP/i3hLDlxutvkJOiaWqu3brF488/5y/+xe+Rux0HJ9eYHzXoJ4X3/vLP8asVij3iweCccBkpkiw8m02IIeAqx9HxIauLFb4X1eNewW2N4mtfvcnhgeVyvWVIGesUd26e8NnDLaoYbhzNeXJ2iR8Cs9mMxlo6bTBWM8cR+5blvHBgHRaDNQPbXtN1ohSyzrDroiylknAyq8aSg9jRd4MXJaYe1T6pkPrI4aymZM2u68ZnlzBOt6PyThtLwbLeBuJQqKfCR5xWDlMUoUtcO5nx5Dyw3g6czOBwqZjU4JOoe0Cs45vt+DwriJV2fLwaLcv9/TM3xkJKAa0k2E4SqEXd6mNh23YoZEksfHLwOVwNKMqX/89+GVYYWb3y94wp0uvYirbNdEGRdcEkWSLU1tIPHm1gMZ9SOU0sosrcdu2IGvGglAxX28z6+TNOnObVI3i8hss2cPrRpSgZY+BoOaEfIqbIENbgMDlxtllz//ED/vZv/UNeOSyY9UsmB0uaN++wurjPDz4748XO44xGK8O1mebWjYqOwsVlYLKcc3j7dW6+/VVe+c3/khcbxU8ft3iVQO94cP8zPv78cy6ePuX45DqzpWbqZvz67/wmf/hP/invX2wouSOkKFzbLHiwnAphiCzmUxKK9XqDs0Z4uUpjbSQrCLngnEM7iw+Rg4MFpMjQe1l869EiaqA2clYSgnDrNFdOhpTi6CypcNoS0zisGhEOmQJa1Nh6nJW0/YCtLE1d4XuP0WZU9Ab6wZNiZLteEyg8f/YIpS3f/Oa3+PSvfsST+59Jrzc6PtanL/nBn/0h12+/wna14dFnH6CMpl9vaapapshF6ivZMQgWR5uMlYkoOSYqY0YV6DivuaoppYhTeh9gka/qyv26NedMCf/uUCwMgcuzS4bdIItErXDNVBbb2jBpKlGhp0i72aFSxho3KiNlyp9TGQPd5NzVMDInr3Qo/+4s7mrHLM/2nKA4hXVuHOrt7800dst7BAWjc2Rf+/Izf/0HsOiOBXuWh3iymeAyDzaXmNTQD4WiBu6tO152hqQNxog/PRmNToYYoekiXsOEjGoH/uyTB/zNd++wXEzoe836csV8UlNbkVVfepHBO2PHQZ1sUKXQlwZRbD8iMTZ2lFKO/wCElHHWwDiN3l9E++3HpKroQ8YZxaKxXD+e0w89L1+e0feRgsY42a4bo1guFxwvlzx7dsbFak3RTm6sGFEa3LRhOZ3htGW92rIbPJ2PqKRQJtH6YbTHyhArl4IpSoIUJhWT+YKXFysu1zuSMhgKqAilYYiZ07NnbP2Ww/kxKsnvrsbBq8owqRoYk1NjzoSYRkmvqMN6L0NBsQVJ06pKhliwSONnFUxqK2oDkRTh8yDwzJKk0MiifogxYaw0cxqFGa0Tzho0CWM8qmScmVBXlhiDqAWzwhopVKeVw/cDGIf3nsppYQyADDlHKcblakdOHmUsWmm2256MWE9Wuy1Gi6xcq0JtLUYrupzZ9gNDisSS6UNAO0dJkRQj0RSS3mttC1NrcVkxsxVMxIosgOW8z7OVYamGiMCKBewu0uj0JQlMzLJxLTlSWYNOA1PbQ21pbcPF5pKSAwpFiGJhi74w+EhVJV68eMxsuuXa7XfRTOV3Ukqsz0q2OJpMTj2kAasSJQqrZr+hC3GgEMWWO7KyxiMJNW4GRVo+JvaVLxp6KURFTiw6rzxuYuR31OPhuD/sihLVYNkrblQZG+VxoBCkE+/6SG2NJMOlQl1Z4Rpoucf0qGYxbgTlK8VuiLz+9hssZo7Vs/uE7Gmc4fqRLAdeObCcXQwondnFGltpXp5vCSlTK4mJn2hFGBWdyjj6ELE60VhNKobNyvPMnLOcGx4/7DhYLvn6V9/k8nzJjRu3qS3cv/+HKKW5ce2Euy+eEoZMFzy5yKO2UhXtqiWZzLqDpjHce3KPeQVVXnL/0RmHlaGklqebzOl5ZPCg7Zhamgtv3l7yrTdm3H18zrOVJ44Q/hASXRQgcgbmU4M1hZQdKWQmVUHHyLypSTFxfblgtd6gsIBl3Xken3XsWpm2zJziG199jecvLzm77IFC9APOWVAWH73I+2vL1nuqRhgSBcAqlDWsVlt652hczRDhYtvR9U+YNI7GanTfcegcTcpUqpCMDIV1LQquSeXEkkChcYZu8BTrWG1bnp3tyCYIhy5JQWUjqKJ5MXTEZcXBBI5qw6RWbHde+J+NY1pr6uKYWsN0WlNKZoiFvgusLy84nz8ipcB0cUDnJYGzsorGCi9yu97Q+h1N7ThYNrTbLT6JSkUVSYp2zrFre/SshgLn20CXNamArR27tmNaVTjl6Iaey4s1VW7olWOLZt44lssTsZ0WYe5ZKzaMwQRijDT1jEVVcfZ8DWUMPSqSKF1KwVgpFobB09iK5/c/Ydd7nIsw9GL1RQZ4dVNjnaPvOkII7O/0Ur48wBu3kvv/9j9QDpTxnNjbKr5Q9Y3nxmi1lcpMXQ3ZRJHyxd+TpZ2cEUoL4F+x/7tfCvQYf1exdoiNKWaxQuzrkysTSJFXbrT+kqpPlEpiSVb0XY+2Gm2MKO98uhpoqjG8Q6REoIso+2KMjPUzVWUxVlQQOavxfyVl1FqDMxrrZHCjjaJxViw2I+fFB09TOZxBQpC0Qid57XVdoa1YBK01dEE2yrJQUwxeEBebncc6h7EQBsl5W+92TJZzZrOGZ+tLlFFUumLS1Oy6/kpR3nmPAmZNjSqFnCMlWnbbXn5HK7xdrRRd26OGiKk0k0lDToWv/dyr/Of/2X9K3cyomiU//qsPKOqSXXtB7zfMZjVD6wlZai+lNXdevcnPfesdrl074ue/823ufvw5d167w7/4l/+Kemp476/eoxsCIQS6krn/8BnOWLRVdKHDhkwbJajJGY3qMlp5ArALnjAm7aZiSMWK28QprE4YO545JVDbjBmvuRgTjYUuZnKyKKNxrnDoMmaExx9MYVHgeDnD5EieTTAmEZTiVCt6NS6NC5I4XfLIO5PrTqNFabofsBTZk1fOjBbgMoYeZLLWrLrMzQPBCWx3id4nJhNLFzSbC3CuFjdKThIM1Et9J4EKe04QUm+Od/FeAWEQVWlOGU0RpagyKJUwAsJj8IFpXQujbbyH97b6akxLNEYzm1golm60BMt1JSoRlRjVgoohij5AWYNPCV0Si0lF9mPoGqIO1DAORmUZaawRVXaOpCy/g3LSyqSRd6lVkRouGVKOzJ0jpEIaImXw3DieUxnN+aolq8h0WlM38p5dXOw4X/fkoqmqmqEP9LkwS+BDYddl1l2gspqQO64f1bw43ZCyYTIx1BOD2SaSB4rw9mTfIXy1NDJIKYqSRTUqwUVcqU6MkyTrMPLBdm0gp3EYbArTiSYE6DppGEsuDEOShNcCu1B48mSNdrW8/10PJIwdgzeKuuI3l/FMVmMCqrWGmDIhBZTXVLbiweef8OjJA67dvolSjr7vIUWszly+fM5P/vgP6FNiMl9ytDzgcDrnxcUleWQuKl0IKTOZTEgqM/QtKgd2bYtRlmbSSJCHH5PVx54MFHfvrzg/N8ymmohmc7ETxXXfsesUs4lhGHpZCmxbzHzKYjEjlczRYsG63eGzJQwea2smM0coUNeGw0o4iHUlasgU8jhIzty6eUxJnu2uow8BY40EAirpTSqTsFqwMCEGphNHKYYysrSrSlKWQ5bLQGtQxtJ2A04p3rw5I/odJhRsEvcZNrA8mNBus1hnjQyxD7rMMMgAj1LGXJJRATVOQdS4nFNjWvZ++hCCpJMqhBurraj2M4WDxYKt2uGDoHnkz8qyLI3Py/0Qf/9cT0mUVd1QwNQUJCU1KsZkXsjJc/3ogPm0pu0GYlboUqiqCTFLbz6pGk53Az94ovjB/VNMnpBDoTYOr5wstlXilVvXyHlgvdlQ64IDDmZTbs2mvPJ2xW996zWMvqByGu/P8Sdv8HO//F3e/9cfkk3ivPV8+yuORdWx6Wo2DwIvP73k843h5u2bfO1v/X2Wt7/Bk17z+PQ5r7z6Ghe7ltOXZ7w8O+fRg/tszy/45re+xceffs7166/z8FnL8Y0bUneRSEh6faM1EyPuN0Wh73vBZxkzjkpkuVNVFmUKlanYdB3RByaTCW3boRRMp1MmBia1YHiapuHyfEWjNSUN6Cz9ZSxjIM8gIR/GyJwjpYTR4qRKyGymxChhH1ZjnTAdi7LEmEfE2YCxhqo0Y61ipI4KnkeffcyL+3f59V/7Xf6jv/m3+cEf/wEvnj2l215KgnjdsD474/LFC1mw5owxgogyzlFKIqRA8J6CuXLuWa2Z1gabCsmCdmpETilhzJarq1wU7XnvNuFqKYESI6koE8fCVMmiMudEt21JOXPnnbf55d/4HQ7uvMFkMkUZQ9WISOry+VM+++AD1KRienSNcL7i2Wef8vDzT1mfv7hK/d5/+32ybtmnSY7K6H+v3JUBeUJEXOMUPpP58tdVXV32NfBYZSt+5q//ABZdALHNYgzFaj4fBroE19QEvw749Y7gDFFJCAVW0SiNCRmMYZclanwbEpTEoa54ftnz4HRLHQPb8wsGP2CUou08PkbQwsMzowXLOpme5zw+mNCjRUgm2CVxlaKiRvuBtXZ8E/NoswE/iGKt0gpX1aQ0cPNwgjGKzaal8wIYN0pROUVSmdpqTo4OMNby2YMHDF0cY98jOXlmtWGxXBLGze3L8y1t35JVYb3e0dgaW+DJ84dMZwsOpgtJZS1yIDRVTYqKB4+fUdeNRGLnTDGBbtiSkiIXxeNnD7jYnPFz7/4CtZqNqsXMpJ5gjcVpTet7fAwMUYZxMSX6wdMFT8qKmIUPpFSislJkNM7ilEGXgh2bXDQMQ4cis+03uGoqRWRM+Cgbo1IyOeqrbbVzGoPciKYMuLymay9p88D02uuEoskpjslysnmaNHOcLuy8DCSrykKB7WpLcXoMBVFEH4CEjmJbCVE2JKIqjFhXozM4NHVtWbcdXYjshoFYxkhuBSFFsTYBFTJpr13FpGicMZDBKU3Q+Uoqn8nkJNJnrQQA7WOUn2usyG8pZKWgRLGniSZBCv2SoHQ8fXaXg8WS45M7dJ0npJaCgiyKSusskNFGWHFae3brpxwcH6BLRmsZMChjIMdxQ5CElZDT2ETI6w6hZw/BNXrk4X1pJSHA7zKmFslhTfmiQU8lEwaxz+3VflorYfeNKr2MXL/C4mJsuuU6kB9VyDELm6cEymgTy6M1wGiEz5IkPMAa0CpitGI2rehDYVY7JtOKk6M5Dx8/5umTlxwcTrk2gzvX52w3G1zVULJm3hSebxTPHrfUtWOIcl0eHU2pKsvm4ZqQPVaJxbrkMbXaFb761i3C0PHDHz/g3Tdv8uknTzicH3D2csXf/fv/KR++9yN+5Zf/Ix4+uc/7956xmM0oycvmPWfcRKFsw53rjhAGbty8wXw+53BiePtrXyP7Fb/evM6jx89YXUZ0SYQYSaqi7wOVtTTOcr7tuLgsxAi1c8Sc6H3k6HCCc2Ifu3VzhooZbYSZMpsajmYVM1vzxuu32e62dINw3MIwsM2WEBUqK+aNZTFTrHbw6d1ntH3EOMfEJF6/teR053l63osaSgkiQRsJBTBOggLIhdT3xJQwRROUpveKoQRyU3CN8KBmWviTTVHkLPfIfOqojKMfAsYI5H9SOVkq7ALZ1nRBBv6ljDB9VTC1KCNygh45Lxj/e1A9h8uaSQKjErdO5syaKX3fMl3MOT9fkbOmA6xzTKeOdpDmWmktgPhSuHm8xPtMQlh7kgDsUcagUuBw3hCDZ1JXlJKoJ05YYFbCD2IbMYgtqhRRqB4e1CzznFQSIfZ0AawasMYwdFIUGDfFKEcIEe897a7FGUscAn0BZWqGoTCtGkzJxBAwytEOkdWuJQbPYAN9P9B1A9PaUJNInUdrCdnouk5qklGJQ1ZXDcTVSF/BnsuD2nPw8hdbVr4ITQCuZLplLBPK+P2vxoT7amzcEe4ByVCkIVECgtdaOHESTvXvNjQUaQSNthSiIAfQo2SvjDYmxgHd+LK+2LOM32dM11WSDKqSeJYkNEnUUfuUdD1aLEKIUrAVNaoMZYhUyphInCJVPUL2S2YyrdFKLB8xi315YmqyKhwfHdDvWlHLGwUlUdmKqlJs/SDJ0mFgOpnIYjQn+p0nKzN+r8ym7UYuKQSjUT4AGusclZJmdnkwZ9Y03OEmpxcbNtuOGLNwkbeiWNyjSvZ4CaWFiWm0PFPjGHagKMwXDfVUcXC05OJixWrd89nn9/i//lf/FV3rycawWe9oKkeMnmHwwrbR8lnUleGv/43f4rd/59dZbXY8eviIP/rDP+Mrb71OU9f8r/+X/xnXrh/yg7/8S+7de8j777/H5eoZVheMEmXnzFSYJJiCrBiRGpnKGIYigwxntKQYh0xlK3zwkDWlVJxvPTHCrLIc2jKGtgWykevCjH9Xl8S0UkynE/wgSfM3jucMfUdl5XsXZcBYfBup0dRjE55ITB20flx0Icmz8jxO+7tLbLraElLGOMvQD8SUqJzDaLHrdr7gS8JnAdlv2gBFrst2CDhTWEw1JHBWXnsan8l7pwtFFnJGC2NNIRY9paROECDuyB9Osjiw1tD6AR8Ck0lD34dxECT18P5nFTQ+eCYTB8bgh4C1jhBl0JxKwRQZRFtt0Cichqa25CAYm+VyxhLNejvgg4QMxCS9gkIYaG4c6AlL6UvpimM0Vxx/bzPWMZtdK83ktMJYw6b3OAUhKS62PdeNKHJns4aqMoS0ZbXObDaeMEgdEJMMuVMu5CSJs+tNYTmrGKKkGG/bHluZL52D+0WFyDJi+DLDdMQIFDk7+iFgx4WqGH8EN+KHjpTU+LsWDo4cJydLhjCw3WViV64WK3s7c0mwXg3cv/scdKHdesgK5UQpmEa3hmZsksdzMQZh8Nlx+B5jpHIVoNitNmxXGw6ODvAhQsrUdUVOmc3FJV3XcvbwMefTmroRK6gkh8vnk5VCGyu4pCGTYsZqS0qJbteOvGY1JqZDyYVQMo+ebXl6qpk2cOeVJZqGrgVXVWxOpSc7WjZs1gMaQze0TCYNhsJ62GAaS9xGTOXY9p641aOaNbFc1HRdS3XQkCL0Teb8siOEzLPn5yzm8uxXxRAT9CFRsixmdn1Ga09dGUoZFT9KY7WiT5khZFnejPddzvLcP1o43nljwRvXC0NvyESCigwpcvN4wuGsYbfaMWlquU9R3LnpSDnx/GwQjfoeGZFlCWTcmIo7cuSdlmR5+Xflig1WKFefSRgiW3bElJgsF7z1c1/jwx+/R2h3pJJEcVbXDEOQ++9LA4iCoHWGtmVaN0SjCSrTVIZpbZnOZijtWK12FDTTZsq3v/kNLtaXfPDRR4QY6PqB+aSi3Q4sDJjUU1eWgmLX78hAYytW6zXtth/ZdRprK7Z9y2J+zN/6zZ/nu99+hQef3uePP3jEx/ce881fUKj2BqUP3DisefLCc3LtgDt3GvRmjU9TbD7kl/7u32Dxyq9x99kz2g8f0m22LI5OeG06x682vP/BT3ny6AGPPvsUReJHf/49LtY9Nmf+9E//iMNJwejMpJZzKyVFHhJTp+mKQumMdbUEVaYEtdyjov4SYcTgB3GNVVYU/IMoSNMojqnsIUVbFtevoaoKlTynLzoJzIyJyXTOW+98jW2/4d4nn6KLJo1DRKUNBks2UqU1k5oU8jg4lyFjNQY4Mi5XU0yEfqCua3FX5cKkqvCbSx48fY6l4hu/8dv82t/423SXaz567y94/6/+isbWzKeO7XZHsQpnFHGIcqYkuZYohX7wxMQVezYXGIaIs5qmsqjKUGxDVRf6IRGGQc6OXEbr7Bhwth+S7Wu6/VN0X4yOPbaMf+RZe3D7Om9+5ztstgMPH98nJU+KAafgxZMnnJ+dcuuNt3j3nXd59dU3sY3j6aP7/Onv/RP+8r//72nPz6Xfv6ph//019zj0Q9wC8iK+OOfjOGPYq/b2r3F//iq+ENDsXS4/69fPPuArCUig7fgKC6EoHhfNy1WL6UdehFckLRtvl1uuVRW3moqHIUg6WUwcLiZUfaBqB1IwfHrvIa8dzNluO4YQ6KMwOaw1VMbQOENV1ZRS8MGPAy1pCGIUXohWCmethCfkgrWWGDzOWoxVOKu4du06Qz9werZGa0MKCTurUEoLmLcEnr5cY22NSkXg7kaTS2Qxm3P7+nVevDjnYrPCpyhwTSMKt5s3r7OcNZyebth1AXTkctNjG8fZy6f4EKiXDbtu4MHnn7CYzzj6xq/Iw95aatvQ9x5P5JO7H3JydJ3Z9IAUM6bSfPLRj3jl9teYzA45P3/C5dkzdrffoD6cY7TFOYvTjqH3dCXRJ/HxDzkTfSb4SOcHfAkoDDprZtaRc6TSkLXFKuGnpNzK+5wUzlZAouu3rC6ece36G2hlZUs5yrhLEVVfHgd8dmRqKA2hXZP8E0K4IPQX+FmFtQv6PjGbzDGqgBXV0KSu2PZbsWlqRbvdUCLkoBhSIiQY+l4akVLIaDrvsVZjq4qqEhVN1pBLYrXu2fpAGq2/eyi0UgofJXzE5kJjrGwCtFhvcxLrm9GKQdbyYqEZVYQlC+A05EhSwsKJUcD+auQuCH9JilRiHhWMmRA6Umx5+OAFt26/zptvvcNue8nDxw/JSPhJLoFm4hj8wKSe0e62+FCYTi5wNJi9mi6LxcLqAiWRoqTKpbKHrjIqH0UxYqzA9fe2PIUhJ4Up+soKk3IeI8EFym212DQsilu3rrFeb7hcbwiA0SP/pSQm0wnbjWe9bckUamckeTQlRCk4bpQpLCYOow3eS7CNsB7lTCkl4axmVjumlTA5KiCiWO8C/+qP/hSQDXjSOw6aGZtty8V6IOvMk3XhWjZ0m5YUAauxJIaYWQeY4TlZOF6sIglRkVZWjYmHMtQ+WByRkqYfEtvdwE8/+Ihb16/z6d2f8tm9+/zid3+Bd7/91/B/8D1K6PnpJx9zvk4czRy7oXDz2gnf+bnX+ea3foWDm1/hna9/jWef3+PowPLj7/1TrC28dntOIXB8Urhx4nn4dGC1Nay6iNOai7Vne73Gx4KtHJtVi6scIQaoHfOZodttmU4m+JRppg5bQ1CJdbflJ598KgMLJcO1k/mSr7/5NkY1PHx8j27wtNtzKIbVquVrrx+w2/XcPJpxOG/45GnilMKQiqhzi8YPkr5dpSzq0Up4pc6Ioi+GTNdm5guLVjAMQWxRQeDvuxKZ1g4VIzF6GmtorCLEwHIisGaTMhNdeHF6Tj9IAEsKnuVsyryRAeCQFKfnG3wsdH0RRQSZSQVTm0ZgveX0/83cfzxZlqbpndjvE0de4SLcQ6bOrKysyq6qrmpVVd1EQxFDgAAHXAwXNONmFjQb/gM0o5EbmnHHBdWK5JKwoZEYkm3AzHRjiAHQ07K6tEidGTrCw/UVR36Ki/e4R8KMu+7FuFlaRmR4etzrfs53XvE8v+e84em4wacAJ41cc50gEVKyaJWzvjxnZ6egbQaarifLMgoLefIkpVgWOc4FVBypckVyGptryKfz0mhCtDSto+laoskgKZp+xDWJZEClSAhiv53NKgo0fUhUKtGMA7t+ZFZXJAP1vGJzucKoRF1KiEAKDYkSpQ3znUMOD/c5ffEEnXmyvJoaeyNKFh/ohlHUa+NAVmUMbiQGeR95LlvWGGXQJggHafzFDZG+NNx7qcy9YmN9+fdfHvJdD/XkRr7eUl59nSuF3jU+Q8v5kWUG0pSw+OVpHFeF3pXkb1o4hEBSL9l6KV5teLnms2gt9t8rBX9KLxvvL7/gEOLEFH755yHF6Ty6sldcqbAFO3C1CFFRY6PYECFh7ZTwhqid3RiI0U0sHFGVFvnAnTv36OMx1VLj2g1qGiSU5bTQ6yeFRT9iK4PShnHwE/hd2F1yjWpJOkXYgMMwSvGcWXarCkgUWqFCwMSIG0acc9f2FcXLNOI8ywg4tJVn3qT9Z39/B23g1dfuMAwNPiY0hkwXbNYjF5dPcc4L51VphiITu1CCup5x794uz58fsbe7wIWRH/zwz7h//yFnZ+ccH5+y+OGMmwe3+NpX32d/f587t2/yvd/9HvPlkrY7ZXV+zMNPPseNgZm1mJAotWIIDhc1QSmyoqBvOzIr4TSZ0uRFJmqT3OATbHsYowwGB+fF4oYEV0z7LLGCZRo1BAptsRiqWS4pwc2AUjnbLuID5EaYzi5G3np1wel65MVFR241N/dKHh33RCON9zAEduZSn7Z9oiw145hYFGB0QTOMaMy0nEuMMRBNYtUjDSFREisTaBWY15oUxZ6ZWY2aVBvGZsLY0pNqT2JX5R69WpAYTWa0MIS1qN9SjIQY5D4k4t0ooTNTeFlV5oK50ZIsbLTBGIuPEuggFksJSAtJlsUifE1kRtqYqs4wGgqjsCphq4w2BJSLVFXJ3u6S07NzsVq7QIgJg8L5EUk0TIIFSaKkuGJu+nCl+JA09syIYrdLTizIzuFClPo2JobBc3neg9Js1lvyIqFNousH3Mj1IjdNg0yuEi0TuADH5y1g6YdelI2d52q7oZSWZFOrJYk9vtx6XC8cmADyASCikxa0+bQUd+MISCiVUoq2cdJf6IyqlOsblQmv9KqnJJF8ZLsR8YVK8h5k2Sw9kuxA4nWzLcsIUWihFHWRM1vUjINjDI7gxL7eXG5wXlScm5UMio3S5CaXQLdty9j2EnKInr4TCUJis97KEC/CMDmotNLozAh+xUa6tkf2MgqVJhZsiAyj5uSkY3ee0bWCTTBZRoiJg/0ZSituH8xpN50oUhWMPkLwBJfYbhtslpOGxKLOxQrvAotFRUxM1jtLmVdsmkDTerbdSF1nVLlY9C2GiKIfA52L5JkmN4osy8kyiyJRVwrfRsaYpoUJlGVGnSWywhJTZBx7ZnWOTYm9peaijRisXE+XDWVl2NvNuVj3bLcRN3j2loZtp3FOahs7Pae11SwPbnLn7h2Onz/j7PiEqigwtYQa+HG8ft5Zm0t4ihtJMU1WWs2d17/Krdfe5fnRc1bPBkKQ539MCj0xxZ3zpKTQScYXykZuH9bs79asNwNJRZxz7O/OGYcRN/TsHewydIH93X3q5U1enJ2hUfKzjp62HfnG+/fYKdY0ZwkTR7wfqKxBUZAXGe3Q8/W37nJw7y3WzcjX7804mPW88/YNxosH/L/+2Z9w7/YeP/38CRcXntdffcbxZ/8Vp5stWsHv//YhR5sLKrPHmco4eP9vU9Vvse49v/r5z7n/2afY+YJu2/ON7/w22WxJ037G06On7JSaRVVQlYZPPvg5yi4ocJw8eUZTGAori2gQtunoJBjDeeHi9W1HCAmTZCmlp37qqmAaRwk1AjlnsqLAj04GT8aS6cDOckEYGlIcufvaa+zcuMmnP/85CU/bNHzy4QfUy11CzEhIiq3NMnyM6MxQzAqKqoQIbnQ4L0PFcSvZCXk+2XaNIfqAVhCDnGFaJ7bbFffu3aMuZ/zqVz+hTYnf/t7vc/v1t8Bqnj97TrvZCuohM+zs7zLf2aGcLTl5+pzz42ckL0nMowvTUjRyZcP3JJogy7XaWkwymChJ9ClmRK3FVTKVgRJWYogxXC97+XJ9yTRmSxK8lpLw+B58/An/+l/+Zzx7+ICLk2O0hrIowXuck8H56aNP+Pwnf8XhW+/wzq+9z2J5wOHb7/PrNuPDH/w56+dHROcmMu7kNkmeNAWoXJWpacKwyDI/XS+7UVdjOzlj9eTwu16ycB1n+bKo/mt8/A0M+KZ/lCgmmJqBGCN99GQKkutFmaMnRUNm8OPIbmVZDZ4mKCpjqNuOOYGFjiyVInWJF0OHG8S6GoE8F/teaRWLeUUyhsvLzfVaPzEp9a5kmkbk0zFOIRLOY7RmPi/Z3VkA4Hzg7HzNMDqMTuTGUOWWcejpx5FP7t/n9PyCr73369QTo8QouHvrJnlZ8/Tpcy42LUxpamVhqPKc/fmMejHj8wdP2WxGsqyauHOJo6NHfPLxL5kvaqwu8Wnk5OnnXGSG1199m9liHxJ0w4gfPZvugkcPPiYOLfHma/RtQ17mnL64z9j33Hv1mxw9e8Tm7Annr73NYucuChh8pB0d7TCQtDBqIomtdzJhn4DiSisyrSitlmjrSd5aWEsKPYSGtjmm6TbMqn1SOSOGQLM6Ydg8wy/2sfkug2tlZ52mgiQJDF1raeZicGQmEuKKi4un5IXCdZfc//ScrDjgxs13KZd7jP0l6+2W2Mw5OLyN0gkTJa05xoj3CTdGAWEqSb7SSEMap4d7qTT5ZP/qRs9AkEn6IBL6JP4pKQSDx2S5WHGMwWqw0zVllSIo2bbEpOjH6QafNvyDdxL+EOVaGtyIzbRsIicoqvdfgpqnKDeegjzTZHFguShZXRQkdcmLoy8AQ5blzOqCpvXUVUGZW7ZNS4iQYk9ZGEwM6NRDarF6DkwhKNGhtJ4OQTkItdb4KEUtSRKQ9cRiNNOByGRlzrMMY3KRP18dTGZqsDXMF7MplMPRuI6skNRBlYnyrR8Hgve0/YixOdqKskVbTT+xTerCUOaavvcUyqAT6Ks20qepiBW+oUoScJOS2NGWRY7xgXXTEUKkLmuSgp3dOcsCutZRLHKUUsxqg7lsONkoDnYrbivP0/OBqiopZ9KorFcObWG5LOiGQNt4duqKV2/dZH9xyO7+Dfbu3uIXP/ljHj8/paoqHj494eKiwwMPnx7z4uyUr777Hv/J/+x/wRdffEj/L/5vPH34Ob/93e/y1tf+Ht94/9vozQnNdkWwJdvOMdt7jfpgyW/8/Zv86ud/xOb5f0N5+hjnE/duLii05fOnPSOJ28uMN25WLBeWFxctMSbmVcbOsmLoHEPv2Dss2Haa806Guv3Gk2VQ5ZKc7X1gPi/ZmeXEGGnbjqOjEzKdc3N3ztnJKW/eyHmzrLm4VLx+b8HZi5G6sgTvuVFrbt3IWbWOZhBWlDVM16SirHOiSqANZQ55Zsm0wubSxIUQsVU+qYITcRzlAagTs6IgREfbtczygrKwFHkuzCcdePvWjNk8pwmaDx+vaLXB5oqitGy2W+q65OZ+xeVmpB8TzsO6EQRByAx1oWkHRfSBss4Jg2NoA5m4SqiqDG0VtqgZxpF2aGi6hqoumc0qDAofI3WWsMbQIoOxwoJVER8TY9Bse4+aBvnaKJazjNHknHed2O+SFH9h9JRGY6tKUgONDJyV1tSzSlLBtL22t9R1RvAlF5cjKUQWpUInx9C39L3H9R2kgWgU8919Npsj1lsZlrddh/OealZTGzWx6BCVaogMw0BmDUWRX7NPskwGRG3TT03jl9elVw3s1bTuSpcn/9Zf4qckpLlQJLhWEsmy7cpGIh/y2cZIcECY7KcpRYIXJbD8fXHi6E2AvQTeX5VcCaWkeFLxZUJwSklwE1fW3mkQGabliwz/riwe6uUMUyWU0WJLncIQlNKTMOdlKYYc9aI6DnEaNIqlS967YQyOGKThy0zOnZu3ef2N16nnNV/7+vsUsxl/9Wd/yoe/+BHr1YZyYj5pa6nrGuekjhH4vQwwrdZkU+qtuBmu3AliTQzBUdcVu7NK2LOZwQ89u/OKWW7ZW9Y8PjonxgGbFwyjx/thSlGXAdToBsws492vvILSnt3dJft7ezx7/oKm6Xny9IjoDZktp++dpNElNMEjbEoliuwmdmRZxmKn5re++xvcvH2L/+Jf/CGnZxd4JwPm9Wqg2z7n/oNn7OzM+ea33pYhCDmr8wsOdxfM64J1CHgi2cQ8yrWSobTVhCj2p4A04ClFBuem2iQSpArHGMUsz0ShaaBxER8mThoZo4+yXNKGRV1h0Cij8cCq9QQ81bzi9LJhZ1ZDgm0f8HHN4cxQKghJc6MYObwrTdRF60hRcXNPkeWG7YWnmmu2nWYdE58eN8Sg0Er4hLI8lKXT4CJBQWFkmFAWCu8MrpfBvx8d28ajLZNt24laK2qUmezpwU/XiL5utpxz5KaUJd6U5MukoBX1oMhsI1EWlUlUskaBRtJpRduccAlQQUI2JqVeNGkKjDGSgDjx39CKMYlaw1pZ5FkShsB2s6IsCu7du8PjJ0/peocPaeoBDOMYsMZcB+ukK1VHVBgrDaD3cnZYayR1foyE4CiiJEDu7s4pqoLj446mG4kpsbPMGd3VmSLnmFYKqyXdVmvPOEijKjboJMzjNEHf00slRkxfUrBFpu/3l5snNSlqZEgv70eSx3VSJKslWGF6HTEo2iaxuhw4ONxB644YA2YKmHHxy/GLYsO9YkFds1S/NF2MKV6D60OSkA5jM8ETJAlKG70Xi+9kNxvDSFSJzGYYM6UUtz22yERtPalcQMIWhLcpf1cYxutFi0qK5OX16ST8OpBk2Zu39shNwdPHLwT1o0V5uGkdRsNirskKgzKOG8sFKTiGMC2gk+AM1psGmxmqXBM9aFvjQiDLLJttO2FfAnf3dtisWtbbHjcmFrOSlHqqsph6TiBETJ0x2oxmDIz9IEuLoAhT7XzadOwsc2aVxUfQUdR8WkWyzPCV1wq+8mpO6HuGduDJMzg79+giwxq4uBxpupfhVRdbR9MH2jayM9fc27fszjMePutpRk1ZWoy1vP3u29SLV3jn/W9A9kPWU0qpC0GC1xY1bpRUXTUp0+FqeWawec2b736NZ08e0ZyvRfUeIajA0A/CsNSaqjTs7NTktqDfNmQF3DqYMYwBZSwhKQbnWV202DzjrbfuUCzmfPjLh3Rjx49+9JcQx0kBGJhVGXWR0XUjh8t9TtOKt167wTe0p9p7ldne67zx1bcpZ0u+fucWippoAq/cVbz41b9jfPErOjOiKsXb771JUGvyKIPYDz8NrBvP/edrfuveHW7NbpAW73Hj7a9zcOfr/PQXv+Dz+x/z+YPPaJqRZghYq3nrzVcZ24ZHn33Ks09/yUdn59RFRmVyhnYkqQ1Pho7KWkwYqRYVXduhFYwuYAhT+rcofN3EXDPGSDCdnpj/RDyyqHZhCtJCFmlJKRQGN3j60XP7xgEffvwhs3rO4WtvcePgJsdPHtM2G7p2ZPA9/ckR0UPQiTREwDDbnXN47w55YdnZ2+H0xSnbzZoiGAqbE5P8XdZkUErStYviSFvMF9TLfbwbODl5wcXFGcMw4Iae0ydf8PDzm7Rty3Z9Jj1aXbJdr4BAs9qQ5zl3Xn+H0cHq9JihH6UHnsISQQaLWVEINk0n3vr6VzFW8auffcTY+al2u1KcyjA7Xdd8apr3SIiVtZbgPEnSybhqZ4FrREV3fsGnP/4hfStnZgwBVXuyPGf0kd3dHXYOd9m0A5/88kc8+uin2LxkO3jqsiSvcuqdGte04hT1EtiVEMU86noMJX2zlkF4mBArxmiMURR1QfAeazO2q1acbl+a5Smlrs/sv+7H3wCDz0wPiwnoECf2lgK8x8ZRYK7eYnPLMA64YsF5THx2uWGuDYssZ2kS+1mkSpEs9BTaMnSePgZRbhlLbi11binLguWsZLvZMjg/KYCUKAImtY2ArqUJELFVRKvEclaxWMzY21vS9wNHx8f4qOkHT0RCJBSRpm3xUbPqVnz66YckFbk4e4Xy1h0prrXhYtVx+eRY1DMoZmXNrLCoTFNmOSfna/rzS7bdQACcH4ljy6Nnn/Ds4QesViecHSV0qolEUmjQtuDjD3/K+7/+O7I9wTL2I5vtBdvLZzwc1iQlSU7hosf3lzxZn1EU+8SxQdNwfPQF853XKMoZPnpKW7DaXJIUWGWJ1tANHSYKMNIkTTUFehAjUSVRtyTAOFxzTAhrNmcPGcJIGlvqcEsGiO0J3faYZnNCvZwxulE4U0ouZh2nRsgqkvekOBJ8g2tPgcR21UgxFLbolLh8nqjzxOXpU7qhY22WlLNawjGMpu+7iW0kQQM+eWxWTttppGjXGqsiuRYewRiEtedVgigpv15xPfhSSpEbi1HCBhDLijwI3egZQxR+C1GYL1epdwBkMnyOSdRj4sEhTZYRrdR1g2m1MAzD1YBPR1T0ZNZx8uIJNhMlSFHAerNh24hNxk0JTF30ZCbHqERV5tRlTV7NaJtjXAiUxRugLcE5rA74MWK0gDxTCmiy6T0njEoCd04G5zop3iOIqi5OVhHhROlM2B4oxaJeYGzOpt0wuA5jFf3xBckHscoZKWoCEJWhHwJcbbaTooti7VFK46IiS4nciiVIhqGKwipGJzyr3EQybVAJjDV4n4go1o0nM0bsygzUlebN119BK3jy4DmDGpkvC+qqJtOJN27v8INPL9iMPTuLHGsj297T9CN5YRldxA+JzEpJb0wkyxK2MLzxzlu8/43foTWGH/78L3EqsL+oabdwfLnBffGQWztLdvdnDN0LfvKD/5Jf//4/5n/6n/wv+dUP/i3f+d4/4NadNygLzZOHHWWZ6PqOf/UH/yn7h7f5ve//LV57+1uUswNC8z1OTv9PfPTBT+j6wHrj6F3g3r7mu+/tk6fER89WND5Rl4qb+0v2liUnR+eYPKfMNPuLnKfnIzZT9CP4pIhei9W30HSdxzBQGkkCHNKWrhkxxZI2SKNFGjiYlYzbkd16hkqajTXs7ue8vag5XjX0Edp2ZBgCISScj2Q2UueGOi+4fWMH5x1Z6dG5PAjLoqTre6JKLHdzWAVmyoryNgFIYFFmFRYlSeYJYjeyl2tuZZ6jKIrTqizo236yiivGzYgfI0WRkdVMLFHF7qxAJxn4DKMMG/LcTBalQJlpCcnRirI0oDW7+7vkVYk2hvWmwflApqcBdNTC2bPS/BttOFiWHK+2ou7sA1WZMSsNMY5M7gSxufWe5bxgf6ciw5KCo6wsazVQ5jk3FwU6BLwb6EZLcIYit5BkidE3Eiw1XywZxgC2YLaQqqKe73B59pTlYofODQxuwCiDj4qsqGnGLeerLWpmWQ0j5f6+nPkpCQ8MeZ39OGCtJis0Nw4X5IXCe7F5iQj4yxaFq21p4uX+Ea7Yd1foAzUN9iQpjEnZkCb03BToMRVtQ/TydafG8Ip7l1LgiqF3pQJRKRGnwuqKbSavTAZ/MaXp72bK45isEepqN5nQExflqni8HtzF6WvHl2iPKxWjSldDQlE5X1lDrjmBSq4/YyT9/eo7ZjODc5Kgd35xwfnFJXuH+zw/PuXOa6/StA1VUTCWgW7Tyv8bR1SUZ0xpckmCR5hOIXrqvCS6nqQNY4jUdTU9CyXRNTOSnD2OIzqv8SkxnwtC4M7hkuPTM0gjkAmPVSlIQdQ3yVHmlnv3Dvn+7/42N28e4kbP6nLF5UWDOTDENLBZt6QUJdRGi6UvROi7hHeCVAkx4YbIyckZWW748z/7K37tm+9NSgXLGBxGawlpCAHnApvNlp/95JegImVZ0TUtx9Zgo8MgHD4XE0MSXUSd5RKG0KyFiWnsNFyYWG1G49wUNpbJz03UYRG/BRUNiez6OT6rJChoOStx48joFH0fGYIklLejY6kNo9McXw6UZUaKBpB69WAx4ENiOzjmOWjlKExguczYq4DoyHc0x0Oi8ZExwmJWEzYDcfohxxQwKlBniioDrcR+WueJxdxwuXJUZY5SgcMb9rr2sCqR1DWBkiIv8BMXTys1cXph9E5Uu5OVSSuJRghJWMTKimI0RjXx42RolxfCNTO5InqxQ5mrrzOpcgUfIwM2kxmc86zbgSyTQJgMS1KJfnSoKbDEoIiF3DFd19I97kWdN83vTJYxunDdGFljQKXJAinqdGuUJEwncCHhvJf6Ksl9YRwkJaiIsixohsjlSlINu66XpdCVVTTJ8M2YyDD05LnwCccxkUKSYd8Vpmhq1F7O8CZI+9Xh+lLCwaRBQJGwmZ4Y4vKH3ifSxB7VmOuhYUQWV0+ermnawLZ1UwMr6mKtrgKQvtQgpn//9aDU9Xk5abCRdGXN/uEBX/vmbxCj5cEnH7BePWe12pK+zEBVovKeLxZkWcb56TlxdHgHRZHjo2fvzm2KsuTi7AzX9UR3hfdxkwBDEafwmxQjvg8MjNPQULPZSDBGVhhcTCwXGcudnIKRe7dL6lpTFBlffaVmUSUutoHt047NsuRgb4aLHqMidWnY2yl50m5pukhVZdI8G82iLpjNS4a2Q0cobI61inYcyLNEkctQt+lH2iApu70PwkxUCOvViM52GGD0GRebyKwIDOlqsT9S6sSbN3Pevl2yvljx4mJgdJoyN3RjpO9bTlYe7zMuGxFcaKOIzUhynjLLWW0TfT/w6is7fG1W89n9S0Lw5GWJynOCjpgM1hcXuFGeOykIT11XFUVZ4L0nxkDbe6JKKKOwVvPqV9+junMHjp+x3N9jc3rC2IvqT5Kw5b5PURSpO3s1GkfbDXzxZEvyIvW32pLnBQcHNX/r977Fd957nb/84BGfffSE88sLxtGJwCFGZlXBfFZQFBmnly23777B3/0n/4Q33/o23x167n3lq/gEH3/2CcXygNXFMT/+qz9hWWecvar5ym1HURqaS83rt/fZ24UfrM5AFezN9/j8swvKwrC/+xrbxbdJtqK68RV+8eHnVE9X/OqXv+To9AX9OHJ6eskrr7zGrYMZR4/v85Mf/5CPf/ZDaNeEoWeIjnUYyHUuwTj9iC3B5NA1HV0fWM4LUu+w2uKTYfDC1bRGAVrcZUrJQkRptDU4Ih6PJ7t2WFWLmq1bkWmLMRk+gKl2+Oa3v8v58VOKqiKf7XD3zTd5fv8z3BjETReh7Uf8JFpxIXFxdk439CyWczKrKQrD2OeEFGjaDbNZSdSapmmZzZbUCYauJanAfG+Pu2+8y6NPPqSuajabLeMgQZ+ub3n46YesLy9Zr1bcvXmImVlS9Kg04+TklO2Dx5y9OJ3qxm5CEUSumM7WaoyV/ISgFGnCErTrjqEXJiBpshNPy+UrR8Y1k29Sx9pMxDCkOAVTXtVqYk2Pk4MjjKJKzIzF+YhOhjRGxjAIczKIsn5vZ4foHKuT02tLbtTZFISlpj5dFkreyc/5SkGolPRUV2er1rJEFP4/k3ND6l+llSi745cDQ6TP/ffO77/Gx19/wMdE7J9SZFABWZcAg0OPDSYvUENPQqFdQA0OEyMhsxTGc8NqdoBFkEKlbyN9M6C1yOuNVhRZTpHnlIUhKc3J+Yq+68RnrgS4L5sJkS5rICWP1rk8LKNjd2+H24f79KPj9PyS9aaVm8KJxaDIM1JSDN7JNg/Fi9NnHD9/QG4Nx3uPSTFweHOPsQgcn24pZxm5zVnMKnZ35zTrDcfNmm3qGFtoQ2AMXlQiOnJ59pTPPvhT1mfPxIuuIsfPPiYqy3ZzTtcaUjScvfYWeVYxny3wQ8/R4wdcnj0nzHZoD09xbmR9cYYbWoZ2YH32gL69xPuOo6f32b3xFWaLHfp+YGc+5/z4CcF37O7dI5vNic2Keb0PKLBakv6mGa2PkTh6ikzUay5ccHnxhMvzpzTdyN5eENZUVdFtz1BxoNs8J8uWE0RySgRTWh5ChWz1MqvQUdFvWrr1CmPlhrWZZugGRtURwwuePmgZhy2BhM22rFZ3yIt94U4FB9oQkihmJBBlpMwyjLpiyyRMSAQSgwsMwTGEIAVVSrgoyYhio4vXNlSjQEX5PqgpWj5EsYa4EHHTFN6PTm5qLTbCq/RQq4zYxLw0zGJvS9eTfI1sZRWJIrOkCDZ5CmPJ6wXro2OKLAk3ywtkVxumFDvhei2WpahB3MB6e4EZOrT2zOeB5eyQsloKJFvJxjT6IMlpigl8agheVJxXKXpKG1xwwvvSWqx63mOyyWKghTlVLxd893d/j6OjY37+i5+IcmYIKJ2mkBFRPcYgW+cQI1dSaSKTauiqaFU4IpsQyK4OapPIFdS5MLdSEN7P6BzOBWor0G+babk/ldho54VFJ8fTh48JSTG6nv2dGc9fbJjlhnmdsagzlpXlaOPZDp4sz+hGSX32yU/2AyaLpmxfLhrH9sETnr444cHjzxmc48Xjp/jB8aK/gCzH+chm1fLq7g4zk9Ou13zys3/HOLaYesHF0eccPfkJn3z4S37jd75PWe3wyw9+wfHTz3n93g5qZvjzP/mvqJc7XByf89Vv/D7f+u5DXnnjfZ4/+ZTPfvFD3r2jWJaJ9emaIeW8WHkut56kNccXW549v8RqhcoCw5hxuFeynBlWTT9xo0r6xrGsC/LMM5/lVJmmziy395dUec42SJHadYHRRfpNg0Hx6isHKG14frzhRZfY+siqGQhGU9WWnYOKyuQUdcHFZsNsWaETdO1APTMUVY4LA2jL4AdIAnRvm55t8Pje4bQmS5CcDN8yA30U1YNwnRK78xLGKMuKbSMWsei4caMGZdm2LVWRY03GMPG+dvdL4jCSq0Seg06KwU2BS0GCSbyPOA25iyyXM+qioG8HmmbL5fpStpuFpe0d3g3sLjJ8Cqw3nWzH64zNZY9JijEp4aSMI9pa1m2PtZoxKpphpOk9Y1RcNo52GCnygk3TUheaxaygziRQKC9KUSAVhTxbdnYwRYFyJUUVyWrDbD5ju5bnX9tdMoyO5d4t8mpG7xOLxR6nShrhcRzxMaAJ5GUORhOVl8JqGr6piW0yDG4qMCaFmNUc3tzj7r1XWF1suThb8+zZMePgpAT599R3V0n1XDeCMvnS02dMHfD0OcIIil/6/6ce+Upxp0BdQ1XgCpdwpXiBqyb55RDj6tcyhPyShnD6pfTYVzaIl5321bNPPjtds4auXtsVnzSqKcAjJVluTl9b6USWWWxmp6S0KxWjJNxVlcHkWs71IAm7G7cBBevtJWcnLzg9fkZ0DpMcahpmoiRRMzcGjKKqCjILPnhc7JmXOblRFHmJT9D1A4JlEHWpipGb+wdYIpdtD0VBNzrqueXi9JRFbinqin1V0vb9FLCiyW1GmVmSrVAqcuvgJt/59d/i8PA2Xd/gneett95mHAcePvqUm7cOODm5oOsdeVZg8pw/+5O/5NOPH2K44rwZfDCkECnykqHr+au/+JEMPCcuodYGbQy5hSyHd999gyIz7Ozd4IvPH9JcruX60JboEr3zJCVKfouhthqjDMpkoORMDwF8lKWsTsjCCEUYxY6UVwV6Ss7zCcYoPNt5mWNtzqrpcMmjk2bbOII2eK8o6x1637Da9BgrmAQF7NSG/UVOcI4bO0sutxuenns6b+k9tH3Cn4zcXFrevqnpleUXT0eaVhSWZZUBE1JDSVNtNVirqGuNUZG+k/TRtvPMZ5bBebaDQiXPvLY455iHqfngavgtN1ciCiM6SnpuWRQYxMJ+1YwwDehsLrzfoXMS6KRFTTY6PykqZECaFRk4WY4VeTax7xTd4MT+6EUFFIMEvPkE88JijKGf0pqNMbiELPC2rcgDFYyDkxreaKF8higW8In1m00BbSG6idEkZ4s0W1Odg+BYMiuWrSzLGMfI0xctKbWsVgEX5Cwa3XQsJDl/tDZyLxGFY6cMRWlxvr9eGsQpPOzq3FAvj45rofFLxMHLP5cFgHACE8LdTWlaqCbhthkj54goWgIpKdpO0Q9b4QHGq7PvKvTsZdr4y4NvOsdIXzq35drywWOQ5OH1asPp8TE377xGVuW4Yw8+Xdufr3ilIQWa9QY1XUdJySlv8wyj5ZmltaYoyinN2ILSwnqdvklj103p8EGCYaKZWFWBzdpPdbalLHMWc8v3v/tVloXhYC9y9OwhYzdSVzUosWrbXNEOLeXtiqUxHCzAlqL0NFYzjIMkx0ZJHt6kUZJlNx1FXqArDTFyY1HTDyPRCYO6Kg0+QhcSIYrtL7NAEJWnFi0fmVHsLkR/6voBtBPXDInjiwbnRkKINLK/Qm9FURfJSEGsh1opCTxwCZTGYth4T6Yj22i43K6pa421iTJT9F3LeOJJaoPr1qxPTyaW7IA2FpUSfd+hR+FW5nk2JQWPhBAIOnHvvXeJSdE2HQe37nBj7w4XLx5zcvScq/R3ow2KSN/3PHk8oBFWozYZVQm3bi559/U9vvW1V3nnjddpQ0bfRGyC0Y1s2lbOXKXJC0ORF7TtQBoj3/rK1/mP/uP/FSnTPP3iPla1dO2Kh48e8KOf/JBnZx03FzWff3afnbnmL/70Gb/7/h5fueNYHX3OjbzkUd5Q5AfsvvquLGj3Mm7uv8rj43Mu7F3WxydcPP4Vx8+fcfTiiOOTc0KMLHZ2mFeW4LZ8/uCCXD/j+OSYZ/efMAwt/dASRo0KJVaba+xL7x2hE/SDsNcTldFkWtP0gkIqcktd5Wij8d2ItVJvueQpMktdLrh7eBs93+PpZ5/QdFt2d3foVg0e2N8/5M6d22TZjOXunMIEnj9+yNnxMXW14NYrb9P5h4R+jbUKmylKU6K1pncK51qGbYdvR5pVw+7eXGy7KRGTYt1uqOs5s/mM26+/zrLa47NPfoHNRBWXKei3lxADbgrtsMZSZQXGD8yLgvXo2K7X9H7E2IxZXZPlGb4Z2K4bYgzXoUIKMwmHp9TvbmToBpSWYd8nH3w0HbyS7C3hP3JuKq2Eh51nBET9LUPRSD1fkGWWbfAEF64V3cjK4/qsVUmj4hSYNiFcUhQOvDaKfr2lXW05t4KHYpSlbwyBERm87+wsUFnGEAayCfcmuCklNXQSh5yZxDEyXJyOYa2JPuLCQLXcoTq4jSo3+OMXJC8ZAle189Uy/K/78TcQspHEmzI9SKcYVfABPY6UfSPsu3ZFbwo0Fh0CNiWMj9LQT6wlGx3ttpFhA1AoQ5nlVLmlyEuSUmy2LX4aKMYEerKSyJxKE4ITe0iK5EZT5pIMuLe7y97ODutNQ9v3tIPHTYmxWmUijSfSdZK2ObY99XzB2fFzYmxYX/Y8fvwxCejHjjuv3MF7TRY1y+WcuizZdC3HZ2c8Oj3lYH+fsVEMMWELTbvdoMuM58cPUW4rFqCQcHHg6NnHVLMlWiW6riXLz7k4f45WM+ydxND39N05xJ6miZw8/wKb5XTbNd45iD0vjj4m+BbnI8atODv+jJhew/Uj9Fv69ROg58L1LG68yvb8iCrLyPMFMY54JgZPmBSTRHKbkcJACi3OeZomsG16jD1jmTzRV3i3pmkbXHhMUe1i8hp8Ii/nkhgWndjarCJnRKmefBHYXIB30oyQIsZEtk0j/Ap3giLhUkZMLZvVKcudOTpL9G1DNFdR12L5VikQgxSGkUimxJ7UDOBdICTP6BwpSThKiBFNkCFTDJgYiEFCYMykZIt+ArMzJQJPsPUYJ0urzokpMXhhA6iYppScidUkEzaEcSL2RE0i1xofIimM0rymET80zGc36OsL2m5FlkmSWdeuGUYvyrd+JMsM622DFGbSTEc/kNl8UhX2BF9ICMqVVcMHkoFxFCuiUTLAU1qG4H6SKsfJPpNSZAwBplCW6+GcEivGX/7wB9Q7c0xpCc2IURKKEZUiT7CcV4SguFg1xCSbTq0M4erwgmltLTDlzAoLJsZI0oLpX1YZhRUJe98PZMZM2BuFCwkdNWAYRkdmNPOiZHdR0jQDPgbms5qmGQkxkOvEej2S9Y6bezPOmi3d4AUYH6QojySIYieSjQxYDQ5ou4F+6Jg/+xzX9nQ9zOYLchNpXaCwcHt/wayqOdi7Td/VFEWiSA2ffvwx3eqUk3/zjHr2FtW84sbOLj/5i3/H8YsH/P7vfZ+nH37B3sGrfPCLH3L06AvyOuOVt77B13/9b3N5cYy/+J+TuiOGIXC2SQyFxquMqhSrEkpTVhZrFacXHc5n9G5LjIpu9BzslygCd27VlDZSFDVKR9Qw8OqNOXcPdrk8XTG0I5vOs21HyjynmNQtbd/x2dnAyTayt5OJvWmh8cpQFzk78xndakUYAvNSMXYtzSiN7tkmoBqB3O/v7PGtr3+Pn//yB6joqHNLXVmGkOjbyDCKTTuFBFrT+oQfZKgS3Mi8NlBmdC5wY6eCIuDIme1U5KbmyfPI2abH6Ok61zD0juAj3RioSs08M8xmBWOIXK42aGMJ0/2hc0dwgwRUIE3cenNJNVtwuVpjReNFiDlGRbKqZNv0XBxvWdQZNiWC0qyagc47fErkxrLdOowFa3MB+PuAyS3aSIo72uCT4nIrPDa1yMkKyKzBBWHEtk3DGMx1odD1W5rtmmGI7O/vkHTAWsN2fUpmFXlV0W0uUVpRVSXO9+gsZ/AZ63WD92ARhUhKEqYQgyAL1BQ0keWG7aZj6Hvmixqlj7h9+w6/9uvf4C/+9K+4/9kjSRyELzWs+t9vbpES66WCJF3bW18O3b782ROXRF0p766OC3UNBrfWolVEgjReJpLZTAaUZrIdhkl1F2K8HuRdFVuyrZ3CPKazSH599dq+/AYmTpm1U4I0mCmxfByFbRhToKpK6iqnrDLGcSAGT5FXeC8LpJgCbpSwpExbokqyVCBR5pYwjrTrNW70zKuMKs9IJhAx2DqXBNl+oLQGYzPGMcjAysj9NfpAOwwYYFmXRD+S5wW9MYxdx5AiWVmw2TRUecHRsxeYlCiLmjCu2G4aYvTCXFNiCJyXGUPrSMnz8Ycf83/5P/9fwWhu7O/xzW/9GibL6NuRbdvjnh7x7Pkxp2eXkDJWlw3rzZqigrfffo1ZPeP0RcO28VxeXrJeb7BWvp/D4DFGTwNTTdv0oBNKBT7/4j5feecd3n7nfe7cfof7n/2MTz76EJcsyfdkNsNHWV7Z3BDw4sZQYivVMbJTZbSjIBhUQrh8Y6KuMpxrsXokKUsXA83gCdFT5IamVwxO4UewNrK3rMiNZb11BKSZmBWG3BoMiU2XuLm01CawrDTOGGwasSqyP8tZjZLAWxaGzkSOmkSxkXs/BouyMAToN708O7UWeyMKF6GJ0HeOspBgnNX5SGUN+zsFnR9YNXJPdV54uXt+UsxqsbY758gzy+hGGd5lliKzMjgKYRqqT587WZ2CDzgfphI/XfP8tDbyvUcaKj96qiJjHEZSCBgrE5CqyGiHQIjIhm+ykKupKVaIVTOzOX5KXnRulETsOCkzCkVgJLNSuxltpR6Z1HEgrEtUJrWZUUSEF2dtdq2qiBP/zge5d5UykkY8ge2vbMlMZ1VCFv9KCWdWgr+mxW1ylKWRay2C8mpic6ppeXq1YHh5El7/ahq2GqsnJEISdE96uXiIU6MoiJWJ5TcJiK+CKK5SdRUvk8RfKo2vFMZpqmNfDnrl6J1en5LhnSwTIq7r+PCnP+KzD3+FGweic2J7u/aeTV83JoZhfKmanr5u0zTYzPLw40+mRndC0lhxeo3eYU1GkRfkRY6xnpQk0MOajGa7JcZEllu6wZMZeU/nK8+f/dmHzCrDu+/cZOwiRlleXFwwm+fEaLFW0rxTinTtwP4yB53ovNjpqirHe+lPrZYBL0DTydBeR0UKCW08szpjdd6RlwVFDgqP0pFu7Bl7wciUZSGqVi9D9dxCUSY2nSNTkSrPpdTVmnYY8TFiDZgsJ0bFxaab1K0JkiZGQ54lfNRYElVhKExksbRUeeLsQnF6lnhx6okpsH9bfg5j2xCi4vMXR8iSLV0PLwSVIM+amNJ07QRSmBAiKXH59CHuYs3esubg5l1uvvI+H/38j2k2l4JEAt66k/HOrcTu/ow6h1fvLHFjYl7vc/PObebLGxLYEBKXFx2N6/ngg8e0OMp5xegVCk1wA4W1jIOjC8Iafnx+wv/2f/e/4XC5oNg55H/0H/1TPv3kU37647/i2fkZT58dcawtoBnans8fPuV8vWV/CW+8/jVu7c+5WSz4te//Gs+Gjhu37vCf/T/+kBA+onUt5cMz9uZzmtax2TScnp+zf7DL+dmKzcWat964w/HJEbNixupyzdHRCV0/yNmZFGVe4pxnGPzEEg2YmNjNLLmBksRcRXxpWbWefhDMSHTiviozzazKqOqZ9JAhcufNO5T1DW7fe4tif5+nX3yCsZZxFCxJ0GB39vj+3/27dKNis9rSrU9pLl7w6MUFh7df5Rvf/Vu8+c0L/vi//P/Qbze4ICFYxlpme3vs7d3jxXPh4/Vdx+k4YgvD4a2bzO2McrFktrPg5p27hKTZW95AG4NPPc1qy/nFKS4E2r5DYbDTa3djjw89ezv7FEXOptmgrWH/xiGz2ZwxRE6PThmaTlxxBglpQRZ4Menr0AxI6JTQOpJldlKKhpfKvfRStZeQwDoVxeDMdD4zLVGVAmXU5Jq7QsJcLQ4nVvIVt28aIEYEHSJWfEtZVPRNj+sk3EPMqeqaT9+1A9pqUcnqaRGuJTQyxav0ZEEjhATBTwGe+gqXoLFFzm///X/I+7/3jzg/fcEHP/kLPv7zf0d7cgQpTWnxfzMff/0BX1QTHHZaVSnAeYiRfLNiNpxCXmDOn6PIMYub5N5TpkSuEzpCrjJGNzL6QdLFjPB/SptTFyVVmdH0vcj4k0xtVQoTG2eC7aZIiONktTFk2kjD7h25zdFKc3x6QYzCSAtRCp4rtYKPnq5tiUnhfce47dDWcnb8hNX5OZnWrM9fcFbtsN1uifTga2I4YG9RE9rAyeqcx48f8OLiDD801MUtmr7F9J6+bUlW8+zxffq2wYdRFCTBY01D33qB2Y6ecWw5fvIxWi8xaqBdbzk9fkQIDh9G1hfPqGYzvBsIYYQU6Noz2aQFT4o93foFOnmMyhlTYn3xBG0hz3psbukuHnJuFLduvUdMg9x0DvzYU9QztE4Yk+jXK/puTbNdAQOZTXRNQ5lZ4TyMHSoG3NDTXj7DFjUhKUK+AF2TTwDlNI4kVqxWR2w3R3gfJiYYOJdYLGvGcUvXNtR1ec2J69qWvttgzZpUFTTbU1zy7N54bQrHUKTJkh0JkiDkIuPgiDpOqWWB4B0hQtCahATDqBDQDIRhAFWBruSmT2raoAWM0lMBNYEwY5BkrBjxKuGnDZdOiTT9mTIKg1hHnI8YIkUuLJLSajxmstkE+mHF85P7zOoFttDc2D3kYn2Bj55qd0bXe7GBeCdb3ilRLkQvaigjwymrLBoBCkuQhjS/IXhUlGJaaxkqK5iUltMmBEWm7TTgSuR5Lu9TSxJSGGW42W86+qZDn2lpBNKk24sy/PBGs2kGrLECZUMOuaRFvhenrUtKSKGfRIpdZobMaKwSiHaMngi0nWNWFVgiyUpKtrE5q1YCc4xSVFYTw0izDnRDYEQzBPCjF6tQgt1ZTl1YuiTW26KoCH6Q2TJSNRvJd8bFCUqthCskTb/m/tNLMiVf28XAwTLn3o2a1w7f5Oat2xzceo1f/PRPWV2e8Y1fe5/7n3zOtluz7Vc8+uiUxf45ZydfsLuzi7I9z06P+Gf//F/w/e98m9de3ecP/vl/yuuv3+R//3/4X/O3/zv/kK+89SYXq3O6YaTOFPOs4tllw08/PmX0GbPa0rYew8j+Ts2mHbhoPLXv2baSsJgZy3rt0UYzjC2ZTpTWkBWKea44325JfmReWO69PuN03XP74Caby4aLrafx8OCo4/75SOs0B7d3WZhINBHnxarw6MWavf0KHyOPnlxgTEFWgKkUq7OWLNMUlWXbHJFXt/F9wHlHkWtym2MsbP3EtEAQCVobUoCqKGQAl1vy3DIkOFk1mEXN+UXL2inS2UDbnrLtA52HXGfkVlNkijJLEANVnUNSDA4GN8owgcnulufkVrGsC4pCGoJNc0k3dJyvVmzbxI3dBVmhGM9HQhCmazf2UzNpabqAmfggRml2q4KikCJ2URpcCAyDI7OKw7oGrVlvt1RVwc68JERFnmmII9t2ZBgcBzsLSiMBGqicTAVm9Yx2M+LansvNCm0ty1By8/abNE3POGyJbkTngI6MY0fTtLS9Y2g9/TDQDyOzMkdbprR0ed0ibJMBWgiR4OXn4PrAyrdsNj0X5xtpdGOQ96cEjxGvzkaAJIqXOIXyXFt2rxV00/nDlxpG6UqpZzUpCg9QT+enMXZKK/ZTAqmw+2JKxCmB1GaWvf098rykKHMAuq6TMKm+ByWKnZTkNeV5jvd++vlp9vZ3yfKMGAKr1Zpms8U5Pw0NE7NZxWJvh/mspm06xmEkK3JWF5cMw0hRWGZ1TlFa5osZEJnVBd5FLs4bNk3PZr2h2fZy1lp7bT/WymBtgQsj601DZgzrtWdnVjKrc5oh0naD1DFZTohRLPFevn15UTLGIAFexrCscuaZYbG7Szd6fHAklVg1PePomc0rrEks55XYh4wMxG/tL2m7hlqJ8jQ3illlCLqkD57RO85OznlxdsKt27e499o9/tE//O/z9Mlz5vOSf/VHf8i6abi4WKOmcKp1s+bgxi5fe/9bvP/+N3n46DEffvQBP//xBao34pwwmjqviElJani8FhuhjabrHM9fHPPv/uy/4e/87b/Hb37vd2j6hqMnR/hRhlclhmAg4EkmojMYWs+YoFKJGztz+rMLYkrkmUWphI+egIEsw1jDMMq1WpYFIMs7ZQy51dyYlezWFVZDPZtxcwmN33K53hCjZgyBuigxKqCU5nzTcbx2xKi4sTQsypzFIrI+G8kzjY6JtgtkSvPgRWScsDayEL2yyRqxMU6LOmOVPLsyTW7lPisXFgVcbjs6D1kuzEOTFPNZRl2IxE6SxhWZNdRVwawUtq6ywgb2o5NB2xSKpOUwE162ViQroXH+S+E0CbnvfQgYbYlRUqWrMkMpYa+60VHlFqVFca+IUyKvvm7IvJMlTJqaMufDNJwApew1g7Muc7RSYotEQiIwovgaBy/8OKspMkOKgaTl/RalLDxDkNCacZQzY3SimLBay89/ENme9BNcq/FQEi4gS1VZDIToyEuoipx5JiEmIcigehwloCcyBQfF+HK2d6WWVpNiLyWcGzGTOiXxpSHrFAROUi8VgNP7VvpKtTwFZwThAV4N3r4kPb46dF++oXSlfp60yhPTk6kWJAoWpnMD6lr9oqfnxEuVolJXQ0Wug5F0kWFyS5FleBcY+pFEnGxoYbJtC7e58+H6PFZGkecZUXtMpsFFjDKY3Ey20oRXlhenIz4MnF84ZrUlM46339ihdz3j4Lh185DoO1YbR4qw6lr2d0oKm4GS6y+GQESxtzPj5HSLUZosL3BeFFchBIYhUea5LE4z6LqBXEu8xnwmW4LLTYfWMvjetMK7XhhNczmSMkVmoR+mYXMSdeg8WqyNqBDoBs/QK5IyWJ8kxDAlfHLEFJmVlnuHlns3c2a5x8XI3k7BxeVW2JDKEqJcX5vVhldeew1z44CHDx9Q1xUmz9hcrnHBTxxjWeKPo5tsh0yD/cgHP/oRu7df51vf/x1Wp2uWNxUxWZhYvaVNfOfNil9/Q1GWlm3n2TtYkmnD8XPP3v4hH3zylEBGNzo+/PApN165xw8/+IIQvYT/uJGxc6LoNBrnPcMUHPXw+Qr14pz6rXu88/X3OX3+jPsPHnD/4X02w8Crt3f42S8+5sb+TQ5254QQ2bpAEXZ4sQ785ve/jwmRv/jlff7dj3/OwY1d7j94zGuv3mO97vjaN34DDRz9+Cd479nf2ePNN1/n+OivOD87x49bFouacql50vY002K4nNi8Xdcz+pHcauZlzjB6FnXO3rJCxcjoEyfrQNN7XFS4IZDUNKSKiZQpvDKQl+wfHLBqHXsH9yjKBa+88RbbsYOsREfFYl5iX7lJMDNee+d9KGe89fpdfvajn5DlmtXZOXVVsH+4A9Wcu3fvcOu1X/L44w9kWZsiKTma9TlVlgtD1UrqrDZGeuBxZO/GXV75ynt0IbBz6zZjs+Xk/AV333iF6AKn+TEubHn2uKCMAe9kgJVSEJajBWU2oME5z6KoCH5k06wpipK6KuibFq1lllOoiYkaAld+tuCvBmARrcT9kKbFVpqENZCm30+K8HGQs3/6fZFlBO8ZJ1tsnovoJyCiE6019aymrCoO79xjZ2eX9cUZx88f07uRG6+8waye8eLoiCLL+N7f/Qc8f/KCH/6rfwlpuK5PNaIGd70DrQij9P+yE5rwM/Flarh8vBS1pJiIWkQ+IQTOT47x3lMs93j3O99DB89P/9W/IIyjfA3Fy0P/r/HxN2DR5eUDJQYZMMQBRSLfvKD2p4RVQG3PmM0W6OUuRbLMYmCpLCaNNNsNPqvJMjARyrxkWRTMqhmkyKbtaMdxgvTq6eE/TUq1sI26oeXi8VOWB4d4PWdWl/KgantJKrtosHkp8ux+wOY5L44ecufeKyglNt5x9MxmM85PHnH84ilvZF/HDz0xjug8Y706Q9sjlns7nB59xnL3JqvtHZZLS+wDz8+OePjgQ9arc7ZnS27feofV5hxtRsqs5OzsjM3FM4ITwH/0rUBrh540DFidSypZ9JwfP6aobgh4vbukac5F4uxH+n5NSsJZiEH4KQQnw75pY9S3p7hhy2J5CyIYPBZFGBuGzTlDd0F2GeirBaaosVlB164JIWLqQoImFHjfsN1eohgxRpgYMUTGvkNp2TDGKAmUzm0wmccNDj/skVV3sUbSZVXasr54wugHrC7YO9hhs9kwuJahE9+9EY8soxvIrKbtBxSWtlmR2Q3GBEa3xoURPxySbCUKjQQpGJLq2axPWcz2CSkxOim81PQwizFA0thMEb0j0WLiBjc0KL2PzYqp6bKMYSThUSZHoSVoI0iycVRMYSVxUmoUqCjsg9xKkrCOgdwYsjilqGlhYtjJSu69E/WizVGZ5cnTj1EKjLEMY4NRwmpyV7YSxG5MMmityIuC4J3AP3WGVpGxayC3mFx4giopMIYYIDdGAg40pImlc2Xfka20wgd/bbGLQdQtKilZb0x1oQqibOTqIE4vpcQhRhqXUMpfF5xT7XitIrhqbD2ilJtcP8wrg4kwqwxKRbohMUYokhyKVZWxaQeUzQkRXAjs1hmzXLOohG2mrMY5GBtHbi1FBj4qjrcer2XA03cBlwbqecV4sZVtduR6s8b0Oq+KazUV5THIAMoosSedriMn6xbvLLt7O/zyo5/z6aNHLOaWi/UzapNj3cC8LFC25oOPH6Oi49PPPmaIOUfHaw72dnj0/FM2/9/HfPrxA7Liazx7+ozV2QOaWxW/+vGfUFjP0ub0ruDjF+ecbiHGgTFESZ0qFKeXDSFqUrKYrKJtekoUWWa53IzMF4Y8t5yuNiIdB27s51hjuHk4x7vI6rLl+LJB0zF2iW2bWDUOrwzrxtOPkS8eXbIzy2m6Fh+lScmrklTMaPsN9bxmtRnoY8I4RXJyUFeqZBwiv/zwx9R5Yn+ZsVtphnbAeMfeshRLjI8QpAgPIcoGPzPszwp2yorzyw25hVlmuTmvWJ8PrNYOEFtb6DxuFDv9ZgxUeeTWTj6FviS6ye40Kw2F1iwLRZ5bxq4nJ0f5gBsGchvJ8wpjC7bNJX0/sDsv0CanaUf60JGUYttHSIE8M2RakSHLjFmZSdJkkZFlQMw4bUaqlOj9wHkT6EOicSOLQlOXlnmmyJRYV8oio7CW4J3YM0tNVLKY2vQjfRhQxjCOPafHz2k2PTor2V3OybMZi51b9O3AatvRDvJ9rGc5WomlMRAxecbgPdrkaANlmaOm7X6wkyUrKbKsEAyB8wS/5Rc//4DdvR3qeUmNYhjGKa1XbBRX6rtxGKeQDFGbXGk/rul9k+hDTfgCpWXY4PzIlXUsIWdSmgqeK4i+eSntm1TMkYuzi+uvnSYZoVjn5P+5OqtQki571axqoxn6Hj3hGsZxxDtRlGWFJQRP13WElHj29DlGa4ZhnFSPaTo/CmJwxFSxt7cvajI7Z7tdsd40XJxtALHdxRQZwjCJFfWkThT1dDWr8MPIMDq6wYGFLDeoQaymWiusVrgQcCmQoelbCUoaRo8pcozRlFZhkwfniDFyvt0yDKK4cSkyryqKKqPZbOgHacJ77xlCYIwJa3KUTWz7jm3r6fz0M3VbTLLkNuPp02ccHT/nxckL6nzO7/zm32b3YJef/vxnfPjJz+j7DVkeWK+3/OSHv+DjT+7z5OlT2qal7wcicYLtc614MmZKAL5aqiHDzKdHp3hG/vUf/XMyldNt1uQqUNUlNiJp1EpUbilNKm8NGVAoxenZBdshMAbI84C1sviN3RQ0pSCzBSGKEix6T51p9uYVe7Mao0fG0fP8omN3R7O3N+PJ/XM2bUBwkYmuhHXrSK3c/5tuFPXDGcwKy+ACzYA4RyYl3M48I6sy/KaVuYsXNYHCAuJKCVOdd6V8S1HjA/gAjIGizBmDwmjQKpEpSfqeWU2VaxZ1iV/OpU5SopoYJkvs1XNOa0Vd2OtBhNYJF6QZM1bU4TFGsWwnCF4UjipNiatXdj2lKDKL845hHAUu7kfQiarQMhxz0qBZZa6v6SwXBapRihA8mbXk00JvcJ5ExGYWrdQ0fIwyFFMSltRER0jm+s+szYgpUhRiOw8xiGsiiW0qpIiLwsiMgDURNw090pV9X4BJ04D16sACiGS5YlGX09ArkBWWzFpCjLRtT9t5ukHqhzTxP+O0bLw+95TUFlPOiJy3V0M0Ha/rpRimeixFUIJMycuCoijx03KlijAMA96LMktEDnJdctVufsk7rKZz82rzYq0RnIuKYDLyssA7J4plNGM/krwMOWOUYSxKVIYmsyz2dnn3a+9x6949Bu/Z299lWS95/vQF56dn5CawulwzDgFrFdvNJU8ePcINHq00yic6JzgL4eZqOheuvweiuowy2DSWbTegbGQ5MxSlITjF2bqdVLmCE9ldLui8gjRwsFvIwrAqIAXGwWOzCQ3kHDbT5FmgzB3BBHpvWa0HRjcwn1esG8+8FNRL6h1915NZS4yKcQjEoBhGCV4xOkeHRGbE2dJPiiwfIzGN7M4yhiHS9QrnE94HcqvRKlwjbcrC4lxktXGMwRPHAFpTFYHDfcWqkR/lOMj5HlNktV4xny9IKGbLHapZxeZyBSix5E5qNK0VwUvtdjWIKDPDu199k8vjZ9z/2Qfcuv06t28d8FEQEcJyXjD0kV89hIfnHZdbz+3bR6TgObtMPGhLPvjkOa0XlvHn95/ABw8ZJ/HGTpVjSYx4jHZUWUU7JEaX0FlGncH7b98mDIHt+TGfxZF2uGS2N2f7fKDMK3aX+/Tdho31HB7u0/vAe1//FrdvHfJH//qPeXD/IW3XsW16nh29oK4tTdvy6r03uHP7FR49eUDrWvb3bjAcd3z66ScQPAe7S0DSbpvc0nY9aRSMg3dRUEcBDIZZUWCVpg+apgs0Y8voRKSSfCBqsNqicuGVK2MY+5GqLMmriqQVXbvF6IyPPnnA9/7O3+W97/wGDx4+4Pf/e/+UP/s3f8hme87Ozj7f/u2/w403vobVgbPLU9phy6MH98ltztnlCWc/XHHZBP7eP/qnfO93/xGhi7h+zdA2bNfndD5ycvKcCAz9KMtSpXBppO0aTo4esd684GLTcePmXd5441VOjl7w+cdb7t55jWbTENPI3VfeYBx7Cfq8uKQbNgQS1XyP2c4O3fCCmCKXq0vWmzVozWK5Q10XdHXOMDoWu0vKouT8/Jwqr0SlPYx0rQzQYpwUbhNzT00OgjyXMJiQZDg5391leXCTe2++zY2DQ2b1gvm8ph8Hnj66z+MvvqDbbrHGsHvjBrs3b3N45xVeef0N9m/cYvfmLWbzHbrthp/+6E/5+Q/+kp0bh+zeWLK8/zkf/vjn/OIHP6TZivvMZpPkP0FUkehkAaMnxbIEhsRr5MD10iRdIV5eLlqUUuRFhkIWmb/6yz/l+dPHeG3Eoda20+dPIJtrX+9f7+NvYMCXkCgkBcGTr04w3QV1BrPtM/SwpZzNGF2LujhCL19FFYbgepxyOL/h4vwxt++9hbG7WJuxP5+RGyWTYmNwwTOOo6h8JihvmApkdGBwnvXlJQ+/+CW3hjfZO3yTGAdInsGLKi0vNMY5iBqjc9rtBY/v/5x6VlJXB4ToefzgQ+7cfZUw9ly8+II0tPTdBd4NksBKRpV7Lo8fsr484uTZ59y4eY+ZGimKOSdnT3nx+DOsiWy6Ndo7+qEhzxUbz2SnlZj6vh+IWopbowRanGIg4UhBE9XI2K9pLj1nF8dodcWME6WkSg7vFd6PFFmONYpxiCgCKTjG2DCrDK6/IM8tMXU4r0DluO4MRWKzes4wduzdeI8bN26RJbH8mrhDlhv8uMWPl/RdS9c5vJsSCYM8mIpSVDyJiPM942gna1DG2J1gsyU+WrQZabZHuO6SbdOB8nT9Cjd6UIEQBvrByjY3ieXJKilyQ4p0zYZ53dFtPO12RYgjQ72hmBXCuDMQ8fT9htX5QwqbCFiGzpHlO9IwpIkRohU6eExsCP4c7zqSa9C5Zmg1ulxKIYknxAFl7DSkcigGiJ7c5qSoCd4LiyIGMiVwTGEtysFukibPpVGJQTaZVqcplCVK8z9abuzdpd1uaJpz2mFNIqFVJHpP1IqxF3WaVhqtk6gWnShpSJE8M4z9htGWlIUEIjjnJOXXmkmtIlvrusgJVywdowjT8NMacz3sUkoLewemIlChrg4wBVdRcfHKmj/ZNNSV9ePaijt9+rSF18Zcb69tJtvnlBJBKmAWtUWjaIdE13sBzIckjbasmhkHj1EaiVWYFBkJ6sxKJLnoIwVs3nr25xm+D2yajDDxr/rR0fduOkQ1SSWckCOFJZjAKrHaiK1AErZ6J4ElamrCok48Orlk9ed/ST2veXS64VAtKZ+esL8s6duOPuWcrkba1vPRJ6ckJRaQuiiY1RUhWn728WOiMmy2HToZPn18xHf/9n/IW1+NfPDiMTsHPV98eMZ5Iw3B6KAfR2aFKBZGl1DJoFGcr3uSixSZJTPCsfMhcXLZUWUGTWJnWbO/MNzYrSQxuB1IMSOpBU+OLqmKHG0S9w4XNGNktnK0IXJ8NtBsR3SW4XzElpDXivPTDYN3RDVS1ZrdWYWNlhRGFjdKTi4azi87irqgKsVeaKoSraXIDbGnyjNsZmibnmUlW9LtxM8MMTF0DXUFpTbUM4VXBU/WHblJVHPDcl6zXXuOzge6cSTPFFVmsVeD8gTaWqwbOFxY9mcFuRGF7nxZ8Nq9Qx49P6Npthg9sF23VCbjcH/OMLRolciLHNePdJ2nGwO9i1g9cVV8YKfKsBZ0jOgoQ8ohSKJjCpFZmZElzWXXo1wihMQ2RlwaibFnf5Fjo2EcBnbLjL1lxayoyItMnh3MeeXNr/Hws5+i2RDcQG4zMjWwXV/SrRLLRc3BzVcorHB6QgqSJFgWdENHSDD4RNsHYV6WBWVdUtcls0VFXuRcXqzYrFr8KErNNIlCgk8E77g8X10PuK4AwZk1Uz+pUSqR5RlVLQo878N0HUrTJkzShDZifb1SpaSUGPpMlCMTGyr5yDiMoEX5FBIEmQygiNfhIN6Ha2WRmqy/X+pxJysfkNIEd5ffa6MZ+0EKtQkonpBtdbftCCkyWsN63cKkHvQhEpyXQYWxNNueziS6fmR1vpk2zzIwlCGtnxJptSxTjNhPYpDX64LgF8oyo5rXnJ6ei/XWCu+qqjJiH8CN1HXFEEB5j7EaHxNdP6CSp0ywv9ihsIqh69m2nno+p1ltGMdRhujaMIwNi/mCYQhom2GyAtzIuovT99HhckiUbAeFn0LMRBykefDgMVEF/uiP/gjvE1989gWHBzf5H/yTf8z/8D/8x7z36Rv87Oc/57MP7nNxec7jp/fJjnNCsgy9hAFkWhPj1dccyXJDYTWp9RRZTkqR23dvAhlJafb3MoIbOb+8ILqe3GSEUVQSRRalPkqaYmLn5lrhoyfTkJucPE7PuhgZB3mG+qBQSpK6+7bFWMP+bMmykrAiULjR06jEi1XL6arjRoB6UWLtnDE0NP1A33uqwlMVBdvOCRrCGrHDDo6mdXgMwxjwMTGrCpo+sB0iKbTE4KmKnJ3dHB8TXuVcrlpCQLAZQDfKtd6NUcK5ksDa1WRv1krYSoc7OTcWChMGCgttP7DaNpMKQYbjSYllSgKxpBmt8hwdIkpFMmMYQrzmSZrMTKnMMhSo61Js7i5gjbpODFfqis0nw/QxePIsgxivlbc208Qoqg8fNEaLYrEsMpIWV03wwi4rckuWLBEZco3OkWHIsilAj4gfB4rCoHSGc46yKDHWsN5u6fsOozVlXhJ8YPSB0TuMUpR5RvQakxkiiSO3YnBcD8aubL0k+bXRsoQwWpNbSRdWSuE9EwfagUrMZhnVrGCzHmk6YYCnSbUhw9SJR6ritfpj8qJNy1UZahkjdcmVpVIWKJLKnmeGqioxtiCkxOrykno+F2v1ONK3PcEHoRggzomrYeL1wsNoOX+NxlqLC57l3h77N28zm89JCr7y7jssZzu0mw0PP/6Eo/NTjk+O6LtWwlRQvPrO2/zu7/993vrKe2il+eFf/Tmjg1e+8jXe+9ZvEUbP2DR88MtfcnlxSj0vOTp6wunJEWEYrxfEVlup+bWS50WUs0iGraIgNBZ2lxUH+wt2dnKUu0T5hjrXHOxWaJ0x+gCmppsWhdZk9P3IYlYweuFWhgDdOICOmBTZnQXef2vBLLecXHo+fdJwNKn1lUk0nce5yKIqqUxidmuBf9qy3orNW6tICpq295RVIvmILjJInkKLbQ8M4xgJVcIkiKOEkikUw4AIIaZnhtFijFs3shTQ2uCdxkfHjWXF7lJzet5P3bc8x9aXl1Oaq2Z9ueLi7OzaweJ9RCVN8OIkwkhci0pqumYCF0ennLx4zubylE9/8Sd89+/8QzSWLMsY+sgvHg4MIXHReXxMPF1tJ2Vs4mT7MdtmJE5L/cEnrBHcjTFa3EC2IC8NIQh+wHuP1ZAbxY2Z5d7d13j+7JQ///MfcPv1d7h9WIi4Z7Oh2bvBzu4+q8tz8vmSX3vjHfZu3qDQhp/8+Md89NHHjKNncCN5mXPr9g02m4Zyvsdrb73N+rLhxdFzHj9/xmq7olt3+CSYgNl8xuqyxYfE+UVLmpZZamKzxSnvwBhhTbZDxClNPwZQIuKYFZa8NqAiSWU0bYfznt4JCmh0HmVGhqHHuRIXYEiKX33wGe9+55xX33yXOq/44z/6A4Z+S1XvcvvuK9ii5ONPfkVwLU+eP+fifE10HTF41pstTz/9CT/8NwXvvPUN5vWS5b0bRB/IbMU2Rl48us/Z0QuM2lLmJZAIQ6BpBpxLmN5i8oxufcnHP1+j0oDKSop6wbe/97f46KNPGLsV+3u7PPr8c3wK1MFwePMGKVX45FmdG4ia4BxuQrys/SXzZc3BzQOabqRezIlhnJiq4txKSmFyGWRrradnknR1Pk74NaVIWjG7cci9N77Cd777Xb7y/q9R1UtSgG50jK5j6Dpuv/U2X/utjiIr2N/dZWexkLrSWJRWrJuWD37xS6yBHJgvFtx+7R6f/ORHfNpcsF1taVdrHpw/ExFKTCKWySzBBbTRpOS5ZlIiDG8VpaZ8Ocu7GvJ9aUSmpsWR1lM4G4Sh5+zBZ6AVRZ4JUxYJ4ohXdet/KxR8KV3lAGObS26c/wp9cUxdVoT1BpXlqB50GLDuErZneDOHCN3QoVdP8Uef4NtL3vr69zHzghAHBqWJGDKlcX5kaNbYxfJl2p0CH8brCPaT42ccPb9P1zWovCJLUNdzsBXnp8/ZNpfcvPUqRTGnrHc5P3nKxel9Pv8s4733/g59d8LTRz8hpYHCVCg1cvT0V5IUqq6GF47TF4/ESuJGlPW0m2NOTx4QyBj7FW1zBiSqquLiTAY5IS+kmFdXPIyEthrthH+ktdgSSVJIWZsRoicMDV2/xo+d2Ai1ka9juW6sUopTalKSr6HkIZ7lk9JnDECOd6NEddsM5zeTtVfBeEG/+pQ0t8R2TSKSxgGbVzTtGZeXT5AtUAAiRZ4DhuBFPZiEOorWYpVV2hDCiOvPCcUOJltIImS/RqswwXAzZvWM4Dzb7Rpl/cRAk5AHlCZFJWl3VqMY6dpzbFYQXAPKM3RnKJPhkyFlBmtzoh+oZpZuWJNlNV1zTEqKLF9e2xRCDMTkSeOaFLaMg8c7R+yPsHZDrd9GZzkpdPT9iszkwppJPX1zxmw2F8UJGSZ56tySpUQ1Nbj6ivcXOpLyoDKxrSlhibkE3o8kLTaE4HrazTmzsiRTO6waYSm5GCjzjEwp1n1PCuCVDJ5S9FQ6Yz6X5M+222IyQwrH5MUO2SRb1DYnBY3OM4JzKC3bd6MVY4jEADozhOlBlCZbnayYJ3XK/5/7/crk8dLqIf+8/G9X/pZrTY381xSnwhhALMBaCc8qBrEP5Jmlc4qkLeMYqDJNSGEKQoEyU6AtJIEajz5glWKeifx8HITlBzIM6GJguZRGK8ssudEMSAKfKCnllVst1pRJFH7Nj3F+sjLrRJFbmn7EJrFQZQa6tsF3kvI9m82xKePxsy0fPlhRZFAWCy4vBwyGsZfhhM4CmVY8fnLCxcWK4AWg/bOPP+XO4YLX7tyjtLu8+9Xfpjt/zOnTv+TT0+cMIWN0AymKGigh3MDcGoYJCGtQ5JWoG4JT5MqQnMcQOdxf0nctRaZ45/U7ZMmx3vQ0TpKPnfecbzxxm8iLDFYt28HT9HIveh8gCUBXGch9olCiDE0Ghqgps4xmdNwoEnf2Z1BVknIbxV5eZpbdRUHTtNS5ZjbLUUNAx4iJiVwpGEfm1kISS5Uk1gXmc4NOmt55ztYOHxJVaQnjwGo9EkNOVWhaJz9DrSztoOi92DkXOrJTGxa1xgXHtvOk6NipE5frS3JrCCpnb2dGP/ZEcgKKm/tzhmHADZ46U6gqZywi63Zk1XmaHjIjITFrN7CoMwqryK0Mt3RKZFMiIlohIVkyhK1yRVkYduc5KQw0fUORWU5p2c1nzOuSvvWgPYqOsq7IyxLXbqlmO9y4ew8TOtbbNYcHN5nPc8rZHDc0LJc1XdNwernl/PyCbT/IMDIiqr5KFk3DKLagru/Z2V1w+85t3PCExndSxKCv4fVXzxvZNE42rRRxUQofZeX547zHObE8GmOmRG6L1loSNY2okhe7Oxhr6bqWtmnZP9zl4OAmMcLe/i6L2YLzkwvQhqbtubxc06zPcW5gjC0pumnhIOeMurKgpZeqQXX9p9MCYhpUqEm1e8WR0nzp90bjpoF+CC8T2j2JLBNVt/eTyklrxiiYiJCgGwZSEMaZQlHmheAkktwDeVbItZ3ELlUWmWz5bcHt24dUleH87BxSEE5wkKTmZVUwyzWpDxKkZCAlT1XmEODujSWV1bRdR997jC05PzmHKSQApfEJhmGkLkfqOufiYk1mM2wa0BhSCtMwIOGxdF54gloZCJosN9iJIfXBBx+xv3eD0/MLvv3tb/D5/Y9ou7uomPE/+R//x/zxv/1X/Mmf/QmzRYktZ3z08X2UC+iYSEks05lRHB7c5h/8B/+Q1998g5/9+Md88emHHBzu88Ybb/HKq2/w4Uef8err+/zyg1+Q0hNOnnXCWFOQtCbPc2a5JfogAWsmEZPBJBnKOJ+YVRlJSbMlg1VJzasKw6zMub2cUxQWoyQhu+1aVs1ICoq8hM26Z+gCGwZOTxq2q54UA957SePViqbrRXkWAhHN5cRxOlwYklOMHpiukRgTbgpm0FqSBDftQEhQ1Pn1BRtiEI6clmekXNtXabDyLPVBVH5Wgxsd4yBugqZzhCgD2szI9RinxYOk+4kbo8gExl/lGYnA6EfStIirqlLCPhC7bvDigiDJoDrXGmMs2VSzdoO4U/JcBuHOJwlYSIIZkfpLzghNgkxeg8kMOiXsxCTNM0tKAR8lPXkxm7PebujaHq80SQmrqSxEiR58oMyt3DODZzGvWcyX9H3P5WaNNoqdWUGMGp0Ct27UjKMMXrdtoF1kXGz81b5SVG1hWlCSyDNNmVvKHEgju0tJY46xED5wjHifCCqgjcJmBusiIUZsBkVpr/rbacimrlUak/lD/m6trtWr8YpJaoUvroy4LVQSRMJ8viBqO3GnDG4ciSlQVjnBBfkZ6pd2a5SEwqWUKIqSMCl8w4RjIUb80OFyS0SWVod3brJ47x2+9du/Qeccx8cvePTwC548uM/F82PeeOMNFss5/dhxcX7Gowef8/zxE46ePuGrX3sPP46cnhzz8Qe/4vToMXlmiT4ShoEsFwZucNPAV4qxLylfJPxOJXnuxKAYu8DJyYb1ReS3vnmDG7XDak11aHl20rDpFKvtQF0l3r63pC4SSVmy4LAZuChK4dEHtI7MKsNvvrfLrBj58PNjNmNNZmWY2jQOlKLIc0xmqKoCFRLz3Yqm8bQ9DD5SFJkMepMM8TOjudg4EoGyMJDUhFTQDE6a/BDACAmX3jl8EHWdAoY+XKev2xBE5DBGmjZyet5SGlFyGy0WRGusKHO7DptluKHHuVGefNNy7uracpNqNdNa8EPGcuPeXb7+m9/nZ3/1JzTrS86OHjG6keWNA5qz53T9wOeDI125ghKE4K6frC9OW/k7Jg65MqKitjZDkchKUftarTjYqVF5wjSed27MWFaG8/NL/uKnv0LFhk2vuf9nR3z719+mdSN2XlHv7OGHxOvf+C3uvv06i0XJT3/5Uz74yY8JzUhZ1MTUoEzOzZs32FkueOON93n73a/xxUcfkBWKX/z0p7RNSwyBeVkR+xGXAtumZbNtUUoz9CNXgUbeByIywC2snay4XvBMRMosclAbdquMoCWp+3TjGL2gRZQyEgBFZNu0DN6xu1OjiQTnyLKSt954lVfv3SXTispYXr33JkfPEyovudy03N0Tx9DRi1N2Dg548nFk7HoJoVIJ17V8/PO/4uT5E2YLYUUP/Zaxd3z1d36fr3zzu3zwgz/m6PGnqBjZbBtmxZKh6Yk+4MaBalHzypuHbNc9jx8do4qOB59+zL27t6kyzeF8j29++zd5/a23ePH8CU/v3+f4+Qv2DgqazYY4DhOqSZxXKOkrm21DNZuzu7eDySuqKqcoCjYXl2w2W3kGTLxtojCgbWYlJK8TZEQIgfnuDb7ze3+P73znt+mGgaePH3F+eswXH37C2fkpYeggwuGbb/DuN3+du3dfY0iBzdCQXODo+Bkf//RHDN2Gh58/xOaKs+Mz9g5vcuf115jd2OX46UO25+dEH6aARQn6staiNIxJlMZ24sWnFEEnTGYgyKILdVURx3+vN1aTSlrqED/pZSZLvgsYK2iYosihMnTbhngVYPffCgVfiBADahhYvPgV88snqOCw2xYVAjZXVGWJ30RSc05++pA6W2B1pIwwXjzC95d0cWBYHZFbxfPNliyvONy7I5DfruHs9Ak2f4Mik6Yr+o6hF4UfIXB29IBmdUl0juKLkrqomS0POLj1OmfHTzk9vo/vNsx2brO7N3Jx+hidBi5ffM7Z3qucvPgM5dacv3jAcn6D3Bi65IlhwBqDzRRdP+BG6SeUlsNs6DrOXjwCDCmNEvgQFUM/MDLKIZcSNssmwKOXtDVTTJYgJ4M9I5vJbuiZVZbROxKOYejlQZ8gL3LhInmxUkpAgaKuKoLv0VccNR+EDxE6uVCNwNRTkk2RDx6jpbBQxpLZntPnH1BZRT7fJTcNfRvYXj5msz6DkChrQ7fyRMe09cul2B8NXd9jtUGbhNYCBfauw/WnEB0hjqSxw3mHNhkxKrYbh7WaLJ8Ro0URMYh1pmkHYpLkZDd6rB7x2ZboW1Qa6YcGrV/gQsQWSxQVRgeGdsXmcs18pvG6Y+guKPMKZQphXWQKPW1Sx9jRb1fE6Om7nrIqccMlyZ2jbEYY17j2nFTO8DEnjCvG5gVxvGRn5zW0iVSZNIUpeoyKiMOwJ4aR4LYYVZBUPcnoE8GJ+iuEHq1gaB3aOLxfMwwb1usVSStyndN7x6ZxZFrA41onzBT+kOc5s1I4Ut0wTMWwlU1/v8VWmSjjomzfUxTgfwyBzBh0pojDNMybmC1iTRaelfOJ3GZTI59eYlu4apq5mtJd2zzkz6ZjaUq3S+rlZlpPxa22mhQFeK2NDHVDDNg8x6dEP3iMhp3K4qyk844hkSNDElEiBObl1XUd8Umx7kfKecUQBcAfYpzA9olyUVDgsbnl9m7JZnDEoNBJgwryxqf3kFtRp0UsuRFTYPCijk2ZwqhMWI8poKJBqYxkBM5/b2+XbbdlMwQ2vWc/y3l+vpH7MlcMoyhUc+S9GqUocstiX+w2e3N4+419QvOIP/i//x+pi5LX37qFGwuenDq2XSvpT9NGW6VIlRcUxlNYxf5OSYwjUU1qKkYODyuCjgxjYn+noLhheeXWIYv5jMcPHlGVFUPfEBhxSdGMMAaFGhOn65ZuCICoqqxJHB7ssN50bLc9NjP40bMePGRJivWQ0POMjU2kpmNcd9TWCPMLhfKe7Xqk6wb8zKDqnKJQ5NFQ+EiWDAVqSk83jNZSZgadw3pMbFqHzRXbbiQ3sngoqwoXIn1Mk6VNE4FmcGxjJCsMuYZXDuZYFWg6UT+FJLzNi0ExPL/kznKP4Dwvjp9TFhVZPuPi/IiBmnXnGIeWAmmibZ5xuFMTwpYuJMYQ2fRRhgdaZtDB91Q6cbgo2KkUI7CNkFvNziJHp8SszOkGz8VFy+4ioyzFptt7aJ1jNp/h+4DS0HXnfPjzP78eeAZl2ay37NYGIpydXuLHmldUzjBc0rcSHlRXM4pMMcZLmn5AW0PUirLKuXXnNk+ePxF1az9w2o2cHV+IaispiFOzmdJ1em0Mkv4Y4gQQnlgnWZ4TgidOdjiiousdZTFtv7uelBR2UqckEqv1lrKqGPoe7z3bdcPp8QU7+7u4MPLZx5+QkuLm7bu8/+1v89Wv/Rqb1Zrjo2d89MGv+PSjD9msLoW1GoQRc6UoBiiKUsKQBrGDCC8s8O8D6PWEK5D3mkjII3dS8kxcNFD4MUzJ6PLMvgL3qyRKiNnuTEJimp7gxSpqM1HJ9P1ACIGmkUTBGCNZZtBas1jMICrOztfMqozDvQVnJ+cyBLp6rSpQVzXd2GEyzWxeM7YthdHsLHcYesdJ2GJIoAzzqqTynvNNR5aX5FnBxWqNigEVR8qqoh8c23ZLphOzykzDIkmF7IdO1CkKYhyxFsrCsrO/wyt3D3l+csKHH37A17/+Hn/5gz/Dj4KU+N7v/C6/9t7X+ft/6z/g7//+PyLLNOvtho8/vc+jJ484OX7ORx9+yvHRCbOq4m/93vf5+te/zocffsAwtuzsL3lxcsLzF8cUP/8hWlt+/NMzxmGQZcFk1VSTdaprA8krlI9448VaqKVRG/qR6BNkCY1hZ5ZJeFhKzIqMOjMs6xKtEpumY9UPKJUwmcWEwP5ORcBjlSKzhVh/c01V5awvByprKQqFVsL8qUphnybEOr47txS55fhipM5lWNh0wtRKSp7L4zBS5ImoMroh0jpZ6Lrp/tIxyDAPAYNLcNWEvUDhIxgtCvgi9xiVMIWhLC1ayUAnhIifLPTmKkE3yWv23hG8IqsKAHoPY5A6LngJDMuMEVdADHiXKIuSmDSJiJ9SnkcnHD7vr5bBsgh2YVL5a0vwgwxNigKCJ0QZtrrBSRNlRNnpvHx/lNK0TUff96LyLCQEZvSijBpcuMZ8xMm6O5+VlFXFbFYSXMe8zJABZaCeV1ilePerb7BpNnz+2VOCD9zYy5nPMxk8GkXwMoTWVpQaRZ6xnBccHO5iTWL/YJfH9x+zWQ20TuyGykAYpf72PpJZKLVgbawRrl6MkRCYhrTTcC9Bilpy0dSU2I04QnwIsgQ1SsKaJhD9dn1J3/cc3LrLO++8g7U5z58+JYZIz3ayH4vFUGvNMKki80yT5Rmj8yISiJHghI3Yb7e4vuPkOdi8YGg2fP7JRyQ0d155hXuvvMrX3/8md+++QfNrG549/Jxf/vJn/NF//gf4IAOQe6/cYblT8asf/gmf/uKHECGMg6hNR+HyhShW4sxkMixy7iXqZXqWCFJhGvZNi5EYEt3gcCGQl4mMntuH+6zPG3QBOtNoq0jJo3TGbDHDtSuGkJjnCp9gtdriggxwZ1VFN7Y8frFm9J6nZ4ZucCxnhZx7KKKCurQYrUWdry0n54006UbRDiOFzeidWHXHGMlmsjRHQZfkGeCGQFEYuj4SXCAEhU+SIJxixCdRqGdWyXB19CijsErun9FFUgCHxo2izowJkhYFakSWxM45jDHT8k0Yr6h4/b1N09lh84x6scfrX/smv/33/ru8/tp7NMPIybNnDO3Ar376M/Zu30OFDvfiBOdkeKO0KEKDT3DFv+elwANjRCmsE0w1dwieZa24c/tQmO5BUVvNOGged4qUSgqlCbpkdXGJSprjZyd843d+g6zc5fbNN7j7vQP82PDk6Bk//MUPeX56xuZiDVGYiSiwec3e/k2++vXfYLHc59MPf8onH37Mcreia8Qa64fI5dBOacVhsoQb4WhGqbOU1pRlhkqGIs+JwWGyDKUNi1xTG8ht4J237/D48RnOWqIRhajQyA2jkygCYaoajBK1tFaK6AMhdJw+PeKjn/yI50+f8u1vfofv/51/xE9+8ue89/X32Ds4ZHN2xuuvvoofPIc3b/Pjf/OHRIKIYSY0SdduefLoc7793b/La+++yV/98R9gQsfP/u0fsnPrLV57/R7KKoq6Yrm3x+XlhqcffcL24gVh3NL2Hfe/+Jzd5T7L5S4Yjes3/Ot/+f+m957M5hw9PWXn1h3e/+avc2vvLv/1f/mf88XHn5DiSFlklLOR1HryomC+XDIOga7b0rYNZhgoykCMFetmg9Jgrabre4zJqOuCoR/Iioz5fCYBO1byCbTWLKqayxdP+S/+n/+M4+MXjMP/j7n/etYtve87sc8TVnjTfnc6+Zw+HdFoAI1uAEQgEqNIjSiNxCnL5Yspuzzl8pU9NS6Xq+y/wjczF771lC3bNZZFaSSRFEWCBAkSuRG6G51ODvvs+Oa11hN98Vt7N1Q1N2PowhsFoNHoc84Oaz3PL3y/n29D6CT8JzgnFVvOPHt8n+P7HyHhi47R1oSvfv1ruBD54Xf+hmZ21rNORUF43G6YPXuKtpbNYimLqyQDx5gyiUh2uVduSrI3/cIwxnDhxrhI7M19n3xOQjjXvvS/prAFMYvdeDisGY3HzJYLQhvIQaGtpR5U6LpgdTwjteE/VAH+//jxH2HAZ4CS0s3Ymz8kbpYiy88ZozQxONbzM3LoQEGRZqgwI6qK5Fr86ojoGnzTcHD/HayB05MnRK3Z/swWxXCMb85YnT2EHBm88GmSKjg+eoDvHIN6QiYyO3ncT8c3rE4fkcdbLFYr6sEW3foMvzni/kenXLr2KkWhmZ8+Fih523Dvzo/wm1O8a0AfsQgerSLaVGi1pAsyXTZaURRSyIQQKYuCstQ0zexi4JUV0mSkLA+pyoRoLpgX1hi6zhGcv7i8tBJ1R1kZ6rKma0OvBgiy4VV9s5GgKkpc9BRFyXQyZr1ekkIkJ/oUmsBgMJCCLkaxLvY2LZ8U1sp2OBmD6zw+JrxLBDejmgyI7Smr0w8IesTZ6RNyTHK4m4jVBSlBWZxHzTugD2VQSlJtyQKIBtpuRghe/n5O5KzRWbaZ603D1nCb1aqjbTtpWqPH2ExRWDaNI9lEWRT9hrYDC85v8N6jmwXGVtiqInaBNipS7PAhgk7UpYSz+PaYupyQ1BAwhBwodcZ3q95C1Un4RM6QA7PTR+zuDQjdAt+e0a4GDIc7dM0pMazIqcXmBo2wpc7f6hQNKQRybFEEDA2hazC5T+tJ0mAkHyE5omuJriGGlqLMuHmDMr1Cxn/8bLjQJwzGxPZkRGkRJoLvSEoKNu/E9ulSJKYWkK2/pAtKhHcXPBrhV6Y+6NpaTeuCbIehTzKzdM6RyX0YAVystS8Ueecfil/+u5lfOtWAc/C+VgprdT/4jSgtaoCQ4DwMZNV5SmVICgoT2SoV9big6SLrJtMmOTV9iGwPK6ZVyWrtaD34pNC65NHTjtN1YFBoxqWmrku6NnA4C0SfwDQYK0NyFSSA5LxhMlJ9yzY8GxKSJKgvvrJM6D3LWWlcr64xWjig65jIixkb11FXmlFVMxoX+LRhe1ygTCKEGtc59nb2GVWGrmuYLZfs70y4sb/Frf1LHJwseeudX0AOXLs0wrldTg+fsD2tyCiOTxuiUjKstZpBJYEmWSna1mHKjEYzqDW7Y9mgbu/sofF87rXXOZ2fcHj0lNW6wRRDMiVXr9yiMpH37x4Ts2bjM4TMpgUXZFNsjISOPDtaiPIxKTYBxpOKidasu4ixJV2T6HzL8anwcIrCYEhc2x+zNTAMKEgx0JKx5YCQIXkPiv7ihMqK6kCljAsOYsG6zaw6T4yZa7XlUzeGrEJktg4cbjTHy0SOEnQzGSoKm6msxmRFocUea5FQF+GoJcrCsjOp8CGwWm04pqGuLJXVxCyhDrbU/QGcWW0cuhZVVtdGBkVie1STVhuUVdRFgUoFjQui0gmZakvYd4NCUWXk/XcOF2FQF2zajsZ5toc1KEXbSQpbWZS0zjObnzIdbxM8GFtCt2LdNhgVuLSzw+zslM08MB3vCNJC1uuUpsAoi1Ul680ZjYksW4/zUJhMVoaQ4PNf+DwPHt7j+OAQnyQ1E5Mv8rLEUn9+DsC5psX7ePGOa60JPuNdIwMJbVBa0ADaaFZO+CKqT9kNveovkwku0ay7i2FFIpKN46h9xumzw4vP4/DggLff/hlvfO5NPv3p17lx/Saf/+xnOZ3NufvRHX7+s5/y5PF9ZmenonTqVUIuuH6gx8UZln7J2qsQW67M9BLGGDKZsigubGLG9KzRXjUfQxJgsur5WPTpwyExm8n7YZQoVUQpFqUB64d1MaQetyAJnSklTk5O2RqNCJ0jNonoNv1JqiQAwBZsWsdssSImeR9VFgbkqChJwTFbt4zHQ0gZozNnB0diB+4TTzdtw3hYMRpOIXSMBjWLVcP29i6VzfjZgmXTMKgse9MxSsPR8YLGG7anE6bbI9qug5R58uQpIcGgHhC9ZzlfkoHbz91mvjjmv/6//J95/ZNvsDOdMh4OuHbtGgWBf/T7f5+Hjx5xZWefw2dPOT495mc/+wE/eOu7nM3mLJcrQkwMhyU3b17h9vM3ODo+5d6DU4ZVzXhQY1ViVJXUURGi3JGuC2yNagpVoEzNpmvIqaMsBqiBxqhMjaWuLG1UYGFaW9xiTS47TKUZWVC1piwTpI7RJJDUhrOVnP0xBPSopE0NK9ewcYlCFyxaqaOGhcY3gWEJpYW9oaYwmXXjmAw0g1pBjgyN6odjUBVQDgpiVswWjoC5eNXOl2nCaRNQekoyOJoORGHWOo+1isIkKuUFMJ4VrVcMGlEkWC1WTFGki0perPOyKFa9ojXHQFVZlBYnyaaRoAUZLspidzAYUlcVzaa54Pid4zbqQUXre4amNn2Kp6jZ2s7Jueo0/duINhpbFLSdp/ORwsJ5anUIvk/M1uhChmOyGIiUpcZ4QVOgFDGL9Tmn84WiJsSIaxt2d7dBTVnMlgx6d9DWQLAdZ8drdnd3qYaBmDxkWQz64BkM6gtu1ai0TLcmdCGze+US9+8/4L1379NuOlLMBC9/flVZbCHDgpGtAKn/jZUFQEjS/IeQCC73tjRxIJA1zok1VWsZyhmrMV4WKdqovh7rQ+OiJzaeB3c/4OmjR+zu7mOLgitXLjGe3GY+m7NcbdjeHnN2Mmd2NqPtOiaTIcPxkLZpWS1dby+GFAMxSNBIyhnnpHlfzees1hse37/HT8uCH//dd0jacuPGcyiVefLkEYvjY3RSmKpi+tpr7G7tcPTwEavTMwotqliXRI1ote3vgCDiBkTxpdP5+lhdLD+U6gNA+gAKEfuIivXa1Sm705oQPdWooOkETq+1Zjgscc7z4MmMSSmcN4ekXY9LWLtI1rBcNeSYeHqc2XjF2VLTbjyrjbBj67LAmopVs2J/Z8Rs1hBCpiWz6QLWGna2RqQEm67lPL1WK4O2ohQutGZQGVYh41ymdUGYz5yHm4hNW1KmFTEpqtLIu+oiLvd3TBIrfO5RFOIIU1z/xCvc++BdCJFuve4DWfrUZbLU2kYUv9oUaFMQlOHaK5/k67/9+7zwyc9S1BMGg5qv/ebfI3dzvvsX/5YP3/k+43rI7pV9losFug/vy+k8zIXebtgvWxQkJQMyq88VuLlXEls2G8/B7AnaKC5NRqyi5emqQedMpRNnszWDekDWA5JzRK+Z1Pu8/uWvkjycPnpIDHN+9pPv8+Gdu5iy7Nm1skCrhiNu3niJ3/39/wSXGv74X/8LVmcnjAYV3q0YDIacnM0gZgy25yJmlNVgoBoOsSZjyUQUvumIHtZelnJbVclQw+X9Mc2yYdYmvv/hMWdnS8aTCT5FlC3EIu8jrUv4lOUc7Af2oa8nslYMBjV7O0N++J2/5MFHD7h+/Rovfurz7F65yqBMvP/++4wGIwa5huhZLw+4dGWXkd6nUFPu330fj8NqTTWsaJs1t1/6JN/51v+H2ckcmxKPz47R/pPUoyn333ufG7duceXF1xjoGrc+o1k3PH7ygG495/D4iNFkwo3nbvHVb/4Ox0cz/u473+LBvff49l/9G2xV89MffJuXXnwBVXnapkElRTUo2ZqOMBZ0UXPp5ouoBI8fvEdOCe+dhBRtVmhbcuP2NZbLDevGYUtDu15RtSsMkq/QNpIsrRA33+nhEYfPnqEuHGXy34UVQYv3wnuPq4aDDz4SjnRKHCvF5tlTIpbl0QkETyBjrCw4iJ71et0vcBFPfO4xBn1gR8ryvqkeFh8uuPtZ8Ac90/bcFYKSd1nrfBGUcdERJ+lnhHUPuqiYTLdYtGfoCKHtWMbAaGeXKzdvcPjgMcr8/4FF14aIbTrG62cUbkNUmtpaOtdBSqTOkVwW6wsJtTpjODgAOyaFBcmtJPk1w2p1wHq2zeL4EW3XcLR3na3LNzl5eoduc0bbrBjXJdXoEqvjB7TrJZt6B1Qk+RUxRSptIEVCtyKrwNnBh7jm9EI11CyfcPywo23mfVJrYD1/QqE1Go0lkvySNnYUWtOh0UZYZ4U1YoMlXjy8KSVsXVEYi04CTzBG/p17KXPOBSmZXvEgD6fRGlMUkjTVN07OBQaDIa5NWG0hBEkcy1keQET27GIgJUXbekJIaCONicFK0eAE/B6AFJVYDbKmrmoKOxAwbPaMhjWubckxkpVm1TqqEOm6A7Qe4tsN1lq6diMy+XNbcJJNjjGatk3YPjXR9o1g6oHOJkVsEbFKIL6+D54wKWJVZn52hrGZYVWQgdQEct/k237rMRqMRCWVhAGYgiSflSaj85rN3KF1hSoLus2SykSa1YJqpGlXa1Faqafo+goVI8iZ2M0JviF6R+ecJDX6iPMdaNgsD+lcg+/WrJfPsDqxWZ4S3AZblDSbU4ztUEpTVZbOKawekbMnBIfr1mizoW0WdG7DeLiPygqjMzl3uG6JNR1NsyGEJSm2qCRpsil7qqKk85mmFQuFNZpRqTFKEsUiCZ3FIobVaKsxCvb3tyC3kD1aF9Czn5TKtCFRlGVfgGQBdyPhG0ppzlPJu0ZsRcFHtI0XMOgLOD70p9bHh8/HJjhFVsIVOU+8FHaKKAaU+g8tA1qdN8kCDlcmyQCwtmy8cAh1EkD3qokUVYHRisYHDKJ+qGrF8cLTeM+6S7ShvxyUpYmJGCJJO3JWbDYRTYAo2/aQonBIzu3vSNpbBlzIvW1IAMj0m0uFxuj+UlDCQkpKsVp71iSKuhS7q08sN57nr+1itaeoCqaTPaZbN5nuXWUwhj/+0z8m+MyTpwt89Dx4diopqt6zXrfsDPeJKvLR4zM2Gy0W0VFF5xKbEPAR1iux4myCJ6fE1BRMBpZhaXnh9m2MVgyGJcdHT/nw8T2WZzPZ2sfE0Fbs7owYDUYcPHrEar5B9yrf+XKDVQaMwMO9k9TmEKDtuj6NCw7PNtzYrdmqSo7XLW3ydJso3LkEpkhUJjFfrDHBsrW3zXQ8RJkORaRZdwxKTedkwbFpghQOCmnaKsPT5YayMmzXmuvTEYWNDI3GZU3Yqnnn6ZpNK83d1b0RO9OCnXGBSUGs7T6zbBwuRUITiEBRGMhJwmdcR11YIrJVXzUr0BU+itq6rGrGo5qT+YImKyaTAdsoYtuQfGBUQFFohlZSlzdG9ym1mlKJRENlRakN40JxfX/Ek4VHGRkqD6uK4ahCmURZDWhbjzYQSTSuwTYVwWcmW1PqBKtNSzHeZ/fmq0R9n8XZIV3YoEqwdY2ymsat0aVivD3g4amnbTuKqiR7JzlYKtN2jr/+13/K6eGRNHpKyXPeW6KU1qSYL9Ru5xDgi9Wi+tii+zFYWO69HAPnqlj6M0Matj7sIn98jBhj+7Tqc8VcH+JjS8bTMW1vLe684/13f87TRw954cVX+fWvfZ2yrHjt05/itddeZbNZ87ff+Vt+/rOfcHJ6Itv0KA0/Sja9Oec+KbNPq7z4cs7RA+dKiNgPx6AoCgBhAfZfR84Qc98cJwVKLMoxRFE9KSts2BjJWpZ1trczhp5raLSmKIwMEUtLNagZ1RUlkcXMSSiK88JwijKs6WSRjFWQQmB3d5vUNXQ+UA9qYoL1su3Dxwp0gmpQczqfiwpcQW0HXLt2g1XTUGjo1huiTkwKS3njMmfzNYUtKK1hMgiUI0tViip21XR0wQlgX8t98uTxM3JUDEcjTk9m3HvwkPFoyJtvKn5x70OOjo65fOUS87MFDw4eUFq4dH3C4+P7UCUePX7CauUBLedtVgSXODk848/u/Q03blzh0s4upydnxOyxZBgkti9NODw8QRUjsBaX5a65tDeiXLasGwGf10VF2AiYwdYy7Gu6lnmXGGtNqRqGObK3W7NsPfVAc7bJfLiAp/OGlTOEmEgo5suAMoGcC8iOdefJKHzQrNvIsDCsfAINtex0CVlRm4gPioDi2lRxrbfeNp3HKcPRMuHzL92kSgMRlLAAU5YlkzIKQ2C7gulQmHxaZ0a1RqVESIqmk+Yy/5IiNfZWTMEeeMqqpKwrmqZFGxmyFNZQaENhLE3wGG2kuUECWozRKC01Ssqqt2r3C0TvZehqK1wnNmGtpOYheoaDgowMptdNS4oyaIx9mrWkJIpqO2dhHhXWEpKoQofDEmtlAFJUiq3JhLOzNa63MMYeqUHKNM6D7x02ET7/xhvcuml4+OgO2TVUpSUnh0qB1mV01OzuyoLk+HTOZDxkWNfElCgqS9O25M2GJ4+Oef/OYzZNR9s6MorSFoIGaR0xdIzGJaNxJZZXuAgS806GdhIEI82gVlD1yZHWGoxOhAg5yTBP6z5QSBUXCkAfAkrni+A1lRIGx/zkKT4mlCnY2prywsuf5I3rtxkNaqbb2zx+/JgP3nub1fwYYwe8+NI+2hQsVkuODw95dO+BLM5DlOWB1sxOTkk5UVYVQ2uJ3nPvvffxOXF88JSbz93GKoNKuu/1Wp5+9CHZVP0irRBFTIzyb4Q1Lrxm0z+P5/cOMmjubarn6nCUvlB2nquoUZrlBj581LHuElsj6OL5kNQxHtdYU7JctbQrRRc6BsOC56+NoefOZWA4qAg+sHGJLkLbBmxRCuuxsAyKordXBjaNI+bEqk100cvQ0DucV4SsAAkEMD2r0lhLThHnIuNxRcYRo9jyldJ9UFTGWFHg5SiDeRXBeZkAhoQM6ZSgaIwWvm3un3VrLP/z/+3/iW9/68945wd/xezwMa4JvUsmiZI5y8A6e8Hc2Hqbz//mP+Dlz32ZW1cvo43Bu5a7j++zs32J3/+f/hc8Oznhwc9/RNcsOH3aUBiNLkpRk54vuVO62PeZc0VxIQGGKss9I44cuSNjzCiTGExKXK9IjjmSsLjGo7Jhd3eXN7/yTaphweuvv8yVGzd5cnDM2fEzVPTc+/BDnh0dMh4NaLxnurNLUWmKYsCrr3+aGzee58nBA95770fMjw5Ydw2T0S6recNivpH3WYn6zUUPGvavXeOVz7zBZz//OX70nW/x6N4HLFeNOPWSKGsVsOmZy2cPeyunVpgukbXBpT6cUAHZkqLgY3IWZaPWBp+CJIQHGI23+MyXvka9O+Xxyfs89/wVnn/pBbQxDMYjNotDbj33HAcHx6T5nKo0/Oj7f0GKiS/8xu+wPM6ouuDZ/DEPPrjLxA94/NE7/GDwb9F+gwmeqhpwenzE++/+hFsvvcre/oR77/2IxekBq3XL7Zde49rzN9HFgEFtODs54cGD93ny9BHv373HZ9/8Nf6LT7/OD996izvv/wzvHTv7+2x8AltRbU3o5ms2TcegLqmqGpfANa2If7wnOUdVDfHeUxrFaDxktHuJW5++KYx379ER1vMZH73/LrNnj+T9N/I2nSNh6BdJxmgJGEsBlCDPxDIugzgJhRJnRYyJ46fPUErcLfQCkRDEfSUL0r4wTR/XqSnJnav7fi/l/HGr2yex5wQJeZ9Sj7U6V8yei1oulhPIFR7OFzdKEb1nfnYiCyQjwiCVFMkFNosz1HCIGUqK+K/68SsP+KrNGZcXLePVI3L0ZO/xute8BEdVWqzVbBopN4q0ISyfUG5dJbYzUWblSEyZdjXn9PiA9fKYtllx985Pua0Nq/lTutUpnfc8IrF783XOTp7Rbo6oqjkpJ5xvIcvmJcQEbYs2idPjB3TdihgySkWCW9E2Bu86EkqKEAK2GNBlRUoa79ecb5aKoqTzEWNkY+CcuwglsEZTlyVlUcthgFxYnfNQWbKSJMsUE7Y0ON/RtS0xJcphjW+9WH2swfuMLUoGgwkpNZRVSYiNREInRdbi4y6MpUiR6c4lmuXyoiHzIVHXY9abJQnfb/0M2gwoqprgW6pygDE1ZZ3YtAuMLRkOLUYHTEYCQJTAlX3XYcuCznnqQSnDzCyfQ8pQKJmwG2PJKVHXQ3zUaCtW5eQD1hi8bwkpXDSILmRsVTEcTTC2ACLRt6xWC+q6kstNaYpCobU0Q75rqeoB1ia00bSuke/Zek5hJ1QlbDYtISs6lxgOC0y9xWC0YDY7JXRnDKopORREMtGvibGjqgo2m4ZMwKiPrbDeLaRJI5PjmvmZ5zzBMQaHa5eUpRSlVpf4VobXMgB1hLAhdpv+eZvRKjB2DKYiZY8PK3J2NO0SpTtSbvEp0PXFuhSssv0dDAph0QRP4yXtr3WKnD2l0aisxDpVaprVGrJmVDtUKABN8IGysD1XwktRWVqcdxSlBUTt41zAKkkQPC/c5f+XTTvwS6EavaLnP1D0SZMLspmWs63XoKhe6EiWAqVvWkCaZI0iZkkhHZaFDIpTwgUIXYJCMaitbMATpD5Ju6rESuOiZu2iJOPFTNMFrDJoAiELo2gyrkgxsgnCwTPWXhzeMmhQPQC7H1qoTBcySSes1fg+5U9rUeHmfptkbd/0kBmNhsSQOVksyTkxrgvmq4bJpOTKdJfBYIcXX3qJqC3/9k//mDv3jxkMFDkW3Hk4o9CRrfEQvKesFLN5y8nDBY/nirN1wHdObKVBYXtL4LqNGBUlwMQoxoMa5zt2rk5IaA6PnmBMIsREN59z4/IuRgM5onxHVWQeP7gHKjDeKrhta47ONlwaDyjLEfOlo3GBLsK6E4aEhF9piArXZh4+W3Pj6oi6tjSuDzlIBrRBxciw0kwrIc48m51xuoLn9geyQKkCZWGo0KTGQaUpioqT+RKlNHU1wJQWrRP7I8v+xNL6xHrVkZUm6sh2bamLQNIIi9RnZvMNvm25PB0zGVi0kmTLwd6A5DOkKAq5xYpRbSVF1TmaTWQwLFGmkOZXgYqBoTXs72xxtm5oYxblgIJBbWlSIGdFFyKNazG6oE6acWkpC8g50CZR9agMk0ozKeBw1fXRLhnTeIxKGOWprKZzjsaVzBdLss9oKoJPrJoVnYvYLnHvvbtsmlNC6Ig6kw2UI0U53KFuFvgoP3dtBXS/7gI+gFIWB4yUNNhd4yR0R5l++CaKtNw3I/m82Tp/zzO9B0EGfufg9vNF1fmgLoMUV72oN9MXRggbygBKK8qyx1fIXEQYfjlhS8ulq1cpyxIXAsPJoLeBJ5qu4S/+4s+5duM6X/7yFymrkkvjy/zmb/8un3nzTX7yk7f48Q9/yHI2gyhFHRdW2/5z7RttGYWoCzVdTsJqzakPUOkbvouCLoul97zZEvuh6pt0RfB9o6oSShm0EZ5VSAmb5Xsaz+3EXgq/DHSuo9lsejZjhe+V7VZplLYUhSZksVTWpWVSi1KlC4rOwbjSJN9SVYZF05GypS5LNpuGTbNhMh5QGc3QWDbzJa1rGQ9rvHNk79kaDjCDmtw6ZssFsbeQNr6hrksmWyNCKDhZRDoXSUGGOKvQkHMg0/RL0wwDzQ+/92POlhsOD5/y4Ucl49E29+8/5Orlfe4/uk/nEluTLUI0kCM5gsJKU5QTbROo7IDZ6RqfNqSk+wCHQExw/+kRpcrgViht8MFQWcPh0TFKO5TyqBjQzmANjIcGYz3Gt1weZkzybA0KfGiYN5GAI7bCw9o4TU7yc1isHbbMKFswm3k2ByuxwZYWRSD5SMoKoy0hQRMkHKHprYWkjCsU2ILTdWLlEqPCYhOsnGbeZJyXBNjYp9PTj+bOR34pSz1gs2YwrEk60jrHdKQZmERlIlWhmLcwGhU8PQ4XXNacI8JIkolj6l0C1tqLoAUBnYtDxRhpRIri/CKXMBKy3I1d5/pXWhbdw7rCmExwHTEFVBZlnu8b4ZQSXQhUVYHJmb3tMSGIAn25aoXLmxWut7Q771E6gzKyjNQG58TOO54McZ1nb7skZzg6WYhDQGtZ2KFQScIoEsI7vnv3DuPJREK6QiSagi5mhuMRk6JG65rRaIhzK7a2trlx+0U+eO89YtdwcHDCbBmYjocs157luiVlqCrh4TofAFG3pwTBg7cBlwIojS0LWtcSXIZs6LzDx0xVFNA3mqU1wuTWRpibPqNUwlrFReJtFjRCaSSIrNDys9SFYTgYYArLunGYYsSbb36Ovf2rXL5xi4OnzxiMBnz5a1/h9S98jscP7rE4O+PJoyeETurU+eysTwTvA4Zypi5KQvSEPlm+azeyBA2Bqzdv8MnPvMHLr36Sp08e8Vd/+sfMjo+olCEHx5Vbt1kvVzTrOXVdoVBsNg3L9Rrftmhk6EfPc7uovXQf3NY389aa/ryV5lz1ShnvE09OWk4Wkdmq4FMvbbNcNKA0o6GhsHKmDkqDaxMb59GF5mS2IflI1DI8xYpyLsREcLJ86kJgWBXUpcVqg3dQVUNiSBiTQWcKLMZqhsOCsEh0bcCHnuuZMr5xxBgxvVpxtlhLr9kPLs5r55gkDCjGfHG/hsDFgi1nqWesVlJ7KmQpSL5YpIX5is18zbpZcfnKZWanM1AwqCtc2zFfrAguojVU1YCvfPmrvPHFr2CmO6zPTsmFAeX5yY//jj/4g3/MaDhmunuJL3zjP6Ga7pA2M+anpzx9co/ZswPWMxHGnP9LIWE01ljKoiDrRNM6tC0IIRET5BRkKYV8HTErYbEjLGlvai5fvsl/9V/+l7z5+S8yW804OnvM08dPMJUFY5gtZ5yt1yw3a154/jkOj0/Z29nntU+8TDnY4Znb8K1//6eUxnBw8IyUEtNRje8crhMW5qXdXdxmA0qzd2WfWzdf4M2v/y6+HHHw7D4nswUJWTT64EAZSmN755AXbiOGHGXBVhUKawoZZilZJDc9l7EfRfecQxlaqayoiyFf/+Y3Kfd2+O5f/iXrxQx97TJ/9C//Od/43T9ktL3FvbfvUBvNYhE4uHeflg2PHj3AZs3JomX/6m1+77PP8cO3fszTe0+YzxeUGD56+yes1p7Ves1m4wRT1LRwLUM8AAEAAElEQVQcP33KsHwB1ziO7n+ELseslnP2r1zlxRdvcnp2zKfe+Cw7e0M++OB9/vYvv8XibME3v/F7fPLVX+NLn/86e5dvsn95F60TXbvm6cFj3vnpW/z4+9/m0f33SQp0Vtgi0607urUjRYfGyAIpJ5rFnCd3PmC1OGE8nvLmF7/KzqUbQMkbX/4G7/3kb/nFOz/n2cGRLC6soms6mtWG4LqLOnNQ1JjCCqJNyXmRkyBlcqJnxp4bNgSZppW0LNZK2noMUrOLui5e9H4x5YvBW9c64WbLJPDineR8qNjjJchcYKzO1ZpKGBqUwyGXrl1mvLMr5/bA4kLk5NEjNos55dDS+YxOmpQC9aBicnmP2/tvcOnaLX7Vj195wDfYPGH72R2MF3BiVUsiSMoZrbIkyGCk6LNS2NpuQVpkottA7JNtFUS/Znb0kJQEfr44+pCn2tGuziB4UtexOLlPzoH17ADfNUQXScljSBSVXEretehCtoGkhhQ8PiUKq+i6RoCG2ZGjl2EBYj01OksIgZHCIiaZCNdlKbYXpWTjmAUGbEzJdGuL7FJvQUR4eCleqN1STFR1KV+3NZRlSdO2pJyp6opwLl0vDLYY0nSB3b19KbqTwvsgxUoSSPH21ohAph5sSfG+hqZt0KZiZ/8qamZYrc7ELpzh0uVrDOqK09OnDCc71MVU5jO9tDm5TNMuJW2sktRSqw3BKmzPkgkx07ab3jqRKIdWNq0y1aQoC5Iy7Ez2sYVis57hsqQ3ZQTwrFXBdLolA1gv3/v1ekkmUxhLWY9QyuGDk5CK/PFlP90eyfYryEURfSLYgDEW5xzGlAyqirOzOYO6wmTF8cERKEcOGRc6WB9S1WCrkrY5pWs2eFOSicSk2DTCMFQKkpELMfRFiFYdyhqCixSFxXtJaNbasnJrIqB0wuoB0XcYlYhZLA+ZxDoeU5WegCWmDSnMcTpQWM9y3dB2DpcyS+flkOitBoXRLDYtg6okJkm9DVFsoQoDShKruhBonTAMx8MRXfDk7FHaSmGcpXgpKoFpZ4T/sl6tqMuSdV/s18MhTZ92JEdk6gvLvvMGuayU+rjwOm/4z8XI59y9/q8zHydcSoiK+bhRRmDjqL7IsYrCgOqfmZwCpjK0LuKjwxSmH4JKgEH28nusW0fbiSLCKhn+uSCfR9by3rouUZeiCMgF+ByoSknjU0hAQl1aed9UxhYGgjRb2giLxYXYh/zIz+e8OL26v49ScDo7wTkZZg8GVjhNy5bQBdz8gNffeIlv/8X3KcYFJwfH3L68R8yBo9kKlRNXr48Y1YZhNaaqDW7pmNuKjV9SWMOoHjJft6x96As9TUg9NiAE0JnluiPEzLPDNYvlA5QJVJUmh0TbdJzoGdYq2qZjVJVE94QEkiKdIovFnOmgpDY1LiTmwUHITCdjhkXD1e0xJ8sVrVfMGjkLXYKTecewlsix86YkxMCohMvbNUMTpDjPGdfBXbdmOCjY26qoSxiZDNZitKVziaIVZS9GodvI7rimLgyNc5wtOrFLa2GYjQrN3qjEN5nDs46jHPHBkwzcPVswqgw6ZarCAIFSa6bDgqLQpM6BkSby2t6YGDWJAlvXlNbQtCWDsqRZLNipC6LryErh0TgXmExqtA6sGidppwax6CLsrc57yBEdJfTFZcPxumF7ayyMpZT6xUQAJdyqQWlpmo7Zcs3eaEhRGgqtsIXirAl0KVDmlv3pFqfzDTlGJuOKtt3QrNe4tuH44ACyInWZtvFiITKWymhMTgzKkqos+8EMkDJRnYfsnKuwf0mtl6GPuu0L+19S7l4UNx9vO89/2cdDdElK0+c6udQrKVIWhV5OFyparaVwBsNiueL5F14Ua0WluX/3IZv1hrpacful53n08B4fvv8uzbrhxRde5nNf+BLWlHz917/BC7ee57t/+x3OTo5ZrdcChY6yoT23Vpz/pzov3BDA+rnSGLhY7OXeYnvxDcminNc9j9AWluFgwGq1IbggG1sr5+CgKuic8OGKosA5j3NeGJJ1zWhQSSKotQQfaFygsIYqQqoVrouUvWKInKisIafAbL6h65PoSuXYGhSs24a97YnUE8s1OTj2d8YAlFpx5fIO69UKnwzRZOp6wPboMm2z5srVywwHW4Tk2b95jZdeus3wyo2+WUksTg958OARP3v3IffvHVGVmtX6jMFoSEzQNi3GGqkPtGI8rIg72zgXWMxnuK4lhYa282w2jtDKeWq1kXuqDw5S2lKXmtc+9Ro+tty99z4pF9isKLWlKg2FHQqmPney0NQFg6EoZ5abSMKgMcTkCHgWXcR4hfKOUWmoTKDzmdMNGFNwvO4Y1wVN8mSlGBQtjc/sjivKChm6+EjjNKlnpRkytjKymIsJY5CkPiMhSIt1S2GET9kKcYVlZ5g3Evwj1nUrb4VS571EL3PvV2gXLFuwOhNi5ngZGFaaRZfY2zLsDRM6QvKy4CqMNDJGKwkBcFGWxeR+uCyDa2NNr5rQsgTyjqLQlF5BMhSlpapK1ss1obdN9jernAUZ2k4cIzFJ2FRpJQ01ZU8XPIUVS5zvPMO6IqeI7xyKgtGopkpZzsyYyTH1d7LwLUOW+74y8kz5LqOU5fRsjY+S2Hv+rpWF3D8xCjNPkQnREVPLctlhrMIYy3y2JI0GhJipdWJUegYmEqJlYDQ7wylXL90gpJa6qlgvD3h2MOuHlXLXWgtG2X45qLGFqNtjgKaHxAsLNqNygVGyJNAKlA+9qlgUz7EP7Mm5D/foFUHGaOpasDttKyMS58Xuj44C/FeZLrSYbOUZyYE7H3zAhx98wGg8outadra3yDmz3niUSujc0TYd8/lclKG97f7cYZFiouu6C1t3ionVctWzhEt2dvcYjbf5+TvvMD95RooRbSzZWob71/i1r/02X/za7xK7htLKwL5zjvc//IDvfvuvcO2a9WKJa86RErlnoH7McwVRPBa9wjFnPlbx9TvmsizYmlSURaQuYLBds9o0+C5R1hadJBShHo8ZDizRRRofCUlCLLpOFqMmK1QWi3hwMqzyXUMxrNnZqti4xGzRsTstKctE14jKuCpAm0BhZPiIUuL2QEnuJLFXpiuGlSVlCZ5K/aBc9Sgjo6Cw5wqgjLU9NsacByuCS7n/db1qvB8mnB0+QtNx+fIeBYnVasNqs6FzG1TIhK6TP6ea8tlv/i6vvfF5bjx3nU0I/PlffIfnP/UqOgeuXrvC7u4OhS149TNvUo92eO655zF+zXrTEN2ap3cfcP+9t/nF++/y5PEDYtehckSZ3L/vWYQ0WffhUElEyIqP634XCaWoIHOUZ357OOV//1/9b3jh1gt88P47xGHJ0dkZ5MR7P3+Xru1ouw2b1jPZvczO5Rt88lNvUg5GdKsNH/z8R/z83gP8ZsnVK7u0m5a2WTOsFZsoQ+J6UFBYhR5u8Y3f/T0u37rF8ZMjPrrzHg+fHHJ68Igc1yxXK3SKDKoK30kSc4rSx9pCSTCMFyGGNlINSFihpvMNSlnGg4qcFIt1IxVGlNRra0vK8YSnsyOO3vkBm7NTQhd49rAj2SF1pTg8eMD3/+ZbjKxGF0MeP3rE3qVtbFbE6Dg5OuDypU8wmVxhd2ufS/t7zA47YkwsTg5ouz70QmWMkjO0XS14eOd9ZvMFxMhoknl6/31Wq1O+8JXfhHLMD378Fr/2la+zff1l/vbP/x0nxwf8/J2/49r155jufYbd/RGjqsBow3QwYX/3Cp/8xGf4rd/5A773d3/Jv/mj/wdPHj9gvV6gcqYua9pNxjuPsgatDa5bs2jWjHZ2+OQXvsjO1X2+82f/isdPDvnqN3+Lr//9P+Qrv/dPWG1ackh0m4bNZsY7P/0+3/mTP6VdLeVuCOLGTCGdC+/oafh8zPJEXI1GE7XUstooYeH1aj/6GhR13rP8EpApnf/eqq/7PhaCXMhaLtQt50vvc/2LwljN5PJlfuM//Sd86Zu/SYiwXCwZ7+4ynewyP3jKe+/9lJ/99PtsjcZsj/Y4XDueu32dyzduM9zaxxw94Ff9+JUHfMqvsd0ZVmtSIRsechbGmNJUZYlGU1oBOGMVMXQyEIttz8vps0dUBiWXNTnTNmuWs0Ni8KicRfrqDd1mTgyScNd1q/PvfM/CUcTgMdVQ/pkgFkeREkhT7l1Hih9LLLUWxVBhhZuTzsE/SQ7TuqxoW9dDfks2bdcnqojqwZSG2P9+1hoZPpD6pFsFysoQo+epiXRaLjNR7wnIeH//Mq7zpAibTQNIkksIfWqhFn5HVQ64eu05nj15iA9gbc1o+yqXr91mtW4YDSN1JUlN60178eClXDLa2iOEjqExBNfgfESZUlo2JQe1D5mQFd5nymqLdragKCoUEaul8IxBmhVjpMiZbO2xe/k51qsVhU+9EkK2WMZIMMhmLUVZDIGyKBmPBigkvMTqguWixfmMsQVaRcqqQilF2zZSQGSFUqaHREPIYArFZGeHxaJla3vKwbNnKApu3LwBaGZnp1ArXHfKaLBFdC3NZoFzEWUE0L9eNVRFSVlZgSuniDIFZTUgdK1swFOQkBOVQUWatqWwFcN6SAwNrotgc5+QFQEBuMbYCffQrGlzZrE8IISOohC5fUIsbsFFab61FIHBh4twFqvl0Agpk7InZ00KwjHR2lCXBTEkGUJmURIqq7BGSbynUZgMpYLWOxQWkxNKS+ovCrx3Au7vt+BGy2D3oqFN53+letbI+WFHz8mSghUlaWDnUF91buOj39RCb5uTAYEPEvxhtJJtnxG+nEm6t6QFugBtSKggNvDYNwTKWBLCfjTnQwnkOHDRoVWiLiyFlgJ6ODBMC0vrMj4i9oQQJKAhJlEReDmPXIiyjVHScGSEeSLFVUb3UN6YDI+PjhlVJSqKRTNpi1KG5caTgue5a1M++fInmDWeRXCsn9zl2rUxj589Yzou+f3f+CLBlRyf3OfZ4TNcXaFzS+MjqJKRNTw5CygdKUqD0jI4FqaKRqlEWQj/kyRhJKeLloHzaKupSsWkFJi/C5HZMlCVBqULOp9pXYdNFW3bsb83pbQVD58sOF1lfDIsQ+D4aM6o1BwsHI9PW2lcFIyrkkoJ+DzGhOtCPwCOWJMYV4aBCQwKsX1vVZbxaMBsE3h6vOH4bM0r14dUE8vIaoxK7F6q2Ro4RmXFfB1wLVwaWaYDS+s8dV2xiZrZfMN0y3Bpp2IwtRy/fYzvIspY1i24lKgGhi4rYusZFZKaSaGYrxzD0jAeluxulQyt4ep2zWA05ekzRzJinzlpA/PGobqIUTJkxUhogIsBt25JLhGzZtlEUpaACRcjjUMULqWmHgjrz4VEWVb4EPGtZzCuZQlmMpd2xxQKUQMUlslkyDlPytqSNgZRRZqCrA1niyXOJzSBajimrIbYwZDRZIvxZMDsLGF0YGc6pPJWAOU6Yq2ELoUY5NW+SKGVsT5Z9clo8jKd///q/D3uL5TzgI2LWuBctdffn+e2hYtTJPU66Iv3SLajOSeUgcG4ZmtrStfIAuz2C88z2dri8aOHLBdzms0KhcE7z3gyInoPWtFsNqybhuVyhS5KfvObv8HWeEy7WvD87ef54le+hNaZh/fv85Mf/YTFYkbbiqXdKI3qFx6ZX7Jj9F/P+TbYKCODv9ir/npViTZyhxMlfGXTK9j+A/uvhqI0/fcs9fd5xvQBWAXCitzb2+fa1cusZ3M2yzmb9ZzSapI2dD2kvbCaylZsTQaczdc4l0BbtFIMq4LhoCKhaDpPyo7BoIIo9dVoMqE0mnWzAQ2mNBRJsV6sWUTDcFQSyfjQ0rYdx4dHOO8YPT3gys1baJV47sYtXJe5euN5Hj68z2Q04aMPP+DyjVt8+6++I8PNkIhpwcnpKdqKdW1nusONG7fY2hpRmMjde4+YqSWrZi3PiFJs70xomw5NxpO5fGWfz77xKq+/+TXu373LnYd3+dtvfZuumdF0GwoF47oQpVkG3wa2xoquk8CWxgdSDPiqDw9Riem4ovORbpEYlomu9TQuszMdEHzBkZO0zZwc23XB9R3YNLBuA5ORpUyJZEs2XvPsLJCyIbiEixkfMjrIM9QSKYzUMiix2y0bR4pWUlezEnUfovTsJe6/pHbNF3VtPn+eNBSlYlJnJrWlLhLETKkSbadYhcRgkNm1ikkVGE3h4LSgripWvumHoKI4VwpyTPTmWFxwdNmKEqfUKOQZ9S5iDRibIfbujepj+6Hqhy4xZUIKFMpQGUtwHSYlqrK+WBbWpWU0KCVBEQnyMP35UhWSHuy8x7uaEJHlSL8EcIgaJnhJ/M6qom2cKMxiz78zsoAwSmGAoiiJObNYrShKGRBarZmOx2w2jroasFl2NOsVl17ZIi8y9WTI2WbBzdufYHLlFs8O7nH/yX/PwdFcAi5CwoeEj7kPWAOUcDpjzDRtwJjzgVUgpg5TKKzSNG2D71VNF0UVUJbCEpP+UvX1lyH3boLSGoJOtD7J0rxnPxXGoGLCh47g2z68o+Xo6JQYM2VpMQbORhXT4QAXIstmTVVatMpUNgOVpMaq/ofSP3YhBDL9oF6lC8WxiYFnD+/x7PEjZoslKnpIibowmMrw8O49fv7Tn/Lya6+xt3uJ8XBI4yKTquDKzRe5fu02Dx/f4+joCT/7/vdo5yuIwqwS9Ytwy8y5so3Up7Nqsk4YW2CUwvuOQWW4dW2L8TBQaHDJMR1anIZQWMZ7mrOFKCaD71DKUtQl7WJDVYt10LUN25OKvd0xRydLhnUtnPNOvgdrH0mqkIAdFNujIWcx9sPxxGgMRkstSa++lXR13S+uE96J6hgS2gIpigPMapyTEKqhsX3f0AdE9SEsPiZU1qS+H1Nag0poJcP2ajzlzS99mfnJC1RWkUzJw4NnED133n6bj37+YwajLV754jd546u/y6AsKU3JvXsPuPeLtxlUmqs3b/M7v/N7DEcjdNK88dk3+N53/4bDsOT27Zd4Mp/z3PM3ma9bXqkqvvoH/5in959w//13uH//F5yePCFsFnRdC1ls+Jwva4zk0+de6Zfky5fgnUJjUXzzN75E0875Z//8v+XKzavc/NQncbFjdnTA2eEBV65d48rVfWJUfPPLX0KVY4I1/N3ffZt3fvwWu5VmtdhgbEHb2+cLU6KBReuwOssSvNnwuS//JpPtPd57710WqyUfvv8LFicLaisBPjkIY03QBPFCzZyyQltFXSmaTC8WCGA05aiUn1vj0KWcEa7rg8bQqJQptcWQCGHB2z/+PjaJy8hkWC3WFEdHHB8d8s7Pf8Ts2WOW2VOPJszmzyh0R6kqVGlZzU+oBjBbLnjhpVe58/IrrE6PejSXIzQtIIirQlt8jH0Yx0bCWRSsN2vQic16wYMbL/GZz32Zu+//lLd++AMuXbmK7zqSb3n65EOWi0OSMty6dYtJVfW9kNwahTbs7e7zjd/5h+xeusU/+2//Gx7e+wWqVyjHMuCdI2RBFG1NJ2CGfPL1X+fKjU/y4S9+yp1fvM3xswP++wcf8cEbP+XNr32Dy9eFu/v04QHL9RFPHz8hBndhGgmpT9tO0m9f7MRAaq/zZQEi1ChKCVk6D0zzPpKC/Io+W62f1aSLWUnM6YLlfI6o0ucD95R6N1vfz/bL7YsISq2oRwM++5Uv8InPv8HR/Iz33/oRH73zHtNLl3nh1Ve5fPMGVz/zScaXtik28PJnP8PJJhPShp/96Du8/9N/zqeuXeFX/fjVB3w5kb0DaymMJmoDNpOyJmVDWZwPRcxFDLjRCp0SOcZ+GJBQ/Tct9ZwQ6AcAbUNMgbK0aJNJKbBZzkgx4aOXmZQVP7VgReUHHGPEGtkGZZ96ibOS5FdjcE7A3jEFgg9kLT/8GAKl+KpIsR/2obGmlg1eXEsBoTR1IRHH5xd2bQtySBS2FDg8gNIoJXBjCXUIxJj6DaP486vKYmyFDwltLYU1XB7uc3DQomMpgFWlKIoBo/EUtObxo0d41xKz2GPH4226LnL56jXOTjLNckZRloToKKsdUtpmurNPWdUkVZC08Jna9pR6OBAbmJLEL0UmNI5IycnSs721S15EfNhcqHNG4xHOOQaDITEFJA0qsrWzg2tXxCiFluqHKCCXn80GNGhj2axbch+VrXSiKCt0IfZpW1g0huAlbTUFxXAwIsWGVJZiHQOy0nSdZ71ueHZ8RCYxHGjmiwVbk5rJ1oiuWwtLZXmEqWsJw+hlvUpZyrIWO3CMcpinJOlMm06awJ59ESJ98SUK05QUbZcIyVOUNeQO7yIxiXpPQNEy8POhxTlPoWAdIRLQWXhvIYvFpyx0PxQVtUvsN5ud62HZ1sg2KSkoDZaiD/7RJJ3xKdG0rRyGVZ+WpxUuSQJvinJolZWBwrJqGkZlSe7fPd92DKq6tyNonOsuVHrqXJyXLvoOsVIoRczpQpqs+w1syqmH8MrhZ4yisoYUVQ9CFaVbaS2FVmgSRa+KCwFiTNSlwSjonKewBUWp+6RGD1Uhtr16QJGdgIuNoq5K1k2DyoqqLDFa9zaajArQtAL0FlWjqDJ8jr1yQhLuck4UVuxgIWYKI/YpJSko+BgZ1iUqSQHetg7XdtSVJSJKsRhko5+T4s6jDY+fvk3rO0xVsNkseazPGJYDFENG2zf4vd/5p/zR//u/Znb2jEv7ms0qs9p0uJwZTwv0TCxs7caLsra3ETZBPt+y0P35B3WlOVt0rFrPaFBDhGGhqOtKnmdjMFax8Y4uJQptaFdrdiYVpSl48HDG8Znj2TISUVS2IKdEDIr1qrmwo2QUs9CyPSyYjAoa57i+W2ILWWZYrdkaGlLIdDoyGmqGKGxKXN4yTOsBAEUKxGjwgDIwW65oW8/QDBlXBZNBS2kizcYTUqQshxydrNidVGxVoFxHM19yeWRZdBLIUtdgk8V1kTYFdIJBVTAsNKMSSq0ZlJmt2tKuG3YuTfDdmpSs3FXGoLGgNzw7PKWqS0qdaZuWybhCAdOtMSYmugQGT+MiKAHKS0gSFH3xv2w8jc8UpWVnXOFchxoUrNtIWWkmtcCUr14aQoScxWKvk8cHUThtX7nByeo+Knpc2+FoSUn4RvNFgOTYLqDdOA6fHbNaNRRGEZNmufas+qGW1Zm6MNThY/xIho+ter2K44K7qc4FRefaHSmgtDYCJKa33KtfStk+v8HPBb4XQzEu1L1aQCWciwOrWpYsxgzQ2nB6esrh0SHL1YLxaIQ2Ft96gvesV2uu3bzBzedu8ezpAQ8fPeTFTzzHenXEn/3Zv+bS/iWUVrz06Rf47nd/SLNe8uLzz/Hbf/+3mC+W/Oyn7/Lk4WOIQYKIct9E8nHtgZLBXsrpQtEoIVI9siCrj9XJxmCMEpV5b81UStQvSitCkGZNuD6xPxgVZIW3kaxF7aWOZrTrJbZHBOR+WJcVuBDwwTGoCnIesu4848mExnmiayEZUtC0nWOxaRhmcElRGKlSfcw0mzWuXVPXBT7BdOcShkKSdXPi4OCYddNyfDZjN2cePHlKPa7ZPznm5OSUF27f5KUXXubp04dcv3mNdbNg0S24873vsFwvGdQlxvRfey7JCkajIf/L//x/xZVLN7j/+B5Nu+DNL/wWbbfi4f33yB6ePD7lU596kY/uPeD69ed48OwpD+5/xL/8V/+SH//8A2499wqf/9I3ufvBPT74xRyVDZ33eO+pSsV0XLI9qdHJSHo9oU91tWw6aZKVNszXLbXVWK3oPNRViYsbZpsNWpV9uqXqEzITk7FlWDoZIISelxwzvmuEI+bFYh5xeC+mWq0VhdUYeZHJKdN4SSdP/bDuoi3JH//luTr2Aoh7bs/sGxEN6BypDWzXispkFpvMum8m22jRbWRSKeoiUmdJqPfBoxQX1l/TdyVVJeFn1ihsj4rJSqOtZTwZoZ2X59NFtrbGnMxnpKyxFNiedZT6oBdtLG0XSQla1wn6phywvXuJohwwGNU8fnCHs3UrTZFWuC5gkqGwtlfRC5B+PBzStoG0TNiioHMyyFODAtd5QsiElCSEwhTSF8RE7jmCoVdLm9inIGYIPqGrQtT/peH69ReYHy8YTAsOT044PJizWG9QXUPdrrh354Anx3/Do0ePOT0+IqbMSKle/ZtxXZDE35xBy7I0ZVkO5ywMbuElC5IkEvszRFSU3ovwQPe83qT7JNJ+4UsWdbrrMroUhahwUVUfdCDKLqUUJAn+CeFchSchZkZlKmsYVpbh0FIlhU+ZspDv9WbdEXJHPSwxq5YQw4WSJZN6u33slWni2IkxSJBR7zI5P9spLPvXrrJ/4wbzxSHf+84BOXgGownj6R4727vsbE24c/c9Ht2/S1VZ9vb2eLraiELvXCWTEaB9TqQMw7JGGeGT+9ajWkmJrUpLzgXHZ5G2y6K8KzPb0xJbBTabhuFWBSqw3iQ0FmMjrXcMRgPKyrBer5iMSobDEmOEje4ifWiLDHJbn2m7hpw0KWuqQoLetDX4GNkeV6xw5JxFLKEzgmyVs1t6xdzbcNUFp1wjjGlV6N7eLcM9H8LFfRqjsLuMzsL+ytKbGPOxjtwr+PN//SccHdxjb3vI9edfYJVLXnv9s5ydnfJp6xiMb/P3/tH/hMH2HiNbolRkd7rLK6+8wp2P7vLpz32R6WQHq4W2uzvcwq/m/NUPv8dv/cM/pFmveHDvDj956/s08xm/fe0Kn/ns63z2jU/jXMdmPefZ06d88ME73Hnv5xw/fkiz2UAuiDFgtZJAHw1KFVgKRqUopbvOcffhXT58cIfnXnoBNbzGj773t6Qu0izOCK5jWA0oywHP3brO8dFjHjx4zGBU8ejdd8mtYxUSXdsyGhd0bUdlFaUVxIhGAnuU1tx85RN87uu/zo9/9FPef/cDtva2CNGRfMeqSSgquk0js4NCGLRKCR/RUgrvr5SfUcoBpWAyGXH15k2ePj5gvepYb7yEcAV5L0U0LYnlSimsjuhOgr8ikRj68K2sWC9WHD59RHSOznVUw5rtrS2azglmJAYOj58CK65evYHVI1598yvc++g+7fKYsrCEosB3noTULtlwwRSmr0uiS6wXDaNRyeNf/AhrMzl2HN75KQd3fkKzafDtgqePNfuXbvLa679BDNC5QCroueSis+6C5+T0iOde+AR/8J/9L/jn/+y/4ezgGV1eogxUdU1ZDphe2eb5567RtZGTxx/y1vIh7/7wLU4PnpFCxMWGn3//bzg5fcLNF17k3R+8xVFvtfadI3RORt+9yv08sCwrqTFj6nnxfVKxbKalji1LiyQ/C0s8uNifX/0YsM9G0Mb0zsH4S/ev7mtV6U2MMegsA1/QvQvlfAEiQhxdGKpxxdGTJ/yb//v/lZPDA5r5jLIqOHrwDh/+5K8lsGprR8LxVolHB+9zeHjMw0f3Uclz9uyQ28Nf+x8auf2P+vjVB3wkcg50LlJXpXzjECuJC+kCwClOPH0xGPDBAcJUi30RrJIWKDXCzVIJbJCNhvfyjU+JfuPUS5o5HyKAtSUutPK/U74AHgwGgx726sV7XchFlbKAfIejETrLqdn2ww5j5PKyRYExNVqVONeI2rAv0sqyEqlolNTDznkpfKzFRd+DGnOvYOtENRGkMAghUA5K8JmcDXU1JKeELipW6w2aiNYFOQVs0Qd2JIjJsrt3iZwMTWNIaUlZVnStpx4gw4xsGI528CkxqAcMBxO0GTLd3mc1m3P91g0Onx2zXCwwRUHIibquqIuKFIUxogxMt69TRUVlLYv5Gc5HrCnRyooCImeMLTHJYlRBTrJBHY3HuHYISYYRMQl8Vpg90hhmbJ9cpPHeS+pvr8q0fepuiGBsxXS6TYqawWjIenGCDk7k67YAO6bzmb3Ll5ns7hNTZLNe0qwbVvMzjIn9MARiciA1q6RU+cxm4zCmQukC7yNVKUMmWxhGw5rlcgnaCCi0KijKCmMTTRtJsSNGGV7mrFG5lQPJeUKMZCKQMDrRtN0FYL4ySWLvjRRjWmusyUQf+89L2Cx1ZfvhFGSVMcgGPamM9x1FURNDwGN6N22irkusalmsj8lZUw+2MbYCJSlu5+Dr0sC4NJTJY5Fk4ya0oORS1qb8uPFQ5+WKPIfn6tPcNyTGnEN0BcQu07YL/TLaakjQ+Y+HgPLbZFQWa+2glHTVTdtzdJSmcQGjLShRnqleXarQqCzpZEYFdqayWGi7RKGgUOfbb03TnidoZpRPkKDQFtUXS/S24RylCJOV0HnzpaQZ1xarxEIWparGhyANF6pvdKRprwtLZSSBMMsfS/SJznu6HEjJMygKlM50YcPRrOOjOx9w5/aHkOHatR1uXNHce9iwvzfGB8WyDexODLOlwzlDWVqylhS6kPrmAC1DhCysmGFViz0pdNSDAc5HmjaKXTdqWu8ZFJrtUUlIgdGoxBrD6dmK8bRmH0s1DmKNUoZFl1hsIqNBySbL0MFY3d96icI6RqMKiyhdLJblOkiaYe6T+byjmFYYAl0TGNaWSV2Q2kjMmdnKUZQFdQmlKVlvEnVtGQ1qyspSlor5fMloULAztoyGlumoFKzBRLFUkbvzSLt21LWmzGJbGw1LVIbCZgY1WJUxBEpbCOeyLlAxUA7GNFGxDJGuXXI096w3gcJYXMg0bo3Jic06E7LBo2VApLKojmIGlRgNKnIKtCEzHhfo5BnYglUbOZ076i4ynVTs7hQMu8R805CyxWrNpu3IKVKXBePBEB0TGIXSBXU1BQUuRdrGS4FiBKVg+sHoaLJFUReUVSEBDbak8YFNF0RNlWBYGwaFJQQPFBcqvJx7zmbfPuR+66m0pJ9n1Q+3tPy30loS1hH2Sb9C7QN2er4Jv6z2lca3LC1Kg7GG0WgEWlPVNVZbZmez3kZbUNU1z91+nl/70pd46eVXePz0Cf/y//XfSRGcM/fvPeHenYcUVhNi4M67dxjUJU3TMJ5u4ULgtU9/ivFkwJOH9/j+4TNGkzG3XniRr//WN/jxd3/Iw4/u4Fz38UGHDEVybz8UxYQsIbUWlfJFKm//a2LKPVbk3FpmhLnTn3HBZ1KSCK8UYl9IJlS/PGm95/jsjJ3dHZrDQ3II4nIgQdZ0XtiXugfWF1qzWgoTa9NsKAvDeFwzGpYYlSg0bI2GFyEJSkV0YZgvl2TvGe2M8Z3nrI2s3JxuM2dvOqJpHG3IDAY1o8FQOEOl5qUXX+DVT3+a3b19JqMRxMwnXnyFejDi6OSQK/tXOT09YTVfc3x8JiwtZWi9qKfcquXOnff4zg/+jKfPnkLUfPWrX2Oz3HD7+iu88blf5/DggLouGU7ew/nAP/jiZ/g3/7rl7tsf8NZbb3Hy9AnvvvNDVGgYDwo2GyQJOmZUNESsMOXIWC3ptOO6JCawWt6tQSHNQUlAa8WqTZAUk0FJFxxrD0lnKq0kxERbni3kbitNZmc4JDk4XDZgNNYIhsD2hWYiU1nFoNQU/Ri8y5o2Rrlb+uVzPld5Qj897+/DHlhplCz4UpJ6yGjV4y0UTdQ8WmYWDgZWETE47xkPxEIdk+HhmaSu5onY/1SO8j2pNMPx8KKhOV/2RO9kSTQsIUbWm5aIDHWquqSuhSE9mYyEEdYr6VOOpIwo+bLwX88HTC54Ug6cnZ1QljVFcYW6HLJczmWo6l2fCgudk2W4cCvFzlnXFZmaLkSyEx6TKUqGtmCxXBGSJLKeD1Btr4DSKmIV+ODpfEtVllSDUtwAXYNKsrhcbRb45NifbjENI2xVsjMs0LbmdL5gvpzx8N5Tjo83os4iiZpKgdaWFDNdlDswuEhVSl8iC2lJ4s6KngUsTShawhGSUj0TnD6JWDYsRhe92ilSWEtZGJxzwv+1htG4YLMRjmphNV3XQc6URS1hfH1wScoRozOjIexMa7ZGBetmKQOzWniXVVGwSgWns424Fnr2FEpLHddD4c8ZaxIMIcPJnKQvmu5dYrR3mWo4oq5LBuMJz91+iStXrnB4+Iwf/+Cvef/977FVjzGqZLw74vDgKauzM3TKF+6ToCLRR3IfckbuHSFAiplhjzjK6H4ZnYkRTmYd3/3JAdZmJmPL9cslthTHy6iyIsjJGkumS7GvG2W51HYdZSE29sWqoesiMZYkBbHrgweTJvd2Rx8Tbp2oKvmZGKvxzku9V2k2raMsDcqIhVMpCC5LuqpBXDh9aRwCJBQhKkL//mTovzYZsonQQOomcs+U7HsF/UtnRSpgsTjh5OABqZ1w995d9m+/zN7ly9iq4MWXX+bK7TfZtBv2ikvUtcUqyyufeIXh+J9yfHbMJ175hAxFestsYQxf/PXfpN6a8vTJI8K64+mDJW9/96/RJH60c5VLv//3GQ+G1GXJzvaUq9dv8ZnX32S1WHL/wV1+9vPv8cHPfsDR02NSFN5mUuCzKC3LokZHjcuWe08OePmFF9nfucpH79zlwYPHTKdDmk3HS8+/QFVaPvrwQ+588C67u1s8e/qArfGYpvEyZE+KypSUCllAx8ywKHFJ3j/Kgmo44stf/RpaV6w3HZksAVPNpu9JdM93dFhdyNIzyUJWlkWRHLLUocZeJKrasiDFTHQZkjy12mi6EAWpYMWuaaqSYiBOwhykD+mSLGbKouTKtWssF6ccHRywXLUY4OjkjJ2dS9y4/jxHh3dJecP1q/u8//bPOTmdszPdZntrm7/3T/4pH739Xe6+9w5NCugUQSW6IMpgYaUibkAvf6ZCcAInz57R+O9R2pLgPD546rKgHtTUkxH7157jxvXbGDSdd0SS5AAYUWWumyX/4o/+O1586ZO8+PIn+dwXv86f/NH/E4xiNN7h1U+9TlkOWaxnrBZz2s2aO++9Sxc868Wa5CK2UIzHNXtX9rHGMq4mEBS+daic+7NCXyyQrS0kmKwwVMORBDG5juh8v7GW8zaliHeSZi3vXST8kq0XpLbN/TxPkqblXv+YRY1Y3JXUvylHZLktd/K5C8X2y5nJ9oTRZIR3jkcffdDPrnz/udZ0LrCcnaFyZvPsmEU9oKgH/M0fvU+5tUW5NaEe7DF6bsBoMOBX/fiVB3w5p74Q6e2uRuyTWhmRP/Yax9wX/wrVMxvkhZKHTfeWvUwKWYIejJGBXIx9Olb/56VeOom8gFnJy2nKksl4h/niVB5ooCpF8p9iYjQcst6sUEoi4I2Ww72qBtKsoOQFsKH/awMIIwk0k+ku3m0IsYFWyvvE+bAikZU8OEYZCltSK0XTiLWUnrdR2BLvAyEE6rqWVB0AZSmKAShL8AJE3t7bJR3DatFJM6QMthSVX2bA3qUpB086QDGZTonBUpU1zdpy9cYLbNbtxeR6UE8YTYeQFV3n2BwsmJ+eEhJcv36dxXrOZFhRWotrT1mtG6rhmOnuDQbOcXJywt6lWxwfdnLJ9NbAnGXgGkLk+tU9xuMtlqs5CcV4OqXbrGQr6wMxSqBIoSElT/IdbZDNrykk4GI82UfpzHx2IoNiJQrR1WJFVQ/oXEvMsbc9lWJ3swXD4Q6HR4ccHh0zHlZ03rE1maBVQQgSe26SDFtVkmTVoihEERICly7fxG0aWmJfTFuxBNMHUShFVVWEEPBZobNsQ7wPRCV2Y+edcIRiQumETrKBXLee0mpp5pSnCx2qEHB6jgKdTxGxU2BFwRYDGrGN6/NBWsikfrNvdKYa9FzIQqNyoiotg7qmLAyHizNSNlhlGQ7GlEr+2aRke22SF4l4brE6MdCSONtmLRDZLDbC9bL5eFUIfXhGlk1/lq0iSlghpZWEOEkpk6YCJcStQpv+cKR/n/qhQIaUNRuXBGCrJGVtWGu6LtD5SFkK3+q8kfA+UumMCol6VFIYYQ5tjSwhOLSSIW3nZWNzPtzLcHG4l4WmMor1OhBjnx5YG5wPtP02/fxD0Q9GS0MOcs5pFERRXoKisAqUYt166iwq4NFQ2DPboyF7Ozs8fboirjzRKLQZsLMjVv/FoqVrFjy6+xZ7U0ORRizmDV/47DfJ7ZqfvfsLVkvHdAh1PeDZaUtKHdoU5GiotGJYik1Xadn8+yjIgOGgRKNYrx2lLVEk9rYsXeuwdYFFLvnFuqXpNNuTUc9TCrx8VaxWmCF/9sNDns4loXHeeMajWlLCCShlcd6zWckGwo4Uyy6iYxCwfVVSKNgaF2zWG3zMtNH19qZAjUJHeUaa4Nm0DldrtodiOV4uG1yMuEJ+voOqRsXEZGCoSs1yuUEbxaXpgGedY9OuyUT2pzU6Z9ph7i0XUFYFi2VHYWFSa6pk2bSe/f0he5MaEmzajsZbUmFpYstwOkBtYLZpGAwKxoVFZzhbtcxWa5RKDCpDVBqXPNponHdMao1V8sxqrdiyCjUpiEvwCU7nHfO1Zzop6aLiZN0wGZakXOJ8YDjIzNczRoXhSj0i6Ia7d95mtZ6zbtYM64Kuc3KOKZiOR+js2NqaMhhtEZJiNBwTXaDUMKw1jfO4kAmpYLVxDEvVq4bO79bz4Vz+JZC2zCDO0w2NFdVJVRUycPe94qO3KYjqXRpZGWr0g4+6whYV0+0pOzsjzs5Occ5x+epVjK0ZjbfY37tMDInhYMx0usulK9eYTLaZbm8TY+DF57f53/0f/o+8/+7POTo6onOOh/fvcefD90khCatnvRF0QWGxtuCtH/yI4XBIcJ7FfMHp2SnHx6f8/j/8A77xm9/g+9bw7ru/6FMbhelpre2ttPGX6hz5WsqiIATZ0ivVp2P0C78chfmpEPue0ZIA6ftgEKV030QLj1dp+tRuqYNWiyUGRaElHEPlxHLVYLWcMTlFtsZjRlVJ2zhRAHmHVZmqKDFK4Ps3rl5i0zrO5nPKekhRVLQ+UdUaYw174yFJZ87aBfPFkug8bXfK5f0dZqsFT49P2N+b0q037G6NOH7ylPlswe2XXuLB/YdMt7b4xje/wcOnT9g0js264fhkzmc/82ls+ZiT2ZovfvHXSKrjycFjjp885fD0ER/e+YDj4wUpag4O/i3Wan79K59H/bTlF+9+wGy54vTshKZt2P/pHqdHJ8Qus1l1HHFMPjmkMgWvfeITnJyccvjshOgjKUZW6w0jq9neGuMWDSkEdL+BN4DrBG0xHWh2BhVN1zHq1Ri2KMW+mjJlXfYDoshZI83efKMoCsi5ZVJrLpeWRatZdxGZfEesylglAQ9dyIQc2BlVdOsOlSQtNRHwSRJfc7/s+/h6/XghFs87jv7dM/3z2Dl5VrRRnPnMMge2RkbuNp/ZmVbMlo6EonWWLmhGg4pZYRkOJfSibTpRGikjS0JjqEuDspa2daheJRZTxsXI1rikqEpa75mMReG4mG9YNQ05QllYClv24WdeAOVKUxY9nw5P17Q8ur9Ea8vWZMr+3h5Zw9n8DEVivV6zaRvWbYvVWgZiWdLcq8GAurYX6mLvPaNRKYu7LMvzqpLU1nXTUhjFeFjKQJRekZHlXUQpnM8cnqx5dHDGdFSzWZ3R+YCtSqbTIVsTw0Abrj9/lbGB7/30Ect1QEVJ5C4rUcEJb1GUjyqBSgpbSMUQe/uWMeZC/RyTpygMClGPqH6YpbUox0St1ycK9zXgoO+jYoxYqykqQwhBzhUtZ04IAa0i2hQkmzEWKmuxFqpaE2LH0WxNF9KF6m5UG1EgESWswxaUhULbmldef5OdyzfISvHgvbc4Oznh1vMvsFolvGtZr89YnJ1SVBUvf/ZNXnvzKyhdYa0m4fjet7/Nkwf32N+/wv72ZR77Dzg7O8AYzWpZoXtlpfcepSM5ipImaBnAFdr29vU+aERrytISYqAq5extnccnj1GK2mRuXh1xabfg0k5JjJ7Oi3PG5MzudIu6SpytWjaN71MrI9rK4i9nwZjYVOC8VKYhZqrSkkKW+6i2KDrpJbwhBk1VFTTB07rE7lixv2VxDpousE7yvMUQqIzU1Cn3VviYyVFCJSUETxw5obcDpnyuZBRFku5DDVWmZ29LLZx7NVN0mcn2FnXZq1ujJHl3PmOKIe999DbF+BqrpkVbxfJozpe/9HlKY7l14ya3r1/HWBmUh36gYTBcu3KTsq752Q+/zyq1fP6LX+K9d37EbHbM1RvXsFXBfHZCWZRs7+5SKBla7uzusr2/x4uffI1nv/5Nvv+33+Ptn3yH1ekBuhgy3N7jxReusre1Q/Q1q7ahKjLP37zFwZMTPrxznxu3LmELxdVbL/HGF7/Ej/7qT3jv7Z9jCTx+uKJpul55pUhBBuTjYUlZWqJr2Z3U1FbTtSvhXtrEpz73axSjK3zw/rtUteL0+Bll4dnZ2uHRyUPpU4qS0lpCFDGF8IE95UCjs6jv15uWFBVVXRK6lqPjGScnS3KXiV4WNwaFVYqgs0j4yhqvKkb1gPXiDJLUbE3oRO21s8tzn3qNwaRgd3+X+fEJViWml3cZ1CM++fqbHP/lM9r1jBgj7/zsB9xYzqkGFtqWYrzNN3/vn7B7/QX++t/+C3LS1LVh3QRSTkzHQ3wb8D6xXnkyUPRcvOADi5Nj6sGkV1mKYMF5x1BN+ezn3uDSzjZWg/Mdm2ZDXVcMB0O00sQMB0/uce/DnzHd+V/zpa//Hu++/XOe3PsFV2/c4NL1m2gbufe373J88ARSIviA6wJ9pDhkQ9MKM35cVTy++xG7l3ZpmiXL0zO0sdR1gTIa5z2gSTEwGg248txNppcuMT854vjRI9bzJdr04TxJ+KwxCPz2PABMXcjC+nC03rWC1thCQtGEdSmsaOiXWSn2zoRerdcPhY0xlGUFWjEcT0gpsVpsiEF4nkYZdNYsZisJVs2Qk6R767Jke2eL6DM7L7/Ob/yjP2RPbTMeWZqDD/6Hh27/Iz7+Iwz4MsF7jC3ESmsLKV6UAPOt+Tg36Nz+aASYxXkVo7WirgYfx6mnIIPD3t9z3mhIaol8w6uqt1RqRVmWoCyqKLFFiXcNtra9nTEzqAeS7oVwFQprLqT7VVmhjUX1ck6teqZIkO1mVkoURsMhvnMMhxO885RlgdG2V6fL7xdSkKGhqQgOjHGMhmOxEwdhgllbiPQT3dvAMkYPqAZjgXCXhpQ8i/mStmlQSgvA22omkwmDeoRWikcPD9isz0RyGxVVVaOVIniP97B/+RrNZoXWBaPJLs+OTtjZr5jsTnl45wgfNiRV4FJmUA2Zz2fcuPE8bbehHteYckrbJqwp2Nnep6pKVpsTolsLI8NYus5jTM1ossV09yrNqmU4rPAhk0LPB+nW2AIal/uE3UxZD0gp0zUCPvaNDCOXywalE3U1RCsjKbNK4uydd5RZ+HRaW4weMKgr6ukVLl1/jlWzppidEnxLSoaMYXv/GmenR+AVne9QGUZlzWg8xIdAYUpsWZGSEhWfslIIZrnYgR4c6zFWUhQzkkB3YWFQkvqGEhVJ7lU8SiexAufUb+F61ZeVkI5Mf+D0k/+uS1grkvIUZUhsjCLHyNBUKBIhOOrSElPABeH3hZioC40uYOMaVi1EDNPJkFG9A1hhD2QJLClVZDeeUuUV6I1w/ZKl0BMiNS55ckx0TSuNLr2i7VzF11t95PujsEZTGFE8TAYFo3qAj4HReMjjp2e4GMRe03MESQmlhVei+gRRhSSZGStDTRfl4kAJeyTG88JHWgZjDBpN6yJBHJVUKbM1lAHrYGA4mUVi9FirBXQfxQ4s3L+AzpmtcUXrJAgoGsWgLgjR4QN9gqgsD1SW82A8qNm0TrZXPoEu5PmIsVeFypY1KUvjE9pkTJe4PYm8fukyP/q5l+bPbwipEvtsCuxUiZE+YeVOMVHx8vU3ef1zv8Gf/vH/jTZ4ki5YdR4XI3VlCCHTdP0AVVt8iphCM6oUVVnRdgGfFOs2Mh1WkAJGRyZDQ10qUlTM14GqMGyPLNbUtF3HcWoJTgrLyiaImgfHMxZOXfystLI0baRpu96KJ3bqK3XBdm1YNo6oIuNRQRcDrunYqi2bVtM5SRgLMbA1sGgNdQXbVUldWGwsWfvEqnEkZah0y1ZZoNEczzpGtWZQaNpFI/eBTX2Yk2a2cjSdJibNqCoISfP4aEPrZAs7KIDlmu1RSV3I0GW52nB1WjGoCioLGcMYi6smPD7cQLZkZRhvb/FsNmfRRTal5crONjtTuejPVpu+4chiMe8VypU1bNVi4WwS5E3HsC7Y3R7w4KSl8Ynx0HK6dMzXTth6HlQXKLSmaRNRebbHW+SQMLVmVNecrH+5gY60TYsm4ZZrXBNIuUJVA6rRmHicWa03wodrEwmF85GYNTEoBkj687lKQOx7kraZz3lA/R2cenWrd/IuxxgpCoMtbA9Cl63x1nTKYFizWW9oNh6UoaxKxpMxl69e56WXP8HZyYyt02NGkwnj0Ra3X3iRyWiH5597kRTFKlxVFdoY6rqmKEqccyxWC0bDmheee54cpeAK3vGtv/hz/vjf/CuOjg+JMVP0ivalWzOdTHjp+Rf52te/zuMnB/z0J2/x0Ycf8qf/6r9na2tKYQte+uQnuPvBh7i27RW6soxD+Z7DovsNf+q5hbKVz0n1abqy7JJhaO8uIJF1pipLiiTAcbFnyTk82RrgXIdRlqossVqzWKzYnk7Z392lXS6Yn52yNx2iUqCsDI0LJO/BGlL01LbA1Ia97ZEwnZSRIJqmYbNaMxlVpJxo1g1NSGStuTSquH55lydHR0yHIxbLUypruXblMpf2t2nXDVuTfba3tzg9OqJtHCfzFetwwsOTJdPpmHtP3mbRSUCWspblYsPRsycUdeLDu/fxXvHs5CEnJwcsVx3LxZqrV69wdNSwWYql022WFIXlz/7dX2EsDEdDzhZLXn7hNqezE+anmp3JJcJ8wdYwE3UnAWYenj19yv7eCLc2GF33qbuZ0pSMRhPaTUelJaG4DY6sEoNxRdO1LBqxSVYatoeZrAyLlccnqEpR2rmUKa1iUhi2xpqCRIgGlTMuQhdFGQ5IunIS1Vhpxa0QQmRYWQqdKAsJaFLKMx1qkoQ5M99EuiCqFmmN4XwaJKXxx6EH3nnyOaMPsXtnDaNxhS4QC1MyHJ15JgONQXAiViU6pfEBFuuNuEm07m25pufxiULQ9nWsApKG3EVCCmy6hlduvcpnP/dNlB3h3IZ/98d/xGr9iJgysRN76nBQoJAFnEcGBeNhjQZa7+mCw9gC1SmGm4JXXn2Vm8+9xpUre/zdX/57jk8PcdHhQ8IUlpj7UC6VqCvL1mSL1XqDNYYyRjTdRQjd3s4epiy4d+ceMUTaLlCXmqKQ4eem7TBaY4xCG03TeAaVRanI2aolJEu3nNG0DYvZAm01dx8+ott0vPD8Lh/ePcI7zWhUYUwUjEcSxWDMUcQASvqYUksQRttJI2eM1HSmD1Sw1vR1Ra/eqQqxeCeg7RckgN8EUkpUpfQ6KWWScxRao3rb3aAuMEp4rm3neqtaojYl5ETTJTovKjatdZ8mntl0icV6DalgtD2g3QRaFxiMKy5dusarn/o1RtNtrl+7wrf+3b8lK81Ln7jNs4MDlHFslnNy6PjoZ28RmpZ67zLjnR0WR0/48Gc/oF0tKYwlx0zoGmmlk2U9W4u6EKknSB9b67RG2NdaXaTs5px6znHE9svtoqoBRReEu/eZV/d49dYA8GzajrWLNJ3j0v4W29MRp6cbTmcLXBIenHOB7ckAayOFkTAFawsW60DbiWLfWMHOTCcD8jAzXzXsTCq0tcznjtUmUHhhqScygzLzqefH7O/vsVjMefveksfPRPHdtMKyTkkGzSR1YUVXWgKdgk+kLJZuyRXUvUq8T2NHrL4ySc4XaqOcM0Nj+MKv/zrLg/scPn3EcLgl39vQ8fTeHY4f3sM1mt/6gz/g5PiQy6MpdSHMalGaKrTKdG3Th8lpDo8OyLpgOBrwxhufw1IQbck3/+F/zg/+9k8IqeNvvvNt7n/4EV/68hd4tfwEdVGjjQRpVGVFUVVUpmBrvMe1mzc4vP+Qm69+mudeeY1mNWNrWPDKC5/CBIdRLTF0fHjvDrdffo5BpXj04Am/9rnP0vqO+XLFajVjMig4PZvxiVdeF0xXagnRszsdorVmPK4wRG5e3eH49IRrl3fAaG6/+grf+MZX+csf/IL7H/yM5WzG7GxGWZZUVSEK1QzDwZDFrCF6j9GiYBWTRqSuC+Gso3ExYFOURQSASmQjP7eqLDEq07kOU2qKQcV0/xK2qKlGAwqj2cwWONeiTaQqKp5/+WWOzk741r//c4qcKcuSwsKtW7fxLrPZrLl+8ybOD1mvluToubo/4fvf+wH7WyV5dsBbb415+fVf56ff+RatP6EoC6qUidEwHA5xNpDXHbZMfU9keoVigdaCQtreFcyXsarPULDU9ZguBNabDfNmwUd37nLtxg1euf0SdVlRlkOuX7nEt//8u/zd3/0Zv/8P/md89bf/MX/6RysKrXj68EMOjo84PnhKs1oLlk3pfhh63mtnfBd49vgJhwfP8Cnyidc+xc3nb/DubIaPURaYxmCiINXqqsR3jrPjY2JMNOsVSgvHebK7Q1HXKBRnR2c0yw3RuT65u19eJ7lvJUVe7lZTSF5AuhCnSB2cMegkYhRF/57GJOEqaHTWvR04c/L0pE+8l9/z/HyTIDkJkcpJrL4kzXqxphicsXflEr6bMZufcu2FK0yv3iAuDn+l2Rz8xxjw9ewE3csaNYpI7jlRqR/QCcfMGkOIwgOB3sqS5aCJMRN8ErUbIgU3vRS2svJpig23oK6GPb9CLF3GWHxAigNbiRUTg9Jic8xJggeqssR7Jz9YMvTRyN55jLHUVSXaor5IN9pgen/17OxItk1oxpMx2qh+YClb1ULZ/vJW8nkoTVlUDKohbet6wHiidY6qKlFayw8ZRVXLP2ONEWVdjEwmE4pSYW1FajO2qIgRBsMhbbvhuVvXefcXT0EpClsRYqIclJR1yWQyZjGbk7KiKBWL9Yb9/X188qxWS6bbW9y/d0A1KmjWGy7vT6jrqyyWMzC1RE1Hw+6lEScnZ1y9epPDx4+xdiicvp4d0jnNYDQiJ81stuDWzVvMZ2cUKRGtpiiGbFYzjIGqKmnWragYigLXtsKdKysciZg9lVaE7HGdR2s5eHwMYqM0hq5te/uooaxrrl2/zfG8485Hdzg5nTEeD1FZc/nmbS5fvsbx0Sla15w8vc9wXGK1vNBd6+i6SPAdpigpi47JcAvvSymKXRDnYc9yjEleFGM03gVidhgrF68kx0nxEYLvFapJnnMthYsPHmtUv32QcIzC9jbS1Nsr6bdFRcV4OEFnjcmQs7Ar2q5FIeEtbRA+k4uecVmRgcZ7iW83wnAkJdpNQw4S+DAeVaTOseOO2LFnhBRY+IDKloRDlQ0mguDqZChfD6rzK6zfWMjhJsVkz7fMGRcSUcNAlzz/0nO8884dThZrYpaN0IWlNwkLUyEJaIU2hJjwMUjYSBDLbNPKoWiVIUbdVzNAz+rTfchIs/HYoVjpC0QFVhpDJjEaapyXFMGcMlkXOC+MnLKSy02lyN64xAXLybIl+NAXWCCnVhaWWsyopPAuYFCMB5bxTs3x3ONcg0GJhchmCmvwUbAFw7LABXjv7oybNzN/73fe5K0ffsDDxy2WxHRgubl3lc+9+gJ37t9BlZA8zOYPeeu7/5zT+YzjeceyTWL5TlLUGaOF+5PEPpMR3l+yik1j8C6BjpRGUxWK6WjAoIL5wnEYI1VhOV1umFSegc2UOjAcWIy1BCsplgbNoom0jWNvbNEEBsMh08mQ46MVyRhcTNQVlBr2xorXblb8+IGjCb36KcsAZNMl2q7FktmbFNgMw6El+4jKAsIutEf16o+iGPLkcEVZGrqxInYdRktKY6orYisw3GQywWViF2gDPD2OTIY13drjNo62zSQ0XZcwGQaVJIunmCgqw/50zP5W1QO4hyzXLRtX0HlDYUq8a2m8o6hrrC1YrjsScPfJMduTASEmGiespNpmTAWGRAoSyNG1/uKeaQPUMeHahraLtCFjtEfrxM50yGzdydAgGcieW5fGjPpkvab1lGVCRc9qucF3kaxb2q4hRdgZVUynI0xtmO7uAIrDgwOePH5KNoZsMtPpiMVqxWBSY0vDsusumLgfg4p/6V0/54CdC4v6O1upnkOiEH5MDD1zUFHXVu7XJjLdGjGdFrgu0/mG9fKMsLfD6ekRe5cuM5wOqeoxVTFiNJzywvMvsr9zSZKwrWyQdT9gVBpMVVDabVLwaIwgH3JiMh7zh3/4n/H6Zz7L3/zNX/P46VOGW1t88lOf5MmjR1ze3+OF55/nxRdeIqbMV7/2dX76k7f48KMPODo85OTsjNnTY6aTIYucaDrXA5dFya+UnPOpf5bP6x2ULBbO/542ktKm+kF/TPSWH0FZFFXJoBRLuCk0ZVUAURYPhfCthqOK1nseP3tGajtyzAwHEiCwXLf4JEppZRXDYcFwsoXrOrwPzOZLtrdG0jhoxd7OFioLg86ViuPlmjYmRoOCxXKGax3txjEZlhTWsFnN8QPFzthSj7Y4Ojkhu8BgPCA3ia4JNN0Rp8+e0nQNXecJOeOcF7tmDPyLf/XHTCdjbj13mzt373B8cgpZETws5/codIXNdZ/AnnBZFrqoRLMJxOS4d+cjrly9SlUbPvXpT7D95W3WmxltdLz44qvEnPjLf/cn3Ds4ods06OSoBwW1sdQqM98saELDsmv4/zL3X02WZemZJvYstdVRflyEh8qISF2ZpQsFFGSjgQamaZgeYxtHNTlNa94MxS3v+Bf4E8ZsxmhjNJI9ZMuBanQDDVEoqBKozKzUGRk6XPuRWy3Fi7U9ErygGa0xF3SzzIxM83T342fvtT/xvs+bGU1V5iybDhV84sUGqDuPLtKgo8wDkzIQRUJjaB2ojIaQlHfKeLKZ4mwd2HQS6aBtLUoYqkzR2pTKLaRIligVGanIbklazmWwUwkqk9QCTZOWekIoTleJFReHe3Aw8Q2mlyvXSxpIxuGT5HDxxSio20g28ARjiBSVxGjPuDQs1unsWW06mrbHe14gNCKkJZdKqhWdKaRMiq+qqOispWlWyT0gNI+PnhLe/VNUzLm4XHJxcfmCJxm8Twu/mHigSqZFEEKw3tZURUZZlrh6ixQR7zrOLk44/8sTqmrOvZfucXjtGnXbIG1DFizBO4IItF1A6xJjFEpEdiYjhJBs6jqlameGs7MLnh89S7bXmIKytrUlM+k60yalskstMblJQTitI0RNQFKOSk6erKg7x+lpx3xe8NqrB6wer3l+XBNki5GRvZmiKJNNVCJAQNumRGNtFNu6J4Q0EehtIPpkYRMynQtqCAAhgjapno0hLV43mwbvI94my5hRiiDjsDxLtjIhRRrOAohUvzRNsuQmRbVCh2QjQ6SGOQiBkHpwRwFItEmDRR8FwTuK3LAzH9F1nigiP/6r7/L4/scUo4rVakW/XfLw7JiHn3yYlhsDViWEwHZxwTt/+T1QKjlJfMS2FpzDYYcldhpeu+jSoFsOrqcwMCGFwMdIYXKc618smga9OD54nB2wRtYRSQOyq1pwudjibxVkShK8ZTYt6M4a2qZnmyu875jPSi5WNQGFMBEpLQc7JZmJXC622K4nNxnjkaLt0pBfGoGIHcZkxCgwSiZloLlKNrbkJp3nrTM8P3d88uwJQmqenkTOV4LMKIxJSk0/hDP1LnKFoOmdGxLVXSpxw5AAOggCPKSE3xQfSQq3S71rcr8Ezk6POVssqVuLkTm27Tg/ecZqdUm9XOE7i3OOspjy+mtfoipGZHmJGnrxtt3y/PSYd378Hm/91NfYrC/449/8F9y88wbf/s7f4cnn95lPd5nt3Wbv+qt0LvCnf/C7+K5nOpvy7GSf1XLN17/yZcazOc9Pj1hvNuxMxhilOTs9ptyZc6fc5Wvf+TY//MFf8r0/+WPe+tLrHJ1c8PK1a9y9Oae1HTdu3WAyrfjTf/fvCELw5OF9jDHcvnWLBx+8y1e+9Dp7JwtK07HuLwhuw85E8/aXbnF2dMJorInlhPm05Nl54PadW9x746u8/s1fZHPykGZ1TLtekytFrg22benbBoJCG8NytaVtu6SwVanWcdYOLjONjp62CygEvgvDoDb1h32M9DFQmhyFIM8jMjOgFPV6ybjo2IYGQrqWZVnQeE8xndLWW95/7wP6TU2wHmkko0nG4vwCIQw/ee8HfO3rX6duCu5/8llifbqWaV5y+uyYl968y/LZhzzJM/avzXl4doIPmqrKaWvLdlOnpaVRVJN0LublGG8tXd9R5AXlqGLv+g1WlzXWeqRZMRpluNiz2tY8P73g489/wscf/YS33nqb+WTG/vyAQOTw8Aau7/nL7/4Bo/Gct7/8d3j7W7/Iu3/+e7T1E05PzwnOD5bXiNLpHradAxKOQkhB8BHX1TRdz+P7nyNlQmwkJ4VN98fw7zqms3J1ekazXKHygvn+NXResnO4m84V58irKfXlJd12TXA9ziZnmHMhnZEhkBmTng+ZQuokDjBap7Rda1FS450cauM4XCNJPJaS3h1tc5W5kJxCRZ7jvEuhqWEIVgsD9oVhaT48r9YnF9htQ7lc8+//6X/Hjw5vcvjSbe4UFfCP/38Zw/1//fhbD/iU1oMiTRB9wIqBmwUvbLlX3C7nr4pmhiLvSsYu01a1MGkwEsH2btiIyxcFSQIeSvzQhCupMDpJk4XU5MYMoNCUvmW9JxsaAa0G/o2Uw4YkMB6NXgzZGIrVGCNZXtL3yQosgTxTuNCmpiZaRlVB0zYok+PaBFS3Lk1tpdLoGNJUXOrh57cIwMdhoOhTIl4CdKeHrRbpIT4aj6gbS14UeFfTdj1VVRGDIi9HzHd3Wa1SUs7uzg6npyeMJ7MUHOBcGurlOW6x5qWXXiaiuFhcML+2y/s/fg+TSdbbOhW6dcPODFbrLTEqylLT2Y7RaJemduRGcvz8IQ8fPOCb3/gW2gQefv4eXkVGoxHGVNjeoU2Bd5bnx8dMxmM2iwUqMwidkRU5wXXYrsNHR2GqZL2VgtyUqREShhAEWV7gg2OSK+rtluCTBTAESVYYlBR0faoSgpR8/uyYnZ05B7NdLi6fs15vGI3HnC/OWC5WvPLK6zSFodlegnQ06wvGs4pqXCFVgnciNdF7jMkx2uD6ZiggFH4AeEJSmOVFgVGG9Xqbkn5lKjqc8wN4Pcl9hUyKLxEchIA2KiliIoQg03UwpMGKKCgyQ2Yk3kIM8gW3RSqJEtDbPrECnB+c6gKjAlWWJYuFgNbGZOcYlJF1bSl1z+5UEXxJt41keGZFjXEtCkclkzVg46D3aZAlhSAzFcHbNO170fynokMAcfilSHnFn0sDqMtNz5/91XvpQCNZbIyU2Kv0TCR+AM56HxiVFbOy5Pz8AkSyUl59LakkPvrUFMSUYEuIZAFMFFRSI03EE3AhJGi3d3S9o8gVii8SkqxLdiNEsjdnBMpMYbQieMf+NKcwBaerPkGNIyip6YOn9y4RlgYuklCRzlpGleLGQcHz4wahJFkO5ShnvW5g2K67GNF4ZJQ8vn+OtIEvv3HAjV1Nbkb83V/9hxzeeZM//4P/lmV7zszMePrsktEtT1FYbJdgu3vTArWT0TnY1pYQFUUGm7pnMjJkOOIwnPUhMS0QAp1rtr1j27WURlO3nhsHOZUKlCbxeMaVoJKK+XRG3zs2rSPLChbna4QU7IwNpszJxBZL4PjZOdcOZuxFw8W2ZVxKdIC710pePxzz4dMls3FF7SLnixohBYURzHLBjanizes58zIxiKQUBODSeqIydNbR9oIuCNSgJhHAdFxipECEkJbYQF6YZGORIJDozHDnIHBdFDw5rskqjYmWZWuxpIHCqDTkwjGv8sQgO1+Tx57ZjRlSpPtOSEkMFqkzDq6NEx6gKiFagvfJfgqIYKnyyKQytC7i8YiQUoNVluDDUQTm44xSJbuYBErvuD7NWDpB3Xv6INDOpeQ1G8iUZD4u0iBPCXSE0XSCMYrZ7IBlveXi7AI1YAOC82A0nQ+4uqPbbLB9iyAwmRS0XU8vJNttTe/BdRbRpjT3xCIeig4BV53gFSMsXg0dhvgyJWWy5zMwNwExwORdCLRDAee9Zmc6ZT7bYbozJy8NH334Ifc//YxHD56k92Jnzt2XX+e//C//18ymc8bliO1mTbfsuHHjFrnRL2yxxGTzTa85BSwZozhbnLOql+zO57z55S9z9/U3kx1bJCVBjIE8GxZDzjEeF+RVzng84Vs/81P0vWM2mvHBB+9zfPyU9957l7/6/g+xbTsUcEmlPIw9X7xmYECDJOyBEMkCftXDy4GLmMK8LN6nIWenelTiTgz1S0q/7bqaEC1FllHk2ZAUmr5zax2X647OCZTKEFLQ9g5nO1xY0/lI3aZUz7yzZFJS5ArbtUzGVYLPI9ifVAQhqArD6eUSawWjMmd/OkHLiGtSkM04h51JRiH3WJ5fcPvGHrUUqEKgC03fbTlQM3yUnFysiF7QeQeiwxjBer3hJ+9/SFVUHM4PuVguGWUVTTOk+AWF4IoNCGVVEqXH2XYIbVHkxnB9b5dme87y4hk/9dPfYTZ/nRu33uDo9Dl7t9/h4nKBUwmb0baWjg7b9ylQIgakNHS9ReoU5hBdSmrOdaQwkXEhaJrEf5tWKZG8CwGTCSSWTQ/eS1wj2EbJSe2JLlDmkkxpoow065RcarIssVBDUvVFY9i6SCFFskrKQK4EznsUEid1UlQOdvgXPvjBIv7FcC89d4RIa/NBwD78P2m4JAXMxwKtPG3nOd5I+uDpXCTbTYpdKTQOO2BCZFo+a4nRgsLoVLcDy1VN0/QDiygD5xE+UpjA6vIJF6uO46M1vufFfRGuAhJcHCy0achnsmGA0HUJITAZ451nOh3hvef5yTGdtfTthiLLMVlJ6BJi4uDanLprkULSNSmUw9oeENy99zJnF5c0vSXLFXXXsFzU2M4Ni3WFDwLrEzpkW3cDCzvQdZZN3dH2CY3Tti5ZYauCbd2wWLe0XUuzPWLdeDZtIIjEKy4Khd9aVJbT1D0hegojqQqDVBAySW9jckT4gPMCfGLnaZECbvBxSDBObCxtFD5GvB+WKSoNIpVKKnupJEUu0Dq+GIyFYUHlhwbT2rSwzMywSFWpl5I+0ttI7yPISIyeTGusDRhlkFHQhx4bIq51iAGt4roNzx6vkULihpRKiLR1DyIpfvKiSKpR5+kHYYKvk4JZDcNHqa54pIkpd5U6Pp1WVGVOs+mS3XjAuiityHQ2DJ6SjVkrnQbIAwdWGZXEBdGzM5Lc2NHsjDV0ji62EB2zcYZSc+zQv0UZMFqzv1vR9pHttkkhWybQNAlxlNJr+8Rn1qCjgWgpypzLiy0+COresa0tbZeacp2lFNy27Vi3ks2zHhcETdMnsYsInF6GIS8noKUgy5K1uu38oCAiMda1GJAY4sUy++qZnGaZ8sXSOf09VUYxRH7wJ/+WpycnLM7O8F0HAtZNQ25MWvBWJd/5e7/CK6+/yfX5Pl4m/r3zPZ989iE//sH3OHr2EY8fH/Phh99juVyxPnvKxcU5o9GUn/z4x1y/fsD12y9zuW3p1+fYzQIZBfXC85d//Kfcuv0qdb0G4OOPPuHycsHNG4d88zs/w0fvfczkcMTDByfYieZ7f/L7XB495XRmqJsG6e6xu/saP37vEw4O97j7yj12bt3h4cOH/MVf/RWhrXnltXv8xq//CidHT9ndPeClm3Mulycc7O2xv6N49aU5u1XGeJzz6cMTXn77Gxze+xqvf+UtnChRpuCj+w94/vAxwQWWiyW4QHQ2CTSEJPhIve0IQaKkJNOK6BP/PDgBXmGUoo8BRVLK9iI9q8ZFzmbtcKrHxoRgCECz7dDOMp4a5hmI2HG27bDOU2RJcFJvW+yjI7p18+JnGk+m3Lh+SPCR2ThnU1tWlyvuP3rAerFGAe+99x67k302lwVnR0smI83zz95ltjsDY+j7HufE0DM7XEi163RnFykkr371Wxw9fcSj+/dpuhZPZOo81+/eYltburqgaZb85ff+EPvtwOnZknd+9BdslmeE9ZLrk31+6qd/jizPufnSa1y7+QZPn37KX/zh77I4Puf05IiubejrliLLsLFPGg0tKMuSGAIbtsQ+glLMD/a5ceMGTx49oGkvOD85J/q0RE4s9EjX9SlDIcQh40AhZEKGvfqVr3LnlTdYXCxYXJxQ1yuUSPiDosqJoUNERVM3CJWmt41q8S7150nFFxMuQeQURcl2u6HZNtiQuHtRJCyCMhohA303iMWGedKLEDkpECqFHgYi3nkIf2NhLq7CQtLMLAD1apt6gGfHPH//Q+6PC+zX/v8gZOPqBUoSqyrEgEzE/2QxECBiOuClTAmtSghgKHCkQiCRMlkJx0VOXW8JyuJcuiiDHySU2lAUY7RMyVmlLOn79BBNQglBnpWs1+cIk6FUshg6n95EGSR5ltP1/WDzS4qRMGzltdYD/DSm4VPsCK5PYFzn0FlSbMUQyJTB9TYNbmSyJKMVPgqkTIPGrrf0tqNpU/qst1dhDGIYSkqEzEDk1G1DkedM5zu0/Tld39E2XSqgrt4sk6VAib1DVssVbWeZTHdSkpiLbDcrgncsFgsm0zEhOj54/wOmOxNOnh8znlRcnl+QZznVeAwINusV0+mUvf09ms2aYAMXlwtm0zm267l96wbHR8d88P5f8+WvfpPyeE506WKcTXfpBoBkWRZU1Zi9/Tnb5QV5mbO1W0ajgrYOON+m5qW3QyEr8N5RVCWuSTd/URXYTcO2bsmLCu9alDQUeUHd1AiZChsfPYqSfDyibSwxrLk230Xs7lDXNWeLc5p1S705Z7PdcDDfZTbbod3UEOSgsBLYALuzGbPpPu22w/n0c2VZNrAT00A4OjcEWgT6NvEftnXDZDTGWoceeI5CDsNHl4I9bPBkOkG+pZQoGQhBQZ/YXJAOLSMUmVSUeZEUZPAizdLbVHzl2iBEUrvlg0ovBIePDheTApZhWxxjpDCaMs/JihyjBKNSUrgG2XdEFE4IYt/SRwFRsu06rJLoHEJwiadnsnThDYfSi4abVIA46/FuONgiOJGKMaWGJhZeDEXicA6IIanSx8i2bdk23YskyhcyoSiQcUhLGmzzgQg+YLRBC4W1gdIoei9YdZbcREaFHlhXmiInMY+8wMWQ0m21pDKKwkCmUnMUpWLbWkSIHE5y6t6zqFNqpRxsw5lOr18Fh9IGLSXny575FCbTnE1jE08nRorc0PY9SkYOd3JeOpzTOcHTx+ccHy8RYcve3oSXbh5QTGesFwu06Pj66y/z8cMn3DwYc7BTcny+wLue+SSjtY7KaIz0iCD5/LijbcSgWu65uV8QQk+IAe97xqOSzcYTMpB4JlUOvmOce0yEcV5w9+aYXATGRjItDfPdObfv3ODZo8ecnVyg5obFZU1QUDdr9ieaB+cd6z5gz9a8fr3CFILOee5eL7m+WzA2htf3Sh6sO5qNZafK6JxHhsC1ac7BSKFsQGQJgB9joGlq7lyraIJg0QT6paXetIllKgKlVkwygXABoTSISDlRWOsxCqSGXCnKvExbsqxkL9ccXza8dG+Pddvx4HLJ48uOpunRBmSM3JxXVDoiQ0cuBWVusD34OiJcjyRShp7r13fpXEHs1lw4j5KK/Z2czWbF3rRCy8DzRce6sWRaU8tApgUBie08K5Heh1mebEfTUqCA+qLDiMg0z14EVWgt0dIzygOZUIwLzThXZEoiPBwfH7NcLciqpPjSKDato2l7NqsFeiiUlNRY11O3jugDbeexTuAQRKWoihxNSlhM3LlURL0Y4gsxaCjiYAlK3M2UeJ+qlKLIMMZgbUoTDzEwGlcoFdiZT9msW0ZjT28d1jqkNCghaLZrijIn9JaH9x/x9NETdr+6y+npCb/9W7/Jl99+m4ODg8H+MihfGM4Dlfh2MSRI+rbd8ru/+ztUZcF3fuYXuX77LnmeUWQJ6fDe+z+hbRt253Oms122fcsf//Hv8eO//gEvv/o6f+/Xfh1vHc5KdnZe4p/8k+9wcfl/5qMPPkoF29BKXfF1h1Z14EOlcyz4NGROIV1pqBFsgj1LIRI7V5kUhmQjPemsS3w+TwI0gxIREe0Q2CXJdQpscDHSulQ3RGtxOlDXiSXV+MBy0xG8IDOpYMyMwdoemWcs6x6F4M71PS4XC7ad4/ximdR9rSPPC/rYc3qy4O6Nm2gc470M51oqE3jpjRvs7F/n6WrLs/Mzbu9d59Wvf5m3v/wlfvM3f5fjswt6H8iNYTqdgAys1316friW7bbHdRBEQ1VVdLKjawJSJNVRUSp298asNxtWfSSTqel5+OApXddRFJqzxZLLbcdo8i53792jMBIjOuy2RQQ1PBcT4xDSs327aRL7Znh2TwrBZJwRfU+uBeNc421LloFE07lAESNlLuiDxKFxBHobEzfNe4yGzie14s2dPHFwteLZpUUKCyIMnB5B16dBR1komrZn6VKy+bgw9PRcbBzBa4xKTFopFVIkeP8Xg/Wrpn4Y9g123avHsZaJ/TXPI4aALgrOt551l2yOUakX2Asfr8IhhgWXSQgBJUjDPR/QhcaHiPWOGAVN71PqchfJGsNIJ6uXkRtcSGyhLNckwZZLDGEpBidOSgLN8wyj0jC3bVt65+ido8gLgstZ2YB1DUXXMa4cInpWdU93dI7JFKNRhdFy4HE7fBCcXSx580tfZVM3nJ0ec/f2CHcdHjx5xPHxKdZ5Qgy0nUMKM7h61DAgVPR9xAfBViqW645V3VGWguW6xdqktFiuOsJwAmotEVpTNyksTXQ9m9oilaLrI3XnMErQ2oAPoGSywHmXvo8LHhVTmEtvoXeWvBCUZTpPiYHJRKcgHh8TwkingAU5DAGdjUgR0YUmekdVJk50dAnfYzLBqCpSkFSWcAldHvFRcr709DaipU7LVg9t16OkJssyvPNEn5AEV3WYVhKlNKHrr2bKGK3Topo0gAaJdxZNsscnTnIENWALpEjoBlJoQ/QBVGS2M2E+m6IOI8uLU9xmQyHTYO2y02zaNEC7EmIIMQy1YqQocyQBLeCbL8/52r0CYxSbbkvrNNeme6zbmuAC1jrGVc6kLDm/dLRdS16MGO9V7M01k1HJ4ycB7zqE0USR3pPeBdabVM9Z6+kD2OCptw4RDUplOB/orcOYFPTStUkdm2tFILl3qlLSdwrbSayPdCHS9gFtkmBF6cQJS6F3AaMjmUi8PUiDciEUUiYWmJAS74eaOA5K3hh5/vBTVusVbdOgRRoqMIgOdJGRlyPuvvIaVVGSkvjg7PScZX3G7//bf8nH7/6Adr3AO8/F0wd0XU+Rl/TLlj/rf5uoFUJt+dH3/z2hddy6c5ef+dZ/zOefPuLBg0eMjQC/4bu//2+Rvk9BDdZx3K/5sRF0m4b3/vozxMAaa+sNq8U5T49KruuKP//L73P9YMZ7H35K//4n/Kd71/jWz/4Ck505f/YHTwixxQhBj2BrLZVRHBxcQ+mS1+6MuHl9yvHRhmpyiNzf5xfe+hW++s2fZbm44LNPP+L89HMO73nOzpYsliv6pqVvGgSRpm7xMdDZDqMzejscklJgrcf7Hi2B4GiamkwnNJCQgugsCM18XKEIbJxHkshj3gdccDAo+sZljvc9bWsJNomSnLVEBLZr6JuGXGrmh4ecX5wRixInK77x9ld4973vs92umOxMeOutr3Py7An15WMuLpc8OH+IsIG6aciujdKCfnvJeJrjasH0YJ92s8ReOLT0TPcOUfmcZn3J/Q9+AtFT5TlN0xC0ZHdnRIyOzeqMr33zm2w7+OTjD/jeH/4Obddi11v6xZJT23F5cYQPlsuLDVkx5hvf/kW263M2F8/50Z/9Dt5F2k1NnhnKaozvFviY2KSB5NosqhJkj84Mt1++y/XrL3F+eY6+XIJPzHkp/YBaGxRvQqZn7eCIjD6hmFbrFfc//4zzZ8/YXpzRtTWTccV0d4q3jqaucTYJboRISbt5biBnqIED0cN6tSEGSZdbur6hrVuiF4OdXpBXJZPJJKFP6gbfW4L1Q81MclYpmUKmgk8COJvOx6uzVA7PcknqE4iC4CLNqgbSnMxaB23/HzaT+xsf/5NYdMPfmEqGEEGrF6lWSilsCIPVJR3UETkM9lKhbHSOkIqu7fChJ8QE5Y512qKLwQqolGZnvsdquQECShmU0aSGo6CuG6SSjMZTcp3Rdx0MyrhkvzAvJOFa6aSACGHgBymst3gvyPIx+zfvcnr6FFLAfVIWuUjbd8RoyaVBDQnARaHS1nPgFwHEKNAmo+1bepuAz4g0IRaD6zDBdSuyIkcZWFysUlpPCHgvGI9HNG1DDCJtOY1mu+kYjySb7QVt26BVTt958ixnvdmiFGgFi8UFpyfHlKXm2sEOR0dPkCrDEdnfvcbZ5Sm5MVRlhTYZk9GU5cWKspwwMhqdaY7PVlw7uMFsZ87R8REnJ88oigrb9vgQ0VnFtlkw2alAQFGWHD07wuOJg/y/rwX4SGFSqmPnenans2TxCeHFgeiDxwtwLhUficcY8K4nz9KWdbNZpRsGyRtvvoU0UxaX5+xf2+GTjz5ivrPHzjzS2UBpRrz86l2Onz3l/OyCbVMz29mjazd4H6g7i+0cj5484+Ag8tL1Ozi3TmwAxIsbVshkR7Z9DyanKAvaph889hJjDCFKEAY7JCNrLehtPdjII4G0yY4iIlUgK5JqNfpANGoY/ims88mOnPRnKHnVsHli8GidIdQQJqFSMe58Co2QWVIijssRXSMwKvEKlUp8HWJAxwT99a7H2z6l7vkU+DHLDWdNh6XBhogsFH5Q0b74EFdZuoM6N8ILRP/wHwMJTKp0UgoIAcI7lEhKPzF8cgxXjUBS58hhQ53ky4FcK8xgSYlDwI7tk+3DhZDYYW2gEZGtDXQOslyipMZ5cN6mtLsubeuNjFRGMS4NzibOyqZ1yTJsHZMqY7Ot2akM8+mI54tmeA8kQiUb9o5RtBYab7E2sFgFMh0HtaHAhfiCRXhrd8Lu2HD74B73XnuJ7//5n7Kzt8d2vSE3hoO9XS6e/ID33vmQW4cKH1tGKmO2MwGdQNrBN0zHhh0VyWSgrgN1fcUplYgBZeCDYzorEAQuLjcUGsqZIYpAkRlyHRlPS0ojqUwgl4H9acWoVLjeMp+O8LHjwYMHPHl+xGbVkekMrQOH04qdcWBdS843PRfGEZXmbNXzc2/s8vGTC9rGcn624uW54Y2bY8SZYb9ytDECnm7bsTcyZNKhc8Om6/FERoXhzo0djM64f7zmcrFFiIzZSBMCzKqSPEuDp9RwRbq+Z9sntqvwCm9bdGFofM+q6fDCs9xEdnf3GVcjOD7j7sGEdWtprWU6rhIXA8/Lt/ewTeL8eespMsmkhCwTzLQhVzm3Xn2LxVrTvbfkxsGMbZsSTossbXgLFZmNDM57MgWjQoEPNL1lMtJIBJ0FW6jE2BSB3SKSHSgshjZKjpY9wqah88G8wMjAuNQYGZEiwcjLQpKZkuOVorcNvXVsO0fXOTJR0EXNYtFwuG5xTcNmuWXbWmbjgnbTs2odUQgKI2kby/WD2bBo+0KjJoY/X9mE0kk4NHyDCiYMBVLb9C+g7UIqjEjpgaOqRCC5uLzg6ZMzhFBoJelthzaaO3fv8urrr/Hw8XN++Vd/fUjwU/zkvZ+Q5wWvvPragD0YGuDhp7sqioQQieChBOPRiDt3b/LHf/IHvPPeD/nP/vN/zOtvfhlTKe7f/4h//q//Hzx7/Ji7L9/j7p1XyYqS3/rNf07Xbnh69JBnx48ZZRO+8dPf5vzZJcfPJL/8i7/E559+llRpKimcpUi22OgS7/EqITMMaeGKpJxOY1E59FGC3iV21NWWNnGXYgoHGFSGLgRMlqGjJ7iA14K675nkhrIQ+KhoumSVtC5Z1CaTCiNTunauDU306czWOjF1gmTdWFoXMCKyV2+4ef0a687x9PiMGDUHOyXOeZaXNSoqFoslt186pG5rzi5qRHSgPI0LPHx+SdM7hNQ8fHzES3de5403vkxZFmy3K7bNhqqc8uW3f5qbN+/x6acfcbE44p2//mtWtsPayGazYTodI2kZlYpyXHB6dsHz51tsH1HS0HqLsIHZbMKdOy/z/gfvc7ncEPwjZrMzzo4e0G4a9nZHzGcF6003gPYzjK6IwVGWGb7tU4GsExvO9w6JJc8kmXDIYLFRoBWsNxFQtCbxnK11SBEo83QmeFKqbaUi01lO01hOlx37lSAXilGuEMElELiRL4bdkkDXRWKQWO8oIizWLVoKDkYZOsJ564lRDqqlZJ6Ng5IqkpaQSUI1LL6EIEogCnIjONgRTLPAqpE8PeporcEOTN7xECS0WUWMEiij0rLK6GR79BZTFBADRimkCMNwUbxQq5tck5c5q1UKKCgyyf7+lJOTbWq4SGxpM9jqhYiD8qHG+R4pMr72rW9x9Pw5m+0ldtOw2tYs1i3eKTweHwLWKGJs05LQetregoTlpmFUZLgAeZHq5vXqnB/98C/4xjd/CnVwjUxnHB2fcW1vl65pODtb4kKgbuILy3AEtrUbLK/Q9ZZt4+i7SN8FlsstbZ8UcVKm33vkKlExDRebLg3eY0iDRuscVgq6YQATghzwHo48k5RVQW8deRbRMiKEpg0eKTXOgtfQx0CWp7AoKyPWpsWtzjRGCjZ1n1JzfcDotLw1GqpCMB4V6CAQRtF0fWJ1tRbV9VSVYXevoukCi80W2zhkpocDPnHelBLkVYGzkt3rN9mZ7DOb7mKyAp1petuxWi5ZLM85eX7EdrsmBEffW5zVyWE1CCOcDylMwA/QfJGQBLPdGdvNNl3CKvG3z48vWZwtKHPFzHju7ZXMRE9wLUcy5/1Vw7ZP1l05MJu1UhTlF6FSUWS8e3/ByVmgKnNscFy/MWKGIzCECyCYz8dk0rNZ9ehZlQKmfOD0ouf5cc22ljgvEp9dSjIt0CpS5Akd1HSWziUGdNJxBDobsRY8gYjFKIEIaTFmZOBwr6JpLJu6JSuTst1IQejT0NmE4X53qTbzg1oxDTTF8OyIaD0kt4vUSzqX1LcREiNsKMCvAjhKk2G0oW1qMiGSu0GAMjkezWKxwHY1z06e8sM//yui6VCFIWYly+aUbrNFiyRE2PYdxjg2H74DecYrr71Ku7mkt46XXvsN/sE//EeE1nOxXODsirrb8L3v/ikfv/fXnB2d0DYdeWupV5c8/fRzFhfnBAEfesnB4SHLbITtI0VV8ObbX+V0teYbX3mT5ycnrM4v0LMZNw/niOhoNlueP3zGjy/OEcryrTde4eLoiHxU8eaXblFUJcHAwf4B3/w7f4/ZaMbj43MefvoRH37wLidHzxnN97lx8yaPP/uEjXM0PvXjbhgEE8Ww0LuyTiYRUpkrRlXO5brF2R5iRm8Dk0xz7XDOo9M6nX9ZQlTEmBxLjXdp2C4Fk6IkUyqlKEuDhCHJO9B6Rx8iznlG1YRiVFD2FbdfeoXrt29Rdz3r5QqlIibXoBRGBqRISxpnwfYdfddzeRk5uL5Hs2nYnU1YhS1IxXx3Srtq6KIjOMtXvvNVnn/+GZ+8/xHeeaQCLQSFMTy6/4CimrBeXvD+u+/w5W//Gr/691/lh3/x+xy9+5B+WzMZj5DaMNrZY73Z8IMf/jnCVASvuXPvbermhCcP7hNcT2YU050ZLqQlr7ee2Ef6IRgl01lKtQ6Rk2fPubxYsFguk9sxpDRyo8HGNOCWA6AiegGkRZZSGdF6Hr//QaqxvEtBUVGwDR6CTQ7LpvuiZ42eGF1CS+CGr5MYu7bu6NpAvW4GN2l6/l4NdrMsZzKbUjcN9XabEFwDJinLMoQS5GWRFhy5oa0b1q0blPdpQRxihGGBLIegNjEECyEE0Q/ojhfc3f/wj/8JQjaSAsi6QGby4c1JNj4pVfKzi2QZu0qqS4PA8AKoml5ggv1KJZAyI4SePMsIXbK3SqWBtEHJ8hLrOpwLKYzAaKRIVuHpbJeu21IVGdYtiHSUVYnt+oH7kCbouSmHuOXERbtSECZgeKDeNmR5Rl07hFEooxDYlPxYjhAhHcjaaHrrGI2SIi7PisSLGtRgQks8OwA0zRbnbEr2kQptcspqTPQO2zRMp2Oq8RTn0vcRPpJlOQGJyTJs3zPd22dTb5jMSk6OevLplPFkTmYUz48fEENS1nnv2d3f52oDvF1v2b8xY7wzAymxvadtGsbjKbnRfPzhB4SYYt6v7U1p6pYYI48eP+e1115nPOk4O3pObhRBG0RIm6qbt2/RtzUnxyeEkHN4OCeGDh88db0dOHLQuY6mbZN6zKUL3g8WKG/TAHWzqpnM9+ibNnGxhveqKAqUBucKpJR01vHJxx+CqTh69oSnR48YjWcc7h9ycHCDX/7VX+fh/acsL88o8jGHtzLG1RgXoBWS5aVDCkWMHXmhKIqSKCAvSjbdlhBIIFKhyPIEMRYDkFNKidaGrksbSyEUEcPO/BrnF6eEIFPibVQvwlGCT9e68xFIVh6lFMokr77CIKNOBdNg9TVaI2JAFyVS9umQ9D3eBTIh0YAwJVFfFZ6B3loyKcjHBX0XkERkDPRtYpuUUhCUG9J3M1zXIIWmcw4r+sQCdD3aFEQ8Nlj+hq54uOFJw/wXo78r5c8gAhoa8RAiXXQYJROPcxgaCOSgBvQvUpsi6XWHcCXHDkNgj3oRlKNUkpv3waFNjhESnWuks0jh8T4xiYxQbLtk5xE+gAIRQlICSOg6y5U+SUgG64qiqnSS1UeBCZb9ccZp7NLmPibeXK4kN65PeHq8ACVTM2JB6TSs6rsOIwSH+2OqacGNuzf58Tvvst4+59p8yi/9nZ/hL7/3l9z50hv84Iff5+buhL5/zqf3e/ZmE6ZVQfQWJTKCrzEGOt/z5t1XuVweMSo8ysDWS44vAnXt2JsWTHJB7BvKUnMwM+zNSzbbGqMNUgSE8EiVotxNltJF+3ZDnlXUXU9/IbHBEpSn6RxBCmz0GKE5uezxfaCziZExKgVEz6oONF3D33lrxsOjBU+PLHd2t7x5a07jBKfiEh81RalYG8HYAFHx+fOG2VTT4dC5wkdPISPzcYaVitPLhum4gOCJ3qOiZlU7isIM4UwCESTORryUIHI6D73zXG48xVihM0mlFP2yoVQZu/sTFq3jcrOmVJbZZMTlquXx0WVSdOaCVdOiTbLKIzyzsSEToFxL3ykm8xmrvkVqi20jmTEILF4EFpsOpSRGS4gerSLzqUYQMToF0my2DfOxprEekRmsF5w2jrNtpLZJ1p9rSecEyzZZi+ejDFkqdlRguXxKCAWZTPb34ANt16X7BYHOSryviVKRjccoLckzQZFBjA6GQZ0xht72+N4hqqu46CuVBF/cyxGuErOFEAP0XBBCGskLAXXdAiIp5WOgCIayyglby2bdYzsP+KTCE4Kbt2/znZ/7JX7w/R/y93/jH/Abv/Gf0NQdbdPyCz//8zw/evaiELo6brx3KKUHLq7EWct6vUTKwPnJCY8/e4DrGj79+H3+u//mOW999ae4c/dVHj5+zOf3P+Pi7IjN+pS2WfCf/xf/K2797/73/P6//Te8+847fPcP/5BRVfLk+X22a8udG/e4/dKNpGDo+gT5VzopoJAEmWySVyppIVRS9w2qvr53RJGGk0ZLPD6xM0n830Di4BiZhoUuRjIlyLWm1BoRHZvOgpGJNRsVfe3Sljo9yckyRb2t2ZmM0nsvJFEM11nXkFcKnRmaTSr8s3LEZmOZTi1Pnj4lK0a4viUfRyZFQQyjpMAvFJNScnK8IAaYTHc4WdZMZmCdpO88x2dn7O7u8uGH7/C1r36Vv/crP8+/+Bf/kvX2gkePnvDhxz9mub7g6dPn3H7pOkUpaNr0jDCm4PXXbiOV59nxCZttjfUe7yJCZPgwMF1J3ML33/uIuunJRYZtPE9WZyAEhc6QQnJ4bcrOruVgNsa1gdn+IQ/vP2RxsSTL04LJ2Z7tJtkW6WDrHdNKMykCRga89dggaawgj5rKCKzv6W2gj5YoFHWdFHkxBIyMRA9OSJCSLvSUmWBvpFmsYaOgCT1VFhllikWTBnSFiVRZZONSKNW0ipRlxvK5o7UR3/cvBmtSMtRsIS2nxRXInRdK+Rih7iOfH3tuHZi0+GlAZzIFO0XPOFOMSkVVZhSFQg0JtDEmxXNRVbRtNwyNZEqwH9RXnlSzKKOwLiku285SNz1aacrKIIKk7fs0uOo81qXQpd46sixLy8ks4+mz57RtqnvzPKdpHZ1z+JBsqjEoehu4tA1KwXQyoreBbdsTfESJQKSjdT1Ez2QyxgjPwwc/oethtnOANIK2bVKzpiM6JKWZtSBzSdNZrAsIXBqURJEUsSGlGscovmi+rvqVyIvfe/ARKZNy2IfU7mmZQpasjcke+yIzcGDwCYdUYeB5icT0UhEXkmXf+BS2YX1E+cQo70VkvekQdMx3qgR1iOmaEaQww9xkBBexnccRESHgbaTvfApwCdDUjjIvwCtyXTEZKZQ2jKqcLNcgDOPxiBu3XuLGzXtcv3mb6WSC1Abv01kWYyDLDMF5nj97wtHzZ5ycHPPs6DltU/P0wROatkkWtJCs0XrAIalMs3dtDxD0vU1hejIxzUVMC9uNszjpKGKESiKdxIfElkwpzoHgktI5xEDfu+EeSMvPcxtZ9ZGyIHFg44brboSUPTpLjquT8wW3D8a88tKUZddydFazahxFkdP3kSAiXgr6Xg3W8u6F86Qaj1kuHFoaughpoCCHEB3wUdCEgM8lRkauzytGYzkMLCBSIOoOkcPZsk8Dc61SOIALCSVAcrf4kJbaYlDIJ4xDUn/6Ye0WXHzhhJEDOihGaLYtTd2RaZ3qgQFNhYRgW7yrefzxj3jvfM2Nu3f44Xf/iNX5Y2L0BF2yPD2mUgqdp2Cq4BI+onNpyB67hqf3P2N3Z061M+K1L71FmReYqmDvYC8NykLPy698hYePH/Dvfvtf8+6Pf8SQmkKeZ9jOIYLn9P7nuPWaSV5QasOTz+5z9+A6b9x7m0mhePzpB/zou3/Anbu3mM/HgKLpJe99+A65hntvvMEbX36Ly/MFnW159Oycn/qlX+POl+5y9/ZtFmvHhx99yNZuWFw858nDBzx5/ISX7rzKx59/Tt+2xOAxWVpGGp2l54+SL0L8jJZoHYdQuoJKOzqlhzAySfSpF9HCY7KBhx0hyvR10jMsvFDTp2BQ/0L1Soz0bY/1aSgkbERHRV93fP7ZA2RuGO2MEZnh808/ZHW5xPYtoLl9N3C4v8+1/TG9DRyfLPnsow8JfUPvLJen50x3ZiijOLh5jcXFitW2QcgIfUQT2Jwec233gOPJE4Lt8AyvJy+4cec6z49SUOX50WM++OEf8au//hv84s/9Mv1FzePnD8hnO7z55W+xt3fI9/70j/j443e49dJdbB2Y7kw4P3uKyQuC83R9T72pqUY5yqRQzhgDyg+9XG+xvUMGxeLiFKUNwVpMlkG0uEFZJ0x6NmZ5lnrD3iJ86hejHHIQfHLEGXXVX0aC87R1TZ7niAEB5dxg3X/Ry6aaCiEH9XlSDKZdSByWysMw3Xuaesvzx11yZPRdwrgIQVVWSfnpbDqEpSIv0xJVaJ2Ut8EPg7wk5EmqxIRB+EIYlhwzIrwoyP9WH3/rAZ8QqQiGtLVOG/7wIuUnDA3IVUQxA0+BKx6I0S/8y9qkhx7OI5XCxYiULg0AoqQsp7RtT1FV2I3HZEnKnhVjfNeT5zlZnrNYXLDdrKmKguBSoauHmy9BnSUmGyGlxGjo+2GIOAwkx9Mp4BEITJbR246UIJkSeYO/GlJKtM6QUqVNrBzyoYYNaHJNapwLtLYHnxQQafgn8b1nPCmom4bNdsv1W/u0TUNAokRK/VQhQkig9fFsl2vXrqfNSSdRxpBlBdYGxpMRUki2Tc3lYklVjSmKikcPn7K7E7h771VOzk6ZqgmbvqEsMtK1GDg/OyfPDNPZLlkxpq09JssYTwVi2xClx9vI9Zs3uTg9GjZOBucdXdez3Wy5fnjIfO8gpfdNZ5yfnrJcLTEZjMZj/MZTVNC2CUpq8gKZJVVINaqSPdYLOhuY71+j3qwINkFP27bBZDrxFq1lNJ7QecW6bdnd2yHLBeeXC1brC84uTnh2esLuzh7zccGz40tWyyXXDnaptw0HB9cZT3Y4vHGD0WjMxcUZq+UKRxp6pWsTsiyjd12a3YtUMMrBdhBcRhs7eutAKsajKfPdQ84vLzF5QTbK8crS9S7ZaAf7UHCeIBTOOwKOGDyFMWRKkSuRkplVsmQoIYbmPW33NJIYNRiYlxmVMZwul6ATB9MYTd+0g+JQYkYKRbI55pkiKwSh9wR8YkQ4ixCSUqd7z0ePFhGPo3MNwXvI0339QtUzfMQYXvz3LyLHYcABpvt1SBi2IQ2XrhSRIfohHCIM9jsgpMHfFzJnRRRxAHl7rqCkUSTLVBdcYuVpMahgofch2WXkYB0mpvcqJm6MGaC5IgZGpULgqRTITNPXHiMDu2NYd4KuD9RNx3Sk6OzAuyFQN4Ljoy29FZgipfBZnwYneabRCnob6EJgubH86N371E3Hk/M1F7rl+F/9JuenZzxfLLhcbPn4owfc3N9hWuV0W/B5z43DOd5axtMRnQygJB9//oxbBxmjecbKNhiV7MhKQFWmnyPPDb2zIBXPz+pUoOs+JRuP0sCv09CGQGkk4xzWbcdqVZMbQTkqqLerxJNylq5LaaHSgkWz7jrGlSZg2GwbShVQvmWC5+UbUxajjmoMPjhOli2fHacE6SL3XN9JD2ZnA0FJVr0lLzOOV5HLbc31vbTpXrU9Calg0Ri2XaBua6LQ+MaSGzACpnmKrV9ve/JSo5BYGzGmpKkjk3FFZXJa6xiNCoKGYD06wuHOmFwKdvd3GBeKvm04WzdoAfW2Zb47oWlrFusTru/tcHHylCennuNlw7p2lGWyY617ASqwaftkyfLQ+8iq7skzySiXyBARvcVIKI1EExBlwenKc//CsnBDeEMUZHkKl1quu7QNzDV1Y5lmmu12yW5VEIRNz1sZ2ZlVTKYVXdPx1ddfRvSR4sYB850J3luyLDEMbevQQlGVOXmuaZqWIAJZlvg+w1P8xf39BfsrorREyJToFyMDm29I1iU9l8SQfig1IBLnym07tMxwpDCeVOSm5vkP//APuTi/QAhJs93gvef9d3/MydkRqjAYJfn6N7/B4wePee/d9zk8uM7P/vzPIxAcHB7w5NHn/Pf//f+Frt7w8suvsLi8ZHO+4ctvfYWj01P++I/+CK3/jBgj3/zm1/j8M0ldr/nskw/5Z//D/52f+Zlf5n/5X/3XvPXWO7z/3l/z53/2B/z4h99HiYznj5/yznslnesS1nzglRFScl6MSaXHUKSJQd0FyXZCSA1YKumTkhkSWkNrhSeglaTIU5r3tu5fYEtCjIzKAqk9TW/JlWQ2LZGxZ2UdTdtijMQIQVUarGtoth1RZ2gJuXDcPJgzKzRG53Sdp5pMuLi8ZDqfYWRkVuZsbIfzUNcSOcnpbGKM7o9Kuos1MQhWmy1ow+npksZndL1HK4OOBZUpefDgE4zyfPT+e1y/fsgvf+WX+PM/+3M29Zqs8Ky3Z3z4/hk78wm3btyi7zuycsw3fvqbfPLpR3ByghKS6XTMcrkBL5FCDxzIpDDtmhQuZZSm6/pkNxWJd3l81LBaWBA1R9WScVWxDQpjDFWWkmltB7nOqRsLvmd/PKLrAgTHqnVUBvCKIEDrpIQJIaKlglylcAMvaD10zrE70YjYszNS7E8VhJ49rQjWU2qHHkOQmsZJ9vNIEJJNHykryfVSIH3g8EDzdBF4thQsasumkS8Sc68WY1f1dCS5V+Qw4PD+yuIjBveAoOkEj44H7p9IvLJZpdkdBXLhyFQk0yrZ0IVAKsgyRa5lak6iR5KstUYpijy5EHrrk3LVenRWUG86Gt8CyU4uhKfIc7QRFDGja5PS37qkYgneoxVkWrBZX2Ayw2Q64eJihfdxGNj7hOARwGCBkjHCtubO7ZfQxvDZp/ep26SY012kyHM2656yUCwuL3FBsFpv2Ns/ZDqdYUNaKC5XLXFwhViXlMjGaIjpdxB8xIb4wgINqflisN6n4V5SAF6p3eQw3PE+dTpIOTRoHiE0UsfBypUYjd4HgkjKTpTEeouQqdYy2qTlgRYDhzYgVRrypPRGlVLPYyDLsyQkUJJRkVOOyoTDGZeUZY5EY3SGMTlZXqJNQVmUqCxjNN4hL2eorELLZEuTOksKF5EULF3X0rQN9cqyrWvqpkEJxWQ6Ze/ggIP9fcZVxVtvvU2eG5xtsX3H+++9zzvv/oTFYkldN8nqK9LPHJwjywzbumZnuocrHcGnxbL3gRiSFbgNmgdLy9EmYISgtj1eagypTouk9NjoA3ZAPAUFwaWzWBd5UkJ1nq5XFJlBa4kp4Py8wZicolD0TU/XJst2UWaMKoXSoLvIYmVxNqSFuBKMxxkietrasql7mi4SSX1p39m0HO0dMZJYjjKF2+xeK7k4vWS19KCT/W9a5uQGlrWlaSNaKdrO4V0K3ai9G/rO1MeKgV0YQuqX1YsFEon1Ggcl+zDsF0KgEOACNgyYGHUV3khaRvSB7/72b9HUK2bXbvP80X28a9FaUY6nhC6li0qR1FJXSKAo0rMtEmg3NU1Rsr97i1FR4mOg3q6wfcfOdEpuDLuzXXZnO7z58j1+9N47/Mt//j/w5PPPcc3QQwF4x/LsFDsZgQoc3EnPpWg7emO4cecu777zYxaLFV//5rf5x//1tzg+eY5bnuCD4+bLr/Pa3VexFr7yCyfkKrB36y7LdceyXvH86Wd8ev9D3nn3XW7f3GdxcQnO8/lHHxKCYDIusfU6LQp9qk+d68kyQzb0LVWROOejPOPV3cDbd8f86z+/YGVTeB5BgBP0XcvevEQXCt+1CO2pTElwlhSQGhFG4HFEIeldTOGRQhOipQ+OKPVg73f0rif6np18yunzY46PT7h8+oTQBHJdkAuBCjVPniwYT2e8/PJX+NbPv80/+7/+Nzx/ep8yV2Aji/MN26almFRkUtJZGE+nxNWSzgWeHT9l7/pNDl65xfL5Gefn5xTSYJTGOsHhrXvcvnHA8bMjuvUF7//wh7z85pvsXr/DyXKDMZrJdMa4zHnw2YecPH1EKQNt2/P86DnLi2XqxxpL3zi8bZKAySaUmfCAAxevhp4C13ssnqzKCEHS9h0+DH2A0hRlSVbkCKUS946EKxE+CWgggkrGjisOfRCeKCMmzzG5IXQR65uUgD4IYK/uvavaNvqkqBMvSPdXC/DEwdRG43pL77vhGTGwM0XAeku04K1l3SX3x7buuP7yPeY37tH2HYuTE7anp8iYWNZt24EfeuorwczQTiv5BZ7gb/Pxtx7wXSmarE3MPK1k2noNRYv3HmM03jmk1i8UfOmvBFzWKhUxAEonNZK1bpgBKpTS5NmEoijYbDd0l8s0zBsXGDTG5EigKHLWi0uUUuzMD6jXa/o+bRa9F+QmQ0jFZDRFm5wQI33fpUAMpQgxSe97J9idj+lawE8RYp0YVzY9mGzv0JohYVNgjAEkIabXlAa0CRYrlEKqAt86vItolWzCoIgofEj2Y6k1fR+oRiXL1RbnOia7U/p+nWKrQ8A6n4ZmWnJ2vECguX7zJm1nWW/X7B9cx/tnXL95yP1PnzKe7LK7t4sIsHewS2trVosLTs+O0ArarsNbS5FnRBHoui3j6ZjF5ZL2Ysvx8RGznR2ex57JeMbZyTlnZxfcunFIVVUED3XbMp/vU44q1ssL8rLi6bNHeGvResRkOk5gd9lRCI3MevIiWV2kysgqhfOa8c4EQ6DrPKvlktFoTN03L+wqXWeTtRm4XCzYObjFK7dvQnCUheH9997l5PQ5ITjazTmfnz1jvb+PD2Bdy2p9TlWOePjoU0ajMQ8e1ywXa4rckBclXFgmpUEbAzFivaesRqzreriR07BJEqjKgm2d0gq1KSmKGd4rtMoYVROc9aggKWViAqHBO5E2cCTmTSRd5xvbUuiIVQGjc3JRDg/5JM8PPqIHm26hDdYGRkZiomVnZ0TvkspTColBJUXqsFAOiZaNMulg1NHTeE8pI52HrU8HgA+adS9wUeCkTQrczBDikHg9nKEwlMPxxb+m1Lb0p5SOxhcKnDTQI/FXSFvJq/fzCiSe7HeJR0JMBY4gUg7vQ9ooJ5VKFEmeLpXGR0/vegqZ4bzD+VR8y9xQVSM2XbL85FoRBemBLiHLZEq89QmOr0UgL0SS0xvF2EBPztElSB25Ps9ZtR5rQSO4+9IeD59dsmy7ZLeTgsZ6/AqKLL3Pz4+2TKqendmEphccn28pM8VsZOgcHJ+cJl6R82zaLWVRMZlEhAyU45LFZcPtm7eoeoco5iwu/5rr13c53Dnk6PIzzhZPuVhbZDRsmy0HO4ppqdBSMCoM29ASvKBuHG0baF2gbXomI810XFIWhm1b40NgZzpjOprR+YbTS0fdRDJtyPIM31gmU0UVwShBVhQ8O7Wo3ZxRIbmzZxgVkZyWG7cEI+PYdGvyPFIWGY9Pa6ZScU1KaueYjwyhDWyd4eFJj1GG1lpOt57dseTRGehM0y06pPBkmQaVs9l0OK/IFOxNMpRWSCJFoel6Ry8ENgrqPr1WIRvGRcm23bAzOWC92SKAg70pRkOZSfpty7iYMNoZ03XJstV2lr4PTEcj1tuOug/s7E24UebI0wXheWJTKtniREpj9FYyKTN8SNDu3Gi6NqUbBpca4jIXVEaSKYlS0JjI4VSxIwybpseJtNHUEnKtmVaGzIBrt2TKM8okUnRoJMEFms7RrNN1s163fPCTj9kdj3E2cP3OGm8t3rZED0JKcqNwTUcMlrZNKW5915OXCSIdr5rdQSWH8GkTSmJowvA8H+7ziEBGiVABk2ne+vLrZLni4mLBxdkqpQKGlLYbfGpqA4GL8/MUojSb8O47P+Ds9Bnr9YJP3v8Ej6fpakSAo+PHPHv6nE8//Zi33nqTH73zPb70pa9x7eYt3n/nB7z3wffp2hqvHb/2a7/G6eVTXn/zTfZvvMSPfvAeWWFYLi+4ODujbbaMx1MuFud8+unnfPT+A37hl3+Za/vX+LVf+1V+9KM/xa0aQnR0fk3XbHCDDZk4KElCRAmNFyntW7444650zF8kh8aYkt78cEhKlbg9fW8heoJWbOuOIjdpwBoDEOj6gHdbqjzjcG9Ks9lwuW5QKj0nhAhoPNO8ZGdSgEhw6dU2qTZyk7Hc9knxo3vqvseLyPX9OTtlQXSeUVmC6pEDi+z4fEvIC2prCUhyYwh9x3w2xmtNlJq6qwkSZqMJhZQ8fHifut+y3Ta0Hcx35xxfXDKuRty+OaOpO37xO7/EyfMzJpXicvGMbbdls73gd/7V/0hUge22xXbprJ/Pdtise6IfHi6D86PIM6SU9F1NnmsKxjiXgtp6GxLLV3m2XUPbKy4Wj9ivMuaFwkvB0jq8ExS5wuAw0mKKxGVNkPSINhJjLdNJCrVqtxYbAlWekAtdUGz6QO8isxgYKYn0sN00ZFlSmpc6kmvYHcFLO5FtExgVikcXPfulRqvAQSHJBOhK8GQpOL4MdE4gYrpuAhIRhiCpmBobGJp5vlg8x4FhdHUfAvQ2/d4yHShNZD4ylJlnubZUG5dU/UaglaEoDVJJttsGEQcrsUxfzztHRxjYvwlhExHM5lP69hTjUuhCEJLooRGeGCyjsmJcZmzWGyIaoSSTScXubEK93XCwv0PbJjfMWgWqStD2Pt0xJqPt0lDQh8H0aOHho8eURUEkAeKtjcwmBVcJout1kxRXRhNFR75t+fu/9h/z+7//e8kO6c/pOpuauZgsnlIagg8vanxcxElSHTYM2IUQgyUyDgnD6bxWMi00wjCADWJAgAyqrBhTo3nFrzMmeYH1cN4LAUZJVJkC45JTaOBWjyuq2YgqLyizEUW+w2w2Z74zY2c2JasmjMYTRlVFVY4oqhFZlqONQUk1gOZTUKAUyUY2zICS6nhQEEmSCjWINICNwQ08t5Bsoj6lQzrrvjBrxEjfWrptzapryXJNZhRZZvjKV77C177xDaQyCSbv09cGBhGDw3s7oI1cWrpal7AyfU/vevo+hYi12y31Zs16vWKzrdmstzRtQ9f3uL6jbRqs7+maDu9dCusBmt7iXU9mJEVpaLsV9JE8KOaTDG971p1kuXSsWzi/bMiMYjTKiFjq2mK0YbaTs1539F2kbT1SRjZNz6YWuABSRYKL9H2y6ZpMoYkEJxnlmulIs1k2dE1yekzHBU3b42yk7nqkAEmy5TrnIUqCH1SdYnCTXBXVISGknPdpwaQkSoJSacAfh+c1af+flvNDeI/WJuGnsoKyzNisa+Z7h3TNhvPlmnr9Ebbv0gDPCCyJS9Z1LZnJMErjelJqs4hDCvUQFpmN+dlf/CWuH96gbjq+/6Mf0G0bfvVXfpU8zyD6tHDORnzzaz/Fwd4e//53f4u/+t6fsblcpv5egHeeZl0n9h2RG4d73Luzw/na88mTY/4P/8f/E/uTCVUxxQvJV4RlIkucs0ijcdaCkBzeuottF5xenvPuT95jeXnK8vQJlyfPibbmw5+8S7AWBZwdHyMyw2xaErxNTiWf3ENlqSF4ykxyONfMC8FXXtmlOT9nNs/4/NjS9znRWySBaS64fVghC+hCia4Eapaz6QRGVmy2NfOyxIx3ufHqXXyzYvH4AW3X0DlLZkDogHepv3MDo1wPKKhRlqfU177HbWp87zBRg7U8/PQzdndnnNcNbSM4vHGP17/0Fs+ePWS7biiyYQ4THR5YdwERFTFT7IzT87NbrYm7PWVWcB4CoyynzDKEUNSrFat6yVtv3uDWSzdZbxuK/YpawEtvvsH1u4ecPHtK07Q8evSA5XJFDJ5PPvmYtulwvkeISNtYnIsIowjRsW1SQKqSSSl3NVC7ur5lCCiZMBUpD2FwSKSoybSssRbftQMiwOGDJ1Oa3CjKUY6NHtv2RCcgBHIDRa4pi5x1k9TgRhfE6LDBpWRzkZybKIGPPikGJQwPgRc9KkIkxR0pfyGGK9RU4oRKmVyIchAH+eCRSNR4yrU33gZZIoxidnHCgx/+JfXpWWJom8TsjFfs0qGeVEqlzIgvNvD/wR9/6wFfCtBKSbBikLo7H5KsXWnkULldxYArpYaFZUp7ileuxECybAxSSyFVmsh6iSnnjCZz1qtLxqOCenOBjYHpdIfdeeIi2T6wWGy4drjP6ekZ3gkmo4pVv0xy5CGsIqRVLfOdPQQZF6cJ5BkiSb6PxgeRZNNSM5ruc3G6HZZrktAn/leMSY0329kj+iSnLssKow0ieHwUGCOwMTKd7iJNSaY8i8sLrO+ReGazOXlR8OTJfWKEybSnqPZR2rA4P8dHSZbnaXutLKfHx+zvHeJ9z9npCSEk0ON8/4Dnz59Tb2qcCzx68DhBZscTEIFms+Gdd37IZlMzm+/gQgosMZnGRxBKUpY5XevZrFb0/ZrTk1PmsymXZ+fk0lDkIw6vH6KNoOtaDq/vsLhcobUhLysuL5dcnp6CypAqsDvfZeFCihU3FboIuOYSAXRdgzIliVvnEWhs69l0Da7v0nZTwmQ0odXJQqKUZrlcYvKc8XhKZiT3P/uQ7WpDWWYE1zOdTvFs6Kzl9kt3aOqG7aYmzytW6xVSaa7fOGR/fhtjFI+ePGQymdF3Dc1myem6Z1TmCNJDU2dFSjP2nrbtsdbTxBajc7I8Q0lJNZkxnkywNhXly+WCIi8xucL6HNH5VBToiDaauvcUpCRoqTWu8xilEUicC2gVGATClMagjCBqjSAgRUCrVL1JGcmlGhhXBu+S7bcsDX1v0UbTthGTZUTvyDXMQkvoAgtnITokSadau4AWmjwz1M4RpeByu0aVEqnSQOWqIYjhCj8NqdkfRnoiMRNSdDiD/Fm8aIZfqA9Ih2pSJqav4lwaAKqB46OlRMRApiVRKfpe0AePMHJIKkypqbkRjIxiYQdbQxBD2EhgZAyQQj/qvkvNaww4J/DWsb+T4waLhzIgfGSUZwgZeHJZMxtpeh8QPtBmikjEevj82WlKWYYhFTGBll0ILOuQ1BBasbURu9iSGcXZZWJjnl8K7l6fsLc3RcbAS9cPKPNArhxKB2SRITLB21//Js2y440v/TKyusXe9G1GVccsr9j9fMHt/XParsXbQFVoXrk5odIdszJDZ4rnJx1NL9nbSYl1m21NlWUJLt94zrYtWa5QEXavH4CAJ8+P2fae3ifr1UhLKpWCcA5mOfuFoQkeO0qDwpFR7E0VeSGJTZf4IiZHxIyHx894vgx0XuGD5mKdrpuTbYsk4qxGKcVkJBlXhr2RojKCQlgeH3cUuabIFO12YGzlhnGZUcg0KOv6tPnum54qz2jawLb1SRY/FIHr7Qbney7PTpjNd/nqq7dYN0tOzxbEaUXfOR4fL3j19g4Tk9G3nvlIsTtS4HrKnQqVT1isanZv3aUcXcfHh/zkg/dZLlpuXivYnWg+e9pyuWlSSp6SjHLBMiZ7ihFhGBIlW2cXIpmLTDKBLgxeZnx+2rO1gbb3GCXQSJptQOQpiERFyTjPqWSye/ZGomJGnyuikkhyxpkkDAqb0bhAZyXBBYwSmCwwRSCzEdumTter0sxnI3SRJfuu4MU9rXUqWnwYnsUxDffSfC81uiICMqK04t6r95jvzbm4OIMouXXrNqenZ5wcn8Dwe0AIxtWIMi9YrVd0dcNf/eWfESMpjKrt2N+f8/jJE/JizHbT07fJAvGj738frVMgy+/9m9/m7PSIvf0JykRa3/NH3/sTHj15zP7+Ib/+9//n3Lv1Nllh+N6f/RF5YQgRur7jv/hH/4R7d14mOMtiu+Rf/j//X7iuoa236VQSiaN7pSaOMQwIiWGY9zcUE5K0xPTBDwuL+MXiclhupHMqJT9/kb4rhxCNDO8TYD0FH3gm0xGF1rjW4a0lCk9jBSZGZtMJounYHWmmVUm3aXAaIprJpCDPFL4DguR8WYOMFFmWNtJImmVD6yxWK/I8o1SSqsipbeDB8YLVpuGNwznXru2xFo7nJ5eJMRk98/mIay/dpFltwHbkecnN229w/+EZ23rL6fmWvvuU2U7Ga6+9xOHhIYvzLd/4xtvMJjMePP6Ypl/y7OkF1l9wen72AsvQ9hHXbwhWJhaNSHZmKRx37t3hS2+/wacffM7h9ZvM5lP+8A/+hG3tE4M2MoDnYVM3zCrDwcGMmyPNxabh+GJDdJGbO4axSrXkwsoEw88M0oHRniLXdBbqpmOnlIyFQmnBURM42UQua4HC0NSBw7nGaE8UKdRk2wVkJihkYFJKcAmLoaTjlWuSSQXGCDKXUlAXbY8ROjH7hMTHCKir8fBw3fkXVvkXzpeBzSWi/GLDNgyUrxwjY+O5NlEob9luAj6kmlvrlJiriEQb2TYtnfOJEaXlMOiRye0SEhPvamdnbeDk+JQs07g+gAzoTNPUXQqFCIFtrJmNSg72Z3g0nXVIAavVmqbeoqKnLApme1PmX5pzfHrKYrGh6SwupBCJvnN41KAADHSdo217pDIQE8vyYtVQ945MycQnw1JpiYuRo+PH/Lvf+y02qwtOz86SnZeUtC2ETkMhl9Sy3qfALSkFeamx/VUDMgzkhRxUUIllrU26DyIxgd+JxOARBExmUsCaSJiOENJAq3dp0FfmaQAXSPiiyXSX69dv8/LLr/DKK69w8+Yt9vcOqKYzirygUBlCJzbnVfOYeqTh/CGdQWLgtV1x26S4UlUPL2NYxoh49bdhkTpcOWk3kZhWUYgX+UpiGDCHIeI1WXXj1W4W55IV21qLdQ7vbGIpe0vfO5z3w+c4LIEgBg67jJhcQZ4RY1oaOe/SIDCkBUckDgtTOdh505mQGFURHy2272nblouLC85Ozzg9PeHs7IS6WZKbGp1vyY1EaDjYLxIv0WukNilQR/YUZYb3Am8tVaFoe0/dtZR5Cs5p20DfRZwXSAxapiFobx1tB8SQuGUGylKxM8+ZVhIhY0KDiCw5FRzJtSVgVKYwk95evRMCREAgKMuMsiqoNzV9nxSjV58TQ0wK1yv7vkoMwUS8EogYU5iDSKEd125cZ7Otabs+qQ4J3P/oA7QxSF2Q50lx7J3H4YZ7vGNUVUNicepRgk9WfucdykiyouRnf+FX+Jmf/7sYlbHZ1Lz8yj1sZwlS0HQddb2hNIYqL8mk4bU7r3Lnf/O/5aVbr/Iv/un/jeePH6RrK6T33m+2dG3L97/7XUoJ/8k//M/42pd/jjt3XubZw89ZLdfozOBciy2mCCKmyFhutqy3a6ztePbkIR9//CFtveT+R/cxxqOCYz6pWJw8RwaHEoHtdom2BcKlZO62WSEJ7E8qZrljPlFYK7h3kLNnGr79pQnvv7fhzz7qeHgW0EKxM6owwnHrmmbvpT2KvX2ePltjI0gVuPfydQIGZTKOnl2Qjw+oqht4nXHiH2BtIEbIjAaRsBCt9fRdR5EXGGNQArCWzfk5RVXgh9AlI8BtW7yPZLPAanFObDqefPrX2HbDrJww3d+DkAZfTdMRfAStMEahdEZVSEDSB00u03Brf2+HYn+KtYG2S6rkooycHJ9isgKVZcmK3lqms4qqmDOf7rCpe1bNmre+/jVc/QpXa89CG8wQYBGGmLQYk6MqnR+OEDy26+jalr5raZqGpm1o+46+67B9T73d0jYtXdsk548P9HUz2FdTmJXWqdYXBLyz1G1N8KBEhjGSg2tj9udj2s6zbZMDQilNZrK0LDUJWxFE6inzrCALkS3dkN5LCq0kYWpSn+q+WHQnrzwypj/rqwGmCogQKCdjXv3alykmJZ+++z6xa4nOIkMKirS2Jy8yyEh8ap2yJKzrEVomB4m6Wub9h3/87VN0EQn+PyTNpoclabAQI653xOjROm0EtTYwFMNaG2JMKichFFmekWWKrqmTRFFmaBOY7V/DujRY6HvPfG9OWY2wLoFlZzv7PF48Yv/wEKkNB9cOybKK42efpYdrZl5YHKQ0IDKaBvb2Z4y7DcvFcXqYSiiLioPDQ7armp2DPY6fHDGd7XNx9pwYeoQUBBuQRqKlxvtIoTNE0OSmIMsSO23TdCidIZxjubrk2dFTdqZVmkoLncCxxRQhJLOdObP5PpnOOL9Y4m2bQkZisnBBUjm9+upLtM2Gw+v7fOwTxyTLC9qmgwDOOrKsYDKdcnhtTNduWV5e4oPj4vyS2c4+3/qpn6eut/zoR3/F8dEzlE7qRakldd2iZMFkMqduOhCG2/deYXf/kPFozPs/eZfJuGSyv8tmu8GHQXarFHv7u6xXF1TVGKVzmmaNEA1dHWl6S6Elk1HOxnUUJkNkBcQcnQu6NknL9WjEqm/xLgGaIzptuEQqAkajEucjo/EOfdvTb9c8fPABh9duokyJkIrXXvkyRycX7O/fou8bvvz2nHd/8g4x9DT1GmMgBs1kfMBbX/oGfdfx7NljprMdsjxju7okUwIldEqrlYoiyyjynL5r0FJiTMZEZ4zGY+rWYm3PzsE1louSskhcB0IkWj9YdC0uRoIcYL0iFTBaKSpdQlQomRMC9G1PXhTkRY7ROr2nCLoreLFMbKc2QpkXSBtRWYYVHmMKnOsxmUYJQVWARCKVYqRapixplU/qAQFaRFa9oYuRPgRilwaIWgRkTEofYiS6lAx0pbxlSBSK3icLvoiJPTKwCoQQKRThqkAclCxKSPLc0PUD2y+mgBUlkgUieJ8GDCEQRUohLUqFkyAD4CPCaKztCU5QjSeUSrE3LglZjnMuWfutTw8IZweGmKL3EWfToNWUYETPfJrReUff9uyMR0khGjrGhSS4iCw0jDXrE8tymywt1glGZYLpyphR5skGvG0dMQiCA2JK0x1PSk7PL5JyNwiKzCB1ajKePDnh9bu7PDzqUCZw++Yc5aY8bTzPLx9y+8Y93r9/xle+8RZvfuNn+eBH3+P9d/+avZfucu/yiMu15XIZKHJF2ziijGwXLU6k66HtLFURiH2DDoGqytmZFcjgERjwHbeuzRiV8OHnz7jcBqyVdC0oERjtFBgf0AHa2qJEZL21aF1QdwEdenwXkCYndC2X9ZrRjUOEW7M/ltQ2MColUXo2HYQouLjw5HrYsGURVXoOKoEcVNwvv5Sx6mtaG2k6l1KJC4GWEXWl4iUxp1yMVLkiF5JRIdifTRBKs209y1ULIpJXGoPicGcHXUZOF471sqbIcnzbkY0Kuj7iujX784pt45jnjpXt2TY91QDdXZszHl+0rNZLpIysO8WjU8/+2LMzhmUrMVIiXCQTkb0SiiINgrxLqhAhI4uNZTSAmx8e1/Tas24i3gsYQPvF2DAvDRmOUkOVpeGzFElpUWQ51SinaRyN75AqJtC/k/igyKs5zjuKKme1CXgZKEuF6Cyhh2JS4HpPqQRRDvfzwPkaHBMpBc6HF2N8BmvQF/ZdUEpy5+5dur7nnXd+Qt91bDdNskEV+WD7SVvaEDwIwWa9SUnkzrM7n+J6x9npCSJGzs8Ch9cO+aVf/nW+/XO/wG//j/+KzWZL126ZTmZ8+vHHTKZzDg8PkcJz/cYt3vr6N3nw4BGbxvPJZ5+z98MfkZkRIwpWyzU/+dN3+PLX3sL1gdVyzTe++i1GRUbrGs6eHvF7v/tblGVF34dk67CJVfhCyejT8OSqIZNI4sAUVFIhRDbwXAZlBoLg0/2v1GC5lH+j4RYi8Zd8T24k4zIn1xItLMLWSFVysD+m67dkSrNtLV0UdNsNUkrGZZmUWlnGRd2wbSzTyYTFxYZRWTCelOQmo2lb9vbmnF9sMDKys1vROcdl3XB5sUDPp0RRcHZ6QZHl7N2eo7XkydEz6u2Wey/dYHawi1QKS2B9ccGbr9/FDA04IuP58yXryxVta7HjEhkmPLjv+OiDD3n9zZf59MEZTx4esVy26Dzj61//GlW5w80b+7z/wXsYAk0b2dQd2iTLsxQKRFp2PX1wxPnJKY31PHzynNykRcxXv/Ea0Qc2qxWXF0u61lEYRdd7np/VXMtGnJ/UtFZDjGwbmO8UGNHD1uJRbBtPIUGIQC4NbR3JpKDMIFeWpg0UOjI2js2VjVNKttYxyR1msJ+2XaRUkXGe4o6ChKaF8VSgY2C3CGSZYL0EC5QGbs8cO2NN7+GykTw6gdaF/w/bXRzsP1cojBfSnStOT5ricNX7RwI6NyStFlRjjek8o1KzblIcq5AZbeOQRqWQoDxPfFw9LO6IjMYVbdMSZaBzYWA199jOJn6wkmkYmbypg9UNVtuWuU7LsWa7piyKNLw2ElPl7O5fY35wi/Vywd7OHl3TYvseHz1SBTw9RV4NPEBFb3u2dWIZxSAQKPoeui4x0vI8Y1wFkBGpJUoIjo7vU41GIOUwSAkoD0oPUidxxXhMrgStv1DnJS4TOJ+UxiKkM7mPHpN5TCaHsyxZp7RM2KE8kykoTCYcQpEZYhy4oUJiVM6tmy/xtW9+g29+49vcufsq870DsrxAy2RJFyHVSkBSVoXwhT1CDO+oSCPgL9R5V6iA9IlXoSAv1q5XQ74oBoXwkPx99WWHg14wPAO4UqcMX/fqkouRv3HkgwAtE+O2yHKGkjR9/WFIePW9XvwgAMP1dfVz+ZDOWx8CLgSc91jnsdbS92mA6Lx98U/vLDEqpMopq4xb1ZTbL91L33xQf8bQ0m6PWJx9zrNHP8G5BucDq7rm5HiDRaU+LU2uuLY/I8s0J8dr5Fax2nrqbrDldw5Qyd4tZVIgeo/Rmq6NQ60aCV5gbWBT94SoWKxsUgYPyk5CoCwyZC4JwbFaByAtsdPrF7Sto6nXL9TgKYk7/d70EEziB8UeMAw+05shRFpyxCEE8vLiAhciWWZYLi7wzqH6jk6knoVgEkJrGEq0bZd6P6Houg7XJ86g0jItFzzoLGO2u8NoPObZ8xPuXtvlT//wTyh2Mr79rZ+n6S3rvuG9n/yY1159lZdvv5zwe77HlBN++u/+GtfuvMx3/+h3+OH3vsfy9BQbEn5hZzLhl//uf8Q/+F/8p9y7d4/Fes1ffPf3eXr/MeVkxN7BAWVZcBkvMEpQTUo++/wRq/Ul58+ecnpxwtnJM8aFJvYrQtAsV5f0XYsUiYcmhqDCtrcUmSE4R54rtIfM9PzM2xO+fnfC9//6iIvLgNyd8t/+zlOWZ1vQI4x2ZArGEt760ivc+vqXePT8kgfPVmy3HePJFJNVNLZHz+f01nJ8fkJ48gj/4Q8ocsW00PQkTIDRCu88Y5OYu3lZ4F1AhxREWQTQ2iBcYPfggHJUsTefMZ5NKKoJBwc7TKcz8vGEyc4eKiv4n/3Kb5CZhKi4YhUjJVFoREjvqVZXtZhEGgMi4hBo75OiNnoCgqbp6G1Lby3eOjwajKEfVBveWrKsow2WcjTC1jvUA9YhWEcbQwoc8YHo3QuuulACKQzSJJfbXllQlQVlVZEVxQvOcggB1yfbeFPXbDcb6u2Gy/Mz1osl69WSzXpF39VEb6nbLUIJCgAbwEe86/BeorMR/bala7vET40OiSA3OTpTCSsjIXpBCA6hJONxBeMMvKbanaZlwe4uIHjw2QPWiyV9XSOGROpAqo2d99ghvEVISRCCo08/5+EHn+D6Gik89bZOgWBKEvzg0iMhObROIhJkhlYyBW6+OH3/wz/+1gO+ZI0bNjACfExyd2stWWZebJmEICXWmMH6EyNKZVjnGI2TZVYIRdc2CO3wIQ2tQpSEwbNcVCOC7en7QAgdk505Uhc423P79iGL1ZLL8yWz+Q5BOHb2rnFxUuOdw8dACBZlNIc3bzKe3EiQYK3JsyIdBkLSbHsuLxeEridT+8z396iKCtv3rJZPcS6pgrrOUUwztElR7ZNyRN/Z4U1LDLdAOpinkzFdv5MuvBjI8wIpFOPxPsvlCcbkPHt+yle+8hWCiDz47AmT6ZTbX7rJyfFR8qV3NY+fPObtt9/m/Z98QFlUw3Au2a3uvXyPo6ePWCzPOTs9YWcn8bCWqwXeeyaTKTdu3EBERZ5V3Lv3Cqenx5RVRdsm9YfShvFkBx8cSMlqveXWvZdZbrYcn55w+84tnjx8yKgqUUqxuz9FSsPTJ4+4dm2X67ducfTslDuv3OLh52f0TY02GQJP1zlyozA62U26Zsu4Sgojbzvy3OBDYDQpOT/Z8PDJJTf2rpOZwe6kEug8pSZrNnWNd3Dnzqtkecl89xqzyS5FOSbKgvfee4/rN/c4PXsOBGzfoZRnvV6zWrYcHx2z3Zyxt3/AxWrBV778ZU6OnpNlBePCYHtP33f0fZd4KiEyGk+QgMly+ja9piwvKKtR4vdohRQCT7KuJSVg2ha3raMPAesG8DIKpcCLHiUMwuQYlZGZdEDHmDbkkID6Skq0SfeR623a4iKZVCUugpFm4Lika05rg4wRY/LEfOk2dH2Lc8lm6FykzAU2DtHuLlBUAttH2k5gUdjeI0JKpjUmp2u3g40oQWSlvLKPpZ9LklL+XIgvmpWkzEgKl2SRTQO+GBI3TxATow8Yl9mwHZcorQiDojfPJb33hAhNHzCDiiEGz2RW0TWRhxdLfEw6JKUMUiTLvLPJ6ul9SCEpSpFniqLMsCE1LkWZU5bQ1j1FodjNElPT+QQNv7WjOL5gkF8HQpDsznLOFj2dS9ukEEAN5bEP6fwzeoZAo2S6BrrOc3Ras1r1gGJtA6YyFCNJMS35+k//GkbP+PTjH/Cj997D+4/wboXbtIjQc+fV6/zgB3/FcrFO2+8oWK1bqsyzM86wvmc61mgtsK0HF5GZSiEkMbBa1YwrA95xY3dGcIEPP3vK2caxqhMbkRCZVJpma2mDRPpI8I5pqSnygs1ZQ0/g8GaOlBFJYFZJZqqiq2uWm4Zb+xVRao7OG7zUnK96xpMsNSYqwwbPYgXLXnI+UdgDz6ulQAsYV5pulYr26ShjlAlwAo2isYFF31ONs8TUcJF14zBJ/k2ZFZTSYLOkTDGZYj4eU45yNvUF9WrJjf0xmZLcnB9wuVqxbVsOpxVlBsFDlgVmlaG2jo11XNs7QOSWdRHI8xHWjsjyjI8enLLuHC/taMyw5Z9VgjKTFNLQdoHaplASH1LifVVkaJkgIPNJzrOVZWeUI6TkYtlgMkPTe0JMIS+liITQsWkdIg8IXbFY9IOFwLCuXWJdyUjrOrQqqarxwJ70mMzQBksmAususOk9u9OcIgSU62n7HkRSF101r865wULB32j14Eq9x8DfExIuL1M6OSS+TEr9CmzXG664mVeD/O1mO3Bdp7z29pvs7u7w6MHnnJ6c4J2n63rKvucb3/g6i4sLum6dgiN0UtB86e03OLh2C9dZLs9OOD495Q//3R+w3TZsl2uOfeBf/LN/irMWbVI6dPCWTz/6BCElP/Odb0O0KFFS6RH/1T/6x3z9a9/g3/zev+X73/8Rq/UCG9coIcjKghBTkEvXNJRVhtJJ9V6NSl5/7TW+852f4f4nn/O9732P6WyEi47Hnz/D2xQKZIwBkTAYMYq0aODKEpc02mtfo8cV45Hh2s6UEDx9WzOdVbg+Q8iWk7Oa4ASHu1NGJmdU5fi+Y2Q0rXZs1g4pK4piwnQ6pyhGHI4mSJ3z0qtT5rMRoyzZEherLdIoiAHb9UxvvkXrAmVmyIRNA69tqgWenywR2Q6rbceijTx4vsa2HReLDVVRsNy27O7s4bq0wN1sIqO9MWeXDasffEJhBFoWWK95dP8E795HCodzHb7zvPbaKzR1T9s6ilHOowfHeK8wOiKVZ5SVNJ1FC0fbdViX2Jp7+3NevvMGZjzl9PgBP/zjP6ddr5GA21jWFy11HfB9GmRsO8/5NhCjR2lD3zryHDqfuLVGpnAqk8FiFZhPBdMqMsoD16eaWRE52woW20DTCuYjxe0ZjFQg5KAjGB0Z5xGloTJJ+VW3UI6g6SJlJbBBUGaCnSoQCDS94qyFvo0s2sBolHGxsmw6+cUgZmAAveAEDffS1TM+afzS8mS5CbStRMnI1Ed0TDxYF6H3Aucd1nuqPEcrDaTkQD+klDrvWa3W6TmuFJNJSUSl5PoQscpjckPTdDgX0Zl5wdLuOsf5xZrxuMKYgm3TEoJnVBqazvL4yRMulhtc3yKAyWRMVRY8OT0jV4ZxWfDSS6/hUdz//KN0xIQBv+DT0D3VROn55DqHVYFQGpaXW6T4fzP3X8GWZfl5J/Zbbrvjrk2fWZVZvsu0bwCEa1gOCZBBDEFqODEK6oFUzISeFBPSzJue9DpPMxGifIQ0MTMYDEWQIEEQvoFGow3alunqMukz783rjt1uOT2sfTML0pvAB92O7KqMm3lu3Xv23mut7/99v0+hVGTZ9HS9J/gEXvcCVHgWu9VKkGdZEmtkOoP0g8NNKo2zyW0bQmSAiuC8R8cBnh8FIfpU4OIGfpqWdNajPSghERGqouLzn/8sf/tv/SpvvvE5drf3BgxJGp7QRURMAywReUZ6SpC1p0OXKMTwDrsBhfKs2syf/9snhN5nT+tzl5/iaUnL8Nnz6+gZO/kTh8gY07CWTwp8z57/8RN/Ng6P96eAeCmeOj8hLRNP94BpwvXU/aKFGV5JPvteOf9en73A+ddPPMrhffEe59JQve97emtpe0vTtTTji4y2brJ/6U3qkw85fPwufX9MWQq6dYMlsFh4ticKEWC1algsLfO1pHca151rwWkfHOKwp41pOG0yAySXlFaKqtAQA56ctvW4PrGjeywMDPXEoe/Z3cmJ9NS1QKiI9+B82oeHpz+3Z1Tr9PNPWB+eOuh5Olx76vmVCmOSmWa1HIRCX1DkGeve4iLJGR06bNcNBpPkNIgkobKt2wHFIYZzu2ZnZ4e266mbDc1mxe/+9m/x0Z07XL8w4Q9/70+5eG2fMit54bXXee/t7/Hd73yD6Sjn4t4VMimTS0rCaFJx86WbXH3+n/LpH/8yP/jON/jone+xfHLE3/sPf41/9A/+Iza24cOPPuTh44cc3LvLycERt155iWpT0LVrPv74NlcuX2Lv8j63733EenGMb9acPXmEjvDw/mOqvGS1WlJkOfV6Tdf1eJs4b3XdEoVgfmpTFDZKZHS8uDfhl3/6M5R5x1e+9YQPHjVka4ElA1XhLOzNKq5emXDlxhX2n7/F7cOOZR2QxuCRLBdzlFixmq+Zf/ARPkra1Qrf96hC431G24X08/aOYCUZqdghixFvFJPpNleuXuOlF17g5Vu3uHrtBtsXLjKeblNNp5TjEVmRo02OGoYL52euv3LThfNZULrD4zAwCDE+vV4CQ7HD+fX1VLsRQzIRhBiKdoZuhCjOXc7JxRtcSpOkcguXGJbW0jXJiVe3DZu2pd7UbDYblssVm82Gum1o+zadE87OaNqerrPpmR0SNoAYUEokdl5mKKqSajxi+/JVrr7wIlVRMCpH6XsR0PeOvmtZzeccHx5w8OgB68Up1q1Y1RLnC0zh8LFPXQ9C4GXiS+fjkvF4RLvZsF4tUcYgTcXFKzcgarb3dvAErl29Stv07F25hnc97333uxzev4/r+jTAFWFw3qZyDSkFRM96PkcqRSZBS02xtY2TsEkLQSqukzK5oG0aWCVm9fB2hk+8t/8/fvz1W3QRoFJMzfbPFkjnPcpJrHOJEzFEYMIwJbIhoL1A6ZwsHyHMiDwvqcqeo8N7WN8hCGR5SaYNm80GkxWMtvZYnC3IsoKyHBNipCgzNus5Ilp2dycU5Yiz0xNUJulsT2kEucoIAfKyJDPpApnMtjlplnihqKpsWGQMJiuQWmNtspHGWJLlE4I7z1krICPLKsRwsxgJQqeGWJ1rorPoLMeGiPSeerMhz5JoYXvL87deYL5YoIyhPm547ZU3WC5WPH54lyLX2L5ltVg9nbQ4H9je2RtuhsBqveHmrRdo2xZjcs5OTyjLjCdPaqyzWN9zfLpBac2FSxcIzjPdmvDRxz/k4OAR1ajEaEWmDSrL8T5w/foNppNtPvjwh/RdB/hUd60i733wPt3mwtAC1dNbWC42vPDSaxR5zsnxnNlsxng8YbOe07VpgiZU4GSxYFpVLFc9hREEbxGmRGY5de1QpkQqg/Udl2/c5OR0BX1LZ1tMntP1Dq2HBS2TTLenXLz+PKvlIsVnmw2Hh49ZLtINtVwt2d3JuX/vQ/KsZDIp0VITQqRpe0S0VJkgxpq7995nveq5fecON2/c4OMP3qHQIzKT03SOyWTEal3Tdz2rVc10OqHrLHk5YTbdRuU5RIMCyrKEEJAy0DR9aolTqR3M5JrgUinDuQjkvMfhmVQZfWdRuSG6yHRapYnCINQRIjIyNNJKgirThC0kDiSDrV/rBIIWITWWFUVG3w8gUCVYyZzOB6x35FrRek/EUeg4sMM8LmS0UdE4QRQOoyf8g3/4j3jh5vP8s//6v2G+WRDEs1ja+SYOBtFeSiQBAk9jFgwTxhgjZ8t1OpScsxZIm8HRKMP2Fu8G90uwiBBxQKUjZabobNqAaaNRw8KWOEiaPDepeS8KZIgEPMZIMq2ebpDCJ8pFFqsGBBgtqJuAiB15Zli0gtKkZuJ+3aEKxStXKh6fJFZcRNJauFSV7EfF6XLDZFLg2p4sU7Rdj48CFwSPDk+RUiNVWnK99Cw7D1ExqxIwPjcwmVT81M/8fb7wk/+Qk2Xklbd+lX/xm/8V+1XDt7/921y7cIM7jw7Z2Z0yMi35tQu4zHHwrbtsTwwX9ydo0bC1P0YT6HrH9uURo0IwG2VMJhO6tmdVt8xXPbX1HJzUTEcVT05bln1gVSfHx/ZUUenU8imVxBJSYyCeUnquXcw5XrZ4Z1HasLWTEZzCWkffByajAicF202PHSuWnUNrwdHS0rVJOLq0qzBasFh7FiJyV3imo0ghJVpA33dp8q0EZ2sLQRImgmwk6TfnTovEcqpbT2kUUiuapkfgyTID0mFwaNVS1wd09RqVadZdz3zTM3YJ6Hu6brFB0PSCS+NU2NFHz2xc0VGyaDv69RHWFay9ZLHcsNhs8KHHesP900BnPVUhUidNNzyjRiBrzyiXLFvN2dpR5IGdUZrmz0rNqpN0EU7XPbVLVNbGghSR003DfqV4bpZcC653uEbQO0M2rdise7Z2JmxNMuxmg1EibQTLEZvFGmdjYrx0Hu8dXeMxwbOrPFtbGUWmOZMKrVPDq5SDgyD4xGEabszIuXvv/MibPtX1lu749OlBTQ7ckkB4uiYCTxvEAXZ2d/j5v/lLPDk5487de+TGMB6NadY1eEG9afk//x//GcdnZxBatrfGrET6umcnp9z+8AHzszneWTb1ZsAiJFLLahC9IaSDtkxiflWW7O5tc+P6JQ4O7nGqSvZ29xiPS95843VeeuVVHj0+5nvf+Qbf/cs/5+TohP/gV/8OFy9fYzlf8uTRI/YubBODohxPCPRsNnNOj064fOkSX/rxL/Ltv/wGx6enOG/TBjuce6nAZGpwQMan7gkzHDKI4F3EtRHpDdPxFsV0hikL8swQokJSkhUle7MZ03FOUeRkWYHJcnQ2oihHTLa22d7eZjxNex+T5SiT2mZTzO6c5HzuEgmImDb+gTSwCb5DxIiPEINP+x4h6If1wvcNQgjazuKtZVlv6FtLu95gvWW1qelcZLGYo0SLsw1t3TGfr7h6pSUEi7UrNpslk0nJndtznK/Z292hyguUEFy+cpFyZNjbm7E120HpjK9+5Wucndwny3NEGbnz/gccPThk0XRUWY9SlryI7E9LciJKbtjdlag1lAryTNJ2lsU6UBQShaKzEus0jXVc2Q5c3ZLUPrBcRvoOtJCcnqWGzbON5GARcEFQmuQw2B1LOu8ZZ4JpSeIHEnE2OW6NTHfFuk/OvTYkTb6ziQ0EgfUmYHLFuJRkZcZsoslzyccPejyf4NPKJPCl6GwcBnvP3LRxiPo5R2pnVZKRiexMEuOxb/p0eAB65xDdwMYMaS9yLhBlg4tAaUnnPOtNEs6QkOcZIijyzNA1DUZJIqTGQEh83OA5Wyy5sLOLiLCuN7QdeJ/4ljb6Aa9TY/ucn/3yz3Lt5IwfvPcewgVee/V1Pvc3fp7f+O/+r3z3W98E0j4gE8MZYohrhpgg6tangZkIMu0zc0XbpeixVAyNrIAXeBI2xAc3YEEC0iiUFBRZRMmhPCNXqWnRp+KM9FoBKSTWp4K49L4McawYkDExCaNMZRw/+WM/wT/6j/7nvP7yW2R1w/rBIaff/hHro2PaxRm+rsE5hB9+kbjC5/KWFBotNFrqxNgzKqUnVIoOC23S741K7YwmQ2mDMAapDbLIEcYMvzTCJMVZGoPIcoQyRJ1igkO4ApR4JgSKVOgQh9+EYagTz9/nwa0XY2qhTSKcGOLEA4TlHAIITyPE58LD0/jp8Dkh01AcmVxjTxeOwaD4SeSkGlJfuckQ1Wh4fZ6K3RGwwdG1LSfHT7hw/31u/+gv6O6+zdgf45ylbXrqjaBp5gO0P7LaNHQWlDLPouukAWkYUA1SKkK0KJ3SKkJCUQqmY83pome+9Nhh9lZUBqkFvnO4zqEzTbsZ+LzK0/YOiUzubRlpvCPEJLg7x7P9dDiP4z4TR9OaEZ6u1875xPwanvXESN+2dF0kDi58qdIadM5j1FnAGI3WGmtT4Ud0yQksSINOZ1OLfG4ymk1L26347ldPeU8HmtrStXN+3/4G9+68xTtvf4+zo2Ne/9SbvPhqhxdySOLAerFktVlwfHRMNZryi7/2j7j1qc+yfnLMq2/e4ptf+30Oz8740f0njLdmtItTvHWczU+5fOkiy/WKD374LqPCkGWKs6MjPn7nB0zHOX27QSrY393i5OgoRU6NYr1cUK839F0S+FKpYUSYnEgkV5IsM1gX+MYPH7Lc1PxokTG7cZ22rbm8f4Xt7TGbZkGICdcwra6zOVjw3gd3qEYjnO2xbQ/RMp2VrFdnYLNhIBLQCiZZltiqLhVE5XmGJFJWE2698BqvferTvPX5L3D1+k12t3cZ5TkypDuFkHAAwUOsHbG2BLHGk55xT2XgyFNchZAyMeQGNBIiRVCVlEQpiDI5sEEghsbqQOSc/BCFIMph4REylR2S7vMQE1tYKQlCE7VPbuNhWBA/MdBNQuGze8f2PW3X0tuezvZ0Xf9M3OssXdfQdS1tU9PUG+qmpq5rVnWdmnhPTznru1RaeS48BkAp8mxElpWMxhPGe9d488bLjMos6TFAdD1129G2LdZZmqbBEciyjLZp8cEzPzuhrld456ibllXds16ecHDwiCzTvPud71GORgilKauCbFQy2pqyXKwZb29z4doNdncv0q421K6n7tfYdoXWsF6s6Os2MfpHmkuvvcmVmy9QHx1z+KOPWa/XzI8fYzfLdOYSEKRMpjk/KH1/jY9/Dy26g9PIx8G27IfmL9IFJQdQqFKIYREMniQsKZWYDV2L0RXTnX2M1Dgix0/uEl1DlAXG5ChlB/7aFlU5pSirFBNta4iRZtMgouTG9ReQOkcrg5QOu9oi+ia1OyEwZsytm69gijFN3+HamqODh2mCIdLmd7xd0dYrbC9YzM84Wx7x+qs3OT7IIEacc8wmUybjMUIIjEgRja63yVU3NHFZ63EuoFSBFBnWWUxmBpeSwvVrsqzijbc+i9JFupgbi/cto9EEneV0ixX7+5coqzHOCjZrR55XXNgruHrleY6OTvjoo/fZ29tFEYhBszWbcO3Gc7zzzrucnByzf+kiu9sXCDaAd2xvzWiahsuXr1AWJQ/uP6AoMp4cHnFx/zJGSQ4PDhhXE0QI9E2LlGnh887x4ME99vYuMKomrDdnXLl2mQf3HuJdYG9vn9V6CaR4sfOBcTHCKCiygmA7pNbovETIVO0epGc6q1IZQg/PPX+LJ4cPyIUnywp6X6dNFxAsHD85YEfl3Ln7mLZuEaIhyyXjUU7fOy7s7bO9NUZnJX1ryTIJTnF6doQykjLPabsebaZc273GTtdwdHjEerOmKou0sBUZActmsUbEQFVm5FlybM4Xa0xpqMb7TLZKHj18QpEleHGRZwgJXa9Yry1RQNun9sum7UEotBJEJEZrhAMjFH5wpeVZNkQZkkNOCkVUgTIb0dYrcp2mnyYzaaItJbk2WJeYWNL5VPseRNosyhRD6TpNa0s668mMpG5bgizorCATlt0cjAi02mL7SKkKovIsveP3/t3v8vtKMK+XCUT6iQZcAU8nRz5AGGbLEVIL9lB1HgeA9/lkN0UMnrG9Npv+6YRY4hkVBhGSS0sjGRWaznbJ5WJ7SqOJJDFICMlIKRpSI1UYXElReKwL5CY5gG3vmVWGEKBuI9OxZGQk+VizWKVykrNVh5BwZU8x3jL0fRIFX7s6ZnN7QRckznuezFfsjguqIiPTgqsXtymUY7p9gR+8f4LUAus83dC0ljZhaSMfK4nICpYHG0Y5RDlFy6vUTc56teH568/xpS/9HY4ev4vkIx4czXnn7iOqsxUzEsf03t11EsWjpF43VDk0sqdvEz4gzxPQOEZB3bSELtLUFuvBmJLnb17DNhYzXzNWERHT4EAlWhMuprY6iSfPYHtkyGJyqaTGYIVUcHy2xrlA36eWuExnSNdzbSenbzumZY42kfcfbRjlBh08Y13gtWWDo8hTEcN8JdmqIqNScfVCSd0MnD3nKXPFuktttMoo1l1Co1elZmQM0geMlAQJwovk1owCGTXr5Yam6wgqcLjYYEOC2j843rAzrRAiYq0jNxm58ay6jq6LrJtAj8eMLzOeXMbXLfN1Q1MnsWxSGVabwKJNWxxlwXrJxCT7m9aSSWlQMoGPQ0xttjGAKXMWi54ny0DtevqQ/rwWsFUVqOiQOAqZuLR9TFwOoQX7kxEbD6u6Zt3C4zPFRClU58lLSTnbpVlvkLEjBkchI0ZY9rcLtIe9UrBdqlRSM7jJzvmh4pP/95TddO4oHsCawxkt0UnOY6vn8a606fxEouhp9PD8IHn33j3WdcOTwyfceu4KqYJCoVXiMm7NSpT2SLHFwZPHrNcblFS89+57+D45Z6Q4jzeop68dB6Yd6KcuFkJIMSUh+Y3//n8g8j9wYe8Sv/SLP49EcLZYcLZqeeGVlxmPND/7Mz/Fo8eH3L/3gPVqw2xrzPMvXmN/f5ejgw23XnwZ71v+9b/55/zZn/0p3gbG2zOWq3XKZ5KuPSGS+Jxlism4IhvYoVIY+qYnWMskL3n+5k0+8/pbfOGtT/OpVz7FaDIjq0aYohg4YBqp9NMD9bMTb3r2RtJBfICPJFFTqyQEDG9ViAFiYh1LkQ7RSj5ziaTNuIdQEoFsuATGnzDTpPf73AGQvqaPIAKoCEHEQYBKkb8QuvT33HB9BYG1Hc5ucLZls+5YzFd0dsFmueD4+JjPvrWm6zvWmzXW9tTrjq6Zs7N1gRBzQrDE0FJvkqtyvmrQsxJbd8QgKQpDqQPjsUB0jtgLYvAwNEATBduj5FxbNEMMyALbBoUnOkuWGzprsb0jYljWPZ1LbM1xIZAisukj90890UUujiSdDYxyqJcpIdR2UBQQhMT2sGqSg+7CNKAN3D9J7jCtFI+Ok5PvcOV4sv6r/C05LKzP3sM0OJeDy0uqJKb48EwQSG96YDIyIALWpqIHQVpHpVRPAf25VnjvMMak6KG1SKEoMoWTidZmncXkienrQ2oTNXlBWWkWqw0upOewVInfa7uO5eqU7a2d9HP0qQFXqRT9apo1WZZRlBUffHyfC/tjcmFZu47f+bf/E9/6zp8xP1mQGU8UFmEVRqSkQ2JgD3HamMS65doxHY1AJHZf+nyKUg5nZGJMAt2ATErpmz5B0KNKQ9EiH+KYMWKjJVMq7b1I951zjr4LxJCac3vnyAtJP+ynCRC84Euf+jT/u//ZP0F99IDFv/5nsFygsoxqNGKvzDFVAZN9gjCEYQARB/RJskx7QvTDRipxa/GBEBzRO2LviX5D9BZsT/AupRycIzo3FJUldwjep9dI0DtETNedHA7q6QCvEVmGyAtEkSHyEp1nyCInVhmUFarIoDSIPEspqzxH5kX6O1lBNIagNdEoUII4OC29EAQpCGL496epi2EteBo3F4MgmIRrBkELySfSX+r8thhMGMNwl3RfnK9XAoEBMp1T7F9lXE7Z33+eq9t/wdE7v8tydYjVmq5u8DLD+oS7meWKbrBBNrajqnKqwrBuOjwMoknAtilWq3XC60jhmYwMrtfUm+TG7F2EKBFR0D5lckpqF/A2oDVIJ3E2xXGlTIUrSSCJqEwMwt4gwJ7f+zJ9724orBMi/SylSCkVRHgqip5TsqXUyRl1vq9WEqFAasirYkjcpeJIR3o+QPo+VosVPsaECerPV4seJQuqTEEQ3PvoNvfvP+D6jctUZc6jB3f44z/+VxhydnYv89LLL3Dw+AEPH93j44/u8sobr7KxR7z73a8zmVZ85euPsMePqEYj7n58h2vPPceje/e5cfUS165eZn9/n8lshwt7u3zvm1/jrc9/kZdv3eLxB+9zdHTIdGvKeDzi8cNDjM64cGGP2x9/mNY0JRnNRhiTsa0UWZazvXOB6XQLpRRVVuKj5866Y2fvEs996gRvW97/4busHx5x/8kZq80CG+HqxUtEIXn/4weczudILVmezTHGJFzXcL0en6byT600ahDWXN+C9eR5wYXtK/zyL/0H/MQXf5qr+RRdW8Jqg/3Oe7TdmrrdQNuA7VE2sdxkTPeAkgqpNVLLlNTSinQxCawcrnypESLlTkU8F/tiiuFLCEYPd89QXiFVOpnF9Ex1UuJFeLqniCph13wAS1rbISKUxmlDNJJgBka7MeRlgSlyVJ4hM40a1paqKpiOqhRdfepGjU9TIm7oM4g+DBzYNJR2vcX1Pa5rcW1D33Z0TUvbdjRtTdM2NG3Lqmlo6o66ndOsjjnpHd46Oh9w0ePCMDxRkizLGJUlJYatUY42mpt7l1ISryjoo0WIdF9tNhvatubx4wc8Pjji8PiUVbtCG8mNV15msneJG6+9xdVr1xmPtljOl8hC0gTL/dsfcnjvI07u3KNdHOP6nmx3j8/9wi/y8ptfIkfiz5a0feR73/lDfvf//n+iOVngI5xX64a/vr731xf4lJTgAybPcC5x4aTWybWHQpucGBIwO0aBLnI8AxNAqYHj4Vkd3mN+coA2BfsXLjAe77I6e8zexStU1QSTVXhvOTs+YLlcYK3l1kuvIPKMpu4ZjUb0TctmtaHpV1SjCbOtCQ9ufwQRMlOkBrCo+ODDDzCF5t7tR2jl2Z5OWK/nyZGyvcvVq1d45wff5uMPP+LSxS3e+sxryChRuqTra7TJuXD5Crbr0UrR9RahHFKnKuXzxev8ibt/8SpHJ0dEHEVZEmJgMT/lwv5FArBeL9FZjxSBC/v71JslQuWYLKcaV5SjEUeHT7hx4yYgee21m9y+c5sfvPN9RmXFc8/dIArJ7s6M733n27z82uscHj7BdT0/9+Wfp65rZtvbFFnGbDrmw48+4rkbN+j7no8+/BDvLJcvPM+Vq1fp+4779+6xs7PL9nSXqpxx8eI1Ll24wmQ64uHDh5TllGpcQkyHhfnJgu3tbbq2g+ASx05n5Nk+4+kUvMB1aw4PHqBkIFcmxSFcJK8ygigospz1as3SWra2tnnhpddYPHlExCeHidL4EOhsAJFRVSPe/PSbPLhzl2s3LvGX3/o69+5+TN91TGZbtN0lfvKnfoHvfuu7RDzzk4eorAR6dvb2WC42PHx4xDVZce3GDdbrmrZr2NvfB9uglCIvMoq2wFpP1zuk9Nh+TVHk7O7t8uTJY+q2YjwZI3Aoaeg7j3WWqihoNoLe9U/bkmKQycEX0xTQW0dpKowp0UpgZJoq901HXhQYpVORSlNT5mOKPEdLOcS9JGiNjwnc7kNAodMkUGtCEGkqLdLmx6OIMseFGuElFkPbpwbddQAlOwrlEQi0dGy6Dcak6PrxyRPiU0t4avUbJDqiCIOD8HwCOEyC5XD9n+/MxF9t2JWkB66SIEJMjdQ4lPBMqpycwHhWsNw4mtaSi4iM8WlZjw8BN6wQuVHMSsnBoh4mUSkGLWVyOTbBURUZhdFUA0+n9ZFFbSlMRaXCYKOG3anhZBPpuoDyDqkKVuue7VHGa9fHfPC44WhuU7ync2xPSvYvTVk8WfD8lV2C0kxGgrNVR3ARITViaLErM0OZJfC0tT3BB6ZFRuzg+PEDjvo/5I+/8qe8fOsGT+7f5sbVq9x6/ouswpLu+/e58/AJl7cqRjmE3qJ1pCoEkxHoZJlEaMFq05KZHHLB7UdnmFyjhaAc5Ugii1XHx/fucXlvjM4z6nXH7kSByVmv29RSF1PZUKEFRI0Iku3divmm5sLOAGTvA+s+smo9QitKAUp7xnmJs44XrlQoU1ActzycN7RdYH+m2Sk920Xg1qWcWaXorSUIDwRi1Ehv2RunyL7NJUJ6bK/ow3AtW8usyjARfNOwPS2QvsdHBSpFplZ1xLnAbKRo1w1BJybSsq0RUtDbwNlixd60RBtJxLHqA72TEARSGyZFxXjvItn+y9QfvYfsD5mOpnReI31N3bfoAF0XaL3hpEmb87GyGCkxEmJ0jKvkatgZG9abBEAus5wQWoiOSaGRIg7Cv8VFyySTTEaKPAMXHD4YlIh0TYdSGeOqYtM0TKuMrUzQestkNGY0mbE8OUYBeM/FqWESPCWgMeQZlBqEymlkSRyiC+f8E6XU03s03cHP/vdU+xtWt8TdTLf5M3bT+T95ehQTUjAej8jzgvsP7rFZb3B9z8GjA9arNcYU3HzxJXb3dvjZL/84h4cH3L5zjydnc8qRJM8ycpNzdrRMgHefxN/zUovzyMp5hFENgwShYFOv+fh2jVBJpDw+fMIP33mbyXhMlIbWOva//U0OHt6nyHKmWzPeeOsNrt26xMHBIV/9t19Bishs+yJ//vU/5bnnr5LnhoPDY7q2xTw5xLkOJQ0MbgkRB1EzBro+sWylDIwmObuZ5mfe+En+9s/+Ei/dfJVxPkJ0Dk465OGT4aCfnIgMEa04RHGiEgitQCqE0sjMIHJNMFmCRQuFFYqIShN7JQnnjpzzh/QQwRPnzCeRNMME20/QfXnebqcTmzc5u1JD6vnzXA/tnckwkJ7N0QcCoHTaG2Aiynu0EBS+IMQxMQR29gXXicmFPYgQKVKYBsTBJ+eFtT12iOA52+MHJ8B6s2SxWrM+PmExP2KxXhA3K1y3BDenPznBhRV13TCuoDCRWLYYKdnUDttaZlsZzaJnXSdOXxfAuZ7KeMZGIDPPto7kCvYmiigEXRdYCsG6C5w2GiMTyt4bzdnSMq4kqyYgOsgraJt0T1cqoIDVJiK0YlkHKhPYHksWztPOJf08HcJiupkGFt95kPJcYB9MEiFFb6UY3FXnkd0QyCuD1JrDs5rtLCEx8sygdTrYGSWYTUf0bYPtA0alOJ1zFhklmZAsm5rt6YTTRY3tE9dWqcSObduOIg+JH+mS4J5cHQ4vAybL6WzHpf09jk5Pabs2tYCiqKoxx8sF3gnmZ+/xwY/SvZyXJXsXtljXSzyBV15/mfl6zf2PH2F9JM/SOUEAokicO+eTMNHbPuF3XKDIDYXReOeT8CjTs0eKSJ6XSCFou27ABKW9Qdsl/vO5W1KI1HAaA8SkE6Izw8xIvItJ9PGOwiR2p1AJiD4Rgp9givtv/wU7ZcnF3Qs0ZcZqeUJ38oBF26M7l3KZg9iulEYZPRTemXR4z9J9pvIMjEbmJSJXyEIR8xyRjZFao4QBOYAppSAq9VQki+E8XQG4gLCOGJIIGp0l+khw/XB4t09LL6xzhL4jLlbE49SEGXtLdEl4FN6Bs+ASUzoOvCmhNTHPkEWBKEvEeIyYTlCTMVk1QpYlVCUirxB5ScxzMBloQxxEzjCgbXyMeAFBRrwcHIByaAeWanhOJMbYOW8s6aNJ8HKDMBpDRDuYZFNerS7zt2Yvkle7dMri3Jyekk2InNUtd1Yt9+YNB3XDoYBYZKxcSgOUJnHbjMnwSiTmtneURjIZK0ZVSonMtib86ONjwiZFkrs+ISs8hrZz9H3EechNYDxW1LUluOS8RTBE5QWF0cToUPK8mFIipKLtkstP6+QyFUKg1PBsVkPL9vAsPhdQCGkIYH3iR+vMoFQkiuSq6vseIZJDF4AgU+mTFkihcDFF47UxKZZpHSu7STgPpVM6zQXWJ0u893zrT/+A7g96qnzM1t5lvvRTX6T3AaMy8qLgL//sjxnNRhzdf4Dd30fnBY9v3yOTgc9+9gt899vf4fHBEcr3XLp0jVdefIOrl3Z59eVPoYAXXniZ3a19Tg5PWS2Pme1sUY7GvPhqT5mV7F3Y5/W3ajrrUrFcWSbWb4CjwyfkRrNuPYcnx+zMxrTrNQcHj3n7h+/z6OEjms2KEDxtU1OUJTu7O6g856VbL3D3ozus1nOuXb/MztYe8+NjZrvbrBY1mamISKy3hDadoaZlQbCRvrfsFBW/8Pkv8zc/9VNsHa0J/4/f4ahbI12HEUNc34enz/9Auu+cd3jv8T4NBX2MyTThU4O5lxGnBGJgqVLkMJhQVJmhihFUGqqCrFBk5YyiqMjNiExlKFOSqYIokrsXNbiGhSTmBq8VQuQIFF5nRC2S0Cw9VkRE8PQuYG1Hu2rpTs9Y2JbWtnS2B584fjZGLAKhM7TJ0jPPGEyWk2UZeVUxno0pR2OqokQXBeJ8HxrTgCuEmDTsANGlezwEh48dwfdEl+LC1jpc7xM6LvjEv3dp/2D7nt52dF1L33a0bU3bttTrDfWTRyzXS842Kxpn2bSOuneUswk7Fy9x9UtfYO0dDx8fsF6viQL2X7iOyyN/9pXf5+jhY8rcMBoVmNkev/BLv8LNX/41XN0S+xXrpuXJas7j5oyPfvRdtsuKzbxHZgWmyBAmdVSkqDznJJy/9sdfP6IbAk3T0VlHnhmMFH/l83Vdk+X58LBKOX/vHUJrMpWiPb0PqbEHz9nxE05OnnDjxg3yckLwsFiuyYuCnZ0dFqdHtF1D3TQsFmfs710CIViczXn86D4fffwB2hii0Fy++hxbW9scHa/x0XL5yjW8NzTthtW6Y704xvmO8soFLl68yMPHx+Rd5MG9xzx8cB/vepTY4fvf/h6f/9KPc/nqC9y7vWG2tUvfdU+n4Fqn+Kc2Oh0enUMbQ2d9ijJZy4svv8JyOU9Z9XbDyekJrQ1kmaLvWurOslxtuHXzOXywjMczjo+OKIucu3fvslws00ZjusN77x+yODtjvliQZYZLly8RhWY5P6MoCm5//BHOB8oBZGmUQsjI3Xu3eXj/AavVkrv377E1m3HpykXGoxc5Pj6irHJ8CDx363mqasyLt17h8PCIvMip65rpdJeLl26gFNy58yHr9ZrFfMNquWD/4j7FuOT4yQGL0xOyqkIoxWpVY3RB31tMYXBtw6auKaqSydYueQ5NZ5mvNpjMUK9q5qdnjKoZ0619FvNjprNtrAusVzWfeu2zXLj+HF//+l8gJLzzzjtsujUmr9je3Wc0K3ny+IiT0xPefe9dWtvy/I1blMWEB49uE2PD4mzDbGuL5bJhvjhBPgwUxYgrV69z/+MfMc4V42oCLk0WvE+bpba1FEWOznLyvGI8y1A6DFb/GqkVVZERQsXxkxUqk6nVs+4TlFoCAxdCSgi9B+3pW5uy+0aTSUVepfZJ31vywlBtTdAS0Gqw6iuk0Mkd5AKoBJI1SpNl+dODlxra2HrbgdJ0NhBR9B66EAk4YuzItcAFxVkv6AEbbIp7aBDd+ej0GY8l+sG1A8NmNT2Izw+NAwFicIwkZ03yuA5xv8EdNKkKMiNpmxpjBMZkdE1LCIFykqGipSo0m02HLjOyDGx3Dv8XKAXFODH9jIbZJGfduqGZTaSNbAzImBgHW5VGhoANMbEdg+Ro2aKVIc81SgrGI0Wh03dRe8npaY0SsKs0V/fHOCRnm57UhOVh3bL8+ABFJDtJA4SdvSlR9SjhKascpTSuc9y4ts31SzOePF7x4Ogxi2aJi5JyK+O3//C3OG4dZ53nz775+3zmlevsXcq4+fItHty3XN7K8CFjNptgYsvll67w3Q8eMSkV+zslk0xztq4RIrJXTXCuQReGTOhUslIZ6rrG9ZJMVkSgblr6zlGVJdHVLOYbjNaMJ2M2ywbnPR1gFYhC0QtLkBIrBCoKVnUPSuKRnBw17G1XjDJFb+Fs3bNYOlCe05Xn+f0Ry01kueo5WIShUd2jFVysBI0zrHrPqm0pSkBK1i00ThGEou3isGAHtkcaKSUupvY4GyOl1tgeNk2P0mZwGkpyk0qRgrc0a0vTpobprWlGt97gXU8XJYu1xpUmTdxFZLluUJ2j3HZoXWJMzvUrV8j0BnH/I+4dO+ZNpNKR0Vhhg2DTWnoLdSGxUmGEZ1IGrI2MCoUSkGsS67Ju2BlJumhQOmO9aVnbltamFsHzNui2E6hJ4r2MjaGZ90z3Jqwbh88LjAhoIcmMTKxNnaG0hOgYaceOMYyjwgSBTPonKkaMTO7a8wNTEuUlCDk0ZQ/3ekw+r09Y95Jbb4hFnSNgzslNSWx45hBLB2fJ9s4Oi/mcxXyegMIhYtc1WZZz68UX+Sf/6f+SixeusFmtuHXzNV57Y8mFa9f4i7/4Gq6zvHDzJodbT3j37XfS/mEQNoQQT2MnKU6WAO6jUYU2gt39xJTdbHpG1Yiuqfn5X/hZFIbeOb71rW9TaMPf//Vf5+GjR/zx7/8J1vZ8+1vf5dOfeZMiy3n0+DFf+ZNvUlZZAkOXFUoqFCq1i6IIUWCMIQqwfWrTFA6a0BOc54XRlF/depFfvvEClykpvvod4r/9Kk3dELqA7/p0eI4RGQXi/LmpJAI1OLcgaEVUOrm1TRIE0BKVZcg8g7IgFAWiyhBljqgKQpl+T5ETqhKKCvIKUVSgS6LW6aAtNUEMsRzv8Lanj5EmpvfV+eTePuctnw99npYvDe91luforEhChZKoKAfw9BAVijFdZzGmdW8QtYiJ/yYHw47OCsoI24NU7H0qa0EJlBCpyEpBCBLlLc71eLfBNWtOThYcHh5y/PgOp08ecnb6hNPDx+TZnFnRElTHZCYoi+QIl96TmcjuVLNaOpa1ZTJROBtYNT2dFfROsnEQhWLeGUJ0jArByZOA9Yp5H8mEYGsksC0s6kieCXYLGGXQB03dRU6WkjqHS7up6CH685nws6jks/bSc0KbeDore1qeIJ4VGpwL3Z0NHJ709F4zRhJ9T+89rk8OPZlpFss1RkmKLEMIQZFrMKk8wjtPUeS4odCntpZN01MWCu/7xNGOae0djwqcTy6hdnDSS2noesd8OWd3e4cnR0cYFZnNZggRkFHR9h1lPmLVBqz3rNslfe+pqpK27Xhw7wlvffZ1nr92jT//i7+kXvdPG72jSCUE6dJJQ4kYk7BD7BlXBWVZUPd9ciX6JIS0XU+eKbSWmEzSdp4wxHtlSMKISLZ/jDb4mA7cvk+DDClSpF1Kmfb7LtI2PUJobmQV//iNT/Mrt24y9pEP73zMw7e/yaTp2c4zdrKKLM/ItUapAlSW7h/viJ0ntpZAxPouxV69RcR0YI0+4IdCPT8IuwHwUhBUenYrLTEmNUTqLEdlOcoUyKJEFBWqTDH/LM8RuUFWGjkZIaqcUOZQlgidg06DgSBEih4rfW5fG7isKW4obIdwHlyfBMCmIfQtsWmImw2u3uDPlriDE2zX4bsO2/UE1xOdxRMGbJNEapPcgKMRYjwim44w0ylyOkWNRohiRCxLQpYRlcJLSZCagMRJgZcyDSbO7WvpUEp0DtO0uAd3MW9/nVnh0XnBVIwQ+Q54S4weYRx/Y9zTX+ipXc/BquN7yw1fbU+4rRWd0GxiT99blJJUhURpePPVHWzXst5YDk96QmwoCoVzkbbtCcKRa4NzgaZLzezEVEpoVGRSSlxU9F2gdwPCJk3PISZWY5krvJA0XeDc2Kl0Ylr7AXFz5doNpjvb3P/4TmqhHoTOFKcehu/DIMw594zvZdNDR2uZGn6H5umqqpBSMx6NWNc1e5euMt3d5uD2x8yfzIlhKJnSEpnleNtw8PBR4spryWa1olM1i+Mjnjz6kEsvvMKv//p/woUrz/F/+K/+97z/9rto58liJJtusZivaes5o/GHXLx8lZ/88t/k1Rdf5IUXX2E23WK9WfOlH/tpfu7nf4ngI531/Pp//L/A9TV11zLf1Ny7fR/f9mzawOnpEpUZiq0t/vJb3+bixW3mp3Pu3b7PKy8/z/e+/0P2Ll3iwvarfOObX+fRowPKMmOxXECEIsvZ2dpJz8VyzE/8zE8j+pr58j6jwrC9vcU73/8B+BZvWx4fPEoxaQfGFHRtmxy9RtC6ngvjff7Tn/97fGYRKf7oD6icwNcdXVfTix6vIkGL4dmZUDPkKXZvJjmyMMQimaUY1lkhFVpkSYxjcHragO8svrc0vqFdtdTzU1o8jQDhk4vbxY4mOFofaVxk3Dl2vWDqI6U2iNkIPR4hqxJdVZhqSl7MMLMdsvEEOaswo5JsMkKqnFAVsDVBZDtIc+7kTY7UGHyKiduIDz0h9njf4V0S3WJn6euWzdEhq9sf8rDeULcty74bEk8GkZWYsqIcF5Sjiulsi/FkRpGXZHkqNdU6gywMr+2IeXLADqF/hAjDfiM8TUNEGFyDz4aMwfYJXeEsve2Zn8w5OD3l4OiYjx7e5cnjxxyfLFh6yxrPwZMDbN2yOj5mfXaWuPtC8vxnP43hF5llhqIc4+MWPjeYJ/f5/f/mf+D2x++zd2GXXpWsT1f0p2c0x4ukETwV1vj/D4GvbRqadpNAnyFQlTm27wjaIcjQSmGUpLWD7fD8QRYF7XpDVk3wkKbhRrGzu03T9iwWZ1y8dIXxeIKUirZpeXL0hEigKgrKrGA6GtE2a5z3NG09bAI8e7t79NZzfHCPfjZBiJw8KzhbNDx34wqPDw45PnpMNcpZnK1ZLtcEadi+cInLl69zdPSE3YsXOHh0j7OzM6TWnBwdIqVCZxOUGhNExqg0tE2LHmLIRVGxqWu8Txbp8WjCqu4piop1PWezWbNYzDHas7e3xWzrAqvlKQ+PDrhw8SJlNuXgwV2UkmzPtiirkvnpKX3bUq/XKKW4dHGXDz865fjoKBV52EDXNKA06/WCGOH07BTvAy+//BrOeYqqZDmfMxmPmM5mbO9uEYPEO4tWOePxmBhS4+rHtz/m+o1r1KuW1WrBrRee48nRQ5bLY5arE6TKuHhhj/FkRO89Jsu4dOkCddPQ+Y7e9USZpqcST1VVbFZrfN+T5xm5lqxWC7QWjEclD+7/iLa3rNY9t56/SFllqQihUmgRuHzpYmrlEQKTjzg+PuZHd28jpeP9d97hM5/5LB98eIftnR2kEFy/9hKz6QU+eOdd3vved0AIrl+/ws72jNVyzL37hxijyPue8bRgtjXh/r07vPrqm9y/e8Dli9fArnE2Reom1YSm7kHYAQisCC7SLFdk+RgXI3lWMJuNsHVNUy8RIpLlHcS0cVMjQdNGjBLkRhG8gCgxRcakKLEt6eEYUytcDJHCJNeVTqs9AlLcTGukMriQJDMpxRD3SO2D0Uv8EE8JHrRwKYLnE/sNmeFcqgJXQoECLT0uBpzwBBTWu9T62/d/9RkTh4NEjANm5Zl74Jy7ouT5wT4xRZSS6b4c2pSUVEymU5xv6fue4BNwVqtI9JGdWUkMaUNrfQIpFIWhaT1Frln3lijEAMo2BN+RqSTmjQ00NokjacEcNvACZqVhaySJzoNUGN0TfWLHbbpIhqNtI23QzErJuk7w8q1JwabznNaR/uyUqsq5cWHCo7OO3ka6HnCJU2VjnVwpMcFsx7lmuezITEFnO27ftig6PvWpXdrvl+xdGHPv0SH3jg55fNRQNz0iq9g0Netmyve+/y2+8+3vce3yTd545fM8t4GsGDOdjZCmYOvCHFzN3sWKqdHsWE8+GuO9YFQpMpPaAK2PaC1o6g3OenrribEjhpqr4556U6cCFdUiVSCIgCwMoywyKjQmBGRu6GNg0zY0Xc+okKAL8sJg1y3VcN82Q6FRHyIxV/TR0UZPazXrtmHvYk636sFIzuaOySxjkjdk45wdk7ErM5p1y6YL5CaihWPRZkkwkR4ZU119rxKE3Amf7qnQUxjFOBeppU0kB9R82SMVbO2O6USgmBh6Z9mdGfR0QrAdSgtWq5amhd2tEudhNC7pQ6BrF3T3PmJxckq5NcYoTZ6lQ2Zvocok40qnsgAlMFrgrcchsG26e3wAh0BJx87UoJRAKs2T3rNcOYLrQCsKDbmAqsjTfSMsTe/obWRjI5kK7GxN6eoVEy0genzTghhRKkVVVJgsT6UoVYmgxriIUQqJx0hBWSS2lLcdQtinrlxx3tQo0oRfnMOPBvH+nPFz7u47P0uFp2w+Mdz1w187F/xIG6nDxweJheM9LqRor4uB8WzM3/yVX6K1LSIXCGvwQXBytuS1V1/nwoV9fue3f4d333sPpRQ6SwVI8EzgSxDomBxnQgzt7pFscCZcvHiR8WjGj//YT6J1QV4qFmdzrHP8uEwumne+/wM++NH79M2Kw/uOrnMsjo/IS83lK1fZ3hrTtjXr5Yr56YKyHKUioDZAlAQRUpR6+AEYZciMwoeevfGMV6dXqB4vefuD3+NH55H4oYVcKEUcNvdRiiTeCYFGoEgMKxUDRoIRGoMgI2KkwCiBjAJDQhloKTEozHBgUKgEFSe5X+TgfkntLBmYHJFnyLyAqoLRiDiuiOMRopoSs5I4CAWymhLLkjjKEKUhZEM8Tyq8TNRBH13aryw3BGuH+K4j8YDOI3mgdEaWZYklaNIQQskkaCophxhRcmSKZEZJop4QIMXTAirCECFXGUpnKDGimF5gdlnx4hsisQZDTG2cfUu7WXF2+JiD+x9x8OB9jh59wN7RPehPKVWNsBtOfWB/DMhATkT4iKgUXR8oEZwsA+uux/tA56AqJesuRfi2KoGvE3ajtaQBjgygI7OCxA51kg8fOx6sI6frtM7AuWD+V92oPjoSGF8hhrje05uWxF9icFLJQQRdtWFg1gnqPjWAqgH4jyA5d7RkVBTDYSsk5qN39C7SeUFtHW3Xg8iQGPoerPNpL24d0SZe13Q8TqidoLBEmi41FgYvWXLG5Yv7LM4WzBdrrOvxXuBjwPo10SeedQiS+aJjvmgQAjabnj/5o6+xs7vFuJzSrM4SGy+kges509O5kBxHSiGiwgdYN5YsC3iXcBMp/pqYgV3nCMGRZYrcpDjv+ROrt6nIzBiFlAHwIFLRh+0tOlN461Msz0c65wHF8zrnv3z9i/zU1iXm797h3ft3mVQZX9y7RFGUzKPjpOlwIWBxRHpsDMgg015BSqLUSCHIRU5uFFpISmMwGozUFFGRC4EiDWCEgCFcR3K9p/UoRI+3nuAdrrW4+Qbfd7iuxXqfkBvOk4dIVhjyyZTiyiWqV19C7W4N11GK4AsUUSWXLiL9ilKlZ5VIPK+oJHFw50FaN2SIiBAQIWGaCCFtRMMzl50PfmBQW2TdwaZGNA22rXGHS/o7h7gulULEvn0qwkapwGhilkGWEfPkYpZ5iahyei3xg+O3W54gF0u2FFzdzclGEhltEl+sRYYW4dPeTXlH4Tylhx0peaWo+KWY87unDb9dn1Gj6aJCCM9z18ZcmipiWGGpOFunwrCmdRiTWMUxRlQ0aUihBc5LoogYrVJrpgypMC9EjAbVQp6pxEQLyX1qcoEyIZ0BpKSVgbaF3qUhixjAaSor2RwfYYMnyw1EUmtoHNZjcT4Ek0OhQhL7ZPDpvZZJwFVCkRUGH1OxSFZUFGhyU9DVLQGFNmZoJ9XcuHmTay99lsXZGT96+xusFmeJBReTm1BlkrbuOXn0gK9/7c94/bMb2npDfTqnbxoyItvXNDduvMDP/szP8vqbb6a0F3Dv4w+5c+cjtra2WS5XdL1FklpIHXDw8AGLs2MODw84W8whpudQ1zaUZc5se4fTswVnZwuOn2Ss5kteeeUVPnj/A7anE154/jn+xb/8bR7ev4dSkensMqOqpCwnjEdj6vWSpmm5cuUGUUbefe9bLDZzbNsiHj6mrdfMRhl3792hzMdUxYh1tiKEmhgEmUqYkOd3LvKfv/Zlrn7jfcanRzhXsxYRk2forCAzOj1/XDIhCOVRPiJ6lyJOi4gczi9aSIJMgx0fAzaG4V46Z3fKlCKQkrE0CKVQ2iBVhiS5QYWPRFsQoqAxirilkT5w4h0Xr14j95ZoO4JzxM4RNmt6f4a1gyDofUI8BE8QgqAUrigQyqDKDF2VyHGJrCrUdIwaj5BlhSlGmLJCFgY5KjFFAbJKSc8dhdfDPlIIohieL8Hjug7fNfS2YVXXLDYblkcfcm+9pmsbmm6TUlJRg9EILdGFQZcjqnHFW6+9QVmViHNX3PkgcUg1pBs04bKi1yhZYlwgFx7hI5dme3yqcviLHvs6rGTgg4O7/Jtv/hG/95df5fTwMdFGvHXQ9cQYyIqc9eP7fO2rf8TR0SPWB0c8ejBndmnCg3t3+ejb32WxmLN+dIAsMnzvaRctvvfP1vZzpM2/h4+/PoNPpYU1dB3VaISQKnHnpErW8WHSH5/GVlIcYzQaIaVhvL3N7Y9vo4xhPKlYzpdDg6ZDZ4bRuEIIQZYpVuu0wNf1mp2dHbZ3tlJFOpLV4hQpFVevXkFKwenxnNb2rFYrXnrpBba3dijHM6xLxR3a5Dx8+AglJWXl6U8XXLxQMBhDefzwgEk1YTyeYoqch/fvorXm5RdeYjbbYrK9zfr4mA8//girBFvbFzg9PSEvK3JVsJgvMHiMCkxGkpHJWZ2sef7GNqVW2B5uvXyZ2x80ZDevsljXGCLjUnP1+lW2plNG4zFV5nnv/SPyPNC3c1arY44OH1GOFHhPWWmMSQyah82K1fIUpQTXLl3kuSuXkDqVV3znm18HIp968w36pmfv0h4/+P47zLYj3/7mR3zh819ARejrmvVixd7WHvOzU7515w5lkfH40WOenJxw4fIFNssFV65eY1yOeHxwwOOHj7lw4RJPHj/h0cPHdE3NK/uXqeuWtnc0vaUsc1bzNSo4QFLXNR999BGhX9P2nuVizdGxwbUdXmiK3HD15vPMjw4TViR66rbhxs2rXC2fp3M1L774Ipk29HVk98I2p6crHnx8j8l0whufeouzs0Pu3rnDn3/lT7h4+Tovv/Q8ZZlz587HnJ7McdZiO8fObIvT0xNG5YST02NGmWA6qhK4Pk8P/uXxARCx2rOzO8J6x97WmN73NHXDyfGcru3wLhDCCttvaG1P53uE8NR9aptDSoKVeG8hOLQs8S5ilCfXKrnNnEsbGRLc1OgU1ZI6QymZYjWQmJaooep+2PArmRgzUibmilZkmSH2HiczMIk1qVSk7TsCEqOT97m3gs46Gi9SPPOpk+d8siCexvKkSpOjc1DAuZMjPmX0aZTSdH2fmJOD02Z7tk1drwk+QXylUvTe4fzgLlKC2Sinax2NC/Qh0PQB2wfynMEpIjBKpol4MGgjmI00NvacrFNM1zmPkpKqKtAS1q2n0IGxkUQX0Zmms0n8WK5haywpR5GmT0LSptNMCkWep+hv33uyPKci8OYLeyy/c8BxYxNbZhBImsYjY3rtPDMsW4sSgnmzQWnobM3tA8n7Dx6hVI7KAqYa8+hwjgs5HlAi0veed374ETuzHX78jb/BuLjCy6/doj+p6dYNbjzCti3b+ztJWKg0hZKYCPl0RlmMKPLEw5B5Au4bozFao4zCGIPWyQUkBkdIDB5vLc73ONemxm9rcV1LsC34JF5v6gbbt6jYEJylXi0xbYNZL5Gxw1JjMklmegSRdr2ijALbwO50zP4o4scWpwJF3hOiZ9NLZKlYnLYJLSI13jm2twoQsOwil/cLlLW0NuKsw2SQEZiV5xXzmvFYM9bJ0dl4aHqLD5K8Klk1jtZKFo3DETCiY2es0VlGW3eURTpwOWtRUmH7nu3tLbrNEhGOibHh8YNTjk8azhrHsk3A4U3jkRI2jcco2M0yJiWMZIBc4oLE6Mh8M0RsVIpQreuephXUncdkAq08uZCMcw3REruI0pFxkeD+agAWt8bR48iMYZZpyHJGGozWZNUUJ9Kkt1CG2aQiJ6JtYqwYKSkzk6JqoafQmjc/+ypnqzn1ZoMgps1dSAyWxKGST10ywFM+6LNynXMH0bP74Km0N0QMiXyC85eGe+ecF5Vp/uiP/4iLly/zW//qX1IUI65ducof/t7vURY51Sin61qklCyXa4zRdCo5gs8joZDi+EZLyqKgGldYZ1mt1/iQIv5/9+/8GC/e+hR5XvHP/1+/wZ985feYbU1ZLxp+7R/8Oo8eHXJ6PIeoaZtUcHR2tkRvBLv7F3ju5nPcu3uf+elpOog5j9YSpyC6JII+cz4KnI/MJmP2tq/wi7/8C9j5Gd96+4c0hwuy3g38mXTY0kTUIJ6G4WfsCQO/6hNo+pg2bDKmyOe5mev856yiwAgwAnIhyIQgk4pCSkZKUypFaTSlVhRKUUlJgaSMghJJITUZigzQIaIiKO+JLmCBThq8McQsh6pEViNUNcJMKuRshJlsIafTNNGfTJCTKXF7RpyUUJZgMmJm8EpiA/S2p69bWp8GTE9doRI8EhGTACPFOWBfJ2bcEGuUSsK5ECglMT5zu8UgB/OKQiiBlhlCV4zHO0wuPsfNt34CHz2+W9PMH/Hwh9/i0YffZPHoO2wvDsloabqWee3YqyKdC5xtBNsKKgXrxjEtJEJoahfZ9IODzkts59mfKcaVoG48PsK9U0HfemRZcrTqWVnoWkFjI1F4YlTpvuDZFD8O4t0gkwNhGDKmxnYIlFkq1vJEKhMZmYj1IImMjKCXGnxEqMRuDTEJLC4EmqahzGQaAMSQDj4MTfAeWpsKwwQS1/UYoyjLnHVdpz1ZECw3DZPJOO03Qo9z6RV6wNYtmdlw4eI+dx8+pLaeGH1yaToxDAdSjFYIgQuJyyQA13g2989QKrHKdCYwSMLTAWYkiPRcOk9YiHOBRCZRxPZ++HlFhEztjFIk3qfRKZrYdekLWlcjSJgIY0BIRdenQaGQySVqfWKpxphE5beyMf/rVz/NZzrNw7c/RFVw4/IVGm/5vScHfK1ecNv31EbhjUZWBqGSwCm9TIKBSDRTISS5kGjS9ykCGBmoMoO2jokyjISilBmVlFRKUigYGUOlJZXOU1GKMmTKkE/GVDslpcqZygyZ5RiVhHQZQC1O6Z88oX33A46/9x7Xf+WXMdMSQXjmzpUCSNFf0M/wAMMagxAIxTnccGB9pc85hkN0jBD9gIhL11J6WZEYo1mO3J6AFOQiIIGghn2JS+4aD0R8cgt2PdGmyGJwIe0tlSZoRdAmRZxnW8gR6GCR3QK9OkI0K2K3hGaD7Iaoce+gt2Atoo/QO4TzqADbvuMfZoovFpf53c2GP7Ur/I7hlVslk1zw3sdrDg43HJw6VmuL0Rlt6xEiYS6iS4NVJYc0jgOTCVzvUBLyAnDp2e11cuxJOcSRSdzh83OzIiIrndq/+4D3aX3RKrLezDk5epIG4tYyGo3gExFhgkssyUHcyEzG9mzKermk6VPJgRp4r1oZdDlOK7oSlEXG/OwE23f0tcWYDKMifUxnicu3XmS77rh/94e09QbXtonMoFMyzznP2cEhf/HHv8/9Ox9y9vgJhS6otid8+gs/wd/9+/+Qnb2L1PWag8cP+LOv/glN1+F6z6fffJVHjx/Su4DJNH1T8+7bP+DBw4c06zVlrlkulljvuHb9Gu+99w6jUcmtWy/wo/ffZbVcQ5RsMsNmteZ4a8pqfsKpP+Lx4SMe37uHdz25zjg9foK1DikUz918jtV8Qd/WPLr/Nrc//g5NfULdW0Z5kZ7R1mGtQliND57l+pSmaZMgPWCrPrWzz3/++ue58fWv44isQ4a8/jzvi4b3NqectAsWTUfjUymHEgmPUGpNKTVGS4yQjJWmkoItrcmjYowklwKtNDpKDJJMCHIpMCKVthjhUcLhSYkAFRKHT6mhcKeDrG6xRx0iyzjuTvj4/kf88pufR0cBIoesIJpzV2wE0nUsQkgM0HjO79XEIAhNJG5qONwQY8CLgBPpFm6UYEXAkcolEaDyFM3NxhVxq0RuTTHTLcx0mziZQJkcelIX+Kpka2ePK+du3UEY9ViCt+CSs7hvWzZdSxMCWW6Y5EVqL3aW6M8bgYdUyXBWlR5kY5HrDX69JqxaWFrixtJtOkJviTKtu1VueF0JXr3+OX7t8sv83/7id/nTj95nYwcBNnjavoXDY77x736H7/3ln5PFyP2PHyFjIFiPa9rEZrQeVyeDS3DnXM0Br8BfbSz/63z8e2jRleTGABHvEotJCUGeGcpc47qIjI4sS/yA6VgjgDy3aB2YlTWXdgW+F+SZ5bmLOwgkZVmyvaPYmnm8i+jMsF5JXrq4Q4hTyjynKjqIabNyeTwGphidEX2kuTml6XrazlKMR0y3p5ydLSnKKVpojg8CVSYRWnLp0g53PryNqwpyGTl8/JBMRn7mxz/DhVlB12+QwrK/N8J1Pdmow/vHXLpiuXFxnyAkWhuE3x1+HooYRwilIIzQmSPTJT/+2ouoc9dRJoETPn1phJCTVJKghumZVCBS9bm1E37us28xJCNARN64ehMpPAiJ1AUmawmh5fpsB+KEshwhhaHrTyjLCut61OemjKoR2qxwLqD1I37mc2OUjPjnL7Cz3SBly87ndslMxnz5GD2DSSU5OZ6T65bpWFDmYHRkMikZ5RXffXCH2daUvb0ZD+59RNc1vPrKy0gUFy5d5OzsjOnWhOXpGdFH6i6xH2ZbUy5fvc4HPzzi4pVLXLl+nbZtcCg611HP5xw9OsQ3HdU4p21rpBK8+/Y73Lj+HIvNkkigqVu6vseenjGbzrgxm9BsGmLwXLpyhcePH6GzDNc3/PD9j7h6+RLP33iBSOTRw8fIoBlXY/b299ja2sK7huPHD/HRI4OirEo+f+tlfvD22xw9efRU8CqrDCEDs2qCqzxZFjisl5RVQVfPWdRrvIe+E6AgN5roBU3riE7hPFgbWIue6WhEcB5UikFpY9KUM3qQBpO8NUhl8IAIESEUPkrKIsMJRdd7jIogBWWV0TbdIPKp9JrakBcF0iaR3LoEAs5VoO0iLkpsFDR9ciYJxRB1PYf2fsKfMzQZaa2JMkXuzx0H6SNFfcJg3EvCX7p+F/N5ip7JFJVRSqCFxqjktlAiuaBkqckKaHrPcp34Ez6I9CCNDG14ju1JhskMkyLBXjfWc/8sNU15F7E2pIiSjcgoybcT6+l07ZAh0ghB3UXO+sjlKRSZYbm0SJFiV2MFoyLDe0tVGZaNZ/HwmK2ZIRhoN5bWBXxM4qfSBpDY3mGUIJMaS0NmClSMnK3X1E1PUTiqccH21HBxf58f3T6hrBRlZciyklsXrvJjL77O83GH7LRhd8ei9y6yc2vGaGcXaxtcDJgyx2mFCCnm0YdUdmR7NwDje2y9oXYON/xKXA/3lFMoYuLGpMiMSps9YxA6w+QVebGL1IrJjmZiFMpklHmGzjOUSE4OhSR6R7AtXb2krTf0Tc1icUbTtTRNS+9a+maB62s27Yrtuga7RvqGVWgJY0vX9pw1DVLD0gt6IQjK0QuFsB3jqkDKnEwFsI4sNzgfWK466laxU2bsTHNc31EUCqs9x4szVJaxcZEzG6ntAP/2FqVgVJaMphkyBELfoDT0jSV6z83rNzjdRM5aQXDQG0dOhfVrQvQEIk1vKXJJ3TpOa4/NIl4IRlkqLagylQpXukBbZGw2jlFVYtqO0qSD+jjPcJ2lzBXjTBC7wIWdEdr3jDPIVIpudU0gish63RMG6Hsjei5OZ1TTLfKiJCsqxqOKol3R1U1qLg8BIyRGQFARaRJo+Wd++qf5/Bc/x2/+j7/JnY8+xssU9e36JHT2vR2ay+JTd9q5MwCexTOfefeGiO5wv59HaT/5bEjaX2Rne5dLFy7z8N5D5qdzHj16DFLw+mufYnlyxKlzw5AjMJ5OadsmHRaV4HwYm1yFyeIlYkzxWD+IEtYThkbxf/tv/x1nZxuMyfnan/85y7M5Z6enCKH4zd/4n2g2a2yfWJlSykHsiPTWc+/eA9769Gf4O3/vs3z1K1/h8cMDuqbDez/wkNQw+BjEJiHYu7DPP/mn/xnf+bNvcnr/CUZo/sOf/zmuyBHTw2OktQgR0IOIhQ+EgUUVoiAOjDEvBhOMEDg1gLAH0TUQcRIcCZLuBHgENkY8ERsDTfBsgmXhPQfe0bVN4sD6VNogUm0uMibRyAC5FFQKJipjqhT7QnEJw24Led8jYkDg8coTRKAbZCkhFUEpojQIpfHa4DJDLPIUwZtOEKMxYpzEPzmdks+mVOMJajRBjccwrpDjCjGuEFUBeUbMkksweIF1Dt+09G6dIrrnw2MCQiT3iw2C+WpD29QoBLsXLnLx5g1QA+cG8FEQkKhih8mVHV6/8iqv/tSvUc/v8c5X/x3vf+33mR+9z6peYLKAzgNND5bIdqGoVCBXScBwMTlKWys4qyWZBFEHNq3DWkGQiqyJdBaWS8eqHg7BOrHFVq1L66QUA/B8uHkgibfn2JvBLCsJaBHJNOzPJE3raGzkxo7BhB7r09fUIq0FKd0aiSEd+AQhRcqzgqoyTMcFq8UmDQKjoPWOtmsSQ8yHFJmWUJY5MUYybfDO4aPAevDrmr3tKUpsOFsmF6sc5OvNpmY23WJ3e4f++BjrXDp0Ko0RGu9TnF0rQ2ZKemtT5C16Ygwk82c6aKohEq6lJESJP3fLx0jwYYiTpnK7rErxZ+tS1N2F5OLI8/Q9llVJ2/bYPg0eMq3IMkmeKWbbFccnixTZK3N62xKcR0SFiBol4bPlhP/i2uvcXCsUa8Z5zyZa/qJb8C8OTnlHOFbjiluf/TxvvPUKexf3Bhd6IFMG3ziEkJSjjMePH1FkGUYlfrfJ8yQY9A4UtF1LdI5F3fCkaek2Nd26JbQtOJvSMfQo2xIah/IeYXtE36Odo3SBSmguOMk1mfPG5AKvXruMubqP3p3Q/eiHPH7vXW689MJ5f8/TREY62KfrEJmGM67e0DRrNt7RZyo9t3SK3CoiSiVGm5YahUpO5CjQQqWCgBwwGUKWKYanJOjE3YvRD/8NKX4sRRpERq3AKMhHRDlOO9I4RAGFJOCQIkC0CBpokoubLCduX8WPe0S7QSyOEPYU6lPYdNB10FlEG1Plde+JvoFocTGnCJE3hEFfu877sxWbZcOZg4OzQO8EW1VG24QkbA/FcyHGdL05kfAJiqGIbHDkaUFuJI21uDAM4EPEeosxqQ07SLC9GBAQIFREykhZQJYlOOR4JDm8f4LwNmEOoqDe1OncICTlqAAv6To7nNQFF/f2+cWf+TF+8L3v8t337+G9xxFQIiKVZHt7Rr1p8SGijcK3NdoYsq2K0WSM6zvmy1OOHt3lT/71b6C1oVkv0/B4VGL7jv29C3zhJ3+aj+/f4/4HP8Q2HU9uf0zoI29+9ov8rV/9O7z0yks8eHSf77/zbR4/vM/Z8SnPv/AcmdLcevVF5ss53aanth3OWZbHR8xXS5bzM8ZVzvHxEXXdcOniPgcPHxFdZH/nEm+//X2KIufK5cs8enRAbgxr3/Pu298jzw2L1YYir9iejVis0gHF9Z6+7zg7O+brX/vz5KyLHYeHG6pqhIwGEz1907JcthRaokSPs5F2s8Z2NTIoMiEIWvHa3hX+Ny9+icvf/ojQtazLnIPnSv4vd77Ht/uO7PI+O89fYHt/B4ZznUTQdxadZQOCBLqmxWhFvVwirQXncH0PbQ+dJ/Y9RJIDNUbyADpGijjcKlIxVpKpytjShl1dcjEreCmbclmXjGWNX7e8MJnxm48+xC7PMCofBP1npo70NJc8HTKlCxIlk9suiJj2ziSsQYjpWjMIpDQEY1Jpzrk7bcANsGjgbEO8G3DBYV1P7S11sLgYkMYgqxI5ymFcEsYj5HhGNp6RT2bonRnZdIaqJsi8IJopO6NtghEEfIoBx6FoK6SvG5xDdJawbugeHxMeHdM/OcYvFvhug+176ELqCIhDe/BQDCIkRCXJpKQUgv9s6zpvfmrKf/fBd3nUyAGJVnJ49ISTBw8ZLVdMJmNctybLcvYu7WFdwDYd7XqNbWtGkxIRBZtljYgCFz2f2Gb/tT/+2gLf1ljy4vUJRaYZVzlVZSiKHYpcMRlrlBxRZqALRfZU/EtxDD3EjOSn91AyAfdljAQ/tNHqJcHPU3GHEMSdgFLgBYjYE1ihh4sRIkIYlHTEkCIKQo1IGGSFCyv6yw4hVjS94zPPX8LavdQGJzSfvXUTbTJms2PGXxxTZDN2pi3bVQ2xTZtHuSDmnigMTgaUTHGBiErigxwuhNgnY5NQBNHj/RZ5voMIC6IfrPkhLU7qnIGkPNKkNH9+4gABAABJREFUqVhq2RWE4FAyILUgmsQBAUnMAzE6hFRE0Qz7PkHM08WhZDPwaVJ9uigk+69XGJGluEoIyPNZrYzEIEAcpYjoWBLdGZcmYrDma/ytAsTVJEp5UtxHPaLvAr/yEzuptTh7QvWpnJcvX0GonrKsWK0WiMox3dnldr9g7SGTGb0SlFqwu7PLam8X17WMizH3Dg/p25bdnRn7+9tMxwW7Ny5zenTEvQenrNqOazeeZzYbcff+XU7mx5ydLjB5gS4zVosVo2pEmRmIgevPPc/23h53P/6YydYOy9Uj+n5DkeWYvOD6zetc2L+AMUmACkGwXG6oRmNGo4r1aoNSmtVqybVrVzg9eQJCpM2lh9Vqg9KKpm4gOMajESdHT5BCMt3aZr05ofGWzll8D22bKumJ6dpPhWcWGQNaaXJjEpxfq/T+iLT4B9sjkNjokEojtUIrk9x2XTrwNk2PGRfY3qUmpMGWDSmm2rueQkmapSMgCChaJ1E+EoPChYgTHuf80whwjOePB/E0lhfj4CI4d+UIQCSB6LzdkjhE/YYGOyGHGrzhv0nKSF4otEyMEKkSoL0scqoMjJKcLdb0UTAqM6aTiqOzDTF4jBJYFwkBHBLrPWNdYruevUnOp7Mx22PD0dJxcFzjfGIkRmdxIf37Zt2hDAMjJT1Ul0tHQKOwjHPFzgh8jLS9YG9cEEMScE6WnlUHPnjGVcbzL13l8cmKJ8fLdNjrLWWmeem5Xa5eusyPPnjIut5QqZzJRDIZ5zx8smBnNuFoccrd+0f8xBdfR4gMQmo+/PxrX+BNv8PWE8lnf/qzXHjxBVQ1o82zFEeVER8jscyTk2VYjINIi6uI527vQbg7twAB5yrNuThCTHX3YXBBnAOqnfc47+m9ox/iWo3tcLWjc5Y6pIZi521q9wsCaz2BgJcRkxUYlaGrK8x2M65kOabI0XlGpg1G5ykqSGrhRIgkSm5qOlcTQ49ra5r1gvlyxWp1guzm2K6ha5Z0mwW+3+B9T99uEDIw7xx9gE0dEcFAXad7qsiSe8O2xOAILrLpeqosY5rl1J2lP9qggN2tjGqUMduq8L3m4eNTKGcsVo6jkw2bdU9TW2ZlgtxLKSkzye4o52TRMa8ddfcsJn9hktzHVabQWtH3jqoQVJVgS5SsQ0fwlnGl8RJGRnJhpKiFYL7q2B1JykxQGYHtPXmRIRSUKk3pXZT0XRIqTVXhfHpGGJNxctCAd2zlGXmepUIbKckyQ71e4KLlq1/5M4pxzs/+3E8xPznh4YOHJF5PwJMaSMUwXTxnbAox+Izi+SX1CXHvr/yTTzDC/j8+G1Oc8M7Hd9ls1hw8TA5phOA73/rL1EKnVRKtbc9ms2Z7ewttFF1n0San3mxYzVdEn2LhXdsTYqRpuqdff3Gypl52ICP//Df/+/TcbC1Kpgg/UbA4PRmu/0FMEYntOB6NuHrjMpu6oWlq7t25w3Q25f6dh1jrOMcQxJAGFoGA0oambpiMxiweP6ISDXko+OKNy+T/6g+4/PA++XpNUIYVglMRWQeJC9APbY1EASo1fyohyITEIDAioqUmi6nFMRMCozRCaoxMy7UWSSTQaTOFVHoo5RAD/24AsgdPFIE+eNrg2ARHEx2bGKijp7GOjbWcWMs7tmHVRraE5POjEW+0kbHt0CEdDM/fVB97Qmr1eCpQ6SgHTmOK1Kddh6RXqWXTq+QKikonFqDUCG0QeY4qc3Q1Qo9G6OkYJmPEaIwaTxiPJujxIApOxohxiRiXxFFJGJXsXJjihaRrm/RMWqwQWmGUJmY5UkmCStG5hLNSqGLG5NIb/NjffYXPffk/4f3vfo1v/N5vce+9b+DtEYva8bgLtK0jzwSzUuA7jxdpzW5cSAOl6Om9AC+xER6vIpVKEng3RExlFAN761waP6fanj+sh3iyHIpkIumEIUCKQJVrCuUwwuMV2BBpXGDVCzob6YLj2pbAD19HhPMSiYgUpLZHmVwHIqQmVn/u3BKR2WzEfN2S2GECj2C9qdMecQCxn8dCtc4JLqFKyqxHyTj8uSS+zZdzbj1/ixAdJ2enw1qUUgZFnmO9o940ZFmWzGAMxTJIQnzGQI4yFX145586G5WUKDW0f4oUA5XDgDErNKFNIjzDa0YC2miWyxVCJlHP+4hEAT41z/sRpcmZjgqOFw2998iQBiII+MnxLv/bFz7FrRbCRHL7wRH5hS3+aLnit46PeTAaY65c50tf/jGuv/oCQji8EfRdei4JIxlVW7zy2it8/93v0hWgc4FzPXmZc7w6pSwrRJmKppTJyc0YGSecnpzgCpjtTalXibPrgmc8maBiwsdoo8mMpm3Smha6jrq3fNTWvH264Xc+fsRPfOcO//jKC8xGW4yn23zv4T2uX7yY5O/oEejhoE+K16qIE4Hj+ZzTyZiTl27xoWs5tpYeiVAGKSU+RiSSXGrGRjGWkbHvKUOgsoIqRErnMXWP6BeYriZ3FhWAEIZBckQLiR7WAKE1QmswKrXJK5NYX9IM0fQBVzN4XwZNIr2SFIShhVcEEHY6mCeAdoPYOEQfoPXEPoCVbGzGe+uOr/YL3ouB4yAxBrQRPLi7ICtyTuaOvnVMRxWjkWG1sjgbqKochKfre1RMcW4lI6NK4mwqO8qyLGFSQir0aoNDiuQuDWFA54SEmmidQ+sU23Y+UGaDqBKSCNQ0HTGG1JYtBCFt+gnR0/UtmVbkpQHAWct4nDMdjciNQkpwPgkfRmeU0wl5UZGbCqklrbfs7o8Yj6Y0vefqjas8vnsPomQ5P6JeHGFdoF5vmE1n7Ozucv/+XfLRlBsvv8lbP/NLfOMrv8O3vvo18lzx5V/5Mn/rH/5j+uWCb3/nLynGGTI6rl27RrtJ/61SZ2gVOFmueP/dd9nZ2+bs5JQkFTh837Doaxbzs4QhQCKF4urVqzx89JDF6Zy2yKmKis16zXKxoG02yTSQzLx0XU0ICfuSYv7DuTt6JD6djrSEGFmu6qFXIAm0XRcwpWZTO/resW4txpSUQpJlkudmF/kvv/BjvPr2bearIxa7O7x9Kee//sF3uSMkn/vpn+HnfukXUJmmDR7bW7IihwjrzYat7W3UsPb7GJiUFe2mpcpM4raH9PwWQuGcp3eWzXpN9IG6bui7jqbe0NcNq9Wa482Ger2iXi45W6yxT54wtZ5fn13in+5fYRsY55GgNV1fU+apgfeZ0h/TD20AOEdp6ITADkgOgkAEMaQ9PDI4iC6Jat4lowfDOjZE/qVO6S6hE56BqDDBMDKj9BUHoR5vk5C5bnAPVvTWYQfE0MY5eu8JUiCrkrhVwWxEvr2DvrCHubiH2d9BjUfEMhUG2rbFrxvq2w84++Ft2sMj+mbNpm9Z9z227nB9Tys8nYzURmAFWO/xwhNI+xXvPc7CxAlmpuR/dfUF/mi749v1Cc55ghcEF/Gt5cwuCBHG0wkXnrtOtb1N3/Ys5qcc3r/PZFwwKscc3n9Mvdhg6xYRIyKc7wX+eh9/bYHvrde2+PxL+0gkhD4toDrifQLnJ2fIebGAwodA8DK5e7wcpnkKr/QQ+4soLZOS2XXpAiBFYqSSYM8jK2mCLRGIcxeJUMMhJE3rEIk5k4TjgQrkA4WSlFohS54CuuNUIkSH0kfsjkCKHuIG1zukTsFdb+Nw0AngE/B9yCWlDW7yfiJlRA3T/CA7pGiQtqV3DSIqtFQEbxFS4kOKGCCAPiLPqcvnqQzhk+MiJrYUqPOY9nBYl4lJk9SX4fvvkIMXNYgINg7CVJs2i6Spf4ofpJ95qlNPrynjM3g2IlnEI4JCSzKZwJQxRvJcMi0kISxSe+R+5Pp+Uval7LA2TabzbMNbFwtCmOKspumSo2nn2hZXqikhWpoucnE2RfgZ0+mM3e0RWSaI4YzxfuDi1kVa22Fy6P0RNy4Kcmm4sn+JR0/OiCKSz0rmp3NkUVDXLUjJdDJjOZ+jM83rr99ECcHZ8ZInj5/Q1Ds8enif3d0dXrx1k8m0xNuKxw/uMC4NW9PUlDabjjg5PUEogessVZGxv7uF70H6wGw8oq4d695x4+Jlnjy5R1QlUkGmI8GRWnKrjHXdp/ZXJFVhyJSiyA1ucFJoIcB7slwTI/SdpcwMRipcBJ1nWJ8eOoGh2TamBrkYocyL5NyKDoQmuIBWqQSgad0gfEtcL9E6I9fQdg1KRrreoU3GpnWJxec8DIUTkdSw9RS5xfk/xXD9DGDfQQRUSpCZ9D0Elw4OSsi0y1JpKimJZFmGGiIFRscUe3OWaaVwXpIZzSr2aK3JNAjh6W3AmJzWRk57QX265tJ2iXeB49MVJsKFiWRZC06XFiU0COiDZ7HpsH3AWRAiEEVgvukBgZ2DcFDmkRgF26PUdrY1kuzMClRjOTjZ0HXp82e9o/dHTCcVSkasSwOIvR3NqzcnzKaKW9c/Re+/xMHcstw8YL5cUGQlP/83fpreSja15+pzz/HKr73O0aOP+Rf//F9S3m34wvM7XPvpHydeuYStG2Q/JxvlhEJjRYpkjYrdtJYOLieGqNP5mswg1Ihzse+ZBSuJNoP9/rxYIg6CPxIKfb7AK4Qongk8YmiuU4mXMViOB3izGg5knt452t7R2p5N39JsGjbzU+qmoW5abNvThyTy2OiIIXGShBToLKcoR+TViHJ8iSuXXkTnObmWKJEiEJokIssYCTa1ZPVdg+trgq3pNhvaOk1Xl6sFbbMgrhaE5ZK2b5MT2XYIowldDRJc33IaOhQ5srbE3mIyTbAb2m7D0dEZmVFkRvHG81t07ZqzRU/TBEYSWunQY4m1yUm73Hh8jJhhLSgyT2ki01KxaizHJ4lJtTfR6Ca1bUevqDtP4yKLHhCOaZlhG0vvJKKuyaqctg+UOr1Po2jYGpWUk210Xqb4hPOEKMmVYlwZxNBMeu6AyZQhFxmnT06Y6Sn+wPOLf/MX+YPf+wMe3H34dN0EhrUFnk11h4jD/9duYJAqhj/7yY/z5Sqei88I5qfzYWN9PqJKfyaE5AzTRrO9tU3TNpSjkvFkzMuvvUjbWkbVlK2dGbd/dJe3v/Md5ssVcRgueBefOgqlFIOTLzmCvBxifVEi/OBAlOl7UUo+ZRd55/De0TeWg0dH3L9zn6oqMNqkeO3w56RU6DJHSsl4VHL9+Zvc/fhD2nrBv/qd/5HPvfEaX379BWb/6o+5tVyyWq3oJxP+0Fn+aNVwbCQuN8TM0MWAkBlCKiwQ5PntmBhU2oMKPTpGZB8wRPIIWYwY78mI6Jgm5zlQCiiEpBKCUYQKyIQiF4pSCkopKaXESEEmYCwFV4Qkk4ackkxnSGWJRcfRuOUbseffrFa8k+X8x2XF/qZOXLw4iIfDehBEGJyInxRWwIs47D/StSFDRMVACnSm34soEsvpr1xTEj9EAiG5eqMe3IJ6OPQXGZQVlBWhGCEnU9Rkip5NMdMJrhoh84xoDLEsEWVFHI0Rk4owmhDKEsocUxpUVZFlU976iV/l9c//Ao9uf58/+63/J0f/7l9jVMeKnq72FLkkasXhItDYnnGpcTYCkq6HTEu0DGSZZrXuU0y+zOl9Gsz1HjofiVF9QiRP12QYgOAMq+/wo01uAilpXMBH2Cxicq5JeHTqCEoTrU8NsU/XhmE9iCm6qgRpXyChVJLofeLYKZlYhUHS9TaJxMgUI4pp6JPg5aCVoiwrjNa0bUdnI1IodncvsNms2JqNsW3DfLUhRsnx6TEvvfAC4cNI3zc0fY0QYWBVZqmRWCvatkeEgfwhYnrOBJI7bCggCOeiMmLgloVB6EtiXSTQ9+m8kBca5zzOeozSGKPw0eNCHIaooIxgNp0ikMmRHjXBQ9du6JoGg0CbDEHgJ6e7/Bc3XudmzOhyy48++hjz3A7/7eEj/mBdc7o1YevVF3nzZ7/AeGeGLiXTcsqTxwfUXc3ubItMGr7w2c9x/8E96k1NWeR0bc1mPie1R1tOQ6QcpXbO7e0tms2C5fyUx48e8uj2fYxQ5HlO7wPXb97g6Mljdnf3UDqjPmvIigwpJVU1IpuM6JoWPR6hJzuMXrrFhx/c42s/eMTf1iWF0qy6lrBap/hsGFhtaeKX7u0gOK7X/L9J+69gy7LzvhP8LbPdMdffvOmzfFWWAQoeBGggkBQkUaIM5dhsqUPqaEVP9NvExLzM2zz0yzyMi5iYVo9aji1RpKg29KRIkQRJgLBlAJTPrPTXm+O2WW4evn1uVs/j4FTcyKzMc/Oec/baa33f//ubH3z2Y/z63h63X3+b1fV1xusrhOSwURQfXdfROUnPjN4LTh29KFK8E1KdMmQmY9B/lXlGoQ0DoxmanFVlWIlQhcDAO2zXUU4WZE1H0XXYkMhSJCdhCo0ZZNi8wBrbEw+VyIi1Rpk+bC4p6L2yaIXhSFMQQ43qGtQi0tae25Oab8wdbyrNQwuxKhiNR6RBwcl8wrSB1SynyjSh85zNPXkOZWWYTCWMIy9UT1iR7jKIxz9lZWg7z3zRYpShbWUvXB1b2lZAVa0V2srAPiUBrn1IVKXF9MEB0UNdJzqfePbm8zy891CCLusZIQaca8+D5rQCk1lsXrCYzSjLnNA5sniOgYLSFONV1i5cJEaL71rq+RnVeJWnX3iF4+MzWuMwg02q1Tk6y1jUE1zb4ryoQepmzvGxHPRH+4/4j7/xy3ziCz/O57/8Fzk989y4cpGf+Ws/Q7OY8M6t24xX18AoRivrrK6MGFeraKOo25oHD+7w8O49nnvuOu+9+QMe7O4ym03xMbG9vs6i7sjMlNFgyOHBIYPBEOcXnJ0eo6KirVvu3L7T2z+GXvpscUGY1p1z1G2LVQaFDMu0hqKwaJQAOiFRlQW+79dijCRl0aaldd25Yic3Fld3WGt4ZrTB/+HjX+CFByccHuxzdGGbPxrCP339daZFwdMv3uTpV58nlNDGlrPZjBQTF9aGZDojH5ZUgwH7+/tc2NmiKAuGeUl16QLJB9qmYTQcopRiOBrhY2TvYJ+1bg1rM2KCrmtpu072+ygbaQye0HV41zE5O+Xug13+w1e/xc16xs8WRa+kMnRRMgyWhCnxHxJvzZgSuwG+1h5zuzLsa7G76aLU4AVQJChJDFNipA0r2rKSGyptGCZFHiJZ02K6GSZEsggFiZxEbjS5MWRazhbTewgrJOwnVxmZSahchlXE2J8TPdN70uHOGvwHj6Tn8B2zFOgGFWZrA/vEE1RXrjI9Oubo7XeZnpwxmc+Yuw6DYTQYYLYGhJGECdYECSgJQYZ4tSe2AROEoBKt55HueOQbLrx/j0/duMA9Eq8fHBHajmUasgJKW7A4m/H+G29hi5KyLCQIrhrTLmrc7ERAPQ15mYmc2AdhTP+Qjx8a4GvbCc4dYLNCEFcinpw80wIQKDGNJokPhtZGjHIRplqeZ4SY6LoW34NmVVUKUwihry6j0KMXIC8iPgfaig+YigljxOhapXhe6AuotXylYlSckuy2SktDG6OYOy5DCryLaK2lZtKSPJhSX9hYCyRS9Bir+ummFB/CVJDErhB9P2HpCzWihBjEFoPFJyMsmyDfCwKcKKPktfeIeFRJPC76QsRaMWLVajnRFeZAom+cljemGBwRlXg7WCWgS3o8GJb3SJTTp2/IUvR989MXlaqfK/ceeFqJV4NBnxea2mgIMhlNKmK1htSSokfrSAqBpl2Q55qoE4PkWUd8YAp1xo2dXnEeI9qs9AVawugJMYF3QYIgrBKJCdKoPrle0XUit5h1aziv8T4yX8zxXth4s7olhprnf/YVRqOKMsvQ2pCeKnF+jfFwRAwO7xNR3SOrD1jPGtaua1bHcwqbEXwiz3YZb3RsfXIbozXbm1vkmaJZtKysFeRlzv0HkXU9IDYeuzViNpvTNpaFk+ax6TwhKJS2EAIuJIIKNKnGRMvO5gbZ0mhcJYIXT4iYwEWJrg8uEpqWajik6eTgXylzVFI0PjIYj1EpUXaGRM6scdD7O0RBwDG5yIN1L/2NyYsPXucBK9NspYk+khuDsYYsz/AhnE+PgCWCJJ4hmnPTc1kzqj9snEzXlbTb1kBeaAalIQbILWSZonOeQakZlXLvGKvY2iqoa5jNPKNCDpNhadlYHXLr4RRjFNNZR25gVCjsWWB7c0wxzDg5dQxMYnutZNFGnBeGYFAGHzMSgbrrJHzCaGI0GA1d5zFG7vM8K0nBM513DEYVpnWslJanr63z/v0pPiUWdaCet1gVubi9yd7+MdcvDbiyXdLOpxzOp+gicvO5z/DiE6/ywif+CYfzM1zT8PHnP45PipOjCdefepKTuuOf/snXeffDu5zaik89+Tz50SPs7JCVlVJMsGeacNDiz2Z0i4a2LKHMIZOgAJtlmFzkccaKxNZa20slezDf6Md7Rt98a6FNnLP7lol0qefbqNQ3mGkJ+vdDkR7sS1qjtDCJlNJkSmHzjKrISYxIvfQQJf5hCZlQJSDF3hQ8CFOr6xxN09C0jtmiZj494fjBfU5nc+ZNTdNKKmRC0svzrKAoSvLhkLKqKKuSslonX79MsTNkWOTsFBk2t1grknCRdEZwDqKjcy2+bpifHTNbHBC6Ge3xIW56Sq4D08mExtxnsOYYmsB0sqBZLKhU5OLIcqZbNqpIpSwdkrTpXMSXBfNFS7IJkymSthzPPG0KzDxMvWZQWNZKTZ4UZ4uWrm2JZU5uEyvKsFIacm0xRIqBJSWNzWUv6HykKgqGxjA0OSujNay1KCLJtRR0bK2WWKN6lq2mqPLzzy4ly+6jXd679S7jtTWuXL6K90tfLB4fFizluQLaKJYg3uMCZMnUo2f2nc+fzqdR5788Vn8t19Q5HCdPikmA5rZzjMdjfBS2D8DpyRmf++KPUJUj1le3eOr6M1y5conf/90/4PT4UKan/RlyLg+OID51kt6LElBgCaoYFMaIZ5BWpmejBWbTKR9MFyIziZHpZNYPGgzDQcV8UZNipG0blIZ2MWE6ndEuGrbXRjz91A2+tHGF4W98lZcWEw4f7sPmNr9hIv+u09wdrlCsjFm9sM6Vp68xCB6lxZsqs8KIWSwW/SUIPUiTyDItE/IUeqZtJLqITkr8lpKk1+E8yXthgPtEcp7kgiT2do7UdRgfwHms82QhUsTAMEY2U+K60bw8yHlZay40DT+TMp6tKv6f84bfUiW/UGRk/qPJyTIcjNoQte7ZQBGnFHOtaFC4j0i2TQTzEQAz9esn9ueFWgJ9Sp6vQ5TaBRla6mXoBFIj0TsyLhNlHdAojVPyepLRYBRkFvISUw0wg4GYgY/HAggOR7C+hl0dE7e3sTvbXFxb46ee+QrPuTG//fZ/4s/v3aXVDU0TSX2wjlaG3BjwHcOBZrLopbFGM507YeZruTYEyLQhpUCV50ybJFY2S3b1Elzv39syjV4l+b1KmuAjC7dUgAAxnTOAxKhcWO4JkdjSM7u1UmSZIs9gfW3IxkpFPZ+TORms164FFE3j8VGGwKm/Zlb3wS26Zwsl8fvDWLoQWV1dxVpNe3LGyemM9ZUBWRYYDscQPSenh7z68ku8//77nJx58tKisIxXVmmamjwXJuSDB4cEOtrOY7Tt2YJBggoyqcGd683leyAq9PeD1gqbZXgfaLuAtWJ9k+cWYzWu68gKqQE653t8wzBf1OQ256mnrlPXc5JKLGYLNkY5KrYU1YDPZav87y/c4HooqBV8//4u+toWv3T7Q75LpN3Y5MpLz/L0Fz7OYKVia3WNwsDe/Uc0XUumDTZoPvXxT3ByfMK7772D0gkTFUfHZ5weHTMaDmgWNadnE8qioihLFidTtjbXmR6d8eiDe8yPTwidFy/dIufdyZT1jQ3aYsDaRkUdYXo6IS8KmkVDiIE8L7A2I88KdFWQvfwCDxuNP27lLAwR33QY3Tcj9MqeJL3btF7wH7fX+cXXP+CZF5/m+uWK77/5Pe5++8+ZTM/EyiGGvk/JeosPi7UZWZ5hjGY0HGKN6QEVqRMUnO/+wXvxowqB2Dms0mTaUhjLMM8YZANWBhUbWcGWydgyGaskBvWCYu+YajphJQTGtmI0LMkK3fs7agHBI8Iu6gK4llkw6I//KPHtH1Ac3ef+WcNr2vGOUsQs59r6mMM88W4z5eDWEWvboqDouo7D07mY+6NZeCGUlKUlMwbvHJnJaLpAiAGDIXigBK2tDF2Xwy4FG2sj9vZn/fPFLzcE8YLUyki4THBsrVi8g9NFonWaGBTtomZ7a50sr2gXLXle4ELkeDGjaWfQznFOpJyjakhmDW4xRftInmeoTKMzzVPPPcvazkXOjie0OoNMUw7GrG9f5smbLxGSeB8XNnJ8eMjBo0cYpUm6Y3tlDClyenJCCtCEwJ3btzg+m3L5iWf48l/8SzxxeYNF3XB2doTOLE889Qzf+Na3efqJq+xsbXE8OGX30QPaecPuvQMIjqOjA27fucN0OsG5DmMsi0XB8ckUepuKpm6oFw2T6YTo+3taibx4uY8umY0xSuCSgHriBWkMsn8bSRNXJNp5i0bC3FzoMEaStb2DqqogtKAzurojpUSWMtbLgn/8+c/z6b0F++/8gPnVi/ym6vhX793CbFzg2oVtisGQcmVMzCwqKDKTsXlxg/F4Fa0Mzksg0uVLVxgUOePxkGFZ4eoWjGZ9Y0yMkWJQUruOB3u7YplQ5ISUWCxqGcIYYXu66Fl66OmiwJQVG+NVrjz5PC/d/Dj7//p/wkdF1AkTEnoJSvT1f8/4ISrN1ybH/FZlOLx+gdtHe3x49xEhGUxeiPem0lgt5COzHON5T/QBkyIligoZKg60YZQZhlrLl4KBipSpYxhhFDXDqKliYgXFWGeMMQxRlEoJCcakvpBMKK8wQfAYq3PKPGPFliTvaacNk71b3HrtDfZWx2xcvsri+JR55yApLm9ucVc5vt6dcedoymS3RRvFyGZcKUZcLAZsRtvbC7RkBHxm8BGizjHRMqsVhx+ecHUl8e3GkaL43HdNR1EUKKCZNaS4kBpWic+4UhpvEuVohesv3OTpV14Ck/PoB+/w1tf/DGOWJIv//x8/NMCn+wIjBUeWaYwSAC+GpV+WgDxShEhln4I0DMFH6q7FZhlJKUHQtQHEI0X8NQJKSXESzyVD/T8VJYFMd5GoRS5ihY0tQMmSpn3uIwEKMV9OyCTf9M2q7r189JIFg2yyMSlS8miT5PDrU4lU/961esxwMlqI4kr3RVhI0hyoDFQGcSQ2s9pKQEIP1CmWPhI9Oq01aEktigqin5N0oHdllftOqjdJDFwWzRggg1ii9RhbDDFZopveR+FIqSOzlhiTTHjSR/zVlo1bH7++5FRobUk6kXw/CUbo3ykKtTlFjVGWMstIpjc9l7g8TBIDZ6USRlt8FF82oy1W5RSZ4nRSY1Qkho6EQ6HRJifpBERUCoSo6bqEpiVFdQ5oSk2fGBkt9OHMs1kJmGCMJQSL6n9vtca7ThL7NASlyS1YW2Js3vtpRZFCaCVG3koJCJsSNq+IsUBpQ2EsMbS4FDF6SqY6dgaWharIDDy8W7N7sMadRy0ZioPJCSkquh5TkFAMTfDyeUcNRidhNFgYFpbkEz4I808YnQZrLR4BD0IUnxPnRI41HFUcHJ3RtDVVnjMalgLypITvn1vXNSkF2s4LE8WLbDiJja/gwikAWqaeSqGsZnVjFec89aIhONevkSUPo/dyWoJDMWKt7AEintC45ChySXYdVhld61AYNlYMzzxxgW+/8YjGtzTBsLM2pusci07u0bxQbG5IXHy7aEnOkSskeMBoykxRVTmzNpKOF+SVoak77GhAnkVGVc7haSvpkSjmjfgQNS4RUuxZkJK8i9K92XFkMq1ZuzzCdh2LJpFniUIHdtYtT17axuRDXn9rl/VNI9JBVTK7NmTngqFzATf3hBT42AsvoMKc73zjNyF1lNuXGZQVi9mC09kZD3fvMPV7vH3rFm++/wZpWPH9ozP+2x98jYuP3mLceT62s80Xn7zJyrRjULdwMoXgaLNIl4k/lcFgkhH5fJ9WrIyG3JAyi8kzkjEi8TYak2XoIsNUGabMMWWOzjNMnqMzeZ4ySppiJV/JqJ6wLCxQ0Xz2NvdaEbQBbWVyri1RiXdH6BvupBVGqR5L1L2htPBTDJo8L0l5CaOV5Xbd9xpSlMUeZHIx0oYka7JuaeqGWbNgOp9xNpny6OEjJnXDfNEyax2ucwQt6aHaZtisoqoGDKqKwbCgGJQYk6MosPkNinHJYKvARk9hoewc+rkDdg7uc3D3LU6+/x0mZw9YyRSuq6mKjNPaMa8Dw0oRnWNtkHNy1rFSKrbXS1xITBaB3CTKrOCkleCdpCJthGEG2ysKj2KcawbWkFRG3dY0TphaVkMXoWmhcWC1gRBZq3KyENC6ousiKSpGRU65PWZYGYwK/WConytG1U8+PcE59h7tsr9/wKP7D5nP5nLv9myZ9L8B9OSqKJk6sQzNSmk5WEKGZ0svOpYAzUdDOT4CCvYnsXpMSZddRQnzfzgcsLe3L2mLeiRpZUnhg2N/b5eT/ROeeeYpPv7pV/jg9nu88c0jlsoGlZbSxnT+05aydXqgY1kgxhTIbdkX/0r8vJSwg7SWVHOVZJjmnSN4T2YTWWbIjKFpWnGmiRHXTklW8fT2Jf7OxWu89J3bXJ803Lu/D9fW+VXn+Q9dZLa5QTUakuU5ZzGylVlsUUpNlRcUVcXpfEKbC9CXQkCnSJnn5EWGirGX7Dxm+xtlHn+6fY0SoqSAonqgqL+msU/EM1osTlzX4YN42u7N5/xguuD04Jjy8IS/E1r+8SAxnC+4ERQ/WZb8auv5K7nlQuiECZJ6uauKPbjnaI3hnTzjqz7ydoKZgtADgRmKEhgmGGNZTYqxUowTDEiUUVEmYScWKZElqGLEEjExyPtPUeqxJQjdz82XUN+yTlCpZwf65X4DScm6lliF3vtYJZJSOCOG/SkfoocrVGvbZKM11q4O+LGXbvK9h/ewpWZYwOk8McgheMWicWyNFRvDSKHhcJGYdWKHMh4bNoYaYmJqPB5F7aD1jhkfvS+WIJ8wW1XqrS/6gYvIUfvaG7BahqrGZOJb5ySZOSnRbBuVMEruZ601mRW2xnhUiB8rMFksiFGjkyYrShazBu/EzkL3suAsF3msc46gND54nHeMxmOGowFN0xGiZzTaoFoZ08ynzOqW0eoKw0FB17TUsynTySkvv/wSb7z5XbJBLn7ReE5P53hfcHFnk4s724wXLY8Ojui60J8xcpakBIMqZx4bfFiyi2UP8dH3yhV1Pjj3PhCCsELKvi4hRbLMgApEr9Aqw7lAvTjjnXfeJyrHs0/eYHDtEg/uP+JsMedT6+v8N2tPc6lW1Npx696HcHWdX7xzm9e1YbG+xcVP3OTZT79IMpqt8SqVUjx8cJ+uC1RFgfaRV59+EeMib731fbRStF3L/oMH1Is57XyB8h5rNIM8o6vnmAS2KDnZO+Rk/5DJwTG5Fua8TlBay8nxCe2spls4ZmdzisGAalASUqJuGrx3vXpKpKM+JbY2tuh2NokHDwQMSDIIWO6JcgPJek0evlO3/Psm8NSnPsY7b77Oa2+8jvOezFqKqqIcr2B783uF1LgpLUOrNPW8ZjGdEULobV4e+5UK50IJCJkZ8iwXpr7JKQqD1ooj5UntGXHhic4TgyeFiNWG4WDE9uoalzevcdNbrp9N2X54n8tRsTkeYnPQfZCYigkCRO9wsaX+wYfo3TlpHlgkj05wYbzC93PFN6f73A8eZQ3Xn7hITMdYY6k7JxWNlmFL19F7zGusSrR1Yryq2N2PuK4PtgnQNAIy5bm03SYzeBd5/8Mz8Yi2MhQpcs3mVsGgzGibjnFluHHJcnG9YD7vmLQV33nrDELg8PiUzjWA4uxsyuUrlymzElzD9UtXWC2HtL5lNp1RT1pKb8m7hAoQQgda49vE0QNJuQ/RkFdDxqslKuW89PLzdD7yB3/wR4xWBjz75BNMpzPK0SoqjNDNjNWVEUcHB5Li2tcIoQucHB3we//zL3Hx8nUmzzzB5Ws3WFlZ5dJwnaQNg9EAW5Z8eP8uRw8PmE8nuMWMLIN7Dx9xdHTEYiGheTGCSp7jk2NcK5L9Rd0QY8L5IEPAPkAnJic2R0ZCkGKM5+tOa0OWySqNKVDkEmJoTMbW9hrz6Zy6abFGghCVShS5eIOiNVWR41zC+UTTdlRZzrga8HOf/SJf9jkH3/8m8+sX+GVf889v32a8dZEXXrzJg9NDGFecTuaYvGA4HLKxvUXbeoyq0cYwGFSMBgN0gFE5oMDSTOeMBkPpzxMUecHZZMLeybHIU41m0bbM5nN8jORFQV0v8N7LEDMKTlJU+Tl41y7mlJtbjC+sknanJCAEJQBd6plBy0eEW7MJv6MT93Yu8tpbb/Fw/4Stp56nGg8xSXrFGMP55yx2J6H/vaR3T4LvyUu9J96iJQUn1yVKirBR4gGca0VuDJU1DIxhqCxrSrOF5ioZN3TJEzrnCpqVZFDKowlCFkiRuFRXeg8hUirLjrHMpgfcvz1hNNggOEe2Nua3pg/4RjdjUA54oRrzwvYlKg2LJnFrMeO780NOuoZuUDDzji5BdAYVItE7ShV52lb8+HCFndqTmYzOy5nluqVdnCE4ARRRiErTalYuXeJzP/VTvPLq50im4Kg+5et/8qcc3LtPIpw7JPwwjx8a4AMxVQVw3uNIpABaBxyASmTGYm0v1U0Jaw0+eKKK59NJksI7kcrFGMVbwRhCTGgkKVFAByMgUgLXymQ/t5bMRvJsKbERpkMkolXsF5kAgEprQZi1ZGYtp1UxOdlEoiSEirGxwqoCTMJYaZqxmqUnikiD+38/RkgZKJkcxBRIOgNVoHSOMasMLERfk/CgIr6XxS7j45Omn8QqNBldIwdz08wZj0oJMQGpAZPovGMCtCErhc02PZ3LBqY8dKfEGBjkHnrZsvOul9qBMAOFoWNsP1nK5FDPjT1vCCLi5aP7H61YaucTWEvnNSEoQa+SLGilZWmlJMabIXbCzvAJtBx63dFdfHeGyhTGrKBtIWCx0udJPUYZdL5KPljFze4TYyfT2hgxYg9DjOJ5GIl9Y6MJrqMnGBOiJ/SNpDIWYwxWS8iEUgoVpVlO/fvTSAEQ+/WhsYRW2BUpdrTdTCTpGtouQSwpswFWBbQJbO+scenqFZ54cpt/9e+/Sl0r2kbR+UBMsuRyrVhdqfAuEb2jntesDiyt9+QkykxjFejM4JIUBgHx2lEmYzAc0HpP4xw6asaDjHqxIK8KuuCYLkQGLIeuTAzyrKBpGmJKLDpHYRI208zrjsY5uiQy05QUKmmRsuI4OjgCpRhUA9bWVjnaPzgHXmKMwjSFvrAWY+5EQmuZkNlcs7U5YH1kmZ7WaKtwQaZmOimyLAM8Wium0xpjQCHA9aQVqnJhFSeN+F7ZXPz7tlZyiiynzDTTpsariuNJx8xFVOdpW48VSEOa/pDoVDpvilWSBHBS7AddAkvsnbTUgwK130gIggqUZUaVW+azlkFVUGnPE9sV4+0BRZ7x4oufJZCxv/saR3t3QMP6eJ3p3hFn9QJjMrw7YWPtZYpqzO37t7G25Td//9d5/849jiZH2NEGH/vMy5yeTDg9mvCDew+YnE25df8uz5Cz2XoWRF5f1Lx9dMyk6Yh9YmJCkpxym5FbAbSLXCbKmTZkiFyvNJZCW4xWGGXE9FlBpmUyprXGGoXOFMoIkCdJlgLSLSWN8ncWY3OszcnyEltW2LLAljkmz3qQ0GKyDKMzlMnAWJQRJgj9Qad0ny6rLWJ2Y8FqkQbpvuU1RiigNqMsSobG9qC0eKwuxxIRAWNi36yHpAldYOFqmrZmsaiZTuecnk04OTvl6PiAex8c8+jwmDv3HnI8mZK0wRZDssGA4XjIeGWVlWrMxvY62zd/ki+8+GOw2OcHf/qb7L77XdrOsXCyN+d5JCIJ2OtjzbCwjPLIZJGYxITSlq5xjIxmaBWdTxxNA3oAl9ctJRETEgWakDoaDXWCwhiqTKFjog2eMlcUxlIR2BmXuKTIV0dkgxKbG7LCSBpjPyBDIQ27tUSfhCnWA68xADEwOTk7HzjFPlRjyYJb+u+JZC4+Jk7xmHEkzxPA6BxMYzkIXhaNgrg8losvn9MDG2hh2afEfDaXQWAIdG3HyfEJZ5MJztc8uLPLbD5lZ+ciP/mVL7N5YYO1C6ucnkyITorLJfCVlkO4KK9fKY02qvdfkybTeS9ev1qhbJT7Ji+w2jKftziXMElT5hLq4oLIAkMUlUGKkhyeFRmvbF/iP9t5mo/fv0d1usftR2fYJy7zS5MzftVD/tRzXF8fc3R2QqdhNBwxPZ6wvr6GMYbhYEjdNrRth+qHDs51jMuSPMulsTWmfw+K4LwYonv53DIrjBnnHD56IpGsP/dijNgsp23bfuDZX2+jhAU8GlDFdVRS7HjH4vSUf//tN7nR1fxl7VEBbjrPPATeN4pVE8n8+bRNLmnUzG3Gr2nFP29a7g8HxCzvQzH7wBZEgXI+XEzpPB04R5GnJOAeUEWogEFKVBGGUTNKinHUDEmMFYxQVFGJ2XiK5DGRp0jWB4jIAFNhl9BzksTOvpqD9BH/Lx9JrcMvFviTQxaP7nCcFfz+nRHfGim09Vxf01ir6NogAPxIMSwS41K8+VqvOW0TgwLyPr1WpcC8jrgkioRVrfFZ4qRWLFSPj/dVyxLwjiR078kswVqR3Giyfl82pF7tgSgRenmr4HKJzGjKwpLZ/DwNO4aId47ORGYTpK5N4r2mtcGjMZklJUnr1FpMy0FYfimBD4EsN7TtvJe2BXRwnO3tYwATI23jyEtFCIHJopFGfXcPryyf+PyP8c47r/Po4T5daHFNA6ljsZizsbHBtScuo63l7r1d8SoMEjIQvDRNeZmR2r6Z7NmfRmcC8PbXu58xoHXCR08Iliwr8MFRFFpkwFrjvJcBbwgkpSBF7tx9yHA45uVXX+JSuMV/s/Ekl048KS9578M7+Kc3+dfv3eI1pVisb/LM51/lmc88T+ccW2sbZDrjwcMHBJcosgwbFa8+/worgyFv33pXbCLKnLqeMR4MoGuZek9UinI8JjUSYmIUbG6sE1zHyX5FaSWMSSVN13oWzRGDaog2Ga5zaBSXdnaYzWa0vmOY5RxP5kTbooyh7jp858hshnIOHSKRQKNEwSOhGj1YnsQjrnaOP80MOy++wOvf+Abvv/8Oo5UVVjc3JVSs36PbtiUEj3eO+aKBmAhebJucc5RFQTGoeumuXEtQkmbdeaJzqJSYaSXJ0MteSAlYY+zj2l0bgzGGXIFbTJjUU971gT9Uiq3hkM/cvMonJzVPvXeLpwarDBSoGESxFJQkIrsW9fAQFwITFQiZwl3a4ndPjnhtWqPLgtXxiOgTf+tn/wa/8b/+S4KbszEaUmjD8WQhjFaUnBcmcuPKQIA/EzHa8nA3MmsaUkhkKHygt6SgD4cRckgCChO5uFGxtZrz3HXLSgErgyGZCRSjnP3DljcfNgRgWBpGw4xVN+L0rGE+a9AK8iLn5PCQ/eN9DvceUVjI1jd4+sZTfO4zXyRO9nGnB2g8pdZ0UVN7x/079zg83CWZnNXtq1x74gZ/6S/9DNcu3WByesjJo7ucPIyYrsbVc168+QJHh3u8/94JymayFoxhMZ9BEo9XV9d8/7Xv8PDuHe5+eIuv/PW/TjleY6Uq6NoF2xvrNPMZu/fucXx0iO8WNNNjDk6OOHi0x2RyRvKBIhcLDAOUZcU81LSto/NRBkv9kDgvcjILMSiM1WRZhlaa5iNnXQgeozJiChgt+/DKirDx57UjKwqKvCEhvVpZ5r3KqyPTmsZpfCcM+fGw4uLWOj/36if5m3aH2a/9HovLO/wb1/Bv73zIcHObC1cu8cb7b7Pz5GUu7GxSDgpOjs9IMTHcGlIVltXRmDwvCMGzkpcM8grvHPjA2mhFzikjIVYnsymPDo/wStZNM58JkIQor7pFe85+Xar6bCaVXlCR2jliUtRdzdNFjlLgdaJFbMWIS0xETsMuwdcXJ+w9cZV3Htznw71Dnn71R2iqIV6p/l4Uj2C9HN73XzHGnkglFV5EyF7EKIqq4MUKxXuCk33JdS1z1zLxDt91RNcSfa9E05rSWobWsmYyrpmKz+oBP1as8LQ2FO0ComA9EvjnpdcDcizbIadddES7YEjGbltz1HX81e3L7KyMuH12zJ+cHXN3NuWUhF5ZYZE8Xis2BwO66ZTGtYyqgoAnBM0sRl5rp8x8zY8P19mJFfeVxI6lKGGHkkS/HCgrdGbYefYJvvBzf5OLTzyHLYbcWN9i5aEm3XyRRzbj9InrbK6t8cM+fmiAzwdP1zQYZTBWaK/aCElTm75gUdA5kc5KgyiIYJZbkZeoIIV4X5wqbfqER43ViuQl9S14Sd61WlEWYmRelAaiR6sFTeuQkm/E1SvXOTw+oGnn+BBkUo8ndJ6laicikzxr+2AD1S9SLUmFVluCk5Qv3wWgRVlhO4WYKHIptkGjdSYAQRDUKS7nw8kRCIwGHfPZCaRaPieTxGCH3gtPCfqtdJL3j5NiLCnKSuOcBGdobcXGzGiUiYhgIYCX5mU8NqA8Kfa+Ngr5GVqhhd8j4COWqDIShhg6iE5kvH1hFLxMhn3sjft7Hb5ZSnv7hjElxdrmRZxzzCe7uE7SQWOIqOSJBKKXDV9mdgatJD3KaA9mgIstITmqPO/L796rpwdcjDXYrKRDfN6Ukve/ZGoEElkv4Qo9M1NZfc4AXRrPJhLRS/pR7IFdbejZXb3nv4oo/ZgJIU1rXyv2BePSz0bp3sNRzWnUjNZ1fZ2cQB3S+pqrF8bsHU1Z1I7RoMS7SNN0jAYlBoXNNU3twQWq0KBswVABRpFlmsXCUZYZaEWXIgFFHRyxq3Fthy6keHSdYXWloihK0Ja67gihEzP1ftIpzawhLwvxR4wOdCSvxMC4m7ciLdcGVQz51I9/hT/+5uv9+4HFfMFiNkedb+HLxjydN//LJMCV8YgLmzvMp2eUWYcPLUcnge21kbBDo+bKdkGWRTbWCy5fusmP/PiXuH13l2/+0W8za49ZW5XUvlmjmNcz5m3AFDnKJDEJJrBYtExbxWBUcTDrmDdyvcuB4eSswShNpjVdEBmu975vBsRDI5ybEvfgrpbJ86L13D90XFjLsQWcHToe0DEsMx4d7rG2PUTFgDsMPHHjGZ575XOsDLd4+82K9bVNTo52eXj/gL1Ji3KGlfV1/vCbX+MzowsMx+v8yr/7d2ysG97+8B6nZzOuP/00N559mtm0ZrJo2Ts4wOYll4aKf/KFZ7k+P+B7pzVv3HrAsE28XOSs5SW5ycEYvAanoFWepmuYBMd8msTLrZfAuhBF7hGDgLnn71umd8b0oJvWZJklyzOqLKfIMwZ5xsAaBjZjZDKGxgooaCQ5z5J6o2uFSaaX1uRUHVQOihiwSzuAHriTb1DCDtSqZwRKwZC0QdsMlWV9JJiVRM2iQA0G2OFQPLTKClUOSNUAVQ1QRQGZmHCnPtETY1jLSlJRoVYV6XJakozFN8h7mq7j0d4Bb771A771xpu8fftD9vcOOLzfikOYFzDRliWro1W2Ntb42DNf4IWtHR689VXWfUPTzUnB41tIRcb6IKPrIrpMXN0qGY7h1u4CpWGzVAwLy6yJoA1GeXwTqAYFEJk5TxcDUefMak8xslwZVFSZFoPuJJYEKySGqSEbjcn8DN8s0CpRVjnNmYciw2jx29JGAgw0YsPgU3wsl02wlFnCY+bbkknZ8+GkITln48n+qPVyL+inF7JLQkL2WSXfn4TGL8VfWrL7elCw/3nnqbxK2MCx//PoJZzg5OCIN8/OhOWt4PDgiLsfPuSVl15lNlnwwTvvkGdajJA7J0EwPpAiLOa1EN9TEBa5FT9Yq/N+KCEy3cwqVtdXWBkPKcqC2WzO3dsPIWmCF6BFpUDXtlhr5b1GsJXl85ev8QsXb/D8yRH5vV3mx6eUT1zif5yc8R98Rn7zea5dvki0cP36BZz3pM4xPZ0AiXJQ4b2nrhtIipAkGdgaS573XphJTnKdhC2a+vtOktY1IYqNRQwRozMckabtGJRVD9w+Zmcaa3HR41KQMz/LiD046rEU29uMP36T3/36d/mLxpJ7zzB4qpQ4iBBIPLbkjnJfRcufKM3/zSV2B0OCB1fPBXTth7lLAmXq153grFr+sA+WUFpLPdbbChiV9z8r9QwmqVVMFECpTIEyJgZJvkYkVmNiK8GlBFsxsBUDK0QGUZGlJXddYfkI2Nevd0kWBo/HJ7gz6XjPZ1xf0yzmHqcii3apKklsjjW4wGwOJiVKq7BJwtGiS0wbTesstQ+YmNgZSwBJYXo1ReotMMR0Tt6j6usv0jkrM6aID0CMeI2wmZIiBlkDvU5b3oeW6IHOd/ggdZK2CWXE6zH0Bv0sJetRPJZtpqhbSZgNAbSyIvXsbUTalOh8wGrF2dmEzBiC91SDCoPi4oV1FouW1Lb4bIiyFfV8ggbu3b7NeLzKCzc/wcGDX8OoSJsMMRiUCcznE95765hFI/Jzku5TqkVh0LmADqmvN3TvaSxXTWvbf349yokMEuVYU7SNAN4pegFEk0apRG4tXc9AyTLL2emCeup446uv8X+8+aNcveVYXVG8/sH36J68yD/74ENeUwq/ucFLP/FZnv7Yc7Rdy+Z4hdJm7O/tcjaZs7m2Qmgbnrp+nUtbFzg4PeJkdsZoOKJra7q6oV4siCGytbnNfDKlXXRobRlUQ8qyItMZ88WUOx/cop4tUFFhs5Kt7VVUD3qNRiPKqmIwHHG8f0g9r8U+RyUGWU5ysh9aEjQtfjKhWsxlAB4kbVz1DblKS3musHnu1WdMbr7Iwf0PuXv7PdY31ti58SQr61uUVYU2wmxOpH6AHDg5OsZogw8Bm1kBIVzPsgmOvMjwXSeXSCum0ymhafHzhfSDmabpPEYOGUKMtO2sZ7TK3paWqE1MWCM2JcKgafj10yNeG4z4Gy89if/ehzyf5eQ+orwnuIBLQZKRncelTmyfyoJfPzjinTKxtbnFoCyZ1Q2n3Yxf+pV/h9HCqglB7HOMEbZjUWrqTv7s4HBGUtA2ibMaXNIiwEmSjh6JLDqPir2tkxIA2hrNaGAprWU+b7j9yNA0sl9e2ipIqWX/OLC/GHC419AFzzNr8BNf+inaRc37dx8wObhPPZugnKcymtg1jPKC02nN22++wf69+zx3eZsrRc6wKvjEKy/zYHeP08UMFzzJajqveOLas/yNv/33eeWljzEoSspcGOO333+bOx+8y4ULVzgpM7x3XL1+nVc+8SoazTe//ucs7t3m0qUd8IHdBw+IyWOj5+TgEafHp7xwc4SNHW3TMJscQwqcHD7EmMT7t95nPjtmb2+fTBlWhhXHJ5PeskPRdh2xkXs+9uQC0NK/Z5rVtYqtzRGH+4fCkkICyCCRWfED9yrggyPPC0jide58EMWX9+RFATpSZBZtMjoXCAmsiWSZxakAOnDlwhY3Ll7gEyvb/NzaJRb/8x9zvD7kV2n5xbt3GWxf5rkbN/jB3ffRo5Iqyzh88AidNM8+9wKbG2usjVcps5wUI67pWFtbZWBzLBpT9KnafTpzCHAwOWH38ICmbdHW0rYtjZfaAAUpimQ4GUUyirrpSRx5RmgDZ2dHHB0fE4isXbxMVdeoCJ1zRN3brbMcjAjR46xteXM05iR13Lr7IatXnmSeVyg0ZSbBbVo9rh8FH+y7Qi1ZC+cqCm1RRpjTyoBJOeYjCgvV3+syXBC8KEYBAF3b0tYLmvmMo8Wc3XrOe6rmz+yUX5wf8DfsKv+FXWHNyz4kZEEBElOS4JQ8atYwnDqPMRl1SLywc4Go4Zfv3+WRSZzMa7rQYU3Oy1eusqhrHu0/4nh6hutaYUV3LUWe47oGm4nv7l1aDhY1z6WSe8v69SP1tXw8un+fidnhIb/zL/815eoa45V1vvz5L/K5T3+BZ7/yV9B/2WBMzu3vfoMf9vHDM/i07gsFRQh9iRQimQHll9H2YrAvZtbCHIkp4VzAWjHxFeaUXNjMGrAKrQKFLcgqsJnBUuFC10/5WzLt6WZzgsl6xpjGBQ9xxnvvvUFI/nxiiRJKdGY0xkKZGTFx1AbZP/oJblwiz4mQxfPgD9tPvxOaGB2Z0aTY4ULe12MyT9W9v1WIGqsMKIdKjq45IwE2yyQGHaGoQsRq28t9AZ1ISmSSsiqEwaR0b3ashIkUQofugbuY+iLofKYbhGGmNDE5AbuUkRQY38s7VQZ6QJUNmTeHeBUgmF5yLB5tIowLvXlxI++rLy6VSljjMSYyPdkFFbEmoHOFiS0JYY5o1cs/e/BMK41WER0CaM/kbIZWHVUpHn/euV5Cls4prWHhcPUJWrdYrYQFRO9Hg0ZRojD98LH3YNSSrpRUpG07nHd474WthUgCxHtXDlkBLnsOX0r9j37cxCqjeMxOWTIQlmyAJMbPhSK3OUSZOBRxhRef3eGD+wfMZgnXifm1tTmgqVtPWRZoq7BF4oJpCCTqVIm8NXi0le1Bp0CIIpl1zp1Pn+b1gtWlZ2UfUBFCIi8KopOGuwUplOl98ayAMp33OOfBapq2hhTJi4rWF3zyU1/Ct/pcttZ3IDxu+3u68ZJSqkSybqzIMy9evMxPfekneXj3Qw6Pd9nde4A2BXXneP7ms1y5cJX1lYrFfMqzr26xkq2zvXqVT/69v8BLz77Ab//OL9FMd6lKT+s7rl7eIKoZZ/NWGi+lKPOMLINHJw1nPnBw6siNRWnNtA4Ym2FVZFRqTlzEBfHYq/KMLMsIEabThTD86Lfe3qjS9YCCV5Z7BzUqaXKbqJ2DkDi6f8LWVsXWqMLrxMnZKQd7J6BWeHBvxrvv36dziTYs6DpFNuuIMdF+9XfY3d/lwe4M7gQ2Lmzzpb/wSZKpeON7bzM9OKadReazjq1Bzj966WU+PUn80Xc+QNeJf3zhElfbgsIbojKSPGkRibrRYMRnEit+U8omEp4UAh7x03AxCIMWAXl88LTOCyM0BBbeMe865p2jWcyYe8fCe86c4zgE8UxVikYlWVtGkXKNKSQltyoqRnnBallysai4HA1P1pqLi5ZsydZRGtUPUugb+2T6pXRO7pL/ST0bL+neD0qJT1cyGhCJMpkllhk6yyHLUEWJzktSUUBZnBvwq0EJgwoGBZQVqiwYVQUpz9hZH/DSFz7Nz/3IpzibzNg7POLW/Xu8+/Ah799/wP7JhONJQzOr2Z+2/P6jfX7iU0/xxZ/8Wd74vf+VzDpsEdgaJsossbVmaJ3cPRmWLLVcXNW0PlKayHpVkK/2bDdrcW3HrAvkBcwbjy4ss0WHS4k2WM5mDl0WLJoGpTSFUZgEzTRSuxmZM2TJ4r1iOqnJ+vTA4B3JWlTXigQ/aWlmez/clB571qEkQIaPDDXOZbj9vf7YMS893h+V6gclsjek2O+h/fm/3DMfz3eXwAXnYMSSWYXqZf/LZdAzHOitPbrOYTNFNRjxt//+z/PZz3+B6cmUT34s8erLn+LO3Q/Y23/Ig/sPsFmiXtRsXNjk8PCEyemEENP/5jXHFHqGVb/HR8X0bM7a6grTyYzRyoDBsKCeuXPz8tTThlSUcyjLNV+5dJl/eOEKF/ceoPd3ofNw6SL/au+YX9cGnnyCJ65fR5vE6sULKAyL2RkH0z2GwyHj8QoohY8B5xwpRrwXb6vhcNj75aremy724SFy3vkgSYyFzUiIfL3rHNrKTZWZjKooaZqG5EPPiBIvoiwrsMaQUOdM8ZAiQQl4N1pfZd+WtKoVz76UIMrAKZ17NfbXOyqOs5xfDg33spLoI8F3IsEbFGRF9tjWpfdFkml/kuCyHtRNyyl/jLgk0/CPgtCqP/vR6hzoUb0twXL/kNM5omMkD5EqKMbJsJ0810g8F+HZELgcxBjcokkqYHvgT1aqwQQYBfhMUfCJn3yW03TIa289oFOKIleELmGTYbEIrA81pwthlAys1I+jyqKC42gRWRtGLleWehFwnWfeaWrPuUx9CdYuJaZaGbkfls2CWt47MqDMek8871N/GAv7yWYyRPcxCttuqaIhMBxarFoONxRWJfKyYtF45vMGk6DIBHRNvdJJ1px4UVqjGFUZPml8SHRdB5khRY9KGYtWfLCqQlQDa9vr+Ps1xWjExsYGXQi4tmF9dImnrj9N606Y15HD4xnTuaNzHcOqoCgzbB2ISDor/f2ZUjy/D5dDVxDv4qVMWy+7zqTIspwYOybTOUZZlJH6PiVD10aUSYwKS2XUuRw/RNjICv6rJz/Pk3c96+OCt99/k+n1Tf7pu+/wVmZJ29t8+qe+wNYTl+iCYzwYMLYVj/YfMZmcsbm6Rjtf8NSFSzx3+Tr1Ysa7H76Hygy+dUwmM5rWUTcd9WLBuBrgGodLDhcCg6qkWis4OjyiWcwYVUNYEYbKaGWMLQqefOFZ9nf3GQwrgvdMphO00ayurdDULW3boo1lfWONw6NjAfpHFt82VPOWYBJeQdBagL1+oqOS1HuExPsh0q2Meefrf9Kz/CKLxYy1jU22NzeAxMnREVmWceXiNhvbmyilJbEa6BZNz8KSEIWHDx9xcHwMRPZ393ny2acZDYfcvX2L733zO6zvbHPjxefJrOXk0T77u7tcuHKR2WTK7p37DFdWyPOCZjZjZW2EtZazkxOO9g9o64b5bILWmrPJKYcnJ/yj61uMPtznejSYEIXZg+/TlTU+JpyBLgUmKXFha4NpM+PR0SkoCWdomwU76xlOdUQlaq9hkbG6PiYGz/7hnKaTM2GQG3KTkXA9S1Hq6NYJ8CDnB+f+73mmcV3gdJIIXWJ9rDiaa+7v1ngP797v+1gsdVOLOk22S/7wP/02wywn39jh+Y+9TG4KDo4OODs95mx/n+bsEUXSzKannBHo1oaEvCAow8c+83k+P17j1r0Pufv+LW7ffZ9hllEazcpgwNHhIffblun8kHqxoF0sRGVzeojd2EApjfMRlzSr41WG65tcMoaPv/px7n/wPidHB1hdkGUWledcubzDQGt27z/i3sF9SIHZ6QkP733AbNGwt/sQ1wor8uqNK9y/9xCMZmVtlaAUB7uP6JwX/9IQewmu+HgPx6UMC7XixlM3ODo65WD/GO9i77crAH9RGJp26dNniVGxaDuc8xgtwGPwHnItUuwkdjUyzDak0PLMzes8dfUqT4ZVfn5wg7Nf+yrTrOK3h5Z/9cHb6MGIp69f43R6RFXlrG5soLXhpRdf4Znnb6KUZm1cUZYFi7rpfVFzGSBGSfCNMREIZNbiUuLh6T73jo/wLqB9QnVdb7MSwChS8Ozu3ePBvXuMV1fIy5KHDw4YoNjY2STUDQvX4l0nPeJiwda0BTRnIVBYjU29SicJ3y4lzWG34Gh9lUfHx9RNw6WtHdqkqEzG9uoaw0Eu51YS8kTbdTJQDb63lRAf4BCD2AYpJSBfP/xNMS3pIYSeYCT3Br2diAaTo4cFw+GY4eYFUgy0i5rZySn1ZMq9EPgX7T5TM+N/V26wFsTyiyQszNifD1Zp8ggmRJSJDNEcmcTvHBwyLzOm8zm+T6dWJN5+6weYXIZgJMgLsbXoupambTBGBhhGa5wx3HE1V/NNtBeps83Fis05J4S1vq52nWN2cIJSCrd/xHEK/MqH7/He/dt8+i/8FHUH42qIPjvkh3380ADfvAnMToVynfUyTqOhzC2Dsjc2P/eqi2RKi99Y34DarE8H0kvJhuqntRofO4KXRKB2obCxJGovYAsGpT0uLvXfod/4AmiHtYZcG/LMQhJgZ+kn4qPDeYmslyLXCHCmhOWmewp4IoL2WDKc92ijCL4BZQQw0RGtWnRv6JlnuSDOQSYAVhXy70RNDC35IBN2oFZMFolp7cFmuC5gc0OOkmK0l2cqGVmeA6AACY9VWV8Q9uCkzvqDQ6a8mkRS7jz4QDuIpvdiApTOiTismtI0p2gbiUmDKvrv701edYYyCYfGdZ7ciJtWYSXCXSHT4+BFcqyN+B0u6gZrs75xhxB66a7pi9GURPOfZ5h8A609aE3XCjuiaVqMznpWgjCOlG4IJvQR4csCv2eG9JuCeswz6SfgvR9k//c6aUJ0PQsCko6gRcKZQsT0LM6UpKBdTh6UhuQlRKR/trw2tcTjhYHZhX4iiaFTUFojG/xaxd7JnHYeaJ0wNG2e94b2CWMsB3VLXsGNbM7tZgCmwugW8hUWOkdF8YwLwaOUpW5bRsMBqROUTeuc6eIM13owGbY1jCsxSPbO9zIui9IG7zwGSbC1mWXRLIixZ0wmy4Wd65yczElp8pEu/3x5nT+Wn73NLDaz1E1D9IE8y3npY69wdHLG06/eJL2nmLU1Vy8/xY/+6I/z6ic+Rugi6JyttXV8aDFW0c467ty6z8c/8SO89MrL/OZv/S98+2t/ynT/A3zUjIY5pwtH4xIuKvESzCw6yzhbdDRdZJHEN8OhyGJifVywYiK1b+icgA2L1kHjBOTV0uT7kHqAL8oXiaZLPDyco4FBZYnJMxhafBJPs3mbCAc1hF0OfvWXGVQVly9fYOfKNsNRwffef5f5UWDS1Bjv6ZJnb/quNKu55Ynr13j6iZc4rTvuPHiP3duHhKajbTwb5Zi/98yTfBLFH/7p93kiDfipzetUs4aYddzXLbdcx0EdWASHSyJPNcqQK0lPzbSi1Joyk//PjZY0KhRl1BgsubZUWrOBRpsKoy2UFl1pjPBTzwv+pALRd8QgnicuJboUaYnU0TNPnjo6ptOOkzDhUXfEa9Hxu5nmWrnGz48v8FxbYyM9Uyf290smjbtP56xm+ft+nRlpXpdsH3q2Eg5hdshihEkvukvpHDhMy4ZYW1LvwxeNFkDQGlSeQ5mhBhWUA/LBiGI4ZjQYcLUa8qkLVwlPPUedWU6JTGLgrIscTGoeHk0ZDyq+/OMf4/kbr/Knv/nPCfWHaLWgKiBGxzBXLBpPnhus8hidMGjGKwOODuesDgxRJ9qZogtJmk0t1gR1EzEkhlVOcJ55oVgfDFgdrzE5njIoLQOtMNHitcKWBXkhnqfKitdicIFpM8cUQ6zRVIhvaxs19FPttDwHbUZKCeeEuZOWe+DSyoBzLO7xoJcl20+APaWVNIfLy9LbQSg+wthKjzeSJbioe5r0Umry0eem/oeJ5YYwurTWvPjSTX7siz9BVg6YnSz4yl/5GRbTOVF5/uxrf8y//R9/kcnpCa7rOJv2tgoI43D5PrXW56ByDFE47hqapuHe3V0ym3Gwf4LrZDKs0MTg+3UKWmWsDwp++upVfn6wwfi928T6mFGE440h/+LwgN/TA9Kzz3Dl+jVsYRmtD2WyHAP1bMHq+hpFJjLfwWDI/tGReId5fw7uZSojubYPtBEbDZL48qgeaDQaQifWFNF7rBLbFEWSlNQYqKyhdR25VSLZdR6dWbzz/aA20TSthF31fryF0tgig3kP7hEJGMzysp+ftxodEh9kge8oLcEWMTBcGbJxeYfRylCavf6aBu9ZLhWlBSAKIYi6QgIPiT4K67pnYgYv0psQoiR1hkAITuSVIYlv8tLyJPX7g1IstGaiDfta8SEZ31aBIgQueMXHbOKnYs4zvqPqLYj0eSUhLJEsRS41Hfc+eMhBtSDLDYUVCHGRIpiE76B2kSLTnM0SVQWbg4SJHqwiuojNYX+amLQWl6DxGkPAqogXtJSEDLAichb1kgG0XtYnXpgT2vR2DIo6egFo+/uxGpSiMFjWSgqMSpRFzqjMqEoLMbFYtJSZqGE6JcyPYWYIwVGWAxZti2p6LyUk9MsnyBSsVpbGeabziE+KMsuY1zOm85a6qcnzjFwb6nqK8w6U5nQyYby2ybVrT/H2W9/l2hM3IZ7ywe13cF7hOkXXaZrWs7a6gjEZR0envRe2rJtEJLN9/dTvLaK+WPq7CehrjPiBphhxLvbKHZFsC5lU450nhkjeOqo8I8aANpYLVcF/8eSn+dRDw5VVx617b3JybYP/7s4HfD/LYHudT3z5s1x86jIxRoZ5TpYs9x/e53g6YWNtjbqesTVe5ePPv4RViruP7mGsZjQcELSnbvLeyD9yNl0wn9UUmWV2OiEEqanL6jKLpmN3f4/JfEJRWlzbkmxkMj/jG9/4Juubm5xOThmvjBmvrGJtRjkesbazQ1WUlOWQ4XjIS0VG7R3JaAZ1zcXbX4UEbRDrEwH4hMlHrx5SMbBvC+ZNx/TslAZHvb/L6dkp+w/u8YOsYDGf0TUNMXiKqmLz4gWuP/Ukr7z8ItduPEG1s0FeVsTk+O53vs1r3/wz9h4+RBlZT/v3bjNeWcF7R5FrfN1w+623MUbTzOY0iwVNV6OA4AWgcDHStA3+xLN9+SLF2iprRjOfzCispes66smMO4sjftVENsYFF45bqrg8c8SfVGMJJJokLEZtFCezKSeLCcRENRA7Ke8kMC4vLEWlCV3N6ngAJE6mDXkmIQzWJqpBTu0C66McfMOUhG9SX0eJkiQvDSGI/2AI0HSBpos0LhLR5E1gYEvq5OmiYrHoUDqgk6bxkaxnTbad4/hoD//gLo9uDdFaMxwO2Ni8wEsvv0hqn2Tuc06Od/FNS9EzXFvX8Tu/+xsMi4rnXvokn//Rn+Rz6ceYHO3ywd1dfuUX/3v0YMTJqRAw9h7ex7ctZZ7j5nNmOpF0xtrFy6ysrXPx8hVetZqDvX0uXb3GYjpHvfN95vWUxjte+sRNtFHsPrzNd1/7Dh0tIXkmh/sE3zAe55wcBBZtzSsf+xw3X36Bu/d+Fa1gfXOTwXjE9OCAEJUESWgB7LIiY2VcsHNlm8O9I06OzqjrwGIhsugYI10b0FZRlhYQHz4fHMZa5jNJzBXrpEBMhuGwJPR+dUYbujaA0XSN48kbF7i8s87GQvG3t25Q/9bX2NMLvrYz5v/9vfeos5ybV5/kw0e3saMKU5ZsX7nOZ77wOYajMW3wWAMnZ47m9BinEitFiQmazkamp2dsra+zvbZOpnNcinx49JCHJwfM2g4TFLlXsm/pQBsbumbO7Xfe4XDvEavrK0xP9llMa2K0lJcvcOeDd2kmMxYOdIqoXLFaLrg4k/V/6JwQnvq49aWEPMXEwxjoMsv+/cO+viyJIVHlhosX1tleW5WhYExMFwuOT05lSNebIQcfaJsa5z2DQSXnEWKXEnqiQewHyBKC0icW931Y8OGxtcQSAERhR2PWRmPKRc3p/j7TyZT/4CfcdAV/LSl0EOZlUJCiFuKTEgsDlRTBaEqleG865cTCop7J2WAUWll5TgrSOwfxvi1swdr6OmdnZ4AAmhKioVDWcOZqno+BgbE00ZPlBYlI1/rzgbfuh90hRPI875WqoPC88a0/5I1vfo0uWbY313nliaf4YR8/NMBXWkU+suSZJbMiqc2MFrVVEgaf1glrZQpv6OPu+1PZe0+HTOTE52c5Oe3TPMPj3zsfyUtwXSSEgqgdmU3kWSYyA6V6armgwzE6urbtp56yaK0xWAsgcojlxNdoLaEKiBxVaODiAxZCoO7Ezy9FL/5zKLIMsryXtChNF12foCssxZAFOg8pJHw6JTUGZUeoWGGUliAEo4lZhzEZhkgIcpBorXu/GDGpjSGdp1ZajLAhk7wmYxTeyUKWSj8SXO/soELfGEvKsPcNhg6lNSH2BuLKYHV+bpIpKbqa6ETO46PCO0XRf45JK0JQOCc3Q/IJlale725JFNIKKdUzDGS6GqNGpYyEXCutIitD8ePSfXEbQ2BY5oBFYcS7T0UCImVbdoupn2CLb9pSgixhCaE3iV8Wtkt5atRiVB4j5MWQRAvK9wBqWhIRpITsjYBjjKgQUZbHdOOYiAgorbQYlmurJagltCJxiYl5sDzarznam0Aw5LZntGLQvcx50ThUEuBt0TkyGi4sEjp1hLUFbYxMFrC1ui7GqUrkKak328m0pXOOYUpUNqMyBa6XnbaNQ4VAmRXiq6M1w8GAtm4IbYMjUHeO1ifyYohLLaur21y5fIVHuwc4r86b6yXTcSliEpxFPC2LqqReSAG2VBd97/XXmE5rqm+VhNjwo1/8Ir/wd3+B6alDx4LRWon3DqMSqIwyKynXNc+aISnNqcoBP/c3/gFf+sxf5o03vsobb32Vyfu3ZAqgofOeFC1dK+EG0ybReXkBWsOiFgZIGzuGpWF7c8juwUwYqL0hr0pyyFgrMn0f4jnbV/XsgOiFMXY2d+RZImlP13VsrAyoF5rd6RnzhePG1Y5LF5/lcP8+aWWLpg3c+fCAg3ngtO6obACbKAclw/GYm88/z/bGJot5y607dzl4sIdpLZOTOWvrI/7qC5f5SlHwvT9/ixuq4CuXr5HNZjwyjl88PuR33JzJ2giGJUJx1pxjXUGqxuQlLU4vxOgWH1AhygQriXl9ARJTnxAwUFtKYxhqy1BphtpKzL3WjHUfeY9moDRDDBWaAYYdrbCqJGdFZLIWtPc0YcId0/LVRcO/efAh/+DCFk+7lgxD0rFfTV7At57tJdGakgSJET+9c2C5nzKS9Dl7YxnClJKEG4GwBOkBGdnrHXJhpXVHI0E+ugcPFUStZP+yBTGzpCyHvMKMxgzXVhhvrJK2NohbG4QbW6hXn0ePV1FVydZf+zu8+KnP8Ge/8v/i3dd/m6Y+5XjuybKcs4VieytgLWzmA9oucHS8oA6RtlFM2ohVIvMpMk0XpMHPsowqB2s0LgSyqkDbEUW5wmBtnTKfM9ANeRwQi2voakXM8rOSajzGNQoVwMVA07XYrGTeLFDaMneReZRzYMko8N6fe9Kp8892uQfIaONcxHjOpuIjYB69/NX0Z3F/L/VT1HPQDj7y7y8T6OU6am3OAbilbPZ8iINc9rIqxQZgdZW79+/ym7/1O+zsXKCNLaPBmOeefYYvfuFHqWczfuWX/y3Jx8esvf4FLZP1UhLwyxqNSx15Zokp4J2S6TotYrkhBahVS+moZjAeksfIz168zN8vLzG4dYuhmaBtxn6R8S/3T/hdZSmff4bB5jqrG0OK0YCkLNF3nJ6eMBqPBFj1nuFwwGQ6o17UAlx5T1WW7KxvMJ9Ohd2XxEPUx0RIvv8QlyEMkNmleb0wC0stIL3RuvcJVGRIMZ9ZQ1LgemNs1wkLME9KBgZKE7XIlockdBS/WlTCpV7WmuhZU8KISinxnvYcJysgy6jg+gvPUJQ5WonthzWGtmkp8gqSBHyIpEq+X2lIUaGtEXBPCpj+fu5riiRSOZasw6V0HEj9Pu5dwHWOtq1p65auafGtI/ShUI2CaWa5oyJfC56/YjR/s8tZDw50wiawSUA+g2K9g3sfLjjajjRZxMTEaZNwnYJGqtvTGkZloBqIB9LuNFEaRWES40pY90kZah+Zz3zfNGTcOXJMOs5lylLd9OA3j4E/ud2WEmeB9Aiimkl9qN2SAZt6+W1VWp66cYPoa05O9mX9eLlug0FBpgS0M0BZWTa3t8B17O4fM8w0pQJjM+ou0Dmx26kjaO3YGGaUOhG0pQuBaeOlKXaOEAO6yOk6AT1nzYIUO06Pj1G+5oWbTzObnLG+sYXhNqM8o1tVHBzXNK3n4OAYpTXjlTGz+ULCuRR97Sv+2zFInRaSqGpQcj4EEqQgtZrvlQc9G9yHhFWPPZhJsv91nYB9W1T8l89+is9M4NpK4v0P7rF3aZ1/du8WbxAJaxt84ctf4ML1i0BidTQmhsTu8R7zrmFtZZXYtmQGPvbc8ygS908OmLqajfEahTKkzKNHG8RVz87mNlcuXcF3Lck7vOvQSlEVBRtra+weHLGxvcN4dY22bSjznLKsUEpTDVfZ2tqmLDKuXblCXpRkNicvSwHNg9wbaAVWo630XNN33mXLybppceRGo0NEJX2+R6co/UinLamekwikEOhcR/QBVzcC1IelfyW08zkPb93h3p27vPvuO9x8+SYb41V8iDzaf8R7P3ib1AhDMTSN/LzOs5jMRDqZ5UQMA2uImaYcDqgGAzrnyDLLeDBk0Qa00eS52E24puHipQsUT1zDFgWrq2OKYsD3vv4N3vrOa3xv/4A/277Iq8FzKRoBi5HaHi22AosUyKKRe/psDplibVwwGg9p20DrI7bMQLfM5jVFKXvVyWnDdC4sKnzCZdA5T1t3kCTIb2ddsb4yZlYn7u7WLOpA6hTeJelXlkuVhHPQdD2z3EfqxtOGwNqogKToXBSSAAprLc/ffI69h4+4f/8+0+mc4WDI9GTCyf4ud4uCaAzl6iYXV9fZvvwken6M8w0hJdqmJriWP/nq7xHyku2LO7z41LN8+Us/xsrGJovG8a3vfocffP/7lIVBjYeYlJhMTujcgnJlg9W1VbquYXfvIVlmWN9YoxpUvPLJT/Dmm68RleHGE0/w0ide5fYHt5gc7PHhh+/y8Y9/jL2HRzy4e4+di5tsrW3xXv0e1hQsZjVvv/UuyUtowXw2o+lanBPWbgiBqspQWlOOKtbXKnIjbDHvE9OzCU3bkOUi03VdwmrxixO1SiTLDXXjxDs+SYCmLTXF0IgaxidWx2MOT+f4FKB1rBUl+WjA2knJ37/yDM3vfY37dcN3n7rIf/fGt5grzfVLT6Lzgmp7k53rV3jh+ecZrG0QM8XcLdBW080bUug4Xcw5OjtjbXWNze0N8tMpH773IU9eu8Z4bYzXmvce3mF/ekwMkdB2+BBoUXRtS9MsuH/3FqmtWZyeUp9Oqc+mmLzABwhuysNuznRaY0kEK/e0KSvWp4YVV5B0YOIcI5tJaFVPKuqbI3ZTpIsdk9mMwfqWhN+oJP7eVoLblKInXaXz/2LvaUuPseik0FbOfqPEVzMiZ7ac/UuiTg/k9VjEoq6JMZLlwhRUPS4TgqdzDl1WmLLi5O5dTqeBX+vO+LzZZCdpwKOW/ur0CqCwJPfIoHfPCbtQiF4WH11vuyZ1hFKqx5bks5ucTc5xjRgineuoigK0YWogRs/IGOauw7WdZE3EjxS9SvzL17fXyKuS06NTbJahk6KbNCzqE8pBhSs9vtnhh3380ADfoFRoLUaGS3ZVxAgwlxJeiZG+i5Iy5HvTwxgTWtneC6kHZXpZgoI+grsHn0zA6oxyeJnOz6jyBUoHQswI0ZNioItdL/nRpCBTPmuNSDfUsoFQPRAkWJEx5hwcUiRCWk4qEyqJmbbqoA6es7njyoWc4JcBFAGSR+k+6TY2Ytjfx3AH0foSoiEyFlAMjeoMQ6vJkkyiVesJRqFURwxCgSbIpCekiDFiGgqQkhMQopcVq37OTO8DCAaL6cG9HGM0xuYkDMk7XEqYfNQHTESii8JwUVIw5pkGk4g+SFPXS+GsBUcgKy0pivTDZnKlUoyoUho6lHjyLVOCSaFvzuhDSxC2Hqmn4M7wYd4zNy0hIf4wSZgsLomsNkXIrEUlaDuHUpHMBoRxJVJr2ZQU+XibfDAm1gsxHafp2YOJlDzOSSkyXN1hdvYQYwHEoNxoEFg1SiJdSuS2IiVF5xf0Kxtlfd/TCqVaLaXeXUYXDQRhzUUC9aIh6RKtGqpSPGCsNVijGFeWybyh6WAl01SqP7irRKNrhoVCNdB0nmk9Iy9yCquwxjLzHc53KGTCeLaYMa0DH//kZ2gWDQ/u3iH4hNUCdhdVhncJgia4xLAsaVPH3HkaF7AmR9sxO1dfYOfyNVxbc+HyDv/xG68Bjxv+80K5B/4UisWsRsXUN/bSsN1/cBdrc9p2yud/5Av89Z/9O3gX2dlZYTgecHhyTIyJvb2HXLp0BWqHyjSzbo73E5JzaFVy+akb2Crjs1/6Ev+P//v/hft7X8MHSf8tV0qshUHrOKwdVi+bdoVzItMJIXI885S2Y1iV1F2Hc0E2dWUwvedeXE7+bY9CxL7wV70xPImgFY3TdEFztkiQPE1MTF1kf1Kz983XaBYdP/7ZT7O1vsIrH3uOb71+m6OJw+QlOtcMhgNefPEFVrYu0zQz7jx4xOnxGaFTTKcnVCsVP/rUDX56fZVbf/xdnqwjX7r+DGne8B3V8H99dI83r11k+3Of4eJKhSpyMePW4nmaUiI35vxwTSmigrCAXYo4FcXUNkYImtopFq0ndR7tPYWCUiuUC/i2o+taKQT75/i2g9aRWoeKkSxECk/ve6XYUIonFNzMCz5dbXF5NOL5acPFQclvAL+yd8B/vbXKZlejkiFiQTl0fxhHXeK0yNOVMjitmKTEJFlqrYnKPE7cSolCQZUUBZCR0MmhY1ySXnq5W48yKY1aSj9jki1zeeiSer+fDqiXlBD5MhkxyyAvSaMBam0Vs7lO2NrGb22gti/A9iabG9v8lX/8f2LzN2/w+n/6/5DlJyJ/ItI1nlzndF2iDpFkDFmChRMbgzYBxuBCpPEZZZHAOerWk1vNyjBn0RWYK59n7dKrlG0inr7G4cPvc/X6J9l5+cdQm1fogiMblgxWR8wmFdZ1qOGQhdd0SuM9ZJmhdoFZ5/uhxrk5wbl/SqT3Ju0HHj2ssNwBWIZu9IRKYcJqTUqy9sTOAvH2OmfKyvennvUlbPkesOWxX9+ScX1u9XyO7mpImkUtTOk//uM/5ruvv87J6QmbF7Y4PNnn5//u36PtZrz3zttMJqf8xJd+nO9+63X2dg/xXSOAZoqMV1eYnE4ESFxOiVl6dCo5f0PXv1fx2ZNAsIDVBSur29DN+OtXt/jPqwHVW2+xOoauC+wWJf/i6IQ/wKKeeoJ8ZcjOlR20tRgguo7jkyOyIqeoSqbTKRsrK7Rty2QyEQlNbyexMhqSWYN3LSqKZBZrcMH1XooJbTNcCDL8Sv3V64HTYWbwnQfvUUXBbFELeBQiDQ2ZFdZeWlLmlBYfW8QLExL4KABffwAErfBIwu1jNAABgbViF0nLTSmweekKRZVjk7Dedb8/daov7hWURdHvtbJOgve99Fe8dtN54yHNgtQ7Cm1sv35NX1P6PqFehp9LdkAIY3kbXkDMyfGEydExofVEr2hJPDIZv6Q8ZzrwD7FsR4/XmixEFBmaSAGsLCLjaDlThsmiowu9gFwZpgvNzGnWvKJyibpReK8oy0ShAkMNV7YUo8yzWUQ2CoVKnoWH3GqUY0lb7Yeg/arX6nGoFY99A6UmErZVlmXibhlkOF2Wpex/Gsos55Of+Bwmdvz+H/8GnXMYD0WhGQwyTk9nxGjIipxBWXJx5xqL+ZTFtCECddcxr8V3qCwMi8ZR1x2Ni0xaz7jMsDbjdLpglBu8U7QBgk+0ykMMZJmY3i/qhhAjH969TesWNLVjdXWba1ducOv2lIPJiXjFepF/Jx9JsaEsivOBXGYtTdshhXLs15FBaxk4ojTBx8cBHFHWdZapPnRG9nzv3XnYEMGgM9gZlfzjJz/Oxw5zrq4X3Hv3fR5sjPjnu3f4dvSwtckXf/qLXHryCp7AqKqIzvPg4SOmTc14dQ3lHIUxfOqlVxnbksOTYx4dH6GNxUSwSeOVYm24wigf4pUXxtCSPZPEEshqS24yblx9TlQvRoBL298DKSWKrCTPC5QSNnyM0jBHBLzz/VmvQkJFQ+wSvvPUD/fYbFuIkUnbsSqUtp7x3m++PWvSBIftg+qi98LrTwnnuvPmeZmaG4JIDLW15KMRR2czDnaPOTs6YTadUuYl209dYzQegzJgLcPBgKyUdPDvf/Nb/IWf+RmuXb8i/qZK4XyQ7sYYkov4PgDKnzN9AmWZy/BBy5kSVeLS1ib3b93iZP+Yr5+e8bfyEdt1QvdnWkhJWEtAkyI2RgYRhoOSi1eHWOPpvOxBEsoZGI5zijIndDWuk75idS3n9NQTguJo2qG0JXphJ9ksJ/hIGzxP3xgxHCj+/I0JTR04DyBQyxAdCZ87mXpapyhzTVFqCgVrqxKaNV20ZEZhs4zSKhYnC7Y2Nrl48QI6KU6PDnn48B4hOeaTlnI4Qp2d8MHBPu+Gt7h55SI31rcBTWw7mUtkBccnxzSu4+H77/Hnf/JHjNY2efnVT/KZV1/lK1/+SRoP7779fd7+3vd47/138c0MpQ3H+/t8+MF7NE2D7zp0lrH141/i1Y+/yjPPPs87b77BjetP0M4XfP+N15lPJ0xO9nkn+x7jlVUuXbpE42TI3ThP8PDBrXdZXR3hHXSt53j/iEjEh4gxmiwzFKVlZXVI62RHrIoS1wW6eSs9qNX9niDnaAji6RhioOwTwUNIlEWBDx1FpbAmYQgsZh1lmdG2ArBaAuvDnMvXxmwPx/zC2nMMf/913j455p2Xr/Hfv/kGp0pzaWOHoipwawWf/NQnGFUloYkcT48ZxBHKwGw6pVssON57yKxt6bRl6+IFFqHmwYeH7N67JyzTp5/jrXv3uHuySxc8ug2kpqWez5jPzljMJnSLmkePDqkyC11DO6+JMRFpcEqxujJkZVAxmzWooGnnNY1v2RwOeWbqyYIikHEym7CTW1RIMlzvz/UYIqdGpMpt17E+GEllYBR5kWGtYemDubRhib2S6JxscG490YNiqh/YarGIWNZ7S1LTki2nrCVDrEKappU9zghAKFtUwgdP3XbMi4IUAge3at7qptxVnq3zumQ5FuvrD3qFSRI//tPUYocZru2IHwlK863DOd8TfwRYDH06burVktaK72wd5PvIDNO6Y9NY9hCWpbBNVa8KFZlqMSypVoYooyhHJb7zzCdzeZlO7MuCjzRNP8D9IR4/NMAn3jXLCb8wmhS6TyWVDzdEcCnReKGCpyh+a9r4HlxTGN1PfI0hzwxLmoDqD5CoV1i7/CPUzQw3+4DZ2fdRKhKSADI268GumPqgD43SgswvCyXTNxkpJYTQIkV96hNmz+VACjIEQPPe0wVN5w3TGbgWnKsp1yrmc8/x6YQyM1y9MGCQQ2al2ANhChllaNqG2lu0rsDVMOoYl4nFwjPIBChQaRnfLZtYCh6Slz5TWxQaFyKZCdieOYVOeBf62LSEMhoXDTEZ4a1E8J1Mg6PzaJvIMotVGSn2vn/nHoT057oiKwoksF0TogESOhuLdMokYpDUMaN0H+0uNNPYg6tKmR44tBiTIGT45MmyApU0MYmpi7FjSBlaOazJwEVIAuClKP5SRhuyQjwNXSpZ2VqHpPBhis4MqetNrnWG7zxRlRBLFtMDXOvZuKCopzUuObQuZMqQFDFYinyNkGaQDEYZVGowSRgaKSla59GmQqtVjDaMNwa03SG+2RcgIARsJgeJMhlNOyd0HpUssT+wV4aKi5uGQmvO2tRPSBPNwoFRDIcjrO7YGFuqMuITqMyRW0XrFclqdK6JJHKroMiYnM0lOTo3hADVcExTR3RSHD/aZzadkhOxgwGTswlBg68bVPKyQabEoCrpZk7MQn0kknHl2jO8/NnP8s6bP+Cn/+rPkkLN73/zdQHy+ib73Ox6OamJIhtYpmIui2dtcjHlziyf+/RnqE8nPDqbMhgVPPnUkxzv7nJwesKbr73BZ7/4KWLdsXlplXd+8Dbf/e632dlaZVCuceHiddbHG9x85nm+9ONf4fat77F/VlMkz+bQkmclZ+2M+9qf+/Io1ado5QarE6EN5GZA8IqoA9bEvgEMKGUgCmAZCMLm7VO0JVCAnjUqm3znE41L+NiRaYPWGfNF4nYzRRnIc8P37nzIX3ryR3li8CTffO19xoOM0chSDQte/NjLbG3vcNZ1vP/ehyzmLbQywc4GOZ/c2eYXhhe490c/YDN0/OiTT2FT5HVT83++d5f7rz7D9c+/Qqs6OgxZrsXMViFm4lHMgE0/OIloYlQ4oA2BRkVizITdqi2GjLyX+o104vp4xMXxEIKjdg0tnrprMSaT/TAIYzU4ibiPXQAXiI1nOl1w+2jKN/Zn1HtnbJ3e4R+kVf7R5jajgxN+olL8D9OG13zF51TBMDgUHUlFolegDUF5tIvUJuPP2shvdfBubphbR/QCKOU+kqVA4SNFiBReOMMjYEXBilGMjWHFZIy1YaQVIwUrwMjAAEXW1zI6ynvXyZzT94Vq1jOEiSTdoBsDZg6zUzg5hr1dWHtIXF8nrm2SttZhZxt15Tpf+Kmfxy+Oee3P/x1tPcMqJcEJSIpeQGNTYDS0zI490y7Rdl72AA0WTdt51gYGHGi7jDGx3Ds84ogDLl96ijkjGFyhXXmKYuMG5WgVnwILk1E7DyrHpwS6EPZZOUDrXAYWsUVVOUrXWLtMjRfpRK+u6M+D/x/K3ZL1QsKo5eBGChixyVAs0cIU0znbbQkigjASJbhJn9tILA/px56A9DiVefzXqQ8iCPI66+lc0jcV+MWM/fu3+U+/95u8+NJL3Lr1IX/4R/+J7e1tPvm5z7L/aJdvf/ObxBjxXWQ6nfZSTnm5S45UG0VOYZLq9wVNUmIvQQKblaytX8BNpvz1i6v8l6N1ePM91ldyaGHPlPyzwxN+NyXSlW3W1ldY394SloaPuLZjOpuitWU4HDGfTRhXFYnE0ekJbduIR5RzlFXJ5sYmZ5MTUg9Am0Rv3yFrU3xoE0krdIrk1soAo2cr+igMNGuNSLM7J41nX5yqJPLKtvVENFbLECsGTwpyL0QfBMzrr4NDE1UiU3wEVOwrKQ3N8opqxXg0JFMKo0TyYqzFGkORF72vcOgn4qEf+mpMJg54PiwDsoTNGp3vGfay5qy1hCAec0kJ889mosQIIZF8kGFmVBgrDHpvNXmxyXhjzMnuEZOTCSoJgDbXlt/KIgMH/5CMcXIyqIwOYxJ5UIzrxGhuqFMkJsXa0JJlirMzj1WRykjy6dnsIyBLE6nGBh81DycCLM2dkSEnhpNWMW09YB4D5/17lNZIndfSS8BbK3rz+4RzEec82opvsgS/yMO5wKJp+MM/+o/kuWJeewZVQZYZMpXwPqKMxXsHTjEoc/Yf3OfkdMJ4ZQxKcfLgITFC61qyLMcayHMBPWonqgvVD/k3RyXzxuNizwbWnF8z8QGW+jy3ltnpGXmRc3p4j50La9y48QpHJ98i5onJdE6MEKIASXVTA1KXnXMZUxQP79g3lxFyYzHW0ISOGOT5PopET+kMHXtpeogC8NDb61jD9azgv3r2kzxxv+Xa2pD773zI3arkfzi+w3dcTVxd5fM/8SNcu36FlGVU2QCTFHcePWA+mzMeDCmINPMFz734ClWe0TnHnd2H1DFgMvDzFhsyqoEleS8MQ5N6ObHsOUVRYLSiyHK59j5RWkPKFJ1vaNtaQqmSIrZzfGr7QXjqfcVlMGOMKBOE+RuFIaigq1v0/jFVD5BNkmdgcgGVU4Jl2F6vhjJBfM9Mfx92PWhojLA987zg5OSUrmtJKZEVBU+8cpNXP/NZ1jY2oJfZ+7rlwoVtVkYjijxD57mAdalnnGrYvXuf9e2LrK5t9eeLhMQQZaCvZeIqYCiS5uyikzNreXb0vlibm1tcvHqNs5MZ99uW74+GPL+IlCr2AT1iu6NR+B5oWEtSw5VZpPUdPsi9FAPM2468CmiVyMuMxaIlK8SXUmtPGxMxKuaLxLAqJFhEBVCWh3uJ2/dPcYGe9BHOmetLFRL9UELyc4RhtDrUFDZSZSKn18ZitKPpWqKCyek+84dTOq+4tHOJtZV1Pv7qRYxVPHrwgKbznJ6c4p2HKMm+Slu01WRlJmxEClZGI/Ky4vjgAN96pvOWw72HvPaNP2C8ssLazjM8/fRNfvpn/hZ/f3OLw727/OCtH/DWe+/w6M4dptMz1jfWWNvc5HtvfIfoWs6Oj3HNgsPde9x6f8psOmNydsLG5pinnnyS48NDrl2/ytf/7OugItF7fBdQxhOjQeOxWhGck9R6KwE/2iryKmdze43ZtOXylWugPDFCNaiYzRbiYa6g6xqMjb0MUlNkOdYqfOh6vEJAEFsYyrxgMe1QClrnmC0khGJoCy5e3eFCtcE/WXmBlT95i3ePJ3z40tP8i/df5zBFTFFhRhVxmHPlxjViDHx4+z2KYsDTr77Cowd7nE1OON7doz05YbXKeXT/ProoeVt7tp64wuJoxkpR8vInPs67+3u8u/dQLDdcgODRynPv1rvM9w85PT0hLyouXn0S1zTc392lmc1IMbG1s0PQmtnZlHA64Wzesb6xIgqu4ZAiWp6NBURPsIFHruH5ah1iP1Xrh3U+BRZWsfAdXYxUw2E/zBWwynlh0ZEgKbHtAvk19SD8kmhwXmiBKHN6nEWeJ92XD49xGPrQTGOWZ6LYuEj9IH75OljQBo/Cr0fMYMDpfMJ7acGr2kiQDZAQ31AN58P81PeyUWmapqPtWow1lOWAGETxshy4LG/T4HuLM6WoBhWS0AxGW8qyxPiOyaxhO69QjRCbjNUYm2GsgJc2E13m/uERKQZKU4gqBE3bD1zmZ3Na5+kudfywjx8e4IsKkkHTG3+2kZg6Ul/UKSXNv9EKY8SoUlmR4Zg+bXcJwCkEIAwhoBE2mNIKowv29jW3D27TzGdsjDsubF5ApWMyrTFWACajjFyQsPTREj2380vNvpENV0tKLGnp+5ceT35jn4BCJBnIco1tEt41pJBRWsNwUJKZRDnIWa0GWBXJdSBFQ7Q5uj9oFJ7MKDaG0HYNKdWoMoF2zJNhhmLhHat5xERDDJZMywTP+YhV9Ea3ApamFPDREY3FO0OInhBhMe8oBhVER2lLtKrwyZE0mEyTGYPqmWiS+ipeEyFqUi9pS6oP+Qg9q6O/+axOuJ4qnXwUX5ioMEYQfAnzkJAJhSbPhTGpdCIpQ8Rg1QqlSngsMRmsVjI5SyUD63DekWU5wxXLdHIk/54dUY22iHja07ug5pgIvqlReYlrW2znJU0OLVR779AMuHficG7IrLGcHhnGeWCUzzF4sBGiMAWJY5wXX67x+haLyYKUEuVwQHNyF5gS/JSkGkia2aknpgVGSzhKTKovUCImGSmSVULpIEzKAJnR5MWAmBpWSpEduFYYO6o0xNgx3tB41/KduePCyGA6x8UiJ0aYuY5CC+g7qCpcgu3NMfNFg800dRsp8oI8RlYGJbODAwbjnNIWTOYtmzsXmc4nqFTjGi806cLS9mB7hqWwJfM2cHp0wp/+7u/z5Z/+CpevPM3v//pvszTXj0ueTQ90nUtlemhM8pwDympWVldISTGZnJKC48/+6I85emaX1nkcifHKiNnklJPjIzZ31lhbW+XO3i20Nbz12l2++d3v4rTDt4nVtVWubl/jp//ClxivDFldXWP3eM54JWOYWabzGp08bdvhU8BqgzbCajRJsb4+4vT4jAtbKzz79DP8wR9/HZei+BYmdS7nluO/p2L3GP3Sq1Hk8TIxjl4KsxgSfkkC80lk8j7gSewd1fzzf/NrXLm6yXHdoMuccm3Iiy8/y9b6JWa14/0P71M3nuP9U6YHE8pRxQuDC/znl26y/+a3WemO+bFnbqKD5fthyn/74B53Pvk8N778CWbNAl/X5MMRplB4F/FdR5lbCq1I0VFVJZpIORxw1jRM5zV1DDiVCFHeZKY1Rns6EpnRFJVlPDRk1pOVhtAZOuclTTz2RvaZQRHJKcUmTyesNuQ2pwmKwcmC4fEcf9wyebTPP3vtTW6myBdWVlifHfKJoea7p2e8uHGBovF9irWcIRHQPnCWaf5pTPwv4xJXlfimpQvduVxP9U2B1hplNbbM0NqeWz9IkI/pJ3ZAVJikyF2iipERnpFKjFNiVSvWFWypyFZKbGnNplKsJE/uZcggqaMBrUUiphdzmIGe7KMOx7C6hX+0Cg8uoB4cE5+6xme++He5e/v73Hv9z2j1/5e5P/21Lc3v+7DPM6xpj2e659yp7r01V/VQ1QNHiaJEyWpZtKHEhhVHhiwnAW05NvIiQP6CxEgAJ9GLBEFiGUEQxAngIHLEaCJFkRTZapLNZg9VPdRcdeczD3tcwzPlxW/tUx0kMGwwL3wa1VV1q+rcs/deaz2/4fv9fA3jkaZpO4qhJTWiku68IrMK03pGhaY0id1xJhZqpVn4yMXK44gUhaZcLQgX32Hr5pK2WTMdJGxRsIhrmgi5kVSystyi0dvkkyvaxQzvA03UDKshOgaSMoxtSRsmJK4wmWYwqAhBBig+RLraXQddJD4PythII5VS1wovsUt+3rBcJ+H2tuvN0E5p+fXYKz3U5zJTeZ6Srn9to+zbWD42RYJY53s1oEoEL9yUtu24vDjnN/7Jb/De++9x78UX2bu5x4cffcJoOmFnZ4vRdMT8ciaKDL/5edW1chEl18kG9sxm2IvYQoqiYLJzg/rqgn9zf4tf2x4Rvv8++9OKLAU+zQz/x9kV/zhGmv097ty7zXhnmyY0+MZT5gWz2RptNNtb28xnV2yNRpRFwcnZOev1muA6QuvRwN3bd1DKslquIDqszkS9YTQEqWeMtYTQP69QFFZjVIaPkLQU4W3rULElzzJC3zjqXq2n0RIUEvslBjIc8zHhezWYcp5BEEsqUQr0CJRpY7HfXCfyR9HfdyElct3jWtSGgAhN15GSNNZ5JlxeEFWF0eY6JEs5GdrJMFhYrymJVTjGKP9d6q3Bff1RmhytFV65fkRmMKRe6QVJi8ogKzTbt2+gi4zL4wtUj0BZmZzfDA1fIuOXg8Nri0kekiEjMUmR6RLQiphLyrH2iSpLTCpFaYVR8ezccNl6VB7ZLg2TUrOsI4uZw9iMWRtZdYqVT/ioQOW9WyOw6YRUH3KiSNcuFK00mTWSio2SYKQu0IWA6tXroFgtFgwHIwmaynLOrs4hBap+oVdlmiwp2jailSEv5Jpw3nN1ekLbChtuazphUA1BqR5CHgSivhHVRjBlyWq5lLPUeIYDCziB2ffL367zOB/ICkuKHueCDBe19AA/+MH3GE12eOXlN3h++Iym7QhRbGlJJbIsx/ve/dM7LEjIABcJjgtRGnMTvCguYpJBSs/rCnHTQIJIRKWGsyrx0mjA//jLP0/5kzn7t29y8sEnPBrCfzJ/zg98gx6PefNn3ubOS3dxyIDItY6nR8d0wTOZjEXJ6R13bt9mNKp4ePaMei1n77xZYqwidB0TO6H0lizPiS7KsLxv/IKPZC5DRZgMBmR5Ruc76kXNfDnj6uKC5XxOiI69/Z0+zTXHZgWD4YjhcEieFzL4buVaSiGircV1kc55QnQ8OL/CpIROiXnnualtD9dPwuDrxRIqKjLnyaNChXA9cFZ9oz+7nGGMoWlqwfuEQF6WvPLyqzy4+4DJZIKxVu5hLcIP5f31uWL6ARtG1Dqu6whtK4KRXjgiA76eodgvIzei7p7GzmIxpyw3T57N0FmzvbeDNoZV3fBedHRBUfR9VeobeEM/y0yRvahomyAK1SjBdkZDEwJdJ3gfbWG+7khkMpyLiaKwlGVBs44oFXABNIamkYTSzsFiHulc6BdoSWYc/YIMPn/OKaQmcj5xdhWocsXaBdbryLpxvWLKC6bBB5rlCh8iV+eGq7NjfPDkZcHezg6vvPISaI1rGpaXMwrX0boGZS2/8ud/lWAMH7z/Hh88ekyzrFEomsZhk2a17BhPS7SCn/zgD/nBt3+Xvd0JW5MdXn3ldb741tt84xt/DmMrDp8/5/TkOYenp3z68DE/evcdVqsFset4+OnHTLa3CaHh9Zfvs7e/T2YL6kVNt5phUmK5XmGNpUuB0WDE9vYubXMmw1MgeYfNoChyDvZvMN0a0TRzhoOK/du3+OCD93Fthy0qTGbpOk+e56ChKktSDBRlQfByjfoUiDoSUsfOTsV4b8Lhk0uZOShD09c/k9JQjIdMp/f4W5PX2fnjz/hsPuPTr9/h//boYw5bj/MwubGFG1e89oVXODk6ZGv3NXZ3b6Jzwwc//BEXp5fMmiUXx6fc3ppyfnxBmef46Fld1uzcMLz+4Ivc2Ntj5QOfnBzSaa7Tpq8uzlguLvj0Jx/ilytiCOzfqsiV4uHDh9TLNRbh684vZmBkcbHuGqKHxdWCznvyqmCcaR4ELanZ0XPZevaV6S0T/Rmf5Pz31uDaFpKETIQUsVmJzfLrRRsqCQKlv6tNb4Xe4HFif69vhmqpX/xc/3U/XL8u81IvFFMKozehWZ/XlsL3TyQcvvYE14E1VKMxi4sTHsVAJMMk1z/TVI83o39wbH4iIEYiwha2Rsswue0gRUyP7JGU8dj//vJ8cV0nar+8wOYF5XCAaRsuz1bcM4KsC0pjqyG3XnuTV7/8Jbb2Dji5uMC7OScff8CzDz6kqxuS0bKQDP0zwSjYJIj/Kb/+1AM+7wKpcT2kW8Deos4T64Lpk9rkvRWJJb06LzphqBjTTzt7Dl6eSyKuxhJSosgKRpUnj48ox4Eib8h79V8InhDEfhFjJx7rXo3g2ZCa+2mykrhkpRXoza/pftAIxNRvOMQzHpIiRUk7PZ037GxXFJnBYOQD1galHFoFFFo27MjQUylFZnISEHxLphMhtrgovJ2Lek7dNezujmiSIcWOzIpNNdYyfOzwqBDxTqDCREVMDmMC6Kxn4YHNcpraU9iSEHPyctQX/2Jj0UYJm8qk3roAxhqU6dDGSdIQhtb5HnTt+q2UJUV5jzGgY38jIvLa3Nrrql5u3lxAmtaDj32KsUHlY6wt8PVzlAk9/yQjHwxYrI4gBRplMTqTwiRFfLykaS6EHdReolLXp+5BNBVGOZJqIRl8kOm+1iVXjeVM32FarUnK8XBuSesFL+0HdrMnpNRgTU50S0lM1hnG5DTnLTpGoo4sZ5qU1thCBhgpNP2wuUOnKAMSRKVHDBgdIbXkmaUoMoIPOCdDoMmkYGekuBqAyQramWcwNAxuGEI25NnREctVTUyalGWcxESWFKtOivjoDZPhkNp5Utuio6eYZCxDIxySlPDOsVw0TG7vcufuS1ydHdEsF2hbsJwtUMELMyVEXOvwzhGjDBeUl8H4gwe3OD2fYWNDWMz59EffZ5g1MsHSnzPQpHFPvc1dk5QwMFNSuDaiUKwWa9kmK7Fg/vH3vsfjZ8+o65a7926ilAMX8KHms48/IYuOQo+4sXeHt77yNR6efMB7H39Avfa09RnLqxkXl88oi5zV7BKVhP8YkqIsDGNtyQpNV4vSpkvSWLjOc7Vs6bB8enzOogtEI017rnXfFIhGySD2F2Nk4JACxD44RlsBTxsloSWmTydVWoabqk+ujb4jesPR2aUk7S7WFGXB7vY2X37rq2zv7OK84+Gzx3i3YnE6Z3m5Zjgdcy9W/Ad7L7N67yHN4py/cvcBQzKe2Y7/5aef8YMX93jtl76Iob8Ps4zaB9pFzWBQMhwWbA1KxloxzDIGZY5zLV10ojLNLNbmfVGtUL7/Q4taLTOGwuRYZfFeng+d14QoB1VE1E6oJCyLpMB7dKYYZBmDqmDVNlzEmpN2QZZpqrv7KPcGv/XRQ37h5gsU9RWvmY4/6houB4ndWkvCY5Gjk8UESYD+zRz+Xqk57xrsfM72zZsUagw6MRwMKLIC13WklFjXK5qmoW1quuUK19sbvdtIszRayaZP98iGIrfkRYaym22iXNdFSOTOUznHVogcOHghwT1tedFabivFdlLkVmPagFqu0bZBX62x4xHh7AJ9ckI6PqF4/RW+9OZf4P33v0vbtSzXipVTNE3Ed9Kk+y6QacX+RMKoQois6oBvFbtTTa4Tk8qwdqKmnjUenZVMwoQqv4dzc1yKHJ1fMjp+jh6M2ZpOGe3e5YWf/++QmgVBJeZXl2xpQ/QwGGTUV2eUywuKlJF+//+Md4HlYo3SSmwXvf3reqh2fe9vhnfyN2mTSH49kJOhmFh1ZdChlO6HFpva7fMGMW0Wudeqpf6f9ap+pT9n78mX6Qc6fYBCv/nU2rBe1tSrmuAj7/3oI95//xO0Ae8cn374AcfDEXW9onUNJIXVWa/SlQFHihurn5z9Uuhzbe/O84rJaJf24oK/sT/ifzgZsPrBx+yOJ+Qq5wMcf3e+5J8GTzPd5t79B+RlQedbSlOiQuTyUngro+GAxXLBoCqZjkacXV4ymy8IztHWDaTEzt4u21s7XF0taeoGRSDLJPFS+X5ApiRICK2ILvXcY2HcdFEaybrpxLqa6Fl1HqMzNmnyQSm64HC9QiaEQNe1aCsDh9T/N4P/j6Av2YeXG1JcX89tmtZdrdEBCUBLGk9C9QwtpYR1Kiw9sSIGH8X0oHobi8iPyTOL8r7fusvV4ZwTq47W5JmlaaO8tn7Dr5TwnCOxxyt4aUqUxhiN73EnRmmSCUy3xwTnmZ9dyVBBKc6s5f/lPF+0lv3gUChslPdqoBLT1jNShmPnybzuPxPPjSHcqGQgUNLxbB5ZOsswU4IfCF5Sd5OiyoXha4OoAIKSZ2Ho1QtGGymtYiSzGq2z68W11YaQAqu6EztrkBMsxkSIsqDtukhKCitbYjIravMUAyHCl/b3+Ku/+DP8/W/9IR8enpOMpBCvVg1dEOB/SB2zxSG5Ndy6dROtDU3d0KROfk4r7g/XtBglSbfLZU3XGapCs7M1ZrVqJBEaEV5t7LJt51Ba4xdrRoMc5ztOj59RDAq+/NaX+fiTj3n89DHGaIrc4H2PvokBUiC3mSzUepWn1YYQJYhFWdszg1Mf4KcxPZeQ/hzTWhw/mda8vbPN/+RLP8vwowXbL9zi5LPPODKa/6w541062gQv3b/LV37xa7gUGAyGNF3Dk2fPiCEwKio616CjYlKMuH/nPheLC1au42o+x61r5rMFq/VCQvqaiBpY9nZ3IcgCI88zjJahpOs809EEvb9PXHk+e/yQk6NDunZJ6OT1d13LcrbF5dWcu/dfROuMyXSrt/0XmEzju4S2hrLIsV4s3CEEmtWanaslJHG/zL3j3iAXNM51Ld8r22NiHFqKGCgyw8pFXnztFY6fH+NcR9PUfaBN6tVVBuccLiTG06lgGJI06iGGXpwjw34f/eeYhijOANe1PQdVhA4pxh67reEa47Rh68ogYr1e83v//Hf48ttfYf/gJlZrUhTHVlVVcr5ozadNTacqUgqbU0vupz6wz6nIDTJSHXBhQN21WBOvGWGu1XgHEDi/9GgHRS417mK1Js8V2ETbRELS4l7qf5+iEJRVlgnPNXjVY4pkwKGNwijd91SiuI4xyOCk7RXyqUdIKIU2hrYNRCUM1aYL2NWSKrd0XU3o1hw1NU+fPsPmhoHNGeiM/cmElAoWy5rf/ebvszUd8+Cl13nzra/z+PEnfPj+e1ycX0l9FSJdFzk9vWC5mIvwZF2ziqd851tH/Ml3/5CdvW0Obt7jra/8HG+88gZ/4c/9CspkXC3mfPbpQz78yY85vzhksjOkns+5ub/L1o2bHB6fsWgWPHq+Yu9gG3dcSz/nWrJizMX8irpZUzeB0WhMCpHRdMSNW7e4+8ILfPjeT+iaNQpDev89To+OSEoTopcBk9KsVkuK3JJUZDgeMF8s8MGTqYQ1Cm0zdvfH7O+MuFp2WDvq8QaaW7dH3NqZ8MqDA3Q+5c83Ix78yae8uzzk5K37/OeXZ/xo0dE0jsneHtsv3OHuay8RdeLFV18izzKUtbz/8Uc8fvaE3Z19die77Ey2uffCPUpbMhoPMEVFOd0nGk2WxAp7+PQZ6+QlvTm0dPUSbeHpex/hljVZUmS2ZHGxwLUf0Sxn+LbFR8jzgqIspX53gTpFhpORnKV1gy0y9jxsNSJSWTuHU5GBqJqg58wnICZB2nShAWsweUFMQUL7sozM5iiVibXWtWTGYLOM0Ie0xRSuw9M2TPNNUJLaBGb0daTp0+Kvbb4+Xtt7ZdEg9UcIXs6mGFit1zSrWpi6KMygImrFWXBEXWJC6uePn/8Mm1mhStLDpiRp9nmRAdC17fX9p5SWhHi4xsdtvkJ/7hilyDR0zrE9LLmy8KWk2NnbJd+f0jrF3t0XWLWOsutYzC85f/4Ed35OcqIWdaHD2gKT5YKLIVGWBVmW/X/N2/7rfv2pB3xZpjHSKaHpi+W+ULfKyhsaUr85hpCCDNX6ZsJoUfeJ1dTjE/gg03OjDYqMejljWGYUJFJ0pAjrGmJ0KGV6TsvnU2DVA1xCki2OQV+n7hgtG+OEMLpAVHxG0QcliIovKrDK4D04H+m84uyqZnSw0x8eAWOEb2JUida5KLkwpLyThMi0KV5NL6lPtF3kMkbawuCTZ1mvodNYMkZZwmQZBoXNNBFLbi0xVxidYTaMwt6WY43BFJnYDGyGc9LIK4UAuFPC+Ya2bVE2kkKLItJ2kXahiJlGaydA6qCZLxt29rYoK4XyAZUEppuM2BeL0mK1QJYHgwqSkyGZS1iV0zZgiwKjYbVqZMuqNVs7A2JShNUFKjg6MyLPtulCR92usCpK06UKQgoSqJEs3arpFZYdKgU0AR81g9EOsXP4riZS9Mlu0qB01FSDju0iYJpznl8uRZ5+AEm1hNgRfId2ntxmKDUghpo2KDLt8EmRUkZSjqRyVDQE3zcQ1x2pRmHZ2n6AyUc4t0CrSN6syDLhGTknD9yUWm7Nlthcs1g7/CRnOhlweijJP3mZYUu5H5QTCLdVmqULlGVGNRiQlZraJ5KybE0rgqqZjiq01visxCfh7ezcuCeW0S5Srxts7tkeDch1znIeiMHh2xarLbqH4Wsd6bqG2dmMUZVx62CH3//t32UdPFmZs4GeG9OrJTZNvhZ1YoxiEw99UEnoge0bOXUMkaWvefjssRSBZeTHH/2YrguUucYFz1GzorJDvvz6A4ZlxZ0Xdvn004ykFE3XMHOBujkTzl+vqlsqz3zZsr81QHcdw0yTqwF1SBgr6gYdFMvlmhgUhS04OTrvuUxyqAhS4fOxw7Awcu0pg2vprSMRbQ1ZbtBGE33qi4CcIlNsT4ZU1Yit7SmPHz6kdYrLxYwst+SVZn9/j7e//CWmW3us1zVPD5+zWlxyebzA5jnZpGDfWX7tpTfJr4746PTH/LXbr7DDNifR8b/+9AO+uTfhhV/5CrayGB/AIAN57yispsg1u1XO/qBgai3ROVxX0wVPk2BZdwg2Qew+EiyUUFkiNxlWGTKlqIwm1xqbZBDsfBAlNlaGhFrjI3RBZPl5nqGAzAiLs209deMwuWVZNyydp5hUPDaGpDWZggmWjMCFD3iRRWJzsUupkFgZ+PtJcWU0ldb8pb/+N7l5cMDy6Qn5VsX56RmvvvoqJ8cnfOHNN1iulrRtR1bmHB+dklcVTx4/QaE4OnzK1fyM2eUV7XpFvVrStAIddmctMYiqRGtpOsWfLcqK0XBIOciwWUGhDfmqZjpf8tUQ+IWs4Ks2Z0zCpjVmMcPOBpjBnHA5h8slYb7i5S++yP72HnH2lDoqklO0nWK2CkyGhiqz6CRnS90pQs+OCjHRLR27pWU6LAi142wtqVw3tkpu74w4ePkBrjnl+QcP2Z5sQ0qcH1/h1g2D0Rhd7VDt7IOxDPdFDVMUBb5rKLcvuDo9JNYyvAg+SeCISrju86RyKbj4qa2qNGem/7xTUoQoKgQBEW+Geb0Vr2fbppD6M7dXKfTJ1eLakKHgT1t9tZHhT+zTrLWGPLcEF4h9iJJYsvpho0/9wFGaeN86TBC0RIiBi7MZV+dzsUjoXOx5QdL04qaqBeQYEvXKZqyYkqcqK6pqSrtc8G/f3OLfH5Sc/fghk8mAUaX5Udvyn86W/G4KdNMtDu7cEaVKbghGEROs5ktQmsnWNov1nEFZsTueMJvNOD4/I3QBt26ILmDKnNsvvoRPgbpe9EFhkTqB6RtBhfCylNZEF+mldfL6vVg2I4auc0QiuRY1rgsCqBfrokfFQO09rRcL13XwhvdsOHaubdiKHh1lGx+SmP+rntMFovRJknTDTYTJ2caIcx1FMBDFSquRZW7olwpN5yAlVK9IDFECgLJMmDwbRiq9AiAmYQOBDCzpzyeFqGw3Vh7nN7gGqVNDf60ppa7rQBCu1vbuFl3d0KwaUbCajB/GwDvR8i8p4QEKhkZTpsR259mNGefG0DmIMTAtpUFZu8i0grs7imGhOFtHmpBofWJraJmtIgHH7riEmOii5qrWLDqDCxYXPSqBNfJs9SGQGQlDQys6J9bj1CsjUOr6dcnrTT1fVvXvXYvRiTLLekW6xsXA7WHF23u7/GBvi4+PLlFa0XYdq9bhXEeIFhdbUvJ0TvHs2TG3bu4zGQ65vLxgMByyWq1ZrBsgkeW2D8URzqczGlTHcJjjnbC3O9cSoyezGhcjLgQqbUghMR6UrNY1q8tzfvyjNW+99XO8/NKr/OSH77Cq1zR1S9s52i5u2jSsFrFAJGKS3BdRiVDA9+pSQQbI3ayVDLgUssAqC80vvvoif+vBa9x4f0ZRTGmenXI0X/NPKscfLC/Q5YDROOPGzRuYpBiPt1iuVxw+f04MgdxYYdERKYohLz14wOHZEclY5qdXfPST92lXK9qLJcGtufv6ayzbOUfPnhDmSwbDIYvVEhc6XnzwgNl8SZ4X+LJiI+ZcXpyzvryga1bUq3U/HM04Pb7A5BkHBw5lPXVtiFTMFpcSQKEsxyeXYDQHB/ssF0uSi+iuZn/VooIkx9Y+MDCbjQvXjbhOwuCeAqOmZZgXnDlHkVds7+5xeXHGcrm85mJt3mPnPZ13dL4DFJnqgxWRhXm0cs5dK3OinAFt5/EpEKzY16UB39Tbm68eS5AiAfmRLy4v6NqaZ0+ecGP/5ucbKRTablBEmpMYaAkyeOiRHEmM9P3CKTEhkUdRlwafyAxY27OlvWW5ajE6oEMmHEgtjMAYlCxGjSHLjAzro6iAFFJjDAaKdZMo81zYXXWPJdi4Rfr3TiVJ1t2IKbyJxLoT1rjenM0a0Gzv36FxDrtsUDEQQ6/8iYndnTFnlzPoPHW9JmjN7Z1tCTfSCR9XHD494fz0kqzMuPPCAb/8y3+eMrccPXvOhx9/wmyxIAQnTOuUMKbA5hWnF+dkXcfedMQn7/+EH737Qybjinu39hlN9tm/e5+XXn6Jf+Ov/VWqwTYJOHr+iMXyklpbnj6/IjOao6dP2d7eYVKUTCrIjFwjXX8toBPFoEQXYAtZzB4eHnF1KTiL3BbU9VOa9QqVZEnqettoWRQSagT4TpA6RZZRFUlUt9MdptsTxpXl5f173JzcYm+7pKhAlVOG27c5uHGf7e8+YfbDb/EfPf+Qx2/eo9wq+ORZjfctZmvE/Z//Mnce3GE6HBG7yPOjUz578oQ7N1/gzbd+hhtvvM7+9h55stR+LQzbtqOYjLiYzTlafMTs7DnzoyOyxvPpxw955StvM35wl9nsDOUjy5NThvmATlu2BgM633F6NUdnhu3pFku1YL2qgURTr8nyXHj9KNbLJWY8YTGfs1vd4HYTmPgEKnIWHZWGIiZIHvo+r7+EcNbQtrHvHzQORV4UfGF/h5/bHjJREu50EXOehCHf+mTFqtkofekFQBsXRupVqvTzIohKasnNmbVBQaW+xpPdYbpewMYkS9tmvcY5qdtMf7abLEfZjHVXEz9/YPC5fnCjOZRFmU7yBDBWalfXCYdPG6Hcam0YjIa0dSM81/7nktojoVSErqMOkeFoRCgsS6NQPrI33iHsTnGzJR//5PvMzy4xMZBriN4TteLmq19gunOLi0efsZydYPJEVwdaJ0PLjWL9T/P1px7wycpHrBWyGe8TS1NEmXQ9wdVms5GXB2znggQ0oFFGin+lkhSfQb6nNRbdy6iXzRqSsFQICaXNNU/Iudj7vT+XOxutZUuvZLCnUs+5QJqLzZBMWVApoqPwUrQ2aJsTtVyMnY9crWq8a8lsAThRANkSq0fYFFDaoXWS7bDRfcNo5BDRfWqT0mgUZRWpfcPz+ZxSRSIdw3zAqBqzl1fkG4tKhJTENqytxSiF8zUpirLRqAwihGCINiNGTbAe116ilMOlTphhztEFeZ/RG2m8xidH0yV0YQjBkaJhMMlYrS9Zt7JdaltHSpDlOcF3ZMaQZRmZsYTVEpsZGbokQ9c6Upd48ukh3qxZXjmsiowmQ2bn38PaFls4YrRotaAsIs6tSXT4lNA+4o0Xq40BHzw2V7RdS25Epi2KiwDB4X0nFqKe/G36puT85Akm8zwvYW9nxMFoBXGJ8oF168hzGQx3PtApKCpHTA4dc1CeaBw+5RLCoiHGDmwitB3ONfgozURUhuF2RVluE3treD7IRNGXlyhbo9waFQtevH+PgwNHjJ55rfnOO++zVopsHNnJrWxdtIKoyEtLYY0oU8io8gEo2OoKUuhofYPOIgTPZLKN84bLdctgpFmcPWO+WBFcw/zqgunONsvVima5Ji8snYtk1Yh2vWY4VMQUyEyJaWA8HDEcDYmhQ6kZoyyye/MFnn52CUk2Fp8XcgljbF/YxJ+C8SMMzEyUulorVJTGyPRAhsuzK0xmIHasVw6tFU8ePialyNXVE1TyZLZif+sGbdVxeHGCCxI1jpJDwSq5t3MDvvUMlOZf/sW3eOVLb/PH73zIt7/zJ6zagMkUmdc0PtJ5h0rS/GR5RgoyBFcpynZLafJSiSIkM/hOFgmyOYaoEiaDrLR4H3BB7q9lbbmatzRdTTHKWF6sMZliul2ys7XF1776s0wnUy5mCw4PT5itlhw+PmaYjalbx3Se+A/vvMxr8yW///A9/tKd+7xU7jBTgf/No0/5x5Vh/xe/yM54TBkV69CxaNaYImcwKNkucl4YD9ktM3Il900bPV30SJyNYlgUZFFK2WjEChlUAG2xSpErLRbWJJYP3w/xnYdohP0JgSzXZEpDMmglsOphaamMpXEBkpbDfrkixEQ1KHGdZpUp6tBR5YZiFZkQmTVrfKew0dMtO7J8hFJwZBSfpMi6S/zML/8SNhuwv7UFswXj7W0++egD5vN9Xnr5AZ3rGI/HGFtzfn6GUZGbezvsb+9Q5AXnly/xu7/322zv7fDSKy+zvFzw8YefsH9rn+fPDlEq8OH7P+T8+aEoOH1Ap0TrHM18Dr4fMClNlhfs7G/xMC/59dmSr56f82/Zkq9aRZkUdrlElSvUqkav14T1krysOBi9xo8fPoG8T8wLkelAszu2tI2jyKECuphwyXK4TmiTMF6z6AIVLT54FguPNoGsHJJfPCF87x/SLhfcObjNL/7Kf4tsuC1FienB503Cd5HpjXFvkRQo/3q14OrZI4xz6CibVrl/03V/F4Qi3C/YkDO1T6cW5qgMFzYDhp+27MvMJfYNiNjaUcKBlZlhX/j1y7UN8K+fT6CR1G/nNkmxorjPrIbkBayu+wZUiQIzbLAa6afUgb1KTKNxTc8yUZrMSLBXTAEVZSFZlDltXfetXhKQfd/8lYMBw3JKt7zkb90a8O8ODCc/fka2PeRglPP+cs3/ft7weyia4YTdm7cIRqPGOTEkhjana1oCcHNnB+9aiizn5u4erm05PD6m6xxh3ZGc8PHuHNxiMtqivrrorS6hv0fFbpe0vHZjJLQiKfBB7F2tk7CxpBXByZJv0+86Jxb3iHB0RfWurwto1d//KSXatpHr1QfCYs1Or6iJStEhvLCCDX9ZLoao5Wy4GyLbGK6UYr2qGYzL3raTZFGn5DrxUuRIKMBmkhylltMJkg/XLosQwnVDv5F/aq36ZHupAVJS15B/pRQpyIJG9cPkzfA8y3JRmca+PrWws7vD4fqwv35hoS2/nwK/aDJGUc6OLEZ8SuwSmDYZeqBonJcwLKU4X0aaStEZxUAncpvYGkbqTuGjxhrFYq365bVGRc9onBN0wiVNlhVidY+iXjBG4zpH8AFjNq+tH4ZHUTTGKE/51DdPvR6Zjb29aRxd8JQm7xVrFus1hdIk7wWMr8QZ4X2fThx7C1MCqzMSCecdV1eX1PWKmKAYVhQDCUYIXoDkrYvEJKbitnOkpEhBrOlaaYrcX/OZcptBCLRNQ55rCpWTWU3brFgtF/zJd/4Frz54hT//Cz/Ln3znHQ4Xx+TaUhhw3l03gNIjKLQKPTcbCY4JGT5BoyBYQ2Zg59ZN3OUFNwcDXr13m+1RxVdvvMjd9y9RK6hY8uHRIx59/S3+2Y+/Qx01O2WFrUp8F/js/U+4++I9Hj9/RjSyiHW+IwYoxyXTnSlee7S2zC5nfPaTD3jywUdkSpHWHbOrc67OLvn5X/ozVEWBxuNdh0qK2zcPWM6vcI0n05pRVVHYnJPjc67OL3n88ROaZY0mYXNLMjUPXn1FEA2Lmmo0oG48PtaiZAoeCExGA5TS1Mu1WBXLRDhasdPJ8zKGyDoEBhvFaJLrR/XPd6UUU62oFiumeYVeLnj06UOUNSznS+mzrKHrm2PBMMDho4ccPX1KNRhe23Pn87kko+YZVVVRVSVlWVJklhjh4vKsV+YHOt9h+ytbb7ZLmyMjRJQS9Y/RmrZtmGxPmG6NiL0amRSJWpYrckxp5jFQy/RSOsVEn7Yc0Uma9hGKKiWc61Wx9Mt3Iq4LLJbCcM5sRkwSmjcaV+TW4LpI0zrBFPWMQqPleZY0DIeC9CE5hgNLnsG6CaDk3k7J9EsMeRZvVPIxRlSAwhi0QZBTMWGs5V/77/0av/X/+C84/OR9uvUl03FFVuQcHh5yfHZKiJAlxTA3jKqSzGp86FOa85Ju1ZHZEmMC33/nh7z7ww+ZTia8/up9vvGNv4DJSp4cHvPw0484PTmm9p7makEXPVnSlFXB+dWCqytRyx2dXLD87IjT3/sX7O+N2N2eUk22eePV1xlP9tnZu8udW7fIVM7IBJbzV/DuinpxxTrqnu9Zsa49netAyZJrMhniY8fi8px13WGtZb0MshDJFCoK27dpmz6UMSP6iC1KOu/AR0Zlwc7IsrtVsDU54P6dL7G9s8fewNB0muHWhBdvlURryYY3KMZbjB6f0334If/Tn7zLNytFvnJUi2MypcnLgp/7xl/ixssPSK5lbzzi8nLGiw/uYYyhnq+5Ojnh+OqY848fEZc1dWrRowGjPOfTyysunz1ndTpne+8OL7z2gB9/8F0Wh0e8cz7j7X/pL+JiS2waZs+OyRK0GtJgyOqqgTyjbRrWy8BkPCb4RNPUbI2GLFYrWQqRCFqzXtfkeclkusX9s4SNjkTgLHZUCmzUYKL8N0kYkTElojbgQn//WXKjqazlF0rNrxjPwg5ovWXQLRgcVLzzOGduWplhJNgE9RDlj0S8DjpLm/s69bd2v0j+6Tou9uq9tLknogQwdTGxTcdXhzmvTgd8K8A/b5ckbWiJRAkvkN9HAf3CRx4jMg+yEXKjyEyGMoq2ldpHI2r/osjIsgxrLK5zNE1zjS7b1LwSLBSYz64wKdISaH3ABsXzqzVb+3d46WdfIR9UNMs5H/zOP8NfXaJ3b/Iv/81f46V7X+TJZ5/x3jvf4oXXH/Dph5/x+J1vcfTwU1xw/1UmcP+lX3/6Ad+mlEjS6HdeBmAyEI59Kp8cF5tNoxRtm09V0mx0D5ndSJb7Wg+lelVbrwb83IYg/DWlJQnTGiMHQZLVz/VWRGsBM+rYM7Z6uabqAbtaYN/09tPNAzYlhQ+Ks3nH+ULswFeLNfVyzqv37pJbi48drQuAwYdI2yaa9Zrt3SG5TRTWEJy/TpZpO7hY1XSdIwulELMRy4AtNOgMlJUE2bAZxiWijmCMNDyhheRINLShofMet440TSKZIfu7W7iu7t8jR0TSr7p1S4iaoCB5j1ZyUfuuxceE81KoGyufXQieLLdYnVF3HcMqw6SINeI/L3JL9IkYFK0Hv9LYtiBXQ3y4BE5RCi4vHat1zXQCTdRcLRyWmq3xFblNdF7SrIrUUmYjTFWQVGBdK3Z3MpzrWLNmUAxkW9O0dJdXGKtYLjSjgRUlIRGfHFs7hpJLVqsVywvNQDnQHVWxhVUDYlyjtCa3Gh81Ks9w7QprE1FFQmxQqSEpy7q9QiWxYIqaMiO2nqgSOtacP/sOl6bAuQbQ1z0rSezRaAUxw8dAEzJ80JRVyauvTSBXhOgobEZmMkhOEqaNIQaHSYm2jljrccGRo2lrUaxiIqbTkNcUITEuSvb2KubzS3a2S7rGsDW4A0qzXncMplNS9Bzc3UIpsenoVBPdknC15PbtKVbBaKQo9BV/8c/uszsdMEsjvvPpM1LgOpXKe0n2caEPN0GTtDQjAEHJ0M8l4VrK+yES7N29LQgaF1rqWlLuVLL4JEDuk/MZw6Hh3t4NfuHtP0MXOn7zn/4GF1crPIkiM9zYGtItO6a5psoUk2lBqC1//M5HPDpZc//lu5SFpXWB8biksJbnR0ucc+QZGDJCgs53DMpcAiN6K8S6VsIF8p08F5IoHlS/TQ0mQqbQmaLIMlJIwgDUiqPThqgjw2HF9mDI/u4N3n77K0ymu1xdXnF4fMZ8tebo0SkqFqyURa8W/NqNF/mycXz74Y/5uYO7fDG/TZ0c/5fDT/i/hxXDr71FtjOQIlMrLlYr2q5jZDU3J0P2ihwdHK2LrH2QgYjt03+TPA9zLeo9UWBlPU9Chh9Wa2yC3BgKpVCpFe6M0UyNKC2SEdWO0rG324BPEa0gOM8qJpYh8eR4xsXZgkJZnE3UnTC4ait8PbSh0BkTpah7a6RKiuQ8kRZbWC5CpLYZpcl48ZVXiS7QtWsG02E/dHCUhcU72Z7P5nMWywV5mROIPHv+DGssBzdukBeWN77wOr/zz/4pq8s5t2/e4o1XX+Hs9IKb23ucXpzQrBucF5hDQuqN0dZUNvBOmg2VIk3d8OSzp2hj2b6xz3fv3+FHz5/y33eafy1oqpTQzQpdrzBNIynD1ZC3XnmJz86/zWW7osEwv3RMhgoXA61XXKw8KoNFq2i7GpMVpKYj0xC1LKHGJRzsSJiLJrKenbCwAasst7deQrsV1ues247Uq+MNSgbXbUOQ1CmICq1zbr3wIqvlDdZte33WXouTlaLXTrBR4hujZZuoNHkmQ/6oYz/43agfBP1grZHwAy+NycaWJYo+Lcok1YcqqA0HSZS5ZWbRKpIZ+sGNWL7yQgz0ZZlhckVbO0KMZNYSYxTQMxqVdB86sVEGAvRW4n4gFHqrqY6iWFRAcI6sKPDe4zqHUoqgEtOtLXTK6eoVf+P2Fr82MTz+wWP2BkMejEp+uFryv71a87s6px2LfSgpxXRnRONaCZKIEH1g/84+XdehlGZ3sk3qPMcnZ6zqltB54rohpkAyitBFLo5PwTW94uxztWNUQYDhvVpSJ7FJ+hD6IZum8wGnlAxXDaiQCJ3DGi2Q9s3SVWlhiTopbIOX73F2fsblxSW+9SQfmWYZezGhohTHri8ccz638iXVs7ES7PvIXa15GBOr+YKdg21ZzGgjPEbVDxT72g3ASaweprdlh16pKQvZhDVWhrZKXacsJ9R1wc4mYEmLvVr3KvUNLC5pxCraX+gaselmvWqwGBYUg4J6JTgOrww/xnOoLK8q1zchEnQyQTFtAvlA0/QswNYFWmdwKeGj4SI49kaJG2NISnG2gGUXGI8U1mmIHpsZmi4SfWIyGOLIcc4LOy7J941JGHLGWFLo5DxS8tl1zuND6lM+U+92UH3Qlfx1luWkAOu6ZVgNWNY1eYyoEGnrmnq5xrcdpsjRRmNTglwG7FK19/bWFLmYzbBGk+cFs9mSpMQ+PB1W7G4PGQ9zZouatkv4iCRBh0TqBwrjakDbOlxwZNqKswYofGAQA9Mqo9SGCkOhE4Pjh1x+9gmvuY63SstAWbJCkUdxU+g+PT5PGkMiAww52lhyEm1lebI15t2m5bD1bO3e4hfefJNbDw/ZV3vsvfQaF9//mN1ZoLuq+Z465Xtvvczh6/d4Y6h4/uQReZXTdh1XZ+dcXlzw6LOHbB3sMdqe0IYWozV5UaBVZG9nh6v5jIKCH/zhH3F+eIyNsDOdcvD6XR5//Cmz80u++0ff4eb9e2A6TF6A0cxnotQty5L1esXi8opSlRw9fc6Pf/AT6vkCk3QvlujAwDt/8g73XnmJF197lb39fWxuWCzXXF2cM5stWTctr7/ygPV8TTUZo1CsVjXby4apj72zSmq1olfSXKde9so5jWJbGUbLObvDCen0iBA948GYtl7jO2nk87ygbRs5L5Lik3d+yPHDR4y2tikHQ6a7O1SjAclH9g72WcyX3Lp9E2MteZGjleaT99/DOcfy8gxcg46JvCppm5YQAqPRiKIoMcpiVZIBR+s4evqMwbBidnnBe/MfYHTOeGeE0orZbNY35Jo6eQkAShuR3wYNATppIoFhVAy15jwklFGYTUK5TtDzDruuoa694D6s6Z/NinUjS19tRT2eCcdGnGshMhlrqjyndWJXNhqKzErt1kbowwVj6ANplEKbRJ4Z8kws/WqTRp8EybBVTPnr//q/wXf/6Hf40bs/EHdGannpxft4DE+eHIHzLFe1oF1Coks1dVMz2T7gcr6i82sGZUFVFCwXa57ML6hnR8wujhlMJuTVNj/3ta8yGk9ZN46TkyOeHR1ycXHCw+cXdK3DGE2e5czmK9a1Z7WqmWeGzBgePz1kdXHMs7Nz0BV3D3bY29ujzHP2b9zmk48OCbFj2Trma08ZA63zKGOxmUInjW8dLQ7vrxiPRjgXyHNLnueoFDCFIjOanelUlmEYpqMR+4OKvcmQ/Z1ttrYm7GztMDJjsgaePX7Gwau7fOu73+P/+e0f87Wf/wX+o//wr6E1nNQl4dFD+PVv8s2PDvnd5QLMkCkWH1p8CjgUx0+fs71/g6KwnF9cMppu8/jZIZ9+9gnL0zOuzs9p64atYkBoO+bNknJnyp0XXuDi4WMunh3z8itf42e++mf47d/+h6yuDimN4Ac+++PvUOzu8eDlV1gWVwyMYjIaU0xG3H/riyjn+exHP+T0+JSri0tZUGvNcrmibmvu3rmLNYrDozOc68S6XjsedAbtPUFFZqFlpBU6gsjoTW9h36jnrKjfk9QfVltSptnpHPiMs8WSgbHkpaOKljK3aK1wUQZ5McZrJ0bsbbH9YOd6frRR+KXANS4tps1ZL44+k+Tf00Agctet+Pd2prxdG/JZ4nSc87v9ND/GjRlX/n4zUur/Vm7llNARCi1zp7Ztpe4LAa3NdUJw26fraq0pygJSpK7rPlSyd1D0Tq/VusanyNJ7bo2mTH/xa0xu3+bFl1+jaRqOHj1i5xvfoNI5Cxd4enjEYtHSuI7tl16kLidkOzd58OWvs1qsKPPqv3z09l/h6/8PAz6Nj7KRhdirXvrpq+rl1CLe6aWQosLZpLZqjPDdtPBSNow+pRQaYeaB668JGd5tkrKUNr2dSL6/NfJylI4oIgorFwkIRVUrgXLLE12sJhF6kvNPbYJdHzetGFYVVdlysVhxvk6MqpKrNmKMQ/UsNt+I5LMqMiZ7Q1Ty6KRp60TSYvsLKRKzHGMytvPIdlayWC96PmDkcjETVRBaLChJdNpKC/TbGkNQ0lBFLbwLj5cDJFNYAlW2InYtq7pjXjf9a9Cs65qoFOt1oHWRcZWR68h4mDMoM3ITMUWGAWxuyKxFR8i0Qkcplo0pUD1XKeVIgqxKAqK1GjsZcnPvNUw2JlCzWjxDR8eqzpjXsLdjePTZU7ZGiqIakuuGJmhyZ8hthWpqDAPMpGSxPOfx8yNUtUdoPNErwo6hMoqL+ZJBscbmBU+fLbl/v0Cprh9SrrB2hS4GJFY0rqKqcpLPsKag9cf4sJahXVIQEsuzK5IVcC5OE1JOlRJKN2SDguCMcOVNIK8GGNsJnFRpAhajB6ybhRy8Ua5Xh2I4GJMXmiePHxHimgS0Ndy++wWqqdCLlCtQsdeNmEhmI03bYZTpB6wFMeVoUxKCpqpKkchbg1EFbVBYU5GnClRJNS2xdkBUhkE5xGY5tswxWX6tvlR9w2NUxyff+2d8ebBm2cxYrmqM7lhczSFXrKNjuZiL/a6333gnkGESpJ/i8gnPRh7KxgiDRS7ViLbCbyMEzk4vJNymT4BTyRKCBiUNfIygTM7l/Iq//xt/H+cSykSyKic5T+c88/ka33jWpsQ5jesC69bz/HLF+89/wh+9+zEhBRKa9fGScSmWfFvl7G9XXFw2LBuH0rJN1VoGqp3z2CAPItUndakuyuuIsjdwLkiEZUoom1OVGatlQ15Z2dyOSobDnK1qzNe+9HXGoylX8znHZ+dcLBYcPT6EWrF75w6HTx/z72zf4M8NKr558hl3hiN+bnRAt17z6/MT/u7yEt56jWJ3Qhc8ycDZfM5l2zCZDBiXJVopLtcrlNGYRvifpuc6yfZNyYM1KYEKO3lOmR52XSiFTp5cayodqDRUSpo/TUQZRbLXAh0JPsJKatVm5ZYUXYqkoOjahF9rVmsHnQe/JmU5IYjyJylRAJZJUUcp4Ej9YEZDMoplCjIoCp5CW8g0RmfoHOqrBU8eP2NrusfujT1G4wmr1Vpsut6TtGJ5NePgYJ/ZYsV4MiEvRtx78VUuzy/Y279NvV6TZQW2yHDHz1itVp+/PqUgBJZXc4L3cg3k/UB3UNGtPWnZcPn8OcurAbfu7fOfPD9l3Db85ajIvcZ0S2IbMK6B0rL/6lvc2dmhXK45ngeS05xeidpqUEhCuE8J5zzDMmNcJiaDEoXHdYEuCstzWPQLrGaJSRl2OWNaafLZh5y9ZymGU0JS6HxEMRxjs4pkK8J6RKshJEtRDCRVMUbyckjtRam3GXpsJBJyNKu+qIsIskjhQ2K1brFGMxwNsMB6VV8DiMW+27OweuC66rlqMkSP14r+ayVWz0C0xmKtlY1qbgm+FfbbcMj+/i71aoULAeMCXRNkG/tTPCaFFm5TP0hMG+nG9TZYGtioNmFB+vp1dz6SG832zoSL00t8TOzsHzCqRlw8e8J/e2+bX9ua8Pz7nzAeltzbmvKDRcvfuVrxrSzH7O1x99Y+q65hOp2ggqgftTGsXMvdu7cJRKI2jAdDUoo8Oz1nvlgQWkdoG2KMbA2GRDyHz56QFxlWQd2sybOMHANJlCmZESxJ13UoAl2QItqnhHfCYnMpEJDtN85TZkVfcMkwbDioIEAXI7mVxU3XOB5/9pj1aiVojhBleFdEdmL/XiZFp4RZmpN6Gac86zfnQeU8Xyg0f6AMi8Ua70QZ5onXlm+lZakQYhDHhtayUOkvjhA3QSxalhZZH9bSX6+bzblct2LNktGW6VmD8fNrAIHux17xn1kroWpaBtdZSrS0jKdD6nV9bQk+R/Ghglfo0zuJaJUoY2KnDYzJuEqJ2iuKTIH3kBTny0BEs3KRqBQ7ZWJaKKy2bFu4WkdmC0+yiTIrscWIkE9YtAL3V5sGIwX0Wq7TvCjQQOdaXCuBQyEoijyTOq8PgpJmRD6IzCrqWsQTmc1wTsItVFIQPaVVVOUAjWZve8rR+Yy1c2htKIsSH7wsiKMMQ8ejEeu2pu5aGaICsVDMY6DKx7z24BbrVcfDZ6ecXMxRSRQSNkQyEsMEeYJpWXGzqtjOCrZ0wdSWVB7yFKlCJHeBIjgy7ShioggW20S0ixivsKFf/JPQSnAu4vEwpOA4Gxve2R/zX7gVj1Y1NiXuTId82VpeeTrjjYNblK++zuFHx7zhDfNPP+GzyvNPJjmjF1/m9Mkhy6sZddvQhY6mromzhC0yqkHF8XrF6mrK7sENskFJvV5x7/aLNKsVg2zA0fNnLC6vWM8WlFnBeGeXB1/4Eq9/6S3+4Ld/m8cPP+Hhp5/y5bffxCtNMFJPDsbjPojQMt3ewvmWVbNEIQmjCotGE5HgAENHmcPl6XOcq1nM17gQmF1cMhiOCM7z8KNPMHlFKV5yqkHFYFZTBqljQxLFciYNmAyrVD/66m+fkdEMF3MObrxA0QeYkYQH13knPZ7WfbiHJ4ZAva5p24aL0zNSFDeWyex1029sztZ0Ql5kmDynax2r+RXb+zf47re+QzWZsFqveeXVl7g4PuPy4oK7919AKU1RDjEKRtMB67rm4cefQAHLy0uuTk7J8hFZlTHdnnLy/Fwee1rTpUDdK//6LpWf1ry2JCpgmhQnPpFlGc6Hvq8UnvmwyjhZrknJUlYZdRdYrLp+YKGpSk2ZaWwpz+t1kyAqMq2wOrK1bQk+4aJhNpcgDZ0lqoElzzKaxtE0oui3VlR7o0qYmzFC5yMh61FTJrJa1Oxv7fALv/JX2H/wJo8ePuGz995ldnXIdKh5cHDA5aqm8x0qBLStcG6JMoqLyysO9vcJzokwJwl2R+U5u9Mp0SWODs95cvgefxQcW1tTdg5uc+eFe7z5hS+yvf1n8W3NxdkZT5484+zigrVvqTtHil7swqZgsXjG06i4XK2JtExtxtnzUybjkvd++H3O5gtIAV1kGF3SrBvQihS08COTIjdQFYpxbtkaj/BFxvimZn97xM3JiJ2qZDqecqMYMi2HlCqj1JphEtxUqBucKTk57TC7Wzy9fMLOV17mnUcf8C/e/zHRNhTFknd/+D22C0uW3+DmO5/C4zP+pOnodGSkLTEGwUqgcMHz/ve+x8P3PyCrSr7+Sz/Po6eHfPTD95lfnJGFRDtbSo8/yXD1GpMC7ck5XTXg8uiEGwd3+Pm/8g3++W/8A2azE4qs4ktf+zofP3zE+dEz7Pk5Q52xNRiTFznFdMT5+QXFsuXy6JhmscKt11LzACGI5VSbgvPzSwZFjlWGGL3wOJ3iXjREL1y9c9+xJfDe/qDsl679wa7jps8T9JQx8tyvDXRtw0QXtHnLcVXywaVjVq8IPsi3C728fqOYVb3SXG0qzfS5wq//lRC8WNET1/zNBH3wTxKBSar5d1zNV88r4jqSRoaUCU5EoWSgqDaFCfJ7KHmN6hoLI3VDhcHodF2vZnmOtZaEWO+DFxdEkecoElmeXzsjo+9t+EYwIi7KcHDuPDdc4HRxwfqTOY++/8c065Y3v/qz/IV//d9iUO3TLNe888Ef8Md//z9jcXLG9s4Oz8/PsUkzGgzI8hxj/xvA4KubSLdKWK0wqk+10qLyyIwEaHwO4fb9cE0CKazWqKgJOhERsKHWmtgPAWIQe622EgRwDR0M8iGpKKNZ35trIjKQMkqKGh8dfT62WCwsiM2kD9pI8v03ktDr1Lg+/Q8U9bJhtajpnAaXIDg+e3zK6OU7jIoKTaDKhEWWZRI6kDZ2JeVo2lZsLS7KBaaEnRMcNOtAExoSkarM6IKXRscoGUJpRfIBW2iaJIdvTEhBrAJN26E2/EOV0WlNfTknYVgsZGNf5DCuKowK3J4OyY2h6hNarc1kQBpBKyuJVspS5CUJI42KigQ0RucCrCaC1vJau47K+r6RaJnN3hcobIrYzBATKGOZDDWubbh9x2LsAO9Lcjthvl7gO4dJkjYX0jkmy7GjwGsvj8iGkbOrBXneQoBmBSE4sIWo30pDVC2kJai8Z4B1AtpXiRQ8bS2fSe0snVv1TBpD8hlaJ0xRoFWFNka24jGhKDG5Zbi1j28bUnL4uJDBhpYCS0VLUgVOJcgyslxjEKh4MgOq0Rbt+hRHg8mUFO3JYLIh3UJjSxle6TyRYfChwAfI9ICUMobDEXmxS17sYbIRRTEmz8dkxYiyGpAXJTrLJdHI5hiTk5kMbYTHKMpn1StXpPnVWgts3FqS69gaZjz97Dex3ZxykhGbJVplYBLRdyjn5IEcpVkK/eYzbbafvZVPgpdir7qVhxx8bv0Due+cF0VG8p8D7TcJmSoZoo8sFi1Zbll1Ha7zlGWBthAbUQgt1h6rFasucLn2DKqSrks0LuAj+FZUGtoGrNF4lWMLw7quqWvNyGiUzbnyYsUclCVlUYratYc++CDcTJtpvE+bBw70oPakE8533NzfQhmF0sKGzE3GeDjgZ776FYbFlOViydnlBVfzBWeHJ3Srhhs373D2/JBfLSZ8Y2+fd44/ZViv+NX9NykXDb/RnPG/O3vGxYMX2Lt7m5Vr2B/eYNW0NEkCKcZZju0cS+/AQJ40hRX2pga6ftjlXSIgYSJilUS20lGTkpNEThRDq2iTpSHijMKkQK6kMBXYsywcOkQJFlFI+rbFJUtUmioq7m3lKF9yPIe6NqyvWtpFTQqynEnRYSzkStEFiZy3eUYInQyClSYjkafEVd0yu7hkb3ePqOHo9IQbe/tMplu4ELB5TlSKe/fu0znHfLng00ePxbJhYb5acbGYc2N3lwevvsZs8T1+8KMfkPVw/qPPTrk4O2Y0GLLsQ2hEyR+JXRCLYM/0SknRhoAqMvKsws0b2mbJ44eOmzcP+D8cn3O3i7wZIlmSbWNYKezlFeqsoczv8vT0MadrcIgVblgYlk2Hi1CWliKXImPdio3Q6Miyc+wOLcPc0nmPUbA9CLx6MOTGdIe7N7fY3iph9RzfHJPlOURDXAxxKqNOhmI8JpUVSheY0TboDJ8MSRnCqv58tflTloNrGHH/tVF2KASG7oKEcpjMEEKSgijICFgsnpvvI4qT2HeNKfWLriR8Xbn/NTYTVVlTd7QpkBcFMQBRs16sqauKne0tPnv0hNW6QSkjP0fqbaZo8ixjMhlzcXFO6IMRtJIzSDhlkaw/k0ISO0/yAR+9nM9tx/wiMKoGOJ/wtef86jn/ys0t/t29MY/e+YTbgwEvVgXfXi/5O/Ml3y5Kpnfvcf+VF3l6fEgxGpCXJTFBOayIKXFwsE2R5yQtSp7Yei5Xa67WNau2ISxX6Ji4cecFvvba6/zg23/Iwq85PHzO3dsHRN9hVRJeaeswpk+eNYZMGynmO0dEcBmbASopydnaK6sb36FI6GSJKQjIvgu0TrhN3jmePnzI6nLZqzE/T8atYmJKEtVjUnQJCiDrlz30w4D+t8WGwFspMAyGmXPML+dMtsek3vajtUYnTbdZZEaBbhsliwdjLZ0XVXXs7TAxqc+T9lI/jEdYda5P5RQci1yDG/WmuEUUySApwCphrREUgY8kpOaz1lINq2vOKkrRKM2PiHxDaXoNMkqBTZEbaEadpSiC/H7AIFeUOaguobOM0AXmay3BWBnMaocykCnNnb0ceqbpUiVWKTEaTcgHMuzXSlAvtqjomoa8yCFKgIg3AZOEV6V0IARhJ2aZAOXFZqSoqkJCEJLgViT52pJpQzYocdqwWHfc2N3GKgnY8H0qtUoSIuedkyWc0TStl+C74AgxEFEoa4gq8vzskhBq7k4m3Mk1L+xsS1BRXrJDxnbM2NGKsYOBg2IZyVqH9TVZrDFJPh8VHTp6lEooK2qljdU+pSjPoigWXR3kWavp2W4G1nbA96ox/6dmhtud8sWyZLfMeMVWfKlLvL1/k277Bp9cLamerBiczTk2if/08hFPbrzOm62jCy3Hl6fEFBCQcqRZrxnnU8qsoF6vOT5/RGo904MbbO1OKW2GiaBN5PJqQZYPxCKuIscnp9ycX2JtwcH9OxwePmI6GjOoRlw1KwKws7WDdx0hekbjCbPFnMJmnJ6eMigrih2LRmyxQSV0VbC1tcvKKXKbs+5aUIHL50e4dUdadIxv7JLnI7nvQiTTCd91TBe13Lsx0SVhiZs+KAN0r9zu1S8qUZqMcbvkZpFTasMyRur16vOjQ8vyxF0rAMEaBZE+iEyWotH73ooacHRcOAkLCjHivKesStTVFU8/+QzvHKqwfPi972JsTgieh59+TFWV2KygqxvQEZ0ZmsWSy6s5xEDyjuAvZJhRFmhlCVHO9qCg6xv8Dasz9QxRi4To2BjZyaBtPdlAep7MpGvVtNSKUufWjQzWpRYOZBniaGojOoftaYG1ibqOFIUiNwFD5PatksUqUuSW5bIjGE2ZZ0TniENRTsaoGJRSe8Xg6GKUYMWUs1o7lNJUleH3f/+bfPHtL7C3M+XGrRd49e2v8oe7E7756/9X2vNLyqKgGg3IfAVNg1IeazSDasCqjhydnrM1HHDz1k3u3rMsZzWnp6fkA4MPjvlsQW4M66bl5PyKtXOcnRzSek9Iibs3bjAaj7hz9zZf/uIboDQqOZ4fXXI5W7BaLlBG0oznqwWu6Vgv13Rdy8RGbo40W6ZkEBW744qdyYjJuGIyHZFnGYMiJ7cFWZZjLUzIGdshA5tT+YKitSKsiK2cleuWtA6YUIu1NEW8sdh8wJXPGU62OfzgGbu/+Cqfrk74e//gdzh47R47B4rl0yMe37jFnZ//OvsfPqd62HEcNc9DhzjEPGtX44OXVXeW4ztHvVixni/54Hs/pO0886MjXNeQDyeMBhOcdzhg3cpCbjAcUF+ssEXJF37hZ7hcXTC7OqKwmsFwgDKWW3fvUWUF+JpP3v0+mbVMbt/lla/9AqNpxgc/fpf56SnG13TOUw4GvPzFL3H7hVcYjveYzS7pVld89tHH3H5pH1vkjIcjso8/5UaQeQkq8cw5vlaaPvRCf14PpoSJiSz6PgQ1Erwj9cPAOtawuOI4TPktBvxofSGJ7o0kYCetUEkRg5PnNum6LtyskKXs/HwJJ/2kuDtSSteOzkhvzw0BjGa7jrz57II2dZjkaeKYq+mepOnGgI6JZPraJKleJNa/tH6uowGfFGWCru2IPTrAaHO9hHB9wIbREu61ca9pLaiXxst5FJIETmqtwVhWnefW5QXv/tPPsCnQug5TVeQ6slzMyOyAdnHJo88+5vyTj3CLNfOjYxrXEUNkkRV0nePl/dv/v4du/zW+/tQDPmsUeanIrUXRQ0U3Nlx6YGGMfaHWT09jEutXn8YZk5fhQL/l1cr08e9KrI5B3sQYhC+kU68U6G08NsvIcklgdVHJFtIoJA0loY1AwHUv9dNGJrQxyB+pVxbYXvGnlLkeMuZ5RohiDc5sYpgrbu4NGQ40hoaUAj5onI/UPoGWKboLQZSEKuARKD7eE4MDHfDeUQ4SpFwKTRXp2g5dJGxe0jQNSiWC1yzbjhB7W6QytF2gaz1KZXjnKLOM3a2cro1U2Zgqt9wcJ1LyaBJZVsjmL2m0CWgtBhuFcCCMNgLQ8a0oG0JfSCHslaQsDkk8jikRu4jXm+GNFAWknpMTk7wnyRNSECC4EjgmGoncVp4MhTFLzCCD5FHRo9MKZTtMpti2jhBrDm5q0LKtDR6Go6wHuke2tg2RDpOJArMa5ahksCaTyX+vKtAKcltSlDeIWl6bSRqFQZmMhMGqHDpFHlcQZnhvuTpviXYtjMAQGRcFXbOQB1GSxCYaKYWcT8JBDBG0Zekv8GHN1nZ53Wz6zFKWQ7bNbQaFJYUKlQ0oiglFtYMtxgyqPYpsTJmPMarCmAqby+Y2IWlgm2ZbBufCrUqxg9ajYkMKXu6VztGnxGBihC6RWidJbjrxQjXAHnyVx5ce3Z5T+xnDocX5hFKWbFABZz3UXNQ2m8fxJm0tpYTzXlLArPB3Ukpkxl5bI8RW0FukYq+wScL6SkqhYg/dRxEdnJ0sUUoGId53snW5biY3f06sW49Hg8mw2qAJ1/Yk+T/FqunIlBRopMA3/uzXWTUdv/Wdd7laJ0Ln8WrDAOsh7EkRvBdhr5I0RxKE3mpR5hnGwMnpJdEHhqOcyahga7rDz3/15yjyjBA9V8uFQHSfHUPj2N/d5/L0gi94w3/33osczk7wJ1f8jYNXGPjAt/yS//jkGZ/e2OXW669y1dXE6FnWLSm3nJ5d4bVmYi15pvAh9O+LHNDa9oFDKDoX8EiD4SKi8kF+/o3Fw2pNZhS1SwyNZqQVXicKlRjoPrXQC2w2RmH2hdDzvbD0mnpCgnUbWCw9TStpkUYL67BSViT5oSXhrtUBRhkYDImu6+16UjjspMhUaS5IzFdrqmrFDbVLmeV88v7HuNahjeaTTz/l4NYthtWQne1tqnLA/sEBT5885rOHn3B+fs7WdJtT55gvZpgUmF+cMqwGXNQrxttTPnz/hK6pRWnWBz3pvjlWWol9P/RBQjEQnUdXFYPdCevLJaFuOT87Je5t8evPzrkbNSOlKUJENw1qdgWPj9m7f4AeTInNJVYn6gh18Jj+TDq+7HBBy+IrM1gHgzxh0HRBkVpPYYSpNq4sr9yacufgBbZ37jDY2qILCXqYeLuUAY3SgdisuXp+JJZdm+GKIUpbktIUgwFtI8Mf1cvgBcq/Ge6ozxMMdZ9v2y/UItA6jwkBrXrQfYKd7R2uLs6vBy4b/hkbHMtmSA6SvKhFIRadl2WQ/C6SJBY3/72oBNu6FQY0wrTdJFpvkh5ViNzY3qFb1azW614dqFFK8BgqJd68f4/5qub5fMHN6ZhhVjBbXmILiy4K5osVrhNLul9c8pdvbvHv39vn8ls/4cak5L6q+MOu5X+1XPL9Qcngxm2+/PZXOD07Z7lcMWZIMcnxSoIubh7ssz0o6YI0v+Ms4+piLku8PCcu++EEisFggDYZP/uLv8AffPe7HJ+ciCo/z9CF8E67FCEidhVJjcCisZnpG+coVvWmxThPkcmy0iFuhTLP8d7T9IXroCwgKWKnOHl+zPJyLtNPPjevaaUYAoNNIZ6gTolCK7FYKo9KQsqSQa78fG+kyF0Ss5RYXM0ZT8ckBTazYstX9ImoGyadojCKLMt6Dl26rjdMb4MJKV2D55XSMoBP8adU6YZN8q+P8my0RizMMW6YXUpssD0/liiMIlDYPt0zKrlYg9Z8EgNLnVPSXC+2LImtlCi7hC7gqomowqBMJCpNbhKBSO0igYyrBnxMrNqExbI9VkxVILeKdRvpMghak9uMgS0Q2H5AK80o0zRNDTGSGY0xOVXl8F1LW9e0viGlxKAakOUZPnoW8wVlYamqnPNzWaR5L+4LRaTMtHxmWhGA2rWYEHAh4SKk4GSxozQxiN1fpUhwog7Ms6wfjiaKpBi1gXsq501Kbi8CewzYImMreOylI/NrShSZhRxNFiQoS6eA7n3dWhlUJotqnQpZ8Kt+KY4M7zbFXFKGpDOwGqUTMcshz9FqwPfMgL97/Ih79x9wz3nemAy5Xw65V0wYTiYw3mXtA2f/6F/w1eENlosT/rG55Ns6cVMPeDI7F7V7kjCaGEMfKiPMMxc8WZHTnJ9z+vwQspwvfvlNSmNRRrGuG9plw6svvcqD23f44Xe+x+zyiuVyxXQ65MFLr/Ct3/pnxBB5790fc+P+LaY7+xwfnhJ8I2q3pBgOhlzMTzk/OuX0+QllXpIitG3L/r2bPPjCy+zfvUtIHXXTMru4Yn65YHW1QHuNV55kM548OSRpxZ2X7tMs5jx48QVutWKHI0KLZ6A1un9AS2O9GfZJkIVVhu2kuRGVPMNWKwaZwdgM473cc2qjEpUFa/Q9QqH/nimK+helsCaToV4QlRcJCU+Lkdn5OXhZOCTfEda1nCFaMb+6wGiNsRnBC8/RZpbhoMKmRNe66++VfKRZ1WQ2v35upZQEWHQtHFeE/n42SREU6BTZQuGdR6n8GidltCIEL4ukccFiJXik2OPJjDEoLYPBlCxZljFfR4oMQvTMV4KY0cpgspLVck7nNC4EcpOo8khHomkVRaFlEWkVrRc8U2UtjVOs1x6jDMYErA1czJ/y6ZOS+6/8JV65f4/D43OW647FukY1KwnNWrdEnxjmlulwzGJxyXgw5KxraNYNTXAc+Y6lW3Nz/xZf/tKXMJliMZ/jyIgXZ7S1CFiMNoK6SvIcvby85PzshM8ePcTojIRlb3fEnbsvcP/BCwy29vjan/0lKmPYe+ddFos50DDUHS9Oh9y/fYtbN29xZ+cWk/GYsijIc4uyfS+eICA8VZWCsIOdQvuIdpCc3JuOgI6eLjoUiS4IpzDFQAqBUBaszueEaUl2s+LOq/f543/0I7765S8TlGe+mPH6y6/zjb/8q5QfHqH/6H3S1RzfNVwZUZR3XYPpv29MgaqqJH08wXqxYH5yhvOeZrkit7JMPLh7m4vlgsFkQCgMq+MzXOM4W5wyvHubyc07ZAzIsgFt13B8dszkbI/DoxNsjFTGUCBn5uzwGd//7d/g1bff5s2f/XN8+O47cPGE+Swx3r7Bzo0XSLbgYj3n9OKCG5MBb3ztK8yWNZkxdK1nenbJKE6l/iJw7gM7ury2QfZyC5RS5Any4BjmmcxgnCcohTOGv3cR+Mcu42nX0Kla7GkI4kjUhLIk25zl1yvjmIRn3nPrPx/vyRmt9U+hAn6q3Yu9mIQQSIs5v1mfU6YFFdD4xPfnQ+l3+8Fg2NzzbGaW/V/JjhIbEk4FKpVwrpUlcJJ6IXiPD6HvsGMvhtJUZYk2whtVPVJOYqXS9c/rY2CmPLlzxLam6Rq0VRgSz9/5Hh//0beAwHA6YjydUNqM+aoldOu+Y4UaYdOn8N+AkI0iU5iISGy1wPhDoIetalQf8GCUEjk9SApk6tl7yJu3eTPNpiALAWUs0UcMwtbpc5NENWOTRJQHKQJdaAhelB1l/jmHSCbAssX1SRoPAahqdJINeFFk1+wJ+nAFmwVJoPMOm4Fxjq1Jxa2dEeNKM5+fS6qtNde8oU0So7GWqPuJN4GgFVpndEE4a513rLo1IWiiltQlpTVJiVJkcTxDKU2W53R1AkQpEbRmPKoYlQpTJUZlhkmJzEpxGPp0tbLIkYI1I6l+Y64ztMnEAh2FiKiUIkQp0ENf2EcnyhoBcQvg2flWWi9Dv3HfpPr2cn0dxYbsZQqTes+6tbKRl9ohknQktC22HPSMu0hmPUoFbLAU2ZiYcozRZCXobJuurmXop0q0tSQkJcgYD4WorcTKbFE2QYpkupAggb54yIsR460XOb/4iJDmEL3YgVSiayIKj9cZKliSMhgdWHYtqJqUGoJSmM4QVInNc1BRErNUBsnKgMDI9N7kGSlZVD7EmkysuraiKEcU2ZRyeodUTCmtDO9yU5JZBb013biADRHrI7iW1CxJFzU0LalrCG2DalpU51BtR3KR1Cmik6ASAmjv0Z1wKlVoSV1ANYEYatAdNibIClI5Ypol7rx4n7MRhGyO1Y5u3rL2kWz7NnAOSlEUYqPYDPVSipsRY6/uk6umGpQEH6nKkju37/DhJx8R5c26VhLKV2+v65v41DMX5JzRBBewyoAXpoIUn/0CJomyI/jAfL6gVUYUP4nrgyQlJfD2GHAxMSxzAorprT2+ePsOf/juj5ktO6JSPf9VikWFKIdNnuGiE+5iz7dCy4EVfCLT2TXfUmnL7tY2P/O1L1MVEgU2my84vbri+fMTnG/JraVuWm56+Ntvf4HZ5SlHjx/xN/deY4eCd9WM/8XzT3hvPGb86uukUUF7Msf7lpP+M+iajs61FEZT3tjCaoXzDm1V3+QHVo0noWg6R5ciHYom9EsGpa7ZFpDI0JLCqxVeQ1CJYBIVEZMlCmNIUdP150ywli4qPBpvM3mmBLEqXDh41rZcNR1t3VGvappVK4cjkEeD8vL+RS/Nt7IZqVlCD97VyjANgZes4dOu4fLsmMl4xNPD5wwHQ/YO9njv/UiWZdx5cI/DwyMePX0kOIiYGI/GHOzewPaJ5aenJ9w5OGA0yFBMaeZXTKcTnjx+zKNPPqVZrvBBtuHj8YTVYkHoOhJgrKWsSvxyJspOJQMEQqJTHcWoZO0CzbphNXD888mAv3zZ8uUkDZoKkdg0qPNTdl94ndmyxysEuUKbJoGKZJlia1iwcppVG6gbR5HLADyzktpZ5Za67vAeZrOGs+MnjPEY3xLTbcxwm2wwRtuK4WiXbDhFm5ykDF29JNZLQrukXc/p2gatI+vVOevmp09yYdtKiq2o9j4f58vgQ0zgAEEGIQESEgqAUmyNx5wfnwqk//p+FTaYMLMSWVJy/SrNyFgGymBVIkuSspwlccHrvim0SmGaCL5Do0gqk11Df16rBGSWLLPkhyf8bFHi8wLfF1whwkonWhOplnMuuxXbpSar5wRnKVRkN9PMM8/pesVi3bFvh/yr+3v821+4yfM/+pgHdsALbeJP8jn/82XHD2xOUY55+eWXaKKjcTX10SmtOUV7hyoKxns7XB4fc7yu8dow2NliPV9QaEkDthG0DwQvKruTR5/ywt4eVT7ijRe/wNXxt2hmS6rtKZ1yeC0LB6N6xl4KGC2JqDFFMSlrhUtREkRNz5fzsbeXytGtlSxHrdVi9wwJ17WcH50RfW9fjvLnmCLKWsYpUcXYq1oT66QYKNC9bUb2LZ83CAnYdYGv54kPQmQ5m+P9LYphjrXCQdRabNuo1C9jxUbjQpIwDJ/6ZOW+MffhegCxUe/FKEOqmEKveOu5gtGLckeJus30KABNj4lBCvmuT+M12ogTpGcChrB5XZqT6Dg3hj1Ufx8Iy3lCYtxFKi0DSWOsqJicoswLrhaeJuZczOSfuZDEGl3lPJ97TleazEggSLCebJgYTgvyvJCgtyzr/zpRtw1t3bCzNaWtWxbLBU29huiJ0VENKsosZzlfcHh8hDWwvTXhxt4WL7/6JT7++H2ePHrIen6ONoa27ch1h+1OaZxjvuzYmWaMRwPCssZ5US0rYzFJVI6TScnezoSjkzkJi/WRO8byC6MhX6vGvEDO2MjiyySp0Yssl8CgzUIyyXmvXcSEiEqhb8JkYMCG29kPq1N/qPdUQfKoidb2gO2MlDTJgMaisNR7E3779CG7r+3xlcLyV195gXJ7j529G1idY9OI+arl49/+Hd6uSvyjD5kVjt+cXzLLS16aTPAxYnLbp1XL/YSSekMrzbrtsLmhnAxJ3rM+O+b5o0eYe7cYDId0XcdivkAPItZmmKrEL5bUyzW3bg7Iqpzh1i71/JLlbMbLb7zGcFhSVTcYjQacnpxggNwaTmZXXJ6eE1yiiy0+SOrqyeEpbfD4GHh8/JjbNw7wXeTo8SF+uUZHg7KW1ek5915+kagShbXkkwkqwQ0nS5EUElcxMVUG/dNL3I0zY6N0A/aKitHlipcmU45DBJ1z8MIODz98XxKbrRXbeIzXNf/GCTGaTHq1U0fTNJTDAavFUurKspJhuhP3jTGG4PqfBTA2YxOyY4zBGtUHuylMJjzh5WIlC6nNeaB6x1ja/LsbZZLqh/f0r0/1fxbkwGY3vKtEVJKihEpt3oeUYDSecDl7xjBabAy0bSCzmqLM6FrfLwECq1VkPoPRUFANTRNpG+haT11fCj9eCbJga1wCgRgC26OM1gniYrkKlKWVgWiIOBeZrzXrGrYm8tqaoydcRcf5a68ytSXPnx9z9uw59bJjaDRd40km0NYOPcjIbEEMkbyoeO3lO9zc2eLy7Jiu86zXa54+e0ZoPMGt2d7ZY3//Jm9/5WeYX1xwcX7E1XLOYjYn08KJX62EjaiU/Dxtc8lJc8Xs7IzvfPsPGIzHlLZk98Ytyq0RD958lV0b+PnXX+JLb3yNvRdeIrMDFBbURrmF2MWTiFToA7MCEoKZtAUtCLCoZOll+09J0S/9lOB1tIuoIL3JHSVL+hdjhyXj3/vb/yNcsoAmbp4tz5/Q/JN/Th5q/PkZl/M5C2XIogQaha5DRVlyuKbpl0SSCJ7q+rr39c6jYqTa2WJY5LTO8eKXv8hjfsLq9JykDFs3Dnj3Jz/h5o1b/Nwv/zI//ONv0h0dcXF8zKQs0RgmoyHL2aX02crSrWZ89oPvsHV2yZ/5M3+R9//k9zg7P2V5dcG7f/j75MMh1XTMuq5xkxGTvT06B/NVg2k73nKRog868ilQx8AU+7l4gv7+UIpcRXZjYKcoICW69Yq8bkkhcbZqIIiFNUZ3vdxDKVIMn2OsgnyO9D1e7MdYUcm5QhQ1/mZxF0PoBSD9c6hXamOi8GhJfDpb8B9HQzKKqDP8xQo9e3x9vmQo+cw31uD+fxs3meqVfRpF1T8FVILcyjhMREjqOpPBWHmeKa1p6lpeY0jy6yldo0M24a0rIlnnMFFmYN55Umhp143UxEaR4opu3aJSvwDv3WMxbcI95cz50379qQd8IUIKCu9lqg1IgYI0ChaIwfdJSnJo6CRyRtWrkXyQD9RoGThZrbFYuQCkrkJZSc+M4t3Bu0hQgYQRMDNJOGrJCaomgYefkk9KQaFIVFZAkALd7vB+TbreUCucC3QOVl3kfBlIKjAYFnSNY3a1YH4VGQ4Mu1sDUuv7AY9w00QB58UmGgJ104niwGhSFMtyXsDUlGRZhrGG0uSYlKNzjVYBVSSKIkf3wSJ5kYn8lCiQy9iraoIoBpU2GJujMVLsak1u5abcQM6VFntr50KfmNYSk4BinXM0XURrscpIf6YwfQiI0gaSyFNTSmQ2IzMRF1oCERccyUSS6WVWJtEFRJmVrHjT0fIgcAoTl1grE/W2k6HOONumo8JHDV4sz1Wucdd8pYD2NUk5Ojw6rIlNgiTJtXmZs1zOySw4pSBuQLYK117QrE5xuqZLLTpIEa8s17+f7zxomA6G+BoyOyBET+cK2QZ1ljTcxqcGa3OyakBRTrHZlDwbUw6nlIMdssEUZUaYrMKYsvfzm/7wMQTfSny5d3Tdmra9IqXEKChGZ+dkV1fo+QKuzknrNSxrQhPxoSOEBhc8ruvogqPF0ylFGzXrAAvvaFwkeIhJ0ylDbSw+szhj8TonpYSNAR3PGGnFlyrLVrtH+caEPDtgHY7JrRPwcvH5Z+77dEVA5NI/tQ3ZuHBjANd6EmJ/PT49kU1RlMLKGGF1aq1IWiS7Wtt+ISAqu2ogzfpi1opaLEoRJPWZDOuTkuGdyTLyKmNeu+uHrOpTmXQfShG72KsME1jDH/zRdzi7/D2ezVrIcnQSC4TVpueAGZRRYA02FhgFKTnWTc8dUsKEq4YFXeiwQTMoJnzly19nWI4ZlANmdc2Tp0ecHJ+R4VkvWuwwp1zW/A/e/kXUasYHP/6If/PWfSZR8TE1/7PHD/l2UbL7ysvMVQDlaVYN7uyc9YUl25tg85ywipw8v2A6qqisBLt0IbKer3uuqXBFk1bMWseyDTQhEo1Yy0WtLEuVwhoKrchihNxgdSLPErnVtERsCATnKG1GjOCMoVWGVkmIgtJ9ME3SHJ6tef/dQ3zjUSEQXUdsG4bDEWUMmP6ZLMFHYGLExEhoahnQIazPKmq+3jl+PxmePXvKi2+8ydHzI4aDIbYoKQcVo8mY9WrNcDTE+8C6qVkv12Kxb1t2tnZ4+623OD065uT5IQ+fPOL0/ISLoxO2t7e5cXDA1dUFN28f8OzJM0JKzGdzknd9g7BJ3zS9Aq23i1nk2R4j0VjyYU636FhezbD7O3xz0fK60xQkCICTbeO4i0wHORcrTefhxrZhuU5cLQSQX5aJVeN6jq3BRUXddpR9anHwnsIqJlsFWiWuFlc8cyua2Tnbi6cMJrcoxruoYoiPML3zMvn2LYrJDbLxDuisb2Vk8CYD6478/BL4B9d2CCmspFBTSovtLYkiG9UHGNA3RhInJiqgXjWR98iHLCVybSi1ZqQNe5lmV1vKlChQFBEyHzFdQMeIiQETxCal+7TWTYqgQbKoDGCR4Y5SiqQ3Sb7yEFL0gPMENkZsiOTasCgKnkbHTEFtZChxL0RGaGZZ4IRIjC27w4qDV+9w8cEhf2U65F994x7ffu8xBy5w08EnWvN3Fg0/zgdkRYVVmkcffkI2rkT55hyDwRhC4PTpM9aLpWzxvSdpy9nxMSoFyixnsVjiuhZDwkfR9++MJ3znm3+AGYy4eeOABy+8wJOHn7Jz/z4q171adzN4Eptz9Omaf+hS7NVpTT9whehjX3hHtJGBnlIaq63cjClgtOHpwyd0G2sNG3Pe51+TGMl7m5sGViox6Qe2m2K5n++x6Z9Ln/ilAv4RcJEiy9mM3f0XSUh9shnCd67rE3Y3/FYv4Uw69KpO9XlB3i8BjNGiElUa1y/xYoqo3MhgCrHWGWX7lGVRdocYsEIXBfr6ENHxxCCLEaU0feYzKUXmwHOjebUHkesEOimKGNkKnpEeEWLH+TowyBWjZLhaBea1LL2syeh6NIXRmnXXkQI0SpYyMbaMtkrGZSnLKNdgbA4hMhiW5HlOWRYslCy99vb2uHFwg67tgMTZ2SnjyQC3XjM7v2RY5ty+tS/Puf1brNaRX/3Vv05RDjh8+oif/PAHnH78HtNyQJ5vEaIM1QaDAeW6hRToYl8rx0SeaQIw3hpgjWY7z7iZVfz5n/lZfu4LX+HGwR3yUYnKtahZVL9pC0r4btFLc+oCqetIXSA5B86R2gbahtg5aB3KB2z0KBWxMWFjRKcESZPIaJDngkmWlBup65VBd5rUtmSZ5ish8OHHj4gvDLj90luU9+/SXc0wx3NWn3zAoWoZH18wqrZZr674nSrwSYSdwRZVVbEKgbatZcCYpPlMfYAJUZYudV0zmU5YnJyxuLzkvXd+RFKR0WRC5xwvv/ICH773KTt7Bzx481Xe++67nB8dc+/BK1zOG37lX/mrfPL+e3z4/ns8Oz3nZ195id2dHVJwPHn8hNPzBSFFHj56TOMa8iondLJc1caitOL+iy9weXnG7viARx8+YXG5RHnFMBuQgFVdo7MMFRAlSBVpm5az50dsdfoaR3IZE2MrytcN41OqfiMvuFe7bRUZg/ML3rq3yw9Wa0iK9WJNnpeEGBmORjRNi3KBLMuYbm0x3dri1oP7vPHmFyiqisvzC9arNV3TcPjsGZdXF9TrNc16LSEAKZIVOa5u+tcrC+PVco0ucrLM0q7X/YJSkVzA6ERRFDjnyEyGtfIMSYAKCecc1uRsopf8Ty0hPn9eiWo/KgkT20qIHT5AXhpUClgjS+TFQjiWWivyPg20yK3Uvj6QZRptFMHLYvTkyjMdaVLUrGrP5SowrGSIuTXJyTPNYi319aiyPHhhwsXFimg0l3PH1coRukBA07ayQAidJgWwmaFdz7h8tuKPfuvXOXz5NR49uaBKa168s8d6Pie4yLptpWcrx5RbB7iLY+pmyZOHT5jsbHHzzj2x/F5NqGctg2LI84sjTi9nNM6zu71HlRXcvHXAG2+8wNZ4yGq14PDoiIurGU3TsK7XdH1Ke1UNiDExne6wWK5J2nGaIosnC7rPKv7W3/4P+NIXvkA+70jf/RPSqiE5j4oSaKZ6NZkyiqiViDeUvu51sZaUyeA06d5xpzSpR2ttllM6ItVK3xOQetGPUpLFmURRbH1EGUujWg7/83/IgXY0Z8cM2hWrHBZBgjTzmFEqQxsdbe2Inccq8R0YbWmbmsFoRDEcMDs5o20aZvM5AcOgGKKTYXdvj6tnRwxGI9589U0YbkFZcDAZUOSGP/y9b1KUFbduHnB0+Jyj8xOKnV1u7R9w/7XX+PSjT3n+8BNOPvuQ77Q1t++/xN6dB1w8f8rV+SU2EzxTnlkWCaLNRTHfefb29jiIChMCKSmuYsTpRKWM1HPhp/h7SgiV90NgN8sYVbkow//frP15rOVpet+Hfd7lt5z9LnVv7UvvPdNNzpAzHJIaUpRIihYlk1YUhbFlxXEUK7FhAwHyT5AEAYIAQZwgfxgwEsCQZSR2ZENOLEVStIuLOFyGM5y9p6e7eq3qWm/d7ay/5d3yx/OeW01JAZKQp1GoulW3773nnHd5nu/zXfZa+qbFDm1WJEZi9HkE89zcRSlF37vcvz33RVbZMiSl3DySWflKlAwodVHTbOX+KYFTYDOIjAFV1KggQKIwkpxIecl1ZIQLCl/KVc0W4sn/qSR2QC4EysGApGHTbCRoQ+XAtpz5oLOysbBC6DHWyHO14tNZFgU+RlRR0PUdOkTGpuCs3ZBSxGdcJqYEDmIf6M3WPVrl80kOJMH1nv+8f5jHHxrgc30UU3Ej3ikpBrZ0mkTCR5F6WWtynD2ZOSYmytZaiFJUFuUAoyN2uykN2bQ14n2Q/1/2OWidewwBpBSRmPwFI8dajbVKCkktC3C7BFd9n40YBSwIPopsIyRcTHQuEpNmtQ60fsumSIwGBcVWRlBazhtP33siBh9avA8XMkVrNXVlGA1KBoWSkANTUFmNiuK1VmqRzBZKo1KNs1BaRewdKUninbZiMm0HY2JSpJiTCNEXG4OtfDOGPAENbNxGZJRRwEayTFFpcDndOER5zYIXI/WiVkDAJ/FGSsmLp1rSmb3n8SniXCI0AuiFFCSZMFzsJVnIYUu/1dlPMeYsE4WOCR2fH7QqCgho04pYLFBeU6RIu3hMWLfoQmSaDkDb3IjK4WF0RYyaFGr6dk1vEoXREDQpSypVqhjNarrW43E5Yl6AWJ0smIJyYEEVdLHGVBPMYI+6njCspoyrGXU9YTCcUY8mFMMZRTHGmmFmsMiSj9lIXhI4E7Fts9ms+I/FhBSkWmONRVNgKsMk9tivfZOjb32V86Mj2rajcY6ljyzRtEXF2mh6U+OLmmgrquEOZlChRkPSeAzDEUlrTFlTFHX2wSxAW4ZVha0r2tYRQ0KbRMTT9S1f+/Bdrj1dsv/xksnL+6x0z2QE3bJhs15n00eVGRSwPXg+TaAWCrSCqOh7LwBJSHRNl88BBRH66C887FJKFIUA3qkLFHWB6zzrlacoIkVpUL2nD2k7GBKZc/RSjimILqLj1qFH5Qsk+77HSNd4CmOFXeEC2kY2y4az8xWmkIRLaZQUyhTsX76KKTTHR0/pFg3ey1mkCw26ED+TQU3jlvQBBoMJ42rMD332hxmPd6jqmhgNDx4+5vj4lOAD50dzZtNdgov8ypc+z2G74cNvfJ0/v3eVF9SQ+7bjf/fJPf5JSuy/9iZmMkDHlkigKhQ6RIJWwuYoFNYomvOWp0dnXNobihylVcQQqHLCacpeFe3a0faJVR9kr21ZyjGCSdjCYIEhAVsZxrVMfNvCYqykV9aupa49RWFZxMTT3nMee0b1kLKCNgY64Nn5is2zU6x3+M4TnYfgSNpSJ4VJ4ru1PS8siWa+wDqZxm+LbqMKPttv2DOKo4f3OT875fzpMdc/f4Wz+RKjNevlipASx+dnHJ8co9+AwhTEEDk9O+X0PHFyfMyd6ze59Ooe+/sHvP3O92gXS97+/tuQ0/WWyyXD0YikFZv5Mv8MORU0BdpmnVHJlPeNYncmCam985SDmtB4fB/pOsfXhwW/Mu8Z5CkiwaM2G4brHpXGnKyfEbSmOwtEHxlUhtIqQpu4tlvyZOE5XgZ6FxnWhmGp8xmNFB99wIdIWygaF1ikc9pmzXBwJOxhW2PrAWFzwujKizSTQ/Rgl2qyizIF1XBMpERXA1RRYftS9m/2qRWgT1i2MUlAhlFyaYik0ktSar5vUAoTI0MUpXOMT+f8aD1goobsoxn3kUmIzDbCCi2NwmoBA421FGVBITcEKkgRplVuqrWA1CmzM0VSkqUe2QjaKoVVUiskBTrIxxrNufKcEmhS4JKuuO0UtveE4Bh7AVtGPlCqwCfHDf18xS9cv8EXLl1mZ5L4vafP2Dw84/No5srzn/Web5UjDm7dYT4/Y92s6XxHPDsheocLPbq0rNcNg6Jk9exYwhzKAmsK5vM5rm/Y29tncXrCNpouahgOao6Xx2hzShscj3d2GA0n+LZnMBhx/foNAWDqmqqq0EaGEVv7CYWAtt73dH2HyxKT3nW0fS+G931L07Xy902P7xtCSMznS06PTkkZhNoqY6QAF0B1LyIAX4KkEnMMk20DdVE0c3EvaGQI9NkU+ExU/K6TVOCbL97BFBZrDKUVmWihTFYZZGDZAkqjrXgsm6IEIsF7yrIQawcvsiuNDCJj2jJsFJ3rhVWdzbsl4CWSos+vlTyk/hTrEI3EuSmrL9LHt69Fg+ITZM1DyI2IFM57SVF6WY+bTuG9oXVG6qNg0UY+VxvZRyGnQxa2QCuxdanqiulEbFX6zYamc0ynE0iJ8+SY7cyoywqLYjwZM5yOGY3HpCiWLtOdGUolutWK8XBC0orLl6/gekdIlt/8yt/l1//R3+LWqz/Ei6++yc/+0r/Bld0Jt+ffQ+s1451LDE/XGK2pqpLJoKAaCMvHeo8qpE5sVx2bzZpr433+h//2X+GnfuxPYKoBsfHgt1KiQEo9Kfqc+FRcoChKG7EH0AYKad4NOYArs6MIYu+QopyP0TlhxsQk7G+foPOUXUfqelInSgbtBAgsmhW/fLDPT/7Ej3HuFV2bUG/dozidY56dY5Pja+98gz9l9lg/OaLfG/Ibq8d0WG7v7edhFTTNWgbq2uBjIPS9WDSEgAleBkFDxXAw4nx5zuZ0yUdvvU81HdE0Pc38lNHuZR48fcbhzgRNZPHsGQoo6hHT3T2+fOc2L3z+81y/dp32eMHuaI/VYsGLN97gfDXn0pUrzHZfQofAx3fvMj9bEHpPwmNKg3MFhwdXaTYNFkkuj0pR1wLwna0XzKqS0/NTyqKGxQpjNJNBzX6SGk0lWKbAMKumQORzZO9U8c4TG5WR0eyu1rxR3GYcAuvUM6xHxJ0d5osVKM2lKzd48bXXePnll7h54waz6RSsJaJYLlfsH16VVOeYCL4XFpHr6dqGru9xQWS3q/mCft2wmC9o+w7ne/q+o9msmZ+fsVmtUUrTrlbUtRF1iesAGI8nDEdDFoslz548zQPhlO8sthIQ6UxUZg7n/Sxqr8Q0RGzukyZGwo5Gg5KzlcdrTYiGznth8ypNTCKpJ4HRIgl2PtB0TmTKocD3XtQMqsD3GpUCMRja4GUfD8UP5vxcktODSxRJAhKS1myaDlTBcFzQecel/QGl1izOV5wGz4cPjvnG179NVVmmVYG2YOsh1UCT1g0pBIrhLpPrnyE9+AC/OsUnz71HD3n88DHVsOTy9VvcvPYqZepw/YKT8zl9J/7Ei/aUJ8dPqe8OqcqS0ciwf2mPW9dvcenSJZRJrNYtzXLOanPK06fHVAPLoJzi2w2LtqX0kV956Uc5+O5H3P+N32bijISPIGzZIlv5bJlQW0UcVmR1Og+HoxK1FOSBQlIX7HKV163R6WLtij/tpxhkShPyvaGjlqFDDByfn6MfPCUdTpisN+ggPrOqjRhtaDcrWFi8NuLhmyJ916EwGER6bsshLvbMZjv4omJ1usCYkmrXoCwkqyAGrIrEvqP1a/YP7nDv6UfcuX6HL/zMkPsffowtDW23YdX1XHnhBV793JeY7h5weOuH+OSDt/nOb/4qRx9/wPnpCTde+SxKGU4efoJrG6L39J0XCXyS17Q0mtpe4XraDlEVR8lhVGKYMqqkECuElP3zkuZlPJf6xI3pkA/PT7nm73D65IjFYJEZb88BvS1IlVLuwVLOsg0RnQNQY5bfpvQcWFcKUpTwjW3tkXINsfXPNEln6w3BeExVXnjtbq3XkhM1X4UM7baElE+D+YrtJFJB0gyTpipLysKyWK/xPg8YFWLRVpUYYySkS4mNh82y7NpaqrIiWY3Vmv29HZS2fO9736VLnimKU6TXjdleRSn5f6OXxOzsW0eOF5PXKzMP/ygef2iAzxgxuE0pEIIWVB2RbOooU2WjDWCIaGlWXBCNt5WCv6y2jog9RHAhojCywfMeT0mYAjGJF4KwPiQRUvw8EKmrEi+qrV+ZywljPlP/Q0z02eOnd8IADEmAwi3SW9iCUVUyzYCXUiLD00rkelrlJEqjULWhNBZr5fCxRqbTKiVKW2QpKxAN2liM0XjE+88IuoVBAASlgqTX1oYURaOOBp0MwYVccIsExWdZqg8hA+GJkMQn7wL2zjTXi/S5KLTYkJJgsCpB9k3URuN99pnJ6YQoj7KJ4JP4pSG6/RBjBhQjCWF3hCghKYpsjJ0HgEYXJK3QpXjJJAW21ChVSGGuFZWdMhrdolsdE/0K1Vua2DEcwko5+q7DRAlkcSGImbQOuN6hcAzMhFFds1ifEqKn0IWk3sRAVZVga4wdMmAEOhHVEGVnGDumqGaU413q4R6DwT7WjLFFjTGlsFiMUOS1LlBaCiEfhJrfxobMKctAc7iYWKjceGptxPNQD8VvDn3x90YbBsZx+rXf5r/5r/4G6Ue+yOzn/xhFOUDZki6I71LUiag0yki6sUuJviyYlDVDpUi+gyReKU3XkZSAs+2m4erugNu3r/PxwyecbhYYa5kMhoSgsYMBxRd/jLu/8TU+r0t2zxcMp3vEfklhSh486y7Yec//wJa8xwW4t2VZ5KmIylPvPAKXSzlGlIGyMCilaNue1ulMR464TSdSMgVdkOm5MYp6UOFcIAQvRUBRiOcgiT4l1n1AYS4O+a0EeCvliikxqy23rl7j86+/zGdfeoUPnp7y3/yDf8ByJdKO6c6M0WRK33pOnpxJYdCLFAslDE+txGuwW55RDAvUeMClnat89qWXONw/pCgrlFV88NE9Hh89xfUtZ4+eUU/3KO2Qn7tyjc+VNQ9/+7f4yat7vLBX8yg4/sOPH/J3oqO8fIWyqjg/m7PuFuzvj9mdTnmsTyhsSVg0pL2aneu7NKuGQTVgVA1wsWfTeXoXWYcsawsAgXXT46OAhJ4te1IKpeCj+JagMSqyO0hcLhSD5BlaKCMoFxloRe0jBYFTD12viaUIIpz3hCieaOuTFXrVENsWQkJ7j7GaGsM4iYclCVSSpGKfRHoVvNxCSSVi9JRKccUlXrGK31xtOD4+49a1q6AM+3t7vOc9R0+f8vJrr8gEe73mwf2PuXTpgJOiZLVYMBjX7O3v4nGSMtZ3vPLCi+xORrz77l1Oz0/zhN6z9oHBaHQh/YbtoCJhC4tLYrNAhOChWa/kNY4KnzrqQcHGdfTrhsfDEU9ix34uTEwK0LbY0zVXhpeZDD+mCYG2l1S44UBRmUip4WBHEuyc97RBMxtXxORZNo5BJamfm5WjLMWrcJsW1m46+rYlaU2lS4qyJLUr2rOHxGJCvXuV4d4VTDmiGu9iRzvUkz2odwi+z3VMBnbyvhYJpEbsjbeG5DoLdQWsL0PiMCReDIrXteZGOWL46JhZgkGMlEkyH4sUMSqiVAKfJIiLlCW/ZIaOlDZp+5dqK4oScZ74aqo8VZW7XpQAGeBBisNOKY6s5oE1nLQNg95zzcMwCUM0IEOiDuiVhAZZ4Iot+NzhAb8wGRBOz/h2Near3/2Ef0slYu/420PD34sGe/0Os8MrPD15RlFVpOCAIKoCaxjvzNDGsFmvMe2GrmkYVSXrzRqroesdq/MzqrKkW22kiXGBZD2D4YTz83NSCiyPnrHWp1ht+Qd/5++AVlSDAUlZlDGS9GYMhbEUZSW+RVXBYFBR5dCgQV0zGAwYjkYMhzvsHwypqloGBQqCb9l0G37jH/8qrnGgTL771fPCOCWsNux5CZ0B6QPWwEhJAf7pQvTTg+cE7HaOn6s130qG1abl2cOnXH/hFkobvMoBCsX2vhTATmcgRXx085mhLWrrJ9i7LO3N0/4QMhgtbE7vc5qe0p+qeUSFENO20Ui43uVAKPELMkbjvbDPt2dBArxWPEySSG6TgIhbftMuUEZFbTSNUzgUXXQCYOtt4S72M1s/6RC3DOutBFnRdj1V16LRzAYlu+OSputJoSf2LfVkglGSYV5bQ11YNm1DUWjqekRZ1LT1GHtZavEQEkVV07mED4omOT744Nt8/OG3+e2v/H0uDSf8uz/zRXZefYNf+jf+fX5RG1YnT/nBB3eZz0948MmHrFfnbM7PUJWmsAUkjR0p/tIv/Bm+dPszxH/2Ffr3P0KvNqjsxxlVImpP0pFkTP5lxa8oW5hgLBQGVVRQFKjCoMpC2GZFiSos2lpKUxEqsWWhrFC6IhqDKiyMa1JdkKqKYCwoQ4wK1yds03O5a7Hf/z6jzRnDmL2Vdvd45s4YnDdcKjuKRcPvXxrjxzP22x5rFYVNTExJc9pjYqTve7mnfMBWJfPlApwnFhpdrVAByqGco/OzM6YK1puWg90Zs719Pnz8hMfnpzSrNaWqeOc73+Pwzm2uXLtM1AVRlxTDMQ0rHj9+ys6lHV567WUePHpALEp803Pp4JAX7JDpdEcC1YxmOp3SuZZyWLNeL8E7Nss1qQ+41TnrtmPZevZ2JlJ3Wc27736P4yePqLRlGiIpBFRKdNGxZ0o5b5WS4JScGJ0Q9jQJbEocVprmfMmbOwf8+umRpCtbzc5sQiRhyoJX3/wsr33msxQ5xAhE+nbp0j59KzJjtKKoawprMwAWxI9Wa0JMDKqKsiizcsRf3EFd23J6coLreyKKzXxOCC0qRYpCEk6/893vUtc1zaZhvdywjssLRdnWHGa7v3XmG2VIU84vDTNghGLpAqPRjJdfvsrDh+cs3nlC53oSihBkEBBiYqCgLMuc+BmIQcBoYwy2sJyte9qNy0OZhNeS+H06bykLA0p6075PhAjLJtJ0UI/3MLZkc77Ch4ApCvqNxyrNoyct4ylcvXaV46fP6NsV67alWcMqS7Z0IXL2K5cPuHzlkPHBbUbXXiaVI07PzoV1ritSSqxXSz64+zZ3/ffZ393lyv4eV2+8wMnpCYrE4vQMwwYKTd+sSJQ8Ov4AHz6mMppRZdmbTbh985DLB1e5c+ez7E13SK6Vu8Y1cP8BzVtv89XV14W9m6QfKq1iqC2VjtRVKaQYO8CWBUNbUNoiE2S0WEzlhPqkhKyQkkIHYYjJnCjm3jZztEMSElFyYk2V1STClLLopOm05tmDR7xcjhg8XRB2r7D5mTc5+PBD/m29w3/99V/l7eMFcbHk0u4exgxJtXjB1/WY0XhEYQvK8RQfIr5t2QTPetUQnafdtDx50NAsFtSTHbyCu+++w8ELL7OaP2U9P+UJPdpKINeDhx8xGlUMdvb5oR/9cYaDCXVZ8fbd92iWGyY7E7rlCYuTp3zYR1545RVefPllPnj/PZYnz2jmSxISODGb7XJweJ0b+5e5fv5IbCuS4kwpJklRRivhmRlok0Ge1FiXQuS1vueTqwfc/+gxzWLO6Mo1YlQEJ/YgW2WO3jaHCIagVQ4dZRuUlS4ALGFWZtn1lqy27TG3tQbx4v5OuapQQD0aYcsye+l6Yoz4xIVnXanE7k2+tzDxU35u29pEBxkmD7TFakvT9viMLcgZoSTBWXznSEmyIYxCwsxQmJCg7TOTzzAPp+zs7TMuSlatZ6csUMqIz2zui43aSslznaVyeNT2OX6qzf6jePyhAb6YD2HIEp8oHi9VWWUGmYBqSkWKQlOYAmUtNgdQhBhE3pu9TUIOvBC/PkV0uWGP8r2sNZmdpGVar7mQ27ogYR2h9YQIvQ/0fcAFYY2YPEXcgiyFrahKg9WKqhQzeJ0iRTYdt1m2pBRYC3VVAZICZWyBiqC0pioqtimiKSGBA0rSJrUSH5xkZMG7ICbxZaFEOhKTyEmTgxRQSeQqwXWgjDCUZAyM6x3kZieGhHdi9KqMTCt8dPKmKPGUCEGuL5+ZZUYnUIGIUFBTlMl/RKGMcJZTUviQvQvTNnxAjLCtFqmsTyFPw8iGxDF74ZGlyjJ1TSqhlEzWEgLcWqthE6hMiSkCSpUMqn1Cs48t9/HcofcntOu36fwZPsGmSRhj0UpQ703TYMoEIaKxGA3Bl5R6h7KqKKoJg+GQupxiyglUU+rxDnW9Tz06oCinFOWQoqiF1q0NCZ2DYFKWftgcRiKAnsuyQ7Zecfn5E1P2HpHpvsTXW5H3IQechuxJqSAFQmqkuPKJsOn5+//0K3Rf/Ene/Nk/SQyy/TvnUU6mPKumFV9HSeym1IboA7pKjCdj5mc9KsrEJoXEJvRUGm5eOeTqwZRP7n2MT3Dj2l7GfhMJS4iRLgRu/8gbfPiN3+GV857RZMRcVxSlwl50b/+yU+cPTke2I5JqUONycELKIKfSZKaNSDtd9uWMSZg526ZSzJ3lq2sENBaJeQZYtJc1pgUYUCS8C2xc9oDIX0t+nnyhqMArL13n5778E1zav8p4OOYnb9/kH//aP+X8VBivm1VDdIrlfA0qikwgP7mEyFDRMBwPca7gys4e1y/v89IrL3Gwv49BDvKj0xMeP3nCZrXm+OmJJDEPK350fMi/8vJNvv9bv82PtIEvXJ/xrAj8Hx4+5W87RyqG7GPon52AcdjOwZMlk70xJ5Mh9IHJdMTaQKsTHZFmscGVNV30kpCbEoXW+B6CjxIMowss4JITHxrE00IZTZE0KilKnTgYWF6oFXfKSBEUhYpUNahCwBRjJPCkToo9ZRkb8cVprUZ3AdVD6BymsIQ+X2IpU61jpE4RnUEduRzJyduSqmqEf4lCQgMmEb6gEr/bOx4+uMfB3g4PHz5hPBniY+Tq9Stkgje3rl7l8dETTs+OgcSorkl9z9OTY9rQMhmPMFpzfnTC3t4etigIff98AOId67OzfLnmtagECLVFgfKtNDwa8TxziUFlmE1q+q4j5IFg6DyLseYHRvGay9BYiOjeoebH3L62h3pqWDaRtoOdoWLdwbMuEb3mgxPPpnfMO8XAKpQKtN5TlSYDG4HRSBh/tq4YjEeQIiH5zPa0wiYPiu70mHWzxqWCovyQ8WyGKkZUk30Ge1eYHtyk3LtFoJJhTx5KiGWExvf5HkFlkDxKwAbit3vJwR/b2eOn9/e5oywTQTIyspNNrYOEdejgUVv/NBQqBGGQJo9OERWChEaQ8jArYhFGjk2SYLallUk6aEJl9vfFNDZEIpGjyZBHfYfuHH+sqLhhaiqEldJbDTmpOXoy0BLZGMX01k1ergfYZ894tr/L//2D+/xU8Ox2kcdlzd/uO9q9XW7s7XC2OaXrG8aDCrdNgdUKZRVd9EQvKeD1eECzWmGVxgdPVQpw0Tctg/EElMy7VUp0ncOnpYQRRRmcxSAOn33XEVOk37QXTEqZKmc0VGlCksAKYwQESzHmABeTX7rtmShrGuQ+Da5ndb4gAXsHB+xduoTznr7rmJ+esFouMVqxl89b5AShibC79cfbXoM8L563jzJEforA38HwHaV4eP8Tdg8PqYYVRlkZ+KKzJCfLYLQMEXV+HoQo/s0EnJN6QZsEauvtEzF2O7hUqKLCZIDabC1dYpZzh0hSAgQkXUoKtPfCLItZlmNL6KQBJ3+dZwmcSdgggJ1GUmxnJAYuMKsMp07OjkJbtkNT4hYwl4GetSozC8XPKSaI0eP6luQH7B9coR5NGA4s46AoigExebrVOevVkr5pWJw84fDaNYbTGfVwTN/2VMMS3weUEt/npmnY3d+nTIbe9bRtgykUg7Kga845OntKPD5gNbT8x3/rH6P39nnj5dfZP7zFGz/8ZaaVNN3Hz55wfHLEvY8/5NGj91BB8dOXr6H+n3+TePcDdNdjMhBESmiD1JjYPLDenup5bSgu9q1Slmii7ANtwBpiBgWVFmAwWGnklSlRtiYVGmUFCExFSSzlz7qqMVWN0gVKa5axY/GNr7F3aUrXdZRNT4yK33n0Lj9qh4TTY8pZzRdv3uSv7r3EafC8vTzhm+2St9WQFBy70xn7uwfcf/yUtnlKnTS2KihGY4ajMSFCKAz1aCb+woXB1gUHYzHjP3rwBDc/Y7lYohKcnh/z7Ou/y+AHbzEYDjFlxXh/lwfvvc9kMubS5UPCek572oqkOURW50uG5Yg+Ro4X51y6fMByvYRS7BJ08ihrefzoKbdv3kbFyKN7PQe7l2menFNPJty6doXFcoGxid9+8pjRpmPkEyrIkLSJkRFGdnGuCWRTp+dHer4LDmrDo2eP+ZOvv8bvnx2RrKZpO5rNhgi4pHn37vu88OJLlIMBw0FN33a4pqHtOvq+o21bmrbj7PSErlmznM/ZbDa0bUufGW+mLDGFzUxXIwOL4YDCWknpRHHj9i2GVcVkssfe7k72HY+8//4HPHj4ENd1ONfLYEhrCWkAimzjIG2NysCemOCbXMSOU2APzWnn2NmZUphKCNcRYu4jg+9xIVJag+s9obJoO6AsK5SypNhTK3HOAdYAAQAASURBVMVmtUFFOYtd9pNXOg80FQxKYQNuUrYiiorFJmGU5os/+WV++c//Cs8eH/G//w//15ycLHC9x2iRAV+a9ySvCckwGY+JzjEbD+majvlqjQ8J53sePHjI2dk5X77yEuOh5oXPvM5qdcL6/Y/RocFajcYQQi8J5usFx8Fz//ExxiruXL/GrTc/S+d6jo6PWZydMpgMMCeREDTJeXanNeum4Tvfu8tys8YUA3anM3YvjTm8vM8vvvbj/NTgR6gvHeG6lbAyVUmPJvSRtVvTuI6T0PG4b+jcBtduoD+n6DqSlxqyQlMHzay0jIxmVNYMippSWwlp0jJM0WiUVXkdR1nbOa1dXAQiGvB4kofTsmbZNUySZWMV6z/7Szzwa4pNz3/r1deZnX3EX312xHSx4ueKIS9PJrjBmEdFZEOgSxDNEK9L4sgSD3YxgzFlOZD1ZTXWWoISP9a1c6zXHaq0dB6qySUsmsWmoxpNKOxNUt+y3LS8/e3vgEpUgwHDSzMe3f8IEzx3Xn+Zx4+PWJ6tufudt7jx8itce+1VdmZfZLNYcvbkEQ/fvcvLL36WvRt3mH10jxsRoneAZUFkzxiKoHK6AbkOz7V6knr8T6iet1YFr12/zIdHj5gdXiapWpiVWqG1YDIx2z2w9Y5LQvaxNrO02DL34Dk5RAYLF9jec0ZJ7g+lR9gOeq217F7aFxUHZNJWoHeep/fvE2OiVvqiXpFmMvsEb4eXCUxSOAK10tB5+uCoipKyLDLEIj5+OiWqspReMgRMH7JFlaydiAInZBJXKaLzlOMxi77lxmDA280Sh4RTxWwVovKf9TZoZGsvpT8Ngv7RYH1/eAafVuhCEm+M0QJQpJiNisl+T0JATMHTBScTZC2HqlaGqIJIbvNi0ReOCQmjrEh2lCTyQkJbg/OBEIWVIkEPKjN9RO9trMHaglFlGdT1BTtvm7QWgqewBmuhshqSmKUaI9976/eSlMpuFFKMWCsFso+REB0xKVrnkQUZiT6I353LwQtKyWRYm8xCTKQk6ZVKizRWq8xgjAGlZUohsdzyLvsYJBUOSCFJ0ap0ZuYJCNq7XgCSzDhEJ/EpijLNUCqDetuNFDKrQgkr0jsPubjSRkxtk/RcBJ+IyuD7KNzMGMQDKGmi8GuzITJoK88lBI/WCmMN3oUMztYoIlVlpYGzoIKiNFNiHGNHE8L8BKUecbJe0bYeVRhC57l2Y4JvWlLUjIb7VNWUop5R1VMm0yvY4YzDakJVTrCDGdVgxmC4g7YV2hSgbGYmktllW7r2cw6CtZoLFWMgh6QIo8UoLYnOURGCw3tHiF5eRy1p0sYIWKx0IMQNKfb4fs6qX9E1czbrBf1mTtvO6ZqGxcpz49oXefvJU374C1+gsgVd8vgQqQcDIh2VAk8OsdgmkQHJR9y6IfiExuAUGAJ1WVCh2J3VDK3i4eNnNF5TDWuZcGTgNkRpHr337O7M+NAHymqHQVQs1ZDSGmBN+v/imNkWgYpE24mX0zYhVA7hkKc7IgXc+rBJeGHIvklJDHSTtKMqyccqSaqtNUaYo0mSObcGzkkbKfpjDgJIOYsz/1BKa7771n0+ePcRVWUoVOKlG5exdYXRBYU1+CBk8dFoyPn8nNIIa8ElmJQj9mcz5qHn2uV9pjszUvT86OduM5zOcAmCgvlmwScPHrJaLDh6+JSgK/YPD3lTVfyll2/z3t13CU9P+cKLNzgeG/6PD57yT7qev/izP88Lh1cofKToemKE73Vr7trIOnWMBwN09Fy/dMhJ6ulrQ7tYs2zWbLopygplvO178IlCKYpSfJOazuMRKW5hLT5FAfqtxQK2NBTJMx0qJnWitiknlic2weIdNL0DLexZO9DsjByxLlggyqyoNGe+ZxN72gpQFSZEogeVv9YwTz4k8TJeADMpBQKJgiT+H1GYQgNt+FxIXAHuf/wRL738WaZjDYXm0rVDjk5PqIZDzldL2k1L03v2xiPWq3MW54nDgz1mswmn9094cP8Tnj07pluvuPPCHY6ePWO5WjPdu8Ti9BTw4r96YWib5X0x0bStNAZKkYiZnarpXKBbrKmHJSoFitrSbAKtD7xfK5xPeBRFTBQhkBbnXNEHuL6gaR2bXoIBruwV9BthIzVt2OKLOCKLRrwrDfBsnhiVMBvAbl1w/dYb3L75Bi56yqpmdfKQ5uQebn6KKhSh9zSty1L8nuWTc/qgKcczyqMH0M4Zup6lmggTMKecheyzqdD4bLOhrZWBQNLYlPhMVfE/+ZVf5mf+9C9Rj3fQvieFVprNfJ5uPc6E/eozOx5ImcFPIHmP8pK2iE8oF0m+J3Y9sd2QXEfsO/AB5QJ4RwoO5RwpJ4Or4LHeoWLHxgaaxTl3TMHLly5zUEoIlDJKQkO0FvlZKmRw5gKhX6NChz49grsfssDwf3ryjHLZ8blezpH3lOUTE7k83KcIPWerDSqKKTwhCWiUkvg/mYI+RnrvUEWB1YrNckld1yidKMpC5DPthuHOjM35kk+nxY3HY7q2IXRiIRJiIKQIWovxc5J7wG02F+yvRA4TSlnNcDEsyUbzyJqy2khabfYfjjGQfKTvHfV4wsH1G4R8P/ROgma0lnC0vTw0SUkYkA2JcRKnupQEtEnApxS7+SxOXGt6/tyk5P0E56sV73zzW/zSX/gLeJW4d/8Bi87labaY2m+HZ9vkdZWZm/L9dTbMzwzTJAm7YucaiIAprUjO89lvUhSfHpOT/VKU4JYYL+ToKtczRee5eqfi+MkTVifHUgQoxRJPrxX19rLL4McswqBtGc9kcJeipEzWZYEtNG0n0k6fEt45psOCw9kYQ0FInmThbLFmUMjPGV1LCjWD4Q6TnX12dnY4fvKI9fKMup6xWioeP37CeDrk8PCA4XRCmmiqwYDx7i4hSD1ijXCTQtIXAPB0OEalyKZpKbVmnTSLZsWiW/Lko3PuPbiPNhaPYm8y4crhFa5dvsErL7zEl37qF9jf/2WuHW0YfuUrpPc+Qp0txLOMHLKlIkkFVCqQ0CS3ve5zSre0dDLkNKC6DNRmgE+r/Oc8KdQyKLrwldFW3Mdloo/KXoxohVZWJvC2IGrD4+MnXNuZoh8/oux7TDSc1IZHjx/xZ52lbtao0VVWgymDdeTOec+NOORy3HA6jDzqe86PFlg3oNIluyR+YXaFg9E+6upl/KiiXy1p+w6f6//eK1RjqW2Nml7GXispS0u0Baks6Ulsmo7NekPTNTSuZd03NA+PeOIe8/G3v4/zjmjk5RGfTMVH7/6AqhIfrcezGWU14GOtuXbjGim/DtVgyKrZUKjI1RuHvPfWXXSy9K7kg/ffYzQaMp+vuHb9Km88PGboO1IMBGVoUmSkntdLJOnNdIoX6djkgcskWQ67Hk3kRw4P+OrJObO9S0xmImsbznY5ODjgO9/+NjaJzHV+dsbZ8Qnz+ZzVeiU1dUw477BGpMVFWVLVlVhCWIgu4INm47cECGmK5W5SdG3H2299myLL/Y3W2MKiNTx79oyTk2O6rhO/YSMycCPbVuR7aQu8ywmaLoaLCp8iVVTcSIl3XCAVNSdNyw8+ekBSBYPhmGY9JKaWFA2BIdODa7zw0g+TomUw3WU4nghLSmuePLzH8ZOPeXL/HpYNMThS8hS2RCtou5bQa4ISQsqolsRrH6EuZnRzz/VbrzEZ73ByMicGqd2LJDYZs50BO9OSJ0+PUFrRRmErlaWh0Jr94QhlYLlpMYM9ghlw3hhmu5f40pev8uTJQx7f/wAVPGVRMq1nJC197vLsjG7d8cFqwUfWYKuSuh6ws7PDzZuXeenmdZ4+Pca1jYQIDjz9esnV65d5+PgICHxy/xEPPrrHn6t2GJ1UPP79b9C6BmuNsPJsyVSX7A0sVCWmHqCHY9T+ZeJwSKqGOA1BKRn0+8C6bVh0G45cT9oEQrcmhDWhbYjOQRcpQ8CoRA1MlGaQQ/7EIkSkwQMs1lZoKo58w9iVqMahg8GcrzGF5tKNQ1bf/T6feXLKvxkLZj6w/+Qhg6dPOZju88cPrzI6uEx9+TrcvMbmxh5uUNMoxab3LDvH3PWcdy3L1YqTVcumWROdw/hInxPdra2Y1FOu7O6gLx8wGg4oTInXlqDIfv4Nm2bDjXKXdjNnvVmgi126/ZanT5/y6N7HnB4fcf2ll9nZP+DVNz/PbDChHl7h4PoVbn7961zSChV6UqF53LUcKo2O4BUoFaVGUmSwXwZd11Xgp483nN3c41FtuP/xe1x74TWcL0QslPMU9FZloeUeVAoKLYGn28CszIlhG7yh8j58bqD2/HN9cPStE6Z/ritUZv4LyThic40SoyLm82JEVkfmGiR77lyQllL2os66bYxKlKVlMKixStP3jtIYyEFLEfGEHboEjRfbGp0IgFeRSlcMqgFt2mAJDMshvV9xZzhFrc+IXbjoY0VdbrAUkk0RxKZl+zC5HozhjwLe+6Ng8MUtQCSLQe5kMZc2Or8ZSSbPaGkuC2sEjAoSYBGjeKwoJdRnTQHIm2+MMO5cL5dCSglTRNFK20KMb8ua2hQMi5yio2SpVIVMijWJotYYLW+kVs8bDq1z/k70JPV8Du1dIMZePFmCyEIS2Q9oi64mhHFotJj6K5lly8+uIIdfkExeUGQjUU8IEBxYVeGDJ6mQ2WGBDWKqrVQShhky0d+i2FvUFy1AnHyu+NkZmy4KKq2RZhXwyuJTS0D8uGJKQqSIwlhLSjxPyBss+IhKwqK6eDOixMHHXNlvZckpCaNCvBOkmTdVTjtEQVlgSAxMRVGIzj8GmVIZtUfsZqzXR4zoUMnRrxuKOKEYasbTIZqe2WhCNdlhUB8ynF2lHF7GDHfRgxH1eI+iHFJVYykEtZWU1YyM+1wYaJVndEokO9tkrJTfzBCEhakhT/6y4XhmOobgCd4RQi9rymhsFYl+gWvnrJtndN0RzeYpTXdG51YQVqTkSKFn3TqSl9fLpsBM7dK3r3Pt1ddxQSaWMt2XdT6oK8ImUpelmItCBqg1vVIMnOeydpxZQ1sO2NcJqwzaOdpmSV9YyrKiqqQZCi6AlmbIJGFTqrKi0DDc2+dotaZaPYLrYFTFYBDzG//PP7az3X/ukWQNooQVnxcYIGa5KXmUSgKsG0MfnUy3jBbT29wsZK0DKSRCHymMzZJnaQ40Gh8VjbcUrWHtErWp0Dr7J4kGI4OIIpcyXoz3x3XB6f0jsIoJnioq5r2nHIIpCtKgYlwWXJ5NOFRjXp1coTkY8dsPPsQkR/KO0d6YR8/O2AuKyWyfZDT3PvmEo6dHPHnwGJTl1mu3udYm/ge3X8cdP+Pdb7/Ff3D5RfrS8J8+ecLfOD7j3/yRH+d/NNkhnh6xWa3Rj894d7ngu/0pzY9+nlRWFMayOD4jzBrefOlFHpwfM280m9izbluSTXQx5LUr522IAaPEiNkhPqi4AIV4SaSYSFZYYV4lTlaJByjU0FAky6SqaFpH4xP1aEJwidQlJqMxjo4uJs66DqehjZrTjcd1kaqqoCyJbU/SSkyzC8tIi8RZGEtyibnMUiLJOZOUTNmjD5RKcaPz/GhVcn9+yvHD+xx89g2qosK7wNHTJ5RFiS0KjC2YTKb0TcdgWNL3HYtNy2QwQHvFZrnm2fEzYtex2bQU1YAQFZevXGE8nnJ29Izl8jwDjtviX2QKIWQv2RjRFgal3HN9n4Q1vekoC01RG5q1I7Q9HxcVS3qGZKOKFNDNmktOMSprNGusEcZS28vZlJJnMrBUhabtHNXAYo2l6XphYzpFtLIfTDTsH77E7vU3JB16tstk9xEPdU0xW2H6ltX8Ka5bUhBwfcLoEltWBB/oN0tOHn7A+fmCfnpT9kn2BUkJ8ZHVeRCSZBAkcEHiVoL/2eF1vnTvBP/X/jqLGFHJE1WUfF1rCUaBMrL+7HPQXRtpwJWRf6MQ6R22IhUVuqhRVY2tavRwF10VaFuibCH/b2FRpYFCpH7RSlOvlNznbvkJH/5X/zl/7q/8e1TTAxnQBHDBiPuSWPYI+x4tCXebHvdr/xD3rW9TusDvVpq3z075y16RouKsVJxMC6ZNoi8stqxQPkGMRC+evTHKcMsohVUGny1GRLkAvmkZWIstDKU2rGO+u3NanA/5nOwdbWzYubTH8eOnRMRDtqxqtIKu6VBGY8jMNpnMCVAXxC8xSLnNVngWdJ7Hx0gHOYQH8fSV6Qq6LHnx1dfxWtOu16wWZ6wWC6Jz0uR7zz5c+O0FYKNgnLZTcTIArDJ4+1zupoAqJH42eX7bWv5Jgs1izid336UJivP1kmI8pd30dF0r+07pbLHCRf2gLoAf8j2efRdTtmGIPstw9AUguPXR0VplH0mVQUvFNoV3+9AKXK6hdFVTDofEk4TOjPJNAq/y8E9n56AUqRNMXGRQ1BTaS5OUm5uY99F2L6mY2N3d5dUXb2JCQSDhaXny7JT1pmGzXkldogz19ZtMdnYphgMm+1fYPbyBKQwkeK1bE0KkqGui88IyNoZ6NMnnV2JQVvRdy2rdorJ/5XyxEmBT2+yHOsalMc5FCD2xVHS+J/Sek9hwfPqE73z/e3x7/4CqGlB2G/5Xhy9zdb4kLdfgpB7N+g/QmYUQJfQkqZhJG1sVCPI+ftp6x6vszSdG+WwBwDwAVBdFbAb2lNi9JJ1XmVLPVQJWVl2jE2ePHvGifQHdNSjvUVh+f7ngRoT6dI4pB7Svv8HoC1/E33+Cny6xquPzVeDX7r7DUEUm04rUz9kpFK8UAz6/jrxkNQd3XmX88z+NHwxQ0RFR+OTpgngRutWadrVms1iyXq+Yrzcs1xvW65X4YPYtzvciEU+GNBjCpJJEeWuISiwsolFEY1gHR588Xejo+pZ2MacPnqenxyy7XggTRYGtSkxRSHhPUlzav8wHd58xKgv62FHuFkz7hp/VQ3S/lAGC1qy0YqIlRTMqpPlF/DHJpdiW7WaS4cagYnn3EX/hc6/z/slvcnx6zGj3kLZzpPM53/zKV2g2a2KUFNGtDF6+GNhC7CZ0rlViCLiuwzvxQt5oc5FeKbY/WybfdggsadlbiyQIdG1L34Fzjs16TfCBwlh0UbLebChtIcxqDZPtxbZ9XnLTYdBUiGRwoAwvpIhJcP/BM87OT3BYBsMaZQpuXfsMb1y3tG7Fuhjywud+gnfvfsS1w8scHl4mIR7sy82GYjDl9R/+KV5/80t8/N7vcu/d79O0QWoIpfABqkITXGLdQIoeqw3TwZg/+WM/ymsv3GTdOvZsyUltaEOgDaJwiTGyPDnN4Y6Wz3zuszy+f5/N+THW1vRNS9+tUNqwv7vD3u5UyBi+55u/95vszmbsX73JF7/0M7i+5979D1menOK6DaawlKXFaqiMwsXA+WKNO1/x+OSM+w8fMRnUGGs42N9ltjehDpFuUzAYlIyGV5mfL7i6f0BcLbn9hS8y37vB+YO7rO4+xShNqRRDbcAU6FbOfaPEukhZI8Fm2lAVBmxNNMLCH5SWK7pGFQPCtMZXl4jFCDWshZxSGaAn6ITrG/rG4dcr2XubJY3rMe1ayDh+g+/mvN02fLHXPGk70lqx+C//OvbOHc6Wx6TlCv3xR/yojxhJCCCmgJufcTafs/7oAybvHjJ55RXqN19hevsG+toB6doV0nREqktiaUnGELX0Oi54Oufp25Z1s2E1X9GdzDk5P+V8Nae5/5B21dH2kbZtaHxHDIEdU3N7ssdgvIe+dQvz5oQ0GdGbQON7NpuWJ6ennM7XNPPAi5/5AtdvXuYHf/vv8q8Nhuj1WpKha83xsucnqhGFshirUVossyTVPLNckkerxE+NC+afnNBfO+R31gs+uf8h1268SF2PcIjlToyiXFEq4YjPnb5ygKmcI3LnGq2fk60yafiCYafI7D1PcuFioKZyKnbcNu35jIp5KNl3DSpFpqq42NvPv7PU9Sl7jwpIKIqQw7Kk1gWmk+/Ve02txPfReQ8xUmbSgldQAvhEMgofRelZVSUHVy7zIz//C9jhLl//O3+XF3/ul/hLO2M++vgtfvC1r/Hk3XcpipCxIuiCvxhaCOklqzdi3DqQ/KEffwQAX0IlSWRUCoySmHRtVP7YCrUZhzJIQ+Ai3svkV7pymQZbYyFpXEgZLIgYI5TSsiioq0KkD0BRDygKkf5pA8ZKsVCVVhDjJKm8cZvipSK+7wneZO+cSAhShsY8lU0ZQAPBJbQRpqB4SartDYgxRTaGVihjhUWnZNGGIAgt2+SeGLPvWyQkg6ZARUsXS5wbUA0vMZjtogc1+CXr46/h8Hn6aYhGkdWvIgWKAR9FEptCIqmcCpek2FdOEsdA431D0gURjfdgC7C2IeLEf8haTCGCuW0CsNaSnityOqirvFlUTixT240jja818lxjSlkGKA+tkQmdNqSgIQbqosKqBBii8ShlUcUNzk5K7CAxnFrcuqOYWMbDPUieoR5RFNeZHb5CPbkK9Q6qnjCe7TKcTkDV+ATeOxofSMmjdczSamkwU57+hSBMy20DtJ0LbE0tjcmsiHx4+CDg8xbcS8FjTGRQBXx3xOrsA5r1h7Sbx/T9HBfOcT6R6IXBSIFRgRRbTATtGhIwK0aMiwrCivurY1773Js89VY8aGKiKgVYraqK2toL4IoYmJQFBYrWO9bLnhgSe9UAXQ0pomfTbthsOkiKsjYUpTAKCltgMjtTG4n33qYMK6VYvXKbB19/ixtJM0oGpyzDUv1/OGS24N72CE0Xfy3GoZlbkpkWkFBbeocC56KQI8hnBjnIRlvKumI8GDMZjdmdTdkdjxlUJRUyfbWATQHVdcTGEdueWDt+ZLSPb3pC16ODowyRKgTKELF9xLjAICbqpUOliC00Y7uD0QXPZpr3pzUnwNXxhP22Y3i65Eq3Jl4xvPXilJ1Lu7S+4XyzgfGQ8/Wah48X3L7hOD4/5cnRMcdPjkmp4sZrd7jkHf/u7Te40vX8tW98gz9zcIm9WvO3To/5L47nUJT8eNPi/tE/IcQGlzy2V7zf93xYBwbnc8azHUa25tl8xXvf+wEvvvAqP/HS57h9cIdz3+K6DW3q6UPAO08MPidlO4IX1q9IHSNeJVDuQtYWENAq1ZZjwPWWx+eJgSkZFJrKDjFaMVTCXKlrw2nj6RE/qoSl7QKb3nN+vMSvO3QvALl3nth5tNHUpqAEYfjmyZ3It+PFvhNy6nMWj00wc54v1xW/lgL333ubl198gQfvH1No2JtNONjd4ZN7D7BaksfvffKAOy/dYVDXPPrkIQbF/OyUtu3Z39vlwUcfce/jDynLiq5r+OT+xxCTsKtWMgEUoaG6WMuS9G4JLlIVmvGwYL0OuCz38b2jMAjQaBSh7ziaTjlCcyk3S5GI6Xt2usT+cMyz8Tmm8aQI56tI58C5wGgHTEpMhyLrd76TgVlK7E8NI5vYHRouzSqKuKBfPqMYjIidomuXKFMyO7yJUoZQT6jaObGdk1yH63uMTuJXogyu72j7B7Tddt+mi0HGVmrBVkqHNNplgj+F5jP377O8e5dAktAjBUnpDJpI06aRICg0WL1tygzJiLUGSuU7GjQWkKY22AKlS8S0Vu61ZAwYQzIaoy3RGqgKKApsWUNREAvNh90Rn9t0pP/or4LRmMEAUxbCyFeKZApiUYjEk5JgFWm9wP3eV1DzM+7XQ/5vzxZ8wUVecgmXEmV1ib/w5hf45L13+RtnR9ire8zqinOgbzth5YdACh58z/LsDGKgKguiS8I69gGCZ91vmA3GdOs1zjmaxYrDy1c4OnqCD05CmlRgtVxhi5K+a4Wx1zsGkxFXLl/h6dOnwrLUAmpYa4X141wOsNq+l7KPDDLdTlqYaglRP+yMZ/RdR9M2jMdjXNfRBs/q7IzV8jwzLsUqZVJY9pycmTFBl2BjNKMLS5Jt6q4WK4PEFiK4YMZcXbb85Z0ZHxq4m+B3fut3wBqq8Zh6MMKgOT8/wXsBKpXJ7CzUBRtA57tLfYotsN2oPnoBerSI/Ukqv+9Sw6mtHFoMo0FrjLX4IEPlQhuxmcmybd80kraYt0ePwm01S0kGg6iIjZFZMJQUFKrNzVGg9eI1a7Sl7XoKqxjUQ6zVzGZjrl65xuNPnjJfOi4fXqcalfQuUdUlg2LAzmRErSWo5/LBZVRRU9RDdGHxriO4De3qnPX5Ke3GszceU5Y120j71jl6FzOgGakLUWZ4F4ghYkwixQ3gZChEhOSorbDBotYcPTsjBMuj0zn4M16tBwyLFYunC7zr0FqYXtEorIpoDDZuB+x5TB6yJO6iTEgovHhtqi2jTxh+opjRF2CuMvnPKvv3KY1STnqGLWCYnoN8IYrU64NmzcFsl7B2bHzEJujxvH10zJ/xFhtFRqWOTwgnC1JZY8sCDJhS8WX9iGnfMU6eZTtHR8d1DwdmSa005oMP0C/dpnrxNnpvh1DXGKuotNwXEQGB5SmmrJIRMD4kCUmKzhO6HrdpWK/XNMsNzXrDZt3Sth1d09Js1jTrFatVS9O2NNnT02VmmtEaXdaY6QRTlWAsfUS8VWuFswo3qfFKsV5tWH/3Hf6UGfJmUFjnRBGiA0EnKm3FNze3OeK0r4kmoPP+zn03E2O52jT4Z0f8W1/6Sf7Tr34Fo3r2Dg54fPSE9fHxxSBca/FMVlrW5VbVJc2rLAptRF2gjcaYQoaEiYtmPwbxlPRIAIt3Lu9pRZn9srbUd+ccMQQm4zE+RBbzBVbLkLtpOibKMFMKlPRjKsv4XQ4DKFA0Sfy1bgUYGM3Rk2OSiZT1gMoOuDzZ50duv8TbX/s98Qm/cY1PPnlEVInRzg5oRak0fd+xms+xwHq9IqXErRc/z4OPj/DLR2KTZGTONRwYehtwjTzXUhfsp8Trv/7/Yvxf/5eoYshrBE6nFccbhw3Quyieni7QrOYoZbj//bc4W5wzKGsuXbvOeDrFpMDHH9/DJ4Uua7Bw6WCPl158iaPH93n00V0efPQOk9keewdXmAxL5s+OSWnrry9kj+Vmw2xkaKMMjL2H88WGxnseH58xqirqylKXhmpQoY1iZzbi5ZvX2Vlv2GvGlGrM8PpVnrz3Hr1vs5O2okRRtJqRtgyKkrooGZSWymqGxmBcQqUVyoKpDPgaY2qUm1NsIj4ofND4KKQVpROpkCCGuiiwRY0eVOjRBGY7mLom4QkF6KoiaUv7z36PF9+4iY09dA37zmPXx/Tdmt47ymqEa1cSWkGR09e1BNz4QDx5xvLkFPXNb2NGI9TuGHO4h716iD3YRx/sofcvUezuoWcT1HhAGg5I4xns7cMtQ9TP+2oubE4iru/xfUfXdPiTNc3pkvbsnOV8weLRB5wuT1m2K/qkqM2YAz3m8s4V0mgC8wXhd/8e/74J/PD0EpgK03f0heb81DF84RLu5TdJl2eYg0syXM1KSUJP8p7Yt8w2K3758VMO3rvHlVTwz9ol997/HkU9ZTLdoRpPsfVAEqvznRuShHnGTLrabtWUEsknXHKgxCuPJOflxZBn65iZcRadGYFZC8r2s1Pu07u2o19vKIgcfoqUsvXhi0ldBGilzFhOSQhO16PmVrQUTSRYsBSYPgOTSUMAZwzfUhseq0ARFTumZAQMTAWHh7zxi7/ItRdeo9rfY+fqTUYvvsnx2YJ2fk5UO7zx5V/i2otfwC8f8O43v4pr1wSXh71KwEulxPBiO8D9o+Dw/aEBvtIq0B5jRO4m1E65eGPy+OQl/TJAyDKkECIkJQsYYYVpFB2OuiwFVFIhgxJSyG6LhsJaMUtWEEJH8IEQoWvF7HG5zFPtC7Q2ZtllRG/xpwt/iUTwQaaIuSBMmXRktHgiGFuIn1QCrSxJ6wxMgg8Jk6fNxipJ/LKJiBNgCI93IiMIsSG4AlO9zCuv/mkmOze5dPkVquEetiiJpiS6lq//k/85y2ffpAV0iLiup4sJ7zwBkQGHIEavGn2RTkOU6TckTJGwRSLFDuiFmjwqaV0LWaorNV0g5gK6VAllxIvBKI0uhVKqyWh3Mqi4vZQFbTa5sVMKEjlFylq2RtRWS6SpsRaB2gyz8QiCxocebSpScZvjZ4FLs11sH2nOz/AKqnrMpNphvPMa5eh1qGdU0zGT/QPKwRgXPJuuJfoGskxHK402z0HGFKNcIpmaq7bP5WLryMFTGCvNeIyZsagkCTdIulLwjsIYJmNNt/mIo3tfZ718n7Z7SgitgG94VOrQcYinx0SPCCUNbBSXYs2N5Yju4ZxZaHH0qJevcHc8YRoc07pkdzomxoGYjoZI8IG6LEUqoUT+qkh0qzX9ek6z3nC0XNIul6zXHfPVgq5t8AlAUxgoSk1lC8pSJrxlVVFlCZHRCmsNAKPhiCZpHAV96/EVJJ+2o5Utten5I4Pin/pA9oVssAz8bwt+gQpMknVjjWEyGnN5/4BbV65w88plDmZTJtFi+p64WuMXK9anJ3QfPSBt1tRtS9l6yuAZ+UhNxKpEYRSV1lTaUmnDQBtqpSiVokoRmxImKbQpMCaH+2lp/Iw24utTFXxiBnzr5IRp06G1YxJgvx7x/ms3+eD8hMlkyNnHT2koefbBR9jguXzpEienpxyfnlKXJTevXGN86zqmW/Pf1Zd5uS34m9//PW6lki/u3uH3Vo/5q4+fcWxLDgvF9OiZrPfoCErhMByFnlRadNujdwxN4yiKgm615Dtf+xp/9pf/27xx5zOMdvczM9lSGiPM4Px+xCgWAh7wSdjOPqdpxxDoc8pmCg4XPD4Gur6XtZ6TC2P+7zx5VOxRBELjcE4Ks3XfsmjWdKs1JycrjEvoPtA5h1KaMkCREgRPpYXB8mk5qMTWP/+ltaKoxvhNg3c9A+CznefVuuR3j5/w3vvv8TN/6o+znC/4wbvvcHq+YDyZMD8547333uHBg3u8/fa3mY4m7O1e4o03foiqrgkEvvX17+H7nmfrVW4G9AWg1awWF/YCnwazUwLfe+zAChtRkdMiM2MlIiFH3jOoFdpq+j6xBB5bw2tZ9kd+DfTpkpf3LtPxhK5PzNdw1kKlEs4WzEaa2VRxsvAs14GkEpNaMxpplJIU2tRF5qfn3H37d7m1nDPeu0U12qNvNgwGA4rBlN4lBrvXCf0eOm0ImwVueYp3LRjPYDigbTrA4TlFePcpAzJS8Og8IFMpyxpJ7Cb4XIqsNy0RPuXZQn5Ncj2Qf+9pEb5OzH5RKjf1ZPmd+DuWcRueIf9u0KTMuFJKgjeE1ZMHWer5xyoadEr0KmJiy52dHYbdXaKFoEssCUMiJUO0woiLGGKwBB1JXYPtVnRW8+tdx1nX8q/oEYY1FIbDz32eUQl/+dqI243lN48/4WM94uWXXqJpGvYPr7KcL7j34fscHlxi7/o1mk2HRXyJpuMdVFRoo2iDoyws43qUfahasIbZ3j6ubVBo8cPtHKXRwnZUAra2TceRO0IHeZ37kMSCI4ic3Fa1SHBzrSOJuu4iGCUQsbZgOpsQfGC1XtN1PdVwyHQ24/G9+yyaBhU9xsj5bY2lrix7Zc2lvhW/YaBXsNGKcYwXdhGfosFncO/52tjus88uNvzl/X3+o7jgWJcCcp6f0ywWGC0+hWRQTSOSrLilg/MpBf2nNmpd1/R9x9aCGy3PVyVh32/BwO2aMUY82iJiJbJtZEpriUkxHo2YTqYsnj2D7MOaUiLIDFqeWdIoepIGGyM7usBGK8y4sma0O2G0f0g5HFPYgtD2dN0C1Ue8WvL02RPuffSBgAW3brB/9Ta6HFHVIwoLR4/vce/ju0x29rl++2WG4xmmzswU7yA4gvfU4ymD4ZiubSmLYQY1heVXFCVlUTE/O6MwBcZYOfOz5DhFjTIlPoe8eRImSY0529ulLA1np+eMBxUx9NycDvjpO7s8PjtlNQg0ynHaes6940wL8FIkqBIUKlFpzVBr6qKgNoZKGSqjsUpTKIXVisIYbFJZOply3ltEJy9Ak1YX9Zosgczsywy3LfgnXpaahOW0Uiy7FS+OavzqBBUTDsuTOrFZLriSCrxO2OQoPvw+m/MzYllTeI9RErzz413DmymhUmDRODahRWMoTcTqDeoHd2nuPiBGRXnrOuWPvUn52VfgYJdYWuywJhYGrDCYKSTdFmtQpsDmswulGGrNbkYrc67FhZpEJVBBbI2Cj/gQ8M4RvaNvGrrzU1anc9bzOev5gma5ol2ucJsGt1wRmp7YtqjunB08r924zc2+wjz6PirJMN/hCSnlDNDtLtLbLcd2zLKtkxVyTt8cGFYfvM8XBp9l8qWf4f/ynd/nZLnmyrXrTF55mfP5ks1qw3I1p+86tkF/KJWTL6V5DzEzWLYMn/w+G2M+xWoREC5lUDdliw9bFBfBiNYa8dnLZ1DftazXDUkpqqoWplz0XCexYyxROZkhQfb/FZZ3iaYBlDJcSZHLyvDUSHhaXQ75zO0X+eHdXd77ym/w7PyMfrZD6RVPnj7i2p0XiCRc6Akp0TQtvuvZerY/eXrC4cEen/mhz/POd1Y0qznWKKpSE4KA8ABt5wnR46JhcqTY+fiYFDY0qaUcagalYdN6qtpijGL/2g0WZcnZ0Qmb9Qq8p+nXfPLeXVwCW1pi8JTlUMIkCfi+4/LNF9nZvcRyccqzo0/ANayePaEeFExnI9rlhsrKuTycjNBG4VzP5fGMTdvi+56274l9wgKlljuvcy1N1xESPHjwlKcP5/zJN15k55Mf8OSv/3VOnz4kRU2tawq0BAYSWcXAPEoafWoTOimKBKUpGOmSWVUyrizjQjFIHTquhV2GWPlsFVdolcNiEsGIdZHTKttPZT9GW6AKjSkLVGlplGFvvWY0P0cT8TjZAsaiqppBMhSzyGLVCKkF6fk9MZuJiS2JRqF6h+qX6LMl6aMneP0DglYSKFSVUFWoukIPh6jpBLUzRe+MMTsT9O4EM5uhpiOYDUmTEWk4pKoGMByTJjtwtcRbWfspaHSzIXQetZjT9y0sF/SLJTw9J6xPsWbB8LVbTNYr1KonVQW0DXPt6MqSw//+r1D8/C+QRiOSLUnaik9xEvIQ2og6IykGvuePz8954/d/n8/8o1/lH7/7DvcDbDYr5idnNH0vrnRaYYuSqhpQDQbYQU1ZVZm9W2CtBFYGZS5CEbcS2hS2/ucZylPyvnmfVYw58EIpdaFq8y4QFhti55gBd4LKgwkhim2tyMhKQ7IPeNIS8jjwgSpECmtoVMAGyYMQRSci1SVxI1mOuo5jHWl04Eo54PDFl9n9iS/x/dMNH52+w8ufeYm5Tzw9PeXZo4ccHT3h6cMHXL99i3JYY8qXeOGHC+5+9Z+SQsungzW2Q9g8GvqD/fb/n48/NMCndIFStUhonbwJSskboZQEF2gTxQcnygS/siLTqspSwihUoqwsfe9E1qszyyMGOhfpXCJkFpVISyPWquxTI4vCZiZSzM3idmqktMkAlSTvopMwtZQwiNj6f6Tn6HBEYSXaEZsSi3UHCsrK41yPLURnTp4wJRKxTTgfMIWRyYr3KBWehwgoh1IDDq98ntd+4i9S6JIQE85B5yLaBUpbc/nGzzN/9Bjn1mgV8H5NSOLbEEgoYyl0uihQVcrBBEE8m5TxGNOjFZiqQGMJMWGSY1wXhOxjY7SVRBirMLqAGIipF0DPSMGqUqLEfMq/R2QvNtOMEwLOKi2x8IoSqPHRUVktYRBKPOJQiaqsMB5i6ClMgYszurhP8B/RdSOq0Yh6kqjUDiN7k3r3FeLkkHK2y+71m9TDMetVx/lqndfZcwnmBdCYD4xtwlWul/IUQOcJSfZjNNn4NB8cIW4B1O0vTwo9o9kOw2LJ0Uf/kPnJd2nWR3jfkZIAHyiN806+nk4U3qKpoUrsLWcUv7mg+d4zmlOHbeEodNxLkenPXCb8dEk7nmJDJPU9q9UC1wrrpm2Elr3ZbNg0KzZNI8m6bcv50WP6rsm7MGCUrGWjNdoW1IMRO5MJo+GA0toMvslFFFNis+nxwUlzFT1mvqJXnlGt0aniaOVYrkL++ulfPGzUP//Bp9h8SSAcnbKUQivG9ZBXbtzmRz7zOq/s7bLTO9JqxfLpM1bffouwOCf1jsoFdgKMlWaoDXVpGRaG4WxCuW8yk0/YGqYwWIUcyNl7REdEJnQh/4RtdZgyawgkNAOdiCaBieykjoHrqJznEpb92R4PX7jD93Yu89Y373E6f0IBBFUxns0Y1hp85OH9R5wdnzGZTrl+7RqTuuBL9SE/laZ878E7vP/kEf/Ll77IWd/x1x494gdK0TnHuLAUi5bW94QQpEmxikYnMAW298zGA4rbVylix8P31jx99JD3Pv6AanDMcGeH3b19RuMxo3q4VSBepHhrZSm0olCQqoqtobTKUrW8WeTSyyP6mDWq21SnmPzF1F1YdinH1IukzYVI33vWXU/vejbNmuVqRTdfs1mc0a5P6Z8+osj0Ikmxksm8/pTPgQzsRPJFQjwXo+Zy7/kTgyG/r3p+8O53ufLiLUbDEcencw6uXCemxKJdc/ettwixI6rE8uSU46dPiTFyenzC2bOnJNfnoiGv5rTtpNTFeSH/kMc+24ZS52Q2q7AmUlhFFRVNG8WTrrAMB6WsQaPpiWyc50lhCX0OAYgJAujzJW+8eBWq9/GrBSc2clYLK2rjE3sTRdP3YoBuoUuaTZMYlIrYeVSlqAsxCZ8vz/nko29weXPMbP8OVDvYvUOq6S5DNK5dsVrMIdRU9Q5rVdGfP2M4DHTNmtAnmnZD0hv2D/ZYbuaEVpIJV6tGvGG3Zsl5S9+Mics+kGOeLvzWzKd2PhksTNszI/85RpFCkOssE4W9ExQ4xN9QAzYmSW9GX4B4PCfsyFtCRCcDFLJ8NXibeLUoMOdz+hTwRmFCcwGAxbzctYKQJD036iCS1gTnRcVveMePjYdco6bcneAv3+QBNcOzQH005s/qAZ87GPG/eXyP31+eE52naT3j4YAfvnnIq5XhFoFuMkRZkePGYoItx3LOWDBVJUEbKAJJvIu1pusDXmmW8w2983QEFusl8/NzNssVa9+xbtZ458RD0weC84QYszFzxDl3AcYmUpY+GobjMQpF02w4O53jnSMlsHXNC6+8RpMlO7YFXVhJKi8LfAy8cvsWo/c+YN+7XIDDRil6pRnH52cCuXEEhIWQ1PPZT14Jdej5+eWcZjriP+lajrQEXJAEvJD3Nq+f9CkblE/ByBfnRV4Rvu/FC/Fi9cnrqpL8zvack1dEarZcIwLPWYApoouKTVFS376N75pMusrD4W37ltmRFzGDwCAlcLD/wqtc+swPMxhMmB0c8PTpKSEE2q5lbzRAe8cgrDg+fUzyLcNBTT3dYffSAd7WwvisS/ZvvMBk/zqj8Yzh7j7RFBgNvm9o1muca5hOdrCDEbasqJzIw7UVu5bCWpQS32utFT7JWW0Lm1lRwv70JHwSgKW2FUVZUlYljx+fMNmZsrezQ1kNOFuu+Ne/PODP/9gaVxn67gqD+YvEZxPCsiX0SZr9dkXne1zwtM7hfUfvekmeb3tc09MER+sDXefovUhaTYIqamotv0qlKbSi1IZKaSpjqI2WxGilsQgjXSVQKUg4gjLEInLvbMGNQY06X5JiwCtF0gXvdh13gKr1F82j6TvGzz55riDSCmUULkXq3R1iWVBFC60hBkURNfhEbBtqevR8gf7gLvprv0+4fIW0u0cqShgNYW+G3pmQ9qawN8TsjmF3hJpMYTgiDmpSocAUEvBiNBid3e6kF0kJaUSz1NkWllQa0APS/gxuXM0rPj9ClDs0Zkax86g+kJYr1HwDx6e4H9yjWyRs+YDYNmz6BTvBYme7kngbZe+pfD+qFEhR8se31ikpCSvyxdGAd771Xd549SX+tz/3c/ytjz/m9x4+5t6jRwStGcymHF67RjGoZYAeRXIbYyJ6sWrZsvmj63GuI3hPcE5sh7y/+PxsznlxEsSwJYrITSS2N+LV1XUdzju0spR1TVUPoOuJvucni5pBFMhSkUF72eAYFDWKVa6jdhJ8XiV+E001HvJDt17kswcHPPnqbzE/Occf7uPKiq5pSDFRaMN6saKz4ti+Wa9p1mu53UL2R09w9eZV2vlVPnx3gdIWUmLZ9qSQqArLsCrQJKZ1z+jyZbSrCZt7PH78Ho/PN/QpyrAsn23T2ZTpZETbOUod2dUzFudrVAqs82thbMFwZwdlCk5Plty7+wM+ee87wpisK8bTA65cPqTQmqZZ0DUdbr2h1oGgFEenxxwcXuL2tRdZLhsePniMLy1FaVGtAPmvvPwKT58+Zrk4QxcFwUs66vVrN9gbFcw/+CZ3771NUBUbFEZHRkHINaEqZY0rTR0VRYz5/Yl4FVngWEQHG0UdYCdpLhUV01TLELnSaAtBBTBS46pt0IISoEaF/K4rjcKLHDJ7VvRKMXIRs1oQg0drOfF7pXKKttSoZVFCSLl+KbLGQOWrSdQfKccOqbyPVZBQD+0ibFqU2g64uQgdShiCVgSjJUCoKqGyUBakcUkcDzGjCWk8RO1PsbMpZjhDVWPScEgcDUhWgkaCnVJPBlg7QDUbzHqMWqykUKJBWQvWcNafMz28xOTFO6zmx9jFOTY5VN+hkDDUpEpCVZOKCsoaYwvMcMLln/0F/jt/7Kf5ie98h7/39/4RX33rbU5cwA+mmEqCK7sUcL2jW89pz49ZBvGsv0jdNRZjK4qixJY1tizll7WYwmKszTUM4BPei+pyS4je3usxJYJ3nDx6hIqJF5LmhZAZiNshMZ4oJ8WFQpOUMDFhoqZEEuptgko0lqDyEDuJaUFSkQNt+dz+Jb7ZzFk6x+Nug6bl+MP3carkyz/+00SVuP/xPZ6dnfHkwT3azRLtW773e19ltrfHaDqlqAbcevVNPvr+NwlR1BFaPw8A2dLP/uXquf/fHn9ogG+56OjOHHVVYkwQbySrsZUmeo+tNIlwIe0MORI9hkDwns53oCObJmTNdhL5aYTnJV64YDGRJJq960RiqKxMn/ogpHiFQkWR3SotMdoxRZKWt1j01xmUC3IAGCMMvuTA1tLgRVOiosIR8TZQDWokwtMTVZCpbpSGYesZoawmxp7ghfHk+l6SbDWAIyTDD1/7PEZVtE2HiWBNRUyGtm1Io4Jbr/8ig/Iqz44foHVgcXrC8uwRfn2fLjzmpDvC2CD59dlPyxiFLeQ1hSDgChZtaizS4AgVXiTOBkgBSaFNCcuQREFRJEwhP3si+3glhdXCcFMqSJpiipIKhLBbXITgEsEP6dqE1QWj2Q5WBbTNenLjIU88oh3ik8KYA5o2T51TJCyPUGHI8PLLVKbCDkbUB1e4dOsmStWcnJ/R5QRMrXT2uxFPjm0DQspNXMitplLZiHsrARRGmbUWaw3OOfnc7NkXY8T7cMF22p1NGdc9n7z1t5kff4sQOwpjid6hi4roHUVZZKaj+AqUox1GxRhlDea3z6l+45gYPMkJCPn+qOArzYovjMdMa8Xp6Qmn99/n/bvvCFMl5cPIB1L0kEL2GQrEDEYnFVFGGimjjTRUWzNRl+hCy/Gm58yIN5QuDMrk5MK0DVMBrbcpUz0UGq8t7370hN955yNUMSX8AerEv+yxLbueN1ky+RWm3p3dy/zC57/AZ0cDZssl7t2P2G+/yzhFxrZgXJUMh1OGwxkqgPUOi0eLG64wN2L2ugoRXA9BvPDwvbxvKRGTMIIiSDFoDcmWYlq6RaOlaiYqiyrkc1RlSUXFHpE/biCcrolN4rEt+c5gxLKsqIJiUo7wKjCuZ+xPZoR+TXPWELTF9YFF1zP1HZ/vFL84vcTi4Uf8zR98j79053V2es1/8fg+X0sBZhN01zDUhqJTMsVS4sXWpYBXYn1Rup6P3/oBZ66nSkKfaVYLvvetr/H6j32B3/j7vwbBMd6ZUQ/GDIZDCltSl5UwJ4oSOxygCyvpUJWwOgpbYIuSwlhsIcEAxpRopYl6y3TNSVo67x3IzW2W4SsojKIwmmGtmaHpc1q6CyknakfOj+/zu/+Pv06pdGalypkT88UVQ05nTc+T7Ygxe0RpBni+uOm4szPme0eP+dqv/Rp3XnmV5ckJ73z329iy4L13fgB4+XmzHKDvGt7+7jcvwKnZdEKf0yUFI9iyFbYowhYEyGs5CYOkKmu0EbB/PLRUWs6yppMAEhUirnMy4bMiLWt95KjQ+C6DYCkK43w153b9Kmd7L9N/8n12VE/TCfjXRPG/olZcMpAKw/E6cbKKVN6jjQInDUlUiaZTuK6hWb/DwdlT9g/vUA4sTiuWfUApYclrralGU5zvsqdJi1t3GNtT1ZpeJe7cuoW1FpSh3bSMRjWLxZLVesnqfC539Kbjhd4z8u1WOPEv4P1b0E9fnALp4uN4MTqDAgHwuqKgK2UtpSgsWxuhisL8NBIxmgE+KXZ0FPWuieGijA5K4XtP6BvWWmGTsHd1jBIClVQu6/Kdf4EVyUBAJU1TdGyC4Y85h2uX8lOvPbOXKmwxRL3xCmZS8+ZM82p7wtfnz6hKSxEDL9y+xr/+cz/Gz17awz5bsPGW8/k57uiItTb0uiCqgNNypvtuzbqVRMnUe3zT4L3PtZHCaUuqROJkDnbRN68SjaTvRSx9NcAXJZuY6JJn4xy+8bSup3M9q3bDerNh07U0bUPbNbTNBlskjK2E5QBgLM2mw1Q111484DBE1u2a1He45Hn1tddpv/0tPhtaZm2PTiKDXJaaXmvqAEklAlIvhCSAbcrnR/rUzbBdILNuw7+2Uox29/g/L875RIt0ZivHCfm+TkoRMrsrpZC/huIPpKwbnSf5ef9mDaFIXbj4ztt1esEYJslZoxTEeMGS1DGQXM/Hd+8SYvgUe1AMT6q4nasLuJ+01EFjBW3ToYYTVgGqesTDx8d03YYUAnVdo1XiwePHVFZzuHMDE3rqoWE026caTRgPJ3Rtz2A4Za+qQRdoFEFptNX4fkPUislkQmJMXdVEJJDKliUqRfEriv7CH3m9WtG0G2LwKETSWdYlKSmKlNAK+j4RkkUrLwqariX6QLtpGRioVWK/Lpien2M+7tHDHjM8g7d67KMp0TWUyWKip9Lb91yg/2SBwqKLGj02aCv+rNgSZRSpEHWHj5E+9XQu0Pce53ta39P7jr5vabwj9B7nW0l4DrlGC9uzQlPGhDeJypaUsWATXK6LND44znrPK/vXCJue0G7AhTxMkp9W6SLfwQFsicaiTEVdDlE+4lMQpk4UtmLc7qHoYTmHvkc/fsrWJ1hpkycZhjCb0r94E71eUDhPGtXo2QhmY5hMiXsTws4MO5iiBlPUeIIe1qi6RJWWVGixKLCaVIgkOhkuZPpq6/2tyYwUQ6KU4UjS6P0DiDLEM388kZo/hzpZEM6O8d/8Z0z+4T+l+txnSQRiUuJZ6DtU6CF6VEhiqBwFuI8hovuOum94db7gww8/pH/wiL/yuc/xl3/yNh+x4e7yjPuLJQ9Wx5w+7uj7gFcFLimSNnitSNpKuKBBAtmMoS4rqem3zT1Gmt3MztrKnVOUsK6UwLse5x2t62g2DXG5RIXIcDhmPB6TvOfZ6T1uaPhXZ3voZxsuxlMqhzpGGVvVQIEMNidofkYVHJc1r9y+xWUSb/3ab1G6lrKwJGXoEhw/eMRs/4p4wncdREPXtHjf412PNeKZWlhDjJFHDx5y950PCSGRlMNqjXdiURJTwFhDSJFeadppotoraOoJmycQogR4GSXnYgieB+/dZb1cC0lkVDOcDditBpJm/eSI8WhIUoo+eR7e/TbvrL7Kw3e/xXhg2SzPaBcSNjg/n1MouHZph8PDfZrdS0xTwPdr6uWC2eEh6y4wKGtef+lVUlHw/qP7EmQx2UENRtx67SXe/v7bTGcTxnZAcA7vVgzbmuJ+y7WDG9w7PcYpT2cNB6++zO0vfYnZa29i94bElEQhspjTn57RPTuje3bK5uSI5ck5y/M589bxUDl0clyNnpvliMvKYDrQpdhcbIk8KZ/vF3pMne8MJHiFrCZZeU9dWrzrL2xiopZATCHxyBDN1DWpT7LvlbnoQxOGlPo/APeliypoWxttQb9MNrioPQVwJka0j6QuoFYtW5gHLeQljZIwBqsIVpOsJI+nsiIUNWk6Qe/tY/Z3MbNdGA5ICoKKEBXaluhCQrR0gkeLOfsHO8yGI0zXo8MG7XvUegWrBpYbWPTYVQddIJK98IxFj8aYOzd46Yc+w7/3v/if8hdPznjn7ve5+9773P/kE549fszJ2ZIuSNGatCKZIWgrVilK45XCkWijo+sauuU5a+9FeZT7Hch2HUVFURTZc9tmqw4BxLq2YX56Ruo6auv4k71hRyo9wjYVXI4QolKZxZoHoUpCUbVK2Cgsdqs0ZDuSbc3oCXR4FtbQBsMP1dfwl0q+tznDl0PqoHjp1ZdZ9i0m9LTNhm69QPmW0yePqJSnpmPx8B5uPmS+bLj96htcuf0aT++9IwOZPMXWSUDfre3AH/bxhwb4dmcVqijxKeDcBpRm03q0EWhJifKCGOUw23orJPJkX2meS2Y9WueCf5uEZhRGi+J9K/FKeIraSFOQXwsBj4RymZRgti6Bsl58gBB5giTqIRciiRgd4FBakwqJPvYx0SuJS44+ooPBhVbADrUF8iKmMAQfsyRV5alzEhlIDJQ5TMRoYVfNJtfQfsI//U/+ryzf/wFXYku6/gY/9R/8j/FVyXLTUijL9Mbn+eSZ5bf+2a/z9je/wZ8Yw7tffQv72i4v/NSUaM6l+ckgSmELrLaEGClzMpUyCmvFADL5SGEthTE5tCQn/CZHiBJNr5IlBfG3IAW8Tzn0Qcz4tYZCF3jnRGtvpSnvnKFdOab1lHpU46c9BghxKamyVhOcJ3lPUiUxKUw1ZTLcpeEK8ZliNBrg1gt2d6CaXUXHGkZjzP4Vdq7dRpdjjo6e0nVdZuqp/LpeAPls24lwARCnT3m7ZAFCfs2M0dR1RbPZCGsvblkDoud3rsf1PVVVMZqMObn36/SLj9BJo2yFNYmikBQc53tM1IzLAUSPCxHXJ9ZtgyoGDIdDwiBx0gc+2d3hfpf4VthwNKj4zGRIOr7HR+2Qidb0TZcnQBJbbo2wKxWGqqooisx61YYYL+U7y6BtgUGCK7TWWCMHYlEWlGVBWRQURXHhjSBFk8TOR+/x3uFdz5OPP2Tx5BN+7dsfcv/ohNfvjLIfwnMA7w8+0vPft5+SFCopamv4ues3+FdnN7j2wROuTgoOqwHF7BJ1PUW5DRFpSkzXYqNBB4sOSqbvaZMBbJ+/Zp58GU0qLNiSlH16svqbJJRUAUKIxKjwILpBWxGrCl1WqNqgqpJUloSyRtshRVLsBY9ft5w+fcK7nzzgfbfk4yc9V64f4vo9jk+O0YMRr73+KgcH+0wme/zg3Y/ZbOb07YJXJjP+e1evc+nhY/7ju9/ms3uX+PG9m3z74cf85/Mjnkym7BxeRfdr7KalX0vqoY+JFuj6QEkiWMeDx0/wdc3g0g6r5ZqyLug2K54+eMCNl15ifzLmw+9/j8XTBwRjSfmMUUqKdJ1yM6CydF0LK9fa/LsxlIV43gzqIaPphMsv3KaazfBeQLbClM9TVBHQVlthU5DPtQILOhcfCpIyJC3Mrm69ovCeiS2JHnRM2Y+Vi0Z+G7qgEoSmhRgJKZ/2MXG7d3yh3OOD0jB/9gh3/Qo2Bk6fPGZ+vuTk6ImEJsEFjEP8NNwMXddJimY+J/7FlfwvwBFAomsdWgWigXWXqIaKTePR1mKJDApNG8iGoxqUw8fAUVXRbid/MZFioGgaLqWS2Rt/mtPjJ9TdY3Rp6DeSMjupFGWpSaXcXTdLxXIsXztpxWYVSQZ8iDSbwMAougib5QrfvE03P2a8f4Nq5zqpHoFPaFvSrdeEPmDKIaPRAUnVxP4Y053RKcVqvqIyJfV4wv6eYWc6pnU9SmuaxYpmvaGOile/8xZx/fDi1VH/3KunIAtX5G+2x0GOKXnOmgCaquJrBj62hjYDM0YhzUJUDIDPxMRrnZKUXCWpjjYpVNLCBiQQlcZl0FkBw5gukhFROqceZ2ZZSnmCm3/CXPeTIuchcRgVd5xnFOVrq/Mj+MYzvFI0RtNby9OqhtAzI/CnXniRW5Oad95+l7vLJV/4sc9zc/+QohwxvbZP9dKrxCuXCfUIXQ1QVYUyBdEa4jYR3DuSF1k8fUdcL3HNBt81hGZD7Dtc19G3Ld2mIzQbVn3HujtnvlrT9D1tVBiniTF7zo5H2P09VFUSrSUUBq8NXYryywfW7Yaz+Zyz8wXrtqFbtRgsw2KPmy/d5MaVy7zzW7/GFR/4sz/z89S/91U4PkED8yQMhkqRhyrpApzf/v7p2+IPlKgRRs2aX4yBO1ev8B9vVnxr1bDOPl8mCUCIEtGlsDhMZvCki2tGvNz+xdHS9n39A/v701eU3gL526+RGUtKMZtOWcwXEqaW0kUCvEowU5rh9gsnhBmQa4ZxSBR9oF8uCcdHFMnggpMkTNdz/OghtbUUBk5Pzjg9esQP3b6KGgeapuXk+BhTrlHKoFRJQmEHOQwpOGKfcM0GrSJtUGALTFUTg8P3kaoaoFSkbda0bctoOCTExHqzBhJ1aSREqypomo4QNdOioIgRcjiJjx6iZr1ZY7Slb1uUsZy6NQOjeHzaiLomeh4crVh/5RE3EmgasRJJgY0ONEUkFMIgjwp0CgxbD8ELEwupvbUWCXhhpU6pqoKhrVDWYqxBmRJdDNC13A9aW5SxhBwGobIyI4YenxkQXml6CgH/nCN2nth3aBfZPV2zW40xl2b4phXWpw/oEEney3uuZGiqt0warTFFiS0qFC6bYIssz6lEqTQhKQkhih16G25HhBikAbWG9vI+9ss/TnrwGP7xr6JXjbCMrJX6tDAYVYqUty6JIyusmdEQPR6hx2MYT9DjMWY0wUyGpOmQNBnAsII6s32seJWKX6mwApM2qCgAhM/DTT2osNcvE25fpzm9TznZwe+MMe0a03eY4KRfKww6anSRiysAJYMgTULjmDYr3tgdc/L+e6y+8qvoquLNwwN+5HAPtbtDc3gdbwucsqyTYtn0rLxjGXqWvmXpHCvXM/eBc9ezbBtWPtA4T+sDzklQUQgRR2bEawnCQCusKVC2pBqOMVXNdG/K+OAarg+YCO1mwfnJEYPQ8+8cXuPNWND6uUgp85lhlUgQA9IM15kQUSTD63bAv3PlDg8+Oub9ew+4YiwnlWKFwSclQTfna6qyoN1siN5ly5uE6zrxIcTgeodzgaIsOHt8RttKujYms87y2eJjZNP1WMB1gbMPvkv7vWPs517CYzHGUqSIMlq8NLWBoiSyxKpAs14RugZVVpmkoJgvGybjAdNByYff+wZN13B+doyfjLiyt0vXNGx68QnVwTE/+X+z9mdBkmXpfSf2O9td3D3WjNyz9r2r9x29ASAaKwGQFIYUMSSHIocaSkOTyWxe9aTRy4gPYzIbMz5QGpkNMSRnxkiRIAA2VgLdQC/o7uq9umvPqszKPVZf771n08N3PDKrAVAmtdwsMjIiPDyuu997zvf9v/9ySB4CW+cvcP7xR/FDoJrOeNf7PsDJ8TFvfONL7B/fYfvcHpfPnCHUNStTMxpVbO9u8u73f5grj15is2q5eesGq2XPMOvYPLvH9f3XCEPH3uYOT/3SL/DIz/4CZncLqgkxy3qnrXihp0LIwXvUqiP1PXF5hL+5z/5r17j9yuu8+vqr/NHJAVtR87zd5GEcNiJkHvUA1KaSAHsZkZ2uNwUFGM2sD1zSroA6qthrrZUt5bOG3IrlwtrnVSdZ+7RxqFxBKhhFqXaEaHPf5mRdGa33SDmEUhmtSUL3dyj5N0aIshtqDQJqKJTJZJ2KMkeh71hSsQQITUVqW6hbVFVhbCERoEhKrJK+sb/PyXTBnf/mnzA5ewazMcGd2cZsbqDaDdRkl7xt0UlBSDB0qMUCfTxHv30T/ZVvEP/Nv6f6mU9x9pMf48yP/wSf/PRn8dETfY/vB+bTE06ODzk5PuL4eMrJ0QnH+4ccHh1xcHzE8WzKbNHRZY934K0joAnaEJUW9jkZn4TBt+xkGJqSDN2VMqf9TKpWfGwZ+GU2UCnKcKOEfqDlHYkZApGokoB6SDMSawM+UnlFthmvFL0KRJWIRpOrhp29K5zf2cAtllybT/nq7JCNhx/CTDbYOn+Rejwmp8RiMWcxn3O0f4fYrdgYN+zfukYaeiZNS+5XhO6E2fFd3vOpT3Ny70361QqsYF6Jcl1nsEW2/6PcfmSA72Q+Z3W0jzKaGD0xZEm9xFNVEnKBViiVGFBl4oSAeqqwy1AoLamsa7llClESW8mncoMYJXpdGcgqorRmiF7YCTFjraatKioNOiQxUnUSlKG1xpdwCqHoaWKAFKXxK2xpvEfAPi8GzFqB0xGiMP60UsJ80xpfPCRAEp3EzFnhrMY5CzkR+gAIUDjsLzn+6pd44g7MfcejbWSpAgcvfZvX7uzT9Z5z1uCHFf/9//AvefnOTaxfsPf4eToHPzha8vCld7FI12mcE/adMfgAtbHYHUscIjl7qkoLrVWDUlE2lBiIcSDEHqWkHsgpk4ZOACFr0SrjQ0ArRfABZyx1pXHWkHMiBsWwSngdiSlgdINKkZQ9/bAga3B1y9ogPueCtqeWyjX0yWDbsyy6yDzB8fEJjTZMT47FswjD2Glys0O9uceobjmZTem7voB5hc2h9SnTaD0NyQhzT3y+5KYo2vZTWU5m1LZ0XSdNVmkqRNIrfmXeB2LKtKMROaxYHV2ThL56QuoOiXEgpiBgWQ6lcc0YI4xMPwQiInlW79pkPnuMF16Y8p1Q81ar2Z/e4/zmNu7MJQ5XA8tkefjiw9TtBls7e7STMc2oZTQe0Y5GjJuGce1QriQCRmkOGTqRZePIyuC00OKN0eBkj1Nan5rcryVKyiiylYaKBClEhq5n/p7n+Pr/659zxRmGuqFaB8X8ueDe+gUuLdapLEuzoy1/vd7mP+0rntKadmeLNHSk1YJsLKlq0GaTmDxDWpHDgFoO0C8knUjJhDpaB7pCGYEOkpINU/xsDLmSoseYGqVq8YY2Gl1b1LhCjaTwVdkUXy8J2ynRzyiVSQRiXBKTYWoUR9sjuuo8W1sTnupXHN27w2c+8j7OthLUYM5uMNGa4faczTk8ceEM7WrE4/XDXEiKreM5f3DrdV6bLfjHn/4x/GHkdw9v86p1hAyzwxO2z+7w9qrne6rnUhoIGTolZ/NmhlFM3C2JqXnV04xGRB/ES2m55PDGDR595GHuvPQDEhntarz3eN+jrYEQwBebAyUx7ClBRON18fvJZSqYE7Z2PPT0U6TbiflbnbBku4xTBu0sGHWaMrkuTXxKGFvhbAU5lxTRUjZnBNCfH+FiYKvdhKFnrVj1iG8L5ZoDyCHK+VPYfyqBw7CtE588WPGn27u8eOttDveP2Njdo+k9zz3/IV79wYu8/sqLxBROq6b7Z2uRFXar8rNy/A/Kck/veh+KUACpTMq1A+8ZBkUegXOa6UqSyNsKwiIShkgfxQcmx8jc1SzzVCRiOaFSIg8Zc2/Jd75xm0cf+gCsllh/hKoVcRXJvew/ldWSdukUtUpUJQl1mGgJOAiBkBVtJbLnzgdiAHXnbWb7dxhtvMHu5ceoti5g6h2WvadqRyyWHdlNGO3VkM5ycu86oQtcffMqV9+8eurF6pTCtg2jdoTNmapybFcTTmJmoS1V8XpUBYhRcGrObsp7qh94WR8Q+bPm2G+1Yx5XmcezJvtENCKnDy6hlWdhKiZ9Iqw8AbA5YdcDHEQM2rmGtyvFQKLKGacUdRaplUVhY6IqPqA255LuqU/BolympSjFLWu5HFQB93jg+AXEqUJiEiTx7metZTCGn8uR9zjH6l2PcjifsfrSnzK/fJlUjdC2ImnFG997iXh4j3HVYEYN1XhCtbmJ297Gbu9S7Wxj9/Ywu9vEnS3yzhZcuYxyraRqKmF2rJPVUt8ToyenAWJAeS9+fN1AHAZS3xMGT46e4HuGbsVysWQxmzI7PmI5n9L3g/jd1Yn60hbOncMbi9cVIRmi90xfeZFnH3+MT/5X/4jHLj3G8A//C5rDI3JMHGtNlZJ4T6eyhyCgqn7gvV43Kw82M4XKQNV1vPva2/w3F8/zR5e2+FdHR7y6GlhlWeNzed3XbRIluKls8lLvhXgqtf2hGd87dqt1I1/Q3Put01quigB/l65cYTr9QVHu31/HDJHntGHkiya5MAsyGlSiTpGNnKFbcHjzBu1oG5+khphPZ0wmTRmELtmYTLh16xorLnNn1bOrLKaqca6maUbi+5wjKSwYFgv62RHd8oTl8SFNXbN54WGqZo+cI9ba0rREtFJUVYWrarQRL9qqbjk5muIjhKTphlCGKgJlGKfx2ZOT+AvnmDAYyIqQE1qJfM5mTWo3ads5KgaGOYzObxIOFIkNlntbjJ9+jDPPPc74whnsxhbKZBnspx49LEiLFX6+IM5OGKbHDIeH+MMjhsNj+pMZ6mSJjQmlpckxSBBK0kr89rQuVjoaYzXa1mhTY2wNKpOM1GE6DqACKkPSGt00uBbGq448PWZYLArjRp2uX0V6UaRyQg4QvCWjnUNbV8BJke1FJSCfcYU1F8XFNOUEUVh+ppynKoG9fYfw9S+hoyH1K0w3kyGWMSijSEoLsG0EeMiNQ125TDw4JPU91Ur2rqgt0dXkqiZXlty26KYmt7WwdcYVqm1gNILRCNWOUO2Y1E7QdYsd16iRI7c13lTk7Q3uHJ6w9WM/Rvv3/7Zsf8NAXq7IywVquYTFgjifkqcLWCzI8zksO/R8gVoGlDKYdsS5K4+x1R6zODkh3Nsn3TsgOpFXj4zCWod2FcZaqCq01aSmItYWXAWtBCAFY4nWEbSl046VUSxVZhk8J0PPNAbmw8Bx57nX9xwslxzMF5wc32OZEvMc8SkRQ5Geq8wH24q/+6738Uu9Ir7xGip61twqldM7AD6AFo0nEVEsj09YfPkFDJZLSrG0iauxx++eYZYTul/KMClGYt/TBY9zlpQiQ9+Rcwm2KoNNg6LvpA5SWgv5IfqSui0gRO8Trq7oNfRVA2lT9sgYWA09tpIe2SnDqG34+E//Ha6+8l2uvfxdjm5f43ixQM+XOGM4c2aby088weHRlP3bNxmNxlB8luPgWSw6keaHxN72Ft1yQfY9sV9y++qr3Ll2DVVbrNHcfPMq23tnsbXGW7h+6w5t1eDnJ7iNbV7+7nfQRnP+oUeYL7bpVnMuPHKZUVVz8oWvcnx8h9uHByy05n1/5S9z5Wc+S2Ms3D2AdExtFcklso5oV8mAqraSQtJuCrAbdmkuP8rGu9/HIycLPnzjNsff+Drf/tqX+cbbd7ljHR+oRhJoSCJb6czesQeRRSloBHhLRtHnTKONSNSLNciarMMaszAGqkxuHTkM2KxBWUIQooSpHOLeoETujipDdQniOuVA5LW5yYNcv/sexsXEhvsjrjXkJxY3uvw8ZUOnQWfpZ7SK0t4MgdxlzIkn6hm91ugcMSkRtCKYzBATX0v7vHcRyb/7FQZVobUmGElkN1WNnjToSYPZ2iZtTUR5tLEpYaDthPz406jjOfo3vkL6wvfgPY+gnnyE6swWejRGNQ1be1tcurhLsqZUB/p0wBqDKOW6xYLZ9IiT4yNODvc52r/H/t19+Tg45OBwxmzeswiRLmWyq4lahhghZLwfUHHBJ5LlH5oxV5ZdIeiqU2/PhCLoElqSIdQNHkedAhaFqR1zn1EpstQZ39aoZpsLZy6wWY+x/YLjO3c5uPYGt5PnC2aJ2j3H5dEOvbKMtrcYBo9Sgb5bMZ+fAJn9/btcuHAW3+2wPDkhW8u5C+fpQ6Kbznjr2ttsP/0Bjl/9Js7CUJjnTV1jjBEM6Ue8/ciPMMTEKkTS4KkbRVKRVUhUlRGA3Am4om0pw7SYTucsKbfCdpPNPZBKMypaHEUErVgWDTzKEHrxzsnIphyKBAoUaZVxLhYD1UzWGijTueLKktLaMLY8ZqGUpCHhqjVSLmi5VpowBLqcSviHJnlV6L/CHHDOSTNoNWt5IimRh4gxisY0JMCYzGqp+erX/wOf2XqYt966yfjcNof7X+SFP/43fG//mK3zV/jITsPB7Vt0xyfUKOq0gs1tdh5NfPhKi0lzNo0llmmRGlZYxEPOJ4s1gE5Ej2Q6w6kfoTayAGmnS70kzAdtdfHwg6QNdaNFZhANKYjhfggd/SCBKdZmMb1MEm5RNRU4hTYVVlXk2ICOZJ3QbiKbqrZoO6att5lND6WP1xUns32wK+q8pGYLrR1BadrJDnU7RqnMfD4/bcplaSzhHqw9tNSpH9ApaKdkQ6V4s63XVIXCGPAhnIJ7mQLyrRup4vmhjSP2K2odCcaxPDkBBoY4x1ZrnDjgyyQgYYQZYgp7JGY6d8DoM2c5f+YSW985xNw+oq0z+8f7KGOxtHzqI5/iY+99Nzvbu6gsfocMXoySfcAsPfV8hQoDOnlppFJNnT0ojyGglCOqiqgdqIA3qmBZskkoFLp4X2WjCVYxOINuLNW4pt3aYLLRsjUZ8asfe5a37+0zV4Z/+XLPX8zgu/+OyH81O0rzXzjH302Bc8sZ+ZaG0QjjHDiD0pHQHZFiwKBprcZg0G1D3s74JoFpwLSkpka1NappKXGl4l3jHNk6Ya0ZSzYii3EGtC1+drkGa9DaoVwFlSNWFqwVFiBK2KpaCeW7adF95OCFV/jYj78Pu1qQlwv+M11CQlSChy4TmwqdAip6jE/gI3q1Is8X6FnH4XTOv37tKr/y1JPsLiPHxzf4Zrdk9OgTVL0n+MDJzX0OV1P+aVjxqarmqQxNijgNlbY0CnQI+OWKLvWkxsnf0ZrUd1x77WXOnT/DxUtXuH7tKt1wLBunVuydv8CVK+c5unFAIvL2nbu4uhIJ1qwvzJV1Y6uxTc0jTz/J8WLB/ksvUdUVrjIMsw5rDP3QE0t6XY7gSlp6TBmqBlu3wsxOEZUjw7JDxczQ9ey1DWdzZMs2KDwqSKETk5AqQ5TiCFUYmlGodwnx0TKIvOVD/ZKPthe4tdny1huv8/7z57n2xlsMfeADH/44V19/uRh2vxPck1vxO3kH+vdnz+d3MI0Acsb3HbaZAIr5IqG1sMaTh6a26AyTtqIPCd8J1BVTotewWicqlnouxZ54cI83b77Fn257/tYnPgVf+21qAhZL8hFl5BeM0uhYPEK0yBGNipiYmNQGnyA5YUZrICdDlyK1jawW++y/fkg92mF09hH0xkXGFx8jYAhKQzXG2R0mNKRVB9wTthuKnDJ9ivTDjNV0jrGa559/nqNbd7nWwqt1DSHR5YQmkZQhZ0WwsqaupX96jbYUeQQqY9DorDAaJnXFYfJism8MzhhqEgYYd4mzvecMmVjWfHX67olXX1KGtwy8tTtiKySyh1UWb8hBKXLWDCkSlYBE4xz51FKz0UsKp86gci5gkuKOMpwtg5oHzx6JVJFbKF8/ESI/l8HdvUfVjqmUZWe0QdKe/vAI3BylZKh4pl9w5+pVYhJQ0gMrxH/YKEWltcjTrEXZhty25M0JeXcLs7WF29jEbGxhNzax4w3MZIyaTGDcokYNumnI4wlpMiZVO+IBZixoW+R7piTIi7SQ6EkhiH9fP5B6AS27pcjoYgbXaLYu7DHZu0Bna+LBHKoGZRUuKzoy2zlhNjZQQyD5Yp2Q0mmQlVp/Pi3r719fhgLyx8D29Rv8bO34yLk9vrx9lj/oB15bzJmGSB/j6QBVzK7LmqXKQFjdl4M/sAOd/u8+TzevL+c/c42vFTAxJr73vReL3xgF/5PaYVtlftJZchkS5LWkuAwM6gxblcEZxezgDtOtswTUaYLgfD5nNBrhAyxnRywP73H9zZs8+uhZJjvnOXPuIrZ45hpX0Xc9/XJKzgldNWyNG8ajEUPXY5tagL0QSSpLYwcSvoGEiAgUpWRIGaXRjAm63jNqayojQRdVVRO0AeOk5lal9nNW/NCIhOR5+MnHuHRlSeNmDKFiFWuy6jm+eJntD3+GJz/5MezeNsmUcJOUIRfZjkkkLddsnTNKJcZkSJ7se1itiCcn9Lfv0b11g+Ub1/BvXSPO5iUcK6PW9VhKZKUJPpOzJ+bFKXqsShOuURgjAR6qoM05RJge49qGhCcjCbFC5FEPnAhrYE/Wq5STrLuVE+mzEqVHUplEFK/JMnxRKZGNQjtpkCPyXFMGhh7zx98gJbEUiklsKXL0AjKuz1alSwqvQl26RLpyBeU9+YWvo6/fROcOxVxWQi1J60qmuWRXoZwkjWvr0NQo7ciVo2trOiOMQ92MYLQJWxP0u5/k8LU3ePSJp4gRuZ7HhrwFIYPOgUjCJLHxue/NB4SBFAK569GLJerkhObwGHfvkHj7NuHePbrjY9LREWk+J69WRB9JnScvZ5iwDrVKuBxx7+jJFEErkjYkVYJKrCW5iuRqlK3B1cT6DGn7YWJVMSjNKluWQ5RBZ0qoHNlRmvOxZ+PeHfprrxFmM2xe+1BKf6mUDIdijog4uyIULrrFkVLAEVDGcFcleqNZ6cwyRvy9u6BacvD0qwUZGIwhlCAcY2Tol1LGuqr4yIs8vLKGymiShuDFw3fdi8Qsyh2nRmQ70OUV6EhTQzvSVNaKxx2J7fMP8aHLj/GBT/4Er3zna3ztDz7Hye23y0Ask7ol84N9+kVH8IHKWNqqJqfEarUgDpbGGaIfmM0XWFth6hFVrQihJ4XIdLGgGzqm00O2Rw3WWEZ1KwoRV8nKHAZMTBzevM53X/wBu9ubjCcVioqHlzBfLlj2ifOPP8pjzz9F+Pa3mF27TX9wAKuerKKQe7LCNTWmHWG2NjHbO+iz26hzO5jtbdjaRW1NMJsTqs0Jzc425x97kqf/4A/4ze98Axcz79FjIZekTLYa3zZkMjXi7xdzKcyU7Os5iw3Dek1f7x2nVqtFDYYxmLYidEEGtqr42Vsh0xi0uIqUGnPNOFVZFwJ6ISgga896j5QiMZ2SVKQCXu9m6zTV+/96bfn22PGnLHjCTtgZFNtDZDNBHTUmSo6BrkSu2KWACpEhZbyCA6O4lQZ+kgqFFsVMhBQ9mUBaedRsKTgIN0VhoxVYQxSzRLCK0FioGzCW6oVvEVHk2hE3J7CzgTqzidndRm9vobe30RsbMBmhNkbQtuSqYsMZzu6cIZ85S37yWfHMUyKhzjkxDB2L+VwSg09mzI5OmE9nLJcL4mpJHQNXvObxl68z+t6rYutU/KNPfRCTQSfFqoL+I5/kzGf/EtPvfwf7ud/kbKfR40vcbZbUWzucn2wyimCnc45u3eLe7JDer+hyYFCZtyvN0tXsVBvcvnWHC888g8pKggyDJ2XxFO1nU7TKvPnGVcJqQU6Jn/xLP89nf+an+Z3f+G2+9tUvY6uWjd0djvgmOUe0NjKos5rBl2CiH/H2IwN8tspUIy8MIRUYjXWJ/pWLQq6lzJCFVp1ixiCMkFMarSqJKKZMzpQmJDFcNkqRcyyGmKIhz2XzFQ8FSX9NQXzhepJ46yGeTJksYJ0uhv+2pN0g/lIxQtYiN8s5Fe8zkQyhC5ikNSlmUo6QhOWQKfJIpURWoER2kJIch1EKizAItdJUCnZt5tKHI4vVa5x/ekLIhxACH9IV79WP0FcT9pzi8nKbx6ozVOOWsFpSjzJbpqWpwOdDYs7UjcUPHmtk6qm0wdmK0PelIDa4WhYWtBHjyOTFuwaRDmfEk0BrKXJNYXGQMzlotDIk5QlR0fkRwtYfMM6i9YjayPTZUpWkKzkptR1R15ZhCFhT0/X7RRZtid0Jq/6AmCfotkJrw2o5h7SCZMhJoV1DXY+oqrr4Mgysk3PWH+T8AOlGmDrpAUaeXNz3WQCpNJ/r4Jc1Q+D+SqrWBIFCzc4E78EpUCN8L41FjAGtwA+emAZ0cZnXRhMiqOwxphVAWRlMDhi1z7veNeLc5YbL39LcPtji9bdqzp09x8c/89OMH3mGvJiTjg5x0wXVwmN9pvKgoyfnDt0P5FWU50iAIoNMSkvnOESICqUCOkc0ljXbMStNzppTv0ldY2pH3qqY7RhOGrCjEc3WNmfOnsPvg4sOW4/5n185eOcF/85u6vR7Ogvz6JeU4z8Jhm0nhtm0FblRqNxhUyZHR25a8mbFULeo0SbohtxuoMYatits1aKrpoBxoJwGp9HGgRNfBqwFU4Boo0QiSUXWjmxCeT+V7JtJPPoUqmAOMqUDhQ4S0LFQFV/+0uf54KWH0IsZtlLkyQhrFEQYUodxm1gk4Y2UUC6gvSf3CfoZdIHff/t1jHL81CNP0V8/4u5qya3QEVSPchlUYHej5fDaAS95z1FV8f5zu0yyglVHFxMuZbZSZEEgLXv8UqGzpkajXINf9Lzx8lUee/wprr19HZPuS9YO90/ohkDqBmpnqKsaVbwhvZNBwM7mLj72DLHnoSce4fh4n26IxC4S+p7eB3SEPkZCilSVw+VMGCLdfImxhtG4pXWGfuhYrHpGjcUZaZyG3qP9wO65PaqTY863E9ThFPFSjHilGLPOH5P6JoaICmLqnYv3iVIai+FSTHz09j5vPP4of/KDN3j5u99isr3NtTdfwYdVCQ4oHq3vuK2b/fLvfwSjzqcjVvk9VTr9MCyp6hYfBpYrmDRjrInEkJnnjqbWxCQNvSqP0aUkTMlUWMyppHHv3+XShfN87jtf48c+/Bzv/eRnCa/9Kcu7J/Q5U9U1fTeIF4+W6ymniDYlEAiFdhWkhFeKaAHVUI/GrGZTUoj0MRNNYuj3mZ8cUtWvkKc3aM5cRus9VLuNB+xkh1Er/pUZRA5fJNOuvBDbu1t8/GMf5/DWXR6dvY37+gtEYHPH4IOiC4qkMoN2qHuaMyt/2gyv7YzFkFrez6gkPORoeo+50sxSZJWzLF/KEKycQzut5VwInDE1WxjGKdOkSEWiVgpjKm5u1LzuLJXvBFAK4l+ZC1CZtQanWOpEbxTv95q294QsZso6C6iRVeYwKx7LmUEqjFMmmoICB8hpIWBV5nIM3Diakh51tFb8u3AUv8IFKCup1nWN3t6mPzoWFmF5nFQY4zkldAA1DBiW6BmYexrzuvz1lDNRa4YC1lFkf8ko8a/ShmDFakC7mtw2qLZBNxWmaUQW3IzQ7Qg9atEbY9TGhGoyRrctarxFalpyM4ENB65GVwblLMymmGRwc094/El0rTGmZ7x/l+cefpqzP/vL5G6JWvX4+YI8nZIWS8JqSVqtys866Ht0P0i6YBhQwUMQoDHHiIuR7Zv7fLqa8uGze9y7cJZb2rGvFPOkWMTMMkVm0bMYPIsUWaXIkDN9TAwxMYRMyBIAtPZETvl+WidQvAfX6hF9P2BDiX9xTrJPrtsplTLWJn6mHfH+IaCIokbIGqVl/1VJYwGVIidHR3TzOfduvsX2+YsoLL7vcZVmNV8SOi8y697j+55Vr9jcu8jW7gXx6KprbFURE5A30GYDWzUYa/F9J7IjKxLenJOAd9pgUfRRvLv80GMrx9B7UvSkFFA5YrU8t8EHTLKY2tKSmfoBrTPWOObLjpShJ9C6ESYHXFVz/epbcEahzooc7bhTPHzpXTz+S38Pt7tLNZuiXrqKWq3Iycu2qkFVkKuKXI1RtSM3NbQVqa2grcmbW6A1WmdG74uMQuDMYkW4fZvZd77P8Re/innzbeqYKPNpBAgrTbKWr1WGnMQbWpemOkQl6dtaIOZBRVzxLl7XL2swZb3O5zIwLgZecg4Yja4dOgVyH4r0SxjxUcvPo4qonEg5opNGWUMqCoNijIxNGmMiKIPK7lSJQhZ1ifQV4h3tfGD4/JfIkxF5c0JaLuX55XyaWq1TWosQSClwcnTAzuWLpMrBfAqdIaREp0A99hSxbrGHdzEH9yBEso/MX/kuV2+9xkcPPerWHH3pPGpvm9xOqNoWRg7VOlFRlTVBWStppEaJR2DTwvY2+aFLZHTxURVW69gHVOfJqwH6FakfYLkiL5ekxZK8WJBnc5iekGYz4mIGyxl5MSd0S1LXQdcLq7D3qPkC4hTtRY2kk0AfFkWFYWy0+IsrpNkjEXwgdSsOhhU2JKpi75CVeCSmHCSISUWcApfLkA6LB7ocxX8TCDmwRKGrBqUdjbYsVidUkxF9t0Qby9rzO8ai7rEGlL5POkgZ56rT+gYS1opPpAKxoFBFbhESqhtwqqNXFW3r2GsyIUV2dzc4uHeMq8A5pB9rdnj/J/4Sl65c4euf/wMOrr9GSJ63r73NbNbjvYDLtpU051jAVHLC+8zx4RRrK85dPM/exYvcvXGD6d0Z1mja2klQ3qhFuZb5siP6E3wObE52eP+H38/NG28zPzzAuorQJ1w3oFcn9PMM9hxn987zzEnHo88/w+EXvkL35tuk+YpuscR3nqgSVgmYrMhiEUOmqSt07bAbE6qtLapLl9BPP4Z7/HH03g56ZwxPPcLD8Sf5GT/w7178DnuN5iFTk9F02rD1139ZFDIHx6TvvYS5u0/MEs60SlFUUCVgMaHvs3kfrBfXi0VlMJOWdLISv1fnwBipDZIMf/QalkuJ2A8FvF6vK2vSjT7df9aWnlA82Mq5IWFwsVz3CRAvvKNK88/iIX+oI3a1ZFM7zjvLQ8rwRHac147zdctmiFyuavEt1QrjAyorrrvEcZfYSraMVRGwG8R/FPHtyyKvJBUZeSqeyPhyrLOM0idEAwNG2I/FszsDUcmQOxpFskiIl3MwasgbE/TGBLUxgc0NzOYWamsbvTFBb45xWyPypKbZbNkcNVzYvkSqa2Fyr6dwSYheyUP6wZvYf/VbqNevkcoak7pI7gfi0KNDoH/sIfb+089yO2byJz7E4ZuvsPHSNdLS8/AnP068c4f5629ycHhI8h2r2LMiMscz5MyhylzNina0i2lqJptnGG9uFu/xHq0V0+Mp+/v7dMsFo/EEYxV5c8RkY5tP/sTPkPWIX/17/3ty2/KlL3yZR55+HyGLK+R4MsEYzWq5oFv0hBD4UW8/eoquySVAIRNSInrxpIspEpFphCx8mVMRh5ciTFthgGUVIWkJa1cZVJKUFVVkoVEacqU0zmpCiOUikCsweInVFqAFrC1+NJrCxpIGiYKWy7ckdUxSVDMqlb9Bpm5rYRXmLGEMCZq6IWtPjgGnjAQboLDWIOGyGo2wW3TWjOuWHIPIhLXFakPTRtRkIYFXJtJrSQ7SgOk9tTlhkSJDtZSJZ1ZYl/DZoJIi9hntDCkrdEzUThN9gqwlfp5I1TgUlpwsMUdU3YLagujIZkpUC3QaqGpDirUw4fSAqRU5ZNAD2ihSbFj1keNFjw8b3DyqubLnePiSQauKPAC6IhEIyHsekqKuW7TeQNsWq3pCPwXtGUKiriKL2S20SeRosbrGaUUcAmpkicqJPK9qxF9D3U/euo/lvVN+u6ZSS7GzBnME1C0lXwH81gWRTA/XC7gAh6Wg0yW9ETlv+q5j3Gyg2odox4cMyxMmo02m06VIlGIk6YwOCpMTMXVobairijhktMrUuqZpLSlG9kZzfuniGUx6mO9f2+TZD3+a3cuPsziaEqYnuNWSjYMl7nBGjkK51kMg9QvxQIhBDLg1WN+R5x3hcCpJluORyLpSj8pG2E9Kk5SCInXJpUDMonJFb7SYj7wHd3abbOT6m1y+wsn0SSaXM94HUG/Kq7XuTh8AVU/XgPLNsybzAa3xOaPjwLAMxK5HO0s8v8E1k3kxGR56z3v40Kc+RDueoJpNUlUTK4Mq4DmAsgNGrw3yEzkKxVpHKYaVKkbe6zc2ZBmFxojCF5A7oZJCxywTnZTvszbLhEfHTEqK211HmK24sLknhut9AuPkWDI4Zck6o7RFY0lxkFchDKRVh+kGDpYzfvfaNf7We55la6hJdcMxiXc9fIUtm7mz7Li5mHNEJgePSpnDEPjmYs7uZAM7bpk0Iy60Gzw5GmPbVpoma6m0Rsx9M4P3KOswTnHuIx/B9x1d39OHgUXsmPdLhuwYfEJ7zRAiMXhMjuicOLp3i6RgZ2eHm6+8SVLiPXkqhSueWCmmch2J9JQIOsi6u7e3Q/KBnCKpsWyPWg7v3CGjCV1Ah8DIOdqY2GtbVEoSjkKR6KZETmXKaXTxRpFrU6sM2ggjKCuMz3xivuI7U8e9yw/xys1bKGA1P+Gl797j1Gz/LwLwfvi2lmflH0Kr1xXdA4+lUhbps3OEwVNtbvGRj36U73/3WxwcXaMDugFyMnK+Ia9X0uo0NTglsYyoZx3PPHMGG+A7L9/hx/7eX6Y6s8vdr38RffcWrna0Y0OOAe8ztatASWr70DuUksxZV8k+42kZXXyUjb1HOLhxGz+7RV7Nid0CreU66VZTpm9/h+HgTdz2OdTmFdqzIuFdriI5J3KW4CtjnAAhSWws9vbOcO78HnFxQn3nkPMOhp3IM5+pON5PtDnTtol7XvEn/3LgoX6gRp7zejqtuS/ezAh/JpOJBJISTxhJ040sc6SPil7BAPicuIfmKCtMOTe9hpXy3BngjhK5cnQa76Twy+gy0NNYk0lW0ebIrW7FkXP0KhVVnliBbOXMYVC8LwnAt06jXgN7ZawoYGU5TVrgTBeIiw6zOUFZeX66+DyGUACWHJns7jA9mYpn0gML6NqXMJf1Zf05lJL79Gp4YIqrHvhYf1c/8Fmt76U43cdyeX2jEtBDXnPQyhC0FuaVqUhOmM7GOnRlRVJnHLWtaOb75NyTjSX6yKMo1HxBtbWNurxB1dZoawRQrBzZOJSWOJWcipw2JHLvYfCkriP2A9EPpH5F8B2TfoVfLTnf9Ty5mjN0S4Z+xdB1pL4jDxJ6laKEHvgs3qVDgC5mugwrDQutWSrDKmuWCeYxMEuBufcs/MAqBroY8CnhQ8CHQAxRBkBKAB6lFJUN/Mz2Hv8l0J7cIqXSYukokqwstWoywoDIg6cyhunxPtWoZWfvIt1yiUVYmknD9uYmy4OKW29f49KjD5O0ZbKxU0BxqV2apoW6OQ2DIYOtRwL0K0VIAjLbqgIMFnDOEmLA6iTAUpJVSPztNG2lUKYMXLViVDmq5BnSQNJJ7G2MIabIquuk7rSa5BNW1WzbOUPy9DqzeeZ9PP2BXyHdPcZ86wdw9x7MZ+BXKDWI8sYYsAplHaqeQNugJmOYTNCbE9gcw+YGeXNM3mxRbU2uWtgdoXe22H7iMbZ/4pPM/vhrnPzG72Dv7oudTGmUVWHhrlca7yyDUqgccXhh/wlbAIxc16b8nlwsZd9ZDwQ43faKlYdYk6SUixefI4cCJhZALhvEi1tTkl4FAM7RAxqVkG5dGzKhgCn3r1/KsHkNKKqy/6Qs9hV2tYKuA5XK4Kr0N4VE19UNJ61jFjohIITA9sY2R7fvMDtectv0eGV4dvQcZrOiX2R0Srh+ASsPB4HV9JCdl15FfelbgCE1hlA7VGWgqkit+BardgSjVt7DzTFqvIHa2IDxmLwhbGLTjlB1Q2ws2rkC7tbkdgz6TAE3QVEGYYWdSSrpvSmJ35j3KO+hH6DvyKslaVU+L1fk+Zw4neHnU9J0BsfH5NmCNJ+RV0t8v0T3AwwDKg5orWhHmzhlqKoRVjdoH4ndEpUk6dNE6VcVhmwq0uY2s9CTF1Nigh6Y50hIhmWMHM6mRBJd31GNE0O3xDgnioTCxLPWEoaS5W0g4xiGgXbcFMA6yMAaYW9lMpWtiCRySKgYyMOKrIIE4dSGza2G2WJF3y0F/NHCHDblbypdcfHR5/n5h57m+O513vj2N3jzxRdYrm7TmIraWrbGLbNpFDIGmmAM3gdJnE2BO7fuMT2Zsup6FgtPXVnqlFn1A1Ebnrh4gbQfmR3NcMpAirz15nW2NsfsPb7Bndeu8eMf/Awf/OhH2dWB1f4h7E8x33+ZS+Ecw41jprf3mS3nDJtjhvNnULbGh0jqOvKwIiyOiX1PuxoYTRNjrRmbI5y5wfjFV8l/8EWaC+epP/EB7Ec+gNkeox8+z5Mf+BDPHx7yrVvX2Rw7xtmifWL/C1+jevppwt42Fz/8brrf/bwEvmXFLAw0VhelRSapoghbA/4P7NcZYeTpxqGHiIpgrAC2Kmhi7wuATEk6Lky8vDYnofjzIeqqsiYJdqjKQKKsn+U31Hqnl+YWTWTsPZ81lnOu5i0VeVNFXlOe7+YALDFJcXaZ+CtnHubK7g4HVeY8lg/eOGR8cMyNJuATTDDC0pVOqBxvQfXKYpVyOVaVxZIACd/DaFLxztbhgbpDF/Ba3X8cFxS5zyjlyXkJHJ/WKklBNOCVEUsGq8lrEHBUozbHqPEEs7mB2dzEbG+itzbQGyPUuEVvSJKwQ6FNi93YIZmKnDTaZXTdEReGAw35l36Bq7MOw8D+smfnE+/H37jL1nTKnT/5U/LBXfrgGVKgIxJUZkliCayU5qryHCTYxZGiQrUtTS3hMIvVklXXEYZObMDGLQf3btN3S+q65sd/8hfY3T0HGrRTfPDjn+bFb3+X8xe2uHb2HLo7BgXL5Yo4FF/OB3uT/x9vPzLAt/KZaSegmzFywsZY5JRKKPN67QFVJo0g8leVhAEgunfRZadyYikvgRvrjVEXTXUI8thGa4yC2mhJGYyl6T+le4vZv1ZWfKqSAH8WMfK1GVTOGGckoQnQusLmGqUi2kix1NgRcZnRlSIZDyFROUfOIv+zVmNktUDrLABDzlhtJcWveH5Fn+mVhqwY+ojKA50qPn9ZGIBJD4h8QMIElFYYY+VxlTSxMQZy1vgUGXIUdlYSiVtM0HXd6XPJ9RVefrXhlVfnbO+MuXLxSZ5+5gJVnjL4HxDidbRSxE6AupQlTSogxsExWVRVialljkynidnYUddiep7yiozHOoXKFU2zjcJgqwnGTUjpUIJXiFg7ZrWaE1LPECq8N4T+AKMCne8wphLgJoGrGmH0lGnO+n1drz25lHbrKSxZvmY9pC2NuxRxp+WbTCFyIqX4gJ+fANBKyUZprSXaSD8k2eS6hnbvGfr5bSaTOd3iDrWZEPQMpa1IWaIXOUZOVLbBDx1pkAVHO8eqF4lRUplkLJs7z/Dpp3+Meusy/nhGOBDJqgqe/s4hzdGctJqRuw66ARcFACeIv2JMkAZQq4BddWQiys0wIwmRWNO9UeXaKLOZrCSVLIH43EynrJ58hP7cWVLXofoVWxvnmOs9pneuChUbpAhVuQTeaJkslIp4bSQ7Bn5xPOJqnxjFzKN9pCPTV5mjnYrfmB4Qz53jL/+1n+Xpp98lxc0qow9npHgAoSMPhhR6kuoxOROyIZmMImKiACWk0m6XDUersgGl9aRpzeIUjySdgFwkLSWxVeQZ4qepMhhrefGN13lmvIu7cQ2cQVeO7GrZcLVc20qBKoZ2OvUw9LBYoBczcjfwwv51RkbzkcuPYXtN2qyp2oHPXNplReSlOvLF0TavXL9H8FGSKX1Ed56/8fHnGDeb+I0tVtqw6Hv6YaBfLRm8l+CXGIjBC4gdVwLqF+ZVrQ0j27DXjnHbF3C1Q1cOa2q0LrBFlnTKnBM+SnPbh57FcsFqWNF1PQnx1/Mx4r2kWvVDL+c4maAhpsidG3fIITOkKKzY4wV+6RnCgFGayxcvMrIVH7t0hc1mhE5RJE6IXLHKMjVVxqCqGoUuXiUJFSM5y9a0xuIuJMWHb9xi+t5HOPYr7h2cnO4NrK/5d+yHDyJ+9+8HwryQ+ws7m8KEuK/l55QdnMkQBlDg6oaDkxNmQ+J9H/tLfO1Pfpvj6T45WwFikT1F6dL0F4pwzoEcoVrMeXrU8Nz7343busQ3ri1o3dMMz+zRVi9w9uT7EGFrew9nGnwwdPN7uEbW1C5rqnrCan6CST1Ojag3H6XaepgdcxFl3kMYloR71+mOb5K7Y5xJZJWEjXlyh/7oHv3sgI0rz4I7I/uPsVhnISmGYRDGCHBub4fJCLa2NcxOiIuAfTwxubxi4RNjxuxsLHnr9oxDWnoCtYiuy6ufTsGxqDReabIx5LomO5HYW0DHTBszm33CDZEmR2oimii+WwVMySRCViyyYTlA5yO9SvRkOqNYGlgo6LIEkPgkfjiTnIhWc8vK+deiqJJ8LGvDMCTOWkcVvcgCC9CbeMcZxHqkaIA2ReYHd9g4P0KZkTSH0VO3NdorUsjChNOa1Z0WZgvWZ9T6EVN5LIPGUOTq3Afrfgh+/jPl3oPHlh74rsqcymUfvG/SBazUoJIvQH5ZE1nvq3KftTw5IbJiBfRG8S0Hz97+U25/4Ss4rSUp1BiSsSTnwNkCElaouoa2RjcFAGhG6NFYmGmjCWYywo0aRuMGzu3CxhUYj+V+9YjsWpStC/CGAHzDitB1hFVfwL8lcTUndkv87JgwPcYvZqShIw4dDB1DjCxzpvORLiRWQ2AVIvMU6FJkSIE+DAwZUIZKWZ5tGz5+PGf76lsMMZWGLUMujYgS/GblDG4y4dJkxMm9u6y8JLUuZzMUEnYx2bSYypCCJ6aEMZqToyPuHe6THn9CZg1r+V4KGG2w1tD1gxjru7r8PFDV4hWljcWHWPy8REniQ8QoQ93U2BToVgOjCra3HClrljpgraIZOapRQzjohLmCgFbGKDZqx6iyLJdzNt2YM2aLK4+MWKg53WKH95/5GPrz30C9eYN4MoV+iYmdeGLncsVnAbaUkXAMKkduGlQ7Ijcj1GSE2prA7gZqdxt1Rj7Y2URtj8WC49wZNn75s7TPP8m9f/avWX7zuzRGk02CHFBldBA0LB97HPu+99ENgdXsBDub4958ndFyUVjD6pSxuRa/qQLuSZP9wMVUpKi6sP+1KYqBykpQhSDBsh45KUBizmiVSDmUx7GlP1vvSamUofch+rVEtHT398vUNbOH4sSlZPCcKcxfozmuHf+93+fOeJeHLl5h29Zs5cyZakw2T+KnU4a44DgMpPGSUCdMq9itNnnsZIqKkX61xKRM1S2IiyMhOUxlT157k4rIQSiZSUnYU9ayhitnSZUTUL9uUOMaMxmJBG80RhXwVrcjaEakZkxuWlTt0E0FdU2uZL1QTqxTspX1JLcWJhNJCy7e5mipMzViBdHkDAFUjCifUX4gDx0sluTljLycwXxBXvbQRXII2MGjv/US6sWXsH0vNXvr0F0ieRFQKm2ozp0n1TUnL36bRMCrxEIpvLUschSGfrcqgHPGey8Dm5xRSkLJwpBAC9EkZUVV6+IZqnGVoTIC6MQYS5+r0SYL6cRoKiN+6JhM6DPLxcBghUhxeLQkBOj7wvS3kqgdC+PH2ooLDz3FxUuP8sgTT/Pdr/whd6+/QRo8k40NRuMRs+mcrhcJrsqqEB+yBDqtVsKUyWWoEhxaZfpVx+G8Z/P8ZbSrmR8e0XcdR/fucnA3o5Th8fOX+N/+4t/E1iPceEJ+OuBrzfA7/4HVP/9XzA/u0m+OsT/1aW6fafnu9ddZrAZWA9RVxd7ONjsbm2xv7xL7SDxZsbx+g+mrr1G9/RZufkJtFBuvHNHevsHGnQOan/wYeWcbdfEKn3ryea7dvsPrw4pnKy3KlzfeJly/hd0es6hrVEwyelSJEx84Y6rTnnJdK67HbyqfGm+xDtNUJpNrK6B/8aY3tpiA6Vg20Mz9KQ3cH+mVrN11z1oGS8JXKoPQkgKqlJKgHK1EwVgGE20a+LQPPOlXeKsZdMO+UtyuFK/qgata0/WBWZ353PIebyTHhTv3eJwRLZ6bQcgJozLekFDHdDqGTcjwwrQ1frnCxCzMysJyD1kx2tqR/WcYUCGwBqkFDFwrB5UAqev1LK/X3sKTL7W3QexYjMqoLpNTB4czkVIjqiufE0MJnJMgIYO2BuMqVO1QxtEsFviEhIKESIqZIXtyTqw+/X7CQzswO+Llt+6hrGaoFO78Gc5whL97TAo9K5XoTaIj42NgRmJFojeOO7ZI521N8AmMoet6VD+QFayWC1azGav5lNo5VAy02jCuRjzx2ON8//uv8PSzT7I4OeHSzjZPv+t5HnnsUV55YYfp8pjpdCapvgEqKzYuP+rtRwb4QoDOCzvIZ/GeqKwuk65EioiRqTEyjUrcl7yWXdVoI5JbnbFa5K1OGwkIyIUtJ2sj1hXWX4qSEqsFaNMpYrUlZ0lOVSqhlcJZJ7TtlDC6wlBBFL89jcI4i9JJPpQAPH3Xg9PYIv3Vm+V6DZrxuELrilBYI4PvgUjKJcAjJYxWDF1HqbRL8IOAjgJ46gJWSpOfSGhlWKftpBRFqqFFWhfW6L2WzWJtDmCtEdDUKGy2YjCbAkpZhniO11+zfPmFWwwhcDib8/0f9LzwrfNcPHuFs+cm7G5ErJ2h8ghrE9ok4gBKOYxNqBxIuYcEj56b0FiNjytMaDA60zSSsqswGNuQ44BSRtLNlBQvzlX4UIGpyXFF1o5uOaDrDbxPDN2CpnYCxEYPObCcz7FjWYTWKbhxbZK9TjUqDfraMUGVxuaUgZfWr1c+lXio4luzXK5om5rFcimcG0EJy/vvSJU8ZvCBxWKGmmyyefljHL/R0WZYLZL4SPaHOAdRa1GDpkwcEln15CAjZ9+DMQ6lFT5sMD73l9h58i8zxIbheIHbP0IHT5d6QurZbB3hxVtUPkAcICzBF3ZVFLBJKYTFqTODG8g50ihLWMwwyx5t9X1ZbubU9yGiTosOvGb6sMVPesxbL+NevUFOW+gze1zZ/TDN7kO89IOvUtZY0DCatLSjloN7B4A6nUKZnPnZyZhfrlr+yTAj58RPaY1NkaOJ5Z92Sx76wEP83SeeYvKt13Hfu03uA/2qwxNJeAwRmypMNiQd6DSkJM9Dk0WuaBXJFO8sDaBRhcZnjAYjzE3KFF5nJ54RitP0ZVPAPVXkiMTIwhneeO0qn7ngydffQFeVrIzuAUbnWhqELaBxgsGjBmGmeA1//Pbb/NXnn2Ojmkj3Vzf0tLz12g36EFjGTOgSVR/IvtT/OrMdI893mfc+/jhnf/LT+AvnSO0IXbegTCk1RJ4Roif6wDAM+JKyuep6YfAtexaLJcv5gtlsynw2ZT49YbVY0C2WhGEgF4NlcsIqCZJotMI0Y5QbY5SEsWhrMJXD1Y0kNxtHMIYejUfRxYGu6+m6jmHoGeJAJuEqx9buGc5ubnLtC3/M//oXfgn90lW0Lx55ShMUNEn6naqqaSZj/HQhkvMgyY4iozFSWOSEi4nPhCVvvPYGP/7BD/HFV97g2p1bpTh6AL37c2/3f66UwrmKYRDQbry5gcqK6fFReV/X91fv+H/2noimahte+Mofcv7SI5y78jBH3z8SUDKLjBoV2ByN8HGfNUMwZ2nEUxjY7Rc89ey7+aM/fYEXvv8aFx55mMlkk0q/h+fGe3zCvsz2zh715lkGoJsvJM24aWl1S7V5lt2cWU6P0DrRp5p6exPbBrwsn4zPP8q2yizvXscNc4bjO8ThBGssRlnGG3tYJQMDksi2xa9WlemsY2tjxMMPn+fG6y+j+iVbylEnQ6UDZgiMNBzdXrCYJhYLxypnAplAJKDxaPxoEy5dxl28SPvoY+w9/jijyxdpdnexoxZtLZBQPhB7T17M6e7eZfb2NU5efYXw1lWGGzdopzMmMVHnhEWxBeys2dlKnQZrRJXAKGzWAsYrjc0CcJqA7CFlTSQHcla8YRwTnbjctGzY6nQvyCkRcyJFGQiRpAiNWZaGEeAPjsklidOomqQFKKkqR9LlbxnLxvk9ZvMV62o3P/ChymuWAcd95iAPnIF/Xpm3hgoePPPzD/2cBx4rIL6Q08owrSzLrPBKGLl1zjQp08ZEEyJVyg8kIosixwF3s+JlpfhQzJgYUDFj/H224QOjtFOgcA08rj+v2Z25BD6xZs2Xol2SVB2qrtB1g2laTCvsITUaYccj7GiEG4+YjEfYjQl5YwK7O6hLl1AFdMh1U9juCpQqPVcmes/QB4Z+RVj1+NmUNJ2S5iekxQl5tUL3gc2YGL/6CqshlNTWErBGwiuDItEb+L7T+LMbPHH2DC/fuY1KmW61pG5XoBzD4Dk8OKRu2yLbbks68sDx8bF4h4ZACp5Q0ma9UjSjkXjJKSRtmSTDcS0cWAEOogyA0TJNKOnoOa3bVc1mW2FSw6zrMaOKnAwNCUOiT4lsHUSoK4Mzjoqa3fEGZvc8F0ZjPrJ9ls3lMePhiI07W3RXv8Tq3gFxvmK1mrOKkjaYlAzWtJZ6yyqFUQZTVCrWVljbYE2DqUaYpsGOx5jJmLyzCed2UGfPwKXzqIu7qN1N9GSEevwhLv6jv8Odf/HvWP7en9A6TTbCPF4DT5HM5NJDNGf3UI2jMg3+N/8V/qsvQPSE3qPGJem9sEpkIPxO9t6DF5LKyLWtpAbFyusafS5AJhJoZQy52A/IqZaRvMoS3CFFklyPa8uUNbSoKGAhRUG0vkIEGLxP4pBkelUAxoDn7e6Ya7NIqjOvDj3zIFUUztFUoiJx7S7f66csWkt96Qy708Avxsi51ON9olWaFDpSHtBBlEAqlOevKMzB4qW+rqE5/c8Dx6hIWpOKF5K3Au4mWwlw5zSqslAZCVCoHDQNuW5QTSU+Xk0DbY1qiufyqCEXOTftCEYNNCNUXZFrB64i26qAgxU0DcruSACjSSVJVYOyEnzgI+qFF1Bf+TpqtQI0w7iGT3yU9JUvovYPICZMiuTjGaEKQkDB4FUiZ13S2jMaTeojRklqMzkg2XcCcvgS0IhSGFfh6rqEFnoJtXDiFx1zIEWRyEcCpEBttRxHDmTvSTrSp4yPmfkiMPhATmCNJYaMMaakb4JSYsuzVjFZ53jk+Q9y6fGnufrSd3jt219hOL6LGgI7W2NyGnF8PEVkohVJKWpniSHitUGvMo1NVLXl8gWRYVftDrNZx2LRc/nyRW7fu8eqFx9X5xzvvlSR/9v/jqNpxG42jHYbzIUN2mqDRddjzz/OzY88xT/50h/y1ZdeYrpckJRYhSiVUciwYtyOOLu1w+Vz53jq4ct8+Fd+gQvNNufv3GH6ud+ge+NNRsdH6D/5MkZl8k98Crs9YXT2PB+++BCff/sNLpuKiXKoPOCSQh0HgrFYLZYNOcPJ4LlSWFjSKmghgBghzaytoHKmBPSUIZwzhaF732NPJ1uAaEXugqiKTj35Htz17+/9siysh0eFwVJUjDLVQs44hchmlSaZig2zhYqGaZzT9Qt2yDzaGT5VCeh1y25wjKWfLbl95y7vVY6d1JNM5o4faLVmrDQhG6ICR6mV1qtjSuiU0dZB7IWtfjpEV3TzOTGBrSuUEQ9L7Rz4ofhni9pJuUQKXl7ARGHrrj09Sz2QM2bUoJQjzyT9PSexcpMXqtQiOUmKcA6na+XaCk6hGHIiKYuNlL1B5MFhs2L2kffStoad4HCNZqOGt998G9s6dPZko4nKcGAS3849ldJcRNFHhHChLckpdic76LYla4fThtVyIf2SUXTLBb5fUhmFVZHsB4ah5+zZPc6fu8BW1CzmJ4yMYxhWfOjjP8bm9llcNWK1mFHVirPn97h49iGefvYxzuxd4Ue9/egSXa1KSqkuxUYufY2SxNuyccYBAYKMxmrxcXDGYbWRiUVV5AbaYrPFIfRjZyp8Bm0TOQesteQAWqWSuCsAi84CJCpliTHiKkvOCWtrYsyYmDBY8eCbFO8hn8ghE1Ug5oAis0wrMpHUiS8fOmDWFN6YWYTVff+P8txPNTYPsGm1KoWrkrlAbQTEzEr87pTRVLo+XTgEqbYyOUMLo0ULA0flKAyk7MlJgkcg43MipUDXR3IcCCmSs2LZT9g/stSTmo9/+CzWGLSy9MOA0Y4zZ8d85U+v8a5nNplMvEiPlKY2Tt4H7SQ0JGlcXUPOGJ1xOpOUoXZrdFkKzJwNKffk2OHMDs6OSdmT8gKFxphNjKvp+o4YMzmNaZo9YrY0bhutIrUZWHZzoqnRkwUxBqL3mLEYsceYivm+hGEoJUWtLgw8AaJkUptL05+TsM7WhUkui3iICR0CTVOzWvVSZBWqkNGKuirSTBQheBaLGe1oi+3HP83xW59ny2oWc41yjmRXpO5EGJAqURtLHGSZVClCHAhR0TQNZvMRth/7WSq1C2/eIn3jNaqX30T7iHtoTHhsRL9K2G6JO5yKJNcHcjeIb5H3gjT3niEH3owL1IVzKD0i3r7BTphyJm8TQkfue1QQf5ghJ3piYaaIXbw+8yijn/4b3P53v8/BH3+TRx57BLe5y9GiZ1tpJu99F8996OPof/+HpwXwsoBHUtklOU8z7FnFz+9sc3gywznDxY99lKu37tC+eY0XfcfrzvHXxhXLz32RamXpk8IGiDrTW9lUo4oiJy6S2VD8HEkUz5JUfByzTJKVAoyAKlqm3Lr4sKgSumGVRXyKDHrNj9EZZe7TzElwfdLi5wPNxUSqDVErDEkM6Uuxn5SWBGMTC2Mwy3C70VBVHPoVPkU++NiTxew+ooPl2XMPcfTGwFHuOZM9TZxz4OA4wOATz1y5zFNty+7xCfn6W/Tf3kKdPEJ18QJqcxs72SA5J8/ZOKgsjMQnRCl9v0ngvoeQLEdSnKRSpKQkzUGKgeQHQhgIQ8/Qd4S+J3Qdw2rFsOzp5nOWsznz+ZzlYsFqOmc1nzObTtHBY/uBOiU2YhRQTmcGJ8V9lRPD7RvEa2/wf/wbv8KTm5dRf/pNCBFJG8x4rXAKARmzJs9W6N5LUVG+n3JCZWFLZhIY2PHw89MV//zFH/DTP/YRvnF1hx+8+jLT5fwBQ9p8inSsJ6/rT+u5gO8H1iXW7Hi6/gnvuPM74BIpwkLfkdKANY63r36f62hyDCJPLOdJW1VcnIwKZCMgh0KIH/QD6aU3+fI3X+Kun1LvneP6rTvsTpZsbO/yreYKl85s8vBFSzXaZTg54cxTz6LchOUyMGKFDwG3tcfZR99L1W4wrI5ZrQb65Zw6ecZRgVFs7OwwnH+ExXyGvvcWq6N7mEoxHo3oBsXG+StUnew3OWVCkKY0JSloZ7MZN67dpN/awd+6ze7tO+gQWBw0HLzpyH1mrAOjBN1BxVHw3DI1w2STyfPv4aGf+yx7H/kA48cfo93dJVknJswlpTMUlj+lMdalsN0mczFlTEr4oyPmb1/n3je/yY3f/0O6b3yL0f4+2zkwIQr7bz0JR4TAJkKVNNlokpbZdFaagHjyqtM9ROxD7jjFTjS0JTk+K4XSYg9h1vs8iJ9vloRGHwJ9zHS+JxxOqdpabEZUSUGNQWoAJKXPbG+IR6iPp2fVg2BYeuD/D37NA99/8Mz8s2fnO3/+IEC4/jjc2uKPdyf8Ud/zVk50hZ5oVKaKnrHKnHHwLu34kKnYHAYmYcB2K8jik3iiNAuVGKv7f0MggHce433w8lTs88Dxlb06ldCzeJ8puT7++MD9/QPfz2p9wvAOOa2ACQ7lnOwDlYPKoasGWzeo0QgzHlFNxrjxiGZ7wmgygo0t8niDtLcDD19CuwptnNQ2i2OODu9I7ZnFVSnpTLIRkzM6G642LV+qNXGxIHh538kQh56+W6JMQ45JJPU5S62EJfg5PgQWyxU5IzWt1dALU8k6kTdrbQgxsFzMsNbRjsayjitZ25wRFUuMsdQ2p1wTCd7ISYDqEHBa47RhsezRqgXjiCFQa/FWGrc1Z0Y7XLz8CJ/89Gd5/sOfwKrA7M0b/OCN69TX30Sf3Kaa3mF5cILSAdMYsm0wbYupG5x15CwedX2U/TP5FayWuFVHPp5Tq0yDZuQaGlvTuBrbNMVjaxN77gz54Qvw6BXUpfOYy2fIWxuc+zt/jZtRMfvdzzNubZHQJWxUjF+9yr3X/wlxPEZtbTI+f4H28LYAoyrSF/9vWNsFPOi/d/96U8XmR87P8jspFTWNQdvS8BcFQ9Za/AWVXHXiQSUnvdQq68crIN66Xy1fn3JsVRb7j3L1nIKNKovHcvl/mday6TN/uznHt6YLLk0yOmlWQ+A4B+4OA/OZBB8ufaTb3eTWMnJ+9zK3V3NWKdMnRacNjatRG61463URFQNpCCifSyOuJBErp1LvldcDJQNnXVaroq5S6v6ajtIYCstNF5WWWb/mcp4LM6l4KBslvjHGgLYi1dMKpeTaTlYSVXVloanIbSuy4XYM4xGMJgIEThyM5We0NaYZye8tV6TPfRHevgtehuJ5Ywe9s0UaikSVICfDckZTV2WmLgSMqvRtqQQArIYB6poUE1kF+dUS0pfXi5XWsnb6nuAD3nt0UQ9572VdsMLia5wMjrVWxAEqrcmDED36mIhoui4xDJmQoLKJlAWQq2qHDxFfehitkCDKBBhFNdnmmQ9/hsfe/SHuvfUy1176Lkc33mJ6cJfxZMzW1gaDjxweTzmZL9gct1w+v8fSn2dzs8EvO1Z9z8aG496NN1muVhiV2T8Y2D84ZHdnh/F4g5X32DxieveQg35FPD4mvwF2EGDJpRXfq5b841/7v3N1eoTP9wMOQRWf7EBEcbKccrKY8vrNN/mTb2l+7Td/i4u7u3z0g+/jP/nP/zqXr99g/5//G9LRXfRXvsa43UF/8N3k3V2eP3uWF+7c5Maw5FE7KXWBAZ+pYgQrhIBoYJYyjTGonMQrWeXSW5a6f93nlDrpwV5RWVWAQbmwU7EniApRAHUJ3cuwMKfCbmN93ctzX1NUCu0AVa4n+eG6nk8F59Iotc4u0IzziImu8HagCwtWRBg8dkjstwOjWebvx5qZGbMVEk0fGGrDUQyMsUzQBNvSXrxIbQz55tswCA5CysTFCkjF4UmdyphzSqTVEqUU3negBYOpq4qoK5q2wc9mYrelJECIIjvWXobKOQVZYxSkmMnLQazecn5nOV5UeLJeq9PyXj3Q0+eoCg4hsvVYBjBlHsd8e8z/8m/+LbO24snLF9k/WjB6z5OcSYnpxoRFCmiVCdbyRl7wqsmkEFhgOKcSC+Aoe3wAiwD1ZjLCaoMhs5zPmE5P6LoVoZuTw0DwPT4MaODJdz3PZHPEMF1ycDTDjEc4V/Hkwxus5j3PPPUoj52JHBwfUVsLWfPSi6/w0KN/XpX3/93tR8/h9Q4dWqxSVCoIK8NqqspB0mhbYSpDlaHSFbIhJJk8IOew0WCtwSiHQuO0TPqiDyibacwgF5op4JfRWGNQSkvxohLW3HehISeyUNGIviMrQ9SZlAI+RvIirYfHxJCKKX/GZIszFp976lqL5ZUq8q2ki7GtRmtzCiAZq6UBzeoU8NMF1TdaE0NGaZGh9UMvf8c6fEqk4pUSi8ecmEOL/CBFLXp2epIa0MaRYk8mSJqVKv5FYYAs4GHMGWMmvHo98dCVM4zbEzCecbUNIciGMGnIzPjxj55lMskYNVBXIzQZZ8DZiqw88kpnjLJSV5iAsy0plwmyNghHPpGSmGZrHdGmxVU7dP09fOiEqakN/WxGTIHoFaPRI/RzT8Yy2Zhw+PZ1NrKni17kO6lDEej7HqUyVVXRD4MsLnnNzlPrWWdZHNdfCeicC/NCFVNOVZqDNcg3DJ6mqhm1I7puJYBvSeQVr0cnshcPIUYWiymMtjjzxM9yfO0ruGFFXEYMGmcGnJUJ/LrhVNrR1JtMmlrk3FTAFtVsB/Xl7+F+53M0b72B6U4YFh02aI7f+yjqPc/BUUf/+tvoxVx8WIaBMCzog4B2mcDB5gXU3/6bHB0eYNnFPg2zb/4+G195mZTnWARQiSQWJFZaaNbRJly2bOxd5uSPfofDL3ydJ37x59i/dIaD/bfZ/uB5Rj+4gf/t32Fj/oz4+5UAlbxefNeNVhaPrY9tbfBEbfmOhcpu8lf+6/8Lm1XLl//Fv+ALv/3rDAdzvv7ta3DSkQfossjFtAY9GDKuTK+CNDi6wVlJE9JGlRQnue6UFrBOa3Uad6+LCb0qALpGicKgUoSqxWiLNlb8gUotqYocRKvEW3iuTBrGz32MVBc5Twgkk9HKgQZTgHyFKalyMnDQKqBD5sYb3+fC7h7b7QSGALknJs2l8xf4X21sElYLFIn+6JDp/j3uHZ9wc9Zzafcy2ZaU8ekB4XvfhmtXYXcX2jF6awvd1pi+Q+Uy2R610LRQj8hr36vKFRNsCR8pqUJFViOTP/H5MDI9pwI1AfI7pOynISQFMFzLFnIUuUZMnhgicRDvKt8FYufpBzEit700wFubLRMN+k++gjqZCchYjIJDjlRGo1WgUgpWvRS+OZakPtmZE6E0DgWmUJHnguLn7x3ym3/8x3z8Yx/jw88/x/feeI1Xrl/n+PhYZCexyMT+DLNPApxQoNLaL++BWqJ8luHgfTjldDiAAi/NsxQcYq6sohRwWWU++uy7aGcLGi3S07UIArRMOadHDN2KkHrM9BBnNQttqCqNxvPCbMz76jPsKEdKS1bTJfV2S8qBerRBW9X4bkHoptidi7jRBnWM+NhhNdQKTpaJ0WRERDHu5sRze/SLE2LXobRinC1mNKb2RpKBjT19rYzSwlQLiW9/8/s889wzTHzAaQkd+P3vdix/AC5rlhhCTtzLK/TuNuZnf5GP/61fZe/974XRWDx+UmCeIrnvZUq/TsWkvEVKGDLrazwXRleyDn3+Alvnz7P9/g/w7K/+KievvML1z/0e9/7tb7B641U240ANWASAqrNG50REEsNNTqDFn1dClWRaLF6cCpTlDoptk4nR41OW8IoCoogtgTkF/owRe49KN4xAmBInx+TzZ8CJtFIpTVIlhCFKw+fqGuMq8Zc6PcPKVVYYxfrPkdQ+CPI9+PnPu/1F91FAby1fnIz4Z1XFDWXphkRCvNeyTcKcI6Nby+3NDW44y9s373G23eWzWxOeffUqehVZ2Yqo/A8BfLL36h/6mw8e/xoEfPC5rUG9B4HCv+h6PJVKrwcXkdOVSf5eALp3/M5fBIDqYutgy4BEaw1aWDByLUgdGVJgWK2wSdhZScvab5LIqVdG8x1nOd7dolrNOfaeiAxS+q7HLlfUY4fOWRiywRNYN0qJZd9xMjshozDWgco416CNIRTALgNOGzY2t6GsW7n4ECojzz7lSEyxyP/E08j3A13XEVJAG03bWBoUy3nHuHJMRiO0q/BRkZA6s6osz7/3Y/z9/+r/xCMPPySMoxjgPe/Hh8jQDSxnMz7/27/Dy1/8IleWS3Z84tyZMxx1PTM8UWvC4OU5o3HGMWobmqwYK82GVbjVgnx0wvT2XY4O7qKO7+GOIqO7NW3d0r4xpn11l/qxS+QnHoZnHkU//ghmd5OLf/0XefPeCcsXvkE7auR9DoGazDk9kP2SdHyPdP0qWBF0Lm0iqETWqgyIi/C8+HurUu/l0zPvgSuoMOYSCHBiFDlpSKYMHBW4++L4QgESadqDzvlrlP0dV+c7r9Q1s+/0+wUkk/14bXkk64UB3kvDo05zcOOIISU5JCIRg9eaqDVJ19h6m9+ae+4ub/HY+W2s7+j7gWllhK0WBgEka0OiQrUPDMxREDPifFJAiuBRIQnwl2SILdYnlNeTEnyS7pMfVNlOfZE9Yk6Bv/X6J39NCvViWSagSrlOrS6jAk0Zwqj7r7dRRG3lGjEatCUbRzbCoI4KjPeY/WNU30E/EInog3vwm5+jmS/xFImuMiQ/YIaOrBJDjngUy6rCXdpldXKPPiNyeJcIKcpxel96P0ExtTaSrhwL0JaTDNGiF5atSmg0IXtRFVgB+HLONK1jYmpCEouZECPdIMFCMQFJEXwihpJaX5QpyRqGIHuP07bsL/o0AboZTXj4+Y/w8PMfYpifcHzvDvPjA+KwYn50j/zyS1SzI8a1o2pbti7scO/eAav5nJQjw9CVgYTGqMxyteLc3jmapmazaej7FW0Fi1qG1ylmlBV/tezhOFn+u299k6vLYzz3mXHrc/6BXVG+1nIuJiT859rRXd7+D3/A73/lK/zVH/8U/5t/8L9j/j/9GrfvHPDwN1/Abo3RZ3apJ3v82MYOXzm6yQXrRdadjLBUTcKhiBgGFDYr6rLnqzU6/8CE7XR/Eg8m8Y3UCEiVKfL5LEo2Y1EmI35B8nhZPTCoDhl8sQoq53w+/bzuuAuTMK+xrfvKl4I7nl5jCsEjnGqonGOcIiEH9g280Q58eHuLzasH7Ggt+73WBOAkJSZZU4mum3TrFj1QRX96XOZ+shEZRcoiISet+wI5QEWWTIOYGI6naGPp+h5SEPlyiFIf1LLPRqLg+VZ86fOahBBjseh5YB14gPF8eq2jC2lH1sQUAFLxPi1gKqoIoTUuJvarCXcPX+Mbb8147eXX+NjWBl986y0++GMfpE8rgtagE0udOQiR86Mdlt5zezVjI0uAV48naMcqRWzK1JMRScGqW5FyYHt7QrfS9FXGqBF3791BWcfly5d57/s/yHI1cHf/gD7CghVnzk7ovaLRhjdff4O3Xvo6PiYZCCpH3WpGkx1+1NuPDPDtbD7Flb1nmB5dJfMiGxMHsaayksaSksK0FSRpCpvakkPEFBFI1dQM3ZKYPdpEyJGgl4Q4ly03gEkZskFFjWKQkyobYhBUO+dANKpM3MS/LpVoa6OC+GNELQVL8XJQSVJZjVPYSjaP6D1JDRAToUvrmgpnKpkmFdlNjFEWp5TJq3QqL84FeEprK44MKRvxxwxD6TkTKQtYlbJG0muKZ49RaFUEeUmj8BhnianD+5VQQXVJVlGOFDO1a1FKnHyUUVjt+ODz27T1nJQ7nHNYIz54tatwakZM92i2vEgacyPHn1JJAxtExqiFDZWiJO8qXUnfo4WTknIPOZBiIJYN3pmGqh5jtORQrbyk+XbeE4aedrLBsq/QaovpvduMti/gFzOcifR+hVU1WiWG1QziQAyyuDV1zXw+F1AzpwKuSFpzXjfsa5BPCfVXay0TtSieN6Jsvj+BUUDX91RVxahtWXUrQrFEQYnHoyQKKbzyhOCZzWek8QZnnv4ppjd3iLe+SequMfiAMglHT9Nacg2oMdnugg7EbkoiYBbHpJd+l/xbXySN4egXPsoiLmnGHc2//T1OvvV5Lt48QN+dszp6i244QWARRSQUQ1Q5bw/dJin1PHRljD+suPbWHeKTTzP5xsu0vUeX34pEAkFARqUY8GhlGCnFrVdeIp61jDfhO1/9PHffusXGzs+Rdy+S9l+k/71bqEmkGmV8FFZpGAbWlqxaGRqrebTWvHDzLjf6jr13X2FYHdA+8l4++J/9TS795If50v/wP7L8yjd5q/OMo8UphcISlMFYR93UjOua1o2oq1ZYvFhp9E0Bk1VZ1LUYbMv+G+SaKelnWSHX6enuHE+lnlk9UFQahbK6nCuZe/MVj1lNfvWbYDUKSzYV2kSi0SgtfmHKmFJ8GrKR1wAljNLXbtzg6XNnUctOgF4tjWfKQfwsaocaPJWGrVGDC5FRhtyvcFu7JGvQIaJOjnDJo1YrrK3E4No50qtvwkvXUVkmYtkaspMPY8UrM9cicclNBc6S25rc1qi2RbcNVDW0DdS1+FbUFbmuUMaSrSlArjxfpa1s0M6CNahKvEDQ902BQZNGIxhpVJI46VTMstViirl+g/T6dcwQyFqTXI3OhT2rK9raUFknAFkpmk5ZOVmjtPjDqCJhMEo8TT+WM+N7R/zm536X4ycf5yfe815+/gMfZZktx4Nn2q1YLFd0/YpuEAlx7weGrmPwPX3fMwy+DBwCwQs4H0MQGXQoTXMSBowUHVJqnoKehSkpa3zGVJaPPvcuPvnEY7zym59jK8k6nshEZUjaiKWlCri8YugH8swy9JHF5orFtEbHyP7ODr/ygV/k8t4Imoq4OkJXsHPmCv3K4zZ3iUfXWRy8RY6R+sxl6u0z+KV4Qa2Upj27zXg0JmCELJHFCDxF0V/lEpSSjo9PQaaUpbmwzqKiZjKqOXPuHIPRjMaOrbqh0nCpCgxDTzXATau4Phrx6Ic+xN/6R/+Id338x6ASuW5czIkx4v1AiJKYKt3ZAwFZSp3W0lqXRs44rLUoI9Yc1shHHjVsfvB9vO+9z9P96q/w5q//Fm//2v/IxtU32ciJisRQ3p8ImByFdaEMRjuUAde2hOPjsodI2vB+ijypZS/3URK1JcwkFZaYNMtaaaIu56Y1ZaptUV1PnC1gawOiPwWjYxZpotGAMbjKkZdl6y6AmAJhg63/X86uNevtfquz/r133v7ir9ct831wLEVP3VvOakecNESnyRqG6Inek3tPdIa9iztcf+smL4bAhQu7fP/uAf8HY3iEyAJhSE5yLK2IMNvWCXyl5PmPHtuDANyfhd//7Ef6oa8fvN//J+Dzz7t/TsIQHJCoF42EMq1f6wffC4BQmKVZZVxKmOTAWJQ2NMPA/N4hk82WmY8kxKM2FaZnDB60lte3NHUpioxv6Htm8wUhJpRTxCTrizWSvLlO/fV5wLj61IZAa1lnc05oK7VM7WwhPmRSiNRtA1p8sUeNZuwcISXGdUvvE6MGgjqhy4dYkxkSbNYNzwyaL/0//xUvf/Ap7PYZdrc3qUct43bEmUlNZzzf3l+xt7fH6OY1Jo9c4tdeeJE/eeVlDrsepQwxC+gRU4Aog/dKG0bOsdWOObe1waNnN3jm2Qs8tv0cDytHfTBn/oOXOXjrLZr9fUZHd9m6e5vJvTu4433UbI5+9inMzhaX/vav8Mrt65hb9xhVowK+FYaZkmAzTSYV6v0iZZJeJ1XK4Oi0cVVrYCH/2RMpi0JE3rVchodSY1OYLJgsNh4aUVYoTv3E1+w9+TulPl037mvq4IMXwA+dxPeHbOkUHHyHrFgrNlXNuKnoAZ8k8X4InhACsQ+E5Alv3uIT5zdZnbdYhmLlHDgyhqrUx74EiKgycVEqiTe6ViU0RT1wPJUQ9wqgrLI090KJloAIitopp3US6HogCuJHWNQ1cT0YWKsPCjgS1883F+VSAWB1OmVdqrxWMZQrW5fhfKkVVJH1iVzw/jHmIhPUZEyQBdnHgUzAKI02BqwhDT3WyKz2Xl2Tnn2M0fYm/jsHEiaJDJJjiFirxcNQibeveDvnAuZHTOWkZ0yRvutEwouw2EOQYw0JYTvlTOcD2cUSoAhZJQmhUGCNo4+BGLOk4lqR5WstVjnaKhlwggCWWomSxQjoKgw/y3j7LOOdcxgtKoTB93zws4F+ccL04C7H+3eYHh8yWfWsTo4Zt45xU5OiqO2GbsnW9g4+JqyBWlsuNntsb5zFt1PoLVbLOhisQgfPb6wOeHl1UJh75apTa/baA5fAA5eHKuvvGqzMSjFfrfiffvcP+M7rd/m//tW/TP/Pf53ljWu4l35A9dyTmN1NHtma8PKxo5ts41pLtwroweNCpEZjk2dhMnWUeiit/6JaS+RL8A36/nD3/uJAoUnKeSpIG8quZffFWsGW+lGXNMAQYchiueTTqdT//mMXiP902JfL3H0dFhnLkOs+KI5ag5AGjMOR2TXwyaCobhyIDUrph3MU/8hpSjxdAprIHhViGcDdBx1TGYCvjy5TbMbyei0rR1iSdSX9OZOSFyxO5ZImLc8wdlI3Sb6AkUGQ0eS1qiGV3X7tC1zWm4wA/tWosGWL76E2Av7FxQCpgKysK25h2ZIzOnny1i76SH4acmYrJF45OeTLf/JVntjcwS56QsysEKuJHQWd75npyLysTQNirWaKLZo2FWRh8y2WC7EpWs3Fpixnkhf/6BwVmYrjkyVf//o3eOqZZzgJI84Zy/Hxgm7esVj2DJ1HEuAj0US0r0vN8KPdfnQPPn/CyckbGNNhKui6AWsysQugQvE/kLI1x4T3BqclcTamyLJTxDTI4u1j8SuSN8NqUzZajdaWysmCbp0j64yrBIBSRgpprcBHL0h3yvgQGEqMvVEVuXjaoQa0bancHlmN6PNA7JdY46mbXKbzXi76LOBejomYxWPOrMMHYtlkMCjdkK1i6JeEuCIlT6YU/FnJNEOr0+enlBSDWsmCXFemeKogF4w2OFMRYqSy4jMoW1XAmqY0RWCMoXI1Wlli7DBOgeqAlTQLqkKrgawyWllErJTlfkmVwMQgmzYU6W3J1dEWq53ch0DOPdFHss5lKiWySLkMa4zZoGrO4kMnr0FhM0LAOItxG2zsbvDa9++gYyDHRN8tIS0l9ZFMGHp8v4I40A89fgjUdXV/E1BaLvqUi8cJD2zqp7VQ6R8LcyMjIS1Qdo37i/XgB1IyjNsxXd8xhBIJrqSos6Xy11oJk281J4SKnQsfYrTxMIfXv4p2b0C6i8pLQujpVh2VS+K/0eyi84S4OmR54y6rF/6E8c1r5Pc/zNWbV2mPjqmvGA7Gjv3Qc+nN1zCLgE9HLFkUmE6cmjTio2dxDPMTRtEwO1gQX73LRgPGZKos9454Ep6hODxJBLxBBQ8k+te/hduoebkZaF76Hpdnmcc3z3P0h1/ku1ev83APKjQ899mP8tF/8NP83v/8O8yPOvbv3qBbDCK1zpE91/DRjR0+v3+Xl5zmURc5ePMb+GGf6BOvf/sHnL99jYcnNXfnFV1Q1DHREjEpor2mMZbajahUgwmKZCNBRQF5khScSimRhKyTcMv0N0cFWgC3U0NmOYVLKrK0bCIHQWQgzpCNsDeyqpjePeSZCejVUoAv1ZNjD9ogg+GOMt8tUhpdgChhyiWlODo65KkzZ0kHBzLVzqr4A0V0NuSYUSGjVEVlKrLzqKphtppj1K4wmq2FFIj9gLM1OfWgFSn2uO0xNg7oeU8uPnWUtNtMus9COGXsSROQTakATAFJjUHk/1qSNY0hKZEgn05PtUh/s9IoZ8nOoKwBJzKZNQ1G5DUVWhVmpbboykjqYIJ8PEPfvCOEifEWjjE29qjlnK1zlxmflaR0YkClSI7SJKi4lkQGaTqiADIqeTIRGz0f8BVnvedrL77MD158icONTcyZPTbPnOf81ibNeELbjqg2tyRAonbC6tAKcpkqa0POmpAUMWsikvDbBU8fA32UcJNu8HRDT+d7Vv2KxapjueoY+oGYEuPJiA8++wzPbo74wq//a55cLdhNqvipqVPgWWeHfugJLp3c4dWrV8kpkNNAf3JIdwJ11RDiwEuv3+TZjSuEIbI8GmhUZEhz6rbm5M4dbN0w3nsYPz9mcXMB3TkCFabdYLxzhkBmsVpRNQ2xTxjncOMdYQXlhNWajKYKhrZueOSRh9k7f47aVpy/dIm93XMk31GPG+KoZvzWy2y89gNsQkBFAyOnGE0m/Px//g/4mb/3d8lNy+HshG4h9go+egFJYyT49V66bm5V2b8KE1fJUM4ojbEOYy3GWCrnsM5RuQpXVThbYY1GPfIoj/2X/5BLP/VTvPzf/t84/Pf/nj3fY1WmT9LoVwp6bVk9/yGWjzxBbzS7m5s0n/t1qns30DkTdOTuYPioK7VHSqfMqfVeolQqQJMq+7JCDzIAU1pjvIW7+6i2ASeBXilJYR6jTPu1MThXnZata1hMOEYJmTeL2fSDoNX64x3NzwO3vxjYyu94DBcCnzxecGYLrnXHHPvAiTWcVI4TnemsxTY1sXVw4yb9dMF4a8IHPvAc3//81/DGsqRnlROjnGmVMPJiOe71MT54TH8eeHe6/f5Hjl/90H0fZPj9MOj3w4/94O1BafAP3/fBxwk86A8ovyeRRLkEoIhESZWaQGsw1Yht4/m5ccVryzn38ggdFNEjibkxoVQiBo+tanm3y0Cgqhx9VsQYmC5X9HFggwZrFD7KuSOprAnrHNY4qRnhFPRLUVJ/Tbl+hr6TJs4YrBV7kdGoYrXo2N4ds5xN2ZpsiL8phs1oMaOG5DRYcNkycjUfSivm3/wSL3/lt7hdbZPHDScbW/RVg3GOBZl895APHN0mbWn+8a//Fi/cO6ALXjy/rEMpxTD08l4qhY6JRQwcDh03V3N+cHCHL7wh/nzjquLieMR7Ll3gM+96mk985ifgW9/i1ne+zf7RbXa+N+fcyYzRrKOKCf3c01Rnz3Dxl3+JN/7p/4OtuGKjHpfrSHqH072+4HCLsicqKLX6fa7pD7XVp33Hqen9+qRYs3eKJcaaFS/adFWAP8r6VsAAXf6Cuv8XkLuXv10UCCAA2PpvqftHtSaur9fM9e+r8oi5/K5TCqct2WgZ+qVEDoqTNOCXPVsvvYm9cxuzOaZfLNnQDSc5MymS0nh6ROmBQxYQjjWY9wB9SL0D4BPQVBeCRXaVmKGsZYxrAKSw8fJpGmiWdO2M7PupABhxbcsiQDiRwroEggxklSqhJVmjSKdehcK0h3UgoRxZcaNMRQKa148ngHpQmaACUUW0EQAilutfKceqMrzRQjWpmB3cIymxRlqDEmumYs5Z5lfFYwwrJ6CxhhCkt/Hey7Bx8GUHkEGQ0Yr5fIV1JQQvJIIW73ZNok+KSD71+NOqrEVKYbUu6jXxG6+yASfnRirsv5QiKFmb1rLhNXs1pYzWhradkHNmNNlm6+wVLvqBnD3z/TvceONlZveuc3TnJlaJNcBsOiMk2NrewuTEYrYkojEI4B2dFfaZcygfuJWm/HY/K4OV+6vyA2e2qCu09Hdr3zWjDTEKOz6vX2djGFLixavf5f/8+cB//dM/z8m/+7foN2+wuzlBjTdR5y7y/P6M0U98huryLlXI5MWCcDLDz6b4xYqDoztMFvdIUY5K5cg60OU+cHwf3FOnF58cn3pgcxIJbwnbVMXiyRb4Wlk533RGOYPyCbXwZB/K0yxX9AOb330BSVm78g8ZdzyweZ5CceV7dcq8z7dE4e2dApBJKRY5stSJswFM8f8vq826w34APlyLiUuvUQJHHlTDrUF+Oeb0ju+fXv8gBC9fzjmEeZqEJSVr3P1nVmqw8nzLuhO8WOFkHYkhir3a+kVQ6+MvBKByzaccGTR0tWW+WhGHgZGzkv4ceppuTrf0NLpiZWCWE8E4hsWcKsqQIyhhwi6MDGyVMqcEstVyScpCSlvNT4S1mEWJZBX4YUCheeK557h+4xYnJ4fcvnmNxTzy0OVddrcqZjGifSeqscJUtjqzORrx/4/bjwzwObegN9fJOuPjIG+fNlLgxDUSrLDOoi30KbMcEkaZ0wXGlamDShpnRWeuUgPJ4WqN04nKgLYJksU42SgCCWVS8T6QE0kbLYtajmCiMAhNBYDWEas00V3g9buG61cHPvjxn2f7yiNssKTSPcRDhunbLKYvU5lDgg+FAZXwMQEeEywkSvKSBH1kvFD4CRibi99Z4XuohFJWGH6mXPRaY7PGFCR6TUdVdn2JJUg9oMCVnhpONzWtk/wtrVCqE4qwXVPgHRQZY0YMmnOClAeyTihV4XsvBUsqAgBlhLmnQJvi4xAGosqS1kk6vehMAQBPh5VYjNqiaR9Gmwbf7RPDQFaWXFhn0Z7lZFVxfDJnOT9iZ3MHbWvZDHyPbSTpNMWBvluRiwdf8B7bNJLeWhbQnBAALt9/3QDWGn2ZwKjCmMynkyu5Y75fqKzZFiGxSh1t22LMQN97UBIUgwJnTfl1ObdC8OwfnzAebXPh+V9gevAmw/6fEqcvUxGojSfkCHbM28uzjHJia3mCuXPE8fV72Nhx92t/hG89Liq+9Urkjndc8IpqCPg0JbIsJUjZrJH0UUumyoHt2SGHv/8b1E++i426oVuu8N98iTgcIJKlTCDgEUp6g8ZlRZYtGNvvczGM2G0Sv/fVP2YTx04IOD9w0VTsqQlHg+f6azd463vf5fDuASPn7m+8lSH1gfO15aGF5xGtuesqNsaO1TDFhiXHBzOuvfT/Ju1Pgy3NrvM88NnDN5zpjpk3x8qsrBk1oAAUAAIEQXAASFAEaYqUSJFWU7ZabUvqDilCCkf0n+5whKNtiZZkR8iS2KGQ1bJa1mxRlkRSFEVSJEhhBgpAFWrKec47nvkb9tA/1v7OvQXSfxqn4lbePPfmGb6z99prvetd7/sNnnr4kNlh4LOuZRocNkaiNpioKb2jmMzIJmls3liihix1HnOjKY1maAy9LKdvNYWxDLSlbzJ6xtC3mjLLyVVGluUycmgL0FkCnjTKigOfzowcvMmtrjUW5SKnHruS9k5Kd7UCbYWq3gnCd4e6kgQ+alkTrWuZNzVbRU/0MkE+LaVlPNC7pF0DKsuJOsMgmpdt7fBVTTCarN/HRI1K9HVtNaGp0GTC2BuUxGkllH8f01rvJgrDqiAg5eKd6IeYy7hUgOgVi0AZ+cUYZZRE3pwcjxphx+oOWBVEhmjEwCiqbuRRLkRAySibUok1qQgqYDVgS8j7UoiZlnIxZuuDr2AdqNZB06C8iFoTXNIriegYVkm0aJcnwC94VHBcbhvOLZZ8bHrErdkR9+/cYXrtKk30NCgqpVgqAWBdAmRk1DslklqYYpgMbTOszSjznH5ZoHslqiixtiAmjSlVDDDrW5iyj84KolEYq8lwjO/f4N//5q+S37nLK21kGJO5lAIImBCphyXFH/p+nnjjNf7j7du46GmbGpPnAkbmOUbD7mxCrTOaukWbGrd4SDvZQ585i85HUAxRa6fJRwtCs6BxS5pqzMAEmrpPPuxRN0smhxOa5ZyyLMh7A6KyYvhT9sDkRGP4gR/5NFHBaG2Nc6dPceP6LS49fplMQVVX9EZDZg9ukVc1oQksnSLLNeHCDj/8F/8CZz7+/dyfTBlfv0VdLWiaCtc2+OgTi8ml8Vi6II21hswKUy/LMmxyXjXGyPfGJmdfAffyvCArCnKbUxYlxuYYozDPPMl7/sp/x7VnrrD7i3+bs4uZaGcqaIKmVobD0+eoX34F4z1qY4P6878Hew+xOBYaFiEwSmwbpbQAV17YEhGSNhMraldXIEblUVqLy9jeAdn6BnpzhNMiDm0ieH3MpLNZJtIB6euYEaNX6bQ8xbvhqm8HzNQf+NOuROhS9NVgvTw3cKauGdZ9LhcFh4s5baNw84pgFN5q2mzGcl9RB8d+G7g9XeD/6b/iAyEwqCM9rQi5ZdQKA6LjXgYVyeKxyUY3ivsHgXBx9Tp///2c+Pm3f//t1+EEf+HE7/3+EWcZxlwNXqXW5vEjqtWr6coD+alLj+kVaKsxQVHEKC5/OOqwBKOoI2RZRhHVSp9JazFuCiFpmnnRuWyWC0yWSc6lkSkWo3CukbMpBrTSqekbk3h/wIdWxuJS59d5L+dZFDafUvIavA/YJCviveSZxhjW1wrwhrZacH7nFLWr6PuC1g9wTY72XkbYihxjSras4wOLnOXhhMMHt3jYBmZeEYo+Ns95bGfATVr+2m+9yr3FXACatEe8bzHaprxKrmtYsV9E91KMz2S0eNwsGdcL3tzf41def4OnT23zxz78Mj/+xI9y8Fu/w+7DQ9prNzhbe9ZcJHMK++xTbD39LK899xRvfvMbDKyicJFhjIyyjKE19CCRAxRj1+JSI4dU+HUr5riGVgmP0glYOrFQE5gl2Juce5jO3EuL9qZOgFbsdp88JrEDF7vnOwYROfH/1eVSKhlbqBUbrEuy4/FLXQEgUa345KtHU9FgomF+9hzqqWfQX/oCZ+ND3l4eMZ7PsFgYrHHgW86aHOhGl+Pq6nTFfuw0FCCNvh1fEwEBkzRRBH8CNOsYSO8uwAOrup+Uk6QmLEmeASUTMzoqibtpRLpr0ndmR/g0JRCOf65iB/p1oENXg0meZJDYrdP9gYBXgTZ6JmXGfWtplaKIgVw7dqylzS1HxvGwUGwSyDe3OK0j96/dlPimkkZbagxpQGkjtUkQhrAhw4cg+1MpXFvLhGfaM5nR+KQfLLqwkeDltVbBo00yQzISh7wLknNoIxNWMX1eihVzUABmWTTRmiSJ0dURHekhseiimLdZJMYYpQRIyTNQisFog7NXniG6mtn4gP0Hd9m7fZ2KjOVyztHte5SZJteaUC9YFGtkLplT4WmNAFr/bjHlgV+eAIxVmqgS1mRRDDh38XHOXbxMlpcsqwUu1BztPmA6nTE5GtM0czEkijFNaMGX3n6TvzVY5y9+73ex9rufwz04hTmfkfdKzg7XWM4XFPocvVEJG2ui7WksmD7TN7/J5R/YYXttSJgvYD7Bzea4+QK/mMJiQajmhMoRq4rY1ggrTL66605Xu2tW+wGigIOm4+WfRO4Mqpc+ERfSNVkVsasTqtOei1HIQavrpjqNuROnouoYr7LHjIgvrOKRiCbAwkAdIxt0Y6ysHuPd+787W98NyEagMx/pnr8b1+3u69ZVN2IfV3V3XLGZQ4is2ncdeJliEAlABImHEYhNC22zih/CWNccjxGTNBPTcyK1boiB6YN7LOsW2zo2jGcxnbKeYoxNdYqz0EQFxmKVYaAh+palkvwppA84aIXOxbzLuZblck7wDb0ip1m2LJcLOatDwER47pn3YJTh1rWr7D+6y2jYY2vjDCjPvTs32N5Yo3EVnRSZNZpeFpkspyspm+/k9h0DfE27pG4WkgybiDVKgm76kGXUVIpIYxDdulQ4KiMFMNqT5zkqKHQM4jQbI1kW0drSqpKFnwnjR7X4upbRlyiaBMLCSAEsCiClUGS5pbQa7wJtAK0dCwr+za/f4+rdgCHnq2//Q4I1rBcFmxun2DmzxcbakA+8/D08eOd/o8zmeG2S/l4UUXVvyU2GsbJxbKZXrweTzD+MguhlZECBVt1BnsBHJLj5KLqFK8dXa0UHKIrouVZyYNgkGK6Vkp8lwEq6jYnhYpScEknXwbuQxpNUmvtH2DQqCGBobKLfS7BIrtX44EQEPR0axmh8UBglzJzVAyHsRaOHlPkOWW8HV88Jbi5OxUVBU81pYkFvuMPtN2+iynXWBmvUDajFlMxCG2u8M/TLIXVdsblpaOsFqqhp24b+2hrGWHETBlglHxyDdelbaXLrlStShBRMPJgOqAO6ZCt1xX2MzOdzer2Sft9S1w0+SBAMMQpzJDHJfJBRxOl8wbIyDEaPs7Z1kcXeaywOvk42v4sNU2ZhwL/4d9cZxZafNPfYuT/GzyPXoua+a/C7R+RWMyPSX8J72hG5m+GYUSZoT6C6Lo2LZARKHP1YYd/4bdqbX2aRF9gmcmo5wxJwKxgPBmQUZBhsCvVCX3ZEol/yCbfBe1WPh6amMAMu+0iv9qBbHvYtk90jbrz9Ok4pjtIIQGZtKpgU2zZyf3zIzdBSDjc5c/5x+pvnWU7GLO5fZ3bzOtm44sBmfF5FWg1nvGboHOs2Y7QmyjGLJnAUNHc93GwDyyAcRDkQxCJDkr/UMEBhFOQKcqXpdV9aMdCaobaMMsPQWtaynGFmGeWWwmYU1lJmliLXNIM+RblOvr1Ds1hgnUN5nw7nLLHguhIxrkZWhBUnUFjlPG3VsqY0yofj5r13YoxS1+AF6MBHjDJEZVHaUwRHs6hgbYgCdFGK3lcUYDw3Fh9kz7M9gocHMmJyArjWaS8oxcqERydn59iJdaTNoIVahFKRWAdUEOZHTLqe3a1znFYh2WRqidPRaoKR1aWVSolqSPlM0iDFrfT/MKBY4k3EY6lDJFeGXpsuks7BRtBWDmyObfxOnm/HBY8GZdA2Q+tIpiKDtuUx53H1AlcvWS7n1I1oDbV1TeNqWifjuD6NMMk4kyM0tTSEvDC4XAg0MaYvxRJolLAdXRrNVkonWQaJJy44pk3F+eD5QFA8GRU9FLmIQUicxtK88B6a9zzF5XaJUoG2arBFAc5TzxfUiwW9osCsnSY//wIUm9TzEd7VFI2nqg0bVx7DkzHcPksbFT4EVKjJF+KWHOoaxxSb98gLg2sa2rYRXT0f8VHRGwwpygGurXj8iacYro/QIbK5NuTxS5ep65rQtoS6ljV48XHc9/wgt6/fZfHWbRoCP/Z//bP0X3wvb964zsH+IcvpnKZe4mOgLAuKMhdwrt/DZPZ4bcXEGvGOWVXjZnPRVEVRFDm9Xo9er4fNM6yxNDYT5l5ZkJc9KtdS5iVFAgQZrPHkn/mzPNje4cEv/AJnJwdYpMOaeY/+xtfY6eUc3t8lP7XB8uF9SUSBIy1nQBkMMYFWMUZM0nuSSbxjpswq92SF98seXNb4h7uozKKLjKgT+JKKz+gkp7Go1ejncfkbVt8fAwG///Z//BPe9ZNjcI9VzIpKCCW5ho2tDYxpqfcnZC3CLG6Bpejmt+mtNgRC1VAoRemhbwyVUmwTyZSWQhDRATZRTqiOYxDf9Xq6d3sCpPg/+P4k8Pft/777+UngUp34evfjqdXZqYg4pZnmGROraaTuolSQIY7BmVfkUYzYFAirJ0bKsmDj/DkOHjxENw3WCDsphJZHjeI3dcbRxoChgVa1tMpjk0ZxB/C1bSN5FomRk0BA17TMjuZYm5NnhUAjIa4KdQAfPMYaYQR27z+Ni2dGiv4QAiY3qzGySOpdpSK47ClUKNjY2oa2oowZA9unDi1aWTLbo3WekbbkMeCtoV8O6PmKoVrjFBUeReUD+XTGNdvw16/e4O5iLhqUkOKbPKf3bvVJSN5/smDrPsj0aaVkLBCZRcfXdh/wzq/u8dlLl/hzH/8+Rl/4Enu3buIf3AUiG8qSoTEXL/DCd32M/midK//Zf8psNmGxd8DkwQMePtwlf/iAOJ7AdMbdykGRse8dfavpEbEdw/3YzYIV4K70ibV0YlUFRN6jSzaNXr1+TBo57YrguHr3ad2GtCJPrlJ1AhBMueyJ1dwVuseMv/S76ngnHO+zDtyTSalgNOVjT5I/9V4Wb75O0czJQsbcNRRoTFYwqeY80ysTq7vDF0+wGFebMRLjiVd/YrOqbt+fBC1jAm66z371GF0DUq0YkSu2ozoGMondZxFAJW3QrmmYpYmMKHmgRqH86hlOXMN0aWNM4TXgEqtaR1DO49sKVS+5Osj4m7bi6waMzVkrNKeHfT4WDGeIHETFoV9wdrTJM+99H5frOa+9/bdJBSExylkmWmwkZpxeTViEZKphrcRiV88xySk3MwatHRmK4WhEVTuaxuGBXp7R4Cm01D1ZZilCoFUtWaZWzt7zusanRrRO+rUmNQCUUhIrEtVMa30M7sXOFVXjI7SupfVRpje0jPzqVKdHQJmMbGfA+umLPPHCK7x/PmW894Cb77zOg9vvcPToIeN5TaM10ck5WgVHGzy7fsnvLMfiGH4SGFIGnfW59PR7eOHF92OKPkFZmXaolmxublBNJmRGs1xOuXHtbQ4f3edw7wHtckmeG0KEX/nGF3nuh36Cnzu7TW88xaxvkRtFu7bB3m/8HtVvf5VmfZ3i9DpmZxuzsY4+d4E4X3Du6dNiwjcYoOO6nB2JQRpCANcSvUM1DbFq8YslzXyOm4zx0yl+PicsFrjlEtrkPBukTlcqOcGm/a+0lukUItGAyqwY0DjJw4/X8MnTsguZHXjWxQH1LjbvcYzQKbR0MQZOUOyEpQasdyH4257neNd3W/UPOtHl70qd2HNdnE9g5HG7TBpTQnQ68d6UTnvouAGyeicnQbsTr0fyNp2AL4kboXusCFEFAeK6fxCkUXb9xjvo6HlmNGSzlzGtHadNwUHtGA0spYcDFVkfDHhMFVgLb80mBCLz2JKjcMpilca5ll6eQ4g0TSNgq3csZlNI+pqD4YDD/QNefulFPv2HPo0xmmo2ZqNnqY4O2Lr8NP/hN7/AK9/9AQ6qyLyq6ReGMrNs9ktcnKONpTwpXPz/5+07N9lIfdLcgFEBo6ULKQ4jGR2dVedKDsiIdC+1ISBmGyE6tGowuRBTmtbhg8Ooltw6cdakwsWFuAw5jzZJdF8pQnT42GKN0CmNFdCrLMFGT+sbPBqbrXFwOOKtd25RtzmjNct4MmZeLdlT0Os/4LU3IztbW1x57Ido64bNdZNGI2q0DeiosLZNwJ09Zs9o6TBpndD8pJIZopdGnhXqvFIRq7vDO6RFqxAyjTD3VAwJsZdDWxGJ3gvYF6MYCJAO0OBWG0I0F0SzQIC5LDn0hqQ5JivGaENEaMPEIJ9F19HxYaUjotMIsUqdZTGp6bacQasco9fpFWew+RYqBprFjEU1wxiPdyVNWzJZFhwe7tPPLeNZTaQkLw02MzTjpXR/kjGKd57lfEpbL+nnlratRYvJWpq2lVwryah0VGAJfp0fkVz7DsTrkswQo7h0pkOwS2gE8DwOk4ul6BaWZUndtDjfuf4IcKsSe9HjhFUXvDjoZBnrp97H5vn30oxvMLn/Gq7psZjcIR+M4K5j4/Yuo0XGZDzn8tpp/KKg71u2Q8vpGBhQpRCt6ZNRcIL5gqwzGa5zKBxrwGK5oFkuycgosAkW9KsE0xAxSYlPOJhCyl4qaJSnqA85U8N5A7Ck9oEDIkdG8bUwwsWI86ITEhXiEJxAto3ekGd7fULrub1syfEMhiW9XsnF7bNcffQAdThlZHO+UDs2g+MjIfCxfsbpUnHHGF641LJuGoxTxOA4IuMXbln+8V4ANEEb0RZRiJlGOjaa1O0JQUxXQvQrliMrgVjp1mpYjUt2XSajZDy9LDT/zTOvcPibv4GNDtsdRFrMfMQCXcZSgxUdPm0sJs/QVrSYprEhNi35sknalAKWKaXANdC2RJfasl6MgVCgjCbTinY2w4YtdG6Fwp8610FD7Rp0aTBFSdzaIJT30G1D9OlgTm6kx4VUIKZGN8nZNloN1rLSFyfptSgvbla44+uVBLAlbCe5BJNYf8CyKDjoaZwT4CsQUG2L9gEbhcbeR9P3AR0NLisImUE3S2galoBvlmRvvCEsCJUh3BpAGRn/V0qYdVGJNuAKYLRgMgEDMy+mIrmFrETlimwwIgN6XWKzOqKOTTdi6PZzkoPwjpBGSY+/HM61eNeuWMSubXBNQ9OKm3Xb1HgvLDWSy2KpFJt1oBdkfVljQWeIrqwmPvMk40XNxc1ter0ey2aCaxpoPbZXYmxB1Jrti5dQm+foDzco/VNoHfFNjXMOW/Yw0eBUji1zwUb1Gks7YLgWUNEhXXHRVuyZApOALG0UznkBEoyFELh45jRb26ewSqUTIRL7A1wIFEXOsD9Cv/RB8p/4T4mt48OTIw4fXCUrDG++8wazxoO2rG+tMVp7jMFojTwv05kCdV2zqCrqtpbnRZFZQ5EX5EVBZsW1NHjPslowX0wZz6e4I0nsB/0BZVmSNzVt62hbjy88bVGQZxmZ8ZBnnPljP4OKkb3//i9xZjIV5mho2Th8gPvsb2KWDQfBMXIVPjgCcBANmQoUPqwIOHqVkHeFqjpOOhNI/q6UOEJsHGHvUMYxt9YJZYazARUiVmsxFFLH/0Bx8vuTYNW7k231B3z3B91/DHylHEAd18udknlUCushUyUbO5cI+SH+YIxydZLvELDIB0dwcTXOZhLjslgbMlOwbUf0t06RLyti0lZU3guw44OMkYU07pxGysTY5NsLkXfDclEi17e9098PDH77fd33J/9dBzaCSFpcKzLe2Vknv7iNjTqB3o6jSQXTJYUPrAfPpvecWzQMQsAocE3DbHefXClsnlEWfTKTU0YxYMrwxMyyjJ7WiSyDsGiQyQNbrITEWeV4UtgEobOJmZQ2hAQ6EU8YlvjUXExmCwYJZcGa1ZvvnHNDKmYiUTSHgwB8k+mSfm6I2pEPc9qZp2pbmhEsVcD2MqqDBudLMp3hYy1Owj2NqsFoS9tGrIaZMvztt17j9vIIhcZFx8nbqkBNZ59OeaXWSf4hncsBYSHSjdx1OZzWzJznV29c5+bBEf/18+/nXBPZ3buL2d8jf+cqg14P7TTb2+fYs2+QzxacPr2D3jmPeullnNEY3+KCR9dLHvzyv2Xv2g1uPvYYD+7eob+oMPMFsW0xIZD7QBahFyI9ND0FPW0plCJLRaxSepVHrIpT3b3PDswhrboo51YKF6Q92Z2vqwL+5ALu1u9q+3f5C+/eKerd9ySYjE6cX8w3IyiPf+3z+G99mdLVRKMZ6YKBzoghUmcZk7lnQ8vjeNRqHZHWb0zfH7+ODvzjxOtSqNAhbEloIArztNPTOhnSYtLZkgmb9Kvd95y8PgqSYAYk/C+mNZ82R9dg6V7r6nonEODd8UXuN1GhvORWUWmWWvMPwpzPW8Of/ORHeeHSaQKWo0Zx6ze/ShlbxsrgFAwGfa6//RZ5YVYAkA8eghfmLSSwNKYpWA0hOVwncogxmn7myDfFQHLY62G0TJ+VhaXtZbROzDNGRUZdQWks3tRkJmDx5KWmLEqWSzEgtNZgUzzotHTbpkFracIqlZh5JvHGtZzzSslV6hpY3ihcCOJwHwPayzlojdR+CjBpKgybUxQDNnbOc+nZl5iPD9m9e4d3Xvsq02bKzkChlk2q1Vo+N5/wKFTC8lTdSWXoD7Z49r0f4skXXmA+PeLenbfZf/QIn5rhWZYxGK6xc+Ysg+Eap88/zrlLT3Lv+lvcuvotmmqOUVKf/KPf/U0++t0fZPS5tyjHC7K1HrY3xMaA2X0Ae/v4m0oa1NYyXxvyhX5gY7TJVjGirzMyHSCzqLxIci6Ihl1mib0SNYIMYXkq0iRZ8OKq3bSEqqadTmnHE9rJVADA6Yy4XKxyZJOmwpSBaOWgViiRpoknxltX+0Gt4ohslXi8DSKJ8auP9UQjKC/gebeXTsaPCTLVuKH0Sv/yZE6SeIlERArNe0/0XVR6d9sicYDenXusgkOKjUql/didDQgTOnUVtBLJoA4cBNKYLazaCikvW2EeHXOni50pd3sXBzEGdBRj+kms2Sj7PPHyK1x+7wsU/R56tuCtV7/O6P4Ro/GcOjpinmPqhiq0tKEldwEXEekBJaSe6CWXapom1Q0uyczI+dW2DYcHh3jnuPb2dSbjOdmg4q3XXufRvVusbZzm6196lWff/xIHRxPWh2s89cQFtkMJPvCei+d4/eZd7PoGFy5e4Du9fccA36BvGGqLxhCT6YLSLn1vCChaPO1M7J19EgAFESENXjQMrOGEM2ogqkzGF+IC39ZkuWEwlDHb4APGuuQeJKKHxEibXAuNsbRtoGoq+kVOdC2YkrfegbffmfChl1/Eh8B0WXPv9h6PP34ep1qevXyaV795m0ItMKES0FE5Bj2bug8erSxJRRYf2lXHrxObDAls0iiMNpBAMdEbypJmQ6JTK3FzI3agGxA7V0OdXLsiyqRDMwjbSZInvQqWxy6TkkMZZaXrFkFr20HxaC3gj+g4mDQ+LV0x0fPLUEY6yZFjQeiQmHNaGbSyKJVDLMnyDcpyi6D66Lykmhzi/QJioG0t+0tF0T/F4cGYzLTs37/DaOMSZdknqprpfI6tF1gV8TEQlehDERwhOGIQkfYu2MTlkm40GNK1jtIliQnUW7EgVExUeCB1JkNXtYROzwYgWZ3TdUjEYdd7T9nrYbymaVvkvEssMkDpTNZu8IQYqNuWvf0x/V6PjfUXOH/qReaLJab4Ev1hn7u39nl+d0G2CDzvW9qHE/qB1B2VA6Oii1uyD7r0Ob7rq0taRO+iU1BocdTIgKkHWpOg9xhk/1loVWROwKUL2HeBPp4iQs8f6xYpYNYbcMfI2lbHDZNVnqoUDDLLk2VBce+AYeuo6pperjHFgEXsQRxydrjDYPmQ2zP44QH8Jxcim1lNrwjcOepTZy1FP5K3kXkwfP0o460K1k9tcn5zg+3NbbZHQzaLgiwTIwgdI9o5dFVD00C9JDY17WJJW9Usm5aFDyxaz9Q7Zk3LzAXa4KmiYwG0UajqWzrjqVZTTPYgU+LmmsZkdNLw093gWQLWhQZ+fLDthYbCR3IXVrR0FQLBeWGx2UKAF18Jky94YnQyuhsjZrHEzJeEwQDTE80l1bQQlYg+O49XGlUW6LU1gl+iaicOyyauklvVjbB0LITWpfreCHBnLKpviTWEeYXqmHxRJQAwyPcJEDc6PZZIiTHr9fkf6zn/dnrE3IfjgjzGVbJdRs8Hyz7/+WCTIlPsXThDGzUXbt3isVYzpSI4R3jjKr5J3W4VpJOJIWox+kBbOViNAK3KquQQnIEVAxBlxD2YzKKygpjlwrq0FowhJrMGrJIOuzEomx1rrHQxoGM5dtTLbnLg5EEXSVruaSTHO3CO2DRQN1BVxGWDahoZJfABnCe6iG5a2lDTXL+L+sJXOHXpFJcvnudwMpXCKnX3tY40KhIaJyNmRR8dChSRrFiT5NDIuRLUsX6Oi1AO10VWwbd0g1tRa3rlAN+Km2aMYEv5zFzrMVlJjBMym+HqBhcCeW4YDHor2wRJ7sWdMRsMKOKC6k7N29euoXpbXLjwGMONLVCaxbLi6s27vPHW27zz9tvcuX2Hg/1dFouFOA93SZ3WAhoVJaPhiO1Tp7lw4QJXrlzhqWee4fHHn2IwKJnPpxzs7bF/dEhZlPSbll7TEvoDESMuS6INArRmOad/6icxy4qjv/Y/sLWYiY6tbynqGXG5FPA+fa4e2FeKNQy58/ggzZNA57p7nMh2+WRHpxFNU9CrzFdjqpbwcF/YtBvDNOIEQQubMCRm73HZ3t1OqoL9/p/9wbd333/870+eEN05qBOTA2yMZFiaYkB2tk/v9A5xPqedL8TN2rd4V6G0JZhOC1HGHhurObpzjyc2t+k/dhnTtjIq77sCW0bmwkrMXsA/753Eoe7LOaJvxV0yJrA9sZH1qnPXaSF2Y3fvxkNOFhnvBgePf9Jdk0dZzu+qwLBuMK/fosUSrKUsMk71MnoXt4goKm346mzB3f0p7zmccSp6shBo5wuyLCMrMgGsTI4zOQMcT0XH7xzMWOYFA9ujMJEsz2nbFiIrM7ZM5ysmlri/W1SM1IuaZtnI3oQEJokzd+iakQm90ASa175B6xSDD3zguKETjfy8mzBJ9yuD6FgWOc7NmY6XoKCpagoD/pQwdzSSL/qyh9NRPhOtxGwqZOgImZK88X+/d5NXqzHeBynWu5ptVYHKeF+vP2BtfZ2t7dOM1tawNmNtfY2jozFFUTCbTTk6PKJ1DQePdnGuYTGfyXvVkve8Nj3iv3r1C/y/nvkIG37Oo4MJm3t75LfuUNgCfa7i8d467T/6l9jnniE7dRpGQ+ygJOtlhLJAZwNOZUNObZ3icFLzvh//US4+8xRZiMS2oakbwmJBXbW0swXVZEFzdMTsaEw4OsCNp8TJhHbZgGtRMWBjoEDRV5qBMRTJBEh0ADkWyE/AyWr0tesgREQDLgKccI3sUKrVsj4u2L/tJKL7dVn7nfOmRBeVRmG1bzG+xceuPtAyEh4cLjomtPR1TpJnI71kBC5Qq5xZxeOiOb7rBUgzVSmTXrfs+y5JlPekUjXnj40IkJE4osRZUrEfFMmoS/Y9kRNxWMCm42sTVkCC6kJdhE7ETEgSSWifBMwm2Q8TSHIggakOfFMFnji7w/llxYMvXmO+bJjMK4p5YIRlHmv6uWX/+jVu7u1ysKiogpfrnvQytUHiu2EF3sfoMCZLY7yI3IvVXDozpGmECKMjnD69xfhoTNvWDNfWmE0XGGU5TY/6zpJGBVyhWRtashCkQRcbBqWlVxjR62tFp1yrZB5pVWqGy80FT+td0uzUCfTTKzIOIM6mWmOF8SDGiYD3aYo0CnnFalnnQWu8B60KhptnWds8yxMvvp+sWVDN/h7t3pdxwTCh4XOziYwy09Wsmt5wiw9/4gfZPP8YN+/f5/7VNwjtEhUcSeCdEGDezrg23qW/vs75x58ksxmXn3iCojDcv3Wdg91HBDw3Dvf42zfu8d9e2sGOpwwLiw2BwakdZuMDdGzRbYZqNZ6GRTvnq23G80cP2DsPu19/i1dqQ88qKPuoIpevLEfl0mDXRYFOpnQm6Tlro0UOqFcQ10ZkO9tpPSrJ871H1Q1+saQdT/FHY8J4QphMiZM5zGti1aAbmRxSCRtfnXndGl9tvsSOWyHaOpX+Jxh+CViPKk36kAAqFOM04bPuRWRDr/Z1d7Iec/HbtqXDFboX9K7cgg4QZBXrul8XB219Qn8zyjxLTPISSh0DmiomToSc4CILZNIZE1OMSN4F3XtPMbLLnqTBIXEppoamipHWSK78kVc+zHs+82n0sM/DoxmHcczLP/WTVJ//Gv43f5cyaCBjZAJVVdEGmVRQCRfR8sLE0FAbYvQE19K2NW1TC1k46ea2IZBnGTvnz3Dm4mPYooexlqODPYpiwIHf58KZMyzaBe1sn737D5j5I7yP3H5wQN06/L0D0Bt8p7fvGOAbTx3T/QrpHCYXRXxKOoS1h0q03CgJjviCpuQzJhCwDWKUoTVG5wRiskaHLI8UpRwgxhiszlBOkRkBe0pjiF4YOcPRBj4EWipAgbN4PIXt8861KVU75Mr5AQ/2D3j4cExR1jzz9FnG44aSIz71sQsE3zAwDyjX+5SmJjpFpgpsbmT8V0WiCmgtI4uCvcWkxSdaLVYntR0lh5NSMlrRneFaWwJWzB8isjjTuLE14pAbYiBqcXPUCTgweHEOTTS+kNyAQUDCrukW6UBFjbFWdPRigCiaZKBEx0hbYVDgpNuMbDafwCx53QaUTSy/kjzfwNohMWQsW03ZL1lWc5pmwaJ1zOocXWxT1zMOHt2jWgayUlNmFmslydC+xaBBzdJhmNO6QGbVyqFQK4NrHM75pEFzIpzEbgQ80Z1T1tMd+N2YigB4yGEcY0pCUu9CdR1auX7xOMbhQ2CxmFMWJUVRCGKfqnylWIGe8hcRdyYJb9aV6PlpY1FFxjIzfG33iA9OK6wLoDxFlCKxIrn6KdgzMI7CrvMKmvTaQzpsWwXBdG9QDt0YxJjJIWvQofFoFgrqpK9UhMiuldHgD3rFeQe1imRoprnhSRf5sHNY5HEaBTdiQA03BWSKXa/nWKg4xMjhwQR7eoOptVTeoKKmUC1laDCtY3L/Fjy6x8wEGgyfvBLYuRConYASNDmudByMLN+6r/n83pDlkx/iZ3/qu3n+Qx/k1M4ZirKHTSyfaNL1jloUJbrkz3uC84SmJk6nuIN93ME+ze4e6sF92tu3qB8+IByNCYuamQ/sEXlgAtoFdqyD0BLqsOrGmPT4IhEja9KEdJjGuEqCPZEKR2YsyjlicAmEDIkNCyolrKEV0AcQZm4IIkUQAnHvALUxglDI6KcxRNeigiE2NdEkBt5aD2pPaOR4tkbjmhptzPEeNyYx5iXhVk0k1g6VGeJSdGii88jYjJzIKqR1ppUAbErG1o2RBN5HuJfBvzo65LoBHwV4a6NfOc3qGGhD4NpiSi/L+PgL7+fhCx9i+8pzfOuf/EPOvvkt5tFhFMSlaLp1oiE6Oo79RFM8VDEVMCEJp6f7tFx7ZVIhYhJ4pw1ojbYdy88KU80aVJaJ0Yi1AhQmkBBjEiCo5fcSS5NMH/9+elxUAhWzrsmgjnV/QgQXRFPQtwJcLGvCskLVjnwxY3DzHpO9exTPP8uzp87wKm/ivOd4AF/GVO/fucv88IigvMRDLSM888qh0QTnyUph+3XC+xDl/ZMTvVwvY2QEwmY2JVvpd6Owy1CKqm5ZLBuCc7i2oXGassxYVA2eyP7+I/AtWawpq12++du/QbADdt7zQXpb53GmYO9oxtdfe53f+g+/xWtf/waTo0Occ8JEV9D1X2OKl+kTpvsjprLSGE2W52yfOsX7PvABvu/7f4APvP/9ZBYePrjPwdER/bpmFDz9KA6NIS/IrRUDgSxj6+d+lno+Z+8Xf5HNaoEOgTiv6J1YXRGNU4YjYxnGiG4SY68LL7EznEnjs7E7FpJWUgegdr8TIwGHXsyIjxyZb/GjNdrcEDqdy9Cp4BynyF0B9u7R1m4l/MHDMydL7VWa3eXgaDrdnrCqDgSqNRF0W6GmM9kb/YzW9sg3B/TWPbGtRRbAR6y2mLJHHQJZNPi2ZqnEnfqUMRhXS7NRpTHRBCar2PFwZJ+qeOwoKUengOPENKXgO7afiOtHL5MKJ9m0pPtOgoGiu5WanhFiCCLzoC1tkWEXFYNqiVJwuxBG9CcWLWvBEUOLWzrcODKPMNYGR0ZhDZfPbHCgYKmhDeKgq2JANzXRGDw1pq1SvLFcsZoXTY/yylO8vv+IO84nwwmPDibFV433DmtzKRJiN4YLJtPk/VKuYZS8Kx07aCvnqbAgNVlsuPfLv8K5T38Gq/UqNiulcM6ttlPH4tNKcr/hIMeqgmoRMSajt5GjomY6H+OCF7fZ4PHtHBdEK1ZYGyE5+kle9c7kiH9xtEel4biBoFZAltaG/mDIM889x86Zs3gfpDGDNPHbxnFq6xSDQZ/+lSdQSjNdzFguFty7d4e7t25xeLBHUy1ljQe4sZzxX7/zBf67J59he1xxOJ8y2t8nGwzR2mAo8Ldv0T68QyhyyHNiWeLKDNUTsf3mrbfY0XB2fYudvM8gihMiRYlfk4IzKJPyKZEMktF8n9Zjg28dcbmgWsxZTicsxxPqoyP2D49wh0e4yYw4n+OXFco14tQZIr0YKbWm0IbcJn2zxOYTVmvStu7MLLo/iasxVvndLlJ8WxzoRltPANuruNDVwCl+oRJZAFggjbxcGTpoXEDCtIZWTL3j4j8m4FIavCE9chfDhXygYjf+KbpxbWxpQ8DhxZAnBGHRGYmEWRDpFZ0aa8aDVgF0QHlNDDZpcAWRTIlK5A5JSahK8F16TqkxBeDswIZjoJVUM8gEiwmBSRZ4FB0f6PXZ3hgS1iK+bvDThtuv3mOuMnYRksFi/yHVeI/DVlP5iLGrw+L3xeQQj1+fOOmKbl6ZK65sjGhaYfebGChKQ0/llL01tIk0Iwtes15ZZu2c3AYqEzmzlVEFw2xaSbMXTS8z6SzStL5zLPYC2mmpb6wxK5IDicAQYqB1gVZFVCKM0MWMTiOeSGa0GEpGcfmNWiYAnPcJjFFSjxuTJsYMZrjJ8tJl5p/7KgTNW8FxO9RpbkjqzV6+zivf/Sk2z5xn995tHty4iopdY9IQlSH6Ft+0aB0wpmW+X/Hm4SFXnnqefm/A2QuPc/fWXWzewzVLIoHfeuMNvvT9n+AHH92nnfdReHqDPgubU7cLAgFLTiBwEDwHUbNhA5PlnPujjDuPdrloDcxmKGPl7NIWpSVP1tamPDLDliWqLDBFju710FmGKnJh/mVW6nNtxWSkV2LWR+Rnd6S+TrUBzkHd4GcL/GRGmEzx0zl+PCMeTQjTOVQNqnUoF1bn6Gqvd+f+ie3fkVyOMwi/+kFEM0lkn346p493+gmgP53iEgb06nGPT/fjPOZklHAKgop4jTSLVBQ3blixnFWM6CDAnMgsSWvEYJOgTZp+6h6+S8qSS68wHJP0SPqvAzm7CyJ5phAHAp4ieE6PBpjCsL0z4LCdkU9kYmSwcwoGJWXV0maw6Q2hLNFzg1JewEWBZii1TeBipKlFa9oYhW8bYvRkeQ4x0NRgreX06TMYm1HVLYONbbbOXGBR13zvR19CGcNsb86YisnREYfLCdZq6rbFhoApeyxbz3d6+44BvrqNLJpUA/mAUiZdctG60EFhtHRrVBDnFkijH8k5UilPnrTnrM0oyhzva7JMnGRtZrHW4IMTV1gM3inyvECpACoQgoZgWFs7iwsN88kjGaPVGVG35Dbw/e/LAMO5jTu8eEHxQ+9bpyi2yEygDRlt2zAY1ChtUPEW2WBDyksv48DWaqL1BC/jW6YDhpRQXHSnZ9cVvRqi7zAJhXPHOj+dbUWMgcxaobtGCHhcG4lBJUH/mIoiAz7N+iTml7GyUQIhjeKK8y3IhlIp4PumJSIMQmNylNIYZWl9LYexbyFKwZ/qPxRm5QYUyTH5BpnuE6LChYp6eUAII0YbZ2mWS2azPeZzhzMjllWNm86hbnHVEo0kt72ij4qBNjrWygHRtbS+JcsytDHy2NHT6w8phutycCUHqizrjLy7QpHjv686Aep4NKnD9rvrtXKPkiDUgYG/jz2RHjymAFdVlYjvFwVt24pXgRanPK+cAIQISBgSkONCYDKbgdL0BgWuyHl7rce16ZQhkdxHGmCRntUD3zKGf6UUKjdYrWkCzDRoH7vsBJTCoWiVIgueiKLJ5f1ZIpmJ5FozUhCNpgesFTlrree6j3xx0fBc1GzYyEMTmducpl/Q252vAoECJkpxPUS2n3wac/AAHXUaRZHrVYbAZg6bW4MVQKQV9PrrnLr8NHPTw6jAbFERxxWLtYw1o9kZWXSu6GtwtcJPG76y3OBLX9sne+Z9/NB/9V/ywnd/EF3kiHN2Gm1ROjkLCrArI+Od56QCYzG5gsEAtrZRj1+hs7k3IaAbodDXu3ss336L5tVXufjlr1Ac7jPIIWuWqOg5Cp6HaLa31ylnFRmRHh7lA8o5KZK16A9iJKH0MbAMDQOtiXVFWC4FjNdSeGot3avQNe0TIKSQkRpjDToo2vkcZkv0aIgqMgH5XIPRVjQVNSLYW2aE5RJV16jg8K1PYKIncYkF9O/EqxHqf0jFQ+wShSCJveg4eUk2uveVzChi0xCaNG6HgnnkjDFMe4qLZ0/RzwsiilxpjALlNEsX+e233uD3lnMedw3/8y/9E05fuMjlN6/zvQ6mGvK0hzvdI1JiJz6iXfsyFTdJAiKGLosJq4XaJfoekgiugDBKdyCDPLZKgOW7v5IGSHqv3Ui20gIKRivAn8oyohWWIDaHLEfZAp1plLEoZQQ41UpY7CYTnT5joOzLWm6laPGPZrQPJ1SNp+mPEqtagENtzMpcJJpI1VaEdkHlG8pSxmyXVZVet2JoE9NbK3wjOokhemFemkw68EG0wLrYoTrNwKalqpbUbcWpzXXOnTkFMdK2jZxtrSOzhtn4kDs33mE7m3Fu9ho3v/Yqy62PcP6lj5Cv7TBrI3fv3ONf/u//ms/+9n9gPhkLEKNIruwrVSqOIcwucTyuTTtQKwRPXS25e+c2d+/c4dd++Vd44qkn+amf+iN86lOfRJ8+w62bN6j399kK3RgtAhJpWcchK9j+Ez9Ps7vL0T/6xwx0wIYIXjQ9O7cqpxTjtmWUZ7SZIXgBwWKISZa1A6KO42J812o9CbIlqC94WCwFGFg0mFEflWfigl413co+sfK7sb/jncDqOY5v6l3P1DHVVkdV+v30X1Sis6m6AZdjZpsJkWI2QQVHaHrEsiQWOTo32DLHxEhwjk4p0HjJIWL0VCpQAZt5jveeTgsnxFaewR8bbRA7Rlp6fataIKbemkaFNEocHZKGHo9C64gwbZKbbOrQHYt7x3j82axYlYH61Dq/e3jI8+Ss37mFdi2PjOZ8MFxcNuRKnCSNkjgTVcChabViqhVfnC4Y9krieJFMvITRHRQs2ooQRFLhmsr4UnC83gQemIwfzyKPcr0CalfXPjGaBPgIhLYly3M6rbNmWeNaB0pG+qNmpb8nI3QqTQhAuLdHPZ7Qu/w4jjQKnL6ssSuh/o4l1TV3T50e0kymnNk4hfOeaT3n4YM9Tm+eAy3a1SsAx+TSlIzg60Y+i0wzaxv+xf377LsG5UXnSCcjpRgiNsu5ePkyl688ic0yllXNM888Q11XLKslWmsWiwWtaxhPGg6PDijLHsYaMmu5cOES589f5O03v8XD+/eYHB7igzhMXp1P+B9u3+b/8fR7aK9+ndFygj48pD/oYft9XL+knR1Jw7iq0NO5sLONGGs0ew8wm1tcznr4X/512l6Bz3PioA+DAabso/ryve31Ub0eqiyhyNHWELKM2CugP2R4Oq1pLYVr4hkJQOeTvmvV0M7m1OMJzcEBy4NDZvv7VIeHtJMJfrZAVy3WebLgKWOkRNHThizTUuZGkq9VXDHGSZ+v5ObHsafLezsw7xgLTNp1Hc6F1CAKxbitWIsK8eTr/q06Xr8no5TqiurjeNMBaIq4YhzFKA70s+g4bCtmKkC/wKxvkK+NyHolylp0FIY6dY2vKtRStPB002KcI2sdWeuxUWNpMFHKfhXlvUkrXa9AK3HUlZFbH4PEDaCrsEALUyi9AcFIDMTARCuqGPnKO3dx0yV59KhM8fhgg61+nzivsU2DtYH5bIb2irZuEcOWBCiqZGqTmNpKn4zwpDpDYbSil8MTF0YQM6mvgqNaVpxZWyOgyEtD3bTUC89wkXPoHUUu0zhnRwOC1bjNNXaPplSNp8zT6G0i1njvyRLrN3qPVwof/EruyVorjuBp+qtTtibG5KYccR2oEAMaK6CWUsloUJPrbr3JSG8MorvZJh1dtwB/4yGuMbTR8ep0zNI3xAR2Gm144rkX2LpwiQe797l34yrGVfI6rMHoPsqUhBDxyxmxmeLamlAHbOa5d/Mq22cusLGxyUuvfJCH9+9w7VvfwNVLJk3N33/jLT66dQq7rLFWY6IiX99ktlcR8bg0FzVuA1W1YPzObTjrqKuGh03FGVXIXmsbjNKgM8RWQHaJ5GkCoiplV9dfaYXKMnSeoXIB/uTPAtUrMKU0IHSmwWrIDZQZcVhiNocQTkk08VGmP1pPbD0sW9rZDDedESYTwtEEP54QpwuoalQjEhliMqNP1MZqlbB0eVLQcD8E+igG75rX6rKRkytXkRAKUvdjRWpQyuBoZd1ocJkijvpkZ8/Sf+wc5tQ6dlRgMosmyDRS0xCrBX4+o5ksqI/mLA8OmB/N8YsKWrBRdNRLbTHRpmmoY3DwZL7TYZ0n88u4GjFLcRGpszeiIn/zOmsf/S7uvfEOug6Y6YKzly6zvHdAiwYj4HaRaXRmCJkmOkVPZ1iT430lzQElDSJXNwnMk7jfNUdikPp/fTjg0hNXcFGxjIr1c4+zNTkgEnjpu16iHG5z7sIGn/vc5xjmGuflvO6ZHkoF8rygzL5zEb7vGOAblYpiJIwyY0QYOCrRBVAggvwqOZYYi0GR25KeLQBN3ito68TQCi0eR5Yb2gbQCh0zrIbQKmxQxFhhc4sOLWE5xdoMr2Rm3xjDfDohRtk/0Qessrg2ElzgqfPlqltmjAZqoS2bjNwEisyijcPqjh6u0YkO7p3o6aEiIRq0KtChn7SwKjrLdTET0TjfrsZ1Y3DiDIiB6FFatG60EQdOKb5lYxkrzDxtDAqHNVYWuY/oTNyJum6ab9KxrmTwVhubQNZ4vMlF5V66OkHGiomR2ntJ5LUjKo2JUmQK6hCweoA2vTTGldO0nvH4gBgVgzIy9452mWGzJY8OdtF5j7ZZ0tRzHtx7wOlTZ3BVQ/COfm+Ia1uKcgAEdGxxTaCXZ9gSCi3jIkppfNREldG0gTIgTrB1vVpHkuaoVZ0OXQfhuASL6TSXHyfNg0TdDSF1RHUCMk504Y67Eh2oKve0riFET68syYymaR0BCfBBycGoUnfUdYVtDIQYGQxH2PUNvtIf8cbpmvmDPUYKJkbhleX9TsZ5ykHBLaewp9YoTGDettQoQpM68hHM6jD14rZsNM4omqhovbAO68rhnRgFBAWBKjEBAy3wH7KMz6MZV6LLd3ra8gFtaVcDwYalgkl0lLdvE3sy2KaB9Ri42AZe7A8Z7Wxwcy1jd2OT0bVH9JUi5rC0PaJRzA7HtHPPqUGfmfMMi0BuWmIQoDAEz3g859em8PxP/jF++s//OYYbmzReRvCtSnqQMRCUX421S6CXPbSK9qjVQdYZTJD0kJxWqNJCmWFGj7H+1EX44e9FzyfMf+/zhF/6N7hvvsVIW9rWY97/PuozGzT3Dym3Nplcv8G61rSZwRuDyUtxDbt3l+JoSvTgXKTMLdG3SY9KYkawGpMXoLSMdHphjwpL0Ii2aGyEods6wsERanMdXfbwvkG5Guflc6SpZMyjn6NMhLRuYkjDlFFGxaUZm1zdMnHjRacZ286NNkLHognuGEqIgApeJA0SoBqJIrSr4MzC8acKw+9VNeHhAcbmRGUJWYnRin7j2VctX1WB2ikGk12q+QNuvvGQH1BbaB9odKTwCXrQGoJ0xTSdvX0HSHS7r9vJ71Yrk78IE6HrV64K6w4UT0B+WClyHe/w4/iY/qqOCx15qC47UseFjepGX7Qkyl03wXZMP42yGdEW6KKH6pXixmsz9GKJqz0HwfNgechebJPIOLhW4osyGb6uGe8fUPmaXrOkufk29uJZFnnGbLygHA1xPlA0LbrXuXIq6qZejdtE77FZxkrOIIHKBA9amHJFUci/DQ3NcsZ0OqMNjjIvqKuK4Fo0nsuPn6O4/zXufu6LVJsvcuEjfwh0xqx2XLtxi7/7d/8/vP7NV0WaQy6kRGR1HJdVujvG45+dBMxWn0vH+EqFqXMNb3zrW/zCX/5L/Mov/xv+/J/787zw4gtcu/Y2+/sHGGMxySAmGEUWExusl3Hxz/5p3jr/JKPtdZZ7ezCZEduW6AMh1FS+pvnqF1nLCuZRYTszHNeim1b+dAHdBhnbDx7txYhBim3hlurYMV/SWg0KKkdoJsTJnJiYo3G+OLH6jt91OHGP+rbrcRLkOz7Puuuafh45dqnrfh47tqI6ATjJNbXeoasZwdf4qsTnOS5T+CKHwlIqDTpKERMiRIeKLdO2ISrFVqZWoJwiPXcnxK3USn8PEss9MfhW7INulDBK3FKhM8+JKOUTq1nLeRpDen5peHYg3+orvccoAshsVwteVIFT7YJ+ZqnznKVqGQbPI++FNRfFbKRUih4i95D5yCCKPm1lpNUg44MSZ6TmkvO8PXWavzM+5LNGswf0ouO5w320mE4KuKZUGg/s1nn6XoH3QYB5ZPqgzDPRaVTJsKhjQXYACoqCwN3f+RyD970fzpwWRr06AZRrJYxzSGdfus9YqibSNpo2LDF5hCKnN1gn2kjtG7yKbG+t4Q04o8mtOqERa9A+8PXJIZ9dzGm9w4WAyQuiEzbxcG2DF15+md5gDec9L738fqrlQsZwj46YzWa0bStSKyHS7xVyfbzDKM2yasjznP39fU5tn2ZtbZ233vwW06NDonO4EPniwSP+xXCNnzm1w2S+YLBYYA4PyfEUozXa+VQmORRpPAtCdKCsSHPEgJtP0c1SgNN0rqHECCokFngwGWQZOs+FxdEroD9A9XrE/jD9vQ/9HrpfYnsFKpfCPVhLLHNif42wvbPSsY0xNSlJTFTX4qsGN59TTaZUh2OaoyMOjo5ojw5pj6aE2Yw4X5DVFVnTUoZIT0ERkakbOjfutLcTihdPTEetKmJ1zJyOQVyA90LDGiSNQXViLcmfXU58HJhPPF53U0gDKYpx02Hw3HNL2F7j7Ps+xJX3vsDw6aewOzuYfg9lM5k+iVEAy7bFu4a4rAjzOX4yo51McPuHtI8OqHd3WT66j3t0gDmaYpYtNrZYJVNMXX3WnaFAYtoc54QqGV0QJVrFzogRjVKRKeCVYV8rvrCsKEd9Hhwc8hOh5LQfijNRrYnKsHCOpcqp0s7W7zLViGmkXiWd9Q48iavPRhtNvzQMRxbVGsoiJzpQ62tEFTFZRu1qGq9Qazn17SUTYBihyTOKAgYbPdaH6wzu7FJVLaOtkQBzzmGMIc8zBnlGcKKdh0LYdtrQtK0QFBQr5q+M3FoiyQREKSJWcj7vQWn8ijUVVyO9OjVHjT5u5MTUDLrz+rc4/LVf5bG1M4yJvDWdE5LGslKG7VPnefaD7+f+0QHXrr1N21T0iayN1nn/hz/E8888R3+0Th0sB/tHvPONL/Gt17/M0Xgf3zgWkzGN94w2Njl19hzX3rnK9s5Z9h/cxTdLPn//Ll84e44fnC1wCADX39qgOjqidnPAS+MkadPf2T/iwtYmaxruqMgLSs4dhcZ5ByriCNLQ0Co1txAwKTicFnkrgpA8tJHGh07O0DqZ8ZjMynhvbtH9MuWGPWkoFAkYzCymFLBptetCwIRtYkyTaN3+aRx+XhHGU9x4Qjgc48dj3NEEtVjCssHUAdVqlJepwlYHDmKkHyPKGIJfzS1Idq2O93i3p07Cft34b1TQaqgGGfHx82x99ENsv/cF7IUdTJmhZBSzwwiFPBAcsa2gqol1Q6xqWFSooynVw4fMbt1k/PZNxncfcVDNKckYUZIFAZY7IJrunOzkdWIH73WO0isUgEikVXAqakZXH/DO3/8n6Pc9Qez12BgMmV2/Tn3vruAjMZKHCMok0oRiWPTpB1g2bnW2o0R/rxMGIQa8b9HAch4pcotRwlx/9Wvf4gc+I5hDExWzyvOxT3wPFy4+we7+mCZG3nj1KwS3oFfkWGPIrDSq29YJsPkd3r5jgC83iqIUcEgpYRV1GlXiFtzKSG2MKO0gaEJsmVcOazR1u0CjaRA6pDHiUmp0JDpAg1/WgEFnWrT6oifL5TDSWsgVMWlCdSYKVmlUmaEJ9DKFUjKAGI3CWntM6dZaqPLKE1QQEM47VBSkPhoLjAihSWOQmrZpsSrDqYBzjiyTTeJCxNiMEGSDxzamIKilG4BOSRz4VqEzS54EUDVI4Ozmzn0kasC3qdgU4C7LBY0XfQeVJvI6plNEYVOCE1Fai758CLTBEVonSa4B6YUZTMyI5ChlcVFTlGsQezSNJlAzG8/J1IwQa+ZVy/raKZo20AaLNmscHU0Zjxd4t8C4QL+fE3xF9CIAW2Ri/RxNjrI51KLFo/s5WVziVcArcHVL2cvRWUGMjrpe0lPgY6BtavKyR4jiBCkBVIoLMbNSSeMhyXyeKN470WspMiNq1ZFUx8FMrfpt76qwOuo6yMG9XFYUeUavLKibGlxX5Fs6xVEbtBTrUa775uYmC2WY6Zzl5XP8xnSBbyvmWnMpZHwoisjF2ajZxvCrt/dwSpKIEMHH5BQUIaSi2Z94md14d1fwdF1YWW3SpTNakRnLljVU1qKs5ezakPNb6zBdMrm/u4L3FJ4DDEvbY7A+gKahNIH3NfDRNqByxY1zp7nwIz/E+u4jbsbIMH+HLWeY1A2PX3qMizvneGv2Gq3x9Pold/drrPLYqPCNpXWKqYfrbZ+P/xf/F37oT/4JTDHAteI67Yi0IWBixPsWr0Wl0CizEoMPoRWwLI03oWQf6KDxSpKJjsXQ6VChpFhDWeJwm96nPo3+ro+x/OVfYfy//K9sP5jQfPnL2LNbGKfwj3ZRs4p8WOKKbYoPvALnHiOaAXzh16n+42cxrqX1nlzleOfQIQnwdl3d1qFshjFWku8EXOJj6qEluQIPYTzGTKdC6U/ddjQonaEQ1nPXLdZGtrACAe5WyB10nevgfCrATywYkzr1TlaIbCAZyUoVaCquE7AYEhMgRPoh8n2t4ikU1w4n7EXPUkWW6TPwAUoNn7aKTedZe/Vt/u+jIdb0+NACTPC0xpERUT4ejxHiEhsirg5npboRSFKsTrFxpeMizF3S/RpYuex2ifUJPKVjMpCe52RigCIJgKckRskYczgZF1YPlICsdMQrJddYdcCIUkhTRREzi9fC6jPGQtvQhpbleo9QmhPPp1aGUUYbQtsyvn8X99Y1Dv/ZP8e9cIXTf/JPsX3mPEV/iA+RLC8wNpP3oC0iSC5juW3bghLGuVKKuq5RSpPlCfSzGZmx5HlJDI63rr7DtXeu8pHv/h6iztCFgqJM2juaB81D7m18lKc/8RnmrSNEz/Ub7/A3/sYvcvPGDbqxw9UlV6votIpFq2DVheeu+RWPwY+YgL0O5IAk6RE8r776Kn/hL/4F/vyf/3N85jOf4dq1q+wfHlLkYurjnMSEYEQfTG2t0f/kd7Mwlpde+YC8hiiMg+A8Lnhe/cW/yWd+9DOMikJ2TetwTUOsa2JVpz8r4rImJre8MJ3JOM14TDuZECdHMJnCfAqLJaqq0HWNatukPeeJlcN5i+8Mr1bgYGLYcjzwe/x1EiDq/lSr+7qds/ptJddXRWHxBVRq9MknoKOGaFBBYqRqAzrWGNcSrOVe23Jt1vDyaIuNJImgSWx3YFI1KGNY8xGWjTBnVCAkpnCIkdDpEaf1oGOCqFagqOw5HQPEVpg1gQR8iMmWyC00+BDwidEfYsRFVvtRznKFgZUzcaYiHB3wdJFjXIsNjmVvQGxaLgw2KesJMYoo9tJHlspzQMTGSKEiKjgaDTYabAgSo4K0BqLSBK3Rec5+r2CPPh99zwvMveNz33idG4sFo2GfTCmqNPaqk66mNCIFbPAeCmuJxor7rUkMkLR5OsDGJ0aNUjJerydTJg8ecuXnfw6nDRYB7jswD2K6vF0Mk4auMZpH+3OyGAntHO0iedEjxoz7B7tgPK985CXifMnRXk0gR9scrMcr0WqqmyW//ugBhzE1rLVJbpyarOzx1DPP0h+t88Qzz7A+Wufu3dvs7+2ymM9kv0XRCHPO0TYNy/mMXr/HaDigjRFlFUUvY3N7i/F4zO6jh5w5c4bzZ8/w1htv4NqWisA/vXeD73r2fTw9mzFfjLHTHJ1bdJ6jyj6hmqNVJOruGmg80tTQrsH7lm5k2nFi3E0h40cxjaqm4jwqGZhR6BXrV5j5IutAblFFgSpK6PWIgz66P4DhADUcoYZ9TGrwkAtwiDEy3t3rQ7/PaOf0yvUxqK4ZE2WdOodfVtTTKe3hEcuDQ6Z7e9T7hzSHh/jJhHa+gFpYZnnrKEKk0IpMKWRWSWOVTlI4aW1hOFpM2bKize318X4VmpUAzxKrxd3z+HastyXrTTHXitvNlNn2kCs/8ke48n3fTe/cRfRgIHq6EVT00sDvVPEUUBaibLwlefkqb49BwKW2RS0rwnhC/eAhy+u3GH/zdSZvXSM+3KXnPQWI/naSOZIJKIlXMQEuiqT1l8BzybjkGh8R2Njc5BOf+h6Cdmgi/+w3P0e/9RTTBbqvafGEtia2Na2PtEHOLZ2cO1PAE8AhradOE32lMaZFTz03nno5RXuHD17M8YpMtLusIYmTMZuMUcEyD4Gj0OJtjtGB3FrK3HDu1Bqt98R+LtrpyWTDx8C0qoRME4yYfKXaxdpu38qL7tJF57p9obBZtmIiWmsSkJeidpD62jlR+dbGyMvVKmn7KXJjeXj3PkeTh1xa36QdnoL1bXphzrKq6fdHvPChj1KjuX/rHZgc0c8Dzz//Ip/5sZ8mG4xo2wptFT0sWdjgmR/9KT7xfT/I//ZL/1+uvvkmy+WSenzItW99nQ987Pt47sUXeHjnGge7DwhKM20b/vmdO3z39hnymbgt57agHKyzHC9ocaIvHA20jrt1xWj3iLg1Yt/VNMaQYZIfACgcMUSRldI6ZYwqmZikoswds+SV63LVuKo7NNL00UatahatkXFea4lGYcoeMc8w/R6UBbpXCjCedP+0MWirErAVib0MPSxRp9chqCSTk/QsvccvloT5AsZT4nhGPDwgNEvczYpn5iWlGRJskLo1HjfhFHHV3F+lbSca6YFAm8Hywjabn/lhdr7nFcz6Osp0zPSU97g2XQMlMdlaVH8EwzUZw48BGWOr6D/xBP2X38vp8Yz25h32vvQqD15/g3uLCSNVshZLLMdGIl2OQVqfq/i1wvNXUQBPZBhgwzeob93g2tVr3NU1/Y1Nev0N0CVnrEJXCu0iJhpO0ePlwQ6TPEL03NrblbicpkZijLg2TXHqFGMSiNs2jdyfWc48dorFbIK1I86fOcXi/DlG6xvsH81ZTCuKETR+xvaZHXy9QEXHYjknV5q81yMrM77T23cM8EWlcMGiPehMrzaB2Ewn9DI06Bgx6b/oGlHl8d0YpSazkpCqmNhKWkSCjVKYLCcplYnJg7YJ0EmFRZBOrzWGGFpB0bEy5R0iqEx0tJKeCNqBh+A9GpuYXV7GvFtHiIo6gBwhaxwtT9PGmhAthbVsDzw6TkDPKfsIGBg11kbRhSLSuoi1UcC0aGT8S0mxHqMjz3ViEbbjKAAXAAEAAElEQVR040DWaoL3mFSYBaI4IIaUABiZVBfranGJ0dYmLPm4uIxpfCX4iPMO14JWOVASVUbQVrQZHERdYvM+MQaWVc3ysKVtD2l9hbGO2im0zsgs1I3HhRIXesQA+7uHaBS7j3bZWlsjRE2wmtxmKG0IjUMRKbJchCiB1nth6oUIfkZGJATZJE1bkRcZKtbkuYwg+wB10zBYWxe2RhqDVapj8enjJLpj1JByBcXxiFWXmaQ/xGVOrhFapdGY44K/K0K7x+gEPOumwXlHr+zTanHVlHRSSeIYIspooofMaEaDIePDKcoaxtmSfoBdnXFPi+bOuCjoZZE8M3y4XzLJA73cYFzk4aLmMAYaBT4qFlHTz4x0CFIRnGmFzzIGBggRkxlG1lBnBV5Fnt0YcRZFX1l6WmOMoS0LVKnJy5zP39nnP46nxMUSDyyN5lY/5/EPPsnZF7Y5+1v3uFzBd5Ez2R6y/PjLXHzmCltra0wmY965f8hTa0M4muHzkonPuDOuCPkaR5Wjno4ZzxWm1yPaAnTF0sPXFiMe+6mf43v/xB8nmkLcAYM/dsMNMXV+WjCaJgRc42SUKcbEGDYyfpBAfafT2FIH7CVdL9Fz1Kv7uxgVlMZvrJP9kZ8g7pzh8L//S2xcv0l9dEhZZPS0JPv6INK/bai+8RWaoocpe+j5nCK5cTotI1beeXQI+LbFeC96bBUy7pllSUNOCRsITfReqPjSGMPUDRyMCYMhqt8j6iwVx8lBu67F1Ws4gL2Z6OgBUUd0x7hL648gOmwSH/0qFw3WCDCUAK/YYQDBpb2hVvcL1qWSAyYEI+Pj59uWNZUzjS3zGJg5RY2nTcBd4SEjki8d/WXNOoZtBuj+GvMAPYwUHYkppNPhvRLmTbH9RI6RwL1UYihhQgelpdERfBolTAdwB4WcQOe6v5+A7ElbfAUyrf7Bifd+8taNQMoDpQ4e4qwuL7F7VGFKyGO3eLUkGAtGsTMa8XDQoyz66cKrleGPUhqdFVx9+x3+2aNbvHx/zON3D7i/d0Ro/j5P/jf/T7Lh+goG7YAVYzKyvEApYU3Z4kRypjRZKQCtthkxipyD7BOD9/DgwS4XHruMc57WLwScTHmeJrJx+T1sXnqWg/GMRbXk4GCXv/WL/29u3ryRYqSc910CBl08PW60ZmVBUeTkRUlelPggYz91VVNVFa5e0gZH29arz1GtQFi59oeHB/zCX/7LjMdj/tjP/iw3bl7ncHxE0duRUfbQprFR0aLcuXSOydGY5XKWmBXyWQs70FFubZJfvEDdNQE6ZiasmCGqK/rjMTipYsRE+VM5L7qaVUNYLvHzOWE2x08mhMkEf3SE3zuk3T/A7x/gpmP8bIqfz1CzBWopIKJqalTboFwr8SHpcwoQiIy6rNbtMRgoSHWnoiWHno6KqDpNJiNMFgKKAM6AzlGoDnMj4LnXzLlfWp6ranShgUaeUwvj4aiqyGOkXzkZy1WaGFvRFVQkEMQkwN1IszV99iFIciwM7ONR0uAa3HJOmFe0bYNzniZElkZRjdaoT59BndlB7+xg1tawfdE6ikqJwc1iiR+Paff3CIeHqKNDRrMZ63XLKATqtqJxDbNcYbfWGEVPVjta76RxFBROwUIFZlpRlRl9HSUpTg0Ok2Xofg8z7FEWBeOmZiPP+filU9iNTb72zdfZW9RkwyHaZnhVHxdh4RgdERdrMFbjncRnowzW5FLwrVhTCtsFqSiF9t7b19n52EfJzpw7sbdE41qrpIurAlobWudWBbfWhv0jha8rFA1lqVC2xU0CuQlsn96gvzbkzJNniG0fdd2Q5TlVvSBmBh3h6mzC16oFLYlxrWQFDkZrPPP88+ycP89jlx5n0Ovx5pvf4ujwgBgcTbWkbVrqqiYSRYoHUFqzmC9wTUOv3ycvCuqqZjAYYK1lPp+hgMl0ypkLj/Hg9i1CcBy5lv9l9w7/7WOXmd1/SLFcYBY5mQ5k/R6+WuJDJKgg5nZRmJ1LJQoJ3nmC7qRs5M+OkZI6TensQEwgVGo0pQNy9ZHQMefS+aBJDR6JExhFMAIChiwjlgWxFBBQ9fvQ66MHQ+j3ZV31etAryYoMVRSQGWJmiMYQ14b01kfw2LljXl4Ci1UQ6R03X1BNZyyPJtRHE6qjCbPxGD8Z06bGQ1wuyRYVZd2y9A1vNjWXewNmhaUXxOhPRWEYepAmX3JgkRHYTlu9OzBFpGCqWr5RL9j8yPv5+M//HKMrV1BGo9sWtX+EWixgWUNbSx6TmlnJ0QGUFa1ba1CZhcxAYeV7k8H6Ompzg/6lx+i9/BJbn/wE/sEeR1//Jg9/47PM377KMASKZC4BXe2ZzqS0TxJxMMVMJ7kSsKciqp/h3YJ5s8QHyLVmEK3UW4UmzCI2Kpy2UtSHQPeAsVsRXRM1duAepKJEzkCtUTrDKk/TOvIITT0nhCATSq6lbj2jwUB+bgrwUANTFFZrNjZ6xOCo53OC9wwHQ5rMYLRO47PquKmZ3nvbxaCI1L8J5NRKkVmL0XrFsrZGRCfapk5xx0otGzp2okYbm9QUkglHCNKIiCJBoIPBYbjb1LxEy0PXMGkqrBGt6NHmKS49/xJf+I+/w2x/F91G3vvKh/lj/+ef5f7dh5TliM2zF3i0+4jKBU4/toNxkPdO8af+1H/JP/h7f59vvvYNFss5s8mYr3/xCzz9/Is8eHBI0RsRW4dvK3730UNev3iBD0wCbQ1YTb42RC9LXCNafBmR9RC53bQ8d7jg3u37DLMcCokBvjN/6j5f1alVqgSiuUS8UKs4TPqZTuhpjAFCarcrKfPls0iEHC1EHaJDqZlot1ojdYpNsjGZRecldtAjJABQ9wphURcFOhMpgRVrTouZhelr4qkBQZ1N8SkyHJb80Fe+zIfOXWb94SF+PIOjKUwWxPGEsKxRdSMTDE2DbjzRCysf51AEXC/HfOA5nvpPfpT83GkZn989glmTGp0LqCqUczI8p5WMUxY5sZ/DsCQO+zAcEId91PYWnAblIqpakl16jPPPPMupb77Jnd/+D9y5dpW5d5xWAwpl02h+8jJY5ZtJwzbF55DWOEoM0fIgsXrdBR7zgX6vz7NnruC05kt7c/RAJ9aT+CuUynBaWw5nRxy0S3FkXxnXd5+/TIu49Nik+KlCwGhFvay4f/shedlj0SgW8zm9QcETjz+OMRmXLl/mW299nQ9976e5tD2kGe/y5a9+hQf3bmAP99B5gc1yvtPbdwzwKRS5tYLsp3FWm6oprTRkrJIXozV5Et61SbhexUBmFEYnwC5RqhVenBW9w9UyGusS+KW1FBTGSEJprRFh1k7wLrg0WtsmQlwl9HWfDn4EZAo+CPEhykEdfCAzuYDaRKKxjJdTvnWnxVhFVQU2RiWLOnJxW5NnFmNkJMVo8M4RguS5ZWnT+mvoxkRjDEQ8WotrpA8NxhwPpYWo0LlJoJOMGXiv0muW5M8HoQqHNhCVxuqOPRFonIABAY3zCmOG2HyDor+BiYbga1oV0WWJdw2NW1A1njDdR2twjXS4PYG8LGjaQAyQZX3yfJ11nTNfBB7dv0dPRUwmG1j5OVaN5BDR0tWxxuCNaPME72iWFaXJsJloCcYQaKoJuJqggTxiM42rK9zigOX0gLUzHu81i8WSbaUYDoYcjccrBF/Ah67AhFWx0yVvnGhExOOiXq61gEgxHYxdB7XTLzpZ2q8eOv3pvaN1U/plSb9XUNUVbSsJNiYk9pasp41Byb29I2yZc2M54+O9nGnj6Z0/w6PFgr/pHXmMlFFzdnvEpwdrbOaafoSDibgGl03ER8MXD+c8tjMgM5FgDS1QGsXDRjEoNCp6qqSb8U/eecD96ZJ1H7l89iwPm8gsGDya67cfMVzL2N7c5I3Jgqttyy9Zw1ZRUpYZxfqAH9kpuH7/Fi+Sc9Er5n3HuZ/4EV754z/D4WSMW1Rsbp/ixazgd/7GXa7efYha9nnt1l2y3X0O7t5jtyrxpx5johaYGPiCN7hpn7ucZuNHfp6Pf/qHIIEOja+o2prlbMJysaDxkUcPHlEv5rSuYf/ggCzL2NhYYzmvyDJDr9cjzzIiivXNDfIix2jN5qlNrLFoY8izAqvF+UgZi7aGXIvLalfQx6wg+9hH2Wj+Ig/+0l9C3b1H5gMmapnpCgatIoPoGCzmhMWcjMSa0ZalgQIlxX4SNxcnSQHaO1BBWQm3Sitc2yTxayPgmlKYCO5gQnb6NKbfI1qDnzdoHQjaiD5WBNWzIl4bA1GDMpZQJ5FiFYnRpcIltbTScxIDFkNoWumQm2MGSMfOly6v6NckX8DjCbyo5MAwivUYGCEDDw2KBZGKSJvilCJgCGRIqyWiyGKgCZGzJDZex7YLoqEDYDOLb5vVGORqNIA0wJtALb3SIk2gICQWwPFjfTvCF7ui7NuAhriKFl1nUCXQpINSIsKOSuCPTj1CpRKrqOttps6u0gmsjHROiTG0hKjZHm3w3AuPkd9aHhcJHTMpBnp5zoP9A167ts/eE0/ymR/5OG6xxB8+4OyjPTa2d+S1aZ0kIJLUQNJfMboraBLDka4Jkoq0pNW6ci7VmjfffJMPvfIKzjsp4o9DaWKcy8jAbLmgqWv+wf/697l+/foxOtx1q+meT8DDstfjueffw9b2Jls7pxmurdHr9ZhPF+RFQfCearnAtw23b99Cm8jVt68RY2R3d49mWZ0AegX0Wy4r/tbf+lvkecEf/smf5OaNq8wXC9ZHG2Ta4n2TjF9kf/RGQ46ODqEDDdN7WywWGG2YLeYr0B+k266SkUsnJB6VxqASYC5fWmlpDOUZFDlq0EfFjeOciBPgZFdYCSUbXHLWWy6Jc+m0h+kMP50QJmP8UQID9/ZwB4f4ozFxOoHZDJZz9HKOaWqUk2JVx4DpGp4IQKG6/SAHnwBuRGKoxN05WiJiNqOV4rms4Gw07ASFbhqiapI8t7B4HtQNa8rAvKYNjhi9yLEEMRbrdC8jwmBQRh83YZOGTwxiviZc00izXBCqGqJnYTOaxy6i3vsyGx/7bkbvfS+DJy6TbWwSixK0XjVIOvArymGMbhztfM7y0S7za9eYf+2r3PvKF4jvXOWDiwU394/4rdaRZ4bSWPplzobJGFhDUWTMrOKbB1PmmaVfN9Kg01CuDRhsbKLKglZF2tbhvUMD8+k+1XJJqzxeBVpf4Zzo1sm1FrkaS8SHQJ5n4uBtrDh9exmjy7Ok5pjWiDiwH+/rOJty78YNnvnMTxDRWCONaikWJefwXkb0VvEsRpnciJEf/MyfITQLDveuc//2GxzOx/h8QVMfohvP9a+9gXvPJc6fe5xQ5AJgaE2MCuc9v7t/yK7vmOAig9M6x9aFLZ58z3NsnjpFXTXcfedtjg72cU3NYjrBNTXbO6d58qkn2d4+hbUZDx8+5N6dO8ymE7mWsznr1mKzjOl0ymDQ59y5s9y+dQuA8xcvU2SW6++8QxM8n9t9xBfOPcZ3D3Kq+YIiL0TQPktgmhOTOAGjUsMoTb5E16KsISSlyJDOAZW0ejsEaAXrK1Kjoxv/Cgk7UUlOJjWUvTruC3UN5mRsE1nKuQtCYxbaJV4BWiQ/sJaYibZr7JWi/9frYQYD1LAvcWVQYssCXRZSKCfneGsMxfoag401uHRBgJfupAxpSsC1wgZcVNTTMYfjQ9w//EecfuYF3ppMaCeigWVcTd5mDJynjBlldBQodOsoosYEyJBpJx8iB8Hx1eC49LM/zcd+/Efk9R0cog4O4GgCkwXMJ7BcQlUnlDU13rTkEGjRryWzxCLp3JYFquzBoEcY9lCjEWogY9FxbYQe9Dl9YYfND76f/c9+gdu/9K/p7Y8Zpaa3IrXdElhIVDSTipWaVdBSI6nIPARcVCJJoTyzRUOpDGshyQ8k8x9lhbEaSJ9dWgddXhdiGuEkMXZXOYdKpDwBYIZZS5krQhMpyhLvHD56RoOCOJ2jlcJaw3DQY7FbEXNLEz2lEUa1sQaCZjQoqdqWOjoMEv9V0r3odAFJNXhM55paNR1EP7L1DudJ5hgptoZIZmxiBMYEVila57G5wWrR9CMqMqXRVuSfgpeIp7TizKVz/HahueXHhPUdGl8xbxryPOO5l17k7as3WE4Oaaoply+c5yd/5sd5/cZ9nrh0jp4eMJtU/Oq//hXeevM1/ugf/aO894WXeHRwwKN7N/n5/9PP83f+9v/Ma298neBbJoePeHT/Ds+99718/QufkyaxUuz7hl9+uMf7epu0C7A+EnVGf22d5UGDCw0qRk4Fxa3FnDMbO5zbOUt0LbFxeCPs1pAa412M0EqjUy0f4jEZpAO/TUKBgu9koY6vuciniEeB8tKwjz4SQoNJSUmMMl1gjKVdeGn8GA1xRmvTtI1SmMxA0n7WmUVlOZQy8qv7JabXQ5e5MP8KjVKBWGju373Fpz70Yc6ePYtxMlYafIv3EV+1tFVLmM3wh1PceEp7OMUfjlGHR/j9MXEyZv2jH2Tzox8S5trtO8SHe4RHe4SjQ/xsCsuG2KT8K0RUFJDSZEYYi2UP3UtM59EAtjeIp9fhzCZxew11egs21shObXLl9CbDX/sN3nr1G9wKE86pEX1xWqST1InBr/KCrtbvJkNCjDQ6YoNMURIDZYycGayxfWqT6zfucFpZolbETEEQosaRdrx1tMvDakEA6tCA0ShtpDndOoxWEDVVVck57d2KCRtDJC8Knnz2KY5mc3qDbY4ODrE6p1fktLXjwb2bfP1Ln+Odt77Jzuk1XnrP0wzPXOHKqSuM2hkmV1hb8J3evmOAb7DxEuWpHZrlEW7xAOv2sXpKpj1WA0qCpTGaGJ1oZyWwRTaNQrrFYt3daaSJCY0EIxTJ3Uf0tTJrRQMkzbsrFdFJSyAkhx+tI86lzYh0w4OLGGXwiekiACFJxwe01SjtRLzUKrResjaacfl8kYq5mDSYIgSHosQpC8GLyGgugtSSVgRc64kEtA4p8fIp9qZCyHRUaZOKtUisuyFLCaYhLejOacYocUQkjac5mwraUNDUBmN6qLyPKvooemTliBA9LrY0vqVpK5qjPXwbAEfWs/g60jqP0ZYQRIdBMULlZ8iydVwb2HvwkGb6iI1hD9MuUAa07aFVyWhtiyLv4YPHaEWRFcnbQt6vaxuUFt2d3ES89xjrQM9wWUtQChe86Oy4AlfNqWYHBNeCKqWbQqQo8tRV6QDRTltMgALdzf3H7hrGFeIOHBcGsXPUJX2mXexUyTilo/dz4rTuED55VEJkOp9TFDmD/oCmqVlWDSDBxXtJEkf9koLIqNfj5kHgYxdPcXj1IZtnzjHIHF+7v8v9/QUNkfnbt9jODY9vDDlXKjJt2DA5F1MxeU0rxh560XK+J8BWqxXfOJpTHda8MNJUZEyj4eF8yaRteWex4N6d27x9MMFHKLOcbDCg2lsw7B/RNi2tzZjryFPPXqGHZ3h2g/FyyVYxZDMuaS3M3/sy7/vkD6Nay/b6WfbNnDO9Abfevs7o/BXWFguqZsbRjWt89kuv8cUvfonttXW+93u+j8d/6Amssdw7NcIUOY9feZbNC09ShzksF4yPphwejdmfHPHw4UNi8Dz93LOYske/7LO2PuK8D4xGI4JzlEXOclGhDBzu70kxqRW3bt8iRs/4q4cYrbh0+TKDXp/trW1hC5RDtMmI1pIVBcbIqL5WCl0W9L//e9naf8SDv/LXyOdzoklcs5iYKUnbT8VWYpJCDHYQHUlixPuIURadW441FESbQ1lxY5XaQYq0gAjO5zaTMQjfEvf3U2dbo3wLGNlbVqNan7QmumJCmDNK+7TsBaCTUbgIUa/wrBghhloAByLReToBXVIXX5wrXQL8pLt7DItHorag+1gvIyURTxY9BZaG0MFcdGOHmjQqpCVWzyMMlPxbFbz0Pjr2ioq4xq1Q+WN47hiCE61Vm547ysiyMTLiGiMhuBWA/+6bWoF8Mr5z/LzdXhewLQFg3TgRXQNFziGvIh6PV5H9QrM8vUE9GsjjuEDeeuykZjhf0g+OvjYoLwLY2shERz7sUfYlkfNJS9FHD1ocf+umwbWR6/01fuvicwwHazxzeYenN0+xqVPD52S3fsUciKuzY+UMThrfS8X56loQUVo6i3fv3OGlF18U0ezu2q+A6QgxMF8saL3jd3/vs3ztK19bMVtid/1UOtG1ZjBa4/Enn+B7PvG9ZFnGG2++wetvvEld1zjnMUozGA0ZDYfkWcazzz3DqbM75EXOKx/6CF/78lcZrd/j0aNdJgf7eCcaux1su1wu+Z/+p7/O2bNn+dCHP8je7kOGvT55cjx2QbRqm8YRY4UxNhXxHQAJ0+kUNDRNnUBZjq9bWhtdQb86sU/8jl4Bfp2mpk76gSkJR8b6VALIxbgmEq2GwqIHBTBKy1KlCYf06XS6kjGKwU/jiNWSMJ8TppJ0h0MBAP3uLu7RI5r9feLhobAGFzOYz0XAvq1R3mNc0q1Kr0l1pjzRo4Ji0yk2jTishswSlac2mjJqgtLsh4ZTyhDqRjRgVZrQcF70RRNrtRMjXxFZYOWcq0Pn9i6JuQPm/T7qw6+w+Zkf59InPkFx+TFCr0fQAnw1sulXx+8Kik9JvdIGbAa9kt6pLfrPP8vZH/1h4nLJ8tpttr70Rbb+/b9n8tWvUy8m1DYwbhruLRsOjKKeianBWm54LDPEw5qgFL21Afn6kJAZtBdWuTQFA95k3NydcGP+gHHjKTdK2tlSZGFAGPYnGB0qjb1l2mBMhtM5PnpMUUhe3DU5kHzEpPy0NIajN6+zcXqHbNAXhlpMrIq0H0LweC8upZm1ZJmM7XeXaW1th82NTa48/T74LkfbVkzGBzy6d5XxeBffv8bhvOFM2MCbZGqmpRjar5d8aXJAExxRKUySmljbXOfl59/LqOgT65aHd+6wqBbUiwXz6ZiLFy7wh3/yD/Pel19ma2sbnbQym6bl6ttv82v/9lf5/Bc+z3Q2YzKdsW6EYT+bL1gfrfH88y9w/do1JpMxjYuUvb442HrHP7jxNh9/5hni9V2W8yWmsGTDElUUMoYcjcQs7TCImYGPYgigfUz7Vqc8UgBnfYJtdaw/17UDTnzf5e5dU+xkzDixJuHYZXQFtnTxOT1+XIEurP69So8RFaIRplVyd7eo3EKeo8qC0CtRvZ7oAw5G6EGJ7vdQPRntoyggz1C6wGcZJtfkRU5va4StzvLJ7/kBfuCP/rQAkcHjFkvaxZTFoqWeTpkfLaiOjjg4nLE4OmI+PWQxOaStl7h5TVM15KNtvv9nf4onn7mC2rsPe4cwnsFsAbM5zCoYL4mTpeiPVpWM7XVarUYnMyuV2HtpjDmzqCIj9guJkcMhbI6I25uoU5uwPiIOCuzZTU595vvpP/0Eb/+df0r19ltsa2FWexTl2oBpU4HRRKMpg7jrdp9dayLTlN9oHfFti28cMVoGTUMWwMdc6lHnGQSPSU0mpcyJ8zaumF5d1rJaDwn8s0qjlWM0yCnKgizXgCX4Bqc8KnpOb23gvOy9ug3EaAlA5T1r1tAf5IDouz/5xBO8/trr9MocbVQCjyI+AZxEn16nWo2WyxKUPFnWvF7lBz5EfNNK/aMV0R+vRbQiL/OVmcaxnEBcNRpNqrtiiDzx9JO8/7/409y8dp3Hn3yR/qtfZOEhG/R4/Nln+b0vf4vl+IhMwad+7Ee5eu8hZnOHaR3Jc0/rImWvZLz7iHu3bvL0U09iTeCf/ctfovdHc37uZ36aX/ir1xlPj3Des/foIWubp3nsiae5d7XhaP8R3rf89sEuf/qJLYa1kxzfWrKiz2i0wd54F1Bcioqv1Qvu1VOeTPEh+EDIkk6hTkw+J3IKIYjuaLfvxcRGas2OdBRTc2GVX6aN7aI0rDXiDm91WOWyPgq7vWsyhtjltj5NkEVimyYQfMDXWkzcAmLqkvIvlQhPSmt0nqEzg+r3MWXBYiPn6vXrfLLYQo1rVL8HvSIR7zMxdchL4tqQeP6sxC4tkwDOGhbXb6PevMn6xcfQ4wlxdw93+x7x3j3c/hhXteKw7ByOuDIBJ0a0llzGKAGQdZ5jixJTFmTDAWp9BNtbxDNn4fGLxKfOw/kzqGGfU8WAXPV49dUvccNNuGTWGASd4qjUY12O3uWjdE+tFQ2RMiph4SLyRIW17B7s82g6ZWwGWCU+D0SLi5Hr40NuuiUlCu1F8sUogcqstTTNUj5LJYSITjfaeZEKKoqMwWiNvNen9Z6eUWyf3qRnDYtlTaYUKrTcv3eTT3zvR5kvjvjmm29x89YDpuMjLp3ZYnNzh8uXHuc7vX3HAN97PvhjvPf9r9C0FfXBA+6/8e/Yu/7Pyfx9CDUxeEJIGmkmTyNFFhWSIUcMGC2zxlpFAk5GaYNQXY3ViSUhBZY1HZGelBQFsRdv3Qo9jdGlMSQZu7FpXEGlzmROTIL08ljGdDWuxmRK2BZKiscQI1HVRK+xeUYQDjvKRFw4IvggumFBdKy65RWSUKcEgmMtoZVleVRiBd+NCERJRHwAq3uAIQRDZiWAW8RxWGc9rCrwLk9AlyHGDG36ZKVPuhey+KazfbR1TBYHLOeVdCEVqQDPWFaBXqgxDNPnsIbVPXTRQ0dLPb3H+OA6/UFJbnKWfoZzCmsK0XfCopQlBE3denKrV0VkVyYTgujPW0O/zKjqihDmmFCBrQimxeR21dXQZY7KLNZYsqygcUIjb+oam3RDUrObROxglc0qGWfqRNzlJ6k4iMn1LMY0Oh4SUJKAZi3Cux2TrzvAV/T77tFOsFZQitZVNE3L2mjEqG+ZzhdEY1IxEyj7Q5RS5HnJ3ZDzWT/hvS+dZxrHtGXJMNdceepx1ra2+Y3f+i3u1g0H44Z8oamWU6zW9GxG3dTMXGA0q/jIpR3WYoNV0llsrOILt6dsZUOcisxtj/MbQ9rDGcXGBnf29lm0rXTjguP02gDvKh7ujTEqRwfPuYvnOPf0FbK2ZTyZ8M5hw7nNEZdUhQlQDkZcu3qD07Ml5dqIcmPE+vpZNta2ePqpZznaf8TBwR73D44Y7Fzg4jNT2sWEL7/xKoeqYe/2PZ6+/BjjoznnL73NS6+8j16mWV8bcbB/SH+0zvrmDk++8DJtU2OsweYFB3v7HE3G7O7uEkJgNpnQz3PWRiOUhoPDIy5efoztzS3ec/4i/V6P5XxBWy2ZHO5x/9497t2+yfaZcwyKAds7ZymLktIH8r7sM6NkXDD0+wx/7Mco3nib6h//Y5oIPSSO+HicpxtMEhZLh67WZNrSaV75CEEGVpPehlkl/3LmKaIyAnoXGdTinuXqFqLDH4yxZUnMczAQTSSzFkUkth5dWEI/R7VeutEJFOvMCRRGmgUpcejOWqVIrL6kt6f1cZex20URpJJJI7GrA1MKjmANWX+AOzwUoCMENAETIpmSUUIdFcFogrVkPghjSSmUClQqUvqEOIaUvJDcv44z8NVrOt7dHStXBNohJrxG2Ao+/XJnqNEZHAngkLT7VrGXE3v7uOseT3QGu3tIoIUKIT2fAxV4Z1jw2y8/z9dtZB7kPWQ6Y63f47HNNa6Elotf/gZPX33AhrIypognNI2I+CcwTWstTCkt7y8rS5q6JjeGUDU0jcfZlkeTJZXvxqhlnXWgVHffCZiSzhFddYkoHWgVVwCz0ZrDwyMODw6o6grX6TCmz2L12YfAZDFnuVzy67/2bwWU5Bjc65hbWMPFJ67w/Z/8JAcHh3ztG6/y9htvCgs/hNTlPNmEMxRFwTtvv8XmqS0uX7nC+fPneekD7+P95v383u/+Rw72D7h7+w6zw0NhNyEF+Xw246/+1b/CX//rf53+YMB0PmNjYxNUhlYuge3Sgc8SAKo5LmoWywUKYd1HE4/ZN5woursCvgPT/4BbV8R3jbsuMVbpnBXwIIGAHdinOq3Y41FmpVdtP9TJ12AVKstgkMP2unyeiP5cjjQIdZRzVjVtEq2f4WYz/GRCPDyiOTzAHezTHB3iDw/x4zFqOoPFAl9VUCdHvraVRw+BjAZPho2WKZFHy5orWJq2xQePjl6KXyKid4IIj8cOHI8rkqyKQRjNRFwCLye9El55H+d/7o+z+alPond2CMbSanVCMysk7Sfks0xr8nikPl2j1DTR3bgwoMoe9vln2X7uSU795I+z97Wv8o2/93eZ/tqvc7Zp2EbicMgsc6s5jJ796YLcewZGUeSZAONtK6CQES3bqBW5MRzsTrm3mKFiZGc04Ggyw+aWsFimuMEK+O5cK6MSvawQPKbIKUdDVJ4l3Edee641Vim80lg8V7/5Td7z6U/jvU9ghFmxbx0CaBgjxmyiTRvpDOe6ddSBdnnWJ7c9NvIh66cuUhaW72oa6rZhpHPaf/avgOQKqxRXpxOuu0a07ECaNGiefe5FLly4QLus2Ts8wLU1hw8fgYp86oc/xc/89M+RlTm+dUymc27cvMWrX3+Vs2d2eOmFF/kzf/b/xosvv49//s//Kdev36BuHefPnadtHS5Ghv0BeV5wcHCXzZ2z9Po9/n/M/WeYbdl1noe+M6ywY+Wqk0/36Qg0QjcagSDRyIwgRVKiKFO0ZEmkJQdeyX6sZFvX1tW15Md+rCuKlGTJCpQsiaRMmkkARYEgCQJEDt3onE8+p3LVjivNcH/MuXZVk/5zL/648Byc07tqh1przjHH+MY3vu/ayy/SNDXPjMd8oTJ8ZNDHzErqWWimoSReSKzxsaqJMiaSAGAEG7oQp06NTkMAVds8r9UdW8g9xBgXA8cp4PrksRMdmJOGAG3TJf6YbJnRcU0EpqeIzxWLkbJYqQadXBHWhY8EiOANd3IuIYJ0j5cSoxQ+CSCgSzNE3kXkHfygi+7m+LyDGvTZm464vzcg292FJIUkTDSIwRJLAxBnN2jPWiEUzku8A+M9ja2oqjnzecly2mVQlfDyNdzOYRD2H0/geILdPaDePaTeH9MUJdgG5wwOhxc2aNMJgZA+MNOkRKgEpVK01ug0QScpMkkR3RyWOojVZdhYhjPr+LNriNUl9LBL7/Imb/1Pf5Tnfv6XufuVr3MmSVFKUTmD00Hz0AlP37tFHQACLNRSkCUJWilEBdJ5hFR0RGDCC2tJnSEDBjLlhnO0mslvOCtO5Q3tn0CYi3mHhFxLHn7ozZztVQjbUHuBme2Rr/Y53rmNUJBnisl8Rm4VI13SYEh0QqfbZWtplVkxZ7g+RIuMzeESRd4J2sneLYCG9jxx3i8azIFhHda18m2t02YLYrGoXRu3FzJIQfBfxvUbpBlDk0OJMEUhYmOi1X9NdMp3/8ifpmgaylnJO19/js/81m9y/8MPUhrDeLRHMZ9y+fJ5Ns7fw+vb+5hyj1cPn+ORhx8gSXJ0L0hG7R0eUpkah6GoCj7+7/8d//mf/U957LFH+exnP4PxltlsRlmWLK+u88o3irhfJK8VM54uZrxPZJiqle1SdDsDdDHF1YZ1p8ms4cnJnCtLnaCGKzzYhtBAdggiccjHhrgSIf+P+Wc7GeGdoIm5tYpNPhtzMhkNR2PKC0LEhpEJhnA+NH4D/VYsGtgysqW9C4irjHvFe4cwAYwMtQVxjDpIFgVMIkhECTnG4XlFlAw9uE9/AaMSbCcPxnCpDvIB/R70uohuNIbrZsgsMIplbbE7Y7q9VfzrtzB3d7DX71Lu7jGp5pT9DmZjGTvo44aD2FyQwUyjKHGjI+TRMXI8RU7GZNaSioREJcgsJcsSOt0OammIeGYVLl/Av/lh3EOXEG9+iKUC3lJWfP25r3PbTrgo+uQi3JdQw7R7O6otiLAeHZ7KOzoELMIjcFJSOkcxnaBSjVU5sq4D0x6PElDbOjgTu1CXaMLawYESCtMY2uZQKKlifuM9dVOj0oQ86/DU157lkUffRdMv2Tp3hm6S0x8MuXvzFrevXWV5sMK73/sEk/mE4eZ1+us32L9zk4yG5bUlOt3/GzD4jLUYKxCqS3fzPh7Yupf18w/w8mf+F3z9atCHisLk0sUkxFqMtTHpDZ0HEBgXxIEb06C0wjaxSEbE4jkAM8a2ApZhiMT7k9Eor/wiOAUh1EhR9g5nDFJCbQIDx3mH0jLmYwJnJcYZrHWg25Emj2sk1ja4eThMnY8sGhEcxzw+MAxbh1sBxgZhSucJwZV4HIS8NXYIHFIFMCt0VRRKpSjVjbphGWmSBf08m6C1wuuMGkXS6WK9wziDssE9y0mHEJqyqDBVwe07h6R7c5QqSaRFSYUxIDNFkgahVK075J0tnA3g6NHomPGd10ilIO8IlKhQQpGIjEzrUMQrjZZZ4LjYGuFqFB28a2hqF2zNY8ciTRSdLMPUU6pqBMqS5hOEmEDuSRwEnQ8VnptnrJx7kNXNK6AUZm6QCEZHI3rDQQT3RAQGfHB18yesm7ZaX2gS0dYKoatgXehYGXsC8gEI0WrahKapjAVXm8i1Hbrfrw0mBJTO0jRHDHpdhoM+09k8YCjekSsNUqOTnOXhGr93/Zhnj3YYpJKJhdIJsm7N0eFh0CrxlvXVLk1tKApHUdcUdbVww0q6A0yqefF4QpYmDBLNer9LaSwvzz1SOib1MWc2VqiFpDElVV3H6xA6Kbvbd7EudPGyLOjDJVmH16/dZnx4xGRaMB1PuP9ewT2yw0BkrA+HZAONLUccTo9ID/oM11bJuhmD4YDlzTPco1JGsxFPANKHZKEoK5AabypSrdBaY4yn1+8htMQZw3BljeFwyN7ePuOjY5598SW++vUv8sLzz3Kwvcf4+ChoNDVm0Qj3UkaMSpCmGUsrK6yurnLvlft4yyNv5fLly1w8e5Z3fOsD2KZkNDritedfYntnh/X1Tc5snSEpenQHSyQqIVGBResHQ8782I9x9eWXmH7jGbIkQ6kAAnoR2GgSiRMhDXfeUNgwGIMAoVX4XD4cwCIeNkAAOIDgqhtAKW9t0DmxNurgOERZ0ewdoVaHeBU1A1UoYmiCJIDsJPjxnFZvc0FabdenCMlbKBRkIKZJuXB587ED1jpyh+omXluIhTq0yiNEcxphHWZW4oUK4sBBmyCAfB6c0LhOl0k350BazhaWfDJBOkvjJQ0NHZ8vjFFaUEQs3m9xQp/6Ez57oNzaCOKFXzqMT0XtIASWKDSMAy9x4ZEW1jr5/fAL7bwADhDGCeIjC6aGCLEmgGkO6R03ehn/5tx5fum115hUBVKEsZbAAAYlLBvLXf74Q1c4M5qS78+CK7RzSGfQHhIhFqpqQazZE43aKKuSyjRUTYUxFd53wdoF6NbCeL4tLoVYPN5qkwZRZDhpiJz8ZqeiF/1BH50kOBcS91BstnEzXKmyKrHO8fWvfJXdne02qi6KUYRApinveuLb6C8t8ZnPfpZqPmM2HuOMgajH22Kr3rejQg2mKphNxoxGRxweHPDa8hL333c/KysrvP9DH+Qb33gWkaTcvXad+XSCjbFMCMHtm7f4+3/vp/nv//r/i+lkRF3XpEkwpGnHyk1k/2mlApM/nsWmaUJyFrtFi8ZNC+8uiu32Vz25bif9nTc+tugs2faHWKzx3w8etgyfBWAgTp02sVBrx63aAvLkz4nubAAPw/6QSQ79HDZWwkQEoSjIgYV2n3VI64KjcF1jqxpfFJj5FDub4qcz7GSMH+3D7gHFC8/x/CuvMar6CHJGPkNXRdAMFIEWLFxkQXuPjKP1Hr84Wxe73DuM8kzPnWfpT/5pLv4HP0R67jwuzQNQ4S2uCQL0xrkwMm5dcLCN4FVgP53cXyHjNRIhRkutaA2WRGRcq16fwXu/hW97x9u58Zuf4mt/+yc5fv551r0LemGJpjaGeZqwLD1LiUJ5H8TCpcMogSc4VjfOsZWmrC31mWGYHk+40s/5zcMROuuGtReZ0FJLlA4TFy7mmFIQjOeSlF6ekKZRtkEpEinJtA5Fm1aMXn6FbHlItrGBicvJRM2r1pCnde5s477AL4pAvKPf77O0vERdN1RVTWManLUkaUpVexAJnU4HqoZS2mB2JxVGwHPHhxyrIKmi4nVeWV3jrY89xvbeDlpqpnXJ7u4eiVZ89/d+N9/zfd+LcY7R6Ihhb0ia5sgs51f+7cc52rnL0qDHE+//ED/yx3+E/+LP/3n+6T/753zjmWfY2zvgzJktqrLi8uV7mEwm3L59k9HREb1unzTr0DQ1hWn4hVu3+NBDb0W+fp16XpJkKbKbobSmaWsGF8zb8EHaxwoZdSHFosHTnnxIEcOooJUCON3gDfqRYR37SE0R/vft/dg8OZ0cCsQCuLfeL9ZqGzfbkX/aqHOqEbNoxkQwbJF9no5LtLVsbFLH30cR82Nx8tkQgkYrrh8f8eZ7L1O8chXR7SDyHNHtIvMU38mCu2evh8wzfNpDZD2kEkgtSbWirzNWlUHs7iFub8PNHRiPcEfHmLt7VLd3qUZjmqbBSIVPU3w/RWR9bJoglMN5hzEOWdchjpTBxEi5JpTSwqNESioTUp2SpBlpp4tY6sPZFeTlTdjawp9ZQ60sIwc5b/qjf4gXVcrrT36JMxbExCAGXZSQ+ETiyybGjpApWDSFb0ikwNWOjs7RSz0GeyUKiXcC6y3rHnpKYq2Mk1l+MaYZAGERGdynchWI7xUkjqTQ9FLF6nCFwcY6edpBd3poYdCdHtP9HTqDIUmiqMoSUHxu/LsI+TpCpSyfv5fVSxdY91NUJ+d4b5f+2nmMXyJPk9AM9D5oQGt9MskU15WP+8C1DRIZjImUODH3Ctq1MoxO0+ZinOhTtox9QswNuaWg7eIEUEmA9Ng6PNbpp/zEf/kX+fbv+C6sqPnV3/g09XyCwvLmt7yFuwfHlI1jfHCL57/0GW4+/zR/+If/OBsra6yvrnGwu8foeIQWsDIY8tr1G7x8+w4f+eiHePKpJ2kmBdY37G7f4p3v/TBnLl/h5ktP4/GUzvBboyPe3T+HSCRKS3whcNaysrbO8e4OHes5Zz1fKyd8ZGmJFZfg4rSJVGkY/7QOr0QENcF4G1G6dupehMa3D80b7wITz9lThgzmZGS1jdnWmyAzI9rJnyAbBj7WCQFgbvFXrVQY/fVtuyXGg2g6KUT4jFi/aCo2jQ13UgquFnMeHvSwRYkTBl3HuiECmV5A0gnnsBUh5jitkHmCGPTJ0fjtI+zLr1Ht7FCkGfVjj9D98LeQ3XueqpuzXxvGTU1dV5TRxLSXZOQqZZBput7DZI69fofdp56Hl15CXbtO/+iQwVFKvn9Mvr2P3t1F3rmLufUA8h1vxT18keWjd/LQ8THfuP0ydyk457sBi4g5e9CLDlOWLhZEDsdMOpZkUDD2TqI8oDIakVC7GtVNkLbEehdIXY1j06ZMRYd9WaB9IFEhQkLlZNzvKJJEB7OcslycAyFmO2SWMOgNSLp9BoMl7styyqLGWcPWmS1eePYp7n3oQforW3SGq6ysn+fRRx/n8OCAo4MjZKLI6jnf7Nc3DfAFvTdNGD/1oDTL932Q1eN9bn3mv6M2DQKDVB4lW0dGG7scGnCtZjogcFEkEiMj/TcEFOtahh4nhddCE4CQDDZtJy4wZzzgbTjQtZJxnMvjREDiG2OhqdEojLE4H0ZFERJXh2BovY1W4RZjPaG7FQXFZRjDszYUn94FbT3vTpJ1qQRZmsUDO1JxUx0OdxkLZCFIdIYSCZnug02RMkPrPkrm6KyD9wrnBbYx1GbOpD7CNCVN2WBccNp1jUX7MM7XGM98Mqe3voFUFVppTC1pKsnK8kWW11a4cX2fNF1hd3eHydEeaVKjdI6yJUp3EMbR0V2EyyjqAIp6JbBR7yvJEpQOLEMpHQKLbQVZERhvAIvDUtuSPLF4N6NhBLoMzS0pQsdDa2rvyVKBlzm175CZwPAUUtDpdgPzzntak6/A4guFaauT4GT83hvO2pY51f6J4zC+LfCI4LFYuCcpH4VRxaJKC52WeGfbZC7mijhnGY0n1HXDytKQMqmZTRs6aQLO0+kNmE+OWFpZYXwsuHlwxLwoYqJ4EEDiWNjdvnU3jB6JsGbzTgdhA4vxeDTmWWeYTsY458m0ZnN5AMLx7PY+SgYB3Gt7RyBaF95WWy108rRKQFjW1s8gpaKYTrl5ext/4yZSCowPnazxfMrK4w9z6fIG5k33MKZiOjqgmRSsLm2wPOxzeDDm4O5dGivIl9cYrgxYWhnS7XSY1zVLSCrTYJuGJMtDd8oH4CvRCXd3t7l2/TrLy0vcvXWHf/2zP8ezzz2HiWL7tIlqe9LFG+kjeOYcNE3DfDbl7q1bPPfM03z8V3+ZLM84c+YMV67cz+OPPsYjb34T3/L+97O/vcv+7h5P3n6S+++9F3HGI4bLVCocvFpKkovnuPwX/yJX/+pfpXs8Dd2o6MDssGHPyiBSXwvJqKm4QI2RsuWiIT0RKY5sHheLYSUAExhhjiBgLX28/wqvwAuHK+aouUb3cmg8zlfILMHPg2GRj8XvybVp13xrUhGul28PHQfemfh7iBN2jYiuz65FCCNLbIGznSSugUFYL9aSVBqwxGZWeH8lkLmmqGbMbYE1OjCMCOy92kPHBb3REKtdi6lwArWxeM+28Dlx3PWnPo2KUF9QVnKRp+EQ1CKhFoJGSKz0QcbgFEvKRyAQ71HOo3zQQEw8SOGCuYEQ0eBARJAnFIXfUIqvZClHZRgBEjqhsR7bBGZhmkhmB1M+kV7niTPr9Pdn9FRILqU1SAXDfhCYL8vQdUYGmQhnggunEB7T1BhhaGhw3gQJiQU41N7viDbJE3RWEEYxF9e1RezeAO4FzZhet8+b3/QIOkkXgOHiUgPeO4qiwBjLl7/4Bawxi9dpB7HzTo+3vefdTCYld+/e5XB3D5zBm7CuwjjhSQwNcTXulLb4KCoOyh3msymmaVhf26CqG86dO8vKygrDfp/XXnyRg93dRSHrcXzmM5/hc7/3e7z7ve+hqip0lO1owTUfk+dwGeQCPjbOBakO7xZrUcRFLwQLtkJbTJ8A4SdaLwv3tna/tKAwcPKNUxdcnAB47WstfnTxvPB/7UPiNDAYr+FiRFgEdtgCAIyFphTRLCSCgW8oQGUc/Ut0GNMRIQYpEYCBcJ0C+K29o5xNeft4zNVf+kU+9sQHWUEgZjOaoxHm8Ijm4IDm8AgznmAnM8xsipnP8MUsaOzVJb6skbOSxhvU2x/h/j//Fxi+592ITgcrdWCjObOQELHW4IzFmgDs2TgZcdoMx8eGihStHmIcjZYqsKajW3yComVSkw+48r1/iPNvf4yv/OTfYfx//hIbVUEmPFsK6qLiTDdDeCibmgSBdj6MCzsDTWjiXtEJ90lFrhMeGQ65pBS1gyzL2oC1WCPOhpxQtBqPUe/RWsNKv0cqFUmSkibR2VoqvFYYY3jlc7/HAx/6KDJN0M7Saml65zAmFIjOO6wJuXGn08E7R5KmFEWBVJJet8PSoB8KTetCQVLX1HXDvCzAQ+MNs/GEO3d2yEyNN4JxWfFSUS5GxBrv6aQpH/3u72Hn4IDBxhqHuwcc7+xjreEj3/ntfMf3fA+T2ZTD42NM3TDsL1FUJVmWceniecY7tzjc3+Hf/uov8vSzT/FX/tJf5s/+2T/LT/7kT/HKq69SVRWdTs6t27e4/4H72d/b5fXXX6MuK/qDYdDrdA1PHh3wQjPlbZ0u9WyKms/ItYzAg8N7ucjxhIfKOQxE85k2erTxod3b/mT7tfVFjFOCBW/rhCHl7BvywJMNS5SXjXvWtfG6ZVifigVeLmJBGxfaYNDqli+ecxoIjF8ynvcOHyU1TsWJU1FExpzJqIb50Zj+8Jj0eILTsW6REbySImgC6hShUkgzfJIglcanCa6TIZaHdIYriNEcrt/G7+1TX7/B7NZtptMJTmmS8xfI77+X7OI56PWYSU+BY9pUmKbEW4vSXTKh6aaaTFmUN5jRDHN7l/LmTezuDur4EFeO0ZUiHWt6hym97R7JjTuoy2fh0gZcOIs4s0GWJLzluz7E52TBS994jg0p8bZmddBnNvUsxxvbQqVGemotmHvHndEEZw0linUVGcxaUDjLupTkKuPYNHHMkkWYdy5q73laZY/YmOENX1J6VtKKl7/8cV5OJYmDJOuQKEWaDyIgkzBcWiLrduj1N8Nn7QhKB76E9bNvJ080KxtrVGVJmiS8cmuHEh+YWgRApj0rTGQ8KynjeSBO+cn4aM7jY/4l4gSXWjSzFmPjSizOuVAv2YVBjSCyARExRw4XR8XtYK1FKMVDj7yF2zdvcnA8wzSBwbh19gxH4zFzJxkd3GXn1qscH95hfPydrK4s8+g7342XAhNzqo3VdXSW8fmvPcWjP/w9rK5tcFjewdc1xeSI6XzCcHWdbq9HMZ/gnOWr4wlHw4QVGQxDRJ5TTiucg/XBgN3xMVup4umq4Yuzkg/nKYmUQS7F1tEAQ6Ai+UYQPov1wWBDmmjah0JE7KA1PSJK9sjYWFCJDvI3jpiP+Eg8CTWuj5OAwQxUnTDVFwHJR5PJ8NXek8bEaUWlwtr24XWtd2FSRAiMkhw2Bct6OZh4Kkldzhd6qt4HEyTXRJDWBbNILQRNntJVfcTuDvb11yn3d5lfOE/6x36Iw8vn+K1nvs6n/teP8/qtmxyOx0xnc+rGBPKUEORak0cZq2F/wObmFg/f+wBvfc+j3PdHP8a6h+rpF9j7979F+swz9PbH6NGI/v4h+XyEqyvk2x5BXLrEubc+yuFsn1dH+0gEazKjI/SC4OBb5DVuUicEYyk5L7NA3sIyl4qystydN8ySjF43xZgOc2eYNxV0+mwtLXO4e5fDesx8PAkcThvIQM66CN66oJFuzCJHk96DUiQ6oSwqOqJgb+eQznCZVARS12xaMZuPmcwnPP6uJ8jSBJzCpZ5ep8fy8hrN5bBO9q6+xDf79U0DfKd1bTzgrKGysHTfRzl44eMUdz4dXOhsHNywFh1dlDwOpQXOhAROKYU1DpUGJl1Th25PlmpELLpsZOt5a7DGLbT5XES7ZXSrbRqLVJp28r2yUPuQLLasOyflIjnyPhTsjbWACCw+XEyi4gaTitZJh4Vzi0MKh9I5yNDfyToyBtLQQTY+6K9olYTutHUIlZHIFElCpjt4o+h1VlAiw6sUgcZ6y3w2ojreRQiDqQ3GuIVTYCpVKJRsHYBQC43zsQeZI0WPqs5RXrO6foFOPmAyHeO8Yjza4+a1q9TzDCkNSoaNTtOgsHQzgWsMWmQkKkenNugVKUvScXRTEQRCVYpWHiVrnKlJsx5pppHColRDogxSTlD5nNpNkKpCaoMXAaBRWtPUDc4oZJLQUQk0kiwfUkxrdJLQG/TpD/vcvru7mK4IkEH4+n3nacTjTrqeCzZfzJ9EfKwtbhyuRe4IyXn8XiyUFslVm8T5U6AKC24QHijKEmcN66srLPU3sU0DxrC6tMxk71YwmskyesMBjTGRYRLHFGIXJs26KCEoyxIlJQ8++AC3rt/iqAostruHo8AE8GE8sDia4RFYGQCPtHVgEoK0tWSH0EnCUVU1nazDX/rLf5WNjXPs7e/xC//mX/ONJ7+CbxqckgyHQ4RUZI++hZUHLzDbuU1ZKn7va8/x9gce4GD7mL27n2dpY0ink9NLMqbbhxwddpn2+jiVoNMMnSakvS5KQN7rLpyqb9++w8/9H7/IM88/zxMf+SCHd+/wm7/xKabj41NsmhhbfMufPEl4RcuKiyNfCxA2flVlxbXXr3Ht2nU+/du/xXA44ANPfIA/+cf/BA+95a289tLL7O/ukMSkBrVCkqRIFCrNyR9/B5f+yl/l+F//LC7rBZnHsiKtajJTI5oCb2oqamZHYFY2mWhJbqOWpAqJnnQxyQewBqLjK9qACQdHEMS2KBu6doKg5eBmdQAyESHRshWi9tiqwlcFQnuEDZ1BIhs6dE7aOiGu/8jck4jowA0L4XvfaqipE8A67rDWeMP7WLB4gZLtiKXERQdpoqh+ABbBjkesIdnQCaKpg06hh7lUeC3Iq3Avw+/WFiZ+Aci07+/j7mqB/PCTYdfbSDcMw1dQIShUSrWyjL9yGXXvPaT3XqZ3dgs9HKA7nTDqKEQARqsaVxXY+Rw7nWKPjjAHR9j9A5qdPcz2Dm7/gE5VkrUMRecppOR1LThq5jjvWNk4xz1veoSmaNBSsr+7i04E11+/yp1xxXRrjRUlyXxYD9Z4fFUjG05Y53HhJkozXFpmfHCIN4IGQKrQmJIy6oO216YFsU6u1yks6A3/fgN21P47AkIewQc+9BFmxYxYU0a2UVu0Bif2ve1tbly7vtibImr4yKzD5UfeTt4dcOvaNSbjUVgXIrzQQuJAiAUwzGJtxs8Uk2HloZrNuXP9FtPRBGMMFy9eCmYdDz4E1qK15mBnJzQJvKSqav7lv/pXPPb4OxF4mqYJrKm28OZELFuKwDBTUoJSVE0TmghOgJARLPeB7dhidW2Rvbh4b7yapzBAFhV++43Tj8aL25oVhFc4fbNO5fKLdxCnGlWC0/+yi0dOfbYIFrSaYqIF+ZBRY7YtxuKIsHyjlqCI+j3tTvMI6Hbpas2FKw+w+da3haYrnjwCJSIy64SNIp/WBbODpsE1obFjTY1sSlxVkp87j1xbW4yQmaagLMvgJGkajDHRoS7EB+d9uH+nUef2IsR12P5OtGNqSiKVQimNUQlKKaRTJEKAUmT3XOKJ/+Fv8tqb3s6tn/q7ZHs7rGaQZILE1NROkMgEiUElGmlACosVAuVgWBUsj0veKSWTjuClsmTuDGZaBCMBIQksQo3SOrC3BAgZGsnGWrJOj3MXL5ErQXV8SFGVCB/Gf7NOgn/pDks+ZensmZA3iyCyL5WmqWu6nc6C8WG1wTmPFpIkz7DG0UtyMh3Y51qH/RVGtpJgWADUxlDVNXVdU5ianbLkQhCm5LXpnGtNiTENeZ7TXxqSd4foJKOZlZTTmv2DQ2xpeORNb+EHfvAHQ4yfV3gHzz37HPddvo8s7dDtdlheXiLPM7yt8UJw49rr/PTf+2n+l7/9k/yZH/8x/tbf+h/Z29/jwsWLFGWFSlIu33MvV6+9ztLqMv1un6KYMR0dMbENv3bnFm9fuxfqgqKqUEVCkkeNZheldYLjG4V31EDig3N95AC0/ZAQx1pAQ4hT+UeMgz6aOuGDFIQgSAgpFf6W4YVcjHfOxb17ilWNEIh2wETEPWvNqT0ad3z875aRfgIKxjXeAjC0XLSWB84JiB9D7AISjDFn5BwiEYDD2AAuhI8SJpWEkLiiAVHFTMujsEhnEcYw6SQsfcsTiO0d/PYhbueQyasvs7f9OkZIBu98jPzRd3PQ1Xxx+ypfeeGrvHT3NrvTMcdVRWkMlQ0nuZKSPJF0k5RBlrEyGHJ5ZYM3rZ3nwXe9h/s6fQajGZNXrjK9/gqjozscNyPyZs7SZEZ//5jO9i5+5xB56SJidYge9nnvB97PJ27e5aXtXWoDk9mcM1XNPSoNzOXI7BHC0cVwuHPMZFwjBKxkHT64ucXR7h0G/SHueM4Z2WHaWCrtmJdx6DKK+Icw30pihKgZmEQn9YB1Dqmgm9Zkeo6xCd5aajdH5Bl2OqKZN+gsYXLsGK50mKk+L3zpVQyQ6YSnn/4S2+PnGPaHkOTopINWGYVe5qEP/Eg0KTs1So4nS/TiDPBxLfrI/pUi6OaJeGY474KGfdsYxked4nhWRMBPCxHA8/ZdTodjEQWpIivNeY+OOaFUmsODEVUjqMqajlLIZICvPVmWMxmPsHVFYRue+8aTvOWxb+X9H/1OZrMJdTkny1I+9r0fw1rHzXFwO948c5bX7t7BNnWYyMOhkyzkoiJoiF5rCl63Je90Gb7xpInG95eYFzM6vssZVbHdzNlILL823mUzy9ksLYnWLClJx9ZBsz9saJQQOBNASyLQ4yXYOGYrYzPfuToacogFk9w62x7RgaHt3aK5gBAYawJY7FpQpo0lPpzdHlwTph6lUtjYRJA6iRqMYVpBAEIHd+XgcmwZeRFwFedpTGTPysD6NMaglaKpKhIdyCi+MQjnaZSkd/Y8zZ191LVrTEZHNG97B/Pv/Aj/5oWv8HP/20/z0q3rzF070djG05jVS4moG6gqGI2Bu8hXXib53GfoqoQzq6s8dP4yH3vX43zrf/Kj9A5Lpr/8a/ivfZX5fkmvLlmZWTieI86fQW9tcu+5+9mfVux7S0PNEo6UBC2DJIOMhB0nHE3quS4bqsSTGokzloM0Z1tPua0yJumQFTdjoKFsHFPhmNQTxsbhE0WWDKmPp2gf1n0Tc5J4KoQpVCForA0u1P4EZ/DOcHS4i/dNmLz0nq7OGBcV+9u7jI+POHv+LCo2aT0RQHeQJKFeS5Tkm/365hl8tqGcjzFmTlGMmYwOOD64zu6NF0nnY1waugNChbFVtKCogs5ekmpoQCtwRpCJ4F5WGYsToDOBQuOwCxaAiy6RQqsIZnnq2mAjMi61iovY4miCfou30TqZBRIpAkKy6IY72yLkcnEgg4wjESEYNnUQOfUOlExBKITyQM7zL8GlczDseVwdxn517ABoLUlVQqJTtNRBw05m5HkHSYLWKfP5jLq21GZE3TSICGKWTRELvDBGoJTA1A1pqrBNhXMyJo6tvkhKp7dG3t3Cp4JUp3Ry2L1zk7xzh9F4B6093V4XJWZ4L6hNRZ5lYcysdRzqSKwUCFdhrae2DU1tWO71aHA09RwIAKOSgDIL3SutLFJZZJLg3BzsMUlS0JgJpA6hgrC1UoraNlTekTQduvkyef88vbXzNIFIRC/PWN/awBjLZDJdJDHte4VAIhZ40OLWcVJAeUQca/HtNxAidrGEj0yUkyKsLY5PAMLwKiyWj18UHKeL5vanqqZhZ3+fzbVVts6dR2vFmfUVrr9KKKqiHpOSEuOJwT6sOykFj779EZaGq3z5C59HK8l9Vy5z6dwZJuMpdVXRWEfp6uCgZyABOt0MJxVVVVEW86BnUzfRzTMkGlVdU1UV1oL1gl/4hV/g0qV7OLN1hjzvhCK3TQ3jWFGysYXvrWCmTzOfDfjUF77Ip778JT707g/xxJsvk9g5en8XX1d0pjOUS5FJnwpNPejj1lexy6sMV1do8pSrd+7y+gsv8olf/1WuXrvFx37gj/DF3/ksLzz3TCjs2ut4GgBA0GrVtAVvOMTb+9Tet8A8FD4OlrZj1kIwGk/5tU98gm984xn+s//kP+Xbv/s7OL61zZ2bN9BKkuU5qqepJWgPKknpf9d30X/i2/CxcKQxCFuHMTRjcGVNr6kZ/Nqv8/gP/AAdH/TVvAlAlI8aThgDpsHXDdQNoq6xVYkvAsDkiwo3L6nnc0RRQhEE9X1VgqmRxiCMRXiD1AZbCcgkwtfQBCdN4TzSujgaHUyFZLtGvQXVdq/j2A/NIhMN45uR1ScCg9q5tshRiyqoZTs5b0GYiCWGNeNl0NySNhQG2tdIE+5DHPJl4gNbIDOiHYQ6ud9BxIt21538HeAMiUUgsfF3aAdmjJBUg2XcOx9j6Ts+RPaudyDPnUEOesFJTwa35JbFJkQcW/YnBZA4nak2Bj8vgyvY3btMv/Jlyk9/hubJp8mnMxqtmWrJvCqxHmbzgjvXbkDcz9P5FN0yiDoJ826C0QrThALcWUs3hawraUwd7ock6sM6mrrG2iYAstZijcUkAc5p2QGhwIhgVHulFg2KU1cwstekDAmf8y6yZDrh/jpHYwznLlxge+cOARl+oz6VsQac4+knn6QqIttQxHsnJQ88+nY2zp3j5WeeZnR8iPBuAe6FDyFi002ikyR0xSG4+JkmjowT9214nveG0VHQtzXGsrK6ytraGvc/9CA60ezv7uCsi+wEePmlF/nC5z7HE+9/gqYxC8aaj0kyIshtCHnCYFBKUZRFYOIsWDRtcGmz1bAHTvbMIn2gTcDDdT4VpxbAaPzhxb04uaYnZVj7/+1KfCPL5/R/tw5tJ8879Z7tsRb/6U5/N36GBQN68bnFG54j27jfsgDbR6Rgd2+H4fISjakjE0S2NMxwv4DQJ5F4rYKunMgDsdQTGhpSoJPg/u2cxbkALpXlnKquqOsaa2wYxY3Mfe/dQtIlaFieyA9AW1CF5kJY48HEKEhtKLRSSJ0gtAwTDEpSC0XSaJIs5cqf/hMs33OZq3/9vyO/+TqrWcqsKDAuavk6B9ZhdRbGBlFILFQlpTU0UiIczIwnyXKcXAyuLdjyweE6uIMH9l7Q45Qq4czmWSajQ4rjKdJDIjy1cxRHjtmv/DLp+97Fi099mU6nR9AOdngb8tjh0hJNVQeQyUNTN+EapylaJ0gpmR7skfUvxWt1cl4GzMqRJkFaoJemLHdzlt/6Fl750pcYNg2fGe9ytynwDnqr67zv/d/G+sZZjmY1veEqdTnj6PCIQZ7zvd/7vUgU1jQMun2aouLlF17i7jtusbSyzmg+p2jKwBpNElKlEQhSrRmPj3no4Yd477d9G5/8d79OWZR0BwNu3b7LxuYmG5tb7B8foHSK8zpM2eD5wuEhx5sXWUozivmU+WxGRwSWbmnqOKZs0ZlmagyNDCN3OHcCRvg2TvBGZ9wYA9rcwXsfJ4zifnJxd9qwTmXM3Rbgm/SL/MVFhhS+zVNP70GiOH/Yn21+GvZdyxxsPwORDdhu/tMxK5omuLjm4vpr6yUiq2enLBnmKd4ZXDt2JlqIMEQOIWXUuI1LJWpgFl4yePgxVOUwd7exd3YYX73K3t0bqDc/wub7P8A1aj7+lc/x2y+/wCtHR4y9xcT39kKcgKoChAXRAJRhO+/uInmVTEiGScJWf4W3rp7j2++9l8fe9RHWioL9Lz7DwdVXOW4mLE1qll8rSSY1WZKiV1awWQ/T6/DOP/kneOXGdaaHR+zv7bJ0NKYZTxGjGbIs8caT2Jr3eB3E/dd7pFKiZpbpzVugPMZWeFuR4khNg0scBQGYFYv/tYE9Oje3BhZxNlrEMztVin4WzIi8MQhfY7xnXk3p6BxTGpTVyI6kbCR4jRMG6xuaZgYyx/k5IkkYHe8gSbCmIdt8COtbaY0IsrXAXawr2gkSKUG3LGJaUwwXcymxWGthZDfcfe/9GyahWnaFkq3rvF9MVbXr2VkbjB/i+mmdgYuyROp4tjjJUn8l6GzOyljrKbxtON7dZnKwGzXeg4nTzmiXy5fupZNl9DfBW8fm1nm8/QqJDqaZ1XzC5voGr6YJbubRWjMzlq+XYx5NVxD9JRopcEUTXMrRnE0STHXAsZ3xu9Wcnxvf5fHBCst1QVY7Uq/pac1ymjBIM3IfvO+kC1rCKlGL0VstJcZalFJhAkO5BXagvArXTsYdK8Dbk2stBKgkoZ2sMSY41ItYK2IJGEAbM1QE6GyQomk1RIWQWBtkLhpCHq8QHKqKoU5R9kSWwHqPN01Ytz6esY0BE0BgbyxLly4hRlPEnbuMZhOKj3yIly+c4X/65/+Qr7/8LLPT+YZoGw9tEtrWEwKiqV6bphbeUzjH4f4eL+3v88lnvsHlX/kE3/f4e/ihP/qH2fzoB9n51z/P+No16pdeYX1qSXbH+PUl5Hsf59E/8QOYLEFUDaJs8EWFPxxhjo8QRwf40Rh7uE85nzArDZ90JZl2JEIwdzVODqizDrf37jDqZAyXBoyOR/hOj7oo2NzaIs/77B7uUWmJdgQdWsliojQQwjypVgvfASEF2NBkrquC9Y0zHG7f5C1vewseSUcqSikYdlNWl9bIkvREGiI2AaU8ATJOS8D8//v1TQN8T33h5/jyp/4HrC1xZgzNhF5uwI1JUofSFtcIlALhA/PD43ANpIR1r1UwtBBNHajO3mMaj9QCtA5dz5hgKwl1Y3FOLmrPum5H1YjON6C1IBxYbhH4JCE4BHFQkEJhjaeT6YVzmYxOvlJKlBJYGxD9LMkQBIBNopAyIVTIlrpe4htP7zPonuX+yz3SpAIvUOQo4bHOoHUaqPvIsDEbz6SaBMtyExhtdV1jTINOA0KvCAe7ViGgSxH0+WplqJwkzTp08wGJztCqQ570sNYwKwtmxZi9/QlVNeHCGTB2Sl0lKOUQytNUBVkajCU6iUJLhfUOvMFZw3TSIIWlmyTB3NFLauWw9RxTNSilSRKN1lCpIBiaaQkYhKwozTZNc4hlRqfjcMKhsgj01g4kNA7wmp7S9PJllN4AuQVqGSET0ixn8+wZOnmH6zfuhs5o7FaotvAi6MMo6RcdFMFJIrRg/4TlEBK3RTCKI1Y+JGVBUyE+f9HEPanM2nrtBAA+zSE8DfaFMdn9/QPWNjeRBIA3MEfjsIYQsUgCnSRoFfRjnPMMB0MefdtbeOi+e8FbhstL7O/ucd3cYjKbMJ1OmRbzYMrSWExdA2EMsaqrwEyxfpHoteClThIGwyH3X7iHsja88NLL6CRlXhQMBn3W1tfZ39uJzCJBkiT0uj2WGkclO9weTZjXNaOi4Fc++xu8eP0i/9Uf+X7OdjOKG3epX7vD6PXXcE4idUKtarIspzQZzy4ts/J938dT+/v83D/9GaRWfOfHPsZnPv3bXLt6LSSh4nQhLEJRLU+SF1pISIatJxAnGiFCgAide9Ey2OLY/0Iw23lu3LjO3/ib/29eeOUF/tx/9Gc5d+89HO7cIdEJw01Q3T6NDx1ek2jEYBg+GwLdk0gdWFehnA3x5KHJjP4jbzoBBHzQYGqZUK1Gjo/FrodFp0nF8SDhPFgbGHzWQl3jmzr8XVdQhVE3iiIK6RcwL/DzEl+W+HmFnZeYssAVBRQlviygLIOAflmGTlpdIxoDTWATShvYN7LVdnI2AIbenRQeiri+QzKr4iSId7FzSZA98FIgXHQcjoWFiJpFDhgpw7ITJNZHgX6xeM12p7UFywkM4todg41pqMTSSBivr5B/5KMMf/AH0I++HbfUx0WzCtOCmUTWn29Xz0KNLO7nuNFF/DxZAmmCWumj7rnE6nvehfiP/hTVk99g+jM/w/zzn6drHP08w1hLcXyIOR7ho+unI2iGqTRhNFNMWA0u4T6Yj3jj8dOKXC8Fdk/TEIkZJGlKbzCIQcvhGoutLSIPzStjbTgnxUkBSSxqF7HOn4yNtpFJcsImgdid5+SeJip09G0LoCzEuVkwfJ5/+pnFekAIhNKsbJ2h1x1yeOMas8M9WOhBBoBESEmvP+DRRx/jsXc8zoVLF+kPlwDJ0WjM1ddf45lnvsGLzz3NdDoKbBjnF2Pl8+mUu7dv45ylKErOnj/LyuYW73niCb7+xS9RR8Cxrht+7d/+Gu994gkUYRRRL3SITsVB5xarTSlFMS8i68bFJRvTU7GINCdgXMvqXkwsnDC9T9bu6WeEB09G+MQikXvjOj959sm/T71ELJ58e4NPf+/3vedp5tHJ791+W7Q9EoJU7Rs/bTuCKFr9wFOf6qWXX+by5UuMp5PFiGl8xcVZuEjtI9N0sU4AgaOT9/B4rG2o6zLoqRUlZVlQR4DPmYbGmNDEahqMranqJlJKQ2HqYy7n4ljTgjUgwnhuK0rf6eSkaYrSOjgVKkUT3VwbpVCVJkszhh96Hw+v/jSv/LW/ysrLL5OnCaWpcNKGyOMNztfx3lnm3pKQBTdgQGLZLuZMnaOsapwI0yRCtTIxbRMyMPcbU6O1Jstzllc3WD1zD/Js7OA7R5Yo9r/8DdQHvo317/qOIBVgHVKFgsK0bpdaUZVVWB/eUZdVKKCigY31jsqZ4LzrfDAc9D4AhDJeQ3cyZue94gN/7If5987wxc9+ns7jj/O9nfdw7fU7XHzgMjdfvcrq6jmOJjO6g4zdu9s0sykPf+vbuHzvPdjGRMMXMFXF/s4O/+qf/yv+zJ/7c0jnmBwc42zQV+z3+jz66Dv4kR/54/S6PcajEd/+kY/w9S9/melkyrkLl5jN50ilGQ6Xubu7g04y7nnwQZ5/8gjXWG6UJc/WMz6SdSiKOWVdQyHpdrvhM5jgWp54z54zNFJhLWH0TIqg+x2LaBHnKwWEJoNnkSe2QLeVARARC4GAdu+BE3ah7ddK1LT7J4DnLIBVd3rM07u43+TCyKD9Ej6KuLcNFXEqhouY07SMPohAHgh3YgKhhcRGIAch2SnmXFhdCvkJdqHb2zL0hZAhB4m/i3Ph7LVAes8lVDfF7R9Q3d7m6No1bkwOOP9938/04hZ///c+xb994RVeLGaUrU5ZrMlakKg9P1ppBx/ZKy2b1xJStqIxbB/u8MzRNv/n1We4PBjygXvu4Ycee5hHHn2c8Re+wvTWS1zrwJX/7E9iv+2d+P4QITVKSDYEbEiPFQ4/neOKBj2dwLRCHBxiRmOaq6/zge09Brdu8NL1Q0azAuMbHl7uca/X9L1gJe9wREGlPIURVF4ihFswpFugtq0xVHsx2zgtgxSJFIJcB+agzjvYWmCrGi0sWlqyTsLxeAqlp5lPULLLZDoFIRYVRlVadu/skSZpYBIJF/PJk7NoYQbW5kkCnA01rYhgS1hiLqzrKNcghVwYlQkpFs0UsQD/xEnDot0p8exTUgT3cNHKIKmFuVV7Pgkco+MRqYRUC0TR0MxnWClJlObSAw9w8/knwVSsbq4zXB9y49Z1tDX0+z22NtdJpKOuC65fv0nZy9nc3IzXWNFYw3gy5vLlB+gMliiODwNI7T1fK4/5IbnExvIyybkVhNCwe4g4niKmM+6ZDxnWM85XU75UHvF0vQ9KM8xzVjqCobCklSO3FVllyIyglyQMZcJS4ulIhZYiMrtsiDuCSAqKjUEXGq1KhKm8RKcIYvPK27iPA/KtFxqKIgQO76MckMNExq2rG7TWiyZ8YAS2ubkkSZLFa1opuVWXrCXJYpRftOCuD2agPjazhBchh3OepJMjsh7cvs1sdkz1/g/wy77gf/tHP8nVchZ0+k7lD9BOA9EW0WRC0NcZnSxDekHVmGAC2TQLzTsQzJ3lhYPbvP6pX+EXn/oCP/GdH+MH/+p/yfHP/jrbn/sU1c2rbNUlaecB8ve8Bf3gBWSWheko4zCiCTXN3OKrwKJ11ZT10TF//eiIyc4Buzdus7+3zW/v7/KpomBtM+d9j2xSHU3I1za4MWm4PpvRBR7c2OLutEIjSVXQqBTtWHVsgnjrQk4uYqYV8zQpFTpNWF1ZZf/wiLt3b1MXBTrv0FQlzzz1dWTa8ODDDyJVC6b7GC5E1Ftt65P/GwB85eh1JkdfBinR0uOdpalVSEjmIFW48UkSSo3GtvoxBMFVG7x7hBB4YReB05pQyAdQMACEAYADY4OZgJARcEsktrGhSyEgSQW6BfaExjkRhKC1CGKb3qNVcGuTWXDA7HSyqJ0RuvtStVopFomKNzAw+KxtmWoZxlhS3SHPNLNxgatyqkahdUrtbdDkkn4xApWlOnanA8WzbgxploRRTQS9/hLTcY0QmhpHlgzI0iXSTk6nswwIkixHKsFocoixBaPJEcLfRdiSJGmoqhLvE4TReGPwXpEpiYnaNlqC1inOBdFH1ZF0FSA8toHKQppCnuVkQmJdgvUSqRrwlizVMUEMI8M6AS8sHhNZQTOm1YSyOqbCsJmp4E6cSLyV0VwAsiRnkC6DEWSddVAbyME5nOiQJzlrWxssra5wNJowmc7ihjgB71pWporIt5SnHCNpi5t22GBRx8eDq008AvsIolB4lPMJXaqoqXFSGtMyQ8KXOMXeaB8Jm1PGQ7cuK/q9Lnd3J0HDIz41fJ7APLhw6TLD3jIvvfgcXnpu3bhNVVRcvXo1dHO8YzqbUZZxdCKyDk8SjDa4hOM00yndpR5Ly0tkeU632yPvBM0vAK0T6sZy333344wNY9txFEdEJyZ8MInwwmFnRwyzDo00pFmXpDKY0vD6jVu8cmeXs5e26CnNbDolcTVV0dAIgU0E0tSsecVoa4nr+9v86i99HK0k7/vgh/nS57/E7Zs3YtHrF3kRQsZiNADtKI0UiqW1dXSSMlheoawMSxtrNKZhNpsgpeX46JB6NscWRehCeROBqnjFY+I6m834uZ/7eWajMf/1X/zL2KZi+8Y1ep0UnUicTjBekwBeyMDacB6LwFmFTtKT4tZZ1leXmE+OcPOSLMnRnQ4y0aegq5jsR1bAAgqOh2H78Uj0IoFvNcECKzEUyTI2OWQLvHm3WJkiAnRYh7A2mHc0AczztYGmhqoOIF9ZYOcFbjrHT+fYyQw7nmCnM9x4gp/O8LMpfjZDFBU+AoOybhDWIBqDsA3S+gAQ+gAQ4jxCxw5gq3upBAhNDexqx7IPpkpuAVKFK+JbRiYtHHhypWSA6OK+s0x6GdX7n2Djx/8M6rHHqHtdKsI1EkRGWKhQFodlO3LSCtIvxkKjC1lsX4cAIQNLW8rgzChWlsk+9AT5Ox8j/b3f5so/+Yc8Oi7h/iuM6wbTOGoL3hoS6cm7HfJuj3p0B1PXOO+onQ3aNB50N6fj0wXgaCL4WFcVvcEQnaTUVU2iEhQhztb1HEFgjLSaZG0jSsoQV3ws8qRoGSVtih2cMaWUoUAwNUrpyC5xcQTSL+Ll4loRxnMP9oMbNRCdbEGmOY++99sYTydce/oa1hgUhO6ac2SdLu9573v57u/7fi5evIyxhhvXr/H8l7/MxsZZ3vbY41y8fIUnPvhh9ndv88lP/jqf/93PUk6ntGPfeM9sNOZAKeRZzfHxCJ0mnL90mVdffIn9slgUvc8++yzPP/sMb3/bWwK4TmTHtLWYaIvvsGeVUsxmU6w1Ie638bwF8UQERMRpyFmcRvwiDiBOAME2WVvgcCds1LZIOvnOG8+NP/C1eNOTwt7/X/zYG15nceidPP30Exc/6xdL4/RJtvikJ4E4xMyD/T0efvghGtMsRNmhBUFPna/ta8UcTsaTc3V1FS8cpqmpIqBXlCXlbE5VlZTFjHkxZz6fIZSi0xvQX1qh0+2hk2whwxJnHwN40TKVCFvXWEtTN5RlyWw2ZWdvH7wjzzMGvT6dTo7WGTIJTD+pExrTkCUZvbc9wsP/y9/hzt/8G/D1J0Fp5lrQSIXBkZpQWKn4Cx7PS7ZSiRYAlrl27B1N6KRhHDjoXwWNS2tdZGeEOCNlKLKGeZeNtfUAwMlQCCIltqjZfuF57vlDH8MJibAWp3QwjBAeEsIZrRRZklHXAXzMe4MFINTen0ET9rWxDi1OmNguWo6HmtAHlhWC3rDPx/70n+LFxx+j8oLVlT7b+8fc2bnDsNfneFai0oS6qTjY3UZ6x3ve++7YDE8AhxaOldVlep0uO9vbHBwcsLS6wke+/aN8/gs5X/vq17jvwTfzp/7Mj7O+vkGSJMznR1w4d5Y3v+nNfOVrX6NqDGma8uorr5LmGYlOmM1nLK+soZNw30pn+ezhER/dvIzWCWXVMC9LpNQIJTG2Bu9Zkoqv1xVzFTROlXGkIlhlQQuIxQaQFHHcrWX2OWSsP4RtV7xbbKiFEY5zQfs57p1QNIuFDp/zNsTMVnc07qsFHu8DS06cYkidsHfD+7XgSsj5QvPi5DO1e/gkFkkhMN7iVdCGMtIxNZaBUkH3K44yLo7gU3ltiFVhbNchcP0+vY3NoLl5e5vdqy8zmo258oM/yBdGh/ztf/EveOr4kKqNff4UWw8QcVw+yzv0hkOSJCXvdINe9coyo8mYYjYNbN7pFO+DxqS1jsJZXhkdcfW5Cb/24ku8+/w9/Ngjb+UtWxvsjvY42DvihX/wM8i1JazzFMbRS7t84B1vZ2l5KZgO5QmsLuGXHGJzCaUEybc+Sq+Y8z2TGR8eTzEH+1RHx6RFQ6eTogYZdj7l5lPPMX3qebbnx1TCLZooYevESQ0f2FihFpA4F+rSEI4tWeIY9j1rg9VwNruc0WiEsZosTTGVJe8mJHmCdTXVrEYTNBGdk2idknZSqmpGaRqaqkEnkjSuF+/9Sd0TzwAZ16KUYVqqXRNtGtyCwCFXCxMCOgL/qFDzuAgCtZi3sy5OucU1yMkJ1wIcQoCPo4UiGgBJQZBgiA7j3jqkb+j1uqRSc/bsuzjTTZjtH3HfIw8xLQ0727tsDhTPvP4Sy+/7NtLlAT/1D36aW7du89hbHuFDH/k+NCLwP3WC9Y6k0wVnwwiqCEDly0XBdY6QLzd0bg9I8gG61ycfDtAry+A8w+mcs+MpT7iGXVtwo55wvZ5xdTznetNQAyrT9LVmpZ+zpKBnDZl3ZBbyxtE1jqFULKUpHSFJvENJgYz5KLoF8cCZkAgKLRBWIEniVEyo9VrnYuH1gpwUJjzCGXACKseRcalw1gb2XttMjGAeqWe7LHm8O8QYixKBvNEaVwkRpmxklLpwPmAyayuriNEx88mE2ePv5N+MbvD/+e3fYWRKnFQQDbYWGuCE2Dns9NnoL3F2ZQ01L8iUwKSaajwn1Yq6o7l1fExpDXvHh2E0WUo8CgPc3N/lb/ybn+Xzz73Ef/tDP85gtce1j/8SxX7NA6NziC8+jfvdp9mdHNB74BzdVKM6XWSvD90Mhl2SLIN+hu9vkZ09Q++emq2Hx8i9HR64dpuzL71C6WFTZXQeuYA7f56VJz7Kl2+8yid+65N4a6i1wJ4kR4t9bZ1Dpymmjnsi7v1WtshLaLxk92jE6uoa+4eHMb92vPTSc3z5c7/DPQ/dw3e84/ETAE+0VAe/UNwRp/Kpb+brm3fRdZ6ytkhhcVJgTOgsqSQI0QKhEzF35FnQwJDSBcaqCuMUtRFx4badylikuGAnLaWgsZ5OrpAeOlk8+nwQEU2Vit2EcGzneQrekSQ6duw0OB8MIZLgtmYbG0ZG8CRJgm0MSZrR1HW4sgqEUNSx05GokLiaypAoEeb90XSzLoYeiRKUc4cSGu8spjKgLEYIEhXSAlPb4A5sQpHmnEbIjKaBpk7odNdZ7i/TTxLQoDLPnbszOrqPrY8YN1cxdk5RTkhTCRJ0AmBocEFjCovPFdIoVodd9o+PMFYhknDQd1SGzj25zEm1Z225h1RTdD1DCoVLFC4PzL66qMNoWZoiEkVVN2Rp0JBw1qF1gk40vplT+wIpwzi0SA3Hh/ukuSFLEqwLo9ZNJVE+Ic9SlJAMOn2kCQ5bUq0jupeQvYsknR7La6usb23QGMPO7gGtBbiPtR8EIwwRwT0lWBwwJwlPy7HzJ8lG+zPiDbr0C6fMAPCJSK5rGR3hh04GClkUeG3njFPvA0HWqdU5OH/hLLd3txd07vBEt/ica8vr/OE//Ee5fuM6hweH7GzvcOPmVfYPR6FQFSGI6zSNY6wRKPSceu/gECzw1LbCmAD0bm5tMRwukaVpSDLjHpE4qiIwJbTWIGC4ssL2zjZ1XdPUFU1d4XXGpGyQ5RGTponU8TCyWteWLz7zLFf6CZtNxbDXoch7ZFicggZLRyaU/QHyze/g3/zKJygnR7zj8Xfz2quvcOvGddoUob03CyBWCZI0Z7CyxmBlFaEkZVVRFAXHsyOq2Rwha5IsIxeOtLdEknVZWlqmnhcU9YS7129QT8f4plm4S7Vd5Kao+NV/+2tIKfjLf+EvYScj9u/cZCtPEVkPm3UQjUALx+0vfpbytVfJewOSbo7KOqR5jtYJY+v5+V/9VS6XhkvS4qzgnnc9ztZD96I7PZTu4NMOKlWQJvhEg0yDKK5SCB3GSE8WpYgGPpLFyHQQNwmgWAsyeIGPunkBlIpFdyIWwIBok+z2IPn9FX9c99r7BUAnrQkgoTH4xoQR47LCFSV+XuBnM9xshpvO8LM5bjbHzwrcrMDNSmwRHvezKWoyQxQFqqyobc3YHDLwCdOuQroGZZvAFiSOZ0Y2Y1sdtGO0rd6eE46jM5t0/+MfY+sHfxC2NiglONeEIiuOo3v8Ahy1UbMUH/nWpglNjTTB2nBG4EEpidRxvE+lCK/xOhzYCwbwUp/+d36M73/kTdQ/9Q+Yf+1rvGoNxxKk1tSNwljBZGIYHe+ypWrWY5cu9O8lSkisSNBJjiDcYxk7tVknZ2t5wEtCILzFNlO6zYiVq6+z+XKDv7jJSFqsgzTPqRqLztPgPFpbusMhxHPVRdMUIQRSnWh8GmND48o5irKMwLpjMpnQX1oKwtgR/PTxmr766itUdRV0PRGoRHPv/Q9ga8Pd118LQsgRNXLWsrq2zn/wo/8h73z3e9BZxo3bt/j1j3+C5579BuPjER/44Ed581vfjvOQporNrS3+zI/9x7z7Xe/h5//lv+TG9eshd4jdk+lkQtbpIJWiPxyS6ZR3v/e9fPqTn2Q+nYKAuiz5jV//dd7+9rdinUV6Ebvo4lRsCeNMMjKg5kWBaYJ2ovdRZ2thuPFG1lybb7Rg00ly1oZ9v9CsPN15XZwMp0ZsTzbf4lekrfZdLNoWbJ5TBWX7dn/gRdr1efp4gsX+/wPf5GR/+T/w3dNQnaeuK6y1pPH8IIIXv/957Vl7+vMZ51hfWwPhA/hWRECvLCmKOfPZlOlkQlGWDJeWuO/SFYYrK3gP29u7fPXr3+Dq1escHh1weHTI5PiY+TzcMyUVeZ4zHA5ZXVth68xZts6e5fI993DmzBZnL1zCO89sMmJ8fMRoMg4jXv0+WZ4jjMHqDOsCQ2nwwBXu/amfpnj9Ndy8wkmJa2r8+Ai7t0+zv029v43ePaLe3eOV42NmTYlHUPSWEPsjjHeYqOGspAya0oux3HBlwnkr6Pe7DJf7Ybw4RECk8By99DqdzU18J4+61bBggngXWL/G4Qm6e8Bibwe9wgAG6yThjQ6fLVPPL5gbrSOv1jq4cApBkmW89Z2PL8Y9L90XDOWmH/gO/s4/+qfMp2Fs15QzVlZWuHDuIldfu8bRZMy1V1+mP8i4cO48jz7+OK++8jpZp0uiUx599B1cvnwPm1sX+ZZ3v5vB8mow3ZKCfr+Pt4Zv/db38vWnnqaYFXR7fVKtuXVwQDGdYIzj/IWLJGmGrQqcczw1mzCTkKYpVVVSNzWz+YxutxdAM2vYSjLmjWW7lzIYTzHC4aUjtTLkr4AmaHYpD9LFCZF45kgR8jQZ9SxOs2XadR/kc4Ibuo8jwELIhXO4bLdnW72dGstdAEUtSy+OTbY7Skaty7YxJeLZ0DYrT6ZVQuNX+Gi84oOxoDPhjJ8m0HhHHtlaRnl0jFt4wpkfGYE+SiJ5wCea3sULmPkcdzBi/9Wr7E/nrH3vd/G/v/I8f+8LX+NOM39j2IjVqVQJw+VVNs6cIe90GQyGHI9GgY1kHd28i/Wwsr5BfzBkMOhRTKaMx8cY23C8e4BUIf5bIdkuZ/z61Wf58u1X+P4zV/jxK5cxX3+atbt3+drhDsfKcaOcc+AFx0+9jR8YLqG7fRjkqP4A2Unx/RzV66KXlxF5F7IO/dU13OZZvJL4xuKaEDyVrbm0ehlb1Hzpq1+n6wSTKA3SuimfSr9jw14i2yaZCmdOL5MM+ylaKdI0wZiGtGfJhSLNUjpJzmh8jFSBZW36kleeGQFgsRSmpGqCxtry8oD+2SVmo3GQ83AuAPZx/KjN8dv+nowablK2aWQ860R7QIA/tZ69j+w+EccRUaeA6hjXrQnj7lJGo5HAxJTxtVpQUEu5uCadPAUExnmwjrIsWM1zTG1JteLC/fcjN6eM5yV0Oiz3eywPEyyKw3HJpXMZ48MJxXjE/sF+IGXISGxwlkRLhBIonZB3cmSSUMzmzLs99roJG9Mp1ldkxZhknmNHOSbJSLKUpJuQbfXpFjXDCVxROU33DCZPmUnDgXXcthV3yxl3ixmvT+dMXRMaSFLRSRNWuglDHDmG1Bg61tNz0FeaZSHp6YSOcqTC46gjiy64GRtrgsxVoHxGopE8BbIG0C9IkoRJERVjOyJqKIqgx+dj9LDOooWkdI6jpmZZJ+F1vA8YjbfhTPJuse5sE4zRsk4XIRLcwS7F2nl+s6r46d/5FCMcUqdYV5+AUt6jtWJzfYP7Lt+Lljl1UTFWCb2LlziczukM++HeNzW+arh49jLFfMK9mWTn7h22d3YoiiLKqEjmvuHjz3yR4+Nd/scf+c85d2w4+uyvMTs6YClJ6DRQvfI8k92bnFvfQOMCS18CSkGW4fs9WFtFra6h19ZgfQW73ufSPRf4ife8jQJDlQqK4QpFf8CWGHK0f8Byt890WkGiKOqKpqnJIqNS+jAyrrs5rmmQsZknhSRJwnRAWVdoneCRyCSjNpabd26ytb7Br//KL3H31nU2z66HvKgNmDEOtw0fcTqWfpNf3zTAJxVkWTjYUi1I03bUNfJUPCgdChkhBD4ROBO7W7F46neiiYYIASXRAoQkkYGyGgAdTzdLwEKSJoBBKE+qOqG4sETxaBm7CURGSbCk9tJhW90hF96nKMNIcF03SCGoKhODnwcFIYZpvIdKCrIkCRvMOZTXNI2nNjXTaozzlnHRUPqI2uNwdYVxHtMIvNQgM8o6R6Dp9pbQuhdeU6bYOgS96WzM0eEBMivxruTwqKGYZAz6Bk8YTdFp0G9KkjyMuwoQTUNTFUFANgPjNKbMyLIBy8s5TTWmqi1JpklSga1K0kwyL+YMeoqsu4LSCbWtoRpR18H8pJtIjK9IhEApFdmNIclxiFAAqwbjChrTYKzBArpj6XQ9eabRrotrPN00I0kyEpGSa41rPFpl+GQDlV5E9c6iun16y8ucOX8WIRR3t7epmyBiCaEQD8Ex/N5StHJA4o2b4tSm8bGriG+t4k8OoljFvXFRLx4LdN+Tekfgo035yUEWNMkCeSrorbhY6AoZAIaV5QH7h4fBPan9QLHrliSa/qBP3uty+b77OXOh4coDBQ/sPsD161eZzefUVcl8PsfYBmOaML7UNJi6oW4anLVBK6tl8gF4T10W3Lp+nTu3bpHnHfqDQfjTH9Dt9ujmGenSkCRJSBKN9x5rap5//nkcAp2k6O4ANRhQ3XoWU1XMTEkUg6TGcWs+ITm/Rr+vqG9nTLxBJsEJkNpSpB3su57gZz//OUbTMfff9yaKquaVl15edP8WTMoIcvWWlxmuriCkjq58h6xsnUEnOaurmySdHt3BgLXegATLeHRIlqdU8ynWOgyOfr/Pg29/G0e7h9y9dQczOcI3gSUb8TGq2vAr//bXuHj+Ev/hD/0R5rs7jO9uM9zcxDQW1e/jvGXoPb3dW4i6ClR8F7r7VgqujQuuPfMM3/PIw5w3YVQo/ervMHv+S2idBUBHqTACiI7OuirSRHUQ7E1SZJIg0gyR54gsR6U5opMj8g4y7yLyDJmF74kkRegEkaRBwFTIABSqwDjzIgDMCzAQTphIbVIXdSBbMNEpGX8mg7b0iEBHSNjDRoihMThL+chocAFQ861KrLVgGoSxOGOgrnBVzZuvvUg+qcgAX1YwK7DzEj8NQKAtK1xV4coKUdaIYo6sK1TdYCcls9U+az/+p0jf/600WQfrDKapo8QB1C6MHWsbijvvHfOixDQmFMbWMp9Nmc1mGNOgdCjCur0uSil63U4Y8cu7Qf6gP4AkQSm96KhZKUgu388f+W/+W8T/9Lf49Mc/wY2mps5TShsc2BMv6AvHB7c2uTw1OBP0CpEhXo5uH7CtXXw8xgxAZwnve+wR3vuWB7nz2qvMpnPevNaj/p3fZms+R7z3MV4v9rGuYdjr01lbw4okmE3MG8a9Pp1BP7iuC4lOUqxzdLoplbXUZbhW/eESHoGxDQDHxyP+/W/8O/7ID//wItmXCHDBkOrVV16LAFhgWQ6XV3nX+5/g61/5Kgc72whnUQQ5i+WNDf7cT/w/eNOb30JZ1bzw7LP85ic/STmfIrDkecq5C+epTY33gqac8o/+159ic2ON7/7e7+Mv/7f/Pf/7P/vHfPlLX6RpahQCZwyz6YS822VtfYODwwO8tTzw5jfz4tPPUBVzBPCVr3yZne1tNjY2Anghom5hW4xLESYGYuw1JgACnUWBHGQJVDQrOhGt92GPeB81vE7MQoQ/KbAXQGKs+hYA4RsA9vY8CWfHgmjZ/iztW76xmRQeP2HMveGwatlAp1/+9OvyRjDu9Njv74f+Tl4g/HX37jabGxsn7CPPouHlT7/mG/4O+eBwMEBrRdM0VGVBUcypyoLZbMpkMmE+L1heWePKQxeorefFV1/jcz/7i3zx87/Hiy+8QDmd0tT1GwrQFtiAk1gm4+M6TcmyjKWVFR568CEefewx3vMt38K9V+5FKRgfH3B0fIwUYwaDAXlucEkW4paFvDfEv+XtYByZtaBFaNRZg5cgnOUjTYOtSurpnGo+Z3t3m9lTT5L/7z/LfD6Po09BWF5qHUDxaPrhHTjjsNazvr4S2bTBLM3hkU3DrZdf4IEPfpBW4B5kyH0i4Ca1RtDEojBqcQoZmEDWUlVVyHFadq8QwfUdYu5zwpzWSkWd1rAOXcsUja9poxOnkJp5WYZiTkgm8wmmqlhbWYlmJIo07fDZz/w2d25dRac5Vx54Mz/yoz9KVTtmN+9y/30Xefr6TRIhMNKwd3zAjevX2L5zm9dff52VQZ8PfOijrKyuMp9M6C2vspL0KWczep3AvJyPj8N1jHv1xmzKrabkQZ1RqzCd4BpDNZ9iBDhnSJuGK52MT4x3+fDKKiuTkvFkhlcaaepQgziBIhjhKSVIdULqBQmCBJAiNsGQQaNKhKZrq+FsTesSLmJMcKhI93TW46L+2QLM8yeNWdFWdHFsXogg7yJamYRo4NGCsyc6gS1b81QO607ARucd2JY1KDi0ln6SonwUvXAC27IR4+sE9/Y4yu8dXiiS9XVUktAcHDO6fp3D8T5nPvJR/v5rr/OPvvB5Zj4agsV4JkUobFdWNjh38TJLy0scHB4yLyvG07tordFak2ZJOJ+ahtlkSl2VjEej0OhKE/qDIYnKWFpZ5u7t24yOD7DW0FjHdlnzT2++wFcPt/mLb30X77pwno507NUVD/RXeKoY81uvvszb77nC1t4RKtFkQmKEoFHBHVSkWXCdTSRZr4vLu8heD9fpoNIeenkJvdQjGXQ5c/8VPnp0wNO3t/na4WEYzyPosGkV2VKnwDIfcy/n/GI81zcVlZX0eh3GR8doCR5HIiR1WQTCRBIIE8rLYEykFNoJRIwbS8MeTVVC3qcsClRqKcsaUMGARwisDM0rFWU3FjIr8bO5aAxwWuNa/L5TwHl3ok8vPSycoMNXmkTYQAqsi+slnkHB3VvhnKUxYVJKCkG300UkiqzTZX50wPb+HisI5vOKw709tFT08xxKQyYUl8+do98RHJX7zGtP5TVbZy5zsHuXbm/ItCox3iOcQRpLqhNcUyBFaOIaB3mWUjeO13sDBru3aeyEXICTHtXJGaYd1tIe/awXXMy1ptPtgPeYpsE2BR1nWUPwgMpgsARnMmwuKZVgdzrhTjXl7mzM7eMRt4qC2jtQ0Mk6rHQ0Axp6DeS2hMIAmo70rEhNX6csaUEiJIlXKB+a+GmiMNahohawEBKpiGOt4d40AWEg9TqEHQmCaHQnJFJprPGMZFBZ1FFnDyGiu7GHKG/lrF8Y/Tlr6a8sY8s507rm5Y0uf/czv86hadAqjYST1jlasLy0wmPveIxePmDn6BjZHXLpkQvsH82pMRRFw63Xb+NEMJHLpefc1hqrF85jreOhjbOcG4+5e+c2V19/FVOXSMK59dmbr/Nf/Ot/yP/8x36C/niH8dWbDJbWwDhWVzd55uZrrHaGpFIE0pgUQXpgWiEOJojrO3glcVKh8ww/7KM3NlFry7hBh9wl6L0K98pNbr92l1defJbNTgdZNvRVMBF13pHKIJkmtaYo5uTdjCzRGNMgpA4s+jhGraObsRCBkFJbx5c/93tcOHuG2zeusrQ04J4r96G0PpXFvZFIdKKU+Acys/+fv75pgE8r6CQydiYMWari2ItCy6g3Z108TKLhRCoXOlZCSFABRZYiQSdqkVDLKIzthUA6Ac6QJAmurlFJQJybJoI20SFJ6SB8KQnUeK31IqkJeg9BG0WpwKYITEKFiAw/58Pf+FCIp1mOcBIlNTrRFHVB0zRMiwbbCLIkRXoVHIacwBiBEi4W3UNMI0izIaurWyhy6sIghKOpJ+zs3qGTWabTYzppghc1qKDJoHOPdxo9SihNSepBeY0UnqouKasgxp/oFKc8Uhh8ItAyC25BLgCBo4MRk/GcRFkSGcb66sqhybAS0rxHt9/DzipsVeNEHQBTFTqrwvpA61WKRIcEUyGoqzHWVzSNo7BjZm4Wkh1rkV7Sy1LSJKGjU1I/QEpBohRCehJrUU2CEksgNkHfT3fzEUj7dJYGnL18CaE0e4cjjidlSFBFOxIRukyhu9qKUsYv3ypHnAB7QecgAILWBcDORue/8JRTuiY4vBM4ebqOaasJTrqabRfc+cjEdFEjwdMYGx8P49nlvMRaxzzqRXnvTiXZYBrD2soK3jYoHEo4nK3QEs6c2WA6nVFVJbPpjKIsKKsyjDkpFUS+ZZi+9C3IaIINwYk2RxDSr8qS46OjmFiK0NWLrolKqXDApWlw45Mab10w6tApyw89QHl0m87NJ/E6JQMaJzD1nNu37wZ6eF3RGAtZJ4jxe48dbKDf9+380msvc3N/j9W1DbbOnefTv/VJrDMEKPwkiKkso7eyjBSaybyg0x8wOBOA3nldU5bTAGxaSyITVJKhlGawvMTK8jJLg1XyPGM9T7B1jXOGZu659NAKB9u3mG3fDeYWzsVkWFJXDf/sn/8LHnroLbz13Brl0YhefxhAckKSm529QLWxCXduI7SgIzXONgig10m5cXeH5pG3MFzbojcdo4kjxs7EUYaGQGbW0HgQfjFe61vmWmTQtVW5dx4nZNCUa4taEQ5rLyVeJfgkxeedAPrlHWTWCQBhniHzDNnpILMcmXUgiz+XJtAChDoJgKMObEKkbimsb/jTUvAXODlxbUVWA6od72mL7zZ5bIdQQxGwvDxg2OuRdvIQ04nFZBQ/xwf3LmctwvrFyJJ1DmkdAyR20KMCrAl6pdZamlYouKlx1Zy7d+5ydHSA9FAbR2MtVW3oD7vs7+9jXAAEW+3Kuqo4Hh1TTOcsLS2xPFziygP3sbF+hrWtsyytrAYR/6jh5QWkq+v84b/4l8jGx5innibLBFY6UjwrKmOgE1ZqS7azz9QaEimjlqHFzOe8XoVEMNM5nnCGddIuy70ely9d5MGLF0GAm5UkVcGd3/g4TUeSpZJiOma2s4uZ7pF1O3gD5axEd1IalWFkSmc4RCtNXZaUeYpxlqqoyLtdxFGPpqmZFSV2cIHZbMbnPvc5PvzRjzJcWg4x1IcYZpqG61evLRJ8rzUPv+PdPPX1b3C4dwdbl+jIHup2+/yHf/rHeOBNj1Abw+e/8Dk++7ufZj4ds3vnNuV8ymCwxOrKANM04D2vv/wCzz71dZq65Etf+iJ//Ef/JP/ZT/wEtmn4yle/EgoGBHVZIQWMx2NW19Y4OjygrGqW1lbZvVUgBIyPR3z+c1/g+3/w+0NMjnpJsf4Ia1JEjTRCQTIaBU5GyzrodbuB4RV1uRZglw1r0bnAlGnB71a2AU7kEtqvN+hmceosiY+0YMofQNk8cZz/jWNzi9ggToF8glMj1Yunt7jf4sV/P4Z4AsW1yeUb37/9/Ldv3eKeK/cuwMoF4+fU807/VuE6OhKt6Xa7WGupqgDulWXBdDJmJ2qq3fvAQ0iV8lu/87v87M/9PM88/RTTyQQXzVcWLGRCrPE4VNsojqyFED7Dz9ZVhalqJuMRt69f49O//Vt0u10eeOhNfPijH+Tbv+PbOX/5CtPpmNHhAQeHh6Hh1RsglzWzSUnTNHTSjF6aoUUELoSPxRGgNV52cUpTSti+3bA7K3j74+/gpedf4vhgL+ZR4TMnKoFYdLfMnk6/y9LmGv1hP2I74R4dX79JfmYTvTJcgNNtE1JrvRitklKSqiw2CVv2XtBLSxId7k3r+upO3BqdCwWeUupkIbTvIQR1U1NWFYNeNzYrY77jDOP5HOEEvqkpZ5PA1F1dReIxtubO3ZvBZAdHIhXT8YiqMQxWMsb7e4yOjxgfH/OmRx5GpDk/93/8It/43OdwTUUxn3Huwjm+9Yn3s76xyv7REU4pfOPJs4w0WeFwNAlHjVYxBxSMjOH52YSH8w1W1tdQLkwueAFNHXKSup7zvjShEopfOdxG65SLSzmbUrKZdFjRKppiKZrK0BQV87qhtg1CSVKpyFCkwpNrhfaCVAq0J55tIS+lZWwF3gLGe5SQ7YRt3KNhLbdC6i4C1y2YF/Z42FALFT8X223On4onETySJ5t1wc500SAn/qx1Ficl+3XNsJPjrDtFHDnRWgsf5aRZ4J1H9jtky6u4WUmxu8/+nTtk73sP/2z3Kv/kS19i5iwItdBMlVLR7S1z5uI9bG6dYTafc+P2HbI8ZfPMWdY31oIGZtNQFGU0vgvamXknpyzmTEYjdnfusL27g/IBuRiurnHhviu89OzTzEfHOGMxVvDVySH/1dc/w1979F184N4H8K++xFqSsJRmfGrnDk8dH/HEYIWsqmgAoTS1qRA6gLtCKmxVUyBQSRoMrYSARFE3BpEkdJf6rAxyOnkHn2hUEqQtZBubfTTYEDaaq0Aoq6MsRqJY6gqUDu6Yk8mYYPIeAD3hPPPZDJ2mwVxRSJrGY50nEcQGgGRlaUCeOZzVFLMpnTxB9zoBxI8AvrFhrze2lbUKJlRa6cgojqwwXNAvi7qcMjKATyC80+zSENhdbJghiIYRQNSJD9h2WPs6y/CAdScHihSwvr5KnqYs9YeMBbx28xoPe0dZNnQ6y5xZ7XPt1Rf4ymd/j5XNC3zLOx+nNxzwtsfvZV6U6DTjfR/8EK+//BQbW2e4u7OLsA7XGHxEF9K8y3B5yMGdBGMdVVFg6xk373k7RXXI3vER/U7KkwdH3ClGdAvJBZ1yn0q5N+lyvjvkTNpjK83JhSSXmkxqvLfgatx8jp0ZhHMMlWY5TXm410Ne2MI/1KPwcDSbsTObsj0Zsz0acXs+4aqvsFLR0ZJ+Jug6x13nEbYhaRpkLegoWBGaodAMs5RcCnI8qRAoF+Y/lNK4mCtoobG+Dk0jwAqLj6w97wyBDiS5Xlec11kA/QlTlc6DtG6h7a+kAjyNacjzIIlRHOxTrW7wT194kuvFGKnC9JhNFN5JUp1w9uwl3v3e97B3cEy2tsa5tQ1mRckLr7zK+OgQZ4IEWO5MGP0tLTNjeGV8iFQpSytDNs+cZfnMeTprW3TWNrj28vNMDg4iUC752u1X+e9+6R/xN7/3R2l+/l9Sj6dknQ7LKqOjEu4c73O2vxTWqxSggjmkg1BPaYlIErxvMPMR+tZNirIIZBvpKTDszKZMRpYvVSN67343qhSsn7/A8PiQWt4kTRJqoPaGzFbUR4ek/X5Y3M5Hk6/AvlRSYr2nbmpsMefihQvcfvZ59q9eoy5Llu65h7c9/jhtZ9cvkkBoRy4E4oQu+01+fdMAnzXQNJK6MkgBpjRkmVyI+gaRQkWaZYtJtLb36wmivyKJI0UeXB0SC+scSrrgVBXpv9Y60tTgrERUFqUthsAYE3h0EjoHSklqY1BKYnyzcBpDgJeC2pqgbWQFzoJOokCp8eAVqvF4LN4Y6hqa2pAsdOc8WgsSHZI35RWNT+lkKVWdsrH1HoZ5sNNu6pqqmXE03mX37k28m2NdEabNfauZldLNAVcFtptKaGqwZUlVWZpGUbsKpWokkwDMKNCpQDhBpyPodDt452jqBiUDECpkguhq9LGgkybggmh0IlPSNMHWilSGETw7m2OLmkRnIAWJDPdLqzSCCjqMl0nwrqKw4BNDUR1S2QqjLCUV5byi08kYdrt0SOmmfZRIUCKhk2mauUU4hSBBpiukyRouPU+6dolGarorS5y7fA9KJuwfT9jZO1yMgy4S/Tg2JuNh0wp7th3RkxEUou10APOcO0l2nT/pZodkykdGaSzYWhH6uMdcZNm0oy3BD8EuAD4TR5arpsE0lrqu8d6y1O8yrkuOoiOkEMSuuFvsH4Hg7p3b/PIv/iKj0TGj8ZiyKKibCmPMyeeMPxtJbgsjDKUVSZrS7XZDR15KWnfB8O/gdCxamrEMHVSd6EU3VWtNmiRoncTX6tHv9xksD0kSRdLrI970Tq7sNPyJP9ZjfHjEzv6Yvb27FHbKDZPh1i7jHx/gHy4xM0unqumfvZdP7lznd770BaTWvOMD7+bTv/Up6roKiVHLRVZB166/ugo6Ic069AZ9JpMRB3duYZsGXNiP7TinQYRkTCiKHcmeTpB5h8HaGmfPX+S+K/dSzEsu33+FLBG8miomKyvs37rOfG8fLxzSh+T8cHTET/2jv8dP/rX/hl4qqA8P6axvgqpRWYbrdBHn74X9fRJTI3DoNA9C3YXl3JktbJahl5apC0OiQlMijOAGzc1wT9TCdCK27MM6CycveBtEkp2h9ZmNFVbs1IfneevxtkJUAj8bhTjaMvFE9HH0nkaIxWEXErUwbuHiZ/NSETLPFJHmiCRHZikiTVBJgkxSZJZCmqPyLqLTg04HkWcRLMwgSUBrtNI4rRFK45VYOEiiwlpUUiCqgt7qMiesgSiWj4p7LxySJO2+C4UczlPhA9jpLFgT3Di1xLrAkLNNxdHdO1x/5UV29w+ZV3Dhnnu4cOUK3eEgOrh6NkfHzKuK1a0tsJBlWQCDvWV6dMTRwQHjyZg7+4c8+eTznD13hq2z57l85R7WVteDlmWS4YVAb57l2//r/yef+x//Fu5rX2VJBnffHg7FjAbJvG6Cs6j3aC1JEkkxq9ifzKlss5CV0EiunLvIPRfvQQnBcGmJYjpnuDEgufII2/UnsbtT0q2z9LcuUU9nFKMjjvevY8qCcnKMciWjo2NUlmKNJ0sV+BotfezoQm9pGWcNWSo5qCUb3/UXGI2nbO/s8ju/89v84A/+EZomaK15AePxlNF4EkOhozPok+Rd1PSI6fFRKAPi2vq2D3+Yt77tMbyFJ7/+JL/0C7/IfDKiKmY4UyGcp5hOOd7fZ2nQwzQNzz79JHVVgHcc7Ozwj//hP6CYTvnTP/ZjbO/ucvX113DO0dQVB3v7CJWQpAkrKysc7O7y4JvexNHeHk0Z2LWf/exn+dj3f1/UFvILtp5vQSkhQQSNp9W1Ne7cucOV7r3hDLUijrCYsH4jg2/BXhBiUZSG/xQLNl8LOrSP02Y4pwr7FhETkW63gP5Og3ELBK5F/U4DdC2w2D7yxubW6f8++Tz+DY+1P3MC9LVK+6feMoKVznuOj48Y9N8WWG4LlDS+wBtevgUjAxtgaTgMzaWmoiwLinLOeHTM3e0d1ja3OHf2As88/zw//dN/ny9/8UvUZbG4ZkIIRLCrQyUJvf6ApdUVVJKikpTeoMd8VuCspSkryukUY2tm4zGmqdEETRxnLZPJhK9/9cs8/eRX+dl/+a/4no99Dz/8wz/MmfOXGI+PGR0fMJ1Pmcwm1MWcqqoRHrqdnE6SkWYZKktCrCRUU8Yayqrk7p1t9kdjlldWeFBrzp87y/jgkBu373J373Dx+ZvGRA1XhxeB6XTu/LnQNolrTOHZu/Yq937L+6IGqIsu8CJqunlqE34nH5udrX5o3dQAiwYEnIx6s2A/+ggKibC+CdpOrbGO95a6bgJImuenio7QYHnuuZcZT2bRRMdijGHY7zOdjpkUY1555QWsrUKOoSV7+3vcuHY1Mgk9h8cj3vHOx1jdWKcRksM3P8KXP/WbmHqOtQ2HB3uMjvZZP7PB3tEhzjtW1tcpK8Px8Q694QqdQe8N28MAT48nfH+6jnUWtbZBfvEispPgmwY7meJmU5bKmovG8JHiiK/Oj3lmNuHzkwlGjOgmKWVRkCLpJylLScZQ53RFl77WdCU4CeOqQNoGjEVaibKeTAgSH1xSEylQTixAN41HeYeOWqLSgxJhHNssZE7kwkU8GMn4RZgI2lptTIh7P7KHRdTytdbEPRnYeO2IZOtaL0UYAbTeclxWPNDvBikLJZBxHYVaMnraC4G34TM4PPn6CkJryoN99re3yc9f4FPW8A8+90VGxgKBQSqBRKZ0l1d482PvpKoMO7u7SKW4cOkSK2srZFlG09SUdc1sMsG7YCrYuhqrsSLPM4bDIWc2txhNRty4eo2jg30sgmJe8OCb3sLh3g63rl3D1RXCCu4WFX/ta1/ir7z7fXzn5hbz8YxV53j70hrPHx3zyNIqZ2Q4fxvXsu4CGaU1EpMx58d5jGsoK0cxL/DOk0lF4xw3xnP2m4YH773Ai68FCQkHUZfUIpyBCKahE0wE1IcrQzYGlmpeQd4NDXgb9HO1k2SiwjSOsimCK6s3CJdGV16wvkFF99nVtWVGx8cMhkuMjo9J8iTsxaaJuo0xt4t/vA8yCdY2C3OkMNopUVogHXEkXISmMydOrdBqv50w050/aTqJNryICEBH0kXLqlatZExYJZw/s4kWjm6ngxSC1155CWEqqmJGJ1vmuW88xb/7hX9JOZ8hshc4s7HKmbPvpagb1leXGB0f8ujjj/HCt32At77t7Xzxa09HrNGA9qxuLiNwNMaRdTpkUlHPJU1Tc/1ojOn3eHlnH+cKVi9dRB+POTweM5eeV32FKmYk8z16UrGapGx4xabOOae7nOv0OZt1WFIJHa9RImiyUld42yDHxzgPSmo2k4zzeRe9eQl1TxcrJcfzKbuzCXuzCbcmU24WE67WcyoMCkGWpXQyyZJw5M6Q+QpZNEgHudL0vWSgdRjzFYJcaVIfcrpSwIn1SZB0sNLjUNTC8XJR8q3dQbg/SuObQKzwxtPYZmFWhQ3M8nywjJ0UlMbxDTfhd2++RuODYY9TEpwgESkXL9zLh77jw9y+c5fz993LrTs7HB4fUhUFpq4QWGzThLoFj3c2kjpC7YI3HO/NONrdpre0zOUr93H5ygMMB8u8/MxT7N6+FRt6gi9ef4m/+9lP8Fc+9GHqT32aJOkjvWSru8yTB3usLy2hDdH9O+QNtjFIJbFVMOAwMmQndeOCL0HToLC4XpeOylkdSC5tdjhynunxIZM65KkISSMEc9NQOehKgWwqSmfo9AchlqJIZMCYbNSzTqRgNe+xff02BwcHiKMRWqY8cN9DnDmz9X+d553aXyzqvW/u65sG+HodSW7CYtOyTXo9WkmsNaRKYK2jsdWiI+msDwEmJqHKyaCZs+hahm6D1hofJjNxro50aBXvoWBeeLx2KAXWemhCtyAAMKGo1ipBeE+aaJwNlHmlkkUAdNaCbFBColQ8kHUcA40/k6QB6CpKh5Q5XqY41SHLlkk6Q4aDZQbLc27dPWJ6+BpzcxR6Cs5gbYVKYpEhPCKBTpIzL2oy7RBCUZYVQgrqxjEeT5kXBq8UzgtmhQWVkncS8gSyRGNdcHRRAiwOUwfGVJgVd3glkSrFS43sKLq9PtZobOPASuYTG4xFnIRaILsJsqvROgzfCW8RJoyzKxnBMWlxlBhbUdmKyoyo3BzjTFhIUjDo9ch0Ri8dkNoOGR20SELS4CSdJMOTIuQQIVawyQWy1YeR3SVW1tfYunAJLxJ2DsfsHoxCshgXv3OtGOwip1nkPSfMOhZFXSuIGUA+v/iz+H58ghCAlCjaHCsmWXFvnYjMuoUlvHXBQcdGV0tjHHVjqBtDVdaYuuBN951nPDrmzu277B8c4k0dTF0ArRTdTodup4uUisPDQ1SiyNKMc+fPkucZad6hk+ekWU6e5XQ6HbrdLnme0clz8jwnyzKSNA1aMlpHlkCg50upAqgUC1UpVQCMRAsSto+3bNqo5XPqOVVVIoSiqmqS1Q3e85EPoe+9n939A7qqi7eW29NtPvHZT/Las8+T6oRO1kF6RSpS3NPPcu36K1gh+I7v+m6ef/45jo8PWGiaicAe6w+GdJaGFHXD8sqQ0eGIg4PtMOYZjQCCbiALbawFX0UEQwlvDL6qOJqMGN+5zc0Xn+fs/Q/wyFvfhh8f86b772V/VqA7HXbka1SjA0xRYV0Yr3nxmaf55d/9ND/8wY+Qj46pHKSrSxgcOtP4M2fRu+dIjvbRpsFKRYLAFQUPP3gfq0sZ06NDhPBYqZFpAL68DmYbC0liFzv/wi9cPQOY7PFWxm5/0AQCTgGCRB2e+Hx/aiO091XHe9k670UGXhhrgsBKjgeIPM0YaPBNg6unMA0Jv3dRJ9QGlhxx7YfxX8FCsFIovFJBgkAlgWGhNTrNwjXIuog8R/f7XHvpReyle+gMhqjBANFJw89ncTRZZyidIHSOSHS4fmmCkAEAFN6Frm08CG1d44yhmE64+tpr3Lh1h7X1Na5cfojNc4GZduPOLV78vd/jxvXr7G3fYW93h9Jazp87R6o0w6VltjY3WV1eY3V1ifsfeIBLm+dYXV1FScXB9h0O9nb46uc/z9aZc5y5cIHzly7TybtIpeldusJ3/M9/h4Onv0FzeICtKpQxIfETgk5tYTJHGYeswnifShsuvnqdq6ZmPpsHQE1rvvUD72N1Y51qXjAdH7OyuY6UgmxrjZVeztJSl+zSFcbjEUrkZGmX4fkLzEbHdOYziuNDzl9UOCfQiaYuZjTVhOnd22SmQec9jEwYrG8wPzrAzovF3s/SjN/4+K/z0P0P8sCDDwVjkMZyeDyiMVHMWWseeuQRajvl+PCQuqrCuJMX9JZXeP9HP4rwUBYVaZLzvve9nxeff5ab116jnFm8sFghMd4znYxQUvLi888F8D7e02I24ed/9l9x//338QM/8AP8vZ/6u1hr8NYxm07Y8Geoy4qlCxfIux2QgpWNTfZu38ZZy9WrV9nf2WVrayOyndSJ+QUsih/n4Z577+Wpp5/m8r0XOdg/YDBYIsnToDPqTwCtwJJqGyxiwWQQyKCHFQ+lANjIN7D42pEZoj4WUUdT+JPPxB8A4/yJBmDb2IqM35Yp8cYxXU7FxNMAnj8BJ0+iyOJnTh4Nj4lT3/Ye6qoEgsbZgrkXP+bpxvPpV7emYdDrB7OJpg66e2XBaHTEzt4+5y/dQ7c35J/8zM/wM//sn3Owvx8AkDgCLYQk7WQsra2yfmaLJEnJspRiXiKVpmpq5sU8ABqJYnmwglnu0+v32dza4va16xzs7bO/s01ZzIO2KKGxdvf2bX7mn/4z/v2/+3f8mR/7cT72hz6G0CqM7AtBd2mZpUSQUGOOD/HKoXod8uGQVGShuRiF5wfes7l1/gR7sW6R3FfG8Nuf/h3+wT/8x8xnM5I0GLgpJRBSsbKywoNX7gNraQRk3jO5fYfe8hoiyzBNiB0GFu/nFAtWHcScxoM3gUEkZdC3Pt0MbD29FuLrcZ22GoYyOmY2JuZwWpFnedT0i79XZBrpLA0TAw4aE0aQu/9f1v4zytLrvO8Ffzu84cTK1dXVOSMTGSCYwZwlirLkIMuyxkm27OvxtX2v7buWZzmNfX0dZizLsmRbnpEsyhItkmIUQZAASYAkCILIaDQa6NyVw0lv2mE+7Pecasn3y5j3rAV0dXWdUye8e+/n+T//kDZRWqGThKuXL5PnBVGUMDU7z8lTN3H86HEqa0mSFKkV2WjElUtXGOU5izNdms0G21kPay3ZaMTa6gpRGqOkIHKG3DjiJA7e0Eh6/TL4atbJOU54zhcZA1vQbMTIUydRb30A00wRxiNLi6wMaZHTHo2Y29zmlrUthjt9NocDMmkRTc3l7VVWh32uZ31WsyFniyFZXgYVjHOkaFoqGOjPNmOaKiJ1goaKUJVBO4uwFu08ZRXsGIQHVU+TIzxpFKGlJFYaLQWxt2gR3GWVF5MBnqzvKwQIF+CRsTdXqEvdRHoZLr1QXQgbbDkg/LsaS3UdlJGgsJa2E4DDeIL/Xp2gKghfh6CPcMbrZgPZbWGLnNHKOoUp2Tpxml955BF2KgO1ZF8KiY4aTC/u5/iZm9nd3aE/6DM1NcXRo0dptVsYayjKgn6/z6Dfw1kTgGprJ0m9SkisSRg4R9FuE6mIm265hY2NdV47d47e7jbOljSbTW5/0z1cufQ66yvXkcBOWfHPv/9Npu96K3dOdUl2BxxLO1wYDbkwGjHbaBAJGZh7dfBSrGOKPMeYiihNMcZgXACIhllIV1dSopsxTsF2olHNlN2dXaampkEq8qqiKEZACG1yxlJUFaXKkVLRamoeOpNyeNZTFp5sNKTR0CRJxGhYYIzDaYWKNIPeEOUjlBVUA4O1HqklXiisAOMrtno98qykPwyDtWIYpL01AlcHS4TeZLy+hZB7cvFx4JwLoWhKhFpQ+z2vTqHGKqnA/vxDgWdCBXcZIfeOgnqAMPl7PQgaP4YU4bqanpsjjSNMIyVOm2yvrfLSs09Da47dHRcGNkWOLTKUd1y//BpTH3g/zz/xHZx3vPnBB+h0Uv7cn/9LbGxv8ruf/v0Q6GU9utmg2W6zsbaBdRIVJUEmLDKM0HQPHOKn//TPcPW1l1m5cIVRljH65hPog0d43/vfx+FDhxgOBqxcu8bZc2e5eOUyV1ZXGIw2EeUWycDTFopZFXEwbnAgSjmiWxyMG0xbTQdBLHxg+fsCVxZUvU0qPCpKmYtb7EuaMDcFyzEmkhSVZaPI2cyHbI0GXO73WBn1uFwNyZwBqUkSTTuSxMbT0eB8hh5VSBRtEZQiXRUxpRSpgERqtPQY63E4rmtLzxj2RxrlBa6yuMqiI4Wv1YwaiXdVzfpUIe312hqDtMVvXn6NbRfoU5bg7ayc4qZbb+ehd76NK2tr0GnxwtnzZKMhpizAVlhTBWsNO1arBd9epSJkVNsbVWaiYhrtbHD+5RGHTpzk0LHjSBSNzhRXzr+CdRXGO77ywne5Zf8BPnlgnriXE2uYT9pEvVVWsh77o07tRzm2YRKhjlMy+F9bF2xAtjeInWfWq+Atvt6jkUiMnsZ6z0yrSS7XuLpyjd5wB6UUZZkzNBYvBNZXYQDiLJWpWNq/jEhaRLFmOBhSmhLlBLaoGGEplSdJm9xy9CjTSwu85+MfD6SKcdU0Oa9r+wz2PP39Hy7x/oduPzLAp6RHR65OsQ2sOKUlVRUio8sa7Q4FQ53CUydMeR/ksVVV1ZRiQVUF+UwURVRFkNiaymK8CEaUQlNWhihSDIYOgyBOBab0WG/RY4UvCiUlRkpirckrGZLE6hFZkiYIGQC+4Gfva9mewnmNQBOnHZAJyAQpYvYvLQSA0QYvtl5/k/7oMm7tAloMsGVBb/s6nbSksh7pPEGhIXH1pEVIQe4cpnIYZ3CupDQVxgR5hcDRjGMqZ4kiaMxEDIqKqWZgXZmyJJExeDC2DDIAAbGKcC4cXFIKWo0pslKBF2Qj8Cb8p7wjjRXNCOKmxihHqhxlXoKRSB0jXDArLUcVOhEYm2FVRSGGVGZEJQw+MhRZRrOZBr8nqWmKmIZuk6gmiU4RlUZbhSslSbOB8grrU4gWkekyvnMAPTVHZ/8h5hf3YYzl6uomO7v9kBRXHxwmaAYmDc4EEJmAb3u+emMbMOc81tey3Prv42jwG/uSsbxq3BBR/+Fv+CLUaTV7b/w49Z+TqPMacI0ixeLMFNrleFcyNztFs5Fy+OASkY7wPhiWp2lCFMWBPq+DBHoMzghJAGaoGSd7z2yCanrPxEjf1n96V7+2sWxg/Crq+wQ2S22yW9P1xxJnVZu6jxObBHWRWidhCR0xs7DAsUqi4iYN45jutLj2wjaXr/RZ28kQYoh22whcmFSaEpzhrrvvxyF49ewrk+eMkEitkEmCaDSIWk28zlm9cglXVQhbf95+r0mdfO7UE27GoQw1ToVDWKisoVfmZIMd1i9f4JY776LT6bI036TKSlKdsnX1DVbOvwGEBt1ax6d/99M8/KZ7EKMdutmIttYYJyBViFYbv/8QVX8bn2dQDy5MWXFwYYlWq4HxjiRJEEGPAXGMkxpEuBaDDHds2j2+jhxj5QOTYi1MZuuLm3GnP56ShurJTa7NcaqeVwIvJErVCb5CgIywasxcUhO35cn1JMZyLuo1J1DjJh/25LPO1sVhbcDtXLA7cAZnqkDlNhWyDFNy5ernLAMAWDQSoqtrRASmt49ijFYY4fGqBkJdmM54qbBCIaKY0dQUB977AUS7Hd4fCVhPVRaYLGN3a4vXzp/Hesm973w3hfU8/cz3+bXf+E2efeb7XL92FVOWE/Nz8DghePWlF/f2gPG1ryRJlDA9O8/NZ05z/OQJ7r//AW695RZOv+kOXnjmWb74+S9y5pabue2WW5lf2IdOG6juFPNvezu2KicTceFd8Iiph3EIifIe6wRdX/KPy5JvfOtx/o9/8//i4sULLO1b4oH7H8A42NrcIY4Dqz2OExqLC9BpsnXlOstC05yZr9PDBdtb2zTTfSAUcVkSJ2GQ1Wwk4B3Z7ibt/W+gXAHteVpzyzRaU+S9baZ21vFRxB23vYlf/MW/xhc+//t86Utf5sTJ08SNiNfOnmV1YwshNZICFTdIOl0ur1xnezt4ESEF1ntO3nwzUzOzFGWFNYZjx09w8tRJ3ve+9/LY1x/hK5//fPDR63RotNqsraxRVTmrqytYZ6De6wSCQb/Hp37rN/lf/+7/xvKBZS5evBSYBdbR392l0Wlx/fo1Go0GG5ubNDtddLxOkeUMBkNeeOEl9i29oya91GEj8gbmW73glvYtsruzRb/Xq0EOQZSEJFQh6j3VM0mOHadm1phb8OplvDGN/+0GZi51kyPHR8l4ndWeeWOmn4c9L63x2hsDamOxVGDVyL1RAROGr9hzUapPs/r5jIdfYgLY3HCITJ76eFZQYwgEb03PtevXmZ2brQE/v/fDf/Qmxs1dAKCazQbWWsqyoCgy+oMeW9vbHDh4BOsE/+Af/kM+95nPYStTy4PCXtVqNenOzjK3MI/3nv5gQLsjKcoSYyz4jKIsaqALcJ5sGDzudns9rl27hkJw8OgR3vqud3HulbO89spLbG9t7FlWOMeVK1f4p//0/8mLL77AX/zLf5m00aIoCgrjUEIRWcvzv/6r2GsrHPr4J1l8z0eI0hhBYMePZdeu3s+tq9Uo4RIF77jt5ps4c/I4z738atiTdUhE1Dri0KGDnDxxjEakcEKivOPCS89x+O57GIxGeMJ5HLy0dC1JDN5W4X1wYWhjDd55rDHBQiWK6gF62Osqa1BWByPwengHnjgKDKHgPS3RdRiYEKDTZHLWBjZl2L9cZamyMgQaSYFxjn6eBU/AKGHUHwCaA4eO8+GPfJxbbr+djbUtXj//KgsLMxw8vMyT336CD3z4Azz6O/+NtzxwH91uh831ldqCwZDnGb1BHyEleTaC6Xaw/rEWXxacPH2K7WsXyfqbpEmKd57XbM4P+gMeyFN6P3wR2xugl/eTTC+ipmeJm1OYmXmqE21UI0IOdulubTDTH+B2epidIUe2lzFZDsZjKkPuLMMiIzc5/aLPdjVgPe+xkg1YH+VsDQeUZYWpDEJApGPaScqUillIE1oSmkoRC4n2UNX1orIV2+WQ0vk6FTk0ool1pEITK0kUKRIliYEEEdjXYSML9aDzjAN7LIGhJ0LkO2FuJ/DGYSU44RBesS0sOYFVaH0YJhhvQ3qnC2e8q1sjZR1eCeKZbgBzezsMe7vYUyf4N8++wNmdneDhJzwCSRw3mFrYx53338frr71OWeYszC9w9Pgxms0mxhh6u7tsbW5gqiChFvU1WtX+0ZEOyhNTFThrGQ37dNodjGnR7U5z5933cP78q2xurJONRsRJyv4jpxiOcoa9bTye9dzwL374FP/szW9mfwYRCQcbU5xf3+a2Q63gG+fB4jGmQtrAjE2SGC8EhSnJrCWrDKgIj6m9qROGQrAaxRw8dJDZTpNkap5Gq8361hY/ePopdFlw6KbjvPDSeXZ7u3Rb0zSbCe+5s8Vbb+6QpIKiUhR5kJNaI+h2GvR2+iRpGwE0mwlGQp7lDHYs3gm0ECgh8c5TVhWmX2JKS1YYIqWJIzvZm71zCKXCnqolWqtaLbT3M6I+B5UKExxLGPzbMfkBhzBM2H57oVN1KeoMCo0TAfQZq6jG+4Wrj5YJ6Ofr6xwQShFJTVEZlg4e4o1XnuM73/gaH/tTP8/K6g5Lhw5x5OY7eP3l56jyDFPmbO9s0G0nfPGLX+SmE8dYmJmhqgzn3rjMztY2ZVGAkCSNFq24gYkEnXaHrTVJluUolbC0f5k33/sARw4cY2lmH+VtGSjFx37sJ2jMzoceXXpUkqKkhsowzIb88Oln2VpfYXN7kxdffIHzly5yPsu4qCy22MWPNtFe0EKykKQsx00OJCmHVJN9UcKMUrSFoOUssRkQmwFaBgxCSUVLxLSk5Khq4GenEPsPQywpnGG36LMz6rE2GnCt3+dC1md10GPgwr7fajVoSM+GLjFuSJU7Ig8dL5l2ikhJSiV4xefc0ekEL2wZhgcqVkgJToYAUmHcZC22Wy1MbsgLw8tqyHe2V8I1ovbUYHOz+/ngj32E8xcvcH1jk37tZ22rCltk2KoA59Ba0+pO0Wy2aDUbgGc4zBj0+wyzQc0WruqzylNmA8699Dy7Oz3OnLkFoWKGvR6bq1ex3jIwlv/0+Je54+EPsu/JV/DdKZSMWI46nN/YZHqxgbB1sS0F1pgA7lUllgBuD4TixdGQmxotUhVDM/jils4yNCWbowxdGZ5+/Ry9oo+KE2IZEQlFGiVIBHGqkVoxLINab+36VWaWDgWbLGvwZYm1oQYcbKywGCUst6Y5dOwU9378vXQW5yf11Y2Yw2S0O5ma/p8VWv//3370FF3jMHkoho2zCK+oKltLETxxHFJjQ08qqUqH9QKXO6wLml1rg2dcFIVDyhhPktRIpnA1mcXTiiWSijiJKIuSKFYI49HC02xFRFGLoqhotRoTZkKQ1oYIcCVUYPsZj7UCvEalMd7HwdReJqRxmzjpEsUNBAJTGqwZ0htssnb9ZVRkiLWnKDO0joiVw0tFM/UMRxmlsSHMw1ust3jrsVnwPTBliDgPDVMUmHYygC5KGrT0RDpCIWmqMPFzcUJhB2gX4UceTUQUK0CS6EZoHmXQqwutacfNkHKUCWzhEFZg8pKZdpMqL0lFhKREWwdIqmwUqLfGhBTJKMZWBoTD+hFZmeGUYVjlWO2woiBWoIQmTVIkktlOh5QEZWKEaKAqjZYRykQoL9EywYwifNJGpPO49hKie5jG/EEWlw/R7s7QG+ZcWVkny00tWajDLOoeRsEeffyPgHTh6oCJ/x5/pBkZA8xy7DNRG1YLUGIvpGNPwrTnmzRum0KjpGoQLUivnI+AkPQ8ZtRKoZhOPcJVkLSY8jVwrOTkd4xBOyHGTZ6YPFE/eQp7T34S6HEDkDkp8mpvqPG/Q6AJM25mx//m/STVV8lQNCgdmquxJ8wNXWkNNAagLxIBLPcS0uEmraJgqyq4vLnJ4488xebGDp3ZeXKTg/cI64mdxw37THfa3P/gQ/zGf/r32KqcdKFCCqJGg+7+A5RVxe7GFvmwP/GREG6vyRVS0mp3mFtYYH5ujk67Q2UNu7s9Nrc32dlcp6xNwL33SBs+PzPM2C6v8f0s5/hNt3Hq4AILizMs7l/kgrLoNGXl3PmQEOsda9fX+N0vfpFf/MlP4i6/QXn9Os0Txygrj9casbwfc+115GCIrwqkUPRHI0TUCHLcThuUxjqBjCNElODrpgsCwCdNkHnZGhSmZpQKBzhTX9uhUQ4sTBUuhfGUZMwqwlNX64FpLMeXi8ROQAFB8DmsQSyla3JfkLpO1sn4YpRqAk6Fa00gCGmM3gVLAVE3txOAwRiUMeE6tg5cFRoRM256JT5NGVY5i0cP0FlcRNoKL1VI/ZYSVDQpNLW1wTu11SXvDVFzM9hII214T4wxVFWByTOuXrrEiy+f5fjtt5E0unz1scf47Kd/h1eef5ZsNJq8rj0JZY2Wjt/P+nV45wIz0XiqckB/OODK5Yvwta/ya7/2Hzhw8CD33HMXb3/7O3n7hz7Ms08/zZWvfJV3vuudHDh0mKIowt4JeONQKgoMB+cojamBe4vyYBEYGz7b9zz8bg4ePcnf/rt/i1NHjnD6yGEEgsVDB4JU23pMUVK6iKgzTWvfMqI9jTeGyjmGWY5TDabmZhA6om0deZ6TNFL6Ozs0mimRjuh2piizgrTRoHKOUkhccwovIjY3Nmk0O3z0Yx/nAx/4AFk2YmZqGisVV9fX+cajj/Kmu9+ErDK2+4arV68xzEfkw1FgAHgBUnLXXffUgFoNmDuDMZYoinjrO97F1tYW3378cc6cPsPRQwdptlO+9c2nGI1GSJ0QJzFVUWJNCCd69dw51jbWeeChh7h08VIAtC1sbmwwt7yEA44eP863vvENFheX6G9vsVmtYp3jlbOv8N73voNx2qvzIJ2f7OpubCCuFfff/yDf/OY3efe73s36ynUQnkarSRzFE3uDMQvP13YR4y3aCXcDQ65uduq9/UYj8/F1NvnJOrhGjEe0QowJu5PbXuLueGhDzTy0e8BgDSpSM2u98xNZ5w0wHwI/sXS5Mcl3Igdhr7Acr24hBRcvXeTUqVOMPdr+O8nI+OnXS6oyFdPdaRCCqioo84w8y9jc2mZ+YQlTWf7RP/4nPPLII5Pn6hGoJGF2cZGl5WV6/T794QilNWm7zW5vQJZleFOF51Wzk8dBEUKGgAmlgyzXeM+5c6/yxoUL3HTTTbz/ox/l6ae+z6XXz5MPB2EgSmikf+/T/43VtTX+5v/yv5A2G1RlQeEtqbPsJ+MWvc13H/syzTc9iF5M6mTjPbDV14qAUAs4jLNUZUVZ5CRpytzcLL6qmF7cR2+7j1ARBxb3cduZM0y1OyHROvL0L11BN1vEU9O1/chYHu7x1oZkbxkS+4wJqfe2Zj+NmY+u3oPtOMVXyQlDfBL6NQahhZjURp49BmBZlMRJDIShqBBjgDwM+oJXmJqUVtu7O0RxTCOOmV3Yx733PsC73/teojhmOBwwNzfDW976IN/65rc4duoYJ06doMgLpqba6CThgQcfwuO5cuUKxhmaU7OsP/1sXctZsjKnNCVpI8UKWFu7TlEZpBBURYHAc0kL/t3oOkV7gbmtnGh3BXM2JtOWKElx7RZ+/z723fVmpvcfIdFNaO4jWTpD2o6hrIi9R2dD6Pex29s0dwfMDPskRUE+2MYXVZB6OU9pK3JbMDQZw3zEIBuw3t9hZTjkej7ibNGnXxpK50PQD45EChpSMaUiulIzk0S0oohEKVIRB7WEMVTGYo3BlZZKeLxQKOFoCEilpKEViQrBH8qHPSYe168YhA9qBOkF49AOnGClNDSSGtT1HuFEDejXgSE1s8u7MFCVzQ4kCc5V9HZ2KXTEo3nG4xfPY8W4PpZIFdGeneX2e+7jjfNvIKRncXmZ46dPEscJ/V6f1WvXyEZ98tEQvCWOItqdDo1GCh7yLKO322M0GoIPnoveedY31onjHrPzi7RabU6eOFnLZg0XL17i1E03c99Db+OJxx6hzEZI4NXRkH937mX+3smbSXoVh32T7aLHrvB0owhnKqwJiaSo4KcnpQ5KBSEQOsIUhsqWSA9JM8YZx5rWHL37TmJZsrO9y8awIGm1WLt+kQMzMScW5ri8u81UM8bkigOLXWY6MffctJ+5WUmkRWD2RTmlczgUWli6iSZREcaG3k9qRWYDW97bWkVBIILkeU6SKJI0ojSe4aAgmYlRQtTKK3DGoEQAfWvhGzqKJm1QWZa1ZVYU9plazeFqVuh40DnuOaz1GGMRUHsQy9rLPBj4hX4iMAHHpam/4Zy5MdDQes8tt97M+S9+idnZOeJmiyuvvcr5Z5+mtf8oW70eD7znAywePcYPn3iCw2duw8kGC/sOsLO1za//+n/gr/2N/5nKeZ7+7nfwwlGakiRWTE1Po3WMpE+nHXHsxGGa7Tb9/gjRaLFv+QBnz51ld2uDVtSi3WkRpzE711coRkMiHYZIcZKSxjHbvR472ZDW3AwHT57g4MkzvPLKC3z+c58jKy1xkiBECloz8LDrHOdcjhyOEIMNpLPEQgbAP0qYjxocFJoD8RQH4og5J5iVlqazxKZEFT1Uz4LwpEKQKM1S1OGm+Tn0gRgrNMPSs1302Bzs8kavx7lRn5XBiF5Z4pREpxqtI1QcMfKO3nDAGZVyp25hjMW5CusckapVPlKACn2psx6pBHGzjeuPyLzky+tX2CEQQXxNDEnSNh/8xI+xvd1nbX27ZrDmYEvK4ZCqyJnqdrjrnvu5/8EHWV4+QNrs0EwTvLNUlWVze5MLl87z1Pee5pXnfshw2MPbcHYJ79hZv8YrznLypts4ccubsN7R21jBe8PqsM+vvvoKpw8tsH9jCFKyL27z7KjHjq2Y8Rrrg9LPCwKjnQAyW+fYKguysqCddrDG4L3BegdOcHB+mmUpefLVV5FKsbz/EEcWF5iemcNpxerVFVY31slMgRiWGARTs8scOHKc2cU5vv3YI5hgho9zDoXj3qzLx5r7MMdm2P+Jj6Jnp2AcWjgmUUxmxH9keurFf1du/Y/cfmSAbzxtDiEWYTKEJ4QVOEFZeRCKqrqhmSK8IGssSEfaSMKmUVoaiUJqR6pByIQ4ichyQ5omeFtSlhVaCJI0JpaaJI5w3qMjjfCeTrMVphb15hLLCOcl1ghk1EBHLTqdKSRNkmiKOE7x3pFlGdZYRtkug8FV8nILRIkSFWmqAqVdFAgf0l9bOsJVlmGeIaWmEQdZ1HCUEfsC5wMqbnHoKAQZaKFoJDEASSTxwhFFOqDNIngLCRGmt85bOnGHQQnDvMDYlHajQ5ENiOIYJaJwUDuPVopBvwe2ohwZnHFESqOtJDGGllREBcROI53HoiBtICOJshZUgkBhsVTFLpXfpfCGKqow0oSJTeQpixydKOJEEQlNnDTQXhLbmES2SHUL4RKUTtAyQopgNmtLB8k0VWMZObUf3d3P7PIx5vYfBBlzfWOH1Y2tsNGIIFeQCPz4wKmp3mI8Ua4nn2NawjiZLHjqhe+N49uRId56/FiTx4A6dnzvMScNxOTm/9DCG7MFxwfgDRBaYLsJaEhJK/aMKoWwZYiprz3JQvIaATyj/p03NFyT3+r30P0/dGDWrDxPKO6cZ+ILOfYTdGOmYy2/cRMG3B9mlcANxrl+PJG9EWzkBpZgaCC8AnfxdVa+/Qznui0uDgecff5J7GAL34ixMsJ6ibcFurJEQvP2d7+TL3/xM+zu7iCQ+IBIo5MmU0sHEFJR9TYphv1w7VPHkVuLkIoDh4/yrne/j/vvf5DFhUUkEu9EaMCVZJDnXL96iW8/+U2e/PY3WF+9FqQFztVeRp7h7hYv/OB7DHePc/u9d9GOUh548D6e+sGL7KxuMKoqXBXYnd/49mP8+HvexymtsJurVLHCLy2QzM7gOlO4pcPYrS1kGcJysmIAfpoSgUKRqgS0wCYxotEIaW3O18E/HleV9aa716D6Ol3ZG0M9Ag2AgNLYGuAMwRoKT2BihBCXPfPtMYptJ2CiB+tC+I+1eyCgkkg0jA9BYOIHKsK+7OrkLl9fBE4ASk18UicJnELiI1/7BgbAUViDc5aQ8wVOCnyastvfYfnECZyQeK2RkQpegTWIYiAk3XpLGSXQaVImDbp334tVIbHKlCVeeLLBkIsX3uDK1avccf+DXFjd5Nf+6d/nO09+kyLPanC0lirfcEYJpUPQUi2nG7/XYlKZhvdw7GWEB2NKLl54nYsX3uALX/oS99x7Lz/7sz/PvmMnePrpp3F4lvYfQLra7sE5cj8CHXzwiDQ+N8FewhtczSbUHqJ2izOnjvOLv/hXeO7p74PxeOnRUVKr1zW+qtDtNo2pGeSwR6SDJ6IU0Ox06kFWaNqLsqSTNhBS1P6pkqQ1hdYKMS7OTRUaQCWx6xukw5y8HJHnQ8qqREtJfzgiaaTcf+ddTDcSsqKgyDKe+sHzPPrdJybyi7AnedrtFidPnsIZy8r1aygpmJubD8+pqtBxzFvf9S5KY+i02/zg6R9w+fIlLl2+zMLSfuaWFjl0aJkXn3me1esrWGMYjXKe/eGzvO1tb+dzv/d7FKNR8B7znq21jSDPrXwABa2lrKrgA+ksL730Uh30FU2GQcGX0k2GBg6B1DHHjh+j19vmiSe+zf33P0C/12dtbRWpJFrHxHUya5KkxHFMHMXBDqH2O/WTicx4SBQe39/ADB97rt442Llx3xc3/H/85ViGOLkuGQOCe+tdCD/5/ZMfdezt5T74x46BnfpEuQEA/KNC33pfEgJjLNvb20xNT9eS+L1qUzA5Zic72dhnNE0TrDFUZUFZFmzt7pI020gZ84//yT/iq1/9ang+MnhwRmmDo6dO0Wh32NnexlpDkqbkeU6/36Mqg7+cd2G44IW94RysgYoyMDlU7SUbEmUNzz/3HOcbLe69/z6iKOH8Ky+Sj0Y1IBL20G89/k2cc/ztv/t3SNKEosoZWUv34ALNaC0MKaUKIMBkHuLq17wH8o09fq11FNayMxxx9co1lHdUwxG5KXnwvrv5+Hse5tjJk0QIlBRo73nj6ac5/I63I6RCOYLKBV+D3RJrHGjwzgXGYz1kiXRo1JUKSYqmltoqJUMKZA22y/o+QXbnbjj3/cRg3TlHlMTBg9Lu+fc57/ASOp0gQ7IuSFClkqyuXCeJI44dPsLf+/v/AFOWjAYDvvz7n+P5F57lvgce5Obbb+fSpcvcfd/dLC0ts7O7S5w2SJot3v7wu3j3+97D5tYWr114g4NHjzPc/SzNdpcsz5BqjuFoiLOOdrfFyZtvYntjDe2DQsabCjfs82q7yW+d2I/aXEUUOXnWx3XazMxNMz27SKuRMPrekwxGj5Amiqw3JI5aRLEkaaUszC2yMD3P0vIyi8uLzN12jIZQ+EjiRn0a3mG3NnGr14iKnJmdPn57gOgPKfMKPwfSODwVpTdUzrNTDhh4y06Zs5pnbORDdoqC3bxks6oY9gaUNVgiXUgB7dT+f+1E0dKalpI0EFgBWWWwwjCoXB2cEZIdIy/QxpJISaRkkP/Kmi1aDydezjJu6bYnYVTSh71EShdkd7gg9cbjlKI51US1GlRZTjbMGMxP8dsvvkivLKkd69BC0epMcdtd97J6fQXnKmbmFzlzy80IIRgNB1y9dIly1KfKhizMTvOWtzzE2976Vg4cOEC708FZz2Aw4PLVy3z/+0/z5BNPcOXKZaTSNJpNrDGsr69hTEUjTTl95jSvn3+NlhCsXLlC58xNPPCWt/PEY49iqxLnPV+7cp23zCzx/kabZqPF/kaXa/0+c1qg3XjvGgNbAusdXgickJgqMGFdVRFpTdxsoJXi4uY6Lwx26TU1+48epME2O70NDu/v8r47bqEtM66ubUA6zblXL9LqJJw80GC+a2lIg5QpQgqSOGVnmOOcRaeK1lQgU7TbTaKsIDcW2U5xA0ON2SGEp9WMCY4vAolhup0gjEVHEuvCPiFlqNfiSNcybx8GcDao4IQIgxRZHz1SBOliVZRhL1A6EBWEQKvQrzpnJ2w+CAF+jGtGEcA/Y23AilQdflOfD7JmZod05QAgP3jfvfzBVx9hkOXsP3qcKy+9wLce+RKf/LO/QCYVu3nJ9P6jvPWD89x06y3s37+Pqizpzi6w1duiLCpW1jc4d/48hcnwwmOF58CRI2ilWF1fpzkzz9yBg6RJwrXraxzeN8vrzz3LcJgjNHQaHYSDNI3I8gIda1SkQgBhnTCsCL3W1HSbrfV1Ih2xu7lNUeah38/05AwLr1sSRzFKKZSK8ElCjiDzglUcPu/jTYXwK2ig6WExbXIwaXIibnMqaXMgaTErHB1vUN4gyxGmzNAEOa2KYmZkwnz3ALfNH0W4isoUDKuSjWLARpZxaTBktT9gWIw40Iy5tdFG5jm5E5N6LSuCtZQRDoQPdYwXJGjSpEmxtco1UfCd/mYAywIbAyElt995N0dP3cIXvvwFelnJwARVYrW7jXCGe++6kz/5Mz/D/PIhnBNkRcnKxi5HDy6hlKDd7CDbTVqz09x6+wO89NxzfObT/4X1lSshidY7qqJg5foVkBH3vPmtJI0WT33zEYrBNgWGJy+c41t3zPKxoo9Op2lFKXPEXOrt0u3MIUQgmo2Vek6Al5IKWCmGKO9oCYmTAi1ismyA8Z683+PUwYNMn15gZn6anhNs9te4trnC5sYm69vbjGzJTHeaY4vLtPYdRE8vklWSbLSOqb34E62IdUzkLQddOD/UW95CMr+AtSaw6CcD0wmEUdele8PW/74u+x+7/cgAX15AUYaC0+YuRC77MOmUUhCoOJZYS7QKHnitVoQWwXOsqCqklggkUVxTJkuDEgqtFdkoJ8sq4qhBGofghySJqEqD0gmmsDWwKBBC44lpNjpAjFQNZqeX0DIKC9K7YPid5WTVGuujV0NyLRXOVWFjqxvDWCmK0hLFinJYI9xRAl5S5jllZFFC0UgjmlHETCvQznf6Ja0kbHJps0EUQ7MRgAZqgFPrYLwrVGjWU5JJOIixVdCpO0+/2sarBp1WzFQrAlsReYEb5hg7QqKwpQ0mv84hvSTW4bBS1hFHMU2liAgFeJRGCOvREmKl8EIwKnIq58jLAtKSwvUwscXiIa4PFRfYDlJFKBVCMyKatKImidCkKkaLFhSaRDWhqIEy3aSwHtVoI7uHke0DNOePsO/wcZrdGQZZzpXV64yGI8apT2MpFDewDqgnRFLIyQE1lo/sGZXfALYRmikpXd3wMAEmxoVtnTlRg317jdOet9seJObHoEbtozTuucYggPceJTydWNFJPcZrRsOQ0qWVqBk8Y4nX+DnWLI7JqShqj7XA9hShH917nTeg+cJTvzdi0jyG/tXtNV0uPMkJk2S8YwgmB3Z4maHYkbU8bo914urXJWsw3qBkTEc3ObBxne987xo/3F0lG2xB5TEYhIpRXmBsQWUqphbnuHL1Mm+ce23y3ASgkgbNpf2oOGJn9TomHwUJilI1wOSZnV/g4x//Cd79/g/RaLbp7W7zlT/4EteuXiOKU6ampymLktnZOZYWl/jJn/4TfOjjH+Nzn/40j37lC4yyQc1wc2iv8K5k9dJlytzxwH33sjS7yOkTZyjLgjee/QHD9S28s1xb2+SRp7/P4QcewKyeR61fJ25H+G4X3W4ijhyluvo60U6Jd5IiSmjOzoBOQqKr0ug4DkEUjRZe6zrVpT50lApDkCL4x2mlJowioaMgoZAqCId1hK+bSScl6DgEYuBxVYUzBvzYEyX47QF1wq8PRuO1f5kvKqQSiDjGCmrphpiEr4zb/719ew9gGCc/IyRCRXWAUrg2XX2dCSVRsaoNbIt6vUmEVhRe4IRC6GAtgASvI0CBd7gacMd5CuNI5qdCctqtd+LTFsL5AO7hqfKK115/g8vXr3Pqtrv58je+wX/8N/+ajc214KcoAtPUEYrOpJUS1V6VrU43FBJKBSa1IKTYjQaYsqQaBoaAZ7zJjNdWWGdFNuLJb32Tl55/np/+6T/Nxz7yMV5++Szd6TnanTYvf+nzuFefpasEToaEO6cTqp5hZrpNNtxktLuBlAneS7LpOdp338FNB/Zx9eVmsDHQmmGeY4ylqsowoU9jksUlNq9vs5ym6CjGOzthj3nvKYqyDhJROBsS1MP+EoqzqqxQStFopgEcFpIkadEVmn0LC4yZW0VZBrmqCOnCR48dQ0mFc/Dc2dewAqq8xNf2B3jPzOws7XaTPM/4nd/+FCvXrjLVbfH+D36E+x56CC9gfn6O97//fWytbyK85+abb2Jra5ulpSVm5mdZ3LfIlUuXWVtdpd/rMxgM2L//AMeOHmN2ZobrWRaAHWsZ9ofESUy308Z7z4EDB+j1emyUFXmesbm+ydWrGxw6tIz1fi+REm5gNYEQCqE0d951N6ur13n0G48yOzvD4SNHaKQNkiSpB3UFpioZ1AOV8Z6toxCKFQKLIrRSdZGv9mS9Mgw6w3U0BvrGMt8bQb4bhj1jFwPGC2NPFjxm807uPwaoJ/v5nn/w+JwZM79FLfeahITga5+XP8L583D1yhWmZ2aIdFT/i7vh5yZv5+SLqjJMdTuAx9QJ18M8Z1QULC7u51d/9T/wla98ZQ9sFILOzAz3vPlBXn/jIjsr13Hes7C4QG93m15vh3Gq+ISZHSZYE9uGiRdhTT+y9YReKkWSpigFVZXz/e8/xYFDh3jg7e/gh099l92trYm3r3eOJ7/9BL/2K7/KX/lrfxWlEwoE16du4hvPX+T4+95L0pkK702tKhi/U5NALxcAMmcshTH0RxnNRpNWq02R55Rra+hGi+X9S5y49WZmZmYIELOlurJGpGPSmdmQtVQ/+piJB3XIRlVNErzDHl3XkIRghzHTTtSMvskp7uphhhsztsTkvs6H3zMebjL2K2Tv8cYgddJI8d6Tj0ZEWhLrmNUrVxj2+6RST0Kn+qMBL74QZHYXL7zBoeMnuOfB+7HW8cgjj3DHnbfz0Jsfwpjg+9RoNbn77nu4794HePKp74GjDvkRFEUxuQbiKAr7jnE02x3W1taJpGK+M8M73vIO3vae95Dt9HjsyW/x8pPfZCqd4rZb3sSF8xf59ve/z8LiHDOzc+j2FMnMIllpyRH0vePqlWvkr7xMUeaUVREAEWD/viWWZmc5dfg4y/uWmF46ylS7y5TwJCKh4SrEcBDYf7sDxE4f0d8h7g1oDfqQF5isCoohCV4JbKwRUYSxFUU2opePGAz7rBQjrhdDrhYFF/Kc0XCXqjJUPgxzG0LRFZK2iphWgmmp6CQaITQxEuEDS0WJIDmzzuC0Yl0bhHUs6SSoibwPyacuyNFd7WkrhQ++vEkKcYwxFUU/xzjLk/mQ87vbIcCrDuRQacIdD7yFrZ0+g9GIqfl5Tpw5TZKkDPIB1y5fpRrsor3lwx/5MJ/8yZ/k4MGDlKZidXWVy5ev4IHpmRnuvPMu7njTnfzEJz7BU089xe///u9z+epllEpw3rO7u4v3nnarxezcLG+8/gYCyaULb7BveZkjx45z4bWz4KGwlv907hXuvPceOgZm04S1wQ6DqQ5TPqhVpBvX9iIAZM5NfLm9JwTrINBxDDrhmjW81t/hjXMrVE//gJvO3EQy0+am+SaR3abIRsy2LHGSceDeAziXEytHHMdUvsTmOYmK8MqTpppESFrtBibPUSIwZxtpRFMmDHo5ZbJnl+DwdDpNul2JViFxt9WMiGdaGFkDls7j6nrOVJao9mIWYs+agvocdN6hpQqyS+8RWk1+Dht6DVOZSShg2Bb2mg+p5KRf8D74iY/3q7G/uVIqhDa48RAw7CVTU13uu/dOHnnsm0xNdVg6doLrr5/nM7/167z/J/8kqtkJ58jMAq12F1OUxHHCOx9+P0VRoEXE17/6VYbZkGxQ0IhTWp0Oqepw7cp19u1fZnZulvnFObK8QMzOcfWJb7GLp8AhtCJJwmBQjHdaAUkaI5Wofact3elpvIPrqyuUlSFtt0g7Ld7y9rfz/PPPs7W5SVmZ2johDOfzIq97vGA7ppQm0hFS1QGGzQQdaaI4xiG4Zg3XfMUTxSqqfxlhLVNCMZ+0OKSaHNMtDugGizJiRiqmDCSiwPsSO8YpnKRNk65scbwLD85KhAoKriwbMSqHFNmAIh9REF5bVVQByFWhNinz4FnXTBJ8llHkJU9VO6wSagghgy1IpzPNB97/QR779hP0K4vRDj/KyXa2ibzlox//cT7y45+gP8o4f/kaRw8fQiURr7z6KvOzbeampxBYXnvpJdrthLm5A9x+110cPrzMb/z6r3H27MuT4bwCdjfXOH/udZIo5va77+aFp79DVYwYmoL/eP4l7l8+zfJmhlaCJZ3y/Z0t+q0pmoS6wFqHUBILWAuZhSulYVrHRNYTxTFVBetCs+Jgdvko07ffysXV1/jBU8+yVpasbK1zvDvFB266m91jtzKa6SDiiN7OiIHxDG2JrTxXLl7AmioM47ynMCUHdIzH8T16NPvbHDJu3J7VYN4N2AJ7td5YmcDk/z/a7UeX6FoYjkJjqBQooSgrSxyHtKc0VQgvUFqglEe4WvLlBYNhhopkTUcO4J+UAld5pAJLRRSpGjDU5KUAn+JlgzhtE8UtUtWg3eqgZISWMOr3MVWBlAWj0YCVwfOU1QitLJ4S7w3eucCg82MwMizMqpJUeOIkRJYjJXlRUuYenSSYgaE0FY1IETtB3EqQQlN6T9xQKAGtVDI/A95K4igCYfA+bPbWWYQIEd4qSpBKkFcZpatACPLBCCSY0YiKkPAb4ygLSX9rSEPFiCrsurEErCGSkoaKcMJjKrCFRUXBYDU3JUIF6nek4jA50sHGapANqPBsjQYo77DaEKcCr8ow4TIeLQRRpGp2jyRttlE+olEDexhFU3UQpUCrBipuI6vaiDKOsCpCNuewrQOk88eZP3CC7sJ+jBdcXtlgc6cXzKelrCPd5aRo3gPqAkglZc3gg7r5qY2GbwDZ6ruF2/jvwk+i3KHGLaTYAwrF2DspgNITttuNq2tM7gmPsMfe8yEMQUqB8J5BXtHPPcYbHAEQlZPfK6BmVuwxBscCqrptEDcAdns4YwhYHYN3N7AmwjR+r3EdszqsDQ3AOJQh1HOunuSP36uxH2bd6NRd24RVOG4Ca0aTcQZkQmNpjsXFNh9JDtA8X/GVbMS6tIGvZQ2Rl0RIciXY3tjgycuXMTbQ/J0ApSKibpfu/mXWXnoOvAkTC7XHbjlz6x38uV/8q5w4eIT19U2yrOTsyy/wX37jP5PEmrmlfRw/fQocDLNdhqMe80tztNpd/sTP/Bw33XQLv/rv/w27u5v19RF+/6jfo/KWndFJRsM5ji0vsXLtMheTJiruY4oAIHzjG4/y029/mOlE4MsS0etTpr3wAnSKnz9I1evhXYUVHuU8xhNkJ0oj0gYySfD1YY4IMlp88JATVuCkAecw1kwOBumDJMsoDUmMq4F1j4A4QjZalC6wWaV3IYSEwNJBiuBl5v2EISSiKPiiaA+mwtWNk4zCugg4RS0/rIFdIWpzWgxCqAkoO745wl49BsqFDD57zjk8FqUFzjhkHIzRfRSzvb1Fa6obClER1pm3NiSCQ5Ch4SnLCtFo4iqDn13E7ztAZQJz2NiQEH7h9dfZ2N7mzC138Ku/9h/4zKc/RTEaTIB+L6DR7dKZmUVHYa8VsvZ09SCiBKl0MDD3nka7iYhT2tNdimFOXpUMNzfJ+lsBDKnX540MqN2dbf7Tf/x3XL5yhb/083+O18+e5eTNt3Lijju58N1v0Nlaw3iJxVLmJUleUNRAe1IOMDrCe8VQNHAUtLmLW28+E6bhSpIkCUYHeUGYwjuSffPMbFucsYgkeOyM90vnHA2la0mMo3QlRVFgTUh/V2M5kghybR1FYQAgw2cdWL5BdpXECVEczug0Tib7UWEt/WGfrD+gyvIJwOStY//iEkmcsHJ1hYXZOQ7t38fjj32Nr3z589x595v4+qOPcvnCBU6fPs3y8oHweuKImZlp8ixjfWWN0ydP0TrT5vTpMwih0FJSVBUCyfzCPq5dvUYYfgQPJY/n0JGD/PCZlOFwRFUZZKQhh16vx7MvvMjBQwew1mDr4dB4YurHTBYhgrxTpZw+cwsnjp/k1XPnePHll9nd3aGqSsDT7XbpTk3R7nRotVu00gattIGMdJCelJYyz2sppME6G1hXdSOkIx1Mz1Xw31GRmqSXRzcwAplIM2Ey0L0BqBuvz1AUjlm0N5x5wDhhc2wHceMseAzoifH96/uOH2vyeHjOnj3LHXfc8X8K5t14E5Oi1JFEMaYymMpQVYadXo9OZ5rvfPd7fOq3PhVAOhmuwYV9+zh45CiXL11mNBoipGR2dpr11RWy4SAwDhgXw/WeJ0J4wPiaNN5NnlEIYwonqfWOIvMorfFSUmQZa9evM7swz6lbb+PCuXNsrq4y8Ta0jq9++cucPn2a93/ogzjlWX7oPSze9WY607NhDx8DYQFRv7HMqMGBmsHnHFtb2xw5eIiZ2VkefOgt7Fvaz8Ejhzl26iRSaRQCLwSR0Lz85BMceegtuJDDQhRFk5Tb4KM1ZuTLG959UTND6/fT7cm2nbUTdinUAJ+pgckJW5kJWOxrlh8w8YYcf9YTSwMhmZ2bIYoV1VaBRNPuTrFx/QpPP/MD7nzgIVbeuMQoy0jjiJtvv5UnHvs609NTeGtIdMT5c2d55Ctf5BuPfoWPfPRj/LGf/im0VOz2e2RZTqQ0X//G47Q6XfqjEWkakw0D29JZRyQ1Ns/R1rIz6LOwtI/BYMSRU2e49R3vZHrfQaLmgPd97BOcOnMT169do5m0uOe+N/HiC9/nB8/+ECUVcZwyPTNLo9VhemaeqekppqanWFicR0kRkoTLikG/z06/YHX9Db79zPPhM3GeqVaLJEmYmZ5ned8Ch/Yf5OjhQywcOsrU6QbdNKERCVRVIkc5cjTE9XZgsAv9Ia7XR/T7MByCcswlEXSnuUtGqCh40ZZlRVGakDxdDVjPdlkfDVnLR2yVBatZzrnRiFFVUjqHxBMjSWXYN6NIE0Ua7SVLVcS7uguozFJ4E3x6kTVLKewO1rvAanWCpNlCJg2M81RFRt5UfPH8BfLJORGYaDfdcQeVkgxHA6J2k8MnT9DstBkUORfeuMpwZ4tOrPmLf/4XePe7H6aX5fzB49/klVfOsr21xcU3Xmdre4u5mVn++v/0P3H40CG6nS7ve8/7ePODD/K1r3+N//Z7n2Fnp4eUgn6vhzWGJE6ZmppiZ2uL3Z0d5uYWOHnqJq5dukBZlHjhuJAN+cLaNf70wkEaNkVmipXhiLTRIJZyMq4INiUB5MuKktLaECAjBHGSkkjJ7mjAKG7gdnvs7PaRjQbtmVlsDO1GTpZv4m1QUcmqQqWtMJRLHGnsMU7hTAC9RCRpK4FzhkQIitzSnk4pq+CjqbxjZqrNaGuAkmFoIaSjlcBMJ/iYKedItCRKmmRpgpahRxtvxmISJhhqXi10PRDydW3nKcuSNE2x9YBYx0ENIwn1QBzpyTlT2cDaU0rvhU/V+72oa5rJQLjeVIL8kTqhOzAMXV3rPvTmh3jiO0/R2+nRbnZZOHCYtWtXePyLn+UjP/WnmZ6Zo9Vs0Uxb4DyuKnjg3jsZDfp85nP/jZdfeQ0JpLFklGUszRxit9ejNdXh5ttvotVu0Yg0Ylbw0gs/5Py5V2hGatIvRTpG1eskSfSkz/HeYlyYPksVbL1UbSHRrP2fhRIcOXSQ6akuq2vrjEYZzgaWs7WWtNGg0WiE31UHMDrvGOUZPnNhOCXlxHc9jRN0lJB0m8RJTFYZXi8rztk+ZrQJVbhOZkXEsk45rBKOx22O6oQ5FDNIEgdNHWo7GilWKmh0SLvTdLsdrMkxxYhy0GfY75H1+wz6/dpCJagfrHBMTc1QDUYMhOV7ZY9KCbAqgMFC85a3v5usqLh47SqFlFgzwmxuERnDB3/y47z34z/Oa1dXuPzGJbqtBt/95jf4sZ/6Y+zfP8/m1hb7FhewRcHv/n/+I6+ff5kTp2/l45/8Kd50+x38yT/9M/zbX/4Vrl6+hCkynLOU2YDXXn6Ot77zYQQFCI33Cusdr/S2eHR/n582oETErEyJK8eF3S1OtKeROiDflTEYJSmKkm0ca5QciGK0lFRVwYYzXHEjpm45xfNmh+9994tcWg8hUMPar39UlsxcWqc8cBS3v0uhHSPl8RiSVgvpc3o76yRJSntqit2NdRLn6DrPJV2xEcec6q0jVfA/Dct0T5k4Ga75vepqj3T0o0N8PzLAFwATSRQJBA4dCZI0MOZ0bTBvqvDsZZ0IlWUmFCFKU5gK4SRSJiA1pXVIH6Ma0yStLkK1WGjNIFyMUglKQFWV2CqjMgOGow22Ny+itUWKEikMzuUIXxCrCGuCfFKiESJQmp2XDIdlSP4VClMZ0mYSvAK1JM/D5MBaS5xoknaYkjTaDaRoBGaY93iXT6bHzaSF0oIsr9C6gZOAqJDCAmFzLK3FEcy8s6wfqLLWhAZSipDA5TxxrFHeETnBTKoofE4znkLa4JUSySiYHQtBpNMgr4gCmCS8A+3QXpIisLbCK4f1BU5U9OuUnpHNGRY5oqVpdhRSWWwsUJEkiXQwUK9C0EekE7SLUGWKMBHaCNIkItEtTK7RPkXaFKk11gpUs4sVKbI1i549TmvpNLPLhxC6wdpOn82tLYyt6eC6NpIlTJeoU7zGclYh92zFxybn40nRZHpeg3njYI3JGcS4efF7QOENRIkJoFV/PV5PY4Q9NETjBSgmzcbkvt6RxIqZqQ47/RE9F6Zi+NoQeY+AUX89ZtXUzDr2Hm7C8Kxr6iAhGAOYNWOA+vW5PQnv+L4Tnz4/lu3WUhxZJ7CNX94EuAvSXqXkGBr5w5tN3UDs9PtcXl0niTUtNFHaZhinxDOCdx46wKkDC3zj/Os8u7HDemWpbIkTHq1j/GhIWYXrve4TkEnMvhOn2bh0kUgJypHF22Aa7Jzg5M2389f/5t9BdbtcW12jKCqSSHPoyCEaacL21jrb2+tcu/Q6RZYj0Tz41nfx3vd9EGtDMXHv/Q/S7LT41//y/2B3az2AmwS5ajXo88OnnyZRCQ/ceTsnjx9lZWeDVzc3gNCsvX7xAt965RXe30yhyinXt5CtDnRbiEab+MQZ+tdeh50RO70Bs84QJUlIhRMeWwUAAgkmXAmhWTMG4UyQUjmLK6u6q1N4a6lGGa4ITDUdx3gEMk1xOiKenQ3sIxURGHwGOxgFzxwpw5rRClOfIlLK+uccspbgOmtwpceZiiCpq31Xap+/INUIoLUYN4EugATjMBbvqjF9lIk3FyKAqCK8DlfkOBEhlMAh2Oj3OL7/NLaqgvFtWSFkVIO64Zozo4zKONKpOSqVoo6exolgKeBckE5cunyZi9evsnTkOL/8S/+aL/z+ZzF1wisqImk0WDp4gNJLRnmB1Ckq0cxMTwWPLvY8s0S9fp2xCK1ROiJpK7RJA4N0aZH+1g797bXa/2u87MOeUJYFX/3KZ5HC81f/wi9Q9Ddp71tm+eEPM/i9/y8MhyRpQrPToLA5aI3WMc4oekWJs9BpRUT7ZhHtKY7sXw4G+oDxBECuHiZEcYScmuPC937AAcbJ1+NVG9a0lHLymWkdkTaamKrCmBpAZ8+ry9cpXuMYnvG+i3ATsMfWPpDjLUMJQZqmtaQj8ErHoMFUuzNJLZ+enkH6EuE8/e0tHn/kq/zup34bpSQX3niDD374Q0x1pvjCF77IydOnuHrlKrfefhtFmZMmjdrHzFDkZjK8aLU7ICXOGrBBFuKMZWV1DeMdlbXMLCww6vXQRUFZlnz3O0/wiY9/FJkmaKnQ9WtWShJHqm52xltT7RfkLPd0prn1tjtAeKq8DInG/R6Dfo/N7W02r2/yRm+HQX/AaDTE2CCLbKYpnakppqY6TE1P02o26+TzVjib60RDvMcZR15leO8xNgBi4zUrVQD7opqNOQb/xsnoqpaZ77Gwxwjf2F+tBvhqg/TxGfiHftSPAcB6wFTfJwCKktX1VYSAmdkZxl6vNxagNywG8KGQbjZSEIRrzhqyPMcYj7EZv/LLv8JoNAqScyGYnp7m0LFj5GXB+vo6cdpgdnaWjfU1hv1e7fXJHijFeObkiNKEZqOBkIq8LBiNcoRwE+9H4YOsyDsbmFMIlNZkowE7W4Kl/cscOXYMU5b0tndCCrKALMv4L7/5m9xx553sW1pA6IjG1BxCqTrVzk9sDCbnbv2ejc9aa8N+oqQky3Mqa3noHe/AOUGr1SZNGix2uzSSBCMFxfomNGMahw+FwQtjQ/N6eCIkEOpDZx1aK+JYTRpIV4N/Uqr6TzmpGcbqAusclbF71wh7n6O3frJ9h7/DWE53I2MT4Wg3m3TbbTZZpSxD8mjh4LOf+zynbnsTK+urDEcZzTTmyIljvHbuFW657VaOHj2Ks5bHHv0DEI6yKPnS5z+H8I6f/umfZro7zcLiPl555RUuXLrE8sGDbO/uQhwC5aqq4sixY7z/wx/h+tYuZ267GfGyYW5hibX1LY6ePgUIrl67jADiOOLEzbeyfOQoSgjWVlf5sU/+cS5evsDZs2fZWlvj2tUrgd2dXiZNUuIkodVq0mm1aTQadLtTzM3OBslmzXAvq4qiKBgNR+RFwaX1NV65+AbWPIEiKGKSKKLdajLVabI4M8P+hSUWFxaZm5llen4/3SNd2q0OkbPEePQwQ496uOEuZneXqtdDDEbo0Ygor0iLmBk3zyErAtNfOvAGYytMnjEshoyKIbtFztpoyE6RsT0aMqoqSmtYkJL70ya+12PDmVDPSo+SGl2fIaoOW4uEDjLhOEaoiKLIKPo9VoXllZ2dwNYmhHg0ulOcvOV2vv/Ms0RScfrEcea7XUo8Vy9fZbC5SrfV5Bd/4Rd44P4HeOHV1/n6t58gqwqsqTj72ll++P3vhWHHyZvqM9kG1YL3tFttfvzjP8att9zGL/3yL3Pp0mXyoqAoC9rtNu12m0GvR9KIWLl2maTR4Pa77uMH33sS7z2V83z20nU+snCQVCtmmg02sxELSUgD98jATPE1qC1qpo/3wdXDBU86LRUr29ucywv6eUFlLLPNJtYbpjqzNKeaNHSEK0sqM0THUSCyCEmSNrFuxNTsMtubqyA1XgRZsJRBqeUIXu6NVptBv0LGKVgbBhgiAGTOWhbm5mgnNbgKdLsd8mGOkTeQHGCPCCHlZM/3nnpgwIRdLoSuhwKgdAgzDPusBxf22PHwQFqBsQbnKpwdExRCIkvl3eRxJgdIfbaMATUzZvY5hzGW7tQs7374YT77e59mJ8uY6nbZd/AQq1cu8xu/9C+4720P8+a3vgtbDKmcYG17jWef/QFPffdJtgae7vQi26uXybIRUdKgs28fjakmB48codFokEYphSnYXLnOi998jGI0wupAeME5rAoySSEEO73gcyiVJNI6WN+4mj1dM+GVkuzu7gZvzHqgbZ0ljSOiSGOMo6rZW/NzczTbU0it92wRXFBX5HmGKUusMeHMN4YsGyLzEb16MK/jhChOghdglNTAqWcgBa86z4vlEJdtETtPSygOCM0hEo7LBgtOMzOM6UpJO0mJooR0mIGARrNJOr1IZ3EpnJVWUpqK4dY2RVWRjUa0jKDY3WHNZrxUFcHaSoSrqNlscce9D/K1R79Bu9uiGhZsb22TlCPuuONNvP/HPsH6+jZr19fpdFp87cuf53tPPkajk/DBj36MrbUthv2CYjRka2sNU2S88sIznDt/jp//sz/Pu97zHn7uz/wcv/xLv8T6+gquCteZq4Y8//R32H/wCCdvuYPzL/4QUwkya/itSxd518xNzA9KGirmgGhycdDnUGsK6QlsYxHIBhbPqjf0ypLZxjSyMKyT8Xw1IDt8iCev9xhGBc9evU6kHUprtPVoqZiKEtq9AStHPb7M2NzKmVvcx/bGCmVR0pJQDEdEscKYAluVzC4dYIRgJc/ItGKQV1gxdkUfD0THh3BdW4xr0Mm5Px65/mi3HxngiyJBIxX19L8RZGfa4wwwTiqKUyrrMEYhRYRUMVMz+9BxA6kSGlEbWym63elaDmQBy6jXo8gydnavYc0QZ3dJm47KBl88U+Zo5Ym9JxIKYxzWGaJIoIQIErYaxLAmTOPjWNa+dwrhIU7AGo0xJa12XMsXAtswihIqE9gN3giMMcSxxhobwkWMR0USYyqUdygEw6HBFhbrDYUwlJVFyJKxzKuqKpTSoditG+kkCj4vTRWFMAkbPOi0VMRW0VKSxIZ0S60SkjimMhkQ5BkB2LFYZzHOhALTVthIQKuk5zdCuk0iISmw0mNsRaMr8N5gXB6aQyVROiIrDFpHCKExhUdYSeIULdekqRpAA0GC9pooligUxkSUPkY2m5TRLNHMEdrLNzGzfIwoSdns9dncXqesLBJCgVGDBuML29eItpZ1w8oeo2D8/yCx8nvJT77+ut5MHUyK2xsnV5O01TFwAYy7CDlZfLU8NpDZA7jnJssyiCU9tUTI0WmnzEx1qIoMV+VIVA3gSYSv/ZjqSdfef0weL7yoGzonv7f4Xa0XuBHIHB/mrpYU3Pj9G337xpKh4E1YlzRjBkDdpIwp/KGYCO+1q43Pw5sRGqtf+8//mcvrq0x3Wkw3Ojxw8ji3DAvS9jSzp6dhY4O/vLCfy7s7fGf9KmfXNljZ3qXwkizSbORjIAiUjpjdf4DRzg4mG9RhAaYGMmB2dp6f/bN/lrwoaNqSwlgqa7CmIok1d959N9967OsU+ZDRYIAUGp0m3H7HHVQmmIgrD7sbaxw5eIhf+At/mX/9L//3INd19ecN7G5ucWlthaXVBQ4u76d9tkM6M8UwD8ykqjJ8+fE/4H1/7i+Qv/oCcZ7hL11FCkXjwEHU9CwsHqLq9xBKMehnDJIRRgYfF12UIEENFdY5vBREKshXXWnCdVFZKCqs0qSzHZwSWKlQaQNhLb60lHmBGGQQaUzt26Y6Xay3uNEAnw2xZRiWqFhjdVRPpC1KK7yxIUHL2xBsYU34r6bOCWrwD4GQUbg0dGDjCYLUIMg2JE6MpebB32+cIC3UuJCpmSAWfGXwlKA0u1UIRQJw1qB8DYLbEipRMwIt2hhUo41VgnJhgajdQdReeXGk2dnaZuXqKkePnObf/tqv8PnPfaYuxALLcfHwEZJWh35vQNJq05mbojU1jYoUVVnSHw6wpsJUFUoE6blWgWXdbLcnjVySplTWYvMhjZkZ9h08yMVzr1CMehMJ23iNlpXhka9+gcMHl/mxD32ISEd07niA7Jnv4s+9GNIMvSButQiRKhFEiobW2KyiwGNlyuLMIjP7D4ZdwXmUdYFVUf8u6yFd2sdMW1MNB0StZricVfBYsnYc9rA3UfAepI6IdWDjTXzLamA3pGfWgNNYm1TvtXseIDXAB1hryAYjbFaihcQIiXWhcQhep5I4SSnKitFgB2MNw36fJ771Lbx3zM4ucPMtt2Aqy3A4ZDTKWFhcYHZ2lvPnX+P/8fe/zZkzN3H69BkOHTrM3OwccRyu+/H2GLwnx2ErDqkjvJTMLC5Sbqwxs7RAo5mwcvUar557lQsXLnD69ElirSfsOOEteT4K/mUyWII4H/wOnfUoPNJbhqMRVVGRaM3czDQLs9McPXIYgap9m8IZMcpyqsrQ7/fo9XbZ2trk2pUVdns9RqMRRRGSIwHiJA5AQrtDtztFp9Oh2+nQbDVpNJpEcRTAwJrN7qwlK8s6vX3vP++ZsAFlLbdSUqH0GBAMf9e6TmiXdURm/ZGOzyFZp28H8Ddca0WZ8dT3n+bBBx+84Vqvh2TUSYnsMQqdd1hjiOMkeDKZCmstu70+cZryu7/zaV49+ypCBkuQtNXipptvYaffY3e3R7MZpKxb6+sMd3dDunj9XISQNBoNbjpzE7ffcTu33HwL8wtzNJsNlFJsbe9w4cIlnn/+eV566SWuXbkUBqb1madqQ2tTVTjnqKpt4ighTVPuvPdenn36B+xsbtSuYrBy/Rpf+sIX+Nk/+3OTteDGg4D6HRxDpvVKmTzX8e+01tBpt2g1muxs77Cyskqr3Q1DG5bA1gCkkPR625x82zuDg0NZhvRzXxf7zqEiiVSKWCqsCgEFSimKOoxG1k1YmiQYY4KPdc3kH18LzjqctbVsd89SYRwCNPZOhD0gePy6xnuB8w7vBTedOcWVK5cZDAfoOKI91eXyhQs88pUvc99b3876xiZFPqK0nu7sHLPz8wyGQ0bDAdeuXkXLoNzx1vD4Y4/yvve9l/2HjjAYDfnt3/00aavN6vomRZ6xODfL1SuXQ8PtBcuHjhBP93ndlngdc/ny5cAkLyqEc+RlCV6wvr5JmsST4VVWVqRpizOnbmGmO09V5Tz3w2e4dvUKo9GIMs8x3hLFCe1mk2YjBOykSYM4ielMdWk120RxzNzcPAcPtVA6qhk6hqIoGQ2H5EXBKMsYDodsru/ywsXrCF4KAJIJA8w0DeyzRpKyMDvD/Mw8cwuLLM7OMn/0JNOtJrOtBolzJM4gsgD2+e0dRG8LXRriQY7PSmSWMVNW2LxCFgY3yoOXrzFQhRTSKh8xynN2KXAF7OQjMlNRGocUNY9NCOI4ooni0P79yDgC66iGQ0preWE4Yrcog2UPgqTR5h3vepirl67grGBueYmZpSWs82yvbLK9soYG/m9/5k9xx5tuZ2Vni8efegqRaGzR54lvfp0L584y6vfZv3+ZW2+9hfn5+YlyQEvFudfOMTM7zU0338T/9vf+Hv/sn/3vvHz2LGVZkuU5SaNJ0kgZDTMajQZSC26/8y6ef/YHFFkGwrOSZ3x17Ro/uW+JONPgHVtFhm42w7DA+olPq6mC15yWCuMcUjoaaQh2uZqPWM2HXFm9itaaNE7I+320K5k+chyiFMjwpUM4zbBf0O6E5GdTGdSgTxpFmAIiUU1CDYZZUDu0GgnCC1qNDrv9YWC19kbUQbdIrdBJm7SZkue9UGCJBG9sACbH/s6iHuTLOhBN7sl0xzKiYDMAXnhUbQUTADs5IRGISahCCMxytddzFEV4XXtGClkzHfd6FGfD/cc+oIg9+XNelIxPcSUlt916O8/98GnOvvIy21slaRIxv7SPKh/x1ONf5rmnvknabCCloiwtKo5ZWj7IYkfQ31xjsLtOs9FkcWE/w9U+h5aPM9PtooQkspbeYMA3Pv8Fehvr4AzGismAbwxUj1nODjDGUlRm8r3KVHVNLDCZDbL2MSOa8LWSMoToiKBANMZz7ep1pFpDRzFJFJEkDRrNcK3OzEyTxDFaKSpjqKzFFAXGWNJmg2wwojQlRTaiyIZBYl+/t5GKaKZNBBFJs4HWihLP65XlVWP4Yr6Oto60kLQNzCFYJOKgTljQmn1Jg26S0E4TmmmTRtJCJQlxs0vabjFVVpTnzlN4yxtVxs6Y7CHC7z9zx+3kznLhynVULIOv3WBAI4355J/4aXZ2h1y7ep1WI+KJxx7lB9/9FljD17/yB7z3PR+g3e7S291hZ2uDsixRSlJ5T54N+frXH+Hhd7+L+++9g4sf/RCf+q1P7Z1jztHv7bDEIdL2FHGzTdWrUJHkxUGfr83u8AkPQkYsyJRtl1MWI/RIYOOIkQo4/qAqeK0YIL1jW1gGsuKyLRnqiHbpuLkUXDRVHUcI1nq6zQ7dpMkDB08x2nSwbwkvS3qjnDk8zVTRH/QohwOKMqPb6OIqg4wb3P/+9/GJ97+Lq69d4PL1FW6+/6FAnLB7HtDjKsKP66+JJcb43OX/ktuPDPB5LxFOEOsYYVIi2cABzfYUcTJNnLa5eHGNM6dvJo0aKC0psgG2GGKKjKIYseOuYv2QjbUM7woQFToCZzKSJEJ4MNbTamiUNAgDNoMkVmR5icdibYQSmiTVRBFoGUIInAvvrdK1VFhKrKuI02DWL6QhakTgNc4aIq0C1duHhShE8MOrjAthHU6ihK+n6R5TFSRpTFVJtIbd3YKdvkQIR2XLMDGLQtGWJgkqiYNESUmk0PgSZCmQBPP7SEqS2ossEjFCaWJhiWSDSIEWgeJtDQjpQIdkSesLSm3IbYnzBtPwOFmRtMHqEl8FGZ9UFVpHNL2uJUZgCkibUU3X8QgDprAkKsKNoNXs0FZTpHSg0kRRgq8UItJUFlzcwDdaqMYiavoIUwfO0N13CBk32NrZZWvlMlUVWDi6Zh+MvRluvLCVlEi1J5+tL7AAyHkAF9Z93dQ6vydTnfjh1HersRxUDVgFn6+xxFfUjU0A2uyYiDTucYWvAVkfClLcZMoVkkUdzSSm1WwyzHKywlA5GdiT4ycedFAIIWvW4JgpV78sqFl7dYMANVOAP9w03PD1uLkLkfZMmrI/fJ9xKzL22quBzfq1732vZuDUmMDEm8kTdJP1rNNELTZKSW9jyPnhdbJBjwdvP0O+usrVK7ssn7kFHSui4RZvbk3x5lsOkpcek8Q8sX2V33308ZqD4ImbTRaPneDCi8+Dq828Zdg/dJzwkZ/4JN2pWb71+NdBeh5+z4fYLYr6YBR84IMf5uxLL7Kxdh1TVXghaU1NcfMttzHs9fHC01mY4/Gvf5UnvvMkf/Nv/x0+9vGP87v/9bcpTZjcSSlxecn5F55H41h85yy333ozO9evcO76KmPG53PPPscz17a5u9khKUrE7g5yM8XFEfnCMp3b7uD6+pXgV+M8OompcDghaTdTnLGMBgO0UiHBNNJoKbBlVQMqDmkdpixx22FqZMsSp8KE1CuJaDWwlQl+a6MM6zfxwzKAaf0ddGlCTRfFlFYjpEbVQT1SK6yqsNogTRUmrfXwQihZX9MKUDhrkNiwRpycJPf6WsYa2G6AL7BVgRsnxdYhA7KelFXOEEuFUmG4Yi2s9nssHTkABEmgF6JebwGEEKYKYKYUqO40rtVG7jsAIjC2rLVUVcELZ19Bpymf+fxn+NqXPktV1RPoOGL+wGFkkjLMMprTU6SdLiqKGfS2Gexu40yJMxU4h/cWapnzeAjghUTHEY1Wi2a7w8KBA7jKcv3KG6xvbXDijjt5/dWXKTbXYeJHGBZOXhT81qd+g5tO34KQmuOHjjP10LvZXVtBlQV4W6fEB6mojmKSNCYzAxLdJiYl8iqwza3FS4iUJhJ7a1s6R9meYntlm0F/SHvWUZkSQfDAsc7V3q7hOC/LsmaMBXmbxwfwAEEch5CncD0EJpB3rmZr7u1H45ZgzJi21lIUJUpKKjee5IdzbjAcIrwniSKWDh1gfSUU9lVVURrDPffez7vf8x727d/PV77yFV4/d47ZuXmee+4FHnroIbzzvPTiC1y8cIGvfPlLtFptTp06xV1338Pb3vEOyjwPe2sdKOWcJW2kDPp98uEIHUXESQPrHNvbO3gcO9vb/O7vf5Zf/Mu/QKIUF69e5XtPfZ9hv08sBUkrJW42KYYFSRIjbCgWOu0GKtKgI+bmZ1mYniWO9OTcGuUjtNaMRiNUFKFVRLcVALvTp24C72qQKZxTofg3ZKOMvCjoD4ds7+7Q29lhY22TN16/yGg0ZJRlVGVJVRsxJ3FMq9Wi1WrR6bbD140mzWaTZqsGIpJ6yu/r4WFpqYpyco64GsARopZ0S1kPF2upsFQTeZWowb7vP/00p06epNvtTtJVx5LYSbDG+NoUBGmZCtWLsQZnLXmeUxrDYKfP5z77+6EpUgq05o5778FYy/buTmCaNhsMBn0GO7sIFywMcJ600eCB+x/kEz/xCY4dP04URWSjIUWR46zFe9i3uI8Dywd584MPsLm5yQ+feY6vfPnLnL/wGpWt6gAyWT9vjzUVW5sb7F9eZqe3y6FjR8mzEcVoLAW1fP1rj/KBD32I/ctL4dRyNbgnxsnINxQX41p93OTeUM9srK+xvbnBzHSXKE4oigyHZXM4IM4ypqanmDt8mErHlFmOrUq8FBOmrDW2lqiPU8AFxXjIR9jfA1NTBv9HramqiizPa++nwFrtFzl5VQV2jwpSvqqW0CFDBeTsePi5B+6bupaRPkg4EZJDRw6xsLSIXfF4a5iamSMb9PnaF77I8oGDzO7bh7OWYTbk9C23oZMm3nu2dnboD/q1bUgAEDa2dzj3+hssHTrGI48+yksvv8yJMzdx/tyrlGVBr79LHGu63S7v++AHaTYbtIxBS8307CzOOKanuszMz7KzuYmpKkZZzqDfJ1JhiF9VJqQ8El5rno2Yn5/jXe9+N6+/cZ5nn3mWssixzjEcDdnZ2WE0HJEkSehnpICVazTSBCUC+6nZapGXjiiOSNMGcRwRJQmtdpulpcWwlmoPzjzLybMcaw3D/gBnKnb6PbZ6O1y6dgUhBHlRhHoyTVBC0Gy1aSYJ++fnmZ2a5eDSfhbnFpjed5JOe5rZJKIRJaTSIguHLgpE5dBFiS9GuKKEvCAaZbR6PaarnEPVCJlnVIMBdjTElTkmL6jygrIoa88+R2tuGh3HmCyjGmVUHp7tD/Fao+qycnFpP9Nz8zzz4lnS6XkOHTmE8ILdQY+rl9/AmSEf/tD7uO/euzEmpzA5B48f5Hvf+Q5f/+IX2N1Yw5YForZIuOO2W5iZmcZUFWVV0ct7/Kt/9S8ZDAf8mZ/7Od798Lv5S3/pL/IP/uE/YnVtHecdrWbYD4eDQHJ49aWzHDlwkPvvfYDvPPmtYMvgLF+4ep2P7DvMVLNDWRTs5gWJ1GgJ3jqU99jMBMaVkCSxQlWeWGraSUxRFbxeVewKMfHnU1GEk5rdLOfshS1eeO0cvWyA9JbDsy2Wlw+zuC8lkQWHF+ep+itMNVOcs+SiJI6n8Kag2ewSeUeZlyA9o9EILxTdmTmIdkFonAAnPTqNaHTbWFdRjPIw7G20iONGGCpA2OfrRklOggL3UILgsycnrKwxeO9rgJD631UwcQt7gwecI46Sus6wQQ1Xe8eXZQASY60xZYUxDl+nfTvvKeuhg3GO0lS1JFwgtOL9H/0xKud4/ZWX6e9maB0Gju3OPDJNiJKUOIlpeIFOU/LCBQnnaCfUAF6yeOgAM/MLdGa69IqKYjRiyzqeefIbnHvuaVRoeHDOk5tQE6n6szbOTOobIWQA7Ovhp6rBUQ9IFfpGZ8N+6Gqlla3PeKFC0qwpw9lnjKUsK0aEM0opTaxDUFez2SJupERxSqT32PkzM7N0Wt3AJIx0kAo7R5aP2NndASxFljMcZfRGI6Bmc2uNlpq43SJNU5x1bGU517MMU2W4cojOLM2eYVFI9qE4ImOOxF3mkyaNWCOMYzYrmW+kGAfPW0elwrBb1UPj+x56iHPnzzOzPM/u9gbl7hYxllvuuo+5Awd47rWLlFryxmsv8r3vPI43JZGSXLt4kTdefZVb77idhSMLZPksB06e4NVnd2gqTZ6XvHH2Vf7W3/hb/JW/9ou8973v4anvfp+zZ1/BlEXAaoxle3OTm257E1dfP0dva5PudIfdsuA3N1Z4y8wpFnb6tJKEtm3yytYWnTTlpnSB+biBShsYW3JMBIBN6hilHbdZT0PFjPIMo3pcmt/Hs71d1qocqzyRqTg+LblDO0YdT7sl2RgZMlNg3IhB6ZhLY557+QJeGB58xzv51te+QUPCi9/7AT/+oY9w6t4HuTVSuKhZW22MkT1R9991nVYzdv+QLHdCBPrRbj8ywDc1e4LlmRkSlRBJhSmDsXtZlJT5kLw/4I1XVshWN5mbN0SNsAicKFGyQCuB0gRmCUEKpDS4SgQwy5ZEOsK7ilFWEEUKRZh0VrZCaU8US8oyUIGNcVgLSRwMWq3xaC1q5D54bCgFSgbII9DULZEOwR2VtSghKEpDHEd1kWeRSqClx1FhhcTY0CR7ISiNQSpHmmrySmC9CKEdsUapEMCQpinCCbyxxDIm8hE4iOIYLSI0Gls54lihtaQqSiRhwadx8De0pcMLcNJhhcEKR2kKjDAYUeKiCrRHKFAR4GwwtBegYk2jmeKcwo4RLRFgnCiOiKUObB0ncDYcct2ki7SalpgD00TrFKskFomMI1wUo5MuLt1HY/EM00snacws4YVie2eb3f5aYDBSg3f1FMQ7j/V2UriOAzbGsrPJ4TMGrxyTSfLE0NqDqQ2CvfMTZNzVk39BOOjs2CyWwAARiIlJNzX4J/aogoDYK3TH36vBMO/HXwtGeUW2shk+j7oDGJuni3qxjn/f5HXd0LS7yWvaA+cm32cPtLsRAB0z9iY0RLd3SI+bugm7IDzZyd/H3nphOhfowGos1x3/++S9Z/I57V+aR3S6oXAfDvBKcHmUsdiIiPQcqy+9hG5HqDghmdI0FhfYubrKsBzwvR8+H8x/pUBHCXPLB9jcWMc5Q1nlYC2ylgkt7z/IAw++hY2NLX74ve9x5dpFqizn3e//UAAhhGJxeZmbbr2Nb2+sIWSFiBR33ncvzUYHUxniNGLlymW+8egjXFm5xq/++3/L//x//5u8+NxzPPfiiwHkrP1JTFGyfm2FK1euo6I4AFlK412FEIJslPHYM0/x0HvfQnH+PL4qcBcu0yoq/ChDLc6j9y3hm6/RG+3QKxZopDFOKnplkGg7HWGsxyEZlpZISbwRWFNR5QXCe+JGgilKGIViW1D7kLrgIaWS0IQrAS7LkHVwiPKOSnhUK8XqBKXjUCymKU5F0EzRjQY2r3C2whc5rsyRte+dMyYw2fBQGZwEVw8drA1276JOWPTeI6wDW0Ek8aXFax3AbimxUmCkRIiYSgi0McF/jgBGJ81uzaYVoKPgH+jB1wwbYQxGx9BoYqfnUc0OgiBfrCrD9dU10ulpLl+5zG9/6jcZFiUi1ugkZmb5IHGrHdatikBrimxA/+oGVT4CZ+oEsXClB+x6jGrvTdNMkbHb36WnFBtr15jed4DjN9/OxpWLXL/yBifP3MHrLz3LaGcjAIUwkcT2ert86nd+g7/7N/5Xdnc26Z68BXfiZsyrz6Hqny1NhWikiFYLNwxMUYujiiNUI8X6ICsYr3vqYUWQuwjS+Vn2Lc8SR+HzT6KQoCmkRNUvydrgqeOsoSxMSM+t9yVrgtejM1XNUqf26BwPBYI30TikYfzejFnDQkgOHjxAlET0a1lqYAwKNjY3wRjSJCJOG9SuYURJwp1338v7P/ABvIe1tTXe/vZ38IEPfDD4KO32yEYjXnn5FXZ3dqiqgk67TX93m6e+9x1ef+N17r73Hra2N8cbOErVfrlFSX9rG2EqIqlIdcRgYxtqGS/W8dgjj3DL6TM8/PDDjEY5X/rCl0Kat4D2zBTdmWls5ZjqdoJPkBBY45BKMDs7zaC3S7fVZuXaNdIoYt/+/eg05ejRo9jKcOLECdK4QbtlaTdb7Oz2UFIQJcFM29vw2bWSBs1GK9R1QmJNjhSBTTAORXA+sFWtDcBokecMR0MGgwHD0Yhev8/m9g7XVlYDcFqUFGUxkfcKKYnjhEYjpd0ODXCz0aSRJrTbbZrNRp0ArLC1VEurCK1DcMNwOOSls2c5euQoBw8fxFgzYTjcyFobN0U1skVVVcHrxwUFgbOO/nCA0ppHvvY1VldXJyEtRw4fBaHZ6e3Q6HTIsoydnV2y/gCcrYdogkOHDvEzP/tneMtb3wICyrLCZBmf+tRv861vfbMGsxVJ2qA7NcX999/H2976Nt71rndy151v4ve/8Pt86atfYdgf1KBmaDq1UtiqZG11leVDhyjygnsefIDvPPZ48ARFsL66yjcff4yf/KmfqmvGwHRSEtwk2Xjv3Rh/duMgImsDG2hlfZUrFy/wO7/5WywsLTM1O8vcvv10DywTj0qEc0zPTFE6h/N10mVtl2GtrZNuqS1Cwq0yZgK6js94KSRVVdU1lGYvzdeGxsEHw3EL2KKCmhXkPVRFRTidal9UN/ZlFSDrQWLtI+WBSCvWrlxhcf8yu70+VVnS6nbpbWzyX3/9P/En/9yfpzk9jXGGffPzSB2hlQ6y8yRBmgIvFVJHnDh9ipNnbuLShQv81//6uxw4cpzRYIgzJa1mSrfd4pXLF1FCMTs7hzeehtaUWUYrSijSBtOdLv2dHXbdDsPBCGMqRsMhzgbGbPDQFIzHm9ZYdja3iWKN1pIzp8/QanXQSrO9s8lzzz5Dr7+LrUoyQo0ktaYfRTSbTW5/0+1MdTtURUlRlExNd7l+7Rp4z0vPv4q1niPHjoKQNJvNSY/WanbotlIiIUkbCVIorKnIi4LKOoosD889G+GBoak4f/0qL54/j1KBKSx9UEk1mzFRs8V0u8n81Bwz7VkWpmaZn5lhtt1mdmmOqU6bSIagvaiuDWVRooYZ0XCEGA3BlIjRED8s8MWAqsqwvT7V9hblYMBokLGRlbyws0VRFSitQUXc99DbeOnl11BxxOzcHEmckA9HrF29Ttbf4eTxA3z84x9FSYGtDK1IcXRpid964WW2V9fxNvh+eTx5UbDbH3DhwgUOHTyElJLPf/7zvPTSC1jv+Bf//J9TZDkf+fCH+VN/4k/wb3/l31GUJVk2Ik5SojgmTWKKouTsKy/zlgce4Pnnn6Xf7+Gc42I25JmdDd4xNUeeJFSmYlSWtJSkmSQo5xFa4KSkqAwlEMWa6U4b6w1bo5Jdpdkuh+QupCMTKUZ5xvSBA1wchFDFi9c2QEC3u0RUtXjpB5c4f/4NDh2Y5Rc++WZyv4NhQBzNUPoQtuBchW6kFCOBdRVeeBppg431Hfr9Ic5ZvNSApKUleW+bREtMHFGU4eeL0qAri9S27q880gcJ/9ieZ9yLhLqnBgFrAGvcL+z5C4/7jDqkQAq0jsIgp76vrpVVzjqEczRr/z6UorKW0jnKqqI0lkgnQaKqDcMyeO47D0oqZuf38ck/9if55mNf5+knvkmZjyiqIIMud4OKKo5jmu02u71eIEnYEmsdSXOaE7ffRnN2mebMNEWWcenSFaqyYHvtKudfeA4tgtewqIe4VRlSxZ0DQ/ASlFrWXq+1JNoECy3J2JImDMOVVDW4FyobJWQY6I/Z9dajtSJK03BWWYO19WDUGHLryMucwXBIFMckcUKj2aDV7hIlMWvrG2gZZPiBtRlCfqqyotPq0mqlFEW1B7IKMNYyHGUoJVhfW2drbZsQoBShozZpW4MUKOspq5xX+ztcazb43qBHqxgyPRI0LdynUj4wtUTPGNZ9xbMmDERUXV/OTs8yv7TMY9/9Gvkw9Gw2H6HwvPM972Zrd0BpHZvbPb76pT+gGA3RAVnFmJLVlWscOnWK9VcvMzs9gyfCEJRlWmsajTY333oL+/Yv00hS3vPwOzn/xoVg5+M9UliuX7vC8rGTHDl5gq2VK3ipaLc7vNbf5dGZHj+hAgnLVo5tDc+Ntnnd5NyaTrMoIoRSxDoikQoXl2hbq4ZkhFSeXClOFpa/fvxmHt9a4Xze487jx/nYsVvo/PBF0tkZHl9bJ56eoqUEOhZUQnB4borecMj+w8c5euoMG+t9MBlvfviDdKfmQdZ1vwzkCVnXaeNeZMySv5E5f0Mb/n8FvvejA3zDzXW2N36IFxVSFORVSRLVxYcTeNugKjJGZcRcJDG2ACuIYo9SNsgQpMeJwE5SQtc+AR5Re8gUBiqvKXJDw3kSZVAqTGcFUZCseVMnp0QoaSnKIrCvPFQmhHZIqbE+yHy0AK0lxjrKsqQoA1tPOQFag4DKBTByYggjZXhMYfFVBYQpuCkdzhZEVBS5w7sGjSQikg6cQsmIyMZ0my1c6Yh8HIyWCYySJE4RDoqyxBtwwqGVRDqBrSyVqfCqonIjEJ5SWnJVYCOHbkiEtuBzxsmYIcpHoCM9MWE2lcVUJXGsaMSBnSjRuMqidYyyEi0iojjBeYhVSlSlxFED5VK8jxG+iUOg0yYi6qCmD9I+eCvdxWNEzS55WbG2tUVvMAyNkgym2AJq9tuN6XCBXRfSbkXNIt+TuuDFRBIbqN62vn8N8tXgl6M+zOrFEkDbesP246TJmqvnmAAo4cfdHvg2Lm7FGOwah2nUZt8+SHXSNCKJNHlRYAwYx95hIES9Kd0oyd1bpWOm3tgzL/QPYiI7/sNy2zF7LzTigSFQg36E79nxN+qJgIAbgL5wGzNwPPXUUsk/snfshXyE17knawZ448VnuXRtjfmlBTrLJyhmF/h2b4Uf76Qs7ptj21uGvQ3KoocpCxpuRNYf8NT6Div9AXGziTEGJyQnbr6Np7/7ZAAiXB38IQRKQkdbtwABAABJREFUKR5+73sZZgUXL1/kytVLmCrny5//LFWR84GPfpyiKBgMhtz3wFt46jvfwZYl+/Yf5p773krlJI1GStbf5df+3b/l5jOnabWbPPfcM3z285/hp/74H+fcP/onDEaDWvoQjPorHD/44TO86+G3cfzMKV5/6RWcKYEADD/2xLf4+fe8jY7wNNotTL9Hb+UaLVmRa0+6eJjFw6f43u9/gfzyGnONhMR5Yq0RzgXwzJh6EupJkhShI2Ss6LSbwejXW6I4Cp9NrPCVxQ4zVKQp8xKZSxyCqB2uxMh6bJ4TSYmOIqrCom0Jwyx8bq5AaE0+kMi0gVERcSNFxDGVlESdNlGzgfRhW7NFXq89gYoTvNRhFUmJF+P1GyZpzlRI4XF5UX8tsbZCRRGq9kiTUuKLHI9j2NshFdvYG8AqW//M2M/KSoVstVHdWVxnGjU7jxQqsJKNYTgccOX6NWQa88v/6l8yHA5C0xhHNGbmSdpTGFuS5xWtbof+zjbZ7g6YEjVOjRRBhCdqyqqtGYl1cOAE+MaDrQxlb5f14YCttassHz3FXOM0q+sXOHT6Zi6ee4l8a73eMxxjk+5nfvgML5x9GSEc6eE2rXseorj2OuQjvNMoEzy5qsrgyhFEEt1poWYXqVDUytPJWqRey4LAHKrilCtX12iubLLv4AkQDi1q78RI3eDh6VFRNAE1ZV2cgkCKPUbeGPgIzMq9BLkALOwNOYKsxwf2JYKgiq43SinwXnJ95Sp5f5d2q02z2cR7SJot3vGOd/K+D34oyOe95VuPP87uzjZvfugtHDx8iLmFfeRlwVvf8TZWVq4w6O+ya8wkgfbwwYP0d3dYW12bsJUVgY3faLXQWtFqtTh8+CCbW5sBlJgUhoLBzi6/9P/+N5x7/SKf/Mk/xp/92Z/ns5/7DFevXWH16ior11ZQQmKqsYQ2Aa2J0pTXX4c0SWl1Wkx1pxhkGb2L18iLgpdffYOqKmk2nsCUJVoqOjWrrtNusbDw/2PtT6Mtvc77PvC3h3c6453q3pqrMFQV5okEARIEOIqkJEtiJDGSrLadWHZsx4niRHHirF5Z6Q/9oVe33Z1Y6SR2x3aUaDAtkRqpgaQlkuIEgMRUQAEooIBCzXc+8zvtoT/s95xbdD5KFwsLqFPn3nvOe9699/P8n/+wRKvdotdZYml5iZWlZdpZRppEtNptoiQJRu5ChHPYBSm3aryChGgBfZTUi3MAQtOFODgPhGjOwIY5EGSCMyajEaPxiPFkwmCwz2QyYTadkec5tg6NQpqmpEkS0lGF58jRYzzy6GO0Wu0QdtOw7Ods+x+QgC8Gb+EeiXQcXocxlKaiKEuKsubPvvpvmU/Q2t0ud951hv3h/iIR21pDkc8QNrBqldY89dSH+E//019keW2V2hqKMjSFDk+UxmxtbeFs8IOan2svvfACX/mTL/OL/+AXOX3yND/7sz/L8ZMn+bVf/VV2dneaREMdErRFYN2qKKLT67G8tsbG0SPcunYN4QMQ/md/+mf88I/+KN1Ou/GnDGehFKKx3hAHq3S+Tlzwo7LWIpTivXffIy9KpjeuM8kL2nv7JEvP0dk4xNkjx8m6IaxBC4nXcVOXcAC86wCwBY/HZv1KoJHzzBPnw3V0jZ9uABrzokCIkEZb1YaqsXFwPjTmzhiMtSgVzpaqymEOCDTA1rwgmA8Da2Ow3jMa7HPzxjUeevJDtHodyumMOi8Zj0b86v/6/+Nzf+2vs37kCFEjY5VCcPfdZ/kbf/Nvs3nrJlopDh1a56677gTv+Gf//H+h218ijmIuX32XuqxI0pTB/oBef4lnPvw0x44fp8xLRsMhCBkkpjqm3epx9b33qGobVDZVibHVwpbH+xAwghDEUQwIZjOLKERgDOmIcm8XZy1aK44cPU60HVOUJe1Ol1arRbeVkbUzolhz8vAGd951mo2NdbyHbrePVIJWt8twf8gsL1g/cgzvgjWRFJLhYEBRF4wGAwa7ewwHQ4bDEbPplLIoFmwnJQT9XockTdBaURTFYtBTlhVSiSbApmaWTxmPh9za3greZk3qqVaSSGm6WUYva7HS67Pe6XK022dNZ6wvH6LT7tFZ30BmGVGskDpDYlDDbSZ/9EdMtreZzEbkdcWrdcWNctbcY5a03SbtLjEs3iVN2xxeP8xkMqMyObvbN5De8vM//dN0s26wLZIS7Rz9tMXnfuInuXLxLQb7Wwgt8AbiJGVlY53nvv8iZVWxv7/HF7/wW9S2xnvY3dvlN37j13jwwfv52Eee5s///Ou8/NoFPJBmreCtmedY76ltSWkqkixlMhkhhKSyjj/Z2uRjh47QTTKMqZHe04kTlrM2/VYbCdi6xuAYFiXb4zFXRyNaaYvrteFWPmJvf5tIRkgVMRnVnDycIfIxr196jyqfUM1yhIC337vB0ZNnGOwXTKY1zifIlUdATEhNifA1wkyopreoJlMcnjiLmezXOBtqxDTJoOmBnXcYB5ubA1bWNMUkp5oZZGRxwlInPfKyxotwrSOl8DrYH6nGSxlkSNlu9i8vgm4jbMu39ShzZt+i/2FBanDOLdC/JoownMFKQ+PVK3wA/5TWSB8C47I0Q/iwr9fOMasqhrMZRVFjvKC/fIjP/tTP8oEnPsyF115hf2+byWjE7q0QtGSNoRiPsWUVQC9jSXt9zr3vcXTaQ0SSV198iXy0y2w6IJ+MkKamH0uiTh8hFZEOTF5rgh/xvL6J4pgsy5hOw2BgbtNkbQjhbFqqhqnnUTKE3UmpEDL4snZ7PawxgS0dRxRFiQe0C+e4tQHsNI1XahiIlZRVwTQPjOE4CaEfSZIsrDoU4XxHCkSkGI6nFHlOHCcNqcPR7bRY6XYRWjOdTJnOcoQOHthlXVHaALIprdBKsXL8JE88/VFee/EVxtMhpVJIHTPLLaNBST0q2HKWW86j0hipFa4WHD5xEp20sTainNngkYvj0OENTt9xB1e3d9Fa8md/+McMtnZRLnidCxEk4MZDVRnK0iHR9Fp9kqRNp7/C6ZN38JGnnuGRxx8lSlKsczz40IOsrqxzK5+Ct+DCAHtv6xaRTkizGFtXJGnG7nDAb+zd5EPdsyzPajpes1TO2I0Ub1ZT3qpyNnTKRpKxXCn6OiIrQy6E8xZhHWPhoRUz29rmnt4qj5+4m0GqsElC68oucXedvNNDr6yh2i2On05QWnHi+DKnTp3gP/8v7iPutKjrmv/mv/0RJtMRrV6PSCiQnkhoRsMh+XQGQH95FZ1lLLyNG1yABohfkJr+EsA9+EsA+JyfUpgdEIqQiKkoZgYpHUoJICaKYmwNRV0gZImWAd4qK4OvIUlUI7+RlM4gccHjrg4UVyk9sxxGE0+3r0gVaOlRxoKvETJ4wXnhEUpQVIY0ThAEfzilJc6VSKWQXlBbQ+1dkI0SpvZaS7wNevzEy+CFpIIxvXcglEZHClsFdgsuyB20DuEWcdKi1SqYjC0t0aYrPVmaohGhpfQOXXq8EQhvFtcvihSibgpDAUI4vKmDdNZ7VBohtGfoJ9RpBYnDqjJs6lpCFLwAEDIUi07QbnUoihJrLEJLpBeBzVdLytJDrBCNLCyLYrwJKbtKJCiR4IUlIgUikGnwmfAJRqXItE1y6CzdYw/SPnQSGaWMJ1P2r98kzwtomGsB9PKBfdfcyLZJU5WiMRSXc1oqtzH2ggzWeXubx55rJtNzQ+uwyQXPvQBXzRvjIL1zB+wgCA08BD+6pmAN/qXNKhLzkfzt8Dm30WY9Sjj6rZilXhvvHEWiyCvHcJo3hLqGvScPDk15WyNwO7g3b1bnh+cPgno/KMf9gUCRhiXgGlp9APRYGIwH0PKAhTOfEMzf2e2MRHHbdfgBuE8Eudec/2eqit3dm+zuXEdeeJ3u6TsxZ+5iaWufR8dTetIRbRxmMhhT5QWT7QE7dc2fvHMlhGqE7oyV9UMUoylCKkzt8NaDD2u20+3ygQ98gPdu7PLct78Tvk+ArUu+8uU/Ik5SfvKnP8c0L1hdXuJzP/2zfOm3v8hnf+JnOH3qXsoiZ7y/za/88/+J69eu8Ev/5X+JUhH/r3/y/+CP//AP+djHP8Hdd9/N+VdebD5qj6krZtOCPT/EYzl68jjdfo/BbNp84nDz1g2+d/UKn1w7DNtbJHGMcyWj8ZT+Q0dpnzjJB46cYqozvvbVL/H21VuovMLkJZFWCOvIoojIA8YGaYC1CClIE41CBkl+GiF9I9+MYxSeNEloqYhWnJB2WvjhjLjdIW0LYh2FQF4ZYYzDYSmmOXGkg99JbQKgFWkq79BZhKlqUJKk3yHpLCGUJm21g/xXK0QUE7UTjHM4G/ZuJQVehXAi4SOETyiriqidUY9nxK2EOi8g0lTGoKOUsrYkS12Qmr3NWywtLwVATQiUD8C99T5Ms7xHKoXREaLToW73SJIWQdZqMdbx7uXLHDpyhF/53/4lb126NCcO0W61WD1yhL3BiLKc0el02N+8RTWdonBNoI5aDBeEDAwXGccIrYEgl7ZVGfYlKRdeXLZJRfOjEdffOE9/4zjHjp1lc+sqdz7wGBef/xYmnx6sMSEoioLPf/HfcM8//EeY8QC9cRx16gzm7ZfwzhH1+viyRApHqVNqXyJaMS6OwtDGmMVaXewZBF4dAuLeCofP3QEmBxE8HedreCGlbF6/cEGA7cJNsijanQ3NYBxFzeDAYxrprbVBpiUbX76DxNDACEQIzt1zhpXVJUZ7u3hvw/4pBJPJhNcvXOADH36Kfq/L3WfOcO+5M9x1190Y66irnK2bN/j+88+S5zMuv/suR0+c5L/4h/8VG4ePcM+5s/z5N77ObDZr9iRBmrX40FMf4sKrF8hn0wWT2ThLLDVrGxtMRyPuuudeklaGijU6jSmrKvhKSoFC4oTn5Re/TyIVZ++8i8/9ez9J0SS8FvmMvcEu3//e99nc2iKf5VgK1CxHI5m4fXYEJI3puFaabreLr2sOHztGFMV0u33KsiJNguxmPB2ze/EdalMyGY0YT8Z4Z+l0MpSHVpaRtHu0222OHD3K0tIyS/0+y8vLdDtd2u02nW43DDiDLr5pSuaNmkUoEcxlECAcUjZ1BDGtLGFtqY9UYQDgCbLcUDw2Z+aCBR/UCUgwtaWYleR5ufCjFA0ILOaG27f9O/eHXOovNayz0DzNZjM8gldffY1rV681ACGcvvNO0ixh7909pFaMh0Ns3cjmG1+nRx5+lH/wD34JLzy7u7sBLHYh0KauK1ZXV9FaUTsL0tIQL/DOceXKFb7159/i9M+fIksTPv7Rj9LtdPln/+x/YXd3h3a7s/BNk0LgrKXT7nDr1i3uPHOGrVu3QjiSgKvvXeH8y6/w5FNPNuEzjZT1NpDz9uJ8fl4725jKO89L588jlObUiZNsHD1Kp7/M/vYuv/I//3M++fGP89M/+eOoSAcWEWHvr00ANoSKghdUw8zzzIF5EMI2wHxTG7jAiGkeQsqIKGoGfUIwK0tEWSy+f27vAWCLipAqEIY4rp4b4ofBqBeNzLxRTEiteeLDH+L3f+u3ePm73+bhD36YOx94gHcvSm5efZfhcJ9/8y/+Vx7/0If5wNNPIwNCSLcT0rHPnTu3CAC7ev0qn//8v0FHKRvrG7x78U32drYBwaH1Q9TGsLJxmGN33YVF4ARcuXqN3b19Wu0OnVaH4WhMUVQhlCcvmM0mgQ3lGn9C1TCVmzo9SeJwH0vVACjTsDdHMbISLPX7bKwfCiSFVgtbVijvWV0/xGA4YTAueefyJnuDgk6nxfKyo93uMM4HrCz16S+vInQcUssbj852u43H0W61wIbwhsBiktR1RVGUvP7mG2xvbVOVJfv7e+xsbTGejpjlM5RQCO9pt4J3p2y3SJKY2hhmeR4CFERg/LuGrLA7GbM92Oft61ehrok8yNKw3u2yhGYVyWq7y1qWsZq06HlHNB2RX7nMbDqiEDWtOObPxvtMpcebMMQ+dfoOWp0uBkGr1UYJGJcF4+EuxXTEYw8+wIP3PRgASx1RmZKyrjC15dw9Z/mP/5O/z+988bfQWhInMa12h/WNdXrdJS68foFf+d/+FdeuXyVNY3q9Pkoqyqrkm9/8Bj//cz/Pp37ok1y4eJGqDozXrJVRFQV42Nsfsj2e8vgzz/CV3/ltrA017MuDAdfLktNpBnUFtaUXpyRS4esgzwVwxtFTQUUw8YZ3B/s8n095p5Vx+J4HWVlew3qNTjLaLcl4sI9xmqizQt9H1PmUuix56913uLG5iRfQTSTlzntoZhRlThLXmGqEsBPwJVURYfOCYjyh9AIVKZRuMyurJoAsDFZ3tgdEUcJ0mDMdG1ZXJFHisXVBXhucqBtPPUmkVTP8bf7rfRPQFKyCtAMnbmMKNWd82N8PHloMMcIfAhGBMICc7zsQvOzmElYlFdZ5kigw1PAhJCQSgiSKyJSipTWuF3rCaVlTW0v73Dnuvudc8J1XgmIypTbB6uHGtWtcvXKF3nKP2XDIYDhgNJkx2dri1mCPcjYEWxLhSdoZkeoG5UJTt8ZRFBiNPqy9qqpCEJLW4D1Zu9uA8aEfNKZmrt6yzlCW5aI2qpuEbVPXCNOEYnrfDFEPejXXsMWjSIXU5rIMicXI5qwLPapzlrIIYVv5bMxwENiXOgoKACki2u02WmmiJAop8klI+JVxsGWY5jn9pSVWDq1TljWjwZDhaIg1Jd5WFBWUpqQ2OS+/8CyrK4fpr6yilWB/OOIPdq7ydQqOJI6uFeSlRMjg81rXlhN33s31azeZzHKUlhR5QSsWnL77biIdsbHUw9U7fPiJ9zO95wz1bEQ1m1JWNU5Kjp08HcLIqprZNOMTH/8oH3vmg5w+dy9pkuKrCqEUZVURZy067TYP33sv27feo65DMJCtSupixsl7zvDW+e8x2h+wfPY4w/1d3isn/NFKzs9sHGJtmBAXMdIWLMucd6TlFVc3vtGKCEniIfY+9Bg4nJScLhPe318imk6Z3bxKHAn6uo2KOwxOnuDCqSNcTjNmDtaPHkMmgsJ4OmurUBj2Rvv88e9/iVN33kHSyYJqsgnwQ3jeePkV/tU//18Azw//+E/yo//+z/wAqWB+xs/7b5oe9S8D4/sLA3xVXVPbGjBIKagrj1QpsZbgS1ztiKTAmQD2ICQ1QQYqRJgA1HVA/62TKBUWo5SKLA3ps1J4lFasLCvA4WpHTgihsFVYONqURBH4qllkVR1YcMIhjWzQe4NTskkLm0/AA8gSR75JMRQ46ZHSk0iPkBpp5/4rAhVHZDoLclqpAzsvUuA1rdgxtpZYtsioiCoPtsYJF3yvXJjUSSmCZ0pVU1clVgdWlVcCQ0VRT0FLCjND1ZqZKnC6wFEjkyDxE0JijCNyiqgp4K0NLMbSWwQRmABxeuNIvCRVEUIINC28EWQiIVMtklYbV4E3IEzYWLzT4DWoDKNaxP0jdDfupX34DElvDS812/t7DIbXMU3hMve1EgtWmVjQxSGk0oTGi4ZV0kj1mkODZlK/SKVrihbb/J1pvHfmAB+Ln3M7uNf87ttWh2+mNtx2iIXvbZ7aTKrnYKBoQK/5j1YCWmkL5w3Xbu02skua+zewnWiKcCll4yF4kJrzf/bWozF3n8tvbwf2wnPDe2TB7HOL9Nz5zwqP3cZPXIBy8++HQCe/nbUzf9+L68UPPLTw41pgnDKi2+2iFYwHQyaXXuOV997isoIrp07zqWOHaQ01dVOUpK0lXrh4kc3pBEzwlNJRxMbhDWpTNbT1GocL4IWHc/c+gLWK7VvbXH/vvWairqldAGC++idfYmvzFkVe8PRHP84HP/hh7j11htWTd+HSFkU54lf+xf/EpXffpN9fIut0mAxy/u7f+Y/5B7/0izz37Hd56qkPceH8S1gfQH3pCH54iePV77/CybvPsrS8yuDmzeYeAm9r/uQb3+CH/vZ/hh+PcLpN98gavrtO+8Qp4naXlbjFT/7C3+QjP/KjnH/hBd547TxX336L6fY2+WjAeJY3oTw1GolWAYCJnGiAP4dWArkAbD2lB9cY/gZgQZHFEanUpEmEVopEK7IkodNpkbVatLOMKIqIVRSmqFKStlogFUVZoVXYY/f2b9Lqz5jVhtZyF2qLTFP6x49R1ylZt4Wb5UyGQ5QPRsr1aIJvWHsmL4gjHZrDJKa3cQiXZagsJWm3wQqKugTvmQ3GrB7pNpLfYMAsVUgKbSKyqXSE6LSRSYJNE5wUIUkOz81bN5gVM7YvD/nyH/1h8Jtq0nc7q2sUtSWfzVhe6rO/s40tCrRs/PVckEn3l5Z56OFHePjhRzl18i6yVguBoLKOWVkyG+xx48Y1zr/+Mq++8Rqz0QjvgxeNMRZbGYa3ruDKnCNHTrK1dY0TZ85w5Y0LuKoZaDSF3RsXXuPiW2/Tj2I2Ti6R3vMQo0vnkd4EU2rncXmO95o4TnBrh3HtNr4JwJnvD/NhgwiLNABvWmHTFuX+EO89VR28z+YST5wjBOOIBqALiYc0e0yQ2/mF2fR8sFDXhqquFsDNgS1CI83z8y3W0211SFRElqXMJk0qYwMkfuNbf877Pvgher1+CE5Ik7C3Wk+SJHz7W9/E1BUSmE7G5JMxrq4QQlHUho9+/FPs7u4xHAxwSI6fuoN77n2A//7//U8QhHNTSAFSIaOErNNnZ2eP+x96CB0l7O8OKGYlzkPW6pC12kRKMJnl3HjvMr9z+d1w/kYRSeOZ1en1UE0wzR133kGe5+zt7TLY3aP2LM6YvCqbPdcxGQ1w3nP96hW01ljjUErTX+o1wBh0u12W+n3Sdp/VI8eRKqIsa/CeYjKkmOZcvXmT19+6SD6bAZ5Ia/CgtaLb7pJkKf3+Equrq7TbHVbX1uh0AkOw318iThJaaYZqWDtSNtP6SDUku/A51mVJ5UuCvFkHv7ZIBvmkVkRKEUUh9EvMpZ/NvXgwUHINOGYDS61hDXrv6XQ64TkNuJXnYeD17W9/O4CtUtLqdnjiQx/kxZdeQqcxo+EQU5ZoAitJAOsbG/zC3/m7EMX8zm9/gS/9/u/xmU9/ir/y4z+OUoGhurG+TqfTYTgc0Ov3kFqxvbUNAo4cPswzzzy9+JyUlDz5xAfAe375n/4y02JKK8sCAOksk9EIZy2j8ZjW+jrrhxsWH46qLPjG17/O+594HN14FM5Bb7lgu4QawzXv3fnghVxVFcPxhItvvcUdZ+7ikcceI04yut0ezjpe+N5zfOXLf8Ryr8NP/Xs/jhShSa6qksCylc3vC4/Pwdj5VxiMqkWNJIRv6pvGKN8Fv0MlxSI1Mzx/ng4pFgqI2lpsXWGt4cAjuHmvSoEPKoHbJb/3P/gwF994k9dffoHnvvYVHv3Q03zg6Y9w4cIqNy5eJN/b50+/8ie88srLnLv/AR545GFW1w8xbXeItaQqc1599RVeeOkV2t0Vur0+ly6+ST7cp5iMueOuM4wnOZ3lZZ7+xMfpLK8yms24+MZFdvb2ycdjVvq9EEwnQClBkRekSYSQjrIKXpbO2FA/mDC8qU1o1hc1mlTgbQAupQpS07wkijVSySYcx6CEZFoU6CjCOsNkMmZre4s4itCRQumISElWV5dppRlZK2N5dRnvXJDLd7tkWZt8MsZ7T5q18C4MDZIkod2NeeKJJxBCNcCAoCpmTGdT6tqyPxgwy3MGu3vs7e7wyiuvML25SZalJElEp5U2t6enrmqSWBHJAHLkRU5Zlezt7VMIw+5on367g5nm6NEOkbeseMn6dMpRZ1mtDMI7OhLe8fCtwS61aWprqTh5+g5uXruO8oo064AQmLpgtL+Dlp5PfuIjVNYQS8FgMGJrb484jlnuL5PPBtx7/320Wn+NXreFUCFpVHnJSq/HxQvnmU7GZFnGseNHmM0KRsMhR44e5sKF1xgO93n4wQdYWz3E9u4OAkG302VQ1dRVhakdt27c4tFHH17cyx7JoCr585s3OX34CJ00I5WWRGlMXlDpILWTyKAqQSGNR9WOjajFubTLzolTDNcPI3XE/nhEbSpmTiGyPvc88CBpp0eUpXz7T34fNx1x4vAql956Hek9a23JY2s7jHcvM3IV1UyRxhFSS6pKkmqFEiD6bepRHsKAyhn5ZBbCLVToK7LII51BK4/wBa2kS6wThjVgDWUdvHGFENQmeMhFVqOVRJtg86SkRGmJFh49H3Y2A/gQ2hnqpdsVR7dbC80bJ9/sTSCavswvhglOBH8+j1v8PISgprGsoZGyKokSIWCk8jAaz5pAwwByiq4mMo7OkuDw4SO8/wMfCBYGzQ5lTYUxJVUd1vRwNGR3Z5tb169y7cp7jIZDpAhsbN/sr6YOQHiadZqBlF0w+qy1KBHqUx0lqEjhrCNVkm5PLc7AujbUprottMngGt9Z50JP6IxBaRH2yyKclXPP5vmwRIiQtLwIQhTzgUwYsJalpSxKhBRMxvuAD69Lx8F3VwhsXdPOWugsI0pSMmfI0pTsWIdjp08ikQz29xgOB5S15eiJU/R6HZJIY51nOp6RZl3ufPBh8Ia3Lr/N/s4mXqakUqHzgCMcOrTOaDwiyWA6nCFFGKzdccedSCHZWF7hyNoaD545i3WOWGm8dZTWMZrlvH3pDS5d+j5HD68zGuwQCc2hQ6tEWQJSMxwM2eiuIU0dzj+tefz9j/HnX/8qFQVaCGIpmc1y2svLLB/aoJyM6PWXKA8dY/fWFb4wvMITZx7nZL/PhrH0d7fYGe+S1TlGlWzHnoG1TEyFFx6cx2lB5SyV91yuLLOh4ENZh65zbNiEcbfFO+fu4vLhda7X+7z13LO88867RFHM4bvv4ciZu3niyfexlLUZv3Ke4XCXSxff4N5HH6OuTTM4C3X50vISw+EenW6Xs/ffu1DmLJYSc7LRgS/+gUTgL/b1Fwb4EBInJJFyCOGC55xyYFUwjPYCKTQQUxsHziIdgX0mbeMd5LHGkaYhnYcG1NDKECuBUoKeFMSxxJkgC7JhOTEzMBhbWp0UpQMYZG1AZyvrkKoBjpwlUsHLSsYx0guanFZMbRdAlNIq+M9YhxLBsD5REZHUwdJOaGKZUmFwRiDx1JXBGk87i6hdSV0adCrwvqbVSSnrIrCsJBSlQUnI6/ABB2PqGqmhEp5JNWXig99D0vKYssYpRV01cd6VItISJSKUlkRSBOaeDyxCUzpo6Ln9pIs0oNMIUzoiGVh7kUqC84pTyDLCVAIhNFJlSJlhfIxs9Ynbq2Srp2ivn6G1fAynYiazgps3NimKAinCZCiaj4+bDT34FjZwkw9SXCnVbWwxv5Cl+qaJhHkybgD2gozSN4+7H/CZm7Ph5j9tLlW5fU0cTKFEA+IdeOHN/38+tWqOrkCJXvw5hGlI5em1EoKZfE1lBYiQCDj3wMGHCeeBnInFAj1ICG428QVAOfcOZPH/t6cJg8A5+wMMv/l0aH5YzF/3HEANgTAuMFmFWHjqzL9k85oFB828akCkOc9vfq0CCOn4xMc+zpXr17h0+R222tto59jZ3KYuDd+9epPt7V2ePn2SdSVwueXKNOfl3QG9Xp96NsTkFrTixOlTvHXpGuDwxgR8xwXz/3P3PcBgWvD6hdfxOPKqJNZNEIuHfn+J9957l93tXR5//AlmRc7q4Q1sNWU6m3Hx9Rd489WXEVGEiBX7wyHGWP7lv/qXVFXF2xff4kf+ymfRkcZUtrlXJOV0QqfTZXt/j/sTTRaHtE3XXEtcCNt4c3/AfY+8n2x5lbiVcvTQOjJJ8ECcRUgER0+3WF3f4OnPfIqqKKlnOdPJlMHuLntbW+xt77C7tc1gb4/pbMJ0MqTKC4rJhMoaIgTCOTSWtrMkUhKpMJhIGt8eYx0ljlpGTGpDNSpw+7NgOlxVVKbCUiG8Q4lgfI8UIcEvDlPANI7pt1NacUS310MrRaffox5voZfXUN0+URRTT3NcWaCcYba7jxYOM5lST6bEkUJFCi8VwkxRnS4yaZOrXdJEM3OOaT5jMh6QLy8TJxppFFqF+841DCCpJFHWRS8tkasI1eoEQbz3lHnBzs4Op+66g3/0j/4bdgd7IBRSC6Jej/bqKrc2d1haWWZ/axNT5kjCenTG0Ol0+JHP/Ag/9qM/Trvb571r19nc2+e+o8ehMsQeoo4jiRNW1tb54NNPM5zN+Mof/wFf//pXKYoSIWSQ1VaG8d42zjrWjpxgfzxm6fhpdi6/jZgXaUBZ5Pz+l/+Ih+8+Sz0dYXuHcK0eyuxR5TNEk+QutUJFEdXaMVrLPfKqJDHB5FlH0QLYxR/IM4UQ6Haf6d5e4wUT5MGmrijyAudCyEbwvArN/myWk6bBIFvIxmS7AaGkCHuya5r4gBHeJhtoGF6L/dY7siTmvnvPMRuPuDIZBxmBCMymN15/nTdeu8Bd9z/AJJ+GQY6QOOvY3tvl9dcvNExjj7M1w/09Bnt7nLzrLNbBMx/7KJfeeZuvf+1rZO0uP/Ozf5X3Lr/Hm2+8viiKpZJ4pWl1AwPurrvPcd/9D3FrsBvOQqU4ffoOtm/dYndrk2Z035wMzd5WVswmM/Z2d/EiAKRKhyRa3zAZbF0351Mz/JEhoGD9yAZPf+ITRHHEeGfA3v6QwWBIVZUMh0NmkwnWGvb29rlCM4Vthj+yCbqI04xWt0+S9kizlKVDijiKA5AfaeraYpqh6dWb21y+ehNj60ZiVKO0DgbdShNHEXGS0O106C/1aXe6rK2tstxbotfv0+8vE8chMKDT61CaZnBiLGmskFqH0JVmWCR9UEzoKFokMAoxZ+QfhETNHwMoipJ8NsN5R1GEROHJbMar51/FC4/FceToUcqiZDSZUJUlxSyEslhnG/ZaxM/+1b/KiZOnuHr9Ks9+97ts3brFr//ar/Laa6/yMz/7s5w9d44jh4+wsrLCYH8f7z1FnqMixaOPPspf/2t/nWPHjzc7e3jtcRzzwSef5OqVq/zqb/wa1lriJGY6nYKr2d7aYuPoUW5tbvHMxz/G73/hC+STKQLP+fPn2dne4dDaapC3yTlDf57GPAf4wDUMj7KuyYuK1159DS8EZ87dQxzF9LptsiSC2vDe229RGctrr77CT372x5o0ZImbBxYpeZs0N5zvIcFRNH5Pge04XxNxHAe2iQ33jW0Y4vNhYG0CiDVnoWgdARZvbWCHRTJIAY1ZgLi1MSgVGC4Bwg/NvKlrrPd84OmnGOxvc+XtSzz/lT/mjnP3c8e993PH4ePcvH6Nd65ewccRL734Aq+8/AI6SYmSCK1DwFCnt8TakRPs7u1z7dVXyAd7uLKgkyRMhyNOnjvHQ489xvLqIaZ5zqWLF7lx7SrSGrwz1HW4h5gPMaWAWNHptolKjXNh8GOMgSTcu1pHRFGTUiwkxSzHGNvUn4KiLBAIdN2ka84HLfNZtQvrUysdvHGVJM0y0jRBCMHu7i5JmiKlbMC7mDRN6fQ7OCeZTWZ0uz3SLAvnrta0sxZpElMVBatrq7SyVsOeDH1Gu92m3ekFBvXpOxHC8/Ajj/Bbv/mbXLv6HtubW3hnyNoZSRJSrFdX12i1W2irefnl82xtbyGkoDbBp62VpcRSk8URSZqyJRSXNPTjlHZR0q8cD7dTvrC1w56x4f3LwOY8duwIN7dHqGZQYowB76hnM5Y6XR687z68cLzy2iv8zu98iXcvXcaamg8++QSf+ZEfJY0TLr9zmccff5RLV67QbvVZWz9MmiacPXeOe+65j1YrYTja5+Kbz1OWBXlR8OAD93H5yns8eP+DnL37LLu7O8FfTAflgBLBv6ycjIiAVrdHVe8iCAEP39zb4ueOH6Mbd0ijilgKCm9C3yAERV6GMCRZI3SM85bIwR1RxuvTgv2ywgJR87lHWpK0O7TSmFaW0UoT+ktLbA73ufDK60gLVVnTUpBvbxNFK7Tajt1b20RC0Ek1/X7K3t4Qi0BrxfJSSlHU1NbhG4shLx1CwfJySuwLKlfRySy44DsrJSz3eyCDr7qpA2BVO0ftAotMK4WyNjCYtEIr2YD/jkgFpp9EBusaGTzw5/XMPOxwDqwx///5H+dAqj8IN7TNMGIuBxZKIpv6wTf9kCMMm1Mp0c4jWjFIHfpw74lbQZlSFmGwhvFUdYVuzisVRcRJRKfxOD96+DCcO4d1ltFwwI3rN7h6+TI3r19jOpuEs9PaEFhH0+crh45iBKKxigoYgbEhvbaqKkxVIxpiRbC1iMhE6wdDIpsgOGdD2m5ZVdR1RVkWYbiggnLCOdvs283vsMFzV9Ikizf1wrzfcy7sP7oJvDB1hTU1ZTENTD6tqKocOwCLIosTdJSik4hep0eatEjSJY711gJoWFXs709w3tFf6tPpL4MX2LJCy4h77r6H2R1nQm8ym1JVJSbPWVo/zOsX38XmOdV0hGzOoPX1DaxXqDgBb9EapIdYK7zXVJXBCHjrzYus9FJuXX0PYwXH7ryTa9evc3V7jzvuOsPa+jpRrNkfjbh8+T3Onr2TYydO0G11yU2BsLax/7Hk+axhZ8NkOCTSIfH7vemUPx3t8Qtr97J59RbpylGOnbqbI6bm0b1bXNvbYiJrTAy2rpjFkm1RsyMcm9ZQes1btWM1rjm9vMbmkaNcP36cNwZ7XPzKc9y4fo2qrnBekK2uYbTm5PETlJOcceW59577+NzP/RyH1jcaILvxV8YTSUm310eI0B9k7fYBPuAXS+mAwfcDCMZf/OsvDPAJHFoFOavwoGOFNQKhw4eNhTgW5LM6TL1SsL4ijglpRoA1DbghLEpqytJTVMHMUEmwdWB1OOcb2j9B3qDACcuxjmJWlMSqCdkwQd6ipEJISRJrqrpsYrQVwgQ2mfTBmLrVjZhWBTNK4kSTaEFdVSgdBzPIKEI6Bd6jUEijiKwiVTGRihFKYIxnqW0QakZuHT6GqszxxpBXOSIKm2ZFSL4UsUJrS5FbvFI4WUHkyMWMKA2pRFErwkWeWIESYQobRzFZEhNJRV0bjPF4GYoWakusFFGU4EqBtgmRjlAuIhIeLTSx1LjSIpxEq4y68kRJC6lbCNVD9Tbort1Ja+Nu0tWjSJ0xnVXc2BkwyfMFfVk3FGf579yHzgUABReKVaXlwl8PAO9DKtucIcBcXmCC0XxjEk3zuG/898K3Npw4cQDqhZ3xtkAMbofFw+9tLGbDQw2Dco6gywbQ4t89yLxFeEev3aKVJVRlSbvdwRNS6eY/a9EAibmhLYum/HZW3oKhc5vPnmuAzQUzb/F8t2DohWvqFiBceLt+8fj8fQvZ0L+b4jSEiLBgEc6fD7cBfU3hGnacpmm7rSFGCD7x8Y9y9913M8unbG7vsLl5i8uX3uHSGxd59Y3XufjuW7x34QJ3rfSIa8v13T1WD6+zIuGNN/YBSZa28TpmZzAIDMEFQBHu62MnTzIuZrz5xnmGwz2E1ExmOZEQ3H33OX7yc5/jT7/6b1np9XnskXv57d//Ek89/UGUiHjtjXf4yFPv53sPvI8L77zJ5uYuv/6bn2fr5iZvXnwtpFYLx3K3Q5QkFHWFnV9LF+RU+4MBk9mUk3ffwcXzr4bkUQ8Iye54xue//CX+/ud+mqVWi6k3uOGU1aPrxN0sGIgLFaZvSYSwEtmNSDodOhsbrJ44yV2NjMraMCFnnp7rHVVVU1c1ZVVR5DllPiUvCop8xnQ8ppjlFJMJdVlSTKZYaqppTooNMvbKsLrap5zN0ElEMcnDISw9ZV5iyjKklU+nGFuzl0+4sb9L7aCugr9TqjWtOKITR2SJJo7iMERwHtUc2ggRzMmVpJXEJEmKjluUIiGuU3RcsryaUegkeBs+/13OHF6nrHOUSBBoXCxxvvHCkyCVQDmopwV6fQndamOlwlQlm1tbCK356le/yoXzr6ClRukIoRUrh4+wuzskSWLGg33qYopCkugICZw+ezd/52//Pe5/8CG+/eyzfOfZL7K9u0unv8yZe+4LoIJStHXEeHeb0WjAzZvXWV9f5+d+5q/y+Pse51/8i3/G9Zs3AktLBIP70WCL7lKHRAmSQ+uMd29SjUbNQS1wDl559VW2BkNWV1dQUhEdP41+JxRW1bjEmRLjPFGaUrZ6KON49qUXcLJp6Ho9lpaXaLVapHFMK00DQ0t4eqePUxQjFEEuJ1Xwg+nFKXiwrmlamvXf7qimyGzYOI0nlWs8qqx31MYGOcUc5Pfg58WnmDOwLfhwZh5d3+DIkcPs7e8ynUyDVFN4auv4rS98gf/szjvJklA4+yaN78UXXmAyGSNcYMhLIamrisH+Pt29fUQc0Wm3+cmf/veZFRVPfejDnD17lv/7/+2/oyzy24AVhdcRp+++m8FgzH33nmN1dZmb+1vUznL89Ckme3thj9c6JN/5Az+dOVA5n5V6EfZSZ+2CoQVzVnfwhQ1SVsGxY8f5oU9/ho2jJ9g4fIQ0Tml1u0FqNJlQlsEofzIdsz8csru1y+7ONoPdXYajEePRiCKfUsxyxpMxdVUuGinvIYp0cw4FMCJOAljQ7XZpd/roKCZrtQLzQsiGPRjyycfjKXujbar6OjgDjR+xxzcpfctIFfz/sjQ0pL1ej267Tb/TZmV1laV+n5Xl5RDO0QqpfEmSBmYIB2zGOVA6D77yzi6852bTKSC4+OZFdra3gxl5HPOhp55i2ICAZZGDbUYsjRz8zJkzfOSjH2N/OODrX/s6l999B2dqysry/HefxVnPh576MI88+jCPPfp+bt24xWQ0wbiaOGvxuZ/5OQ4dOhKC0SKFimSQd12/wdFjx/ihT/0Q333ueS69c5FWq0UUxZRVyWg04N4H7mc0HLC3t8/K2irXJxOEEAx293j55Vf46Mc+Eu4NezAYOygSxA+wOyaznP3hkItvX+LJD36Io0ePsrayQivLWF1ZRvrA1vZIcJYiLxBphkCidNQAagKtxeKszrJ0wbTVQuFUsCi5fQgQQECBSpKGlXIw9JtLYufDw7qqFow82zSRc99hrQOLM/gae+q6wpkDr19jQ3Oatbo89tRHGI+nDK9f49Xnv83li69z7r4HOX7mbpaOn2D98BHK0Yi8LMhabarasLq0xO7ODoPBLjeuX2Vv+xbjnR2qSfDGpdtn7chR7rv3XlZXVhju7XPl3XfYvHmD8WCAzWe0s4wiz7G1CUyMBmD1DYiepin44P9FY5firG8ScFsoGWRmtm8xDQPIOhfSoGXw/rbOBW9MpcJeaMM6q8qKWtQHagoC4zaOI0Qz7FZSoaNoweiVUjapupKV5RWiKKYylixN6XQ7oXk1NUv9PlIGE/1OpxW8QY2l2+2QJMlCXtzt9/ibf/tvMRlPOP/iy9za2eLW1iavfP9FrK0YjSZIKciLkqIqSbvd4HNcVgHEFYpRXrA/HlM5RytJ0TqiqmtiJRFK82fVjKGrabc64X3Xht7aCsfPnuWdze8SxYo4SoKEcTbBmZKjh0+wvLREbSzXbtxgNBqwvXWDPJ/yh3+yzatvvsbP/uzPs3F4g4sX3+b7r7zMAw8+yOPd94GzHDlymL/yE59le3+XL/3uF0FIrIfhaMS1G5u8ffkKZ8/ew4lTJ3n2uWcDEKZUuO44ZBQxnBV0VlY5e+/9fP/b30RGEaaueacuuTiZ8oF+F91rEUcSWWuqaY6WIRiqrEpwMCktg8JS24JbZc0trbAqRqrQc+EtwgViSm09VTmlGN6kHE+oreHWzhZJpOikCd1Y4IVB+ghlK0RVMMs9sYZ6UjObjoiSFENElrZxRU1ZO6azAidDyIIQAuMMvSRC9wTF1LLUVRTlDEmNtzWxjkgjiUhjYO5ZHvomY5r9WRiMUWitGta3xzRBLErKEPKgFVJ5tJBIJRa9U+BlhP1PLnqvRiEQEGDmFA/dWIV4D5a5lVAA0UDgtcY5R2ntArzRIvgDax0GaR6BkYJ23CLSMXgo65pZkVOUOXP/Mq01SqvgpSwlSkhWVlZZWlrm7rNncFVFMZ1RlCX7gwH7e/shNbthRxZ5zv5gj8H+PlXZDF8b65P5W/OeBlyzwdO0qrDeNt6eYU9N0pS5D2ucpMEX0xpqE4Y0dd3YrzgXmNo+7MehHwi1ZfD6c0FR6O28rcVah5SiseE6IKjMyUggUBisgbKcYYaW0f4ecRQjVUQcRyRpEgJTogiEZCo8u9NN0lYGOFQSk8QRUZxy9PBRJvkMg6POc5AJu8Mh46YHEd7hccRZxjAv0Z2EpDkS536FQohAtqrHJJFkf3sPJRxIxSsvnef44TWsE+Szig88/hhlYfnCb36eP//m1/nr/5ef56kPf4r+0jKbox1CxSioBaRLS3itAMusnHLH/Q8yLafMBru866Zsb11npZgyEDHbckYxHuEHE9ZExhoRFofvtpi2M44pTdXJKFPNHpLdOOaagJfLgus3rrH96mtMhgPyYorBkaUd0laLe+9/mHFpuePkaZZ6ffLZjMoYPvChD1NVFb6pJR1z0JiFZ6O1plFf/jsUvWaSPFddHDz4F//6CwN8SgePOaXCAouUpiorvPQkcYSpFXGimI0dWmhMlSNVqENrCdaFotY5j61UqE+9wNYupMrYRs4rg7+ccCCi0ISYygb/DBWmIlKDMp4oVaF5B0AirCCVAaTrt3rBkLesiXVMZCSpjKgrRxqlSDypjHA6JOTGsWYu2xRKokQMTqK7KbGOkC5IDkUq6WYx1nty75i5EiMtM2cwUYEhyNNsRljgeBKtsGmYyjsMMgqTlCTVwf/KQD/rIq04kBRUjspWOB1R5AZn5hItSyeLkEqSxRERLbyPiUSEr4M8jFJSIxEyRUcZQrXQcUzcO0TUP0bv6P2ka3cikw5lWXNrd8hkurW4+bQKEul5A2Tn9GxEk8jYsB0QyOjfAbxuY+q5BvSy3gezbILkx3nZ+O3NAb65hPcA4Q4NWkN/hYNpUsP8CfheA3hy4B3U2AotpjVynnAr5+DeATN27vsnEYxGOXt7Y4y3CKmDh5tSC3N+IebyXr84+Dw0xWfzypuDYi558gsW3+1/vg30vF2SuwDc+IGGcM4wmU+Yw3/nFrgHB0G4fm7x7hYyvDnDT80T+YKZ+JzhN5dNex+o7d1Ol267y913nOaDH/hAMOU3ljffucTrb13g1Rdf4tKFN0k6y9xzz11897nv4bUilRFL/SWOnjyJfe6l0Mhw0DRqLVnuL/OdZ1/AmpIThw9z6sw53rr0LmtLHX7mpz/H0aPHiFVMPhvTbrV55803MOWEDz71FK+++gobvTZ/++/9Ii9fvMD5119hVsxw3oTwGuVptzIy2cgThQQsSoI3NhhdR5KpFZRON6DqvHESeGv4xre+wWc/+iluvfYmq+s9fNph+8ZNljdWaff75FVNq91GCM9sPCaJNf3lJYq8QkcxCBXuEx3kqd6F5GqhCIejByU1tplgBo+4JlmRAEAoEZrCOVhcVUWQKOQ5pi6ZTsYU+ZTpcIArCqoipy4riqqkqiryWY53lmI2w+Y5OEM+GVHmJXVVMqsqdmvDbFYiqhxX27BmrUXJMIXEWWKlSQS0VIRG0eq2SdIMFWe0+m1mEm7sbrOC5LjKqLxjpnXwy4qg1W5jnUe3ItLVw7SdYTYe0zl9J7ZZhXlRcuP6DdaPHuGPvvSHDEZDVByGFe3VNYrxBGU9razN5u52SBtXCikEZ8+c47/+R/9XKmP55//yf2M4GSIF3LxxjdOt1sIjy1qPrj1/8Ltf5K333uaTn/5h8qpgf2/AidPH+c/+wX/Bf/9P/3tu3LwRmG8unDk3r1zjrnvOsTOYcujMg9w4/wK+zBfb0Xg04LmXX2Rt+RCnjx7FnriH4u3XsKVBxRF1naOSGNNp4ZdWQEi++c1v8+qbr6LjBJRGSIXWmqV+n7vvvItHHn6Epx7/ANOp58qFixz7CYsWEd764J8Y7hKk1AR5Yii3lVI47RfFoNaqMXQPMhql9CJYY272bm3wDglMy7D3+GavEs5z7NQJnn/5RY4dO86bF9/EK4G3Ei8d7757id/7zd/kJ3/2Z/BKUdYGvOD1118Pe5NstutmoCGEZGV1hcoGdszaxhF+6b/6R8Ra8b/+T/9fXn/9NXAuSDQB4xxLy6u0uj2OHjnGyZMn2dre5fp7V7l2+SqxglgqDp86hSc07fl4SlEVDSACztiw7k0dikcXEtXmCehzvzs3tyqQoXnY2tri1/73/504ydBRTKvXYW3jMFEcCvpDh9boLy3R7Xbo9pc4c+/9vK/TRXhLmqaB1VtV5OWM3f1t3nnnbZ791reZTMfhPGzOAFtXeDdDiTEAu1ubofH3TSOldZOYKBDNn4UMUsE0DYyiOGoTJQoVxRhjmBlFO04YjWZkaZvr12/hEVy5cpXh/h69Xo9z584SKUkURUQ6Jk1SVlfXOHvuDGkchyCghsWkpFoU8gHcqhZsGx1HPPvdZ6mqCqU0S0t9Tp86xRd//w/AExopHwAp70NYxI/82I8hlObddy/znW9/h3w2Dd6AOLSOefChB7nz7rtwHp740Ifo9Hv8/u/+LoPhgLP33Eens0wdZoDks5LXL7/O5z//eS6++SY/91f/Kn/lx36CH/3RH+WX/8e3KMqCVpYGWV9V8e47l8jaHVCSU6fvYndzKwBIzvLcs8/y1NNPBZ9A728b/ICxbmFn4TzM8pz9/X0uv/ce99x3D0c2DrOyvEy/26XTbtNptdjb3aG2jl6vxyc/8UmqKgAynW6XTrsV1qExAUyfy6ZFqFOyJGn2/lA7hWtvG/uDgzFemiQLX06tFJ1WRrfbWXgXz1l6xpom8bGRF0OTrCkCeGMtPknCfuBDIm1tAkOwKEvWDq3z4U/8EJfOv8Dbb7zBeLDD97/zNc6/8jwbR04i3/coN67dAu84evQI0/EEMVvmrQsX2Nq+xf7eDrHWSODQ6gqj6QSZJtzz6MNsHDnM3uYml95+i82r19BKkA+GCG/ZGuzjpVjUKvMBapAjh1pGCkGUhFANKTVR4/mWpWlgv8gAuFnnFj6HLJifDTBibThfixJTBbnu3CMR5xe+x7YO4QFBIn0glR7s7DRs7GCdo6OIm3FMkiREcUSaJrSyjDhJ8Ei2k4Q4jvGwYON5oNPtoVVEu9VCKUWWpbRaGWmacsfZezl59z0YV/Pkkx/GVCXT6YSyyEnSlLTdorO0zP7ePm9fvMjm5iaxVgwH+0zHE/KqxBlLnhcBsHGWsizZrQoSreh0elRFSZRmrB86RNrqs7M7DH5mQFWW4C3eOk6eOEkcxUyGexxa6pPEEmdrtJYUZc7bl97mq3/6Z/zUT3+OuqrYHU947NHHuHr5XX7vd36Hf++nf4oTJ08Sd9v88Gd/gmPHjnPp0iXqqmK5v8y1azepnePw4Y3g4asCizlJUorZFBUnVMayubPH+pFji89BeNivSr6wdZN7WxlZVVEo1QCmkvFkjPGAiJjWjq2q4D0q3vHwfQ03fcXScIs066CiGIHFmimRcLg6ZzgbMt25wfFOwaPrXc4diTl9qM0UzdFDETL1lJN9pjXkSqIcTGuHMAVZpNFRC2M8e/sFWaeFqjzOBJ82Yy02ishWejhfUQ5L8qlhXwzQSUqrkzErKqxXzX4R5K9xpJqcxbgZ0AVShanna/nAb1ca2bD6JMqEPl7LwDafe3tK2ZAYDub+TdM1lxr+IMtDNCQcCcF+xB8oukLPJRd9kXVzW5Gmd2yamrkrmXQGpQQ6VcS6RVmbYC3QDCFdHYA1LVVIBzcenCfSEbqb0e/1ATjpPUIotG6ksY31QFWV3Lx+k0vvvM3ldy8znk7I8zzsn03NEMUpWSobNv5tPZt3mLpJzTUWa0wA0b1HOUfSXI85W8+YmjTLqMoy1FsmDOmjJMW5EIRk7XxvCVZcRVFgjUHIgxTf+QdwMHQLQw4I4KxwNbZ21FVBWSmms8ZHuxl4xPE+kYooZmNkFFFUBqkCYNrttMM+B4z39/FPfAIdZyRpi3Kyj7OOJArEjHdu3uLyziaTnVu8c/4FZJWjhCBudbnnkfdhpOTQiePEziEwpGnKN77+XeqVHlEcY+spzz/3Ta5cucS3v/V1bFHwB7/z27zviY+SdLJwtwjRWNhIvLG0u12KTo+ycpD0aPfWGW3v8Lar+Jfs8ZAxPLxXkV/f58/8Fu91I6Kki/KaXCmKyDMjx3hFOZqR7ztKU5FXRQB/3dyKxDTBUtBfPkRtLTrrMMkNabdDu9NtrjlYZynyuZ9rhHOBlRk+JIdUIli9xZp2p8PcmX8B4TUT09stcv6yvv4SJLoQxUFGKwjR50iHEIqyMI1Js8d5yWzi8ZFCRhGzWY3WniSVoULyEuuCF01YSJZIhThv4wxSaiYjz6y0dLqaTDtSHSG1oJ6VIBzCaTQKX4aLFJo+iUSgZAQWRCEQFjo6Q3pFIiMiK+knGucJv9OFpEUsSCKyVkJVBYRfq4iqrLB2ysyFzQXpyEsTpnlaMclzJlWBjMDrAMipVOKEC8w2KVAiorIVURb8CNIooayrQLWVmiSOiOMY6WQIKak8URKMVK0F4RWphigKyb5axgHQMJpUt1A+aO0lCis8KkkRMkIhMSTEnRWi9lG6R8+RHroL2VqmrC23BgMms51FWlxojNyiCArglcAxnwqHhlLJZgNhDiwdhETcnsjo3AHAt2go5wCYDRuL837xvQfBEOFem/vI/YDZ9eK5872vKdgaX8BgrLwgqh3IaedU9LleHt8AgTIAj05S1cFgXqqooaT7227928zHOViwP8jc8w1wd5CSyxw84/98febg4kKqO2dL3AYIzr/mTLz5v4vJ03xytvjzHNQ8kOMuLmvTpCzMPcXczHt+XYMvYjig59KfphzWknN3n+Ges2f57Gd+HG9hNB6zubXJox+6wNb2Jq+/coGbt24x2NoBaykmOUKqxe9VQqK94MSxw/ynv/ifsBQpuhvHmegYkc9ox4rJdMby2jrr8VH2xhX/4d/6u3z/+Wd5/rmXuP++s1hb8a0XX2C4P+Jv/LX/gO2bWxw/dJjvPf8dXr14gfc99n6EmyeB+UUjLyU4Z9BE7G/eYrY/CAyGZmIPASQpvOUb55/j6eVjfP5XfwUTxzx8zzkOHz5C1uoyVhGtQ4fIa8v+aEy71SJTEWmkSTstdBqTJgntrIVSEa1+r0molc30P4T7RHEcJnZYpJQYW4f7VEuEihCE/cChaLf7dBojcTs3RSesp4PP8cDPci7jmvum1FUZCoCiwBQF1WxGNZtSTKcUkyl5PmU6GpLPZpT5lNFgwGw6ZToaYfIZeVVSTqaI6Qizv0ONxGrJKM9pZRn333OWvRvXSdoJ1nrqwtFfz9jeuUpeWk7d/wCHzp5lcmsTvbKB6i8FJnRt2BvscfTUcS6+9Savv/ZakCVmGV4rOisrbG9tk+qY3a0trKmIpUZ4yfETp/il//K/Zmt3wKuvv0ZpZrzx2iu889ZbVEXB2bNn0UpSO4t1BmzN1Xff5t23X+Pzu1s885FPcP+Z+3nrsuXOU8f4O7/wd/mnv/w/sL2/HdKDLbiq5NbVqywfPUKhO7SXeky3isUe5Z3j29/9Fh953weZlZZ04zS5A+0dQiUkvWVqIWivHUYfPsEoV2xevUExGeFVROXCvWDqCmcM51/4Pl/+0u/xN/7GL/DDxw5TjWeN/56aTw1C3lMzNBAiMOoEByygkEAu8d4GUM+HwmTuP1NVdShsDiYRVM5ifGhy5xNoYwxeao4cPcaJIyfY2t5ib28PoSTCAt7zja/9GZ1+n4996tM4D6aseeqZj/K+x9/PYHeP/d1drl65wt7uLpM8ByFJkiAXFY18+Dd+49f5kz/+Q7w1wZuukfskWZt773+Auq5ZaViOu7sz3nntdfxsipHBV0XoIFOOlCbutBG+RafbI05SIq2JpKYyoTCnYaFpFQIlyiL4cFVFxXQ0pixmjTF28OjNS4NxFeVgl939HZSK6Pb7dLoJ1U7OtesllTEIArMga6UIociyjF63S7fbpdPtUNU1ItIcPn4c6whKglab8XDMZDxZ+JPOE/3C9LfCWUNZ1zgTvGHLcoqSgsp78mZ38z5IbRESL0BrjWySZK9deY9WlrJ56xZpGuOd5ZGHH+WOU3dRlSHIYs4k0nHM1etb4fpEmqquUEqG/S1L0UoRRxFKBhaj947BYMDLL77cSIwMnW4H42sqU2LKCmNCynFIj/esrR3i0cfez3g849nvPs/O7hamLoCQ6pokCfv7++zt7HLXXXexvzfg/vse4O67zjAaTFg5dJjNW7sMoiFKeb70e7/LhdfOs7+3hxCeP/6jP+RDTz/Dgw89zNGjx7l2/QoQmHHTPGd3Z5dzGxuMZlMefeQhLl18IwyoPdy6dYs8z8MashZTBxaHtY6yqsmLkBZelCWTyYRWq80DDz5Ir9MN1yiOQw3aWJTsD8fkRcn9D5zi/vvvJ8sylI4ZjsZEUdQM1/xCiq0aEMPauXdpYHQE371Q38w9Nb2fB3w0fshNyq61IXk1sMsESmqINFJmgWFL2DcqUwfPUQKr3FqBEBFS6UaCnDWyu7BFWGupzp3h/U8+xbVrV3n3lRd4643zDEZDJsNtnv3KHzOeTtFRxNWLCVVREGcJZVEGDzBXg7H0VlawDtYOH+PJZz7C0RMnuHDhNa5cfJPR3j7OWWaTMfgDH0iY+3+FAe1cTq50o7JRitJUCwadFBI5k0y1Jmo8OOM4BFolcbIIkhFAWVU4a0mFDCBoWgUmFVAUOcYE/60548c2AyMpgupn7k3pnF0Aot67RWr53B9XAEkDQqJUsFJoPvNWq0WWZlSmJopTIhUjpUZrTRRHoQ+JglTYWUuWpfT7fbzzLK9t4Jyn1W6RZikOwdEjx3jkkUfDryIAc7PZjKIo2B/sM55MmY0njIYjRqMBtbNMhiP2B2Mms2kApTvLCCexpmoGIiF0oC4KTF2z3F8ONX9dksUKUxUIb4mkpCgrlpcO8eQHnmR59TBxmrB+5BhZEvGnX/5jxtMBL730Ik98+COsLa3w/ocf5oc/8UNMhmNsVaOUZGd/j9kkZ7nbYW7dEskwkCiiiLo2RElMFGuWlpfQWlLVJR5PXVu+unmdR7orfGKpy629XfIsZr+sGJQ1W3XBRCn2RcRQa3YVFLHGRRLpSobb15i2erRaGb2kZkVOWFYlZ0+12FjpsnNZs7p+mvF0zGobltYOk1c1K502EzvFVwVp1kNHHkGNFykocDhmZY7wkryo6HTb1PWMurZEIgInaScxoi6w0jDJS5xzxK2U8cwykxVZFAY8QRJpqaQgjqPAjGsSdSOtSKQmIE5iwdCde7Yb4wLA35yBUiq09SgZZL5ShYGSkhIlWfj9KUJInuSgTzvw9Z6jgU3FrQ/6iTlARtP6O3/QJxkf/HaVmstg/YKIIAUoCQKJTpNA5IDGhmDOqHYIH/olvMd4T1XVIMAaSxxFRDoMqKwJ9cUdd57mzrtO42ywmdja3WVza5vtzU02N7eYTCYURY63dQBsGssEKRVRLElkdttwUCwYwGVVLawT5t7jSglMli3COuq6anq8OSs7XL24kb4OB8MFuy9YMBhqGyTHas6uZF4nBGAW0dR8LvgturpgzgTx3mPKcD5orZBSB+uGKMZKwWy8H1jQgJAOoSxJHJO1O4wHCdY7nPVIU9FeOsTUw+Zwyp9+9Sv4ySAo+KKMz2Yd7n3k/ax013DllPHONmnW46GH7meyP+bQ6cNcu3qNL3/pD6jzMVqCwjEaDyjrkqwVI4UPVljCE7mayBuU1BTFDCVjEpPz8EP34Ubb7O4P+K3pNb4k4KloiR+J+pysV3mpnvKq2adEIRuyi2hIMa4BlsN92vS3TY9dmyDVTjt9kk6X6d4OR46dwOuYO8/cya0b17nw/HfZ2d+j8m4BykeN5YZHIKMIYUr2d3eRznL6jnMsraw0n1nT23sCuMecmPSXC/L9hQE+Y6GqJcaGDcvXQZaD92g8xtXQ3IpCKOJEgLBkkWzSfQKzxTU+a5IQ/Be3FLa0mNKhJMRCELdjtPDEUtKJA7gSRxHShuY2llHwg/Me6TyRlggZFnYkI2QkSWSCjjVVVRGpmCxJMUVNJGWQvNQOlUQI4QN4aA1V2aD9dYXSgYJcm0CLlYAVFuMdWdoK9PhaYiJP5UtacUSmYnQc/A+cdThTo2OBVBmVMRRFiY6jYIBZGyKr0CpGo2nFLbRKKawlljE0hsDKOWa2JI01voRYtZEuJU4zHIKyromSNNB0kwQnU5JeH5Ut0du4h3jlLkS6RG0du8MRo52reB+mmPo2r6ZFQIUPk4hwPzaMB8GBv1PzzwErbf7cOYB3G0uhmeYY436AMTcHpax1i2nD7Z5xc3BmQduDhc/cQi7LgQRXzZmXwjcgXygGF158cg7YBbCn3UnpddvoKKbIS/JpzjSvwrTFzX0RwpRXNEXl4nV4FgBdeHsHIN4iZn4O2s0fYy6/ZQHGLP5LKNqddT/wfJhDkfOf22wGYu7Lt+DvLa7bwXWcPzWwLP0c/COAnIvvF3Mo998FHMPz5h4/1jd+QNYF0E5Ad2mJTq/HnWfO4L1tJMDwj3/5lxGukag2fk/ehwO8qmqMFGQrK/iqZDLLGboSVxaYVowmgDK/9qu/xdPPfIi7Tx/j45/5NF4GCU2/nfDW9ZtQWFaXV6imBUtLfZ584gk++PQHKU3NcLBP1ciXhJqD1s2ajxSZkkS9dnjNBGaU1BFJ1sZbw+//0e+hPvYjLJ14gF/72h/x5YtvEzfSQp+lxN1uoGU3DJh2FLHU6hDHmlaWoL2nk7RQTtLpdIiihCxKaLdb6CQmSSK6vQ5SB7/PXq8bDphWFtIwbZgOSaFIswydxgtjfalUE02tEKJJ4lLBiN16iNIYawOAmDTSQ+g0jM9mEigCICGae26RXG1t8MsyQZpi64K6KKmLnLII7D/nQtFhvUcRCsBeK8FZSzmdkg8njDYHJB3J0dUlLBHH77wD0V8lPXkHUXsJg8TUNVVVkM9mpP0e//o3f4u8qkBpXG1YWT/K/t4QIQS1s5TFLHi9SU0r6/Lz/+HfolYxVzdv8a1vfI3XXnoe78OkNI1ilrqdA0avipiMhmxubSGdoxzu8dUv/S57j2/xkR/6DFevXOPkidP89Od+jl/51X/FZDIGGfzjpqMx2XKfstinvbLBdHeAN9Ui8OKdd99mVEwZ3bqGWDuGWD+NG74WmkNfY1TMZGwY3Nzm+qTkyntvYYShtdQmihOsFzhTU5cF1XTCeG+XL/2b3+Cj//AfsrTUQ9UlqhXYKL4Bv0KTOZfgHwxBQsHrF2bz1pjwXBX8YKz3AfC0lsoaXG0o8gIvJQa3kNhYa6mtIdGa0ydP8c4bb/DoAw/wjW99E+M93od9pLaGP/7SH5DnBU9/4pMMxyMOHT1GK43o93qsLq/y3ruXefX8K/SWV4ni4GEltWQ6nfD5f/3rfOUPv4Q1AUxyhD2XJObIiRNUec6pI0c5vLGOVHD9+hVuXLlMOZmEMyPSiAa4K5pmXyjF1FoKIUiyID01DesniiKQmlYrQwhBp9shTbJmqBP8vKSSJFEUArFsjUcEsG82I02Dp1aapgTZqQapiOMYZ0w4001IvK+NYTgdcmt3kziN+fDTT5FlGV4oIh1TFhV5XjCZTKmKgjNnz3Ls6BF0I2sq8pzhaEBV1Wxvb7O/u8M0nzEcDqnqinw6w5garKUqKwSBZW2cRSvLLM+RUjAeNMnLQhBpzb/+jV9HaY2xwQMyjpOGNRj2d93sMx5CAniaNp5hKa045qc++1k63RbGGF55+WV29nZDMwHc//AjlE26Z11Wi/NnPki64+w5WksrvPLSed68eJHpbBYYWs15KlRYUzdu3ODZ73yXVtbm1Vdf4/1Pvp/aGl48f5615S5f+frXOH/+RaoyX9iCSKnY39vj/Cuv8NTTz/DBJ5/ki797g7phRAigrkqKsqKqa4azHB0nHNo4xHgyYToZc/HNN7n7zJmQBm0C4G2MbQzZI9JWxrFuj06ng450SIKUzTUTYsH0V0pibY0zlsOHj9ButZtBm2gAWEWk9QJAmod0zZljUXMu102zqLVG+LAuQ6puuGahpp4DXRJr50yZoJKYD0hlc421Cl5eWZoEdYMUC3kuPkjDjLELT0Bjgq2DjCOcT8kyw/rqAzz2wH04QjJsOZ2wv73LpUtv8er5l9jbvoV3jjwvcMYE6SxhaDUYjun2l/jIxz7KbFrw/De+wc0bN5B4xoNRY2BviZOILMtoxXEwzbeOqqiwxlDXdXg/Juxr80bf+3DNrA9ecrU11NaQF3lgZQsFPsjjkyQJ7NUoRjZhNKIO69LoCoEnSxPKMvidFnFJWZTEUZDwee8hDiDt3AfRObfw/bO2GcI1bGnvffD4avztJqPbQtoaACWOwlA5SWKSNCVOsub1BRmw8yG0QCLYvHkTGum+0Jpup8vycqjFtne2yNJg45A29hpKSrJ2l1a71ySKCpCaJI6Dn+YsZzIeM8tzvPAUszEbG+t0Win5eExVFkGR0KzlAK46lAq/Yy5hDj1iGBB0Oh32t3dZP7LO3t4+WZrw4COPcvXae0ynObu7ewy2tkil4OixY7QOZXgbhktHjh5G4BnuB9BXqOAdqrQMdgzekiQpo9GQtdUV4jimrptwJKnI45T/wxR8R7S5Ph2ADUwbqyMqlSLnzGghsbZhxxrTJMyPaU22eOyB4/TFkNVMMCunyHJGOz0OG6uoNGElUXRTSefo/XTqAfV4xqCoGRUxxqcUZc5SWxHJlP3RAOcOvJfjOGmueQleYrzAopAOStOil0q0KJBtw6yCwSgn6YhmEOQCa0+pppcQzV5VE+mQuqqVblh5AfSTWiFkvOgt5mGGxgZZ75zhp5o9QyrV9IXNHiNEE2IpkbIJj1y0Qz9ItriddYa8LcgL34Au4Xnz3gdY9Ii+AWNEQzKJpWosqZowNQGR1BgP01mBMYZWloJwOG+DZRdBvVPXNcVsShLHRDoKfQ9BexVqIk2n26Pd7XLH6dMLhmFRlIxGYwbDITvb2wwG++zs7DCdjimLgqrxopRSNHJhRZrGpK126Kucoa4r8iIPahxTo1WEiQ3GBKDSGtcML1j0pt55ev0epg7svMC6LhuWWQj3sHUd+kQPeIutXNObhs+osKYh3TSfhQjDESGgIpBZQhCJRjVBW1UxC36HSUKmLBvrq7z77nWEivBC4rxhsL3NyVNnyEcFaRp65pq5ms1x8/oV7n3wIcajguVOJ9hyIfBCs3byFMuHj6I7fXpf/xrb4118FFROsZTgDHXT2kqpcEIhdUKUJMTtbvDJDOADRaQxKsIZRyw0eVXzb90eL/h9HvdtnigyVuOM70QlM1ex4IYugniCglAQwFWBpDZVsHVIUlrtfgg8MQaTzzh1xyneuXSRr/zOF/CTMUUd0oLxDtsEu87DW4TS0PiVnr3nHH/tb/5CA9z6Od4a1h8HqruFMm/R6f/Fvv7CAJ93gqoS6ChMAsKDc6Au3PCRFuFfpUiUDAbt3gYvoaZ4RICzppFueJRQqHZIT5NeEGuNNZ7eUgLOkSQRpqxJrMbJVvNmJLGQodGUsjkcNTU1sdIIKQLQJyVxFlOVJcL7wD4UAhmFwsF6j/U1trSgoa49tbV4EQxdvTDk1uGiMIGwTuAV1BT0V4HEEiWaJJJEiUT4KhR9SmHxVMZiawtWhIY/iohEhNKKrJ1ic0KakIjQJPg6DvHiRUUkBVU9I4pSYjI0KTLWCJ/giZkVoOKIpN3BuBSyJVprJ+ht3I1ePoqLe9QGNgcDZptXMY18a15c4PwPSJQCgOZvA91k01QfAFyBNOZwcCApbYAha30zPWn+vmk2HQdF2Nwvxjf3zhwwDM0lCHUAWtE8cw4o0rDy5sDW/GBZmMnLBvATogHmYO4n4X2IR29lMf2lHnEUkecFw/09ZnnVMAxtYEJ4H4pIwuY7T4iiAedgDmL6xp8oTMmaF3wbaNewPr1vDrHbwb4DAHAeQsKcGigOZNC2mdLPn3t7YAaL6zSfEIQJ2LxBm09x5nDh/FC+/ffSNF8Nmac5PFiw+bANC655LcKzYAPMAU4RrPagYTcOB0Na7YzxcD8cMiKA48468jxnPCvZG+e0hSD2huVOH5klRMJSTiZs3bxBp5cRtzW//D/8fzh29BB//5f+a37ni1/k9NEN1o4eIV1pc/nKZRSCW/vbxEKiastsMmF3b5+6KjgQPDefpQrsIWMtx45uEEURlTdIrUNTMtoP3hkTza/+3hd4+pHH+PFnPsa3z7/AOzdvsjma4LVu6Pwu+BlpjVASW1mWlpawdUU5myC8RMUxEkWqk0ZikizYz0pIlnpdNJJOu42SgiiK6C51sbVheXklSHvSFt1+F1M7lBSsra7S63ZotTukWUYcJyilcULipaLT6zbSgYbGjwj+G00jKudSPx9SCZXWOC8WYIU1FhGFpjHJMrIlFqCwJ0wLnXfBj1CphcRASIEzJrBYtAJnQ2Kdh7oJkJEKkAqqYFC/tztAqYjvfPM7vPi974EUSBmhk4QoazHZ2w3m2kWBtYZYBZbJU898hPUjJxhNZ3zh13+Dt994GVw4cKMoCmnQnW4z2QWQXL1yjaIMRVdZWpyseemV7yO14jM/9GmMq3nf+x/n5Vdf43svPEs1G4eG09SMdsZ0llt0Vk9SjnYZ3boJNtxZk8mU7770Cqvv+wDrhyF73+PsXX0POxthfEWcpOTpEkmnx4t//gcMp2OyTo/l9eMcO30XneUVokQxmwy5dPENXv/ec1y9dpWLg120tZjZCPpLCKUXwxMxT/ucr3Hnwr0tNLIp6OR8eDL/++azLfISi8U4FwYbec54MsUrGe7j0oQ9TIShWdxuk/S6GK1YPbTOzuYWIPAyTEVzU/KnX/0Trly7wkc++SlanTaD0YTZtEBKTdZb5plPfoqNQ4dopQlVXXDx9Qv82v/xK7x54QLeWnQjF7TOgxKsLK9x/I6T2MrxxPvfj/GWt96+yJf/+A8xpiKKFVVdYUuzKNwRAiuCl1ZNYHPMptNwXqjmnm+K3tDcR7SyFlmWkbQyirKgzHM63S5Vq40UEVHUwjiLoQx+kQiG0xnD6XQxpIyiCB1FRFrjfThX0zRdsBlk0ibJEvCB+Z8kEbX1qCiml6WsbKzirWU8GXHx0hg1L7azDBknrK+uc/jY6ZBanrWYzGaoOKIsZs1w03Hz2g2sqSiKnO9/9ztcu3J5MQwSgNIq1DRRhPOgfAiJoCoRs+lCwjS/pbQOMp+6rlFCcOPaVZyzlEXOa6++wk/91E+xdugQX/7yV/Ee4iQGAUuHNrjw5ttIrSkaieM8wMhax9n77ye3hue+9xy7e1vUdYUSirnkXBDYFlevvMelt9/isccfZ5xPeP57zzMejmi1O4z3drjj7rt5+ZUXQNKkwgbZujGGCxde58kPfYiHH3mY3/3D38PVhm6nTT4rqGY5Ozt7LK0fon9kgyTL2N+8RV5XTPMZf/D7v8f/8x//E7J2F2c8wljysqJs5FjBR7gZ5hmHJXgolc6GNHBnmUwnbG9v8fxzz7KyusL6+gZlXRHpCGNCA+0bH7j5/VPVwZc1ieOmPg7MEObSOgRChXvLNSCfjKLbqPmhqU2ThDSdi8Wa6qlRnjjvApNUgHQStArKDQj2M40f3zywK/xYt/D0s9bSaUBtZ13jE9Wi7LTYOLzOPQ/cyw//2I9iq5K97R22dne48MorDHa2WTq0xtl77+GVF1/ixtWrvPT8CwxGwzA89sFru5VljeekwHkfPGB1FO5hZ4jihHa3g7eWujaNJxWkWbYIJMEHo3PZpArPG13Z9AfBo89RViVFWS6GWsHmIIAISgcWZhwFGbzWmmU1B+5C6IexQc5bVQHsy/NgiVFXdThnORgCz/cJoVXz2dvwuWqNtzb4fDlH0dTYUcM89D54j0upAtCnFUkc1AFKhmT2kJKt2c9zyukYoQJQnzaJ22kSGIve+8WeEgY4ARgIHpVBhl8Vs8DKQzGdBSZrYP6XFPmMzlJ/3qsymYxRWpK0UkBhjMc5gYoi0lbM2XsfoNvvc2vzKr2+5LvPfpcHH3yQQ8t9fuKzP0kSJ1y+fo2r16/SW+7QW+rT7XTAh8/HW0tta6q6xhhDFMXMFUFaa0wdzjVjDKuHDiGjFG/HtPrLtLpLpElE4R3fufQ2vshZkkt4rWlncWC3WY/zNtRIKgAfwjrwNeVslzs7Gct+n9V+xqyYMhxNiKTn2rVbHDtxgk6vh7QF08E+ZVmyNxgy3Nnn+u6QzUFJnBjaumQml7iz5fB1zvawoNdtMyssmbMsU2G8x3ooy4LKeqK4Rx6v0lOevNinjmO6rR7R9BpxklHXFiFsI6E9sN+QzRBTKdkM6YO9E4TBltaqIWc08lylSBekChpSgwsSftukzTY9olJB5m5MCNQUQiySu4UIvaG8vR8L1UFDjmj2/zm8ctAiNTWEmG9fTW059yP3P3B+iYDGLEINpIAsjajKQBCSMnjEp7FqGO2KdppR1TXj0RhjLLGOAjDjPFIJpPV4U4fBt5hbYCjanTbtdsbRoxv4e86GdVAbZrMpw+GY3b09dra32d7aZDgaMsuDyiIEmYXfnWYtslYrcJ9sYL9WpiLP85DG68IQzDeDdVPXKBUhdISUNnx+QBzLph8WGFvjmoGQNQbXeC561wCGBMBQykB0mkd5LAZI3iPE3H7CUvmCuX2TEKE3e/uVF1g++SBSaZK0xZhQ411+7zIf/MwPc2OUs3Zog6zdx432kM6itWJ04wYP3HGaqnZcOH+e5W6XtJ3wyBPv59begOV+j7WVZT72mU/zO//mNzDljDovOLx+mEin7O0NwkDaBvA0inXocaKIJErobRwnyboYW9BbXUGs9Rjt7rP93lVcLdgWli/rMfsYPub63FIR500e3rdoHOAbK6wGeEAgKU2FrQODPs46OKEop0M0ips3rjMY7jPMSxSOGIjiCBklmLomUhHWGFrtDKkU3aU+yytrPPTwo3zyM59m/ciRxRnclEChFmt60QVcMCcH/SUQ+f7iAJ8HhKKuPNIF1NjLgLyaGuIoQcoYpRx11Rg9OoHzAi89VBapWYBCSslQZChFFIsQciEk2ioiqdEqwXsDpSBVLXztiYRGR4IoDoBglqWBKUSTDBfHUNf4ZsJnXY2UgWFYVXmYKDZJO6jg2Wd8jSH4xHlh8ElN5W3DlHGYxn9AR4puklLkNb1U8vF2itQ1iByBopxZlAIjHIIKKSGNUua2aGkSo4TGI/HWIwuN8ApbQKRiTA1ShGQzSURtFUrFSNeEadQCryKMEeh2C6W76O4S2coxuht3o3vHEXGHvKjY2h9QlDcasEkE3wYarwTvb5sa18EY0phw0HkOpBBSzL8jbNG3bb7OuwakYlEEzg2f58CP90GCJhrzZ2hudNE42AkxZ8s2h0Hw0giXqwFlxNyhoWGUMQf1aCagzf+L28Iv5izDBTsNJJ44iYmjhNFoSllWlFXVgH+hoA71oGt+z5xJCPOJ+YG09gAQ+0HZbVMU+2Yi1VyPeSG+kPPa254zX9hhOMccXZt744nF9zV/18CbC0CR+TR4frS6RYE+Z0bOr+P8y81l2IuNP/zdnLlwwJA8eL3z9327N0R4HYHxOMcmpZJEjYea9IR7q/FdtNawu72JFIp2u0uqFK04Qpqc65cv8bWvfYU3LrzONK94+lOfIZ8VFOMx01HGbDLluW99i9++9Aa9lVU+9MzHeeKJJ2j3lgIwkIRoJyElb737DlVtsEIgpEI4H8DtqsanCbPSUqPDLEdKrAlBKkoIZGOAX9uar7z8POtLK3zwofs5duwIb1y5yt5gSFVWaB+ujxUVSMHy8gqPP/owX/+3f0pdFOEeznOc90x1hFBNQyV8w8KTiC3RgKpNEq5zYE0jWWikESIcCkkco53g8Noq/W4HU1V02m3iJMUaS7+/HFh7aUocx+g4YjorOXrkCCv97iL5K0sTpAQijZCebruDMw6lI3ScoJOEtNMGpYmTlE4rJU1S4igOhVIao7RENEXyvDALrBS1kINIAaY2oHWzJj21E0RNoV7WhuFkSqvXYTQdYZ0ha2U4JKtHjzGdTcJ97FxIE5MCjaTX7/GpT38al5cIaxgPhiihsFisI5jr1jlZmgbQY1YiBbz5xnnqMieJQwDBpCgRzvLCs9/iyqVL/LX/4D/kgQce4q/8yKd44+IbTJxdGCIX0wmd5R7C5Zy85wEuDIaY6TRMHIHnX/4un3rfI9y8eomN04cQDz5E8cpr+Bk4HTOWGmlL3r16hfsef4qVjcNUxnPz5iabb76BVwF0iZRHRhGT/T02r13lqPdsXb1G79jJsDnMZbnzzfVgd2pYUDQMTUllDPMQnsXWgUdrSV2G8682hrwqyasC6zx5Y86uRZC9Wm+oigKnFdM8Z2l5lfFgRFnOmHtr4j21t1x84wJXr7zHA488yuOPf4CjR4+wvrqKjlNqUzLa3ebl7z3Hn/35n3L+pZepZnmzjwtM0whHUcTy8hrraxvs7474iZ/6CWpnGQ/3+JM//BI3rryHtBZnzIKtOPdCnQsfqFkkwTpMw3wMvmNhH5aUDQAwHY6QSmHmRt5KMRyOieIYQZjOWmcbb75m8i8Di90TinmpFFmchv3YHzAFoygM8eq6RifBgkMhiFREFEdBVquC1888XbUyDo0jr6YMR1OcM2xu3sJ72wy4wrsVUqCTBKETcJ7uUocsToijiFdffjFM2Kvy4OjycMfZs3z6hz/Dtes32d7eZjgaMRqPKcoC04T/mCZROOwVARQ2xpBPZ8FEXHguvfMu//Sf/o9EUUQ+neGFQKmQePjAQw/z1qW3uPT2xZDgW8kwABDBD/fUsWMU0xm2Kjlz7m7uvOMkqRS4uiKKEg4dWqfXX+LSpUt88hOfpLu8xNETx/jG17/OzvYmj508xp133Y2tLN97/jjvvfv2YlhFw+C6dvUKxhpWVg+xsXaIW5u3KMsqeJ4Zw3Q0ZunQGuPRlHavjxAyeKNJydtvv8u//vy/4eiJk+xu7pIP9rm1eYurN282HmQsfNbm3sHz4WRdB0n1eDKmKEs+8+lP8Y//8T/h1OlTCARFVVFVFUmaUdcG39wntlEMTKdTZjLHWhsSl3u9oMZoOgPrPWVZ4qwjjmPKsgACyBHHEbU1GFNRV1Uj2W3uTykWjKW5L/Dct29eGzoXTPDF3O+xuWmkoJHNA031OB/8zge0rhOYQPP6ATyra4e4G88zzzyDEiHgxzrHMx/5ONPxiPFozGQyCdLWsmQ2nTIZTxiPRgxHo6YRrqjrmrIo5jPPhi1haTUMJes8nU6H5ZVlWmmGVpK8KNjc3KTIZw1zItQ4UgUG35wBKZp6yTX7KhwMWktTU1Rl2EubNS8bMCNJE5I4odPuND+LYKYP5PmM2SwE8FRltaiFzTx5swH0EGGwpqKQYm2MWdRgznlmsyJsVQULQGVepyVJjDUWKUNAVpLExEnw+5NRAHl0FBNFUWAaN+tDqrAnhfosxtSmkWKKABA4h7UOFcWoSNHqtGm1O9R5EYKt9CpCapI0493Ll7EWtE6Y5TPyWcGdd93Ng488yr33P8jq2iFu3trkyntXWF7KcMbw+vlXmZ08zmOPPUhZVAFUVZIv/PYX+bd/+qfcdeed3HnqNCdPnGB9bRmpNbN8RtCJs2AcSaVwtUHHCa00I1EZnc4qXicsrS4z3d9jZ2sHby1pInnyodM8ee4Ely9fZSuvmVjYK2dNv6ERQoMkSFeLkpbyrC/FbA92UHqNXifh0KEVnK0oi4Ib771Nlkj2BlPSVg97fRedxeztjhjXEMcaM9pC9WJE3WK4t82wcOxPDaQJUZzhhWB/NGMydRSlCWeNdYwmhqtX9pmlkk5vidpVTMwKSUuxN4LVRg7orKVuZJ5zj9ZFLSDEwqooEB8a5YwzCwBORxo7Zx4rRRIHgD/UDyyCeYz1jf9dUPtIG9a/tG7hb64bUF410t452WduhBQUYeHebcQGTU9z0JMckBfmtkIHyeDz8EHvPH7++mUY2MXN+nPWLR73fu69LokFxMu9wLpDYWoTQMz6wMZGNEPv2wupuPHTVI3Xc7DQ6rPU73Pq5PEwgLG2GY7O2NsbsLl5i82tTYbDAflsimvqL600cSsiJqPb6y96qLo+OG9tbYIPaBX2vLwoiOOkATzDZyG1xuqoGZiFx0Tz3ueAofOmYWgGT+1QkzR9ob+NlNG8tvkwJTzPMh0PeeKO43znhfPk03GoI13NG2++ibA17SQmyjY4dvouLu3cgLrAO8/2jRtcevNNjpy+g3du7LKxscJbb73NE5/+IZaX1+jEEc5ZPvDMJ7m2ucd7b53n1tWrPPK+x6mqiuFgEHAHEerVztIqIk6RKry+uNumt7TE1rVrUEsmZYlH0er0sabGe0tha56LDW+4CeO8BhrF2W3ehfgDP3xrC5y3AdhNW8RZRpVPiVTEmfseIOt1OHL0CGfP3cORI0foZxkiCmzC6SzH1DVFWdLpdomTEGSWtTKSOA72M36Ocx0QkRZe/c3f/WWAerd//cU9+BB4Y0miiFhEeBP82SIdYa3HVuHFJ3GI49ZeoYwMnma+QqmoobEGM+1AOLdoAdIJlFeBpUHYoFxtFxRwFWuCOaHD+5CCFa6PDV4fWlA5E+imWuAklFWBUhpDjVKayoWpqdaGwoWC1QuoXYWMJTUWK4Ofho9CeESsBP20ja8EOlakqUYpj1SwlEgqU+KlI9YKW4c0wbDBRCRZjK8MSoQiyZchCt3kNgClQiEILB+URqHC4eshjlPiOKMu66CZNz4kSSV9ktVDdDfO0D18Dt07glMps6Lg5vY+VbUTIss9wfgXFsBdmNb4BuRrpp4CRLOBqzkTrtmUw5dfFIVzCSdNk24bGe8PAnwN0OUOotJpvFSgYZE1k9VmrtP8vgMwLfjNucWGH75PLFJwA1MvLJq5H+Cc1DKXEx/csYQNEc90mjMaT5tmqZG2CRqGCwvGoiA0idw2cZr7yHkvFtfCN0X+wWEULvLtLD/fnJpzie2c3Rdelm/+e5sP3+L7bk8LbhrM2ydhzSHuvD8A9xrPiNvlzt77xefp8D94qPp5oI1fMNJMU/iLhi1QNY1J+F1Q1gEYnX9OgSlkmEum4yShv7REXVVEKsj5hW/ixL3l0ltvsH7mLLGUtLKUKh/x9X/7R/zZV7/MbLiPt5ZWq83Vt97kx/7Kj/GP/tv/LpjHTwv29nYpyhmzmzP+4He/wPee+w5/4z/4jzh85AiVtdSzAikk3//eC3jh0FES/Cma6xYCFCz3nTzGZDILJvwusCGdUKg4Js1awSg9STly4iSHjh+lrSLaKzl3Pvp+Xnz+eV5++XxgH+DxMqyDsqz4zje/g0OQ9ZeopEDGCUZKslaHVrdDWdRIBEtLPaIkwQhBd22JOi9ZXV7C5NUiaawsSiAUs9PxEB0L8lnOpLYUOHIMfrCNxGOKCvvuRbwJhsJJlmDKmmKWc2xjjZV2CxVFTJxnZX2dWEqixsdnfXUVX4XfG0XBJ6jVyoI3WWXpd9sIL+h2eyytLIVmIg3sAeMh67SJ0wRnHb1Whq0sKo1RSpKoiOF4iopEU6BrZJY1ALmnMDXltOCbf/7tEI5gNSLJ6K+sMrxyJYA0JkwuYxUhvODRR97H8tIydVESJ23+7n/89/jVX/lXXH73ElGkGnZuTJYkKBzOzFBa8e47F/E+GOkWs5JMJ5jS0Wq3OLpxCFcXREJw6shhHrj3Xr79/HfROqZ2DmuCsfr2jRvcefoOIjRO6jAg8Z7X37rAtd1bYGLitMvGx3+Y7p3nuPzCs8yilJe2R7z1B1+kUiXXbt7grRtXWFpbo5W2EYkiEjC+tUm5t40ZDYjwtJKUldMn6bcELp9R2JACOSsLYh1MtgWefDJesKuMMXS7XVQcEyXB+0U1oSdFPiOOIrI0Q+sIiyfWEVmS0M1aDMdTvJswrmvyaoY1lrIug0ytDuywOIp48qkn+f7zzzMdT8NZLhpk0XmK6YTvf+ubvPTcd+kvB/mLkILpZMp4sE+V5wt/TykDq9k1e0Pcyuj0lzh+9gyd3hJn7z3HrK4Yj2/y9a9+hctvXsQXJbU1C3Yz8/OgGQw1eWbMPd+8EAH0n2/0ApAO74IcsfbVItRDSIkVIjD9mz05NPeiSeL2Tc3ROLOKkJYtJExFMCmneS1KNb5oUoAIP0NpjRBqAe7FURg2uQaACaFAYZ0orRZNvZIKpRVRpMMeJhzG1HgpMEWJd56yDMBQlmY88sSTnHvgIQZ7u0Eq4xzXrl/j3sceZ+oUh0/dxYm77yNOYjyCsioadleFK4OvWF3VOCmCF1FtqIuC2lpmswmz8ZjZbBak652Ssiyp6xrnQpDDiy+8xHg4xJQVUSP9DXYQnkxp1jpd/qO/9QvULrADI+vBWYwPhvA7W9s88fgH2B8NsFVNf6nHvffdx9raKrWp+MJv/ib33XsfP/7Zn+B//uV/SpFXyCj4mSopGQ8HVLWl3e2wurTE5q1NVlZX2by5CYApC6o8R2I5euIIF19+IZyRaYu6cvz6r/5rjLP4qkI6v5BfKhlAj7IqOX7ieEjBzlocOXqEWzc3uf/++7lx4wZPPPkkznue/vCHWV9f53ZvXq1CIJzDh4EPcz+3IK+b32fbOzsURR6SWLUO598spyxL+v1+418pmUwm4fwmyHlV49s2rztMY7ngOfDLEk1jp7WezwsRNI1jM2yyjUQXwDQWLaFWIHhbC7cYAiop0CpesIHm56015qDOc429CxCvrLGyshqCpBa1TdOIicDINCakNJdV8Dscj0ZUZclwMMQ5R5rEDbC3wqFDh1heWSGOgrTdGMP29g7f+c43eeH7LwafvEaWeHswx9zUPVKBJRhqIIsQgakxH2R67zG1wVmDMTXFMF+8ZgjsVa0UaZbS7fXCAECEhFBT1yAEdQP4CQJbK5/locdoWFOeoATRWhEncSONPgBC5sxNay3T6RStFd7UlGXBrGhCDJq6O/htaXSkSaK4qQchy1pESWAWx3Ec2JIynCNxHAcpoLMoFeGAuqo4duw4m1feo64K9OnTYUDY6XL91iZ7eyOW+23StM3f+/v/CccOHyHttElaXYbjMUVdcenSJW7d2iZRniQR7G5t8frrb+Ks5+b2Nl/7s68xGu9x7Pgx8rLkG9/4Jkmk+KX//Bc5ceIkg8GwAWKC3UtVV2StNrPZlLIKzO9OlnD81Em2pkOuXXqTOp+SJjFO1Tx8z138xDMPMHz7JU5lU86t99Fph+FMM6th8P9n7j+jdbuuMz3wWWHv/aWTb46IF4kgAZIAk0hRFEkVKYnKJcmyK7nKw+XUbfcop7Y7/mmPtsdo13DbrnLJklxdpVJJqpJIkRSDSEoCEwAmkMi4FzfgxpPPl3Zaa/WPudb+DuhfXewfPmMA994TvrO/vdeaa853vvN95y3XDhxXbu8zn1WU9YyHTg05e2qdnJbtrR3qMpMpNNdSVQ1WQ57BbO6Y3LmDBkzWIzcyrWUyi9WKeQkrQ3Bas7srZkN1FXjw0fvZu3OL7YMJk2lF0ziKXICp0NbMDzaZuR7D0ZD57X3UcA3bG4LK4rkXUFrA6rZt8VoTrBHZqTgarrQAhkVhSIxja6MLcWx+JY1LHfeFGNcYjNKYzKKyZFKHmHa0rgOqxalXmtBJO9q0ohGdWH0mEiV0BALTbk9CSYvaJnR1nlGHVM91rB0jq7sjlBAIrYy9J+dsc8gIEQRQj8r6aAWFNXgPWT+jbVycSjMJZRSGCIq6FtAmAFXdorTr9pa1pouZCTgdDoeMRiNOHj/Gow9fwHvPZD5jb/+A27duceP6dTa3t5iMJ7KGER1ypSx5bigK0TpNphlpvL9uRL+2bsR4o6rkjHatiw0l39Vc3omOa1YUdIxr7yLw52jrJsqhqa52X8j1xDpTKzSWVy5e5KM05FpYvr1iwGw6541r13j9pVc4dvcDvHZrmw9+9OPcePkHzPe3GayssLy8QeUcwbc8/q638MrFi4xbx95kysA6TD6kbT2NUvzib/zr/PPf/gfMDiY8+Z73c/XSRfYODmS0Xyu8b+mvrFEHQzUryQYjTp44wXBYsLqxSrm7yv7VXYLOKY4fx7ct7cE2au5pG8d+mHXry0dfXrw/VLMnJk3UL88Lev0hvmkotOKht7+D/9P/7f/C+to6WhtC29IGwXVaH2hcg82yjtCS5I2AOM20YAnKPRbW6IJFqbva3Md1nRpqP+rHjwzw9bMMBn0yk1GoHF+DLsSSvppWKBWYTjy2DfStZWOpjw4OEzwEi1fQ6xfCGvMIamsUptC41glzQMtIb55rnAZtcqDCNROy3IAStFoTHVh9jc5bKu/QGcycp3JQZAOUUQTtaF1FrSuaVmaoy3KGswJW+aBkBKMJGKvwTph6vm0pvGEwKPBtIMtFuLxtZaFM5w1ZT3c6ABZNvxBnYGLyY73CB4vvqMQZhkFM6Pvkph873Q0qE2OQzPQobCEjrqqP6ln0cJX+yjGGa6dZPvkAoXeU2lsmZcl4c595dbvrThpto+ZKQCU2nJKR6I6p1Uaadyx6kktfWoRJ6y4kd1dYdHxjEpgYbK5t49cX4FTaTF33NIJICSBLi1npxBJUHdNAa+mqJvAo3cvuoFBKnGpUpCNzKHlNSDkh6vJAnolLcVU1tA7gUNcCEXLVZqFfl4CqiKItgiCLsdouWCRGXio4D30tgXkJse9cgkPoRucSfTq9+R8W3Tx8D99sQKK6wymN4tk42rz4+aSNGFUHktOYElZF0hBTCeRVdIc4QIh6N86L5bkLvhMjJY5vpffXNk13veFgn5MnT9IrcrAWV5YC6mqFR/P97z/Hv/bkk+zcuYU+cYxP/f7v8cxTX6Yu5+ioFdVULXeu35CRuY11qknD7Rs3mOztyX00lroq2d7a4nd+57f4jb/21zl/7iyT2YzJeI8rVy7HW7BIeIKCvFewvDzi5KlT/PmX/gJtLLqXEXLLubvu4pEHHuXMqbOcOn6crAWdGWHKKHHzKpuGu+6/wLvef4PvvfBdLr70EuPdnWgUBGVTo4d9MArrA0WvEK2iqmKuLcXSMk3bUseDubc6ZE5A9XO2yrl0IF1LnllqY8gHI3QwZGsr6J4mr1sG2pL7QM9XGAXKBTKTxdHpwGw8pa1rfFtj93e5fOcOL+7eZjYeg3fgnpP1bnOKzNIfDMQZtxiwsrZOz2aiXxc8gyKjlxcsr6yIRllTY5RAHMrI2FjTtoQQ6BU5eRSKV9YyWh6SKXEDd03FyVOnmGwdsLyyzNHTZ1DFMuvra9h+n+lsjLUFOtOsnTzF7u5eHAM2zGcTKYQJ5FnOu558D1XVkGlD07ZceOBB/vP/8v/M5ddf48UXXqDXLyj6PWxe8N///f+WJ9/9BI+/4wlu3NpE2R7FcMSxEyd59MJDPPLQQ5y7925Zq8BkMiGzmg+85wm+9e2n8ZllXisy79i7c4f++ipt0zIYLFHPZ8IgU4pmXvOlb36dX/vAz1PuHbA/KvCrR5g98Ha+8NWv8sWvPsXWdBc7GnLs7FnOHjmCyXL29vdQoeHmS69R3bqFCQ5thG0xbUp2bt6mWFpi9aHHaduAtTlLeYFW0rm1NqNthL/mvMbYQFYMsb0sMnMaaMRsYz6bi8mRc52W0tJggMtylgcD1lfXmNU149mE6WTKzu4utzdLZvM5+7s7aNdSlTNefWmTI+tHOH7sBHc277C/vxdHZGNTJwR85bhz5w5qc5Mc1en/+RgjjdG0wQsbNC84cfwErnGcOXcX2Jyzd58jWMsbN67z9Fe+wtVXXiE0rTD3YqBPsS6EQIgCzSqojr2d6AjpLJFPhfg9OjIWQlc04cXt3h1qRqVELY12tCqeWfHrXmZhaFLzykStr/h9PkT9Q+g0YbMovC8sKxmVFL0kG0dj5foza2OTIosO2wJKZFlGlueiP4acIdZmKK3Z35/Q7/cwmWX92HGslbHNE6dOy3rb3hbmT54LcBXPK5vnIkbuvIwE9qyYAYyW0EGhgiMoxTCOHbUhYEKgrWRM0QDz2Yxz5+7CZobZdCpNWmPwbRMbPIpyLhqebWLABWGHa6AOjllZMlhd4vXXXuX//ff/PoHAY+94Bz/+kx9me3uPWzevc+fOHS5fvsq/9x/8u/xb//a/y7Vrl3nh5Vd46aWXUEZTVSVN02Jz0dYNSlFFFkpAdDV903L9jTdkBHO0RA+NXRqitCHPDLfeuBFZ7lIo9Po9/p2/++/wxJNPsr2zw9333svKyirWKPq9HlVZMRwOqaqKIrKmpIHqutyqdnVkiVryPBOwLwTqpiYQsFmOivIHxliqqmY8nUoB6KW4Qymm87kA10omZEII8idSPC4mLxa5QCqQU86RwD+RLTFdLmUi+Gey/FA+1CUjwmZFdfpRnft0EgFRqtszCRgl7rEENCTNZEggoY55kOw3bSyFzej1+4vmbmQaSbNSo4IXMAHi3hRAUxtDYSynTp3iZ3/257n/woMCDtbi1L65KcX2bD7vQHwfQhRijzIVCtlp0YwtOfESctIYeLqfrpHR7aqqGE/GYpqlop6e1vR7ffqDAXlWSH7V1HjvKOclZVVSzkuUUdRNE105hc3ZtK3o6sY8OzGSbZbRNHV3bYlxpHViVkLTtjS1NGZLPeuau+ODgxgSVQR7oChEo1TrKG2hElvQc7B5m7OnT/NMW+OcYj6bRWOwHrsH+3zjmWf5xM98jEcffwdN49jf22NeVzhtuXTtKuP5lNWNZb76ta9w+dJlHn74rfzVX/1VdN5nOiuxu7vcvnmdupwx2z+gP7jCfDbnwoX7WF1do64brl17Q+K088ICdUHA8EwxGPY5euIYdahpQ8Nsb5OeUdhBn6VRxkff8RiPLmtu/eDbTKuS3cmYe5ZWWB0oqt1deihOrvUY2ZqlrODFK3Om3nNyrcfO5g2W+wKs7+868txQty29fp+mbiky4Szsl4HMQi9z+FxqR9+IrvTKyio3N7eZjIbMqpZ+T2GN5/nnn2e1p1A5VE4kJbIsJ9QNo+UeG2s51WyPra0pB3tjev46zaRBr94jTDSTdbVLns4GhYBCTUO/L+ZSgUDTNpHFq2XKRglpIq0vY6JJgxPAo3WiXylj21Fvz2iyOJ1xGNRwLnR65S7ISKnyaSw3NrmU77TR08i8SVNWi1O2i7MoZBw35hOdHWIAQ2yuxZjgXehiSqf1rhN4T8e41SiRiYqGHJk10ZTExBjgUAlMtNA6OdNtdCcOIeAiqFo3rvt9IWrWCttPR/kjmSgcDQecPnmCd7z9cWbzOePxhM2tLW7dusX21g7j8QHz2Yw0dr4YZwZjM4p+ZN6mhocX596mqqhL0ZCtKzHs8NFlWGKSw7Wuy8PE8beNzDGp19qmjkzo0OU9Kdm5ev0mX/vaN3jiMWlWSbNCM69KPvPZz/Bv/2fvwN7c5oGHH+Hf+4/+M25fu8zd99xNVvSwwx7DpWVM03Lx+ef53je/yavPfYtiMOBjP/FB3vVjP4E3GUv9Ph94z4c4d/ohjt3zKJ///H+HaypUWKjTjfpDqklF3Vasbaxx/93nCCg2pxOWlodsXb9GM58RRaSkOZRq5I4Tk4aUVVcHq27VRUZpZhkOltFevCHe9a5386t/5++QFUP2J6XIY8UD0EUSDEDduu5cTkSgNGkoM3QL80PiWhRcMXSmdyBrTsxR/7cyousUobLQM9Q46d6XnrYeY5VQ3wtrcYUI+5sgVt7WaEJTg/JkKHKTEZQwZ1zwWGUxPRFq19bSuEAIjcyVhzloR9mWWKxonZgWfI1TmpkTbSdnFJ42ugoGpr5Ca9EKcLS0LVgDeWFpPDS0OOUikBQwAWxuwSuU8vS0JGJBgQsNdd3iahcPQ4NrxJ0xszlt7cn60mVvnZHXcDKuM8jy+B5zrC0wpiAYQ/AWnKUJgaLXBwzBGFzoUQyPMlg/ztKx8wyPnEMVG7Sqx6xsuDGdMd+6RVs3oJNmiIgte+c77EdE8OMi9I7W+aiZFQ5plKRkKyaC3RhtiED0YgzXxVFMSImRfJ93ye1VdQlfiKCW6MolMIoO7EsdYfmlEqhTMhkC0aSFjnqudeo8RWFPJRv3cBdIKxUTNU+RZ4yGBf1+QW5z6rphNq9ovbgwVVVN0zhJ7vQiuHbrPCySpwTKRZJKN/6aEuX0PhaAX7pnC5AvfT2ZaKSfBzqwT/T/3gzqHX7dw1oWWqVujCS16Uupix5v62LcJn7I1xe6XGlsRykBYKV71OBd7NYFaF20EI/MDnHpTAYq4vZEkPF2Kdo8a6sbDAcjBsvL1PMSFVk7zjt2draZbm1xq67YbVt+8P2XyPOCuqxI5ipVXVG4lnI2Y9dajNHMxgcE18i4jNagDeVsztUrl3nqqT/n7K/8VbTRfP3r32QynxMy040nyloSt+pjR48xGi2xtb+NKXrYfk6jDZNxycWXXuHW9assjUYsjZbBK9aPrIs2hs1YW13i5JF1nnz3O3jfT76f1169yN72Nvfdfx/Be/b2DxiXJcE5Nt+4wc7WJjt7e2xu32E8HrP/xg7ldMpcRwBAaUy/L8LREM0QZKS7NxjggCwvOuFqH803bDLaQEYksiyP90W6rlmRYYdLrK6vsn72LFYryskUV9fcvPYGO3duU02nuLpiNp2QFtDVWNQRkCaEzbDasLK2wmA0knHEokAjYHF/0JOuf2YZDAaiJ9R61o9soJQlKJgf7GG0Y+mV12hmJZO9KaH1fPTjn+DJH38/L7/4PG9cvQZB4b1iMBhRli0gjsLeRS3UEFhdW+fc+bvxHryW2OKcoz8Y8I53PsETTz7JN775DT772U/z87/481x8/VXqpuFd7/kAv/rrf43z589iRkO2y5LhoMfRXh+CxARxt/IYFHedPc3qaETZlFJgNA3NfE7hV5jMZyxvrDOb7FHP56A1rmn5s6/8GZnt8fADD6Ovvcyz3/se33vheaazObbXo7eyzOjkSexomaZ1OC/jeqNBn+32RZRrSc7X+WDAaGOFrW88y6jIcS3YfCCd68ioKfo5PsDyxpC6bemvLTrSxhic8/RHAhS1TU3VwnBeMxgMZOymbWlCK2ABCmMUvcySjZZYHgxZXVnh6LGj7B3sc+f2bW7fvEXTevZu32G+f5PltVUefutbufLaRW7fuCFFglKSrEZGjvYBh8I76e7bLLEIDPfffz95ryDLhY0zG885cuokyhqqccmNS1f51rPfYLK1hfHRRMAWpGZIgA4skP9S+RGbMikeegFAU6UQApGN4+N7l0ZjuncqApI+dHzpjnUQgODc4ntVSu7Sp1Q8T2LMVfK/jlVNoFLiyJfiMVrE8k1i/ijJL0DR+BYH9PKczAhomxW57P3AYtQ3COvWh0A1MSij0wFAlkXtQQR4aKI2HtABnYlhGAKghflfV2JmkMDFlFsM+gPaWEAkFqkwhsSp/uTJE1y5+BptWXd5gRylijubW9F4zMXCJaCCA++YTKc8//KLzOZz3vXkk/zyr/8qf/Qvfp9bd25iih55f8ST734vb330bVy9epXzd93L0Xe8C4Jna++A/+d/9f/g0isvyDntQixM6igRIc8xQHRPLtFk3HPPA+y8fY8wHvO+n/wA737ve5iOJ/xn//F/yt72tuQTWvOxj/00n/i5X2DQL7j//vtF9iHqR7etoygKnHNYayMQF4uOCOhpY0DpyLLsCTgbArP5nLYVDThFYmqJLl/KD2SqAEwmz7wsS0KA4XCA1jKS6uN1+K4I0d366l4n7hsb8wXJT0yXKwTkrPfhzUwacygHC7EhL9p4oUuaktPk4ZwlMQUj8t+xR0Kc/JDrcnjfyu9XRFAhaUKnxq6OUyBxcoRYdDkfR0xN/L2hy2OMtfRtxmOPvT2yKsQVvJxJw2Jre5PN25u8ce0ae3t7VHXNbDqLTpgy/u8iq8YYKyzIKKxvjMX7Fo0hs9khoFqYmS4CgE1dU5YVe3u7gI76sFJTaG3o9/osLy/LPm9Fa65tXWR4eBm1lltHFZ2bQ/DYaLpBzL+Dd3G0TZ5Dr7Bd7JExXGEbpVzQGhO1rgJ1OaWaTyWGsACEm7blymsvc/LMPeSZZVqW7G/dZm1jg/m8Ju8P+dSffoEPfOD99HoF83lF3XjKxtOommMnT/Dp/+lTfPlP/4TQlDRtiwme+exnyTDcun1H9AqD1Gp1VVKXFcYYHrjvAjbLcD7w0ssvY4yhrKo4yh7NJPIMVZasLS1RB8/e7hYHW9s0ZcmR46v8xLsfYbna5/qtXZb6BZVTnDx9nqqFZ39wkbap6fd6LNshtzb32NyecXp1xNqZDZZ6sNQbMpnOaFuoq5raG+rWE1TNzu6EQb9PbjXTacVgUNC2FU2TQXAYI6Ba24rRzPZ+RX+YE3Ac7GzSYCkHBtcG9g5KMY9DUbYtJ5cHbG3eIeBZzZaZV4G9mzdYWrYo9jgSzw0f97F3jibJS9hoyGYtSUrIGtGWrKqSfq/faffqWH8kQMToQxI/QYgMbRvjv7FibhLPMGG9GjKrUEqm6yT+CGjkvMfjIgN2oYWpY92pOgmkxe9VYQGoqw7c+yEwhkPsvgBBp7/EfcBi/DGRLNo4YaaUxmYC3KUmiLzfyIaEjkwSoIvlwUuzpXUy0RSsiQC/IrMFaXy8cS1NbFyGEPBRiy8EZBpoMOTEsaO85eGHxMhjVjLe3+f25m1u3brN3t6emGfVtbC7Y74UCBibY0KG6Wl8r8UvyXtLrt2ubSmrqjN7cG0rGqlRNxYC3rVx/whpIzhP68Sww7XS6EnTeTfeuMi73v1uGUvu9amrnMY1PP3s0/zkD77HPfc9wKsvvsbZc/dw7u67Wcot87Kiv7bK/mTC1u4Brz3/fcJsh5sXD2gJfLIsufDk+zDK4W3Ggw89zAMPPcTW9k2+84Pv0PiGns1pW2HHPfTA/XgHO7fvcO8jj5D1VkAZbC/n8stXaOfjTm7izXmfT1ADC5vJ+NWufk55mqHoDXFKs7Sywsd+9hO878c/SO3gtUuXsXkm+E1RkGWWxjkyayNArSI26uJ5ILhQ3dSxWRunN0LocAUX8Rc6UFd1hJoEyP+oHz/6iG4cow2VJ8s0Wlthe3knbA0Cea7QtScrNBrRdzGFISsamtbj2qiFkUkiKmLDGuc9VRvIgiCkqFp0A7wT8VjtoS1F5ym0VJ54oENmNGXjCEYyVK1AG5mz1l4L3ZcANmfY77PGiHkYE3RLnvVoS/DRXTXL5Yk0jZLJUjQ4sEjCjDJ4J+M501nAaYcqDJOqhcyyZIeoRkakrM7QwaD7BqstwWtA4y1gcvJ8hXntsMurZKOjjNbPMTx+H2ZwhJacWVlzczJlvr1NE7srRIaAtnnUBfJooyB2QX3wpLHzxksyb43qgmlaZFIjhFSrdGOaQNfhhRCR65iYHerEpoMgNVwWhg3pNdUikVRaUk6diNpvBvd0nFlPLEKlF8XbYcZeZ/ahDo0RR31EgifLDKsrI5aWBoCmLGt2xgeUVYvzqaORXKNEeJY3dZPCoUv7IXAvjR6HNA4ROlZi0l/qvi8klt4h1l+k8uruHoXuXqSiIH2kr7Wt6yzk6QIZXbc6XbJafEneSwRA02hQAvYSwNpt5wToxmfXti1lWUY3vVYs4JumOyibupF/tw1NIy516TBJB6NYxbcM+yJsng/6NDOHikVh2ZT8xV98mZ/82V/gznjMkZOnecsD7+HI2jJ/9vnPc/XyZXwInD57RsZWI2g8no7l/WkDyuCcrJGV5RXe+fg7aOYl5XTC0998unNmlD9EY2i4vERV1jz+0MNQO16/eJm2kYQerTiYzRjfvk5Qoh8pwKnGmiyKXWtGvSHrSyOWj6zTW19jNp1TT0vG04ql0VBE0o3h1KnTnF0/Qi83YBTeKKqqYm88Ybyzz3hnizZ4bt+4zcHBmGk5pyrnTCcTaifjWPXeDnVVM/FexvcCKOfxxnDk+FEarZjOStHbszZqg8mYrSlElBu9YD0UmTjqnb7vPk7edRfVdMrmjWvs3rmNqxsZ5U97GIWLrIIyBObVnDS+HgBTFNRV1bmppU5WGvvXaIy2hOhRv7yyQp73sMYyHPYY9kfs1zXPPvsM/+R3/wkHB/t4AutHjrOyusr+pWsi+xBaQnBoQXM4eupU5wqXGjniCCbXVVc1o/6I5eEq587czaOPPs6RoyeYz2ve/vZ3cPnyZWzruP+tjzJrS9pZRTudYSXSiC6da1kd9jlz4jjX97dFpDcEQlOjlGHeON76zid55JEHefn7z3Pr9i1m5ZRJ2fCpz36aT3/+Mzg0gQysobc8wiyNGKyvY3sDlBE5hrqRYqUFLjzwEH/1P/j32d464JN/8mnue/Ae3vrwI1x8+rvsvf4GfjrDDQaynlqoXcvu1ia9Xg+Tidu6dw3i7gaTSYn3gX6/oJw6gpPYnmU5w8GoixWSJPlYcIt7ZlXX4hpblox6PVZGIzaWVzhz6jSbW1tkxnLz6jUmB3t8+5lnUF5YcSjFypF1zp+/m4sXX8M7R57lbGysc+TYEb7/vecYjga4pqGuGrY37zAZj9k4fgx//Di9fp9Lr79GnmVcvXiRyc4ubVNLR98YPFJcW2tTgOsaHzrGu+QWS3xmMgbhO91ZCYdeADwfGYUKAQ+idIIUCp4kGaHifUK9GUTkUAxP520AiA2QxEqIkohdHFZ6MR6Y2F1OpfNSCo8qAr2p4GhiUYISwwxxq0m6R6IDOI5jvklny3tHZqWRmsT15wnkikxBE41/5rMKYzUmL2gbJ1/XmsYHnG4kvihN61pmQRiDwhyXhs+kriF4cZ3e36OuZRzRRLDXOxl9vPjaa50chQ9SZMynE771zLN89atP8fLLLzKfTvniAw/x0x//af7e3/tPuLO9Q+MDq+urbN25w8MPPchjjz8mZii1FJKj4RL/0X/4H/PZP/kj0Ir19SNMJwfCWvKOOgJpSmvyXACJwua88y2Pcf/JcxxZGXHfwxfiGFPgQx/6KC89/zx3nT/PhQsX+MhHPkxRFHFiwaG1jyBt6M68zGYkRkaR590zVkoJ2z2IeUnrWpRTcURTwFGQBmrdNKDk+xJLLoQAUUYiqZhMJ2OapiLPcikwI5s+kBp8sjaThpQs3jQOlMBoHdd0cpmXGCg+SHHkPYIAPo4ZJTOWRWNQdWtdd0BbBAMTSEcao9NoNMoeSnRU6ORNXBorSzqBUTNWx6ZBuialICRANIgWrPx+AZhlqkdyyC6PcrInB6Mhw6URR45u8MjDbyG4lrqqOn3D7Z1dbt26RX/Qp2lqrl69yv7+PlubWxzs79G0DSsrosV16+atOOEQ88/4+7WRvZUVuhvzda4Vsf2m6TT4iCAoSmRNbNy/eSY11erSMjYTkEFrRV1XkZ3XMC+rGK9d55acnJOTS2oCc1yQ89g5ke8gGHEsj/WTTLqoaCITIvPY89xz3+E3nvwxTp0+zYsvvcTWjWucPnuOm26HfjHk9p1NPvvZz/JLv/QLGKuxRYarWybjOV996i949qt/CY1If5hc2MM7t2+wcew09991jqt4cdqtS+bzOUWvx8baBh/+qY+iteXKlWu8cf2GGKoYzXgyQStF2zQM+33W15Y4euoE3/rGN9m9c4e2begPemAyXnzhEmGyS9bXrOYZuQK7fYtBFoEl0yPUmpuX3sCbjOXlJXo9yyiHqqqZTGuKrKBqWxyGg32JX8HVWJuxN57R6xU0dUtlLFoJgxkXCBrWV3MO9qd4BSjDvJwzLxS51cyaltnMoIPD+UDVOhQtpWvY39+lbQ0hKHZ3bxO8RekGNXX0+jJBEzCouG+0CpjMSn0anY3LsowMNUsI5hA5IYALxKphwfpMNU3ME42V+sBGPWWUaGuqSE4wkQFn4toVM0tNZqO7t0oMv2jaEZmXytGRKXSMC8kUUSuF0tJIU7H53ZE+Yj3vYyyIJ+6iJgqgEAPHDvOLx3RXZ8W/i3mIsEGTvECqhxQKqw1kUDnPIBrU+Bg7fBDzzdY7cmsZ9nu46NDetoqykRpT2HS+Az2NtdhoVKK1EuOyLGNtdZnzd50BFGVVM5vN2N3bZ2tri1u3b7M/3ufg4ICmrkEFnAeT5ej4fmyWd0XfEgHXtF0MbeuGqqrFibeq5Odj7HC+jRqyLW3d4BJQ6B24hjvbt1ldX+Gtb3mYbzzzTfKqTz1zVLMZ//S3/mf+3v/1/87xI2sYrSh6OVcuv8ZkVnLf6pPs1Zrvf+u7TPa2sfE8MGg2b91kPD7gxMYRrAbby6ENfOXPvsDBZIwiEla05sx999BfXuLqq9c4efYsRzaOsL66xHxSsTIa8fprr8XR7dRgXXDz0keI6yLliQIax7WipcGaZUOW105y/sELPPzY21nZOML3XnhJ5FAK0ZAf9QcMen3BDoKj1y+kgWQ0/UKYsokklSYOWxcAqZ2Kooi1eSSatMKA9xySM1PSUFlo6v+rf/zIAN8g0yz3M0HmM2G7ZXkm3SZtsT3wvkUNETadbvChofQagowYNMFTuZZhL2NaSkLjnSczXmadlaIKnmnTCqtFOzLtcK1QjLXNqBuHxZIpjck0ykKuocVFFp9C5zmZKXB1jcbFEQSDC4Fhv2A83kcXUDctVlt83ZL1C4KLTrvOkxvLcDBgvFcyGBZYpzAtZJnCG8NynpMZTZEX2DBg0B8QashGBU2tKPIePihMpqJLjMYWPXRvhcHaaYardzHaOIXvb+DNgOm04tZsynxnm3JeoY3uugLaZpA6Cf6Q6UUEnohdTHGr1FEQXEex1YRpH0K1w+LnnE9B0HfGEc7JyFJinXUgFYtxXGKHuMOXwoKhlzrJiZWSXiOx01KHQzaHRrSK4ns91FVSSIGUChyhW9AxLFRMaEejPktLA4xWTCZzZvOKumpF4ynQJUDEZFAOmcV1ydtZGHoc7gSFdEAc6hBFeBRhB4dO/yJ1dEM82OT7DzH3OrDPd7+zeyzyiw7dowUYl5LwVBime8dhgDSCesGFN2kIynUt5v9Jz+PQ3g7xQJpXlVC5naNuW+qm7Rh9dRRir+qKqpYg5kEEqQHXiPuZ84577r+PG1s3GR/s087jmGVMHl97/TUev/kGw6Xj/PhHP8KL33qGn/3IR3n325/ki1/6Mp/93J9y34MPyzpr5Vq293ZpXUDpgqWVDYzNOHvuND//Vz7OsWMb1E3Lpz/zafbGe8LMSYCxVlglXe/77rubhx54mK9++ctU1Vw6866FVmj4sSqHoPBaxqsaapq53J9S77OzaXAXX8VHwJngeP7Zb0RWocbkGVZpej1xvOsVPUajIcPREJsXrK2torziyNF17jl/jtFoCVv0GY1WKOclo+UhVS3A6WR/zN7BHrv7u+xsbzMbHzCuSjIFk9mErIVqXuIQp0cfkpixgAVBa5QSoFJZYf3lRYHzgbzfY+n4SbL+gNn+Ab5ppNhpGgGnQ4jrLI6nuxaTxuutjGzkmaWuakLwGAw2L6JeeYiSANC4hq3tO5gg2oKtb7GDHq9eeoVmPmM+nwmQoRRZf0BZldRtje71cXXVxYfgA0eOHsU3js3N63zzu89ijWFjbY2Tp09w8sRplobLPPLo27j7vgtMJ1N+4ed/GaXhu996lpdffIm/8tMfoxgMUdWcqpqinML4QMxp0WjmbU3t4MSxo9iLtsPVQ4CmqsisZbI35tvffAqtAuQ5/UGPUNWopo0OlzlNUPSWljD9AcNjxxgNl8htxmhtWfZYaNAIODPIerz/gx9C5Ss8+PiTfO2pr/Hc85eoV5a48vxLnP/B97n7iXeigqb1Dmtg8+YV2qrizLnzDFdWOdg/oCpLjHJY7VGu4erLdyiGS2TDZbb3Z8ydisLlxDinurE8ay1FnjMajiSueCmym7alahvmVcV8NuXtDz7I1t4OWzdusX3nDrsHe9TTMdPZnJBbAk6Ync6xduQojz76FvZ3tilnM9q25tixE2xs9AHNY489Tu0arl27xhtXr7C/G3X6gu/07bTJYyGqYnwGGzXuQojje1bUfL1fGARJMyOOuXkXO65plCOy0FNDJ8bj5OIXfCqGFYTkcP5mhlKK1yE2mcKhYLpgSMleCF4tzr+wOGN8LFISe0IKF92tORn5XWgWdQz4WJQk/UBhJEjBZdPntLB6VGQOJUF1DzISFqDIxf12OBrSNDDd2ScExdLSsDMLqZsQhawDZVWJUVUuzMs8ywSEsYZBTyRRHn3b27h1+w6XL75OkalIcpDD6vXXX6Mq5ygtWmQvvPQ8n/qjf8nFl1/GNWIQoZznysWL/N7v/TP+0//jf8FwOGJlaYnPffKTPPedZzl1+hQf+MBP8NbHH+fo0WPiOOpajh49wl//W38Hoh7vtddfZTKZYKymmk3xbU3Qit5wSDA5WW655/RxNh6+IEVoCCgnJjf//t/9t2maVkaZY8PRxWJVG03TSPM4L4RBGYKwOFwruk8oRZbZyLBK64oofeK79SHOzpLgt62LbD8ZQ0wFd5Zl2PhsXdSTa40RRkYI3ai2tdI0SKCwD4EQGRzJfKzbQ+l6AK0XuU/SAwpxfCuxakxkuRDZQUqpyOJmceYcalwmkEmA5mRgY8VoD5nESDi5jiPvWmtIfh4xDxMNQdWNzqdR+RBSA9oden+q23tdrhXlR4j7vW4a+f1GoxHQRltLoTX9fo+1tTXuvefuDuh/++OP44Pn4OCAa9feYH9vj+UV0Xh9/fIlJtMZk+mU8cFYiudG9IrL2VzuX0i3LQOzYDUmkDvVoXVZM2tn5HlGVSl8cGR1BPeUZjQa0e/16PUHnSFP2zbkcf/OpnMp0L0Xt+io3SVOm63oo3sXAeiUiy5GqMUYYTGSaI3lYHeLg82bnD93nksXXyMEz+03rnHs5AkmO5v0BwM+9dnP8ejjj/HQgw8wb3bZ2dvjqW88wx/+3u/Szg4k70AarWVZsru7zbnzd/PA/feQ54YLDz7ID77/HK0LDIZDfvGXfon77heg/XNf+CJV6+L0k4kMP4s2Yvxy1313UwyWmTcNj73vvfRXV3jnw49QB0PfwnT7NtevX+W7T3+D++85QzuZMKnn9ApNGwJlW1MLrYOyqanrktBaUI555ZiqMpJX5HyoGge6wLeO3BY0NdStRreAa8FEDbxGMZnLxBdKzsPgHHWT4Wglps4bjNFMpk50ftuAzgpxq20CmQ00eA7mM0ZLA6bzhlA2C7IDEg9MJqx9bYRZ1rHlIgu2riuReDCWsiy7UWxr5Yxo23bBZguI7Ipa5HzptdLGcoml55qo2We72kLIF7IXtTFkcUIsyUA0rYsssoUmmfNx/yuRSqL7nYakXasR8zu6/S1/T9M+8m/TNUJCKnsUBCUxalEb63iOC9lCJtACIUr5xG1B0StiPSe1p/IJnFTY4TCCj3HCTEHRy1FWU1cN+aDoAKW2dVRNy3ReCiAXazoTr99agwqBPM8oilU21le5/567cMFTty2z+YyDyZitzS22t3fY35emVVVWnaZfAo+MzmJsCbiiZXlF/l5VJY1vaatKtD+bmqZtUBrapsG3AgLWbQXOsLO7zz/93d/l/D1vYW1tlWp+gKtKfF3x6gsv8E9/83/iZ3/9N7B5xs7+Pv/DP/qH/Mpf/TXacspqX3Pt1Rfp5Tl1W8Wmk6edj6n3NxmdPklmZU384KXn+MqXvsx0MiG3GWVVYfOC0fIGmbX84LlnGS0NeODBB6jm0qxum5JsMGRJKcr5XMBP38YEvTtSOhBYPnRcOkqkk7IeR0+e4/i5u1jdOMHq2iqbtzd55ZVXmU7GEFoyo1laXePcuXtYXl5htDSibkXXN89zbGaZlbUYSDknUxJaYxSd9EbbNPTynEGvoMgznBOA3mYWOuRBzrb0Mz/qx48M8OW5ojeAunIQWkmetcXmXvROdEDpjLYx1L6GvEVbjw8yPppZWdSUNU2AWjm08mgLTouuk1MKCofOvYzjRnptXTuynqVsPL3MELxi3gb6RcFyf4QKisZXuFCjlMcpTS/PaZXBaEnsMytGFsF7etYSaISd4w0E0a7LdQZexOYtBlMblrMM3VgGgyV0qYRub3N6xUCSDm1RzuIqR94vCM4yWl3GhYygMugN6G+cpr92htH6GfTgKI6ceVnzxviA2fYubXs7dvtVV7RYa6I4sMG3Lo7YirGDjB4gIFsrh7dWC5abjjobKcClAJaYXEAnXAp0LrJpnj+gYhIlo5VpA5Fe0gfpJMWun2Kh06fVopOcPpwPC2BK6W5UOMR2S9IxUG9iGR4awz0EfAEYld6aMMj29moODg7wTjI6FR0KUcISTeO+pjuwFm+mG1ROhW8C5cKCpZgKYh91CVPSmDQKQ+xALFhxITIXkv6F6n6uGy8OP3zPEgtwAQimAi8JfSfQRUC9RaHZ0e1V6q4nWnACWN98DYdvQepwVXXDbDbHBUmunXPMI/27dY7pZIqLI7vzuYj6ByXmNoFAM29wrqENgbX1NSxQT6cUWY/SlxE/C1R1zWc/+2l+46/9HZpej/N338X3n3+Rd73zSe5/4EGe+sY3eNd73kvRH0rBT0BllkefeIIf+7H3s7y0wnAwQinNwGjqpuXpZ7/JM888Q8ChtMUHAYmdd6xurKOC5u0PPkIx6PP1bz+DKQpUAn05VJDHgp30HBZ6/vJMlYzoJVHfOGDePbO6qgghMNnvnmAHLAt7J3R3Pksji2rBprFZQd4ryHMppJeXVxkMhgyXltk4cZrRyjKDvCCziqXBsFtHSkt3O1H3J9MpZVkKC3A2Y16VlFXFbD5nXs6ZlXMOtraY7O5iIpBvjEbbHnm88qZ1WCvGPydPnuCJd7wDHeDmrZvcvHEL5xxn7zrP0nDI5cuXuXz5MrN5SasCrdJoF8hsQchFpFZ5j/ZGEoqyAi+vH5TCK8X5Cw8wnkzI+z1UnjOfj7uCWXlYGS7RaM2z3/0un/2jf8F8PkEbiZf94Qp33X2BX/uNv8HZs2cwGeRe84XPfoYbN2/wrve9h6W1Jbb397n2/DVm9ZRQNaiywVUN+/v7fOC9H2CQZ5IU93pdUex8IDMKE6CaTSiMEcaKkpGIcl6h6gblHboKBDUjaEOr4dixI5zaWGfQ66OVZlyW+KYSZ2Sr0AROnTgqXd4scO7kEf7hs9/kC5+8zDDTLOeaMy+8zPnH3k7ta+kmO8+5u++jnM9wOmNeewbLq+T9ltl0zGQ+xk3HTGd77G/f4sjJ06AGFPmIoujFItxFAEI0n3ztuqZRGn1LzaF+IaYlenWVs6dOd6NhbSsd7eCkkKycuNS5+LW6btjZ2mJvd4eVtSNUdYVBs725xa07t/nec88xPhBXakKg1+sxOrKEsgadi/i9bx2+dZFhF9nhWnUAnzjZanSAzBRx3Ef2rtamG2eFBRM9oi1dU0risIvnoe8AEO9cB051Z09qqnXng+vip4/XmP59+GPBbJf477uvB2E4pJh8KCiHIDLR8vnYOHMLk6Y2xvxufAqoWBRBIGB/GbvLci6ayD5TcbQ2Y2dnV7r4QcYvD/Z2yaMupRSVcq4VWQ5KiRaUUqwsL9M08uystbzw4gsEDE1kAaZRsqoR/bnr169x5fXLnL/nHJdeu8Tv/7M/4PWLL2N8ZPxphfcyBvpjH/5J7r7/AtPZjP3dPW5cuUQ5OeC1l/e5ce0af/RHf8hPfeyn+cQnfp5e0aNuhWloggD1Tz/9TZq2ITc5TVlG4F3i6sG8pF8UYozmGoISo4teUVC1NVoH+v08dtkdWi3E6pVSsZjWwqCL9zYxIp1zwoJ3Nt47szhbVByTjCY5wmIU0xSQEdnUTDTGiKZfLrmo9yKsnoBX59zC7EpLMVlHgCkBSWlMyUcWmOB1cVg5SnM4JyOeLgJxzrsO0BOs+XDRv5BRITaSbFq0AYzV3enmjeQcKU8JwVM3aVxYgIBA6Jxo01oz3bivFPaegNUGa6L25eG9mIr0mMeK8LzpQAlr0z5MxbxP6Y6w+vwh7T+tutzQB981gY22HDlyjCNHjgrI4eVrb3nbYx3o2zGg43TD9tYW16+9wcH+Hru7u8ymU3a2tphOpjJuHRsPXfM7KEbLSwwGA7SWddC2jRiMTGbsj0WLMSgB34aDAYN+n+Vl08W0Qa8vjOl1iduT6VTAw7pmPhf2X9tUeNceuuZF/rNoZAmw29YtLzz/PT74Ex/iqb/8c8bTMdevXOJ8loNvCLagamr+4W/+Nv/5f/L3WF5ZoalfZ2V5mZ/6+Md56Qff49qVSzTVXO4Zmhtb+7w17+MDHDt2jA9/+KO8fvEied7j53/hF/iFX/wlrC345je/wbe/871O9sXFoKi1JiiZ2jhz5ix1XaJ7Ix5/8v0MhjlHl9cYT2bYPOPe+x7igbrh7e/9KY4c3aCdT6lnU5YHOTeuXuHMqSO89sIL5EXGdDbh0sXXcPMt2nLCbG+TIte4VppDxhi8gumkQcrXBmMUZe3wNBgcJtM4FIXVVDXghVGHgrLyNM5TN9D4Gb3CopF73HrFdN5SG02jNPPZjLXVHk3V4KqWMmuZz2bYlTjBlVJ+QmwKyB5OFYMxGh8c3tPVi4nRl2op5+TMdq5l0O9DZGc7EZAnz/OOzXnoF4p0QKfbqUR/NYKKPgirL3RnWFSNVUqMOwoN5CSpIucTwy+yeH00llEimUWMVxrwWliLCmHdScxdnJcq/pwyEc0/VEvFAChxUqU7Z5I6QYw1OnErpD5GGhd103Y1lkJ1mvEiWRG1jCVgiI4bErNEz9aRZTI5Y63CRRZt28pYNSGgG6mbRaJD3pBNtb+xLC8tsbqywtlTpyOJRMb1Z7MZ+wf77O3usre/z/7+uDPvIeZmicVWJEkN39JUNWU1p2kammjk0dYNWVGS1yWtd/im4dVLl3jH+97PhfvvZXtnU854Aq4seeoLnyXr5Xzk534Nl/W48LZ3cv+Dj9C2LTvbW3ziEz/H3s77uXzxItffuMru7jZ5YamDNLKM0ly7dpXf/M3fYnPzNllkSWqb0Rsu8dbHn2Dzzh2Gy0tceOgh8t4Sw6Uc31Y888y3yIoBhc0peiO8T9NkNa5polxYzLVUGz0I0nSgYrC8wslT97J2/DSj9ZGYCmrDxvoqS6PVSE5pmBzsMxuP+c7T36Cal/RHI0Yry/QGI86cP0dR9MgzcVPvD/rC2jZKgNu4V5TRzKqGg9kcq1Un95HnOY1r4xmryGyGMUoaAj/ix48M8JW+YlbtSUKtBexolCZoUANDMIq2CoznjnyUo3KFzR0H0wrXKExQZChsnjFrG+bO0x/2WBtaQmgIxhEQnT7jAjrLZVZaaXpZTZ71JYnwXvQAsVSV0FILU7C0NBAR4tCgraHIMiqv0MbHQtpiTYamYD3Phf5tDdZqmtqRZQWWHN9oTG4I3lDkPSgg4DHaYgZg8gxVaxpnkJFgTZb3ZGQ5K8As0z9xL731MwzXTqN7q3gz5GBWcns6Y7p1h/lsKlo56I7eqW1kmzmPsbob80yd0dQBgUXSljownaZeB1x1qdZi0bMYiUidlRBHO7qREJ8YZwu32FSMJDBLXj50gbz795u+prrujkIOnpT9pe6Qgm4taVQcR41fS5oMMfFIdFwpVEQva9DLWRoto5WMqZR1w3zaUrUyloYXfUYZhUpg4YLHmMi9nZX2oe7qIuAv9CqE4Ri/7sKhn4/f7wTwO2yekYrCNo5SLEDBdO/fhDUuPmJR6uK9FJdGOrAvxERTLjsZdkjXSlyBdRzFWDAsO5ahS8mlX9yPEKTzW1ddkb65uRUPekNZzpnP50wmk2gRP6N1LfOyBCMgZqYtdVnhaBnagvWjR9nb3eHE+nGyouC1F54DBW1w7B7s83t/+Lv84i/9Io888gDXXn+dH7z8Ei+8/DL3XLjA8eMnJHi3DV5pAobz91/gyLHjFCZj2Ovj6oZeZnn2e9/jD//4U7S+JTNWihVtaJ2jKHr4uuXCved535NP8MnP/imbu3vYohd1unSnY6igE6tOWh1GJQHryEZRitB6SZSdMDa8c6K6HJkLzrmusGidk85o3HuH91I9L7uHrpRiEgshE0cUPAhDJP4e0cqJOijRCS/PZZRgaXlFir88Z7S0RJYX9Pt9VpaW6Pf6HD1yRPSfYhe3yHOch729XQ72dzk4OBCtnfFExPiNpigs9z5wgff82HtYW1pl2OuztrICXpJD1zq0Kej1B2xtbeO843Of+yKf+8Ln2R/v4dtKYpgVB/L5VPSj0n0OwdM6iSnFYMDK+lH2J1Oxn+/3u3jhgidThrxtmZcTSh9wjejRYS3KKvYOdri9fQuv4B//L7/NrRtX+ZVf/nkeffRhXnjpBZwPDAd9/sUf/HM+96l/SfAiNK3RBKUZrqzyvne9l54SZlLlAiaKpYs+oKetK/rDHqNhj6aaY/OMIs9QWlF7BcEJa6ZtUd7T7O1w+Ts73HjpBXIrbJ+aQGMUVokOiEYxWV3lv965ydlz9/DTH/lJ/sbf/Ne4ePki/f4QpxSPvOUt5MYKaEJAeY/JB2S9FaJvlwAwgwHGFoyW1mmq4wzXzmKCwysIFezPZxFIEbZpiOtOYmzo1q3oUAmQ1TbCkum0RJUSTc24J4zWaCvGDYMuuOsOKz9/5gwhgM5kPFG7QDmfM6/mHOztM97fY2d3h729A8r5jL2DA3bGB+yNx1JoNHIvVRw77fV6kTWkuyReaU1oW1zTsLq8xOOPvY2777qLvb09Xr/8Os99/3mapu30sUJYnKvpvDzsmpnYUR0AEI+5xGxKDaBuJC6NnXbs7XR++Hj+qQ4gSv9ZFmdyV0Ol9xN/YQdAEsXAF+3pCBbJnw53qHmmFk0kfehs1gvwRRtzqCmkunuolaaOAG9AmITJFdhaw1QpGdcyBmtzZvv73XkeArz03HP8+Ic+gs1y1o4cpZ5OxYjAtsL8bhu+/OU/42/d97c5d+Y8P/ae93P71g18M8W1DSYyjwfDIe9+8kkZF/eezBqassQaxbysGO/vMpmM+aM/+AO0UvziL/4KIRBdQA3bu1t89etfk/GXpqGJzLrR0oiqrAjBceH+eygyUctXSmFjM0gjzDrng+SajY9MDdOdp3kue1HY8jLVYKyJjDsrhgl1w2A4wEagMz1m50TvUxuL8tGhNwnhx+eejByCd4zH40PmK+LamoBtArRu4dSqtBG2YBwrQyFjZ4BBgZczLIFqqtuvcSohLPR9U2NDcrfEMPBxXcbx9zQS3yUuCQD03RruWOBqIbS/AMBln6QJh/ZQTkOIUwhq0TRNpmrpvJS8RTT5jNVdkeyjnrAyabKBziE06U4ml+zEcktjYjJ2J7El8jFR0aFZxz3kXYgGAjH3N5JHhJ4U/ceOHOWhBx9EKU3diFvufDJlvH/A9u42m3fucO2NN7h+4zqubamrGucdVSWj8ioEMpOztrLO6rJcQ9u0NG1FXTd475jNZszn884USPT5LEWvJ+ea0vT6AwbDJYbD5TiWF2O5E5mathVH8rYRRo9PzRknAODLr7zC40+8jwsPvYXvPPt1XFtx7dJLnLn7Icbzhiwfcmd7zG/+1v/C/+4/+Hd577vfxaNveStXrlzhjbe/jUtXXufFl17mtVdfY297lxtbB8xrT1k1GGN58l1PcuL4MQbDAefO3YVWmkuvX+Kf/LPfpw2BphHQffPOJi54jDIsrSxz7Pgxzt51F9s7W5SzGTZomrllsrNPUeQMhyNu3LqNcy2ZNpSzGZm1DFbWyYo+9z92AmM0D2+cp8jFWf6JyZi9Oze4deMaKytDrl+6TF1O2NvdpppNuHX9DcrZhICc79paTFvRtgFlDbnJqOYlwYD1Gtd4igTktdIAD5EBN20qBr2CEIT5K6m9p6oalA9Utce3AnDNJrPo6LqI5yo2i4ks9LSfZWIooHNh00mTX86oLBrxpDNGx/VcNw2qFTaYjBSqboInGXHoCPQlw6p0bmSRjeRiY0KIDE6an/zQBFmITHMlhgaZWug+dgB5K4Cf6HwrlE9jj+0C2PNxikmprv5d5O2xqRAZjt38kzES6wLdOYxEn/hnjG9KEfyinjv8PcS6OHkkpJox1ZVKa/Ii76ZNlJZ4FJSirwzzshICUW7px/vctG38zzGvW3FWVwrTJgAoxOa/6WroQb9Hv8g5srFGuPsuXBuinJLIqpTzOXs7u+zs7rK9u8fBeIzznrqqyPKCot8HBPhv6kocqauCpipEg9UJc/CLf/oF3vvhj3F7d8JrL/2AlkAbPGU54/N//Ids7+zx87/61/iFX/kb9HPFfDbmYF6zWwXsaJX73/Z2HnriSbQK9LKM4yfOY0zOjZs3+Qf/4B9x9fLrjPoDmramrFtGy2vce9/9rK2v87WnvsHK8irHT5ykPxixMurzpc9/jjtvXAWEJaeNwePoD0f0Qoij1PLc8rzAZEKO8ljSSHtvMCAYy2QyoW5L+oMBTdkwn80xViZx+v0linyJtY3E3G8IvmU2OWDrzhZ72ztMJxPWN9ZI2sfOeY6dOsn6kSP0ih6N85gsEzk57+n3iu68TFMBIQiw2+/3CN5TlSU/6sePDPC1eFwRKApofSWb1ogIM43MVuvMMdIBZVuwLfPGYYxo23mlqBqPzxW28BS5Qqs6JkGGBgET8txSKGGVZcbQzwy1zcCLvozJFLQKW2SEkcbmGd5LsmNMAlY8TRPoD5fxdTTcsH1hOLWSvPZ6GhM8yhtslhOciCha5fGtR5HhGwGfsl5G2wbKuaPwCuU1vaUVAgPs8hqDjdP0lk8xXD+LHR2n8RllWXF7PmN8e5OquS6NhOCxRYGNFvZ4vwD1RIWgAxtS11HrhftZsjk32nYMk8U4ZmQoxKokHBobTRbj3vtFoA8sEoQYqDvAihC7unrxmhFk8zEROzyW0Y2QpsUSUqKnui7uYb0DcRKMmgskQ41DLD9YHGiHCxUCKsiYda+w4GWkkBAobIbvAY3GRTCl6+7A4j+9YAI670jaSl1h5tMY7mKMwUfgbpFhEsdz4wiOP8S+i0mriyMiITL4ugKQ0I2wENIzo+umk65Z6cgg0HEEI+lXLJL0NFKWhO1VHHVGsUjA43NLl55o8Z12oJKkfV6WqMlUxnEbGcsTbZ1WBJujLp1CutXjyUS6i0XG1uY2RVFQTme0bUOv12d94wi3htfZ2tlmY22F9aPH2Nq6Lfesrdm+dZ3f//3f4+M/8wvce999TPdnjFbXeeCRRwDdufgGJcne8miJns0YFj0Ka2hdzZ/92ef55Oc/R1nLCMJhF0yTZfRXlhkay898/OPsH0z40he+QBUdrFKRnAA8pYStIuBoZGBEbTttNMoYjBXRdFv0MDoKXivIjMEqRa4FsA4aeX0le1ujCY0kamgtzzbqMCUdp6ZtYuLtYpFY4Z2nKmsZk27auJcdZRxtnYwP0Fqzu7MtayVqX4QgwJi1cZ1IbdbFlzzLJAYZzWAwoMh7DEYj1tY2WD1/N0c21sh6OaOVJW7duMN0NKfIMnaWdlkaDsmt6AV5V4JWDEcDFPBrv/rLfPSjH+J3f//3efprX6WuSybjfcrpokP1Zv0UGavAQy8f4OpWGC5aCbCDiixpmEz2ydqKkclwBLwC1zbgGgqbs762Rt7vcfXKNbJQ473ivoffysd/rmE6L/nOM9/hyGgJ61oZM1egtMHkfZ5417uxRUaeW1zbsDM+oIks3NQKaGophOq2pCnn5Ll0p9fW15lNK9qqxLuGpaVl9ra2xRlaCYu1JYpbawRwi7CP856LN97g6sVX6PeHPP6WR/npj32MaVXhlKaqGwojgBxGIzPQciZITEixpcVFna26rphOJ0zH++jYNXStZ16W9MqSw+Y7KRakMT6T3PXiWZPiewK/UozrHDJjnJc4l0bPJHYeZjApApk22Mww7BXAKpw8GbV85BwM3tO4lrppmM3nVFXJ3s5ubIQsGi9VLeMmeVGQ5wVr62ssLS2xurzMaDik3yu6GODalu//4Hm+8ud/jjGG8cGYyWzCvCypylKKk0Pgm5wJyRQgnWFhEadJjCHfnXEJyKMDR1kAfiyaROl8PgwAJsyuY9X7N3/uTWPBCTUlYSohHfuHzuFDiJvvTuPoTijf7J1bnNMJ4FMaOi02YhFogYUBVmL7K226WIKKYyk+8Ny3v83P/PQn+MAH3s/TTz/D7fmc2ovGqdbCevjmM0/zwQ99iLvP3cV73vM+nn/5JS5e/D7lfIz3UPuabDDgyMZRrDH0+z2q6ThqBwm7LCDn4HR8wKf+6I9ZXzvCBz74wc4d+Etf+TJ3NrewNpqKaDERGS0vs3X7DndfuJ+HHnmEFy9eQvtA0e/T7/fo9YrIpoiFaZyikPNVxXM87pV47qZ8SAHogPLy9ExihAUxrVBGzrO2rjFF0TGntBJWpYxGRtmSJLodBLCrywpjjXT/mwX4nhKRBMxba8mzosvFUqPRe49vAz5ErVzVdNp2xuio6RiXV2wgJcAPYME2lfee9LAkBskYafqdhzV+E7D3w+zVuOxQUbdbh0NAc/zZw+ZkIebz7tC61VFfcAE+qs5gQOtAnmV0UxfedSACibHGgjGY9YqOVeecxKAELCazgDYy0FNtkRi16RkIABgnYZJGWXQKtllOvlawsrbGuXvuQiGAbB2nI7a3t9nZ2WFvZ4u93V12dncYT8bMJlPm85mch7nFZoZeL2ryxucqepequ9aqqqlivDmYTGJu6slshs3kzLZGmLs2LwhB1r/uGheSy/sQmM4rXnvlBX7iwz/J66+/zM7ODm1dc+X1lzl19gJlW5INBvzg5df4H//h/8zf+ht/g2MbG6wMely45xwPP3iBRx99C7d39rj0+lWapqHo59R1xaDfp98f8MCDD5LnGa71vPzyS/z3/+AfsTeeEry8z6qumUwn9AcClp89f44HHrhAv+jzzNPPSr5Z1QQv4PdgMODgYCLFtDWsra5SzqYR8BKW7cryEkWekeUZdS2upHlu2Th7no1zd4kcyLkHsdaSWUtdlczHB7R1xWQyppmO+e63nuXY0TVCW/PGldeom5LTvZydzU0mkwlFz1BVNaOlAW7WUs5blgYFxrdkWUHwMK1KhqMCa2DgNE3ZMOwXNJWmrhyjYY8QLJOyxDlPVVVkQda8ZXFOJ0KFrEFD27jOqEmpZJAj54OOpowyIrpg9SVg30eDCR31lp33USPMM+j3u6Zg+p0Q3vQ6KY9uWxcNKhU+SC7glRNQ/FCM0EphcgvBQqE6CaM2gtCpedYKubADFxVEYyp3KHeR19U6xWm6a0rnWGIOpwaEQKQBQqwJjV6AeyGdrymSLOpQSGZFC8KFUoo2NuJS3SnaoHRgY55nFNaiVSDXFlXkuBCYzOfMGzE2rBvRZewaSlnW1cSCY0geaLXBGDnzZaKwwG5sdE3VyjnKqmZ/f4/bt2+xu7/HzvaOSFcUOWpuyXp92mYB9rV1SVCwu7+JChUffP97mM/2uPZGkjoLlLMZz3z581x68QV+9pd/lXc9+QS66HPk6FFG6+uEqqatKpq2ptfPOLKywko/5/VXX+A3f/O3uXz5Cr0so3UNVdPgtcYOB7zzx97PrVubaKN57LHHWF9fZ2U0pJ7s882v/Bm+qfEBWq0wynb3oXVNNKuyZEWPvN9HKYMqLEpbnBe5IJSmrCvqtiGrc/b2J+S9A/r9AVluyXs9iqJP8NDv9+n1+3EiUrOyusHS8rqw9vEYDdV0xsH+Lnu7u2xv3sY5j80ytLasHzvK8soqSimGoyFZnnd1JfHcKnp99F7UZvzfAsDnFEyblka1jEbi+GVESxyaAFRoDctLPeZVCcrT74uWBChsltE6BcahPOIM2Xp0BjhxjwFZ4FpBbg0qKOpaUeR9jBGnxV7RYzZtsXkRqcUerYTVpdBYY/FKxEq19zSOaAYgoKR34k4XAvR0hvMaQgUhp6dzgtIy9lGJUx0oqpkm7w0oRgX5YIPV0/czWD/L8tpZzHCDRuVMZzWbkzHT7VvMyxLXtDH4aZQRMVIwnaFFuoYFLCbJiPceHXQn8Am6C+YqiZLGZClAxwhLeX04BDKF2LV4k9lDjGAKRdv6DhCU+sX/kNZcS4zqi85JpH53RUZgoQOnkxiygIYLgGkx7rMIfgIspdGIxLSTjo+E1BArGAXiZhivfTydM52nrrCM+rZtFESNAGI3CpvauCqWRH5RUKXCNRXxCUj1UVQatfhe4r2GVOQuWJGJGcch0HQB7tFZ0CedKJCubAfEBR2TZ38IvIsUdtdGoEl14Gqi3subWIzOdEVhPAzTc1KwEK0mPltFfE1J5tvW0bjoMty2GJsxmU5p6joKtHpc21BVFQFFfzAktzmtc5w5fYbWOWa9XrfOVPCsrq7yxu7rjA9gMFxiNFhm/2AHtKIpK3Zu3eEPfvef8ta3vYOf+NBHePwdT2KNEv1NpbvDrac1G0tL9DNLPzdcu3aFT37qk3z/hRdo4rh669yi6ERx4tgJ5qrlxz/8k5y7/x7+X//1f8Nkf6975h3O5BcOXSGyBFx8HaAbb1skGAiTKf5bxUNAHfr+oBZ6WQIwyy7Xab0qWX1SpER2jdFYm6F6OYXtM9TLIsIeYkET95gYn4gblmjgCeNQHI1lPSVXs+BDbCL4zhDFB0/rHXU5IXjP5GAvxoWk66UEENAyI5F+tzGWPIn55wVLwyGDwZDl5WWGoxGra6usr64xXB7x9re/g1vXb3L95nXQlrqtadpa9kgClgPgpWhr6oZBkTMc9LmtNK6uyI2mjjszWM3V2zc4trrM6Y11zj90L1dfe5WqqvCtY3V1lQ9/4CcZFUP++t/827j5mDPnznIwntHPBnzn2e/xvve9m0fe8lae+LEf55tf/ypVOUUbw/FTJ/mpj38sPlOFayq29g8kNidgVMV74kUHVkd30Wo2Z39/glGG0DYYK65ijz7+OC987zlcW3ci621KxpFEUGuFU8gBagyjpWVOnDnHtG6p20DtZSSvduJC6KNAuzHi7KtCYDIeM5vPGQ2HZEURC0xF0SsYH0iSO51Oca2jaVqqquwA1tQs6k6f1AhQqYmkSZQbHYXtVQS9k+trQqO0UngkxqnI4Esx7HATIwTfNTF0p5Hju9/by3N6ec7ycCjr/fz5DlBJIz+JhXOondSdYRKbwwJsRPHWRx/loYceom3buHccVVUyHo8ZHxywf3DAzs42u7t7zMo5e7t7TGcz6rqmdQ1awdLSEhCYjCeUVSmsH0XnQne4sUNYsOMXTaJD8dgvRpNE8iGa23SxenF2pPM1/fybnO5JAGOM+en3HgYF4+t0Z1gQJ9J09qFSQy0ZiUA6MJIcSPq57gyk6b4vAHVsVJWzGa+9+AKFc9y6coWsKFhdXWF7d1ecJb1nNjng9//ZP+U//D/8PdbW1/jVX/vX+b3f///wxuVXGPQHbO3sc+L0WZaXV2LMiYyrCIaL7pyh1+9x4cJD/MRPfphLVy7z/ee+x3vf915eu3SRT33yU/jg0MHG8bXAYDigqira1nP3vQ/yl898m698+S/oL61gi4I8z+LZktEvcpYHA4aDASujIaMIABZFIaBy1LHK85wiz7FGHFXzTMxIrDUR0JQJEddGdMuLQ26S7TgMLIsxRegmBNJeU8ZAnpMY/y6xxuN+Wkw9qMgojU3CeNYnsEkYLPG1I3DfxBHhpB2YwDidHJ1jI0DAkdg0DIenOqJrJDGnicB4yjFUmlhI+SF0cSExcNPv8PE8TuBBikvpZxPTdcF4XciIhBDEebWVazPGRBBSvi+x7yAxIVW373xirLUusqQ0uclRykjsijHHdyDlYtrFOzFuca2LrxPN67ynSe9BaZxyMS9egIrGWHo9+dxwNOKue+6WGBrNy0QSZcKNG9fZ3t1hb2+Xm9evs7O1hVYqTh9l5CpKgHhPrpNLeTK2EfZTAv+8d8zmZYwfct7rFOuVMEpsNFHQxtDLDa88/10+dv8v8uR738sf/f4fkGUZNGNuX7/IsTN3M59NKXp9vv29F5n8/f+Bv/7Xfp27z51l0Cs4f+YUx45usH0w5i0PP8Tm5jYEkeXQZsHyquuWr3/jG/zzf/6HbO9PsFoA1aXhgMuXL8k5ZSz3P/wgaytr3H/vvezu7nLtjevCWgMiVEzey8micY1Wiq2dHYo8pyhyBv0+vSKnLGfYzAojqtenKDLyyLiRZ2OkbjOGoDRZr4fJC4L3rJ0Ueab73v4ejNG0TU05HYu+F4HNN67RG/Rx3nHj4iu89PzzvPN9Z7H9HreuvkFVTyinc/a3N6nbHQb9AqvFhGJail5bVbeMhn2cz5jMSuYNrAYZ3XR+MUJqnIrvNdU5SCMMMWVoo2xB+khO2Cm+KyIDLmmdK2GcOe9RQcnoYNOQZRlZnsf+kpBfILKWDzNu1WIaIBlApYMm5aJBSQ5l08QZCMBPTDdjDpoAysTwc05kP9I4vmehuSuAnuq0/ZKuqFYp7sTRXlJMSLn74h4E1UWmeLCJcUenaGToaumUY8svibJYpAZJbEgQ40DbdvcqFaEuuLj35H4apRj1CvJCANUqaj0XeR7jW6wflWJWVrjSd5NvRhu8d1ijUInFFkHGLMtQvYxh7xinThwDJTWnyPSU7O7usX9wwNbmpjD+tjZlbwwGhL1dnv6Lr/Dud72Hj//Mx/nKV7/Ka9//LqrfozcYMrlzhxuXX+W3/rv/mj+/+z4++OGf4qF3vIu1lVXM8jJaKTLlyZWnHO/wpc98gc987ovs7u1DgLJqab1jaXkZrOWhhx6mrVtefv5FTp85RX8w4OiRDbxr+JNPf5LNrdvSNMOI6apr8S7E8eHIhhuM0CYjECecbCHAnzL04vRSSPmsKfBBYXKDUYH5wZR6VlH2SjJrqWZTeoN+pzM5HA4xWca8nAlTk4zR2gZL60c5c88DaKNwoaUq5+zt7FGVJfvbW2zeusnO9ia94ZDl9Y3YdNP0ioLhcInllVWyvMfG4FAu+6/48SMDfNaCzTX9gabINHXsdAUsRd+inJKxLaVZGY2E5qsDTVNhMwGFlHYURY7xIwBUFihMn7zIKasaT4MtLN45stxEQE7m2dvWo4ylbmqU9sznjWgAKUG1XSk6UrUD5QNaQzlvUEbEjNuqBlWAI1LhoQyBYtCnmsCgP0KrjKzoobSltzwk6y2j+iusHDvPaO00vdEx+mvHaCnY35twfVYzu3OTuhFRSRHBNaIbUsixYw53SL2PmgCxu+mCuASGgG/qLrFRJDbFgtGVErdUuCT6cGKWeRe6DsiCjSBhR7qQrgPbEgtBKdN1k7uO76HuDOEQqBE8PjIEEmi0GBONY4WJ9Rei81sQ4kkqyha6eqELsIvxWeJ9ioH40KFhMx0TMtEhUTrHtYGyrkV/zEkX3cSxDqCjhod4fQv2ww8VQfHPpKEkn1Kx+DlUQHGYvSLfk4o4YX04krlJB64gHZbU4el0VyK4RiCyEkJ3z6R4lLn9xfOX71dBEk9jTLy+BbCbXjuNP9JdZSrS1Zve8+Fnnt5yAh210fhouV7VNbN5KSyzpmY6nYilu/e4DlRynRj2dDoT8MK1DJdX6A0GVHXN+RMn6BV9Wi9aYT4EfFUSvOPbT3+V55/7Dvc98DAPveURTp84wfJoRG4NRikevu8+mrLmu9/+Nt9+7ru88srLlFWVnsKCoUogy3tceOghDnYOeMuDb+FDH/gQX/rSl3n+B9/v7OdViGO3XbJDV8t2kHtXE/tuHcliCt39SiB7WquyKVT3w+pQcdKNxPkQC+oFSBFYjMylogJ9WDw8siPS17VGJTdBbeTvWjrUOrPonpgQWW06oEacl1W8B9Hl0nsBWOIacomx6mRcSZ65jBGIYLenbmpCNWdndwtcYjupDnQWIF9G1bS1sSkhTRNpduiu6WHiNRZ5wdrSkNVVcSn05YTk2psKwOt3blLO59x95gQf/chH+a0rVwizCoLhyPFT3HPP/TTzkuXRCq3R/OPf+W2MCfzsx3+Gj3zkQ5w4dZKD6YyP/dwvU7Yt33n6GzTOceHBhymyonOmvrW5yaQS9iQRNLZFhmtrltaXUTZnaXVNkvM849y5u3j7Wx/l2sXXufT6Ze5s75LbnAceeoSD8QH33n8vs4Mptt9nMp4QfEsx6DOrGtaPHmVr8xazvV0+8fGfZnl1lZ39fUlEtMF6gyHE57twMk5ubVlRsNbrkRwZCSJtMSgKzgyH4hruHNPxhPGdOwvXTucIHlovOjOBBcCn37QOk1C+xFAV9UQOx/IQDsUnlaKNnHVpPDXFKKVkpFTF+LoQ2VcRoKJb76336JDA8KgBpkE5j3KLa15IKES2oV6ckwn4SKyFXtEDpVhaWuLokaOLeOmT9qyMr1RVRVmWwiIb9CkK0Q8aj8e8/PJL/OD73+fGzZuU5Zy2bQgQGx8iXp32E4EYCw+N8oaFTEMaLUkGH+lZdM8kRbiOIa8OgXthESsOfX9i4KemXgfIhMPsw9C9367hFR9SMh8JsUFIaoawCJKHr801jcQnFH/51F/w1//63+Cv/JWf4sbmJndu3GBWzpmMJ50e4osvvcgf/dG/5Fd/49/g6LGj/Pq/9m9w5/pVxvsHXLt5gyNra/QHQ+pWgMSiKDA2o3USMwmKD3zwQ/ytf/Nvs7q2wcVLr7OztYUr5/zuP/nH3NnaIrOGtq1jDLasrm5w69ZNllbWuHD/Q3zmM59mc3sHM52hswwT3ciN0liryYwR8E6LOZvRmtxacdmzliyTMd0iF3CwlxcyVZDnjPp9ijyn3+/R7/fIMwEQirwQxlgmoKA1phvtTWdzKhW7/KvbS4HGu06aQ6k0EhdlWoB5K2BVUkMhBHRY6BsT17oClDHkJHYt3e9JB51LYGJITF4pVJOhRZo+SR9aKYjNQh/3agKcxYE5goBh0ciVNZje56H8LyTmH6CS+Udce905K6ZNHbARAfNAoG1k5FDYw3J2pzMIRXRgl9fOskxytgTiIcz34Jrumfiuypc/bDSxs3kmvz8aqqi4TwNpFFuuS3JT18VG1zVVFmZzSQPbh4AyhiLL6Q+HHDl+Ir4vT1NX7O/ucjA+YHd3D+/FqbyXZ0ymM65eucqN69cFDGnELbOXcpwUK51DXDnlPAdprgUv7qI+mqoll2TvFd/8xtc5e/4e3vb2d/LKC8+Lrt94n6sXX+LE6buoqpJCD7hy9Rb/zX/73/GBH3sPP/Fj72V9Y5Vhv8dw0GdWViz3+1Tzkl6v3wGlt+/c4Y//+I955tlvUzaeotejnM8Y9vtcufw689mM1fUj3PfwQzinuP/CvaysrvKVv/hLqqrGx7FOaxR53qMuK3zmSJNIbeuoylpcbxtHmQuzMzlhFkXJaGkoY9HWklvDcDAgyyxZ3cZaQ8W9Gs/OEN1TnUNlluH6ERkLxXNu5WjXjD//8Dt58q/UXSyuqzlN22CU5/bl15nsbbG/vclkd4tyNuFgOoPMMJ/P2dvewYeaytfiYI0AYjY2FlXcfzJiK2SZzFp0dEkW8F9qhAUZQxHijKkKgNGSBwe6/MFmCzYe0LFi0xmllMQi0fcLIrsR893MZjJRoBVGmbiGonNxnCoi7Wkf8FHzT5uo3xfSNJokFCrWLEoJ87+IIHti2AuhY9HM80p1sUkpIQmoaNbhXTQfSSAkAiiq+Hs6RqKi09dO+tjdWZnq7hAbHiEBeouff5N0iNEYTLRy0R2LuGpcBPvTqLTk5SZeV5FlopuoFVlk0YMw1/NM00RSTttIjHKIoz0orLbRoKyLmNRtLe8ryl4tj4asLI04cfRIlxs0Tcvu/h5Xrl7j4uVLXLz0Gju3bvO5P/kTHnzyCd71xDvoK8MPnn+RvO9ZWl5ld3uL/d09XnjxRa68fpH+P/snnLtwgXP33MNoaYirKrZv3eS1ixfZ3Z3QeGGz13VF2zSSF85r7r7/Ph577AneuH6dc3ed4777LrC6uoxrGr7z7DN846mnpG7SFoKmdk4mfJQmNwLE2yzH2oIQ475rW1wj9by1GqsCS8sDtrcPwBYMhj2caxiOhoSgyG2ONkakXKoKpySGt85jrWU2nYmZnoYRSwTraJs6yiJlGG/Q1jIaLTMYrsR1r7j/wUdxrqZtW/IiZ293h9lkwnQ65tIrLzI52GewssJjD97Lj/rxIwN8WgXWli1FYaCNRgdNwClH44y4LHopTNvWCwsvyzBKNng2yCMKD/2oISUJhAWdMxqNmEymaDQ2B2MU87KkdVC5liwz1PMS7xJi79BWgwu0TnT0ilxEnjWScAavRG/Jih6JVgavpAtjTUZmB4RQsHR0haJ3BK8KVD5k48x9jI7eTX/lOHawQtMEDiZTbh5MKLdvQhDtP9WJBKuOOp865trqCKZJeG2i1kHXoW/l0Hdxo2ojgcno9KhiUUNK2hfAXRfUQhr3efP4bUpK5FpiIOrGdBfdCheF2zlUhGkjwUhAoQXIkAoHFbUUUsKWuriJzpqCM0pEQ3UcmzZ6EVwPG0akjnICNgW0UPSKnKXRQKjHVgrNtpFOaVlWTFyFQkdNFC2dGx8OXVvsuupDzLl4vYeBvZDAGyRnTYWW5JOLUavD5heJ3SC0dk9npgFRc0M+2qY9BMwsnk3qUqffkQCmN40/HwLfQghdQq2jzt6bC1y6Itda22lJpERKa0g0dK01LrToVE7E9VBkOUWvwHtP0zT4piXPDFUtTIrpdEpVl7gQqCNzpW1b2ZNexICrssRaAXeCgio4RieOcf21V/nOM0+zvLTM2voGEBgf7It+2XzeGUR8/7lneeHF76HQmMxQWEuR5bRNzXg2kTHVEGjbRgBN5wjOYwIYben1B9zzwP2EIuf8haP88s99gleef55/+Yf/InYcs4jdLphL3V9iAd1lxHGfLQ543+3tpKmX9gQJJA2IoUQENnwcAZfcJlb8pOLFd/pD6tAaTPt+IQlOt37SJlVKv+nzCXxh0ZpERRfrlLiktZTAeNWBNAugXls5qLQxGCN6qYOl2MnSRpIWLR14hQjL6hDwraOqK+mqVTV1WVJVJW3V0NQ1wTvqSgTtvVuwnJR3AnQqxWsvPMf5u+7lpRdeIXhJ9tVYRsKD88yrkm88+zTveMvjHC1Weeej7+DipYtUlePjP/0JtLa0ZYWrK/7003/AV770p4QQ2NvZ5ld+9dd47dXX+O4PXuGBB+/j3/q7/z7/Yxv4zne/w4MPPgIO0cnLM5576SXKphWDl6jHZqylqho21o/wCz/3CX71536eldGQfNhDoelnIvDftp7xZIqPe9lmGf1BX7SOWkdT15jM4hTcub3D/v6YYyeOcvbkcUb9Xiw0vTjApeRYpXUge7dpGskOvSIrig7AVSiymBT7WLTOZjMa50Br+kVBkQtQRdQG++H4FuKa6sCxQ00PJZW/MI0PmdNIcr6IWzpqXS3Ab4Qd2cV/FZsCfvE7u8Kf7jVEMHwRz+UMo1s7cdt1+6Zj/8S9pg7F+vaQrmCK/Z2+UHT/M3HsbzgYMkwGNl1pJK/ZL3ocO3KU9733faL7Ws6ZzeeUVcmNGzfY39/n5s2bTCcTDg4mlGXJbD6j3xtw/q7zLC8vc+PmDV595RUZr1MLACGBFM4LIyjExslhME4pcX5O7/nwObYoyxaf75o3pBgmwJ0wCOPPxfviQ8of0shxjFnx3+leJhZhiE0oJYsHj+LFl17m+u1N3vuBD/Lbv/PbeG04cfo0r7z0Sicv4UPgTz/3OfL+kI/99M+yNFpidO/9KK15Z24prO1GC33w9Io+RdFnZe0oj7z1rZw5c4azZ86wu39Af7jE6ZMnuf/8OX7rd36LZ555VkZ3VATBgdXVNSk8Pbzvve8jB25ceo2ybQhag8nQWU5WCMivYnzLMhllzHMZ3c2yrGOzGCPyDNZWAtjZObm1ZNZEEw0bWUE6AgcZuZXXLDJhGRVZJuw/IwVsHv9to/yB0WJ6YqMxSorV+KRVl54REQgTw5wmNZFi3q2j0ZaNbBblwRhIZlyJgSLNVrNgnyPA2AK8ijmmlwZQGyVYlGLBWNOHQH8veZ4LKY9RksP6hcmGjms1vZ20dn38njd/JCBwoW2ciu50hqUY8MM/JVqJbnGOxv2cxvsISQNaimRlZccnQ53DkylaRQmOqG8NIq7fpY1KdZMHAqrqRb4e946L0g9tFOuXi4jns1diOthGwCHG0jzvc+xEn+OnznT3SCnASU702ONvZzKeMB6PmUym7I/32N7c5saNm+zv7ccaQ67DKsgyAUj6/VSzRIMhH6ijc3brPK+9fgVdjHj0sSfYurPJ9TfewCooD/a4zRU2jhynaqbUgyGTyvKpz32Br3/zm7z1oYd459sf4+677qLX73N8fY2mrinnE65eucLXv/Z1vvH0s0ymJcHkrKysUs7nLI+G3HzjCnU5o1f0Wd84wZGN45w7c4a7zt3Nq5cucunyZXHRdGAyE83kHFleEMWVKQoZW3ROarWmrnHeR8OWnLppcT7gfKDIM8xSgUMzr1tmZU2mFUVRkOUZeZZjg4x+d43MRCBwrTiipwaYiZJHwWHyvNtbRb+PC0JCWDlySlZg2zCfTKjLEltkYGQ8v6kqxjubXHn5JXZ3t8AWuLYFFRmWKIw1dK7rIHWv9ngfnVqtWQDj0Jn0HD7vvQmY2ERXYbHvUy1qJXGM620hf6MimSWRMwLCMjPGoHyg9U3HLl7UlykvlZdJ4CEIE74NUfc0CIs4aex1wGCMR5m25EoRipi/OE9wgTYxVYNHSPHynlwEg3Q8NzvSRNT4S++XZHyT8hZ8Es2K9znGG60PnY0cOjflp9IkVnrvRgbgIx6gu3vv4lRN8CmXkfssrLGFMaWAgcL8LZTBtSVaKfJCzpEQxKX4YDpjWpZoxCjFWlmjvV4PQnR6d2L4ktjTKU/Ms4wTR45yZH2Dx972Nm7vbHLp0mt8+Qtf4pUXXmJ3e4cHLzzAsD/iYH+PG9evc+z0EifOw87mHdrplP3xAd95+ut855tfl+ZYnpP1hihtmLUNRZ7jm4rQ1hzbOML+bM65e+/j3e95D29cvUaW5xw/foK19VVUUFy5epVP/8kncc5R9Aax/tXkWiRptEqTbrK6ZMLM4X0lQHWUXbBZH1sUHIxnGGsIWrG/vw9KUbdixqaNgUZqGZkSMQTn6WUW5x2z8YxhXxqN5XRGo0pQYvBW9ITVb6yw87MsQ8dGnjYGmw8YZJbgA0ezHuq4rP1H3/oO5uUcZTR9P+dH/fj/A8CnsRh8DYUtyHKwcQPKbL3BO9HqskaQZ2ssyhQoB95ZeoUEGq01XhtBoUMt1tANtL4mtAbftLjgqSrRyFEghhohEFwscDWE2mEAwaMMtRPLaJxGk2FDD7QkT3nPEpqM0fopdH8Zsj7HTt9HNjpBPlhnsHQEZXpgehyUNfPWcfvWPmV5O5pSCOgUAh3IqGIy5X2QIMGikE8smATaZJmlaaTjkUAVazKsVV3yACyKpZTIxM+/aQwIoovXocT7UCEAUkgnDZHAAjwS8w7VJS7Bu26UkNi1T90IoOvcpC6AvFboUAkpjGKxoCVNMUYOIumcQmLQLfQXYtEYAQsdA3+WGUbDAaPRgF6Rk2qsqq6Yz2va1jMvKybTudCnU1FnZAzbHEp8F51kFe8lHWgm9zksANGYKKbRKYjAVwJw4gGTxr+S61zMruP76eb5OmMEG2n1hHQApkw2JXtx7aQOfmTwGWM617fUleqchzk0wqNScrlgciRWiBymqnPSTdfnI9MwxA5WRD1ZGg5Y29iQBK8RVkrbipFGVVeMD8bsjcfsTSfs7O4ymU4k+W9bfNWS9woRU5+LvpVSimlbYbKMY6fPsnP9BkrBfDqhqSopZrRB2YzaOeqqhLpeAAXWMA2LEZ0kDq2UUPl9W5P0v5S12Dzj/L13sbu5g10a8FN/5WNcunaF3/nN/4lqNkFrcYYVd7C2uz+pSBHgOoIlcVxHq9jRjCBZIhyY+KdSby6y07hhAgNd8B1jp9Pt6tZTEFG2riCJnw+Huu4RKHwTCi0rMf1E/PN/zdgMXTa1ePmOZSgLK9ZLCSQ8DBDKaFZibIS0lxKYFH/WGBv3uY5aQbmwYPo5+ajfJVBKa+q2IVb4GAVt7WjrGtc4lPPMx2PuOX8vp869yhtvvMGwZ9jZvNOBDlXb8Pmn/pz3/9iPk93c4Td+/V/nL576KlVZ8bZH30o5q5k1JW0z5/vPfYvgapTS/OAH3+Hue+/i4z/zCc6cPcfV67fZ2DjOv/Pv/e/5L/7L/5wzp8/Szwpya9mbjvn+6xep6opQ1ajg0UVG6wPWaN5y332sjwYURZ/MWHo9cVJvGmGKD5ZGDJZXukTWxjEWq00HXpmo8/jIvfcS28yQ9nRi2aK655IYlg7fAWNpzaZ4nJLmrghWirZpqaqa1dUBVhtu3LpNUTfR8CjE+CTP77BeaWom+C4uxhUXC/ruhAsiaC1nSEqARdc0xBjUxbWusF7EqlSU6wSsk0Auj1ce5w5r/SwKeGEhSRxNBUDSxFJdEb5wlu325qFlH9I5Ggtlca5cOPkdvnZiUZ+uUxv5M88KiqLHyvIaSivuPnePjFE5aXYJC0pEsLM8E2OGqCX28osv8vWvfw0XAlVTs7OzK2BsXdFGYXSlVXdNIF32FLt9ZKw7L6BFN5KcgHMWcSblEAl4CYcLkhBiKJGfc6ngSo0NHwjeHTojD00I+MNGXQKoVnXFH/yL3+dv/1t/l/3dPfb2D9jYWGOp32c+neDCQmLiU3/ySW7fucMv/dIvsba2TuNaQpCOeV01Mb8I9Hs9PvgTH+LU6TM89La3obVlZ2uT5aVllodDtrc2+e//0f/A57/0ZQGFCZ1baDCG4coSW7fvcPzESZ548p184QtfgqwgszL62rQtoW0o67rbPtpa8qKHtjnGzjHWCtiWR4AvgX1GmDN5novOmRFN6Mymz2cC4BlDnlkyE783M/FnjcgeRPDPxO/NErMvnv3GyN+tWYwRpv1gtKasa6zOZYQyBIIhTjz4CAxAHeScVEHAI40UtlYvwHVc24F0dECh6kbsjTEoszi+UkxLQHRaD85Hlgnt/2r/wmKMrk372y+giBTXmshqS41gk5g5fpEXSXwQJqCK50REwuP+T6zn0P1MB3B0oLeSf7k3A4PEPDZNU6SmVvqdhEVTXthiUquYqFvdMYoPAXs6NuE6bdz4/lu3kBkR0y7VXWuafhEDrmQItrgnKU5Zm7O2vsHq2nr3/NrG0bQ10+kBs+mUyWTKzZu32dnZJrPCCt/b3WVvb5eqqlFBmqeF7cn7Uho1n7N9+xajpRXe84Ef5+tPPcXW7RtYZ3DzMdu3Gk6cPcvykRFbW3vM5i3lpGZz6xm++s1vM+gXHFldxilDVZYc7O1y4/YWbevQmaW/tMrS8hL7uzvo4Lj82qvM5zO0sdx1z7287Yl3cWR9g1PHjjE+GPP0088ym0zBBzG2U9K0splC1WI6I7qzjooqmstB3RiyLKc/jM6ircPEdWqUik6ckZThnbjatg410+R5htYKazRFljEY9KNgPuBdBOHTmR06XVJiHp40XYEF+KQU2mQM1zboRXZXOsf1kmVl4wSn7n0Eqzw3rl3jlWs7gCKZwACR0Sufs/nCjEcpYaK6VtaIic63h9lmqTHQtqJRKfmKsJO74zLVZ/E1FvtOJghkjYYovRRJN0quxwU5O0BIBnmeoYJ684RLPFO9DpEAsjjLWuchEkcCLP5UqjvbtFKYzKIyKLr6zYsDs3OHmPOeNkkppWkqBT41MuJ5q30k1ZhF7pBG/RMDTsU6QCHXmgC9w8l2eocLffy01+ULYixpurQ+LRWCgP6JiKFI4J7EIFiAfTaeCQA6s6yMBhxMZngCTdtQNRWalINamjTJoCPfNJ7bVePQypEZK3q1ynBs/Sinj53kLQ+9jc997nNcvnaZF1/4PnXdoLTigx96H9ffuM6lS6+ztHqU/OhJmfrynrZu8K1jurfDdD4nKwK5dsz3twjOYzFUszlvf+wJTp09z+Rgwsb6GoPREutH16mqip3tTb74xS/S6w84fvKU1FJOjEjqssQHcQquqzoyIY3sK2vpRQ1JFzxGZwRl2D+YddgHqiHPC5FqmU6EzJBl0U9CnsewEJddrRWqDvSWl/E+UO1P5DlaK5qmRcF03FDlOUWvj9HiBWFthg8SF0ILupFnnZrIYuKVMxgKozhvf/js+f/940cG+HqZZWh7GC0Mof7A0lTCwJAugKGuappWglqi3xsjTA3fBqZli6cltxqZ7lNJ/I2gszji26JsRLcJOCeUaqO8LNJY9GoU3kNuczLTQ7UZo6Iv4oV5n6ZU9EfL4qSpB6yeupvB8hmOnH6Y/upx6lbhlWZWVkxnc+7cmVNVm9R1jS0yfCsjv0FpNEHAmij0DHQjqGlbd0lxGnkjLAoDRdf5gciyCnT6W3AoKCDBoDsU3gTeLRh4MtaTfreLATbp66iFc2uQ0cl00ISU1CuFil1uEmB3GPwKCzHlxecWAKCxhuBjcogEPWtNF7TTzylUnM7pyjjpggbfFU9ZZllZGrG0NOhew4dAVdZMZ3Pa1lM3Lo6K+gh2JT2/gIpgZepouXjwAW9OCEndUzpgZQHqpW5UDNaH7nu6x8lwRBikvnsN51LXeVFM6pj4pW66tYamaQ5p7C0Kfu/dm641MRs7ZpU2hLDQ70NB69pOyyK9YKdXAxHEWySXxujFfVNy6B4WqdZKdC+9D2S5ReQyAkuDvhSTR4/hQqANgappmc7mTOZT9vf32dnZZjyZsLuzy972DtvbW3I9ZUnZVLQEBisrTA/2OX7sKK1rOdjZxXmHQ95rv+hRliU+FiRtIyCzUWYBtB6CtIJrJZGLhWY+XOKNzU1Onz3NB3/8g+xs3eEP//nvMTvYl4K7S/x1d487MCs+DxfXpJKFQggLcKIb1VECYi+QlQU4lvaLQrrKEfPv9mEqXhZDE2pRaBx69sGJP2pI2iU+MpISCzfqA3UF/CHMMOn7pdGDN9+2Q2v9MACY8pAuCC3YNvENxjceOh0LpRRN2leHwMJUgCSwNGYpXUK5kCGQwsVaS2/Yo1GBkyePcWRpme1ewaQsox6PBufwbcvtrU3+9Iuf4/GHnqCuAj/xkx+SBkUguika3rh5h929HUCSu6Yq+cu/+DLvevd70Drn4QceoMh6HDt6gl/8pV8m04Z+UZDnOd/45lNsHhww2z9AlaKflw8H1GXNcDTg/gcvcLC3h9cHGGMZDIboKMlQFzmVc9JMitpczieGpySCOgIjOiwKC61kNE/uY3oWC3CJuP517AQvgN7QAcAdWy4+lxCg6BUURQEEqtmMqmlk7DFiRmLe47uFs9BC1V0xnZmkxxUZoh0Qt4iRCQDozqa4V7s4m9adLNZuSQCR/bxYc+n1BEyWz/tYtKd4KwDfIpnuZCJivBTQMLEJ5ZrV4tu7/Wq17YDGwwDg4WYZLGKyHLueONXc7Zv0h9Y6js1EMSFUp6WTGEkBFUWkH+dtb32bSIwgWkfz+Yz9/X32dnfZ3dtjPBmzs7/HeDxmPptRlhVt2+CdZzaddq7AdSPAeRMlC2Q8cHFOqZhQJsAHIKgI1DnfxQiHl/WpFFlYxIoE7CZ9OGJcSGYdLjF/4tfeuHaVb379q/ybf/Nv8pnPfIrvfuvbaGBjY4PbW1u0bYPS4u781FN/yasvv8LHfuYTPPnudzMYDiEEmiDsf6XEbfDDH/kIzosR2XA45MSRI2Q4nv76X/A7v/M7XHz9CjbPcW0TWUgObS3DlRXGkykYy0c+9jE29w74wcuvoHs9VASjs15BXvTIMks1K2nbhrZuaMsSpRoaLaZKDDVN7SmbJjJMIhvP2Mh8FoazzUSTr4hMvCxq9aVx3aIVEXxrDEXU78uMxmYam2WL8WAjIKBMBiowOjrcB0wchUtn0Gxe0h/mHctfqbQfLCpGk6BFU0okIuRzvm2pWGjBAh2zxVizANhDPDHUQgc4gXuJGZSm69JFubjGNAvduvRnGwuaxd7VXVzTWtOGtnOTx0s8c67pwIMkR6K764kxM9DFv1SMp8Mx7XOjFzFTkXILFnnUoRgg4ETM69tFjEzje2lkOuX0mToUmxKYeAj4DEGafmIgsIhlOkpX2NgESA0LcUENHdvZBTEOCsRmeQILtOmeSypKUp2S5xn93hH82hpKWx548BGUTk0AeSY729u89NJLtI3otu3u7bG9vU3rPMVkzGQ8ZrK/TVb0ec973suXv/hF9totNIH5bMz1y5do2sDqxkkefPABpvOKOzsHtG3F5t6Yzds7zOoWF1oKBSrrMVzusba6QlOX3Lx2hcwqtu/cZj4dE9Ccvvscx06elr+fPc3OnS2e+tpT7B8cyNr1Iovj6xpjrIzgasis1JFFUXSTO845rHEdKaIoZIIsyzOquqGuW9FeH/SZzkusNVF3FdDC9BHJAIW1Ffm8IssMvVwYtkWeAbWQWyI4H1Axv0mu1XSNegH3Yt7fytlmojuoi1qaAt7LlnYhkQukjjbR/M7qqDXPAkBaNBFVt3c79m3QYBZ73bmkYyf7WSa32thUiCy6BCiGEMdpFT4kYHmRC7ZtrGG0RmlZw875haZhzBPapjnUuFjcmy5uGRNTi9DtZ9e2C+JFyknU4ven3FTAToMBVAQqk166MOOjS6+PclNdTRVB/BgDlE/MPoMmpbauI950cctEGa6o1+dCWEyLdfWk7DVzqLaO7BRSDmd0mtRKMVryQx+EmdimujOtIUL3EqnWzjPL6vKIqo41ZixqMmvwaIwTp24XR3xd00Qt0LyrCZLbtvMyRrw0GPDLv/AJ5rMZV69dZXNri/5wyIULF7DacP2NN3ju+R/whT/7CuPxlLoRvelev4/zgaqcoT2U0wmgyYshJ86e4/z9D7J+5ASjVZG8WV7fIMszmqrm5Usv8O1vf5u2lAa9znuE1oPOyfs5WV6QFdIwnUxm8nS8SA2o2BRsmhpjTWTAZ7RNBLG1EjZuZiPRTPSqldLiaN62mKKgblrKpqFtW3p5j56xlNOJMIGj9FCv16Oa1+R5RvBQljVZbimKHK1r8iwXc6wsQ6sEBIMDmmZBMDFKYVmYEP6rfvzIAF+Wa3IvF6eUosWhc0VZtaja4JynlxdMJ3PcXBLDomdQkTJrrQcVaNtA3UrB2jYtrYMss2jnUEHRqICrWgmSIc6Ue4M1isLmuMqzPFrBBul+mmKJYbaEHRyDYAiZZe3sGXRvg9Hx82jbw9glVG+Z+axip20pr2+zu7cvQqK1ILree3GrChkK0WJJ+jw26Rk4GU1MQrqHOyjE7nzqtqVCA0vUIxKthNTtRi/GHlLATWxAOCyYLcyIpGOSQCMJCCEe0iJuHDikqxZSwI6AQBIzVdKhcNGhV/KfEBONQwkcsbvgU2Emr6+j4QeHAkxipsmoLF3icShlWiQf8eDRGvLMsrQ0Ymk0ELpxtDqv6obxeEZVtbQuMJvNqJsaHceXbdRSS0XMYpwjJo7wpiIniTGjEoshJrgdKyV2txLgGaILrtz9NwGsi2I2uSctisk3fS0mmSIumwSNF45n3deDUNLTQZnYezIqLevJ/RAAmA7NJKYs+o+iqdE52h06UFJCJJ3mBYMmfS54JwK7TsaLQxuizlcq4BfC7BoojKJYGrA67HHu2BG8vwcXPK1rqWvR6Ts4OGBvb5+9/QP29veZ7Oxw++YNbt++QQiB1SNH+MQnfh7b6/Ps00/z6ssvMrQFp8+c5s6dTabTCeVsJmun+91BCgfkjFxe32C4ukFeFIxWlplUNU8++W6uXHqdp/7yKaq6IR8uo5Qi1wvWQwL60rhp96EWzyQ9u5ghxfntpE2U3JN9Fw+8D7TBxfutJCvr0IwFIJj0xpSW0StiUpbiiFIQMh27iGl1RjHgBLLjI9Aml/Ym8f1wiGUTiEybQ+zfDgxM4N/i/abvj0PI3euLC6fvGho+6RgFSVESMBUDjFxxBw6KiPECnD6sxyJ/naDY297ha0/9JXefOs6N3TvUBxmnzt/HtYsvEYKnms0pBn0+84XP8/A9j1D4nEF/RUSaXaBVYHqW77/wPGVVEUMJbduyu7vHl//8y/zir/w6o+GIcjolOMePPfluFJAZy6tXr/LM95+nnleUOzvo4BksLQMWpz0n7r2f0/fej+71Ca3EiXkULReWjOw5YehYtDYMh0N6RU6R5dJ1jTo+Jib+TmlMUF3Cm552165Nz6iLbN0i7eL2D6NXi7izeCQpDrTOLVjMMXlOTuxNEFBgUcQuRvo7xkH8XQlIA9V13gl0P9sZx6S4GEJ3DamjDgtWejrjFudd6Eb5UqLdJcsq/b7QreNOfPtQnJczaKEV2P09jezoxPLpLoHETBXhbXkZkd5Y3PnFe1mwaA+z51zbRkAsvEn7KzmXaoWA0ofuaTIX2VhdJ5y7K26NyJpTUojV0eyoqkrms7loYgbHZDJlNi8ZHxxQVSWTyYSyqjg4OGA6nTKeTKJ+phgJJP3UReNqocvXOkk0k15QGgVM77cDPmKMS+Y9gSBntyQMfPc7z3L27Bnuv3CB1159lY2NI2wc3WD67e9htGI+FzDS5Bk3b93mt3/zH/GZP/4kTzz5Tp5417s4cfIkS8MhRZahVKC3Jhp5/X6fyWTMn//Zn/PpP/kUz7/wA7TJ0L0+ZSMmPs61ol9qDKPBEnfu3OFd730fZ+66h3/8O7/NdDojyzOca6NphYzm0Iim2mhpWSQglEJ5ET0ProRG4yrRuNS9fpxMCNSuJjiF9eI4p4EsKMrWYZoWWzXkWU2/ErfOfp7TLwr6RQ9vwQdFCIaWgPHQWinocmNwpiWzFhfZfjbqMrchdEBcihvCGD3kZhvXmexD0EF3Y3hpT6o4eXPYPAyg9QGdpEbUYp+khqInakvHhm8a41VKWN1tBJltzCOtybp9kopfH3PTBHal3Cp93sf34WK89Om88KLfpZSS0UiQRnMCGENqGhwC+tLkSIoZahFHu7w3nYE/FOtSTEuyLCmHc4GO2ZjOtpSLapOkYxSJZenjGZ+xkFXx8Zl57yHmklqZQ1qJFq88ylpQeRcjXXw2MtXgCN5Fs5SwAD+1i2yRRS6vVNRvdnT5PEpx9PgJjh4/sYgJMd60bcvBwQE7W5vcuHmT1y9dpprPeezt7+BrX/1L2moq966peOPVl7j48mvcuX6FY+fOgRnQTsacP3OSoAyjlSV2x2PK2ZimKjnY2eSV5y9SVxXGZjTVnKaaE7QhH65w5MzdPPTY2xj0R7x68RIvvfAD0fL0oZsYUEqhIpPJJLAlgmwR35CzthB2Tq/fo+j1opZwS1J3NNYzLUvRwVNwZGODWVn/r5rimc3xQONBe4ULisxmqCwXc7pyTq/XW5wpBKwVtq8xhlxLXpeSH2MsytABwzJVpbqYK89IiAvzqkG7dN62MhGGTAXlZPimpihyGSMOHqMMC6Mc3QGAqKiVr0UGJoFsad2kPKNt29jIkD1r7SG9SBWn2PRC8y7LF8y/lJP6ELqxR+8SG1UA6VQdCulBo7VNJVuXd6sIgtnMdvmisLmS5FLoHLV1REPTuZreh4rMSxs1RxPoJzn8QnYAD47FfZf6MByaQlHomCOo+F5QxM8RSUhA0HQMRAXBHwL20jNN8agb51WkhM1I0CEQMOjFlF66r/FMDj7QyOromMRaGzLrqepGWOFxQsMowSdMnmEjy9v5vIs9lWtAi7mJNARtx05UyrCykvPW1bVY9i+mxZYeeIAHH3qAc3fdzZe//Odcvf4G84MDmvmMyf4O5WSPkGl8UJw4e5bHnnwPzhccPX6Eg90JO+6AwcoyKwq2d7d4/jvf4c6Nm/I+jMip2TwTZnMra91aG1mwGUtLBVledLmqIlCWJfPZBGuF1SfrpkV5JxrlSnQMgzKYosDkBXVdMZuVFP2CPBcnepQiy3JAjOpSPieNgTyWSuK63tYiAaLIo4SGiViCYhLjR14U9Pu9mJqGTiLF2IzCLhi+/6ofKhxuU/8rfPxX/+XHKOpvUTeBosg6gKqpPSZoZvMKVBYT2UCi7LqWaM4QddpcMnLwka1r0SajsJrQWvKswGRStPWzAUU2IASDskNGgyN4ZzCDEetHT1A5OHrPg+hsxOqJu7BZjrI5Lmjm84rJrGQyLZmNx1grNsnWqoimxiLASIfAZgbvDrPqFtoDxmhJZOMtbBvXdTcWTLU3fyQHOKA76OFwoRaLmlhYp+TZO/8mUMdFc4wOjIlBpnO7Tcm6UocCbGJyLBh3IKMUJgZq321gOtp3+rn0tXiV3UhI+nwXUJEOQarY5Z4oCKnLEbr3uqCPK/Jc7OqXRn3pcMWCrGlaxpMp01mF81DO5rgImsh9TIWZAAsKOhaaxJwFkLAY0Y1BMX3tTffsUMB8UzEduqQ3PR9/CPQ77A6XGBOJ7ZTuUdKkWLgshi4RTuPcvjuQ9KGiN3R6MN3BGJPddPymZ9utrUNj3wvqvI+AoY3iyotDJq0RkPdQVxVtbjh26kyniXiYrXhYiysV0cmttft6OCRcG69HBWHg+gjklNWc2cFYRoC14tiRYzR1y2xWsrW1Sescq+tr7Ozu8urLL3Pnzi32d3fxbcP2nU1W19c5feY0X33qKbI858T/l7h/jbl1y9LDoGfM+b5rfbd9OZc6VXWqqrvd7a7udnebbpv4FmI7xI4Vm0uMLYs4AaHIUQLkByj5gYJCAiGgoCBAihARkpEjfiQSEAFKhESEsI3dTtztbnf1vcpdVafq1Dl7n3377mut951z8GOMZ4y5vtMYqIPEKp3ae3/fWut93znHHJdnPGOM938An3zyCdbDHu+8/x6++nt+El//ra/jg299G2fnZ9hsbSq2CFBkYiouAAqCCEWsJFgUXh5oE7AhxjLqXh5Z69A7qBlTJMqglNnB1ZwFL7dRz8g2vn/o5UeDzQQAxGVEg0causWcfvcmCFJ6UEXAAuLP5TIiAaJJAEEKghMJwrGsD0DeG1KexxJAgthRDtWHUk46Igz4TdrNKfAEwwgGBgjo+uFHfvh345/5r/8L+N/++/87XF/d4PbyDdr+GlcvXmDpK6bzUzx69BhffvIF/NN/8b+K80fnePr220BT3O0XtG3F//x/9m/i17/2dwBtlvkTwbJ2PH3vXfwr/9q/ji9//gcwS4X2hu3GWkm8ePMaf/n/8L/Hs8s3+Ojv/T3cfPw99Lbi5K2nWG7uMdUJf+6f+ifwJ/6zfyKAYup/O48lWE2lFBwWmzZ9dnaKWitOT88c/JutbQXEQcASfbemqWZrA3EGhnDvWcqdzEuCW9SdXEfKCyQTLC+eP8cv/eqv4vzJ0wTchs/FUB7KSmq+BNT868deV7RrzCJHuS2DXvUSO1jZEkJeE3Abwb9Rt5LxR7vURufddXm2fEinnEDrp/rGCSIzTr1ZonSa7SQk/s6zlbY0bRh8T4gTcA0IgnEVw2aDiRzvx0NAINaqxD1CJKcU83wMgMTRoKYAD0u8jeebgM/d3S1a77i7v8f+sMfLly/x/PlzPP/kEzx//hz7ZcH9/T3Ww2KNpbv19LLG/xLgoLFh96n/tWM5LAb2FTEdafQDqCq2Jyf45/4b/zy+/e1v4be+/g38xtd+DT/9+38GTx89xW/95tfxjd/8dWMyl4qpTFjWhr4uEBS89967eP8Ln8e7b7+N80fnkKng9voKnzz7GN/69rfw+tUboM54+t4XIPOMFy9foPSGGbBJ79rxuS98Efe3O3zxvS/iz/+Fv4C/9p/8bfziL/xt9NXKMYMlM1WgFpR548G070ktwT7bbKyf17KsWBSo88a8C7Uk5bTZoJYJUicU79fHQUgsg9/MM+bNjLMTDubY4NSTASdzxaZOmDb22U0tOJlm1FoM2Css4S0xFXZk2t68foXp9AIXj5+mTHpZV/GzMSZZXMziPPL8BMjtr0wyZ9+74myTbOtCP0I8yM2+YAIf2gMmMfnzgmgRw/Pv/2c9IhHsUfYb5j2yuoGMQj5Pqclo4yv0E88xhHNabMAAEDYyTm3hOsTXHOmAWCvkekIk+teBfrcz9PSBzgwGsuTzELwIsAHmP1jpo+sH3zOe9Zg8zJVm/NC7+xuEK9QGFIpXgsCA3cqEIug/pD4D6IcSKFMfurXi9voGH3z0Ef76X/2/42//3M/h5u7Gyu/XZjFgmXw9C9AWzAK0av2d9wcbOjGXYsDX6QnOT7d4/uwFDvf3Nq36ydv4B//oP4TPvfc+vvj5z+GDDz/EL//y34WuHdXvK8rWfVrrNE3g9GfKK4G+Wm2K5snJFqenp9gfFuzudyjTjM3JFoBXHjngtj05AeCATbXPbzYbTPPs4KsRDE63M05PNjg/N3LC/f0Oqoqz83PTv86wnmo1gM/6CJld8320Xp7e85gINcG9AQj7zgffxi/82gcGKDrz8ORkA7RuE4GL9ebdbGZsNzYsZPZnN4YY44kSsYfJddo+INeVn5OScYl4X1yJeytZwk45lGyPAUmdEbGl+zGRsOskNWRVDb+P16Q+poJgBU7EOH5WgrGIoac0ZTrObH53rAEAbebPEvBib/s444OOzDNjP6ti7GX656ZDFCI5ZVjU44Fok5SxJz1v17JZKQTEPWQfVEQcFu9xn4ZEDg7W7KpeylsxefmsQg3AGqvaFFZBsCwQ7VGirZAYZCJI8skoD6qpdwXma3z4ne/ho48+wtd+5Vfwa7/5G9jdXOLq6gplPsFXf+Kn8eTJW7i5vcPjp09wen6Kqzdv8PHHH+PyzUtMYoOnMM8QqYCaL0Q5KxxIujaUqVoSpRacnFif6zpPtp5qcjLNRkbS1tDW1Xq4d6sE3S/76Em5tBXLYcHpdut6WLFxEG/n55p9d2evyBDA2IDbjQF/qihzTrXm2S1+3613bLfbiAOK64WuwJN6wP/iX//v4rO8PjPA9z/6l/4x1N3fAQcKWFmisVrIVltWQyarZynWtWMuNqmqzmJ9Lg4W9M0bwbbOEK3ANGEqZxCdUeQCTz//PnQ+hcoj/MTv+0O4vDngcz/0I3h0/hSqAkwbnJ5doNYZh1WxWwwkuLy8wm53j939fQbpas4aevdSFfVA3bIhpTC7Dhy8h8O6tkDA19V+xgyEdivXZaNxuFKqbiQY/JkSkACL0hkgEs9m1+olpWMzXg1BY3NTMtGoWdY1WQAjsKdHCjV/zx4eNPC8P0CiLyKzusFc9GbsABl5rtgLAzX+l84mlaL2dBYJ/M1zxeNH53h0ce7AnjlVh2XF1dUN7ncLlqVhvz9gbWvcFwcCWBA5fm8qe8CVdTc2Y4OXgIUC1aPeKEACbGOvqdY45RHJCgHCaSsOKBLcIujHe2DjZNXMNEVwN4Co/J2VxPo0t6GsuXlPDjLMiohn1QxMMOo/FX9+bwajnwZruF59kDeIYLfbYZkL3nv//ZClGMbie8SgkkFAMFAiMLazQECIMqu9g4mULorSEf29ppLl2FAydLL8nUMFpBQs3pS+SMV3vvMB7nY7fPDh9/DBt74JQce7X/gCLm/uABEc9gs2PuyjzjPu7u9R5wn3uz1aW3B3c4vtdoO5zgbsrw13t7d4+vQJPv+F99B7x9XlJXb7Hfb7PW7u7gBV7PY77JaDBwZWPjbPUzTNBhRttSmaokBvKxjsj2CDsTzXwSnXBGF7TyYS2Q0htz3K7PvgDGI4/9RJviEgO3eUUYKw7vIY6FDcPeGhBmC+VDo44bSlKrOLj/qnk2WoDwLEfC4DR3vcP5mH8zTjT/+5/wpOzy/wt/7jv4Fy+ggbNFw9/xjPvvttrAU4f/oYW9ngR37oh/FP/oW/iM+/8zYqZlzvGtZa8e/8O/8r/JE/8ofw+OIc0hSAlc/9tb/1N/BjP/Hj+MP/wB+BLh2b2fqifvLqBf69/+D/jO9c3+DNq5d49hu/Buz3OH/yFE0b1t0eX37/S/hLf+mfwfmTx9BS0NduJbCbzZEDUp2JWz3pUUqJDPM0Ve+5OqUOLcVK/GoJdk6AZaFPkc40AdvBWR2TGtwD/rs6u+eT58/w67/1dTx6+la8jwki9riKPXanMhMgPPbuWPo9sEQNkrZufB0x11xWxAMIgImgFF4yXwSI9RyfKf7Oe9OHTevtKqO9Vf9eC26z9yD/HIN2Os15VlLPcYBUGYIIu+csjc51OR5MxWbh0YtTc2ImwXLaBk4+LBFcDYCCZP/FyPrzvv1+OcWd9qs6+1Ag0CIGskfwoDYoxFl/19dXuLu/x+XVFV6+fIXd7h7XNzfY7e6x3x9wc3uDWirefuctXF5e4fbuDl3VWILOHmzrgsUn5N3f7/DO22/jL/yX/wlcX1/jF3/xF3F9c4unT5/iW9/+Fu4uL3FzfW2MnDpBJ++DI+JT8FoGiN1aFhQI5s0Wp2cXeO9LX8Td/R6vLt9gs50gaNhdXuFwe4+Ld96CbLbAvMV/7h//87i6vsR/9B/+BzZ9uVvD8XmziXK4MlWgTjjZnrq9AVTEB8HZkJ15njFNxkRbF+sHCwfa5mmDE/blgiVSpVRMbNDvg4vm7RanG5t8erLZYp4qTrYbbCabCMjhHrMUTFVyau80eblusX6ADu5Vl8/byzfYnj/GoydPQz7IPGGpayYTTZ7iXMrQToVnGmnbGUvSZ4xhbkL/yt7QB1mVYjECmVSTn/nq329MCAu+ulo5GIMt83km96sJ9CVITsAvz1P6NiPwr4pg0Hbt7lPkcDNRG3gAwNv+2DnmmaZOI3ODPlAChuYTfsoHpc2TBCEVmkzXwa+KBEUAIxnUj3qYyQrqK9tf9gTLUke+RjvP9zcvqWd5WB+YUCXsTj7LSE7w2z0K7ntXXL5+g+u7S7x8+Qq/+qu/jp/7m38Lzz95ht3NFa5ev4IU4LCsxrIVY68tS8PFo3OcnJzi9ZsrZ4hNKHXCV77yFfzQj/0E3n76Lp48fYQPvvktvHz9Br2t1juyGPuJyZfiellBJlcNGUlZdEBV1UC6MllPzO0WxcvQ580Gm+0W87z11kN2rdmna4vHtxvvvTlNFWen1kvTevN5r12fkL0sizF5BDY9u9YYFEibm0lCcT1tz8RzQV9bVfHxh9/FL//WhzYQSIr3vDe5tWcy8G4zTVF+bSXENoihuv8hgmCzmryRhJLEDsDiZZI6RrDMJTPsDnuD2l6IM6Q8SeaKIcJekaggAbLlwzzP0Xec1yGZhP5lVEmVEt/HNaIvlGelY7Tro0yHHnN7Gn5LhjYJokVZbw4DI9mDPo87yFZ+KxjWwn9OMHB4Lj/VCca7vDYgEgT5Hvtsh6Lo2FoofSINYXGdyPiNVTs9K/WYIKrTFHEy/aTdfu/T4amHi8ewHQ0W6zBpwF6LpVSg2+T2uVq15bq2YMbu1xXX11d4+eITfPz8E3zv2XN87/nHuL65wZuXr/H8o4+w7Hc4Pz3F9uQE07xBmSbUeYMyb+w+4UQF5JRnW0u7z7706IG5KnUs7OzOmwDNa7XhXaVaMt2qFdTZ2LavbdkbccWHsq0+kbNv+egAAQAASURBVFzcl9LWvITc5jEYMF4MCG0LyrTBZmuJgGmqUG8vB7GE/TRPBk7aQYwz9s4p8G/9G/89fJbXZy7R3e0ayj2w7Be0FdgWr+2eFQfvpTN5vwJoRxVgLhUCxflmi9ILTjYT6samoq19geqMtlRcvPu78M7v/gOY5nO8+94P4ukX3sfZo8fomFGnDb4sAKYZAuB+v+DqzTW++8nHWJYV9zd3aH2FoqMtHfN2BrpP6XEqrmBGgWKeJ/NMpA/BAdALAtmdXNH03n3SnfU4APwYiWWzSAsPkMOdCkAxour8rxRzFjj9isAQr7WytMcdrBGYURhqDXeqxheBPiqMYNtpltEVEe9BZsBEb81pzxZ4l2oGjKWe2rOsgSUK82ToeSk8cFamYZkeiewMsQXTm1amMc8VTx5f4OLxqZd52Fqth4armxvc3t5jf1ixLFSoNgxhnucBIJMAYgGEQaJTyoCodytfDOXogIrtH9c1A7gx4GOWl0BFY48o/7TCS9TBTOLg0Ll8WJN4ceNshq/3bhN1azl6P2AGvRG46wxO01Hm71YlRdhKbdo6TMWi014cBFZmeJ0tqBrAkHpZMnsyRQmeK03eWvG62GNwzzd3WK9lbeGMiyMAIsw0S/5cjX4uBZAO76HZwqBCXdYUwdZR7Zir7fl8sjUWAoAf+ZHfBYXip3/qJ8LRFog1onfG5Fwq9vc777Ni00vVGZfh7EZvDwviHz95FACyNbgXrG3Fi+cv8OKTT3BydoKzR+fY7XZ49tEzNO347nc+xKvXr3F9e2PBrSoO+72VWK8Nu93OWDDeO0fVMsZ1sgCzuoNickoGkKbToSmf/LnbOwMIumuIkKnh7wEijGfB9xQaSQomagAYGNtaVokOuE04QQKIECByMJbOliLKjBSW4TM2C+XGkhbLYrT7ti5oawPUJov99b/2f8E//V/75/HW2QWmp4/wnW9+gN3ugIuLR7i5u8Lt6zc4bE/wm9/4DfyVf/ev4C/+438eX/n8D0BRAZ0xbx7hvS98GV985x1s6oTruwVvv/Uu3lzf4jd/8zfxx/7QH0NHh2LF17/5Dfwf/6P/K57d32K/NnzywQfoywF1mlBRcPfmFeaLc/zQf+qncbV2XD1/BdlY0L+5n41yr+bcnJ+fo7iTV9caGfpRH/dusj1PE7QWTARtBFFuZo6wlQ1aMJol8tyFYKmkb5fAU5zR1Getd+/3lsE9e8IwIz3KD/cx8svqcqCZ2QaS+ZnxiLefEEYn9t4YENTZX8iZ4+5liwi6IeJmT9Y12NoUPDIRrMdd+MGpr1UhKOH8ikiUCgJwWff7GgGOAfgLh59nxT+7rCuXOUC/6PU3gCPWzPw4wAZ4PwWlAlWmWJcxucTrmdMPc0xc16aO9hJAqXGvYfNcR9ueqE20dp8CDNgVWSYl1mNxc3aOx+cX0Pc+H8AEfaPFp5vv93vsl0NMy17WFbv9HtfXN3hzdYmPP36O3e4On7z4BJfXl9gf9ri5ucV+v8cv/MIvQNeGs+0ZXr14iV/71V/Bk6ePcXJ2ive/9D7WZcXz5y9wfX0DXRrU+6mJWHWAtUGZrAeddtSywfb8AvP2FO3mFlsB7l+/Qa2K5f4Wj588wTyfYN1s8Mf/5J+CiOA//rmfQ4dYIq11FFGcP7rAsiw2EGqqNrkawLSZ7YzOEwoKivdLFlQoxAdnaDAymgJ1O2PpDf2wRy2C05MTbLdWOnSyMR+pGa0bANlUilJTdjH4a067s7YZXa35u3TICqiu6A6QVdp8t6PNfQeeXbMdLeRd4eXn/J2fWTixNQA2D/q72x5OgmVSCOKsm3SO4q+qatUTBVY62jp6Nz95USspk5qDJRIAV7CSgQMH1O1LQbY/KXM9OlcWcPYhEM+KAnt+a59An6LqoJ66hF6jXuzuu6YuEC9HROgSixm9r1IfqkcGX4n2lkAHxBJAWgjWYQDvuvdLzj5fBKbMhuSzqiom11ZM/nf2F2uZ9GfPVCbqJweRap3AapDjGKS5jepewlkyQd076jSFDqxFUcuEt95+G0/feoLPffEr+Inf+7P4z//Z/xJu726wu77Cx88/wTe+/uv4hb/9d/H8k+e4u7rG1c0ldGm4u7vH1dUVRCyxJXPB2+++jSfvfR6P33kLr968xN/71texHhZUkge0JNt2ZI9VC7CNDb+huYCIOEEhK1qAjNnoP3X4hN214w73Bha43e5rR9/MphfmOdiwgOLuXjEtxrif5gnzNGNdD4DaoJJaC7abDZbWcFhWQLwSym/Q4iA7OCKL7ZWzWqdaISEHXjK9NFRMJie6OkGiYH+wnp5VOg5qfcVKFW9/1bGdrdxxAwMrq4oD22TeDcOwpmK9fov1grO+es2JMt2Zhn4MrA+SgSYeO5r5sLLl1AkSe0KbriKY4AMIoWFD+1AhlWz3BMFZWptAIlvJaJzhaZoylht8JybHICQlMXaPIxB6pZQCVGDi1FvGg+yf2TioyjEEOFOXSnA1UK0VTT/DqzvYVoHx8+wxZBe2kvKBIErfwBJ+BCFEhwSDe/LujoU/Zdtj8ZeiRtKdVSbs1R/nCBql3dYn0WKf7bzBPNu5W9rkoJjEIBDtilYFu/2CtS9A32P2CeKqQFXF08eP8eTJE/zwj37VnrOtWA57XF1e4dWbN/jk1St89PEzvHz5Eje397i8vMJ+t4cRsAhb0U+0RViXZsmuWjGdzphcX04ex6r7vEyelsn8zVkmQAx/mMrsts3OQp1mJ2/ngDlzwzgd2pj/CiuBbqsNHNnvFutDO1n7NdOhPihNChbvUYvqsxJkSOZAnHg2COH3+frMDL7/zj/3p9Be/V20tWNTBLMqDmIZg8dnZ1j2e5xuK0qZcX5ygrnMQO9YpWDWCRfn72C/75Dzc9wfKn7sD/4xPH3vK/j2Nz/A7/7p34d3f+CrHvxuo+a6NcX17Q1WBW7vbnFzeY0OxeGwoLWOaTK+vQiwmWug4YbWm6KD6lEPNh5sKdaLoLcGODAy+ThjUQJIptzaugYyX0pFZX+sI1YAgvnG2v0EzLI/ylhqRObB4v0OeGgIPEVz4p5GygxvD+CGDkJMEgxA7EHGpedoc2a5CIqRpUChZEbPmJge1CCzo3SG6PAlIGhXYyZjsym4uDjHo4sza0TrgePhsODq+g7XN3dovWNZ6Aiy6SsprojSKSDLL+ggRVipR9iTBTqNYAbSCLkT3R3oItKnZEoyYPJmvLFWfnTY50Q1gczWyIZLQJb3ODL3uJf82cjAoGPHCcvMMo8B/DQZU2zMSLNHX4Cdfm27Zj+6DwbS0DSgBEgPhwOWTcW7X3w/1vU4m2+AJkGah1lrf+IHIBIBKtuc7oGCAeaDfHMhj17qjg+ZgbEMgzxKOEhcSAbAAWgNQFfcfyxpBvLpKHDRR3q/hiPaXYGz+TXXmSDabrcDFLi5ufEeeYKPPvoYn7x8ifv7e0ybCXd3d/jOt7+F1hpu73a4fnOJ1lYcDgt2h72BT6JerubyIsbuYgkgJ5fFdN4R9AHAMm3hgfC/U6bJ3jqWEfafdGdJEQNAAGQJeLeS5WAfNj9H7EW4Nu8dlqch+xz6fSNBqD4w+aBWMv17f98/gN//+/8z+Kv/j/8bSj3B68tXwN0Nbq/e4HZ/j9UDm5PtBm9dPMaf+Uf/DH7iJ34WUmd881vfwOWb13j76RP8wFd+AL/8K7+F3/NTP4Wrq5d4/OgcP/njP44PP/ou/ubf+Xn8J7/6NVx3C9IvP/wubp49A3rHxZPHuLu+xsnJKf7AH/kH8aM/9ZPYHxbc397j7PzcmvT2ju12AyhwcXZujbtF8PjRBebZMu2Ts29Ksb9Xb6p/st2A5TDzNHsARjDQM+BAMMaM8VdjT2U4yzn8Qocz4mxYPyMvP/kEv/71r+PRk7cwAm7A0PYAiCCO5zTPn0TQmgBfnpUA8yTlJH7nYEP8OXycQBIkeHNHzKJ4TiDONs8jexUZ0JHscTvTLudtKMPkWmkm3ei4M7DNVgfJhibzz25b4++jRgpmj4N+RfKZDAQkcxFhXxmQjEkmPvcYzI96jAlL9ukFskWF6YAs2eUzxRrjuKx6ZHrmXj/wHbjXJasL+H6oBkizrCvu9ztcXr3Bs08+wUfPPsbHz55Z4uPqCh9869vQ1vEH/uAfwF//a38VL168gAA42W7x9rvvYu0dr1+8RhXB5vQU02aDq+srTPOM0/MzaFcc2orbyytsIajzFhdvPcWbV6+wLjvo/gDtC04uHuHdL/0gHr31Dn789/wUTrcb/M2/+XO4WxYsbbHEkvddPjs7AwS4ujZdPRUrndeJLR2c1SRZBjidzLg4O8N6WHF2ssXtzR12+z2mk1OoGHB1cnKC7WzDVdCtf9TZ+Tmub++gKnjn7ac43dpwjmmerY90tYEsm+q9Or0RPnXG5Ky9SXygXR18MAHuL99gc/YY54+egEwVyhtZJAUspVY/LyaL6oAwW3OMTLiwsSme4LTQBMDyJCg02Pc862yGT8YOfSdVDRYz7TMZrHWqnhRU9+MzeWuTgns8px4fReapIkAL380Bc5uWq5YsVMleWnxQwdE54VXCH3DdNT77uEaUnUFjcHHAwSiKBDN50dG/IZvfzKTdH0ty2bph1B8i9OUQvghvdfHBP72zjoI6KfsFEpgJmfCHYWk+RKwaQeGl/wSNrbcXSgndp37/XYGpKnaHhrvdLe6vr/H8+XN8/PFzfPLiOX7zN34Lzz76CM8+/BA6zfihH/5hXDx+gv1uj7au1qy+OnuuOmjjNq2K+IADYJ63mKYJ283WQAVDQx3Y8z3xMkL6tfacGStACHzW2PciNvSG/c2kGHNu3tiADivZq5g3s4H+0wwmoUSMLbjZzMGiV23BqrVp4W7vnd1qpAb32Ty2rMVaibx69gy/8a0XEGe2ViFrkD2k1YE6+0ydqyXBFJhrwXYzB9txLhWbjfkltQqmmmeZVVrq9nQEDEamLP+Tkp9J+U+bUh3EZHXX2FIjQRsXdB1iFWA482oJUfqxGJivfhgLN5R6jKD7g3P1O0EggRcM9p5A2fhiuKnDfXIAjg2a4v3w3dSd6vs5svs1fQNxnVrEWKoiUdpveXcN5hxJP2PsKHK8bnmzab9t7ewMsFqGYFQyhy2hwxYxCvt7gZWZM2aQku3CplqxdsVhNd1gWErB/rAEJlJqtVjPE7vjtXmrpqcOuN8f8OLlK3zvex/j6voO9/c73NzcYVkWHJYl/JnWFKoNdbZBn1MRS6jVyZKaUqAyto1RSHc7BMRQQMoSmXjVbZv1tiiOFRkAWqCBeYDJZ7VKvrU1HPYHa3XlsRwr/EIEPL4qkwGMm80WHDb63nnBv/1v/g8+JZv/37w+M8D3L/+zfxr947+DLhWndWPZjQmYClDXCVOZ8aX3v4T58ZeA7QUwz/jSV38C8/k7OOwUP/DVH8Nh6Th/6zHWVTCfP4FIRS2K/b7h7tYm/b158wa7wwHajOVRquD6+g5nZxu0taM6cqtqrJHmGSpoD+opfOMW7ytjzc0tY2pDI9xQrWuUXI6j66FWVtC1Y6pTBkOhrOlgS/xJ5390zEcGH0G/1hpagEe2tjwMpMQCCR6pahx4+0VmOkanXMaD6ky+cNaHQN8OvAt3zelbDCjZf8GcHhxdJ0qUBlHKrIezF2CK4fz8FE+enGO7sX40vXXP+t/h7u4erdvhoKKEGA3WAsxj5yqNhq+Xg5UERKNkSWx/BYjv5H4dDRrAyPpABEOMU0cGJsBMVu63yZ6kswO7DpWf/eeleqpR8s2ytWBrqjmsh8MBm3mO/bFntPuf6oTWOb3Z5cid4jHLSnsUNHs6quHcPdgvMZltrWNZDli3G7z3/pciSC8hcwm+PHxFE9rBSI+Bth8GiDuox56wOYejc5nngYDBeNYQ4MGxQz04bciM/BHcEc6yHP3He6dMjINqQhgGeSQQBkiwJ3VY0+x7WLGs1u9hnHR8OBxCikSKTZq6N4bffr/H3W6H3/7mN3Fzc4vHTx5hv9thXQ74+OOP8fz5Mzx5+gStNbx+8wYvXrwEFFjXZWAuWsKCiYbi5843/Oj8J3DBhzzeYjoSniM8cvZS+xkQGL3HGMR19fLiHuVVbAjOjTNA2hr7a0ugsfeOk+0Wf/gP/0m8/da7+OXf+Bra6YwP/963gNax7m5RBJhOZiyLZc9Ophk//OUfxp/4h/8EvvqjP45pYw74clhxf7/Hu+++Cykdd7fX+KVf/1X89Z//ebzZL2jVJpLdPHuG62cf2WCNkzNjfG5n/KP/2J/B+aMn+Pjjj3BycY67yysAwFvvvoPXr17j7XfextnZGQSCp0+f4GSzxfnZqffFsd57IizTsQDIAD0L2seSn6lOVson8AbiLAktg4Ns/x6TK6M8m+OYyQGW6r385BN884MP8PSdz4VOpW5jf1DL8B73CsUQ9NFesKdI9G912QltPdhG4VnmOaSdHPRH2kzEfUVyhEEwbVzY3ywjZMLAAs4s7+WUPxmCcSYbeAjHRAuG90Rbhs5BQ4jzn9+ZJbS0raOLRUaPK57Q/f7PsNdMzDEYiuCJ3zfoKa5f+BbIMuWRVXDk67tdjHPpz8VnPk42ZRAHYdKPiSuJBAl8fyapJmPej9ec3RWtd9wf9ri+ucGLVy/x9W98A1/72tdwd3OL73z723jz+hXasmJ/OITs1MnKe+aTU2dedpydngXj+nA4QJviZGvnZG0dh8MeTB3MZ+f4yo9+Fe/94A/hvS++j1cvX+JXfunvYlmM8XE47MC+ddUDFhXB5vQE2jqkG2B50O4B+8bas8CSjSenp5im4iW11j/v4uICL56/tFK/WrH2hpPt1oZpnJygSsG0mbB2xeX1NU6mDb70xS/gycUF1mXxlh92zus8YzPNmKWgTrYnk/ffmxxQmL3EKidGm2zcXb7BdPoIZxePw6ehT1Cc8VTcVusg9yIO/A1+3lHZKFKPBBgYyT2ecMT54CuHeEjoB56bY9lMf4Vny4I/90+FOogVMvRVHfijn+h6wp7H/x1wEOIcARa7JdOiJ7gvyfwDkGxFruXgY7G/IYNx3g/PKhPuvnzUCAk3DGs16srjv9v7ouetn1v6mPT//DgOPvqgV8i8HHTJOE2bSW0Go9TvZmNYWjb0R4PE5xjnkD3KZIkI95v6k2Xc3hfVH621hvv7e7x58RKXNzd4/eYSby4vcX11jevraxwOB/tvWbAqk4QZh9GvZdXJPM8AbKAjwDYvfZDXBCnIpJLiJe9eKUT9G2W5pQagWpxZN+rMALkqEzsFm+1sNlsEs/fdlGJs/erntvKz1a4f5fTV/cwxdoHi5bNn+Pq3nkPqJip4LE5yBlYxvhbvq07VmKhqzKxs/WE2ZjPZZ+apYru15EFxfV/dx4Ak+B5DavwsZ4KJJcY1k5DluLVE792H5HSfEq2uwx4QUiT3lvLGpLNQdmifpDgZp3usWyIWIWsr/ZdBB2gmuGMIIU+h+y0kq1CH8kyHjyMZCYaP4zFstM+J1kiDvnP3Oz+LeF5xlUB2NWXErqeDDTd9mdVYOtx7+uX28i7eD2IhIKu78jskdXyn5qSP49WZtQ5yL1Hi2xWe6DM2ZC0Vy7rYeiisUgfmlxieAbdBLhteJr6uqzHW1SYts3f94bBgXZq37FLc73bY7Q+4vd9ht99jvz948kGBUrCuHff7A/b7g8lVLa6rPWGOAngiXTVnJRQCoNDo36++3xDX90y42+Ez2VKaNwG8f2zvHcuyYG0rlsMBh/0By2HvPY7tPSOm8YXzgn/7f/qv4bO8PjPA96/+s/8FXNz8NgRbnDz6ApZlQjk7xZd/8qfQywlefPQ9vP3eV/Azf/xPQWcrwz07P8eyZmZcID4meI/bu3t89L0X6H3FYXcwqvT+LoRsmqg0qDC6l8VOwYxjH6ABegm2Hqnp6ofWgl0zTNM8DWWRieAXkQAJ2XgVdO4HpUZHRUMQ9OjAAem4tE5gaXiPCwcZTGxoTeNNQ9o8k0ewiA7heC8jI4zgJNkNdFLI+GN2b/LyigDySva4EyE4kM1PGSwRNIBkcGkAXAJOqh2PHl14I0lzHtbDgvv7A1bvY7h6H5DlcPB+VUhgEYheTHyN7CQAn1prKiiCpCMrQuGAqG9aBJUuNDGSvOfnyQQdHRIgg9XuzVitvw18XXsodhq2h4wIygWdg9HIiMuKICdbufVA12x4TPAplC8kJu72rjHVMgBMSebnuq7YzDMU6mUNtq/LcsCymfDel74M39IjQ0QjFgY/7lsjYD3ajyEYd9t4jA+OToOq2yF+7xjAIwxbfsFw2jXLYI6vz72SuFcG4QkoJMBLJyK/H5GxlSE4YdnA6FyLOxV0DHoEIZnp4iKSWSRi7GGu6zQlGB/vKcXOCywzttvtcH5+AUCxu7/DmzdvsJnNYbq5u8P9bo+TU5sQd3tzjW9+87dx+ebSpkrd71CmivvdPpIo+8Me7Iu33+/B3oDNyxHZtoBZR3M8vH0ByGBleWcHm6lHnxXtR/uqQLIfmzGw27Jatr+tdt68T5H0jlpn/Bf/7D+Fy/s9nn/yDM8++RgvP/4IZ5uK25tbo85vNzg5P8NhXbDeHzCXii+8/0V87gufx5PHb5kOV8G6HHB58xovr2/xcneAThtsNltgOeDN9z7E4fINJig2mxnLsqJuz/D7/tAfxM/+7O/Fb/72N3F3t8Pbb7+FdrvDsq54+vZTm6zVO05OTvD2W285q8aSFNvNBk+ePEHv1lj35OQEd7d3ePToEU5OTqxx9zzj9OQEAjEmoFuS7XYbAOD9/Q6PLi4G0CedzMlZDRnkStgQVZbOmJ559ckn+I2vfx2Pn74VOrZ6wmF00OlkYtABdIwzKOT4lzz7yRyTo2x9Oj4IBzn0BoZoXwD24MRwTb439L3mv6PxNDScM9plC0qPGWolAheA4EBm/lOrJPghoR9Sban3RnUgouvxewTBwAef/cErfAoMYGesD+JzOSDgGITjfYRMYAyK+qAT7dkiASWCaZrBiaHauwfnQ0Ay2hlf766ZMGIwOdUpbE/25bL7JEjMZGVrDYvakI+Xr17h1auX+N6HH+LDDz/Ehx99hKurS7x+8QL3t7e4v9/h/nBAB7AeFohafywpBethhWsR1MnKDdfWcXpxhvd/6Afx3vtfwuXra9zd73BYDqbz5g16tQms4slDtJ4B5lSNuaOwRKQI1t4hztpZlxWqwGa7hUjBNAkuzs6s0b03ybaS08k+VyyoL0Wwmf0902wTOu9u8fjiAp9/622cn56E7rSSIgtO5jKhSsVUHTRw4GCqBVOZUIqd+1qMnsOzdnf5BtvTRzh99DjOGPeM/6IuNzsO1+XecgXqgMZx37XiwVf0sOOJ1GTqwWWGoJaT1CIopiyEjMjI/k/gLc6A6wsrkxp7SungV2Bgn2nccylZiRK99AThn2YyzwLR9DmOE/Ldk8asjmGpXK5ric9EoFf4OKlXxIO+6HM6vBjMB3A/JC0yTOe9SapLoctkaxcTkP1+x8FFAVQUZxA7uKW9B3OMa8DkW5QMK7waaagGgMdINdeuOPsFkAD+6K+zIoeJEpIVjGThPqz7Etys1la03rAcrJ/nbrfD9c0t7u6tJ+jVzQ1679jt9mjaIaWiLeZLTLMNFBAAFxfneO+9z+Ott57i8s0lPvzeh/jk5WvsDw3Vm+EzGQz/Y2y7pACkWP9esumYzKxTxVSK9eHdbq3UvtOuDAzYASwjAwgCB2/skWut3hbK1oa93Nn3VQrw5pPn+Ma3PsE0n6BUsbLlyjNKWUOUX4vHaAE8lpKANNSYwZPZ/o2DbiLA2cmJT+uW8B1G38KDvkE27d/HdszYhbXU4XyaDHNStXvmQ9+9bHlhcjuC6/7V7r+H71wyxqm1Dn38JD4XgFnI7+DnRyye5/Vhgs5k+Ni+jQSJ9G9Sj/BMJejXjIUHDLJuGEDiCelrMGFRfLkzLj/WLYybGGM0B9kMoBL7f60Q7UdtdrhND9eAz6z+BuIb3OkkXVCOEjeg/GHwhTKOdN0ignU16EzFsI3WrTVZVx+8AiTQxpZBHICyNqy9GdmmmE2njViXNfRJKQW73R7XN7e4vLrG3f6Apa0hO2tb4Qc//SS7IIr3w7Znmzx2TuahK7eIOWkXrKpJYxCrjD602ne3oa9faw3LYsnQdV3x1rzgf/lv/Cv4LK/PDPD9D//bfwn18hnefu+L+LE/+o9gPn8XugJf/pEfxbS9QF/2kFrRpTqNEtjvDthsK1pveP36EldXN7i6vMI02+86KgQdc7UBHSfbbFjevbdcG8AmHlQ7zJMht+HEaoAhm3kOEFCA6MVTSwnGn2pO9iuFvcpSAVhWYVAsAAiWQOFVS1l6wPug6l7ZT8B7dTQfm002GyBeYimhCGqxjLhogoZWItxAZD/Reo3yH5YiJfCCcMICwPTMVG/NWWHd0esHFGd/TlLd45qh38XpxjWdpmBNGhhjLIjVjG8fHByCKywRk5LO5aCAeb1RMY+GOGJG4Wh37j1CBmi7VdnY3I0DSzU8qImAzb+/eXaUzocNV2F/BN6Kxu94z731aFBq+67huE3TZM06B9YNJEvIckom/LnZ+6FHT8iH2ZooD1XNZ+sNs5fyJuA7lILp2ITWGa9qo8WXzYR3v/g+GBibkWLW4zgwHffatied0jR6iOvwlYDfMTOPLJYEDIegO86jnbuHZS7HV9cIEMLSKNKxoOMLyfcPf9cjOTtWl5Y00CzzG+4deFjq+0CP8By6ExNGRcdS4MxMKyTKb9e2hgywR0fxMxjZRsmM6OFwwDxNzlq2yxwOC6aN9cY4LAueP/sEUguePL7Auq64vLzExx9/jEePH9u0qXXB7e4eV5eX2B8OuLm5wbNnz/Dhhx8CEHOQVXF1eY3Ti1NcX91gWQ5uyHIoDSgj/m+FGWfpls1rq/VksxYGK3pv3nPK+lVtzs7xJ//0n8Pdi9d4tdzheneDj77+DWy2M25eX+L+/h6oFWePH6OenqNstmgF6LWiiAX0hcDRZBnz2ZlS7eoabz76CLrfYxbLrjftWKaCn/nD/xB+38/8LD787W9ALs5xfnaOqQtKs93dnp64/gLmabby3KkGs67ABnjs9nucbLbYbDa4vbvFyckpnj5+AghwfnaOjQ/XOT09wWazwWazsYxmTUdynicUyemZAkQQQKfzcDjY+5yBwbIqlrS+fvEC3/jmN/H4rbdNzobyMHE9RNmLgB3qQELBwxKbTzvLY/ldDxa1DrqHwT1ZDwwYQx/kQcMIfjH4UB3PaDqccXabhiLgVMB4c2iIQVNoJq54D0fMcddr4ViHvjtmB1Ij7r3v5gh60f6IO7Xjc43XGCeip5OtR+vHR4kyKhyzrMdgrNbJn6lET9JlWWyaM/dSZLCTdk/rUJIXzj9BAbTodWY6zxheZRKIJiOMzv+gOU2fAWiajKnWO5bVSll29/c47Pa4v7vDGy/le/3mNQ77HS4eP8Krl6/x937rG3j+/BlevnqJ1ZO6S2s4PTvHNM1Ye8d+WbB2wZN338X5k6eYthvoVIEObMQmVdJXmKcJ87zBZp4hXq0xTj5k0NPZgkMVtQpOphlbH5whVSwwKNVKdGFMhzpx2qbp4NdX1yjThHfffgsXm603w09gvRQfxgNPtDKoKwnACxLUPQLSRXB39Qab7QVOLx7H+Y9y/wjEjd3W1XwDFIkew8Jz58B4nFNxIAw48s/GwTwS5yDlMwLhkOH01RJQoz/hcdPA1g0fYDiDYwuUMXl5xHZSzeSwrxHPFSSZdeGDgX6+B+lDIvmhL82kQuvdhkS5LKsEfw9Cf9mfgSwyc3Wz/I9rM4IDcdaRlRHmp/ZYC/NfLY4IgJU+2aDijqtRNHT5CFYAGr3MdPA5KSvc1/Ch/T4YS7EHZZHsxUh9MiajeG3qNcoSgQnqfvpt1Gsc8hZtE4RJwhZ7sTarhNntDtjd73GytaES1v8yq1Sg5qtf39/je9/7CLvDAbe39w58CM4uzi3RebfzieOWyFP1/o4wAGKq1luuVpucuvUhHPBnLpRBP1/WkN9l0e1o7x6LwsoFYxp7MR+JdsjiUvvdzasX+Pb33kDKHCD27G09Jm/iD39ellxPPmCJQzus7N2uUaolkud5Cp0yeWWBqGIzGfO4+HUKJAYrck9MjgqFJXWm7yETXSLiPQWPQTYN+TR5nnyg0ag/JNTwwxY0GSsxTglgBYhS0+LrnXow9c6n4hfV4d92YcYvqgi7yLZF0T4l/BscxS7ps8DOi5+P7j5868g1CE3DD0kMR4LfE4kbUb0lDyoQ4JVS3QZ2tNa9xlfQhWc5GYySt4bwq2KV4jaC7a/D/497EGvmz15r9piLwThdsyoOEnpUxOxuc+bbsq4O6PkauD8lQFTGAeanLKtVQkLEe6n3IXFgcrj2jt2yYHdYsK4thqbYGWVyQWMj1t7NB2rJ/NWuDlj7kCZQZxd0WL99lmlb2JL9CZMh3nIdfe1HFuZ2vcb/5F/+F/FZXp8Z4Pvf/OX/NT7/1tu4f32D3/vH/ijmk3Pc393h/PQMd3c7aLUmxje391jXjuvrW1xdXWO5v0frrEfuWFeywIplIypQFAAmtL5iKvBmnqaoDvv9MCnI2QmtOciXjBpmA7Q1N1gE0EpkZoDjCX1lyPSTdhzACNJZpVMbYBGFIxg6CXIxk3YE4vizkFrf3RFqLenFPCDqpyvYfJIMLHtUHcoD7e/Lsrozqdlbz9dl8mw3XHmGsj9SmnmgAK/mcyBSCoLqT6cj+qq0cYqYKfwemUCfZtu5Hl6aKiWdz2KU8MgI83vcMeA+tQcAJteBf0bQRyeCwYn/XEpOu1V1lhJBF8jRd/HeVY97H5ERo2Bm8jhT3AkcujPEDBaQJblSzNiNZSk0DmRHkXFRa4l9514C4fOCmazIuteSQxNcidTq/Rojo0pq+rA+IjjsD9CzLT7/pS8frUVQuTtBOh3WOQNxAt3ZyDtLQjIYLVHCMa45ZfKoDJ3POAQPPBv0+7nPYwBD53k0RuFQI0EBMgNkuBYNHf8/DSB1AR0a+3sf1ml0XEYZhSR7lMHyKGPUB9AEATMDC8/UsrxC4jwpAAxZJQOIETLKARcAokSYMs1zJ0Wi4W6U8XsAwWCOzug0z1iXFfd3987oALSvuLq8web0BL13fPc738HzZ88xz1u89c5buLm9Q50nfPe738Enz58BAlxdX+HDD7+LNy8/gaoNNdJmmbm2WhauaYcuK9R7+Z2cX+DP/vl/Eh+/eIVf+vlfwN3hEutuj4vzc0gRvHnxAvvdDoqC6fQMJ48eY7p4hHp6hjJ7s2co0BuwLliuLnH75hWW2zvMMrBoFagXZ/hd/+mfwefe+jzW6xs8OjsDphl97aieXd/t9xBB9M472W6x2W4ggLP1tthutphnA1k5ZXeaJ9jwp4r9fo8nj5/g5GSL6n11Hj16ZFM4PXhjo2+BeHl/sn4zy1hC/gnw0iG1gVImx69evsA3v/VtPHrr7QGAURB8puPL783YU+NsSmgfOx3iQaEBmp8uMeVrBKz64NREC4Vw5CXLoSQBo7/fa+yxSeZ/nvMEF/IcS4AIfE7+Jc/8ANx5hCEyOO4YQEAke661hu1mkwDGg5sfEz9jy4Rj1gAgkrqZfXnN0T5235gUCwCl5N4pEryEjv1uMkiIci7a7/AvXNeCgK3vXVs9GEkH3IYkNaDTCvDm7G/x3R7w8h4YrFuTewz359+inJTqDAgA67LgsN/hbnePm5sbXF5e4uryGre35mfe7u9xc7/H4dCBWtCKxH2oArpahn6F6V3zKStienvxpJfAqg/EhlYovD9XrZiKYKre54otScQSLFz8guL98wpQxBhHCjx68hiPT8+wrZOxjEqWCfIscTLhyN60vR33TbwMNYPLu8s3mDZnOL14FN9BW9Y7ASEyJJDMGsoqsgwtGbq0udQRZsnrVNMO8x4IOlMWB3vIPoGDkbU9AYE11wH0Rd0+066lTdUjwyzg2ZTBpg+BZATingj1z1Rv11NLjXOfbCXqPDWAZvQtZKgq8fd0BRo0qnS0d2fCZxlgrIfLB+MCAUFTCR9IMbTFOXpQhB6I8+SLJRgS8J7Qeai/R0VKH9EXPvQKK3yqA0QGOh9XbMgAAvL76YeZrFG3GwAKwJkrqX8pK2PSOXuf8ssR7QHGIUYpPopgPPJmgKhQYpk0Y5UxnusexC/LOsiWMXsIph7WhsvLS7x88RJSK7anp6Zj7nZQVczzBmAp/2ZjvlzLAYdMXlvMB3R0FO/FW8RKbLezTeRuLF2Ukf1E/Wz7efXiOb7z0RugzOaH1Oo6AD5pmyBdtgGqIKu+xORPKEFAeOxs62GsvRrtC4q3wTrsrXXQvJmwmWyKd8FYGm9rR5+buv2hjLJ8O5IWksAU/Q/guOrpSN/xWpJxMm0zj0jEgDwyImiryQD7ylmyfAJb2KRuG8kprjec8BMkCdpH4AisIWDDliphd488ivir6xwHJSHR751tnYYob4iBh1idPo0wDs+YyNYKIYMC8+GbSqxv6BFfq1DL4QwZ4D/2X49nZVThb6UPFzHhUQA33JewV6NdUNWScaXUIGyIk69UDQxtq8Umh2WhqvLp8TXWqqmxFTn4BKBvZRVqBrwBgO0/v5O9RWmzsj+sFTZbQjJ1Wff5AHYflFfzXYCBZASJtQhwj/ek2b+d1ycgOe0v8T/+l/5b+Cyvzwzw/fv/p/8QX/3xn0TVhs3ZI+zubnFzfw9A8PrVG9zc7XF6MuHNy9eY5hmtHbA52ZriptKH+mTUgr4amXSeM7NgpbPZwHW322GzMTbeuhpQ1ry0MHtNMBtNplwOLBARD3QSAKSSZ/ZPgSHDZM6OjYFmVve4bBZiiHH1KZk9TkqW4RorogeIxOtCjaLJrGj0jnMBj1LKZY3M7XEA8CBwcCObQV4FvO8EFRYBJTo68zQH0JGAngx0fnEKvzggUyKjVuu4ThgiQbs+B4mIqDnHvQfjKZxFn8R0lDFE0voVx45l94zlyG4ItkgsTK4NlQ6dmyzJVWd11mDejUqpax+GWNhBZD+BWirWgRXHTBNBFSADOCvVs/6PpJEzeCZjj+xSKxNhv0TaK2Zxe2QZjhVtshEpV21w2sLwCoFFBNOL981Sb97zcjignxrAF864CxgV8xi0jyA4LQUDCfunZzDc0YmeHfzdA2Ngcnfc7JnrQOf++Hd5H/nn8Avo0VmJ9aKzPXxXPwqc1Z1vOXKsEyzOYHm8fjyE/5F6YFgzl5d8O58re4awkbbfSaxbWy3rF88A76cCxOAcf7ijvWKwAySVPxIhfobH0iee8eYMhWCDYextVtFcjmhsAc/wcr0gWHpDlezNxe/Z7e7xd3/pl7D0FW+98w4++vAjnF6c4eOPPsZv/Oqv4fLqEq0dcPn6FV6+fIn93Q7b01P86E/8NCoKfvPrv4Hd/Y3369rg/PwcAmB3c4fd/R3acjAtXm3KnLjTq91Z0AqICuY6QWEg47zd4itf+QrOHj3F+efewpuXb7A9OXNn3xiUkwN1XTtOTk+sSXWpODk5gaolUi4uzrHdbCOzv/FG2+wruJmt3HC73RrTYLPBPM82KKIWbDY2BXCe8mdAZqMJqOW/h6wuePxMXzCJA1W8fvkC3/rgAzx+621EO4WabRUocRl4DTLKwLSUo3MzOuHZMmKwR8ISP/Yq8pL3kmXvdEIzKBwGYj0IaIO9RLAh2NAlrml/5nkdLESAD36Mj34efqu/J0vyjhMhoU3Gc48skx7Xh4EW1zfaLoSeT5sf55BnFmNvMu8Z6zceAex4/9Rrfs/GIgL90CEQSvvFa5LdQJCFCTg+Yy2WjLOMO4aAXqA9pxSPQT6UfWxS73DduScx6IchjftxESR6EMNEEwAIWVy+fqOTrP6d69qxtBXLYv/tDnusy4q7+3vslxX7ZcH9fo8GiUC/e5+w0+0GX/z8e/jSF97DXCq++73v4bc/+ABXN3do7vdYQD07k8IqGSp7UhbffwgglqyQKjjZGui/nSYrwx0ZKgNgR0ZPnGuuU0GszQig8323b15DplOcP36SgV/YP7edtOMhugPr0yTDZbkkqALBsi4OGI5ACQKYGcF4AmWIPc0EughtHj//wJ5r2tMj25miAFU+M+IcHL0kdQpliraYDhZBQCatuV4jA5b3OPqhkYwF/Qm/h1o9AQ2vvLFLMWhk2VZ3Jhh9jujr5bEO7TtBT7KBU2Ho8frkQ8fvY7gHfecHZ1PGNQrZyPgh/WsyikucjdAtQ1klKy8IVHJNTOdo+Fb0T5lktGmcCJaL+UaS+pJrTtHw+6WfHMDH4PfTN2OSIPr9igTIyNJ8CtXq09pHmbb9tuvEdwDeD9CmiFZPiJIheHt3h8vL6yhzZ+xmfpv3JoWBBxPlDlalxuVSqA+FNAaa7ZP99vb1S3zn40tImV0urUdbVGCVglLMxlBfzw7YkUyzBtnFpopW+vAiARrOztyfJiaFHdD39ZknY/Rt5jkSx8GOE0DY/xcPffPj8xngCsiGTNAwmJtSPA63dWB8KCUTgAM2GOSTlNWUe7gfq0MMC7E49yjG5tkckg38CwkYdi6G+IDsUs32NJGQCD9FBr07fIe/WHlmMkcgyPCS4yhp8GlCNfBa9nf64eKgVinpP9Hejja5+ZkkjEFNofGDjCFyjXL/+Imuud6xvpr+DNwfGNcuqjM99uAacO9VDcRrfi7X1VjDxgi0n8NlmvdU/Rx3sHf+w8SD4xfOPLYhic5OXq3XX4cPivLzx8otrmFvq7ENVaEqOKzWcmjsVWnyYGqtN69oVFvZEaPoqtDbF/jv/4v/TXyW1/T//i1//1edNlgbsFsVLy6f4fUnL3B1vzPAThtaF9xdXeLkZMKyWENjbd0n4DhttCvQAZWOaRKUskHrK7RbSauI0xu1o6kZTSKe1hTUHoNBAeBZZGY4a8FmwxHdkkGqZjZatQX41V14Sd2kMlpbgw/eC5YUv4NlKuvahkmWGgAF4OBeOAcmOKOia8MBK14e0kNgsiRkzPQTGGIvPoX6FDA3tGAmmn0Le2TQ2eA9gRYNFl2wrpzRI0olTCVk6zxNHK8OtOaMu96tXEZZOsD+CH6c3RERBwMi+OjGDKSWGhUikOWOBI00DjlXY3B2hv5Btr/eP8QdF4Jq7iYaU0i8zHvIBgB+EMWCFioN+10LB4K0eV6XCoDP1VqHENv3n9Hpgkj0hWSmgb8a+84pkIxGXw8akgjOgWBLEuSbpimUWO9ZGl1KMgzEx2vlusDvq2Ka5wiW4GvKzEhrDRy3jkG2eZMhax4MlOlBOR+YETcAiIA/9y7pzBngMngNBmsEx4NDqxmoUH4y44fB+cgyNw0Z4525vkC+P84dEIpbYL1UMjBN4xpvVth7ZAD6YHYSD2SUzpoqy8KthwY84Cvu/NdNObovGp7eWSozrluep+IyyECiRoIky2qKLVicU4Fa2QdqOjrIgJwluE2dnegOrGWGEzwsIli7BYfs0VSK4PHjR/jjf/wfDjlff3IFHMi+/VO31l5BO3bLHl/7lV/BL//iz2MqBT/8I1/Fe+9/AR9+9yP84s/9Dfzy176Gm8M9rl6/gUBRy4TTszNsNk+xrgcrR1sbVh9nr8XbEnimsEwVh6Z46/NfwFvvfh5f+vKX8fzD7+HqxWucn5+jq2Df1mBDd1VI75g2M5alYTnQLoiXx8JLexr2+wPOz8/DHpRSrNlw91JaZwCZ023ZdXPqdiaHW8XUJ7ReBkAW0AKU7nuv3c8aUDxgFeocmHPD3aN+S/vHgDWOP1LoU88ycJJRPmgv3KEuIsBUBkcuzzxt3LquoVMMSDJ5JpDESaFjII3hnDHjGfZmDMwh5vSXmo7/0COKepVyyaAwUYbUCXma80yPuvko2QaFMPLR4y/oXaHFn721o2qC8AvEStUxnD/q9jLom2Qc+ncM0wW5Nlzz3jtU2I92AGTgQVIEjbaXRbkuHoQ3+x72yB3FgnsWyVN+s+vd4vbcxHVYX8qu0l5m8EAbyGehfWEvzlhn1+dKMNKvW/3s8Bl778CGwUUPX43XHJn3NvTJE5bOct9uNtHDCwA+9+M/hq/+4A/i1Zs3uL69w349mK+m7P3TPDDxCg30oXWL2WNL5BkLcCoFJQKvYT3FfDiFB1tDcDz5AS0yBsv5e/G3dzW2gwEZEu1YaJdBX8r3i21huJeb2Xzr1ppNHBTxEsAp7Ty8GfsQyPA0dCb0RIg3BVg4BrMjiBYgQ5w8cf/DbBfEdZF4tZlqDAkh4z0AKwA5uCavN/bXChs/WdIf3m+bJWOZRNbQJeZfpG4D4EP9XJZ9uuwo57VUVPjnZ5NF8e8Nm927Ba+toSOD4Eh8e8wDJCNnBE8DCKsSfkVHstrYzxnDeg8OdKo/ni1VjyMUCp86LoJJWH3UAJU4m6oF6jEav6P341YBjL3oyxZnaE99QiToPebhRFLAgDDGSHwG26NMcNBG0C9SZRLS5JRtA6wlz5TxiesE+pZLWyEOLpIxv3hsUCtjLeD09BQnJ4w5ze8xX0jx+OICp9ttTNDcHxbrI9iXqHKqEBSFxR9wUMf3sbhvvt1sYkDb2prHxPT1FUAPXyo633jCTtW/Xzu0wcuFgblw4Ed1W2IxSodV0IkC1jFK0fsKhgq1+jDL3gEHYNam6Lpibeb7W5JyRpE8LxGbyejtS5Qd026PPoLpInucSC6JRmsa6h0DVxQNpq+l+ZkpBWDCUgb/ffDva62IqUF+XfHY34C/OjAI+XsSUR4kNwCzrw5OM34gCKi+H3HPvaPRJx/0SrDXRENXBdFlSgygK4ytpvopJn/YVWcYa1M/5wZ2Fx/KwoSBPdNQ0Vg8FdcZR7g8WCATOAD1IvUCgLiXh8QLxsoCsRYGYfcTbDO7bvtJIG6q1ROTzRmWcF/JWIUmD8Xv0+w2yTjLsqLUgoMDtNbH2tZwdsCalXhNcyAK5cBY/QWbzYnLekPrwLKsIWPmqxaUecKJr3lrDas2aDMMq7fmiUMbFEJcpjqG1NXk11rKHCe+PsvrMzP4/vJf+Xfx5OnnsLu/B4Wno6D11acCVQfgLFNVS43Gj9X7BNjIcFs85qCWw4JpKpHtqNPkG9+jzIhsMkNDm2cmKhTdpo8CYVAAgjvmxPJQ1PqATYcMQGyv0iFlfbiBQJ79cOYXWWCq9hzcHGObtQiwuiPQIqkcCNLUWnx8vRk8GoHiCjWzUvABCmsoeho8VWfjOEgQWcBSPPDQUJYUn+Ilf4ApXvbZA3hAuStq2WgVbLcTzs9OcXZ2gpOTE4y+3XLouLs/YO2Ku/t73N7c4rBfTJkUawRL142U8hi4wvWWwTGjAzkowTb0wGEZKBThTMaeYuivp9mDRJBlJ2tbfV0tq0eDQ6DMhp442EkwxsElNiZXlx/rt4gIvlgGMvaJnOcJqpQnxH2mUzUOeLGsRR1lwJ8bmsDtOIlUhz9LMfCSTgncaSjFlFCt0xHTD/AyCAD73Q797ATvvf+lOBtk30SG/8hxzmAtvdsRaM3cUzqOiOckGM+1oBNK4zoaYQv8nN0TSrkHtT0Dx2PAj2cSIhmII2U9nFvXE7yuDI5KngukMP2/UMa5Pv7GYWl8eeIHPNv8Ox1cPjP8LAwfCcfiKCPK2+F16JzwBwNYas+cwQUEORik5zAN7kU2aHYnJEqWBucMCIbteCsmsg917Vge4NcgMKsJ/JCtuDk5QYENyKDOZDnfen+PT158gl/9tV/DB9/5APvdDm9evsKzj76HV29e4/Luzspq3S5ZWewBt3d3fu7teaZ5g3mzxenZGcrJCR6/8zYenZ+zEsQycIAlqjaz98azjPPZ+Rk28wabacbp6Yl9Z7UBBPM04fTk1Er9ipW/bE+2mCezVdvtBuenZ6hT9UDCWL+bjfXByUx8yR58NcuJGeDSaTgu6ZNPydflq5f48KPv4cnb7wbbhD2DqIfNbmkABJEwAh24DJ4ThMtAkw79uN+lcGiMvSXbOUgAggRdIbbObLY8TuZDONppTyPD7KCQyWLjqQ09wGc9Xh+TweF45RmVOKwRnPA88XvjM25n4sQlRnF8cOOo5udHZ55rkmv66c/E70c9zCBKWWKqXvbKkh+WK/LGcNT6I+9X82rUYRpaeHjmYwefr5Hxx2AuWAO8vyO5OQ7wKB+IS+euBIt5SFyx1UP0EMSwx7zffOTI0NNnEslESJGhzF3h/WIkBcJ16rqu1jPQHfi1rejRR1Qtow/4AKJh712epLAnHt0eMmj8mUcQnisQ7EqK0bDv7qcIBNdvXmHFjLOLJ9Zj2p+RQVItqc8h4/2xt5MDR2yhQb3vfs3k/i7LkmmHuJfcw2CpSzJQGeyR5QUGnZLtWbgPtL/mvw9gl/tblYMhBp+DCVeeoZRjHJ2bUf64w+lfucxF4CnhV3GtaCN5dpJdbf0WeUtjXywyBaFZ+so3Wv8+EgRy2B4TGWFHB59kPHVW/ZHJuqNnxMgAtDUXjKXwsUxHwWWeO/tMBNgDsJjr4WQET87FMMRYO0+wD7FM+vqSzzPojdFnhLAiCAkeq7FiQraEDBz6G3ZQWKZItid7SqY+Q1ynuy+5eoxFwCAAIE+EE5AfdR39afYcg1curati7dZA/7AsBvD4EDyyfhg/MugHFOotU4QDYFxP3r5+gW9/9AaQOUgZVtLvMQJsQNjkpbtJ3jC/wVp+GMuPQ1EsIWILUarJSZkq0Dm8B+6LlNAHhXqoFJD3uZmmoUTYknQc1ER7LUdy9sCGuXSqCzzPnGpWmFVPugzedTJzgfAdQf3ushHXdTWc8ubp+TR1R9hA8zPI9ikl+tFLfF/0ewu/2M+2CBjH8u9M0nWvaqMSLUN1m4y6HnHc+K0+idbBQidHGMsPsWZc5QC9A4AbGJD+A8oHfbYpcv4CRcHaV3QYGAyVqFR7+EqgnuYydQf0uAWHf+DIn6BOTCwm7W9iOuy5mUleY0GX2GdiBat/niBd7xYH1GLtNeivhn/g5512PaY1hz41H7V1HUqBbZ3C56Eu82dh4rL5c65rw+GwYr8cLAHbe5SAt9ag18/xr/4L/39m8N3eXGGzOfHG/ILJA5COofcO3Hg2dSBOXMjN8dwzM+wOQHdWUC/WsHieZivRdeHneyYY2jxPE2TyAGCaooyRQtN6spIUghretgaLQCAo1ZlcPAiqaIfmwJ0fmr6mQ6kIJgiAKGEjfCWO5ALm6EUQopZhGydjpvF4OG2JNfLulLkzJvCDOGbvApijcw9YdsfLHAsiAKRTSySchymyMxicfqfzTnXCxfkpLs5O8ejRRWTlGfL1DuwOK64ub3Fzd49ltUmYvXdMGwO1CjoE06DgTXXQ+QjDD1fYZGmBDEKN5+WQDPNBBwd1WIOjvkZ0luN3CsuOuzNHMK54DwQfpAH/2divb3RWx0wolY8p226AM4cEFCuRW1br+WDlgTZhL0G9kW2FGPZB+ahlGJ7iZdOrywcNRPVpyMauy0wvM9BrDDzQcByFbE5NZqGAYIsF2r01Z9AODEil84oINDnJLkx1EVRhKTyGNZQj0LGrjUL3d2CIc0BAkY5ygMUimCRB/NE4k/lBHRADVByw7T37I6oOPSp4ky2fKS3rIJ8yMF8kzzwdCDMwcvRZTg2nfrHPDpGAv90c0IpS0gjSZeh0jJHfYQbk4d+5vuNC5r1OU5YXVG++zOvAs4cBAiAdntYajKCgsW9j8MogCcgy0ggO1eVpKN0FstwpgvBYEYV2Y/9WqVjbYiyIkmVPPHf19ARf+oEfxJd/8IeizGI9HNCWPVpvePn6Gm8uLzF58FOmiqvrazx//gy7/d4WPZwj+84FZsR3d/fYHfbY7ffY7Q/GiukdUylWTjtPOD05wVtPnuLp06d4+vgJLi4uMM8T3lxe4dmz51h94A6c3Ve9qT4EmOfZmoDX2ISQPTo3pdSYcusrY78bgKpIMInxhYuv8RjkQozlzVIXygIDcsrVCBwinDRj2PC7RgfsyDn3wIvgcDiW8qC0hvIiZkUC7BtKRBF9sTTkb8EhA2sGbe6cFgcBpzrFOYx7EmBkd5NtEck/cVc4yn0YpMkQHPAo5fPyWawkpHKlQ5Z4/dFxzQy2horp2qFt1C89dKt2iaSDx8t+jx6m+HONgMokU1QOzD6YC3XsxyNxD5Yc6Ud7mn+qB75D8CQJwFBfW/cbyefFCLDS1z2WFYT+zmCe7DWCCFzv0R6rcmp0TgmlBiSbJn9GAFfDP2ByVBVmRz0wj6BIHuyv3yvXXCCoU8E8n6Ar98iceMtjGPOatqiTDeFsp2VZbN09CEkWlN9vAF2ZPe3aPaijDB0HWMkcsfttrWcPI2ejiaRM967oWJGM7mR0Wu9rtgMpdC/cx0UkyVXZCxnO6BxtEVC0hH8XU2JL8QmixVll4vvVcVhb2MQolWQvz3FPVI98Q9q1mGKIBO4oc0dBJP1vyWoe4XvBg55AlO2/+zV+G8kmSqZP9HKSoVJibQECtd6g62qMP+oiBne+DrUKarHwbONnfazCSGBbM8EMa4EhQii4O4haQieU4XkysTIsKSzGiISXr1/2GZYAxmOtFbH/9pU1fGomz0dWD9sXUefb+VvjMwTbbe2SdZ33nX5uoZylygs9DLVzaOwYY8kdDsuRjx39BIsPfXC5q97rdoPZYhuPBaKixEusF48fCRqQkc31VZ5F1xmbYm02NpuNff5gUzOXZcX+cAAAzFMNO6mq6LWHXhOk7t7Xgv1+QZmst6eKUflZFVWLA5EdkFqgRdB7gZYOUXvuPrS2qtVjlJqWzaaAOoheXGeoOtWwoaqxqGqtkA5AfWpraVgWY4FNDg7OU491qA6MqozgPY7kglUkTrE7klHtNmmVOqAUY4WxRNyPcezz6hN2aSdqNdAy+o6Gr+KrLLnWfE21AjWJRgJj0GkwBofz7vcZfs9oN/23PBdFAFSSV0y/Eri2xndwOe2fOgfMOxWXX4VCfagjGW1dAW2mEyLecj1M9qvdm6JoAbCmbyEIYFfgfjg4UM90Q1t9FnBPhrBKQVO2Z+K1uSq2BqQm2WRcpWsa+jlfEnFaV4W2IaZ3X0hKxezDO0UkqLAKhdSCCpPBxYlgXQvYr2S/rh7bayTQrW1MxeS+YKONVgPoyII0lV1DRwSLUNXafPScrEubQJtlOqZh1hpMUWPRmq5ZH/iX38/rMwN8RQSbzcZ7k5lybG21vnndRhXX4r1aULCuzUCOZW/lWusKRfYLIOKvanX+bV2xLos5FN3YewLFyenW3A4h0MED480U2wLS9VkKQ6O/rhnAjZnCdV1j4AMDVxHBsizem0PzEAKhzBefhGoBdZb0GrW5HE0vtX/3mKxLJ45T0njNvjYUTl8V8cycCUmdihnOQmfAAcJg/BVHqDncIqcd0TgA6SQKlYsHOwDC7RcBtvOER4/P8eTRI5ycbE0h+UlUCNZVcX+/x5vLG9zd35vBc+ZlsoR6PGMlJVo1ypntXvwg281FRMDpwnTOIrhBTivm2ppSfzDZ1v/Bw8/GriODiU4e1Bp300hE/70HwZN6SQWDynVdA3ziFK9SCtZliexAW42VMr6f4NPkPVvmefbeIB2lTOG8kT04BvLsVWKDO2wkfEzL9We3npA9DEt3uasiaMUz8bN9ZnGmHxmPaeQ8mJkHY+hnlI4eQNZkBs69pXJjoDZmaI/7aNhzkaHD16cABA+C+zpQqYcg2WxX9uViTzhONRuz8ECWmIbzrBaIsVcgnW9VNk+FOyFABI1ABgTgUJHBKUU6eb8TKJAGMJ+19wQUeLP8vAoDkCFDD6tGoPOQGa/BmY6MYQbxY1kKARjGwRLfn8dxZFvlzvNhEI6FZYJtSMbq92B+ocaZgRAArFEyJcN/D0u4VBWiagaQutx76DFREufFdX6drBH+phR8+fwxvvzlL4GATmYQmW1M/Q4lC4jlCQZ+rN1KZDgBK9ZAyL4yAJNrJQJ8+fPv4cd++HfhbrfD3f0ey7pmOwZRCEoEFFY+XbMkU630y3rylSit670bgBW2pmerAP+ZqlppoFg5xpEM+TOzxEM8mIL2WM84UHzA2IwSa0O5PyqvoVzz312PPx9OXuqY1N92n2TdMqkRn/dnKmJBEMu/xWWvEdBXYFnCW4wJxBnM2OemeTo6kyYXPXRra2uUY/E6BEjIkonpcKAzfHzGx3VSTb9jXA24Pqce0Dgz/Lvrn5gmlzckzXYj1rwTaBFrRi0CUcV6YOIT0U+4iPpniwP+FdEegHbGdSAZJQRkTOYSFAtdzcfXFnpkBN+4jyPTrj+QFTLk008b9ZEMTf/dAY9m9B7k1QRZQx9pDnyi4qIdFQGmORPI+Xu/3UFntt7QmoasGGjTh/vLHna12gRKmQsK5kjK0YjYujoI6sFB02xNYbrCdE4RgagltZh0oz0e5ZfBMhONh8PB93Q5Yq3SJyTLJa1uBl1ZytzRV7gvasDFGGhZBYVk+a8SrEm23ZicDRGBRq9B6gKBTXIFMolqCcXi53uJYHbs58m9iB6Wo8qCt96Jvw+2VzUCRTh7zuxh+vKjPXXTDyaXuZfVAzeZjvWJHeVsmxEBrDOzxvUk0NrWbPZP/3GaKnr3EsVBh2j3QF0tGbV6Up32rcPLqwEIk5Y4ZgRXb2xPmZFSI3ZgXAK3hRIHIwH+o7ONwdcR7k3qh+5+8+qJ1jF+gxhYxj0o0rlaYSfkd9CxgIFM3I7KeM0jXBWBTnWo0LG4YmmrD0MRYwIxLvGkEve6equHOlUrbXX9stnMrocs8Z7TyVe0rlgW809GPcnnwfC3aZ4gpeCwHMCkcABdnrCnrrKegc5m90qu3ov3yKtYe/fYbXLAovo9GF5mwEP2XZ58Iq75jWtUCoh4b0CPvXrzSbsQqAOebWW55+pVCllR0DTJEulvNszThFUMMDNfJ3U3MDCwxaeTAmDCOZIdpYxqz+M+06U8QyVsWr54JpoDwCOLzJ7DQGr6uwn64chPIDlm4tr2tNdktVG/EHAO8M/3cWQZUzZMrou3AlOQxWi2AW6X/Xz19MPF9VFURVVLM9KX1SkZr7QxqmarUybNZ8+QTrCqopZ+dH+0v9WvPZEVbHOKwg/DKm7bRxPlZ89L+4EeZ9bOuMY6p3eOiB+oU+xHpvNiwi5jBBGXf7e/NGwdQBW0tsdcptDNZaro0xQtGfZDe4UgwNDPVia2gK7NWYDObHXGq8WowGaqFjso27etXuLbA8yDWOKVVZO9Di2palrk7/f1mQE+E97RyfMA/HDwOmWAiPnkdOD97t42RyQUJCI70n3cvAXapRTUacIkBVNNGv0R24aOsLKMlY1knbrp9xrlYcXQ22WxLJpROFvUxgsd8eIN5r0vUn9g8OmY12my0lohaORllaVknz2/T9LL6zRHHzNzSuRIMRgbL51jOi/VKZxT9V5NNcsPs5cPJ6SawzBPni3RLGclVd0cmiwx5UksteDkZIunjx/h8aNz+w6h0gGgwLp23Nzc4fXlNQ77FZCK/X4Jx7N5nyGRYkNTUlcGM685o4nOejg87hCaUTe6eAJ9g6z1ITMaTXvJRCGVnrkCykrHuprBI9LPTOPYG4mfIYOSipqGLoNlyheDIUWZyIZzULAj2Ca2x1m20byMBwAWZ7AlWA1ANPan+1613jBPM4RDT9TuZSGgWKyXk5VktcgQ0CFjQEKHBPAMldkXk8d9Q6GDKq61wAwZM1ZUuoMzDwscZgcBx4A0zpY7jeb4Zk8RIIHz0Ykbe0IKMqsb++oGjk5879a/MgIeSfNcJ+8H6AZWSpZYhHHDEJgj9Qsks8N0WqNJqx73cOi8b01nbcyeJ/iXWUcCWylTw8Lx1lzHPlzXh58XQfSpMGfcg946XncI4nnNzlIgOvUaa0D5C8ABDHtc7jnJVTzIDi+D64gwxJS9lexlcK0YhEj83dg8fj0P6su4/1Do0HuSL/UbpI3i3dp6+DNKAXlIvj2esDHZnwpL/ym/8fVgn7DwUICwI7Fm0jFNE85OT6BPkQY+QGTEPZmTnY7M2Fx/BD2lZGKrg1OSjx2CPB/54t5xMw7Lgv3h4IHyUFoEROAMXlcZFPjJOAqyQgCP8u08U2Myjc/ZtTu7n4mu7HXDtSuFZ8GDgAIUpA5NGQZq9TVTAoQZ0CvgbGdP2umS59sDOGZXpRTUKQdScc9HHyNKXWFMJz5+Nvr24JbgXwEiIJZ8vhH4Qw45zZBZE5iIc+oA5BhUZyDgJWnuqHeXLYKSDQyqS/Qssi+wLDwfmKADXA4gVsqi7u/wvjOpk3qD+pC+zqjLqP/T32dCYfiZajBboVkyNjLml5W6mQw3jfW2ex78IoK74Qcgvl8A9JIBpsJ682QyMfW/jPdIeYSX30Jj+djHrreOZW0hO2PAZzJSLVkKY/HbLZSQN/rDxtCHAzfGqDH5G4JJlmJzTT24mSeJIT1cW9ujhtZokzqWQX6N/eqBsbN5xCJmV3NmZyfaT/c5mYxeHYQy+dMo8aW9qrVGuTjLfKEIHcZBUXY/lvDgHkAKepewowaaCZRsnpj6WjHqTKX8+Tph2Fe4/23lXeoxmlLBREVQ71kNE3ad38HvkRDF0Jv23OYPTmIg4DhsoxdObuzBWMv+hlmO2gxd8zVjrGL23fpJTZ6cmNIPcp2xetDam8bvWiODCQHa854pq6UCni4O4FYl71c1z8jor8epH9aJPh9LqoXzhVRhfb166EsOccg1Hnwe70NI/UK5XlwGRCT6RguS4cy4qqiDOKWYToMEK5YDhljloTCywtIagIa+HMASZBHxcyIxxKJKRa2Tt92wdWvhh5um6K1hddZQh+LQFvc5jMnPCbrpXx4nxtfWItFTa0HxRJ/CWEPNE1i6GuCl1eR+Ej5fhXA4hNtOK3VUVN/XXgy4MQYX7RkifgJZ454gCrJC6+jur5k9twq4GRUrGgoQFQamJ4B+WKyiodYYBoG4nPuDoRFS76afaO+rSD3R1WIkyvrY4mPsgUZ9GIQNCNrQw88SNEidgLyX9D/Np6asDtYbHJzQu5X00sujbhwBLYthvUemV+9xLRgDg7LKaqQBOKRds+/P8mXqCFMpvEOLL63vnJeJux1j2EmfNHrvAdHmq/UGOJPbZJ+9Kj2e0oo6F4+XTNevDmpxmEz4zUAM/6K/EsCrcjUHfY3fwYeQ1OvN9bH5Qi1sD/UakxnaDeQvMJ+xOnNvIgPTff6+9vS13W9v6GgwDGZdWyQJ2TKHXquIsSylFJRpwlyLJ/CAVq0FgA0J0fQ/u6LWY/bo9/v6zADf/nAwBbgcsN2e4P7+PqYSsdmkqmJdOnorkR0AzFFk2QKaKbgi1giYh5dN2tVrvsfMctChgYEKaaJDNpMCRyw6QKKvX1fF/f29HYYigxgZ83CeZ5AO3we2hhn6iras0Eqmnn2egzgAP5TFMixVpsgyFvGhEy5w3TNIocLCaWOQYuANG6pyUhHLqiLbJPbskfWDH+4IQtm3QPwwKUiOsHtRzB6IPn36GOdnp54h5/OYg7XbL7i5ucPl1U0IpwFTdo1l6T6tSbwxP5xBYqAuA3krna6AaCglIFlVBmzZGkXpNNWCf59INv/mvjDzSOMFGKuUmUT2NrQmpmN5tITCFwEOyxKZGgKI0YtNuT/m+MMPJ2WS03bpxAFwppyBynQYuc/06u0P9papobj4OTJg2beLcr0si7PUbLOaDzigDOR/PCsSDiKFlc6NqkJdPrnWXFvbHw/MqYTDiZMIXs2ZcUPIIJJOIzNsdIQzsgMBZ7ulhJCYaWoqGSn6s3HqUt4PhjNARcuhFXm5YK9F+8IM31jWwimFDMhMb83phAjNqN0/AV64AVc/z8EKGvoEZj+s0YFJZlD8bNg/LiOfcQQgGWg3Oi46shtp2DmoRY/kgoaUpQ7VgxtuD58z1/A46OZz02ibbQwXDQRhiOPafWXvpkE8GCHYz4c9oQwYcyTLVigHZZBlGe4/ZDzWdPxkfj7OPoZ1hmDcYkHxlgX2r+oA5ijCwdEIPTbsT7zHXuOgJ34mgiS/hg73LJ/akyPpeyAPdCSHZ+zdG+rbe7bzBtt5G98Qe+b31FoPOQI0EjPRc0jJMHBQpacOGSdSmpx5GZt/P4EXerA8X9xDZkb5XOLKgvJ6pAcA1ochJk4OwXLvNkDF1qEMwamveUmfoi9rBo4YwFV33si2HHuI6nD27azbf0tfB9nDwC6WlNHhDKYaSBmtKEe/OnJyqWNCjkb7aMN/jpxhlxP1stneBeNLBE7O73H22tCqYAxG6ACHXPqzzeB6DGehe8AVSTgmmHhnZNmN4Ib5JKHWS4K/8PfaWSEbVgzAzMOaNk6oczxwI9tKEDadP+vhj6QOLiJAwZE8w69bJZOrhMPCdsnIwGiD3k+wtnfzn1X5fj3WYX5/tPmiXvpL3WvC4G0octiH9YlevCpFgmXE4TVmbt0ncFaV7U3D6jKzNsQZIkhaq/tDXQc7QRvJSggNlpwIsKzN/XEGpT16hQLGFDrqnStZyhR+kv9/HfylOrAc6LdlWbSDXHBmSilAS9/A/LpkG0ZywXVXKmU7D/Sljxhn/jL//1iXQ9PfNVHIHtIB9Be+1YwjdVzjoKqmmHqClVBg0TWvS58ZA6vWgVMOghIAUyejNatGOJFzdRAaAmsno0wIFAfT7FqLtqgaiinoviaUgc71c19Qew92bthSsBWP/UzhZcSeHMyEqS1+02TjrOsKTm4vghzgdeRrKQ4H69GrDhoGI7BWVPqHLq/NmVGMyYAM8kUKNvMc+oyTd62kv+NwWLCsy5Fe5NobuOiVKzDWnxSBThOw3UIVAXS3ZonO5oxC+3sP+6serwXo52fcHS1bHykoExN9acetPLVAO1CrVYdoV++N53GTACgCVbEekChoKhG7oEjqueL6DDB/Xaw9UxGgqyX4CjKu0Q406VAVyOQl0S5US3ObIEnuoH5mr0QeqEy2hNnPc8B4z9eavcy6x8/d22cVMX87E3G+VsXtYiQj7HvZI5HAYC1eqkx9AcbdD2MB+hVMkNr3t2aytpmno6oK7i983dIf1VwHl6QKQP1MdrB9CcDBnoYnrEekn7BnSrIBoA4KTrUYEKw24Z2tInqzPR59etg0VL9Pk7EYptdYKeb9LoUs8ZzIrFNF1+4VFhwginjW8GAFRxVND1/iZ3v0V+MeB9/XTJHppbVrkAA4CCh0mRh7swLorgcmT2bLPLku7+h1MlLSBnb+u7U9MdtrvtLiNj3uwWNn8R9UjxsKgCozqhTsl8WmcUs+79he7Pt9ffYS3WKB8DRN2O93AEz5VDHqIxv8k93W1sVKb9uKfrCJYvM0GZXWN7mGchUw4yEwGroFGfnwLHUkJZ3DL0TgpbUShxQwJ2AEBus0g83s2e+sOl1z9drykVnHBsV00NbDAbUac22asrxQu6JhRa0+BXAIAKz9gX3PCFDas1dXBA1ToXPnDsTAHOvaQxESCKRBieABFC7jztIBIsDGQEAEONlu8OgRy3BncIIPX9oVu/0Bl1c3uL65R++W2VpXA/aMqWgGsRQrJaizPUutoxNlz57KlcaZoOfA4NIsJUI4Ejy0Q+A//D17Kh6XHxKMI922sYw3HBsqiQTyWM7EqJwDVbi2luUbaNeadfbU83TkeG1gCIx8/7sDVK3RwAmgw1RkYVCalHeCxXx+Mn0os3xGgpoS48XFraMETT3KW0BGkt0bHWoGaQRCSylYnSHCvn0J7kmwEihz4wRXBnHiwV8G7gAnPMZ3xT6bseEzdn77EOi2NZMJI9BoWTog+9IgzonCsuFkHjCoGuWJTjB1E88Og3WoZqNypHGWIRCRaYo9OX65PkH2bQj2CzO+mn3CcLSW/g0ECNypGe+NE1R5LZ4/OtdsiE2QAyIo3b5rRT+6TgBGfG7/ezLKKmQ6Xtv4nJ8rOslkxEbfIwk/NZx+Oq18xgApskmHO3opZwTi465d1/E7cs1KOon66fdSbtJ5sJ9k1jfvlx/JGEairGTUoDK+efjd6LvkWh2vef4kz+LRFz0UKyr68fpIXT++ba4V23mOgIc9/mrJxvFs3hxlhJpNhbt2YOUUuFxn68mTg5Cod7lfZOkEsBUBt7MFlAAHQm5NV7AkzINQIAPMUFzpHFN2jsBxHJcDj3JmQJ6t2KhjAHgJlsaS220zUPTAZKqY7SAEeKB+L3S+e29Y1x6OefRFK3mWxyl8oIP+YD+Z9VUXJFWEfPDvlCkGDwwWR90J0P+wh+ro8Mo4EHAZmecMZFhWnzelEC87iT6xw9qUMqGVEszuUb4EySIiA5ZARADGMsj/w7MRwR9/bqx26jW7Zw/2evOAU2MPqG+ybYSVtY/Mbj63CLLHrLOuouXKIGfFk1VMcMVnZDZ/hu1FeraDYZ/f6HXqfsq6Ztkl9zZkRQZ5qcZjERFs5g3WtsfBAT76GeI9tXr3YXTiQaTL81zTp0gVyQRNVjfwlJj/78k/lot7qw2CWcThqFeqT5ylvVrcj18pr/AkEzTKEum6WDCbbUdCtw72BILQMdzf0XdkpYM6WEaWIIM6jfJUuwCB567dWE5xtpDsSdqUuEeNtcXQcoDyQdUSQTxSB9aa8sxBbtxD6k9bW4mzGVUBIg66GPcuALJSbEojFJtpQq9+A5s8N81LyOx8qsciedY4SblAoOsSumlkm9AfppdAn6x7ZZFVZrnfxVhEck2oUnpPhmCUOAYJwFmtyxpnyb5rjKscpI4kJIB1ddAvWekqeYbAONBBRDKAKB/BbqwVtRr5Y54n8ykGf83K4q0FFQYbJK7riwMeo+3YThW9GZDEJHCRZFguqw3xIRg4eZzljXaP/TJvTVOZzGDFw+gzd2PVSAyWssRBUaCoMeKkwKeSGjOqFqCo2ehpygRz7FdT9FKsvLbkGTbfBTgsLWJ986esRRD9rLV1IxfASodrZTxr5bpRzk/d88D3ER4ufyLGX3YG/WyrJ1aaRoIrE1SS/qbLYmWfPo9dsLINjDEc1X2KSPCE22L99UJnua60RXXMoXUnZqReVx9QxzPVPCFk9iOcIWgX/7e5xaiGA1TKBWzyM70HYUWGalSvcKXYG7WUCmUibbIya06ZNfavPSdLfWNv1dqi0Dk2/9n6NdM20VcSn6683c4Rd3OIjTHUhz7AGPx/HZInYMzip5xipryn/IPkL4EGDgB/fjKjFe0BsxCAV/MZOOc2qK0Oklp7k20VNABdK9ZVcVhX1KlAmpMoFFDXdYdlCR8j+hr6HsyTDd0jW7/1hrSy3//rMwN8CmPBMVAmywdqDfPJxlsOB2y223De6zxHrz3AHjSmL/Xc4GCxafZb4TAEgfWYmacphIBjkRkrLQfrpxYGGQxseZs5gMP6WxQs3rOEtHZV9V4H3kC0NctWtDS6kzewLsX7wRQz2AzOqYzM8Gc2lT0CAXMIVCyA4uQhGkFzpArQgbqp0euE/ZPIiuThEyXQ4RlDP7TaAZWOUoCpCE62Gzx98hiPH19Yc1ffVf5/74rb2x0ur65xe3MHqRXL4RBDC9bWwfHTqj0a5Nrz8oS5EhqCOAz7oQoHbnLqVhHSlSVAPgKtRSQy6ZGl7QwOK9Zl9aERPh6+Z5mhObk29r41ywaq0905wZiBpbFFi4MhOdG0CEdyDwGsehPrmuUlZOGRtckyWSgCFOsMarpaw3DKqP8+gFr0+L5lOQQTM6ZSaocq1xc5udl7Q3Cda80p0GMpqICOlwchxZTMppSYSB1BlrJUU638xi0a/71iYNn4YjDTy//x2n1w6Pis7F32MHAVIPobcsx6gAb+gcx0s38Qn70j+miWBCvhyh59CJaHV60lgvBwuEDmSAaI7IGj63r0ee4nHU4zciWAQE4KjZJ5W4hYZ+7OGJAHcK3HUyRpcHvvQG+5fn6YuTY0mlHKq8O9BnsGQxQiA2sBEA/Ik9PsF3DjnuXGKVsoWSJXfepsyjYFhQAgy9qOQUBQnDyoQJF0MF2nZJY3dzJCfh3BnFjacMwI3vGeea3sBcg7TafVBWFwPD4Fwfn9cBMQ9xzf5V9Hm5Hg4vAagth8pvG78xvHfZej3xx/nUBwv99j3u/cWRVst5uwPfM8Q0Qw06lUjTKpTLakXg3HmckStdKwBCO44Oy/U1A0dTh1hrCXCYCRHUK7YYG3xG6EUw41b1uQ5YQRUPOzCRCGHA0vgm2hfwuBvgFIwLGjCXdOyZTiY7Lc0ZoxVwuIZDr6jujv6eCfOdMhsakTZejvWJJhPMopZSFP0yAHw16NyT0gGVJjuW0EQsDxWQqQqUfpXpwdOQYli9uUkeUrUrzHrRwxFcSBNAM6jhOlvJ4467317FfHjchS1RK6Lu0V4mxHYwFflAAPkZUDCqB7YL609A/DboWOSxbSwzJ6AtWZ8BlsE5ylKCbnpbLo3Pa59QGQgZX6Wc8fY4Iz4LOea16u2/LvpZqfuKyH1PXFJ0/7k5AZtDtYqfpUrVxYoN4TyCaXU+RrnRBVepGEdA0mBGAQ56+1NUrCjO1V09gLzyaCXZt76H3gLMqJc2hgBMAuIgC8b2iywRLwSpCYUyvJzmRT/1JyCEbKNielRgox5JRBq/mhGnIPWPKRZaC9s8Rz6Husiu4tYFKHpJ3KwTkDq839OtoFvjeSZ+77Gl7nZffSI15iCxYylGy4l8clfj6YsCHQBADTZhMJT/Y0Iyuwh27KoW/iynFlOb67ENSdYOwBPyf+ZwywCxdMMZBe87wQHNcBnOka72Mro87OBF3Cx+yNOiOHzUkRdAiaInSueOwhpURMJ5IkEGhHLe3o/NZSXcZsbedNBRw0n+cJW93YOnX2Tmterm8+22G/ALIOSfNMmBjBwc5qLbQjVg1V68b9KMH+6k24rwrGNoVuRq4jyHaEM3BzAv2Y3GI7F9vHjrVpMF6727HWLTlQUNHX7iCixXozy6op4s5mL4XxGgA/P13tua3MX2Iibili13W7xHMvsOm9c2V7HV+vPgzm8v+3RxrtuwTjjWCXCo7Ys6re+oB6mHp7SNzDfdL04Ages2Jh8HllIHcM8VCt6UUayExCjw1g62v3cloJcgHPffSQb9mWgWc5bZTbn2J2fK4V8HgVCozVamw7YzLTYj0joWXbBRQrsTYbZHY3Jj0jq7WOq3vszC9QSEcynlXd/6dPw3UoVoJcFZjtPLbWo0IwelYjfRyuO2MF9WvG7/UYY7AkQwQ7rpsI3irgQJwqBwF5j+9lBfGbwnPDdjI95yeUjdmp/X6PqVbMU/WSd2BpCswTerdWAod1DR1FARcFNt57VqUCMcDp+399doBPfaACDFQwkEQ8S9t95D1wenbqwZ9Eaa45aQZatE5nwp05f+hojOwb2doaYBsFdVmZkdQoh2M/B3OErIS2OZuNSpbOdToJ4jXVlk3kwAETHg16PjOxpIzb+3wScJQks7wTEXwcTfZtqzduzczqWAbBbEs4LL1hmmb7t+b0nwIvgVTPigKggxAgC3Dk+M1TxcXFGZ48eYSL81ObakwhBwAUrK3j5vYOr15f4u7+4AwqwbK7NwfC+/8VqWC/oyI2GY0BB52VcPrx6aCwThPUm9My48XAw+SLTCKJteuufDkMggeNgBnceRmHJORBPgaolEAPMktH59m+h2W/VAZ9kIcOqTUo5r2t2ejXliBLwwURAHbNUevMJvi2RT+90bEj8MYG8tZM14yHNL/vbmfPAKMEShmEqPdRYF9EyvjxGqeTQIXMcoEAqJVAqjsHFcP+prF07RB6IhwpAoMM7DxqCFMccoMAoDKDhkwg+OcDTIB6iUGyAnhfY3PtHPCgUM17DkmNoFAZhxiQDTqCPc4mgSuJdavHZ92dcAYIR2W6Vvt0HIyD/XXGEuPh7/7zaVD8wvvnogGhqxQEzDyA956fZAcCiLVhgNxWjetTZ6jCejwyMEO+ZHDmOQ2NoECAHW51m3aEF58CH+ejIA0/iiBAQH6NG2XeK5sGjwAg7yn/niBglF3RqeV6KQDPEI9MgmE1HziPQE4SQMryeGEcXSp1wtHTy/HmuzB8Gnbi/einfh7fAcXgsbpz+wCI8t9R0yss67o2hYjp9IPbUjpdBkqZAz5v5ijtqc5WN/1PG4cjp8qAZvVgoUUwS3/hcFji7G7mGeydKs1kibIgpTh7gM429+xY5gnsEAxUDIzpWH0dNlhDj/K3PPs5HZbLmXtPEDYCCP9a3tIxGN/Qe8OiB0AYxGR5kLjdZ2JoBB2YRFKyuVqHeq88RbJJGMRn3z/Tfp9m2PGTeb8AoAP7JvbQ3/Bwqu7xf8ifg/vOKYsdDW0AxHgfA5sGDaNMj6BfXJN21zzMSJCUmgx2AJgodzqWvQ+BBwzcIUvcozU097FYx65suEQZ4b2Il1HF2rmPAIDDHyizZCSYvUmAj60p4u8UHc3hOHme7fxE0k8sfKmuaztMP8KnJLPVQ3MG0uKJJvEyPvXkIzdNxAfCVAONFd0SPR1QFSyNE0FNxtZ+iHUvImiLBhPH7FMNoD4Cet/o5ve3ws427fM0GUVk9knILOeirxUMVSUDJ1sGwHW+FOujZg3LTZ8RsDKiDNklTK7RPqe+YmUA/L6lTkcJDCYtLEhuiH6hyB6ltvw8NxZUE+DiGung/7KPs0LdtiLAQQLtTO4XDD6MyxgUHkeNQCV9W8o+oLoO4EL1eMwnrUqmqjhhmSX0bB5fYKZOqxVeMoAGshWBxVIaALTyfLD1SSMbW4A1Zb/09PHZboTrzcEQ1EypQ9IPpX4Qtz/W8kdiynudJn+uYqWhrmuqy1hrDVJlkDNntXmcBz+/poOy8sfYNzaM0Z8Ah+WAWrwvYCQznSkFO0d1MwEet+iW/amBpa12hp21t/rARCZtSwE4iVWKDaEU1Zi6a7FujWSUa1PXVw7saocVIJqUVvpazrKrbosQfieTGFwXKxduUKy9oE6KqgUbL7c2VpKfJfdPy+B7qHaUOg0OEJN0EsnxUgp0XaznnwO3bP8B2n+BlV+jREy12WwwRUuoB/25+Swu6UIfz58vYk3l2bT3WYzeIp4c7TYPIIFZMw/OLHVQTkTMrqqiVPPFXFTMBSEYWNyWk5FbJeKu3jrKZPqdbax4LVWEbxW+edh+hI7nM07F9IvFhQCTyM3JL6yao+8jxUutRY7WrxYbkjnVCWT9N0/6tdAFnuwphr/EN7iz1FZSA5yIJNlXdHYZEb/21tmxJEoZe9WG3bWevcJNzXoPYJAxTNlD7NdDkkruvQSzt6vZ2eayIaF/JQbswXU5IKjQ0F9zrSjbE0/4KJqDg/DvLEUg02TAobAXtN8PgHXNlhpk83+W12cG+OgE9Lbg7PQsenyY8qCSy4bX2hVr92a1ZDM5JRVAMNPaYLi0CNbD4j3MOvqSE3Lhgch+twcEQU+1HmjwoB/eXJvZA40SEoJxI+MoDKQiSoxFBE2tSW73Wu7JS4tJhy2lHJdtwjIbOcggkXwG4ZgyiGdGKcAoKhYp1ohXLGMkZP140MF+Dz2MSzov3AvApuE+fnSBJ0/OcHpy6hGNxnOrWg/By8srvLm6wX5/iIaVh8PiPrGBi5NPfjElhwQ9qFjD6fCQIhwUM9LhdPfMkDPrmWdOTOEq0DXBvAQn1JlqhozTojDbyEPGn5GuzClrLK0ptVoPQe0RYEfm2Mu9aVhCCfqflI/uDDGjXNv32c+tRw+cmTqCxvDVMacuS+BatBDMcmFVL98OMM7KUgHLfDKg7R6B8LPV+zRCYCAtFGWqqHDG7VRt0i/7/QUTR4/+DiAcuSyFRQaY4cRm4HmUHSwph0egJoNZBliq0GH/c3DNMWMvDRrC4GIM7CnTXVHUG8x3NofWAJSPe+kcg1MmvqljmD3OiY3q908QO74mmANQA5EpuxyOUEO+zRwx8LDMOocNpT4Yy1Xg1won0pk9R82kXSeAgZwIZBbkeTx+XjtPybRhkBp/dyMOTRZXGMhhL6PPEIby3ZAF3ydJowsgepF0tAi0+b18Bn4HWwfXUp3N4Q7/uB+K2GPkrQ0l8gNVAGP209eE/VB5/8P9cL8x6BZ7azn69/gRhITkzymf8ad8+uMPvmq4x3wRsBnX83e6gfSr85t4vsgsNuaer687lofD6lObATkcQofR4Z6m2QPH4lN+veyoFkzzhOIO80YdzHZ7bH3HVhwO+5jyeX5x6tVGlLeRfa1R8iZdjmQfIlnyL6M85v4dnXEPpDO/n+uVYOCwigMb8BjEHYIEQZRmxz2oHu1I6BsP4vva4pry4KywJ5X1/CnHgxKAo3NJfcPSSfZPG3XlUVJm+J3JzFCuDPdNlOproCXQkQb1APzP9JfCrxnuM4bO+OXGczmCE3w/k7cRXLVjOR4DciDLi2J6rfuBiuo/nxi/RbkjdVDYt+K6Fxo/FyCOVP5bhzOU92x6ox8dwQ6F9BxKBCDuk/+2NcDR5wwI9/5JOAQThDZofPa8lrlyUgRzNcY9E062jxpJPZYI1cKJqRo9x+rG2Ltrb1Zmy7Ji/77WGlTs/PZmvtQh/GcD/7X79Evx887A2hQ5WDIVQXS0TSTIl30qafNCVguApu6vjMEdS2EdkEPBuqyowZa3Z+AQNfYhJehqn0eozAR43F+tqWcttpaUfYKZ7m80B4NKFwc+zUeGWElgkQKVnj2mXOagVg5bGISr7WwPHZFlX/ZBiZY+cXJdBuya1t/aHtTIEa0JgI4VZEbxbHnwCfqSLle+VxN95IGFr74PdWLVitlW+rGrs2Fy8NjI9HZ9w41pGr6cRK91tacPICZZQEC2GhkZ4Exsps+UDC9fbCiAOtkeFJARaTKwcdAUYvGIlQt6hZCvq3YOPllBkKfIGjqXIAkTWgCcRHGsuzhRe5Jig7i2G3QYAaM5S6qWit6M6WfN+RW7/Q5dO3bLIWwP5UVB+ewQNdvhDpTJW4W3idIAHnTY7wo4M/bYz95I9bJvHw62WJuDVoyxONUJUDG2lrP2pLLXpVVCcQgTdUqSArwU1PeHLOYqJuOeqsTucAiASjwRI2VykGqFANhs7PNTHT2m9L50+H8MMQwEpqU8CQTGNTCXlEB2+PslE2m+RO6ruzDB1sHi0skpphmzMzw4ukeRIERNtUKr6Q5xoBrOfi/FpgMb+SSHMmnvNtjvQZJM/Jw7v82Zf+IxhMn9VCoAS6RqN1Zy04HsUTyO0Eym078vHudOHgczCdMUWCNBmPEqApC0hJQxtu13h/UQZ5xVakwgF2H1j2CSGoBi7wb6te6+R/fegcQY3GYrRt0j8R/9Gfp41KMFBPnsdzb51/0IIKoLFsrfYKc4ZEphPQ4nQTAfm08532xmlIkksILF+yLXatWj698vIPj/8PWZAb55qthuNk5dBKQmqIdwXDWb+LqS44kjEMMJJVTMRIKjDr3Z40ZJIxk13bIKCrXso5jiIkiozQAD9txgRibKEWXMGvLA2vexUWJXtcm+vcOqdg1ssR5/2XB8ORwsK0mml7MToYp5nuN5WKqmahkqqdUoupwuNSgXcwhhIFH6wVnKWnKwA+MKAjfGDe84PbGhGY8vzrHZTPZ8SlTerrfbL3j56g1ubu9wWFpQ7tdlHRw076tAR8DvDb25oHr/xZKAbik2SXgafj9OJ4xSV5H8vQhWV9h44MxGY20HbNkXhXTucXjFsq5haCmTzP6aw2ugpTHUEM/J7xERrFhdYbF8KY0CA2M6aKrA7DRcykWhQYBgmmY3Bj7lqvuUK6VTWTy76NnCNvSX7B3qjVMD6CriStOB8WlywNNBpFLRVs/IlhpAHH9mStf79BHwThEj/hGyWotPRQWDXWSmG4jel0Fil4EJFiVN7LHlhrXQ2HuANuxzlq8lYysasLtTysDHzkv2+aKB45kCLPgQ+PrSce/JUImmxW4UyL6zZq54kA30BaJRGIz2CCbQoYNmmTihheasWKiie9aXzmV16v5UTWaq1tiMdA7tHk02cpI5rx9Ne7kmvLrwZyzz88cpg/M+BOSQjBOUXhgQ60a9HAMG3NlIkLBHw16/hXhlCUT+UNwhBQYw0r+Ha7lKi7/TxpAqz+edpORuhbNKZ9jBS/DvQ+leXJcsTjfpirgvLg0fR5EsP37REaiHozenjMiD3w2vcQsefHy4V66j/4gOCcR9luN7pXNDp/DkZIupFoj3y2WrDTLQ580mesywoX3vzfWOZza7s5ORzvI8lFya7ScTwgLqKNsUwfb01FhHywFTnTBPVt4Qk/7ivr1McRjUYOelRdDHrGcwvYpEeU2WY45ajuvn+iDkyfd52CcJu51nSse9/NR+ylFfQIFY+bGyqbzEfdMHgfsyra1AH510yedyP6ZIwTQPvQyHteLZ64MOXX3KpCKfl/aIDCnFqB9SjxN04tL13lFwfM2xz59dR4f7QZwxlgt1l1VOGuTnRuZyCjbCzoedct3clSBa6kAKeNz3sEbiexEsOgFkADlzyNOQ9IjnOAYnE3CQozOmISe/k2BwGZPRToaEup0QyUFhgrS3XR8+x7F+ONoPtzdj+5JSEKCwiLFtDBCze23d+/4BMUGSjLwCNb9SFZDJgLNChp0Bmof14MlewTRPBnB2RZn8Wh4EBxDrzCPz60qUga3r4mvn/nBN3c4Jz+z7mec094O2XMUHjsW9OqBBoMnPUffvoH9JOTQZaBFgAh6kU3Bg66gwX0gre9fBS341banklFjxOIX+63HiAEOALlQRg+D4czjrkn5JCmDa8viu3hnKYhz2ccz2U/fT0x9lTLasXmUkGj5k93uYvOQzzq8IyjRh8gPQvGcZYH5qTJXVXCuBYmFw7ffMmADFnrMPukF8v5gcDAaYn6YYjCicgswBIN7bTl2XWUYp4k+EjWCSFIAULMti/QsF4ZfbszWwJaWO9+E+hjFRk4ne2xoyE/2ra4G2jsO6d2alrZN6T/ipCLbz1spBi1WNjQMAqefGUnVe3541BND2tjjArRLJ9K7qTFEfnKOZcKYfYwS/apyUSdBg5Yb7wwFLsaGUU51QqxMWtEGKgduT26xavH8jvDIpzm1xsgewrrYmXTTK8NmSqZHR6D6F6W0JVv9hWVEA9KlaVd/qJeglAewMalJXmplTGgM7Qy6NBbBa6fgJQl5oa0SyvQf3wM5QsmIFgIoP0IF4NVIynTMuAp3UAAyDlb+ZHQBtQYKCWIVfrTbV1aZE01frrmdtry1O6cFaP/Id6BsVnjDrCWcyn2c2k5C872RZZk9QxQTBplYH+BHsuy4OlrnstSGOiDMJxbL2BO/9vxoVXwg/oJSKjRO7wvdpHa1ZCTUH0lCP2nWcsDD4fLwLDuI89rM1dl/HL1KNMmkAgVtxkCs3tEjKnYgBtM2ruOgrSeAG5re2YYDU9/v6zACf3XKHSA26NDRrvQmCFCnDEIEEYQBHNtclGXBI544lsKVMoTBHw5RBh33X/nAI6qh5HiWzLxD01YCQ6sE5A0TLxmQpHJ2nQuPVOzben4IZKWZZl8WAvSgb8e+tdQKn6TVVzJzGQu46CJqVUDY0vMaUKDCbQ9DHh2q4wWHpqPizkBou1ZTx+eNzPH38GBcXpz7NVgF0V4gFrSlu73Z4c3mF27sd1nXFshgQuxwOcWitZ4NleQmYmPEhQEF2UpZ8MtxtDp41Dobwck8+j1ucOHxFEICa+Pvp0NCgTj6NTaMM1z+L4wbQ4eiBDq8dcmsIbUZ8WVdsthsLfnxP7M7JArXnNT1HzV+CRss+kpt5xrIcoiSX5WR5K90AoFIA7VjXXFeWh6zL6hPHSDHu8X2ZHbD7b61ZBtVBu9kHw5hyY7DbsoycRtLX4mHj52CpttUbA1PXpsPTPIPB86kmsO7gl9AmlEcMypBZEnNM5Tj6UWadxum+HsApvOH0cSjDBtB0kuzeMqDLoIhrl4GdNVO2Cx8xXDQZLkCCyZ9ucu3Mu97juxn4Cvc65DkDPwJRRw67f1S7oumaE25LCQq+lSfmtGm/OdsD4XoPXzoYE+4vgRfqJjqjRppLNgGfewRhCSYzMTGCaATjYrR83II4EJDGW92QdSjQzcjbszs46NfunNSlsGd2J4Y6WTiZm9/rsrUyUQANJ5LrPgbFDASZSInfHX1rrh3lmEvcdTDyXHo5/uzDgI0bJ5BwoEJojlYuXyOA8jt81RjPHe9/OBJ2vbiK0inSdGBbw+R27GQzIwcGJDivsACoLYdg4xvThoGI63J/7up9clhuXicHw0quG+145T6JYH9YsBdrMzDViirOEPQGxIBgEgBzPn04dJ1si3S8196sKbxaQM29rgNQFeeXKxcsKWdaMXAOGeH7fZ/jLaYj6ZubGnPnH+mUMng1MRAQNTBXJXW/lrz+yG4OwM5ZUzzb7E8cAKDvwzQdu3hH3xHJAeu3dKQrXAelM59DDqBkzVH+MqE7SiZ1sNIWoMb+H4GBwJHPpsowCkc+X/WS/dDJSsDNZLoPOowgm72XpUQ5YZdsO4Is7meDE/WKl6tVJAPebpVlinq0N3nuXL7F/M00cS77mueWiW4JfVT8HjS+iiCtrVEmHvIZKZ+8dDKU17ZivzTIhuuUJdG1VqyqKGJDI1phHzcPVkuFNA5FcLlwYLCI9Vxm3+TJwbPS4aC87aGo2TUU859MztZYXwJD1tPa9IdVxPQAOszv8ASRJAmAAZ4UwVQqFA5AoQQAx/NDPxle6UBAmf5Fh7UQYOsXcdmB+02UTVuXAjgpIZPZJgsEkSaf4CmVvqP7/O4r9ahdzbOGsEVmFwWIpAjgulgtvqIfxqBUOem80L+h3siklV2nBEMoxLXAmF70sV1+gpmoloiErzX8HthXsbWGrt4XWQnAKSQm0mYvQoUx5yZYG5sc4mFgbIshRl6KB7dfrUPF/UavaAE0JoLyVUo+mLg9DpAbqd9M/du5WZc1WFCMVTMx4snOvgajzfQjW/n0sCH0kclY5JmpflwbzNZ2b08RE8HVQGio9USHt9Y/LAtUgXWytWEllsKm+E6loIpPP+0KiCXairAMX0JP9d5tcIKk3uB+sWemSXD2b6c8p/dmySpBVqdVKZi9gq15AmlZV0zTZJOHxXvsshJFurP+J2djeaWfJCAKj3uK+jA9tZidvdpU2e9agLVbT7tuex2tLwZ/j+WjVlrqTOjR56PB1rC8PJrmP4Ut58tlmT6ceKJdaQscwC0l7qMOMpq4h0bP1PCd6AP4OgjyvIm/YRJbp1oEdTOHbe3qlZBuC8K2+700dZKCGIAaVVdVInnPBADLVE0G7PPd31RUcr9dz6s0G37itpXDR6jbpipAN5bgPJnM9m66cmk5WV7hssw+moOtHO2e6chwybKSEX6G1IDAUiZMtKFQrAun3VrLBnhFiOWohwoEzWtS/3IQGGONjpRX/sxkIf0R+hSKjlX1KG7o/n2FA0jF2NC9d2up2o+rAb7f12cG+Jh9am11llrzyWfVH9KYT529V4DIYpgCdlablxP03iNDEowjr7/mQRLvBbIsC2RNpgKdTpYXWVNQq5kuKJBqgE/b7/woZ1aaxpXAjYiBi3SQRSTAw3meEhCq1g+NTvM02e+2XlJjo+aTtWRGcUWp2btudKozMFIHkMiqqXFo6yRGiRaYYJCpAGNkP350gSdPH+P0ZBNsOzu4tj6tKS5fX+L15RV2u71lW3qW0iz75gywzFQa48wdRD0u/Y1R9UhABCBjwoyZ7W2Wu1ZOpC3JQKSTTsflqEzbTzu/hwNPAFK688STeUmHnb0USjHqqy45va+U7PunnjkfZdJAiAdMDgDzPFtWD9mrIZx5TSPInn3zNHt5iAMopKyrlcHRyTDl5Qfe5V9HZ82fjxlpqMt0Pw70+AwmOwTFe8i59aOsEegsbXGFz9K36mcBQ3NuD4w8aKXMRh80xAKAGx1OsZ+hABnj//yZ1bK01fvxZCNlgr8aa0MHE94Lq5bqBlqPvpjTC8fzabqF7D4btlIrG2ezrMkDP3+GapYXAOJsQiZfe81AFogyBMqB+j2zR2iAVGOJoHBfk9VCtpoCEN9jUcHqPWAUsIyPRORpa8SggI4LHrAohQ4eApAvKMHMDOA2DJ3GV0XbAh3YJDh+jWXCCZ4MQJoUu1QFBFP0luFamc2UvB7oFA1yFvKV9xzBku9drgmyxBI0yi7HaomKUQ5TrpHP4EETnyWzffl9fFH8jsqAec34DECeK0b2xtFiBt9i+MmxzQ8gZnDmf0cQmTcVgYh/mQB3ux3k5uYo47vxLPE8zw62TZg2c5Ybhb5HTGXkMAUbGGCSvXqQVzlQgwEo5d3ZeK11oEzmNPtyrU2xX/eYJrZVIHBoyYzoB0YdN00QcZaagzbjYIAcQNOwthbCy7PIkvbc+xI+hd2TJ600hd4lPe2DJijHMyex2MNHJf8ckxCjEPBeaMOC0ePXqYPNpW1kX+PFmekMPgFEzy0mcqxMsx4JlZ21LI+l3W2toaENMpU9RkfdjgBWJESOunYMOAXiZxhDSV020Ye/b1wfAJ4EsM8zgVZ+h7OYgJiX4jJ4CB2tgCRTiUADA92lrUbY5VkZ98WfsWPoCembGYCbfw/v/1N+eth0jW8mS5b2fJRBAN6jemCgDcEC19CSgrleHAZB5qOV4ZvNszNgz1KLAJ5wNJ/AgmotBWjd+0UJlr5iLmaf18MCQMPP1W4l/hzuJf48LdbH1myzme3eW/bKtpYIXu3iQP00TyFLhedLElxtPct894eDJdeXnv33wGqTHHo2mgXuI6Ne63XoQRx9I9DfQa49DIBYF5/M6Gc0po4jgfsAD6QFoCO1xPcEi5DnztmoTHIetTxxP81sv4NtbtRo36DOOBU2rqfeYesWgD3GgGR2MolGP+Yo4cVgXxCltxAYM6rkHliitUEa+7mVYNfxXI/DqrjuBWLVP71jOkoa51APVUWDl/gJkwGadtYWCX0druF7xoogs7MO+KJAtQWxwvSdAYfpn5VYU8YhbW1hK2op6O7XhF5RJ3UoARbXBxgAGCGwJ5G872uDAQ1DNYOYnO2X5oDvErrfyuA7Dst65C9lNRQT964Ti7e8KsZUrchegvDPcdgVQW+IATmC7N2pruM13GEN/3mqJpetd6y9Y7ffoxYb1FVrgfPMvbx3sXNSrNfeVOyZq9vaOpUwS9H6QSVIIqrmh4/nmn8J9pUyhiOjjkl3wbIs6N0IN6W4v1LcLoQPMDiFoB0YfMrRZ3PyUNwz4DiGD7ob/OFSOaXbfXMRb9lhgHoXY3axZVINX5jtiuwKJspeK1UE81xTtsBYz+5xbT4tuRTrCSdeAl2Y7ODgUL+GppwKAG0teneaDyEGnHlJr30/rK9c+LbGBDW/KlfHw4MAdWuhrerR7713K+/Nth+2A+lH0HdGkMrMB1L3jdhLkP6J6ae52n+Z3LQ/F4+fgyAT/vvQEgMIFiB9MdOp2X6A7Z5GJiH108AHDLu/qkJXK9d1aj4AuM1KGfksr88M8AFmENe2hmFkFoCoNhFO7RoIqiIDTymCxZsRTpUTTg3AsV4EC+Z5NofFbCf2hyUOFGmRkB5KfT0szqqroaDXZYEdCAuC6zRhXdYAa6KvmjOf2PMPag47+4sICqRkjbhR2bOX3DRNJvSaIE3vwDTNoPNvTh7pp1bOQIBN3SkztDwnEzNQEhF0aQOA0bHdbvH40QUeXZxhu9kclftyH27u7vHq9SWWdcFhadbkHCZwiyvdOk3h0NVpRm9rOEw0ftkj0I1WSoI5+e6g5JnzLETQHXLqltCIDlNflX0BoW5UB2ZgfF9ObmODUlLy+W9oH35un7OsMafXApycRQNv68lgSoMpWf07FRo9I9WNCWBGd1lyUtphWTDVifYhylfXZbW+d+vq05+tkT3Xk7IHJLBhk68k1simB/pEWQYcrrAZQFNxWpANSJVYRwOLV9BAN21DJhqDoyPhNASYQIZLHUsZMvAlKGZOHSLQ5IsK16NP+2HPLCYNI0BAeo17Gfvl+MEZdMUQFPMOXGcG+FDYL+bY0WTm2BIV3dfIz4/LQ1DvbYE8KCMbSDNiRxp/yn3vKa/8+dgfQgedMAb7fD9LMRSIARsB2Ir1SyKroSBBx2Aj0EhlhO63quHg8dptYB+SIRGsL0jIpriRZnNuOrgMEgy8ycAa4D3YZ6lHxn1jUMOSffb7AYesDEEIhucJgEPH9c3gAm0QQIwBTV6XQXpKhv+v6/CTvLYFVqkvUk7ERfu4LPDoNfyMAbHfaT7P+AMM/6ST42uqwxtj/X+Hy9Hx46XpEKkCylJmsbO8OtN+3e2dWbMHkzfF2XWlVp+8ac69FJu2bZP+qq+bl4YuK2SqUAwMMwBzmSGbTZS7sM8QdVvdzMAgs92HMXUHO8ZAkJOpRx0y1Qnb7QabeQNXHZCyGZjMBBh8cEuqFR8mUKClRymQ/XJIZCBljYyto7M26ITYdnUpY3wwBL3jz0c5OGIbAE66sPdqN6DJfC4D3erAlDOd1nLyrDvQAV7Gs0qU/UI8kTEIHiWNlRN0kJvvSSpdngMEKB7nTCSSjDF8owx6yROe9gbEGiqs1+1hWbDZbgfZtUBAhvNmz5yMHIDBRLLROH03AKaM5U02og9XypcQ6BjOzjKwKCESiRXuzTgQgWsZrQjUg2RfN/oyseRdAWe8mt7x97kfHSd/UBWUxeiV2p1pq8BmmsIfbX6/mcDOvV1bAgkG7ltfzdXbejQcrHR/quhNsdsfIKVgrjWSZFZ1w4EyfHBYrzFVFCjKXFDrjGVd7LsLeyrZ2W7eb4tsPKty6FHmz56ftk7OQGP0CFuHZVEs4kxU7cHgqaVCvDKGZ8hk1FktxYcRKHWe71mhHBVI8QTFEMwx+ae+6drh/jsXwe2gbfDgRwtEJvdBa+w3fVj6e9b/l5pCMpDtGdNkbJGvHro/fRAMz2WX6a4gRysoIb+AoAuBRYleqarwgHwJP8B8y9RZBGXIjmV/667J3CRMH/bd9Wj1oQNVlTMiojqM1wY86dhzeJh2QD053yNBbcm8lUGHMyltUJ2ddavuyDYP67p6fOf6YrE1XiX3iMlasyPNy97T91M1UA2SpIfWmvlqsOC/rw1FSDixfpnRR492pFtfNEvGe7mjLYLJkFZnJnVjjYl9njH2ujZM1Vh+9I9Dtt3CGyDIpBVCZugfqQJakKWavl/8nuIgSldLMBwOVmo/T9Z6Ywr2nEJR0LrJS/ivfq7hvghCLiRsgbjQsmRbPOaIWLlke4riMkx2LUt9Ic4EREcX8YEvtqlWUQLEACx/ziMFHRr42DZD7VqlVkuQyNB6o1ulovI97guZ/0/14DqbvhNjmm692aP3nwIMmgh8QUmwoe0x3TIxntAEBkstqAJoZ8xjJ3Dt2bfS9F+C5nR944HVhncU+LkuQFfxgWqC1hH+QXHQSmRkKaZPVFx2JvEJukp71HxwFG2h7c3YViB8KDVokTEcWesB9oFxh/vrMELLhr0DO6fRd6yrrdPqwF/afrL9Rj88z3mSTDC8J1uT0PdsHttjiLO5d+u6mD8QrbS+/9f/TwA+st7W1qOJLRl0++VwVCbI/iuAWjmiALtd9hojc8VooNZ8WyHYHRaoI61EsouIgyUtjJ1C0b3MdL8/2LQ/NyLNSw7a6g0hPYNiwxMEyUTcmFPs/clKnaC9YV0MEFuWgwGODu6gSQxP4GGkI8cSTu19yG5KZFMBD0hI+PADPU+zr4lPUHXgxybYGosBauPZz87OcXF+htOzLcQV1+6wx7Ks2N3voABub+9wOBygKBF4WyBkhn2eDewE1J23DnhGswgz5SnEMb6exgx2QLszOszhTRZSMrdM+gvBFD91Agm5gMKHVUxAFbT1YbtJKn7x9VgDECaIYD1cjgHOcLKFTNEW2S5OKq7TZKCiAKLJlFjWHOzSWjdfQyzbMdVpyC6ZMtuIKbrqjap5D2TdzdM03HMaybxfghyCZTWwmmBEbx0ySQA/EitrAZez/AN00OHMresK7fUowKpSE/AUy+aoOzUFlpmx/nB2v6VYaTMdMIIH1ssmgRv1IMHAEL93JbNQI2phppprE71FKA4ucyzvYcAVPXXUGZHC5t4JkpnMGjNwDLZszR+wQweHghPNuCZce0g+n+kz11cslwaNTuyA66ZuDOfBIHHfeU86cU3cAFQaibAYIISjIX/HbNoRZIvTIvmcfJ8MvytCzUMx0VgjqIEtZg41dBvBXVV1x38ILNwxrFPNYB7J5gmnEZ7ppuFTNXp63CvfX0Bwj+svXlrCZ7DzWnPd+fySjgmDAq5frL3/PAGWXOMcFFLdn/LviDJbhm2mL6LhOuLy8Z7cD4QsCYagKzcxAJHxi8zJ5DXzd3FUKCuaa5ibyl8NzB/AbHaUUxkbduwPFSCNJFsBvn/smXS/a86oI3MkgZ3ijId2aFna7U78XH3yn8LLSWf77tYNiFME8Na950xFTvlzF83NjYTsBoio1nuX/kkwChwggNRh3RCl6iPot659OK90ypmRP24WLjLucgKBnwJ54wymjgrbhUyiKPs+8jscgGASx85UlquPUUb2CzRWCe8n7YzJjTKQSAckHHzaHwJ/7GMETFYaFXppYM2pAYCxjr0fyX48N2Vh0NWUe5aSZaLEbMbzZ8/w/pe+BFaHjO9JPZIsVibDGFBovJ9sigmlaARZ4YzrUAKMoapg+NmYUAww0IG3ZHWn4x9Jsgf3AZ5R5FFVV75RtqT5HeO/Cf6NC0z/mkniZlGW3Z8q0FaUiYz39DvYPwrhC5H9qFiWNUocp1LQlzX9GQGmyQLD2hug1pONfZ5qqXFPosZQYzuHti4QVWwmGwqSGK37lmJN5aVWAx67y4vb2uZJeXsvBxnY2jfAkpoOWPcmIR9MLkOHhBnYP8oCrknqAz8CoVdpUKqD1XzPYVncTrE5vTPNgmRWAE1QpBHY8LgDwvcwELf+YhQMLQR37TnX1fa1mZG2ZyBjUUbbJVlC78/UW/Oha+73SJ7jSJLSL9BcnzAlmgPLRCzJPiakx3YuZOWIIPxt3keRHr4Dd1782lHMOMRNZPqFTp8sppxQALDfl3rywdvcKAdl5L5Qx482ljaCAXl1oKgwdhAjdgS72T+jayY5yZSNHs9q+FstasCXxx3U4QKWy7tMrM38rUgEGIlARHBYF9d9lJ/UuTYzpUNQrBxXh5JNOyEo0tGKg1lWSoSsFLJxI6qI5AIG/UD9EeQNbhToW8H3135QYaXqXWsk5XaH5sB8xVQLSk1CgCLZdyQzETSsAbQlwzImmNsCoLEUvDtQKxK+leluAz1tj3NIl3bTXWwfNvr37WBkjJg07BtGu80YiraDa3Hs7cHLVYv7jN4rbpBB2vEoLXa9m0xMsxG9K6Rz8ru38qHvO/r/fl/EYSjh9tyWSFB1MK87SE4WsMv56uBc9Uq+5mQZ6teIU8PltA8XVcxi1WWtdyzdfVy1vnQUeks+EdRlabiEb1DUCUC1YPY4qKv7q80wENM3Eq1Z1DdgbK1E4TTgzQ+jDHpmALh5JmspqBvDMiZ4u4DejUFMXULQbmDZhW2mzVeC0fDqpMFmw/2vnm3GyKaE2yF94DZ+P6/PDPBFk3rxyUThIGed936/N4bTutoQAgJt3rix1oplOaCWit1uQZ3Yq86MmbgDpmq9P0TEDJpy6pT97HDYxWf72rCZZ0CGARuDUxU94Xj/KDE0I0o0xbKcZAjM8xxgoogBT9vtJhxABrBRpuaOEodr8PAxQFFFKJyHjvjDcigpORWVj1E8U3J9c4Pb21uUWmJS2urgZOstJkEpEGWxy2HBPHuPJJ/0tT3ZRJBKJqXUAgEF24Nz7ShKGmwJYYYM2ULgSNEoBFHv7k5kZhQ52EJiLQFk6WsxGjV7FpjxalEanI62NX0lMw7ubLMcVXRgavhzB+AkrvDWNWQTMjhzDjoZqwOxN+u6DkM5qEPILGQWxA43QT31Z5udKWB7T0cvAV3xDFD0UVJAxSnIvUezaO539enGbHhP0JlrCTi93+VubdZ0nWW5Eo5TQWtrDFuIZtsOVtuzMzjDELg4I7AlYLAS+Fz4nDWAOkZB6ka7wxxAPz1p7Bic1nQwgAzMI5oaZI4sHwKB0AFgBcDslxmaasN5hAbGvq7S4fZXb96s2eUtpgfyXvh+OWZ0mZ8skankA1iWsLgzn4waGvxwfN3RDllCGgteOyZDIo0wF4eTzqM/3cCaifeLhFwo+0L6O0oxIGZkqHgnPf87AAbyo0MCvycmWFYN/UgASyT799GxkZJlLwxEgbEXGdkT/UgeKIuqZGdIyFIE9cEooRwM1/XzRFB4tK/dS3r5GmMDyv8IVgSw7m+WvFQ0dKdbFI6TJFg+gkJ6tD8ZbI5rNgYqvH7cSyEDE/H9AMJxJwtgmqYole/dz/+yglNybZJ7GYICxJkm8BX3Cv5pa80Jb713qAfCZdj/WnNYVZ0qpPnvKlt3FEywgHxd1yxv8ubS7IdLELr1Dl0tgUSQxUpzeqzPPE8xDV5gpeoy0XHt4agBOvzdAlYyO1k2zIFPJfbQAIsR5Bv3SZByPSYjuN+0NRAcyVH+HiHfEXSECBw7rRE6q+kbuE21EjqXqypH16JNV7eJsZcuPqUWsOcfZUmEU6413seMNvt60d6R/TfKoz9SAhKSzyYi+MEf+qGo/jBdkLoYIm6jSh409eDBGShH7RT8zA2PdASIcGFLKagkufG8cyu4XuHwJygH5X32SEabbPYEDzWz+gEyd43voiwxEUcZSN0ix/q20w5IrPvKYHId2P4+IAFQrAAqqrHTot+v93r2fWYwBnWAL5IzVvWwrB0i5ntBCmRRzHO1YP/Ayb3FmS2EIcQALilobbGhOnS3CC6r6aS5VhwWDSa3VeyYfEaidW049I7NPEUScJorlsX8OQ7Yom5KwFQThB189qUel5mZHWRVDN+vLmN+PddDDPICDHGZWz1Bar6Bgymapa/r0jBNmQArrpe0Y0iU8qwTwLd9YFBg/aYAbZaAoazUQr8k++RFH82wn2kP6LvSPwcYKyfbURmE++8DrFEy4DyxJwWFjFz4WfH9y8SM6yspXn1iPgbXFo1kA/fbaDNp0HlNi9qt79eM6A2nkEjyN2dKwv1ERYk4wapw6M+Jx0dDEoLXUEA8fmCc2jhkrvdghDW1WFO9jHV1/58s6ugnWMz+lKLwsQ5BAlEv52X5JIfkGTGkQ2EDm0wnNgf7bC+57jHYkuuo4oMYDXiNyqliDCpx+0OmZtgXHe5bj/Uz9WPoUbCSqAKovsbe8qF3yNoS7POWGyNgxV6Zvan19/Qe3eEnDBO+iQZzGGckLIT7qFAhbtqNXecMPquQKiHzULIDLQ7UbiA6r83+wyxBp681gjfxlyh3HRLWcEAPoy8/srhtYUtNfxuD3x7M227tDWjfeQ0+toFKuZ6sqihxxq2vdy9D+xuPJYPcAKuiPCxr7E9vSagyWz2GKUM1jwBTRZCXylx9j9gTV4977GNMWOrg29j9F1XM1UD4XgWqxVmCfWD7HQ/PoP2Mezpac/ftaGNdP5ofw+uaHSoiqHOFquuK5tPBwUGZxz32Yk/tH0Pskn6V/2DwZxjL6eBkfLbXZwf44NNKS4H2JZwIKQWHwwHsgUAF1VrDcliMjlmnMIjNQSg4mycyHYWDK9wpWo1lUNwQMJPTGzDPG7BOfJ4nK6+cpjgY3EQDPlasaw+QZp4ti5hGDZA6QUo1Jds79ocDNvMcTup2uw0Ahf07mCFi77fq5UzAsSIgO896faRDbr0BatxDGZTDPE8wI+4lMs0UrYg7chEgrPGnfbakw9caJimYN7PLUE4eRSgAGH0+514C4o6MM9b4zM1Lk0v10huWSUREK87qTIalQByA9N558Ia9lCN/DgMmKtbFfk45MyVWnBFpGRH2f5oc1GLmng74YX/whpaI7AJBQhWNjAkdMptQ27x3WsfBh72Y0Z2R07LU2UTunNQpGZ5jYKTq1GWFeo/KNZ4HIVPM7NRSrCTJv6eUYzCTa0BndZ6r95/yJsKdpTI2Tap5xnZUQAI7b/adJZ7N5LBjvy7YCNwQEoAaA0kE6BDG0WWljiVTxRxSGqaxVDWBCv+dctKcAyD8fUHsj10/ZV8VKFXi7Es40RnoUO5Sb7kiLfb3UnKgi2iWXXVJJmUw96olEWoM4NH8Pt6QyNH+0nCHQ+fOMEsTpJQ8i76G8Cx53j/8/twYxbAJrlVGoeNzsyRNocEmiABXkmnLe3g4GMSm9cbCpcV1wLTQ4UdehwCF9fNAGCsG2kXgTOJkLDG41yXL8iPYh6B4oK28r7CDQ6CuDKDt7w/7WJgJz8wnA2luUjQqH2SScq7+8Fxb0vZBBziXP+4pnB6eO9BxQkikwh5E8wNxrjLwZ5mgPwMdxyBeZcIoGgKr5i0JQh4oiyNrl9cI1h6OS8uZiKvF2DHWn8ecxGiSvvozkhUjg1M6liyTBQdn18BkYXdYAijk+WJgWr0kmMDe1ks1ReaQy9H5762hTS3kf3T2zA6uOBwWY90A0X+MvQcFgjKxm6DJEhRH+8hDwvVZV2aHHUinnhY50mksscmyXuot3ygdWb4OSPA8u4zGQDMKXARfg+l12XN1mXo7stb+zxLudDqX8HPqH6XsjK+2rtFom/cacZ7Ip/Vmqcheew+cYs2yKtWOta/hs/GcEexFXIesiBCBBNM01wseLMpgo6IdiGYQFSCd94A2/3O0WVxZv54i9jTbiCB1vp+fyX0jUYVWAqvU1/SlRvBzZHfY+5o35+ce81p27eoyg+jPBzFbWqcaPXQFaXuL98yir929TUUtZPKoAf2wc6etoYoBAnO1agKZZ1C99m46QHyqwNqyXJLDPTbTjOLgA8ukajX5WNQqb0o1YHEqJfTc6jbJwFoYM9zlmcmVrmw9ougw+2EtfSwgU/fTj/pbGw0VpeaADNvfrLI5dI3hIrXSrkkkBbQrCpgUUcD7TNOmcd15DhLMtWcjIFxKwTwXxOApJMsFbjN7b5aMhA7N/zUIAlKsv23vCpVKrZG6z88Wht5g4zC4KIemX+n3TVsiUlHYc6on0zN01fB/lXYWo33WOB/a1c6Fq1Eyt7Q39F5S1sV85qlWSFeoJya6GFjUHeyaBgaU+oROEjXYT9HAro6peqzXO7RXdEiU4bG3uiV4SD5gy5FmPpqfN2sF5HLva2b93Owz6fOIlxi2OC9rJ9sRAcp374tXxYdNKrAuS8SPU62WMJ8m14EGIJpfZ74sFCi9o0GgRSDd++4pAC/N7c4ClaaQqqQY2p8gy9KqlBRkzyFAo5AH32/aDpvonL5z+OEmRj5gg35+sr3JkpdWYggnQVWWpDL5Tl0IwHSpZLmrxTPJljbbTx0pca7Ym1Q98aOF+hhJMnHvjGCzEYKs5dFByUQsngCgMk5/jr7s6H7S34KvI9eMIbPGACcDrVoQcwikZULtKP4kIMzrtEwYjX4Ej6e4vYOvP9zOSy1eEWSlsuq/N2KD6TQDUM1p6yRJCQBlwjVt9VjNYq1E7B5qEajr5+ZJhq5J+KJOJCFD1NigR7rEY6OpWKypXbHxyc5ttdLaZTX2LpDtvLj2ER/4fgBOgglwLRMGlHPGXSShVBGUaYopwUwS8Bnge2k2SfPfmvEDPTHqwCOQ+LgY6Pt6fWaAb1lWnKgJPgPU6GHnbCL2zFgcMKnOFLi7v0d1VtDamrGnakU/LKEoodycjplTbL2uuw2lYjYsYYn76kihbp0AoR2yk5MTAOYkTuy3Yt5CjLSeJiutXA8H7PcNm3nCPM8xnrx79lkEoYTW1pwNZV9HMCocTiADpVpRiht3EQMbixttOksUpurOg7rh0Y7eJLJbaxup/m7E4c5usayQKTQyuNxhmbN82BzajmlKZ787qyOydh54Ejg66ksGxP0BPIgSmRFznHNohu1LBvcsc1nWNddLjLUXgIH3XIkeNCJeIolglAB+UIVakxRzN24hF4rNdjMEfA3rusS0xuaTzJhNM3DTLnA47DHPs2VO4+lzYAzvQUIB263Uwp5lDgypDX2QwUDp4IACGiDnkXPk6yWuvESyh2EpVtbCSZbW86EG+MTAodChmGZTQM3o6LyfBKHHgMIdxp4ZXoD9LXowDshWsN+VkOW4dhEHFJOFCd+XCGw0+2vw35k9tr1l0JtGjOUfCWoLBDYpLgPhAHkKIDLleg8TJxO84bPD5bC74vUz0sj2Ld4jxuVAsl+drRmZQ+ZH0YElXV56j7NTBhCQZyx7uuVa2VRAZANXiyLTSe8OJtUMsuONmvsZgZ9I3Ccz5LwW95NAMAFBGig25y8lQRGudUyU9DPL82ST8UyuI9AQ680z6kv4BMIxQA+ZsYsgEkuSQUtm3Qeg2INfBj3Qgan08LtjrSnDJfufxXvs+tEXRTJLG6utx2WAceeUaYLhw34wMONN5KeGmxveTPmMfi/+HgJ/DNijtEYToBAg2AjUYwTXCFIEOD/KhS9nDqnJc55sEAC9o5dhTRToRVALA1QmhwZGmBtDy/ivYJPxownOYsycLJk97jGl2nF6cgrApxL2zPRG6wzY2SQrUHvHsiwxNMyy+wn+kVU76qVwtEuy9+jkdc/yarfyKmiWELNKgBNqNdbNFwkJVFF+4vcDO5BeaugxkUjKDJI6SrYHQzJGbKErKdfKKap+Zo4SJKrRHH88C2xErb2hQyJ4zc8hzyuZYr6uRRXwIUvjdcast61py73T8Tg4Q228nus6O/PHPXypO1TjnSnDqtkQPewxwAXyq4NliZwEHmdruPdx1RMg5rIcB2BkH1glSt4Vex/GhE5oyHMnc2GwnRFo94ExrepMV2PvROWBPxf7ty7riirG0GQD9d47mig204SlsQeI6ZdpmlBQMM8O9otEbJJAmJe9qxhYyDYcrWPyNh+lFNQOAFaCJXAApFYAHWXNvsnpD9n3ENhnFBfBli/25Kwb6odlWRMwRked5nj+IsZgnurkQ10wOLnJGAk5dfs16kkRtiQoYVctsZsnMQd2kf1jfycQSP3H5Jfp8GQWmQ7inzEnyxP0vu/uL9G3aD1L9+O6ZFWBfkYDSgJ7pdp04u6DKYJ557aLbYQYS6jLc9hwZTKW+ixtO8+JCEsgrYxZgajYgcc1aB3qs3WtksV7JXb7qbU00JAB81/93Ps5BQbfSIwlWEvFJPTNef2spuhq58/67lnZdEdWA/XeoS3lIcs/x+nyaRvhtqo5ODxWeLGvXo91hPdNpV5VBy0AqBNj/LkVxZ9D4ZGOxaTqPnCzEmM77Yom+T5bh7QdlXrf11e1A9V8lj5Ug6ROYzyWPgUYG8rgJ1EveNJfhwAymFC9oXdnU61kUdc4X4TRWNbZ0SA9CTZRCSeAPGTNd43nMuFj3OaAu+95EnXM/56qeHzLBJ3t76LZI9/2PpxGavZP+4MyfA+dPbalgDHwSpm8LULesw2XBGijSPqgbiDQb7vqZ5P2jmd+uM/x8qxM4jq5YwSBxqRkQFEnB+Z6D0VmtokAun3XwduZZbm+YpIpwUwHVyeXmSJAAVuX+TUATxQplsZWSIY9mLjpcN/uJ8G+rBbBVIHejTm6NsGydmffpZ2EliBM8cATmM2BhxmP23tWXyOPoyT3nc9XfaZCV++Drza9uAcBwT6oanulLpuMTaDq8f1ne31mgI8Hg0CeGS0bJsADtbaGfT/Ywh2OH6K7ASrs1SGCaZ6hzutcHPQDBMvh4Mgw0HTFtm6N9u7YTq0V+90es4+PJquLGaBaJy+5dSdLNUpwl3WBqmLjgzVUgcPhYNO14ACKah6MYoMPTFUYqLndbi3IgvchEVMCza81DWxCClTvDdO8wWbODL84BYt19mFEtAerYpoq9od9lB70cDBNwjLjbP09VA0Fp+GZ5gnoBiqyPJRlFLaWBT38OL9n7UfDGHgNczKOp7NS8a9eSk0Hdl1Xc16hMZ57HKow0vxHUMeMmmZDUGVAmX0tVBG9L+hkj+WyBP52+304w4uzA1neymw3S1OKCFZFZJxLrQHqsE+gMQhtGuRUK+bJwT8l4JHlspQVgmK2nnafy7JkxrZZqTGdu3DougOd+H8y9zdrruQ4EihoIN0Vmd3z/m85u9udITkJzAJmAJXVm6msxY2vKs85ESHJnU7ix2AwJEP2ZjVP4OJeq/URSY8XQ3WvjeuaWNQThOVk5AQrA5r4a6B4daiFhe3waIBR+2Fw0pACPz3r0mhRQEE2V7ew6TVe4Ij2k+7leVZPpxv9TKeqQzqLB7ijz3eo3QhliMUOzE3NFu0jCKu9DlaFQowudJJaiaWYp1ZAWiZdam+N2qeEtuoMJCmp29Hz9qM/05i4uCNiswrZQ3w6QeU1D7XLN9ChILrW46i0d5YtYCq1FAHANEjo+KyyQWpb5Gd0kh1fdkJ/12WciW62T7V+zBlk6D+mKVJIp/8FXOjzvj4z76lA2Vr9Bh0UFMIstT4OW9ugzZF9RdTzBL7ZegIlK7DNp/O1BuefgBJ1q23UgEEDZWYE/ernDaxyk0CgzQm6njddQSUUnPTz8XyI/V6RrRdzbU5EPK6Z2UWynvPaZQODD/aaAgXRFXRdagSnlBPw1QPhfUrr6AT1v9bO+3mN0aCajYFzbz5k4GmPXtQ8VVX//fnkc4aVPIFakcUgjThsGhrs3ntjxUJ8umX9um5IRDunRTbrpbIaiKkQpUW116prTrZYcKJd74cEzPff7rPtSB2o3ElfP2tggWdz5F1/FUUEEvD1mXxpX9rxvvl7evZf9k/3YIxRDhAMUIsugEEA9W82qzSYI7sEJJhf7YI4hdO5NiOZEqZEivdxVvrr+R1AvTMJkf5XxGFraq+2//r6QejM9vMB+r0qfRv/6uua9njGING2FDgKsXpf5319s/Rz7VBJsvZBdg2MYgfO8snprxf1fZ3D3pSMX3OSCbe5UwV85R5SnKLCnAN4Vv57A3gYJygBNoDDDTb8w7gyMubMNl/POIbPMYZhRWQXzzUxzbCejWxZTYbSNSeeveosb3cmr0DAgR01uKIYcJFT5hOQpo8laIlIhhczTqg1V8P3kpXlFSff98VBNYT36FsnYxC75hEDofKJfN8mCRgL2zVkIwLDaUctt4lzu4B7ygLVWVLxUNBu055bxeXfzPd1MPUNqAIgWNCXPSmGfvA9skObe15+PfdIMtvIMkYD48bWz5KmcfpYU9bR95Rxwy6plDFGtjyGCorlHcv2qu24OGARh3RHMOZedf4VSBjSV1/cr74X10pnOXLoAA2CB0rjT9I2NgzXyPbusHwec0zan2RMqfV2R8CM10OfumM3kBTq8JLblZVDPRMNaKzCulhNYgEy/s1JuBMCpRRv79jwyEEkHsB9dlG5A5asWBWwsvPEYGKBbw6jwOQ6kV04RmraAbAhuR3DCBQjqzRO0V0HZUKjmXNOWwPti/I3qK6JsqdcsJDti8QBFOOOwbbeMdiynnlyPstAxO7rN+kCW6+8GX9H38vnsb193dqp2Zd7K3NVXWvFQXxuwdhYwx0kI6br1f1WlmHA51kVH11j4iZDTbFqRILs0wwgwz5Y5JPklnznV5zEczTpfwV4iZ2sX18CFCu87LjTIB+U71YDeBjHTbPCPlzgYwSezy4b78EYR1I+ZviszZZvToSv/EOAV3wx5qBnO0EcabHAFxXGCngE7alBwL3uK9f9dc1kJRrgOzi8NXGDtXK/y5bnfo2KAaoNXzY0mBdE/qwKu9G5pNiKw1B773VNeIyaGBxb03v9K+7Ueswjn/l3v/4xwHdOYAkAn8/TYAORUtGeA5YCv0jh/jPoPPVYirmD3PC+yC5R0mAJIj7PkwG0ZQXteXJhns+HwbLhf//6xeuVAzHWegPIzZxDMvIaiqXGw/r5fPB6vZAPPXVGAsEBDIsOzjp5Gllxzc2UBkDtnQHgvm4GD81Uix0FKMlpXeNqoMQDMXJ6XB5ey4BlpJOOcMx5cRBIs+MyWQxc1yQoRCo52oFKmHbYJDPbC5QwjunOFPFoV2ayJ8BMwYdAJAElmZy18xGg8tUaop8TrFI13yx1umRkg3qBa616PmY9Lt09irUpNqOYle6OGbOqaBX4R7fQjDGK0WgjxaO3qpRORhWTJ13/dV14/75LC7En6iI1H2laCgDhvW4/QMxBY7zzntZ+kBqPF4VxvzVQqo3T8r7W46S7p/bV0qRjy6ByPSs15RiQ1jCOYTWVaIyooS++d4GAYYMaOI7P47iRDlVJu+4NAK6R5uN0CAroTiObDuJgRgDFHoiIsgnNCBOrI/81S/C6ljfbU0PBQe8v0GbMcTjZ0dfr0QlaQIkhz3h4X0Np3AjwaPAyJ/qJaXl9rUsDFKHcLY213VAbf+h780h+deejKfhn4BNx/iyOpLS1bJLyHcAxPOS8JlWuZS9lf/++ZyuR4M8HWykNySa+M1Ktz1CCL5ClghAHwCSpzkMcbASuUwXukdduSjYiGFNwffQ7RzAMBcShVsPenwKQBiak3fX93Hnvrv3zDaImaKM9yHU8GLb58c2g0FeuQwA4GIeB8mF6f627wJHz61yvL/al/e33ud4RAhsawKkCzPl8j6sEslXo9/Oprs1s0WvbaNY6eBMJDsiGKrHyCGqXNttUtrqD1txHgwl1Miv4ROxg7+lsute9h3/b4JMprddNk/5UwFnE66mZGQtc91WAo1n+W+zMTTa2igqgrQ36OwHF2zd2APvzqTjFzA4dwgFjW7/sr9iBc8xa0/Rju/c9voGg8970+9VK3rtM1oHrKGZTaKvU+upsIhKc+3xSRoLbsndF6LzVRvw6E+cZPhm8eq0+WMlBv7dan3gOmCjr52eC+y+6dAeIW2vBwpiZtI+/bYyWxdmGE8faRnSngcAeXwfDWmeoAH/Zw+M+Dxv2lSgyrmlgn4khn52SoutKXUm6Fg4r48RU03MAmm3g6NvSfunnlP59FOClz9Kgo7SzmZRidyfHcsWpaQcz+QLlbzZ+rqsK73t7idlvDqqICDwrJTJ2AP50QXd7pOD/3rjnRBgF0T1w31e9/kXGzea+SuDb8HweTr3PVq4NMuOviXXYOSAZenOMZP4ZE1cm5uUn98ZAajG/7gvFPrILe6/cd+hJkukrJIWTk0CHWekZJgO3/bLuZ5jYwWnjcxgGmBSiSQeXmD9Hwc7ssN25d6RRG8hYXowuaQECzJOOgqHiMN17XpyT7Zbt0hueICP3nPIX0I9uGC7JoiAn1QYTUoTRZu4v1lJ4x14GxqB1rlHgyTUnc0C2hBbpwuuZ4kioz0LQSIpTXpPYV4hKziMCn+jhd/l2yQoFAmsyOXenDl3+XJ9xWxZkpEUoEBwsyG/fuEa2q2ceNjAuAT0onbk86wRJ+T2w0G2MHWQPVLAr2/JVSAgMkJlHVmOSGqLsrNYiIuCWYO/0gTkcd1w5+daAe14I8xwoHIHAwBxgvHsCOdyHoN2g4cucXCxRlI6rDVTxPv22fCYqtlA8Z1Axhy2QmbTmeQ6CYmIdK+6zbEdOMMnx+9kYY6VPnaOYyRHRtp3Pfrix9ddqr8puOpqRx9Q6X28J4irGlB0ZaN8xdN0EkUV2kg/OKevJhA5PzfUkJ6QP3p7yA58VeF0Tf7BLIN+Maya8QHkPcEzlRp0rEXy0PmbqDrCKjX03MJ9xmc4k0BrD+UBS6qJtk0gYinmB6CnnY2BYMjuDsdTaHUsnMD0ICk+467MDgLP9lmdC8bkYrNDecNzTcM0La0fZohxSkc9r0caXPAPxCeO+G0Ddi3EgHK6BfaeW31oZ3z3bKycQwCcc0YPDg2ivNqLIaGWT0yDDJmqmwWQFReQgo721mXIGa28saOowsZEjp/13v/4xwOfu+N/f3y8WFpB98td9VWB73xf2jtLFg7VG1fN5CoTY2+GRDvRmC+kkKpwtI5zQNYyaLgMgSJUbboA7BWOwzfbJybhjZCC1186JseypV8JwXQKqjOKmueCvVwNXcuLS5RvXxWEHG0Cy6u771S0I1kh7HsxZgIlaoeTAchpsg1Vm1BUJtTdsKE7fJxAEDXx46u/q53aPGjBhZrivUYzI/NwgIq920qzMZO+7GFIEm8h4yKB/1PASECcQy0ztotofqRnEjySV3Y+pfam/weElyOEPc8ycQosEAaVBk+s4v5I8AWGBFnx/v991HWstAp45JRcefO4NYEbkwImazsXn8uwOYIYNvH9/MwjVfp9K4qOm3SK82tSB3NPzSsP+rKf0Ic0M6/PJpI+gsNgbcixATm3OZxpfTiwBzayaDzO8Px9c12zdPSXEZC4OS4bfPPZ5twCnLtXeu8SiFfifoIQquAoI9RzmvzDd8j9pxK4D9OhkU4NWFNw1GNUBhRJMJYQoB2XC4Op5FUuNznDtxSAeFViDTkQ2Qklc+uouIiR5hRV0oJL1Ai7sm0Fl+j/tT09nsvphxCiHyzc7gu8juItAtYJV1tyAXe7FrhA2OE/GDYP60Jp6MxHd2L6kIS66Bz4PtV8rOTfj/dPxZjD+zTCRlpqiJjMALY32xdDqqiMYuHi3JoKBSMh+5/UZxte990eda8skXPtLqxa9btob5+RsXWSdYwEc1myCYIDi7oCE6P9lr4OaRFH7WhIJ57WL0dQvPPZS9DXr8xuUIzixoxKmc38EANsKopu5Vfvs+MT+ezCZ51TtatfJ35PsxmNGGQoCZjMF9KdlcC1ADOiEW9QUfcbgOvrR+mWw2gNZlW1bKzvILIeTfjsZ0v6sghN0RoP2oCfc5n5y7Lcq7lEFQLHX1e71x89PPSu1Puo5iQEuv632NE1Df55NSYp+LgKiNChJbWBmfc7qOTJhALpgkRVq75YeWLEI9DzMxKT82xmpfVJlAqjEIM1hfvj33pDt0HM6AHg79pKhz1x9ZvlkJW75g0AD8LJ1+rwvP8wXiCUJoDS0tE7l73mdsY5iwd/2T53VOY/1QNmYqPfsFtehnx/BeyUbdebjuJfDDxx2UWAfvlf3+Hva+YDARYLDGDVAS746Qgy2TBjkXzWdLwvhuxKwtPEJdJtiCfnckbrP6d7EPurJk2a5T28OrJi0mxcLxdMG1n4qZpTDDmbzZ1zgTMb22vxsMfIz4dNwtfCoomnGHozxtNPCgTlZvCSzxr3i8D0HNEG2gfHDxZ77i24jk96ofTuO5zao3YcIXGw93owHxYKKvdjBsVgYIRvcpWNrZf8jgG3JXEGkT12HnI6AuQjU3s8zHBXnI9Impb1KUPRk7WCkbdlbWobRusJmWM+ifqFRAw5Y6Pa0wTxB50KfqXM856Agfx6GGdKxpP3m6RWDEe7J0lFhkTFUxtkbms59DkLQehVYhI5hUN8P5nVPnelkc9GumPKLYCETNextrYWSAIls/Rvc98Hj7SuBuQjAdrKOfDFeJ4DpIQ1m+qGI1MveG8Md93VjPQ9wvcrGPCw8uavjilp9ZgXOlT0ionDmU0HbLWt+gsAngz7Z4Q/bWw3PSnApGfc72b4A5mn/ENXiHZG6oVBxKxL8y6mslIbiB2dM5TA3YAwYr6/q24f/UHvtWdjLIRHt27jpOx5EswAT2KUpiwaJPk+TYObILsIGnQX8OszVmmrMrQneoi62iuUJdo4EaqxtdIaEwdZT5yUzf2FMUfnWaP1TR571vfWM8z4Xbe9+Mg//455AAUq5lsk2y/14EahkWAQg5RM13C+AGkIUoUm53Rae9p3nGqkrqHuLipUCICs0cnMDC19s9cFW8ED7orRH6bvvK7so1bUGA55wPJr8vXuwpFh5xjhPMgljZMGhB7kyJobhMiAGOPgi/VIOsBmV34VZToCXX8K5ZtpIehbAfQ3cGLgFlrrj8RyO9KwNXweISiOYw1caYM0gHNqglacrf5IPZik215IxRMU5kczH/8TXf2DIRhr4amVj8FXBGRlPANrRrFXgkAA2VZvMKNDPA3pdF3wvhOdmeL8/eN0Xnmdj3Klds9lm6RHUCQDbERnsERRZa2Hsnc7RujV1LRRDQMG7EuD7utIxcjDHz89PMcXOREvOV5VRtR7vtTAI+JWjUxLmXpWodmpibaUzdHi1dM45C3BSAHffL06HZfJt6ewdnhX6Sm55kYY+pAfF+itRHDrAnPpVoEOzZmoseTEr2JYxZxlkMSRNFP/4bj8RaCjw9FFbdwSemjiawJcANSAlmxPg4fAIBowXW7A1CTbEwFDSQAc/rMVcFSA9n08lr7B08NsdLw1uoXN93T+1T3pK8uG8aKwm2zicFT5pFZ3Th+7rwgMyUqApzU+CdtSGzOu7mFzk1kk9y5xIvdbK5NVZ++D+2S5x4qsSnTEMl5FlyHNYQvY00K/XK7/P5zdIjdazP3Vd5ITX3pDOj/ZxOxPTtsvgPgjYW2i3dasMJzUFdXwGy4S9Hx0dCFfKhRKpV/LOiLRFl5vJlgZdzqifRRzWX7pB2Q6Bfv6GMtJqqUK97ABBKrvF8dwOlp0SdQjgIOBAU1Idw0qc8Lfrhypwgt4OSr3ACTqNa16wac1g474TqKY9KoBLgL37hgbPqD11mGWRwb7bJkFborxVgepZfS/Bfet7znu869oqGfa/2Va+sR/XbARJzrbcAsXKjfezjlqp433+BggXO4AfqXb/cVGMnbY9oi6Ja80AxLkf/UhQeH1lgyuJ5IdEcO81KCcQQwmHQpNAwGZ87WdjpFf/Dqv9oc+Rdlllajw6GkhQAE0YxuS+5KGdZOlWdGSjhmJsOJ5H7XBZFMtWtmT/DbeqrAvsZAbb98OAU+BcJ3n48ktWj5RJHFtsNJAj+pIrSG0tRjGlDoYuvwQcfj5Pfd5FzT0APbQjgvZ5AUzsnCwmgWVmTh/IIR0stKiYpf35ft7/wszT+a8WD8ppHBjg0VIcCZygEzwANaDAaHRqOBnG1zn8AoGt94kJDFGB4PD5Jwive9E+rTfR681QLXE6B4ftBgRqo2MdWAXaxRKiZo2dZwMN1hvBJwnc6+yobeerNVbxjew9WjeHO6zkWLQOey9giKmKb/FyfK+FEhR9Rn8Wfx5AaQejbdgXMy+81rKmoh82FmiQ1enDVXAdI8EZR2QSSvvhQEnLZJxCXVjfZN1MBCVl+jNUlFZMPpjv8rlZJmc9AIJ7cATAe5pjMKkyxM54DDawOYjm2dklYiOZFwBqKBkiMNimCu/OgBFGkCJF/8d9Z3KEbLtaexWgkMlS2oHrmpgQU2xVgUJtygCy40F/R/rgEYaIPAv31R0Dyd7vZ6399uxPFXU1VVttjchTmCSDQW0sAO7G5C73UHD/n9NcjXtVcUmCFtnBo1Zp+S75XcV7Zq3zpyKDGaqlcIzMGQZUfEMV1NO2qvjv7DbNcyZWdAxKukz0gBdwr0fLtsDY0ZWbE8tRMVsyS5utjdF2kLfLfWFVIHEWVeSH1Y0inyoJCMUWYhFp+rcfxRo9P8W5Z37SsccuZmIOAMrnuMj4DijxZ+cCco0HDNNGglC+Mc1w3RPwLKB/CGh8noXWvNtwHK2IQ+3G0iPP873D6/4VQ05DxTB7OZ5n43k2PjM1JV/3heuauJ3ngn+WPukkcBuOOQ1zAoNFpiCpZm/HxIAPtpnTNmTHFQdyeHfiiREdIW3Tk4HmtIMoR5ZFlowT3ajDGUifErS8A5jUSgxq1O9I4DgHOCbpILucZuW/qduXEeGmPTQLSot5+V1Y67tHeE1VDXqakphRXhCBQeehWDYC8FiYFcPxPSLZYmsnW8yRMVHEzSzMam6AwfDZjt/3J/PR1wt/vm7JfR85SPu4JGQm1BoBxBjFQkv90KP9PZcZ0mIdhOlVzNHZAez/9KdqV9475Z+g8C6iOyRZrHndxEZcrMlmyn5N7yX+Iz1YM3Q3BGMgyRlpknugWaMB7tMIjNesLtNnOz7Phmgb7g64gEaU7ahiKzRDwHDPkUPbIod3rJ3/j+3wxZhMm9odsTeLG3k9sg1pq0h44NmdyuGwvkgFYor+k6//CIOvjG5E6Ud8ngdmOXHyui9qgiSr5rpmBst74/N5yJzbBVBJ00oMv/AcgPDHnz943RMDhh9WS5LmzCDTDJ/fN14/OYzj/X7j5+cHBoF5V0+hMks24Zy8Tgby1MyRZtuYwOuVAbySCTnKtVInJAMCJYYMotiSOK67gEREGv1pA0ZAB0AFzvsASpzAinRRIgK/1BeccyIIzoDJyX1dwMgYCwjc19UJJQOIAr0C2L4gWd69NubBtpTTq2A4BDpS1LaSMK/kZXACTzPivttM9V4CdVWh1e+pT71ZWPn5MhICSLUn1rMhfQuPgO2NJ44DynUtkPAwNsFntGhc7uvCdd+155RkXFNTUnNNxQIshs7OKvem2Mn2BcNM2j/A9mGrtRUzToF+6UdxjQR0a7JzO8ao4MVgCfKOniD9PE8yVFvrNSsoWnc+Y7tmBW7B+15712dUcG2jqMTyIsWoofHz0nVJx5AAo9MwN428KmkgPnA4fIC6jzMThTACe7MF5VMrKwANmkEDAPNghOj6esCH9f2QGSqjLUbWXs00VZU0k0QvnTFVq5rtZXSOB8JTX2SnHnsYMDLjWl8h9+b4OkfwcxBGZ90CSs9FzGuy0j/Esa/rM2brBJmZsCcAVq0LYHKk6cTFPCkWH88QM/cMXDroObVM1QZdn2JaJyU0TIA5cbqv5nhOQ+DG/AqcWmPru8qtBEjtLErE9SzOa+mlycxKjN/SOSWG63T8GfA0S1OVdAEUeq0+6htoQ18Pjr9bBsECiXWFFVAogYTsYAMXeu7p53oPKSH/muR8rI++SgjaGkAJRLW9DPbKeOR0QwhsEaACJY4AFLzDqu1BIMRmcUF6UNrSc3RRRfbcABhZJxEMMmsNafsBGO2mzgNPFRLEIYzBxFQgj+QktAYFCgFfRS0lfGOQvcj9tXfeB45W3GWDAR91Wu+zFZnPjaCanmEXsFgc0TlF+zaVrlQckd0tEDCUsLNKL/tZiESUz1Z2eZ59YPd6Hz5d68EdA+WzAna+vgjCHchG7e16hzj2Hi/u9MX55n2u+/t6ywTnbagnDKk1l9l07e0E8Zm0l504nrFZ+eg5uuAIaO9TF9HV5dAaO/ytAhiSLUlfdjHmoQ2pc829LoZNrmPUs0Iv0XGGuRwwtrkBAsf6q59PMb2ORJFUwwJRanr48fqLYJe0k1ODly2mxmFiZl97TwW7a16ANZCjtvOHsihe02edbBW1yY3aA9c1cxieCp/zqhi7Wor5udkKOVLDjMmbb6/4fex8xp+VOUMO5Ru4BbgzJjO1bDI2XcvxEEg2GxgCYxNLyqI84/WpgnW0DuQwE+G/7KDYaPl3JZiDfsIxZ+psuWeh/fl8sljs6WPGGPi83xgCSpH5heLLm+xcAQURHBrCPCqQxYlRg0Kir41nJKVKch+c++osuhZAOa2YVpo4rZxGSbVvp71k143sKwkecOOZ6Bbn1M4cGDarGL8zEcrptXtzoIplkcWSVclewiNvsAYBCX6VRmiKeVUrdMYUZ3s7cn/QFq+92C5IuYZx2m8WyEVOMCTrKgKbwJ4d6+geuKbYPoM5xGYXzYXPs2CWZIHBuMZ9d4y/nWcMVazIgqLj83nwuGM7EjwjAOGb/ttPMOK0GgSEXxNjD/y+3/j8leDz58lhka/Xxr0v3FcCIX5NXLz/mBdG9KCBMSZm5ITmCHb8bAJlidtj6HzVa8ZBUNBaeRX7zKKkX47gDIrbBc5rUISKnLJu/Qwio5BpNSBDtnBxEq1857xGTueW3yu7ebC3beRQGUtbgWGl46mgTe9fcS2v5dT0HNb2Y0eC+3DnMBjFodl2ajbwui6MIZtBmQMCk8sJJpnh9/MgwvHnfeX+nVY2EoxDEmzmeWflUxJOc4xk5kFnOOOdxz+w45pLZ/DI4ztmzVg8c162lXrAQ/G+9RplwJiPlzG3WeIUmy3hwwzreUBYN+0+YyYVkysmXMmazliXoLRLBkvEqDjOPerZDSRLz5DTgH1kTX6pjV5yW9u7RfyIlzIvME7sHrhnYHt2GuaQzp0TnpVHIQtZst8BQFIKitUtAp9IEHvXZ+UajP3/AoBvb0c8G9dt+Lw/+UA9KuHcrIo8a+Hn51XB89pv8Ghi7aYnarPcrxvrd1XL4XWn41zPg9frrkD+fr3w+XwYsAz8/PwAECorImSCLe4Bt13Ml8meeN+O9axCoFUln6zeLjomHdq9HvbTD3yeT7GkBltRtcENxkEbUaycF1l1OXmqq9sKytbSaHdVd2dNSFO7xuf9aaYcvx9gWzSp2OdnaFBBCtz36HiAzEWMag89g3SBnAJP9l5lsLcYPiNbfpWM7VCgMYp1lwnUqMAShtKkk1Zggpmz1r5bsbguzyITDeXcz0BVrDN3Tv6tvbRZDWVgbFbA2mQSuBZqfaUNd7/uEqhWYLv3LiBIiYOqEaVhx8AqDhae1lAAyeb73vcNWIOKc6QeiIyjtK/EplK79n3nsX2eh5pOaRCADF6MgXvsBlA1zTjiQcQoBywARs9cgP1kuwvQwJ9AHoa5dEJ2rC1/erQ+KlnIV1mDLEowogWGi1E3jFPbvGj5CQo0Gy/NzMl4AoDDEWytTVO89RkCI+YRHF/zKoevCpHarHW29Ppm5KDeTwNuvgLS6D0HgY/K5XTWDFALagPhHU9oQneBGgRAxAQ8z0gxPQok4ZvAMCQAjwa5cICRerIlIn+8L47PEphhZoiZ79E2g++pfeIUj43We4y/vdf5XGo6nzcoomede3Ac15p7siYVx8k48iMe6+uridARDSIwIRCQVUUN/l4CtqiEEPY9ZKjsPIE4P9bWjmdekywvfAXmxvUpAIKfr0lhSk6gxMkFjogB9F1xhHVgEmQZQ9cFtDQCUMy+Zy+MSBtwjax05qCKroxWAB5tl1X0KaF1rkW24lm3QodYFAw8LUWzlZBagX+5tya1RSvYL+ZTAgQIr/s1Ii1K0hYrvmIJ7MMOZ4UeXIfeAwLlqnEgMgmXPi6MLKVwVrOfKhRKU1WAkFjDsCxu1jEaDQ68qH03Z2u3qNU4px7qXLauUNrwZHKbPk9mNuJrGnmx1g9sSf5a76VznK1t9rczBJzMsrIFR7DL3QalNydDz3nulAzp2ej9/i//Dt0XTgD3SDAA5IRwO1q3G1hu+5ls9lhHznicq2Ltm3SZOubIZ5H7bLtjr822VwHJvZ4F+pkkHI7WZLCaf9oJoNct4quAhIoX9XrZRn1gFzPK1/bDSfZVATgCV/Oe1t6IteC89+eR3cn1G0c7m+IZBEpTOjXEmMTPi8yxUf4bZjDvPSx94SB76XloS+ZMJpAK3yNjlGuOAkmrgMivSdsin7x81/5wMuMW18RXspuu6679eKtAmwaYftOxVj/rMQYesjgEvCAC19VSDm4GWMYEua6o4U9K5nv9HPeluGIgyIyfR4v+tInPs7C24x4z2/FcMhBM/up4W61XAjdX7WflBbBmfGh9bhaZTwA344AW+28wPDd1tXya1bAP2Radx2FWZI1AgjzK3SK6I+fU8MICPB4IWJTGGiKSFU9Hd9EO7c24gdcpEFDnMHW8GUOq8EOCwazWwdzHm/FMYuGRdDMoXm6QU7Gt7Nh17B2zXjvZGY8EAjyiRPpNQKg7bDuy18gLwN0rAYLPWhiHRrtkS7Qsez+5TmNgRqSGPGONvTd8sq2e5jOBc14b0Mx1AK974r7+C+/3B3/9vvHX7y+etbD2C697w193+uXt8PvieVwEntOWjxHwMeAhhn7GMxP0gRg4209SZsVrKqodMfz2gA0yANE2T0MbZMO0+4sZzXs9ot2yJXJ0s37JcoJ7HmWolXd/Fj4EuYqBXHEf2GGUMdbGrnzFkNpxY04yFr1sI3jOc/+k5c/8bQMhKQ3GXxXHZqHldU24CUjzGsSV52zUmdL+EJhIdbGUR8Gs89wdLkBpKEbnKnm+5V153uhbL7Irk+W3EU5tZTTr28wwDQhKd+l8ZfGWTy4ca+uzDAvspgvJEbQuXsYg+eyuK+M994CxaAX5RPdi0geSFa3414kdJEsOGJHTvg3dqoxQ0To4WCZw8bE5EqREDCzL1yz79tnS9YfJBh8xOJLdd40Bv4glbcceqXW/lpNVn340/57rqgJlXmfH5ZuA7c9xIv7dr38M8GWQMPD7+wvp70lv58NpndfMYOH9/uSGnxfBIhqltUljfkO6D8/nqaTv/dcvGVwZBGyXNoBAjhzjbDMfzCLohhFZHaJxua9ZrcTpKGYjwgxu1Z4rMcw5rISKFbw7NdaSyZfJhZKWOWcPVEBU5VQ92+5PJ3VkAxUoFY77dePhoBIgSn/teRaNUrb9SGNtco2uOTEIMGl8dASDLQWwA1Xxq4rvjgp6FTSkjlwGh8UMquDS6mDGzGpbxCoQSwMO1noqyRIQV8H69rp+gW95XoIDNVCV5oho8ISMuNx2DQp9ng/UWgig2aJkttmwqj56JCiMyBYcO1oQEdluJX9yXdexv7oSdF9XgX0LOMRTGWC5goWoZ+vb8Xw+mBJqBvD+fJrevz2Hqni3Y7/fb7xed7XSbg7DMOOedMdaD5mkF0CdDDFqxcRQ4iNAxMw4SXdWUum71z0Ndxqky1pIVV+5Hbo6pzHoaunIRCwq0dWzktE/mXaVyHkU2BdMBP7F1OisQX6VLDgc1EWwfWi+6pm237cvo13aimOUjUBwqAfwBR5VFYtvqvfKfT8YmHX7eQIIeQaDa5Mu4QCElOAaioKe69UTtaBkmf9uQLOT7UknrSpdXqaukStM5gy0HFzHwYRGn5H/FBCGAll1v+O45kpQubbSR5RoMexgGzHh0GQ4OfATVEYc64DeN5XYMtGsB8vrbLBC4d/ViR0UpKNBLm8B3xPU8OP3T8Dxe+/otd/XFtxqvVfw1ZLX15yLp+QoQLAmusgjYETAVa5V/l5jLdGsZ8kf1PV7abQmqbbtfYGXeVOYc9S0bu0ZiwB2FsMGE3CBbwmqiGnJVgp4h5l8FkoYk8nL+jsBgbIJ2u9c+2x1cNjS5EMmOWRazCt1rybtlrGVq4XZo9j28ikqUuk6AHUG5H2uOFp5o1tYz6Ee2l9gsA9YsabCNrYbxvDe+/zdU6pAoEodH2t5iEHfkfYjJ/zOUIF0F9PJ4+Hh1l5XG14z1YyHeNPmd/HGslX/2O8RUWysE1hucBV9nzrHXEUlDwJAq1iZb1b7VzZAxu1rH9LulA/gm/dvo/yETK/xTOjZ5nmOlkdAJj+KGXTe+wzk0LaycfXJtCEED2wY91LuK+nUCSSV7ddAhm/5ACs2lM7b38FMfaofgb1W9/yeChrGYpEYAPoaNrCDDI6IYoorMR4a7IL0I7qHjaNbhPdtnquQ8R+faW9n7PUc95WTbuUPav+ZQdMk59H6ZwZOxk3tuDkG5nUnKMME2kytb7SnZNEKvNYAiOGaHDqynXAdrDYV+xX3sHA7NVnbswBkNph8AoBjPRyKwE38LOljk40/DIPDc1RoVUw8MuQhgwflN7XBlFwGIu0kX6fuIrFhPs9TBYmOI7xs2DXb/iOi7bYlQz92ruP21LoydkSBz3zMCexvjfGpnc/k9cs2RzJcgqSAM14KAiEOwKmBJhs/ZmrU5cRKtgHzYKs4GfQPNqhLGrlOEY4Xu7tgkhmY2ThIewgAToB48yzbpjYq9fGysDDqezqDGhgzq6CLsiF6fgWYMwjSOS6wqiI4XXOSVGRX9w7My4BIQsqmPa3Bg2Pgsx/abdlxDpPZ1F/jeQ0wvvb0jXOOGvi1jpZrxTiAgM60vRm7A6///hP//V9/4vN58Pv5YO+FN5liL3fElecyfMKvmfp8BMjGyP3lJK/smQM8NsHWAvxiwC0w5ZvV8DNSb7BytrAC9/R/De3J4v7haXieymJqk+rnFUPQhxxnUq/XJ0VwOAOAz7NhHBCjosSYkgfT+7Xv89g19GCSWdeEIJG4N+M05rMm0Cwq1hkV99MHO9lifJ9qM0cCWJtSBnMSFANwH+AkPM+Z1sMj97ITuwB9p15b5Z8OgDNX07lGFnkZOmae65mXFsg/BuhloY5mGCrvdSOgroxHXQUwuAu0TaMZNSgGMBbwJvMfzM4/AGCbISzBZN+BtT69iyyZlnuvPuvqLrSBHQbsIClJN5+amjl8Kdd3WjL1N5nTm7FLDYyVPaNvafZvVNfPPUeCt+7weyYDcyXL73HH409dW8VX6BZo0Jf4/5ED///79R9p0f3965fsso1AT9i6rytFDkcGm3Jcp67KNS/87r/gPiq4vu8X1soJNNsdf/zxw2DN8HzeGCOn0r5erwQr9qYYci7yTQbXnKn7sJbjupoVJxDr70lZAj4zJ2yNNkKqrjscr9dPAlTSMgmHu5HJIA0oHZau/FbVCTRijOHkFJ/nyWTdE+0VKHRzMqsqDpU7I3BPTjXcYNJMhD4OUIBVSTfdp4JptmTICBXlPds59XdNtGv2DapykS2O3yAISP+FWQEewYBu7w5eF4OyNMBRgXxON+52qTGy+pNvebFSnMZG7bqIBCMH236vmbRZTa9VFXKOUWxMM0u9uZ3TE1WBVsVTwdMYOc1NyU+2i3eiYQA+z1Osuk3hZQFVvndVz2FXAR9fjCYCxNq/emYC9QAUO9Msh8+koGgG8PdlDbIRwDMDWQL5vvnawYnWabwUWK616n47+HM8nxzlfjqoBu00bdZyopgCYbZLqG2ynGSBHQ1eKPCH1ofOr4LjI4mr74N79mAD1KFAgxl2vH+DM6ggIkG8KKcE79d01asT6ZM9oYQ8bUADdgUU0AG4d4V/U0/qmlcK7souqP3XO0gLMVWU3PHvGF+32skk7zmBXbHPmoFQIBVtdrWl6suUHJOdUCDaN6NXifuRu8u3lmMScKWAvxJ83a8C2uhnJVDA6rk2I+T8MrMcMlGff4LO+r7VvoaCXu0FroCC++N4QBazQNxABXdx7hN+aY+ocGK1GN9JuylhNwDF6Mz3Txkivnd4g+g6Z0pAQmBxFztgwFbyrL1Qb25V0TcGukG/BDTACZBV532OstXO6jwHAMx8/Q6x2tNmho0Cl2WjR10LbRA/6QSmtTcSuAOKQmJg0UH7Ot+zCja+el8DPd13zmS8GI5zfJxX7SsuT7a2tGxG7cNIBkQWQ9Q2N2q/ay8gtI87QVyLgJolADqGYfGzy49xDyfgp2JAD+WYnAY4+Xlq7wug7ImAhWR9Gyy70vCO6OFIQ+2YVz3X9TyUcrgPXcEEEuXjnX40KF7fQyq6sALan/OMKZmRzu53Eobao91abl9//h2M07myY81AwECfr+/Lf555oJIX7X/52TEG9YCVtH2fGXfHs55m2J7XqM+U/TIrZiigfX7qFMn+g/bDv5Kq2tyQb4v6U/ev+2k8zwDLYQIqlnWCkPfRBTBjorBhBLQBSTmoXbD3tDSlJgb2ykLgAgsdO+NnFcjXdmr/BoytuWs9mHZxnbrNsYfn7WJz5yTSqHOZzynI9D0098xgxUxNm2Yw+ER2nbhjWvoSD8e8rgS20BpZiECsZORcV98zYpc8T9R2DcryJMCpQQ1AJpR5DQNgsV3FNbUmpt5mYFtgWJSfQXBgg6QwZO5G22XlQskczPsXUPr+fFi4f3HNOLSPzzr15ICX4sNrZj6BQ9fuyg99GJMuMlWzCJPgUl6T2E1qaU3AQ9pYhshE2nPyZ0/D7GLe5/PJ/GukPdvB/cp9Wgl7BMDhKx6BhwP4Yn0yxj+Kyg1yzrKp7q0t5mRASsZjb88OgkgWjVhmyudUWO+8ZtT3lI842/HNwMJ57hGEOhJm/d59ZStp5paTa7sJcncssffGQ+LCxfg+IAmkwb276/wKjM6t7Iilov2uvDQgA8t7KmvYxbz8vIH7v/7Af//3n9BU3wBKX87dsc2AZWA/LmJIQkk5osF26vONMRLoE4NpJBCVuzdho2EG8+/uHOwMMqsoy7MH65zTkKzM8s+KTcuvyCB3XBdQiJV7OVnzZInRnxCGRoyAig+5R3IoiRlIEJhQ44IxBihgOqjBaFYt6zYMMya09FVMQRepzAaWOyfyBk8SUq+Qv6PcZ8ifIqgjKLtOwkVEMyTBa0TAPRmiHgk+i7nanUuys0e+4VHxWftNI+M684GBQcAvOHytgW+j/dOjHAHE6HxieyIp4a2JGTWFO6WWYIzrSGxSzF2YB+1VZKqUxDHkGkniJFm/zYyTj8xhqklCmpZSENtXkpN4dqah7CpqzSbMHUMxhhm2pS/fENsxEIyHdUZVYDKu0YCmvF+4wvFzJz6xqQm498Zz4BKZg40OaP7B1z8G+JSUberAhWU77JwX1vsDs2TjXfekNgH1bJ78nRiO+3ph742fn5/aPB7pQAAUy8sYVCmoz1ZVIsliOMXGz+sGQtNLL9yWwy7gRxCOPAACXxJYJL0f6dzVOvt6vTiaPvK6rwZepG+Sml5RgpJqy1XbwXoSWBlj4vNZJWQrcOC+7nKCYySzsNpQh5WOxzVzcmFeJw8BDeEpYG9Q+yAAHoR0CD25Zoxx6BbkhJ9u3RSgxcnFoUr1bgMwUh+xqPRKro72G1HepdexVov0awrWGDk0Qka4pvCaRHB1DauqsrCjtz3UOrm5X5Lpd80r22zcoRbF53nKRWxW3wC2Cq+N+87n8Pl8ut3qb/s9wZSNe7KCxtbROSccu5znz8+rXiOGY65TAsxiHT6fD+7Xi8ZNEx2j9peB7caH9p50HjVReu+smCsZC3fAA+Ma8A283x/e54VAgoRiib7uO+93tD5iaR2640Mh+kxCpWHIiVnWmhYDYvqAoJGlk0YnTNqb5Vz0b6i6iUp2lCgZDL5WBY0uZxQNHMgRQ06p2gZz7xeQU0ANE28BUGDgDFTbXe73dmQ6R80cUet1VLAfTJb/nhinOxePvdfIw5NWTgbbUGD9t6RV9u//2o/pwwzB56BMMpSccK344Zyk67W/I9RCyt+I/hwxkoIlxvh6lh24NojY5z5w5Pu8XxAMgIIZfN9TJU7z5ud04mymtoi+FyVBX2syDL4EmP2dfdlARbZZFU5RtlJrWp9S+5FPMhqIKBZTIFsDrIfGiLklwKNbqBrUDLam6f3rvdDPLBCw7ZW0tk0nKIBmKW0OGPq/ooO2w1Z75Fkb/ggAyOBtIpkFybYfGJEAsET1i/HB8wucoKYCUdmIcexjY+Esb2Lz/JmuicG51SPS57DurAAVzS5DJZi0B5YgodYotcQmfc7BnD2WJ/wAPNxhB3CvzwKUMxjZPMl80nXlMSeY4V4ARgtUpw3twoOKGi0foIRzFqjYbWHJrNP+a93avXvqXGnRUoLi8/lAA8U6LRLIKttL2z1zEMG5pkpIe/9H7aO+fnTMcMQOxxOv/W6h5/d9rvSNZtLr88Si+U5Uvw7n8a8EAaj3A7aQ6rPr83ofwtsXSVD9GhfcvAyC4rwgSGFutUYwFo486iK+C0vtR6SJqvusaXwEZ/bulqDeD/3viutkK9D3loltnuljdfkaxXf5vYddEMb4DxHVjjvGAJxTfJG+dzF3WYuaa3MgSYIjW8QYixM/bGYbn2O2nnFi6kh20QBKp9gJwsDZOlqxRSd9Yk8YskB2MTGeZHsHgkXGwGWpUVwSNCzqwwbeHKSj/TXzgXHdCNYRQJoqErsYQbmrvYDKfDZ78PnwjCoWv+bEhiN84ybI49Q/rnvaG4P3OLiRs/jCll5rTVQjaJQAdJ7XRQ2ttZ7MH0BigCdbZBYwYLAhoDXXwKYBob3sFZfDHZ+HxX6XTc04zrDlyjImld0Giiig702xgHRWTh9qwPPsPpk748hYKrbvAg3yvORa5XM6bAcY54HdKfTzE+ghDeFQZWA9O4tV4XiWCgmrzlflNEzoxYaykJZs6xcr/vUdeHxXYaoGWtF39bTgHFhhNotI4FsAYr5PMJ5MFl8zX2FeA5aGDU6EDgInsq25TjoHXZhoGxsEYbI4MWD3XXGm4tQEVLIjRQxfQyDMybJnjOoDYyaYPSOwjexClxxQM+OyrZNSPNKq2No71iCRk60ln8AivoMAkuI4Q0lhpQ3J51OegbFXRJTkM6NYxsiy1z3cw92YHmSctfauz5SklQZyKC4NRAG0invV7TRZiDHaCQdy8EIGEdhuLNTQvkDkjqg9K712xR96JuB9FdPTgKAEhwcqJ1x7s41fNj6v7x7UFVQsS7ubuTuPJM+bQceXbDgZKiSj00P7tWOwM5dI4Jxs/2EFOAaxkWCBOdxysObstuLM2/N9vgd+HsM+nM+Vj3QOqzMQlsxdtcTOmczcD9nacMDmxLMefI58SLIHn8+nw3fG91WM5LkdAG2KFVAnuyemM864ie9lYbjHhesnBx6u7Xg0rZedAf+Jr/8Ig8/GRKw0Nu/fNyKiJ9nM7DVfT7Ot3FuXY7PSd18XPmSxmWdgvNajFLWqJZsTdeec8IEc4LFWOrn7hntW/KWd9fl8imnjCFy3mEwPnr2TUUMNtJpONXIKIMaAWQb+87pgvvG6c8ro6351JSg4ltzaoM5r1L0p2FAQL+03IAMQCesiEn1/XReMgKWMmqpBFwFSsXC2Oy4bxRqCjJiNMhTB1k2xCutaZPyFdNOxtV4e9+aho6aDpaEqUe8FZHKW03cHE7sUGE0NRuNBHzbxsMpnCOzVrcZaU5gEeHsy8ZJOIFDU6mCAp0M0NFyAAfRF0FZ6enNocIY3OBABVyDOiFjTZK8r2ZybINegNpYFmNA0cKdk4OIE3edZ0GRh3/uYapzPNEG1NOTv33etu9rJpkBg/k4BK2T8SJdjseKeoIb1NGdrnZbXz6vea6+Fh5XG8PO6LzyLbdJgsJ6ZSiUbqhruvTCugVHV5Ak3OjQ+wwyiG1AoIPCLlRdl9MKasSZHgTyWBYhkC8txnrhn88cNJgeiqmsFTDIRUwJa54jOSWwdMXEbuIo6i5XM2sFI4rV+sQYCX6L/55lVEJKB4lXJQdkO64RO+7psrfW9ijGrKVQGVrf0OSb31PcBBr7ZAujlvPfu9Ty18kRHL63FOIFGMpTHN/PmTIANVi0EcThp2ZshMFqJVijP6HuV41ai8gWqiiVRn02Q/Gp24Ga7T9Q1ZkC7ogdldGuwtb4VgJrwpggCApFoh0Msg4AAHskaRKCurSeaHmCBQGh3YHxrnDqDXd2nNFx6DxFIrOtUgjK/PksRbEDJ2nfbZdTZ7haNjajPvzZtpWdhf8wG9K+r2+2qQhwE2xm4B/1RgekHeA0Gvtpjg0yOMZvNr/Oa99KMktYHbACxW0GaVftwArvAnTlmFVZS7oJAAxkZBaSY1XmQjWrgNAPpGsTArRNkwd9DnIgoMEcM5TQXCVztvSAdsEAnMCe7HRucHBrle1ScE4NA209C0fIVey1OhkSdYSVBAjSrun8kKUrwClDSXQuM4ZlKNrgAyBOUHBVriPhXZ+BYX12LisTnhN8CvJEABE9mfw9Z2FMiUYUVhuSCBGXfTiae9uJhhvrzdPb587LLA3nWgzyZwyeFHeea9mcfbaO6pwr0R2uITXUKzKuKSYrRlIQkezYZtJuFYk1wFuNZFkvPVPZHSbZsRIOmHcv5UWjV89AU3AEjiBIIqKjK+9o7W9zdu9XQBsKccTZvgkWbYTOTpHAsagEm0yHPjjbLLn/QYKnO3OJZbBF5Pa6QqcN9X8WsEvPKpuEaFzRkxcC2QNrdOSd+Pw/uObEtmaw2BpZnG/J9vwiUWE4lrmJeVGyT2lUJ3nwscwglb2odvcjmXzuHqKXov9c9RSAnWMYu+6GJlgaCgdcgmJYsp8tuunYOkOC5dQcWUtvLBuNdA1lwOWhPBZByf2gdxoD8zsB+nspVtNOKva1YxMBBKSqCR8X1GR/lWu0Ffp6VPQhvRuU+Hq3iMF17Se0wBo5YtTaXjfr9tI8DEdIMdFy32goZC4Yl83pknpIC+buKkxhqdVcRijb+OMt5/63r7VyLtTeGZX5rYsaF4hrKwExQ17UBOfk/sJUxY7OMm9LfR8W4exFIhOIxnm87rXk+K9mHQNuX/i6KeW4EZ/T3AWBM7nt1TDCW2ivg5gT78pns4RibIJ8lkL8NxQq1NEoIJHMdrhgw398H2XthzXQ16Y9HWfe2X6juBhrXihsAUOuN11xxHGNi2rqM/Y0uW+3gZIR5xhDP0pAhlJ55vpTxFT9+RTK+JP0hW3ox7hJH1N0BRw+wC8MuLhrjeOQZEvN0y896dEfHdsAiNewidUcnAa7PIsljjCS2GItec+B1DdoTZkMq4EdGTw+JVtc1m8nKc1ZgH1LbO7i2O7Ij5FEb/SFZZIYqYkwW4vJZJNsZQyBt+nvF7osApQqZHRvkvXfBpgtninPzzFC/XliB5aAN94DDqXfJQvs1+KxXFlBWdowYP2OOtK9zzBzM4RnL3bRbNoBr3Hh4zcvzvZokwlgq+vwp90Vka/uYA7hzzV/rg3/69R8B+J71wAanII1sfxlgQhXtJJ7nSccPw/MsjOGsnufPxGwS0DfuVyWhom9eFLvMia9MDGxg3hLHTQAPzjHFZrjvWUYxDWNeB4iOi6E2bPQgiycZicOAZz143S9W9Xp8/faNEcneqgmrlgyroJGEGVt/aYAVvIBsCxoHMQaNjneOiesaCNcEYAER6SiC5S2ll8manDBTuyS1IKYS807ClRR0JQLlgPdef0tyOvEX2Kaqa1UbbUITwEgywEMNPgOKTj45hbcOPrS3N2xcxehT+2k5sq0Wh2YL5KHZkCiXBkMksPZUgmrIFtprTjycejwsmZsWrJQyIJg2GXSmkbjYYn7fV7X6Xldqz0yCcaUXgnRCz2dj8fPdAz8/GRg+EVVtTf08tUR3gDjmwM98QS6sKMNp7WvditVBByKg77quSujOQEcJn5L8ZItSzw8JXqf4dAKSr/sFGFJXE+0kjaLAOrMjMgCglCQQbLnhHjWkrpacqBxM6jQeUy5NCXeHJM0aYYIGY2ts1DnwYq+qSkmnNQ8gG6Ax3wdTqqu/wAnuiLGGAo+VHCnAUHBTrDM5EyWMDGDqTiqoy5b/c9psViG9HKvAxhOgUwu8LlDOYYwEVxSICxrN30kb02ytdER9zVwb64S+ku1jLRSIRASO2APF2lQQBSvg/Nx7+nu9nwIT0u11bjXVWIui556M5E5eASXwRyKOduZmgMWsa691Hs1AKjajkVXFaxg+voCvUXulAXy1O+nzVFiQbS6AJFGpbpdmYlDVdp5ZxJHKRwdbYgWGBRkD+X7uXm0nu1riA4qEVf0VqKqrqWurtewzqQE0If8I6QoZGaeZaAPyW7whQ03gTg20BhvVtjYCbIXVfiH8YijbnPscODUiwwNBnRQxE7T+X/d02hAc59ka0BQbSH6wKrQBuK8MfPlci3XA6y0WkBF4tPg6O8bNJ7mFZrnxzsqu/82fRk80NvqafH4pbs3t2WCdWrhtFEOoihoKHkdPKQYos3GnXd1rI6YxJkhfpUEeTuBP/k7Am3xLBgfUJrSjHZKARa7jroDcd7KHyk7puWtdq50dx3rxxOqwoM+hFkp7pYJjavHk0kXZliouAEei1zbXBSTLj5SZsEwwlDTqddEJdWr5qOiKOjdfLU8sgPgB1MuulB2IZt8g/ga462oYI8pnpvTMxKXf87bNa6+aapqJUJ6Xz/NBRDPuT98i/3b6LgGRwdjKdu+NOayS/26ra5bVVjzG1R60Z8mGp97baBawulUq+WMMnvbnamY0siAsYEqtvgGxa/LZOlBreNksb2jg6/gcroqRBbobBovA9KjlE9RWbUyQ5WM8AoNyG7mfE6TNNq8u7qVsCgf/RA6Je1beq4v5c9vBHMl13RFVpEV4tvVZA2qy8S8m3yqMgp0KpZMIFHkg7VBqlSd5QmxwAimMa5JpxlwjCMqYITRIw7MtOplOfe5DzPFA29nwgwnWOt+519BxQbR/1vnT3pCm4ByoQuFau844LLuIwozFnJVFP+QEy8F9kmsGfD4suPM839eo9Y2RgGyMQRbXqshqL29A6MgbZT/T9qnTKAsMn+dT59h3DztJljE7UwRUy76515CQ0tG0zM3Utvesxb15vFb5QAZOOAE+gevQiYgGtgwsMur3y/axiEF7AOs4apiRUdq2emuQz5wYg6Afc8oEdKhnPy3bfi3gwTgBtEsjGegdK9DvwBDFhEzgS3EAgOoYy6vx884hEsEZ38fX6+uGC4DqWMmyeDOZozOn+/gGogdYzkMbU/kv0AxXsc8G1NI7cM+8VvAsqP3XDPWss0hkuihEAI9wAk5YmdbFMBsjBzwozzfD654swtt37sK9uLbiJ8Vm7GRyx5sFHN3XZLz5FXtHYxBmgXEZrpjYAXidIy+flTFZ+7T8aGnE085ZM9TznCKnfNO1Cw8AcsK3cq4gEDhHAuQ7srgLV/G0VAEhwgVG4JoZ56+1MQjYYRhiSNol4+r1FoEkZzssSp6I4FCdj8gBJjOy43S5U+tP3SYaAOpN/qLjCQeM63SkMP/21z8G+AIpeHtZDiR4ve487Bi4jGOeV1ar7jlr+tWcZMkBgMAJtgWmAd4VjAXAlkgNiGgKKuiQEHQAkVXjHWyD5IGWhs0Y1xfVd+8NTOCHen4F9vAaxhy47a5NrUASSJFb3c/zPBkArvVlRCRqDCQYsUjTt5GTWiOyQue+GaDfWd3aC3NcpN86bHZgNYcGjXAybvRGOY2+jK9+R+CY2EgJ+LHar8qcNdNFGnr57U6sxUBR4KhWk1MPZl6qIqRDnZyWWxWTmTohasVVUhAReHEycgMs+Zq1Nq4rDdpmD7tQ/2RLOp1Jaxh+Pp9kPjBAWnvBnELJCAQF3W8yLFR532TcpcF1MoW89DOkCSLtRDNDmDfVfU7AMhTV3ki7mobeLWpq0uSAjM39L0bH2ska3GsX8CynJabi2TIu9uOOrAwDCUKvJyf8jjEqKFNyqme5OahDg0WyguF4hZKBisbKscVOgHUY9XCqVZxJPI1utWJCzBeK3XJi8TAxOuio0MBaJpZK3AfsGAJx4g1Fa6fP1plQsM0M7IuZF9IVGVbBlloUFAQJJKsAm8n0yfDRuYsjcFLQIWdSgABQjtx4tgX66IyeYCzGwT7ReR6ygUcSHvlzndG6NmuQdJDJLJtQgIqS5mKWfJ/3Agbl4PkeEtCuOzscku5Zz7GSTC0ATiAw70HU+wqwrHVLT6YRDT3XscFE7YWaCnncWwMDDUwO7Q9el5LVv79G7TE1FZzXp8r514TAKeZ0g3l6lIollSTpe7kZgIFmeYQS8vsqcNCYBLeNZpDOfazWAq2jEvcEBsmmPO/L2ULlu9iA2ltinsYcmAy0LSIDkOGY1mdh8B6NB38r6A8k+7tYf0bx72SpCEMZowHjEyjWeemtdwA6vAEDUqcrIn0lggWJUcF+yO4EEARogP7cOjkMohe1YdTOKGaZbED6LK9r1nR6mHWgdviIAs5C3QuzAKsTPK4LqOSrz2AGmtRdcq/FUTthC+F3i9lgUt1dAA61GMmHiG0ymawGbecnTrtlPeiATK32QwPDu6Ciz/kXRu92PL7qdfl/smDlMNDn78uGRdtS5WRpg8ToNCb//GG/Ewxn1wIOm617YFcJk0Cd2QKCeX7OvRr1+TxjQ6AY04c62HkmhroEwyhczy6Ow6fq9Sqc5iC3bv9XcSAOIBwsEhrZMIO6vbncZKQ6faPznrm30sxb2QixU81k2/pZGJKdkZ3L69j3VnFVsnJTNkT2VzFMLNrFYx3LN3CtawqwoYZt5bC+kUVZyD/mPlyMY2QF9az6fIJTTgneMJdQfJCA+IRDLfTOQSGgv2Scah2P6PlkrNV7pJhNfN6adq1tZkjmx4hknH8oOZQFlYVpgI1u3ZwjSysrAtLoqwIj99gcVm2muidNbAfalykXySOWAImTEaaBhX/99QtNdDVkHPdhzHrfdxaNzUp33MbABbaoRnCCcXY7Zfuh1zPZOqNg4Xn7YUu+iyLbV8clJtCsW+S7gMb9tBukdCjJBgJsdV27LILiOE14zef4KdsasAL+tLdfaq0GcFkSE/JsOZYHkijliHUUJIZiOHXTaF/Z0ZIrZmCfsWr15PM6487cA7lGAeqUr4WN9ouG8RU/GlKOSef7KB3keoTDkKwvw8AIZawBD2Nb8tFaaSzkiVgyLM/64HgtE0Dr2Atwoz8ajj3YpjkH1jbMGbhGrp9FYEbmAEN+iYW84YFgZ5v0FT0sDZEZtdEOVpQhNVZ5+EJWiLakDgekeUpfFLI7XfiUf8h0LoosFGQVOzJ2yonEqP18zS6yIQiSctUXAlhdmC0NP3Qx+4wh5RYjMmbMwX1qYe6cBUE9y4i0ow6EceIt/ACKs9U/IvD+PEiZysQRJJ3G5qFs748cNoSgvvgciiDR+tc6P6h/WySw5PAEBgn0+qB+q7Q2OQBV9gxAPlMYHGc8CuZuivkTKPbFIVfIsy5dWNzG2QvJxAtLNp26R7gD8mq3s92ZcQbILnbP4U/spgvamGSV5368fn6AiMK3dHazay4Hd+y9kjg0chjWoPZgPu+B0NRdX9ynPL8RuEv87N//+scA3xgD8SQT7Y8//4DGqPvKqorvBGye9cCDwEd0y9ycqQO3nlWVpk1dEqNR/eHQDWn4FailZDjAitddSeB1Xbis25USAKOzMJQg9X3dNQ5+rWRrWaBaMhWQZAvJwEXtMiV7qf12GFbew3pWVip4WANRLJgz2Z92VEgiYJ4bTvd2z4EYs4BOHSZtUw1VqBZCYzustZ6EaKUK4I2BqqbUFkhg+NJJVDKi6rA+H7BqPc5qUmuvBXLtFhZZl0mFhbGayOhx7Zxes9mekIFNVl5/f38BMNE0q8EVGqKReWO3Sc7rwnUZPp83PBw/Pz9AoBh9CBDZn7ivi/R5qzXJZ7grKTMzVn05GZjP+r5zeu5gFCiwt1oXdge9AOB7wWtfpDG92VIOGK7r5j0C952gplqfbiaF1xz4EOl33zWRWoNG5py4xgWbqbmkwFjv83rdFbgAeQ1iYeqsIjJo8L1rqnJe04QD+FAbpVvxUOynDK4SsDMyfdTZi2jal5KxEmdHBpzugSCLjdsk92ccQTPEAOFLy2HzfQafR4EqIIM40CkAKdIMdI2B9+SbmgHmacylxYdQsidH2+DACXxVgD9QCboCnAKW8oYbPOrL6rNfSWUn0F/g1Ylj8cxm2xsY3PB6j2vkxwJQAYDPTMWB3WCBdGE66VZ77qjKn1kDU4ZOgs/zWgHO8aX7Nz0v4Ov30jY1yCFb0zqH6Hb1iow7sKv1285JWwRQ0Ha5gILT5jGrP4sVkpKQrlVWxKP2WAezQVuUEws9urKqe6r2uNGt3f0bnXCe7B2BB90C2o4/uOejnrGehQJQBpW6PgYu2m/FIBjNHpBPSCDAWO3npEr3bCND+w3bwKIdMBYVslViVqsVQF06a2BRiRh2YIEVW4DP9PszCvTj2hVoe649g9uM/zh5tgLx70KX9vy5Zz0ajBBrTyCEAKiztZa7hZNT/YvNKWAkCxbG+GWUjzxbWEFgAkpK2AbOXVZmpNqAaOfrPFNnS3tsu9c5VvI4xCzga80Mg4PQzBr02mvjdTcT3ACYfxcv3J2yDToD36wcA5Myns2axKvXaw9O2aSos13JwWHnrvvqtQKg1m09/7Kb6P2ebxEQoMs8BNLF1JmQvS1Wtfc+0dmW/akzqD2s99AJZvJXrK2Rul3nQClN+D2TMX2J4WuyRyP1tQzBJILxVEQxbQFO2uQe9E8DgwJMZRMFeuDreliUiQAFkegg8v3PQVF6r78DWFpHP2zi8C5moYBzsSSaQaF1U9fBl70FfQJb0mTmH7VKHfshO8qCdgvUAWzwQkV12ZEJ6THxPpkbSL4BfJ186DWNrbV979pn8nGSePFjbbETaLXab3kdr/tOHxpZlE73k+w+jAmjlrVsgQ8jcEZfsB3jItMYqDxItiltJdlL3PtzWCWeLvsiAEsFnzEAEi1GrQMwqF/1UeIMYM587bOyg+VDhtvgMwnsBIuMoFS0j9dSJPCWyWzmHwL7lVukvnR9rxhGKB9i0BkDgvZsItsjzeTLJ+aFr9wl7y3abiBb5PfzwGDUTt0VbwpAVGwgBp0KLOpQU/yFQGpFj2Sspf1AMbHqDEZUbiLpBG4IFvU7xhGoCPRQAujcQeaE8aIuIimZ3AuMXxjPyMSBeVj9O8CuMOWCuXem9iP3j9FeufOZq7DF/SNbJ/uZnWnBqcdkaPnAY4Y5NUyQharRLd3TRoJ7tAPOlvkAaggdUUdIP1jwk+K8tIEJVnp8cRplzXIfmezJ8draL7L2Qf1dLilX3FnwETNWNiFb39s/graqY5ckIZl80rl+XP/cbyQ5OTsBeE3ZTo7uzvL2X5v7c3GAWw7idGYARlvaWMKOLPZG7K+Cwt4b709iBHNOXCRZTVPXFFeRsXW++2j2dW690sOM2BDXAmHIxvnsNHxYoJ4mtyoilex+5moX6A/5+ZfkHyLjGyAo2ZaSFrzpfDYRGDtjL9lWqzyL9ttQdid9sx/dqDo7gQHHZ2/mBskWLgYvEvgdJL+sCOxn02ZIHkSTrtNeLjes2By+kc/hZy78069/DPBJnNXDsT6JoF5DjKLAf//5ZyKcTq0BXEVfN0snlsFP4Od6lTMBDO/9v/jzjz8KREp9OE1RQjHAxhx49obNdB43HVbAKzA2BjVzTrzmXawlFDiVR1aff80L3cqRdPwM5vK6r+sqbR/9HZHDNJK9lQHIesT4Otk+IOhGUV/Sz2VI5pyAO8dVZ0C3nUHM6CREjmqtbgEu/UFuxtLKCznQPDBaux7+IMaNriINxnoysNcIaB0CAYRpSDsB16mvSlSQycgD1WBTBp2+Nl4/LwSy+pBJU7dOCjzV9NsK9AzV2j1i4vN5IxOhgefzpONWYKI9A2qNgYM41IolAJWJzBiWLQnuGNdMvcWdU3rfnw+nNBPdZ5IQ7qU1oxZWyLTzGc458TyrNAUl2pkG/zkYJZmgio2ICHx+35zIlfsxAqWP8P68q33j8/ngogZNsmLTMdY6e2BeE+/3m3p/ZNlyn173xeAs28Mr0SkmLfUg58Tkud28j4UcYHLNySRFJ5ksWygB1XSp0cl7JW1MWGgIMyjfGDGwQXDVmoU1x4S5EgKrP8VMPbUjlahUC6T2KcHOqnYLGGamrYpqvtjr+ZReGpMjVZ/PyrQYMMABzNuRDCm4QienTvaFQPucFjgqsKmCgCKD6CA0tO6VrOYfZ9ACoKqk5XHlrK9OzAWMnPd6Ao6VnPHLbKKYQgUKaupqJ0YnMCM79i+MQibakPaKte1RoUAJszEYrYIGp1qlvhJB72hdQVUq9UwVYCtWF4jR68tgRmvGvQMFHvcNR2AKRC1gedQ+g0AYPf9iNnTLfTGCdE7CCZoDpS9mOlHaQ6P+HtbBo5pZpUWqFD/bxI+NQPs8AYB20Jg5pP6WkoSTBWZZiBJjgAUIDZQA0p+p+j6GGGsoAMAhcE0bL/8jFni38AG283eq9Vet+NKmMgGguWelSyYwDTgSRUPtrWwFzo/fweJT6Lnm2lQhT/um9kAygPORCPjOTV2tq7G+hlQAJ2sw/VeSEeJLRiGKQUygh5+BQO0V7eNJXT5cAi+AUS0jgSA7U+CQhMLFcrputlpF1HRwCdErvpC+0nn+qx1Un3MwivPPgRNg0b7W1xgNkNfzRvtKXXNEA50GVHFAAMB5/uuxea+37K+YOVGfb+UfqrOAZy4CB5v31FvV2Y06V0ratHcNuS8sBKC3L9PPgozgll3hvowE94opDg4NQdtr9xwiYMOwd4I6aayigF751+wuGOULGjTIIGhiKs+v/fHd3UH/WENuUPtO5+O02elLAzVeifc2xgB2tnCaqVV31jNNcD3KzhcbRw/sSNjt/Cz6zDFYKOe5Y3mOvyNNOcYtY3S3S14cNgF4gfke2dbl7keLZ8Z7Aim0r+t8j6MgLvA1ZG7YmgjTlUGJ9n1Tg3eMBPGQBcaL3TsPBeHDgP3JPCqlggLS7gvuwbviw2BSLpEFxV891A8he0OmUO2v9KkqfHoA9+sFSbqIJfws6nEO4PPs6pIweLNhDLjHhWmDkky875lFknwm7M66Jnaoe2YlQKZ9dOy5YrgABF9zz4kBKvP+fN58ThMafNC+Zdf+PQeFzCGWmIrUxlxtw/fCVEE6MoaOtXNYney9BaIIHwT7kT7XqQUmcGJhF/nktFVdsCT7nKy/Udcv3eSjeKcYQ0MjgsgKV0SsLJ1XSWCMOGIunF8E7THIwJSP66msBiQDq87C4ZP4tvLVgQSlVLwWOOgeBaILEBOJIGbkQKMxeL4H7JCZCRjgWTzwtcuf6X5GG9VeB8XM3uElLG29GOCV71SsFRUb6r2Cbz34OU6bllJAqOfz+ywYVk76pt3pZ8034jXIv2K3z0EkMWTYEX+YZQsna+Gt+609M4oM1OErfXagiCxmyfCT7TmnKu+9gYe+PVITc+2Fx4B1Oe45MKfxvqyX/TgfHmpHzVhicz9fswdX6XnMkQPXNve4h8OX9z5WDlNPqI5vdYiZgfdjMBYYdUa2bwxPZuMigeph91i14Hp3xyXpBdTZt6+fqXinadjSAE88JeW7xDpcrjXkOhAnuCgLFmAM6k7t9GQKYgzOUTgjpn/v6z/A4LNcOOoC5CABZ8U6D7H0Jl6vH/jeOc1kOzwWwZd8gHtvAn8D1zVxjzuTNFaM9lrYwxAjH8KYqe/heyeSu3eBLjmEALCRBvoepGfvXYurhBhMFlNTIwdwBJ2P1lh6cxLglzhvTmpdxQ6475ugDI2JiZEgIenW18q2y6RjDopeytgtb42js5qaQJGCZkDoegbbuxygQND9NW5eDL6rAgUd/jEGpxUDnXRZJy8FRDVQkROBP6VVBzTzUAddrRlyUossnHSaFDJm4OBrdzIRGQBrqmsCXq1Htp6cCHbN6yvJyAqQA9Sik+GT0YVlUDVx4RJrzR2BDDoXK4hJZ86D+HxSQDdiHWstQHQSKF1lqNV2qYnKw1Sh3JBWYTkLGoxusZaQqpf4MwQ+cV3ycxzP51M/G2PgpfZaBsbSvOz3y3bdK65icEU4nifPzbSBvZ5OohikQAk0q2ViKYpZkDqXVyUaSpIrGB/IyXxyXDZYncnfedZTDrACOHpA35s6iShnqKQqWSebgWK3qKVT1JnRVh7aDrWnlUS4gnnaAwWaA+PLyJ5JDtzKOIjdJqe6uSbn2Tou5CuoU/FhoBN3tXSktg/BPWTSGEijJl0uvX+1T+hw8ln0z/LilLw1+Ajl96jJvQJAIMfKZ1VmIe9Vp1GrAygpFPBJh1zRVDMoZH+8rsNqLRT9tJ3JILEmON8sNhwtvfIb2YrJxGHLie/SaNL1tRYJgN0B9vmsBdjkcbLS2rKv3xULR69Jn+MxcE0dBe4F3m9ex6j1oLNg8Bk1Qff8rPjbnpFthhLj4/5kW8REKFA6Nys1ioJaV9Gf75lgXuMqvyNdQJ2r2hMGRIyy9xV3hcMJuEgf82QyavAMEMlcQYMf0qgMJSTaV9qnAFsYW89I+7/bfHVGm6WrZLOefUTt9/oUs2IAyPbgaO/U9E9pKVldWtpatQIWa9eAS+o0soVoAFbi6Wdyp3vJSne3LZ9gSyXmIeHoOPa1seXlYPwdPh68Bg8CQYdkBggCGFkDevaB9FF2ajBGYJsKY1msTZ2sDtAVzFbhIhJAlAabAH3Z4mp95bVOJePRTK/tAfiq/aZ4rPap7AhCeUHZMf41n+XBWj6TIAGsJ1jbgEn/vnynHc/Typd4XVs/zy4YaG+kAP8xle841zhanoz+thJAtchZsq8EbsqnGA75jmFZIOD7S45CPrBYjEzO85kcLGdYnTcxNlH73BgX9Pn5u43SmpyA3PdUenCN0gaVriPoTU6fbkCIZTilmc2C9hiAHYPkvFtzy34C6OnabdczH7lwX7mPL7LvfKfesgosWUzN676OdnXDJOMiEuw52qYDlHexiffzJHtDhWOTzdCZCcROjcD7dbMDY5MAoMJHEg+eJ4cSSoqBDbf4cKCQ4Yw36YSk50V25DS1WfIILK92NGcLWbriBsLn665io0PF+o1x5bo/e/GM5hqEOz5rcT2z6J32BcWIyWntV3Vk6WAmSSh18OBq2EO22xGEfpg3FEuJZ+EaJE0cdq/sFosS15W+b5OkIOAn7ao6e3KfvV4/ePZqZi7Po0fg83BAY5C9ffjDabomw7bs6khNWUKXO+qsKEbLXEaT0QdjG68YyLcGMkYXDBEZE4bKikcLKv9+mSHbC4OTZTs2lm+rZhf5NR5ExbVAg/AJvpxFX/mRBIQ6bkzwW2wlMN5IO2AwT2A0CxaBOQNzOPY2DuaYyUQlIKnhimkmD426yjtohwMwi2L0AyFlF6ZQlj9XMShOW/V1O+U4eh06PgZ6PS7mNB7cr5EQoDTbnr20i6HhRzaAEd/6451HBcINH+YAit8RTVwQuXpJ/758jBX4NaaV5nm1hkYUI9SUD+Dbb5mlncgUi/547WTKYhZoPofAfTHi4njOCRIKMPbdRXkzIJwcg8WyDP1f5p5k+Qk0dGe82HhG5k3JAoR1PCQfZ0AOsLLsZMQY2J6TyWULkjyW8Ye667gl8LxzGCjITH3WU9d+3y/mBJSfi4DvhewU5kyHMXDp+YwBaMCq5X5Xp2gAeD5PxZ9T8f0//PrnGnwBbE7dnFPVUrGbGsx6XRecWg4KGqRBp4cx2TarBchx7wROgARk3CEdvXnN7Eu3wZbG3EgC6O77xvv3F6/XCwAKEFDCAlgOx1irWDsJJs5KdqUv4p6o8rgv6p5dFUQLLAQIUlaba4IW63kQmMn005TUACfgZBVd157gFDIR44S1PAjSrtAGltPvVsA8vHkIoQRhtFNIho3XwW6dw0belSittXL4AgOUZz247hvBQ6E2aelZXHeCSzmsIQMQd09GI9lIaydtdT2quOSBtytbcgScAqxMRFajr/vCXoFNIKieFxoUzr1DrZMx8Pl88LpvXPfFPfBDcV4Uw+9hS+w1JkV6OQnLvfZJTkLr9mEAuK4bQBRQl+CmAtsOgDWEw91KS8xUJfYMHJQMwZJFN8gCTL3Bqw788zy8lnTak9MyU4DXiyWbyWAGBq/XK9suq4Uo2a7reQDu6dfrxvv9xjVfOVjmvvOc7JX7iMGw2syDbXWxmdRds9g9YmzJ0PqR9KEYFO18ZNikxalE7vyac2aQI4YNDXrwOeVZbj2fQMB3ICrAi2IKan+f7X4FMLG6ZtHnoAIROXHa21MweYxR928MJvysyBzBWzlRfSZ/tzTDYjcA4dGAtqHAB7VP5vXLboADeQT2MNKhPWmmmnQTG/Twc7kZfFalkNeqIQOaKKeWdcVVaT9UlWsgt+4VqEmqQocmRbt11gv02QeLg18CYs42C+k66jomGdYDFxllDVxEdDKU51vXceiMck+dDKlaXNjfJuv29Z2J6imYrWDpnNIMUzXdOimgjceRkCjF/QIdQkm+9mQL/p7XZH+7vrwK64RXATwLEZtJj86R9HOy2jpB3XcMHy20L7BukIHLz8zi1U5wReujNh4FndsJtjpiMhGazfARyyOgoDsD9RPAkdh//nxULO6e9j3ZTrsC75NRlvY0/5OFq24xcu2XAn+jrlvPJbheybKPnmKL/NXlKVeiC5RNwRDDkFaMrEaBDwI0VN0Wk0rP27TeRj28L9/f+Uido6/3AG2y9kCeUcmNTA5BUACvYqU2spJdBJkruhbet4pTc06MCIhJIh8A+pNwx8OYI4Po3KfXddUzgAJbJmqTQyKmngHXn8aFBbXAQzZMg9+AdAjPhLXXSXlbJ9l6yIH24wn0WX8enU8NOTsKJipMnnYkE6mTfatEka+vyaRk4ZaN9T69UUSGlL0x2enalPVzJf96Rvtx9l8xd3K10x/AJ7LcsHyVT0w2Adr2B2BxAOuRHTGbiXxvMwG2DRKWHIBsX6W5BD7VNr67iG4DLEwMXocOLtomWgP7FTvw6A1wEnD580ltvwG116ZE0EySgJZpMqHkfey92TmR3UqGnmYpyYgEHMQiZ5knUqP74mdNGxivSQZn2u/hVnvrWQmqfdZCwMlw457beY6kCT2GI+AJOq7NKdtZzL8I0CdIbHgqbgqcGzAmmqVIVm8gzzgi79/5bE4gMkX9OSSBbfsJDAZecyBGEIwAnpVgnCMZM3YU5BQPjWCrM324+6pcIAcw5FnLDirFCvnZC4FYtI3ylwCWtNrdO2ahfQBj596nBDvWxkLLHkwOrFMHjICyzKkGgjIuQbbfaWuLBUmyyRboH7nfEvDcPKMz9eKn1WAXwCqODM8OEZEkzuLsiB7gE+5wS7Zb7CwS2mWwGRhBfTlsjJhf618x6OxyrYo+KkZU8VU2mwBMDUereKN9TwD5vOn/8lmOsk8FaB17HGzT3CPbMcdODb+LQN+YaecUwyc4NngtbFCnvQ8cXSe6Kv+O12TyVeTUgCT5rvxVMYXbV5fDzdVCa0J3TDrMoD5CjGCczXPl2QmlgYiKyzTgRhZSLcndhRdFZrHF2Gfk+1bRhWdhk6WZvsMy7keSMnpFKOekgpKl/rN5F3XSHzpJRqOeXcDw17NK9z6Z0Sz4iE1LZvZAYHm2JGtPodY3Qenrythh75w4XYVnA2xoYEn62M04TwQHaS7ycVEDL23guXaKAMYwTJtYZpgc9JogLGMIS8Awn+oov6zcFepKck1N5+eNlOuaMOzN4tEYWSzivvs8G+8lwhBtMLx8urNAswPYd+cT/+7XP5+iuzderxthhs/7Ddy54M/OSTOqVF8guwuB3/cvq12c/jkvwHLaqej7vhZeIwcz3H+8sJ4F2MA1Zk1JuSSSG2nwNVntvm8AeVjuKydkyfYIMLiuO1lXShIYGMwxqHOGGqIgFtoY46uCL91ACWnvlYMZpEHzPB/MMTn9y7GfdIYlZMlW3qT2D9LCk/FkNko3ThUng2HFgtlNJ5Qtn6J2qgp4BsGt86LEdaRjjsg2VB4qiXXvneAZkMKV7g5wsIXaONOAplGe8yr9OaZf1da1qLUB5KTWqGCiDa8bP4fX+XyedrwW8BXVBgGAQVnq0L3f71xvtnYP9GTb1+tVwV1OF1p4/fzUhN2JDD7CHeN+kWJruK8L788br5+fZGbSmPjeBUA/66nqGkJsMRQwc72uXCs6LIFz17zw/nzKEK/nKd0jhdvrWcm6QDNV9PV8PsUQldF63XdN5d0723B///rN6rOpipOBiwDO188P3p93BUUCEn9eL6y98Hl/cN13Bqtj4jpYsa07xQp2APtZ6ciR4ICqKhq+YWZwTYv1ZmKOI/GSQ1WCe983g32ytiowVwUzN5ASJFU98qzb4cIYmP2dOeatKafkWddRZwbtNNuh9/tr/fJbZ5LBthFrgOdkLejPLzDNgATg0Z8J1HUq0dIzjfADaMmgQUGCKu7Sa6uhIOik2wAG8J3gpg1iFZiVcRyJFX+x/p1BCI77I4iiRPu4fgWSAr3qudeaAohOck/NrVgdnJ/PoSrJ+ruSBlWK9esGGBNFQ3clp+/payiWskUFCPnmwUl7qCCzyFXRAABTDklEQVQXaNAMCpSjWzuKtWJ+JPR6P74GApPO5Y26RcILyahEsrxzfyj5B67ZIF8BgrT/p/i/n5/BiqUCLrFwVzhZq3mJz1pYlm3w01LgejiOSXeAgL05J8K8gFsFhAKhxEAAyF00DcwSA+q8D4d7n5VsEjC4pW3QZyTLjeeDK6ZkW/tdvqr81t/YfwiQcRm1d2SLiw0m9CLiK4nTNTdgT4Ct9nsUUISKG7hvxFTVOUGDI20n0Oedn++Mdf4+QbFa0U4bwyTX9Ga1a3idUMsbev9aMjhhDaK6VdNl+Zk4tnLfb7fZqoNjzh7ioetajLsAIAgE5ZRSfog+276Tcdmei6B4rorkEeifos/Bdsc69jgAlN6j9bTQYX04tM7bCZrJ3EV8nzOXfYtKKpRoZfI+6udKeeOwt5J1qLhGLdFIH6uJobofQK+lbd9pD4Pgt6byKsUWiz8iiqkp27G3WqtaBiDG90AkrUNwIIzOgnKcLsyDMezhcXX2+LwFKAp0MTG15OvKCYBrloBoTdCOTIjBs+ijNiP3Xdt/3X9pnqILUOGBxzeuULxlpZUXTNJ+OSlRjBf5zmoBHan3pk4MFbtP/wrGHFvtVyGG5NEpEOzg4bMVE1XnMHjve0Vdv2fDBuOZfCoZk0m+Itd5ALhfmSMEB/ttakQFAa4lX8GdutfGNR0CKswG5jVqD43REhipM2aZ6FkyUZLc6QnSjii7ds0bG45J27meljUaw/D+PFUQDTieZ30x0rMzxCpnUdE4puHmvrdIqSfZuM/nqf15DnypZ2oGlUkjQICRhaIguWT3VEyUrQkm5V5767ouuOJdFc95rsD22sXilYemZ6OKNgK0y0aZlcTUWhtBEMt3AptWoW8DPjsyRmhtyt4nw9P3m+LS80+ecWNHiAjnHfdFYjUanCONPvSR7eJ9x96KbTwCNpK5FZ5+BGHVFdAFx46Hg2SE7JCSTNHAGJsM8NTqy2E2E8Mcwxv0Uxd4+nrFYDybX58rX6m4vAtO2je5RF7vcRZgS8LhsIH6I+3kEV8YMHsH8Z4B2Ky9EJETcj81rTltjUKPL3aracmox3rGwGiwsDqx8g14VtB+DDn6Zu+NkRM5sEKDbhL4e9aij8t42IDCbpKJmkXbvBYCocMAG3h/3vBgjAFnrsx1Yjw2MEr3UudxGICB9Eve3VDDkrixeQ95trxAT3DNlJ0YY1onO9B3F4byGR2a4eGY94UrWJSIwCLQKQkE5Xa+H+b2uxiVstu+BPTmAj8726ZzKCiJQJH7N5vOU5dQwJ5IOk0M+Gdf/xzgI2NLTul5Vielg1o7F4EsJm/bN7DSOOaEuQRN5pwYc9LZTPzx8wceX9iLBvXO35Uw7qKOnHtgvi7MMQ4Nv8Dz+eD1+snr3Dl84WwRA1C0/GayOdyS9TQsnXB931uku8K2QAFbqm4roDKbpVMXSMr/oFPWZ2eCkcn4dQ0GS3K0SvisRDURKLbMYkvtFkMiuurQuXBwrP3OgqgSkSGx26wiFXrMjVpDO7SmafUqUEzHuPk8nCBTB63vz4PruvGspypTWQ1LRt9DKmyOUmd7nYKlMUpsFkANxUhmaDI7PYJ6J9k+9Pl88Oeff+K+uq17r42A4XkW7tfN4R0ZiGwTeyMdy/26Ib2iMSb++usvgmn5rKbaX2loc/gImZHBNvA79/N6nmpF2O4JMhsOeq+eTO4JaeFNJn3P86kpwGbAWg9erx+yINNQXNeNmxM2T+aHBtdojyfQnMw8AYZrrXzvOTOI8AzQlLjdr1cxM43GTkYzAeo0ppcRCBtKbhs4gZJq4EjkxQYjAxQ09AIZxijWqio4JYIdSqRBAzkKtJ5kJkLBjf5/BA5t9PXnkK3Ns1gT2TrZ1r8BQBNo87x2la08OwTM0cVXewtwhAEdGPF8Bc9jCdzzNWZKgFpjrYDHAQy7vtZV9kLXq2oUzCr5PYc2nItlNshcpH3QM1SSCX3OMTTi+9aPu+tASZ/V7Zk9ObUqYuqbONfSwLZkfO2f831PMEu5v6ZkpSxBg1t95rh+9X7cC4rFhmyzVYukPqPY2pXoRwXCmiAtQEc2ttg4x9pFCEwWgD/qd3X7lVjw+gb3cBneY3/i0PHRPeczJytrRgWqCiQDyVRvbTYtO3VicFR+kbolqvBrrZz3mfm5V2BWYPsYgHFa2JwIFsHqrBiZWgzW834P5qS2Q11eJswqUAlQOqeTmxnB6VkMIiUTPgio1v7heSVTX4BILrsxMG9h89pv3ppsBhwAWr6uA76zfQm9D3mWTa879iOgaZlOf5f33bmTVbuR2Y0T5AN6r54FhWAwWcA311TMQwFvp8xA3xv32hHEAslglw2vNh8zPntUjJV7nAz/eWVLKtvSFFuo+n0LtLNMbHMIR2CZJFXA621bP+asM0LjReZXfuvC1QwXMsnzOh0RG28OqBDYlQDLsZeqVSjjCAFcmdbIJ3E9dfYi11QyD7IxDeBpH4ycnKe9RR8c0exkJYSKCSsZrGMRDQYaEyLks8vWZsWswfPJe7JkKFSyxXbIdLX5ze3ZMaLi6qizyfPvqeWpYSCZXDeb8atIFZ34SiurAMLoz+y93vYg/ZoXarF36vEK8A0Tg2vys9SG1ozqKjiS+br5O2kvWeS1iWveZEsxERT4vBZthzQuu71rigzAWL6eJ1qfXIwnvUZtsuqeNaB0nVNjMRNknav00RM2JpPEtLnvh/fqD5PnvM+Pb+zcNCmuPy/EaAa8m5cMQzjZoezoaHu1sYshhupoQkQB7JMgwt4JslhteKN2m3EP7gIoDIExk9FryJwtE9187nNe8PXAkWyYtZRTZCycms9RvnXvjZ/7RVDhsAXWg+ZkQPM5irGFL3s4J/WzkMMMnDnHpF58hPIyQEStiMDn8wHYiqfrV2xhyPsE2+LnGLWXlLPZ4ad2ZMdTgppHDKtYZAO2D61FnaPINlcQrIc0M6MBZbXhBqKkRgDtiSzsZQuv41kPXq+7imU6e8V0g7Rj9URlR5N4o0Jq+Xh+rkJK13vo/mgvSqojyFLjeRiMEQaJKCnNZZiTxJSRk3mzk6db9bflHg0Y8zQV3J0gT+6pimmPAPobXInyQVU4OWKT4Lko/wnlIFb3XevtKjYaQHbtYKynSdYOAsG+EJV6Zw+PJLwmY0iU3d21zr4Di4ttvPdk3ibLzkyEj8YN1uOUcwHc0h+kDZyI2F/vo/M4aZtKBkeYykrb9/ss7EDFlMNQJIx7Mu7VHlYMTBsyTOBxUP6qYzI154QZrpG7d8PxbMfzfIpJfY2ZQzu0x6ZiKpB5tzsPQcdXA4wxLIHPtTZAkC7jf2E8OUyHuxsqpvXEFjF1rbARnam029Q/tM5hxhzENXZ1CfyTr38M8CVtUzpgedH3dZURlWaZEtifP34whuH1ky2Te22MWzpmnpRJBD4EQ677qo2dib/jRRaTwTJwHF4ViGterGRTuyMvEmMM/P7+4n69jmBav5sADcjSEiDlyNakbamHcc2BcU06rTSo9+tVVeIMZIFMRsg2GNkehsG2C66ThmXMa5ZRi2Ayz9YBMyPwmVPzhuXDn2TaqHX4K4GNZODMCrZUucpNWrVVObnRSHEl5UCJBZuCfQbegNqbQcANpWeRAU1X65/1pP3wpCjrnipo1DOfF3X4MjFbS8HTJLDFwSdc+0Bq333IkIQGcTy5Z54nhz245yCVcWhBzTnx88cf+d4Mpn3vbPVGtku/38mK1PCUvVYFrHXdbEuPY8JbTrxK5zpsYL4mns+D3/XGdc1ieZrlfb5/f/H6eXEtO5BRa/PrdTM4mljrYWvYlcG3b3zeTdcXAKHJyBqwERH4+fnJgSSfB5/PB//9//nvuu/7fqXxHTmoJKdaTb5PtkF8lnRGMnG9CDqV8WSVSeyXQCfrSmicAagCBrHwWvsuN15pFYQAwQYaULvzANGR1O8K7vRfM+pCncwWajoxEQUF7AX66P3V8l0JHAD31UyerQQmGReV4EVXJHUlNjr5ONlKxXQCmHCyyo9vNowSC+kqaa8BDQqdgrIChjKQ6go2QgWWQzSeCZe+d7IE6zOi3NfBXuoAVuGMCSiIb3tUns6s2lx7kI4q0grK+9fPp81P4NvI5qGdPn8zTMBtfL06q3ti1xzVZj13+2adVDp6BG041oXYPSb10DT8BtagdgGPFVFkBRHWLFX94EuXiusRAAXXxW6ICrSVaCX74hjoorNGoKH2oAGIARsCcfM5fiQIv70YfhGpJ6LXDraMZNtmAtKpweQFiCAaLNAiKpnM5Cht66b9zcux8iNTGYH1M9afAbF8unBhtDsCoQWKKPiWBibA/W8GO74nMHR77+kgOJLBtgl5YOt3LlltT4FGBbMAYiwUmuHJ2kh/0WvbGk1BZibq2actYKAu2wntuWafJBDQg7XO81q6wgcQ5SEwBuUHBUgsS9uuhPn8v67XKjjVjZA57WpJOhI8Qw14yXUemBG1V9wO28mEq5gjvD7FCUqE2zdGxWlA1ARZSaqo+PZ3ML+uJTc/YgQiJubVDMyI6FabyNMXLChmu1e+p6aqFuCuU+xRCV1tCn7fa85qF20F+KmFMICKH4JnVsWtsiF8/2SzGdsnWTQv9iJBmYNNKRkCh1j33HdiSeBgVoy2G7nfmlVm2o8hu8o9ymTLeS4rqS9/1wlUWLaKSZMaYlzkwfoCk/VeNfTK2kF0rMq1U/uwnk2d/QOYYet5F0eCfknhjffrgK/7EPNTWsFisa21qtDahSCUvrTsdMUSOqdzFNC4Vg+oATLZvcfEa1wlsZK130iwKKLWRH9POaOMW9wM78+n/N2Yq+IO7SffH8ZyE769ZAdUEAkAMQbj28D6bMx5s010ffl5af1NaqoaFM8QFDnYuxfXChA4xjjB0HaStuK6Jz6fjd/fJ/XYrpyF7EDq/a1FoBDF9F1rZScY49ivorFLvy+BUBELgMD+cBiRR2mjC7ROH0NAeqTetuz1YJfZilW/9zWQSDEyMs5TdxiWsQU4c4153xD68Pk8Fc/7yr2nrqFBEKiAPebEw9OueQBgTK1WyYhkxEGgEIHAMTqWw3CMSOBNHT068/JZeUYMGLL7ZBzzTMnvZk4Q8DQwzN21/9o2MqpJ23PEAGeHR9p+R869IUvRgwzavLZs542SEEldx4xP6jWRAJkP2pajXTzmWUTr/KFsjSLdaEkCWgZAsGnobjr2PkJvlFUVLRwiyiiW8MN/tAabswjgoeFTnQOohV0FlrJYjMmgmGQHW3Pzaw7Jh6VSqHnv77AeglGFDhan55jQsDfZS9/JzNzO4TS0cQ6U3qjAQncWWTywc/RMdVSe+Q5CTNfccwJpl2tS8YYzznPqbA9LGbgtHMKBz/pg2jg6uxQV5L6eZskGB4d87Egsx7M1PgzQYFc9yFAOzK7OpwhlwNrUzWccUpqHkevhTvk4/r7ztU47maFj7jsRX/7p139gyMaAL7WQZqA9rwvr/YYhwRa1gP68foAwTiXNxPi6LiSjc+C+jFWqTaflFfT88eefiPBkZUWKJAYfuAJCOdjFiSZnO01q9BkfKocOhCOI5As0U/Cbk/9ag2POrIKs9xv3dfFYa2jEhA0gGe5RQUAy4kSx12aOSkQGM8XlmwFdCmLCCPh5t5sZxOwBNJFVbEXzDJqcTJL1LMSc2Vq82Wo2OoEPVV/NaDAILhDUeKgxKNASQBqE0cywakPmABS13eiaA9KoMzw7NfkkiqvgXslKVZrN8Pv+4L5u3PedwbzvegYfaual8+PAC06yKmc6BtY7W1mv+8br54XnWQSFF9vuAp/Pu3TZgEzE7/vC5/NhcHEV++SLzUOa8pCGX3i1nq8d1HvMz9jUsPv5+SkHYXOU01JAoBaMTWHnySEfHjngY4yBH7YXX1cCj/d911nQMwkE9ZR6LzwEPZXADBvVBi0n+qwMACcBTVXqZGO2s30TUW0EUULMlpqRiAoQEaBOQxQDbWjfM7nmpqqAoCr+NKJVIDiYF+AaVvVT92BZjSqHwLOHiHJmYktp2nA9DxP1vVKwNugn4EB8RcyUUMGeb5YBU1YwgWbrKOlQcD0qcR8VAMwKGJicMOARmAEGrj1p1kq/My/CvoIJiU7rx/2sI7UG67P4LAU4KOCg+HAFk94JYgOEZzLbiT4XjoAQ+P6oqnEzhdiabsYkCPXMAKv2Au3tYsQezN68rzzSSs7EdAHXsSqxjqT9D7GlrMFlb4BVt3CC0+dX32HvYb1O7WZ6XxiyXUn7WvdzOG9peAgM0/CZAKuwx2dUQHowt1Y8xZyRP5HeYP9bSSY6aDADtte6N+iVz8B4PxK2NhgwvZLX1BLKddSkPIWY1ULPhH387VnmGgGaAunH72gNBSwqVi3mmlb/sF8Cik7WkL6/Ixkx2z2n+oIFA29fCpAZZgY3AaKZUHdyb7WfB31l2xD7+sy2K6rMBp//N2isRPd7Pzf4IJ8GiJHVvjrq85x4toA/r1ilbFNtXNpUAtJZDBCocFybPjsykYb1tYJ7XYyeKgSeNpxnWi33I3ug0+pxLcX2M7O0f2NwEnDU/ta5uu6r2gwVd+ydml5KQtZnVVumACRArC3UMwQaVIzIdn3w/EwAOXUWXEuK8iMZDlqftEe9JwYHxQEHwK+9q43Bgix3QYO1ETCbKLjYaI94/yXIH1HXpOdeiYLakAUuMA7q406bCjLvDP0cjQCYEGAmGb0nG+T7/mpQOvfpWWQKCLVV+7uh/dk5NKT0GMG9eoCa9T3tYwPEeD7PmwFsQ2x7b5YJocTiwVbWsCOJOuKHcSbaegZ1zqL2cZEVTMANC3C0YYrtkmEk3U2C84ztJXWjz+6CWz6wHQHMLCCVP+O9zpEJo+LoHYduG+PUbHHrAr/6vW1kPAiuQcRCXLkW27Mz5PW68awcbOYcnDjHwM8ffyAiZZRq4EskuJSgGfBB/v5V+RhzHj9W0TclmTQMBiUn8Xk+UOvqtNRk3Gvj5/WCxy6GoiHyPJlVwRtm8JWyN7Bci7U1kEdF5pyGe993kiMs7cNaC6aulwGuRSb5knOJ0/bxrBuUW95QTqPpv2WLhwgNWQDfa6NZPAM22z/MOSF5ErHrleNFBJ6dclHan0N2waM0p4O2SzFF+dPDhihc245kxyGAGAiCZMRYslATgJPh5ww/ZwyGU9GD1NCdJrkwAEbeVw0JidQDBPeGgKIdgWAnlCQ3yjfMBoe1TgiH7yTC+MhurEFmm9htuU5Rk17H4BllIaa7BlAyAGn3cq8WUFkxIaG38uPgdVUUXHYquA4nO0x7N9/KOrCB7MgoG1A6i/pV2tlLuTOf5fbUUI7VtuxLw6/eG81kB+ArwbWTaSZ/bkB2axgwtlOagAMongceLGIQVkggjnvGc21ECpplh9nVgkDsPscJWj5w5qvVaWU9bFSxeba4OjS4NcG9HHKTWoRWfmNG4L4GwvI8fT4rO0mlEQjmI5EDQBQkDcZNitMC2SUpuyzfIjtrQLXTK1RzsnWDuNXa7cthLH+El881Q841iJQBGiyPxt7wWdHDv/31jwE+APi83wjgGC5BHbeIbLNdDw9zIpg27nxIa2GOBD8utgtapIOY1NpToF/TQZGbe9EAaSPs1SDdz+sPgnSDFba7AqoWXWW7oHdrrhgFmsy6j9dI82q7ZxCCKAMVvgEyBltwt4OAoKHP3yOz6LoKdFBQHjhaBWmEIjopja3pT8nw8uC/GQwZDL6TQbkI2uSGAsyBFZsGja0Ah0PJceUMEgMw72BfWcZaut7AWp+8h+31Ozn0ZOdAjnkxafCanCdG3H1f8I/nxFYg9TOYkF7U9FNbqQCqz+872ZccfoEwgil538MG/vd//5fU8tGV1GfhGmzrAvB+HrzsZqKa6/771xuvnxc+n5XJxLMwh+H3942fnx/AqI13JGhiId73zYRjsaWg28dy8pojOFhFosz3deN5koH6fB4aZcPP687Xy9ia4c8//yzdwEFh9lvtu2OQep3GQ9OqzZptWQkiE/dxCQzI4Ojzfpc30Fo7W66dQcQ1x7EPolqm0xmhEt/tga0kZ7dGFkLgX+YRCR6wXGtdqc/ERAAYr5tAlm+1M34n9wJiYCigY2+xAp36T0wyosGhAOo8f02LtIxOzgnT+pwe7y4vcRhBZlN6iar2NFjQcBUBt2ZyFGIZ51qwoFQJpNoJ1PIn+6d1qwrgkcDvnUH0mFaArJJuYwACJkuI1sQLdCImQNeAr+TvvAYxCLWiRrAM0pdCB0TaI7K7uXFYVeW6K/EWKwMhUGDWWgug1TWIZVL3iQYqa38omQrUdamVtp/xt60TIFbAyrEH/qXVGYB0bHqpoz5PGan2+ODe0z0IhKh7CiW/u+QKZJeBVSzE9FvANgJ6ENuJz6PA+CDbW9dHZgmvX6CidpD8CWIAa5fgfD6y3KPbBZ4DbsakDgi3Ygjp57IbqtZi9F48nyMfefo8P3T+oISWe3UYIkYxffWziAYIq6WMz8m0B+ppH2eJZ2breZCtk+c276e0+fgZzc5jcmF9Xs4i1jyGcPhuJpdxD+rMSK/QZSuU8IPg5m5bZ3/bTwGD79U2Y0UFyypi6e+5wFbJh2KVcwJksQytbbVdVsBTgUkR1KmVjizXr65zdFHnsNdnUgEmQhbO59rt6WNM3K9D/P0AjudL8hkBAbwq9m5vQXrsLoKdmkQ1eZcFqNovfB8BctMuTIwvEM1GYHtrggWTgARgZtkWs77m1G/2Sm4AKzBu+4LMl5OxBaP74J+bIMlm4UT2QG3BvR+Ogh8L1hnLdUt4sNPGLAHtXNG2kdqxRtsRwylAj7I7hmbG5XUxJpZfklbuUnKT9+JsKe79wGvi4T91rrNgFkfhhK3CX2e8mbxDg/2YpFVsrn1P29dsERw+MXgVtInSQDrj/6lnd9p1+t7IvVYDv9pJHb48GcLqQAJIiKBEzhlfrOXwKXCkZVyGni3UNeBd3AEAd1w22I6WoLn86WIRW9cv2aHtOYEz/VAmob/vt2rhyKEeKJD9vu8CA6BzZJaTZgMFSnkEgoNJlC+lD1o5dISyFhlyBRNgJe9eQP7euX8/Owfq/bxeKWZv0u/i0IK1qsvl2Qnm7e1YvhHRMbvHU2s3aSsQue4XfYkh9bN8R3Uvqesik34ygPbGWgKl8rWlJ2rAjt67bpxcPlImQL7CI/DZH+5BY2tw5kF2JxiackzU+dqejNXDtkXoPI5M9sbACMXnOdk+wnKwa9m9BDO7bTUvepSPpu0PFmTJAty+YCMHu+TRMozRNmtIQLSKGjpnZwzCuIygoeL8iu9Sv6f9B8+F/KlsoOzu2hvmCeYtc9i26t4ZA/TRIgMl47GkGSrGYB6SSXe1SBptaxWHieTluWobmHH9QB3+Iz84W3NVXOv8Osp/6jq+bVgX3AKMu2C4hyE4mTYsn/+i3pzRPmjQlBidWsccWNFYAKqphLkF7etlF2CU2IJx2NtOfdEwbE8AGGaUBcrPmCaWbGsEBiJbdjNorEEzug4av4x7kRN8J1t5t6uAv3NgiKct/XndMOME752x8VoL18yznO3cgfdaeD/NmLWhtvrIe6ocIa9D7G8jQze8QdLU12+ZNvlJ7QkzADP1E201ELolF8Bn6SBTMNTam2SovTcQrUP9T77+A1N0Ay+2AF5kgPneuCiO+n7/ljEBDRseao5NTaJlYMsx6gbgdfek0kFdmkB0jzJZbALGhhKZ2SwEMFGtQMQSvFulhZaTF/Vv59Q8P5JeATZA2s37uhm4Z0JT46cruR31ejCx0DopIVnu8M8HY0zMe1QwNmY6CfVxDxvpnFbSxtdekN7avCbgOZTiujiuXgw7BpBiLuUk4NEVBSbOH4JWc0zc18x2KsiYDTyk+asKtXdO1s08PJOKYgsgqeUXVevfnw9erxubFPNNhpWqWblGfCzD8Jqv/B0GrQIP9QwX3//n50+s9ZQA8LMdcWsfvrinksW4WX301Xo4c058PnLwuW9eP68Ee1kxEPtpmFXb6iZg97Ct4L4v7JUTpFNjyrPSNXJd0ukOtmjTYFwDhk4MBRQoeVh75RTgyDMglmZex4f6TBTNhiEgDccEGPfaNShBjnCMfK0W4LZZOjMzSyzVciKgGwQpYKx+KakWUMPDdLZ7dhqrRDQdVlXvPABNsTOD5VSWYkeqNQQ4gQFOZuSzkvFVBe0ECCq5r6SXbSw4xsGPkckwGa8TbNk9Pju4T842chnjM4lNc3a0gx5OSIERgCosCMjCSFs3oOEgSu6bnZTJLVssIqusWld57wIvlIwjE/dc00MvUG3TezNht38BuwSgFCh5AAlnBVx7rVeqn7e7I6gT6t52V8nYrjajBtyqUqmA11DMQUWLCjpPQMKY5JsZQi1kaKDYIeaUEte8zrTztM+VpMaxnvmEnUmlks5iNqFB2bp2E9s6E9wTCKqghWt6Ms4qES5/0ydrMpCfnBR+j1mBIQw5sEb7kMGmQ4kV97f84bDSM20wOZ+ppvu591S7AeqsIJNajJ58Rwghz4AhGw+TBlDBvgLIwYqqL4ePXM9qe2KcoOel3y8g9gicChQgYKBBPyqmBVk6WbCYqInhrISq/f8MvAUgKanTP0/AXDtczLUYtDwR8DBk4QIIToE8B1wIcKwPOe7lbKUpLU/pO/L5lw3mb9Y1fcV7358XsDqSYiEBAYn8RyTgm+fH6/XSN5NmloLcLhqg2EyVVHHdxCj20dZfaycd4a3kBHqW3W4KtD2hu+Fa5Zn+eLP8tIZaR9k8FfLmRGmclWQB2TfV4kuf9aiVUWffrLoTWnoBX2dm2kBivs4Ok4vtxt1iVO1kSDClGBMM6LOlKn2BMckIAvJpo+O4P/k5FUDSrmigBoIFllr4XESBev73/XSsn3lvJR23zVYnM8MG7aPO42l7DXDXQLt8sRlbxaCklLpQ29uOumxycDAICxxo0D7313l+vn3Q18RqRHe48B6kqazzpWpZiE3O31E8cfpBG5lmSxNQnyS2HmBYu0FSxUhmg1MrOQnZjMAre7wY+wmMtgHM+4I7Ku5KNs5uv8DkOs+h7H5+oIo9hsCzWPwMFUBRE2ydU4KDOU94yu2IFGEz84nPXrkfee9RQLbVOVp742zLdSbpi9pY0wY0efu6aJON3UEj9dXVriYCg49AcIhdsrxn+dJ8v4Vw+Qq1s6dd+3ykcZ3JfrAYo6LsmF2oGCyQLRXFKFWTdnPi8zy5t0YCryJPjDlx3QlufZ4H0yL1viKHVtSZ5P5Jxt0iuSA7ihbbPHKve+UU3JUN8HNy+TVTh/FZnKS5VxbzXfIHhhGBz/N06zDPez4v7s5hJD8kyCBQseP7gXHoz7WlIGN4J+iRDFaCheBb0ocMxSIOmNEncugKvAsZxvOd7ftRMTNLt1UkBhl8ua6RPiVQIFsIQ+Dpl//P8FJxFeM5BMwtNfiUXzAGkVTHHGTim2I6UNszrYebhmsEcgkGKF1X4I/WrQvIVrGf4s/081YrLN/a//xXG1627/heDYZwMh7dOdgSFUddZvBpxQB9qEHfBU4CnWOW3YcZ/ZocCGoYBfaZd8gPoYqa2zP+9JXyYso30lzqOqIGRiGsWnlPGzy4uTwccK4/47yUzaA0B9J+rL1KjzkLzRy+YgMxgUAy/jFVcAX+uG8MDPwPixCyj3mG6JdcD1ha2dqTIg/ktc1p2AbAM39MiS8BfsovVejkfhkD8+eVIOzOXGgVqBcV6y0C7Rk3NHj87379Rxh815VaERfbKFV9e0oLYdBppZ5LoqpNV0ZkH70jAZPXz6sEUcW+U2V4PQ/Zfg/mbA2V7Iu+svVClUu1ZQQoDMthBNxwGjpQbZ900tsDC9lWamPkAIc//sxr9Py+fvfDqag2jlanI0lR8hbITXSxCgTQwbtaTNmiNjqwS7VLggtbul1RAa4miDoT6EpmA8WmM+RGGgFqRwxg9ICS8MCi2HMe2gRhPgRmi1FihnnlZNOnNCJARl0aNt8b+xCGfJ6Fh1NtlwIQTd0F2J6XLaJjJpPPmDh+fj/4eb1wv/7A50khWw0L+Ov9iwHqM9rBPHOHmUCGPigSBd7rwSDj7v3+FNsvvxj8zFkafvOaxVAYlkHbi+3ABlCAN2nMSlTcHWOyXZ3VV/eNzaEy7/e72HFZkZr4/X3jzz/+4DCTIANr4v15J2jOCpsmTwp0vsk2fN0X5nhh/jHZKp0Bwe/vL8xmAq2egUu+FjxLiyDikxOGP59qMf79fVdSXtUkOxIfdHUIUEoEqMoIZLAovb5uW7QKSpMJ1GDFsLQRq0SZQYHsUQNIJDKunwfZJ1AlMFCTp13afAVaoYCKfOJ5b3tnZduUxFYyY3VtShy6lbiBn/yJktDKs/PfB8sgEF0J5r8rUOb5E4NlP7uC/BGzg3/0dRQAqc+vrK3MTwUhCno1pOiLrQPp0Vi//F8Ckb/hC3W9vVYlGH2AwUpQ9WcFmecaHZNbITC3gidAjMCTGaHfKdYJg21wb1d1me0oEWQoIDtHjDYiA1rvVpDRNH5EV+3y2bK14JjEKhCghZv7ASh4DoKqxYA6gPFiiUSDrX3G+vnVHo6zSmxV6BiI0gQMtnZh5Pm6bJT+otqZjM9cwIT2bi5nM9F7S2XSO/lexnM1CT5qbQLNiH3WkwWWHRjRbLvBBPXCRaZJDoAS8Ke9ldhC7/uhwEtsN0eto+/4Atq+n0czRENxQZ1XReLNqFT8UsBuRL3fl5QAolrGNSwH6MAsr7PtQn0e/9HMYf/yQwWeac/hX8+kWMAgOMOItOKkvzN7aku7lz6QzlTbub+BQeiERZ+p+y44xwPfdrL3Pgw1+EGFHjEjpdfjjMfE4BC7QWcAkcU+XeAJjGeMuWqNEkAxXPUsjwSYyfCzFl5DRUl1aJznQEF6QIZg2GDrmpLC9DdTbDHPyfHZJpR6xCNQrTgeBGHcs+WZhioMNRhIiVO1ujGxrMl9ApDckizGzzU+F+0j317sG7G0wHgFipHQtjstR/7c80U8G72HK96Unef+0j6eXU9C222ySoK+qXxl+0NtTCWuEINTSe2xPwNR+8+sfbT2kQCl/P7RHYC+dp3DL81b+iNnshkeGK575XvQ9+d2JGt0K3G1Ou/qbrl45uZIrdLF82lmbNnK2HtvFrz5PNy8mKUA0AxVY86RwvaDw/zOOFdLf2qp6mn8Pqm3p6mqeSO7kuYf6pKrHe4ahsrKh6EGNsXIwnFsvB+v1trS2tK6cVNIXiXjOiO7tYkOCS7MZCvGZtdJvsd1XUBIjomDDjOJot3xsqX5DEOZeg2ISpFJIAjudEtespdgybb7eb0whuGv39+yU5d8MkGrnPo7sT5v7PXg5+cPXlcO8UOow2nT52XB36672JkX4zbloBrUkHIXZEaVRnDa+g/bIsVIvu47iR/raYDBjUxztXSrQBcAJmABC/o+GDATmJtjELAj0GICqNMGJHkFQEj33Ogmo8ERy7xJTsV4ePPxRq23Tn6Ag0CIrEg+C2L2ctMOPV96LoFLUXld+nzlDED+eSkOPmxuvp6FRJFohkgFbN8147NTqzsDXtkQD9pEI8BHO8lnVb+u3II2LM+V9i1qrc8zikADmWVHeRNm3UkbaBb+ICs0onEH2TxLFzDYKl8trYFktnp3jQ3eowreaeei4jAHaqJ0BQJGb8HzeLMg74zdFUekPc7r0QTfOXPg2pd/4o0HcztHx6aZ7yo3aTsblj7w2Ru2koF8X5PDDfM5rL27CATkoDcM2BwVtznywaXPzbg6tQ65/1xxDZmnvL/0bbsY9Hqma20s6S+ryHfkD+nn0w6+YK3OG2Sh6twe7/lPvv45wBeBN1t0s3JBOvhq/YP3b4JgF7JFUBtAAziueWHthRcdzd4bf/z84Pk8ZCVEMZN+fn6yLffnBYEJ930nVXovxAoCPxlE3NdVk0cTfEmGmdoq89BPOvsMzl43N+xO0BJ2A3DYuJKquXdqJxDwcbahzpttPTRA1Y5h2cK096bemYYgPDVgItcSxUwEuqoqp6aWUp2iVYm6AvmsKO/tNX3K+PMPtdzGaHYSkI73mhO/709VvPL7YjA+iJgwG/g8H1zXXdeWTMJkzLlnW+daq6Yl6j20yc16yrGcZ1W5fVWglMSSwO/7F3NK20S6jBt//PzRenxkuQSTNBs5bEPtwE6tOE2F1X2npt+D+UdahBx48YO1dwFx95336ttx3fn8NN3ze1BIrsXrvvF6vfI5fz5pSNYDC+B6vfB58nt5Vma2ro8M3mDA6+dV4J4Sjhpkct95HXNyTDkT2jmxnlVgunMScOqWRAYqHrivG2Mk2L73Lh2Ya2TgIqbHX3/9xf2X+235xu/zVDI56BgMGXgB0oVBBfyXaPQ2UeiKEgV0wP13UCkTo2j2gZL9quQKWJ3VqpSBCa9tGOZQwtxsowoSdjN51SqrM6EECbw+Vf5qr9JegU6pWtogICsPsAlp5Nc57nzOmUDAGEVP38c16ZzIwIMtkU4JAE3eRTjPTmvSnboQOvcKohVtNOOnk5eoK/1mL+nfckrQWiomiQYPTiCwGBfowEt6jPmudtiEvLzSEjX7she69mZxtE1TRim7COtijgB4EBSuZNS7Yq1nfzHp1b7Ue0k0/0s/bnsxFQQ8OYNs/Y6STvmYCIExByBs/fqvNRTDGvXIGJzt4zn1Gje4qOfWgYQ04lTECW4D6f+pLTorvVlMG9dMZoVrgrpVS+406YwuMo8IUCmBO05bV4OlGdYcgditteKxMHzU503eePkgJvbfemJaZ7ZXmNX0u4Z5qGdLX6fgtVqZXQA56mc2nMWEY7+h92gxtejfBRK2PlPbAN1/mIBgtdMdABXZlcW6P0Dv3Kqtn1TXaRncJgyUAFIF9scZ1PuZNbNIv9f6qg0inNfXRQNeb7E3Ufb9tHewQyDbrGxo2kLLNhS+T+nO4RuQTxuRbfia/i3wMEDtny8W2bGWLDLlcz6eqX3bs2Eje34sJ1Rubz+7YQ1AQmsWxQ7dvrMVSeypg31QUg78XDCBMwAjMvm1mSLeDoNbxis7sgAK2ovscFBCavpfniut3bC0EaFsstuz9naERTFw1NaV7FeydbSZuXdkK2FijPfe32QTuu3ys859VnZLtgRWoIKRjiHAM5NODkVxJWeFQn21MA+c/qj3Yvn58ml9ULQjNU1XNqN8Hn2dBgbAmxEXEUw2gyxk58AQsputbU0n5mQcKg6H2J15ZsYIDvHS9NW8DgFd3I2I2md1aOv8OAGrvXd2NQkIImC2PNAsbaetT0Dm4wvP2sUUFmN6e4PqsYH10e8AexN0igQG5kxGzIBhgz5oJastBesnVuyyy9nCxnNrlrnbWljrk0UHFshpLiqvGmPg/SwWkvNnGdNeWM/GWg/GNLa8dqs0gAJmzQzXlO8zwHqyNwLUnstkfIyBOVLi5vNJn/d63ak7+PnwHtDxd4DyOBseL1xXdl/Jy/jenOgOdizkWqtN+/N8sNcD97RhwWFAe++cWozUX5ZkTtnuUIcOCA4ubjVrW+jZep9xe2rlqt12YLAbzQBP9vVExgDDpHnI6udIGR1LJwffrZOu4S4egZDNK9/ZDMC0WNk+D7eaCpqOIkG9KXsfRaxNJh27kgwET/h9gZ+Kr3lE6n0lORBmKe9gBotdcaAmIKu4oLVMd7jhO1l8Zlb3ZJa6neoymtb2g+Fy7lHGAGmCgvu6i80m/3f6S/43jvg0ZN8VZ+CIIcoweP8MAOQfytahBvDpNfIlGUtljHhNxb3A4usKB2BMXfmBHSnMYKsyjVdKHXWxpR5MPSf6EwOukfZj+4aRoVf+mPeookzuafosoAta3F2Z61v5HIPheXZhBeA1zctSx37msMzNCbjydx7ITqMIBPeLhnBoUCImiQiR5B13r3xN66Wzmkz3fnaS9cjf3fVcAop9vQpz8nepfU1sx4g5uGOMcxjfv/f1H5mia9RuS/0wVZVuzGm47hsX2ybnlSDJ/bp58LKV08MLJMqgZOP9TlDCrNlmr9eVgYCl+PN13V8V6IuMu3J+gaK0q0IvpwA6fbgGVuR1DTO2gCWlPfZKlPZSi1duvtIIHEnjBh24PtfDWZ2iAwsvIOXSwI95ZdsrgSsFr3utHOxBhxBhDQJWoAGCW1H3tfeqhMY9ujX6SKo/z8PprNy03H0GMuG4np/PB/crW17zvVNHUaxAs4FxJ0sz3PE8q8A4gbufz6dEuPdeuO/Uk7vuO5mcBY4t/LxesDDM+6qk43kSdPzr97cmMz/vN8aV++D5fOAzwZh5XXi/f7HXpPZLruviuv5wGq9xT1gAU3p0BN2Suh8Yf/zkvuMAkfulNcgDd98ZEDiZezZysqxHgpJjjATrWNW0mVOwAODz+eDn5wea1JrJeLLtNIzj8/5kG/RoMeo5cnLv+/2pacKIHIwRhjpf/jher5tg61OVEBnzNwOk67qxCJI+68F9/4mf1wv/8z//ky3O7smoVHIoL8dkaO+FZ+dk6Yv7eswMLgbS6CXrIQ24aN3nV0/FtDLQ+UWDzT0ilpX2/8MWa+1pVd1GjNKSMSBblcm8UBWsPo9n5gSsii1jVhPp1loZPFOYXoyEADhBiXqWI6ePeQFOrJDybCWbPQpwqdZB8Lpc2mmooCIC1YYVAkPzAgu4klNdDMyUYIvS/wXqQSBfg3BnAhxA2Y6yNXwiqtY3SIBMjmAVdJfWkLNFV5XFMVT8zPMl+6Rg7tBGVNJZVU4+G+kr0gD3NQjU4i8rOIZZsYMWJ12fzEkBY1uBiiI4Pq9FOwfvdROgomeo4PtkECmZ07/0pdZRfdeYPJ5grK4r75PRLgDphGmvKTnN/Xu0YB5gy3lL4C2OkRPMbAzMGdXOpd9fKwtXCzkwarNKP+fMQRi0VSXwPQYmYQioYw8Ug+bNa98VIw4NgBTLNoCAgr9k+7kUvXlfc0zE1DodwByn3VZbm/YCo9TSrykwQLowWk8mB03eKt+kZF5vKhaxzqnHxhcT0FAAHJTAR22rev4aPjUgNgcBoXHeX4rGn0Uk2c+v36tEo68j91bHO4AA9qiBUOcmyUJSP78TcLRzE1uDdDr3YvkXcxKAtCi1TwEAqwG6b2bh0Z7Pf+s9Q1TbiIoxI4K6W1ZnVGcagSPmUUIo+YFVNi4TUwqJz4FQks7hStNH3au71wAGm11MFPv3WRkH5LNoMErPIvVGcSSeaQtGOFIybmJvgusR8OlYB2NC0iZKDKtISdtpYmQZgRatB33VCXIKeh18RuNordxLhSLrcwADQuBwJzZjjAIN843VKoc6w1ms474uHaWAGcXuy2Z+n8kG0jJl1PbJ+6E/0e8BZAh1V9BZoNIeb2DgKD7hSMpMrKW8B+mYJhPdmAz2YZDeYK6FwF75wO5oOKeBjrIL3MOrmdMRjjgLMvlbmQA/qWu+sUu71aFOhcy9BCiZ4qQAJ/SmHW6tusy8txJTskykk2WWDK6HPm2T/h6HPuZaeV8aspStqQ5NhZaG2lqLQ/K8dI7n8IoPYgFmm+2pXXgq+8VnWvtje/mL8CgbAQQLVBo4wnj5Yuu+dQGF3IQuKNIWhO+MMebEPZKVN8zwWau7pNzx1+9DOzfw7AQtP2snjvbhAAKkvFREtgxPS/s2xwvhWRTPwSQ5W3uxa+mMxySXAxjj+rsKuQL4sl6uqaLyE8YJ4VHax46Zfl7nGWSIRo7OAJ9NacEOQ+yNGZFTlD3ZUsbYKs/twCCD7WSfO23CpFa4dPSSsdcSEIEsyvHHZfsFSDkSdNtbWuGzfu8825ampwaI4Hw/A6e/inUtVnxULF4sbY+ULSCQn4NHjMM7KFFEXQNjIaHOdsWw6P2ry6SdtuguQcVjXbLt3w+ArFp85UpnsTuO9027IoY/4xnFkwjk8QvmDm27FfelRnz7s9aoVIcJ6v5yN+lByfwpgMjrCcZxZWd52dfIro8RCRb6Ztt/JLuxhsocHsEYKwSS4JBDUa3sTOrZ5vR4fY7HRqy0pwsp0aUhfjlnYJctSf+e5+iybO9N/MIweK6wFJ8bYDPPOQf/pG9exSoeY3BQD4fHMCZSrpaFRPphrs2Sj2enmXIKnau4/l/Qopu6YV5o/GC1cRMEg6jAYBUjAr4MAtzEXrqvFxBeU0nS2RmBmARC9s4K27YcK57BoKjNZGrtlSy81yuBNlUrEGX0I6K01Ervhtf4fv8m2HQE7PfNoBSBOS8Yg8PW16KIIlCgn6+sprzuu4NCMr1ULc/2Wsd4HXpVbDtCnMh309oL9NhdrWgWz6wkP6vaiUAXu8fSeK+16/10DTVERO2CZsXqqvscA+93Dp6Qo+7P7nuScdJU1mGDlPvc4M/zKdqtQC73wOf5YKyVE2q5fpqiBWTl4L75sznxx59/VpC098LPz08xQ+955d5A4FkP9l7QZLPrpqg9jZSTfSfWnxyNjJy0BS8OL1GlfmDUmj/c23tt/PnnXSDnWrs0Eq/rKtabrlPaenpvpxH6uV5M2smW5FnXYJTX64Vwr+fhZsXwAyKnicFwzQuPP/h83rivO9ulVw4R8eqtCfz11y+Bw3R8r/vGHgOSSFZrD7iXrnlBwNxSK4kHnr0wNp8/7RtGttjadgrEMjBWAnQkP5kcSrA/5Neq6lhtBmj6/dqRiU4IZJ7FuHO2GGiCtICBAjwYcBeApACAZ3CMUdoo2r86SwUwEiDuKlEacGdQLT1ETTH2EFsI3ZIzxTpJ1qYmOrUo+/eXWq9wtI7ltTUg4TsKRE32ou4cFYBK1wamaU8dLqj1NAPN2a8bqu6KSaNWtSgB9VMUGgfDR0mFnqujda/yS0L1dHR2sBoPZ8031EvKfkpvRlqXiODUvgx2FCTpXCUokBFhBcl6DVCgRETqJvZaMsi7ChVhgGKYCnYYFGvdzuRT0wKzBW9Xy5GNqMBW+yWXpllrApALxEWbs+A6K1hQEBbhgHSIuFc1qS/ve2IaODkvsr2I72PmdRbN1XqZvjuGwbbldLqZoJX74lTa0cl1RAXYNZX3eOwCRpTsqKXy9IVKAsHfSR+tRBrZBgwmh1TREqgrW5UmjEAM7Hg+B7hwBr3UTtKEVqUWzTJsJqOuN/0hDl23Fuw3Pjfdg0DP7T1JPs83gQcCTNorw76H/bgSCtqALwCjrjHXu1hvsiH8vZMFX3t9HEUA7e9KQtNOBM92RA7wEmNVG/Jk2p1nQCDKCUjrfhPMapaC1kf3BBu46Fg0cKDe21t7Ts82tpIhMbvyji5qKddeIvBZTEpP2znZflhgNKiPSX/hQEIvR1Kj3w+ALTgnO7L9XdsN2pLYpYGZLPWA3bPYA2tlzJfTQL3iDe3rrQSda+9rNWPArJK81CsFmTay9XktK879JLuT66fz4e4FqEegGDvFYDGlm7KDuRKyWZvFKMus7ADJouQ19JnC+bURNbXSYAUqZzyVxZZKqnhPFvKztUwQYFkyF8g4cZq6E1Asvi7eoFpQdQVA+tg8nPxYP4aNiDmpYh79vcC0Oa/8JrL9dlfSq6FkAxg8+zwS4ZT1jxz2oHZ8EORK24Tyz+rKmWPCQU0sb98PU8sYWSPXADCqIJ0220jAYCGRYOaYVzHpClii7weM8bRzKNyuayo7rtjRVEAjIGJd2E77lPHj86w6z9pfxRCPqOebvi3P4iNfg+xGue8bgQHw+cZ2LDKtN23ZRHYBJfNpAlcUsQSMWfbz4GGsvKPtmXngzc4zrVkOGpxf9uW+srvlCUByCrITWdBO8sWzxMQVMYW5nAOD7+1qI0RqfCOaxDLcUzaJvj2l0hS/OpmrkZxSU9smC0geyeA1aodSnkOhcGpnggDSqHNcg5ICxZI7n035IaNuGtonhQOavqvioOy0YmsVbTaA4cCWtl8uAX9PIFXmGTDJ60jzUzrfGUOIIZ6SDn195pbWgXsHppBbtlPDOdquwPrfVdTUuWdhsUP64++BihVCjlQ2WxW4w7/qS7eRx5m2PbqY54pHPYfGgHFhDSuijaoc3o+Ot+2olyj/kkRM9OdXHIU+t9rPevhaizGAgYzLNsiajmS0KuKY9NfTDFvF4WE1zT79U+C+OY/B9JzzTT4rgXA/W3Q9C/rbBRKyUHOltFvGAo3pzAzuKqZwDwJ3eb1inSM4hXxtiImokryMhgoPw0aeQU/GPRUfqqgUiMpL4njG/+7XPwb45pi4Jipxm/PGmNk3Lb2KxRbHixVSJb9jpLjuXhvzx+BhuObgawN7AX/8/OBFQMXdaTCkNZAb8PV6VaV5zon9PPi83zlpaQy2mdLhSYeJLb8vtvrutZM6Pq8cXHFfrIxlIPF4Tr5NPaODHpxIBEelR68DK0H5wBwS5hxjUMR1cIOMCgbF+JkaKhJnAJZGytfKccpy7AG2aT4JqHHaFgCcWlGAAvjBwRxXBSrZ+pv/bsFjSyBtSHCyWxoTqO3k9/3OCbfrSc0l0OmvtdkeneuKmZR4347X64e023RYajEVNXY9D35+XkzKExy+76uNSiTF1sWGoHH64yeZems92U7M9oL7jz9qmIpYN5pqd98XA+j8vkC5NqYagpKGJlsGWBVEwHc/o+vnxSk+6dzvm45sJONgh2O9s0e/7petzuGOmyCltIWkm/jD93XfNdEX1hoy13Xhf/73fwFk4j1GThiCgcHGBRxJm0SZzQw/Pz/JkrQLr9er2Csh8FYJKfcdAqTQd0BmJjH/Zoi4WrB9YTMAKJ0VBp5Z2eW0bCUH9PajnDBatxA91EWRXidPam1JcFNVoWGta2MCTY73TwdsmDYriM63ttJGEWsFqmoz8TGMYg6VW9P1KwlU0q1kkoG4majYatPM+1PCkqYyF/sMCXrKJ6/FHacvUHCls992wCsBqsA8osBvVY+KbcUbqbOvSCK6annalzGaxmX8ew0ZqlZWrwAKsmtcm6rul73rfSCAoQai8PrEohXAZ0zAdW95sQCYuJ5st2Qs5DNJvQ6vfXkmrCfwonsLgcH6GYOOvNdcJo8GhIyJvTS3KuBlwUC1OifjYbtA3GyN0j6ur9De0D/62eV6Bu22ErlRILdkIrQWQX8csGQGMBEHOonXRzcgLHY8AXszDAbTg3vELYG2DDQHxjgG+dReZlVbAbUJgOPZRibVYjUqKFelGTBssFgkhptZBWwMufv7XC5R3+a4Km7Wngp027Wedz1+7tE+U0CYzgsKWNw76nttF3SeVLSbdX/ntFvZMu19PathhoWu2sO9ihRmVoCdEjETwxYnY6WLE4JhAl0I1c+Aw64e/67v42AZGAD/ZmQ5CzHdlhulIaxpwkY7WgH48f7nvYc1QCZ7b3HYCZ49I6tIybJhYFwEDwS6WQbqz8oYJoe4jW/wh/8XAK7YC0yMBwC7BhD0N55sHFdQLn9jyZbStasQvbQ2LNICzRzP18fhMxIo18Aw489NsiivLPhtz2nX251DETaMcdoJmLV0Rf5XoLXOnLF/zn2TeCg9Tib16tCpnc7Ex9qfBo+fV77lIsocr+EzYmI6jOwOJUKDJzd66E8BP5bgo5ho4H6ABXXh23dm/GIpBUB7Kd8NFYHo2nexLwBUB/JRnCpb0gWKqKSdX/kga9I5jAyU3Ni8Xih0qeeej8fq9ZrWXnnDtIqVtMelc9XdwodfVSzkCw/tY+kph4PzsEomSVrIzyO5jPT5jlyD+HjZPsU7SQZIprJ8v65LhZXr9UrArfZ3n3ERQTy6eDVHXs9a6V/VwqmlDbKuxCCUprmKHso1FHdJqD9iUw7pF7LHAnRgKN9oewOPbCXgq9vyob2kn3nglznF1zpGYPmmTmYaBR+MSa4LgJVETkTmFTcL76mnlxIYi3I9a626Fw2qyyIxGVd6JjslbozTpH3vLBzHQGDjGhPmGsiRz1g+IYdkUB9vAsHDqyJasvY4KEVMvpFao+OwJRjGqd2jzjYFSVncyMKS5DAwxMBSntHxbp6xODpeDt9EYHfLXw3G42ElHxnRBRbJ2sCAsGYTiil2dgRV/qLCNBR/NJlFrzMDBvX9tI+ULxn9uaPBtEDHhBWfnEhO+aH2g/JvaY8OG6Z9fOAEOF9nyLiXbEtXHI1DyiGi4h7ZJChnmgZnwTlCbNGM4WU2z8yjrjn04YqheK2Mh76L/oSlB+qstH1MUpcHKsYPvaicba5PMLaWHds8FwWMEj40gIxDFV9m2eGcQNwEEuXeggGM121gvKyYz4zSWwFMtuA7cor3Ilh6APh5CVHPQqsF68KG5BT+6dc/Bvg8HM9n4eePBGzs5wfr8ymHv/bC/brqxhTs3YkK4rquAuES6En2wn0noLE9tfXS2WVtPqsWaUzv+8b7/c5r8U5gg4dSGhXSVvK9Ma5JbQXH5bMM6jXToV6cqprvKQcEVgEpLst7EVC5CZi4t55U9ZRTSwPRFQhnwCaBWkRWY+cceJ4PnZpxuh0ZkKTQqjJUSSMTAGPgKEfTkxn7kALUZxqG5/NUoGJuSXU3w8So9qKHbbaa4Ps8BL+ACiwBlHagJkstsux+rgsSsX5/3gASkNifD7ZnO+nDQRGizt/3izpzXgbIIytjPz+vGhO+yNbMjtxsIfx8olorNcRkXhfWzuEs2ZbsGOPqACyC1cZVenp77xzCYYMTfXdrMkIOKdt4NTE0mXppVH5XTueSzpKSlTkMGGQHRTKF3utdbIQS5t47WXq50ABQTEEPL61DBUpr5cQtTaU2A/76/cXrfuH18ypG0tpPTjUbOe1rr8XASdMBRYmmMDpjzpxeTQdhbL8ZqrOkHRAb04CuqNG5KXFV1VhMNYHhc2fw/DVV9wT9IqpFbuTi5dY2NNMHXSFEoPSnNGxAqc1GSgLsRyxYtWUpoTIGHeB/yNgcA+FiMrQvKrd4JIMKFNRmUoyqOAZGcB9tgkuZYAekN5k/O0DKoXYRVIVfANeoJ4EGKHmRBaLQnsEDm0s45iADMXp9PKvHYiDJFrhZsaEzGWyH1K0CHWBU0gLA5pEEmVdgo6Ak30dJXycK0HsEvoIwgY65ppvRf8UGBVaIDVQ2kuf9eZ6+NpBlybOjduQCIiO6Asu911VWPncmXgW6VUac69KVzKjgKKIHLZ3+MVnfnewWCOPdglQ6Pcd9jXm0VzOZPxlOiwCmWoK1fts3g9M8s1aJeJCJ14CkAlx9lW80MTNA5nS+TzE3zBkI53qLBa2rnSO1uYaQADsG6eAbTEpAu9m/YgRqDXdErblYPqtAWhbtokG7YGKp4NO4J6yqt8FAufd28HdybVkRZlU297B+zu9HJ/wCC5QkqlBYACD3TrFC1N5nR6WX6x4uZhnqOY8xy/dwu5Y90PksDcM6owajbdZgjALZFQEDxXY1oJis+XKxEnNfylZr8I7Y/vI1AtfbTuvk6pmgfr/A9b+ty2ln9Hv6Tu0F6VLRHmwNcLKT8RYFHqhQpYS/AaFRsVcxSBgHiiGlti/fmvhMmQq0fmoAeDHm2zQC1apEcL/YfwQkIx1svR5mBSpK49Vs5MAdaphFOPb6ID5P3V/arU7kOlZGSztEg1eaCL79BNbTR+IA42x0vJ37Bzl1upLOLoCGta9mQFzfx/Gsg3YE3kCh9pgSOgD9mXYA8jwzeqNNn2+ycQZEEGCNgItVyUvKP+3Y2wKYW/e3z7B+lq+tQqJYuxFfe7gSu7pcxuTFYqzLrnvSzzx26Wfp4nJIUcc8Zs1GrX3NmCMA6giPijee5ykgu5h+HPYgu+vsvBhjUB/Qy75VkcW9WKVmBnC/b9/HFN2OM7SGai02fu6iHmxYtidvTi4WyLfdcY2r2/P1Xz6HF7uvnmchsBnjAYZZNuxsRTwDOfkM+XztQbPBybb5muxeSdt9MY9d66lJnpsthcGY0ZdXx9Ln8+k4mPvCWXDbkkyizT1Z1Bnro9YAu2MZxRyujeNOENIQnNh5avRlOGVk3yXbaITidCs7GMZOJrICI5Ixrtb1EcjCjs7CsLQfw2DU4cwGGhbDPM/wYB5tlq8HryVb8MkMxMF85f4Cv9dEgD4sJfVh9G0G5i6td6wuBOdBF0BXf/LcGoydKC23oYGKYJgq+6lYqPezAVDbs5iP+JpIm6aigU1uvHJk9TuKaSOgzhrIH3Cv6sIVj9bPjv+qXZvmlHc06uebeyYgO8a1GcelmboTrYtaW2DhAUbVX8TGL2vFcyYDKzvb66KigJOVmprXLFwtyQAw/gsUy9DB/D86fxgkYuX9tZTHAPBzX1/AJDyOOBnMwRLMdD3LiNqX2zcWcyQzYTRGkggBegPc0g9bTGDLv/dArzj3ZYD3csT8Z+Ho3/z650M2zHCR9WMjAZQpGrYR3Yx8KAvAz8+dba4MLpL1lUymOSd8p4Ff6/miq+71YF6tXzUIJsnZhOdAjQaxkmk2COp8PqldNiz7+REJ6rh79mDPZHIlgMLg5kg0svK8YXOyDVK+gQK0MgwhjYrBKaUD931VK6tZjkW/7klEXA7ICHp0q4cNTZ3laGlLWjyQjufhhNfX665BIzYH1mdhXhpoQePpHdQHN+ipHZBDSDjIggGBhi3o3p+1azrv6ydboG0nCi6diogNTTl8PrvaXl+vF/Zadb9zXtBwvOuaeL8/mGPi9bqKwff6eeG+X/h9/ybLzrP6Lwf9+nnhZZMgh9XE23DHH3/8JHjFdpY//vipZC+dXhqNwT27KuIKtmhn+/mHQCW4HuuRPuL4aokFAp/3B/NK5ud135zGa5XwpHFoxs9eG8Y1eOj4r+vCgOHnz9QrlH5Eav7l3v+v//qvNH47W+FSL27g83lgSC3M676KLTlm6vdd14X9JBC418aOfN36PAWa6hw9nFb911q4ng/mYhucZRCDyMBBe1HV7U3dQptKb1HtPAZgsN1egYkS910ASH55eLX6DrMCKEu3D3SO3sEdcrcXAK52qAgAoyud5QhNgXdrsfl+Dm3AdoJjpFbTJPCGECA3sGMLy6H/sgrsz0Axz3Sz0WCdVFYSwSpoVRItWUECvcAren8+X63D3W6MaglWG28FV1ozMex5ztO26DP6GSS7ZfLZBtkvm4H9hu1KrRn05f2P8V3pr2el37aD4QA5VQZ6Z8JENrQ0TPP2Oehi27GmZEqvZqoEA5ZMJkYlgt0Ky88mwJK6GgrotXMFcndbZO49XicUYKm1oXVEdB4QVmyCBo4FYh5DZvh8AwB8QwCfflf7McjGuMZV+6EEovcudtSZKSgIURIhnZYIYPnGg9QK8tgITpSr1snhZOlruEPrwSnxmgISI+A8T8b9bZbJWlbtwf3kBBsNwaLC9myBEsPFLKvHwDHwJrSnQhuJO7XBbV1X7XV0cmj8ze1WwV9r3UiYnWAtUM849/ToNoti1XnZtUB0csBqrcNRkhva/QJHeU5Av29fe1NtVuNrXxB6yWIhr1X7EWgAsiv/qOs3HOzLNHTHvmp7o1ayPEb9c62FedtarbFYt0pGNEnTlRDVc83zstHAlEAH2b7Q6/Ts9Hfd6+izrDOm4B3Hvu128IxFtgc0ofI8eyWZMFqz9DLromu0rEJEYH1W2fB6ViuHZWzvtR9zph6anSxqlL8G2K7IRP2amQyDpL5kITNf5+t9PcXm20g5jPw4K8Cm9irPYCZBXiwzPR+dSdkJTU4ssfVKlo9zZ9Itav9rsEq4ZYsNgLl8w7fvS+aLTi1t9+FzTg1FYXZ9pnc52TjYzPlM+b6BZBHVxEV+Nj/L2UvLE5P7yCsYyNfE4bsCpeOkxNu4Tjj2qdrjHYqpdd+0VYN7VPdaa0DfdewdAfFOdNdDFD09K55z6/fPvUxbxwJ/AZFmaCYK7VUiKhnnk+035yxmzGSxWnFvAVDn9e18Hu7tO8UKCvpMD9nPWWc4AMRaBB0EAjngnXPsnaCfwAv50JQdCiBE2GibmcPw0uasnYVrDXIz2loVrFIXb9Y95RnLc5Z5KztFtgHIIlXtIX94jd7MRcr8SKZKtgo2sHiW089F2XmRAyKCes4on1+FXaT/TICw9QQzhiZw6yy6W4JtiXVFxXlO9lIg2wOHIYE47u2ofU1whMWvGGT7Gfgn19EVk4BFOXY8MOYz6RbPZqtyoHF6xa39OhpsQxcDYqjg0nb+q123T37tg/CDhTkcIJMvTU/roaUv1DkD/bNY6opb7G8xhLVdpA3Vn0v7r2yJuoJ07vj3Ad1hfb9soP4it02wsiyEyUzHdxyP75zp68sZi1VepTiDhb3j+VkBa0EJAMm3GIt49HXEJGTvbObmXN4FaK1LBPVguQFKSxxRORsUuxjoKwEILDQBxipWDsTq9lkjMWGthUUT64vx3c74Oc91F8LThHrmgiHWryTeMk82J1t6Gv0Ic6LtxFEEzoEgX0CSaFqjSaZq5am8Xuc+iZF+ea9VDH/ZNzHU0VHYP/r6xwDfPYD5x0BoIq1ZTdrcDGrgKcZvYQh/4LHSwF6TrZYL2w3ro3ypA0sBMTBgPDIm9qX1Ju2lvzzbaJsi3hPc9tpYixp1v0EttXQmonRr+IUEaaUzczKwABQz77pmO9I6vKCzlDHO33Ma7DlnVZ/UrnQmImpB1me5CwRphF7rrIlMuQZKhtUCZfWaMUYx3Io6vRWFWBkJraMYj3IiujFV4YBA/D/gWjDIsa7ol+hqdBD7P/8D3PeVk2vnxOd5eoqRjI07/ud/AbV5vj//U8GHJhWr6vf5fPDXX6j9JkaPKtG/v/9TNtLM8L9//T/5eay8z6mKnkTMmcgf7IDSNOJhrZbad1Yrs+V04fW6GYh3JTUCBUhX0M/qh1hd0tKq9l/Szls/RYFIXl8FnWW3tb7JHlx1X4F4/wWwfVStGXI22VKR37+vBp/9r79gTMbEJv1d/188f/1VLBl9ZbxPFkxmWO2k7P/X3t3kuI0DYRiukrt7EQwwF5j73zEdWzUL8qsq0gKSZQS8z2LGsSWKKvFPFNvWaqD2RaNRT+5zQk7LAyOWbfTkR+UiB6lWNxBK56oJ9IyR0p1l1ZbinnnNvVqnG7HVDa8jKf160qYBQuulc9s5KGjv5w1UZqJuNpZy19NpKwKslU+VH52nu+VgVgPqHts1h+r4Nahpn7pX3ba6RsqnRU1gXse4OnEN0pSuNsxrNCOgG+yY9VITFIprxlJlbT0N08MddawaqEWLmbX0lnwrPt5WomVW460s9UkRxfpKXzVY8Zj5mvFtYcp8VlTW8rNcv7xhqnKgcrr+UnpNpuhprrnb6/un/Xh929c5v2lznooGp2ob3aqu5Q18TqBoJZZnxXgq76rv1upvG9FWe6BzrffzPeXH3Mx7m/C+vfc0W7D6Tanqa6XfBueKq+qLbtSyzFe977Gybb9ePioOVe6qyI99VY81EO/b51hoO6lscq+KXqtjvd2ROv8tP21XRUOrE71fpO0eS21Bj4uOv+YrM6AzqA80trKo9szqJHPicomrPr5oL9sYcj+eJlV0Mvprid6HZRexpavvtczVa+2cs93qmTNNgKj8HhkvnWuOf+b5auJNkyN6iBNh9pz7RITpJ9Y0zswbBR3r9bSv0+y0R4V/aYvXy6J2SbF/a7+zWM6pVW8rJl1xrdPv1+KqGOTxMl/Li5bntc/Xtet5zf5h31f/3fJTbYgq9rbH2iiP9P1o7+kYLVaLZXDxXm8uLO3FZcWu42R/lLeBnv1B/Tnge5uW5Xu2KVHhMz1M6PlVf97rRJ7ejFvvw/Pjc9zk97a+P3zobbGF5X1GLuqYkdWPBOgCjlWtXscP1aPx/+dc7djbeNNK1LCc9IgZE59pHDEmd45W3sdflo50HnmNlOfxvXWPeQ95RJh9j++F06SCJqXsfFqE568g6z7lK8J8/hCCVqjV2DDyOLWqZ7bXs3h8xMv++/fTfp2t75v902H1WvVnTILXcXxev6UP9N4vV79t5jkp2FfQjfNT+kqj2oveJ6sYjvJgOW7p18hdXzWh/S3zX/nOhOq1jlVvvu1n++u1udi2Vf+7f2p5LIvIYU9WR8XKe1p72m3b3gb+sb7Hdf8+PnG9sW1VlVl1qbqumPeykfVV/ZJS7OepB4i5yfx37zeXo0d2i6198/ZBOyONKzJrlRetbI/zNRacnKcdegA725LTzD7U5MVprzbncUbYR53WSPcMcxsPMf25Pvz0GH9N/qn6a2EvH3UzjgrAWBGrr23SYoARtPCweFjF+VMRfdh5+hrzMPvn8zcdxh/w2EcwAAAAAAAAAG7j+P0mAAAAAAAAAP5WTPABAAAAAAAAN8YEHwAAAAAAAHBjTPABAAAAAAAAN8YEHwAAAAAAAHBjTPABAAAAAAAAN8YEHwAAAAAAAHBjTPABAAAAAAAAN8YEHwAAAAAAAHBjTPABAAAAAAAAN8YEHwAAAAAAAHBjTPABAAAAAAAAN8YEHwAAAAAAAHBjTPABAAAAAAAAN8YEHwAAAAAAAHBj/wNyvHmdVzwy0AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "run without FRESCO\n", + "\"\"\"\n", + "batch_ind = 0\n", + "propagation_mode = batch_ind > 0\n", + "imgs = []\n", + "record_latents = []\n", + "video_cap = cv2.VideoCapture(config['file_path'])\n", + "for i in range(frame_num):\n", + " # prepare a batch of frame based on sublists\n", + " success, frame = video_cap.read()\n", + " frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n", + " img = resize_image(frame, 512)\n", + " H, W, C = img.shape\n", + " Image.fromarray(img).save(os.path.join(config['save_path'], 'video/%04d.png'%(i)))\n", + " if i not in sublists[batch_ind]:\n", + " continue\n", + " \n", + " imgs += [img]\n", + " if i != sublists[batch_ind][-1]:\n", + " continue\n", + " \n", + " print('processing batch [%d/%d] with %d frames'%(batch_ind+1, len(sublists), len(sublists[batch_ind])))\n", + " \n", + " # prepare input\n", + " batch_size = len(imgs)\n", + " n_prompts = [n_prompt] * len(imgs)\n", + " prompts = [base_prompt + a_prompt + extra_prompts[ind] for ind in sublists[batch_ind]]\n", + " if propagation_mode: # restore the extra_prompts from previous batch\n", + " assert len(imgs) == len(sublists[batch_ind]) + 2\n", + " prompts = ref_prompt + prompts\n", + " \n", + " prompt_embeds = pipe._encode_prompt(\n", + " prompts,\n", + " device,\n", + " 1,\n", + " do_classifier_free_guidance,\n", + " n_prompts,\n", + " ) \n", + " \n", + " imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0)\n", + "\n", + " print('input of current batch:')\n", + " viz = torchvision.utils.make_grid(imgs_torch, len(imgs_torch), 1)\n", + " visualize(viz.cpu(), 160)\n", + " \n", + " edges = torch.cat([numpy2tensor(apply_control(img, detector, config)[:, :, None]) for img in imgs], dim=0)\n", + " edges = edges.repeat(1,3,1,1).cuda() * 0.5 + 0.5\n", + " if do_classifier_free_guidance:\n", + " edges = torch.cat([edges.to(pipe.unet.dtype)] * 2)\n", + " \n", + " # Turn on all FRESCO support\n", + " frescoProc.controller.disable_controller()\n", + " disable_FRESCO_opt(pipe)\n", + " # run!\n", + " latents = inference(pipe, controlnet, frescoProc, \n", + " imgs_torch, prompt_embeds, edges, timesteps,\n", + " cond_scale, config['num_inference_steps'], config['num_warmup_steps'], \n", + " do_classifier_free_guidance, config['seed'], guidance_scale, config['use_controlnet'], \n", + " record_latents, propagation_mode,\n", + " flows = None, occs = None, saliency=None, repeat_noise=True)\n", + " \n", + " with torch.no_grad():\n", + " image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]\n", + " image = torch.clamp(image, -1 , 1)\n", + " save_imgs = tensor2numpy(image)\n", + " bias = 2 if propagation_mode else 0\n", + " print('results of current batch:')\n", + " viz = torchvision.utils.make_grid(image, len(image), 1)\n", + " visualize(viz.cpu(), 160)\n", + " \n", + " batch_ind += 1\n", + " # current batch uses the last frame of the previous batch as ref\n", + " ref_prompt= [prompts[0], prompts[-1]]\n", + " imgs = [imgs[0], imgs[-1]]\n", + " propagation_mode = batch_ind > 0\n", + " if batch_ind == len(sublists):\n", + " gc.collect()\n", + " torch.cuda.empty_cache()\n", + " break " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "processing batch [1/3] with 8 frames\n", + "input of current batch:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAAC7CAYAAAD4xCBLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOz9x49u67bmCf1eM+3nImK5bY7LazKrbiZZWS4FHVpICAESqkbhGnSgyd9BkxZ/CaKJaBQlFRRQRaW559x79jnbLhPus9O/hsZ454y1q0CCOg10pG9IW9vFivhizteM8YzneYaKMUaucY1rXOMa17jGNa5xjWtc4xrXuMY1rnGNa/xZhv7/9we4xjWucY1rXOMa17jGNa5xjWtc4xrXuMY1rvFfP64A3zWucY1rXOMa17jGNa5xjWtc4xrXuMY1rvFnHFeA7xrXuMY1rnGNa1zjGte4xjWucY1rXOMa1/gzjivAd41rXOMa17jGNa5xjWtc4xrXuMY1rnGNa/wZxxXgu8Y1rnGNa1zjGte4xjWucY1rXOMa17jGNf6M4wrwXeMa17jGNa5xjWtc4xrXuMY1rnGNa1zjGn/GcQX4rnGNa1zjGte4xjWucY1rXOMa17jGNa5xjT/juAJ817jGNa5xjWtc4xrXuMY1rnGNa1zjGte4xp9xXAG+a1zjGte4xjWucY1rXOMa17jGNa5xjWtc4884rgDfNa5xjWtc4xrXuMY1rnGNa1zjGte4xjWu8WccV4DvGte4xjWucY1rXOMa17jGNa5xjWtc4xrX+DOOK8B3jWtc4xrXuMY1rnGNa1zjGte4xjWucY1r/BnHFeC7xjWucY1rXOMa17jGNa5xjWtc4xrXuMY1/ozjCvBd4xrXuMY1rnGNa1zjGte4xjWucY1rXOMaf8ZxBfiucY1rXOMa17jGNa5xjWtc4xrXuMY1rnGNP+Owf+o3+D/87/+PvH79jhgjURWQV+Q4KutQ3jOMPYHIOExUVU0IAa01XdcxjCMmy6mqitVqxTiO9F2Hm0ZiCIQQsNaiADc5VuuSGOW/T2MkqoCxBmMMbdsy9D15lqO1pixLbm5usNby8PiI9xFjDEVR0HUdq/WKaRrw3lPkFV3XcTweKcsS7z1ZluGcwxiD9375Z601bdtyOJ/I8xzvPUopbm9vqetavvdqxTRNnE4njqcDUUX2+z1t3zOOI1ZbNusN682Gj/efGJ1DaU2IAQCllLyczDKOPVpp1nXNqqqZxhGlFcM4sl6vscbyvH+mH0fe3L3iV199zXa15ng8kmcF1mY0XctPnz5y//DA7W7LX/7mNxAj0zTx9PTEdnfD7uaWp+dn3n/8wLlpeP36NQ+f7tlstrx+90t+9Zt/SJ5XRKVBPt7yOWNQxBiBiNFgrcFqjVUB5QeiH5imlrY5EYInz3LGydE7x//5P/lPiNpwPJ3ohxEXIjFGvB+BiFLpe8fI/+R/8B/w7vVbIgEXNdiKIjPURcSPI13fgYK+GynLn6817z3W6p+ttXGcGIYR7z0AWmuUUgTnqeoCpSIxwtA7YvSyFpViGAaGYVi+frVasbvZYK3ldDoRQvj5Wlut6PueaZrIi4q2bTkej1RVxTRNWGvx3qO1JsYoayT9rPlr588cQuDVq1esVivatmW9XuOc4+npiafnZ2yecTgdaYaecZywWlNXFau6Zn880g0DxhpCCD/bx1pr+QwoqqriZrdj6HsCgX7oWa83WGs4Ho80Xcu716/56u0XvLq5Zb/fU+YV1ljavuPj4wOf7j9xu93y61/+gsxmy++RZTmvXr+hHwY+PT7w/sMHdrsdx/MZazJ2d2/463/0T1mvb0FpUApQy1ojRCKyHqyOZFmG0QqjAqS1No4tzeVIjJ6yKOmHiSkG/k//0X+EshnPhwPOB0IE7x3eT8QoZ42s58D/9H/4H/Dq9haI+ABRldRVSZFFrIocDwdsntP3PUobrJE/O00TPngCnrzIqasapRTjODL0E865ZV0qpYg+YDNNUeTEGJkmj3fy/40xTJP8GedGjNWUZUVdyxruuo5pclhrMcaglEIpMEbOKKUN4zRxPB4pimL5Xlpr+QzRMLkJYy1T8PR9T3tpKIuCpmnIsoyqqtjebtMaWKO15uOHD3z6+ImiKtFa85zWGz5S5iVFluFC4NxcUFqjjSLGsOzlECLBR5RWWGN4dfsKYmScJoZxxDnHbrdjHAfOzZlVVXG73fJX/+AvaM4XQohs6g3jOLI/H/njd9/y+tVr7nZbtpsN5/MZ5xzPz8+8ffsFZVVxvJz5/v1Py3OZxomsqPjFr/6Cv/qrfxNjC6IyKD5bbzFChEjAqECRF1it0CoQXU+Yeqap43TeE4NnvV7Rtj3NMPD//Jf/kufTiUvT4KOcI857pmkg4imKgjzP0cD/6L/z32e33WGNBqXxQbHdbVHRYQhcThfZB0bT9QNFXhCCPE/vAyF4jDGUZYkxhr7v5Y6cpp+tNe89WimqqnhZqy6gtUnbLDCNnhDicibUdcXuZov3jmEYMUbOjrIsiTGS5xl93zFNnmEc6IcRazK89wzDIPspRoIPECPaGrqhZxhH2vOFPM/pug5rLVpr7l7dMfqRuq7J85wPHz7w4cMHtNbcvrrj8fmJZhgY+p4qL7DpTr60LVGxfD7QxPSzvffEKOtts9pQlSXTODG6ieZyYbPbybPyDkXk1W7HP/j1b1ARmkvLdrtFK03bd/zdN7+nLAq+evcldV3Stg3eex4+PbBeb7m9u2UYR+6fn/j2h++weYGL8nnW6xv+yX/jn3Gze4XWOUoZtLbpbIsQAzFGtIoUudyhhkgMI37smMaepjkyjgPbzRoXAj99+Mjp0vCf/4t/gVfgg8eHSIgR7x3OT2SZoapqcpvx3/vv/i/YlhY1HXDTyHq9IgJKa+7ubmkuJ4LztE1LWdboTHM+N2it5S8UEXBezpEsy1BK0fc9xhjGcUQptZwzMQSsNeR5hrWWYRgIXt6L1hqlI9PoUErWqNaKvMjZbjeElAPOd22e5xRFjtaKvh9o246ma7E2I88KhmHAOYf3Hu89k5soy5IQ4XA8cDwcmYaBm5sbnvd7Nus1IQbW2zXOO16/fk3XDXz33Xdczhe2u53cp8cjo5vou56yzMltLmfVNKGNkr+0xjlPiMjn9p6Y7qw8y8jznBA8wXu6oSfPS5zzKBSZ0WzrFf/kb/5NLucT0+C42d1gteHUNfzrv/sdN7sdv/jiS6xRnC8XYow8Pz5T1ytub29ph577p0fef/pI0JoYARR5UfJXf/Vv8MW7r8nzGm1ysqyAKEdKjJ4YArkx5JnGaI3GE6YON/YMQ0vTnvFuYrtd40Lk7775A5Nz/Gf/xb8gKAgxEpWScz14nBtYr1b8B//h/5q62kF0ZHqi3X+kNIHMgHOePM9QQF1V2NwSQqBpOrQ2tN2Q8iJHSDlhURSAouva5UxTCpTSOD8xjQ7nHHmey7lDlN+tyCkKWadu8gQfcG6iLAtihBA8m80GkHyiLEu6vufT/Sd5Vum8W63WODcxjhMAwziRL/f2iNaavu9xTr7+dLnwzR++oek6ttstYz/w5vXr5Wxer1Y8Pj+ijOyX86nBZhmvbm/JbMYwDJzbhrbvmJzkFOtqhQ+Btu9QWuO9oyoL6tUaow37/Z7RTQQgEFPt4tEKtDZSV8UIKIgarSEzll99/TVdc+FmveGLd1+gFZybC3/8/luapuUXX/+CdbWiHwbyLKOua9qu4/7hkefTkX4cSD8EDfgYQMu7IWoImjyv+cf/+J9SZEV6P577+3u0UpRFzmH/yKu7Hcf9A9tVRV2WfPnFFzjnOV3O/Pabb3jaH9gfjoQYcTHgQ2Czqvmf/Yf/K7abG/gsx4hEUEZq07HDd0eqIqKVJy8KydNCoKqqdGbIP5dFhbaG0+nE5dxyPneEIHWetZbJOdByDnrnCN6TG0te5PRtJ7mbtRhraXrJwx8eH8nynLou0UqR2wxrFL/4xVfUZcUwDDw8PKR7VzFNI9MkdWiML7Vr0zRYazDWEoBp9HT9gPMeHwJd24HSaK2oq4rjUe6L29tbDscDHz99Is9zvvzyC5rmIme4tbjJ8bx/JkRPZi13t6+pq4oYIm3bYI3kmO3QczifGL1n8o5+6BmnEecDX7x5i0bRdx2T97gQCARCyv1C8IQoeffkIlGSA7SS+yfGgNEKpSX3kjyftFblTiPtd4Ve/lv0AVRcagWAECLOB2IIKCRPCTGiIqnei8Qo+RMqEgJYm0ldYS1DP+DChNLg/XwvK3brFf/z//H/UrAMKUNQBPkdFBBARUVEEYighUWlUCmd1PgwosKAYcT7HiIUZUFVVrRtR5ZlZFm2nH8QORyOcg8qhdEZbSO4SlEU9H1PluUorTlfLigNeZannDtSFCXByZkzeYcPAa0M1mZ8erin6QeMMbx59Yoiy5iGDqUUv/7VL3HTyOPD83KXam3oh37BPgQTUVij8SEwOselafHek+cl0zRJbWJMWos91maczyeUgiIvyKwlxsj5fKYoZb3v9wcym7NarSiKQnK8y5k3b19TFgWn44lxHDldzuigmbwDpZjchPeeoBSTc0zjSFCBV7e33O52NG3Px4d7WjeglYEQU96hMSajH0aGYSTEGeQIKD0z4RSRiFaGEDxaS97mvdRgMSq01Tg34X1cnk+MkejjkuPMtf40TcS03sZxAiV7QGu5p1ZVzv/uf/u/+f+AvP1/F38ywDf2Z3AbitwSQ09ZBKzOcdPEmP6q65oYWAAKa2UBK60hXdTDMDCOAxHQShGUWh7O/EBCiBij0UozMWKsWR5illm0rlGAVvI6+l6K0t12J8WVc2R5xnq9kheCgCTnUwPA69evlz83F0ZzwlqWJV3XcblcOB6P2EIKE+ccJl0Gp/OJ9WpN3/fcPzzw4f17tFHsbnfyGa1lmiZQMDrH8+HA5ARcIkpyEXwAJYfQ0A+4tEkP5wvD6IhElDJcmpZTNxJ8kCSHSNt1nC8XsizneD5zd2PJTZG+r2OzXvHLr38hCfkw4KaJGOF0OsmlYA1FXfF4OvLdTz+ilKZ9fuTxdOTYnvj1r/6S1XoHGMqylqIpLXp5r4oi11ijUWEiTD1u6BiHjrY9E6Nns1kzes/vvvmGyQc+PT7iAVKxCqSCLJBllrqq04Xt6dozQ7+mqgp0HCmLjLLKaNsLbpwYh5HVZo3CMAwDMQrYWJYCbigliWXbtmktxvTo4wJwxXQJTONEntvlYjJGkre6rrDWAEUqemSTdymJq+s6reWRLMvYbrcCeFrLOI4cTxe898tam/cEkNaGYrvdcjqdeHp64ng6sqpXXC4XplQ0PT4+8vT0xM3NDU3T8P7DBx7u77FZxmqzxmojALX3M0ZB2/cMbkIb2RtlWRJCSMmpAAE+RoKKnLqGdugB0MbQDwOHS7sA7ho4XxqGm5HRO/bHI2/uJDHOY07wnqoo+MXXX5PZjK4TcFNpzeQcp8uFqODYXhgJfHx+JKJgHDh/7Dh1F37x9W+4u3uLzUq2mxtimJMA+bxlackzgzVAmHBjx9S3jENH119QBNbrNaNz/Pb3v8dHeHh+xhPTQSpJbvAe7x1FkbPZbKUwiwE39VwuJ7abDdZAlgW2u5zT8cjgHKNzaJuzWm24XC4MTi5JY4wUFjHgJkcbWrTRdG1HUVQ/O9yNMcTg0V4OeEnmPBEYxwFjLHkuF7UxBTaTi1CKjGEpUE6nE0VRUBQFdV0RgiSGXTdwOB7SGrTLWnPO4SZH8HCzu2FwEz999y1PT0+UeUHcbmnbFmMM5/OZx/0jeSnr/aeffuL5+UmaB5NjSqBEkef0/UAkkpUFl8MRnZ4HKcmYpikl0hMx4WeDc/zw6T0qylpDG8Zx4Ng1gMIqTQgt62qFzQu++/F3vLl7RV3UZEWOvijyLMcaw3azYxxGnJMEpigrRu8J08T3Hz9yaC5pj8vFOg4Nv//j3/K4v+fNmy9Zr2559+4rjLbEaORMbSWhLtcVCgcx0nUXhu4C3jGMHTEGVqsVl67jjz/8wP5w4tPTM8fLGZRGaTBKY4zC+Uhd1by6vWOanCRhBLrmzGq1Ssmdos4V/SDJeyASg6IqC7yXBoDSegG3nJPf53IRwKxtO6qqTGvFLQWCNOFgGEgFbyREjxsFdN5s13gfiXiyTM4+bTTD0Kfi1vPwcE+ZCpKbm5sEMo/EqGQdlhV5nqfzVsm54j0+Oqq6QmnNTx8/cH9/j9WG7XaDmxxN02Cs4dxeGN3Ir3/1K/74xz/y/PyMzTLW6zWX05ngA8ZojDU479ntdjRtSyCSZwXOOVarFd4FApG+k3MsKAHun44H3LMns5k8O+8Z9nu575XCABrNPywr/vD7b4g+UNYVVVWChtVKkvCiKkFrIhqbWdY3N5IjTBM/fHjPx8cHglJ474gKlIqc2mf+r//3/5jt+oa7mzd89dWvuL19zdhLM2Ace47HPW9evcJPHhR0Y0N7OaKJxChJZVVXtMPAdz/9xLc//IhznnPfLbmUNprMWJSKGAOvXr9GBQE7Yn9GaU1uFVPvcdOE1orCZkQ/ARHnPVle4rwUXHMDKsZI1HMBLc0Rl5oRL3+X9TY3ZEI6r7UW8E4pCMElADJS1RVee0LwFEWZcq0cpSJlWfD+/Xua5sJ2e5NAbXBOGnMhRPp+YLct8T4sifocxmrKuuLpec+P739iGkeKLOfcNEQiz4cD6/WKn97/hDKaQOSH739ico7Nak2R50zeoaIATGjF6Bw3N3f0hz1RRbTNcG5kU1VY6wHN5SKAfJASlXPf4S9nMmvRSsmamxrm0s8m8KWbJr774SdWdc1qtSZa2Z91XXK+nNHZL6RI0IbcZuxu77DWcu57vvvpB/bHI1EpdAKMA57Rd/z27/4F3/zh79msb/gHv/lrvvrqFzRNT13X9H3D/aePfPH2LZpInmn69kzXHCmzDGM1eZ4RM8vhcuGP3//A9z/+RAiRdhzSHohk1kqhhiazirubWzSgNeAdmRpYrwzRST5f1SXBe7SS/WOsZew7Ju+IzjGOIz548iyjqkppzCiVQNGUMicgW2kpukAKrbbtpPGfZcSomCZpXmV5hlECaBhTCMCJrLPNZs35fGYcR8nDUNze3NEPPQSz3NsKi9YRHwKn00WaHVWBMQqtDcMwCdAZe3744QeMsbx+8watNEWWc3d3xw8//MDd3R1d13F7e8unh09M40RZlShtqFcr+raTxvTkKLKccWxAKy6t3IugUv4GTdszTl72jZZcOgQ5/0ICSgKKGKTWkMaHAElocMHzw/ufyI0heM/kPau65P2nD7KmiPzw4f3SpMmMxWY5/TThpglHwBOXJmfkpXkcgRAmNIa2O/Gf/qf/MXmeSb7rJvmeRNnX3vHHHyKZ1tzd7rBKofOc8/HMp6cHvv3xR4Zpoh9GiGCLHJtlVHWFVrL2FICSszJEAd8hEoPj9nZNWWgmJyCl5CYKo6UZ5L1jHCdc8DD6JV/KrMV5aZwCuODQaEIUkLcuCmKUPZCn3ElrtdwpWWYhSvNJaUtR5NIgVorD/kjxNhdgdhzTPW0YR5fAYvez87cocuq6wkc4tw0BhChjLf0wpHXhUdrSDQMouLm54enpiYfHR4w1VFXJ8Xhgs9lwPB7RZUWMkbKqJKckstluGPoBqw2resXkplSjeaqyJLQtIUKZFxiVgO1xZFXV6KLg0nZ4YJxGjNGEAMYogo+p+RCkTlcvzdR5P5KILjHKHo9xBvIT3hciUcVU98ox6kNALlotoGuIOOcpslzuqclJUyOBpyEEiqLEGAHjvJvwjqU5NNdGCkVR5EyTp+s6ijyXnxMFyFY6ooDcKpRKxAMj5/roHD7I2WS1IsTAOI2M45ntumRdbyGucS7gvGe/P6YawhID+CkmoMihlTTTog9oDUUpJJmmaTBGwLqh77FaydelvTeD2DMRyXmPtRnWWKZxZLvd0A4Dl65FPyvevr4jLwuU0vzu7/+eX/7iF1Srmtg0xBAT6BmXBnMIQfCFECjyjCzPyKyl70dQmpB+7vl4pG0b8tzy+PxICIF1XeO843Q8JkDT0DYtVVVJHpGOkX7o6YeBvu84nY/c3t5SZDkf3n+kXtUJ/5Wcw6cGRtd1YDQmsxAcj/tnxmmi66UJXdc1zntcmAgxYrWBKOtIG4MK0qhbLhsl54pWCmsN3gtpYRpeyDgheMZB6lxjbGokBYJ3EBUxuoXkMJN55npWwO5AiB4VJa/XM6nlT4g/GeAjRNw4kRkDKLIoHcmh8YDCKEMMYHVG76QQiFFQeO8niGHpfs0vSUNCpbPlx0xuQI1ywIEc3OMoQFye2/TQPUZLQiIbRWGtxnl4vH9Aa81qtUJrGMZ+YdM47wg+pGI6fsaGkQWclwXGWn788J6PHz9ijCEPLhXRHWVZMh4PnM9n3r59S9/3PD09obXm1e0dfnJpQ50FSAoBZbSAjF2UzlqU66larQheQKgYpRsQonTEuqMcACSwc+ym5fmoGAne89UXX/Pdjz9x3O/Zbnd0Y4cPHjR0Q0c39pSVXBDK5qy2O4jQDyMfnx759PSYzklNIICOxDjx4/s/8PH+R+rqhq+//BV/+Rf/kMulZ71aM0w9Hz6+583rOxoNViumoaG9HCitJc8sVV3gfOBhv+eb77/nw6d7XIgMzi2dbq0UubHoLMMrz263JU7SiddlQZZbXBiZvEYTMUQIHu8EyMpsRpjCz5KGdCWgFHgfl+LghekBwzAkBD4mxuaEc8JgsdaSZZZh6KTTE4UJGKJHqUiW51irKUv5+zA4np4eEhtMukPjqBjHaQFnQngBFOeYGVt5VTI6x/tPH3l+fpauXd9RVRVt37Gqa7ph4HQ+0Y0CJJ6OR7I85+bmhuA9ZVFwbJt04Hmcd5R5LSC5QMRM08R2u12AgXEapSSIclh245AuVZO63PJMp9GjohSB7Tjx+2+/ozmeef3qNW3fpG6+px97TpcL2d0rJh/QWc62rOiHkf3pxP3+mcP5RFQk0FEufq0Cx/MTp98dyGzF61fv+Cf/+J/RtT11LSzGH3/8nrevX2GNXMwKx+W8Z10WrOqSuq5w3vHp+YnfffMHHp6epaMYWRJdDeQ2o6pznMrYrNcoH+idp6xKbGaXgtVqhdHgxh5tDcM4UlaVJIAJNAkxEoOXr7WGMAW8C5JUTx6lhN3ivV9YmzF1JPuhp1QFWWaw1hCCQxuFDxPa5BirmaaRLBOQrShyyirHu8DDwyeUUhgjfw2DJGF9P6CUMP6MNilpeQG0AcqqpB8Hfv/HP/C0f2a73eLGCWU01XqF9566rnk+PuP7wLfff8fhcCDPMnY3O3IjoGE/jUzTmJiKwsLTVuMmj48BPwlboq4FrD8cDrKGYpAkJLGNdAygJkICDUHhI/ig2V8u/Mu//Vv6caSoKkY/gIfD5UgzNMRjYL1ZS1PEOe7u7qiM4nl/5PGw59icCWmfKY10iFXEx4mn/T3P+yeMzvnHf/NPqesNMUCIAmgZrSiyjMP+mdvbDafjEzfrNZu64s2bOybneP/wwG9///fsTxeapsV5j7ZZShCki71brdDbGu8cRinObYPNLEpBXkhi7ZyjzCxTKkgvlxabFXTdIEB5cHgiKkpCm9kM44VtnmUZfT9SFCV93/+X1hqAYpocCiWNMi2sHack8YwxSrETA0WRJYC5SOxSz/PzI1lmpRMfYBz7VHQHrMlYrdYYk6d7UzqTfd8vLJp+GPi7b37P8Xzi9uYmsSgLbu7uOBwO3N7e8rx/xuSG7374XtixRvPq9SsyI/slCxlDL40ONzmOF7lTldHCXPGRrh/ZrNdy908TbgoLuJk4BUzeoaOW/5YK3xACQSsuQ8ff/v3f0TctX7/7kkhknEYenx/5+HiPd4EfP36AGAXovL3BFgXPpxMfPt3TDlLcoIURJYlbAAzj1PH41HN//5HT6cAXX35N27Ss1itOpyPHw4GfNmsO+yequqJvz2xXNZu64je/+iWKyKlp+C/+9m95Phw5nE5EFLYoCKnIHKcBbSx3mxumsUd7n57DRHR7lLohoKi3FTYxzzJr8U6aDE3TCUug67DOEuNLA6ooipS7yR1KnDvV0gz9nIEuxWmG94FxcEunO8ulSy9r1JEXwpwQgFkYWMZYAcqA29s72rZJQHpNluWEIDnDZg3T5LF2XnPCKHXeU69qvvnmD7z/8J6iLHn3xRfsn5758qsvOZ1OS0PGFNIQ/OGHH1DaUtc1r9+8xk+OSyPsRaPkXfrgeNo/o7RCaS2MxOA5X1rqqqKuS7qhw08+NXrkjI9KgBSt05qLc24ScSiavuO3f//3xMnxxWbD6Aaizvj+px+4f3xEW8Pf//Eb/ORxk+P1q1doY3k8Hvn0+MDgJjAC8DITWVJzzwWH6y80TcPlcub9h+8JPmAzy+Vy5nK58O23JZfLmTzP8G7kbrthVRb81V/8BdFHzk3Df/6v/hWH85nT+UKIYPOCkACyaepRKrJbr0WB4x2ZmrChQYeWIgO7rnHDhE8NCZC732YZk5tYr9dkNud8aYhBp/PLY4zkd9M0pea9YkprzGZ2acYbkyWA29P2Pa7tKcsSG6QNnSGNgTdv3who4ibatqXvB87nC+M40ffSEFBoKWz9S242jhN9N9ANA8M4CjAQ4dL2eDcxjSNZnqO14eOPP3Fzc0eWZzw8PRFU5N3bN/zx228XJpP3ntP5RNu11GVFbnOKshLlhHO8efWKYZqY3ETTtkSlE9ACk5dzvcgLaSKESHPpUIlZppVewI+52lfMbGbQSa2Q2TwxoYR9sz+fOTUNeZHTdi3BaBQKN59hEQFIhgEfI9qYxFaSOsW5aWFqxxBRRp6m0go/CCDcJHZmCJ4YfTpPPDFEpuCZUEyPzxil+PHjJ6KPjMHTjQPDOKGVwjuHzTPqqmJITTCX8iYCoAxGQYwTuIHceMZxoml7YvTc3d5JLpyIFZIXaIqyxE+B5/0zANZYxiiNuJmRNLOXpF7QS9HunF+AQ+c9IUa00WhjeP36NfvjQQAWs2O12uDHgcNBVGO7xCIfhgmtI9udkAVm5dgwyH2+XksT0PUj3jkOh4vU3Ua/AGAI+NA0Ld47urblfD6TZxm3dzcCrMbAMHR4P9K0AWss63pFUeSsNwLu5VmGRtilRVkxTiOr1QoXBAQrioJ+GBI7LTL0Pbv1hsJYYeEOI8MkoGMMnoAwy6ZJWKWRKCSfdBaQjkQBPlSqVOQw04mVrIjLGTczexdVSAgQhQ1utMbkov4T0JSFVa61BXzKWV9wh7n5HbyXZnO685zzjJNjGB2T+/m5rlJxGYI08ayV/FIRsVahnDSuYwSiJ/gOPw5cThN9e6GsCghK6ptS1rKOsueOxwMxRNabNdbkAniqwO52x/55j/IxgbmKprlQFQVa5+k5CPCYWWkKT5PDZDYB+2apBeSONsROFDQfPz3wxbu3WKPRJuebP37LP/zrvyIvhNWYWYOxUsu0bS+M1nGStaKVrBcF1mghASjN/niQ30tpPny6l8aDD9i56RxJLFrH3d0rPn76KAz2pPwax5FXr14tzMtpHDEIUH2z29J2A4ZIXuSgIpPzjE4aq3meMzmNG3qe98L8NdZSVTXeO85O6ngfw8u5YjKmpT2XKExpnWmtGIcBY7Mlp8yLjLIoGYYBHwJ9Pyz1bAj+s9rrRYmW+KtyRmhpMigluUz4LGf4U+NPBvhmGZd0TiWRtinxmwGU8+mMsVbYDEoth6QxhskLk2U+yATRnA+1IUkbwsJ6UaQOdZahrabvu6W7lucZZZ6kTwmciTFyPB6p63qRkgjQt16AlqqsmCYH8DNa5fx9x2nid//yX9L3PXd3d/J5jObLL78SKeLt7cKi2e/3SQ5qefPmDXme0TYXpmkkLwqGcSREz/lyEcprkgDPVG9B4y2r1YrT+ZzooIKWK23wQbpT8fNDETlcxuD59qcfCN7zenuDDx4dFJ8e7nn/6SM+BL7/8J4fP35iGkeR3+129F3Px0/39ONAUCk50AqldEKxVerEj+z7T5xPRx4ePxKjXAz9NNA0F/7wbS4UcqMhenarmk1Z8td/+Rd0vefUtvwXv/1bHo8H2kaoydpaQoys6pqx7zFGi3QmOLQLlFXNh/uP5BQordlst0QfMEoAQWskkRA5T+R0OmGzTKi0iYE5y8lm6ewM7M5rcV5rRVEkQMcsxUrf9xRFQVlViakSYZELFUk2EtP6dLStMPmUUolOb9lsdvIeYyAikuGZQWg+u0i01vRdz9/+9m9xzvP27dtlr7x7945Pnz6x2+0Slbng6elJNnGW8ebNGzJraS8N5/OFPMsYnDDzumFA4Lm4/CwVhRJtraUsS0lIgrBcRLIl3XKdGBufrzetYPSO79//iIqKu82Wtmspi5yHpyd+/PABFzzff/iJHz9+ZJqkcLy9vaXtOx6e9gzBEVRcZLHqs4Jk7riOY8OPP33L09OntB7lEh76ke9+yBiHIV3GsK5L1mXJX/7614xu5Ny2/Ivf/lbko11P9C8/pK5qAQajMHIUQqHebXd8vP/EMPSEGNjuZK2pGJYkQSUaeIzQdwOZdajUNRvHESB1bmQvSwdLLzIFYOnayLuTzvM4eYbhLGeX0su6eJF7ixSraRqU0gz9iHOe3e42SX4G+l6YVkoZylIKn9O5pW0OlJXIN7XShCBAo/Oe3/7ud4xu4vVrKXpcNvHmzRt++uknbm5uljPv6emRPjUz8lxsFcaup0mdPaMEKApEkZAxd0uliXM+ndHGUNe1FGlaQZIfQCp4QxBG22dJF1rhVeR4OdF2HWWe8+OH9+zWIhf66eMHunGgd47z736bkgDF6ukBFwJtPzB5jycuFgvyMyVhFPaxR6tIcIH/x3/2f1lkMT5dziBsh3EcMT8ZMqM473asipKgIsfzmR8+fOT9/SeGSbrFMUZslmG0oawq2uaMzSy7zZq+7chtxq9/9Su+++5bJucoioIss7hpIi/krJNmkE+NCSeNDitSXOcEqPNO7CN+dob0HXmeL6Bf1/VoI11FlGZ0Ad/2iXUgTJayKJY1nmnN7e0tXSdNsGlyaK3Y7W6Wc3FuVFhjMdpijOV8bhmGA2VVJ0mPSM7dNBGV5g9//BZQvH79OsnKLa9eveL9+/dsNhvatqWuaw6nPX2y2/DeSVEwSNc9OGEHH88jIPd5TJ35WR45DAMuMbDnZuLC+kFYL4FISL/XvCelyFM4H3j/4QOZzfj2xx/Y7bZkmeH9xw80fQ9K8+1PP+AnKRg+Pj9Jd9t7lDG4xEaQ5xlSA0ulOltBlHzmh5++5cOnH6VAJKSCN3L/lFgIDwEFdOOWh2eYYmDsey5dy/cfPsiZMY5Lc9LmmdxHylMUGevVimK347A/8Fd/8dd898N33Oy2FGXBOA7kCfi3VkCWOaG0mTAItNELa3u1qjmfzy/PSsnaM0aKqWmasJllmjxlWQkwpjQ+Sh4RQ2AaAtYLiFxVJa9evQIiw9BLcV3kXC4T5/M53Y2WVb2m63tWq610zCeHm1IhRuT5+SDAZl7I53Uig0drjh8/0XUDX3719ZJXfvX115zPZ56ennj37h3n8xmTaVFlWEtIgE7wnr7rWVU1wyiARDf0KCU5hU/FOwgY5CbHxV9o2zZJIBHaaCq25evE/kPAN2GOGCNMXOcDz4c9Vht++83vpeGk4OH5iSl4tAt8fHwkJFnv/nxe2ArGWnziL2klsk2pi18kayDMj+PpmUtzWKxnxJ4CLo0UG6EJqAjOTxgF7TgwjSJH/un+njE1XL0TlnhZV6lRkJMZw2a9ZlVWPD89gR8xLlBkHuUDNquIRqNVtoAXIEVYVVcoQ8oVLH03fpajucXmYAqTyHbnAlsr3OjRWorrLMtxwaOs5tOnByKRqiyEFdT3eCe2FTbLmCbP8XhO61xshCYnwIV3nq7pl3s9WFl7AdkXwv4Qtv3pdKEoC0xeYrNMbG8Sa/7Dh4+czkdev37D89MT9ape8qmmaeiGnrKQO/XNqzdYbcUeo7SoxPpr2oZVXaON4XQ5S+4xOPJMGpPT2C+MlQCQ8hWRqWq0kf0Zoqh/lEIA/RASUCqSM2H2BaYAgxcWo3R5tUiwlQCBAiIKmhRQ+CjrcEqFrdZKCAchQhSZnDFWZLtJ7hidnJHWSn3n3bh838kHJj+iECbO4iajNEqJqsGZEe9CsmrIMCpgTcQoAVZi1LKe/YDNAlZrvFeU5QqbWQE9UqNfYcgyeV7TNEoDUol9itC0IrPNinOOvCgJJuL7LlkGaAiKyY/Y1DTwIQFBSdpbFsJEfT4cGaeRN69eizXE2PPp4YGvvviCm5tb7u8f8cHTtt1SQ4s0OEs1RUvXtYuaJc+zReqfZxnFWlQin+7vWa9r2rZhmCZRkaWG0zgMC6hgjeV8ulBVddqTnuenZ0II/PIXv6BrW5qmYbic6VLTEKUYEgvOpZxtzlXbpuHdm7dkeU7TPwrpIuVPpByryHKiUoyp5p5jzvmi8NUXcoHS6jOGtkIj+aNzYzpDlICv4wQ63U0hikIh5YNzDicgn1rwBGv10ijVZpZISrNgHGWNKU1iHiq8i7gQmGKyHFECQUp5IfYqAQ9xrp8jyjlRJboeP3YUNuW3aNqmpV6tuL27xU2ey7mlbZ/Z3dwQQiTLM85tS9d1ZFZUID54rLFkNrJaq2RLEUAlUEpQx8XmLLMWp7UwX5kBKkMgLjmf0RZrcrybeHzes9tuWa1XjOPAb3/7O/7df+efcXdnhbCQMJWhH0XxFIBcp6ZvJ8/HTQzDwHF/pB8n1tsNh+OR3XbH/nTEJsm5857R9SgFq1VN27W8fnVHWVUEHxjHkaIs2G62XC4XHh8fKYuCfFVwd3dLWVWYLEtncWS7WdF10uR3QVRUTd9Jrq814zCifCAeTtjcUtUl/TAkOxOHRvY5nykB5gJ1rsucn5I1juR2Tdsx9BN5njGNab3FmPZFwsMys9SvMy4240gxfa2K0jQMIWBsvtTGf0r8yd/BWJ2kso6qKjHWEon4KA988o6IsPayzKYOcbMALsSISyBLSEVxNHpB0c+Xi3SNY3rgkycMA0VZEvGsVmvKUjor4yggWmYtXdfRNG1ivIiEQ3ThwjBwKVG01nJpzlwuIhHKMyuF6TjhvBRIP314T71asdluZMNqxetXr/nhh+8py4rm0qCAtmvph466rHBuQivkElGGMiuxNjBNs/4/0HRtQnDld4sEmlb8VbQxybsKVJxZN+mvRF2WPzMXroYIHM4njDYM4wOPxz2bzYbHx0dG54kKno9HQBLu/fnMj58+ynvUNslvBNBzCS2Xz/Yit0Ep+rHj/cfvl+LIOZcKev0CnsXIOA6crOXYNPjgcCHy6eGRdhjToeTIrFDsY4wYKzLmzWZNlWccj0devb7j0l2EUUZMh5aXxDIBuHJgZ7ipx6TukTY6ydXaBT3/nF2wbIDkC5TlGZe2IbMZLl0kuNSlsx5CZHezI8syfJL5zr5Ec5dh/n4gQPFqvUYbkW10/YDRmsNRLkqFIsstMUSGUYptazM+fPzA3d2rxUsrz3Nub2/59ttvKYqCtm0BkWVO00RdVpL0R+i7HmsMt7sdjsDz4YDHCajY9/gEnmil0Ur23eIlqKVrZJSWRCyyXF4xdYPkWZskOYi0rfgufXp+4um4Z7sW78cxBEBx6buXdTr0PJ+OS9d3YRjEmKTZIUkgEpAXxTtjciPTeZBOaFqXIQSGKXWzgdgLC/jStOzPZ4KX3/lx/0SffMZmlsl6vRafIWPJjGG7XlMUOafTmdVmTd1c6PpOPl4Qr56ikOJ5THKJ9WolFPQiHcap4TB7KqAUCsU4iDzBWk10L+Bylgk7xocAbsKaDBMjRilciFgT2W23VFUFIdL1HX0/MAziy3I5NwLea73IJbNcgJpxmsTrb3L04yjgbghMiaY/jaN4ZljLdz/+ge3tDWVZ8bx/xjnH2zdv+O6773DOsd1u8d5zbs60bUuVl1hjqcuaoRsgwJvXbxndxKXvhGmiNc7L5YqCTIt8IHqRIZxOJ7QRsNtqI4WbUpgkuQhRANKoXpgTmbGEVFC1w0D78Imnc0n0gd4HMJagNEMQeXUIge5wkDMpMZ7xKrFAXphEwMIcJzVyQioujLHpe8n50o+TMOwmxzjC5MTP7psffyCGQD9NDM6lNQBuGtmWBWVZ0HctRV5QFiVN02KUMAUeH58oyoqqLDFauocQyZOlQJFZAVm7AdCJfZeeT/IYMkonFpUjRgQotFa+Ty4NiyzPaboW58WrpShygpciT2nF7e2NeLFFAcdOpxOXi3jL9d0oHjREkakyJ8EWpQz9MNK2HZM743wAreiGHu+l+LLWUBQlP377LavNhnq14uHhgb4feffmLZ8+fmLoezYb8Vy7NBexmdCGzUo8ZsMkLO3tast6tWFwE03TSZGQgB7nPJm2bFYrvBOvyWEUWVGMHqNNkmJoMGbuy74AuNaInMpkRJ2kE8Ez9i2tG7BG03uPStLeCESjhYU6juK3EyUJjKkhFnzATZNYOiiSNw8Ya3GTJ6rI6MZ0f8dFauK8wwdh5cQA++MZrTSP/+pfM43jUhyJvYfBeYeNkbIoRAaTWXKbM/QDzXBhtar58PETwyDgSZGL/xMqEjQQFTax6sq6RilNc24xxi6eY0r1hAhjAjVdEKAnI6O00jkHKArJr4qy5NI0XI5HqrqmKguMEiWHNobbV3fCFktg+DiOHA5HnHOMg0/NECcMLJOJXCy3+BCZEvOqG0aUNagg9iTOe8ZxYLMWEH2/f+aLL76gH3o+fvpAVa3QRnN8PqGtSaBw5PnhEaWkyLu5u0n7VKT5mZUG9vFyIs8ylDY0XfL6HUbWdc26FtbV5CXHASCxOST3MOiomL0hQ/J9spk0kokvYLALARc84+kouRURZQxKm1lXKWtrBmQSeygiwLTzIeVVVtZT8AnrS3L54BcG66wGYWHA+NRAjpxaOaeeDn9knCS/k6ZQRGk5X3yQM3wcejIrsvCua3l+fGKzWqF94G63xlppCBR5zqquU75pAGFbOOdQRhFdYByFEWms5Fazz14Y5U73XqSTdb0SeWxekptcPOnUXMAbbLq/5xy1rCoO+z3WGKrTibzIOZyOIsH2ijxT6X6dku3Ni1dSVVWUlUjiTk3DOE6LD1uf1B9z7XFuGvKypMgzfvzxR9pOJGchBBwRq6SZbLWhqmtsllHWBXmWU1U1bdOwWq1S7uGYgifLclZKcWkaygSOOO9QQaCQqihQIdJPjsvQQWqGxtRomNlNi8d0lHcnbMe5gSuM9ZA8qURynOT4Udarsgrl5XlObiJigLCcoXNT3QcHHkKSVg7TiI2BLBOFFEHkuCIZDCkPZAEjvILLpSUkQJ8oHl9aC2gTSXYA48jpNJDd7KhyxbbKcG7CKHnvXS+epZs6T37BK6bRMfZu2d/5qoCoGDqx+MkKy3q1Fkm40azqikiAMYptiZb8P/hAlpi98uwE+PRRFGFojZ8cxlhRYfmJqirJ2pa27zkcD1ijEvPJ8He//4Zffv01292WrmmJhASAWozRwuwJkbywAsxlGTbLyeyQWK6SIwXveHx8RKnI/vBE07RkNiPLJMclRlYr8Yonyr1JUvQ8PT0RUz03juIzvl6JPVDbtWx3Oy6XRrzvtUmewtLsMFr8g89tQ3y8F0/JpqWqa/FKnBzSZJAmawwiZY0hvDCVYqIgKpUIOtniqRpT7U4EHxzBCXsyRmGgj+NI8LL+QqothDQ0nwlWQOkkAx5HuZe1VgSE5ZyZjCw1Ric3Sn6e2KXDKHldnltCVAl0Vvg4cyZlzzkl+ADpbAaFCY4QJzKj8BoB1U1O8JEsy7FaJLNt06OtJVOKj/f35EXB8f6B5/2e1WrFr3/5FVWVUxYFhSn4dP+YJLyzndiE0uaFEKk04+Rwk6euapxvxMYjgU5juqvWqxXDIBYqbSNWZt0wsLvZYrOMS9Pw6fGJ3/zqFxDlvhAroJiIUWJBlBeW0cm/a6U5nk+MbqJe10JWMpq+HSBILrmqa4a+59XNDcTINAysqxVVLWBtsaowSvPw9Mzjw8PiJb7bCVg9joGZD1dk4vtMiBQ2E2/484lTc0GhWG3WnM5nfAxEnyzFnCVP3qx5XuBdEK9TFdAkJdYM5CL3rk/KmRiEAY9X+NT46Tph8AHiy5lnhBBT/gyzhcgsmZ799z73iM6zPFlxJTb0nxh/MsCnZmQ+hmSoLl3w27tb2rYn0onk0XtikqjNyYYCYgLeNMLG8kGAPZslL5gi53g+MfnAZrNhwlFkFu8D292Gu7u7pbuy3+8ZhoE+MaS8j4nFJywun1gZMtzA0fcD43RhGCdMWiDHy1lQ1hip65qfPn4kL3I2mw339/d0XceXX37J/rDHO2HeFbl4c12aC8Ya6rri1as7MSU9t+SZGDO7OLOpFNFPxBDkQphG3r5+wzSKV5mPYQFjlBK7cDFDT52MRFyOzBeASWhwksykImGKnvZ5TB1NmzTdaim+576y+HSEBXQNcVo6R3MHWiSlAaXkHQFEF5OXokEhB6qw1OQ5t0NPP2keTyeRNMwDNFxIhRcLUOGDJ7eWsiq4XM7cn0/Udc33P3zH0/6ZPM/Fn8oaxjADb4Ysz7i7u+V8vuCyjGkahKHm9QLszezMeWPN7M4ZbCmKQnhEWqdhKB3bzVa6DFnO5Dzrdc12t0MrzdD3Imsdx8Unw02SiPXTQF2v5F13A/XK4sO0JI+jc2gj7KrD6cxssF5VJR8+fmK93lBVFZ8+faLrOr766iuenp6Wd2yM4fn5mS5J2NerFW/fvMEYk6S6hVw00VPkubC9nGNyERcECPjy7TvcONJ14rM2d+GUAqMU0SsBfIMTb7QogNtsXi0+WAZ0AmRiwBEYT8ckBxfAMCqFj0mGrBQhAcsuhMScigt92VpDTEXQzIY02kpXRSmm8QWUka66HKoqMWP6cWKYHMdLk6jSPnX+pBOozQwayucvbEZZ5Lhp5NP9J8qy5MeffuLTp0+sVrX4rhU5LnVYjLWsk1RfTNQjQzelzk9c1pdzbgEoQwwQIFPiDaGSX4Ux0j1r+56n5z1ZUbBZ1xiUeIWhxRi8zHHjRNNcEjv1LACV83Ih+WmRzXVdh800XQfOCeOr63rhqhnD+fJilJ+XJR8/faSsS+pVzcePHzkej7x5/ZZDukRn9nPTiMn3zFh9dSPg86VpsJkAJZnJwLesqhqM5txcMEA79Kx3N6yqgr7rUGNkSnR4UGJMnBKjGfxUSovsRasEhEy4yFJs+Cj3Rzv0cp4kv1WRSYgkWO4kOSDFhNkllqNYREhNG5fzThJAJwzWVHCHOC2fiyjrCC2f18dA0w+JSdGnM+WFoZUXuRQnzqESMzi3VgD6psFozcdP9zzvn5f9v16vpBOc1v9ut0NbI0DZMBCik6LeR2HpuOTlGJ2wv+LM8pZus0ss+LIsYIBdvuXTp0e6fuDW3jB4R+Y9mXfU48jGrAkudWaHfmGZzvtQ2MWJ5Tx5lIFLcyFh+YzjlAY8hOS/orCFrJmnx0eqqqIq5Vx73j+z2+44HY/k1mKTVcAwDIvPjdGazWojhUQq2o02aODUntlUK6IyHM9n0DC0I3mRUeQ5XknSZZRmSpJckzqwISqsMgKwpQQrImzL4AW0ssamnCbdH14kRaT7WM6yQJiNvVUU8C4kNktaU3PMd9ysCuj6HmvzBMxA8A4bZz8b2ctKJQYDQZ6tDwzjmAZoJEYx0sQy1uDdSNd2GGWo8pK6WjH2A8oYmq5Paw3yzCb/RfFycs4vigObmptaK5R50Ye8DMcJaCtJ/DgPHbNm8eCZgXNj5F3tdjdcmjadUbnYOux7qjynXtXc3d5wuTQcDmI9kuc5TdOlgWwVAG3bLlYtCmguF3wIZHnOuWmlOHOefhgw1lInCVk/DLx7947L5cLHT58I0bFarXl4eBCPRi/A0jSOUgCn5sVmtWYaJ+qqElmjUrRpQNZ2tWb0TixlEus/eLGsyIxmmmQzuCjNUZMahSG8nG+knG1mOJNkVrMCJqRzKaYzZWYzz2DNUgMbJcwJJWDzyzkmgMM8BAXEbF5yneJnTPi5uWZtxjgOoIRR6H2QwtA5plEMw+e9Is2hLEmzJA/SKlIXa2xijdk8Q2eG3Ab6/sI4CviW3b3CO/cz7y2dpGDTNHE87RGRl7CnQoB6VQurL8/w6TNba5NvmpxRxs5epC6BAwpjc7744h3Ph/1CINist3g/cTqeKHMpFJ1zDN3ApDw3NzcpT5XMePbjW2/WgPgyj8NA08ogEGsSGy7LsFjZn97h3MT5KLXOZr3h5nbHpWmWYRfTOHGaJL+tqor1aiUFfttSFiXjMGCzDELAKJvqFcl9nBOpal2KZUvfdby5u6PIcqrJ4Q5+yY9jEC/aLM+Wxvtcn/1XQ866hWwQSWCfFrJ9qlUUJPZKJAQBfk3y3tPGpntIy5pJ67rICwGRU24kzWO9WDOJt2ECkEGY40mePY6T+Pe6gA5ezl+Bb4kxcnNzS1HmoNLn8krsEcLA0J8wyqchUNJsKvOaaZy42d1xOp7o25G6rjgeZsm+ZRxduis8RZlzbo5oI37exMg0DqzqGhd08mxOEs8EKo2Tg2RZJQ1ryV/8KOdC8DJY6P37T3z55RdYEymrFX/87nv++q/+ktvXN8KySqq00+nEzIx0k8fklrkRrmJER/EQ08DxeMIaIa2c2wYZNjEkdmRcfHuFod/hppavvvqKw+EgDcKyEP+9xILv+4Ess9zkO1artQDQmy3D0GMTODy4aTm/L+2ZQ3vCDQ6TZdjckKucixMpsdICjvkkDfXzeadiKkhF4hpjxI3ibx9DIGjDer2RfNBN9EO/NFNRpHxrWtZTTPiCDNOTwVVKyd0/TmIhIzWw1LA+sc6cE+9DnXzwiAhTXWvGaUwelzE19GZNVLqdUrM6T+duRNQ/Wk3EMLFeb3GZErm1i+RFSZYLaeN8bpfBf4eTDJBoup5z09ENHh8uHM9nvvzqryms5jK20ohAoZWo2IjJTzLGZFsV6Rphr1kjmInSShrsfh4uYdDKoVRMoJKjKItEKBio6prJee4fnliv1ry626FUEMZ/Iid17ZBszQSUDSHI4J2hp1rVHE4n+nHifDkn1YehyPNlMEnfd/R9x2a9oV7VWK1RWUwEhlJAf+9Z1TXv3r0jyzKen56TpZEQdIzVZLkw8F2ceHV3m/xjLW03cWouTMMgbDodxS+5bZmIRK0R/9acvMhR3ixEIjc5eaYmvWWt0Nrigkt5uQx5WXyug2Bac/NwtkRQWjGOAzLQTqXm+yhnaBrwKOvWi/WU98T/t+f0/2/xJwN82812ka3OE4lmVLLreow2KDWhUiE2Jxbz18/JpQzKyBiaAau1eJvFWfo4MZwukrhETxhkEllMRvrGGA6HA5emoSrEU0KkbPJW5g6TSsyatm2TFONFSjxOUqyPyYemTEzDqiopy4IPHz4sU3bP5zMaxXotF//cZairCm1kquoMyKzWK0kUUVxOB6qySoMHOtmIU790QjJrCU6mmk0+EPCLH6AkbpJAxjijwWqR8n0uo5z/7l0QeUfq3MlDEKadXP5qAVznd/L5s/pcljlPRSyKakkC5nc5G8EKk0+kKzZNZhrGAeel2NUxkmXyefMsXyYwns9n0aBXJSFk0q0pxVPocDxIt8UYbm9uFi3+PC0tS8CssB7lYLXGJhP/l87l7Eclk4A0dV0vE2/nhHsKjs1mIxPBFEtHuLmc8X5is11R5DlPT090fUeRiyfa+XxG8eJrcLlcBIzMM2IMaUpg6qoG8TqYB1vYLCPLLJemYbPdUGQ579+/53w+U9d1ktFqkY2k7vXsJWn07Ckpv99qtV669c1ZWEMqAbN5UaGmgX4I9L0UWSHLlyLlha4tnQQV5PvgQ6LF2+XnzGtMqZfOq0wj4rMEUZ7FvA8EvEvScvXzc0Cpn5uzO+eSPP9lfauUsPqEKHx+dtgsY+xH+l6kyJPzEF2a0ieXjjaKvhMvEq0UalWjVZLsp6RnfzykfeO5u73l7u5OEphxeAF7SKBiklfPDY55P8yTb4dhWCZhzXYE87ub91dVVSh1SMClRlstAJu11FVJnlmen58Ty9IIY6ofGPqBokhdnuRZJXLxDOcCvUsAjZtAiyRc65fmyaW5UNc1ZSlrbR7OID44ftlTs7zdWEtRZZRZQVmK4fl6tUosJY9LrNiqkgnRlc3xieEhfnMVdSkFs59GkUhpSarm5sC8ZgS4kAtx/vd5AtnLmSOGxtZa5vavMKtN6qhL0RyCNJ2C90sRbI0VH5VkeDtPv4Sw2EF8PgV0NjInSmKeZxkxItNTY/LVQtK5uXiZz5S+7xn6HlcUdAqa84Vx7LnZ3cg5ZS2rquLu7pbtdiu/R5RpZz4E6Q56KbStMUSrmY2+5/PeuWnxPywKma672+04Ho9LIW+tlYmfWmExTJNjs1nTXM6cz2cyY1mta8ahT+CSMNhFzjGh9TwtTZ5tWZas1rWwOy+NTIgeBkxm6XpZez74VHR5tNEUZcGHjx/EmqIoFx+Xuiw4HY+sNmtpWKzXrGrxjdxutlzOZ2ElJsBRKajqGjONnM8NVTI496WcQUYLO9IqTTf2i3eqPC9hM83rVqWJ8D+ThMeXs+tzj58sSSyWe1apxHATidDkxHg9zs1LpZb71SdjcSl8Q2JcxKWr6xIDWywh2pRTePLkA9q2Hc5HAYwT4ByiJPTOOTIrTZqmacizjGkYuJwbhqGnKku22zV5nlGVBTa3bLablOxr8kIAznEYUEEzDQNd16bzTROjTUOlZA9+PhnZmkyUENZR13WS0yVZUCYSwCyT4nsYRu7u7ricTjRtx/FwYlVXy90t542jLCpimNkXL/Ykq9WKzWZF1/ecTudUkMZkcTKikLNcBrb1iy/Rp0/3KAWb9UYaI4WASZfLhaosF5uN9aqirlbMnc/F4sPJ8ANt5dycnGO73ohsuKqBSJZZyiwjsxn96Ng3p6RqCXOJL1MukwXL7M1FWnOLiDZIi0CaUhGlXtLzmFhOcx7tvWOavHhYqRfj7llePDPy5AyY/3z42Tm65OBp0FvwAZty5r6TvG0YRykCeWF6TdO4eF4HL/YCh/2BNssYpoHMWIx+RZbJvsmLDXmWJbm/gAGFKkS+F0Wivd8/Y5NFQZbkiKiYJPgyxMkFyfuKqkjNDM3oBgpTLmvFJ/9WFUT6WxYlz4cDwyBF33q9wTvHw+MT7968Zrfb8dA/SJ7XNkkdEzDp3gZRS8i1Lc2YosgZR7FIKIuCIhe2at+3bHcbDvsONLx++0oaQk5YI3mWiY+jcwzpftlut7RNy+Vy4d27d5RViZsmDvs957ZZ9trsexaiNB6cl8JTpphObDZr2qc9xMSmCqK2CEGk22VRMk6JaZze/1zgk7KaOb8z5mXgnXjlCVtclBACUhdFxTCMKecD58WPitQgE5Xg3LCVf56b6zGqpKRKTBpjcNEtKhhhkcqtqpXYnNhMvIkVEecGnAvstjv6vmezqunGgDJSY2gi0Q8y3EWLN2cM0ozTxnL36o6+FYnp6XSShklqcDw8PqRcuiQqAYfW6x2n05k8t0mBBZMTueMMyIcQ0JnIqvO8oB+Hl71ihHlstCG3OWUBVb2i71qe9ntub25YrVd0Xcvf/vZ3/Pv//r/D7e0tMczsZmHpzbJOyVEF5HJe2LjdsePh/oFitSK3GWWoGbyn7VvKLKOuSoZukAmreUYMjsxovvryHXkCYE+nk3jXasNz0zCNI6/uxOs6s6K+u7u7IS8K6komcbtPn5ISD86Xi0wz1ZoJYQOfmwu5sdS1ANKTd9IshUU9FOIL600ptYBHs9+oD7Luj8ejDOWxMgprVrXJWaHI0jBDkQ7HpYGmQcDlxOBbrDMQxlTwktv5IIzRLMuZJsc0yT0GmjwzTNPsS66XXGi2NJpzApsmGMfg0CHgp47BdagQOR/SIMqyYrPecWlavv3hJ+q64nI6M4wjp/OZ7XYjiiAvU9lVkjk/PO55/eqJN6/uJM9CGNlzbQlSilhjUVHUPFUaoDKrixRqUaXMuU6MgbubHUVRcDFmsUdoLwNZZshswcPDPc2l5Z//e/+MusrJ8pz1esXpdMZmhrKo8NHRXjp++vAeay118sT2QfwZgxcm4c3uBkUgz3Ka5kJR1FizZrvakuyxUcok4szEbbKG6bqOdb3idDpJA07FZchIUcjAwclPSSlqudnt2Gy3nC4dPKol3zdGCXPSaHyI9OMIyFkKwo622ixEqqU21RFjMqZhEouhGFFBWOdaaWyqKWclpEKaApObuLt7zeV05tK0GJMlgFVYyTKA1eDdy1kSvMfP5IU/If5kgM8mZgJIx2v26BmGIY0bDi8S0qUokUtCihPxGBvHkfV6LUlu0vfPv2yeF0Qa2n5gt92QGc3T4xMxBFarw9KN0ErJ6Po8Jy/K1H2UA3kYBuq6Zr1eS1e2HTgcT0LVTp9/lv99/jtkmeXTp0+yqOp6KaLyvOB0Oi1JwGq1oqhy8RMpimVCrUzUkgt1u9uJLv10oiwKfAhUITCEiEVT5gWFsSIVay+MSd/uvEcrg9ZWEN8EPn0Own0O9M0ab6J4T8x+DXFud8wdp88ZR59R+F9CM38r6RjppfCdf/bLZMx5GjApQYauHxmdgKfWWmFuTZJYDONEmUZiyzoSKrD3jr7rKXPLplqR5SVf3b3mN7/45QIEW2sXEFnMPlsBWZMvDCp1KUJIJqnu5fOldbparRYvK58AAIV4qSk0wzBhKtHoD9NI07Y8Pz/z9s0beTKJ/pznOevNjqHrl2cyg4+b9QYUdHHg6VnYpVlRYIJZ0H8B+vwyrXn/9EzTNGy324UZMU/mmz0F67qmSD5oVou0PbcyNXf2W9nubuiHnnC+sN1skm+QDCCJXnwwCm0YbMapa+nHYTnM5il9Lk18DpCKvURHVy+gyrzWZNLry4GkEkNz7gILICcXckxsX6XEgzEmrxgpRGbPkRewZQ7/GbU5RvG/CN6LVLMfGNM0KmF7aYYxTd8eR6qqWL5PUZa0rQDsTdsKUBQgUxnb11v++i//EpVYdkor8gSu+hA4ny/LhGatxZOjKPIF3JvPDvkd7GIdMAO0L1NNLZrIZrPh0rbEELi9uZFBIn3H8XiiKkuqqkpeaJ4QHbubG4Y0GVQGuAzCFNispaj2PcEHjqcjWttkFqwWwEtYCfJnzuejXJrrFdvtjqaRwT4m7ZvT6bQwDNbrFQbN0At7YJxGkS3HgC1yVplBt23qdMqgjToPS2JRlRWZseRuxB0PQnkP8u7yPGNKDIMQw2JwvDQYfta4mD30EquOmf3CkjjKGZik30maHZUmTxKhxWMvFcIzA2H2sANSsTOlc9EkppVnjDHdazA5J0BMngmorBCAyYhlhUlMvL7rxM+k7ynrCh8cOkJhLf/kb/4GlGJKdgWgkl8tPD494r0MQHDDILKAtNbm82/eH/NU7Pl8m///zGrJjOHt27fcPz6laXtQVzXWSLPp/tM9X335JX0tIF8/jGx3O4qyomtbMdRO0+XlrhGzY+8cl4sw+XIjcmytIyaBfPP6PBxEDrder3l1dyeTb8dxyQUuyYqjLErqsibPcg7HI6taGDzSmFJpypnGRikaRucZp4kyl8/XNBe+ePOW3Aoze/SOKYjfpvdi6p1nOdGnxt/SPHs52z5vbM3/TdbWDAob8T9L4K8k+goXhW1sjF3uk/lKlPXmktdc8SINTmxywsQ0yeRshYA/42JlEQhR7swsJ3lbOgFPrE7DeDSrlD9ZrSjygqg825sNY9djteb13R0hikfmfIfOjTljZajF8XgURpst6LoR6S6Xi41FpnLxA8oNJtMyqVQFfPQvIMtc9ABfvHvL/eMj/TDw+LRnt9mwqtf0fcunT498/dVX6bw647zkgPMUvVn6KL5MkfPlzNAPtAmEJsZk2j6xWq+ZnGO/31MU4p/UDh31qhKv4c2Op6cn/CSsfa1EVlRVFXVVkdlcrFa0Zr1a0TYyMKpLa35M55jRMgk+y6xIaceBpm348s1bSh/QbU8z9vI8UMtdUCZm/TS9TLIXFcvn6+/l60V54JeiZH5Pn99/SimCn43j9cJm1lok4QtrK8ndZh8rYNnDziWpGhrvAn0vzQVhigpzvigMUcOYmDpFpnFeWJl5lktjOpfhJMfTkTevX4GXaZt1LWbmfT/QtX1Ss4jlTt8NTJNMAN2sN7RdR5blVFWZmMATXSdKBefcMlVXno4wlbVRyfNWzjnxvrXLnVfVFfp8oRsGzpc0Eb2QwUHf/OFbfvmLr9nubhgSkKgUWCNNnHkQQJ7lzANZsiIT8LMMaCOex33XcjjsiTHw008/4rxMlKSNtE1LWVSJZd+Ikig1Jvu+o+u7xef0eJLhQ6uq4uHhgdtXd6L88NNiz+KcY0yTucuqYup7nvZ7ng8H+mEkKwuqPF8G1Mz58uiEka5RSd3wwiiez6F5TYjdQ1w+q/OizMmyDKVYGpg+xJeGSZKtCSF9eUOopZmbGsWJ6TazfcdxlAFPn9noiI2GeIEaDUaDNoosK8msNFA365JVvaI1hnFy+KgJGHR0hDiyqnO6Vjyt86wkArvVDdbm9J2wMJUyWJvz4/sPKK05nk5cLhfWqxV/+Re/5u7mhrqqyG3B+dQSgrD8dVIFGWuF7ZnuhObSpsbUBsYxgUEydXO2PLKJkaa1vAc8dEPPdrsmyzP6YeB5f2S1WknzM8qAqjrdV8GTpkSrRWbtved5v6darwgIIB2U1LwqIDY0WU6VFZSrkmkY0Saj3GyWXOpmtyF4z36/Xzw2b29v2azWHI97VFpLRVGIgiDIAKXtakNRFDw8PxEjrFZrmr6TRvs4imedEiUAycpGKQFF/HI2mUXaODfF5jzOWIuxGrc0JDxjOxIRZrx4wBoBwmSqigDcxjKOE2iSJYnY7cw13txAEkl+Yrylpus0ebwLjEOPUmWqfTy73UYmQMcoDbmUm873vEqfOfoI0RP9QHQdVkWy3JJZuR/HYeK+e+S3f/cNtqh4Pp5pmwuKkOwAKqZhInrxoGzHUdZiXXP/+MSr29vkBZcGgmhNDCzKlXEc037XaT9PWFuSaSPy5hgILiz1W1VUaQiYwnsYJtmbx9OZqipompbRBdTo+OaP3/E3/8ZfY42iXq/I8ozj8czkJvaHA3/3+78nyzNevXrF8XSkbcWuxXvHbr1mvdpgjKYsyjR5PUsNvLXcKUZy8xBlQu16veHx6WlpOMwN6IjgM2VRyMAiJw2u7c2OaRpp2oYPHz9wulzY7m45HQ8obeiHTmTbaWJ2CCKTFsUVuDTIqcwLxmlkQmrfVJKIjU5iHr65u+N0OIiXe11jjcZuCvbHI/0wUWUCro6T43JuCIGU4wsxwxiZ6C6DYzTO9amOSXf8C2TxXzv+ZIBv/jAgh1mWZQvrZPa+k6LgJZmc5V8zWCGURWETGWOwQaR5c8enrgtub+FwPPH4+MTrV3fsbm+wwPPzM1VV8ebNG56fnxdvtPV6nYwps2Xc+QxETdNE348Lo2YZQU1klYv5736/XxgpM6V5t9sRo0yBnKVxbdsKoJj8AawxPD4+8eb1a+nUDT0xdZfHRCE2qVMmHiI5Pog31Wb1BWVVM40jwzThgphPq7S4Z6mK+F+wAHM/B+VeQjwuPCrMIKtewMYZCPy8UJyNl5dugDJLkahS4TK/8zlxUEolhpD4pzk3LYNMfKIcizThBRScf9YMfMwMp8yaJFVTvHl9RxjEt2V3c4tLQMl/mWn4+ChFcJ4XGAt9L2bfIIdtURYEHxYD9xl4Wd79Z+9iln+8ffOW58Oe/X5PDJ7Nao0xitPpRJbJ4fX8/MzpfEEmlZaEPEs06Jex5MPQJ08hly4USTznISo2y+iHnsNhn7oh8v1fv369TBw9Ho/EGMnzXIZrJDA6hkhwnqfzga+//EoKmuTp2LYtQ1przrllopfRBqsNfdfhVzU3my2272nHYWFKGW0kYVGKoigJ3jH5lymTM1Ngfo/zO52fo/d+Waez1FYuZpaLVaViPSQm6syigReQZV6DczI8ny3zlLv5cu66Tny6gnTrnHPkmUh4QjL/nddanmfYxBS2WrNK8p83X7wjjg6LSgy1ThLYtM7nz/T4+CgAtzLiCxWmJMEKy7lWFAWXy2UZWvA58L544ASZrhti5ObmBhfCIvl+ffeKV7evGMee+/snfvmLr7i5ueXx8elFPqCUeHtlZpn8fblcEqNSJd/AgmmSTlRZFJR1Tdf3UjjcvjC83r59uzDVSMXMvG7m86HMC4a253w+88W7d5RFKRf6fi8/V+s0GUvO1ggLYKe1prk0bFaSwF6eumXCn07sk1nynfHizTMXH/P5vDQnUsRUJOS5Xd5xCG4pgud9kpq7cu4R0xqe/Z3iAijP63t+FsIOfnn33keGflgYsWJrEDFpYpqxBqJIMtw0EoNnvV4vA2byPGccOkxm2azXGMTz6XA6/mytyVrynI7H1J3V6ezQwuKaRCI4Dzvpkr/fvNbm33/+XiG++DBpk7FerXk+7Ll/fOTtmzfsVmuMEv+Q+/tH3rx+xTQ+4KaePrHM3eSWM1sn1sgwdsnLU/bMOE5y/2lNUVcM08j9wwO73VaGJsQgdhqJQT+NI0WWLQDG6SJ2BVUlnrb37QOb7Wbxr3p6fubSisx8nn4oZ0tk8p7Ry7kyjhNN07LbbTk9PixFkNIKi2YKwlzP0s+e/X9mFoL57Gwzxi7DcEIqymS/+4XdN45jer8Z3rFIduZ72YeQmnMvbNDF10ULkKeNwdoiNSZ4AaeR5uDMFMmMRiOsb538t2StBTbrNeOQ8qlkt0A6nze7LX3X048DbdMsE4nNLCOLIoVt25aqqgkpZxMD9ympIeTdjNOUEl6ZUEicPYXs8ty892hr0vRuaWJ8un+gbU8Q4PXtLVW1Zpoc3337A1999aXkY25k6DthskWRDM2y0HEciMkmYqNWaVq3DIvKbQYhJlBD6EPny4XMarZp/XVtvwyeEQmTnKWSd1ienp5o2pab3U6eD/DxwwdiYny41CCZhxWI1UrEZjJd8HSWoWn70zGdbeINODPoZoP7aK0cSMsaeblXQRqdc1NkBtNlnU3MZvbzmhNWN8tznxUEwSfzCvUy+C6ks2QGRpVOVghKGLDBxc8YYsnaAGEgaBXIcmEdGCMSU6PF29pNAnbGKM9CG0039NysN6I+SHn/PMSqSYxfY8wy2KQyFu+SnyhzA66V+y1kwoILjroWax0/ySAQo9N5Gb34k5rZL1ote96PHqMVMYpv5fuPn/j6yy/xHur1mm+//4F/9A//IXVdJgBAZOxPz3uUjsS0F422n90/AUJAG+jbhm4YqauK/eF5kWkqJUCDtYYst1ir+eKLd3z8+In1es1ms2a/PxCBr3/xiyWHaC4Nk3O8evWK9XpNn/UCJuUWa8Rn63i5gNYiZtaayYtXcQR0CBRaPNp8ap7MjXg1A8tRJOAxBJkOPQPz3qcmoZxjNikQiqKg6dq0Bue8LaazwKBELpPOAE9MeWRMz8slv7RZZmqNsFomL2vOJcZ6TOxJrUSpRYR6VS4M/FVVsVpXNG2Lm2RS8rlpWZUFmoBmIoaOGCaMXrPd7NhutsSgsFnO8XSkac7SmPMC2rdth7bCsENbohYW7qfHR77+xRfJG+28nN06ee5pI2oBY19ybIIwK7uuS00TIWXMQyOVVpRFYKoc1grTy2hD1w5MzlOWK0JQfPv9jxhj+eqLN+ncrRkHl5rFk9QGiJdm23aczyfKskRZw2G/p+m6ZANhxd9XiT/mNI60lwY3Trx985bPh6sYI3mic9KYXN+tl+GRip83EGV4mCi07m5ucEFy0aYbOFzOSV4s/nZVUTOkYV0EzTx8LsuzBZCLISagStjNhASqWKnJh3GUdT5KXhu0AHAhpnZvFCKMUmqxJgkhSF7iRpybFiDMmCxZ90i+MBNDQlKNxahw07gQQ1bGYKyWafQ62WnoiDUQoiYo9cLiQ2TpnogfLhRZoF7nMp04LzkcDknhETlfOobJ8XR+pu+F0PLrX37F8XBIIKdLE7OlYTcOAxcFRq9o217sd2IkS9ZGLjiMlrqL5N+mtTRBvc+Sr6L4SIuaRUAlYwzGZqjouVwaUMJkJPjFSikrMirics+1fc92XUmNWFbstOGbP/yRn96/R2tD14/c3z8SkIEu1mjqqmC73bIqa8ZhxE9uaTp2bYt3U5LHT0tucjweef3mNbd3t/RdT4w1PoiHtncyaES8FDO6biBGaej03cCPP/1EVmRL8zwq8bovigwNTNNABIqiRFlLl4a1Bu+pVyUuyEA7GzNi8vaelToRwXm2G/HLdC5Q5Dk2s5wuZ4a+T+eEEpJNqve0NRQ6l/wRaYCbqGWoVcpvZpuqz2vHPyX+ZIBvpvjP01hOx1NiUiXATs9sK0fXCchibc4wpILbvrAn5iIe9SIHmGW1RZ4nBPse9ntut1vqVY33lvfvP/Dq9SvqVb1ISC5NQ0geeWoG8FIhPHsTRaDvh+QDIGDb6Ef2+2dWqxVt29EPPZu1SG73z3uUEqAihrjov2dgyHkpeqdpYlWlqb1dL92VqmJwKXHznuA8Lgahhya/qef9ntevXnG6XOj7QQ5ghHrskwQS5rHbP2ccfM46mA3/5f1IojwPGRF5iF28d4SCPNPz58RQKPoxSoIwGxXPkg/595gK7CKxGv3yM+af41NXrioKYggUmRQMZW5S4SsTJmcmTUiF+UUrLk3LOpkO73/6ER8D//4//bdSF1p+r7ZtF3boDAQVhZhU9sMg8kJtkmdZvgAs87ORTkDyr/FOpJpKfGE2mw2n84n98QgRdtstdbXlsD/Rtz13r+7k4lEiCYpBfOgWDzEFfbpk67rG2EwK+ZSsa2Po+47D/kBRyfTlcRxZJ+nt4+OjmADn817JRcqlxPB8oOfx8THtMb2MrJ8nuHnnmaJ0rPDy+43eJWmZ4flweAEDx2EpfuSZJLA3BDwsNHqhnqdD7jOAeF4b8u/ZZyDslAZqqMV42adOrhTI88TUsHRwRY45TxpSi0T9RfqVLWtMJFCSNExOutJ1VRAmR24NLkTKQqaMZdaKNCHtiXEYubu9oSjLBK6vubQdH/dPmMzwz//tfyqF0tzJDxN5ljNL1bLMUpRC5e+6DpskDEMy3bZGL8/Jp5HwM2No8h5jhe3kQ2C72dD10lU2hxPZ6zvxhLKGv/3d3/OrX/6K1Xoj8j0ZB0yWySAZ8cOcwRcBJWTNTEleJUy5oe94fn4iywwf7z8y9APlLFc7n8WWoKrp2oa8KFKCYOg6Kfy994xpAMPdzS1ZkfPw6Z67V68Ss0v2nxsnSd6dFFxZatzcp8lsTWKzhRjo2pYYFSZNMBtnMC0lkrNkEvUif54tG2ZAVZKC5LuptEyUjMICjzO4s4DFArJ755NnidTas9+GNVrkPSrixgFlJeGc0sTrEEXqMTmHjzIZT6UzMSpYVeLdKGzxDTbLOZ8uMv23yNnd3vL4+EiRlxAij89PPB0P/Lf/+X9LAEsn0/PKomC1WtF1HZOTYT1u8kQ62q4HRBoypf1q8ywBvi/X+TiOCUQPEObmjMgJq6ri0vSczx06am62a1arNfv9kcul5etffMXxKIwUozVlnskAJe8IwckEt8RqyaN8z2GUyZRtI0N6nh+fsNbw4eOHhQkP0HVi+l3XNVPfE4wME5Ip5ROfPn1amoaH05HL6cxqteJ4OLww/MeRoszF3Dh6nJN1npclwziwPx/Zn46M40i1rilKYQPOA60kN2kSi+VzW4qf5zYvEm6ZlL1aC/NMhpwIs1Mk30469sud/HNwJhDRgeTrJMmz3KHyfH2a+uoWhq9iGXrgA5OXhLdaV3g/oVRkVVes0gQ4qw2r1ZrzpaFpO6xWbLdbzm3Dpe2oysi5adifjhCUGJRnFoLidDgyTTJQx2i7dMhvbm/Y7w9pYIkU8n3fobRMfY3xBZTK7CzpT6wWlcCl+MLCzfKcrm8Yxon98cjt7Q6bF5wOz3z7/ff85je/4nw5ihzPGLLEzBkn8XbMdE5ZrdB6toGYPXoqjqcz56bBTxND33P/+EnOaGsWHzmZLi5DaMbkBT1Pin56fl7usaZtGYZRfM/Gkbdv33I8HjFKU5Y5F+9wowBBWinquqZpGvanM9PjM0HB9mZHluwViAL2GWOYOiliXHjx7VpYIJ8xqowxTM7J1O3tjqZpErjoU35hRQoX1eK1pz+7jyMBhUmStHm4hzQiCD75yHqmEBfZ7MwsiCGKN5AXRsxuJ0NrUJFqVbFZ1wKse896s+F8acXIXydgTRuapiNPMqS+76mqkpubW7pWmOhdL/LfPC8JBD7cf0KhqMtSmi4hUtdr/KUhszNrH6ZR/IpiKkKFFWZSk6GiGwakyeyWxrVW4ncUgqauavq+5Wl/4PbmhvV6TXNp+Jf/6l/z3/zn/y67mx2S4IQEhncCgAjejJsm+qFbvEYv+zOny4nNdkfb9+xudvT391ijpWbQhoEBm2mKIuNyOXN3t8PabLGDOJ8vaGQ66v6wZ7VaU9c1BE9eZPLc65KITANukqdlNwxpqMyEzjKxi/ATUUE/TWw3awakmTC4SaYNJ3B7Pui0MQKUGvE99OOEGyeilrOvaRtUVAkwUZDkodrIWqnKNAHaOWZPPtmXwhQS+aRIeGfVk1KK6IXx/MLO1Skn14kAoRZQWeSklq4fiCi6diB4GarT9jJYocozdPTEsSP6nugd7UXqlizPWG+2/PDjB/bHI5vNlv3znrZrccmKRYgQjnH0+KgoTM44eX744T2//uXXjGngok/N3TlniOl+mHOMWR4653lzSaZS81smzzpWtSgzjscjXS95yvl4SaCo5nA487u/+z2b9YrNusJm2TL53KTBEMPkeP/xI/uDKNiMzXh62qO1Zhh6cmOo6xW77RajIpm1tE3DerNiXa2xJpM8IjWcQggYK6DF6SQeldGL7cXsgxljpKoqsiynbTryIieqgA6Kt3evaccJF0SdM04TeZFY4mlQRT+NaCXN9hAT6UDJIIPgA94FjI1pvYFPmABe/v849KlRYvBKABfnndhy4anLErvJeHx8gsRU9SGAjuRlLudhgGmYEmNZ7letgMQMVSimaWS73SYJusDU4psux4MikGkZsBFCACNnuA8BoyNxGgiup1qvyTNhcMbUBI4xcjieGAcZRpHZnEk7brY31FXNNAzpc4lFx81uy+PTkW4Yha0WZNq35LDSEJqbLF3XUtWl7Lk0NEwa5hqlLefzXgaJFqXUDj4wdIOw59yENoq713d07yUHkyFeMt3eE7g0DcfTiW/+8Af+2b/1T1CIn//7T5/45ts/CKaRBsD1w8jkZGiOkGZe4Sa/+OE3TQMKbFYnsDFgMkNdrTme9sSoE3vTkueWcVQUeck0jqjEmrTWJja9WBT1Y7+QAXY3O6KCH95/QGU5LgTqVY3WcHuzxXnP/eOT1KNBfI6zzCaPSmEyzpZSIVm/GKPT4DOp6T58+oR3sq5vkz1NP4zoNO9gGAWLsrNNVfDL55uSStVole7cSZokVs7yEBJp4E+MP30Ob1QQFU+Pz5RlSVlUaG3T9Kiaosg57I+pOBBJA5ASbbtIdGfEcu6uiH9eoi7O9ObMoDNLNw7o03mhepq84A9//JZf/uoX3L16RZeAH6Pk5/T9ICyyJHXI81yQ6dyAysTwOgSatuXx+UieZ3y8/7RcQCR2CjGy3chkyaIseXp6YrPZ4L2naRrGaWS92RBxPB4OFHkhkpBk3tw/P0niOIy4CP0gXTVB0S1d2/L9Tx9wwVNWJbe3NxxPB8bRiRwlT2bI8cWbcH6WL9IOFhktUbxcNpstMYqH3pCQ4hmomCb/8vXMgKFOSc3LFN155PP8PGa235gGg8zg0LyBx2lKskvPzUaSxOA963XBdl0Roxb/jM2aw/FE23YUixlw5HS5MCagrmkaijxfmA3Pz8/JQ0zMh7uupShKyjJnHA/E6cXofGbQzM9rXmdKKcZpTJ07hUqsnhCkO+ydx+Y5Q5qcFlFsN2tsVvD0vCfEyLt3bzlfzmmtSSJ0uVzSpSmTG4WBANaAM5ApS10WHI8n2uZCnlse7u/T/gjEKOvUBce6lIlzm82Wh4cHdrubJYEY3cjN7Q1d1zF6z9g2iy/kbieJ5mq1wk8OFSOTF/8qYzQ2z2nahvvnp8WXcL2WyWEivZDi1A/9IokTb8gkX/NqSWpmqrt0t6XgyjKT1tqID56YpkfOBeznDD1jPkuEpGrixVtDf7YGWXwL50R1Gmf/KzlUp2liW9WoIsN5x7qqWNclRlvOzYXVasWlaWgT668bJ3yINM2Z0cnk2Usj3kwEOdsO+yMhyIAfYyw2MWA3uw2T3zMmyXkIIXl2VoltlSb8EqXL6yfGaUoTEVNiCOmykO6lj4rBOT58+sS7t2/xQJYX/OHbb/lH/+ivKCuZOmm0psgyjuczyT5JWAYmS+8lEsKEQgat9F2guZwoiozD4UA/DEkaOTcFxIvEasWbN6+5f7hnta4FWDme0Mos3pfee7q2RQfLq1evxO9NIZNwtSY3lmbocG2bfG0ymXo6JDlW8tjLi4x+SECviikZ8wso8rkMTYVZMpuG62iNT+uvKIr0vN0iu/GpIAuCyCXG+Mt7mgsPIRgoAj7JG5Scx1rjnLyvmcnoXPJ2guSj5FFRsV7JxPQpSAG2WtccjycmJwBr07Vopbi0LSHC+Sxm6yElQXVZLh5Np8s5eaplMlTGZHgn07qUUtDJZE7vPeOUPB6VdOGNNUlukCUPv+T9Bmm4Ukxnelj88ZybeN7vUchkvaKqOB72vP/4kX/wm1/StjIQxBpN28iE+CzLl2bKvH5mqcgUhFG2P5xY1TX7k7CPQxQ/yCxkkrSoiDGK1d2tSCqrkru7Ox6fnsjznLu7O7JMpMOX84XBTbx+/XphZZ6bC9YaiszKGX48CqiUuqtTkE6sdG3TwA8jnjYRtTS35PJ8keSGEJfhEiKtGBP7aJ4g6qXYKjSX80Um2sYX1tA0jYtlh+xDmD0rZAoqqPByts0dWpGtBeaJhvKzEkDo/cIgWK3WlKqiHwaR7+cFhc3YH4+M44FuEKnbFAL7w4lLI4zH4/nMPMVU1odjmk5sNlv6fiAv8p9NghdJsVgu5Hku4G7aB7nNCEES4HmPeh+xCdQbJpG9yF4X031JRQLaaqKKHE4HlImsVyvq9Zr98xPf//ADf/XXf0kMTlgS1vD0+Lwwz6S7/uLXKr+DsBKeHh5QxlAWAvAWebmoCubGbgie9UqaruMw8ub1G4qyIMYDxIIvv3jHOE0cDjNzVvHu3TtpzhnDFDxKQ1UWtF3L017W3NgNMjRMaxzStLqczxijklRYfMOGcVgY5lEhxaEXT0hrDFYrQnr/kAZXjZ6maZe8VYC1l+EvSit0VImJE5b7MgqdRb5GpcmjiSmaZVlqXL006YwxDOOIcx5rssRi03RDh1nJdNem7ShKOWvzYsXj4yPNwz3jKOfiGCLh6UjXN/LOE1twu90Ki7vr6LoBtCHg+eGn9yil2Z+OtE3DzW7LX/3FP+D2ZkdZFlhjOZ9E1iQqyGSbYj4fOmI4nxustWw3W1ECIPvOaoVLDUObJHbaqNScCbR9z2a7pijFguX5eOaruloKMJEjluR5ZByliSeYdURrS3c5cjge2Gw3NF1L07ZSu0zCbqzLCoViu1qhjWEcRm5vduSZKIqs0dxsN3Rtx8PDA23bstnI0EA/TYxjT17kQFxUSFYb6qLA3t7xuH+m6Tp5n+leGycBWIw17A+HRWUzs0JRL83AEGMaRKCSWX9qaBiDNUo8/5xDYZj61IBwck9mmSW4NEwvAdIQFhmdMdK8CCEuZ5w0aMVuwE0ehV68j+d8JETEq1dFqkqIA3FW1hi9MIzEPklADp8axYQRP01URUa1WTH7gU+T58cf3/PNH7/DZCU/frjHTyPb7RqbWYqypE/eof0oOavI6Q2nc8M4yZ0RfCBxJoXQklQlk5vSJOVskTgbI80NFzxhSoqeRNCoKsnpm+bCMI4MU6AqK84X8U9tUp4wusAfv/uev/k3RQ652W4oy5LD8cQwCEPp48M9292WQOTT/b2wEhMzfrvZUJU1Ron/aN/34levVCJBjKnhHZm9Qquy4vFRatTLZzYOMpws+UuPDqIQILRRnE5HaVQ+PbPabDkfj8sgqME5Qp6l4TNerG6CBzWrAgx5mac7WgZ0yoA1YZmiZK3tNmuOxyO3mx1aa6q6pBtGng97GcKQcp6uH1C82JNMTpphUv+JKmkcR5HXhjSMLUSqVY0Pgaa9kBnL3e2OGMHWZWruaZxXuCmSiP64IJgEYQIvg84MWoa5qMDNVp69Vgbv4XDYczqdePf2HVU10LVHtus1oxMm/npVE4MotWYrKhA5eFVXtH2f7E4KgvdkNseYgT7Z9azWNc6L573N5oZsEJb/0NOPjrwoiVFUNibaBbcQFZrYipk0uMIPE+Mgaoj1ppbnZqCoSvb7E99+9wNlWfDbv/877h8eUEKcT5YOwgStq4I8y6gqsU9Z12uOz0d22y3ZdkNApNrNpWW73UCQPDEvCoa+5+bmBpPIRGVZMA6Sn+R5TlkbyZe0sAQhcmkuIq1NAz3PrdhTTcNInmW8ffWa5+dHmvNF8vy5VoqeuioYxlFA9ugJITUro+bStVRVyd2rNxyOB5T3jLPtl1FUq5rz5SKN36iYrapEkTqfGimndMOSG8rQHiEe7HYbLuczZW4xWprCSr2Qtv7rxp8M8E3O0fV96iaNiyyI9AtlmWjoK1NhtF2kK/MmnBOw2V9slvHBf1USGENApY3vvefh4ZHXr1+R5xmr9YpvvvkD//hv/oY3b98k6q8kMm3b/YzpFsI8xdPj3MTQi9fN49MT682K8+VCkQu7hRjJrUXlOX3X/8xMvq5rbm9vuFwuNJeGu1ev2N3s2O/3Yl6eZdSrmlUtxfKQpHNqjUwPfnqgHUTOOvR9ovrKZ+yGHvf4RJG6IPiwmFj7IBT75R0kj7sZdJllti4xGJtGWIt5niffKEeMLyDLnAh/Ln2d46Ugfil8imRsPsfMWpqnohprUcGTZTB1DqUcdS0T8qqyEuaDlaLi/tM9wyQXf991TLOPo1K03cAs74xR5Alt2zFP6jmfzwvCPk3is2aMoa4tJrEKZm+RuSidP7f3nizPmPpeKNozQyxNuEW9SJG1kum6SinW6xXrzYYPHz5is4xf/vJrZkZNTCDP54BpjKlLnpgQ3snv9/z8zHp3w+lyZrfb8rzfY7SmKktmqcL8ztpWDrvVasWQWFQ3N7fc3t4sz2Gz3lBXVQI+S3Y7MU2dgWn/+IDvpehp2zaNgJdCoh96Hp8eKQuR/Y3JY2WW/Mj49TR9zwdiuixnBuvn66ZtG4wRRuEMBr8AeGq5vF480JL0QX++1ljW28wOnd/bLK0Ofu66iHE1Wkacax2oyoJL6zBWGDraCOX94eGecXJEhFkrn106icN4TueDJkbN6Sws2hhFMnQ6yyRoMYcWGWyWZYT8peicz6vPpcvzeSNDVySZmaV9JpkvKxQqKjFHLkqGvuXx+Zmb3ZbVZk039Pzr3/6Wf+/f+bepygISs3B0E+N0ZvauiVHWbN93QmP3juPxyP3DA6vthmESD7RxmghKifdUlsmkZKUpspy2a7m5uVkGhAQf6buBPMs4dR2HwyGtsYIyTdutqxqbS+Go6xUc5OwZnTBqpkno7lMQKWUgorsooHKa9Dv7YPbpLJnXC0hCNRdG8z6d7QfOZ/GmnKW9UlyKdClqhcL8TD4+Mwzms02mh+mfScFlPYfPvDtf2A9WG4wGa8RA3mYKY3KmVu7A8+mCcwIUD8OIT3KTrm1pzi3aZHT9LEOwRDTH44m7mzu8D1RVzX6/53g6vbALnEwSFK/Hl7t1lhTPDJPFexVJ1ts04XeRACa2bJnn5NZKc2oaOZ5ORAWv7m6pVzU//vQjq03Nb371S2GmJba6AJ5+eUbOkfaIgA5D3/H09ES1WuOigIbDNKCVYlVVVGWZilvxXhn6nu1mI51Ta3n7+g375z34SNNfeHp+oiwrtusN88Rz7z277Q5UJHhHPklyf+lafCqwbZHTpol4HpGS7bZb4jgtbAqlVCosWN67TuDefE+EKSTPNJMYbJJMxzAPK1AYazCIH1iRZPnzeTjbEbwUSTGxu18MnxdLhxCWu8w5yUtAwOwQAvWqxKYCSI8iRToOMiW376UwnZwwuMTOQhJ9YdEHIiadN5BbyzAOAt4bmbD98PCAtZZ3b9/I8wDubm65v39cGPaghDGUus7zOlRKrBiqqsZ3bdpbMvFyZsiv6wrnA6t1TUPg0rZoY3j76o6syPn48MCbL97y9s0dKjUTt1tpqgiTQsvfRykC5jvl6fmJoMRn6XxpqeqKS9uQWcvdzQ0xRPE2noexOCcecUTyvMAqw9PTM+fTmcPxgHOem9sbysT0m9UZmc4J0RONvK/bnWJ/OiYJeGKPnsX7yMeI9Yp1vpIGnzI4H4CBITU59Gf34AKuKL3kHLP1gvOOOM3WFXLmZakwDz5gkuJFgOGw5DzzZNx5Qt+LjFcAfufdIl93ziewdIQc8fWNgd12I011I2fYNE4MXYex8k76YRCWRiaD0caTgAYgV9Tt7R1N0y/g+JT8MruuwyQje5Qlakvbj/z04QNv374RWeTULntiXmfSnE3NvuSvbbWFKGqJ2U5Bp+LWGANaUXg5N7P0zLW1otyZBHSo/Ya/+/tvCMHzy6/eAQi7LzZcmpYY5a7yQWZyPz3v6YeB9WbDME20Xcu5uRBcoCxKisyi0pAaGVY0pQELBQr5HDMTtq5qIRtYyxdffAHAsesWxcmcQ9T1Cj8Ja+dmd0NVFZyaC6dzy+Fyka9ZrRbrgbYVWf0wDCjlRBqr5PwkRtz40mwLQZg28+Twvu9FaZAm2DI37lNO65xbhoyF4Bf2vNRu40sjLpEX5nx4vr+nSf7dJkXP4lsMZLll6DtsZvFu9vcWZYgoZuTeNCajMhlTlAa0YeLu7o5VLXuubRratqPresbR4Xzk6bjHecd2VfH27TueHh8Tez/5lGlFbg2jG7lcInlm6dqeru0QgonkQ6IoSCzslOc5P1GWBVnMmSafGEoRk6WGjxYmr+S9DqWhXtf0+xPOO1ywFEaz2q7QmaG5NJzOZ86XM69u5RzL8pxqveL3f/wDz6cDKMNhf+J8blFKGGhFnrGqazarNQpN1zUyUKiqKMuSvmsYx4mykGntM5B0uVz41a9/ne7ygJsEXJUJpSYx10QOejweBeQNivtPDzgl3sCDmzB5xiUNQTAm1bUqyqAiY5j6KXndR1Z1wTwF25LJ3IIQliFHEQFzVith2s4KLYUApH5y6FIGgU2jQ2WihMvyDO0UeC9M0ijMu34aIIQ0HTegtQxjkHojpjUpDc2uE/ag0uDcmHwnRzbrEhcUU4gEJx57YRoS+Baoy4Lb2xsiPqmiAl3fcn//sOTUq3rF+dRSBBinjlWVk1mNG3pssilou1aGn4CcJ5SMQ0fftygrHnH781EmKqchOEVVisRXpwnACZju+4HJhzRIL/33dK5mWb7YF5VlyfnSLAMNg5b7fugH7nY3NFlGc5HhXff/twch7SjIrBXP3yB2JHmWsV2vZQ1YLT7ibUfXNBSZJc8M2uaYzHI6nXj79s1Sk49O7rznw4Ev3r5jnKRxPwwjbdMt6g+fvP9jlJrwp59+YhhHHu8fZE1bOJ5PZDZn7IX5OfYtX3/xBfcP96yrmhjheP5/MfdfXZZk+ZUnto8yeYWr8IjMRGUVRDdaTE/PrOH3f+EDuRbXkEM0MGiUykoRwuVVJo/kwz5mHkU+cfJlAgtAiYwI9+tm5/zF3r99gTQ6L/WAuq4yukPn9VAkBkgkXC7nlbkpFrQGqAz01iG6AGJ66HgrlplMSmsNHVNEiB6mkFw6TxYiBsTg0GxqGKkhtcAwDYAw+LW/fvWAz/qA46VDWzc4n094fHzE3d0t6rrM03ONzWaD4/G8NvX/32mcwFvSbYiRh0/mowCLeoOJLlVRQBclRG6Sj+cL3t3doqpbpMMRf/rhL/i//C//M4qcUhZCRLthmsvSFC1+dJ8ShNRwYcTTyzPquoILlKpy8gqURYndlgybzc3tysFoqhJNew3vHe5urmGk5vYlBDw9PaFpGuw2W7jVJhexadps4bIwZYlNQ+vvue+RIuXPwzRyMGdjZohlZoExWX3ADbcPYVULfK16WRlfKfGgU+TuBetyw8lGWkqsNgHgrZlePh8WiSzcU1qSjt8SKpni5teLjg3NWwiCVoyZv9q2K9eoLAy8s5gnj5QIzHQuwOZY6RQ9ur5HURYcQGW1DgA4H2F9wMvxhHbT4vHLA16eX/DNN++xywmMdc3h2PPzcW3oF4ba8qwtz8DyfS8cxaXJQ4bflkajrao15VOnEueuR1XXqMsKQht8enjAN3/zDeqSDKAYI+qmhpodFl4PmwpuAYXUmF2P4/GAdrvBMPUQImWum4DRZn3Wbq+vsSQDbpsm849mNPstlBA4nY5w84zz+YS23eB6v1+Tmb33qKuKA7gQYIoCu5af0evpiBQjrUVjTxaA93mjy6JNmwLI8m4feOHrnOi3pP8tf8/y7hZFgZBiHpZSqRRZFQAQa0rrMvj6esjHZ1gjJb8qCkRmGCwFo3M+KxAFYuBWnT/XhKLQSAi42m2gshWlyNL18zRBiHENqnAZxq2kwDiPeUvMAYlWOfl55nbx0+cHKKPRfenw+vKCtmnw29/+BptNm5+3Fp8/fl4HQUsRy1cp5gtC5kvSod1u/kptq5SEj2Qr1VXBplxLTEiYrcMwztjv92Q1jhNejyf8zbcfqCRICcoYNE27Dp9or8tNt1SwnpbtdtvCeod+6NchoFEam7pFQsL2hslr4zhgv92hLAvM84SyLKD3ezyMT3j88oC+7xmScH2zhoesCehKwwZuwNq6QVEUeHh+QgwedVnCRkKMl9RmoyX5LpIMkGUQ/zV4Pn5lnVyag5TS27O2DEcC1X8hP4tNVf/VIGq5Q74+6xaVqFILa42DEGtdxhPE3Cwa9P24DnCrlul/i+3KzjMgCMs9n8+riib4hLRqyliwCp3P4phQl1VO046o6gafvjwgJoa+nM9HICYUZYHvvv0ORaHR1C36y4CUJkBIxKz4JeuJ8HQIqiyGYcTNzdWqolmGSfy7Y2a9BQgRMc4Egw/jgKu0gy4MirKkUsA5lJpJsykPqozhnbEkL6esRrNuwsvrC+qmhgsWx8sFPrwxI6uizImTJYutjCOo6yrbToHCVBj7Aq+vL2so1u3tLVLk8sfkwa/JyA8hJWRR4OaKg9BzP6A0BVxGEhCgHWC0weFw4FAlP2ta56T1GNfBSgKg9Nt9sS4i8wAzeP+V3SLBh4BS52I6T7Pehq4JKS1KlrC+73QtsPm1lnyW4Hm/SsNnbXm3qqqCFNzwlqXJNib+s13Xreeu9xFSaGjNe1QbtSJTnA8rd9S5iGmeUZgKs3U4nc+IoFp+niYYrbHd7fD3f/ctjJKw1ucFK9lai+pXQGeVK5unbqQqdXk2vh5kLirPlBKCo71mnicUFe3FPgY0TYvZeTw8PhOFURnE5NdlpzEG88TUStp6NLyPOJ7PCDGiLEucLmfa9sYBMSRUZQlEoC7J8LIzVSh3NzfQRtF2LAHV1jidJDmRIeLd3R12u92a0rtwo41SXIoqAwmJtmkRgsPsHMbZ43K5MHglLxhijGTMKQMhOFw1Rq/hXwAyPoYexpDVfGR1SVpwhVhZQ6yNU/5M4lsyeK6fl8HW4rbw3q7D5TcFMzDP4/ocmZLIicWF4ZxD27a0+yagKDRZhS5BCrkuL6nQCFDSQBg6IFReyoWUECKxFj9//ASpNLbbDV5eXjBMHPbd3d5mtQPvuZgEIDSsi/j06Qu+++4DFRLRIQS/DkaQElJYzmVy9YSk8tZnFXwuY9elkcuLn7quqIA6Sthcnx1PFwL+Q0Lfj/jTn/+Cq90O220JbQxMaWCsBsA6ZxhH/PjzjxjnGbd3dwgp4nQ60wbtmQC9aVts2gZloXPQ4Iztdou6aqnkEIJ3l/MQCGibCsMwQUJAS4VxHFFVVNoQbZBxBl+5T3wkJsJo1rz9OHHZVnAwL5SiU2g9xwDr+P4sVnCkBGcdCrMEkkTa37KzIHifa3wmcSq1ICGQU4Ttqp4/Hc98PhOHMyrjQ3jOz1gwJSE4xBBRVxVt2t4i+IiyNKiqmqmqgn2Jz88HlfMLM4wIJ56NNWbrsOiny1JDKSBG1m90UzS4dD3GYURZlLi9anC+nLHb7qCVwqZt89/hUBYlrq8kHp8PYJr3EsywhJAoqmdj5DLh0nHprZAXfVS0C6EgJVPDlZYIyUIpgxh5F15dXQFZNbfb7XC+0HI9C0EVl2Biso8BXT/ghx9+wm67hZJcOv/Lv/4Lvnx5WJdBKQ9f2aMpbLcbNHVDhRx/4pimae31rHMoDM+KpmnW4Ky6rqGVhCkUnI1oG/48ikLDmHL9GdZ1k98xAa0N2s0GutT4tz/8AUIbuODRtg0KZbDbbaC0wpfHB4TgkLLjxxjDITdLFqSMtwgx5SUW8TohBQzjCO8oIipBu/rpfMoOvByOkJ+NlCLdPILPHgIdMs47KMH0apnAn0eiGq8oyL61M2vvlBgOmYX2iCn3DIhAHtJ6n+BdgLczop/hpgHTxMyBqqwx5rtUaYPT6YCHxyckBLRtm5e/PaqqRNcPmKYe2+0W1s7YtQ1Som3/dDzh+vYGRWFQ1iXm2WJEwNAPeH58wt3dLUIgx66sSrrnQwLDCenoSQBituvWRcFnOPf353MHpRXKqlrr99nN/LolUNcFrPcoq4LClKAxjQMu3Tm7sogXaatyZbJCCFR1QwVp7sWC97jZ7fHnl1fYmYxxbXR2M9EhsCSWmMIQ73I4MNugLPDTzz+jGxg6KMBF1/39PbabBpu2xfF4wqUjm/729hY+eDR1A1VoVGWNoqrw8eMn7Ha7fCvknkBQzZ2EoO0eHPIurs0Y37i3ZcnvcRpHfp3GZGVlha6/cNmWAhKYQB4jE9O1VLlHUlw+W4sUeK9Jo+Dz/aVN/ueMRhJEY82zBVfHv+7Xrx7wMeGElsy+78kLSQn/6T/+IzYbKj2GgUX+103cwskA3oDUr6+v2O/3kOYtQXNNNcybO4GEkBVr1jskKTBZh/12g/3+Gv0w4PH5Fd/e30EK5PhtNoVL+tPS9BjNodzr4YCmaeC9wzCTOTVOM5RQKE0BBTIAESntb5oGu/0WnAelrBprKNXve7Rtiw8fPrCAmWZsNxsAC2iZMFMAuL26weyoEpq8wzCNuIw9m15JMOqYZfhCekAsjYmA9ItKz6/fz9fN7BvUm4Dd0rwN81YAeG6Ql4Hr8vu+hrXTTolcCNEusyQjLvZqbgr52TrnsN1uobWE94BWEt6z4FRSYnLjX6WKSqmghUTKNiYpVA4CAZDy7w8WiMDj8zMSJB6enzFbh/PlAqU1bm9vcPfuFkpJxMuAhROY0ttnsAyYloHS8XjEZrtBIaq/etaW5mSxAvoQqBhMLDTHaUbT1Li6usG5O+Onnz/i7377GxjNwvzrzw9AfsYFpNQ4X864XC5oNxsM44jJUo23gNjrooRMgFEKc1aY7XY7bLdbPvuStqm6qjH03Nrud3u8f/9+tSNvNpuvvg+FqqqBlDiU8Q5aKXR2wnkc0E9jthHzmRyz0nWaRiBbyIwBgc7yjZki8+DiLXkNbxBy76hyUgrRLyojsQ5IVvh//swXJpJzFiLbR5TKPzeI3JilVTEHIA/o7frsGmNgZwKjXT6UlWJjNs8TTE5PVUoTqJwiBBJKrRBChPOLDURnG1XAqesgdhrBWlyGEVNM8P2A1+MR3377DcqSysrlawDelhVSyHXYF+Kb2sCURX4uFq4Ng0+gBYyJMFpBZ2ah0gY2W9HadosYEv7yw8/QUuHD+zskJDRNnbkW/POXQAIIMki7jrbkECP6vqMFe7IwpkBT1hApQS/PWuI2tywKpkhlBWZVVWga/rlaa7x/T4XDmFUGXw/Qm6Yht6WqcFVXqJsax+6CY3fB3F2ABLRNi7osEHIgRgwR1o357HmzzwfLZkDqN/XtokQJ+VmP2QqyJJvz+l5i7dnYVFWFoefgc2GFxZiHyhlyHYNfnyveTQTpa7OwxRZUA++h4KnkdLNlcS2WAXYEvd1ko0AI6Dzg0FrlwTQTzFKYYAqq2J9eXnF9dQ0hFXwCki7g5xmPT8+4v7/Hzc0V5pFsFt6BtEOu95ghQHvZaPIdnrIlFfl94iBusU/stlsUxqAs8uIoBEzThNIU2O32OBzO+Kd/+hf81//yn2A0g4TChiBm59xqvXPe43Lpcek6NG0LISXOr0c4x3TzqqxRFSWWsJRh5BAuWIfmpgY5dAoJMfNK69Wee3d3B2NoK6+qCgsPL4SQE9AtvPO4vbnBdrPBYC2ej0ccLmeM04TNFZtqrTX6vodUer3/10kABBeBC380pXUAuLgR7ESsyGznHH6EfHcJLKE7KQHb7Rb9pYezDEUREAgpgDbJzGLJd+5yD/usOqQaJK3BDzqfqxw6MqRgmsgYoxqNwyA2YSVtVku4Rv55W+sRQuJ2OSbUZYFLP+B0pv2qaho47yG1RVIRLgZ8/PQJd7c3uMn4h5gXest9sijNTOYJWRdQV/Wq/FmYoBzGiRXfoLXH9fUVyqpEUZaICRinGXNmEVVlg18+fsE0Tvif/6f/DKOB7W4HJIHz+QJjNKqqgfMO/djj0xcq6JtNi0u2II/jAAFg225WBUnKn7EpDArNIKwUyMKBICB9u91QsdX3uL29XWsu4l2m9d2nOpI/76ou8dvvv8c4z3g5nCEvBGzvd0ymlAKY5gkpIjO8CF+PebmTYmQTLt/qYpWV6cjDFj5zFpt289d1m2eCpQ8eNzc3RAJYx/TXPACUuYbhM+eRYkTIA9OYFZIx/6ysnbPiPitoJIfVwQdMs0VKeFOT5Pt6eeZ8Vj5I5IWdj/A+YRYeHz9/xnZ3jZ8/fUYMHvv9DmVJNeWQlXHOWljn0FY1lDQ4nS/48OF+vU+V5HvkQshDAb5z4zzlcDs6gCAEhwLhTe2/hBNVdYsYA86XC4dunudH1zMgr+97JAAuBPz488/4j//xH1ZbZNM2OBzP6PsBP/7yE059l5XnA06n0xpO0lQNrna04Eogn08+c/3oIEhSQAm+Q845DonzcKJpmpwAXWa+KlVxMTJIQUrJ5e884fOXzzhdzplF2uB8OVFBlRXGujAYxwnVsuR1+W6IvKNjivBKQSlkCxyXCFIz0Oab+3s8PTxQ+Zr/t59G9ENPBVVOM1/uxZXD55lqKqXgADouSmT+ewkO/hh+wHN80zb5TgaqooAQgLOBg7UkOXBcGm+JFa9irc1JlHzulJAQiWrUl5cX2Nlis91hv9thnh12aYPJBgRfYtPUSCFCS/VXZ733PrtkLLy1tEPGiKpisAHrg4CqLtG0NaZpgik5LBqHCVVVoh86uBBR5wVAyvd0yIEi5/MZbdsAKWEaBkgh4RNrjNfDAdc3VyiMhsuq9ueXV/zTf/sXzHbGp8+f4TIbGYmDz0V52TYcpmkpIEWCNBpDx7ApMgGX5WpE0RgqgSUDhoL3uL65WQeoIUQmlUPw92eVY3fpMI49hmFA13Urf9RemKgdkgBCxO3NDRZUQVFwmEcba7ZaOvYhuTSisjw4DvF2O1zfXOP19RWLeyFGhbIqIbXG6XLOjGZBIUjw8D5w0Jv7Pu88oLmUUnnQHLwno3+pW7Vi+EIKSGHhny4cdUX0R4hrJoCPTPSNicPv7nxEcAOG/oyyLHF9+w4//PADPn36iP/lv/6PaNstAI2X4wkPT4/48OEeQio8PD0jZJX+MA10LgWHCGCyZPqeuzNu724ZXhcCw8hKg6a+wfl8wucvX3B//w5K8dnVBcMmrGUtOo4jfIowusAcbO7TBVXLIUAJge2mQUxk4V1fXWEaevbJpsB+t8MwWwhrcbocYLTC8+tj7vGoAC6LIoekJTS77Tr4UlLg6moHbydUVYPttsXxeEQMkb2pJp/TeaaDS6mIS9huKfIJfNfv3t1hmifs9nu02y20VnDOo+8HDlALDakV/vLzj2iaDb59/wFNU0MIgcPphHkYc38mmAOhFNpNi6eXJ2w2Gy46eHFBaolSavS9A9QSksQwNa11rnWIzCiLchWujOOAsirQdWeoPJuBWGptwEePJNjHRlCEMFkLU+i8CBEoygra8M+fphnDPOb3ulh761/z61cP+KqqgikKco+Ehi4aDJPDjz/+jP/6P/0PmC35CiG+FbbLMGUpGBclz5Icuki2l/98SToLMWLTtmAyEdNTUhTouxG7zTYX2gL/r//tvwH/5T/j22/uIQRwc3uLw8sBMcU3poojJ+81B2pIKXE6n2C9zWlyLZq6gREcOHRdh3bTQgWJzaYFC6SUm04ASLi5uUE/DNBKMVHtcEDTNkAu9gpTwBQmJ39SKWUKjd1+j+P5hMeXZ9bGkts8rRWUEplhMkFIheRpMSSgMRewMeaLVa1NUMzMmhACYY/ZohADwwgW2yCQ0LYtkBIOx+O6HUUeiLBYfYPH/hULKzf3tGoSplzmQVpR6LwxAGbLRj4pASH42TjnYYpqVTCwbWU7zCIROV3JQirylTabzaow64YZpmwwuYAffvgZ1zfXcNbl9M6Qi2E+o9zs5mYjcdu72WwghVxVdgDw9ZDTOYYqtC2tJMMwIiSB07nLHEZu637/+z9DQuLv//Y3EBK4vr7G6+sB1lnURZ2t6BMeHx9wOp+x2+/WIZp1HFSUZYWr/RV0VgItLLempr17tX5myTUQcXN9s9owqsyDXN6faZrWlM2hf1MnCinw7TffopsGpC9fQDWGYMqWMYTAx8gULE1IaFgstiKn/XxlB/+aAwmAHC47IwiJtmlW6xESlbzLMMboAi/Pz5CKfyYSLSJSksPhHJmZ+GpoTf4kt9jOW7Rtna0SHBBwqBpzIbUw3AjY9p5D2gTywvLMHyllW5PPoS1xgjEKAulNNetoZ0d+Ng/HC5P4vvtAq3OWXGfKQv4kyDtSWiH5mJuQJR1RZJUdIdAxhvz8J2y3G1SZxzLPDnNy6Lohg18Nng+v+O//9kcC9jcVtNEoSgPrZiwQXz95fM7w5avrK2htcHh+AgTgJotCG2zbDXab7TqItpYpgHVd54RbbqFYAHFoPE1TbuyK1fIRs4XDGMr7nWdyHORiBYtoaiaqjtMIIWum9ApAJV5eNm+aU0oIls2k0hpRSqocIq2TMSel+axIkiAMPks4UBclXKTSk6mOtNHUVbUO4pZwBCqauEGm3ShmnAMQ/TI8ImdDCYGmYsDTbC1Zm/mZSpGBNDGQ9cOzZkmK+0q9lyLILaNKNkFkO7lAUTBpsaqqnIwmME0epSkhlMFPP3/Edttinh1cdPl9E2vz9/Uih9xVrA2kzCEuCwtpsY0CtGk2NbfN546cr6eXI+5urmFdwDQ7DOOIj58f8P1vvoFU4DY3eFhvkQQwzhN++OEvOF863NzeQkmBl9cXSAjYaUKpDdq6wdVuB6Fo6+/yoHibAzOUJG+UX6dDURosLKdFJbwsg5bvt67rVZ1EtUfA8XLBOHNz7meLpiqQYoDI6a7LQlBKfnZMe+ZQn5t6+nhM5kf5QJW6kgplvt8KpQEfsalr+BgwjlMOCjMYM2LDGJ2b27jekYUx65Z6nu2qRIqB6Wt1VWf0hERbl6iqer1jpZSYrYPPliIfyKVN/EHnMCueQTwPkdXvIvOpeNZ4F5CKiKenR+x3VwxiyguvebKYZ4v9doumbfHp8wPT7DPawOdQqJSyElWSH0yeEs8wZy2KbNmPWcmWwptavjAFlAo5bVrSHp0Snp5f0NYNofch4HTp8OnzA77//hsIAbTbFlILnE4dXHR4ePqCv/z0M8q6xlVZ4nQ+ZyeAg4RA2zTYNBsUhUGTUSpS0tJUVRVC4PngPBlDixWy69jgLKFpxhiGT+Xl0HLnbXcbWGcxziM+fv6UVXUSfXeG0VQ5FGWRAexcOZiC72GwDhCSicsiAoLKVT6T5JB671GVFTZ1hWEcsW1bKCGw2+/IIx4G2t2khB9Zlyxp1usgVqtVIRNjYMOLiBSIhimLAio7TpRiyI7SBrGquFQRwBQiZhugFBUc0zSvw7XVgh7I8kyRSdYAB/7BA8loWB/w+PxKlXjb4v7dPZ6env5KeW2MRkhYrViF0RjHGdM0rZ97DGld3BhjAIk1NGJxsRDXcGZ9qA0Wtf/SqC2Cgs22xXw4kQlqDGolsdtvMcwK3fmCw/GIvu9xdbVD8oBSBbQx+PNffkA/0gr5+noCxOI6iNi05B4XigubcRzgg8uqEaxLhaIsMY7DCocPIeDqekfHUFYpTtPEgBVd5O+vghAC/This2lxuZzRDz3Zf49PTIbPAKyqKBiullUjxrylQy5W7UVRTGh85j7mebyPHnVBR4MUXJCWWSU1TrSprssj7/NwUOSUYAFrs5LSL64biwRyqZZFk86LASq2OZxKa9Izz13rZlgXIISmWtd6+OBRlGSLhZQQUoIyvIdn62AKWmPPlyOOxxN7OiHWYbaSEvN8xmbDuyN6x6U8gOPphM2mhTYyMwglhuGCYRj4c9YSAWSIFrqEUILLv36AQU7VlVzYslTm0s1a4oXGYVjv7IU/3TQ1TucOhWENtmBI5mnMij2Bw4FhIA8vj1zGat41RU5IVtmqebVjaMD+agclBU7nMy7nM26ub6CkQFlVqx1/v9/Bzrz7ZmfRdR0ulwtu3t3h6eUF3TDicrlApISb61uM07zWtTFFfPr8CfM0czEhJDbbDfpLDyEUkndQieEY11dXmIcJheG7+HR8hTAcLHKQVK7LrBgTJMg3DdHjdDwgRgbkCCTQbQDUdYlhoIMNKSEG/j4tFQd8ke+kMHRhCQUYRbyVjzwDy7pkrxEE3OTWgVVKAkiLMlhinjmQiUsdEvj8Bh8R/YxhOON4eMHQd/j+++/x9PCEebLYbVsorVHVFf7tj3/CDz/9jKo02O2v8fJ64MCorPD5yxfsNi2utltiPpTGMI0Y5xn7HVmDIUbMfoabZ1RNjZhY+87C4XQ6YbvZ5IDHkN8DCx8iETgqhyTmIEypJJQhAkxJCQXgeDxlBIhHUZiMWxsxzjarJ3vM84gpMZSrNAXcRFUn1a90Suz3e3z+9Hk9c04n4Ltv3uPm5hqn4xkvma1MQYBE3w/o+h7GFPlMLzAOPPN9cLi5vsmoB6K3UkzYbzZwOfBIGwaSHs9HhjiVFaybkKaI0/mM0/kMJfW65N/vtti0LQfTlwuEFNjst0gx5mRhQAaRnSEUTNR1jbJkmBdDUBViEvCJiw2pJExGQJVFyXmQI6N0qSPKsshKass7S0m+N3nuxT7DYZrY11rrVvckMQT/JxjwSRIxEUNkkZuAotzAR+Djp8/48P4dfMj8sfA1M+hNQfZ1o+Kcg8oJfYviZ9naL5DnJdTg5XQGpIZzA+rDGXaaME0OIQr8+adfsN1tsNkUTAO73gGnhGmycMHjj3/8E859j9u7O/jgcT6SZTX1EypTY9tsUOaCtaorXLozUgq4vrligIIwq4ScAFGD0+mSm5v5Ta0EvmRSSQgjEEVEs6GMtR8HvB5e8fz6gu1uh9P5CChBG402iEnDR8Bbm+XIHHiGbI0TkgegBA86JRjjjWzD3bYtIZplgbqsUBiDCKbOKa1QlgbD4JjOGSMKzZ9BcFkxoxZFg8A8cJMdXEQKkfaFwuB86hF8wPXVDinSzrMw+SbrEB0PzxBBiL4EEgjHpXV1Ec4uyq4E5xO3QUlAggtlxTx0qsdiwjhNAASudjvoosQvHz/j+998h5ACXHh71mIElOKGcin0ZAZpOu9RVPWaILs8a8tQqWlqLCmkLm8ZFYDD8YjgPe1ASeDT5wfcXu9xc7OBUJJbuCzjt97h337/bxhni+ubG4zTjPPlTIbaNKGtaux2Ow5rMoOt0AO0pM0i+JDDYGhTdtaibTZ4fnkhq2YcV5bG0hB/3cy3GzJJur7H8+EVTy/P2O526C4XbmS+Uiq6zK1ig8IG1DteEFppePEWkLEoQJPgGXB7fYXL8QgtBeqmoUU2BhxOZwgpURRsKKYpwWLOzEdueBeVKBP0Arxbtr5pTXmrmxrOXZBixPV+t1owuW1hYTVZNkwxBcw25hQp2nEMsKrbuDggZyKEhADqriQINjUlm/KUm+d55uWz3+5Q1S1eDyfc3t2QOxcDUh6ap7jYhyRmSy6HVJo2hBhpacLy93t4vzTjCU1VrxYKnwHyWhscjxc0dZWHiVTM/OWnX/Cf/9M/QCqJ3Z5p4scj4cs/ffwFzy+vaDcbuBDx+MxErOg86qLGZrNBVVUAyBaMw4DtdgMhAUiqO6ioElk9uME4sNmq6xqHw2HldS7vuXOOidFGo24aDMOATw9fcDqfOAAQCX3fQxe0jC/pjgu3y2VF3vJurme/VhzuZ8VLBDe0+/0WMgGvr69rE6W1xsvhmJPuqPhwzuHSXThcSkxyFnIB6/qMcHBZyfPGTmTYDwd+RckkP4Zf0BDEbSkLQz5vCX622ZozQymTOTNYB8/eBQ494nLeIaMgxF8NsNaEYKVZdAqJ55dX3N3e8VmHyPZIpsgZSf7g5BgwopVG21I9EvEWTvI1I7LO7MVpnjCME2bLM4M2vAmzneG8hTEaP/38Eff3t2iaEkVdwZQliqrEy8sBn798wfl8gTQsDg/HA+asuC20wXazWa2MbcWz7N3N7Wr1csEhCZXvNVq4NpsNxmHG9fU1i9jtdr3/l+JnAd5fXe0xzzM+ffmMcZowThPqtsU8cxkmpaLiQfFZaOoaPoSsaGG6nCpYRHFQENeF4xJUYAqN+5tbfP78mQBspVFVFZ5eD7mxpJLKOgs5MTBDG7kOYpc/axniA+uFx39Wkce1rAY2m/YrlwG47HAe1sfcHJMPKYREChwY+ax2XriUznK5R0weh4Ba8L3a7Xbr4NDmdGjwaoW1FuPIjXU/9KtFiYtAkbmhy1JWZPuJQVkWDLhylsuGROofk9LzkLMwUFHhfOlgrSXP1Bj4uKi82RzM84wvXx7x4cM7tHWJJCSU2gPS4C8//Ygvz4+IQOY+v2SVNq1Fm5apkYV+C5qpqmpl11o7EydiOYxfPuftdpffSKx3qXUWAsv7rLICVKCqCzhn8cvHj5BKYZoH6KLE7CwMqKiZh4nFvJArdsV5qvjKIqMupEBRGDKlwSFZSlQIF6XB1XaLhy8PVGEpJvuNY5/fYwMXmFYuncxLzzxYTgu7mo0IRISQDPSQUkFpAa2zDTN4GFPBGIl5oppCKuSALAcfEqqyQopZqSrzokWIrDyjCtK6Gd4yBTVEcOkCoK4qlNUGl0uHbXYWtG2T1XIeZVViLwT86zlbxzWTGK1n8rfU8J7PclWVHDxkxYXWiur3ZYkSAe9jdpNMqy15GEZcXV2zNnIOu90W50uP2QfM84RtWyNkBVVEwjjN+MMff8D/+F/+M5SQeHh6wD/9t3/CpevW5fPiDkD0KIxh4ICUGKeRSg7FwVGMkU1rVoSUKFZ7q1YKTVNDa74bMSRiWozJ1k8NHfOyvCzRNBz0tW2Lb/Q3eH59YapqUcIUBW6ub3A6HnD//h7DMODlcODQLNfBTUOIf4ysi5KSq32sKku+h9Zimi0en14QPRNIZ5uTg0NYhwaLDX1xVnhQxcdBItV9aTmToGiJdy6LehW8s0CMEIWCdTP5aYKLHS6FJaRkYx0CMLtckwuPEDkMi1FAG8B5h7bYQKkC3aXDL798xHa75XJ7HDEMI7bbLc6XL/COSrN+uKC9vUWMEQ9PT5jtDGMNF5xSYhotlGgx9h1++uln/O6332fBg0RVmjUFW2mzqqISEkKionVxC3nvkUKEny2h/kbzLI05wEkppMj6PnjWB855HI6vOJxP2T7LhXRZVSh1ATfP0FWdA5a44NrtWlg3ozTEKJ2PB9R1TYt9ZHhJynW0zYEgQglMk81IrTt0XYfnl8PqQksp4fH5BR8+cFAjlMTDyzPKssT++hpKMjygqmuYiumup/MZdU3ElswhmVprzN4hQeSaWgAprnX/16ifJSxjdqztpWYCb1WWxF/FgBQ9VW/gzqypm1UQpLLgIMRI5bxkvy2RqMLKmBjArL1D8AkiyfW5RsC6IChzyM0S2jbPrHO/PHzENI1QQqz4AK0lNm2Fq90WdV3hcDzix59+RkrA1fU1fvrlF3Rdh++++w6HwwHb7Q6FUnQACmQnRcLxdEJZVgwkdFQnztOMoippga0aBBdxPJ3x7v07BG8Rs/tiGMdVbR49E4GDc3BCZPsunXJTduA1G/LwY0qYrMWl79Fl9yIXKO7t5+IdrLNQGQExzQwyLcoSD1++wFkHkYBt0yD4gH4YGbQZqHx07i3Jux8HTNaibhiw6fwJRrGXur65JtLHWkRJNZ4WEsfTEZvtDjEGPL2cGHKSEm7v7smT3m1x7s4oqwLXao+uGyCUzD3ShsrRwO8rBKaxj9MEO1vUVZ15kxYyDylDdu6ltCwfAqSSRDjZKTNVayr6YqRLAinbl1O+K/mc++CyApl3uzYKiFyupMCzdOGSLosOId542r/m169P0QWDNjhRD4DgxVEVGqfzGe/f3a5g/JVPFENWh2G1QJVlyWI+5GHKX0HO+c8t4H4GCxzzFtChzsw+k+HE1jtMk2VoxuYbHkZG4u7uDo+Pz/j5l59pn0iJ7BTvYd3bw7zdbgnVDQsnMOL+/p6y8FW++bahf3l5wb/7d/9uTRm9ZCvAYuNZod7zjHEccX11RWvW4xOGiS+lnfnwjSNl35wCW0QI1HXNAcY8/dVhuG408RZIsqZOaY2b2xsWGXZGWZUw2uB4PK08D79algEtyQdaODsheqiI9RJflIFKGm65MpOP1jeFsiwwDhNCtrvNEy9ua8OqqPHewQtAqmxnTAlICkpyWx58tm5KWpR88kBOQdJKrtL8N5YbLyktBbqeKWbTNGOJ0F6eG1oo09pAl6VcG8fZ54s4vdk7FksvQDXMOI75OXcZDu1gMiw1RHJknp6fcXW9IZATAfs9Y9b/8Mc/wmWlxOvr66p6E2BTud1u0bYtGTjewXuD6+vrv7JIL6xDpRTO5zPevXuH23QD5/wK416ar+V7FkIwfCMXn0/PT2RqVdX69feXAXXDVC83z0hisXAwoTYuUviiWN/hZfiyKoZiYuNTlpiLkkNTQzvU5dCtCpzl3dGaW7ai0AhBvBVCWU23WFgX+/bSHOb+C1rprHgAL+wUMc8e1pK9UpYGKQFLmrPWkgqwCABk+1k7Z1ZgAgSfNRezeizb41ZYfj7byqKED4QnS9lgGKZ1i6gNVUBf24OWwzpkRRibxoC+WyzkX7H4Fv4j2HQVxqCfHSHBOf21bbkZPJ9POJ8uuJw63N5ek1uSwbN//vOfcT5fkCBwPJ0gzuc8YHKoqwq7zZZnSUorT4nPh8Bsp/U8m6ZpDTTw3uH65gqXc7d+zQvQfPlnyAxK6LseVVnhfL7QIrPZ8II2tK+WIrPAZosQCc7WSmEYx8zbS6u1iT87JlAv/36R5PJzy0y9RFj+pe/ggseSNulySMFSZIo82J3nGT4FGKnX1NBF5aGUXq1qSgmYtAwz2Jjw5xuopvNUUEsp4FzMagcDKRk2lKKA0AUma7kUyUOMuikxDP3SlrLRzpbhmCKQIhVfIAOk7weMY4tpnPis6SWAJLOJcjEhpYR35M0t7LjThbgMndWxX9vjl3d7024xuiNcjDCJFsKqrFBUBi8vr5BixsdfPuI//Pt/QJIcFilT4PPDF7y8vgC5sR3GYR2OVWWF2/3VV8D3AS8vr7i+vuZQxzMpnUP7eb2/aNnaIGTb2/27d28JfPkMWtSi58sJMWZbaH6Oj+czTFEhRT47ZcZHuOAg83LC5+CRJYhgKfSXd3Y5O4VkUQwA/Tis6pKmbtD1PaxztGvHiJCVgVk+yWFptndGHxHkW0jL8r0uaAFaT2g/LAqTky0lFg7kbF1WJTNZ1geq57RWecFHNtuCRJhnl78MiSZzuJZkdCl579nZrQNlJWUeznk4zyAE5zzs7NY6x6i35ORlM70A9JcGTSp+fpcLU+XLullRF8siIAQqEO7e3eLTwxO5utYhVhXqugIU8Pr6guPpjJ9/+gX/4d//O6REm/TxdMJPP/9CZReIPZhnPjtKKbRti+v91V8NyueZg+I35wgHbrOd1nNEa426YfiLkgqo+ExFqWCyaryu6/y90yppM4bEOoeu77HJQQ91VcNIgd12i2mecen7ddDGxUHxhhnI7CiVzyUpJSIvNThraSfNi9yyLHA+n6k0yLb4mOiwWBZtMiM1+PkkSEH21IKpWRqHBXUwT/nnqAW84zAmBJ4LLqelIiwBZgHWUvmIjM/wjimDAgLekgEJAFVL/mlMEdtNC6kKeM8BFdXTGkoswWd8J9qmxjQJeOcY/hECqrrOTGuerU1To21bdH2HQhRZNcpl5DiMsJ4OoKX+ZPIyf+7n85m2LCGYAJ8l9Etq8v5mh6qs4WwAhMbzywH/j//1/4l5mvD88gIIwUVdjGwapUS72a6c4xipQoleIDqHq6s9clweyGwrMyKINVSKxHHUNRt5pRWmacjJohLb/Q7jPEHEiNlajKcBT09P+Ob9e7y8vFA9PE+omwbd5QSjNepCQ+y2uByPKOs6OyY8TKFgnc8IALkGkWghMXouJjfbPc7nM23fnuouqRWqos6BNlmJqjVcDu9S2T64hF+5GCGNoDI/L0avrq/QDxcmW+ZgnoXdJQB4x0VFiLSdM12dCj2moks4H+FXFYDm0C8LA2ZHBmiICeeux88/f8T5csHu6gbOR/z88RPqusHLlwdaousKhVYwVbkOUiAE7u9pCbczHQrtpgZQI2XGYgLxHkKC7ifHelMoRY5qohXeL8rUfFcAxDJtNg2mecYwdGjrW1g78/3VGrvdHjYQb3U8v0AAsIGLSIgAKYBNU0MJAS0Fbu7fo+8ZZCeUwNXVFnYacHd/BzsHfP78BXXdZpU7l5HIibUxskc3WbVsrcV+v0dd1wCA9+/fo+t7nIoTEoB+IEd7GAc8PD/h9fiKv//d32GzaWAKg8v5gi+PXzDNNgdjEKm02Wzw9PyIqqmQBNW5Md+NptCIIxdLX2O6lGLoyoKUKooCMd+Z49RDG43z5QSjFYxWZOqFiJA8ZmdRlgY+8Nl1ziGJRG54SiiqAkIU0JqLmmEa1+WrQMampKX35ACrLIlWmqY5p47nMxSJSe8pQiaJumowjTOurrYYx9wjaok//eufqRjebHE8Eo9TViV++OFnQADff/ttVm1NEFLAeQufGXhGa/TjiBQZvDfHhMfHJ9RNjd12j6puMM4W0zhTqABabVMUSPkdKkxJXE4h8/eFzJcOmX1ncugp8STTbHG8nDHkwNRM+iADNGMwYkzwMUKDOQLb3RZDPzDApWBfOfZj5gMmGCPxpx/+hNla3N3eousu+N3vfgf74qGKAqfuDBsc3t2/g5YK/aVD8AEvzy8wOfTj7/7u7/D45Quu1Q2k0lCmwOvphMnys3Leo7uc0bQVmg3dpI+Pz9kZJAExQhcSIXqcz2eYogAc65qiKFD4iK7rURkD52doyWUmFeN57uF4NknJWnuzaYH0xmtOKbNxBRXNHAJamCDfnm/Nfx3i4i6jWGOt/WPKjs2l90xLu/Orfv3qAV+i1y2/FAUmG+BjQtcPaOoC02SZPAS5SqYXpsIysFuKlDVZzlKCujAklv9+aSoXBhBMgafXA6Ycg1yWBUqtMGVL2E8//YK76x2ur64RRcI0z/j88AUPT09rkTTkeHshuGF4d3eb1XFAypPoFHgQLsySJZHomC2txpicmFuj73vcv39HiKx1KKoCPrAQbrNMVGsNkdhE3N7d4Y9/+uM6HKhyEbjb7TkEfH1FwnJpsLBP2YIIUAmZ0tu09+vEyC8PD+SVZLhr17EJZvBGWgtIWjPDKkef7QQkwFk2nSJbgqWkf95ohcJozNZCCkIip3nOYNw8qAkJPiaCzEVihHs+0GPI1qGs5KBVLjeqmTHkQ4BPYbULKqOy3J7S/k1T4zLMmJ2DngSauiQ8ObD5F+KtWVsSj/+KGffVoPb19RXb7XZtzJa0YtrmRjRtC1VU+PT4hMk5GKdRVSVE4s9+6C/45eNn3Fzt8M033wAQuFw6/OFPf6SqxTL1L+QCVgiJsjC4f/+OsHZvkZAwjj2QIva7PayboSRlum22ZgAcChpjUJRFfg+2mGZLeL1+C65ommZVH2hN1cl2v8fv//D7dVi7a8ki2O1oG/789CVfkkAIDtoomMwHAPBX7+nKYwK3ul8eH6CEwDhP2Atazl1gUx2REP0bK9KHABF9blZs/prfUkAXi5TPTBetNeX8UuTn02KBH/tsdYspIWUln8tcPQCZ5xi5CZXLwGixn3uUmQeDxLAChitQlSMgURiN/XaDl+MFk7UojEbwEfO0DFQFJKiiMpoptGwIlsRgszZXANP+ljNjGep1XYerKyYixxBxc3uN0TqMs8NsPULDw5+pgsDp0uHPP/yFPzfJoe8//+//gofHRxZxWQ60DE8XdUtZFZjnMbMiqcaIKWCeHGXkIHJhgcoy/bTh+15mq1SS2eJFns4y7DXGrM9a2zYwpcHHz5/IBRICbVVjv2UQzDcfPuD1dEQ/9PDBASJCaQlTNliGcov9f7YcYld1xWIrBjLZyhIueFjvMc4zFzSCVqDZzlh4LFQajivcPiUuob4euGhlIHIhpHROiLUWQimqCz3twcRFaCQpAMkL3SfOgXxIQLbpek9eqtAcrmrFhkZKFqsxLXgFAKCt1jl+3rc314gvB/QDbUplkRA9rT6CRGp459b0s3meYCqTnzWxDmJyNmceLjCBtKpKnM/nVeEwjR3a7RaDszgcL7Dew3qHTdvicqaiPYSET58ecH93i+1+j+fXF/zzP/8zXo9HKglnKjsEqEIyWqOtKygtYd2cFSgFpKLVZpxG9H2Htt3A50J+miYICOw226xo0bAuZUakxHa7AQTVlHNWNVRlCe/5++/u3uFwOlKx6xnq8u7dOzw8PODdu3cY5gmz5e8TkkN/QOYh8bIAAoaRtpH9/grTPMNamwt8FsU+BhwvZypNpMzK5xyUAKpfgw90dSjelfqroepy9xSFyem8DDtxednoHB0B3ueAKM1QBp/Ix4rIduaUuBnHm1JwcUAwoIbqhnHoyHwD+X8hs0aXuopnEROOnSVfeM7sKe/4c9PKYM6OhLZtsYD3NTgoWs5h2tQdiqLKCyePhWfbdR0Wztg8d6iaDR0MdsJsHWbroAyTL5HIpfny5Qn73R5CS/zhD7/Hzx8/rsrX6HnexJwMWBQGdVWBaA6P6AKausqW5UD7rwvY7XYrUsRai6rk0kNIgaouYWcLJGQ+YbU6L6Z5RC0qzHZek9eNMTh3F7RNA+9mXO13uLm+wsPnT6jrElIwyMkHj6LQ8IFsJ7FgJYQE1Fuows3tLY6nE8+rPAjShYGLAYfzKSuiAGVo0142Xm/hdBziJBBBsCjzRR68liWHlUIQsxE8uYzWJaRIdQoHnhmx4BOEUgjL+ZYSovNQScM6PuPwrONEEpCayuih5zO32zSQUmCaB7RtRatd8CgUCb6n4xGb7RZKAlVlYLTC0F1WiHupqJ5RWqAoGlrMkspKVTLIhGDYDYSgPawwmCaqIrqBz9zCraaKrcbpdIYxipZiAVR1iXkYsb+6gkjA4XTAOPR4enmCUQyTEUKi0AUVYFWBuqpwc7XHOM64u72FkAk//fwTgnf45v4DEsioGqeJ6vh837B3mfH0/IRCG2y2O3z6/BnDNGGaZmit8OHDB1z6bl3GdF2Hw+GAuqrw9PSEzXaDJATSRaCsK4zThN1mw/tKvDFEiZ3Aes+x2c3IFNCW19QVIhJeDy95+M6QDqMXOHwFb3mmLRbwQmtA82uTAFJk2IKPVAwpLREcB1390KEoNYxRCFFgmCcIKIhEdwY4C+RCwXoUpkCMDjEAIQBJREwzwxmMKbhk8x4xiqzS4qAxxIh/+dd/xThO+O7bb1DVNT5++oTbu1sqE5NA27Qo83lqjEGhNbqux6ZpIPLQ3lqqobbFJtdCJYbg8fT4iPv3dxiHATFQDNIPQ0aRsO6MMa7BSCsuxQckyUEW7f4mW8M1GeLnM/FFCBiGHs7NVHRlnIwSElVl0GSFnAQXJufzGWVZYL/b4PX1gL/72+9RNxX6/hXOcaG+oB2mjF+o6wbn8wVt0+J1PuJ8OWG337LuTFQv9f0RWmnstzucLmfyuvse556MXSU4EPPO4XQ543g4EM8VA/bbPZ+dkgPvrr8gpYTNbguhWPMTFcXvy2c3lTFmFSmkxH5RaQpNxnFcOcFCsu+OGcG0KMxSimhaomUsZiCR27xwOflZ0BVHkQmXSlpTGMMllcuKTLnWkG+Cj9xjJA6oZe6BECLPZ+fgPHEnhb5DXVc4X6hIrusa0+RxPPVMTJ4dolAoNPuGZck6zy7XaA79OCEk4rZMYchjdXy3UkJWMrJ+fPjygN/85jt8/PiJywFtGKhiDLybUK8ONCp5p3ni4lsSEQOpIEB13OKiAWK+uySqHKJ2PB7Zx0OsmBwlEsZxYpWZsTAiAe1mA2NKXC4dfvn0Gd0wIiHCZHtuu9sgPT/heD5h6Afcv3sHIOLSjfCWvECiNIBhmiCPR/jI2cHLwwMg+LOtywrWOnT9gKoymOyM559fafedJ/iQMM8jWtQorMHzyzNO5wt0WSAh4tL3iFnV6hyXYUWpuQRcw2fSV2q8HBBLCyJCCJimcRU9FEUJCaDrh7x0CBAhq1mVykpAIKUAv8xrUqJ9PAS6qVLEEo5mrYfV/v9n3vb/769fPeBbCoy2bWC9RwR5HUVb5YKS9ksBNrfcSJbo+z4zOAy+Djnw/o3vlhKTIeuvNtEctMW8VclS+EQeUNtWGPsxc+Y0ktD48w8/4z/8Y43n52f82+//DcfTiQdzLriklCjygK7MD7TKCY+btsVeL8mcLm8C3yxDdV1jHEfc3Nzk4RDTuqydkULEbrtFEgmFMOi6bm3uX15ecbXbrdaPsixXi877u3c4Xy4Y+yF786k+k5IXDptMs37uRVHQuiCA+/t32YrCF8U6C20M6qbG6XKGd5SRLvD4RUmQgGwHsrlRzwl4iQqt5YGv6grzNK6NfcxsDxc8kAQ3NVk9Qbga1Ukp/4xStpkuDQ7TBRMSPASoZtJGYrZ8SbTC+v37nBr5FgQiURYl7DwjGrM2wUoZeE/148JrWi5fcgHfAkWosoyrqmnhiYUseV4aP6q9QuZFAcM0oq4KKmginyNTVPjTn3+CVAYPjw/48w9/5hZWSkQfoSQH1aUpVj6etUxY48Ciws31NQCyS/q+x3azB0AQdZlj7ZdnjfBocixSBJq6hlAyW+XHVWV1OZ9pDR5GnLvLOliarcXt9TVVaZcLTFlQaSlYuxNgG3JICgexWptVNXF/fw8fODxe3gehFTbbLbq+5zAK4LMWwzoYZKMr10ZrSeUF+Fnudjv0fY+qqpiqJiWHTykhBg+XnyvrludX5OeL1pmYOJTg0F5C6xIpeXjvIIRHFJ7NgUzcbtuBKjjDZw/AapFczqYEXijI71aoKCdvmw1G2cNmte5ms0EDYHYzFJiaSQg+hxjjZPPl9ZYmvPx9ix0xBCY+AsjvlMP5fMHNzRUAbpB1UeHlcMF/++d/RUgBP/38E2H5isPUlJtUDvY2OeCI/2sKDkn2+/06MPferTyz5ecCMEG8rgnQN8agn3t4xyXHZrPBNE+rwnUcR7y8vODdu3d4fn5GSAnjzLP7dLmgqWu0dQ3vHLpLh6ooMNmRVrWygLdutfsug+BFXVVWFeq6yRwoFmE+BGy2WyCDeWPC+r4u98mqjEki//zJ0hB5oLY2/Mog4S31OsW0qrOSWBK18vkTaCeNKbExsLRUpwRIad7UcQKIjlw0qjIVmqpE1/coS5Ot53ptQJf7bp4msokaBWcnxEjO0IKLsDn1LsaApiFjzM4zk8lmDp1nazGOE6QuUJYiD5Tlqlg6n8/Y7/e0TlgHN9v8WQdcLhcYpdBUNRABZ6ly/l//t/8GbTQenx6o6ioKqs2EQKmpYLq+ugaQoAzZJHVd4XK5oCoLqKbKS4wZbbshfiB4CM/i0DuH9vaWqhsBeGcxDmNOq65XW1SIAS+vL3h+fsZ2u2VyuEBm32r0eZgkYsL7+3vyItsWnTGZm8Xz3xQs8K1dEAHZCg5kC1h8U1vl97XNSxO/qPzyefb180a+loX3EUVZQEDAZXX1kqInFaHLAFEBWivM4wgtmHo/D+OqzuRyIEFJAztb2MzgFXJJTCXKwseUZz4JiAnbbYtpHFebLm2eCna2aBrzV+9JWNSngnePy4mbbdvifLqsSjwgZXbUBcn7fDeLXJBaDNOIqqYaHdm6tAwUmeTI82TKit20DOCGDkqBS8hLj2my6P2M/+v/7f8OMkodtDGQStOLKWmFbfdM/66bGiFRVWFHi7ooUdcVh6PBowgGu+0eC3IhgTZU72hNH8YR8zzjdDwhhYTNdkuEQlhS4j1++MsPGMcRDw8PGTsAdH0HbQwH1k0DhYT7+3cYxxHbzRbd0K/LsRQDyrrKdddbCNhSHw15qSiy7WtxWSz34Ow9054jVU/I5zywWNts5pTxmbPzDFMo6ELnhfKbSjYl2l+tt1xq5fdgWUTFGOBDglYF5tnCuUDmmTaIUSBGqqtSrukEyG/j0ItsYaPJf4tJQIoK4zhg29wihoCHx8fVubMMm+3sIDctpnHAL798xN/+7W/zO8jhZAjkYUmt0eUmVwgykVzgUMM51r0pkIEplMp1i2YN5zlEmqwjBzFx6KCkwMPjA06XM5ydEVNEoekGUoK9QmkK7NoNlBJoqgpKC+z3DYpCoe8HhDxAFkrC2hESOg/pqPpmMA4tu8Mw4P53v8Ol66BNAd8PcCFgmCZc/vQnfPhwj5vbWzw8PaEbBrz/8IFBfdndkhIHYAwwMNi0GyqqLhfUTbWqabUpIRebc17EvQUX0PZsrSXrVpCRKgV/oFoTbxCShza0XksI1FWFaZ64fBCgWmWeEJHrr+BQFgZFWZOXFy2se1twznaGzDzjGLKCuCzW+ti5DEtJAdbxrEspIkGRd5z7NuSlsdYJWlJptd3ukSDwv//rfyfr93jG5dLh9uaGeKLooZBDKFhGZE4h3UZK5jAmLbMK3kAbg0vf47fN9xj6Hj4EjMNIhwj9xEwcRuaZzjOE5vslctgIhMTt7d2ayDrNFi+nI4ZxwjTPuf4lkqRpaozDBOvpRPJKYhgnVGUFAbrFWAso9rCFxMvrEfVY4XQ8YXaWijDn0DQ17xdTwPu86PAeKte2VLyy16lrsumPxyN7v1z/HM9MB99sNig1ByBSS0gFvHt3h3GcYK3DZGfcXF+hqkqcLifUWYELCfTnjoPHqoKQAtPAhaterZA6Dz8ipGKNuyRdex9QlQX/2RgR85B6re1CQFQUv9i8GJFSQMg3N5P3DLNjT6gQ41tAn1RyrfPJ06ZCb54ZAhciz2lgCUfiYOtqt8U//uO/x//7n/4Zl65f652b62t8/vwFUjJ9+PmlQ4hAP5DRCyHQ1mRJjtMEY6jc74cJXT9i9h5JTG9DzxiYPo8ExJhr7Qm73QaXoYeLAS/HA6bZQWVuthCCiImZid1ICcYUUFrj1J0wzPm5UwZlUVNFn4MjpJAotAFROOS+2ox3iSlCS4mqMBAiQglyJQvDACapiBgoqwKHM4UibbtB3ZRcohU1Hp+e8XI4YMq9tp1mXFwHAYmmrNaZD6RAWZc4HI84Ho8YpxHeB+z217CeCbyzc7mPcHh8fqVdf7PBMM3wkcrv2EcorTFMMyAFhOLgHYKLBX79BtZO2LW7vJT2eRHngVwbLinBQjB92Tmqa5d+wXuGnMwTg9gqWUIpojiWTISyLNg/RS7FvSUXsjAaUnFJ6oOHc4tQapkK/R//9esturmxmkb6kutCwEsqB4KnrbCuuTlTOQl3+c8WWHuI3AgqpXA6HYHMuVlklMvAz3u/DgmFlHg9vTKFKAZ4l3B4PeD65gbaGIzDgGGacTod8Ocff4JzE4TA+ucyvZWH8O31DWII2O/36Md+VdMVpsjwf7JZrq+vs4x9SXGMOJ1O+PDhw8rpGscRXdejbVoAgNAEfkop8fL6guOBSoNPEKjbBufLhd7tQB/3NI54f3+Ph8dHlGWJJkUM08iFaWYQVWWFrut4oa6fUVjZCctnTA+4R9M0mceSbUQAFhsXbYTkSy2230U1udg0hVh4dArB6DXBEnmrQYg7m92YE4Ig8uAQIm/oyGgx2gCJ6pUUJZDtsxBMJ7q9uyILaGLTKfBmeVzsGkIyjAIpwUiR03srqMwaGceR1pTchFUVG01aNeP6GQ3jCEi1MrCWg35RDy0qU6UNzi8vkEIi5Zd+GHpst3sOpJTC8dLB2xE/f/rIGGzJ+HIhBIIIKHQBrRRur29hrcPNzTWGiYlUMfJykDnsous6vLu7AzetYbWtvLy84P37D+j7HofjAX1ORW2aFpt2g5jTVAHg+fkZp9MJSik8v7xgd3WFvh++UnqwONtfXWEcBx7MsUQ39CzMchPLkIohD0YjiqJEjBwEACzwlVT5GWYUPBPOsl1V8GJck04Xu0cepK6pqZmzYq1dGWFvg9YMeE9Yhy8up1zxGRZwLkEp5EOWzxq/1oQlVTUJDh4EWJTdXd/Aem6BIMh5S+It/Kfve3K3pEJVcjg0jkO2bAuUJQHU2ryx4owpME4jpNIIIfGdCfldSeR6zPMMASYkCknAbu6fsW3ZGCohyZ0UZGd0/QX7/TWtl+cTpqnH08szmEJKe73RBbzwUDnIZr/bIvqIq6srKCXx9PSIru9w/+4dpABMwQK/bdt1uGYMh7gvLy8cEG63eHh8wDDNmMYRhS5wf3+PYRzWQf+l73B4fUVd1fjy8AVXV1dUvQkBbRQufb8GwCgl102VdxFSZj5dxgHwXRdrA0cOpcfhhbB2pTQgmRIZQ0RZlSurhoU/UJdVTlrL2AjJJL6UaPFOkcOVceyhlSYTA1y2LA91DJTd04Ye4ZyFVmQlEcWgYGcH58gEqmsqhMd+YGADRFbacdlRFVR+xEALJIeDEwrDLevydyulUFcKSgYomTAMHazbvr23QqzAYuTTUUqdreIGFLQkSK1RlgbzzAJvmseVW6m1gVIadSFhfYACUBoN720eKEy4utpDKY2X1xe8ni6InsWI0RpaGShKg6ArhbqssN1uUCgDaST211f49Okjnp6ecP/uHRPzJM+JokioSp7RRUlL2OvrK+w84927d/jx558wjhPOlwuqssRutyW/KKtwxmnE6+GAdrNBTBG7/R6mLKGPRzR1jU+fv2C72RIDojWZYWC6J4QAHRFyVeMv9mwuehp479BdzhxiagMlBExRrmENIXjEFPKAI2XlWMxLRazNMhXxkswwRf7jMDI8iUFKZNEpoYk5yAOxRSGhtMkLJACJ2/3ZMm3PlBx69pdhVRYwWZkM0bLQLMKBfBcKeG8RAz9HKmUi4fJti6IwKAoJ7wv0fcLQ91w47Fr44CBB9dMysFiwAi4rVRM4eGk3m7xgY6DN6XTKdqACWjOdW4jElHUhUJcGzlvUbc1QqqaGjx6n/gTvLEQCjBaoMpOoXJAATYGqLHF7zWCtqq5R1hV+//vfQ2uF7XaTG2usykEkgeAjtNEYxwEPDw94/+4eh+MBn7880nZtLaSQ2M5soDZbsvtO3QWQAu/fv0eIEe2WPLnXwxEmLyuvdnsAXJIiNwcUkch8RuusOFkcCxy6EBBuOfSMiTiKyHd8gfz7rHJP4DvEwcycn1/AzjMWVlAIkUr3HEzkXICUCUYVmR1qCSDPSMiYeY4CtAzyF3lVk3X8OiGgdYGqoT09CZFZomQ/CyQUWmU1XsGzGDx3tk2LotAwssT5eEJZVZBS4e7dOwgpMY8TJASaukKqWceeLmfY4KELTQazErA+wi4Lk2xrWpRxAGh5Tgw3EpJNZj+MmGeLtmlpwQMArVC3G0jvcOnPOJ5PEClmCyHPzkJptE2DFD20lrh6d4fj4cSzV2rowsAYidubKxwPF7y8vGS2bb0qcYbxuNaVUkhoxaAd5xy++5vvkBJxKFXVQEimYdv87Fy6DhHAz7/8jLquV+UvpMRffvoLAIlpnLNqyORwlxHTNEIXBjIl2ODgHe8vKknjmjq7iBGEEDmB05KTlxt5Z2corTDPIxWMCVAF0RfzzLu2zvfEGiyR37WqKKCNWpev8+Dh4Nc+0WiT1b0RSUQI5AC4VQXnqFTO4hDk+jIEspnt7GAKIIWA2/0WV9sG7+92aNoWZVXh88MzpFSYQ0L/8AKjNLRkgJwNEc7RUcCQJQ4dQ4yQinLCpmlwPp3RbjZo2x1iTHB2wuvLkap55+jwoSQBSjJ4AykhKsNz1ie4yKA4rSQgJMaZP9tu6DGMIy59B+tmCiKEhFJUWTvrASHo/IjkqDrnYTS5Z7c3NxiHAc46BJ1QlTV8SHh8PuCnX36CFALv7v8e3fmE+/fv0A0DlDZ4fHxAu9vg9vYWUz9hHAa8vhyzKKVGUVSoqgZIYBiVVuinkXW8FMRejSOcm/F3f/+3qOsWzjIYZ5otQkyY7IjJDng9HJGkRBTEd1VNjTkmdN2AsqSKtdJ1tunHvHyViKCVlC4amYMQM4s2M84AgSSILZqtY5Bk7tkWXJWUaf25eh/IZV7wIoohKiZzWqHezmrvGS4WI/m4gFyV0yL/zyLqeHd3i93CFW0oENluma49TRzIdsPIoDrkkKsUYQqqEy+XC63GEDheOOByIeFwuuBGkfsvEu+D4voKMSVYH+CHCbvdHvM8ImlFVBBoFxVCYLPZsqbfbPOwbEBKEUVV4XA44dL3mYkoIWLC5XymB0nxc1aCAzz2KeNbXSoFFBSM1HzZk4BQEk1Vo6lrTPMMrThEfHh6xDiNKItyDazwwaEoSvz33/8eRckgn2bTojIljClRVhUttzNFSSFRhX3uOyo/Aeyur3Bzc4vHl2dIpXIYDznn200LmAKHM12K1nIoqtsWr6cj7wZtaOsHLbgKFEQIKaGrJg90GRillILOd/UyZ0FWb6aUQ00Fl7BCSMQc/scrRq1hPcFSfYlI16q1M0xZIgbWIm8sU0/0T8iW8Sigxf8JFHzTPMG6gNvbW0jpURjAOYFp9Dh158x/8UgIOW3JIIKyf5lB/Mum2sUAU1XrVtNZRxB43s4XxqxqhxgjjNSoC8B6Mgu2bYtxoP3ndJrQDR15ESmhyMw4byPqqkJKEW1doaoq7LYbjL3F1Y7qwI8fP+Lm5gp1VayJpPx7uQ1bFC6vr6+Ex2uNH3/8Eeeux/l8gTEanx+/4MOHD9htd6jqCk/Pz5gyE2YZXtzc3KBuKAc/HA4oqxKFyY1bijBKQuTPRmmFGCgPne0IIRN84BCVHJAFmh1XlZZRmpbLGMAItbjaEJuKXKyQ2W7Oury9TblZWRQ/iuwQJVEoiRAThnF+G7qAyUICLBxETtbyIYdrBI/ZMmFNSoJm53mm0oi+Loi8udluGsiUYKTEDA5iUrYlRi/Q9R3GYcL9/T2kEKgqCTtb9NHjeD7hcum4MU9MM2SkdVqVFT5ERMEBg08JRVXngS0HDNNEKK8ycuWmiSzHLXQBqxZCfkJTVRiHDlVd4Xg5MGUsRWghUGqmFgVLdWBRCTQln7XNpsU8zWjbBvM8oTt12F/tUBYm27cZSMFLTuRDg8Ph2ToUZYVPnx8wjAPOZ9p2vzw84u7uFne3d2g3G/zwww9ISHj//j2VeJEJxE3LNNRpYohH09SQOdnMaAllmXBodAkkbsdsBpHHnFBaFAViZDjB8rkCPNRiVrQs7EkqP4CqrnmRJwdlzBoiESIPxUW9u0CO47J9yfJ0IA/oUoadSoGqMLSEQyJ4QAgGI3CzmqH1WsDNjvailCBThEgcBK4pntlKFVO+1PPzfzqd4B2tzk3ToCzLnPxoYOcJv/zyC9pNi5AY6lC3VR5AAhASzieyjEQeWOXPgRtEFg3jMEFqBW24iU8xwTsLKRTByoYw9UWSfzy94tJd1iWElgpVUdD64RxUVkcXWqGuKrR15h5piZhA2Pluky0iM2SiwgGgom1Jg5qmCV3f4bfff49Ld6FCZyaAu+sHHC9nvH9/j+ubKzw9P2OcR3z47gODQhaLUBJIL68whUFpjuS26ALWkTWa8vBdmQLM9gt/xTBcAjcKYxjckG27SCkPMgBtJMaxX5u6GNJ69oXZZe5XIq/LEi6dfIA2HFgs4TrWUsm78DGJlBAr/5ApyECICzdIIzmX1eZsbJynvY+DI7namgrFBVJdmZVj6T1tCFmMtD5rWmtcXV2h1BpGB2AMcCLi05fPeP/Ne4QUmHRYMyRlGXr7lPL2OjeCKWW7rsc4Djn9bIIpS1jvueQKAW62SFKiriqEPJQe5gGbusaXx8+YnUM/dOvz11YVjF4G/XpdgG3qBsYoIAU0bQNnZ3SXAZvNNqtKA0QS5BYJgUt3wn67g8/K3q7rcH9/j27o0bYtYgLMzES4Xz59wf39PW5ur3A4HPD0+opvvvmATbOBECziY2Aqn4CEzOy5sipx7s5o2xpKSibtSQ1ICSUVrOdGd+FkLUqfGKi6WBLmgUiAeWXQ9WdAUDHFy4vs2mHmxj1kNs88zpnvswypK/LzvIf3drV2vOE0IsOKkoRWkgE5PlCVnvh5u5wqLsHFWwo9h82BXyNiRFkaXF+12G1bzHZGigpDopJJIVuTQ4AE8Pj0RERKxnUUhsO3/X6LcdT4+PETbm9vsPAITcEFgAsRUEz19JG2PinEykecZzY4pSlQlQZKa3RDj/1uDzdPHDJrg81ui3EcIA1wOp9QGIMffvpLrmGYbF2VBcpCMx234NnZ1DWkAG5vrjGPA/a7DUxZ4en5FVpobFvauWc3oxDI6nIOvxYO29J0mLJAAnB//x7l5UyEiXPohg66VDCVwZ/+8hcIIfCbb7/l/aQVDscjYCWmwUIJBS0N6rKBUOQ1FmXBIZhMEFqikIa22KwGZ6PgMw9PIUZa+cuyWhnK0zygKDS6yzkHb2gIZOtZYsJzWZYI3kEgYLZcfCMRn1GWJbRRq0JrHm1WLPGeXL4WkXh31zUTdGdrkbLjJkSPKBKEUAgxoO8vOdFWIKSAGALatsF+u8F+12KaRwiirCFEQlM32G9ory1MCW/oNmnqivwy5+gqCQFlVQJg4qf3Hs/Pz/jumw8Y+w7Be3jnGXQhlhU1B4yLCjAELk0gaP3zjmdlURZkcEoJGz1Opx6TtVR7OosYXFb0ZwueBKrSQCsgSgWlDS6XDpf+grIoUJRE3dz8zTeQUq0W9eVdHscJ00QFbwjA6XhCVZYI8YhxHvE3f/Md1dpI+PLlC1JkzdQ0DS6XCyZLhXDXjairFpUxqIoCdp7RjT2avEDdmi32uz1i9GjaGsPAZXHqI67vbgFQlUnVSObRCqKUWPNyMLcMR5zz6LoeRhtst+3K2GRYE88Y3odAWZVvw2sZoKSCyuEgUvEOZC/BMIyFD11VJYSImfVIrmFMtEDO1nMIGUVG/QABKdeRHPDFRbwggOvbLe5urlArRcV52+B87slizCFTCfy6Uopwbgm9MgghYRhmXPoBpadirCyYTNtfmHgbQsTj4xOAiKau8Pj0iH/8d/+A3//hj5ishTIF+mFAW9e0vrZtVvgoDuZiwDRzaD/OM6Q0EErjeD7wewk+D365yN02DUJKGEYy/dhmSCCwjvbOr+fsoizd7XbQRYHn12ccTydIpVGVBR10ZQUXmHT95ekRpSlQFgbHwwF2fONpa21w6TrYbO0d7YwvT48cnEuGaPi8aNdaQZcF/vDHP2cFHVV1LnjMbsbdu2t8+fIFl2GAKUsoo9GPA3ziSEUK8hObltzvoqSlNB+JQLYxxsz1TjHSOprV6coYCCGRYmAQhBDwMaDW5TpUWXqHtzpIAlFyaZYHKmT9EW/FEBmHmOgCcZ73cWG4HBSLQwiJX6cCtpsa26ZGoRW2TYGyLLHbtqiqEv/9v/8b6rqFLkp0z4fsLuKyWBsyJPtxQlkYlHWF4/mC4/GI7WaHYZyhVFYqRlplYxZsmMLAhYjZzijrBs4FzNOEy6Wj3VgQKYVEUcack66bdoO+7/D54QuGcQSz4xSk5nAVkgGLGnyPdFa9J0ucSooCVd1gu+HSLDi6oQCB7W5HhI8xxCNFsjv7YczOSyr8lNYYLwPG4Rnv795hGCc0+wZVWUGCi7eXlxcs7HtleMee+441Yoorq9s9PlC9Zxk8Ms8zJjch9jzXponKQG0MmqaEtw5KKghBt4ydx9wXeIgkVhGaKsjY1VJCCQFvLZTSFASAKn6l9OpaMUbD5eCMmBgaBbDWk1pCSuSFCmc2Qmv4xPdRZtQPaxP+PikkfACcS5gmh5gESvPr9Xe/+k8YpwnXV7x0SkN4J1KA2W5wuVzw008/4bvvvltVeFppTM6vh1j3lXIhZFuhUIrbS2BVBbnZZtkx7aJCsBD2lw61NhimHl3fwTqLp+dHOO/hFxVI00LlBlFncH9ZFqjLguo21+H9h1t4b3E8HNG2bZbUIzNX4qqyqPMDvaiN7u7uMM8zbq5vULcbLODj8+VIlUJRoJsG/PTxF/zuN7/BzfXNqpZ5fX3NLyon1Fpp7K/2eHk9oGkaToZjfnGkXK1+ALB4w5OiSgZJZI6HXockzlkUZYFh6CnZ1woLfw2CA8I3izTyRSwhhMqWvbc/a5omphVB5pSouPI9ZFYnMeAkwFsy+AgHf1NKLBYFDoH4swECbq62uNttsd21OJ1PmGcCr5eIe8bDU8797v5+VZcZpQCjUd5c4Xw+48cf/4J/+Id/4GGqZVZUvNlDh5FKSGMMxnHCEu6wfKZCEEI+2XxAXV9j6keqE9oNFWAAFUunE1IMeHh6oNUoJ4vVTQMRA8qizINX+vDrssJms4FzHe4/3GEcLC7Z8r1Abpc0qCVYoygKlGWVU7AS3r27p1rg6grb/R66oBLD9D0gJS5dh8vQ49PjF3z3zbfYbDYwZQHnPT5++ogQUraMGipBqwovry8srrPVgDw7KnXmhUGRVZ2LzVMps/Kblnd0CVsgAJhhFiZvchduE5uLxQqUOT7gYfk1k24YhvWzWIbhy9ZX5Y2HUgouh7IQkptB9qAMGynk4oEWS37twO3VDldtjaurPV4Oz3COdi8fIlK27hnNYeuH99+sak5yjIrMOulxuVxoISwMUm7WZusx5/NrytyqhVNFKwKj0BduxaZtEVJCN/QodvxZ+hCgTIHtfo/ZWkzTgEt3We1zSb59/03dQAkWve/evUPf9VgCZaiYs7h7d42h93h8fEa7JOgKFv/zbPNQIwKCqliRh1zv378HhMhJiBW0KdFOI9mlMeLSXxBFxM8ffyHgHiD0PwE//fwTBBTGacqDNL6/BMfPeRiSVksLhKAqMyuji8zroMpArgU+gGzhTRC5ieB7Sw6iMionZWbbRYoZFcACkwxHhbou1oCNhVMIyLXAGMcZwXskgZWFFnPh6X2AzertlLAOP0LwuXFJ0FqgMBrvbq+wbyrc3t7g05dPuUhXBLJnFeEyOLm5vkVV1ZimcX3ur6+uME4jLqcT0+5ub9CHkIMqsg1dSrhpXjfLyy8paL1umhrBMp3WOp7XPngo3WCeI5Q2MGWBVgmMdkTXXzBPQ95SstFXUmLTtjCKqsT7+3ucz2c47xG8w7ZtIRXw4d0dLv2IT59pI2qy+mSaxvVZW1S3Y+bODcOA+/v7r5Zois+iKTBbi00OLHg5vOKnX36h/SQXRiFGfPr0iVZ261CXFZqmgTIK00wVoCkM6pJA/9k7aPMWaLPYILVZ7KRvnLwF9i0Ek02Bt+Cc5V9P08RFXD67GJCRVtWelGLFangfkGLCNC3YAQ55+25c1VkLoD0mctFCJIMqBoAaIz7XIRIZQUUmOaG31xvcbjfYbRtMbsb5ckIIyF8bciiIyFxBAvq5SE1rbbWkaztr4aXC4XDEfr/HNA4AWIfM1jI1OjLlGylRYWLMOrRsmgbReew2W7wcD9BSEchfVUgApsUBIRKVR8OAIQEyJ4raiUya7aZBDLyTrq6v8PDlMZ8PCqfjCX/z7T2udi0eno+4nM5ommZ1JUzTjK7rUZZ8pxbHyMJAvru7W8+O4D2qokR5XeD1dKSzouvQTSPOXYe2qTHnIcXp+YzD4QCtCgBEyux3O5RVgaeXZ3R9DykFms2W9fE4QeWmIeVBfFmWKErzlpwrJZQyDAdyDlpLKC2RkGCKNxzLEtRmCs3QipQQ5aKSx3pmLgiUlDgAHse3Z65pWlg7rPUOgNWFYb1HisBkJzCkMAFCZsxBXJ85KTXqssDVvsX1psV+U8NHh9PpFc7H/PUr6NykL3ZOwppYJw7zjGmyMKZAd7mwgdccOJRVhculQ/HbEv2FIQf9MHDZJ954kyEvWKy1kEZmyxTfV60ktplj7bzH5DxeDwf005jtyKzXjFbYbHboLxf4xNrHeaaftm0LOzMQoK4YtDKNE6qrPU7nDvPs8PD8jMulw367xTj2uLm5xThNaDdbnC/nVcEkhcD1/hrBe4zDAAGBu7s79N1IpEXgMnG0DGeBAG6vrhEd7xUhBXa7LcZxJvtKCJy7E673+/VMJV+uzEoRiwiJwrA5JWiftkuteN/yuaI1NASGgUjxhlFZnjkOlbEOx4UAEAHr5qyAfwsMW+o08pqX8BXiMbzjXcozlupSBjAIzJ6LMZeXnzEHCC2IBCTW9G3VIgQLNw+4nCJS3SAl2uPGmQrnru/ZH+R6JqWEbhzIfQ0efTdjnGb0s4U0BZdKMUBJgbap4EJcB1LTTDZuKjW6aUQ3DBSfuKXms1DG5MThGTEFbNoW3nqcLheMOeAIUkNCZvUpJ1opJTRFASk5NGVQwhufy6gcvJR4b2tj1kRwoakmX5AKbcP//O7uBkaxxvjD7/+I0+UMpTSkUJiHGZOz2LYbKhrzXWDKEi4GnF6e8Ho8QkiJqmmgtMLpcoH3jnd9DHg5HqG1gfMeStH2G2NEChEvxxO6cQIkg1J84JI25UVQULTlN02dk+cdZFZtJdCZo6REFLSzBMScwspzVgQylK11QEwwpQFbQKYQL8FBEmLFK6TsVjJGQ2r2lCGSoZ2SJBs+M9gSBIaJvadAWGcUckFfIFIdGANSdEjRQauEeeogJcN8+n5E3Wzx+PyKbpiQIOjgKIuVGTt6j8s44+H1NZ9hCbqw+WdNS24MAXMMkCmhyUNWlT+frjvDeYuy0Dgej/lcGHM9zYWH0hp1Xq49H15gnaWSMCQ4H2GEyHVEyk4/in9kUSAiUtgBgev9Hlf7a0zziKJq0V069H3P0A7noGXmXSuFkBhu5zwDaJq2wTxb/PjTj5BC4MP7D1lEIHE+nRnE6RwXjZJn9ma7QZIJ7oUJwlCSCbUhwdouz2vmbJ/XKMoSpzPV1T4vvdhLT/COwzkhs2ZPEIfi88JHCgnIHI6YZxVLrUJErlhrM4oSqDZVSsHnZb21LjsUiDTgWeizIMABOdxGKQMRxPoMIquVQ3aXKWngXETfTXThSJV1hr/u168e8G02Lfb7PVIkK8wYg81mA+/J4jsez/juu79ZU0npWY5YEhoBYGHZCCFgCjY/VVVini2aplmLFfIDVG64EoZpgjL01s/zhP4yrxumEPkQ11XF2OV5Qtu2EBA4HY/wzkHkgv53v/0WMXj85S9PEFKgaVuQ0Ub47Ti9JZRCzDidybPb7/frA8VUXuDm+jqrFgmzfHx+znyVtPIqxing8fEJUmpY69C0DZVMeWBy7i5ISNhtWgApM23446ZVNWU7h14/U4AFXoxhbV4XdsnX9sg3zkrMD2ZOkxSJgQog2NgYci5sBtYvhVIICdvtFl3XrxZYpbl1CJET6BDTmhTFZ3SR4bPRWlKwNm2F26st3u03aEyBqAlDnWcLIblHdmFRVygOrAxTbsZxWIdUC1diGMbV4omUN805JXd5hkQuDmOMKIsSCWm1TZZluaYfp/z7y6qCDZ7FWv5sh7FHsBZS0qZpvaflqKrQVCXsxCGGEALn85mH5ZYfxd/97QcoLfH542dwY10iJaaazrPFNFHKnxIQQsLLywE+xFX5GWPkEC2rtGKIDIoJHv0wcEMgqDz0wWG60NKmdUHr3fUexmgIcEvWDz1CZFEi88ZWetqfl0EcE33kXyU2a63yxpoJw0tzyMH4WyLx16zItxRPjze7vlgbiMXe5p1bg28WhiI5WYoQ5xDzxeyRFoVL4DB4sU0opeHcBO/ZdNeVwc31Hnf7LSrJP8f5QPguuLkn84Cfy3a7YdjLkuQ1jtjud7mR4mb/4fERv/nuGwz9Zd3KjuOIFBIv5FWhwyTpRc0nlF7PyvORVh7vmAaOEHDuz7iMYx5cTJjdRKuSpHxBSYnSGFSFAVLEwtO8dOSnXe13OB4O+N1vv0VTlricZzifLz/BpnMcJzjnUdUVTqcz6qrB8XjGOHb45ptv1kb58fFxVSaW2eo+e4bFdMOIuqozV5Jn7KXvsNlsMAwj9vsdNtsNYuJ5fjhxK1dMCpvdlgWHJ7g2+TdLXYwZor+khWSr7DzPmOcJdV3BmDcwMwe75JWsZ5JSQGBapZTgmVZoLEwzkbfhcR26ZHm91izwNM81HxOsDZimHD4TE0MO1i8t0bovBEJkemVhBDZNif2mQq0LzNOYhyIhJ56yCFCKyISqKlFV1TrU7vse19fXHB6aAsaUOB5P+HB/j6oq8jCRyWnOWXJWxBt/EMjDVoF1uFMWBfpxWLk7IdBCfTyfcOo62pb8jLCkD+eBVxIJhTF8T/PnOs8z01IFn7Xz+Yy/+e59Vu7yLkDerofJoe/JOGs3W7y8vNIiLBW67oLvvvtmPcPHccTl0nELXZaYxwnd0MMFj2MX0dQtG/eGDdkw9Njv95inGVJJbHdbGKNR1zWenp/hPJWbZcHi2oXAPzczo5bhtszQeDL4mAjrnWOwj1LY7TfrkHlJAF6U74uKeRnOIS+XyrJYB74pKztDYCjAZKe1cS6KIltdqfK1LmCcXF44RES2GsgXab6XwLNQRCgj0dQKdalQlRrOWRb72d4lcnNiCp4/5AC6bOMkB8iHAJfDHpRSqJsWKSQcjid89+23CN6yrvCEyy8N/JI8uzy3QnDxEDyB3rMlG7KuakzThHmeMUwTzkOPYZpot/QcGKi8ePR5gI+szpLgO/D0+LTa6upmC+cc+mGEQMI0Ej/iggdsgrVLyAfPl9PpgvOlZ7BNSvj22w+r0vxyuSCEhMv5grppqN7uGKgUYsD11Q0KQ9vvNA4oCoN37+5wOl2glEZZFWjaGlopVE2Fw/kVhSxY/44TrfJNs54BXPjQ/p1k1oZktT4V6Nzeb6v2TbmU3+mFV8VajncLh16gDdZokA/E5nZRwYvczC/3L++bgASBkBKsjxjGOVvNuSwLIH90OedEvltLYyCVQFEkGJVQaIFpHjHOY1Ze5YVKtnv5EOCGAXVV8++MQILI9WsBkVIevvZo2gZtuwOSwDj0eHx8xqblszOMEyJAnrEiqkFphaRjVikGzJ7qN60MkSF9jxAiuqFHP43ZbUS+pJISOtvSLpcLj89EO2r0AV7wXkgx4eb6Gt2FyfC73RZKGnT9hI+fH/D6ymXG1fUV5nnC/nqPl8MBXXfBMI64ub1BVdcY+yEvOiY6dQoOiBfV9qXv4KzFNFPhLqRCNwwIzqEbeqqnTIHj8UKFYPDYbFqcuzOc83g9nxCRMHuLShOB1I8zUT6C73pVkYu+1GQQuUbODW1ZlRCJFsnlnV4cGsM0I/iQ8TweVVmhbVqqPDOOwDkPAZEXWZkvmVi7L+dCAhMmg48IEJhmz59rTBmnsB51ucHlvS5BG3hZSvQ9a9w5s8YjNtnWLNaAsSUMYbYWh9MJV/stXIi4XDooqTHNAf04o6prLHw1oyTMhsFz0+zwejxhu71C17OGH4YpDzLYOxSmhMs8wxgikmSY1uw9nl5fMc4WEUTDUNE3ZwVZVktJibIgSqPrLlyCZQGKzggi1tQ1yqJEVZZrfV3oChASXx6+5DqaadspL1+eH16zqp9IjbbdoCwK1FnMgQQUoIW2GzpchgHjNDEcAAq//e5bfPz4C2ZnYZ2F9wzr0rHApixgZw87DmsNVhqDl8ORDg6l4APvrBSzACRGFEqjaEwWimQkQB5cyjy4DyHwGYwJItIun0TKohKmu2qlYGE5zJMGIoc5mszaDCE/Rzk52hTsa8kMpy16tjz/nKNAILB4gtIGSEBIdKKRTRlRlrSRKxnQNBs472FKg++//z7fIRw82hwYM01UgC2JtBxWRwxdD1MWGGYLl0BHAYD9foeqNBi6br0nhmHGpqnJC04Jl6lDaTQu44imrtE0NQRifoaB19cj69gkqNYXAv3IEFEozklcoLCiEDovbzkIL4xGWVTwLg9bhYaWwKZpMU8jg/a0Rgx+rW+a8q3nW5K0D8cTNpsWp9MJDw+PMMagqmr+PabAz798XAPx2qZBcBYPr8/5Li1xGQf46NCNA4RRTEMuiBwahwEh+pwVkO9BRLR5RhRChNRACDELHChCUsucLANj3+o2Be8TgEVBX0IJAesthOLiSEiVkTaKWKJ8J5JtSlutMRUFVEpBGdZgHAryXOGA2WCaJ2ht2L+6AO9idjomJBUxTQ7UQ7HPc1kd/mt+/eoBn8kFRwxpbfbruoQQBtvNFv3ljPP5jNvbG/R9z4HEOPCw/Iq1tAwDyrKkJFPrbAtM2dNORdQ0z/Ax4NzxUFoGCYygp0pntixatZQI3sGKtwP/cr4QKp1DBJASXp8PqJsWPkYewlojJpkvZYftfofT6URwuWQjdXO9z0EJVCZcLhcEHzEM4wrSPxxOCAkwpsC723eoqgp1U+F4PODu3S2sDbR7CKDeNGjqCn3XoWwqDHkLNY0DNxMZSm6thdEFpFBI2Y6xWhcVO7rk8jTa0HqxFF3LZ6VzShGAbBviRpPTZz5fPjd6bKBZWDL0QK8WlyVC3PkIO/tVas9GSSzdBYC3xkRCoMqDBoEIbydYq2nrmgeMmeuRKw0UJRlWCdwwsDBPawGyNCWbdoPufML5fMGHD/foOx66tHhPWBJPl/Rc57gFEhm0CiCz/Kh2iflZSDHi0F3QDyNsZujEwOacMeczXAzQgly4MUUYxc9oGAYsrMM5s84eH55RNy2sc0xclUBRMB3MuYDNdofT6YhxmjBoKgt3uz2UUqsiFADGYcTpRJit0hovh1c4T+Xg7e3tag07no+4f/8OfTcxfGOeUFZbtE2Lru/Q5MNYKoWhP1E5WIm1yFNFkRlxi/WScnMuP+SqCF0YhkswwqKS+frfr6qYrHBB4p8TI1UaAGBnj6IsGRqR/2wO0WmJdDZgzjbKELMCI5ITJIRcz5EYmaZXV7SOaJkwjx06mWCNwXSyGKcBzoe8ocPaBAPZEh8DpslCa/LZqpox7FoblEWJviNTi4qnhHGaqC5OwAJKX4bj/PywnmsABy9X+6t1yD7OM06XM049G8yFySUELcXD2BOem4AgOeQu85D+9fU1b+CXUAeN06mDtQ7PhwOGiZa6cYzY7/cAKL23jkWJKQISIra7HZYk6RACrq6uMI0znp9fYLPKZzxbXPoBCQnX+6s8cGJC6dX1PquSmHLXDx12ux28588VQmT2H7dXSECpadcSahlSLVBugRDcqhRNSSOlcv1Ml7MPwAqgX1RZPO88QuRSyEgagQEqnfnu2pVHpzJ8dzkPpFQYrcU8L40wWPiFhQ20Vg1w1gEpoCxUZlY6eDfh6fkZVVFCa4nBcnFBVgqL4IUFyOEvlyL8/QHn8xnNpkUIS5r3QEtkQfbflBM9U2JjEfMztrCPADYSdmZ6X4hvSwJrLWY7oxsGvJwOsM7n943Wuqv9nrydYBFTQIgC0zyhNkzwPh6P2G63cJYg6rIuMY60lv/y6RNOlw5FWWK0I7778B42A8x9IMR6kwvSjSAn5nQ6AQCur6+x2Wzw8IXDnLpp4GLA+eUZLgZc7a/gnMPheMT7+1tANvCOC48kEs7dGdf7q5VnpU3mGGXGkoi08IfAZ1NC0SIXqBpZ1BO0pVKJxucoJ3Iv/z3I81nOvXUBAUAZBZU4SEFKsLMjnylx0EL49hJOxmJRK41+nOD8onrnQN2HgIVyhvx/Y4xIMcJoiWpbIUa+e8fTEePYw2QY+YIqWOzsIvNHydCTqOqaxb9j8ICdZzw/P6MsS9R1i7KsME0jm748EOi6nu9sHh4v4QVaLWVkDqRxliwwJVFpLqVMUcA6i+Plgm4krD7GCCVoc97u97hcmKDq87B0nh22TYt5yqq3/G7N04zd7S28TxhGjx9+/AnWB3z33bfoLif8/d/9PT7+8hmmLPD49ARTlri7u6OFMfLdWmrN9+8/YBwmKkxiQFGV6OYJU+aQ+RQxnDo0VYmrqx02RYGnxxd+nSF77MGB9jRxAMC+jQOVcbYcoloLqVRuwPDV+cY6jLUruVMQcV1Cvg3MmBzK5phDQQBZgUokwILSWJ7TRYklhPwq3EnmRQgV1tZlLEsilSimzJwSYn3uQvBsrGVCVdPymYJHdzljHnuq2EGlfkiAVABEoppdE8vjY0I38cypsdgiC6Tg0V8uq1bh8fEBDLBq8fzyjPv7f8TPHz9hmmcoXdBZUVU4nS/EbIB9fIq0Es92Qu9HjPOMJCWKosLxfFiZwDIrEpXkEs97T+taTkqXKUFqk7mscU3mruoaZYrYbjdo2wafPn3ENFvUdYu2qdD3A8qywOXSY7IzzucOdb5fT6cTjDYrjmSeHfphwuwcfB4yH0/HlX3dtC36foQXHH68HE8YhoH2XOcQYmAa5jhCSDL7rPeomxrWzrgMDO2gUyhkizfvzcWmG1PK4Rkxq+T5+TOk5O0OoavAY55GaFNACGReNOuu5TkJnmpADpQUA2y0ArICerZZ4T7RLut9REiAdTG7LnLqRX6XVErQWdUTA5l/C7+trQsYzZAU7xxCcJhmC6GKRW4FZTSUAGbrsGlqPB9PuHS0Md9c3cD7AKP02/md0ppuaQz5pSlPC2Pgmfv6ckBd1TCBPK9pmKDz8CXkQfXz6zPOF6Zhh5TgI9NW/cyaIwYqT7UQ0EZT8ZRZYlpqXO2usMkqPR+4xJqnCZu2QVkWDJasS7gsMPAuwrkZu/0VpOTSj+zwCmVRwdq382UYB/jIZOa6qqjOdhbH0wmjswiJC1GlBP70w59ZQwtAGw1TasyzxTAzPdhZy+ABiOxM4qIBklx1P1tIufR9WRUqFUxpEGYq+1a1qJQQeEub11IiRAYgLOKfkCg0QK6Z2k0FpbjSj2BYIwc2vIvHaULVUBww5IRpqrU53Jsm1o/jzNChlHinpVybQyqeByJBSY/9RkPICCkcTuczrnZ0LX748B5tU8POlnbZosDL8bzafpVSKAuDplm4+XzOpaBKEIgMyTEFpnGEkBJtxXODvTgxOuSjCtaqkoFds7W0v84OSi0heUxs1oKL4Et3ocspYxmwzEK8R4q8+6UQaCvikewcsro0Ynt1BWsdA62aDbquwzjO+T0VqwJcAJkbTC6e8xb92KNtN/jmm2/QXc44Xy74/PSA0U0MvEgCARQ9GWPw/W9/i8fnJxyOB0gj4ZKHSBJSCOyudkiRKm4fA5TREDmo0XsGfHKeIRDnuDpBQuTsJSEjpFJEDI5qvJQ4S8pookIbzjoyY89bLoq8d0QnRZ8HoQUD99JXARpZ/as0RVHIzh8uPHkvjeOMEFnr0/0YMC9KcqkwTBOxLDFmrn2RF52/7tevHvDFlOWcefNwuVxWZhsfXIPT8YR3797lH8ii+lmsc/KvGjamzKmVVyQEix5GjHP7M9oZx8sZzvOAX0CcddNAJEqlRb7EFoVHmxkXV/s9zuczD+3ELUISJX785Qs+PzyiMBXaTQslFW5urvH6ekYIEdPEBN/NZoPT6cQD//UVSzre999/j8eHJ2hDpVKygD+8wqUEoTWGacQ49thdbVE3DaRSeHn9QrtRTtJ1M9WBKvu+fQyo6hpzSLhcLiiLHIKhzDr8YFPGKbGQEimmVVUo1RIlvhRsPHAXu+0SUU5bcVz/uSVEYxnMLIMTY8wqOQUIdLazgwvAPDtA5GS1rJRDlvbnvzgf5gJlUSCkAESL2U74/DxASw1lVN52pJXlh3xILsEq82zXw2yaJjw+PqIoC+w2O5RlidPphPv7d0wA8zHL9RV85MG1bIIWC5/EouRhYVE3NZWQMmKcZkzzROhzDoFQuWkqqxqcUZERsDTXzjkUhhbWm5sbnM9nNsGGce2QJf7yyyc8Pj6jqeoMURaotjt4/5qVDhbXV9frszbPE8ZxWIeZH96/x9PTMxuQEJEcbVMBLFL6YcDFO1zfcAittEY/DGzkg0fTVHh5eUY/DIRTg9bdqq5hfULXXZgyFwK04CHpHNVOIjMcpWQAiik0itKsm2Bu0NVqCVqGpkt6NoMpcrGtOICIeEvjVplR9zYsZDNiLQMNYhIYJwchFGJ8KwjzuZrfBRZRSgBFkVOYrUMQwMvpwELDELysZebviASRqFLSWmX1XVzfmbIs8fz8jKqusd9fo8rD+IfHJ1Ql2Uf9MOamTEAiropHlS0EMSbY2cI5Kk6FpA1rchy4TNOEU3fBMA3cEglaPSGQ2XA59TqwEPIpcZtpLa72V7DzjGkeabcpakzW43zp8dPHj5BK4x8+fEB3OePDh29wOffrIGm/22G332MYekzDgNeXA7Thz0tKBVMUuLq+wiWnI7usvJaZi5ECt+FSAiYYXLqBgPZxxH63w/F4hM/KGCEFZjujqitUdYVhmnkfZFVoXTf5nmDBsFh/+P+Rt9RhfdeWy5yA5BHeeXgvIGQJUxQoxKLO0nnLx0YuZnsruUESUhkkHzHbgNlm2HcSsI4NiVqUM/muAcAUMXBoopVAUxloLdD7AAGeL93EwBRuDgW0ktkGPa+qbZW3elQRCrRtw2JqnvDu3T2STrBuxsePn/Db77+FjsB8uOQBEBCz5WAJpArBZ9UyF0JaaiQhgBAx5sFgP/ToxylbLjNrUJusQp0yX4TDrBRzGS2p4NhutxAQmMOMpDSqskbXjTgcz/j85QkhBvztu3eIIeD29g7H4xnWO7wejri+vkaT02inEHA6ndeE4HGc1uTmw/mIbuyZjmsMUpQYphEiMgn16eUAAaDvB27M5xl15mS+vL7icGbAA+1ZTDPn4Hqg1UUrlFl1bJcGQAqIuFjgGbQCsTClAhZrPGTCNExrbaE1h8JKFzxrluVE9EAeyMUEFCWHbFoViMljnkNWu1kqRT2HWktwkJBqbXCMJnYAoFqhrSuYQmAcfeauScyWzf+6TFAKkBrWzmsQz5J0j8ynLMsKSvBOHieqeptGIGZ76C8fP+Fvf/c9jocDJmtXpQ5AJWxdV2+WyRAxT9PKRE4p5cWLwKW7YMhqgpAHT1qQpQoA5/Mpv18JKkOrpWSqtBACWvCsDJHJfEaX6LoBh+MRs3UZas203KqsEFPCp8+fIaXE1X7PofY8I3qqx6uygnN8/lJiHfvw9IQIYM6MzBAChmFEqRV8jPjxl49MYZ1mOE/FBn9GwOVyxmUcYEoNFwJcT14cw4TYiC3PnHOeoS/ImJW0KEJzKnNY7NditT0H/6aWD9GjqkxeNsuscyITT0rk843hMtIYSJUXvDEhTB7OelgbEBIwu0SbkeG7T1RBRIqALhgAA5BrvN22MEZiEgyZEYLsoWjjyrGrMj8bKaEbBjSbLax3sHbEbD3OwwCpyUqM3kNLgW1bY3ZvtWaMfJ8LLdGNI4ZpRIgJ0WcFrrUoqxoRwDRN8MFjv93CjqzVKAJITNxEhwguwJV4C7rShkETzluEuMDMyW7mu+8hkkZTN9i0LYMVYkSwDid3gs9DJ+csNtuWS5SQ8Ps//iHjVcq1tynKEpuGisxxGGC0hhHAue8IvZ8nKGPw/ttv8PnTZ4b1TcOqKq9TBSiF88AFn82N7S6rtew8A0qhnyYuj6SCigJSRkRJe2YIKTOPNaATEByUUBBqGeLS7oxIO6NzVOciL0pTIpesLA3VtpacQTa1WW2XBFKItO1qjZgbeOsDzzjP5Z1zcV1ehMwyRQBSbmgVErQSUIIuCK01EgJZ3onfX4zko1VNBWUMbAiQyDzkps5KYPYqz4czZjvlP5938NWOYWYMWEiwzkEhYbNtkGKEFEBhNA6HF6REDt8w9Li7u8M4jVy4hQANTaxLYfB8OOB4PsFlfITPTivWpxysihycBsEzJwW+70YXeHd9h02zweVywm6zxfPrK9E2WiGFCDfPMMsiKSN5GAJIVtvQzxiGDk3b4MOHa7w+k/fXZWyO846OgKIgVggJIi8xhJZADJjHCUYUq8jDOrJBC2Mo2pDseYqygMqYCrIsI1R2fckkUZQG80xBzILFsNZidjO89zBGw7s3KzgWAYgScMHlgLJiXZI7z0C16HMS+ipa8VnpyM9YKsXgAyURIxXc82wRQkBhCngfMQ2eaulg8+kpmT6rAC0YqhkBSMXhXlk6xHhBDDN222/gPMNF7OzILo0M8pgnixiBfiS7LkX2v/Vmg91mA6SIp5cXJDAgDiQgoChK1tYZofJ6fMoCiIjz+YL3724hE5EsPkT+2dB4Pj5nFXqP9/e3WXjB0NH+dIL1Mxn8SFmBzc/YKIXoHdq2ZbhRjCgLja6n1RiZeddUDYzmOXm+nPH8+sLhcVFit93jfL6gKAo0VZMxKlykWOtYe5cFhmnEZRjQjyPiMHBQKSTDRkLIIRcCXx6+4HA6IMQEbwMgIhACtC6QosA4TvzXYCp0TKxPhOQcqaprzPO8Pk8hOqKVcvAeUTpcCojc03IhJ9fenQNi1tR0eJKNl4JfbdoUjyWe4VUFBnBQVCK1xDSP+VkU+RlM60AV8W0OI7Jj0hhibI7HE8pCwbsZRhcM2RNvyJ3/o79+PcUv8kMojIFKEQoJ/TBgd3UFHyOkKTDODq9Hsk1enmk5lFJjnEZoxeKYzQmbNj97Du8yN2JhYMUYcTifYD03X/mcJBhREV4+z1MeLnEDE7yH1BpD36MwBVKgwgoxoW22iAH49OUBz8/PcMFjt91BKYndbpetjw7PDw+4vblFoRlF771H9Nwq+xiYeinZxPfziJfjAQqCSrtE63KUtJj+9OkLUzaz1daGgDDNuL2ReHp+xGXoIQsDaTTOPSfWbLTYODRNAwEOKIahB6f6arU/cGsfcwMc1gJSa0LDmXyVh5sr5+pNcrpsf6WQkIkWi6Jkqo3SBpNlIm6KwGypwHEBmB1fEIADMJm3wUoBSuagARex32/JZZo7SEE+kI8RERFhpvpmST8N0UIKWk+8ZypV3WoURQlruaEehhF13WCYZyTJQvzp+Rnv7m7w8eNnuJxWMw4DTFFgnGbUTQWp+L15aymt9h5SSdiLy3aNhNfjES74VWYtc7JpWRZADLmgIncMMQIhQmROC336DkUe5Gy3W0hp8OXxCYfDMTPdSjjnsdtQdTLNM54Pr7i7uUUC8PD0uP69ZUEbsbWE+Vs74did8Xo6QisFrQW0KTFOLPbqpsaPnz5hnMacouxgU4AfLW4ScDid0U8DdFGgrCv0EzeGPnLj64JHsyE4WCkJ69iQKMHPOCX5tg3Klr8lQEIpbnenaVw3Z0W5bMUTFraAz7Zp2inJvtEl5fSQguBlHzDOlEKnhKwmilBa5oF2hNQaMivxtJL8+33CfreFUoC1M0pD23aCzIBtqjbquqZKKSspiqKADzN5lqpAVZEHN479qjiepgHTNKOqSjw9P+M//eO/x+fPXzD0E6Q23G4aieE0YrdjAiqkQAopP2sOYZ6wpE6bsuAg11m+7+DnqqVAky3cs5vgk8MiHqNygRZDkQA7zUz8Lmvsd3vUdYuXDF8uygrGaAwDFwnTNHHgcnxFWzVIiPjy8JlMIkXWoo8BYz5rpaCV8+V4yEBfoG5rDMMMh4BCazy/HDDNI7abLca8fSbs2UJJWgVs8CgqLjLOfc9nTbJwoRKRkPSUfN7+vr13tB1k2423q9V+Gf4tajZTaABpxRN479dlANWgS4OdlR+5yhrGCSEAYZrZ/EZm7I0T7ZMi8/eUkpBaMOFMy5UxU5VFfu4c6qqkHVAkwswThzxNU2eWH4M+lBJQRqDvByDlsJXi/8Pcf/VKtqVZe9gzzbIRsU2aY8p0N8GPlMRb/f97CQJ4IZGSiG5W8+uqOudk5jZhlpteF+9ckYcCJBAqXXzZaKC6+pi9I9aaZrxjPKPhNl3lcq7tnRt2PB7FCZSL7KeXS50i1rb0ehDfuZcacR6klFm2Cec8PkT6YWReZzZX4zhKY7UI26dB2uBW58QlGgsajcVgMVLKgiJ74YqehgPD2DMeBi5nz/V2FbxFZZdopZimmWmZudxu2NrU++XlhkbTN7Xso7bx9f3Aahyvb2/clglVRcucE3iZelqteb8I2+ruZq57mp883dAzrQsJiQ3FEGvcUniMuhZrdG1/dwzsl5m9WGN3gColh9W7c7leKkIItRWuBUzFLCRC5auBNJ+qe1uvRGFQhVKjfyFUfpiLgrZIRVoBC6j0vfhDG2lE1QY0RoYPSiI4KXqsqRfgkkAZUIXkPf0womv7ZN/JNF9rxbSuxJjJShiBrbVQMusqXDZrDe/vb6ybiPNh9aSSeL9d5KJoG1IpNFaaPI2pzcIp0zYdTdszbe9sTjAAscAwDOKWzkHOBPd4pOL0IC6q2zQRkcuaRtF1vewSKt8vBAqJwTQ1IvT2/oo2MB4GDscj6ExnO/76t7/zdn4TQcNabtOEc66WJfUE77nVqNRtnuVycn4jRuGgdaaTaJoPWGNZfeC3b6/ElBj6xOYFeeBrs+MYB7YYwGgSiqTU/SxmbCFGsMqgjRRc5HoflWdO1lvD7o4XJ5w21fmdM6WYKsQnurbFFGFUxig/4zAM4mhPUaDgSbAEVoszuJQqIodCKZrgEzELi2mPqvna8ii3ToUx4l7RjeAuBDUvZ1mt1N0RobQ43YL3tF2HtroOUA3DOBILXKYZrS2bi/gohTGFIq4HrRmHkXFUuBiZp3fG4wPLMgmbcV4x2tI0CtsIkzhW7IqYASxGKeZt5eX9rTpnqiOsyKAGFMZWPqEx9YJnuV7P5Mpd6vteBjFZ+GuNtRwOJ7qmoWvaOjyUveLL12/kEtFK1nRQ+BB4fX3ncDiwzCtdLVXbsSrLtlTeVMu6Sfpocdudi9oaLW2lKbL6jaLBJxk8x1WEzd3hg1bi7s5Zvjct+5C0kYrnN1e0yNDKBd7XEi4XXX2HRFgvFVexD0i7riXmIAJqEqi+otDYhq6K8UrJ5dpYcRmnKGfkpmmkoTkXyBKJ3DZHyOBjIWVxUPkgQ+VS9ghavfQWued0Tebj80AMns1LWZ+IFwaj5OfVSCS/UeZ3v49GC5sGlUsVX09M81L52ZnOWh5OJ0pJNEbRjlLKs6wLH54e2RmW83RmZ04fj4+0bYNShbaeB5d5qSUIwuIrCpZllnOZbcQBnxNS6CqFS9oaGmMlydW1XG8XFDJYoppZLtcLj0+CvIpJmNBt10oxRRK28jzPd3df03Vc3m8opfn06ROmkZK+y+3Cl7dvwlxsO0xrmNcJd7tKOYtLvE+3+3BZNwZtFJ8rUz7n9N2lVzJbRQwM7cAyz5hO0kt95apKokbW7qzy/yoppoDoA7qIkDx0vUTocyLVVA+FenaJhODoKqN0bz33Xop4tK7JsHrukcEc1YEn8fBUkrBcK7stBHHFSzO0J6TKvC2ZFAsKU5uUdY1aaorOKALjqHh8sCzzlRg3tPpcUTd7IlA46tNt5v1yxd3vNBZt9d0B+/72zvl2reiMjEb2arTi9e3tzpvfE4LiZFQc+46cCuPQkdEsfiNkGVqumwwmr/NCPw0MbUP0MhCZ1/V3A++EaRt0FkSIKjD0PQZF8oFh6FjmuYrnMpTQSjMvMpx+eDjy7eUbKUaOh5HDQcqqul6cvNd5Yl43Qb0ge8PpdGRdV1bvmOcZXRuDfYxglDCFqw4RfSSVWFEBcobux0FwDqWaG4p8jihJXOQkKSttDG1v5Q6uZC8tWf0OHSDfdXSeEGWdNNrImbzkyjVURAqZLOxkDOPjkyA2qgC4F+ekXFC1gDKGULUKcb376OuwVWQ1tZuS63dbigyZJPG0u04lddp3onucDh3GSnx66Jr/DQLc//c//7DA573n8UE+2FyZXDsM+Fqt98fDgbe3N/75X/7My+sbm/M0rfDOcmOJa2QY9gMGGCUOoGWeWb1jrSyctm1xUXLkorvLRt1Z4f5NyyyW3Zzu7WBN02CVvkcAuq67O332Qop13Tg+CNfl8enxbvH95bffmJcZWxuWbs4RUuR0OlGS1KXLZNby7fzG5XpjriUSpw8feHt7A6NZnaPrO96vl9o054Q7Uqe8sV7YbutCMVLdnJMsOCUnWXRqjG8cR1Is94vrui33SJE1Ansv7C2U4l7KeQckx9puM2Ir0Hqvpt8/i91JlYu4hYa2AW0ITpwfm5eIbMxFDhdZwJ1oiZBQco0FabTOtLZU94rF2Iac/HfrcxWCdkag33yNBkiT6e5IkUtBwTnP48neL1s7VybEiF9XfHVZXm43Pnx+5ny7sW6OJotVnv1Q6CROW0qhb3tpj5wmZicMP4PY9F0U27kcwKFrGxojQu11mqqjIEOWy2RjpfFP1QPwoRbCiPtI35kgp8cHfG1UlnYgx1//9ldWLy66GAVWGlPi4XRCF1hmEShta3m7vHOdr6zegYLnjx/48uUL6My6raSuY70KzHYLkbysTMt8/1nfLmdu6wxKDpTZp3sM12otz2QQh5OIJL46POT5vDeVplgXynR/1vYYWM4JHxzjeLwzDPayjb3wZReT9/hv33egJM6x+SDuFKWICTafK7+nkOszQnVByOA3Yg3VnWPpmoacxF5dcsI0urastqDAu1WW9JwkmtWa6tYJWIMA/g/qfrm3tvIpjcRX1wrYbxvLFjzXaRa2RMqYGmPf3yfvPd5JRNvYhul65bbOhOqIMTUqUpDpkqrrWmutCLveE3duThVE26aVKvLqrH04nUgx4uuByXuH2zz9MBBi4MOHpxoXaPkf/h//dxmutA3KfHfHHY8HTB2GNLV8YdlWbtMk7ilr+PzTD3z98pXNOdZNLhwbivEwkrXhbb6x1Qavkgvd1lFyIuQAWt8dOaaRQzFVZBM3amRvGwtBOKJNtc4XRT0Q5Mr2+e7s2/9Iu1Vzt87vjKrdIS4lL/KsW9tSlLRGepdwLhGiCMA+ipi3x9FB3V1LAt/OtE3GmAxIM3hOMi3UFXpPnb6NozgCQvDCA2kEMD72Xf0dBQVwPD7egeDCnfWoOnQxppG9xmiWZWOaxH1ZlMD4Yy2w2Mt55mXmOIxorblOM9NyI6REKoqplkaJfCl7qFyyh3sMMMcok+39WbONHKpypmtbjocjRmvW6ha73W7cpqtMSDM8PAji4Hg48n/7H/8Hif5QOPTSrNcqgdb3TU/04kZp+o5pXbi93QQirjU//fwzl8uF8+Um8fwgAmvXdbR9x+yklMsHYTE9Hk+8ns/46NFWS5wdXZm91bFSX7A9UrSnBCQeJyIARVUYujiw/t+fM2saKILK6Fpxre9FOn53thh7dzXoIk4ZFxzeR4JP+CButJRkkJGKuD2KUr8bKImQ3HWFtsnEWNehLFDompBCK8hFM/SduA8aKWywnSYmX1uTqwOuOquU1nx4fhZxoWn4/OmTOBnrfjocRkFS5MSybWxuo20lajn0Pdu2CLdVKbYQxAXWSznFuZbp5FzAaN4vZ/ncq5Nsj7OMQ49PgWWRtdgaXQcbpiIgZP0VAWjEu4BtDMZofv31V7awCVcz5joEjKxu4eu31/rdadqupW1a+r6vjB2NqxytLXjeLleWebljYf78T3/mX//139iCrNlb2cQpNAzCTF3nu4OqlELILefpRlGZpmsqA1dEGFJGoel7iaTvRR27M69t2/vQKFfnLexxLOp3/T02GEKQS1UdbuyXWnnmYsU/FJoax8wl49xGiJngM87n6rSEEDNxTx5Ub4cqIrhpnTmMGmtLLccRIf57nI7f7VMtxsAwCOPXGEVMAdO0vF6u+NcLbtt4PD3KmVxrYvSUIsOHPWLbtE09O4lbMUVx5n/99iLFIEFcmuu80PZ9hfELs/v8+sJ1OgOCUggx0fYtubr/d3epvP9yoVvnWdp7m5aPzx/l861Jjsvlgt/kvcEalBa3xZ0FHgKpJJ6fRZx+eZkoJfP502dCTDS2Y90EiXK9XcUt4heGYeD4cCJeztyWiViQBEXOhG3lP/76V3wSflNX0xrTPBFzREWRWI2WRlWjNEklqKgUVZ3GxihijrL+OY+lCgcKKT0ppb5n4ugsJaONJdbhekpyf9qbK5USl9R46GRPK1TuXKoFGnL3yHWf9d6LgJtln/YhM2+elBW5aEKoUXKUiHEFEJ+vRBFV5NAnSr5Jy3QegLbG6xIpFRprhLdZMjE6Sm6ru7NhHDqOxyPzsrAsS8VCVW4piufnZ4mQhkjbjeRScD7dm0mHrqmYD43JuwZjOF+n2qiqxD3dNIQoXHKfFkpJTLVxfquChNwDNDF4rP7uVm4bKZ6q40V0gY/PH1i3jdPhgFKa98sby7ailWIcD8zTSmssKSS2dSOkyLptzOtKiImPH594+vjE1y+O9+tFGnSL4Gx0jhQlb/kPnz7z8dNH/qd/+9fqOjKUel7qqyMphLk61bVEkLPsO855lmWRz2xz8uG0sqYLT7P6iZUiRs8+LAshkKJwqBvd3COMmUJy7s5TDs4DMsSwpsE5YcW2rZzbqKVp1hpWV4tbojgcm7YVN3xt+5X25q263ajDxUSI31n0e8nCLvS0bcPQS5vqYeg4HFoKN7w/47Yz2hRyWrEGcVNrYaz3w8Avv31hmld8hqKkOHDoB9Z1EQa6sYQswyrbCI+SIufMoe9pTHMvN1zWFQW01vL54yf8trBphW4azldhYIeS7mfnmBKvr+/84acf5YztHc67+hzbmghUWJXpD1L4o1XGbyuqbZgn0QxSlqbsthWX5/v5wqHrBSVF4dOHj/fhx7YJs3E3KLxc3jCdZdvc3b0dQpB7d8WECCpF3RNAqhorQiz31EEpkafHB9lj6/l72RZxbebC0HZsQe5DXdNIJDyLE9aoQogOsHeBtOsavI8oJTpNTAnnXT0TZhpj6FqDqT8DSniQlExTW9RTSjS9BaO53SYxjBZFUXiA8gABAABJREFUuOsm9W7rNpqmp+tbMcvUtuEQQxWhM5BFKzD2d3dLTft8oqRISIJfySVj7X8BEV1d69RB3VvMcimElMiN8AmmecGYI9Ntrl+yvjNKUoqMw0BBJtsA4+HI2/nMbZ5+12yVuC0zTduyNxyB8ImskQjstm1oJZudRonFvMjUvOs6xn7gMA6kKAcl55w0sNSN73Q6sW0bj4+P/Ou//RtN2xJi4unhRGMbet2jaxNtKRbdWEKMnG9XrvOEDwKw/PTxI8NhZP31F4qSSZO7SSTWtg1FwfvlXK3hnsMwcp6uZM092rJfSoF7fPlwONT4LJhS7f+1zAFksct5XwSF9aUU1Xoav0cGKrcLlSlBrM+xNrjtbadKaXQj04QQIsu8ETOsqwct+fYYKyuriOAiMcfdVVkYR83hoJnnyF4QUIpk5UFEr5wk+iWtxgLrbDtLIWAbBdjKbfseVwEpX+iqAOgrV+l4OrEsC8PQ3dsJbZ2Qj+NQ40ejCA5BFrWmhZfzmwCNK38mkJmn27051miDhnvT47U6AoxSsgg09ecqYBtD1/WMfV8bFMU15IPn/f0dbXWNuYlD9PHxkb/85S+0fUdxRaKLtY1a1e8rB2li25zj/f3KtC4VFi0A6LbrxMGoZDIy763JjbQkXm7X+/PUti3XCtXHiCi3b7hQG3ONpWs7uQTLEYSYvjcl7jFAWRDL/WKxu0mFh2nuorzRBpRcLPq+q5f1+L1BqcbjUhLI+ro5QlSEKDJEilkchFWI2kVrVeplUWWOR8vpZJkmR6nG+5xFZDO2Rn9KoCAxldPDEe88bSfxX5TUrHtfpPa8xj9zFhHv6enpPkF6P184HI8i+t9mllmKWZq2IRc4jAMhaJQAmiSqp6Qh7ny5SP17ScL5ULC47X6IMloOGk0FZS9uk0mSUrRNU2vb5WC8c6mOw8jQdWxKnlFtDF++fBVmW2P/V5Hp9/d3YdI1sgYM40jbNHS1cr6EgNKaxa0Sj3IbLnhKbQAz1uJjxDkvxRLVvZPrVH9Zl3uk3lrLFiUGUdgbGysHip2zx53hItFvKy5s9V3cE3eorocAVS+vVJ6cu2+cbdvU4iEBdhtr5WBXnzUp3xAAe6mcRu8iLmSWLSCw3VgLg/KO7JMDhJJILinSt/DxgzgmlkWityLQRAHr8p27GJTEGI1piSmgTK6bfazuGml/u/9+Ssl+2PegFW/vZ+HHKcPteuH97SKQ474jxMRhHGpDW6pCAeJSKpnb+SIXySzuBw3EJPEUa6XRvjMWo6mu6upc1Yq+64VLgnz+phX+3vPjI1aLCPRwOqGN5vXtzFLbuUuW5/I2Tby+vTLUJrVWt/T9QGMNtpFCpPm2VDFHcb7JuhaiRA2ttWz1ArMXlNyblmNkQIoc5AxieD6eiDEQckRV7pj3G8Y0lJzkO60sLYDNL3fRZBe59qm87JPiWNpjG7uoIuJEYRgamkbVoUDEWIVtemJFOYQQGPuBVDKhCnLStJgELJ8NPnzfh0Q/FEFvF09KSlhT+HAyaBNZFrmsYBQ5R8jfi5BSlnKOwzjIBSJFcvH0g6UUKadQyrAs8nt/Z1cqyPtz1xOziOL9KLFEt628vLzSNB2lBLp6MO0a4WoKH3kAY/n69sI03Yi1qMHUGA5KxHujtSQbTCvzmZTYailR37Y8Pj6wMwZdbfEbx5HHhwda2+4vozyr3rO6lUJP24prcl1XQgh8+PCBZVkwVtN3nTAXU+LLly8Ir/fA5h1vlzNLFSJzdVb89e9/l4hdydiurc/KxrwutKll21aapqnw8J4UI8ZqMtxbwCW2I8iTGKQMIVWBXRohgziSTYOq66BgBmqhmDG1sEXVYa3sw4fDINypnMTdrMWxnJN8lzt7a286l2cDNpdY10BBmGz7JXdf3tTv9tWSoWsyTycDBJlTqAKNJcZQIfzyX0niwzOMIlRaowBpOS6l8Hq+om1b0yyGp4cT8zxLkU8VxY2C4SjDBR8CXWM5X95BCXc2+MDz0zNKb0y3qZ43JZXRtJZvr29cbleygpSTlKvkgkm6OgzF7aWowpap4n4ptLbhh4+faNuOZVk5nU68vr7IpbVtUEUTQ4aeu0vj/XzmcDzi3MrlckWh8MHz+PRA2/d8+Y+/sRfuNG3Lsm2UZcE0mjTP5CKNrkWp6tLM1XlpKLqwbitNdSbvA6tG2eoOFqH194U/Wonol3KkaUwVepvaqivlKrqAtRpFpqSIaiwuSCxUG40P0v5K4n5HENb3iDJaEA/VOCE/V7ljBKw2eC84EmFLiVs0p0Tfa1IC7/filrI/ccJSU0qER9tUQSzycDAM/ca6fKUbTvIdZHvn/XWtrB22xt1VHablnAk+0BwP9wb5ZV0pGHZ7hzQPz0zzcjc97OUeRkk0+A8/fOQ4DrJfpCyuoKbj9vJGCMJZ+/MffyTVO1oI8u9xQc6AVAE1I8P0HenzcDzWe5ekTlz5zhBu6jDo+fER2xi+vXzl7f0NhWI4HEWwnCaKNizrxuo8L29voMBFz6cfPuKc45cvv90RWZnqfO4kTeCDsKTfbxfO0xnnNygKv60SV1eyz8UkrtyUC9Y0lFTq6U3E9MOhI9c9UGkZfErEPd4HZFZZmr0FvOKKlBHsQ46Rpm2IKdxd6qUWVqW6/u2FjiULvqRpWx4qxqQgg7QYhK1sTVPvqIHdCZpLgSralToEOxwP3K4L42BZceKw07q27Wp8SAyDpmtqkY/2NEaBCizLhLWZUiLWiHHheDxQSmFeV1IGbduKAhAHtPObsJWr49DHiK3GCJ+CcE2V8HfH8cDQ9mzrTPDCwKRAY8SRqhW0XcNtdeQcabXl0PeUGgUHQ06Syio5SnNz5a3mIs76zTm6tquFY4L7eXh6lGSbscQUJVKfEtk7NuchFXL99zdtS0aJCGsMbd9zW8T9HteJkBM5iQYg/yN8WpUzmUCuxXBFy89kSIRwqwVpvQwrSpAED0bY6NrW96cOm1uLpjD0La4ylnOSckNtxG2bEmirKn6ko21kcBRCRpCHha7pSDny/HCk7ywpelQWriY0UnSZC0Zr+qajOTSEFLnNt7oWIk27UM1RItQb0wAJ5zeUsrgt0HdybtnRD9ooso+CctO1WCwFKTVVkEKomBgI8b8AgY9qu22qq6LrOnRtZ7tOE6fTI8t64fX9UiHfFl1gHCUORC53YanrBzbv+fL+yrTM+OgpqBoRkFhJirleWM3dAlyAeZ4wKB7GI2Pfy2YfquBF4en5gVZbCpmHx5McxnLCJ3/f2HYG4MvLC8/Pz/gqdjW19S+mhLstOOdo+4Z+6LlON87TTRoDY8Y2La+Xd+x0Q1WX0ngYK1djrZlxsZtaazmeTiK+lO8MphDc3XF4P4hrfXf/WfsdPrq3XO1NWOKg27+cxO/+D2KUw6bUP+f7lEUV7lPl3RmYUmStHAutDCFl1i3i0x59ls2M+gwqqkJd7fNWFw7DSqNXxu6E8wZjmvsFKWdp0ZK1OFHyhrISl/Q+0nVyqRUWTW2+rJ+KVjIdN0pXl2Phfdt4eHgipoXrbWJZVtq2Qedy5+m0tq3PWmI8HLncbvz92xdp40pRnjVrpPnJytSosUbckdbU6WRkdRsGxfPxgXEYCVEivt45Yop8OA10pkFpOJ4OUihQEiEFSLVptroUf/31V3748ccK/22FGwV3uLlzjsMoDob1duV8u1YIuUSKv9V3Req3YTjIZeJ6uaI3ETlTyVht6SovqezfWKYKA/tU9TsPc3+udG2aM7XxTZ4jXxdTce/tEF2lDDufL6XA8TiiNShd7gy/7yKtlJoAd7EvFzlUhJBZt0RIiqx29xS731megjoh1UBrNUPnULzRty3OW4xpavtkqRPc2gicgCbVpU/artrW1Gc/fI+6Fdjjw3k/uDWalPdnXiGIPsXf//4L49gDCm1FUOqqdXtdN/p+wC8zf/vyixxckMW7aYxsTnUCJNFKhUamUusy42ok6jQe+PjxA9M0oY3mcrkIp6hrJe5pNW2dXKEafJK2qT3WcD6f8d5zPB7vgN5QW+jmymjZto1u6Hl+euZyu3J7fZF1LYlAEraVv/79byJYKEXbt1gj7A4fI6U6onYxUQS6TDHCBlEFXBA+R4xJGjij/w66ri5Qaafu5HNOgBHujvcSCQwxoqpLUhppRezbo5V726Z8f81dbNxZV96nO74gpsK6BVYXJLZfIyWgQFVnQW3D0krRWOg7T/Av2KahbR7IRQSynJOsHUa+16Y1NBZyXkEbohOQtoh5cjjQrZaoSr24hRBRRcTKlKVtc5o3rLW0Xc+XL7/xz//yzwyDwL53p6Mw7GTNc4vny7evxCINhTGL6yHn7+/R3tLaDw1Wa0KN/7fWchxGPn/6yO16wzYNb+d3mVgruYw2Rt/3IKV0bUVMtMcDWhl++eUXUkqcTic+fvjIPEtMd10XrlU4TzHRNR0Pj4+EEFi/fZW4mhKuV6Lw5fVFJtQ50fbSnOy9l/bgKAd8XTlAIQaJ61cMwL4x5RxBGWwrjtGYUy0SkL9GKb4/a+X7EMl7V91VkVIhzvtgTA7Pqg5GIrnIsEMhZwhjvpckCAMoCHdOG9wmQhxauEL3eJr6XuCxYzMaA33ryekGBLr2EedkfRLEx+5KjVhraFqJuAMiBJXvDejO+e8OxlLuLjSo+4PRdL24MNqmYa5tfm3b8fryyh/+8Ae02oSntW73cp+2FbD9+8uZy3yr5xKIUUTx7wNAOX9QhzlGFfwqhUQPxxPPz0+oeo6JMTLdJgC6tsVvG3aUWG9M1KIBcUmO48i6bvztb3/DWsuf/vgnnJPY6vl8xm3uHmNtmgbbNIyHg/DbvLTvZjI+BQyGeV1wdVDatsLxTCXJBajIQHlHAuyttKgiQ2ula4Iio608C0rDFrbKY6rRrJxp+p4c6iXIQEZE2v0yrpQmxkzfNYIS+F1EPGb53qTNWN+f2VJdoDuvttQIrXMJ5+K96buUfYWr3Cst+4eIXoWu86R4IZWNvv/AugbQVqL3ifsz17YNTavQuvyu5T0L3gWF0haUoGoeHx6ry1nRHyUWOa0LHx4eAXHpXK+TPPdNw3gY5dlSInKKi2muokqirWv9XFM71ISEnHfk7SbJM7KXzQ1Dz/n9VS7WSsudBcW6bDw/PVenvQhkTdNwPBzJOdG2HWEVrmSInpgFWdH3Az/88AO32xWAX7/8xrwtcmbVUrayOTEdfP75D/z65TeurzO+Dim0tXStuGe/fv0i6YcqTKQURHirrnVpF5X1e6it40YbDObOdspFLvUxxHuErOt64Vmq74UuznkpjVI1+hajuEwLlQUrZouhH+SMrTX5d8Uv0v4uTudQI8bGWNZlk3RPFPzA5iMuJOTIpOR8KDszIOefvjpvD4eWxmgOh4gqnilNlKxomyOlRsuNha63uM3LWhGDoFqUYABAHDa365W1tiVba8lRHLIo5A6mpOjKGENS1HOn5fnx8c7ssm3HersxO0d8P7OFgEIRUuLl/cLz4wMxbMzLxOYDyyrmFR+ilADsgrKGvhYWKTKqiOC1l9lYazFNRXFMM8fjyPv5ncM4chgP9L2wxVCKkBNuunGdJ3Ex5UTTNdyWWdYjb1mdo2lNHTIWqPgjciKkTEwVb1OLvg7NAEbu1aXkO8rE6N3c4SsrWKNLliF5yaCr+9AodCmULPeZrCDXRtKSMll/F6K1UqALKXm6RpBcfdux1DZeYzS1v7sytOW785WJqutasMwzXTfev8dUjSylyL3INm1d3cTl3HUNWhW6VtGYjuPY1jNoqI6yxO0WGXpN1xmO4wMle7Ry2DYz3Tb5p5WICzPL+saH5yeU1szzyv/p//LfS6FdrEKPkihoroOqnV247xe7Y1sj7cKX9zNpPJGip20bRiPIM1XS/Sz0+v4OWktssyj+8OMnXt8Uy+pZnKz319uNlBzOrRREhD8cjizzLPcajMTIaynE7XojZ/DIvqONoeusCFRFWrWLDqSy8XD6gFsdLnnczTN/2+rtSsqUcnVeajSlJHxcCF7MPNP8RoyeD88/EWMhJUf2M9fLF0qOPD58pm1g8zd82DANaNVhq7PUVA4gRZi+MUiZJDnXe1MAFSt301JSkg6GGHC5YV0i2jTshrCdyZqj5+be6Yzm7fWFzz/+gbbt2FwmpIA1rTiFo7jwdNVpfI2uG2Nw3kF91+0uGued8yeinTyjUe6qxhCtcNVTTuQcq1mnqWZEcaqa36VO/5E//7DAtzt5vPeQxSGkKnNNVfcaCA/odrtxGEdciPc4S19htF0nEZ1vry/4JAf9wg7Z1xSVK2eiTvCqyJdzIiziBHg+PvD50yfO57NUuN9uLMsil57NoVvuB7T9YrBPydq25eXlBeck5vnTTz/x9etXYhIQvTTwCFy0aRqGcaTvO17P75UlpXE54rcVYw2HYcSFUC8FDcdDZVMg+fbDKC08ucKUd+fjDpVNteBih8i7GpH9LsB9nwDdQcxJ4MyQq6tPGh53iPn37+x7pFKmgfk+Fdz5dzFmia0FJ7yiKJX2RRkRTkpB/+4ipbXUYMsFsND3EdSVeX3lMHZsThOjZo+rdl2P915aqVpNwVPw9N13aKU4uuRg1TYNzrv7c6NLZhgGsVdrVeNryx3gerlcOR4PbC5UISPSt+L2bE8tb+czb+d3fK6R5izV1S1VlKgW7n0Svk+Wkve0xvLp6QNPtUDgeDjwdn4X8bW18qw15fv3Ywzb9SbThPpdnd/PrPPM58+fOR6P0iCYMpt398ZiW8HcBQHiZoo8I9YQnJeFxjb0WrEFT9/2KASWfzgckOVX0Q/ijMwhQl3Ic90ADLsopzGmqZwKh/dyuDT1QruL6fulWqZsgZyjxF4Rwa7ruvtfIwfGCNj6LOv6jPVs2ybPcUzEIJfgEGKd+io2H8nFkNUOKr3Lkhita9lCRhXP4QjGzMzz3zmd/sDmOwToLM91V8Hc4zjStIaCIxcv7oc6LfFeWowphXaUA7SUMkTIib7vxFmRAm3bcL5OdxfAPM88Pz2ilGFeFnEw1nd3HA+4EHh5fWUNm6xpQaZZ7K6JIuUiSlTFu3ifU8Rqw9PDA89PD6zryul45HqTZiyjDGSJUTWmuTt5b9OtFmSoe1zXB+GlPD098duX3yRa4vy9EEZat8U1db5ehCWClBAJLDtIFFUJ86wxDbtHcbg7aQNd35H2uFhlz0mkS6DDTW02bRppV9xdBnvj436RjXHnerXoYipg/vuww+/Oq8po25/JfVCxs1ubpmFbt/ulNHqBLjsvE9Vc6nQPLReRIt/J7qKyWtG1nUzesuc4wulYuF1f0WaEYklBQNXaCMMoxULbdbSdRakgruWS6Pq2toP6+/DCDKa2HQYRPINj6LvayDjR2Aa3nfFa01hNU4XjoR+4XK81oiKO63EcSTnz+vYm76aich6R9doYtJLDnarfnbBIIyVLOc5xPPD8+Mi2Oo7Hk1yg6wWuMc3dmSQimBQXtJ2US4h7IMmBWmuenp/58vVLBdQX4TvFKK2STcNmAot3pJRxKaJrC1mywiPMCD4i5UwnCzAaeDgeWdeFpmsltjEM9UKTyQoRTer7J3udTE5N2fknOy+WGt9LeCfgfmP0PUmwC/yyF7oaqfw+oJBYfbkf3I22cj5B0djmXv7ha6Mt1uJCJMYCukLtC9/dglrX98JAibRN5vmpZV1+w/tVBIlsiElig10vFxmjNU3bYK04Q/e2NmF6CpMsRRF/Pnz4QIq5rukNMQgmoB86Wmt5ny70bcf5cqNpG8F5VEfkOB5YX9+qg6w2xQ49l9uNaRZmYsoC1FdZoY3E5YUnKQO+oe+AjA8eo4SpNwwDfgsYozgcj7y8vKC1pW2Fkaq1uOJddSacrxcOh5Hz5Z1v377SdVJW1XUdmcIvv/1CzoW2aWvkbGGaJhlwGcNlurG6TeDyWiL2x76TgXARTnHbdpRcRFw0Bmu0XKKbhpwLx+OxFieJgFlSlkibsfWAr+paJv+OooRjJvuhrKfeB/peHOzrukoBQil1//c45+namqaojZQpiVgjwwi5FHu3pzM0MSS8C/fSCm2NnLcz1V2hqrgt+481wmHUtdSg6+SZm2+/Ef2MajtK0nWYlRirkFKKRM2sFRE8lSifUQhy/iyylhsUDw8P1TxRsH1PTJngPLbtqvNXGn3rzLG6UuB8lWHmtm08Pz1UkUFcyG4SvMGyLeJk2sRdSFF0tiH7iNkZtrnQWstc2aalQKLw+PRMyZlhHAgh8FrZk9ponh6feDu/07Ytw2FkXldu88RWh2JFKfpxxLQWnyLv01UQHUoislZltlRQVnM6PbK6jds8y7NS++dSiOi2ZV0WtJLWzrbtRAhREntctlXwAXUQbo29D2VN5SBaY9DWsDm5hO5ROW3EZW4rc0owApmcA7bt7kNFQTAkQQAYQ2M7Hk8PUIfD+vdrYs5kq6trxdwxOTIIiVW0krVinrf7BVfi11DqIKOowjhYZB6TOPTQdYoUZ9b1Da0iqjj6fkOpjpA6CtB2llDPpjFlqJ/b0HfElLldFxSaUhs+U0mSLKq35ecPz3RNJ0NtlBToOYkUj33HdDnTNI+oRvicLsS705AqoN9uM0M/UKpTc9uxF6WIY7hIKdLhcBDRP3hAC/88JSmBUIoQIyjh6K7TymkcOV+utG3H4+Mz27LhlMd2lvk2iTPVGOHTNobipNSuQQQDHz2mEf6YeC+q4FQKGuHGxqAAg20KJXnadmRaN7SygoOikILD9r2weaup5HQ64b0TN19rcH4VlmjRGG3oB2GkrqujaSQR5oPH5Iwu0HcNQ99WF7AMGXLW5BSwytB2HTF6xuFIzJnbrX6Pu3iYd+NAqRzjXOOXcg4sqtShTCPtsF1HSpauHe4mn9OjcCWd20ArmhZ8WNGlcDp02NZgmyT8yJyIyRHXRe72MUmBRfI4NzHPE29vZ76+vHGdHSlL0LyteCCQdSrVgprd7RmrM1tpVc99C4rM4gqqGD7/+Inr7cayrhitmG4XUHIPGceBP/3hjyzTiqZwOpzQamVzF5rWsm5LdVXXpMuuC+Rci05k6Le7yPeW4lIApaQQrXJJD8NI21lynrlc/oOYPHC8YxWKlnfYh3iP9UIhq0jOK9PtTN+NUnQ5vTIvN07HR3LpySny+voLy/SVw9DinKHtHvHuTIie3PVirEFjdCInJzSiZOjbQRz7qrCsC23T0lpDzhNue2cYjmjVEJInKUUKLZvPHB96rBI0gfNeUnzec718RSnP6/sZ0xs+fzLkvLH5jRQXjsdHQk4oJamMnIoMYzVYNLlYusbStg3btooQaLWssRpKFj0ChENZiiHnUEdrkuDprCHHSARa295di1r94xLfPy7w5YKxDcE72sYyjH2NTdXF6HqjqWBTt3l++PQRtUj7mTYy0dGNsMuml0k2ySoyxCg5885IzEIraNumXroacS+UjCkyCRnr1PZwOEisJ0kN9GEYGfsRchHb/LLgKrenaaQ4I+XEh+cPABwOB758feH1/RXQ9P1IKYXLfIMJjqcj568TaMU03UDLQWoYe9p6MfPRk3NE6xbvNxQwjj3LutYLqqvgVlWt0TvMG7GjVjfh7qzZI0Jd190jaTIt+x6dFJC2WEXlsmtYJyni6Lvhu/MA7sKgTIXVHVxsTVMbr6TYgALOZxZXAeBaCTJ2jxQpRWs1XY1ljJ2laRKPDwXvFlJaSPEMfECrAZ88x2NfBQVTbf+GkjWpSBRFIjMBqS8Xi7AxEsXSRte4QkvbimNpXVYa0zDNC13X8/BwIpfA2I9oHF9vErdVSGxIKWk6ikkOxmutyy6A1i0lCfOrafaXt2XbFuEGKilyaBvD5Xrh4elRhIMsUeexHzgdTuQK9J/nqVbeSw7/fHlHa82nj5+E7dK3/P23X3m7vFGKRI9DTlyXGYDHx0dulzPp8sayLHJR0JphHBmGnvfzuxw4s1xkvXPsDMBtE37Q5nfhXaIX+0GB2ii0t5BanVln4V1qJZZ8EdFkcVIKSsoo8z3Ka7uuPqca5251mioiurGWEiMpyaRsF2h2odoYg3fiJPFeorUhFlzIcghA3ACo6t1U0LeGtpEpUd83GJV5OEW8u5HzSo4LVg2gB3xJtJ0wz0RcjDRFV0eOREJyTnKrQMpStJbSgbbvaIeB+TbRdw22sbRNw3S9oYpCZZkGjeMBY0TMfDyeWOYZxb5pytR5mRZ8CsK6STKVyxlaJTDVouQQPXY9p+ORy3SlkGiqkNC2LdfLjeEw0nY9/u0dYxq6puHheAKgH3rWdSGXxLJNKKW5The01nz+/Jl1lcvny9sLbxcByjdNB1oA5Tlnfnz+ifPlynl5Ya+g142wOj9+eOb19U2aFnPCtB0pe1zFEuyTSbeJWNz1fWVPiJhUEncBUmJn0vB6j9FndV+H9gbv3zMalVF07XB3t0CQAcEgTag72DZXd2tTByXeBbyPlcsi/KBQi2q00izb7iAEVXJty5I/TWM49A05C4i4sS2NXcnphvc3rC103aNI7wmMLXJZTeKqiyFLw10W0WAXwlUVdXaeVd8NjOOB2/VK14qjzmgpWVmXlb5r6lBpqPuB46cff2RdF4L3sjdauezP8yQDMq2F61UkdiEN5cIxMUox9D0fHh95P7/J1LsOfIbDwDRN0rB2PPL19QURkRRDP2JVQ9v2xBTqpSLg/MZtEkbRTz/+TC7STvry/sZlurE5h0bcryFKE/bnH3/m9f2N18tFXHtZLlKttXz89IF5mu/CY2sr4yTlCk+u8SlBkDIejoQYsI1gJ5TS9ymtDOZihW0Haf9TAnkX94nCOXEke+9E2FW7cJzrIE3KMkpJ7KVBe7FQqk5NY4Txs21bfRaVxFdi5Uoaw+K2+6CG6r7a/SyttRyGVqbrNnM6DNWNd8W5K1onGuuhL/igySUxDC3r6sSF4D0UiQSt6yY8WKMk+m8MOYnwIsUYlnE8gjLM68rT6UQpquJWdG0H7Oi6QdwQCpZt48PTEyh517z3AoY38HZ5Ay3Pws7ZyZRaMuNlso1i7HuO48jb+4u4faktvsZQYmYYjqRUWJZNhlrV+ROivJ+xxplX56pgcuPx4cSPP/3A5XplnhZuy4LPghBYneNwGAk5cXg48ac//5n/57/+T9Lyuw9RihTGHIYBt20UVQXT6q6WqEyQQTPgkqOxDRpN1plGN1Q/U02jeExjpTSqOsqMVndHx+5WFnyEkgsqMsgQwbUC521D8GGfONwF9VIKIXra1t6Zac5JWUfOWYagWc6BTdNyWxyl1C2uIgCKFuGxbQ2Hoa3NwvD0OJDzjeivbNsVYxKNcdAfiEkTS6HrDa6KsSkGQKN1YV19ZZsKc8u05s4jvlyvzPMsgkh1QuaUZQhGoeTPnA4DucjeoLRFm47bcsZ5z1IdzHaPu3nP4lZpNKzPXGM1Klbnj5a1/Xg60FgrEPXKfdr5wRrhhJ8OB7qu5e+//J3r7UZjG46HkbZr7liA2yyN42/nC5Io0vz4h594f39n/brJ71YKRdcBbCPlcT6KW/n18nY/5xcUyYtRQM5VCQGBqep0MkQXJWWD4jgexBFvKyMvlirgpHonUoLBiHJW7vqeVKRNeb8fJuQzT3XIRHWtlVyFkSLCaEoiioZUBCW0D9tSrPxiizLSylxKqg7hWjJRsvxzsxRmNVYu58+PPd5ZOWuoIo7WzeFdYewNtlH0HWjlaW0mq4DfAl1ryXnDNhu2OTAvhhA1MTiEnRxrVL66ZJ24B9GamLNgAxRsXgq/9r7pddnQg2aeblJsoCQtMHZSZqEfH8BolnUlRk/ftvz46SMv76/S1q1FDH19O2M1UrpYo+CmllV5H8X5W0Wue6Gel2ELCHamZHFAeh/omhZ0wigZDobopeU1K9zscCHUe0QmqwxRGsdLibidT50Tzk00fYNWck9MMaGN43z+ikIzjB9QJDZ/FSRNrM5zBdTW9q7r6Lset0liYjyMxJzwMaBUpm2gtXK+9U7O8aY66UqB4IWhezweauze8HDqcW4iBUfbj6CkdCfFvehAc3x84lZbsMUNXdtyszhKbXVyNba978HiFpUyx/2sXGrBgtL12VbchUVrxSyUchB8B5IwaqxG4iLgwwY50bWyPqcYcNvGeGjRSrO5hWme+Nd/+59lb6oCGSWTYmAJsrY/Pj3RtR2Fus6XzDTfMBacmytr/8K0nHk8/YxWj3x7fcE5aSXWOuPdlWn6RogLjTX0HTwcP5NzYlkmQoi0tZBzN7uoxlA0ZDJTXZvk/CLPQ07i/EwxU1D3e7hzjmVasMoQvKexBe+uvF++4GPm9PDPgiFD3WPcso9IwpKcUdrjtnfW5RtGnfj27ZVtWQS3Mr0zjD+SYmDbFqZlxlpQJrO5Ce835vlGYzuOo0brhjWstTV9pO8fydGjta1lJeLatLbUAcMq3EZjMY1GYTiNB06PB17fbmQjGKwQPUplYpo5v/9G04nYe5tesFZKWYxpoViWdaYoSTfI2U3uaqhMLkncsjrj3FyHphp0ITovBpa6X0vKTcxJCiVpsL2gJxVpKq/pH2p6TO8P9T/w5x8W+Lq+Z902gtvoHk/1C2+53iTe02Z4enwUPkHd8K2VSXXKAiRtuhYfAtO6kiikGsGgig8pC2DVaIPRAvFOMeJDlpiBEmD0uq5yMRlHvn79egfdaxTBhfuEN9TJ1bKtwo3IiY8fPvD0/My0zMJmqXbU4MVdYI0Bq/nTn/6Ec47XX36RaW61vqeSOZ1O92lBKfl+6DI1+rWtW3WnVKGtFcaRro1yO/8iVvDuXkSwO5F2Z5T3coGUSbO45kKQi/UeRdsdDEM/oJW+/3e/P2QKPFiar5Z5lp8zCcsC5LMfhpF59SijIGRI+7RYXq62sRzHDnIgRsfjwwPGeGK4Mk8XlMootXI4JrxzNNpgG+Eu+Soaeu+wjTjflLIMQyMMM6WJBInI6VydWIGUcuXTSZxI2Fry+ZyOR+H3GCXNczkxtMJ929xGq3t8CFyXiQT4ynEy1tRDWIRU7caqMAwdsVqQKWCV4sPHZ7Zt5XB8wFjL69ubNFEpcWcu0yJOnhTvYtY0Cz8mlcSHDx94eH7k9frO17dvOB/xRZ61gLjlVFOftc3x5f1VYLi1lKREL3yaGhsQTpyIB3tr2y4KhxTqtMGiipJJzu7e2Z/dlGrhys7boF7AkEtKFluyRGYyoT4DIiqLo6dtGymfqS6DHYC7X0qUlkuztD9v92cxxO9FE4fjic15bFMwbm/tVRQjom/TGI6HDoW0sx36jsYakn9jmd8xGpRyHI9BrNPKYBuxy6/LhtYG57f75A8Uh0MHSQQ5RXW/khiGg0TolEKaqSX20LYtcQtVBJVSg8WJI+XHtrmz8nwI0qKmFe/v75SSxUlRsjDVDMIuyZmh7eo/2xKCNJihMzEXnp8+SOSpadHaME0z8yzFOmPfs6xzdQQPggFwG/MijBkfIx+enxmPB1zYeLuc5bCuBDCfQNy41vD08IRuDNd5kgOLlk8jxUDbiFBWraTVMSbPSGdb1m3FNIYSssCclRLnELJml0Rtejas24JthYMXvRx+U0zVbSXTTlnzZGgTU7yLKi54do5k3w/YuyNGSqxdFbRBokZG7yysst+T67ooDY+gcG6FVtdNXd+jlCkmDr1hHC3zvGC15jAYUnKsy1Wa2Euk6zzGepxvCQmMlQZK4fgVDPa+sTdNU53U8sMYrURM6jqcC+Jay4WUpJUy133HGC2sj7bl69ubHPSGHl+b3EOIteFU8365sDOg1s2LS6eRg2yIgWM/imvdaqbpKgc/BSEnnk5PMiwqgip4e39lnoXX+fT4SAhRDv3WkMm8vZ/roETYS49PT7JXA9O2cF5uKA2xRIy2+BxBQ1Obbs/XizhKQBJfOZOyOHrFib4XYcnlte9b1k1c5r9fZ0L83pK7O+HatsG5VNlBPW7z8r0Gcb6gEvdCqSzsR+ohbEdV7M5lrbUMjargvDOq9j2biikpZXcNV/ef1eKOa1ratiO+nzmODZosbveY0LVAZegsh0OD2yLGFNrGY1TEuVsVNgptl2j7iNksIchwVCbHMtSR11ZX3mRh7HpKkTiWtRptCiEmjO24TjOZCZUyX19eeX444pyRdStl2QWU5nZbuM5T3WelpECMw+Kkg8y2OSnOqoOTu7M2JVrbcDocxCEzdMzTTdxKCnIuDMOBru1pR8u6bby9veHchjaGz58/M00TVovDa3EbL2/SjutcoO8PaNtyvk3c5lku5Vma+FQtW9qSR7WaNXr+9S//M9Mijq9UB5wKEYCDF1Zozpm266DuhXKpbDke2urcKqgMKYV7GUqpnN6mMaSk6BpLzMJcNEqTgri+QxZBWAqtuIt+YuQuFfGRK2Reczqe2FlN4jAP9d2VlIGc4/T9mbyXQZXEYTjIvretdIeW4AUfE4I4bKb5xtBqDgeJPFpVUCoxtIl1negacau0baQfAs5lNl/d/I04uqQwpFSnuLyvXdew4xaUEqefc4Fokryb9UxbjEIbw8fHZxHkq7v7PK/M60YosIUoQ7+ceXm78MPnDxSVmFZBV2w1ihZzEpcpIloaI5HfZb4xDMJN9tV5t5+Lu1EGGduy0vcd0zzz8PDAUNtvVyexfx882hjOtwtFy5myVQ1fv32TtWpLMlzdy3hiJmYRyijCw8pFhofWKhSG7ngU1xcSBQublBD0Xc+6rZQUAWn29cFjrEKbXB2CRuKyJKwyIubtTdo5450DrYjB1+fI4KKj7zpa28i66DdUElNCRjA3KWW88/Icek9bXdgojZs3bKNpa7OpXJBlrdWm1CKfjpTMvcRQq8TT44hSGdfI+pNrhNKg6WzL0FuMSRjd4X0Up05aRTDePKjEtk30XY/VGtWMaKNpjLjGchGuc9Hi3hLsgDitxGRSz8s5C++YwrYtGKUxtuXp8YjzwjdOMfLb168YVViWicPxxM8/f2KZVp4ejmiVWF3kfJuIUZJRc3CkKK2txgrX+Xq5oZS0boZaQpeSONHlDCnn7r7raTXMy0TTWA7HjpJXvJ8Zj5+Z5ivBJ2YnRoS9qMqlCFox9BZVMhRPjAs5SVz25e3vDEPPh+c/kkOhpMDl8oVp+iKc86EBZXDulZQ7hr6ha8RplbMIz845eScLtdGzCAKDgtWZGCdxJumB1mh8mMhqZJ4zGRkI7983lZUbwhuNTfz662/88NOfeXj8iAmFLQUpawmRVCoXN4Y7z7SxjeCRquPMGnN3B5MzViE8S1Fwq+AsmKWoIikJ7so7J38NDTlFlBIc1t72G2rUsqBpW0PbKHJcgYQ1Dcu8Mo5dZaZtpBSZlw20iI65JEI4U7TG6o6EJiRHDFmSFcXj3Uwub7j1xtv7bygVAEGBzJPidBxE4Gp6bAMxLrj4xsv7f5DzzPFw4Levg+x7uiHniPMbKYNSMuRou55pvlHIlY24Jx0jTQNdZyjVsJFSuesHzm38ti4MXcdPP/4o74WNvLxccM4DNw6Hre41VrjqCRrbIlzElZwDxI15eiGGiet1ZV0nnPNcrlc2N/H4/JmQEsFtWN3inZTC5RoPl3fRkdJNTBhEcnZ4N9N3ilx6FKMI830jjL/sgUjbKpblim0ahnZkXResbTEWht6QYhCHYVnpW0ssG6enAaX2FlzHsryjiuEwPGK6kS8vM20/CtKmSJLOGn1nphclyCpxVYvQaBsjn3WrCEmxbUmSc1qKr5rWgiqVN133SqQvROuCyuL2LPq/AIHvdpuxVi5L7+cL6umxqsVy2BWINby8vpEpuOA5jAIQV2i24KUu3vnqqJIJyP4Bai1q8th1EtdQEgddqspfcsa2wlYZug6jDa+vr5wvF2KKHMYDbd9Jw64CHYzwpW6TiFkh8PDwwLQ58vnC4jxxWYVnYcB2jUAbizRxfvn2G+u6EVJi8/4e/9m5cruoCFSHnFxWtZYI1d4qJEy3ygjcp7RGiKAyvZOJmfcippSa24edxyKtRLu4tfPMfl9ZTxE2xS7qgThn9ovJDuM2Rt8vUUarO+vvMA70fUcIjuGhZ21KtceKQ2yaJlBwGOXAWrJCE+hbxe3msY1FAOSJppfG4W0d8dVRVhARt2lblKJerhQ526rMS4uNFHNkXt7eCVFq26fpxuePH9BKXCEpy0uqjOH16wWXArdp5odPH2QDaCyb98zv76y1QVdXG2yqbrI9pnw6Hhn6HrWLXEEEnVLFBaUUT0/PgObl5YXL5SIC7/FI23dstWFJu43rPHGbJnIFoj9/+MhtWvAxs/og34suoKEdOpSCVKRt82+//JUYquMreHHbWV3LDUT03h2ZcikVQUUupA9yEY1OGtVqW2VNGmCUqm4V0LV9Nud4j4dQKiy1btKHw1jjboYUYo0r5LuDdG8p/f0zdo/hJpl0yDMok6RSuWXGSMyj71u61hKD4/nUM1h1h9IabaQNLWeOo7hUxuGAVoGugzUF2nbncQbabkObjrKayl+SSvqcfY217REXEYBSkN+h68TlVcj89vLCMEskocTIh6cHHg4DKUV8TGAspmlZ1o23y6U2Q4oIV7II6Ou2EmMQJ1J93nJW94bonCKnw5GxH6AUusZWHp5Ga1uZOiK2HMaR17c33t/f5e/vOk6nE9N0o2uttI17z28vr2QZ0fPDjz9JG/iXr2zbTEzSjoeCthM0gk/ybL+d39FXaSvNQPRRYtDIsxZVvMdgjTH3whGgrmv6zsTLmeq+EvFG5VI5ZLa2+Wlc8Oj6qH0vFiqoUng4HqoAK1Gqqs2RojA9cmUCiogu69pWRUZZ2yo7je+CYVud27KuQNtIwc/DUfAFKYOqDEooXK8Tfa8ZBkPfnig5oLSnNZF18SgjB4IQr+L2iBCTrc62jK6uTCnSkDil1optW2iaVn72rFAafvv6DWMF2K5K5vEw8MOnp/uwJxXQtiPEzGWSRjNtLA/HkZxEyN28Y7tIKcruvOhai/dBmDAFhvHAoRPHY2OlcEFYtoZY9y3nHB8en3h/f+fbywtKKfq+r82EszQc58SyLrzVCB2l8PThAyh4OZ8JKZAQx3XMUVwf2hCzNKx7H/C1JRy4x+d31uPuestJ4izxd44rQQBIxMTaVoZAqQjSwshU34VICE64MtaSY6TUtc2YCmwnY+9R/8r5LML5LUWy2jkmchWgzb1cq9QLkDi8xbUiDcqlJHEdG03wsT6H0DXSrnw4WIZ+xB87WSeKrLvv7yIKHkYjawEBmOn6VCODchhctwvD0GI0RNUhDZKFxorbx1pVzwXiGFnXta6VI7bRWG14Pb+jtYi2qf6evRFo99B1NJ3Cl0ByCZ8U0+pYfCSkwpfXdx5PB0pKzOvC5hzLOuODl7hcKTQ1eUDOtNbSNvK59F2Hr1E22XNkyOG9533b+OHjZ15fX9m2TaDjo5Sh7GiR1TvmdeO2rDWWaOnGkWmbMT7UYimDrsgRlAwrpZlc1b1R3PsoVc85EhkvpdRhYBaGUBbu074/WSslUdqUWo5gUPXsWCikXIglkLNl58+WDKVyfbu2IURfo9eaw0EagUOQZxC182xr+U91prRde3dHbdv2XXThu7hdahMh2CqqJSnQ0ZJ6eHro6bqeVB3UuTTVPeyxVjP0cBh6SkzkMtO0kXmRxEHMkWl553RsZG8LHaVIrK6xipSDJB4KtK2l7zvWGmmzVhiRVlueHp8Yh15cpFrxdnmXxETOtI0Rl3zb0nQNyzwTQsRYi1F7XFfKBa63ha41la8tZ7iUM13b3cX4vegvBM/heJASl4p80Fr4dKUUKfvwnuMw4txG17UcDgeWaRbh+Thym2uiSGu2KANDlLC9bNuQnLiExPad73unMQpNwgcpnInZ0BiLqgOvHAWmrptG3BxGs3iPItM3lmzlrKSNwWSD1hLDDcGhVSGXzOHQMrQd3guzWlXMSFPPQQ+HA+PYQYmYLYhDqTFsm0dDXUctGEl9pJTo2w6QuHmKCWxhb83bByr7HadpamJnHEW8QgSmrrE1UilCi1KKQEKrIC7u5DFa0Y89WitsU5jXGZUjymS83xliibaxKJ3ROnE4WNatDuEM+C1iKic76kSs5zlVOeZKKYJP1QVTsLbg3URMC0VtaD3wYE6ElFjmmb5tWZcr3k9A4La88t/+p/895tRLZFVXl1upgnaStb7UPWVvaU1ZBHBx8iWMrftJrocdBJHz888/89uvv0jBEZCiI4Qz317/g9nNDMMnQkWGZFUEtxEjyuo7/kQXh3NnlvnKOBy4TRPz7YXgOk6HZ6DF+Ylvr1+Y5698/vyBlBZU1qSwELzw0SXOqVjdhrsLQhZt2spoFBfk2PdQNrb1HW0yVod6t02CAKDB1IEcVRRMSVx/58tXortwmxfMu6LpNT5kYZqviXF8wgQtw9G6BhoDaFmTWy17idEQQ7q/h4UdL7WX4slZoBQqo1bubWMvZ8XkpUTO1LNZU59RYw2pBIkJjy2qOEKciHGr+9eANdLIvm43Mh5V9vSIpjGFt8tXrI60TV/xFPL3nM8v1QV743r5Cz5e8H5mmic0mcfHR3Q3k+MrhR6tHwhxYdu+cjn/xvn8Nz5+OuLDmffbr/wh/AvbGnl9e+V4fGDbZrbN8fj4JIMFaimQcM4kYm4tOTtK2WRfKh3WdCLeho3z+RtPj4+cjo8EP+PdgokRH1Yu55lhLDw8vGHNgXm+8vz8iVyES4iKrOsrbrtwGFuiX5muE103si3iWOvajsvljecPnwhhZp5vRO/onh5lOKQL3klpFxn6rkXpQiFgjDiFv337z3TNR54//BO5CIYnhQDaM08Xcom0negewUWWeaGxo2C/Uv3OdeB6faPRHd7dcG6h6wRX0BqDWyTxaLXGZkmKpeo4N3LYo9EavReZpVSRHBL/3ZFEKcy4PNN0BzmfFXVnjxaVa9mgpJsUwqZIMYiLtogpbdd7/pE//7DAd5ln5lCwStNbzXE40HUN1rQQPSiDj9JSmEshhCs/NVYKD7YN771UKsdQWU+Rzlq2tBG9iAZj10krT5J2t9vtBgiLqyiZ1t5uN4Y6Kf/27ZuIHMeTsFJSwtZK5ZfXd27LxuQdpCRwVqOYbxPOb/cLr1HCRbI1VrfHCoSFQc22J/pe4kr3ivjKhtpdADvj7/flA6ZOwK015CAbdi4ZqZAHY3rkEBfJOzy8FXaVuOY0RktEY12lgbMxqnJaNH7zFGUJKtQpv7i79sNs3/fCxyqVXVXLBWTy3qBioa8tgYrIw6nHGs3Qa5pWIJfCWLTEkOk6iZtpWuEA5I2ivcDjc+Jyu/BopPrcmgFlW4qSaatE8qQ9Zxg7jG6EkUChaToROWq75eo96XbFoBnbhlKgaXtSCcxhJaK4rRuLD2TgMm0Mw8JhGFjXlXlZWDZpBc0p1QmRhqwocgJm6DpKini3MXQd8zwDIjwYa9HWcr1ecWal70fe3t5omobH6hwNFSSeSuZ8uTFtjjUEyImhH1i2lXVb2YIjRC8xViAGaaHLWl7+PR6U90lBkUtbTPJ8bdtWn4dyv5iXDM1Q3VUlkWqrZ9yZi1ks5HsLqTQqd4QoE6kUYhW+xDGScqBrhaOkUGyxFgBYA1paAK+bp2hhnaQc6fv+Hi8HqmvJ3MWqnUGUc6LvW2I0HGvz2f6slVKwJtP1coAr9ZBfiqVtCsaCwopFPTpS3mrTZmRebhjb0tgerQ3GjuQSsTLqk2cNaVUWZ1SFpFpxleoivFAXI6lOlI79IJMg06CNZUuOLWzEsrIsjpg1BcW3t3c+PT9ijGVazrjgWdZFhLUoJTiNUcQibIah60jes+XM0PcsyyKOx3pA2pu+l9vE50+feH97w1grToNhqGUTimWT6Pb5diWULLEHbThfz/dK+hC9FByxfzc1RlcKoXLQtBE3sVaK8XCSS1QWgTvFSIxRXLS1TEbV6ImUkxRpKIwerVs5mRaJ4RMLSklDcM4Z7zZZq6JY740R8PfY90StaqMdQI0NWovRVtrvUob8vaIekPUzJ5rW1mbUvQRGfs+9rXZv2dXIIXIcOvpOSjtskRIV4eRkTkdL0xiMjpgG3JYIYaUUgbrHFKt7YcPmhabrSAq6TuIKKYpAvl88pcO2sLdbqwqmN1qLiFlkjXk+PTCOHTmrGj8qzOuNgrScpSJC5OU6YY3m8Xji/XJmWVdWt9VDV66uBXErNkYYbTkmpiAc3HX1tXlOiieOxyM+eG6XCyVl3l5f6bqOY23/i7Xl+DqdQRfer++kIk7BnDO3eSIXiZ7HEirnUyKWJRcSGYVwk3xtGtUWKJmnxyMh1HKoktncIi15do8ryN83jBU4TsJYahlVbfpT4oprqI5QIwcw78S5F2NgPEiLr3NS9BJCwCh5VLU1aNOQkei6d4EpzBgMa1jFCXl/3iS2q62qXF1xdJWiahw20vcNPsDp0Av+wCja2ryXdKTrm3pecBxGUzEbAWPBOxF4pnST6bp3aFtwYaHtJsbhICJXL+Ug27Kizd5erivG4/sAMNcBmda2grT7Wp4TMcrw048/o7wjhEjTtazbzHWasG3AVUZfKnC+3Ggby2Hocd6x+e0ed9WV7eqco++7e+lN8CuxZNaUKFkE2FyFxYeHB263Gwb4EsUl/qEKxTuX0kcn6w+Jl/OrtNC7SCawulVQItmjaiSplNrgVw/TSkn5mY8ZaxK22feeI+vqKjdQIo8xefqmr0B+hY+Bw+mIq6VaTatYNlfdE6nGC0cRgnPlLMWNkoROLPy5I1rDsniGsWfdZGBklKLpWjIy0ddKnMIua7mAp51LWgUCVepworm7R8X9p+i6tjp1NUpZ+vZQQeBwHGU/jcHR1v3Eh42xb2jaHqsLSkV8iZQkg9OUorjQjCZnTy4bfSf8K9M2lKwFi9LI/qyrUJ7z9wFoyvF+gdmWlUYplmUi1T2h7XvGrmccB8Ze/t5t2whBGMc///CJt/Mby+pQSgSvy/WKNYrbbZIyCqtpa1wvxEhrpRVbYvLiPitKyRpQ1xJVRXq/bTSNpuhALpHD4YT3m7jyUuTL16+CHwgyiChKhiLSkJrYtkX2F5W53l7pup6uO1FSIfqNXFbe3v9G23ScHj5RyCzLK23TYcqT3I/qul8KImYpjQ/bvaE5xgqOD56kg7R6lloclCIxwOaCiK4lcxhHmUjnxNgZ3HomZSmZ6R6eMcYyz4LNiPXZSkmavFGKGB1aW4zVOL/Rqpa9nV7xnbe+R1FjZWULc6zU4hMR1X1YycWK0JsTOVWXVR1qpORk2FkAEuNBOFTWSOvMfFtonk/E4PFqZRzl/LK6RaLFfG+fhsLxcMAYibnPy0qIK96vkAPz/E7TZHK8sbgzR/Un2uYnvnz9QkFVDNGKC1de3/+GD1f6xvLwpeWPP/0nUBnntsqI7rhcb2I0aUTMislX1rG/D0GLog505Wf0FWNjrSHEwF/+l38nhyjlbErcwus6saxnkjIocyBkkC8UUhI0gryTEt0veWWZvxLCzKZm3t9eWecr003x4fknxuMzioBzUiySE/i4Eio7N2cI/oZuZLi3rm/0w4jWLV3b4vyKblqEq2gpJLoWUlSs20KOUiCnNCjT8Kc//sjr24QLq7jEopdzHgG33aA4np4PbNuV8/kXcjQ0zcjj44l5loRN04gTFSVi7j74bWrywd/TZRJxVNUNH6PDu60muxQ5CTIJxNGpqEWWgDIapbkLgdrIuVRXbFEKHq09MayE4IhR0hfeB1qbWLcrOQdxD1aUkI8z3p1x5ULqGm63lb6xkB64TDPj4YRzZ5w7My3vgKZvO0qRd3zb3nDbTM4tf/j5v2ZxZ+bpV1KeJYKaROSapndu8wsltfxf/8f/M/+H/+6/Y103clEcjx/59vUdmeHL+xa9F95gk8npivO/EePGw+Gf0KrBbQsxL9xuv2LNxtPJcrnMDEPHvMzE5GoTMFwurzw+FG7Xdx4fe3zYqq6RmKbfyDnQDyd82O6cSaUU18tVDAB+Zl3eJR0Rhd1eimAVbCvYkG31zPPGy8sbj08Hut6ybCt7yV5wb5yOzyjTARZUxPmFeZ5oGrnPDcOBkmC6LVi7YLXcB5f1SimOHGe2dWNZJrqhk3NA5e2v60aOgtz58Gnk+fnI6hIle0wrjuO2L+S0YLRiDg6jG4waKRRMq4hxYdsuKFX4MHT13qNwdV9qreAfVBERNqWIFJ5mcVUnwccY3fz/pMn9/s8/3qJbbUBt3/P5w0diFBeHsYbpfcGFiD+/ycVEGWIuvLy+89MPogCvzuGDrxbgetBG6te7obu/9G5d0F33vfCiMnCktdfw/v4OD49cr1fatr3HBXON/UzzzOYdPkaWTThjLgaprF4lq795aSaVCb78eil7tBbmQ4pygdFKo1SUyvB6wblDNOv0YS/H2C9RMl0ttJ0cMJ2LaNWASvSDpWl7pnmtZQaV01Jt8MfDga43pOTr5XwHygtzYHdJ9X3P7TbXUo2GaZloKkvjfiCsn90Oqt/LPYZxqJdmTdtKxCnHgFLSWCawU48qrcDg/UZjYOxHOSiVgFtXjEqU5IhBIg7WyiWdEmk7UeRTaTC6YVrXunD62samKl9GoqC+XtT3tjiqoNt2HZ8+fmJdZxRgmoZpnllDwKUoLgykMe71/Sxg7zp129mL1CglJWO1oR/7GjlR+HUhlcJcLy/iEpLLeS6F+Xrj8XBkWVa66qTam6BRitsy352V67ahrbDm1uDojRaQdJILbC5Sia41oCKkQE6eELLUr1fOUWPFkr2Lxvv/hrCzSJraWrQ7QTNWy2XUO49WDUplDseetu2Zp+UuxMkzLM/aw8OJplGkJOKOUoZQnTb7wTMjjpbpttC2rfyeTt7f+LvPbG9TvTe0VqafuEJDrTbPVUjhu11ZQfAJssYqg0sb1hTapkNp4SAuy4Q1GVUCIWw45yS+UZ9FaxPDCCFlrG1xNZqRkgDL1f1Za6Sowm/3C7zRAvnX1Yr94fmZbZlptOJ4PDDP78yLOLFCTKBl2jLPsqk/Pj6Qi7hAdtSArZdt7z2nw7GWTRTIkVzZXSKS6btoAjBPE13bcj6fUVrz+PiI9551XRnHAb+zWXJmWpcKdJfLrrYGVR0exioytcq+ZJSSsqIUNuECRrCmQSEcOlWEsaS0vqMSdjRA0zTilKkDAhH7E9bu37+UORzGlq7pCS7eWx1DCNhWWFNPTyeJWAeHQaJVWjVSQqG1RHMa+ffM0yqOWyuR172hTMTjgtLixNVK2Eq6gsyNkcIZrXcnrq5TzoL3S41gCt9LYVGloBCnGMhlJviFkj39oFjXUDfkSGcl6hnTSt8/UIBU2avyPNq7EzPnVMucunpZUOLQTlKmg9KUGOnahhQTa0mM4zPL25V1E35fLDXOpyCmxPl6YzwcCCniUxTmXtqjcvKOjYcDXSclO7Ztic6xVg7s9yKAwrquUn6iFfMyoY3hWDEAwXsOpyPKyHMuhTFepvt7HM+AzppUqnOtCN9OANiyV6W4irtZWcgNSkUEwC6ON2WsTNd/V+xDjdDsLCOJjQljyoqhhoisIW3XiJge5PtJOdE2LSVlnp9PtK0Az1UrQ4K26ZnnBZShsQ1d35FJ3K7zPTJYqli6r2v7Xi7Ob/leQ3C1ICEzjL1ENWKg0UqcXzpXx6Gtooe89zVVRNNVZ1mRKW6MK0NviEEGPCEGWqNl4JUCtI5h7HBBLsnOO5Q2GNPWc4G4bkxt53bzRj+IoDkOA10/cr5dxT2iCrpkYokU6tBwWUgpMNqBlGQQYJRgDN7PV6Ce2+p6sBd27CVh+5DHe8fD6QHnpEV2//yS2D04n8+QEsdxICEsQwH6bxQFbdcTl8TmHLdpuXMaa4CYVLmCpUhLvaJQsjjicvZYU5inV1LKNO0RsiWlFWs0Kcrea1QjiAj9vWxNUTEEWt0j/jEGTEm0jQD3XYp0TYPR1UdS12ujDU3b4jbHx89PlLQRwkbXKhSBcegFIK8sTdtyGA44v9Vz7Xf0CdUpahtTfx7Ljr2QYpRSXQO2rlUyvJMy3IDWsj42jTj7KAlVEhqNUcIYVCqRY6EQKcUzDAbvwKHkfeyoQvhG0yyyHm0buQjTKsQoQP34PbWyn3lzkgFyLhHnPUaLs/Xp6VHKX4K4df/2y99prMa7ja7r+ad/+hOX84Xj0GF4Yhk8b5epco4Dy+bujniUtMtP860K9bW4Bil8qo8n4q8rHMYRS2G63Ri6lqFvaJrM+fxG24H3hhQ1i9ukbZs6uCwijhutUaYQU2DzS007RN7f/0bXDnz69C+EKBGzy/tfmZevnI4HhiAOZucvlDJwOBxobFP5gYFiLL6Wosh9RhyIChmaKSLBv9NYg9Ej1shdJAXPsiTG45O4tI1m21ZKydymM9P8lZQ2VucwjebxqMnZ4bYEypNH6loNMQVySYIDsVJI1Bh1H+ilihoqqdwTRW1r670goREXVbqfL+RzSrnuAfW6qI1BVyE2RY8FxtGi1ExMk7iVvTxXbdujlSXnwLpeAI13wpaUYpi696uC8ysxrTSNwTmP9yJmrNsbt+lM9NJiOx563PZGZ5+IHrpuIGaHixeW9Stfvv2FfigY0/P127/z8fkHSobNL/iQWF0gFxHYD4cjl+sZtLgeBZMg+HylpHRLnGwOEIdPTI7bdKGzLU+nB/70x594fftG28Hff72yLI5UJo6HCaVaSta07UBWCqp7NsUrW1gwyOfi3My6rHe+agieEGaa5rG6vCMpJNwW7gV62yalXus6Y2v821qP907OKFsmc8Aig06tFAqPDzcy4swrShGjRO61ysz2hVLkPKh1YXNXDn1PcDPDaFGqr67PhuhXclK01mDopVCoP96TLjHlyk0XjSGXKFHlmCgpE32h7zu0jTTaE3QhZapY1IDVtK1l3TzRS5mcNZpYC8+MaigKtuAh1H29iJs254BKwsFUKoEqNE1fPyvP6aTwfqEbP9O2vSCytkBOjphWtEooFfj67d/IsWdZNePhv8GHq4ifWbGujlIyXd+yxAVtFV2buFy/MfQi2Me0UIpwiMk1tWUdmz+zrYnz7W/8578VYeWajv/l3yO2eUBpaX8tCinQKZFSNmI8s2zfyDmi6DkODcs6obWXZ2rNLGtHiI7tWpjnK/N8YxgbKIkYVpblTAgTIVxxm0SBrYXr9ZVhHHg/v5NLomulwCuGwOn0SIyeFAPz9EqIud5XA9frlWH8TPTC2e27sRZaSQeAMkWMMYtjWx1um3h6euJweCIF4SYu0wUfRJsRjUOzbZ5t9aztwsPhgZBnQpjYlonr9SwoscroXteNsT8QS0IhAwmlIfiF8Sh3kJIjSgUUgRg35uWVrm1JqdB0z5BlcKnJ+HDDGEGS5SLvZMmJtgGlhF1ashgVBFeSGYeWXAIhOMCKAF3y/1YV7v/jn///CHxFDomazOo2DoeeZXOstXmpa1q0ph4UNdsm8ckQPc6thGq3zxRpdVw3aXAbhwruzBwfTqzLQtd2dyfaHpdxzlV+nLQIaSVsOx882up7U+CyLsQim7aqVmuphU81VlWIccWYrkb1fJ0Ab1wuL/T9AWsPMj2KV7R6wntbI7qglaFrFKpt71wMiXjIopsTlBQwttBZS0oFjEx2UoiVdSZsk77tyAVsazgeW5b5jNtmDqdHUJZ1lYNv2/YoDUN34Hw+i0W5JFLItcFJokfCbrH1wpLuEShlxWmjapREIZtzyXtc2pOSrpeTvYG3RmgbTSkR7xBxSkXaPlNSpG065vmGi4F+tHi/obXYdufJkVS+c2farpVJgeRngEwIvkY3u7roG/k9cqFR0GgoWtO1LfPm8E64IMdB6tljlr8nxsjL6zuowrzM92hLLrLI7JE52zS1WUhxPJ1YFhHAcmUrSVN0qI4QXWGbqk4hakGJtRJvTAIsTaWQVaEEiQwVwAdX3WyFdb3S9wcKllLksJeT4/z2hbbr6fsnSsms24X2+IwLHVIOJp/TfiAU+LKI3abR9RIQMVbszUPTkhJkJS1r0ZvK3JDL+WEUpqVpDH2v2dYzyzxzevjAvUUyRJrqbjDWssxrPbgJWHx/NvYoUNPsz5oAgLWq49uSKSUKJFwVrFaoIu4OgdyreyOTxEH32JnFB1eZnAlrM22bCbWsZp7lIrwfjjdzox9G4hLxm3C5vI90Q3+PAEAtZYjyfXW10TDWQ4TW0LcNrVH0xwNai5C0zAvkxNNpxPnEbVnRyqJL4XydSCVznSbh59SGza5tWasgpVSF/tbYQyx8b56t7DalYJpnVBZOVyxySc8VIKy15jpNLNtGjJHrNJPqZX1vtdu2mR2EvbkFpQp9dxKBKG4o5bmcfwOVeHz4kULGbVeZumvQ1Jr3+jmJGGZEMLaGoeul/clHtPKQPa2Rw0DJTurlCyyrR2n5vQ+nQ436eCiBZT4T/IoxLU37gNUt8+zlEhBDdeV832p2d0ZjDTF6jG7Fer+3hOWI1VQhSATugoiXAl/fUQqekCKdkvUlpogt4tTW1tTq+oJKhbaFvi/kvGIqoFLEfeF9ts0IyCRvXWQSbK0R2H6BEEWQykl4TdEHtJEGS7nLS5HQYZRhyfPjA/PtVkucJontngb6fuTL6wupRuy9D3z5+o3rbcJ5d2/pbpqG1UnrcM6ZeZ7kQty0wgxJmUaJWBazHGq892gy/aEn5oXh0JOKI9U4/bfXb/gUqrDqSSWjjOJQXXXibhT3S8qOy/Wdzx//SCqaFCMuL0zXL4S48Pjwia49sm43UnJondFGIlupJLKYqUVcqcJJ3/fkLOus0ZmUNyCi9YAhyXOoEusWKRiU1gx9D/XyGvzCus40Ft7ezvz40x/pmgMTAqsvQN7Kfc8GEd21FZSFDKtEwGisFjGpRIxCona6umuiF7GrumNylHXMB09BsAiyLtSW0bo+yN4D/aA5HBWUBWrsaJoWPnWPFXzdkcuGoif6DNrS9y0pyX7sfajRYCnh8s5XB02haRTLPONc5DAOxBg59AO5JA6nkel2q+7hRKMVnz9IfOZ8mwh727l3fH11zOsqjEhrhYmIMDB33tl9jboKe5bqZGkaKQfy3onTsWswbWZdb3z6+BG3zffB6+v7OynHWs4SQBWssRwPAzE6QlwqpiJzPX+llMKH5z8SkzgebvMLl8svtK2lbUud4r8SjaVtNY09VPRJRllbmbFyZpDGZJmuy9qXSVFEOEyP1ZHgJ4oZWdZI045oxV1Mp0Sm6yvOnSklsG6BH374mb6XArBSIDtHvAv/Ld7LAd9YuVT7GDBaXD8xikiXs8TKKBIXRskQurMNRan7OxJjJMRUI2z2d9H3LE7VAt6toAqHsaHrIiUvKJMwWjPPM+PhAylGWgs5rRjdk4IBLa2BO7Tee9mvJM5XiD5UXEcipokYFpQeUXrgUA6klJnmhdYYfJjZtjNaJ8o5MvSGh9ORHJMMbJBLEyoTsyeTUEbX4jUZdKcYZVhouA/UxemkqtgiwumHj5/48uW3uiZHTMyEtPLy/nem9czDwx9IyZKSukfYM/mOCiolQV7Z1leutzfGceByeWO+vRHbkYfjZ7QZCH7hdrswLVcOh56CE1Zc8kzbSt+NmCagKczbjVYNtO0AqhVXGwEXNjSKw9CgSKxpoqDQShiSprE0tqUbnrhNDmUbliUQUkCTWLcbL6+/0Lay/0zLF1KaSFmTs7gbl3WVz7IOKLXVYCp7stFoVfC1+RUURSVCDPc7WIoyVKpxkBppl0lFQRBGOUVsZRMLwkD+f6iMaTRaJ7RKaAIhrMLjtgZUg3eBcbBoXeg6Uzl9kmZSFrxfGIdBEiXMWHPker2SSyTFC7ebuPFKyTi3oHWhCYquvbIu/xkYaexPhDhzvf6dbbuQ443GjNKUat64za8sauMv//4X/vTnf2JzE8u68vOPf8L57c7eoqJMipLPjrwS0o0UAk17wjZHFCJE3q7fMA+PGDPwyy9/oe0s87xRcmKePLksrNs7ffvI7bby4ePnytvWgOd2+4WcHafDSCmJdfP0XYPzUdzcSvPy9VdOxxNuvbHMVYxGs27CpAs+M7sVXXl+pUSaRrOsG95nzsuNx8c/YIcHVBFufdNE5ukdsqtOu0LJMN1Wuhbi4LG6R6lCLhvR33BqZXMTm1tkzYhypvfRE0NG6GNN5R9HQihSamcUthHXv+xlgjswtgElwltKK/P0RhoGmuZIoxtCFH6x7Zp7jF+KmuTeS017GKWJ3mFQ9VwuKTfdGIxOBCeplNPDkdt15nJZuF5mKR1SER9mbKP48PyMcxspX7HWsCweMszzTAyZbc2keIDyswg/FvAKisG7hLUK50VcLRli8pwv33h6ehYRlVLLDiUFk3Lk/fwLy+rQJpDzyjRNlKy46jOn4088PH4khhnnVxhOrKvj9GCIcbobl67XLwzdyLq9kLKnFMftuvHSFCmoUIp1veHcxjAIVkvKhDKpOOblLAYbrUhJV75xQFtD8HL/P18nlDJM04JzC6eHkWmeUEYwAtvmOIy93K8p+CDvkk+SxHp8PhJjprGKxjRYbclWzuGXy0bJsg9IE7E4XLU2XC4TWlmMqUzrHNm2BedWbtOtFtcN2MYIO/P0wOX9Qtf3kkCJiWVZATgeh5oI6ShklE4yEPAzWgu6pNMnKXTJiVy8lHFqxXjo8dvEOB7F8atkEHqbrjgXGQ+PEuuPkb5tiV4ckTkHcjYo1f3D8tw/LPBprXl8fKDTRaCHasClwLwtUOSC/Oc//MyvX7+xeombpqB4u1wIUXgLIAfnQz+wrKu0AylhM+xOoG1bBZwZ450zthdOKOTDzGyUAv3Q4sLM4gNLbWEpQMrCM0NnjuNIcJqCx/u1Hkjh73//N3788c9YeyT4QimOdf6NdX2FPPLh6U/4sLFtv9E0Ba0/0NiOzYdqyfb4AP041ljYXkcvsVaUZ9uuNPaA0Q0hzuQcWeaNkBT90EmDYnU9xbTy8voCeePr12/8qP6Z56cfUSrjo1xS29TQxIJtWtZ1pWLLMVaRojh15IIkB7BCgpJoraakSNdYqPEWayzBC/wx53JnCu6CaqrtPnLJFvddjIG2NwyjIZWZkKREYZ4Xnp5GjKmiQwrEsBJ9BFoaa2Qab4q0aNZDG3UquAOcSxZBxGrLx+cnTIkylVCF1/d3UFrESQV/+uEHvuo3ZudxPuBT5rrOpBTunEJjNMfDyLwsNchTWGuTKICr/1l5T1svfNq0bOuKNYbDoQccPqyMh89s28bmA4vbcJXNkRUClSdzGAaZlBdHiNs9Bvvlt3/n48cfGMfPpAAxbNymX9m2d1LuGIeWED3efSO0YM0ntB1wXiJJhcS2BrQ6oRRyEa2TWNOAwuHcjdbIs5bLTI6BdXWEZDgcBoySiHIMkZxW3t5eyWnh65evxOL5/PFnQIT4zXnathfH4O8m0DlltJWmxEJmGAbhtoWINeK0aAyokqUSvOQaiW6qsGnuz9fu8trdHkohTCErTU8+bHSdphsUKc6kLHHPbd04PfS0bUPTCN9u21bipqugCm2nEVNQuYs+wmqpLM0aIS0FHk4ntG449h3T7cI4DFzeLwzLyuPTI2aa+Pj4JO4QY9m8RINijry8v4o4VQXUrhU3mETizX2gQSlcr9VmUOMuTdMwjiPLstao7Eg/Gi6Xr4zHDyzrjZg0ad2EzVhdC6H+jmBoG2HkOX9FK5kG3qYX1nXmz3/8b4hRoOZvb39jWV7oh4bet7RNj3dvpKRpm4G+eyDGLHHURn5uEFFbG0VwrsaOpaE1uHfatsOogYy0NfvocQ4OD0/yLtfBS8mZaXpjun1l2xaUbvn55z/RtwdS3lhuC2070rZdhYB/L0XQRqHRoKTZ2BjF5kK97ArPoyhxDJl6SY9ZkYq4n1UVVrTV9XcCW8G32mpZq4q0ZO0xY6U83t0kepQzfdeLU7oK2d4tQE/whabtMLqgaswNI5Nh27Ssi8No6FoRQimKx8dHgi88nA68vb+xbQsxBL68vvD5h8+s68JhHCSClT6wxcj7+UoucL1dKxZgd1JZjDWU7TubBri79JTSqFrkYWzL4+nEt5dvWGPou45+MFyvryR3xcYTubSEKEVUuQoMPnuJTiuJzVhbuE7f6PuOGD2bu/Ht639wOhwxWmJrb29fmG6/0nawbdC2GefOxCjuRGM1GinYylpVJ0gnzFdUFcSjMHOKx/t3lI7oxiOjwUhOAb9COzxgTYNWgi7IJRP9wuXyd3JaWddANxienz7Ls7ZGKJbj8eGO2Ai1CU8pUKZgUQJ3N9XVxR4TS/fGP1sjJzGmGi0uaC1RrXGUCHSKocZxFTu2oxTh+YW4obXFmihxlu1GKYW+69FaM4z9/VzQdZHgEqYTYVGRMSrSNvIzN31H8JHkFV3f0RhhomUyP37+iNaa19dXYkx8+foVrSLawMv7N/7ln/4rlmlhaBp6Y2mM5e1yZYmJWIoUBJRUizIyTTNI6YL+zincL7zcnXvivDsejxQFyzLTtVaEBJOYt6+klytN8xFUQwyxPnNSWpByomlbcU7mILGi6wunw5FlvXG7/UbwicPwCHokhI1vL79ym7/y+HhijD1aB4K/EVB03Yg14jr0fkVpiXrGZKpzs7paS2HoWyiO1b/Sdy05ibgpAmCCImKW0rbGKiU6trmZ19e/kaIjZsV4aIlJ0CXLsmD0wDAMNXZWywt0QVsRTBol74S4vB3KGrkAJGGy5Zyxran4BEXJsmfubZNd37GsGzkEuoppERFd7nm2bYj7v1NHUtqY56ugSoYRgKGWdTi3Mo4PpCSOW6XAqIIiyflRFdqmJ6ZMCp7WGlz4jZQmNvdOKp8Zun/m5dsL2jRyIcyBGGcut99Y/Vc6o2h+yfzv/tP/EXRtBC5SrrUGacc12gDiEkwpsiyyp+YSyaGW4NS7SYhSaGI1+BT4n//yFxSFTx8/VFRO4uXl79xu78QUaPtHYKAUg6Z+vsbUAddKIZPSzHz7Qo4L27Ky3M4E57hdJj59+CMPzyObEyG8aweWZaXvJnGKbAJ9j3GGsqF1IcYLuI7GHujaQiot0NE0FqMUKW30faZpYN1mjLH0fU/wjs722DbSNsIBTSWSyoZpgbQyHhvhzWbLtp4paUPTcTp+ZnNwmxbG44G6gLDzZ5WS0rmUxaEsTL0arW5UjQxK8dk++Ct1nxTgfKipEktWqiY1dF1bYxVbZG1UiOnBx5mcPM7NgjRoGmkIV4rxaMjFSeIJiRZLaimQcyLlwNv7v6PVide3jR9/+ol5fcfHhdu1CqPaklMg+MBmbkS7sS6RcSz4bcG5V3J2WAMlJbRRzOsVH24oPP/6l/+eYm4i9GZFSk8sqyR2zA4TLiCdN4Fcbqzb3/F+46T/RN+1LKsj58C2vrNYTykDm19YtsS83Fi2iW6QuP31ciEfFNfzO6dTK8VDSJx+nl4xBhaTuS1TTdFVhrmRgVpK4uKLwd1F7pQKRkkJBkfDOWamaUEDj08jtjU1HVGkgKsYhv6AMi2kQFERt6zkLNiErh1oDwe2xbPOnrY90A8aHxzOzWzLREkNITkZOi5O3tVcqvjlICvG8cTHp2e2IMYLbSLKJJSOOHehtcI2buwjJVecoUo4d2FzE9ZK2aec2aLE3Ftpn04l0VopWPEx1qRUIidxaoESPqZS98E72UlzrltoOk3JmujBuUTJ8Ntvv2H0gdY+cBg75nkipjf6TrEYWxt/W47HI1o5fv31hXV7JUZhHg/9wMuXL9xuC8uy8uNPH2hb4W97n5jyXN+XeE/fKa0oEUKIfHuRaLm1hmm60vWd8GV1JOeJXBqm+TfhQZeFbY0cDiPT7ZVhbJjnlZQz0/Qb63YhRDnrxhiZlitNK23oD49HYcnrhlYJw7rpOpRWzNNNvpPWcrk4ts3RdS2mFJZlxZtSnYoLSomrf5lX2rZB68T1fOHh4YnGNtyuC93QErysNZTC6fiI3yLaWJbVEULhOi313jCRS+F2mTgdjtJIGyOumk/abuB8vjEcjpwvZ56eT8Qo939rWsbhgcP4gA8bznnc5ompoH2WYXDMbJeJAoSwVZa8l4K4RhH9hFaZGFe6rsfYQAobxlrctnK7XQQ30DQcj5oU5Y7adRofPamWtBQG2k4MQtPtnZR9bd9OaNWja6vzP/LnHxb4TGUKLfPEf/7bX2ukKTCOA//1v/yZ6XqjbyyfH5+Y1o2366VC1l3l+nyPbuwOlv2AFVOs/BxhluiakzZaGtbe3t/IZA6DQN6dn7lN30h8oqQnAZSnfGdNxSINkm2zR2cNm3u5W6hTylxur7Q9fHz+rygYrtcz18sXQrhhGwjpig8b3i0s9o1D32JRmLKwbU44QPZwFyZjCLjN0bSGrlesy4V1e6U9ZUKUyKqAJDuK6iXWlBEHWBI78fn8G347E0Lk9f2vtL1i3ZKwULZEKQ94N98/P60USguoUZrg7J2fUUrCVGeeMdIcqBXEnAk+Vns9lftWaNuxxk+/N6fu3Le9MVgb0DqjdEaVxLJcyTkyji2FiNZNZVNIKYJEKSJdL5ydEjN9K3EoU12GOSq6RlwdMUUOQ3ePFavkuV6vgBwUmqbhz3/8M8s8Y1E8H4801vHNv8vGsk33iy5wj7fmnO6xqfv3VafGEqUSAfvnn3/mt69fyMilOOVEzDfe3v8m9eXNR0KRqIM0nEHIYpFuGkuMGVUKy/aC8wvGWGLw3OYv2Aba9kDKhmWdeH//hnMXfvr5R0rZSHkjxo1pfuHx1GFUxpSVdd3o+5G+7ytAXsSKeV3o+5Z20GzrzLa9YcdATgYQl2XfHTBJ7MVyaHX1olp4f/+Cd+/EHDmff6HvNd4lwNYIsBzUpCQgoZVB11bkosrdrVpKrnFPER2NsdV1ANSLcYzcHTNShNBUx2iFluo9ii7fjwjQEnuDiLGZ7TpRSmI8dKQcSFHYgKhE2yq2OUBpaHthiqSAgKCLRMJB2DptY4VJA7RNLURYN1RMxLjx+vYNbRWv56/885//hR8+PmPrwephHCT+aZUItTHeI2l7wcM0T+ysqh0dsB+otdYiUpTCx4+fcEGe766Rg83mVs7XX7jNv3F6+Cdy7u/P2s55U1qi8HIwcPh04e39bzw9feD17ZXr5Z2cI/P6TtM84v3C7XbmdnvlU/MRlCelTMqe9eYYugeapmBUYd6ulNJhbIcxLblASSKMKgXj2KGVOAbFqStwf2MtQzdyOJ04X1esaXHbRowOozKbu/L29oXDsSOEjXl5YVsvQCMuqJxY161GgeTy1uxOPYpw5Uomhyr8qULRhRTFWSIlDuIcFeaplaFCijRKCkZUdfrubp2Uwz0mZ3ZXVvJoI5u49ysxiSC8rit9GWhbTdfJARoyfS+A4NttwtqethHmSymBppXG3/o6SGMnsG6rtHylyPXbrygim1vJeeHPf/oXVNEEt9Faw7KsGIW0rRe5jJDk2WrbVkDFd4FJVyh6Uy++CpQI3OM4ghLWq9FVRIuZ2/SVdbvy/PzPoE7kUmPf9bk1jb0XFAmA+8a8fEGbI6+vb3IoWi9cLi88PXbEHNi2G8syobS0moW4kJJjWxea5so4Sn93DBshFBoz0PeNcIBUex+StY2itTLp3vyNUnx1Ldr/F3N/0mNZkqXZYkua095GG2vco6nMysF7xeQDOCH4/yeccEQ+PD4QxcqsbCI83NxMVW9zOjnScrBFNZIECJCMCX2QSAc83M1M7z1HZO/vW4vG9Pzxj3/gx+udFD1+z5WPG4lp4T69Mg6aplNM83eUCoQ6zFaqY54XmkYs7yBD4KIlAdC0Uul5r86pUqTGkepnLcePNIetFfCmaSquQ38s1STBK1vlWOVOuSZ2tVbEsNPoSAw7cd8IKdF1ku4qJMZBVyyCfNas1nR9yzLLc/BdQiaVkoxtRLYAGaNlcHa/37HWsq4bJUFInmX+AUrONYqVv/9P/yNKFZZ1Fbd4rSMLa7Cyr4rURH2QuqaIBvLH861tO1nW5oxtGknjlcx0nyTRkzIlK4LfuN1/Y7aax8eGjJyDKMI4zKXQdi1Kldou8Dj3xrr9wJiNH99/Y9sWnAvMD28cHyQR7/1W2x4ZVMLtEyEKk+xwXLC15r3vr6AHjOpprKppzb5+fyTR2HYZHyRNr5Wl6ztKLhzPJ56bL3z7fpVabZQEq9WFEFa8XzgcO2LK3O+/4eMCpeUwnIhJyaWna9BGLpjGSNJf8c58FM6l1sKQM0rqf23T4HZPiurjgl90wWojFbMqftAK3k3UklaPKFtFJFDxBDutTvLnFVwdjEliquTC4TjSD1Y+cyViTU/fd9ynSVJF6r3qGSrYXip637//r5TsGA8DYbccup+JvtANJ3IK7P4Nt73wl1//74yHTHPoeLv9O9f773k4/Z5puWBtw7rJO6OUwun0wO1+4x0voKDyzjQlS3qi5EyKGoURMHqJTPc3mtby/PDE4+ORlx/f0RacW1mWlZjgdBL+3batnE+PktZEhlL7fmPf7vSdxrmJeZ1oTCcG62KwujDNF06PJ/ZtFq5tdLT2jA+JkBLb5lEq0jaWx4cT3u809t1K6tk3x+H0la7pSNmSkwzs7/cXCjUFniXxsS4bRi8MNBWbo7A2MF1ehCHqbxQCSllZ5jct27pgTKBpxrrUbAnBV35ixphM08iCPaf4UVN+55WZUkjJUYrDmA5Ng86GWMMRRSkyIipKID+HFImxSNMly31s92JypiDYh9ryGIYeZRLrGpinytVqLWW5Y05is5YGQ8AH4bKlKDy6X3/771L7To98+XomppmcQ63hZXYfGMee+zRVScmBZbvx/ft/r4sdSbO1TYPVDT7uGLNznX4l+sLuL/z48a903YAxDf/831fGwxea7kSMsvCwuiFnhVaBGO84P6FUZlq+0zQdy3KFEgnxzrbtvLwq0O8JI0eIjuNxYF0dft9YSgYdyGll3+TebK3Gu422a1mXRd7rjWa5zVCKpJiQ5dHl8l2quHXo1GwbQy/1aL8nxnEg58i0LJyfjrjdcT6f+fHjjZwyMWzs4Y2WA7tbybbUlLYWyZ1ucM4LXbeGb3ISq+8yX1m3mZg6+lHuChkZnoYE7x+spm2Z5xufPw8cOkMsSqqQSiQ12/aCGntyKtCMqCIsQHnvR9pWEl0UwXlpnRkPyHdhmrFNhw/C2G5bRdNIgzAmGciEWOCd9ZcKQumpfM/Sil23aIyxPD4+cjqf2feEDwvz9gv/8u8vuH2i6SSt7PyE2yLn0wPX25uEePYZt93QwLrtbFtgmsWWa3RTBUqDWKyx3O8TbdsyHEQAJBIQS0yF6+XG89NDRYlBroIwl3ZKXmWAOa3M0w+0bUjJM/YD27azbTNtc5R3s21Y17u0Ao9n9m3/kEbFGNi2hX6Qe8a6rpwOZ7RRrOuC0ZLGVYDfxVOQEzSNpNyapq+oDBFQeb/z9auYoY1pUWj6fsQ5TwiJvhc/wrZtPJwf8btnmmacW3lIB56eH9jWSUIyGVIo2FbQFN3Qsy4rbddVDJEgQBQat0kjbHf+rzONDNvmuE8Te5VABp+lEuwS/SBoAErmOJ7F5k0hZWkUpqzRunAYW+HtFkfOKykVrD0AMjTe94pzO58kQewdXd+IKLBEILGvdx4fP9H0DVc/o5D3rdHQtoW+0//fD+T+X/76mwd8IQRu10m6x/vKtr+R0kYzWQ5jxzCM7H7H+42SA1oVNr/XocQ7m06htQgjFHLR0kYOKLEaJ0uWhELTNuSUWdZFzIka/O5obc/uL1zv/04iyg8gZVDyQxW+l6HRYnyVrdzEuv1amSGKZV1Yl1euNnM6/oxSLUrvolY38hDb/czmHPseUWrlNC6kvGB0ZF7uUEaGMRLziFI9uUhFWALSnqErMqWff2CspWt7gl/4+vUz86y43XaSUcQUMCqjVYIMSmvOD0c2N3O7/ErBYO3A09MDr6+LmGg1KF0Npboml6yWjUfOdWNRKFlUz+8W5neosm4MRRVMvVBLRVIGYNbqjwGfbE8TOb9XnIXXVUwipRVKxLut9s0L6+xpzi1tJ1t0rTtSKrSdRpuG3Ym9SCoX0tsXGZYMEI2lMh0cqAWrCsGvzMtvxLSgKAx94fnhZ1IKLKtUiqw1bItU3IwWGYukCzLbtsiBI//1kvVeBX0fJjVNQ0yZb99/w20rbbUCg8W5K/fpB6lkzueOkHTdJGtC/TMR9k2uX9wN536w7wtKGe73O9sykULk4fyVph1lY1VZcCEEVnfHOYffI5SdfJgJYQaV8O6OKgPD8EgpB3LpQVnZoigoydHZQrCJZX2lsQ3DcMC5K18+P7I7w20KZAUh7sJOVJIytY3lcJLt8zT9hsLStWeOj8/8eN0w1mCEMFsP94ZIxDS6MgUrkyjJsNNasWNJXa5+1kwjn7U63EspopQM+94HE2JmfedO/jURk1OgpETKO4rMti6SirSGaVrR2jIeLUptdehmKnOol5q1F+5ZyqmmBWUIJMsGqQNN94lcDFarGu3+zh6utRZ243/6x/8D2oCb14/KJFmq7UZrbPdXZt08z1LP1JkQ94+KuNWWohUxJ7q2JafMtx/fiDEyDj2aQtMa/H5nWS+gwXSPUg9UFRxcB6CNbUgpoHICHNvynZwnltkz399YlpllXnh6/MrnL2dSU2oacpDB8DJTcmavFqsQFoytadR0JYQGYzqUzaTcYsyAaRus1uTkabpI0xmWeUJry+Ew1uemxmhNawypHsqU2rGNwqbM49MRpeVi4Z0cAIzuOB4/cbvvpGRpWl2HUpKIRINSBd6ZgvXzk6o1zTRIyiDL+yMDqiipHhjhtMRcTY1ZvvvG1oVFFIENiO23bYxs51SSlJkqGKMwpmWeJ9lODi3gUQifKpeI1Za2a2rNglrxynUQ/P68keHs5XJBKeH1LeuC2691u3rFuWd++ulZ0pROKvBin7TsYaO1FmV0TW4Xlk0g5CgROill0UYGlilXoHsrU8bffnynlMzxcGTsW2xjWNcf3G5vxOxohxvD0JOyRmn5nqr3IUJK5OQwOjFPv5HjzP224LeVZZPayHR/5fOnn1FW4cOOtpYQkwgc7M46z+SMcPFwMphgp+RMyDNtzJTcopozCkPXNpQcQAW0ETmTc5F+6PFBsARaNXRNS0wZ3WR2f+VwbClu4/n5CCpIcDJHtu2OwjKcOvbg8b7Qdgd5KVYxi62yEMhSV6Z8SBWaVmNMwRipFackBzTegf5GSSU7Cwi868ROb6q5LyXYvciRZDhrKdmTkqQHu64h1+XKsqzEqDgcBR2Ss4CnU9jJrca29qPWaJsGFPh9R1AOpi7jhCe0LCtt0zEOgyRqwpVp+cbqvtPYwreXlZ9++onGtiJ1UjLEUbpgDDSmJVWbJkjlWCklk4AqPwAx0PkQhU+ohPX2l9/+TKs7/vj734tQoVP89v0Hy7LQdi0+OrRuyMnQNi2pZNpWvuspOHLxoALL9J0UFu7XDbctpJhY5pl9n3luvrJXa3xrO/ZNRG4pZtZFgPO7W2htlou8XolhBdMRvAd1AGRx1dkGxUYIEyjhLWqdaJIkLOb5Qms1re0oJJousE9XhkNPTBuPj0dQUZJgGrb1jjUdw3nE7Sspt5QiNlUFFYheuZ1JnlMlF0p6t4FrUIF3bmDMwvNJShY8ymiyl4GspKhMHSS1NckD27ZSipJ6ddOQc6iLTcVh7Fm2FaVa5lnA5YfjQEwOxUIpihgs0b5/XoswlJsGlRW7lzO81uD9QikO6wtd23Gf/gnNgab9AzHu3O//hvczOa1AV2vbF27TN5Sy/Nf/9n/mP/393+ND5D7d+cMf/wHvVkQgJkmPmISx3XUGrXZ2/0aMgb5/omsfUGR2v7Cub7TRoB56/vTv/5Wua3F7kqFklrbBdHvjfFZM1yunscWHQCkBlGeaf6OkwDA+8C7cE5Ni5na90TQt0+2V/dOjWCidq4Mz8D5gjaFre+Z55XqbhFU5GNquY7vdsFYzL69o29A0PVr1hLQTjGNzK0q9C9AspWjmaUPTYE1H28oSO0dHjjPb6tm2haHvWJcNayxbivK/0R5rBg6Hz3S0rE44u43JWBvFdlsyIcs5rmtGclaY3pJLYN1uKAqPD19QSKAg7Ct936GytDRI8eNs9b7AhPJx1moaSZNKN0+W9CEEQpwxjSH4xHTf6wBbZGy7XzifTxwOFqUybnNY+1cIfd9ZprCx+yulzLhtrqnSlmVaubxNxCjiNpSR5y6ZbZtrQr/UM0Qk5+bj/Hm/v7Dvnr7XNTU2I8iQjVTgy9iyrD8IwdE2B9bN8/jU4/yNrm3Y941tfWPsO/x+Z/OOUnbu94WuU2irquBNbLVayZDRB7kDFx+43l4FRdNY5tnLmSdJS2G6z/TdIMP4AtM0E32gcxbTGBSGdV0RNp5l3wP9IDXaeV4JwXM+Hyl1/ReCfJdTRYcs84U537heLjw/P5JjJGEISrNtK9b0xCBSqJgCu1+Z7tfK+guy5KlDqK7reHt5YzwcEalB4HK90vctjw9nQkoY20p6uVUEdvy+YUwWC6oqZF1QORODY9/Xej/Utclj6VpVK7kLu7+T6WmbUXikVjNNWw1dREppAFkS9+0gi1g8IUSpC8fIuiwM45kQPcdjT06Red54fFopemJPFxb3RtmDpN7OPVrvaJNYt4WuOzAeWu7Tq7SIbMuG8DZD8BwOA20rY5jj6cx0XzmdzxRUbdxFUsq0rXAK5Y4sLRiUJqfMtG2EEBj6lqbNuP0msi7vsKMlxJUYE8sizGnbCMc6lkzbW9rW0LRiNbZW0tlKtcx3wXl8//HCMkgN9ng6ELII6nYvaKzD4YzSmmlePs4BW8VmpSym5LfLpUoVI8u8opDUXdvIMp8Mx8MZisx5Hh+f8d7hXKhCuHc+XiFF+WeW2QkDNmXK7hlM9yFZmidphj4+PlQvQiSEzHRfaNuOrunxe2CaVqn+1wF0rwZA3o3X6x3bPKFtoVFyD7S2Q6RZCz6saGNQuqHRFr9fyUk42iUKC3yZVw6nTlo5SRP2LAlxVVjXO+M4QJb23uEo2JSiZI5SOPz/MpL7f/rrb6/oGiPg2bDjw8Tb27+wx1eOhyPfvvf88ed/lKFJjnLQaDTaFZSRl9uyrh/DJKV0tVyljz9krXR9WYh1RaDWHve6MXQdP//8k5hiSuBPv1wFXqnu9KM8wDUt2kiVSOsKlo87uXj8fmNbJkLYKUUYMkYZlnkm5YXjYeD1da/JjFK/YCvrtrHvAa0t23qnaYyw7nDCcdll4tu1j1jV0/adbNQJwj0pwoAyZiSGgPeO+/07ORywTYNShRgmlIVSPMYmTNOQU+AwdMS4ESOYQZGT8ALlZfvXOhZ1KCcq5whZmHuULJKERhTXxnSQxTSp60uu0Q2pVhXfLYHv3MP/mHj7ONgB2koCpBA5PwwYA27TTNOdlAPHo3BojJUER4yJFFpKlhec1I7eGWgy2LNWUmNKK8Iug6+m0cSw4MOd17d/I3HjMPb8eD1wGE8iB8mx1gGSVJeMmAXneQXeQZxy6X5P7knKQX5fMYq4IqWI2zbcrjgMA3/4w8/M00RjC3/5dse5AGZhPHmUsqQsm385SWcokRg3QnDktLFMl79+1ratGvEcu79xPB95eV0pGUIu7M7TtjvOObZ1JyfqA6EjBC9bwhDYScDOOH7GmIZG9+ToUSWy+wnhoUVK0exuI0TPPP+gpAeUElNy8BOlimRycbSdJYbA0HUE7ypiRexmKRVsO5CSJGdyrTN0xhBSZV5k+dzkFCV1YESY0rUDutR6JVU9bhpyHeC9Vz5yvTy2bfvx9/u+VzaforXyYosxSs3YFKbJcbtOxCgA+jTtHI8a2zQ4l9h3Oey8G4ffJSi5DuXECCifC1fZocPQEeIqevrrn9n8C10P1znz+vZ7vnz+O3x0gMUHR8pyoB3HoSZkTR2EZ5RWKCXPNmMVumjZksf35HISk9u+cTye+enrJ+b5RttpbveJaVrQ1jAeV/q2x++RoT/IIkQVKB5Yud9f6TpY1wvzfMMZIykp29A0Het2Q6riG94HoncYOwq8uFT2RIK2vdK2T8TosbYQ9pmkd9zqOB2/0vcjIRuBx1rFPF3IpSY14ePCbbSh6xqoKYOcHM69onXPtl3JJWDRwvHrjPye24GmaUmpATXinKPvpc4tJjmIOchWF12HZ0qeWYjlrO9GrB1ASzI7Jk9r3msAwnUNPlUGhiwD3j8X7/ZdEQuoysCS9NLxOHK9LdyuK7fbKvXxBlIvAP221VLJq8IdkKSwwsil9D1NHgLGNJSsKKnQDQ3z+krKNy6Xf+Ny+wvnx5YtJH759b/xD3/3v+U2z6Badu9wwZOy5zieiDWJ/D4I/yvLFJRO6BLrpRga21Fywu8b03zj06dnnh6PBO8k+elXlnXFuY2mX2hbh9sSfT/S6EaeazkS48R0/844WFKamecJYwzLslHQNHZg31em+YWuH5nnGe9XDoeOFGVgE0KWw57S9IMVVIMWy7LC8vrjL4yHTxyHEz7J8krrzLLcasXO1EoHTPeJvhvpGnm/CoNrJ/hX9r3DuTu73+iapnITO6bpKvWTtiXnAWOkCtX3LUoJRqFrMikFSejlgtYNqkqMFIl1u7Hvmr47YW2LSpKIssbWepswML2XdJvY+qgXSXlX5yTPnZKhbYXNu64L3WBxQeHmwOVt5XhqWNcVaxXn08Awjuw+En2QFGA9k5UCOUmaQ56l8nnuW0OKEypHSV2QWNxf8OHKj+//jO0SbTewuh+8vP2Jrul5vfzGMIhR221VvnJ64nq7fZwLBC4vzN9S+ZslR1Ai07JWquK36Q1F5unLmVw8u7sTM+xeqkr3aWMcJw6HgdvtO18+/YwqCbJIgZy7sG0XjsceVGSeJ4ZuxO+REBLGtFyuP3h4fGBbF+Z5oSTP0/OZ3Qn2IYYsn21r6FoFRPrOMK8rOURmv/H49Dtae0RnS0w7XRO536+gYjU2ymLhepl4OFv6c8KaQMxBsBFxYt1WluUqj4D6M7atWPqM8XTtAaV6rJEhgDZdXXQorNkpObHHUNlCjVQdi6YQWdYrKfX03RltLLuHUhdkKcSPQfMWZRFWSibrv6b23p8NOSWyKnSdMPqWdWU8GnCKbfVc3lbGg+X04NAB7LHneDyy74ngvbBi62Ay13OiLJrkvC5SK6mVbdtM2wWW6Re6QZ673l9IWczR0QfapsPtK5kNHy98+/FP7PmVx8cnfIgs05GYDKWI3IFSre9GkdkpeSbEF/Zd0B3H0bD7BCoSw40UCymegMTb9TspR94uv8nQh8LuJ/bdsLsLzo2VJ+oxpnC/XWhby+WahHOnTU1CeU7nsxix086yXAjeVTmFo2msLOiNwtp3iYviPs9oe8SURD8MTNPC/XaHohnHA0ZHqa66rUpqIgURV4WQWRYHGIbxTNPIeXjbZq7XCw+PT2htWFaH2zzHsSWkQEHeZzFLorkfrADky44xoJRjWV6rWdmi9VDPj4BO7O5OyZLw1OqB9/ZO2yYaI7Izo4Sjak0DRkzwMUpiSmtVn4HvVWu5eJM8yihU0oIHigWtLefz6ePZUUjc7i8o9YBzM8HX1peRpUKuEpCX77+w/PEnWqPwWRiz87wAivt95kt3xlrLNN0ouXDbpJJegQvCv2wbNpe5zTPRp49l8LLMDMOAUkaaV2VlXX/jcvszWilCkOV9ToHp9srpPMq7oNFM8w+WZUabTpLvwLRMjOPAvjseHk6C1kCe22HdUKowjL20Iih12Z0oRaGUFc62tsRQQBmm6Y41DU9fn5gn+Swt60qMmfNJcCvL4tj3QIyJcTzwzqF/+XFhPFm6VgvT13kohfP5wLTMoCUpSw3jgOJ8esB7CTgI22ylbWVBPwwjKULfDWxOhi3TtqJ1y7YFopdnWy6J4/HA7ncJNzRyV09Rk4pnGOTc1w8DsJOTMIaDE3HbMs8cT5m2NRV/Icuz4B2UQArQDiNGWfy+4ve53nmTsExVZrAdhYAPnqYpiJn1r+xJ6hkwhIAaZcgUkwcCKe8yTAsREIt032qGwdJ1Z+63jT2sbK7j+flZ7lGL4+n5CWvEyn29vPH74XeCEssK7yPDONZUZCaEVBd8MuDX1hJ2L6x3L6iCx4cHWTRrCSgoJen369sbX758oSDW+pwz6yoL7K7tiSBs+hw4HAZO5wN+lyGn30U41rcHwi7vlePxJKEVJWGZpm0JPjBPM7a1fP36lXV1KGQ4/+XLF9zusY1hvt9oGyMDvZrcTVlM0k3TsbvAdJ/ZthW3iXhztJ0sT4P8OeRcJJVqZcHWdyMpFkLY6VKHMQ2n40hje263iRADTdZsiyOlQkoi6bneJDxzPB4YR82PlxfGQ611B0+So7SkKTuD1h1D30qrKvsaSqlM0RxRdmd3jhR1vQ8G1nVjGGSQ6JzH2IHD+cR8XzgcBrECe0dOIomTpkGpsw9FjO7//eDt/8O//nbJRkq49UpKd27Tn/nt+7/w9HzA+zs/3v6Zz89/JGXP2/WCtT2r3wlxp+86uq5nWTeppZYK1S5i21Ilokok5gzFYHUjtaQYeHv7lafnJ4bxyLZcCCFR2MmlcLsuhNhyPNwY+pHb9QdPj5/rQRFinrjPL6gS6Np32GOgsS3eJfY90XWKl+9/5vifj8zTnXVx2EYxDEW+yAXmaSb4QGs1jw8nxLQjZpjb9gqsjF8GjG5By5Y7pU22pyga28qG1hfmZaLvjrJF0AnvJ1K4kVPGhw3nVtq2IwYotuDjQgzScTe64zgeazwauqah6Mw4KqJfMSqw54xWI6aRNCMktu2OcwufP/0OrRrZ8tVBQJ3QCIevDrykGi2RUec2sWGZmnyiHhmLWCatkUOB3xPz5NEmVzA/rNuVw6GlFNn2CrOq5a/2YIGJag377mtNuJODSIo4dyHGV+7Tr7xe/sTzpxMxOV5vf+LrT/+ZmAPfvn/jdPqE2xbCvnM8nWlsi1a7QNxrfTIlSX2BoyThMKIHGtNjlCZEx+X6jcenR9ruwMvLn9HKsPtAIXOfZkJSnI43+u7E7XLh0+efyDFJelE5pukHJXkO40Aphb2C0oPPzPNG1zX8+P4Lx+ORZZLofttoYixsm3zBvfdSV7eKKtyk7zvctrMsMyktDMNIKQ0aXatQK+s6CedEaXlxxMj9PtG3J9om1LrJjZxkK7m5CdF1N4Q9Y6wMnWJIxFB4emokQh2y1BxNi7aFrhE5iFaJLSasOcgv0hjIO87NbG6me/4dWlmsUSyL/N51zqgivMdUAeHvJi2l/sqAfE/2UYeHBfl8KNxHGmadPWgZ/BlrcW7mdDwQo1TTgne0vUhJYgjEIDR/Y3RlSSZJ2rQdKewkk7ne/o2cZ663P2PbjFIDq3vl7fYLp/Mj//7Lf+Xx8SspF+blwun4SGMN6yoA6r+KSGK1ZSZKvBPjhtId1ohJVlKCr/jgeH4+8+Pl3+VwTU9Kuzyn1p3xcKN9PHC/vdHVZBZIPX6av+G2ibY/o+ufQ2PFxDZNMyllrpcXHh8eBJi/yUW3JMW+e5rG0ncDt+tdQLVGczj2dJ3wN6zRLOuVxnb0/QFFT0w7UXlWt6AQ05kxDblo7pNcXLV2WAvrvpLjTvALS97Y95W+Hyqbo2X3gWlZMFug6wZOx2dK1jifMMpiGkXXRlJe6ExhCwGtT1CUWBptIfiFdblhFNihwSA4CK0UDZaEQHytETu0rgNXSZcr2RRK5A0QWH8sUt3dNkfftVBUHQ7KgFEpxbrNKN3Q9WdSisyzZxgOcsmNiVyr6YIgAO9FDtCeekraKCkyT38mF6m7wg7F4vaJt+svfP3ye3759u8EH/ny9Wdu03fO50e6VrFcNmEP1uGhD6EaFws5XgnhTsbSt1/QumXfN+b1yvX2nYeHjsv1F7xfOZ1PrO4uVfVccOuM7+6ss4PsGIcDIThJgW2vuP1G151IORCCx9oRrSVFG/aA2xaW6RWjkxgTdQOl8uqs4XA4yDNsXvmuCk9PJ/peFitiUnPkrDgezhh9IIRMMZ5tn/D7TC5ibG6bgXXzuC1hm5Guq8/MuOK2GaUj27ZKgmYSUVeIidU5KJ6m6Xh87BnHFucKRqdaeUvEeEPhURl06aQipEDZQgwLwS+gFMfxIAsSVUhho7cjqtQlGgWU2JmtKZQSBKmQgtyalJx/hP8jiaEYI2wJTYv3rg4yFRSN9zv36ZXDaNBRsW4JpQxd20llPwZKUeQiKa51FTaxNS336b9hdMPn578nF8U0/ytKR4raKVnjnScXx+vbX3g8f+af/uV/5vzwwPl85na/8A//8F/Y3VKH4PU7khMxJWxjsSbg/Q+8v9I2Z4b+D8S0s/sVt72xrQtfno9cr1f5/ueOaX6VlLfVXK8/aJuObfnOfmjQuiF6h1KBeXkhxR0fMstyJ8aAGqTauu87CjFexzijspdLXNMhsgVJxnA8EWPmdpsoJXI6D/QV/l6UYponUJa2HVB6lDZCXFk2aSbs+844HEiNYll2cr7TtAeapse5iRg35unC4TjK+UILZHwcR7yP7CGiQqF3C+fzgFLgfaExGaUS1kT2/VoFPBmjTyhlpXKrEutyJ4aVoDOH8UCoZw1ZzA7kAqnEWtFVJNRH1VQEKOkjsS6DuVCB8mJ13FYPWRO8JKveh+gxB27TK8eDAVWEW4liHEZirAl8tLDsOlmk+BgZxoF5mYgp8WA1m5/47ce/8OnpU01AKLrOYI2YskMIXK6/Ms0X9nDlet0pbIDmn/9l4nj4yunhq5ijVUEVU1PJmZwWQlhk+Lv8YOiPuH0Tbm2cKSnz7du/MIwdrqJAcgn0fY/bPMs8yRKq7KS0sru1/n4aVMmkEAhKzh9t23G9TBjTsKyOUhJtttxuN0qVeHifSKmQM7jKehKe4c667jx/esDtM8fDCVUDDU2jmacX2mZkmWf6wVJSkgqaMWybF65e21OKrgvpGb87pvvEOjuGbqdphf1rbcP9eq9McE1Mmev1Sts2DLqnxILGSDoqyyLap4jRTV1KDnIdIKCJWKMY+oHdz2K5NwrVygB+3SZs26J1TVBrCN7J8jghghYlrOzGKqyxNFaRE3WRW8R42nUMfebhacCHSZaYWpYIRst/q+uPlS8Mfddyvf3KMPScjpZ5fiVnYW65PTLPC0Y3HE+HasaW90YpmRg967ry/Pm5GogFydC2Hdu2QdGUDNa2FBSrE25Xzpn295Z53Qh+RmkRMZ1PR7ZtZVtnSYQVDRi5E2jBmexuYt83DseaWs2JGEe0Mry+vfFwkpbGPE/IZV8wVbkUunbA+4WmKxX10bJtglcJUVpVKI1tm7r0sBhjWdeFYexRCoZhIEZXF+cB53aGQ0PTacahESZolUC4TdLph/HEtgr24n0gnlLi7fXC7oXx+W4wluRZ5nq7EUICheBGUmFzUgX99OkTXdtiNJJI85Gm69CqsKwTxrTYRtLnm9twLtbEeSanHkFOWFJEcA6AyOQ2ucvvDl0ybpvpGkvXDZQSaFsjqAxT0NrL3ytHSglMpu0M2SoKDW7zYqhthDGpdVNbOZmXl+98+jRUrl6htZp1vtM0PefzA0Yb3OQAqUK/NxXneeblxwtPj88cDwN+dxzGQw1EZNy2idCktRxPwj9NObNuG1prxvqsEBakpPTfrdZuXbFGntv/9N/+mT/+8e8YDz0heWLw5BzR2nA6yXA+eOHc3+6TLGoaLdVha5nnhd0lUkicHx6l5r27ypeFbRWzdtd3RC8hj/P5xP1+IyVBjhxPR/R7A2qSZp5Rmr4fZPgWPD8//0ROmTU6Yii12qqqaErTGqn2T9NNGi7LyngYsY2haaR6nrMM7rwPUmt2gW2TM7HSBr9HcpF3k9GWfXPyfFIN2+Zr40zMxqrI86FtZVHlNs+6eqw58fg0gsqEWO/j5j3sFIhxpeDRpiPs8m7tu451W1CmIjiqgCiVhE+egnCt389/bvdSDW/fxa3/f2DR1Tri/Avz+md2f8daSQzte8ToF+7rXzC65f/yf/0/8Y//+L9n3W4ED7/7+b/w4+Uql3UJnFUGUpQpPAve/YYPK8fDH1HqmeA3YvTcp1+x1nMeetbwSmt7NrcQwoptBMQ83X9APrHMF54ee9y2AhFtN9b1h3yg1ci6LkAhJmEHkhXeecK+4fc3yK7+AMQ+pZSh6QxPD88sy8LLywUUnE69/F5yIXjHfbpwPBw4nXStBwfm5ca8TnIgDZFPz59Yl4XLdWEYHG2zEUPAbTecq73uRqNrMkI25UA2hH3Hqx1OO+fDyB4a4e4pSTkE/519u1WeYY82PSlljIZ9nyjZkeMOxWMMlKwkIWEy5Lr5rdUiCphOoKQpiz02lUhCwP4GRaypssa0eD/XxIpsn4dRklcg4GqjbxRG1lV6m23fkqPIAiQ5J+Dk9zRfCBGtMkY5/H7hPv+FEFYaCzlFfCmkeOE2/0bfnvif/9f/I//4j/87YvLse+J3v3/i8nqTgYsqqArtLzpjdAG14PZfhJcz/gFrvog9rETW5RWtHM8PB/b9IjVG71m3ia7W2q63H5zPgWV94ykPhH0DlUB51uUVo8UWtm7yWXtPpFrTfICH/X6vFTXZ2lBUNQEpjkex+k7TjFKF88Oh2qfk4Xm53umHI5+eG0rMULykIpyYhb33PD99YveO63Wm72c+feoI4c663VnXjZSKsBCAeVoBRacrnLgaGWPyHA+xWhNlqCL69InNXSWBWTq0GmQgrAohbZS8keNOKTvaCKC5bQqaWJkEUpkTC3GkG0TVHkKisXJQAaAOy0RJLvFu/24rjnLoHg8C8NYKYvCs6wXFGbdrSlG0pcVUaK0xklRVWmL+3gvMVUIXEyFE1vXXWisPyAyl4PzMffnBtt/406//xLfXf+PLl8/clzeenv837LukIQsFZQUPoEwh54jRnt19x+1v2ObAw/kfpDYcHD5OzPMbKT6jTOF+f2PwA99f/kLTihl0W270TcPurmy7sDR8WDFWsyyvxBC53ATyHVMhRLGetk1HNoUcA2G/k7OuDJvM7jynY49CWCNt14NSlWGioBWw9zJv9QWuGMcDTRPI0eFzZN+FTacUNWUQq1BiYRyOoArRzyzLwnSbOT8caZuG3e3suyTzfNxRqsGYRqyw3UrX6ZrclGdATjPz8iLVsqIwVNNUyagcKHn/AOAaBjQwNPKOKWnDbRvaNGJnz5lx6OU54Re0HmiMIaRc67OBvrOUykvs+15EPUVhrOHnn79wOEjKp20bdu8Y+wPbuop1KxWw0LWtWKSVYBNiqviAzRFCYF7+jG0H3P4bBV8rmBmFwgfHtt/xcWbZfvCv//6vqOZ/ZHMT4wGmSQzUJQt/pJCxVskmVwe8e8PtL5RiaK1A/tdtobDhw5XNHWm7I/flO4k73378AjrTdpqUdhmq5FxBwxHnZppO47Y7u1u5VQyDpFVzrcJY2lNbn78T6wKNUcRYuF8njsehSn0KXdfWpHYQk6/KnE4n7reJdV3IxfHw+MAwZBnQt5p1naQW3jRY0xATxFCIccd7SfrGuHK/30QsohVDN0r6IYt4yscdhamJi0QIC/3QMSqDUklq8Djc9gYkSecpjaavTDQZrDTNe+p4w2hhB489aLUzzRNt1xNzRhcrl4ci301FizFGqnBKPr/WKkzlI/bjgXWe0FpkVJ8/P/PwNOL2G4eT/BpSceSkUPSVu5fpuram7hVoWytXcn4IwWNsYZr/gtIbfX+SC7SWZYpwQzUpepQJLO4H8/qN19u/8sc//gEfI9++WSgnbHOQaq6uG2etoeykPLP7H/hwq+nfIylqnLuS00wId67XP3MYB+7TG3voud1fBbIdA7nszPN3cnLENKOywu8rbdcwTzesNdzuV9BwOB7YdscePMPYSzqoRK63F2LI2Mbg90Aukb4XtMt7bcwYkYCdzgdWt/H4+MTLyxsxeLZtIoQ7TRPk0tQUgg9YK8Z5rS3ex4/aujCcxex8u12EkWkNfd/Je9A2hCjLDzAfQ9oYZ8aDLDMVUQZ1sXJzGyO1Olq0EmMt2SP2eOF8pTTRmEaq5BpgZZkn2u5IypLi7FtLSoE9eKBFqxaV5NliNLTGyCA7wXDoWaYbRhustXz5+omn55F5feVwHCrE3lOyxRqLMlJvGwZBrigMbSeXYGstP35MuN0wDBatRZogz4iNdZ3kgpPB+x3dCVOv63pu0wXhNFnhXgc5C5N3FiyPz4+4/TdQkRSkRfD0MLK6V2yr2bZIDIFp/hXvo0Dwg5gxjS3E3GGMpu9a/C7LnL4bcGXDWkmcz/Md7zeatuF+XWWwO/ZiZ57uGCWfp32XQWeMmbfXS63Qwf02cTyeAc08rQxjLxfyIJKV0/kB53wVzqyEkFg3RylXbGO5XW+s88KXr5+JQWQSTduhlWVbd/pu5Hq78vT0gJjSF5S29MNIPxyI0Uu1zXtZkm2hXkQTcQ3y/nUaHxMGRddZctmhBECSKX1XSMmjtLCjlmXF7w7bGE6nnmCEP9q0ht3tlLyRYmQ4tMSYiSGwbRPdIIglozsKYiU3OlJK/GtzwS84t5JzousGfPB4L8sg7z3j6QgkstppuzNuC2BbdrdjlGboLGFfUSR5XrQt59OZUmbO5yPOeZrW4NzGeOjou57ZzxxPZ45HqXA6t7PvnoeHhtvtyr47jNH1PSzvm3XbsY2lHVpMk9n9St83zLOj6w3BO8EkAdM8i1U77FjTYBtDLgGlM/3QcDj0KCWJrWlamWfHMjvCfiF4z9efPgsyxxpCjgQX0EqS4beb4DNAoQq4bePx4QHvA+uyClolZ6ZpoWs7pnmm7Sx935FSou8lOWityFA2N2NbRYxXclK1xdQRQ2aeVty28/z8CZd2ghfBkE+pSrBkAd+2EjpIUYYt43Dk4fzI9XqhMS1Fg1IWp4SnKUs3aelMZsY6xeHQQYloZUkxMU1XQnR0fU9KE12rmedZUukF+mFgnha0hmHUzPOdxydZsjdauLkxetrGEryjH/qaOqc2rFZ0I+KmxjaoHElxY1sFqyPcf2GzuW2n5J1Pz8+8vv2F6X6h62QA7L1nnmfGseCcCOtiTHR9wzCeeX25sqwty7KSkjyTcgpQEsejcO6NsUzTnf/0d38vw6n6uXPOoY2lsw3zspJSoGlalFbYpiHHjHM7m5sw9hkQHl6MoSbzRtpmIMSddXEitpgmQWzFzL7tQOF4PKCVYug7zHPLr395ocBHyMf7QHfsUAjWSRvhMicyX79+oe07Xl/f6jCxQDG8TiLy6ruOZAR59eu337CmBTR7SPhVBuQpKkGy9R2H45EYHcu2se3SXjodz/LfS4GU3qv+Ep44nR5QKrMtUrlNQX7fRklDZneevu+Ytpl927G24etPPxFT4tdfv3E+PvHb9++obKQhQGLoB4a+5+X1W218qSoNdIiQ5R2bIX/W0nyTbMvhKMGFjGC/ur5jXieWZZH7gzE8fXoWP4Np8S5gmwZTeewKQXX8rX/9zf+GlF9x/ju7nyVxUlLlmml88GQ2drfw8vYn/vlfxSSmVcef/lxAHdFGarcahbUKlSVN4fyVfftBKjvTYjkeLes2Sb2lzLhdsboBv9/ZtRJo4r5yOAhTanczxgr4MqY7e7hLoMgFlnljHAfmea7Gz8j9Lsm6rnKTQnC8vHwjRtG2L8vCeOgx7h10mzkcjux+Y102uk5U0U3TME0zIXh8WNj3F0qWg73bFkAiom03sO9ipVRKE6McRP2+4r1AJnNSPDwdhN/SG+Z5IcaAUYacZDM0TTeOxyM2F6yhXrIjYV9ZtxsneyATUfqEyoaUIsaAKTAeW3yY6LoRjWJsC+jANK+8QylTEjNTLp5CJKZCjhZ0Q1Mr1LbCeUsGklQPC2ICPp1OnM5y+BpMUy9Ksq3sOhlKBu9rPVfLw6DvRf1dxK4co3B8XPhOiHd8kG26UnULLbd3Yl65LxvT+p1/+bf/hdP5gFKWf/onT9c+o5uRkIQXZKwc0FQJhHDD+Qsl7yzbrxwPDatz5ByJeWbbd94uEhWnCBB3DyvH48jmAn7PLJOwz1Ka2d0dbSSt41bHMPSs20rXdZSSud8WuSzqjMYQouf19Ts5C2NhXR3ed3R9I0DYGBnHA9u2sCwbh2Mvl8C+536fZZtDZJq/o0v9/GYB7bdtR98N7HtAYWhaAaHmEnHbgvc7t+sdUDTNGWOEI3G7T2ybw5qWGCUhN013jseDWNJsSykRrTMqO5y70bRnUvJ0/UhJtb5bB86nU0+MM30z0iAXWVRmmmZKUZK0SJKmEs6gDBVLEgaVrp+ZxhSszX/d2oQgnxMr3LfjqWd1b2hthedRCkoruq5D14NqYy1N2xJDout65vX+kRT1XviSr5d/4eFROEo6i7kN9AcvJmXH6/XfWd0P1stG0TJ8/e//8r8wdJ85HD/hq4kzFxE5kKCUhRBvxLQSkqfrT5Tccrt9J+WdECb+8us/8/h4Yt2uxNTjNqlyeJPZ1pnGalJyKA5iK3Mr41Hq/jEllJfaxel04vJ2lYR0TjjnOJ1G7tMdrZo6TI5oLRus6PY6eLaEGFiWhc9fntn2hcNwZF0Ejt00wgtqm5lpmujHrg7DxPYpsoKhpgwgl8y6SvR+nmaJro891tafizLc7jeOpzN+F+7Gvr8yjB02KchOuGW6QBJ4edC5cjw9KZqa6pSUpjWaxipS3rDaMFhDQaoJITiG5kQpplYnBdot3NCIooOiaFvhU2ntiTkJOzJG1mVl6E8oVWhai3MbKLnkDcPAuor9N+cOiiHGjLFyULOVQeecYxhHtJaD3evl3zDdEyhP8DvWashNXRYFYnT89v2/c73/yrx85/trjwhIZprmgaenn0lZEg7eO/r+yL5Hhk7SjjE5SlZMyzcO4ydut79IBSDM/Pb9X4npsQoJhGHWti3H48jrywWj5PB6PJ1Z1gvbOjGqQcDiH4wYSb7O81oTeonr9Y3T6ci6bVJtNZptmkUikGQY+bE4iJJEfnp+4N2UbGyLMQ1GKbxf2PeF6T5zOI7kFP7DRnylsemjIphykmrwdGNdN9bV0XU9yUo7YBgHXr6/cn44CZclRl7f3uj6hhBnks80TSfIhuyheEKUd1/bNhgdSRFyjKzLRC7vKAGH0ZG+lSWJ2zdSXkhJoNPe75VFtKKNxu+Bki1at2irq+RH0svB+zqIXTkdWmKKtG3LssyE6FAmM4wH5nlh7E7VANvgth2bZZFgrYEsEod+GHh4OJNCIUSBub++/cbPPwsHSZ6/Bo1IpkII3KcXESGEGyll7rcXdr9zu74xDj/z00//AyHc0MYTQ8LoHlTBNgsFhzGFeXrD2I7G9lyvvwAF7yZefhTC40lqWXGmFE9OIo643yb6tiVEgYLnEknRE7MMk2IUuP66bHRtx7o4FAbndqZpYhhbuq6laTpCiJWfdSIlOUsYI+ypGCXNobSGQl08NhQkEThNb4Di8nbl4ekkcoq6VlvXRQb4GdZ147lk1m1mnu8EL9UxWxdTuTJZb/eJh8cnGSJ4L4KeviJH6u+pbTU5eyhRZC5a03ZBhi5F2MfLPFEIwmfMsqDtOxks7/tGyhspa4wRXpT3ToDyxkrTJUuVWRtNY/VHujYEj48r67YyDseallKsq9T1lFYcjg9M95nj4QGUpCvd5hAre8YaK2eezTH0B6ztmKeZpjlgTcO6zJJs2+8ooOlE8tDYhrbrK8/7hmulOuXDXpPJGWtbfNpo1cY0/cL1+hdMY4ixpmdL4T69cj71UvdtLdt2Y9u8gO5LqUkhT9833O8Tnz9/oiAcv66VIcXmNoyWAaxCsD2oOmytFteu7YixoI0hBGkgffnyhdv9TZJeWVLsMSQ26vOc+ll5fuZ6vfL2cmPbLM+fT+i24T69QbayqEmFXDIPj4+y3NaWtibHbdPhd+HbNdayrivjOKCU/Pp3N32kY/q+J+yZZd1QWjMeeg6HXnicRQZLxmr8viFM70LfNZWb5QhhQhWFZsDohCqJ4IPUzR9P8r4JO61uiGnnXRTSNYauHckhoFSow18wptB2RsQSwZOLJJWU0RRlKbRELxLF99p3QclgIQQa03A8HtnWRPCCE9p9wpjIp+eeeQ4oU3DecTgd8EEaAYfjyO9+9xMx7Ly9Lais8bsskO/Td2J64nyWYWwpcLvdsbbhcDgxjkNtLEm6VynDcTzTdpacPKrAjx8vHA9n5vud9tMzpZ7XRQYmQiLbWHbnmaapnhX6/2C8Tfg9M91mnh8/EUIU/mgq9eymcM4zjiMlC9urG8TAvcwbu3OM48jxdOLt7VqNtQs5F0nrBRFX9n3P8XTE2obr5c50X0g5ijTj2HIYD2hluPiptgxERKmU5tOnL4jN1TJNwowPlXm71s9XyoUQEvMkbShJJF7kHmFlUXu7vXI8nRj6Hr+7j8bOtu3ovdC2mnGscsWcERFHJ2xvFYjpzravGDVKa2ddarIdnPNoYwX1pZLc9cgs842utSglHPe2kefO0MsiWQNKZRprMVrRtQ2Cayq4uGFt5HK54F3i6fHAPM8cDpKuc9tOP3RY2/L4+MztdqsDrYMwAbuOaVowVmztMhBva6pUuPqmMczbna7tORyPuH2naWQYbY2h7wa0FiHmtm1QhXzbtnK73TiOZ7RGErUVkaCNoQBD39O2LT9+fK9tKMP37y/ymbQNwzDQdT2FTIyBw9gRg7TMxrHHmFBZzoYcCz++/6DvO2La6YeGfugpxQqqqxSeHk6srcUtnh8/LnTdgbgnok8yWB4Gvnw+4X3g7fLGNK+cTiPGGnYX6qI4crm8gSocjwM5i9XdNraGEmSp/OnTJ6ZJhCTT/U7bNlVmJ/XZU9OglLx7j8cTOWfudzmTHY8Ny7ryd3/3D7y93gSdog3rKognqzXTfBdxoTH4sOO8FpdEKSIsKyLziBGKTizLhNEDlF7aoD7w9HQGEt5Htk1mCl++fJUAVEq1maYZhzPLKjO0rjWS4lPmbx3P/e0Dvtv0G7aVA4k1hWHoaqTYk3Pi5fVP8sEyCefuOC/8hcvbjePxJ56evxL8REbsXLtLHE8tpSwUs1NS5D59o+s7tu2GjxsKz+32gtWJthXw+eZW9uDpulEqintCW9mYvV1e8V5sjCEExByYMFqzLGI1TTU1dZ+u8gHJbZ0QKwHQF7k0h1Bf8H7jdrsTgmf83RfQYkFtm4FSDBTZnr++fZcorFYfh6ycPBnQWow5Ssnw7uF04n6/4/ZNLobaorSu0Hcx3za2ly17Cry9vTIeGh6fTnifaZtOWHpGUbJILna/0LSi645lAAr3+4WYvLTQjiKxUAq6ocXtO6Ws5CT68uhlGr9uE31vKTGjGdHY+ntSGJWlprU73D7jdgFZGyuA130XtkZKkdNDx3RfOJ+OaCQm67wnxA1jLWKYCXJwaKQeGEIi+MTt/p3jSRh7WhXaTqLiYu1LvF3+QowJrRM5O6a7XKpUmRgGx9ef/0jYbmK5Mz1+z5xOLTHeMTbjgwDju+7AvjuW9UYprh5SC02rJYmSEzHKoNCayh5UHSFGrtc3QpChsF+mmgSKqGK43+TyHIIMqLbNse8bbm+xxhJjYZok5p0zuC3Q9R0pZW63OylGvvz8GZSo6GOClGs9tW5X10VqvcOhqxcMV0UHLdfrHaMt99ud0+nIvEwf6SmFwZpWwN/J43cv1tPoSTFyeXtjPHQ8P691wNVgjMai2PeF1hq8nxmGI1oFSukwWnO93QlBEoKn80DbSYqp6zo2t5HLRk6K46ElJerW907bW0hFTLWAthatpd6WcsTvO86v1eQqh4BputEnSX5O08rDYysMmhMkLdDo4IWb03St8LFKFBOUbWjaBjCkUNjcjW4PoITrhhIxTYgeaxuWVSzO4OlaqcNLMmdlWzz90JGCI6rAtjr69kgpcgHWRurW0zyh778w9k/M829oLRWz+wTaekqO6AhNa1ido+8HSYMajdaK+3yTaqmmppXW+h1q6yHVkrPUhUScEXh9vYAqdN3A7XanbUcRRkwb/dCisDgnlYXT6ZFlczRWsWwrPiSWxRFiph86Ltc3tnXji/lMSnJI67qOrhvZ1p1xHLlc3jg/nADZxHfdgKKh70a8X9mdk8MdLbfrTEyhvmwF+JxrrF4FAWmH6GgaTc6bDFxUIBUrlrpVwM7LspBOqf5zVdJUMimt5BxI0dJ1B4xWtQYT5TJtFIqEbVpQCecXus6gVK4IBEny6Wqo9N7RDw3Lstaqd6CxHY01LFsiF4VzO63ViDnVVXZJJqciQwCfSNlzu71WClDBeUkl+LBLatBvvF2/4cPCOLaksOH2HcVGYyPH4wGlq0V+ukP5zLqtMrBJK9Zq1s2xbt9orGZzl4pXSNynK92oyTFg7cjxNLI7T07CxlFKcTgcxO57n7FGs64Lc5WptLSsy4aIrBTOSR10HIWdmEvCPDW8vr7Rtwf6oWeeN2y1NQrjRnM6PbCujvFgiTmxbZH7tKC14eExsq4Lt9uNbmjkgorApg/jiZQK46hZ15VlXj8qTX03UE6GYTjg/UYuhW2V4fN0l0tIQQaKpcC2imgmxndzc0BrsXErE9Fa6oJGD4Qoh8hlXmm7RNfaOpx8B2E7SvaEIFZl2xsBM+8LTWvRGJpG07SgdMHts6Q8ERttCJIYC1Gq8/vuGA8twgreadserQz90PH2KrzPEAs+eUkmRYc1BVSSz22teu1bZnfQ2MztfiVEGZZ67zkejsQU6bue+/2Od2IM1orKidO1jjuT8o2YXgn7nW1LjP2ZrrPcpzeMlSaGsZpp+kbXHtjcjNYWbTT3+Y7thZn0+HgmpWoFz5m+60kpyUAyBbZ1oe0s8zxJiq6x2AwxRErSGN1wX+4APD4+49wi54WwMd0nnp6+AIp52mhaj98DwzCgq6Ti9eXC8dSCNdymmW0Ta+XxeOR2v5HLX7mW0iowPDw84fdA34+8vb3hNieDCqXph5FSDArN5gR5sm0bbTNwu0hqTTb4ko6fl7ugXTaB+6fsaRstTQNdoCzy+1QjsUQUhem+wGlgHDoycq5S1Wid007wheHc0RgjQ+GwopTgO2yjaPsGpRLzepOUXJtIpUBNwUud2+K92DpBBtJdKwbWrutYF0nxhJjJMdG2jZwpkcFNyokYZOnTNi1KCa+7QbG7nWVZ+d2jpM9ykap623RVBiIpR2sblDLsu4Dt183RDx3TspOToxRLKoqUDcu2S1qXxDiMFd8hDZFxaMmpsEwLWnf4IPxg5zxg+P79B2M/ynnfC2i+aSwxZZZl5vHxGYVmnoV/CZrgN2ERhlAHRRNd27M7z7JsNLaRi/7QSgpMGcbxgHM7XdfT9z2bm3AuCf+OBkoghkwMWVimgyQ9JDUn77B9X7he73WBd6QUxTzLMOd+n7G2ZRyO3PyN+20mR6lyCquu8q1L4XZbhC1XUk1mCsrF+51lvaF1wdiGxuzkKp7q2obcj2y7Y5rEDr2sd8aanm3ahrg5fGUQun2RqluWpk/Oe63vFVLxNG0LJhN3R4hSM5VhA4zHXhJTRI6HM27bMNpiNIJ0iQiOwkX6ttTa88LpdKzV6MQ8r9zuE4/nM9s2oxUcDgfeJW7O7RwOp/q9Fuvytu0oLLlVtK3YR7WWJDBVFrGuG9fbxpevTzLEennD2o7xMNQapAzhcoan54fKaoykmJln4Ww/PbVs2yrP3CBL43EciVFkFDHKucd7j/cTXS9DfOccw9Dx/Pkzb29vpLoYkSXMXRKRTsQMzgkX7J31qrXmerkIiywAGKzVHI8DSifWeSWESIyBrhv58eOFh4cTKSVutyvGNPWcbKuszpMSsiRBSZJs8/T9QMnC13Wb4/HpWQR488Tp+Mjtdif6iLVKmiloSArnNvbRCCuuRHwIoCAmqWWHEIhKEFopZWzbcDiMdXiy0nRwOg04t9I0XeWeGYbDQEiSuAY+FmaSvmqAJOenXZhpIWViKizrhjGKUgI//fQT6yLCw7JnNrdxPFkaW5NcSdptMmDLPD49crvepfGhMm1n69AWnp+fcF3gepWzeN83NSlYeHx84nK5SsLr+ZHghb+nt53HpyfGYWSrVfKUhA85jB1D333cSWOUGm3wgdAY7vcbxtgalGmkRl08h4Nid/J53veN//TH/4m2sdyuV7pe8fR0xPvM6+sdrSy7W/nDH/8TWheutxdpv8RM8JHjcEJpRYwLYfeCKqiIB6XkXDgeDnIfqfbcw3jG+5153TgcxyqX9Dw/P7GsK+uyQJGliw87MQj33zm5W4QQeXh4rFxbYX0Gv2OblsfHEaU087Kx+0wXUg3KHKuEDj59/spPP/+BzTn+6Z/+b5wfBpbFsazS9rRWBsgh7fTDAzEG5kUG9MfjiWXZ8F6+X+M40rXCAExRYw8DFM+2Op4/nwlR2plSb0+s64rWhugVqjT89PUPvPz4r+x6x9kIeqRt+r91PPe3D/iWZaaJiZwTPgVSyuj4LskwvF2+S/S+tUS/YdsGMarteH+l5IHNfScmh9Uju8v03ZFpeqEfLVvtS9+uv7GsS730SW9/dTMhCajyfD5xvd9rxHRgWRZJmI0H3CaVyRhlUxu8xHFjEHB2igIoXtc7w9DLBsStKGW53S7kXDidTrKd9YHN7lAK43DEacc0beQSGAdLjJnLZUIryzyvkurYZs7ns0Apmw79fkk3kvIopUiNoFZTj8cTMYptbZklKYFSlCxchJJ3jFGVY3TCbY5UCkVFyJmYFEYXDuNAzGJtSmUhl0LbmDqtL3gfeKj8wJS9pPPyLmkWn/CuoW3li1RKkGi2gsZqYRdo2N1MIDGMWoCvWdMkWw8MAjGNMXwMJWMMAkPvO5Zpp0SxEwcf6EeLQmo6qIQPRg6Guqn2opmCkaEOmRQTbdOJvZTC69t3SR4ahXcrTdtirEXpSCozIVyYl+8UPIqWkjTDeOJ6lcGhRM8L19s3tlWSXErJRuA+3zkeB3yBh9OJ3cshUV4Modb9Bpzb0Uog+sFX4HWRCrIxRrgYuuE2X+i6loeHnz/4Aut6R9cUqK8WQAHies7nB6b7xNvrjd03PJwPFBT3m9Rpt23ndDqQcuJ4PEosvZWDtTEGhaXvR7kg7muF/BuGocHvM6DrRi9XFllhdztaQ9s1NE3D6XSUg7MqZDz7FmitpTFKDiNpE9AwArHVjVySc5ZBx9PTWZ4TYauMOIGJSz1lqtKIDEoSsvJrd/S9oShHjFUU0Bq0aUB3KOSZo4xGzH27xMoLAlEdH+jahmV2AtmuqT9tG0B+VtoUYhROUdP07Jtn33fe3oR7QQ7klEQuUiQF8fb2gt+dVGBKYZ7v9H1PjB7TBdz+xrLOxLR+WJD7ruE+vWCaACXTNJZ5uUrNOG9oLYyUdZsZDy2xbq2N1hSjKanQNC1u2+i6jpwCKYi966/Ac7EpNk1bh0hieN33nS9fvrCuC00jDExr33lyUpVJSQ7Kj4+Pcoi9TCzbzOfPJ47Ho9SqsianIs95bTg/POCDr/UqYaRoLUncdd2lzrZ74RhVZs71dqNQxPJlWknArgu2MRyOQ622JfY9cjr2NI1mmWdA+I1to3FBpE1aWxlg6ERBqhcy2FYoNCE4CgEKFZycud8vfP7cSiIoiZ1OKoo73WAprBQSxmaaViqPAy1uk4pH07U1DSTSA2OMmHlj4DhaUoxsW6Tojj1EUlJ0TaHro4zwSmH3hrbp6iF+Z90uPH/69CEussaKdXPbuF1vKBQhyAZwmm/yXlm2Otj8ISnJ7S61kE7TNvK/dU5STe/Cm+vlOymuNM2hVjiiXAJSRBVoOuHTGdXQtQPbJma0nDOqLivI8kxOIdHYlraRNCxa0umXyxufP38h5144eRjG4SiyoFJq+kgSlDII3HHTxrpqnvOJ50+P3C4XKIacCm4T6c3DgwwEvA8cDkdA2B63241tdfXPzQhqo0jJ9vJ2IQbhxaUU8b6wLitKw9OTgKnFIr3R9Y+0vcJ7x+b2ukkVQ+XuN8ZBYbQhFRlKGK1BWWLIpKTQKuP2la5rqqkU1nXG2oauH/Bxq4OgAiqIrENlqWQoj2lGtJKCho2KnGTJaPZYWXobbWtRpeBWx/lhIMUoAGwjvw4fPQroukhhBwW737AmMfZH1nUnhspXDJ6fvn5lXpY6BBfhz+1+I8XET1/kfVEA7+VSNM13Hp8aLtd/ZXMTqeyEoBgGA1i25UrXa4pKlCTp6dvtha4VGdhtnTkeDqQURJIxSHJ/XYSR2DRdrXJWEztIMrFtAGFaGWVqKr3yeoxlXUVO1LZy9jTaMgwjy7zQ9S3GSOUlJQGEb5swcPposI3h+XkgxmtNyHipT5bC4XhkWaQ6KDy/jN8DLy8Xgo8fldRcktRPnefydsNay+4iS9jZfWBZNsZh4HgaGIYRt23cbzOfvjxiTGH1G/seaRpFIeH9RsqRYdToaiul7FgtNswQKreqKczLXJlhsghe1hnbtDWpstVaXgSV0caTSoRSsDZibIc2ER3FDl6MFWOjTxQa7veFti45/O7ouyMpyGdOG0UIcvHWKGyzk4uk1lOUy3U/NCzrwjC28mtcN/p+4HQ6E3zGbUGWcIezsMs2JziIbWXdHE3Ts67yZ/fw8EDbGUmPjF1NCkHuW5LWdG1fU0cbm3M1+aJq8jPQDx0PDydZeKw73iem+wpZ/j6EiU/Pz6A0Wssismnl57ssM0rBl6+SsPImsO8LX79+xQfhMc3TxDjKAl7CBCsxRo6nR5q2ZZ1XWT7FyNqumEYxVKFaTKnyyxp2F3HbznE80XcjoX5+jscDTaN5enpmmpc6+BBB3b57YpQB2f0+yffhcED3mt++f+d0PmOMpLGFG5WZppWmUxyPHdrIeav+H0q9EzTWse9i07R6wO0b27IxDC17hfGD4CvWaaXvWtZlpm9F5pSTomlbtm2p7FMn7ZsiUh5dxGAbQmDfA95nStFc3q4EnxmPHduWmOeNGBOHww1jH2jbFlOfiRQ5j3z9+pndw+Zu3G7CAkspcr/deXp+oKTI09PjR6jDOcfzp0/kLHchWUxJis1ow9vrhZQCx9OBtu3ku9SN8mwgEby0ocbxWNPsoZ6RZZGXs/wcQwyApu16tJpJZLZt5dQIt3UYem63hWVd+fzpC+u24dwuoY+HM7nIwNBaqfqdTg8UkIFrLgQiOXl8CJLsNPZjsIJSjOPINAlyJufC4XBkmTZJVHUdUPC7oLG0tnz58kUYjApAmiDH44nbTWzRRiu8l9T8PC0Y0/Dp+ZnbrQYGaspvvi8SnkmF88OZy+VG27Vo3TDNK7/73VdhjVJ4OD/y44cjp0IMsbZZfL17Un+twhfNWbG7FWtOcqe2lvHYYRsJmlwuF07Hk6QWx8PHkDaEiHP+4/1zGAaKksF42wpCwwfP69uVy+XOtm60reLr18+0bcsw9Lz+ECb5YTywrp6vXx84nY8EH1iXmeu8cn54qAPbgRAT58r41NpAzry9fEfTc73cGcexzgl6QJo+MkiVxGfYJb09DiNd29SloIiZRHBpWOZF5I+t4nQeZR6QEq9vLzw+/QNNK++PphH2u3MSCui6nut6J8XCTz/9jDWGt7cL99vE734vdl+3ryKMmDfW2fHtL7+hm4LWsoQDyFrx9cvvMFrx51//nb4fMXYFMsZYDscjl8sVhUgzUym8vLzRtg1fvn6i7Q3HcZSQFaWmUFveWX6nk3CeYwgMQ1dDMoH7fSJnkX0pBYfDSNcfcW7ner1xPj/SNh0Le5XtFcGzBEc/WOb5inMz83Tjp58/VUTTzuEoktDjYcS5RZpgiNRp6AdUPfMZ06B1qp/PCDVclWL9Z8e+MuyjpIDRWC2ClJIFyXAYnzgfnmnbnpQKt+uNxydpQuWc/tbxHPpv/Rfcq42ksfJh09p8VLN+fH9h2zYZVPi91pxCPVBfSGXmNv3C2+VPbO6VafmGbXd8uDDdr6RYJF5sNLubSGmSbVwM7Osm2/YQuV9nAErObOuGVnJ52t0um976z0nfWS4mpjLeZHKe68VB4NZ932ONcCWG/oBSRiD1VQJhbUOpFhU51EWWxaFUKxdLZQlR/nsI7QSjLfO0VrClJpfC5fXCt1+/8/LyhlKGdZFDx7ruLLMTKK9qmeed69vMPDteXi5YI0bMYTgy3TdiVDRWDsoheEqRpIkAhucKRl+wdsHtr7Sdout6FMLZCruAZpdlZts2SZLkzLxIVXLd5gp+BK0LKe/EPJHKhaLvNG2sYPCVFOWB3Hc9xhi6bpSXMNC28vLP1epIKTUhKNH/uO9AYA9XjPaUFJhmORClnJgm6bAfj0e0NhLHrtu36+X2H7a2UtUKUaowb2/fienOdfqFefmO268s2ytN59n9q1RHvGwFJTobSHGj7+ViLF9OCN6zLsJLUVixtgaJ6y6LcFpySuz7LrF03RB2kaGIgVFiuSHI8PBdIiLGNS+bLHRlPZQ6EJaHvXMOY62YHl0mRupnTWxCoX523w8q+y4H53e1+P028fLyxvVyE5vq6tn3jFs927qjlaZpBtzmud0WMShNi0TD6zDo8nbDbSJzyUnYFqhMUZl5m1m3BR8dqayYZmVzr3RdjW8jFjPnPPvuKwNCYPvWapwTa9jmZOsrXKhMLjt7uBHznVTuaLtTcIS4SiUpJWwjdcauHVmWnRQlzercTvoPn7VUZTExlJr8C3h/QWupOs2zLBBK3bBcr1fhUhgr1ZgYMVY4Etvq5AFvDLlkQhQ9++vbG3tYmKZv7O6Nfb9L9S9PFGa2dWKd1/rrEKW62xfGoaVtxHirFKQoSUPvQ03YrdxvCxTNtjl8VdSXUrjd7jIETIp9Cx8/T+8D67p+vGCWRWQ9fvcf9lJfB5TaiGFYAMzyHX54eJJE3xZlSImmoGSo4BPLsuGcl4GB87U2LabIddlYF7lkgcGtnpxqsvL8xGE81e2cByStYbQsO943pfPkWBfPurqatipV8LAwzXd5n6SVpvU4fyHGFWM0Yz8w32dutzs5F66XKygZVA/jgNGKFKXqa42qA6cIKhHigg8TKc9o7UhpIyXPfbrinCNW3onC1md0RKuO6MFV2LpWGUNGl0LYPUYprEkEfyf4G+OoydHh3FZtYPJzUkqJ5AhZGljb1sGLJECUkkphSoVpXpnmiWm54fwNH26ktFGKZ9uvFDbW9c48z+RUUEXRWCsV5aFl6DtKiagioGWlhFMYfcKtnl//8p3pvjBPkib3fkdbw3SfoGgUmpThdp3qIkM4fQINz9xuV7yXSsg8Lx/POjGG2co0HJAkXubz56+0bY+rCI0kX1mp8IbEtu1c3m6EaqOVoTRsq6t/NhZjmvq+2clZs66ew+FU+SyGnDXWtgzjQQbguXC/zZKAnnem+8r9KjIaEdcU1m1hWidSisTkUGYnl5ltu0nqvbW4bWO+y+VmnidSSgxjT9839F1LToGShbfTd229eGVKCexeng8ZR04rBbHDbttWUxKREER+sC2BGBUxSiKtpIxWmcYKQy/GiBCjAinNOPfGYQRr5GxTAGOkfm4bK5O7mlyJMWObFmvbKqSycoGPCTBse+Byu7OsKzl79nChsJOjfN5DWNn2Cecdr5cr1rbEnKRiWVMKbWdoGoOxirY1HI8HnAtsa+R2Wfj26wtvr7eaQpeka9NalvcaFoqlsmhTFjv5ui51EaSZprs8uzJMk5gzRdyVZSFS4HiUepBSmvP5gRASfk9cLjcourKDJLG2zCuXtxuNbYn1LCo1z8DQj3RdL2Z4ZfFO3ot+j3z69IWShTlpm5bj4cxhPGKMgaIqEkNQHLerGNKpiT1jNDFFtn2rQrAAyhHClXW7kbMIYJZpZnfCDVuWDa004zjQ9Q1j35HjTooiF7LGYLSccwsRH2ZyWUFJEo6SKkJhY/eB1W04t7GuO26LxAAxKO73hRgCYjOX838IAa0MSkVKWdj3C4eDou81f/zj73k4j1AKOWZIsDvPy+srr29vUk1uernwT2IgHYYjx+MJaxr6dmCeJqiX+PeUitWGP/3bnygpU1Ik7A6/7x9LJqU14zjSdh0oWBZBkTSNISb/cS5cl43bbeIwnnh6/MTjwzMpZaJPhCiLhPdnFRSGoa/v3iDcp+MDTdPg3MY8TSLyCpFhGNhr8+V0OiMDlEDO1Peo1MAba2gbqZy5dauYA0ktN1aeT+u6ArIws9bW51CsySAlZ0nZ69PaFr8H1lUWZ7uPrM6jTcv9NuE2X6H8ihQT98ud++VGCjuN0XXhk+SxoGQgEpMHHWvzwtNYSz+OLOsmqb5OLr+5yPs55oRpDKlEtNUUpXD7Tte3aI3IrozF2oZc2wfWWsAQotiVS0k8PT9yOAysi+N6mT7OCCKJyIyHhNb+I2EFwveelztta2g7YSl+/foZreXM1LQNmUzMkaLg6fmZeZrlzFxTbn4PkqqPIijqehFhzPPM9Xplcytay9CsaWz9mSTB/hgRd6zrxjQttXkzCTPOe6AyTlPk+dMzj+cHWRxbxcPjkZ9++izLu77HaMuhyhPXdUWr+s6NWZarSnM+HXmXcby+vsoXsojZPEW5455PUvM2xnK73jG2qe+CzOPTAyi432dK0ewuMk0Tzm1477ndJt7eLnWZaTidzlIn9pFlXj7uyu9sYsFhSOUzhExRlraXdPbPP/+Rh8dP7E7QBIXM2+XCvKxcLxfeLm+1wZAJKbBsK/se6NqhpgpFCJJSZp7vwicrkpgT3qNUgt0mjR5tFOOhZ1kmckoss+Px4Wcac2SatpqMdCgkPDPNc0V7uRoukKH150+fGYaB19dXXn5cavgGctKsy05KcL8vrKu8r98tzG+XC1vlVUpCsPDjxzeW5YrWqUoTG5quEYGObQgx8Xa5Mt0XvA/suyTzrTF1cVF4eXnl5ccrpehqhPfSltNWxB3HM84F2m7gfHrkcrl+fO7cJmdqpSxdPzLNM6Zp2EPgdr/jQ+RwONL2gmhKOdC0DX0/YG0HyD3ofD5ira0J0ljvKpLK9t5jjCUnkWd677lPE64+91POtF3LTz9/5uHxxDRdCPXeLCnhAbdF/vLLD9ZVZhGHwwFjtDxDjOJ6ffv4Tso95VHOGzGhteBGUkq8/HiFUng4SzL2crvStA3nh5HD0XI6NWgVuVxfuVxeSWnnp6+PQGI8jIKXITMc5Ky8bSvBx4rQioQaONmdr2eclqYR5EdT2bd912GNoaQiz/lNXApd19F3LV1j8H7BbTdaq3h+fqLvW2J8l5j9bX/9zQO+xhq2RbYzoCUOblsa29O2wgyQaaetSbWFt7erPHBtwe3fUSrJQ5ZISBOru+P9zv06MfSjcAhKqf/Ohq6zaCNcLNtq2qGtzLDC6+vE999euV7k4hGjr8BiidvHmFGq4XqZcJurB//Ctq4cDmdSyvVLASFEbreJ1nTEPcrvq5EKwzCONRoqA4x9j0x34QSJ4SYTY2J3getV7Kh9P9aKbiHsgb7teHx4Fjaa7dh9kuSczxQ0/TjKC19ZzudH+m6UuhRSjVhWhw+Jy2Xhdpsgi5Sj7RQh7VJVjlTQ7g5MLIvEur2Xw+G2OUKSNEzKgcNxQKnM4SDcoBh2SpHakG0MKQeMUex7tUnVGpNGEWIgJofbPfOyMt1X3n4s3K4bfg9sS+H6EphuMyksWJNrBY56EPVofSeGK8dD4eEBxr6nEOkHy/EkNccCpAIhZrq+lwecEabetm3CdwKmeeE23clkmlbj9gta5/qwTOxhwe0rMSfeLhdsK/yRlCPKSo2maXXd0nUcxo6ub5mXlXly3G8LP3688PZ2IdcLqW0sphHTro+RmKW+IawzGeBt28rT0xNd17LvOzFJWm/bHG3bEGKgKGi6hkypSaEd5zzBy7BlXR3T/S5ptZzxXhJP6yo69bbp5fLiEyUXxsOBT89fQGvEviaHTe+l7qa1qdUPOJ+fMFoSPO8Q3W1zlKK535Z6eEmSpLOJVAJFFQqaECOFQGZhWq7ECt53+86+R1Is7C4AimEUmUbft2yb8KUEoCpckFISxui6yfOgIsZEjJaBRC6Z1e0sq2OeN15ebizTzu5gXTPXa+DHyxvbvtC2hX4wlYcj0pvCSkx3xjFyPsPpOACRw6FlGORFJsO7xLKu9MOAUiLj0VoSuu8czW3dpXpojJjByoY2iZLERh2yx3l5YdznmVwEH/BeQ2g6kRK0neV8OnA49mLAion7bWVddm63ie/fv7NVKyYalNEordhDZNt35mVFFakTt1ZkPOfziZ9//plhGOT7UeVMxhiMhc0JH7LpWgowTTP3+523t0u9qOS63RJGXIyiqnebmCuHYUQryzKvNdHV8fj4TNt31Tqu2DYvW/iQCDHy4+WNeZUtpLaGdZN6TaMtRmlyLAQXmaeN3YmZUdtCUSIlaNpWpDlkMgube5P6bQjs+yaJtaw+AMXGSAVD6rZidhbBS2Z3UsUwFgSW74WhqRNGCxOjaywxieXLbY55mVhXVy++Mui8Xq7M8x1jI12XGQdNawwp7RR2NndFa88wwPE40HUtSkni6MuXn7Cmwe8Bt8qfa0mwTJvAl2dJtOSs2JzH+8jheOBwkG2jrsMB7+W7EnOUGq42LNvGsq2EFEFD27XCEbOap6cHHk8Hhl42+fO0EvZUnwe3+vmmXnKh6wcZsNVamm0M4yjb593v9H3Hz7/7HQ9PT2hjSDHXaqalHQZClEPw+fERbSQhNE0L3759k89TfZbH+FcD5e4F0TAMBzET14GANQ3GGA7jQRhHIZBKIUS4TwvrJqa3H68XbvdVmD5acbldGMaRpmmkqpOkZjPdFpbVobWm7S1FZbKS9562WmoWeWb3FyCQU6hpcogxEWr6UmtFKYmYBAeyLBMpRmGaLUtNr8j7JaWEMmBNwdhM22razsqWOJaa4A54L0noeZKh8rY6LlcZ5I6HTN8p+t6SoqexEefehIWnd8bRMPStGC9rIj3nLOedWAgh41ysSyoZqLddRyoRHzy7d9LUaFo+ffpE2zWVgSjiom3dWDfhMA3DwDgcmWcZEhnpH5JyqBczw8PDUZ7DSt6Z18uNxnYMvdStlNIEv39wnIXzU+rQaeFwGBl6sdRSMp+enjifT5wfTrKwjZmu6T4A8u+Li8enR2IqXC83pvvEj++voAxdf6DrBoKPlKLxIVOQROLz82e0buT5tqz03SjMuKYhBOFnlaLwPtdla8ZtjlsdqAQfpNI4zwyjVN7l8C+X0uvlJikYrWg6SyypLpKEuZRSoJQNt19QRHKOxBDRSphFwce6RFHVnlxIOcpSF3lWrttGrJVpKDXRKk2Hxkgjo+saUIq9XiwFRyPDo/m+4/fCtu7c7le02TgcJFEz9G3F80TcdiWXGdRM04hVdd9XDmOPrilgtzmG4UDbiiCgZIXbBP4efKFtBxkkVrlaY0Xytq4r3779ilvlLJlC4n670XUNpWSslWHLNM00tpMF37YTA0z3lXlePv7Zvm95enrAWlOr+GJTDTEI68l2TPeZnAWj48PO8/MzX778BEi1sxQZHn///pvU6Y2k9rz3/PrrrzKoQgagl9cLyzwz3WfA1ATjiZwLy7ww3SfO5wPn84G+73mXlBhjah3twLkiDLZtqwn+lnEYSLmwbsLG9T6wrRs5ZJ4en3k4PeKWnaeHZ+43ea6PwwlVNI/nJ54ePxF2acFoqPU3Yaa6WqOTbkyUimT09ENLITMMvdTSup7r7Sr4gSjsu36USmTMSRoD1lTrpBiTt2WFkmsNc+ftcuHtcme6r4TgORxGfv75C6eHUVoeJP7wx5/46efPHI8tq7vSDYmidoZecz521TINbWPkfag01hg08PT0xOVyY1423t6q5TgEDuOREBLTfZHnrM+1Ii0inr4XtqFcyHseHh7oqs14XcXSOc8TTWu532+ynFwXjNG0NbF8v0/sLtD3A9sq1Wbvg6QZQ2S6TcQYOJ8GhrGjazve3u6yzK2BmaZpGMYDJUP0mefHz5xPz5XPKGI02zQcDsc6zBS80b5HfvvtB/fbjDEtygj243g6MIwd+75zOp4Y+iM5iZm570ZAwiHjOHA8nj5YpoJuke9aPwz0vTyXlZKFJPUOuKwLwzDUn3tAW8354YG//7u/5+HxzDh2nE4HmkZ4tefzGaUhpv0DCwIiGVTKoOuweVmk3jweRmnd1AFK0zayvLIt2+7R1rLtO9Myy9lOGzo78unh72jNE7fLyvVtZtsd277i9l18ATkSc0CpzDgOtK2cD7ZN5Hvfvr3y4/sbu3sX7skI5nQ68vT0XKvcO+s6E+KO2wWXdJ8WYog0DXz5+cT/8F/+QMo7D49nHh6PAMzLxv22oopm3x3ee7QxxJw/KrnTNNH1fU36JrZ9xpiCq7bvdVu5XC7c7xN/+eXX+lmTUMrr6yuvLze801xeV5Zl4+Hpkc2JMGI8HLnfF377/gJoHh+feXu9ymfMGHbveX19rW08kX2WnCW5bTTLMrHvjnle2baddZWAjLGwh50vP32h7TpCCihdKDkQ/MIwtIxjL4uFIg2l4+EBiq7D+8iv336pzRyPbQ3Pn54YxoHf/f73PH/6JOGK3ZFylMV/DpXD27JuK/Myo3Th8fFEzIFSEs+fzmiTGQ8HSlGIkdoSc2RbJVTk407XNXz68szp4cD58czheOLh4RGtLaUItqPr5H3jQ+DtekObBr8ntLYftWOlNX03sm2eaVrRmI/EYtPIM0Z+zhlQxJBkcPg3/vU3D/iGceTx8bFOxCWSvO/y/8smXA6/3ns2twl34DTw6dOD1KoKtDWBM013cl3dH4/Hj+2bc64+DFRNUQSOxyOH4wFrTWWBJKZpFuV0KZRSTYi59uNT4nA4gIJ5lvTQ+eGMUlQQc8/z8yPDIC/f91/78XiUi0CdxD4+PnA6nVgWxzSt3K53Ac13Yn4x1sphP0BOwhIZhoG+F7NoqNs/SSlpYk0BGiNGtt37aszVXK/X+me5s227DINiqg9UqS2VChd9/XFlmRcBNZckkdb4V9ZAyh4fVkrxCDRTanwxRrZV/nvG6JpkKeQSsBYyAiyWuqiwNd4ZYNY2AvMmok2SxFtWxKBq3UTz8DQw9CPTDdY5yIdZg9KRhycwjWMYTB3cBbb1VuHIV5QOKMQydDqOKKjGGql1vhue5GelJCmm5NK0rMJEOx4PPD4+gMqyxa7br+v1ghhsC8fjmX4QZlSIsZqD1UciZTwMjOMg1fKSiSlzvd55eHikbbtq+SwfwPltE96AMLZkwNH1IrfYneN4PHE6ndHaCK8pyvbpcDjK96EV29U4yoHPucC2eXYnF7227TifhHkgFVGN9wljGonQ189SqvYja4Xf4etWWdUKZa5qcWtFDCOXFWEDvgOpt83JJqXINsH7yOXtzryIYbUo2Yh+AEOzVDtC3DBGOBGNbei7Tvh6ztVtpyUG2eCGuNP1Ur2xVn98vru+RalSU34GYxQ5B5SWw2KMqQ6wE/1g+fl3nxiGkXlyTPeVplGcTgdskxmOEWM3mg5AbIDrcmGaXpmmF3Jx+H3l4eHIOPaEKBcdv8tG6p2TKYkQOB7PH5+3d/uaVK6lCmNqckk+p0F4Esi2+tOnz3XTJS8HgOAj87LWQ3Nb64T7x8LB2obPnz/VZIJE1EsSg1Tbdbyz4YyRS5xsWoWBJJWE/DH8TSnTtn39jGSenp7kIF9B5LuTjbbWmrZpJf2SM/M8fVyigI/P2TzPyGVUoMiSJPXVHi4w75wURje0bcfuPHv9HOdSKm+s5cf3C8viZCinBXI8T3s97BZhkYWdd0NcKfKdC8HRduqDnTQMI23T4pwkPIe+r3XAHu8dx9NQq7JySstZ6knv/FKR4UBOgZw9YmeVg5L3MrT5z//wd3z+/MS2btxvE1D4+fdfOD/0aLNxOgNsNLagVWTf79xvL9yur7jtTk4Oa+D8cAYUr6+vLMtaKzAN3ktqzRo5uA/D+MFReQdTd12P1gCS4vz+/QeNbXCbpNu9j/V9KO+x98RcToX7farvhlRrGDvrutbUY+Lx8ZGHhwep0G67bMljgsoiM8bQ1cvxPM/14N/UBGhgmu5y6fNBJEjAMi+cTicocvHxPhKD8Aj7fhQmE1JHut/FmDrPy0dSdXMbt9sNkIT+u5BDzMalckzFbNm2I30/CMpjdQyD/H3wgePhkd++vXK7Lqyrq4l3Q8mG6b7WZLGtVlc5O/jgq8FNTLRdL+++cRxrNV/SL0M/MM1zxWB4uraRRUbwpCQp7lyEe1tKksNtks+h92vFJ0jCWRILkd/97it//5//QMqxGgQ9X3/6xO9+9xmld7ohoO2GVoG+16S4ssxXrpcX5umCUZGcHA9PB5q2rfWvmZeXF7FL2rZW/+XcNo5H2rZDaysX021D0nCSUJJmAvzyy6+8vl4YhoGSE7vba4K8oLXl8fHhYwjo3M79NomwbJ1rSj7U1JhwC/u+rwNrSanO81qN6zJEUqrw9euX+vmYsMaKvXp3xOBZ5qnC8+X5s8wL+74z9CJU+/brN5ZpoRQBZx+PR6y2rMvC2+sbm1s/eH/SPBFO0jQJP3AYxLbpg/CnrNYf7CTnAuN4pOsG9rr8eH7+xDgeibFwPD1KKnba5PNMqqnljnV1HykZkbHkmgaTyl2Mnq6zdL3BWsX5dK7PTjk3tm3L9XpFG6mujWOPqgzTECT5obXGWBnwjuMoTYsccfvC7iSNdb/N7PtOSpGff/eVv//7P1ZB0kbwOz///IXf/f4zaEfb7+jGoVTkMFhS3FiWK7frG/P9glYyRNz9zul8qIw1aS+8n+FikO/WOMqA1RjDPC3crvd6LrGV/SfNgsa28i7Jfx3oeb9zOknS6X6/14vw+lHzPp8eaOqwV95/wnW0tR6vanLyPXH3pz//wu12r+/+/SNtMQwDpUQOB3mfjsPA7nZsTdqFKMkmYwyfPn1m6HuxBS8b4+FA38tyWM4WnpeXV1LMBC/PhLaTiqAxmm3bOBwOlWfbMM9TvQcILznlVKVjDfO8cTiesaZlnjd2JwNy5zw///xHGfzte73s7sRUiDFxvV6F41rTbW6XgYTI30xtaQg6Z1kX5uWOtWJ1L6XU1N07a06edc+fHgixyuli4nh4pGkOzPNGjsJR05r/B3P/0WRLkqVbYkuJcXKYk8siImnVq3qvBYIBWiCC/z/E8DXQRTMzyL3XyaHGzVQVg23u1ePOHiBESkqKRGRc93PMVPf+vrVQWnG9XlEKhnFgGCbcWi+uqgqtNb/88gsheH783Wf++Kcv1HXM0F+YlxuEAe9bVFgHfBv5vBurqOuCqpRa8ziOPD195+nplebWye9pXt6fSZIqV6tRVhhfwse0YhQHYequy/JhmLheGm63BoV8j3x4w/HId1reCxHei9k9iYXt2HVSdVwWx4cPH7FGBA1t19P13bqwXuRz6MAvYmKWVpCnvcnQIY4T8rQiXofYVraSFEWxfrfkvtcP8syuqkqW1LNIY+Su7aWlFll++fkr18uw1o0NaSrcLwVorTidjszzzPPz8/sZoGlElmWt1MNFlBcoCkk16hWbYSPDPDfkmeJ2feVf/+VfIIhIoyoz4shSVaXcsVdJ3rJMDP2AXwJKCetvXtwaxJEqpDGKLE+JIksU23U5a6R9FqC5tVgbrbXqmXke14Fgx7enXwjevTej3qrVcWxWu7PwZpdZ2h390EOAJC5QRDgH8yhc8u1mi9GWoRdR4dBPRHHCZruhrqu1NdO+o1BsJCgLo0ceHwoI8g4pspy+nUAZxmkkLwvQUq/WRlMUBXEiHF5jDFFs2O9L/vt//wN//PMntrtslX1ZkiTmw4dH/vCH3634C4+NNPv9hjRN6NqethkIXszL+/2eqqpXfpy0Ke7vHljmwPF45XyWFsg09kSx5no9SyNjGEBpnPfkuZxNsyzHLVL3jpNUFn55xm674XI9oY0EM/I8IS9SyjLlsN+QxEYWelZaRE9Pz3i/8Od/+AMPjweSxAJBzu0hYCLB1/jgOZ6OXG83AsJklIFtT1nloKQBYKyVVJ+X5ldQIp+axpHgFc4pjE243WYu55llVtwuLVWWU1cZkfUQ5H2pVVilVBJ4SNMEG2mu1yttM0CImUYRWWVZAci8yXlZ3EVxQtv2+LAO8caJeXKCeGhu4l+YlzUYt/yfH8ytf/3dA76npydeX49rrDxBKakugVkPitla203eZREK+SD3vdTE/v3f/iIa4yRdk0z9OsBSpElGVVZrWFFxvbT0vRwiu17qGX3f0XatbCg1FGVOvl5q/cIKx10HaotMd+/u9pxOR8Z16y5GvnY9WLZMk/DPuq6TC+wKoX1+euH56YV2PXymWSLGr2nidrvy+vKCMR6lPafzC+MkVaymkctEUVQoJSy9aRZ2W5okeCcpLKU0ZVkRgtTZsizn4eFBfoaRVJ+/ff8OSuFZJ97lBrAEAnFsVn7V9J6YnKZ5PUzNFGUCysuBI5EKWBTJh7HvRwGgzhNJElFW8sD1q4HTaIHcK+VIkpiub6XW5SQ1czpdOJ2udJ0wa4oy4/OXRzEV+xkTLXz+YcvDY41nZJiO5KVnWTp2u4IkDuthfeZ2ORGWEY0jzxKJ2J7OXK83QhDGjlQYhK2W5xVaS71NZCayUVoWx/V6pe9bAoq//vUXLpcrdVWzrBeBcb0UpGlOXVXroC7QND23a4fWsqEwRlJl0yjmJOcWMSitNQ63OM7nG0bLZ63rxLz88HhH27RrrdOItOJ0WrfkUjVr247j8fheaffO8/L8zMvzywqxV6RZSl1XzNPE+XTheDyR5TFpJjWRcd0ATJPUi6pySxJntK3UM4URJsbkaZTLWhTFjONM2wxEUcz9/Z2Q3JQiilKenl6JohhrLXGcsNveoVS0phX1+0BzWSuqwyAHknmeSFKDWHXlgJ2mmQycSuHtvB5f8X4mSS1VJTwSpcL7IGmcBoyVamXXtSuPY1lB02fO5wu32w3nxIy329dUG4GGl6Xh97+/Z7eL0Wqi71/I8wU3Nxz2BXkqNU0VAn3b4OaRPLVEVq/PoHGtBkjCSmtD28rFIc+r1XYnm0bho4iZ73Q6rQOPhdPpwvfvT2LcWi/IwuuT6vNms1kTV47m1nI6Ck9icRNaQ15k6+BOEhbzImm/PMsxOuJ8lmq5MRHjOBLFEZ8+f0RpRdsIM8h7z+urfK7eDjXL4nl+fl7TfOuh7Xrjcjqvg0iJw9d1hQrQNj3n85Wyytnta7I8XQeUeq2XC3C+rrcM/VsyuBM2SpZLbXcYEdbWSNNI1bWqKoq8YhgmNtWW86khBENRCvh6tz1Q5NVa9dTrZXeWz9t64J7nmcVJsmUcO5yXn7GxVpZAeSmm1NfXdRBoxYZu9Mq6lO/6NI8CoI+lxnW5nNGiUuV6u71XbaZxIEmk6lrVOftDycPjlj/+6TNZZrDW0Q9nnLuhmcgSzaePewizDCOGkev5jNWOsogYehkaiwhCIMghwO16Y5m98Ee9WqsnZq0hiD3xer3x8vJK13W4xXO9yEGb4AWTkCb0vQhuiqJkWI22bSt22WF4G6IrNpua3W6L1krERsskPxNrSZKUcZBnhNFiOYsiw4ePH8iydBUzCXfkdL5wvlyxNiaJU0DT3Fput9tqf3bCwR1HlukNrC4XX4WkY5tbS1kW3N/vORz2aK2I45jddisLChRZVrwvKN4u7rvtVmoQw7gOnqXW7hYZCNTVjnEUfs48B8bJURQ11kbkeUFV1Xi34jzGkXma1mYBkjwe5eA1TRNd3wjT0YvkoK7r9T3naduWtm3I8oQokQTGG7NRhqWOELyA0/G0TUMIUtVq2obrtaVteuZ5JIoNw9jjg+PubsOHj3v+8KfPbLYpIQwsS8swnohjD8x8+XyHtfL7cctC1zYMXceurpnX5HTf9yRJJsDpIOeqaRR0QvBiC72cmzW1DXGUkSYFXdtzuzbvlZvIJuu7UhiecRy/iwSUkjr07XZbeVfCoVpWFi0Ktju5dLwtxha/0HTtmnY379VhsWl67u/v1mRFvC4kxGLX9QLGNiYS4+LK1IpjERy8YTOyJJWb61q31Fqg+cEDQVhLh8OWh4d7rDFsNhsOhztE+iNCj2UJ67mqk89UXdM08v0LAS6XG5drCysioSq3LLMnSyRRA4a8qNekqhXW0PIGD5fqmFscoNd0pfxsuq6hWwej04phybMcYyKmcaLvZUi/2RZEsSJJo3X4lzJPbmUKrp+54Gi7dv2dGbq243q5vZ/bkiSibRumeeThYceHTzv+8KfP1JsE7zq86ximE1G0QJj5+HGLtU4kVJMss9rmKtVqFcSu6RY8gd3+QNf2kjRbl5B9P9B3Hc45tNaUVbFiTjpuzZWuF3FOXuQYI7bYgMcHv7IH+/dlgdYyFHh9PeHcsvITPc3txm635/7ufm0wLFRVzoePD7LwsgneBR4fPnB/fy+J9jhGKy2MyyVgbboiTxyXy3XFW8i9oG3blXtmcE5sorvtgaZtabpuZRuHlaEni+G3hLLYvntut9v73edtYZKmYku1VpBBSkGeycL5er2+J4eneSZPC/IsRxnDbrfn06cv/OlPf2Je5HOBDvSDLNACnn5oUVo+E+M0rmZvjdYySH1DcCRJLCIAI0v0qqxEHrUOk5ZlXpcg43tlflkC2/oHEnPP7TpzPF5p2o5+6BiGaQ2CDGv6Ud7VxsqAaZ4dbTPx289HXp/PhCD3zDi2a1ppYByvRNYxTw3D0EoNP00Yx4Fh7LneTmiz8MOPj6RpQl1vqMpKmN0Yhn5eERQiKJH0rixm5ZwmIYGvX7/hFpFsxVG81oT1uoyC0/FI3y+kScnL8wvzNMnzv+npO6m3K2XIy2IdFOd8//7E6+ur/O8Lueu1XUeWJtzf36OVZeiEb5vlKUEJW9pYzbKMImcZW/qhw4cgmKV5phs6TpcLaZbRdj3TPOODZ7ut31P+kbWybLne1kVoQdMMDONA17XEiSzVkzQiTmTo9ibayvOMqipEbmaEVbvZVgx9/y4MJHjavifLxXr6+OFAWUVkuRhXb40sh8tSeLNaa67NjX7s2O0rqjrDRoY0y9bfhSdNc7SRgXKciCV9ngQZ88YmjG0k0qlYsAnPz694L2w/qzVxpNBqocwT7u4O1FXJPMkyo6xy0kwaDPJML9nuKuLErsKOmDzLqcqSIs9J0pyHx0+8vLxKqiyS+rP3mt32HrdIoyeOkvfvbtteSbOYrhNp4+5QYLTj6dt3qirnT3/8gaKImaaB+7uDiLKmnuAd09SRpnIWffr2G/tNTd/diGNFXlju7jY83O9QOLyfiKznen4huAmlPHGkyRLDTz8+8uGx5m5fQHBE1jAODYSZoWsosow0yvjLf/6N1+OJYT0TDH1HWaT88Q8/kOcJWoFzM8PQgvbMbuL703fGaVlFn3Jea5qWb1+/o42mLHPKMiPLIi7nV0KYRa6kFgILNjKMY0/bNlgDccwqtlT84Y+/I0kjFJ6uk3anD57r9SoBkigijtP1+ym/M+dHyiqm669EcSCKA48f9nz58UCS8X4+Cl445V3b8+//9jN/+Y9nrhfHOHiiKCZNYjFSO4d3kkiWsFjOpt4Qx3KnckvA6oRIpywznI5nLtcrUZyweL++AwJZVr7X9NM8pRs6ojTh1lwJwQnDL8gQ/S3E9ff89XcP+O4Od+thTK8xWuHtLLOHYHh9Pa2VMLVC2MVG9fz0ulp+JoxJRXixmm1lk1uKnSyKhDkxCIBzHBfGwa1MAmF43d0d1iRNj7FKXjR9+54MAbEghRCI44jHD/dEsSGyAuWW9JWwo2SIoN5tYrJhzPBe0lBGa/JMto1RJNDLaRgIixwEqmrL/rDlcNixqXcAfPz4ichGRFYulMErQmDdMt+oqwprLG3TS8JlHHl9OeEW9c7gSuJcYqQ6Ypo9aOFYyAR43ZaOE13Xvx9qZFMlG2Y59E6czycZUs3DCuqM5QO3CCB6GAaqunz//Up0uyCKCtp2YpmXdVsG4LleGxSKcRJD3dsmrq5L5mXgl19+I8stX3488Ps/fiTLE7qukWTP3KMY8W5mU0VYOxHcwtiPay2p5/G+RgVhEe33BwGVhv/680iiSkQBLy9H5lmm4UkiwG7hIgkjoW9HkqSAILVlo9W6JU0EzA7rwG+QyO3kCcGsyaQABDabjaRJuhYbaYZpoB86zpcLStn175vxToao9/cHtIY0i0lTeTn5sFa6Vujt29Y0TdNVkCHb+3h9scjnzBKC43K+4J1inh1VuaEsc4oiEwOXc9zdPazJhvR9UA1ScZ/niSRJ3y9cb2nX66WVzdTssCalKncQzDpE1Yyzxwe5qF+vNxm2TJNw1tZLgQgbhBMim76Z0+ko38dpZFnTNvO84LxnXJMKZSWwfB88bgnEUUmZH7hdx3UovaC0RxvhRXq/2rTmBYUcPPaHHRD45eff8D7w8Ljnx58esUYx9K2AUP1AoIcwUxSWKJKBd9+LeMGowMfHHXEEyzJTrcndZZYkslxCPVoJKPb5+ZWu61dOWkYSZxLbR9N3w8olleF5PwjUX3hqshn23jOOE23byaFciwRlHOf3IW+SSB3GeeGWgtSdf/tN4veS9JKfRZIkbLebdehmqepCqrN63Xyulae3SkVdbdhsNrj18hvHCWVZrYlUqTK9vDzT97JR1jqSeopVq328eU9evCVA5VArqYe3waTWhrbpKVfo8TDIdjYyMcsCDw9f1jqJbC5vTUffCxP0+9M34V9q9V/PtqZbMQkyUJfvkKfrGpT2KA1pGq8bfKlb9m9VYK2JIrMOYMXU+nj/E127MPRS1ZmXCYIwy8Y3ePm8rGmtgscPDxRFwfl85bdfv6ON5XC3Y55kWTMOHYqFee6JrIYwo9TMsqwH6MhSVTlfvtxz2OfURbIOEMz7M1w26TnCIdO8vpxl6+dAoQkejJa02xs/9o079VZptNYKaHwRntDpJJfBLM1IUzF0GS3/P8uyEJxjnqUiPi9vyR/Fy8srT08v75fQZfarxMW+H/T3+3r9zIjN+y0ZPi9i98yzgseHR5xz3G7X92ddAJIkIk5iXl+PtG2PW2AY5O+bl2l9jpx5MyxqpVcOT0vTCA/VWE0cx/I7Hcb1UpyviWSpHi0zPD78SFXuaduWelMyThPnizDQXl9fuFzPGCtp8mmcVjyGXplsy7r0W1YWrwzRJFkcrQZPGZQFLynxOI5o189a04zst5/wTsRZt5s8O52TAVnf9/Rr4lR+Phnb7Y79fsc8Lfz6y1eGYaIoc7yXVNc4rjy8sUGpCfyA8yKV6bpmTbMmfPi44cPHmrLQq0VWlozz5N6HmUVRiKXbyAXwjSnknOd6k2HfMIxkWQbrRRgkkeyDp66Fz/Ttm9QT26YXtjCaNM7WGikkSSxMGh/eHCk8PNytz7aBNEnlWdJK3ai9ye/AGAGgR3GEjQx1LcPJ0/ksy41VTPXGm6qqmjSWc+Xx+CppjmUGPHUtzyKpYUrb4HZr6fuOYew4n488PT29P8PKslyfNTPXyw2B/UuF601wIM9aGXBFUUISp+TZhk8ff89+d8/tJqD/pm05ni4yKL1e5UJjDaBkmdyu3Nu1rTKunwmzSqTkOZS+D7KyLGMYRwTI7UF5acJ4MZ7fH35kngxdN3O5NP+VKHHzyl1umRfBz+R5wWazYbvdsCyOr789CQA+T1kWAZDPy4DzI+Nw/a/PnBtAzbTdjTRNKIqM/SHncr7QteP67JG0dRQnK5ezWd8FDhUkRf2W4knTVOqzScxmsxF2m5GUs/eBZl1edd1Nkklrej3LC+ZJFh3jMMlnFbF55kWBMYrb7crpeCQET10XgJg0X49nXl8uvL5eeHl9FVtpKnVF5wKfPv7Ix8cfyLJc0tRrgi1JUza1JFVZmbZd2/H89Mz5dGZTb8jSlKLIKauKgED9CWZdsEpzI1otudttjdaacZx4enrmfJYUzThObLY1UWS5Nbf33z3r+9w7OU8Mo/w+bs2Ry+XIy/MT9/c7ijIhjjVFkbDbbbi/v8MaTVVImtM7T5YWGBOzzB6lrKTYvQyXbGTI0gS7MsZksSdntDeu+DJLqr7tWtJU0kPn6ytDPxCcJA7lDDgTJ9GaFhMxkfPS7mmaG8EHtIrWc33gehk4Hzuck3ZOHBuKIsYax3ZTMqw8wLbtuN06vPPEseLuvmC/j1H05FlMWZXEScLz0wvjKJgVpRSX8xlr7ftSHuB0Pq0JPU8UG6o6J0kNw3hlnmWh/TbMDMHRr+w2ab94bteWy6nlb3/5zu0iDPIQAm3T8fDwgTSVM0SWFZRFzel05fX1xMvLC+M4cr6c6NZEmndvlmOFMTAvA/P8xjwTlMFmU5NnmSTorEgcF7ew228RjLZjf9j9H55pBZGN6fsJYwK//8MnksTw/dtvsjjRMozOCwmwVFVB34vJ3nvBzgi2QZGtwzjWQndZZWtltAcktCHSCFn8aBXTtyIfu91E8FRtcuptTmBe+bXp+v2F8/mMUmCtZpmlQXS9tkRRyps8EAX9eud/ky+2TU/X9GsS3r2LNb9//8r1esWamLYdBDHRtfIOV/LvXxQZu92WNM25Xm98+/aVpr0yzSNpIneU5upom3k9X8ZM48LPf/vK199emGfeLcwg7FdttASK4oQ0NfzpH34kzyPcPNK3N7LYcNhVxJEnMgt+6clSxX6fU9cRm9qy2VgiO4IfuF1O+HnEzR37TY6fOwwzQ3fmxx/u+eHLHZEOLONAe7sSXEuRe7abiIe7krG/kFjPYZfycFexLCILbW4XbpcTCoe1HvwAYWSebpSZpi4j8lSRpaAYmKYLh32J8jPH568M3RWtZoKfyLMIrSZ224yy0CTJwm6X4ZYOY500Cv1AmsDD/QZCw24P948R0K+Cw4GqjNltSvbbCqM9fXdj6BuM8ng/4cPI5SqDw7JMSDPNfp+zP2TcP5SYaCZKPLttymaTAg6UCB2H4cbj44E8yynLHX6RmrsY3j3ewfPTUdiGcUoUx2vg6Ij3jrquJUE6zMwzXC8t8zTjF6l7l2UBSIDseDxzuzaM48BuL8/ht8bq/cPhHc1UlBlV+V9zmP+zf/3dFl0fgKBo1wqavJANURRzPL4wz5L0WObA8fXKZrOh70byIgfkofdWT9BaU1UVp9PrWiFKeHk5SgTXWNI0JYqGdbBn36tqcSw8AKNjulZSb97P3G4N07ywLCN1LQcwtyZyFJrtvhSm2NXx8nJit9vj3LxemhxZlrLb7bmcG0mCXa5stvUa81Yc7u7o+zPj6MmzaK3+KoolwS0Lx+MF5z1FUZBlGWI/W9aax0AcC9NG0og9PojAw7lGLilphVaBD48/MG4cf3X/yvV6pSw2XC8taRrh1z+PW3riaM84LmusWJHlOdN4IyCxZvn5CSNxQWxc58uRqj6syaiJJJHaXdcLqHcYPNvqHuVnfv7lX+iNALCTVACay7wwzRHLMhNQkoLwjiS1tG3D5dQwzw37u4w01VynnrKKGYZWaohzi1YpXX9h8RNdf6WqC4w27PYl232K95a2kU1G8IphkGGt/Exl0Hq5NGsKcmQcZ15ejtRVzbxM7HablTdm1sqnxVpDWZVcr1eu1ytxHHE+XQn4NQkQr3VCMT0WhVRMo8SQF8LnOJ0u5HnJzLImoxaGviPPE4zWYrWaFpI0kWrGPHO9NtxuHWW5QallTeTIxb3IK5pGXlzn85nNRmq8IQS2my2LXzXtQSoY09RQlmLfuV7PhFBTFiV5nq+bZP+eNkjTROpxyP88TzM+SwghCDDYpmgFHz98QSmL8zMvL89sdxtJ/rgZhRwu+qFhe9jxJgPwTj7jcuAYQHnKsqQspT4/Oc9+t+N0OlFvcuG5TAJuXhYxxMVRinOKMr8jNvD0XZ4B3AWytTYsFeM3CYTAV8VS7On7ketlZOhn9vcpaWzp+iv1JqXvGknhuAFrNEN/YfEdTXsVBob3FFVEvRW759AtnDrPNM+kaYEAumOCZ60FTe9sBecXLueL1KDx7A87prklSRKUatBaKsZJIhdQqXuJTfZ6bTDarINVYTrtdhn39xumacAvnji2fPnygePxKinTRKDuu92O8+mIRpPECcM44ubA4XBgGHqsNRxfzzS3EaMtxkZ0nRgKhSuj139eQdf1eL+sAzmNijSbjfy+pnHCexj6DmPV+9ZdkosLea4o8uI9Zde0A3EarazUbK01LwzDgFKSJJsnh/Oe7ebAl08/Mc0j//5v/xvbbb4Ostw6jLPMy0iRGOLI0PVyeddKbG/O9evhypLnGQrDNCxERtJJxkj9aZ6X1eQ3Mk0yqEmTkiKr2W7u+Pnn33h5/sZunwlct1tTtF5YWG+MpzRVeL9wvvRMo+fl5UYUiaSja8/sDvJOM1ahzYJRC4SF21XkC3Eco42mH27ASBrFGCKMtnTtQF3XK+dGYOPLsmCMJstSSSa65f3nmWXpCnOXNLWkTee1ZvGW4JZnuTGW20WGzN63ECKxfWvFH//0I8syMPQTcRTz8HBg6BfO51YWCzbhxx9/5HQUCHESx0zziMNw2G/4/vwbYjG9rck5eYddLhcxjiFJJlmOxWgduF4vVFVFlhXcrg277YY8K3h5ecZUFpx7xwmEIBva4BHmrbWAQM1RYb1gKXlXjZKoG3r572mSgdMrjNtQVVv+8Ic/8Je//n+YlxHUvJ4tlPCs3IxWnjSNmBcZJEt6VxK8y1qxspGRhYsTXENRlExzh16T49bGzIuj66R+mqUxRV6w2ez59vWZ52/fyQtNXRdSyXALMciQapxRCrI8WytSr4yj43Ju14vXnr712Ghhty8Zxl4GDtoRxzD2kkpZFs9mU3FrzjjfY/REGkm6rSiKdcB0k9Shc+8DXKUgiixlmTPNglNY5ok4iqjqAm00SktNUGkIi4cQuF6uMryz8cp/nemHjs2mev9nX6836rrk0+dHrmfh4OVFSRQL/+Z2Gei6kTjJeXh45PkpkKYWayzdtaMoN9TFnqf+KyGsCa4oIYoTAnA5X6irjaSPmn5FoUi1su87NpsNUZTSNA3b7QZrYq7XK3lRoPWKoBgn0iwjjlKGfsSYSIbk6zNJ0r9SJc3TYn1OyAIozFI37fuBaR7QSpOmOYfDAdSwSoGE6xOZZJU2dMRxRGRFAlPkNVop9PpnW5ZpXTBCmlrmyeGdnElCmNfviQy/hdMog/rIxlRVSVVuCMFyPl6p6pj9vn6vzseRwkYJ4yQ19TRN0BqOx1fmifUzFzAG+s5hreNwXzIMPUWRY/RCEiumoeN6EQFIltZcrifuDpLkTrPyv/AdQa9pw4E8L+m6jmitMypY3+VyFo4i+44IWeaFspK6026343g8AprIxgzDwGZbv4cI+m5E64iqqjlfzsSRCC/yPCMgyW5rY07nM9oa4R5eZClhjTAB49iidcLx9Ui9KSXpOU0YbRhGqZIp5Hw9z9OaTBtlaVrkpFnOY5ISgufWnNmYeh2kS1vo+enI2HvyUkR/VVVwvZ7J8oS2XRdBccw0zdzf3698pobCJCxOnvHPzyfKqiIvJHxwvlyIk4RNXoLq2W4T4kjYhYvvKMqUDw93cv7IUs7Xi7DGCmn0vOEOZKGKyBjaQVBGtSTq+24CMpZFqmmCIrFENuZyFrP7pq7Xz5YH1RNbxcP9nigOTGOPXU2fRgeCFyh+VUp4QZo0I5vNHdutgmCp6pzb7UjTjDS3jiiZCViSOKUsYg7bB749XXi9PJGkBq0D49gLPgbHPPX88OWef/3XXzi9Htntt7jDnlsjaaHNdiOV5/VuWNUVIiyShNDd4Q5r4IcfHrCx4vl7wc9//ZU40kRG8/hwT9dNq8RDkWYRdZWQJznP329kiQyZl3mhKAru7+8Y+4EiS9HKrBVBkVUVpSzZvV/49Pke52YulwvT2BEnEbfmRlmW9P3AdndYlyFyrrjdGowVLMLr6ytZnuAWx+vrE1FkyIuYOJEQitwdFGMvWKvdvmC7K1lcQr2Rd5IsnQZJEw5vqdL1GZjnjJNUIdVN+G1N070v/dCBehsxz2vLZ1mwykKQ5eTf/vqVaZRh5XZXQg51WbDMPVGk6PuWaXIsLmCsoqxy4sTiZhF/pGmJNRnNrcfoFIxjHNq1ci7JVxcc4zRRF/UqUrny+ZPi5fWFzS4DLcnZaZyIIkMUKxFuBEff9SwOirwWiUwYeXjco1SEmzWb8hP7/YE///kfuDTf2WzkrOnDDRDszRvf+enpic2mllRbqtfF65U0SbFm4W6fEpDlcGwD27qi3qREcc3iFpLI4oMDHfj86QPWfiGydr0zChYn/PiBEDx/+uMDcRyh1B9gfdY1tw8y6LGaLBPsBkEEVk3XYo3lemlkcdINHPb3VEXE6Xzkp9/9mbLKwHuxv04zSZoQRZau38qd160Io5BS5Rus+RM2Vtg4JqAIXoj4Icg5VaFlgTovDOPIf/7nf7IsC58/P6CV4rArsbYkybO1DTYTmNjUuQjrdEJdRTy9nBiHgcXNZHHKMPakWUwUQxprssSTpmBMzDDdSBPLskhabr+rCV6hSSjLiLrSVFXMZlPw8tygtCPLS8oyYl7WM4DTzJMIgkwUEdlAlmTodeEe2ZiyLBk6wZtleYIxnjS1oFK+P88M04hdHEMnzNm+F2ZhbDyjhdfXI7tDzOIEkSNei7/vr797wHe7tqt2OGea+tVeFt4rK8YalmVkGIVBE0KgqgqBmFtDwGGsY5wGsjzm9fVVNrY6QauEaewlYr7ZyIF5mGmajk9fHsjSmNPxBAF2++Ld8DkNC7dLw6cvn0mTmOvlKBH8OTCOI5vqgDGG8+3NmCeH2jRN6Xo5iJVlyTg5Xo/PuElRr8DXZVnY7/bMi6fre8pqQz++Mq2K9HmWAxcKdvsarQzNrWOKhZ3kvKcsCpJUrzyDG3W9RaHwzjFNAhrXOhJjbBEz9lLRrKsUrWb6cWQYHFWRkudSRe47R5xEWDsLNFfLwTSKLdPk31NINtIksWWZAlEsnDd8EG6TE3aODFA8XXtjUx9IYsPT12eGbiROJ5SppHYxzxgLUaRWFtpICCKlaNvbWtlWOLcwDjPHl8A8t2yqwwpfLohjja6l/vntacIFxTg7jFo4XZ65v3sgS0p++FLwP//nd9ruurKVHG0r/L39XrZISiuck222WGEtRZmtl9yYeR4wVg4ARZFwPp8wWi6xWmlJPjrP/UNF38uBomt7GQhqy7W5gtdst8JgLItSzIvXjrv7O5IkZZkmUZ4HmIaZhy8fieOUl+MvmHXwbcwkevSbWADrWmqILy9XpnGh3pRkaS4A+UIszu1a9zXW4paZsk6IYyvsMO3Y7baAom17+l622suyUFUl282GaRYGUlWJ+S0ggxS3uHVAf6PaZJzOTygibCTfqXFc6PuZqsqF3eMcSi1ExogBTEXYNBLGChpjonXrO/1XtXT0K6MhJXiBpbvZoxK7JhgVTXNju3kgsPB6PK2pMuEnSLrPEccaY4OIO4aOgEFpT9fdKMsNeT6wLKBCxOnU0XUtu33FNLcC9TURkcpI4opfv75IvasdiWPN8fjE4+GRJK54PGRczpbj8SL1gDUFJrUs2TxLkrBHGyM1xjQmzzOGoRdexjTgkSreOI4YbdAaokjAxM21Z54nDocdxkQcbyepGS0T2miaRriY+7s9bTtQb2q+f32lbW7yuS5KhmHg7m4rqaY5cHc4cLd/JOA5n19JkoSulQpBXW/4+vWrVI4mxxQcLy+vJHHC4X6zHgAEfN51PcfXE1pbfBiAsPIhZehUFCILmqeZl+cX3viMWZZSVQVKw+V0YVk8WZYzjcs7ZH0cBGYeJ4a+u3A8fuP7b7+w321WZMFMkkZkuUTuL+dXstxKWsktGKXBK5ZJGJJKiyDBWkkuEiyREYZdFJkVSOzFonbYkmUpXfeMSgumeeDWnOi6G2kmTBe32gCzLBFWqBKI8TzL0qfrZzabHZEtmcaAsRq3aM6njrxIiGIJxedFhHLwhz9+4dv3rzJ46nryTL5jz8+/8Puf/swyi2nxr3/7D4wx5HnGOE7vn/+iqGSYMS1ojVR2vPznns9HrGVNLzQYYzgej/zwwxd5NmtD8KyVXGHflmXB96+vBMJ6ePVczteVDVQwLQ49W7p+ZDr38s/59Svz2LHdykFVYdjUBw7bR7TSvJ6+yrvz//BZ67oOVhC91obbKhq6v9+v9ekCrWXJ8vwkdSXnBfdQFKk8I/y8cnwGxnF4T7eB8BazXNKmTdNCmNelWMo8LugAXSM1yn5oyLItzfWVf/vX/y9xApERDpB3gaIqsNbStbNYrfuWxQ9rtTdmXua1whXWtFi+PteUvFdGSJJUDvYucGvk4hgnUmV3TvAU49hxu53Z1MX7sFipQJpExLEsoN64a94HYJF62f2OvpPhYpGVPD39RpIqdvuS4B1JYrEq8MOnB6ZZ8euvYlCXIfHErz//hcP2QBRFkkLWrFxWSYBopQguSJXJCkMqjixdLyKgoiwR2Urgejnz8Hi3gsB7MbiawOfPX1hWSUHXigXerxVEG2lut5bD4Y7dbkvbtDw9PVFVtTQg5h7nPbemX7lmml9//QW/jMS2ZB4HImu5Pzyyqfd0XUs7KEJoiOKYEBRZnnG7NXLJU5qiLPn+9MS0LDJQWBl/zjmqquS3X78BCVqLQEyScB0C+jacz69stzv65xfKUuRr09RSVjlRJDW+8/VKUZTUdYVbPMMog8QsS1n8QJSOdOMzf/vrX4migI0Dh33FsniKVRiGCmRpzDislTovvxsRGU2E4JinhSyLiZMItygiG9N1koJ6a2f0fUdeplR1xbwswo4MvfA1x5HtdkOWKkmC60BRZCSJvJP8IuBxtywENFmasdnsGHpJB5dlxdevfyNNA7tDifeLyO104McfPjDPll+/OcZBpAnTPPD1668URUlRFGudWq2p6lnq+pEM++VzDotzLMuMNoavX7/z+fNH+n7AGqneCUtYEAWn05nT8UpV1/hWUt3jMNPcZoI3qyiq4+PnA30vA1XnPcfjFWs0ziu2tUgrtLaUZUXftJyOr9w9bBEZmpxhjBYp1609oqM9bXMjEGjaRrhVVhbd9w/33K4ti/NEweGcyI6yLF3PC2/vyIyy3NE2L8SJldTo0JMkcllOkpjtLqIqC/K8XNO/jZzHu4ZpHmTI0wm3s+86kjRhf9hxvXS07cDHTxUhONJMPu/aGIyOmWfPOM2kTloBHz7uyAqN0YEk3RC8nIEv1zMuOJI0xa6A/a4dyNODtJuiSKR6Q4+bZpRXWGW5XRp5/k4L8SZBreeCp6cnyipis8kY+pGgAoSJQEIcSbMJpRmHhKbpOL6c+PbtBe/ARvIMujvsyYuMrhu5XS+kUcHuTmOjAeda8rxEBgmeae6pNxV93+GXWVLMH/a0TU+kd+x3m1WkcqMoMqZpoOsa8jRjmQcO93u6tuX792d2ux1D29GYgSjR4Ed++vEjx9cjOlTMY8fQdlhjmMcJ5TdMg+BJttuY5+9HirTELzPN0OP9SJnlWBtAeXk2rGK9ZRF5TBxpqlLukmWdcbuNzHNPXd8hDPCZaZw4HU8S3IhjzucLPkC9qfj04Z62a1Eqek/WLYswprU2bDYFfTuuwg2DjRzOjWRZSpIYksQw9C0qaOF/Dz1GW5IkwTm/LpChXDnjdV0SkHNTnIoc4e7+jpfnJ4wOaxVWZH8iFpxZxgSbpytiRpMlMdfmTBQpjLUksSGzMX0vtW6jY9J1OWywhEUzDjN93/L48YGyqpgmaeAtq3xpHAb2my0PH+4ZOkFIbHY1cbIQxSIInWY5S0xjT57XJHGKD5q57deEYoS1GdO0cL1cKYodx8t3Pn3ZEcyNoG50vaaua4r6HlC8PB/Ji4hNnfFw/2eGTt6zWRKT5RmbImZTlWsoSRay8+JXNumMjYWjrVZL9jB4CIo4MVilSDPhDg79SPCT3PujCB/euNQD2ijSxLIpd3gXGKYOYz1KiWVYzqiFDNHLGKMN4zwDEbtNTNvlErQxkhy1RmNN8X7+2mxr4ijGe0FcKBLqakNdB4KaUdrjgixulEw3CMHJc3BlYM5zQV1a+qHl8fEOgsO7kmtzJRBobxd+//s/SOvNOdwixnYXAv/833/33pgCwbWdTq/k+XoHX1sq4xRxuQXiJJXB9jDTtR1oTZEbkhju7zKu1yfSdOHuXvPweKAsLM5fqMuK2+XG119+pawq7h8fmJob3gW6VhoHwtC1xFaz/bChyMXoGycxyixYq/jpd19QGK6XGz//7W9cbw3lppDvhQZj5NzVjz2Puz3d0LEszd87nvu/IMHnZdsucOOZEDxRFK1sFStg9OlGkhi2u5pxbHHe4sNCVhyYpobFDdxOMuioqoy+H0gzgT5LEkEYKOMw0vUdHz8+kiSW6+XK6XTiw8dHosjQdyPTNDC0C9PoePr+SpIaIhNwLsLahDhO2G53oBT9dGZZ4IJAuBfnKMqS0+nINM5obajriuPLGb9urOM4ZnELeS48gf/4j7+hlSiXozgG5XjTpg9Dv8JL5UW+3e5Y+p62a9hsyvea6cvLC/v9garWhADXS0NZ7Gm6E/u7DE9D33teX5/RWpFnqYBG1+27cwtZbtBaHr4+ePpeFNdiNhb9e1EWUmVaZLjqnMcau7JDlNSEW4kbF3nOqDusDWLji2buHypsVODWqkuRZ9g4oLRowLPMikl1lgd6XZVsNp4kmag3Kc9PT8xzxzAW9MMNG4kN8/5hSxxt+Mvf/oXTqSFLD6A9T0+/cn934OHwkcv5DewqG6VlkRTRW8XWOU9pI8ZJklpVVXK9XUjnDOcm6jpjnCTa3rVyANhuN3StiEO6rpeEiXozaQkb5sPHD+R5SnNruFxuaG3IVi7F0Lcskyc4w+XUrA87AaGLLCEhTQqssbzZdkLoKIpiFUzolRHYrHy7LdfrTf7Z4yBbOLcQRaId/+tffpVLcZkQRwVKS0XIGsPtemGZPdutZVlmHh4e6NbqQr0psEHg7s/Pz+z3d8IadI7LtaEudySpYbtLMNFCcIrT6QVjNUVRYa1636g7P1OWEVEkLCqlZGuOCsJonKUmVVXFysqYVzmAW5lIZk02ZLStpNnqTY0xUq9X2hFFgf1dTZoolqVF24iizDHGyYYuMmy2JT6IuXMcp/fUcJ4LcPh0Eijw0A/0442AY1ul7DYZWVbzt18WTqcbHz4cCH7hePzO88uWTx9/5Hi6oNR/gYu1VngfeLNuslaDx/G/JCXNChru+4Yff/oshi0f6LpeapyHO0nIxinn8wVr1wr5tKC11D3yPGW73TBPE8MwrekZMQoLHD6ggmGexICcJpL0LAphMalVgPBWHYZAmqaIEfXMPM+8Hl/J0oI8z7m72yEDvZYsk23ROA5rmrWl665EUWC3K6mqgqZpSFKBCnfdjSgScPn9/Z2wkAZhJTm/kOUZx9fTWsta/x1ersRxwmZbY+OFsrJkuSQXh3GgLAsOhz2X6w1QnM5HyiKiqhOUWvBBQxCzoLURcZDDuTURaRLJYsJHDLNsFbUW63eapoyT5unphZ9+/EJRlCgdhMtipIKTFSlKTeuCRZNmKSDfvd1ug9KGcRy5XC7Mk6O59iyLDBHFfp2yzI5pFPaiVrCrKrbbhNeTvCfNKhgoy5zz5Ym229M1irYb1zSqf69FiqhAr6gFJYepsKa/x4k8Lxinkc9fHkmSlOBv75dIYYSmKBLa9oJ3UBY1Ckfb3HBe0n5RLHb5OJJFWtN05GW2yhoy3DSyEIiihDyNaZsb3kt1fBhaGeRerqi1QhmCcBW/ffsqgqJREgxlVbLfb+S9NLSrjMnJ9jJKSJOSX375irGeqorQJlk5j+NqL22IY7H55bkklNu2WQ/HC3Vd8e3rM96z8u4sTdsRxwKp3+4zyjqiKOXy0nZnYcKkBS8vryiluV4vpJnmcF8Tx4G2k0XZPIuAoyhq2lZaBVEkogq/JBBmvDdEcYxbRCBQFjWvr6f1eSGMuSjSKIJs3nWQCtU8iTk7ipjnnoyY7aaiqmCaF66XC8ErTqdGOMKRsItFfhHhnOP55VWWiXXMZhtzvY1yEbCWtmnZ72tm13G5fiNPHeptgH98pSxLeVdlxfpZC2tq1PDt+3fyIicERbdKv1RssJHl7n7L7Sb8m7qumeeBrr+tLBoYOsfiFjbbLd45QiRw98vlQp5H3N8d2O/u5P3UDyRxhM+hqiumXupfVVkSQkpzORPHG+GeXV8pq4Lb7UpQy1ofvrHd7vj27SvGCGhdDKSaw92OZZ6Z5oE8rxnHkbZtKYqSzWbHX//yRJrBMESkqdR2wWNNYCnz9RybSvorCOvZGsM4rguXb68YMwJhrYhLSkcbz91OUktlmQqaZe7WJYLh9XgC4HI58fCwYbvJMNbT9wqlondLepqWuEXeGcZomltPZCWhaFdb8zQJO5cA5/ORPC/QSqqQ1hqUDii8cBKD1CjHaSCKNMMwkKY1m01FtZHB4OVyZXH/xRBKk0T+3DaiKEQ+9vpyBhR325iqNjS3hTQxa5J3kOdlCERxRFnLkOrnn38hsRliNM55fX3l06ePctaZxAp7axvKsiLPc7RWfPh4xzgMvLy+rk0dYV1nWYrai2G0H0Q6kxcl1/OZ263jdu3Z7Ut2B0k6woksk9/568szd4dH0iTh199+IRCYZ+g6GZzcrheqjWJZRpRWLCsjNEkEe9D341oZ1sRZsjK7Ktr2Jg0cY9lsasaxZ5oUu22NNB2Ev+xd4OXpSJRo/vyPv2Oa2rWtZNDGMPTCYRLshFSotVYkqcX5Zf2dpVRVwrJ4kvUZN44DqIk4jXHOM0+OsCi8V1gT8fx0AQSK37cj9aYmTaTm6sMiDEsdsbgRYxRJnGE09ENH6CGyGePoMUqEcd5PXK5nMX5rhV0DCdt6uy7uThx2v1vr8cLvm6aFaZ5RRtha8zxhtaIfRsCQ5QWmNwx+4MsPH1f+5oKNSyI7Mk0iXJTveYtSC6fzb7y+Htke7miaE3EsSyMbGbHIB0OUKrm76JZl7umHibGf+N2PDxjrSCKxSW8qi/cZSTqTxJrN5p5NXePDvMoKIso8wShNXZlVgqf48x8+o43l69evJLHUpXe7Eq0jfvxhR8DTDR1xXNI2hshYghrYbVPcIqz0arOlrkvaa4vBMo4tZZmy3cYkUUJR7EQEN83sDhWRhSKHLJMhf1XupSbtp/WutmfoesBwu12pq3z9Hiekifwex3Hm8X/cowzM8wXnpFW1KUvc5NGpLLb7biKOEoIfURr6fqIopPIdxxarZz4+VozLhIne5AE3Hj/s8YtnnjxpptF2oCgjDvua09HJADbMaJUxLwNFUfD6+vrO/VVeGJduXgjOk5YpWjdYk9B0I0PviOMEFRbSRKr9Ly8vsuRBEUUKAKU8bXsTo3nbk2RWEntqYX+34en7d9pWBu27/VaQHNOCcxNxHIhj+35X32wseZrw4cOB41UWNVVZkyTZytCcaLozjw8/8vnDTpY3Y86y4k4Mh4AAAQAASURBVEqcc/hlIbaO4Du0TTBaoZQjODkbLU5aUVEUE5yjzDOmWQZcb4iEPM9Z5pmhHyANRIkVtvo0YaxGo3CzIzhpUFqjMdrgg5e7iQo4P0NwggEKC4QJbRaqGooilUCMMYxDT17VZNmKOlNaZIpO6sdDPxJZJNG7+gecc7hxXBswYK2S9lxsCOg1dKP4/HFPYCccbechiinLD7ycjry+PvPTT19YJo9WUOQxCsUwTDS3E9pYklgWRWXqsftcEB4mJzIxCsviIpalJY40h81Bav/zhDKeOC4pC/j9H+54fnH80z9/Wi3O0HctyzKRZyX7OsMvA4sPWO3o5pEkydblwLze0TVGeWKzcH+Q1Hg/jpJMHnqUtjSNvPe77iZC1yTCR4YkStAq0HY3qniVxroZtwx/73ju7x/whcD7hv4NJg2wuNVk1rXkecQyzzTXQRhOVpPEMbvtjr/97YZWKbttwel0piikgtYNI81NPkCb7ZY3g6vRhpeX75S1IklyqmqzWnMsaZKw3dYclwbVTGIbrTOmoeVyvbLf71nm+R1i269K+L7vVgB2T9O1KKW5rDWigGO7qyRZo3m3XC3es9lsaW7TCpLuuFwWDocN1+uFLM/IZ48qZNiZZRvMauZTQN8LWyqKLMsSaNqWYRyoqg11vWMYBva7DcXKWAtODrQBJYf3rqPr5DLu/MgPP92JyTZUsrlPRLCxzMIjMEaMb2JLjcmTO8ZBqmvTNK6MLwied7FE3/crC8pjdML373+h3lo221J+hn5hmAcICVleENkIpRXDENM2I0/fL3z/fkJrj40mAgsPj3usNfTdAqEjT7dkmWYcbyRJ4P5+x/nc8OmTqKjb7sjRQDc4hkHYXl0ncXBrLW+m2HlZeH56Yn/YvnOc4igTc2ckW9rX1xPBRez3NS/Pr+RZth6kZoZeDLLVO5fFkmUZz8/fSVJPsULY59nJ1jROubs/8G2+0D3J4T1LM6bJ0/ctRSkP4L5viJOUrpe0YdvdsCYRa3RzoyyLd8aEUoE0l4tCkkRrDVSSn2W5pSxGzqcTPrecL1fqTcHiFtJU6jjBK+q6WodQrLVLQ9u0GAtZGhO8WqsQM1VVsdvuZMiZafIiI8tS5lFA0W8xcBFyeIoiY15mPnz8gPMdWV6uKS3F5XKVWrcVNbr3AhwPLqLI75lHSSa4ZVpFKstqmpWLeNM0q0TGY23G8/e/UFaW3T5n6BamZSAwkTupY+ZFQlAQjzHB9zw/XTi+XkBBkoo1en8oiZOI42mS1FHhyAoY+hdg4PHhwPl05fFxTxR5+vHG8fSNfpx4eZlI0miFSb/9LkQkUhQF//Zv/7ZWr5T8DNIChSZLC7Is5XK5cDlLFXvoB07HV/K85HbtWWazMoISsiwiiuWw2DQt377/xm63IY4lTSfJIc92u2WZLK9Pv60mU421Ce3pSlWVgKPrG/q+FUaRRmDKt4YPjx95fX2V4eG80HcD3kdSYZlnrFUURY73Aec8WRqz3Rw4n/4qyYJl5tu3b5RVsX42LdvdhjzPePzwwLIstO1tZdD0DGO/pnOF7zmOI2kq7J/L5SZsqHInyyAbsSwOpQ3eK9p2lLpoMmEM3N1vsHZCG0MUy2fce8/r8ZU4iUnTZMUeTMxToC5r2YbFCc53AqZfL0ZGR1yvDd5NIiUIEfudGDaHCXa7HOU1XdthRoAJbSCOI6Z5WQ2xwhdr2gGtxRiNRkzNhZVLSC9pqzQ1tN0Tx9efiWPD0/crdreh7yfqKuPl9RtG11zOjVi+jeHNemmtDBQFyv1dgL+p8JGyrBRmVfRmsW2F2eoVVZVzPJ24M3ccX65Mk0IpsXPWm4SqLrlcWyIrSAmtPMviieNYEpOnK0lakaYp33490nY9h7sdSSwpGDmYaaZ5oO8bLtcTyixrhX7m7r7geDqSZymH3Z6X5xeMUYSwMAw9KE+9KWWhZO3KkZLNbp5Y6k3Jb7/9ym63RalAUFBvSqwxPD4+0g8DbSsw+jguadobdbWRbbiR7fLiFuq65Hy+0PcDSVqt1T0j7E5lAUtzm3BOc7u2ZFlMXSXEsQJmiiLDe4X3I03Tg1br73/hernhnCKNc6yJyIqCaRpouitay3cgTTIu1xt1VTBPM5oec4gZB8cSWqzNSJKUrr1iI83ipFaWJSnjvBBFEXme0bZyDkpT+b6Cx9pAnOhVBLKwTAuRBR8avn37C8NwXoH5ild34+OnHafzC65chUqt1LybpqGuN7xZr50T9msUxYJ1yMUUGoKXGnnXYSNPPzScjheen85ENqGqM7pOFk2nY8cyWULQ/PbrM7/7/SNRZGUwkWRkWcHr65lpXHh4fMAtI9frGaUTgofXVxkCCr/RMXuHC7JY7fqGYei4Nlfi2DD0ssirqorz+UwcJ3KOG3o2W6mizm6iLHPyIoOgSNOcoqg4vT5BUHz6fEdZW75+/ZXtbos1Cm0URZmRxglJktF2wtTRRrE4Q9u2bDZ7aQ2gUEYLAy5LOB5fiWLLvMiC2i+KaZ7knObUirRQ3K6NsK3KfGURycBdoRi0p7lK5TFJYtquQ/WK4C0hkvdjFKXMSyeLllgGm0mcSe06yRmHBbcMfLxLabsebReSNAbEYh6CxS0DbavJ0pRpGLFRvMobWtpmYlMX+ODQBkG7RMLdmueAmz3GKrxv+PrtF4b+zDyK1d5NN378acdtGnj+/pWPnz7xw5fPvL5c6Ds5x2drsm+eZ8qyxAdJrZ7PRw77HeAoy5yHDxWHh5J//9f/xFowJlAUwuiTRXhGnGiKwvK73z9yPo28Pl9QRp5TwUOapUxTj1smNpsdT08v7Pd7unbEK3kHzcvIP/3z73h5fhZMT3BiR11G0izi6fsTRbGRZcpa+R96qZ5X1UaGjigZtJ6eV2j/QlAORcBG5l0Ip1QgjgxKOYoioSikajkMHeM4obCMjIQg781plmqvNpJkn6aR7e6Op6cjkTUYG9gVFYe7kufnZ4wV2UQIgTiyDGPPb7++YE1GUSREZubz5w8sy8DihhUjYuEde6MZppGyyPF+Wc9qMX4x3NqWW9Px8dM9SZrSdTcWJwKpZXHMbmJ3qJknv7L6IjwL2oC24MaZLI7xbibflCRRRECtFeeBLBP539DPTOMCSlLI9/c1t+aVoqgYhk6sv0NPmlYrusDTNBfKIsdosCZFW8utacmzjDSz/PDTDrcsOJcRRzt88BSFvFedd6ggi7jZzSSxxRpDmklt3Xtpu2gjDHCpgyriaI+bZ+Ik58cvB0nO+mVlZmpJMGn1njYax5ng5b6ndEqZW74/PfHHP/3IdldiFBgtn6O3ZbjzHzDGsKwDFUJClh14fNBrzX7lJcqhX3jhQVJf2kQ4F7hcrvzrv/47cRzx3/7b7wl+oRuEO5pkKc47oigmMhblHd5VLC7wRx5pmoFxnFcMwFsyNRajsnNUpdzDplvL2C9EUQY4lnEUFj+aODI83JV0440k0fTDC2lm+fhpS1FH9MOV4OFyalfjfYlS4OZJjLrImTlJU6qyIIoXlLmRJJYo8WS5ZeNzpuWePC/55a8/r8zAK/myCj69wi+BsRuwBqLYMgwLTSuG5aKsieKMeV3aax3Wd9KRNM24u9uRxJY40hjtyTLL7CHNDcs8Mo6Othv58YffURaZCNN8kMGo8gQvchFpjMm5LARFIBChpR1hBDky9iJbCgH84um7Hm0URknCelkrrkmarovjFo8neLHOT4vjej6iMJRVznZXCdvZpszzwuymtV0hTTcfFlIbo7XUdwlW6qUEiqxCAcvKOxUevVuFVZKeNzpGIZx3lPDsrY3QSuEQjBjrsBajmZd1ke3lP0+kjlZSdoukvO8f75mXEas9HoU2MvCU5PeKtyKIAEghS343y3DN9Yg93XB/2P3XEM7EhBCt3yVFkVk+f9zy8CApazcvdH1PbBeyJCLPI9JY8c///DvWuhyna8f53HC9dlgbUxYZeSZYkywxK+9RWqBKGeoiZV48SST3HKN/JElidjvhNu6qirab+fLDlqY/cr0dUcasIaa/76+/e8DXdR2BGa1lqPBWzev7FmtiXp5f+fLlM13bEycx4yisPqUUt9uNy7njeGzYbAqyPKLrO5pbS3MN4C3OT8zzK3/88yduN4FoHu62hCBRWK0ND48HAfqbmGGQgcjT03fiNKLe5LgV4osCrS3Xa0OSplzON/mF49et20Q/9CRp+g4t3m53XK83XJi5O9yBksFEsr4Ib1eRLfz5H3/Hy+tvPL8+UVXCcYgTMVZKtLxdpRACpB7GG9Ya6k3B+dQQRxZUgrHgfM80dyyuoulubDd7mW6jiWzE6dSsEdeBKNbs9iVKe0C2DgIGFni31pBlcki4XK5oY1Fo+n4izzbAzOl0kSiulpfKMA4c7A6F4XS6sN9+4XQSGLRWYrOcxlEsvrGw5qJoXHXvmiyr6LsepSZ+/8cPTOOANmJwslFH18kHV5KFE/PYrsy1E2PruZ0C/94+8fmHmqZtiGyCC8Lgck7q2jLoa4Uv1dzIs3wVJiD8G+3FLDfFJImhaW40Tcv5JFW1NLO03Y158lzOM9PgmZeBru340z9+YZommqbh/u5Anpccj2eSOFkZMK9o1dH3M8vsOZ/PJLlhHyoW5/GI9c9EmnESwP/1cltBymGFbmrGaWRxM1Fs0UZx93DgcrkyTo793XY190h9KITA6XghySL+/A8/cr4eubVX2TiEsDLeFoyVuu08T/gARZIwjA3aKdI0YxyXtTobYwwsrseHAW1ymralrmRAqldmxrdvsnUwRhHHEfv9dgUiG6Z5YJrd+hIXmH2aRiyLWH6zLAfEqp2lKQHH5XJBr9IMgqHveoyxWCOg/TK/4/n5GaWFjTUOszCClBPj55pIvd1uoDRlsSFJJTn8x3/4xNCPa8o1Jskm+r5dpQzQtTeG/sbr643mdmUeA7fLTHP9ypcf9+TZSJaK6dtGEd+/f+fh4UE2On3/PuATq2cmqb44YKwY5JberWlQqQcPg5i2TcRqBLYM48DptUPMcN/50z/8QFllDH1PHMd8/PBpNUUHDoc7mubK9dqgVcPYC4h+cQtt1xLHCmUUs1vkomgUxspFwkZGtr27LVEUsd/vxHQ2CEOoKAtQ0HUtaSYvc2FwGWwU8fT9K0rBP/y3PxLFjueXZ5QJFFlK2w6IodcxDD1te0MpESe88fbiOFr/XHJwtFZLWimVy4TzM/Oi3u3k3sEvf3sWnloEWTaz3ZVCS9WaEBZu1ytg1kH8ZrU4jyvLKSaOpB6ogDRVOC/LHJQnTVKmRQZveZZKhdSL+XjoB/ZlhXML1+uAWyT1F8WFpBTbjnFcKPJy5VQZttutHJTmaZWybJjd9R3w3zQNbXshz+HW3IhtgiHlr//5ncNdIUPVvEAF4VX+8uvfVplO+s5pFQbbkf3+wOVykSRuHBiHifNZ3h/eSz05K2IIBrGeK0nmpTGX85VxcHTdjST9iPeeNM0YuoX7exmwLPPMfi+ftZeXE0kyMfRifZwnAX6HUOCCDFvUmuIwq8yn7a8M/URd75jGmf12xziOnE4vFGWOc1I1VUajTSArEm7nDuc0Smuenr4yzzN/+vOfqGqDto8sfia20cqHAa0M/dAJa0gLukBSVbLlLMuC260nSQxRbLEmUFUJPnhspHBe0uoKg5s1//nvX1lmjbFw/7AhqhLSJMW5Aa2h7RqCF3ZwWVYoAz5I0pYASVIxT55+6YmspyxF6OC88DlNJFKIOIoR83OHdzOXy4n9vfxMmuYmfLtYIPxZlgrwux+J44w4iVAaiiKDYJhm2RaX5R1xKnDo/f6wvqsuVEUtlWplydOaX355oigsxsAPPzwyTfOallEURcX1ehXu5srkzPKMZZlpmquwgb3nx58+onTg+Hrk6em4MnwM231FmmW4RdN1Z5Sa2e13uEVxu0ycXluSzNIPA3mRc3d/x7hafL0L5FlBlhT88vJK17doM9PcoKpTxqnjcjlhDO9MxWSzCoAisSQuTtIdxojxdb/fMQw9wzCSZxnn0wkTGbI8oawzaTf0ImgzOuLl5YKxhg8f9yg1Ef/uB1n0asXlcgNEGCWQ7QVt9IqomFZL8IW6rrhcGmIbEcUKa2OieC9iNGtXNmSCJqZpLjw/veK9CAL2h4i7Q7n+PDxBBbq2kf9cpTjs93gcCphuI9oY0jjDL3C+3cgKR1EI+3iae2EvGc009Ww3Ff1a0Z6mcWXmprgw07TjytPVFOvg080L0zLjARtZNpuSspKhxDI7FjeTJBuKUhLq+8OWcR643a5UxVaq5hjyrOSXX15IUqiqhs+ffxBenp/J0wS2O37tfiPLEmxkuV2ugu0IM5sqQxvFz7/8wtBBHBtOLx19LyKE+30tEp6pZx5a3Lyw20gqyU8TzeWMMQnWBLTuxZI5tBBb0lix21ZEEVyvLV3Xcbs2KAPWQnAzKkzM05W6smzrnH5s6BlI48A0XCmrHUYrXp9fJCGrA307kcWS4q3KBPDM40xZFpL2jSD4EZQhTTLSpKS7dnz6nMm5ebhi8px5lj9/nhis7jmebiIGyUsZsOogTNTYkKRauK+x4sPHLdZoPA4fZqzVPDxuUEEzW42NEID8h3sx1PucYeiIE8GLFKnBecPpdCTPs7XJI8lB5x3GlOR5xvHlShpFvLyeiaNCzvEGiiLn1lx4fT2vz7mJ6TBRVQXDynlUWpFEEVkB4Li733E6njhfjvT9jcNhj/eSyiEs74K8xYlAy1gZ+iotLYNffxb5zZcve9ruRt+PGGN4uK/5xz//P7hcL++fqyIvuNsV1FVBlr0tvZ0gbDDrWcfg/US2Snq8D1gvjO7FTSyLDGOb243m1lCUhRhlC1nEL8uAtRqtF6xJUMrQD6NUEtc7pwqyALA2Wc/SFm3Wc8TmkU+fK7QCHVrhZ2Y5SZoQgkMpj/Yeo2W+IGnwlE0Vo1SKVoKBkYaZhvB2M5cwRAgLwSrS+5K7/f8ig0zceg5IcXXML7/8yul84n/8j/+B0Zbg1DqgNPTjxLbeYv8P4Z3b9cr1euGHz494F7CRnMsfpprL7UaWFSLAmmTYGUcpRW74/GXPz79e+Pwl58//8E/sDjXOTVyvR/a7O4bW8frtmaFpaBND07fvyIihn3HeE8KCcz3bTcGmlmetCxN9d8QtC/ttscqgYprb5X3oHltpqkmY4Im7hw8EZk6n0ypwG5inhf1+uy5CDHGcMQ0zZVmvjbmYrunI4hpFoLlemJYL23rP+dLwL//yM0Wx4+XlZwwLf/jpE//tH36HVjLUj5IIowVlJIEOOUsBqzjSv4unpLUgrHeAelNDCBgV0Gi0sZS5Fm7vPDHL3yp4M2WI04T8g1Soo8jK4GvseWMETvPE+XyFoKjqkiSxOOdRkWWZ3zwEgSxPMWtiT2SNCucDfnE0Xcs4T2gMsc0p8g1Ka7xHhG1xLPe49Z3mQxCJ4DSAkmGgtRFJnCFmWblHDeMoC5Zl4uX4xIf7ByJj+eXXX5gGWdJI4yUQvPAtx2kQbEQcY1JLcNKGHMZOxCllueJlPNO8gPfr0NWtkqEJpQxxFOG949/+/S8opfjD73+PtYbgHYtzKBUzDg1GK4q8WsVYN4xK2VQpSSJL+OA1s5fQUJGJrKfKt6ACh13CmzjKLyn3+xptItKiox83zM7xeryxmP8/YPBF1nK+9uvhxyO1SYHfloUlzwSi/Id/eMT7wNO3hdttIooyjFUc7kt2+40wd9wMLDw+HnDLheY6CQT0UNP3PXVdsdsF2bKu3fXD4QGC4fh6IUkyptHTdSN39wf6vudyOePdhLUyjNxuNivYdUNkcwHf2ljqgiZit99zOh1JU6l9Ho+vJElMWWXEKbhloesd07KwOGHy3D3sKMpAmj/Qdx1KScXBLW8H0FYMcWlCZBV5ntEPV263C5uNpqwymqYnThKSRFF+2tE2Cc4LH8YHGRlZE/P1t1eOx540NRzuavyiqMo9ze2ZPJeB4rKKN/K8YnEjUQQBseMlScIyW4Z+5nz6jR9+/ECeF1wurzgvwhIQBlRVSV1QKY9SDhsplJbtkHPzavlcyLKcJI4lwdMtDP1AXqSkWULbDPgw4WZ5id89brhcT8LmmsTk67yY/cZxJk1ziYoPwn7r+5GymEnTkqLwXC4jxsjGKEkS4iTBLSPTNLHd7EhSy58ev6BN4On7C0/fbzLJjwyPH/c8PN6/19RspNnta6ztuJwGrhc5LAzDSFmUfPjwAedmlllSl3GcYk3M5SIQ5HlytF3Hjz89MIwj5/MZ70e08bRdx25l36VpTpFvGcaeyK4mUS+DvqaRTf6yOL5//06SJESxEjZQCMxToG17CDIM3OYJNgkc7mrqJWcYB9prw7KIYbnr2tXqJxzANEtYnFSojNHrQFnYI8Z6Pv9wR9/2NN1NxAvTxLIYIpvw/dsLr68NRZGx2RQsGWzqA5frb+SFWQU7SExeRahpwBgZos+TRiuL95Zp9Jxef+N3f/hMXZUcTyLfiRKpizdNs14OpS5ZVjmLuxLHWtIQLmCMZRx7srwU61ZZ0zQDbdORJDFxFHE+Nwy9DKn6ruWHzYbrbeUlTD1lnoi0oZBhsNYFBI3zDueEeTTNM1FcEUdivjJG0oxS9xMgdd/37Pc7nJt4eNzy4+8eaJqWn//6G9MkVr56U0hN/Cr8nCgWaUySCHD/6duJNKtXTlXgcHdH07RcbzIYPZ1uEDRtM9I2PXluaNobP/z4geP5tBo0JeU1DGJm7bqWZXFUxQYXlnUwFvj69VfyvJSLldWA4XI+k2QJPkiK1wXh/zRNz/V6xYcZYwPGeOJY88MPnzmdXoWnOfYra9OuJkDhfSqtyJKEeYlwbma7PTBNJ7QR/lSVFdw/1Dw/PRNFwg9y7o0VpzgdW9KkIC8sQzez+WnHOF5Z3IT3M0maY7QRPtX5IhfDjaTZlgm0tXS94CLULlDVMf0Q0XXCcfV+YR4H9rsvwtdqJT1y/3hPkgWSRBGCZZ41fdfQ9Z4svSPLCggj5/OFoihWY9rM09M34jhejZCazTbhdGzph577O0l1RXGK0Yrj6YbShjiOKaocayPabmC33TPPMx8/fiKEsDLALEWRSYpvGnBOU5Y51sIPPz4QguOXXxSXU4MxCqU9d/dbWQCkidjvckuWWeqy5Nefj1RVxpsR0hpLFFuutwuP93tu12een19XsPZIFMtz6fHjHUWVoYxHa8809kSRJoq39H0nyWMssU2xVgbj379/I0mi1UK3wXs5kDrvCCzYSGp1WZ4yDtA2DUo54iTgw4g2GR8/PQiOArPW46WyfLlcVuGGw3tHFAv/BxzVRg5RIseKsRHc3e85vp4ISgbjs3urt8Q8P4FbNNZY+nbi/mGzPj8vLEtPUcqhU6WW0+nCvEw8fthjNFyvHXjD7dahSVjMwmabUhQZl8ssJlSjWJaJw27Dhw+P3K49JtJ8/vIRZQbSDLQOJJmh6xqB3us9aZqRBi3ppLKCdcD9y8/fyPOcrr/iloHPP9xxvfRcLje224ylnun6G0pJWsOHnCRJqaqYvCjo2oGqUNRVzbfvvxLHMT/88ANd1xJUWC+0A0kScbtdSZKCLE+Ypo56k/PwYcviJtwC4CAsLHPP9TpQljKkgZH7+4K6LPGLGBXjKBbkQN+tjsWF3WHHX/7jZ25NJ8iMoWO7KxiGIz/94SOvL6+kmSUyhuOpQZkcEymulzOPD462FQZUliXM88T1cqGqShEcJCIqiZMUbRRNdwFi5iWQ5SVae+ZpJsvESutcR5bHpFlJHKl3VvEwzGta5S25uzBNkkDd7kqMFgGAD7NIGawnjhSbzYaXlxe0lmFiCLIE2G23vDxfia3w+sZhIY5inBND+jh1AubWBufg5fUFpQMfPz5AgObW443ifLqgdYqbR7QygpQ5nrherhijQS1wH3h8fOB8aomTmA8fH7HJRJqK8TP4iOv1yvF04+HxQJGVWBsLY2o1/hlt+frb1zVZfmGaW35M7rheRs6nG/tDid96+l7A8ufzFRAsyWYTUVUVdZ2hQokKM+Mw0jYtnz/usbHIzpIoocwzUH5NShuq8gubukYrj2ciTkQ2oYJfz3zyu7DGign5tg6SlKauK9IkI4QfCciC1xOYRpGfabMQ24RtXfD16zc+fnygrGJU8BAMISxoBXVd0vflymBlXaRE3O1j/pd//oksl+enwjAvDpRDq0CSRlgT4RySlO97/uM//hNjLL/76TOEwDKnKOtIs2SVEnm0ismzmL4LVEXEbpPx9HLGe78miSfmxbPbVXg/EkWaIl9wHs7XE8pIUsw7S5qkBKeIbUxVpRzuSuLYk+aa56cjUey5e3wgLbykfnxgGgNpKggZ8OsQH7HjakVZVWw3FddbCywkqcXaQL3JuXU5WVHQ3lqOr6+r/C/l1txYJsfYLXTqRlCKJFUsC9yaBpQlzzdoHa/iELGgz7PjdnslTRM2O3mHfvn8CaXHtVViWJx7Z6WnSUIgUJc5ceTY1Qm7zQNulf9oBVrJ4j5Oc6yxZGkEaxNqnhapE6IITirPbdczjAPWCj/Ue0UcJ1S1wVqNsTLo8t4JkmR2NM0FhSXNLFkWr6wyETwFvFRNnZP3NQLfl5HJQm3tGihRuMUQRxBHimmaCUGhtCxyjdLMi4hQAAh+FWcFwdQYBQhK5o19Ztb7hoRbhFemtcaYBOeFAaq0koSoCgxdQ5LG6/dukudzdyGJU9IklpqldtS1pGIjGxMkEYBiIdKe2Ho+f9gDiJBrCdSl4cunDbv9T7J0s2LX9T5wf/hAZGOm0lHm/x2UYpxnrm1P1/ecThes1cTWUhQFRZFS5SkiDPSgpQVntVhqQ+hIEkcce7ZVirGBiIw48hgzkhjD5fJKXspCOklSvDMcj1cCCE5kxetYE+FHR5rGWCtpuzKPUSEw9B1Nd2XoBvIk5X/57//E09Mr0+R4uH9ks81RZiGLpQUnnxm/8rsXoihGKbE3S6NBo61Urh8e7zHaytnHK5xHEm9KEZSkQuM4Xrm3KVVdSrLOg3cKozMRAs5rm6fppSmwpsKSJOLDh3u8k0Fw28uyUSup9EdRTJbZVdr29vldIMhSNssy4jh7T/1rlcpCzDlMpFEqEm5oPxCQNKlSkCQZOrIEHE0n9eCub+XPGjzTIpJQG1m2WwlyXa8TLy/fGPqe15cn/umf/pGH+2QVGcr59//zL/+Tf/zHfyCJE1lKrQivLJVFqdYalAwYx2mU8NNaUx/7mTgVpJEIp8KKT5LkapYZiiJfK/CKunJ8+3ri6fuRosxJE5FopmlEHMl7JMIwtRPjtLDMI/vtToJPfcvEuGILDN4prBV55/2hwIeIthv5j//4K4S/ezz39w/4Dnd3BDWusF+/Ch7AAM8vzxzuxAYU2Yg0NyTJPb/88oQxctmQxIlE06PYvv8ivvy443wcME+aEBzWpPS9HJYCAW0ysiLn3/79rxRlRjdMLC6gSdA68OWHR86r2W2eHP1w4+HhnqAcXX8jaWtutw4bQZzENDeBGm52Wx4/3IkVOEiyyIUR1MgwdkQmZbutaVrh/W22EUkq3fqqFDuUMQrWB0TfL5xOJ/K8YJ4XbGS53o6yhUtL8jwhjnJsZCjrmHEYiGNDvJNtvvNqTSVZQpi4O9T0jSKNFddTS5FFGJzUY04nlIYszdBW03cT1+uV/aEWO9Iw4Rdorz3OxURWo5hIc2g6y/NvV+JkYhw7yjxjt9mgYB0MxmBS8kK6+/cPYtk8vrzStQ2Hw3413I6SCtBGuIarZc57z6058fo64p3nl59f2O1LimLg1py5XHrmeaC5zlhrOdzLRfV66anLkSSG7XYrB/R5QoGwGZVDWTieXrjb3eOXBbcYjNXs9nJBEvOsAxau1xPzLDy4EBzLNLDZxFij5WcfGYx++0y2AjCPNGke8/PPv/ItfmaeJUYc2xSUZ39f0jSKqsoYJ0/TnimKO9nAexjGmefnF5JE7MNt06/JG8Xd3ZZ+6PBOE0UJwzQQmBnnHqMs292evh3p+oHDfUpZGeZxoKxKtFJkaURiLU3Tcbt2tG1HWdRM04gxmvP5hcBCWaYkicSI4wTyPGWcBpSaqeqIOCllA2QVMTHOTXz4cEfXSjz+fGmoNjGLE8vg9XYk4KXmjHAg21vDZpez3ZQM3YAKhvY24pdo5W5NJDnYRvP96UpkBbBalgVGKyYntTHnZgKOKLHMXiqCz89PnM8X5mVgWTaAls3VtDBN81oll1i40opx6jkeZYP66y9nttucaXaMYycpLe84Hq+gIh4eJKHzcjyTpCm7rWzsPjw+crmcsdF6oAuOusr5/v2JeRrZbCqa64UQEqxVbLb5yngYIDjatlllCbEwecYOowJpKnUnpYB1+ND3N7I8Ik0tSnv6ruN//s//jTiOGKeeoswZx5btrmS7ieVlksQMz2eyXOPDiDJSZXt5eUJpqe1NQ4fCo40nSSKy3DKNA1GZ0w2jXAhZWBZFEkccDmIdu3tIsDZmWW7MS0yYoa5yfAiEsHA+X7lceuK4YFk0SsN4EdtbFCmiSGpdnz7vUCqspr4JhebxcSObwEytFeCBh4cDry8FyyKXzyTPcL4nTi3TPHG9tuRFJknnIJwbowX+myUJszLgNWPfkCQFWjvywjK5jO9PL3JY9o7IGtwi3MiX1wtV+YHXl2cePpTvDDmU59ffzlRVzu3WoJRBYdaL5IBSwgLN83wFqDuWRTbWbTvRNjP7nWaaR0zforTmfO7oO0VaRJR1zuV6pe97okh+FpvNltPpxDxN68vfs7/b8PI8cLm8sNvtuN1OON+SZBFGOz59OnA+nyirnKFrKfIIHwLz3DNNPfM0E4IhLwLjuJDEEdMoSbK6ismylGkZcMHx8y+/UtcVgYBSDk/P4q5E0UJRZDJ0HRx54RimJ+bFU9V/4OefG27Ni0C2vSbPDFkeodVCUhgiaxjHhWlZmJeJyGZ4N+EC7PZbTsczu4Pm8w8PxMlI04z0fURsI+IoYsgihnGiuTVoJQdaazXD1DItktRL84QQRh4/1HJZ1CIYGscbd/fVKr8oKYqYKArUdUx7X/D0feHWXjCxIUnu8EwkaUbzekObmTiJsUYQJBrhYWZpxjwqkjjnNL9iE2ERZakGnfLt6Rv9KCnSeRoZB6l0v76cuN/P/Pb1K/s7izKGODWYSPN6PEldqJ/XCp8wV99YbFGUiAE2jjDW09wWpnFmGj196ylLIxKzMOFZGKeF0+mM0rDZl3RDx/XmiOIdSfSBqiwI3hMZTfALJlLEkcVEBfWmYhw7FCMGRd8OgFjE00gTDMzDyDI70ijm8Q93tF3D7Aaa621NSiTcHRKyPAPtgJF6Y7Fak6UwTley1HK+nKg3BbmJsXqmyAPjcCJPYVtmcojUGdUmYl6upLmlLCO868BCHC1E1pBne7QKGLOQ1wlRVND3E/00sakTCBMET2QT8m1Me2v4h3+sSdKIoFqpnS6e3bZmGmeyTDGPC9dOWijey7u06wfKSgb2SZpj7cjjh5Jh7DDrQHeeFx4edyhlWGZPnqdUtWa3T9lsci5nx7g0HOIaE01oE/DBMC+BaIFghGUbRyngmcaZaBXXGJXifIO1HphF5GMLnp5fUMauS/KJcVi4qYbT6cKHw8TXX75z+CAXqCxLCFpzPF8oiwznoBsGafQFGIYJtwSsdVRVRRInaO1pW8cyy3NkGBbmOTAOAy5I3WucF45HadTU2w2LX8hzy357IISAWxzp7++FLZWI0ZEQ8EEGqouTIVmWpsRpRGQ1PizMs8gktJJUCEGhkNZNHMc83FcopWWpo1aDuX6rv23l97B4kUI4x+yhayeytGe3l3qs0QFrQSup1UnyKcaat+tRQKuUqqgosh9BjXJpVRK3Ue+pKS/iJ6UJZAxDQpH/HucWHh7KlXvW0Q4dbdsQloGffvqJOEpxbsQtkor2SvM/9A8EJF3r3MLleqJtb2w2H3DLQpHXOAf7XcY4Cy/8cm6YZ5HMZWlJHHk+fdzw9duvfPmh4qffbbm72+DCgNKSOr+cGv7z2zfmsScvRSag1npo3wmiQqmANgu/+92BaZb0V1AibtpvKxEEWM3x5ZllFhtvEkcYoymKkpfTC0m0IYkV58uZrn8TowwcDttVPGeJbMLkl5VtF68J9ovch2JD28hienED85o8v44tTaOE05Ubgp+YRmlLlEW1okyidcAgiXdt9bpMe2u8zPId1xKQAEiTBB8ckY6ZZgmaJGnGNC9cbt/XYUogSRLytEArg9EitZDPj/zfCDI0uN0aFGodjBhU0CgrHNY3lpk1kiAiSLrJaBEKDFO/DvuQlHAin4s3tMI8z1KTNAq/GoGDF/60C/2Ka+mJ4wRrEqlSz4ssv0NgXmbSPOH1+MT9nYg8xqlb70kWrcs1Hb2sllbW/70sZpd5xs/yfTgcauHx4glBzpTdPEIIJJEhYPBrojE4x7dv31iWhY+fPohcI5O6ZlHnjMvAvBgOhzvhLmtDYi11kZGnclfOIoNTgTLL0Mausp6KJI7o+y/EiQya8CmfPxX8r//rn3g5/kbbXYnSmOMxrFKzWQQx80xdl6RJjPOeOE45vVyYp0BgpCo2PH7cEieaoe8A0Kvl+rDf8Kc//okkSSEElFokeRmkdquUpDdDCCwuyL8X7t1SnCQJUQCltfyckWZLQJhwfT8SWVlw5qUsU974+T44tDIoIqrske3mC9N849/+8/9NXhjyQoaMIUgAKHjQGvKsYJoWirSALEMrzTTNq0BT01679f6fC9NVObQPOIT3rZWwYK1OMFa4l8Lik5mIQTOOi0gSo0QQabPgvRSK6/VCWZSkWcT11rw9RZmGETd7fv3lO2VR0/cDjx8eeHx4IE2i1eJt5d+xveK95/nplehjQpEXRBZhlht5lrGK6ZQyJEnG88sL292O/f4O7yemucX5ca3iK+4OnzlfjpxON/nc24gkSUnTCjdpvBezbpaVfP5wILKePEsJbiaJLHkay6IzhPU7qTDKkSYRWVoT9BrVDJo59CzDQGzAB8OoDVmcMI1/73Tu/4IBX5JYAVe3LVmerxuwBOcVXXtlGltspDi+dhRzinML212+bpkzuu5KWZYcDlua5ooPC5frUYw+uWW7T+Sh7nuiKGV/JzWpEBwosdi1bS8MtCxi7GfSXNEPL1R1xKaOuDU92/0ebWemZWK3ecBGGm08NpINxj6piOMI7yeMcdzd3TH0IxDRdQtJWnO7nbFGkeQTGEeae376w2e0CUzTifNJRBBpkqH1wGYTMc8DQy+21KJM6fuVh5Yb0syi7UiaZURxzDg1JIllnjvKslgZZ7CpSpyD6mSIIsPPf5tomom8tNx/TBjmEyHAMku0WilDEkfM09sgK6yXr5y6vmPojzA50cqbmaosabuBza4kjizfvzXcrg1V1YidLd3LsHK6gZGE0jT1XK8ngociq9DKMvtFtlvrtP/7968SZ89rhmHgw8d74tjTtj15Xol1bVyQrZPGO8PtNuMWONznpGnOPAR++/WJ2G6wtsJGnnFsKIuCNLVkuQyFp1ERmUWskt0VrVKCX9jUMZdLj9Ezfhn58LijLCtOpxMa0auLadaQp/fCEvEDkU2IbYY2YPVEHMF2U9I0UoGJE4nDZ2mJ4sZ2o9jvI7re8vHTJ6yBZZlIk5oiizlsc7JCAYZwX6O1AkR//lP1AQg4pxgmYR59//6NJNPstooysywuJi8eiRNN13VMw4w1EUUWw7JQZjmJ8ZwvPcvUkJc5zvco5djWBVp7kiRQpJ7Iaq7NK3GcMC8DUZ6SRxEhKMoyJTYV1ZMhijWBiX4IVJuYu8eccT7hnKPrxGoXUiuXeGZ5YKEZR0eWFWyqPcE3tI1wbIxxlHXGMOZ84oHIxPz888/crg3X602G/KZaN1wTTSfsqX5ouTVi+jRGBk/zLEuDyMaM48TT0zfKsmKzrbler3z8+IixM13Xs91K2q7vJQVprYgq2nZinh27Q0QUZUQm5fv3V5J0Q5ZVoGdstBAZR15k+OCpa8U4WIq0XNktI7GRl8d+k+JXnoRzhjLfst3umKaJ4/GIm1qyNOHubsvdoZDkmhYpyW6zp20b0kResD9+fuTXX4UpaaMNeR6zrz/JRm0RJl9QgbvDZ7LcggLvDHkGv/vhjjiR6qYxkWz81v9KErseZALzEphnxy+//MztduPLpw8kicUvCT4MFFXCMI4sTurURSZSizqv+fxhy+vrhWkKxEmC95IouNtXzLNA+as8sITA+XICJWnmxSniOMVNjihKKYuYx/sCTEuaO16fG7Jc8+FThdIDTdMz9BNtMxJFmQw8B2G7aG3pe0cIwpEqcqkxhAB5obFRIC9ifvr9J9Ik56//+Tf6tud0upJlwkcxJiZNM7qu4e5+Q9833G4N3nluVxE/RZFlnlcO4mpxjOOYw+HA7XZdt7sRITjKsqTIS7q2X7lYKbdrxzJBwJEmGbdrg1ExbdNxvV7Ybj9izURdaYJ31FXEuHjyzHF3l/HD5wN5lqHUjI0U2hjuNyL6+fShXOtRTnh2KF5eXtY6o6Xe1GhtV76i8NeSJOX19ZU0Sbi1Pb//6SNZ/EqSRGw299SbHP/nlfszC4tJaU//Y06WRyuQ2VJmgf/+T58Zp5KiTIhsvB5oFrlka7mwOxdAW+bF8Z//+Rf+9re/8ad//ie2VYFbKpruwmZTiSAhjnFekacJbnZ8uEtxIdC0E20zYfUqWpp7SUrgmOaJuhLr8eUm4oYsK5immWXRDP2EMTGRgU8ft5xvr8SJJ4SW/SHi05cadMs0a8Zh4fTa4mbNdi8232mU7+g8eWYckY3YbipUkIVWvclBz2iz8NPvPhBFKV9//c7T99f3KrUkJ97kPFeqTYFzM9drx7Is3G4NWZaulm3YbHYsi1vZXBN3d3dM00jbzmy3G7SGOEn48DFnGK/v8pXbtaXr1mpIEdMPPc4F/CJClF2Vs6slYZlmEfd3d1gjXGQXZtI0cDh8Ic+Kd+aZc5IuUeogJjttV6mPnJ2CNwy9wPmjyBInIlNSeOZFBo4EJSkzKxvqx8OOf/nf/50PH2sePuzIslQuxwRQTs4DPhDCx/XCDN4r9tuI/9f/85+xsSOJI7SRyzoEQpDLrdWSrgrKMAwT//v//i+cLmf+7/+33xFbqbGezq/UG7k4lBtJUhujCU6qSS4oxmF5v9SKAKdHW0fwC94H6lKM8Re8iNeylHGYGfqWeZa/L47gsEu5Nk+kWWAaR/Z3NQ+PJUr3eK9ompbffv3O4W5PWeVijR7eLOAelMMoRVUnfPlhz7IE0ixB6QWlHb///ReMMXz99StP31+4Xrq1TudJkpSy2DD2R/b7knkeuTUD07jw7SaL9qou8Z6Vx+hpp45xHMUgOojtfbupCUHOkx8/3tOPDd3/j7U/+7Esydb8sJ9Ne95n9CHmHCqz5uo7NCWKJEDxQf+vHiQ9StADBYIkIDbZ3bp9q25VZkZGZkT4eMY9mxkf1navKwkESF46kKjMqAiP4+fYNrO11vf9vkbRdx2n45mundA6slhKQ+R0bHl5tSBJPEpFmqYjxmm2t1umSe7s4yjPhQtyj/NhENt9ljIOIw/3j1hrWa4W87k1zKo3UcDChDUJk/Ho2e4Wwl8Dioyx85rSKEYIE5t1Rp5tmaYBo3vGocfqjLKu5waVqGRinABRUvnJs6jlnooSRU3fDRgr4WXOWUDh7JONLVCVlkX9ArQ0+0MIWFdQL0ve//iBjx/v+OqrLxj6FqMjVZXOd6uGU9tjbUKWOhmkZorESvKxq3I0YgGPXhTrq+WWi/WS4COTH9DKsawTvvryiotLS5onOKcZxwHvnTSfgmFdpawXf0BpTTeOHE4Nfgo0544YBPNQVilZpskSCeZrmg5rA94KCqLpjmLhiwN1lZDYgK0y8kwRQoPRkaY9YZww3FKXYGpBshBhuZIhjDT5ElGZW42xUXAdZSp89HPLclGyWGYM45kYA4+Pj0x+xfff/8ivf/2aLE3IM/uM9QA1n0f2eQ+eJklEt9YSApJenGSSimwsSlvCrP5TKpKmNUVWyR5DYLmshLOnNNYkxAhZLmsuTRxt1zJNw1whS7PPaEOMgNJ0/TCHxlhpjhgreCRrpBEZFCgj76mCLM1QUQKW2qahbwObxWu0Nhjj5vAW4RAbq2cVacA4RxxF7T5OEkTXd+OcYK3Ji4zH3SNFmdG0LU3b8fgoluuH+3sikd/89nc4K6zjPBNW9uPugbfv3qBQ9O04N1E12igUYK0mRGiadm4mBsLk2T3usamfhY0BawynRmrMy6sL8jolcTkhwuQVzkoDaX844xJhQU+jxmppIDmricHQn88MXY9LM5aLmhg17fmIVgNZYmQYlRsS13G1zVitXhC55k9//hENpElKDJoQPEVhCL4nT6XOSLMCPWlubg4wQVUsSV3E6kiRF+zP0qwPPnA8SphonHrquhSMVNui0MJVBIpcuNTWZPgQUUqjdUqSiOpT0DeR6EUZbASEznJVU1XVPMhQ5EUmQV1ewj8VCj9GDI5l/QprMr774d/JfT54+n6aA/QEq/KExokBnHVzkIhw/otCmqKT9xwPZz7f3PHFu29Ik3ROmh+JsSHPCxQijDFmJMkydodbQugpC+HDR605Ng3BB4oAwQfSzM136h7vR/q+oSwzFsuSfvDcP+wYx4nLiwvKrKQqa+wc4qY0oCLD0OF9EAQPgS+/+JKm6QTjNojwZAqeoRmfg8PkHqto257g5Xs87u7QJsFGBd7irGVZr2jbEzefb8XpZwq6tmPrSvyk2O8a9o9n2kZS4bu+JXXuGbvSdy3GyF0vL3OMhRimGWOnUBgEsxkI0cudg9meHRR5krOqV3xunydH/6u//sUNPqN7ri4zxpWiKHOUihgdSJOK13MzRelJWAJaLotaCyPOWos2L4lBGlNd1+G94ikh1jmDUiLnHHr5/57UF9PkQaVcLhZ8992f+NWvv2a1KXDGYo2dG3VqXkgXqNmuppUmBsuiXrNZfkuSyaRFKy1TBzxGq3miaVDKQYTH3Z4//bEjz3N++au3gOd03jOFgXGaSJIL6qLGWcM49rx7WctF41eOaULk5UZSz7quQZuI94NMlYuUYQg8HjrStKBrAsP8QGo06zJS5BV5Zjk1D7x4mVLVl2y2BT4eqauKvg883h8ZR8/1iwvu/V4YQhMkzhL8KKlUvuPtuyVDP6K0FTvp+cSizimLlKEfub2Vi3GIAosNQbFYrLn/8T31SuSoh8OBYRjY7xr6YeTqaisdfgzWunkSspwTt0Q1meeWfpg4nTry3DGMkcl7+uHM466jOQeci7z9YkOaKn78/oYY4PXbCmUmqhw26xUhVORpQohyeXSJ5at3V+RZJpNYLWmAAFor+uFKgkbsV2LD0JpxuCTKjGRmLgR58DT46JkmsU52XY8fpfnWrgN//OOf+ObLF1xcLnFOJMwxClNOrBwCpZb1owneslmtWS1/iXWiTlQomQAjhclTgqFSAss9nRrqfMJaxxdfXKOItO2ZpjtKOEZRst1sZ4VVD6oSO/i3rwFDFKc8fd9xPh+ICBdKKUtZlAxjRpELR67tRrp+pG9bjFYkOkhyaW15PNzy299tqaua5SrneHpgs7pgGCZuPt6w63rwkX6UcA2CpW8jwYti0vuGq6ucsBWmijIjx0NDlhrspmQcZFo6DgGtLEkin0hRVPz8saVcZGR5wmEvTMG26/j5p8/0nVjJQNJ4jbFsNtvnJss4tmhtGLuJ3eNBbNxh/rumgeNpwAdNlmm+/OoSl2o+/nwLIfLi1RKlAtttymKRYMwahReguJeEuy/fXZC5dL7UCCj8iachKazC8JPrTpDPNbwS7oOWCbLSCqNlzwleJnxDvyWi6NoBoiP6A4uF4eWrS5LEzPbaONsy1dMOLIqrAFo5yrxgVX1LiDJIALEVQIA5jTzMa1Npwzh4FuUbzucTV9dLEidNpv1RkrXO+3u++Vak795PhDDL4pXml9+8FJ6Ilsnx4Xhg93jH5eULpjGQZRUhwtW2oO0GrEs4Ho6MYyDJNFlmydLIy1cLPvz8Hb/5zQXl3y9ZrUrO7aMMXlYbdo8ndvd3tEdN154IEYyVo+t8aklSi9U91oy8fFHNaa0dfesZ+oE00TTnR5zT3J6OvM2uZ46Rw2orRU/ssHbNOIqi0rmE06nh/Q8/s1hWM6A/xxgnDFBkItt2pzlEAu7uHgherPfjKBfdc9OQpBlVHVmuC7I85dOnGzQDi1VGWeW8uVqy2QpDUUDGkdFPs0XrUi5gzqAN+GmcC1yxrso+JwUEiNrr9fVqDh8aMU7P4VCGEAz6qiBGw8urBQpF2/eApc5lIHH9QhSXMu2MJEkpqzgOECVpVC5MCakruNws6HqL1tLsUUCcUzwhzn9WCmbvFb/51Vu++uKSNHUkRhOCZrlYMk4T3/35Pd98+w3L5QKtELi7MaBgmsQ2oZSSiXnfcnPzic16JeoJm6KV43JbsTscKcuK87llHAN1keBcQlVqXr1aMry/of6i5A+/f0VdZ/PecqasFrTNyOnwgFETbXOi61sSl+KU43RqZHJsAyGcudhmKF1wOOyIPqVrTyhteXz4jLFwPDxyebXGOCnendUoFTg1R7Yxk895DrWYRsWH95/YbJezQiKbU8ErvJcEvq5rQHmUMTw+SmLodrOdLVZG3A1Rs17XWGdYrEo+fRZVzaJOWa0rfv/rF6SpNACTVMDYYrOZiNHOjYlKim2nUbPVURAhczL15CVcBnBOlDfbVTnzQUeMHdFa0se19pRFyjQG1osrseGME0olbFa/RGnIMscwNdKw08J6VeJuE7uRccKpi1DlBvtyhY+N2E2RZyEi03BQaPy8+gLOwt/9zbdMUcIOwuRJnKMoL9nt9nz//T/x93/3d7jUzn/WYIxhmDxTZjC2ekbCNK1ld3hke3GJChpnMrkbLXP2hz2LekXfT0xjECubM6wWKV99fcWHn8/84utrqjInTR3n5oRSoI1lWSX4/kyaaaapE/tW4p5T2LNcXCKJC1xd5PgQOTctfvKMfYdShse9YBUOx0fevXuBs5FFJUw6H3rGvmUYMpRWDP1IUUhx9uOHT2zWC4yVzzFNMxnAzDbArm/RZl5zD3uOxxOXlxfYSYLy5DMPrNYLrDXUy5LPn2/QZUHfnaR556RRRRROoZ8Co5/oml4UqjahDwNNI7ykeh5eWONYrbeyjozCR1m3cudS3N7eS/GeSTJ7kibPCcKTH+czTxpFMQpU36VWmEylJSIhRbFwMA9AlBbLWghx3uNlPZIkGKMYJ4HIy3Do6f4n600p4UsqjaBdpgH457ZISbiPsxVsc7mh7Y8k1qCNBWWJCJZHowSPE+eC2FicEzRN37UQBoR3nVBVF4ITUBCdBlKa84CziuUipSilORtjZOoGzocDU5qwXC7JspHESULwFDUffhoZRiWcOAV1lVPXKXVdEsNI1zbUhUVpw2Z5wTRFtpsSYwzf/uIF0QsreRg8r1/U8Hdf8enWcjjdUZQJ9w+efujZ7yVBvesHvlyvJMRptmDffn6gO4+YRJTt24sFDw8PHI9n7h/2TL7gch6SV1VGURR8881LiiJitWV6srAiKp7z+UyWFvNQQhpuT/gSYzQXFxuMcfhJBhFN29CcOxLnntN4nXOMYy+fRepIlJuTSh15thGl4sMPwvHzIoKQu5asjaoWlV+Ika4fkIG+p+9lnRZlxuSDBHlgpCH0/FrFPp2mOTF6jM6fv7cxUeoNNCZqhn6g9R3WutmiOUrDVxu6oSVLZp73bscUPKfmJKpRr9gfe07HwH5/IMuq5yFLUeSSxq0Uh+Oeh8d7Xr68JksLqjojeBlwWGclPAIE/eLsbJVWOJeyWm2YQkNkoB860JG3b79gtz9yOJwZR0+WZaQuJUkyqmrF3f0tu92Rly8uefPqmrpy1GWCsZHEKopCBEA+Csc0dQqwZMlCrP9aPXNjT80tSRYxXiy9fg7cVFpqSXQkSR3r9YKvvnyDBINFfvr+nnGY2NYrilyUcEVR8Ld/8/fc7n7i9vM9v/rlL3FOkzpDmljMbLtdVAtilNawRsIpQvhrWKZSwoqTtSp7iDJzARflPScanDFYG4UlqeRGTwSnzOwwma27RG4e/oTWkOYdEQdIXZnnhdSqWhp7ICgB2bukmRxCFKuuEcfCuRmYJiUsSQvdvn3mWj88PlIWpajCieyPn7m9+0jft3z5xZdkecapaXl4eCT4wClp0CjKIqdpD7x+84qyzPn55w8MY8ur12+lab8/4afIxTby8tWWcRhksII0wKdpoutbvBcRg4SIGvphYLffYc2R7WbLuW04n1vysiD6wP3jA3VVcdif6McedESb8OyYsNYS48TxdIfW8O6L10yj58svv+Z8bpjGgWkMvHp1weQVu8MR5wxJanCp5fHxUdZgXpA4yxRmlawf0cqQpSWb9QuC97TDgajiP+MwzjWd0jitJczv/DQk+F//9S9u8L15s6JelIQgC7drW2IIpImbNyWLMoowp+pqZUBJfDuIrfdJ8rus12id0jQHtBbLhTbSkMmSBKUc0xi42BRMk8cHTYiKq6tfkaSWxBn81JLNCaSiZlNMTopZGcvJxW9ZO4gVUQ0oHSSdZS6CAND6+dCEwIurBRebv0Nkrp5pCmyWNVEZ/uEf/8w4PvD73/0KhRe7ixXpbHNuSBKFs3ZOHUvoOgGjZvkCaxKMThkGT4wdWhsuNjVEKyk6TNRVSZoWjGFD01rW/3ojU5IwMU0VaZLR9SPOvqZtepTWHFuPVo7zqWWcRrQRrlNROKo8JVSOcyMBBKdTj9KO8+k0T9ICWWbIc0VwjrrKubs9o1SgbU9kuabrZpVOveLm8yP4hIvrCj+NxCjBEsMwzE0XAZ0nqeNwaOn6gYttRb1MCeFE15+4vd9TVhmXl7J5f3j/SFnlbC8KeR0BXr2sKUthAD7J0+WiZURFYySOe5omxqFFEoJk+hRCwPtGLmwuIU8d1ia0zRmtRqQ+FquDiZosEb5YVVSMo0w27FXKxeVviASsnRiHBlekJFkiD6nyBC+w24gU4NpMpA6WdQazJXOaxnmTlUYJyPqPEXwIbNYl281v8X5iGHqZctYly0XBn7//gYf7O64vrwjTgJ0DH7yTpKXJe7SR+PqiiFibEIKZ09EcWiUkk6frTmjtefViiVZStHvvqaoldVUw+Wu6vmJZ1yiiXGx5KXbTYaAqvqDvBlCK/ckyBdg/CGcMNMtlyaJKBK4dhUloraNpPSFqpqGHECgLQ5I4ilwTQ8JqUYlNq3S0rai5hqEjRpGB73aSQnx1LSmzh8NJVF39wHKxwlhIMoGrPz6eGX2gThzLZU4IDUPf8fn2HuM01y9qtJl4/90d9aLm+sUSl3i8H5/XmtYaPwlnws/BUVkq1nZrJNmya/ZM3lOVJVUhYH/vBdjsrMMY5uehZ/IiTVdz8UHUOCsXoTwTC0nwnjzP+Ff/6t38DI0Mw5EYNUWRS5HkPU+BI9Ls8fTDyKIIZJkjRCkWxvFJ5y3FigISJzbmED3WKN682QIbJj8SpojGkV1c8rg/sD8cxTLSdygNRZ7jJ0/f95wOB0Dgw9pA6uDyYoNRGpe5eY+KTDoQQ0+RZWxXL/FeCqAYFKtFxhdfbHnxUlJQNdB3HXVVk6YpMQaWleHViz+AUrT9yOP+yOncie0rz6nKlLpMKfMMraBpz1RFTkBTFAmTDxjlSV1Naic2K0nXWhSORWm5vKhph4HD6UFsQsPA6TjQnAem1LFcajbbNafjiagU3SCBR8YayjIjzSzeD0QCSjtijCwW8wS3OXNqjmSlxiWRH3/4gPfwy199hbYdMXq224LEDVhnIZW0ZhvlQmN1YOhPxGBJE8v+8ZGmbVivV+R5PlsDJVzJuQylA0p7REgdZgXWU8GjCVGDkkmx0mreqxNevV7Qdz1EYcgO/chyucA5Ja9nHkKAXEqa8xlXLwTibA3K+PkZmeZLtZn/V2G1kXAOIss6ZVEnsk8CioQQc2HnaLFeRz/RDcOsLIoM/cj51OD9QTiSRhFiYLtaicpBRwQNO6FVFNC+mri+XImyfOoY+pEyt7y83rBa/4Y4N3y6tiV1is1S2GBdDqv/6JcorZmi4u7+keOp5XzuKIuSskypq4KqyNEg0PptgTGWskoIAfJE7GB5Is3KssroW89qUfDiRc2p7Tiddqw2G/qu53Rs2e8bYVl6ePXqBV3XEWPATyNdN5C4lCR1FOWCJDHs9juMscJ63dQ4p+j7jsNpBwbyoubnD5/Y71q++vo11UIh4UYDkZ4sL5jGjiRJZR+yFjOn0g9DT4wyRHHGcD41TJNnuayxmcMrD3iUmlOLp0nWvok48wR3j3PBAiGMc1GiUCqgGHFWs1g4xmlEMZCYQAwdZSXWw+ClOWy0QivwMTAO0/z3SpM3RvV834khzEweZosmEhwxW3MIUjRlST4XWJGdOpLlBREJk1FKUdeVhKENA/vDSVhEWYJ1BhUDi6pg7DrBBGhQyuA0VEVKYiNlUQq/bOwZR0+eWV69XHF59ctnoHfTNhSpMJRcasnTyOX2W1CGwcOnz3c07Tg34iqqKqMqU/IsQcdI057J04KIZr2sGEZPVUrz4mpbslzWJJll6iLrleOrL1fsTgNde6JeLKXBsuvo2nFuRFhev3pF3w2EKI2t5iR2sDS1LJYrWXO7x5nVd2ZzUeESaTK0fQs6UJQLbm/uOOxarrYFRV6SppIe+TRgfxoyARwOBwlmGieUMeSFFKAqGmHzHs9Y50AZ9g87In62WjvKsmK5XEFUM2NJAv6c07OtuuPxYcc0RdIsZbEo5TxOLN4LXzEET5KmJC4hBhnoiiBgeuaRtm07M7IyquJSlDIzeztJ50GGinMtExm6nn7on5t4aZKQJBmRiA8TIUwcz0eUDvTtmZu7kZfX15z2B/bvD6Lef/eVsJNHP7sNpKCtlxVp8nSeSQN4HDvgKY1cONfT5CGAChLconQvCnqtydKUP37+SJonrNcLyiLFT5M4gNqR1DnaZhDVL57jYUeRr9HkGKeJ3tB3PUPb44eBIi8klKQ9M8WGokjRjKSFo8wnXlxlVPUVSl/y/sNHrJZmWV3XDP1IVab4qaNYZjiTYF3G1C25uz2RpRlFojnujnTNieurJX0zcD4FsqwlzwrOzZkYMopCgxqYggw+Y4i4uckmbpk4JyPPqcDGkqbp3CQQttzToC5NLTEmTMNE1w2UVSnBTU4GNN6LHTJGy9X2t6zqL/jp0z+wezySFxqXmOdBb5pm8noiwj+fJowpkeE+8yB8RCnF7cMd93c7Li9ekFiP0lLbyHBRmHPDMEitQE9kIkQJzBnGcRZSNDOfUpSFMnRT+MFz/3DP5eaCxWLFQlUEZWj78bmJfX+z5/KipnpVUZQZCrGYSlCB8ONc4qjrBZ8+3nB1+YIkSUR5ZDR9PxBjJE8zUpfhjZcwx6IgzQxLs+Z8doxTQxcmXFJQ5/DxwwMxjoyjYr/vWK9WlEXGzecD59OEVinWOMZR7mSJheZhhzYypM3ynMwlhDiBihhlGXvQxoGJs8J7pBsFnaGNwSnDi+uX/OWHG8HGXF3RdOI2LIpCGkoRToeWJMmoq5w0S+YhWz3XASmvX77g3atXz/0GrSLB+7mFoAH93FznqZ+ggRDR2j7Xf3Hu8kmTx8yK9Tgr7aSWJIIPQrIV5uHcqwgwTl6GDaEF1aOjQhtRvUudGWfBgdzjpLcgC1O0D3F+VkSNiQqMo+fzzT2HY4PLv+Pb8h3bi4oYFrRdx7/9t/8DRVHy29/+Fk0UC/zk+fMfvyNLM968ezPX3znnU8tqtSFLHDc3H7m9+8z2Yi1hhH3L4WDI8z1JVoudWWsmL0i2tm1oG3k/ghfhitJgneNis0HryDAOXF1tpWeDhEPVtiQrCowVkdaTNT2gWdRLYggMQ0+aau7ubzmfTwzjSJokbLdrirxAE7n5/GGu2IKggYynqhR1aVlWjrJwWKefg77athX1r1FontAAgrTY7R6Fp+2MoCnCxNDLmZElOcHDOClOp4Y8K//ntuH+J7/+N1DwBabhTJZJwEWWJjOaQpp9fdeT56Lo2h8Okq5YFbPNc0ChhDMxBaISi6WzouKTpyHO3A1QMaAIc8dzQulAniSz9WvEmDhPTLQkrU1BlC3YOcnI0nXCUCJIASUgy4FhGGSSEaKkvyh5XSglXAoNRjPL/iVYIIbI4APWaawT23Df95RlSZIY+n4g+EDbCIcry+Qi4qxMDoduoPU9zo4Y40RiH8AmAuuVFJgOoyfqIuHtywtCFABo23ace/GM29RQ55BeVCi1wDrHw+nMze0ercWiW9c5RZGwXtUkWtO2DdV8MVpcrYlorjYyOf3lL67ph46qLOm7iauLiiK1rC+OPO4/U9UZx8MR7yVBNktz2m6gKuvZPi1KkpvPd5yPE8YGtps1q00JaqJpej78+Ik371asNzVKwXa7pis90cP+scNPko6zWBQUlcBwlfJMU0cyv9fpfLh47zkf5TKe5ck8hQBUIEmFBziO4zyxE9XSGCPWTrMNSfMcDy4r7J/JgaVIlon8SFVbKUKR6Z/SMkUIHoKX9FmtFMaJdVRpYSkQ5WDxs+rGWov30gBSSniCKCXqCDWglGxS2ii5sE6eKUzCgVvXTJNYPlLrMFYO8BA9XdsLMBcBBDvrCEHPNrMWa1KMdVxu18CclmUUkDAOI4SBMrdcbmpCzFBRGIzdMHBuTqxWC/LEoisDc+BAnhvudwfsRS2criIhLxzLRYmzmr7tKObJ+eJiidKWYaiIEX797UspWPKUaYxs1guuLku2FyMP+xuSJKVt+tle0JGlBW3bk2c5VZmjtCZNcz5/vOe4b0kyzXK5ZLUuiExMY+TDhzvevL2QUJroubjYUNURgubu7oTRCV3bkSRbVusFbROxVuF9RwxmVlcKsLXvhDX1dHFzzpK4AqWGuamhJU3TB6w1c6CKTMiyPJGBh9LzoOFJgi2MOqU0RkNVCRfIOSl6vJ/IVE6M06ziC88FrlYKZxOUmrBGY6xmnIRt9HSJfFKIyiaqhH8RNcFP+OAJ4akBJHD1rpNm1fF84OJ6S9MdKGdAtTSQAsZKIS/WNYGhP9lNhOsyMAxi50sTx6vrC7QxxJkXSrQ0J7G55IklsdLMU0DfeT59/ERZZlxebkmsxxDR1mKM5XgM1JVwtvw4oqL8HVkqCtrEyqVJKVjUJX4KrGuxNAxvVwLCDYosXXB5UePjlxzOS8Ywcf8g6i8/9cQgwS4heJxVXF+sycuScYCff7pl/3Bgtc4pMss4BS4vV3z+eGT3eGa53EhzHlguSupFzc3n/awI93z6+JFf/eYLpsGIQmi29MvHJo2I4+lI6zvSJEWsPoo8r4SHYp6Kllmd4hLatqM570BF6rpisSjR2pBl0pQNwROR5LEnDlFV5fN5KkEy8hUAKXq8H5/3RtkfpWDKi+wZNj5OE8pPoJibsk+NQPlzw9DPe6qnafZStEeNM47mfKIfB9pOwhza/kg+GPIsx4eJGCJKR5LEMgxyGVJJMuM5RBUTI/MAQhSzm9WCNEkIRIgTaaKZBsCDM4ZgJAnOGoMfDT9++BnwvH37GmcVhBGlDTqIBS6xjpgburbF2UgsEhI7X+YnNQ9mBuqigAh1uSaEwHadYLVBK4NbLbjcJvztH77kcKqZwsjD/sihqvCTIwbL6XRiHAa08izrjLpeEILh00937B+OrDY5iVMYE1gvSxKT8vnzA8tlOXMgJSF6e1FzPHR4H8mynI8fP/K7iy9FdZkklKWc0XjoGlE7Kwx+CpxOZ7TWVHVJkjh5PdqyXC4Js33yaS2kacLDwyPDIKnq6/WSoijQypEkOf1wnl0XshbMbF/Mi3ze8yJqVjZpLUXOOD5ZgGWKPQ4DMMyqaPOsXOnHHj9NKKWfBwFq3sPGaRIuFKIkGYaONM+l2TtGdrs9AUmWzkvH3cNHXlxdyXpsTsJKto7lsqZv+7nh6WQg4iwuEXX2NIgLw3tPVeQkSSKDbkRdMvUBHRUqBFTwqOhJ0oTgJ/7xj/9IWWZ88eVbMqdmR0qg6yYIE844vFGcz2eMnqhyS2YNqED0MgTwQYIpEqupK0lcrcsoa98H8mXN1YXhd799TdPWBAI/f75nWS8hpDg70DQnpnEghoGqcFT1gugNcdSc9idWmwKjIn4aWSxyEpfx04cb4c1GsWtmacJqVdK1Hj9F8qxgv9/Pd3eN0Xpm7Y1o64hBBjxSB8j9HSX6FgVoFdBGCqanvWRRv5S9K0pojyjXZbBlnWIchX+o1YCfBrTRLFfC6gWYgtwRjRG+1VOyu5rD+mRY5uf0coNzyZxuLezsGCzCwWZWVCUIP7dlmAZUFKWpc47cFvI8hhGPF4i8cfi5AdPMKIJayc93c3vg5vMtXT8RpomLbc9mLe+NtZqffv6Zm9vP/M3lv5ptoSC8ewnA0PP+/cS7nqYRPxpCAGcztNWAn+/Aijdvv+TcntjvT6RpSpbYeYCQsD8JTmh3OPLVFy+5vKypqpSycMQ4kRhFMTcfFcIvd1aTuQofMmlKaQNR0w8HrA0UuRGVcN9xOh3RKieEEW0jaWZZr5d89eUbgh84nyc+nO8haKqiIkvh3E1U1UK4wqnlsBvoWmHn5XnBbifAfAn2kfqKZ2UMszInzAN/gyoEZcHMgAxRlHtGa1TUZLkoWWVIEWY1+5PLZuYxewmTm6aB+90P7I8/slwXxCCDcqUM1tr571Gzu2OYBxCgsAyjBH8Zo8VhEi1dO1HmK7HPPtzStf3Mk+3RRhOiZxg7fBz54f1fMAauLq+JRIZh4nG3n3mAR2KExapG60hR5gxDwcPulixLSNKc3aGd2eCOr7/+mjcvrzFGzTZmj1IwTj1d1zJNszLROa4vL3l42HF7d0ORS5jT/eMj2hhRAhsjw0oUd7f3rNdL/um7/56ikFA7Y/QcsihN8evrKx4f7/nmF7+i6weMCihtWa8W7B472qah60qKYsmySun7hoiW+j4OdMMgDZN530yTkqpY03ZnFHLn0UbLENDPycYolDa0bc/N3R1VVWEsjFPL1Ddcbv5jNqucq8uMqav56cOei82CxaokyzRKSyqv1XpW60WIft4f1Lz2nliPMhSVEZeVc0pFwDwr8Z7u30Q1W7nV/PsgxHlnfFL6EVFR4aMMwfDgpyCYCSt3oIjCexHGyB2KeV3KcxHnPePJuh58JPjAMHQYq6WuScRB8Olmz08f7njz+gW2VEQ/8fBwR5IkLBZLxnEkS5JZHOR4++4d4zhy2O8xLpXgURRFlqF1ZLvZsF5VGK2pqiVfzi6sslhw7jx+HNluJbX8/Q8/cjwe+Oqrr8U9oY0MsFI3OxsC6IixCC9Uy88bh0Ca5pggDhKtDD70PDzek9qEvuuJXtMZuSeNo4QMlrXUrBA5n85zv0gUtnkuyK7CORaD5dWLmkVtGceWJM3kvqkC49RybvbSEHeOq8tLadxGxdCf2B86XGq4vftM151nK3sgTXLSpOT2dsdPP37mD7//L/7/+m3/S7/+5TEdUaat/ZwMao2l7USporWSRCwDcRipygXOmTk5TDqqTxe7u7t7vA+URcFqvcDYBGMyjLb0Q0vwA5EZVmjAmCepqp9tmRJtnqcWCIxTh9Fzs8d78YNH5EHXCVFFQhjxoX+eijgnYE3mhks3DKJ+w9D1e5LUCRA3KPqx53g8zXLwHhh5ePzI1dUVfX/m3OwY/UiVLzGmkgvINM1FfSRNHWkmD0UMin7o0QrKsuIpaGQaPCpGjFJEHxn6AaXke2RJyn5/4Pv3f+Hbb79is1pjtWMaR8Azdj1GO7QyTFPPcbdDU6EXspFliaH1at68B/K8YFGWtF1DN3SUmSK1gSR3LErI0oSivgK2fLq955O6xWjLoq7pupGySoixo8hSnBM2xNAsubs5UhclTk083t0zDj2XlxWnXcv9bSe2zEpzOgxEZZnGSNcHiqJkGM7s92e6LmO1uERFQ5gi515Sd9CInz5IA04sGppmVhdmuWwuvYbJh9n+ozjsT3gfJY2pLqQI06k0k9qzJJRGYUTYGcxpMICk4kWYYbPSnJMiWCT7w9A/T7KMdhgjfLIQA9Mgh6VL3QxHDXJhB4ZhnHkCin44Y51IesHSDz3n04lu6AhxZBhbbu9/5sWLa07nPbf3n5n8yOX2isoUUswTaDt5HUWeiiUuCbNtWxqBMqmSC0vX9YzDQJamjH1P157RmtliIxPJn37+kSR9R1lekLhKLA1KE6aIIeHc9RA1Y9fRmwm1rNGKeRqm5+CSVvh8ixVt19L1J7IMUhcwKlLknjzTGLPh9cuaz7ePfPeX97NaKyOGOKc29izqhRywxnBIUtrjRJnlFEnCw9090zCwWZfs7htub45YN3GxKTnuD0xeMYww9JE0y+j78zO/YbV8g4oag+F0POGSFKKin3rGMaCtkQmStZzPDV3XUdc1TXPieDrMFgVPUYjSeBgnsjmlKc6y+ywr6PuetpNDRGtR2MoUzYpKeBSuSpJIYR6CfWbVoCDMvJ6+H0QtpRyJE+h4DEGUBFEsTMoIUyZGAZp3bSv2CRXoh5a6XmJ0go8BHz1t1+CZGMYTu91EcnlFP8D3P/5A2za8ffOWNMthBiaHEDicDqw3SxJjnxWqWsvl3vuJJLWAnhtzk7DZiPN7HGdld8Q6x+G0Z/QNF1dbiqJEK2StHQfyrObnTzumyVMWFj+Nz4EbUQdiammblmEcGcaOzXqLtfJsKxtnpaTCmhHnWjbLlLpc0/QDf/7TdxwPZ7wXhtXrV1dYM3GxqUkTS5pmfPp4YOojaVqwXmxo+gOTDxRFQpoZ9rsz73/4yC9/dYWJ0DQ7Tk3LfjfNBa1YuD9/euTl9bfS/FCG4/Eg1qg5KVAZQ2KFIWWtcG67pqWqK87nhuGxk4ugiuR5TpZJcpoUsKLGkjCSvyaE7R4fMcayXNXPE1utNcPQz0MuIwncsyJFz9ZfUV1O7PcHUV9GTVVori5eSxrhOD5fIJ/O6UjAT5FxGBingagiTXOUIJMojW6XOKYooTqokX6Ew1nR9R0fP31mv9/z5s1rLrdXZHMT2RjDzx8/cnV9iXYyHGRWOwjkPIoDQMlam6aRoW9RCo6HA8pIWvo4TmijGceRYewZpomqLCnyDKU0bT9R1ws+fDhwPPasVzmJFb6tcxqtJH2z60amqWc69qxWWxl2Dh39MJGlDq2l8azUgUVlSFzO6B0fPvzI4/0dqIzJD1y/2JLnitWyYLteYI3j8bFl6D1WpSzLDYGeU/tIWRWiSB5GfvjuI99+u6Ve5Nz7B+7uHjkeh7m5qzA2Z/d4xqqtOChikAaVnyS1OxP7mrGOeg5a0UoRg1jGsjTFGc2xGwgxEGflUwiR7eYC1NN5GOm6DmcDkw8oNXE47Ol7jzWW1XrBMA4kLpmdETwXQMY4xLYWZ4SLn88fzbk5i2J/nHB2Kw4JbcA8hTTMbFVnn10asj9OdEMjA4xeoaIUZVmRcjwdSHNHP2kmH3h8PHA6nrm9v+N0PvP73/2ORbWYEyUdwzjy04cf+eabr2cQ+URUCpc4CifDHtmjoO9EySppfpIe6zIBrHddS4iihOlmuHuSJBRJgtEJ2niaNvL9DzcMo+diW1IVOUWekSQWokfNSJEwDExTw3KxnJX1Han180BAQ1R4f2JRScN1GEcOuwceHu6IMWEYO7YXS7IMtpslm9UCayx3t2e6psPplFW9xoeWU9fNidXC1frw4y2J27Bcltw/7Li7e+B8FsWIdVFs13PjNxDm9T8jK7RiuazQc0KjQgJMjqczRpk5GTWQ5xnTNEoqqDJoJXcxQkrmtmwvLvjxwz/SNntcosmyDGvle47jiDHC69Ra048DZVkKgsVPtO1Z9mKt2R2OwpNSMiBTc0DA07qU/TmFecDmQ8QlBh8iOoo1su96jLE8pUqOXlSrh8OBqpShzLn1uDSDfqQfJobO8/6Hn1ivNvhgefP61RzqZubGj52HKqKu+fjzJ64ur2bFGfPvC/w11E6e993jjjJfzZzekabZM0495/6AdQVl5jjsz+weTyTJSOIMy6UwuB7uG8JkKbIarbQMlvuOnom2PcrzkDiyKp8VbwExyCuUtqCfuhCBbjiLUEKDUo4XVy/5p+8+0o2K66trScu0ok5zVhMVHKeeLC1IXIK1ME0dzljOh5G7h8+8evWCuj7zuLvn9r7j9ZsrXr+WxNE8X+Bn76FSEINY+CMKY+dk2xjn0APAiGhDesh6nn8alJ75d1HN93P59ydGmjDVZHi1O36PsYa0CIKiiBaLnPF+DrwQBEuQgZWPKKNQys+DDSX12uD58OMnzs3AT58+8PbtS6yTJlGa5fzlu79QViXv3r1FI4nzQ9/z8dNH6qpmtVo+fQp03cBiIZb1j58+Qhz59pff0PZndvtbYvS8efs1xhnavsellmHscBbOx9Msu1azQCFitJb9x6VAZAqe9XYFMUooCIp6Uc57vmHsB3yIeA8RaV56OkK0nM8tp9NRhCvGsVwuWCxTlss3xNDhjNwJ/dRQFrDd5jzuUxarHOsUQYlaPCpFiBISIcEIUuuMYcIoPyuzEsbQzefYrLzUMh6IMXI6nYgxcnmxxSWOxaKgLDKMDhz2Z9b1ijTRaDVS5jl1mVHkCVqLMCNLMyLj8zn21Dx7+kfqUhF2oJD9C/NsyRVDxHxexXkgOouKjHraN58ETcLiE/HzjHZ6UrNbg0vk+wdEmSfNarm7RSUBKKIsDIQY8UPAh8gURoZuFCFCFLFKOtcqfoK26UizHB9HPn66I15vaM8nyrKmrpcopeW8Gzw+eF6/fsmbd68JfiIQiVHx+uUL9o97zqc9ZSFBeXp2ulRFQduKIk/Un46XLy7wfiSZ2cVVVRLChLOy/lyiGX3P7nHHOEooXVHmlE74hr0fGIPn5x8/oIwTdnKIpC6jKheEcZgFEHJmZ5nlxctL/LyeFZFxGOmagaIsZsWsDE6UFr5qURrevN2irQxG23MDJpBlCdvLtTgv2m4O5hm5ubkhBM/lxWuGseN06ri/e2CanUwKPXPFA8vVmr/7uyt+8fVv/he34/5/v/7FDT5rjNgOzpICE7zHJZbMpLI5Kk+IcpmUi0cUxhSiVioqAY1eXV08T8YkzaslTTVejQQ/zAmacugLbHISoCUeZiCqdNLlR5KutYLg0Va4YF3fiZ3EWxblG7QSgK1z8iC2XfM8UQ4hoq3CINDTyXuMV5xHsQiiFWmW0B7OLJY5XSuNxM+fb/n86YGHxz1JavnD7/5AnhYo7cjznO+//35mhrwAxAMfUWI9sna2NUHXdUwTDH2DsxVDL8WEsQofRqbJ42zCZrPheDpSpAXWOPI8Q2nDemXZHe74/OmO9brg5fWW7XZJUWQkVuEdkv5XiNRfFIYJaaYJUawHibH4EBmnE1pDZiGiiNPI+XTE2Iy27dDGU9aW9brmyy/eQJzY7xuO+wPWWBb1gqgaAiNVCTGOpLkhTIbmFMnTlDTR3D+0WOfwsSPJHEWdM/QDm/UL1stLYeP0PcMwkudS9BdFMTdEn1JJpdiwM6PLe7EIa6Up8gQUXF4+cYukqBBGhzQ6lIq0XcM4SOKcNoq+77HWYYwUlzLlMjzxExRBLgRAkgo/SBRzEpM9+mG+oDrSVLr8bdsSo39WoDjnyPOUAIyhIUTP8XQkscLNwcAUJqq6ZBgsUWs+fr7l5tMDu8MOZy1FvqSuK7RRZFnCX/7yHURYf/0lz6DyKHbgNBX5r1JRrDlepteJVSgszomKbPJeGu9VzavXb2i6nuPxTJqkJM5hbMZmfcn9w0fub4+stxWvXlywWlYUhRyGKpfGVFVL40ApCUConKOsamBOOgJ8aKQwTRQhyqj6qYETbGQaR6x1vLy+4N2blwQvU8u+73A2YVHVxDiQmBxvB1CBepFKgEkTOCeeNM043B+wNqcfT+SJoygLuq5nu37JZn31fFlv2xZjJHlJGzMHWkQ0UnyWZUFR5qKkcwtijEyTJ0ktkmomKjul5TM+nY4YE/BzwxkiT0lYSinOZ0nmcs7gnKMs5/X9bLHVBC9jAusMi0VF38t+IGmhE24uOBMnbJFxHGmH9rk5opWmrsV63naNJHh2rSRS6znEZZCk6vVqQwiKh13L/f0Dfd9xOh5Yry64vlxitBRQ+/2O9z/8wHb7NzgnKYjei6ogz0U9B8z8OM0QhEqitaGq1qAFuDsOE0YnfPXVt+yPj9zfH0hdSpZa0qygKFZMn3r85Bj6kS/eblmvc6rCSWKZVhRFQl3nz2eUNKki2lhR0MEs5VccT7dYGzDW4IOlrmoeH1vKShiw49Tz8tU1r15eY1TkeDjhp2lmyiykEAyKvh1oujPLZTlP6OHDj3e8evWCalGy251xiSGMPYtFQYyKqlhL4NMMEA4hkOeOJElRxshlDylIjBZl6nKxIBIoqwKFTGWN1fPPKOsjIuy681n27difREXmLNvtFtBYpzmdjrOa2MzT2qe1JkVPjGHmSwqTKc9LElfggycGReoWz/xFY+y8xwT6oWMKwh3R2pKlkmw/TNKsHgZBCzRjw/F4JIRAP/aUxZK+GzkePbvdR4iRyUsDTy7Uwg/q+56ff/5AvahJs5QsT2d11ijNUztzSKMobOWS7EjTnNXyBYN/kMS0UZQbr15/xeH4yG53pm0mSUErCoyt8NOAijnT2LOol1xcFKQJaCUpjGWVUVQCT4ZIDFKwpYkhzSoZ4syF1+l8C2iSRKG9Y1UvMOYzxlmurrf4aaKqCl6+fEFdJDSnhqnvMdpQLZZobWmbIwThj6VJyhdfXjH2gU8f9yilWa9X3NyecM7R+568EJRBmpRcXryUvddKoSrrYSMNAzHZMIaAirK3KTRlXhKDqMMvL7aCW5l5pjFosrQWVIjvCVEURMIHlcTTxWIx76WRqAJd3zH0/bzHiUrAOSe22XnvlKaANJ7TLJ0tjqJwrvKKvu/kGdbgtJGhm5o4Hs84K1N+rSVlPUaxNE3TRJYktF3H6XSiH0cJi8Gw3/U0Fu7v71gsluS58CnzNJtDFAKn3QOPjw+0zUuqsqLIckKcbada+D0E0CiqquJwOJOkGfViwXZ4xzA94v2AUtIgvb76gv3xnpubR9I0I88cVVmjVMr5NGJNzTSdWdYLFnVKMjd9YpzIi5QsF14h2s+qD0nJTpwo5Z+e4f3xBlAkTgbbm82GDx8fSNKMspbB83JZc3V1RZVZmnPDOPazgnEt9r9enpPPn29JkpSvf/GKrp349PMjWq+4uFzz8eN+HlgO5IUlL8wcPBHmYAzB0hgjjTSln1IlZf/Icoc2laRDjx1ZnpFkCTbY54I8RoWKhkX1ijcvfs/n2x84nc4oMwhPdhRmkSSVJs/Ke60VWeKIiSMGUSdrXc4hNmfef/+BFy9fs1mv5+GsrG9rLWmS0XctSg0Y4zieHjmcHlguFrI3aEPT97RdR4jSEMtysdMPc2Ba1zcs6oq6LDj3I037wDgNvH31movNBWWeYZyWAJuncBrfczqf6PuBNEl4/fo1zbnlcXcgdQl5XnB3f09AFHNZmpImKeMY2O/31DX86S//HWmaSS1jDPVizTRCzBRZmtE0LV99+RXn05EsLRknSJOM0/GBYRq4vChY1hK20w8N3kfO54ZxtPN9xgg3La3JkhoN+CB8rieb/FMDFyIuTZgm+PDjJ4ryKIn2YSD6gZdXG5Z1ztVlwthU3NyeeHG1JC/gp48/kyYZQw9d2+GcZrNZEGKPMVJPGOOerZAxirVfzWfiU/NEqflgflI+SUtvHkqJwsYHRJ4X1axUFtXek7uHGOm7drZkKhk6ej2ffWpWg0b8PLjQMTwnVOtZjeX7acYxTM9DDNC03cTHz/coa3j95orFoiRGuLm943Q6PVvCrTGEKMrorun58ccfJeBCO4ZRAoBWqzVKR4a+5nja0TSNCDIWK4pc6qq+81ijyefB+edPnwD5s9YasYNPozQn/YTJM2IIGJjvMGHmhPbUi0rq86zE+8jt7T1t22CUwQfP7nBAK8P+uKNrZdhGDPSdsBiPh0fAkxfZ7I4JWOtJM89ioakrg9IjyqRUdUlzPvP4eKRpToQYSJxlu13OCu+Jw/GOqi6ZwsT9wy3jOPL48EheFGRJQfCGP/7xn7jYXEG07Pc77j/d4dc1aZLwD//2LxzuG66uLzgeJkIUTIOsB2H6aWOIyorTLz5ZgXmmq+vZfsvceo0oYvzr3SQ+rcEoDeSo5B4XoySrKyw6hmeOY4zxnwmQIkLXlvRxoiIaGY7F+IS48ASeQjhEoazm4Z2zBjVBPw54P5IXUmdaJ6EcXT/QNiN5nuMfdqzXCx7udxS5BJmMgww1tVYUeSUBeErO2t3+INiYIKzSLM25vt7K8NpozOyoa9oGkBTmKYy0XUMMkGeGoliwqEvW68Uc7PXkRJLQKe/7mWtZE6OnKGZWdBBlsbOGJLV8/nxHP8qAWviQnroQ0U2epWjtSRKFcQYVhU/rvdihjRG0zFPicYwjx+NxrlctSZKTJRWL7SX3Dx8IDIQpyGDJpHMNojj1HVW1JEwTr198S9+fadtbqmrJ8XggcSlFUeKjl5TyqOk7M4tC/mVf/3IFH9JVXq+XoiyZF/I0CQtMKZHkLldLnlZ2vSj4azEii8C6dH5j43wBDER64V4pxWa7QikJKBjGnn5oGac4F6362V7k/ThLryN4+SCMNrPCQRoMxAxrDZMfMDbwlDhmtGEYB9qZF5amwgcZBynyReknQMfHnSj0jucGbQzNyXNzPmNdQdvAi+t3YsfD4tycdBQCXddyOh9ZLGtJWcnz2c4n793ThaQoCkJQ3Lcdq8Ulq+UL7h4mxukIGPqppyxWnJuBtum4i0e0DpRFTlVecD5NjL0mTWrpmieWrm0oMsdudxQwpDPUefpse9FqwFjFOImiRMIjAqM/o4LBOoFzXl5ckmfvOZ46Li5rujbix4jWTmK8o9heF4sFMUiTIUSxvTTHhpvbG959teDupmO/a7Am8uadhF785S/3cuiUFmsz3r7+knfvvoFYYu2IswXLpZsnIWq29Twl8YqFIstS6bYrxXqzkEUapRkXAtTVkq5vmKZhVt8p4TAGEVEL5N09d+1DkCSoYYizzN/N66Gf7bXSRNDKzoo3N08bgGhInKFtp9mCbuaBjZnt28JeUojVbRh7UJGulyTIJE3YPe6IxNk6Cedzz/3dI0W5ZBzg3btvSJ1YwSQGXGzZIUTac8PDw57Vcik8PjVzPebLjdGaskwIQdE0A9vtFdvNyxkGfCT4gbbvyLMNu92Jrhl59C1an6mrkrrOub870DURRUqaZEx+pGlOOFdxbk5iN00seebmAyTMBbLGe2ZQtRxWo29RXlKGCHBxcUlR1DQPR8qypDm1dN3EfnckvokkzpKnKYuqYkjkfUwSOXhHn/P9D9/x5u0l93d7Toczzgbevn3F5D3ffX+HVo6iSLEm4Yt33/D61Vf4KcGYkSTJeZVnEsATxY7adp1YZtNUmuzO4L1njCNlWcw/i0zq/KilSFKex90NQxRYvigS9AzYt2RZhlJmDh6SZpT3/rm5UhQFXdfNIS4Rax1aidQ/KkWapiSJXBdcYkRZxHyJnPkciXPChkgExisKt0GUnm2H1or1sqIfRlkf2tA1wj788MPPFMWC4AOXV9e8ff1mDu7xPIHIvQ/kRclPP33i+vqaLM3EIuSSuXiXfTZJEhJnBOdQFmR5xnbzktP5noGRZjiRFxXDqGjPd4xdR6s9aWq5uKw4Nw0PdyfOp5E8T2jODVVpGEzEB1l3xirKYm78zM095sAba+VCH6JMgsPkIYLSmsQ5FvWSafpM0x7R2jB0HUTPxXrBV1+8pK5LXr3I2D/+TJ5lrBYO5wbSbMvuu4bgR5arjMf7veznOpJnipuhJwbD5cUaFRXv3v6Sd2++xXuH0g1ZmnD94go9v5dTgNPxyDiM5Jk0K7MsQSFW3qLMsE7UHooUYspycYE18P7DH3FJnPcpUVgOg5+nyZokyZmmnizL5mmyNPKGQXg5p9NpPtf1PNiwz40q4cbIwEEbCTTSOmKsYZrmwBkNYzeQpTmKSD/0Yj9GUs/6vudie0VindiHIzR9j4mah/sdftQUZc5iUZDnL565qo2XwqBpGq6urrm5uQUUdS02JGO07KHDiFFmThUOdN0gSkHfslxVnM4TXdcx+J7M1SQWPn/6zDAN1KWhY8TZimlSPNye2O/OSHrkGT8leK3o4sTxuEdpT55lMjhLnDDftCFiUTHOHJxRVAdBMCNoudNUVU2MhtubB7KsoGtamuZImSf867/9HVVV8PpVxu5B7LDLRUFVwf4IXb/i9u6Gl6+uuLu9mxmugSSFEDqCh+2mJksS1suX/PLb35OlK7z/Ce/V83rSWhRPMapZ4bWHKDiC4D11VSMsR/X8M2hlAcdy8Zbt5hXvP/wD+9099SKVAaMCmNVZs1KvKAq6vmW5XD43bJ4sheM48enTJ/I8n+HwZh6kGVEgpwVdN2FMIIQObSLTMJCljmEcmKZhViV3JAtpaD6xaIPS7O8PJElCmZcUeU6aptzvjpzOj1TFisPDHXlq+PLdO0kn1KI67/oW1StGLxzo16/f8PnmFi7NDPZ2TN4z+hFFJHEpWZo9YwuyrOBx91HunX3BEGW4sl6uOZ2P3Nx8ZPKRxC1oziNVYRkGOB0iu4czSk+cz62EGGhN13eczgeIYsVOs4Q0kXRqZzNimAcZVprzSs2K8RgJswI6SzOCV/z88w0uSZnGif3ukcwZ/nd//3vquuLt64L9QyB1CZt1yWJpuH/0tO2Su7s7Xr66pOse5bMGtJnwvkWphO1mRZFZ2Yusw9oRayUc5wlJEWdli4RTqGfcQ5FI6NATp08pYXLKnVhA6KAYxhMfPv47DqfPlLUBlRNjeFbrPf1ZPavJJuG1PK/1aRrmcxqapkPplBgMLs3oTz37w+F5WKG1YlHXaB04tw/cP36SlHKnWSxq2m7k/v6Bth9p0l44d0PKuTnxxRfvmKaBDx/eM/Qtb95+jdaG/eE495kCy1VO357Q0c0qm6fXLHbuPM+wxkgi5CTDYmtl8DT5CaUNU4jcPzzirJtTR08YZ8gy4dJ1ndjMz60EBpVVwes3lxgjSevWlnKWK8+LFxV3DynjlFCUItIYx3F2GYh1Oc0T/CSOE62MiC2cwSUWFSSAJ8Yw218Ddk6QbdqWfpREcJdYlsuKIsuwJnJ/90iVvyJNErQeKTNRU+WlMIWbj2disPz4/pG8yEhSWCxqtKpYra6f77MyKOW5iRyjme2QzByzJ+ujDE3l7P9nZbACxaz0k41KLJHzcFURMcV8Bs5cURTomW9rtZ7396cme2SK01ybSvPRe2GZQxBXWGJJk5Tlcs1uP/Dhx09cXyy5ulzJHhkDX339NUVRSK0TLMMwcv3iisurLSF6fIgYJQoiPwoD2iJM0curLVop0iSjaZpZDJDTdUeyxGBRTMPATz99oCgKqqLCpNKwTFOHTRxNc+Zw2KFQz4MZafx5jLUcjyfGCR4eTiglKJWqqgnTMCOthGG4WtX0ZUaRFeRZRt/37B9lOFWWlZwxcZL16yxXVzVpZjBGXAZKe4b57Lq8XtO2rQxvsoJ+GDkeDjObryAcPI/7xzkpVTBP03RmLEDhqOsVX7z7Lff3B8qyJE3g9atLlqslp6MMck/Hlu3FGx4fGmkaR41WWhrx6qkGFZzXMwon8tcG3gyijTOXljgr7ebQKPW8DgMRTZzXr4/xORVc8H1xXouz/TfKmQ1mDmtQwhFljo4M4s7xMzplmiZxpGk9K1LlDB2HXpjdITJOI4ejoBWyNOV8PuGnnldXG8qqoKwy8iInTTOcEWyG0eLO0lpzf3/Hbr9jGMbn+1BVVJRliXWCQgC4u39kGqeZJ27J84wxSDhpVmYzM09LUFIUV+g0jez3e2lpehG6lOU85A5e3uPZUg9iVX71Yst2syKgaZpW7sLzQCRMAWsdZZXT9x1hCqi5XzX0A4fDWRSQSvimEblzby9ezB9sEJEPDqIV9Z2FIstne7Wd9xxwThw40WucLdg93uHjRNTQjx3jNJGVMgTvjmd8NExTwnN/+F/w9S9n8BnIi5IkSQk+ME4TXdtyOJ5mJZXAf8uyxE8jLpFocq0hEkntC6riirKs+OM//XcEJE0MEpFFz5wNCDibzIlBgdVKLCFyQRSZbNu23Nx8ZrGo58Q9g9YjxkoSkrUC49dqQtsRYz0hjvPmMeCnQN8PcyJQwjjK4+Jmnt7Dwz2bzVYshsslg5/YH3uMSyXNjz2bzRqXKLSKsxpPFAfjKKEQ2+0lbdvy+HDAT5BlAsc9nU9yUVSKqigwWhK3Rj/xsP/A6BtpFtoSfEpZrLA25XRqOR52mPKSLF1g9ITWKVa3jN3E/mFPnkmi1XpZMY4dIXgO+wbn9PyPlQtpWpHYmjQp8fE0RzdHFIbgZQqAMvPDCj//fE+R9yRJxjC0EOCL16+p6oTtZk17yri7O/Lq1ZY0W/P+/Q8SHNEbmiZQ1QVZmpC4ka5r8b7j6qqgLjOZZocF/9Hf/ueMI3z+fAfIpFcSrwQOOvQjh8MO5xL6QWO0papKJM3XEMM0b4iaPHnJxfoLXKL4d//wX+HjmaJ0fy3MjCjNQFIMlQoMOpIki+f1/qReOJ8bfvrwM+vNhjwrQEmDVBs5ANI0p+0aYe2FnkBH1x5J05Rh6AgRsXH1PcYt6AdJYnWppe9HTqejXHrzktVqSTeM3Nztsc7w8sU1i3LBYrHAOjVPcaQx3HUtfSdw0uVixaJacj5JVHuaZmhtOJ0e5xAZKLIM5xzHY8M4Tny8+Z5zu8PM1j/rHFUlDahFvZp5eUuxlfgOYxOKvETT0JzOdI2lfLNmvaxo+2YuHD0xjvRdR5I6pnEiTSuyZEGe5QzjERjn510OPB8CSosKYBwmPn26Y7GYyNOMdmj5/Ome8GtFUiSslyvay4xPn468frmlKCPfv3/P/X1L9An7XUdRFaSpIU2kcLNO8fLlijRJWdUrCAV/+4f/hGmEjz/fCiNmbhqAxs98l+AHYgi0rUx5F8sFxlmclsb2NEnTy+qKL17/jrwo+A9/+m85HhqqRYIxlrZtSZJ0TtGSS1+aZGKTmFWlT1ZeafRN/PDDB/K0ZLXeYMwIDLIXxkhZVnMQiReblzY87G4oigLvvVwsNewOO1bLtbAfjRW1bBhnlcGADwNlkWGN5WF34nBsePf6Jdu/2ZBnuTRavLBgVIyESRolzdykfvP6Defzmf3uQOM6qqrm8+dbUBFjJd08cZKmeP/wyHK14M/f/xsSKxYsYyxFnTHOyITLizUhKH7x9W84HncyidSBq+sV9w97xkGRZgvKImcaW7pe0pydkxTM8XieLaqOLK1Zr66kaR0l3VBsRep5Su8SS1SR/fGI1Sl1XVAVsg8o5TA6waSOZa2psgPruuL6uuR4Vvz3//7fMg6e8yngo8MmCVXpCMGzXKx4cS1T3DIvSMyKV9df8PL6Cx4ejnj/SIjjrHJUEALOWYo8YbTmmeVX6AxjNTb5axOYaDDa8fbVb8jSij/+07+RZp6OAnLvxeqVuHRmbcoEVTnhRcV5Qpxl2cxv8tzePXA+d7x9+w5jHV03EmMPMVCUYs2f/IjVnhBGfvzpu/lCJxN+tGK3P1IU8v2sMZRVhtaKNBVQddseWS8viEXOpxuxlb559Yp/9YffYq2cMcGPz02BoZ/oxoG+E1bu5nLL6dSxOxzp+oHlYsl+v6cfB9IsxSCqwyxJ+fjpM8tlxU+f/wN5mkFMZD2m0HWPKKV5++6arhv54t1v6NsWPw1MYeDV6zXHc4dvRHGWpY4Qevb7o/x3LpiDYRw4n48SYuQU28013o9MoUOrMA/L9LOzQM8hLefzGeaiaf3qem5olcQoAVFlCVUusOiryyU+Jtze/yRp1L3m48+PpKmlXCSiwsxKri4V08qjgUV1QZGtefv6a86nET8zzYSr6GclMcQoqu/Lyy3jNNF3rSjrc/vPlCxiwZwiVPmGy+2X7I/3HE/yGsY5sVHOz2RWJksR46cRa8Rh8cTaS1MJvxqGieO+IXjLq1cXRDznszB+gw9MpWf0AzFOTEGaxJ8+v2e7vcBqC0rRtD27/YHRQ9t2LOoKl8iwa71ecXd3w+GYsN1c0naRh4cdp/OZzVeX/M3f/hLwErQVhUs0TZM0dL2MrJ0xZKs1t3cP3NzdU2Q5Vbng9v4O7cQaTjhg5zTa29tbNtsF2k4kNiFGcYZMcWR/arDG8cWXr1FkXF99yfn0QIwT2k588eWG3eGAS3LyPMUoCbVpexk8F0U9MztH2qZFG0twGcvqmqh6fNjj41+VkDHMAPWoCCpyOjckSUpdV8KxVWHGSYykZUZZCi+pKkouNhVj0Hy6+cDhcKJtIz/+eE+aahaLQiz9Wc7V9ZLgDRrDqnyF0iUojbXpXL/OVS9xZsLJuSe4KTWr2dXsxrGzEnYeKKCemWcxBvrxnsnvsYknRkUIci/VxhBD4CkM6KnYk6Rxni2RSSLMxmGYuH/Y8/nukW4KZJVjVRdkmUVpxZ/+6c/sHh/5+7//e9wc2GeN4/0PPxH8xK9//UusTSnymrbdUddLqjLncXfPw/09FxdbmqaV0KbzmYf7O1y2kJPHSMHbti1jL/gehSIGnnEHLk14cX0lATAErl9s598TaE4tm+0KHyFNc4KPHA9nToeGoqggwvF4pKpq9vsDbXtmnHpc4jAmUBZLHh7vsE4G4go9N8Uji4Wm7z1loVHak2UJWe54fHzkeDhxOIprZbGoBLsRI+f2jmRKME6zPz7SdQ27/Q4FlHmNVil//NOPZElGXZacjmc+/3zLalWzrGr+/I8/cXzo2F6uOZ0Co0+wVoaeIQSWyzV1/ZbzKfLhw3tO/Zm6KLjafoMzM5gfM6vh5kCBqJ7XmRwj0tB7gvgrpVFGrOw6SuPDwKymEjyN2Bo9KFH9CeLg6dvNGiwjOBetAj4g5+x8rj6pup6UhU3TzoNb2SOleRE4d0dRtsXI1eUlt3f3ZJkEgQgbfrZR+oQwz+c3my3d0M8s5YkY4GK7nX/GgEtScptI/ekD1jicSSFGmuaM1Yp3b16TphlFmbNa/WuIkgBsjRalPoHT+SCqe2PI84IilyGKF/McDw8P7PZnhlHhvSBmhBMdSK3CR+F3KuXJ85zcpSiEL0+ExWLBOPnZXq3ohuG5cWedON+KfIlBc2530uSbRNmeZhl6mLA2YffY0naitP3q3a84Hj+xWUFZlBIMWFYzs1hUeJcXr1mvvqQq94xTjTWTqB6nM6tNSde0wqRzmrJO6PqOBEOMjmTuL8Qozes427Bh5ts9O9XjfMd8WkuK8Ow2VLLXxShujSi30qckYknUdcQ4KwRVxCP4H/0UGgqzkjQ+D2sjwpUM3jOOPd7L/c7MCj2Y7cJKwsqGvkfNd7Mkcwx9P/PxZOAyDL1YVV1C34/cfLohTaQxl1blrOw9Eom8evXymRPedd18nkoT0Bh5UzbrFWKFl2altYYkWowtZ1dc5HA80fUDqUtIEkX0kCT5M7bAWsc0aqaxFxa0lr8TlcxOAgVYnM2wiaIoDARPDB5ICF5BtCidoY0jSQu5v4wtzmmWy4I8q4ghkXrHCIszYsBL70rrkaHvhD1pNMPYcWxE/a4Q9v40RfphwjqDS3P6MHK/f0QQ7pExyNDk3Abqqma92RKCA1WQpav/yb7b/9yvf3GDTxbbX6fU1irqRU6aWVGIeEhTgct7p57/XIyR4BXV4iUXm3d8//7fywXHaMaxfQ69SNNs5rMwK7CCpF4xq/UIsxxfwgt2j2cW1UsW5TWn8yPN6UTUHdpK6s04ThAHHtQnPn/6nqY9cXV1gQAvLff7PeMwkZ5HhiGw2ZRYPVEUGcNYcXv3UYqvsuK0G3jYncmygV//csP1dYFSwh+SBabpu+k5ics5O0s7E3a7Rx4eHlguVqAU+/0el2V473m827FYLDgejkx+wjmwySTFmI8Mo2caA84lbC4y1tsvybMNxIxxbPF+oKwtL1+vuN8dZCJj1KxwOcP8gNRVgQ+jpNIQGYaexJXzFMuiZmm2UoFpkglp8BLwMfmJq6sNWjs2m4KyesHYBb7/7iPffvuOPC0gjOR5RVGkpOmESyzjMKJJ+Pl9h1KKukowdcrl5gsUO9p2wupAmS1I7JblYksM8Ld/+M/4p+//L0BDjCNKa7SCvHTYZC1Ky1Em20lqCV4ObI2ZE9LETpQkGe8//ANJqogkTNPAOA7PUwNjzawuGGHmZMhh5pmm8VmJGUKk6yY0BcvFNafzgdNxT4gCzU1S4Z91nazzm9sPnE5Hrq+vxZIU4e7hga4bODUjwWsWy5Rp6tls1yymns83P6GIXGyvOJ0nHncn8iLh5cstq+UWH0asVbNFwDw3kZ1LSDP5zIP3DH3P8XSU59M42rYhyXKmaWL/eGBRLzmdzgKpTTWDhFHRdQPDONAPI1mWUi1Kvlm8xdkahROAeugpKnj5uubuIaeuK5xV+CDKCmmIarKsIPhxtutE2qYVRuQgzXcf9Py+ipIocSkheHYHWWuvX12jlGG5rKjLF7RNx7/5N/+B3//uW9brFWPfkqcFeZbg3IicY4HEldx9HvGxochhudB8/eVXGPOItXtSaynSmtSt2Sw3jKPib//wn/KPf/k/A8J3jNGLfF1rVutawnXGEWuc2CZUnPljcpATFNoKt+HT5x+Y/EnsFkrk386JJU6mzsyc0Q6lnoIJeL4EKqVmO37ONGkWiy1+6rl7uCHObMdzcyZNnhqDO7qu4ccfv+fi4pL1Zo3Vmk83dzw87ul7mSTXdUHbHHjx4orlcslfvvsTfdvy5Re/wFrHuelpziPTNHF5sRBkQJBJop/CzDWRxt16s5RmeowzbzKijTBO09QyerHXtV03D1gc4+SZ/Mg4tTirOB73nBsBkDsn4O3NViywx+M9wlUdCXFitbYsV9LILIsEa+OsqBGWZIjzlM5HYoj46On7lsPhkTSzMO9r4zhyOp1Ik0Sen0lzf3vP5XaDMSlaiRIwcSn/5v/9/2H/sOPXv/olQydDD+tEERhDIM8yyjJQl2t+/PATMUSmTeTFb16wWb3j/ua/ocgrsqRktbySFNws51/94Vt++PkjKGniBR/QRmzgkmSnZovpbN+YuSxGzYgAL9af4+mex91nQjyzWGaiUIwea8U+qo17vjSOYw/qr+tVwqhE4TcMozRxRkicBKvsd3tROivF3b1As5MkATVxON5wf3/D4WD56quvsFnK/cOOw6nl3A6CHsgy7n54z3a7ZrVa8vPHH9nt7lEoFost0+Rp23HeXwN939F24/NUehyF7eNcInxeoxmmEXROjDmJMRgLdV2SjCnaCJdxnAKxn9A6QWlNP3TkaU7Tnnh4eKAfJIF1uaxZLFZYY9jvPsgEffKEGMhyz3qTEMJIXWVi5zAZSSJT4b4bCMHOTWD5fMap4+HxhrLMYeYBjePIbr+TBpCzhGD4/of3LJcVxuQMgyQWVsWC7/78I4+3j/zN3/yWLC0YxkhpLNZqpsHPzZkF69WaP/7xex6njs0qoS6WfPv1f8R//V//v0hMJLGW5WLFdnMtKl+3pOlKjOmlsTI3+kAsfCFCmjlSEqpSlHgyYJ2bLc8WIsUwHfjux/+BEFuyQq6SokbI521t5jdGYcyO0/h0Y4R5HT5N9I/HkzgR+h2b7UYsgX2L1mLt/dOf/sjX33yJdQlaTwzjmU+fbhnHiW9+8QuU0hyOLf0QoOkoy5x+HPnzX/6J3/zm1yglCIHjcY81lixfyoDQM59HA0175ImvNQ6iwDPOkqXC6Q1eGEOvXl/hY8QiKoCrqy3D5LFOkqGDjzTNQJZVGGPo+47EOh539+z3O4ZxwFrLxcWGslrQd0fuH/9BIOBe9maXTixX4kYoS0uSaUpbUU0Z+8Nhvk9KQWmN3G/GqWF/fk+eSwBZ18sder/bkcxNgslrfvj+PZv1Eudy+n5kHAYWdc2f//gz9592/P73vyRxBdOQompJBxw7UV8v6iWX22/40x+/57g7EXrNq9crfvnlf8J/89/+V+gYKQpDXW2oqo2srVmFoLRYypgL2LntIcVxlAYeUZbO9M+aMSEGNIq+H+dkVIPWhhBlkCZ7JoB/Hs4yK0t8kARmNzc5pNknDRtrJQShyCu6/meOHz7x6uUFdSmq1tP5xOl0ZLVe0/c9WV0TgpzzX3z5Dms1u/2ePC/nO7WnzHOsNayWC6oqJ00sWlc496Ukx1YLDscOP/VsVxdM48gP3/9A9BNfffU1+WzJKoqcsioZx5G+a0WFQ0RHaYIEL8nAkw+Mg+ydYBgGj7YSnmWdwTmNMYoscyTpkqoqSVLH+dxwd3dHnmdio44R45BBZQpv324Y+gmtJoaxZfIy3FiuSpLGMPyzBtXhcJidDDktHVFN/PzpAyHKWSZrU5GlkSRN+c0vv2IaE/b7O5Ik8vLlNavVgq5pGIeBtu25vnrDbtdgjdhs+8Hz+HhkWW8JY0vmHAHL7vGe0+6RF9cbVJx5hWGuLf/a1ZP7f5Rf1+j53JyxFl49N1bmduCsLJ0ZafpZhCVKISaeknn1jKUIPuDxsp+pQJgQ4IEGqw0qQt/3dG2H1prlomaam3JNc0ZpzfHYYBRUpWO5qrFOVEB5VjCMco4mSYKzKVmScTgcuLm5Y7ffw6ywdtaxqBcslgvZu7Wmac60bScqfAQ3NE0jPkxkWU6SGLJMxDLp7IAZx0Fej0FU7XXFarUUtwM84xQUEWcNr1++YFE37I8tp3NHDGCsY7UoiV6Y5YuloINi9OAj0cDQCdorRmlWCZN+IM0c1iRYk/LEpLYqIXEF5/NpRuZI0JExKRSRKQTW24TVZoXTBYldoNQdaZYTYmR/OLBcLkitoW072jk4pKpaQuwZp4ZhagEj4VLeEZVluX7BevmC1UrxuPuJGPK5aSuM6Rj0fEfzs3BJo+JTnyNIQ3j+PeLSkz1Pz/xKCHPjWPoFEh7E3LBTs4L5qdciG6TWEsY3jdO8i87Nkfn3BD/belV85unJnhuYwsT53EgwVQBjLameLe1Gg1Y4qzmfzhRFgrEGY2umcWK329M0Hc7K4CzL0tlmbjBWk6WONHVMU0c3nPF+pCiWFKWImMapn5WtUvvEIK8VJZi3u/tbqqqkrhdUVY21hsf7jnEI+EkzDBJg0TYt4zTiJ0PwHdoaYpgbpQQilr6LHA5n0iTn8sryH/8ffoXVoIxH6YSBHKVKSWm2Kcejkhpn7BFhueZ8DoyDQms3f1/hcU7jQN81pKlmuTYsloFzP9APHjtZskzcn9bmlOWCS1eBEbXldvWaLHlJkhicMWjjKMsFRV6LjTdIgIu1CR9+/My/9Ot/A4vuPCWc/x0FxhpyayhU9nSkS8c4qOeObgwiW9wdPnA6f6QdduTV/ODEnCwrEJaCnRewXGimcZynffKLT0lJSilu7x5pe8/97oaytoQ44EOPtYbDfs9N2/Lll1+htcP7jnEa+fDhI1mecX19zTRpNJpp9KQJrJdLHh9uOB4e+P3vf0vbNjzu7ohEXr96g3NicdB5QXue0GVC17fSqY+Kdra4GWMpq5yqzp7tAvXySor3MTCOgavrLUpLOMU4yEOojWVRLmi7niwbUcDt7R19PzIMI2VVcH19TQyB29N78ixHzUoiaMkyT5lr6irFGYHQX2w3NKcju8Oem/aE0tKArapSOEZTQz+cyYuM0/nM6SScg65vKIsKrXO++/4TTHC1veDudsfHH+9ZLj3b9QU3H/f48QcWi5LzKZO0Qvtkj1UsFld88e4LvvvzLZ9v30tDyi5Yr19z+3lgd3PHdrNg+/KazWZDjB3r9Ru++vLX/PmH/+tsA3/iaqlny6wcOPMUWAkb40lmL5M9xeH0M4fzz0Q6XOplMkJGluXPDReJM5fp7zSNz0wqrTVJks2FcOT27oHDqSX89J6iErC7SyLGZtw/PHD/4x2//91vZ0XahAJ++P4DSmm++OotCifWo3YS28Sy5OHxlpubj9R1RdO0HI8HmDlS1laiOFKaofMYPF3fE7w0IYdOAmFQirKM1Isl4zSgTeT120tQShqAnefy+ur5fRsHz8PDHrShyDK6tpc0Vm15eHjAeym48zwlne2Wh+4DSZKS5YmAdbUnSSYWC0ddOWnAKstyUdO2LbvdI59OOwDyPGO9XkLUhNhxPJ8oy4rDYc/+sKfvW9ruTFlUWFvx3V8+M/WB6+01nz595sfvf2K7XfPF27f4ceK7v3zg5+yWaVgQohQUk/dMIVLVS16/+gU/vt/z8dN3TOOZNNmQp5fYOHHePVBsa64uLliv14TQsly84s3rr/inH0QRoOd0v+f1NieDJmki620uVpQycwNFCuApHPnw+b9HqUCSCdhWkeCcfIZPjBcQK7WfKxylPE/JkHJp8JzOZ376dIPRjmqVs13XLBaZFCLNmX/37/8df/jd71jUi5kHknJ3d+Dufs+//td/Q56X1PVyZjs5Li/W9EPLzedbsenXJX3f4b3n/uGWut7OahvZ0/t+kMabFdu+UXNC+JzOdXGxEVvmOLC5ELWrWBp76kVNiPGZBXR398Bhf3q2qhwOR4KP7HY7sfRFiD4w9CMKw+GwRyvFclWDEstjmgY2GyeqVdXJ1NiJ1aVpjhwfG0LwOJdwfXX5fE4dTnfkIWMcez7ffEYpxfEonNCirGnOkc+f7vjqq1/z4ccbHh/2+FXgV7+65s3rS7ruzA8/vqdtDavtK0bfE3GMfiKgqMoN1xe/5+FuBDUwjR1NE9gsLBfra6wRRcZyVZCkctnZrLZ8+Jw829iMmdcYojKI4clSzyxwmc/SOJ+7CkLs2R1/kmloKkluKhqUsmhlntUDT8qWMKdxPxUBZg4TCiHQ9w0//XwjTaWfP/D116/Ybiu0VhyPZ/70l/8A6g3v3r6b17ujaTpub2+p6prtxSVpkuJMgtaWl9fXTH7k8f6O29s7UQr6gHWOrm8wTTa/BtlzmqZjt79nuVpiZsWMVjBNksabzkn0xjylTcvktj13JGmGyxySwlqz35+4/XyPM5ZpksCDxKQcj2ciEkxirMZaRdeMguZwkbxw83uuyTPDZp3hTMDZkWFsSJXDOYWxkf7ccj6LLfliu5GzLkSG8cSwO2Gs5cPPH0ApecYm/3yOfvzpnjcvf8Fh33J8+Am8582rV3zz9Vc05xMP9wdOp3tevvol++PN3PiHYTSEUPLl17/n5w8nlBnw056+6xn6juurS/w4cbFds7lYY7TDDz1Xl2/56c6hjZ8h8TwrhVEKNUuqnqxDMQSCBubkyGkKEMUyOakWzYgyUhw/XbDVzKwIQUKA5Nfic3q8VhrzzBqWaX3XjXy6fSBJUy52j3zx9ooivyBEzT/+8Z/YHXcMw0BZivoptRntaeLTcCeQ9sUKhWLoJ1bLlPViSde1rJZLHh8fqKqCqlrMtjIJfYlRrNXGWO7vHzgc9rx8+VKA8otUQm5mhcNTQcUkqIk4c7U678nyHDX4WWVjub/f0ZxbCJFhECVPo08SLpXlLBbLOdhKs7sXDu/gBoo8F6eJ1tTG8eplhZ88Rg/yfZBmgks0x+NxBvgbLi+2xODxIdB1R7wfGYaOnz/9iDaGsZdwubwsmEbNYXfil1//Kz58uOHc3pMvCt69fsPyN7+ha4+cTw0fj0dev/kDu8OPxJjO8HyHipo3L7/hw/sbytwwDAcJ0Bl6Xr64JEyR9bpkvdqCykD984T2OYE06hkqPuNoeEo5/CuvSs9cT3R8VrQURhrIanb+qHkPlCGAQOSfbLUg+AsiDHMR3HQSSqCVcJLzPMUYTYhRlMdR89NPn8hSOfdihG9+8UtRmSANmBA8y9WKi6urGQUkg96Xr67YPe5p2iOVzufGmgzc8rzgKUl4GieyxPLlu9eEEFlUBfHFC5yz1HVJNqNVlFI87h44Hk8oBYtKGobaSFNZBod3NM2ID4ZxkpRIZy0xDCRWcXd3oK5ytI4UVTLz6KTR7hIZyj2d34HIuW3ph26+41jqqqIs1pxOO7SR58UHsQ0Le0wQIudzQ9uNfPP1l7My98Cb11/StkeyrERpK4qaCNuLF+TJNUM/cTwbjJb7zzgeqZYFXRMFUWMi2gWO5zPeDzzcP9CcHnn34m/4+P4TZWZYbC5ATWzXG+qqICKJ68xDK7HjPu1j09wKnm22URHnEBphwan5GVeCE3qy16KeVXohhllUoP7acJkHFNJWCPMQQJK9jdY4ZeYmmIUQiV4aY33XghL+WYwBpxOMgbJMyHJRxK7Wa5xztO0ZGVQ7siQleDgcDvNwqWNZV2S5rBvnErI0n+8PkuY7+ZGyLAWXoRVFmT8HGD0FQZzOZ07nkSzNSOewnmHocE4CpbTW+Gki+DA7TOSdDFG49c458sKwWm1QxhKCNNLHsUfFjBChXixpmpboHS6xTN7jkgTVRrKkJHppMiVJSl5kWKMIs/tqmlnO2srnNkw9kQGURmu5Ww9j4HySNNPUWUzTcb8fSbLAFCIqSTm2I4sqw6UZyiiGQZPna1K3IfgtqAnvxamUZRVFvsTZGmszEpfhnGG3f+DHn/+f0pSLFhsl8CZouadoxfNaC1EkJkpJk/cJS6C1KHXV0xrjyQLuhO+vnhoeMPkR7ztJiGVmvs9KPREDSGNZuLqaZ7wBWoLN4hMfmbl24bnRqI04pUIMDN2ISxwucbMoQzjxzgk3/nw6kyYJiXNzqJpg1IZhnJn4BUoZhqGl68+cTnuMUaxWSyZ/RvFXZr0IwuRzC0j/YxhHtptrGSAGx37X8G//zSN//uMdV9dXvP3iLUVZUtYFL19X0vB2GVVVSFM+gDVu3ucM2qScjmdBtJmR1E7zQBMe9w/8l//lvyfNRK26uVxRFJVkGBSyjyolA0+jzZzLIO/hNE3cfP7E/+P//n/j+nrDejtwdf0Vv/7V/wlCYLFYsaiXpGlBltY4k6NnTvk0TWgt52iEWW3O7JCAMInqOPoo97x+loH+C77+xQ0+lziMe+rs8zzdeOryzzMRmdvGJ0j8E8Q0EjgS0GgT/79ULWpu0IQgIPGn7+19ZIzCrvprHDXzRjXy8fOOKUQuL1esVwvqRUbbtbx/fztHSXtJvwmK4C373cT7Hz+RZAlpUjONDePQsXnzap60VwQvEnttEl68+IIsy9A6oTl5CW8ohFfz5z//GeM0r168xCgBVEvTzhCYYFY4iiJDHlBUmPk5Mt3wY2QYPMdTK8qesSUvHFPwmDl1sCpLiRxXcDwcGYaBuq6ZpgGXSPFkXYpzkV//+gLnFNPYMfTgx0iaGtarirbvGKeBvMjo+5bz+UTiirlY7/nxpw8yybZyYZqms0xoywXbb7+izDd8Kj7iUuEh1FUhYGF62r7j7fYr7m/vsYK04HTy/PRTg46O+/szZbGi7R+5uT1yOnm++fpb/vZ3f0ue5RxPZ6KP9L08+JLOljw3+OIsv3/67GW4IStNPRXISjFME0RpyinOsrb0UyHyBMlWc/H7JLOe4czK0HW9HNCW+XObVTBT5PPtnqb1vHnbcbmtKXLHue25u7sBYBwk6fWJh2esY7ffUz8WFFlN254Z+o66lqSeFUtcopgm2TC/ePcNLnFkacnpNED01FWFHz1/fP9HtDO8e/MGoxX5qsKYBJckz42hJwZPVLLpoyDNE2KAYRzouo7RQz96zAw6L0phTDprxHaXOsryFUTFbidS/cWiRuzxkzwjUbHaWH71qxfzgTvSdQpthIe3vVzQtT3j5CmqnMPpkfPpROIyEidKwp8/fmCYBojgQ6RpR4o88OL6Ja9f/Yb1+gUfr37COcVqXZFlkgIY/EDXTVTVG07Hbub5TBxPPd9/f8PL6ws+ff5ImqcM48DHz/d8883Et7/4Fb/91e/x48Q4nciznHHwbF5dEKeIdQkuSZ+ZGk9DhmmW2cthLdOnEOXCIyrPQWxF2gICh0XPXAw/H27zhFjWm5zYT0xHkCbPMAzzJQyUthxPkji82S652CyoipzBBz59/kyWZQyjBCtYI7a/ul6Aitze3bLdimKyb8+sV0uK3KHVxK9+9S3OiYLyi3e/EEVcXhKC5nw8zKmJiu+//4Hd/oGvvvyKuqrQSpLv0lx4i8M4PCt1wtMzCSRJKmmBw8Tjo6SzKWWpFkuR1htNmjqyNGGzWRNCIMtS0jSlaRpOp4ayKEhTmaBJMiskKbx7t5ED0o8Mc/GWZSmr9YLFsuLcnEnSlK7v+Pz5Ewq4vnpH1/QczyfGcZqn2AXCdrVcbJf8F//5Gy633/Ly8haXQJKNaDvvAVxxOp0ZR8eivqY53+CjZbdv+PHHB5y5YOw/0fUDm23F/tATfEUM8PbVL3n79rUodJwjT1dslm9JXY1SBmPTZ0ZQiDLdVP7JdiHwYG2NWCxjJE6Rvh+wTsDFimH+PsKLjJMUb9PMfVRPDBgkhTlO8ZkJ9HSZt1aTZTlZVnF3f8OHnz7x6uWGIrP4KXB3f0dVL8jzfH72E7E5bjbUiwVt19I0B4JX+GmgrHNRBQyBd1+8wTnBZLx79xXTFMiyjMRm/PDDR/I8ARW5ufnMTx9/5NXr17y6fkEIMyulqPBegPVdO81hKtKAnyb5mc5NQz/42VKMJMMvl4RpADxZKumGF5drxkkuvmmWMI4953NLUaZkWUoI41yoiRJktbISbuKlOTSNPXmRUJYpZZlyblop/rTmw4efGMeRl9dvCSgGLxPivh9w6YIkE0h6lhX8p//Z/57t9mse7s4ofo8xkyhCY+Biu6TrGpKsY3tdM8UdPgYeTyfe//yJoSu4vTvRDZGrqw2nw1GsuoXjb/7we1K3wE8GayzO5awWb1ktX/Dx3jw7IrR6avoqcbcoxNo582pjkGbMFAQBET2EaUIZJXZj5dHRzBfsWTGjnizAMhB5soAb44hB4X1kaIQzm6YWawX8XpULPt3c8/79z6yWGc7A5CVt+ssvv5T0usnLezr2/P4Pv2EKYqmSQVwkTTSJM3MRFXnz5oWk+2qDtTIEzLNyVl1MEqARPPf39/R9z/ncsFrV+DDOARGatum5uz3JnpenpImbk3tFmfnweCQEQ9ePRBRlUZEXOWEahCmUZliruH6xxQc1FxyacRxwiUeTzKzBicmL+jkEz2rpsEbuj5K8O5CmlqxIyYuE87nFuYRxGPj06SPTFPni3S+ZxoFp8s+8rqyuZX+zkeW64v949ZrL7a94cXWHtd2skvJERlarNafTAWUDq4uMzms8nsP5kffv/8LYr9mvH2iaT7x7/YJuTCjylKoy/Hb1G6riArGsBSIZk/phVlI9XdX0zCm2oppSSpJoFWLJnZeimgvl+HSizMPbJyXWUwfOmSd3Rpj3wLnu4Cm4QL6aphEGWZqQpk/WT8/5dBIOrlU4mzFOAze3d7x8cUWMirZtkSZdSZGWgCjWH3c7pkmcLzGKg2i1WpClKdZqlFFMw0jTtBAn+q5/VuHNZTr1siIvUsrqlYTYeE/XdVIrRGFuLhavZpWLnwtfSb92JuH16xc8Phy5uz9y7iUccJoUF5sF0Y9olVDXpSTtxgkV5P2Xe1jAT5C4p3M1PpVdKCVMZOE1rmjOPQSPmYt7osKUFvAMY0+a5/yPzP3Xs2VZnt+HfdZa2x97/U1bWbbLtJme7kEPxhAiBuAAIiEwBIEhinqQFKG/SPZVEVLIhBikQAGEBzhDYGYw3VNtq7q6qrLSu2uP3W4ZPfzWPlkjvbH1wBuRUVFVmTfvOWfttdbva72Dvb0TlotrgupIcsNyfUkSHKOiwFrNelPTNDWM1ujE09otQ51tkVeY3qN0wXxvxv7+Xfb2PZvtBalSfPvDfbwLvHH3+/zOb/8HFKkhSaRoqsqnXC1XPH3x38SI9yBzZhCyPyCDv7zzopJSGHQIu4ZYFWIQRLzbD3ZdpaP1kfh9474ms4MgOd718bOV1m6Qvc5ouXd7DybRci/Sir5tybKUvMgZhYre2pghl0lpgBbFad10XF1est2umc4mVFUZZxeQYkjN/sEJPvS0rbSpW6vIp/Oo8pfG2NlsKgCzSWWeDrL3NE0ttk2TkOUpJpFn0iSag4M9vJ8RgmdbrxmeRBWJHiGADEWeoYwBHCo4QpACS+sKFostba1oug1ZWvDg4XO0ygg+wfYt221LCJqu9ayXKybjhA+/eYc8heWyp6iKCMAGvDcolaKTGdumRusU74TA9EGy8NrG4XtY14ouy+iblFcvFwRqjm/s8+H7d9ib7jMZzSjLCcaUZGlFmpQkKsM7GwFPJXd6L9CbgF0BMPgQWC47EpXG8k1izr+Q+06QjF3MkFEGrbNoWRbHoQ9OVH0EKdD1AXSIdu4hJ1QAOx88htdrTZsEg7gEnGuQCDJpKe66bjeTaDPkxCu8CwKWOhcV6ookkUgy2b+kp6AoSpwPEWiVPMSh4K9tO8bjMUOG6bBPdZ2NwpcsCmIsr16d8+jxYylVLQKL1RV3bt9hOjlAkUWQz8e31GMSz6ZpeXG2YTodMxsfU5Z32Z/O+f3fm/EH//6IalyS5CZacaU6JDVpJBtFteujRX+w9QcVmB9I4YhG4ayl7zq22zWff/mMdaNxOhASw82b9yhLsQdLHn/EoWJ/BErOLYnd9BwenvLW29+g7zucrZlNRrx59wYHe3OU9zhrxQqsFN4prJPzKoQEh2TjErSQoMP9Sw1KY7/bi4c4sF/n69cG+AYfdYgHdvBg/dA4pAVwAXmxHvCvw5WlgTGG7sfhLSDgjfLwOjD1NWuSpildF+g7R287kkSTZcK4Hx4d8fjJBY8fveJgXpFE4UNd10wn+0wmk9g0KbXkZVnwWz/4DTnklCKEnrxI6K3BuhptMrJccefuKRICOmKzkTai1JSkScN4kgMdIaQ0zZZxOoIgIJtIiKFuNqxWK0LoGY0KxpPJDtF1znN2do6zit6B7WN2UJEKS+g9m41kcEwnIw6P9sCzC9yfzsa7wZAInjbtlq6LDTdVSlUVqKBpGimF6CMYUJYlxgozulqt2WzWHO7POJjfoK633LzxJk23wBhDkUvrWPCKo4MM/Jg8PSAve4L2oGq2bc2oPGG1Tnn+4hx1a41Ox6y3GSF0lPk73LutuHv7bUbVHmWV4awlzzMO9o4kjFrBct3wqy83tE3Hf/L3fpNRdcKrVy/lAEd/TSLtiRQk8BqEQX890FmGDKV8ZN9iuYsLu8HEx4yaIS9IALIhRDOhbR12I7lteS4Mxt7eHpPplIuzK766/4A0uYMi0LSO09NblEUBytC0koFQjUZ87/vfxTqLSeRyMZ3JpbFt1hhTkZjA4cEcpWA8HrNebwUwVwl5Fjg6mgEdaV6S5SlFWcamtyRm8GkW11esViuUFsvaaDyS7B/r8M7z8sUZbRtwThqChlbg4ZDuehhVJbPZlPl8EpU+DudhPC5xLo/KD1F0rDcLuq4nSQ1ZnpLnI7KkYLNZoLWsNQH6CpI0gBdpfvCKPJtxcnSHTX3JG3ffZVMvUEoxqiY4h2SJkdK1GWWVMZlIC/L1Ykm4UiyXG45PbmKdp+k0Opmx2SqMGTGbfpOPPvgmR4e3GI+eCHBUlCQmZTqbYbKMTz79JUolLBdb/uf/2d/h5vEdEpVG5WLA+Hi47gbgwcYRQ5UH3XK8qEopwWClFKXeTkzqJRNNVCt+R4IMv2y0ffddH4sKgjRrpwlFWTCeTumvNjx6+ITJOGVcFWybjpOjm9y+lUQ7RiN5HwS++e0PJb8mSH7pfD6BoHCuoWlWpGkqjJeCJM3RarCeywX/zu1T2l6KLA4P9zk42GM8HjOuKrG6GLHVDq1SVVUymU5JdELX9wQXuLpacH29pm2VXNJimY8xjiQJrFeO8WQEwUYGMCHgqOtBYSWqv67r0UYC0eumhtjgl6cjjg/e4OLyAmNkQE4QS8d0si8Nb92W/b0jjM64c+sbXC/OqEYz9uw+q9U1+3tHBAJt09O0Ftv2XFws2axrnj1/zp17p8z2xnhvSE2FMXtxVp3TdI7VqqCqKj764G3G40M0KXduf0g1Lnj46KuY8zTl4YP7vP/+3+KdN98m0YiCwBuWixrvYxMfJu5hancZG8xsxCwqrcOgU45sbwBNLNh5rYryuLinhdh0K1m1YjPr6XtL00hzMSowGhWEkO2UlVU1pmtbnj97weHhnO22YT4/ZDrbJ8tS6lrsVH1veePePZyTC77zVrJ+0oK6rtlsloxGFVnIYoO9J88qjJbMIGt7Tk+P6G1PVVXs7485PjkkTVOqstwpGOu6pqlFdV+WOePRmCSV7+mdMMkXZ5ds6qh4UpoQrkkM5KmCYJlMxigVGOlRvLg5tlspFEkSQ7CDRVka4NbrNShRbSVJwcH8NLZcy+AePCiVMJ8e47zk1h0d3gA0t2++zWqzYtttKUdTaUtNxwQcL1+8JIQlR0dHdB2EIFmIzkFvY26dqbAhIR+NCbqitSNenSXg3uD2jSl17bF2zPvf+G0ePfyEb370+/zBX/s9puMZiUkp8n2ybCoX1gAow2KxxjtFcDqCJsT3KSoKtEJLChVaa3y0cSuj4iAcQ8aNDBVyJ4uKp0FFpQflhabv5Rx1zoP1rNfrmIcWJHQ9ETBus17T9X0s5fK8ennGfD7FedibH8RBRLHZdmgFeSFuiL7vcV4iNkajkjwTOxLBMp2M8d7GvNOC1KS42BRPUNw8PcYkhul0yv7+jOBE1Tgo9OTeuAXlKYtcgulHZSTros0YJG962dC0niTJuDy/oioNRgcSo8lSUd2pqIR0LtA2EchzikQbrO1QSoDKbb0lIHk/PlWcHt/i/OKMJOnljEZjVMr+fI7zlqbecuP0LpBxtH+X5eqKkoLp3oSXL16xtyeRIOt6JfcYu6XptjTtBm1rlPZYZ8myHBtyXJhhUk3dGi6vCq6XG8pqxttv/hZpssfbb77HG7fvsD87pJqkTMd7zKcHKBLK8oA8H6EVXF5d8NlXD2SAUQaF3Ff94EQL4IfZALUbbHaahQjw+eB3qhSt1E5V74Osq4CoBG1sSdTxvAVRWG3Wa0xiSI00gjaNWJclC7ljubhgPisoioKyKqhGFUlWoHdrNEUFsQWvVksur65YrVeMRxV5nlGOJkxGIwG8Y6nE4nJB3/VU5Zgsy9jby3ARCMoyiUxw3tF1DQrIM2lU3WzWUV2lmO/vyfAagXAA5wRkb/otJtHM5yWnJ/sEFL2TfCnbtZG41szn+6zXG1F8ayETk0QKExKTY3uNTgqSVFGONArJO+57R90EHj89Y71e0bQLPJ6bN/bI8gTd20jYd2LrzwqaTvHqYklWaEyakOQHeMZ0XYXRY7IEtm1P246lYDtMuLh4zv7+iLfe+oj5ZJ88nZCYijybxDKueK9VYl2ERJwQcSYOTpjXbZPErN2ogAk63mkFIEbJn5Gz1UcgT85bH4UBSgmwEpD82hDE7ihZtsOiHOy7kg3pvMPFiKqBpGWYWePv32w3pGlGkiRkeUKaVhEAkL0yTRPqeoNJZP6Uc3O7uzefnBxFta60w3ofKIqM3oB1HV23pWk2KK3Yn+9hEgENZI4ZiH0td0HHTmzgIzCeZXq3HxdZEUGuIWYK8qKg6yxZmjKZSlSLxHGJGlTF9wIMLigefRn46c8+J01T7t69i0nneFuwvzfn+PQGaVpR5jO2dQde09SB6+uGqjIcHGSYVAh+pXNs26KwBOS8+aM/+lOcM+R5ydHhMVlaiIAmSSlHOZOJuGrm8xnjUc5f/MUTXrxY8UG7x3/4N/4247KU4yHEDSh4sIE+KLyLmXZKnk2lBrdDiO+ZqNGdcxidSmZ8JEm1EntrnuSiBoUIqsqzblIhhSQzOyGIe5akSKnbGu871puFiDImM7mDheFcDcOPhQ+Bvm/x3pJlOoqFelQi684MzYRBFKcgFndn5WfXEM8aRZYYkmSE1prlcsn1ZhvJZ7Fsz2YznBPXYFKN5EmKs0oIgTzP4nwj+anOWZzL+fjjT3j+4oosz5knJU+fvwIN33h3Qp5maDRta3EOTO5pm0BZ3uPo+ISyuoG3GVfLDGuFuNV6BZsNNgSCUvTW4q3DaIVRgTyP0WdK7NxplkRST1FkOWjNq5cvJdbBWZ4/e8r3fvADPvzWt2i7lsSIYm831MYSniRJqKoKrQ2t7RkcDSGIWjAvMrI8wdqEuu754ovH9HcsB/OZHF9B8v89clYpBjFH3G8G2Ztid6cIPuIRQbCJITv21/n6tQG+4MX/DHJJFHxFRhAVbSCDIgrlUIZd+LK0r0S5aARY/NfCOES66OPwQFTIWLbbLdYKw15WeZQkO2lZUTDfP2C52nJxcUWei+prNtuPwJ5iE7YoZTg4OsBaGy+KLd57puMJs6k8ZIlRjMopve1pm44k1RilCd6xXq9ou47ToznVuGJUFBwcfgtnBTyTpjC57BodYmC8bNppkgpyHzRpYphPprx4ec5i2dD1VuT2mWE6G9G3NaNxhTFKWF7rSeIG03VOsp6soyxHNG1LnhtcZ1FB412QYMugKcsj6uY5QTnKQpB5pSUotLctJ0cV7sAxLo+kpc41mGxE28hQNa4MSaJi0HJDkaWMRp7eLfGhw3vLaHzEg0eXjGbv8N773+Hk5JTUlAQkiPTOnURYDZPwbrz4i6RWNnAbPCZNyEYbbtQjVAh8+fCS+f4pPnSy1ly6A5QH2k2pEENDh/aggFHC+po0tmiFKJWOG5IoC7y0QSodWzVDBF3lmtn3LavVGu8dWZagdYZk7zUsrheE4Nnbm9N1Pa9enbG3t4dWiiyVMheGzyAxTGd7EjqKwfYtnW9JdMrpyYmwdmlKmlb0fUvTtATfE7wXO3bTYq1lXKWMpyOqqmI2excXMzHidEbXNeR5ynh8vHvuEi1rTQVFlmQcHx/x8vk515sNdSsbV5Yn7O+JMjBPc2kn0iGuV0PX9Wy3DZLN5ZhMpmy3G4oyRStDWaTxmdXxon/Iar3GIPXlAEangLRhJvsybFXlkRx4UTYubIdlNJIWJFs3sal4hEmkKezFq5r9g7e4c+8tvNfszY9JsyIyIjIEpGnGnbuyUSql+Oa3clDCmLjINF1fX1JOW7T3HB28waMHCw7ndwkmiOrTJ+Bf2xF2DLCKB7pKYviPlAoMYEzYscGKocFVKfAIoyMtqYNadGBpRJ2y3YqFL0nMLq+zay3XV2t0kOGlqkpevHjBnTu3yLIM58XmmucpZTHCoKnGE9q2o6k7ul7UA0ZrRlXFaFTKAR9Zt/V6je2ttOp23V/a20dVynicM50Ie+ydp262km/UWrRWnJ5K1EDfW9kbgxdrZao5PT1kVBVcXm2ot720F6aG+d4MpRxaSROeSTTOi/JRK01dt2w20gRaVkUcjCSDrShKAZ2NZNQEKrruApNaqlIYabkRGYIOpImNh3NC3wU2mzU6CVFlpmjamixP6G3O/S97Do/ucOedDzk8SXjnGwmTyQyTSIsXQZPmFUkiMQqnJ540SUQJFLwoxKOK5NXLl9y/v2B/b8Z8b8rJ6Vs8eXbJjdM3GZUFzvZAT+9bNCk6nnn4gZoYiInYRA/xkiatmMPAJmoZFVn1Qc3uIykm1siIP8fLvsL2XSR5NGlakqQCTDdNx2rZUBQ5V9dL9ucTLq+uqeLg2zQ11jlCyCmLEVmakhdCHC0Wi2gn6UmNoapGHB3u7yzAzqkInjmc66jrJiofFEmSkRgoS8kCGo9KnJUgeR9Vh1pr5ntTklg6olVUTARPmmjyaUWZpyxXNdu6o7NC6EwnJYmR52s6ncp74nqC8+gkpesc11fLGOwfYjGNEHGHB0fy/BoiYJ/jXIMPljyXfGBrIzgWRKFrrSXQ0rWexRWcX3rWzYosH5OmB1TlHKP3ODq8weHhKaPRnIO5oeuayBSnX2N1xQblgXfe+RDrHA8ePuTsvGFvf5/D42OyVHF8csKkSqiqexwdnGK7nra3GDOK4IcoGDvb4X2K9+o12aVkGDADARvD5KXkIF48VRAVX1AoPM7L3c46RxKBM4KXZ9KLagDlpXgikYO6rhuyTKyRsg5FZbLd1Gy2G8YTUaWNRhVNKyU4RZlLe6eR/KIil7bP3vY8f/5KyqrifbGqSqaTsRRsKTln6rqRRmUjrZN938fm8pQ8z9CJFhVPEHW9957l8np39ss5O5EcQidAE0FUGkE5xuOcqjrBOaibXu5maVQResBr5vM5bSd5T9pIi3XXO9bLLSGIwlKhKMuUshoxnc7wQUJwvdc4n9Bb8KEnzTSEhLpWONdT1y1NLWB9cPDf/ut/Q1rAd773JqPxEZPJEWk2J8sqJromTbd4Z5hO3yaEm6zXC1wIZEGakfvGsN7UeA/btWc+e48/+uN/wbe//Rb/6X/6nzAb75PoFEHpBBDGy35jO0vbWyCP2aqB4KTh0ehE7nkhtpgObD2yDuMkG8/EAErteDXtRSWfaLHTBu/lmfAxTN5bnJXiJ51k0UYpd64kgm5NvaXrW7IiQ5tcMpC9NJjevn0Daa9PmEzmdNaxuFqg8ZSVxJIorWmbLdb2HB0ecOPGEdogd+PeiZJG6TjvOPbmcxSiYJW9Lw60RpoRnQvUqy1tZ2MuOKJmjsU0db0FpLDLW4fKZDZKkoQkydGJASVZgiFsMclQOOgwykh+WTKm7wPz6U1CSPGhZ715SVGm5Pk+3ml6m9K1Kfe/fBQVywlpInm0SVoyGU3J8wMeP3nGeDSBcMLe/AitJVJkfy+Pwg4NKuPw8A5JmtJ1LU8efYnRBYRAmpakqWTHFVlFWY0p0i1/+m8ecuPGmD/4977HrdObaCTfl2H/CQI2ueAlPoA+qmIcIWZ5JVHxmJqczIDECQyKGLdTwxAVPoNKTymx+MkQMRARLV2//dp9L5YbOIvogDydtbs4CxDFW2Ik285HC/OwtkFRRUJUwOVG4imSRO7KQdw64hSTSBFr5X6aJEZAdys5810nQoG+tzH7zLFcbiVLtq1JUrlQ7u8fxry919nhku2cYBLN2aszNtsN8/kU76GuW2znSAohy4wZZqNod/dgVEKz7emaa4yBJGbp985iTI61OT6Msf2U+d4h/8O//R8zm02kvEVrlDYobeitkzWW5pQTcL0lBM3pnYREgzHybGtt6HpLtpfQ1B1tW3P/wZcs14kQ02nGyc27FFm5y1uWPMREFHQamrbnP/wP/0dY22Ldhq++esadG6eMqjKKjsLurHsNeA73cr/7BWYH6gzKzaoq6e2WopAs7aKU1yn7U8BZG9ebi9jBCuslY1dUn/Kcui4Rd2KwpJkAmwEB1VQU7AwlcAOhppRDGyE2ZH4WsQAxnmDI2tMKVCKqTRXPcaV0dAg42q6LIiQYlaVkE8em2SKPz20ia9kTAfEgDbaqVLGwaCADwSRQ1x1llXF4MCfJU8aTEusSrq9rPv3sl7x55x7HB2+wN3mfxeqCdXvJZrPHz3/hePjkKUG/QmMxRkoiR1XFjdNjDk6OeP7yjKBSvvzqAW3b0NdbUqPFjm1EUOG9xSTEgkiN0ilFPqYsE/7X/6v/Bc56xlWFDjAdj9B6vFP2eS+z0GazYVNvuffmWzti/NnzZ3zxxRf0rRDi3rlYpAG9lc91NqlQfI+96VTiT5TDBxWzP4XMksUlcIRiWG8hOlRd3OtkDcln/t8DgE+FDBWGJN1hWxvUUSoyGoPt0eyQ0p1yPwQG69DQ1hbnYkG0lVzuQiDWvYtcdGh1C8HFwa0hBE1ZVrFJUZraJpNJZJPlEM+yhLIoadqW1WrF+fk51kqGTpYlzCZTRkUZc4kSCeSsGwDSRA60vhMQKEtzdKLIs0SUC1pR5BlNI3aPwdI5m41J08gWReBySG91rqWsFG+9dYKOF1GlpY3MxgEozyuyLGe9udpdgOTSKkOw7SFNFH3nGY9GjA+nQlDgQENTe7Qq4oJ1dH0n759potV4S1PXlKOMLu2ol2vafkFWVATlUNrT9VvKsmQymRB8RpEecnJ0j1E1pahynIdNk3J51eKTE15dB56eneH6Fk1PmhlGZcV2s+H6+prZTEJbdSIWT+8cAWLbD2zrFd/4xrv88he/4ObNAw4PxygljXJSN/4aFQ9EaxtEUHUIOJDfMzANg01NDnMBx5RSkp/hQ8xjkkeirhtpop1NGeyuXd9iraZrpQiiLHPyrGRUxEasJI3S5Z48L0mTlKKoWK83vLy64PLyAm2UsCRlRjEpKYoCaQUyLJdLmqaRkow8oQB6LeHzk/E4SpQD3vWAJktlAFqtljtJ/t7enDS2HA92ZmGtAs7VpKni7r0D3k5v0lsbgTEvzA4zsnREURZstkuMSggEkiRDqQ6CwuiM4BKMzhlVsq5lM3Iobai3DkIioIgTG7BY6UVSvt12dG1HWYkV7nq9pW4XFGWOi03GbesYj6bs703QZoxhxo3TdzH6mnRkqaa32VhFU7ecXdeEsIBgSY2h2W5ZrdZMZzO01tTNFh/Ezjg0MM1mM7LMcOvWLUZ5xs8+/pj18opbp0fcunlDJNohlcwBkPXlpcGKCKSEIK2LPuYxDfjMoKJSUUn1OmdPrOI+rkFRTpo4gDTSKpnlmNLs2P2uE1BpvdqQFymHyZy9WUE1kktOUYiKpapyksSgVY6zjufPXnF5eUmSGPJCwnDH4ylFXqAjMLTZbFiv16RpFi3i2a54wpiENM1w3uKcpbXSXhyCj+yyNI/PZpP4/YiMnlz8nPO7YqGi1NybH2C0qFdESdaJitYbprN9ttslWTqS4g4nCi3vA0U+JQRNCJaySuLFUvZ1k0iouDEJ48mI1UZs/tI6J3bJvlM4q+OAUdF3ivWqZzTJqOuOLB1j1JhRcUSwp3z0G6dM927igychw7eei1Ut7diR4e8vF4Sh3d05PAKAEM+xohLV4dVyzR/+4X/E44f3uV5e0ISeX/3yU4o04Qe/9X1MaqJN2BGsIeihrTSuF0IEleSME8uZi5dNyUgxRtaZ0Wb33z3CphI8wQ5N7gbJzAl0bUvbtqRpylC4sV7LQJmmWcz9tJwc7zGfjhmNcspRGa3cKq5bAVGd9VxcXXJ9dU2SGqqyoKhGzCYzUdUnKmZ4tqxWS/I8p6oqjNFMJqMdyKh1gnWWumnw3lPkHs3XSoOyhNEojyqnTl6TEeAToGnE7mW05uiwJEmmki0TL9tiaxZw2NqeNJE8q22zIi808/lIoinIMTpDKYdJRJEoyqKY16pgMp1wcXlBv+6w1pNGttj2oHVBkefklceYCRfnay6up3zw7X+f2f4+RTHBqIJ7b6ZoUgEoVaDIJRZhGDJCEMvxEEkShA1ltVlinl3xxr33OLlxFAd6S8gN2/Ulf/Knf8rf+g/+EBXkrMrcVs67EAkWpQlO4Xtp+lPx+2okt0rWiEPckj5eUWTQGGBnHZUNCmI2YheHJAGZnHdkSRoboT2EgO16jFKxQK2njsVWSZJgtGG7XQqZMEqZz2ZMJzOS2ExclmUcJqDtarpG1uu23spZl4hFa1SJKnNQW0hJkWI22yNNE0ajEIliaUYXoq5lubwmTVLymK87qPeKQtTx1nZAIDXyvBiTYm2gtx3KQJIoijxhOq3E4RDi/mRyCAVgSMyIqijoXUvTLhmNcoo8IzEVwcmgJNEW9e751xq8E4KqKEqWy2u26wlX547F9Zq7926TpTc4PJBBOktH3LiZUk7HjKYJkKBVyRDabpSH0GOt5EKNJ5bRWJoyf/7zn/PVV19xdHTMvXtvURY5xgiR8B//3f8pSlkePbjkmx+c4H1CiApXoqJda0PnetquJiviZxACRqckOg5bqLgmJJ9MRzJsOGEHxZPSGh8HVJQmxMgfpRQh2szAR9A6oPAkaWxk1LHQxVtaK4N/UB6dGrJc7iQq5nfXtZRaScmN5ENtNzVX1wuUhqLMqUo587SWu2GaGdJMIkCaZkPXd+TZiKLISNKMvm8ALRhTEDDAOS9xQB4ur84piozpdMZoXDFC8u6S+PeDAJdFUQggYFJm0wO6psEHt5uZjE4JWqOCKPOkBMeI9U8H2tZxcf4cpTJGt04YFSc0/Zrl+oJme40KGmdHPHtmefp4xeHRXd57/y3yQogbbXJCyMiSGWla8BvfkzPN+g7rRD0jOWJhRxR4ryhHCd7Bs+cv+OUvf0aatnzw/nvcvX0HnYh9TvY1RVVO+Z/9p/9LQuh4+viSNFTsH4xl6PVypxrIHRgiTYacxfj+4vFaxAOZyclTg9JptHFLCYsIhuVy5oLEJHVdi/cNCseQQ6iUloIrJZZTsfUKge1p0MZBiOKNIPuECxbtFF6Jisg5eR4EVItWwSCiga7vSRIDicH2geVixWgsTpw8qyKQJ1fOqqoYSiP7Xu32qyRJKUsi8QePHr3gqwdPCQFmexmXV+e89dYb3Ll9NypKhZSVfUQG9Nl8Fs/+1xEd+JTgDSohEnAurkeFc4p627HdiC3TJCFaiTX4GZ29AfoEzBRvMlRhuK4dr67PCUqEG72T2Tg4T5bnMb5GnimjNXnMzUN58jyXcyHJuFysePHiOTdOj2m6nv/gD/8WtmsFUIqN9FJYLIroJA1SPBOzaHvbRACn4fL8FcurK77zrQ/JsiSSBC7u+SDZ2exmQiHjRbhEQM7gSDqsN2eYxJEmCa7raXoBcpSR58LbwY6PnJtK4YKjszGPMYLTnRj0CEAIEs/R2xpNIiqvaBVVu7xEEUh512O9QylPEh1su1bdQVwVgW1ljNhztYl7tbQfD8QrIYhzDkVVFfEPyd83ZGQrbXZukL7r5H6ciK1XCAxRtl5fX1OUOffmt5lMxyyWCy4ue5ptYDYbsdrUjMot9fqK88sXBDPn418EVm3O5DBhPCqYjnNS7anyjJPjQyaTMdY5bpwc8OpyQ1GUfPXgPn5c8sadm0wmI5S2orINQq51TU3XO764/5znF5eMUkWmoXGWcVXwyS9+xma1oGlq0ixlNKqYzaZYK1mXv/rVQz771S/5u3/372G05vryikQp3nnvHUajiqrMyfOSLM24Xi75+OOPefjwIW/cvcXt0xP29/YI8a4+mFmHLE+ISr0gRKiPGYohDASiEGdaK8yOCPvv/vXrt+hahe/Fivt6UfudHFoZsalaawVNVhJc+Je/BsRSmGDnLSGILQQtiGZv3W4wcc7RW0vXCoObZwXaKNp6yd48J0tyDvdHjEayYK21VFUVgULLZlOzrTfUTU2SaA4OjvFBlDOjsoqb24B6IxajTMI0y0rYliHwMqBYrFa0bct4VO1krGmSkqQpQ5iptXIpylJh8YxJGXLktB5QcEWWZlgX1WdOvofRBX2vGZcnjEYjzs9fAIq9vSn4BGdz0jRjNBph/TZK/yXXUBM31iyna4XNaI2R2utEVEpVdcx8nhPomI5uUJUe57fk6QQOpOlwPNpnOtknTSS7QOsSRSKqKK9o+sD/7b/8x/zrP/kYXTyk3myZz2b84d/8A24cTxlXOTjL4vqKtmmoyozpeIJJMv7sh3/Bg2fPefe99zg+POLw+JDNZsnz509J04QXz1+yt5cT+riy1Ou1JkpPtUPIpaKeOATzWkUaAh77lwBlH5zIblFSIBDhdmG8PGkqyp3hl7TQJjHrzHO0N8KYlIP9KVVVSftj3cTGqwSlAuvNis12i1KBo+MDxuNKmnpCoCjKeCkT9qWqKqpqRBJDyENIsDaN8n1hkZbrFU3TMirHO1ZpPB6TZaIKGlpXfQT4lJJ/amXolUJKHAKojjzXUb5NXK8Zmgzbw970DkU25sXZI6BjMpkSvKZvDXleUJQZbbemt0TgLMT30JNnGU3d0HVblE4Zjyth8yiZTSYURyNCcIxHe3iX4IME/CZpyqicM6rmlOUUnaQkyQh8zvnVhv/XP/ov+OlnD8hG9+mtZ7VYszef8Qd//fe5dWOPUZGzur7m7Owlb9y9Q5GJ4rJzjp998inb9Yb3vvE+s+mEcpTz5f3PSdKMZ8+fcXw45auvHnB0uEdva7FwW9mbhpiAEMRKNOQKiQpeySn9tb3YeYeKG3zcJXExB0wrRWIyCXT2cqCINDuGBXcyuGilsd6SGM14lJOl8qzNZxOKSoC9xfUqKttEudY2Nc22Ic8S3rh7i7zI6bqGvutJdIrRqQxBwVOWJVUlwbjGqGgNCnHdyiXaOh/tPIkAkHnOXgx/bmoBVZxzOBuzWLXkhMjwKqoBURr0oDxDq5wx0oCbJhV9F9if34MgTaWrzUsCHeOxwdtA7xxlVdD1KzbbhizLAVEH2b5HK4ftLV0LfevxY8NoLPvT3uyA8eiAPJd8kYP9W9x54zuUZYbWUnKTpCN+9ov7/ON/+qecrR5g8cxnE5bLlvW6RivHhx+8xTc/ep/rywtevnjBRx9+k3FZ0Wy3NF3Htm04v7wGFOORhP5macri+pr5fM7PfvEXtO2aVCs+//ILvvnN98nyJBIULfgAblhnekeU7TJsIyistdoNK1qbONw5xDYUFeNW1ppzUt4jA6SGIACekYRjul6sGsKIiyouMYbZfMx0NsZax3g0IkkyKcq5uhRSosjJUolW6PqOMk/Yf+suWnu6vqFtOvpe2tMVPtqxE4rikEHRMpR+GDOo8wJmdxZK+3FRZRzkojbt+hbv+3gmy2uXS7kmTXJMlWJdC0oGOO97aXw1QkigDGma07UwGR1h9JS8KPAXD+jsgjxXksXZWSYTRddvWaxWO7A4TRXe9qjERmAzpW08ShWkMcdnNj5kMjmhLMdYv+HsVeD49k1O3zzFknB+bem7FX23pOssvrd41xLoMXF/kcHWxWw4yUvyQUopkkRzcX3B97/3HWzf8urFE9bLS5bLKxIDn//y56Qm8J1vf5tbN27JUOFkyA0uKp36tQDR3qNjbhAE0ALAqBDivcbjVcyiUURbUgRadsyyj4OmAN2ub3HBURQVmiB7gdZiNfWObb2lazqxNVaTSLq0hOBFBawVaZJQFBWbdcvF4oq+b9jbm5FHVZ6Ldsy9vSknJ/tYJ0Bh23QUeUmRV3HP0eR5Fgc2Abj7Xhwfdb3eqWMGFV9wApaPRhWTyVhIl0YAILGGSk4pMQw7SXK00fJ34aLazpJEQk0yDg2EBNv37M1vocIIbeBicZ/ergnB0TU1IUBZVTTdhrpek2d5zJfM8K5H4dEmJeg9NosJWXKb3/zuPQ5PKpJ0TJaNMCbBesXsBCwu2kCHfLoIyCglysN4vwlK8u/OL84x6YiPvvVd9vdmFIO6OHQ4a2m6hquLl9z/8lPGZcbdO/dE3R88Q8mUNgLeqGjVEuVT/P8MLh6iwiYRUlH5qIixQlgO/05UqmhR6IZYqhGCqCPFBuvIstfZj1op+Fppi3cOaz0qVQKqBCnnc86RZGkcfoVECyGIarRpcQ4m44okFeJtKCNYLC4oy5KyFBJsvVnTtBusramqBPQ2/t6o7Ir1q2Jng7br2Ww2TCf7GCOt5c7KM6jNQAS6ncpGxc8Kr2mboX1a7h5dV4tCBHHu2B6qkeRvN01sgAyKuvb0/YbDfY/rLdfrK54+fxVtxVPGk49474M7fO+v3CTP0ziDidNAm4wQRIXqtezLKgngIM8MRmuyJCUoKbYBGUbrpuH5ixes12v+4G/+DdJEUeaZuBas27W39n3LdrNhu12xWS/pmi3Pnjzir//7v0eeZbv1QtTRvY7l4Wv/PijxZF/K0hKNk4HZe1By18drNIo0z2l7IWzaXkpvsvwgrlUVG0rlvQ9Kyqua2LSa54pcK0Jcp8YQnWevSVwXvl7EFttUEcDW5Dl5URC8ZxFLxZyzLK6vKYqcZG+2m4klSxKIpR9KsXNzyJmpJPe4dWw2NXlWkhYJeaHwoeHVqwvyvODk+AapnqB1SudqApblcoFSmvF4vFMySxnenL7vaZo1vZX73BBT5ENAm4SDw0MCFp1EoY6a8+rFPh//9Iy6OQMdKEaSRb+tazoLq02/sycWmaYsMsosZ1xV9LYnKzIuLq65vJJsdIwoIkd5gjY5Gvjed7/Jb33/N8gTjeu7SNpvWDXSDrxZ1zx78Yxvfus7HBzs8+TJE374w39HiGqu6Xga85xX3Do95vTmMTeOjuKz+XXMQu32M7S4HlQUHImgRKgwHyzLzQvKEpyXO5yQVDXayD0j/nZQcX/SEoOlFVjX7mY5pWIsmWe3VmWSjRnwiNWaqFIUoRQYHQFHL7iC0uKcGvZLrYfZhDjfxoDdAEqFKEZJ4rkPQziadQEXHMHJZ2ytpcgL2r4XMBCPSRJSLaIrIfLbnUAlSTLu3rkTZ29HbVJODk8pskmcqaC3NXBBNp7w6acWa484OEi4cWNOVSYoPGWSsDebkiUpnbWkWUbQmlFZkt+seOPubVy75fr6kvOrS65XC4IPJDpjNDLcvX1MpRPS9IwQPLdv3mFSFdSbFfe//IwiN9w4vRejaCpms5nEY2y3ZFnOt779Ef+7//3/Aec6sqzgxukxH773Drdunuzu2iE+7/v7M148f8Ljxw948uQJt2+dRlEZu7Xlg9+tJbHiesJgl3d+9xnvPonh49rtg//dv359BZ8YhKJFMg4ZkfEdFtcQHqlCbIuJL97HC4jfqVykpS5LUpIkJ0YaoBMJWHTOUjctAb524HYEL21Z9964gYuAX5qUrFdbrhcX5EXKdCq5TUoZAjVKeU6PRWpvbUPb9XSNZVRMSZIMH1q0lhyoQZkyhExaa1kuL6iqirKqmE7HWFvgnYsqBbNjT6wTibVSijybfk12qcjTMVY3BNVFlYBsNEYPF0UJA16srsmSGYfHb5PnE9qxZrU+x7kVXbcmURXOTbC+ZrU+Iy8KjM5INIyqitRoVID59A7bumE6PWY6m1FVI8ajY2bTY/K0wpgCo8VyJotMGnlliB/k7iKZl8wCdkj0s/MFf/KzX0E+3eXGnZ9f8Y/+8T8nMY733rrNO/fuoCOrr1WgLEq2jePHP/+MVWN59OqH4B3f+uYH/LXf+z5N23B665Tnr54xm7YC0OnBfmZ2608TJJg+vM4VkrUom90AIKthTYaYQ2Ub0jQhy8poFZGLvvYam2i22xqFYlRVkonkeryXhs8bN6SdM8tyCIaryzWr9YKiTHYNbXIJsSQJVNWEJIGm3WJdjbRhzkjTHOcbtE536wyG4d7gveX8xRnj8ZjRaMxkPGM08gQnACFEjMkFrJLXaExCXlVYZyNYHmTQTZQMwfHyI9mDZgc0t23DanVNnk/Zm90jz/apqprF8jEEK/ZRkxG8prVbNptrirJCK0+WSP4emUKFhJsnH9G2lr2DE6bTOUVeMa72qMo5aToS244amhzF5uGsiyUWQymPo++EGf3hjz/j8cslnde8++Y9vvjyK6wKrOuaf/vv/py9ackHb7+Bjizt0ycPOdibcXh0k8cPX/Fv/+zHdL3ll/efkqcJ77xzmzu3T7laXDHbn2Ndw7Pnj3jwOKVuryRYerfJ6cimBfSghoy7r9aaENdYJM/AB4wWK66wuJ4QRFWV5IVs3tFaJtmfMnwGK5adtJCiFGttVCxLWcFAClxeXrPdbklSxWQ8JzUJwTlpP04Uqc4py1wubH2NUglJGi2Frt2pBb5u6ZSXY7i8vEAp2N8/kDIhY0i0qJkH4iMQyLKU4MW6Mt+b09sO56Utzwcnwwsy6Ijlg79kG+m6nrPlM5xLuH1zj/3ZKdvmgs22xfZrYUdtiABTT9tu4kGoIRgO926RJ4EiO+Tte2+iVUZVzZnvH0X1dU5iBHwZ2hWHDBUJxvYEnXB13fDP/uWPufXm2zz5+BNGo5Lf/sFv8Uf/9kdcr7cYpWldIMky9vbn7M3GJMqSKMutm/s4pfnJL37FX/z8lxhj+OC995hMxmQ64cHDR3z3ux9x585NPvvlzzm9fZuHz5/w6PkDqtxTJDlPXvwSrbwADSHsGF8TlVIy2MV1qCFoGXB2TfJKsoekJdbvFCdKi5pDcqwcbSfkmLVWYgm8EuVSkcbPUy6peZ6SpkkkNzyXF5fUdSMFFHnGqCwFNDBi61UqoI2j72u6bktQirLKdrYjtXs2ZM0552IuqoTYO2eZzWbRNpmTJCl5mr9mrBVkSgLkvfeMRzOUMvS95LL1UflgTArKELyTEyGonSKu6xq222s22y23Tr/BjaN3cLZmuVzT92uKPKNrLElSUDfbmMun0fmYYBOOT+7gnSbJxownh7z7VkmZz5nO99E6leKEuH9bp/npzz7nH/7D/4rGKy5WH7NpWm6eHHBwsMf1quHLr56C9+zNRrz71m0O9qd84713UAH6Toqv6rbnetXyi0+/oOta3n//PWbzKT/9+U/4/b/6A149fYCyPT/50Y/43d/9HapyzGZzxY9/8jNunNwgMYpEW9brK66unpLohOevHhMigKIHFU6Qu0pQokQdcmFQw34WhCjU4fVnkgjAY72AOUprslLy77R+zUwvFwuKqgIdyIuUoogqOC0DtABpNWVZYIwAcU1Ts95sJLpkfrBTbznnohKvEpWJb+n7mrreMJnuU41ylA7o3ec+7G+iqAtB4iUGy7u8NlFwjEajmPMVCx2UuDl6K8U1VTXFulYGKBRtV0cSLsV7g7WBNEklR9U5+ljAsd1c0FtHnk+Zjk5ZLi85P7tCqa0MTnVLkuYsl6ImyPOSLDkgyybcOL5N18JoesysNWzqxxy+e4y3E/pOcf9pg9IdbfsC5wO9C3R9j/c9IUj8QZZl0S4W4j1IYg60kZ/duR5tAr/7u3+VF8+eYvuGZnPNi+fPSLIErQK/+ORnXJy9wuA5Otzjxo2b0bpl4nsl9lSjIU81RnVstwsWy8coLWfWcN83KsfoQlSvSgCErt9GklgKqUIs2hNHh5LQ8qiYsk7AFKWDkAxO1mFiDDpJosXQoLUAe01Ty2fvPXleQCRKQghkWVS9G7k7DXuPtTY2gNrYehhixrfYKRfLDb/87AvazgItF5eXnJ4suHXzDYyWBkwfBvBbslG1Vmy3GwiQFzkEWCxWVKOK2SyRMPwYqxBitmDfOTabbRwkHZPpWBw4rid4iTWwLWy2ApC2bSulIErTtq3sR4yZjG+xWjnWm57NtqTMv89XX7UE07Ja/wLrP6WpxQrsbUOeS2mgNgmXF1eyv0ZFk/VCAlZZQpHl0SFiMGlBnpd0Xc13v/ttvvMb3+LVi6fYvqatl9SbLZeX15xfnPPt736bx48e8POf/5T5bMp6s+T81Rlv3XuDj775Pm/cuS1Ay24YljuEPK+RBDKyjrMsBTz+csumvSBNHDb09N6ilRJLZAgYZeiadHevznJIs5yABR/tYgo8GpQAp9o4dBJIjQft6fpAkiiMQtqMv5bTprQRJVX8uYMScHsArNfrNUVZkkbgQgxIohwcWmlBgGAf1fohuidCzM4dsvQGV1vbtRwd77F/sMdoMsK6jsXVJYvFGmMu0ZS8dfcOVXnC/Yc/pesXEfhxrJYLJlMBIWzfs14vZQ0GS9v2GF3x8sXlzjpaFBnFKCPgsCHQtSUvX0z59JcLqsmM4xsjplPJoXTBc35+wWLruPrqOUYrDmZTbt864ZsfvMt4NALv2bY1XdfSB81/8Q/+ZXy2Azo4vvvN9/nww+/x1RdfcHX5nMTIXHN9dYkKntEoZ29WkWaSHf1P//k5P/7Jj/iDP/gbJInhr3z/N7l795ZkHpqErx484t/+23/Dk2dPePrkGYf7Eh0SGO6o0XOo/I6AHLI/Y/AOr788TV+zrleSTZ8Vu3uNtY69/QNR2EYluA8Ob8ViC0ScRMXZNTrL4l1OyfITcC825IpTKObxKcm+HgDEoBVGpSgVreoGGNalen3+KSXlbIMIcXABDiCuioCiiz/zcEamaYZOFUlsUg7BxxKyEK3hPdZKruhoNGI2nZEkCW3bSARSUcZm55w0G1OOKnRiaLoD7j8oqZ1mNtPcvj0jyyExliLN2Z/tURYF3nqKLOP8uubTLx6zXHcxBkJxOB+z2Wz42Sdf0sb3NzGaInHs741J05y+a0gIfOvD9wjeSqmk7Ui0fI4vXz5judqIi8Z70tTwV3/7d3jjjdscHB5weXHB6clN9qYz2nqDVnKfdkGKTPBCfL755ht8+tkvefT4Ed947x1W6y2TyYhBlReCw0oApszcgyo0gsYEaYoOKqqiNfF+/98DBZ82BlF6ht1BrhBgT+mwkyZGm/ju0ui9Q5shaH4ILpV2RjMwKT7Qu57eWrJM5KBVJQe1jqxklkl2S5KoqAwR5qxu1tTNltl8QhaDF4fDvSgkB8b5jt53dF1N2zbs752S5WJp0F9jjYaHteukFMM5z3g8jewgsfFSMx6NeR3I6eMDSRxUE4piStdvo+fa0/ZLEiMZdLaXB1GUdh3eQdttsa5nuVqQF2uOD9/FtgUvXryibl6RpkjuVdLT9Uu29RZjSvamb1AWBxzs32Q2O8SogvH4gNSM0TrHZNIibGPAuhw4ICZER9/7OJRHxVv0hIvFYmA0JJ/BOo/tPZ/86jOuFgtIhB1CG0yasdo2oAJ/8bMvuHF6wrc/fIdEyyDmYwlAkeXUPTg06+2Wl+eXXFxeslytuH3nBs+ebDg7t8zHIQ4lA7o9MDDRbjuU3wzBukoRIqunlRSQ+IiUm8SQ5RWDgpIgORl1XUe1p5GH1IeoPtJkRiymKAnjLYocazu61hPoOTiYxZIFWTvCkiUYU+JcT9N21M2Kpl1zeHBMliOs2M7OOaw32Qic83SdZX//SNYawthoo6OsesisjIeClqwgEf6YCKh7nHc03VIuE8HT9xC8KPHaTjLabC8ZTXXdstlecLwX6GvLsyev2LYXJCYl0YGiEMXmet2Q5wfcOn2X6fiU+eyE8XhOYkrKYooxueRJKYN1/jXz4UVaL8DXa6BxAGAGMGCAN4IPLLY1P/zkV6iyoneXYvOqawJQdx2PnrzgmYF6s+Xv/d0/JNNiWTeIKtg6sA6CLlhsHV0rTYE3bxyyWC6599ZbPPjiE5QJPH31K3SyZZZVMdvz9ecxrDfZ21TMvhiAPhUv9nIgeydFQjraJwUACPGzlu+yWCx2a82YYrcvDCUcWgf6XvItnQelA9ttS5Jq5vMJaSYsW57nUXEi+SBd17Kt17TtluXqir29PZLM4Xwd1xe7dTb8u3Oeq6trRqMJeZ7hvYqXEgkxHpQfQwh4vDoASFugkv/vA3SdNOQqJXlDm3VNWcre2HWtMNg+0LTQNi1N7VmGjqvlgocPnjIeF6Sm35UnOQdFdsK9u+9zdHiP6fSEajTDmJxEp2iV4FzA+hC/t+TueRfovI22QrWz6MlzA8FrfvqzzzBZhU4zut5yPBZ2ebFYYEPAWs8vPv2czWbLm7ePeOPmEVmiKAtRxgU0j5+9ou41yio+/sXnuK7nzo0jfL/hBz/4TfI8Zb1ZkmYp27rmV198xpt3C/R0Qts/p0znSMaPvKveO1G4IOenGrJYInOIGhQ0IWbmOFByQXFuyLsd1A0Cl4sFSKzhmTbyWVqLtWKdE2uOZJRBAipls64pypSiTKJNSNZ0XddYaxmNRgS8qOHbLYvFJVVRMJ/NcX4bF5lcVF4PsLLuzl6dY4xiNB7hnJALShtRfnq/e06G80ZHi/dyuZXcMu13+6FSAZyCoFgut+RZRZomNG1D3wlQUDce2yds1p7tSMoMHj54xnic0maiuCzLihAy5tMj7t5+j1s332U6PSEvRiglbXjOyu3a2rhvRcLKWVlj51cr/tE//ld88ME32T+9yX/xT/4FdC3f/ub73Lxxwp99/Ak2WE5Pb/DND97jYFYyLjTr5QWnx0eYUYmnwmH4+B//MQ+evATtsZ99TpEZlG8wv/c7zKZjRoXm6OgA5x3T+R6r1RWff/k5v734iK55SV1f0LYrjDYc7N3A+msSkwq5ImhxLEZzeN/J2akHlVdcVzGvaLgHJEnMGlJKBuwgn4FYMoW81THgXlR0Pj73XcwsVWR5vrOmOOewrqM00jTcdT3jcRE/b4eU/hhWqxVaa0ajEueG5tuG7VZUJ4nR0oi9o2XU7lkXu77lyZOnjCcjRqMKcDRNS5plkmUUf+YwtG8GsUK2Tc92c4nWnjxPUFrjImkL4J2Qe6ORDMxN08idyHq6TopTuqZi1cPlZc/jB0sODgr6VLJsi3KKtZrjg33eeesjjo/vUVVHaF3ivOH8csH/6f/y/+Qnn3zKeDLHBsOzl+doDfduHXP3zi2qyYjFtuHf/Mmfsz+f0zYbPvzgXX7z7Y/oth3eWbpITtaN5eeffMKrV2e8/fY9ur7me9/7CGNgcXnFqErouw0f/+QT/uAP/oDf//3f48d/8SOePX7I/fv3ubq+5nD/EFH/igrSaE/dXvDy1S/ZbC+wtqHrA2layXMaHL3dsu02jEdTbPO6RMjHrGGZHYS8MSYluI401WglFnnnRSkpd1S5fxqjImGvdkBm33d4J3m3otRM6XvLei1No2kiivX9/T0hBKQ2kiyTc1DOLRvL1NI4l8hz7hw8fnTGs6fXlNWYssxZLGra9hGz2R6T8YwkKehaT99b0kxykW0fODw8pG16gociH/Heu3dROnC9OJf9PkbGSCGCxwdFVY4BT5JpUSwGAZDTNGex2LJa1WRFxXK9EGtxPPNs56JiqmBUHqBUT5pP6Jqb/ORnL0irEVWluHPrmNt33+Knn97nz/7dj8i15+/8rb/Ohx98g947Pvn0c64Xa37ys0+4Wq7xSlGU8Fd/8O9x98YNyblsHS/PFnz51QPA88vPPuGj99/B257V9QWjUcrkeMZsNuJP/vSPODies7c/42/+jb/O/v4eX311n3/xr/4V18sFjx4/4uaNUxKTROCBmG0WBRIx4iH4QF1v+eLLf4fSlmfPv8SHS6zrCUqKqnwkyIXgkpb5IWNtKNXrujoKBVQkEsSyaIzCeYmPsM7FDGPZ87VWuzxcIfHd7i4lIuwByPHRSpoxT1M5j0UGtvunG9xqCLm9WW9w4XVZW9dKaVqWZdH+H+fKAFdXC4zRjMclk8mY589fkZiCGycHlFWGtYGLq2e8ePUMF/qdUmu+J1n0w11fa8O2FidI024haK4XK569uBKBS6F4+9072NCQGEMIM9bbW/zyV0tm8xlv3D1iPptAzEVerTekakrz7ArrAqenh3zvNz7C4NluNrRNw2K14c9/8lOC1hwcHmPD7pRBoeh6y3/5D/7fXJ2d87f/B9+X2cxZetsTbEPTXJOmhv39A2azPd5//z3+8T/9Z1jrmE6maOVjIZK0y5ZVwXa7pW4aHj95xBt37rC/v88As8n8hABtIeBtjOYIr0nw4XdqrZjMxlgLLipx8zzHOom+auqG8TjbiSZMnO9DjAwYugZ2ZyJy9xZATfJB00QKOl3waCViGJQnqKEgRgi3gfiV/+/w1rJaLcUlqCSz0xjzNYvvoKqWtTcQ9q9LUVV8NhRt11DmBQ5pjNd6mEt0zIhMoptGxz1zcI7JeT/f35O7hpIiKbRCJSmWhJdPStZNitcd997apyoCxkCeFlT5iHFVkaUZZLBYrri6XvDTn3/K+aIGZSizhOl3PuSzL+/T9uAwOC9RBVpp6sbJ7KBSUqX55gfvs607NpsNV1dXKCzL5RVX19c0bRdzpR1Gmzi7GA4O9nn58jmH+4ckScKiaWJ7sIolPMM90FEWBbbvWK03nJ1f8OrsXObz4CC6Bp17rQbVEdRzXnyHg9Ldu0HoFmMP3K8v4fu1AT5BKCXAVGTmImPeVR0hYd8SUySgl1IygHvvUUYzlB44H8Mh43CCEoxdKqotSgds29FbS5qkZJmJ4exS5eyc5FdstxtAM5lWDLlG1kq21Hq9oihyTGJomoZXl6+o656u2WIdHB1Z8qyILFL0ChCk+CLNaJoVT5++4OBgn6oqaVvLZiMqm763EXkdpLUx08DD6nLNleowBqpKJPHOiZoKNNutp617RuOEum7p2o5AYLOpyfIS103QYZ/r5ZKLsw1t33J0eMxoOmFUVZTVIUU55/DgFrdO36UsDghoeudQQVRCwUseiLOeoWFzaDcLwQuQpYg2HQVfqwofrKw2gpc+XhidD2w7+MVnn6OARIP1MZhzVzOvsF7z6PkrDg/m3Dw+kr/HpOwdzPn93/8d/ut/+ccEJ9lSZ2evuP/VAzbbNdttS1nu09kAdChk6Le2x4du914LmCfSYAXR8ujiASnqT51oTAQzvJeCEhMz95QOJMowGpUx/yKG4oYQM/EyetfJ3+2s5KagaJsOrQ2jcfH6M41KmrpuxAakoWkbHj97TtO2eFtT1w1HRy3z+T6aFCkBkawNpRQmSWjbDc+fv2A+m1ONKgCWi5rxZIRRNg7dfqcsDRGQuLpaAGuMgclMQMwQPH3fgjJsN46+85RFYFt3tJ3UpW+3LXmekaUjsvSQ6+sN242j7VOmh6cc7M3J8pTp9JTR+Iijg1scHtxCqxEhaHonahoVQW7rQixH8RFIFrtY8BH8j6CGxuN9tDREC6wLwtxb6/jywVMWqzWrVY1JjeRbRtsYxDIf4Grd0PSetBD7hI/K2ZPTI05PjrhabbFB0zRbnr+84MmzV3TNhu98830efvUpXis6qyjzksRU0tRkjKjTQhdtHICU18dBQsgM28swnKTSnoSCJJUA9bbtUIRYbMFuj5hMxngvao+mqfFBbJR8LW+tKHJQoqpq6g4TMxyBmDMFbduIjc5orGvpXc+DR8+4ul7RtTV78yUn6zW3bt0mS3KCl8KZgbgAiQfo+47FwonlO824vFhgkpSDwwnGyP/XWslhGgLWBtarGmdFET2eFmRxqJecvITt1tE0ck60Xcd2u5VL5bYlSVK0qjjcf4v1yqNVzmR8yuHBEYeHR2Rpxnx2zMHhXWazI8ajOcGnOBt2LYq9FShYnne/I1cGMinYgBvaqpCLVYhKnc225ueffsmde2/y2f3H9J0F71lcraS5F2JmouH+g6eMyoLf/52/Sqo8wVpZ30qJAi3R6DQTMKmzPHl5xjgTffHLVy9Zrc5p2w0HhwesN0vy/Jhgc7zNyaoxRWbQWnJVnW8JXi5/EaKQfTvud6J6F/uY0l7OVyUZeb21qBBIs5wB5NBaMhKloKoRsE8psqzAOo+OA9QA2Bmj6bue6XTCkMVSN7XEYHQNkq1Y4HyP7S0PHj7n2fNzemuZTgxn5+e89947zKYHKNLdey4XFrH0VaOCetvQtaICq7cWrTSpUZiESAA4Bmu8s7BcNFirMEYJ8FhkAtoil+zVqsY5hbWaum5Yb9YoNOtNTZoUEHJu3fgGweckJufG6Zsc7B9wuH9KlhWU5ZwbN99mNNqnzKQ5WcgJv7sEhl3mZojr7XUQcgiaH//8FyRFzumtGzy/vOJ6tcakCbPZBELg2bOX6Gh/efjoMQ9tzd2bB3zwjXuo2HysYwPt1XKFi0DK1WpLu11zMCsIAdIkQasUozXnFxccHhzw+PF9Lq8u+fgnP+T0UDEe5YyrKdIQCbb35GlOalK5nKteSpSaLQRD7xqGhnqjJDohhF6eHS+Xd9t3eORcTZIIFsbByEQrv9bD4Bt2mZ1aC3nprKfteooiI8syyduMn3OaeiaTJJaxeLpOhmhrbVT5iUWqaVo+/fQRi+UGrQPXixUvXr3gW9/8kKqYopQ05sl9Mir7teb45GintNA6ITElmalQO6LJRgW2gMtN49hubAQaPEmaYBS7UGxjcq6ulpikwDnF9fW1DG1KScZnUmD0iNPjD1hcOebTIz764AecnpwwnY0BzXx+wsHhLYp8Sppk9F20Snk5N/7Zv/hXXF9f85/8nb/LZLbPy8WK/+t/+Q9QwfHbv/19To8P+eLhYxwt3/3+9zmYT1Desj+fcOPkmBQtIFocCP/0h7/g0ZMXuOB59uqcMlc0dcN6vcYA41HFvXt3+cWnn8idSeccHx/z8vljrq4vefr0CW+/9Q7GGJaLc549/5y6WXN2/mOChaoYU0RHhEk0xkDXtwQs2/qKspS4EILCD4S/IZ7jBm8d27oRG6SJaqjdkBtHijB0EArwH9Mjh5MMF8vWlIlt0M4zHlX0maVptlSl5L0K6W92Q5YCnH+d1yx5zJIhLoSKR2nHrVsHaJ0wGmX40NB2a+5/9RUnxye8cetD3rz1Hc6vv+T86j7OxrtBUIwnFUaneA/b7QqdQGI027olTXPOzy/pe8n+zPOMw4MDgTyUlyKFJBUVdu/RSkiXrtsyGo3oXUHbdKRlQaIS9uenzKc3mIxLptOKLx9c8MtfPuPO3Zv85m9+j3ffeYvNdsVy2/Mv/9s/w3lLORrxxt3bXF5dcLlYkZUVJ5Mpv7O3xx/98Z9wuVxh0oy9+Zyjgz200VwuNvyTf/Hf8vLsAq09ow/fIYTAq1fPeXj/E+bzivff/4CiyHnr7Td58eI5t2/dxPYtSimOj0/IYvbr/a/u885bb3J0eCznVlQ3ZWlGWZbs7+/z8uVLIXVw9G7F8voLetdFgKMH/XooHkDT4GMeY2SNgwKNuLkGENEFMHF97TJtg4sEmtgj9ddIeBeBPx2bSwdSWoje4TyIVst4GZHiRXldPs5Wzg+RQIrJdEJv+10OuLjHiBm2a5qmBWA8nnDjxg3u3L5LXW9ZLBbszacYk4rgA8f+/pyyyKMqS/IU5eySmdb4QFWllEXFdrtBaUuhElCKidfcOJ1RVhUacZ7UdUeeHqDNPX7+yRVZWXHr1h6nJ3MpucpKri6vsdFCfr1Yo1BcX6/41edfcno04+rqmuevLlltOy4XNSrJeXH+WLLGIl4QnGa77lgvl4xHJbdu36JpLF999Zg//qN/Am6DDz1Zavjgw2/xu7/7+0ynFW1bs1wumIwmLK4v2NufEoLEt2RJTlmNWK2uefDoIe+9+w2m05kAlsQ9KF62dlbtwO6eOBDiWssdpu8sZVmSjFKC8/S2Y5pNmUwm5HmJVkkktERtGpAiFolMek3ihhBiWYPcL+q6Zr2Su0qSaiaTAqWHGdzR1jVaQ5LJXOF8JNyVTFF9J9nUdbslSzPqpmZbb6nKgrIo5L4dC0A7ayMIKPuRrGmZ0cqsIA0KFwK2s0ie3NCFIJ9TVY3jeo7zs4oiBp0QQkfv489qFCooXFB4X3J1Pebiakxdr7hzZ0pRONI0pcgL8jQnM6Kink/npGlK7zw6XbHeNiidEqI4Z+9gHxcALdmjvbV4bymQPOe2s/R94Phon9s3Tzh7ecnV1ULUes5yeXHBgwcPRHUfJJrIaMN6vWa9XnN1dYmzge986zdiqQ88e/6Mo4N9tAGTyLljnePq+lIa2ZcLnjx9yq3TmzSHR5GgAgZXBHJ2uajg9TEnegD+BhJcZjmJFfl1v35tgC9PZ5S5+LPbbhsHqYH5VTtZccDFoHUJFnfORbuqIcsEBPFBEHytkwhcDGAZbLcipTTGUOQ5tg9Yy04CWpYeEIXdfL4fQb82MvxEdsUxGo0F/cZzeX3Nz37+FW0XqLKUettyvbjkgw/eI0uKaFP1whzEFs4sS7lx45TgpdQiTVNOj07xocezZpDVDrcR5wNNE/A+R2sjdhcT1WTeY1TGcrGhbRRFPmG12nJ1dRULPqRhsanh3hu3yfIphVPcvfMuh8cVxwfvkaYZZVVxeHiXvJjumIVta6NUx+0+q4H9wQ+qvZg9IZzXjqUfmkDF5iSAjHWOYGOFcxAgy0Qf/2Kz4cmzlwQ8k0nB4mojFzAFeaRGbd/zk198yYuLBb/zW9/lycMHbNZrxtWI6WxONR6Teclzc7blxasr9vemnL26ZG9+yHZ7QZ7NqAodbXbb+DB0UeWSoEhBbYEuKjkFMGqbBud6lBosKirmFsCQlaJ1bEAMQdRhIcScAkPXOkLoyfKULBuaPHsIsL8vSrqus5G9yxjKPCaTCUrHvI1lzaefPMOHjFHpaZpzrhdrvv2dgiofi1UgKGkaNQpnG5T23LhxA2d9PFQq7t29LUNOtxCQ0zt8tLwBtJ0nSSuMTkhSt7MKgzT/XF2taJpAkY+4Xi64uromy1K2mwZCQt85bt48ICvG7O2PSZIPmc5zTo7EHl6WI2bzE7TOxcriJDcq+D4+93FGGlSeKmZKRADTBYuKpSav12XYrbWBMfUIeNJazSe/+pIsz9lsz5jP55FZ11/LeZKso8Vqy//5//EPuHm8z9/523+TerPl4vISpROOjg653jwhMwlFUeC6hq6D6XSf0WjC3sERJIHT03uYxJM0l6QJUd0UdmB3iK1VSiXyLNBKZgfJTgXFriLBi+Vwp2Rht4lb2zPk/HjvyYuC3nr63lHXK2nwy3OKwkgMAbKeQIA9F9vYsixDgrlVVMz1dF3g/hfPaDpFnhuypOPz5ReUVc7hwSGJrvAWISTMoAzcMptNRdlrHT4J3L79BtPpnIvLZ7JvO480AEdA2Sfk+RhTZSjlyQuihSAAKdu65epqSZ6V1G3NyxdncZDPqLcto9GMNC3J8xlFXjK3Ofv7M27efJvJ5IT5/JCinACZZMS0srf6rylCZf1A8DbuvQJmD/ZMrY2AylH9NigkvQ/cf/iAprOYIufFqzNUgNunp7x8eY51QjSl2sifUYrnZ1f81//ij8lN4De/9RF78wleKe68cZeff/4FvQ94EkyaSDZYD+t1x8nJKe+8+wZt13Dzxm20umaz2ZKN052KybnYmhg8QwM70f6oEBvGELysdsoES8DyOhdErGbyGl8rmLqu3ykMsiylKHI225r1ekPfCtiSFymTiWQ5oQJlKYSCrFdHkecURbbLGRrWsE0Dz578hPXWU5QFisDV1RXPnj+hKHKqYgbexKwmAWzOzs/Js5LpbCLDqk44OJixv3fM5eULrJVQ+UHZ3zY9WVpSlgKCOG9j2L283kCg6xwXFwvSNMN7ODs7j+rWir6z5Kkhy0YU2YyqOsS7KUWhOTy8wd7ePY6PbpNmJd5J29+m6SN5Oaw1WWiiKh5cB7GRN8g+tFitePjoOXffeRurPS/Pz2nbnkkldsi2ywTs14rLywsuzs8wSvaT3/6d38YpKaMg2g7n8xnn1xux7KNRfUbbSb5qNapQSNbr+asz7t15gzzNCNS0TcPJ0TfoujWbzTWBnmK/xPmG6+UaszfDkyOZPirKWcPueZLnW0iWLEsiY60hETWCUsP9QGAWIWi/rvyLl1WtY86nqPwur65xvTyfy6Vlb2+PqiplENIGE1VUeS4tkSBRLEPrLpEEXq8si8sNRTkiSQMEx+J6wcuXLzk8gL3ZMT4UKDzOrehdx3q1oarGO5eH0QlZVTGqxizXl1jbiQrYWnxsl8zzkvlsX4BmLfZEbRRlWeI9XF9vWK23pIklSVvOL88hIHbQoKhGI0bFAXlacPv2lO22oO0zJqMjbt95l4P9E9ApXRfo+o62EzDVR3Xo/a8e8OrsOX/lB99lPCoJ9Dx9/pS6bZmOC6bTMc47fvSjn5JPD6mqiufPnoGz2HrKu3du7BS+wUHvPA8fPcFjyIqCurN0bU9wsN1suP/5J/ze0Q8oipI0y+LdIKcajVBGUTcbvvj8V3z7m98hS1NWqzOevvwLtKpJU8fh4W3aBjb1C+rGoxNLkkjjY8AxnVV43xGIBTkRvFcKrHckKWKTS6TYzXsv2XpKYYZ4CPF2S1vuDvGTu6qOa1LrQNt1YkVWijxLBWQBwmwUVTVyU1mvV7gYdJ+lCU0jRScBadRO03Q36K/XW7x3HBxOmc/3gMDTp09RocLZAmcNy+WCzeonXCweonVHcIbZbI68FEXb1lgr+6Axgbard8rkly+XbJuGIg/cu3cDVBcLOJCQfBXwVvbLyXjMbDpDGVGflkXK5cU1RqdS0NdvCa7H2Z6mM/zoRw85PNrj2x+9zbe++S7nF5ds2oazyxUPHz8hoNg/nJPmKQ8ePeKXXzykc1B3LW3Xsq430Q6doIJHY/E2cPbyOVfX16R5jlKOPC8IIfDFF1/yT//JP2Q+Kzg6PmB//wY3b97iRx9/LIOxFaA9TXPGkwnXVw1Pnjzi1dkZ+3uHDHGzYt3XO+vkcOf55Oc/Q+sZ8+mbdO1Ten+2c/AMe4eOIgullRRhKRgKX4yRc1SrJDaVSoyKMQa0w6iwazDdrVMSUqMZChibZisg4U6U8loNxu7PDQr015ZIHTNPpURTxeISUVOb+HkP+e/WOq6urtBaYjPyvNiB1jb0KB2YTCumjMnTnCLNRDRjDIoYyIaOwhkhp9q+R2u5Q6dmxPToNovlJcv2BVmuODkuOTlGIj88pHmCJ2OUf8Sff7zF2oxbt+a88cYpmRE7Vd1sOb88p+ksjpTL1QYUbGvHarPl3p1jHr94yXJjsV6T5gV2uOeoAUST9+vlq0vSJEGFnhsnJ7S15cXzl2zXW5Ta0vcN3lseP35E02wJSL791cUFk0ocZJcXl4zGJd7KWtjfO+Thg694/vIlZxfnnB6eMh6PQEXbrBGQKsQ87aFc6uszinNyZ/7yiy8ZjVNu3bxJkeckJkVrEx19mq5rIdpsB7FIXlQxmzXQ9y3eSw52lghJ2bQti3pFU3f0/RVpZqhGt8Wyq2W9ZnkiM1WMvJGfy4qyPs0IieAtZSFlNUkiOfxZltK2DU3bUo0mkbwQwNu5AH5Yi6KW79oaa9udml8wlFhuQ4giFMFeUpOTGMO23uwcGEKOZ5hEY21NcBqvRqw3M168HHO57Dg4mDEeiwOyTMud1TlJxFZ9fb0QhZ11vDq/oHcejzwjzjkW1yuJP1AeFwKpMXRWon/Wm5okrQjA+9+4J/EZ1vPgwVd8ef9XdO2WxOid66l3jrapIQQ+//xzFosFq9WCs7NL0sSwbmrKquDxk0eMKinjGozbAbi4OCfPU+q64fnzF7S99DxMpyOIri14LaYgulhEIOV3qsfXs7AoT9u24df9+rUBvt5u6fuo+EIULRIyKsowUSL1ZJmJA28ml0Ij9jkBJ2QzVV5/DU7/mtxZa0YxaLmuaxaL62hpVegEjg5PYuaPj8oUebPyPAck50DaPocg3mhbrJ/St4rJeEyeSk361VXHi5ePOdg/ZlyckJopWm3p+jVNIzL/UTUjBEWWikQ1y6Sqve2EwQ6IOlCyPHqyvGQ+38dZh04szvXCwGvJFqq30Hctzqr432T4z/OELC2YTk65dfMe0+ke0+mcPANUhzFj3nvv+6AUbWdp2yBsVvBy4fZ+13onD/PXgv/jhioqRQH//NeDIEPAO3YHlHODHVbx+PFjnr94yUcffQvn4cHDx5RFwb/3+9+i7eD+l485uzhjKA/JkxSVpTglaop//Uf/huA11nrmU8fFcotDo4ymmkxQfiyZdoslh/v7vPvWN7jSAWsfUDdD75rIX6VJUtQJPjiCUhSFXOCMURiEefAh2w29cva+VjANa0IeRBiPx2itWa/XLJbL3fugdODg4ICiyCCYnbRWKSgKs1NwDq3Pw4PtnKOtn5IlKWU5Is1astTR1j2PHjzh6OiQ08O3GZc32DYLVptXdJ3kqohlUrIRQ4CuX+8aJLsWjClYLlf01tH3LUWesbc3xVkfVVk9SSLApOvB25TgGrpuI61ppQBEs9mYLC2Zzw+4eeNN5pMZiow866XZSU94443v7GzDto8qUBzSxBs3veEQcPJ5ENVBKM1OMKbEJiFDfMzijBkc27rmxYuXHJ2cYNKcVd3x6Mkz8nyEBmazGb216JhPKTkYGW2QDJPFqqXrL/jP/6t/zuXZK5LUMJvPWK435NUIrVNMltNuN9x/8IzjgwkffuMbzOfHHB1Nef+97/Hq1XOu1o9JjAOr44XfgR4stnJIO2fJCsll8V4Uxmkin40Mu3r3LMnjpnZrzMRGwSTuA33fs92uCF7RdS3WtvjxmCQZoXUSLyIxd1IZhmiD4c/H+yTOpaxWDZNRQVUllJWhLAKbTcejh8/Zbja8eed9bp58A+cCT198hrVbnPUE1VGNJlQxQLrrN1wvOkyiaFtLCIbNpmGzbfDWkiSGw8PDXfxCbzuwksfovSJLRkzHirav2ZtPKPOU9XpLmuX0Y8t0usdscpNxWVGVM67XC7QpcdZw6/Z7hKhiCaHHuX6n9JFimK+1aIcY/L/LEImKZHRUWELf+x3jqVA0neXjn35KXhYsr1cslhuyvGQ2n3N+tRDQAomM6NoG6wJX1yt+eP0pWaqZzI9Rj17w+f2vWK43tH1PXsr60gG6JgHXsd7UnJ7epOtuM53c4KMPfgvbrdHqgr5fYUOPDw29hSGDiWgJG6y2YvPqyQowSoA9FAy5aAGxXPqvPWBaDU2poFXKoJAfAJjEaExZsA2SBZQkcn4mSQaDpkVJjlFiRNUnrXfxXDdiN2maNUdHe0waR1mmZLljvfFcnq/x9ivevvc+d258i7yY8tXDn1K3S4xOcFFRP56MI6jccnX1TPYsG7C9ous1Z+eXsZhlw/7+HJMYNAK6OefjuQ9VUXFyeErvW8ajgv39CcvlGjD0raWqJkxGB4xHJaOqYrFcxky4nDt33iOElLaVMg9n7a60SdphXVSxDQDfAC5HoizIMPTFl49J8pxqVNFay4tX5/R9z8nxDbq25XrVs66b+PwbMRsqzbOzC/7v//k/ROM4Pdrjr/+130Ubw717d3n68gyMxgVDlhUE19JbR1mNsP2ab3/7I/7lv/xvADg8PMS6BZ1t+fLhZ8AZfWspyznz+RFtu0UpRyBnZ/Me2M+oLEiMEWVs36O0xbmo5FdyZ1ORDBwypoIsxNeDrPl6W5+l7TrSVJSGh3sCdNRNTVEW0UKUxLui352ZPrY4Dk3PMjgrAXuCpu873n33Lt579g+nLFdXrJYr7n/5nLb25Mmct+/+Jq/OX/Ls6iVaWfI0p21qymoklrfeYW3DetOhlNirCCmLheN6uSTPNNY6RlVOEi1Ive3kjgooDIcHx0zH+1jfMqoqTo4PRT0foO8d41HFdDwlSxVp1uG252jTs3ewz8nJXZqmx7ZiHfTWigWLgHWOpu74ix//lLtvvctoMqHrpXH58dNnMIBZ3tP3gU3d8eD55/L8aiE7bt885be+/308jsxIJIrWhiyV0piizKTMpZPYkqocsVxdQ4D1ekvbNLx8+ZLT01PSJMW7QNM2PH32hMvLS05PT9muPYd7b3F1/SuatubB05+zXXt8WKDNHtUoBWV3pVRGK3ov9wWURqF3dkydiNJQ1k6IyqNAsF6uqHF/MkbyvVUQCu21Cj1IGgAhWrkrhhZygiT7BeJQ5QZlcCwIU/LftdEkqTR8ytrT1HWLtX1UmyfcufNGJGQkzuD46IQ8LWnbhuC0NDqaaw4O9yQYn0CWSvzGtq7pektZjGiaGh1Vij5a4VGO2XSE0ZbgHcvVEqNK8qxCJ0Fa5BXU9ZYqzyirMZvthoSEPAnMJ2B0znS6R98HqkJK4H7+y0ds2sCHH97lnbffJDEJ9XZLCJqXZ1dsty1aKSbjiQzc1YhPPvsVrQX0oHISa74OGusDQSe4vuN6cQ1BIpTyvGA+Hce5UMputtuGi4tLJpNDLi7OOTs7FyVaUGy3W8pyxMnxKWcvX3Bxecmz5y94486bVEUu4AICLqyXK7q2ZTqdoRTsHezxox9+TlOvmc4mqDyQZKJG8uo1UCBW3E7KwpJkl1Vb5CVZVoE2Uja4i5KKcUyuRwUVLXny8YSY7SkkbEvTdjvQcdin8jwlz/KdDRhUJH6loCB4cRAZk9D1PVle0LRbdJ7Q9S5mUepo5ZR97+joCGvjfQa5B4qZREqy0kyTGlFm63jXHJqhh0xrhtxlrXY5cFqVVOUJp4ff4Btvzbm6fsXV4hnL7VN6d4nGM5ke0TnH5arlwf3nfPWoZ7Y/543bR4yLEttvaa3l2YsX1F2L97Cqu6g2zLDOs9k0KAzT+QEXq1f4YOLdX/Ls02TIUxdxz97eIcvrSzJlOD465Ozlgpcvn3F29grClqatsbYjTUuWixWf/PKXJInh+Yvn3L3zBkVRCjmRJjLXukDXNnRdz2ZTc3kh9swkkfdIHFMKkya7aK6Io+3OtbjDEDy89dY7TKYZfefwTpHnmaiUQ+wi0KJc985G8DCBtsNZIffqeiU5x4mh12KTJgT2plP8WJTHJtGgeoIP2KAwaJTyMa9PbLUyc/mYHxtIU43SCc5atts1zjnqeiP50fMDkqTYnbWKCCwpsbcur1eMRmMpaPPSP5BEdX6ayhn9unlXMBofhsgsKXKSKAgwumQ2EhXupr/CKSAc8vArx7KT93p/npEbxaSqKPIC4vzX+gZTpnTWcblcsKpbPv/qIUElqChIajvPg0fPMEmOVnI+GCXZsgSL9QnOgsby3d/4FtumZdvWPHz0gO1mjXc9Ly8u6PqOuqlZrUVtqrTiow8/4H/y9//H7B/M+N/8b/+PbLYbmk5ixrZNw4tXr9ifzSNeEuh6cSKJq9BydX3Jtt5yfnlBNRKSUXrtvl7YImePj66BIZ9RONYQz7D/7+zH/25f/3+w6A4KAuJQEqW2yAWvbrbSQucUQ8DzEAJJlGET7VND5oUc8joyGZJxFwAT2ZuDg30kPLujqspd2PfApgxffWx/GQKaZdMTNsY6AdDef+8NkjRjOvO8eP6CzTrw+MESbzOqW7eZzd7hq4c/o+3lQzYmY7NZMZ3OQEnleqCLf09P31p8yHn2QhpGyyxwWGi02eyGot4OrZWaxKTcuXkPHxq0EcvMbJazWW9lg7aBJN2gQk/XbPBs6N1zimKPt9/5NtokNI3UgQeRqAhC7CUkGF6rhuKHJEqEEF5fniOi7KzbBW3a3u6aXlBSGDIcDueXVzx6+oTOwWi8x6PHz7j3xk3ef++ITz5dYkxJkUr+SZZlUg0eApumkZwd52JrpOasbSjLgrIqY+5JQtf2qFSsO8tNDTpwfvaKvaKFONwOrJv3Hh00KAehxWg5TEXtIgCjPEDxANd6J8PGD4kEMBQ+1HWNUirah0qKoojrxZIX+Y5h63u/Ez5oLcyO2MrkdQ2gIUh2R5oa3n33lKqqyAvNi+cv2axars5bqryjqToy7Th78YrOLVFK6svbumY0TqRBre1xicUkAnT3nce6jlevrmjbjiw3jG6UKN1JS6cyKOfiQCwWquOjQ1FuaLFNFblhudjIsxc8tl+Bs3RtTe9est48YDK5wb0335OfoW9FzemG/ClhkWxvd+vqa5sDQxaFUn5nPx5AZGvdjsH0Xtbpy5fn/PDjH/P2O+9x6/ZdHjw7w9mOv/k3focPPniP5xcd9x98wXhcydATpAAhyXKm2mC0bBrL9YZgMtJqROsVWTkhIE1/iUlJ0hm2qTm7uObyesN8dkiiDY8fv+D66orEdzsgxTOA4O71gKc8SSqWcgnjFjBEwKWYm0ZuUoNKAAEAAElEQVRAGbnk7TZ3JU2UWif0tqXtesqiwCQJ+3tzQMXmMr1TGlhraeoG0KRJSh9bnZ3rKctiZ/0lDjDbZsPJ6T6jseRNPX/+nDRV1BuNOR5LXg+Pub5cYv0a71vKshC1gre4EGhaGbbSVGN9JypYazi7aLi8WlDkmpune6BadCq2K4MwmD426yamYm9vD5NMUFrKILabNcF2FHmO62u6doXRgdX2MS/Pf0KWTvjgw9/H6JRts5WMGh8EVAkSpisqm68xYsPpEy9kJgYRE8AjVt4Xr8745We/4q2336YaTTi7WPDw0TM++NZHLGrPaLJH03TU1uNRZHkWmVhHUeY722BQCZ7AP/+jP42tnwVZkTEtK9IklzY9QAdH6D3n52e8dWefzMz5rd/8PcbVAVeXFyyXgZ4VukjwrhOVoR6MZrIny9BpUCag8TtVi1hzhdUVwFL2N63lwmoMMgAPv5TYAoZAZK0Vk5EQZtPJaDcQDGttuVyjlBGwxztR9RFIU3m9Q56LtZKFlqaKvf05k8mYly+eo0OOImNUHbDerHj+6gtW6w7vWnzoKIucUVXhgqfrGpraxot2kDO1bwje8PzFmlfn11RFwsnxFFRP7+QOkWQaHUTB3fcSklxWJdN0hDKWrrXYTsCToqhQocf2NYkxLFdPOLv+OUYnvPfeDzAmZ7ttcL6PbOrAknussztVOwx8mNr9N2kahG1juf/oOdVoTAiOVd1xdnmFMZrZdMRoXPCTH/48Zi7J+hxU5HXTc//hcxSBzdZy68sXvDp7xS8++5zOOqpU8v98L0OnddJIWVUZb771Jt8+W7F3cEhWpbx49jloTVkdkJqKrd5QVRNQiqxMo4XV42zLQE4F1O6clyHGoYzfRXqgnQwXEUgOISrq4nka4oXU2kHBreL3FXI1SRLwHpWIciUvkggoyq/NZkvXdaJqKCqatoZ4l/Reyg9UJFEkEmVNmkkJR5YnnJ9fMJ2ckCRi215vVvzq/p/SdqKActZRjUvSNKXrO1arhbwGQEjpnq7r6TvN02cb6qYlNZY337xB3azi36/IciFyvXM0dROzOMfkEUC3fY9ta4xJmY7Hsp6DI01SLi6/4Hr1OZPxLU5v3I6gcC8kt/N/SVnsnOPzL+/TWMONyR7O9ngPra15fnaBdYrToyMuLq84OLop8SVBCALrxL5pMfzo55+xWVyhgbJI+O53vsmb9+7y4MkLstSQZBlNX+NCIElGrLc1m6Yhz3L+yvd+wMcff4z5jqhv0yRnGzyrzZIXZ8+4fecGXz28z2p5xcnJDQ733sUoz3nymLpZEMhx/gU62p/jgkdhRNWgRIHrYwvxcC+Vu50AcgQkhiNu5vL6xDYJoEKMY4nns/NObJZx/kDxWn2i4l1vsANGiVhWZKRhuANKY2kIUoywWq2xVsDmyWRKnueM05QQBHzzrmdvPpUzID0gy3PSVO4gPmgSHaM8fEBrR6UMeQGpKaiKGXUr+ZFpqqgOSvb29uIeLneqPK8o0mNGxQlPXn6M1j0azXQypm16rq+u8SHFW4NRObNxFe9XWsB1W/PioufHP3vO7Tducni8z2gyZbOpRY0fPF/efwgqwdqOttlyeX2NC1JAoIymi2ROAEyQEJyHz89oul5mtyRnOptiSdDaU+apxCrFeKPeWdbrFRfnr9ifzRgVOVeXV+zv77FYrMiyYkBSaNqOl2evuLpeUBweEfDSCh+tsF3XUW9riqLg1q27nBzf5PzsjM+//ITWGfAWo40UBUaAyznJC6uq0a7wxTnPYrHi/PyaxOQo7bl9+1TskJGcJcY6KQx4KUzzwaGRgpY0NaT5eDdXyLm5wvuMzXpNmmZU1UhAZdd/bf6S+2DTdoB8X5MY+r6Le4JkcqepiY22ss+maSGWf5NIYVZSkCQZbbfE+jZmg7rdGeX7VqJ7fGR+o1LWe49YRgv2Zje5vqr59LO/4HD/Lof7t9ifvY3WGZfLDp12bOue1ie03T0+++qcrCp5894ps9EE7xXbuuX52Uu2tdxljUnY1h0EI6R+cNRNz/nVilE1IdGX2BCFJSE2xaKiQ1fmhZevzqhyw/7ejFFV8cKec3b2gm29wvZbvO/RWrFZbzk/v+Ttt9/BecVXDx5Li6wRccZ8PiVNNF3fURSZCEGs5ezinMVyyWg0QkHMOATV9bEJXX3tfJJS7BAJKOfDrtxTa8nu7fo6/l7JKYZAkSX0FiEZlWY80jinSFRCXTdcXKzQSrNeramqivl8znQ63u13UjhoSZNEughs3LoQ95nQ2x7vpHSibmoRejhPVVTR/VNhjKHte7peCoP6vpP7U7SZrhZbnj+/EKKqDWybmh//9Iec3jhgb28ujp9UHDRVVcb5Ru0Kibq+kfuuVgRFfN4KtHa0fcHF5SkffPi7/NkPf0xdb7la19y6vY/RPWU6pspKVGCnYjOJJqjA1eKK1XZF5xRXiw3OS9YqSAb88xdnoKXtYRA3GAWahK5RtGlLVSa8+85bLC63XC+ueHX2Eq0co6Lk6OiI7XZL3pSkac5ytaR3HTpRnJ295Ic/+iFd37FpNru77sHRCX/+o7/g3t073L17R5SBLpAXYqXHQGs7zi/PKYuCpjskNRocOyxA3GB+l9/pYgFH8MPrEEvzIKb6db9+bYDPho7Od69/lHhWJ6SILVATsPTW78IYX2+ixCwuGB4Qrf5yo9SQhaF2svoB/FMURb4DDECxWq0YJKWj0YjNZrNT3Aj6PCClgevra/q+J89S9vb2aNsaFeacHE1IMw0uZVNf89WTf00Yctx8YDqdorUALNvtCmNS2lYYv76t8T6wWC45O3+FMQW+yNnfK1kuFiSpoNtJKrmCbdtSb9dMRilFMaa3K7H6xry7shhR5GNAkZgCT8Ozsz9Hmw23b79Lnlc7G/Jg9RJlz1/+9XX5OHGz+kugX3xPvPc7gE9CRiMwEf3iwcn7OJlMGE+nWO8lG2295PGTV3z6yedYKrSCvcJQjQtG1YiyLEWhGQdS5yx5mopVNn6+RV6gtbSEEoYA0UBVFWw316wWz2lPPWluIwQsvwTn1vFSKDZtP2TveBmiBrXirvVKiQ5BCbS+e/0glqDh/RqYXqUUCcnu/XLOs15vASWKztGIut4ixQj6a5+D/F3r1YbEZExGcuhb68jMlP3bE8BLK22/5nL5K8qxpvBTfHDCQgfY1FuaZkuaFLumy65r8N6x2XhWmzWJyRhCUheLhbQom5w087v3fbvdUhUJk/Gc1faKNNVkac54JPbwyWhC33mqYor3Dc9efkyS1rxz/F1SU7Bt2h24Yvv+tdLTD5vXa6kxsHs2v/5rCIJ23sb8CDlQg5fLetf1bOuGLx8+ZN1anr64ou/hL/7iRzx+tuDllWO5uCBLDUVZMp6M8UFUIet6S7CWvusgSBnE4jplPJkwGom92CRiVbJB8vJ8MFxcXTOvUj5/+Dm3bh7RNFv2pjXGdpG9TmV3MmrXWIryDHmjgSB5qgNIMQy4UUUW4nsx2DNAgnHzLCfL8l1OFF/7fS68BhAEXJLyCgp2hQlpmu7WW9+/Liwp8oLjkyNRXgRPnlfsz08JKPquhpGid5eMZ4bEzCMLLW2I26amaVuMzuNA1YDqUaZHeYd3HXuzKVpbkjRlu63RKqMsxgTVk8bco9b2cphODtg0C7TxFNmIw/2EJMmZTfdo2w6jxvjgefj4F3guODm6x3RyiHV211pteyuqqrhvfX2/+voh+PoQRYAJ5EANKC4ur7n/6DFdULxx7x2+ePCMcjLio2/d4uFTx9KW/OIXn/DLL+7T1BtGo5Isj3Zu6+P+pKN6VtH10pguOS4x59TJYJolCbqoCEaz2W4Zjd6m3SZcX225vqzZrJfUzRKSnsW1p5g1aGPBq9guLfuTNgYfpF0SZeWyHiTs3SRSkuCHPQ4PPqpdlIrB9bFkIyi0SUmiIoogVyWlVGQhLUPmo4tN8NY6yRnxKhYHia2j76XZeSi+2N8/4ODgSIC6tmY+m3Own6KUwfYtVVFhkp7pTJOYqGpRARUUne1ouo6yLOUc7WKBhrI4FygLuHv7kCzRVFWOswFnPQf7N9i2VxgjlipnFeiMIp0L+N3VjMoJJ0elWAyrMV3b460or5+/+pK2f8HdW99lf++25Or0nRQ/WMkV/Ppe5v1wbujdufj8xUuurxfcuXOHzsGzlxcs65bj2ZzOetbbjnXdyrClYNu0mEQYcRNUtOsICSmZYnJDfHW55h/9sz8mL3NMVjKf5Cgdc1usJ2Dp2hZbb/jzP/sh3/rmd/j7f/8/IyjFYnXJTwxcnj+gbXJMNuPmyR6Tacl6fU6zyUjTDrWLLRkC5g0E/7q5T0WAxUTAz722Sw+ZvTpamvD+tRJwt/ELoJMO4fJKzv5BYRsCr4O9eQ0CBu9Js4w0k2ZLY2So32w2tK0oAfMs59133sX7wGq9pGlrbt24SZLkeGfJi5T5dEqSJJSjlMQIoE1wwpoDRdCUxQjnPW27BqUwSSDPU06OFUV+LMNbJgproyacHt/l7PJLtOlAJZRFAb7AqIpNLfloZZYzvj3FJClVOWa7adFMaJqeJ08/Iytqjg/foMhn9H3//7O/Dfv3tu759NMHHB0fg3MQnS6X1wsWmw0+KKbzOW1n+dWXX7F/cMxq85io+xXgWCf8yb/7MevlCpQALzfv3OPo+JTRZIwNKto+5dmuqhHnFxf8/Be/4IP3PmA+n8vZ03a7e5C0zirOzl+hteZv/eF/xIvnL/nqqy/44rMnONezf7DP8cE9goaz6xdoHT9zL6olUaEbjI451N7GIHhZDyaWAg3P3UD2G61JkpT1eoWPwJ9S0SURz9pB8TRkZg6Euo15wGLZ9ChtaBsZdNPYvivn8msCEsTJoVSMSdBD7m1HCI6yLJhO5bOWxnONjtEhQxOmtFtK+ZbrAkql0khvJrxx+zskuuDy+iXL9Qt6t8CFJW1To1VOlk+p65oXT7+krn/BeKbQpiA1KU3d4hwC5PYabz1lrmm2W0yqcMrjvMa2Yz754j4qUdy8eURve3Sa0MUimKazPHr6jKDkfbpz+xYf//jHvP/hdxlN/j/M/dmzb+l534d93mFNv2n/9nTGPj13o9GYSJAEVRYHSbRoXcSMRMqSI1tKKiVV/oQ4yb0rt5YVy66SbCdx2SnbtKVKYjllRXEiSpTFEQABdAM9nD7z2eNvXtM75OJ5128f0HdCLrIBogHufc7ee613eJ7v8x0OWO8asn0wnQzBwfLPfve77Lbb/VDzYDbfew9PxyVDErAkRmp+93e/zQfvt9y58xoHswNevHjO6ekJXdtzeXlBvdvi+h7f9bx8+ZLr62tOkgQ6xojyg/LhxptqtdklZdeMt99+h+99/A8JwdF3LUUhntAxyPsCYdllVqdgBEeWWWazcWLRCCteR7FUssaQZSbZlwyDtkjsZcjYd61Yt8SQgMeGGCJVZckzm2wiErsgerLcpjZDnl/fOVAi/e57UWuYxGSV/kKCo0QKrOV8Rqf1G9NZ0dD1LQpDnt2GAN6taF1DNSqSJDiF2QFRD35g4rlZFCXPX3wBGGyuuVp9zGL9kKLMyTJFW2sID7h95z02zvO73/0IrzNODmccTsYQPT4onr54Qd00RAT8QsPl1ZbohWAQtaccjfn80TNu37lDVRbUTUdIgY2vtv9KdLL0XYfTltu37qOi1L1KeYoqpywtRZ4nCN/yz/+H32Fb79g1LRG5v1xwlKMRn3/xiDdff426aTk6OSJGSRo/Pz+ncy55+RvqereXXceg9uSiPcCXagHvPd55+r4hywK73Y7WZhKUZyzG5HjXEUIvI9eYPLTRKfDHst22QJSApaJgkiSzu6ahaRvKIt1XKnIwF0atTkB513ZkeSHnkQJCZLvdUZZl8pXVKBc4e3nObDZnMpEhh9EFZXaIiiXLxVPGk0zCKOodXe84mE/pmoa8yNBa8aX3v8zl1RnXV0sODo7IC0PXbTBWUxYlSgvpyqQ06TiAoVFGK+v1ku2m53wJ51cnrPpPuN51vP+V98ker8lzj7Udo2qCZggklPWe5QW991wsr2mdZ1NHnNcy4EznavCixhlVFXRdSszWFCkh3rvIbrvlzQf3mU2mnD1fcHFxwWq15CsffsBf+Ff/PLdv36YoS4JSfPzxR/ztv/23ePr0Eb/9T3+b3/2d3+Xs4oxqNGG1WiZmY0Arw5tvvcNv/ePf4vZnn/PVDz9gOp0mm6TIfH5IkefstjXOO5p6hxmN9njLqww95zoBjhNgNszA5L8Pd+b/HzD4et/R+0botXu6qyXQoywoH2BgzTlhgWU2hQnoKH4OyesgIqbmxJiaFmmUjcnlczHuvRhiehDDhA5gNBolQ+YKa+2eOg2Sbrbb7WjbjqoqmUwmfHj0ZZyLLJdXxJhz/959rFX40EmwQVUIC0zlieGQAkUUlKUisxVVNaZuNkleYKUQMQWzyesURYULnrww5HbEZPwaeZZxdvVDjBUJ6Ww2oa0lUbZtc2azMaOi4mheIYydiu1mh9YVl1cvWSxecHpyyq3jD1BKpH193++Bl7BfTIlxkA6m4UPBMHTagy7is0eSTAdeBU2J7KW73gfwnvv37nHv/j16r3lxvuXkzrust7U0ZlFjYocOPg1lI8+ePZMLZzC7jyLVuH3nHvNDKSSDF5Tc2gwVI4aIMQJgPHn0Xe7enRM4w/lO1ljyghIkXBoWtHgEaiW6erhh5klqMxgT94W+Hqa6pAlEvAGP9x583DyrodAFGI9HhBD3HkN5PtuDM5vNhrbt6HvHqJpQVWPeffcI73sWywW7bcudO8eYlOgmh734UCplsaaQ6aWXAJZRpSjyEUU+lvCPTijeYKiqnOOjefpZhRmWZyMmo3uUZcGzl99DKUlznU5mdG1kudzhXIkKOVZlHB0WhKCIwQr7KmguL8/ZrBccHx8zn70FSoJN+r7HO0l92196++eSmC3cgFWvMvZiapSH4k/YRYNMV6SUx8fH/MzP/Awuata7DqUzqnLKcgUnx3c5OgQVboOK5HnJdDYVAM1ojGKfyJdlKaUoeWkoZZLxtxGvT62F2RkC90+PuHj+CavFC6aTHq0jLnY4ekDkUEYP6WziK0iKrJd37tOkVKS3rndooxjCgxgAG30jZR6ez6vg3rDOhiTwgWWb5xlZnonpslbEINPIGAPLxSKtNfG/GY0qTk9O0FpT77YslguOD2cUZUWRF5TlaWqoDSpqrMn3k11Zz4Ys77CmxOiCullRtxGF4+BgyvzgdnrXAeciVTVGxSlHh3d59PS7dGFHkeeJDahYLC8JsZBC1EJmRiitWCyXEDVlPkkT/uccHGoOJvextqBp3b7xHbwxxSBfznvJsnv12cX93vTBCRAxrLvEJnDec3ZxRTG64IvHz1ivW/6r3/xveXYWuN4G6nrF5bOa2XTGeDqlzC1ds6WpGyk6u54+TVa1tjLomEyYjkeMKpkGuxhoeydSCm2p2w40rFYrvnj4Kdbm9F1NCC2jUcaseBPUQ6L2KGXwsccoe8OoCj4VPzLVG7yEQgjJ0zakiaASkEZLYSDpgz75m8mdehPGk4Y+sggZEo/lbvtxi4EhBTUEz+XlRQKSFXku8v5RJfLL1ojRfW6tmKKPKjKbYa3cnVFJkablApBppbVom6FVRp5NqMoZm8013jdUo4x33z1K788TgyLPJnhXUOV3ub5eokzDqBql39Gx3pwRw5gQc3DC7G5Dz2ZzlgI85jRtzdnLJ0xmilF5QmZLAQD6XoYOr9yjN2vtxsc0JqboDz/5lOcvXhK0ZX50i08ePmZ+MuWNN+/ywy9WnC1qnDconfPJ5y949vwKH8UzUCsrwIoVjzDikJjeMxqNhFlgEpsz1c46sYtCMPRdw6ia0LVwfHyH9XbHerNhu1ninUapkm3tqYoR3/3u5xRFxmxaYvUdlHqC0iFNiwcGnxfATwfpQUM633RKGUWJRAaVzqZ+f35BwAx0KzXYqgxWKLI3vXP7PaoHwE/dNE/W6lSYmHQ2CjjSNDVXV5dIUp/ZKzxi8BilqarEpDES4JFnGSax7bQgkMQoQxkSuxkl3mdaZYyrE2KlWCzPUGZLNbEcHULbim+QMYU03m7CyxdLrtdXjCaaKq/o2hajFXUNvi/xPeQ20gdHVB3r1Q5FRpmPWa6uWK7OOcnnVMVRGgq3+/Nts9nS9T1FUdL1gc8fPqMNEsLkupYQHCHCi/MrAeO1Ifqeu3dv8du/8z2iUmR5Jsz69F5evjyXe9kYiAYXFf/gH/2WMKejJCtqY9CJSSAJ3IofffI5P/vNn+crX32Tt995l77v+eTTjqOjI+ZHJSfHJ/jgefzsGUfzU6azI37uW38Souf8/JJPP/0h3//+ZygD1XxLESSkpGk68rwkzyuMytCFRhtFbmT9BeSM6TpHlkkyo0lnWfARomW5XMhAIgEsOoEBaM1kMhbwLHlLSZp7I0nPiC+1hBAFsqzC6JyIAF1977F2kFTKALcoCgEookq9iJjI5yYnxJ7ONTfgtZZNKkw9AfvEg5IU0iN9S/Awqk7wfc7Dzx/z2r33mE/e52j2Di8uPuJ68xFlpamKQ4K3rNdbbBY4nlTJJ9elsJvIaDSGqGkax3hU4UOH8wUmO2E+O6YLgbMLxecPv+DLX/0yVZVT5LlYcaRQvW3dsN7siMkPcbvbMRpP+KMffMT8cE7TnKVh4s1BtFitZayuMqmhtSYr5Aw2SnMwl+G00YaiGHHraM7d2/cIwXB1tSTPC66urhJLLePs5RllKSzAyWyCNpa6bdg1DbnN0jkVGeYHIUDoeoIW5leNYrVe0XXN3s8wBE3wNcZY1utrQnQUmXidTSZTtNZURYY3DmUUWuc4v0MHYRh7nySkMez7TVLAEklp4mMEbciMpU/s/u12jdIwmRxwMD0my3K6TiwAjIYQNMvrNXXtGI9n+OB4/vILDuYjRqOK8XiyP1fz3CaCgFi+uEG+q4TdF5NvXZkfcHL4vpBWlg/Z7s5k8OdjAivt4MJE17b7M3S326K1wbkdXR/IckvXtqxrh9Y562XJ4rrh6PZrnJ2/ILQZb792zMnxKcZUgHiVN22Hj6nvMjIw324DSuVoArnR9F1LMPDFF4/EAzUR5Iq8ShJUT54XFHnBqKjIraavV7z71utib9R1xKi4f/91/spf+su88fqbTCYVzkf+6Pvf59/79/5ddvWOyXQqYXUhkBcFbhE4O78Uy4yux9iMg9mUrvd0ztO0DUU+QSubBunpXZkbX8Wbe07uf5SE8yjVkhcW17esVhIsUhQjtNJpsABlUUhdqDJizBmVJ4xyT5G/wMddsj8xoAyT2ZS2qaXnUzAejcmzIq0/CdopiwkhCjnIe0cferkzlaEaFxwcHhF9pKl7vI8czo+pmy1RacpyQlUcAT0+bui7TmoopTicH+FHkaapmcxKDo9v89rrd4RBbYTJe3h8IqCqkjNZJKRCYFCk9ZZ+drF5QcLtjOXRs6f8yV/4WWLMGF9nvDh7TPSB2diDVagAWuforMLHjMvlNYt1y8Xllk3dcnJrzrQ11HVH23V418ugJQROj48pEugZUx8ffEfXrvjpn/pFmqaj6zueP3/G4eERv/gLv8R4JFkHfR8weYbWltund+j7jmdPnqZ0657M5lxcnDGfzyUBPUYODg752te/wW/91j/m6ZOnvP3Wm4zGI16cnYkNW98TImhtWW82VGWBigP3UHpj8TBOeQd7slLcfwXpczeWO//iHz+5RDfJbokM0uyEQA689xsDTZMlryitEi3TY6zaN7LDQ7gxPR1oi2Jy/qqOWb1SKA4NsdaGohhkuDfTOElGkYlTnhdYmycmkUeryGw6ZTySP5/nWWLGyMROKPPm5hVElcI+RHJGLLl7+g5Ns2O1OsNmHZOxR+nIdttQqJwsK+j7wPn5kuXykny0YTwS5pJ3HkWJC1u0mlNvW5TuWa/7pJdfMyTcLVYvIDqsqsiyClSkH0CXV9h7r7KqhsNp/9y4eTU3n0+NclBpwipTLRdeYc2kRgQguORj1YOxFXk+ZTw7JEaHSxIqudA6YoiMDgSAyq1N5rXikaFSUy4TXCVm74Ultxk6wHLT8ulnD6nbHcbeSILkV7hZX0oNwjZpIGJKM4WBdWXpe4niHuRERt1srBCGyHD2a04YC+k7SdX8Y89SgMBhjbF/hpvNJsVpW8bjMVmSvvZdDcB0PGY6noiUwxiMkcZXUnSH7yGXurI5fe+T0TAYNeHevffoXcv14gVdv8DmHudbmrpFPPPG7Oodjy4/ZbFaMpsFJpMcawxd20Ms09of0TfiYVnvtmhj6fyQstyx2S3QSmH1BG0rmdA5h+tumHsDuDc0wtK4qgS+x3RJ8so+1gk4MITg9v87RknE895jM8Nr9+6xayNlo7l15wM+/LDDuUZkoypiUnJt13U8eviYoixZr5aMxhXbbZ2i5se8/+57tJ0noujalhh68cjTKq1pQ57lXJ89RuuGe/cP6f1ODH7Tz66T350PUbxCVESbKCyVdBjLetIYJSyDPZCn5MLZrxv27mZ7pvLwbIY9B3I+Dlt08Bkc0oV1FEaAClI4yZSwYjTSeymZ73s84rN26+RUWCgJTFB6WG8CXQ7rXoqSiO9l4keouHfna0xGxyzXlyzWT+n6K5zv6Lot0eccTI7Z1tdcXDzkR5/+kLJ0HByURK/wvaSN2awk+jHOSzPXuzolo9+w8HxoKSsjcrd8ilKWEDoBXdIae3W9DXv9VYYoibkiARUp3TgkoBTF/ft3+dU/+2fZtYGrxS4V2JDnlqOjMS5EUD3e1RRVRVlW2H3CeyIfpcJeJwBOQqSGC1uKFLkiNGh5D7dODrg4f07fN7x8+YTZwYQQHEYH6tZydXXJ22/JwEIb8SX1MaV064DVg9dZkHtQNhJWC7BhraFpd/tzHMJeUhXSHtw/o3DDchFvHrVvnJTStG2T5N4COEnIldwR3nuqStaZWGGk1G+fJEjGMJ0dUuSZ/MxEUBatJVl4H8CjBlAcYtSomEMYcevWhxzOXyeGyPXyBcvNQ7b1S1xsiKFkfnSHy8vnXFw85POHP6QaRWaznNC3EKBtHdZURAxdqyhsSoENDmvTOySS5ZrpdMR0mjOqDkEpQvQ434lFRVprA8CXduv+vpRBpKKuG5brNd/76Ic8eLNnXW+4d3yb5xdX/OizM15ebDmYzSW5XUmBXlgja9uHVEfI3ZrnYqA+Ho+E0avl3iI13sPPVJYFXezwzmFHI/re8/TpU6rxirZv6bsGbTTlaELvA1/64Cv83M/+Aoura54/f875Jx9RTgdVhKQ2y8BF/DSNFkm7NrK/iG6/XmKakisFvuupm3Y/VLJW2A9h/36H+zOBcTpx611IX3MT1tX3HXme07X9vg4YjPCtzTg5ORG8Mf0cIucSm40sk8CrIs8waRIugHW2B3leZXXJrMVgVEYMOfPJ29w+fZcQ4Hr5iBfnH9H0MoysymPK4pjzq895+fJjACZTjVUW13lCH/CxJc8z+k7A+SJL9h9ahofBi5zPZnB8NOdgekqeTSEpWFwKS/rdP/hDFssVP/+tP8Fi1fDRp19wfOuQLFMsag1eoXC8OF/KHYvm8ycvsXnF1XLNk2dnZFlGlWVSJ/sgpuGAsRlVVTGejMkLqXtHpcFHsRRRRqOj+LvNZod861vf4u13v4TRhtmB5vLqnBDh9t3XePrsE3Z1y2a34/zinLIc07Udeh0xGqqy4Gd+5lv89Dd/jkdPHvLF0x9RljL8K8sxm82WZ0+fkecl2+2ad955i7yQe0mn5R51TMNyGS5IYnjAmozptKJuO6qReEgSArUOOC+sqnXdMJ5OhTmKDNtkeChrqndyfjqX0udTIrhzTqxw9n62Me0RjVYZZVmy2a4lbdxovIuANIZ9L5YzymjyTIMG8Qd1iWUng/y2aYmxpG5qgm/xvuOTh5ccHtyjKCrGk5xtW7BrttS7M7o2MJvJ8HtXb/Z3jNEZxmravkMRcU78JJVqWW8155fw5aN3uX/3Pr/9z/5vPHj9De7du0fnAxbxleyaRqSKez88AUs//+IpH374AR9/5w9Q2mAUlFlOv2fxKZQylKPRvk8qipwyL+h3NdqLcioG2ZuTyYy/+lf/F3zja99gOp0RYuC73/sev/mb/zk6+W8WRcn3f/AFWZFxdHhIs5M9Vbe1KBD2/cwwVJD+UhKUpWZu6halFdv1Fm0yqkq+LiTfQ+87WtOxWa959uw5JyfHHB4cYDOpV53ryNKQK3ixAnBBNJE+ppTSBOxpoG5blssV622DRnN0eMR0NuPoqKLvG6pyQtd6zs6ecjAfy7AzRtarLReXy6SQ8bRtx+XlgrOzl8wPp7z22n2m0ymLxTWz2ZQ8L1J9JrWN804knEP9GAN1u+Dx829LTeKcDOL7yGDuH3zAR49PbFwaR5aXKXhBmKtt16J9pO+b1IdH1ruWq/WK73/yIz7++BP+zJ/6WU5Pb3F+ZVhvl2S0bLYLej9YHkko3nbniTpjPs9xfYdVmqgjRZHTNC0KzbgsZdhVVuLvZgzGWkw698vMsnMbHrz2gKZxyS8S/tQv/2neeutdFJqui/gYyYsRWlvauqGocrbbTVJJOY6Ojvjkk0+o6y2bjXgsz2ZzXOcoipLNeitWJUNFGYU9KZZgkcxmezuAoXYJPrDdbvBhxV5grCKh72mbFq0zsjxnPBqnuiHD6Anj8gFvPvgmoHj09PdZbB6C2mK1xjlAa6bTSbo3k+WKyZLlgiFEcL2XPlAnBqPKGI9vlHAxStjGNBvJgNcH8lLCK3q3pmlXMsyxOUZr7t65t99ToBhPRsSoGIhmStl92nTv2lRT+2RHFhKBqRdWISrZN3UYDc57yvyQxWILdsbv/8F3ef70mtW2xCtHWd5mtenxhSI3Bm0My+sdi+WSpy/OuFrVbOo29SWCG1gNWVUSKPZS5gGAhORQGSNFZiFYvvylD1iu1nR9x8uzl7z99tscHByw2YkFjQsB1Ro5E52nd0HWZJGzWa8harbbHUVesgrbfR197/5dPvjgA/7Jb/0TPv38c5SS8Lrj42OOD4+5d+81tLEsFiuODw9g6OteJbsQ0yGVVEapB5QyXaxhfLghZv2LfvzEAJ+xVpKyokyFxLhSFqhK5u8kNoIajEy1FLXL5TYh0tIIDzHSryLne7DqFTbQIPUbfOzaVvwGrDWS4JJMSuXvlSQ38VIT/fiA0A/JJuJLZPY+RDfAYZIFp6ZKIQW3VqAo0Loi00fk6i5vvf0l2nbFavOEZ2d/SNudk9mKw/lr1E3HavU518sn5EVBWYzoWime+76jKioUms22Yz4r0NrjfUuMN/LSspySFxnWjphNTjEmZ6Cw932/f05//P/2gNjAdBka01c+5PdMjJF4I6d89e8BbphaUeE9LBc1qpqRZZHJbMJ4lHE0K6UxiiJxybObZypgB/u1kcp1xB9CJrp13XB9ec31csOuCRwdHvLirKL3W6w1ZBkSppHWmtY3QQ571iJx8JRFKZEQ1c1WWHx6kJtZbmLL4VVgdAAdxZBZmAzee5Q2uF6Sq7Q29P2PG+IqpRiNRoxGo+QDqPa+hRqVWFcxrVWb5HNpTwj6mNa2FFP7xC1vyewIHWdsVoH7dz/kaPoBnb/i6Yvv0PQvybMx08kpXRvouhWdWzKfZ+S5oa07WhVwfWA8KokRdjvHwbREKUfv+32DpHVGXpZkDQQy5gd3MDoXdoaPKbp7CF4Z0rBDWld/HHR5dfo17CthEe39Qv7Yeosx4oOibnpsJhKYrMjQWkDGGHwq/B0xBA7nhwy+a2KqK74YKk0tmQpzT6QTiszKvo7AdtvzxRdPWC4uKQpHNJAljzIZFsjk3jkB84X5kczpGUDmgFUQohPpT9vTtt0+oWmQbWdZhkmSWq1EckcCUgYpkfdOLnMvl01ZjmjdRppqH1IxoVLRJwVINpvJWlPSbBsjvp4qIgBHugQHo/gQZDok63tgPA5m5RqjM6waYfSMFy8uOD0ekZk7vHH3HhfXn/Hy/BOsjWRlgbUVfr0gLzRVNUIp8YxZ7Gp0NFTVBIyh2XbkWYXWKZHcSdOtdY62lqbbSjplOaeq5sNqoesl4EDWhN8zfYeE5htwPa2zPVN5GMeIx2OMAY2iKirqtufk9ITDo9dpmo1IeFRGiBB8B7rn5YvntE2L223Jy5yu7chtSd87bt25x717r9F3HX3b0nWtMAZN+r7D+kczKgvWyxdcLl7w+hu3kbS3lqbeMZtNefPNt/m5n/15Pv/s72NMj7Uao32a8gnTziWjZm1Ehqt13DOq66ZNa61OTCi7B4yLsqAoKxQkac5wfhuMFfYjAXwU5vR4MkWp7hUwVZgogwxDwqQktMqYAqJCG8htgVaathdZguIVtiDif2q0IUSVEupSGnWUQjUvZlTFEc+eP+HqsmY6us/xyQMUJX0HqJdgI9v1mhg1s9mU8cQJZOg8m6ZDa0tmK4zJabYO7yxaRwl9CYEQFFpnKGNZbRbSKKsRZXmwryWcC/vwlv8REz7eAHxpsXH37h3q3oEtePz0JX/4hz/g//Xf/w6brqX3FqnNHEWRM5uMGI1KQq9FXtt72qZP519IQI+jKkuqkbA5RqOKvCzQyuCUDEC0UgQUTdPR5DXL5YrvfvfbvP7W63R9m4JmJIyh6zwvX57RtwGjNG+8/haHR4f80Q9/gFIOYyxZHsSmIRdgWNJCZXCSZwajTALiBARVRs43UQt46qbBWsNmKwbm48kEm1nyLMNqsQfou54syyGBwYrEsNU2Nb4hsYTE+sAYizFi0i9MU6nrimKE9z3EyKic0XUtvW8Gvl8aqMjac85hbYZPgycf01kAxGgZV7eJwfLw0Q+5vLjm8OAB8/kJd2+9x9OzHb2PdK5ltzunLA44PQHnRXrVNgEdhQGYFSUxCHCZ5xnON3haTLQJTMyo25bAJd5HMjsVNUoY1pyn7z2Xl9dcXi/47g8+phhNwWreee8u3a7j4QK26w33ZhmtM0ymc4KPbLeeH/zwMUrDbDZJNVVihmrFdCJNrjGWsqqkCRxA1STRzmxGNIaqzCDA7dt3eOutt7m+uiaESNs11PUGrS2T0Zy33vwyZWlRKnBxecnJ0S0MVoYRgKInLFeJrSbvzqQaJ/geay2np8fCUJnkoOQ8Csj9qpU0zFqb9LMOB1ckBkfvZL0ZQwqxc7RtLeEYtuLo+BCljQwQo/gDh0AKlegTe09quBAdWW5RKiY1BPt7WlpF2RMqihx4MOzvXYPRGbPxXUbVEdfLZ/TuWrB4rehah9WJGIAS9qUX9ZL3rSSTchOQdXZ9zhAeoo0A403juLpYcXm55GA+QSuD0hLsJQyzuJcpW5uhjCfgaTrP+WJN9sUznl00NM7xq7/4LWw54aMfnvH87IzT49dwDq5XPU9fLsiyAps82da14w+++5GwYFFkY5GWRoTUkOUFWVmRZTK0kX9L3TgaVXTbRgZngu3zy7/0S7z3pQ8IKM4vLmnalr4TpmqW5YCiqka89eZ7PPziM/recffefTbbHVW5Y1RUie2dbFCi8IUGokL0wvz0wUOEw8M5SmeijFEFdd0yn88BT2YlebgoShaLa84vzoXIYQxZbjkwE0yevO/6HucCNstR2L0H8OXFJdPZDKUt88NjZgewWm7ZblqqErq+pShyqvwW8+nrGPNDPAtC8FxfL3B94O79Y+ptR9utyIuMb37zG2y3W0J0zGZzbGY5Oj5mGBzD0IOIZzhJCRejqARE2u5wXiUiiU9KGfEIF893j/M9KPESj12DUo6qHNG1bVLU+T27z4eADxablTx5+oTDoyMWqzVPnl6waQ6IxjEyLavNUkL7VEbXO+quZ9c4Zgcz6rpBBQnRQcu9kidlgM00xmagNFmep2AbJf2HEl/dMrfcvXuXi/MV6+2aPLe8/sYDlisB1oZgObk3JTHVmpy+d2RZzm6zJYbA6w8e8E/+6W9xfn7BqBzRdZ43HryONRl1vaXvE3s91dZiSyJgatO1eOcTYUB8Y/s+EFxJnu4udMA58bA2Kme32+GcT7iGwuiczM7JzAGul3d0ePAmPu7Y7B6lPuimvshsSYyaiHgfh+ATU0/jXJsQ7i6lSZdYIx6D8r4jXqK7iO6ml1Vap1C81O8mhu2rGErXi+2KSazZAVjMsynWloRwTe/Xkthr5azyQfzjXLtLv6uhc9JD9K7g6jLw8LNn9F58NZtWAkhVplm8/CG3Tw+5e+uU0WjMo8dPuLi4YLvd0jloe/HkNNZSlhXT2ZzxZEqIjryQflQrDSqmwDZhfSvAtT2v377D8dExH//wczabLVdXl2TZKZtdLQQiY+kTE1EyGnKqaowwIqUPnk6n3L1zn9wWqe8IaVAY+MbXvs43vvY1UaQWOeNxRWZsGtw5VosFoW/pe5cGvOoVJeWNmmDg9v1x4tWQAP6TfvzkHnyuARWSF5Hag3vee1znkrTCiEnlXuKiWW8kKrpuBz8Y2O0ajMkYj0dyeaWLNybj4SzPGfwdvAfvPHlWYHWOjxu6Trx75IUlar6/iSbP85zcznC+IeIp8rF4IIQtcsCIPxARgguQItrdELuepicyyakYl8c0jePTx7/NxfUX3Dl9D2un3D79Os/O/we6vuXl+WOCMxwe3EpFncN1cvgO3kYQ6HpH07a4EAl+yx6DiwalNecXz1mtr8kzjbVz2q6mmhwSPGmiKObP3g8JuJLGRvTpIh4G3D8O70WG5KgfZ0jCKwyb1PTFGFPhqnF94Or6ij/6vT/Ed3B6esTJ8Yg//Qs/T1UVcmDoEVfLBmtkqr7arMmrjKIoWC5WFFWGipbtasvJ6Smff/6Ybb1jcX3FxcU1282K26cnjMsRId6hqZ9RZI6ySl5SSsA9n0zHBx+F4EVCqpBCq+scUclkZGCnrFZLYhRZtxQa1Z4JOqwf+X3F4NRFJ8mTpsD5XZICiB+arLUbnb3WRg6MYkbTbYgxMKlOaJotni06gVzimzDImaSRl2Il+QUqhXdAzDAmp2u3rC4vuLx+zJ1b71CWFbeO36N/0dH211xcPKfvNYeHxyglUpa+CwQv4Lm1MsX2vqNpDeNRD+xAS9KdUTlRwcvzlyyWZ5Slp+ugaXeMZydENM6LrF78Q1KTmhhuMZklE5NcX574fkKUViCDmbgS+h5DNuOQUtZ2jqb1lCWMJxVlmTEZZ0xHFfVuizFSiOnBX1ElGZYKez8GowfmhoDKRT40nB1t17Pb9uTGczlekJcFnd8ACu8UNi9om451FKmgUPIjMTpc8PSdyMSHNeJ9l4p2g9YZWsNoXBK8yIKapmF5cS0hLdqQFwVFmQugGwaQVy4B50UCqrTZg6kyURTprwDT0nDHxGwRD8sZ3nu6fouxxX6wMoDqXdsTiRib70F25xw+CsNGpQKr6yOZzendEu88n31xxuH8DuVuRFFoptM5V4vH4rm2u2YymeHDmO1uwxBMkNmSEKFxgdh3dK3CkNO0W7QNKQVO2NTrzZbr6zUuNmw2HZvtlmPv0TrDOaHhKDzBpd83Kkj09b03EBrB1yRQYpCB+hj3jYHzsNt1KFtibI62iiw3wtBTJgUM9QKQhJS07jopfvueLCsIEbI8I880ZTFCT0fUux1lmZFlAuaHGOldpGsDjx99xnqVfKgSWxUFk+mUoqiodz2bdcNiseR6sWQyKTk4mO7vhBgdGi8MOQxo6L34LwalKfKKEDQ2E1auUsnse7lG91A3W5RSTKYTAQlTcricKUOBLOE7Xdu/Amrp5OuqMUYCFoZmwVqLNVXya1xJQm+IOB8xpiAEg/M1MXbkRSlNa0yJ2yEmto7szbbbYo1iu1ujNWzaFdv2CZfrnFE1wWawXnZEevpuSwwGsLRtSwzCksnzDO8iEU/oGvpOoZSl67co48QI2ZFk/g3N00esNyuMLlgsV9y669GmTHUD6JgSTSMCDoch6SwmKYmw2R689jpHp69xvW7YNYHJ5DZKgc0yfFAEZYjREUOHTkW3sUb8kwIobBoW6iRDTPd0YsB5L7VSTB5gWmus1pRFxijXXJw/5d69U8ajAnxHDI718prxuEKrSEQSr2djhwPatmGzXaG14fz8OUopttstr79xj+l0jPicCTEqM1ak31o6dec7KWyjoihzVB8T+4/0ewlDw9rh3URUKcyOvMiTxDIxXwOJpRfpuobetUlqnhr56AnBpOcg+5OosbrAtX0a1u1S6FdOZkt6V+P7ft+s62RdMtg+DMxDsZeILLszSQrMcnZ9w+78KU/OYDwu6buWputQyrFeLQhBwPK6blEEvOul2SPSh0iIls5pkYT5hqzwEA1aCZu+bjxX108JsSbPpFk9DQJkOi9nlDKGbd1wcX3N7uULynLC7/3eD/jk0Ut+9KIji5GPY43KSmbTqbDxu46m3uHbjt61wkJ1Dq0UWV4wmUwZVSVKazIb04BHTMV6LzW6McLWMdrgY0cMcH52LsM6JcB+1zYYwGvxVJTggUjX9LS7ljJD7FBeaUa8lj+3WW9YLzcStJZlFEUmDaUxFLlIXfsugbBO7qoQIj6x4zUC4jgvbP+ub2naXnySicJQyUs2mwXBe4pihFFydquk6FEazl5e0tSBqpoSveZHn3zEdrfkjTfuMRpXHB8f0TTNfljrXKAsKwlBcY623crwMnk5oixNU0Oo8Z2ibT1ZrpPKwu6HM4EofnkhCDPXWPreAyK3VN7Tdts0+LUYLE3Tsd3sGI1LjM1SPRDQAcqsousbQoz4aGgah8LRbGps1uEZ0/Q1ddvwyWff4fad2zw/e8rnjy95dhZot0sefvYQZQwhaOqu57W7d2naht519K7DeWE3CgAgDPU8LwQ4NQZtM6LcsMDAEA9EFcms5uBgztXlgt71+Kh5/vIFmckwyuJjoO17qvGU0WjMlboGNHfu3OfNN98kyyyud2w2O8psw9FsLpVh8vQMMez9vpRif//HGKiqkqIocV6T2xmnh+/TtA0X1z/C+TVKeZEoe7h//z5iqyK9YVkUZPlw5si5kxcjubODDFPbbsvhyWli2hvyPEdFzcH0CK1lmNl1jQRS6Y7F+gugw6gs1UQFVWmpRjmjqhC6agJ2yipPIK4ERPig5QwPA5M8pCGdxijLaFSw262l51aetm1lv0YlQLDrUTFiM0vTtXvCgtyXNq3xnrpd7aWpAuQaUAWRkqw4YGaO+We/832cC/zT316Dymk7iw+ewsJsPk6yYkXTtKxWK5quk6FGiHStWBAYaxmNxxzM5hRlSV4U5LlJpB058w3iNZhZg+s6juYHTCcTnjw5Y7NdU7cNy+UarQ3WWGxiYLV1LX6hvM7R8QnHRyfkaQA5gPu/8qd/hbIsZaARI8FL2qlKNaKouVLf78P+KDPaoqym6xxtCuDonaepFUaXhODo+i02MzRNZDqtMFa8i40u0pAp8PL6EVl2xaZ+iUJxvbjE5i2onuAR3zgfGFXHzGcPmB/cputbzi+fsN49R5sdiog1pTAlA6nWdjT9QDyRIZY2w1D7hmxhM2HG+0RwGZQBso8GOwFhxO0HZQzhLhbnA3W9QZmetulp20BEzvKsKNG6IMsOUfaYUTYiy2eokHN4XPDmu27vobferNjtNoQo99FANOi7nqPj27jeU+921G3DZrOjaXvavmOz3so+943IZ9uWzGT0ztO5nhAFmLVa7hUVA9/4+p/k6nrF9fWC3W7Lbrtjs95wfnZOWchaEKsBWK1XzGYHjMdjyqJkNBozm045mB/w7jtvy/A09tLLhph6C4/NMgEbiaxWC3znxeIl4SUqStCbSljUgLcobjIo9hdnHHpk9tjL/w/wvZ8c4Nusey7OH/H22w/IcvnrhgZSJ6mGc0LtBEckYLSlrHIxTs7LvaRNmGRSWOx2W0ajUYqrT95Zwe///oG140ObUlJToZBSZQbmCvBjMebWGna1QylP8CtiNFg7JbMVbbvB9Q1FkZPlmTR9r3jJeS+ssbquUQhVV2lNUeZs6mf86NEXQukvKpquk8I4BK4uNyyXOVk+oO03wCPas9luMWaMUqNEy5RDInjFwfSY5brGx56XFy+5fTLherFLZBWNMVaagcRs8t4T/DA1vQnT2HsXym9DTPKVSBQ2ET/OporEvYfVj5nbe/GOPb8857NPv8Pqesfrb7yF9yueP7/kjz6e8/EPPuHTzz7mb/z1v8Hf/tv/Pt/4xtf40vsf8tu//fvcuXefr3z4If/2v/2/53/2b/xrtHXHP/gH/zX/1v/6f8Ojx8+EjUjP9eKC3fqa4GtmB4fcunWLl89anj75mC9/+B5FMgQVtB0BkYn40Kfhq8dHR4xWEjH7iLaJqYhhkiRmKE3fCSthCC0Ykpdv/PtUes7tvjhWmD0iL6a4pAIxsWOiHKDD12x2l+I1ZQ/JszF1s8L7moEp6pwTeVTyEhiYL23bEGJP3dTEAMZKYfzo+W+LFCIvCaGTYtl1nJ0tuLrKmUxKadIQ1l2GxJkH35HnM6wt07ru0SoQvGY2nbNc7RiNMlbrFVlestm6BAgoKTidJwYnTa/3wmoNNx5uAnBqAkPC3Y9/DEzfQTJIFGPwqFSKplecn1/xg08f8ez8gpOTEyajgm9+40O+/P7bjHKNUj6F4Ek8u0pTyqgdUUPfRjFstzlt48htxmrpeP78JW3XcXZ+wcXlNa5z3L/3gKooycIBkoLdk9sRy8WC59un3L5zzK3bJ+kcSXK7PBUKUSQOGgFmne+xqB+zHYgxkueWw6O5mIynJsYoTSCSFYPERi68vgtomxN8j/fbdK7Z/WU4sAKlkbjxI9XaiIm2MnRuh1EZuT1gNj1hu13Tmw0+tOIB1/cE7/ahRySgte972s7RO5kqur6nLMdcLj4SeYgRj9GIo+0alusdL1++5PD4MDHXZL/0XsC43okRcp5NURrZm8HjvGc0PsQ5xWg8Y7lc4hz0TlO3Ygo9nFfeOVSUs3KPH4ch0SzJ9tVA4wsEFVFpehpSU6CUZlv3bGpPNs3Jypw8t5TZkCK9QmHFL85qXrt9hMiohWk+RCAoLZNeH0ROrTUcHb4h7Aslg48QFattz8cffUHfb9OEPYoEvtmRZRbvO6ydQzBsVlt61+D8BuiYziqCjxgtErGQPJ0GNlOuLb2ThOe226HTVByCBEWEQFFalIaDyQHClJRGwiYgRSlJO96sW7JCQI2oaiC9Y6NRKnvFQkDumoFBaXO5i7Msw8cOomYyOuXWyTvstlu29TPqZonWYmCvYjKuNnI0uzQYEKbECvFba8nzAu8d26ZnuTVkNifiqXc16/WOtvXM5jNhB4ZAlnyVYoz4riM4Q24O8AGcb9EIgFBVM5q2YzI5pHfyPPug2bW9+BQlRqPrHSo48V/yiUWd7lQfxKQ/+EjQml0b2daRPD+iGhXMD07pvUz8Q5Tms+8bfvjRd8lyy2q1ZDaV4K8yFynMyfEt3n73PbrOCRPUe+pdI8xukp+asckvFqrMslld8uzlBV1fc3AwkkTXppZBHWKgrrViXEqwSN+7fdkonk6Bk9NDtFIcHU0TyC1nqVLiCRuUxqSzReoySa9GaXxw0uBmGW1Ti1F319H3PXmeM58fYWyV7k6X1A4y1G1qx3bdMZ6N6fodXb9lPMmJRIoyl7VlM4yxe/ZWCF4YhKEXX1M0IB6YB5PXOT56i4urZ2x3j4k0KMzecNxaK3epczjXIjJNh9Yt4HCuIctymq4mhJ6ms2S5MLWWyzVNI8C+8ckyA4XU6jIcCS4BW1HTdg1KC6PQ9ZrxWLFcLTk9eY/edWy2hrYP7Jo2DX4yQhAbg2989evcuf+A88WaH337B7TNBeeXV+z6FqVzWq/ZxUBRtiKBL0sscDDOcX2k7+Qu7eVhy92xXVG3NUVVooNFaU1VVDggV4OkSVNNJ6zXO7brDV3X8Xu/+7t84xtfZTqdyX3YdcIkwRF9GEZx9K2k/0YbiT7uGXMDU8E5AWpcv2a73TCZjDk+PKQsS4gqNUgKtDxvGWT1xCjSWhAPyiEkKYZA2/VcXy84v7hAR83JyS3yPGc8nkuKuxpzdXlJCB1HxwciGesD3st79K4j4rh16xarZcHZ2RWnt+YcHMwwxtAk2blOddcN2D70FOnn9B3adNTtFZktsJlN91NKftYR73vavk9+vIa6qVOAW3pGXY/SIbHhBMzpOgdRUZQSrmbzjHpXU9c1ZVHQIdI3m+VATtRjQsgFhMpyxvkB88ag0Hz+8Au+ePSY3/5nnsvlhs4ZYh/Ic0NeFqm3ykXGuttS1zuc63F9tw+eiDFSFBWz+QHVaEw1HkOvMSZPe1SG0HmZoYLY4mhl2Gw2BO9ZXC84OzujzAthUCto2oaf/umfTueSMDsUKjHR23TXKrbbmq5PSb2kXiUOvd/g5T2st4hzEpIzKo+psgfcPv4ptNFU1ZSL64/wYYlWEe9V6guHHkf2c9gPWwPO96mmF6BeCCJWEk1TX9V1HdYU+/t3vV0kD3rouo30CEmV5nzk8OgUl34f6VNElTbczSEq6A3BWQKtWFNEAbCNiYxHE+q6keTcvicrSpqmxlgZKnWtQ+k+pa92Ur9YLeCOkvMJSPJ0tVcnOQeRkhhzsuyAanSHPL/N8dGUzpU8eOOrtG2f5uhyT9d1k9j4oK3ZJ/3G4Om6lrquk1eap3c9TSOMSOeckE60RikJOgnO4VwnA0IsKrPo6HjrjXd5/vyC5WKB68X/+OOPP+ZwfkCR5YzKirISm6pf+qVfJMsyxpMphwdzVsvVnvFOYlRt+s2+/1CJiaWVpm2Fra4SMcC9QmYRe55B7SI/f987Nrua9W7LdFZB9PhOwoLq9lJ6H7elLtqkMDNEreh9zdnVhTDNrKFzwko1asa9k69zNH+NO3ff5WB2F4UEELXtmufn3+P3v/MPcO4CoxwuDjJtDT4NbQNkpiIETwg9MbqEVdh0hybLtGQDFY0MIRRqj5EQYrpr5euVMbTdlierJaDo/Y48z2lqyPM5k/FrjMd3KMsDbDYDMyNQYrJcADDXcPbyudQiueQhTMeHhDAXBUmU3rtI4Zok1mDXtrRts1eGhUFRkYp/P+zNRIiIQfaSUuLzrJQweU8ODzg7O6d3LU2zBQJPnz7FtS0PHjzg9PSU+fyIyXTC/PAB77zztii/EujpnZN3WtdcXl/uVTMxekiDw6Z1NG3NQO5RUaHTmST+sCL3tlb6gr3f3j79feDvvYK9vNIrv0rE+hf9+IkBvjy3VNUBKGEcxCjyS5NSciSFSAIO5HD0+AAEYTkZY9ntNjRtI7KVaJiMK46PT/YT3BBuUu2UMiwXW7yzFHlF269At4xS+mlVjYkxJUwqQa2HRQsKF8S4lmScnZmKk/n7jEenvDj7EU08R+Q/MrEe/NpCkq50nciBu67GaElu23Vb8rygbbeAp/OGzJT0vRctt9ZoK2ixoNcyvffeE/0gY+kJ9NRtjVIt1pcoDKvNNT4UVNWU0ahkW3dsty1tkxphK5I+2dwikYvchJYM4GR0SaLCgBzzCkswhZbsP5cmR+EV5t7AltGapuu5XFxRlpFZEXj29AvGkwO0yfji2QsePb/gs4ePefz4MU+fvuD46Jijw9uE6Fksrnj+4hltt+Ps7DkhwGq75eHjxzx8+JCmbYmxZ3444+XTLzg9OZVIeaWZTHMOj17HWpF5D022NinEQKUUwChs0RCEFYGX1LYiz9lsV3RtTb3raFvHZDLl+PhYwga0ou8bQGjIrg+slg3eWarxmOV6RdevOD4+QOtIVVU45ymKXJqgJJUcmHxtt2XvwRY9WhdMqrtMJ7e5uHzEpn8BQXzPEn0jsXwUbdPjXI01kiwsxRR03RZrJXES5XHtBqMtXdexXm+oRuW+aHTOiWQqz+l6Yf7EYNjVNc4VrDY9NuvIsgKN5nr1EqiwWUE5qlgs1oyLmt1OJnJ5LvIi1ztCFJZL8G5ffO2DM+LNMfXHPSBhWGJpYhZTiAsRFTRd1/P5Zx9zcXaOtTmjSrPbLfi9P/w9bKb5v/xn/xn/0p/4Fscnp/y9v/f3+Et/6S9zfbXiO9/9AR98+D7vv/82/8G//3f5M3/qF3nw4DX+j//xf8yv//qvM50e8vDxY1DiwXNx/gKCo202mMxy587rLBbXKLcltxXVyZQ7dx9I869Cuki8hLoQUviODBRClIt1SNkMwVDkRSp2NngfJEk5MxwfnzAeTROo2+1ZdsK8qulazWRywGqz4eXZI27fmZMXGQezOc55ssxirUnefMICdM7TtMIU1QZhRuJTNVyilafrNumR+xt6O2nQkBKW8yxPMk8pGozRNO1GisbQ4aMmsxl979hudhhrODw5ZGDRkhhufd/hgseaQlgGoSO2DVlRk2fiIbVYXmKzgpPxbZSBbutYrTe0bUvX9eRFhdGGPgRIQRPB30ztJaVM9lm4WVVpMJkYyTEmMDBydrng8ctLVrtPmE1nnJ4e8PUP3+f20Qm3DysB1DIjk/LUdCgdicrJHo5Dg5GKqziwCkTyttluWFwvWa62KFUwHhWcnB7z8uWW6D1tV9P3EtBS2JzRSED2i8szDuYV1h6mEIUu7VNpOgRQFAnXwFobzjUfoe28eJpqQ98J66tpWtpuQ/CK+fw4AcEOlPw9TdNz9vKKzMwYR8Vy0/DRR9/l9PaM6XTE6ekp1mZ0XcdoNNoz7/KsoostTbfbMyu0ikQVaLuas/PnBO+omw2oxFAWVJQYhV0YYqDe7YRRnEnyd9+L/1XTbDDG0PVtCp/xdF1PkxJoDyfT1CQ4CDGxKn3aFxkuRLxv6Hvowo7xqCAGxfXykrIaUVSHxN6BVuy2W7zzNE1DUU7IrKUOklgaY8AFbkyO1eCDKBLZrgu0LsOWI1A5qEiZl5TqJhG7d47dzvLmm+9T5DnO9xgllhyZzYRtCjjvKKqCvMjoupa8KBiNKrTycs4oTcCw2W558fgztpvL4VZPq17AyIiw0cUawHLr1j1Ai3E40lR2XY81kcwKWK2tDEu6VgzXg0/+x4lVPCSL+uDSXgtsdzXL5Vakn4V44YzHB9T1Fh96nPMoPH1fk+Vapm9K8fLlczYrz/zgNn0bePrsJZ9++gPu3j9hfjjjzp07KMTz5uDgMN03JURN7zo6ahTsm/PgA4vVE9a7K6IPtP2OLFP7xk1YpZ7euzTQ6MXzq6ySPYqWvdJu01aORCWS2baVIexoNMLYTGRSfYfRmrKw1HUN2mJsjusVUQc2TUtuI4oSTcHl1TnlqExAbQ8q0rUdwUda11OWJUrndH2DUwadTzk5OeLX/idfZbVaJBuSiPOAEs9acHjfMSheNKIEsFpqBKU1fe9SzSv1ngt9YmfImTj4rVkjCeG5he16ycX5S9588x6z6ZiD6Zi2ren7nrrecnb+kjv37spzT4yXrhPPKTuEmaSWZagBOueZHx6gouXe3btsdzsWqxVZXRNCpKpKRqOczEp4ijCLk0eoylBoQujYbTf4ECgrCSGYTA/o2o7lYoPReQok8xT5hMPZG0zHt7m4ekiMUO9qrq6vODg4wigrsm/g9t05t+8cSt0YfWLoK0ajZBkDadCevCKDwqgM5zvAY62WYRUBH9KgKd5YIfRdl/68SomX4qHctDth7iYGWts2DH6MMUSstjgX6F1kudoBgaqU9PO6bpDwgIy261FGE1WHdxalRszmpxwfvcnxYYmPE/7KX/4ydV2LlC562k78HmMYhsjJ9ykN8X3vkifoQAxIzEkjcsVIEvGncxcf8cnXkihkjju3D3n2/Bmr1RJjFM+fvOCLzz/j7bfepqrEi9qoiOsbnj9d4pzHp4Z5AI6HqXDXd8nLevBCv7HBkTryxtvd+4jNhIXdR4UODZvtBcbkuDajKucs19d0gwVKcCkIoEBF8VvuXYvztQyPjaTTy3qWwb/4OQ59lvSPjh5SgFCMkT6kwKAQ937IMUKe5fvBd4yBfrCySDJa5wNWW06PHpDnU55ffEzXi4dml97bbnuWiAfLtF+g63tCLWdVDKA6sFbWViQm78ZkN5TWmHeRohxRlhM2647J5B6z2RtUxX2yYooxo8TiM6AtPgR2uw3Pnj4iyzRkmoPJQQK+rKSeZzmjkQSkaC1svuVyedOTxmEgqvaEE+f7FD6g9mxRbXIimrLMqcqMZ8+estksQUVGowoVA4cHM05PTqnKKr23ntlkRNt1dH3P06ePRT1G0gWpfYs7ILj4lKguvYAjzzK8d0mJdBNs4KNnHywA+/XXOYfzLe66pyxKnO+ZTKdyvCJ2S23nUqio3wOEWWZEZm2kfut6eP3+W7z//p9kuwnUNVizY7nYsN3WTKZjqvIus+kDnjx+RlQ7jFVpICnknqiEsDIal2gU22YloSoq7PdORM4akwZzLvg9B1cY1Tp9zU2as0++sjEx1ZSZMx69yf07H1BUr4GZALmwJLMSH8TzTweDNZHzqxf8P/7b/47XHzzgO9/5Nu+++xaPHz+hHI2oqopqNOE3/uK/hkLhXBRmc98TvCIiykZl4h6TGMhIKkqgnDGGqigobSbYSox0fcAnQHC9XtI0OzabFc53/Ok/88tUZcn9u/eS5DpHa0sInta3bLYr+qb7scDSpqlZb1aMpxPyQuxpBqBP+vUbwgpDDQH7ILGI3PVFLOXzfwxfIQ2QbtInSPuU1PP/5BDfT+7Bl3VMJhbvRQIGqXjUkhqVzKZQKkBMGz442k3NbuuoRnOMDVhTUUwn7HYbet8l9oYH5dEmppcRePjwIUZNGI/m9K7n0x894fLqgrv3ZxwdHXN6eouu7VCqYTqb4JzfF74iO5JpnNYk+W3Ni4sfYvRDfKiJvkcnzx1rDc5FaW69SxNGR56XFEUlfiwpXdQYMVaPUcml75q9ybzSEnHeOwmhMFa+d921lGUFSGJSCJq268kLhVEz2q6mdguK/Ji22VFWGW0jwE5d14QYyMtCFs8gr4L9BA558umf8jEUs/DKwoo3nyNdBDdff+ONNnxcb3as65bFOrDedUQlbMpdveWzT7/g3ffe4d6dQ+q65c/+y3+O6XSEtZb5fMp4OgHl+Mv/+l9kNK7I85x/89/8qzgfuFxcoVBU4xFPX55TVlO8h1u3b8vvoSTtzLlm792oVES59HvG4UC/AZN617Fbb1lcbymKQoI88pyjoxlNU+/NSLfNloijLDMGb4LPPn+I1TOmkzl91/H86Rkvz55xcjrh5PSI09NTYpRY8MPDQ2HP5EWaBnqCloNiMOt3fsfF4lOulo9QCkmaDjqZ4cs+8cHTOye0ew0RTZELUGKNoXUCQBpjiKlwFzlSpKxGRLSYMNeNNHda/LtcSoYjZjinRaYRPdqMKLI529010W3Jc03f1dIshQylA03biJQzMz82VRCT2ZBYQdLwK7U/wxhoyMO7EBma7L04gIHp1AhphHpxfcl2t2Y6KXj8/IzgO2azA9q+5fGzl/zhd77HfH7A2285vvud7/Gtbz2i3va8/fa77LY9n336jE8/+Zy33ngT7wKffPIJT548ZTqrWS7WtH2NDz27ektuIMtmRGWoihFd2dHWDW3bMRpJKAtKkv201mLK2svhHiFJKYcDWYq37XbN5eV678s0m0yZTKZUZZUYdpbdrmG1vuJwfrD3wru6umaz7iiLA1zf0XUdy+WO9WbB4eEUomI8nnB5ec7h4dHe50jCEDTet/sm3Whpbp27omnWcmmrRBv30vxFrXAx0vuOtmsBqNuOUTmh7yJlNWG7vSZG8bMSXxcvRaWDvChlUKPEE6auW4osp1fSKGhtUSojKwyht4SosTpnVE3Z1QvabokErAf6boMxknzcdS298xQj8d7aDx9iZEjClX2fYA6Vzqxh+hWH9M+Qwkigrls++uiP+PTJc8rxAcHf5sXzz1hdveDD99/jkx/9kNffeMB0OuPjjz/inXfeoixH/OhHn1JNCr785Q/45JPPcV3H1776IV88fMRyueTrX/8Gnz96zGazQ6nIZrNjtVoSnGc6mYMOWF1wfHrI1aVI3yRdVoKeQvR8/PEP+cpXPVlpCL6HxGAJREJ/E3AUQvJQHJhlyaR7sVizq3cEHzk9OWE6mTCZFJR9R1GM6Jqe84svmB/OqCphB242O0KEznUUvkPhuXv3Hqv1JX0v+60oKpqm3ft4xShSc2vN3s9HPOukEdba07sN1uSY3NB3StioicEoU+CerpOGpO06UIYYFKPRhO12SZoFYLOMEHrxZouaIi9pnaN3DmIQYMFY2q7FB5GoxKglhKKxGJthzJiyOKRpVzj/gu2u5vBAsdku8L6lLEYJdO0Tsz/b42Zydya7hhgS60LumLZ3LNYtpizJrJZhkzJMRgWb9YrgA0YZqkwzOppx62iWfFjFu5cotZA2ikBi8iYK/Xx+m3GVgxoGCIaI4cXLFX909pKur0XZFRUhCrBQ141MsPfBPJqToyPm82M2yyXbXZP8giJd37NerymrnjwvEkjeM67KfY3gekl/t1akLgphMDnXY22WCuCeum44P7vg5OgWwWey162myOb0nWa1uuZgPgI62rbHZobpvKRp1kRlOD4+4GD+syyX0ojLnrCJuSvnR/ApYMEavO8wWkDnoSbJckkztSZHG0XXB7RKIV9G0acpfN/3KYymJSI2DGU5oXfNvhCPGoIKqKDQSlLGd02Dci75OErDuN4IGGqS+b22Od5prB2T5QfMD485P3sJSlPXPRHPZnOJCw2UgbZrCUHhomXTBK42HU0oyKoDprmsqTzPCIidRNcHXrx4zkcf/RGz2YTF9RXHJ4dcX11y++QOy+War33jp7h774H4YO1qkZU2Lb3vyVOomaxhC1GR6UCVZ9T1ksuzC5pmiws9BwcTYnBcXJ6TWQmyCDEwHo8J3uNCTwyRKhd1QN22ybNWBkIhDVxABuRZplNSJhyVh5ycHALQOZFLaiP+dz4EtLKURnzZYjQYbWm7mtE4pf1qaeqMlsH+wexYztAQiEFAluvVF8krTpgc4/GU8XiyV1WIrJMUWCD3hIqSAu69F59JYEgbz2wmab1WkoizoqBu1sk/OtI2PXlu0/Cip20bxmNJiS+LKlmYxDQQ1OCFWez6nhilJvOhk2FfH7BGlB/r5Zb1puHg4ACTFex2KzJrsRiiFy/k7a5ldnDE3TvvcXL6AeODB2hGqKhxnr09RQgd2+2a588fU2WGtvXpjJFy2WhDUY44Pj4BDE3dsVqtiAhDa5DtaisejuJ/K/2M0Yoiy7B5iSLQtluePxdQ5v6DO7z91msixQ6e9XopDEEnd8D3v/993njjTarJKAXxkIanco51fU/XO8z+vld7kI/h3gdUlOGoi8IE67vHaP2C1fYLtDFsN1tM5jGmh2gxpkDFjMODN3n9/jc4OrxL71qePv+cF+ffY9c+hShDmD1rqG8JXoBYIWfIOah9MsuPyTdSkdayWK0orbFaJdac9AA+2Tw4J5ZBElglxILHTz8hAJ1bYS2sVivKqkppwhEfEgjQR1yy+AFZ+845rBGwU9tkjxM0g186iKWMsjmZeY3Dg69w+/g1TH5I1JqATjJsS9f1uBCwmdRe5+cX/OEffJtbt0750Y9+yL37d3j6+AllVWEz8dL7y//6X8EYGVKBYlSN6XoBui3SyxtjBlwEpUqsFcDJJpa3c0oksG3NxUrOpbarqUY5v/qv/MsUWYbre5arFcuFAIhd3+5B6m1d88knP+L+a68xPzzaWwChUq0eZBgcUto4PtL2HePRSJigiQSUGt8EEv64p7j3nkePntG2W6aTOUZ3rNYLqtE577z3OrPpCNfVdF3HZDwV648YxHdWRbyClEePd/Do0Q9kSOQt2+0Oaw3j0ZS29lTjAxkq6J6oxc8veIdXCu968lzTeYcLkbb1qYEXwE4bUZpoLQnMQ3pxJEi9oQ1918nw0Q3rSdjOMUbG4ym98+TKotSc+finmIy+TNQTWp+hkle40RrX1kkeLjhGHzxHhyf8lX/jrxGC52d/9udRSgK1QvqnNrkozJJUWGuxucgLuXdikAFnjJLOvPeuNxJu6bqOrq3Z1Ttc6OmdDJxiiHS93H3eObmzomM2HVMWBefnZ2IjEpUQzLQBIz5+anjHqTf9zne+zcNHX/AzP/cz3L13F2uzfUjiqx8SwiojkCECFCCoSNu7hAdEoroxN3Dhx8+1QfEl9eeP4y0/ycdPDPCJJKLH2jA4IRFDoOkauQhSqEEMUiyGyJ7Cv9ttWSw3EDNOj2+RF0NwgsaaMYvNBV23YT4/oOnEsHA2O6BrFG2/IlPwxlt3uH3nlOXqDGsKrMmwo2wvGTTJr2Qo4mUBB2FTADFobBbow5LMjvFB0fd9+nPSPIus9obB1rYtrleS2hchy2TKKwCGLAGNTo2CYrer9y9QKUXXdeKXohVd57AmZ4hED2HCuDrBdTnb+hG2yFGqpOku2WyEBt7125QOFRMtPFE/0609/O6vfrx6SA1yW7hhWA1fw56FJb4awwK88eEL7JqaW3cecPe1t1hcL+jaBm0gswWzyZw33ngDayNGa959+4MkbYN33nsXtEoU4/T9h6AJZbl79x6uF4BLbAIE1Npuar744nPGZaCuO4pSEidlEhmSybwwzLQRBkLfC5irTbqYrdDLr68XnB7fpmvW2FxjMEzGp2y2K5arl2S5oW12dJ3j5OSYrlU4v8WryFvv3OH1N2+x2a6ZTseU5QitkcY5eb74ICbnxuoUNiKTEa0kOttoT4g9RhUo5GLWZhCzShMWk1RXGHsd3iEgTYwJrHN7QAwC1pR436c9tZNJb2aTt1ZH78ULs20cRudCyw8aT0lVHuK8p+kv0NqQZ2OaZs1qeUWWWepmTdM0hMh+rQ1BK4M8dGBSDR36jTn9K8Ene9DZE8MrrD4Zz0CMtJ3jYrGkc1Jctk3DZDrH2pzHjx/z4MGOL3/5Q+bzQ5SyfPjh1/ZnzB/8/u9y97V7jMY5X/nql5lORxij+NbP/wlsVvDw0Re8eHnOfD5jMh2xa1r64HH+gpPTO3TOsdltOTu/4PT0iLZ1QI8PbTIxV/umo+t6irwEa+Udesd6vWZUVQDMDqZ0bc9isSZ6g1YFPkg63HR8SpFPkhEvuK5lvd6iVOTkZE5T99TdFQfzkp89+TpN26B0ZDabYIzm9PTWK+yaZAeuIgQZLgQfU9qWXIYClIi8LoQAUfwKvQ8CmOggJuOp4ZDpp6Zt18TocE4m+UM6oNF5msxGrhcrIhJgYo1lVzepIbeAJ7iA0iUqBiAn2BLnStr+Gh8VoVO0XcO2XgIdTVvTdY0MdqK6acwYZCyv+oNKkT80+wzNByRpOglMUVwuLlguXlJvLlAGLi89k/GY6+U1j5+/4D/4O/8Rv/4X/lUOD4/4O3/n7/DX//r/ktnsiB/96BGjyZj7997j//x/+k3a3Zb/7f/u3+I//y/+HhfnL3n9jXf54osXIjGPsm8XiyW7zTXL8oLj0ztMRgfMJkds11vURH4sozLqXYvWiu/94Pvcu5/vvZnmhzNAGDZd39J1knoXMQlkjVxcnDOZTjDWcnR8xDwcsFnXbNY142pOW+8kOXN0xPHhA2HeuTV957m+vsaHwPxwjnfQdleMZxXHp68T4+upkZYCcX6Q7SeSgtWrPbNIYbDG0LR1et/yuaatxZ9IDZYa8k4EFEwNvQ+YJNmKyrPZXtO7Du96SJ5zwngTuUffOy4vrySYwVjyPGO7q0Gxl6G0TYM1E6wt0OR4b2n6SN3VuBBRwdL2rQB+oRWGkutEZhgHZtgwENM3k9o4MPmExX95ueDx2TW79gXz+ZyTkxlv3H+N08MRpzNJKdXG7Bmhw8Rda4VWN8nL0vhruQuDFN7oiO8FxKybhq6t0SZjMs45OBjRtFN2a5HS93VH14o3o1EG5z1ZUZBlGdPpHJsXXF8vubo4560335L94yPbXUPb1YSwpqgKRlVBiIo8eXMGL4lwSguLyvsO17c0bcdonDGdHXBwcIh3gXrXElzGfHqftl9gbaTMj5mNS5RpgZa261gsFuIJN85RU7kj82IMaO6/djuxkYUtOBi9qwi9d/s7RnxdM7Q1NO1WvBeDnGEy6ZZ7oO9EGpVINgDi5RyFcS8KE8d2d72XXSmtUEYk40ZZXBfoe8ezFy8Zj2dUxUgYHlHkznmuaZqGut1QlHOMzimLKaA5v1rj0tpRWK4XL+lcTYx98jIUpv/LF2dcLzaYbIQlB5URlZxlRVmlmqUgc56T49v8zE9LgInrWvHWqneUZUHbt2A0u6bB2ozxZELXtGRZTl5WxNTcqjgMQ4Iw9s6eUO8WeNcndiCJ5ymMTR30/p65e/cui+UC5wJVOeatt95jdbXAB+iDDFGIKoEdMmjxMVKVI4pCvP2GxGalFdYPAUkieYsgYUcMgVYiO9VGCSCDPLMQHE5FrMnw0eNaSTY0Ws4arToG5rZRwgx8tdZ1Xu5BiyEEqasyXVKWt+hVQ9NeERFmnvhJdrKmescQwudcTOm7Q3DGFpG3K/JS0ibVYLPiB3m/RyuLNSN8kLCWEGX/W1OkkDydQCBLVhbMTM5kekCej1hvakLnIEiSeZXNuf/al7hz52coR4dEPcKT0zuxlNDKEcNgNaPZbM/59LMvODk55tHDL7h7+zaXlxfiHa0UbdfzP/3zf4E8r7BZyWQ6Y71ei2WBkWCGQEATQQnwaY0w8nxXs14v2NYrmma3P8et1YTgWC63KGUoiird1QLEHR3NKcuc6KXej4n+mNscF3x634E8y/c15dDHaT2EHYq1iyewWq9RuhHfNN/Su7WkexcZ3ge61jEZ3eNrH/wq08ldDg5uUxQzXA9ZFvjyl97l9dc/5L//x/8J680naDPYSaUUzyjnug+BsphRFYZduyBGn2xAZAcRoetlPxljRMIexT5B7Vs0ATmszRKrXerpumn3rFLvFOPRCLEHymjqndQ3yqCUPB8fJIlbG+lBxWIoyUl9l7AtTZWNWa02+N6hdM7B9GvE+CW6kOFbj84E1G67DmulDkGnOkrBvft3+bU//xtA5Od//l9K4KH4N4v6RuG8KPjyIhc8wGgmU0lz9b0TYE+bveVW8LIOmqYWBV9T07Zdkhj3Yg+QrEgUga6taXcbkSkbS1VW+2AFo6XXapJlhNGK6B0xURAgBXwxgItiP+ODS0PKV2rK4euUJhBQDMrBwY838uLFGeIhq8izgiwvubg859adY8bjEQGFsoagEAasa/Guk3Ay5Awqy0wG7WHDsxd/kBjLYT9cy/MSv1B03iP5HjL06vvk3+qCECq0hDU6H+nblrrZMZ1MKaqCzW7HbrNls9pxfHzMwXwivtbEG19dxJtVK0uWlUkFJzVXIBBCjlK3WW4O2XVbstIxKmfMqjm120nNBqClPvV4Bpm9NhKkVI4k/KlKrMlhD7je7YeIKkaMskmNF1HJmkYZgzIyQGrals12Q9+1QrhqhazRuZ6+74giDd3XbsEHVJTQGZVqxBDEm14NvWwWUI7EJk31uRG84/T0hHffe5dbd26x2e4E34puf5/ceIAP3p1qb0E0WAs4LwzWPV4XB8KbSkSquLfxSgWo/IeSwdBP+vETA3zL5YpRXzMeVxgj/imQXpq2ySNLEWLHZrsSM8nRmMmkYjad07vIZtVTFhOhN+uCoiiZjO5SZAcsVk+IMdC2HVdXV5yenlKW4iWkjSLPJRX0tddvEQIYKw/WKpkFDT4yg+8HaPIsp0+MgCzPRXIYkElgFNx+u6upqlIuFSsvVoIDCowJRA9tvxZNePBpmiKLo3ct1uQ471lvGhbLDaPxiFGVfBOM+MXluWW329J3HbPJbTI7Icsy8S4JS3Te44OibR2de44PPT7KxWaMyFEGP4UYRX4RGQ6skAAW9gyXMAB3e37eDcC3Z/GFoflgz76K8ebQi1HRNw3Pzp5Qt5Lq9dpr95lMkuFqUPzf/5v/K6v1dUoBUkQfaJpmL/UJyUxbistIiJqvfeUb/PIv/2m0MlgFH33v+/zeH/4ePji+9MEHZFbTNSumUwHtxDjUoomUhU0bViZErasJiDG6tob5fMLxsaVrHW3rKfMpWZbT9+JtosgYVQd43wjzLkS22w1HR0eMRhITHpVMwLwPHJ8cyaFh5CFZI0CPFO/io4JSKKx45HlH1zeYJG/se0dmb4yCtxtZayF4bG5lYqo0KmpMLu/ZudSQBpJPBBgrAKDVkegDq9WG1XrHbHYIlJKAZ8Q0mGiom562XnB0eB+TiwfLer0i6h0mc7g+ijSie0FQjqaVUIcil5S9gcotlg46SYESUD5MyxLgd+OZFm9A5HS4hYEqs2eOynprupasHPHeh1/n6uoKh8VYSwyBO7fuMh/P+PW/8OtkRr7/g7/0hrAjjebLX/kgmWBH/vxf+DUBVJXi1t17xAjlZExRVYAiqMjd1x5wMpty+/Y90IblckXb9qxWG+7cucV6syXERtIvkzRVK0VZWEZVMjRGjL9jFAmRMpZRWVAUBb4P3Dq5TYyG6WRKXe+S12ikriV6HeWGpUI5KilLy2RapuJCLATKkSRpSnEoHhCKdDlE8amwNkNhyO0IlWnqerOfhre9Q+HRxoKC7W5LnucSVJKLv1ffdWkdi8eWsEfCTZCMdygtcgajHQTDrhYT9cl4TlUc0HY7lDZYlaVJqBSMo9GE2XgOsaTrV6y2K4pSsdl5xqMDnr74gravAU+ZeUajyb6wHEDyIQlTfGuGhp+bNZWSgeVsE8AzJu+m3gfOL684Pjlh13VcLBeIcXjG9dIznixxEdbbLcZkeAfn55f0fUpqDIFnz56J11jT8OLlC64X1yzXa16cnfH8xQuMtUm+FdiulhRWcXR0SNd2TMYCUAen6dqAtQrvOryLdF6CAUQCERlVI7TJku+dptA5ZTkk0WcMps7HJ7dEemNTEmkIzCaHaG0p8tF+qh2j4/ziC/GjM+LNNJsdYKw0fwqNsWMGPNSHZK6eHq2ENEmZIY1HpEzJe3lWEaOSAZ/vxW832SMI8y6w24nnYJZl2MyAHoorkSc5J2et9y41wpq+75KthyQGW5VTtw1t55iMp0ynpzjfYrywhSVgSmFNRpFXjKcHdI0hqpb15hmjsaF1gcmo4uzyGZt6hTEKqzzT6YGEZygB4XoxG03ejeBT4m8azuJ6x0cffcy3f/AjVFZycnxM3zV88xtf4ytfep+m3jKejJhOpqxWK7LcUJblvlEZjSrxyuw78jynzEuaukUrTVHlPH95Rl03TKczNusN14tFshnRVNWYvumIQXH3zn1evHxOVeUsF+IDlpclWS4suKqo6LuOj374EVcXF9y9f59MyxT87v3bZJmoGSSR1IiRtpNAkqwoExJk0KpE0RFzyItKmFSpwda5pSjGCYxxFDZDK0/Tn7GtPVpLUI4xlukb8+RpMxQdeaolJDFdqcRMIhKD+BaLX6lNzVBF2zQoLYmtzqezyOYQO2EEKCMNr+9RWrw0B/BXJDcRlMP1Ip30vpfaBE1dN1JPhQhGmF27ekNVTRhVBxwf3eXq+gXeN/i+p20jWmeMqwlleYDJprSNo3c7YnSUlaFp4WA24/zqpYTdEBmXkclozmq55aNPnoAdkakMbcHqKBYi67Wo/tLMzyjFyeEB+mguQGS6f5US1nxE2NgiSXaUueb+rWMyo8SfK7fYTBi4y3XLw8+fsLi6pO1rGZAoI/X6XsI7hJG4PZNtsQzJq7Lg9OQO49EU1/RJhpoGfMn3eX+fe7F4IcogO9IlVmiOiiXWFnRdLcnDscFoQ4xgrbBCYhrcSYqo31uCGBNTjXozTPRaZMektWmSN/MQQNX3vchJo4jVXbI5kHvVkGcjNpstu2aHMQl8yYSNZK0kyWqt8Y0AyjLIj1ITaS2gV2YJSUkhj0GLh2iE6DUmO2A6usNieYHWEdfXVNVYwjoQyTMY+r4WH1ljWG3WEDfkdpQ8WRVdD0Vxh8P51wjxkLo10sUph+t7ur4WP+oIzoms9Pj0lD/zK3+OGDxf++pPyQhjqOtVBC0eeF039DgRqyLFWAbmIWZpQCF9S4yR7WbLerWg3q3o+yYxEzuik4Rzg7CMY5QwnVfltUpp3n33PXa7nShViPgQOTm4xb2791hcX3N5cS7nMJHBYnfw5R38Dp00JQLgdUkeawACxmp6LxJgpRQuKEw2JcvnLJZbLq9/yPzggK71XF+tKYoRRaW4ffo214tPCekeyjJF6EXeqL0AfOLjl6c6J+5rs2HwDQJoW2txzqc1KAw7lEoKnZ4YhwTPCh8io7EQBtpW+hCtLYoM35XE2KG0WAApZdjVW0LUGFWQGZuY4BmZqWRP9V7OhhBY9Vu0scIviic07QhvGkzeoI3mIJtSFhV10yQ1kd3vZUmRVpCsadA6ZUzn7L3ZFfiuJ6iOUTFmnCxPjDUYm6YsESKW9bZludrQto0EP63X9F2N831SoUUGHzmjIjoqPGnIaDVZphO2oFJvAy6IauT4+JgPPvg12rbh8vJCQGLUHgzOsoLReILre66vr+hDl3zeYjovIuhhkJzq7H1gTiIr6MA7792mGuX0Scaa5wXzJmO32/DyzFEWGVlmxJc1gYx5PgDVHtf0MoRXBiI4Vye/Y0ugp+0bOreRP6k0vo9YDd4LkNdtuvQzSXiZzXIyY8RqJC8Zjw9wwbNYXOJ6T15OaLvI1fWOspCgpGpcCcOtd0QcbbtCIcnqZSUhecYY6rriyZOa1e57HJ0c884771JkI7p6hwpBgrmUBIGmR421GVZrlJFBqUhW5b0N2Ifs+8B8OmI8yilyS5bZFIglgyCtDatNx8PHL1itNzR1nYoxOX+VEeBcMhYkdNV7j0pBQQPorrUWNUDqO7VN6ozQYYMMOYbeUdoJ2cvvvvse4/GYTb2FqPfEKZWIKQOppRqNOTo6JrOa7XrN1fVVUotGXOfS3Sh3pXjx3ShziCqtszj4Dt3coX+MpPUv8vETA3yTyZjDwzzJK4a0kIguRLahlQRcNH7LqNJpEiY8XaMtWaaYTg4wqsCHIcGm53r1uRR6ViGRxTMODuZ7dpBK0xuRpQ1ottqzhORliCGlVpY8G+0pt13XURQVXb+S4lBbAWFcm5pFCHh6L0w+bRTOy8UmUdVOtPSA810yXZcF5pLkQxtF1FLcTyaHzGZzRqMxL84eE3XA95Gu0+TZAaNqLH5V9ZLeG6LakReKkAxRy5Hl2fMLlBa/nbKcopX4C1krybFd1yTUOgF0wwLZg3SDjE0OhlfBFdkE5se+Tj7n95cyJPAvSkplvdvwT377nzKfz2maHR988AFKKZ4+fcp//fd/k129RemI0VZk2iHuw3uKIkcZSYZyLhKD5vL8gvfff4/D+QkQuV5ccXl+wemdU1arJaenxxwfHTGdtvJOkjxyODSIlogUsjLtCIzGApZIGiLkeUFZ2rThHZkyRDo29dMEDqfCfWyYTmfCwANQMpMYvD8kwSim76UIUaar2misEbDFGAmk6NpeJu1du58Ixxhpu1YmOES0FU8KrbU0ycgFI2tTQRTg0vuwbz5jiPg2CLOHgM4ytMmYz4+YTkS+UneNpP/0UOQlk/GE6Vh8l9abS7mEswabB0mWjpq80rx8eUXEEVygyCuZLrmAzTJsZql3UpRGr4aegIHtMtCMB6BviGGHIRnyxqMABhN1IBU2F+cXjGcHTGcHnJ6eUpQZeVZS5BJD3nVNYpMKO9I7martQz0iuARwm/Tuy2rC22++zVuvv0OIkkq72Sxpuy3nl+d4H1ksFlJsOJEVnJweMxo1SRak9tMUOQM8MTFniBkx9GR2tH+3fddjtcXkkl7VdiuUEVCj6RbynHSSCGnFyfGJTHHSLxD3/YsU4TKYsilgpSWEHoW8D2EBZfTBUzfibYZS7OoWraUZFIlIR4hemj3l8TEI6y+9Lp+6Sq0yVDQonDTBUYpV53pikDM3yzOs8xweHZFnU6pqzmZXy3OPjlE1wRhLVUmDeHn9BEWFsQ1RddSdsGuLvAEliYLi0yqG0H0vU7ciz+W5iy4xQcNxv97UH2eIOidg1L6mVCzXG3atZ7nu6J0CrziczcltzqNHT3n7zff4tV/7Ne7dPiG3Ob/xG3+Rk1snjMoxV5cLilFJ02z5pV/4EwTv6dqaX/rFX2RX16zWK56/eEYIkaPjOZPxmPV6Sygsjx4/4/ad17BZxmqz5bvf+z6KwJc/fG/f0NR1TTUeczCfMB4LuDSknfkQcL1PzbxGqyCTQT2cfeD6QPBdCsYQb7Jds0TYTBHv6nR+BRQGpc2+wNVqCJDoQZl9MER0kUxNyPIRhC2928h5mkIBNustwppuJRUVkVUPPpWvMscldCuKv1FA2CBOzpUQNGUxTaDqlhCE1V6WEwkW8sKWCkYMn+dHRygKlDHyM4SA1ZrxaIpS4knZ9y0vzx/JWjMdSjfsGpcYczLYE98dTzbKUdj0DMWzV+lhgKqE/eXTNDmdK9t6w8uXT9Cq47XXHrDd7pgdjLm8uuD8+pS/9Tf/Jj/3s9/kz/zKn+Lf+Xf+Jh9++QN+/Td+g7/7d/4jDg4P+KVf/iW6ruM//Lv/IX/uV/8VvvWtb/F/+Fv/Lm+++QZ/7X/+1/id3/k21Xi8H8StV0vanaR7v/76W+x2Dbdu3ebgYM52t+Xq8iWz6RytjYAnSe67vF5ACDx7/pzry3O6pkEXJd578ionzwWQGNaASJ9l8DCkNhpdEEOPUjH5uBphDqZwHq0NKJHABp9UCwqIIof1waehUErkRaG0gEcDG8qHgPMbDBNuH7+HD57r5UMCIiHXUQaDgx2JVmJaLgqQHlSQBiUOYM5w3taoXoagaG7CxrxlUt2maR0uLuTeRjGdzNjuNmL8r8SXJysLdC6yo4vrc+q6xhpFWY4pyzIxRhrq9oJmtUArOd9Qgfq6S+xiRURYUAQJLADDJ5885OnzK7weMZ2OOD6aMzs8ZDquOCiFpaiMJA1nGqyCIhfvVZtJ6I02CrTUYzEFgAgTEnIr93VyTUvpiRZrNM8yzXRaYe2ErrW0TUfXeAaf674XL6rWCZNE3rOWBHiTc3J6h8zk7HZbXrx8xgcfvE9u88EI9eYs9h6fNHHG5CiVU5T3eeuNn+LWrbfJsozF8pwnz77H87PvE8ICpVyyl/F7KZpJZ53VuQC4rkcluwmtJDE5JPAuKiXSQm1QKqJ1SLWi3INDcJr3bs8S3qzPWW7O2dUbRlXJZlsTAozHyeOr75KVhLBEfRhM36X+yK0MWNw+iEN6kFE1pmvEC8xoy67ecr34VH4mKyCzeHpL2rP3ge22IaKJSogLWktI2GK5oe8aRiNLVd2mqu7S9GN6OiyWUZ4znYzRSksAYGpYZYijcCTZemJwahAAeJDWKJGMtl1HbjV3bh+jtcjclR56NYMP8OjJBY+fvGC7FXKDsTrVoAZNjkvvz6d7YAg+lNASICVIXl5esW9CFJTViAdvvEWmMyYTqX0FIJDkyhBTQ5w8QofUz947+q7j4OCQzeaCtu2IBPKYoTVkmQAnWjmuF5/yu9/+L2TY1nU411MUFdZUlOWMpuswtgYVKYuxqGuUldAyneF6jyey8zVdu8SFnvF4hDUGfMB1jtVqw3Q6pSiT7y3Q1J3Ud4V4TSptKYoKhYI0YAGfWEnJv1FJH2r1EW++9k1+9PlvY2xL2/Q0zY4sz7HZiNFoioqR1eoapTxNvSbPBXCxRvyCY1CEqOn6kmdPW54+/39STSfcuXPK17/yNWJV4fuO3OgEoptX1lAK3UoAjtGKzGpUYvcabSAG8Y/NNUcnM/JMpST3sK/DFdA6zfd/+Ji22aZgiIz57ADnKnzoiVESgZtmS3BS2yeeuwDzIYjM2fXU7RbrbLoXdPI/1zx//lyGjGk/DiDzuBrz3ntfoigqNqsV1ljOz19KHRU8gr1KjLyKkehvmH8KYfGHVJ/du3eCtYG2cwgo31ONRmkfu9TzQNdJ6m9uLVlMQ7TM0HUepQJlXiTbE5uYwj1N2yCxgxJC0fY91agkJHavc562lV6xdz2ZLShGI4y2ONeJ72QfcNEznc4IAbq2ZzQas1ytaNqA0pH1binDYR/QVoYREloaaFu5B7XK+PyzK37/Dx8zmh3z6MlDmu2Wb3ztp6Hr0cmWzBhhS5PUCyF6vDEiR43I0DpZoplEyMiswZjAZJJRWjBavHtjIH3OYjKLQpLhizxD6/RuYoTg8YVJd7/cAa7v6NpWmMRtmwZDMhCQ01sREju76WpiDOigyIxNntcDy1PUHLtdI4q4VAUO/rIJDEFjuHXrNvdfex1rc7zrqcoxylguLs9RvZXwSGLCi+L+X/JXiET/x+/NcEOI2Y/a/8U/fmKAbzSqyJN9jQ8+TeJbvOuJ0WBNhnMhTYsFxfbeo7RMIBWSkOajaPdhaEiFwSFNg02TtD1tQ15aSnJyXmQtmR1zNHuXuluw2T2RDQtEPNeLy4Sq12RZRtPLRvNeJpXis6Ww2qANaCMhCaD30wLZvJHMjJiO7rHZXqEV9L6lqibJv6ZPXns9Xd9QjizOaZo2sFw/J0ZFno2YHpTit9Z58R/SS4KvZEqmdzSdSwBQYEhpVSoyHlf0TiafXVejdSUsp6HR5eZijek5DcmdwuIL+ykc3ISPvNqYvUpZvlHwxgRyiUeStYY7d+4QY+Tg4IDRaMTBwQHL5ZJf/qVfxnlNVIar6yWZdmRa5NLaysRju+146403ODiogEBRlLz++gPG4ynXV9fcv3+Xx49v4aLn5OSEGANFnpNnIaHv4uXo+k7kPH0EpAHI8owiHzNIAhIWK4y5IElqIBtZfB7lUBmYkJKYO0ywpZAjAaDOeQEp7ZTbtz5gvbniavUQhRRprm9E6qONMPWynKbbitTRiTw8+JAmNtL0SBN8A5BpY9I0C4yaMpvcY7k6xxqo252sNScJPa5PQJevMZnGB8VyLXIaYxVlMSMfi89C09R0fZOAqBFicL8RnyEV8Q7cZQ8ppbYalzTdlt7V9K4lS/tQTEUFdBnWGggwMQDCctnJeSBrUO///wLC6FT8vSqh6dmsl/x3/+gfklnLG2++wTe/+U3KoqXRW37zv/yv+MEPvkdEpH8KAY4H2EcnsCoomdRrFMHD3Xuv8zf++v+Kw8NjlFJstxv+0//0P6HtWlxw/Nlf/VUA1ts1GNju1hwdWoqsFCmQFzmCdx0a6Hs5e4g1mc0pyjI1A+JRJMOYNB1P0+aYUqNiCMkkVwBQYwwxGXLL2vCJ8aCSKbY0N7dvvY/38PLiozQBcnR9v2dzaj2AXYq+DwlMTaYjShKARVbU7iWHNzJYeZVa5Uwmd1Pq2RUR+VmyzCTGi5wXTbsVEEJZ1ts1u1rYGXlWCTvBdezWyzSIgRgLcpvT+x3Ob0UaRGS5ugSkkSiKHO9bur7GuWGCbdLZFPY0djWsuihFlxrOsPiK916aKoNmu2u499ob3H/wFqvVgt1ul1ab5vXX3uKdt97mS2+/jdjDKN586x0B6rXh7bffkq9Ukbunp0QiWZ5x+/YdkXc7zy/84i+wWq3lYtZw69YtRmXB7Vt3MDbjxcszlIInT54wmVTpvhMA0wVPURZALkwoUhJuAldt+n3Ei4R0h8q0UiaEIrEYBlrDmgohvMJiGZgwyScIWSsCkockvQ7Jx04YeZPRCUqXrDcLQuxxrkM1khA6yCnFUkLMpH2SRig1rCNZayGKn8vwziSFeUisy8ntIa6H4IU5YJJX6RBSVDft0J4SMPRdg/NrinwiXmtR0py7rktDPkAX5NkYHzrabkNR5ARgu1uw9kGm60WO8y1tuxE/13ATFORTUNVQO6SlRlRwtbzm6GTGrtvyyY++x8HhEXlhuFz0PHn+nIurBdeLBS+ev+DFixecnBzx9MkzTm/d4cOvfoXlcsuzZ8/54uEznj0/45NPP+ezh1+Q5TmPnzzn7PKaaR/QGsajit2uZnl1zmv3H7DdronAwfwIpSC3BWVRYa3eh38NakRjDMvlkqjAJPZInoU9gOuVQesqSbc7nKvxoQalJElag9IGhUlDvgHokPNIknUD0Kf1LN/X2gE0jIkdpSCKzM2nIDB5zkEafi1AYd/1LBZXNN2WurtGac9u2zCdThMgmBxuAghrumegVUp9KGvPeWkgJJFc4bysea20DC4Y09SlMI6CgDVFkYsFRfK0cq4lRk0QTI6u6yjLMePxEfVujesDG7emT8ztqAKoKVk+wvmOvhOJuguexeqMGDyT6YjMWDbbBWfnz/n9b3/B737nh2TVAZPxiMzAr/ypX+bu7dvC2jFixaEV5JnGak3XCriXZTaBe5KyLRYNwvZXRmTYn3/2grbpOT45wlrNdrMVK5i8YlKN2K5XrLse1zlmkwmr4KlrR1UVEsygLKOq2BvnhxjJi5I8L7Da0LQ7/vnv/HP+6I/+iOlkwt07d0WCiEosDlkDu66mLEo+eP9XuHXyPlk+Z1zNiQhTd1SO+OY33ua7fzTmO9//b4hxgdIia1ck8MDK0Edpw/H8mOX6Ch/a5JcnNA2FSjLXlKytpAHUQdH3Akj7RAzouk68wtoOhTSjSimKMt/Xa8ZYiMKmEwDMEoKw7KISL9LcWhlUk5EXOTEEet8JU9UHNn4LIflFqUBULeNplTwYoe89dS3yZTmEM/KiTCmpLcvlFq12rHdrfOc4PjpmMinRHPH9HzzlfPGUyWzM0eGMn/r615kUOVleYqsCVJJlJxZM1DE1zQprIDcGa6TXMcYk9ko6221iziergBBkcGqAsiwoMkVmFAfTMSHIXmrqHZttoEvm9NInDX6M7OtoAQJUGkZIgCEJuLh95y5VMaLverbbDZvNhtGowOgCPTD2X+1F0l9urcVYw9V6CUoGmM51+zuy61pGI0kl9r5hsXqUCAHQ+Z7QZ2SxZHXl8FFhjUKrQNP4xLoD5yXoMVHH0r0qfnBtAzG3nF+eUW93eB/ZbB2nJ8fkecY+KClEfC3AjPNybhptJJm0GZLb+/TskjzYZlilGY1OaNqI7ltihDzPCUTqZsdut6MoSzwBC4TYyyBThX29qdBom1OvMj755AWYA9545wEvXz7lkzwjOkdwkaIoUEn2mtmMLBuIO5L8mllDtAa8JjNCYhDvRCgySznKWa0uefr0CX3bMZmNqcqSwmZUZcVkfkxVii1E3w0ySsizAufFE64JW7zr8b3spSjmnoCcbVppWu8lwTxPAXVBhj+yLsT/P0v1sA9gs4J33n5PrBaCDPMmkwl934p6gpueV46wpDr0g+dkBKP3Xyd3WUdmxW89yyVEQaT4RaqxNDHVP03T4IwQcbbbrdgn5CXGZuQFaWAgtlLaZuKNngaymRok2g15LiFfo8mYkIYdJstBybCgqXdUo4rdbgkEghJrA2PFu9oYkXEvl9c415NlkvA9ycY0Tc/goT7SFqMCm01NswuMyjG/9Iu/wHa7pSokOfgf/b//Ie+//z6HR3M+/fRT5gdzjo5PqHcNPvSMRpUk5CJM+szKOWmtAHcSbBT4nX/+bc5ePMcA4/GIW7dOeePBA6azGXfu3SHPM8qyIBDJvVgxiNdmR/B+H4rRth1d28iweUi6TcFgJPuzoRBVkDIROnRQ6Ix9/TfI6G9YnWpfAw7DiaF/ODk85d2338fFSNvIneRj2K8vTWQ0Hu/7lGGeQTr7pG9JmM1AjlHgYwoBG6jLP8HHTwzwxWhBFWKgGjt8aMlMLgiwkcMwywZ6tt9fACFG8kwOv5iebAw33lKCnstmFRnqjRxA/hnxSb4FMtFs246rxUvWm0s8a8DTNC3TyRjnW3wQClnbd3gfafuYfHEQyqxRBKPlbFTyvb0LZCbD9UEMSrOMEAoW14GAyEIUYrDfdC0xRjb1Dt2JSav82AXReMriGOd61utrmmaNzSJuSFCNGqOnwpDqBioq7Nqay8UFk/GY+WxGCI7l6hLvkuY8pOS7OBhBq/06kgv6xqNmH3rA/zg448ekltyw/vbeRHtW1mAQqfjaV75C8IGDyRTXdlyenROd5ytf/jLL1YJdH1mo1/lzf/IrnM4c27qW2YTJ+Pv/+BmPFhecbJ+htWZ2cMBv/db/h9dee8CoGuF8z7d+/luE4NhsNklSMaPI59TNlt6t8PH/y9p/fVmapeed2G/v/dljwkdkZFb6zOqyXdXeoGEaJGEIgJghCXIgckkkZ2atWbrR0tJoSfpHpBtphiPdcEiJxLBphiAJRxBotDfVXdXl02f4iOM+u40u3n1OJsArTev06lVVmZGZkefsb+/9vu/z/B5JV1ReUSRSxILwIawNq0JREpzcc51xUUho7chMsmo0LVUw0txTceIbGy3BxWJHrrLT2ZRF9SPqpkKZCus62rZlPByLCkLJBKnpG4LXtJ2VSXK0h7jgMSGKkyCGLcg0wfVSPIsKUHFwcApaJPdyWbAxSlwSMxViMXchkGYlaS7T9rqumE0uKHJNXhhpVgLC+BPLcdWK6iCEwKKqWSwqRsMBW1ubON+ymM9Xljtp1izt29GmsmxMBYeLKsTlWnt+La3UkKv19mwNPp+MBgLn3t3dWX2tcw7b9Tx5+oi26zBpJsnFKtC1TVTvRkagMbGQjDYUo7i4OOOjj9/nk8MBIaiodoWiKNCJXD7TNKVp6qia1GTpJdbGYqmf1ac4N5WUMAK5yYSzE9VxoRcrjLAbwPYtLlla6E2cAIIxKYkxccJnVn83E7ln1krjzXm58IGoJ+p2xof3voO1AecrtPHM52IHTJNkNamSqbaWtR8Cwdtn77NKUT4OVZTGO0iTAq0SSRLNC6wLPD04QmmPTtq4JwTaTtIl+8jHdE4KA5MYBsMhtvecnk5wvifLYDjKJYE2TsUSrUiTFNdLunXXeRZVxWIxxyQJV/Yvy0GNHNj6uUP1P1EVxzWxTGhbNSiVKEOXTUiC9DYnF2ecXDwAYxgOBmxurJNmCWUxIDM5Tx7ep20WrPqcWorLhGfnkUmSqO6KNwClyLOc7d19bt28JRw3J9auyfScrm85ODrEOc+TJ0/Z3t4Svpq3kuTofUynq1hbW+eFS5/i+rW9+OsecDZ9gNYT8E4sQsGi0Fjb45yK6hSD0Zk0BHVcL3E4sdyvjRGVgw9LHIAkuS6fUe8R9WRkNyqtafsF9yc/IihD31fkmWE2m5MXOWVREIKTxpvWUiD7mFQf2aMEKIry2ZQSj/PCr8zSkouLCXmeEeiozh6JwsXI3uKcpWkcIQjfylqxp2ZZLr9+kNN2joePnpAYxbDQDEdZxFXI/SJRmiSmBiotl+tFVdHEfeLS7i62duhM9ukkTSJCZGn9kn1oNWkNopJqesvRyQXTRUPddoxGQzSKvZ09Hjx8RNv1XNq/TJbnLBYLtrd2ybKC6XzCBx+8x/sfvsdXfvYr9H3D/uU9lA7U9ZzRaIBODEfHx3zwwYdsbG4xGBTs7W0zm804P5tw5fJVZrMZQWcSFlFXfHT/Hm/98Lt85We+hHfCCEtTs3pO6roCDcPh6NlAL0CaXOflF9/g8qVPUJRDqnrGo8c/4v7j79G0T8UiS6DvWrTqY8HEKvRDLd0CcY8KQUnIhdar4U0XGcZKRSi2c/GcJp6v8TPuhPVk+5aj6j1625PlBt9JM6BpGtIso2ubqMTQKJXgYqOGYDFGkWXpit23tI1ZC4NyhAqGxXxOlie4cE5wC0LoSTNRJM1mi7ifBLxToBKUymJ4gsY5xcnJMScnJ+xubxCKlMEgx/mo6FoOr1VK5xxKW+qmpW5qur4Xy7RNaaqOvY0rXFzMOHj6lCI3fOXnv8T7772Htz2T2TlVPed3fud3+JVf+Svs7u7xta/9C9745Kv8zBe/yNe+9i+p24qf/4WfZXt7j3/1L/8Nly9f4hd/8Rf4j3/8x5yeHPNrv/6ruAB/+qff4oWrN/jROx8R8MznE3Ij1r5r125wePiUuq64efMWo+EYZZ7SNA1t21OWI3TkIqephAGlaYoyBttbJufCy/zw3j0ODg959PAR169cxTtp2i4VHd7L3TeQ4nxK3bQ8PXiXzU3Bm9RVw3S6YLw2Ii/WKIsNLqbnaG3xQVwGlh7jpZGidUJdtQTl4xkG2vhoKRULmIl3ORBQugsBSY1NI5M5iG3KthiTUpaD2OSN4XVGmidtrbh86UWePPkYkkXkcUfMj1eMhrsURcl8NqHIS5qqk7rA9gQUWZ5JM0LLeaS0Wtk1vdNUC2Gk6lRCRbrO4ump5gvq5pgkS+laGY4WWUJSFIAE61XTCQ8feNZ299nb2+Ds9JifvPMjcI7pxZQ8zxmvr1FVlXBUx+soYZqQJKKESZIkBmQYcThpUdSISFHxk3ffJQTN7s4ueS53lsRoUIY8G5JnKd2sZjabUtcLktRQFgVdXUfLaYbRjqquUUqT5wXGyD6uIo99OfhN04TBUCxuzjnquuKP/sMf8fDBfX72577MKy+9RBbxKM+0L2olPFgqczrbolRLiAMta5/xOxeLOq7J5b1fmiZ939E0FVrNMSYjKOh6TxI5j7Z3NFERqROpVfNBKTWACYzGWwwHa/igKMueJBlKCEyeM69qdC17ZJqkcfgV65EgOBRCIEk6tEklCLLqSJOMJM+F5R3/glK/ZGILjlxSeQ8CaB+5xT2N9aRpLs1dDHgtjS+l6Nqe+cwACZ/97KcohiXVYsrO7hYuWP6H/+f/wC/+4i/w+uuv8//+p/+Yy/tX+MVf+EW+953v8OFHH3DnxVt88vXX+fDDj5hOzrn74h2GoyGHB4dkScLVFy7jguMb3/omm1tbjIdjthpLmi7Ae4bDEcXZgsFok4CibRuauqFtREmV5xngcH2P6/rVgDrPMqr5AtSyHpPPV4E0HXUqA/54R5ThQsRUxWTx7e1dNja3RVHrLRcXZzx69IDhcIDWiq7vyCLOQS0HFbC6z3gCwT1j9cnZ1LFY1NRNw/raOiEEsjwX1ZmScyjPC1FCxp6H1hIoFoLch1b2YG2iMyOsrMAqJhT3laWpJYjHeWEtWidDSFFXB+pmAV6hV0IfqQtZ9jC8IzhFWQxIs4wsywg42raJ+QlJPD9l2K6NoW962ran7UApw599/c94/Y03yIuCj+59wB/9h9/n+o3LTCaOf/bP/gl/7Td+k7t3bvPf/3/+KYtmwd/823+TS5f2+Ef/6H9kNCj5a7/5mzx8fJ9vf/vbvPrqK9y5e4eHDx7y1ltv8ak3PxXvBI553fOT9++xvj7m6eERr77yOm1dMb2YUNc1bdvQ98JAHY5GlOUQpaCuKiZdFxFbosgcjYZIoq70D1aEEGSAH2KzHqViPRcdKComqMf7v7Amlz0s6bOU5ZCbN26jkxRXNfRdx2x6wenZMU1TU5Y5ly9fwsSBUJHmzzX45IIu6+S5HgzSZ1AB6Tc8z+b7X/j6qRt8r738m9y4vs/p6TEPn/yAk8nbeN9iYnSxd9KE67ouyr4NxhQop7CuAWxkO0kowFKJsITbCndB1FTL/y+90D56mUOQB7OqW+Yc07Ytg0FB03QxFl3exK5r44eqsE5ShjrbooKXjdUkMYJcClvvJL45MwN629O3LSYNBBoS1eOsyFSDl8SjoCQFCBIIJXmSE1JJNuo6x+HRI7quYmdrSF6I3zz4GEHvJQlPlBbIZcQLQyFNU5x1zGY1OuS8dP0qxuSk6bI55Z4D0Idnk674z+WPr5ozPPvxZTjE8r+XE4rn/3v5Zyjkgj2fz1ksFjiXk5iEo6MjFosF3//+93n69Gks0ht6m7N99+eZTC9hbEtrJfGnd4FufsGHD35Ee/YuOiyj5D03btzg1VdfpWma1brx3lMUOX/t1/5z7ty6ymR6weOnb/Pxw2/SNEeo0D+nwhCLgIphHlqnGJ3hfMOziHth/CzVn8Eu/44ij101jWOzefl1YvMQa0jbtQQ1xVpLZsTWUxQSuiKT4n4ls3ZePp9FVZNouUQmiUxTQrTJ2T5ge4/ORPHqvUcnDqU60qKMibjgOs/FxRRJMQKFqBWTpKDrLYuqovYLJpNDrO25tLfFoEiJ1RVK+ShIFMXOMoTEey+FtElw1jKfNWhybr9wOa41uYzaOFX7iw2X5UuetWiJis2EZSNP1D9m9Tkt/1x5s59ZA+7evsPBwQF3b9+hzAv29/dRAf7L//K/lkZEkvPR41POTs65vFuidU/QotxwIeHeo1O+8KnX2B6JfTlNU7a3d9jc3KLvLe+9+y4/+3Nf5r333mNtfZ08pkymxtChee/dD/jrv/HfcPvWDaztOD6+x3sff4OnBz9EMUcpS+88Jm7QSoWoMFbk2UhYjkGSaV1MIdVKraxPssbkvVgCmpfBM8s1T0znBkkr7W0XlQxy0RiPR3GtqRWoXCbxHrcENgdhzRV5jjbS0O16AdQ6G3C2k+awcyjd0veOYjjA2U4k71YUq84KUy8ETZkPYhEcuLiYMulFEbeo52xvbzIaFphE7NbSJO/jNF0+ZxOBuaPRkMFwyGKxoKpaVMjZvbzDsNxaTf562wvn5rkGH+HPjfLjGhLmk6iWn01Z0Ya2bXn//Xf5+P49RqMRX/3qV9ne3gbnObh4zH//3/0/mE4vANkzBESvxRbkYzEZh0xBywDF9R6TZPzmf/Y3+Mt/+a/E6bHiwf17/LPf+ackmaGzll/6pb+C0tB2FV1fs7W9RtPWuN7JZ9F2rK9vcOfOz3Fl/xIhBG5drzg8+YA/+cY/xtrD2JiL0N5odUmzFB8CZT4gywrabi5KKhdTx6Jatq5FrZtlWRwuCEvGGDlnQoCutaDFmtNHW4vDYbQhSUW1Ph6P8F7Rd/FMigMjtKipeitg5SJOaINXwk3rmjhscXSupWtsZKU5rOvIYgJf39loy9Zxj9EoVVAWGdbKfjWb1lTVhQCbE8twMGBtNBAuVdeJGloZUQd1dhXmpIC1tTFrao3pdErfe3QoGazvMii3VlYpa4XTtVprq//LmpstKvYuXyUfjNAm4+johDRJuffRPbrWMi6G/G/+7t9BRQbu3/t7/0CSx43ir/+Nv05vZcCzt73Nrb//96L1X/Nf/YP/ChvE8ry7u411kr5d1zVt17G9s8d8XnPz9l1MVIY1fce3vv1t3n/3bV577TW2N9exNjLl4ue/qGu2t7exjSAt5I4Ar7/861zafYEsy5nPFni3xst3/wppssE3vv1PcP4UpWXCqZSKiBKNCWJ13Bht0qYJTbMg0Qk+qNX6d66n7yWhNz6dwtCMz2QfC7S27eI9C7yV4UdWpGQkdG0rgxRlIGRUiyY2tBO0Fpt413msE8B5lqZyx7OKPE9prAxpFIaqrtCAThC1v7NkqezZVdXI0FZFe3twJGmONilN3dJVHYtFR99Z8lKzsTGgKFNGwyHWRkaulsK77y0hWuW1SsQynQnwfjqZ4KzCqCEb69doas/aeMT5bMp3v/OnoAxFnnN4ckTTdPz47R/z6c+8Qd00fPvb32ZQ5ly/eo3ziylf+PKXqBvPhx/d49/++9/ljTc+ySfffJM/+IM/5uTkkM9/8cscnZwTSPnx2++zs7NJmiW0jWVWn0EIbG5u0Pcdw+GIvb1LtFVLnmSMhmPqRkIrskzKgiQOj+ZzsYkrJampJ2enDMZDilHJ6enp6gwvioI2JsA732MMtO0J7334b1HkUVku3KfRcF32kANR0bXtJELexS3T95187kFJU9cp+q6jrmUYMx6voXzAdhXn51N8gL3dHbJM6oUAdK2wLl3doeI6TuMg2DonqfY60NYLFtUcYxJ62xHcgEu7r3B8MqO1DTYyU5XWpDqN4QiiGJ5XFa4TxnKWG0l1dTKckx6DxsSAmNb2Yvc1KZPZgrbrybNcrHtZAtqRF0m8u8pZU5YZiUlpW7n/WStn0q/+8lf57g++R54n0thXjn/4//rvuHPnNn/n7/xd/uE//Ed0tuf/8L/73/PNb3+bb3zjm1y9cYX/1W//Nr/3B3/Ed7/1LX7rt/46+3v7/OP/8R+zsb7Gb/+d/4JHj5/y0b0nvPrK67z14w9wrmM+n1FkKXmWc/v2i8xnMw4OD2iahv39fXb3dunajiTJOTp8ineSuD0oxf1krYuWWHFy5JmEBqVpxnA4oqlbmqqGIvD+h+/zzW9/m75t+OY3DTdv3hALXaxDtFyS/pPhX13XGN3hE0MaazitFX0MHEvTjLatVzVk3/exYSSDua4XJNNwOMAB3lqC1mjJ58HZQJIaBuWQEBCWulJUdS1MRkQZVleNNFUcqCShbVsuLmbkuRT4RVms1p9WkGRyt6gWHSEUJGnJdHZGmsUaJAQUKc4mOCu4FGHBKRSR/egdeZrTVG3cVyXEcrFoY5hLQOkhg3Kf4UDx9a//R15/8w0JrOw6Pnj6Ho8e32dRTfn43gf84PvfJfmMYjGf8M5P3mYwLOS59Y5/9T//a548esj/6f/yf+b45IL/6//t/84nXrzD//G//W/50ds/5mJS88t/9Wd5/PgpDx4/YnJxznRywaXdXYajNT755mc4PjlicnZB3/YMh0Nu3rxJluV0fUPbrAvy4viI4DyDckBbt1FdnuKcJUtyml6eyaBs5CLK5621KMbyPCPPc4rBiMuXrkaFds/Dh/f5V//qX3D//sfcvXObL//Ml2TfGK0TlF/ZNCPpb9mLYYnqEPeBoShKikIzGEhgXllmKyGD3EcMo2FOCEQLNoDc+7RK6Lt+hWOJ+Lco6OgxJsMkCV3XSdq985hE+LPynWlMRBq1bRvDVWRoa50ThaeXFGcdw4YSU0jTVxGDWYwoCNMcQogqyhjOGRJGgzWy3HLz5hqPn95nczhmb2cPBZyfnmBiUNi9+x/jvCVNNA8f3GNja50X918EAm/9+C1+8MPvc/fObWbzKd/+9nf4/d/7A+7cvYs2hnv3HzCdLnjw8AmXr7xAVTccnZwxvTjj8v4u62tjrl27ycXkjLOzU5qmxlrH2toal69cocgLtDKCdskHlOWI2eSM4+PDVciMMJ4dzyYC0dmCoNu8l9CyJEljei7RcSV/PxluCt4lyzLSLKUoCna2dinLAV3T09QVjx895Otf/xO++71vA4E333yDL37x86KUVoZscyf+uay+j6VeYClIQC85nuE/Laz/F75+6gZfmqyTpzvsbm9y7cor/Mk3/jkfPfhDAguSREc9WXzwlBamKznra9ssmjOcq8lSSeFbpcz2DQThUEgBHZssq3RbKYC7rsfEJCKxYgjcUiv5GrGMyAXMOrn0iSIwwbWdgNstJCZD6QRI8E6UU11fS8HkJXBDKU2SaELo5HtKZeo2n0pKlDYZRqWoxKPosD6wqCdoEi7OZ2RZwbBIKNKCsixQytO2MT59+fduO7LMY2KSsHYqAnOliEmTnNHgEmtrL5BlpYCJfYgpp341sYJlQ0UuIVKrRKsXz2oXKfKeWaKWhyiwmkIsGzVLGxxA23b88Ic/YDwekaUZs9kMgCdPn7CYV5KGhEUHxdHpP+f97/1LUjqC0uQxyc75RCYWXUuSZhweHQGB07NTrLOMRyOOjo5pW2HwjMcj/vbf+HXOz2qsTfnErV+gazXff+trWHtOkkoBIpNcg8ZElWjKsByyqJaBBMnq7yfNFFFz5XkRlZARtOk9BpFNgySNaW0IXqESjTEZWW7o+gbrZApC0CgGtM0EnUiKkKRMdxFinpOaLDIpDH0rqgtnJYFK+EEyrdGJwJt9CCtF13yyIDEpaTJE6wRnPL5rmFcNbTtFG0NdtShlKPIMCoMPPW0Xovx6qfaUZN80k7hzlBwbuVFok9C2PVlSMiovsbNzUxqIxuD6Xtbac+rPle02Wr1Xr7C0g0d1qOK5ZmLcvZZ6aCWXtLYVYPr+/j5XLkss+eTigoMnB3z44Uf0fc9iPqEncGHX+dynf44337wKfk7dNOgkZd4k/Pj+e/yrf/d1ku4JWaLY3t4iSVKuXbvO3bt3aVoJNXnzzTfoupbFfBZ5NYEP3n+f4+NDmvq/5vHDY9q2Y2fnGjdfgKdPHnA+eYrSliRNxUJEtDxGNVmaFGKL61pAIwgj+bqletkkaUwTlaaS7S1eL5vwEqpjEkkUHAxGNL5lMBjjg43Fq+z/RbojCd20JElGiCDYpulI9IAiL6Xh562oX0jxVlgVaSpMI6Nlwuv9sqDr6S00jUORkGUD8kxR15UwLrqp2AyyFO8Ntg9Az9q4ACTFOUlEDm9tG9MIW9Kki4Eikk4WEHWR1ilZkqPCkGvXXiUxJYOixDlHtahwKwbKclmJdX25toj/dDEt69k+pqMCTzEYFGxurlOWg9VeFkLg/OyUEDxFMRTsmhHYrXMe1/coL7bbPFtiEDwaT9/2gObtt3/EF77weYaDNbGI4VlUcy6tXSKJVps0SVfJnm1TU9di4VvUFRfnZ9y+c4v5/IJ79xbMZnNGwxFZMWR3+y4f3nuE8xJUsbzAGWOwjUj4nQuRvSLJd3ppTwxyKZHhmLznNjZXbCeMNKVkffVWlLjeB8rBAGuF4yUMUI+OyqhhuUcIKbPFQ9LMCOelk5CMLB0yGIzBW9quIjEp1cJFO5LsucHEiXpMi0uTDK0TeouoY0hIUkmTd21N71pCWzOfz4RdFkRJ0tY166MBWilmc7HgaqPorYDx27Yl0TnKRDC2krVS5gPW1xISk4EveeGFT2D0kEExwFlLVYn6RK3ORqLdXjg+s+mUqpNgjjff+AxLQL1WKVlSsLsjzQVtFMSGF9EdoONnYuJN3nknybpGr/h0bddx5erV+Cx6ut6iVWA0KFgbrdM7x8OHjzg+OgJELRUITKcXbG6M43m/VNxpFos5a+M1fNE/p6iyPHz0I7ruhCwb0LeW05NzhuMBad6xtr7L0fGBKHhNtNb1jlzlLOoKbQxNfQA+xH1NLsoiGhXVZZLmK5WNFDoJtu/JYlPaeWGKusgRWlvfYDqdorWE2ojaKaVrLTevfpKDw6c0/WOMNtR1F+8jmvW1TYblmPl8CgTqqqaPQzAdm3ZSlD3jv2ZpKed3VLfkeUbX9bRdT9vWuOCEL9zUFEVBajReS9L5xvoYay3T+ZyikGLI9RZtEnobCMbGwawMh4OCLE2FL21KEtbZ3LrBhx+csLW7zQcPPmZ3fcjZ2YSdqy9gnTQdtUnou45qPgdkr57N5zRtw6OHD9m7tBfDCSzWwvnZmbgl6prpbMbh4RFv/eht8qKgKA1DBlGNCTdv3ZRQLefZ2doGH+hiCurR0QF7ezvyrDqxPM1rSSIlLJEa4o44OT0GApubW9ioQtHRApWlovir6j66VzyL6jSqOVOaThRRVbcQbqbr0SYl1RC8o4l7K0BQjsSCJIkm0vAarEV77ZDZbMbBwQFKGdIk5/BowubG+uoulSQZTSP7UG9rbC8q+zKGbUlyr5wFRS7FOFrTWw9BnCau8c/qreBw1tF1TVRQyxmzVFl1rfz+SZJi0lwS7a1nNl+gdSvNIAK9FQW3tWJrVSHQ9TL0cl6JOseIyqzrAm1YkGYGrXK2t/Zou55vffPrNH3P5tY2RydHDAaiKLS248mThxwcPibPC07Pjjl4/IQvffELFIOCo6Njvvvd7/KDt37IV7/6VWbTiu985/tcu36N6bTiR+/8hL4PfPjxAx48fMT6+gjbWtqmJksNhweP8ErTNBXD4YgXXngBhaGtRaQxGg6ZTi/oexcbnYL0GY5yRqMheZYJq9xb5tWCqm7o256NOJz68MP32bu0y9PHD7n38cdMzs9ZK4fPhsJOzrnlXVOI4IYszfC+p++6OFSVvVVUqCneQ5oWLFNfe2tlSB4CSZqhdYqyYp9uu44szwFFkglDVKNI0pTJZIJWhrZtKMsi8uQ8GEXf2Ti0F+WUNGMNg8EwYqdEzbhsRikFyhhWISGm4OD4Ams7CZMIniKTlPo8XcMr+Qy6rsMGcX5MpxO6XhLVl4NkZaT5J844TWd7vDWUmYbguXvnDteu3QQvQ7nZZILRkKSGyXQiqsM0YbGYE3BcfuEy4/UxZ2dnLBZzdCL4ocePn9DFNOCTkxPuP3zAk4MD/t3v/QFnZxeUZc7J8SGGwHg4hBCo5lP6uqJtK8piwJ07dyiKUvbNoKNlt2A8GjOfTTg5vUCGR8+QP847XFBkWtJ0s9h0SdOMLE3FZhwH/rN5xWI2Q6+Nmc4m/OF/+CPefucd6mpO1zaMRgN+4Rd+Xs7z54QwDmnALPX8zjqMksDIum5A9ZTlMKpbY5BQVGgqpSMrr5Vfb9LInFV4X5DnY4yCqlnQWy+2cJPgXGRm9x2L2YKiLEiLTMQBAbq4vnzEN/W9J8sMXWdXvMg0LbDa4oLGIKgB36fkhaSwV3VDYkYMhjnONfRdI4FKytC3LYtqQZ4X1HWD9QkHhw1Gw/b2Nq+9+gofffghfdeSZYLZWSwkQCpJNYt6wbyaMayH9LZnNp/QdTWjkQzyLy7OI9ItYTGf8+TgMQ8ePqTtHdlgSJpqHj95wvHhExIjd6dq0VAtqoiX6lhfW+funRdF7KD0KkBLxz5KkueMx+tMp+dMZ2L3DvGzXGIafPASwGOlsZbnCTrNyExKmeWR1Z+TpRlJvHsrpcjznNl8Lk3BztI2DV3bcXx8yL//9/+Ob337G/RdS9s1NPWCtlnwxS9+gWE5xBNW90AVgmQ9LF0uUXQTIlpIRSQJ+rl6+n/h66du8J2eHOO6BbNZxfrGmK2NF3jweMCiPsNGuTZB4XtPrjLm1RxtGuZ1g0JSGQXoaVZKMu997KgKv0XsE8K3yrLoWXfi3+9asXGU5QjnFki8uvB+ksRgO83NG2/y4cc/QaUNwUO96AhRjba5fok8H3Jy+gQyQ72oGAwypL2qJRHTRdaLk48kS3N65wlamAVay4EHLV3bojTUbS2TXA1FntH1HcNhxnCUUVUTsiwnTVO5WMYOvXMOgljZiCBhUTUqymJIlhXk+QithwwGAwjQdu1K5bbsPrNMMY1LaGk38mHZyHvW2X7eJvn863k138r24CQAQik4PT3h4cN7capaxx+XeHajM/H75zkmaTk/PyNPS159/Q1eevmllVx+ydiy1vGtb32TqlpQLeZ4HDduXuP45JD7Dz6iKErKMuPk5AHenTK5mFMUQ7JcU+RDZjaGVARpinV9HzepiixrmE4WgARvLK1Dy0RT55xc9K3FhJjsF62SaUZUrEhCr3PCesiLgt4t6PqedplAmmTYXvHKK1/ix+9+D/QE5xxNvcCYhDTJGI82MKbk4uKIQKBazGQCmwnzQS4xKnKOFN6LSqHvPUrnYiuylvlsIfaPIE2lputAgzJLq2egLAuyXNE0FcakaKXpbEXfC4jVu4yU7FmyIQJItdaRmAKtC5JkjHWa0WiN4D2dFQulW/K+YtG4tAwsL13Lht+K90hYWSflDP0La03ig6jrmvPzc9peFLsEeV/v3bvHBx98iLeOQFTrFfscHXzIj9MzEsR+Zz10NmV+ep8nDz9E1U9QOD7+UP5ub//4bU4//7nIhHEsrf/eOxkWGEOWSUP2/Y++wZX9XU5PJ9x/WJJmMB6vczGNiU1OvnPnLHmeUzctAUddtwQncPU8F4WS0bLOmqYRHoxz+FZUMq4LsfiUQAIw0RIqSt5AwCQpXd/R99JcRYlsfn/7FuMRPD7+NsEruXgAaZJRFGskJse6ShggraRPZ5mWRkrw0SYABE1vXeTgBUlKSwxt23F+ckKRpQTXxYmjJ8kUSWZoapmA52VGWWb0VmTlJskkIdF2kTtZCOdRK0m+MvI8VVVF8BqnNZnJqWtHng+inakXuL5fqoyj3TQC85dxTD4WmCuF8tIG42U8lpiUS5cu0bQNiU4YFiWXdvfY2txia3OL69duYQNYpXj7/UfUdcv2egpIYrXY/jSPDiZ84vYNru4NCT4GBSSG27dvUhYDDg+Pmc0LvvCFz/Po0SPG4w2G5YC2banqamVDNsbwx3/8x5ydnXHz5k0uX7rEt777NbY2RzSNwJCdsygzRylNUYzo+36lohZ1QGQwth7Xe5zrGAxLGWwoKVAmkxnra2sUZU7bCrOs7RuC9+RBzjelNElarIonCY+Btq2xVhSdy0TfjfEGW1s3+NFPDgg4+k64sGmaxqFAg0mQQI2+iwWVjsxOuSl7vxwcabKsoO8djXVgUuaLBdXijLIoCUEg1aAoypwkMRIE4ES5l6TR2p4akixZNWe6uiMxa9JwIAFlUHjytIjBHUrUhdmQpvaUpQyobG/FAhuZO0rp5xLNZIo/nVzww3feZVHVbG5tcufObfI8I0szuq7lP/7O77OYT6I6OkEnkjibJcIdNMZIKnqSoBJ5H7RJyIxha2uHuy++LOqOqHjWHg6PD3nyWBohg3LI2dmZWAjbFud6di/t0PXdao9tmgbnPMOhND/W1kZ4FZl4SHP8o/t/wscPhBM7Hm0QQiA5LWi7Du/nSPpjDpH9672jQxRJ3snz31Q1XdeyubWF1jCvaqaTGVVVs3dpj9GolDVAoGoWmCUnyYjtVdAAMhSp6gUhONqmp60rtEliomhCmqwxGsLFwSOM6QBhidoAbVOzmC9IU42zbWy09dFaKxxSY1JBI+gEjUeFhLbraLqGvnd0dkpVNaLaiYFqJtEMTCGqzr7HECgiQN2YmD4t2U1Y5wm2x+giNrByQO5CWmsWswWJKWl7TzYccHy2oCPh8OgpOsk5OTple3uP+WTBbF7xiRdf4j/79d9ke2ObJEn41V/+VbZ3twgBtre2uHf/Hhub6xRlzle+8iWu7F/G9h1vvPFJqrrCOsvTp485Oz9he3uLqp5z6dIOP/7hDyhSw2QyY2d3P1oKB8xmM46Oj/jd3/03vPPOW/zGr/8aL7xwleBcbGqwUhME70GLgn86nXL58mXqumY0Hq0Uw89E1vIvfe8QDtXys8vp+5be9vFsTwg6gG1ovQxjA7BYVKKqVGLfz9KSrBjGtOSEshyQZiMKr9jZIQ5yc/q+52JSySDGLBnekkQcVEyyVFDVLYlJKfIRbVdhnTR5lBIVfw+yBoPcFUFh1PI+3GOtJ88SURahKPIBSSoW17oW3qF1FYF4l4vpjr3rV4Oium4jEyuhbRqyLKG3ToZ90Ro2KMeU5ZiT08dSyDJg0fScnZ9xe2+X8foGa+N1dFB0bUNmDHmaUi1m4CWFtK4XzGcXHD7xDNfGXNrdpa0b0iTDWkffzqgbSdWeLRZMp1MePX7C4dGRKJpx5ElKYuDunducnZ2BFoXc5f198ixnNpnTNw2zyQVNUwl7Lii2h0OyPBeb3HzGdDaLd8x+pZBZqu2U1pyfn3N48BSj4PLlSzy8/4CmrgjeEZRgkBRisyY6sZYvOYcG6BBWbh6lFIqEJJV9oHed7OeR87hMcU9SacAoJ03BJJX04ywOnFQUC1jvSE0SVcoZKmjyNGNRLTAkFMVAkElBszYcMRqtMaskzKdp6lizBnSQ+scYTd+JkwwUVVOTFSUbgx2Ckz1ehUQ42L2l6qYE3+K9o+07vLOrJoBJNFkqTcUQm5Zt5wQBpUvS5DJdl2KSlIuLCfPJlNFozNnJBePRmLu37jDIS5y3bG1sMhiU1G3F0dFTnjx5yOe+8HmuXtWSLG0SXN9RL+bYriFJNHVXcXj0lEePHnL77l20hqqqmU0X+L7lqz/3M7RNQ1tXdE2NBq5evSpNbRfo21asmJMLmmaBViE25sXpkuYFozyjLEuU1sLD1poyL8B7+r6nazsWi4rWSmBHkoga229CXhR8+NFHHB4+4dbtm8xnU548fshPfvIOX/7SF+F5RJVWsHQgKY1RSnoYkbFmTEZvO87Pz6NDIiXL0ti4ldwBTBCXFJLya51w21+88RVevPMFsiRn1hzy1jv/kacH72ESg+0dqdb0vhcBgA00jWU4HNE2Db31NHUlQ/GsYFCWZLkWNJKSBvFgOJQz0lqs7clMju0dJ+fHKLOs9Q1NF1DB0nXSQHb1nK63eDwWS2Z22d97meBrenfCdDrhD/7gD2mbhhvXbyPoIcWlvUt84sWXopoucHT4lMn0nLsv3sI5S5IYyiLH9S31YobGkxrN9OKM48MjxqMhv/Ebf5UkSfn43r0YEhT47Gc/zWwyY7FYRFtuT5HnfOITn6AshiIico6ubZnPpnL3sRIkaBJDlufMZrOVC1QZTTEYRBWeqPG0UqgAeZ6T5cJOxIPtJSil73qqRSUNdW/Ji5zJZIp3gbW1DUaDIYtqzg9+8D0ODh7z4ot38N5xdHDI+cUZb731Q65cucxLL760cjEsB8iBIPva8n9BrODPK/eWdfZP8/qpG3w/evffMx6lpKni/oEwSLq+Ik2GIGHpWCeXnqUaamnZaesKhZNLgoGubzg7FSvB3t4ORanogkyl27oRObuPoRFBicQ0EytXXdfCGAueuqpWypFEj9nZeJmHySnT6kOMEnui9xrrPdPZBaaaY1KBNyYJdH1NlmZiSVKiuFEr4KKWYIxmgQvEVKNuNQUEsUINBpKq2XcOH3qyHJTu6DpFUZYk8aAQ2XETF4CnyMc41dO0s1VynffCGrEdkCeAZn1dfP8XFxexwRcBo88desuFtGziLS9hS5XL86/n7bh/kcP37N/BWreyfflQijKla1fTFbkIwtWr18lSsREPigGD4Rree95++8eIrFCvYP86Sp7zLGVrY53FbM7Xv/6nnJ6ekueFWFrThB++87tsbOQYowle40OHtVPSrMQ7h9GJgJGR6UaS5CtpdlPVuODZWN8AkBTC8wsIgf39XYajMipDRVGVJCk2qhZ9cCTGkKYZ1jkW1RxrOwiBPqoUWttAKCnyDRI9ZNYcY5QiTSVOvu8t5+fnKDXBJNIYKgaJhIS4RJLBlDT0go6peDja1jFfzOgjt6hr4wUw0RgDOEc5zEU9YD194smNoe9bnJfk4CXwdSlhX37tcLAOxjCZHqOUiimC0b7nU7QqyLIBm5ub+BA4Pzuj67qVak+vVELx0oU0XKyNvqulQA9JWAxRfuyfW3syZZTLnneBt956i6CE49V33XMNm5bT81MIjqbr0eaI3330NloHlBM5+mA0krRrJ8phoz1pYqgWFdY7Dg6PuJhccPPmTbRWzGYzuq6lbcVO+9nPfpbxeIxW8JMPf4/Ds3jxU4ausSgTbSJaprCegLUSEqR1IqoqD30n3MjxeJ08TzmZTZnP5zR1x9raiN3dLUwiOjwf1HOScOj7Nlp+RVrfNAJWdraXNRJUVADJdC7LBnQdBB0ify3Qe8t8fiG260ITgqMoU5qmw1oIvSj30rLAOyf2iPmCuupZ1AuaXi7Cwity2L5F0pwd5aAkywcxFMEhHCqYzURpJnbAXi6CMRjJewmneOHqZZ4cfCAg3GhlTNMUQkqWbpBlQy7t7xOA2WwmTZfnVcVRCb60UIa4lkIILKl9S57r0q5LCGileO2VV6P6u+Xw4Cnf+sY3mc8lze1idoZVmpNuj1df/Qyf+8we2DltY9FphvU5T//4Y350/5DTo3sY5VgbjynyjLOzM27fvo33Ytt57bXXeOWVl/HeM52Kuuj8/JzxeMzDhw/5p//0n3F4eEBRFFy9epUkSTg+e59FZynygpOJFI3aKJQOWAvWgrAVPX7FuYxpusrQdlFpmCccnxyzWFR4D1Xl2N7eoChyXLDSULbLYCVp5Ckln0Ge51gnqfN4MCrBZBnO26hcBqMLnNVoYmgOMtDxffwsvah8tBJeYN+r1Rk3GAxERYjm4nzCYtFgXWDR1DEFvsdZz2wxl9Tq4BkMS/Iil/3OeLI8xTlFN+8QYWGgbUWNLAmqEqJVFkOuXbvOweGHNG0Vz9BAlpVohgzKbUbjLS7vX5Yp/2waPyuerbV4jC6HEn3f8eDBPSazGYPDAVeu7EvzUymePrnPv/7XX6NbJeDFpPNowQhRqSv26BQf9zuDwXU9m5vb/Df/zf+Wuy++iI9qqXfe+Qn/0z//HfIyp+kavvKVr7C9tU2SFjx5ckRiFCFNQSuquqJtpIlSFiXOO6aTC65euUxT188NYECZGttfoAw0vex781Yau2LdDlRVG3+NQPbTTCbPiZE9bjBcwyQ9eb5O3TY8eXqA94GiGDGZtlLMpAm9bSnKkq4Xi3nXd7RtJ/yvaOfW/ZI/21MOxqt7S98v2VM5Sido5ei9jZZ1i/eWgKa3WgY/Tgo670TpKgorGVg1dct8PpM9jUBvhUtctz3eQqUkzds4S5oN0FFlqpWnKAq8TXC+w6Qhqreg66VJZJ2j6yo21tfY3Nrk+GSCs5a+c2idok3GKN9ic/0FymLMiy/u8cK169w4OWY2n4mKtXNcf+EGt2/e4qXbNyKvyXD9+m28EqXO5f0rYvG0PYrAb/7GX1upMn/+Z3+BoARZ8/KrL5EVwlPSRvHg4SO2dndJFexfuszN23clYTMRHM7JyQk/fvtHTC8ueP/997l8eX9VjHhhgLAKw3JgE0vT1ly+cpnJxYTtrW25zkWJ9YqhHfEcfS93HxkeSYiAqKssbdvSxQFZkeV0vaBM8kERBwIeHxRJWjAoR1x057RdS1kmXFyc4pECiehIMDohywc0TcVkMkUnYmcblKLymc9rlIY0SVgfF9TNAmcVw9ElzqfHhNCIpVtltF1P8CVVZcjTpRJfsTZeF7uiEzdD8IrZ/JSyLCL/yRIIdNEGl5h0tRF4PEbJc6R1L3eqyUSGp504ObY2t+n6Huc6vO85vzgGZTDJBlf3v8TkHKYLePcn73L12g2qWcPjR0/41Jtv8tf/xt8iSTRGp/zaX/11Ac9by527t3nw4CFZKQ3W1155mY21NVJjUMbw+uuvsrW9xXQ24cMPP6C3jrt373B6dsbNm9d4/933mE/OKAtBBRWDMVmas762Ttd0LBYLPvjgPf7N7/5LvGv5xV/8Ki+8cF0CM7qWruvpuo6279BpIsrmINWhivtMCJanB09ou46NjQ3Oz08ZjUZxUPdcnfJ8cQPPQnbQ2N5RZFmsVXqUEm5dXTUE5bFeUkeF0SzDMJOIuqfre4q8kDPQJKKwk7EIznnqqpZ08EyUpEqpmGKaUpQlCrNK9x0MxqSm4OjwDBt6iiIlS0pUCok2FMVQhluN1CpFntL2LaG3TGcLLs4PGZSpYK58hg89aZahncGpgPM9SaYwqohJ5D4qaKW2diFgTIH3gq26fetlXrzxl5lMFWn+LqenZ9y/d4+m7rm8f4Xbt25y8/otSR9X8Pf+13+f3gmK5zf/2m9ydnHOYDjAGM1v/sZv0DQtRhuu7F/iL/3iV9m9tEtVV5yencZUYVjb3uCFF67y7b7h7R/9iA8/+EiwLSajbVrW1tbZv7QPXtG3DRfnp7z73jt87/vfwbuWl196ictXrrB/+9aqXl2KYJqmoW87pjNJw1Wwqn9RGq/EWrnk2SVJwmwx57333o3numdjc535/IKz0zNRS+/uxZ8Tp4HYwJcs6+WWpla1pbAOzWoAamICsfSt5c9ERUxIYvA20PY1P3znP7KoK6qqYzI9xrPAe4VtPFkyjMxqz2h9GPcZR56XaJViuhYzSMjTQcR2edq+IngbXR5wfnGCC72sXA+967F9J44BDdY5EpPEgBSDdZaubzFpFge2CWky4BO3f4ly8AIqPEbrMYvFgrquuX7tBhvjdfb296nqOVubO1y7co2qrUmTlP/ib/82ddsQQuDa1Wv89t/+bYosR6H58pe+xM0bNyiKjOlkgtGCgPmzP/2PfPrTn+LmjRc4fHKf2fkhp8fHnJ6dsbd/hbauIHhefPFFtre2WMxbVID5dMLTp4+4d+8ejx8/JHjLtWsvsHtpD6UUly9fYjwaS3iJ1uRFsRKfOO9om1Y49dMpYVm7dnKXfb4mA/Aq0HlLY1s0Eo5jnePJ06e8+95PyIuMopC958atG7Tv1hwdHXHv44956cUXZegUniG/pK6NDb6/IK76/+frp27wWX9O3dfMGumaw1JtoaQTb+SyrlH0rbDP0AbvoRyMaVqLMTvMFqc8PTjGaEnvOTyu2dgwcZqvyJKSupHUl6qqYuEHg8EApQOJEVVf8J6iKEUOqTxdKw+J8Dcy4XbYXibtatkkasFFbppS5FlGwEhKmdKYNKFuauqqoWnbaCMW0HjXOerGRnWCwXtLmhmSIE2b4D3aaIpshNEZVXMBOCpbxyhvuRRVzTzagSQddsmLE0++NJd2Nj7BtSuf5M6dT5AkGVXdcnx8ylIWHFa2tWdsimfW3ecbetFE8+eagX/+a4SfyEoaraINwQeZlmVZRtPKAWWMYW1tje3tHS7OJ3Rdy/mZKDhDlKJeXMxYhjFIebM0byuMMjF1T5JfB6VYsKztpePtQrTD9PRuQe9CZJJBYozYW+oWTbeSvSbWgtexgSBAXOcUw8EmZxcnnF9UJMmALMuZzHqsF76DUooiz2k6WXd1vRDrb0zHMSaJ60OSxopsJBbN4GnrJdcljXagnr6TgnzJngre0vXCyDBpRlkM5XCOFk3rA027kMtZJ0WbtTKFsNazqIUrWRi5hKaZKGSWfButHXlWkpoB88UFXd9Rt3N625GmMf67acAHprML0AIZfz7lMM8yrl1+hWuXX+fll18jzXOm0xnHJ6fEfBVpoHhJKXpm8eZZQ0avFO9x84wK2L8w5Zf/ULHAlO9vOp1wcPiEphbF2qfefJO7L97i9/7dv6XrO6yzDDJNWaScX5yRpSW3rt/h2o0bEnzR9zFB0pDohMODA06Oj7mYnHN2dsqlS3tsbW3yox9/THCSZLq7s8v1G9dZBpEYA12/IAkmBm8YgpWpa9f20RYpzbMslSlalmYo5UmzlI2NPba29qiait7OSLMBg8EWaZZyMW0xMZU7z4XJUiNMGO8cSapQdKRJT2IM5WBANW8lyj6BzBDTS3tMkpHoAUrX+GgJSYym7juUUrS1xfU9rXEMR2PhDLYt3nvm87kUVfOZhCRZhyQMCQ9kMhNFT5Gm9E6CVoogXBv59BxlMWJtvM3Fxbmw5rC40Iqlu+tjKmmPc+fcuzdBGVG8eh9VIipw9fJtbl//PHfvvMZwNKaqap4+ORQmpTx8sYlsVwfvKjiAZbiGJGDLPhj/G5jNpVFYVVW8hAkU/8++8U3mi0p4utrT6UCy8yl61zKZXICbi3VeJ9QNtM0FH378AfdnH6F8g1EIz0kbvvzln+Hy5csxDEj2y+X7ORwO+eCD93nppZfI8yw2GuRVVRVPnz4hK6FfpgeHyBLsw0r91lkrnMJYnKogDXBholrG4x1Gow2ss5TDjiQrUSQrJVfVVixDYGQ4IvuK0rKXN52jdy2JUZg0E4t3koPyUTUcaLuOJbNziXZQ2qDRNBGH0fcBHxUEg+GIxBiaqqKqxGoblsO1IEU/SpNlorCY1zVKJaIO8Ja+60X94VgljZdFwfraNmfn5zTtXC5pXYvWAdd7JGAqYb445969BegGFYONhPGXcf3KNV66+yVu3niF4XiNum54+vQwJueqOGxgpV6T91galru7OyijIqs0Bs0YKR6GwxF5VkSmpoCqu65ZqZNDcKBTSZDUgAsoF7BJj7U97773E65cuSLp3EoSkxf1gqzMGI1HWNdHNXmgaxpu3bzJBx++H5Pk7Oqz/u73vst8PifLMm7dvMmTJ0/kWY1nfdu0ON/HoYaoDJLUCPA78n610lR1LQ6KOCzKspJBPpZEcedIsgIfBFWxtb0bAwRgUA5YLGZUoUObwKK6kL0zrpcsTUWtsMTiBI3tFd4NCEbjQkuaxqK7FTcAQQYFaVLgvAMveJbBoJQi2xQ47UmyDAXUiwXOy1mstDACTaqjjUmRZoYQJGE7yQagpUHkrAyv0iRBAj4ltXY43OTk9IS2ERVz0y3IslwK6fiMTqYn1O0JxvRxCERM9Eu5e/Mlbl7/DN/6zk+Y1ceMxmPyLOPKlSskJqHIh+RpzmCQopSk1mqTyO/tHUZrjBZVd2oSAp4Q1WbL51FrTddZ9vev8Morr6zujGkmCa9FKsrM6WzBxx9/xGQyZWdnmwcPH3Dt+jUe68DJyTF914qqKg6Gl0yqFSo3SSIz27C/v89oNJJB6PLmFb9QISq4JMtiCrYUwNZLsF1AuGhJLvebKjKX01T+7OiqIi8LOttyfHIg90WladuaalGhjIoKnyTu/dJ8GQzGorBSnjoqyoqiJElSUfYZUQZ1raXrAlVzinWBvBgRgsV6Rd1WbG/vUXcP6DvhOjZ9jZvI8MrF0L80zUArQYQoJWcR4sCwzmGVokgLdKKwdU3bSEG/WFScnZ+T5gm7u5fY2dzBWUvT9DRNTZ5LmE3dNhiTc+XKJ9jbvcPubsbO/iWqekHXCnpj//I1bly/jlF+xXu+fGWpxHRc2tnj1VdeX+1pn//c5/nC54m4D8Vv/dbfFDeLcrz22is8PTjk9PSYra1Njo8OWcwmpEnK0ycH3Lx1m8FwzHh9Aw/U9ZyDo6d87V9+jXd+8hYGR15k/JW/PIzuI2kqSKMkiPXBCPZAhcjoDLJ2jk+O2N7a4saNa7z7no0BAGm8Vy4Z0s8ECM8PY7quBeXindmjVcHG8A6Dcos0TVk0Uw5O3ieEOjbi5M7bdT1t00joidYkSYZzHhubAlITJPHuL6qlxaJB4yjLIRJWFUjTjNFgSJoU0hxWiu2dHdmz8bT1FOc76rZmNp8yny0IylMOSrpJj/M9Xd+Q57k0k43cia3z9NZy8+aLvP3efY5PTtBGAgZ6C721UeFvyFKZqHetjeFzBq0K2vkaDx6ckA3WuXv3RV56aZlyr9lYlzupd32U2OuVatdGdtnlF66tVL1725ekTukto+GYvUuX8XiSLOFTb36Ke/c/5vT0CLexwcf3appmwc0b1zg+PiHPC7reUY6GXL78Am3TUdUN5+dnfOdb3+Rr/+J/4uT0ABU877zzI371V/+qWLpdoO36yNoTi673jq7tsNrG0Ai50CiWrDwt/P9YaxwdH3F4dLBCDczmMza3tng0vS8OtLAMWAhxQBdT5+OWJvdJqXOW9lSC7F1pmtJ1Dts7CbJIM9IkF7u/6zBak2YKXUjQ0dHZ+4AB08uwNBhGww2ydETwgcnsdDXYb3sJbFLKoZRH9YpmsYiDkkQSx42ndxbbC08ySbUwwnVCksgepZA1VSYinPBegk5NmmJIxQ3Z96jogHvrrfcZb80YDgZcu36VIi8JQYstOYnjdL+7egZXqrTACldDCOxu7uIjU/7O7TVu3r6D0rC+scGrr77C6dkZxsCTpw9FvT2fsrGxwU/efY+iGHA+uaD3jq2tHdbGa5yenjOb1cxmEz766H3+6A9/n+9//7ssFjMUnu3tDb785Z/hs5/9POPREGfl+a6qGm0MbdfF+7ncY+xKlBTDVYKKwU1Rn7L8+6llYKlHaUOSShbBO+++LUFDiWYyEddeXuS8cPUFzs9POT87f9bQ4xl7niBneCRkoogtgGVtrJagip/u9VM3+NpuQefOILBS83gfItNMihiBoyoSnUBqKIcjUQIpRZ6PUSYjzXN2d/fwXlRB3jlm8xaxikjXOQSx7CqtYpy9ou1FBpolCV3fE8jQQdMHsWtorei7HkKO7RVZosjzgraTpNXgU/J8gHMdWdpjEknhs9ZSL2b4EOhsbNJovZK/Kq3kIqjT+BAn2OComxrTaVwpCUAgUu8iHxB8IpaNxmJSA6GSB1RBWQ6wneJicoBKKmGzuRg7bwOZGXD96uu8dPczbGxs0fU9T548Wdm3nqmqokoq2tieKfOISij/3D//vELv+dcyMeb5IAQf+TlKKYqi4PxcAMtLGHeRDxgMRJW3qGYrRaV1PW3XAEsgN/jYSFhOE3xI0AFSU0QmoTRg67aiazthRcwv6GxcT6tgEHmflQosFnWU5UtqZ54NKIo1+l4UCVqnVK00RdbXN1iCx5MkZ75o0VrTtg3z5+xAckmRS7/1kcvixAabJusyMfMNWktzpW0tUNLUgTRBLgzWiS2ANHJ/GtJUoPa97em8pWslrKDtO5QRXk2S6hWYWNiBgTRZSqx7qrrCaM14oCkHAotPoh3Y9halCkn5y1JRliix8OZ5Qdco6uYCnfRkmUapJUtPM8iG7G3f4qVPvMnaeJO6bnj06BHWSqPXeWnQaP1s3S2VWqtX7Ph5wurnlg3Av7jWlmtLay32TS2cHB834qquyLKcjc1tjo4PMSZlOBgxGo6irbagaRreffvH8XhfpocGtDKrP3NtvAYEjg8PODx4grM9g7KMajkjaY2uZ3tri7pe0NvFaq2JXd7ESZjsDwJwVrhekWclZbEOSmzMKkmYzKSpLYBlmaameU7fQ0DTtoHpTJLvQhCLrNjGJQE0SVKU0lSLjiRZQ5mE2eKCNJXJddt2kQOjMSaQpaIsNGnBaDgkSRJBB6TRIjOdil2ul/Xd2Z6AKP/SNI1FfjxylCIvcmzvqRuxbMpnqFkbjQXuHEOeqmpG11nyTEDFjovIvzOUaUnbOPq+wToF0X4QAnin0cmAMt/h1s1X2N66RNt2PHz4kKZtRBHpPD5I01XxLJhlubctl9qywbf6+YhTmFxc8PWv/ynDYUmeZ1TVAq3g6ZOnJGlOmmRMz6c0tsEfTTh+/9v8btIRfIcKopBTpqDrU2zXYkKNDlae91gE/9vZjGvXrsua9V4unEHWQdu2TCYT/tJf+sVYuEnKat/3nJ+fc3R0xObODPSMZRpk3/eUkVW6bJL7ENBBYztPkmQU2ViaDe0clJLmYhDYtzEJbdNTN8KBNCajaWY0rTR+gg+MRiNcJ1+jFQyHQ4JJqCpLorfROmEyOyTNLHhHphsSPaRvSpxxZGkBIZBnKWUpavSqWmB7S93WLCpJV/TWxX3Ar5ACciEPeOfoeksWlZyzqajwre3I84KmsYyGQ8qyZDGfYV3HdHZG23SsjXfRiabtT+l6YeSKfdXR+V6GZ8GS6iSeOzl5ssZwsMvNGy+ztblL23Y8ePCAtmminc7HNOKlMVfed4JDG2loNG3D3t4l8jRlb2eH9c1N1jbWeeWlV1FBEUzGj995QNdZ1seiJPHOyRrFcHJesbG+ziduXcHbRn4Oz/bWNi9+4i7KJNy/f5/ReMCnP/NpgY0DW5vbsud0TUxpK9nc2GRjbZ3NjQ0eP37C1772NSaTCYPBgFdffZXDoyMGRflMAKOEVehcizGs0viaVth3ZTmg74XnuLTWKRR4hdEpZTliOpvSdS1FkTCdXhCUDDGNEkWnNAkLIDCZneO9FMppmjIalHE4IveUJEnp+4DtYDTe5nx6Fov6QHCBeTVnNLiFtwN02pCYlEDPqMxok46mlSRuZx1Bhch8Bjwx8KxnmTidRPdFG4dmShmSNGU2mzGvJhRFzvraBkoJN8+6nmYxx7me07NDQjDsbF8lKEvVHNNFDpExKQtbo42kSLvI4w1BkyQFZbHOxvpVbt18id/7g2/zr//t7zEaj3njjU9y7do10iSlTRve+fGP+da3vynD8MiPWjZfU20k+dQYjJIAD7TcT/K8JMtyNtc3+Oznvsh4PEYZhVeWtmo4PjplNp+ump1bmzs8PXiMUoqmLbn/8GPqdsEL165wcX5G0zURXyL3E+ssbdOS5wXjtTF1XTE5v6D8REa5s7PiFq+O/bghi00wwbpGbO9B3nMZgjuMEcB72zWxQRfTTXWCimxpZWKTMDHRivgs+CXNEmwc5iulpaBGzrEkVSwW0pwcDscEB94GwUF44TKmpmR9bch8MY9qHXE5LPEHbTfD2YzZ/DyGATqatkEj4VppIRbXJJHwg7btRSntPIuqoSzWaBYdw+EGw9GYyfwQH6Drhf2W5xmfePGOFOe9o6oWJCanrXu2t64zHo1QpufBow/orOfx42POTn5IXowZDAcURcH6WkGelWRZSZJK3VLqDGUMiUpIlTSF0WIbNVoT4rAExTM1fGwQt33P1uY2k+k5y6TrJEl5+cWXGA0KLu3vo5OU84sLJhMZnBmj+eDD93BYrl+/xuHTxzx4cJ/z8zO2t3fiMJ/V+U285/kQubrO4Z2na1vOzs9iTWW4desOrhfmqRTEiqDVciqARq2+R1l+Ud2PNBLTpGR7+xp3b32RPCs4nz4lzVIOjn8Cy68xGpUZhsM1nHO0rSVNh3jXysDcO4blOkUxkPtfgpxN6QZZOpREU9/SdY18//UJdVWtcDnOWUkOVhoDNO2CNE9QWpMPU5JE0zuLC40kuUaebGISuk5+X3xB33VcXCyYXJwxGIjKi6Dl/mlyikI488IALMiSMbu7d1HKsFjMefL4hA+qU7b3L7O+vkGR5xRFSZrmnJ+dYxIJnynyDG1SslS4yGmWkaQZ43KIUUl8BgM6qtZkECzvuXWO8XjMrds3ZaBrLSi4ce06RVpw/dp11tY2mC7mwnezgqgpipzDo6f8yTf+mN63FGVBW1ecnp7w3e9+h73dS2RZISnetscu2WUrkYGLVkex4auYdooBZx2Jlr3l8PCA3vZsb27wwgsv8ODhA87PTsiKAh9rBUKITRgR16hlQKCX+7YLInBxVvbiNBkwGg7p+pq6XrA2XmNQjhkWa5TFuqQy25q2FZyTid9L13WC/ZJRAN55mnbK+cUJF5NTEiN/t+FwIA1uQrS7ZrHPokhJY00b6G1P0zWkaUaeC86nrutYP0ioo9HJqiHpvCd4hw2CIRgUa9R1hXOiTA8+4eOPvsvVGy+yt7tLnuUUWUHXWaq6ZjAoKIuCoixjYGRGHu/SSZKSlhlKSXK4CkH2nSAYssFQ7sh91/KlL3yRi8kFXdvS9g3WeV57/XXyNOXq1Wtcu34T54k2eY1JMoZpgXPw4Yfv8S/+1T/nw4/eJyjBtfjecXZ2wh/+4e+RJIbPfPpzKCUq/iwvaBsRaK3wUSE825uWwk2tVqKUZXMYiE7AGEioEhSBs4sz7j+4D4jN98aNG7Rty5Mnj1FGs7mxEfszmqCIw8n4h+nl7//nG6SxypG75H9SJf///vqpG3zOW5xr4iTWkuXib+5tj3f+WXfdy6UhTXOKYkjT9HhnRa45PY7R1jI5d9FumaUlbduwmM9XKZNlWVIUOdWiFvCsEYjrfFHjnWY42ubk9BSte3Ql0fZ105GZdVQQZZh3ApAfjwvqqma+mLCoZhgjjKc0S/BOOutBaTrbgRJehFYyta/bJiraNH3fcjY7oe1axqM1dnf3yAyMRiMmF1OcdyyaY7rOkaVjrly5wWxxRtsp2ramKDOxttkeZXqR0tqoXMwyNEMuX7rLnVuvcunSPm1T8/jRIxZz4TQBPEuIVSv5Os81VJbNl2UU9GpDi8Wxjqye5aTMWfdsahuZZctJ2mI2IzWGxWwuX+89ruuZnJ/jXMBbiwqQmpjGplNSXUQod/yelID9jVmyFzVaSRqSixH3NjZWQ9yYjNZiG4k26SQ1cXoilpuyHMT3Qp6hJKoR2rbDeUdZKKYXi5ggK00ME3lLWZLTti3eWjmgvGc4GFAWhfy4Aq2F7di2HbbX6EHCyfkErR1aeTSifFgf7VI1T0iMjcqjBqU1VT3nYnpK17aYJI28AA2IwjWQ0PWB0HckJmASg9Epdd3S9ZbgFU3bcnY2wYWere1tdrYvoYIoIxZzseFW9Yyu68mzdXZ2rzCbn6FUj3Vx0pflWNvK9611BOsbimJAote4df2TvPzSm6yvS3Pv4YMHwkZAgRZunaT/im1zyUELcc0tp7Wyafl4oDxrKi9fPvj4dc/s4cPBkMl0wjIspe97mqZlcjHn8uVrFOWQuhIuwtmpFJCL2YKlpUjUrLEY4HmVqloVlV0iBYKODSSFBNycHB+zvrbOr/zKr2CKb8cGn6g9hOmRxARI4WyN8iLakUWZ5HwQK0rbUBaKup4LL8Q7vBMLv3dO1MUegvNkiaHvmsgEKoSzFpVEJjH01tI1jjTLmJyfRwUaGO2YLqZcv77BaLCBx6BVoOsXtPWCruuom0qwAybBJAbfiVUw0QYfVOQverq+xjlpsljnaNuOpra0nePk5AxwrK+P2NneJzVygRALEyQGpvMLgjMMhrv01tJ0c3zohXuXGpKUCO2PFygUeV5SZkNeuPwan/v0z7Ozs0fbdjx+/JjZbLayUiwP4mWZIEOGZXjLM+yAtyFOWMOKl+qChMpU1YKz8xP6rqWpq9Xv9eUvf4XhaIMffP87zI8m+NBi1ZkkayPsrr29fS7t74hawpYExiRGk2QJp0fH1NWCJ48fcXTwlI3NLfYuXeLw8GlMjdesra1x69ZtiqJ4tvZDIDjHYjbn8OCA3csJQQn43xiZ8iptqKqaLBP4+7J5GDykWca8mkEIdL3AvptGLi5BsVK1+Bis4S2kSU6WJljXg0aayW7JepSi2fYdXeMgGNq+J8lSrE1QeFrryLIB6+NLNNbS2wZrW5rpBdZ1MrUNbsUotVFZkESG7PJcaZoO7w1lOaBpG6x11PUMgmJyfoY2mrX1AVubW2RpTl0taJsOb2F9fcxsPsG6IHD+oOl6OfPquhJFdyLKe6UCLnKzs2xIkq9z5dJLfPmLf5nNjW2apuXRo0eSELrakkRpF2KDL/gQG8mawXBIejHhU298EpS4Ex49esAf/tEf0XY9tu1ZLKbYJOO03uHNz3yJz316H23nwsnzYLIx/+H7R7x7/wHWfkyR9ORFzvraiJOzE777/e+xs7MrCbpty5e++IWVgqptWi4mF7Rtx8XFBVtbW+zs7KyS9nZ2duj7Xs5u56TQDIG2bRkNhnhEHeyCp3OWNElAJSRJRpIKn7FpRNWXZflq4CKNmhQUwo7TBgix2djGoapCa7F8dl1HlhakmWAjtPGiFgxKAtC0qEfk+wz0naPvAt3FBSEkjIa7+NCjABdk8Km1oWkr6srRuY62q3CRp0VQpFkem4X9qrDo+wBB2Fl11bOxvkGWJzT9OW3b0zYVPkC1mLO2XjJeWyNLhygPR0cnaJUyLEeMRiOOTp7ig2a+mIrVHRmEXFxcMB6PKMoUYxQ+WJxVgKHINkmTbV66+2k+9caXSBJBdXR9g7UZ8/lcnBFAajQ//OH3uP/xR9HhIMFCCQYbLD6OrSQMJ7o1op1aeYXBkKYFSZLy2c9+jjQXq1DXdvyTf/w/8vDRQ9a3Nui6jt/6W7+F95aiKDk+OqSuK/I8Y7GYsb6xjguepm9p6pbeWrI8ZWt7Cx/D3E5OTqgWldjsxuMV/1lcOzwbCodA09Q4FhidgpJEe60TtEnxztF2nTApVQzeSRNUVPq5GCRjrV0NvpIkReFXigujktX57L1me2uH+bxiMW1IszW0kQIYH0iMDLBmswtZQ76nNnOqdoEP0mAriozhMAcNVTNnf/dlTqd7HJ9+TNvMV2idpmlEzak0YEX90vV4F793Z8izLTbXtuV9PnvMomolbCbPGAwk5EMrxWRyhg+K4WBAmpbs712myAZRsSiKrqatqBYtf/j7/4aiHPK5L3yeK5ev0DUtWVrz43fe5p133oYQSLUiSTOKvCBL84gNkr9/sSzKi5Qsl0TIshwwHo25tHeJPC8ZljmjoQScGZUQiPWSCszmMph6+Ogx5+fnbG1tY4zm/fffxWjF3qVd1sYl9z7+iLPzE3Z2dsSCG3xcv+CjU6SPjT0VAkU5oO1a2qqm3Nggz3OMVmxvbTMcDbEhRDC9DO8VSNKtk/Xm/TKYULAV1lpqO+ft9/+Ek/MDqkXNvLpA6Z7eVqRJzniwjVeQJL0MWKNSO89TumxB0yxQSjAozknzLGBBWUDuWfP5HJV48CJckPt8TKk3ijRPsH0r7FdjyApJTDaoFedLxZpiUMp7XS9qikKaDFrLj1XNjLqZi+Irga7uY31mKAdDFos5RVYyHA44PDxkfbzHaLBJUZQYk/D+T+7z3e/9mBt37vIzP/OVlVPko/vv8c//+e9gvcMg2IQ0zUkTSQsuhxLUNiyHDAZDyrIgzVPyMqcsZN1sbKyzubnNYDhgUBSU+5dJk0QEOEv2rNaooKmbhpPjY548eUrfO27dvEXfd3zn29/CO8e1q1cp8ozJxTn3733IkyePOT07Zv/SC2j06v60dNIaYwguro1lPRHPcqWRcLNCkrEPnjwhTzNAMxqNuHLlMvO5qJjLwWBVIy8HfM+7TBRSG8uISLO1cY2ykCYWITAP5+ihcLdnswnVoqbvDkmznKabC0pJafpW9na5o4iIpe9lj226Duct5UBjtAynPC1oFWcbSgbjLrCYz8nzIqIO5HtME8kcAE2hEwgq2oflbJbHMOBCHwf4Yhf3XrOopI+gtY6ODMtbP/ghOh1waW8PjSJNDL/3e/+OH731Q7Qx5ElCURSUgyFlUcb1MWAwGDAcjxgMB5RlyaCUnxsUJYOB/HxRFGR5yt7uDleu7JMYwY7lRU6SJpRFIYIL67l//7G4g5qWzc0tdnf3ePz4EX/4R7/PbDbl2tWrZJnYtCfnZzx5/IDpdMr3v/89bt+6w9rahggXgsMHj/sLjT29bOxJcyQ2eYn1xaqNgjIRbRP5qN57Dg+eUi9kaL67u8ve3h4bGxskieHBw/usra9HxJOKSdt6WZUuf9e41OS/pbksa1irZ263n+b1Uzf4fFRGJSaTAIzQ07StyEeXxYoSyWuWDWj7jur4qSitlKauqhjSIA9RkqR46zCpRgXDaLBFmqQkSaCqKsoyi+BtjckSgvc4H2h7h+098+YwWi830Kol0FE1c4bDIYengYv5JF5EW+xpJ2+8ke5qkpVkJo2XjQxrAxLYq+ltQ9cr1tfHhGAJAabTGWCo2hqTwOXtLbKskEPGtTx9eoBRAy7t7eJDy1l7Qdu3HJw8kIJHOXrraadzRqOSYmAI3sVETtkki2yTtdENfuYLv8GVyzdo24anT54yn81lmUTbDkgDallIeZasM+FIyF4kS3fZCCEWMUtVnTSvxW6xmpAsN1W1hP7DxnjEV77wJV66fRdre7ood11C4JcFwLKBs3rFDVE2fSXKuCxDEnFkGqR0oCxK8iwT1l9MwcrzjE79KQFNlkrqknUtTdOgldhRYFn0e7K8pO0bUcQpSNIkNo8b+g6CFmVW1zWU5ZgsLdhY32I2OyfNFHVdC1tBQ7FKMlLS3LNeph3TCaPRJlleoJSkjDZdTSBnsZjSObG/tm1D8AIW1kamS0lm0Fq4aGkiCYNtY1FG03U9vdZsDjbp+znOe7rOxkM9sLW5xWgthUTjQgdWsZjPKPIxWxu7aGN5enCfpptxcNygiGutd9SV2KrTVCbpvZXJkjE5RbbN/s4rfPFzv8bu7hUW84onjx6zWCzixhd5FMGLki9e1qQR/Gz6EFejbKrLhrL/82EuIuf2q5+T30Ozu7vL4yePBTAcrZdaay4uzpnP59jeRS5cL4obv/x9ZP1JIw+W35FW5pl0P8KVk9RE1VrA9w4fNNOLGR9/dI83PvkGa6Mx855oeyjF6trVEQArNg2lRQ0jU7SEoBTzShreysgzYIyWvS3GrLetBJyMhusMh0MWiwlBSTKutwHfi0LZeWnMNLVYytAZbWcZjTYoyzHOV/T9DBtaelszm1/Qh1N8VI31tkNDPFzitDFNaZrY9lSJ8PicXDaqyrFx5RK9q+g6SYlqW2kc7F/aoRxl9LaNz5LBWhiWG4yGm2xujvjo3js0ruXo7DGogDbCipovFigNg7KAYKWgM5IGaNQ616++zmc/9YtcuXyTuqp59Oghi8U8HiwInzCqCV1M5Fs2i5erbKkMXTLPQpBL07LZlcd0tYDH6EDX1qthx81btxkO17DWsX34hPv3P5a0cieWxTzLwPUcPnqAMWkcOggHbGn3k2l3SpIYvLUcHx/Q9S15nsmEusxJkoSzszOapiFNUvZ2d1kbj9nd3eX69eso/RO816RpLu+vE0VAkqQQiInHLjbPwQdhTjonSvCAJ8sSQVdoQ1kWOBtQKqHIR4xHa9TtlL4XHEXwAd+DIqG3ooD3TpOl65iBp+8gK+WSZV1L2zY0bU1vK+aLExp7jqcTi4zrMVrHIlwuw8Youi4QvEKnKV3v6DtFlq3Rtx1XLt9mvjij7RY4J89oVmRcvbJPOUyZTE9YzC/Qo20UGRtrlxgNNygHKe7JByzmUybTE3ET0WEM1LUoTDc2xnR9S9eJIjvPchK1xt1bn+Mzb/4cO1tXWCwqHjx4SF3LXqiWF3qCNFGCpGjKpV8udk0jHLemEWugUYpFVfGd735/lcbmvKUJhvUX1igGmfCcXEdwwr6sm3P6ruHk7JyHP/ozCt0AgSJL0VqztbXNL/3SL6GUYjqdYiMrpus6uq6hKErOTk949Ogh169fYzweMp1OV5zeLMtWdqPFouLk6Jgyz9nZ3HruCDYxwCxENWUeg5eSeCcjFgXpahjR9ZY0Veh4ZiyTt8VO+SwgLU1TUSkgg6lea7RCGEJodJAi2gVpxBqdMd4aUFULul6UTPNqgjYuWpUOubx3R9YJYsGzriVNNXlaAGJFSuLArut6Ua+HQN30JElBokeMBjnbOzscnnxM0/V47xiMSrRWXNrfpOlrLibnDAvNsFijKHZ4Yf9GbDLWlOWE6WzC+fQYozXON4Jq6CxN07K2llLXc8FzqISyGDMY7PG5T/8lXnrxM6TJgEePnuKcsM1OjoUvlhhDHlP7jBGrZtt1oEQVo72nty0Oj1LLIZgRZo/WuL4nOB9LBs0777zNa6+9Fu1lfpUmbL0nzwqCIiqjJTH9yePHXL28jzGGew8/RhvDoqnJjGU0GsXhgufexw94//33WSwWGGNi8Jxjf3+fx48fSw3gl9a4qLLTCfvbrzJrHjFfHIlCL7pCutYzm81IjGEwGpClBUanko4bm30hyPcoTRs50OezjrIckecD8E5cDiajKAq6vmMyOZeE+kz26qZqcK5hyTqyztN1DVmW0vetMPi82NvH44IQXLSv90ynM168tcVi1sX0+A6TJjgngwMVi+a2tZTFQIpwP6AoRhjTUVcVi7mEkHT9lK6vKAupXbJM07Xg7ZCdzV3G4xFn52eURcHJyePIfNY43xFw4hrqPPNqhk41dSXKUosm0ZrvfuPrfHzvI1y8B2mtRAESpLBcuo8C8sz74KRxoDUaQ55mfPWrv8hf/bVfoxxI0rzSEsry+7/3+zHlWlGUBT/3cz9H3/V421NkKQ8e3Of0+Iiub+iaGeO1NYbjMfOqwgUfudySnm37Pt5Peqy10nAscobDkvliHpvNOfP5gv1Lu5wcH68GxT4e8PqZHnnlLAohkGdDQPawPEvQKkVrQ++mZEXCZjHA+Q5nU5KkRJNS1VN6t6BuROVeNy3eWQl2yUQNqgM0fYfRIibxwdJ0LQSD0tKgdN7hI7fTZFlMwfTiOvMGbUTZ63rNcDhiPq/orTgTdBQtCH4EymJInmZYL0MzH0ShNRgNYhCgIs1HUlvZnkV1jvdQtwHrWkwS8Mw4n7xPdVDT9QGTZozW1sSqqaR5aLTmwf2PqRZTeTYi/1JHVRyIWm3pgNFaVEghIriMTshMxuUrV/gH/+AfsHfpEiYx8fk3HB4c88EHH8hdJTrUXnnlNarFnGo+oyiGFHnKO2+/xUcfvI+3PSFV2D5w5colFJYH9+5xdHjIpb1LKAwECZ8Kq3ufNEW8l88gKOElWutIemFkjoZj2rZmPp+wtjbmypUrck9Y32R7a4dRMWB9fV3WUlBRVsrqjqlip2fZRMQ7zib3sGeyF2ZpJlZgLfuV/BpLkmlC6BgPC+ySa+Q9IWJ9tE5ou0aCMHJZ1SbRBExUgZvoxGjJ8jzii6R5PxzEwJkoOpFnGoJDEpU7GxWUS3eOtCZDsEipv7SJBrLU0CNOKYIgXJRSjIYD4Vk6T0gCfdfy+OF9SY1GsYh3PaWQswlprIdlna8E55KZhCIrSNKcqy+8wG/91m+xsbEpwqVEo3WCwnBxMYnnkqj9B8MRSmuePnkalcIJ+/v7LBYzvv/97/Lxxx+SJYYik4GJ0Yr9vR32L+3ywx98n6PDIz6+J/XcEqLonUN5ef9VlOktnwdkJcmdLyrFXZBnwntPpjO6Wu7OSinatuHw4Cnee/I8YzZbkOfnWGu5desWFxfn1IuK0ZoIApa7Vli+X3EI5oM0DZXSq7UszjgI7qfv8P3UDT4V02hNktE0VbQ1xoZQVLs5J6mDAjB9dmAvN4o0phypeBAVwxKQgIDgDaiEEFyEriI/BjSVJy8KsqRguFmwmDUEJfyMtp+h6PGhoW4mFNkava2xvpXmgpKUS+8l6SakMuWynaVtO0bDdUmIbTqG5SZlMmA42sYkcHT2Nk1bk+eFWBfMiOFwwPnZEbPZOWvjhMwM2Nu5wd72VarqjLY/pygM59M5oZUCUkvvDWLKZpYYUTU4iyYw2Njj9vUv8/nP/hLra1tMJhOePHlC27SEaI1dxcfHFbQshFdqvvgS25r7cz+23Liff2mlVw0G1LOvWX5dEhLy7ZytzS3u3rkjf2Z4Zuv7iwEdz1syn2f+SREVO+UolnJjYSCoZ0q/AHiF85ajCy3AbZ3gXMsyvjoxGQI8leRZ72X6K/J4+b2d9xLKkmfxQZKNcTRaIzGlWBHrGqVF+p7nJcErkmSAUhrbizouTVPSUcZ0OscHmEzP0caT5xCCYz4/Z3frtnA0kAaYSQNZIpY7URnIe9F3TriUusD2jr73lGaLzfEGg8E6vW+YNucxHTAnH2Vi7ygKzs6f0iws66Nd8mTI1v4tNtd3uLg4prML8sIwmc7pG1FyJInYfCXURdhKbVSh9kEzKrf49Gu/zBuf/Ap5NuD46ISDgwMJuoib2jMruGxMy7W2/Lyf//mlYm/5/+Xz/ufWRWzuLadQi/mcLElwXScAYq0w2tC1HafdGc46SVTq2rieZNoFmqANiYmNaZ7Jm5cyaBX5ODJh9wTfCSMnhpY45zg7OROOjjH0lY8XothIMQLUlWao2MqtFeuotQIMT9N0ZSHqbOQjKpkOSzDOiMSUaJVxcTHFuVY4n6TkRU6W5GRZsVIVJNFOPZ3OcKFjdjHh+OQhw1FBkiqs1SSpYVCuM28v6LsabWCUDwjex8JfnuW26elaSafUyhNI8c6wt/sJ7FgxGq7x0YPvEIL8uo2NdUnyco6qnVNVFePBgMQUrG1tsj7eYj6f8OTJI5LUoG3gYnIOKlAUCUVRsraWrmxz8l4pXG8o03U+88Zf5jOf+nmyZMTp6TkHBwd0XcuS3aFjkbts4LmY1iz3ErUaWMi+9mytLX9MLKCB0XC4spIvz55l0/jxk6ck2QVV0wKGra09mrqiaxrariUEx3Ry/kx5R4gK0TjdC8twD4V3UFcVupM/I9GSyBkPLLa3tnjv3Xd5/fXXePH2HTbW10nSFKUDp/O35d+VkXMgz/FOk5iExGSrotc5H1lhUb2uxc7edh1FnpMWKUTYd5LmDMtNsnTI2dkpva0py4LEaNI8ITU5aZpRty2Lao4EQll619J2DVW9wLmO9Y2RKKK8J0kSNjcvcXxxynR+gVKawUCUhV3bycU6Fr7OSiHftQqTiIpvd/sm40EgMWMOjz4gzUX9OxoNZYDTtsxnc3CaLB+QJiXr400G+TqLxYSz8wkggSLzmFg7HotFLU0LtJZ9XpoDGUYNGOT7fOGzv8ybr/8MSmUcHBxydHQSFYd+VeyEWKgtbaZEjqP3go2aTC74sz/7OqPRgLzIZJ10PWfHRxLoZBKyPGe+qJnO/gO/c++7/EGpUUEYPLH9wcKWTBYLfHWEQBfkZq5U4ODpYxaLGbu7ezLoJETsiWd5dD569IjTs1NOT0+4fPkyjx494uTkZKUmEOGrp1rMefudt/nspz8jjXmtsbFxaXRGYmQf7PoWhaIsy9W5oOLe6rXwRuvIQg1BzkylPGlUIKB1bAYqbEgYbewSvKaq5uTZFkWeYF0r1UcI9NazmC/o+oY0TZhMPZ1t4sBOms2DYYlJDU27YGtzjyuXb3P/0bc4PT9kNBqRmoK+7SRIKoDVThTxHhbzDqVTUApFxub6PpAym1Ucn5xRFqLiLopCwl3ajsW8Z1zuUBZjRoMN8mxNgq36GufrOLTy1DGJe3NzjTRNGY88ARmcKS1s3tSscWX/ZX72y7/Olf27LBYND+5/xPmFQMV3t3fI05zN9TWGg4LtrR2KouTv/f1/gHeivj2Zt3znrQ+5fmmNNDR4XOQaBUIwTBaW7a0tdjdLbFvTdcJbLYuc69evxXW44MGDh3z+859ntpBBY5qISrxuaozRnJ4eS3Mkz7l7+0XuPbjP5sYWa+MxddVQV6Ige/vtt3nnJ+9gtOHy5cu88MILfPELX6AsCg6fHkhRrGVjXCJbtDG89NLPUrdP+N4P/4A8DzStsEuVMexs7+K9MMS8l4awtcKhLbIBo/EmWiUSqBJanAtsrg0JQRG0p1rMsLai787o25beisXRRo6wOF8Sgg9Y22JSafgUg0yGNEaRZhmFEVttCBalAm3XoNBY22Bdx6I6RxsYDIer4ZFWKUma0Hcd45E0bLTOuLJ/l53t63T9gqcHH3By9oi2r2m7KVkmrETbWVKTsz7a5fLeK5SDkqPjRyTJBednRywWE0wqbNKiKKThpA0mT3njjVc5ODhlUA5YBk6BpBUPh2v03uKCJBTrICERfQxOCn45tNeoRM6U4ERJ3tuet976IV/80hfZzzKCEtHGfDbnW9/6NotqwSsvv8z9Rw949bVXKYpiVUe89/57aK15+eVPMJ/PePr0KZubmwSk2VBXbRyK94CoeEcjUYRJg7RmNp9xcnLCMpgqSRLG4zWyPBd3iTLPCmSe1RPPFPGwMbyCdVM6V8c9W9G6Ducqsfgph4qc666vcM5zdnGMMcg9YbTOcFSyDLMyJqJMVo1maQz0tid4F3nWwge0tonq5HS11ysVqJtGhnLei6AhwHQ6J6AxJqWtO7JUM5suCAjWyivNomkJvscYUWE17Zzd3RskZp1qVrG5eYXeNSzqJ+S5qBclTMKQpBlVdQ4sMCrFdrCzs8XNG9coB2OyqJAaDAaREbyOdZY+7aNCKTbivcfFhp8LfiXCUNpENaWgl548ecy9ex9L0wZBbyRG8/bbP+Hf/Jv/mUU159atG3Rdx8bGegyBsgwGBW1T89Zbb7Go5qSphuCYzuZU1Zz19Q3ycsB8IQIHE5vXIdZ3y1Tq4D2tF05hb0VNbEwS9/icLEuZzaZ0XcNgMOTw8JA8z/jc5z7L5OKcfrxGUQzimS9rYdl0/Yt1DcRkU+1QwUcUg1htRdASn700EYSJQhScKgY4uIjG6Xogp+vaWKt2gp9YCRU8fS93jyzLn4kZrGQNrK+v0zQ1bVvLoFlrwckQ1eN5DkVsIjnPeLTGeLzG06ePUAgjHOVx1tH1rTgt0wzSjL53JOmIl19ZZzgshbefpqu6OM3E0izYNVbKXACTOKyPOB1tVrbWha3QuuH99+d89NEHvPnmp+l7hSHBGMXB0wP+yT/5J0ynE5JUs7G+zquvvs4vfPUX4kDaMRyPGZYFb//kHb77nW/ibAvB02nhgAbvKMuSrc11bt++w/vvvc+Txw955eVXWHIlg3Pg5bMLatnP9c8GvNGNJqplHzl9PdZ7kiah7/rVUKJpK87OzwDB3ZRlyfHxEWtrY9bXN9jfv0xT1bz5yU8yGo6lJlXPwgCX9YtamXqicjAEgnv2Yz/t66du8CVJTsBg+548EzB3YqQwF7WLFCFN29B3HVmW4r0lSXKUAq9D5BnFh8gr+h52di5TLVqqak6WjeOGGqsrFCF0zBZndK5lXklaYW87CTFoG/IiZTQcg/csqik3rnyW47N7PHj6Q+bzKRsbmxBVSNb2EDROBZHH9o6L8zYqfwyKjCLbIjUZRydPWdRzyqLA6IS8kIv49KLGWc3u1lXwBZvr2xijeHLwDknq6fsqquMcTSvQ6o2NDQnxSDR9X0mBZFKydMDmxg0+/6lf5pWXvoR3iocPHnJ+fiFNlecSy5634D6bbMBSBrrykEcb5bLzIYo8vfq55w9N75593fMF8fN/3vMNH0msfMbHWr5WzcfnFuryxzQ6FjfEwkT+XQCXarXwl6qKgNi7rdMCEk0SlE4JPqzUB9HgTt95us4RQh+ZPmL98OnysNXI4Sw2xdFoCIWmqitG2SbCfWzjZMhT1RWz6QUmVZLwiDQD9RLarwxKD8EH5osJr754le3NF/jo4RGz+YT19U1pJlmL92Jdd1YSi3xwzGctSqfCngnCZOj7mnl9wWIxZzwUqX2epzgXqKuWRG9wZXcD28P6cJMQLA8fv0OagvNtfLdF3VakJRub63EK5Gk7KajSVBo2L1x+mS985le4cfV1FouGhw8+Yj6fx+fx2WcndmP3TOb8/OYk0r5nVu7nEr6X6+wvMh/Dn1uLitRobt+4QZ4kTKZT+sigBBXBxzG0IVoMlgmq/LnfM6oEY6PtmepQNlVthAGWGCONT5NQlAV5UXDlhRe4fOUKKE+eF1i7oG3bOM0tItxXrGU6smycC9R1SxGt3H3XE9AUeSFTWu9Ik4wsKdAqJU1KsrQkMQXGKJR2tM0c76QpPZ3PmC4mhNBRlNmzpo63FEWOSWUP7PtA5wOpKdnauMzZww+ZTCLPLxdmREAOMNcKrNoYQ9eASos4/fNMZ8LPC7qnbhYMBpq1tQ3yPIufY0qRjLlyfYe+b+L6rXn85F3EgS/PgyJQFjkoxcbGOnkuaXV934udXq2htOH6jVf40ud/mSv7L1Etej5+8iHzuezfMgdUcc+Raaxb7m3P7y0hDgViU08KtOfSwgkr1cDa2hplWdI0FQFRNTrnMEnCYr7Ah4rpfEFVLWiahq6uZZ1ZsaE/swj7eO74iCzwETkgqgiUhhha4ZfN1aBoas3BwSHvv/8+49GIvUuX2ByvkZokNl16UQ/UE/p+zng8lIJOxc/etqRZJoFDyLRT1M+wWCzwTgqDECw+QJGX5MWANJPLmnMNa2trGLMBwGJ+Tt91LOwc5wJVs8B7S1GmtK0AnQme0XhICDHwomkJVgqARK9RVx19JxNisfhLAaCNPBs+BNK0oGsd4+ElAopGzTk8FI5n79dIUmlqjccjSVQ1CbZL2dm+wfbmFotqzsXFMVW44Pz8CURry5LVNVqTcKJhtIKImtjTNj0q5KSm5BN3P83PfOlXWBte4vx8weHB/cgEJjZq5Z6yDJJyS9yAf26vCgLNTxJD23YcnxzibEdT18+ddZrdnT3u3LnL2+/8iNPzhyxC4Fw9m9w652KhKEzAJEnwcT1qo+htSwiKH/zge2KTimEUg0FJ17YCPAf29y/xuZj2fenSJWazGY8fP47nuHANe++pKoH42yBZo+IS0nLcxudEUqotg3JIoQYYnURr+fJeJHtXUYjCLHioqo4sE6aw0YokBBKTMygHNF3FbHa8ama6Xs6q4Duc66Qp4hwOh8kCvatYzGdiTSqHDAaFNFE6S20rsiTDWnj65DgqGCVd1VqL9WDSnERB3wlz06iMNF9jb+8WXV+zqE45OH5f9iI8eS6qgjzNSJMUQsKw2OPFW3cYDId89PFbzGZnXLhjUPL8Z2mKD5YszVgfS8hWWQzJ8ozeCsOwrTuMXmNtvMPnPvPzvP7Kl7C94eOPHnF2drZiKadpwubGRnR0eC7Oz/nxj37M8ekpqUlpmwZlNBd9gdt6g1/61KfYShd0XSVKbgzWF/zLP3nAw/Mp4zXhTI9HI0ajIZnWPH76lI2NdUBCFK5cuczf+Jt/nd52cR9ssH1HXVdUVYVGs79/mfl8Rp5kuN4xOZ+ytrbG5sYmSik2NzflnhrZ1PP5nJPjY7wTHh3eY0PkNcbzvu9a/vBP/ikhzAm+pWkCRT6mzDMBluPJ0gE+CDuT6FpxrgeWQXpyN09ScSB0/Swqzzu0kvWemASTQpbnIg4wMsDtWgtaMBeJykBpnPf0bRcHwUsniaZvW4wODAYF2guepu0qPB1NX2HSXu6PTvaEtrckIafvewal4HHSVKMTG1PiK9p2irNylhgjzDScDEKUD/TNsSB2tGMRMQRFUUQlkAyu61rCBMtyHbxiNCjZ3brE5voWl3b32draIoTAb//dv0td1yyaipPJgtPzBQPVYbuGpm2kGdL3WOdpusi/NArfd3TRBh1C4Pz8jK2tHXRi6PuGwbBke3sbbTRtVPl6hEmepIa2rXn06AFFkZGlGbdu3aapW6qqIs9yTk/PCD4wKEu2tzdXys+27Tg9PeOjjz7i+PiQEMT+PRqNuH79Op/85Bvs7e7wk3feWRW9PPfP5Z1xdSf1nsODBwQq0sJgbcD2Uc1oxK2igK5uGQzKiI+wjMejZzgkgwQa6qW7IyMrcgncipeOpUI9S6RZHFC0bb/CU4jFt4h7sSWowDK0TCstyIvOP7e3JngLg3Idkwqzr2k7GTK5BuekcXwxPWFn9xZd6wjI0KVtG1zv6JD1laYa6z1dY8mzMr5JPTkBHQJFnnL58j7r4zH7+5cpipJf+dW/ype+/LNUTcPh2YzjoxOUr+jbChv5wZ3tpXnWiTjB2xbXdyuUlnOOhw8f8Oqrr+GJSqlUsb6+hvee4XDEtes3+Ojjj2TtOLlHDAYlTw+e8tHHHzIcDnj9tZfIi4zT01M+/PAj6rphb29P3Et9jzYJs/l8NYx31glKJZ7TSZKsLKKSgixhGM71TCYXVFXFYDCkqir29nYZDodsbmxyenIqz7Z9rv59rh5erbvY6AyKGOTiIBO1Wd95IN5NlKKPCdpGpzIYTVOWiAVjDMNsKPZ0JYO1tfEGIQTqWgKBylLWkFYa4j4FsfHoOupGUl+VCSRKE5SKaKuw4uApJZbrppHn/+zsjDRLUUqGhW3bREt2Kldbr9A6I0kCXRswieXK/h7XXrgizP+u42/8zb/F+cWEyaJiOp3TLCZUiyltU9O2HW3X0XcddllvJRLCqFgixAJPnz7h9dffEEyW7Vlys6fTKU+ePOHV115hfWODo5MjUfo6ByowHo/pupYfvfVDjo4O8L6nLHI2N9bI8ozpdMJ0MkXh2djcYDQeMZ/PadqKJM3jnc/JPdlLbeS8rCFnnXDlg1ut6eD8ShmalwVZkjEaDVhbWydJDGdnZ9T1HGMMV69e5fHjx2xvb7O+vs5isWBzY4Pj4YgX734iWqSfr1WX4ZSx0RcFKc9jw57vz/w0r5+6wdd3HdP5KXmeMxgM5LAO0HcOrZdFmSIxBp3LFMB7AWpn6YjRqASVUmQliR5TDBLqpuFicorRKVmexjS2c5yTKSZKS/cb4SHYvmexqADFsCwZj0dY21NVsYgpJigdODx8RAgu8pB8tN8okkQmUrZ36AB5VjIo99lYv0LbNMya+5zN3mLg1uh9RZqFmJQjkGUd/r+s/dmPZVmW3on99t5nuqPNZj6Ge4THkDHkWFmVWUmyi6zqptgU1JIeCPU/0NAL/yMBgp4ahNB6ESBAaBFUU2yyqrpYlfMQo7uHj+Y23+lMe9DD2ufca5ZRAsTkrQqku7nZvdfuWWfttb71re/Lefv+t7hzeJe6mfHpZ7/g8vKYqr6UdYGaKM4vZghZocizIXkUYFUKgh/TNC3TyS5vP/iYP/nhXzAZ3eLN8Rlv3rwRl6iIuhklgrqbjBVZ3bo+bdhMVJt09o7utwnGbTJgNhl7mwYbm4fq5rolHaPlxuMmAv1NYF/PhulaoY0/CzcLmQwrTdM0LJaizyZajAWdexwErGtQJGiVkBc5nZtz2wRGgylFPiQqcJOYIWmmWFUrTs+Oe0S9qhXOtngfNaUSjXWWtAgoJa7GVRSvT+OkCALL5VxAMzXDh4YXL79GqcB4PMIYKbaD1xgzwCgvAE3jSUzB7t477O++Td0suZg94/LqBZaUsppTDCIbITJi02zEw7sfcHjwFvPFGZ9/8QvOL19QVjOSVKMbTZ5JPOd5gUkCo8GYLJVYCyGQmhRnFbu7t/n4wx/y8Yd/An7A46+ec3FxITpdMdY0ApRtsvHCBnuqA4BD2ADpN6/nRhzcnIZ1Saxzz82yjO3tbR6986gHpF1Yx203uQtxLTf40DNZYa3pB8R1AmF7yeGo+tfTWov2Ygj9/SeIl3yP7SaDdU3TNORFTlHkDIqCyrYEB1W1AAJGZ+T5iDzPsa2FkJNno97Qo25qlMpIlGJVL1ksXwBy/UVzyKOC7xnBjkAxUKBymR65Bh8NOASU01T1KoItAgycX57StrUIrKtOx1R019LEEKIdvaww3uHBve8SguFy8ZKXrz5Fa8fZxWuKQfz9rSNNPEU+5fb+Q27desR8fs6LV5+zWJxFfRoBv6aTbby3aCUGJCZNyXJZq68qUCFlkA/Y3b7Dd779xzx6+2OcTXj81QvOzy9ifpHJujYao4WB1gE2Lvw9RZdXfTzGFIEU4Z1jn8e6gElSbt26xfHxa5mKa0MIkGXCjCzrmrKqqUvRK7SNjVP3m6xjE/8uedGY9XBDKREv10bymTGGuqpJsgTvamDGF59/zieffMJ0MlnfC4imi7CPhcHXNA7vG8ajMW3T4KxjtVqQmDxOU3PSLAE8RTYiy0T7xFrRfnQusFwuWZ68BETjp7WOPCtIjLiDVmWJTkWvJc0UxhSSOzVRNFlcSvM8E8e1ICyKulmwWs1xrmEwLPpGxblAkY+kmc1EU2uxWLEzvcvdOx9RFGOu5sc8ffZr0CvKqiRJIqPTWpwxZMmI+3cfsrNzxGx+StOs8KHm6krW0bRRTMaTqKXiBFxKDcWgY2I5vMuYjg+5c/sR3/nkT7h19JDlvOHTTx8zn8eBRRdrcQDpXdTa6QYHN5pJcYFXomkV3TidFUa3DDMkh3z3e9/nT370p9x/8IDHzx7z7Otn5ImwfC7OL7pxmwx3nMNbiwcxgMKijWZvssfF5RXlqqVCoxPNarkgzVKSJCHLMobDIdOtKT/5yU9YRk2sztX08PCA9x49Ymd7m+2dbe7cucPu7t56OBc1rDqDqu2trciccsIGzjNs2wKeRA/ZmRzEAW6D8zW2tUzGBVqJJMFyOYsO2XNOTkradiUOtfHkyAsxYtEomraibiHJ8n4gFEIgLwb9mbBcVlH/zyFFcEvbNjRthTKOPMmpqzZq8yYUxYj5fMHO9g7z+RLnPIeHdxgP7mAmHqNTZrNLkqTCU5MmcjBUZY1RKdPJlPFwn7K65OT0C6pqRgiy6pnlCVoHsmxMG5kWSZKQZyl5nkYQCYwa8/DeA771wfd499FHGD3g5Yszzs7OI1MD4piSLMs5Pb+iSjTKKJpqxa9//QsuLi8xOhHjAG9ZJFt89PAf0DYNSWFoopV0ay1VG6jalE8//5qf/uW/pTAabVKmoxFZkrA13eKf/bN/Fhk6llnUgW1tK67pTY33lvl8JuvcznNyIo6paZry5RdfMh6POT8/J0nW7qEEAY/rquLi/JynT57ivef20S3aaDqnY2NCkHX3yTQHPM7mpGlOkg4pV0uW5ZymrUmTihCgqkq09hgjOrWJ7gzmHFmaELA0TU1rPZBg4nnWNC1WW5RSDAcDYVqYRNb+taF1Ak4UeY5tLBbPqqzIsgznLGUpBhuj4YSiEFOv1orGIkq04QaDXZrWE1xCmuSU9ookFS22JNVY1zAaFTSt5cXLz1AYQnDUteQvbRIBGFEkSqO0aLGmiWE0znn95pVsdWgxtTKJDKolPxGHGoZyuWJ//wG3jrZwDl69esWXX34R1+PFTHA03ubZZYbefsQ/+Qdvk7or0fKyAgwta8vPfvWKW0d7/NF33iahQSuF9RYVPEeHhxwcHGCShCdPn/L69Rv+6//6f8Vf/vVfU5Yluzu7DIsBy3JFMRpzenaKAvZ2d9ja2kahuH3rNk+ePKHICu7evsNoOKSuG5bLJWfzc4igxtHREX/7t3/Lb37zG4wx7O/vs7+/z5/92X/B69ev0UqGZSrGXZ+PVUcCiHdWzCVp5snzIa23EcAtMYlolHUrda1tSFtZdTTG0LQVYvhihLnXWEghSVJh8eHY3zvoTca0VigvYAoqRMMUTVEMIkgK1gZhybYtSaoi+UBAxOAtosGW9Gcs2qCi1qZzomFqEshyAYhkMCt1VpKkBF/iuSBJLHujCcvVlQwd8pyyqhgUexwd3sM7i04CKiTMzse8dXeASlNOTk949uw5ISDbASbBFCMuKo/eOuLPf/SAhDnOtlRlRdO2rGzLF88WHO3u8PGjQ3A1rrXMF3PKsmQ6mfDo0SOUkV7gxfOXPHjwFo8evUNV1zx79lyGASahbS0mSUhSw+MnXzGfX/H2wweMRiNOTt6ws73L2w8CL14+Y1AMmEwmLFcrLi4uZdieZmR5znAq+qiSn2RotjY1u2Q2E7Z/UQx49uwZIDrG5+cXbG9v8/r1a/JigDZG5AzCWl7gWp1JiL21aH8GH+LwWvoO37mqxnU8Y7SAuxia1scNIFmTz7JMftZ5rHKYZBj7V3HMFeMShfeWprGkRpOlqRgRaVnZJ3haJ4x8bWRg5yyRHJQxnUyoqlqYcythdmepDCOMVlF/XUBgbUSHL7iATnISM6GxDmsr7t07wAfL06dPePbsOUUxZP/giKM7b/Hp03OWfslPfrhPEpY0dSmffVXROMWsdIwHQ2jn1OWC5XLBbDaLTHMt5lSpaPbatmU4HDIeT9jb32dre4vRZIx1rjd50lozGg95+fIFv/3tr3HOsrM15dbtIxaLOdtbW3z729/mV7/8JScnxzRNw9GtW0KEcA60pW5qZou5aMY6J8M515FSLCZNsc4zHA4ZDIaMhyOyLCPNchn8WjEM1VpRlksuLs6itImiaSqWyznGKF69esXbD98m2d7tjYRcZzTX9SqaniHamZmiui0PpOeNZJo/9PEHA3yiHbOLdyEaQziyJKNuBX1NTcFwNOmZat6JIcLOVkaSiO7FqlzQ2ppZeUF9IroYWSYHtdKaLDV0u9JN2/SAh0mSmMANg8EoCoW3VFUj+kFWhJjbVpqUpq1JMtHhqqoSgiExQ4w2lOWKg4NDzk/fYEzO7s4+mdkiz0a0/oyrq9cElhhToUIRV5BWjJVhMjykqZZ89fRvqKol1le07YzFYsFgMCRJ5QCuqpqgo5mByeLN5rCtYntymw9/8H3ef/c7jIeHXF3N+c2T31GWVWwiQAAFE4X7BQDpDr/QMxs3ALQeGfaRsSBfvzmd2ATerqPG15mCXVL7JvZe91x9ggysAR9uPKXagH+Uiu9zk12I4HBs/C4RnNndPYBg4o0aD8dWJqxZus/WdB+CsIqqeoHKLVlaYFuPtTWrUpxNnbO0VlaHRLOli2eDVgYV16a97T4TjQ/RAa0YYLShrltsK5N5mQhrPEIVr+sKU2g0itVSBL3TZIAxKatyycHBLc7OTjBG3AnrRlbcnLU0dUmathgt+nCuddi6RQUo8hHHx884Of+KsppF8wtNXVu0ztBKY20T13oHTCaydqBNIsxMP+DurQd8/OEf8eD+BygKTk/OefPm6ziJXMdJ50jc6X+JM2WAuBq9ec0JWsC0/pJdj6vu+TbzxjcBwF1sdZoxZvNnsZ4lpAABAABJREFUgzTIN1l7G6+Id34NdCsi4BfjUQsYo/p4Zf1+Fb1VuqzsKYpizM72WKZgrcWnGQSNQjMsJkzGO9HBV+5571aMxwOCh8vZKdbWMUlLvDkrgs4oYTU3bS1aeTpOAtsWnYjOT+d6rHXCYJCJWHxZMRoN0SoFHRlL9ZKqKhGNOU1Zilt18JClwpwej8aEoFkua4aDMVezC6xtuJwf41yN9RVJKsWrClq0JH3AW2jrL3hz+hmtXbBYNAwHY7wTTctEQ93UWNswGAwZTSaix2k9wQUSPeXh2x/x4fvf5/7dd7BW8ebVOaenZ9IU9vGg+vwuh64ULN45iOzOLgbCtYtGX2R5d5195aPT8/HrYwZ5TpakIuEQIE0y0iTj8uICpY244yowaUoap20gZ1Pv4LsRu+uAUzG0pAgMBNrW9m+vqS3eQJF56qpmWAwwHbjcOQ75gHeaNBkxHk4jIKxIdE6WNoTEMR5nJFpc7ep6RWulMVEKyuqKk7PnqC6nxnUQhWiT6SQhy1PaVopGow15kdN6169wtbaJILes73prsdaTZTqu9Cu8C5T1kibmltSAHMUa7xxVJWucWgnbSQFprrhavOb1Sc1qdYV3NdaJS6dW6/V77xy2cTT1ijenv6ZpS64ulwyKcVyrFuZV27ZxvWdEmubUkR3qWs2g2OfD9/+E99/9Dvu7t1nMK55+dczV5VW/ttfd87LyTK9fK8xqvzmT6HNLQPQfJ+OxGFME0QlO0/WKPoge329+9ynzxYIsGXD3zn0W8zneLRiOxjRxldJGBoOkrW6aKyyUV6+OEXMhOSQVAlQT1jmiqirOz845Pj7mzckxeZFRFPvsbm/z8OHb7O3uYrSJ61rCHNABdBBGrA6DKDOgCDgG+ZigUpkyI7WU9y1KpZTlEh+u8N7GeitQt1dY19I0dTRyQfSp0sAoLyR/R/3lum6Eyxedzl0QYfy6rePkWkxwgtI0dYPo+GWEYKlrcZh3oSYATSNO9lol6ETFYd8S6y2zxQxnhZXb+hmvTn9JUy/j+xaZDJTrB6Otd7R1yUX7EtvOKesFi8WCxbzh1q27jIZjUB4TXydNE8aTASGIPu5q1WL0kLfufosffv/PuHP0AHzC8etTzi9eRU3pzQ0GudLPnz3n737+c4bjgcg3+MDp6RvKshRGSitC4Hqw4Nf/5l9x+dMB46EWoEBH18pkxJuLgvria+xijkN0jJYXl+IObgwEx/233qJjvnc6Qs7ZXvfu6yePaeuK89MzJuMhd27fYjKZcHx8zNnZ2bU6cLkUN3nvHFVZslqu+M3vfsutoyNu3bol8KUPeC3uf1oJ82FRXaG0aJ7qdoFSF1xentPaiuA9aZazvbVNkimC19jWbzDXYDgUJosMPTypUbH2SONQJInuwioO8jSNFS0zOcflFiurEm99NF0zuNbhvMJaxWCY44OitsKkhxptFJdXpzRtQ9sqbKOploF7d4+4uprjqciLDGedDEC1aGebqLXUti1JCpPpFkkqdddqtaCYTLGtxSSyRue9Z2trJzKIfS/fAiKn0jStOP86T1EMaRsBA5x3lKXjr/7qr6ibBq00ZVXSWIff+RYf/fCfkxdjRgauLs7IiwKtM0yeYzP4Dz//jP/4t/8Tk6RlNJ6yf7DPeDRkKzLoJtMJ3ouY/8HhAf+7//3/FmctClgsl7RNg5ooXr58QZZnTKdTvvryK955+yFv3b/P61evINYrX3z+JZ7A4eER48mEPJdBVdc3CqNZzvS6qXj18gWj4YhqtcTWdTQGcD2LSqaccbgbc7QLwqavmwpPx5Br0DqJBnI6gguycSEDa5FoUEoY6Fq5WMcL889ohbUVtYo/3zq8s6RZhrZOttKjgUFiYDLJaZqW8WjMcDji9etGcohRUVNNzpzESF430eHUOctsNsckRligyjAa5ZKLoxla06wgwHAwwOUrmnrF1mSbxKRopWhcg9E5RZbz8K0f8O7b32O5WmASRV05XqoTmnZF1bYsFw1/+7d/J7GFYjGfUzmD2vs2f/IP/xmD6ZSxNswuzxhsTcnzETOf8qvXz/n5ly8o5y/ZnRQMiyHj8YjD6ZRhUXB5ecF4MmZQDKS/U4F/8S/+BZ9+/imL2YydnR2GRcHZxTl5LoaGX375hay4z2csF0t+/etf85Mf/4Tvfvc7XM0uqSoZWo9HI4rdPYmdJBFdwralrCqurma9hESSpFxdXfGrX/2SN2+OY9/rmUwm7O3tMRgMeO+99/jyiy/48z//J1xeXpGl+bXzvj/3ux4iMgatdxA8zrY0dY3SjhBEgztLUobDgWgcR0BZKUOWp3T4Q7f5IWeRwiSaqpKVXTEkEYBHdLMhyxQhMhTTLKdp254J2vVBbZS9kTgXJtpJLa+VpkmURxMgq6lbTLLWkNaJDMjLRiQ6JsMJb91/l1VV8uTJFxjt0Srw5Vef8/TJc0yaMp8tab0mjN7lwft/yp0Hj9jKV9i6jAxzzazV/D/+/W/JsgE/+t4HjFKDSdL1tRiPuX37tuQkk/DkyVOuLhf8xV/8Bf/x7/6Gqiw5fv2aH/7xD2nrBttaRsMhCnj8+DFnZ6cMBwXf/d53+fLLz/jVr37Ff/t/+G/Z3trigw8+oKoqyrKkyAcUUT5muVxxeXEl/VWsoyaTMaPhmDTLyDLRqiXW5c5abGupqoqLiythRy9mNHVFkibkec5XXz3ujeROTk64uLjs65dPvv1tHj9+IjgCwhxUbG5A+o3aIHTBJ0abIfSbaR3J4A95/MEAX5oUJAkk+YTgA6NxgXM1ijlKGYwa0OlYLRcrArU02c2Cuilxvo2riVIQJZlhYCTp6yLDO7CtRRtJzIlJ0VoErNuqFjQ0BFCyutG0jjTR5KkIU1ZVSdVUuBCw3kPtyLJcHGdCoG1LrBN0/OrqRNxdcSxWb1itXtK2S7S2KDS2rWNjokSvr21p64pFeMF4fMXl1RtWq5qmgv2DXbaN/F4mSQi0jKdjElPQ2kDTOhQtw8Euf/L9P+Pjb/0pmRGK8qfPvuhR+A7s6Bo6aWbjwRbBPa3jWqtaa6B0TD0BgyPDyXVg34bZwTcAJZtsmc3v2wT4bjIDVQjiSNOBLx2LKwJ98hyCmHeabvLeVWy2roOMa2bOGgTI0y20yWT6MM5IEkXdrFAsY4NruLw8BSUrtkkqBUFVz6nrJc63aJNFjEqRFVHjKrIaZAJnEZ9PEYpOjKGNN7s45cl6SQhWpnVFIcK6FppGtLvQGkwirsnJQNaBlO8nTB7PbHGOTuTmP796HDUXJEl3UwVh3GSSjF0bDVgWDCeak5NXVGWDs5qdnR3MzhZaEx1YPcORFHVN7cWSPsDB3lv88Ad/zttvfYKzgdevXnN+/rQ3JfARVOocnJXSkXuwwWjSawBwc32bjZjYXKe8ydj7+0C9m+vdfSx0MRCnIV00bD7L+nkVGB3FbPuw6b8/hIAKbr320U3tokZfH2lBMxzs4Lwmz0YU2W4Esh3Bz/Gqxfmas4tXsqqpBNxNEkNZzXG2oY629V2OVlqRFRnaGGnik5S2EaakB5wNFMWIVVnRtBYf5Bo4L47Ozgcm4wlJltLWpayp65TKloy3tjmde4JPGBaH1M2SoKQJVxoaW8uqSp5wPnuKVi/FcTN4qmrOYGBItFjdJsZgcjGsSVPDYKC5Wiyj+6nHGM14MkZ87JSwRnUGGGwb8G1Cko64feshf/T9f8SD+59gm8DL5684OzuXZiYWOd2ESq5ff5Xo3GK7Qc5NNp0U+wGlOwDEx2FAZ7Bi+jx162CfQZ7xzoOHzK9msqIW2VqttcISdVaA4cgQleFCB8KsXbdCCKhEwKkAaIwAdlHbL81S8jynyIVZnOYZiU6YTMZMJhPyNIsiuz2CTlAwHkzF0ThoimxMVVYsmhXON2gTsLYhhAXtZYtJuteDpq7xvsWHFqNMdEUWICdJNBiF8540yVBadIisa7GNZTSeMpstcUBZyRp6J4BOEF0RZRKcbWjahixJKOs5t+7e4eVZQlU6xoPblNUcrUqEFSeME2VgOC64nL9GLU5lYt0Ka2i6JcxrwW4D462JgK6ZNH5VXeKdYjQckxeDeJ92K8AakDX5unJYlzAe7XLvziN+8L1/yO2jd1nOK7784hmXF1eEEDVp9c1YW+eaTnuHKN8eIlCrEFCTCLINBgP29w+4ml/iXRsFtdePVVXy6s1rmrphtRSX77JcUa4W1NWKNq41hY7tHNFYxVo2QlaOJOZAXJy7OCYEvG1xbcP52Rmvj1/x6tVLptMJt2/d5u6dO8JoR+qFRGvRfFEBr5wAlTjGk31ae0lZzqhqYbASVJQBaEhSTVHkpIkwqmw0exFdsoaqWUQXQOTvZRMZFDAYFGhlImOvAwtFlN4ogzaisxa8omoqsjTlajFHaVltGxZFdOcWVmOSGBwVu/uHVMfPWcw9e3t3uZofy2cfxOFXGcUgG2Cd5+ziGYnJ8F40Ma1rGI3HpGkuALfRjIYTvAsMhxOSJMEFy3SaMBoJM3c4KkCJ0L6Nq+lV2ULIMCbjaP9dPvrWj/jg3e+TpmNevzzm5M0JVVnRSZVY5/oBperYv1pxfnHO18/neGup6qofVHWTz+FoxMPbR/zudz/j5IkwMCRYHCGIE1+WDkXcv4+XjqUurKef/t3f8MUXnzIohlHKRMvWCjJoqFYlIXgOj24zGg750R//MfcfPODzL77g9PT0WoPbMebTJOkZ7VVV8uzrryly0Zny0fU3+E4zMsRTzVJVC6nZE5EAyPOMvJD63mhD09aib6sT8jxjkA/RaOq6RqmEtpX4TBKp01Casqp7/SoVV/ESI8209bIK763cQ1mWozRYfL+CKUOelJ3tIU27YrUqUboUgwLXgvWYwpEYw3S8zes3L8gGGWfnz1Cqpchy8IHRYBRNcFrybNhr8I7GAxQJi+WcupKmsihG+KAYDMc0Tc1itaJpHVme9dfRWTFPCh5s40nMlKPDh3zw/veYTG/xf/o//18xJsckAvRVlUiIyMqiRykDzRWmfM3laYFNW7xraIMlhIqgt/DeMpvPqE6fMtTSeyVfpiRKUeQZP/7xn/LRh99CK2EX13WJdU5qEOtY1RWKQNtUfP31U5qm4fPPvhAHya0ddne2GY/HHL855dXxCWVdMRwNma1WQvLQmjSafnUNN95RrUqW8wV/+Zd/yT/+x3/GyyfPGQwGIsOhVX+/S15ee1FKvdadkQ066uV1Z7IwqhzGKAbDAePRNiEEymoVVzh9P3AK3pHnsjFD1Jg2IaC0Js01kAkTT4nD7fZ4srFFJbp8VV2xXC5JMyF1hOBoXC0yBzpBBQ3BYB2ERDMcJAyHKa2VOlIbjbNtzAZyxti2YjRIyZOcsg6MhkOWy5LEeLwSg6zlqiZJCrSCl29e8/LV15ycPBcnVlXj67eAbZrWEoKnqlbynhNQSYI3NcNkCW2Jyj1FKvI2VbOkCWNsA2/enPPV3/170iDg6d7+LoMiZ1QM+OSTT/jkk0/I8xwN1NWKNM348FvvA3K+1HVN0zYMR0NOTo559uwZg0FBlmjm8zk//tFP+PCjj1gsZ+zv7fP8xQsSI6zp8WjM6ekZ5+fnzGYzLi7OqaqaO3fu8PDtd9je2eldZD/++GP+1b/67/nyyy9I0ySuCzvOzk75kx/+Me88+id8/PEn/A//w/+N0XjUD2m7A73fGIm1lJBpOjMj1QM1RiuSJMdaWZnue2MvMldb0ynL5TJKurSIcSBR1sTF3lc0XJ1KMUkWZQBUHJwl+ACZyUhJaG3Vk1+SxKCkSI7DjkEckEcDTRVwro6bIZDlKcFbsiwT4xMTUNGURgcl6/YvHjNfLCmrOZPJDqPBiM9+t6Rta6qmEjMrZShtzXRrgFICblbzKxlA6ZTlylH7CX/5Nz/l53/5FTujgslkyp1799kayYrr+fk5o9GIg8MjwWCaio8++hZ3793m5OQYrTX7+/siTRLNeOaLOU+efEVTV9x76z47O9scHd2iKApu3Tri+OQEZx3vv/8+v/71b2S7aGuLJEkYjwbR6XcoWEwAZy1tI0Y2y/mSslwxny9YLJfM53Oc94zHE27dusXWdMqrF8/55S9/znK5wHtPMRhw7/59rLW8//77fPLxJzjn+eSTT/jwww95/PiZmG9qkfEKdL1t3OW4ga90WEn3UErqhT/08Ycz+BhgmxYSK+sFb86xtiZJiPoHy8hqUBiToRCwz7oyugFKkFdVEyciBlNk8dkdnQFN21qstWTpgKbROKepKlndCcGzKBdobSiKMVk2pCpbvC9jUDryYc5wtEVZ1iyuDDs7dzi/+ookCYAhMTlKieOM95aL2VO0zmldQ720pJkjz6aiJ1i15HlKlurIsBmRJCmDYguRoVJ9Ea+NTMd9kJWetmkwZshoMOWjb/0Rn3z8Q6bjWyyuGp68+pr5fN5rUAnYYtdFPpGhgu9Bss112s21yXXTvJ5IbK7h3tzx3mSorEFFf+1nO1AR6F9j8+c2EenNxhw6ILBjIq5fR/Sz1j/fJc+bum1SSFlae0WVLvE+xITnUTpEnaAUnch7TDNxC2ubWkBkJXosUqDWcRUtRZH2jV33XsQURqOVCGt2TAVnLYHAbHGFSTKGwwlKJZLEEecj51uSPGE03mIxX3J14bhz+x2OTz8DJZT+TsMry1KatqFqT1EkWBeoyorRuGAwKCJDqyUzBSSyojsej1EKptNttqZyjaxrUB4Sk6KUiJpbC661pOmYw4PbfP+7P+Hddz5GqxFvji84eXNMVVXX4sTa9lpcdMYGm19bA7zX46azqN+Ml+7fN6/n9ee4Hh+bMbc54eheQysFG6vp19bEJVrk/zvQ+xte4xqjMJp4dABfx+Lx3jOfX1I3J6RpSpKIBhqqaxrEVTnLDM6FPhFbWwmwl4jOn7UhAsNJBABTOsFlG2n53rkO12K5XBGCEkfBqsEYzXy+QBlDmuV4D4vFChVsZLV5ynLBaDTFmIzL04Z7d44I5oSLq5exWJUVqPFkhKfF+Qq0rI00rWUyyRkMc7QyLJcVrfcMRmPqpiZNs5jfxuTZCKW0rFMZKXyKXNZvRMfMMCh2uH/7Ad/9zo+4f+89vDU8//oNFxei+9aDtkqYYxCdx3qGiVvnFHWdzXn92l2ftHYyEGvcbF2EJUnCaDQEbvcDkQ6wQ60BHQF/43PFte4uZtbAswIdvx9paDdd/brvEexG98ZHXeRrrXr3wr4xCJ6Xr58QkFWb4XAseUlLs5moFB+6JjGNzM4QASNhBigjBgO2kZjJc3GZdy6AlmYZiO54wm6+vLxA67T7rXA2UFWNANFphkLiAd+AammpZUo/vkPwhuW8YlKMyDM4OT9jMJBCsmmWTCYT2rZCR1BRwCHL3v6UwUBcQ2czYVKngxFlVZHGgZRSCcPhCK07EyABYweFSFhonaApGA13uX//Xb77yY/Z37/Lamn58otnXF1eRjbnGmywcR3iptRAn5/iVVtPU+mnqN2ZZ63lvffe5Xef/Rbbympbl1+yPKdtLbPjNzRNG6f8FXVZCqvEC4sshG5C0XGIJXq01vh1WMsANAI7KtY3YrLgmc3mWKf47NNPKYqcjz/8kOlkSmqEvZ0oDVokUTD0ea27l+arl8yXL1itxK1alwk7O9sMxpoQNE3t4mBUWMuDwZBu4GRdE42GDCqCzArTAxvyvhPa6Ai5yfK3zhIaKytRXla+nQ0YxJBHXPi8rGbbFYGWutLMZpeiqWUVbetRSDNcNUuGgwHBBrxVkAWcdWRZAsFFF8ICbYbCZk0yFsuKcToEEkKQoZ3SBjAYA1qHGHM+5g5DVXrybMR4sMXhwUM++taPefvhBzgLb15fcHr6hLZpZJjKOm90AC5hPQQdj8dxvSvgrLhT+77mkWu/u7PLP//n/2v+wT/6R7x4+YKf/uynELWd3py8YZCP2dvZl1XXxUKcGFsr+rAhkBQZSaJ5/NWXvfSF7hmdiZjBpDlbW1uMBkN+9I9/xMXFBWnUa7q6msU6fG1FnyaGg/0DJuMxw+GQnZ0d7ty5w+07d8iynA5c7Fa/u5rUWhuZJb6ve6xtadtagAwtwKGzHoxHKVmVHw5GTMZTlst5fx0aKytmXSwPBkNCkJVGgmY83qJtLK5axCGDrGJaK4OuNM2iMYbrGbSi5ZxSBI/HkefyM9po8iSnbSqKfMBwmAKWPEk5Gt1mPp8xX84lxrwhHYz4+Ft/ynh4gPMNPsgG0VdPfsPr4y8pqxV5PmAwHGOMZrZYUNfC3vFBhOuNztia7rJaVrQNvPvuJ3z80R9z+9Y7KDK++OIxn/3uC07OThFMzNI0jYAPkaWjlEbPl/zV66/5+b8OgJhsZYWshJpkwspOWCxnKHtO7Zzk3ETOLKM1y/mci/NTBkWO1matSUXU9yYwnU55ennJy+jmfXL8GttuszWdUtU1g8GAr5+/EAMeY7iazWE+77cjunVI2wqjtI2/S7kqOTs745e//CViTHVA1TaSX6RwkJ9dp8pY/ykCcs27VXqTmAjmCmspTTUqrtf5aO5mjNx3dWTwZ5EhHYi1Jp7WVjKwVyrmNBONVoTl7qwQL0wiDuHGpLJWGBxFkeOcYjgcSv73Iic1KIbcvf0I61vevPkcrT3aqPgaAaKrfbBSj6o44E9MTpYMUSqIG6oWl/jReMj5+Sk+BM4uXnHx9RfM5udU9ZI00SSZ4ad/81esFil5UbBYLKPbeiuxg8HPZ/zb//tjfv0/DSjSwHg0ZDAckA4GmOE+J09L6stXqCCs1VQrZucXLI3mwmiquKpbRGmkVVlirevPV+scbWtl/XBryrNnz1gtl7z/3ru0TcXl5SV7e7s8/foJSsHe7h6vXr6mqVo+/fQLqrrBWsvTr7+mqWvG4zF37twmLQpevj7m+M1Jz1pLUzGo6Ub21kp+PD8/IxBYLZd8+eVXvHz+nIdvvXWNEHBd9irIQFZDohLwgSYE0lSTRhd3hSKLZ6TuBolGcn9ZloD0wSHIuS4DbCeatkHAQ600ymiytODi4kT61zRDEUizFBPZelontI1s/XglWp34QKIUDtm0ypJMMIumJMsylqsFeSZO5VeLBU1rGY0G2NaJFI61FFkGBIo8YWv7AScnr7i8POf5018wGQ97Lb+6WuK9geyUk6//lifjB6y2c4osocgzXLBk6URW0RtLUzecr1acnZxx/PqYRIv28A9/+EM+/vjbnJ2cylBSwXx2hdaBw8MDOhPHVVWCkn7r7OyUp0++Ik0zppMpL168JMtyDg4O+Lu/+zuO37zho48+Ynd3l+FgxHw5l145QJ7KavTZ2QXzhRgGLpdLZldX1JHxt1ytqKuao6NDHr7zDm+99YCtra3+bL5//z5JmvI//o//T4xWjEYjAVG9ZW9vjyIvmF3Nubqc8ezpS85PzhgWA/RG/bWuC67jLX0vy42tthtkmP+Uxx8M8M2WLykr2dGeTrfJjCfxAWc9WmUidqsUedRWEU0pKwUBskJkrWMwKGR9jSA74UrjvKVDX9JUDpu6WeGc0FJNZMh5H0i06NP4YKgrS9NUBL+KxeopZbmQhOwtPuiY+B1VVTIcyo0nq0jiXpRlsjufJinZJCcvXF/E1E2LwqB1hvNN1BCJDXsQycRuYp/gSbSmbWFQHLA9vc0H73+Xd97+iPHogLOzSz773VNZxfUWdJwTqDVQsaZ2rgtmMXj4fUrxJjAi+kLX2QrX6Mc3AJKbX+tBD9agzCbw1jGrrLPXnkNea90gr9kTwuLrfp9187EWleyasO7RAT8hBJblKXXzCpNotrd2STIAQ9PI6uxqtSJ4Jc6OwWJtBXiMVpESLwyQJBF3pc5FUZyzOiC10z0J0RUpug8Hj1YG7wPDYkIxGOBsiLpXDa5doZQIwa9WS4LXURw2Y1XOJKEq22tygKcqVxAUaZoAhrQQhyvvm+igJcWEMSlGJzhnWSyWfVw4bwnBRb0a1cceIWM6PuLuO+/xwfvf4e6dR4SQcvz6lIuLV3H1w9H5Fau4LrV2Ge3owaoXeN28ti4KxF4HgNdN8s0YW89av/lx82e6xvybvm9Tl2Ada2v2lYsgnY0x1D1XB6psxrbQ4WU1dTOmQwisynM8V1RNYDqZUgwLglfYNpAmKa1tKZdL8ryILBwZcHQNMDoRMqELJKm4gAvAHUGGqC2oY3HYTZWs9bStJTUyaRoPpyRZStO2LBaifQcNztYY3TBfXDEY7GCtpxhqYR5XF7G3lOKhKAqaSjQg82wiqwCpZjCgHzrkuYm/i8LonEGRCdNgsSTJM9rWRpH8Fq2kESqrBqOGjEeHvPfoO3z4wffZ379LXTmePX3N1dUMZz0+OmgKS7IDa2UF21oZ/qBE+2aTvt5dk80YkT93/10/DDt9vJv6oV3jeTPWJBB+P8Y2//xNTFTbOUjrqKOn1sOOHuRmLV3QGQap+Dtvvr5WWhpLnWBbi/dVH6NpGgXokdWoLBWZCxt1okzUddUqoYkai0p1IIXkFHwPR0oO05o0TdDaimtlC6lJpEkeTFCJoqkq5vM5JlFobWnrisQ42rZme3uXECAfwLJ6Td2sKIosMn6DyA1UNYSEQTFFK9HQnYwUIWiWqyvadimrmB48KcNRRt2sWK4uSbOMpq3JiwLnfe8uXJYtWbrN4f4DPvzgB7z77scMBxPm85ovP3/FfD6X8y5II9Ux47prsAb1NnXoupyD/HnjzNoE9qy1XFxe0tQN29NtXr96KSuGJsd6R5EPOD89o4k5KDjR1ZQpf+f0bqSe6aA96dB6qM+FNTwU3w6eQGsDzrZoBc4meKvQKuXJV1/x6NE7jEcjsjTFoMFIk6lVx6i+rqsLxIFDymSyRTdwWw/tTGTv5SQ6YeWXaG2wccXIaENQKoKvokUr51NNmiZinIaszJlEGg4ViJsXcTXSWdLE4JQAilvbAxrbUi1XVGWJSePPWgGHIbC3d8izl468CCzL1yTasT2ZUtcVWSbrfrZxDPI9drbuAx6dRFfUuuHs4hmz2YxBMYSQkGUjKr+ksS11vWIwHMTcnYpWXJKyWtWUK83+7nu88/ATPv7oh+xsH7JaOl48P+X87Jy2dXRSAMIGl/pGmB8xdygZIrW2ZX9vX5hwWqGztD+bkiSuWHnP0a1bIhvgxcDuww8/oSxXNHXDaLxHXVqqekXTNvHMaXG+jfVKoG4aPC6eQ7FGjPkmS7O+YRqPxzjn2NnZ4fVvX3NwdCQMuyInz2RlLMtStra2uHvnNrdv32E4GJKlOSaCdcooVD8AXA/ypPaU4aQMbSCEjkUbGf9BxSG1Rhupu9NU431L2coANigvQzWlRAw+CChktOhRomBnZ4/lcklRDGmaq/79Na0QBrJMzMmC9agkI03lfqrqGh1c1I6Vz8QYCAgQZG1D0y7Y2Z5yeWVwriE4x+X5FVmeUxQjmrolywoSM2I8vIVtE169Psb5BYvVKbPFa6wTBopSAbBRK7JFa2Elgsa2CamZMM7f4sN3H/HgrXfZ3TmiLB2vXlxwfnbB2fkFWS7ut3VVUddikgIyJJPzxaDdjJCs+Ml/8U/52c9/xvHJG84vy7hy6gnBUOQFh4cHUSNSRYF5T7Va8uL5guVqxmg0JM9zTJKSGNE6NTqJjX5NU9VRM3zK4eEBzlp+/rOf8uMf/5gkSZhdzajqBm0kVnyQcyiNOrCSpxRFllNXJW3TslwuMcbw+WefsT2ZcOvwlvy8uj4Y+abaUBjVUoP194PW8cz1NK3IUBiToJWRgWsqck2qDehYdwyHE7m3sBhE40xpE92ehR2amCTWkxalZXujl1qI21W2tVRE2Z54xjRx60LqywVVU1I1LUa3JJnoTtrWxbpDy2A40bStpXXSt5SNMPysF8BHabm3B4MBAc3l1RtUqsiHAa9SMlPgvWg4n76pOD+/pK5LMQnUAW0UYhp3hVsc8+Zp2cfT2jwsxQWDVgkmWColg/TubEMpLs7PWS7nvP32Q7I8YzgcUdd17CvSOEiFyWTCm1cv+fzT35GlhqPDA549+5rlcsmbN284OXnDP/2n/5Q2DoNeH78BHc2hFOwfHvQgbtk0lMev43kZV5+1QfQr41ZOCNRViW2HBC/GUuPxkMePv2K5WFBkGXVdo42RmjnWS1KDBVBrsy0de4ZBUaB0g7UyoAAhIHWtSZfXXaeVp+Xe7BxvJXwlhrM8p6pqFqsrFsslVb2S8zwkaKWo6poqatdNJmO8EYKUcl6c65sGYzJa5yUnaqiqGmWMaIJ7T9NUXM1muNaz8KJHF0JgOpngHFSNpchTLq4u4VLMIwfDAZ998WueP5/TWh0HNRbQmPSYy+PP+d1fCSieGqlTk2KAHmyzaBKa+QW1vRL8wxiaukIrRZIYfvbTnzEZTyjynMFggAfm81kfS7JV46nbhsl0QtPWfP30CWdn50ymY+ZXV5y+EYKYmOiJm/t/+ed/wTgaTs2jadRstuDJk2fYuKGD0d1BzavjYy6vLhkNR4yGQz786CNG4wmgefnqmNfHJ3TyQGkatfC1aDa2sTYMIfD48WPu3L7D2ekZe3sHPH78FV9//YTd7S1SbQist0e6vuL3c9h1wO8/1+MPX9FNNUkyARJs6+JhLwl0OBxQriqssyhNDBBPt/6njaGqBSBzLlDXtYBrRhBxHyxJons9hTRNEbcicdfK0oS29ZgkZTgsqKqK5WqF0oa8EAfcEDzGQJIodnf3+fr5U3TiWJYvKApZ9y3LFaPRMBZqmq3xbSaTXTmUlSMxI84vXjNbvML5kjwXi/fhYIer+Ss5/IMISIvbnGZQjFHKM1/OSbMx33r/e7z/6Dvcv/ceioLT0wtefP2E1WrZa5x1rJVN7blugtYxkjaZSd2fe8HPDRZMB/BtNsK/z3i6zlDZ/Pfu69/EturexyYjpvt697Md8LoWIu/Awpvgz/Vg7mj7N4NcoSiKlKwYo5XolxktbleDwaB3Z25bibVgvWgyWhF3VRgR06+FSVRXNUmiSUwWGRu2X1NTSkc3TEsw4naT54am8b27lqyrtHgsWa4iiyGQZQLgTad7XFx+RZo5WnfBZDogkLFczhmN5LBRIefe7Q/Z3b2Fcy0mEXDizcnXvDl9grUteS56f6PhlLOLY2GSIWspykQ2y2iEbT3LRcn+3lt88O4f8d6732Zn+4iqtDx/dsrV5SwKusdGNqIOHXuFQG8N3unbyDX95vv+GhsqAnzBrxmkm3G6CTr3oEkQBl0/LduItW9ihnZN6N8HwKynIKyfG67dG5vx2012tdbooH8vJgeDgqBGiGupsOCyNBe3PmMoEtFd7CjYSpnYkAKI5ottPdY5mraNOkGy6uaCxSTRkdlvGNgoF4vOCKgZEaS3zmK0pmkqssJgTIbOUxJTgHKMx1uAJs1rdDJnZzhA6zEXF+doLS7TwRluHb3Lo4ffoVxVFMME7xuadskXX/2Mq/kpiSkYDsYUxZDFcsZyKWscKulyT8721i7eKaqqZTo+4Hvf+Yc8eudjxsMdrq5WfPa7ZywWS2F/snaK6ia5dLlCqzj9VqgoMUDo9HH8teu/yd6T67w24YDIJt5gwWzGQ/fvm8/ZD0k2WKXd997MhR0LpvuadY7ghVFD4NrzdMBjx+LTEXBEbQCLXAcNUaJn6LysKYo5SRlZeCLObpKEyXgqZkKBqM8kLnYaRWMF3BNdOHGn9R7yrKBqSpQOYtISY955izjZJ5gkiwMS0Ypy3jMoBiyXM7JEtDuLfCJAj6vRSnSvklSjqZluTUlMwunpiUy6dUJIEu7e+pD33/ljVquGYmhomiVNU/O7z/+Gi6tnpKms4Q5HQ8pyyXK1FN1FQGmN94at6Z2ozaXYu3WPP/r+n3Hv7rtolXF2es6TLx/3+juyPg/ENSe5lqG/Rv29LTvSAgjrTR0UOXU7EwygL+CUEoH8rcmEH37/B5zff0BVVWuX78hQa62PZh22B7SFFd2x1W2sR+JgMmiCi6xKJY2B6mIxSLPi4+AlNbLWn6cZe/v73L93l6PDgzgURX6n2AT7IGzUzbNWbfzOysv5CTLMMlrHfKPQWmI80ZrDgyOWyyVOCzOwblpZ+43N7HA4IAQVXQWlOc6zAWfnJxij5SwM9NIUqUlkUItCK08ImsVyQZJlbG2NKcsFg+EAYboXJKZgtVqQGlmxgRqF59bREW1bMwuXpJmwk7w3fOfDf8TB9rcpqzkmaWnsjOcvPmdVnbJcigbXaDJA60BjZYVaKSOmL2kKNmF7epvVynJrf5dPPv4B77/7PbJ0wmJe8vmnz5nNZvHcCddMnfqzrLv/lY4MobX75vbWFtPJlOWqRKvAYDBkNrtanz0IM+Onv/g5dd1SliVVVbFarWgaWW9r6pq2WtE2VT9Edr3GpKZuGupGNmNccCg6LSl5L1mSYggE67i8vOT09IRPvvMxr16/Zrmcs7u7TZFnTMZj7ty5w+HhIaPRKDLd5WwTnb3IPuW6NEw/9IsjjjRNGY4mjEdj5vM5RM3O7izQChKtwGRoBbYtpbb1DkwgM4k0e3VLluQMh2O2tna4vLrsAdwkSSijO3aeZ/EMCYCYdBitCYlCqRwfDM5UDAc5rWv788FakaCIZumgFXW1IDMJiUoZjlJaq6mbitC25FnBqrQslkvybIfnLz7j6dePuZwdg67Jc2FNymci9ft8scC2jsQUpPkQrQfs7t7j/Xe/w93b7zIZH2Abz+zqit/++nOquo1nnSfNEg73D8SZNgRQvtc9XTM1ha19/8F9/tF/8Y/405/8hOOTN7x584YsTXl9fMzZ2RXjyYQ0S6mrmjYODhfzOTOtUcGhgC+++CzmQYnrNBPdUaMT8jRnOt1iOByRZxl/8sM/Zjab8b3vfpeHDx/yP/+H/0BVCojku/M5xrfRGqNVLPsFGJ6MRpKLtGFUDLm1f8i77z7i6OBAwLNYI6x/Rvf5VSmFCYadyR6Xl6K7Jufbuhdq27Zf1Q1BDE5MlFja3FLxXozJUIayXOBintOJDG2zNJNzMvE466NWahDpH530zqhFXlDVbRzOSa3trax0aqVwtiZJFHYVaCpZpcxyHd2TpY5OjPTHTWPJspzFXAgqTW2j2UKIYKbG+YCLxnPeOQajgmbZUORT2lqjSRkPM/L8tI/HTucySzOcEdkLa9u49SSr2++++z6vX71hvphLfYOwjNI0591H7/Luu++T57k4B6vA+fkZv/v0tywWc4rBAFDkRcF0Mokr2Q7bWtq6EYDRaJ5//TVnZ2ecnZ1x984dHrz1gG9//B1+/ZtfEwIcH79BGQHdfegAPB31tGWQb7RBy3KFgJ6xzsuyjLapIjt0RZoV/OZ3v+VqdsHsakbd1JxdXrC/t4eK5/LmkHZdyXW0KznHxXxkLr93jEmIvZMxJCrpQV/p1yROszwTSRnWoHfTNhidMJ0MMMYwckPyNI9nqmyuoYVU4J3cm2maicSOCtggsVKkGVoLIcQHUJY4aHIEJ+66aSr3TZKmpCbFOzGgdFrWwLWuybIWV8Ni1WJSeS3voXHijp0kCYkX7bk0SanUesswEFmKSkBxk2QQfPxsNalJ0Uozn80pVwveeus+w9GYre0tkYdp2/g8wnpM85QsMbx49pTPP/0dITjyTJiNDx8+5PHjL1ksFhweHvC/+W/+G46OjkjTlGKQY7Tm9PQMH87ioMGAEmKUR2RXJltThuNRnz/fnJ6izi8IARQ6sniRIQOBtq0p8pymqbBNS12JNM1XX33F7u4en3zyCePxhF/96tcsFnPee/TORgz9PllhEzfpfAg6ljQ3CQz/iY8/GOCzLkRkO+kTaveBOWcpBuK61tomNkImCjSbXtx6OBxhrRMhVDTT6Q5NbVmsqrjaNkSorp66acjSPE7Euz12sZhO04TxeIDzjqJI0CSgwCQiTp4lQ4aDEd5bsjRhONzt1xSNMeSZIUum/OC7/5Q826KpW6x11O05VXVJ3QwpqxVKJUy3JjT1JSFI8ZGkKdoF2saSmimD4gitUh49fJuPPvojDvbfom0dr1+dcnHxJJpEQECmwAowiXxuAlRIUkiS5FoB1T2kYXDxc3b9VOAm2Lap09eBch2A1v1b97gJxnRfuwkMduDI5vNurv9uAnybK3Y9nb4HemQypzZYO0pdD+we7FNiT+5DHcWVRbuka5ba1jIopmxNM8pySZeU17+PvMZoNJYiwIpGzq2ju9R1w8Xlm7gGV6CUTNPks0oiiq9Q2kcWnTieDoqMEBTFIEFW52RiWDcLBvmE4WCIdbKuPplsU5ZLEWJWQaaITHnv0Z+Qp1Nmi3OgZbG8oKkdSdJpBSbkRYb1S0DAXln1BO8UiR6QJwfsTXd5548+4dE7HzMotpnN5nz5+ddSVNq2Bz9Czxy7Dm4orUjSJP59k0J8fU1bru0m+BIBnJ6L8vvgyiYY2IMhEWi8GV83k9pmnG7G2maS7P7rDmjnHJ7rMXsTCOyfv4vBG/dW07ZYVwqrI0niVN8SQsfszbh1dJvZXMRXhZUsTpVdzGZ5So5M3a1r2Jpss729y7OXz0Q3LTFoTPz9fGQVKRHxNwbnPFdXM0yaojUMioTBMCMEF9dPNFW1oMgKxsOpWL67FqNzfNBsbe1QVSsUijTJOdx7wHh4RF2eUi5rqnrF6flTqromTQpZPdaeQE3TCFuwGAwEvA0pdWmYDA45OLzD++99hzu3H5CaEWdnlzx7+iXL5TIW0ddjrV85jFdeIYWuMFdVPFC7A64rzNlgksrPXYvXDdBGGug1q29zINHF26ZRUDeh3syVm3F4Mx438xpAEsHvoPyN97N+vT6/QQ/w9HGm1zEZQqBpa5yr5dpbJ8WwbWV9T7UYlzGZTNFaUdUlzooGnBS2CuV8HCwo0lTyYpbm7Gzv8er4VZQo0FEIXgBrEwFRk+QkRsDq2Uz00HyQWEszgzFRJzUE6nrFZDRiWExobSkM5qrBas94vCVmM86iyJiO9wk+ZT4/5/XxBWV1xtXiFXUzI8+HpKnBh5rWwtX8HEAGH0ERSPF2yDC/x8O3vsW773zE9nSfuva8fH7K1dUsrr5GQ5Pumum1Q2zXbIk+7ZpZJGvAWph+4YbmZ4wfHV1DTWJ6XbH9vT12d3b6XOScw3bGLhuxaZ3oqHa1kA++X/2+qSvbGXjIF2UtTMfY6pjAXc7TqBi3QhVTdIZQ8vu44CIrWPVgk+pAw5gTpXAUxplCJCysdaKhHA3LkiQQfENjAworzWloUUGR5XmvxaVUQpYVeGfZ2tpiuSzJ0oy6LslzEX8PTlYu09RQ5CNC1BfKjBHTIucJw5QkzfDesTUdo1SImszymZXljNtHt8iSVDQpMZycnDMYFKRZER1uA0anGJ3x+vhrnr/6HWV9jrULWjcH1TIcjoBA066o41A5SVLyfIRzisyMmI7v8uDet3n0zkfs7RzStC0nx3Nms1cCJAfbg3UohUaDWZ8pN2u0zaFBdz598K0PeP7yBbUVPWetxTymi/8kTTk7OxMpmeWCtq6xbUvTVDFPWGzTSNyETvaky4WbsiwiERMi+ynoNSBZtw3zxYLBEH7+y19y/+qcV69ekWYpe/t73Ll9m/29vShjEuNRaYktNDrEplf3mHL/e/fDX68pBjkBS/CWy6tzYe1FJ0JhhDQUWYZDciAKTGSet77ulRIU4na9bJZoXTObz4FO9zZF6l5iPaijiYOs+9e1rNNrZTg6vM/B4Vs8fvJrVqsT0qjRHLw0fEYnAop6IIgR387uHuppFllgYsAxGBakaYLzLWmW0doVT579CusbktzibCDPRWLFR0dfpXOCM0yGWxwd3Ofevbe5d+ddJpMjmtpzcT7n9YunNHXVD8a89wQVNQ4V3H/rLr/53W8FLEgz0jQVzWclq6/OOVwIvPXgIW9OzglK4ZzCJAXnlxc4pxiNRabo8lJcLavVkrKqaOuSaiU9VPDxPUftdELAW4/JjThgaiObTWnGy5cvAfj444/57g++zxeff85ytZJBrzEYpXonZq3lzM/znNFwxN7uLgf7+7K6XuRkacYgL4TBFFesu5hSWveNr4mrjpu59OryEh/X1DelPvrzXq3JDk0r21iXVzNCsCRJKkCzSWjac5wPDIos6nFHsCFJaKtW5EniSmdqEuqmxLoWaLDWk+cjmmbB5eU5ENjd3QEgT8RQMc8MJtWcnp0ymRywvXUL6+bUlZgyCkCd0LQNrm4wWkgtq/IC8XiSnicvUi4ur1hUS9HaNKJ/atuGaqnYmz7kcP8dDvbuc+fOQ/7mr37B/+Xxf49SwrrSSpPlKX/yoz/hF7/4BYvFAu9DXCmEB/cf8N/9d/9HlouSV69e4+PWwuXlFQcHt7h9+zYoxWpVMZtdUVY1g+GE8XSbsm45OTlntVxQNzVJKgzuJElJk4xBUbC9tYPWiovLCz759id868Nvsbe3x8MHD7hz5w6//s2vwHvOz07lukfgpzsThWUnkKMx4mKrImOzy0FFnlNXsno5n8+ZTg0vnz9ntZgRfODo8DbD4TDqYq+3S/pcFntwdKetJ8M8550Y6SQpTSMs9w7EH0aX2qZpNvqVyDC1HYmBOIiF4DwETYhmSMFDSBTjyZSqXKKDbEaEKOWjAiivSHUWwc0Q5c0EhzDGoJUmzXKMUmiT4YMnTYqeRKUiE9o5Syeqbq2jKDJaW1I3LUlSMJnkGNOQJik2bTFa5CC6+9hoE8/3FII8d7eptL2zxXK5QIrdQF2Lc+/3v/cDPvn2twkBVsslT58+4Ze//LmY1xjNYDCgKMS3oWktX3z2OXVdcXVxTp6lFFnGO++8w8HBAT/72c8IIbD7R3u89/77rJZLWEm/453nq6++khVok/Ta553zcDeA3ySTCNvYoFTnirweDusIKE8mE07eiKby7OqK0WjMYrHg8eOvWCzm4D2np+e0TYuzjtliTl5k8QzaqA2uMUXlvPa9D8HGgPoPfPzBAF8Igu4qZylycdCpamG7WNuitSPPRGzUxfXXNDrXWGsxypCahCwp2Ns9YD6fMygGNPUFw8EQbYg3i3zY49FIKMUqodC5OK05iw8mimxKQ2mMJtCiVI61DXW1ZHtyyMlpileSrE5PF2JNn+aUdUWeWFKtaerA8fGXPHvxFGcbWneK8xVJEgWavWe1WrAsr+TGGA4jSyxne3KHve1HfPDeD7l9+y6JSbmaLXj8+WMWqyW219wKchmVJulIIv31vF4sdawouL4+tAbhJEmATEdlXUKeJ0mS32tQbzKm5DnCtb93r3+zKbm55ru5Qnu9Saant/Zfk063B4QictAR76817VqvgTmQSa82OoKiPgJlXWKNYrbtAlQRKfryda1zWUNsHakR3T2hIBfMZwvKckVVV2KWEU1ZtA4kiSbPZY3FmIy6tqSpwBBZlsSpJISQIOsX0rxY19JUc7anW7zQOiY/zdnpBXmWozDCVFWO8SBlubzkqze/4cXrpzhXi9izEf3KPBeR+aoqKasl3nmKoiBNCowZc+vwfY723+PR2x8z3dqhLhtOj8+ZzV5Qt3XPmJT/BFi8OaHqQy6AUt06q8SOxEynTej7mCIW+N3KWxevxqwBuO66XzOC2Si6NhuCriDrfmadW9ag4E0AZvPv3/Q1gxz4Ok6UvJPVqY4d0zUlKrItrjdpwuxUSnRosiyXYtc3KO2iI1rN1exU3qi2GKTB8iqIA2maYxKZ5KV5Jms1bc3r45fRFVw+axEeTzFKDkylDK0LOG0ZaEVRJETeK0qJw5uYSMi9sFpeMhoMUchKVpHnLBc1qCQyCBKWyxVFpmnsnN9+9pc8f/k1VTUnST3aWNK0m3oGmqamLFe4EMgHY7J0SJJsc//ehzy49yG3jt4mTXJWq4qvn56wXDzGRpCjW0Xt7vsoRnL9mna/C2vQXe4jsY6X3LRm/enYWPpYOAiIGiParIv2zeu3mTu719+My818thlrmz+7GcM382PHUJHf9bpmaPc5hrCWWeheal2Yru8dgyLPMnwo4vqP6XW5QBxKraspq5kAOib003CZ7iaMxxOMFk0XjwBd1rUcn7zCGMjznBCgalvyPIqQRzA6YHBKkWjPoJjiOsCbsNadDGBCwNkVRjm5t0xCOsiYL2oaK01HmuXM5lcUmWE2v+TNyb/l+PQ5ZTknTSDNda9b6b18PldXc1KTkxY5WTpmMr7Du4++x707H7A1OcS2gaurKz579aXoBsVY6T7PNZhrrl2nTsLCheu5RtiUjs5sag3yaoKO8gDeE5QnVSnBroG/zSGHC57Mr/VjI9LYzfrF+Cs2pDfz2Tc9eiBZ/hIbmtDXCpuxpTdXcbv4jnlMIWwyJfZEEKLMhdcor0WHLRXGhbMin5IacQHNcilEnWvxvpVY1ZqsSMBDVTUEFFlWsLW9w2K+gCSVBsPItoTSopmWZWlkmMng0igdAaGEQbFNY2ucW5FYaTCMSSODvI2/t4AWtq3Ikxy8Y5hnBFLqxtPaluFogDEJ5xenTCcDnr34lOM3r1isLhCH4ETWzJWwDJMkoW083iUMij3ydMjW9IiHD7/Do7c/YWt6C9vA+fkFX335VAS1Q4igtzSUxnRnnzT6m5P2zTNssz7qhhZ107C/v890MuH4tZznqcmoI5g1Gk04eXMmzC0vv6NtamzTCLs16lH2q+cKumFbIA4QuqyiTOwGY1xog3Wy9myCYlGucErz8tVLOjbYndu3efToEWmSRKdvheka5ugwaJReu/0JF0KcZONwsxMe1UHJkMI3pInvm29polSsexO0htSkZNmAsikxBJROCPG+bqN7pABmIYJOUe5CC+Ah9X4igH93/3kvQJ+KdaaCs7MTLq6WzGZnEBqSNKC03GNaxXW3NEOpQJEPWaxK0qQFlbIqZ1GzLxcALv7usrJlGY0HNK0ilAqrAvgBOE1qMram+xzs3+H+vfe4d+cdsnTIYlFxdT7nxfMn/VaJsCJlOOmsXw+CYg57+OBhlC5Y4YMhzTKqppH1USWSQ3mes7Wzw28/+4yqamhbS10Li6lpmp61Z6PAvG1rYYW2NW3bsFg4wOFx/eCsG3CDFiB9Q/akc7LOBwW/+OUv+PTTz1iUS9I8ZTAcRPfvhCxLGQwGbG/vcHh4wP7+PsPhQJzetTCXO51Gpbp6R1/P3X2eXNeL9ECPQ2mRQ1Iq/caeSWtNVdU0TcWiLHG2psgz0ixFEfptKaPFqVsFATh9a2mamrZuKIqBaN/lBT6adInxjcHbmrJaYV1gONrCO0dTS69CouNKf4MPCh9mtM6SmIzlakXwgaYJeCxae1onMWGdZ+zhl7/5fwuI7R1VWeNcwLaQFSOCm3B4+A737jxkkE/Z3jpgONzBe8N8UXJ5umJQTBkOh7RXM9IOHC5rfvoffwZAqlNc8NRe2LUff/JdrIW6tgxHU6nHtCbNBswXS1797OfUjY3mGbKl1zYNrvEMB1OMSpgMx8wWl6xWwgDs5BTSJGE8GVLXFaNRzve+/21++5vf8vTp46hX+GvOzi9onWWxXMj11lrc37vhLN0wNcpgbJx7KiZC7xx5KvrZbd1SrUoSbSiXK966d58P3nvEZDSIgDH9kBgtqbMDgIKKmrz0sDJpmsX7wXQHuGAhdRcTKgJe8oRdf+m9Z3d3h5OTUyE6JQkEcEHWvwmacrWKjq1GjIGMSK34eM6YJInEE0/wijTR0TQoo2m6jb8EvCPLCwGL3Wbfn6KU/CxamJvD4SCy+kN3mnCwt8tjPYPUoNSA1WIRtbQT/sE/+AknJyd8+eVXsVwRzWlrLUdH+/zLf/kvsW2gaVqapmWxWLC/v8/R0S3QMth3ztP6wN7BAcfHxzx+8oSqrilXJc65OEyQTYCdnW2Gg4wk1dy9exuU5vvf/z7ee168eMFXX33J++99wIMHb0UWnOL169c0rZgdGpPKeMok/YCUCNx1EiIq4hPdcEGwXR0/b4mFwWAgjG/XMp/PRV6jdXz99Anilqs4PztjMp7y6vglu+02hweHGKOEHB6HTXFyg1ci8bnZm6BCx/n7plLx/6/HHwzw5XmOTiYR4ZYGKFVrzTC0JagErQODgVjDt60cynk+YHtrj1ncv26ahizLWZVzlPGkHVofgrDuMqGhpqkDEopkj9ZeEWjJh4lQm5NUmF7eETAQ5NAoy6UYaSAosbXQWjFUGA7HWKspyytGRcNXX/9HXr95RlnJJGo4yHpWhfMyFa+bgDEjEpUxGe1y59Z7vP/uD7h99AhjhsxnM16+eE1ZVrStsN2C7tYPQXMdFLvJOOmYdt2jY8VtNiZ9M6NNrGHWTe1mQ9s7m21MlOF607rJ7Ov+rXuezZ+72QR/0+/Q/ftNECbeMf3zd0wJ3afONfupO5D71Uwgz3IyNeybqo55qbQSMVx8XHMV7RXvPVUlQsrj0ZDt7V3Ozy8geJbLpQDCypMYhFJsEgaDISJeb3qgwuicW4cPWK3OcW6JSZE1PaOxjRTR3ltCUCRGUddLRoMDkiQjy7IoDi/N/WAwRqmM1fIKRg1fPP4brubn/SRwOhnFCbcIJ6dpKge52SbNx+zuHPLWvQ95993vMp0cUpWOi4sLXr36XFYObFyJ1p2c4xrA6hqT7s/fxHSSqcF15kGIh9e6qFqDepuPa0mK9fRjE1C+yY7ajI9NVmoIUZ+N6+DyZmzebKw2X1Niad3093FFB+51v7cwQLtYM8ZgnbhmNm1Ox8TS2tO7lzZlXJ9uMdGhlAC2lWuWpRnb27ssV6U40UVR/jxLIwvQk2VF/3odI6+pG/J8xOHBXSBwcvY1iYlaVloAvU7DzznRDwrEiW42JNBcA1TzXHRNr2xDmhmev/xMtEIo8UoE5vNc1kja1kZmaIrRY7YnB9y+/YD7d9/l3r33ydIJ83nJ8evzuLq7HhooJc24fLSqB4M7gP4mmLbOD9evqfdrrU75GmvAI6jIbPDRGXwdc30c6HWcdAX+NzFq1q+/zll/HxB9Paau//mbYr3XWQtrwE+GU9LYCvMmst4TEftPEnHVq+sSa5K1GYuiX8OzrkEpYWy1AYKXAkncIhXO1YgmkBSAaWIic9eRJANAXE6ddwKk1JY8H3H/zrdAJzz9+lcoXZIaQJm4SmYIaHH2DrKKbhIYj6asyrmsswZ5niQVl7ZxEJOQN2dfiAyBLklzYTvkeYpcPIdWwmgZ5mMO9t7irfuPuHvnETs7d6irwOXFjC+Pn4oYffCIi2hkueoOA+vOuDjQCh3ocT0vKDozJ8nVhLj68nuPNetyM8dsMo27r5sICPbxG1mp/TT4Rm67KYWx+R6v5cF4A4SuQe1B4rUshuj3rWNfSUccC1jVN+TiAkzUBAXru/VIJ8MyL06ZKheWelmu6DRZfXDC/ETjQlevKOpWzK6WyxUBEfqWdSRN6cT0QI71de3RNhaLNE27u3vcu/Mtzi6OeXX8KUnSmaFAUzVobXBBgLTgoW4WjEZbpMkQWMmakhFdM60VnsDe3r4M0S6ekeYwIKWuIcsHkosiwy/RQ4wecefgLR69/TF3br/FZLJP0yguLxe8fvFEGA54OidjrXWvA7Y2korsULXWBOvA2M3c0LZtv+nQti1nJydcnV/w6OHbqACL2QzrLBM9JRAwSrOcL9DKRP1C+ZpKpTH2VhHSFJQnRF1TGdyZWO8S44C+4ZRV3bVJmdzXmjSBgGi4VdWKg7199nZ2GeQ5WmmBh7uVNdmbp9PY7RrN7vftQDsZOnVJW4mAv7fxvk3IsoEAGW2NDx6jxOXbaMVkMGVZVmgj5mA+1nZJIrqIYtQjLsJJomhtDUFWBuu6YTLZ7j9vkUvRWOvxzpIaLVqQieLW0V2MNlxdHtM2S5JU2ChtKwZDzrXglaxkNcKUrusarQPT6YTFomQRteKyLMfZENn+S7wz5Nkue1v77O0ecff2Qw72bjEe79G2geWy5Nmzc+rqtazuy8fU9wTBx8FDHEQ4a+M6maTA6XSb7373O/y7//nf0zQVOrJ1rLXC1ARu3bnNmzcnNI24+zZ1S93WONvimjauwtUCClph/HfSAeuztBuEQlBB7v9IivDeE7RmtSoZDicE1WBdy/nFKfPFgs+//IyqKRmNh+Rpxng0YjwecXB4yOHhAaPhiDRJ+sGr5C4tNVTMPeu8LQ22Dz7ee6GPb6lxu2G11N8dU73rC4DeAMg6WSss8oIiF7Ao+CHD4YimqcT4JbJ0EiMmaEop8jSnbgRk1qnB4dFBM5vNY53uRVO0Fd1NlCLRKYlOcEGAoEQb2tYTom57WTWkeYLzKxbLy37N3ySRIe0dVd3IhpoyzP2MLGlJkxGKAXvbt9nZOWIyOmBv9zb7+7cZFltUVctyWTO7rDk/fYN1MogKLjAejblz9w4XVzOU1gwGQ9qmYT6fx/gLfW+wtbXD3XsPefzkOctlyWw2oyxX8hlHyZmqaQTgqxqJU29xbStGFE1NU5dYW0d3Y+mXjBFgSmmFMYok1ZhEkWXirr5YzLHOMV/MefnqFfPFUmoZI1swiUniNo30Ulki6/cdaJhmKXmWM57I2udoMIomeUmsh3NGw0IknVJx3RYNY9OzugB8HGqGKMPAJmmBgElSTCqa3IkWaRMBvhMZ7mcJbVOJjuhGr+W9DLAE3BOn5M5NV2paQ1M2JNFJWQUxuStXdSRCaZIko2k8g8JQZAPaVnASoxJW81pW2bVIUwXrqRtHWa36jQOlFFVVkeeFnAVJSpoWVCuFNmPJ0Q62tg751tvvcXX+7/jVb77Ae0U+ELDQti3/y1/9NWmWyfZHkAGRjQPDH/34J+ztH0IQULssS/JiwHyxYL58jNIJTdOyLCtOzy/QWjEYbfP+B9+mqYW5fn5xSrlcoBCm9ng8JksT6rrq4yNNc95++JB//f/61+zu7PJf/vmfc3J6xmpV0rYtq9UymjqtTTPXjLy1fqSJceS7IYsk4/77up+TAaWc+23j8E5kLqaTbc5OzwRjShK2JlPGgwFHhwfs7mxH4BackhVr5cXIz3sPWhizXa0Bgv2pG7XEf+rjPwODL/RIdZYVKAJN7db0RyduKqpDLZG6xFoRjlwul0Cc8pqEEBQWEbk1SbeWIgLsAgxK8XXr8B639t7jxetfcDV/Q2I0KulYR9Iwi0+AIlGGqlpy5+gO5quM4B1NU6OUiMfqRJGmiuFgh0Dg4uolSQp5GESdLtEHSRKhTxudURQHPHjrE9558An7e4doBqyWJc+fnfR0528CuTbBsm8CKDYb0w7U69d4NhuDOLXoGmln1xooSqkeHOmu0ebjJujSPfq1ohtMl8332j3fTfbf77+GNGCbrx82vrcH8ZTqDQfURjPTAZk9wGtlatu2Ld4LQyoAZSXW4d00Z7VcAt1KsPzsarWk0jWXV5dorUWXJTFY57CNjevj3VRGAMK6bvrfb/fggO3pPtbNubxaiVZGIocWkbatkMMqeInpg/0HaJXhnFD3k0QzGEhTorRje3uKDy3WSQwqIzpIihwx9EjI0hF5PmZn6zbvPvoe9+++x6AYUZWOy8sZL59/GZ2a4u9/LdbW4IjfmP50n9MmONNPyiMAqNi8pl1TvAZjvF8DvzfB5ptx0L1O9+dNTbMu3r+JTdXF3ubzflMsxp+QQ5JOuPv3waPN1+sYrsbo/ucl1rp1USIAEOgcMMUVt8W6OhYqonfRNDYy0jSJSXHOUdoVdVML2JeJGZB3gbLsHPyk+E5jkaEUrKKTm9ISQ3VTYtsWpWopgLwI5non2lVZlqGUERdF35ClQ5blJT4OObSRorltG5mkJwajA1kxwC8cKmrpOCvDlmGxy2i4x+2jRzx659vcvvUAhWE+W/HqxRXL5eteT6QTMV6DwxFYC9066wYLF3XtGkje6Va21/d7F1fXmZwhNj0SgwK2uP77bgLG3q1BlO7c2Hxs6oHejKGb8dzF3++x/iJLRkCY6zlemDUxl23+TP+VjfVJ1qC26AwZlCIWYR6lksiAhzQzUnAGT9MKAzzPB4jZjayFhhCIw8l4vq0Nlsqy7FfZRBqjJTUiEn52/obGWsp6gVE2uo+LiZRo8ujoYihrD5JfDc5pWlfLunJ09ZOmS5wETSpT67OzhkwPyNNChLOVYTLa4vDgHvduv8/9+++xNTmgKmvOz6/49PXTKMXQgSgCaoawoSMXAT3nfA/IdQOULsa6YcFNQLjPGGF9lbpY84T+dcVF14NbN5Td9dxc975WLPbPvY6hzdj4pjx3M4b7vxvT/30z723KXdx8nQ7o6xjWSoVovLSONW0U4horjBwVhdoTk5Bn0vQ53/YmP6AJ0UQrzwtMIueqdVKHybETaxaESaXUppGWsDa9tRgDi/kVT558wcX8hLpeCrMz1fgQB5W2FUMsoexjbUNZLjBmQN3MqBuLTkSzEi+DuappyNOMNJeVzbJqyLMtgiswKmU4Eif5hw+/xeH+A8ajXZpa1s1ePX9GE0G4eFvHz3kdH1J7sI65GC9aaQHalLCXA/T33GYeEjZCxp3bdzg8OKR+9z1++IM/YjGfU9UVjbW0thW2VVPT1I2w96I7bgiii9g2dV8v+bjZIK+ncFYcKjuDmS6eOuMsASH7iBfWXJ5zdOuIo8MDDg8OGORFbGS6fO7Xfw/091cH7PU1YIggjdLCKgnyHrTRhMhUdz4AKYvlFdaVhODJ81x0QZ1iNl+JRlWAoLrVSgPOU69WeGSIXWSFrMC1bXQadwLkhSvm8wVNXTEaj0mTjDzJKXIR0e9MOZ58/TlFPmYwnOKdYbG8YrlYMBoPhHFIwFnIQs1i8YbjNxatHWVVsqpElqB10gsoRkxGuwy2p4xGWxwe3OXo4CFb0wO8V5TLmtlswcnJS2xrewA2RGvOTZC2v5eDx/vNgb7k97a2nF9dsr+/x61bt3jy+LGYcSUZvq0JOlDkOQrFs2fP8Z5+SOxsg7fiqNuZBnkvqGGI/8W31p9VKpIyuq8J0CasVeUdrbPMVzO01jx7/oymbQjAYrFgkBfcOjjkzi1Z9R4MByJhtNlcBy0r7irOZcTjgGuyFqg+Brsc2rOqunMAydNVVeF8iThGp9dys40GGcQ7IHgHidQLZbmiKAqS1MiGBkFWcVMj4IsRFmbrLFolIjOgIU0FCDda9M0So0lzF4fBUgdWVYXU1BFoThIa2whjUEfTjUyRpQPKsiLVA9rW0baiVzbIRhT5hK3JHvfuvs2dWw/Zmh6JBIuHxaJisaw4OS4hlChl+tU/7yMoGnOEAv70x3/K46dfc3VxAUqRZbkMdTR0UjxaG+7eu8/nn38h7uWtrKO2VhieHYjTdKzG1kqesgL0df8F3+JCK/EFUZtUk2cZznmqqgblOT095Wc//ztu3T7ko48+IslyfvrTn3J5eUlrWwbDYXQAN2RJRpokJKmAfHkm+uvT8YT9vT2mW1uMx0OKvMCkJvYs0G3pyBiu07uWIOu0HfuaMDYAgRAHiZ0EmYm66UoMRI3Gti1Be4xOgRTbatIsizW1icONWJt4FfX5HWhZBUUJU1pwhZS28Uwnw36Y5KwjzwYU6ZirqytWdcPe7ha+bvDesJiXeKfwJNgWtM7F+KdI8dYRrMIrcG2O1hmpkc2SIk9ROmH/cI/JeIvJZJfJeIf9/VtMxtvk+RDvFKtVy3ym+d1nT3DOUeQFdVbR1BWLxSL2GJHN7hwhKO7cuce3v/19jo8vKFfiTrtcLqnrmnK1isC1MFObpqG1wmx3Tnob27ZS9yph/oYg+qN5nos5UlXx6tUrHj9+zK3btzm6fchf/Fd/wU9+/BNu3b7Ff/jr/4WqaWRb0ruIK61NV7TSsUYV5rDRwoQRGRRPalJhqRsZaCVxGKG1Qhk567Ym4x5jCcEzGo0ZjUfsbG+xt7fHnVu32dnZJTGdfITckzp0MgMb+t6xZFuToK4VqH/w4w8G+Iwx6CSjc8jKsoI08bE5FScw74m6NILGShG4aRBBBGkkAIMXrb5OvF4o2TquxsnNdX5+Trn4lLOLVwREuy/LRVw3jQ4yJsv6oqBzDgJDVVU0tScbFIAkemMUjW3JjBQeVevxrSfJRqTJiNTkTKd7vHX/He7efsTO3j20SpnNlzx9+oZqVbFeiQQVeWndBQshgOtMJtbA3CZQtrnO0QncEjZBjg3QbKNpuQmwbTbTm03FzcZEAIbfB0Buvp9vAvQ2G99val5AVtM6i3DiJ9MBTZsFtVbXmxYIqDX2QjcBMcaQkEjSNaJDkmUiehmCFxdOrzY+W2mEhfHZsdd8r6WndYrWUgwkqSKPbqFaa7Isviftubx8g7ea4+MzrG1IjDQlSoGOWmnGJJF5IEL3ddX2TrrWuv7rSTTSaKKZh85SbG3xaLJ8SmpGkmx3b/Pgwfsc7N+lyMeUZcvF+ZKvZ29oaxE779b9uiDbLLo71glEkCWEHlgRnQ3XX8f++oXr5iZdzPVC4v0qq702dfgm0O0mE7P7bzNWN9e7N91x/z7W6N8bawpQoRew7eJr8/W732cTYIzYbD9Jh279kkjZNsg6uBwGaTbAuVLclWUxqQcSQJo5Y1LwQQ4X41FKJrJSBOioVSqrHgKod4ePBuWoWyl8FosV5UoKJVs4lBHNJ63k0Pbe4axnOMxp6hrvEppaVuSUimCWj3nIK3Fiw2FaR2uVrKglY3aPjrhz+yG3bt1jZ+sI7xXLRcmTx6+oqlrYWwrA9swgaQrWMWcj+K4R/Tb6axfBDdZOk85HvTyu55ybpiw9I67Tkoou1kGLePE3xUoXY5vg3+Z/3YrEZv76/wVU3wReUCq+9nVWax+rPVsxQK/JuQbKQ5CcIYVmh8DHj0sJGyjPMwiaPBuRpY66WSByAwYVVD+N7vRCg/O4CP55bzGJjve6J88LqsqRZXnf6Fi71mlzTth3RZEyn19Rri7xzpFEoyBjDMFKzqwbxyCf0jQNqclo6oasyElUYFmWtE4cwk2a0dqG2lratgEyxqMjtieH3L39NrdvPWBruofROWVZc3G+5Pmzz4RF0hsWCKawzi1rEEmapche3YhB+T5xbPZOVvJkxUxdywnd93e57BqwhuvXD41K4jX21wdrN87TTiP3JqDX/flm/rqZJ2+ynrtH9zqbGqY3QcCbLNX1+R5X3LVCh25gI8/rrAAvomEYtS6dwqGYjHe4rC4IwWFtQLYfwOiUNA4UgpJCXJzmoWnLyHKqYu2XslotEJfQJK6WitC25MvAZLrDzt4hL158xWp1FutCWY02SUobmVo940OVeGexPjAcj3EeLq6uop5XQZYNcLalrhrSFLYmd9nffYs7t97m/r13GAymeAeLecXpmxUvmi9xdmMdWj7Ua2fnJtDQnaPClpPKrmugfeDaUMxvnJXdDZ4kSZ9/0jSlKAqm0yn+4KA/b/q6R2ms74Dp9RnvnevNKUJ3lncDBqXWbK8+L8nL69jMdA+jpNEkhGhMtD6fe82pGJdiVLUBoEcA8RrIcmPAIXVb6IEbHbW2q7Kkqi1NI46u3cqac47WN+gkAeVJspSybPrBBCFgW89ovEWeR5OqRnKrRlh51lY0TUlRFAyHQxSQGHGArZq2H5pYN0NccsVpvK3F3M+haKyX5jMEnHXUTUvVVJycPRFtbGVQZBidMx7usL93iw+/9T3u3H6b4A1tE2gax2pecXl23A9Mu8+jh1fjWRbiPbquzQTYI0hzf43x6wPlasXl2TnL2YK7t2/jrWV2dUXTNPHZPUYLm1Hh8LEO9s6hvO8wWtEwS4UV17Er1wX6mpEaj6n+nQcEZF5VZTSpMMwWM4aDguPj11EDXTas7t6+zQfvfcAgH0RQr09qco8h2zFaCbOyc81U8TPq7znVAXLymQgwuAFT93mWuIYo2zrGiNQFCra3dzg+PqZuatIk3QByZHvDNi2LpibJDB6L6vSvHGiVEYIMDYpiyKqUVdoiLzBJKiZ7AYxam5y0bUVdlzLs7OrPuJ4bPV0ITtG4gHAwDLiM6eiIQbHNZLzN7s4B08kO21sH5PmYYBVlVVOVNSevG5pm0bsSXx+U2v7v3vk4sBL9RNs2FHnGj/74j/n//Lt/x+VFJZ9TKtqm3b26vb0LKF6+eiUAn/PCJov6395ZrHVY5wVA9la0Vq2NZ6+LRjUuDjsjgA29TALBs1yt2NoaY4zhs88+Yz6fc35xxdVswZs3b1isFqRpSp5nJIlsv4xHE0ajEVvbW0y3ttiaThkMBiIpELd1unXbTspDhuZRroIQ/7zRK3f/5yVnrw2qWMdcrC9iO05Vt0BNnmY0TcNwmPU1h1aGqnNsTnJCB7SHgE8C4/GWkIuSlDRLI8tegNWiyMETsRNxmW8qORMSM0SpwNnZgsRkNJVDym5DoyKTNBWWdFMrEpOR5BmTyRZbj/aZTvcZDEYMhxNGwzFZVkRQ0dLUjrpuqKuGV7MFbXOJteKAvru3x49+/GP+zb/5N1jrBMCMxk4uaiCH2KNnWcFbD97hF7/8rfTAtQB3bdPS2ibiGhbnvGgVe49t14Y4bduCtxFIbjGpZjgYoZTpWXjWtpyfn3P79i2mW1Occ+zsbhMU/NVf/zW/++x3NE3DfDYXprBWJKnkBG0Skrip17E+TaLj9p6OILIQH4aDEcPhkO3tLSaTiTCSBwWJSUh00uMwXU9pjJZY62pLT5+nlAoQFDFNoLRZh+C6DVjXjuH3MZ3/1Md/Fg2+blIbAjirmIx2uajO0MbGAi9EO/quQTF94SdFYIu44HnaxjMabhOC75kJUthH10uj8LZFG8Xe7l3ydMj55dfUzQrbOtIsjSCOEc2DOJ3yQTRmRNxSs7O9w6ppuby8JEk0w9GAVOXYxuFsi9YDDnfvcOvwHd66+5Dbh++gVMpqWbNcrnj81ct+EtatpGk213RUbFiuF0HymXVFeEfblQn59XW16Lb3e5/37xf63Z9vslo2m9TN7+2AvU2mwxpsvV6wbb7uzb9vNhprUdzrAJ5Mzq4zHDZBmq7A7b4uCVX3TJj+tUN3oIiDpbWyajKd7HCyeiVruo3YeHcFa5KkETwWcM8YiQnrWpJEs1zN2d7apwmB1apERjabzsUKpQMmVSRJztv3v82b068JfknTlvhgUakAlCKKD2k6iEw8WdEJyjMajmit5fLqgsQYhsMRSTLEtmAbxXh0i8ODh9y5/Ta3j96KdHvHfFby6vmctj2Ln0GQqWs/BSBOMaMW4jUAdkMDKKw/AxddHeGmu+wNBsmNmIU1k/Qm2NvHVyzs9Ubyuwki34yxa81BfM5NIfvusRm/N78WItW5K0y7tb3+dcP132vz59eg1XpFAZBJanQs9s6isoRRPmEx71zaLEoJ8LIJYHovCj3GaJwLQocvUhaLGWlaMBiMubqas1yumEwmIgyuZf0/y2RSdHU552DvHonOgQVlecV8MWdQ5CRpgm1bWXEyBYTAbHaKwhGCI3hLludcXFyyKpcMihFZOiRLhxAMo9GUT+68y9HhQ/Z375CaActlzXy+5PHpa6yLK6ZdoY3EHF3RHTqNPE23K9mNNOwGGBOIzUV/3WJ8RdHddePM78Xa9WGF6COhVG+ccDO3rdlC6vfiqctN61y9Bn27GPsmcK97X5sPKfLW+hg3QaLgN5hsGwK+154ndOCSPIc0sjVNu5RVsaYlywqIq2cBMfwJkRmTRRFnE9krIQQSk9I0wjIxSXQN1DIpv7y4IBDY3trGRdCvMzdK05zzyzcMiz0G+Q6T0ZCynHFxecFoNJBVEd/SVBaNIfiWV68+p20XQGA2uyQrcsrViqANxWBMlozYGu2SZ2P2dg+5ffQOe7sPyLMhTe1YLFa8eH4hjJZrJhfxM1KdSUs3Ie1WxDbZu7LaJ1or3LjeThrJII1kfFKuFfU3zrLua0FHUEzpyI68vqq9CULflM+4qT26GcObshvXYztce97ud9jMrZ3T983HZgxvxtlNsE900STWJD/KQKyslrS2YTgYErwlNYHX5SsUiixPRIcvOJSWZrwsl/ho4mCSBI2hqksCUpiLq7OnXDU0VYVKlIAtSjGZbNHUNS44hkPNqzdfiQO4VgyGU+pqyflsxng8xPs6mgM4VHAYdcYvfv3vaN2M1tYsz1cEBU3tCE6RJTm7W/fY3T5gMtnlcP8u21tHKAaUq5Kri5LjV6/6gVQHaqJABQFcfPAC7PqA68xXggBZsibXraZ25mEb2xfy0UaNvg0wA3XtWm3+txkXN/NWCIEkrn/r5PpQ7Ob5t/m1/lwF0ZAMHcpHn6ND8NfYnF3t1xkqhGjS0p+foQOouvcX6w35Q3Sy3GCHbsYcijzLccHiXWA8GolOo49NUiIGBYRuuK/Ecbm2ZElOINBaG8F1qf0WC9lW6F4vz3OWqzlJmveAv9Ka4ISRaq2YLqRpQescqdYo46nqOc55SEApQ6oMq6rG2s4dNUORkeghW5N9drZvsTU94OjwPtPJAVoVNI2nri2vns8j+yTEWmDzusvXu6FP18h2zA1/Iy6ci3pyvXlKN6QIjMYjHj16m7ecoyxrlp98m7IsRVevbajKJa21lGUp50ndRCBG8qzIFnX63TYOgKMucbeKiKZ3cdyQJRBncI/1axZgCEHYNlFfzzvP0Z0jHj58yN7uHkWSCwu3C9k1xoLq+oHQMfZUr9/b568u/uIPJSbpgUxFEAPFEMERpaIbrEVrMQmxQfqq09MzMQaIUhNZYgCNDimr1TIafXlUEFPG1aoUwoFJKAoxJtBpircB33qGoxEKTbmspd7PM+qqEfZREEagdwEdHZTrqhRDPZ0xHE5Ik4IkGbC3d8je7m2mk112dw8Zj3YwOse1ntWqYrUsOT0uaduFxEVfj8nnFnwQGS8fonQLBOX7fO8R1pxznrZuePbsKSenZywXC95+8ICvrGO5nGPMEFQRmd4aYzJOTy9kyhY6przUhMFbQrA9uNcRJmKGoOt1BSNda+EF5P0sqxJlNKnRzOYz0jzBtC1tJLOcnV3iA1xEGaXDg11Z797fZ393j8lkQpbn/dq1JD7isEL6DxVjJsTXFiZ4HPIF2bDogNF+JRIBYHqyUTwLpOaJQ4uIc2ilo2ayj+u/kjfFXMxgnQxb6toSUNjWMRqNuLy8EpmvRj7LYjCgKn1koWtxWTaBthZjF2sDWqUoknh2jUizguAd0+k+o+EE24rvwe7uAVtbewyHI4qioBiMpPdFo3VC2zrqRpiWTWM5O6lo2znOrq9j92F254cLa93YDz54n/OLC37xs5/TtpYsL6jq6tqZmCYZt+/cpWksz549i5t2QqJwkT3sIuOttRbrOj3Zbpglg1upO4Rxm0StSKUC8/mc7e1tWmuZLeYMRkPu3r2L92K8+rc/+1t+8+tfc3U14+LiEucd48kUpcVNOUtTTCIAXxLXvLM0Iy8yRkOREdjemrK9tcN4NGYYmaM6OjSHwNrELMpVrPOV3Jua9fCmOzNVNLmKt0fMt77Pi93wpPumri/YxEX+kMcfDPCtVhWtXVIUAwIOrVIuLk6jULXCRqZQnidxf9/1iUPWFyxVVdO5frWtaOfNZwuWq4U4LKUZJk0YjUa0TYsxOTqHJ89/wyDbwyRjikQxX8y4ms/Y3p5QVpU0/R5C0FxcfU3bLFDasVwtmS/mMn11UhCofMCto3fYHt9hd3eP3d1bTMZ7NHVgPl/w/Pkpbdv0N0NfWAMqrKcCfYPZa/5IwugKRSCKM0e6e0cMQeGjMDs9yEU8BK8Lxm6y6rrHzSbiZnN6DVALa2fI7ns7J7dNVtXNpvcmyLJuJtaOV2EDTFmDm/R/J4jmXhfASpseEOpAKTomUPd+AesDi+WKphULdu9kgjFfLEiNTBQ74MUY0T6o65JOiyXPxXq8bRtQwlBwznF1dUm5EqHY1bIiS1KUMUynU8qyJMtTwPLm9ClFvhsnZ5rWBqq6ktWOpsFHpk7TzNE845e/PgZd0dQlq3JFax0qZASVMR7c5sFbH7M9OWR374DRcAtnNctFycnrJc7FApQNAJ0uEcRQ62Mp4J2NB/RmrOl1sc8anOj1HvrRQRSolatyDYDrCtIQOp2kNWNwExzprtNNBtVmjG02I12sdc/3TSvgN2P3m0DtdUzquJoUm5S+n48OoKprnNeJed0Yd41NQIyAPM61LJZLqmbGoChkRcY6lkvJU6NRTmC9Rh6CsA2UqnHWk5iELM1pqlpccls5yOu6ZrEo8ZGeLk2BZjzZwllH5T2DQULdzDh+05Kk4gLogsF7ReM8rXOyrguU1RJNxs9++W+QVTFZ/V2tGmyTMhxO2Zne4cNv/RGH+/cZFlOSNKepHLPZkudfn8WBx5rR1K1qyOe6BkYUAhB3jCofbCyEfHeR2NTeU4Te6KArxFH9sUjHXOhyhIuOm3LN1syS4CHo607M3dTsZqzcjF2QfNg0zbXY6YCTbwLzukZ1vY5+w6QhXvduaLH572maRFH+7re8HrNr4yDVg3POOa5mMwIlRShQKtDaFWXVoFCMRgO8N7EYEimGuqmjQH3SsyZEjFk0akIItI2IqRfFAELANhYtYqOyWmM9A3SczIvr4+XVFcIWTKiahixLqWppZJytcD7w2y/+vayiE9Amo6oURu2wNTnk/v13+PD9H8QVNYNtPMtlyembOU172k81u3XadQmj1kgJG4C7i3nDB2yf+NY5oo81HfuREJvFDXBF/uE6sLuZt7prqLWWjig2NIG43qp0v+LxTTlqM542Y3Tzunf6tmtw2vV1gdYqggA6/t5rBovEYsJNQBxi7RS1OQProco6t3W/2xqQcs4xX15Q1Wf4YEUywhi8gjZYFF70o7ICW8nAoGpqUIGyXDGZbJEmGUYntI2s9gcfRINKWZp6RWoy8vEUtLCgTZpRVSJTkamMVVlHMEbypki0iK5R64QF0jRtLzliXc3l1UlsbgKjwRRtRgz3drl7+23ef+977Gzfoq4EAGrqlhfPLgnhsr/Hu3uxi7fuY+xqkhDotc58rN0AHMKSc1209h9/rOsiSHH9TKGP30hliff9xnqiWg9Vu+u8qTd73TyGPg9txtv14dxG/pK/9DWDjs2tPNfaYbJ7nk7/kOjUuvlc3WZFd9uJ7I2sLYIYWXWfR0Do8FoR2WOepm3wvo7rw6J1pFDUVrQ0x6MJdb0C5Wnr6FBqPWhDmmZ4NK1v4+8lbA5hwEfnRu/Zmu7hlcd7AYSqqsLoJJIKooSBbSmKXITsdUJb14xGY8qyjszFhGG+RT4dMhpsszU95NbhfQ72bjOd7kHIWS0bloslZ29KGlv2TVzPjlRyJnon93eUmIvvK/T39eZ1u1kbbX7+XR0tsSO/hw8abQxZkjKdjOI1Xkvc9DVZB84RZH0yNpbO2Vg3W4JbM9mtd+BFP1a0SsVlXbQ7o9ZkBMU1qpcH0sbIamqWkSWZMB0RJj+x94m2yD0w3NWl3bBOzLm6oVnHt47xGcOr18WKt16IgGlXy6JVXAHXEEzM+Uje92LgY2J+z/MCrVK8N+ztThBjFkdV10zGE4b5NpeXFzSNI8u0rGS34joafM5yJoSOJMqbeA/B53gXhCGYT8jyCYnOyYshuzsHDIoxR4e3GI22GQ7HZGkBytA2YphRLmquzi8k9vshwhrsVXoTWJfYQBE1LuP9qWSjJISYt1SsgYLHJJpbt28zGo84OT1nMpmwt7NDVVeU1Yq6qqK2mqNpPU23wg0463FOCxATFCGkGGdJk475ttHLEUHjEOWhgpy11ntUXMFcLpdkqTCZLy+uGAyGLBcrbOtFh7ppMVqzvbPDW/fvc//eWwyLgUhKdCUjSnQylQzjPB0LtaszxQhIQGXdVwMhqL53CjGneOe7dI7uevEgEHLXi6qY+1ys9bII8DnnsG2DVgm29Yj9trDpTNwAUiQEr9ne3pEtmtZjTEpTCZhelQ1ZmpOnOUEnqFBASDAYdrcPGA7GTLf32NnZZ2tbjKGyrIgO5ynWdWvUjrqqaaqa5aLCuWXUe2aD7dn1WaKV6n1kLgZEazNiCz545ssFL1++5PJyxmwhTsEPHjzkxfPnzJezuA0jrHFjUhJTUJU1r18fo4gDg9Cdp+L4Li7uPupMdq6xUSIgfl8g6ssSaNomauLCYrFkMBhEbb0V8/mc3/72Nzx9+hStNYvViqqsmM2vWK1WbE2nJImYiuV5RpEX8r/FgOl0yng8YjrdYjwaM8gLTGJIjYnvXYxb1lgPsc9RkSwTSJQYS0nYddVsjKveZ8D3oKCOwxpC6OtgIcSEvn670fb+Z3n8wQCfTHO6otizWs17G/U0zfG1TFJKLyYITV0zGk3FMTAxlKWNVH1hljknSSfLM9J8F6M1iRYBzbpuohFHRiiXKKWp3DmtrcRhz4NJc+rWixNlLfT8JKmpqiXn6hVplmISGA53yJMtxsPbvHXvPR7cf5/BYJu6tqyWK2aXFecnr6TA89fX/NaF4fUrsskaCf56Aea9x/cFfjdNV3QGVcKq0JKwu6ZaqY3ktGarbBZoHcup+99NtsE36Z11/7vZjHR/32yOu+dWOrIhNorR7r1170ue8yaYtwnArN+D6YRxdaffAh042DXA3Zc3p9IiOK7Ji+hYrMAH2dXXxpBlGWUp7I/VaoVSiqZtmIynDIc5oGhbt27elYJgaVuxcc/zbZQK5GmGMklkz2i806xWNcok+Poca+tothIwaU5rA9YrmqbGeYvRFc5VJDpHRR293e09tqa32Jre5c7tB+zt3sFZw2pZMr+sOHtzsvE5bq4qd9c+Jo74mXdgHqh+erzJ/vA+4MK6ueniQYSMJZmrcB2A0/r32UtKqWsraOt4kcTcxdOmxkH/Hjeee3MtcjNmv6lR2YytmyD1JnDT/U7d56FvxiVR7y8WkZvPHTbu567RXAPjsQgPnuFwKEzQzMTPxWGUgCoh1AQUbSPCtk1jGQ5yhpMRBEVb1z0o5uJBikKAmTQh4MmSlDTPZJoVApnJqCpLkiqMrqjKWuj62mDSvAfAqqpBQlgxX5yTqIKiGJMlE472b3F4+BbbW3fZ2T5ikE+oK1gtK2YXC4Kfr3XGuusSPLpfJfU4JzqFaxq6rBl0AEpnWLAZF5ufve7u7Q6Y6MCJWKB6F80SVMdyliGB6IPRAybWyspMx6zczGmboPM3xdpmPrwJJG/mp+uP3weuN59j82HM2t18DRbHg5w12L55L0lcXn9PxiSMhhOSNCMEh0lUPEslVlT8/MU51yJrkwZjUvK8oGla2nZF28o5WlVtzz4zOu3BlMQkpHkhTpo6Icty6rqlKFJsaCjnczxOiuMkIwTLaiUaO96ryLhpKbIho+Ehg8E2Rwdvcefu24wGeyRmRNN4ylXLi6uZ6NB0QOcG4C73WgeKroEO+RzpwY7gOwDv+hXq7v91rEXLO0L/92vX3Dk2CXCbw7LN59tkJ3exps2GS+2Nodfm+9g8g2/KC/z++4b+UEdW06Tgk8K7y69rEEiTJJ1b/HXGqNZ67cy2AWp2ZyYbca61iJSPRgNGo11CCGIA1Vb4jRysjaGqW5RORF/RacCJKLf1tE1NXS/oDIyKPMc2NanJCVqR6BxtDHVTY5JMMNMgbNEAWOspigyPp2lr8kEueqRxbdjaNpoKFKTpiDwp2N894tbRu+zv3WNn64CimGJdwmK+ZHZRc3FyDCqsY0npnl22rrV0n9e9k/XTboAgK5EOhfl9ZiffDPKvY24NSN+siYhFvcZcq8W+Kf9sDse6f+ues/u9NmPtJsD89z1iyr12lt4cEm/GXNdAmzicMTqefR0gbRIxdOjnOhv3OEEcQr18nnVZ42l6TbTgJY/VTcNyuaBuhLFubU1q0jgDEuf34DXj0RZNW4v2oDbRwVYRQksICo2YtLWtbAo1TYP1os9MaEhT2dgwJqVpxOTAqCG+zXDNFveO7nGwf5fdnVtsb+8zKEZolVLXjnJZsVosuTg97z+TECQvG22i3uG6flDoeJ51Oqxr5l6fnTbOp83H79c53efZR0d8jfi9Jg6WYh7rgNYQAlmaXstTFPTriqp78t+LkUDH1lT9kKHb/ohSQd2Pxl4lIDWX2qj313IUUa8KtX7tjdsqgIjLx3rLXMtrXR0ZYm6T99T3Cl0P9f9l7c+WJFmSbTFsmZlHZGZlzVV7ON197r3AJfgA4oEiJAGIUCjkOyeh8JUfTyFwh9PTHqsyI9zNlA+qy2yZZWxAcHZ7y+7KjAx3t0FNh6UTkndazv5ZSR6Zfrl4FNDd3RmPj+/87KDiVAoABxXK5g1SvIayZ7RYO+HXX7x2Wk6PSAX48ktFTmfsl4Rj93qlD3evPf0xnfDx01uc7u7x6uE1Hu5f49Onb/H23Sfc3T3ivD0gl1OkJx748usXfPnlip/+/gtq/ZGb4ZAAnatGUNj6SrXm2SmppyuPjLHaZYoDmnQSWGpI0fimNddV7u/vcHf3Ge8/fIAlB+6sGY5Ih9z3HV++fMXzdcflesXT09de7/xyueLr0xccu7s6juPwsxZA4HHUTmCNdW/DUVyPEfV8HDuuh6drwoCnJ6+D/3D/gOul4u2bR/ybP/07/OGPUbvx7gGpeUmJNJuyqNHdHjmi+80c9CteC9bpH4CRX7odS8cdopEhzJgJ7jwuIhddj6iDJjF0uKP6WXx+uuL+fEZGwXb2Wnrb6QxrpT/nVE5odQNaxttH17lKPiPjjFQKHh43vHv3Ht99+wevf3f/Ch8/fsbjq7e4v3tEKd7d+HrZ8Xy54unrM7788oz98AZN1nJ3vOeSYG30P+gOeSBq5aGDrv5flDAxi/WN0g8w3N3d4fvvv0dK3n3dmuHdu7c4n/9LXC5fsV+ese9X7NUdxDX0tR7YhIjeq14H72jJa9ClBktHSE7P7rPInGs5oVmFWZSZAfD8/IwEwJrhxx9/xP39Hb5+/YIffsiodY9sFQeGf/rpR1wvz/j06T0+vn+PD+/f482bN3j//h1ePTzifHeK0ksjnNh1bNXTDej2ao0SIUR+M06bp9eyEgWo+1P/Cn7YrPZuuYF19pIaSBgltPIICCg9I6gEf32ZufG/9PrdAN+bN29gdg0P0RVmrecoMy1y2zZcr1cPnz77ZC/PV3xt3nll207YNgfwcnHF8tgPbKc7WK3RivgIwjt3AzOnDZerd/c5n8+oR0Wzgq9fv6I1r92R8glo97h/9R7ffvoe33z+L/Dh/ff4/OmPeLh7h31P+PmnX/DXv1zR2r8gJ8NRjxGVlhK8NiCV+vCwtxFYmYLBULFxXjc2Z1X8ZoFu3cgFlppQLVIqoltfkppDwMvUIEa20BBeI6zU0NVnqAG6joO1B/j81bB3hTPLs7zOlI9tBvdYkwoCkubIR++GVdKmGxK5lTPePL4DsjdoOazBUusp0dfrHrnwBbWyflLCvjd8/foFniqcovvZPa7XZ5xOD+HtBXJ0fc5pc0M6wTthtYqSE7ZScN29ocf5fOqG7/PzxWmhnbHlRzzcvfaiuP/07/GnP/1XePvmW9zfvcZRk6dC/vwF/7//71/98Kcma8bD7cg/0yYckBrRB2RMLjQHramBoTQyGQyVnhxPmVeAhArjCtrwGUonBFd4v14KIvO9q9E9gMhRCPl/ylBZwZv1PCm49+KMdc0WKAiPX9JILwfNdBy1HXh8eMT9q7N3nNsvrjQho+SM6zWaTaSM0+ne92MDLpcd16s7MU7lBIMbwDlnlO2AJW/EYebt43PZ3EPaWo86ALxO6XFEtODrRzw/P2MrG647UGvClh+R8j0eX73Hp/ff49/+8/8af/rjv8fbt994cdynK375+Qt++OsVf97/gpy3MNiorOcuiKg41yPWP/FcAynSJQfvs27Yr+u9fkYldaTdD9o083o+ubhR5DwkIrGSRFQB4YGftTs1fPmOW7Sz0spN+ujf5dhHOhqt2PW7Kx9UwIg+X19XBekDsIrUeNblyjnhfDrh1aN73y+Xr8jbFlEOXgPHmvf13MrZ65Vlr+d5HE/wFOQTtnL29JXtJN1z79GOA/v12muFtuYRpq0dPX3eG14lPDy8iuZC96i74VQMD3d3uD+/w4f3f8D33/wJf/zDv8X7d9/gtD3iy69P+OmXXyLl4zkUmIyyZRi88y7AKLIBiJihK5d0XtRDHVSUVTN4uu7huvdON7bwlOalb3NCyQ4uK2ACvKzjqCCy0poazitNKM2utK48b9xPw5p8bET4KI9VPk5a62tgUasQ81gAjMhaDFpLOeHYrzBcnA62jMfoImlg7d8rSvIO3+fzGcU2eHmhEkZOwbu3r8MJ4CmJ2/2r0Fd87JfrFYgmZz29CU7rp3wC4Ebj+XyPVhNyOuFU7nB/Knh4eIW3b77Bpw//jO+++Wd8fP8Z5/MrXC+GL79e8ctPX/GXP/8d1oEkr8lMgAnw9G3UUbdrpJoNg61VTzH0u8JYxBxVx/1bG5vM4O4R+4Rpf/3m5FFv4UBVPqiyU8G9CZxZaIjfXWXprUudboOfDd3BdbYBavO5dOx0IBOYxs1IkJzKMGoIZPX3wJ2wSEgNaNfqe92A67NHkZWSkFqK7vAJX58vyLni9eO7qKOccexutCdseLh/hedn75KbNzecnp8vMBieLs+9C3xKGddLQzsycP+Ix1fv8fj4Dm/ffMTbt5/wxz/8O7x58wEP96+R0xmXy4HnL8/45e9X/H3/IRoLcX0L6DgoOaPW5FF6u8tRM0OySG9uKc4yQr9tfc09xZEOr7Enur+znt7/MstpucZ+LbIVA3zl95AACzAOYfBbf7xF3VHArHYts7+z+Xd6smyziOhLHeDjm5uNKND+KQPMZM7UQUl7/Puqv6bVeI75hF096Zo//vAzanvC/f0Dvnz5iqenC1pzoPp0coCX/Kvuh5eyuFaPTqtAKSekfEZKd3i4u8PDwxsAGz5++A5vXr/tEafv3n7Aq8d3uLt7cMM8FezXHZeLN8V5+nLBzz/+jOP4Aayj3vUhoz1k3UHg67I7wNGsz7XLCHgNvdRRKJvPfnw8ykH579SNcimw2rpMY/Q8SuzH/bnbce/ffXCwMaHrxa4PNbDUEuCp80zxJti37x7BnlPYvqF3H/Xw5oXJLeLavDYgx38+ebOf8+nsWEEuw5mQE9g0SMt5kF8pveTo0uLgik3ft4QoszCi9TzYLnd6pd5JR3yD2721VZSCABA9yizD08XvTgVo7mxtBhzXDc9fElL+hPuHe5xPD3j/7ju8fvUBOZ9wf/eA129e4+OHzzifH5DzCSWfHIir3izp69MTnp89y9Dar1FmoEpaZ+AB4SgFWscavM61oaJ5hC6Et7TUMQtGH7uDy/q6AS43mjUUAI+Pr/Dv/u2/xZ/+8Ccc1feZzTKevn7B1y9fHQy+XKJhxoHnp3DShY5/3T19vTYDm541q/1nGCMHj54a7MCwA5D74RF7182z7169esDd3Rk//fRjpNifUA8HQE+nDZ8+f8bnT5/wpz/8EX/4J++YnvIsKw0jYs7xA6Zqj4CV1qrXqk0OGKeIdDeznvNmcSZ7AEmzXteW5Q64zu1g6RlPFMm5OJhvbPBlaJFh12xufvR7rt8N8LXa8PjotVaen78ghwGco4h3a8D57oRSAgxqG6yeYDii4cYJp+2MXHLUHoL7Nc7mqVWb12PLAeHX40A5ZdR2QdmA43rg1atHXK5PzszzK9yd3+Dh/hHv3vwR33z6N/j2m3+Dd28+4+7uHpdLw5dfv+LHv3/Bn6//wTetOcKfc/boJiqLlqaIOv/uDJT1dRCF2oWWdeDK7x1RKDxMrMfhndkaitQW6N8J4YqUsF/3TqhrcW1gFpI8QAqk3PqXF+9do6u0G+XtiISR3jeEOGubMSqPjFjSmnlvzK2DODwF7OTG9yDherng/iHh3Zv3+PL1F6TUcL0+A+FVShm4v7tHi1ohHNvD/Stspw37vntUAoC78z1c+fKGAdfr1RthNK+fZjWK1p9yGIk79uuOh4dXqNVwKvc437/G5/ev8e7dB3z68E/4/Omf8f7ttziVe9TD8PXrM3782xdc97/5YU/0qhgse1MaVcBrFIMeAEnqQr813NivoYAqjen+vYxaCsWzzNF2KbtgD1MTNbyBatxQoVRAYzU49P38d+1eukai3KLjNdV8VXLXZ/CzYcTJ8/r3XqbH6Bo5hfpn+35F/fVXvHr1KgC3K4AcJQJ8ze7vH7Bt7LiccTq5sH/39gOuu0eibJGCfj4Bhx1g589O5lxfOL3d3z3g8vyMWh103i8Fd6fPuHt8wJvXn/Dxw7f49PF7rz96fg3Ugq9fn/D1ywU//PVvfu7NPPWuJiDSlyu89kcO71DrhatTKJ7B58JIYVQj15kNKlZA5Rad3VpXBXVpOB6RQmBURpe9dborg0blGfrvrfGstKi0ttLdOB9zemS3020G8dbrBQAY/1LB0jG4DJnLIBx1jxotZ5zPG64RjddapEGj4VzusJU77HtDSq5AnU5n3J1f9eYZVOLPpw11v+K47Nir1zs5RdMDT0G/IuWCrSTUAzh2T2065df49O4T3rz+iE8f/4BPH7/Du7cf8XD/DsdheP7q9Wf/w//4E+rxg59tiyY0KeEwjYYzpEhZoTFGh8+gi7npyUv+cJunKU9Z93F1RHiU20gtx0KfM629jEjtcmmhtfV7+rf/OT5FWhvfmaNmBo8daXv8/gpA5RfPjXXKHu2hc6TRlZPrNU9PX/H09NXrGrcDp9MWUR8NJUezl7s7wAzX/AwYcHd+BUPGFQdGExlEFAjrfnkUwH5ccf9w9pTy0x02nHHZG+7v3iDZK+T2Gv/03b/BH//pv8S7t9/iw4dPOJ8evJ7k0wVPX5/wn//TFxz7T7BwqMDcSTXqe6UOVPRDl8jDxrqMkhcvI8hX2bTKTKWtOeJ08B2lg1s6mOpX6lhTPYw0z8hNNzJmJ9rKczt13JCTOhY2XuGjfL4z3xqp6MAAHxY5beZGuM3ZGvp9/nfaTjDzzrz394/YrzW6v1svyG+W8N2nb/DTzz/gl19+QT1cNp22M56fdnhEecLfv37F+fyA1jL23bxQeXsEkPDu9XfYtld48/oT7u4e8M3nf8Lr1+/x7t0HPL56h62cI8LvwL7v+PnHZ/z1+le06nRxCyD3NK2IVrPWuxn7WlYwCmTIxChVY9adZICBTd8S0KNKuY9KZ4M/pOBRQxeDJRBJu8VnVv5I+uS5sKhviKiN6/ZJ6vLJgQ1PjTMDWJbAmpyzQYIBuECA8eCHWHmk/7mZebQdzBsYkJ5IOTZ0gk7bpKuaorFWjDWCO6rNOu7d/RnX64Hz+R5bNH30KK8CawnPXw6gJe8EXs6ww51ij69e4/XrD/jw/hPevvmAT5++x5u373AX0Zw5b72j6fV64HK54qefrrhev0RNseA83LMEjEhG8gbaVbR8IngjEfQdDrB2WJx9NqyBp0/WCkYhd1jBRqBEGJv9mdmcT1UzoGSkJu80AMjQsMpSijvADKzEFkNNSGnrzzWzntWzpSi1IQEqqmdzbFqPuBlr547xDp4BIOQeYp4WAfq0/607KDol9jPT6XDiceYgddRCS2GTp/wyWro79sDyHMkB0lgfpIbTdsYfvvlvkVLG/fkOjw+voyHDa9zfP+Lu/OiBIyX07JoiitHxDG8AUXEcP/d0eAA9UszlVJLpMcAm5AUYxemYBfXDCKWdZAnpj6U01uh0Xq3VDhryxS7f3K23pYLWNjzeP8RaOfjkYJ25bRrju169mca+77hcLr1Ezr57B9zL5eId4ferN5oM90E9DtRosOGdmZ1+j8MbD16vF9R69FI0j4+vcHe+x/3DA96+eYvPHz7jm2++wYf373F3vnOdNMB1ZAa2JMDYeG3wv0FNqYOdKZURoGTCc8mniAmJ3IuFj3/Rwb4adX9Jc4n0D0StzuCVDT0N/IZI+lddvxvguzw/4zh+xvl8Qs7uVXMU8nADdzsjIeHh/rWj0ScnxrvzK5h5IfGRDuDNCq77Ba05kZzvTrgcO+62e1wuV2yn4p1nUoYdr9D2Cjve45+/+9/i86c/4tPH7/Hh/Wfc3T3AasHXrzu+fn3Cn//lV9T6o3R5NGdcmd1V4cZwoLgumBM8PL52oU1ZpIrMbQV+fEcPnXqdeA9rxXiU42CG/J6nqo3IkFU5XA1M3qdjUUbavTuipOo9t4zpMc9Bw2OOYwwKPFJZ9F/JTNuLe5Uhg1+VcVMZanbgl19/wtPzF0+/OJ4lMikjp4J6AK8e3gWT8Tb15/O9R8FMXvIcxcH33u7a/9ZwPp1w7B4Vaq2gHhvuTp/xeL/h7ZuP+Oc//Ht8++0/4+2bT3i4e4PWGr5+veDXX77iL//5K479555+4II/9XQK0PKwADajdogZkNOG2q7T3lNJU6NkjShYU7ZnMGUWYEx35PcY8WnmQu04DpQ0QtJplCjdqUG00vhq7PYoC6E1vY+Xvke/s54npWU9J/z7rXPIcXDp9T793c93KObwZho///wTTufN55ASWJCcDVvu717hzeMjnp6+IAG4O99hPxpgBF89EqG2iqfrc3QbczDt6ekJdw9n7JcD9/ePKNs9jusZrx6+x9vX3+H14zv88Q//Bb779k94uH+NlE54fr7i119/wd/+/Ix9/3N4OOkF57FxQNiVTzcQCKjXNpRyT3+NrrZmIejH2q9GrO5jwlw3yuJsr/uo9zm95fCwhiGLAfYzLWJyJNTWFUilNYKPNIAV9FEa0rOiNPLynAxwb9C3j2Gkj+LmtT5/pfEJVETqtQn7uHevyXa9uGMi54yvX5967aCSN1yeK/JdxsPdA56+OCiTkfH11+dIx3F+5k7chsvzV7RWUc2N0et1j+5dGQ8Pb3F3eo277QEfPvwB33z+Z3z88C0+vP8WryJy4fJc8eXLE/725y+4Xv+jR2fI2aMHEubRd1NtWgzez3ojQJ74yHEcXlfnxj4p6Mf1ZNr4yjNWp5Oud++aDPcSZ3gkDu/VveO4lM92udO8EYGCLWqgKzC38rBJ+QOiDo3T0uCpc7TiuHekTq60tuof61wIfpUyy4Z69SjH65NHcG4n7wq3N+DrV0+FPG/3QC44Dt/LnBLakfDm9VuPVDl2GBK2c8bT0zOyOVj/5dlTrtjcpLWMZ7vD46vPeP34EZ8+/AEf3n+L7779t3j//jNO2wOAguvlwNevz/jLvzxhv/6C2vZxdmSfE2tYthbNMFwPRBr0xrNM3cIdpLe6KKcXawew5MxLkLd3Jr5xn/IR0hyV9OHOHLxgRNfkDljo8wgMKhDIS+lr1dFW/uPfIXiQbzzD9R0tV6F0qzTXdQywRmHqKaoeed1PpesULeN8ug8DyGs+Obiy4fn5azc8awV+/OEJtRWcT6/x5cuBjDOuAForMMu4v3uNu+2Mx/t3uHt4hfcfPuDu7gGvH9/h7duPePfuA7bTK28sFEDM8/Mzvv7yhL//5a9Ry7MFnVC2Dccqgc4OsnSjekQBv9T3HbAZRjnmJlACOiQM3YJGcREgmWveeclkPM6OpSFHPFCPe59z7sB9p40A5/yYBFBIGrOhx7fWgDYaDMAwaquFfrQanBnxHaHtjrfwOwEYkedy3IHfBD3F771kTwyshKyE2Cgx6WarLWU4bQ84lQdY24BqeHV3j3oA2/aA8+ke71/d47zd47vv/gmfPn2Hx1dv8fj6NR4f32Hb7p13VOtRSr/8/Auu12jy1I6wG4PHWIuIMJcLZgE8AlM9xJTQaxyP/c19vVRW5cQGJ5EFBgDNxnIapJFPCjC1jCgsDB0vJY/6542tedRRi7X1p0YzquSdiZtZOKS9w7Kx5l17qWOXCJJI1JcL6QShPwJbpIrDDOpIyPAMmojju6mvswmZwQSD1KwI65heSv1X/x2pjyGl1NMead8AbIYzByb0cwAC0ug8eNilCafTHf4P/7v/B06bO76OY+8NbZ6+XvHrLzuaXaQ29Tj//LkHDZH+kdAiypflOixAYNLXqDGsGQ4FjAQlP13lABAOVwWpMh36TkclonxZzqXB7dMWEe255ElGhFYQPM3PH8nt/v4+5smjzLPrwC7H4bLdx17jOZwXU4u3UlBy8VRk0rI1bJvXcOx6OYDUpL5t2BApl2i+Et/JHo0Hc32QYHEizLjwOB+7YhkKfEDmOWwqfreXj4o9Tzbkbspp2FzEQ2zEKY81+/0o3+8G+AAf+HH4pC6XC0rZULYN93evcBwNgNfRg3kB1ruztxi/XJ97OtLz5YqUMy7P3mYcKWE7ZTw/XdHqCW3LuD97dMHrx4/48OED/vD9f42P77/Hq1dvgAALv359wg9/u+B6+Sv2uoPt6DuDwIgMaAZYZTcgAJa7R7y1A/SqGyjw0ME9ABNzUsOElxqkqpTdAmRaEImF9k9EnAHqOUAXVQb13fo8H/9gXvmGMrFG3PCRs8KhDDDy/HORnzNSeulhZvTBUAxDCYCv+Wg2wkLzraPnFGBJGUochBbdpNzNZGh78zTsVDxyr2aUfMaxe1g7WsGbN29web7ierkgFSCVDc/PF8BK1HQ8vCtgPsEsoe4Z+fQGH9+/x7t3n/HN53/Cp0/f4+OHP+Lh/i2AguenZ3z9+oy//eUJx/FrhCCzsGysV7IO8rUwdGkUIkCXHLTVWg2jL02GRG/bDi+qrop+3+sEn6tcqxGse756/WlQuBDJKFGUls9gnY1b9YHUKFK65nvWd6sxPAtVFzjDUJ4jvcZ02Mxm0HuWSE8y/GFYz+9h9KSuC8CacQNgqNVwXAznuxNSNmRjrZ8dtV1xOiW8evUa9WhoNXm03pHw+Oa1p31cK6o1nO/PuDxd4U0VgOszkPMDci7YyoZyd4fT6R6fv/8OH95/h0+f/4AP777BmzfvcdoecRwNz08X/PTDF/x1/6t3Z04peBPpzP9r7XAnns8Ore4dIEbOHSjw+lNFapwF2hB6tUXjjxSto1pEL6DziRZKinvuguIiYoDKeOrgIfUxNp9gtEApJ6e1JMZ4FDz2VJ/sETtpnBvlYdy/tbHBeg60EzO/ozzS54rOewddBIg1GfQpQJeXZQ14FshrFaRS3g8AGg3pPP6E+7s3nn6GhFM5I53OeL48Aa3h9etHWKtIacPTF4/uLOWMugNbym5EnDe0I5wJaYNZijSQDff3r/D61Xu8ev0ef/juj3j79jPevf2Mu/M9UjpHGYMn/PTDFf/yn/4jPHKd9bdYhylOXpwTaztGlPHgK97tlmviEaOMRiCv51p4LcahPBL8WIGYbkBLLUbSrsorBRC1REXOBVs3lIejgvumfIr3zPJzeNf9dYOHjpT12WDj86dO4NkBhhTADufoQOc4C0OGvgRbuN5cBwIGBuVtrvACEUlvLmurGUq+w8PDHe7vOC7DflR8fPsNni9f8cNPf0fNCTgM21ZwvVb3OFvBTz88o2xnwApq88LewD32w/Dq4TVeP97jzevPuL9/xMePn/Hu3We8ffsJrx8/IOGEWhsuzxccR8Xf/vKE5+cffGyR7tsCZDAq/hHtxn2aHaVML/WxsXETEGmxpI1q3dha9SF97rzGapzMQNkKsKrsYyp0p98O7kH+FYCtzXJ5yLRxJgZ/C57T66Rh+j7nos83M+SSgr8Nuipl1FYFyk2aI20iHB/dgRdAEc9ia60b4R1EKggHKyN5AY/E25FSw34F9mvDtt0jpw0tnXHaznh8eIXT5mm133zzPUopeHz1Bh/ef8arxze4Oz8AKeOoFcdecblc8Py8429/fcL1+lOPDuoRGmEsdrBD0iJZU9bMgK57cY15xnaMyEc5W11XoJ4dukcgDS1kKn/vssntWxi8yysBNeUbZtazVxJGnTqrotO5ooycMdGy8WwYY7CGft8bVZhFnTTyc3hqGdJozGa3ZZzz2xSgCufW+s+9E4dcKYAaynJR5qZ5E6RJUT+TjyHA2Sz4XMrIEa1EnbTZCR/f/a/w+eN3eP/uO+S04fXrN3j79j0eHh5dt48sLW9U5bT5668X/PTTD52HdhpHAGSBRhoAZzfDyK+phpNx8I/hKAzwu+tFkPkQSB52W2sWgFfQp0QnczWbGbZTifrRCR6ZyPqtEaEbYF9vdhYRmL0FZBR8LymPiFRfdH9T0FN/a4yVzetIRzBGfSFU8uR1FCGRxQl9DjnowiRyyavGhuwO3TQRLKZTq1EPnB1aQTwzLcV4VddqtaFl1ks2FFDndRCrwXqJJ9Ufc0qekinnh2eitgP/w//wP0Z0cqjOfa8yWvPyTnou+3MzG/oBZkM3GfpIirWuobYPmrKw08ZlyDnOX6x7PY5Yg2H/N2uOMsm5TCJPcg49OOX+fTOmNHsdRwY98DxAbI9mhlScxjJTnjP5rkV9dD/DOfgAs8UQ42hA6GxRTqP5vLINzMZyYDXVRm3kTkvJ/54sIjVTxxO4h/6r9c+i95qvYUCWXnpiOBTG3pK4AtAmjoQEpOyRr7FPqiPwIbVVZLjji/XISZ/qCCIQ3u3aRSf511y/vwbf67eodvXuMPke7968x75f8eXrF9ydTkhoKPmEp6eLeyQMqLt3f0tWvIutZSQ8oB2GV/dv8HAueHz1CaftHp8/f4v3777Fx4/f4O3rjzidXiGlgv3qLZ9/+fmCv/31P2Pf966QdUPNNOXBjXhV3nMuk8EBIOprAe6JHkoUALlveNtVUVRFaWUM+g41Srdtm7zGKXldgmZRW4dKaRqdJQFMzx3FTo++Lwq4aDe5dSwD3Es9AkE/JxNTVNq/W/pzlKkOcEX/Fu/ie/m9SGlgZKILhmD7y5rXo+Lx4S2AKJKNjG8+fYMvX7/gh59+wPkU4bC1eYpQgKN//9uvKPmM1k6w6l2iYPfI6YyP7/4Jp9NbvH//PR7uH/HtN9/j7duPePP6LUo+wwIEfH6+4Me/X/Dn63/q3RJ1fVVAjNTgOb0LKXvh+X5ocyjADD9P05p3hf6GYbCmGPHnsW+i/CyGg44p59zrcJnRY6QMbkTxHcfR6WMFLiyY3SyAArg0TOvz2xEubkCXkoXWhiGi3/Uxod/n78hg/Udn8LPxT0OagKCegWE4jki/d28+Auln5Fzw/HzBx/cfsR8X/O3Hv3i6z8XLD6BV1N3n+cPfvsKaF2NOOePLzxU5v4JZwYd3n/Fv/vkj3r//Hu/efMa79x/w5vHdqE10aXh6esbz12f88tNPaO2HZe/mqEganjyLLkwHYKFgWAFm4MTCqxpym6k1fJ4ZsEfn2XXPUih3SnO6ls6CGVGY/fuR7ns6ueFa4Z5PYET80qhlt1hYxSG8Wt+hfPf2Ps5nYf3+PPZh9K1GPujhk88JlCootfJ7zgvQtLcxjmZq0ANvXr/H9fp3vH58i69fnnF3eo3zqWI/fN1+/eUCYMNx3b0jswHXp4rWvIvh/cMb7E8VD/der+z77/6IDx+/wft33+L14wdPs4Q7Wr5+/Yqnrzv+9ucL9uPXYLMma+YOOe47UzG4Pts2+FSrjDiQdc95dEhsbrYgJWRq4N0IcKVK5Rb5DNfvluz0PWDq+NgprWE2gD1Xsvf92r8z5Cf6HDn2WyALHVh6BgZtDDrjuAYfn404M/MaumE3Egwa9DgDUNRllOb9bwnepXTQWYKnyHjfGl2nMIotohcS8OrVG5y2Hc+XZ+z7BefzHZIBX369oDXgdHqD49qwtxoOqAyrwGm7x6m8wrk8YtvO+PjpG2zbGe/ff8Kbxw/48OEbPLx6jZzPMAMuz4fzsy8X/PDXP6Mehlp9TqeTdyTMooDXfehRiO6RXFsaQaQ7nyIBGTcmtJxAq1ybmdfzGeq0Uhpbz/HKEzRNn8+7VcJEU3N1n/uZEDqbDMsF6ObzGMlXrdK+6nRGOlRdQPWSMI8W2p+dui4byzSOW3pdp3ewu+tcJ5JrYCFf9mvB9eoZEZ5hcUJKJ2zlDq9ev8bHD9/h/fvP+PTxO7z/+BmvH9/ifH6F5OFb2I8rrpcDT08X/PWvX7HvPzl/GEQQ+1dFPg45OGSHg75+hjmf1vkQyAMBpOa1rhsMZuy0vgCAAtrl0DsIlFg4hrzrqI30xRsyidetSE2lM0YlcU+UJypAzbrICTkwpTRS+KN+mN+XiSEi5+R1r9DC+T5nWnReJHNm1J6DDLE+YeyaDYPe50lcgOu8zK1/Ad2ZzeeZGQyVgYfoxr7NAMppO+O/+9//v/Fw9xrX69Hrwn350vDzzz+FbTjskJG+jP5vwLHuoAL3YtiSFvVkfQQugx1cjEigvs/DEeD8xwLImKP7WmtTRDhin6mW8V1jr4feVRuQHNHo60GgmfKDdNrMsyRYz5tneS0dobynOx+NwIi/yjx0EowazApEZv+7pTTqkJH2xqT6vynokOcTfSxjzRiRttpY/ewVBpKsTrCg3UJweACLPWJKom3JG2knJ9qgfaSzPK+19qhU6zZy7kEetIW4zmq3qa7q+ztsJj/HHmHvdJSE3/P9fG/rQLE7DgjqsiZt0EHznEQLsDQkBnKAvCQui7kkRw2dR/Rsg9B3E8+/NxnKyZCKYzG1VqTNicWjk6/eNK+5rCgdT8EANV1rQe5zD/pD686v7hjI1nkC+T26rhpdvZM760PNcse0IaKDR5AH6cP5C+RcjHeushlh47IhRi456seGjsVU8pKnXgn9+bGDBNZTNIAkb0g5967h1gBLUqbgd1y/v4tuBVI64XzK2K+G8yvvZlQK8OXLrwCy19IwD9Mv5QxrGaftDue7V3jz5hucTie8fvwG795+xjfffIs3b97h7vy6Nzy4Xnc8PX3Fn//lCfX4FUf12kRlS5Hqc6tOCY0VEtWIvhgKzssmFPTYtXaA3XRWpnjL+9vaXLOKiqSCJCtTV6WBipJ7CW4rigC8a4x4tWl88Hkcp66FGtEK8OhFocRrVu7UyJYi375yXQGalEAZBxXyDCpOM8McxuM23a9eeyQalEBOJxz7Fb/+8oSjeQHnp69XAJt3A/WMA9yfX2HbXuHh/i3u7x7w6dNnPLx6jTevP+DNay+6fD6/QmsZx+GFv5+fnvGf/9PPAeAMQZ1SIPHCoEOf7OvTPXDBCGYlvk6MhB7wobCNgq/AWofsJVB3HHOXXDVSGCHEdVRaU0X/Fv0qeEFQj89Qo2MC2zB7wfiM4xjeb6X19d3+X+60xi6bfd0X4HA965w3/0Zmqt+lIsH1W+mVIHsfmyXs1wOnU0JCwY8//OyCxzYk2/DlF49AwHaHy/OOu/MD3jx+wOPje68D9M33ePPmHR5fvXX6u38FJF+Ty3XH9bLjr392o+W6XzGi38TTlwa4STBYU9pDjCElGnoIgTbWytdvdMb1zxBaQ+qKj+7Pmg7OaCilNwUj+Pt6psnv1lRfPRe3aEO/CwwDaDWGb0WdrHSiz1yV2f7MZc2GQgmhpP7Xrgh0Wmlz7SFde1VO+d/sRGm4Xg7se0NrHln8y89PqM1w1BNSeoX9WvD68SMeHjwi/tXDI7795k94++YD3rx+i7fvPkatSJet9Wh4vlxxue74+9++er2Xww2R1hrADtqIkjdBE37e06zoTnLPYO0QOUHAPLo8phzRzIxO8dw9a8NLO9YGPWVN126Vj7p22vyCdLSOkzJY6Yd/VyfcpGiL0ay0pvQ1A28aeTzzl5UWV7nLotakq0GXA3AZ75jTRpx2bKL91trUHEnnstJaa+a0dr1i3yuOo6Ee3liqHQlmD7i/+4hyvsf59ArffP4e9/ev8OrVa3x4/w3evfuE+/t7nE93MCuelvT0jOtlx9dfr/j73/8eNUZHQWkavBaGIIAeiVzBFBUDA4HI09jasDWg1RpRxBjpLaB+n6JMAdN13Eh0EB0vLuU/qnvpfunfVp4HzGCyrvctGdwzNOS9+jy+X2nzVnMVGh49fdTGeHXsvAbNhS6chyyZDeaX+tstnv4/9Y5VltZaHQCwb/Fw/gYfP3zC99//Ae/efsLr1+/w/sMnPL56h5xPMLic3a9X/PzjE56e/6VnRHh5gSjJg3FuekRPRAS5nlZ7xGdrq45QewoYphIU/BkR5WI9WjkJgLSCIZPNwHPMiHgkGA6YzZHjup+b8APymwk8zuM9ZlHUPc9ZOHwW9WYFCT3lTuoY81RwDHmOYvVnDVBt1R/HM5gOH0a0AHlIXINxRvS6SUeJAGB+8b0uY2XdfovujlrxH//j33F3/hLyKM6wjQZqXBunhzbe2evb+Zmr5pFpQ0bYxIet72fuuu9+7P2Mtzp0By/NE/rFjD9NDnilK43s1rmvPAsWBfkpo4IWHcQZGVHOfx30sf5uL9VTstf8mssmwceQMDKQyKfTkL15omFG1INM/KXu04acc9oQx9eiOylPBRw0sTafoc5v0gAG1dYF+GxMYFtK7LQ705XqOX6uPYth6IFum7RwQLdGfMHlFJug1Np6tKzBo9FGcxXN1LPe/KPbNwYcHega+zEA+4g4I64BDF5oDnB5Qx8/46MWcgKiJ4KDswlHq7DkATXZci+lkpKsAzwdm86TzhtTAhrreZKWfXwlF+SMXqeRUWkZ1kFGgHLJAWHXwWON0sgEcUw+bInqjp3BB+RAJd5vcUB9vin0AIKkKqNeyLrGPaau4jzNoYuVB7lje+okb7cxk0FPPHtzAM30XM51VMH83dfvB/iOitZ2Z3gAfvzxr7BWkPNbWDvh7vQO33z+HjlvuLt7xMcP3+Hzp+/w+vVbvHr1BqWcIzXXiys+PT/h73996kUoqZTAUveImXl4bb34glzrAfSInSXkNojC079G2mSKiAYNl65hrFHhU0azGr63CjUDs/DpxgGGp4BCevWYAEuUjQhvFU4pjSgHJVYqivoMXrcIm88aQqNMY+Hl4y5gfRIylzFnJ2Z+Z9QMoQHF90Z0XprHQMBJhZeZ9YhMEr93owP2aw3g54Trc0a1VzifPuP8+BoP92/x/Xd/xLad8PDwiE8fHWS5u3vAabtzg6Y2PH19wuVyxZ//8y/Yjx+7QUJgRTuA+l4LvUNSM9qIdhGN25W+uijHRmFORdtBSE/Pmr3CpAXdr9Xo4H6vdKdruyqofN5qbPBZ+j3ep9GmSts9qkAMmFsAnl5qgFPYDvCOAri8iKqZlQWtQTQD3TrnWUgSCHDFonsoW5vm2GmtFBy7Yb8mtAPI6YyUNmSc8eb+FV6//oS782t8++33ePv2Pc7ne7x98wGPr96gbCfAEo694XJ1wPjnny7421+/4qhH98r0s1ddEVQQfQIvQqATUHDaiz1PYVDQkxdqwHGoYwPezTINEJV/oxLUWnsR5bsCxDRaNSVN111BvVvgCb+r3ZcVNFw/GzQ3K3UTsJGGUqe0r2dEaU9pSt855rkaIb5G/m+e5qVnciiVvG+WQQqMr9/JVlCPguulYDvucD4/oOQzPrz9iI+fv8X799/g1YN3gXx8fI3T3Rlb9oi8fa+4PDvA8tdfn7Dvv4yoOwujK6ZEYM+jqEIxTSPVjuNhMfC43Ru0tAqEfD+mCFwHUbpBE/RX8rbQBGlN6WoYdkprpC3lDUoP9D4ryKXru+7vGh3DsfM+NWaV3vkz5YHyrq6sd35O/j3v7zoWKrzKe+NNQV983uhiuhra6/M7rWHwDl033YeSM469wFqBoSDjNd68+ox3bz/h3dtP+OabP+Djp2/w+Oq9p9AXj+6+7juenq748uUZP/z9B9f56qwH+N54pHo3hpoDdxxPKUOX4XEZaUijlAcjeXxdFn2mueHZjcSm6zXGk02aZUSq2irzYOiddnnfuna3+InqSfz7qjeu8lJpivd605vbzdBWHbHWeG6jMUmTT3Wxl8/384lOG9PV9wCgM3ultVtA5y3+tp6bsm34v//f/j94/+6903wDajU8Xy74+ecLfvjhz5Emy9pMruN3GQcCtNHJvTF9G6g8Q/E72jg3Wrhezwh4liXVtVbSQu414Mxe8qGxJ86zWqRyeW22UZvUbYsCOue4FmqMqmxfgWWlwZnWzOuk6V74Ur1w2rMZg0H1t9ajqhGUo8yq9GiSIQ9If+TDKlvHXKxHzhjQ10zneOu+/rMNYErpd5xHAgtL93BZx66jt4r92Cfd0umd7/dIy66nBvDRjDKAQJynWeo5ouxKSP3U1XYgpZdAJmUnx5iTgoUzXWrkugZurOdt0OsS8JHQmyNYABKW0BtF+ryjJAjG7xZzJQBFsKp04Mt1SpbQaMaaZkEmLaH3k0kFtQ6QbZV7Zp59RUCNTvvQLjCirOf5cl1zdkCO3VVXcDdFow+nYwUOB9+jDtDXNA2Q7aV9EbQojoBxr99/7BUlU4bpuCXKzBkJNa1+/vrZKjlSrL0eHAEil1dRey+QKUbVGeIsttGJuIZ8NBhK8sAPph0j+ARtBmuRmtyOsFPn0Q8eNPT6fb8iZY+A9tmkODuIcQFbBlLa+p62iJQONLyviS9J7YB5b74jMtnCDu/PQJQTEFuWZ8t/H7p7MyA3j5620HNX2bjqRJ6pSVxoOL1SlpUR8G7IxgQC3uvlY4uanP4yDwwKomQErBkjlkPZpsJupKXff/1+gO9ScLmc8PbNRzzcP+LNp2/w6dP3eP/+M96/+wb3d494fHz0g5gS9qvher3gcrngL3/5sbfXXr3tg5EzkgvdkC2lAIZApL0mXPd6tWEA+zWEFi83sl2R07opKhzUmFUBp8JflTt+BrxEh3lpJN0K4KgSuRrLawSTGmMqDFTRIti3MsR1jVOK7nQ3/q5rSGaW0qzY8l1mkUPfjbYZdOhzxS0javFOyb5wDWs9cOxnWH2Pd2+/w9s3H/Hh/Tf45ts/4s3bj3h89Q4lF2wn7xR53Q88P+/4+eevuFx+eVGsv4+RAsJGqrMqKLci6cpGD0cYCU1TWy0Aw9Xj1MSYnMFbBWbXMG6nGxcu2uWp5KEc0kjRfVF6VDrgeFaa1TkozZNuVbhynPp3Rvvx+SsdDVrJEz1oUfL1u6tBy3d1r+Xyt/nd8177vAwaqTqUiHHuAQCHIdlrPN4/4t3bb/DN5+/x/t1nL878+j3u718708+umD09PeP5suOnn/4ejQ6q4L0CCqFPfYCMdaTAqmLa9zF2nFc9hDdi8B9dT31vra177HUtzBDGkHq4XeHSKE+tg7UqWKwLqUo5x6PP4L/6faeF0mntllG7goi8Z93z1Yi4ZZCuihz34JYiPXjwaPrBVKTf4u0qv2js85zo2vDaNk/LTxl48/hH/Ls//Tf4/Ol7fP78Hd6/+4RXj69xOt/hevXI4svlii+/XvD8t6849vAiWwO7gumZ8dqcwduCJ7mDSwycFGl2aC/m7EqmYZ+Ar2OK+ljlnf6ra9L/hlGrqhvL0YFVDUl9pvIdpXPdf11fAChbQaozbep+cTyrg45gi17+XAfe5rMzop5Segmk6XNWvnz7Ysoj6ZPKcLs59smAbq2nRLVae+1aPXs8ZzkD/+W/++/w+tU9Pn3+NorNv8N2ugPM65I9Pz3jx79/xeX6k8vceoR8LKEExzq0oZwaQgFPTAlzwJFFtTn24xh184bjj15+RkQu6TpBr6fTaeL7urcqp1fdAkCvqfZi/cMIUb6w8peJhkVXUV2Ol0bi3dK1+AwFKzRiVJ91CzQbNEYgYpbZOg7VWXSdpvWCwcJ4X9OSxvPGOuja30orndYxFfz5zz/gxx++uNm78OvxrwGjSlh8gVFWqTekGH7UOXLSSCdBdwQbUgA7tb0EVzgH0obPu0YjyqH/6GVm8W63OSr1YBAsMeRwbHDb+jybhSXKNXTCIx9h1HSnHTEuW4AApdNaACNsyhC8lKRTSkHV9TGbopVS8nM+jO7Bn1PYStu2CT+039zrnAI9sAFkKp1ZgCyrXqh07WD+sBHGuGlz4MW7u4zrv8+8cThV8lQHkg1WKN8cPErBl0ZN2NDsO0V6LdkUNe4isTCXiJZaHDAp9Wgz1bkGX0AHS27xAc3kmvSUPDIpqGu/0MsIuviG+jxSwrEfHgEa65jlbBMERURAQ/Zm0CjPK/qej0j0sWccq+5T5zdsnGHW5dotnV/pw3VI1irziNveOAYAbDjdNEqv02ee+Uqnu+S6U8C/SBy3jDcFqJuT00ivvZYSgIxWCZx5dLk2s3La872hw7TkOVDH8diojY3c55XRYDnjqEePxN2jyaayyIaKTAeBC2LknLqcHH9IPerQgdtIb0VGlTJGXebG2pHGciEdj0y21lp/9zgbEiwEi+ZRES26BC/0sd3Q8RMS2uHBMyZ0ofrzTGOdUm/qiKv8lQWLewc4Tprr0d79/S+fwbmqXJzPrfLChuHYHXhDkrOAlGGpTrDeqk//a67fDfD9V//+v8U///FP+Pjhe7x98x7nc0TkXa54ftrx/PyEX3/9O67XK44wMrQ991i8OPwtGgcs3kZrs4Lli0mF03oTA3ph1hom+75PRvQaJbAWdOb3J2N7MRBXBY2ADf9VpqWCR+u49Y0QA0MZn3qGtf7ZZNTcSPvV50wCdVF4qKAHx4l7MLwGk6K4piy9XA8KBS+umbqRyToIZvP8/D6uMXno7En09GTDf//f/l/xb/74z3h49Qbn0x1aAHlPT0/4+99+xXW/xL7XOFD+bKRQcmxWyDwUfa7fM+YxK/f8PCVve86IxpT8HfteAxx56bWk4aD7r8r8mgqr+8tnHOGd7Gtfxs+rYcz/lLb53dUYWmlN6WRVzFaanY3X4T0b72JR2TjfXPteD8QFMOs5rsWHZ2OfNDZolEz4tjE1jCb+3dPH5v1Uo4X7VHLB/+n/+P/En/74J9ydH2AA9uuBy9WjWP7613/Bse9BOy28+Hkoq32JrHdXWxWlRMUlFHw/ZzUUmXH26h5nIztfm4RIGkL1FF3LVg8X4F1OUTJ6dzZgip6aPce518dTelnXV+lnVfBWRWc9V0qnOh/lr6vz4tZ9v733ixHRFCwqUA/lTK98P9+lUWH8/KUBqGvN99Ra+3degqBeEsDXPeH/8n/+f+Hjh49o1XC5XPDl6Ql///Fv3tQlOkB2WQRJPYAoEI1GcXhGAaSkKfjmNVOSAnMYvB8qo3yMpeSeLp9CiUMLmQfyvxn0O44d2vnRadc9k+SZ3jEslM82eJOCUgru/JZytfItvV/Xnv925VR4gv5tvfy9c03VYSyyoLKAXubzUcNC6VT1HI3e6ZsBBT14KYA/DKR+NoIWez2d1oBmEcUxAEffM+B/81//93h89Yh9372xyo9/xREykxF3QAAfXHt/MLy+bCjhoo/1keaI1FLanHj07RIAzgNHxIbSz0oXKuuGbDwmfUjXfPAmp7eUMPGWWzXk9F4+T3kUv7fW11R5u8rVVXfc9/2F7FmdH4MWVpAldd409JCZpgdZkQ59f5JRRxn0ZWaw1DoQpOvAn5VPco5DNya9D75x1B21NtQyR9T5mBqYOuygmEeVzOt9gBH61p2mvn85Z+yH19W0qDFVmVmCjIIRkbGe9WltElc36tOl1JuMqWNX975krw/Y9Jh2nS8i99LQPZq1SCtPyIXGt6eVUvZznp0GqvWIK2P0sNHR67M8avOi8qFnH3TWlQwLPafr4CX18XqzvpHG6Pqr/9EBlSI2jUdtsbvmiIRCOJes1/hk9B87o+dUQgaN86+21IgUb71xzJA9nOdIK+12SN+8YSvklLrzXvfKs8som2YAylrCcbhemTJ6ai0S0BZ7AIjUyYiCQsyrtgOtxftDpyMozdJRDkI3IGyDbOR3o1khgLBFaPe0zjd5rkKE4nw+T3wEmEsGNK+Z1e0bdijtUVvNcKB2QETXs1XKTV/cXrvsaCjssFpdJhZpFOUAZIB4kTbfHbyhp5OOqRyrbe6/j3qXmVGJVnFURGMPA3qTtgBKOxgaToUtGmM0gNGWCHCFNMQT77q0USoEwJK8YQJTu3l+SFuH4wscO/m8z2HIW17jb5x1mvCCvvRih/UU6+j+iq7bjECklIBcNiQDtghE4tpyL6iz1mP3JhhSwxtBowbrqbykl9RGls3L0jy+7s0Mdsz7zOxH6kONujYYiODv3TZmA6ZoyBbAateRC9j0yJujhOwJPaGZ8z2CvJkOD/LGxM/hNCxyN1ieAIc2vwMk/dTPR+frIkK4XujP4T76v0cbEasQHTY2MvRuC4dSnINN6i5HJF/6Dbn1v+T63QDfv/s3/w2+/eY7PD8/489/+dEjWAQgGwoRrYkG62kXKQ7MQvBSr2wQ2Evvj5lN6aqttQDXBvPg9zVKR0ERZZYaMr0as8AAAVWBW1MOea0RArxW8IaCU40ZVQ75jkmRlntXT7auEZ+twup0Or1o6pFKIQ+L9SehzQTMMHcyGX1P657EGHtKaIJ8m5yQGYGfa0C0xjEPsPU4DtRWcT69w9evCT/8+DccQWeu/Kkyjm4U8/mIiIGEOX0gdqqv8a0IAaUX/Z37QCWJig0/XwG72eM46FaFs9LLoDF0pVZpTGlyjRhRw4ZCkPdpFA7vn5nUS8N3Hd9qBPEsl7JNdOl7OO7tBVMhymxX/oEEdwAMBgxZQ+lG2c/mfL7m9CoWpB/v0LO8KkhqsNRWcb0m/Mu//Ija/oZaj1Bo00I7YWA0V3pcOgjokCC1Q1I3nqmIUd9ZeQUjXRhRl/JQyFvQM9JQYvyeo/+r4PFK2zQ89H2cN1PoVDHhXLhGg98yGhMvaFd57pqequ9X4bvyxZUH6/N5L50iuqcrLetnBHh7cegkIIPwp9qiMHVTEJspYyMSV88U10mjvtdzx3UboE3DURv+w3/8F/z446/9PTCTM6AAEQ365kqg7N1sxIYzw+CAS6uuyFmdaNDnX6d98He6ol4hTgBEBHQYNlQgcyrTnvsYR1TdMJTd+KajTmlgBYHJH/U8a0Sk0hf3gT+PdNA5Mphr5XQwp8Dxfn32rHSP6FNV1hhZzXkz+pURama6rqOTtdaJmptJRH0a0JAYjcAGyAWYDRC5j5X0YpK2F8NjrcN6VPyP/+E/4NXDK9CY4ODd+RbnDqmnVfVyAF1O0Wu9dZrvOh5Tuo74LDvPPI7a7+2Gn+w1/6Z0rJ59nieVwdTDRq2fl4DcLMsqStk6bfD9Si/Ui8iLlH9Rt+R1S7YrPerfOZ5Vd1C9YtXhyN+OugNoYCfEtXzMzCMwnu0j6nwCEnHmUW7D8cFoFQPQqs7DBRSNYZ4dnf8YrxvXfHOL1DOOacx/GDWMDCn55EXF2xzh6zWyEfSjDkDh9QlI5k5Xp39Dy/N513WdnN8tGGRy4G5ENg3aJN/xerxnWDZYckCtRKdDM0MupRvLXP/jOJBLgSWvX1WbAL/mIEZJsyPDAYyIfKlMA3Rh1R0kQPDu0FcMEfHifBbNIzJ7VFF10OOotTdJAoDtVGSuo5xQ54Hx+ypXR1mWMNQDyHEeMWTYcPCOizotIrKHpZ1Ssk4/BP2rtcmR5bQKRAdCcJDJhgNcz55Gd5P+WPYpwXNMW/Uy/35OIj0X1gGLlJLXfM+LPAkX6bBsHDznHjq9BlCUXe9NKSODHWx98DnnbivXo8JKQykb6uQEB/bjwBZjGA6k8T5AInet9fFzfzsIBaDCo2ItIZqmuQ0WGiYIMpAvu+oZUY0RuZ0Mfb4ZGWjwtFOzTqJmvleUbepEV/7e7UUzDAcZQXTDNdKha9MmeSofPNLtiL2T3hE9lqhWr0OIzmeHvpOCF6EU1LoDmTb5bP/3pnGtotYDjLQnXfucR+oum0qlNOx71WtTTy+N84wGh6yKr28KkNVaB/0SQfEYt9LkLJMOuI7ufIkALe1l7pHT09AbcvYI02QaOMJeB3FWLc51lNSoOFDhJc5yzki5IOfhlCRmwMCFBDq5o9azJWxpA3Kst+zNtnlDruYKVi/JgRhH6vWfra+pr9FsX7CTsmHEyPHvs8yJgIXqTcv8DOXOF7ttFE1Neu2/oDczEl7szzE7nwHACN76L6FfC2+nPofff/1ugO/Pf/lLF66rUjURXR1AjLeBZreSl8AdQlHd92OE5JpNXk9grj8BoCtgqlTx98Hgh7GrkVOrEnbL00+jYTV+adjlnCdFkWPU7/Hn9VqNi3UNVwVRDTKNWFjHS0VVgVAaK93wbfRwc/lDaQMm5qFCnp7IeZ/HdxlFos/Ta33urPQDFOqdrlrDDz/+2GlN56m0x581aqHVOnUhXsG2lEYNDFUO1Nuyel7Uw7vORf9VWtR1VyOXNEXAkjWm+F7+nYYv771VnHs1gnUsfJcaMarwTiAzlrDrNMDosf+DzrRGma6XGvIq0NVAoBGNaKF+G8wf0Re8j4ayzmEFVvs7gN4lWIWsjoXvbK3h1y+/Luc/1N2Fz5kN7y89j0q365mZDA8+QPaJtMW90bV/CXK2vu7cdz6ftEF6173RtVmjSPxrL6MX1gY4/t/L+nqkB402Vhpcx6lA2CQDMEAP5Z3c4/VzPbs6Rk9XRTc8e6flPNYRwNQ90IuJDyM4vtkj2vQsK810+gMclJW5qDFP54V3cHe5pvyZRlApHhE2ABTS4DhPyjfHPuZJJtOY5X2dHmymNY5zTWN3BXwY/gNomXkUn600pWdofD7ALN1HvpOdvVeAZZUX+u51D/R5HAvHo8Y+x8RxK80PUG0G1NaaPmo8+jMR3wtDzLXNbpworavDjKBgTnBgwF6WEVEjfwXyVa7UMEJyRFe513mshT+PRfhZn+p2JLvThBurrD/G9bh1BjiGBDUulW/YRCvKD3R9OUfSnDq5VPdbdSJe+l53dBGAbvM5kD3heNTho3xI6UL1CNUtb/FYfkajhus3NUdYxtuaF3XPJXtKlLDHW/Lbz3dBiZSygF8WHYA8ns9xfYvpVybnRHXzW+DsWOvU6ccN39RpTiNpKSNTGs80S6jHVcYUUUMRhQNzg/M4rqM7J2b9w2zwb/I11uwCHJTo6aSQMhb9XM5Nt7iXevGenAssASU6Vmd4dJa15sBpzqjBy12fA/Y62xlmhtzySA9u5iBSCjBVMmNySmiHeRRYn28YqslejJs6UQr63LYNkRQV7+LespkZeUjqafa9NEByw/Y49mBh6cX7enS2Db5Ue31OSRFOs8GdAaS8uTEbkY9M46SxTfDwRcmbnKYOkwSGat0BzPJs5fFurGdf1yjPs9cDecs4zM+bYbaBGoATxGm0bTHWoLHAiQGJrDXfn24nhAwlUHAc3sxj3/dOX2WL+dpLuZ5e8L3Wz5q/M/U5tjRo1tPDAxhCyHFLDrxhRLo6qFGj2dg497XS0dO6zWFyz+ArDmJ3nmC+T+W0eSMncaCt/L6vIZazzZqccAB5ta0m3lwr9ignkdPoYl1AAD70V3t5ZhI8Is5lv6cCw8KJtGsgRvYOxskcOUwjM0t1beo1vI5jR07bJDuCckF+xOjqZKmnWU84QYu02AQ0eAOQjHEmSy6w5hF9tQGlnJwmk9osHsHLQIsCdz5QF3Y6Db29jr2xoO9DzlJKBTkn1ObgNBLp3/o9vH+ylQPLabVi24p/L9JWOy0lp3dPgXe+nUtBr7Xb9fKQZwE0ap3NGSeis8T1ei19suo6/vfUwdecSwfx6Hggn6M+sdKjQfQcYEqbHrr0OEerHhPxG3MdwH/l9bsBPkZ1qDIIzAonjY7edYnAUDxjNfxV8cohHMysA3gKRvBSBXw1XpMcRIZOAwMAY/0LvTgfreVzy6CiMrAyrZTmuhpUcF4U/MQMQKohqPet49KUYzXo1fDjfWtkojKjMRY/MJouMMLmZ+aawkIeLeS1WCrEeBShs4ArvBwMOKbi/VqMXQ/AcRy9+YYeYB2brhdByC7cwhPBddX1XQXOCvyuabSHCC1da86J9/DZGmmgz1WlWQ1jKvnD+HsZdbcCeUo3qgzw2XrGeI8qQkrT5hK3v4+f6xlQQ3Wk0N4QoMt5Zcep7omhkpLbKLAeyvcq1AmyEQTRMeuacL45515rI28FVgev8fUdHmIqlzQoJ6A+udE8isKj38M6U7UamJ6jdOLf9ygDHWvGSOlb+QH30z28V2xl6wbhoNWeiPAiuoXXChxpSpoa19yDHk2dZqNd94//8tkKjij/X50O/3NprUqP65nkOdFnrXT4UpkHkKI2qAGAR5QiBHC15vLFPCpjumw4T3RP9Ox2pUDmgITR4KK1qJU05jp4rStcrE+izy9li7opddqfxDo5COUCM0A6zn9Fm+3TONMNJW8LrXl6HOflRuFZxsr9MzBdt6+vNY9qEVrX91Fer/SREul1MVptdkLc+m8FDVXJ78pVnQuYr7xI9+9WlIca/FyTUcduduzw7zSKHNQbBldKaXQQNgSt2bSP/m+Jn4cC6sbGTBvKZ/1G/7+W4LxAaCklp3+/wSMPjuOAnedz1pph6x3Ljz726T38HQ2HVTDFf9VNFAyN6XaQSb+vWRAqr1Tu8uLaXy6Xnjr0Ql7ZSBdSoFGBsM7XJF1BaZM6Bmnwlk6gupquj+qtSjscn9Kc6i9qOK+6WafXHKlvUsJCZWnZSi+Wj4he8ML7AU8YpMmC9f3NmdG3nlUD/lX2pUeRL/wxBRDhk/DvkE/4uGb9gj8fx3A09PpT/oGvS0NP/7Qwno5aicz29Dkff8j4NEDSPnYYLPv3SnZw1KVlneTSqoMpLerenc8nTAZspFTCA6P6u5lZ0vcWI/qVzyulwA4W17eub2zb1h1Rnb/EHs5RvKG7C5Aw+GeaaMz5tM9nOOmcRnIuPVtgzL3GUo/MKdKN8uF+vmroN8a0/eBDweeRQkexsbYpJUDGjYh6yiV3HSnnDASNqc1gLbq09zUdtLA6mvV8droV2uN+wCQyFS9LHm2bp0N2egOiRm2UBjCPjmwVzkcDQHRDP0aY4PVM+5lw0FnrcA/bZJzRvt4AWpg85EFDFjawIRL3nWC4pWHHmTnAWzKjqVPUa8yeih36aClb54MlHAukRZ4Nr+3MPfVx1Vpx2s7ozUzguQYoHmFX8uZrckhkdgv9tKks5Fmhk2HMswVtWex9A7ysl8G7UwMB5jnY7dlc5AEz7+7nO9anwbCVkP0RPe+BnuKcyE6nq84wZFDp35/5tERK9tJErr0f1pBqeDUMSKKr11qlAVDIdsBBOcu9aZCnizfkLXNVOg31+Vqk6mPop41GXrelGhuKD0DLAgcx2hzjYi1KT292YPXYj5gfS7kor3b92DPeLJrCxNo0yXYIwM47xwcgnoaz2nl8ZDQAwc8Gfaqcpk5jrEOIcY5uXSkBOW3oWF7oWPwbf1jLPZkBBAd5sWM6MZqEhOFqFRpMg+/TOcpAgN9z/W6AL2FNjRtpC7Oi44zcv0ih37rytypivHdNjeRC+f2i3EfRcf6NgApkfGSml8sFp9NpOph9PkEgWjNNDYE1nY61RPgZ589rFTCD6EZah36PgMAK+qxEoAoDx6dRU6siqfPQyyy8S52JtK5Y9b0w9PSF2aglUDo/j4qe2Qy2rkqij2cAn0o3NGToYY4bpj3p74NNbEe/kxI7XuWuTN4CaRXAUCNeQUmusTKP1aul655zxuVy6UWLV4+7RiMoXfC9LvDHPFbQk3PVd+v41UDVyAG+93q99rmtgKYaIOsZIUg+j+ElGKfK4KAZidiDnhX3wjpHCPBLAIDfitzg/PRfnScwQJScZtCzF5IV42SliQEcYHpHX+um59FgGPtBGuh8TdaYAmFdKwWo9Hu1tW5kDOV68M1t2/D8/Dy9W9dJU7uUl/1W5NIq/FSpVONWaUXpZQasyhTtQ8eKPuMW3Q4FiXxcI7LmlD1e6+/9GUG+VQzdxjpQaTgrVgA7JaY/u8I5e2Dn6BwW829sbCJRJYOvzfx4XTdVGiePODzV1hVhAvCtez55Pnr0ZLNlPeGe7QBeKEebjcioPp/WuvxUeVfr0YGIAQC0if/p+dP9Ubn2W7S26g/6TH2XrhnPiu4HRYHSggJzurcrjxrNH6yvm0dLvKQ1lcnjTLgSTyMtJcqoiOLOczpySjNIRuOvz0VoZTgkNKqwwRLnnRxgbhEJXrQL5njOmrkAM8+WSG7QD7JU8G1Drbsr1ZJuvILXUwQnowDwsrMvozR5v0bEcpykE9KXOniVn+m7V5rg/fr7eobJq5ghMhlXaY7S0Ht4n+qaqn8p31Mgb+WtQy+bjQhGg7A8xGqwpZSA5PvJ6F5NV7L4vZBfdF7AaAcBEQIsKrlMZ6IUpufOfKjZoH/qJqpbHHVeI5UbI4IX3sU0D7puNuRMi8WYIsqaTZFvTvMDAKu1Qu0ip285z3mmFeq8rb2MHFVdzAiX8p7Wov6cAG4iw7n/KbuxqrynHhWpOahJ3aTrh3WOnM95BlYCAfAoTcxRpRbm9EkyRToNddBxODOrROkMWiSNzLUpVTdSva9Ft4GXhfbR6xUquKc077IrnBsgv+zKPnolDeHVHumXOn0z7Y7r2NOWJeJX5UiP1KdsRMj/TH3Oo4vUEZpAGtGo+AGY0kl73k4+fqbtJY/qtjg+GVJmJzIECOy5juF89TgOpDKXK2m1odGhF+vsPDTqQIudVc2QO//EAOiSA6slZzSLuoJxflnGwcJmWzM2eI58/owwrqLjAPkU0ZFdpg/7jk4uT4sf609HUQ7AByJT2aWZpRUq9UTCRjYi2nMCcvLPWAuTuIynnDovUeyg6wZI3jgFst8OsQQOPZfQqtV5lnZBd1CGUZ08RwH4pOBzG/UkBjI1tnjocjjBeiSfA7WhP8KiKYNFdoinxJbk47TkYNlhNXS9AWW5PuUyxIHf4dQ0M6Clzq+OowLJay4CftaqOVDcAnys1nqTGks+/nZUlDRANtopSfQ18keELsTGNYyszaHHtAD8S3Z91WlgZCSpTptSxl7dRnDalaj6PLIIvGEKHfzo/852Bvch9TNrFDFhMyivHPrSACYBwMIpS1CZ9SeHXToikPvzKAuCljtq+Tuv3w3wWfcGBUFTuUwUiikMnlGnoUYh0ZzLvLDyryqKK7Cm93RGnIDT5krjqkQpCNJam1KA9D81Rvj36/Xa3zsIVFMO5k4+ClLxP40SIIPgPNXw6QcOLwlvNWJWpZPj1vu5VirsfOwDYAEiDcDoHUjTPCkMjdFW4hkYyj/fRUIfOP8WabIJiJostszTFUgXUi/rQbkX5phC8nVP+/UCMIrmKkekKRk9arMBp3u5/q7vSCn1Rga6P9wbXW8qbGaGu7u7Ph4qf5ruq1F4BNyU1jjFUvKLMa6KjNKi0s4wBueUotW41rOlZ0bHS+Vm1DlMwQTHfauhr0BZjfbl/h41ul15MyTksnnReKGFcabQlRAFX9ml2OdCYDgYqwmBYAWVBjiZEn+37k1yD3h8jlAmcum8zml+ToNnt7UqqSWkVOUHrlTVUGqoMPs7tu3kwjWMc7/P17wrQL2mXO4Kn9Ilz4DuP/dE+ZrShZ4p9Sorreozb50nNWqVZm/x8RVsZx1ANUqcrmaByO/MRu9LsLAeFV7zFQC8BgjtQoPhVLYohD5oZnIy9JoqfmUx/HPOfY/8pU5npeRufFqnHf8CUxyRknfwq63TzbEffgYauhJfCExFfRaEZ5PgSc7Fa+LF+uzm/I71j46jxj42aMRcp+0Ohg1gzUsrHp33+D6FoRkS4LSdIm1wNpZXuWVmPQ1pPsdzlNO2bVN0tYLByldvGZm638qflbepPsHnsWC58gPys/Euk3Ubz3757gDbOp9gdG84Z5BwKky/Sp0PUqJm8epyfUpJ3QjvdYsoE8IoI937eDyyKAUvpZKZ4aBnRcKxV1xxoNcPTB6NV6vrRUc9PM0nACfniRVITg8pRv1bzhSzASDWMPSBuasxdRXVhy6Xy7Rvq16mvJ7f0ah/5Ueq83CflN7UobbS1S3a4byUxjqostyr+zfKfrzMrBi0Rb5DuT/TGqKg+BrZ5XyE8sH1tpyirpk/OWgod2PKjZ8BRGsNyZSox0ttpL7WY+4eYT8ix8k3+Il3vU1SL2rW152XYeoSeezXjmryHguD28HJjAa3F1IJPSqlqOfp6bg9sp7RsSFzjWOzcCAetdPi6XQKvkmeWtGjj9rIoiDwZubgnO+BLx1tGKVR6gQwd8LVABx651FD8GjAQibl7GM6asUWtYxb82i17bRFvbPBrN1hbag213/09R2ggUeNZOEjQwbrGeb9fmYGLRLYca4iein5fS6uv4R+WgC05uAXAiwT1avvMYWLwxODdlIuHUitrfYC/f0cIgOIiE7zCMkj5OtRK2o1nLYTtu0E6gceqRSRU+xWMUjfn0vbBc7gPBJ7BvbMGsq2BUg1ZFDOGRml87oedYXcAQ+zJQgh9Mzr9RoNCRyM8PqYnlrrqciMYLZ+pr0zacV+HJ1fpKjRRmCFF0s0EO3KOeMaDWqG7A+gOhX0DrMi22CDn9TG5ihztDZg2E6uSx37yAjgPtOODMTFx1YcqKJtR1nDdH+ywNaqR3lxrl2uplijAIuMtvHWde/S0zOFX4PnJ9aolAkIGuZCC/7rKaIaWQlgwgmoI1Fm+nxmB9hq6/vzU9dFfRcDXLPWazUm5G6Xe53PEaFfDfDO3hkopDHD9ThwKrmXe2rWT56DlynOM6yvz3Ecjt/k3OuF+uZlmNCKn1MgFQm6QolsSxu4jhn26+jF0KwhRz07By8DWA06MHg0erYhH/NpC36fUYp1PZp0beZRizk54JlsODE0hZn07zaX60Mdo0pAjnIBqHR2Bb+R6PU2AXV58P/aRpMzmAPnwTvG2Yku1taQbOhKvelfa4JhGLLNmM+/9vrdAN9xVNSj4boo0GpoGhLQ4qAawy3T6NImihMXkEaDKvSqyAGzMlhr7QqVAhf8mUDg6m1lUxAqhBohwL/dqgnDZ3VjfTE+VBFV76Ve/J56SxTgIVNa00gUINRn6TN1PDpfem5VKXVZGYqYAElTodd+2E2UuxbMGLJ3YViEkHIlycHdajaBr2MO7lUAmBqgNZRC0bQ5HVwVUI2s07Xoz8hSh0gEk9a1U0OSY5u9BcM4Jb3wvtWw5O+3UsrVyFEBOXtthzEzAOMBaqnBq+uoYCEvXRM9n+sZXc+KeqRXejWjkfwyAmXe1xkIHTQKV1a9EAvKNt638awloEt4uQjAlZK7Up8znzmfxV7nwPhSeGHhzrCPmOvcPTQl4HLZcT7NKaj0cLnh7YpOzl6jptYakRboxh1pQNdgjtAkPbrALfk0aO0IQVt93NfrFSVvo64KHBzfNhfMjADQtdaoI3UIqNIxg6TWjbvV8NUIHOXPpDHeo+eFvHg1JNRwUrpojUCeYYrcFcNinPuZJ5sBvdBumkGbhOLKSLxvC2XmVIaHjTV05jNhPUWI72gA8hZrGWpZg6HQAZIT2uEd6xrg9ZmMHksX8nvdY9yeBnDsDc9PV3dI7LvvJaIg+JaFPrmfoyYS4HWv1FBPaa7P5UZKnda/7xcSjt2N3VZr1Fo5kMNDPYC7jG3Tjm3usabSzXeRFsm3uqK/0Btpjfz8er32v83lGuaIFs7xFg+jPNbzqrSm93B8HLs+f/APlhV5KZ9HpAmE1uIZ4kzjWTnnQjRE7tcGI+TnjNSh02LwW7/HOg9LqaBFAwIqmN5MpXkEQE04rocDiFE4m2eqitGzH9fYswPWqteiaoxEIA0e6IBfM2QW5U+jLk0TJZdGV+vGMvpaaxSFRhPSGF71La07SxrT560yC5jrJKrOtpYs0IuyfJV9qhPqpc9urU0g5nCoGpq5YaVp80yjIitedRrOjZ0szUYkF8AoSil9kzOQMk7x/a6btDZ0N8w8mHvmY916B0zOt7J2HPieNGRuGHrgeQo+cNSKvQL7cUVtFZsNHSh+QEpANnaddymvGSIpR7faNtJMS/L0pqO6EyTDO5ETTPHoKUjU8wAX3InmkU1l86i6UgqO1rDlETHf66rFOnReEbRgNUCzzfNyPaVx1hfdGCUoGvOOM5A3Ta1NAfo1eNS/n+PTtmEqSg8/g0gWRnAQTE/zWxpTtaiFVgoOOhjb0Eu4xjmn7hDkRT0q0Rg2B1paA1pqoUcFbJZpNGvUDpD5ncMjb1abcKJzDAApyt567VAz5I0gj/M71oZETh6xHOm8DjggQGC3TKrBa1cCER2aepOMZofTrJEWQ9+2FE2CCpAy2mHd8YeEDvA2OzrAB28A7WfbDniWe0RHttFpkzysoAQwQbDKkKL+GlKKeROkD/5QKxB7foSNRmeQ+aaGnikRly1FMwxPkaytYdsctGmH01uJOmxegw8OT8bmW0p9nCpzW2Vt882PlmlUva9XNQKNQWdlto0AA0oCLOOoLWpjhjwyhEMTsGgqZJ1XJiBSib3ZRTzXzJs+wCJCK5bA4LXZzPq8uk6boqRQyMLr9erOStApFjwh+EZPTc250x9y6uV+aL/XAOf7GS/hhMBwEmvkeY5yKUervhaMTE4BGIlNQjpq1X9v1aM8cxm2peUEqxUlHM+WUjRUKdjY1CJnFDiNka+t+ISfTaagBphGh1DXtWN/2miYahjOlG43Vji/zOgOjlHnMXhc4A+blt5IdFL4dx18dv7e5UYfe6RmZ8cRSi5RJsdBdh9Pi7mgO6MsxhEsKybv8s76OgwepnYTwkPACGJ/t+tMJW0+jnLC3g5YG/Kx802jLgl4WQEDevo2Bp39zuv3A3xRIJwK8+qpXQEw/rdFUcvabjczUFCOBEjjVp8PzAq6KueqJAKjcQI3SiPv+B4FkICXiqIavDo/NeB5jxrF/Jy/818d7/Aajk7A/J4CP2pQz1EEaXr2C2MupX5guG7KfLdti0yQ6OBGozClkfLVAEZLDcBmBrf6f8HcGW3SDx5mT3EX8tAInjF3jneXmobAnNazpqGu66TP5Pf0HQqucXxKr/z+vu+dzvmuVYnhz/qMW901B3iXxvrLmq7G7Wx4zlEpOqfhiZ1TvHWf1Ahe0+FI92oYKWDCOif6bF63Qql1Lpxna85Ee3qZP8k700ltA53Lb9Gafj7ofI4u0fWn4UUAdsw9tLkQUnQYqAG50prXFJpBiRWIXcfJ7+v51POsvxPwKVlSRmS9130jLay0q7xiBa45znUNOQ+l75zzlMqm71fDfd2v1tqUlrfy+5wzrtfRoVfpVfdbf1+dPfHGHkkFYDpTTb43eHbGtqQR6PN0jgCV+dZ/doNupHH3e21EbXKevNQoq9X56ep8IK2R38yAnU1nb9tGEd9bMvFW9Dsv/v709CR72G7S8br2lJe3zpxGOeoYdO9VPuv4FVjkOdF95D0rb16fufKetQuqBTDF9yp96fr21IvOf9co6+FQiJu6gtj3JLkBm5cUZ+Vt85kEHMSeo5/8OQL6hTGVI3LE4Ck8jGjwVHGP+jjqPu0ReZZ2o17PrkdSjfUsJcDyJoZfm888wUks71E+xD0eOp47TChbSUNcI36f9KZyQWvykV8pvWqNZeW5+n2lcf6dUaX63ZW+Vgey6nFmEVWNwHZljUeh79L53crXt23UMILNa6z6SpfRsvbOgwAEMM97Oj3i5VlDTl4jqeuhA4QbNDt2eUQvp97EIp84/22iNR3z1ESCsqW1cCoUKfyvOlUazTJ8gZAA3N/dwZI7WDxTqKC1I6JEYp4lAanglKPsQWGNsABxwlBrdkS0jIMIJXvDjCTRXAgDkZEZVRrTjIgLd86QLj2LZdYFDKPm1KTXY5bHzjtiD2JcHpm9gzqM6pJBKj14gr9rGrSeL816OGrtIMmIyvYZlSTNHzodAbDUo3I63YQzIyU3Uh2Ezb0yaZexPIukzRyR7Sl1oFnn5URkUY5pfFS2Da1G/bRckbKDBcms00lrDj7RsHZ8tEZBewcPCFS2DqL6ejNCrZTiNevKMNgNFmmSiHVznQ1UJeHlCHL2qP5R2y5zMdxJGPTvazXOoPJLntthf5AfjcAPp5nS0wIJWFFulbyhmXWaJIhfCITEnpI/KN9GEn0qDac497LkhBRglo/9pU0aXRYc0MvuJMjwSOOccu/qS+eaz27wYvRUbOepdOKbjYg/TzMddp3K2H7174bdZDPQNfSGqCXb/Cbux1ErLKKBV6f9kCNBRObo9Qt+3f+OaKYTXaOLQ05hiotcCN2q1c4Hp+ybALu8fnTp86xH2DzJnTaG5HUEFxlIOUy5tAldc94NDay36Xysdl4J+Bz3Y4/0YUmHxqjJ7OsQKdfxipQivtXMy5ig9dIGroc0twvzOM9dLojOTocjo2UN3sCITpl6VOR0AvI4H17TM/S8HPyA72hOgXz+kFuqAzrfRiPw6K6Gelwj3do/L8X5zNHUPh5lFDBYxgt94F97/f4UXZsjoNRDqsAZ8FLhzSXfFvaiEOjv6rkF0I3ffd+7N0oFo3pXgdmwpbLIi9+fiovKGPi+1ShRhXHN7+d31xptHpY813rifV742AXLOhdVQtVoUyVVlQUd61ACIi2Iwl/uAai8WP/PGfuoS+MlE3Kfx2ysapfBlykp9Bjoew2xHmjORKeCzjYEbHx2HEcHCjQlWcHUboikYcyrIch9XelsXSs1MoHRDUfr6XHev2WAr2nbSmtTql9+mb7I9btVD0ONRP5+S5CZcR3HWqxz1VpBegbVONaxsyYGn7Gesc44ZT6qLPS04pRGFADnbLnXymvWkLfSAT8WUYYwfl13BYsoaFeDbNRWogZmKOUUik6JvXZDmnM4n8/97K/74IbYNr2b+75GhPA+/XcFRDTsnwDstm046h6K0e1GFaqIqWGs71jPg+6v8qpb50HPzgqUKG0oT9SxkYb53RU4ZiryCkApMKbf1/FRQA6aSGht/q6nKlExdA9+O+amJR2UWeTRWGsjycw8vUqX1/DGt9Z61MDMn0faZYtSFVwTjX5T+rp1zrVZlBpqKtNWXsufOSbSUs6587bz6YTrce3rtu7TSkMq28kb9X2kJ5WH/Fe7w/IZY60JcmzTvfp+AitrY4TfojU1mvz5A5hZ+SoV8JWOx3l5GUHdaTIFDYQRWFKG1dbBvZ4aLbJK3+H8dD6/+n4tdQF4qn5CYjaRG9hIKPBoTp4rpSXdP02xXmVlSsm971XqXDVDO4aTb9/ZOTBkSavwoQ+63Y8d59N54iVrhKjWUePFvVp1P/IgldOqx+i+61w0unSla+V1Spd6rZH+o47r7WjTfd/hNeIqUhr8oKTNdRrDQnOqN4fxDvQC4atOhYjwYNo/5WlJM/B4HIc705IAtctZ6jRnpDl3uLXWpJ6iD7vWEXGJ5NEoIH8zTwfXtZ1khPCBLnuaIWU39ll0PdOIT6mnH7Y4t76XOQCciLLz1Yj0TD377hz2iVmX5W6gujOmZDfUnbdnARkzmJpX8mjIl1PuqcikC87P9ZvQ6XPCEQ6cHNFN5LVKq8OQtVhHdZC2mDM63ymRpqk8fAKdMc54LiUc83OmkdowTkdpoolt8z1tUedTM5Zaa2AjKj0PGSmizuIMgjo2s7ZmkJoiNW/RTCU5wHfUihrng3S/ykOu9+gMPCJba92Rgp5zFO1nJ2ry35IZqcQz68nCujfHcXgQSvZyGgT4eCYTEvbjwDnKQ23ssJst0inrkLk2eOt1vwaA7zzb5xS/hHqjMpQ00vlMBXLxMg7HMRwf5/MZsIyKsDeS2Fl9vx1Ape7vUx28KIN05qARMOsYk1Mq6tN5lBe63pzSS75GnuK0WXAwuKFkj3LNpb9v6NMBvrfDZQrBJXrM4rz42hnYFMjID0QvJr10+0I+4/iamY8hnuUdiDvnAx0tx3Fgy0O3YfZFTosTMei/5OEQ5f2dJ0ZNtmbh1DELBwI64O6NJxIsA1YzcjgpWPeZfNiqAXmkOLM5xmE1MJeC2hr2Y4+mGGMNaq1h3zsQRmcDa8gfjY0lG5JFmQSjc2Mf6ayxHiUX5FNBSRnVqnfsNdrEwWeKj5WRdn1MyTqdIjnk5mP3hh5WlHeNq1bHEXLQNXlDRzeKj+doc31VAF7exIbcyDmPzIiFlvlfxx2QOu0SLKxHRS7ZsxlFhx/BUUqHCQTqhyz4/dfvb7KRXka78FBplFcppSvjwwgfUS+MigHmsG7+rsaoRm5RWdHFX41Efq+19gKkWw3j1fsLzN5SKl+qKKqRqM/le9Rgc6XCprWhgKHgp0Kua6Apy2QMK6ighrUqpwq6+r9j3VbjgQcBbRw2XSMzHpjhYdV3jucN47tHNApD0j3h81MpYBSEz0vnHXUW0oiW0ntXIEINOj5P1/t69ZS40+n0AtTQ6EwCx3y+0h7Hol57pcGV1rhPSmvKKFZ6UgGvUXZq7HBc6kVWmuB3dG5k2kCkEkTdgYm52Gy8E2wi0EHv4QperaC5/rwCTjlnLxwbtJYw9qB7oEsYEH1fIuUGM1/gGpHmVkVQGazSCOdBIJmKVsLceXsFNm4BX1yPdV+1++OsuL+MRtbnKlCawzO1RiHruxlZB8wG8BpJvPLIFZDTKEwFBpSGdexdORKDknSqn62G9cyrBj9RWlMa5Hw4Zk0TXumTJP+SNw15pMCGq4o2RVAoMFSCN9U6Inr62IKfNipm8XOeFILhtNF5IJReBcYVZFFa4H2UrWqIKP+gA+IWv9F7VGEnj75EqqxhyHQ9v9xzptSSl3C8KzijdK40rnvD5+terpfuhfJdfl95J7/PfdOflb6VD3EN17my2PxKi6Vs0/xmIwYuZJlKr6AvaYd6S5tT6TsAVHKUMpnp2CMThgzv74cbETXW2uuxjeiQW3rBMPCGbqN0QV2lNQcQc8ruDU9FwOXW+drpVDpI1OwIo96/d3e+e0Ereg44D6U5fv96vU73rfKJe6g8RecIDOecpoK/2DPMERHAAMR0rLxX+Q8wHI7Kn/0sBZjdVF44uFBbfTF+js8jMkOXKmXiH2MNhuGMMHLjNyRgkoWIouiwYWCuvF3rILfWovh9RK9xnrV1Y8aNoEGDLYzj3gnarI/JzEGGJIag05ZP0prhWq8AUxab66EEiWBAyo4I9X1u5NqjOHs7hgwG0EszcA8515yzP/+F3PIO5qR7NjewLHpmjPlWNK/vTwCRYbyXMCwJks08RnQSzGBba603NAmUroM0SseDJo+oYzfGkZGQIp2UfMPrbo3uzV3vDMrheI796Nk8PuXcM4xqHZkCXUZpd9qgQTMHnFNKaKge3bNEzbdI36u19n7OZu6xUN7lYG+JunVB5a1GAwZvEKAyk+85BWjb6yJHTW7kUbs8RbzYdBbTiITmWUwIgMwi1TOicH2+g4/lMssxlekuo6l3QErHuI7S7RcMJ4LyiZz9vFz2az+HvFJKUmeeGz/07i7/QP5We929XIqPJefe4ED5bp8HEJldc6RhOpFuvXGC0kKnlZyRcsYWdSrZJTsBvdEF9ZgWEYEteEoy6lsOcPoYcy+RUnI0i2hzVpKPf/CN42gAGsrmdHnZPXUbKRqx1Nr3fPByykP/2VOf3ZnW5bm13hiD0XB+/5CpYz1CJwveej6ffe7NAxt6aSHSBBtFpIgstAGyE6g1RMZciJnO5xOA5mW3KFeOdkx7WopE3oJ176I0wnGMyFUzsCQ0I/PMzEFEDFnL53otzeqp45jlrbEUTzR+Qj8DzmtIu615tKml1vs5AKmfBWIEALCdAlzbMvLGqFivi27NPKAy5qgOkqMdHVBl1Kvq10rL1KcHn7bgA4P/5S1FIxuAngzDsD3Yt4Jyl+sFobnfe/1ugA+YiXb1OisjpyCttXZjVJUkNThWhsLvEGBR5R4YhMz7GN2nAACZ0KoE/lY0nKZAkuFqqojOS9eC77hlyOgGqiChkFXiX8FGVfxUOVDlYlUUfVDh8UDwC0j0F4KhCEE7gp66d20yZuN3dkOicZyA/nOtFT2NwUyA2/DSyVqtez3AlNEdyvfRx3SL1kgXeiBV6VCQkXtzd3c3AQ+qlLMOG4XkLeNCaYbRNMM4Ky/okfeokaDMQEFkFcTHcfTmG3qpgXQLDFhpTsehCnxKaSqIrc9fgfNBHwbg6OvE21ZQwY09gNGcg+6HsGUdR6X9Abp0jRT74QxRl0Hp0sGk0bVLwQbORQGAlZEqMJoxe+b1XKxG6gpMKL/hu+/v7/varKm867ldI7gG0PYSeOX4FDhTAbSCYxxDV8YB4l39XVQmVzpSkOMWeLwaObo+3J91PSceBc/8mWlzjE3HwWd63ZkNjITrnRhbTwaaxq68QQGiTvehZNdlP7meKQoMHUfUBuJ4JofMKIqdkLqiDD0/sTdbKUAYvBznvB5zNzuOVUG+W7TDdd73vT9T5ZjyOtJON+jzXFNs5QmrfHeD+GWaLvkg+a/um75XjTCdI/9V0HPleeSpq7zjZ2yKtAKmXB+l29kQGE4Z0hEjaX1thrNtTkP67YYNM0CLKLLvCrPKJ+UzKc1AOhV17SZdcoEFDfJ5fA9La7TmQMOI1ngJmCo9jHnGfEIpP51OKE2iYACcThtY/N9MjaENKWq36TuUJ6kRwDXUdeC+Dcfn4NmqmFOOK3C7Ro/XervrttIXx6W0zXGujhHVFfm707tH6I5IVjf+PKpnRAytNDvTHDqNlu2E49jBRglD1o7oXWDQiK/Z7DSisWbZjddqw/Gie8Fl4TybNTfKPG+vv3srBQqDMlrNnzE7fjQtMgaM3MYZzAEc1zQchf5dj7IokWLe9YMkZxZDNuz7NeaU0WyUUPHICm/u5WDloP9aq8t60+wJRmqrkw0oG3rR9lKisHptaMeBXGbe4T/Dx5oM2ykikyKSrHeWTB6h0xqQSkZJ1flJAGxH6NE5eTdN6gE5nyY9xzAcSzyInReYpzimSB9jlOx2OqM1b+I0jFUHL1j3E0nsrRRNvlpDtav/PXhUr+vNMWU2jKie9s3oy0itJajRdA6NEcIIfRRgYzzSCsxglfxjRMBbyFMvY1J6undKfG9ElFlyDNCi+VYGsAmvzkFb8WzOuzs/gv8aoq5d2rwhluV+Nq4WwQcgYJh6TTfSxrZtMDRU0IlYUPfjBX/mvuqZzK5QBzjReqQpO6Y7zUPOv9th2bvTOHBRW9RpYwOePNURdnpzxZ4Rl2qLjv0CrAFlO6FFbUz+nbJTbYNaKzJtI/i8zUbNynpUj84Snt2soWLU1fXzDLZqgKH1dNVO8zn1SCxeXY6BtofXIkzV04NPJYBQeJ1PM3QnP+/vz2qGhNxTjFlWSHmA8uMZCBq6TK3OV3PKo96ayP2+1mZe6y74K893OQ1b4TgOd4REBGivHSljQdjsZoZ8GuWJvPRB7hgB+Y+fkYYadU2TM6x+trju3uDimLrieoBB7Kk57+3NUFLqMsr5Ten8xOApxUiIJkpBf8aUbY9eVZ2dNGRIDjqmjJRdFngfhbDHUkLKWw9mQdelho7E1Ha1UTp/CDp1Z2ZEYcd5HLYKx9Y3FKBXNj6tApyboctstVt4jn/v9bsBvtWLpErQrUiQlBLO5/MUFaOIL+9bDWEaC+ppXpXfW8CaKnOrMa5AnQIrzPfX2jSqOFLZUK8f38f36Ds1DWgdu64jP6fSqiCgPlOBKTV6ZuN3bK0a/SRAf13sW0vdUFFlux57V7j7egYAYilqduTsHXZTxF/Ro2qzcALwIrVoem5KkwJe6wGGWwMNzeZOn6vA0cOoRhujWRR4UWNRBad/zxWc1fAB5pRgNUL4br5nvVffz/vWlA41SvTzVfHXuev50L1fDd11TZTmdMyr8a6X3pvzMDDcABshyKN+F8G9IfAHeODpMj40v+clQ40UIIQyYx7Wve6d/wsgWtoPQGYGdFZQXNdGeUjOGTVq+Oh4dG/Ig9YzrMrAarzO4535hI5N/8buo0oTOofJ8LcBNK/G8xoRqsZ8N4KEzm4B313REP6gXmV25VVa4/PW7+rY9MqS1kfByM/YDdLXbOZVZow6Ie27gu/7Pup26pnTsYY1EWkm8xj1Yg2tjYpGa11Qc56tNdTr6J7ZC4WH0CefLUiuUJt1sEd5hNKOyg39fI3M1EufoXSlgJjSyTpf8v2V/rmX6sDgPit/7QZ+nT2TeqYImqniqzKP992KNNd9VJrUM7KCi9O+L1ENKqf1Pr9IYxksho/eIXHQnomRrUDNSxnthgbaGsUqtLYASR1QtNnR12uArco8gIP0kwynckJtIx33t0B8YE6HpTFX2xxhflu2jTpf3lTNo2r4999yDihv0AhfpbmURtTmSpu39MBp/PFdgm4a5an0ekuWrvs56xmUoQNoSckcTFE5m6J+lqR1r/Pmuq+06/bqFs8mnyBwOkoTjOfNfMCfFYYkPIqh2RGRZTUixvjdOeqFnUH9M5+ntRadmkPna5ShkSYfzQFq8/ra2V52XM8Y8goAWlojMSMKDwEoBQ0bPB3dS3tEmmxK2HJByXS6wQ3bGjQBN+aTAfVo8Ci4mK95ymXJm4MgodsiOSgz9joiEGGAUV8iXwdcTi1R1xHZl4sXtCcA47RJvh40WnwvQllyhztCX4r9dX3aw2a84YPBGiLCyQEeX78RnVUw3ocU8zpFJkCLaJZFFpdtgG9VUuf8Swmn84bjYJTtzH8PsOtnLHEHftHp1PlskgZU6ECm2VymaZUHOd7ZWvPOuTz3EOAiOo625gAaeWwx34eS/AyUzVO8PZrJGBDkYHjkhqeSI7rOx5aC/lPIbguwlOnQKSW06lFdpzhT+77jOPaICrNel6yap0OaAcUaTrlEaYVwmgHeUIDNJ5I3nkkx0GoVZcvIFnSPhNO2DRAoofNiM4Ol1OUDdSgkj2ZCYj0211esWfBvQ8kn1Hb0rqqqO+eckUrxDtcnnx/f546iE1qb+VMczyBH501HNP5IaehHPRunNVhK2Mo5PufcvFtp0cZGwvN6zT6lpaiVVq1FrXkM3Yxge61+9k5RL62O4A0+J29bpDtX5OJnyxCODMxlI3gpXVPuDLnroLM7EJyCDezG7ADafjhIXVFRigNC1yOcXAjZD5b4SsjFm6Yllu/IGSiDN8MM2+kENHTe5Pzbwadm5g1/ijflyDnjul9HlG8ECTarODo/Gk7v6/UC1lW0BE/p7fpW89p2yXlfjnPDtdg6+DzkLR2XMC954vX9KyqB1WCPHn1qOG8brBq2tKEVytzUn5HzhqMe4WBxYI0NZ+rhYCWzroat5XTKLum+5y4fcskAbctmMHjU4ClvMbcRnKJ2V21tOGXN95/PXFTCf9X1D6jBNyuzCroAwxhWRXqPxhxaoHIFaFajUg1YfodXjo5Aqqyq4aIeRVU0uYHKgFprPfLht9INmbY50lTmCDEClACwAmQapaggw2qA8N51rvx9NW4UFOQYNGWR46XA13Xycc9jWAGfbigte5zSqJ2hAmCLWoLdSIULtyxErjQzxjHAtlJmgJfPV2VRx8dnaVSTCiMNq1WDYE214bqqAaKK/7pPOnbdY36ma6mAmj5TQR6d1wi1nyMzKcBooKyAn76TtLDSi+7DKoB0nrcElaY46t8G/RHkG8apf79C646pEsd39f1tNjyUeUTAKaDi670NZbl/Njporo1zlOekNBd/9c9zrzelBiO/TzBL6ZH0tvIxXRN9lp771kaNI66J1jWd+GCj97ZOe8mxKG9bgUBdl5WGyR/W0HOlNaVdAD0V4HK5dCCdz9CxrPu6vlsNIx8zQOeDnn3Sq9KmAjis1+Ln6YCJF1drua1Ag5mFxxpd2GoUk45fz8SspC1RHEjhhdT6hgIGdBpxJ9NWtun88z2kNaV3AD0CfuUXvEiPeimwofTJPaeM1TkqX+MZ5LMUKDJzgKDW+sI5tzoONC1M+QD5nUbOK/DHs6fA4MpvdX7K2/QM8DNGh6xGJb8zzgL672MeaVo/Ko+kC75zzQIwC3NS+IvqQfq99WdXriVyNM3Ars7vhe4QxisNZH6uGRF6trl/1IVY63ic0ZdA63HsU2Qsn8+9UKNHeavyOv5N0xg5V+pdysfYiXmd8wq46L7yWmUyn6HroHxT1xlI3Ymkct8IpvQ5zmCxngHVSVea47j6uiGBDRZSAmrd0R20N+TjOm+DAQHgjcjaWe7wUl7nz5B9TikiOnKvpce1UgfKZm6InrbN0yJbQ8qld1JcO9UCQIrxs/abhWOn63AloiUCYCGYZfDzpynSXMuh6xhOOYP1pAF0x3S3C6zConYrGvp9lgIcPny+Xf77QewgAW2Gu7u7wXNy8tpr7FCcnUbSOJY9qq5sBa3S+R5yv1mvnejv8bu2coIDMofQ7+y46XSUCMr4GjdrDl61kRXTeeZV6X7wDO6rAywzYEt62cppksdDR3FQ0d8ToETZ0JsSdV7qf5+dBtbB7VarrPk4w4Yc0XcV+z5Ht/teWwBI/p1eQ9sa0rahJBraoa8dO3LeHNiLKEGCSpOcr5EOmVMvx5NzxrEfaG33tEDhEWgOZucAMFKkfNoetFMPEJTLW0aCl2pgLcExX1auGdFQADqQuOqrPq4C1PpCD3Ld4wQ2zXB9a0NKL2WPzr83qGsWzgIHKkpPVx5ZOiovJh2p88IcTWMCBC2jlAZrxuVCPurpk+Acjf8NgIZnX3XnlFJ32ufOu5zGa9/fGZRbm0nyyolRkg0wdvl2XS+Xgoy5nIraAefzeeJRDW7jnE4OyNVjD6Aw+zMPd0IAQG2GvBUvkXAcuLu/8/E2Y2l8mEQoOk9VWRO8eTujYtTy7D1lkkRxnuCRcrHOR62wGg6cBCS8DJ5yruVZBXTCDFnM+r2hM0Zku9dyHXJ/1sEGby7hKGnN05SzI58w83PGDIa91nAEybOaOXAbtWoNozkS39vtsNZw2jaPLF/0Vh+SBhWQ/ccYGZGaNzDLo0XAk89ndGh2/tiCt/m+5Vy6jHPbaraT/jXXPwDgG17dNRJJAQgqh6o8rYWTgaEIqqf4Vk0hNUY9bHMYY2NsNhkbqgiNg+8RH2bWUyFVyeN3ea1pUavBqgYLFVUqXjoOPgPAi3VTY1bfvxos/K4aQcq4ValcQVYzE8PdU0t0Lj63YajrGFYFksVGJ+O/td72uo/TaFItQA4GM9S0LlX0rTXU40Dd6gRurRGWrNnDn9d6faSdldbUcFU60zmtiseq9Cs9rIZrbXWKCKWBrsYFaWKlD10r/VkNKTXU13Oggoa0sqYQK0CoRouuCzDO7ArQqlI91sSFBu9n6DbDkWdh+jLytgsFoUum3ekYnEecXjQYUMWVnyn4qYqo0vN+7C5s6+jouJ5B7os2YNEIz1vXcRzTu4ABPLE2DJ/L7/OzyehbwEDyJC1JQPpkFCD/vu69GsKtjTqgSkurQa9G461IR/V4Kt+5xTPVKNVoGq7tSst6KYjl93FNixvfOSGnlw6cW/SRLL84JxrtuzpjlHfp9ZKHzvxAeVHOGZAuuvqdaWxpjmhauz9zLVbgUulGx6rnnYCMRqbfeobyu3UuK/iofIyXRrErra2KuPIoPee33kPdQNdmpVH9TMF+XVfur9Msva0v6XqWA6S1lxFpv7VG/b1hjPC542xqUx6WMpizE3q0idDXuqe3aC0lGsUzHYx5z7TcWpsAvZXv8TPuI+mG/EPPtY5RIwgHODqeq3xOIyzXvaRutxoFSne3ynaonrrKh5U/DP1wjoxcZazXIcxRVN8N5FZnZ4CeU547/Vf5np4DLZnArqtFCoxrbTzV6XQffQyj1tNxVGwbUMqGnDR7YtgUq67Yx9Vm+rml7/j6OkDhXQQTMjLa7t+vZZRT6PwWhoKMCnRjLCFNNRlhkWqI1KNFYMDewsEcoFVLQDavaUX68hQtwLJhP7yOJKNS2eW0tYa0RXSKeTSm77mnAGcbTsMWoMPp5Guo+sxUsxcFptHPxdc/5fxCf6xR25DReF6zGj0bZqw3o3Q25KlGHdOlF76LHB2GU6TPJml+0W7u87CThh1D+tjKhut+9f0VGtd/9dzxDPmv7jBpzYExBZUIqPDsdl0iwCNrDSUMbwKlei5TTkg2nJv8DnXDnL22mgIIADovnmWYp4cmCydIgKddDhike/CoKd8aIx+tR/SozZj6O1t0QzdZL4TBH3xk82gpb0osTofWkLYiezeADMvDcQMM+aJOFNXtBoA19C+C7Ck5KJZzQbOXwS5mhrIN8Eh5GNd2lbXKN/Q95/PZAZJqvaHccewO4gQAkiT1lp3tfe1L35P+zoTp/Z1fJzio35yeXIO1UWs1OSBcj8MbpUCcgxhloywbTtsJSINXwwy1ptjzDTm3Xv5IMQ+VO2b+7mM/vMvyXiN92rozorWDmnafY8rFI5LhUak5UlA9is+B+O2UkYw6CTNcHJXK2Dp9RxNpVKndl1KC1/oz1KNNMsj3PRoRRcpup2FktN3PQNmc/7cGBz5Dn4ERCwgdqyH2UCLIc475jauUEvww5CUattOp207c9yYOV09dDkeFb20QBnqjU+U1nQc2687ksVfqOLa4z2VZQoqSElqey1OFzdCdB9YbwJif4Xp0odu7GgePYz3K33P9Q7roDgEwH2Ye+DW1cVVEeYBogALDIOA9qwKvB0THoYY7masqc6sSBczGlSqY/J6CiXqp4q6G8FrAWCMklFGrUKTgUCNXayCRIauh0JWSxRhUI3WNDOC4FdigJ0MvMmldO52Drn2KfVMDMWPx9ItHSOmEz1Zlh6dwMsDa8Dau0Wj6nsvl0j9TcEONZK4t15dRctznFTT8LVBADb6XaP/sTXV5P9Mav6f30ghdDXP93iQcJrB6jm7QOfNejUzqQjzNNeG4DgqgasSOzp8/rwCFfx7h2DIuXTNepWzQlNr13KvR1ulhAiNmoILryLGrsnnrDK8GlnuZZ3rR73OMSl/X63Vaez3rVLbovdM1WgFIpWfSwkrjuk46xhVg0EhDpUnyxLXWFuen3+F6qqGp51iNcl5TCkeaAVS9Z+1AScOU41WeQKWXkQ1riqiv40h12zYv+K/rxDHd2nOdj/6Nz1Pa0edwf1daS8k9xbq3Zp7K9hJ8Sn3dVDaukWzkk7pO3H/lKZQhKjNWnqb0tjo39DuqmKtTRXmemfWzsK4pv7fKDuWjtyILlT8p/awR9wrw5px7EwXlBXrWOA4FFjkepWPVFVZ68d/n6H2ntRn8WKNlO51hBn18zbkmNJa8jiOvznfzqNei6zDOyJwRsRpyugeUR0qzK00QAFG+p2ujNEaeqDSnc+Q7CKhgWYeVn5l5ag5pjqVduM+rvNCzu66vznk9+6pTEHTW59pSz2mAHaTtJQqqeYmAFTC/dUZUfpO2dFyzXsSz4aDFGqGrZ4bX+nNKbtACbgiNxh3U9dyQUVrXn5mWiJxQ0gAZuq4bqXxHPXpksu+pRwuWsgVw66BPT+HylfEMkdqQCxxEycO50MwmI5djKyXBwnojL973Y5Jt3flV4kwHgMIsnilCvRfzt7EHKQGeET262pOvsG4fht3Sz5PQ27qPpHXl+c3MgZ+wtc3csHcj0iO6qI6YzU4Z7uOLc4oymiY4c+mNTlZA+3Q6QzuEDzpN8V6LM+xNYzxifgagVPeKkcq7nH49bW+A8t5QaOiIzifNo94CyKPB21pDQ3UALGWYeb2vUkqABT6u/ThwOm04jhqyl9kewx7h6TiCR7IDcGstIgOzBxYErWam5uWEAo+m2+hITf7uXE5wm2o4Ocu2IbXUy3EkpEjRHc91GjijtgNA6+NrdTjuavX6ZPu+d8dKa64Lnc6noJWoZ9jE+ZGHzJ/3NbqXCw/iGQISzqfNgfFjBHuoXFM5pGdSaWvUI52jxNUBk3OO9PvQFRK7mHLuTjs5FyQUsDlOb74Q7mZrUUIjpUh5togyDHkDA5J5evbRwGJ1Xk+O+sqGdlQ87Re05OuQA2hkmravMcBI/Ow/Oq0DSCkirQ+PKGOwjGbZ+ZlKSLn1NE5XB5NHytWG7RRdmRFAWPFzk0rCFg6Nkrzba6sBcibnpDlKZoysFM+qq9VinGo3At6wI5O5BEB+TKUthkwoPRoVQI8GbodnQOVkaAedJL7yKa8gsKfd22Gdpw+dcsaIwOhkIKK6vcwTO1UneJRzsqhNuA/MacvF62an1B2kKeomqq0DBXDrsHW7bQx42nn1VN1AiwF4gIanSnuJr9oc9GP68an42ndHQHV+l8wj04/a0GDYipTFwO+//iEAHzB72VcAT1NryRDU6FDCJ/CirexXJgLMyhwQCK0g+CvTWSMCFeRSg2YFmzSiiwiwGotqAGlaIN+l3rxV2Zi8ixgK4G+BdWrErIY2L1Wq1aCfDSxX5LQYLo2LMScyHDUiUidS3YfKwyPGm/4bG+SMJs1eHd3D4W2iIlDRw/hFIVJDWt+jtKcGzQoskfZ4sOl5U8CF9630NtZiBg5UcN0CD1Z6n5iXeBZuCUgVjny/CttbipqOe72XigG/r98jzWq0l4LePC+3aJS0ze9SqRq/G5hixDn5GERQyN6mlLFtLz1/fC/XSp+vBtsatap7p8r/Ok+9+JxbQCrfs9YQ5aXv4trq85RmyTNmoTYavegarGCFNldQQE73VemGz9LIOTUu+T31sKqwWwGBFWhYo5Wp8HP8eu61rtbELzA7dvxvMxijY/drKAM+3qMbQyt4MHvmZn40v3esmco1nTP5h9KZofUoDZWRela7RxPzfqz8QYEq3r/KhVXe6js5N63LqsCbgoe3QAO9R/nGbznG9D2rIbuCbyut8Rm3eOoKHHsaxBz5e39/P9Xe0XWbHFA3DO6VP/O9GoEx6wfDgUEFlPco8LEavOu58TWfHXo0hrWBgY+zvaC1IfNmWlVeoeNZdQTdpzVdOOd8sxboelYVvOKlepDuve4FgN4ll+uq+7nyCuVRSm98Jj/TOXONeJ8+X9fc7KWjhvdp9MvQV206VzknXK47Tqety3N1YmgU66oDrjxfdUzlb4NfWKc5vZd6s4/vZVMRM4vIJ4+kKIV0QKNq5o1On06LRz2wRW1Tpm4RcOr80QLUEocmaeG0eZdIk7EghREUNe22nFFpJNMYU7kLBzyUlk32HAlRW85gaXZAMoovpQRLhv3Yg74vsQee9psS62GFnCG/NweIrvvVI3fTiCRceYPSt8oA5WG695xfzln8BMM5zmh5swFWsGad6kytOoChOodnKA1ZskWUXy4JZXNaO44jaiPO4N7MDw1m3mUYsKip7Z+nJLrX4XXtaF9Ql3MD2p0XbFbBs5RaxdEartWjhpEiwga0RaxHvTXzSDXWDj/qjtbuRmNFNGyngmLUdzOu+94bRzBysO7V60wmGvut05YDEhnX5x3blh08C9raTuehN9YKQ0XZfE2HDDWpL2ui4/o8PNVygMpHdCTu2RkJOOB61HbasNejdzVt1nC/nX1vDR7VxohW+Pruka7Lkl5WG1pSUO8QuVY6SNjBBZWBeGlzqCNH9ZF+ruU5g38SmDxD6wPu+94dAZ7mm9HMU0SZyl2rN0uo7cBWAHZrzikhlYSj13ALgLB5xpfa+rl4DcMWPDBHN2aziJa1iPIPcMjpJXhNkoCLlEYAC/Gwxnmcuxpa6zhLKXvdS+IPlOte080BxJQScjp7Q4o2GpAVFDQGHLTqPNtiYxH1NIGphmOK6NLa/Oeh68/9ELqco71PDp0SkHKP+FV7x3mU80PtxJtSilstaqYO57VHDs5BUaUUh8myg5cllw7YEeStQltdlkeTjRSImtPQgXPYtd7EZegz1jzqOKXk0d6Y7c+xHu6ABwx3d/e4Xq8TnkDwz/lyCoDYT8i2lV6ju9bqqbYJ8C7gzfkygCb6Ozv1QuS8y2enUUYW/57rH9JFV5VXVaRUaCkD0HtWL/cK7KmCtyp8FEzuufGFXT2YwGy4KUhBYaz/qmLPcaoBtBo8qjSqMqHrwPt1jryfa1ZKcWM+oacbq1Gj7+d9qjyrEchrjYKMiSExQiu5BwoZsOZdSmvdu5BKaSgSw3h2kI9GfK1+mH0+BEzNmUMUgh6Eax2o89o0jIyZ6zv4fABGSXD8BCOnz24a5XOU3y2Pke7Tuq8rOMjnaCTmSmtqNJAeVkNLjcsJMELqwOdKN3oPx8jxppSm86IdWPU8dsURc5QM147GNe/jd1aaG4bDnF6rQKOecQoUX2enr22ba7SNMRpGSlp4mGJ8mt6/ghm+J+6p07mrEUE+sfKFnHMUpwWQM1oyAA0WbejVMNU103VUA3gFIfgZz6euk86f6b1KEyuvJEivUX1Kdyt/VKNhCKiXhj3nx/Gdz+fp2fqsW8DuCnqZWY/QocK9AhJ870pr+h6eLQIOY7/bNB89c/oMCnd2HFXDhe/TufD7Uwp6Tki9AYx7SV2BoacVUZDa0FLthdX9ftYcpYIvXsvM+bsyVGuFbTNIqjJQlTEFrfWcKWiiing3umrtslJpTaM8laZXAEzBEuVhuq9Kb+s4VW6T5m51CNa90TGoXB73OD8hrfEckTfzfpWhCiqvfJy0pn8DZgNd10P3yusIUaGdgReVLTR2xzl2XuOe7gqC08fhKWIt5K4FrbHmUKa338yLnG8ZzVKndz1rGfBoJPJBzA021Pm68v71Wete83tKm1wvGoGrTqg8o5SC8/mMbcs46iH0M3i5Ogr4PJZ6MDTUuoOd2lVOcO/0X91b5Wn8/RY4rSDbC9mdhiGX0oactqj/M6+lGsP8mTpfNy4sypDUlxFfBAqI/nCs+/4ytdbfWbsRlBL6nvv+u0GvRkXJG+pReyM0p7moVWQetZQQEXrhrM0loxmbPsQYzMK09AianOeSEmaGaKLrRnaKqIoAccwYExGRQmkAhQdlfZtB5mrezRZyRkvxtLUk+9VrOFFvZwRm2jyKYh9NqqD1FWHRoABoCUgl41qPMBoBCgPlfaQVBgQ4GJBc/xaeoLoma4ilbB1AMDYT2bxzb7OGYt2+7iCFfxDU0SyajiBqXqdIG03YzhvUGQGzqIuVAJvPeWu1NzNJkMY25tGfPd3M2GzC02LzqWDfD2zZIyuTwaOsjDpe6wSbBQT0wY86ul6Pyovqt9bQLOR/9vRvaynudWCWzlCeOa+Bb/1npyrAGnAc3gX5VDxlODPlNQHNGGWHAHkSqkTxq6PrtG04WkUWWXY+n71TbYApHkV4REqjz4mRrgB6WjibAoz1b0OnSAl5C3neKAuCJ6SEfT9Qsq8FwXsDelp/irpofg4iHRHhZBQbIQGd9rLnBvdxTLaFAafsUcSnfArwf/PmITQ1LaFsBUetqOYRs6ctGgZZROxZDoASHhFs4RgNRwEMqPsOoHmUHAzWvF4fz9Ypec1O1kcDons3nE69Qy7PMmIfw+aMoJM99rdeDWiRLZYTtkSH1xFNXgyoDTiFDA6d0Gmg9FTuHDZdyu5UyMWb3iABx35EYwv0lOOeIgzrbKxjJJG+2pohbbQZm8/Xb+7NW/oexRwQnWG3k5ZGcu5LOUFQFL4N2CMiDuRtFoDmUYHmoJ4Dds53ut6OiIaLtGTAaXqkVQ8eSQdZDvDwqH4+Mgr21pBbC5A/oiMtwMOIwMw5AznqZiLjHDZHhZcGI16AGEkP4OhNsIJ+msFS2BFIKIioT5PGrimPVN/dS5qV8+Zp3AQMWwPg9Hs0oGQvE9HqsNW6LsPoaaeWkLlhP7aGUk59/X7v9Q+L4ANmI1MNkxX8UKWfl0a1kAhoAKhCzmeot12jQBSAWMEO9aIS0WadDjUuVyAAmGvv6Tg1hU4N1hXg4fcVqFFDmoofFWb9ngKHqthoHTd9px/w2Qs3FMbUPY7dcLYoQilj9nWcI8pU2Z6eXXIvWsm12I89FBAZW1OAoQUT0hoBM/jkc3fQpRsT55E+uhpdOj7ddxrkuo46rpRGcfeVZlb6Jn0w4uC30mlhg96ooKpn/ta+rsCtArStjXo8t+iaz9Gx3jLAdd3UIO9Kphiuaoip0qqdiZ1m7cV667i6stgGzXA/uUYcPz19ujeqlPPino0i60OI9O+mAbitxuI4s5725vMdgNEacaPrwc81wlPnqt9do/8UCOV7yIuU96iBp4WRCXby0j0kQKGA4Ar+qLF9i6Y5N53/+u8KiOueKB1p9J+uk9LKSo8c3wpqKs9WetS1UGNpRHGRr0eB5gWM6Mbesh6su0ODLGev9XocR0/RoPDPJXv9KKE1N+5SdMaagZ6uwImM1LNG3nxrnDpnPfe3gGiVaSvYoOdQv8t/GS2l67N+X/ebYyTYpnSl39No/nrU2WO7nAHywJmPD55HGqjV0zd5rwJTSo/qTCSNKUjFM6Ag4C15vdLtAIsAOhrokdez4venblxwf7ftBMq4wbcbjv2YakP2VC4E/ZtHYqWgNSqJeo46r6seVXM6nXB3vpvOKOehDjDSieobXPf1LGoksNbF4zuUl6zgMWusPV92jCgXr53ZDWChIa79cbiR5EZpwvU6mrbR0NcobjoaSDPq2FD6Vn2HgP+6Dvy3lDkNWWmX81cHha4pn6NrYc36nCB8g+MrJU1r6o4lOrqHnOk6cE7IEWxBA3KAunM071aKG6r7jhaNJlI0OSupwJo7ZFsNoy5HHUoGHAUQ5800ItW2RRH15KmT2ByASBg8vOvzrXWwz8cY+yfR/SVHNF2Gd8+sFS14SCmD97UwbhWk7rSbhaaMPC9qBcbZTe5t7VF81hwMTAVRtD4jN3fGJ/OxDHkuPK8xCsMNbdZhSikjtVnfMrMAM6t3riy+ZqcWXXizp3pZ60se7xN5E3tA8N9p+Dwi22Is6nBiF8fTqXSAj1GM7D58HA4eTbSYttD5E4Ayorqis2cy8yYUyXX9Hq0SVw0boZSC6mzT141fSOJEDcg3JyBvW6/lbdG5lAK1Hh5Rxfu2XFzGJDfzI9syHHVeF5LypyXVV5wOSy6eWpvgnU2F3ysfSGWu09taw11E2LXaUI+5oH9zRXjI9DbLFp++6AKonSbZ/Tgb9Shfu5K3F3yFPBlAdNFt/dm5uD5jcXa77DX0qDY/z6mDjLRB+pk9Bi9llJc1lzFdB6gj1TY1KR/RPLDhfHfujiDnV8FTEbwipQ7W5Tj7Zogap9TXfCbX0I07v0ipP6NFc59WG6q1XteyHQcOaa5Rm9fAI3hIgJRy18yQNqDa4WmcKYBUoxz2yMBup8GiVIu//ziOXrcwRXPQBNeFWmvBK31T3Tb3v28EoLPUEo6zBcsBto0ziqCXxgekFEzadYYc9ThzDjB+O0UEWsM5gjBaPRANmb3BR9h+5nGHk7xnx112au66eEd70ws5aOaOJ/KRHI0ZvRtuQkkJFoCxBx1znhJRvRXU6+xMZpdbrynoTtEcqdhbSt5du6+/RyVPesymWYyIdFrEOY0st+tzyJB4J/EMFF9Lq14P8bT5WbZ4AJx23dHQhn6RvXGIy482gdG/5/qHAXwKAKkippu6KoqGuT6Yeje1jp0aJPyPCrmCYznnXoNtBQtVQVPP/Bq9pIo3FSU1QBUY0zlzHjpnZbj6HD5LgQZlymo0qcKpgBCVR85jBi2st75em21Q4ZiF1cvouBZI8mpYqkLLq9bamfNq+I9DN1KZZvA3TZF8KjwJwHhR4UiJsAFSqdGpyvotQ1T3netCOlxT2lbFXxs76H5pMesXYEEa60iGNzXWgAsPzoVpngp+rEAG6UBpTQ2tNa3oFiC1zkPXTA3d9Ryua64Xw835XDWildb1vlvAsYLzq8HF56yGUxdmQmsKGKwG6qDf+T59b61RM0XmTYPvFhih79A5Kchn7svuygxAZYJ75p40GqdKs3ynGgO6Rvo+HZ/u3QDt2wugudOsrB2/Tz6oxqbuSUppomv9nrJUGMEAAEfGSURBVNIvx6M0yufynVwbrkGL4rUr+MX3rrSmdDzTotOo1hzk+/q75J6RtmA9zUMNfd0fC2ODETNjToxICRBGaGRabxAsKC/+fgs8WCPele5VZqaUcLlcpu+ugL9+V+WTgnNcKz33t8Br7rOmi3NeypN0z83c+8r5KnitOgHXbnWoKL9YZdetZ/SaNyLHKPt1zCsP0nf1PZf/Bj26wVVK6Qq5OmVUjq/6kpl1Q7zz9GW/eB74/Q5A9hQ2MUjkLCa4XpyaR3vx0n1e14Dz0i64ZtYjPm/RySq/OD49s6ordccqhi5T6wFGOK48SvWGUkovrk3jVtdKHcDK23TdFYzWvfBoo9KdeKpraSSsju+WnrZGD6rc5lrqc3KJGJXmdYxUxqkep+fIzANOct6wbaVHsHb+di4vIoZ0PRjBOtKRMrRubuPPzeXltuXR4AJhYN7gYSl76lyOJjQe7Rd1wY7QT9kR/qioR0NLDiZ4N8kDDw/3XpOIXVuBaA6R0OxASnBjrGxAHU6X8/mMlBm1QX6a+vxoeHM8qOKEYR0rLz3mc9qiLlIDCgqOa+jMyR1ILVmAAg5e0gD1PY01KZhkYU6z7CrFO2SDdCbdZNvh9ffM3MDkWVJ5pFHZJY+SACqXeUZ5kU5O5QSzOhmYfg4CIA11SWXFVgqOOjsDVB50nTlltGNOlXZ7Yegog894dpCfp+q0Y643df3TElJr2G130BCGhIxjr6jJkIucRSO4Ajh/jHTuEhGAyF13LaV43bIt4xCH9QTAS1Qu+UFKKYCWYTe21rDvR+fVXYbl3M9hTrk7Cq1kbAGeoPJdEUEehJdSwn7sEVmVsMP3C2nwYQf6RiRXH7uYa7VWNKvYIlrOjNFHfjmQxT3Q9SNgHM79ZthO0qnd5uAezfxpHI8NWaedZldd0j9Lobdl5Ox14/q+IsNLCQS/jijT0+kM6lz+vZhzaxHlWz1VGUDZArjBCO7o9n7zdTdIxkHKSLmA9cJzFkAvJSCihb3+3FiX/p/onSozSXtb1Ir0+2ebafBlPwvHvjv/NXhn8gBlW2tARPkDrFeIbjcjIqYB14dbRDpaii65AXwmIDJPIh01mdfbS8kbFJ1KBwOd50cgjs022IgiBCwZ8in3TMsSNr2h9YjAu3SOtFseuBSRyNabVPq6hG1hjFR0HbvWisoowihL4PIpGpGwm3cPJrLOc9RWbLXhwOGlCIKHUOKpHcyAENJrbJwDnYchn6KjciPm0NxJ5lQ66ZmuI6iD9x8B7/0DAD5VoFbjajUSVPGj8gDMwB6ZvgrDW1EXapSoYccFWtNF+uaJIspx0ou8Gs18Py++VxW8dTPG5rdp7GpUqCBQg0jnsxoUaqh3QR6/U1FU0IpjogFLo6GaedgwBsNuwfQ18oGKLH/Xuem6lOJeMqYVjz0uoZDMaaH0TKjhN54/kP9hvHlYfrM6eb10jqtHTY22FaBdDSwFXDgfXd/VAFb6Pp1OHbjjvUpXazTDSsMssrsa2Kvxzv3QehJUABTg5n7qHBU40X2bDdN5TTgX0rmCKWoQcU56rnmeFIRW40uBAdKS1kBUUL0bsGLYkSa1BsgKdKnhr2vpzw9vmosxD3/HDFqwIHW+e1mgfqU3BTjIu3SuXBeCfB2IsDkFVtO9bykANFzINxSI5b9cG9KKrp3WN1v5Cn/msxREUYN5/S6bhrCmI9deu28qrenPCnqcz+fOgzX6ptURgbGCLis/X2lqXOQVM9/i+HVew8APwS1FspXvcq5dkeS/QmspMRXGjYhahzed71QQYj2Dutb8Xc8d90Dv17Pz0jh56RhbaUDnuHZT1kvHyIgp5bk9asAGMKHv0O9RsdbvKU/ktYLHSpsa4a+0tfIoswFArkD8rWuNVOWY1qjcQTstjJLZ2UY5P/ZhPlf+2ajf0nlfylEuoE3rSoWQCrgbr2Hgl4JW546IfE9Lc9Mx7ofuBeepvFp5oP6dY+A7dN/VoKexr4AX168bPGHwJXgEw2HH9K4VQPaznhAFFiYgco16VfnIZ96S8eOclend2tyDn69ZJZyrFiTnWmhkIcej0adK1w7wNsBmXVX3X3VL8k3lB3zu3Z0X7O/pSIv8oqzSun1ehyqiHc0bGZjUuYR5upnXfaoBloz6zV33DgObQBURweM4vKYUGweY9cg23/8R6VZbhVUgF6YZZuREkDgiu8wpQMFkMwNSw/k8l75Amvmd674vnXStNaQtRRpy7GM46GolEBYgQIAvDbNO2uVhLjjaAbTZwUIgXvlKSwNs6bRouevXBNuUlrnep5OnSQKz3FUZwX9HEwXyVfT7eDaGjRP3Q50iXqfM6Zj6xWjsBPNOwQZDRUU2Q23zGFKkFXY+T7kWVJAJHJj5GGo4xDePnKRjiFnrOWfc3d0H8EuUcERTd57pj+81sbhfx3F4yaJkOOpIW/Tx+j0pe9Tf6vTYRR50uRrNR5Q3EXFS/SEehMMcIGFKaOdfbXRVhlmASMG/8ojSSy0BFdNeew1D34+GYW9z7K0R4PB9HuAeHYyhj/Tf55IoFsCFn6ExV9Vj/CzOEdiUcXRuqz6kzyBvGqm3vNcjMMvmzXy27RTge4LBn0VHVDZP4d+DnrdSUCJ6TS/Vi1l7z4Eij3qDAaieJsxoYaeJqK8q+mznIdFhN0XqtNoKTH82r7fhusn5FGvh8Kc6B9s1zib8u7RhrDXskj2XMsHjsHBy9u6uKTmI13kcz5Y7/bwr7swLz+czYHEeSgDZBUBJUf8yeJK5LO4RoslBs726XHc9oaIdhwPQBtBdUzEyFvc9nHs5shQOCWjICXvb+55Svz6ag/48XB1UN/SU9Fy2CGCKaNoOwPo+qK7IuR+VQWBbTxWf8Krs5wXRFK1VdDvocuxIyfl2rQdGdkVgIXnWG/2/4tHUdXbC/N7rH1KDDxgGRDdmxdBWY0IBBh56BexU+QJmY1eFODAUsPXn1RDic/QQK5C0AgKq2KqxwGi/qXBnnr3g63iU8ZdSeoMMNab5Pp2DAi38fY3yUDBBwZHV+PUb0BmEd6SFpyVQkMhzyfxzfpnSpoeByj1zyW+v/1AiGDrL7oArEOKCZo7IYbQhvQFUPlYjUI1QjXpa36P7yfVVw5u0otGROqdbYI/+vO4f912VKzWA1MhMyx7cOkMKXut66708IywYznlolAsvNXb1HGqHXTVIeI+CwfxM/1NBN5TeiFBY1kvXRvdU53krylILldNoVhrV9eDfvM4VpHgsJsXH6cvCGzjWW2laz7jyCX62GpIKlGuk5kprfIYascBLQwyY0/NVWddz8MJo6cbRy5QR3f9h6L6MoqJxoOAMmyLpeyeFSZSzlUeQXjSKms/Vuel7FTjvhlTnkwC9cnyXNl0wG7WXBo0AwNx8YN8PoKzAl9bbIoDgUSD8jhmjcevwgobRvMq/UjJqw8QfVrBF57hLCko3YuJajTjlByndShUVRd3sxXldz57Slp4nBZpXEEXfuRql+izdX/2MZ0V5oCuCo+YlaeeWnqHruX7OeR/H0T34tSt1LxuwqIz3/SLdqENtdGHrfDCNvWJnNV1f/qz2xjizNepypfl8tBEBdzqdI4WEMjM6lS507zR1QGvi6vu4FjpHAgfcY8pKXRPOf3U4EPxXpyPv4bNVlmst2XXf/PlbNxRYW9NreVnoNi/B97WBzyr7eel5csPBa4mtdVGVllcdcAXt9Vyuv7fWenkJ0m0pJZoFRASZ0NIAriKySegceNmddyuRRhUpoimyBXSv17OakhvyZg1HGFZ8Do2blNygPG2n0CHDUOlyYW5SlpBwzk4HbY+oud3rRaaUegR1zhktALScEwo2JESEDoZjz2pFS7M88v1s3gXVRmqcAj2qT1myroe40Z087bWNbui+vn7Aaz9DiDTJSBfLAUwK3el56raDRR01iFPjiOiuRXcdPBxdX+fZ59+ZypYSUPIJNbpvkm7MGizliOIbgRLKW1VW8QwOWh5Ai/OwGo0agg6L18qk3E9GkDPke/DFox1elyx7embJpdd6S9mzcchAGbWZcsZWTnGGGgoKSh61OS0ZrnUPkDf0g+ge2shTs0dQ1Vq9FmTsNaN8vRaeA+h9YxFBAbUil9IbyZTiwHWtFSijo+ve6hTppvabgpw9LZR6vOqOSNgC8O9NE2M+pHn+V2W9YcB22oCccBFbstYKtNGogJF33RmVPfKrmeHuLrqYW8NxuAwxhI1WK3KM2RmRTc/Z9yuAhGoVW5KSLpLBUDK7IgevqUNe9LNi2tzxZRR558OlwMBMo+DViDR3AKfiqY0HWoyh4XodWXzHUbGdTih3pdey22tFwZBfwHA61ergoU/d+WE/G8miXuUoK0RwOols4JVLRspj7nTwuOzwaMmjjoCJ49g7nfP8mzmf2U5np3NE2q0ZSvJu1pFxGmfbo/K2ckI7KgoafKs9TZ7AIBBNHhrcrkZCzl6f0/mwz8+BLu8YnVPpjUpSxyJS6OVrPeWG1BBdf/nGFNHfhPH9fz6i3Pmz6wPeI4ByPm90oOYQj8yc8ejpWg0JnjlhZsibA4QpImWpe5U8ePzoID90YUAyJTjOOLPbMkfXExI2eJfe1hqOengNQ+ow5Al8RpQYyGXOcHPda0Qbr/r9v/b6hwB86oEHlmiYlCYvoxrCt/5dlZfRCnwGsNTIpFBkqqcqMBrZsQITOkbdaBWoeq1GyQAuZqCSf1MDU6MrFARZDS/OazV2ua6cDz8vpeD5+fmF4cyrgxDWsBUvDMlOZxbrchwHDEM5PZ02JKso4cnY98Mj/5K0jbbWw92LhHGzmC7AlCgPqSXCrmvmUX6a9nSgFA9VVkPC53/qXr4VzFMhsRolNLhXMAmYI/2oSKlyxu9qpJyCFev+k74oXHQManjMRv6oEaPrswKLuqdrlCP/RuNXPfqkGwUa9exo18RhvA6DSxXCUgoul8s0Vo04WZmSCm4A3rnuuncj18yFHr3ykyJubuBw74AwIsywbfHuSDHwNKDYp+7tdC9Rw6g7guyChO/IoaTreevGbRsKMfdPATaC9QT8dW9UQda1UaBCvcCkoXEObNobYIB83Ic1knIFR/X9Sqe8lM7VccBzoTTOs1FrfRENymcoHaw03g3PbSjZ+j5dJz57BXxISxptrX/3cYYc8uJJvXhtd51jpOKQvg7WzrChVJuFIE6zMLcQ6KftDvt+9BR7Fv1VYBoJQHEvLcKLDKRetNusRQc+RIHsGVBvdXaakNa0kLjKssG752gplR9cazVIf4tGlP+Qn+nfhnH90pG26gEq85Uu+CzlVUoHCuSqI4Lrw1o2a2SBjlvpXQEnPYtcDyr5K61Rv9HnpDAikRCyMXkdFQwHVim5F5g+jgM1wBLTOl020pA47hqd6XLJOJXzxIuHh7qhpYa9XoEElBIpcYuRtM6bvH3VF1TmqZy4BeyugOnqwOJ3W2u4u7ub+MhKA6ssG4bZKJ2i/Mn3ZdQ9HueuvqDVVR9TQHKlOT1DKaWpUyv/Rt1CQWYa3gpc8j4FkZXWld5Ic17b06LW0ahpNs4Zz2QYOGGEk+YgNRxTAmAehdDgII0dcw1K1a8ARH1kwHJC6SCLNwpClvPTPBom5YStsNRDguN9pUe31NAPtR4n5d62OViyndwgG2doOJ8cA3AHcT0ONwJzDp10tiNyNHMwq7juTdLLMMkc0kOXpSfXXVucvQmYLxgIvhMJLCek4lFejD5CDUNV9LuUUkSHu9FWW3WANYdMBcAuoH4PQKOutYYte0H8Hk9l3vBgnB3/97JfJ/pGTp76WxuigqDLtTw3PSJNavZQj7JphwO3GI4QlptI0ZI15WiecLgzYd8dXHEwwHDsO0qktzs/8DHTfqGxz9RwANg66NdQktf8anTqRqRUSglIcIAxIl4IxtKAtma4Hu7Yvj+dw0hPEZXntRoLiugOAQIGgOtAY+qRW1YrUqhUW9o6QHG0wz9PAPLs9DqOA6d8iqYqDoa4vUSe6jpIPTw6L28FOWo0elulhL3uANKo8VYr7qLOLGlm7M/IButRk2VEmfq6NOTNoybrUWGJZQAKANdtLGpvVuo9KWrNmUXzCMpfp6vD6BB1UKqcHMQ9rGFvu/OxlIFKXpi88UYqaKmhoeFyXB2wAzw9NC2AX0BaKUWznpSwnRxQOY7g3+0ZtRkQwPekO25b6AnOTzzt+8Bed0/bzCMFnfeklD3983C6KlkbL7mT9+H+3AMDjn3vkb7kM6fTydc8Sh5Y1Fg7okt0RvK12dz+8TqiEQWeR1mI0aiudmD8vJ0cjI5nb2mLRpdic8cWHkdFLkMWdng5+Mmx753NeXp3lMwS/TrxxE78R8sRBf9povMVTzUmEJ6QkCJj1xvJpGjKkbAf1QG62IrWHMS25hGo5MJOuxHwZaxXuyGnjIZojnd4t+zrNYI+4gxtcU6O0PVz2aRj9ihx0vVVE+d+8PDeVOZ0csdC2AQI500zl6Gns8ucehwO9EMyFFIA+Yvt4um+UYaH+rm9DMj5X3r9Q2rwaRQaMANeZOpUZHipgNbICTUe1HuqhrYqitY3xTmtKjArYLYaOjxEWktNFVsFAWkI68aokaPjnAuUAyQAVfjUYNY5rUYJ/107UqohraAS0yM1AovjrWQKAFLeYCxwLoYiI5zcmIiaM61ib14MnEW9u93cDZ5ZcXfBwSiCBNYYQ/RCGsq8C7fhafQ21Uypo/BqrYZhvU/Als6PypkanOqpVCNc11v3mkbyqvzrPUrHSpNqTCutcc81ckHpcI2GUwBZPfhqyOr4OD/Skp4nPp/3pJSmumNqVOl5m8AKGasqhZNBtKy7Rr3lEEy1NZzO5zB6E8hY9f6RLrRhK5sLYAzB4owYXaiklJCKgyZoI62y75XNgFMp3k2s1hopLSRk9NIAtR44bQO0Aubu3mtk0kugKU38Qtefe6sAq4K0vFYAlpfyydXwXsEW0oeC/j0qA3Mk1RrRofdxjuuZ0vOuRqvyHf5Lnqh8WdOIV/mx0rcCOWqscOz+XXrRE66HR4cwrYtNNurhzgqYd06rzRs0FKmp0/cjSM4jAyKKI7qSwcz5Y8i+1VnjZ2sttTCvcW0O8p3rMa3tcRxd6Vz3W/dW5eTqxOBak5fp/nJ8+k4FczR675Zc4h6sZ55jUj650rY2HSCNvYh6avNZ0H0mKMJ3cd31e7+li/AZk5EvMmHeu8HjVkAaGNFxOQF7PXq9trxl1PDKX68XB/TCq95C3zifT9NzUhoeeG8eIbQt0cXK11UOqUwzm6MIqB9wHrW2rjhqVCzvVwDYu9vOgB11kVtRcXyWdjPmvSt/UtBnHSv/znvWCDXnN3OKNMfCcajThfPhvlLn0znxeysd6TO0Purd3d3El1aa0/fybK2NawBMQCJrEPM/vVIC2CEZcJDjdLoDmgXYch10GREgh7nRcTqdsJW7wVdTg4d9cF3YCdAcwBL5r52NVYdaIwJdHr8ERXMZxir3zcHAkcqZcsIR9SGdXx6906DBgbWN9aTgwGY7Irq1uJFbSu4RcWuqWWteM64KH0yJ6W0NKXnaGBAgbKSP0cCmXCunrT+jz12K23cZ0yrafri8SAmX/UBOGXdhILpzYk7bZKSfI0LWgSwHbRqOSFH1cxHF6OngzJIiF7rVcURHiTDPKYeUN6yR8OyUmuB7WVsDekoqZYAho+DY/VlfL1+RUuhdMZdyOvXADCDWo6mt5rXjJt0X1Cdbr0+Ys0eeNTmTZm2yLWqkpXpwpUcudZ6Sxtz3urueGO+vUfJnEzA7IUWH0y1kr8V6urwnOFtKQUkFeYua5sW6HUS6aAEkACP7qLWGZAlb9q6vpRRvVhCNPNCqpxCWrWeQpAQcdgTwEbUYW+q1/Dwie3ZwqZ3gBeeGzVA2XxPvHtoYqObvOXZs2YEP1nBnx2wHP6x3zB7OF9bW9FTQXv+t2zo+CUZv6r6ye27nf0Fj2vDQ+VWsVZSruF6vqFV12ARkfz+QJt04pSRNQ2qUIChIyXqTHUYo1+q03x0B9RA5F2W1zBwsOg6qaF3Gix859hpg2anjOCI6kjq7g9mnQhlusIQeVZdSwbFXd/zmBDqwzAx1d+AoFepJzExJkro+1qeILPUo5NSj6fxcO5dgo4+UEpDJC0dEcYv1rfWIxithv+WElhpqighY4eFeq4/ycACCDMBg6j7Pb0LGloR2OI+oQepbHaB29TNaMfRH7/oNnE4bbwVa6yUBcuAKrVaP7ty2cCyg8xfEGpGW1L52ed86b3c8JIIXkADWL20O1KfCsyplY9ooI6L8GD1a3npWxu+9/iEAHxm1MhdVvhQMW72/VNBVWeJnuqh8JjBHT1HhWCOh1BvNca1F3vk+fb4CPgpM6ty4KSO6aFyrEcWxrMY/lR5VqtdotFUR5udqsNHgoVLIOet3OS5GQpE4gTxFT/l6H36Am3mxWRhSKTifz8HkZsBIFSZVltWTPYxARvMN+qi1YeoEJmNNSaLABBScPfdj3WnoqkddjVA1HPRzepbVKFnBYKWp1aDVSFI+WyOs1nfpmulaEvBQA4CC7izeOz17XEetEbS+g59R0CjYpGuqe6BnezXkVClUgFznyP3vAGXMNacMq55qcr3GettIO1MDvlZDhnUPeMoJJnNi4dl6zIYFf74VJafRK6SzWvcZZE3oNXJWutHfNVJUaUXBZzXCuR53d3cdNNN947MV1OV+rxFHQ+EdqfJ6rrjn65gJgJLmlS+Thyj/0PfwIq0rmKcgjBqCWltNgSTOfwV6lJfrGJQOdZ3G+11JytmRuFPZsOXN62A097QxdYPz2U4bTuk0GeEcV84ZyPMZpYLbbJ/WuNONXCmFl3upT+a/z+cMwjPJB3Rt1LjW8auzQOmIa7fve6c15WF63ielO81p2MrLdSxM/VfZpLxGn8vftVGR8sW1Tql/4aUcfSkbZqBL9015m9I1x6Lf13OnP3Pf9dzq/ZxHLgmnBJy2E1od3YcZVe+Ga8P57tz3kIDVetb5Ts7raA3tGOnI+n7+rnOdeYWn/Cjo4g/yf1YAjDSun/NvZnOq7doISHnA6izVS0Hk3rGulIm3KbC6zk/pXemN3+O+cSzapELXgGPks9dmWevYKTf12Suf59qQNkkHul9aZoLvB9DrGSlYzb/Pcpn00ZCTR34c1rDv15Alu0fuNHc+nM4nILnhUffQLaPouDvOHFT0tfEUz3q40cZL11vXUHVLM/TnEKSxZHhVHvq5d97mdcmof3b9P2XpLAlos7UuVwJk0ZR3OoqBAMJNIoByRIRlN8LClu2RY3SEE2w6mtsGBNXaMSIAV3pQHTyn7JF5qChnj4KzCJxiIXtGhHlNM4+2nObWvNafwZ951DlCHsAALyedN4ONBgx0jkdDEHEOjXWfHWJ6fglIjU7WwLadUA+P0CwlYd+vHaij05U1Zg3FAZ7ljJh5OloqbrxmY2MgRq1wJz2oMbHbMM9ui2hlyoA0gGSA5XgaSvHoPLVFs4kjK40amTybm0S0tuYRdsheDoBgHiMZy5ZRMLJDkEYWleW5HrbLpBTdl0ejQqYflpQ7mEp+THrfyslpxOa/b9sJqaHbXxnRxTb5mjrwNMqUWIBVkLltpURHXwd1LDqIMsoxRTOBkot3OM7F66aVze3EVFBt7zwz54z92GMfM/ImafMNHbCzNngoEE6tLWyH3UGvFvxn2KnhBECC4RhZcMEjSgBTPl+Pdu3y2sMxff24hHF83VYQPd/YzCR1W1jPOXnesPOtR4Vx/1MpHmfYZvtyi7R0yjnVLRjk08/fccAiAtfrk1LWhy2btz7XkkuAY0c/E/2Z2fmn1xlMGOnNUbO11t6hvtaIpmVn8QBLqaOwC+1p29BAG9NBaQYKtTgnOcW5OVwenU5bd1S3iP49nUKvtO5jdLmDUYLCzHmdwdD9Hciud7c5gGfVMR3M9KjwCzt01wo0d0hNPBwMbhi295BfBqYMq642dA7yt2hkIrpxQukgo9OKAVFTuESXYNVnVQfs80gOch+XUfboX3v9Q5pscCGYrrYuPtMaqCRNhW/jWpWj1UBXY1kVPQVWCOyokqjj4LN17MAcNcix6Bw0akkvVUJ1k/kMBZn4861uaEMBGhEu/JsqOsokdD6rEa5GsO4Pa46M7wCAeyMOMWSc4AtgnltfTlsXFA0V+zEbi6qIMHWJBUa5Pv5d1pGROgvNBb2Z16JQQqfhDki79TpqXXBt13QT/v2WEXHLMFDjTUFKYBjOagjou3XNSBMcu/6sQNB5CrWfo+VY+F/3me8m3SutqcGptHY6nXo6rRrEq2Gia6iG8LpOFGb6LGVOHBv3kWs+wBF3TO/Xa6cB7r/XqkCvf0JFvVrFZb8gIeG0BRAT3kQFQhgZtZ5BjdJRhVM/D20NXj8oFNc2G2W9TpDQhp5BVUoATF1qlcdwXzVtaTbKx7la90j3e91Dpf0u6MTzxO+v4JDer7RGOhl06+syfzZHrZJ/UiBq+juf3TuwqVItPEKBvcEfXho2q5HJe7dNSidYwuX5Gd27KWuigBmvshUv4hve6VwKqs0gkK+feo5nmdUVfrMO2pHejkhrQ6TqtFoByxFFMEBtgq4KdujeKcClQKqOkd9dgbr1WaRxpQWuqT5X95mX8mDeczqdJgD9t0AV7vuasu004x7UFcSb6SFSnBfHgvJhHZfSGvdsjapVgJnP0zOszzAznE6UxRUw4PnpufMhgmAejVc6PXH+uWQckfpUchTyRsiOZJFuM5wMnA/XiWDXcIQMPYTfYQMKB3x2eGqnAyQ8h1zTW/JO5Qrfr3uhNEfepk6JlcZUf1vPrxogOi/VvTieNSJV0/xWfvH8/NyfxTpXWhuQ43VAIHUDTfXTVbarMr6eT9UT17lyLivwp2eEafiqN1L/AYDz2YEpOmmO54vL1cSolbMXVFdnQDirvDuoR35s1DGbOLzCkEpmPcKb4+X4btHcONts1hAGbD3QakPNkv3SXAdNGGMGIuoip57qrucs+wTje4YanUTNPEqIAEhOrsd2oPp08i6RfBYYvTJ0vE4LNtL9HRzwLBUCeCml+F35gaeSGVx/sWa47jtKGZF0BLIcHMkRHcY0TtomI6IYBT5fGSP3x+ApdENvTx3AJ32lVDzFOzlY488g/Y2zrjyR8v98PuOo+6SbMXrNjX1MNOsXz4c3xdhOp4jYccO3teD5vcPx6B6NkKXs+pqQkLLYEbF3quP2853I7+dyOzlvsIzRvKExis4zF6rNjkn+TaPjWXOPa0WZP+m4vaN01LoUQLbXg0UCwqFNwHC1R80G6Df2MGRtZuR06QAnmqf7wdCbriSiubX2tVce5eNmLbsKQ/LUYxiKpJEG2hW/F5zSyc9UZC4Y5lIY3Kft5CBzTgX7cXXQNOcgHXfOM/JY95INdAAHmLJFQnpTMI2yBlPpHY88Dt6puhE8hd+Cp7Q4C71Ui/lZZR1Tb+bj6bJeq+88nQut7dvaEbUkZzuDuIeBsjGNcfd6vFIjull0jS0xJsDgAN7RDqQtIxV2fB2ZX9xLg6GlkaaNKCVwtNpr62fzNP+cMi5XOvlE5iTDfuyydhE96VgUSmJZEq9vd716x+ohlyF8FbAG2OGTaa2hwMtosLRAM8NxvfayR9YMBcVpH9bBzNacRzd4J/vWVO/OXU+a6G+pX+6BI1dYGrVpGYXK77lc06aVBBdHcJQ2u6B+ohlHHtzlznqgOb0dMb8ASY9WkSIwJQPRIXi2Y/jOfj5a2Lf1kAyzf/31uwE+1lpQQxQYnhNVCPSAq5LE+1TBI4qsyudq8OrnPAzAAAv5NwAvCsGvEVG3orA4PgJPapxrl8FSyqTcqVHA8d5SGvV3FWIDQZ9T89R4UUNp9bKudU/4r4/Lv+u1tMJ4aw0BOQ8FM89RAm1ZJ9joJqR7O/bfD7yCtK6QrHWX5r3TPXCBKvV9Yp1VOeQ9eqlRpL/rd1djQsE/Vc7XOn0rrd0CXxjZyb3R7qercaAe6dYaLpdLfyaNEkbhKENQI0fHRQNF11PHznnp2qx0q+dGFbpbxp8anRwDuw7qWhnCq5fnduCueLjh2Y29GG+O+jxMB2qtRRj+AB38HW7067oo8LOC6mqw6FzYVj0X1ibBlGpCga57zusWyErFfQWWViBCwTjyrhVY0DPMsSi9kq7P53N/r9KK7vsKEuSccblc4MDFaRqn/1v7OVUAiM9UXqTAI7+n4PZUT0zkge6Lng/OVQF1/Z6uH+mR5QBW3sizzN/5rD5OeL0pMy+uXjHXfovRgCDfaiwNYNa94wSiqfBZdNzqzqnWQjEc+6dAOWlHZZ7ShdKN2VyvVcenvEHLD9wCu9b1X9+h9EN6JZ9ao+0VqFEASEFGpdFuYBum8XGvVgNJn73utfIAPac6Px2DRsCuvEJ5Ie9VMJD3aUc2nisdZ/9+QtRNmz+vtXZnGsESTf1RvrUC97xfaa0Z1zLAWguQJs8yS9dN+bsaMuv3b62dXuooUh68yohVpyFf5z7wDNzd3XWepuOhM0n5Pe9T/UrrilJWKG9sImNUJupclLaUDrkXt/SglafpWNeIRMp5vtOM+pjLOE9NG+tKGcXndcdEWyKDLCKnwD2Ns1HHmFJGpG21DvCtslL5tP/HtNQwkILmctQZ9fxIeERuTjjlDa2OVDzSkjdKiLp2jLQwOJCTgHrsfi6Yfsc9CCBBzyB5wfV6jegrpvCGkZwGmMPvw0OHHECLBhVmNTquJpilqX6W86mGdhw4nc4oyGhWuxOcY1FaNTMge0pxY2MMa72Lb9kKqjkAM9IZHZhq0cSi6/sle8ME0f9IBwSUuK+17pPc4PlQPjyDdi6PWqswHMjZy6Sow77TIIaj2+cSKd0NPW2u5By1kq2fsQQvj1ECsGAaruqynrLsGRwtGqPk7M1YkJIDI8bmaozOc5vuqNeYl9c5q631CDQzeK3CkpHaiKyEOQCZkwFl7N9xHL43Ap4hIrhScho/9qNHUZEfJISDJo/AAMoFPjfnHACPCd8tAAYY6FFa3N/q4E/J3tXUUq9bR8AKAE7nc+zTgSP4vUepNdEj6FgJR1CAxylnr5MtPNQtuUVXos1rR0RyOS8/UL3jsQ0nm9qAXZ9ggwPpFs5mDOpc5HrSTup6QNCpn6fa14fRa3vsCfWrQeeD5zLiszXDaTs5bWCcA93zlH3NGJG3ykx0rpnCzslIsGhsgd5xGKoXhWpIm/xUTs6brQERnctOxgSIj7bDEnpqqZlnOpWyAafm4K2Zn0NkgOULTPUmB6UQAJuXO3Bgz1LCcY0mQGbYm0fHGgz1IE3W3j04JQf3j7rHGcoRjOH0f73uyDnhfL4LkM2Qsu+Vtda7bDt4l72Op0VTugmP6dsyrX2tdcqkJG7S0rDxz9upO4VKKYED5b5j///2rm03klw5Bslq7fH/f6nhPTtSV5Hph8wgg5T84jFgDJABaFfT6q6uIpN5v1S2aLDwOW36PrZ2HMT7/eVO8kY5VqYde9PZCosMcsp06iiraujUUfswdk+d035/B7/t4OPhUkfCT4LjFCh8bQnZPeqpRiIFEzdHs97okNIJg6dji4djn0a1FGQ61E5DyWxvSK0Cch58+U69bzUe+btmZq2I0Z4tocbyaeTrfZzfuyJ2yzlBY5T3fDoNmd7v/8dUCuczclLd8KiIK17ONWtlU94waIXp+Rq7w4QZeus7lwLuz+Nlujpww+miToOp9wcWKcIFi2ZUuVGHB9dRaUxf173Qz2uGHB1letBVOKvhokZR76vskplcqvTtz773i1EDgYLxPB9qlJCW1TmwK+DLKcvP87lOp95UHkWJV4VF6V2NbS29IwPlOmtZ09U+Jq2QNkspYQcUdE4QnGdnwN5jKkFP935ptdTJgOe9WwnjYilGxQpezXuwlciaWs/FiUx0lOzZZhyA0OrKLCFNnJlW55n+iS7VEaDrquBnTwfBbEItmSzbs4/Vg03/zn1fPQ3btz2cjqYjC4/PoFmHjM6dvOukRQ3eqHNc6eN0Ak6KkHXTNVEj/eSr6hTg2X29Pg6B7IqQK9ItosdOS717f46n9zk9y+0HYx/0jQ+znMUj/e+NN3AKuDupXWlp5QKKT6Zbk8BdoWD/JuePr42GWmuzFFKdAuT55D3n2v8kO3kedZ247/zbDNzIeaf80/3RyZe6p3oWfgrq8b38/X/qxefG2hPf9XivKltGvK4BaVRphXtDRZ30xfNzZgZ+//5Fa+qQOWU7+YF+zq8ZOsTgNZ+YvOdls6WUmdFC+QeEYtfciRFWidNhROvf9ztKrhANrLX8HhhWgOJZVLXQ8fJTn75FL1w35RdmK6iljlO9zpmFpvKP9MH1VXmlzimVDWfAVs8693vxbYBlhKUUlIolF8oqfVInKPeOkXvAFfLncceJlvxxHXSNVK/VbJ/aPPNDnYTMAGptb4+g5/CkWXU4qWN1dxp6doI6KpfO4w6ZPkaUOHYYdaqxSsImzUfiOmmUwxNQmMnnz6o0t+6t4n6eKadL9BOjA6gUuP7ZbQbvSi3Rh23M0iiVC2PE1MfjnLlcu9Anz9t7LD79AYQuS3Ndocba+j0OwPbBesrvvKgqMtIR/L0vvuYyOIK5aOGQ83PeyhWOnJBFbGgv0xaZkWfWcTWvTmAfLpQSzkRf8wuUNUvWj+IGvJ4NFO+7eMWwiNqY3UK5tLLJ/cysXr5K53x/rRxcQ73dANQoc/YWKNx737MaPMbChnX66ePx8tMW0+bhPOkKuWnmmfI2npCV0f/LPNj18brw+Xx6CSR5HbxB/ugx3KUx22yyznnP7M/3PKH3hqxH8AgvOfbEhhrXLJFpqTqlZ5t2WDVcH5fLI9BBg3nWGAy9ZsVGtOYpBTbXqrk7Zfg+jciqZmZeqRXP+wF6OCFRMLoPPaT9M4M28R93qPk+t5AhYwy014V3TMptVwM1q959oEWrNXSaghEZe/3podN4n8ir7r3bqQNcHx/hfKOMaOjPHY6fZzo1xzMm3bXmpb4qMyfluZIV/C+ygCPjTnVrdyKGDRi0W6pX93gTNqy+27XGUCF4RVB1ecEMQncAlug1WubAhukABVArbTYfejBlSHeHnNPYPriHdgtCT25zunAQd/zeu/dyDgE/S4KXHu02jGcW+/M+3TPhgAhex6SKlcBhHiwsMYTCwl8RQ5ZmcA+8Re81SHnCu/H7sCVLwd6VHQV1OufWZOPgkYUTYv38v14vPP0N6ytohoHI3uaAFLfnB4BiFePxoAVgKBZJI+2awc3Xdbmc76vEnrRJeaA2TGsNhfd28Rmj/HnYDD7RFlY9QacBa9su1Zemfe0WRUyqj0zlkH+uAzp9tuZyA1bwqi+XSzH9F4bIml1zJKqtZ/td/L6Db4xNSdHI9em44Gu8cSqKFOZ8Xw1BrQoqv2sp8ruSqv+m8sDyOnWCsIyIRK8OJ2AZpWe56BnFPZVVvS+9Z35ejVF+ThVbNR7UeD2NWs3koDLonn566FzhixXb1uOMvE8nlmRU3TFBx6Pls1B+EXZIjWE9MviocC2l/jTS6UxhiYMqdv5e/+E9MKqynG0II2Y5rPg8vC8qMHyd3306YdY92Uaf2g9BjWPdd35eJ1mqM1BpQ6+ja6H0oIYU03/1u3me9NpnxtzpwDwZw+acMNscPrwOf+gk+unM/pSFps93OhW4RqdxQ6HbWsPTO+rVIrMzmLXSdsQySGsFHl36+PiY08X8/tyQuK42p6mx3HY8az1oCOm+0Sjz/XE6tJgyTVo7AxVq7PJeeU3yHd1zrv/pDNDsMw2Q6NnQstafaF8btxPquOEeqHBUIaU86KfvIW/X7LBz7wHMiN/pfOR7lW5OI1f5E9dR6V/fp8JW/6+843QMUCkdNnD3jjE6rsI+WV4u4L2S4vu9PRUQjc2V53qfEWajufLv9+COqSnP5PlrcdOxRTZOMeebV214bEyvC59V90TPuq6l7u1Jmz/xHqUjze5U2a09GUkveu6VL5FOVUE6/z4VofiZZauqJH3j3SFbKjOsQsEcPzvVSJdrEMPi437tD3imx+7QVt6mz686hgZmlKdqoGV3ujuP4UREtr1o83pc41Bmy8rU83i/ZGwNlrnFWW8FbGVRJu2yLxV5P6bB51k8BhrRTlte1qjZ2/p8qscoXZVS8PX55aUmdTnvufZTjxAep3xHndKn8qwlt9R3NIiqa8tSN6oXbmh70K++VqmO0rTqAvpZvzbCiFi6FWlK71f1CNJ8a5G56ulpcy9bu+DDyJ7tGmdwRvVlvn72+1myG7GP3zNy/VyE88UGxuPOtlqAEfxNS7LNzDMDCl0PNNqHOKV7yJ42ne0MsPZwSgCePfc8D141HMtXw2p1gW80RCKdax0OtVb39imLtsqcbKhBtrmn4Uxvtc1BAuwntYIMFpl8e6BhBQpsOot0oA2dWWOMadSOMbyM9vLeWhgxpbKyXDF0nrE7o0vlvbJqo8zsQmcxIxzPi1cr/TutrynE5HfMhGHpG4Pf/vzMAOo/Xm8PClPusvxXZHD07yMd1Giu3wdp8JrnB2MArUS/w+JVQGRM8d3vz2hVEXT99I7WXjD4VGCU2PMBWPdpzLU1tIo4a2VmvHFC+R1OMGZGlnA6PEPOMRCZrV6GDvNJnegrcKUJINd14bHQ45jlRgezeTUKP9vqC8P6TD7xZ/JAzB36wbCBYo+caY/ElB6ZWxgo8NYdrbY5WGSz24Lu319vMAHCHaHOy57bpzaj1Bl4KOaOnyeG0kzd1cwnZ0d/SDM/J09/PLlL5CKr3S7JlHrebw8kCA/zQQM1zoRU/GDxALchB+7OtiqLx75e7jDXwN+ypdbnSwSypk5EOiMGpqPG3+sHfJ7/wuvW+foKDnrZJa+vvfJQDP32s0A7hmfOXJhEKw5mhAZ/mVOJB2q9fH/NZbz6Efrw5JDRLRzOQStRVdKuGlOc92B5Kw0jJjKTV/D/KkNfHxdYNj8DSTBcHx/AMNwWw93qqi5pr6i+6QPMNlx9W30v+7AYiAgA3qe61roGfozhOhgM78cnbGMYGhi4YiDC0NrAq/3ldlnBDIZYtHFQvZf/f5479i56mdrANXVMBj+LBwiw+KPyQLWf1Xb4Kflh2u5wHY8JBP6roVAvHMPldi1OEu7jw3SiGGYGrjsI+wyA9b7sgt/B/0kPPlUY1RhQZZELpcqfKmBmttLRUWbTfVWG1FA9jVxV3nkvPhhCejdgMZ2zbE+NTmA3dnk9Ktb8jBrVqpQRrnAtxVF/yDz0nghVcDXT7Lz+MpJWtMJsOXF4KJQZ8FnUGNbfdU3Oda91Xx8aKe7M2ftGnc4xZaja/0bvh85CNq70e/HDg3iPluhyDVUp5/NTCdLv0TU4M+FOpwhpRh2sNEr4fco8KQTOqYNqcKhjhHus71U6UnrT/dPPnAorXz8N/HMv1ODi+3mmKND28qU9S0uVzlNx/InW1DmgdF1LNJeNSI3Sm/++aJdZFh9/fcwyHlVW1xrQ0UDHHLNn9v5xY0i2X9ES9x4R0OXc4Jqpc2I/f4sO1XnH5zjPlwpedZDw/sjj9AxqNo3S0EkDXN8zmKAO5HNfeD7USD8NM71HpdH53rJ4xjIQl2Gh55z3wexE0uGeMbg7tJWe9axoto1mpyk/ZTZTQQH6g2v2IfXSIyruStdzP649S/d+7jBWdqdBaxcAnRap5f4ebXe+dMme+qTFeqw590Idi3rONMNy0e1eVrnJocPRquujfEj3SnkAaU35oQZFtBzylFX8nXt7ZpI6Xa1ss1INH+1j0xMKm4LbCgzqWaKsnz00Zb1I3yzl5L2oI4rX0In28/q2GjSrXKZsUVnkxkLwnuBtnulCI22dJ+4RnXbet6V51qLINvK9ZjXKbta+z/spQDWWBRX0maHNJvzLUXG1az4Leefp/DgDFIAPbDh5hWY3qqPq3HteZyrGhxJN2lV6Vvnh7VU6xuAkek40x1KOx8rM57Uo9xgk0/vye3YDrNZdnirPJm3sDhHPkPHSHcxMEDpIyBM0wHwG1Pg9qoee+ij32P9m3/QZf2aAgdxigD19lsQ6be7lRipLPK141595tsYYQLnms9XWUIr3dmLZUSkFH68LrRTJ9F2OoVoLPl4vD5JcodONMh16w1jud82edKpjszr95CNqaBFKa6ecmM9f3Onzul543zdKGJA0IheNDLQrnLrPyhKinLjvG68r+p+VEk3kC4rIPrPYH7gO7ntPnkXHYOjbIs9792EpvX/vg8o9uu9beKCvOfX8c5q67jmvr/qH6vxFZDh1waXDMHi56wVjPF7Uwz5jjc/3wB2X3ocU5lkuV7vmNFSnoRVMYRaoP2cEzm9v71Kk9NiTP4YPYOuRyQUPuNGA53MDgI2wIZpXc7zaa2a50kGjtojBEzw6tOVFGN2Iio+6dAWze6PRTV8pGpjxs/Zq3ivRirdqqOEsN4Rj3haPUJ5E3j/MHWi1wJ2P5llJrfgwBNenw0H/dHQ8QF08kujD0GawxAf5FfOMwlOPJA1N2hKa1LP3PEsH43U1KO26opdOn7qNV1bsSSy8h+3zsXZcH5U/vXfvP1frNgHcz5NnbrV2RaBhT/xhph+X6LRlSB/DloOQ7RNofzMxhueQTj4ddjVGlPPbOotqN9TiTmL2lNZWLVV0EN7P3W/nt6gYc/LvruPzOute42zAM8gKMB2ElHfKP5gJ3COL9ukdNjpes+oggtphCzzPExmP/kxXDAZZ9g9mlqCZBrE7apTkM/FIHXDKu9yh57phre7gfx6bvGrae+ZtyFrzypmzldspO1Q/OXWGSQNiX/G9H68XAJt8rdUKtOA9FbPfppmxSCMymlegrfelw/y+e+//ogefKFL6fzVkFbpwqngAcCO/1G1BeWiB75kdG/Mru9G7DvbywFKhUkNUjXDge7adOg45NfM0tAm9hj9OiXHSImhH37JddC24dko8XDMqxmog7R7ovVHkem0ZdqfRsw66lxCw7KD3jmKGESnJhDMpKmE36ODzvwEeCdwFgzNnL8O9rhIMBlOYt0i5X3vh1369/joEzKKbnxSYM1qhQoa0ow6AnXntpVpcFz7bWRajtK/0oIo7aY3/1uzOXUHf90Pv8zwfJ5PR15ZitDs+qKjROcrv0uxZpeGT5tQ5qevG5zkH0JzCXR2J/JzZOrPWzSOXYtQAq3H3Oqeh8IZTxBmpbftH5ZlZKyvS1oNWPU+GpeVUulsjfYRCYNiEyxnhUX7Edachp8qQKh26N6Qv3WPdw9O41Pfq3iotbIqb0JruF3mf9qLj59faj0jZb7C+Z8EqX9f91H3nGrDvpF77NG71ettEMaFLNfh0wqfSmRrEugc8XzQYZskA2DrAy5L602GF5bdOW9PIGXToC08vbCgPAM5jSWvA6jc0sx366vupvHtTsmx3klM50V6WXB/NNFC5B2A6AfjeyVdqmb3XSJP8Dg1W6D6TbtVpqjxLM4t1L9Q5d2aC6n2jDHfaXFcog7Ym6kEy/LHkyrm/pZSZGehBnX2aNN+vPFyd5+pgpyMQWFnamsFJGtbflWaXEbLKYPz5bcrL3uEZK1O+uHH+2HDFHytYRfk6+UXhWrJXE+XuiKl+I3q/7DyBvV/MDO/3F/7113/8KCdVH9E1OZ2zpI/lqN6zkpUetPex8rLe3XGi0+3OveW1vOLCvMQuaNVLgZ7IvDJ3ptY14Vf3ZgZlozBoZln2ldnILE/N3lP+pLzkunyq5H17Js0yalfpU2sN//rXvzaex8/TkUyHEtdHW3rsTt6l556vLXlAg6fiioqOYX7d5/ahEzZ2nu/X8HvufRmh3Edmojn99AhieBmeG2duOD1z/8OYifUvAFqpGGV4K5/4zq+vr6237XL0tY1P6HR7YPVX0sAkzzRliDrrVV8uJVw/pURWWOhnBVEwJzoyVFatDCe1HZ47aE90F1aY2DNm/ySnq70PE0ydF/vk2XX+1j6RF6vTbZ2xXR7wufUsc0/VUUB61oAN5Ln5WS2JI/2pDDeL4Gxzg/YdDj3/jj6zFSv5MXZZ7bpZnWtBR6XvSXwHvgcl/R4juaDC+/mpblZX4GX0RQcWEy1HlC3XsnTh57nB4if2JVee5Gt+Dv5psBH7WnbZRzokbZM2/Qeib0ggq2KW1bd2+fso67DutXd3VGNgDiCczx/3iRb251i6w8bvK8LeWlVBTDY79REzD26ycuYKJ+We3bQHylT+n3qwrtH8GxbN7mu1O5zG6Khid6g+WoLe3vfbz27xAD91fVgMuWCm56GHYgbQWIrv/3a9wKYeRZ2SfKP3Hplau36uP87XffgL16L3lSG4nrlC+zDqeSO/owzkWXi9Xp5CVp1fmzhEfX29j+DHawWgXV40IHijlgyffEftq1HMeWIpvg+9Twd+GVKNQ52kd88+tGWzIPimVxxX9PvtQaBaAVs0edoX3GOnqx7ZvGVlpxbpdcy1Kl4R6pN/dzuZ+6KDEUmzM9AkdMZsVn5e5ZP3PJ7SxB2a8P62c2hHoXO6zKxiOrWB6BsoLVB+F7/t4ANEYY/ftZG3OsrUeNXP0JBRA58MWbM7tIk333Mqj7wHCkt1dPBv6tzTqaWng02vqQ4bfWY1osks3u/3dg8qICwmGPGeScRcAxIfM6n4DGqwUvBqSQdrxZk1w9eVWPWelxGxO065Dx6NA3rfhxGwYalH1FbaKg0bbiHXUyfP+Lri26RYrtFZOkaQsfC6ijPjaVeS9qwY0p9eG8Dm8KDBqGurDgc1dk+657op7asDjM+t79fvV8euZi6dwpb3cF3XnJR7Ojh/2l/SwfksAL45qHhNNfb0ddIsr7/2aX0H71HP9rrWCKMiovv4HlFeDNhmX8mne3Nmj4rua+PKRkUpiybVgTGG9yji/vpaarmzOirGtu8ahVTaIr1qRgsF0OkYPZVu0pqeBX0eVXD479PQUPpQmtwUHlGuyB/03lQJNayyfN4315b7TvrU59depdxz5Tnnj2a66VnQ5z2FnDoOlBbPteC11DHDR3JlD9P5RgW6VJb4YCp2Sx5gGmz96aLgaar/ujdO5OTaqKNuDdRwmn7fbghzTXiutI2E8lA1BJXWyF+pLJ5ZS7XsvE8dgkpf7HlTQylSh56ecXXk6B4rXSmtqYzdHH21zGg64M3Xuf6Tth43ps2WQcq95Vnuvcez7BmJVNY141D57Bls4T0rHzwjyPpZPwN7EIPffZ5HGvMnDQPRv4VBiLKMNQ6y4jUZYGPWsUWGYYffA52dvE9G7VvzMp6PaMCu+pXqPfzczFRre+a46mynM0BpUpXm8zuUV+o1qdOoLDz1On7X19cXPv76wJrQuNaa96TVFv687jR1hx6kLHLn/coz+ayqu1LH6+PxzAWpbPD3lo1Hq8Gna0n++TGb4veNHs8113vTfZj6Z6vRTyoysadBE7Qmxrs7GsNxM2lu9WM99SzqfaR79nnjeaHOC2DqooalU7PX6VUvlEt5ZUV0Y9qet5SCYVxz5w/3fU8dyte5ebPzSPW773tmqC76Z5ZM6DvVpxtWlpvT6SmZtmr09e5G8DOWvHu9Xl4KNjg5ty0DcVAOS0/kPrz/HsqkuaW3uoFtXdqw9GcOIVD5rjz2PA+E6hunXkwaU/pj4I//Vj5HcD1U5+GZ4ntbZB2pbVOr95NaZd0ugwtK9KGjLsjzv/rQGh0D1R1J1D1oQzjvCUfurNpYWZA2LIJ2+/mZmT6RUa8ZfHQQ+DqslkCqkwBLX+K69Gc5bzltdHTnM7ASjjnvIdmat4/po0dmoz/L6+PlK2fLAcxrUhdt4bD76xUDh2AotvOqshbZe3mRj8aU6jN5gOtNO4VDXygDSDO1lTgzoYN2l9O8htNCB6zi9ZKBeWKPbPQD2+jqer1gUZbIbHsNwKmMQAG62EFq1/G7vOfihW4jsgVpH7hTxddz7y3OYMZpI+4OaamOMHd6stqByQvUJVRG6pnnNfeztlpysIqRDHuu2zCn1+G8vZrYt90TGyz+Rh677C6vRgmFd9I1qGuNMXXWM5FFdbrX6+V9pc3w7gP9Xtn0A6xK8vp6HSZRuk0nXInAHlBiYqwP4iDt6sArTUpRnZ/370Ep/9z1cWHNBVjfdTPzNh5JbRnqC5xgr2dC9RbKnHNttupLOYeThkYPR2aJ/rjKY/tsKTVlh+h7qk/+b/HbDr5fX78A7ALh6/6cv7fW5rhziJDiZ1SoAAhjv+D5tZdx1vBsTmUPmM1tSy2bQDwFGMfYnwqEmeHX+9cs8SilwL6WA00NJF4PJUpCbE3I0SynedDj/vi5U0EE4FPAaDSXElH45Zi4+/ubY4TXmwJzrmFkjY2Bd7do5P29J92pNMw9mgzNI7GlAwNLSWJ25eqNB3x+rXJnXxdGcZ2Bt9rwfL1deerBxFrF+/6aB4v8xvdwTc3rPRxmV4vx7wO/Pv8B092JqZB+SS8012i/GWUqCE/H4+Y0u1fmltL26XDha6Rj3osKx1JKKIMDf//zXzMCoExIac17M4hy5Rs+le737cwQhtlousw1XzSnzjdljHoG2By0tYbP96/tPKoTgb8jBAGvb2b4/OfX3IfTsXQqk+dZ9+yVhq+nR9bOKmeg8sMMl69fjzPDYXjD5oAEZ6QurPH4+z1L1o2Su3/NNRxjYIQxRwNnRnYNPg0vSnd/fRXc05k4UN57lpw6IOA+1m9OlTHcaG/Np/OhFIwZufOMYPv0E6cKhdLR6VDYMr9EiehjzL1UhYpGvtLuqcDN61C5hEfoONFq7lnwKN1P0tDJd4etqP23cxPrwN4pShfTyC1l7hkdNV//fG5ZP1NBwfes15PeuMeUI2tIUCiekycXjJuvh3MDYQcaG3evcrQ1GKigv/c1n88efH6MgdquGd17PwN9PPh8v2AFGJ97+4r4imkEqALCPat1NfllUEKjigSdh1xjNfy4N3OyoXmJOic16plWeUSchvE6U7sRqM4uf45QxoDVyF10GjrFaln3jje2ff77n37sc8H18gbNvmbe47PWCvu0WS620dqx5tNY0H2r3zOv/6d/U0+oZfWu7P1Z0xxrmxkqbB5eLwbxloLrxgjWe8eI/j3VZW/0JXWeuTu63HnNfjkD9+NGz7//+RvX6wPl/fMzK98ZY6B8Ll1JjSzu85w6h0Wj1AeaXJNrYsIv1AicOs/zbHrikt3qjHVa+PuXH8pavV/r+36j1bbRutISAJ92ahbnmTzJtvf03nG9XrjZh7kUXK1FBktdRliJz9hy5rKslH0k9QycjpJJO5/CzyMj4jwr1KHJL/V8Uc74OpTJu7wnaPDZunqWqRFCXj16OAUKcMfSLTnSUK3i11ePAS+UKes8Lset95gc6Pj7339vgcNhUeJ7VHlQLFRpdq97r/rb59dX8DwPQrApPDH1nZATpbg+wJqoHtmuiF2vWDKNtDqmI9jPU2s+4XZEP7rPr0+MR/qPxf44LQDFlvNC6Y8yaMQ9uDzwqZNnRcUWBAld7XWtwUS1NTxx9ngtXQPVWU/HnOrCPHfkwyP0EgDT0UIhdF6X9wfKdvP+dDPTcwyvBDLDlzEI2WYGpZlF4AZgpREiyIGhAWXvKfqe/ZSZ7RcZbTbw169/x3P431prqKF39dFnqXWdjpOVFbeew+V4KS6fp92KZSOp/OP+s4x9jBEyw4I3U9TQuRHl36Tb1nzi7DDUX8yG9PUc0bCrVK9AoU5M3kk+1O+9VRBlo9vdtJe1ksxttMH+e+Kko6OWgYBNlvc9MDGrw5T2gW09lUfRaT2vB8xyYsoqhO0z9cWQv4rPe9FcfGHoqIhBMbE2GHjfnzP7c+mxEcwdA+V5x72OuTZjGO6nztdqDGBrtcEwYKPjP//rP0MXK/O6PE++T76uDIqMOLNFAr9mUkljUdlXaKc30cMx5SbM0K4XYLu9cJ59tRPWcLGBdi23ITPgSq1iNwYfHH2TWSxvvpo7Vy0SMwYMxdQhyKqIHrQvfp22KjOc30aGW/E2CO1iQoTt+n3YVjzru27JagmX11/3ewa3SJfP86BEAK7FuqpNRDsDAMpd5msqEwiTZ/V9rtG3NmwH28t/AXiQwcaiv4LlwLSBq7aZGjCos8X1PQv191BMrdZEIpFIJBKJRCKRSCQSiUQi8Ufh93MAE4lEIpFIJBKJRCKRSCQSicT/G9LBl0gkEolEIpFIJBKJRCKRSPzBSAdfIpFIJBKJRCKRSCQSiUQi8QcjHXyJRCKRSCQSiUQikUgkEonEH4x08CUSiUQikUgkEolEIpFIJBJ/MNLBl0gkEolEIpFIJBKJRCKRSPzBSAdfIpFIJBKJRCKRSCQSiUQi8QcjHXyJRCKRSCQSiUQikUgkEonEH4x08CUSiUQikUgkEolEIpFIJBJ/MNLBl0gkEolEIpFIJBKJRCKRSPzBSAdfIpFIJBKJRCKRSCQSiUQi8QcjHXyJRCKRSCQSiUQikUgkEonEH4x08CUSiUQikUgkEolEIpFIJBJ/MNLBl0gkEolEIpFIJBKJRCKRSPzBSAdfIpFIJBKJRCKRSCQSiUQi8QfjvwH8daHK38fM2AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/yangs/miniconda3/envs/diffuser/lib/python3.8/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3526.)\n", + " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n", + "100%|██████████| 15/15 [00:26<00:00, 1.76s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "results of current batch:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAAC7CAYAAAD4xCBLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOz9ya5la5alh31/tYq9zzlm9173qAgSVINiX5AeQIAaegaBKhvqqClChF5CgKBXkSCxJTCZGRlZMAEpUswMjwj3cPfrt7DiFHvvVf2lGnOuZTcyU4BIb0gO7Olwv2527Rw7e62/mHPMMcY0rbXGPe5xj3vc4x73uMc97nGPe9zjHve4xz3ucY8/yLD/v/4B7nGPe9zjHve4xz3ucY973OMe97jHPe5xj3v8t487wHePe9zjHve4xz3ucY973OMe97jHPe5xj3v8Accd4LvHPe5xj3vc4x73uMc97nGPe9zjHve4xz3+gOMO8N3jHve4xz3ucY973OMe97jHPe5xj3vc4x5/wHEH+O5xj3vc4x73uMc97nGPe9zjHve4xz3ucY8/4LgDfPe4xz3ucY973OMe97jHPe5xj3vc4x73uMcfcNwBvnvc4x73uMc97nGPe9zjHve4xz3ucY973OMPOO4A3z3ucY973OMe97jHPe5xj3vc4x73uMc97vEHHHeA7x73uMc97nGPe9zjHve4xz3ucY973OMe9/gDjjvAd4973OMe97jHPe5xj3vc4x73uMc97nGPe/wBxx3gu8c97nGPe9zjHve4xz3ucY973OMe97jHPf6A4w7w3eMe97jHPe5xj3vc4x73uMc97nGPe9zjHn/AcQf47nGPe9zjHve4xz3ucY973OMe97jHPe5xjz/guAN897jHPe5xj3vc4x73uMc97nGPe9zjHve4xx9w3AG+e9zjHve4xz3ucY973OMe97jHPe5xj3vc4w84/O/7Df7P//n/nT/5s3+Psevw3jIvK9575nkmxkStDe8dxgCt8fhwJpdCzgUAA4xjT0qZaV7puo7zeWDbIqUgX+8MzlmGvsMYcM6Rc6EPHmMNt9uEdZZaGyUXuuDo+o5SKn0XwEDJldrAWktMkRgTxlqcNXjn8M5SauM2L3gf6IKn1Xr8fdZanHPU1ki5sMVM8BbrHCllvHc8nAZKyqRSAZjXyIdPL7QG33z1nrF3GGPwwdP3HZfrxLJGvHNYC85ZUiqkVOi6wOvlRoyFEBx97xn6jofTyDAErDE450n6HFNKbFuUl+oDtRScM9Aa1lpaa1iD/vyZWhsAtVac9xi+fE7vHMPQ04WADwEjLw8a6P9oNH2Df/93voT8u6Zf2oBSG6U1Xt+uvL5d+fbb3/F/+7/+X5huCzmtzNOFGCPGGIx1DF0vn6dm/if/yf+U//A//A8wrWGcJadCzhmMofOe2hrLshKCxxowxmCt/AwpF2LK5FLofODp3RO1VuIWCV2gtXY8g67rKEW+92kcMAasNaSUMUApGWetfDCD/AzHJzYYY2g0nLWErgMgbhu5VBrgvefh4YFa5d2VUsmlfvl5mzxF5xzrttFqxQdPyRkaOOcptVBLJVZ4u0wAPD4MdN5jLcSUmaaVfugouVBywer7ra2R92fReZw11Np0LRlKLoQuMHSBzjtC56m1YK2Vr69N92DGOUstsrdqrboG5JkbA1mfe9/3WAPWyjMCQ6mFlCqYxunU8/T4xGkccc5ijrXU9HG0Y0V9WWPmy5r7ycJrP1lzpTauy8IvfvE3/MVf/HN++P47Pnz/Ld5bSqkYY/He4pxnnifWZeFP/viP+B/+j/7HfPPznzN0Aefk+ezfc7pN5FLou47T2FNqJaWke8zK2qXR9T0hBNZ14zQO9H2n38NQSsY7S991zMtC13WMfcBaQ4zyvby3pBippVCqPNWg51Jtsvf2c6nUShcCxlrWdQUDQz/IPrByRhlr9CzW51YrwzjQamPZEssaeblMrMvK48NA8I5aC9uWSaWxbhtd39MHizXy/LyzdMHJUzdynlpraA1yaaSUSSnL2m8N5y2twbIkkp5RtsEwBMZh4HQaoFZKkb1Xa6HUSikVZz2NL/ukloIxFmP1XE5Jzj/njvVXmwFjiTGyxUStlUblfDpxPp34+v17ui78O0+vf2f85Cz76a+rnmufX15JKfPd99/z53/xT/jV3/wt83QlbTOtVsbxRDcMtArGGoKF/8X/8n/O+/dfs22R1ipdF0gpUUohhA7vLNCorWGMpZRCq5XWKs5ZvPeM40gpVe81I+vWO1ptZN3PcrQ0TuPA9XojpUynvw8GY8BYS6tyrll9zjkVGnI/GWPw3su/c44Y5eestWKt1bPSYjCU1ogpyf3qHa1BqZXW4DatxFxwVu72VispF1LOut8N1hj6PrBukZQrfedprWKto5TK41nyhpQLrTXGYSAluQ9C8ORccM7RWsHouSv3pqHve663CWMcJUsusJ8oxkDX9dRa6Xu/n2aUWgne47wl58KyRIL3WNMw1lCBVhshBGqtbCmzrhvrutF3HaHr+OM//jl938kZ2H6ykn56sOn+xMhJ2dp+BsqXrDFirOXzyxvff/jIP/wv/pzf/ubXvL58pJWGtwbvOXKiy9sbtVbOp4H/2f/qf03oBlprBO94PI+UmlmW+OUdg6yx1nT9mWONG2N0H+vztYauC/Rdh3OWGBM+dLTWqKXgvWPog76njPdW3oH1xJQoOVNaPfKwPgSwhlIqrTYajdYaucgd1nUd3ju64HHes65yr1r9Gll7ELysuVX3vPOOZZY/G7zj4SzP4PPrlZe3Wd+bh1YJwdN1nloKWyqA3Jney793eo567457qJSKsRZDwzmLdRb0Tsw56zvfn6F8v+BlzfkQZO+mhEH2Q8mZ4D2lNoa+wzkoreGsI6dMbTAtkS1m1jViDHjvsMZwOo9sa6JROY0j757OjMPwJQ/Xg+tL9vYlh2vty+/W1vTX8mdSzjy/vPHnf/7P+Jd/+S/59PF7rJX9vmmessUNGrx/98j/9n//n/H+/XvAEFPiN7/5Fuf8se6tc5Rc5HkZ6DvJNa0xGGNJKdJ3gVrlfEm5QJPPWTU3N/qzdn1HrU1yttOJ1irQSDHR9b3cUfoOrbNs64Zz/qhLWmv6PQ21Vrz3co8iZwlo3uc9vd7BDTDGyXttTf9OqKXinSe3xuU2UZueC51nHAZMa6Ta+PDhEw3ogmfoZQ9Z3fOhc6xrxDpP6DytQkpZ1rJzktvrme2c3L+lyD5JKUsOYgzOOVJK8v+t1btT7mBrDaELOGfJKRFTxhhLFyS/lGfR9BwMZK175nnDOoM14H0HxjDNK9fbjXle2NaVt8uNuEXWbWVeFvpePlttYDHUCqlEQrAs00bKFecqxjROpzOfP33mfHrkP/qP/js0/Zz//J//V9yuN3KJPH/6IHdiafzsm6/4T/+z/x2PT0/6ufU++3sXt2FLmU/Pr+SU6XpPa41l2bTGlBrKOU/fdZSUyE3Wk7WyJlqD4L3kWUhdFXM67qoQPJ13xzlUWwUMucgdXKucX85ZzZUb49BxGjqWdT+bAuu2yZ6wkos7vZuslbzLWjlf+j58WYcYcm3yd5VC5x19F8il8uHTC9bJmbksq5zTKUNr1FpkOxpDjBuncSR4jzGGXLKsf+/JOZGL1OIhBHLObDFTSmUcOjrv5IyujeDlbN9SIcaMs3KPf365kHLl/dMj5zFwOo9M08w0r+RS6byT/NFZLteZhsFbWa9rTJTWOI093sj5W0ol5kYXpGa9XG/88ONnfvfd97TW2NaFy9sbcVvxVs6Trg+kXMgxYYBtWwDJq/dzpZTCtq10XZA/Zy3zfGNZJr7+5mv+k//Nf8pwOmHYzyrNncy/8Wv+/j+t+VIXGSDHxO12o9VGbZXOWd49nXH63tG7IObK5TZTa5N7z4Jz8vfklOkVe8HAMm+g+/40dIBhmhdZu53gBjlLzmSd4zSOlJxx3jEOw5FXhhCAxrZtR+3gjNQuzjnNDyrOWHLJxJSwxh0/lzFG7y1LzplSGzFXPjxfWOYN5wQvGceOy+VG1DrBOrnDgrN0fcfr5UYIjnfnE0+nnufbwm2KWCsP0hqjd73UI3s+vG0JY+B0Ghl7wQZqaaxbopRKylLD5yJnmjEG7/Z1JXVF14XjbnDOyh2YEv3Q4fUZdF0nd1PKOCf33N/9+nf85ttv2aLc5wZ4/9U73j0+aA5ReH194/n5VdZn3Hh7fWFdFmqVfMVg+NnPf8b/6f/4f+D3id8b4Gs0BeMqXz094qzjep3IOeG8ByS5dkYOhnlesNZRWxXACcvb5UbXdbx//05+rxaGfmDdIqBAoDVsMWENnEZJ1EspOCTZNrVScmEcpajdtihFV6kMQ6cFYWWeZ1KWgtM7hwmeahrFwHWapeB3Vg4W7zFWFmguhRgja5LNFrqOh7GnxYi1lpzh7XIT4KNI4jjPK+8ezzQa0zyzLobTeSDUeiSzUvxmSI2u85RcqKVQi+E8DgyhsKbEZVr58dOrXCKh4/Fh5Dz2OGM4jQPOGsahozYUWK1ssWixm4kp02ni6o2l2cqWEhhLiol1jThviTFrgS4JqzWWh4cz79+/Yxw6nLE/SRJ3AG8vVHbAxbAnkEUvoJQLMRc+fn7lL//VX/GLv/4F15c3Pv74Pa1m0raR4iqF2njidDoznk6s80ytleA7WqvMsxy8LRe64EmpUnKlKUDmvccCwXkqTZ7FnrxZy7nv6buObV0x1uK9U0BRwBaAZVnou+4AeeWTOUIICrhUeUf6Hp11pJw0gWqatHUC/iUBuasW43vCtK0KRDqnhUCTgqYJeGasYd0EiA4hUEvDWscWE4teSjEVLtPCw3nkcRyxtlEbpFS4XCZyNVhX8RaaXkDLsjAMA10IkvzlxFYKtbYjCUgpcZsXLtcJY2Dopag6n0ZoBW8cLUhRa43BeseiB6fXot9gMNYo6GKIMeoFJ8BnqYUQAsZUSq1crxOfny9UDH/886959/RAFwLWfiEZG6DypdhlX3XGkGs93scaE1vKxFz49tvv+Ud//hf8+le/ZJsnUlowRp7xOIyczw+sy8y8zATvCY8PrOuK9wKK0RpfvXskxsTz20VAGS/JgMUyz8vxwwn4WXDO470neHmWtUnxlnPmfD4L+G6lUI5JigbZn3Kp+iCgQkpRCgf97CklmgIpTQHElDLLssiaAUIIkpCVzLZtjOPIPM8Yawm2o9VGqUWTmcamieV1jvz48ZlC43HoscD1NktytRXWbeXxfJbzRD9PKZXuPFJKI+WExXA6dUiZC6ZJYrs3FGqTdzX2HcFa3qaZ2qRAmeeVl8skQIiznIae1sBZGMaBUlYFhPNx74BRIKHS9Z2edbK/aq1YY4i5kIsksWMvRf2aItfbzPW28OHjMz/7may3vtP19tPKQJ//T887moBttcGybCwxcblMfPz8mX/45/8l3nm+//ZbbpdXUooE52jO4vqe0+nEMA58/PFHnA88fvMVNCke5X0NpJjAmKNRE4sA6Q1D8IZUq64Dw6AgcsmFlBLWOgFp9r0ZHBhpMJzGUYC2Ks0eZ+0Bflgjzapai/5TipN5WaU49YFmBPgrpYB1xLgouCKgijQ8DNYIICmATBCAsjVSqeRceLlMpCT7XxLvTG2N27TIvaMg+WkYDgC16wK1ZAWdpZDe1g2nzR/vLMuyscYIRlZg1SJW3lzDO0drUnx3XSSXSkrSkGwty+cC+TNemmX9Fgje4kNgmVeclwJYir5CTI0cI6VmXAi0Btv2xhajAqUGjJHmmzF8en7mfD7zs2++5vF8ImiTEhqVxuXtSj8MgDQCU0q8vL5xPp/w3lOb4V//4m+Axj/+83/Cb7/9juvLCyVHLA3jLa1Ugu9JKbLGhVKzgG3hkWWNYAOdlybjsqw0GqUUBVyynCVaJIQgoGrWPRy8P4rPHczfE/pam55z9SiYrJWmpXGWlhqlVnyQpmuMGxird6ylmMptnnHWYq3TRk0T8Mo5uiCNuFIKxVpKidTS8FaKDGsE9O+7QK8gRYqJLVfm5UqKkXEYsBhuc2SaZq7TQikNZxudt5Qie8MomG5NpVQpttYtYqg8nUaCNmONMfRDh3WWeV7lbPNeQamGtYY+hKPQ9V5yvFQq61owRtZLw3A6jThriVEKIFsb07xyuc30vafWxtD31FxYt8gSK5XKw2nQBnWhlMLz52dpZjT4zIVf/jrhvefrr97xx3/0M8Yh4J0A9KVUlmUjpYT3kuN0fUdKiet1knvDe0qp/L/+9S/4p3/xT/ju228pteC8xRvLskiOJt2rps+kZ0esU858/PRM04K4KRgFhZQT3vc8PDxgFTRpdb9fCjHJuRJTEmBFAThawzlPbZWh7zHGUHLSJsemd7SnBbRhVuj7HmMNOUmu1prmjpqb7eu46zppCG2b5ijhyHNl7Rm9a4w264qSAYw20Ty5VC56v3nnMH6/5xZSzEzrSsyZIXgeH06ULM3j/bzawT3vHSnmo7nakPPXWz2DEBBKinCrQFSlNUtrsv7lvg+kmLTh0Q5AuJaMDx4wdCFQamVZVgWgHc45vHVsW2bRZkVrkLfMOI58+vEjHz594vPzK9frDUPjdr2ScqbkogVtY+sCMW2A1XNWcoPWGjluOO/Yto15WbRot6xPE+tfSsNxWa68vDyzLgtQias0Gx/Oj8edbX56b//kugbDtET+7re/Y92ykD6mKue6czgLYx8Y+45cFOBJiZgzrQmoUrW7u593MSa9AxpGwYacM0Hvwqbnh9Qd5mjmb1GaQr2SCmLMBOcJPlBrZNrzSaBWXQ8GcipgKkPfYZ0jl0yetHmmALTRxnFKGW+N5HXTgvOBnBNvyyI5ZpOfwzvHtsk+G4aeruuJW5Q1VFGwI0OpRy0VTiPLvGCtZegCpTXWdaMG2SPGWt2DkdYEJJynyLZKnRW6HmcF7FqmhW2LpBgPkkmKSc79Wo/GdGuNWKvmWyt9CBgjtap0Jy0fP33m+x8+8f33P3C9vHI+n3l7fSWnSOc9poHve0IfiNsVWtWmUSYokFNLZVsll/bOMfQjtzVKTq/v1Vr3k8LjSBL5+0njv3MRfvlTDS7XGylGIYe0hsWAc1yuM8FpXtcJXrIdgH3T/d2IURoj0ljz5BQlz0XqBF8rOXjJQYC+76m1kBW4H8eRaZa6pwuBUooA8V0nAGgW3KTvB2pdKCUThv7IraPiHqkkBcQMxrYjb6i1sm4b53GgAeuW+fbHT8xL5OF8Im6JS85crvrzeq8EI8OyRkzfYZKsBYzlMs04Izlf3wdiTEzzgnfSpIxbwTqDwR4NpC0Vttc30mkUEksz2tQ1eOex3lG2SK2Zoeuw1nKbZmkgeiHGWLPvba0jamWgFyBXz7acMzln3q4zv/jrv+Xl5U2bmZ6fffMVX717T22F6+XC29sbz88vbNtG3FaWeWZdZ1mHwZNSpu+lUT2Op/8Pa+r/+/i9Ab6U9AJBEPyY5fLa1pXTODJ0ckmt2ybdfC9MpAY4a1i3RQCcLjD0nloqS8q8XS5aKDtqK5QCwQecNcQkybK1cqEGBcaGQRgyt3nRLrfjq3ePRyd/XTcBDY0UwkcCqyyHvusE5FEEIaVCqVKYNwzTkni+TNJtCIkYE6ehE4aAyUeXcVojj6eB9+/O0KTz43ygc8KOmJcNa40WY/JsBMSRxMZajzWWLX25aI2Bh/Hd0S379HzhR0WhT6eRoXOcxoEuyKLzQQo9+dyrdFlTJueiLCpJpuRAFtbHtiVhkiHdyL7r2Epk+7zx6dNnzuczTw9nfvazr49iumkBvG0JFzy3acEqu+53P3zkN99+y8/++I9IufJH33zNP/gv/zH/7C/+ETlFKSqMHGbFZELoqM0chWjXBVrq2FLifH6Qd5KLdB8UUAFD6DpSjCj/AhucgLXWUJsk2V3fYwzaFRcG1NjJGnDZKRBYMcgzyUUO0M47rEFAjC2RczpYDNY6km7MfhgoOUn3NnhJBKt0AmopyPltFURNiv4HTRQEaNxLUWEbRZxz9F1PLpnSkPWrxb/BsKwb7x7P9H3HvC14K8+s7zuGceBymykl8ng6Y7XDhYKg6yaFrSlGC8fGsmo3MwS8E6ZnTInbslIqvFwmvJVE8PHhLImRMoViFCBvXVdykUT4fD79PXDKGUlI98/YWKBVxr7HOk1gK/z6N7+jatfkj//o5/zsm69xzrEsCyF0fH55wXcdW9yY5wUfPC+vN7Z14T/+j/+73JaNZVn4R//gH/KbX/2tMFi0E0sT9s7QD/KeamFdN4y19F3PdL1ggxS6tVYwnts0a6IlLKFaG3FbMSig5x21VFoTMFYYYV+Apj0kSdrouk7YHtqksFrQrtvKOA54jLCEihSRRQEe7+W4dvuZlQQUMgoi7KyvruuONbJtUYHvcIA2Vi+sWivWOV5vC9/9+JmUizQJauU2LZRmud6uYA2noSflzJYSQyfFTQhOAcCNlAtDJz+fsIwSt2nRrLthLbQKl2lh3hKPQ2Acel4vM6fecxpPvFwWtpi4bIm3bsM7Qx8svXd47/E+6FlrjyR8WQU47kI4Gh2dJrzWC3srpoK1jrfrVc8AYWxnPW8/ffrE58+f6PqOp8dH3r17p8XYzO02MSnoIEWc4/VywfeB27wAjtoMnz594J//xT/mww/f6V42tJzpQ8fpdGai8c3Pfk7cItfLhVojpiJnjjEEH7B2FTClFmGf9z0++KODX2plmmdlZ/aS7Bs5q2Styp0YFIDCmIMxDIY1bnQhMHS9NE/WVcBXPSN3BqQxTbugkaggBrVSkXy6s+YowEEYyAJsW5yRItEoE6Vk6UbGGCnN8PnlwpYyXZB1Nq/SPMtF2TnOch5HnA96/mS8siEEoIOYM8F3WCsNlB1wXTZp2jSkA51L5TbNknDqee6sJfgvfOCoYEurwkSgFbDCVlnXjWWxCgB4UslHd/V0GqRhoSytLnS8TTeWNSr7ShgUIUhBUKz8fTklnj9/5uOHDzw+PdJ3HcNw4u1yAWP48OkTW4qsy0rwnueXN+Z14/z4yJ/98Z/w+PiOf/Ev/pJf/vW/Yp1vZH0+1kKpCJPdFrZ1JZd8NIy88wfAKYW7JedIqfXIIZoCzbVVrLN4549iXAoE+eydsn7suBez6BkEwzCQUmGLEWMFUGmt0dmOcRyprRz3jd0BZgUKSy7QGmHshT23bgfYCPUoHKy1+K5jmRd5pnrO7szCWgupWmIsvF4m5i0Sgpd3hmFeN5bX61HsdMEeedPOlmwN1k3uw515XUqUhqA2r5uBXDKhOKzzer87OeNDR0WatSEEijYRnbUsaSEp28A5x+k0kFLVRow5gA9rkP1dG/OyqurihkUYa1Zf+jLPwh5xVth9RRjPew4iypbEL//2mV/96u94//TEw8OZVDK368zldjtysfF04unxiWWbMRhSLvzpn/0Zv/zrX/Dn/+C/YF4mqLI+Us5UvdtFDWMJQdjEfReO/fX9jx+Z5lVYuknAeEl2RC0BCCFAwYGcEluUe21dpaFzOo0YpGGfUhK2m3M445SJj7BQgj9AxDVGgg+EzlJLZls3/Pl0sOi9k9wsxiSNCK95m675h4eHg6kCKGt9B/j8UUxrqwlj7MFSfr1cKE1AVBDAojSY5pUYIyhgF7rANM0CztY9vyg4bdRIc9vpGSlnfK6F3naAAHVNzyDT5BnsbLFciq4FYal47yV/bMIAsklAIasqjPE0CiOo76FUBYwqy5Z4u1woTZVQtVBL5vvvP/L9Dz/w9vZK2ja9Axw5yfp3XcA7R86J86lnWSoxZZoRMoY3khNVa2hFyAghODkTu0BOiU8ffpBGxTILiywLsBb6jvPDI48PT0DmAFJ+grPszLZ1y/zVL3/NsglDL84zYx8IRogmp74jxkxWlca8bjhreHx4wJifKAO81KcpJZx3Rx0rrD4Bkar+EEfDpFZZa0Hei0HOyZiSnIc1k3Ki6zpSzgcjs/OiVii1ssUs9YOut1wK1lhhS1mLMfKMZdk2+hBozXC5SQNjB2O6II3fFAUwXNYNa+B80jpVm33GGCr1ICXsYGzKmWVdD+ZYbZq/WMO6bfjgCK5jXlcB4LZNFFXekzU/MDT6Xu7SbUsKbAjAtm0bFfR7N6yexdYaeuvxweOtEA5SLkzLqnsw8/HjRz59+EhaZ7y13C4XWpV72FkrzOLapD7JiUYj5kgqicH1WG2orXMDK2BujBvLKk3urg8M48jQDwc+IGvs7/Og/22o7ye/o192m268vb0RU+as59o4ihqIht6Hjstt5jbNGGd1jTk5+4OcmanI2bjFKE1+bdAYYzQfigTnGYb+2Ave7OzLTRpitSqrvB3sYGvlnLvNi6pqTpQipKGfqpVqlaZtbdJkC8qOzrnSkPptjYl5jvz2h080DGPfU3Ji21aKNhmrJJ1yx1s5A2JK5JoP4otqcng4n/j08kYulT443r97xFtRjp6GQXKWqo2DJHXTvj+fXy8HQ28ned3mmc57xrHn9e1C8J7T6cS2btLM1g5zbQJqPjyc6YdeiD6KG92mmc8vL/zmN79hmhecs5xPI19/9Q3j0PPy8sznz5+Yppllntm2KJ+/ZCFLaOPRecs8FYqT5kn5iTLwv2383gDfw2k8OqtbihirDA2VvTbQ5KRI91HZVKVUinZDQhdUKmRwocOHQMMKvZ2GU8prjJGg8oxaGxWINckBqi/uNk1C5TcGi/w9Q9cRUyRlubxSTgQnTL2j+4Vcjsu6UHIFa1SGKfLJ19vKvCb64DkNni3K5bmu8aCwplIJzvH1kxyYKUnx33vHvG5QHb5ZnPdsMTEOTuUgAvT4TpLgT59f4UGSpDkmXt9udF3g6SxJ6HnoeDiJvKFo8vd6SVh3pQuOIQROY8fQdfRBGGbbtvF6nen7gKMdgNPOHlvWqHI/ixH9GFtMlCLMvxAC67Ly8vLCh0+feHx4YNk2Yb4NI3/9y1/x8nbl2+9+oNEwNF6fX0hb5r/3P/jv8+//+/8e/+yf/nP+9b/8S4yyKAYFr3Z2WN89KeOyJ+eCt5alVVKKKkkth5zLOaeyl0YulU1ljbu0qtIoyhIJXgAXZyVRMsYyjoNKeQ3WirxDpNZySDUQGcy8choHMNAPHfmWjo6DMWgxLUCPD4HmmiZ50vXfuY1Bqf+1Nea8HImh0LA9wVtyrczLJqQP6wRUTJFNL/VljcJuUKbNg3Z+q3f0oVPgsZJT43waJFFOmett4+E0YLHkvDEtK0Pwsjac5fnlQtf1dF3HskbauvIwDjyeB1obuC0r06LdVwWolzViVTY/9IFcmuwVZYDUBq9vF7wWZSKh6/He8Xa90ZrhNPYCbBi5FKKCaq1VqI3X68THT690fUcIHd9/+kzcIjEKSBKTsJZMq4ROGJ6Xy0LOiV/99V/xm1/+tQBewVN9wDopQLxztCp/xxIXrJdEr+s6FiPdrq4T2UzKiZKVZv30qJKyogxgg++CStH8ASA3ZTEIOO/pVVLRFMwR5rGuCx+EfWINp9NJJGygTJjyRX6TMyaEA+zZ2QR7R75Ku5daMibJmQrSYQ5dJzR5lcn2XZACtTa+//Ez3316FTmo9zhjWLekRaVIv9+fTwLsdJ4tCo2+80GeRS4CIjpJCqYlaoJWD6n7FjcBqqsk0XmLdF6YwLpsyKngjKEbBTjZcua2Ji61CoDhLEMnUpBhkG5710knPG5yWV+uEyJx42BPpVxoCBhvtBo6nQcsUHPCGsM8zwBcLld++9vfsSwLMWU+f37h7e1NCm8DNMM49ORSOJ0fdO015vnG7fLCts6c+47WjIC+3klBsa4459nWlWVeyCpbLaUQl4WU5SywzoEmXc6ao9GyS4x3Nm9QiweDAAx78mYVMGhNfr2vkwbaUNLEMMv3eXh8EMmTymK988cZIkD9nvAZkbFbSxfkrkpJAAsBpw3GyDpct5VaqzCllCGUS6E0w/cfX4i5MPYdtMqyipx2Z41ZlUhgDLdpkm65Av2lVEoT+WvMhZgX/MNJJEHa6a6t0VmrjK6CUfaF5BXCUozabT2PwuZ0VtaIAVaVSJe8kTWZ9d6TYyIEuSPleVY+v7xJ5905+ex6xoWg8rnc2FZpOlllCO7y+tIgp8qP339i3SLTsnC9TszzzPV6EzAiJqz3zIs0Vb7+5ht+84u/oebMutzIy8SpC2StKozviTlRi7D1tm3FKLu8eehDh/cCclUaqWROw0B2AgzIexfLhtP5TFZm8E/3jdUkXph50kCwxlKUTeq9p7iGtYVc5A7Nuehal/NAnlVjmoQd5gDvLcZYgpe1Z1E5quZnImv7IrGEdjDro663XISx2zcwwTFfJ17eJkqujCoVSimrFFYAj74TuaUxAuwVBa6gSe6TC6HzmicWaQwEOe+XdZXiZ+xopVKyNOrWdRNmTEzaTDa4VMgx04Kl1UWlSLIuU4x0fQdNGH7SLI1sW6LrAyWJvAkMuQhzz1pzWJD0XU/fBWGv1UopwnqOMR9AFdYwdB1ff/WOZd34+Okzv/n2d6Ii6Qdizlgg5crl7QO/+913vL29Ymrh7fWZ88MDnz9+5Ha7YPgikaUWtijMutP5TC557+coEFf4+FHubEujHzriFoV50ncE74711AVhMV2vN2JKJLUjsc4erCOj7GDnRfmw5xpWn5vb2fWac6QsAKc0UMMhpy9SS5L0THV6d4lE0x2MsJyz2GFUaRB57zDSh5D8Uhlqu8LHI5Yg07LSjORoSUFF7zxvlyvzGgXEDsL4us0iqe/7TsFskOZgw+lndsoWpBUELpKiXmTpUocELfqrsjhzKXrfowW4PC+xgRCrFK+Egx1cSiqDnxcBaLx3LMsqbNE1kmvVvBxeX5758ceP3K7XI6fZ1RneSmO8tcamjeQtJgH9jSU4h0NypW3bMMFBlSZN1z1ScyJuK9dppmqCYBp4K+/mfDozDINIJ5dJgC7NpWmqVtH6tNTGh4+fBDgxFqNNCu/EtihXAWQxFmsa07rQWlMWuDB5nTZ/MTClmVIqD90Zr4zKXi0+5mXBOIe3wiSyxpJaobXC+XTWvCLRqgUr7987K3YASgbogjY7ipBKiioRnDUC6mtdNq+rnE2l0jdpWjaVBGNgmjc+Pr8AMAz90dSNMR72C+ehJzinVgGW0io0yKXqzyZ5o2li+VOb2JCQK08PZ0otLGuSRjlFQO9a2FZh5K1bIm6J82lkXhaccQx9Rxccb5eFWs0BTNcm+3RbN9BnuqwbpTa+eXpkS1HIBV5Yh6/XG6YZ4rry48dPvDy/ME835unGbrdUq+AArWSgHUQXY6AooQe0KZTl3rTekksip8y6in2Q81bZ5HKf7cxy9jXHF3BPdq+CemZfjA2DfNbr9UowhnfnE0ktP2oWq6IcijY/HPOysmhe3fcd8zzzR9+8B1VMLGuk60TOLaxXi6nSsBCFgdpt6ef11hJVfizNI0M39FpHVJXdZrZ1FUa0fsZlXWldxzCIVcy2CfPTGCTH2mSPyc+tzTwv/z/mytu08On5TexaNsFghmFAJLzhyJtqyfR9YOg7at2IVfYdrjEGT+eFpf/x5SL1e9/x7uEEBl7errx7knx8XSNYaawMfafqqSJ3tO59Z6Vpdrle2XJhVCm2sBBg1twkxSyfFYhJnvcw9FSVJJfS+OHHj3z89JmX52e5P6zl4XTCGsPry2d+2FbmaWKZZ1JKxC0ewHrO0liSxpg0TUclN0ldMf/bgNt/w/i9AT6po9S/pslCejqfmXYpbJYL5/xwkkO8ZPUzcQzDCLXSD52AhJiDmXU6j3LppIJxjoZ0aUssBxDlgz9o2aVUtrgeviEiLZGLUPywOpHC5cSgfmDTukr3T5MnGw0oeh28o5pCaXCdN5Y1aUdVDv2GeJa1UsAaQeOVQTIEx2VKDJ1cbPOykZIyDIHWMngBhUpt9KEjqaQw50iugp7//P07apVu32noBBRwjpoTJSWctwRneToPPD2MTPPKFiOfbjPmFboQeP941kTK8fR44nabeHj3QMxJvLWy+CRId0vYMpamh5Nl6KXzNM0rs4Ir7nLjV7/+HWtMvL6+sW0bt9vMdZrlglUJQNd7qnH87V/9gv/6//n/YF4WcsqMw8iyrCIjq0K1HseB2ir9MBweJq1Uus4DAynFQzrWhS/+UqfTKNJo79gVUSlnYaEFCEeBKuvBW9HWGyvJwC5PaK2xRaE5O6DvuyNp2eLGaRhwzjL8BFnf1pVRuyMAtTRNsCq7x+EuMS218na9UnfWjrKrxONI1uy8bsyLsLgWpeofEkdd1/M8czqNnE/jlwR3lweodwbG0Grl4TzSbgtr3BiHoIzATsHrL5fV11+948OnF2JW6XjXS9dYv+fT+SQgsbJ2vLfalWusW+Q2zYx9T9P9sSl1Gho2iJ+YdZZpWfD6PGqrQlGPTTxx1K/TGni7zMJAsxZvGvPtxuvbTTwpVQpaknhodMo8ra1Qc+Iv/6t/yrquzPNEbQ6s0OofH07C1HPuYEh0XSfvu+tYpgkLnB6f1PenHV2gndGZc+bx4UwfAusalQXgSfWLL9z+vnPKtFYZ1VMQxFfIWPEe3KKAxCiro2jxNtBJwVYWWpWiOHRn5nnWZycXZS5SAIWul4SiSRKx+99ZJ8l5yYWuCiOpGenI0xq2VF4uEx8+vZBz5fHhzLat0BrztrHGzNP5RDDCohuHXhLdEJjXjaa+d9u6SVJ/AHzC3O7d7pdmDu/UlBJfvTsxBM/1tkAz6v/WiKke4L01lsF7emXDCPhemOvKZgw5eymKbMBbR/NSnM/LwtCJv5nZ2WvOKqtHzmxrDHHdpGGQBXy83WZeXl95eb0yzwulNnKOysoQxuMQJFnIKWFoTK/P1Jq5XC4KIgecDZhWSa0Q10X+jibsp1zEisF5h6+ONQlTzpimficwDgMxbvTKfOhVUrysK6W0o9HSlMlSdP8Ky10+284M3fvGO5NuS1KsCqCuZ09xWOPoe0fX9azLot645rgXjYE++KMxtiziS7UnkLVW9eBshywpBCfFicoaKoYfP70SY2IYegHVYjqYcXhPLZlWxZPocpvk96v48nRdoCnrOeckskAFAZL6Rgm7TIrGvcMeQjiYy15B6Vph6B215oMJusvl9/Pa9RZbmoINWYFU8YJstUITede6RuYt0Rr0Kl3dJSLWWELnMFYsA4J3xHWTptG6Ms0bpjVqzqSSabWwzDMlRUoWtnOrmc5Z+uBxNZG3mZozrWR6ZZwZ9maSME3EM0rWvNgMJLUzSaT0xWewqJUARtggXS+JZtcHrPVc002+j7UiAyzlYAcYLRa98xQauw8oaFHF7vsrcsLaGl6f7zj0xBoVuBBm5rZFZWPtXn/SmMUYhmGkNsn9jEqIu64TsGRZVW4jILO3DkylZLheF0qtjKMoMpZlOxq/pVT64AnKsNltSToFgddtw1pH6DqcRbRy8uHIMSpTopN8sFVwkss1bert8j0fhAV7nSZO/Uirjai+fqPKwGqxlCwg+DJvVAyX6yyS1Cjv0BnJf60xjKMoBYZezj7xdxM1QC6FdZlYtTEk7BjJmabpRtjE6+/UdwRv1S9tZl5XybWcw7ZKnmfmt1dKiry+PnN9fSXGKMWini/j0HM+nck5CxtfG0SlVUrMrMvKjx8/czo/YI3Fd5Z3j4+0kxSgPjiVZRlllDmWdRUmK+ZgbhrUM0qLJ2E9+n+LbbIzv3a7GB88WEtLSZtfevf5QAjqobmKfYuz8v28StWMNs+iqih+Kg12Ts62nL/sh7wJg9qEcHiVbTEeXsulZN5uM9OyHgzYmOX86btA5xxdH8RzV20WrHNyXykwUEpVTze0USxsyJhENWKtAGopZ1Gj0L54pxrovOO2xMM/q5ZK1j05L6K6cW0HMvY8tnA6nUiaqyzTxLYsXN8u/PDjD6JMabs/lVWwqmNFu3ZNpNUNw7Zuso+b7BNvDNd5FjaiNmd3xnfcNkoTZuXYD6RtY2+E/+mf/BnOW0rKrNtK2jbOX73/+7Qpvfxqgx8+fub1esNbw+lxBBrLIkBjVPsca6WG3bYNAzyeTwLqJy3AnT/AImsdBiv1YVG5eS6kWsi10h8efdLg7TsvIE8T4kLKiVrBGX3GRuSLfeh499hTSmJZN60phCwQvDQ3YozcbjNJmxlbNNpYVu835A5+fr3x+fVC3wfGTmTsuwKolKJMMQFQYkrHsxMvQi+NNm0u7s1qay1W14Tg4yrDpVGzyOSlsStSyS0lYY2qb25MheDBOwHXNlX8ZPUd3VVVpQgRyOl+M0Y8+kPwpCw5/6eXV1JM5Jj4qODetq2sqzT3vTavjeIMOzs5BH/8jM4YzuN4eF6KRYqwjHMRskhw4pmZc5b7PPjjXbR9ne3v6afM0Z/84gs+UViXRXzWgnibW5A6wBqGoVOZtkjhMUalmglrLI/nM6bBw8NJ7LSsNH1rKTw9Ph4KDFHECWFll70Ku1PqLIzUqaVKA6hWIRP0ndiYpSzgrCjDpZZYVmFT909nzs5RW8+yLFpnCAhadH8EZUVX6/jx0wu3aeU2TeK3vNefylBu6pnad553jw+kuB13p9j6GHzohI3c4PnlpqxsJ2SDJGSbXdWYUyJ0PTGL9Hrohdg1TSt/8vOv2aX1wzhyvbwxrStd3zMOI3ZnzhvBjkIIFLUjWDepcU7jiVoqz9eJ223i8+dXPn78oBY28j5pjevbmzJv5f28vDwTnDts3oREJdYNzljevXt/+H8aY9hi5OnpHU9PD/y+8fsDfOqrU2oR08S+F4lhEgmTc47xfBJfs+DVeFEvsAZW/Qi8FmEo+8uaxtPjA9O0qDdRr4leEfmtosVfv39kHHou19vhqbZ7oJzPZ/kZFSXulMnSamXNhVSadHQU5Q5BXoLXLkypRkznU8YiBVbJheIcrUJp5RjmobwalRzo8dxkIVML2yYsjafziHdyQexU5L7vGfuBbdvYtsRp6OlDkOQ3RvFLMiJNSqWSS1MkuQiTwzQqlmXdeP94ZlOPli0lvv3+E7lIF2LsRaa3bJH3DyceTz0g4ORticzrxuk0cOoC07Lwer2xJiudfCNDJnbK9842mOeZUjOmglGDcYxs3BYT83RlWS7iLVhlEEhOSVk1vR6gWtAgh5YBXJOk+TbdpAM4L3pxW5Uc7UWF4fxwJr1KF7opa0oMcHdprKy1XeZojDB8rHbxaqtHMrYPKokxilShNVqVoTDjODAOI7lknj99xhi5kGQQieyFo6NjjHorycUp7IMgXa2Yv7A2lfE1L+JvgrU8v170e9iDQh1jpAueh4czzhlS2pNPOcBljQubZIvCRLHOMp4G4lvSQhjpUoEcnt6JB01N/NE37/jw+cK0RPW5ksRni0nlRF69u8T3oRVJ0mxQr5uasdbL5QRs23rIkWngOwGZprypH0JjnnXIyQ4mqrT1epuERZYTtCrU/QqeStcHKrDVIiCeFlYxS/Gdtihm5a0Rgg7SsJZpXnk4n7jcbiLrQ/ZdKUWaDJ0c6qlWTuOZUpsOl6i0LPus7zpiSpxOA4+PslaWddWBA2jhm/XZWbrQHezOWjlYKCEEvBefndY2+r5X1mNl3UQCPoxnrF3xymxoRXwbU5QGgFePoVqrJEOa3O/eitfLRDUIMBvzwYgYhh6c4/Xtxo+fX9liEjnMttJ5z8t1xtD4+vGEM9D3XqVJIqEI3jEO4rO3pcrlduN8OlH1Uj3vgzE0Od1SonMOFxxd6AjGEqxTVk9jCB5vHamIFKXos5YhSo6aLYWKHzzzvLDkyroFXi8zXXAqj5YEDiNn4MN5xGA4DSMpbeIf0smwE9913K43Xt/eeH194/X1VUyISxGpQBNwfwjil5e2SMyJVgspbsLwUpZUzpmiw2pAGR+IbPSnUn4BrqS4CMFRi4Do2HZ4UxoE/Hj/pD6HRgqaZd24qQ9p13WUKl5SZWep65rb/UeNMnv2+OIrJaB0KvJ1tErLqHTTELcV5+U97LYSpYqBc6vy7o+zVIctCJClne0knfwQxAJhl9y11mQYQMoMvfjo5ebw1uKMYVFrBWMaT4+PrPN82GR4p3d5FsBcChlhfD128jx3r9K+F8+vpCzgPeHaWdK1oX8X5GzozmfmRVh/FpE8L8si3jfecZtmMdPX+3EHK0UW3Q5vqpAKr7cb10XYffYmEvE+BJ7OAz6YQ/qxD0uxxgigt210PrDOq5h9lwQt0/f+6Gz3IZBL4uXTszItG+u2SEKqoEcuIssUBpU5GlClSLOr7zpu0wXrJPn/2TffMK+bmP77QVj9xtK0Ufvy8nowmwC2NaqpvlUWQ1VZpBR2O7Abk/gOGmtJWxSA7DAur9LYBIaxk5+1NiqObZsJXY9VD5odUBGwT1QQVvM4GkzzovL/Jl45tdJqxnWG1uS8yzHyeBpZY+I6b+QqYKh3su6cRYeHWDaTxSJC91IpevetKw/nUQoGbRD0IQhbxojHcWsW4z3TstKFwLquwrFq0pTtu8CyRXIruGJFNtWJnG9ZIjIYYeM6zSzzpnmRZex7vBNZYMOIz1UTwH3oO7qDbR0pRgrUnYXdWtVmajn8Hff71Spb7OE0skyz3Net0mrhuixcL69cLq9EzYOKrilhskhe5Z3kLF+AIJHqtryRSpV74DQKA8t63o0DWFSK1GGVESNNKmnA5lL59OlZzf/3gSHQjAARtUm+5n1QUElYoYDeeQJC7Gysnb3mrDvkZ6UWlg0d+GAPnyQZ9CO6/WqElZvUOsMoG7G1chRkB9Ouyf4C9MyC620hqadZsGKPIw3+TC6NcQgH4+/d+UxwajNkhU23blGZXI5xEG/BmBLOevXHEksCbx2JrM0DTyni3XS9zSzKstkBkn4ctXFmFMRxrEWk2wbU+xmal2ftVIo6zRPGim/V7TZxnSYury8yZCzFY6iLc9LUke8lpAfrpCEsebpBtn4TAMAIk2iNG7t/a2uioNlSPBqDfS9nX9cFHh8ejiZM1HPcGXPcOfLdv7Cqcqn85rsfuNwWShKvy6pfX0qBJpYfIvtuxLTpHSpecd15YNDnX4rIWR8fz4epfs2VVPJPWFLmYOFYI+t7ixsYeY+i3oDTcOI2SwPb48VvNwSmsnBmZByFmXi9ynAWq6BEykXzYJHRygAA+bRJz+qYK99/eGZbNrrO8zh23G4LBWHlgQzs2b/GdEatYRLj0GNd4zpN5FpxyD1WFHjd6x8M3G4zr+XK+XSipZW1JFLyCmpbajNq75HodViRweqz8lxv08GaBzDWYJoMBttzoVrzMXTn5U3qIecMb29v5JSYrjc+fvjA29uF+XqV5nApBxs4p0yqsndLlaEKrVYZxpClebSsKzVnOi91XkoJ2+Qs8MFJgxcd2makhqutKrjXfgIqm72niAo9JDcRyJVWYbrNBNP42ft3XOeZLWWcdXgjw6+CAu87E308nZiWhaTWQqe+ow9yn1gs6ybgUdd1h9JQRpvtzVcBaJc16x4TEoLUK07u6xhxPujeiwzjCEV87oehoxbxQxbwdVGl3YC3noeHR663GzbJ4KxSBbit1tCa4cOnN7778MKyLlgk7xiHQW2S9LE1VZqVwjQtx3mFkQFtNEtZN0zfcZkWUZ4N4VBSbVtULKCpP7nk003B2M47rBuYl41cZD3lXMTz0VmGvsd7z7wshyWNDPYTH9KiliylZB4enpjmhY+fPpNr4+X5lXm6EeMqz95Z3l7fMFj2IZzrumKs+F8PT49gwLtRhhV2AZrn6eGB63Rji5uCuwvOe0ppB0no94nfG+DzXjxE9uLWn08Y20vXUllGy7LohrDHpVD1IhaAyigbSXx3gpdi27sGZtCEZeU0CNq6bImUI7E08k5zbWpAHCrLvMiwgCxIvHMy8W3sB8z5RNFpVL13AgxoMbGz6XZz8h8+vrJsAkj0yhb03rHVirGSXG4xchp7Umqsy0bnLFtu6p8Bl9tEyvIz9sEJUKHeGlUTkJREnuG8ox8CXee5vE2sUeik1cpABRn+IVKWqJ/hNIjRez/0MonKVgyVsQ88jj310TCvkZfrxLRsIgtYVn74/Map7ziPPaehZ+g6woNM6Hm5XHSDBOk8zgJkTLcr0+3GMi/CRkDMY7tOulY7Qm29MIkuL2/M60zXBZZ5ERlz1Km1tXIaT0KBtSKXeHx8Yp5uDKcTOSWWaWZdZvHmq6Lr70Kg73vOJ9mIt9tE13e8f/dOvGiUbZXKLhvSCbkWMSHWgs5rslrKlynCu6H4Yewao5iYKpCwDzeYbrIhDRC3yDiOX4rtUmjqYyd1tjl8Fo0RYC4py6Lvekk0VX5WmwxqKbVyHntaLdLRVFAp7D9/M4dUqWoiKkWsTLGLSeRgMeVjctq0bpyHXgbfNOkNv92kwD0P0jH75v0DOV+YF0n6hxBY8z6lb9eCgdkafdcfA2v26ZG1isfKziB0CnBmZfjUIj5X++TdWZNf75wk0vVGShveiddm1k65eJ80UmtcLjfWddNEV+SbfReYphvbtlJLoSHJfePLRMtaKsMoUoG4LRhlcrrZKqujMN+unJ/eYY34Urng8NpwGFQSuRuFj8PAbZq0gJILPiWRkBcFYzr1eNynLHtvdfiG02S1Y1436ropaCZJTFTJ/+l8PrqotYkhuXWWQRmsWSWyRUGd0AkL+jpNVGQS6LpFqOILOfYDtMrLZebj8xspZk7KZvbe83oRg/9T31Fy4nQ+KQPWKuNVPCRrFWb0bVqY14S1G+dRpi7LABGr0iWZdN4FzxpFRrtPtYy5QDMyjdw5WqlSdHcy/WvdRAYiyW2l1ozzAVM2cs0YbfagPkJOQa1SJfEuqTD0E0+PYpewrivX28R0m3h5fuH1cmFbFgFkW+NhPJGrrO+gwPSiHdeYpOlAqwz9wO16VT8gea8GkRJiJCHffc/2fem9TF4VYkMVeVonnfK07ZIgDgYjTsy/c8m8vL4eMjgBVvLh/7Tfm9KcCsdaFKaJPRhYO2jgvTsmCTtl62AMVYGg03jCWQGZGxxeksaqD2ndjanL8fnEhyQJuxqRF+77LpfKtCY+vbwJI9dYOi9Mj2nZ2LSJImzThWlepJueEt5ainNM14lhPzPkQ1NzwdTCVgqrnnHrtmkTz/P4eKYV8WisRRihRs8ko96E4kVrZeq47GCxeQBKdczKGqklq++To+bGdZpFQqrn7jCOfP30SEoi24w5UmnM63pM4TTOkFYZIOW9Y7rOWG+4Xi7M10UGHlhlc3qZ6ruDTTkm5m2FCrsXGLWRq9xRRWVzAE7Bima1mFJWocjmjAKflr53NMRaYQfTi7LK9+JrZ/pElWIPvXgeWoP6KTl9x/Ic1k0aO0Y9IY/7VeXf4iPqWJWpcRpPlJxYt6tYWxhpBvRdL/5PperUPyncjBNWgXXigdf1Xht6X86+cehZY+bTyytfvX9knjcucxRPslZ5Og1yHpesAITKQBFVBhj15ikY0zgPA8u2KTDTQxOmiSkWKMTcqM2T5xs+BG7TImcVcg70nZyXwkwq5LD7g4pvoDQOM9cl8naZxG/TqEzZOoJXOXypyuCVJpC3jm3dOJ9Gaca1Suh6LpeLet1pcaCNtJQi4kUWD9nz7XJlmlZZTjUxzzOXy5X5dmXblmNN7Yy4fchDFzqV5i2M48gWN2HBW3OwE6wRj8CdmVVbo7f+yHH2KZPeaSM2JbZ1pusHrPNSL2iONo79wWKRkJ8l78bs1ojcVJnNXwZRiL9s0AnFqe7y+nbkYk/v3pNzVDVBIoSOfhwoKuNHPzvGKKNOQMnOC6vPOourkhW0hnqyGsaup9bGmgWU3X3TQggHQ+VR7/Z1E9ugmLUpoqwbmZLbjn0s59V+x0mzYduSNBENnE+jNIKzgASS4SHsMwVjcy4qrRNGvLUia3ZWBzU0ATdvt5nWGm/XmWnZ+PjxI8/PLyzzTIzbYdkw9qIeMK0dDMmU5Pxb44a3lsfHR2HBANZ2YoGkgP9us4OCbxVpHAUfdM1CP/SchlGmdebEvKx4b4/G2Wk4HUx29DbOpfLr337H959fqM3wp19/Ra0Z6x3TvOI7L4BkazgfmLdIo+K9qHZ8F5SdZLSeyPSD5OriPyhDxVDFBPqsvarGdl/ucRjURiarJFqmfXad10Zu1jpVVCLTKtYQ7x5PeBekmdgKMWU+ffyMcZbT2OOUHVi1yVZK4/l14ocPn/HBMQxCZHl+uZFL4f3TA/Mqw/WEBS97w1ojyi1jtRnWjny9tIp3on5ZdbBg0Nr88fEsazrpYMacpfGcMlgZRChs+t0yxEAr9KHX9VcPAkVV/9tSdzao+8kAB7nvijJFvbN8+PiJy+XK9e3CpNLHWhvGSY4adEp3KZnWirBti3hS7n7FO7N8v89QUkjRhvluObYTg2iNdRN/1KZs7l0hsf9zjy8Qs/z/mivPLy/ELfHuPHLu4d3jmWWOGNt4fDjjjUqxbaChPvE5HdYZq2IQXXCU4g77oIbI2oW0VMSnVJmcuRSS+h832hfP1CZ5hFgPQNoi4zBSVVq9f0YZNiWDm2ISJePz6xXn3QHEDsOgjVcYfEeMG1ss/Oa7T3z7/Qd2X97Qe4IzWG20WCOKk3EYSDkpsx52bf1OarFGpibPOmU5OMNXj4+0ko9G3PnkxRpBmzRFh6fkCsUZSpVJ6iVljDb1MNJ864IjpSpy5yBvzlnxsUVr9xQTxjimaeHT8wvLKpLbnDLbOpN0GFNtcn4H/8UblVZVIdNpEyno+ZCkwQlM80QuwmJFz2nvnAzbU+/P3yd+b4DPGvHc20c1O32pT0+PfPj4SSfdiSmydKMyfScdjWFQcE+9oRpF6ekic5EkwHJ+GMlvhWVLYMWvLRVLzkIBNwZJUFX6k2uD0vBBfm2tJKsYOI8j13LDWmE+GcwhKVpjpNNhB5frwrKpDFBp9KVWtpJ4PD3IVNxtow+etMkUKO+kIEqlUYr4n7WmdNOWCcFSy8Y4iPRimmbO4whYQmdxRTD4Wiq5Vk59T8mVOUWgcbYi8ZULwynjoqixpVDExfcPljXx9DASjEpCW+Xx1GPtSG6F63VhXiPTonRw03BYBYEsOcnlcLtOXKeZt9cXbrcrOe6TPBU8sxaLfN5FTU+DcXz6/FmklDkpql9x1tP1PafTyLYsAsotC1uSDXK9XiQRD0HAP2+Zpgun00nXguN8PnFST4nSNEnoekrOLEb8lErJMpBFwRUpdLzSlu0XRoGu36qfxxqZoLZ3E/dx2tKVQsCIIEDwPg0vdEFuiSpJjXPi0/OFZiyy46DePQ8PZ2QabtSJhCLFWJbE8+sFZx3vHk60WrChI+ZFJMUIoyblQhdG6a6pSfgxXlyTZflnUYnQqoeJlQQ7l8MUd9kSfR+4zSvnUYxr3z2NXG4LMQnjYuw9ZzVCXaMwmXZT/eDFN8tanRpYKqdxEBNyY3g4iR9ijJkC3KZVOjUIoOusYezkMLvepkMWbYywRudVhg6UnJmn3WspH1NoQycd2Jw38WnU368IU860xsP5QRLTKlI676TTKh5qUnw200i1UOKCXz1LEvl4HwLncdBOjiS/tWQd9PEKWEk2q3SAO/VBPJ3Gw4tPjM6bejVKV32LVdeJoyueaRGvkYdR6OhYe4C0zlg1PG6H5DCnxHp091QeEwTAaaDnJ8rwMXRdL8+2Np4vCz9+fmErhd4HbsvKu/PAbZk5n8aDCdJ1vcgJl1Ukw1VYyssWqU38yuZVCrpxEEB2i1HZN2gimQle1l1Wqd6yZU3+xEtlp8B3KjWRoQwCDosHhdwDzjhsy5z7QKXRhZ7gPKVmgsq25mlV+eNMK424Rl5f32i5kGrm7frGOs/CplDfO+esMgh1GAeGzss+WpaVqrIQ33ksAsrsLE1jtWdqjHieGSt+kT4czYCqAIxBpDxWGYcpRWED5HYw7nIphKEXQM05tmWlGSOTz632k+vuN2UPaab3QZnAMt1bmgrC1sBIkgdSgBzysSYNjRjFA3UYz+Qs3cjd92w/S2Sqtw5kikm8mKrKlY3cA1TpIMvURGEtz2viqhP3Hs+DelcbLrcb3gXOY895HNlSJunEPrEcEKbYPC+sm+yDr5/OvFxupCpyEKtAO5qIo8moMYbL9aZSYPGMKVlsNLyzvHs4qdxOGjFZpcFGWVqXacHUxhw3TONo+MnQnS8d9lwKORWuS8RZOA89f/yNSC1ep4kQOrZN5E/BQsMxrYuABylRt8gyXUhpw+HJSeS6tVZKSpQmQ1FkSELBGZm2Ps+z+I1WMf3f1DC8C5149UyT3Hsx6SRleZbBdzycHrAu4Kzj8aFT/0FhznZdYNs2lnk9JiF6HzBW5MwYAfZTScJm1qEbgDLGBYygFR2k4OQOc1Y9KOWea03+fCnCXHDei2WEFlqoNG9vzOy4TtXkv9TKaRwxyyIMLgud8+rTVkTubByX28blOpO1UbVPyVu3yKATLNct4Zw5GDi7b1uuFdtEZjYvkWHsjibR6TTqFGspCF6vN06DTP6unQdTWTZlsp16ahTmwBaFRS85gQD9IYinrVhPZLo+EIwhlUaKsi5zFeZNM8gwkZKYV2EHdb1ISlMWn76Hh0fACjOFJo1sAIT5mhEfqpbzkfsu88T1cmHZxN6lJvUOrk1Zm0YaMFYGQZmKSJZNo9V8SKTFbkJ8heRvFDbX0AfWnDAWTr7TQt4f3kbrtjHNcrefTgOtOIKXO9qiBV8pCjpbnLGkkuW+sDtzRpsqVrwc92bC3oA5Gg65KKPfqEdr4eH8QMoRmuTwMpRO2Co0yV+tk9+vRWwussq/5Nw2lAqvl0nBMing+q4nt8rr5UrThmypXxperTVSKXjjyLmybMvx77YUMQSqkzN2Bzp2sN0oINDgYPW2JizoYRBwLPgAtXEaemXwp4MNZJ0H06R5rfdU6AJWDd/neSbnwtvrlXm+8vr5swKE4vsnk9H9IWP23kNVhq2y4KyVRox4zkne1jmdHLtFGjAOI8bAssqAuFqKTpyVe0xy/kDXDaQoskVM0/UsEsbavjDOpakLv/vxIx9fr+QqEuc5bjyNHTFnVZo9CKPJOpnmbi3j+UyplaDNpJ9KX4P3oHn27mlrlGG/S2Mxas/S9km7li3KkKoueKw25UTJ4wlFvMOtTh5dF1l/MUuD/KsnUZ8J4WDSITPSzCytYRoEa/S+m/nh0yu1Vt53J50i3WGcYRxkInbX9aBDl3KWYQaL2szUJvf5skgTtKHncR8Oe6CnhxPGWrY1MfTCjlqWTUDDKiAJAEl2nLcWN3QyVGaTXN9bmOeVeRPpY4wZg7BRDdK82afPG+rRdCtVPNRebhOXy4Xn589sy6by7ya2Espec/ZL07MLQfw8tyjMXCPTgfVB0ofAMHQHAckaI4PZEKsOIR0JwFuKNFZ2K4qfgnv/Jsi3v6cUE7PKw4sxVMRbtsPyeJb7yOkaw8mkaqdTeqWBmhmGQM5iYSTKRsP7R884DkzLStI6r+v7w597iwLkpdzoOrWuquqtWIQU4fRzdk4YztYYMpW4yR42NhOcOezUWqusMfPyeuGPf/a13Ls+8P79E+u6EbeFec38q7/5LZ8+PRN6z6nvGEJHH0S9UJBhOl2wMiwzRVGHWUsIluuy0Wqj907WiwMZQpHwwWHxXK83us4ftkAxRgat/1MTCxyDNHhyKZzGgdu8EHPh59+8Y54XXi43rHM8nE68vl1lEvS2gZGJ0GKj4Jm3yLYVSsxcbxew8Pb2yqZ53O160SaQOXytx6EXHCOr5HuVg2lZFrwOjut6GbzRhUBwluA8/vFJ1mer/Mmf/hnOOmqJ/ybc9t84fn+AzzlhH3jpARTVVU/zLCi5TkAcVfoiLILI0A/CCsiCslsnXT1hrDgqjd2UXiaNjVxuE1uMyqQIDCeRuQqYE0ibTBJyPkjXPMnlbJ1suW3bsM7y8PBI6CLruqqngHS+eqVYb7FwnVfxtzuJnn1T+dvJWi7XG60hvkFBGES1aeKvnoHLtpvkCyI/zRs5V0LnmefIaQxaBG0MvdcuvnjS5Chy5xA8n6arsiQqU91kcqUxvDuPLAq27SbWzsq0JmvBWkm0b9PKdRbgrYGMNq+W8M5hrEw5m+aNaVrZSuRynXBW7tG4bby+vXK7XJV6n3EWQt9rY9NQq3Q1xfxYzGVv14t45hmjAJQkfX3Xcz6fVd6Fjule6PsgXoat8vNvfgZY3t4uNApd6Hh6fOJ2u3I+n8TkXjsr3oo8VxhBSQ1phcmAriWMdCj3Ds6+ZnfD5i/UfcPuN9FrB1a8BxcezifWlii1cTIDw3D6UkSZdkyBNNaBSpXE9FjZO9bSnEfo0yIFOo+DFF/G8Pp64fVyO2TZMSYwjuV2E+mHkQPoYRyw3c7CEWaZdK5B2HxqqrwDmLUQfOBWN2iNaZZOEKUSc5UJ19aAFel8rpHltjD2HVsS1sOyZZ7OA6+XK1tMPJ5PBC/X2jj0ItvsPODYNgEtTk061Z0PwuijQZX3u8saQlCGadsnBRmmaWaaJp22JwbYcuBKFwYkubRKny+1kGsmrsJMDeoVtm6SVOScWFaPcZa8SfG3m77HuKkMrlCyDrtYb0xvnyXpqe1LJ1YnMAur6cy6SjLWW4dpBdvJehvHQbuQXybk7uCIPxhPysirkqSNw0BDJA1vt4nz6YR3kvwZLA/nnt0Ythijz0dZm+ZLoum9YxwGAIauZ5oXSimM48gQArUVXq8Lz5fbAeqkJA0KQBkCmSF4hiDF+C7rrbUpHV6B7lRZ141T3wvgXYp2t9vBPhDWXcW6cPgNtihJ2RA8XefJVllvVs6OLTY1cBcgZZpmAXH3DidwPgvzx7kv3dTgAyVXnDeMfcAXw7ZmlmlimieRNmf166DpclSA3znSJsBk73VKa4zktBGcp6qMP26bmLInASeC+jU5lfbV/ddWJpLuzYV1E5+w2qpMy7OGh4cz82zou8Bak36d2A2krFOCYxJ2Z5UBIbVUmpE9J80DOVNliJBItHam6z6ds6lp9g5o0fhSXOZCXja898oGb5z6gAuGZgymNTbNhnMR6USMmd3bJUXxTdvX9ZdCX+T912nhOsm90ylQ3ajcpkmmB6p0lNbIKQpgZw3UypYT3nm6ruN6W3i73jj3/gDsqg6zEvNqKSairtWYZS2mVSYdxiTG9DUXhmHUzj7sJuoxCnsipVWK3yoFIQ3Opx6q3GGmges6DDI8ofOeGgu5FXKq7N6n7x5OnNLGuiSgsixisn+7XJi3RVijKdFKoaWEqY24yVQ5OQYFfCgqu7XWiHdgkWExpRY6Bw+nM946YfehUkQrjD6sxXqLbYZmLD44Sg46TTBivSdYI2DvFrFOgN63yyQsDvVZulyuWO8ZhnCAefv01t3/dfczNbsHmMp0m8p7nbWHpDylLFPzqhT+5Vo5n0/EKLkWykgUsYdVAEHYq8bK78eUePf0yIOVAuU2XQHxyc3V8OOnN2IsyhBunHoZpLFFmVRprTBLdpYrCm6kWChI/iBWMoGSCw/nkRAs6yaDccahY3m9sERpcg1Dr+dnJUXxjN4nCk6z3KXOGPrOK/PVsq5ieRKTDPFqrdApSDI8jGyXi/gNak757umB63WiNLFK6HtHLnuuXdmSDnuIG84ZzueTWj40Xl7eSGzYZshxY75e2eIKjcMTalnmL/IozbslhzS0ogCbNrYwYI1j7AfxiPWOeY6M4+mQaFeVxIXgCNay1ULbgSEFThocU7J7Zd9RqwzictLgMsYKKzglaWI4qw19ka16VfrsrLfdbkUAIHtYWEBTRp+s25y+DMdY1igD3voRq3dKjB14GQTjw37/COAk+1yA2WakkX6dZrlPo8pWK0zTxG0W30fvLdbIUDmvDMdN7XmaQVUQjXEchCDRUE9VkQIbdFDG7mds7MEwKqXKROQkKounxwfNrReCFwmoeJup7DV4krIBvZNaYtFpp10IzMvCukaxsHh+Zb5dKa0cSpC+6/DBM0+zyBW/UOeotXJ+OAtjNmfWFNlS5Hx6oJSF15eb+vAJVleqNGRzSsSy4bwndIHb5UrJmcenB8bxfDQLa8ni6UjjerkQQkdcZ4LXCeANnt+u0ih3lp8/vBP5sN2HQTWezidaKTi9B/ehdfu6ssbKxPhS1Y8UMJ64CQtTLCqkrpCs9YtacwepjFFrAeex6n22DwWqtR5esGWLrJsMNQhd4DqtB5nAO8fjw4DBHvdkUebbEKSh3rB8+PzGdx+esRhC55R0atTSJxBVYr97vjljyE3YUSjDP+fC7TZRVF0gDRsZnpBTxgcvQNgawchwy5IKzgcZwvATdnkXxCPUeUtK0tyHxs+/fk+tjdu0kKsQKELY724ZNDTPMnCsC4HO9WzrTMnSJPvw4wem65UYN/Gxq2p1YUUCXnI5WO9ioyJNgW1dFXwVoNY1IwM7ukBDJpeLb6w0xksupBJ1+I/XpmjmdDoTOi8DIo6KZWcjG20qmC81b0zUJMMNvTOsPuG8IXhh0zvnlU3YwDnilo4BT2gNZ60jr5KjlSZg5+Iz45BloIuxdJ3R5y7WWNdpFSsHZe7Vpuxxsw8G9Nrg2qdkSxNu94V3zvPyNrGsia+eTjKwTEky49BTikyefTiNYOXzj+PA23XhX/zLv+U6TZzHXu5z9fez1tGM5PYe8SsWINzS9vWl698Zy2kcsEb88V5er1K7I3WGAP4d6yJTm2Mq1CJNyc4K/mI174vZMqqk+tPrTexE9tqpyT3fDGqBYMWyozZckHvnepvZYuLy8sZ0u+Ks4XJ9OzyNxaZHanHnHdN0k5pznrWJnw7W+KBejs6Kn+I83fjq/Xs5cye5f0PoGU+iBA3qVfj7xu8N8IkcQ0zC1dGB6/Wmhc7pYCqlLFTj4K2aSTZiFaTZOYttUhg0wKmeHGVHVO3MPzw8cLvd1PfBkWsV/yjtcIlsxIs/mbH0Y39cgjhhQLQm1P++7+m7Tgrm1qgIJf+2RJ7fZHLdw9gxr5ElFYbgiTExrdLZF1mbAA0ioaj04Uvi0AUnciQL05YVCMoM1suF6XqlameeHpTqbkTCMS+ZvlNzTE2sSy6EQSQrBumCe2vZUqULYhDrFFSgSQcmJRmesbOiVvVqECNOmUQZU+ZpHPB/9DXf/fiRj5/fuN4WkaGuM2mLB4VZDkW50fdpi9Kpq6QiXZYUV2HeNOk+OyeyDh8C79+/w1lHr+yK1opOwwz0zmMtjOcTz58/k+KK9TKN68MP31GKsEm2GElZvZA0qcvqfRdUaptrVRC5Pyb+0HY/BPFk29k1+3CEXeqze8v0XUeMYjR+m2dO4yiHsTF0zjEMJ+Zyk8O9iC8GDTUo7ZAJOZ12M0WKvulUvV3Cu64bHz+/yFQdBQSs9ZRmuF6v4sVjhYEpTLAKzRxSY6fsDJmypZMmS2FLAuDIc8k8nEZeXi8EN4hcct3UB9LLFCxnhW0itBAtjipbqvSdsGQ7BRKCt9IRVkNxmWqZKSpD39eaD52wKZok+2+Xm9L+Pc7Auq7c1NtwWTcWnYaYtpWWhe0VYyRuGyATkL3zUEVCUUplnqQgTTFiLcf0yBQ3lVR3xxS00/nEtiwHC3D3rOlCoBmhm5uysS6TFm2SmMWUqcXycD7JtLNWCcFTgcv1hkUmJHdBhztYZZGq3A7dJxgOjyw5K+V/cpFJam4cuE4zL29XHehiDm/Td48PDOMJ50UWukXpTu1FzDAMhw+NgGWWdypz6UJ3dMqu88q6biLNQcBFY8Rj8vGk3qDKtEGWmiRO1hzrc1mFUdAFx9A5NmWi5VxAp54a7NF4kAveKGNAGh+pFFzWs71ktmZoCPu4WUdWz0LvA95aUsuMvTB0trhBM2o0DRiYlgWDURPpyrIuvL29Mqtf6A5+70My9ufvdL3uE9zFjydTs/gyxrzRqngVxSgedCklncRsaBVl8mY9Q+RsphVaM5zOJ1KOnM4PwphdN4y1LPPCcr1wKZGTyvuNNSprFDBzjZFcZDiUaeIH1nXy72OM1Np0Apcwy6UIVZnBPqzEyuTmZr6wBNHft7YSSyOuG0PXyQCdWng4jYzDiXWdcU7sI5qBrhvEE3BZ2OKGV4Z0Uf/BQ/LuPD8+v3K9zVjjGIJniZGXt6uAOyphKso8kUEPjlrT4XdirRMgtWbppM4br7eV0xAUnFPGo3rpyLlTOZ07AVlyphs6AdKaTklsjZYrxUoBlUrEG0fKhfPgaQo65CRScmfEFyhVKRyMMtWDs9gh8P7piet1YoriKTv0nnWZKWkj1ULaMo0ikxPnlW2dhf1Z9s8u4Os+jbMpG91YI4ljysdkVOOseOR0g/h1KnufKh6IIM1G77wMl/KeIXhKjCSVKcdtYbbCEvYKwF9uwq6kVpZlkfuvig3GPC8YJ142+yTLoe9kEqWR/EcGA60C/FQB2Yp6GBttmBU1KC9GJHzXmzDShZEqBd849HSdeBWnkuFosCQB+moV03d0v5UqEpaYVNZjmNeklirC4D/1gT6IX+SWIn0QhmLf90yzeFQZZKJ40wZhCOLvdhp7sZhwOlypZAyO2gzXy1XOD1WY1JxYU1EPqkRFPMkoIr+LSdjsoe+Y5g1qpRkr08ZzFtaQdzjrWbeN4KxOpJdBKvtkyYfziY+fL1hruVwnmmmsaxRmYkks68q7xxNYKzLG4LGtEbzldllIW+I2TazrwjxNAuxviw7C0wE8IYAFZ6Sorfva0/1kkSnt+xRGOVfF9+r9+3cEZ3h+eQZjtFFlpaFgzMHQFuZaJmlfryEA3sP5hHditWA7GVbTmoBs1gnjb17EWsNZ2Y8uBPF51CbMnsOhxa28p31YkBTvUsQ6YbMpuGWs5XySyZHGek6nMyluOiCjaCNQ2HJ48MGCsSxL5OXtdvhpL1vCbPI8YypyzzmRt++5kXjlVraU6RSEFZavE9/LXmqpUutP1oYVOXdSn+laVLqdmZZN1AF9x9ALi/dyFZn9aRxBv87o/tvVBLlVYsl0Rth2W8rMa+T2dmG6Tby9vbIs89H0bqWKmqBKcy9qo+B0Oskka22SU4X1/HKb+Oqrr2XwQYpqqyKAxtgNpBJF2tsk996nA1vncd7x7t2TNjArOW2UHAX7qJWm7KuUNmKc6bIXUsanZ377/Qf60PFnf/SV2ucMDMpcj5crBkPodhVP0Wmv2zHw5Zhgr3mbt4GYE0uMOPNlaB5NcgH8F+umfeCLTKOX9UbTQSmlqNe71RqtKoNe7KeGfmDoRVFhjOX1emEYAp0XqS8NFrWNMIC1nt/+8Jnvf/zEPoG+95ZtXTE6gBA9i4J3mFZpaJ3orErqM9bLz3nYETlDziizW5uIGF5fhWgShp6Pz2/qEWq0eSvNzfGQbBpSEvZqTJl3jydKSqza9BVOrdwXYRgPwGVeF775+iuoYr10nSectVwuF95eXthWGdKY9fCorR4NBWHYCgBK0+EubV9TFqywWVsWllTXBVLcMM6ypMgwDmKJsCXmeZI6xQsRJKgtlHdO5Zs7oGcPUNhamdLsrGWaFz4/v3DuRWE0dJ2AatpocMbQsqiugC/WICXrcBEB+WSCrviEhxBEARM3YuoP5rK1MtjCWsvn1ysxidUATWYGpJSP5ofVfC4Vcww7FBZ0O84ZUyp975iWiL3Cu4cRZ0Sds0VhTr+8TgoUit3Er7/7yD/7l78gLSvBVXlHWRQjg+8pNIJxnPqOyzQrk7aqRYvUyrfbTKfN4aS+os/Pr8Sk+UOt6skotljWIiQiK3lbUA9GwUs9pWykvBK8ZVll0M+Hzy989XQ+Bnhu26Y1QtJmh8d6z7YlrtOFz88vzLcLb2+vBPtlyrC12rDXoZN7857WuN2uQvKwag9Riw7vkTPFWcvT4yPn00mewbqQSj7+/ek0ip2ZNtl+3/i9Ab5ex143NSFe1g2niZK10qEdglATb9OCQRLs3bsFUO2xDI/oeynexSDesvsZpVyEcj6O6rGWcViu88pp7Om6HtuBj44cJCGwOilMwDMxMffeSefIK9DkpUAKa+TbHz5ym1d6KwM3Xm+rTCQDprQxbxu991jTCH13yAwMHMlMTIU1imxMNrSyDLxI8YZeiiBZuBxSqi44lYxY8araIg+nkadz49Pzm3Qto4EmXc6UxK9jixHvZKrZbRYD/qCfc5qWg8KfcqY1AfdOXWCaVt4uN9Y1EoJ4unz8+Jm3y1XYKkkmxwRlP1or/kpC7d09PYRpYVojrjM5FeZpEp+YEOiD5/37r9iWldP5pAXiLCxM4OnpCVrlhx8/MIw9rcLbyws1JdI6E/qeFCPzfNMpSlnlRkHWmyLng7NMKi2MWQryHfCotZIVINr7bFa7Vju/uiFT+PapkSDeBsMwMs0zxljmZRP2jHZdur7j8fGJy/Ui5qSgpqSGWrMyAHfze3nn4yiAj3We17crv/7dD2z7xL0GYy9+A+IjUPENlUrJPomp4K3hq8cnlZWj/nhWE1bL7rVCE+DG4LBWmLMxRx7HnqxG+K3oZGo4JB/OOfIWGYaeXGT8+hZFjjn0Hc4GYdGoZNSb3XdLpO7Be7Y1seZEsNLdWdY3YhJwJuhZ0A8Dl8uVVoUpKtO0Kk1lH1klJXIxiQR1DDKRMsXG29tFaNEK6qKfu6WdkVkPUNIo+LcuE8bYQ3Lz/quv2eLGOk/Ms/iznc4jfT8oO0l8DncWsVc/kerEDFsmQVVk0qFll6BhtMgzVi7Yn6zFvQCxtWlyVQ8/r4fTwOU2MW9Rk/8vdPunhxPWeb755ues2yIyIh1WgTIEQT67aVUkrGpwnxt8++GZ7z48S+esNayH12VlHMSHMxWZSLo2QCUmexTtJG1JJOJDF9SKQZKbYC1rKdAKuQh1fpet1ApYmehnjcE0kbCdR7Fp8E7o+kstBC28am6UXCVpdUH8cozIEENt3GaZdlaM3BshBJZl4+3tjXmaWVcZzLQDpGLybBQor2rW/qWDX7LITt1egCYBlkX2I/Lo/b7ajbQB9WYzCrIVUerrVECZsiysZYOlDx2bc+RtZV1mrBEwm2FQqbs9kq3dcysE8VDLW1TTZ47pc1a7wPt6M0YKxL4PB4vlME9X+4qsz0GkHtJoay3LZDIF6td44el84vHxSWwPtlUmZIaOlEXe3Hed+igJc3n3RA3O8/x64/lFTK9lWmXm7XqjCx1O/3ypYsURgFSEZV6KsKW2LeO8AK0CKEnx9Px2Yei/JsVIMwYXgsiqY1JZL3hjqLqGli1SdTqpHA8/9bgrXJaVnITJsftBXaZJvGdoynCx5FqYloXT0GNa5XQedY2tWNuwiJxsnQVMXmtjTZESpam3xY20RlKUKW9ln0RoxITZ6lrqdvXAtomMsn4BLIyBh/NZCwkjfjpRgbucGIZRfGKdYVBPzZoSKcrPVJbCMot0N3hJ8p9fxfPNOs+ySlEZgiXpOeq9w7HLzmQIVW07gzBQambdBIyliT3FLm3ageovsiUBgkII1CSsqaHv8FSMcVxvE/7dozQ2SqEEef9R73uRKzlJmrsgoGOthK7Dd4FPL1d+9+OLgPi10HlH37ljanOw5hhMJECqPNPdewqjU1yXKHKqLFIfuVsd3n1hZZjgZTgblceHE9M047Spe/g8IpYBckfAw+nE7bYKMx/D7SYgeR88Y9+pbUOkYg6v0lKkMHTaZPoyqEHu0a7rSD6JR6oR65stSsPserkK+zk4rpcL0/XG29vb0VUqWSYx7/5XXZD3uUvr9qaMUfZ5U98/HRGjeceqfrKe4DybTmJ9eveOUuB8fpRn5x3D0Kt0vx1sMvF0RX3bxL/y/eNZPPWMnLOfnl+kWejkZ8DKkA1joPNep4or87MoIwQOySatiRzaiH6l6Lm4/6dUuSuXZVOriU7vGWG73m43Wb7WUFMhdB1DL4zNdYt8fhG7BmvgOm+HD+V+DzgrwzJolZLFS7YhzJZOSQ8lZd4/PrBuK1XBxrEfxPesVqzxVCPPSQpEtQfIRc5N+aCHv1bXySCjTlk6pTZiEpWSsP5FoZKyDGJJeo/P88LlcuXy8sIyT2xbPKR5rUHoO0oqbFvEOPk+VRvKrUkOeDqd1F/YEHzH9XIVn7d1wRiUySvM5lIqsSQFir94Ytsm4F1Vf0pTJb9rVdg7hnZIjKtOAgXDp9c3ur7nP/izP2VZFsZh4NT3Ul8VYY4f7CodCCb3WNNcRxrmOwtM5MbhGJq4W/mklHXwjTTDvzRqG6idj7Mqs1fPuiOPbcqKbeKzRakM6pM8rwtdCDycRp7fLtR25jZvfPUoBAUZviHQdW3w/Y/P/Ob7j8IeKhU7SOMnlsTgpMlblOUmuXEj1XoMVVvU5imlxKaM50bk8TQog7yypSQ+i1VIFFvMEKMAUrXy/vF8yA87fWdbzgqwyPd4OI0MoRMLp1Xq2913zVmxxXLO0HS90xpp27hcLlyvF2KMXC4X1mWhpKzecWpx4yyFIqptpLET4yae7Sqn987xs2++4Tpf5d5tAuDWkgVk7frDNiynxLYuUpdbsZHpu44UV6iVdVs5Pz5yTBXWf3onpA/vLPOa+P7HHwFLcFaaTE3whH1ITC4C7u4AKsboQBp3EH3EVkvq1m3b6IOQFUqt5FoY+57SDBaxivnw/KbMXJEUDyHgnWNRsExqpYDb/97QEbwjpqoWaTqkKGf64KB1TEo8eXcexWsu1kM11Izh4TzwV7/6Hb/81W9l6I4DfA9G5iH0XRD1hvOsOTFkp2xBDgJQSxm0xu26wDRv3OaVlJJMXnaGLkht5a2oiQTwlDtXpuwKIYEmezdOE+sWFSdRliSNnBIfPr1oPXVmy1kGcmX5fsIsb0zTzA/f/8CyLNQU8UBKG7VUGR5p7TFA0zqLQwg3qDordH4nYtJrs2AYxf9yn/Tedx1vVwHNTZUat+9FEeeDEwYf/3/A4NsNEWm7ga0Y+o5Dx/U28/78RNpWoR2rCalcClaBLTnY5fKDWlXjrpeZjCdXPp9BpbACdvSiF+DtNjN0gdPQ8/hwPhK2FJPSmhMPjw+grC2RTyKJq5OJMr97/czH5wtjF8A7Xq4ryxZ5GHuWRQYqnFTi4a38PDIRsegUt0ZTho8UfYYlSQIWvKPzhdsiBXLopB9tMOSYyDocROj4O7Mq8vRwlj9TpOAgJR4fnmTyaBdA/Ve8P2nyp5t/aJTWmBbptBW9UKQIg7fbpMaVhXUROuntdmNeFkpMeG/pvT/Yg7UWci2kkmhGmFW7JKuWTCpSbKQk0/ZOp0cezg/COgkBs3e7Sz6GZJQs3YrLdTqSqlYb8/WNdZnIcWWZbwjvUg5+gNqka94pSEW1XwrWrsNYlcuCJvPdwfLzO+MvF238f5HlihTOHFKkfeR86AI5CUNvmhcBOAYZIvPu8YGv379H7tCmY7sz27TiQzjkc/tkJ2OlY/vx8xt/86tfq+lx4/H8SE6Fj88v4k9ZC1Y9QpYt0hWRgccYCUMvDKEqAwqaHviNSugEYDNG5K37gZXTTOcDL9cbp2GQC34VubrzMhF6PziLJoc5S+L5/HaRCyhmcq68e3gQpq2R6V7NydQwq4Mz3uaVlIW116ncYFk3AQSyTE6MKRK3lS1u0nWphaHzXN8u0mFK8ej09V1QHzDLsonUsqqEbZ9eFGM+mCMYcFgxAbZGZW7iX+OsMAutFXnS9e2CD560CsW773vxY1PD/qIy6BDET9E6Sdir+vlJAiDgblLJWm1Vk1zpuO6SI9lHctHszNN9At3+9dB4OJ+53GZu60qXAt47GVIAvH96wHvHUy9T5QSIT0dhs3tJeuehCcgbc+VXv/vAdz9+orM6dblUkfcr8D9NsOaoYL0U88ZK8hC8DGHImsyPfTjO4pJFRlVqUxPxThPucAx52T1Plk18NPbhC7dpoldfrNZ0GmjOWAWqSqm4apl0X0rRtJse62TpFElbpDQtam9XmWCrQFKtu5+UGiO3L1PORfKIFoGFWmXK4f51Rb0m+6GnbDLtr1OpjAHtQgrAGJMOF3JWJMVOGGhYnQCZNnJJ1BzJKVJLYhgHUvzCgNvv0taEeV13CUOD0/lETmJ7UZU9Po6jyHyqgDHrJuC5MZbWtHi1aPFipNGk7AEBPvkJEG1YNmEDgeEyCcvq1Pf0g07dS5F12bBBPBBjEn+a0yjTBoP3vE0L3396lgSuNBKZ6+1K33WM+wRIZWc5q6CE/rfzAnjlWgnGEXp51sE5GBzPryuX66L+uwIGv03T8X6lISGyCKOS3Vb2ATU761zM+Z0XP6QknUbmtslaKgXTGmMvSep+hgYFE2oprOtKTJll2Wg1k5R1eJsWSsnCmGuVbVllqlyTQRmyZutx71sj00gxiMVHrdroEAuDmKWBsE93T1nO9FYLVe+roe+x3qp5u6Mk8c1ZpomSIqXIO4spqkVCYcuNy3WRpo+1XC5XKoahEz8pH7xKDYPKwBpdL2A86JCLmKTIa5XQ98KcbU19iN3xjo3uOWuNNtzkPiq1CKjsHc4I8Pd6ueHcewFSrZXnVoWdPY7jMQDLalNlf6/Pbwu//e6zSDqpPJ2FcbCs4ofrrPj0jOOg+YCnqXclBnKVM84qk38Y/DG0Te65AsaR40Yz+xTpynkYyNum8hxDzJlhGEjrRoyJ0yDMilSrmPhXGTC0LNI4sMgwBimu6iEPw4gUi11VAKTSeLvMwsBqMjSmcwKslpoO+dY8fxY/2LiKxUraZMrkdCMpSyklsR9AWVlFn6VVOrT468o9JXcAcCge9L8qe4opArKuUyk8PD7y+DDy9nrhdrsqK1l8hsSKR4pRQK3UhNGAkcbFvG48nEaMUQYLRobwaBOxC6KIAAidynKrytLZwT39r+5350SChZ6D8ybM3c4rMNgAU3i7Tljr6JVBt9cgXQgUIHQCoBgMOWW+//Ezl2XBG8u8JG1ay52+TwCu+hl236vgJVeqRkgAt3nhq3ePzMuibB4dVGK/NKGLlwL1YEoHqQ2EAVp4ejxJk9YYrK1smyhXapG75zatrDExdMLm2TbxKp7mVSTSMbHMCy+vr0zXK+s8ybs3mj8rK01yhXS8v67rWFexOem7jtAF+mEglayDsUR+ikqMQwgymbnpwBZjSU3y1sfzg0igrYBRD49nPn/+LAqwTQYu1FKo1uFaJa4Lt+sV5y1PT19zGk6Mp4Gnh0c673kce/YJqKkU3m6z2ExYe4BTgzJ4Y4zCgDSwxqzeX0ab5tJA6rueLRWRzilQI/tAbFZ+OlneWmkKRW0u9jZQqznqg74Tv9rdQqOUJvJ8AzFJU+vxdObtOjF0HaehYwjSaB76HucCf/XLb/mbv/sdtVUeH85UrW32CeTblg7m2T5UKOcs9xto86jqsBXxRJYhAO4AoZsRcNg5qWUv00rwUs/EmIgpMymD+Da/HUyzfYrr5Xqh68Sqx+nZOq2L5Cit0Url/Vdf8+Hjx8PCJoTAy8sraV24vr1xu9246kAzq4QZ5x0ep013S7b2yO+MMixrk8ZXfxo4n8+cH07M60Qr4tfotKuTahXvyJzFrqsWSiuHR13JmVn9/NZ1Oe4zGVol7PYheAYdHDqtK88vL/zR11+p/6d6/RrxL9+HCTYLeZV9aKxRsolMX5VBnDoQJBemdVVClA5JbEIaOHV789Nz0fVtlRDVa92ZctGcsqoHaT6ISLlkIZ5YYbPmWumsZegDPhf6zpNr5Tavh/x56AMxF27LxoeXb3l9uTBPEwbxWsVJw2z3HwfDsqy8e3yUoUj2RDY6iFKbqGLbpFYnS5LhlUZrJYPWp+UA8lKRZ4XJOmBE8tkWxB8ydEGbr0ZnA1RqyTw+nOh0/y9LZF43vEUnjkvDdLrcsNbwww8/Mk83yXmqNGeqYi37UJ2a1csVyFU8h42TRn/fdQdb21hRh/3pn/wJl8tFfPiiNOqWZcECQ9cRS9YhVQ7veq7Xt6Nu/H3i9wb4Yiq60aXTMnQ9IAfou3ePOAPFWuZZjORrlQVYqkxFEQmfsBb6LugEM6s+Q0XllUU72XLxtyYTKaP6WFQgl8iWxGz768ezTNTx/pBhlSJTTpoVc9Kml29rjd9895Fffvs952GgVPju0xvnsWPwlts0UysMnSenRNfJNFzvZKM1wFlhBuTSDvPlnVq6m+ULD11MvLvgWBsiE1H669g7ZX5IofZ2nWT6aJUJqyUVqm18+vzGOHSU1ngYx8MIP6XCGhNbzPzJz9/z8uNn1ijJX7Dw1eNISonnixSJyywTauMmIOAWZcpfcCKXK0W885raNOcqU4dKSpoYNoou9n264jiOdN7x7v37Y1oPBoZxgCoy34fHBxqV6/UmE0BrIThPXFb6oWfbFgFYqrC5JKn27CbY7ZDVilTU5MrYe5WHWV5eL+zDFqwJykxr4tPVKuCo+QttuWih7w+5mdL6FByjiRzaWCuXZxT2Wus7AfkeziLnMiKxm6YZ62TCmtUCTczK5fD9/sdP/M3f/ZaYCuexYxxGPr1exevCWtKW6DpJNH3oDkBj0AOuIfT5mL/4c8UUOQ29drLVJyt4cq5cbrN4HOYsF+j1xs/ePWKsSLZrEWA+F5FtgTmMsmstPJ5PfHy+KGjSWFaRue6StmWLetkartN8sAiMhZwar29XYX7FJFMT0wzIRCVHUxaOSLuEdSWHqDFyThhrKCWTszBwrDXqxycgTTkOXQEZ9y4JWkjXVvGuo6wiQTPWcLleaCUxzwvvnx55ejgzzRO1FDGZ1VAy5zGZua4b1g6EzvPgTocfmJgCq1mulcmci5q5OyMJ1c7KlO5c0cEVRQsA6RjHlGkt0YeAtY5pWfHN46zjw+c3kbk/noSFZy3Oe/WVEwNoaHjfHdKFVBr/9V//mu8+vXAaB1pMxNSOorJTf6GUxdA9DF5NcL36OqkRepJ9OnROE1opFJv+vachaBf7y8Af66xOihPJV6mNlgpxk8vtoT+RsvgX1do4nbovwyhqkeLPCxurM14/45ehMqVWrpcrV/WUKmrmLd4r6egS7j6urQrrFm0w7QXTtq1fgP22m5arj5Ma4JqOA/jbC1MDBxvMqDFyCJ1InFuV/euFfbdFYXeUFHXwgMhwY4z4riPXpj8v4huTvgyb2BmkfdfJXisytKc22DYxud6OhouAXVXPLlN2RrI9AJqdEV9aOaZrOiNrdlpWmaYeHLd5EymlQe9jGR60xiRdcOd0iqesz8tt5Te/+4F1U3/HXFmqTMPcJ8FBPTwwnbUHaNx34sG6+9nItHh5RuMQ6Irn1c68XMRg2Zsv8pzx1Akrucikt9oEfJVipuGVMZ1yOVjsNSZyEo+ePjimeWZTD6bg7JHMiVwdul4Yq1ediuss3JZFpjquq7Ad1gXThLVdWxPvn9aUcZHlB1MGh7Fy5++DnZIaia/bIuCPMkVBEtyrFrNVrUDGXiYlttLorCTuec1sceV2uyg7qxz3gfh2CcN8XlaG0wO2NKYlssaiqoGGRe54rKEaAfO8Gr/XUnhUr69SmrIe/DFlVoYNVVL9MgnOe6+MGBmW0Rp03lFq4DYvpJR4OI1smyTmz29XnH9Hr9YG1og1wLwsnO0o0hplmqfc+OVvfsvvfvjEuiZOg2PsekptbDnx7uGEc8LEsCFgkEJil57JpMlC8J5cjBrPC7Mq50SuKOCfmas0eM/jKAWvc+QcyblRmyGtG7sv4c4kXzadvKvPblsj87xKg1cnEXbBMc0b/eBpRRJb5xyxZHxzOol0OPzOrG3ULH+ulsw0JzCjTGxW8KHoPXu7XmW4lDJCrbMyZb5WbSahjCYOias1llQSnXeyJprYblirA31Mk+YWOpUxFr2HK5035JhFcrStjKNn7PbhS+lge9cs+3xHwLLam+RSuE6rDCly0gA/n0ZyqSIXt07teMSvdPdT3mX+VvORGIVRt5/p+5mSS6HoYINYMo1OCQRfbFpeXt/4o599g3Oy7sZRcubOB5XOVy7zym9/+x1vbzdcJ5KyznseT+PB1DI6bdVYI7VoQdetZYmRLSWWLYoPM7CmxGAtp9OgbExpUj2cz1JAqndTLjII6nJbmJaN02kQtpieXcYYtV8RZlbKmberWBB5zaO2mHi73sg6tXeLG9uycnl5lju01QNEVXKdspQ82Qnra7+fJeeWtUKT4Uw1J2EhR2nqikVP0KmeMrxpl+oG7/jq3TsshrfLm9jT1IKzMjnXO5H2b5vY8jQjA4qskVaB9yKnds7w2AfOh7xZ9nMqhetN66jWWOcF78STc/dxrE0YrS7I4IgtSa4ZvAKRujazAmFfnq00U5uVByX5RKNFNEeR/Gn3UkXfX6hO81IwxpHrpv7FVRt10vj46vHMliK3dRP/PGO4Tit/+Yu/49vvfmDoex77QX2vA8Eq4JUTRpUdFohRJvOuW1TvsIrR97Loc33/eNbnIA0ukU6rVZHXAUGlch6tNAqcozrDbZIJ8KB7vIqMe9omXBAGs4BKajdVKimv9Dog8PJ2YVlWbZx7bBLZ8+X1jfl64zZPYnUUOrVJkPtUJOvS/NmVFaWKZLJSceiwM+vwmIOEJACdSu2VlFFKOmpBUeN4GSBTqyqyFOdQOSkGxs7z/jzI8AjNU27TzNt1xhtLSeJbvks5Ra4tBIlaiigDSmHZNk7jSEyVZVvpvKfVoDlDUoWjnE0xZW7LysM4Uop4d3pVH6xbPlQI+7CR0uC2bl+kuEjOpPPG8E4sBs6nHuecDl2MUq8HURsmHRK6xcgQ5M7+/Hblx48vVH2GzjTePYzyjhXD6bwMLU3q3Sceqo7C7hWY2TZVzdhCTJV5S7SaeXwYWdeoDNuABU7nkct1JnRio5BiZBweoGVikXwkFWmMG1VAOvtl4I3MRhCsJgQhL+SU6IYgishx4PX5lev1xjzd2JaZWiVnK8okllpBwEdnHSmnowbbvQz3gUNRvVi99zKsqrOsWtt673l6euTzy2c5a4OAe7bKQksxEdcbcVsw6qn++8TvDfAllQ/EJIwspzRwZx0Pp4GWMzFZUm5abEsCE5x6B1Xpqp2GAdMQvxcjXcqqdFrgYLz0XeC2LGCsJnriEVXhoFY7LxvQgAwPKEWAOiSpEAhO/vntjy/88rffc+4H8ahaIo+njrgmYpZDve8EoMGIbCaXKsMsmqEU0X8LyCV+eDnJoug76f7JwdMIQbos+5TFZYnHtFYxU5ZuS98FwPDyNhOcgAdbkik6xkrSX2slBvm9y7TKpmoCgH1+fmW6LbRS8V4S02lZmeaFuEVmlSSmKGbftYrn4QGG5nKwIaQbKGypvutYkjCvvPMEG8hNCqmx7wldf0hGjKl889V7lnXlZz/7huU2EWPi+fMz1dTDSwfAKONhvl1Y51l+Ju32WmOozWjBY0gK1u4yb++dyJ6tJAI7I0+AFLmo9gsGTQIt5gDcynH46zTd3c9Ffw8EgV/XTS5PRJo31UypPdY6ns6jdoZUQ6++KDLRTaZP5v83c//xLNmWXnlia6uj3P3eGxFPZSYSqqyK1ewekQOyh/zf2QOakVZVrEIhkciX4qlQV7n7EVtvDtZ3PFBTZg86YDAA+fDiRrifs/cn1vqt2vDDzx/x/Z9/gtYKp+MBrTZ8+PyKBiYHaUUo+DAMtHUIZJuqHlGgCdcsJtqPfPAc9JSCWpXAaw0gG9xSKtYt3uDh15Cx+CQJikXSBTnU3BUD3AJGrAJeHgeH85xQS8bmA3LJOByO5KokQnCtnlAKt5qtNdTEVK4YI2JOTI4s+0apScPJZ/96vdy2T7kkdKaD2RUKuUgqL6XnezHLDQnEgkcF6OFwoHXdaJG7c5hzf3cnzJGIznaoueB0PEJpA1Ur34eZxUTVmooFUY6ZHdStyFGhsnaASg3nc8BhHIXjw+1zq1VUVbutmu97Q2ORXDjw34sNyNYRDRj6Hpvn5641Qear94hgANCnxxd0zuAw8KIzxsK5DqsMF/j7UHkYYsF//Zc/4fPrBcfDgWnmwnNyxkhxYmibtlY2y2TDxBhF8ao4EKwZvWOCd4gBQ69uluDOWTnL+e/m1FAsGUM+ZtwdB4RUbkOxfnDYLlG2eCyGS85Y1iCbZKCUBqMJhI6lAJYJ2JsPovBMuLy84rosSNHf3kkGZ+xMFitDLao/9wWPAreDKcUvqmAZDO4LBICWyFolKVYrUXI6PseNytu92FfgJnXoO7RcUFKEbhUlRERPTELwG5lpmmy3kvNtONza3rRzALYroKgEYtLhPkAe5NKflwWn41GCoioOE5Wk+5Z5L2C1vCt7obpjDgQBd9vkWk2LxBoi+tbBRxZLX90fsXOr+r4XZRxwOhzInbEWl8Xj+x9+BqDRFHC5zFT0iuo1ZzarQzfQ4ik8tCDNaC3kmKi6p61rsW5nLCutgH3niL8IEV893OHx5RVGaxyH8ZbenIQjx++YFrmHuzs8vp4RU0a0GoCRc65h7GjDDDGhqoreOByG8ZbqHjMHGUgRKIppfGhYrgtWOdv85qV6puJ4b3RD2NALCwei9qAdP8N2wm0yTMjOKUsAmLkNtXa70v6ljsOI6zwL4zPdUvW6zsKvC1piUEdOQeykkcmr+3OtObAj46cgxILXC0NsOmnQCxqscei1wTIvOB5GLi0bF0nbRmbfvG5kYGUuFXcGZy93ya6MB2SwIqrM2io64zB0QK09Nh9wnRccBi5LlFZ4fr3im3f3sNpwGCCKRqOpYgGAdcv4lz/8gJfLjFYT7g5k+m6ev8fUUzXfCi1jBF1bJsMDgKbC++54IDpmjegk6W8LVGLFxFAQnv8cbhr5zlLOaErhuq7Qlg1ZL+gJDaqGmgLSzHRGpStezxcqbouo9o8Tlfea6o6ciiiJzM0N0yrw8noRNVCTc04Wrc1gWzz6rsN8maF0QwiFvMe4Yp1npCjBQg2AEgUWD4bb+cBlOcMbbGfRUoHpmARuKutwOgEU7ez7cNDY22KzVS7bYtx43pWEmMixDSGiVALWoXFbgO/stZQLof21obOs4abOUYnuLHxcYaxD31mkGFChoBoZrQDZVxA1Z5W7t2kt3EgR7kHdmHaddTj7GTFlTAPrty1sGDoGRnlR3Wul4IQdze8DWLeAf/n+L7hcZvTO4m4cUWXAkHLCGshS4hJDwUIjJ/Yk1pA/Oy8etRQcThOOY39jTMYYoQ8jWYjWIiX2LPY4IReGk1ljsPqA6xLYI4EDzaHn8nfbIvqO9tEkg1TeJ1QxBu8RAh03JRWUHLEsC7Z1RUqBFuyb2hkyAOc9v8zLbYCkleLzXsqXQCcZYqY9URsKwziiVKaPV1HQJVmUjQMtp6UUrFI/NTAYrqQAZzkUoQr3C2aB75NG1w9Met9WFGekG/1iwQ4xYtkCSgU2H8kmM4aCk1JQmsYWaF/sxFKXUpJAPtZQZEirG/JCaRmKCYfNKuJR5s1LkI5DiFRJUZFIx04DPxstwwcn1ljIn5Z9piQ7i6ui7+gAen65QAH48f1n/OFPv6DmhNNhgAEdNHswFTmtHMI7Q2ajchbzQqeWcRbz5tFbi9Y0vI833um2eRmMNNRGZp/rBmyedeB1XgQ/lW/va5KFhJb3P6SAoe/I8LQGndZYl1Vqr8R7T3oXNCr4l2Uhw7nyuUgx4Hy9YplnRO9vQo6Uk/xducRHk/AGw/CbvacwWmMcD0TnyIK/sw6vzy9Ep1i6R3gOWEBmEJ0Ijlpt6Dta8K3R8MUTlWJp1XbWorMWd1OHsefw5rpsCIED+ypYjX0hMg0jQwwBpMTPN6Gxpq0F2lhc5o3Lsr674QuMUTeVaAM52ADV5ovf8HCcOOyPker63dkIfQs+WySIxDp9U7sbY+G9JwpDK6iOQ+Pj1MNajZDrTdF5mkZc14DLHFDR8PPHF8QY6OSIEYMzGLoOh6GDlXvRas0APWuQW0NIWaztBcZQzVlqwRYYrnQQPMUXNxlFVCkzeCmXDI2K3kyYhg65MsiqKoVtixjkZ9Oi2wRfkfg99jwHvQ+sS1uDF0FYyRlVWeyWXr96skeXK1IM0CAyQ4uq8ktfUTAdJtRSYKrmEyb92+7E2hXK67rhu1/9SuY8K3JOOB6PyCnh46ePmIUvmZRwlrVCCJ7Oj0Te955t8df8+usHfFLkmbx7mR2G3iGVirEzqNpheWKRYq3BGhITfCybnZC5eb/ZQWWoodU+XjEyWKtgn00L2iJBATvk0otS7vm6EAL/N9+wUAAlw1pr+JWsAEGh4+dPr/jXP/+MdQvYfMTUO5lUBynazA1kTrugRJ0rFhC0P2Uo0xE2bQx8IOS71AaV8q2hacKx4iFMlYFPVFDxEGPYgJVBx8PdAR8fz3j39h5j7zDPG4y2MKph3QLePpxulh3VFMa+w0WtUGhYVja9zmkpjBIu1wUxRpxfXsgqCFEUapSOGKNRa77x8ZpYimKMHBy2xm1YzjLsZFPr14C+7zAOAzkiUnBZa5BjZPBHzjjeHfH4+QnaKBhlsC0r+Y2dw/l6xnK9AvrL5gjghrkfeg4l5BAmR+SLehOgfYPJQO1LwdmYrHQ7vHdVDhSMqA1K4zCBXAx5/nauiDTZre6qjApUwkmVUmTl1SaWH1qDyI5hcAnZVExiKrXhDz/8jB9+eg+tNE6HSWwWVOGNkmbbCeh333Z1vUOMWXgDDU01hEbFmjFGkk13KyQ5Oc5ZoBTEmmGdwzT2uC4BTfMwspqXgBKbow8Bd8cJIWbymWSovfcBXgqaJra6cRiwrJ7w+MgtTN85XK4zfErIuWK+kl2zrRtKTrzEnUOWpLcsdtRasoDSRVpfmZqsZJi2A5WpomR6FtleHfquv9kmrdht7u6OWFfysVC5OZsOE7Qy6GyHVoHj8QijgZwCg2S2TThAHEDqXuxuYnvidd9gZctKGw3VkKfDhOuyAtDonL6pJ2Mqwtbiwa0UGximaFG+XqTxNzLETrWKDJ6DqdVHaF1xGAdctw1r8FAaeP/5BX/zzTtaZRVu7EXyWXiOzlvEf/2XP+G6epyOR8wz7V3OKDhjMHY89n3waKJUi8IAcfYLd7A1IBYmPNKKX3AYBxhNFWkptHCExAFAKrRKKq0wXzkINsZgOa+A5lav62ipviwBx6mXgV2BaRxo9NOI1BqMtRzoZT4jfWewLh7LsmBZWQBSPaduttxSv6jDDKVIHBonCXtJSTAIX5ZGMVJppWWg7DqyThh0IKFERqNVBiB1ziJGqp6VVpjGQe4udWO1aKURg0dKZEsWKbCUbPubKAq00bcCuUjhWQo101asE7SvksNDW4OhvbnvsXmPEGgx2nmvVYoFYLcd8t7ZLfg7263KhnpXfzaxnfSdw+qZmPz4usAagzfHCUppnvE+iEW0wHUDXi4L/uWPPyLEiKnvsfOvrNGoTWMYR9pAckFS5IWGEOCF24nWRO1CO/LOSIIUpEWUrUYpDH13Y1P5kDjcmGdAkXm0L3Y6Z2DMIAu/crNScBDHpeQwdEBTmNcXNDQcxwnee2Ghcbi6YwK0UXBKY9s8tuCxzAu21fMMk2dOqSYLj3izTQN742HIKFPqFkxiNQMx5vnCYcM0iuvA4TrPN8bM4XjE9Xzm3brb2KBhrYJCRYkBfp0ZTCTbZiNb+yKWrM5aUcLTTr9ukTB3UTynpJhMrvalj8XD3YlDTu9vv5czBpd55WZeczPvJPUaoNpNVQWt2NjG6iWchwl+TQbvWlH92voO6+oxbxusI2Nv3Tyuc4eHuwNGWWQ01FvTfF4C/un3f4bfPPnA2krjwKXAaHnfv16I/gBEnV/FcipWo2nk3bqFhKqoDg9RlNXlC2C+sxqtGMLr9R6AURFyQa4VSqzguvGuKoK7yLlKeInn56IFYg4qvmII8l5IHaPULfl9V05v64Y9HAGiCjLGoGQGuyzzTE7mtiIlTyW8cB6zKJqp0OPiuJYqoSdcxH9ZsIhqvQFDP8qCsZEFiQyjuOQqskDfrdI+eAZRpCLDw4YcA5m3OWHxEdqJtbWxtgLnbhxQyx3TGhjyVS2iy7LoY+PedR28NIS5cEDbmQ7ky+3BeXRsiAiav6f8oJp2Rb7YqTIVgCElnOcVp2kEoDB7j4MeMG8eXdeBc9YmjEaFxUf893/9I2LwuD8daL8X54qRMzSmjM6w8ctQVISnBNsZ+JTxclmQa8P9NOBukLRRbeUONlRiAwwOsQar91i9kX5KAU3h9bIgRM/wEhlilFoRMxcjg6SN75iHGJn6nrzCGjztbCUjxYgUAhOUpQ7ruo79kRLEScmyKCH6JEmQT23EwihNdfKyhZv9kDdPhZV7WRmqj0rmwsU5Dm/v7054enrCWrhomw4TQghMrlUAQFth8BHOGGRj4Cztrf1AZ4vSwLK9wriRVmCRCceUGC5Y682KzJpZCQvU4LJSXe7Ad3XvHdKuNpIE0H1h3Q89Pj++oCmFnCp6p9E7i8uyIeeC+2lAShUhMyiPy42d91Zv93xWO6u33Xrofci3K2oVFPwWsPqInx+v+N/+v3+AKhmnscPDiZ9TlTpn6rtb35IqezaFgr6jPXvvt5sMe61W8IEMXApu3E1pGVOEMQNKYaiR1gqv1/nGuI2iguJiM0ArI/y7nb3KEAprLEU4rWIcRgzOYVlWukYMQ504mCtoMWKrfD785rFu661eM4a8ylKyfH4V3C9w6YzKBaMSV4ZWCs44jIdRerQNMUVBM9ECHD0XyUqBdV6j4ltr3n8lcUCrteYQOyZoMPmV52eR74cIr80ncd6ImOjfWGI3H3Aae1gNNMsaOySqIVEbXq4rKhom193u7WIYMFQa0VRVVN0tk5UMZ+FjxnHiz+PcIMpiV9TKtSDXht7xLKjiVuk6h9I5+MjQKWeAoTOYN49D10M3UeylgnWb8XRe8OnxFYeRgWXrsgAAemdw6BkcYgwkH0HOX6WI1ihUq9HxoDE4AybwbmiQuqOWG4N8dHSixVrlTuCiY+w7nK8zmtqH5XTKuZ7uzKfzQlWqKHpXH6Bl+F3RsEl/eRwPVJjHLEPAAmc0rpcrPq0zUJI4H/INDZdrliAPPhtd37OOTVQiz+uCYTjJAJOsxNYaagiwznJpq7XwZ5XcZQEhBnz33XcIm8fL8xMdXz5AS9LwNJJ/7bcNf+2vv96imwu2kERpxEYp+IDXVjG8OQmfg5fsReDod9PA1DJrsfiEaRhk82Hk5bCIOQu4HrcDKCROVale4RZkt0Q5awSiCTxdrug/d/iHX30F6ErfuxQY4x1TC3/69Iz//M9/wrZsuDtMMKoh+IA1splwVjMWOmdUKQ56ZynhrgVGFF7G0GZhpUmOqcjgiRdH39vbgCTnfLPMUJXQYVs9Yq7Q+os6aF688HkUXs4zpr6DUmSeUBDqMM8rlFI4HQexrnDgmEUKXDIvwi0kXC9Xhlt4pvmxAaiikGIhW7Kor2SItgN2d2nrXokZQx+70R2ipNgATUIwDIHd4AHqnMM4jPJZJCgNbrhDQEkBS/QsTqNHKQlaUij3qy/lguapSBinSYYjkI0tm1/AYQ0BQ0eYJ1PKuMliWiC31uYmpZfLVqmbjJbcE2Df9Cr5U7TaEDO3dUZg5HsilVIKISQ81yvCMGAaRxjTGENfCoZxQO86VAD//P0P+PHnD+RpdBZPr1daohRwGjtJuAJKa/Kf74EXFilvPORlK+RsLwW2luJWmIK1wgjUHgBTgFPm4LBjMlDOVDT5jYMT2or1Dd69qxi4KWVKZd85TEbjKlwu8pBmbCEiCqNkV66t64r5umBeFg4ypKirOUM7phUqreSZa7Q6pD2sgoXnDnOXzGOELdy2dFUk9E6GgG6/wCq3WdfLlUV8YtpR1/dwdkIIG7SmPez68oyQPNZlQY7pZlPUmoo/bTTGaZICktt1FrxFsAFZVCsOxjpsMdNCUKm+kmUSlAzsdvYFOS2y1S1kKPY9OVd7wmkWW13vLJTWHKT6isFapEIeBhrw2bzit7/6CkopqjiliWyt4vEc8Ls//oicOIx7eb2SCySA5lLbFxuofIa1FFEmF1HRcUMfk8C6CweytOI05CQK2iyQfWWxrB6l0b5QMod9zhpsm0fKgNJUOujCszWkiAd74PNbK1pmge1jYAIaxPqsmBy2rhnbTOVxjMJIzPnWMFI5ZG7fZa1F1CtiQRfr7Z6oGIUP1GpF1zFRnVt1Dt5qLVScNGGxSVDLLQG10gKkh4HvnhY4d6lMKAyez5YUphyccrCWJJXaGAPjLGoD0q7eU+rGRAGA1IgDUJapkVRSGKQUsXm+O50EzRTZNKoqCe9N/rO2w7alGBOYOIfs/Px8jtgTz4fOYgtcUn14uqJzFoeBgR8Pbx6wzFdopfH+8Yw//Pkn5FTwcE/g9rJ4aGMZkiLJkLVxY86FBS1+TQb9VhYwRrOotvJZaK3I5Yui9i8FRkgX15mD6bCnwmuDWmkZ7bse58sFvaibfaLlfV43oDk0aMSSkTePUiumYUTNCUWaua53mEXNu64bnLBeay6Yr1fav0thc244iGm1MN09pS+q95q5cRaEQS4ZYz+wkcqRQ6JAnl8MAVpJ6rI8symRC9R1PWS6i+PxSLWidcg5IPqNCeJotB3K96yFS8QlHzk7pbGpm9cAnaQxAhNdORzhn1E3jeu84pt39whrZI22bTKIbYi54DAMZOVog1oyNIwoneTil+ZJy3A85yIbcQXvI07HESoTSTENPTmMIaEhC6Llgs4ZnA4jppGBLjlXnOeA//79Dwy2QMUWdk6Uxth1GAYLDar8W6uY+gEKxLZ4SYmkJoINdAbP87vDBKAixYQQm6icmBQeQuDZUIpgZlaM3cDfR+6jkAqUccgxIeYmuAQlqe7SIOiGLQS0UjGJpTwXgvo766RB57879APWdSErstVb+I5RDUbxnjcG2PwMvy0oJZHtWQsXZoq16V5HrdsKbfldbJ680344fGEpWw2taYey1qLmzCVjLTcHjVJAKnQOtNowOothHHiOVtYyOSXEGGClDql1T+9utyUIl0cQVQnPp4oGazRCThgav28rz2cu8YZH2JW3e/CDNgzR0KJguYlo6dUB7W2iYClchMfMhq+Vhtwq8UKOSp6XywJmecx4OE2wWiM3hQ+PT/j+Tz9SVKAV4rJi6Dt01kIrLUMkDsY7y2VGKw1ZWK5hK5g3j1oVppFcUw5TWHMYUQCvMlzMPqJzBr21mLeA4zQAjY4iBkzRany+rhicwzQxRME4I6mw8aY0C57n3JaZ9JgSn8EUA7ZtAxGsDcPYw1kn333kWcBXmbW9DB+VIt+ytIo3D/dQFciN7Ld5vgoTiwObILxTaw2OxxEx8OwCKvy6ctEhQxRnLdZlRW4NGcRQlJwRU8TpcERt+WbDrpUDyhwDQtygzJeQxwbBvqSC18vM2kA1dP9GvbxuRHwcR/I6YxIXk6j30PalEO+YaehkaObwOq+33i2mDB8SDkMny1AOaZSoAQsUnGb6OpPsDd8LTYtulhpxH2CR0aqwhICfHi/48HRGaxXvDv0tcGrxAbUUvB0HWGswr5EhaSmjgex7q8Xlk2Vp2jlcZMDW21762CgiGtba0zDgel1wzQuGocMbN0GrxmWrkgWkIKM0qNqspXAYrhVSyDBmQquNi0fP0KV5XqAOE0oTFVQjNiJ4LiT8tnLYnBJyLkxINQy42znJ1uxM1HJrDrWwUHvHhRgT6DW6oQeg8Pz0wqWRUjhMA+a5YL1eyY2WMwQgw9jIQK/mCmWE+wYQR6O5QMg7+7tWfH65YpwmBB+QModORnOwPXQWXuYAndU3JIf3Hi/zitV7aGXwKoiKQ9ehmAJjrHCoC5rmGalk0EQUk0aFkoEt7+zffPMWT+croBXZ4bViVFzQql0kJYshpRWQiMNaPFV5gKVzw1psopBcthXP5xmPL684jh1+8+1bzNcZz/Nycx1MzuL+OHLWUKogCYgh8oEzmWEccL4ugNIYO4u39ye8//yCWBpaicRGtYbrygCzLXhhyzK9uO86tJKRS4ZPGVpVDOOA+4cD5mXFvCZs24X1DC8UDH2HmBJDgBIQQxaHFGuCZfUIOQmWoccvn5/w+vKMEj2mccC6bAwo6eV9lmXyNB3Iro4RW4riWEhEakXybHkm9HDS52qjMU2H23yh1YplXRETEV9V0FS7gMAZQzal5iL28jrD3pTJ////+qsHfE0allIbhs7hMm84jD0KMuYtwlpFP3dteF0WfHN3EoizwXmNt8m8T1Q8USK9S6KBKiyFDg61NoRM6GrJmWmTwgtRTSPVgqHvsC4VH57OeHN/hzcHcpcOh5HJMwD+/Mtn/Od//iNKLvjqzQHRJ8wiXe+sRd9ZjB2T4KpmQwqlmHZoNc5Xj9aAQ2cRM8d/IaSbv31wFrl9sXk4yyQ2prcx1OMw9DjPm0DFgZSBXhqgXApySDhOPd5/fsVh6DEMHV4vC1AMlCromyWrpjVpLpiCuXOsckpoCliXGdfLBSkEKqiwW9KyKJfoGzeyvdJiX7HWsBCSQj0nspUqKnQiQ+3+dERIhFlrSR26v/8al/MZOWX85re/RfQBfvMwWmFdZpZ4JSNtHqmQYVakaKzYeVk8wLve4jASqt51THOi8oScxsUHxFxwHDomhcmWKdcGYxoluKXCykBvD2yh4vlLwMZ+ee3F4A6e3rdw3PxyI3pdNsLoG1lXPiR4ARt/9/YOWgEPd3dQAHIFfvf9X/DjxyecDiNqafj8TMWJ1cBRuHm51BvbseQC0zuBrNI+l/Ywg9JgTcY0TNg8gzxKYWJzAYtcNM30PmGjGO1grMWzKLBKAaoDggzfrNW3YJj99ryunu9YyXC2x+qzbEYFIl8ZjuNDQgrxFm7gN24zY2TacifJeX3XoSTadHdYcxHuHPhVIOd0u+CYIMXPPCYe4NYY6L7D4XCUaHUOWrSxDDDAniTHrXrOGd1Imz4qLXAhRCoKI/+cOZGPpK2F63pM7guLo8hljqbQdJNGkkOTTXEDFlKietkYqEIMAdDQSYjJMPS39xFNQTnD1CulBKDabkxJpSD/U3gsWmPoO5yXFbyIFZrROM8rtFa4O064P5FL1fcdyprx6XXFP/3hL5iGHtYpnC8Lt5GoGMR+ufNFrOHwkfwIbh2tpbweio1Q5ywMaCkYxg6tCSC3Cm7BGlELEFRroG5FZ04RD6cTfMhojeofyBlzGHu8Xq63YVnJYrcArehasSgujeiAbVnghSdFK+4e7lFuTQeaWDNLZpEv6mkrhSAagdi1ZijFhsA6g24YJAGORZ+R574BHOLVKpZJql2lyySnLDemmdaKgooYNiqWZYmzc1GUwk0t16TZbaAEf+gGhMTU150tU2uBMlS0NbELlVywLBuZHTFi28i0heHGv+SMJGpwpWgtBgCtqZhqoCJOCX6hKhbOITIgAa3KwoAb784ZhFwQYsbT64zh6wcYTRXvMB7w/Y8f8P1ffiKD5e6IGKIMZhWVqVZwE73DYHscphE1ZzSQA7NtnkWn4qAToJ2OCjCxHzWB2ucq2A8LtIrLsiBKCl+I5I+O08CgCA2MfQfjDBQ0ztcVnTWYul5U5gnrtsEZqpt9iDBQWCOL3svrK1YfOXiLPLP2oUaIgctEraGtRUwJKZNbVQv5Q2Pf826t8jk3Mo2spRMhZzK9lmWVQpOBASlH5Nwh+r3xJ7O27zupl1gbWa3hlxkpbqI6FsW1BlTZbZzpZp/azxmnyefZQsJxOGDzrJ06Z4RXluB2BrBYbqdpxHVZqTDSGtd5I7NO+Jv7EoQ7NypPdWNzwiE575NdeVpKho8BY+6gQKVNazzbi6GS4vHlgtbu8NItmMaew48GPJ5X/Of//kecz2emJVcqeA7DKEMKDpiq2EGnYYBWu5oaYsfkmVdLQ65ASAmDI9MxlQZjNdU8qsFafnZG08LW92S2DT0VaZdlgYLie1gqrotHlQVPq7QGdZ0TRhVE2Qs0swcqyfBEFI43eykUOXWi/EYDqgQgpZZRMhWA55cztoXcWCgg70oDfuDkTctnohSH/kr+/jvcvBOFBdDkc27/RuksDaKkOELqIYAQ9a7vkcLGM1EwA/t9TgUvn6tShd8sd7gS6ycEuZETHSFkUWd4HxkQ0Sn4QpWk1mR951xwlIEvoKiyq/XWxNW239lNrMW4LdCUWKmGrsPLvBDTkAtWP+Pt6YBSGkLOeCkFVgPTOOJpvuD3f/oBnx9fAShoo3AYerx7cydogITrvNLFYA2cFnQIGmrmGVAbMHs+l8fDgDenAxji1LAFTxeSLA6dtVi3gH7oYTLPMX+ZJRGywy+fX7Cung2tqIGdozqVqdoF5fEFl+uCedkQfbzZG0vmf9fKJVX04TbAI5tYI3gvnHGHriOfN4aIIs6s1qoEJ5ibagVosqBlgmkuTdKieQf0PQdKtVaM0wC/efYnitPYHLOEVwH3D/dQSuHy/HzrCRg4QvVLjlK/hUzrbxIHE1ibLmuQ+jXg49MLFJjA6USpHFOGasQ59eK0UYqIJa046LRWeMuZLoLVB9wf2eCPY495C+icBbRC8FRsGqWxRXJ/bcdzzxrDxSs4YAoxIhXiPg4jOc7P84JYdgW4wseXC35+uuA8L+i0w9eHnn0j9uGWxt3Yi1LT4fF1V69TQHKY+G6v3ougJcMaLk3RmE68CzR29mrKVMIbzR559RE+JMROwjdEsFDFZVBb5ZBK0zmXMhdUqA3rvKK2hnldeVygyRnpsXkmfwdZSm3bhhg8Winw24adh95ZK++tqN9FwMMaZg/eBGrKGMaR7jylbgEgpRRBYBFNleVnXeerqJd5H6Lhi32aVQv7dGtvA+1cMkrOsmCiSq/UijUUuK4gFWCNHDoOnULOdMzFnBETB/4NwOITPr1ccZlXWNvhw/kVaMDUd5LIzENzP7v3pOVadkY3Q0mdsbhGDxNYLy8+yX1DHn6rXKJvIeJ4mChOqEx4tdjVocBpmnC+zjBQcKMDSsKn1zM+vsx4erlgdBZ/++0b1FLw/uMnXC4LrNOYJOTISp2627U7Z6mMFpZhzBnLK88CqjCJVsmlIEUqf+9PJzw+P3PA7jc0AG7sYMC/z7yuQKs4Hg84jFaWYhXXecOnpwtiKrc6fQ/hURL2mFKmMjDTqWG0wuPTK3MK/AZUIG4eLy/PaDnyPIoRTXBj0ROjsKNjYuT9x+C9jFoNnQhakX8/HeC9xzAMOJ1ODNtKEfcPD7hcroiyTOnEdv/tt9/iej4jRar4c0rImYvhy+Usz2e71cV/za//HSy6lD0CCs9+JUOhVhyGDi9X4HScoLTGx8dnvHs4suBswJYKPl9mvD2OuG4sDGJK6FyPcbC3ZDOAxsoQErqeww4vyUqd63CeZxz6npDOfQtSKpZU8NPnZxy6b+Cc+PZLwT9//yN+96efMVqDu+OA83lFKNxijGIvtkbfUrE6ZyUVS+G6BfiQZOumoayRoVmDjxww8c/IwmQaOuzJebXx95+vTL+6Lhte5xUaQFUc0tUK6BPVjJuPGMYexhq8XFcMQ4/yOpOLAm5otGw+Xy4rlOZRRTVToPJwnTl8yQzG2C0bMUak8m+YA9KgaNCqutspqmxdUkxY1xXWGUzTxACHSpZMrQXDMGDbgrDPNKZxREPDYRixzldoo8g4i4FBC9vKlMWc/gcZb8rc+GlhzRlrYJ2B9xu8p0VJKyA1YN08Qsy4rh6de8AWI45Df2OxKDSsmXHh3B6Rg2eNQipJGnlyM1LOUFrBgAfWzhCiZZGqxBSFk1ALthRhlGFSk9NQsPj8csZpGnAYqS7zIeG//euf8XI+4+3dAS8vFzIJjEZvFY69uw0QdoVGSuUGwq1ivxyG/ja06p3F1JNfVVtDlaHYFgjqbY0q0mmcUErG6gNVIwo4DD2u64qcyW1pjfZbI8wOpWh98Tlz86qZJmg1gEYQdggZr5cZWmtc5hnn8yvC5pFFhVJFaTsIW6GJXL2IMm2H4uayB2l8sUruzcEOImWYSbkVn9M0SdNE3sw+wFSKIOS4JHSKoGFrDezpgLu7O8SNYTLbssnGxPDPkYv0LArjOGIYJyhULPMiFhFuvmB3Jgv5FMYwYSvKAOUwDRic46VeCzphQWlDxqSWQ9qnjNHQtsfGNwMwwu4DB7o132y3TFNSOI09Vh/RKhcMrbN4PF+4IRq+4+ZHK3x6XfDfvv8LDuNIsHqIOAwjt0aivHHGojMGrbKoi6Vi29WvWqMXmPHOKCk5I8lmrFXy2nykzVKBG87YeKakVOEcFXvzyoFEE2YhQI6IUvwM704TXuUdhmxmq6JasraKaaS9MqWEbVmxLtfbYD8L87GWJMUcNc2QwfH+vez8zdQkvVkaWTRAG3VLfoUsQ/Zk7VrZHK7bir6nQZuqxSyDxIbavjQ3rdH20uTv0aBkkM13gWoSBllUAK0pDhWF9bKnJTbZTBP+nZGyFr4R7RrJR8QYASisW+DmUiuMp4kNfqkC/uYZZyTJUT6a2/ullbpZmyvYHIcgvNhSsPksgyX+38pqzEtAuMvoe4PruuF3f/4FP3/4jE5UxE+vV+y8nFYLOsthYuc6aKUwjoJZsIYWkEjmyth3TDMztJaR50kgMgsog85pXOYVpQIprXDW3ewX0zAiJdyeFTRa2neFVuccrrOHGRWGscPlurKwNZrnqiis0IBVQjEMGmKIVFvxA0MrGaoBnZZNdSIDjylu5NNaa2BAlT0HOCz+xnFkAZk5jIZ8v0pUdmhk/Djn0PcDai6Iwj/s+gHWMp0SqNjWGes8o8mzX2WRsZ+ftew2Lw4ArCIrrYE2XStBYCGy0dyXqVTjNpQS4GPCODD9XCvamUNItzCqVDLVAqUgJC6JTmN321rvvEj+qqJA2KHXXCb5ILwmxdpxlLtQg+mcz+cLF2XHEdNhwo/vn/D/+W//isu88txxDFxwRmMa3G1oRHyDQqv7Z8yVFYNi6MDoOoN5278jMgevK1NMlXzfaHRDeFFS3WzGmbawNTPZsO4qY21wnWlJUzJ4uTtOuFxncUXwvuucgxYOUt/1mEamVkNrbNuGt2/e4cOnTzDGAqkibmJ7TRmpBeQcsa7rjRvkw8pPuRZZ5FCpuSuyG/ceGDqmqmYJfnNiAXbW3tjRe/iGkSXq4XikgqEVzPMF0zjBGHJbtQau51dRvkbyaqUR7/oBxlqM44RamBzcySKoCLQ+1wa0LEs0fFGL7WdfLRjRIQqPVGmNeQuYevLwct2RMjvWZ08EbsIo3L/D/fiWM11s0UZrzNnfntPLQteJsbSrLT7iP/3uj9gWD+0saiGu56u7A97en6AU8HyZaXMXxb1zPL9q47K4NJ7Hq6di4839CffTIGogfl+9YGWy1J9p81SbpoTRORwE8XFZVjzcnfD49MpFlGrotMVhHPgZy5K5oaGVghQzuXqBNtsQPJt/xZC8JEm9RYafrfHfy+JWyTv6In8Zjpa8L84SjocJxlls68p05FoRApPF92C4rrPEpxgnCwFgWdnvaKl5ti1gHCd0lsxl2zts88wAr8bBmdVUq+cU4f2GkjKU3tX7XxYMDFChcu+n959RmoJpGW4YkVLBFgN612ETRd7iI3zOGB3tc9YooGUu8xoTZk2h5XYaBxzHHsvTmcpRpcheSxmnsUcQtaoxBpfV35A7fWex+YTzvNyetRQLzkpj6hjcdPYe5yXg/eMZMUa8Pfb49W++4XCwkTmWasWb44jeWjinEXPD+cqwRGepCpz6HkoB14WhGiXTaqqg4ENEZwx6Z5BiwjiNiJncXip1K+Z5gbMOSmUAFV3fYVk9oBQ2H2/OJqUVgo+wzqJzDNkrotQNiant0AolFXLqNWCdQZkzfC7Y1gXLPKPVImrRfOs1d7REFRcZ/3cKV6zlQGUXAKRSYGWIPgwD3r37Ctu6yFKEjop1XRg6VDiEc441jdaGgYv7+QCqVDWApmRZGuMNeVEFV+U6B4Dn/dg5fD5v+Hze0GmFbx9GoONS6DD0WFO5Kc9/fnzFy3VBg8GHz6+wVkPVipiJXxkdl09rCAAU+kabulZ0daVSieDgaYjLRpTXskXcHw/wPuP98yve3R3xeL7cagsjvNjdnq4FY2DRMI0jzvOK9y8zfv70jJfzFZ3V+Ntv3iLnjB/ff8Yyb1CKi4bOMfCjNTJmfaSQhouZJJz7AtsbxJgRpI8zfNXx6eksycQBp9OE5+dXuaAKlATCXOflVs8PY8+liSGOy8eC6xLwfJ6xrJsszyR3ABVD74Q9SVUs+fEGJSWoquG9pxtonlFSQkxBEAlUaIbA+rHkJEv1QuGECBqUKDErKG5g7gKFSFGcOtPhgGkacTgc8PMvvyA/PWHzHn3fw4SI+/sHLhBSRAyeYZ/c/iPnhDlFcbOoW2/w1/76qwd8u/c9Zaa9LiFjjhe8Ox7QwCSx53ljm1NpUyi14eN5xbcPRyiZjJL9oOTibmhN36w7SgFRLAPW0PYT4h6NrXHZAqbacOh7rBIRnkrFvHjMIePBdnh8vuA//dMf8PH5jPvjAOccnl4Xbg2MwTS42wdrjEHnRhlGkv9yWQJWz8PwMHWYph7bxsZwT6HcrZS9MwieW5KvHyYsW8Cyx2SLNalkNvrWWWwh3STW9ycm42qjcbmumIYer9cVb++OUPgyNR+axv1pwrxuWP1GKKs1iJ6FXy0Z63WGUo1WRLFkspkUNgQaSom3cpwbbCqSgmwwdsuYUrg1D85o2KG/SdUVcJtOl5xxf3eHpoB5mWk9SQHz9Yy4bfBBbEW335f/s7QqISjkF3Q9GWt74mdJEVAG53lDyFRXWGsw+4CPLxd0+gHTMFBZAJ7dMbKx1+ALGjNhx53lBo7qEG4BQkwYxMKzXyh7outuGffe43Q44OlyxZYyLw4Fwtq3gPefn/D3v/kOr9cZ//z9D2it4XQ44PPTmdaj1tAbjdPQ8xkQhcPQ0caprZFETvKEsEeEawufAszQISVaH7TWTA5SlclxmkOX2ir6joEDpdHeqAAcpxG1VrzEFZsPtyGV0eR9HQ8ErfZVLF21YjAsUGJIolRquF4XrD7g9fyKbV2Rw5e4931DXyuLvlwrtFHY/ApU0DY79HDK3jaAO+dl31rslsZtWxkxPg7kmJWCcRxukmcmqrLQb6Ka6BzfAd138OuG7L2oSSMB+bLtbWXnCFk4a3AYJ0bXp3Ib1OyNz76h3tU4qRRJrzUYpwE5EQS/bPycXe+weo9jx62WMpoXmTSZVcINdmyBBZvevQmBYroclajEFdhscN0Cutow9g4haTy+nHHqezzcTfjXv/yEnz89Y3QOl8sMKA1VgctMi4rRCoPAwmuljcRL6nZnLe4PA3zM8CFg5yKta7ixDZPi4NHIM7ZHwbdakDOtUVtIOOoBLTRsnraRWlmg7E2ljxEpV+IFACzLBq2NgMBliNaAJa9IOSKGDcnzIkyF7xsvXNwUGU0sH7s9dbfkymoWrVbyUnUTlgZ1dL3rUMQCsFvoWquIKdzgtoTQk+1B3pIMXiu3mBDAfk4JIWzy71Cdp7S+NSC18D23xuI4HTAdJmzrQmtKTEx2TBmlKIH1cmsbc6b6VZSAp8MBr9cF8+olxdSBTLuILLYtDgw54Nwh+HuqY2v6NoQvrd2GDqun9auzBqU0xEw14dhZnNeA1nX4+DLj8/mCH375yHSxXJBqwGEc0ItiFWAjfHeYqMqUjfu6bqhVYfYBmw9kYU49Qc+K5x/kfbNa3WydZznntpiQKnDsu1tx3/UdoqcdWEui3/3didBqucP4DmXMa0VFwfm8QhmgM72k085cxniPFGijcJ3FGogSGbpezjI+dzUXBlkUnhMNgNUGqnFosP8zWjAyhq6n2qx9OdvyvxnKdb2TBRwB00w8LDBWwzqH+7t7OKuxzgklBcRtRY5kT+6D5ipsX4Fu3JR1Xd9DKYW+76FkEahkiKXBdzmkRGuKZ2MxyDDr89MZeHuPw3AEQKSC0hbb5nF/HJFKhY9ZkhXJNrJGw5gvg5VdHQ+p6bwMcrXSEkLFpUGp/D773kElhVIS1pRxvlzx0weHj09/xPc/fkBNVBR2lrzT48ClbpOByj7k21VjO/dxt0VrUXmFSGt7KRVT32HdmFxsGp/D67KgKQ3VCPo2joqReaUtPEUqH6sMxVpu0LbdhiG1ZGhN5Qy5oPzuO837wCna23LKUOPAYbVi7RVCQNgCUBpKijcGT84cynjvsa6rqBXJCxrHEcb0xB4EKpigCLZHU1TClz1ETcPAwBgJw2sAIGwwUEFonGVInASrJQl/gd4TCYEQNuxBWXsoERdzBp0bYFwPazsJFciYJARCay0WKVAx3IhEaYqOAgWF1+uKw9jjMA23nxEilf9Os6liSnmHHUT/ZZFB3IMTyD7wpWbdk3t9Sui0gdMGSyCeY00Mhni+MHzj3ekIHyTxtWTc3x3w9WGiwyYVnK8LthhoC++4CPPeS2JlQ1UKl4ViAAWFN/d3GGRpqZQW8QI//trI2aqy3GWidUVMBS7wzss547psTLNGk0Atg3ULstzgwra2QgZj5pC3pIhSMlAzWiH+IcVIh4T+UqspYe4BXMxA+hhaBdWNx3eYJi6CO4fNe1r0YpR+IUFJsrExGsfpQMWLqOxowcwYhoHWXGPEpcMQKQ2F+XLBNs9cLFtDu6ZW8NuGmAL/DqhiCWf/oqCF/5uRfOTnnsjXGvoO1y1g8R4P04TXxYuCLWOOCb2hpZ/p6xzO1EIe7H43lVrx9EqVZ9c7IqlixrxlqFpwRcShczDO4uk8C+KGis7dLtygJChBwlpCwuuy4f3Tmf+OBo59j6+/OvG+DBExVYTAZOxJwot8SvCZlmJrNI5jJ4v9hr4zmLeAVBh2tvNWa42YBofTMMBYDvhYy/MO0Q0wXXf7zomesDI4JWt88RHHaUBJwvGsFbZVGE2cRWtfAi5zKYJaUnCa58blfEFKAWHdEDzRJQAYmrPXa5SSfhEDCCbAOQvXWQ6SwcWLUppDExGDjPJM7Yo7gMFcUZJL95pHK/VvhngJ1jn2XBBEj7BLveeyhkGPAPKXILQ9DKVU4LxEhJShrMZlS+idhVY9joNFKh5Ga3y6rnh8XTgDCAmoDaoZWKcxWAtnqLDznuivXpAluVamDWdJjRc187xSGb7EjMuy4e3dAdbJfdSA1Ue8vT/IfcdnkX9/up5SKfCp4JfPZ/z44ZGDMKNxOg4YOoePTxeKOABYpeGcZmiGBE5lYdRDaggt8vn9/tuXgEDjEFdbpJCwFo+7u4lBNCJQiSLUysELn9PgTsInc2E9zDTshuvLFefrDGj2XSXxvLFa3ezNTSmsa0QqsphoxGwtfoFfVviwYZ0XqTU5AA+ihmyNjoIUA38/mdUYCTyrhbOmcZzofFJ72CkH+6fTiXOP1m5ClH2+8PbtW9bMKWOZGUKVI8+2ILx4yLvT9+yrlChm/9pff/2ArwI+CAunNozO4HneEOMZxmh880bhvBBmWyql1M9XD2sVYggYul6GDLQPGLE00CapbvyqfbvXdw7TyMTblL+k7S6BBVnMBSkxZSuGjA+Pz/in37/ix58+Qivgq7sRxhh8frqgosEojUH4Qp0cyrUWSaQBKhSeLiteLguc6zB2Ft+9vSdzSgr9XLhhCYkBG8exw9j30Bo3hsPqI3xMshUvmEaHCQ7OGU6uJTXGewYYGMvAhHnbQw4qnCXvwzUL4wYsa8C8rAjbBtUq5mvAts6UQScWhLvNeX8Q97hvJlvl2wAg5yoqDA6YlGKoiFLkEzzcn24bjHGgXDZHDjiHYYAVVeHpdId+HPD4+IhxHBH8gsvrK7w0tFksRVosduQS8hJkYIKBc93tJcopoet7lNbw8XXB190BIQuYP1HS/fg6o7cGp+PhxgTwiaynnDi485GqiSCw5r6aG2y6inKRFk9JDaxkiO02zmnoMW8Ry7rh0Hf4tM5Q1iBmYAncDn58XvC6/IAQAs7XlVyazGQwpzgo7KyWJCc2JNZyA8D0RH2z9HTWckAXEnzKHBpLClHvrFjCFFYfpLijTRhQ2FYmwfHQKjxcCsH81gTGlsOgcxYpF8RMeGxQHOKdDhPOF9p/tt16VwuCjwjrgteXV4Gzy3BYSZpWo5TdyGCyygbr9pz0/U1Gr7XsNJtwSKrEuIt9yfUOrRQ8nO7wen7lsPR0x4KmigWmFDarcsBarZC9R0PF9XwBFOD9JtbML2lbVOZ2ON3dU4lVK2rmYNk9WKzXCwBuZ6hYK7vIEinS4nno3Jehj2VC3tA5bDGJ9RWiMmThdRh6SdqEKLvYDHAwxda8VLL5uk5jMA7rRtVWbzVWzdQ31AYNjcfzBX79GfNy4fZo6HC+rkzt1VTgWKPgtEIvwH6jNXIFtphRKxgC4wx8kKTLzuG60AI0WA2ryWQqmYoiALg7jFh9QIqJ3NFYIHNQMsjibpfihjLGDGc1cm7w8nObIADWZSMQGRC8AIHG2SeksN1sRUn4aLVU7EwnZ6givg3U8MVqYbVhOEsFcgH6Xs60XcUHYgei2CustTdI7h724pyVRkhJMjMv+t51MKohhiBy/k1swzKk3n+KMEmapD12rsPxeMQwTIgp3s76rrO3c0c3IIYEaIPL7GUIXzB2DvfHEb54XOYVq4+wVmPsmH7rY+JGWysYy8UF2VbcTBeBfe9KHf75KqAtUCuGjinIIROCHXLGeV7x7uGEZYv4dF7x3//4E8xNkZVxHDqMbkJtkMaVaIrTYQRqhZFQgV1lkwqb1FIKTodJBq/S9FQuyYzWwg/KbPpTgjWWS66Zqi+yoBQyHzS0nFEaoejzunFIKaEOO2C9ZKpHrNV4e7pDKw0aHHanzHswJ3KEc0zIKaNz9vb8Be+RY7rdETt7dw8EC5GFPmHPcnYr3qvee1hnBX1BBbcTq9Su9iuloh9HcvGUlsEtoBQXHdtyRY7hphDKVfjEjcuHJCqM2shedNbh4f5ehpyeS78YYHuy40oFm97TxJRyaapy5l0fc8V52fD1A1PJ+87hefY4TAO01ni+eA5ZZdC2bh53pwN7NK1k6LZzm4pwFpvY+jiIWddNBguC/qiVapDSoJXB+8cLfv/nD6iVg4XpMNF23RruT6MoVyqc7bCkDUordD3tt0kA2q00Yer0wmhuOM+BwTUdlXudo20zpCRKUQ4cnTVoFgihYPVeLMFKfibPEzbKCi2LCksZGZwRCUGbayWeoDVoLVbWRt7h+bpIY8rzBpXIlBwCSkmyGKs39aDfNmmuqKYZBHSeS0LwUc5DXlQKXLilxrvZSGO8q2y5DGyyxKQKXheiEZzVqCWLRYwJwa0U+JRQUr5ZcnOjas4aA6vJ/d0T40PwWH3GeOh5PmViInzkcIJ3ZxP1nwIqQ+FS0Xh8XfGrr+QMLg1PLxecRjoZjLx7ZK7xV6tAU6JvERU2MRQGyqov934l96+hoXMGi294XjZ8eL4ApeIff/M1DuOIy3WGNQa9czjoAW9PIxchW8R5mVEADI7LHY0G2zk0ip0QU8V58ZhXBsx88/aE49CTDaUVnAKcoXJca3Vb9JdaUZTmwEUBynDQc5x6xJTxer5iD/1pUOwDLM+AFPOtQd3vt1KLJMVXgcdX+BgomlAaVfHsTYVpuhqSiCy12V4nKcVaZRon9H2Py+UKHxi8k4JwLf+N3RGt4Xg4YE8SpVqPg/9pGFBagV9XdF2H+/t7DFIPns9X5BRFDQ/kGFEzzzu/bezJBCNTZI2vNTmQfT8gpox1q/iXv/yMw9DhcHfEefFIteDQD/jx+QqNhq/vjnhZNgBKAnkKalPkrynWw87JkkTLYlUGGw/HA3yIeJ5XxFxxP/bQaIA2eL5QrTs4Dh2oiq5Q4qpRquEwjXg6L/jjL49Y/Iapt/jmjmnaISakpDGMR7zOz7dgqZqBRYZbfcd+xDmHmBIOukMIEePUI+WKEMmX44DSQOmCN/dH+I0oo7SxV9AyFJnXDYeho9urFNixR21ArylYCCHBS5LuvHoYudMUIMMshWXzyI120lK+uByMVgiey7bgPWIISD7IeygLdqmRdyxUEY6sNYaLEKWQcoS2TCK1jpgKYxhQdbw7CecYmK9nGUZHHA8H9nrbBmsMYAx/H83BpTYa1WgZGhb03SDBIRyOtlpE0AKQrFdk+EeFWMoVMRdyMiMphtctYOoMvno4MnxiJc/thw8v+PnzmX1PJp4GDegFWcOejmdXZ8nE25XgTZZlWhT6VjNg8nXZMDr+/IaGy7JhGHqsngvXg6g5jWItl3OFTRnXNeDHT8/440+fERLRToNzmAYHlIZPn1/YP6Bi6Dv0loPzmBkKmIUbakTMwdToCGXMDWWVBCH05u4O27ZhCxE5FaAVLveipwpOBsW6kN95dzrBB49l3WRJnRlYmZkmzkC2CgONzmikxiX7rkKvtcHHIMvXgpoKam8RQsb5csYyX4FG5a/RZN4lUevBGITksXmP1ioOrhOnWBUFZwNUQ98PAFj7Pzy84QDadOg7B+MM/LbAWAfnFJcgK9PZ+ZwBm9/QO4P58opxmpAb4H3gO9X4PY9dh/l64UJgV179Fb/+6gFfrhUhN5QQUMCX981xwueXK94/veJvv32HN8cDetkaPvmELUX8u6+/wXXxOAgjptQGB25LtaYtN0rq4RbSTZ2gU6Yc03JYM3aGgPtS8bp6bk7ElvXDL8/46Zf3OHQOzlgMg4Xre3z89IiUCU29P9KalzOTZ1RjQdZPGtfVY/YJyxahjMVoNP72u7dYVo9c2xcFS2k4z5ukkHKoYfTu9W/YQkbKkORXRti31jAv281mSAm8RipVAPtMKcqJnJJcMo7TiGXzHGTEiGVdyTGJAX5dEOOG6ANypI3NyDaJajT6vLWWTV/hIIXeMOHltIoMFr/WajhDFkffdWRCod02HVGYH93Q483DA0G+nlDyp8dH1JwxX17x8vkz4iahC1JYlspit7YGA6pdBtfjME1wg8O6bpxmdw578l7KCX/+9ApzeIOwLfLns+gci6IfPr3g27cPDChQCp83T3WPVjBZLp+moQXEX2vD7uFQmhuooeugIBIrQAITRBlTaaMuDVCtYRLrJDTwskTkvOB+mjDHSPBpK7DKoJaIoetgDVkfCgpb4GBsP8iM0ej6jvH0At30PqBC47puuD9wc7p6SSVGQcxF3o0IY600tUwuncYeXe/gtEUGG7hl9rgD+R/WKnjPwXnOFWuImDqqB6/LxqIyRszzAuMM5ssVfouYlxW1JLGlNQDCGAPl31ZrhApEH26XfZSEU0qcwcFfYWNEhZNCiklSSal6GscRrTlCbFMUJsyAvu+xrhvGaaR9N5FNdDhMqCXj5ekzgg8iqWdS9Be+INgJKPKzTsc72hIrGxVVmyxSMrzfxEbbxMrC5NGYaMU4Lyum3qAfulsht2yexQoaxm5ArhWj6zBvbCgPA4fUu1WJQTxF0gybQOYVas2wlperHhzWQJX0m+OEP//yGY8vBT54qFaxQEEbqnOeX2fhkmnkRkD8YehYmMk21otFi7J7g6k3MMrAl4Sx67Fsfk8IoWqtVKxbFMYGkMGBas6Z6huw8NhVFbVyOGNdhxC5lODCpKFgV/tl7PKFGCOaaqglcRNYGEKUU0SVARgd4k14UCJZFzVOk0Ry1YDSxGKL9iU5rNH2ZZQShSmXQbUwXIhp1eVWWO6/fxblXJMFkNZGlOX8+8cUsPkFJZXbhpTBMBBl8j6yBZzrMAwjleqlYN1WWGvg1w1KVbF2kXGzN/qlNRkaB1ilMG8ed1OHXBuZhgCcdRj7jknDjU3t2HVsYhXQRK28hzvZziEVCYyqtMnpWtF3RlhlFjFHpJZx7Km6/8vnM16vHrUkOM1zMOeMdxKoQVYnreN3h4kLg5ShNXAaR4QUkTOXevO6AUrhOHaYeot19QxwqRz8akV7q+q7m3VsHHr4wOFuyZmhUdsmxW+9vbuoEsrTFKzrUQqZL6013B0nvLxeADScDiOO/YDLvGDbyExZHp+wbduNO9tyJVQ8JyzbJupM2qGNWF9cJ2rYnJGapC1bCwVhzsgzuwYu6loDVcCVy63T6SRJwoFg5o7D39PphMv5THD4+RXX1xcEvyJsKxXRYmFWisuQ3TbF+5T8oNPd3U15GKNHigHBbxx892zgzvPCIJCckSpN5LkU2GpQCq1+7z8947u39zieDvjx/RNCyribRpyXDVtMUAAOx0mCARyHtE3LoIuODvJdFeZ1w+XK2mAaqaBeSsbbN28wyvD+Oq+4XFe8ziuCDxh7i68fjhj67pY2XyOL88u84eHuIFwf4jic4gBvC5G1j7ZcJiiF2ph8DsW05d6Zm4I+JrIzK0St68ilbIb15Tzvis16+y7XjUDwEJI4HDjcyCnCDB20YrIvFF0EujdckhRBfzh+Xj5xWBxSQMl0X+SUEPwG1Abv19t5VEpFjORj9n1/U6tfrldRlLDx3wOphq67MXz2ZRpvQVrTNu9hrUPnHPZwlp2zpgDUHXVQqYCpooTRUNKQ0krnrMUwDMKFA4xVmOcZnRqRC+3+WpM1WCpTDTtjbvdpA2Aqh3BIgG4MRnu9bvjqzQk/vH9kXS41m3KSRL1jBlq7DS1aZbicduamLImp3NY6xhqoUvEyc6j3/uUKHxL+4ds3+PbtPWaf8Jf3n2Gg8HDkHWwNh7rX9Yp187BG4TiMPK9yoloykysVcsXLZcXsA6yx+ObhhPupl7ASXnvOSq2vgFaoirkbLBMksyw45e+bYmTi63VFa40w+i1wCS/n3rKsN4U27y3HHiNGBFG9Van19zBCKrCzoC5o3TWiIo2RjTjPcfLHlTYYxxF+W29WxRQCKhjM1cDvbRpGdB0DEa7XGbWWWzCQlaFUkZ7hdDhQnJEj+4nAgBFiE6jaB5rYZel+0lDQkuLbCwtzH96+zgH/8v4Jp7HHm9MRL9eVantt8efHC2JO+Mev3+DxumANVC43NBhtkWMGNJE1fOGKhDsNcNbi9bri8/MZ37y9w2VN2EKh+AFULD2LFZ+1kMXUWw5VrCGD3Rk8vi74/Y+fsMSI09Dj4XSEbjyvrLV4d3eE0RqfX15xWTboRia7j/xOU8oYOofjoWPwoTXYYsJhpHrtdZZUYGvQcsEwGRz7ASpTfbmFclMkKa25KNPAvBFFYVTDQQ085wyVsLsSqu8crfiaqsAmK+nLZb7xhHvnkPFlSR9jok08SYDVXmdJUIbVGlU3UTnLMKORO9s5A++J/gnRwxSOKYIPmA4Tut5xyGc0Lq/LbWijlaL9UnBBWRJ0GQSnoIyGkjCzLDiLoe9A90i8iQC0yNxr4aLSGkPOoNy7cyyYfML9YcCHpxd0w4HqrJAQc8FQqWb/L99/wB9/fiR+Qgd8fTpy0aPo6jlfFzycDoDYvquwkfMubtodXLJsuC4rOgVkbeBTwsu8IuRCd5fpUEqSZFs6IFJLmFePsXP4+fGCf/rjL3i+LKg1427sMfUOtWS8XrwIRhp6ozB1g6AUxMUk7p2h62GMgpXPXmnWDRq7am/HULCPg1JyD7L24v3FpUTIFCIcjyNarbheL9iC1FFKMZxKbRJSYgDFcCpriGjZ1W21EQOhocR1yLOWITxcbq7LjCLDSdQCZSTZGiAiq2Qq3BVrKeuIF/DekzVujGQrOHRdh3OpGFyPJIPyJMGrwzTC2g7LwmE0nYjsRXKkLXe5BNZdIbA/qhXQRhyFGpfXM8+/UjDZ/wMw+AgUpSLLtIazj/CZyY9P5wU/Pb7g11+/wXy9Akrj5TLjN9+8xeu8wWkjvCeNTgDZjKimjcpqLYwqhVLJxJtXFlzHscfVs/kcS8NL3BBSwloV3j894TD0+Jtv7rAuAT4Synq5Bjw+XaB0Rd9ZnMYBpVCJcjx0UKT2IqeCyxLwdNlkkGJwN1j89tu32ELAdeEAap/MplxEKtzBaoXrtuHt/ZFpU7VxQIidk5SxbF5syI2TdLkIoMiyuC6BG6P7AQVAOS8I8hBbRc5VREVNCbXSfhu8vzUiOwDXaM0GqSRaNgCxkfDQKJLQUyqn3rs6pu8tum7Eum7oeotx7BDDzqcgy7B3FnAObujQCdsgWwtUDhzOz68I24YUvMiM283WBMgcQWt0wwitNQ4jhzQpSiIzaNnLOWOYJqA1/Pl5xfv0Hg+Txckp3A8dps5AQ+Oybvj9j5/wH37zjp+xAEhHqzDYThSdEcdphEKFVlQj0vphkUV63VrbVzfYQmSjWCts58QWkaBQYHTD1UfknPCrt/foj3d4//iMZVlxHLqbXaezBkBB340ohWmCRhuWBnJ4HKaeisbS4IxigSeWqONhQmsVIUQmHjmDWlhMZLkYN++RS5WU4YZSGi7Xldt6kBnhQ0JrC97cHfH2/g5hKnh8fqXqLhXE3EEZsghqrUw0yxnry4Z1WRniIpZODR6sVhtJ3jO3hFFuA7NYAit2HoaRwXuU90Yrfv9xo/1mZ+pZazGNA9UtMd4k9n3fyUAy4XCcsD2tQM7opwP8umLbyJskm6pK4c/nfA9QUErBWYvpcGA4h9jr+bMb1nWFsSx29yWBVgpV7aqLKjxHhaerx5s3D2zwSsX9cUTnjISPREzjAJ8zXuYV94dREtNwa8qpjrU3ZXIuO9eNcvdO7M7GaPzydMXLdcPL5YrOGORUUGrG1HUwTSH4hFCqpPoBp0NPdoXY2EOi6uM40u7phP9DYHHGNPQ4XxakRFXOfh7tFvqGJgsBBR95ZqTEsy/mgpIbhoHbb4oMeKY5q1ECt8q1sVkcHBNRvYBljSXzpCRetH6hPZdcnYKqFJwzMDDwwd+K5tRE9SjvQpVcMAC34q3JcNcYWjJiBnzk2TsNI1V8iQMNK4EGy0KOSwW5pMPYceBcmTxIfgbB+kWgxjuQvrV9rKdEwaZwmCaxGXkYa2+bwa6TAUQtkqSaxGqmRO3UsGwenXN4uSz46s09vI8AONhyllajmPeBHwHHCuRh7cEpZeeHKCZ9zT6gVrYmpQBu4Pb6dQ5wVgGweF4CN7mi3CGcPOPYD9CdxnXxN1ZIr4A3UrgSJGzRmhZrGUM65pVJ4IfB4TSO2PbmMFPp1MABrG4KWyMfKmUuVVYfsYYMZ4D5OmMLGZ1hc9MJ74nLIi5mrteZw2dhziYfaHXhtEcUKQ2vlwtqzljXhQ1TLUg5AZVnbSpJbCAs/CCfLR0GVDIa3aCaYpiP0ljzAqU0YgqillK3RDbnLJRqGLpe2KTk4Bit8e7dO/TTBKMVPn9YkTyDFYgiEeBzrl+UmTIA4N8FcF2Pru/RdbyLcwxIOTGBNHGoaK1F1zk8XxY8PDygd5rvrvDTlGI4k7MWaGSGvn98xtu7I87rhq/v7xBLwXnZUHLFm9MB1ii0SsVKTAzuUhroOycs2SaYA3ULQLLaoDayM0OMWEPCzx+f8HpZUHPF8dDhN1+/xdgbrDHh+WVGBe/J02HA3WGC1RCL9YrSGu4nPlMA0Dmqpn3YebdWFjuAj5HDWEn9ts4ixoKxdzBKY92CNHUMnXh9nbnIFTVTKe3WbKdU5I6pkqqXURSweQ7l9W7XrJXDNKMBseDXFLh0rRnbuiHGBGcNrtcL7eBi4c453uo1gOoZZ7mkYxqfQs5cDJVS0XUM2BmGHp11tKFpBdd1N95VaRIEogDXOajaRE2bZSnB4ZBqsqho/GdlV8zLEs4YQyulI6u3liKYAFrMjVFoTTAsjd9/g4GzbESZ7MhhlxIXznWLMIqTsM8vV7y7P2LeqHqooPIM/0Z12GSp8m9Zvsbo2yI1i5W1yLP3um744/tn/Pz4Cqc13p0OePiuQ4XBv/z4CSVXjBLKwMTViqo1Xi4LSuVQaBRnSUODNRa7vdCHhEdZslmt8dWbA/q+w3XZ0DnLJNbWJD2ywBoLnwpSLkh+AxSD7Jq4FbfLDGMNFlEDOmsw9j2CIvO7Argui5zzxL/sDKl1W7FtK9XvMd7qKgcqB6vUZYWbOapKjULLtEvHlLiwdTwzti0gS1jVILZlY4yIOxgadHd/goJGrQz1YPq0xbYs7DvE1n4YDxjHHjF4aMcBrWrANAw8sxIV1CFst3NLqy+LvWEc+VwbGdLnjAzgn/70C+4fTnh3GHGeNyhtkErFL5cV53XF3719wMt1Ra0FX98fMXQWVoLsGiqs5mejZDChtMJlDTiMPXLK+OnzK+5PBwosnMHDacS8bFQya43esp8auu6Gnsm14P3zjB8/PmFJGVPn8OY44TiQBbj4gEPf424a4YzGz58e4UOmEl8p9Jbohla5XCit4bKsdChUoBoGA728LCgNMGiwWgFKoUMFasbsE7ycVZ3RYtFWUKrBKi0MzARnNbaQgUI81qfHVwbsxISxdzgcD1jWFaVQoBJSFo47n/dWyMbLMSJ6L3zGLDxFyEBR3Z63JANmBXDhWonCQi2IgSnMVZwAne1gtEVDxXE6iDvF3e5ta9mH5ERmaYpRFrxiqZWXKucEA77X1vLcami3tNSd36+05nkjC18NOVM0+dh/+HDGMPZ4MxoUbRCkTqi7YKFU/Nc/fcA///gBLVMNfjdMiBImZ51hOJ+1t0FVLvzeQyY6x1mHvGy3wLNSRRXfmgyTG86Lx6fXGe/u7nFZNpTKWn1ePaa+g08Vh7HHXz6+4p++/wmr531wP/awWvH7FDGSU0BvNaae7/d+vxmxq/e9g5M6kn05hMXfgJr/hzO4FGJ4ojgOnKE1PAO3MJvjxARr7wM24ZSmXNABN1Ut3TQNtbD31V2P6zwjJmp4x6G/PScpS9AZGlrO2JZZRBuFXD1R/RqtiWgSvJbW6haQNg0j9gT24Cm+cs0Im5IoiK7rME0jto19ijZOFhNcLrUaoJsEfxiDD+9/QWdYg8QYkEMU5IvcqcIB1Ibs7n3wt4vD/tpff/WAD0qTV2HJVxmsxRZlM1wb/tPvf8D/4//yH3F/d8SnlwumwaGzBp+eL/juzR3tvbpniEaH26UNhRu/hPc6ixhr95RQBacUHl+vGIYB8xbw+WXGaejwH//+17DG4NPHJ3gfoI1FDAk+RTijcBwmCdIIGMcBUFQ0NZWEP9JE3s0CYewt/va7N/Ah4jqv0hzVG9TVWoPNB+SUcTz0gNI4XzcAFVsiWJ6KFA7j4GmhOx0G+NXfNhrH48RtEvh7U6HXbja1bfVUJsUIjYKW0y1uPu+ppI0S9yjDkf2yFq2aDNqA1ijRZ6NCi7LhZBWtklF1LTOWZZWkIv7zKt7xzjocD0eEGHC+nOl1X5fbBnq5Xri5qVQrlvqFZ2ashTUWXTfgcCAvAK3RTqlYkOZSxPdvZLNcEKvC6zXi6bLhbrR4N0Z8dejw9d2ETin8+PEJf/ftG+zJkzEVlCQXWeMr7mOgZQa0SuSSRYXDS8c5h5gTMsqNn+G6jpdarthSwWX1CMHjt1/f46uHN/j0+IKfPzxi7CzeHAexWHOAoqFoEfZk+Oz/u9ZMQOutQSsFtid7S2kNrXhxO2fRcsKWCrQi4HjZAkql9dsZjal3sJ3DvIm9CZWfW0+rjDYay7yhgUqgvncYhl5UsGQL5iIg1+BpHbpccH4907YbPUpOABSsARTI17Nagfcft8EhBBnoQSDfkra6NwWVVq0oRSWE+6LEsjIMnRwnTGIt1eB0Ot4ixp2jHSEKv7GVjHizcWaUHJFCuMndd1CvUhpaVWjXkUeluCmJkUEYnWAB1vmKnDxQzQ0Ur4QdF0PE5hOM5rBMNSaDf/j8gq/e3KHYgs4afHh8QS0dB3o54/my3hQ3TNPWX7aocnzuCYq0VFfUSvvWmjI+Pl3wl09nLIvH27seb44jti0i14xD79AZDR+j2KQsjG5493AEahUuokZNFaVmvD3JAD0lWO1uVjFtLF7PK3xI6KyGUQ2qFRThM6VUhHHFoYvRVF6UHSZe+f9nEodkrdH+3DvCdnfF394UOyNKSLFGlgSU5IWRWMmyk+bKKC0KZ2DdaIXVhlatVoUdJfYVqCbnFreS5INY5MKUNmhycNa9sd8VW41D114GZK7rsK4r3x1F1anfVmwr2Rn7NnpnTylAkm0l1VYDru/Ru46Kc63Q1G53IqwctcIoptyZziHXhiUkjH0HJDKR0BqO0wEfPj2i3p/w9HrGm4c7fH69oARa9V8WKohaqbibGMTQdeQOaS3ntSiVa62i2GBxa42FakBTVBHEmvFyIXbi7jiiaYOn84LrsuI09eTb+oRlXlGbxjQYHHqHdw8HxJipinAGd9OIeQt4uVwlKZLP53Hq0VvagrwEVBhJjNbawBkuCZxRCKkgJI5ss6h8Omex+YiQkqTxUj1iwHNIKw2/RX7PVc6hBlkwcNg9LwtaKbgsM/zCuyol3pNGPscQPVJMt+/fGY2qdhZKhTMc5JrbsJ4sIec6dJ0DFHBwowx8lLA3G/rBwSY2fqgKIXjc3TM1slYgrB4pblCtIIaI4Mnai9FTiSkyJAXAKEmkzhn90OP+7kGWRx61yPBWVIUZBf0wCv9Owcgw1Ec6A2zXIYdwO6fC5rFb8/70/hFv7h8wOAfnLH78+IRUG+6GDofJYdkC05YTUGqmVVMxZMhaI6EtCc4ZjNOE6AOuywptaDP63Y8f8XJZYZXGaRpw9+BwHMlr+/Q8Y/MegEbfW0m6pAWrKMA0i4rGpELVoDVVKMZazFtA3zm8fTjCKIPNb/C+YA0B1hreoU0RXF6bqEyZSo9W0VmH82VBSPlW5vadE1YoFwmlEgRKiySZQp2lZSnVAtOoxreKdMQqamElW3mNBr8uVI/GhKiAGLwwpFj3VmlenbOCVnFIMWBbN6Z2Rw57oCQ0SCtY4dvWQmi4QkPNBSkmhttYA6M0nHVAKaxLWqF6VphNRGBUsSRnpJJkkM4AKwWFaRyhJSV1WxfkzAUytOVwsND6rxUkAd7g6gN622EOiVZnSa2PiUOCUhtV4kXj8XzFeX1D+7Qnjqcz5oZQwb5UkSUtB/qsd3Y+3zqvMK7D47zi+/ef8fn1imM/4v/0m2+gNBdn339YoNEwdRqDA/rOYLBUxHUDFdIVdCUpKKkbNI5jj9Ay/BawxYTXy4pYKzpr8Kt39yi1Yt08+s5i7N1tWbZuG8aBKuXOamijUIvBZd7gQ0TKBSVygcfk6oqmNFmcMgxOmU6CfXHZuNFAzgmhFGx+Q5HQoc4aCUgLVLrXckNdfFlSKbSiMPQORYQERkliaSPfcvNiD5dlB8ABsS6aqZE5YdsCnRXggLc2LiaGcUQvSblD75i0zUJRAgELLZwli+DgC1O6lMIhH8gl1wCKIjZjb4SNobji2PVYYoZPBaUmPM0Bn85XfHOacN0CnNWYZLC3rEEStQt6RyGENmS0qQbMa4Ay7NOMMXi+LvjwfMHp7ojXKwNMzrPHaexw6DtaEJ1DL6EAz4vH73/8jM+XBVorvDuN+Pq+Q00Nr/OKAmDqHQ6Dw+PlivW6ItfGd9haDNZg6B1yrug7h66zDIRS/E64sNE4XxcZCGmcBgeDBp8S1GhxmVdssSJXwGmF6dAjGoXz7NHAuygmImJ8UHi5rOgc/72YMvqBizrnGMZBxTS/u+tl5l1kFAUCoSDXTM7e5hEDQ2zyPvxRSljW7FMbWK9ZY6FVQ66sKZnGzpqgtoy+7+GcQ0oJ0/EE3Rr85mH7HinTHQU01o8yVK2i6LeG441SyPdEa4JB4jC3pITceDYa4SwXOce0oeMsCvokhRkKBW484vF8xdNyj7/96h16a3D1Cc7QOryljP/y/Uf8v3//C0otmJzG28NEBaSxqCkLh1UjCkpMyawjS68US0FnGYB3mkbA03mXckUsDaFkpNLQWY1//fkT/m//0z/Cp4TrRsakFWWisQb/8sMH/Nc//szQTqMxOb7jBVwu905hdAx+tNZiWTaGRyjInbovJzUX+K3BOSK+QmDt1HW9DEiZpRBTQiyVQ2QWnaiClXCOATM5J1y3wAEhcAuBMlCIOUJbuquM4XIcUFJLkrWec0JKtIo7q5H2AB4FlBS5NGl7sGgTtimzD7j0Zw9I5Rzv2p3VqrVmIGMzslCKANhPrOt641i6vpNgLyuzKccAtByxnT2WdUbyHto5aDSUGG7IhNIqkQqNCb5KKwmsqrdF2q6U/2t+/e8QssGkWSV8mgZe6IehQ8wJL/OG3//0Af/Xf/9bLFvAr795iz/98gintVjKKAXtLP31TbJi0BhZniKTy5TioG+3ai1bRFMKH19mnOdHDM7gf/nHX+HN3YQPn17w/HJF31m4zuF8vqJWbjAOYy/JvwXGWFrKrKbUMiRcQ8Gy0VbojMah7/GPv3mHlCJ/ZuUXs4M79+0+lL4pW4yq2MCJ+HVeKatXhhsGA5Fmthsct3OGcPllExYeEGNCK0yqYeLLgG1dhE2WECMP0bz7yFu72RSSMKEYH25uSpMikuOUyRNyzuDh/oQUWPxN43ADUXedw9j3Ik/2tD7Vhs7yMsulwscItIbXlxfkSF7RKklGObG5b63R3lsrm0ql4boOh8ORW5baUBSHREqLutARHj92TvQwDa0x3TOBjAajNGKp8KVi9gHHweHx6vHHD4/4+68fYBTVRd3YwWfy48bBoSgNq62w+qpswKmkKq2hCRepNoUKJTafik/nBX/+8IwtRPz6zQH/4R++gw8Rv//+L+hdh/vDwEvQB0BRWm0cQxx8oCKztxYhRSpWhJHQKod5fdcjxAgNfo9ZLNAhJuEv0GIZJAEXgDDNKo5jjyQppa2RxTHkAaVkjJK0phWL4OsaMI68xOxuZVQK20oFrPcB1/MrYkiyvU9wolJKOaM1HogaO2yWP9P7Fc5yoKIVOWBNsXjYk5ohSqlSJAHU8TMbhkGKxp1lFDH0HOg1seAoramC0hp+W4BcoGqFjwtaqaCqho290pChMK2OChbGWhyOR8zXmUWbNjjdnbDOV/iVNkRVC0pL6PsOc8yATzj1/KPNIaIzHIxwuF9xvq746s0DBsc0tAaF3jKQ4yrck8PQA00hyxY2p4qUI6wdZMNUb8Vskg3dL88zfvzwjFor3t4d8O3DG8zXFS/zBqsa3p4mhJAwb0E2ZwqHXuPrt/fwohrOBYTJA7ifejgNnENFU4oDqVwwDhZXCWygYhqyia5fmiY520JKZNbJ4COKerndik13UxfFyBSyVNgU5pSxbRFaA8VqbOuGFCJiWOE3qqx2Zcb+eezJtK0VBFF52s4iFw6Fd27n7r42MlCguhQwis1YzDzLUWRoqPnO8RkGE58b7dnB01LZWYdhIAc0hYAYAi1UckFTgatuyoIsC5iGhq4fMYwjZIvC4aim4iPnDNNAm0ATK0gja+66eYQYcRh6IhEUhwDWGVzmFR+eHd7cndB3TJ7VxuH8ehZbP7f7SnEzHFLCYRylQDK3RthoKjetNlCqIeaKP394wvunM4wyuL+bkGLGh8+v8LFgcBbHwQEl4/kcbgOtY6dxHB2+enuP67zB+4ShM3hzd8AWPC7zxsFrJYfQWQPdmGxGVRCb08t1pnJP+De1FqoGUkbMBVpsl1Y1HMcR5+tMVa2zUI3MKSusJyo+qyggWdBbS/UObdARIVT4eUFMnsuAUlH2RPVMaziREODAq3EIm8Wq5PZnTAG5FlkOyeDD8Mwzhu8/rbwdjLCGjSGYPvggcPkB2hgMw4BWmVSbI0HkUYKRijRDynLwVFtFiAHKWDjXoR8G3N/fMRE7BOieSwJlDJPEOytJ0XzmUsqwhsrReSM0bCr8frZIxXuMCblVhMwBxdNlxrdff4WfP3zC4jOcVbTbpAwvG/ratDCONHrnMPaOQQGxyCBGw6iMohU+nhe8Xmbk1BjwM3U4jj3uTgekmHBdEs7nM7SRBEZN5VonKaWbuDa0J9fKGo15WdH3HTmIIeH+7gTVyCZbIhvnqyBUjFLIlQstXdlYqZbgjMV1XnGcBmw+YAuJyzYwaCBGqkNa1chRrMGiOtWiYE8pSdOrabFdN6RM1S0alXJ+YY3chIFcRdGeGkHbre5WOv5s1irCIE1UuymtUQTz0TviU/bnBa2hZBYIe7CaNlwu0P4kKaaotPfH3fVReS4pLrf4f/MMs8bKsgzo+4GhdOOECqo26Qj5kpKrGnlRPlfE64pD75ChoKExrxtS4T9nAEgRJm3D4DrM3vPv2io+Pp7x9ZsTfllWZNBarQr5Rt4H8v5UE/cLm1JTWadsIeHD64I/vv8LXq4rvro74j/85juMQ49fni/45fGClCqOzuLNaGBUgUGDqhloBnfHe6Yg14aHhyMVkI1878lopJiwbB6rT1i3gJQKhsHiV19/hZoTfKAq0ymNGL8MLwCggoNUo8VKFxNZWQVMIZWQMliL0iq0rljm+sWaxg+ZwyhF7IWPHBRDgi14F9JOmVK5OY74B2DDq6X+67tenh0uEPaQi5wzur6H6xTOr6/QWqMT6/feIzRDC2PwHqlkhBhwGEc8PJwQQ0JAQu869K6jiiVs0KANe8tJErozmoQE7ImlfA45aOm7XqyWQI5JQjW4aM25YHSOqjipY2JM+HQNeJpXnPoOrTZsqUA1wKMgluU2kLkhklrBuvE8d9Yg5IocWG9/93BC9Qm/++Ej/uPf/RolJjwuHspo5FqxhoReXGhbSvjThxf87sfPCJmLoK/fTLjvOywbUTRGE4sx2h6PLxesK9XHO6N76jtYJSpt0NXTW4vVByKNFN9fYxzmbQZaxcFZ1JwRChO0n1/nm5vHdQ6oBcEHFGUQM/nIveAkfJRAHgWMA39OrQ3xskKBKqsQIgUTotijMk5U5alg3RbkHFEiVZitchik5PxXZlcb779EDVYyNHa0AxN3UyzQWticsuygtwBIKZKB7Df+DOGAa6lvdiUdB4f6NrRpCoIsoUJagYPSLO4ZKAngkKVslqAIA0BDIYdn+PmM6eEdrNb408cX/O3bI/7+2zf4L398j4SG092Ef/rzR/y/fvcDUs4YncHoWK+VWmEKmDdgLUJM2BKxEahiA9UK4+BgKgdXsVasMeE0DlCiQtdGYdsCfKkwSSN9vuBXb1/wcBiQ0guCtShgwOJ1C/ivf/oZKUYcrIEzCj4FqNowOi08wIxp4PJqvi6CCGNRPbkOQ090z74s1TJgLoKl6bruppwcB/Z5qtIFZzWDxwbTwWi6TIxW8JKyGzOZh0oZpMShbtpDmEqWxY8RMUJFyU1mHZXLOIBDxhSF2Z3hNwpSSi3CemSPxSWZDG93ta4mWqqUhpSTpP5qqoM1B4DTNCKmgM71cLaHD579qDGw1tH9oDWi90hn4ZL7QN5jpTuAGCAypyl+abxrxPJdS7st31knNFRVb4iNv+bXXz3gS7Ui1QqraPVoiYfHEhMOnUM7Ad//+BH/89//Bl893OPluuD1uuFXb46yfeLGfYsJnTVQmmlfu0pCaXATUBpybbcp/c9PV3x4vKK3wP/577/F33z7Bi+XDf/8h5+g0fBwHLBsntaPWuA0L4h55cs2jT2ll6AVIcSIyxzgCzcA1jIK++9+/YAYPa5r4MWUEjpnoJVFCAFdZ2idqgCMxnXZCNFOBa+ZjS1QoQxDFooA3Eup8Puh2VuB4CYeyFZhW1YEzQHZulzJa9gWtHNGyYE8HrQv/v26X4y06O7bLxZLRRR4SjYbCsY4vH33hpwzxVCNLLyzaehZ+BmNX/3mV3h+eoS1A14vF2xbxTQN8JvnkDZFLPMFKWSynEK4sZ+aVrdtChlXTM7qh5EHr95luPWWDAhtkRMlyrVEbq1aRa4RnQa+OjicHPAPb+/x6j0UgOsW0BsNaxV+/nTGv/vVN/jmzR1el0+oexojgEn1nCMpKoByYXJxlc8wJNoNSgMB7k3j0/WCP394xuo9fvNmxL//7h1KbfjDjx9QUsbXDycW7hJ2oRS3ZZ1zMIqNVG24/f2msUfNiX7/QjYWFAtfK9a6UoHLssmMgEOrZQ0IOfPPqjXTiXMFCjDXPYWTXJoGjZBWboy9yJutoR01JURP67HSUkLUAp8LXp5e4IPnJkGKUSvPTAwcqCvVKMevCnvibBZQ+O3PqzV8YDz4IKq5Uiq0MjLoNSglw2iF4/EA1YAQAtWm8s+2jYWnGgeqEK9XboJixKf3L4gCXt65GQCt5miA0Y4WHgVRHTj0w0D5PZokpGms8wU5BuhWgJKpADEKzijEyINYGw3TqGp9iQGqVdyPkxTVGZ9ez/jHX32N9fGVS4OTho8F80o7KaQJ0mKThgKO44AmCqN5Y4O1xYyfH8/4y/tnOF3x737zBqfDhI+PF/zyiazNY9fDWYXzvCEX2jG0arg/HjD2jmxQUQRungOnd29OyCnjskZsgclh6xbw9Vf3eHq+SNKf/F5aYYuJqXKScOmMYaGeufnve4cYZGimOCTWaPKe0voVg6gqGmAMkGNGKhG6Kqi1IKyL8BUD9sRlCHh+t8rkzOG70kxWM0ZDSbNi5PmHkmGzJntF34Y9okoLATCSqq1YGJ9OJ8JxrcVeZDbZ3LZW0ZkOtuthDEND/LpS3SLpl6U0eQe5ua6ALC1okRxGIgei8HyUAmrOt2YixwQItJnnIi3TJ1G4dVJgKm2QcsHbuxM+Pp1xvqz4/HzF128fEELEh+cLYko3hchh6AGQi3U3DbLx5Tux29SdszCKNpBPr1f8/OkMrSrujwOsc3h+ueI6cwt8GDrERIaLcxYpRvSdwWEYMHQabx5OeDmv2ELE1JM7tKwen1+uZGZJo38Ye6imeNflLxa0PbAA4J9TadyKuWno0Dfg5XVGygUPdxOWZWNSI6gIVYBYSZPY/5WEfbCw7KylQrRULOsFfmNyMzLVMTGGW8jS3hRr8HuNiX8uPjcSqCH3NaRpCZEqyVwKmLmg5M9ARqmWzW4IHikXnC+Xm4166AYcDxN/gm44ny/Ytg05RCzXGa0VnoPyeSVRUFdRJ2ttcLq/5xLEb5jniN46KiHEmu1kINZ1PVKMTKE3Bmso+OpoackZBpznVZaMFmNv0DuNyxpQCpXSH55e8M3D3zJ12aibEjhKkAkHTuXGMzoMAxuJEHGYRoSU8HKZ8fF1xvvPr6iNwVjv7kfcn46076SI63VlcJnwXVst0Nqi67j4LaUwdCYkVCT85tu32JYN58uMfmAT0mrDNA28k3KRcKiGLaX/IRkzlUxFmDVQtQJO47L622J12fidjX1/s5RBnoWUmW7OGR5r3pwSym3wDxn2ZWzrIvecZigMqD7ZbaU7B7mKvc1aDuP3tMeqNVa/YbdVWhnstkqFZS0FytJ2B0AG+UCKCXtis7MWMbCus/qLIjplOjvGcZT03V31viv1LPakzSbWJNd1XOYIp7CUjBjpQDGG4R2odBugVVxmj7sTl7XL6jF0A65elNOGVjYofUtl1jIMiGLvP68ev/n6DaJgN5zR8Mh4EJ5fk2E7z3AFZXke/OV5wX/78wfMPuLhMODvf/UV7g4TUoz4158+49Nlg0PFu9HiftSohYOmoXM4CE/w5XJBq8DdsQdyQoGC91HUQA2XnDn4ECvb0Dm8vT+i5czFm9RpZCSTadd1FgCDVMg1JJ9054xyIFNQUmaYGg90uLFHCJHKNgkFUyCoPgkyotaMIAvQnOKXJYdhn6LMFya42tU5RsPqjugQQJzsxKmMwwilqTgsu8ulNbFREp9UM7m3QRb1x3GEc+wfDuOIdX5EQ0VtBctyRcoJ0XugKaSS5c7lEop3OW2W1lh0FlDGAo0hOLkkqnxKkbqO9UptbMhXn3E8DrguKz5cIz6eZ0zOQqEiVkCVDKMc1TtQOA1EJaS6q2Uba35RN2pFRVMoBa+iOv7xZcY/lozDYcQfP7zg4Tjg+bJh6h3enUZc14A/fHjB9x9fkEvF0Bt8dzxS8eYjWs64HwfUlqEb8HK+YN08jDIoreIwTnCKgoZUmWbvHOuh3moMnUFvLUUBRuH1ckVJHCSHjQrcmDMliI04ASqK6D5aQkBpDak1WnGVFsstlU6DYzBAiLS0c3AGnC987o1ib24NFedD3yFsK6KPyFkWoICw3tUtOJAL8Sz1HJXYQJO6qyBVukz6ob8tEmqhetnKsNlazfRuGVLXRudOTEGs+xTOWGuglCREy9JYaS7rUPclCt0nqRSp5YzUTu3mujBNHBCIKHlDmF+Q04K4viCkgq4Af3i84n/9d9/gh8dXlNLwdF3xv/3zj/AhwioGBW4hIhlhZraM49hjXsNNhWc0XQKuIzJodzzsd47WrBmb0VhDQsyVPaw2mFPGlgr++f1n/K///u/w7uEN1nXFMDjMPuI//+4vWDePAZrKTh9hlYLVwGA0WuXyc148QgwiqjLoO8v+pFQJi2rQbRdnCMJEsGQpkZ98mEagcakUU+TyQSscp54Bb4kLrRgrSsFNgd13xBiEVCRYkzVxLV+wN7Tv0kHViWhGqQa/8H5Ngb1ESenW/+z3qjLq9jz1zvH51RbRew5uU0aBoCWMhTYMj7HaoBr5M2mN4/HI7yRUuM4CMWHsey41PJnoaDJzSQk+rzBG0b2Zkyzsqyza+XfjkkKWMIGooB3tUsGZzF/7668e8A0dmwZjNFYfEXaWR2v4dJ1xGEYoZfHz5xf8T3//G/zrT595mMslPYh/efeZW82B2Z6YtNtKc6l4XTx+/PyKT6/c5P/63RH/7jff4M3R4V/+/AFbyDiNDqgNT68XrD6iZirtkgxHeilSnHUckFgFv2Vct4BUlWyNKOX+x9+8QU4BL9cNnXEIOQENmNdI7k9hAlUsBboBpVFafbo74nJZkHOT7Sgn4kX8/aU0+OB31jx5TIWS11IqtpoJiMzchBQf8LIFtBIpnVUQ6amSopTMny1scJ1DloNMNwVrmbzDIjkLo4YWgfk6y9aZ/5WSQDArQaDbsuH15RXWOszzTFi9NZI4CFzPr1i2hS9YTLdDtCglw0U2I0Yb6M6g63qM44R+2DlEu1SZhzs3slRNtFKYBlwSWiED799/c4fx7g5WS2BFVLjGAlsb1KiwxYaQC35+uuBvv7qTrUbhgWwNmRdDj1x4AY6uQ2vcvE/jgBBpB0il4sPzgj/+8oQYE/7m6zv89usDWqn4/v0Lwhbw9Zsj3j0cmUIr3vmu62FA2Xqp5CtSIcrmfug7WgTlZ1irkXNFKbyczcDUo3ndUGuVTRuZOAQ5a373RUDVoixZNzKx2BRWWMftZ2tUmmVd0SLTOWPkUKLvLZYtIqaI+XxB8CtyFB4AONhKKaEp/SUaXTPhaVeyULHFA9WaL5dkaw1D33PDK8q8kivGYcA8B1jH5rvrudl9fn66MYuUDJeGoZPE3QyrDUoMSDHCbyti/NII7uo3WmobjO05RO5HGGsING+yGSmFPJ+c0VpBKbQ5NwVkVWEsB2aqVUydwdhZbIG8oL7vEEtAg8Evry94ezjAWUiqaeJFnguerxtWz9AIBaYXNjlT5mXDMHTQmgf/mhI+vCz45emCX54viDHht1+d8I/f3eMye/zp/QeUXHE3OtyPPbxPOC9RlLnkOgzCf7qkdGvwQsxwFvj6zT2WdcN1jVQ0VjIq3r29x9PzGddlQ2+ZBgilcV0DN3VaMdXQKMDQktakyZyXjVs0oxlIMHArt1/uO7Q9xAitDbJYAWstiDlhjhHJe4mwF06Klu2uXHbkObHp1bt6uzXURDAuVQZMENsLDifsrSSsKA67IaygJilmRT63Btf1orqDqD73oTwTWr1PCIGgZwCA2s9bNjZKCkEog74fbmlwWmynTf5+TJrmPUZraUEWVMQeAFNlMHQceio5a8O6JawhsJh3FmuM+Px6xW+/+zt8ennF/DLj7WHA1HFDGHJCKrT2Nk2eklZarK8ctG4+4c/vX/DD52e02vDrr9/AGIV5WTG/zCi53gby12WBF0C9VsDYW4xDD6uB+7ujhLo0OGMw9fzOn4RBtWMGppHN8rZ6FCl+tNZIpQEFskVngvPpMGLoOyqllMHLeUHIGVPfI/gkIGNyemoWyw0E8p6KfKeOYPq+R6lVAjI2hOBl279vjHHb1JZMBUltVLDs9qF9+79b2rQmtJ/PNe0q1lJBUkpF58hvdM7JIMaiiArbOIeUaVUd+p5KpFZo/fYblnkmuyiS6aogymj1pc4qlUO/Q9fjzZu3sL3DNI54TrQtp1wRgr/BxqsoxDJoWQnBYzqdMPZkHUN1+Ph8gXEGndYwqiIl3NK2O6tRC619IWd8+9U74NNnjE5j2TyUtjK0YODZcRgkabqgWYemDf70/gl/fP+IZdlgnMHUWby7v8Ox76EVmaaxFFxnTwtgLhg6i8HRZjoMvVjOqNrbtozSgMl2WNeNyaIAqizXjoeBSkylJMFaYds29ENPJbxqaEbDQKGzGseewPotcCjrrEIIVVwUCqrR8ssmh81M4zSLvB25V4zRMI3qkBCo0tz5U2gNGbT51CrhBlKH5v33kyWF0VTn1UrLbJPlQyeNSRbOLRpQEs9LBUFbKFE8g4M9gI2y0hopBFqRpF/YLUtQDGvLOd2e9VYBO7ibJdJqA+0sjNY4HCbM8xVBBuI5Rey/Ka29dNugVXK0Ne2bZx+htMPHlwtyA1RpKFtEkMANaxjmEBOtbmvkufyvP3/Cr79+i+M00RpVKpPDjcZhHKkYakAIGcYqvH/c8E8/PeHD64qHY4//8DffStNq8Xj2+OnTE2KtOFjg7aGHBfB6ptLpbhpwHHvhRnFg12QIFkIiJ1UWCNc53rAT2hgcZKCVU0GoDAQcJCgt5oKhd+idRacVNJhKn2LC6jNyo8oZoub3PqCk/EVx0tqN7WWUZj2kiA0JMSBn2vmpFhcLGljD1dZkcRoxTAPVpZZLZGOtKG84HNl7uOlwREqZdvFS+RxKnZVFKa0NB+Nd57D6Dc4YaEdFS04RJSW8vGzk8PUdOa4hUE2f8m2Q2aRPZM1sxZKu0WngYDZ4dDCWibxhlQAMSM3XvtyztRTEUvG8BLx/2fB4XdEbCw2maBtjMbru1lSXpgUTwaF8sbTfLVtgcnNIGJ1FqkDIBU9LwJvjhEvI+PHzCx6mAalWLIlvb0gFPme8f1nwrx9eEHLG/dThmxMDRhToHps6KyEUBfO8ohbWVsbs9v4M1RkUz4G8hsLgDMaeyzYDRVdGq3Ag7mPoaDNeU4RVGr0zgNZIqSKkimVNgOIy1BiFw9hDhyjOMD7X0DwTUk3YfBI3gIQOtH34oW9OvSLYl3kJiH5DzfWmjOMBwxAwNGKPONwrtzMmZvZESYJ8GMrBe9UMDBAiRsRgHAa0WrFuC6oscfdwy9a+BIlR+Vlgm+ZQWYQLQIUCFbdNAh4g92sVFRf5tuwDnHMYhx5hW+H9DKsbXl9/wuXyhFoLDusZ91ph6CweX2aU/BZveoOoDP6f/+1PeF4DbCs4jHz+fC5AyhLYQ3eCFZY9nQEGMRfUTbjTrUJLSIZSCjVlTPdHvFwXzDGjsw7KGISQsRXiDeqHM+6GT/i//8e/w8/vE1LV+PMP7/H4/IJRKdQUEVuDbnwGrKL1OqWMTcIojRJ2rmboYVOad3HnoIyG9xFb4PmynwNWWThjcDpOCJvnMEuQAfv9nVLGljL51muA0sTiWGNkecYZiLFWaoJyUxajkQcKtS9a+Z/HSpRKjhE1cVGQRQWs9K4sxc1JpowGVMXxcIAPdMqElKA06yoA8sxRBBZi5BKmVVznK6aJIZfzdd6PIOIQIusOI2r0bdvoZA0BKdMZWkpBzVmUguxN0t6PCJJAiR23grbru/t7eL/C6P8DKPhCLJgEnjlJuEDQkrwFhed5Q6kNH88e/1G2gYfOSlott85VM2oaSgt801DFVxtCKvjl+YLv37/g9bpAgYks/dSj0xa/fHrB84vC2PW4PxAWv65iBZJGQCm+vJ1lIeEsAxOsYcLt4hOaMlBg8X8/OXz75gi/eZyvC1zXC5uncHIck6gKM4bO4tRpfPXmhDUCD2/eQBmL19crGwmjhVln+SArfQNMd32HZV7hN8/Jd2AKahL1SRGYPlNLM3pHCSm3ErwcU0zCMhMLbqZEdr/E7X5xihRdKaqRUkxMmZJEMieJhqUW9J1hSmTjhiTFBL9xCJYF/J0LN4alFJQYhZVhxMuu4Vx3k1h3roe2DofDgRvlSFmtNhqAQdd1aNVimkaEGBFDRa4Nw3SHOr+iSXJP05qbqNbgkKFKwRYzemPgc4NPnPb/6f0L/uG7dzh0Fp9WFmODMyzYNW4sR7SKBg3Xcfg5rwF/epzxh/cc7P364YS/+eqImDI+Pl7xel0wOIfffvMWRgPnZWPRXwqOh5F2mhSRi8ZlnuHMDjUuTEDzXg4dFnNK7K7GaCyekmRnqSBbM2GpFTJscRajU+idRooe3gdYAJ3pkBKhzVS9ti/JcaJE1Uoh1grVmNrmfcA8bzifz9i2GcnzYDKGRV8pVElpTpIB8PNqonYtYqXcYfFUYTU2t1rDOitj+SbWJjYL+9DGGI1jd5ANULpxffq+p+W/H3A6jLheLuRbriuCZ0L0znWsux0IPDhNZ9EBGKYTjLUY+h63dFQw8VK1CqeBjEwFAyqc0mhKIYLsJWMUQiKX8PFMiDKViQ1rTBiNxbEb8DxvAHpoBWwh4O4w4Hzd8Lp4Qro17d0FrK9aZOHkrEGIGb88XfG7nx7x6XVGqwWnzuC339xh7DV+95dPiInFy7HnO/V09jfMwNg7aTYhYHzDTX2mBPzuMODhfsLlumKN5RYochg7jEOHz5+fsUpoixGFNBO3OT7LpaLrqOqJe+hPZaiC1iA6IWfUCmwbt7Za7EZeRxhjxYIWUAqh261msbIyCdqAdnyeieamvFLCq9u3fnuy7V7Ml1KkgCC/KGdKwlzXI8fIxYZS0M5K025lC8jCyVoWv1kGOwrA6XSUrS7P4G3b0JqwXKTJRlMCd2eDA9WgFdUp/dDDKIMYhSPUmOC2DwCUppU4J6pWS2swyqApDdUaFp8w3Ws8XxYYbXFZPZwxcFahao2udZi3BU/XFdfNY924Vb2bBvhtw8P9EZ11VI0aDVv5PVrLQJZUgR8+v+LHD0+opeBXX93j7jBgDRGPnxaEGDH23c2ufL7OUrgoDPJOt8Ze/s39EU8vK2IpOPUWQ0+rxOtlgY8RWhnoxufUGY3rdUWW89bIsgBN1E+ipNWKQ9sUIzYf4SPDb7qO51ESuy/VnBUppVv6tNZaFHYFrfDfabVgCwExeKSUbqE/Ss4CZyxyIzttT1KOKUrRxQKzyVY3BCr9tAxfdoV8E8tMBVWfDRXWWXKiZDm5/ywYg1Qiai4wRiGGDdvCza+X7XOVwJ99c9sam17jFMMsmoKxDqfDHU6nicFKke+SUkoUe1Re0UqjoZSR1HUqbxQAp6kmv4od3UDqiAq0mtB1HaKPUMqgqAJUg/N5wd/+6g1UDrheZ5TGxuMwDribaNksrcFvG/p+wPc/P+L3P33Gsnp0zuC7t/c4HSx6azn0z0SPlMI77rrM5Dc7BvNYS05SDGT5MbDHIaUAZ1jsPz6doS2TNWOiMsIaBZ+EjRwTbWhdhxjYZGtjAanzeme4sNi8sHYbclaCX+Fi4P/H3H/13Jal2ZnYM91aa5vPHBc+IzKrKsuwis0iiVY31BB0IwmtO/1a6UoNqEmQbLLIYlb6DHfi+M9uu9y0unjn3lEUIKHFvOkAEqiMiozzmb3meud4x3hGyoUweaHuZYnHSolUOAtquYoqsV40QmWKlVJbloNEiU+8MKtPLcvCZC3VeSIX1yr41/IsjaLphK1ptDjIurar7zQ5MxXVlVK/nlOJk9bymVD6lOiQtApFWi5TLRGiYg1SPSudkQVU0YrGttKY2BimYWIahO2mZYgUUVLJpbmUSE7+7E4sSUTAwygOP1/gfvDMMbFuhEnUNk6eSSUtx6qKvkZXHl+EX3z9A//Hv/0Lvv/hVS2/KswVlo8S8bKfZ3798shv328oMfFnH1/xyfWahTX0Gb5998DoBWL/0dJytWzZ7fbsJ+GyPb9c4azhOIwVYyBFSFpBCJndcSB4X+fbfHZcGmukBdtafAx4L86RtnVS0lQiF8uOZeswRe4NKE0osB/FbeKqIw7KuT0xl1pYI7ZzSAVd5A4jZSlSqDeOI4LLieefe0ySoDqnJrRmsViIm6W+a4uWxUQuguWAwmq1PMPn/TzRWHdeeNi6TENJoVr0sbq16s9CKZltqzkgJcRB1gqHdhqnKkaG+pmtDrx6bp9i4SkFWmfR4cDLl79kff0Vl08+Z5yqcxFpY5YY7ixpGStx53GO3G1mHvoRqxSG00JOONjS8ikO29YJ5qkz0jqdimI3eHbDTNskSspcrRo6Y1g3hiEU+mHEeymtuF50NNaSfKozOGyHwO8/bAhkni07rpYtgx+xKJ4shFE4TT+e87HC9cURK+KZ1SICFmvk7VFAlcJxkDSP1mKGyKdyr5SZQySXhFWK5aIhR+HXHoeZfDKQWFMj9FFKTGIkJfBR4vWtEpFMZjoxq5jqTC5KxPvGOowqVcjLxPp+TdVNfyqyMUYcdKdSHl+ZdtIkLcYAKU7IwjGrkW9XY9xd05FTommlBFGXLO77FKu4WAv85GNbI7mZhGgLYkKoTqoq3pSSyFXwPj1fMUvSSKFqc69F4URY1YoUJ3Tx5BAY+x2nhFCMgc+erFgvG9EUnOWf/unn/D/+/jtePRwoOZ1d58PshWdpqEJnQrciJJ/mWmH4aymLVGJVMJU37oxGGS0R+1xwCuYkv7vBR3I9Sx6GmTcPx7qEV3zz6j3v3r1nHkdJxSEFEdbI+z7HJHflnGicxShoXHNeeAtyRH428xwIKTEHSRFIgkDSCQpYLTuG41FKk9QJxaXpuoZxktSQVppCZA6y7PDzjFci3B2PR0mGmVYKb3KRAqksGAfvPa514mIsUnxoUMQkv5t5HOX7rnO/qiYtieBLXFveiZr9ZkdSGfKPCB/XyPLKVME5BjETRB9kvqiL/1KfCVUX+I1tzsv/2fuayJHPmhhVJHqrqYUytegv17nndM8queC0oanNxVrD+uJC7mP/aMH7X/vXHy3wxVzYHqfKQirMsdDW6OXloqUxhlePe97d79hPHqcV7bKRw6R15CIiSEFs/UZrUskMvvDydsfv3zywHWZWBj66XrJuG3LJDKPnOM4sGsdHV5ekGHn19p5T3bMzirZzXKyW+MrfcY2pNdLyUOcMo48Yq0lR2viuly3Xq5bjMNbIjyFNMyfVv5RCY+CiMyyq4yMUzd3ecxg8Y5StcawHnFLVuUepbChNSIkwB2J1Zu3mCRQC1q7tKvM0yQu3FJTKNRaM1HmXgtZWDr5TpKteDJyRT4mqm04FlBN7IMihkOvlZLVacdzv5fKrDL5G5hbd4keeCorlYkWKR8I8MY6DvKiKOCRyiueBstQsXNs6rFlQ8hFVCqurSxQabTTjKCUlMQZa1yEPg7C2hEcyE+cZ2y2xriH6UX4GWvNqN3HcqipowGfLqvrnTD9LNDaEzOOh5/4wsl4veX2/rw9lQTfS/NU6sSCHFOVFkxXf3x/45sMjg49cLxs+u15Bybx/3BO8FAQ8WXV88XzNNAc220Hi1sZUzp4np7lyfnKtk5fNTVsPbA2YxjJOM8vFKf6T6eciYHCn6VzLZj8Qi1zQO6tpjCLHILDwUeZBH8Sq3U8DIZ8G7AxWE2fZhpEzNllQhZwE9D7NM8MoJShxGtBkdG2FlAidbLxFfPPYGhFQ1TVq6ucnVUEEEPeMO/GepJXq9LycRGWxQ8sBdxIKY/KsV2v2O4nmri7WzJPHaOj7A31/AKDvewGZp1ydjDJ4Ki1fSyFDOBKHO+zlc7SWy/t5k5iLNOHWqAkloWtn4Ck+3jhb4+LCApl8JBYR5aaYz8P4wzzypGtYNJbt4OsGN3J1ecF3H3ZnYP9x9CwXjXArnUIVuVRues8vvrvhzf1OxKXOsG5atCrc70eJqOjCqmvorKIfRko96RedxSJur5xybTKUS+4p/rBcNKxXLdvdgZDVueFYnknD4+5IDImuOTnexO3WFAHqalWkjbEUDvuewafKTIJSDMFH5ixtwkrJ5USEmvrCKgVrgmzPvcQ2UoqVZcW5UOck9pazs+vkcv5xEyx/p1RX08mVKuJHyuJOzZm6ofX1a9F1EJamPaNloZKRwWb2oQ7LIsI4K+fk5CemcTy7DVX9XBfqcIqcbUoriB7mR9bXn2Hckpgyx3mowj3YOjSI21piWSWLAJRKOTuTVJFno7FGNukxslg69sPExWpJ9klicUoWRA+7I+/ud1xerJhDZJw9GfmMH4eRORa0rU3MKTPHmfePR/7w5pZ5jnz54oInF1eMIfPt6xtCkqF31basuoZ9P8qyqxS6xvD0csk4S1PvqnVcX60kgpsK64VjtRAR/eGxl6ZmJUzarhWha7s7nqNnJVMj/vKzb4z7R1GKzFz5Uv0wk4oMnjnKZSLXAc4pe+b6yAVIPguhMmCssQJYnsWVNE/iNlVFmiZd01SGrj9zE0+XYIF6y1a90eZ8CYkh1ndsdfEViZR5H4Rl2EpjqUI4cbnGk4dhgDo4t9bgVCOtc5VT671nqk7tVHEkp+ilsQajLZmI1REz3WMWTzFW4qfez2jATyNKF5bLBapkAWtrRUnyTMxBnBVGFbISwdYn2O8HcUe04nh1jWG1aGrcRpApg5fhPNeLUOMsj9udOLDQXF2uaLSRKOXhWMuzHP/w3Q/cbPYobXhxfcnFUp6vFBODnyUqagxFZR63W8Z6kVk6hzYyvyzblinI2UvOqAgKz2rhMMay3R/lJZgTociz0TaWw6HHOTlzJx/EJRcjwcvFwTrHZvvI8+dPORx7HndbfAwYJUUWIZ7KJFRtBq4OFyUb9+gFu6DrgqGUwjzJmS2N6xBrWZC8o0T0s9ZUTIb8b04tuSdBRJwjpjJ6xH3gKj8SremPA67yFI3WZ7yFCHUiEsrvSZTyprYCq7pgaNuGRWvr2SaxzlTkmaLIO11VodxZyzw+ME57nj37GZTM0E+y3AjqPBPI4qSy77I46OYiy2hjLUZD07ZM08xitebbt/fkmGocTrFedrKkdLVARqnqLpP3NIir4nY38OZ+x1dffMGHuxumeuEsKXO5WpKV4h/eH/m7l/corblwhochMPgdzkkTKkXxbGn59Kpl6Gdu7h8BWV48uehI3jMGzhgGcbEq2kXHZrsjiGIlrL/6Duq6haRPZn+O8Z8Ep4UTVl1JjpI5t4Z3yyUpFQ6Pe6ZxRqJZMleEEEWAiaeCCZlJYkrnz7EPganvxSk6TrKkrEGnVMTxE6O4pdq2JdcGT1VFGm2ljRjEFaqQuCdI82iIEesqU6qWbThjKCXjrKbRjpIiSonYMQeZK1OSiLc1hkQ6ow9yEpdyibk6hpKIjTmhi2Kx6Dgej+JOVohbqHh8GHh87In5DU2zplle07UtJQtGyJpTsZKqccbMzX7kdvA4RS0LA6sMTW0FN9UlU4A0BzIKV5lnx9lzd5Tv4eAzORQ248xl47hYNoxe7m8oxduHPf/8Tz5nexR28cViwfW64X/65ff4GFk0hotFwzBPdI3jsnGM4yhldiFQ4klolfSbq84lTalLGomUhurA97HyQpWWBb1RWGS+iXWR0FZERkyJ4xQYJpkFu6aRe6EuaCWmiXHw+JQpWoSUxkqMOVYWrYj3ckbFFOnaRpZwJ+yBl2ZmwavIWZVTJNUyjdNyzNdEl4If/7mKTzHGUADXNHSV/9h1Lcu2E46mk6/72PcELS7j0yxYcjwv+06iZ6nPi7JOMFAofBjrzC+JI/lfy3yJkmI/S7XMmgABAABJREFUZYRJTJGUlNGCmyElSDMl9Az9Fk0mhEwqRnSC7Em5pSDP9kM/87/84TVTLiKoFAQ5piX5EJMIdEYrUgJtMq3RaCNFEpcrSTrEUjgOnjiIKLruGrnTxsiicSzaNW+2ex4nz24WN2OjNFcrR4viN79/yfev3nBz+yDmpvqeskY4/9YomfezILusFtY1SAT29NlbNlIQGYJEgk/CrbPCjgRF4+SzstvuagOyIadQ462a41HYt1LgE5hyknkzznU5lAl+ZDzcY5sFF08+rcWaoc57hRiylKhlmcNPqR/5DEqpY6rLNmF2i4jcuQZNwfsJZSShpOpdW5WC9wlntZgVlJTgBT+gjSP4IILraiE/I2dZLDpiTYKmKDgCaWuexNlf2dynNvmUpSVX5Xo4qwJK3numcmNRCtd0lIrQkXvK6czsCfNEs1z8r5Xh/r/+9UcLfD9se3bbIoB4BT54Wm24XjR8dtnyyeWSz/IlH3YHXt/ueHq5ZrM7VJEisugWBB9RSjLxThkee8/fffuB95ueThe+vL7gydriQ2I7eobR0xrD03XHwmluHvbsDj2qSAuRNursKBnGmWXX1vxzpjk5kVJGW41PhZhlC3C9aFgvHMdpZpqEbaDIGDK6FC47RWcMSlkihclHhgDDXAgpsVh0TLO4q2SDUKvoQTLrCmnw0ZArcDTWFtAYBbKd6+Eqm5EaJV1Ijn2ehNfljGxmnTVMIWGVRKXccinOoRrdPEFQx0k2QCBCWtdJrvx4PFZIdkFlYSz4Ciz288zVk6eQYfIDvrbUTJMIn/bUBKoUIMq9McI7a5zj6mLF3dtvmMcDy/UlWVm8z2e2ojH27BJLKTJNU013VCt3koH5FDUwolexaOQi1k+R9yGSSTRGIp8rZ2i1wJ2/fnXD3/z04/PAE019RRQBaxclMbGjz/z9Nx+462caq7mqzID7ozAXS0q0RvHp9ZLLRcP944Fxlu1h5ywXy1YcXxmskcttqJFWYy1XF0tSlFiltM3K5vsUZZ58oK8HTsmF++2RkjOrzsolw3sOQyRlyEWGlGEWl4GqL+NcICMb2eLTeeBXRVgVsV4aipIoSJgn4jRBFndBTFJYIAwL2cyUXN0mtUjltCFOOdcDTAoVGmfRVQRMqTYFKnGvSdRLmoq1OjknhbnkrMM1jr4/EusmqWtbxr6n72eJHfS9xOLmSQYjdSoLsGQjg0LTNmgsD2/fksINy/6epruk6S7QRtNU2O5wnOUMyMLa49RsSianiC6nJiWJgW6niEJeCKvGMCBCzOgDmymwFOsbd9sD3ft7/tmffUEhs+zaM2h18oFV18jGTmU+7Gb+/vtb+jlwZRUfXXUUpThMEs1fKrhq9dkht5/EHdc4VwfVgq88TW1O7rvKYyqFzhpWi6VwWIzFlgi54JyBAg+bA7lk2sZUR3HB15e30VBS5aEA8xQYZ9nanZmPvsbCqlBTqnOTIttIeWblRTvWGLUqGV0vmtTPfThdYpQ424yWIqB0YiqWXDddEmGob3fZtGn53qd5xhgZTimZkhBHVf1jTBUMhXuWz5Eg6ue4azo0mpwiw7E/8wBzlnO31LOXIg2txhisgkXrmPoDD5uXTMOBJy/+jKxk2yyDuGwPhaWTyDHUAVeGUlKhaA3xR/fVEDIqKPoxEg5SrhJiD2RiOoiTc9EwhcCrmw3//Oc/IcXE65t7Li5WbPtBzsBTfL7A/X7gD69uuN0cuVw4/smXLwil8PL9I5OX31vnLFcrEWAet0emIEzSZWe5ulhglSHEgacXF6yWC24fd1Dgat1xvWwZvWe7PTJ5ifk0xnCx7ujHkTAUYpYiJ3KmaVqGcRSHhtLEOnDFECVKFhRTbd5bdA2NcxyHgZxqQUC9fJS6Sbe2OkGqq0ccn55h6GXICqG+/wpGKZxx5yKEUkWOmBKNa84Dma18o1jj/yFGQNoktdHiyE2psmBkiOzaVt5bMVGSwLpzPRuvri+l1GqeCUG2vIfDnnmaJJ5VnTolC1hZYipV9K1R3zRvmIY7VJi4eLIEa/CzOMGi9zUKWc9rSgX31/ePFnxHyeJuVCh2w0S3FJ7M6AOdsyxacVHkKIuA50awAkop9uPEOHlykXf1k+UKpRWb7eEstlpriRm+/uYN2+NIZw2fPr2g6xoOlfG3aBydkzKSfhy5f9iRiwh6XWMxRr5ncScHMY4jF3hyoSmG5aLl4XFXL5GZkgpdKyPsdtfLz5pEiLOUBYVTq7L8fDfbPSClJ/vDIGK/kndACPEfOdZ/5KGdfg755GCmnNmvfp6IweNnf3aLyBmoyVEuI9aJuOeMFgGx/jP1H64uFGr8NlSeVJFiORTJS8SwdQIw936uIpDYc2LKTLM4QlRdtMgyRhYl1jqailVJIZFL+kfntgDfjdYS09YFVSbCtKHfvmEeep69+BKlXI2jisNakwnzKE5GI5erHCLWyBKFosg5cr878umnn/DDw55+HLm+vCDXuOtjLw3o231dAlSB9NSuDbp+XYrfvbrjZ5++4PrykofNgX4cBOUTIt8/9Pz9Dw8EpeiUIivFYQocS6YxikYXvny2ZmE0728fGWeJNVabmcTH68yjSiGmUqP0tUG3iswxJVIWkHzXLgiVwSeFB9UB2Visgpgi+4ce1zaklLi6WNK2HeOcuHvYME2TPKtKnGTRS/lCrp+7k1nidH5JYiExjyNjFfhOTd455frezDURA4uukcJCI+4ccvoxSqYqe8+Y82fvFAlXlTUqC4eEdU1tmzy1kErsfZ7m6l6V1nYKXD25pj/2SGJKlrJKIZy9JF+nNlJmkYu4c3KWBdspUdM6w9wfefvmW8iBadij0hFdLuTcmEZpL6/lFYpcz+XEh+2OYltaW+89yuIr3611juiz/G6tZtk1lAJDbXM/zJE5FlKpZTG5ILp+YEyFo5fZ+uAT+ynyw92Wj59d8/2bG2Y/8w/fP3IYJy4ax7q1hORZOs1lYzkcDmJmSYWEsDud0Tgj6JiUZf5qGkuqi0xJKRRcI2UfJYsg1zqDyolYS1N8DFx0C6xWzD6xOY6EpKqzFlQuxCRMZWV05TvKwlZXJ3epBolSF6nnIhYkoktKFC3v8lCRE75GwmXhWqOy1Z2dU6rvNBnIVG0900rJgjOfzlopZGqso1TXtiqC2gihing5SQFBnd9kEPzReWesAaVJtQFciiRPSwT5x4Vrpri6vCSMI8qq+t+vmKcRreVunpMXRJcqGFXQKjFPW4b+lhBmiYfGBNrw/Wak7DyfXy95+3Dg//6fv2E7RzSqNpEnOieOx7l+xozWXLSOVeuq41diyccxsjmMJKRp/MQyRykeellaXy0dXXV7H6bIdpyxVvHRsuXSafxw4GbzyIdvZ1mO1N93U58prVR1U6ZqulDnJMI8n36eNTlTix99DGfxPKdAyU2dhTNd15FToZ9GuTNqWb4LQsVy6PecWmdzjDy8/5blxTPs8omUlyhoS+Dh9W+5ffcHFhcv+LO/WVUMwghoXHt55s4aBVnJfdaPAylEgp/FWZczjbM0TpaqWreQwfuRcTzSLq8pSpyjscZ9NVRHa2Dc3eGcZvIz66uPagGdqaKwEjNQSvjZM1V3zUnrKFnaulV1SEppVkSVerDWO7+4C2tLsjKyhM9yDhgjYnauhWqURPJy76yizR/11x8t8L3eT2wxrBrJnPuYidYQ+8zD0PNqM/PJZYN1Ddvjkf/251/wGz8zTJ6YxY2ydHIp0cbyu/db/sN3H/AhcNW1fHTZ0RjNh83E5AON0axbw7PVgtlHbnd7copYpc4P6zxLM6lAGyMhZbrG0djT4R1ZLjpWywXlcSDGQGM1zhoO/UxBoa1m2WoujKoPvCGkzMFnppArc8nSTzOxLk9zCAzVFXBqsdXVbVSqmu2sRmkYBikL8V5iuTF4VM6VYSYuRKNlIDYUohdguDESiYonh0qU2LCtbA0BwiuUqh/COqhqsVGJLdppVK6XZ0o9kMXC27YN4zDQVaFi6AemccR7X+3RuR6cnAfgXFK1OTsBtK+X9OMDD7dv0UbRHx9ZLJ/U2VnaclDSwhqTAIWNdXCyrDZOVPo4Q5Y24awshoRVmT5nEpGLRYcumjEWVDH0IRE0WDTvtgf+unzCerVguzvKi0adhnVRAd5vRv7hh1sGH7ladsSSGSZpwlG50BrFRad5vl4SY+TD/UYuJVqzbGVwniaprrdKs1pYgk8Mc6BxlicXK3mpZmn7kcbLyhdASVtzjefklAix1E2AEvdEKjXLbymqMIyeKSSKEmGibSwgG/1UhZpSIyTUi6+qUXVjNWH0qCL2+lJja7LRlU3bqcnJ+0BBxIoYxbJvjViTT0UYIraoyt6TkgVp7JQ68qZpzxZr6hZK1ziPVhKPmsYRax3r9YW0404T/bEnZRmIZIDmHJXMCrQT0HijGlbLJdYo5ulAKYH7+x2u+ZoXn/wVul2xaFqUQhwcpVr2S3VnIe6xmCSylJM497SBkDJ9TDQps3AGn4rE0EJg3TYM3nMMkc4aQiq8uXvkTz57zpPLJVZZbh53aKNpjTiOfEp8/X7LH253pJh40jguF5YpJHofMSVzYTTXK8scIofjzClaYbTAWcmRrm0FiEyhsRLb9rFQyKyXLZfrJZerlsNRYpytk89bPwWOlbWxWjQo1I8NVkWGpnEUcTZGuXilIoOG00bcTjGdL8AnZ+8JBJxCLT04RSI0UFliSpXz+ZdiZSFWlwxFIkelLlhyFf9OS5ETbL6xRi4vlVOUKifMKBFeVD37bC2SaduGofItplmEnFyyND+miDMNOcuFep7Gc5yjlOooy/ns1jNaQM+qbtxznDhub3l8PLJaFxbrp9jmqbiNkzgmGqNJOZCT/OfkPARVYxjigDxd4t7sR1K/ETyCzqzblqTq57IUILI7Dlhnef+441/or84/+5ILu37ik+sr1guJVX334ZFff/8OP3s+e7bmxZNr7nc9Hx73mGJoG816IVHvcQ5M8wAFmsaw6BpW3YJxmpmy56MnVzjbcPe4JefETz5+wrprOPYDj5uDtHpT6JRm1TaM41T/HlgrC5nZS2RZKaQt8iyciWMhpsrModA0lvVqyX5/kN+p0TKQOSvcFKqD22p0AddUNpv3VTiL1QFagfD1gh68/CylkEABEmGMMZyd+cJ9KefouNZyiZDPcEJVnIS43Bs08gwejiIqOufqciSzXC5Zr5b0xyPeTwzDKN9/deaf/sz6MEkcxBq0sQKDVhlrFMOU2O56MBOmecLKfYxRGm0Vcp+X2JLwIDMxpOpySMJWqp8xrWsMv5Z5LWsMsZ89pjrQoZCUYvYRDVwvlyIW9z1zTLx4/pRhmHjYHit30LBsWwKa3333lm0/4ozi6mKJUZrNbl/LgDRaOeaUebjfMQ4jWhXayuuksnpjKoSQzzGfFFP9PMpF8HDouVwt2R56Usl0rqkXqNOig3MMe/JeFgzG1PgQNI1jDpH7h10tQwkSNaoOulh/jo1zzHM4L7p0jfmVIuLVPI3kmIjR19ntFF+Si6wxwnUqUBsJZbiX1mZpC6W+X511dK2082lKBXPLxUZg+hK1TsETk/BgBfOhmWdPLnK2NNbQtlKO5upyo9RzK0YRtsWccrpwKMx5ZqsXvjiz3b7j7v4NOXrC/gfWi452+RGmMkiNBqsQnqGWf1/K8g7JSZzb1Et/Kom7w8g3t4+slgveH3pBZWQwqnDVNVxZxWrZMc+BpvLEUiq8348cQsTHTDKWu92R68USoxtefwikELk/zvzPv79hiKkuYBQ6Q0Hm57UufP5sjSqZt7ebunCPjFOkMxaMFJydoteucay6BqNE7Dj0Q71wywy9XCxoGydu4wK5qNp4Kov7OUQOk4juy65Da8Xzp88Zp8Dtw17aSVPEKGHnzvMsC47zeVDfrcqe34XWWMZxZJ5mjvudRL1r5PvUECkuHZndRLhLNa0gZ1YphdZaKZkxWhh9WtpRjRYOadd1xJyYhlFQFs6gdKmLN7FipRyZsswJMt9VjpZS+EkimyVLGmSaJlzbyvxoDCXBsu2wRjOHIEw3Y3CVvU3JxDQRc8CZAiqjSdy8/5YvfrpmHpFzrRoXnDHkXF2zMZ4v7rnAnBOETGcMFCWR5XrmqyTFJsqI008c5QZpUweTk7iTtKZRIhBNdRnTGc0hF/7w7oH/898+R6nC3WHk/eORZWNZN4ZOFzpr0SWz2W0pIaOQr7fVVky29YxyzqEVLLvmjBfQRmKR60XHumvo51M7uZxB+8HjfcRpxbprGVMizdKQ7KtwrzHi/DuXZSiMre8eJQsgXSryRFQbYj0XCuKKb5yRtE6Kcu+rDkRVCjHMUiBXhKErjHFTHfHCTCfnyj6jLhVk2SdijbTBdk2DrhqGyvJniAtVlqKnmLyqZ4rWYs4QjIEsfrQovcJ5rzJVrsmqjJRpNsZK3NVqVJG5NfqBkgKqaExJNPrEpwz4LPdxP00cDwPjPFVRVMrcDseJF08v+eL5Bf/qd2+42Y2yPC4JB1w0DqfgOHtKEZHFNRoDHIaREJPM8Urjo4jbunEsrUK3DbEohjmQTqVdOeHSxMOjYpfguulYKMj7DRvvKTmiM+Qc6nv1hMOQWdbXlI6qMxZA1vn8HhA3HhU50DBXd2CsxZAPH77n6tmnmPW1cN6Dr442ReIUpZ3q/SESxh0oWFx9wtgfuXn9W1aXT/noJ/8U112ijGb/eMP2/nvG/T0hBu5e/Yb9YcdiuSaXwovP/gpUkbKLNOLHEa0dfh4JtewsaFk2ldBLYcp8IOWOMcjPZJoHnOvI2NoLIeeAtYY5eEoK3L/7LSV6acQeHrj66M8Ev5MLrlvhq7M5+IAuWdzLCMqAGOu7WAxbuboMSnWsniwkKQvb3ZgGrR2uLv1UTpQsbF5dxe2Uc2Xv5f/VGtz/r7/+aIFvioVDKSSVaFThZ1dLPlo1hAL9lNjPiVc7z4XT7HqBLP70sxd8++aW4RT/6Ro6rfnFD7f83bcfQCk+uV7xbNmy60fmUKBErhctH122tYHoIE2gRcDxtg5JPniWXcvTyzXOaK6uLsV1szsyzIXL9VIuTUVilConrhYymEuzqKaxcNkaLhuBmh5DJhZDRCHljfJCPfYz0zTTLTpK0fSjRHlLVexTqjXYpdA4uXwu5LZHTLK1K0kaPHV9MZZ6yFqtWLTuv4A5isW5btmqwmsUdF2Hrl9/ypm2aeXC0TpSDPhZNm62EdYAhepC07RObKWxnFwEIt6kGBmHI8fDsarQMkycWqxQnLkYSitWiw5nLMYoSo7s796x29ygDTx98QnJLVCmO8e0jNE16iS18ZRSt+NRMur1cpzDWCMbDZsxokk86SxjgiHBlVakuplYN5a5JEYfyKZwmGaeVcdoSFkaIS/WaFP4sJv5u+/f44w0UI7zLDbaXMgkllbzdN3QGNjsdgJLV9C1jovlQiq5Z+EYXq06Jh/xEQ79hNKay1VHqb//0yWywUjMQyl2VUg2BnSBkiKx5LqRl8PBGmgbaV2a/IlbdNp2yqObcjpHYE+DYkgi3px4JdYqdI1Ux+BJsVre60B5iniD2PBjEov/yc0iEUcRY4X3Yc6RbPlslrODQYYRKwPLLI6abtnRdtLmqBTyfwdpEnZOSgLC7KWxdBani8TQZSOtzUloEebN5cVSonbeQwls79/yeP+aRdcwjQfm8chifU0KMgSSJYZ8GqCFDyIig0aagn08XVIKVEx1a620nykpSFhazbJRLKxlCIF+9nSuwXvP129u+G//6s/44f0tIQmbpV0L9P23bx/5+maLRXHZWJTK7Gsrt1aJi1azahy7fhRugxFoa8kFXSMUl+sl5mz5F1n2OEgk/OPnVzIkKOiPI9McWHQi9uz6iX4UwbB1lhAzOQTatgUkNu1jrlB4YXlW7Q2gsjdKFQPFzSSfAxEyBEZfuXeqCvZRHAA5V3dwkdZGVUU5py0axRykIZsiLsTTIuIc5eTU4qzOYpdCBN+Tq9doXbeMEdM4irOM0yQNainSuQ5SZNl1LLqW4RigJHyU4oFTk59cnGpDdSlnlpmqbsmSMxhFv93w+PCWlAoxR+ZxS7eUsoqFcnSNE4dLClVoEe6SiIe1pKN+Dr2XxsCQCwc/c9lZ1s4S/YzSlq5tKEoE14yltYaHY89vX93w5YsrXHPkMIwsXCNDrtX89ocbfvvDe3LKXC5bUIbfvfpASpnWGFYLy3rZgipsDz0hyO+ua0VY8yGw7we61vHZJ08Yxpnbxx0lR148vaJzju1e/lyqs2m5aGicpR8HShGYf+PkPZKzCBZzSfL8a8FjLLqWYZiqM0biDUqJuDUMwr48OZuM1mQfpEnNGNqmY1GjfcfjkXEYkEKTcI6HySVfPmPCdsnngVUbDUWdo5IF4cctu04Gxyr0GWtEYHauYixkEaPrZ06A7SIeV7s5KSQa19K0DbvdlvHYi1PRC1ojhBNbS75GXZ2F1jqW65WA0htLiQM5zMyjlDqJhX0i+RHlCih7FqmV0hSEwSuxTInmiktQzuWYZOttrGY7TIxBUgmr1smyNSUoGn/wjJV7mJWConj4sOWjpw989eKa7f5I27bEKJenq/WS//Sb79kdR1prWHUN0xwYhlH4X40UDIw+sK8/i1NTdEoRpy3rTrbYy0VD8J6sIPog0eoYidmx3+7puo7jKMvhpnHVGS0u/7ZrscbQD0MV0uRCk73MLqvVAu8D0+jPYG1d2V9WLJCkWhJhtbCJQww16qdQ9WftU2AaRxEkamFAjvnMkXXOiVsTcfCpGkkNNZXhjCFlMFpmJWsNMVZGoNbSaFvnq5IzmXyOGSulzqUt8p6PdE1XmyY11M88SATNJy9M4+DlfDAWlcWRbazEcZdtS6zR2lw8/rjj8f4DORaUMhwPdyyXT4RRpTQpSZurNEyK40A+O4kUZrS2dQlcyKbhl69v6UthPgw86SzX65arxRKnC05p9iHx+jCxnzwqTTgKq9bSp0IfJQL6+vHIv/7NS/5v//0/YZo9n378gg+3D/wvf3jP4yBz7LqxrI282xdW8WLZcLmwbHcHhsmf3XDOaBaNZWGFsWgVWDK2dVxfLJknTyiFYZyIKdfW9sLVxQUxCy+15AKas/t0nDz7XpjSxjmuLqQ5dZo9N3cb+nFGa0HIeC/n2TgMIoicFuYlVZ6oRFWEN5iYJ09/PJ7xPebsJpXzL9XW19ViIWdczqCM/PucwSeJ2raNlEycbp5+nuXdp084CjEotE5KW1ISV3asXF9dncloYSU7I4u/U5v9PMn5HmOUs44i/NNS6p/vcNbQNQ2ucYK8KOIcRMt8muYRPx7ke42FZDLFBY6HOy6eSHzz5EBKKVJSQBtxoTqtpfirCI/S1jk05iIuuCpvrDppubfOMOfMzW5kCImION4WWhNyqa3YEGqEfdEo5lRocuZx3/P6/pEpRt7cbUHDZeu4aDTkyNCP+ElEzK62Uccss7kyp4Wh3LeUUQyjrxxFjbFSrtQ1UljSGnkfTN7zsDuQYhI2btsy+0jvw3nBqmRjKvOZMuSYQWca49jevmL7cMvzz/+cAhy3t7SLNVZfAVqaTwvnYjyrIMWZeRLeb6nPOAB5JnpAu2rUkN+zlAgI8kBmRFmiWaXIBEqo/71rQMnf10ruGDnLHJbqPTiEGWsdWZQZQetVx3vnWmJlLOYiz481IprEOjuK+0kWJoLOiKiSMAizModyfsZKEmSPkZZItC4olVBW0bSWUhwxeqyxIky2mc+er7jbHni9keIFBXSNwSYp39nOmZDreawVo0/E+ShRek4mB4VSicPDIx9/8SWXy5bZJ2HXTZFUEj7MTLsN7vEbxtHTfvY36FXHGCW5Z4ogvHRRNNbQtU5E0hAJseDnEyPb1EVfXc5X8VQSNzLvex/rEh6SkhnfTz3377+n61raxYqiDHN1mpYC3k9kr2psNTPNI9P+DdM8YdsV4+6WfvfAdNywvnjK1ccrGmN53L7n8HjHNI2YVNjcvmYcdxwfNa5b8OL559X8s2Lz+BarLbpZidhcitwhSkFlz9jfokmkOBHqMkbi5CPOtLjlE6xboIw0B6uicNqQ8owhcRgOtF3H3bvvaRdXONewnXuunv+UrNvTR4mSBMmUY002kVEYYUMXcbdmJJkk73lxyLaNnKlt06F0wehCSV7cuHGqwrS43sVBGeuy+Y8X+f5oga8oBP6vFbrIpmfhNCtt+Xyt2E6erzcT91PiehbX0PV6xYsnl7x8e0sIistVx9fvN/zHb97RNoZ/+uXH6FJ4+7Bj9JmF1XxyteKyc+z2PbvDUTYyWQYrp4EcWHUWZ6UxNgvwrj5MlRGVC8M48/T6gqurJcc+YLVccpUSJsP10mGRuOz9pOphX6OBRnO5blHa8P7DQ7VXizVsGId6yVU153+KPAqgNidpVRt6RUHYFCnJL/IU+aAKg20rLbPzLGUWUiUv5RSlZNq2IXnZeLqm2raTvDCEHVRBvTHWMgKNcVrijEUOymGo/D4WKJT8u4w0YuYoVu55mvGzr1XnEa2MlIagaimHvPgX3ZLVaknfHyscuEAeidGzdC03r//AJ1+tWV5+9I82MAmtm1prLpeyqd9V1kMVeZKnpJkUZpSGpVNcLC0Lo9nNiU3vUU4x+Bq/ixEHBBL7Y+Tt44F//rNPeHP7IEwe1zDMnmMo/PuXH0Q80BIr72oZSWcVl8sGqwpxmupFswhUN0XJ4detSClgjYgBYZiZKvdt2Ta0TY3FJHFVtM5WB1wmFUW3bFkvOoL3DMMIOZ3dfihpoSzGsDlOzKEy/epFuBThnxSqS0+djCoCztbVHuzk3UKISUSPFOUlXQUZeYDFQUEVEqitr6VGqRXCjSwpoYq0/+WUCXVr/uOmTcSfxtnqjJo4TZMxSBvcPE2QYbFcsVwsOGwfq6iuCDV+rlQ5Mx/appGLEtIy1jSW1WLJOB7EUVOkkVQj7pO+P3I4HugW77m8ekbWShoEEft0yRmly3mTL4LLiecmwo/SWpgMSYTi4yQg1pzBT5FdEIdkawXmG6Jsbd7f79gdexpruFw4GdZ04s39ge9uN7Ra0VQbd1QKnaWpd91JPGh7PKKKSIuCuZDYYWM1y66TmFWMJITv4UOicUbg2CWz72dSzKyXHUXBOCeO/SDb9lovX0gsu4ZoBAw7TZ55DsS6ebI1okN9Pgu1XU9riUVqfXZLy0Aqw7vRkFPAR4EQlyznn6IC44tcpiX+LeeUr3GPXGqDYBHx5hTFOLWcyqUlVSEG0JpceZ1y4Y3SEKxqyKBu2402KCd/plFatnbjQKqXqhMa4VSqgBLXdtu2HA9HuRBpeZcoJcOr9zPaOsYpslgtCPPM9vGGJ89/ChV0rapTVJ1guyCX37qdBlVdeQWqu3HwkVBMPRsdF6sFOQlfbxxl6RTr59cZw+/f3PLFR89JKYugpgyhKH73/Qd+8/IduYBTiuMwsx/EVXW9lEKEOSb2x/5c0iJOHnnm+2HGGcWzJxesFx3T7Ll92IHWPFktaKxmsz/QH4Uvl3Oma+WdcTgcsc5htRQipSx4DO/D+T0phSWJHBWHQy8tclrjtJXfb1FMozAby8lzoU4tZVla3lA0RjH7mb4/SiFKPacouTb4KlIszEEaJLXWtVmUyjpxTNOIrs7iYZrkTMg/nqmlZJbtknEcz7wy+VpkljiHJ3I5x6Mb5+i9J4QJPw8Vai7v7xADpzxtUQprHa21UmrhZ1wtvFp2LZYiDDq/57jfoSxAZr+5wbmlvDOL8IIk1pdqM6zF+6kO7bXUQSnmHAVHEiZCzHRtByhKyoQMJmRGHxhCOi8nFYoQEmjFzif+7tsPXK5XfPHpp7x+817aaI3hV1+/493DVlizVviyAK0xLJ0IT8M4M/pZFp26fm1Z0xjNk6slF8uuuoZhe5woBVatcIDmWJj2gzi5x4nDMCKNtrJ4WHYtIA75oxf+XanRrBgSqWSscYzjJGJFRVtIjEb4jMEnOfOjzDNzPQslyhoJMVVecqj/iZwa5OWZlk+rtPzJJTflLFFCisyjSdyB0tx5KsdQTKMIvycAvDHSxB28J9bLyI8NlKXGfsShf+LhthVCnstJ2BRn9GmutPVdZbTGNcK+NEbXZvXENA2UHPB+YBh3qFzQqrDsDDmO9Idbrp5+Skqhij2y1BWwuIjc4j4UF4/SDaUUfrh54GK55udPL7nqGpbWMPmAz3B7nNnOgZvjTJ8zpWgaYKkKkcQYMr7InzOVzK9e3/Mvf77D5cg0e76+3fPt3QFnNB+tl1xYaYx1jWbhYJpHjkd5FzljaFsnriIUKURM2zLNA6oULtaXNcWSOQwzUwhUZQFtFBfrNdP0o1tSK+ha4eJtDgMKhbL2nHLY7mQ+EQxPQSkHGfp54FQWFfxc3Rq6uj7NGUmTqiPNR19n8LnOwwFV+Z9tK624rbW0i04cgFku6M41+CTOXNM4aUJWwk801ZmTYqBtm1p8Ie9va3Qt7RO3vs9J3LF10dp17TmWT12KxehxrpHP2ymJpMAgDcy2kYVO2zSQ5L1ociZGOSdKCoxDkCU0keiPNE5hjcxl0zgQ5x6dPbZZCctagwzKglpQ1lUeX6rijiKh6E/4h1w1c6W4O84Uo3Bq5hASvi5S5YptORAJVQftlGLhNM8XikOIzDHxbLlEx8jf//ZbjtPMsmm5aA1LC2EOHA4yxxnEqZeKOKbLyelTZ0ajT4Vfp+iezOp3t7c8efE5JUbBpaTI4+aAj74Wuhh88Oz20nKfiJQwo0xLToGH93/g6voFdvUMsswjhci7737B3O9YX77AuIa717+mW6757E/+BUYtMNS7jErEopiGo7hpK8dRIoSS7Dnu78gpcXH1EaVk5hJom7W0mFbnuCwE5IywOjEOB0KYOebA1bMvce0FOU0UMskHcZuqU4FV+fF9Xs9yrRRJbHLkFGXpluQ+ZI1Cq1z5b/n8+YQs53VJ+OTFLRW9nP1Z1ZbydGa7hSACY2Nh0SwYqrMzRInE+iqkLrOnNfCrdztCDMQcBZsVZnyKxOnUUq6xaGZkpo4lYeJBOPymq0ssz/bb/0CrC/snn5ExYvLwHjUfUeOO8e0vSP7IYbfFuQXFfgVJoYzcl7S1NFbTaOG2SgrmHzXUIu+UXGpBHaayh0FbJfxBcyorEWyO9z3WLhgPG8Kw4/bd91w++YSYxMBC0QxjjwHmMIICZxoODy+5e/MbXLdE25b7D6/JORDnmcP9a65ffEXygc39W5RKlanuOR7vSWFm9p7WL9i8/wNTGDm6lvF4T9teMPue9vIn2MUzEWyVQuVAnA6EaVuL7WRZGrPgSZLf03QLDJZSPPPxJbk4utXHbG9/zzwdUST63RZjLbu7V5JCiyPatKyffkGKdXGaA7lochhQylBKxNoWpSReLgKgAm1JxVOQpd8JF2R0ESzWKWFBQYqphAEtZgBFybrqVucp87/6rz9a4HsMkU1OmDSzahxuH9gdZqZUaJzmrz9a82LhuB0jL+8H/uH1Hf/7n3/G1WrB5x8/Z/aetw97/u7rN1gyf/PZR0Q/8/Zuh1aay0Zz0RjmceL7hw2qXnJOoE2QzcWiEbu9j+JWmXzkYr3koxfP+O7VO9rGsWwsqooRx37m9n6HnydODW6N0fhppE8iwmQ4XwCXrcM4aaW7ud8IRNPKxm2aRnlgnGwuKKdacn22y6eQiWHmMA6UkvHTqYWqQr6RmIiUfwThYflEQS4t4ujS/yhDrmgbEaWmcebExbL6tLGoluJUWCxly5ty5HDsa2RG0zYdjZMSgpik5Uc5YeCctoulgLMNJLHwKtPinGzjDocDbdtwcbHCOcvYy8UoxZmxP2A0DLWIYHf/LYvlBa65qLFA2bqokvFhlnrzOIvjqlqdfXXxaRIqB9ZG8XzVMHuxvccCczpdcmA/RS4bI3GeMPPdzSN/+2c/4fnlFfe7HT5EQoG/+/6OKWZWrsEUuFxYCBnnEuuuxYeZsW7MrZGBeq6i7aGfmUyoFnZF1zU87HqGSVrWpM3PnDkTuYKZp0ks19ZZnlyusFqz3fek4NGVOxaqQNs2mkWn2Q+JfkrkautPOaOyNGnJKCjDZsnChSqlgC4YpCyhJM8corQex5NjTNX/n8TYS3VOhiBOh1gPmVzFRKfkwJ9TrLEh4QApoRxjnSEFEUCtlbhHLvJ9oODEqHHO1QIKuQTt+wPj0AuTQNemUmXompbi3I9Db2VMyddeiHMP0RP9LM8Dnoe7D2fnjqEQw4H++Ig2ql64So2rlPNlvdSIAtjzpSVXJ2JWMMXE3X4k5EwXA09bh7RsFzIRsji9IorOydf62x/e8T/8zc95/uSC129vSDnx6m5Low22iIOocRaTIled5bMXF3y42+BjrpwS+XlpJKK2aC3rRSuQ/JKlfa8fyUVs+NoY9v1EPylWlSvjY+Hm8SAR3FS4WBieXK8Z+5FxDOx94HjsidWJfNrymtpuSXXyoiTGY6soCdSSlFRbcOtWNce6LZSIh4Cf8xkZIM+QOUcvUh0aARH34Bwzknh5FCi9EeHQxyQw9kYiIY1z+BDOZ798nRpF/JGNUQtqJHoTyTniZ1mwhFncNSmJQH36bMqAIlzC5XJJ17aoUuqGWLaTjswUI+v1E4bDBpQUMJQkLhJjbI0Py/lUSpL/UIfNypPLtQyEGkt+33uStiRV2AwTK6VYGCkFsIBbLJhSYIwVieATv3/9no+uLrl/3DKHyHcfNvzyu3eyfQdS5UyuGsuT9YLWavp+rNBkcWQarVm0zVnU6dqGZ08uoCR2h57dvifnxLPrS64uFhz6nv440jbS+DeMI6AI84RzFmPk37ffHxnn6risFxenxVUSszg7YgZrFW118E5eWkqpwvJpqCeXGqUSsHhKif1OnL4hVAe8KoINqKD7UFvY5IISsU2DVggvKhdC9Kh6rocaBzLWcmLTdLWBWSJvNb7nLK6Ke9SLvjKVaaXE7RXmmWkU51qq5780BTqUkhIK1zm01nSLTja2KEqSC4ohoxAnjJ969tv3SCGVPFvDsKPbvsE5hW0/IaQAZBRSSKK0IvpQ31lB+FRF5iRTRfnt4FFtc463Dd7jqju6a+SMlvZFRQBUykw583Z/5D99947/6z//M3765ec87vb87vv3vPpwz3LR1ZbQiVwUC2e5XMi2enfsJRKmKtOpphlaKw3MjXNsDwPjHIhJ8AhOg3WG4yRsO2uMLLCSRK+NlsWDtbIA6IdR9JgqqMcoz2XOGWUEbB1z4hScKSe2UM74HGrT7I+LqlIySWlyCqQoUd9UW7FPHNJT1EmYPdRobThHdmQpInFUiRTqysQTIWeu80WpS/GzIGts/Yyelg+mnpdK5jMFpmnOWBOlpOijqQtK+b4kXaG1wlopGXLOVfd+QOssDoYURFzIkZQDjRJxyRrNPAeMtWw2W5RecPXkI5w2+JoS0PE06wViEmdirqJn6xSQ+asvPmK1XBNz5uAj3+9GPuxHhjkyBykQSUXSHE5DW/Eqc8xMqRC0whZ53nzO/P71LX/12TP+4eUNv3y7o2sdP312jS2e/XHE6QIpcvASFV45S7eQheTsazQZEen3x0EWHAV2x5Fl53jcHuh7cZ9ZI02RrpF2chBBXbhJWmK6WbAN5MQwT2AMORVpvc6Jw8NrUJrl1afMwZOjvCdiSmfBV6lS348i8IbKKx7HuaJKUi1Bi+JSIyMp3ETbNayXS/pa2pNLZrFYivDhLJ1zaF2EER1+bDFVlLrUlHemD57k0vndr2v6yFiDsRaK4sRZmyp/rbGmCoqhPlNiKChZuHxtxaNIOiShsiztT07UE0dQKYlnzlMgTAc2mxv2h1H+f0nRWss0HNjef8/1i59XLq9GLIdy6VZFkkXRqOrAhRzkLCmIC6+gMEWDTuL0yxCMRidFUplGSfHeEGfS7o6nLz5hSoWVa1lZxRRh2RiaFNjNIzElrlvHk06W8bvtkRAyKtdCDmOIPjAT6pgijExxgNeSOV+XgFpY78fdHe++/QVaWxbOMI4zMWeWzlWO4ISULHkoch74ccuwu2P97HPGw4a7l79kvH7GZ3/236FMiyJy+/Yl/e6B4fDAYfOGi6uPGPd3+P6BF5/8jO5JAyYzHR45hpnF6lrEcivvvBwkel2yJ8aZMO6JwdeCNxj6DYvVU7rFBTnMuG4tDmVdmL0nhYlxf0OJXhYutqNbTOQ0Y7SULp3E7vKPl77IXKpVTa9lcd2Zyhi0VkSrkzHVVMb2afFSSpJzW89ScFLij66o/OPcKfN/TVaUxDQc2R9ucM7R2oboEmnyFTEkHLqbhy2D9+gYUFj8HNi/+i2r6ydED6t1h7INg+k4cfytP+Bvf4dxC+zTn6BTJh5uKMf3hO1bltYwjhMsrlHHB/zN74iHB/zhDpqWPO04vvslV1dPUK6FXOjHDev1CyYFsZZ2iEAq2AuF/BxTSBiV2G/uuLh8QtMuxSHn5V43DweMazCmJWfPcXPD+vJjpsM9OfT023fE/oFpOrC+fEHKGj/tMQVCf0eIM6v1R2xvv2c8boVPGwv7h3sR80um390wPL5m6PfEcSB4eTZyyvT7fS0hCfip8Hj3PYfjDqsti0VD8iOH/QPr2fPkizXKdFgtTeElz/ipJ9YFVNQaKYiPTIcHDIFoOpQyzPtb5vlIng7kaSOx/iz8bJ8DenvHcrEQE8+8o6QX5JBRZa6c5pZpfMQaJyVHy2uUNsQwk/xIMQ0mizvatpc10SLvdUOklEBJHpAzS9UCvqLk/nc2M+Qqcv+Rf/3RAt9I4u0w0qD5QmW+fNHx1fUVr7cTv32c+M2D5/lKc9Vovt/P/M9f3/Hl8yu6Gq8KKfPvfv+Ww3Hk+fUFb++39P0g4ERtSHPmtkY7Wi2xOdlgKk48uMVyQecMu2EmpIKl0DjHs+sLbu7umWNitepo6gXgMEyMtRlMFQTUXPlrPspArMgybFqJk2mjOQwzx8OOUETRXbYdx2EkRgFVChdPY5whBg9IhFKiQEnssimfHUTWCPfPOStxFAopShRJXIAC9myMghTQGoFmiqGTeZxqbE2Em65xZwDpYtmJ1T0n+ftZYr0SNTN0XVcv1LkOxekczUspga5Ae21pXYMzsqHUVpwGWhVy1+KcIcwjySuMFmFn9/gKYzJt13I8HpmnwDxsSXESsVBbSJqSg3DkSmA87CoToUagqsIttnw5xB/nyO2HI32U38voA21nySEyJdmMD0nRFogZPuwHfvPDB/7mq89o3hs+bA98/WHDFDxPupalU6joiVPhopHv63AUAaXUYT+GUr8ORdPU1jEtrXrjHLi531HQtI1hVctQQH6OSmlmLxEWYyyLrmGx6JjnxIfdThpsS0alyFxFz6515AKbY+I4i6tk1VoZ+Ivw9HLdsBclh6Ow8CQK56xCp0iYZqbkibOnRH92BpBlcyMHSnUTKQGkpijDn3W2NqdKhDXWl2ZEhENrjAgiNVKSSqExCu+lLS4V2b7qup3WSpGDRD2MhvF4FIFFCcdPaYVWBlehuzklyJFCZWJF4Taemld1SbLdKIHt/RuMjgTfV/eX4uH+jsurT1h2Da5dyvel6oUknZiD5cwTRJXKYBHgsHUNr48zhxz5ydWSz9eduCCrEOhDZEgZn6RQQanChXMcxsCffXHg+dWSmDOPh5nj5DEpEnOFtMfI0mnWS8f7m0fm2lxlivDEToK/M5r1aoEqCWUsm8PIMAWKlliQczJ8z4OIbnQNU0jc7x/xldO06izrRcfD/T39EMhJUUogxHjmPChVUOXHYh79Y4pHqt5LObe1nQQXzg2Rpw1prnHAUt17sg0/MRpDdUjHWiiQknCzUJxb5HKNw0rZivA4c71In9xfWmkMEr/x6cRZk8F8uVrVKIepgrdsJnNOpCyx4VQjldZKy2vTNPhpZrFcVAFZ2HkSdy7y8k9JItMojvsDD7ev6Y93hBCxFlLw7O5fc/X8K4rW9eeX6597ujTJcyXcRxE5cnVvK5PZxMRkC8Nu5topLtZONtIkpmL44W5bnxGISuMyfPN+w+fPn9G4kd57/vDDjTgAlbiSG1VYNpZV1zBOE4e6rNFKY5Sw7mxlRApPzbFcWA6HI/34IxdEG8jZc/OhJyLRHUrhcOyJWTbsi66R4pNpZn/oZeNZMQ/WiIN9SpMM8jFgjKuFTJYwexInuLw4k4CKqpCogyycPLkk0iwb9VyLWozR59hvDIGQhNNHFUyMoTqxRDwuKZ25adM815KBE9fPnOOFGoklnZ7FtnEYBTEF5tmz6JYVhi7RzpMjJ8UEVgY1C+d2cWucOERrk68S8ry4wE+ClVaQIiGOBJ/Y7g9sHt5TiqKUSIme4+5WLu/NmhPX8QQ0L3WmoGRMLVZQWvACKSewDb94PDJqaXfvKKwtPF22LEvBjzO+FPYhS1O20iwoTNoQYuY3bx746umav/3Tz+lvAi/f34m7IwYprECWkI01UjbmZ0pRGMCoTGONQPVjFuaf0hyHXZ1LkIijAmUqzkXVIiGFtBmTxemjFWEOeC+XtJCiCG0UKRgpuUKsG0yjz03MMfiz8wglUaUYwlns1Uo4r0VBKtLUF6MUppWUUUqEFq2NLDq0sCD9PKFqZJrqQomVD2U15xgZJVISRHUqmJESjpLLuU0ylxMMvMLytZx9pr6nShbecgmZFAKuOc1jCqsUxgmjubG24inECW61kmREDOLWLzKz5hTI0ZP8kc3De6wWpIKzmjjPtRCssLl/w5MnH4t4qAU1EGtxjMoV20Kuy8KAXcBm3/Ob9wcGbXnoZ0JRWDIqQ6Mzzxea1ihaC61RhKTYjJ59FPnUFDBFNgRLJ66Mw+h5txlwKvN8YTF+YDeMsowJga4xLBuLq5G+YZzOl15TxdicM1NKtfBLWpJnL2kVkPjyomswRjHMMxWAAiiaRlirIjREjruNNKn7CWU7vJ8FheEHbr7/T2jb8OIrCxjmYS/vnW4tjjLAavnM+xiI3kMVtGOYKPVnabQi+Z62bZmmnuXFU6AWY+UTUxjMyclGlnM6Dkx+IhRxYC0XS4SbRkWsyGyrToZyFNTlf6HQtp3MZW0jRWdJlnsxBuYoCxYoRC/85cY5OtfQdi2NtXImpkDKQc7jfHJC6/NCVSLugRQHVPHVoKAIUUFWDONMTFtco/H+iLULVM61TbeWSATPXAoxQdE1wRTFpKHSTCERlJMZK02o/S188ufntMqsNCWB14l53GNf/h1t+7eE5ilWdQxDotUaP88c4kyrNM8XHctGM82TfMaSxCRzFt51yvmcfCk13VZyoWkMq2XDPM4ohIlakifkwPHxA6F/4PHme2y3JIfEetEgJXETIXlI0hyqKWzuXzMedzir2b2fub/5jsP2jhwnnn76SLu8wg8bPrz+JdOwJ8TA9vY7dJ4JfmRKnvvXv6V1DfM0sL3/geN+wydf/DmuWxPrHClnY6akwLB/ZJ56tFKMh0e00vT7B3HGZWHwCVtVxOowj8R5JMw9wc9orTls3hHnXsws2pEbh9IS29XIstHnWF3Bwi1M1cmXs6AAcoq0zlSsS0FYZ7rGJ8s5JZHiJJxzpSDHijJxaGOIXlIXISZ0I3Oj1vLubm3L48MbYp6wRtAtq64hx4mXL79n9dOWnAvez2xTZvYB+/ADebwFtSLvBoq22M//Odo6TE6k++8Y3/9G0kmhB3PBtHlFHB65+fo/8GkYON6/ZfnJXxKP9xxf/1qW+9ETsq/oq9c8efY1i/UlD9s74rzDfPSnhKK4ePqFoDuKBEgVtdSpOljD1HPcvCWHgcunHws+QmtiiGzef8Pq4orl5SekMDDub+maBdPxA2EaiOOB+1e/IcYBUyI5W1LsCcFzePgB7wfi1Y5+d0eMXpIuh915cZVzZjxuuX31SzaPdzjT1Dh9wTWt3Os0kCRefDwe6PvhXMYYwpEQIof9LU/CHmsbKJky74jzUWa6ikFRFTsmbbsD02EmZbmzT8MBVRLHzSsphs0Ra0pdAAvSLHgjPQDDkXH/gLEN0YujtdiO+XBDdh2hlmYY62pEuaBKwo+PUCJKGbRdSOQ5R/n+smgcJSdS9CLGFjlvY51T5QKmidH/Ecqc/PVHC3wxpjM0+L//+CnPlob3+z3HqBiV4Yex8GYOrEzEGMddP/Gvvn7H/+WffMnoD7x8t+HYj6ybhn53oCRpMlI+MlG/wSogmBqpQYEqFY5bkBid6/CnCIYVZffmYY8PEX2+RAq7bxwEaKwpVVCIHHrhWYWcUKmCSLXG2UJOcPdwJJ1EgeqS6vuBkkQptkqaROXlktCIu2WeZmL0NdYYBK6oNF1jJVeuFD7OhBCri0aa3VJMFZKZqnAjDosUfHUhJblkugZrxFHXNg2hAm5BmETTLFyUFKLUojs53CinhkFRsMU+XtA1yqG1OCJO22eFkQ8tScowKHSuCjwp0RhD0TDHmQ/vvibOPcM4oxBw9jgeOW5e03YXrJ5+JQu4MJMo5DCRk4ciW9ZGK6bKpSkl14174TgHEpltzMShxzWOdvKsG4MqAhIe50B2Whohi+a3rz7wT776jOVywc3LDxxGz1VjKNEzhsLCKhqjCSHTD74yQ2QAOsGFjdYYI4OuqvGU4zAxedlALhrNatHSVMeE9zPLbsF+39fYnaFpHEYb7h/28hkupdqMCymKWNc4yzQHYipMqZDRtK6T4TMEsQ7Xls9EorUG5zSt0TWeE9BF4eeJeZ4qnzKBKfVwqduBousWTFXOQ4LqOJL40smmPdcIia7OqFyHUnWuTffBQ5YLVEqJojXONYS5x3th9ZSoiDnIRaCUGmEoKGuEa1FFUSlX8ahcoFRRSUvcCKegJGm7TQmtCylM7DZ37LePGF0IXsTXkjN3Ny/RRC6ffCHik5Ktd8oFe2LLlAwkuQCnGa1aCsKkCDHx0cUKpw2/ujtITL8CoymFrIQbR0roXBimzNXC8uvv3vFP/+Rz3t0feX2/kYbsEM5Q1dZZconcbWZMdQS0RgvzRQkKINY21nHypJQ4Dgc8lV9nNBfrJa3TXKwWlCwvu81xYhwnQo40VrFuWgxw/7AVuHIpZ2FPFSm4EcegLAisMcR04tEFgdNmec4pGYO4lTJy2U1RGhmFi1aFYyWLEBm35HJyKjyQl5yIbCXX9rskDKcSKqdOZzQKciLWSAxaSWOWbsV1UJ2arXa0bYtCMc+e1jm8n0XUq/HYUkVqiabXJjdjaepFyBpLu5ZWM8ECBIkRIe6sWONuMUVynAm+R5NwRlGsBCS9H9lsPtAuLnD6Odo1+CBRllOcK5eTY0g2xfHENCoSWRqU5mFOCJUz8WkoHHKmcZlvh4kpyWfNGU0mYUpmMVm+v3ngutW8ud1yDDJAGDKtNegiYseul+YvZzSNE8HkxMkao6dkdebbPD5KI65zhhQ9nTWkotjuJ1RJLDvL5XrNw+OGUzPcyaG73R4lal/ffaRAKSLEagTIHLNnt7mj6ZYs19fMc8T3PW6xQKOJQcThk8p3ai9Nc4091uY5VEZnMOYUs4Rp6KWoJQkCQoQtiZ+F+v6N2dczQERWW5mQxjoWiwXGaCn9qJ/biIhOGkhByrTkPZAJfgal8MFL5C2czk6JPQtzShqKVf1eSimYkomVN6Tqc2GrQ0GjySGR/EBKM6vFNXt7z7EfxeFTXTDjccO02tCursWJoDJGS+zYKF3LSOR9oLLE3UBEnbt55oic3zZnFkbzbkqsNFxZQ9bQJ3nWJwJBKSKRWEWAX7255dlqxX/41ddQxPEVqytCZxFUx2mU5mwFzUm0q8JKP0gpFaXg40TMia7yQnWRTXoqwhrtWsvFasnN7R0lScJBa5iGGZ8kWiVuIKrr8ISyUGStKDYR9j1zv8U1Lc1iSZxGYgi07QKlLaYuOMTNLsJgjp4YxCVeSiaXCFmRUo2P21acESkwz5HoRchWFIlk10tqyhE/HqVNEHEW51Ro6sK1kGUEL+IqzVEixaWKg/K+VWf8Rdcuz2eIdY5U3YBGAUWWGjlX/2t1V2kK0c/kdGLv1jIZlSGJEJ5LYpoHDv0Dx/1WxOG5FluVxGF3x353w6JbYtyKnGtZgxbPZM7UCF9tc9XCbv3m5oE5NqS2k891ymir6KzGp8z7PrDSiqdLx1SEdd37QqwunYURV23XOFZG4X3kX//yWw7DSEPheJxJVtMZsCiKlll0DpGxCOfKaHHkGquZRmnF1crUCC1gEsfNBt10aG3pnGa5XIg44YXH1RiLdWC0RJrz3OP9zPH+Ffe3r/nkq3/GNG5ZrF+QsqehZXf7PXfvvhWh1y1ZX33G/vENYZ749Gf/DcY6DJqcA7OX9EyYJuGI5VPTsQgQJQf84QMqrpiOj+ic6NbPQDlxhQNtK+7kHIOgWQj0u/cM/Z7VxSciapaIaRZY67BKXGwiSMmSowBWO1IKUppnnZSQhZkUQnUeCuMzBXHLUHmO1ohLVJcCOTKN4trJ0UsMrSZMCnJ+quq8l3drz9g/oHMW17qVr2McZxadqczpBdTPlywgxdEVo6c1hW1OHLUhKs1QNEk5vggD5vV/ghTJV1+Swozdv2b48DUr3TC7lvLsM3yCLk440+D395TtG3a/PbD+k/8OFkuOWqPTzAx01vCsbUkxcN/P5wW7SoWiZV6V8hFFSdKWnovj3GCsFckH+V6AlAKUiJ8Gbt/8nsf7D4zzxOryI1SeKaMlX7+QxFcKUALTNKBK5P71LyipcPX0E+b5jv3Da0E7DVse3/2Oy2dfMmzfc9jcoQyUFDlu79Al4v0EOrPfvKZ9u8aHgcfb16Ayb3/4NZ9/9ed07TVoIzNfjsToOexuyHEG46qDvJDTzDypMy85dUuUa0lpJs6DpHriTMqeOUCTxRF9efmUWGZMVKzWz1CY86zkrKo4jRO/VMSQnKQtvhRNrM/PNI10ywskGC0LEhGMlCwwUsS4RjA8iFyfZE9dlyp1Pk2ChxqGrcQttWGa49npN08z3VoRhgPf3ewYI7KQyYU0bnnqN3RdJquEf3xDiiOLxVPMs69IcWD88Fumx3ciVMaEvfiYeHxP9hPRT2zeNUz7O6bhQOsMOUxoK+3mJcuCS+XC7v03TN2SedhCSRxVXRjPE9cf/0TQELple/cD3eKaZnnBeLgnjiPj4w8c714ybp6zXF3QXX2Ca5bM/R067CBllIr027e0RnG4f4v3AwC7h1coZJnZNgusgRg8+82NCGPjIE66mCnMuMbQNB3TDKrMzNPI/vGG6AO4LC5zJcYQ52rpUKqO5nqupJKZ51Ei7a4jpcDt29/z6RcWyBx370gpMM+T3J/qHTVnSfadMD4pJXL0NVWTyUWYoqo6DZQSbJEyGpsLnbH4KnpfXb0ghoEURoxp8NOBEkZCyqiUWKyeCJYiZ1Qe8VNPzp6mGJarFyjVoCrOLJHIJUopR5wpaIwycsdVEv/1YaRpr/634eArFBHFjObvHra0WwspEbUjFE3SlmWGhwgrlzAm8+Zuz9v7Pa8+3POwP6BzZJylOl4swSLknBwbRgmTSQDVmkzBGYUxlpwiow+oA4xzxBqFs46mbZh8BK24WDhCTNzdPoCRIVucVmIJPU5Djc8tGQ87bLeCIpvoefLysCtT684jpRge799w/fQjjGlxRi7ecmnzBC/lIfM0yvY4CV/KGUVjXf25xQqpFQfDqcRCNnJiNUdnlAabesK4Q68/roeRiBBt04A2WGfQWkCpoTb4ngIpSgmvqNS4x8XFihyDNNFUq7NS0Don/IoaqTOVuyF7vSIvMlPqgCkPjQJQGUPdsJdAv79htbzmrt/TtI6hTxijGMeR+w/f8uz5F3SXn1dugpGCgxRxRkQX2VqKRV/LPaAO8SIgjTFCKowK/BykiEILxDRnqTgf55lGG2JMbI8jv/zuNWM/8OFhj68ckpPDRZUiomCN7WhVsNoSg/z5pybiGIuAeLVimsc6eGeW6zVPL5cSoZpE0Fx0HZvNDoXGOUPbtYxzYH8YiMHXeJHGxwHXrgRabSAkTwqJ4/6OoT9y9dGfMh1umA93rJ99KSweLQ5OeTYkapNDwKeJHD1TiOJuS16YKtMOPx9ZrJ9TqlCnlUapLFG5mOqQLqJImvbEUsC2GNdgEReCVrXZV8vvQhxSwvMrKUkcosZpVMoymCKf91Rj66a6EjhbyHWtIxdxSBVh+pxioClHjJLmLVIEcnWrCI9mGDYC0W0Mx2PCNIbgI9M8s4ynAoWIMZYQ63akFGIqlW2ZzpE+RWL2M4vVipgTYwwkn3jfT6QMC6vJWTY+4k4sOC2uCkrBq4KeMt9/eCTnxNvbRw6jJ+aEKYmF0bRWGBlFw8oqFk5ci8dhZpw9nVOVXZJpGsthnDkMEylrrMs0bUfXtpi6Xd/3E0ppbjdHYhSA8IUzWOsYh0k2WpV1E6YBtMW2C6zW0rCZA+NwpG0uiXkCZRmOjxy3N3z2k7+sB3ypscnadpvT2RmScxSxrw4ehUAII9quwGQRJIRGI+7I2YsDAmGDFQ1l2nLYvOfyyScku6Qx1YkVCyBOOlVjb1krYim1sbrygEqNAGeJ7OTkz+5bawwl1Vi4yuLMVuocTU9Z3HzzPMr2Vkk0SWlhuMWYsFpEUO9HhnGHnwZSFPB9Spn2wjFNE8f9DZrE1dPP0bUlVwSc8l9E+kqN8OQ6iEBhTIlRphKaVHh9mNDKEE1mFzNRSXO3T5quOuL8HHl3+8Bh0fBhs+OiaQV8X+G8sbZCt86hdI2SyWHKMMlF3xr5OVot7fICoy/keQ+6I1mLqhGxrpWCpsfHHfMcWSwago9QFH6WGLxV8jMc+y33777j40//FNssKUqEk7sP33Dcb2jaJeHpZygN77/7LZ//yd+wuLiWWKuTNkyrNajMNPaUlGUAKoVCxCoocWL7eI9bLGlXT0h+rIy7VhhHiupgk9Z6owupf+Dx4S2rqy8x7RKjckUiLASBkMRVd461kHDaYIosP4yuMcicyFkuCX4W5tQp8u2cNJNKPNKIS/Ps4JJ2QU2prmH5eVVVCYomZc/QbxkOj5SkuLp6huKRcRgqu024LWnuyc2CjID9FZkwj+i2lUiQAoqgHFIueO/RravDrzj+dFF4VTBReFYLo+iyIsQZ7QytEge3K/I1r7WFmPnX/+lXHIepMpcV8COrNUeJGFqrQQlrU8zp1QOltbh7YkIpceRZpdj0B5YLR06GF9cdi2VDioX7hy3yaipMc8Affd1uT1hV0NahlOOwu5XPdPdEYpJo9g8f8Ps9N29/xWr9lM+++ks+/PA7UPDxZz9ncXFdI9citpWarsgpSJlECGdesNGaYfsGHzOXz74k+gONXVAQ9EkqiQpp+zFSFie2739Pu+hQuqO7/KwubZHlaRXnshaXjDGGUtMg2hhCEvi+qVFxaeLT5y3/uWCofp2lnjXaaGIU11Sq8xpK5hURMYVxmYsUWEmjpriiYizMs+BZlE4YVQixZ71asN/d8/RZC8oSs4g2KUortSxi5Yw9NXwTR3HcHu7Ibk3ULaFoxqSrEbwQtUYTsf0dQ0zE5QtcXVhfdJbdMOGKY2kUX3//lhADS6dYOUNnDCrDFDxjFGRLTAGjDY2thXJI4U8IuXIOxUlmjLwjxu0Nb777JZ/+/F9y9eQFTeMqTxvaxmJsI83Tc6B1heP2lrvXv2GxuODtN39Pv7/D5owPB5599lcU05D7wM33f8889KDg5odfkj/17B4+sN984PnHPyEZS9MtAc3jh5e0i0tiga5psFl+xz56nLGE/h6/f40/Wlk0Gbn0N5cvAPkdO2uJRRp6CRPztGPYfmAchFeubUeaEu3qCXFWWLdEaWHiniKO1jiMtWgli9AY53MD8wmtcVr0pizYAmvd2aWdU8RHgcef2JSneUFEmRNOo+JQoqQwhPvtOR7vKKmI0B8TVxfS4r1YtHUWDMQ0Y42Td1ac0HV+i9FzW8Amy5QKn8Ut69tfM/7wnynG0Qw7dJmJ23eY6FEv/y2YDrv4H3GAffn/4mL1BO7fEdJAHBLh/a/xyyus1uzf/IrrL/4Ct75i3/fEJGgGSkYrh3G2LktFxAsh8PDmd2htuP78L8iV0RvmiceH1yzWz2QJNe8xpmU+PHLcfCDNAzOB/YdvGPa3LBcLvvj5v2T2HhNG/LThuH9EoZkPDygUvm0Y+p0810XaOvcPr+naJdv79wTvsY05I2gO+624t0qh7w+Y++9pmiUhjPX37Pnww2/57Is/p1leU6pLMoUJPx0rvicRo5zfMQVM0vjpSClZ8BNxgSIwD7uzAJNyJsTM0PesLy4IYcRqy2G7wRlHt3pSI7NSoEIUrqayK4IfZZYsipBlwR9iYZx65vEgrb5Ic2wMXlzKQRxWpaSKh5GzIYUgOkMS5lyqBoVSRH8Y+z3RDyhVWHYNfT8TU2S1XNA4GHYfmNpPUcaynB/Iy4+wacD4I2VSaBMo/ogfdrjb39KtrynDPWH/gRTF7R2HB/rDw7lESSlFv31PGAdsmLDLC3EOVpEqBEmDqJLoDw8kfyQGz6J1zPt7eQfnwDYNtKtrvI/s3v+O8uRT8njN9uYP+MnTHx7QRtPHA/194eL5A0+efUkctsxelulKQRy23E17puFIjAGtDWN/wDnNMLxluVzhrKtFWLNE41Vh5rS/y1U8lXuWVrIICt6fl1YFLcxkYwVhYiyoIo32URbkYuJSqAxz8FLO1z/Sb16Sc2TodzRugbNy1ueKXnKNw9RyC1BnPFJOWRKWkzShozU6K5qmpSi5F+RSmKcZ6yKqeHwv2k7xR3wudZ7z+KEnTkfhprcXoAxD/8A8blEKumZBiT0lS3JAGYOUycgMKRsmXRekilJmxuGBlCYpqls//f9bj/v//OuPF/iyWNyD0fx2SCxU5prAwmQ88HHX8NxaXifQWZqk5kPPv/2H3/O42VUItTTQtMYQkog8pYi6ro1FOS3MqPpy6LqWrmkY+lpffRpmVWbY3dG6r+jHmU+eXdAYy93jjv040GhLZzUXyzX9MDCOAmx9vJeoSej3fPubf8PP/+b/AM2aqMFPB9599ws+/epv8GFic/eapx/9lNdf/x3253/Lk49/Jlv9lJnTJPb1aa6Q40hjHUrbGkGxlDgxz1sKBusW7Dc3LFZXWLdi9pNsQKIMnEZpjCn0m1f0uw+gf2B5/SmXT36CKpHGdWS0xEByOrdglizb+lwHzsZatHNA5TNR0I0hp1r+p2X4ttYK90BJM6Yo3SdRBXKSl7g0xMnWPoSCs45SMiFM3N+9JMTCi48+5/72A9oonBU22DyNbDe3rK4ecetnxARpiBI/qnB9VSRKFWLAGVcfWACFUZlh9vgCl21DP4/MIXMzC/TYUs7ckueXHZtjZNk0/Ptff1thwgZDYVVjP9M0c5pFKfKzMsYQqwDVGn1mZcUiAGuNAZVwFIbhkevLFbkUpjnSNYaubbl73KAzLDtH0zh2uz3j7MlRtv7Owjx43r36DX/yF/89c5zpsITpiPeJx7ffMBzvWV9+xP2bX7G9ecmf/4sLVLNAZfkNoh3zOJODwhZqTblsxqhxmeAnNjd/4HjY8slP/hplGtbrK5SSYhEKpJgl5ohECB/ufmDoH7l8+gVXz74gZ0+IAv83FKx2ZE11YtUIbRbmpFLqHIcqRThycpmVz5i2TqJOWtrfjAZyRKksibqs6nBYW3lzJCu5OMRSavQhymczRWFuRHHIxlgoFfDcNla2tRrCuMU1sg3JdZgtteglxSwMTl2qWKwI04BqOuYUuN31lfVWyDR0CvppJtcL7BgindUsjUaXzFIVjsPIr77ZQ/3+1laz7hqc1UyTpzGK1mkWTSNg+HFgDvHMD7NGoYxj308MU8TXKPP+/g3x+jk+PyfmzIfHXmDI84wxiutli00FHyOHQ4+fZ5Tv2W/fcnn5Ce9f/YLLpz/h+Sc/JRWJyDy8/5r72x/405//73jz9jc8efYTDrs7tvevef7iU2yzrAKwtFnKS7uc3YamsnBSiOIYGe8ZpiPry8/IWsTCbnFNVoakFCkHUlay4Sahimc8PjId7yBPLK4+o3RrfEgU3ZIy2CKlCEopYZ0Fj21c3XipCs5PeC/PlkIENLkAyGJFF6rbhMraqrsxJc6TlFNlcZwg3bKZPUVtcxG2zjyODOORQqR1EGv0XByrM4fjA+uLj6qALZ8zie1J1Fe4sUY+w6cLdv3nUklMSnPMkbvoAUOorpzrxtKh2afE0ooDsyExTxPvHx6rSzChvAjk1gpM30IVn6SNUqsCuYi7isLFYgHI5jL4wuRnNJkP3/5HPv7JX6LVNetVh1MQQmK3O1CKuNiGMZOCPJOqQJyPvP/ut1w9/1OO+wfm3Tumiyu6ixdoqxke73j5q3+Dajoa1wqfte/Z3HxN13V8/NO/JpeCLRKN8/NATJ5YB0KlCgaNU5DDyLuX/8Bh/0DTrvj4i79gONxh3YKL51+RS5Smb1U4FUGVNLJ7fMf+8S39/pHLZ1+yWD8F3WBMPf8VEn8swrnSiJs1JnHrJWXPMXatZGkVo4jEbWNlFWagbRwxCI7D1M+cnDuJjDi6c5IWW1U/Z2hkCx48ZLi/e0NOM1J2EVmtrLBXS2GaR/rjLdo5rFsLC8ZarM6EeSDESLGy/DTGVESB/AxbpVkZTVNTCI3kzGm1YZ5mKImlMdiiWFnDmCMLrSnKstKFw2ZHmEc6o2m1pmktPniJmlUGpkZKL1LJxCTfr7EOSVuK61Np+bNLLgxzYdw9Mm5mnn3yM0KIDA+z4CiKvFuEOyXnm1aK/uElJU6066cs1p/w4YffYQw8/fyvUa6lTBM//OrfYMgcdx8ocWa7WPDh9W9obMNquaZpxbEtrboZigiUpcgC4/T5cVrj/YHN3UuGcUYry/7xJddPPuXy2ZcV/XJy3dUIa5zx45YURsbQU5SlXT4VF4mx2PZaXFMlkdOPwqDVlUkLlLpkLZQzCB6AJDOztZaYa9teUVVsUJXOK/NbipJgSdXVWeqFS2IwklKYpwNhPrJeXpFToh8G2taiS6pRQwjzJJHLGNBWE4O0/6UkrdGhIjhyAdeIS8vfvuJwnDB+R7n6CfnyJ4RsQRsKhoYMNjO9/pbj1/8TNEuWf/l/4uqjr1h1DT99vuKHu8yiJPabPUZlnnQOp2Q+HsdQkw1KnMjW4bS4hSm5ltLBNEsZVClBrJ7VxTiOW7avf8/j269pV9csrMb3CtuuKfOO4Bra7pLgR/rDPVeXz3n9u3/H7cv/zGJ1Tb9/IITIzetfU4osia9f/IzD7i399kZELlXod7c0Tcd43BPDwOO7rwVF0zQsuktuXv4Drr3g+ed/AfYKZU5nDOji6bevOOwfMdbSNB3H7TvGfkvrFjK/lnrOFE+YjuR5zzzsiXMv55ffo6NnHHbiaMqJ1fVn2HYldwIDPgSMsUQ/Iu3v4gD3XkQjDZKgwFCUomsbuVQXuQPmKK6pnFN93/74XJUSK3LIyiJILONSEpQjMcjywk+jcLk0kp7RFpUC282WbhlYrz/BdYYUZpyzFK1QxhBz4ePhLeOk2Fx+xTpOfHLzd6jta/LUUxS0RHIKlFmWZ+Pd92TT0Lz7JW79gunuB5rjB+J2iyZR5sz08Ir8/KcEbdi++gdU6OHjn3F8fMdq/ZzrT35G1jILCrHUELxHO0Oaj/QPL5mHA81qhVs8RSXDMDzw6jf/licf/wld5zg+vuTq2U/ZPX4gTEesk1TI/sMfOB735IsLjtsvMNpw2L5hODwQZmkK5/Rz9gfC3GPqmdo0sjQ/7u6JaRZ+c5DlhbUdT559RAiB7eaOcRrQ6p62W0vkXolwdjxsePvmD3z86Z/WiDtM464yPE8LBPA+n8t/KImSIuNxS9tFKFHeR2GS9IgxtIuO5Wotia7jjrZpOB63LJeXtO0CYxpK9oRwAG0Yh0eaLoi7tb2gZC1NtNET/MjsJ4bhgLGOtl1jbSNMtPlITBNdu4aSkJ6LOiMaeScn4dAI/iAXWczmKM/quCeGWVyrCmKCw36kWydUf8fTwyuM09jd97T5c4wfuEteRD03kuMk89/2NeruGdPmJb7fyUxrpBCwKI11jTjtqe2ppeBnj7NDvVuVuoypJqcSxU2rxOSRUyRVI4ofNvgQKfNTto83+GEHaWbRLRi294z1HZpKobOSrDk+vKZMB2IYcLohzVtiypLoqc80VBZx5ZnnXAhmQOVOninxHEmCsiAibJA2ZbLMnspoitLy77aW2UsirRRQ+kQfVsxBYsVdYyVZqGryyNX5SimmGNnv70g50XYrYVgag58Fn5Eqg3Z1+UTi4VW4Ls6Saxxf2wZd8WQheWLJtN2C/tiT5pn2ak1OikxmGo8sFx2lyNJY68w0TOIuzZn+uGVpHFo1En0fJ1CZRXfBPB5oqjs8pglqssJqKzHdFChKFiVh3jONO0k7hAfWz3/yX6nK/fjXHy3wUQSQr1Ik1gitC3s60xBYsFGONnmu0VwVQxcTwzzww4NHl8xq0UpEQ0k7pDyIwrbSxtS2rkwuhovOsVhI9vkwSKyVLBtL5xS7zS2vf/vvsP+N48nzTxhnz9vtAzFnri4XqCgX1YfHPZOfMGg2dy/5/rf/nuX6KcY2HO5/4O13S776q/+BnOG4/cDbb/9zhX0W7l7/mjzP7O9f875xrK+eko2hP+xF6NAtJXm0svI9qNNhkrClMO5ecfP+a9ziOeurj9l8+Aaef8nyWhrwnKtwWiXuujIfBaR6PBLTnhQmdEqMw55nn/wZ3eUzUqoX7+oOifVSo7WmNZZVJ2yQnLPEToiUc4voCRwuFz99EjRqwQUVvEwpOKtrJXs+i2ElRWKJKKOYhy3aWvzhlvvbXpR7XcHD2mJcg3OOze3XtN2SnCzi0wnEMJFBHBRaYbRc5jWaU4twri2H8xxYlEKnNUsyfjxwsfwIHzw+ZzSZfT/ypGu4322lebEUOlcoWhOiNOMZ6me3/gxO23WlC8YZbNswDrOITlriMs5qlCn0d6+4f/1ryrDho5/9DUVJjOD+/hFfm6e2+z3pcYex4j71x3ui9yyWHffvX7G/+Zrds09R3QVzUjy8/5ppGOgffmAadvSPr9h++IZ+d8fNd/+e649/LjyENHH57E8oaSSkQNNenA/jUmTAsk7jxwOb+xuG454Y/oHV+pr87BMunnx+dooKEFpiv84i0er9lnE4CGx7PHB5ccny8mOJbyuDVUYGa6hivPyedf2/c0TEu1Iq70t+l6ro8+cLA0qJa+D8t7QRUS+JyKsVNeIgcGyFlDvEHMQaH4UHE0Kk7SwhJKyytFYuTHc3b1lcXPLRxytKkW2R9+JoSymfL5uyTBCxAi1FO74U9inRGcs4eqaQWJtCGo8slpfMXraXU4iYbHneKeZ5JIWIo7BsLZetpXHCwjrOoiQLZLvwuO8R05ls6Noqkk8+cBzlc0w5NdHObN5+zeb99zz76m85Xj4BFO1pc54Lu72XS1gIGBI2TTy8/Q3bu2+JL/6c/d0PxLlntbqiWV5ScmZz8z27m5d8WKzZP7wmzwNFwXF3w+PNS7rlNa7pSBmOuzuM1SzXzzFKokpzDsKkJFL8gf3je47HLWGeWa+fM2zfYBWY9qpC34V92Fjh2cT5wDxsiN4z5S2LxnEcNqBb7OoFhcqyqXwfSf8UyJ55SjSVWyXCsmzxVf0MRhpBGSRZRvwXpS81npnqs0+WCLdcVmSoKEizckkzh/0Di6bDKo11in4MGCMxx5iEgxXixKp5xjQPWOPOzLyQBfStjbRu5ZxRRRyk1jYotKTlBG6FIjKkgCVi+w2hu2abEks103QLXM6kMLOPE4dek8lcNJpGGdYLiypaGGAxMsZ0/vmBxHNjksVJTJHjMMqwFqoDS4M/btm8/4amaWm6v2SeFUNMKGSYNFYu01QHc/QzYR64+fbveXj3e+bjkZw80/6Ww92StluiiqHfvGYadphxT3QNu7ahPx6Z+iObu1c8+/gnIrCmJckY9g/vaNsLcZQ7JwNRyqToOW5u2W9uGIeeqd9VB8hExrJYP0WZljlG4beVCAmG7XuGwz1x9kyDbFVz+inPPvqSHAbmCG23wDpHyBGnkUh0nPHTFqUarFuBFjdpqTxRbaUN8QS0LiisqpFLJe8xJYoxJQRU42rTc21RK/8I9I0AvLUuXF48Ybt9zzgHpokzX7VY+d/EJJDyYjvIhVSB7Sl6iR75SeJfWZzt1jaklHAp8dQtaEkiSMVIVgU7H9Apc7h/yeX1C8r1pzTWcDN5BqVptLT2dSnRGU3jhBs6Db248QCUxuYa2cxRXCIiNUl8K2UknSoLnZwKMczMwfPuu19gNFw9+5hhKuQQKVnEiKxs5dyJDhumA9v3v2M87lhdf8T66cj+7gdyjrjVR1w++4T99h3j9q3MPCnipwP3775l7HvUInN4fMd6fYlSinE+QBHXXM4ivDdNV89eEWcPD68ZjwdC8vTbN0zHLY8x0HYLuu4alSw+hhoJysyHd/jDAyRP0ZrF+oLd3ffkMtIun3HllmDb2pCrz3F0WYxJ8Yw1Erk1WsuyTENMM33/SNeuSKqtbtKIVlaEmfqWPLXGlyJNp0oJriBFmbEzqs5mCacdOXmOxwdhoFnDPAeWC0mb5JJRFaUR48zCdYQgzcMgPx+x7ovg1xphWW7/8O+Yhh1OF+L2Fv0XT2i7C3wsWBKNsbSbHxi++VeMjzeEGLHNmvXHz/lktWLZGMz+DdvNjmb9AtcY/BgYSyQXEUOtkucv5kLJnjhuSboB25CSLC8VmqIiarxHdU9JyWMozLsbNncvIfTsPvweE3uUszx98VM2b/4ztrvi+uOfc9y/5/7N7/jo0z/j4e3vCKMw/2LwxFToj4+0ruP4+I7l6pL94ztijD8iR4rm8HBDQeFcw/b2JSUHueg3HfieYdixNYbuq78mKcFjaFWI/shxewtUF66xxLHHtZH+cEtT00HTFJjGvYguwwMqi8HAWUMYR4qaSfORuVekMGO0obv8GGMbmbWAGGZK6OVcKbJkMWYhixdjMSqhiyMVYZ7mGCnI+yzFSUTpQm30VeQsX5tgZTTKSPqq7nzrO3bi2N8z7rfCn86RaRKho6Qo7iYjfFRjoTGFOQrCo2sdYpJU5Le/Y9mPxC86lgzku28Iwx5hYWlIgRwkNizPhMTr8g//FvPkc/x0xDND8mKSKAG0wj+8JGWIw4HNm9/h+w3z8ZF49Yxnz5+izAIVI7uHt1w8+ykp9szzzOOHV+zv31HyzN03/4FnX/4zknUc7l8S+kduvt/irEURMAWO23vhJlY3/TweyCkwjQf2D68xShOHO6b+KHHCecQYaZ8fx17OfaVYdEuJApbKOq4LllNpijVa3ptjLwsBpOE9j70YPSp2IaeC6vcc9rf4eWa9fsrY7+XKj8JYQ5hnXNNIMUzNI2hd548wVnadnA+usRhtQcE0e4xxhBiJYWaceva7e3RJLBZr4cGbSCmymBj8gyzGbEPODqUyfjwyjntCCqQoM5q9FuHY2I7ZD0zjThrMcyHlGWNtxc4oWTC0C0l0KUXMsuiVVEfDYnlBf0ioECkx0ziDrfHreXfHyliUhvlwB4cHuuUKqzLJS39AAUF5TAPzzW/wh0eUhhwzRYvQhSpoLV8P9dk5lTzlyhM3RjoAYvSUWuolS+hMBnJSJHVikxdyPHD0E348MvsAhwd0XlUXncbnhKWAyvggZZbD4QHjmpoMFJE21zi9D9JwnoskcUoWjUAaixWjjxSlsKYhozDGARkJ0CqyUri2RRvL1O8IKWGsom3ac2GOUg7XdAQvTkVT2dAaSSZqY8j1a7CuEVxKddtr06CNNCpbayVRqIVP7mxDTongB5QWMVWSW7kWb3lJFilXBbYoOoW2xKLonAjZbZNlFilgG8fQ71El4EMmxoJuNKSJVFMA1liUkRk5+EnSolaQUxTpWUgI8oACqt6Vp3EnM2SKNVL/vwEGnxAwA1kbTApYP9Jt39BoQ3f5EzpnWClD58AEz+wnyCKudF2DdoZ+jqQsyrJJcgE0JUt+oQioepwTy0XHcZwZJn9uqbM1vjfNgZtXf2B7+4rvf/cfGb76Kzb751yv1zy9WELO3Ny9p7EdMYMmMk0HvvvF/5P9ZsO8v6egmceBD69/x5OPf8bV1XO2/2/m/qRHsixN08SeM957RURVzczN3WPIzMjMqq6uIlkEu0FwRfB3c8cFAZJAV9eYQ0TGkBE+mNukgwx3ODMX3xGxbC5YQGcvyoBAemSYm6mK3nvON7zv8378nsvpiceffosxhrSe+fjdf6LGmeePf+Tzu18wes/Lp+8orfH6m38hL8BwJwkvTdLcnFa0vHF6/J7nT58x/kjLG9v8xAutH9YaZQaZsDvN4BohXAjbirVKUmG2mfzTb6SVsANfe9l60OrtMLumVordTwu/4BrN3BpKdStbn4grY1BKwOjXF6DlJBwQrrYi5FJU8t+viW0pJ3mgS08iLAmUgNfPl4VaMm4wsukPK8ecONw9UHJA676BSsIaM+KHu8F3S5NkpSu8OqVEJaJzAWuwZUOTaZ//QL57g+pR5c5IQ3TJM1XBqERpkHISzhMIa6CnElute4JPoaqMU7YnEUsRp6k446AUYtoYGrz88BtOn35kPT6ze/sLtB6JywwIf2lbLjRlqDFSoliqfvr9/4TWA9ZNfP7pd7SSeP/H/8Du9a+4e/WWlw/fsZ0+E7cTWis+/fE/imw/RT798BtayYTLicvlCf46CNcinHn1s3+Fnx6wRtOqRusKJfL84XeEsALSFCVjePoQ8G4iNximfT9QjWzclyNhPVJyQFXF4/vfi6U0b0z7VzjXE6H6tk4O53ZrpGsVPpu2Hq0kiENToFaMqlc3q6S09SKrlSTbnaakCa5fQgmugOJGV0C1LMOYa7phCeScyCmRqwwwhtEzr2eMUni/Z/AH1uWCHQ54NxJTRN0GxvGm4LTWkUtjcI6UohzeVC5BmswxL5gcscsTWim8OWDRWNckdTk1DJlBw85YJqNJKbHGfLMjDU7jjCHERIgRd7XCK8UW5bK5BLH1Y8S+bqhcTp84f/5RQnZ2B2r5M4b9G6IWaXlOCzHLds2TIc+Ey0dOn38gLgvPH35HiZHt/JnT43e89f+KdTtzfvlISYmPP/x9H7AqYkjEbeX54x/JueJHz93dN3x6/4+gNX/xL/4HlJ26ilc2e61ULufPhOVECivL+RFVCtt8RCvF3WvFcHgrxXXZaKVCjeTtLOohL5bGsC09eGLCTm8kPMFIGi6lkatYkEoS27LW8jVIeIc0NJrIupw4PPxSyqYm/iNZJMgW1CjNNTFTa40qAKor66D0AT1a2Jzr5ZljCHhrGO1IHYKwxLRsL2tbePvVNxg9SKGtDaZJMpzuAw6aFEW5Vtk4VuFgaaNoMaGMx24bnjOkzG75gDv+xPztv6E1R/YDY2vMm6WqSlKZg7PcOcvbwfDV/cTxeCQlsWwVlAyIm5x3oYiyt7ZC6gPMZZ37YEC4t1YbTo/fs52fefzxHxj2d9y9/gXWeoxq0CKtWAEzl5W8nnn86R+YX56ZX34ibjPH978V1WvNwpM5fsU4jsyPP2LonE4Kl6cPzMuFUiLr+TPPP/0jy/zM3euvcH7H4w9/x8PXf8F4+BqtJ7awMEwTmsZyfibFIN9LSFxOn6k5k0vj/vkDD1/9klIllGI+iXprW2ZK2lBKBmGXywltfkTXwHT4imF6hevBJlZXYsrU1tlB4YSxO3ADJSPDPK2wuqENOO9ludeHwzUHdMsSDtSZt/WGFuDqlBbrJ6qrrUrnxhTW+cy2Xhj9jmlUPNYjzimcbpRc0VY2ya1KMa4QG3kqktosawGxdQuQXexszU1YZHA2jU5YZrVwoBI+/QN5W4mf/8Sa/hw7vuZUC6k2miq8nTw+N3ZWoXIi5shW1A2jYfs/lNyoTZaAukngmNJWjPqm0mIAPZLiRm1JFB+nz5w//4B1jp/+9Pe8+frPmfzIfPpACgvTwy9Yz4+4YaAWOH/8LadPP/Twi8zl5amnWsPL+98wDiPn5x9FUdLE4prChqry/DcNcV1YXj4S1iMhnvDjK1JcJQHS32F7MIqxWuDy50dRSio4PX8g5URrlXB5osSVaf8Vyg5IAlGkRAmGGw8PhG0lhbWrWQolP7LbvcbwQEkN640o5I1gIMQCJOmgpg+2UVmQGmVjPX+ilcC0fyMNQusL2SZqbxq07rSQMKoO9a5Sa1njKFXUFrVJMxG2lVYTl00S0Z1Rkh585U+FjRAE9VJKZ/n1h9le+ac5d5ZmxE6OtDzRtplmDfnT7zjcf4vev8Jrh9q9ZdCVy9/83yFdRClpYH73a5bv/oJP4S+JxwM//ef/B2mb+fqv/s9w95asjNQDDewwyMBgETV3DSvPP/4nhv0bdl//C2rKnVOoKdsj6vQn2F0w44FSK+dPf2I9fQLVCC8feNrOuGGEuLF+/o6CIW0Ly/ED5+efIF4Iy7EPMvNtUKWQ86DGhZf3v2dbzz3wSFJ8l/MLrRXBFaBwfuTp8YnDOKKVkFdbTYT5I3H+JdPdNz1xtxGWJ3KKNzfOtoirQKfIfPqI1patZsp2IayiaM5hwRq546AvYUuklUBYpB6bj+/x44TVD8TU0+udZzv9RMszWnm2uDFMXwstqFliOAnrTHlqkgY+14LTipJWWlNYP1K1EqRKiyhG6HY9qw2tKYrqPFIDg9Hsh3uO6Se2dcNaCdnYgpyHfhwJ20pOmXc//Jpf/tl/z5UhXas4jzSN7fREevzMvf6fcaoQ56MELjTkd9Qi/MyGBH+1jGqKcH5GlyLCicFwtxtZN3G3OArx+KMMSlqixsLl03fUXCBHnr7/W9z9z5mGHc/f/xesGwjzkXz+yMun78hxRgHL04/iojIj5+d3UIW5SDU4A8fHn4SZrQElC8qGIuWIs4r56SdxEuVVhvy5opUos3U/M0BjjKE21VM9E20L/XkbcGokBOlPYpIgx7BFSUNuuqvyMrnz1Y2GnCPHp49AlvO6u6xKaZTSebY9nEhYgjL4TSmQU2Toy+1aBAWUqAzjHq16eA8VrQpomJczox+EQd8a4ziCqcKA7MGTDY8fH2g1My9HclrZwkajsm2BwTrcWNnvLdt8ZgsLtE8MfofWjVpt//k3lLF90CuccOcHUpihRgyJyWjaYEjK3djCMURCksFjuHxmHAfytqD6oGYcPOfTLIzXcZIE31o7Yz7d1HhKa2qUgatSmlKaKFJr+ZImXAXr0midLYf0SOqq6u4BTB01JnPzjrJSuf9+Yc1JrSROq5ozxVpilsYnlypM5u7+uTqcqBKE1Sq0Js4/6RH0l9/Tl0S2ySCyYVizMAkbdKdY4c2rB1RT5Cj21KpkiC2/x5JzxjoJbvoSQOqoCIbMOkNNMm8IceNuv6fV1O29rg8mRUFPVYKOUTIUdc5KjrVS3U2gWNeA9/2z041YErnBNE3krKkVSjOEmCXQLwsWxiiNtZ5zFsdhU41cCq5mlvlEUwPXXVer8n42gJa706jd0Ge1yjCwXTuT2Be2iI295EyI6z9vNsf/FgO+Cqo2VK74HNm9vGd/+iN1PrL7qx27YcC6gRY21lJQOaOdZvSeojTbmoSrXduNRSdMlIQ2toNYNSnXnlgKLUdJpbRWEoiSyMo/v/s9KVx4+un3NCpf/+yveL3/V9Ainz584NM//iesu2P/1c8paeX89BNxPVPyxnoRJl2rirDOfPzjf6b+7K/4/OEPpLTy8vgj07SDVlmXR5Efb0c+f//37PYH5pcPNNFWQoOf/erfypAjV4yxOOtYT2eW9dLZQhfm0yNhW4gh4Z3Hj/cwHBi8x1DZXt7x9PH3bIvwAIZhJCWxLebS2C6PwtYaBITrpweqajgj0Fyl5JCWA6NQkrDeWqts8yc5JO6+QZtRIJ0gErZWxN6mWmdSaVKftnsnSsPW2o3jIFLmldPzR6bhwOnlI84qHu52pBhISdhwtWSmccQZJ1ZI27oyp3OpurqlldLVX4h6sG+497ryaVsZUJjTZ+pPf4O721E//QHzzc8o41tKKn3g2CimMlqPoRFjptaEQw4SrQ22p+epKt9v1U623sawzZsUhvNn1LCjaI1FeErb6cjx8QdimClx4dOffsPh/i27hzcobUklsM4v+P1XlO3M+fgDOW6cnj9Si3x9y+UFbz3P7/+Rdd0YvWW9PLJdPiO7TcV8ei+D2FbY1jPn5x8pMZK3hc8//n1PYpRD89u//B+w/kBOCWeNSOBfPhDXhdLlxzFutO3CT9/9DcMwcnj9Z1jvCatsGV4+/ZGUZrSulKpZ5yPaeFHR5oD2A62mfjA3rkBT3Qq5JolrolGL7mrIjNKQwklYkXaSxE4/oEQ2R6uV1Ae4Rol1rTUZRqe0CePFioXYGiupaSVT8wY1Mw0TfnCQKjEG5qX2ABDNup05nR55+/WA0aLQc86SU8ENFgGnXxMPjTR0RphdrWYoEVMbRhX80x/ZlQvt9AHPBm//FQqHzQKeVqrhKYwomlHMQSwA1hicEj6F04qwrWxBbBNUQ4Eu02+kKmB3ZQZ2xrKbHNvlxPL5O2o401Rj/vBbVJx58y//T+zGEa8Lnz7+AXCMh28hzhw//APz8RPbeuo8krOcm1Xz9PF37PevWOZn2RK3StguKGXQi0Dia608P37AaMs6V0qIbPMLIUWeDr/j9ds/x/qJpkdRGeSN08t7luWC1oq0zZxTIIaAt5b1+BPODh038CNRyeW6Xl4kLbDKoKysiZorfszkMEuSXM5ov5NgCqOI24X5+A47HNDqLcaNokppiVYTazgxnz4xTq9QxqGacLqssbSaMMr2IUi/czqzg1ZFyao11vTnsMqW8OHhLe9+/A2Xy4Y3hnEaQRVC6IEOqrHMZxrvef36rTCgpj2lKATr1hutPnyp0AOVMl4pVM6ovDGECw/1Iywn7NPvsHHmbpio4xu8vsM2TXB7TC4YnXizf4OuiZfTyoBm3RJKSQGujKW2ynL6hDcav/uqqz0rXstncXl5x7B7g2obxo/yvnz8PSVF5uN7zh//iHc73Ouvbwutw/1XknZoDB//9Hd8/OE3ff8szW5YjrhhwBtFjRe24wfyYknbGaNl+FiLJoYLOS5oZVjmM59/+h0pnDk/v2N/98B2fmJbz3zzy/+e4e0vZaAfJbV4W46iRvNO0BRhk+IVWM+fGHf3KCrPj98R5xfW9YgxcuY46yl1haII8wslrtgeuuJMo+GhJGxHB6S4EsNC2xZeTXdY40CL2rHElS2uDM5LodYk4U9raXhyTkDF6wGtG7mndVtj5J6phQK98DMo3aArLipFrCVVODT7wcuA1UjoldjCFDFtGAy1t7ryWMs9KrWTWHFT3lDG4V8+kvY/J7bKkFamFomffs/27m+Fu7Ve2FRm9+pXpP1XDMpgdeVgJlSeCfMithsKRg8oe+VqdYWR0mgiJQf8/h6lxCpcSyJdPrKePvPVL/81eTuxXp7QKM6P36PqQomGp3d/wLZMefiG9eUjcT2ilGU7/USxhlw1p8/fiVorV3QM5Hzp96rh+OEP3O3vOT3+gFaZArQq+BSthLnbcuJ0ekJrSPFMjAv7h0aYj2jzxOuv/wKrXgGZwU+EZSZuC7qr/+W8qsSUuJxPpPSBV28C+7uvekPWeWTbpScEy4CllCKYlj6k81VhrCgFx9HjneNyfu7NQBB3gZ1k0diHeGE7s21nOaPcJDWc0bQi0VuVRq2m28GlkdCtAQVtJQiu1M4L1DLYLzGzxY0lZBqa2hS6DwFTaTgkVbeUyMvzRw61yiApJWpNfTihumVTdKzCn5aaD4vUWD/+Txi/w2nF8OZXQKMtj8Sc0Cim0TEvZ56++xtcufA0Xzi9/x2tVD6WxP23f4Xfv2Z6+DkxJFGulMC6zCijCecX5s/fE0+faGbAaQV+QlnP9ukP1POPZP0j48MvMcYzP79DV1kWe2epaSHVhZd3F1RZKE3x/NOvCdtGTpHLyydpdo3cJzSFKqWrQwa0NoRtRjUJUtHOcbh7LTW6Uux2d+RaqThqa+K+wEIThmIOi8Dt/Y5WEo3EfPwg4T9FFvjaOFST4e06HxmGe3KJnE+faHljXRe0ang7dGUlXeWZbqpOFKicCJdnVF+ApW2mGE2YP1HjGecPgO0qPlG7bNuxPwcX8Hc35EpsjbA+Y+1IMaLmySWS84ruPg9UX0ZoCRmTWm+jpI2cVowWZd2yic1OGM8rIVRCARsTX7/9ivn0Hucn9HBP064PWCvb+UhYZvSnPzAMrosQmtR2WpErvbcU9q/Wpg9oNS1HrJIlRUhZkpAHCfVK20XSlesVHSWMrppWPv/wD/jDE4eHr9iOH3j64dd4A+dP37FeTnLGI9/+/PwjoIlxI2UZ4mg6i6wWtLYiMCgSFFUMGOMxykhNqBuKSit9mFLkz5aBSAMM2g43RFOpDUqWHiYXCg2lZDknCnKwXmqQwWpKqazbhh9GFJKG3lojpYVSK642ahVLv/UOby0xyvJQECrc+ipBlPTnTDVRDmbbWWuwrGdyrRz2B1pOPVSus+hQ4txT4rZR6upSEfeBigtKyX2WSkRbxbYValNclguv3I4QZgnhK4llKYKyKhJg5KzvZ3eUYATks7icX1BkLJFcovyzhtgyl+XK4ZazVgE1BdTo8U7jvRN0hBYF2+A98/mEgZuqWfeaEhS1KVBGBk7iE+7OEQlpbLXhlai3nZbvHyVhYI3W2eLyPHcT/O3nRbe9WmPJuvRloggxtJa6U+urc0nU6qk0Ju+vkU8SQGIt0Pv83hNVwJmuzdNGRFlF6o6YK+O0Z1CGdDl1LEjrOKbWGccSBOecp5aElsQ3Hh5eYe3A5RSkTu/fhxtG7DBgVSXkghscW4y3QaV1oipvtTFMO3HB1IIbR4zxXQ0pSfUpX92KGu88pWRyqigvIaUtRUoWoZgfRgbviV0c00Jm8q6rtoOgnPr7oBDXqvGVkjf5up2nv/ni4skSIijTUkGl1T5nqYhTM26L2J+b/FwEO1z/Vw7lvvz632DAVzBYxvNn7tIjrz/+GhVfUHFDH39ED3tybOTTj5g3f4nSFm8HiTTvU0xo6KZEjacaqkSWx9/j777BuIGtqy7WKpPy8PSPuP1bqvW07YWyHTk9vqdsJ2qJ5O3E+fN3zJ/+SHj5gV/+5b/h+PQTl/e/B6UI8wdaTpyPj7K5skrSduXIpaTK8fEdYZ3ZLs+S9LKtkiarr3YKGTytp0/UvNDyBlqzHj9RysrL4Hj95s/wulHMA4P1PF0eWdcN50SevK0XqI1YVrblCC0z7t+AhZwvvHz+HhqSmJYFaE7LhCTDtm05Ei5PtHogx0X86EqjdGNbnrCqkSs0NwFiF6ZmWl4Iy+OtWDF3X5PjivKTRJBXseSmKn5xNwz9IorEKOEgpRac8Rij+wFtWLeVl+d3NFnvUVpl3mJXbVXG0XOYBqiRtJ0YDtJ0ySGlaElS1pSGmirOOUIOKG2lWcqFXVhRSmM+/S3T6XfYuKPlE+vv/5+Yv/i/4o2jzJlx9w31+A7/6ucobURRVStWa2qJeGsp4YJukJYz4fyB6et/SdMGLZF81Lxx+u7f8fDNXzO8/iXb+R3TeOD08TtpWKsk0D1/9zeUN78gX+6ZXv2SFI8cnz7w9a/+Lcvn3/Hph7/DWC9F1bKQtJLURScckuX5R57GieX0JMpCKihDzV/g7K0oltOLyO5rY5ufJJ47F06P33P35pcYIyBUtbvjcvzEum6izkyFuC00P6ApbPMTqu44tco4TqyXR4y2hG0R66Lu5ttWoGXWyzOnYcdX3hFjZtg9UPvmS1Ehr5KWlldqBTd9dWt4Y4hcXj5g/cj+7mtyElWF0lYk7DlwbUy1k6RC2WBqatrIOdD8IMm7WhJNc06UnPjppz8R49zT7wLT+IpSC9u6oCRHghQD63ymFksuDTdMhHCh0UghdNtRBKoE+liL8wMtV3SQ9CivK4fnP2DzCdsq6ae/FWXRcGDKJ2png5XlE2b/lqwPmOqwCkarsQa2mFjXDVNnju9/z+HVW/T0Srh0weGHHecPvyWnwPj1v2TeXgiPFy5PP5BPnzBNhqXh9IlBax7/8O/gZ79iRfPy7rcopXjzS83l8x85fvwDOWWoYnO+FoPWaOJy4vnjH1guR9mmtYJuwmwpnSdGa9L0ThMlF0mQypL6+/j+HxmsZpx2+N23aDcSlye2+UyMcmlrbcQCWQs5RdJ6ZHn5QTbo6QJN7DulA+1l92jpDhVinHHbI+QTKW3cv/1r0CLD3+Ynjk/vGfevsHbCWN/h8YWwngjbiflyxvn37A4P1JzQxjAdXjOfPnG4+xptZKAD3e6gmnwNWpNK5goD10aRw5GUIq9efcvz40+sy4VQMoPRTKMHKjFKcnlrR0Yndlg7jH0Qrr7waZDhy7Xqt1aKGZ0TY8p8dfkjh/gOTu/J2yyg9+c/oN401OV7Ujwz/Ox/lASz049UXwjWMxlH3CSJfHRe7tCaaCkSH/9ILJHdt/+aZp2kJKpAOL3j0x/+I9/+xf+B09Mf+dm3f8V8+sDl6Z0wMUvi0/e/ZhgPHA57Xn76Bx6/+y/U198Qw5H7h684Pf4gn29fIl8HPbrK/ZTiRjh/4BS2L6yWVsVuZSRgpyHJs+fTI7SCNxvnPIvSul14+fRHvLOUHrA7Xx7JfbNZckMpgYejJB0zbitxfiauF7b5EzUlUQYrSSdXygAO5yAXsbxtl8/kcGF0mspO0utUJSxn4npiPj1SW2F//w3O30kaqdFslydKk6GzNhaqKEEwhhwX4Z/RSNTOgpQUyNrEDmSMo1bhZ6WwYYxmXc43NX5skhwac+bxmBm8YjQKRcHkyLbOmOGOq+mo91Z9g9xZqLXRTENrS6uV8sO/o9z9JfbtL2mn96gW2H76O1RaJVlTVer8SP7wD5hf/FvM5RNxe2Er/zsuH/6Oh7d/jrI7UGCMNNcpRnQr0IS7lbfPtBxYS2R6+FYK1ZJYXz7w+NPvhbNUVtL8TGuN5elHUXLryuXpB4gXvvp2psUzYTmhlCKvLyxxBmWJy4uwvrQwr0IMOO+gFSiZ44ffES8vSPKjfO9WW1H8IuFPiibv8nZCAdu6ENZAqResHTjcvSHVwugGXh5/ZFnmbjnWNxtuVZVtuwjnbDtSTCPGC9QkrCU3UGMklQzaYrQm5khBMV8+44Y9KIWqlRphDaDSRYJJilisp7tvAQk1qzmQ1xMpbCwcJRxGaWpWGDNIfZY3rNvJcFBLQp+oawq5pRvGpdbWof+RdT3hzchgPfMW0Eb3FOpKLgXbuUaX+UIesqA+irA+S5UEcq3ESpVTwSotzVtTgjasYsvc5jMqCyu7xlnO35ogS6hU3jZ0TSyfv+On9Zn5/Cy4GmB5/pGyPjEeXjH8d/83VK3Elw/U7UTDEOJGmk/U9UJKC9v7XxNbkGXD4WeE5z9Q1jMYx2Vb0HZCtcQ47UQhFBPOyJlVdcAZJQzIlCj5an+XQTwolLZYa9C6dsfJtSGS9MewBQyanORdt36P8wN5nRmngWF3T0kzKdXee8ifc3z8nsP+NSUtrMsTJUVhX1fhdaIsWilSjNJMx1WGHWGmlMI07YgxoLE4bylZrPKlyMCX1gPzrASV5e1ErRslB5pWlLjR0soSN4bxDmP38r52VmSMwulMtYKxaOMpORKWF+p4j2kNt3tAIQzlFCUBPOcMJuKNJ9dCrZEYnkib9Cn25tTQwkarFWsyg1W4YaSVxOX8wvlUORwOfPuzg9Qu6stSstVKXmeqkpRbFJRaOk5BIC/QByM9dNBaSymZyZue0p5uQoPSKi1dMQeC6KmtoLUMUeJ6oabAevqAKpGXn36P8w7X4i1oqzXht+mcJFAnZ8Fo5EpT14E4wFWFZFA1kfvdkWvGFIMqDedlSFaqwtpBFk+1kVLBeUtKuTtT5Gs1xlJzlcCj0jrCR1AhIUZyCmgFh/2BGCRIUptBcCIldravDCNSqUzTHSkXcgwMdteHTGJJLDX3gUrDWyN9Z7cb+8ERUyKmyOQ91nq2y0z2SbAbBaqWv6vUivPCd0w5YuyAUz3NuRSMkURdcaVVYi59eFsJKRJjoKDYUiMVRcmBVw/CEK+d7691d300cQFK8Fkl9iTxGM8dgSFL+rvdyHkJoOW58cPEts4cph2ntIlNtMR++crd4MeBoio5xtvASoZ0VhZ4SgJAtBaFMQ2xoVYJpSxVhprXZ7bUhkWGfrXJHVZqk2FSkxBI3YeptTVSrn1Z02iIM6/nC3XetGC2xF0gQ8BaMtpLWIyg176IeFoXxtQmfYQ2Uh9rY2TR1wPIUgg3JI5WGuM8o3es64pCbLS1SO8oAz/NMO7lc+s/f2vlXXVOkmkxjdZDOrwf0dbQqgXtemp9lfsPGaRpO2CGHTGsYnNtirEPrqsyoLRYro3MKLQ1KAbG6Q47yFml9XUIK/1DypXDOHI8PsosQl0VlFp657Dh/Y6MobYvPFrhUiq0bv2MV1jrhe3YmohAOuaiIdzDhmYa97e++J/z65894BsaDMuFn3///+IuPtG2DTsOlJZR8yMmzLR0JH74G3bGUO++pcWr79kIcw25IHWTQ3G7PHL+/j9w//VfooYH3N1XzMf3DHc/w/g95x//I+PDn2H8gXj6Hmt3nD/+lrSdJaQhr6xHKezPo+OjgrQ+k+MistwPyz+xrl5ZZOamJHPOEreVy/mlM57EFlCKWDWvzBR5AxNxO6ObbGdLk0vi+PlPHAyMg8YOO8KycTl/6nL1gnce2aZmvLMMzqJJxPkT3mrOx3ds25lKwztLDgu5iExVKdnaWFtI24lWVqCQtzPNeJTyLOePoqzKmWn/lmH3GpDGbT5/EMVJzdSmGYY71vkJq9+yrUdyODHuXtP6SypR9xXdRDlJa7QstmqFpeWMto37uweOLx+4rLlbhE0vsMXKNxjdhwfCkbHDPaEkjB9k09EqTjvCtskhnKIcyF3JqXPCvfufsX6ivHxHDis1LyLFT9/z6vX3TOOO4/OPqK/+Oy5/+v/g/+zfML75lzQtiZi6WUn9aZ42fybHwMuH37Mef+IbozHTAyVPDNMd6/kd6fg9CwmdzszPf6Ls3nB5fEfNUQDzVXF8+QA1kOeBGhfS9kQOK6f3jscff0PaZqo1OL+D5UJtmnHweCeFU8mRl49/pGThQRhrqPUKYBW+jkD6pVCnyWfDNYmzwvz0I7pWjseP6Ld/zunpnRQ3Ncs2Qcm2UDZ6wvZwJaDKXd/6CUy59MaAKswA71z/ezOnlw9c5pWf/XyQIUXN5LxxOX6QJjuLbU7bHVVbtIJtPfF8esG6CYzHKEeKFT9OciHWBNfmMzdqXvswpDPLUKgkF05R19RBSVS6v3/N81Mgx4h3slUMKVKM4+7uDqsVKUXCNmPdHkfDKIGYq365aSWp2zltlJRg2KG1Yx9XzMdf43bfULXBz58pNaKcpYYNv3xmIHL+x/83h4evqcpw+vBb3Ld/xeEX/xrt7tFWk5azhDE0Aznx8vH3zB9+Tb3cs7v/ObTI4eFbSj5w+vA7rK5YP5GWF9heWJdnwnJGqYJqwudYTp9J6yM1nEEZ5uMntGoM3rGePotlucgl1bRsrvywI2XIOXN6/klCAK5MiFLwziGNi2faP5DjQsqScNdKRBtJlq018/z5B3a7idcKatxzuYh9zTjhbQqPC5xzovDNgW1+gh7aY3pwzRXKf2XGGWOEzdUgzI8Yo1BacX76R/zhW0ASxHR/XmNacPlAyYEcV1Lc2NYTpSS2cBb7a0qsYeY+beRwYbOG/f5NL3QrVlu8kYCDVjPk2gNBFEY3chJrXYmJcRywBqYcKXnDaM0cMilXvNPA1QYkF7wEJoiaBzIpVayVDR5Ky4VeCrvtiF8fefP4d3jXhwQlymx/e2GfnpmffkTVxO7wlja9oTz+A3P8jD68xX/9K1K8sL28w96/JVeFMVBDZH76gbi8ABU73qOmNzTreHz3a5bTex5/KNR45qwrLy+fKVFAwNY4cph5/4d/z2Q189OfWM+PeBWhJJ7DhbiKDbH1AlW1inEOb50M6WtinU+dTVb7QkAeO0W3nXRVhFaQSmWrGVN6WIHShOUkDCI7YrTi+PgT27Z0iLtwNJ2T4rIW2YrmbWE9f6KkVZpr5wWcvQW09QxKC6jdOlkYbgs5J7b1IgVlk2CNOH9mPj9RY6YqLfa8qtHOkbaV49N7jN/jnGUaD6K6yZHaLDUvpCCJ5lo1XG+SW95ITQYFbvDkJPdprUkavxY4nT9irWPa3aF0ZJg0p/ORNTa0r4yDkUCOeEa7EaW92C3LNRBLiuVr0yjwdLGMjGUm//jvaPmICZ+ZL0/EdWbwgwyuTBMo+ssPDHc/o33+W9LpAx9e3qHqkck73P4tyo1Uo0jzC9pMnI/v2R3eUGvi8uF31BLZvfklu92eEgNxfuby/I60vvD8499ClXCEsK2Ebab1pFpaYbs8cTYV74Tb01qilUKO623BY4zBWs+ybsIDMparFTXHBaMk9d5og3ED43To0H8JLaFJA5GLDJfCujBOEzEa1vmZx49/Ehta2Pj84XtqDx4wxkjDhrA9bwynuHLuantpmkRxPkx3OF9Y15O4EozFu4GcNtL2JP9uqbRo0XpguXwWELlulBywfofSE60WYlxZ1yMpBaCxLWf5WnTDuT1KFebLC4d9lVTVXFF6EB6W1izrgnGD3COo/lkGXo4fWLYZ4zQTTlTAWbhsxkg4iiylJaxliyvGjT31UGGtE8sqoLRm8F4ScYuEY3kkxVoZQ22BmqQONcZhDdjJdL6goeEoeWV+2dhyYTdYSmtyp2WxzM8ffo11nhpPLKdPTHc/J4eFeHlBq0yrmnT5SM0rUSt0XtnOT9Sm8HYgLhea2nDOo71wTA0e1TIO09ExdJQNpFz6ME/+M3j53mPLEurW6HzWQRQvHWcgTMWC1ophGAkhSBI3mtdf/YzL83upQWqmZeEgl5q4HN+R41lYgX4CrQT7ow3OCwZCKeGFxbSKCyjG3tzDOAmHzWgnIWV9qJFQol7pP8dUMrZkQlwgB4yzGFPYQiFF4WIPzfIw3snQrVXW9cJhf6CmGcUAVOImizVlHFo1ZP/SSHFlnDyguzJHMAWqNZQqbPOFD59/xKnGMDj2uwGjNtbUGAdZ+MVS0XWloNgPHqUb+91Ohvs5C3aiMyVjqZhaSVnst1dEh1ZXW5z0mUqrbmutN+5lygqaDLW8c9KA14IzRpZC6hoYJEqpXAtkWRWorvyvcaY2R3PiBMlZkAB0y3yiB2tpSRDVWn8ZMBlFTRlLt9grLem01oriqzVUgf3uIPbpVUIoWv1i0x2nkWGY5FlAUoudH4h5o6bAOO76gLYyeN97iUpKEeccubNaY+oD7ttn1OTz1AbnFJQCyJDHWcvgPHRGW2304UVhtBPJGrZ1E2eRH5iXldrAON1TosUea5S9KQDFxmpwbhDxSNNM057WraghLsh82UNODKMnbGvvpxNO72QYGiQ1NaSIdyM0BO2FxXlRmXq/7+nhCV1BW0RVGx1NJ/KWu0qtsYbGpAzjuJcgyCRqSz0Im7TVyjhNuHFHmY+StOw9CqltmtLSaylBMkhQpSwdlTbd6pwx2spAshVUV7OaJCpPY6RmMbrbsY1HlYSmyvlkRL2KMmIB7uu/2pC/oyutZY6g+8JTUZu+feZaN7awobTBWgVaOMiuL3CVkiV1rdKbh5iwRtLKp1EUksZkjLUYL8pmSdw2ABgraCJtNLqKilYs2xIche4uhEJ3I0pACkYzjaME7U0HXj18fRvMXjm/MQZqyhgnVnRVC6pBXDeGwcry3jisc4QtytfQlPQANbCFjPMjw+6eLTzC9XPVsIYL424gH1diyreeM8Yku6yaKPSApI5eAk1MmXEYySUjjJbOFhXlk/RHa6Sh8cMkHHW/EwfoP/PXP3vAd28mfhbesX/5I6o30AoDNdCWZ0x4hnAknh8pf/yfefXX/yNtNVR3D3ff0uZPAn11I+vlE8PuDfHpT4TjI6d4we6+5q78Bc9//Pf4/Vc8fPOXlMsnzpdHrB3Fdjnco5sER4hkU4YTg3Ns50fOyHRdOHRV7KcdEnuVmfb7C+uESdC6pDTnjDeeWBPGDkzTnss5yGGkkO2xsRhvZBKsFNaJJPbp858w9wOjMjzPG+vlJBuRzuxoPdRCKSg1Y5tnvbwXzlQ4o7Rh5z0hRvZ3d6zL/EU22qokg2VJXlVaEYzF7x6IEZbjY4eAGy4v7/DjXhYMJUn6V1yopZLLJ8bxgfPps6R1vrwnbCfeKtkK187EE+uuWCN1tydQhQVktGYad6xnkbK2yXOaN+aUsU6z9w7vFM4aYgroUjHmJLYVHKpEVN865ZL7xYI88M6QciGljH76Lebx9zRtaHmV1NyYaFWh20r6/FuUc6TLE6eXn9hO73lKC1+bgVI3rHPo8YF4+YR/+JZ4es98fOTl3W+oJfP5T/9BAijKxuHha9bTRyiR48ffEc4fZWB1fJLDjwZV9RTMwnx+oeWJWn4PTay8jz/8vTTBVNm05UUa0dZwg5XUYy1qi3U+9sNTo7TDGoMxHqUjqmq01bdhiOrbyJwrzhtomu38gbRJKvVLlTRd70dpdow00hVu1ura34MQFqwT5aYxGudH8hZo18Fyrlg3UnJjW585nU/cHd4wTgdhIswvbJcnkSlrAYXb6YL1ki58OT6xbSuuKebzUSxyOfeD+QI14gaBwBaAK2cPGboZM4rs2nl5t5ts29blhefHjxin2U2eGAPLMiMx65rz8YVh8IzjhPMD3g8Mzkvykh+ETxETrQlHpiphMMSU0G7gm/l7Pr77z7z+9i8IqZHzIrbjJBav7eNvUdOBcPyAimdZGGwXHt/9BqU0u6/+AmUU5w+/R9kB/+rPKHklHH+kxZU8Fy7rsfsaT9TmiOcn8Jb5/W8wGlpaCctFouV7QeusJcUFowbC+VmaiSr8w/n4SQaztXSWiXD1lLZMuwM5ZlqJxG2Fvr0E0MrI2ba7w7gRVzLHuEq6lzLEHKkVht1E3DaW9YLVmePjD6As67xgrKisvHcyfEaaQuuGW7Nj+rOesyxSgG4jk+FQq9JZtVwJYcF7Kfri+o5dV76sl2eUtoxacTk9YdTAujz2wXUWy29rpDBzyaLKmE9PqNY3oy+R0Q+onohKtw+WJPw/qx0Ni1JWmH3GsS0zRldynEmxSpJXSGgVaU3A1dbIfaCa2HrK9EBF7Pgtd+6eqjLIUVYaglLRDX61/prT+z/Qwkx0wjNtOSIJ6YE6P5LWk6hiT3+izh8p50+s2xPt6XvunCUbw/r+7wlPB4wdGHcT61ZJ8zMlrlw+/gFjLXZ6zbR/w3p8L03HesbqwuX4kdQZiNL8Szp9WI58+u4/Q41IqrDwRy6L2GyskY2xAqbBiwVRSUFpkFAMhdwTShmc9fJMKHUbEJRaQWmMdaSQ+gBFgMYxRbb5iHUzOS6EdZG9prEo3ZimHds6y8+fgtKNUuNtcAiqM4NkWDGMB2izBFEgqr+UI8aNMmhLCy1f2LYT23KWdPImPLLzy0f82xEJntooNEwS+7puDUqglowyjuX83FVmVUDOWqySKW1d1SdpxGLj1WK7q+CUwepC2GZCiNTm0HYUni6gbaFhKSWSy0a+PHN3/418hkCtslkuNXfQs4T45JLRXpQGaX1h+elvcM5QO4pDUA8StKVqQYUX6tNvyJeP1LCw5j9hjWH59HvU6SP7t39JPlU+/fifePP2X3B5+Q4Vf05pifn5J7FEpcSg4Xx8Im1H4SDmIlZYZKjfWiPFcFvwaSUm9rydqVEGsWGpXTkly1GjtRS/TUJMSrsOd2sXPHTch5Jkcucc2hry1rnNToZ0tb/fKRZyDxZw1pHihfn0GWrlx/MTaUu9ERI+Z21Xm5GkgxonfN/Uk2WNdT34YMW6zjRGBv05FHLcaCjGsBCbKCEiCmsGST/NCbwnhBXnzzjfhwp5Y51F+ZZzZNsuUqOWxH6fu3r9QqmF+2lPqpVhFP5jrqJEoiYaFmNlUR2rKJaVhhgyIQSxammFtgaPIqfMFgLWWmLaWJfTbdAAEopVsiw2tNLEFChVFks5VpoTdY5T/cyvwtYavBZ8DIpSFO0aClO0qJC7+ry2RowF7xo1wenHv8WNO5x1bOdnlNKApqWVWhLWOVnmV+ELLscPpKrY3b+lxI1UGuMgDbU2w63RLWmhBAnhyqX0fkZ8Pa02lNViS9UaWa12G5bWGGNR2vd7aBPFbm/2rPPYYRALe82ULH1La5BSYpxecT4+Yk3D2R2l5G5PrNQQ0CicsX0IYCjddldylpCjJIv3lho5nbm7P2D9KAO3jgJIWZY2KUkqdW1Kvi/V8G4gpJUUxSKZ+zBHa4duURrXLM+GHzzaeNaLnHklBlqW1ND1/ESddqgx4exOhsNNhkHiQinillCakgPD4Pnq1Te8HD/z9HLpyiDDULP0NNajjcYoMErhBoc3sM4BN0VKlXAi5ccu1NDUeuWVgfB5FeYa0aYN3vrOleyL3h7il3JBK+ROarUzFDW1gPcWhyJvmwz0VGed9QFhf6y7SrCzKVG3O850ift1wFh64FftT1CtlYIMgWOMWD9IHa01tUog4P39vWAOwiZ2XQ10zrXpn9u0OwgnT6mbbZP+bDs/0RDV9TDsuJzPtKsdsEkPo7qaK8dM1YVpnFCtyZAHmM996GwsbhxBST8iCztww3BDILRa2ZYL0NW5JdNKZT8O5G1jP931+rSxrC+SaN66vrqV3m/WL/1O64uELKpN5wfQSu76JmdIjJlYGqNWhG2T4duNra2orSJPY0FVxLm3nfrgzFCLhDzEGDrXu3TVmzxnqUJIhbffvCWsC9Nu5HwSZlytuWOgxC5stcaPA2lb8d7TrKHkblc1mqHXLaVV6Uu16UphWb6gtPBikdAaY+3NYgqSSNua8PPFMUEfBCNBnVmUprrJcsLk1lXHdPwWvfYC21mAWsufoa1BFSv23Sx1hGKgNoVBCS9QTj6sNtQenFXRpCxsf2sczli0cWJRbT3sTcFuHMmlSjiLUVhrKKV2pp7Uk95PpBzR1mKMQhtxI6zritKNQU+knPHOMEwHrBk4HR9JZWW3m3qgYsZbgx88g5afSUlbZ01mxsOBdQsMDrYID6/f4NeVjx/fU1KS34/UBFYZwnqhqR4shIY+lLZWUuFrA281y7Z2AVe3VSt5t2hyl0hYWA95LJXSEhhLS7EPaa8CgH/+r3/2gG93/sDD8+9oOYlkU0HZVkmFC8+08wdiWkhBOHnl8Y/EHMm1sfvr/wvzp9+xHj9yuP+G5fk79JtfEU8fpeGPCWeemD+slG0h5shSLqS0iYS7JRSGePl8UzMpRZfgVhk+jcMtMKJ29pIc0FIsylbVUFslX20VVUlKotJi2fQGVzTjdNeLNkstI7Qo9hNtAMM43hFTZpik1qy6MsdCu3xgWytaMOPyojnha6lePMg0v6JqJK5P1CSXZqZg+/bfGMt+Gokp4ay+yV2pmZIrYf5I3Y6sJUnTow2Hwz3rcmE5P+GnB+J6ZN3WHrMum9HjywfiduG5ZNb1LMOC8zPOTwzDSC7CUqh5o6QFaFgzkZVM13OdSZtnW2d2O49mwljNGjKqwd1+x7Je2NaNwRms8dzfTSgSNFEAxiSMmFwapSw46zF2IsUgDZ2C/PInSZaaz3hvJCSjqyBrUyzP70jWklMi5c8oNOvLe+YPfw854rxl//ALXn76LebbC2U7cfr8PbUkVJVEpLqdcaaRjt91+3iFksnbWYrAIkM45ywx5RvToPZNGHNGKVG+5bxRq2wyci6kIsVV68nP2ph+iUlzdk11NcYzjvu+RZSGzfQUUts8KLFc0FN7lIWahbEi/J4CZsD4ETfIAEMCBSxo34dAm3CsnFwprYN5tXYMgyabfEs60h1IOy9nQlxJ4SIsqpaZ5xe2bZWLyshnEdcXsRjXwrqdJW3NRrb1jJkOkow1V+LyJIrbrky0nRtWS0abAWqGFii9mNXadGVQ5W7/ipwTx9NnljV0y4XDWagtM01OUphapUZJUqu1khF5+DYHlFF452Tj3ITH6P1IbhW9vIOS2F5+EmVLlmGsVgXdGsvjD7SdsHK2+Yjp6tQcNk4f/0DLG9pazo8/0Gi8oomFbzv3oVylVGkQL+V95y8UedzWF1EJxa3zWeQ5t4oe2nAtfpIwTxB1cYmbIAQQmGsuBWNliBKjFOkAchW3bk/VUtgBqYrSqNTeFDf691V74etAiUolxEwqZwSSW7tiSFSRoxXFiVYGZZwoI+u1JZILPYbQmUKaqsEbL1tta4ltEQttLVQtA8tlfpGauWVqs2xBAgVimFmXBa1qZzTKIDGuK9ZVsoaUI9vWIc5xZlteGP2OphQ5GzRFAMtNGFTKHqhsbGm7WVAv89yTqhFbNVLQOyVNoNJa1AtxAW1kGNMUtQMISlG0lliXC/vDW3IqKA3Wag7xzCnO5LChqv3yLOUNbxslngVG3RQ6nknpMyUmUjE4l7h8+gPGDszPH2ntA+PuAOHAFjIpyHmdtpnQKnZbKOszNS5ApuQVYx0ly1C2tSqFI50Zoxphu4giKksRq1rtC7IiX2uRwQydG6NN61YSaaRQug9/DVY7+fuK3GcpZ2qRJtn7kZxiV8CImsCKT4iwbUBEEny/WKxQWgp0LSypWoSNZvxI7riJ3W6CKoE0rasjvB8xzhFDQBnN6HeyeKiVuLwQ41nU+02GHbU0VAnMp0d2d2+gVSa/YxilcWolUeMqjbk1xM7dSmHGao1qTmxZTVhsReA4hOXENN1DgyWsXYUjPKLBSyDPuoYbokM12Mh4qzhfZsadJNVeQdNoYYCqIsNr6EnSVLSWhaRqVZ73Is+aBExJ4aqv1pMSiM/f0UoQd0Jf6K3HD2Q+yaArR7aXD5xyIqeZtUVRnsSVUqCdn3isiZxWwrqSWxMngVaEdbsV/Vr1RhRJe2yqUGu33GoltaTqtqLe/Mhx08QWpg21CY7ges6jlFjzlCgacoxoJYPoVuWzL6UyjCOgmS+nfl46Smus24JuSpoTGtoIS3pbV0wrOGuJRVJzRRkoA6OcM6WB68CXmishZWlgtcU4SeRTtK6eWRmUo1WIOXW7aBB0QaukbUYh7KVtOYnSsuh+1wexFLZKDCspZ1Enqo1gZAiaU6DVLEmZXWVXWmZQmtoSKUiYAzSs1YSsybGwrgrnClrL+1mNAlVxxmN1IW4zRjupSYxCYVnXIEPrVDFOFPrKqJtqWxtZalgj6bymD1iuZ4dCgs3o9blRiljoql/5madS0aFjPJyTxn67MIwHWWFenxMFtRZCFkaUdRPj/oHTtjJYS4qR6sArGZyXXLuSSnfboZEUyCID8i9OEofRVlRgqd9nRtqonGNffDqGYaQh9jY/7HoYVhYOWUs4o2h+kACNng5pdcb7QdS48reLdb0rm2q7YiVkaCMcTnmODLoLBgy6XTlstS9zJSn7msxZasPUQowb1vnuLFQSdlaklvDOkmNDpciYAjGuhG0TZnNXC2qqMJbTRlOWhrCTS0loLVbxlGLnYfXe7DoaUIo1bTKMvn+Fs5bLZZZBBRbnTUd4FKLSOGeY5wtMnvuHe0xLDNOeyyKLCWscwyh9Uu4WW9XvaLpFHBRNaXlGlbo5s+QzQWylyGKr9btM3DStCzokJKTVLzyza79ptCIVqd+6r4Zrem0n0t2Uado6lJa/W5BPGmoVsYh1hBCxgywQBBciqrZ0BfU7CSaQz6d2NbOoBkOQsJtcCqrYPihXjN6T8iZcwlxvSq4lbKQs9d7hsCfFCLo/N1S5V0ol1e3Wtw7DdHN3ibI4MvTh3ros7HY7lKoS9EJX9GEYp4lWck+zzUz7A7TGGCb5zJQgeKy3tC4W0FwfHCO4oZopraHdQMoFtMH7kRgD1qou+oHUGsPdA3FbxUZqhR13XSrVmjB6Yp1XjBlkca41g3XUJHwfowBtyBZCSAxG4YxmmWd5X5RinPYot+dw75nPL6AU+/2etC3EFGWI3JcYwhKXd3SLXSTULdVNWYy3mFo6w7fenG+11zrXuQaqB6MYg0KTGhIcqDRgqNqitMUNA2Wb5RzWovJsSuPHiZqC1E99cRBTZJpGnBcra4xJBoWdgaiU1O1Wmy62EFVn1Yq6rIIBaIBqWCsq8GHwuFEwErEU/DBinEdZi2mRsFWqkvfEOlk40Rd858uxq8M147CHUMXR47rK0Y34YULVyrpu7O733L1+S/qUSBmMt1grz3zOG85o7vYTxhpi0qRU2B08Wyysy4odPI1MTLK4za3hFIAmpMhutIy7kfPlhLae0UrvQkkobRn8xBo6oxOxqO+NlfpUgXGjqPaUnEFaG2KUZUdqhre/+CteHj+QlgvWGpw1N1XjP+fXP3vA5z/8e/zzn8gUalY0lcE6FArSQnj+oxx3tRBD4dS5cikuTIMlzSfWl0+07YVtvkCSLbgkoEHNGmqi1ozKhbS126Unk9DWN4dyKaUig7vWYNhJOqNRkDt4urZGUwajZNBXW7dNVY1zitobUJpwB0T5JwEXu7t75lNAm3uM2YjbCdUa426PouGnPU1JGlmmkTJE3SBEYjUo66ibFh6R6Q8IMlkexwGFbBBQokLZH15jOnxVEhedFOZJLhhtrhcIpJigNYotlCbpRrlFoveczie0/8AbN7Itp5sdUhgHrodmKObLEYwAV3MtqLRScsSNd3JAFtvTOpOwIpVliyeBajdY1wvPp8ttU+WMIsfMy/EZZRxWqa5YTJyOLxzUHX50xNytkzRyTRxfPuKd59XrX9Bo5CzbW10TKckwJ2VwRlOKbCONUtQcCDlQau1WCRk8PL/7gyS9KkVcTiwvj8T5hcP9G1SVNDQU4ucvMziLKqIYUNd0wFIwVoqOcgUVgxye/d9XqucXVlDaiq1SaeHvlcK6BaiIcqKnDmtlkQLjKpmWi6DUwuVylKGZEiZYLYVKjxUfPBRpWugFaKtfAgN0HySi6GwN2y27rQ+opYCJpWIGjcYQQhBLWWcLaGOIKbEsi3AztpVaK8fjI8aM5LSyzCcBzBpL047S4HL+zEFfN0BJotFLJdSNVuXij+cTNQeMbrBJ4Ektob/PoEoRdZ2qWCv2Ma3Eoh7jyrI8oQgMzvVsj8p52YhJY42k0nmHWJPTRq4N1blBtUrIRlhn0jaTc8RajfETfhiI60ZansWCHEWt2brKSCkkrZJMSUqYGf9kuKGAsJyh/SCf3yqN/uXzH/Heo+jw8yZcH1F2FtYQBZTbvz4ZXIuyWGsjPztkQ2e1bPw0Ss4HVVEqSSGAbPlUD49QTWP9yG53IIaNJcW+7JDisPfJnTv1ihClITJuIvcBvbVO5P7aQtKiJFNGhmlGYf2EKsKuGYaRdZkxHR9hrEMxSjGM8Ma01lwDTmSg7KlJmrYYC9oqWrf6ppzlZ4c0p9p5lLoWO40QVhkqb2foAxxjbU8GV+Qk6W8hbP0zKQL3n0LfrmkyldKB3yiFA4H55ohCo4zYUHKWv89oxWBkK62UnJXOGkkHKxXlD6zrgjFWggs6V2NbJR11GHYYO/Xwo4qhiHJK0UHTtm80JVm9ltiXHHIOpRhF5aobrWrW4wdAGkzVGjHMtNZYVxnuKSAmUWGWqkTFU+XfbU2CYIB+boIMjFpXw4utpWmxE1yfR6oU7ta6DjvW0hSV0s94LQek8X0hIoek86NYEIwRBaDTKF17uI0W60yMWNsbbAyp5M4PqqA9TYlVKKZKikFUIVbYPs5orNbk0LBWts6lNIZxQmknKjWtMdr0Rk3RmiGViKvCjapNksyu4SgaI01hydT1iB267WSa0NpT+72kapZzISeELCuDipzCbZFRW4aeIJfDyvn0SK1ViulaoBasGmlcOJ5W/OBpLTM4UbS3ktlipVZDa6JGiCFg3UhOstwpnSkkFuXMNSUvpXRzC5gOPKcVcm5iw+yJo62rgFWNaC0sXq0yrXN2tm0F9SOqSWp6CidKbZ1FKHdGq/K8Xi7Hfm8WSqGHN1SxDDV6qrJw8oQxLO8ByM+GerWKqX6XSpKdqCaq1FDKyZPS7bO1NjkHtUEZaUpzV65bZ/t9KcNs4Ypt0jR0JlLJlVKTIB5ywfv+55bSh2F8UZg10GhqLmJqaAqnLakUpnFEKUdTF6iSUKh7Xam0JuSG9xCTPBMoRcylv0NSV4S4orRnXc/iukAzDBPLMstwvMkAISbhyFZkKLLFyOhHVBEbqeqqnlwkYTCERZATLTJYQ1QQasFZRc4K4ySMw1iL14qYK7ZJgxliwPuAcxLIkXLqYVXyM8m1sd/vcc6wzV2hraDmhrYeax3buqKaUIaclXqoImeIVsIAFEMnt8W9qNCkZr+ywUqt6JTJRgax119aGao2fWGzQxtL2tbOPTUoJKQHpSgp49xEUbqzeiO1Sl1ZQZiESpQX1jpRdyGqRKW6ndCPks5eEk1p3HgQDlwfsm3rTIob+8O9qEFroVVRw9CHRY1CqyvzlrvqHaybsG7AYPqzpGg5dnWc1MYNhTaeYfBobfCjxyixPuYi7LOG9Buy1B1QWlO6knK/33PeLqiqoFmGYX9L6FSqkUtgCxesraJS1XfoYSSuK1p1vAAFlCfGrbPFLKjc06jl780lg07yUy0RrTzTMHK5PIu7YiqEuEmwRO4IFRSlNZzRDKMTR0/cJF3aHChF4Zy8QzmXbq/un2+f60mdrcFIsVOrKKNyKThtO8vMcENHIH1lqRVdCsYYsfqb0kOP5HOpcqB17l1X5xXBTdA5vq3J0vu6rFed36e6bRhlaPTwqf41ydJIGGraCHcPJXZY+nBAKUPOhdFJL2CsJMSKPdBiMUzjnpTyPxkwCeOr9sCy2iqDH3h49ZoQIsbvRIxQNlqVs8/oHkoQoyx1lEbv5J4IIeOsYdrtZHFnJMjO+gkVK0Y3UhS33OBH6ZPEb0lrlWU+U5sMUQc/3pw147iTWqHbhmOSs1VVYcE5N4F1rMcXtlg43HsZskwDw7SnNEkD9tpgnAgiQpDFdO3OPKW0fH67kWWNUGELggdypnIYDCk2Qmmsc8Y7qUW8NWANr7/+OW7aoc4r47jncloJQSzj6xpIYcVZg2paxB5JFHrWywBSZocGYxzOK0rVcLvDOpOtD/S1kcHaVS2Ws/z8tHXyLtPE2WcMxor91GfHsiyMznS7qNyzg/fyDCA/Vz+MLOvK/WHPMDiMFWyFsR5tIqOTZGOlZFg+jLsuaIrd/RCIKeLcJNiCNeP9XrIQSsH3MBtjNE2NWGeFfW4s+8OekBPD4IVhTUMbR9gyu3EEGuN4wFqHc1F6sygMV6VlKeinEWUt+90daM0wi0vMjjvm0zO5ytkhdasSK7427O92zMvKfn+H0o5cM58/fUAbeS4uaWH/+o5p2uF0w/uB7bKhtfAkjZXALq0aJRe2EBDkDvhhvN1NdO7yuqwM3lFSFJeCluG3sxr0xKtv/4JYKls/n5wb8N79V+dv/7Vf//yQje0Iab3mtxF6QpAzyBAhnLpVRrYBcTmL/LRkTh+//2IVXC60WtjmE85aFNI80xqq9m1f3+yLrJoOkL0err2wU1LA5SoDL2cd9GbDaAGpquuBzJWpghSE1uLc0HkiUmDWKtZIa00feljcsAMqO7MnbUmAt+OE9neY0tjWnkirLdpAbpqYGs0Mtxe51MI47VnmCxgZ2ijVIavIyx2DJKs4a7u/PNGaDIxaqyxrZH8YGac9rR2pStSEKWZOcwDVcDsZGMX1mfk0sYWZ2OObVW90xC7WuhUXMDLMMeMkW9uWpNBuDaUbunYgJ5Xz5ZFWJAVsi9IsWNtY196kNXDeUVIWS1OViPqYMzbMHO6/6QV1JawJ09VoqSViOGPsJMUu9Sa9LxVKzLg+oL0OVmofbskF+oVDFLaLKJBoMnzNGdUixyd5YZ0fKCnIQaQ1rkvjRUUkyUhKSTKR0p4QojwjIiaQX0220dZ5saMhklyum7+u6ou5CLMKMEqKA1GmdZ07siEppaARhYK1VzuBWIqUGdFGEVZ5TqGrN6Q0oTSFsgMtJimWrcI5ueSsl2FLrBKMIoWiEpVVa+QGzlkUhcvl1BURkXUVRUurkGuiUYlhJoZNiqUk6iZjHJrKtpwATQwbxshFVfvWOKtGzeEG6q4q0ZzC6T7IbE34mI3+rAvr4PjyQVKcSiAsM2tchG1RFVo7RpdJVZqsmDLOyTBu6NZJIZ8gG2hnUVQeP32H0paHhzc4LVYF75wMXHRDd96EVk2gqbWgVN8sduVt08KwELC5DDnC2m2rVWwvaZshJ1Ez1kIpqls3eqNSZICYu5Kwdd4e/acqz2ZXKbXWmw/Vk4ulCMi1YU27KV2ssRhjscYyz7MsSVTrARNdFWjELqr0QG2W/c5xfHmUs04LSqBUYeH5PhQQW4c8w601Qg8I0FqTUsI6OcMU0thfWTPlGs5jRQEh4HvVm6C+GW+FkmKHBxtq7rJ1bWkts4YsNqkmnMFh3OP9xOXySQaXtaKr6kMkgYzLoLmgVepcyDNeNVpX1lorvBthTSqUEvWnNEYW+pDOaMV+N0loyib2E6UUzhsUqp+lBu+m/i6LuiVtidJtJKKEPXJ3Z2lNwM+lts5GyjfQ8JWFWboaQZ4F1be6RuwjpeJso6aeItt5timCQlP/SdqagOAb1ETuG0yUEpWlkuF/qXRLgthoU9wwVnW7mQTfaKX79yJpryllUYFUhfGeVoOcu53t4vwotpWsBTp+VZF2R6W+JmPXjG6ymS4NSY9rYpnSqtyUFtY5LIp1uYjloyuHjTFSyCn6Qqyfh1qjupUiJrGmtJooyODLWBn0GX0NI5AF1nWIkErDG92XiEaSgMNM1Zbdq29ZzidogqlIPRGwlnwb1mYTcc3JJryW/vPO/T6S5jGlFWpDacXxeITW2I3yuW0ps67SkHjbFzdN3+qXlBLWXEM2RG0hcPuZLZw7q0c+HxiF29N5P/+LoBnkuSq5ddWIBOHIcE3OPrHXi+q4hEs/h5qoj2qjptyXZAInpzQsWZQQCEeJ1tjWCypnnO1pfoDzA2ELfaigbuoYSeITGLVWBsUVMq4Fhm10r+PcbQDYShL+aZYhOUqek9LxGK1WvPdyphfhUF0v81o6ILwLf2Snohi8lzqhZGnKrO/qaoO3WpTi3Yrrx64UbY2mCinL0FcpWURqbbHOM0zCf/LOQA+QMkZB7QqxnKkx4FwgxoWaElUZMqL+iSmhu1WvclVxyvuTc0EN/cypuQ/WrKjCGxgjNfnL5ZnQYf3GyHk9DuY2VK1NmnSF2L6ddUzj0N0JgRRFmWe0LM1TnGkts5y77ct8SS9EyzN3VcipJqylUookgWrBjlitb/fb9X6Fq5JOgRIWVakNYwfEMtW68lkYTzLshqo9bv+Gdb5g48q2Lt3iDSk2tK6kFDpXS0uFoMUdUlMUy+ggCBDh9ZouCJOfY6XgvSfGzDjsKDlQUbe7x1jFYB3LuhK2lWkc8dO+L5ssl/PMNBmGwYkKv14xF3JOej9RmtzX18TIWivW+X68aUj0RYs801IjV1Qfmu4OD+jVsW4XUN2WXjK70WK8l2fDWRoG6z1q1cKW9JawHDHxAi3IMDGvrOPMbtz1paYMd0U9X8RqRhNumJZ3SpTvsqCRgJcENZDiqbtCJD3TGkciizJRNWKWc2S/82gltW7KlclqBn/A2Mxuv6MhCrdSSlfZtT4k6SxM6+Ud7wrNUjLWOnlH+jMq7hlRnV/VfrU2lJPBrtKdjZ3l65ArTkI6bmm5vQ5XIO8j8uzL/18aetWE10gXLjCIPbTlJPgAI8vbdZOaquSCIvXBchZ7pFIYPTBfjlJbKY1zI7VALopxFHvjPM8ijvASDrRtkcFLzVVEsE+thefnzwzjrtdv8uw444QZOYhSCm1Ylo1GZZlnXt2/Qk87cVTU7iJCnkPnPaoFao5YI8IBOTMNL6cnUtwYp0mWxDmR4yYKyBRl4N0XjErL8F1qDbGQ0jTWi/Iq5YJzlmWZpUbxA847Hj8/E7aNw/4e57rdebTUKgskrSXbWdTi3W3Ql1oibtEsl42QSmchSp1ndQ+wCBshKqZp4nB3kPNVaw6HB6wfuH/9muVkWS8nGbC0/gygBL9kOyKpiJ239YFayaKMjbHitO3Cjs5Z7CICwTYBLeFtD7aIQc7Tfq/UKizkCW6LDJViH7Rnqa1N6d+3fO2lB2rcPbwmxsS6XrrdGMZxR45LH/wZdod75uMjGQlE8R3p5PwgCuvWuLu7k0H71WGUJDwjd8bzOOwIITC4sZ91sjDbthUFPWzDMu4OfYmb2e32JCX80GEYcd5xPJ1xThG2M3Y4UJviMs+8nu4x3lO3C9uWePP6nqYcDXGI1JoJMWD8SCqVr7/5BT//+a84Hp+x7sjLyzPztrLzjvvDDqsqzhlyMQyqCw8KKCq1GXHSXft40wNuWsUo6QFiybQmrGRnREFunSekwP3rN0zDQOn4hGEYum36vwEFn3C8Vpz1KK0YtBM1VWuUJmEMrV2VAdeNrdgUtuXStxy1M5hKPxhNL7wz9Mtyv9sRYk9oaUjSjrO3AVjMCec8drxjWxfq1qe8Wt/gytKw0rdLhRJqt7/pXtSZLwoFRH3SciXlhh+Es9To1l/rULURezjT/uEtwzhyubxQmmyx717tcA7WVPG7iYxn3CeWy3MfmIF1I8M0sbt7w7q8SPHQpMD0zhNVQdkd4+QpeiOXTFpnUJq7h1cYP7J7eE3YFrRuxGbADGAC1mqWZaMmmd7b5UUu4autyQ6y+dYG5WRzSysoM6CtI+TYt+WVUjdZvOVryqvwg7z1hF4893kEMSOqDgWpFkxu3apgyUWegd00MFh4eXrH/u5rKV4QHmLO0iikcKEWMHak1Z7E1a6cOvncdbfktG7XqU0KSNWLQgGXysFttaIYSUCOCZQqOC+Dmi+vkkzXVaNv/eRiylG2prUA2uCM2GRzLrdNbkP4GsZY2bo4R1XC+KgyRZbCvcngyeZ4U3GK3UyGoSASbWmOBc7autpHNsdglWEYJ0rcqA10Q5RO2rK/f4O/+5rSFJfLGWdVLwYtw3TA+YmwXaQw7n9vKVK8VyStyFiP845ti9AMy7pIkdOhr7Um1u0i7Ejr+2ZY1FU1S9LaFtfefHnhxxlu6tActw4AblTVrSmldOWlnAmS5CT2rEbDag01kPOCHx1N7ShbwA9GBheqEZI05pORXFZrPZN3wnQbJlHcGUMOGzFFYpI/TyuRxL96+2fcHb6i/f73IvXPtVvYCsbIwEEhw4dW5bLJteLMlY8hz0CukaHDnCUsQveE2orC3IZ7UvxJGpUoqKSBKd0mKbY7adBzSajW8INsyyryZ7ZcyNWglDT8uv+9wtiRZ9oaTbqmZTWQxEsZxBjtMMYJoLZltG7M5xln5H93XjiG27qilMN73c9IOZuFEVX7+ylvUe3DKPhijVSlg8RLlSKjb6pqLTjlCSH1wYwop6FDiREAsFhWpEG3XmDQ63ri/v4tu929NMQtCHNl2gm7sNv5pAh23VISiN4B8qyEUGkUFFUsbnqgIn9fbZVx8NTkaCXJcqJfxHJH0c8Y+bp1t6anGFFOlGuqNXK4ENMihcU2sxvvKLoy+ZGchfmT+5D3xuJU8n2nIgMI+Sx6klqV4Yecl+U2QFVKoRFLe+t82VrpasIk6iElW13r3G0wovrAzlrNfv8KEFvHOAwy0GqFpq6cNFkKtaS6Ak7efbqV6GpButqFjNbCg6J19YAsNkZj+hBFkUth3N2T8wvo3BlRXS2qJdlezlXZWFvrMd5jejsld5TY7IpCzjwlPxtl7M2SlJIwYnKujCMY7WhdQUOvWWKWZy/3Tb9S4HqQgLOesM3digd+HHFGVKsFGdLEmMi13gbbrauNrkwdEBth3C6EuGCSovncB6ab2FO0nA27caAUzWmJqAqjM8QtQufTVjRhmxlGYQ3V1rAGge+HBCTGYRJe6wBu2KM40VrpSjaNMfI8tSZLP6vEQnUNQrk+e6pCTK3bcRp0S2vtA18QlQrKkFKi9ufzioYYd/dclgtGKUIu2K6MkuWYNMPy76tbHVZKZ9VoUa9QGsO4l4TmkDrn7GqT1F0ZKvVOlyjeBgum/yyvtig3DrSiOuPIg7I0ZUCLdXwcbGcO+V6TFErODF6a4au9WNKjwVQZsuUoSnRrLa7z+ASzoVmW9ab2sc7L2VDl9+ZtI4WIH0ZRm9SKdYZaorhaejN/VaBmhCFtrRZ2l7X4YRBecf8cvIPWpAmUVGHhuUoonMPZiVobIURC3AhRnttS6NgNy+iFp7TbTcTtwmW+sN/dU3JhP03kJqrvS5EQkN1oxdqtxf4qP0vbl66q42g651NrSr+XdEd8aG2IuXTWsyiCNcKq1Mp2Fc8ggW/KkeKCLUVqUy3DDJR8TapmUtiYpgla7E1TDyCwRjApeHIS67z8+7mfr6Y/Mxbv5c5u/2RoY52jZLHLjqO/YQeMUjK8noabxdD5yr7XgtoYUojElKBpYlhRffiZcwVnyVXh7CD3ilJUpFl0XhS9wusSVa/pDK1xd6DmIIzJCm4StvGyLphxQoUFdCOXhHNix3O9z6oKSo7UIANvGWRpqrJscRFbuYZxlLGB9h6nKjUptJ1oDQavUcb3hVimkXDTQN2SDHd1HzYrSDn090OTC1gnKiY/iRvKKocv9IHcQqkSmmh1Y11WSnnk7pVB2deU66KhD05qfw9BzjNBGsldU/vCL2dhfStdbwMF1evTm3W8s677qLvfy9x6VpQmV0mNVQ0ycifn3kvSypd/szcs2tg+9FAMQ8f76C8DHNkzXC2RFu2sLLC0phlLjIVpJ1iIYZgwzotiTovS3zvDGiLjOIj934l6yQ8DOTsUothv1hF15JqCu5/u2E87LlWGiaa7yqwVVWjOksBttWW/k6GZ7yFRwyD1HVfOcRYWHX0gnovwFGMKjOOIUpp5Dex2O1JKDH7g7v5OBAla9bPTENMVq6VvA2TnJHRn3E+Ul+duz5VlkdYeu9vLwt0YLiHwi5/9GXGdienCq4evSWUjLKvcPc6gne3WdVHNpVqIUVTR1ihKlr7xEkUZb3aFh69foa0DZblcRLDk968I5Znn4xPGGQ73X/HycsQ4I4tUbbHeMx1eU2vtvHDd69SNcXAECqmITTXVyn63l6XLtYYxoqZ2w464ntgf7khx7bV0lbNM9X62o8UMBTtYXAjEVBj8yDVZWhuZn4jIxOL8yFdvv+Xdux9orTH05cJuf8+lJBFYKc2yCIbGGk/KQRK1pXjAecdyOTONA/thZNjdibUeeS68NaQsNfy0u4NeEy7zLIs3Z9FasCjDMBCiqPlCsNTW2O0m5rkxDIeegB25u3vgspx5M04Yo4kls5xfSHETGUMXeNAEBSXvd8W7Ae9Glnnm48cPvHn7Dcsaacry5qufkbcjkyuMZiMtC5dVAvWMERHK5CcJ4mqagiUX6fOc9cI17j2sMhbdpDc3pjJMB8EKaSWW5WHH4/OTBA06exNmtHqtFv/X/9L/9d/y//9XvQHd5cIx3TcsB6iQB65DOW1EAqq6f710q9i1sHReiiHvvSg2ULJZ6s3qdeNsrZWGQukOblSSbGU9h8M9h8Pd/0IZdU3AEuCp7cyhcpM1C19B1FYpJwENX20kWrObhKERtrUrCRGuSwE/3fHw5hccHr4ldRDtZVnw3suAQk9UPTAcvuJw/xV3D9/Q1FV2bdBW5MX1KgU3RmT42lKUDOFqrWwhCowawzQ9oJrw95RW5NowbsKP9/j9V8TmqbkQ1sS4f4V2IyHJxN45j3EON0yYzivowjdybVTtKJ1dJKqDytbBw0qLraXUIpeXLljjGL1cAsYZ9juP71GnKSsJjVEwTF5Sh1rjzcOBw27gdHqmlIBxDjtMMllPm0hfNYT1QsnC6qmt9YJa4YwM2ETt0gcBXbau0F1t0PrARXU1ie7Dqy/wda6qG+DKUhHFg4BVm7Z4P6K48hP68LArS4xxfUAmRamxjquOjl70yjOnMapvuW82CdlAhxC6SoB+QPpeENOl5JIGZrUMAcfdgcPdPcMwEEOUn5G05304pPG7+26/NAzTHbVpcpPGJiZJJPR+wljPOB3IqSfZasfgR7TWDNOh2+MKYLvMH+hDsxDOxCib/1QKuYmtMfWErWvQQ+nqNGuuqgApomrfgMdc0W4k5T4Yy7LFvjYyWitqK5QSxdaq5ecbY6KgJamJPgDRhrcPA1+/cux3o/xvWpGTpAbPlxPLOjN6g9WNbTl2aLtiW2fCtolS8OkDKctQuJTWFWuqM3D6M0VXaCAsEqCD7q9PEzclKa1he7Mq7MTrYFoG39KACsy1NUm3U+bafEjziLZYN/bitIp1w3rajZWmbn+X8BpVD7lwt7RRY8S66pwXDoQRdbP1Q1cqSEDGPM9flg/jAa0dKUljbf0kAy5E/Zlro2HQyqKtY9ztccPENI1Mw9i/p2sDZ7t9pfXGVJQwOV5VMz05u1VKaxJ8oKWQ0ka4IsOww7mBYXpAa2m8t02UuMZ5mrKywe4Mkdrfa4USBcLVHlmFfRm7ai4XsYJsqfRlkcF2vENpoiAyTp5JqxGVSQfAXwHmzo3sdnfkHKlpAwohpm6PjZLy2/lR63ZBQedeig2M/58zzLqBcTyQiyb3wcnh8Ko3WXJe3JR51w3a9dnsz6dzXjbqffss6o7Ot7PuNqi9NtbWynJCLP+IqsNNgCEVeT8Bsf4ojeoLAbHryl3m/SQDOOv7/Wy+JMh11SNKywKwq4SuNifdldLOj6LURMsQtdstcyk3y0jJmVIyKQq2QUKjstgUm2y7pYjzkow2TvhxZNrtROWTExKw1bpoQL7nkqV5s8bKcLrK/2a96w1kJmZRHYplsS8mtEP7CWVFsVcKfUkhHDz58YjCJaeKrmIXiindnrGh38vbmjmeE59fZmqtvNo7dNOsPSgCrdjvB7xT0CKlCkOvNkmtpknwwRYCtQmXsJYmacTO32xexlj5mXfFpDLXe6yrpfiSwHetN8VRYG7WNdvf8SYf4225m3JfgNXa673a8RNXi43UV8MwMoyDwMfHCWMdfhjxTupB3e9a70aGcSfP2CDnu9gTr4OhfgciLKLWrgsWextii7JIfm8ttS/fAO0Ypz0p1xvAPOV+lzU5Sx8eHrg73OGMw/sBkKHxl/NfOG3OOwGrN4X3E1qJMidnMN1KWfudZTv83nUMhb/aRovwLXPOhCAJkaLyV+IocVJ7lNqTPRGlbkoRhSx6Qky9HhFu0RXrUmvn9AJ396+5v/+KYdgxjXumQYY1BUhJnldlBvl7WmFwFu8M1ggjNBfhs+UqoVnrthKSnKkV0NZ8WYD258Ba25cM/Vzv9be4FfxNdU4Db4cbm1iGch5jHdqNNKWpSjOMB6mDlO4LC2HaufEO7Sf8IEOFVmWYo/sAWUJYdO8p5H4c3CjnYr+vpF6eONy/xvmpf22iJNVKMe52XNl4OQdSyQj8v9effWB8DXxR/Rk1ptt6nQT/eDeKO8dYWmmABe0oSpS1zog63NzS7vmivLVW+o3u9rimc6aUWdaAUlbq+2stc10YYYUzjuL113/NtHvV7+YqHFdlefX2VyjExiqvidQErRrAkYokeebupGlZkEFVWfSwl4G9sfhp3wNVBPvRWkVkZO22WHNuxPtJBBzW0hQcXn/Dn/3V/5H7h58Jk7sIbqk2CEEYftaZW82ljdxjUj8qpmnHfr+nFgmkuzL1rr2jvgoBtNxlgooQscH1vqTXquM4iYjEOqZhYPCixmp9OKeUqNjkata9v+iM9dbrHT8yTZM4tfpzaExHB9Dw3gvjrHP1ShXLn+029mEamfZ7rPPs9nuc9zcL77ZFmpYUa+iqLCOoHOs9pTTGcY9zo9yxTt6lYdzRgMenTzhj0Mrdhu6ms5Gdk+A/KjLgQcJZ+jyJabfvIROCCPBOzsDaFx3WO/zgCdvGeZ5v7gSULJHmZSbldHPJXSsZ3zmbtUpycUgFZUdilFouJTmjnZPe5fWrr3F+R6sK2xLrfOl3dqWWwDKfhF/az78SAzEsLPOREDf248jD/oG73QM7v2Mwcte5vhivSvP+4zv+8U9/ZBgH9vt7vvnml1htCMvCulw4n45Y5/n66287t1Pu0P1+j0KEG+PuDud3TLs9EmSXAXnHrbEMfsC7AWed9Jva0uj4nlZ59dXPcOM9FTnDShFVr7W283Ibr9685XD/6nYmqn6XDsPQFXeuP2eyvDFa8emnn6hFlrK1FrawkZLYY41xjPt79vev8dM9rqs+hXfZmAZRMt/fP3A43GOcI6eANcL90/a6CBS3gbGKUmVw6AfPbre7KeqvNeI07YlJllJKW3JFPjs3cplXKo2Y4au3f0YpkJOgAGqWpZicEaJ81UqLOKm1LswR7ubXX79lXU98+PA9Ty+f+PTpPfPlRcQURskSwE7c3X/FOB24xvZoDU6L80xuAA12lDwBfU0nbiKqQtSt2sgiXqvGtm4s80Jripfnz1CD4D5qR4H8t6DgU53XJSmJuitw1Jf/9P2HbOoU2upunaQzcFoHsF6nHI0c5ZK8KpmMLDYwSqxU1o84a4VxoWWAUovI7U8vjyiFPLBGlAHeflFXyYfsCIjlVdurRU2KH1UbajDdktMLW2Da7VBUtLL40RNjxSh56Qqi9MrpRCmFmFJPn9nhdwdSFJrI8fjIbn+HGyZUE2l/qRKtPR0OnF8CoLpCsLLEzH5/h+Zq+YkYJZd7VZ110tk9dpgwg+N4vJDyhh0cZtizf3jFOI28PP5IaeCNQJTVIIeGuV6IWsMmKXHWWJZlZb+b0MDQffi2y9gVPWWsFWru6afKoVVBkRndgDZFLgRlgML5spLROCrrtkpBZQdSDKzzM9aNLJfP1G6N3II87M4nWhGGldgYuf2sRPGQbsrLK2T5ejjUeh16SAiGVgZt/G3wInB2R9XCZ7sO/VpP56sdOCwDR2mAbE+fk0ZG2EnArWjq+2okMMBQWrfYNoQLojTWaflz6M/X9bJpoLS9sdemaepqJ+EBOivMRWW6Xc84hH9ibqpDpQzz+Yhxe+7v7sW+ePxEq1sfHkjxVN1ATk2g60pJcldTXUEqKabbumK6fWObjygF4yDNYM1Xm7IWS3HrKjtrJUDB0osoC0aGLzEIPzN3nt0qMkpyDPjdDhCbjTGWnIJA0L3rVqhKjAshzISSSEVh/SjsxxDxTotqh0aMYrVotTDejdQmzUnNAd1VPMtyZNsuXcmib+DYTx++4/D6W8D0zWWRQ7kpvBGFIkgz/UVxp74M8/jyf6+8r6viVaxDUoq2/nuMNWID78W6NhZThL3WVB9siOxEznsrl7J3YqMUDsyVKVa65knUV7KFthgzEGOSS6hdvy7bBxvtVmTGGPHDxO5QuMyFqQf0yHBbrH7aOLQJKK2FPec8znrheZqBcTqwrjO1ZJxzEpyQgygfrKOkFVpl9J4cA9Ur/DRSW+fQ9VCKhigjatM440Sxolxnag1i9fUe4Zb0lO2+QIopsoWZlAOtVJq6WpgMrad0twqxZNDCgtPGEXMCdbW1NZqWO8oaRy7y/JUqknutLd5eB1aiQMglsqyJnBt5XHHTAW80lxaIOQgHFPqGO3f3Qul2tG67bPWLzarbWUEUYKJktMQQ+5DnGmCRQYl1UdS1dOWHNM0pp46iEEVnLo1h6I1iV+OJomDs/Da5flvn4KIt4/6OcjmJUl8J9LylTFNiCaIPca11XBOCvfPIzFkGja2WXmx5alMyeFQG+jDaaEO2wiSV875glDRQ10asZUleE2WrnOuidLKibi4Fq3W3ArbbUP16lrUszDoZ9BaaLmhE/Zpz5HrBXNP7lB1oaUNhMFgqCWUspSrWywk/TmJtTfQhcsaPB7TayGmVe8wYrOrq5iLflyjFRNkkljJ5OOIWeNg7vN2xho0YG0Y3+bNNww2Oh8OE6qqPmBKjl4GVQ2ysMUnggqTotc6CEXVJa/W2ONB9aCCWYhmwlx5wpLSop2rLWOO+KJquuIXWem0kKYzOeakrumJWmE8O1e3Ixg3SfDfLbndgmaUVdt535ZXtrurWOUIjtcSb4l2YtsLfM84JnuI6tDOmN6PyWVYlQ7ys6m0waa3tyv7uzug8vlYU3ikylvP5TKOn9GrVh1AyCK1VlgDGDaIkrqLqlOEd5NQbYuu6PbP0wakwqVKI3L96xcvzIyklsaLVhIRoCTdTFDBy59AbA90TBgUlMt2ezZyvd4/uw2hP6wwnuV51b77lPTFWiQJcmc5HbQjLyDLtHzB24uXlM7VbCXUWe/YWEzlHXu8tqi5S16jGsl64bBu//FYW1YrMPM+izplXXu8LIQgjVvXBs+48Y9qXAJ5aCrFUpmHAGkdzPSzCatIW8aOXXbKWQXHTBuccNGH6NTIMoyzajMcOe5TRzJczw26P0zJYbjmLss67Xqapfq9XtBmk5tAFZR22eFISdZMkQcqgzroJbegDe6n9RJkjilxnHcpIiJBqdOWGcOtqSQzei/q6SJhK2HrabmdKWttQSP9gjMfYQZwXxkqv0mpvlvekuFJLZhzdP7EMa1RubCFirGfvLDFvDN6zrEu3wS+y1DYGO07kKhb6549/wqgISurasMyixhv2uN095SJoknU+M+3uQWl2+x25RvSwQ4eZtG3UVnBa+gXXGlrJmQ+aabcnLBdyvlDrQtWVcXQo7Qm5YbxHFTDZsIUFOwjH8eP732NaZtjd4ctELY3d/iAMV6txw4hzjnUW9V3r/GFBdWRRatvumuiKJdWRFs5NEtrYe+naGhp5d5SSFMwriqK17iKBzsaWrqO1a9UiKIfrElprUYDmWrHdibA/3OO9pZzPGNXkn5NYWVtnSeeUeyCQfJ/TNKF7T0vvA3MK5JLx1ssCzBpBZKAE6VE7M7wprBtYl+Wmhh28BHKUrnbctoXDYY8fDjLM8xOqSZLsMAyMgyaGyy2owhiN9RbnLa2NhCh33DiOQGUJM/f7HVQJIcy54pSWOt1P7LImlYZzE3GTofhBqf7ZDOSYcbqSi9hwW+vsThTWabZU2bYZNNTSmKaRAjy8ecunj++IYb0NlUJnaIdlwRuoKWGtJPDWPqSvtRJ6yFrchOMYtsttkTeOe5SzsAR0n1385Z//nPVypNTE3/yX/wCt8earN9w/3PH89Jnn58+8uTtQgoh9XEwYf5AlZa7sDq94efpE2DbGnajRlvNJuIO5sNvt2e0PXE4vXLaNV6Moredlgab45pe/YvIOpzKXo9iLbUffVCrDOAiKKVd8HyYrxMnTqtxfh8MB6yyfP35E3R2gVbRJDFqEKiEGJi/Oi9JENe3cKEvJuEkgWRA8DC33vldY1M4YUb1HUaXtD/cs54xqRTAeOdP0lS3deZVVllrT4Cm1ycD2zWs+fVgZholp2rNsiVev3+LHEbVe0Eh/PS8Xcooc7u6Yz8/4YcDaN4R1ZT8NjNMdChn+TeOOLUZ2/o5QGuc5cnf3mufjkRgr07Tn7ZvXDKYxsKLqyjCOrFkxjIbReZb1graeqsA0zahHyKI8D2FhP70WR5NqDMNErpKYrpvMT0ptWO/BGO7v7/nuu+9peear/T1Ce1T/bQz4rmqpVCVWWFuxwbbS+rZKmhVtDM6NGK0J3bZ7zRev0P3m8k3pPhxJOYIWRo/pTUBtopYQ9YQoKZryWO/kUh+G27Rea2macpYNivOSRFVq7ptd2chfE+2aksZXosClcBqGQSbJ+z3bcqY2sS/EILwAbbxsKmoVy5BzOGvlMLRWlHdFY73GO8XL03vevP0FL59/wrgR08APO4wbGXcTcTU9PE6xGwxxORILvP7qG9yYsXZgvpxxTgplbQbG3U6spOPEG7vj0/uEux/JJbOcn7nMq4D53SjqBq2pNPbTxFY3QJqwUmTDLuql0q0vPalLicw8poK1XU2pNHawtNR/FsZQqvCYWhJG3batpCQAyv2g8NZSUlfOxMIwwttxxNodF6UhLd0uUdlSZOopfN4PNxVSKhGtnHAAlSgNTJ+iV/KXwveq0jMK1SrODxg3dFVW4pau1JtQfVVBIVJb72QDpW2XcWtpcmiivHHWolRjC7WrLy21JoZp6NtoS6oyna5khsGRllUu8Gkn1uEodpqaS1e51f412+7gbN0yk3H9M0gxsHb7m3fuZhkQJUw/KHXh6fEjKWeGYWS5rOx2HtODMGotpFLwItvAaeHWVeNxw8jlcqRS8WYQ5cd1q6Y9KIdAgC25ZQT9aMghEHWUlDwlSoqC5u7uDXFbGcaJGBSmf60oQ05RFDla06qmYnoiHIBCt87TtIPYqFpmvURKSYSzDCdzScxroDZZAuymCe8EvL5uAecHGfKrxjiMlDST48I8L4hCQ7bdKcxM4x1KOVEKlXbbxFw3/blL4U3nWqW4dkXEdbEhfJXrO2Wtx+jO+uzWcQnOqTflh7FWUvy6CsY6j/Uj1HJLMtValCq1mNsypBSB2auuKhTrpixMTB/+0Ew/x4Qj1Md/VNotjOb6vE3jQNO+P9/hpgYRpYs0Ys45+f4at4FhSJnD4RXbtnA+H2/MSO0s2jjuppF1DdQSKKkwTQPUyjR4Ude1SkGzxYCoXiX8QmmNH0Z0hVJleGCNJqcN28Q278cJrQYGL1bzrCJFdSB57SwtLG4YZQjZN/uilGxM475/XfmmJAsxoq1ni1mWLTrgbMPZO1LeaEXQEeM4UWsmpSDMUtPVQ034fYrKtok1jla6ikY4nbUUcojYUQZfMQRq30S3koSR1T/g1tpNKZWKcMdqAtVERS4NvXAgVRXVu+nqdWUculRJ7OqDJBGWXFlF7fq4cg3XERuS7UwnGKc923JCOFyiHrXWd5Vh58v1r9M74QrmrqYTdYnr6Z4dh9Eazg2s20IpQRQKbuzKxMbpdKIVGbhZ5dBukPcLhZskpENpIwO7mihF9UFVtxH3ZEHnHaaJ3cgajfWO0Ap2GKFWYpy7mkg+P40RsLgVHpbuql3rfFchK2JuWKMIcaNaQ4kKPx24pqjHGKnLJn9et2UKuLzSqDi/J8Wz2P5zxlvHGgPKWjnT8srz8dKDZWRomJIwOUOGmjIhLDjb2I+O3eQwujF6KVSNndCozh6WyVPORf470FoSNZYSG+DtrFYJrS21D5lqFY5ZqYqmu275n3xPuis3rgmOMWyy5OmKuGvtpXvIiXEa7z1riBwOB+bzkdLZd6WKZV/Yr9KMW+corWB6+Ia1ourc7Q6iRleaNWyEsOK7ItG5gWWdUT2h3rYqyZhNmnClBUpe2zXnUgZhTQtn1+ZKqwatJB20lPJFcdakNgIoPSmwFIP3VhrIKEgUWXJ5Sl7Ywsbd/RtRsGjF6XQkJbEmpiTvhqoJbQZJKc2ZaRowTWPtRElVVNpNU5Xh/vXX0Bqn4wuNAtZCunJA5R0zxlNrxnoJbbOu4ymsoXQWmnNWnBW1kOLGui1sIUrTpulqGcXQ3/+DB6Ml7EirRoiVLVf2O7Gxt1bZOhNz2QI5N3ZbFUtxk+dTzhRpyGWoZrF+IqfI4EQIIO+09A6lCDvKGkNISoa2zuGGQc75ImyuLW7sDw+0ZjE2Q6vMl4Vl3RjvQNsd4+DI20IrsTeidPXSgMQBNgwFZSx+3EvQTpUAIH1ldLqBu1evOT9+pKmGUmKZdl7wI9YaShIFp3D+YNjdiXK0aKb9nTxvyO9pTRYgUmOIKjAG4QYOo5N3RuuOhLG4UcKMBj8yn1fhT/aBvR92oCyDd+T2ZeFt7MAwQkkRpRy7vYSbaC1LausmwvrEtHtF3BbiJqnxITX8uEdTOH/+CT940Zsaw8OrV10dORLTCqibs2h/d8/l/EIrsXPiFBhH2jbuNKQt9QGVBG3kuIm9GOHunsM7arNYO6KNY3/3Nb/41f+e2jTklbheKLUxHfakpnDTXnAzIeLc0O+9PujXUjfnImgEcYJVrsE8IiTQOG+pVZw1rUQUV3a38By1lqWVboUQY6/huhsBJFREG7HV19AXt5ob9Ecj6ekKoHQlM/9f0v6j2dYtzdKEnqk/scQWR17hHu4RURFZWZRRlUBSDTCgAw0w4xfwi/gz9OljWGFlVhBZZIZydcWRWyz1ialovHPtG5hlJ8uPWVi4+7l3i7W+NcV4x3gGd3evODx9FeYekHIhUn5BoVQZOvs2BAvBEmMkriIUpzWyGTfUJBy0a5TVu455iYzjhmV9kpK7uLDdbNnc37WUkpyvQzewpkxaYLt7xeFwwFp49foV6zJxOZ/wzlJzJvQ9vlNYJSYQbx3OGS5nORNux5F5unA+HxmGgT50nM/PGGuxFYZ+pBQR7Wo5odZI8B3u5p7T8Yk+DIybPZfLhbGXRIlKzRC0RKyzUh7Zysfevf+eZVk5nY+UktnudpyPZ3HOvXnDjz+tvPv2N/zpjz9wfzswT8eXM2VtrPRx3HB4PkgZ0FwxqjDPJ3SNrGtpojmUnMirCOHeGei3pAydlQLMd29v+fzpCyjN22/+Au86Xr9+w9PDF5Tz9MNALoVxI6UnuhT8uGOZTngvw3wRjEXMlw4Di1MQ5wWVM3leuHv9lt46XOjY2sbb7j2DuUHrWy6rFLU4nNwF0opT4qwLRmHRrTwkE63Ga00wht1mYDt2Uk6YVo6nmcFZYrB4a9n0gZSkAGmej8R5ljIw58nRyhnJOvrO8+7uDmvFkKKVlETZ6nDJUVIERJSvJbIs4jp0FuKyyh3dSmLJW0PKiYcvH8lZnrdh3DBsJDWU0kJcV5zvWlmI5/lpfWnPPp2O3N7csRlHoDJstlzOR9Y14UMHaJRzjJ0HFE/HA8OwwerI9nZHXGYciqoVa9GEHNExoegw/QjWUeYzJa3MSWFtpbPi/q4lEZvIfDXo1CiJ0WAVxkky8OnwRNWObnfHuHlieToBSfoQnHk5l/85f/5sge8aG9DGkLHYl8lvhdzab7Q4ueK6krUWTsgqh6xUCl3o5DDaXHvGyYbig4A4XbDktIgF33YSISkJZa4uBIv2PTE9AjKpjjHiXddEEnkAQ+iFU6MMyq7ULHEp58QVs8RECBZIMhXWcnG51pSXnOVCY5xc1I1M4b3XfP38E5v9Hb7bcHg+CcAVRdYdu03P8TTRDbfcvfqWzx//iA8ebS3eOmIDt9IgzSlFYsqELuC9x5uOaZ4oJVF1z93dKz5/+ZlBa/phaGKlYZ3PfP70M6fTM84H9rfv6PsR6x+Zz0e0hsN5kkPvGlEbmTqXWlsMxsok8Wq9RqKJFBH0JLrV2FCqymS7TXRyyVDWlwmIRiCtOUfQmm3nmePCtAqTKjjD0PdkdHNJJZTKFCVigrOK4AzTdEKPcmks9QrblpZQAfP/Et0uzUVyhXIDLy2guj2TKResD9R0dTHJpfPK+1FOFjK0le+l24atKjlD37kWrQQRVcqL+GWMfK1Kc1xpQ46JYb9nWhZUKWgqwzAIIwuZZNvmFLjGwqZpRrmrO1FL66YzGH29GGjKJHB+baUVCS0xTxGmRX7rho7zpw8yPe6E0xH6XtyLRjdHhFw+C2C9w3V7oHA4X7C+x/cDyzyjqzjArO/phpG4NIaPFpeY1oaqFnEhtQuTMZW+ay3BtYoDpl6juBKtsC4Q+gGMZ9hsZQnImSUuoBW+6yjzRYRcrcjaMG52mGUhFTlchpJxWt4j1ZoYp+kiMR/lqM3huKZMP275/OmBlBa6YLhMEzlnOh+4TBd8d2Z9+NQuORVdBSxbqyxPIifr9jlN4sRBuDq/wJYN2kp8QyLAMtFVTQSpSuODo2aJGIqjrDY3lhR7iI1bNUs7XEsoUBptLdbZdlBuUV6tsH4LJZPWkzzXSgSjNSZinGVDbnyakktzvMgBsWpY1ohzcnnabG+ZLo8SpcYwjh3naaULPcvSpvs1sawr1ntc2BDTwjwtKAXeWYZxS80S3a5KGgkLrfRBFaJSUDJLTBjnxbUQFDFOlAK6alLR7LvAkoTjU9Et8r8RibmhGlTV0kapLdZqul4T17ldbmiMUmktLBWqNpQmACzzgkX6SmKWGFopUnxR0kxKq4gszBJNRS5WQYuz0fgtpBnVSkyUtdzevEIDc5qE+RcXtNKMY0+MUuQwrwtvXr3luB5l2q/bmlRbYUabLte2tlkXuJyOrUSiOUXrtU3S4EOPak5ltEZV8xKtiim+iNW/lCjIsw00l2ZjiDonz1+b/K7zJE4ldxVNJXZnWhHHMFiU8XQ+kOKCd4blNJNLIbQMT2pxWkVrZVYCui5KBMmx9+Ra0bY5I5SmmF+wGgopAFLaAiJSqSb61aqaKUcRY0GbwtA4Qlc8gO86iZ0ZTT5PDRkhEa+rAJSKnBWUFsddqRWDiFm1SAGgbS5CaW2P4KWBViLzlnguKFXZbQQOrSqULI4kazu0s4IgsBVtNFZ5BmPpuo5lTlhlqNUxx1liQSUTC3gnzm9lO3bbPXV5JNgq5VVu5nT8CmZse9AVT1GEXZtF6E5FhBltAwYphQCNtl3jhgJKE1vBUWmDMiljog2frg5l+R4pCtJEaUMqL0e4xpNxwnBy/iVOWotM8J2XFvhapAjNN/GsKoUPQQQ/DUvNgre4DuO0cIjiLHwdb21znMredy2b0tpRERfxlb+FEjdgzhlnrFxeSyVTOc+rnBO7DnKS17VkjAlNFNcsa2QYeqwVPIE2wws72vuA1bKOX84nvDfc3NzgQkc6H+hCT4+SltVSX9IuxsjZsutHQSa0UiKlNGtVOGOZpxVU5HB4lO+rGye4yCU0F9pQRc5OSonob7xvruY2GLCW2hy0WUuMU6E4TxPzLDF3aqEoEQqcM9Iib8QFmBrL2ShD5wwlSRrjZnvLPD+3KLhcwOeYqAzEmhhCkCbwNrAopZJTodSZ+uLwFKdcLln2uog4wK0mG80iaU5B82TZd1MWIbsozXZ3z+OXn+mDxDCvcP3T40dm56FWNpseb0fmacIqca5a6/G+o6aFPsiacXWbSRpJPr8KcddKOoQ2SJAznBjsDQpHqTLMoQoHNVNZlxUbZJAQlwvjuKWkRCqRw2mi3+6I60Su4hZflgXlAglD37vmArbEecHZTn6umun67S8uQz9KOqINkYwVrlYtE7tX77DW8NMffwdKs8QV349tAH/h7u4eP45kZQjOs9WGmCPLPBFoA0ot7uiHr194982OaY6Mw4BNszhVTIsIu551OslafT7hwyCmiVJJeRURrc6kdMGZlVoTWiU2g2ZZpNDrskyE8ZbL9MwPv/93dNbydLpwfPoECuJ6YXvzls24Y1kmhpv3oD9gtMVZi3OCcojrijzlv3z2rf/FnWmMFQeQEe5XTG2daTH+lCc6L67gVOE8zRL57Qe0BkNlXcRpa9H0mz2Xw5M4e70nrzPONu58BbQRblpjFd/d3UJJUF3DDhSuja/aKvphJISedZkwKlBNRQdNToW+34ASs4sPgeenB/pxgx+2+DXTdzLQLSdh9g39iC6RbujxxnCZFjb7G+Z5pqAJ45bvb2/5+MPvuFxOjONGzk85MfShNaG3O8bo2G635DjTd16Y81nK+XbbjUSPa5bEUZJStZik4KymlWkWHragixzeWTbbUcqZ4ooe5E5jvWOdJrpuYLPdoS8nTqcz25tblihn+X7ckmIkF8TAk1dylnvg5TRzc3PDPH1tcVCLUiK0YGRo2HU9NU+sa0Iraa6OWe58Gkk6nC4iehetJIXRzlG7/Z7buxv+8Lvfsdns2O12aCVOxuly4v233zMMI0+ff2KeZ6bLhVorQxD2/dv7WzadE1epKiQ38Ktvv+NyOvDmbs/5+ZFyc89gM7su4ExCaY8GnPkiTu/b2PY+MS8J6qajasFexUXJXeftDl1z0xg0sKMwU9RK/SaQ9MJaDGs1PPuKznDzzR22ZrwtpKJIKFKdMaoSmoO1lIDSb6kohm6B1xtAE2tljjC/6iVJYBJpK+lJ1e7pJnQs0xnfGabJsawjmbF1OBRSVZQ48fZXb7lcLkzLF25evSWjOV4mlvUJ03V8f/ueLw+PjEo4ob2u2BIZTWH79hU+9NJMnRN1s8VpRw2CajscL7x/+xaM5eHpn0m58Ou7d/z84z9i1pX9vicncQIXgDoznU7i1ibjveVmNzCtibVoMkYQJkYz9h3LmsV4lFbZq2qGnK/WI4ryONux2205TUdKXqkxkUzF+mvg/3/8nz8/otsEEpALk7hCSpuLyWaIcVQl7A5pQasCI0c2bBFEhCNgbLscK8VUxG+yxEQwV8aYwncDaZ3lsI3GdR0ozTiOwggqUeJNLXN9hVBKREmhjJMyjiWh9MsVmnWNdB2NueLRahHRxTkoVYDhvpPpyOW5iZOBeYrc3b0m9D2Hx4/NcaFJMbHZbblcLqzzSb5PHcV54jvh/eTKZrt5iUNMc5TFvgmZa65sxg6T5SA8x0j1HaEbGYaRnCI+9FgU56/PxOVMXM8sy4mnw4E3r1+TY6XWxGF5Zn/3lu9vb/nxT79nTTIZKch0tFS4zAsb5/HdwGWeGccdr15/w9PTV1w34NcAeaHkwhpnNIV1lQu58D8upCp2VJS4+sTNkenblEtrRXAdpVpud7f0/cj5dCLG1jJYM84opmnGOsdQMikuIrq296oqLYeOIs+Ta5DtLFkZrPUiuLQ4om7NwxXadFQEtSucNxctnMc2QZF4YCFYmSat64pGGpqNsTgnB+lcDBAbV44XsQulqcqCllYmo8UpmKq4MIYuSHOk1sKbMlZYeVcWWal0nTj2ahUOS8lJ4taHk8Q0TidyLvTDSImTHBaKuNhyVlymxObmntPxQGdcO5AqQtdJO2kWQaQfelJjAZZytacXUomMLuArzHmm846+H+XZmA5o5yhZ4/uBFNf2u4s7VFuP9ZoaxeHk+4HOSbtXjYuwF9KKceFlCFC1IfQ9RinWHCmNT1UQwcI7z7xM1KrxYaB3Hct8QZ0T6xKZU0Fq5AvaePm9YmXou8bYrJwvJ3JeeXp+kuZUgCqXt+B6SopotzRBDWlE0hZqkhhFi92KACdMnLjI60ZVL+4453qoieBVc1OJWGdsEGZmc9xVpRrvRyKvmuaobG5OuZwK9Nl1gcFsXhgyKWeMljIgozWqsVWmtJCKDEi0VhgjcPxSpIWzIOJCrXJRUco0Pp5pEarIPLcmXxTGdRQsd/c7llmisF2/4XI5IEUMPVfuk1yyr22AHSlG4pq4nM8iJCr1MpEz2rTYUsGYinISJ65n4exo6xl9R1zOoEAry5oym82mifVQVcJbBTVjXcD6TtxmxmJ9IMWzRA9QqCpOR9U+wyllcT8QWS8TV/dgN+5QORFzEsdgA3OjjOxt2uCsYV7W5gRwlJJwRi57wRnOlzPWj3ijWXQlKWm4neczOVdCGISD2Rg3PvQ4l5mXCC06ovUvQlzOBaU0yzxRkhQgXJ1qth04UfLMXOO7WmnWaRZXWamgKn0IlArBd8QoF9brkQ9ooPckAo0VsLGxipKa86e0YhelQXvmZeF4nugGTfA0t3Fu7LQmCraLcgiBHAWLIWKrh5ybA9G2y+0FmgtPt3hcQZ5xWgzeuRZrVcKPubYPF2To1A8DtWZKSs05G8lZxI3D0wMUiUYN48A6zcJ0tVIDqIzmfDigyeSUX2LLxnmMA0USllWWoeF2u8OGkXVdWjxTHA7LumK0RVfZF9GGbtxymSYKhjkmSmytqRXKKrWGYRjYO01YHMtlIhcZsPXDhqfnE3f7He+++yu+/PDvmaZHgoPjecY7GLZ7iaJZS7pUlFGkWllSlsu7thgM55iwWv0L14Cj2EjJUlpRAOM7gUbnJK9rkYgPSBmRbmKqtYYUZ1KucqYBYJJDvWpDOGXbYMK3VsUZFzpqhO1mS0W159+/DDSkLEOcMjmJ2K3a/lBSpOs61i5wmQRfIq5CAcPnUhu3zAl3qHGNUs4EHyhZi2JbJGVCjQTnmJeZnJRwf2oCxFXtfMAYze3dO47PD8Q4s9l2LEsiNGFKypsUqIQynpyFZWrcyLrMIm5pwUrM04XOO4IPbUAOw7illANSdpTQaKiVeV7EbVsy8/nMZrtrEXnPeZoxxrG9aS2xTtwPSkmEyljT+F6etVyLxq54kcaJBXbbLV2QAdd1mK2VYm2Nh7VCShVsoAs9umZiXAQFkIQhGmNljVGcaDHSBY1JljW2xvUqQzBxYsvAKgSPxjaOlohoci6WwRWNdVSLPGfKSKGL4F08obdYJ4JnyhkbAmhYU8IETwiDNLPO8wtXMStx06lWPhG6QWLLPjQcUJX4tJFikZxmYkn0vZgFSs4v55xra6IMWgoxi5ghKIU2YGglQxpZB/LaYvK6iZPpSFrb5a8UaUOt8vPUNtAWQ4MMY5wP9OMWKcGRC2CpGUpuZVCWabmgnRcHtXNyFtGaYXsj5oFlIcttFasrT19/wvnAOAROswxy8xqpRWG6njQ/czidCc4T+huM37C7eY2xmoeHz1jX83w4st8ObG9vWazmeDrR953gXtYTixODh66RVBI5rZwuR2ixcmsUqkpsfuxe4cd7pG238Onnf2SaDlJMWBLURH0Qg8bQjXT9tr3uCm2vTGw5U8rnQVNyYhiGa+QMpaShtrRmbYXGdwPWGKbzCdOJW9KaIL9DTFjbcbnM9F1PcJ048xuLeLO7Q2vNfDoJ22ue5XuGkaTlvVNGhpi5VBE6jXCQZU6nYJWBvneWsB3ou55lnrnZbcTFXAvWW2KubDZ7Sk0YZTldpOF0s78hFhmQnKeJUgr3r14xX85QMpthoOsH1nUR8W2NuOYwN0azrIlxe09KC85aNpsdOS4467Da8vj0FZTm1Zu9DDlza0Ivltvb1zx+/iN9cOQm9sX5LGKfkqK1nDJdpwl95HxZKEzstzt2+3u0kdb40AWWeaUie68xhq5vLOdScc4Rl5Xj+UDfB7R2TJOkxDbjhi9fP4EyjNsN0+lZCoBKxbqezW7P+fAFYwz73S3n6SSDUOPo+x6jApfygNEJhSXHxLRmnNcoo5iTIDCeHr7y3X/+N+QUOZwioR9wRgTkH/70ezpTKOnC4dMfuNtv0FTsOvFf/Zf/hoef/sDGXzB5pdOZ0WtMjjgLdVxx639A+4KbfxCMVldbOkJRogiM12I31VyyFdClPfvIQEwrTV0a+sIVTI1tGFzb+ivJS9VSk7TBRS4KtVUS4W8mnyuiSoTbQkEGWZIeqtDuReQnXvA6VKpT6CDokVoqyis5X1QZ7JZS0aNGc0BtaQgQKWUpRUxH1EotP1M3oLYaZX4m5ozZGv6b/7ynKEOuP5DuZdgVa6W+ftXMYAZle6p2LKVyCI5le8OaKnMuXGLm/s2e/RAoccYWaZl++PGf6S0M1rWOgZ6aojxnBZZYcKHjvMwUH9g6g/eOh0nhqmae5V43L7OwT5MUzxmrITeTlJZ9bLMdKHHhy4c/cTd2rHNEGSglNgPHn/fnzxb40CLuCRtEDt3XRpecG1xXngGZTLW8taj3BuuDlDo0x9XYCgK0kliHMZDmA0kpnHFY3+H9hmVeJCaCwmqxb64psTw/CIcIiCmzHXtpKTNNnFFSYBE6j9aa8+ErWol7zXqHcbZFg+Vg5P2VwSJxuf1WmmuVC+S0tEOr53w5cZnP8ntZOUwqDcvyTFwvpHVlswktZilV030njLWSZs6XiwBshy3T5UBeZ3a9px9GTscD+5t7pjUyLRdKPUjDzDKz7QdUa1zR1mL9gNIzRskFL2WZ4M/zxNu3b6hlZTo90YfG5WqRDR/69tA51vmC3eylcbUb0KYjrpHsE1RDwaK1RGGXdknMaSXFqU3MDBhD8CO1JqzJlJwYe4keFBTOypT/dHnmHDPWd2gSKQljYEkSIfE40jpT8Si1bVwciS6l1qrpnG8RKyiqNehV1a6tsoF71/gQ5xPUQh90a8GUibXSUgBgjEer/HKAU9f/39xqqYh07axtUddI1wVSFkeDUVWsubUCMsXyIRC949TKC5QSN0VKWRonjRNuRkyty1OaeHIVaLBMo2ObzCt2+zu+fPqZ4CXGvnE31ApxfsY1ZqTTiX4zkNcoHIy4Mi+TbKbaMWy2WGfZ3rzhcj7inFzM+2FkncUBOm52nM5HgrsuvJVxu5NFr99SqnthV4VuIMUk4vey4ELgsmZcN+KM5XB4og8bYTisF5LWaKMaVLUSvCemyrC94XI8Mi1iiQ/dgIqJdZkhT8zTRCwZVaDfKGqqGOUI3lCVAFu11RgTWkOUIq4RY8X2fjk94v3I2O85XR6ISSrPh87hg8TCLsdzq4S3vwDZi6xjIp5oShMa0I5+E1jni2ADALTD+IAqGhB3mtKKZVoxPuC9Q6G5rCd6L1w51aKyGPl+qcHiBQ6PMFlqlcN9zq3EQTZsb8VxVeaJsNtT0CjTLnJorO8IyCHXtvbasordpjbQ/O7mhmWJrMvCON7y6dOfKCXSDzvu7r5lnsWVbKxlM25JaZGSgSTTvaqgHzes88ww9M29K/iDzW7PuiZCPzBdDuIeNQ4pK7UsqTKEgRQn0voLfw+lMVqhvWVNghDwVnM5Hdnd3hO6kZJXzqcDMSb2t3uenx6Zp4kwbMlyukfxi1CGMhLD0q2oCRGEYy6sOeG1CKfkSKlSjmF0JgSDKlqauIuImblW+q5DVdUYPbnFr4UZmeJEyTIkmpcW02lcO6UTximm6fzCDJrmq8tSnMPiyBW+mPNtLYL/vyg/ShoNxY0sF/ZSCiqXFnGWy11qbp+ra+vq/pd/vmIxTQxWrAncsOF0em7PnkQgSxGOpLWWaVl/KWvQGudDEyKSCKEkUsp0XZALujHNqQ4V+XmMs+QW2QjDgDKB54fPEoVUwtxKMdO5gNIKVWSdWJZCrRFjlbTQNYZRjBPawDxNuKHHeonaUyvOgGpc3VgrNWdU4yvW5u621stgqsq5pg8SvVriLG6ITIsR6peWt37YELMIsCklailSopAyykgczFpPzI0RZiPbuzcslyNrFW5MHzyFTIwXDoeDNDOGjn7YSvkEldN5YjM4gsn8/Lt/B0U4l5cMfTcw3HzD23e/4unLJ0punFWkITFqXtrfclwxxrLb33J4fiIWhbOqnduEwVVRON+jtWuC8oIUVOh2GZbLgLVSXKVQEu9H2h5nbRF+o7hjuuDxoSPHlXVZXoRrZxteAokrU6UEwxkjw5SkWK/NekpRUhZERXN6thVT1mTVSmK0DJGNgr6T1120byPNgdqwrhPe2ZffVVtHmpPs51FSB5031GKaS3Gl67YvxR8aOQte47tGKVQppCrib7Ca4DumNdF1oQlZheenJ7ncNMHeGHHPd14iztCciFpao7VSGBuwQXhKl8ulOT0FUQEiOK3zQhcCa1xJMb4MoWj8xVIrOWVpTw3C/tVcRb6KQZoMgwutpfBCTCtatQGSVlSkbMNaT4nSyOhDIJXEPE/0Xc/xZCmsWK2IsUoZ0bhhs99xfPhJhPImMIqQmdG6udKVtJ12naNgsE4EdIlXOlIVR/V2u2eZL+KAng5wEcaYt0acxkEYbaHvWSLQ3l9rPdvb16zziePzg6wHWoqbbBgoaYISWeNCrcIEXJYZow0+KJZ5woeemDI+tAIV6xqXTJAYFd1ainUrreqY8hnrvQyYS6SU9rorLXxZ5+T8qhTeaaZpQuvK5XQgl8pmf0M/bEjrKmu1MtJq+fxARTOMI4pMCD1apZd9QwoMIMXEMj/x+9/9A7d37+T5oMpZJxeqHTFdJ+7N4ri7v+PDTz+jsjg65/kzm3HEKIeyjvvX37LOwhPvQ4CqeX58Yr4c6UwljDeMN47D6cIS0wvjTD6TItA5ayjJU4sjA5fLivcyaDdknFNs9q+ZTk90Xc/zg5hAUi5NkKhQEqfnTwT7WgbOlxM3+1uunpJ1mWSvVJrgOqbLMzlJI2foBqpyPD5+ptSCdyLmdn2HpmBrZDf0GA29l6bfaZrJQ4/RAzf7HfubPU8Pj1y84CZubgNVK7pV1utcpHSq7xxHG1vLvGUbKpeaKRRUyWw3I7pmVBcwugcKcW9bAYjB3uywWuF8x3SZZX9eE5tNx3R+QltN2Bh6HZimZ+72N6zzxLjt+Hh5QuXIt29e4awm6ErXB9zthsevXzDeM5hbbOi4TM+8ffcNp0Pi+euBV7vXXC5nPn96xA8ejKLzBq09VilqXnDOyPDCaB4+/UyJC9X1bMaNOJXbGVYrzWazZV3EURmjxOGtMUzzwjfv3qAVTNNCXBd2uz1xuWC0wlvNOp1ZvCd4Q0ozhYizmsvpwppOvL5/Q0mZx8+PnE8nvvvVr/jhxxMpHrC24/Zmz9fHL+RcGLd7ctFSBKcUy3RhWRZ5XuqEqlmG61n2blMrc86UasTdnBNUyw8/feB/9b/+3/Dx85E//uP/h5oiNSZ++5vfcHj8wuOHr3zbTfytOdPphAngf/y/80plbJbzg6KiU2vzRqOsjNCUaXzsUtFVNA6J8bYIeheA0lxhsmeIc7sNpQroKsJfTeJWRVeUtNu0QQUtISLnsdIOj+VKhkFI4yjTEnKqyXalmQMK1xLLWgq0Ig+q7Bfy7whe6MX5376HVXKHqpSX/1GhqSlLXF5pDFWE/LaHtUMZOTVuXzbt965YpTAtUdc1XBUoynJBRTmzdLUypAzKUgxEVViUwb17Sz4fuN8887f/ev+CeEnZcVwmdD1JokfDRSkOF8U4yJnajBsUWpzkoef1znKeM14Pcvb1wk031hFThbyg84rrHGE3ENcJbzTzdJahS5DSMknuqfZ7/Hl//nwGX/sg5PbgGGMpV5ivkYOG8b3AfAdHXKUl0dSEcR3WB865SJtYFYdL42yz6R3rdHzhUay5MAw9w80rljgR5wtaS6OZdj33bzasy0SJF66NXCGIU06iroolSuPv+fTMukRM42ChFEa7f8FHcQ3MXOm88Hz6YSQYib7Q2ILeWzSV0+HCb/7yb5nnC1++PFGKYo2VQQ9i5ew9427P8fkr3dBDzXJwHDcsU+O5ETg9fZJGXS0tVcs8S/uOMiij2N+95vHjH6ne09/2KOSiMc2Rp6fPHE/iqhnGG7QVtks3DDw+feH56Zm+G/DdViJCGaxxBFupqYFencGFDSEMsuFpC0bRj6MIMc6Qozh7nBNWj/Dp2gVQS0OmXAwzmUqKC50DyoIyluV8kYw5Fkzhbr9nd/9r/vT3/w+WJYmlXZvGlzOsueJqQRmpDvNe2jOV0qTmymszA5TWGISbFKPwh7y17WcS50ZcBVIvkGxx7QWtmaallWtkChVvLSWX1rAm7qZx7JkvtTkFJXKX48IaJ+FkGRrDSK4fpV0W51UicjlJTM07J3l9tBx8AGMUy5pY1ohZV25v91hrJM5UDfMygbIcnx8kRjnuMSmxLhPeOqr9pV47Fcv9q/c8Pz6QU6TmVV5PBe1aJDHHtAp7ru+oBLb7V8zrjPYLUwOalvVCXGaqNnTjnhJnnp4+U0ph3Nyz7UdSTKidagfyntrYAxlpg6ZFr+JybVysrEmmqesqbW+bceRwOFJLfnFaVsAHD8uCQgmbYc1oZzifn1rjXMGHnm68Ia6LAJ6NIZaIM5axH6nGYaxhHG54Pn3meHlql0LxMdRS0Bis7YklyaZ6XeNqeYnLSnGLrBe1VHIWfpaIfw0zoKT18Ro/kjZqcRQbEwTEraQR0DmJEEu0R3hbtjN03Uhc5mZnV780kmkrpTa5MdlikjVYa2gtg9o65ssZrTVdN7AsUUSlqwenAZglembFRZcM795/w/l0Yr48y/PO1bVYMEZxOU/SwGY9JUq5S6nStu26nkplXRLTtDIMA+O44Xi6sKwRZYzEZBuMyfgeVTIpRqzRnOeFWqFzUmaA8WQ06zIRdMHoxn1UEILlfD61dmDJTg+bG+7efMPxeJAiGz+gkvBxrhE+F7xserYnbLaYBrgVIU+LMGvl9yVnclxIaRY2SRaIcFqjRNOtorO2rR8gLMcmMBhHyiuH0zPbcYdWF/oucJ4WcVpqiW5fzge0E4ew9cIp0YirMjUX+HWqWcov3LDSDjPX+Jix0kYZV2ksu4LBZXgtbjKaI8h5Eb5LaTE+44hlQXuJSa7rLOUtVcqFrge0ftywLKu8Pu1nsEajnUPXSskJ70ZiSSLkKSUis5LJclqR1kgth/1lPlNSxFuLMVIs5Y20i2olIGjvWpS3lRzUKkKQqtB3HTFLBNW6TtzcNVGiXLaN9fjQky8nfLDCrDIQCxgvrD/rPcYp0nKWAgijSVncYKVKDDrmIg5ep9nevmG+nCjp0jAHlmH3iqcvH1A1iwsFRUzQDz1eK0oWpoo27oVjNZ2OrMuZZVnkbBF6zudnpiXKJLQ5t1JKHM8nutZ6JzGyRHAFkHOH0iJ6WB/48uknglNUEjGvMvWvcnwetzcsa0GZgDGFw/HEuN0wn4+EfqR3W05xxQVp1h7GDcsSMdYJezivoEG3M55SwqKrSVxGtjWSXrmO0p4swwVlZI1zXUc3riyXE0qLKKhqpes8yzpDzRIN9SIcW2twrdUSJWy+uCzUnHhpfNaK4C2lFkqN4pYs8l7k1KKwbb+La8Q7aZk0RuODJ2VFcJZc1+ZumnCdF8YvmlIVm90O7zxxTfT9wETGO0vJVlxeORK6QJ7FRaWNIacVozUxxiaYDtzfeQ7HR+ZlEVdtFgFQIU6ecewbpzMz1zOuBnFIltwuc9IUK4KVvAbDuBHnqFOoXAh9gBxZ15l5WRlbAY8UdWlqK3ix18idsqwpYqw0RlsX2NrA+XRgntoFoznYS47EpbY4sHwm11iYloWCMIpDMPTKYlRl6DqWNVExMoxJi4h1McueokT4l6GtCH2bzVb28BixrsN6x0mdBONglAxMSiKnyCr0F97ev0W7jv2txxrFw9NXRm3ZbEYRQnN+4S/31uO7DaenB7zLhK5j3Gy4nKRcLtYsa68CqxSliMCIsfR9z3IJ4vpBIsvG8MI+XpaVK2ewGqS1XRkuxzPj1osuVcBpwzGuoBxrKqwpM44bckrYXFC1gJI9UyvF88Nnxs0Wb4yUjinD7d1b4npiGHou5zPXYeAaZT9w3cDN7S3PD194/voFrxQ//f4f6McBjSb40MoWthileHj+TM4T4SSlWRnLuL1B55Xj4Su3r18zX2Yev/xEv3lFh8V2G+7ffs/59HeM2w1ow+HrB+5evRb0Sugkjt04ylpdI/qCX+n6wDJP6F4cZKXAGiGoZ37+3X+L7W/ounfc3r9B65XzeRE+IxXjKlZpTscHpuevOF3YOgjOsd1teX76yvEU8b7jV+9v+PxhYtz0jF1gGG/55le/5eMf/g4uX9gPhsEpOluxCpzaoNuwQdWKcVDSNeGj0WpCqQn1PguTrUZQH4R9vb+WS9rWZiwu2yvzt+hPrOXauO1QSjjQ3kvpjjMKqpH+LKJ8bSpKLTBkwVjoQLQnsj3ibCCnGX2joCqMaedndSHeu7YPn6GKocb3BlUOZJtQupD2GsXKtCa0/iNpjOiNwneP5CEz70aUkQFovBnJONayssaI70Y+Pk5kEu+/+5affrjQdwanMrYPpLMB61hjpsQFTUFr6J1jnaSkwRgYhg2nw1c2Q8+lyL7bdT1kSRzMKktZ4PnA0A/88OETy7pye/9WXhuj0NozDgObm5EPH39imi7cbPdM80ToR/ZZHMfD5l7uqsaT44FlXejGG07HR9K6Yk0mF+EVe6fxvWWLYp4TqRr6wfLzAsNmR461Ff9NPD98IqXIp08/o6h8OxbedRXPiqsZW8FUMAqcMXhn0BRx5qqKUq0IS4u+oKqSzRbxMetW6CQRzgglSmFFqkj7bhOEXs6GDQtUBSckBVtyf0FdURZSSmNsK0BSkv6imVBqrS8op+t5UzcEFlXuNYjkh9KOqqo0RdbSvgfN4ay5Fg/SNEaK6CdXfjTIoE7QIK0ZvjYtoQ3tahYDmWrnLKqgZYyThEDBomxHzKCtRztLWc6UtFBKhpRF2MyZNU7UVFAxodczIT4T2o1vyYlc5HXJORMULHmm6EAMllwNc4yE4PDNqX27HRisYbQKtGpuvVaWYwzrWijasiywGDEV3Nkbst2RyfQGjC7EGOmDYEe6cfhPkeL+o3/+fAafuk5WjLg0WhxIHlRxKilkotlv9myN5eHTz8xxofMabzz3r942UKprl9BMTBAGgbnapUMrcV/stjd04x7z9EWcD0oaX8o6Eathu93z9dNZIqPGoNAMY0+K4ixAFap2xFig5HagbQt3A0g7Z19KDkqRWEOcF1wYWXLh+etHgS4bI4BZBa9evcIYw9PjA6bZrJW2vH73jo8fVh4fnljXM58+/cB+OzJdIjkUNpsdSXuBRs8X1hhxwUsxiNKczgf24Q3eBmy5YMJAuX3F108/y4Q/iz0/xhXrArubV6zzBaUyVieUVeQ4c39zx9PhiWWZ6XuJNYS+xxuLN4lpkqKDmBJKr2TnqGrg5v41aM+Spd0u5SjvUIos85mUFlIs5JLJbcogsdORSoAS6fqeFE+kZcWHgvedCA1VU4pme/OG87MskEVLoUlKipKkoaeqjEOYc6W5L6SdV6YIKSV8379cLjRKWvhKJbfKb2OlFXddpdmpFBEpcy44L5wyY5uLK5Y2ZU8MwyiXnFQIIUhrUK2U9n1NEdFxsxmRZlXhe1mt8d4xHU5Y44SF1uLrUm0vsd/QBxEuszwzc4s2b3Y7+l6AzyjFuq4N4p+pzTlVlCW2JrWU5WKtolzKrAlcTs98+fA7YqrstqMwsTppfstEzsdnnHcs8xnjHCF4Pn/8PdoFQBwt6yKuidB19H2PtY7Hwxe60PH8+IVDyvhuw2bcMmx2nM9Hxn6AGrFZpran6UI/bGX67X2L8VWUkYvk7uYGowqdV4ybkWWa0bRD8ywRdKq4JGTeFDFV7PpZ1xaNKpR8IcVZDlg1oatMtrteczx+JaWB0O1IKZOSiIpVJYIzOAtdV0l5EQHIFc4g4GZjyTVirWNZI946QKOMxaFaq6lMwzQywToenrndDeIEqdc10olbIBdhguTS1jDVWrCkQSvnxPksHBTSSq2VpcXhnO8o64TvpDRiWSQWVap8Ld917TmWyxq1OWC0YjqfkJKHjnWeQRVpq+oGvHc8fvnMsq5MlweB5pfE7a2ltktV13X4biNOoMMT1jlOl6OwzFKk1kTXebRSeN/EIqNYsxQQ7G9uyHHGO8u6RHY3O2n1LoW0LlAra0QuoWVtUTeZbnc2cD6fRRB3jm+++TWPj194fvyMafytkjJQ6TpHLStdCDw37mXVtbXCWbxFLop6w3mKxBixvsc5x/H4yHIpdMGA0dS1EEtpcG3wXrW4lG8uGICKay4pga5HlgT7G2mFWxaFVoYQgjj/UsZYiYwFHzinxqNNiaHvSUlDlQuPs+6X5trQkVMkJUWOInib5gd28KkAAQAASURBVEQ0WlFSm7RqEa6NNaznlWHYcDw8yWFIO2H6aE2qsj5KOkMYhrrhNAwFHwKn00mE3JzpO4nYW+/R69KERcd8PsrlrJfmzZhyE4hV4/4JkuM6CZ4u0hiqtcZ7ERPTGkl55nxZJEZZhAPng8c4K5eWAsYJY/FwPFGNI6ckkaNxRBeHrUDJ7UCbCcFjjDj9un7L0/NXnKtUVUlZpsbeucYhTZSSqcpDFbfBbuikWEcb+Rxoje02rOcZ32/EbZvldzmf5pfPNhVyFv6SsZbODxhteXh8EkEDOegbo+m6jpwnUhKMQi6CmVBas8TCEle0kUHEdrRQFtZlARS5RlJKBOvQzovopyxKWdmHnMbkhctlZtzdsKwa7QJpmTkepMkxxpVYGrYCkNbkG56f/kDoOobtDet8Is5n+WyHQFyvEZKG2yhSiLPMF+H2Ks1mHJvbtMr7nBIU2W9zKsRcGUbf9vX0i/PJDzJ8QAZrMUtLoLK1fc4Vfd9zeFQtXSERoKySoBm6II3pRmGrEsbg9ZwQeqySNkzhb2lO88IwblmXBRUCzjm6rmfOcnaJCXb7Udy3JeG94zpct87hrCalSOccOWeGceTpccGH0BisiNO9ShTPNIaldYFSNFllNuMOawyX85FlzdQqTbnWAUUR+o0AxBv7TWtD157p7W4vAzY9kVMiVbBOhmPWBqbpKOUkz2sT7GVPvzZM55jk9Usra1zZ7u54/eYtl9OBZZpQJgtHdBVeKsriXU+pmRAC3/zqP+Ph80fiMvF0eJLillwZ725Zv3xBq8Lu5pb5ckGpyrocMMo0oabHh56aF9ZZkCzWB46HZ9Y4E0ukIO5wbwwpFnRL4JQiDujD8cRf/u1v+fzzD6zLRV6DlBl398R5QpWF4+HAOl8IPuDHHe++/Y6vH37P+Xjk5vYe74R/uF6LX1JjHaeK0wrnA6Vk1pzprcPoa5mRggLLMovDp8j6CxLJneeJfhwE+WOlTdr4wD7soSaenx4ZgkeViNHQdZ7L+cyyZoxzghxShkJjXBoD2qM3e+avC2ssuH6UdbGxG5W2xCUyzyvb/R0xJVLJhFUwCSVD6HeE0DE/HtFB0XceZTpqUawpk0vh/Hzg5vYWpR3Hpye8t1wuC9v9Pesa2apKrg1fUTIOizUZSuXu/hWb3Q2fP/+M945SZH+W4asmZo91AWNHYqyEYaALcDgciElKbDq/JfR3nI+PEhH2A9/97X/N6fjA8vDPLOtM1xlUeuT/9DcbXBZWtLULbCowCOZBf8T8xgAz3q7oekB9+APv3AIbcc6SgZhF0NCmuYmFe11KxdQsw4YkZTviHK7ofBUu5ByqqyAalNat0be2JAcEIwM75YywZ02hlKUlrCA31rdtEXZFxjTeqb7GMUuFOhFcoZgzOs+gUhNeJNiOa03ZVpq1ySvzFNs6HEnLmYBCFXEAo6AnopO4qpRS1OWIomCD7AlZF1RwlLqAbgKlXvibHlCZzO/5q19ZUp5lT1KWV3eWqCzTatCuMnQZ5yzv+z3TpcOHDtf3eLsSeim4ykYRVMVZzXiz4XQ8UK0UTozecLzMjINnuhyYp7NESY1mHDuOhyObzUbKL5tLdV1nDo+P1BIZR4/VlVxmVE6Cu0pnnp6e6PrAcVGCq8JSyKy5OaALqCqO85wzwQZ+/d33/MPf/wfm+UgXPP377zidDsIv7ALfvd3Tx8+UeqJqcF7jrcbqBvHJwvS7Ji5q0Y2XLBFa3/doEiotqLpQkjhS5axW24DRUJVFWSmwkCZaANUQLaAoUHMzJIBRFWMaQkVJh4A8wbXxnrPAEpoTln/h1JMkrxKhrSqUyi+4IEE5yEATWimjvn5l1dx2ks65ooCqNijnSGkWx6FqyRJ1TZpIakop+fcThSVXBucwpJcURlkTRWlyAWWk8CctCn1FwsUF1T5Xsb0eBrmL+mAI4Y5gbzDacplndK2saeb5+Sj7XimYfsAXTW8kTaGKYs2wGhgsnI8HkoYwWoIqOANOFYwuuKrbANlQXYU6A5p1sMR64bEmvv3LO3IVF6u2hqfTSnXmP0WK+4/++fMZfErs4KYdxozzsuiVFnFrkN8UV56+fJQmtM2Geoxsxi3ed2K7VMg0U2lqFm5WBTbbV1yOB1nsnOfm7o1MHJ0nx5k1Rna3PQ9fPrPd3dBv7tBfP+OcZb/bicugqebaOlTLdr9+857L+ZnL8xc22xuUAjtaSq6kmLDes9ltOR2O+DCwu92RC5yOJ7771a95fvjAfLlIfE8bvvnue56enqVJ5pt3PH79LBdBLW++otJZz5tXb+m6jtPxgPMeYw2bzQaoLNNRoNTasNl0otZn8c2mdYK4SlPum2+pLQtu2oTbGc+/+tf/NT//9CPPT594evzC5TLz7v13aBuYLjPPpwtKKw7HyNt3rzkcnhmHgbwmbu7u+Pr4RWIoVpxmwfUyoS/CcHDeostIXZ4pbfIYV4ldaGUbqF03B4jGmgJK4j1aFWKpoAPDsONaDmBdz3y+8Pj5D1wuC6pm5imSqmW7uRFmEyLGVq0kSovk/69qvzOuwacNKa30YaQf96zzma+fP0mLqg+UkigpANB14lhJKTHu79gqTVxmUlxfoPLOd+xu72UKrzQlReZ5aRuIuEKXNbEZNyzrLODNKgeyGKW9tvOB3hnWacI4cZvK50ZL2UbjPdaSgeY+MZUuBIkTeiNQ7NQimTmSY+Xu7g0lL9zsemIsYgXWmu7aFBzPXJZK8AHnVYvQWU7nmW++fc3TV2mV2uzvieuKyjPn5wO2u+H+1Xt+/8//X0oWZ9x+/4rz6VmYH1qcuhWLDRtevf2enAvL6ZHQvaLrx3Y4stS6sMaZh6+fUabj/TcbQgjt/ZBGsrQuPD8/8/2vfsOw2eFDL7DuUumdsDy6LpB1x/H0hfN0blG4WZx0VTUGk2FJ4L0jpSs70+BU4Xw8cJkj1p5Z52d2mx1P/UBMsV2Gxa358Hikcma8eSWx2bZBXRlQpbT3BfViNw/DiHWetC4oZchVIOHeaEouhLBplm+ZOm83A5fzLKyZzQ6nM6VqjHjMJXJupV3Wak2iFSC0SdbpdCQEA0WmnCkliTtQUWlhvlwYxz3P64K34ghTxggX0Ft0gwevjU2qiuab73/D0+MDP/7xD4ybkcPhWYR6o+mGHbvtK/70u3+g6x1fPv/MdrvFeY0xPU/PMrGyzhHj9OKeNASGYcv5fEYrze39a3wIrOdnaklooyQu6Ae085h1kWi57yhZ2FtKO6zRrOuKc4Z+6JmXiDKay3QUZ9kwMo4j65o4PH2m5lZOklZSLXgXqHlB6194VPOy4hUEXxj6QJoMy1LQJnB7/15EtMuXduCQN1prEfZSyVDBGUu5AuGzfP6usT9rNSOKvJ6IZW0MPxGzlBKHqTGGqgwxG5yRC2WKEYZBJpxaYW0rM9KKLgiHxu/3nI/PzDm+oDCsc8RlFmdzi0UZbei6HmMcWVnOJ3m9lAZrJYrrnBWnUxam4NOTTMg3+8DpeBBWX+jwRrcDpaJ3PUpXOifNoqrCOA5YLU21lyVBbpxdbVq0UkQRqkyMN5uRdZqotQg3txR2d6/48YMMzsitKTCtlJox2pOrHJAFJi3tltSK0uBac7gInhrrbOO9isMipULJlfkyg/FoHyBLdGXYDJQ0E7O4mPabHUY7Hr/8gBavrPxMFWpKuKopeDa7TgTods7JJdMNHesqA7SqKr4bACtrhbVoq7m5ucVYy8PXgg+FZXrm+emjNGsi0155zy1VZbabHdvdK54+/4jWCd+KvaZTapPzQs2Fp+cngjd4awWpMG5YUmWanljXhVgS67LQ9zsen0TgnZaJ2/1Wml21xvc9ziriWphOT1iTMaw8PDzjvax5FWkcLxUptVEG1wlGQmlx+qdaWVeJuoawbwMHyzwl0rpgnOP2zTs2Q0+aDnSdY00J7zs22z2hH7FAVCv5As44qrbs93umNbKuC3aRPVYrTa6yF9ecUKpglbDWTLtIV2OJq6A0vHPEeWEcxXGsMOz3A9p2nJ6+oL245KyzrDmzDYHNdsN0PuG9p/OWuCZc57G6x3srjnKthBjXOEdSniEiQVwjt/s7zucj3snZyljPuL1pbeqRdZ5ICkpJ9H3Pupzpu04+B9Wy3d9xPj5Lk6O3TOssw6suoLSh1Nicp4qh23B4fhKETQGtCut0xnlxNypEPLZazh1dcKxFOMWdUVxOT3hrsLqQtTg9cmNwmisLq+uoNTLPJ37/z/8DwVnmeSZnaRTe9ZXp+St1PVLmyjDe8Pbuey6HR/R8wZrCq7t7LIp5mhg3njg47oaM0ZUSPM4GYT2vkZih70YwRgD83Yaaex6/gnaZb/3E7Z1muiSGXeH2tjKUT2zfvObr1yPKrLhh4O3rt7iu58unj/zF29cYrRiD4tLK3+7tSNcPpEUK+EouKGPphg3Kdbwae54evrJ1nr7r2W43PD0/obVjXaQFdYmJvutwLnC/CXz89IV8/sqvf/UNvdnirGaepOCnv+9492ZDLRkXep4OJ44m4UpGuY7gA/3Nlv1uz+l8wKtMrSs6WMb370il4kLg06cvkpJp7h0fOrzvKWni9Zt3fPzwgYudpeCmG7i5e8WynBm2W+IyM253PD99YV0Tw26PzU6Gb8uFznsuCtZlleFmFnRH13WEMPDXf+v58NOP3L95y+cf/oFpXuiHERd6lmWmpMp+d0vWEadmFIpSLszrhZjERVqzZVkdyhp8f8/dN3/Jcr7w/PUHLqcH9jfvyHHihz/+B/6zf/U/5Us88vT1R6oOHA4P3KwHbLmI6zyqhlYBFZX0N2qNVaCzNMFKBFahm1tGGS3M7iKsSGoTQ3RtUULagF1jlKQ6aipkxBiSiyBEbItZUjK5SCGYFIlocTCqgiqSqMhmRVXZNzdB9rNSi5zQtJwFDVBbaUutujGTNUp7ElKEI05+SaYVZaiptvTIStGasixijKiKvMwi5jdOvpS60b7mL4xica8KjuR6X2lAD4mAoiBHnAbVzBdKWVLNbRhW2TpIOGbjSPpCN6xoNWE6hdoUtFmFNaZPLKNhTYU8anJNJAzGJvpOMRPwvaZoxcY5DueFN8Mbng5nSlG8HXq0nnnzZsd5WpiD5aLh8PSVse8ZB8+yZNY1sdWG/c2OT18+c39/yx/++QO5rJSUhYVeZYCWopSyraWgsGzHnnVZMEpxPs/84Y8/4Z3h+2/e84c//cjd7St+89u/4ePPf2K6nHBvvuf27X/F/tN/jz3+kVqSnLXa614K1CyRV0mYlIYt0/KclRWytM4q1Yx5WswkYChak2oS2Mq6AHJOvGK0r/Y4Ob82wU5p+dcRZMO1ErDyC+6lNlSQcOSb+HiN7WYxz6Cb+IbCCiSV3J49tJwVqzIv2hDKUjDCWkdRrinPlFFZ3JJZyRBMBMpCQbA11phmnJG0Tm8NKi1kpaglYpT8hse5oJzDV1AqE2PBZINRoFT7TQvUktqAS5GXhfX5AeqCcurl580uUIvF+x1FCy+UXEnGQkr0vUHpmZwNdrxjs9szpifGcmQYLJ0BXVdUzKiaqFnSBaqI5lGzmHZMrhQVuTU9QzmhrWGxK1UbdGdZ/3yA3p8v8KWYSRmJ48XYXiSBMOpaKMVIy5O2PD18xEwnLi5wu7/Bd4M4CZaJdZ7YbLaE0HM5L3z8+Y9YqyhYAV3nwqv7ex6fHnl8+EKKKze7DbWVb0yXIyllfvNXf8Pu5pblIm02rl0E6pUfnwvTfGGz3VNTFDbfddGyFusa+D3l1lqp8J0AeL98fWS73RK6kRQLa0xsjOOb998yzRPHwyOX84zRsN/f0PUDpWR2N7dsd/fcv3rHeHwmBM93v7Z8/fwJrY3E78pKTgs39/cY7Xl8eKCW2GJEgWHTcTrC4+MDm73h/vU39P1A13X0wwZrA18//cTl/ITWhnfvf82yrBwPT2z2t+xu7uTBX8XdeD5LRXeKi0z9jWa32/H49MS8JMZtz7gZSHml7zuBMxdxyPlhi9KOfsktGqvZjLfEXEhpJsUJ7+T58MFhKCRrcb4jDHd0/YZSIjnDebpQlMH6jqoUl1mmDVpValwxJPK6oruO58Mzl+nCbrOhtMbUznl2N3fklNjtbzg8fiGXwuV8xFq5/LoQXtwAm80WkKgxNdN1HUYpnh6/sNls2e5vyDlijcKHjtvbOz58/EDwjtIcXClL8/OySOQOBbf7PevlhO8Ght2eHOXQr5RGa8fNqzccnh4ZhlZI0ezOxmqsUeDka+fUmHRBmg61Ek6gbApSDnD/5j2v3n/HH/7x33E+nui2dwRnOMWZftxxvKzc3Nxyvhy5TIZxu6ekxO3+jr7fEvqRJa5sbu4Z93c8Pz1SaiaVjDeOZZnQRrPpe3766Qd2N7fcv3nHPF2YlxllHKHfiZMrS2TnlCKXywkFWC+sCGs9MTXhIUvDKMqBchhj8F1rqtSK0A2Y0GN9oJxPIppOZwKRPB+pJeKtZtGa0sD7ocWMhMNoyc310vcDzhiUsWgXMFzoO4c1hnk6cJ5XtBWhI65ZSgpyYe8ST3MlzjMpSru1Vog9Xovl3TZ+mVIi+CzzhDWGfhhZlhWrhC/qvZdIFSKuDtsbYk4cD0e6fhB3hfPUJA15xpYGPw74foO3EjeKSxMr2yG17xwlxnbwlIg9RSJPQ99zPj5xf/+aMoxkxB6/rDMClU7EUnFBHGE5Cyfm6fGRjx8/kNPK41PkN7/5a37/u//AdrPj9uYeMIQuMC8Tm82Ot+++4cunH8lJwPrWONZlIcXE+XTCGsOrN28YxpGHpwf6caCmRJwvUBLrshK8Ii6V6CzOe9LaCXKhZHJKOCPOr+3NK2hT6LhWpABt4NWrd5yOz3z8+IGUFbubO+bLBecCOSecD6zLwmaz53h8lEGPbgd36/HdyLjZUGtmTTBsNu1ApFjLwnE+443EAlNqfE1nqXFFK0twjnWWcgcQiLQMZISV6ZzAuXMSp9W0Ltgql4BaZPq/zBdOp68sdSAV+bms39BhibMIcinJJTOnRFql8flaQGGtkWbYNumk0phODu87xnHPZbqwrAveSemQtxZTe4Z+wyEmuk4cyrv9/uUwL0zMwGZ7w3Q+kdaVEPrrX8kgpUBZI7d390znI/vdjvV8ZDf2pDVyWSPDOKBrIWqNVVoYvMaw2d6Qu4Hj04MMIKqiD6MIL8PI+XSmHzdYa/HOi0PRyGtBqQ1E7n/htvlA33dM5yPaWPpeWuB98JSSCMGJKDkGeJA9KwwbVGMDLlnilKrFx4ougizIsRVHJawzeNdxOp05HB558/Y7fvXbvyGnzKFdumopoDU5QSFhbOLadLwfN5znmVQUl8dHbm5vWaYLab2Q4oG8Rrp+g3KK3d2WqjTPT19JsVBw3L/5NXk5ouqZ82kW4b8VZczLM3U5sHpp2BUxtqCr3AmssZSqiClilWXoB1ISdto0y17Uh4BWIiTneGbwGrfbUSvc7RNxXfDD2Jys8rxttKFicUZzPj5hGsfKG8Wbb97x8ecPrPPEq9c7rNKUuBC6Xl7jFOn6V+QaCQbsdmReVoIxrKdnslY4q9kOI/Myg1LMpyPvv/0Vnz9/oqbI2AXWBVLJWK1Y14Lzms475hzRRmFcIFXNZTnx+tU9plYe5jPGyOAsDDdcLjMxCwuxFo1xPZ3v8DZQiyKti1wIUsYMHTlbxnFgNdIuapxjkZYxfIsvO+ek6KgLDKNwInNO1CpDK+s6UIaUI0Pf0YWRuExcDhOliLOdWum7IEJqWqUsyhhYVobBov1ACE6e75pJCVCaeToRgm+O7kBaDWWVcgLnnLiDa5W47Ep7fStrK9dCKQyBfuzpQs/h+EgIDucD87wyDNLeuq4CJU/xQpyEl2mNbRdHxf/htxZfBwwJb58w6oB+nTGvhYVt1FM7I1WMmhFI6c8YJ3gL3fZY8dVo4AJayX83X2XNu61ApCz/LQSF8hlzZ6n1K0Y9wPo72Fu4c2gdqZyoWaPfCsvZaAP1I/pWhshaQcmfUZ3E5a7N9VU9UYyl6hmzEScpTCj1gLlpTCoAJiqWohKxnmSIc19wWBwfRXGlUoJiKZrulaPyQf5dZSgDTbAdyUWJS0ytVD5S7qCoRS6rLXqXlaPqiWdfiBnOm565OKIK+G0gXiZyjZxNorvpWGJku9uycQVfIQFLqlymM04rlpJ4/PATLnSyPwSPtZaUCvubG+K64rpAN/bUkslV3KRvv/lW+OKal4KmTStvqTajGtdwjhIT1KaiiKQkreMpZlROIoDVmTTLuTG6gd3te9E6fM+nT3/i3/93/0+6zuF8zzRf6EIhXRK2SIzbGI2zkh4xujntjLC6ZIfT9KOYKuR7LxKR1BmZYpTmSqqthENcbaUWBOmq2nDNioAAUBVWK3F7K9korREet+A76otQV4qId9LOrFFJo3VsbqqGGaryd1XLgCgpyxR1Q8AYQthgsji+jPfk9UJNFwpFfqZr7LFWjHdtzRYUkDVeHOYpY70HhC2Xa6Vqj/KOXAs1SiRaaYVt7Gm0p5pWDpQjOS2NmStcUZpTqaiCylUETKVRqtBbSXiVlGWAW1sDsTEQM87KXaqoymW6sJ4nei2FXlYlOr2yyTP3PuFswe97dF1x9kmGF/oMo6Hcaqbv76nVcpwXlpJZSsdx1dxsDEt8pueCSRt+8xd/xZ/+9HvOxwe2m42kOB5+AsAZWJZI6EbWZZXYJpqhc0yXZ97/xa/55z/8Hnm7V7Q2/Jt/8285np755tu33PRb1uUz8fiBXCpLkfZUawpWyx336vKspTa3nYS22mLSkCjtua21CXRXgJCIXvK/tVrTqiiqo4RbSlwxUVz6qjaOnZFnoNaKEnlavmcTABsjRv6z1a3MQ77+tZRDK0HM0MQ1+Qc0VQeqlSETyrRWdFhToSIOTUekK8svrkIkttxWRUmzVeEtK3gR4wTFJHz9ShWWba1klalohtChrcJ4GQppEmgRMo2GHAsxJkkL1doKEg1axcaxzSjjiAlKWqURt/7imo1Fi9i5rlStBEtiHb2upC+/I2wc2kmppNKa4Bym6zBFRP+aZyhgVEZXMUXkDEkVUrow9BGjM8lkqlFMTyvR5f8UKe4/+ufPF/hKIabE3kv1uzOa1BZOhbgaNn1PVYqTVjgFisRu03N/vyeuK4d4Ik2FN3d7trsd//QPn+hsxlvN4XIiqsqvvv8V/bjhcpnkwKUtlyXx5u13hK7ji/N8/+07Hj/+yOgNf/MX/wpvDU8PDxgnUdquC4yuZ0mVm61nGyt620sTZuOuaVsY9579TnO6FGzM7ELB6Eh3L1FfVy54lfC95f3Nlrd3N/zxj/+MR/FX//q/4B/+/d/RjSPjZgfrwvu3b3Cmx9aZ588/sMTM67fvubu95+nxEari8fERUJSsmOepuTISKS3UWnl8fKIft6zPj8zTkS7c4lxgf3fPjz/8wDff/wUfP//Im7dvqSXz5euBV6/fYUj88NOPdGHk7ZtX/OM/PTXoZWLse/wwkGMiLQuv37zn8empFUQIHNUYzXSZ5MhWEyou1LSwXJ7J+UKtiWUpWG1bc8zUWhjBaihV2CXeCgTeeTksKGOZ1wtaGbyzPE2rtOR5L3BTDM5llmVhWiNdmoCNuGhyoZTKZtwwLzOn04EUE9vdXmKo3tH5gO8HbkfhF1kl6n0IjlIqQ+dYLmdxUA6Ku7Dj69dn3ry9x6wBaxRh3JDnE3ebDqM0c0oEveV8OeMs7LpenCvBi4vEeqZl4ZubnpKlATUtM8Nu4C7c8lOdhGOTlbB6lBLXQ29ZE9RqeTYrMSZehcrNftfA4IqjNVgT8F1P6EameOH9LhD8SEJaoJ6Y6ILm/bu/4OuXB05fP7PbbLjd75jOZ6bTE+fDkW4Y6EPHzf6GmjOvX78VyGtZOZ4n8nxGNfGqC4GYVjoGcoo8T2fevnvP508/s84XnB+htfvutgMly8IXvGGOBeUkSry73RGGDbVENtuBHC8Yb8mt7Svlyvb2VhoxizQzb4ZBNqZyYj49M/aaaRbLtzJGHJMmoI0I+TfDKx6//AA10nUDSimWnNBVY00lrQUXFClOLJPE6ayxjN5yf7PHrGfcFEmxYI3mZrtBI0U/Xd8TvIOUqArWKi5QSmHTB7a7LSlGno8Hbm9vuL255Xx84m4vHMVKZVkyyXu0bkLA0FGytFcfjplDyWy3G1692kusfZk5qQnfIhc3O3FArnOR9kbnePjyBesMpiqcgyVU+nAivA/UCtO6ErNMkuMoTdNowzx0EqXvR6p6xI+J7Zt7eh+AM/ff73n//j3r8oSxhrtXGmW26DAwbhX9rFhXzfe3b1hzZeyhdh1rd0Ou0NdE0JmgMoOFKSWszi/A/N57qIp+GFFZsXm74+OPf6QLnqXk5pArHB8/o7Xm7vYGKiKC2I6Hh6+s85E+GJbpyP3dHcU57m7vuEyTFB3FFecGvrt9zeHhIxSB0zsLnfUMwx7vLfN5xnk4PT1g/NhcI5nkDBZLLiIkBWsx1sgF2HWYLG4YKSY6sywRbTTeKnKehVVYpTXRai3PqXNMlyeUVhhWalqYVsjrLHvn+ZndfstSHDHO3AwO3UvLsRQjLfR3tzw/PrC/uSX4Hm0tx8OBZZ7ZbAeGzrPfbbk8H1jdGWzmN8PYWLSGrBzbreZrVfQDxLyyPH+kL4lv3r+Hkhj8ht12y/NDJK2VcdD0nTwzJUembQCluXnVE2clU9yNZtsZSoJcDdYK/0xpTyqVtUihzLgtEjPe7QjeUjG4PqPvDNSOp7CSdWQzyoFbW8tlXrhMiS5UQh94LBf82DGMW5Yl8vXhgftNx+3NjmWW2FWpBW1dY9ROsK4EI+2ug+84n8+sOcmdW0l7asqFeZpYloX7/YBpPLW+H9nfvkLpT6SceX74xN//u/+ed+/eUXPEW0NcKje39611W0oVbu9uiTlhlGE6nQhdj3OWTx9+4vZmAzWzxIzvOra7d/h15ng+Ms8Ty7ziQuDh4z/y+u2vUHXCOYlOa2VACT/TGmEElyKXO7SR5muV20FYSnqsUug0YfOEV4pf/+Y75sMDtazcb8HrQt8t5ACbXiJBxmj0/Yg1W4zzDV0hseOCptu9Yl1Xnr5+pusGbrdb9PqM947jm3dUG7C64gOUN3uWeSLnjr7v8H7CbjUqz1AkQmZ0O2soDUqcAik6lLZgNL4/8e1dwpLQdx5juhc0R61BBktGEbOw0qoSRMByO+CDiLDzdi+Odm0IHZT7nqenhWXYSgN9lTj8u6FSlWWJka7r0VYKkg7zmdEb3t28bc4Mzel45nB65ny+SNtrVmw2GwyVuKzsNyNx1S/lGrv9DqUqwQuPyrseYyyhlbAZ45guJ4kNA5TE7uaWw/MRowxrnPjmm7/g8eEzRssQdNzu8aHnd//09zgnrmBjDNp2eAvT6UGGPWju7t4KQ286NTxAFL5bTu21B5TlCmL3IZCr4S//6r/g+fmZWhbSunA6T1QKXWcJyjOtmZoWas506weGchY0AFrigw2nUJFLnK66iVvtQtFMAbXWl0IX8YoIckBV/RIV042Fp7VcXKXYJb8UlcjXiyidoUZ0vbqQKirSUAa6Rd6qsD9rba6rilbiugVFqRZVM0pN4qzPwuTVBkxu7i8lbfelyu/ntYhMqjVsliaASJuvp9+9Ik+PKK6FKavELKswgWnRwKrkoqtUu9hfGy2bWKi05k0Qbz6jJmNB9Uy9x4YnDCvlJqGsZ4mWrFZS/meSVUQPcWO5JMu5BJZ4wzkZolJ46zGhYz4feLXtGHZ7Hj5/YrPZMGw2jJsNx6cH5unA4Tzx7XffM/SSynpzd8em89yOA+fTien0xJROpPWLtN+ON/TDPUrPTCljvCemIq3Hy5mHj//E67d/QVknUIlc4N0333O5PDFPF4x1vHn3t+Q4o82W7fAFX1yLMEo0jirv8ZVVW3R7n8hMxydQTTpRtAKrJrY0l5WUAckzc03ISOFawWojfyf9PvL3yOOlaO9byZSY5el9Yb03x1ZrMdVN1JN0jjzXBUVG3FPU1JpzCwsOU5RgFc5PpPmAswGImJJBW0ydRLApK7o0hzO/DMbqtZ0UkYQolloLJWWKstScWeYZ7QOqiLAn4rqlpkjRklpIuaCrpiJrnQuBqqQ9NOYiBowuoOyOMs+oNFFipJiroCVuM2ekFJCSoMjnpmopa3IVqlWUeSEvjmlZITc28ArrMmOohCCCi3ca0gIlslUFxcSug8oqr8lo0faPZKf5Xhke1YEfzuBVpYaeznlSXhiGHtUHTqcz291Gir46z7JIuWIpme245ZvvfsPrd+84HU98+/49eV74X/zb/4bHTz/w4ff/genwGZdmtAOrkkRua5ayqlIl6SCLWSvH4SUeDgqqbkMbBM9AbZmCFQBtHGhJRSgqSRlS6ui++7f4N3/N5Y//b/LXf4dibXqMap8J1QaPvKDUVIvHan0tzoCSVdvL5HnPuULKoDKqCW2CJhJTl3KaVGSInht6iCrPg1LyOaiqktDSvowUrRkMVYMhy/dQGpUqqmQR+6wHW6mxtdErC6U9OxWM9xjXU3VA96PEldcZZbVoRTWh09qKXTpsP1Jm4ZbmWtFBUG4VpGyyKHKtPK9AVXg3YpSwxntaGsoZTnOkTA8EImWJ6AwExXIB4zXKXV9Lh1grNSkt2CJIp4wS12PJGF3QL598Q6cL1v75JRuqiifzf/Sf/+P/7n/O/PAzd9sRowr3u56aVzpX6b1j8Ja+80CWibiRUoFx3GCNF/tpjmiNAOI1xHWSB60USlVkDMoNxGo5r5kvjwcKslj3/YbQeUyeeXfTo+KEN2LtlLgk8sAgk5nrG2mcR8cjxrS8uELYZLW0ooL8khm/TnNqraCleEEOEoaiLWjLGhdEFJMjidISCRYToGUpUkF9XiLZePpxD2gOhwPDZsfHTx9Fl7cdl1Q4nicevz5yOh749vu/JOaZcbPjpx9/ZLO74e72hu3+FSUtfPjwE/v9DT/9/Ed86Hg+PjHubjHGkVIi5sp8mUjLzN39W5Z5RunM2HcoBZfLiaEf0a304Z//6e+5e/WG/f4Vd3e3fPn8kcfHB27GAMuBHC+UdObh8QuH08qa5P0cQse8TBJbMprOCzvGe09VFm1848c4jLccn4RXiLZ0Xc/T14/EdaFkEQmDg+NlZZrg7m7L3f2v8XUlWIvVhbvdiCoFHxxW18YgqRhVcJoGSq6yqCLTdk2Vi0OD6KjWIHSFjCptZSFUMj2jzU/US3GG8EGum7JWrZm5lDZtbXExdT0YgupeYcsZaisFaBwcuLZ71tY2lsW52D5b10mJQHtrmyJKRLY0Ho84ZuWff5nJeLnQ5pRkGowW+7tyLLXDbu5JOWLCKEywuArM3nmq7pmXC9My83x4phaF63v6bmSdzyQUy7zw6csn2YhsRz+OTKcz29t7Nts9zjrmywkbOj5++JmffvoT/bhjd/sGXTOHrx/QGrpx5Hx4Ytzs+Ot/9V9SirQOf/n8iU8//UGinbuB9fJAnA5QC/MyE9NKLprgB7zvGkC/sEZNSpMAxUttYq5MhmpJWGXpOs/TeeJ4PpFilMNWexKMlZIF1e34frsl5DO9F2abtxpdazvky7TNGom7OvPLBo0yaFRjqNQ23cu/NF3RWBa0w2M7HVaQanetZf2RO4v4Y1Vtm7JMZK+Mn3ItmWibrQJKA7ar9s+lXChK3D4iMwqTjrbJ5yQxT1UrpSQ0mlKEy/aLOHA9fGiqBOYlfmnk81GUahES1S4xloQlKUvKkIoc/FLKnKaVZDznJVNVj+m3fH58wDpLUOLOKO3zs+Qszjbf4VxPQS5f87JCLfg2VH54PuKHHZthZL/fczwcWdaF3//u76lFCpxKOmNUJRXY37ymG2/49td/SYwXfvr9P7AsZ9ZpxYWOFCcevvwsZURlIq1TK3HQL5y9zouDQRraFSkuLMtEKonOOXGVGgECZwLWd1zWSkxwOn5ht9syT2fG3T3/k7c3mPVIsErWLqNFEFQZbxTeGGl5dwGqNLVe9ys5C7bDkpFo7tWJQklyYKjtMYPmMlMvTB+UQWkRU5UCY2WvtNeveX2uW07jCmeW86HEg6zzMulve6zkWWmREn3NCb4869fPhdaqrU+GosSlV7PETmpth11UO/QZqjZkGWVLfLqAavFLQc9oqhbHZcwS8y9YllKZY0F3t/z04x9ZKry+f4M1BuMcZY0cjwdevf+Wn3/6wPF85LjM3G96UOA1DP2IMo5pOvF8ODJsRnKxjLf3fP70mZgjuhZc6JinFWUNp9MJF3q6rmN784oPH3/g4esDKRccK0NvScuZy3Kh1EoqinFzx83tKx4+/8DXp2fhj6LwWqHJDJ1hu78lxwJkSs5YLUUH2njGbsDakVjgw+ePUu5kPSCxvf/lN4FQJoIWzpHTsh5cLwkAtvGjrmBs66Qhr7ZnRNY5+btcAHN9DgO2H9HpSI4rVjehrvFBQb043nUtct5RUkyktW7YA/kZjKa5DpBVTVuKsqx0GJXQeZV1tkWO4F+si+1rKEQkQkmTar0mS4yhVHn2knwVFFFERGWkJEHJ+pZzITXX75orRUkbtDYC4M+tYTgm4ZnG4sha83RaUGEg+z2nxw/c7zbMcWJaVpwJONeTqOSSxF1TZO2PaUUhqJFllYbKdVowvqPf7vAhMJ0nPj0e8OOO0HUYbTFG8DHQyl+GDdP5wLjZ8vOP/8zYGebzQXhHSqG1Q2FYlzOlRGmwdUbcChV8G5DJHplJpeCcw9hATBJbMsYyTRegEONCWhNrkj2mG3b8n3+rGMqx7WEt5t+KqLSxKHRbR2qLTVqUhlrLi7Aigon8+7LnmBcukzKy75QsF06KNAgr3fZy/QvcXThO8thqmoOlPS+67bPyz0oKoDZHS23nd7QUwlDX5nRRjXtbG5g+I04teaar61C1UnNqnF35HEgzpKQ3roiB2piV5eXcoF7wBzRXiwhRcv7QjZV5TRiJAIA4IFVrpS6a2N0Q1s9SGqdAnIWdxPvStZVXUbUnr5FUNcUMHBMcI1g/oqYTvav0Vs4RSmuU8VTlUW7DlCuXNfJ0XlmzDPVfvX1LLcIg/PrzD1zWxGmaeD4+8vT4ExpBZnTbdxQcRQ1s93cs04Hn5w/EeGwFeA6rE1+/fmaKld3YMc+F/d03rHGllMzrV++xCn6b/4BNJznntGIt+aw3QbmW9h6bFy25qQUvZVLamNYACrwggMQvFbxpCUnV9l4jZzhlUNZjd+/Ipw8Qz+jazvZNiC5FYreirzS5WrVlS2mM5mUfvzoMS0sTXIXsCqQqPGelDVOUh3kTBOlgjZWYMU2EMUWwLTXhaIMeVeUZqeoXjnhuXrB271lipvcVVY0MSXOkJsAaaQLVBjtsKFWj8oqp4sS0GtCFmuV75aLABJYaiMpTUyLUCVNLO6XK662dA2O4zJGGdEVrxbwmYoalKJ7rQNGOul7obaUrK5aC9RqrDMYo4VNbjyoJZwq9V+h2f6u1yLDPOJTxYB0LhbUG/u7HiX/68JHzeebu7obD0wMlX1AlY4xnWWbmacJ7eb+T3fKnk+fXv/pL/uYvfwv5ws24YWMLh5//ia4cqPMXzPqEyTOmrk24aS49JcaZ9ubLkOG6RlW5P5SqXoaOxhqMLhhoQ4j2XGrdUEwZMmTt8AoUGWU7GQaU9eXuWKsYRa4uTiUnfYlTq+tdhMbHkz1UzvqatBa0NWgl75s4NWsr+Gj3IuspagBd0cqRC4LkcgarlJRPWoOuSVBbJUFOSCdWe+prJaVCrro5b8U9Z22Q0rOS4ap/itGcUjOqarCGUiQlmK/rvW5Drubyk+u7oRonLe1K9g6MGEZq645IuRKr4bRm5lVMCVeG+uk8k1AcpgvH0xnvNLZmBlUZO4U3MlgITrNxGYqiKOklUMbhdUTFWWLDtVDb+w0N66EqRXkep8rJv+X/8n/9v/Hn/PmzHXz/2992hLcBzYI1CqsPWNMuD1ouF1oJ88cay0ujSnlCY18U5VoqRKAWOsRq2nZX2efjM6rCa6357WvTDqMapR6R/VZDepYNUilUaXnyly/TVtSCRAjsVmD9BYm7VUVZF7G8aoGl8nJpv1paoVY5iFalmr01obJGO9CkJu60zT/W9j2bOFil8QcqnApVVbTVlEvh15tWGFEge8UaYNkbShxgr5hjpdYjf/1rx7DtMDax5k8oBzf7iNJf2dwopjSx21rWdCEuYscu88poC9vtlsv0iEVxu7vh5vaGw+GZNEMwsslN8wmDYgiBV3e3GA3rfOZ+t6WkiWEzMp0Xnk4LpUrFt1KaHBeqD60NbCZGYUitc0Tpjn4zUqvh5vU7NIrtbsvp9sCynFHa8PjlR6Z5ksXUyuFqXjMxamJJXNbK//4dbPMFZ2XDrvUgF0UlkaEa5cPVzmkvLKqm3cn/qet7IM/V9Y+qYi03tQFBS22ihbxvRHnflEIs9eo6CZELQnn5xtevB7VRnKx2EJ9fxAutZVGs14tse0YNSBPRtUVJydRb6WtLEnh9vSS3CQyKquQ0cp3KlPXAxhhZDMsqYmBnoK7AmRq/oIyRQVAFZbQwEoqhjO+I9cicLyy7GeUGclpwfkWNniUm0kYzbV+RcxGHmCqUsWcYA74T2O/jdOHp8Svf7Szvtr9hjgk39uSU0GsgrQveVS555XI6cHr8yvtv3vH56xd0XRk7cVqO3UhZzkylRX+0HE5CN+DChvl8YuwtXw8z1nesCWFi5YSt1+m8ZbvpUWjGccc4Vk6HL8xx4fm00nmBq/r+Bm8003zmV68dYRXmkSpgkjBd5H2XEgOt1Eu9vMrtYN7WN9nMr5DYxlKrvKxJUgTCi+B33fCvoi3IxNi0i46+Tvnaz6PQwp8ojZ/RvoI1oT27svZa68Ba8nwmFYnOSOYjtphFoSbaVLVQVPtsta95/dxobSipoLTGKSU28wRog9PXtVbmemTdDqtXtod8JrIq5B4yhkUXolrxfeGvXIFyQdVCRYY6hYozWhgeeqWahTUr5gwXo1iSHJZjXEn1zJ217DuNLZk3dwOpWPxpRzWKdV04nJoMUBW+rmx9waSJuJy4326YveVsTqwZfD9K9Gw9gZISBjlYW2pN5FKxGqoW/IA3inMq+E5jc26XOHGE1yT/OaWFlDJrlNjOMl9EiKPw1l7wnNpQK2NQqKow1koMUxtqmWE5CTS8rRe6OmqV6boyoHOUaEMT2a6A7it7RdOmHu1SYbSSQ0WN0kCbr+unAtqFpl4dDNdnUy7acs/R5JIhRhHx2mVdXZ+FJBed673i5Ybd/j6j5LVSBmUFlqzI7UAuhy2lFc2MIW7a9llR7UJMgdA26Voh57YXqAqmorUnV1DBsYaF3/46SNu5Okv8qlRMZ2BbqPUP/PW7Aiqw1o4lZqasWWKmmsSyzGxC5c19jzcVbSvUZ/a3lsuc5aJnHPbVlikmfkoT6Mq7t6+o1lPv71BU1rVyu/Pk6YmTzjyfjlymBEZj7cx0OuGco+8C0ywR/e1uJMZEN2zw/gbdd8S0cLO95eHTH7m773Fhi0rCBU4nieZ0VnOeL1zmlXF7y95qQpplqJGrMDlVRRc5z6gqZy+NsOiU0pDlGRZGYHsGEO6U1IVoEeqUxmvISuFaS6BGtUi6RDFlsZFnTOJJgkLR7RCcsCgXyNMFVZIMz2qh6HYxMWsTo6s8e0ouvKo0Ya8NwKiFqiWBoABSlnW2uW6s1sQl4nwQsbgKrL1k4eYorSFNmFrxSlPLTDAWZSy14UcKlWwk4qONIsaIMuL2fXMDs448GsW+r+zyV5SrlIZawCliTsKFViI+KltZk6HqnufVkuaKsRqz7dpeH0nLTGcVm3e32G5gmSNh0/Hw9Svp/Ixzjru37/n2V7/i409/IKZM7wxpnem8pzpY5pm4Lmy3t6QUGTf33L99z9NP/0QYRh6fH3H9SMmVNR4Yu172+XUipxXnB/ywwbqObrjFu8rPP/yBOc6Mu1vimrBakYsIg6YdwIyire8alOBTcpoFjaCkpOi6x8mAXdaMWmWdUKqAShgkmq5LFUd1bWB3K+tWRYS0lOW5M20/Llo4Y1cSgaoiHJbGN5DBrmkxWiWCRW33DyfCrUoikJgmulUFq2gW0Binxga0HalaU+MsRYPV4u7eky4PaGQAcxUaQUrddAXd3Ea6OQlzzmACRRvM/ICquQ14ZICsldwvysv5z1AzFE1bkzUqSKldrlCNNDPWtv9b6+TCbi05a5aUmaOFrKiXEy4fcarSaRkC6KwwtYmVq+KW5uXpr5B+TXn6SKqGXBWjrqzBcel6/u78TOdsK0IrxOkrNmw5Hx9Y5gPf/fX/jLff/zV/+sf/F+t8oO8Cz48nvLNM68Lj4wltO6Yl4RSQjizPBbPfk0tGldLOK+KMwyhKE9i4npDaGcwojaYNEl4KMTIliwCnkfOWbY7961ld1h7VcB6g9Ibu7jesa6auK6SMVfWlJCC3Z+wq9qVcKUhE06iG6kiyJhkrTFARuGXvtgZheKGwVUwkpWhMrZRqiFmjsmIhYm0F1RECggComRoV6Qr4jxEaJ1SmL9LQLVFEL+3a/ItWV62xyiEfV4uxFbBgG3O6Iszpmhs+Q9ZlY2VAqerKGjNLjrIGELHeUooIkVpl8pyo1oLu0N41lI9wjFOVJIdPmakIHmW7GRidxSEYJaelHKjWBZXmVoISBfXSBstWm3a3UuIqU8JhPK6Wp4MixZVaIx8+/EDvO6z2TMuBMke81/R9z+2rN0znC3PWLKcDH//xv+PV8X/AljOn5chtX7CqkIqIVuaFl1hwurZn0sqAvYl6cpcoLSknPkldEWSTvl5Ok7hBkUNUancEkxEOeZXLZlBSpldKoaaTxFfbCf7lflF0GyQWnFUv71etCu/EMFWurEcUubGyVeMroiqxSBO2akzw3ArnlN+CClAmKIlNEIUmUzDaklMlzzNVt7tFhVozOcvnVJf6EjxeYqILWgRLA7VMUiIHoBzaCH4ixxWUleFFqegqZaPGSoIilzbzUFBKlGLNKlYIZQK5DZZqitSUGudPNyMGdCXTWQNEYTHqhOmk6ENXMMXQW8vOe7xaUSYQlwtJ7I/y9mktYmbMlHUhuQKloMkoY0mpvpRw1ZoATSxFWruHwJ/7588W+HSJGBacURilsQKxaNN3EVnkCKiJa2oMADkWNs8+MSZQApPPSRZOZ/hFmNFy4dGtrYV2kNPGvlyU5b9fp4RKRD8tLVelqsbGydRcMQqyloiLnP7ahMfYZtE3FOcEeJ0jqiSukWNxSclCF5UH08lOPT1hapTL1/WiTqWmLGBNRZsAintMG3lTRagXsYBa8VocMp2T5il6Tdk4yEGYCIPDmYlYCklpigns+kypK3clkxWgBy4xkbTF97fkOGNKQaUj/TuDNwprLlQ1UV8X6huJDZYaiUWzfvOW3e0txiXQmjeLYdzteD4I7+ZT9qyd53wWF5OzjiUmgg901pA0ZGcInWHNEGNiYzciJFXN8fCR0+EDOSe6YcsYOiZXGTtDzb9MVXOSyuhSFUYZSlopeWaNcrDTqLZQCtxTe9cWVWk+E9FLv7y2VxlEtkv14mJS7blSTUihvU+1HQyu4i7tfVKUFzENMij94h6gTQm1lkmzNRbaxq2VLMD6Xx4y20j5ZRrbpsK1Ch+mXpuD20FFGCCyYUgTUhOGuH4s5AAoz1ebDDSRqKAwtpPLS03UkpoIVdphMxGXA4PNBF/BG6pJlAyprkRjyPMqgo8T6/V+P0oLZi5sRlD1QKXyfr+QdxVXJ6rz6Fqw7kQulfRmD9qwZJi/71iyxXUFzzN39w612/LFL0yTxMXc69eEPkgJizJ8+fQHQrcF48D1FOPY326wwfP0+MCb777n+PDAdH6k7wOUwmVKjINFWQ0lEcvK6TxhjWaeZ8gVpyWetX/1nlJOba2RF1am9e2SeeW0aAVtMqsay0I+yyJyCtJC3oO2rTSRUL08a+ZqiTGtZfRf7O3ybdp71GDyV65WRSZX9Sq+0A4vTQymKGpNsv4kWtRHJphXplFtQpD8VtKELo++bpEVRHRrgov8nTg0cmqsGMTFU9tBQ55EmeKKoC7Pqzgp2/G7FqzSaFMIrqDyhHUIo0prqEq6vGrBOIVSGVSSvzea7AKnVXOuhULk2zeG23DB2wlbCzrJZ/SvfyvusVwKpQ4yiEiZrCrKPmPMmdRlcoDDeeEPauXjbLnMAjzOdQVdWdeIcz3edZSy4hTEJJzMnMU9ttndkkpmOp8pdaFzQXiDccVaS0kRRSFXiQtpVXDOyARSIbBqDc472cu0agJbhubiBagpiWMSSBSq3bQocKJiMTQHSzs0yPamX5g3uRh8P1DXIznPUNaXvUlpcZDoFmWi6SXXBVng2pmXGbzccFDKQGtPl927PQdFLlulpH/hXpVnVKK74sKrrUFNImkCci61Smt25pffvQrwuSDvT70K5kUmsNp3/z/m/uTntjRL78N+62323uecr7ttxI2IzMis7CqZxWpIFml2oEiKNChYlAVJMATbmnigof0fGIY1tAeGB4IHHhgkIAswZdq0qCrYNEQJxRJJlathqfrKzMgmutt+3Tln77dZHqy1z42aOie+CVRl5L1xv9O8e71rPetpiDG74fgqSXE/V+nkYMO7W/0gwfxDbfhyJkXHG1dhGRIcTJoxt0YKStRODJVJYNID2ymRNgG5UJBCTJ3eLWm9XW1NdJGv0TByiIXj1UM6ndd3N3z3cIPoPZcXA1eXZ9ztj5ydjZTllv1+Tw6JGm1znPPI04cPmbZXPP/suwQ6ywLz7XOCdJZjY384cLVNhLBjyiNnuwuur++JoZOSsTyM7WSsoKaJu2PnbPIbRNZ65YObL7S6+lARzASfsDI0LFQroEib0XbPcv3GmS7W26yMSwOUbRGrYretnBL6HPjrQlRjCIgYIGNARjzVOCOGjIRghuStLogUt3Kwv0+CDyl9HRnsvWmI0LyPqxV6oRUDIelWF1CTF8nMiUkmKEu3f3/MkRAdBFifkQ61uU9nClAqAsy909vCFI3NG7R4vW4c5hljITdnTNsSUZdKzZ1NHBg3mVjuiDS/Qzp5SIwpkEcQ7pApEfKe5VlAvvSYlAZar/Tj93nyIFB65DVndHYsrfODz55TA/RoAQJBOqqV480LNlOg98bZ5RNa3nF5ccWD470l0Lbn3N7dIFLYirLcF3pvZksQzA4hhMD+7p7aCtP0hNJntNj5mTIM0RQUSqW3PeUYCNHuy3ldgDfv4b2OGLPE7sohBEJyhpUIIpHWq4NtthxS792aRicTm1VKiFhyZfXAgxjsLEg3ueDKWDXanNn1NPP/6ih9niFlAsIyV1INiAxozNRyJPTGlILdl+UIy4yFrNhqQkNgefWRDXJi4VlKIgQbmLts0DjR655YbskyGwPQnwdka32lM+xN6ukhCL7gkPUmDxmNExIGlhosvVrML1nr3UlS17SzHI++EEksTShNyRLoeSS3mSRi4Ei3+Sx4AvTawwjGbu2rcZiu932hETlLgUPrTEPiwTTy5honPyyEZqCFYKmViHI4zIzTOb1Xais8evKAWgYk3IJMBFGOh5fkcaB0838z1jc+1Jv8UcSJI19YqMZoC6LkzE4DR63XULXOJXgoY/BevjXvfbwWrvPo6rgY45HDiz82u41mfuaddfbA5uK4ekmKpWKL2HeqQqtCFyWo0qrQQiJSCMHuP9FAnCyAQhYQacbkziA0Su2svn5NIxKUJhYWaez9Sl0yNUQigZRsZgndQhrmFo1hVMy2aRuFYYqAqdgQD4mSTic602kmJ6XRWLoSeqSKsLRi7NKjz+dJORSTRi/HmR4ijFu7J9ueRZtJQUskn+2QvLGgsd6QMjNgYQqhKlkqm93I1A4EoAcFifQQSWmw70Kh6T3SZq8PtkQyAo/3t65oQBuimd5Mfdd6Y4iJd599QGbhxYtG74UhBu7vZ25fP6d0iJuHnE+Z5fY5x1dv2EZLbr6ttkwzJUWw2U3tv7coRnpSC27Jfhf6zWS17rTMMGn+CjCrNUAYROl9P4HOGryCkZJ6Y57raTm/sgLXs79Kz9XJAaUYYB9FiZgHo6oRkwRTq1lrFegkalM2qZKCErIxvLtiSew60kP2cx2o5cgYOgRFGyyuihQxFpuECCGC24+BPQNKIG8nZKikaPedhICozfTSi/UaQSAkuntrtmbnzQJjCqKNpTRiMjVdc5mx+GcQtcD+3tQ1si4Y5bQEIYzEcYckm6fXRYrSbDGgSs6BYTeg0tnmSJDRFDRdUCI5rrOP2db1FJFus3gnQjL7qRQMLOyoKQbjQGODXl6yFN8k/gS/fmKAr6sNUHYUTb8cZN0o2QfSgNhtKxEBmjFFWjMwBIEoYolKMdv2IiikZKb7x3t6rXRtfgjt8o8uGTFwJRBI/vCvg2+3TY4/SmrEYFaKp3ah006HH4zK2gBqss1Nt8jjkxuIJIiZZSluwn3wB0ppIXvUeTTpUS0oBcRkXJZg1kEbIdlA4aiA/eze6c3eo/RO7zY8lbsXaF/swRdlFjFQiWjAgLMehiE6NbYSscsroWhdkF65nCLnqZGCbT/Mh7V74huGzMeAZEGXH9FnG/AuHkRa/5T3zwMyjHwy7vgnn/2IHBO1VPdG6ZTjgYvLcwIDjc5h7uwePiM1KLVw+/oNu7OF4/GGLDANwvWLN7wq5o0l2plyNmqvVlIauN9Xqgqby8cGYMTghcJp8r0jYo29toYGOxtdraiJe+rUbn5CuPwwBJN+6YkN180zqvtl4IAz+PAXowEYsoJpf1ISFAjWuHWjVYM4/Rl6GAixWvFMvolAbPMv7negkPI6JFvyZO9q55OV3m3AuEQ5NSLalY41urTZG5Owwkmskjn7Oxp1MbnICjAZKO7FVJUcOkIlDiCSXTYeCTjtupkHE4ozHiqtNTMDjhmtShoS1DuSVhIFaVaY83Ln2892YlHquIpGb6GOBubGzjuX0M87z+fX/ObHR/bHA0pA8o7NZkdIIzFFHnzwkFI681xoCMM48PrF50QRzs4vUBXimEkCvR25e/2akIT7+z3LXAzu1cijB0+QKDx/+ZpxPKOPUDpotE05qoRudeotcGz+JCsoElyCGFZLAD+XFuSzbmTFig84E8uhP4XSu52H02BjrChj3ZmHwzo8WwkLqA7eyNgQbIyQta5Aq524ooatoXOhSoA0Mp5dIQjL7Uu0HkkBk+s6Pd4M16NLkL3G5oyGSDnco7UTkrFc7XnrRAcDV1BAPIWrd6ejezMNkd6h7A9EtfqVgknhj6WxzJWcbDnUe8N8ac3/YtaADhOpLAy5kaQYiNS8WQ6RNJhES2thSMmRKiVMoy9xOqozSLeEzaGzexhYnjeeP//Uniep1GJ32zQNBEnErSUg5nFDyon7wzVROjHeU2qjFKWpUMqe7XbL5uyMR4/e4ebNp8j+yPZySxp2fPbxH1ErDKzPn30/doo7oUMOLuFfm9W1ZwvJ7sFeod7RdEbiZNYBohAnynJLqzNDsgWG9kp0yW3b3/lg3wyo8a3yKqO05YOYtLo5q8YDJIJEtPqAIw7yitCaM9qpVltWpnFYFykDErNPSOpJf90aveASuJjdaN2bUa2kbD6XNJOjqpgNAQhpmkA7y9EuqtSLeWQaUojJetPJp7OlSNzsSDnQ5j2ehmGmyWVBg224tVeWruwrLG0Fi5xpoxBUCAlohbpUY7WhxGibYu0QcyIHq9F9ObCUyiRKW2ARM1v+JHaeLwd6M0+1adjQW2Madjy8esjt9S0h3DGNW8btJfniCZtNZv5ooXc4305cX79iSG7mHgaYnhAUzs4umHtic/GYjz/+Idd3R3Y+oRrTUSku0YkS3gLKQOvNQhhwCUwLSMh0l1XOt3eWaGxtqTWydKsPgoGqwTtcedt5aW90J5BYlkMyqWgwFUBvvqDCJEHZPeDWWUWDMez7MlvQkppsWfrs1dUXFs7cC4P9i2atYRLjTjFAWIwh3Vs/AebRPaqiRGcOvFVwiNe3VQ4qOdk7lkDUYP+sirZitTcmS6rucCHCLnRwSbuKMO87UZq/vnoaQAmBUtVI0H1PDpUgxhgOYMnGQUl6IAgkGqF2tnSkdKQqzXBxEAM5H2yE1oUqwnw5EBIcl0arFlS33+8ZWqRrZnP5gDluGKYzQswMw0hpDUmFV29eUZYFCcrZ2SNyCtzevKHWxm4zcn625e6w8PrNNarN7QbU6roPl92l+gpEWfv3zsoQDv6/iYg74xiLxBhXlhxeutAZLBFbhNDKW9mbrECMfZ52n/oSSsRrkHlBdVdpNIWovsCI1rtpSLTV5qcZaKSiLN0G0VqULAu0SgzNPH7VWDLBARs0GEtZoJcO/eDPiwUspBStn6qdlG+9p7RBcnHqSWsQwtGUlTkR2uJk6bV/xwAAa6ds+TGd0YczynxP10SIDrwFPYGnSjBDeYI/NQkNyZi8IqReGaYLxvEBcv+C0mdkWUhYmmxbiQoiaC8+UBnzBQVtjaTRfEFViPWOFAKbMVGb0Huk9YK0yNl2x/3xyOsf/g7HWjg727CdJu5u9rzc31BLo/fEtNty9+YFvcHF+QVzKZydPYQwUvZKrP7dS0Cimnz0xJTSt6DHSSFjEt51RhSfYqszMtf5IYS36onVLiWIGLtdF6TOIM68WlmM3eapEG1helpv+uxm84GerFxwO4qlqi/iLFymdWhLobVAopPdziuGbAEaAbR3tj4PaSjmf1aPtph2JKksnZZGVDO1GEimXejSOS6FHhNBhd4D9aYhqSGtEWI7zYYhZWKoSBx95ooWUKd7BunEwZbX3T+/FmzhMVGpg5Egynwgp4SGLQQn8gQBZrSaeqHRiRGCWgjRGAI5wqhmRzEOgRztOYuhWM0IkRAHGM8JbIhxcNbizHK8J09n5Gljz3rK1NrZlcCXm3JoQlkWfvprXzUlTljYju/z5vqGYbuh9s+5u99TqzDsAqNUJAVeHWdKhl20s7Ff7HlIDVLuTCkwRBiSSVSDqLOJG13jerGQcjgtZP0A0/vKdBarJcFVWhiwa6qM7vcexlY0lJDV210k2pJf7W5ea0ag2/yIAWS1KUsxuN54Js1tq6yjS6GRRUAjc282vsROSJa8jgpabgkxmGKFwlKsPkgQ5mLzRwhCsmuQPGbz9C1mySICrRXa0cJKtKnJcmPANMg2SxUF4egzT0B1NMXWspgnZG/Ws6BO7lLQYuAbzRd2QtPF/D5bp0on5IGUJspSEK30YoncrTXz1Y6GHREg+XnmINRivy/d7rc8DCcbJ63N+19XRghUsfDHuL2Aw2sYH8HuHXrcIA/epTNCHNmlkcOr1/ykv35igK8AvZj/hGhnzDDG4ACfDa8dJSEkFUIU8jjZAVWxjRxW+LoWtN2bFrt0SknMh0BdGr02R+ONThqTmd/TTc9tl1hDicZYiYGgULo3DjGyPj9BBK33frGZVrx7agvaicn80FRtw1i6FW6hAhVqIIVEj5YOo9GQXNutDHSNiCaWcmeorVaWZkb5JqGygbfQnBpurBy8OUZ8M6cgWmjtwHxsDKLIkNzvCN8ERvvcVEwK7MBljhFapS/3DKGCNpbDkb0UHwhw6YSj12EFg6wBFweIJEZULewipkQ/3pEOhd204W5W0hjYbXfU/hrJBkDtYmAO9rnMc2U/H5j3N0xT4nC4tgTj3iwOWjY8eveCl5/9kH15RYyd41w5ts5+LmiPvPPlb/OtP/2L5Lt/QVhGQhyoyz2dmXiqk829x7xQnhgcBvQOTtvI08b9hqyIaW8ut462saL75d0IGMhmBXT1V7ELWtyjKngKM5jMJAKURmmdnJLBc2peDrp6DUh0tox5o4VocsukHWpBcGZXFIqCqnt90C1Rs5mBae0m+VUaIpE4mBnoiR6sti2WdVMTLNXIzrqD5T4Q4aB8X2bolqwYA7SGAQyhclwyrRb3DMAun9qgLYTBfJrKckArDL2irdkQ2RpRhCFBFtvsWAqZyWlsQDQQs6fsCUodlc47Y+Xr7z3kRy8OvN4vhBg5lsr+7nMuzy8pZaY1pdeZ0myQyBuTAs+tMGXz9Twe74hUS+irME0THWFeArvtRNhM3N/vuXjnK/zsX/rX0d/9vxNcwhw90dXF/adnBIWcLI3RrtDunjsGyqYYEGl+Bk0m1NQaMgW/bGzYNR8M82BodGK334vB0s6ibwetWto2zwLC7RlWLTY41/Z2CIWTHxXBz5DYc997od+9MI86Ok2MxWlLiIBoIFFtw75S2yUQmqItkKNQsAakdqVpZBgmtNy5fxushtK947IMu6B7CzBMwEhI9ppbKcw+4IhYCI06Cwjf0qnacuN6rhzbgbIs7FJjIw2NCtmkF4aWNqrasG0yd9/GNdvIqb6VnaIQ88iuQ2j2+o1JZMbPRDguCzkF5mVhHCfUG7QxZ0qZOc57usIwnXOxe0TOgVIrx+XAJz/+iJQTKW15/O6HvL55xTRtCTJycfEI5BYRZznFaNte4QTO2/5HccjlJCHLJ8nZWwsIkxwcCaLkIRCo5nvSjHEqK93SFxXiVNOVpdyb2iCIMx5WZgvBPRltiMvuhdVbs62tCtqSgYZVibExJGUzWIvR1Roe7Z3o56OrDYqhB1RmtM3EXm2Abrb91mbsJRS6JhgvCdtL6vXH9HkmRQNzw8roEzXWAcLqo0vd0+qMliPSjrSWTPrt7bJooBQ3OBZ7pko3H6valNIbcdpS7u+s8Y3RJKgJtBeW6gmAjiuGlGzpUYvVTuTEXkvZzmOImcfnW94cCnPP3Nwf2e3OKc6kUBIE4eryAbe3d7z/+EPyOHB4/UdM08j9/kgPkQeXDynFPGuDKre3Nzy4Gpj3e+bbW17eHbndHxnHDRfnD0jxxmqwBCb3kRM52ncixqgcko0NZvgcwJc3gkI7MA1qS89mFisSGtENr22vsAK0LucJztgjmKxfcB8x+46CFwnFGDRJAojZnZiPkjh41lB1c3s1tkjAbE5Ei4MNwe/rjtb1fQSaNjvbHlogEm1hNGSE5P2U9aCERMqRXo9+BitTglotwVo1QvPHMAT3NzM2X+vFejhtNJTSR+YQoA1sNvYZt9qBmSTYfRWFWm2o72Ism6MayGTs+kLyhWPy5V7KyT22+hcWKebhm2JwJoJCDNRS6RIY6Dw+2/CmRDa7LcfST2m/0o7shhGdttS5cbx9wf7+wNXlpXkVxQ3n5w+4v7/luMzUm1dEOKlvLOl7JsTI40dXpDQBi3vJWa1NwfpcCd3BFhtIhX5ijooEgvo968wKreqdt7PI4wXDw6+bNcn9c3q/8WFXSOmt99m6qI3Be//QaTqfVBpdlR4uyFcf0A6vCX2BvoYaCF0GY9FEgaoMQzZgUjtNK9Ih5AGpMykEAy+dUWfvrxnBv3fjPUcAC/Zq6oz9LjD462lWv1ZPNpFAyIL2SFOllnVYN6VRcgCTYExw81wO1PkAPZDGiRC2xDFDSLRWHMBU6nxkqJ3eCrV15hJBRooY2L6LjbTckw4mPYxDMjC5KTEPBpK22R0fIqV3tCl5BWjx+0WFSQOxK9sA5XBkPsy214lmA6G1MeSR0gwcq4swpciQhbs75f44o71Qmkk8z6aB57cHHj24YH93x8WV2PMXHJTzdNC+Mma852qhmszYbZJUobrVRxBf3p6W+GIgU7B1uc1ItkjX1mjBlvom5vXe1ZcA9qU7Ii+2MDmFeHT9AtgoaK/+HIgzA4HQnJxiVlERA5SIfkd3gV6oDhalnJDkXl6tey9o57sdQSlmM7DcQ7FFrUSrg6gF/ywzdA1UgSUoPQhaqiuRmoUJxoXNZiRFk+Wap3l1pprNL0ECJLs7kcwoxvIiQIyZpVsdSNHID+tnonr0u8C8mhEhdSWNI0+GiSoJIbGZRrbbAS0NDZCaeb0Oo3mD5pxpraBE4rijNTVgcNyRx5FeFpbDHbXeU5cj51SeTMJda7z5we9zXyp5e0kNA1USL3/8MaU2CBlJZivSjnvaMnPvzNEhRnahmz9gDowRchJjvwpWmxQH1w0sjg4a21Kt07ucpovgISOm+LMFgXmxc3q21Gd1GymdDoh5chtebTUl+DOxzrUrxmBMUCeznNSR6s/zF5iBQWldWXDma4h0hGM1glWgstTGsSib7P1isj6iqVALKMaYVvW/uy6ILPZaaqUHmz1EfeEYumMktspNYnJtkeoYjRLF1Ai9FvTos2gIVpPFkBq6zQNLbdZ7DeY92teeoC00tUT0SKWXe2crd7QX61e6ImkgD6a+iwlyzvZeeuUQk0mwV6sRGmnItkhSW5CbYjOCdvOaHre0w431lsMTluHLbM/Puf38x9x99hHnzz5Axwsa/3/A4NvPnVSUKSlThk2CFE1fH0QYkst3nJlX20KZ9wD+YFtkcXD0rfV+apzAJK8pBuJohy+IIlSkCarGrFpp/EjkUAdLX2lWdGJoCBlap2ljlRQtNdCIFCJdolPWYRMCo6xbaUiY35+k8UT5Xtkpig8updCDbeU6BeJI0EqimdG8ChIGkAZ9T9RAURvWO4b+19pMjocxGtWbnq7W3OTNFXiT0B01LqVY1HLPLNUGc7SzFGsuO4HIAlRjRmilRaU2u4TUqa+NfgIE1nh1G/7MF0RFGMZMGEaawDBOjJ/dwasjWSLzYo3JYTlydYR3c+ZfbQNzN4p7CIFhGhmG0Wi0IXG/v4a+gGTe3FTe/eBrfPoDYX/3gh4KyxGUgc1ui6D89v/nV3jvy5VcbohBHDyxYaJ1++xhRlnZTCbZju53YLUyEqYzMwtebmyA7qa9N+bV2qAZW655ip99R2v6lTH1wKUKHWvStBGDS2m6bUlr68bHaYVS7VKLwT7nEH3j7MyGRqPV4pJCrPCeNv4u9RVLFyZ292kwpqhgA42oAbnNWVM4q1Bbp7rcCImQ1FkM4sCStdhhd46kLf1wbQOqCITuAI1JjEOCVsxnSNSAxjzu6CFS65FpyLTmfjmrBI/A0iE2e40r8NpWQDVa06E083jJg22JuyBpw/7NgcPhJVobr14dOBwWQg88lM7t0t3gdeDps6fcvH7OuLVY+6gLtdzTDpWUk6ecqXk9zo0YIptRiTpz/+YzQj7nL//Vv8MnL95w3qqVFPcRCv7d+0u3Z8RZRb3ONli4nEvVnt/eM6LJGUnV5Idh3RjjGzdBopCy+TClKJ4s2L4QfqHUshgLNZh5sA2K9v2lGE+LCwgnNlZI0b0erTNYwcmu3qSqvYbuQ4KKsUqNZGjeLBKMsWRsZ6hl8VAXMSAnJBqRkNQZqdkkbKr0aowL80KxhntRoWiiz4U5TnSBXtXZMorUSgiB1K3Zjsmp/cFMgkcVLrIFm8xENqEzpmjDcrD61UKiNWVIGdFO1+aSAwMmDS1qXvECtXdoM0cZefz+V6nbez7+7DOub19x2N+SUuZw3CNTZCkLGgYuzkZ6rwzjlloXUgrMc+Pm+pr9fu/pyRPvPHnCi+efMs+3iHQ++u7nIJFpnHj47Ftstxfo8pvUrq4xsU2gBhtalECM+QQmGcHfalrrQO/EOKBaSFqhzNAWcF/OqoqsdhdusG3PmqfXySrRthqTIv5zrQ2qxeXB3lxa0xXRaqzoromlW60fYve7yyTqirAsxWqF6erc7NuBaxmJ05XVmjbTuyDBGagO/ok4i8L7BSkHyvWepMV6WMSkSbU7o9mWHt2lFSatj+YvNFroVO+W1N0JxCESY0TyAK1TsUEkj1vaUjjcHVFtLLMFHWxD5zyXtwmZGhEiKfhSsOtJIu9QlzG3Vc2TC7U7uwlBErd399zNlVJhv78lp0SQke3ZA77yta/x5s0Lbu8XPvvkj3n/vWdEETabc0hbWhe2m4njckvXhcO+MuWE9GbDWWwsxxvOpg29RR6dJUQ7rVpQy+pRl6J5KUq0AaT3dfgwmT9a0Kruv+dsXp3g4ssMj79BO7xmef57BL1Fe3sLUICDhi7c9i128N7CzlWH0GnNhpTa3FJFoiXOZg/oCJYkuTgrSKSTRNkMkRgSa6gQ+hZgsKF7VXEIkhIpZVuASDCfLG2Y75k9A1HUHp3FFrHNgTwFY/ZIguB2CUlO90GtBprGZMFOvdr9l6TSauN6qUzjxpL13Hs5dmXKme3Dh9y/ecPtvrNX4bh0isCxB2eGJwMpJJ6WEr1BjdGWNq0aUwurB10sxKu7bFgNcULjQJ0DvR948+YVw+acFy+uOR4Ld7XzjfPIMSaOOvFmhtgq87zn7n6P0ijVfBy/9Ohdrq9fMWW4uz+CwHy44XZ/bZ/l3ZHp7Ip+1t2+w15H7+b5KbUh7ukmwXosmy8Vs+00JuXab4k0Z/oZcBLaLcvnvwl4j0ckDtkWh60yL7Yxt4G62wwg691ng3aU6KXwjv7yD41EvAovy2Ay1WYLhCABjcZkrQ46ax9JDvJ3DGCJUlkOC929BG2Ajv6zHVQSS25UfNmn6gocXwKqBUGJWqCIJamq9yJK6ZCluX9bMPAtGOt4HKIzWwux39KKUurC/Y2lp6sEk5gHQUolSoJWGL0+59ARSUYuyOdsspD6jFRBuoWzxAgOc9hnFq3HFA2Ebt0yurKJ7F03NaJAvOtM24GbYzTAOUVyyob5iyBp5Nn732C7O+Pm0z9G5nu2Z4XSbdEfolpg4PUNIpGLcGEX2/QAvX3p6jFjM3WqMWuctR7FQFBL9YSib5nB2YGzIHpatNnZE58Dne3eqs8DihSh4iox8VlEdbWiPdUFI7Ib2JliJAW703D2tFVDA1pKD5QGU7akd7PfaaczsPo6Nwz46Ro4ViXVThBnC6kibQ1EAek+vwQDwGsraIjGMtLAYRbuF28QHDS8utrQ5iMlGXABBlTlCClUezaotlRACaGtBLNTbx8R1Gh4pGAMxTRm0uFAzCA5GWtxOdBbsSWQVqvf2Dmca6POe2LMqAwc58ruYqAttvwShO5BZrUe7ez1BLUQu1L2d6RhQ2tH5ptPWbT43V85HDv7mjjWkd12R5we0kPiyYP3uXj6PiknPv3ur4MU3ry8YS5Cq4UUIpeTEDOcpcDl2LkalTHCGPzZDOu5i9absy70OYG2QkN0tWCyPkaDeJ9jVi4WxIMTMax+RFmxOydQ+Z2KvMUkqvrCRPW0OAkrYCy2UlkJHWLxteQsJ6Daj5EF8ChITMYmDEKIiSyWW2D/TmPKwrTKWTtQ3RhDOsNgZzlKMwJNO/rSxsBJwYB1G73XJZ4h4/ZMBVSUPJlkPKjPTFhNfAuye1sfTLESFbNjSwOjVFskh0yeDHAPEkzyG/NJtdQ6Dn4mWkuE6dye02TqvdY6ZZ7pzRRGpTRoiobMePWMFBPz9XPylE0hUxdqNWuh3r1fRJFhArXlIXc/4vDp9zlcXDK0yqR7eLVQwkQfHvKT/vqJAb5HW2VsnRSswREcuAsmVTosC3RB5XgaaMO6nQomOeshkfJA1CNjcjmHHzYF89QRjPEVndosAJ1WKiYATCwSuFbhrM+k5FKHDjEs/qAJIeJwVmIWYZvEgIpQHUCsJ5mjodw+LHfBcighuHzWZCjGVJMU6cy0ZimYpTu9Fk5MLcQuuiFZcxlOl0InjRMqA8EHh9a6+QoBmXTa6KlCyKu/AFSMydhRDs208mRLTtW8odc9WhrnU+Bs2LKZ4qmIrpRfcJp0iG4cD5QD9ObgVqQeZ8pxT23K/dJZDhVhYNpumZeKELiYRs7JfKYVGc+Zr2e2Dx8xDoHD4UgKEdEjh7trxt1jvvXtP8MPvv9dHj7Y8vkP/4C+vDYpXAjcH2+5evCYn//Fv8EyL8zHO6T9jqH7KK1ZwVvla9YhrguKtwmn2jtFjQk3PfkG57/wb/L8o98lvPxd+pvvGePAwbsTWOwbD1w+tzL2bFgLzgRo9JTJWFqY9orEQBKlaQCqaep7pEkiToOBFSsDJzidfR1iCWgTJJnsxgCWBDHaqfOttgYxurBgA5ms57LReqXNwqzWoQzjhmHYUBaTo2lQQjNPt7zbIX1BW/FmVynLPSrZ02SzS4S9IdHAZrSGpCRDv2uphCGTcqarhz4Ul3r24jLJidCr0ZL7QgyD7TzbgqqDB+t57M0GYRranJlQG0k72hNLV6ZpQ+8wdmXHETl7wBw2pFp4/eI5ZTlwtj1nHDbQGnd3le3ZSO+duRTGpAw5Uopt+o7H2TZMAXq945/+0n+KxMTPXFX72WKsKEt5tIsXgeELsjwwWUJ1y3kTPA9s3v0F8rTl8OpHhHqHLK99WPH3LOISB5BW7Ex1G+RUG9KS+YZ0NcBHEjmPSEhI8DPR1RpNxT+zQGkNbdWBP/tZq7SXYLK3ritTFfCLufgWuqoPvyEQ1IIuxBvVICZvajZzI6ExJUAm30wnZ3oVNCaI3RXJpi3JqqCZWTK1Wd0cxw3L/g5t7gkgHVIiaCXG5ANVcZaxkh181NAYkjCIbeBMWijePBmjGo3kYTLQSYRa9/RlDzTf1EEpjQrc9QMv7+/43o9fcne4p3aldqUcmg/69+y2Fyx14XB8w+XlU9CK7O/obUCbpVF2Vd68ec2jiy13rw6EXkDtGUvu31VrhZj40jd/Gn7nt9mcP6HPe3oxILC5XNZY8LPXnI4G8/gJEl2mb4BjfPId6v417eXvmrdWNMDjtCmO4sCX2QgYEzmSU4JeQSutzWizOzfnQFv6W2CuugmyGvBoRBVjIuekZFzykcQWcAS0Ci2sKbjeYAYzMe5F0FBYbl+79CfQySzNvIcqSpCBSLI6JMZ8QGEcElG2tOkhfbk1Owuvj6sBOilbQ1nNF4kgZOn0kN1TF7QWQo+gxnAmK6Gb9KUeb4ldyTRqL7YEa5BjZ8yB0A5EaQ6aNmvebUNmfUHODEOmFk/dVBuGSm3mrdszQ5kJEknBJCv3xwUlm7wI5bNPfsj9/poojeP+NTevEsfDLVcPHzOFC66efMCP//DXqFUJRMZhMMsUEdI4EY93vPvokjf3hZ/9C/8ax8NM23+GOvvCnhPs3w+rn60vnfyuOzUIvvE0HEZo+Snbr/xVjnev2L/4mHAwhnQI4mfV2FkmBhTGLKgvbNFGK+YHeapvEkAGQs6kcaAUk+qsHnrGKBASDclidTmo9534QF19GZDN77fNaBcfjK3GLstigzs+WKnSg+WLm2S4vwVpRajdBnlLqo0GQsdAwhgKIgF6PXGrF7fAmLYXbFLmXBsxbKAqKQm12DB+FhXtC5vtGVfnZ5SbF4xZ/JlLHFRpIbGgaBgprbJdGmEToTZy0BOCEPNASBtiHm2AoiNtQeriw1qje7L03c0NtzcH7uaFvNywlMb93pgRt31LOczc1cqr63s+fP8Jb65fcnt3z7wsJrs6vOD+7jUxJe5ViXnH2cUDOpGtQG2VXiDGkdr2JpvE61CCQHPAtTkD2M5BE/HBHmLUU0+2hpgZ/9tloOoy2BDQ0InaaMt8WlamaIqU1d9Re0M8NMjM/p0p7qyqEDoddUVLOC2ESMJ8NDaUaidIRunMCDdl4b3zQOiLMfOLzT/72ep7UmHMkSnjC+FgPlXqdgkhQ5psnqChzf27vdYZ+7B7CGC0flRgrIWcJx/+F/AlkKmGlKCWHFokmwy/RarY2Y0hcezqf6cxhGLMgLDRSCMyRDiEM9KDdxmOP2LQLb0WUmyEdkDaQldjugZdkO6rIG2nRdFKTgADEaIIx2buYVFM4jsvlX2tzAvsLt+BMFAOr/nBH/5zLq6+zKPLkdtghvrEkacf/DQXV+9w/fpj7m9+yPWbG148f4X0iMRbLlf2koMoKSQ6gaVASoIG80M0JYsDHSLOXLZnKTi4Z1ZQUDw4zXwOjeUeo8mv7WcYkyoEPS19Y8R9F+vp7Cp+N2g5MZkNbLN+LUhEA4QwEjQhHC2Ru5oSZ2Vp1frW2771Rm1KU+U4F8YhMEQ1W4BsvV4IPs9g57l2oSDG6McWexdjYjc2xnFE1GSPSRY0OoBi2lH3X3SlknZfshh4iysvrA9ePcMDKUXaUlExokUrHl7UO/1wa+nTosTe6L3Z/KCmU6BXxiEQmpErss6Mu8gotnEJTmaRJgbqYGnkpRhIdFwKEjNtsUCQVipxOqMshbv9Ykzliy9x8fCn2LAhbXZcvPOMovac9KVw9+IT3rz4EcNUGDYRkczSBx6OnY3C1SRsMyRRtyNwpdTJx7NRupIkOqjr/YnfsY22QlUnVHjVFWi379CdvVAn3qgz1BBjkK5AsuJts6uGxMkGwgpAm/S7rwxTr4Nm5iDOerRlkHbr76chEUNgwM50ikpTuz+7NnQ2xrlIZAjWU7Zm06iBjoqIAdRKsOdQO6oBCUq2rZ8TjQwj0bXVUAunEe20VmnVQD9FyePg8wy+sBakqTNzV/97e/d5GECMXBbHZKqxaj7MUFga6HDJUu/ITam1EonMmD1MrwtCo7ZG6EpoSinGmo2tU2s3G5zlBhFlSBaKYs1FgzQwnT8y8PF4B2lLHCdoZ9SwIeYNmz5T00i6eMxFHBkvrtg8eo9XcslP+usnBvhaMwZVa+pNkkHMigFxKXSSs6hsWxx9MI7mDZU3PP2z/xahHfn81/4f1NaMJqnYYCrBBWl29OfWjWbsFGfwTYUYsKOtUqpttFKAMUeG6Kw/bFPY+wISGUJkyonWhNoN5c4CQRtmYimIJjeQhV6UUlc2AvQwoXQkK7qYtEokGTtBlTQOaBcYBoK6DLaNRiOuCzEnf67F34CBV6qBIY9+nJXA4FTSiDRnaMVsMtI6k0Iktc44d+6rsoSRUoNLT4/EkNlNMAZLpgwxQhRizNTaSClRjwsSE4wXhHo0AKCbxC2k0Q74AFoasc1st5n38gNubgvEATZWnH6tzISUuJBI3kwErQz5AQ8evYdo5/b6E3pvjGPgR9//HUIekXzGs69+m+/u38Cyp9bGdnvG2e4BH3/8GU/efcb59pz++e+wLPWko7cB2FgAp3MW1o26Op3YKMgpBPr+cz779f+C+eYzUr23ohDUZLK83ZzgBTeegip8u6DYMCydFiYOc2cbG80byb4020rFRA4RbUIgEbMzr+jUZbZik4zC2/07X6n1toUxFkOI9vuL2utrdSFKpkZjIOHbisDRbwUr3JOY1W+ioLNtncI4EIKBccG9umrJ9GiS2TbPpGlDbfZ9xhgIrdhZk4DkgVIqw5DppVKOC/dtgWWhzQa4hs1Eii4TlEBozX1CIqE3hhyd9h3obaKnEZ1vbEBeJQuSDIRKiVXqkPKBi4sdelhYlkJ138Efknn/yYekFsyHYd7z/JOPSNPIOG64e3UkDxvS5hFjFg63b8z3Jww8fXTJ7evP6Lw0UIbENG158s5T0MSoHzHW6pvUVc4IAyalCCvoqyZ51m6Ak/0zEDpcv+T2+UdwfHUaqFf2yur3NAu+nWsMybb9Zv1onk444GK0zsLSzf9Q0ROovUqSzFOxedBC9y1i8HprAD5Ys5ByQlYjXTVZgPbOINGH9JXBJ0xxsAWvWrBRZ90mm1Ssto4woH022wPtqGTvI5zmbut+Y/RqIsmIJNjljmhj2ET6ksww3boYQtyYItX9YWhW0zUJPY90KlPqTEmJITMX8wLqrXm6oi1KYjmaDyYG6uDtrSqn7RoK9y3xyZt70rTj6uyM61dvaP1ISIFtHiyVT2diCEzTjrYcud9fc35+QauNMd8h4cg4JDbZfZu62ShsN5G7I9RajME2bTh/8Ijt7iGtF+5fv7D03GD3WPANdQpeG8I6tKrL9f2RV4E2U1/8DtIXhuzn1U2Ba8O8CZdog4V0JPiw3AtaOA3QMRpjvHdYFv+MmoEIrQuEQE6RJG5poP0LcieT9YozC4OChupdgtA10bUTJSEO5EQHWexPJHKyJDQF8sq8obk/q/tTaUPmgRoC9XhtYLWYQqB3sZoYIkEbdPPHC8HMnWMQA7/U5LildOKwQdJgK5JWjP2vi/k71sq4VXQ7GMuQSI6BmOLb4JTgADoOUikIgSCNXo4mSQ7myVRrofdE9eERzVycnbNc36IinJ+fMU4b0MLN7XOGzUOePPs6ncjd9XPiIJylMz/fhXnZc/HwGYf9HdnZkxKNwV7mA/t94dDg3Q++xvNPf8yjp08IR0GL0oWTH6gNgUqvCtEGWWv0V/DAPGVyCiSxVLm2/JDDf/v3TJIiBkYEVslo8DrvkudeafUtK2BNBFcFVRsEQ3IP0QC9zQxB/ayvi95ARlhNuUNwKkMD3LdvXfT1XtFqm//gDGjtYteJyFsmHi6BPyUeGjCowWSL3bS3+LqUQHNmqidJd4WYkTQZg6Uv5KTGtC33BvrQaHkgN7EAOV0IDGxCQ8eJqI39zRuUyJQHSisWQMCExkQvR4TKNAS2yQy+JWRfhkAIA51M2j0jDDvmz/4IeiFOO4ZHX2G5f4O0IxoXeq1sLwZ2B2U8O0Ml8eb6lqdPL2hL4YZIjjur+Vt7jpdiCZgpRA6tsD2/4Nl7H3K/nxEtbM9MwtuWA3WOjNNAz4n3PviQfHxN1pVFZ5BP6z7EOciqgi0z115O1diQiN+vBrrkFCz12cEZui/dxZe8GIuqO6NjdZYjJJTG0oAevdaYLEs9gCcmC43Sk3wTCObpti4Ngt+1VZV5sSFvXpQs0RYACjnBZprMO7U3JJkKxPInApI2poKZK+SJfHZFP95DO4BEWi3kHFweFonjFb03yuENEaHWxXrUeiCkZBLiGE8Mn9VSp6mQMEZ3iMouFrK4ZU83JjwY475jLC9rnIXWBrLs0TcWZjdsI9SjWdE0pTeB6YqcB+Tw0hQcuyvKPEMrxGFDKzMhZbQXl7ypJR7HF8SYOT+7pF3f2HOURtBGbwasJwnMd895pVfEOKHtGu2RTz7+IVePv0o5VM42Z0jcIjEhpXL+4Ap59QnaoXZnGMdGCMrG4naxBPa3vbwg1N7o0uzE+F7IugOXeaNIWH3irBePzsDy5Am72xru5W1+g62LLWlFGewvoqybYcHvSfs7I2BagkhvZntxqEor5aTCaV0JoZ+82DrmhR0iDAmGFJxdZ8qi9Wf02kxZ1leFmzCNtlRB7B4XzU56MQBUl+awTyAORjihF4SG1hW0MBC590ieNtRlsfcfos1MXS2coVREm3/eK0iOqYdQVnuoMAz0vvqRNnJyy41WKc2+0y4RbdHsGHImKaAWABhSsoVUMwZ9b/20wDNLISMjMGBhNxopc6Xra8L4knz2ARdXV/SqTElYSieOmd2DZzx49h0evD+yuXjAoydPAPit//N/RK6BKAdffhtRZqm2zLKaZWqRHGyKJ0DtndLaCbAwEM9BYAecxRdtZk9s1idRFDx7wO49+zp7tH8Wdb9mYLVFs3CY1f7ri7Y0vuhH397DCEZmMSmtqDBlk1KLuIILoTYHiiXSCD7nrB6XQiQwZMNeDGRb66cvdpAT6KfYd7q+DhwHCdHeT1clDpmIqT5itEwEYxMae1VxBnuIqFuCISM1ZkgDGjeUYSLmyXCGcSAOIzEONMnuc98IQ+b4+lNSivRSSePICOQ8OctfySL0+YDe39LurqnzHcILMrcspZF0MTstItRA00gez2GYKGlD3m1JecO4uSKMW8ZpS95ckLeX5N0Vw9kFcdzZa00ZQiR873v8pL9+YoCvtk6oTkv1w5OiscuieIKpswiEFTgWlgXS9gwk8+IP/iXH1x/TlyMCbM+21KVS60KrhSDRNz/rtrYTfSP3NijANiFnQTgf1o0CmIGvbbeQ6odYjNJMp9dO68ai6VpZWI0ZFZFKjCbxSUbjIY2JjpDHrQ2NebTCFiJl3hNcCptD527fkQ5nEWIKRkXuC33u9LqQmpk8S8g2qEknSKTUTpMEVLoXhNoKTmBwynUyWQJ2N9OF0eUzKgs3+ZJXfcOhzSxHZa6Vh3FhtxzZjFYoezBpSlvwZrlAmS1N7uw90tOvmzRUG/32tcnn5gPb/ZHx/iO0dB4/POdwOPDy5ae8ub2mLY2L7ZZj7RwPhfvDa/L2kqEWco5cPHyH169f8t5Xvk0phTcvPuPFJz8g58gwXfLq9kAaRlKDthzYv/mUz8o9N3e3PHlim2bbPNpZiKuk2OnJFnxrF6FIIGKXYwzA8pJy/9I2Ktps2yZq4IHYkLsanXZPpgJsUHS2VcOYTUttHEokpsqUs29v1vNv29jCuomQE5OgzAeiQDkaK65rXz13kW5bi+DS294ipGAMzxyNtRANQCFacp9iCbbz0ugomzGySQbmRLENH9LQ0kESSzVJGiF4IxMseKF0YzekRIqW6nc/2xZsc/GAerijHg8gEKiMvTGONnzNTSgxMYQjOSWiVGQ0cCKERMBYqjEk1hS5NFmRJVz5xd9JMVNJ1JAJcWfnjoF48xnz9cJhPnJ7c0eMiSfvfsDt3S2vPvk+c+lI2jFNA1ePHpOGLcO44fzqAWdXD5mPBaQyDluIsD1/xLh5yP7mNSHvGKPy7Ks/x6P3v8LP/NzPc3d/4PNf/t8YO0tWmZ0N7k07ERsaJKzeLCtgFJyBACIFff1HiC83RD21Khj70tTS4nXG/vc1GW9dB4vYkGLAgRCCGZeHdeEX7P+EsC4GrN6pWjqoySfw4B6MsalCqziTyt6XgY2uQxM7Oykm20S1hV7fSpxUm7NObdjRPtBVKP2INnxT6GU6gcjoDa+x0hrRvIBSIQeh7s3DAxWq9R0mM8zJPEdXH46cEbdIiNEM+GPvjDmTkphH4UaQVR7uyZvqTElVa+jVV39lf0MKjTiO9NAQErte2W1H7t7cc3N9oJRKQDjbnbPbbDnu76lq4PL57got98iUuNpuuLm+MbY6Qq+d6fIxu4sL0ER/84qcFg5He29dgLhhSInPPvkRj7uBUQSIkgj6FuxYWR3ivbWxjew7Mz8wl0uV5wY+hE5piqqZyYtLgvIqr/T7N/i2NAZ8m2lARyWYtMblmuoLj5zXpVo3AL9Zk9Zqo6pZXEwTJOke1LMamA/UvIXpknLck6cdZVnQJAQqsR5Bu3l39rcyySF1MzD2nykroIPS+kJvic5snxcLtgaMxhJIGYr1G3FzzrA592TdhXC8M5sL7dAq8/0dxu4JxrLPo4VnhY4mSD4stACaR0I/OpPBWWrdwb1WCSGbuFkbtRbSuKERON7tqbVT5kZryjEl3iT7nHe7C0qHY6nE4RINkXq4YT4Wan0DXXny7Kc423yF+f65eb/FiaUGXnz3DximgbOLC5b9PRKUq/MLLh8+pdWFPG55eTvz5Z/6Jr/5L3/VEqvDmp5qHnTFk4rNM7kTqzOng4HNgnuJqp3DJlb3zNLWztaaAmi1riGyhke9lRCtwIkRAe0Zii6NoVd6E7M3AV8Qq4NC9p2LmBRLfevf1Rkcol4PO6KB3qMN7hqcbug/F/MyMwDagipCMGlajG6H4v6M+NCUQiO5J2B1CW8QD6PpBnhqqFZj3cy8V5DBFnTLsVGWxqCFfaksJTAMQpZKGMy3UfqRdm/hBWNeGBMcemIrQqAxNWOzDym6qXh7G7iAM/hCpswHlsO9gWHjOWl7jpQj0zjQ1SXMrXC2zFxdDXz+/CWlFqJGtsOWmjqBxFIXVBN1WRiGc3abiT5NzGVBQ+Sb3/kL3O/3DO0Nzz95zosXr0gp8eDqit3lyLTd8ZVvfIdPf/wJYcapKJwYyVZnxP2WxFf0Lo9crx/3QbP0a9yA3oAoweYKgrNTovXu0WWSBv7a9926sXlqtwvTev7gfZo4wOAv0b1fceZMUIhq/oLBInht0dYjY7KFcu+BItXAKQ0sDFQaLWW0J0LxZWaItjy5fo62xQCbGNh/ZqBzcqCnAyWY6sRkys+RlIhhII4jOU/uj9qotZP6TO34IG1SbtTCGLpE93czW5TWA0IlJqv1UUCzeEifcLi3pGjphe0gyPKKoko8Qu4zFCWu7MLbO0TiqS5rm22RGwO6PzAkqxfdZ7CiBQ0T49klz96bqETeXF9zON5ynGd73WkgTg8YNxOfffKxETDywF4iohF64/u//+vklJjGHc/eOWd39YjlUCjFwn1iNLlt9vtsrdMQoBlQZuxQ3pKYnERhEFR34HntM/SUvGtI6BrMF3nL+HN2VBBbhvT17jNfbLs/fcGKL5uCs4p9dVBaYKlCGqy3TlEYkzMyRU5ehayMYQHPNvYlb7RFSbBnS4MSYiSmCeMOuJ+t2nwpslpDBXoY0HIk9mrPUTQAMWbzNVWtGNfG+lIFQq22mAvBlq7ZlEbqPye45RESzTe3u+eeq1TWRdjqv2iepMGlpxagU1tH+2BhRckC7LpmJGdEstcTpQ2TfX/zS18GVrQFRCwMyPZBgbTbEsctpU0M5wJpA+fvc/nVnyVvzqkK47QjTVuupi0xZ9778tfIQyYmY8CKBH78/T/mN1vHAqNMTl/bKqdVclRGD81AlKKdWiOtWCiU+oypviCNwZcfklnZZ4KryRzuSKEyRvNlj7ICeW9BWwWW5v272h5/vTmDhwSK/9xTGKDXYptJogOHweuie97CiQBQunM+u7rcFydsGSKBuFpu8fkUVz0Ft2DS7kJle/iCcCKCSHQ7grwj7x7QDkfikAkX75PPniLTJWm6QMatL2Q3SB6ROBgYlhISLOHb5LYW3Kb+38WtHUA5Hvb84KPv8+LTjznuCxoy03TGcPYdRCJ9VFZimUggJJuFYoxwJsSnycBMbWzne1787q/y9IOnDNstw+aCsDlnPH9E3p4Tsy2P374GqwH+NZ2AXnxe8q/Eq9F6M/5kv35igC/5FmFNcRJ174nWadGonr1Yyo3NkIuZg0ug3SzGULr+xPTIYkPL9fWdlT55G3NtoKEXSAkue402hBrfGpXAUmxDFdfh2Qfp3g3MiCGaF19ItC4sBay4BIREGjNj6sQ02TZwGG0rXKp7T2Va7dTe2I6mCz/c3VLLkdIKzf3xam1GDw/BfAE6KOY5NkRIdIiR0qqxLNS82nKK9J4IKXjnIacGx4zH0+nLF7UhnVMSHYRWkAjbMEO+ZL74CuXlDziPynmYLcVHG700o9uKLcFDSM4+ci+Z4cBxKcRppDPALluR653z0vhauOTjz17ww88+5nsffUSpBQmRvB3ZbEZub49cPnjI0jv3d2aC/OjhA0JIpBT5+OMfMR9nNptE006dIe0esVtgHAduPvmM+6Xy7PE5MW14lIWUrtHZgk2WYoNX8YIXQjBZmm/VtLv/Ema8LFpPG4QcPKXJjXJVVqmynT+i+UhG963o6zZPmkvsjA35vEEMiQ1+ofWOxsgyL3SJvrmylE7UpCLo279vlUXZxbr66RlTJ+VMiBtajBznmdxN8q4du/BjJialLEeOx6Odt9Y47uEmJnISkxOIFXBECKGYL49vgbpvIku1C4c4k1Lk2LA/UwsxKnO9J2Ur5kYLN5AnRiGoMERFqWaavyw0sWTmuiyWig30WkxK6uhUCMkaX/wz0m6SZkm0uKMMA8ayOSJn7/Lhu3+O9Pv/gto+5uzsgpgmpo1dUFvJxGGHauXhgwccSieFyP2tcnbxCGRPpTCkTu+FdrinpcTDp0/Im0f8tb/97/Lu4ycMU+bw+hX7736fVjutgVbfrEm3tFRnHnjXc/Lj9AeS6Aw4UGswpL6NiMdlQTHSW3VmoGJpuXZ27fmzP6fdtsFNOkOIngRsbC6CedxZeMdqWG+ADwKleMBETJhivNvZ84EATHqv+NYwGpsmRJDZ/91xQ1ka0qo3mJzCQFbW5VEbVQONZMwRT49MwRIAJTSamC9OKUKPtnWNEiwdb6mMPqwOngSXcjAws9vmkzZDP8LKpHFWd0oZaLRlQaoBFiYXwqbCzqmxqLV7Y2ueSUuN9BAJaaAHYysGhGfvXXFoP0a4RVQYc7IBepnZ7c7oXWk9cL4d2N9c00Q4326IMTONwvPrO4gDDx6/Symdi4sdD66uOMwzjz7YMW03zPPMtLvk4tG7XDx8wt2PA2EJFlZSjcUm3ZuvaPVtxX1j7yDGLsoxGJsu2HjSulIVl8IWAhGJztrUzkkuhC2wEKH16Ebj1lTkcSCFyMpi0OY+OyIG/nV7VrsaS8G8T214L+47ZtLgTq3mc9LDDW05EEKk7m1oqHOn0kErN3dH1iAg0WTSHLHXtYZ6WOiOnJrtFQCiVwOqq9mBqETiYpJVCcIglf39C2ci+HIhRl+SDPZ3ANorGidC2hLSSK+zJQhKtQFBMj1vkSr0ulhgCHL6O0uzQTBodxZRo9WZXhqlVupirP4elfjgKxyWgMZzvvXBI378/T/g9u41RQckDczDlqfvZJbSGHbnXFxdkNPED24+ZZkbTz54l0dPPuDT7/42Lz7/hJgStS0MQUhqQSKHufPo2Vf44FsPyZfv8W/++9+hdeX4z/5jB7uNUWG1WP2c2RCwptKLRJf/dgvlcnBEw8qkaydQVoIpHJp4uIaDZPZ74QQUs4LGAU8K9DsqmkRIgBgsqT0Ek7VafW1IjyfblhAqos6EdvZe005Tl6bRjZnr93p3GVB377ccOQ0y5Vht+AeGYTEJHtBKp8fAwso8s7tb1T0hZ+vEejfZ4dqTm5eQm3wEk+WmlBkG8w1UzItO+0LRQEpuEdEtDXYLbKSbf2joDFMm9OrzdEc3O6QVeimYHi+RxbwSGc+JOWMk/4UyH+gNll6Z44549XXeebTl4t1bNudX7G/vePHpj5iXhdIKwzyjRLZNOR4OTOPgvWzk8nzL3etPmKvSauPx03fR3hjOn/Ln/8rfBEnsdltCDHzpp95w+0v/b7NrIKwWh7ZUEOvX0HYaWo18uVao1XpkBVTfyhxX/1pLqLUg7CAKwRe12Lky/zRXEcUVFLH/mHeiA/T2X+3/h7dzjMoqujYWcweK91hzNel22ARStAC2GBLj7pw2H9FSjMHb1Uw7eqSUTtsfIRjoFjTZna+niBerywSS+86aDLIhHNB5tnrtbOVAp5bZBLoyoDGagXz3V60HECVlY06b272gHnZVuzGxREEiMCa2Rus1Zm3vTGpDe1eMCZuCLzdBMQ85s+QwoJTWkOY3TF3MY9nlfKUcIWy4uHiIDjuaJIbDyKYq93Pn2YdfZ9o94Mcf/RGPnjxld/aAN69fsnnwZabHExdXj3n6zrtstudcPnjA1cPHnF8+YLfbcXfzhv/mf/er4ABkVaM4RT8qEbODCMEDeFRPEkiw/q57EZNm6ocUMl2hLcaEz8nsV2Ky1iKc+j6bNWrtPsT7HBb11GepLxhDMIDEbDD8TArEJOxQ0IMtxdT8l7X7Gey2XAkx2UJJhLAC/s6c6735rGjLKu0N6caMDGJAmmqgiSmDaq22gQ0eyqYdZ3oYWB7Vgh9WRlU34Fy7SWKjp5hb6Ahos+fUvLodDEyRkEZaTRzJhGkk7i4Zz3ZoPVKuX6BaLZAnRFprpDTQJRnxQhKEAcYd+6NymBudRBx3SN5AHOjjGTkFljcviaF7rk2lz9dweEVmjw4T6fIZ+eIxm6t3eXr2mLy9QOIIabA02JB8m/oFlpyzjteaI9gieTMG+hFbVndjra9YhQZhrhZKsV6MvRvQZ3OBDfNRLLE4EszjWiY2u0uOSzGfTDoxdeimAmhitamJO/o5sGde6eoMUiGJETvW84rgakkrvuuybuWunMKOQnDUyfwbQwjUZmSi1g3wCqIMKbkayfpC6RY80zFSTAjBZeprqIfVmrgGtwUngPriRGRCH3+b+/iQabvjwVe/Qz57wPjgGensMZInmzdkBZjse8GfH3yGXS+XNSxuvWt01c4LoJ0kkW98+et864OvoO1Inwt1OVKWA6UWlrn6dyuW/i3GCFcCXYwV25ylu+iOi6/9a8ybHVc/9QFXjy5pKxnCv4/T64LTnbMusk714/SC9e09Jes7+Ml+/cQAH+ABFc1HBPEhGJOQOjPKfTZdgmXNoYglzfTeaNWKWo627U0hEj05NDh4tX5egg0srRstvVWj6R9aZ+7ZDG+dzi8dS1PzwVu6IdUIJklNPrmGSO8RDYHSEkWEXo/o4WAJNmqMAvCdkCSoiTe3M8vxwLIUDqVzNiTOdwNDVPIQSUGpszHPYg4GVoqBL1rNzyJsHjNdPKYdXlPvb6xRrcqyGONkzIas924PsGKbydQPiERCjzTBxttWTEoy79nwgsiGGJRx2hAZ7Xpem3DEt9E2hIuaiaZqMD+nP/5Vuoj5Gah5z/Te+dGrhc8Pgfz4S5xdPODLHwhLMd/DYZxAIu++d86zD97jfimENBkgM20YJ6O9pnFDHiZyHNCwMjDh+aefcnv9ij78K25vrzl/8Ahk4OXzH7CkTmjrxsAG0BgMdFAfMNcRVoKYXDTYn4GVYRcA895qKhT3JFBnA8Ro6U1KZ6n9BIKYr5ixBJo25h4oRXk5L0gXl3Z3untvxFCJYuBicnarRpcqYtK94K+r904p7oukSkzNvHxYKAj3C9TQiFLZ5UidTfqD2mZ8k4SeAhtnYSnd5JUaCCFTuwMA1YC5piYrXT0+ehfiMNjmszY2CXJshNEvbV2QauwiwtsdRJ7OaIe9AaXBJD0xRipm+C3B2F1NIeYBrfXt5+/tMzHae9VgaehpRIadmeG3hbAZ2ejER59/ytnVA54NG+5uD1w9fMqLF8+ZW+TZsy/RgWHM7LY7nmzOOD/bcX/zVWLeEXwT22qx9G0wyblAvd/TP/0hr/75P+PqxScc929I+yPtakH6ynD6or+L09wdUFu3QwYyQ6e4p4Sx7gxItXRDg9LriZ0lK70dG6TXi8rqZfftvklNK83SwulGT+/BPrN1CJBVrm63XrcphVa7L1bsdRqQ7EBjiKdtnmqkKga8dHsWwzy7D6ggrZ3WTMa/sUG5BfOAKb0QgHESDkujtm6SoiAclmRBSUOy4TklQrXGaIgGwqzPcghqsuQmVAGp3ii7v0lzAEtp9F4J20v0qC5fwE2ubTCxRrORcBAsRYbNhCosqTlwK3QZmXui6RmX6ZLLs5ln73yZ46GQx2wBS6KkcUIkkoaJzeYM1UaIA9M4EnJGtVsgSxzMRy1E+jJTe+P88Ts8fvYlYkiEPDCMI48fPOD+7o7//J/879GDNeJD7ORgtaqfUAJ7VqJ7bkaXi/VuUubeDRox1osPaOo+fr0Z6CbJGwxrXqw5t5qXQiJHT7utlSYrk8FBYQ1I696I6GnQjiJmnh4jtZon0FIduA5+54UIVVlNwI9zMYZBcal9jgzT6Jtp+5lv5bMjtZjsJkdjFEgviFRaNfaKydttiG2ABRYZ+DekSDnY4iFG87pTtXARSYM1pCkiIbMsBoj2eW/gTW80tSoleUvYbNHW6JLQemdgUW0+HK5pr9ZoQ0DS1pJnE1ycZXoPdEbKsOWTY+DNix8y6w3jzWv2S6MPO/tc08T57oJp2pDHHXHYMGwviCnzrQdPGaeRcdySx0xMkbOnH/Dm5Uuu3n2PUApPHz/gKz/9Z3j3K9/k8bsfkrcXhDQiIrx68Rm/8qv/B4riXlTeaHrDblUMqxs25SNuqdKdLd4DvhkyiX4IgdIbVE5bf0HQCqtyQh3gE6y3ExHrJ4KYLN3Pa8f6QxVTPJzYLs4eBAMe1yCCWjEvnxRZFj29gyG5hBdjisXkPVtwmWztLLUgsgJMsKawandmvDoHoi3OBtgQxg31fu+ebnr6D0Cpa5fu/mYr8wY8IMcWjOJDSC/dBrPevUYbA2cYJxqdcryxPwvEKdDLnlYMLIj3xcIwe0ZKQ8+2tP0N5HOG6Zy43NhZ2j2m68x4fmHfTz5jfvWKw/XHPP3yT3FzdyQBDx+9w8XVA2qI/rkI+8OB2+uXHO+vkWXmbGqkYcvF5WM2l49459n7XF0+4PHTd9mcnZHyQCmN7W6LCLx58Rn//B+JMRrp3tPD6nMWJZzkZXiPYCcnOOjuIEHD+1Q17+rqA1JY2Sjr7KarQ4l9Jz4wrPJGIbrnYvckUWfOe1Kq/R3m1dxcBSJSXS62epd6AAbBUl6DMDq7KuVOnz+j986yVIgwRjFfZYSoSp46q1wZc1cELOBGm56A7waIpJPfuHbrcenqzCX7rJIDEMg9SaM9bynSazcpGy5ry5b6HMWWsna2/d4X0BiJ40RiYyohX1L0bmFVIZoNQidRosvpdQXSxBezQBxpYkSAEM3WoXSlh8BxaWxrZrp8h8un7/DlWggqlNYZph2783Nqh1/4KyZzlmiBOCmN5HG0xU6IJ3skn4AJIiZn7TajaROK+LPecK/hdaFpvUHw/msFQSzQwGuG93fd5ZMx2alMcfXT65SyAiQrmymc5hH1eZhlBaZt+RDXWhf9Xg3iM6ecZjGUkyVObWaVEYOyBtKs/WEXW6yUov5RRAgdWqTiKgJtJ+mkgi9uIl0XA3oDBJnRfoeKgXqmzrDf02JMdOpbNVOMtnBMOKMbs0FSjZBHU6KFLYxbyDvC7iHp/DGb3VPO3/0KcXuBpsnneev/LM3ewwQxxq5JfKPblQRCzLz5/DPk9ubUW699t4jdT9v3vkFYAZlg5zvSqO3A/TzzzocfMm3PrEf2RTWn6u3Xnlqv2Tw8TyvkIeNUcP8zMGtEZGRMI4luXrCipLgGfTknNIj9XT6LKf7anVAy5ECOkZzsPYzpCLGQY6DVxYKUmn2/axor+PfqlhlDtt4tRgNWV3DVZmR/lptZcqAWwIGuah/7vJRuQXdiZ9HIqh00nGYUQaFXGm5HhEuuQz/9fvDFIJhPfaNBTPQaDEsWm09rVUQSbfOUzdf/Cg9/8d8mP3iPdVGs3ZZ1tXZ0Mfylu09jb43WjKlpy2U9vR/x+V6cyBWCMMbENAzEeeb6X/029aPv0z77nPL6DXJzR9sfDH/qau8NX94UISwNulKCsGwSd5vEfkq0IRGGgbTbcXZ1ST+75Ae/u+P+p7/Js5//WVtu+gx2Ojkq1FLsPK1nz37Dz5UtJG15/QVg8if89ZOn6C6QlkAWyNFBFd9mil8oEStOq8Fj1xUsN8BjzOuuxR7MrmKsNlE3ODUcTsKaiBZpLgsSb+YlCkMUjrVzaGa8PoXgTb0ldooP3AZGWOKWYvHic5kp1eKtt0MjZfPIatq4vTMvANVOTsLV2cA4NoujnxtDaIyT8PhsIGeT/6YYsXSsQJiE2IujuhEVGzokdIaQCelA4pZxypAv6Nqp8wKyJQwjeRgNqa+VEBO1N45LpRxnhEboRygNCR2VEXoj9oUUKrLcIiGRzzOyHOwi9HRY4s6alvyQPpwby63PyP7aJAPdklSlN2eN2SC3XxpzvODy7CFFJh6+/w2CCMt+z1Lhw298mw+//m2ePH2HcZrIw/iFNExv3P1CtfvaAEfpQFf29/d89N0/5L/6L3+ZUheefvB1vvd7O/TzT2lqDXkSbOgTG+77CakXf39Qmp+1Zoy97k2k9Y9yQvyDOFCDMaSW098TfHBcU4wsl5gQaSExjuZZsnRLrx1yYAidMbmxr6pLw41ZhJpnJWpNQ+1+eYt7Y8lC7cJ+D/el0LrJfGsXdrGxzUpSQTz0IOdA8oY3ixgQIGJm1sGmGo3m92QJrRHVRKfbJq5Vb9ACw/YcbQ3aYnKS2ujNQHpotCZ0KjFF8jQRx4GYBtLVxnzO4kitZqib88Tx9SdGp+6NlectYUSCBTkQozfus8nRU6QXpdeK3F8jIaEh0RdlkMI2Km9u4eGjD/jmtz/k/OFjxs2Oh8/eN9P5aXI5gxmpJv8s1Fly4l1890ZqHdBsiGjo4cAnv/Uv2b16QfvBDwi//p/AUb3ZtWGhN0G6UqOH5mAMRm1OvW++7VOThEcfQCxNr54kl/iw27uekmxFojWBvqkzEN+YMKV90T/DU6HRU2PZ1ZjSirF+V4gvRgPWhiGs96DX5QAhGsjdDK5raiwV4oacOrEX1iCfFKM3+ra9r2U26bvMqApjEPIKvrXG2bgh5Ij2gflwZJOENChZCimOJKoP1J0kiZg43Q0N0BBt++8M5hAiRQOezkQYN35WO3HckKLJLenVvfcaGhKtVUKwYJtMMu/VeSFKJPfZ/FykWy9UJ/r2HaZn3+T9n/2bPHr2JTZnl6RxJLonTIjOiJPAalzs4yarRYD2lfVgIIEdukJZZpbjkd3ZFlFYysIwbVhKYUwByZzSyYTmZsnrl7Zux+0ObWLMlhDEPd4sWS+Iy99WCZtpdlExNjPdGd+e9DY6OIcaoNxE6ZopMtA6tPmAoEw5kXP0+zf5UO6Jk5L8LhOGJEAlavB6rEh002FWqXs39uUYzbtNLcAkYEukIJGQE8bYOpK00nohRQdhtBN6IqEm6OwmAxEMyI05EenEnBnHrQ286t44gGigFGN/qXbKcTb1QFloxdmObvlBLUjKNG30+RoZRmQ4o4eE0kmjbZa1ronXtr0dp3NDCSTCsKXlB+TdE9LFu+j2CbthyzeGkTBsSHmkS4AQyEN2aVUm54GYsg1vp+2mMU16N9az9kYrC2VZuLm9puzvGWJie/WUiwdXfh59jHEAdKkQqpJCsCiUIGYe7bp6/wRcDts9DdbuEvFn3AZlZ2UJBgB7P5cH4yMFXcMBPK0vvL3vxRlbq3xexGSWVpuM3WIpxzjAjBdWS+6WEOx8qiBNT0NQXJcECviQkPyewUFKY2g09wq0pEPUAjuE4N+bydxEnL3aldJm2r6SxJ7tNNiQYvU6UHv1n4L3WP75dUHUgo3oAbKzxDQZ0yZkWzLMe0II5O2ELAu9N5LAUiopCIUEUrH9R0HSBVy8z+ZLv0AYznn1o+9x8cHXiFTG/WeEwRZluUPcXbCdtrThjAckW/QMFtYUYiIl8z6NMZiXkS80tVXm+cjt/p4ogc32gs00ulzNehhkZd1xMt4Hs04ZoknWTpLb6O8dv8s0eCiPkv1+1nVS03AC6nMCencWiiBR/dyYv2/ElmMGsLjqQtf71UAsWRl5vgiS4L6jKqdFp51Hr+/ul2uyaPdwGywsRMQebdVCrzNzVWoJ1j8HYUzuA+cG9gFBo59LNTk/wcJoussZ1/ez8k+0L1bvwwoYgAU14exPpbZKSsHDHmwYbS6l1lIMyCt7yhHGFBzwU2M7Brsymyjjg/cpS6fkkeH8CenBV5ke/xTp7ArJk32iObvXmfccrpDpKhzvD7x8/pztxQXj2flpWZdRcjOboXA4kO/vuLm+4ZPPbq33RDl/8JB3n/0Uj5488VqFeWh6Px9ckmot+dv6gZz+ZwRhrgJF1mmalCCl4P6auKoAckx46+ayWvVUU2NfITZg49YDvVuftdR1oWY/M4kRVVQdGFCIfQWd1MEwy/i0vksgrOcTW7ZjJJW6BveIM5TdAkUcoBOgtW49nvaTj6Ko9STRl3wEvx89qNGALKXWdpLI99ZtBnFweF2IrmBgXMFK91BDbNkjYsQPU4yZN1wIGXnwTc6//GeY3v0m6eyRLaPGiThMSLZagazzE8ZG9O9WEZKu99PbBffq3ab+nYvCow+2XO3vKfd3lLs7yt095e6Ouj9S55n5uKcfj7RSaMcD7XCk94UiQg0jP3z4iO/87b/Ng6dP1iptz6acrh579sSf+Zy9Z+4n4G9d3BxaQGpgiIkQzTbJAiK6zVYBkH6aiwZZbVCwOUTXJaipH4yspCyHI2vQz7oEi9JIyWqHXYH23RpY1ggkW0z0E+ZtIDEG1KnavGnMUPuuV25ZimadAzZnrL2sI082qzUnUokQMCsl4mqNZWC19ZfrYkROdlV06yslmkf73IzRvFSljFdsfuHf53fuAt/7e/+Q1y9fcX9/Ry0zrVtPWKqrmcTOce9vAb3u38kpjEOsBxXBrRkUrZ3Nonxre8bfYUR/8Edc76859EapwnVfWNTqUFNlEcuSCF25OgpfPXaGLtwPmX/8zsgnHz6h18nuPwL6udBqpR8XhqXzc+8+49/4D/9nvPdnfxYQynLk+vUbQoxcPXh0UjLIF4BlVXtfrVnvGGPwGqgOfv9kv35igG9MMGW/XLXTRSjuQ2AFpFP8cIpLicRvyOgASl0HZWwLF5PJHGOwtLSYbCAxryd7IFcwcV32lVrYL7CvnQsf3qvK6jmK0Kzp60oTp62LRcqX2uiibJIy+sN0e6OULsxL577Y5u5stAvjeCj02T3PshUEM0i3R2el5KKCakVO5psYSOL+ISl2tDZjedy98ibF/PzM8DfCHGnNUV81T6OMELZb+jgY+45EHNW9NpRhSAzjaBubHo29sr2EuBC1mVyydtL5JW1eoC4s853RzHWx15siPSS6ZNLlGYzn5PMr8nDON7+9Rc6eMJ5fkcbRhyejV7/3wVeYxi20TlsW+nyk3dxQD3v0cISl0Ocj82FPORztz+z3tPt76uEe7vcQIV894W9+6+f4J7/33/Bf/5f/CBAeJ2VMxsxRVZq6wbCCyZ+jD5uJUjs5dWu2ooszRE+Fj4577NnW1i6Xt/5oK7tHMUp/ECGlwbeCwrHZdmMXCxfD6lPk8duqLIsBLqpqpvkx2MZVg3l7hFXy2V0GZwzEIMKQlCnpieUA/bRhQ72hrkrXaJyFgJmrRzxREmuqsMYAtWQqWc2GAYLNbQK2/Ss3NFHEEy01ZLsK3JA35wQhQ9pYES0zrVViq8ZcbEdreGRkOH+Inp05AGEM3Vqrb6mrb223BiDXjAYb0pBIGM+Q8Zy4u2J3/hjZ7hhlol8f0I++z89858/xrZ/575HHkV4LrRX6/kC7vqHUYhTqUqFWpLtXRqusISkqgZCyeWemAdlObHcbbm5f8+N94YNf+MvsvvpN9Lf+U1YJh702rDkHpOmJoRlDR0K3SzeKpzc7qChWtLU338pY1I/RAtw7VJ26LsbkU2yr3U+LOAMYo3tIWNcXfevUWaowF6hqQ8x2iGyGbAMsSi3NJJg9+KBtCdPjNICnyuWInVEEsCTbXhdnOzRqtWemL3pig4YQCNkGmTwlkIZqIklkmHbIGKnHe0IVNjRwM9wcXEIbhBBHcjQUOgaTVc8uy1VGRDIa7PuiFduw92ayqGi2CdoPwAJ1T/OE6NYVSRN9KfRWLek4JCAS8kiQQMpKyAmRzPSln+fi2/862/d/GvJErwVtzX3vfJtbCn2eT+epLTOtFkvuLdW2jEs9JYa5QxQSE+Ojh+TNSOoLv/9bv89PfeNbnF1e+mVulgESmvnkIQbGdPfu1BVANAa89e3NATu85vkw1M1TrDnot279ow+P0F3Oaz+jq9k+dHWQtwcajZgX24AKjDkxZZPm9i6nzWn3mk/f+znCpSoBPUn5TYpmm/lE0yMTkV7NKkDdEzGGZMOYKCEUlnkxWWDtlArjYIyB4F5HvVR7llonp8ggQsy4HE+MaSwdCQe0KtKbW3BkNIxoiv5M95M8KXhdQE3WJiGblYIDfX1ls6nQy0LtypATaRxpOLM8T8Qh0dOWNj3h7Ks/z9VX/zTjw/cJ486WFgAoa1Id6/DuoMcXOQVrw60+QHbFGN6CAbetMB/23L18xSff/2MKws/+xb/C3d095XhPGjcEMSn/3c0tvcwmtfVgFFnZJ6duzSCJ6OxjZQWq9CSZBGeTKLZlE0g+MjQ1YMbAnM6aqineC0l3EWKALnZObRpyn0xnzSB6Cl1I3t/FaD/f8GirASHjagjzazNSjFsVSPRlmgNvav5QEtVndLvvV+9oDCayT1vdB7ljCbrqciQaEiPDEJjGTKtmPi8owSiLgL03JILL2EIATRGVbIDU5gpipC/3Jn2sM3kaIAzUYn9f8kWVzoVazXcvDOcMl++THn+T/OSniJfP0DggUXjwp37BVBp+ryHxNHipD9GWVix+ouyCWf2ScL+6Uhbm+ztur2+4fvGc25efU++u2V5c8s2/+NcIMZ1OyxfgKB/aV69aP0uK+wqvyzbzMhQvZEsNlNmACpNFmrVDDHbXpuRSr+7+anaZGjgGVpOay9a6pyI7QWBNUYwhkKKQo7rFCIi4rxhWQ9YzHSQglD8hFV6tDdbAq9ZAYrfgo+6DGHaHxuBLF+1W+3zgXtkZpTWXh7pkcwUkbVPiQT72HKzfW1clJ/uLVmWUavAFjzECm9o90nuzZaNG/47sjIc0ocl6O/u2MjVsiVcPyRfvM33wp3jw8D1kOEOGHeQNYdwSYj7VI4kr6ODFSdZvHngEz77yZb+c9HQe7M4wgLKXQj8e0P0t9e4N7bCnHPYs8z3Lb/4ar778FR5/46dpYqoFY6GvQK6DepzwNf5kpXSPXgarb75YWO1UUvKAjW5Kr+Js84bJq1EDblNQcmy+HFbzXe3dhRjdAF8nGBC9npxelM8XbpHSuqVD4zNEb8YPamo2PKrqVj3G0sxi4JAEyMGBi2CMegs3kxWNe/sxB3MtPVZlf1icMdTZjsqUbCqrar31Uqspd4wqa4uSL3yHQ4xsRmcPNetHRKKDkDYXtaYMIZEPC+H8Cnn855Cf+vO8CVsOn+4p5dZStLv322vfIt6/ip3KEI1RH2Owhby4B+4X/M5iSGRA9geOn3zOm08+YX5zTZnfoMd72uEAx4IcF9o801ullkJvjZsx8KPeedGUvVYKnTxd8Kvf/S7/4f/if8752fnbu1Y5fQZ/EjL2I74G0+nKuIKNVFLqRF9Kasd8i/tbslEM0WT+2gworkrpnbKCZysTz89QopPzCkKHt6fbF7uC2/Ng/onrFawUsxzDlqOtd2ozFvqqthqTsMkGOEdWLMZ7QvUDZVgjTcLpuRJnIyQnJuTo4Seqb203glthqZEGdg/eg3agHq6B4rU/MGtlt0tMOXE7j/y+fIdf+j/+A4YvfcDFu08Znz1hyO8xRbEfJiaLnWujKhxbd09Ke7lDiv6z109zBW0trIfeKbXy6Q8+5fd+5V/wc2+E39vd87tj5bP7AzVbr5tCopFoCLfHIxcXWzYxsL/e8z+qlZ/bK2+mgc+/9WU+/MVfYEy2IAj28bJU5aNPXvDxjz/lP/+j3+fL/+Af8uRPfZObZc/nn/yYOheevPPMfX8jtVW7Z06eR+qy5ni6U/9EYfsJf/3EAF/vymHpp3ADkyTifnk4PG6Xbi+BIRkYtqZSrZTZjlGS6ZbWk5IyRDOr7GLeCqhTiaXbw1KM+VGrAXCH1mzLFIyWn7DtzFyU2tw40lHgaYjOOBCG5PwsBW3C3M07bzME4uibozgAanRmf+gF254Ee4Sp3WiltVtqUlejxacYmJvFeKcgiDSS+NbcQaCO+XFYcbThTRfzWpA6O3X6gqgDvSvDGgkdIzln6rJA9889Bto8E1InBfNIiP1AK4t5IqJITJSb12jaoDIR0o642ZA2G8LuIWdPvsRw9Q757CF5e0kcN2aOGuLpO/M1rjWKHXj+OZ/90n/Bq+9+n9effsrt9Q13d/dc7++5Xo7saRwJHDsc10u2d/a1UFpl6RZHTVce58RfevIu7//NP8v5FLnZH71JWh+A4NsWcdmHBW+I2GbCzEVN4tG7DYorDd4GSacpy+rraJez+MDTu8mop8F9SlbWgZsZ7IaCUGzD0DvSw2lYTtG91IIVgyiQpXvjgMfBG/BGc9A7BMa8XuxuUsBqIG4XjhX2dcNjDWhc63OvKF44FEK07cdAgJjseVMvfsHAnohVblUDdAMrw0chCHF6TNWEzneIJrR2hCOhd46HA8mTRVFYFZyNA3G+93TS5ISISIvZYuuJpMstMp0z7S4Zzx+QpnPS9oJ89pC0e0iazol5NMMTX2V+dZ754S//Eq//5a/zy//ol3lxe8/t4cBtnTnUwqEVZjWrue4F3j4fhd78mBq8a9IM4Sxv+eY7z/j6o8fst5H5y+/z+GtfR+PGkhbb2wYsnBpGAxJW41jEUtTEL5vWfHRYZSGs0kPxbVQ4baJ1BRYIFJTSzMvCQlb8nvMhzLytBK2dGCurTHqIkU32YdiBHGGxehKc7YDD2mKJ0aIdaQbMmBTBho6qRq8PIZqUWQIyrYxbq+VhmHxgL/4c+rClgtZC7YXj/Uy7d/AgQEoDJoeKzsK3BlyCULuxBzfnT6ilMk5bC2MYBtp8MLsBgdpnIuZn0j09UWuBZtI3FWPWqhg4zbBDpom02ZHGLXl3TtycM27OSeNEGgbzh4lbPvr+5/zWf/1rvH71/2K+u2M+HqjzQi+FMh/RWki1oaVSSuGwmCR5aRYQspRqDZWDZoh5gXWEszzwP/6f/gc8uNzxK7/xa3z/1Wv+jX/vf8Kf/Yt/+QQ6o7Y5rOXt+Vh7yyiKhIINgG7wG5zrLmJAlts2+Hjrnl7qG2JYvdK6BnoL1O4SXDG5fkiR0M1nLYeISAUqMQe0dfbNmYO90DW+vevFmGAW5GG+ZgH385FEV2f+NvO+DGEFUexnhRRAXLauxpBtCLUWCJ0xBTaDOBAVXe4XXVbSGAbzg4nJjlRXpdSFupoXt+4yz2TWChKRuCFND8gX71Nefo8Q7ximhJYZSTtiKMYGS5l2rBAHZCnWOoZMnM6I8h45jYRhB8OWTQoEyeRhIhAY3/8W2/e/Q9fAcX/g7gcfsRwOlHlmORZKKRT35iulsBRbskmZvf8ptphZDahzRtJAGiYuL654eHHJ/Y+/x+0nH/HJ5x/zw5cv+aPXN+TdOQ/ffYeHT56SorDMB0vTWw4c97ccZwvVEvcSVQf5DGRTVx44PCO47FsxWVB8u19Y2R/gch33OgvGhkfcAqLLKR0QZ0Kskm/zlHK/KldZ2NC8hnzgTIW1qTeGBKyD/3rX+fLUZUgWxujg5FoDcTmo1xwbkJOxM6SfYCrrAT3EJsMQMhJGNER7tlultxnVhflw8Pq/plbLqS8JwUDt2q2nbe5rPD36kH74HNUZWiBqIaaMhoHQzYK8qYFWPdjgO549YXz0HpsnX+Hiqz/P+O43keGc7tI71e6DtIGovXVaaaiWt0wZB0voKxvFhsbWOq0W5ptrrj9/zuvnP+b64x9z/Owz4u0dZT5w2xov6p7r2vjF+wN//X/wdz211j/ndem13nZrP6jK3ALHYvI+82tzCV10Byc1T6hpEIZoTLQUTQ20Dtg+JthrVXyYtHPVndF0Yry4/U2OVovEZXOCOMikVO/h7R43ppkEdUDbmElrcn2M8dT7gVB6Mxm4yqkvW20LWnfFgzNhVbstBXwBo92YJsHvvh7U3lwPxrjx3swGPJN2dYQhuh9ZCKQcnKGtIJXelOUk4wvOwmzEUE99i7qSIWomjVdMX/p5pi/9LMPTr5HOnxLyaHNP77bQcvRoXYUHH/hXlubKEnoLiPj79dfe9weOL94QUOrhjrvnn3L3+cccX71ieXPDtD/woM4UGveh86IW3lS4ny749t/5u/ypP/eLvP0JcpoRhS/+3D85AYsIm4t3CPUhpRxtlliOGKMKZLYgkxQcvPP3k6STjUJm6ej+XQrrneX/5L6kKcYTO1HxhUZ35ZEvIVaWlxFM7OerFVPMcQ27z7CFVfRzuvZ5wrroUCL9BO4qHvBhDQZVI8dZOJRK6SYjj9KZUmQptjwrCvu5WTAg+ILdWa+uZlOUIQnb0UCl6mEN0j0BXTMxD5CS+UWGQNxe8U9/KPyr3/0d+Oc/Mr/xmJFoFlfqCildZxc1VlQ4Pb82k/VmNastR+p8QEshaiP2TmyNTev8HAN/NW14s+z5/HjHoVXqshirvhW6Nkqzz+ArNG7iwD9ownHIjNGYq9Ojx5w9fcK//L3/jg9/+Zf4d/6dfxd/TN+eJFnPuJxO3p84Zb6kCAJXQ0FktpkzYMBBET8DibY0erDQL6URQmXMkJ2VLuscGkBpvty3ulmrSVj7SQXkFmf+HBvjz15jVVN3NRUPl7E5ZfShMIlaOJPXOlmfVVeX9P52qWjKL1PiqHLyJjZrk2TPQXy7NAoeLGprvIa4vLvffWL3s1cQ1c6hQ12UKSu1wG14wj/+te/y1b/+13j89a8ybUx9FYMlVg+89av8/mcv2M+N48092xCYgnm7azSG9yIws65r/LwF88aPmhmuLhingZSV353gD3PhxZsbdsMZV7sN+/2RH798ydxhacrfvBr51tj5hy/3/DAIPyNK1kIUGKN5ruJsTu0WlHV1vmF5/JDvvnzJb333v+PPf/Ip2y+9z1e+9k1iSNZ/iClrbGm/Lj/lpBwUH7DsDhWSmHLqJ/31EwN8S9G3fncrW8BPrxIozQbjMSdC8vjq3ik1nOiv+GbI0tnMtyyIUntjbuZH0LQCRmuvhszY0IiSQmeXEudSiaHa1roLc7VDLdoZgl/onkYjalTa1fzeXn9ApBHU2AeCGZcKoOLHyCVO5sNi2viOeYhIgJwCods2aKXd12oG8mgndEO+Z9cpN7UABmtC/aKNtu1caiVWB3ckkR6+Tz8czQ8rNHJzoHP17pKOpoGo2ZO98G2pxUfL5YcwXjBsr8i7h+Tzh6TtFXl3RdpeEEczGCcYFf906CS83aJ55fO59FQO5zc3/L3/5f+K3/mjP+BFStyExCEl5hTocaBvLnh6ecmTsw273Rb2By4vrvjB93/I5mwixcCbF29IIaMNvt8WXr/6lL/7/R/z4Xe+zaeffMzy4iN06Qw52oNGA5f01GYbEhRC8LAS9+szr5Z1WLANgeM/9sulQsnP8OoXs24wJIp5IAi2cV8lOMDK/IviAGMIZuqsilCJMXqyljG70O5+Ivkkw7CC2P37V8A2YKc22pmhFkq2NvLOYjxtin2rEmz4bcXkHK0KeLKqsRsUsMIs0uyzCeaxVVqhNb+ohonN+QW1VLTOzHMx6feYSGJ+e6FzOmddIj0MkM9o8ZL89APy2SOmyyek3UPGy8cMm3NCHo1l4FN5d2+K1ST2tLFdm2cfTG4/+5j/03/y9/jtY6dtL1i0UQWYtmyGkZgi+2qpuw1DVfMQ+PrTR5T5SNfOcn9kKYXbN2847C2984dvXvDrf/z7fHB5zjANHH/t1/nGV79uYTRBnZZuwGdr9n1rw0Mr3jI9zZbAJb3OHtC+1j512rq4Z8XbZyuIOvAqDu4JKUUQM0I2hoX6hjmezllkHXQtZVu1m8TRMDXi6UFtBBzQjT68nBrPfhqW1ZNEhyFZMBBWR5vYsGCsqU6Z76zW+CZPO+C+PoBLo0wWWroxEkL0n9EX21Yle692gTWTwG7e4Xj4mOXmjQFp+709uyJkZ+VpN29JZCBOW9LFFXLxDsPlY9L2nDg9IO0uydszQt4Shslk4jF7HfTWXtdtX+Bf/LNf5T/63/7HHEJi6Z2Qkkch+Q5VIiQISblsDcLIcbwwo2ln6s1EmthmtdlEbwO7KuHmhvCf/WdQCy+zAblf/Z3f4ud+8c+bT5IvoKStUjYDIaI3PCbHDr4J59To2YBg/0ecAdWd7m9n1Zt6gg8qzQbDbhOKyT/s7oyIM+SbldRglgImwbK7xQABEGkmv3P7WvPVTQTJZnKt+CYd888KhRgiOXRbOmBSjrqon/WV8eVNqC9ookvIQ3RwWQRJQGin+tib99alMt+b+TFe1ocxk2M+DerWFB9o+wMydza7pwZopeBgUbKFZLef0RZFJaNxh1xdsnnwLnLxHunsMeniIZvLJ6TNmS0igiXsgXA8Hvm//P2/z2/887/PixcvOByOzKUgUWha2TtI/cWFjSUPNjRm1JcajhMTwQF1u7CetM5/8OCcu6j8oTa+dyg0afze5y/58tMnfP7D77E723CcJo6He1JKHO9v0LqYXxtQu1IaDroLQfspiMAYusYwausiTbsD7e4pJwZs4SxP1Ubv0QCNYIyY2tXZa50xrh6Sb1lOIdt513UE9uEpxGTnr7UvMOJXM3HAm2TU+joflzAls4F53ZkuVhOtT1CxZ7MV98jStyOcnbkVVAou4XNmQrEhsveVddlOdzI4O09sKaLOJKOLLbXEfL6aD9N5d8m8PEe0oW2hKvQyIyQWMiIjTDvy9oxpe86wfczFhz9L2z7ixetbfvTpDfvv/xrLfKQsR8pxpiwLdT6wLDNlPrLMC61WW+bW5vez+hLWh3cfuunKZQl8eHck3NxS68Lr+ZYfHu75XimEUfhua96nKm/+6T/hz//1v8Fme2aVxSlqxhA0dHXeX9PKkTef/oC5JoKOVnuHgc12Mq6E7RjN7qUqVYStVKJUk52Lyb87611qg2hEjcXs31vKwUHD1dcPr4VeL1QtidJ9poJbPKxgqC03hVLUz7oHGPhs0ZqxZYMEOvHk9VwRC5Rwv7YgkdoaJ8k5q5zMZOIhCNkXgN3rH64AscWhs5cTPgxanUfsz9DND00x7+DVloaVrSjNfDRTdnCqoESSKilsiMMVOl7x8skv8Ca8x/Uf3nP47X9BL85Ab29BlxMQ39Vnsrdef6LGohEHZpMrFnI0u4eLMPDgx8/hu5+wv3/Db775hM/LzCEJxxRJBM6PB/7Gq5f8w/MtfxACN7VzFBinM9757BX/6298k93ZmTPh7RFNKZ7YkKdAM06PL4rw+u7AfPua1ooDFkaCyNHkjCkEklSCVtYUUAu7MFns0jtZIhKqfR++jH/LGBS0GaO3iS+VQidlmyuM5bnYOXIQDsECJRFiNmmmydiDTwO2+LJ+NxDwGSMYE69rp5ZgZwscIBa6KEsXDk3oWhiiunWGksW8uefaKU0ozXwbcwiMkshOnJFos0hO0frKCBKzLSqBccikOFgohwRjEEpCJPHb1/Ab+oQv/Vt/h7TdkGVApDEEmFKma+PFq1fsDzO9N+5ub+m1sl7YaZi4fPiQHBMJ+Oz5p9ztj5RiwMf+/g5C574t/IPf+E3GH/6I31j2vKZz3QtNlf1SeNohEngdhB8f9vwPr854b4TSEx8+ecCDDWRtfP/+ht3FGbUp/89f/iX+1t/6W1ycX9hX9MXz9Pab5jR96el/ZGXSN21QF2ZnmOLPhNVCZ862TgiNKFYXZpdYn0L5RKmz9QwpKkO2XGTBg/r8czeGMJRu89HKcG5qXp4JO4eKnO7cjs2pTaC0TrXDczrL6/xhwCE+26/elPbOQ3wLclZnIPfesZR6IQRjJop0Wjd2qHif2nsnrGepV5Ofe/Bo6/BffXLH+df/NI+++gEfvPsYpbFfFhrVnlMAl8v2bKzTJpW5W0LzUSo9RHJK1K4can37NYlyOWSenl/w8uYWWuGdXpnmim4ziTug8ubuhru71wxdOS6VY4fWhLq/4YMpcT4Iz6NZJGwahNvjussAfGnn6rRpyMQoPHz8mN/44R/z8vd/ny99+OFplv3iqVorlgVBxdMS7ovLjBOL7/R7/7//+okBvhhtuDVphaGqtRuFMSchB2MT9FZ9jxCd8eI6dDX5ojFi5DTw1FlMLhJ9uybhtNHdZUixkxOsiYBBFtztwv4+Zy9IWDcy3kQGG4YNLZHTQao2vdjfpeULAA5+aAGxRLSVAWWG5oZU5whDhhNFvVsDrLrS9gUlUnvFlG/d2A1d3Uej0qsbhVehFBtiNpMN9Q3ofcfm6ZfQ248p8/Xa2towJYGYRiRfwtW7pCdnDJdP2D58xnj5lOHckoPCsLE0JgmcBBb+HsCb5BXUtN9k3dGeZB7Yb/Z169SVP/qd3+JXjzOf/Y3/PvPtHYfDkeoMFemdJIHxQeKdLz9i6cog7wCRJ+cDz1/dclMa9d0dc4NgBjvs6by8W/iZJ1/ieOyEl+4To8pS3OcKp9CrNQQxiPmNlOrvQ5w1BLgXDN0Ym2+llKu3h4OZzgq1VFsFlzGiHu+dVrmQDWO9dXIyuflKizZzX7E5iODPiAMHWmxgaN0ZDOv3YKb3tvFzYFfVjebt/IEDNcgJZLHQjEZdjH3SrR01s89ghsgSrIC1DkinWU41bW50lxepurdcTFw8fo+iEaHSNRGTIGrnuecRYqavQPGDD9g9/ZDdo2eMFw8JwwbSAHzhjJ0YDm/PEutb4jSmgb/n7gxHS8hc+Mf/6P/Kx+99hUdf/ja3r19S714zJLtQvvGlL1FK4dPnL0h5ZDkeGaeExsBhv6AEUhzYnW8I84GPfvwJYCDVXQzstgP7OqMvPuH/9iu/wl/6xb8ApdIWB+nXeovTqbGzlJPVu0A4JYx2D/6RKEiK1pwGk2esw7WISYW6WqOZfcs2JWcLiqXYbpKxWNQv367l/8van//atl33ndhnzDnXWnvv093u3Xfvu69jT5FUY0llq3MrS4otpxQDCSpIVYCgEATJH1FA/oEAARSUUQjKcWKjfnDKqbJdNiouy7JKlmWJIkWRIvlIvr69/T3dbtaazcgPY6x9Lu0UEIR1iMd33+3OOXvPNeYY3/FtkBj28r7moozZD24vKZ8viBqcQWmMKdsmireWoM2ax6LGakjBmMe7aWt+Yjjbl3lRgp0vnd83B/lqA6m0FkweK2JSixAwLzhLsJNoIHMQA72jmmyyVkuNTmZSRE1x/7mQDoZrhOMTlrdeY/HC6yxvvkx/fIuwOCCkAZ03jA7E2snSq3MlLha82krYk98qX/36H/GX/qd/k+9ebHnw4BNWB4c8vbhkO21RLSbJofGF9YaffrTh0fKQr794gxyE212HhMQ7lxecq9kfpAqtCIGOVpRFPOHNh+9SgnAjBMbdyMfvv8vjTz6khp5xt9uDd87bM/ZosDsrBf9aUQNK/SlpzhYU/8ZmFjA40KdqSwCKMZoRItGsHMjmn+PPPPPA6HSZENSCSeYmTwsk3yLD/pyp2ntXMfanBF+ENLfPSIoEqzQiNrBYGl+gX0aXKIsP8exDrGwJ6G9XKdg8bUxOs4wxOVtRC7LaTcZOJKhLiyNahcm9EFNQui4hzbrZkDqkFEqpJuMvO5oYW0b6A+LhC/S3Xme49QrLF16lP7pNWBwYrQtcAjh3e1bPZq7kv/nDP+K//r3fpb92TB5eIRwccEThx188RLXxT7/3Mc82ldTsrA/aOOwSD999h2u3r9EdnRgLTSI1GMg2+OKpj4EP3nuHDy8u+WTZ8UAaaxqPTy84WR2yHbc8eecNut27tM/8JNvzU/TiPuOz95jGkU1LXO4aMiVaNbCkc5BhtkFu6mmAgt8xQvIAEfFeKIZ5UWY/Z/fr7CVrAODC/2292WwMLqRYDdRTGzTme02YZZYFpNoyChtOzKfGZaHqoWu4KUeKEJv7mxnYaIe67u+W6uwoW4pdSY7nBi8KZuyOfY2NubeZnwtFJCLOZLYAHIz9J4nWhKk2/3X1RWIlOsDYp54aF3SLI3bN3tOWDoj9Ef21O/TXX2bx4qdYHN2kO7qJdAskdSiRf/Ovfod/9I/+Hzy+WJtPqjamnIHAbtyRizn+q4rJYYG+N3sNRKnRWKCdBFo1udroC68qkW6b+Y2nZ3x2s+YfSeVPAwQVLqryZ/uepo1F6jndjHzw7ju88/bb/NhXftxe12oBBpvLS6bNOecfv8XTD99C28jZkzOuHy1I/YrahIPjE0KAcX2OaEZyNYZuCkQp5vXrw6G1f2ZeH53Z52JIX6hZP2NKDDGZHDhfC9eyB0cer/zF7P222mByXnUmoHpfFTHY3f5tSb8WWNCwAIuYekqejC3adO+LKvjf47Vrvova7Ik6s6giRA100hii+gzT/Nz4vTpvn5sz7Cm+3IqWfi1CrQEjINgZHvqFvQbOEuq65AtF8wj7lx+M/OPf+S02XU9xNUUMyRjC0V+/VtllW0jUWlnmRiqFHIXJHilqLdaXzZ7gzWvolOl2mV8PHf/LsfC9OPHVa0vebZVa4HKz5ezigsW44wvXb/DWUniyXJqvYWtIn3jvw/f5kz/5Y37uF36RUgsoDH3PnlO1H36VaZzYrC85e/AhH737JnXzmEHPvH+y99sdBKA1QrbnQVE0REsKFffsTA6muAQyV0j6fHhSI4mYZNxDGW2mgylnW55eaZcB3fdI0WepFEztZRuR2dcZXxjo/s+ps6pEr0BcH16uLKlCouTKIgZSb8s6m4WS2V743NVHTAXnntQpxn04WorJvHEdRLYzm+iWVwqtmAxQTAApkWJkS8/vfZJ57a/8JY5u3eDG4YLY4HLc0ktgtVhwsV5bbxvtNarFE8/92e1ToAtGotCaUcnU2NBgwSh1iGy35t2YDw55Uh7xpEy8UTJV4XDoeFIqUhs3FgNx0VPHkQ9r41MEhjLRxYlOKwlI24nLR49YHl3j3ffe45vf/BN+4Rd+iVqKvSYxznAee1n4c+/Kvp30ErIbC5Lb/hwI7J/dKWe36bH7MAarC2NuTG2+W8z7NQose1vmzintqFr6sJjVg92nswWak03U6pKqYSStNgdgjSiRgt9p7I/OfrbdW1oEMGl62N+VqpUmFvhXpyvQjNlDWRtNArUKfQp+l1fM21QoWv1sBYI0hiHaEiAJvYEjnNYbfONp5Ct/4fPcvHGN2Zvc/P793g1XwGJuRtwxf+hKSJZSPIhwslyxXq9tVvbeXoBl19GLJ95uN3yJJaltuIyV9XYLQdic7ThamK/tnJhetfB0agxZuJ0C92UC6VjVRn96ybSbiKFHsP7TiDbFFuVRGA5WfKKBN7/zLV7+5V82L2d/EWdbsd12Q87Z5r6uByAm8+M1hvAcIDP3YD/ax48M8BlyDOCIcgz0SVwyaQ1ZreaH19S9x2bWkJg0bKxtP6hEICajDduGyC5b1DZX0Wn1iAvf5DnQSRpazVi3qG9yg9Egk6/npWGSHZxZFWYNuf13LXbZBweO9gw/fGZGDIir0GYTXTFpXfHiWp2VGKPsUVh14/FarYHQJkClj0oSG/w3ZfJtr6BaGLpol7hGhsUBOxH6wxeIh0umxx+TVkcMq2OWJy+iy+usbr5Mf+Ml+qObxH5pAKM/4fawyx4Is1db94Ur4JHrvumdE/EUrDme/9ub7dbUJMm5MG3O+ZNvfJXFzWNObtwgR2Gx6smt0XUD426HNtgsEt893VqqalIuL845e3JBrtWlB9EBCaHSqEPHw7Nz+qa8+PIrnL1rr2FuXvjUtrFdciqzivti+Pu130zg5rPGKJjBin2is1ydIxGFGOiSEGWWCzkjT+wyDjNwWBstGCW4uPedujGmoC5lsXegotRWoM3SFDzxySuwF9EQZxAvELvEtN3hFgv+8BsTqZRqQQO4fE3FWHEInUt8zXfKAYNibEfEUg+3Y3Zqv72ns3Hz0MNidQhhQc2ZVgohrdB+wfLkRfrrL7O6+xmWtz9Fd3ANSQOdy7d1Hsaurgaeb1x47uTBDCz7wpP5DfvhPynAB++8zZsfPaS98DLLvqNJI6bgzxu88fY7tjRoSqsbS6E+NRlrbQ2thVZNztlyJnTG7szaeLjdsVLlxaLsPv6YcH5BeO8NNqNSS3TauJCkEmJwZpXd9HtjV2vhSCHSLYb9VlBDYMojNU8m43YQbvY3C8F8opRm8ny1hUmrxX4v1iCpWMCJKAYcyhUYaum+LvmguXH0bHhbnSEUqTPjMDh7qDX/Gsx/pqlSdaKM5QpMESAt7HPWieBpwPNzJRiz2oiuChRSvJJ5lwa7XabOvhhcLX3mryGGAY0rjmuk5EJKK2TV0a+uE09e5OjVn2T10hfojm4gaXG1mPDndn7aZlD9+bNjjIkr1so88c/P/OX6ku1U6G7c4KAIKxqHfc+pQPS67Y8+6xR49yBao7EbGVLg7vESEWFTOnbbLUEKqbP6sZuyec24fcOxNnLr2CCcPXnIgw/fYnHrNTaXF876nJPsnBW0H1nt/TYj5cJsUTIzqWbvqIZC9RQzmWuhPWvzAgG1tM7WjOWLDyApBkL0zb4YI9DS1S3p08nnoG4O7yz0FqBKT2lCqebritoGdkhK30GsSvHQo+a3aBQzFh+LecU0bS6DHAClth21GRNJ9erNNCaeyZlSCqQUyLXsAVJFbCAWS0sNndB33f7XJPZWU3oD28LyGsO1W3QHt+huvMTq5sssb7xEd3gd0tKWEvtB/bk+g+eGgBkowKwa/vBrf8Tnf/4XSP3ABx9+gBwdwtljjhaBsQixX9qGvjVCLdzuAl0dedIgqSLbNZ0Egtp7el4nxnFCWyMtelQLZ1OlT43NuIbVAXmaODk+4fTZE97//jd56cZPUbYjw+KQkl7j7P7bTI8/ZpMLsVsQ6gidLedCimY8j6fhBWvGtTVomSiVoC7lbTgQhxnS1+p+fVZr9ungzLJVUyXMqg5txcAb1IcLD00Tpx033N7E+imdjcjE5Co2tFQIJkNXVUqdKJOdgUgzMPv5O1XElhhVUTWp7cxMkhj3w3Zt5ns5M6/NO3eWYtpSzoYipQZBJFHVeqDWbPHYd50NK4bEEQJkP/X0KzQOaDrk4JUvsnz1J+lWL7B64R6pX5j/I74IEwECDz76gP/6H/1DVq+9xs986nMcH9/go08+4OGzZ7x46y7ffecHnO12tkBskZAbYXvBZ155hRA6Hq3PuTg4ZnV4SMuKSqDuNnz7W19lnLbWo3aZb5+fcU+VTZ/QaeLLsePrUdnmyvVVz8Zrx3qz5lvf+gZ3X7pDCLB++pjtxSndMHD+8GM2H34XqSPT+sKYVHmHti0pKPVyQ5nZda3RRJHSsOAIAfeAne+OfeqoQi6mlgnMfmrBPBK1IlL3LHSzLJh7sDlFfR5uZzaWgzaOAQpKF00Ot1+0UlAaTaMxnhFURsiZNm4pgi0UBGPNO0NMYkLEgM9Sm/kNigU5+ZVDL40+6p6BnzN71qDSjBGNLWJnRp1ZXdhrkWZywRw4JdGCUvqe1BmwG8OABqELHaLC2IR/9bBw5y//Moubtxj6BcMQiBrY7CaeXD4jEakl89Gj+yxaQ8eJH9tmXtLK97vAO32PaKQorPoF12+cGKisUKeJcRzZXO74vX/+2/zZzQX/TbvkMsHbjx7xmddfZ7lsnF6eczFmTqtyKyuPD4V+tWRYLdmen9H1iT/6o6/y87/wi/S912rvtWurTNPIdrtlGndcnJ9TxpHNd36P8e0/pZcdoqMzkgywmi/v4KEAMSZqs0VT8ntzXkELjc702rh1OxBs56U2iyrKNDWyNqbcTAqraqy4VI0xGpL5RUb7GpqrgGbJvu57/eAgW0DF6pdJtcH5+TPkRNfFff0Dq9vLHpfQKASfY7C6FoM9I7PXqoW3hX04jrY5VdUAZByg0VYJpe1nkakYG3/Rd4hYP/1OXXJ+9Dov37xFHwJDCOymyQBCDxa0mjgrCJyBqfZaa3MWYinuGZlZdYPZfFWTsRcVarIgzbC+YNkqd/rEJgnvZOX+5YZcldOmvBACWxTtEw+rLbBPFLa7zAt9oovKySBcnJ8xHB2zOFjyh7//r/n5n/sFwyH2FCt//f6t+eOHf2D1YtHZAtQ81MNexn9FhcHqR1VaCUzVFt/qpIBliiyS7MONamvOopytJOysailGRNLqYT9W58wNpvgdBqEFAhb4cdWh6H4Oxp8j9zSwPDq3KSAEC7BQZSqN0pL5UkYhamXoHBDEPIhVGzUGlAnPJqLroBNlEW0R2AUjIUhspJjQ2titd0ga+J2PM8tXvsjBtWssFz2tFWI0rEZi2LPBzVar0trsE23f02U28sNBNJBY5TmZsb8/Bx4GqBKYzs/57HlhF0ZO2lM+lXe8p8qpGrgeUtv/ORQusfCxZZ54rzVyCByWidunW07PzujSNbNAqxZAYoB6Y+ijBUatDvj2m2/xC5sNshywjsnhYlUIkW6QvfKr1koZd5RiPV6MkeViRQiBWjI/6sePDPCFbsHi8DrUicBEFCt0rRZqMfBPVYjJpFYmyzWfOqunjV6wxmv+S5vhEa0JOYtvbefUF8FzT+wyd4lfwJori6O22h5iNO8PN7JUNRkVCrWaiXzL9uJbgWW/ZbCtXsBizK0xiTEYu7CY3MSMbntit0TrJbuSTZYi9rLW1gjz/0KgF/HUMCsMPkIy1Ubxlc+8i0whsuzdlyQEardiNSwN0Npdkg6uc3jjdeLN1zh89Qt0Jy/SHxyi+22O7i/IfSrRTHv3MvR8bVOuUmrmDVCbgT4vYPOMHGNA8tbAJ3r+xT/7Z2xOzzgthXvXDjm8ccQbH33MxXpLmca96erl5WSXdSmUesk0Tfb1NgufsEQU86HoEJbLFdv1JWNWXnz1ZR4VCFXMK8rZJbP5d3gO7hbfYKBhP+CrBhtAMXlBDNWaymAgtDY/M2KDc61YjpoakNuauozJXlvzkLTXMcicGmlFZZb/JN/WmT9UZLtr9nzILMso9F1kMQy+nRSq+PauNqYyoURS39lFLPbe7qZpv+SN3sRoM4+QVis1NJBg21aUgPkNFSq7CXILDrLOwIdx7WLqSDFBq6zPnhBqZXHzJa59/heIy5scvfpFDm6/SuiXeymgiO2mbfs5n2E/Vs8xQ/cfOvtwXO3HFJcbyv4lvXovga99/WtsVRmOTmgts82Zlpsb69o/qurG/Y2i1Rm2jeAm+lWryRarSQWsOKt7fPZo3/G0FQ62O/jBRxy8XmFwcNbTMWnVwC4VZ2s4gBuUgPmW1TyCQM7tagPj/jv2vluhD8GebcE2+gQhizBmA27397Hg8lpn0ZSZWWDbsi5eeVWZp50yZaERiVFQrWg2g9d52DE1XmdJgK0YYF/VmYptD6o0AqHZ153wAanY2Wxiz0snNuBUNVYyorRWCMHMmcveCyqinpg6Cc61FiRmlp0iXSSc3OXwsz9PzrC4+2mO732OuDgyEDzMu5Krod9qlf8b9t3ZXOeUK8DYalrb1zZB+eSTjzk6ucbHF+u9DKgUk4DMDJ7id8N7ixUf9itStkxtBD7KGamN02lnaZoqrkJxSXKCMTQ6DRwAExFJwm7MbNYj3ZHdF00xA3exgVVmnHLeJovLdYMtFGbgQlFq0b2nVBRj7NmwG5iFJrMtRG1WeyTixvN2jiy1EDZZ0epaN8zPZcZSY7T/To7ntBZooVK1spt6+1xS6aOB3lUbuRiLODfI2fS8fRKyv0azeZEEY0FnLZSWaWWilukKtHPGtWYorTJ0Jhlq7nmKSx2iRJf9Gthuy4cF0vwcdAtEOsYCbbflxitfon/hUxy9/CVWt+4QusHufL/vUfbm6Ff1yM+YMyjn0yfAbrfl48f3efX1n2az3kE1T6RSbIG12e2oDdK+DmVWHVxbRfovfooU4ehgyTRlly9Wnp5WZ2Da8S4h8LRUbmnH8sYNpnWmSGSaRmpW8rSju/U6w3LFdH6f0ze/xvT0HWobQTpi7InSuaWAL4g0Q5uMkdea33XRznlrHkQwA3nupekDhDmNyL4WznVuTglUrW4sb6CeybHtvlTBtvPZkiHnmXyWoGuwe6k2Ywo0fxZbge3YbGnsrL8YA12AVNnbrdRWqU3IRXwBZ0n3KQSmqkhzZqj71iow5kJl/hquznwQ6KIxx9SZVbmZB5IEXyS7LU1IGJMwWMI0oadbmSRs9frPko7vcHjrM8TD6/TLA18S4c/aVW/2zT/6fZa3rvHyF77I8clNVotD3n3vLUKKTK2xnSYyyiCNWwcLDvLIaVFiHZEk1FboaybmiVArHR2bacOQApmOrI3Yei6HjpxsGKhBuV4y11Pg6Ri4fZh4NlqAVq2Fb33tD/nzv/gL1Fp59uAB7fwjZPeM6eIp07MH0DJlykzYwiaOmTl4IgackdwMrA2zRNuB8iC+WDKQPqsYwDbfWSJMNXtqvTEcWp1HcwPDzArDlxoBA6YVZ9H50+qL2/lIWzCHsdOiS2kNILKvzf6qyFgakwqTmuXAqrP6WUolt0it2ftROzcHyc7g1OYloZU81URmBl8wSbr32E1tIVsd8U4hQAepM8ATMeCZ5jUh9HYHakGKoFHQnAkxEUOjZXh7s2J9cp2XX77FzRt32K4vWQ4RKcK4Xe/7uFqLJ3AKRWErylZHRuxzzGz+kz5x59qBqUvWO/LlJfH4hDc3I12IFALbXHhweQmi5JYNiAjCFIWPpPHCtvL9m0LVSj/0bIF+0fH9N95gt90xLJcuZxW6FMk58/TJU3bbDXOAR1Rhu8uU83O/kyC7xQzaqA60taIUUdse+BJCm1B9Ngru3RicgS7BZNgSInmyxUbnIRcqM0/U1FXMS8X9ItZAt/2NUee+pPly2FnOoVHayKwQEYEwsyoFVzro3opDHfCdF+IzIzqkeBW+Yh3bHszzm9r2Y3X2+FSbhXS+4YPJsaVh/EUPcBH7RMMQiSnRJQtc/Pa7lRe//ON0sacXA4nntE9jZDf/x/rJgHlK23Mn1GKkgaFkSzhX2O7G/V3amvUUtVUomeHsgoOcuZWUVCrv+JJJ1djrXSvsWoAQeOZs/9sx8t4O9NgWfkMXudyc01rj8OSE737nO6zXa05OjpGrFvHf/fh3fkF4HrBpGpywY79xH3aG1ZuQbNZcdYAnricHX816xZJ2tdmi3IJPnH0aZk9I+3zqZIaGnSezW7G+HScA2FDo/st4bZVod6T3goKB1ykGJ6zAOCnbnOyeFp+vxZZl6DwLY+GFkgwM76IHJnkFDWKEkxCZSkUk0KbCRCMXY8hdSM/vf5z44t/4EqvDpfWXzApKq3Xz+W5qP9eapYVX78dnNVUK0diEOuMcsy1RYEiJXanUUumfnHJ3nVnolp9bXPL0tLGj8i7zIiiQhL3N2YTwnV11sE/JQYkt8/n1jn/+yRMODpbgoKyDKqBKF+2ZWRyd8P6DB+yePWO5fOm5I2TYQZwtZ7C7Prh6qxuWRsbwO7CUie12/T90Mv9//vjRAb6W0XwBbUdDPcrbWHGIIdIpwmzVOpNPtBkTy8hFc6dsDWIUM56Mzf2GnOZaGo6423Y0hllkaYXBJmqbipObcc8R4e5laIa/0S7xUtSM5cWmGNOUB/pgksog0eiiCrko02jtSBRYdoOxzUKAWo1lRaLzzUwMti1JMqPyzQd6l1U2qC0yNWVXGlODJInDZU+QStdHVn3nrLOBi/4e2yAs2JFPH3O4usHqx36RxZ3P0h8c2iatzenFBqwYaWpm3nnzKFevoT6HveyHKMRR81kuJe77xL4BfeO3f4v3fuufsjy8wYs/+4ucPX7MYTcwauQoBFJV2I1044iOW/JmTduN1FxJ1SSXlEJs9noPjhxqaPPhQBCmnLmk0gVhvNx5UbIBv7bEbLhcm8mGhk4YolXBFuzsqKcJWZfnEePYpZ1zowZPLFKFJi4Nm70V5rQ1LyrVNsj2YpokJwQzNzVgGB9a5z/hkgIBrcowKFeB8ebFFoNQsiCpowVLd6KeO3V/vpwVM5ZWZ1M2Zp8If5sc8Tcpby1Gc6baYG6D1vMDKaz6xGrorPGONhh3qadLHW04ogzXmB5/bPT+ruPkS3+OxfU7niRXnTVo1MLmXmviz3Bz0OWHpN5+xp5nw1x5IzpmI9a5nF9sCCGwWi6Ydls++ehD1qFHFgeUzRmdGGNIWyG2HS1v0VyQyYaLUAsxBUSjLRok2CTggIExfgItBLI0LltmM2YuW+FwqlxrOx6ODbKbM0cbRuZGys6ge4K2BlV8SLDvyYBXcWmaARghNB88vdmhGgBW5+ezGUsPO64xWHpe9BdHQrmyF8AA4iTG4GsNgxcnu7CmrFS196RPJtGuwSSeQZWiCeKheaTVDVoyublPYLCzKghNhNYmEPN6xE90rrYASQHicmbn+CXrm/IYowPtnYHnKaAMnlrnEvaYCET6xYo6XqBTYf3hO6w++7Nc/9RP0MRS/FKMaCvo8wXLwYb55/aSKB8K5t80P8/MYJeIN5CNJ0+eEPues0fnpKMV0WXlqIH24gwKaYXojQACRQtlUt58uLHBUaFpQcvV+UadpVHdY0crYcoMw8B6O/Hk6Rmvf/k6cb1ml6EVA3+7KKR9nWZfz6MzybWCzxzMwQHz3WbGxPZaRHGGsDRaMLuC2OH1x/yEpmrgLA4O236nuoTNmIcxepJ9sKbSJP5XoVkVQcLEsrNWdLbM0KYUCZQMhLgHPabslUvUN+BCKxgdULdmsi1C1wVLZw3u0alqC5oQGfpI50yFlCIyJ6AGQBIpLei6A0K/slRGqbRSKZKQ1S3WDy+49sKC5Yuvc/DZn6U/vAUhOgO0MRs81z168PzWoflTcHUQDadsPHr8GGLgYEjsNvYaJ2dwzhYmfdex2azRnEna2PYdoQUuCiyDcPnslMllKZuxUnPlKCWyNkoeIQa2LSMknl5cUGRh91SxQJBcEu/96VcZDzKUc7anT9Bmz3cLiZDPiHpKfA7oDl5H1P2hWqlMxaWQzswOUv39DQRcBqv49h9m1gdB3RbF+kDFABtjV5mcR7NJqmdGnLj3ZD+niosFwdTSTPqNIhpoQcxrF2HKFavA1ljH1igyN89Xd3CtMDVj8fQh7G0qFPf1VAt9s/Tt6oEs6jVamVN9RZrbyHi9icqQlIU4K4YGTECHSLK/Jy1I0sPiJqUql48+guUJi5v3OHzhLlUjc3OmDjbMw+K43fCtb36Ta3dfIaaeLia0FXY7uxt320tbcIVAjYH3xo0ts1YLnu4u0M0lOTdSU5YXl/QpMdFgWpNqIThI0oDLmmmiDAqNyNQyd0vjLSKv+h4zdR0N4ZMPPmS3nbh97xVObr7I5ScrHn3/q9RpZ9Lj3JDUkcKKZyPEaV7ERvqoLJMzeKU4R0n9Hg3mw+lPlgW5tH0qcm3NVS/2RxpmSWDSOFu+RjErmPl9342uvmiWCholModpGHPZwJ0QqrOm5/Ry43SIghCpNTKp3c5KYBmsj5smS/qeqoHHUZRllxiC0gUQzH+qi0KffL4IkS4BIRBC54tak58ZmcpZsLUao0cshKVh0vYYEkgHwSxItE6IdEBDxe5eqiJdj0okEfnuxZLrr71ClxJ9ENYtY46Gynaa/C1QSskmPRahpMj30yFv6sotH+x8xtZYoLboEmEpgU+miby5YBy3HLaKamUpgbFZj7vebPYWNUXgUct8OuosH0G1EmKkifD48WPOnj3j9nJ5lVKL0vcdN2/dZNwdWApuKWwvz02NMUS2E4Rqs9msjgm++AohoEGIHprTDx3TuGM0M0R6SUw6g2i2KOtjJIiSumDv52xDpW6LEpKRJ+pcA5N55bVw1evicv09Ryjse+OoyZ+LK89Hmb3/fIlAiO4rPgemRVtieJL1HGCkWn2+M4kfzQI+lFk5I96XBgOIXG4LEVqwRS8KdECm1dFBi0ifAkoBbVyGQ94rB3z6lVeQEOhSsIVoNYuEGIIzoX3x5sDlcrXYh2oU933cjiOjCHXKrKdM9YT5qTqTWhuxVA7XI6FUC5ucMho698KESZXYKkdd4LWb13nrw4eMRG6Hxptjpu8WlKlxsAg8XU+0Wlislrz//ke89/4HfOnHvkhKaX+1X4Exft/rD/3kfpbOVaAFott/4QutJMLgCrLo5z3gslNsFi2teS89LzgNBE3Mxjl2BiuR3K6UNPOTMIcyWG9YDcwLc43178IJKrl6+I/anZicVICNtvZ5WqR42nP0UNPAlV+gttkfORiRwW05zBfSvtdclFJtMRrEvt+UlKCB5TJapkJY8a8+XNDf/RSHN044PBhsfhQsbEyb+QYyq+Eau2KBo5YA7U2vf1SUTZ5Q7+lnx7WmyoeXa6acKZtLbj5dc22E73WVHzxLfBOhLnaEcwuHq65oFGcj76h8Yx3YZmUtsPEl0GfXa7727n0u7t5k6BOlXX0xJqE2nKdbrXj6+CEXDx9ycO9lezv2R0r250x/6P2a8Rg1kgQQQ89ieciP+vEjA3y1jOhuDQJTsa3akNSMP6UYM0vD3j9kn1jll4p48sucojIHIQSXjeVmA2wXfXhwPC5XYZvFJL8YiCFVzVNGBG2ZmW08X1D2SQOqkbEKYzOjxuzytaGL9EFpUtk1QJIZ8BYb9FTNKyoGIRcbwBPZQJQ+EWuiS9G3AiZ5TMmLuzZvAoWZfUMQpAqr1HG9j/R9oI8JAgRVUugIIZHjITqcECVSH79L3JyzeO3PcfTSZ4mLFRCorRiK7vLZqx2SXLHLtLkMTPcXJ5g8ZaYYWxJhvbp09oCg/f46FX77v/tnfPz+e9x9OfPP/85v8tH5Jb/yF/8y3dP7fPO/+cds1xs22zWaRwOPYuAgDAaY+oZGWiMRnDkjxNQTQqJfLRCtDBIpdEybU37vH/4/2S57XpUJ2VjxDGLstOhJk30I0KBO9p5bL2cPjzj4MEuIcJ871RnI9KIZDKBAHIhz7xQDovzg+XuLb6RncEZllpuJbaZb8+EUWhY0BDr3IjJZCUjoTJ6Mx7xT6GJEtdgm0RMNgzeA0Qcx8wCcEVfZM+hwMNEaQ3E5p7/LIbEKHQeLgCSTHgQFbYnUmQeFSA9dj4TO6eKNVM5Ih7dZHt+0gaA2YpfMBB3xIVh/aCuhyt6jZL4g5w2iYaNXzKT9KfU1zDe/+z3+zn/xX3L9xg3+4//wP2D77CHnmwu65RHH/ZK8ueD68RH3Nxfc35wRdSLUnX1dKZK6A8aLDUeHxwZC5ozG5M21+jVaSSHQi4dZXF5wsTunXE6cLRJvLQaupx0hejCBLyRKc8BFZkTSinQK/lqJgdMqxvytEi0QSAQ165r9ds3ePvNusLS0sDcKnyFAv4upBNuiGXGMLiqBSmnGRCnNoGDzVFGqGpV+SFfJzXaBRLa5MbVGbeegsOxtGAGTUkTM/yoEaxRjckldDYy5Un2gHvpGF4vVchFCNNaxYJdtip01BSqETgjJE3CDXeq1VmLsEDXwatxs6PKOw064+fqXCbEzhmWKBiA/J/Gelzr45RwMKdgbm6NXzyU+vJdS+IM/+Nc8ffqMv/qrv0aKkfPzCxaHR6zLfV6IQuwioTbSbks4e0xoO/MaqhWpgVwKRSB3QvC7JfgzkGIkkaz5DGrAjkKWRhGoVCQGXjwcqOtzLh/f53C1YMyTy4oaSew52andhSnas4wquUD1c6eY15z492bXmoOmIVjAky8Q1Jcy2gStArOM0dNOFfNpLMVSfyONIUb3bLThOWDBBNWXdnu7ZrE63IVAyUJr7j8TzIR5TkmPbZYnYT5GNDqugo/MYF48STDSk9wnRpzVY+nLRl60RY297lh/4f4lKXUQeiQlVBq1rWllYpSAhB4ZjskyIPqU1PU07ViujpGU9uz16PISYz8//6H7c7VfWezvRduPv/fhR9y4eUIf7ZkrYyFUYxLXpoxjoZ49o9utCRIZJHB2tuFpq6Ra2aVAicY6L9X6qUXseen6EVkzWYQPHzzmkkLJGwtYio0XDw85GzMHfc9Fnnh2esGXfuJn0LImPX5EEGW6eMyuJi4ffUKrE6OzBWYLibn1tCRdY9zNoO+cFmhpj5U5UKQ6o2QOhRHBgSpnM6gw79WrzED8DMAX9ydjD5DVZmCOavX32c5p9ECtqoGdYuFpGun9LheSbfxdBSISjHXndeEgCcsuYSpjpQDVg9QWQ2/+WWoDzdxoK5CIdDPoGKvVIbf6MOmRgZaqtuyacgGys60rdbNB45LF8i6ijcsnH7G8Vjl54dOomswnJNmDfPY82tD44JOPefzsGS9/8SdJRIRAmSZ2u5Hu4JDddktuSk2BCkytkprd6Q21urUbCecXnITAnYMVqU2snz3jIAQalS5GCNAkoFHopRkQuQi8sKl8MybIjUVITFFZ73Zc7ta8//57XH/xLn0038zlzVcI3SHL3Rm1KGlYsG2RZ+//sd+PSufehFXNjoYgSNP9giKQvZ7hkjDvUSW4/7QBSvtFqjbru+fH0Rcro1ugmK9nI2i78i4VLFSHCUsjn+9idYAEkzHrbMMCKSkpViKRDqjNVBU2fxg7LwZh1cMyCoMYixC5Aq6DNCQkZ4tZ3SrN7TfUw6ya7pmcMQhDv4TQEfojwsnL1M0TKGtjj2iHpABlAq0suoi2DmJnQ38faXmk1C2X9ZAf7Hqu37lLnzpKGUkS0KLQYJzGvTVNLoWAnffqAJWxf2w2iFUJ2ri1GOhq4XLM6DjxLFc2bUfNhaQmW4tihLkYI+vdDi2FcRzpY+TRlPnJQyVW2b+nBwcrzjcbshY+eXCf23fv0OY2SYxZNAwDfT9Y354nFkPH9JmvsGlC98HXCWrqmxAiZjlU0SCoJJ85A0Ihj8WCpWLYK3hidBhOxIISAaTul1VjnoEWX4yEsK9dIbisN0Lqo9cSqwnR7UhinIEZV314T2k/aWevFWfSzb20++fZzlgdC3BZoM9qFdz66WqNiRpIW/31izGg1UEh6ej7JblmV4pUA3HEejaJvfVk2pDk9lgpoRJ5+3JA7nyWuFz677eeaJ4nA8JYKqVcMfjU71V8Ng2+sJ5B+924Q4ng9la5ZGNz1wabzMluZFuVd3Ljsbq01C1JqgSI8KmjgVVXeCsmLspkYWi7ZAnyVBZ9hMvKtNnQH51Qg/De++/yqc98mlgKfde5OutKffT/FeTz+/JgaNY/7dPnldm+yWZD67eaCtm6ZwP9Aj53eop4My++1szGbPYVNY/Y2TbAgn7wRVNwYkFuhqVIA81eJ/1+EzElSdXAVAXEznPnwWWr3gNeEFQN4Fz2A60ItShjyxCUzhllRlL1ZYnOFmvWu8WQHIw2GbKRNQVJkW5YEOOCPm95WA/42pPAZ371y/SrnpBs0R5CZKzFFws2R09+dtbTxFQzuzyZ5x3iknZY58zGw2fmnjg0+14vpgqt0c7PeeWykjbnfGu15Y1t5WBQPt4aE7coBq0G90ANRtj4aNrRqGyBMxqvIqymzM+9f59/8dlXqdcW88Nk738QJJqqpBsGLory9IMPePGnfvqKgPDcMbpC/XwB6jOiWUREP33q1nc/2sePDPBtpopkkzg2AsveiuA8j82eZ/bFWyFI0UuRH5KZklkJjMVQ6+RJpsli5LxoBcZiamuLnbdLf24mVc0fJThNsPqLG5MgzTw+KriJL1Z0amXRC12wwaNWKCrsspnr9slK12rojF2RMMNVCU4/ngdORUO1rbXaZsi2Jq6pTz1IcyZCpDqDMcbAatExeHImKk7Tjkh3CBLQdExuAloI63OWq9scfeGnGYaFUWJr2csgavvhU9HmbbQDL9YL6f6MqVNfwS6Z2uz9SGEuXrJ/iABil/iJv/TLnP9z5TwGTg+PKE+fcLbdcOf6MU0Di2tHSFHzQywjm/NnLPvEolsYxb1MRIRFSKyGJcs+cnx4yFG3pE/JAKgukhaBJ+sN3/rqH9n2vHfpYi2kDnrfrIUAibKns4sY4DEnzc4Jn+an2J7zQMMbyqs0oZkRFZypF9zrUZv5L5ZafKAJzpic5WbRt7/2fYtEWrHCF4CFDwptZjoQLbF2BmBV6XtFdTLAs3PGjlrhT2qNn7+dzqxoLmmyIdd+b3AJaUJDoJa56WefDtbUGBESTMZpdH5BQyTGJTUtabkiTUlpoL9+G8G8EESePzPW/PhY5GdI96DDzEi4Ol8znAezUfosO5gB5e++8SaPnpzydIJ//tWv8+zNbyGt8vH3/5iLD95jmcxfq+0mhotzyrSlbzCRkD5Qp0wnsL7/PjHPMn4Q91FJyb7n1cEBoo2Tg4E49NTDFccMnH58yc1+wWQKAb/QPFVZZjNs2Q8AJjEHmo0oBoqI17CwBwiTo2jBJbW4DDCFecguBEkoNgSpCkV0/54a4PMc6NeU5j5DXbDzsA9KKGqeEKqgkYrYEsP2XRzEAL354aXgcqmY3GvtitETzIeAWgSdDfmDoBrdjywxleKAp8nvYjTZMGLLnpjsimnSmFphzM2/CiG1ZqD+4sgS1YYDlnc+R3/tFtkbcMC9iHS+T+fC9dwPdV/XZtB4ZiRb0yS89dab/K3/9D9lN47cf/yEw+UBP3jrLV586RW2Tx+w3jxm9+ATFiRemCYuy8Tm9NzkcHmyBL2SmaaJ6yfHnBwcUZJJolpQpBljNBDMMJpGVJiaMAm8Lj0NeKmMbKcL5M3v8vjDD9ktVjaoV5gqNLVNaS9QshDKzPz0LbEz1+aGOnodMxsKlyw2ey0M1LamMYbn5bVCbmLPczBGXwgwpNkbxAY8k2ZeLXlkBnBDwDZtULM681QQClOxJjKlyJQbXWfg9xDFJeWBoe+YpQ1NAQfEFmJLIMRSb2ttLt21hVNi9mCttGo2Hoow9B2rZe+HoVAnC3VpWo2hldzbL66MdXOxoUwjpSldP1AFVE3Gbr5uxcG8K0CZfY3zZ7yMXL7zLou7LxNWC0SEN956kxu3rjF0kFuhTCM1b5kuL9mEwpNn57xQLvgKmbVUvtU6tmMjOai122WkQs4bKrY9z9Lz/bOHNrAGoQyJTQhIC8YWWi04O79E15cc9AcsLwOrswvu34+89tO/QHypcO3mC+zOzlmvL3nv239MmEwuFuLMNDBWlRdmA5kcdDMfJ2jVnsXq+sWZ2S8C0kzSNw9Adsb8bg1Xd7JY/33VizSXN+kcejCaH4/O7Dq/l7Onw6vdYYvU3JrCJNQillY5qyYEY03NLIrZcNxgI3XWqUmX7C02HyXrnCwtWILsDektWEiYJqtn1me5BKoZWGZ3ntB1EUsRrkiI1LJjt91QayNq4/DWKyxuvkQhGGCuc02fAVF7Bd958/t2Zy8Ge1skcpk3TLuJ4SAw7nZ2TouQSqEFk3GVpshYKWcXFA0UEdalcrrecKyZL23OuZsa4xBo0vPuasmkQiCSErDL5KHnsl3SFEa1IAyVSquZqVXee/8D/twv/QVCEA5feJVr9z7N7vKSks07trXK08ePsd12RVtkpyYTi0GJWLqk1XdPgZ/7cszDWpsxnmypcMVgMdDHehbJbS8nNG+q2VfW2eVhBpDcu9N9Y6OzTJtLtJp75eGAc4i+2IjW003FWDBVrd7MNfOgC5yIhREYEHzFYAn4YD23e2oBQxVL5CWt6FY3qNMWKCQpSN3ZQO9ySFqgtR3lyfcp0wbEwgqamvJDSeZ3RTOmeDOGXJSAhkhogdO25GLouLta0PcduUxIdE+w2hiLLe0QYZeLLYT8Lm2wJ0iALVcU+O7DR7Qn1kcuJLKrzWwXSsGvfrNKycrJ4YCUiS4lbi1PqBI5e/qEhcBChamp+Xh7EAMSuH//Pn9mZrP5hro4o3G+01PXc9T1HPzsn2f14j3e+K3/DCnWCweUEm3+Cg26ZEBbDG3P6rN7zCuCGGupFFt+lSl7z2ieiPP5Ujut9ozOadp2szArQ1JsNm8yK1S8j2/Wg9b5TvG+dF6kalNCNI/jEPx8a7We0+cAxK0G/I6HKw/embgwe7hZPz+vbwxECNIgmBe12V152KDawiYSqLkyLA+snpVM6w5AC1mWfOuRcO2nX/OZyXr2+dnogt2LpTZqrXtwtukMzluYXFotyNPEtJuQauuM5IxFbZVSMtRGrIpuRm6pck7j96dCjck0TWIsRmrlEpDNxPs7uNDIxVS5ppVVUM5YEXNhq40+YNZGAv1yycP7921Jo2Z5JCL0LkWe7SZ+6OM5vO9yJ4QJgmb6Tlgk7+EFcHugWs2KRAVCsMC5MTv5xuciEWMBGo7gM5k069ui7Fl0z+vInl+8FcxyTJuJs6di78ns06w+R6Qolk4v2FyAOqHGApiCRANUQyOJMkhwgDGQUvJliN+ZxnLwe3zGuITU2T1pLMBEQ/moHPPVZ6/zi4sP+cP7sD2+xdGLN1msDCAruZJiYtdMqjrjFDQDSne5MtW2Z3XajtBAwE2uxOgqOpeli8CiqS3US+Hs/Y/57GWmtUs+0C0Pd4mqPXl1wr0bBwyLAbQyfvAByETsI2F5g3D9kNAl8rvvcBHMLCES+dzZJe9//Q3e+PkvU1O4IuAErPBi+MgYEk/fe88W1mFWtlkdnWfl+YTNS1EfaZgJJHN9+lE/fnSJrswF17YnUQwgk2qXnYvGfSANPqDM36DspQnNQacuuBlnMbDO1wDgTVZtM9PPpa6TUSnUm0lLcZxBLCt8xdMwo9+2IQiDP9ygdGIyDaOYRtvyibDsAwuXHpm8y7ds6ik40UA5YWZKmOEtag9yCLaBsYu9UnNDUiL1HYNPWzFYggraINqAL6GjaiD1C6bthm3LrHcXLNpEmUbk1oss73wacdRcfLAtpj2BGWzhhwGXqyLx/DCsz6HgzwGAzJcXXP2Ndon90q/8Vf69P/8L5HHD/+U3/8/cGdf8+It3+bN3X0XyxiSNlyNn0waddtT1MYu6Zak4uwOCJNKw5EAWaDTQdMC8+KwIChIWvKUb/qQPfP7kmFCeISm7/+GVhM3adpM7mvGng2b29DCbfqdoaYEhVmcBznJpMYbMXp4bGKpdnjF4vKCAuLl3jLL3UxC4knJgcsw5kVnE2aGilDI5lVqotWP2G+xjZIjJ2Dphvvx1f9bABnr2z7qLWLwIzN4yZuZsv7dWQcOCQqMxGrglEGJPTB1KJXYLvygaIfYGTFMpbUcpA9N2Td2NTGOhP7zOlV3r84DKzBqUH7oA55/6oY/nDtPeu048AKKZP55o4xf/3M/y7PQU6Rcc0Hh4ds7nX7zOnevX6EtgnHb0Y2FdlDbdZL1bs60jqTSGnDmQaEl1lxte70/g+JCYQBeJrnYMIZJQQmsIlRgK3/3kAx60iaOs/FgRSMLXaKRgNSzKDGh64+TNL89t+iXoHhSbizWY54mobcHNM8Mu7BjFzMcBNFBpSK37WjB7PFrSuA2arZoMZ0bnA5boK2H2UzTQedXbAsTeU3sz+iEQoxpNf07iolrdcaA1SHD2np1j80ZTQrLBOrSwrxHNp/YQ4x5oSykQU/IQBKuvRUGDmgxTEn2vtmEXcVnvwFQC0+Wa60c3GO58Co0JiiJuvrtnHOtci66ar/lzz/XruZ/xf9mPj46POTo+5tUbt/iN3/ib/K3f/E0unz5A1s+4p43y7JKjac21xTF6uOSQke3CAkFq7NCpcXC4IHSBba08u3jMpw+ucf14hfTBvmY1j6hOTWJxoZHzMvFeLby4Lhx1jdutsjoYWI4T+u1vw+c+t7e1iNFYfLaFt1qVgjjrxIzmDTTx5YNRDsgWo71/NsEDrvDgBDGwTB1Iqa2CRGMcyBVwbDJ+C71SB/Lme9Mkc3Ym5yCkhLEdzL9HKC1RJqVzq4TDIe6DFGIUUtcba1jb3hcmuZR7LxkieSpyQ3JGath7aqUIlSWRjs3lBVBZLiNHBwsECzGajcxTSxCE2K2QxYH7S1VKLuTdDj07Y1gdmGfq1WFxo/Orhddcx54/cyEIH/zOb/PB3/pNVv/+/5yv/K/+17Qy8b03v8+P/+QXGRTCdo08u89Hn7zJ3cMVh7GxePqM9vgZ70yNR6FwqQGZGqFBKVuGFFHpWFLpQkcKQhcrVRpFErWDHAPaKgdj5bVlo1w+4s8Ox8RrS9LBkptHRwyrI+5eP+La7ddsadMNbMvAcnnTgHds0w8ujwZyUCAQvNZEH35nZ6bZp0vVVBJdmFna1cMoIjRjkBabXFG/h8N+6QqlzDJIuxDEFxhhNqVvjVIDk0uDos7BPHOAlgfR+J0jXedsPZOdtWJ+fDQbpZsv+BQlJJcKNyil+CsQ6fq0ZyGis8y+2bDZbFkrYmoDRFGXNM1KgEgkRmO+py5SizF+1TR0lDJaunQYOHrhNUg9c9J1cJ/g7XpNnjJHxyeA8s6bP6ANA7Hvydjg++jsCeO4ZVUzl7tzshZUOsap0PpAa5VUKuXJOVUSs3tkCZHzBmeauJcSrxxFlh6y8EQiD5uFSrxwcMDnVwd8sAN96SaHYcGpPmWRhF2117irwuk775I0IN3AyYv3QJXl4XVayZw+eYzmkaOTazZ+unIlBEguvxdn4Yp7cJqtgi0ezGFnHoNMXTGzpIKoyy/doue5JqP4YirNgQr7Xj/YXSe+nMSZ+KoO/NkFqjIzPgNjsRrcpuqGBvY1pyisYiRFtwZQG8znkLLgrG0LdQi2IFOlFLe1iIHYrejjYBYa7ZwYgiswKiVnYmhoyQhbH/C8/sXmgFfwe8CCNJKYP2Xqe9BK0Mi5HDO4H+Hbj5V2dGwm/l1kvRnpYk8ZC6UUpmrPRG7KlDNdDExT9mHUB9g2A3y2ON9gCiNaY3LihpZCHkc6rdAqh6sVn3rpDl0nLIbI1KBK4OL8gt3jp0jJ9LWyrsL56ZrQWUJxdxB49OgBs72Lv0HWDznDFp1VFLMNRaJUWwBFwZdKumfl2bVlgTytPN+3qS/N7fuLzjKbU5qDGEmggSuj/N7zxYbvH30phrMzC60E7/+ahRT4gs78je37SZKwECKTShMNfEQ9+KJlm4PmGc/JH9Yz2+JY5hqkGVU7H7XAHNJR1QHxEKCZoqf55uX5oJHkSx2thZBgutwhqWccbvJW/Sx36gOQwCd54Iu3bwPQ99F8dp0xGyRQavEl6GjPtEIrma6zpchUCtPOQpFq9T5FYNUKQ6hc1kJDyaJsamXabrgucNYqte9ZrJZ89se+wGK1Yrcb+eDDDzl/8gn3x8DFsKQNE7syMohyo2Q+Om+shiOqBkJXkM5YlcNqwZPHj/agaRCb8cZcGbOpqPouMSfkMu+B9gNyMzuAaIvwXKyezfPx1aATyMVqTt8nuxfEAhyHLhDctsv+fjWpd7OFRFMLaQzPn027Me1ZdZsJ1as5cEhCL2Lpx8ESbNXVJUEMvOu8j2szYSUbM13c8mdI+Lno9mdb65Xk3Gpt828veN9v92YMQpkKLVSbg0vmrc0RobzENx4/5KWf+Qrh4JDDxSGVQuiEze6CcTdS3PN+2SVWXcfl5SWnHz/k6ekZ6/U5ISb6xUA/9MQu0teJvB3RKXvvp5QmxmapynS2prz9Np873XAaMqeLSKTnxpf+DKVZ7WutmV/4wRmhnoFEpn5FSgtyniilcOkKBAGG1vilD+5zsUp8+Is/z9HtO64YrcQA4zTx/scPYTHw6IMPqNMEw+CAnveYcz85M3W8xs4LgivM5uoY/SgfPzLAN9OLS8Vowo7+2pb2ahidr4vkLJAUw/7A4rKHqLbJKF54696g1CQY4qBOFIxxFwQ8ZAMRN6I0dojILBW62thET8FsTUn4AxRsyBm6SNf1CMWQ14VtAsFkUyEka0STU2rVgzEAdS8ycY27bQYb0pQxT1Z4q5vZ58BiiCxCoou9FYYgNJIxJPzra3Vid7mllkodjhAqul0jw4Lu3qeJyxOTE7gpbHNz0/n1nlufGcgzdPy59039vmRmHD6HKM9m9A4w+J2KiR7steyHJTEmfurWy9w7fJ2jzcjBQUdLCV1Avxh4YXtAO82EQyVJIbaCJjH/jk6hTnST0EUl1ohqR8iJtsu02hjX93mdRl/hpWuHPHzkSaR+0QcvjqWYBfeeMu2F2RJ2bbuaglrarti23pKdDVTWhtFrO9+eiSHTMQb/M3axzuyDOe1Nq33KVmxrnXHj1TYDcrYF6Tr8yrXGtO+iSTKp7gXjT7OASGL2xJoZLkGsyagtoET6YWGpsIIn+riFqtgzY6Eho7OxPGGt7502X53Z0qA0ap5oermXwmtc0R0naj43JmK3IA0rAxSDOOvCDsTzjDydD5RfVs8XsucwZ/Az1loz/wuUFBNNGrVV7ty+xf/mP/wPWJ894+zrX+fP/tRPUreXpDAwSKPVU0Jp7FLHbhqZPnqKLnsGjeaVViw1N1VIa1uhaRtpzZr9Jo1aJmQ0pmQZJ35yE/joySWPQmMz7ViUYwRo6obKe5T7ir0HQohXm1rFZsGpVoSO3AK7CosuEskMyeTZkeAMLJMtijb3+RNSiHvwQ93nqqpf+M42aY4oW0CIMUxTNH+PNlNkGj704s+DbQJrtUFjzNW2eGLegEYAtdSaFgJj8QQwNW8NsNTOfk4xFa/pquRibNZhsMRvzcUMurOzmcNACI3QlK7HanSwTa9KTwqJwIJWJqTvSUc3rmoRM3jHHjz+H7r45jO2r2HP/6TAvZde5j/5T/6PPHj0kM3lBb/+13+Fh+98j/d+97c5Lmqg8PWeVd5x3iD0Pbz4Mt1ocoUQYKgQ24SUSjlYcKNfcXM4JLQGuiPUTGlCEJMDrneZ0zrxJ/3ATywPOEyV4YVjVqlnfHDGw7/99/jTT90jaoEIXYx7xkcKzlpRYxbwHGOXeYMvdv/lZoz36KFB/RwEI+KJa75Jt72De7HAEKMvRxqlmeTSti8GworfpbRgrCZs0EgpIFEJ7lfVXJLV94E0mHlzYJajz6BxQHMx/xkVB38EsM+zy41cG7VllxkbYz4mB8hbZapAMlXA8WFHiv3elLjOrK8qSDegaWF1hkLbXRhYXKG0jloy0oSuX/4QcLyvVzrvI642rTO+P+8cH91/xNhVNg8+QFQ5O3/G5aP3+dbvfsSi77nYZW4e9XDyAlIqf/zkHEkDslrxlBFa4FoubMcJVPmJo0NuMfF4zEg0OfQqHdKLsSpWdUSL8OHFmlsNTnaVl4+OEelZLI84WJlXlpxlNg/fp9x8l8Vf/BsUMQDt5No1Li/OCRE0Ovux+IJMDFo1myZ7/w3WmllVdl/iw22KwRKUm4LafRpl9qky83ut6kPLFXDsK10HYZ67OVp1z0err0Oys2nMQmerer2RoIRoQSqtVe/1rDMpJQPN7FHVByCchS94crrdoxITXb+4+jX15Og5dAZvNJlBFeuTxCd7sQ2LgYeKA3yBWgpNqy8mAiqJzeWGkAL96pC0OLB7Xg1mFQKPHj7k7/3dv0eulb/+1/8Gn3n9FZ48vE8bFmgIBsSME89OnzKV0UDIaceQJ9p2ot+MqGYudxOpQTu/IPWDAUfa9gsBEN7vlPOzbMykIfG4FlMMtMDdF2/wUHoePIWxQquZ7a5xr08cLgZ+oj/i2jBw7/4D8rOndHfueJ0JxG4gpoEXXjpAUB49/NjB0mr3lIMnOAtstpLZJy/7QoOZPSfGzJj7uT1T2Z8/U1xE8ycWYUhtL2ebwRvrozwwR+Z5wT5/kOhs4eADa9jXwEqgC4FlBEmBPswJziZzQ71v6aMvP0wbLd5b4rVoNtBvGLOjl0CtO2rbmZ3L7sqvdX4tCI2QZO+hOgOTTWbfN+srtY372lxrpeiIxMi386f4B/nP8IvhXX5RvsUjPeHkhVs0GkRLHUeFXCuX2w2lZFIQJmm0Uug0EMdMt95C19NCoMlcED2syV+LFtxrLZpfbRt3rFqGWllcu8lnfvpnefON75BRnp2fk4aBECzpt+bKvZde4ujVe8g2c17W6G7k2cP71O3a3iefTwT28uVxHHn88AG379y1pFH7LayGq7NRZ0uIXGypBZ7BXGyxJTOTVGnB2GiWHA8SBVQoVexO8UCo4Cb60YHPgKnWYuCKpOJ/pkzWNwYvrAlLy7QzaASBFvFePCBaEMmsR2e6+dfTVKHZ5GBkEQs1szHHgrFyvjo7zb3vazMwvvi9j7jyYhJnQRv4I4DEAiERVCy5fhKojZqV76xXfFOPucvE9e6Sev1l+uWSIo2+X3C52TC1hqhSELa7HdvtlsuLM2o2wLxLHaVmym4iZwvYKO41E4MwVKVXWEpkedBxMwhNlHefrPlo3HJE4GMxBvcXf+IrHBwdsd7uICZeefV1HteRZ6cXkAZqyGy0scjK3VS43yIc3mIRIyPN/jk/R8cd5eIMY6LPkkj2hIrSGnk3EkOg7zsHka+ahBhBs73O02ydI7L304yufjN/NwdjS+HooKcTQZr1k7MU14D7eZkYjbnf7K7rXJnlo64x+qrPtb78Ty7jjgSzyQmJflhR8kgtikFn5nHbakGxNOxmrRhdigzJXDln/+GM3YddsgRnY7Aqudi5rI2997Al9CrVsQu00aQh9Snjs6e82SsP1hOfv3ePcbtjJ894ePoE1cJ0vmb9bM36cs12swYthFK5vLjg/GxNa2ZHo1HIfWQblMXhkrNdYZcn1C1hYuyIccEklU4j5/cf8lOXEze3F/xeGvk4VxbdwOnTJzQnbCggrdGlnl3s6fsFbdwxjhO0ArVQY+fUnUpCuVaUX3vrA/5fBf7klddcMZdJ1UwNFWWRd5THT9DNljAMV/PJHimeuQdzb2lI2NzL4P3m/wj43v8IEt0cyaP7DEgDirHSfAPT1BL1uhT23mBD17PsF4TUUVtGyxYz/257yqowB3Xgf7exvmwotcG9qQEhtTXz6Inu5xYgxmQbNN9+GAJtD/DMiEpBWaWOgAnZNRfyHlSZ5YsJYkeTSi4TZVLGrGaQ32zrOKPoQQJDn53NY+4zRgMXBwRd0tk2aC2UfrJBKPpWrl/YFkWVXCZrPoqS+0DXHUA4R1JEW/YtpzdwRAfl8E3P1aUzg3MzPNec4YjgLEP7upu2/SBtLLBZQjEftFl8cyVcCqnjiy++SvdkjXz4Pv2ukJY9i0cT/ZQJrTF2mW5KVImkXSXuMm1T6XY7GDOkii4EPThkc/o+77WJ6XNf5PjRM24erwhPH/JTr9zhxZ/4CZ7+znfMwyk8p0/XmZY8ewIYIyW57CtGmV8AG47VvO1CmGVryZo9rkxibauTUISSlV2te9+BOVXYD7eNgMEuzqK++YtC31lBTSKeIGY/NnZBQ4JJeZo2slpqkm3XmkvWnTnhfjXNU4BjDOymDapG5xcxqe1Vo2g3hVAdoFTaVNnljZuo+/O06qGM+0a7NWuo4uo629zMi613SdO4oTueNw3zNz+//vbf89kTf7n/7SF59oa4ApPVz5hdsCEGl9UZu215ccnJm+/QMdJSTwhbKsoUC9Ia19tEOR2hLuByR9TiAJ8QxoiMdlGoClIMWGbV0VIPOZH7gfbCCSUo57sNZZwgNtYvHJFeuk5uTygFZzE1ercMiPtAFTMAF/f6UezHURSVTBLhpI8myBH1UAAfBnSWdMzyRzVAu14BWvvzK56K5SAz4h6LNm/boEOjRfzGDR4sYWemVZNIEDwWPsyyYRvkJdgblVUpORjTwJcmtTbziJRGVwJ9smCELtlwVPyCj52nz86y2DRLCBJd3zFtMjE22lSpNUAx740YI9otKXlHrwWoxM5TAYOxu68uvKut/RXQN589ff5EekM0M0NmZFC598rLvPzyS0xVefmVl+h+/Md4enRCePoEUWOBVgpME939S0KLDK0C2awFggWWBI12Rxn1zoKY5BApEWpDa0M3mTFUpsdnvLS5pN0YSEmpbz4kPLmkpkQYDsgffMjilYYGbPuPsdFzFr/7gte1RorB7SWc/SrGmu+TSyGZpbzB2ZMm/S3NXscglSEGZx9bE1mqDaBzonOyz0gtJoUwaWQlqnkzxvmFrsHrwESXbLA2Rk6yrYdiLi9igbH24YwdrbYhDsmCrmqhNBiLMuWGxESgMURY9IE+zhYUEFsxed8sMXEWWZ3ToIkEBxZoGY0dWidUBmRxgNRIF5Rxc8n5B29x68d+Zn+RXDVb9vzsWaEOSsjcdInyuV/5Vf512RIODnl2ccq/+t1/wZ/78heILXKokcOWWRws0VfuoV0korz/D/876kVhcXjMSqI1s/2Obkic5MrQZdJxz6AZbR3CwJCVFiuTNIbSOKs7zjs4v/8udw+v0TaVuNnQjbYEDVU47Je0r/8J7fET4p3bIEK/WMHlJesJdLIhcgjsw1uC125CYCoG+Jp0ZObx2O9NzmrZlco+gEutx6phtnG4AuhDmCXzLpsPBv5VH07M2sKWOyGa9LBPFuQRPBUZNcnSzOCrrTFNE7MXUxA8gMU9YqN432eyq1lOpM3AJHOPjex2mSkbeF5ys94iNb+fHdCJHvbg/UVKHkSEe5SpAdPSjN1f69XAPblMWQVS6O3ZmbYEVZqohXugPH78jE8ePGV1eMDb77zDtVXHs7OnDDfvUndr1qdnXOw+4tn771DuP+DjB4/IuzXLFmg5U6YRtFLWI10IpLZDtoEDFYrp5c3XUeE8JZ6FQA4dYejRULirDU2JZyjvnV5wsY1MU4Y2cksbPzdcZyqNxTrTLtccycjp17/Bi3/tf2IDnd/tYX7RvBe2hEMD6HG5Wc3NE0LtrkzB7s+rxbKBKwYMz36QjT4oi84CARDrtZJUUue+tc/5DVvb6mnwPCf5bsGXs3M4kPXuKZgP1ZCEPkAXE25PaLOAxc47U8nucFNPlf35npOgZzJ1c41ibSb9b1pAxOYGzDMNNfVJn6CP7FnXrcGkjdisxopLtaqroSwIR4ytglnCaBDS0POD3YLHFxNvhMTLm4k3SuHa547J2w1SrtG2G6okdhcbnnxyn7OPPmF7es50esbm/MzurmJ1sCCkRU+IHanviF0ihEToOmoKaApksZCXopH29JzrzqJ7tN2xu3+f7/7g+ywWA2Mu3H7xDgf9gkyAXDlen/Pxx5lQtpzUwCpO/MSq47WH92m7EVku96+7LeqE1HUcHh3t+8b5/t9lsKQM64fmoI0YhVYLMeE9U6HrhE5cMaPzecVrg5JLsOCBvSWT7s+WJX5Wv2cBMX/kRnDljvXMy8ECVKbcyH63NFX6Tiy8HJOih7azBW8wtmoQ69cUY7aHfQ2y/+VSHficASGzomrVev8Z0NNq/Ne5jwy+aBOUFBopKRCYJmEzNlvwaGPZdUiAqpHvPkm88ehNHnQjL14Xrn35HpSKoJw+uc/jh4/ZbSY2F2vKbsf24pzdxTllt0UkMQxL4rKjO1gRhyXq6pbZEiYAtVNq7JAhEUvlfBF5Oo6sm5J2I9eaMqop3zbjxMX20dX8CaTlIfr0nE4CLUQmVRat8ems3H/0hMtpgi5wQmNRlYPQsZTIFy8z8dkFevPac+PMFZtTvH5tdyMpRrrOMA0Fpmwot7Z55guE/Y1nX1nfmSdn7xLYEDsH6RRCpXhonHofJ8EWuOo93NDbvdyqxesUDXty00EfjSgFJiM3hb2dydBQzbTpnCRKSvPCA8y31H5fr8GJCU7iEVuAVb+/YzCf2eSewGAsOUToO5N1a1Bn8RnpxjwDA63aPXs9TLzQPeVxuMu1Gy/w7L2PefaDkQ/yjnHKaN1Z/S9QsjKuL8ieH95FuNn1bHYbxs2Oo+s3GPolu1op58qqX7GSjs2msJ1Gah1JYSSroH3Hqhb+2ha6eslbfeHj7UhUuLdZIzHsmbS0Rt/30CwXQfOOpMqyZV47PuQkXWNc2aUTW4EQ6BcdvyGJX3r2mBIVSYJEY0AmIv31mxwfLYmnT9FrJ3sMa14UG/7ic8188tRUFbMacz+3/IgfPzLA1wiIdKRQLWoc9+iR5klGto0fQgAHX9BKYEsro9H4o/mTzNHQNszNiUO2melTNDqzF79S7GGwjYSlCkVnQIiYx4w2l0e2q6933gJ2yX59Ow9pPjkaMUJYdIm+sxTb3TiyGSvryYbwqRgzoYvQpZl9I063D0xTc2mvoc9R5gNgNNY+zhthDwKpQiSR0gAtk5vLeltBNZJ1wXDrZaJkpqcfkp++SS0TIfU8hw3bv/eD8HNQ8Uz59CbbgDuHX3Terl55wcUY3EdB9z4588AzD9YB2L71PukH3+Lijfd4FpWDsw0vl0LfDmhnE7RMaIXWMhIjZzdvo9OO7oMH9OcbzOOn0KdIjso3XnmRj3/9V7j9xU/zbKM8/M9+k8++cI1hAc/eeBNtzYJc5sMbXRYeZr363Ai5ZFkVzdU3q7bNRcWkijHsHyqloe47parWCWhw4NOwEDNtt+atqm175kCXNIdaBIgSTU7iqatpLwU3z45cjGlZSrEUUfcWyvhwoM08aDAPKcE8XqZpNH8Vpn16Bu4rAAEAAElEQVQy8LzdkDAnIAU/25EuKea+GqgqIAawI41AQuKAUAhBmcZsxSUuiMOSviYbmPOEjmeU3dqAVGcS/ruFR+d6tT9Xz1UyB2SCn6XZ48nPWzOQby64QQKMI+2PvoFebAnTRCc7QlamvCW1Ec0V3WX6qdJyhTKZBMrcq9FJkV1m3O1gyvRDIq4Gmu64CBPnd+8QQ8/h995m8dJ1rsWe06gc3jskvXCNi/vncGA7lVx1D9Jrg9BZY60YI2p+zFRcOuS+KDwP0mIb5dIc5BPdm+sGMcmu4kMIxsBqrRFS3AOMcwARGOsvzvV/b/TL/jU1EFqQUG1QcWOcDtkDvCYHUMYilBKMHRXEATxrVyyxzer53Cx3XqObln3qrrTikxV7f5jWDAQt22e2YYwWPFJQD3cRNHbE4cTMhvPozDR19pe7LgVjRs+eN1d1bj5rV+dO5gZq/99uu0AwGWET1tst9elT+rPHnH/ve/RPTqFWujoZ4KKW7t0tB7pNITRjF1NBNFv6JMV82+wCRIsQt5G2O4dxS9sqLSUu3v4um8cPaSHRXdwmnZ0TSyYipOMVxMK0qeRdQ3fqclHzj0pBrWEI9k8Xg7Oq7L3vYzCTemewyb7OO1vAvjQUoQuNvvNlA+ZDm325YxXGJUfiT2uYAR9/fwl0YncH/rVEP5cidu+aYbgDLsEAUGPWG9hnLEIDc8SDhGoTtmPZgyy7rDQJLKQRu0bXB7pkA4UtRBpzKnXTSsvFrC+KhQxMk3s6amDoj6jTRMAMmhsLtPVsLx97RcpI3fpAaF/f7EJwdaM+t8zwema3hXBw+w6/8h/973j3+2/w6Ls/4MdKx53uBWLODK0QUc7PR7hxx8CcXeZzr36ZcHBqsvc6IaWwOHuGjsU8XgMoldigxR4NxvoJDbpqPlvXW+Nsu2N6JRGmTCw9u+2EPH7MelzzgMrr916xRG2XzM5A3eyZN1sAVG17/yRjeho4bYnqNijPacXQkDkFV60WBWeGzXYLxaWNeL0PsP85Y7TN/o3qBuPGSpEQidL2f7dJZH0J1CarBc3S2sECVSQqSHOz9urPgUmwcjVrgT75s+C+ZUls+KjOuDcAPFKwoINcG7vJl6R4HWzYa+FN+bwoVjX5Zi5mSRODBRdYcx7Ns1Ai9EckWbFbbzheLmjjpYGPYV7OwM3rN/j5n/9FPvP5L3Bx9pQ3vvc9dtOO7Ycf8IOzC7brNZuLC6ZxNOBNhDzuwNkZZdzQLxbUcYI6cXK8YJoqh0c30VAhdJB6UjI/y7xVZDHQUmGaCrdjYNsX7hN4vGkcpJ7bnXBbO25v4fDJOYcTrIJwrAJsOf3H/5R7f/EvUo4O9gu96r6ywf3KcgWplvCeot1hQ8eeaaw6s+TNFH4OLatqfV2XhN7BlRgsYXNb7EUL2CwRnVEaVXyBOw/o0dlzQiM600LpegcZgpjyQy34B19+medkoVQ7wzQPb/GlSRQhJre28QWvLUqaAyze76jQ9r1X8zvXWc1inqSd17SmxUK0qvjCbe7X1WtT8dfYeisLDBSkCi1GtBa0CrnuONi8w+bxET9g5Ppp5lE64+jdNzllYvedb1N2IxcXG9YXGx7ef4QqpBBZxJ7j1YGBMAVS6tmMG8Yxc+3GC4xNie5fN3t2NbV7ok2ZBmzOz3mBStTGo4sL3vvWNwkhsVgcICFTi7K8dkAJEaaRnzp9wGubA7pxR58bi9KgTBw+vURPnxKW9/Z304ywhZA4uXbDX/8ZFFZj16on0Sdl2UVju4mxHyOKNEGSkkShWm/fxdlPWWnN5f8xsIjuT+xAigkoFKLdy/MZN8anWeD00VUVIYAWtLMk3uADe21zj2f/iyIMnTGaBbufUwyU6v5eYp8btfRV3GPdnhvvrZsTHAL0qbn10LwEDczgu6olhLdifcE4Kdsxmxc9Qoey6MR6lRQJecfNzfvcy4n7TysXpx235Vv88Xe+za5llp3y0fsfMa63dP2CflgCyvrsnBQCh4cHsFjQmiWhauw4unsHhgUtROJiSYwdGqGlxG60RelYG5cXmenZBQcX5xw1Q68ijcv1pYGbbd/hmV87AptTDkrlpDaGWnkR+BvnT82z8GhFFxcMIbJsgYFA//77bH/nX7H4n/376BzWAz8MvCjMDN8yTnQxMtu2ChCisgg20aTkyyQaMZmSL6jV+JjMV9nAVaGVSsPmyVygRfOiDGkgDNdZHL2I1C278wcoFxQH+pZR6D0gI/l5lM68Yq3uWt2cSRgiEDwTwBZlDvSJ7O9+6zjci3FO/o0GNtZaGKtQvPc2JikIiSoFLTZjzEGqhA7CEukOSUcnxOEaP3fzJdbhBst+wUoDT9aZoQvUZHdsqxvyZsuD9z5hWDS6waw2Qi6mIomHFG2sLzcOegaqZsbNhhQ65CAwHS3YtIHGipYiUSuvv7/mZx4841Iy92ksFVoutIsLUhfoEFYaOQhwnHq623dYAje2kRulcZwCN2vg9g5aX6lB2YaFIWapR4eeW2FAUkcnpl4KGBGok444BcLTx7TXX98De3gdmOuVzTg+Lzvuhf+6zJjUj/jxIwN8B8sjODpCpnMWnT8oEijVjHv71FlaF5WqxenwjZrnIgSD0Q/YB3EE95PzD5Fg6VitmM9GCPR9Ak+yed6TyO5kr3Bqm1pLasW2rBGiJNCGwR+N5D5g6oU7SCSmyG4q1KZsx+LmoY0U4PCgY9GLS+sSKViC3ww4bsfCoo9EqXuJsLW5gZmWCdUSelVtm7RYkkKktIRqQWJPiCbdjUGQzRmsnxIj5PGCaVwzDFcxys+Pus8fC5v7rEERP0Sz35Y1D/Z6R/f+mjeyMYb9Nn728JtlMsEb3E/+6X/Fo3/z+8iv/waHn75HfXbBn/xf/3O++N1vMxSh6Y6JzDpkHg4HXPSR9NH73Gg7yI+RAE9RjiehB946eY3zJ28zvP2M3N8iHZ9w50/f4BsHkfXTa9y7LYRmBW7o7PKL0qENcpuHDnsBVBqzsqA6kJLmeVMgVyuEU/HBIyppDt9AaK3YEOuDLO5x0cWOTm2TLDMlvloTYc1speutCdCm5DpRZgdyZF612ENeM9KCyUwQbwZwRl61RrI12wy6zFHcuw/c/+q5Z2gYegOPZgDZz4KoUGq25xJLe1o0S89CEiEJSaHKAqVzr6FKMfQCYufz7fOnDP8cz5Wh5+ZhuAKbr2SdVxsyKxOzx1oxzzb/O3Z/8gZP/+E/4qJvjC/c4eD0krv3H9NvM/V0y7jesVMlqkIpFEY6MZ+PkUpskSnBbnPKVieaBF6NPevDgbf/yq9z+AtfYTvB3cs1+e/+HQ7GRro+ED5zj83lBbGLxmjFmi/zQrPvZyqCNpMhSrgCNq0gzx5n9uO5AZxDElLAJdzmQ7rorJk3ya+nigbxz5eM1YjL3Frz5CzQ6uccELHBpFbB5AGTgy6+6XfgpfhSwvyrjJ5gF08gRGWZwn5ZERz2noHNWaa/ZyHUZtvDMIfW4M22wUcpBCQlB4BsE1o8Gc281owdy+IaZ8/OWHbC0Ca0rinjJT020M1sY/O2+eGz99wh2wMvIg7UwB5Ext+DSECnLe0P/ojyB/89/XbLcD4i6x1xnZHdjpYn+lxhOxGmguSC5EwrldmkfWrtiu3cGoSIhsqDQXljsaAMh7y42fHS4XXq6Tm9RNqipzx7ihQldQOiZg6MKuIyDzOVb/TuR2oWFPadNBWm0lw+NL8eFhol2vaMd9vk6r7M2PnwewdLnm9i8oogCaowRDOJdr4dqmYQnUKyQRzzBezcK69LyZ/xarYTKrRiUhcJBhqVas1rdeZzl8IenI7J/V80MtXGZjQAJkZl2QWGQT2oy35uPxxpgyaMrUI2cLBUX4Q0Ay5KbXRdI6aBOl2gxWqvhg6NZjzPtCV1CqFivIUrJm2rdd/Z7wFkVWYGm9VSAxfKxx9z/tVvcP3td+nPz+hbpg9C6UyKmFW5Fnryf/U7dJc7BKUw2ZkuzmJdbxjOzi3QxOtyUCFuGkwmyWWxgFXHtFowbS8Y7z8hPH3MWC4ZQ+SoChFBY+Jg0bNarkyGWtWkyI5cKrbM6wPG9nGWb4j2q3ZZ2rNe1eSlQYKHp13JHMG8guaBwmdIRKIpFESc2aJmJ6C4ZCzSxc6AxWapebUpJVt/tFoktxVwXyxMRqheT2Mww3uojDkbM1n92Y7B2XqyT2BFIpZIKbSW7JmNbb8wQyoDVturJxPWWqleO41hZkbeJn+35Ziizjo1SacSGYboqeEGKtUmyNAj6TpTi2zPn7iXbzGx1Lxk8TvyhRdu8dd/7VcYp8K//N63+f3f/W1evvdp+rRguytMfaStes7HDVyuOV4umPwF6IDYvDe4POeIxHURLmPlJAyct0Z/uGSzm/h4PXLv6Bo7vaSTwjBVupo5Wi3ZTguua8/n2wU/u1pwfdrwUmkswpK0nWC3o+SRdT9QTgYe1cyr2w39wcpqmTX+Nhg6Sx+xniyKBU6p35GlNqRa4EDzGtUH85pLyRbnXvpQDMec7XqM9Rf2/YXOAS9RUOkJIUEzGbN4LTVFhPkT5GxoZIjmZ9rFQlBnyWujNmP82ZIj7pflGqzTyWrs6lqsd2+ehpw8RGhmOXcx+bOSnIllD0oMkdiZNLyVTMk7G6AlW6AgCnNv7nJLbcaINw9oZ82K//0hUJuHD9Dx0+kxl5u3+NMnPemF1/lUDciHH9PVxhYllkJH5RqR4+XKXpu8JfSmNVRpxCHRaaUOcM7Igw/e4Auf+4Ld4Wqg0tSE3OAiT+RaGKcLTtZP+YIqvS+oD4+OiV3ieHWNG/0Rt+qWHxsCr7/yGe5NE+HZyKuyJtQeknnQDdMCfbBl/Nq3WP76PetDrErv/x/v0TWCqPVNfQItHrKiwm6n7KLNbH1Slr0pFqgwEfbKq7ZHjIKrv5QkzuBVP4DBA6uw5VYQV42J+4/t71sriNVaR4KqeZWqK2SAvrOFirXDbrEkwUIjvEfugpMOFKuBzMwqewVsAWrLuNDNC2NfiM40czUP0tKsjtqzmf16Mz/yvjOv5I5Ilzr73oISSGiq/OWX4efudjxYv8DDUbimF5zXSmVF2WRevX7E+toR57lw4/p1xu2acDLQSwICkicnTgi5ZfonD5ykUcmSGOnISdhGoRDIktiWQt5cMjx5wC9NhRMVNETzjysm8Y1N6AosadxbdPzZxTVeDMLdIXFXCoulIsmAaOjQs0Ioa6DYMkpBU8f2B++wArIXmn1wnl91V2CM/USujSlnemeDWr/uUnoALdYD1UbOzRcTAZmKLUUT+9ro7pBG8li9wPLOZ7n75b/Ai1/6JRYnd6jjhtP3vslHX/0HPHvn9wltZMACTJI5CyDeglaZZ3K770yqrkhy/zhnIEuLzkA1Z127L41I0lT3XpO1TCbfRahRiGrZBHOgS9EO6Q5gcZPu+A7DyUssb9yjO3yB4fAWcXWMZoH7F3xWL6GtQToiwre/9T103PHyrpKmHTEWxrMNb16e8bnX77FqzWzeakOq9eDaFDlcEsggPdofEK5H9xbsIEa0BiRHuKyEd+/T3viQ3TTyqCsg8L84eYF+u+XwrHEtBI4IHBI4kcYQCwOJVRV6IiH1tJZY5ch4GKgt2sJHR0reELYZTne0MkEthGJfa2iFGpRpMXB26xi+/wOO/8zP7EljMGMx1t/U9jzIB3OKrzfuPzQr///78SMDfF3bIHWNhuZR3ephFZ60I40xT77FsiY/BWvI5kvfGGQwanXAwB6SvR9amOnpyRo6MYaDqMvY3ONMmm11fLdhDasKy5ScKVhN864NiQas0dTAPTDduDcN4zhRtPmvWTE8XNlWyDLHTaOuJVMlQt05s8AASGdz7t/M1nRPn8YvwCCJLkRiTEgaHFWPSBeB3iTGLEmLE8r6KTKeQx9p44Y27vZX3l6idtU17ie8+fqaqZ/MbIrnZH97kO+51EpVuzQMwGrMfk5BhLfe/gEP33uXe4+fcOPWNT7oM48//j61Ljk4XnFRTvlIK1C5jPCdrqNrW27+4A+gFdaiTF1lEwNnCp+qyokKx7XQD7fouxWLA5jW56xL4ye6Q+7fOkS6C2LnBsYBUGu+m7MIuuATvn9vrc3DxZy+aM2dKjSXWCNXPnhDZ2drBoebFqSZnGIGOWMolsSqZt7cnEGVEvQpkWIzcKxaXHzzTfAsT5pR6KqQ3T+mlcLQBU+XtuRHFMIs0VBPZE0u8w0mP48x2burELslqUtQJ6BRanappl9oIrZtiAtCHIhdb+etFmoLhK5H0yG79aVt1/NE9MF/Zhnu2V/zw79/rezHVxcjPF+bZmB5lm5d0d50L73LpZBCQkrm2X/7T/jg/ILTv/arnCscfmbB/X/w93np299kbMK0Ty2LzGyKGgI1gtZKGVY8PXmFg7Th8PyCjQZSnnhchQcJPjfA082a67dv8z0qN87PePnuZ8gPL0hhoIRiGzins6sKU7VnLQYbcJsa0AbYQIdt8UxiYXxNW0bInqFox882xCL290xFmdSas4MhuDm4pYlTZz8+8+nbdxpAnLfLAXItlGYhBOadh53J6Oed7CBYsa1uqP732OcTlMWQ0FLR2vam58Q5OU5cwm1fT/Um32SjJmuZkzj7GGkiTKVgbbENBX1nMp+xKLk1Yn+Ng+VNuvKIIYGMFa1r2uVDgnx+rmwzLO53RLtCrp4/XM8dxSsZ+PzLNvSvP/mED/7u32b62jegJY4en3Hncs1QBbKgFXKsUIwRMeUdOU9ULTRs42rv9uxaZ8DPAmXbCX94+9PEX/0rHN1+iW/993+IfvKYa6sT8vaU01hZlEYcevN9UweCug7tAweDIA3f2Mt+uCvOHvWHBWkCc3AKOAjhd5/MnqQOLqsDOMFlvQ3UvcQkmEynd+AtSaDre2qrjLkRFIbeBt7ZXD6I3a1TnvYAdnUZWgyesqlzWrPsvxZEkBZ96x68D7C7pNXKsqt0KZBCIUVQIjN1XyVQMO/IOTxDQqLkupeLDKknl8nFv0LQQJkmY+WoJ1LSERfXyKUi4zkpzXJ3uwxF4n7g2jdYXs10/rE8d6+utzz8v/19lh8/pCuFrgVk3FG2F6TNRBg3yHaHbgvsDIwa2kBqldiqMXBbpcgOzWuCdPQSDZyIwsgFp0DXnXCwSyjHbC6esn73bVIrJJQeAy770DnhPKAEbp9cs7TdMtHGzB7A9H9HB1PngJ/ZV3VmztX9lt9AyjkpDoTiflRd8CCx/Zljz1SZ1QEKlKo+vELXdcTQISIMwQzmm9cIccaglglx4Lgy2z7Y/dpUyRMeJBZQaXvWvvVs85Bm/deQ3F5Cr/pSC2KLLm200BVVW55ECaSEMy2u6rgZ7YMGt87wPm5e4CyXHZ10VFH3FQ1oPKClYyT2TGcfUnY70mLBtNuyOXvmgRv+N7hX2PTwKad/+g0+/eH3Ge7d4bU7tzlZGNujhmuQlWeXl6w+ecRRsr6i7SbMM7AiZUu3OIEJqEoNmZgrU8hMFzvyVCgd3BqfgVSqQDpYIe2IaVpwWS75ygfP2G0y7dm7LLL1K0NMnI1bJEY6aaxunzBGePfxQ6btjt7Bjhkk31crbfRRXeLoZToaeDEHneBLjOR1TH1JgbP9ZybxQpx97iogCJboqqaM0TYvpCxcqDEPwM5wwhbzJoWzvjRFW0TN4S+q/izMCopizwDOymtzq+M9vFkn2P3Z9ZaGKagrhAQ02zM3P0++NGgqtLYzRpXfmym5/+NceqQ6EUIQSSYljUrokiXkzsABMstYoAohLFl2K37t+gE/lT5Hv7rJ9ScP0WAAS1tcZ7E8BL1guevotLJLhcXlGTpNdDlSgzLWxkIrLY60VHiqcCKm7Ig1INWWXLlN7HaZJ6fK2ekFNw9WvPrgGedVuRfg9X7F60149fSMV+sZ1zeZFhqL2BFbpNGxGAu5XcJpZsxbxkm5vxy49qff5fVf+xUkRfMAbFd3nujVQZtBlNacUSlW17SZJxnN/EZ3ox0468OV4EvUqka66KITT9SYnY3ZN7Sx6EyhZV6ibS9pNLDIZos5RVux5V0X7Z8YBWkGcnf+HKRgNcRUZ3a/badKP/Tm/aXNZq2gmNRcbUkWrFbNHvNzn6MKU67ONGyEEClVqdgiTMS9G4MypMhBn0idqcQIBxBPiIfHdMtbyPKIeHCdrlvRpKePPcOzyN1RiZrppLAqAmSkTOQxswmV1YMHLG8P9ChdirS0ZNBKC4pqoCZ/31xF1URpJVLHQC1KLoVpmsjnI/XigmUVljvl45pJUjm4zNx4+JC/OdxgORX6EDnaKEPMHOiK1iaGyeapIhkmSHlip+dkrM63XPYpxEhg/ft/yK2LNeHaofcvbQ+2PN8/4vPLPLdEBwIN7La+eO7daOZTpxgTrlgULiUpZPuzQW3B2AXh5N5n+fQv/x/oT26joSMXRU8fI5rpD2/x2b/wH/FuuWB88KeMu9HPjc+5TjoJvrj3r9i6ZhVyhlnyL45bxGjzRxeELl7dkblVqoqrxuxuSzGYpUvoESL98iVWL/8UyztfZnn9HmF1HYm9edGXhhQlTArjlvrsGfndD4gvHqOiBJ2ou8aduy/xh9//HkO/5CuvfYowjtTjiRdfqdQ2WdCmXIH5gtCko4VEaIK0iuwULkf08hlycUY42yBnF3B2Bk/OmdaXbNqWt7sNtRZ+VQM3dk+5odCvKzEkszlyiX7Thrp37s6ft6iwPbrNm9017n7wLrFtCdg9pCQS4jSFSPAgjho66sExz1LP5Zd/krItHOncR+r++5pn4b1CcmZrKI5bzP0YP/LHjwzwlZohjwbYheBU/FnzXezXMb8RMwq31L8QdS8Lrb6pmuntTa0xTRGGLnlalRW0mJSglpY6FuyynRrLIWIbcBuGQ7RUmSTZthmqSLBLoKkPL2GOonZ/kAZ5BnE0kDB/I3DNtrZ9kxsCDkXahKVq26EZWldAUvCNbtg3BV5p3Zg6MnQ9sRtgWKLZ2Ddm2qlIaay3I+kg0ElFfANT82SSNdU9E4Tntg/Pf9jx8jQ7/9qaN8TWTFkB2/vxOchXqjEKZj1+bTb4N+Bv/+f/dx69+af8bxeHfG7KPHr7A9aLyPE6c/zhfdDCmsokwrMgHOfCvQorGgXrY1qFUIxqPOBA1Nf+DYtdZfX518nvfZfDd9/lWYx8plQuHxe29yp9Ui+uAELOJq8NwbYj2uwiKc1ALW0KM0Mu2IZiP8w0dcDG3jed2n7TYpJANSm4WvOaK/Qp0NXi0pCOLi3o+0QMBdqOnKsNo3aH4J2AyRe1UaswFudrKIRgMqgQZp9I26wYkzQhQVkueuZ5eWartuYu6URStzDvhbwGieZDlQZrAiRCTMS9of0E0mFG0IkWB4RA6xcEbcQUkemCnEe6IQGCOtA7b51+6HDtx78fPnHzSXzeH+35dCCT+vq5FXvGcil851/8Dje+/k0+yhcQRsZxYrUYaKslZ23kEuFAQFrlfox0ErhW4ALlsAhTaxQZuTGeMp49JZVKH8xK4OSycPbOR5x99lVePzni4b/5l9w6u+Red4gMPd8dC+3eLV4ad1aHcLX2bMrs52ny57y559wsO6sNigSKEUIYuvmsF0JI7sUDJjhQtrnuG8w+BYrCNJX9gBNjZJyUPkU0Nl9uWE0SH2gMdIQQ7bxayMoc3OKsoHmrJ7OM1Z43PNWwCxDqRPNwhNnn6IfDdoJL2+y56qLNFs+zOi0pDWqLjE2IyeTGSaw2G/s3QlhyeP01+7UUSDKZ32MeKetnzB56zCdL50XJ/hP9O0CfY5oOJsv+89nvCrz9z36L069+jZNf/evo3Rc5/e7bPPu7/wUnZ0/J2jHSaDpxFgKHIixycYa3N0koGaX4AJEdH+q0MWli9/lX+el/77OsN5VHd2/w9h//EZ/bbGklc3mwov/ij8G0RXaZgNAvArs2EYZkkn+XJjeXr3Xz+4XVawBpBi+mmY2NGdPPvnhNnwN4xSwDWksum8WTI5UhBbrQiOKNb6toMSPhRcISIiWgLikqDaZa7F6at4wKEg2YNiafpf3h5zHJ7FlaKKW6Mb6xdMDTgYfmhAOrC63ZQBWCeWrVVl11ryiRWt23BpwZmIgIxZcEtEYnytBHOmeBNSJp+QI7HaibMyRv6Dp/bYJS8kQYlsyNl3nIzDTQ+cRdgawoTFPmw++/yUvvf4A+fEi3MRZi1sykFapLiKlsYmFH41aJTDRGNTsEExdblUnAoELCDOw/ePke0y//VVK/4Nq/+H1ePL/Pw0ePWbZZIBzoiFQJpND78jKSU0dbLDi6dp1hMKBrRiXUAcrqd0dts4Talw4zeyXOfE9/LZozP1G6aEyKmaGHCK2FK7BUxJLssAVGiLYsrKpoVrRNBq765+1j8v9utFINgA0GbLT9cmoeyABnC4u0/f0amBfG1h92CQORnB8WHETSMLfZxQZ1//7nZUhMlShX9ga1gRI8Zdi8TKdqtc+8iSJ9N5AkmM+dCMQFrVlqXh5PQZaUaUcfFXRCyQQZUS3QzPd39/AJp3/wh6R3v8/tnHkpRu7WHcOzxyxWjaqBtimMm8e8GBLx6IAiAd3s0CERVWmbDVIqoRS0FZoIhUSNkErjICVSt4LFQJcSi6qMn5xR3jkln26pux2HecvUKmGILFYHUCq7aUerlaqZ2nUcpBU8XbNNSklhD39HX6D+2+l/y9RIfTM2srOTTEbmiwgfilubl2bCmGfGqO7DgMTrrVZFK8Rowy00tAQaZgcRanGZu8tpgwHPXbKRdW53QVy+q9aPqpnUS/alt98fuFxWPYSji8YasQVz8uejXH3Pat6fZkK/R+vQMi/aZtZP299Pdiqrg4UzM9EVM3EOVvL05hqwoGEP9dIELAmHt5GTV0l3fhI9eolld4NX04LYCovf+n+zOntqCpVygRYl5A2tRMoC+jJxSM9q1dkSMqh5zUoHYSJI4B4NLUo3BWJuSMlELdQSYOqha4xdx65csG7G+P6NBvfefMD1rjMLntkbPGfqeI5uN8Q8MTbs+59tY5YLdneuoeOOaZrQ5kwdJ4VceT7+MONqLELLz/UMKLGZ7VPJUILQx0afIv2wpDt6geHul7l+79MEAuefvMnTt75G2T5xCb2d0S5FxtIY/X0xxpbXQJ8pBNwaJ+wte/qUaLWite59GsV7GbOXmpelFpIlEtAx758dSYb1pWjWArXNy14Q7Pwrdt/P9y5qMtHWbC4ckvnIpxRY9p0lrEqgyJJ6/Dm6u19heftV0uoYidaH5NyYSmas9jzGVrjz6BMO2mSMxFoZtaEhkJOiVdhcbvjMV75EqFu0jJBtOVlyps/ViDfVgCZCIDYhZSW0itRKnJR0npHHF+SHj7g8f8T5+Tnr9ZbDUvmPD44pMZIuheH0CbkW+gqNirSRbSusqvDJp75Ef+9lut/9bWNKOfQSsD7cYJgAJIiRzek55eISPVntgb2rUMqrj5kY0/yZHYtQR1s2xS6w6ITlMFCmiRiVwQHc6KoFz6/DbpI5JMrqUb34gO//k/+T2zNNvq01v7+aC/3iiHb5hFomSmsEqWgLoLOfNqCVFJMDfT4XqNdUlIClflultK6oNWHXCuqLqdIqhLkPEPpoChxbu8DJK7/C0ad+DeISnSr5/kQoH9HnRmpKbEL0PpY2QZjgIMHFJaKBmhLa99ySnr/6hS+hTv+XloiLFXSJ0EU0RVqsNHVAbyrEZ5d0HzwifHAfefAYzjfobkKmRs0jpa3Juy2bsuG8brioEzsqW1GkwovN2KsXKLAlNCEU6DC5dnIlh3d4eHQX7968xnduXuf6k8e8eJlRenrjzzqw13zd36EiTCmQF5F+u0O/+jW4ft2whyRXAwozyMf+TMk8t+zP2/OL5h/t40cG+FI0mvB84YraxtOYSFdrlqmZTKtgFPgUQIJ5UQRvnHGD8PliT9FMuLNm8/Xx8IoxW2FssPe0G7qOMU8WQR2NGo0T10sxdN7Qc1zSMW/T7GGch4iAJdFEb0LEv7Y5hEBErMlNeJw1+2Iv3jjEFNyIXp4DegJIQpvQdcl8AyUR00AYDiB0FDKEjlyq0cynxmYsnIiim2fmYzWaobJd8OoMDd0b8e4/noN/Z0aVabz9+lN8mxX2DfdsSh+ieVYUTwETfPMQhFYrrRZOz08518j5oye8fnbG0eqY+s4P6B8/ZkvjBkKngU9njFqM2laewA5IMdIkMmGgakuJa3Xk3jd+j803/4CnMfGtV19BXrnN4f1HxGentBdhOzkPVA10tPfE/A1T8mFXg7Olonk6LU5IwwLRyrh+RGtmjpyqsXsWQ+/JupmUlKFLlAI5G5AXfXsXY3QzemeohkYXt/ZnC1SjyRjgGI311sSYKioWqlGbMVsX0fw/TDJugQMIZpIdg8umoz1DisV6a7tqpCN0cYGkCIzGMpDg5rVmLEwMaMs2hMWBOm5Jg5ng12lHa9G8rbpImS7RUumP7lDWG2fsFHSWZcxyBZ6rRPN/qvJDuqPnfgg//NvRuYlW74n9TAqUPPFP/8u/z//+9Jyj88d8/Pt/yOroOv3Zd+i+/R2meaRogQmTN9YAZw4aTCijKP1uZLF+nxPMKHrZGkWsmX3pj7/G+OBjWC545dF9Xu1fYB0j79XGP/nOm9zNMGpj6kGreINlDdVe+o+9j0MfSGJhJ5YMZs9IH2ewQEipR8Wap6Lmu9NHYcxbYoKDsJ8OqFlpBJf7mHejSXLc6yyYT4rJYH1I8j87M1PjHhgyVpolkooHgxgrBTFJfnRfIoL7WMkVbtaaSZRwiWerDUT3rC8JkdKqedA4aGk+HIJEWKRI19n2z8zWBUkDXVhx0B3asK89uYwQM6lLBoQuVmitkJLXrXZVwOSKtv5D1e65AzYPmfZ92msSRHny9DHx9U9x+dodWJ8Tbx2yXfVMTzZcIuzEWCFnQbhdhAOqX90mKA5Ah9A954M0Yt6ZU630D+/z4RvfYXXrJY6PI71UN1hekkLg/8PcfwVrlmX3ndhvu3POZ65NX5nlu6q62ncDDYCNhieJIehBJ8YoSEkzI0VILwzNgxShUAT1oongC0OcUYzTDCNoRjMaagYkAQEkGgBhutFoX91drsumqbTXf/acs/deelj7fDeL1BN7HnQR6Kx0N+/9vn3WXuu//iY98Qzh5CFmucDs7DCpPauD+yTbq+Q6K4vAk4pcjWI3oQCFMyqdVplEYmj1yZa+eD0OSw9NoBw2yonKZWrvqKzBOjUI1yXBUMdAJJbh00JOJEkbX6g8WB8YfQasUUaDNephlUVl2JUzBKOybYMy4zaMxGKZkLNK1c+dwjWFd0CVvbMbVnZOiZihL15ZiJqU+5KclrOaVQ/s7bquqEt4V/COPgrGNrrEEEu/ONVnyVoMifFkG8pzhtFaNDTzg/3A5syVZ6pfLXjvW3/I+qrlaP8J3vmt97i4OkQkMbcwM8IKbYc6a1gagxjDqIGFKYma4rDimaSevZipBCoMFcLq2pOYv/aXOJ7UOGNZ/vSP8cF/90+5JJmxvrsYPBXqDea8pubZ0RjZnVLvX6Cqt2j2GuLxnEqG+1JPTJcs0rvN0sra4kNlRSVaolJwEQVabDmLqsgYFqRa57weTGXSZb13VUmpoE4SDYRJxXvUkIiphCIYZUVFlC09MAxy0qWplgCVZOKyes0aryEAZcBW6az2aMYWK4QCsmAMUgBiBqnxxoRe64opA68OgrqIEXFlBBI9v1bBbiUOar/oXY33gSwKLOAaRCqFD+MZqWvx1RhjPd4kYowE3xC7NV2f6PtEyD2Lb3yb9de+wu7pQkEwOqRfc9lZmK/IIoyypwuWcRphUk9KM6qctKfoeky3xqSMjT0SFeAyEqBdY2ZzzBrM7kXStT3Mg0fEDx7Rny5J6xa6YuJvMqe2Y5V7cu+IZ4k6OazxVNWEfSKmrnF1wN24zuTTz/PU7hZue2eYVx6zcZANk69yBcxF2Z8xl/PmFagTdHkGA2tKx0ljwBYAdgCdrMkbEHoIgQPBuSLLpADa5LI01DoooozkoRFOSQFc5/VzJHGEZhtjApLmiCghQeeYvtQwNoOvRSVsUVotv+eeEOWc6L9fxCK6SC93rzWZ4Ix60Ur5Xq3BovJM2bxaCu5558BagguI1UE920BVTQiXPou79Enc/rPY8T62HuNMhSNjJWnnkyzup38ed3ZGaDuEFskJO0j3O9iPPSIdkjtMAhPPb1bXZ0gJ1ytoaXOGuEZmK/K9Bdw5hEf3iLNj+jaTYybkFdYkrpvAfjMlLU5Y9UtcsfHyWM7qCjeZMD4u6bC+grrBh0BXG+o+k9tOLVxQdYeCw3o/2QIMx6I0yFlYRzBJQ1I0dEX7NmMUCHPG0mxd5Pqnfp6LL/wE+89+nPH+NTIWckZiy9F73+L1f/53aQ/eQ9OfKX7DQ53Qft0O1jKwuT8ttvjVquImxuGOlk1/IrHY/pRGy1hUYm/VFzxlnViTCDYpJLVKw3JMwTxl+2iDY8ryIhiHD5o6HnwBIb2n8gFXFmiStadKzjN6/s/DE5/B+gorGbLHu4bGe5VqG0sgK8IYE2ZrT5+3lLF9x1YXCesOu1rTzc7YdZZ6NscNoES2uvBxIz23UoC1JLjTFe7BKfnoDHPYkudz+rNDlvMD1qu5ynez+gRbMtnAYv5QbZEw9AZszhhRgEUQssmc4vme6XnK1VwyFY30paqf3+PaKXioLLYKNFtTTFGrDe2IFCDmQyDfMLOg/eSyEwKWELQX8waIHc5kDbYonn6mJGBTmKBsWJcGSYZ1EhbtCTmfFBBBzwFo/QrOsDi7WwJRhKqEAfUxIZJQC0/9Om2MGDT116RU+nj9ugcPQa3LplhsDD7LugQbvLaDdVpDRRPsK28YNReYNF8k30k0q0PCakFYrLFnK8J8iVu1sF4jbYf0EfoeE9eY2OrrEBxUFVQjpBkxGtWYJmgoqrPY4GDUYKY1MvLkImu2B3O4eRd35xHMlki7pIstq/6MtlsySyva3BVcSZ9HjeoztNaxzplctB0OPkRQcWjugaCk98wwsw7/Z1kf3mOnndOvlmQsPT09SlKw+LIEqXHGk70jO0cdgs4/IdB3bTlP+h7lQlzY9JsF3DsH/oZ7apgIPzQ5/1t9/NAAX9tDbqU0RpQgiaQsuuEFNfqQBW9pyrorOKicxnX3KW8aL2uEplxuXdSZMRiDMaKGxkbAZE0otY7K6+cKNlE3ZelWGrJcNtaUrYpBac+5gI/q4VNeCDc0c9reDWaoiOC9DhYqlbMK4kiRvFiwJpCyphx67xlqcEqRbDxYTZ/SY4Y25LbCeQ+uwlRT+m5Nn0RfT1NhfcCGSBUz6ewhtl9i0ERO4ypiHzfbhiJeYpCRDkfj8SFYQb3y54aiVwDJAZCBInctwKHH0Me4Af4GCUIzbvj8aMreO2+z3tpmev8uHL/GWoT3gsePJpiy6VwZwwpYOkfnLXMD8y7S5UxvA60YVtHS5pa/vhRuFNbRyRNP8+n/w3/IhZef5bf/i/+W0btvUFf3Sa1j1SewZTtRLthSUcGazQDpvCE4j/eZJDNi1zGqLUaqYogKIehAGmOPqfRe6jv1jqgrLQQ5Z3wYBlfdiJVXD92G6K87K1ijfih9EtqkDZwzQhUSoXiWBdV+lmSmwkY0WWUFBt3OJUvXdXpGpUStA9aqP6TzrnhxrTZ0XmM8QpEQkEm9XqwxeyR4vEsYW9MlqHyF+nx0xHVPxuObHYwRBZELiONCpV+gGfwo/s0N13DizMZg+v9XYXp8ezEM0qWYljO7XK5YHhzQr1b8jFhuf+X3edRFxl1iJLB2XtlLIjgCl8og1hevLrGGSZGU9UC0loWAiQkvsNfC1XVL9f5tnLM0riKFFWmr5rtnZ9xatVzfv8o333uXH71hNZ06xcLQ1QAK/VElbkqzLuATUuSSqUg41NPRm6ybRqvSCmsiQqb2eqXElHQoRn+/qeoCuCQ9b1ZKc5dU0luon6kAg1K2tW7jh2fP65kr/mcOhgTlnIq1QFm4KCtXFx7OmjKgFy82BqZlufCdNkwpawJyn4VczoKzjso7gncYH9RD0Ov1UllHtlOwjr6P2LjE1mPI6yKrUg9Umwyx7zUIaBjE8wDYffhMbVKw/o3zpR/WmA0YLkZonrjB4e/+DjuXL/Lw3j1GybDdtSSEmTFqBC8wjok2CwlhbR2NcSSERjK7OW8aic0wikouqlffYpEMy0sXCO2KHQMmJZIL4B23D9+n8RWj7TFm3JCISF1DjoyDEHJhnptBIFHAiPL/Gryjzf9gI5Dk8QQ19e9T0/BYZLWlqg/WBaIszJhUplmsb8sCQ4eLvkv6uJdtbtBiqmAOdiPXt9ZoKEiMykAz53K3oVXKZbjRJHPdMNvicZZzET6L+jJ664qVQqbrzlkwMZmyFDHUXplTUvwxnbMYHxjbgPP6tWEV6NRAw6D+e4Cra+re0Qdt7l09ImxfVui2AHpZHvecHaYy2fyQYuSf/sd/h2nX8vJf+59BXnOwd5Hb/49/zH47w4gjhwqwJFMzlooxFicQcuRy8AQyq9rRV44W4Wi1oDk5xaNhUPPLu5izd5g++UlYtsz2BDupcQvtpywOcQEfND7UNA1+e4Ld3yNsb7Hy+vx/9c5NvvKf/cf8r/+v/xEXrlzS90NQiZRR77kmqDxSBwEFvXpBbVet2bAA+qTvN0nBFIMm6HZ9WZQp0qGsdlEp2RCqoYOCgnuVc2VoLgOGVTbhsMRy5fxbi7IsUVAOY8lDcqU1jz0ncbNEzVkK80mf+ZyHQCgdaAbgSOtc8WR+bJDTM12Ri++ax4ILWKfG9F5cYQoKJPWQNEa9HaEndUek2KHsCw2akUGGKwljElXlwDhcEtavfIv8r36f3bzGtJGYIspkchgbIOlrabLBRbVjQTI2FvkyBp8ddA7bG3VdEKcAWBiTqil27xJmscS2Pd3hEf079+gfndBJpDfCiXQcS0eH4yQnLruJ7ul8wLlKe42qwZqE29sjTyrsM08hly+wtbuFl8cZuPriPs7x76OBXofQjN5TAxN8ACycVcDWl4ACHrt/Boue84VqYeMMsdxlSBqo9psrQURZmkXzmob7wgx+fIIXTypeVOs0w6DvmyT9uxrKYTdMMSQhba8qGMkbggCUZ0OUlSVGa5iz+ow5P/ipDtYcChK7kmLpnGOwEzLFLkPBRE3fpISokQxRIvXl53D+BXae/yXq8Z5+Las1ZnGCb1vsusV0SjeVuML2LbZLmCTkFHX4Jw8bML0ArEAWbK+Ml8FjNseMWfZwOsPNluRHh8jte+RHx+Tlgo41pyaxypriurA9Zx4mfWIskdjdxWp8YDmx54xvh8VPt7SeB49Yq0usyvEEjrMyfBu9wPTOzUW5Un59uKNSzowDmMQm0VsX8cXCwju2rzzD87/wN7j08k8WFYEwP/gA6wzd/JjZ0SO2dnd54qVP82j5Pjk5jBTFAgoQDn12GgikRu9lSh86eJZr8J0UiyC1oAhlEZILeKIpyiVp2rCpV4IjZl1yGKev07K5xiQdEmwuVkqm1KK0OStDPzScH+mzWlcUwEaZ0pYw2mM0uopfR0JTa//SzbCzA1zM2C7iZK1zTbKQDZJc2d+U51HAJiH0kWAqbPDlRdLeSIK+z2pP5LWGHc3Jb3+A/OA26eEh6+Upi+6ENq4KicSxxrI0iRWZrix9FpIICUKBXQazlDUJp87KOIEZif7d1+lu3qHLa1og0WtAhb4qnEynLCYT6mSZpJ6mDjw1qjcYgCm1R9VKbGaUYWMxSMOntVBlMDmV2SCXwEMpDPPSn6VhAUoBb8/Twi2WbIalvN6trpwZrxcoUQyIZdXqjB5jj5RwNWuHZYVQBaidBoeu2xZXVBbFQYgh8MxaVYd5V0JAjL6nm+V5lvIeO2obGNVOE767XeqvvQVHC8K9B9QP7uMXc+g6bBq84QujujAkzcB0M1YZyNZCqJFRjak9JhhMXWNChalqZb04i5Bx2UBq4WRJXs5ZL49ZrA5YxBlzafV8lLpuyr9W2xozmiDTbVY7l4lXLhH+4EvUdAVg1ek9bb4yPbJFs8TgY62ThODIfHy2YDlrWTeBtLtDPjolmArvg/65bDHWkUaB2FRYXyEu48j4OtCngZJS6vtGRq2/pKrSQS/x2PQy0Pv+J/j4oQG+ygrGCWI0In740pQ7l9XI0QzUfUWNg4PKmiLxylSGDRML1CttHSMiRT4mGorhgxRNuC1GkpCGhKokGK9MvOHiF1CUuABZvTG0xRNDvTKKF5Z2iAoe5OEByJvmz5fGREjF002Lj/cO51WJPQAPxmhcumDAalIQ4pRZZT2C4G0F1pOtI4ljvWqJMWmiW+rIqSOYCSlbRrsXMGlJSh34ckBHE9quZQLnnqob4KV4RZWNPWWzuvlPeTxwQ3998IcbGl5hAATMhgmRUi7wDIy3Jny2Mez/4p9l55f+Eus//H0u/Jf/dyZV4B9UjpsIrUT6YkSbKWl2vTLVjLMkp8mMwXiy0e1zyIZYtgx+b5fsHfcfHXPpxadZvfIKQ1bFzshgJJWIcjP0dOfAU1aGkzcq8aHvqL1lXOnwkEW9GAWInQ4OA/jhjBrhOuuKjLr4XZihcBc0PhfD1DwkrCl7z1oF/JwzjJ2yEERUbhKswboAoiyIvo+IlKhyqxvnLitNX3LZtIiosb3VrwMpyYF9AuuVbeEMiENKsYjFAyJLxJuAdYIdbeGk1kGJxHI5R1IihSnB1bgwJhNI65UOuRak+IHg3KboDGAyDCDL0FYMx2wAzYeLg/KrfPjnG5BvaCiFlCJbAv3ymFvPv4zd+SzP/tZvEUzin4xr/ihHNYEOFdhBEigF4R187UzxVhK8WFoyMTj2JPG3omM3JTrj+WAEWMN1ZzAucdE4ppNtJNScoUOAxFy+bSEnSEa9p2wldINHjz7pJDGkVJhXRtkwprCMhFTkisV7xQwAjoAtrCdTDJzpSeroijNSJOVDMIEOsaAejs5oCIeGLRiaUBGCLeDO8DqXRiOdv1+WAkwalAktBcgxlCZVt11CYRqIUHll4okxmFJTK8pywJiNv5azHmMDxgd0DPNkv8XWhY+wnj3C2zXGeHy9jSwOkKxekbZ4YqT1QgHJcs7+zaUEm0HuMdEuj52yc3Cm/OHbr36XR//iV9kf77L8H3+NZzCEdQcHBywRrkjGlas+6vxOi+G+h+1sGcfEGIeUgTEzSD60tnkMW/Njqu99D/vJz7D/7PM0n9mh+/K3aGPiN63n1179Q/7qcy/yV649V4YWyF4ladMiJRvqShaVYeUkWJvP2Sk65W/Y1E6E4GRTv/zwnBqt6Vp+nb5uJpOdhl54ZxQ4Nsqyit25LYQuELTOaGKtAja2LE1yFl06GDTh1FhCUBZcn6P+mc3rL1Q+6DBiHUJCsjJ5kpgihdDGOQm0bSzeWtosGyPUlaWMIWz8Yp3D2oAPDZKhCjrg9AkkO6SeYv1YWTyjPVLXgnVUdYOEmtR3uJ0KxhOGJd7mXHEO8Ml54cIY6Luee+/c4tMvPcPN179N9/CISy89ydsX97n8wZwz4/jaeIu586ysfq5rzYh2sUaSZY0wEss69+Qu4Xf3kL0tuuC5OJ/x+TbSPnrIznqfnbTmYHWKTT3dekk/2sbduE598SJ2a5dYT5ikHv/wHqHy5PEYM53guhZs4Ms3H/ClxSk/+cbrfPHypU09qL3F1udS241lBQYxQ3qzLjCcMcQ8gC/KXnJ2aI3VFzGLoesp75myTMPQchgYB6t3iahkVrLVB0f0vtX3VNkNSC7BQvoM9LEkdVqzOYOb50QSudgl5IEutVlwGgZLM+e8gorObGpVLuE4Qz9jbGFSGY91ytfNyZIlEKMGXpEtkhwueJXcGEPbLsntEiEXGaj2hiFUdLHDFO/Kqnbqd5RavLOsXvkaq3/+a5x9cItqLUx7y+jCFsd37mvgTx/JUS1aTMpko1wVUtQFQ5QSiqUsIZOiMnWM3qkj60mV5WA6Yr3dYOc9e+/P8bMFXUqcSscZmWSgloqxn9DZllEYE30mhEAgYKzDNjUSLO7qRdiaIDtb5PmCd77zbc7MmI/90i8NxYHBb5py//dRIFqMn+D3brB946NsX32aZrqFRVgc3OLs5leJR+9iJWrt28ix9Q7OpR4Mcsxzr9HH/bLMRgY3LEF8SajVemJLoFg5lKZ4gOZC0Wo7TYM0FmsSykYvie5WfSk1BV7vHOu0L3TlX1TpoVZaZ6W872gq5dAf5ITgNmoe6waGoSp+hr7bomBJLMyc3CeMceTcaYDR8QHXLv04zVe/hVt0uNUaf9xiVyBdp/JbVsq+7Twmir4OkpE+ISnqSJszJitcQpldRARxBlN7RSfnS/r7B7j5EtcmiC05rZi5yO3Q84NQkZspz54ucCbydt0wHu0iR3cxkqmLBI6yGFeKRNbFcUxQBZWb2wyVQ56/Tr5xmWayTXrhRe1THr/eNwskKaC+yv+V0aR9jrcKZ3RJF2FioKksbbvktd/6f+J//3/AikodNVQpYvo1WXq8D7jUkloNzhMGf29lX2rnRVE/KGirYDIbcoECbFI8QdWD0pikaamiAWV56OGyft661lcnJsG5xKTyGKMejtk1HE9foFnOCCWQbgB2ig2b2gwVEHzUKBvUOb9Zoqg/nCNKpDvr+eDXv8TY7fBEmLIrgl+sMQuBvsfmVGqP9v4mC5iEl+I2Jg6bHdiA9VYRBGeKVZRBuhWuE+gEg4YWZclwdIo8OuGsP+GkP2ElPRFdrLbAmgLciAIxe899lPl0G+7ewj68X6ZaZeDZ0tUMNAsD7AA/koWUl3SUuwp9Rq1xnL34Aubf+Tm29i8gpzPOfvvLyLgmerP5PAPRANmMeQxzzKZ0oO9j2+UCWpSllxcqo2ei7bR7zaXXGayijFUsPThdAlTFDkMZf3p++iTFHgIkQcxDSnNBDQcrLZOhWPQ03hVmcEnQLez84IYQRl2q1kYX/ma4QzlnTjspQWqYjYoMHIvO8etfOWDn/j/jpd5z8WxF1a35SojcsZFda3guW/ociQyfV+gMVNlQicVlh8kWmw05BvycUm9VUWnF4iQVhaZhYkdcuf4sOz5w9OBVzmTGmkQEOgy98UWlom9KEseRtSwkcnJywKP5CdtHH/C05HJD6P3ZD9hIWZWq8ULa3BtsqrXSLRo821hy1+G6MypxWi86tdjqtnYwf/KL7P3czyC7e1jvSIsF6/dvs759i9hU+iob/1j9KvhU3kzJm5o2/GwIdjGP/e6/7ccPDfCBIvV5YEzYAZzQZjEVzzpjNVW28oZgjJrhSq8XmykefAhD6qMOBaKbD2KhIyuwpwBJubyzpqBZ52k7C2UDW4UKctro0QfKalP8OJzSZFR65oonkAPvy4VkdKgQEYxXE1eD1RQspwwsYzx9BDGWECblIlf5ZMqiyWoulO2sHifBseo1cVAk0a1XpNSRc0+KQ+R7Yjq5SL21Qzw7hvZE/+yypWpU629DUInVxkh/OKA8NrCUQaucneHneaAJPzYIDyw9NkBh8UZBk4Ih0/c9BqGpJ1g8/hM/xlvdA2789J/A/JP/kWvLOS9NG95ZHerlYwxYRxhNmFYVPmgycBUqgnUMicVWIhf6yN1Fy627d/h35ivynXdZvvI24+2Gi9/8Npe7jt9pExKtAntyDvIOBt8KrEmBAiyxTyrJcoa+U/+swQQ5lu9TN72UIdlos2OUWWUNauLMeRjEIIPDaGqfsZ51NxjFa+PpypAiBRVUTxgt3hJjeW/KNls0KASjl7QCcEqX1m2QwbqhMdAm1DgFjFP5moyo755EoM/IYIqfLMlbUjSYtmXdz/S855ZYNohGVsRmhE8GvNAvTyFHgjFY77DVGONVfrQZ3B8Dh6VciI9/DECf2ZzBx8pYAWw2ADRsgBxnDGNvOfjiF8l/9i9z8Nb7fO57b3Lp7vt4sXzbQSuG1Pcb4G3zWQpID8VkGTn/2iTzgnNEFZ7z7v4eW//bf5/eOGZf+ybNa69zRQwj6xRYCTVtFExJwrKldmQSlUbhYobpUOxG/i9ls++tStwlqVTMIEgufi3lnA3hCSovowAqZYdrwJRtoF4GiTqonD+lpIEk3uLNUBMHvyK92FOK5OKfNSSaDpdLFZQF1cfi6edUbukG77ECElvnyaKScQ1zsCoBN8O1o8+bLV4aGYNzAe8C0RjEjui7hK8qvPXgx9Tbl1ifPlI5cOzI3QpDJnYJ7w3ZlAChmLG+DOxD8TKU1Orz9/t8mDw/gOc9mtbF1Ee+9k/+CVfu3OXZP/uXOI09/ltfx64W9OWzz61hnHkMwtNGfq8XaomMUJmuK6R+b9Thq2Qcs5RIhaV68ROEy08x8iNSdwR1RW4M79eG02z59ukxf+npCiJaN3JmKY5JNLjOgslQ5IzeCcGpp1jlhq9Nv09XvkZl3p0/W/0ASJtBNnQOjEipcVIajJRQKUx5razRO1B/T437xVmCsXRR09s2J1bYpKdmm1m3HULx3hWLC04lEVaB4D5lUkzF8kHvheH8W2tIFlxOUFKXzcYHzxWmhCOjCeZqpq73SszK7usieDsimVJXJ0+RuiWyOqIOI2K3wPopebVQ2NoYQjXB11PO1xWPDY+Upd9j9+OwbTXbO3zk+UscrXvaaU3z8D7GK0vg2Fm+1Lc8yhrOtLs15XNXLrOcLTD0vH16wrTZYmwT7WqBt5nj+ZK0NeKzdc3F+ydUj5a8+YMjfP4e1sGD777HM9EyfvJ5xj/+KdYPH9KmBbfHDcfLjpd3J1wQsLUjeUtuhegMj1LkqRc+xv1HB2Uzr8+Ms4FoJpgq6KAZV5DWWncEXagiQFa/OT/cMdoLDaFjIiqFoYAeykLRWhZLIJEqJhOIK3vGjNsAMedlG1BpLed/N6O1SCXfhWGYha6AFYO1ymAgfl6nNTxrSMIdZH6SFQAY3mpn1NvMWIv+U16/x6jLE11k2BJeEtQfKEG7XhD7NdZmuralDqF4+WrfmZLgq4A1vbLOjAI+IIS6Ij+4w+0v/yu+d3BG/dHnCBm2v/IKF957m0ddyzJGtnJm1GmPm4CI0FtDu71N7Hpc3/OwrrmUYX85w5IIqNxP0ECT2089zerHfhR/9SrNfMVrv/obPDufkaVlgbKmq2pKf+Uq4cIFmjd+QLAeMZlQjfDGQ6gwO9vk3SncuAxVjXjLN/7wK7z/3lv4kzlP/viPs3XpEkM/KeVZEQN2NOHKJ36ap3/qr7F946OYMGa1bpEsTCZjrLXE2QNu/u5/xQdf/oesu9XGNscUdrHWGkcuQIY3hjqUcA47iCCN9uHDbWHKG17uVrORowuDp7QxAl7rjx0CTK1KKCVnxNXFtkWJC8Yo8IBASpZedAx0jpL+y8bOZRPwFss4WRZgFCbpINM0hXmVChtMsU3tyzAlKrPAGcZ5DBFJicPf+yNeeeMO8fJVQtfz0fcfUZ+tIKm0UwYLhhKGYRGVKYuCffqsKbjgsCSjs5dBQcdgDMvK8p4smVWeSWd5shMuSOK+i7weIpnARDyTsyWub1nYzGk2HJze56Oiz6F24j2mfA8ZC2HEqHY0zUiZOyOPHzesdyacbju6xRHL5QmdSzS3P830qSfLIvXDw+5m2V56noH0krKyJxH1MzUWcoysTx4Q/EOk3Jt56BMGxpaxtGWWSEWh5b3eu94pCBOGJYeTsrQ3ZSGgc2tWHwmc1TCzvLmfsqodyl0tlDAYI2XehC6ZjadzLiErBksymVXlaJPHxjUDjdAHnU+dL/5qToEZixR2vNpdGTSop3cBk+DNO4kjN+KFj32Sd2/fof6Xv8ezp2fkDpYjTy+BKluaAryaQYrsHMEKF89adnrBZfWBNcW+xoiCNcl1dHXD0npG2TBZCQcy4x13xtMRzlAAbkZiCXQGXGFY9UAiswZsvyAwpZ2dUJfZtnC6z+e7cmZT+Z0BEK4xBCyOTIWha6bM/vgv4J++juSInV5Gfurz5NNTunVLU567oXadD8zl3ZJSH8p8HYv9ubVZmXNWezRDUeBhSKXfr8p9p0vzAaMuaEC50wa1oSRNpk5Zz0floLKqynDla8qlf1Nf7XK/lbOnZ9mQov6+SUIdLJW3xfZFF3bDQsYaqEKlUnHv1PoEBafbpCFbfe7hqS3kU5/gfnOR0z/8DnvvvMev2p6TsI21sBv0/WljUjArRky7YiqeUWxxseeCwDVf85pb8bFcMZaOsz4yd8JCIi/vXOKlL/40uam5/947PPj297gRprQyI5Hpyzu/xtJi6FCGdp2hJlFFyygadslcblfkxZxRgYGV0jKIcAfdnTzmvAcDh08rdsJSMWwinUipmbn0JpZ6NKX5q3+B/Es/xcOTBesHD4lZQwrteET1iY8z3t8Dfw6xmWG+KPjV0Otueswyr248t82Ha96/zccPDfDV08uwfESKC3KOiCSNVjZaLJ3V//Yunw++kln3ZXNcZH0KvKj0Vrf3Qyy4LbIyUVNXKAVfKcrOGarCALVYrFcasbdZ0dbSJUiREzhr1fAzSrn0i2yobPxip/LcbIeiArb4kVirRyKLpe2KRDRUbO0/QRjtkVJHv5zRrRaaxBgVxMTXWOtJyRC7lr4/I/ctllQ2i4J1gb5b02xfQ9KKZjIhrmbI+ghyD0bNzqXPuOWc3C60EZESGlJG08cHE4EBkTrfTgz/bYathZwDf5RDV4rIAMRkivTPO2LMVNWIRRjT/P6/4PIXfpH1u7/G/uyAOz6yf2mb/+ClH+E4OdoIt9dCc+Uprl67SkqZcVPx8NEBk+D5o69+nffv3CZ4x/G44TU6tk3kT3vDaHZK/vv/Bc+Pt/FO+IDI9MU/SX/8DrOD93HtITb3iCgQp+5lBpcHb4FyVBgkqwqYqIfG+fesxbLQZMU8BgwpG9P22qqo7NqRUtp4FigLLernVsR64/2VxICYwuYs5wvA6PbFqyMpobCwBrDRB7tJXjNOvT66PjI0TNZ5jK2xvqHv2uLl4vHBk/oWg8WKJZmK7CzYmqqesFj1xNUaR4QSmIK1mGwR01JPavVAM8q8jBiaKiB+6zEg5fx86SZrOGdSQJXzJcWAg+ofGYqrfmx8a8rn0+dcb9FQefLHPsriQs3lrY/Q/cqY2d2WremYv/6Fn+JgPmO5jpzlRJTMaFTR4XFe0zW9ddTjKWcPHmJuf0Dda5rgdteR+pY1jub6ZXY/8hwP797E/ORnWL/+KuuzM6qgzeBiOcNe0sTTymUNUCHqs5B1A6veOjpk1G4AUsrywMoG7NsAYkYbNimvTUoUbzoww3mQqGfZFI/KwezflIE7dVg0vMMXUNAZbcpzzqU5UIhzYAmmnHQpYQdvNrvx4Qs+4AuLQAyEyhdvkUo9AI0t3p4KMFOaEykNfCj0+ySArbDWE/uOPiWMdSz7DhdbXK6RZctq9gBvhNwtUS9TCvCQaTvBuKTApORNvVJw4vx8ldN2juQNaMHm3D1+SQqLxZL5Wzd54XiO/MN/SOgT6eM/grz2Gt3qlPvTKSfBg/dEdz4wpqwSJZJ+LRFDZw2x+K5GI1zpWr4YI7GblfS9xLU+c+/738WeHnDFWg4qeGQcW5evcm+1YBETNkL2FUuJtCJc/eQvEvoZ3eKY9ugmZvkBRnpNz7ZaZ7o8wHuGVJZcj4PPmxRLUyRjVutYnxOmBLmchxBnBm9FETV9xpjid9up9NWWTWyvyykxonKdct84UZZzSknBEKteL85aTAG2UxkkU2HsWav3s0UBziFgKxSZxGBMr3eQMuOtdzA0arbSwcUG0rCfN5C6FjEzIJETePMcKatbSt+tC6NbaFOrSxOBcOHJ0nzpsKBrgc38dF6rytEyOXPw5hv0b7/PGz7QNJYRkde+8gqrw1MEwyQLH22m7NSeXhK1B5kdsZ8gth2fCg3bSUirnsZUPOgM760WXAoVn48GYscVHPe/f4tvvnuTrVb4VOe44few9x+w+sE7zB884v2PPcvf+9rvc3h2wn/0uT/GhVCTgyc7j0mZaJTDc+OTn2H70mVl7xQQ64U/8b9hd/8K450LSE7MD25z99Wv8Oj138W0BzosGNmAYcN5GfyHMkPt0TvRDUhvAQwGJpCxFivq32g2YhpDl5StLdmU1NKBqTsML8OCS5dUGrpitGcrsksZmNuK+uG93YAmKeny1hVW3rBcVhsMW7yP9a5VEMWVZZfDOg9YsglgAxlH7jMxrslphckZsor0ndPzG3P5fpLH1wERi3cV5F6XmU1AstA0ATGZ47df5fY796n/7J/i+c9/jINZj2stD770O7waDNd+4vO0KcE7d/C3bmJE2cQnzsHuvsol7YrTAOMOdq1HRNEwYywuJfKo4eTJPW7OHtDNj/jIhUscVQ5HpCHjwwi3e4n1R5+muX6NNB4j6w776IRgMm5ri1yNYW+KuXoBt7uF1AERWPYdb92+hexe4Pj0mNdf+Q6f+4U/vhmPbLkzjLGMrjzF9IWfhMllFqsO20ba1ZycM+3KsT58yPLwJscrwyJXxNzS9gKDymZT23TR4VExgfYQGv4Skz7B3ss5q2ro1xju3/I5TWG2F9YNqAl/Jul9LkX9YDxvm89xRd5hh5MiDVWwNVuDJKic2tgYo31zKmCOtQOjurBCi8e1cW5TV5IUwKvXodyaAFbrXDZeyawx6XMrHcb0heES6aLnvdduc/zJH+GJn/8pzro1X/tH/z0v3n2FcVbQqcoViC8j8BBCV9FXHrFCtz5BJJXvXX2rKGoXSRFrHN+xY7qPfoSnfvZHmDnPV//guzz97dcxbcfTbWAkgtDjFIrHJcuVtsNLYiwKTHrA47FUKsVrKtKoJk4C5ukb2MsXCHs7uEuXuHP/Pt//w99j/eQN5hemrI4fcuerX+dPPHmDwcNwU5ZLn/74/BtMBq/s44HhPtyPzqBsp2FOkqJMHpRgw6JfhCEg0hYA2RZGoJ67jKTCYM+ZZCw2DWdKg5VC0KV9jsoCLJRNnDMKEJrzgZ6yxEdUrTEQWFSFZvE+aNX0lhwbvG3xpsI6xyYZHWWvqmWKxRgHLuBcQJwnO4vJiRRbXIC5ucgX/sQvkkR48TOf5F8cHHH0G1/C7uwSzITK1BgLKQTGkzF5tcIlsBJpup6l6wh2QciJxgaqZJGcGGPw3YqHjec36xWzcUPV9nwyJz7SGt50a2WkAXOJjHBsEwgy+OTpIqMjsSRjzuYEW+uCWvmoDLrAEtVWao5jsK4wWBosHqvkEmcJo4b45FVO1yfMXj1k2a1YrHtk3WPE4r/02/zoX//L4Nw5wPcYUxSGjnNYA+r85orfe+VkE3LW61WwYSEXG3TsADTrY8bGSgJ9/mMeetqBrqBsN+t1ESGiLG5KTfRe7z1XFrJSAD+9Q3Xp5b2q7+rgVIlkLK0IYl2ZIbziJN4V4kjxDc2Kb6jKr0KC8NInXuTaT/wlzh7MOWWbm2+/y/9idJn7k4p3jGE3VGQLyySYesS0gs55+sUas1izs15yYRnxKfFy6play1af2bZjDrzlrD1h68Illlcv4C/tsH/9ErO9i3z7X/4az5JLgnpgeu0ZRrNTmJ2pfN4GYqPBQ1rIMuMkWDInW1vErR2au7egxJkVMwQMlKqk8FdHv4FP9SwF1GirRXA4MYhRy6G6HuObHezODt85O+HeP/vndAlagdYKbUrYnKn7zLUXP8KPf+4TjHb3wJyTrwYyldoqfeioaa5AFpwf1vg/3McPDfB98pf/j1yYWGb3Xufhq7/J7N0/JK/npKxNnUUv+wGki6XRi6lQTdGiGgooCMU/ZQjtMOUbTWq062xpya0UTzOVqIn0OBOxSaWNsRzqge44pC9pXzjIOgtwZVRaiSioopJaTenzzuF8wBaDy5gTXbRkq1psVzf0PZzMH2Jyou07DBU+jJQlkTra+QkSO/rYFW8IR44tVVUrGNR11I1Kg8P0MtW4xvgReXUfcq+eZs7gK4+xBj/eRRg207o9UpCEIrkZxpJhK/Hh92wA/oawsA1QI6D0krItMedlTUSBreAdW9MtvheFn7n9A6b/1XcIZzPOtrb5e+tTXrl5xNW1IQXPpQauXtqlbZdAZr1eMh41LJct4x3LdHvKYtXzxDM3eO+dN1kv5+yGwK9VFSNneQFhcfiQFuDyHi/+7L/LhSeu0M4ece+VL3Hrq/+E1fEt+hTJyRRg2JTgEyFmixQfFYDgRM1+jV6gyCDxHeSigw/GwH4ZAENTvD3ihn1lkOLzpANF3ydS0rNkopSzW9gioUjnBC3alKpfgGe8V+anUdmpRX3OyOeSTBtUPoRx9OLoux5JhoglURO7hPUTci7r6JyIfUtOC/r1KfNFBFkzCjoQpNjjqwkYXzyuHDa2xVMtq7eQ89RXX0CMykYGUHTYcW1kbEN1GkAY4UPn7nEZ3OYM/msgtEEwAnu7+2y/+Qr1tWcxJw9oT4/4jVDzD5Ytj373j4hommO0wt6FHf7Cj/4cs3XH9t4F1m1P1TTM2sgHbUd4dEDb9jTi2KPhbZOBhH33feSbr/NEbTj50m8gx3NsU+GmY9qYWbc9n/lz/3v2pw3d8oTl4Zvc/cav0C7OiIXJVAVTJNx6UeeMbtHQZtEWjwtTlhEDsFeoLuUCVfmbSmYpiY3Kft5QuAtgo35BWRcYm13Q4COqYRdCSZMETQlHm1iMSoSM8/RZTZQHqbxkQW2ujMrWxCDiicl9aFuYhzouYGwD1m1S4voYyWkOJCQJXY7Q9vRRQzmyrzHW0rUt1ahB4oq0ipisqeGaIJixocHUU7D2vOERzpshkfMztTlP54jy47+n23ChXa+xqxX++JR5XXH0Z/407cV9pk3gvW98m/+0sUUiHjUmW/SZyx7EifpFF98sS2YkCecVaN/3lpfPeoKoZ2B89y3u7O0y2bnI129+nz9uL7O+sIedTrl6cY+j73+Tdbdi4hs6SRzOZpxNt/n4n/ybXLmwT0odcXnCrW/8Gjd//x+Q12d0Ufmow8JleK6EQRKm/z1cAFkMOYoCkfl8CNIfTal35pyxjCnE18FvymFFa1tSzZxKcLSkgdUzlWEDmqQIWIPkoQarJMQgBQBWgMUbZYPFLBA1RCsEvVuSWIyr9Ps0FmMCmIpsLDZUpD6T6ElpicttYdGWZwztoA1C7hPteomsl3jnqZsR/bKDtN544xpvaK48jzXVcGA2z9vjy4pNCrOB5ckpb/wn/wn/q4t7fPPr3+Lm/YdM1iviegXW80pwHIfApfkpu7NEL7CsHdlknr93woWcQRIeWDrPKCdy5flCqHkpdlw+nVOJMDKWn1omvtBZsh+Tq7F6GfVrlu/eph/X/PrBA1598IBgLQ/Wa+LetIBT+n72IrRi8X7M5QuXzr8fY7n6sS8ynUx0OQhMLj3JtZd+nDuv/iiv/bO/Q1weai2REhRVFBWpSF690XrlimLcFDmaDuHDKKRnoUPPzBCUkwvYO9RDRP2kLGoYbw3Fy8jSx/Mzi0gBmCn/rmxqq4ayDI2yFKm/LWC3GhioEblRuxbrsS6Q0Tsb8QVUqUnG0nc9fero+zOMRLz1qN+ygs/WGFLscdZQV8pYTilShYA1jtBMGI2ntOuMcRXebyGxI4wqjJ/Qx4aJd0jbIt0aFyOxX5ENHE62ePaTn+Hm73yJJ597EnfnHk0SJr5iyxji3fskq8P2fnKYPvFm3XDLe0Kw1G3HF9Y9O+vIfhvZevkiR8dL1meHdOsFrWQmVcPe+ALej7Dv3mW6XGBffJrZx66yvFUxOu2QZ66TL2zDKBCmY6T4XopkTo5nPDRwezThg3t3GX/723zm539hIwFXkESH0aMP3uLo3b+N8Vu4ZotqNKJdd5qnI5a4OKbrZ6R2jcsdBk1hbgJYUXacL+/34L+Xkob4DQFr2qcJEtVeQW06zv/80KGkrCwsJRsoEJeyWmcYazZMVBHIznJSXaJqb9NkZVuECmrj1Mcu6PnXzy5FilsGbFFZOEYZ1Vachg4ai7EB72uyeLVBMJYYI5g1RjqQXBZyQFZprhSWvHX6fCxWlqmdMm5qjs8eMU8Zc2mH41BxKy/ojWHSRxbesJsM0ULroEkduROseKxziIUqW6wpA7RxuGaE61Y8ksR7F3b4iU8/z9anXmTn8kdYffSTfP3/8nf51K0FYxFckUraMCZef5Ld69ex3Yr41utUJ4cELI0dYcOUPGqQ7Qb2GvylfUaTivHHX9RN5aJn8eABX/7aH3HPZJbO8eu/8TvM1y2f+eAeP/4nf57t3Z3zJd7jPeSm4inbScwAxJU+wQCmsGay9mYGtbZwRsridABkBsabhkJIYbgbkn6eWP4lUwgECN5m+mw20nLnLH2UArgXr2Zn8JXZjBy+hC9aqx5s5frR2ieAM1R2jPW5eNI6Qh2IfYOVeQFxPM75MkO74vNuiJJ0CZzW5H6JxIgh401C+hXiDXvrPdrf+ypdtebVLOzHNbfimrdmB7zUH+D6lu3s+aBxPC2O2XpGRNjB0hmDC5atnDlGOEaDyRyGG3g+YS3fcInRj/4Yn/vij3G2WvL2l7/GwVe/QZ8Td7wjxMQunh0UvIxVRX7iGvUT12iypX94wOSDu3C8ZHZyE6QrTL2Mw1LjqAg4PK6cW5yCL6aqsdMxYX+H6vIlwpWL1Ncv8p1H93j73TdYTKfcPl1w68F9zs5OsT7wy5d2+dRyST3dKnPzh49ZfmxuGda/lQNiJjg9g10CkgJ3UeRD9jgetYsw5d7MZLVtKPKzXCS3BlWGZIpdipYAUoIoRUVjM6PKliVWAasMZblVmIZy/kzkLBo0hiNK6efLWTNZAaa+NxjbYH2tfZeriASm0wpxYP2I6uLHeffVW/hFy6gySO7xB7f4b888b5jAn9ra5nvLBddsxZs28NPjio6e3At9aHhu1bOLcOJhEhoe5JbJ1pS23uEJP+XeqWf28ICzD36An+8wPpjzzBf+GG//4b+ibeHC7iVuH93FHj0iGEP/0ZfgheeQGxcxO1OCG+FzQmZnpG+9ifvGtxmvlvSSaMqrMbwmrjg3+gIKZzLjcp70z2iolrUW6zw21FRNRbO9jZ9M8dMGuzVlfXmHX3n9W9wxwu5Ln+CNt97m3ttvklKPw7C/s8OPrc6QNvHHfvkvUj15DSnEGvVMd5satjlr5fe1f7Ef+r1/248fGuAzIVDvX2d8+Vmuf/yn+cHv/WPu/f5/iemUTtyXNCHtn3UoNRtGlVFqbxloewpVlY1S7Lz5Y5CMbmYOUjnNIrkMxWbTKAIIiWxUFjswq9RTBsokgYlaeAfpZrCOOtSM67rQVr1SX4EYDW0KuuE1lq43xK4n50PdGgVHlsx6fkKKK1btsiTtaj6vcV5NLOnV189aIGK8w3mowkjZhL7Wr82ksmpyxfA6Y0JFuP4p7NZVjUi3uchJyzYxZx5P9np8B/H4r222FeVHHRrLxSjDyzPAe2y249bCZNLwfQn8PRw3UoLg+U57wleBq9duMJ+Omc0XHN1/RDMas2yPWLWJFCO3b94hp8zRQeTo+IgqWB58cBvJmapqaJ3jv7bClWbKJ5yjHnseJOF0POJ/lyKTbPHTK9z4sb9IZ0a89f/5vxHzmRJxjXpKGVFabhdVouFMacLs0JKVrZ5RoMSU4dhasEOBtoroDwyFDdCJSn1i8S3EGGxU35YsmrSriVuDl1nxNRtew1hk6GXDC6LeKMNzMSBk5c0yRhPfbNRvLksZ9l1AjJqTdr3BpZbcLkl9i5hEKBuA2LfEviIbJa13fSJUeuaNgRAcbrqLcY729ARrVWIcfMBsXUMuvIR1oTT4xb+ofAwhBh/6+DcAmH/z5xvwhgLKiKIHOQvdZMTFwwXH//l/Tr8+4rRv+YPL++xPttl3nq9/cJtPfezjNLXj6OSAC5f22O0VZLp8ZZsugvOWD5qGO9ee4LWT11i1S7yx7PrIFzH88bNTjv7e39F00+wZG8ux36W3Gk3f5cj02nPsXb5K33Ws393jSL6G6WcKruVMN4CvOn8WD7OStGcMvgwbCvClskQoPMzya2pYXAD6jYyoDM92kPaUc1BAHgUjBg+zhjZ6rKy0qSzgrC49wDtL7DMx69lqU2SAiWwZWGU43cbgrHqMGhs38iFrXfkb+r9ZBOdWGJOR1CM4fNWwWi71TAusu556pIyPXicJNZuuVOrtqgZiq8OMgWw8rqnxVz9Odekjm39bjfozWezmDA0G4Bt4+DGJ6kYOvgH4YLVa4FLkzFn2piOSW1AtPM3umK4y9ClC6vECjQi16KZv3OmPRoRaSmquZJbWsHRwjBp+L5N6ZF7sE71kDlZzqqDgQps6FtMxW3vb2KtXOHu7pg0Va+NZLlsOup5ZisosXc7ouxX9ekl95WNUF1/g7OY3y72nd1cpWZua5oatqyK65ceyHTYKqmxS4zHEnCANgAwFiFO2Ux+1nnkjxWYjK5hXns9oGhIjRjJHiu0Gg+TNOT3b3mzuDcnaLMUEsYRXtMVPqqnrwmQo76KpQXRLm/FgA4KyZlNXTONFmcemFGpj1IReW4Cs5uvDvdXPcTZTjbZYnR6olK89xsha2V7NFn7nGsZXpeHSBHRtSx4LZ5Hh2YOD23e5uILJ5ev8xEsXOfWv4+7fp+2Fe3s7fLBXU9VbpL0x65ioUuJy7TgWz+HWHsSerZg4sj1GHKaFZ6LwlBsxso4L/TF1t2QrC/RrTqxh/tLzuE+8TPX2B6Tvv4bMZrSN4YAxF65d59H9u7yzWvIz+/rcZQNiDGsBmopgM4ePHiAvPa/PiQipW9DlFsiszg45uX+T1cldTg4fIKYmZtncVbGYAWWUGRWMylq03qnsRZOKC/ScyuMow5Kt1MUCuGlwmSXmYakrgx2fhpQVys3AfIlhl86Oqdq76o9L3gQWOGvJkjaLMB2gFcGNSUrN0Du2Dg3ON2A8yVjWWTB4ktG7TnIH0nF8fLKxVbCuwoqyk60TvQ+NRyTirWU0HpfFhCVJYlTX4GqayY6ybvMYW43I3RxcIFRjogv4q09Q7T7Cf/c13j9+RLCZa6szQnSMjg757j/9f3MjQ3/nHjZFOkDimkgmGtlIjYKAwzPa2eedIFybbDE5mzFOkZN4iH/3IYeuRiZbuNNjJqsFY4FLYYvGWOquJVTCyTNX+Uevf5/v3nvE569e569+5EWaa1eQyurGqVLKq5Tl09HZMakesXX9ecJ8ydHxkYLFZgBVz72sVqtEns9wdoYx0LoSIGBzSQZVRy2PYDzq2+YhWENK2gulArzFdN6rgnks4OK8NxvqidnYVmgtjKX3aILeo86cs+2N1c8nmc1ckGLENB2zzrOXM94lYlSGqS9G8FKIB9qyqSRP7YEsSazao2SHiC9u8AkHpH4NObJuI0bUK9giGqpnSyBWUX8YBO89pnj4GoH7S5jammd++yu09w/ZvnGBdLzA72xzejBjTMUqZ04tiM0sjd7BUxHWuacxMBGDbXsSkc5Y2p0L+OSY9Csu9Jm2ctjKM1meIHnGzUe3efraVWZXLnJ66y5XUSWW3b+E/4t/Hre/RXt8RjibkS9fJLz5FpM7D7Bbu+TtCWZ/gt0fE6ZjorfE4xPsrYeYLmKWHfNHBzw4O4KnrvHNt97maL7EesejRw+ZL2Zs7e5uSBkD+jIoSTSlW8MMRCD2OqsZY7C52N8M8L/Ipu9P2RRQRhQkMqVvKj5gKUuxUZIyp+nsE0pQgUH/3S4O6dC2hMaUYBUPlbMbBZV1Ru9hYxBr0U5MFx26Q/GazG09xlck4+gyGFvhXaD3e3TtHEmdklli1nMqPZIjkgq4KUIVVPpnKL623qhNihHqg0Ou71uWTWB57wPCO3c5JXKEYWeyS7fyrJOjsYlOKhY+sXQwS4mUEx+rtrgaDXMWTNqkYWQG5gbOrOd+bfnER27gP3KV3eWSF7d+gffefIvq4ICHTni6cKQiCbd/mSt/5c/jn3+C7AJpuWY1m5Nv3qf72is0t2/SxciY+hyUMQ7jAqapsFsTwoUdwqULVJcvUO1uI01NQki9cNrO6T64ybe++z3ebhzvHp7wg3feJca+PLuWW6cndF1HkLxhnn/oQwRbwuU2M1wZZWKvfXiW4W4r6e/unIFs0yB9N4VhrEGeG1lxSdxlmBdyseihSPat2sMEW+7k8u9ILItSVMXobCEFCIDFOqe9TnY4F3Cuxlc1zqt/3YbeKonYrbFdjyGzXB1iU8SsKyqfOF2PWc0/yo1pxp8tWb93G5N6bhnwxvKxGLlxdIwbV2wbx/urU3y9x/0YaeoxP0g9t4wmz39TlnRG+MWm5k5d8fU8o0proGe6mHHja29gv/gTsL/HwWuvc7Ju8ddeJLWG3fFV3HbA/uyPEV5+iumlPaY2UHdr7OEp/Ukk+gnd5z/HcnsX+d3fJs1PyAVUfZyFqdBewFkN0bJVwI4b3GSE357idreotiaErTF+VOtsb1zJUDC0qxWvHTzge0eH5CeeYbXouX/7A+arThcCArMHDzk6+30+Nt6jPTuDeAlQn8NBUbgZYTgH95zzJczwHH/5YT5++BTd1YLjR3dpT+9y61tfYvbOl8mLDnLebIIBbbzhnAJtLDEOl2vx60IP78ZYmXMPJskZsTpwYax6myg8U8SZmVAiubMMMkuwXlju/yjh9HW8zEjGEDOFVVh2OtmWpCOllPcZlj3IWtkaKWdN8BWvhFFrVLaX11gSKfb0MRJjR5cMs7Zo5rPQNEXnbrIa4Ful+DZVUDDAN2XYsXhbI6mlX57itvYUHBKlztscMc7jRtvYrStqYp+Uetr1UVMzS1M+JE3Bh8GUza/JuZ/akE4pj/33uc/V+fs2pAsaC6FpEJ/53Sz0oSLXU/y0oz+8y8nigO64o1t3kC3fev19+pzoskGMJaXItatXWK9bDg8OHjvEmXrUkFLiypPXufbEk9zpe7793e+BN2whnJ08xPcz5g/f5Y2v/gZ2dgvXn1HZtEk4zXlIKtLtWfC5sEhN8e0ZQDKnVFirwIuISigVeGYDpqhh7gDmKRV+w2QqfwObQQyhcqTdz7A9ex0rLakActaWM25ckaup1CS4wQDfbADwzcVgrPoCOQ+2oRc1dk45ItIj/UoDQqzQ2wtIdwA4ZUJZYb3u9PNgELMu/5ayGHxoMC4Ryoai3r0K61Ny7DGmxeRENIHdpz7N+OJ1jA8KJCT14lKMcQBgNgjD4zDyOdgyDPH/2hnUx0OHFf0cClTfnJ3hLl+gOjij9SPa/X1+0nUsguXtaPja7cSDO7egqom55/27R/QxcraY4wyczJYgltl8zft3bpOGCzp4Zibwey6Qzta83K3ZNipdbeqGr/hEbMbEnDA58953v8oPZsccPXiHs4N7dKf3qJOnsUKwaQPcJqPbNYPOQiq1KCdaNq2lbmiTDuB2A0yJBqBYs/EHUn8pHZL6oqk8l/2ee6WJMcxG1znLFXurH4DRM1V5Ng1FyqX5pDSgQqmvJbGyINlZVJIXU8QYT/DmMeAnISYT+w5EE1azopl4FwgBtQtIEVOCT6SYXnnr8FVQBrQzmn5og4Ye5KibZQy+arDTy0xf/nmaS89uLrwYowLL5SSllDYyzk3AizGP/dxstrAp6Xt0enLCnvNs7WzxzvKM/tvf50o15Z5zdLsTfqyumafIcVPz/HSXremYlfeYCNl7uhRJVv0Hdyy8eecdPkpiq4vkLvHafImpKz7/8Ihnekhvv8dp4/hCO6JOic4ZqvGYy1efwexdJd17wDw73u/XvB0sS0m8+nu/Qp4fsFoc0a9npLOH5OUBNhb2sNFtsTdDrVC2SC/nBVoTKGWzyR3uzUzGFONmCtvYFcmTWgDoXRGc0bNoipepHwBpBX8Xkxc4SRd4Yv41gtcgBWPP26Y8dKOibGA1INezWpU616cMYonikWyxxp/X1Ryx0kNeqE9O8bJybGYknBm8bxX8ptzzpvy7IVRqQN534Cw2jDDpHoIjrtZ476DvCOMnNnVNzcozMUWCD+X5G8DvwuwzwsnpMav5Md9/41s0MeG2t9j1nhvVhF/H8F/ffYDYR8gHJbyhDOwGTXU3WbhoAqkxZFORXaL1mZ0dz9279/jlquYvzs+YS2TpKt7+6Md48OwT7E4bnv3JHyEcPqK6eZvjuKY1lk//6E/wW7/xq9yZzzAZcCqHdSGxqjqq7S0qZzg8OFBPH6MpwK/82n+KrOekfsV6dki/OCLHntyvsDniyBsWDOXe9BuWst0wYwY+jDWmMM6HM2fpsgYdNMHSxxJihd3I5owpkrTCMrW2oIHGlTtFlzSp2mFu9rnY3aUK6kE2+F/FZIhZl6cBTbjVf90i2SPGlWCXQG/G2n+IAJEUWwwJyZHcCuqj6tRQvhTu4ME6WxKe9XNXVcAYh3cjrNXEcB90AVz5BuPUE0v6FeSO3Au5X2KwxN7Thh1as03zqR/h+A/+iOuLGSEK/Vs3SavIx13F0e1jfOxUDqxQEhFlf1Qy9LumsA8c9dExn2kqbq5XNF6QMOIwZvoH92mWc7aDo4qZ9WnHjqkZCZB7MrBuJvwPr73Ov7z3gGVMxIOH/JlP/ghbtS/grI5GZpgbExwen+D2LlE3u1y6/izWV3q/mGFBrH5mIqiBe9lRq/dQ0mVF8a0j66JJ2ftmMyDHNLwNek9aU5YtpsjgUGafN2hAT3lGB/5NzkLl1JfKOf27zgmSVIjfoWRtZ+3mvnamhIIgYEFIrKmJKYKBdg3e++JlVZOzx/pAFiUQeK+1VGXqmRxbJC71PRRBJGraaAmQsuXexVhdvES1YQnWgCg7KRmDpXiTOh0yv3Gv5bJEvtCNuPjVV4jewMUbPKjHzJ3nk6kBhOdiRGNtEh5DplfRWdOQuhXjco7OrOfdyZgD7/m5dU1/8Aiy0LaRyXxB+9prTMZ7vP/9V3gwO+I5Cy6DMxX8yCeJy1P6B3d4YDJvr2bcz5GnXnqaz04nTOoRMq3JrlhdnCyQlIhHR/h6FxNGRO84jC29d/QIzZUnudALJ4cP6WMs/q6P3fEFPP7QAtkY2ghkq8oFq4tOXXaZwvbU+8h5U8DiwW6i3C12SA439KIhJ8Fofx/KeXXFZ039DvSseSs0QQfyob65EsIigkqvjaHL+vWVfYQCC8br8+MD2Xl6jNpQScDklj72pO6MdveU01mmWc5IqcfXnuA9/brDmIj3Rn3sypLYCPQl4dyg/vRNbbBpwsXdJ3n4R99m78WnubISbr51k+Qs17PloO+4YB0jMWybEcZGPjLZpXYViYQTQ2MzWXpeTHusmzUmanVKxpBSzywZzk7m9N9/A9OMkC6yN5qwMif0CJXonS5+xN7Pf4HqxausTpc8vHeHIwOzHJGxofn082y5RP3uTUIYUW3v0ly4QLhykXBxF787JXtLypkUe1arNWePHiFlie0v7GKCZby7zbzvCBcvcvDOTa48+xEO7t+lXSyRnDg4OaKNHY1IAV5g6NqzDNYnj50/o/M9nS0+xufzsRR/uzaVudLo2Rl6Kj1zhmgsbbY0TthphNomNsF3JOpgCE695mMqd6c7t9aJJahFULawoLL/4IJiBF69jyki/CyZvl0i61mpTRHvLHUVlKUfU1H0ZXKvwWaNt3S94/jsKl9/8xX+3I3n6N5+G//+ezxA+N7uNi92kaeMYPo1z6wShwE+OdoirzpM8FSSec45pDF0fcLVgZ0Ml7rE911mvTslTyc8eCC808/5G4tI/+u/SRcMXbdm9+Jltpsp68P7+JyZXb3K5Kc/x961J2hu36d69Qcs37vDo144tI6ZdPgWwmLFzkc/gfnON3E5YmwFYYQfT6knO9R7OzQXdqj2t7HbU+yowgSH5ESOGek60rpltVyRj4+ZHZ2xjomrly7rsrsX/tl7r3IskecuX+a9m+/zkR/5HKeHRxzcucns8BAn0PWJ5YUJs8pQUUJMSl0YuDwDkWHom+25twT/U3z80ADfK7/6n9EfvEteHeCzpilJ2aanbDbAnbeFBWKKwbEpqZIoIq7RzoUhVaA9EFIJUwBNktEUXlOaRFNkGhlr9WHLsUANJcSATliFa0RziyatsKjprDMqnayCw1v1aQFHlzIxGdZdD9aXrfSotLM9jiW5XZFST9f1OjAXXaf6J4CnpgqaFuysZ9SUrzuoH5bFU9cOV9J09dtzSHZUVUXXt8T5GUl6sII30EXBBoe//BL15eeKr4wQu14TakWH+JjiOfBSTtG57GgAWwrgIgMj8pyxcB7Ece4LcA5+68VpnaNNGV+NMMYxXy1xzuqmqe+ZbE1Jq0MmI3hqy3H7LLFa9Tivuv/DR49w3iugFyNV1SAIT1y7ykdffpl7d+/yiU9/kitXr/HGmz9gsV6TxfDWr/5d/OoDfG5pJIJ04BJG1AOlj1ptXRlyrYVeQ2npc1LzXCAPiWo501SmdJ9mIzvzRTak2zstnhYNJOij3fg6GpM2A7BFpY7r8AQ2v0fVr+lTQozdAHzWFvmI82AdbSpDsXHKlHIqCdfByWKMBmsslnNSUr9BI2kjh0JKLECditFqS3IQfCEgO1ea0oAJY7xvMBJxwSsg6fSSMt2C1C0x9CW1zWDDFu7yy1TjPQbPiJQSKQ3+aBSw71w2uQHzeLwZ+9fOnzzu3adbp0HC2/U9P4g1/6fbB0g0ONuw6BISRtx+eJ+zxYwksL+/x1qEs+M1v/Ibv42I4Wy5YFLXnM3neGuoq5qz2QxrLPV4xGq5JGG4eOMKN69PeP/kBLtaEGPPo9SziPDsZALGIiny+r/6b2B+X6VCVmhsIjghWAWMLUId9JFQI2sFbtdx4BMoumekbG2NNv7B5c0GWIA+lTTLpIPJEHrgBvZs8ZMMxVs0S9ZwFWBdVyz9PvuuwluVjaWsg9nAuktZWVwUcBEsMWkqoLMOHxTUcEHlwjkmUu7p+1WRxQkxDcw+3YbbAYhMsVDJheBVmlUZQ06ZUQjgQqG7O/qugxRJ0iKp2wB26pPlceMrJFMreCCQc9SgB1EWtzY26UP1aahIG3D5/MiVjSqcnZ4RujWfHW3xicqxnM/JsuJvLebcHY/okqanr85mPPX0s9iPfZRGLNF4+tWSugks5nN8H2mCwzy6yyOT+cHhfQ3XaVteysLPiGUkwouzDhaZLGNa77BVgw01F/Z3WV66zFdefZU3ugW365p6Z4dJZXj3a7+GzB9A8ULBqKeQJpnCKCiIHEVIscAoxa928CcawlTSY0OLfWyANUYH3GoYg40hpYgx6jkbrCPnMnQW0FBTxQOZBKZi7XcLCGPIEov3VEneHepXsOXu8IS6UrapVUqqoIuQPicktkieY4YUOqSwDkxhopsNe8KgdgoqE3cKZkkihAZj1Rs354yvKkzfIx5EHKmEuJjYqV1HFP3zfkK7Wm5EGSmmzcFJZYlhrYIUmpQuJIQ3Pnifzx6dcbC3x+V/928yv3fI5B/9fXqBo77n6vaU7WDp+04ThlFLhdBFkoM8qvhgviBWma5b01SB04cPOJ7N+a5b80tWPcX60HDLVnQP7xFyx/xC5GJ5LY8F8COefOYlrl59hXvLM9qcqZczVrni0cULfEMs7WROzupBqSAa5Jy4+9Z36E/vEawoQ88IRMH7jDcoZbMwfoewABkeSqPMYGW6nA8+uqhRj9guQZczjS/yXlPks0YbWV26Wf1ni4zeWchR6CTp3ZpUypxCTz/ewvoa0hoxlj5RllwK7BrryWiAEtbTY3FhVJZ9PUYS/eoEiNobifqbDonAMenrYpwheK99jHVYxf0IwRMKw9NbZfc1lcdar4AxFoIHyeTYkVMHRpnzFFN8b40ymvdfgDuJnd3LjH/yZ3DvvEt69Q18a7g/HXE/J07EYEKFwxAk0xpDT1ZGeFkMDayfbDNCwknHc2vLliReY4k1Hpcy8XhOJ5aqqtjZv8LejRtY1xCMsHj7TVqTeX21xo7HmMWKky6yqj0M5NoMiPq45jYjXeLRyRHy5PNMdrYZbb3AJ154miGZeJBHD73lUIeiFECP0pIWqX/KFJmiPodDyzrcnWFQXzy2wBhpu1VYyedMl2FxJeXvVm5gwJnNIjblkpIuBYSxprBfFBwJXn3yEpbKJc5kihtdIrge7xtdshtNA4dI3+k8kXPUsAAj9Kmgk4VAIEZBIOc0IVXKv9/1JbzD5gIEFEkYWYFipy+cMaqmwAqr1RiOLbFd8LU04xNWmMgIOTzgzcVdvj+dYKIwikI2NdMojHLGS9ZlivP0kzGRzKL0q71JNLVhKwp3gnB12iBdy0Hbceus46nb96hHp7z/YM7ygw/YTgBZA0nu3CUfnXE0sfzjs2P+6Zuvc9KueWp3h7/72Z/gxRZkucI6C7XX2l1UKzlU5LpCujVnqQNjeRAN4yuX+bEXXuK1b36NxfEjZvMFfYwbv7zBM0/vycEvz+IdiC2hX6V/EgyFQ6J/dwhQUdgUZ9VDzdhUvIzZ/N3gdWErMizch/CX4vOZ9der4Aq4rYoJ61xJmfd6BoxHxJHxJf3d48pMkGJHiplucYYxiZg6fPAE52jbTv+s89TSsaAh556mUoQ1diuso8yv+rzq7KCguXcGKxapHN6Pcf0ldqafYeczzzCr3mT2O1+Cs2PE1bwznVBv7zNrJmzFhO8Sh7ZlmR2ujcTYE/qEqxxXq4Z5Y2nWMDU1P3npSeLZjOnRAb3NPDKGd96/yaemI5p6BWdrHh4ekiRhM9SANZ76xnX8jass7x/y8NZtvm0t/+r927x39y7L5YIr4yl/49pTfOYzn2F7fx8XPHm5Jvcd67YlHx/rOTIGvCO1PdYrSxHnEKs94bptmbUtR8sl0oy4/OzzXH/+BR7e/YCbb7zGarkgxcKnG0AVcz4HW+c2BIbB93BdRs9hxjbasGz6LLVt0vfEOu1fXVEJGm1omSKMncE47YlUhm9wRtOJxSnpJ9RlGVrYoMaqXYyUg5lTD1kxF5GO3K2RiCo4srKRC4MFxVD0LhZn6GOn4qKCHUjSGi7GczrPtPkZPvdTf4rp7VvY1+7x4kh43TlOfuaneeJjL7Kez+jrhvvff4XXXnuNzhq2/ODF56hWPd4a1sbQW8MTNuAl8d068QOTiSYRGseZFY6857cmnr+1/xw5d/hmQh0r2nfv8iAtmNnI4ekhP+4bTDMmHZzw5iuv87vW8OWDI9568JDZes64Dnzhiaf4m1uX2b32HBeffQ6/v4PbmmIcSE7E3JFiT9f28OAAiYmcevX5zUVR16eS1ZCYrVYsJXJpaw8hc9K3vNkuCft7PHr0iGYyZry9y7XrT9K++BJvff/7fPDWa+QUeXD3PuFohnv+8UgPKcqbx/z4vCvS3GKhU/77h/34oQG+2cObpMP3CFYlBBQ5TkqoZWGJFy/LOKVJF/+WWB4qR/FWKQVWP/QPBVeizwtzZZCsYQb/HYrpqSUVgIdyoVs/SDm06durPM4k3URji5eVoc+ZnB24Ec5XiKi/ROw7UteBmauMIwvrrEmnUqiyUAq98wSvG+mYLU2TaHxFSokqGKowUXPvYHHOF8PxWqWWos2xcSMSFvE1hojJPZIifbZgHWH/WXY+9gvUe09s2BJxk8qqkjEFYIohez4H6YZXdWBc5Q2gl7VZ/NdAPt3YD2yZxwBBgRgT3gf6JPq6+ZrrTz/J5//cX+T+wwc8uPcBd6JjsVzz5lkGqTU8QQTjdDjPUQeyvf2LPPnU09x46imuXb7MtatX2N3bxYjQdj3jyRbiK6ZbW/TLI+z6hGxT2e6qMe7mfBXpYlfgDQ3H0K1Zn22Rh4CI+mM0JRG1TyhQUTZzfSqAdDZlC4gOiCV1si6FWmPFFXylSEViSrRS43EK7A0eEQWUDqFGxGBDwJfE5yyJ2EdySnrmincGiIYbSN6APhrmYHUINQYxGV9lcOpJ6Y3BWMd4tI2xnqaqVWZuXWHvqaeQNQaJrTLDcos1SanzAviGnU//abY/8uPYoOBrykLf9wxoXs46COs29bGzxXB+PvxzBV/yh87ScAazKFOmS4lmHLi9iBxLJNjAfHHEdNRz1keyczhvefXtd2jqinXbkY2GQqScmfX6LMSUyW3L7sWLjOqGUFXc++Au1lkOj4+pLle8+GM/xre/+Q0ODw+p6kYTnoMvEllLY9ZUVYsr0u9hmEgZsi0sYwyp11o0DBZ6jcpmWHHFvFoJKgW8EDCYYmQ/MO1kswAxlERvV5bF1tJ34I2mlTmrXM9V2zPzIxKOnHpiV7bXombxxSkGayzeeawNGOfwOWKNkOKa2Ef6vkcG8Myoz6YzIDnr3zNF7uZKop+FnHRZ0QRPzIlR5TEUY2gjOB8wvkbsiGQrBa9SR2wXKg9OEUxCTIWMd9n55M+z++SL+tRmlfTKpn7Zwh49Z+/9GxLw8j/KIhlYbJlF13FshJU3GNdAjiyNQeox3mT6yjOdNOTDDps6rIXFcsV40nC8mmFG+/SSOHh4H18H6smUN27d5WyuTFcxhgsxU0mgQ817TTasnHAcPK+vFvQm0CZDO93iNxph0WVy38OjA370uc8TT1T2oIFUGW9LmmmpMzELMZfQgceWD30q0u3yLGkam67w1ScokozKi2NSo++c1LZgCGVyrmyLkzJesli890jXb5YMkoVuNSOOAm10VCYqc8V6lbQ4ZbMIHnGVnq2UaLusZyz1CInYQV0pIBScFmzr1KPKOb2D1AqjsCGsmmlLCe9wRW5lrVM5cGlckyS8c8S+Q1JGYsSNxpryitqEWJvJvmLy3I+z8/IfZ3T5GVyoNnXMe7dZYugAacFkJOq9mp3lTs681IxZTgJmdcx05DioPCdNxb7bpRfLSQ8mZiRlApnodYlBnzimVTbUeqVsrLMFXdexheFF6/V7AejW7Byd0O5eolqdkc5q4tERlcBp5di/epHr1y7y3EsfZfb1P+DwdEZ1YZvvTKf8+s37vHlwn+29bXJKrNu2AP6atrdc9qRVT1vqlbMUtQEYVxYwG+pxsQ6wRYY7hBOIAn/9RuqtoL4pqouRN+VeKbJb5Pw1LU2tgjbKWlh3ZYnh9E42XutrTCt6qVi3Qu28vg94Qj2G7DG+0cCVrPIx6Tty7hFW5JT0OSnWCeqLqhLK2nusyeSUidmWwVzZ7SLFqN9aXKU9nSp/NTzDVY3K+ErdySliepWqSerVC9H58v3rsxmj0HaWlPZxb3wfd/KI5uCB+lVuVdxrt/inOfOo1nZ8YIQMrDSXPISietn4HOpw64e5NBvqBC/2kU+vIs38FCeRtQH/zNNM9rdZWU/dZUywHElHzA3+8pM84WsePnpIe3yfZVpD16ixfR+xCdJiRe4z65h5sO4J0ytcv3yRR2fHXL52RRUthbY+WCPo+2nA6dDLsAg159YlpcUvssmBoW6ovCnJxKWmywCgKDOKx4Fnzj3/KkdhIRcgsRxjUcr6hqWllhQa3ONDIIlVAK8e6fdhK8bGcoDD5I4sHZJbjERlYqEzwPD168JDNgCUKkDOsz37pIEgRPXESigQGhzUQe9aV3pBay02Z6w0+CoXGbjQ07DOn+Lf+1Mfo+l7Hr57i/de+R57t9/jrvf84bVLzLf2+G8WRxjnyeIZY/FeqJNQ4mPwSbAXJ7oMFJCUWAeLzYlkK6pqm196dMql6Pjt1+/x0t0x074jHM745a7iuq+wdYW9uIvtOoxveXXs+dK9Oxx2CtTdOZ3xg/WcZ1qHcxbbNBin0lT6hBjIVheD5MyjriVUgVRtcf360zz17LNI3/PNP/ht1u1aF1VlmTXYLz1265f1XumjirS513USWYpMv8i1lTGuywxd5GtNipjNUjVYXYrGYqUTiyuNQaWRxngNHBSIyeNsIFQN2QW8D1CZYsujMlpJQow9WZYMoQlkXZrqOKsEFetUiukdhImFrJ/HxjU2TAkOleTGhDUe0Ls5i1UrIVEQPKbBe0/VE7eOAlvhE1yeXCNmx/iTP8qDm7fx3/kaj7zhjXXHWf+QcV1T+8Ckdlzd26MlMfI1VTXCpEgYbUHdcLFdEA2MVx2xXxHGU27Nj7hlKvU4+/67fP2dd7EhUJ2d8LF5y8IIY+OoMIw/+jLbn36W9uQu+XTGGZb/8itf551HRzo3ALePjnjWWJ7qHN3b9+jPTqjGFeMLe5g6QOMRb8B6nWFJWOuQJJvFtDGwnC1Zecdi1ROaEZN6wuVr1xhfuMR61dKue51rhuNk+FAIwmPshY1fv3cCQUqfrvXEW7dR2biipjOlRfHGlCWkUFcq+TQ4qqYiZvVvzUnBxBw7nbHLQJv6iEhHMomUYpnl1Q/aGZX0QwkyNQZxZeGW9Nf168uEyulCqpyRITxm8OgOxoNNJBGczSyWO2zvP0OazbmeF+xfv8pZ3zMZT3j3+JCDb3+DPJ2wd+EKk5degMmE2cmcR2dzMonU9zTOs+zXxCg4k+nXS6bbW+yMtljhqNdn3HqwgsWap0fb7G9v8+0IbtUhx2f0sxnzLJxUnmAszeERi1feYvd0xRu/+Qf8wzt3+LX7H7Bsu5JHkGEOd09PuPD8J/irO7usR2PS0Sly94Eu/Iz2ltZ7XVaWwU7bncJWH8L1+kzus/bF5I169GHfcS/2uKri/t27XH3mebZGEz7y1NPgHHtbO3x1OefRBzdZxZZYDd3CY/hK+X+tbefMvY0VQcFpftiPHxrgo4B6qWz8RKwOFMpIxZf1RkIvem/Pv4mqxDKrrwobHzyHNjdS3gwNjiiFPJsNsKa0ay3v3lnq2hCcw5uymTO6qakqWNpd+v4+2TrEjsFW4IMORRlS7Mh9S+qXGOnL1kcvDms0EbCPiVS8igamQXCWcXDUldfhonLkXDGdOmrv6ZIat1tntfj5irrZKlvPHowjZcHXYyRGYr+Gaky3eABdq+EizuJ2b3DlZ/4mk6c+gYjGBg8pm+eb9MeHW86Bvc2vPQbAPCZXVXCQDfNvkMlkOU/plawNexYhGEMVHCl3SFxRuYbJaMqNZ15keuEa1WgbxHN0eMi6XSkTJ6up8SCBGr7O5XLF+zdvcnI24+bWbXZ2dtjemrK9NSVUNZOtLY7PzpC8Rdcn8kqHcMNgEm9Lsz1c8rJpspyzBKv/TvCWJFBZLXg6TCsTajwqTWZ5T4Uibc0FxBFTPCEzU2sJTkEIb9UUdSyQxWGDZ+ENrdth165wwSEmkK3BiiH1vQ6UsWW1XOpXbPTi8L4ixfTY662+KwP7YgC3rdXwR1d7fGHG9E4Qo5t57ypGWxcILoBYmvGEnCKhCvTrMxxFRknGe8jZkto5uZsj0mvjef2T7H7850ioVEcTrBWAHHxJNnLJx8CWAdT7sLfj+ZncpKOW7zFnBQ5zViZQ3/UlzMRRBc/sbEYW4aMvf4qqaXj1O1+nHs05PnxEzEJoRjTjMdPJlD4m2rYt7GG9xIxk1u2atmvZv7DPeDQmS8aHwHg04sq1Jzg5Oyt+YtoANnWFrxqQJX2fiKXlKC5TCnal8swVZmPlhxS0wqxkkGlIkWaz8e1IuchJjALNOem/PXj4qQ+oyn00LVVB+ODK0gIKg87iLawZsYyOYGuwujjw3uGdU18xRAGW1NJ3C3Kh7NtSF7QR0SRKU74mZzPeq1+k+oCqtFKyBsdI1mG48hXWWEZNYDCe1tAHT6hrUlbT+U4sJvUgPblfk43gSWW7Hagnlwl7TyAuFAbyIFfewKUa5JHzBsDLebgFHgf3Sh0oAIWI0GH57brhe3HB0emcLmZmfUt84kkuX7/M2++/x90HB5gsvHr7HubwlCyZqg50bUf0FduTMbffeluTzvuWrm31HNiMw/DdFPnblfBxE9gTBfUPHfzALekNXPSeiztbHG1vsXPxIg8ePFQGiq/Yu/ok9eJr4BXcM0YKs/acAeN1Si1LBinGyzosDw1kKi+Ct7mYe+sZEkrSpLFIEnopgzdqnO8z6lmaSwK4VQbJ8AwHZxHxBDJiA52ZUIUKF2q8s/SdJj+vuhbDnLzsCstedAOKAhyCR4wyqo3JZPOYjMk8vtEEwSnQKOqWIhbdcBqjQLwPDJQcEX2YUko4V2laYJGD++DJREXJqXDjC+y8/LM0T7yIbybksiCzxZNhsLzAFL/WrPdJykKOwhf395h88IijgyMWv/VlHhwc8t974fuSGY0m9NYxyR0/86nPEk3Fg9M5qRoT+w7T6IKlwpLXK66/fZvJcs7EdNQm8UTbcd8aRiZQpcjHTg95cLpHHgd24yEcHCK15+EkgLOMxyM++rEXefiD1zjcmvCr8zlf/t63OJnP6XPmieufB9TrJ2cdeoa6rc+O2Xg2ea+9Tild6uKZpQD5GZMNFOnb0Efo+XCFGaN/T3fUyoaRAsCcs+XlnL1XFj1dzAgO51SdUdXKlM+F2W6MJVVT3GifYNcKYvdRP2fuiasVZFTpUOqsc5YYS29oBFMGruArgq8wOeELM957c163Qvk6BSrvCC6UtErBeKcgljFI0ju8mKVB8X+0xhD7HhCsRMiJvlc/rGrnKvWzP8kyPMXZzV+hOryDe/Iaq8mE6uYdfFxzt48s/JRFzixFEFMGfKNsWZvAulT8Ny1WUGm2zerZlJMug5oRL8SeRjQZcF1NkaefpNoac/j660zeuq1JsJXlwAXMzlX2Jw2T3Yvcfq0l9tDZnrxeQb/GinC2WvDw9JT2eMXuxSuceMe866iMAkTWai2h9MoDwyqKISdlu1s3vBdsgp00HL0w7zZsLKNzRNaQA0EBZ+/Ul88aPZddNCURMlP5ch9URWKZNMQKFEBOyVAZZUOJDdjiyeicI6We4IpX8XqOzR2pSzAeMV8HVq6l9j1JcpkHhl7GEHspXWfx/Cvnb91mgi+eXQO9C2XNYwRvDHXlGHml+ejS1oApqiMSxgVs7TBdh5hMmy13jpYE94gLOxd48vCEanuH8cUnOFid0jz3LFttzffnj6h8YMd67ktH7DryKuJdRvpIJGOyQ4jKDEK42NSMnENWa3aToW52+LPPvkg93mYrOxoX8S9WmFrUxys0cGWXR//iN3HtjO/YC7z8+Z8gfv+73L97l5QTHyxndHZKnTWpXKXIGelaxLmSRtwTc+Swb1mFjqX0PDNu+MizT3L/1tu88OKLGgZWANsPE1pk84MA8xZSazduWw7PQmCVlM3ZGKH2wk6dNSSBQgwp6e4ihmyKsiIrk3NgjBtrCSHgQ41zQQE5g7LpRT2b18tFWShEFHjLhe1shq8U5yy53DO6/LXFCkWtNawR9dizygTtW32GUtOC3VY2eamPKXf6TABihGTU+8dZvRq9NUSE2HccrsZ0Dfzg6D7mjbfYPj7jnXsPWOxfIo8q/tR0i2WGuYc5HWdkwpVLPHj7PrN2jm8OMCtI7gG3vIe+pTOGUYJ3upYnYmZRV9yLHb/sa160Fh8TPYZxtY+/oFLa2gZGSdRf8PXbxPWCw3Hg/5Ujp2K58tQzzGdnzE5PEMl87eSAv1zvsb0y1P0aYxOSpkgCSQ5VNIFYQxKVsudc3A1FoM3cOzqht5bT5YrJlct03ZoXn7jC+weB9PHP8ui1r5W6PfSObNKv9WMA6oo9BSXhNAWqoMtv6wbPQ/VuBUMVQmEGZ3LqqX3QoFGT6WOLpSWt1qQYaSXp3GIoIYto0FA58Epu0n7fFmZgKAyvwZhAZ6lzgsGQoiui9/2w0BIRvNc7d2AOSgKxQgheiUrO4Z7+Ke68fgj9XZ4KU9qHR8ze+4CuW3FtMcPYCW8fHfLBB/f52Z/7eeYnbzFuRtx44gYXL1xEprvEoxnOdkwuXuTo/l3ef/MtPvn8R/jiaWQ6P8VJT3/pCttuizHCOCWkEppOMC4hVU/VRqRvMMlTSWL9zgNOv/pt/ui9d/mX8xNcM2Vru2a1mNEtF4hk2iz8yv13+alrHyd8+3XmZsmomlBvT3GjsJmxdVczSPpR/EYKUJikBCCBC564brXmS+SD1Zx56tnF0LUrLl6+yChY7rz3FqOtKVevXOKlj3+C44d3iTjszu75XI9sLMOcdXp2BlCvvN9Dvfj/CwafejeB9AZboqMFIQS92L0bDJALzT4P20kdXHWg1SZxCBDoyuZERD+f/lQLZeV1a2mtMmL84HPj7MD+BgFnA4L6jVXeMxs9hwkrUn8K9KR2wXoZsUblHurX4TbqBNnQ+WORcCjY4RxUwZbBCsbBM6qD+qOJ04bCWuq6webEaDQB41ROhFF5phshqcUgpBSROKRgaqBCtg4ribYH5ytMGLP/8s8wuvoCWWwx/RTSJnFFjc77vjsHfR8D9c4ZVAPo8uEfc5Zzf7oCvg3+iQMjMA9ATMoqY+4i7XKNSS2ZjqOHD/nqH/wBDw4fsTg7ViDC2U2iWDa5ACB66ZkhKUZUUnh0cMjx4THOO7wP+KByZe89N67fYGtrC2sONqzNYbt7vsfVM1I5CF63GwJgS9okmVA8KiiAGQjBm8250c2uZUg2whaEHQUIvfElkEX5gd55DR4xDhNG5NBwc7aiCRdo2yPMaoUxrQY39L16DRllDfpyhoK1+KApzsnlDYhhKM+HVUaVGRrBYQ6RRPAWMepvFUY7BB8Y1RU2jPH1hLw+0ya2XyGxR+KcKB7nAmrUmsB4TJyTew1qCBef5yN/8j/AXbqOggBS5MHDtlQ9TVJKG3D4w2dLNhfhBhhGCkNU2aIKLuuZioWZlVKm61pSTMV7LZElEvvIuov8zC/8HJ//0c9zdPSQV771NVbLJadnZyxXK7q2I8d+I5NWSx5RVhr6jCRgsVxQ1TVboxH37t8vSd8qbejbNfOTI7anY3zd0Kcl0uuZsHbY7mqDpQwE3eQ5OySGFsPdDN5lSEUeUtZDfQFlYkIj72VIz8qYwtKzZeg26HtrrTKsNEmPchF78BXOjZmOdhjVV3ByBRePyXGthuwRImkjcdXBywJ5U7dcAYy902fQGkvMkVg2wjqY6yY05YR1Bm8DlauxwWBdoA7qv1SNx4ho4l8VAkkcVTMlxqSbZOeR1OLoccEQY0lHt47J05/k+s/+z/G7V1TeVBKsUvGlsNYQU9zIwXM5O+cg8mP1rpzBgb6RJTMZj1jtbvN96bl72DE/m5Elcfn0IclF1vMZ69UKBywWZ8SzY2yoWPbqI9t3LYutbWXyBE82wqQOzM5mKl8VoWszr3vHG5KYTEYkUcDaVSO2usS0XXJ9f5e3naNPmS7pwO4EpFsjheXTi8E4XY7JJuxB/aZUQiRgi59euR9zKtte1BIiZbWqcKmwuIu3lbG53G061KRNuITQx7yRLlZWmc4hjNU+wgdCNSGMdlR21GyR+wNYn9Glpfr1WW2KnHNUXtlcMVHYUxTmXcYWtqAxJZXTqPyvdKWFzayMi6auqILyTozR+x1jsK6m8NzINmPy4LsbtTEzVpd1AjJfYEWHNOs848vPMbr4DPV0nySQYr+RRPRRWWAKMpR06ZQ2qdk5C8+bhpfqKZ+NHet33ufvVzXf2b/CbHaIs8InP/4x3nr1e8QrT3Dp+g3y4TH7V64TnCfUgS4lRtHw1rvv8Ps/eIc+xcLSNZi6wowaprHlzyw7nj8+ZveNV6kmE8zxCaPcsJyMecM27G9vs7e/z/juiP2f/mnOPv8FPhcz//z//B/Sd50uYfrEeDSh7Vu9t4tEdhSEGPKGreKc3ncJZSKZsowtNpvKQhpAMNQHyBYVhTPDo3buOZSFkgivj6UvjBRhsHmQzRJNGX0ZYwLGWvroMHWN9QHjA/Vohxx7TpeRGGdgE86o1YbKa4ukhlwYFMUHzao3kbcO74pM3VuMJHA6SNkCSHlny4LN40NzvlE3FhFlG1kTSTGSCgvRGEjZ43zQey5mHbQFct9jvCdHgzWOvPscl3/8r2Cvf5b3v/E92tWaejzCvfQEX37/ES9i2c9QAfW44ka7ZJyF2mrgz5WUsTiqpKqYLimwOEqJbUlYA3UWmiwcOMPbcY47mwE9Fou3kfr5G7z27mt85Gd/mtOb/x2h7Rk5z91g2b/xDPVEpcand2/hsmF+csrydMbtxTHrrmOvatjavcT7lfD1w7tc9on9/W0WJ52GlKD3xzCebHwtB0GN1f7Gu0FeXJicsOmpvSuL9qyM5cG6Z/AU7bP+naEWtFEZpFW5J61CyxjrMM6B0XCCJB5XAMhERGJH6hd0nKLJIUUvbCyhrtS2QDJNPKMOlzEmb4IctLcY7iBUUmdNkbjpj6r2d+Uugthp7+gMVNaRnVB7p+nySR8mJQZZ9WJLGe8DrgqQ9b6U3LNdGeaLR2xdu8iFr3yP1Y2XefcTn2T07k38N/6Qw9de5/reBf698Q5ThBQMldvFxBn3r0/ZmtbEvCRJ4mj7AjKLrI2jbVd8dmuCebTk5TduEWNkq0psvfUetTiig/nYgA24dg5JZcPRGc5OTjBPXOYDa6lGI55/8SX6PnL08AFH7YquGRNE30srGZMMsYtY7yAnbOw5PDvh4bKluzxl68YLNJNt7t5/hK8a/vSf/wu8/PGPF79V2Gz0Sie66T0F1r0yv0WUmadLyeLdmDMmGILT5VsvyvoMPuCdx3uPdX4DCkPGSC41K+EdxK6jX63piOQcC3inS0+1m8oanpFkQw4pXFa9Y6yh7VSWPfT9kpPei8YoMOUdZMN63Wmvg0OMwxKxoSaZQC6LTmOK2VQqs4oRZfENvt+hhMbkTE/iVhYu//gXse884OlHd6gmu/zteMofHTxgdHzElndcbhp2Rw1PjSu2793mxl6NdVtUYZ+JCezNVhCEvE4cUKksvetplqdMY0+oPU9QYcWwIzW2qWjqQC0Ocq+vbIzE+Qmzk2NWxvDNK3v8zoNHpGpMVY24/swl7t96j7PjIx4sVzxIkYvZFrZ3CRZxGoYHCZsF4+1mBsk548QQl2tsTNw6PaWxntPlKU80Fc8+dZ2nnrrOrEscNcdMplubJYPlw9L/je98WTabwsSbbF0l2pMS0KOqrX7VKmvc9uSonvB1SIwqxT1W62KbI4OMXJeH6vOn/ZwVlYz7AvioVcEQ4qH3WkqmYCKWGJOGPOVzoo93ygx2iHrMit71OWcwrtRp7W+8VZueuqkL2KxMbDET6he/wOjut7n49nfwYnjH1Bw9ekC1bhmfzairigce/O4FfvtLX6KPGQme9viEswcPmV6+RuwT129cxVnD3uUrxDBi/drrXHv1Nh9ddfQk0vR9vA+kJrA2UhZ6U6wVQk6EtkPimq7tWMQVj1anPOg7ft9ZUqjYvnSJ7b1LVMFx++0fcPjoAUjmwWLFt+l4MgSyOGLuCQNBwZSaAIUQoksEBGVilItJvBJNbFFBdH0PJvNotaIXmM/OigLGYFLPpz7xCZrJlO9+/3UuXLvOeGuXC898hOm1a/QpEawtdjZmg9sg50QFyuxiysz4eILzv+3HDw3wBSu4IJsthCkbeWuGzYUMt/wGmhwGYihNPWgam1ETSqQ0iqJJLZUXRrUrLCZFy1Xupz8XUd24CRXW1WACvlLa+artYXafk+4C7fw+1rT6JOesAICxOlBlVMpTmlTQojI0EMEZvLeod5mnckE3Jd6TU0TIOFcxqiZEU1HXjQ4+RhNwfWjABk1psx7yogAZkcFjyNUjur7DSYdI0kF+tM3lz/4Su5/7JWwzUU83o+bVgyxCpSeUIjQMvcOJLf9dnJINRinM5fcVbNOfWdFGI6VcmmUNNslZG5kBlB2NR1y7fJnaO2LssNawNd0hBMuT165in7zOdGub6XRKXTdUVcBXnlAuUx+Uyu6dMo2G9DtriizLOfW+qQJVVVPXNTlFfvvv/i/p5mo2XzkdeEUGsE+NvQdGXEzqh6jfmytsAqEOhsbagVSAZEM26l2FKb4dSRg5S1U2rM4qS9B5TdHBV/hQofwdlVP2fUfXrvB2zlIcuVviTMRawXnKYKvDo7NsCkPwVfEFiODUH00ZTFIaXzsc181lo4iMx5riceYsVeUL+zUi3Ql9f4oD+vkpSKZbR3JeY0IFjLDWa3HTNTrWOvzeEzz9i/8+7uIzICWyvTBQNwOZgRz/v8z92a8keZbfiX1+q5m5+13j3tgjcomM3LPW7NpYvZJsskmQw+aMAAIDDQbQi/4AQQ96kl70KkAjQBAgCXoQJEGagUYUl57h0mRvZC+1dFdWVVZm5RK5xHrj7r6Y2W/Rw/mZu9/Iol5qHngLWRFxr193c7djx875nu/5flfg3roG37OMveWkJK8YoznLTVgA40iIiRASfR9YLDpAsZi3WJVlJdVqFrMZjz6/z9nZMU8PHzKdzpjPpvRdR2hbQt8TY1iChqkwCynXRIqIHbyCdjFndn6KMbIybq1BW0s373n69JBLl6/w4t1X4OTPhMlCXmp2yrVWWASFHaIRsyCZ+ArY1wW1nACnwjgOKRUdIfl9o6X5razoxwyuxymBRjTNcok5ub49Wekl2Nv1iXDyAHbvcnJ+yqg/xlsZGGilsbaYcSzZqnE5lRyg2pQSASmE+xyWN/hSlorWoDEYZ2l8hXcN3lYoI0C4LYweZxqyqSVHlDxC6jE6EbsFSddYN8cSyEXTxLiK0c0vc/3X/0vy5CptLy67w/p5HvRuCpg8MD1TToXRnVcxdyH2BqAoQ06MmgatDL4as7Gzy+npCSiYzWb87j/8z3j0+CEP7t9n3rZ88sH7bGxuiLBxF4R9jWY+m9N3MjxRzuKsY2NjE6tlHfw0HKOVohqNuPXcixweHvL48WMpCpJM67vZlJODJ5wdHnHl8lWcc1T1GHIsumKSX3USECQmiR9rkGl0hqwR4EAXABOZ9uYk30sZUhTx9GEaHKIM22otAxdJ44VboGXaoY3DWo/WFue1uOkakTEgBNrpEfH0DH3jZdqwoAknBfgojBaMsP7IS3DHKnGdHEw0xEhL9PlUYeqhchGPTlgrjrjOW7yrhY1kXAGP9PI2llNPJoCyIkGRVXEWtWXoV6OsxZAI/YIYM3Z0iStv/ydsvvId/PZVYYLFXtgZSomYeXHRVYXJm3MWgffCBg1K8WOduLkxguDp+sA0iWGDrmpcVXN+ekJS8P6Hn/DOzz7EeMf+wSHbl69y+fJlalP0vZxlWlU8OT6SWC9TeK0Ur4xGXPMjdk7PaRYJ17bo6hLdeMTvjRTnuxtstJHPP38AynLnV77D/t3X2Tg7ZXNnj4NH9wF48OARr7YdKgnzOiEsR2GoSDOas+QlgC6uyoVUcpdRWUT/yz2166Umq5wSjTM1OP7JGm8egA4tTYUpcaq1XdbNSol+nTBAbUELM4pE6jv6tkPTAYk0O0ft3KHDMsodOiuRBcmi3yN5sWyDFI1Spa1ogbpKijrK1kAQExZhzqQCAsnA1SiLtRVoB0rqD5VjuZ/I+tcgHKeNLk12QCdh7xnjZL1ZQQwKuTgSfvsWzVv/kHT1LZKynBwf4vrEWYYJE97edbiPnvCXWvGZrTg6S6ArcurQMTFKitteo3NiEiOqbLIEaxkR+Yfa8MLpOSYpwLLpDMe15poaoU2UsWYbePwv/phbv/INDr73A1zXUukK3Yz5fLTBzVvX2dsesegzn+7u0caOH9/7kIdHp1zb2uXlq7f54fycf/HuX/H+yRHVzh7XteODn7zDaDJGGbtkfg5/SUVawY8nqPYQawSUXfRSpwmLpKyUKdFtjD3LYVkqEdFGJMNlYTsoJSutyjqa2lJrT2VcOe8Zg4BzOUa6fk7LVJzeC5NZNiak7tXaonNGl/uvrKonlMm4SqNMSx0VOglTa5lfyxDekwvoEDHaijRMHGQ2FGTpV5wz1M4UsoPGuGIEUUCrrFVxINbCKrSiaWqdJ/Udznu6RYvOmdzNWLzzIeH9Dzn9xq/x4OlHXHY9H5D5k5BoHj7gclOxnRO2VeiqYtL3VAtoZjNSBdZExukBj+tAHSMTo/me8zw8P+OFPqHbMz7v4WrIjLB8fPsGm//57xCsZfH9H1P/3r9hK4plR9Vs8xNtiJNNaue4tHuJazdvcnTwmMWip/WRUemTUtuSFh3z2YxmVHP65D4PZke8c3yC3d1i6iwYcad+7tYt+tk5Slnqqi51LxeHeFmGVcsW00p/ZoymchZrFdveobWlck7YMloLwaQY7Az6iX0fCfMZKQdhxy11pksONKtBlRrkC7QAiXGQQ8qrDSitNEob+lAyex4YerLGWRlQJDHkyatVYCFtsBxUDNpuOsyJVaYLCV/IEXJN2GU8C6t40K0Vne/BeFHnzPnJnGr3Cmcbu9gUaOc9T02gBfYnY0Yq8fTslLN2QXNsaKZzaqOY5oR4SniiNiSjiCrTG4NNCp07fmN7m7dsxZU+8P7shO02oSeWS9/9MnvX9unuPSb/8Y/YOO+IMdGmyLnJtJMRf7iYkSvHpav7hKQw1nL1xi1m0zNC2/LxYspragNTzEpSn0EHYprL+00JlSzJqDKPzugg0iQqwoOzU7qqoptrXN1w4/IVPv74M9546QU+fP89rl+/TjMeSy1S+sIlC3lgrK8BLSlGjg4eExcniG4w6CyDKm0y2kpf54uRVIrSf6SBYa4hR6ndnB10Rlf6owOYnct9OESRjDJlEC/64obQi6xY1AVgItJU0tPJ85TetgyDpfeX58iqaP4pjdNmqdMXowiXBaPY29yj2blJ/eDfYlTmdGefU9dQzaborudGaPmWM4RZx+fAAxLnlUb5EQ9SZPLuj5kbw8ffM7Ta4WpPU4/4z8c73PCOfHyOM4q2Pefe7Jw0Fb1ZEzNNyrRZ3JmnKTJVGZ0ycxRt3fDvHfxAZ0Yb+zTNGKszzjve+vrb/Oh7f87TJw9JwA+OH/P3quvEs0D0wvIceracEjoXvWUngKeSCRO6YAXGSN4IuSMpRY7y+wd9T1aK+fkZm9evUteWm9ev8vkn93j19TfZ393lwwf3uXLrFn05H7YYz1ltiob/kBfUkpQw1DJD3/w/xNcvDfBZA4G00iujrDUmEc0ORYsvyl0bZ4RhoJVoRFmDnCAnQtldL1C6UZpxbai9LpoWGqOtHPKgdaC0gC4hQQqk1BL6EzSROMvkrOn7hNZPyWafToNpWzlwPaDauYjtyjFpJZPdwa3NW4M3Vi6Q4ixJEc1U5aK0xqG0wTebVKM9MhHrq6JTRWEKacgdOfWoviXGBTn0QgdWsqLncCR6CB1ZOepJw+Vv/SN2v/y3UNqTtQBiIYo1ds66HKuh7/slKpxZTbaWf1/7c2iKyWuNMRRk8CJAo7UpbI8V++7alX3eeO3VcqNNqyabguWqASJYfQ2vv/waaKlLkFFfmJgMPx/+3c5nYk5gKFMNebXBntzo0rYWUGNYqZHV21xYB9K4CuNRQ0xEMnYAK7RGGYfxBm09mOIAWo4xq8L6yIEwm0mhkAO5TKaJibpaMLO7GK+okFVxaxRa2TIVHNhT0vzEIOYZmSwT3SwTFl/WpoYkIM6UZvkRGuPRymO8R5sRzjelyOjl88w9MXSQOtFkkBNKKOfUa+izko5Neaq92+x85e8xuv0WURlpCEPRn1Na9AdYFe+qMMIGVyAoE4cCTmZYahCpLCtiqmjVyHNKoWQpYFiS4mx7a4v33ntvDfjuefTwU/7sT/8tXdfSdwtyDIQQAYWrqmIUsQIaJb5WN2qth8nsKg5VAZP3jDAxvK/Y2b3EV7/+NV5/9RX+/P/8AxZnaamrE0vB1Qdp9HLJYUolapsFiFFqSZXv06AjJI2wUrLG0zhbGhkRWrbaopTFVhUxQV1cCYemN8aiKxWn5BwIAFkV1lVNtdMRlcNo0YiovAxSKi/MaLIq22QCXIt8giSuEGXS57XC6UFwXAxfnJXGzViDM5XQyp3HWAupSBiUqbdSiZxbKVLKdRBTW9YuE00t5i6tEk0hPdln+9Vf5/Kv/D3U+BK5aPeRxdADBIzKWQT1h/XNgcF3EUheA41zZtDSlPtNovIVXisWKlNVVXFaDcQEL73yKn/t136Nvu/46IOf8+FPf4J1lvfe/4D7D58wnZ3TF/BY9C4hh0DX9bSzGUt2Somzvl1w76Ofs7m1XYD5THt8yNnpOfePTjl48gRrHa++/ibXrl1nsrFJU1ecfSogVc7CGs8lhRolWqDOSuzGKABwHyTerDXEkIk54ZbNi/wvFEb6uJZ7hilxbq0rgyEBznJM5NSKkHyWe5Izoj9irRFjimzQbgOnEkmbskat0UX2QKUE2ZSBVzFXsHLuKWxEpU1hf5QhU444a/HWFlOMhDEO7xthE1aWnETLUVtDDmWNxlpyHzHWiBmXBkUo8hYaE1vIDuM9SntG1+5y6cu/Q3PrS9jJlqyJ5Ywyot3TdbGsnks+SFHuFYu2Lw6wBWSuav73SvF/zS0TMk/OnnDSbOLqCScHjzDAk0cPmS9aPrp3j7ZrGVUVTz79GOMblPKMJzVZayyQYwGximFEKjqrx7nmz67f5PoVxbhvWfRwP0R+rnp+hmKzi7y0tc39+w/Z3Nzk7OSUoyePIQe2d3Z4evAIow2nx4d8+LMf89orrzKfTTFa087nYjSlNN1ynYe160ZqMZFRKSC/UvSBJXPPWRk4hSh5vghF4ktDZM1guCKgccpgvEOHhM8Ziv5mCnP64gIvLFQZp9Ru5czbJ0PsA63yhKQKUy5TOXEbFVOxKKwFqzFKTKfk+DoZBpdGp6oanK8ld+VeGiA02niUcmQjIF9Oib6focrmhrFOmKiITIWxlQworLC+BNhWqABKO5xXKNNgb3yV+s53Gd18nXprG5Slyo5bJnHp8Jj7/+qP8NpwiOLD529xd2ubNogsx8nxCbdffJ5qe5+NnS36lFBdT+rF2Obzz+5z6gz/5MOfs2csdhGwOXNeWX6qIn9IpsqaSmluZnjh4BH97/1jmj6yoSyuqjmrDCd1zQ1v2dzagJMp4/GYJ+dn7DjLt19+icfR8fsZ/umHH3C6mBGNk00AItV4zMbWNs430lSXgcMAvshQLxBSIiL5eDkITKV5JouZ/FB6YsQUSjuUqfC1xdhKBmJFnkCX3BHCHLozzkOQwVmOVE60qVIW3WUy0tBpBSoWaRXR/lalsTZGiS62FsfalCM5Kazq0DkTk6IymZBFG1DYzxo9rFUi4vgKkQfytlrqhVplAJG/oNRwztfM2xkQMW4k935XEfsZpCAbOymR+1nR5BIXVFuNhDGuPSkH6n/2/+a1y7foHt/nUwubQTNWmqvjTTZU5mxD8/TklDMFanZA3QdC1Cw0qGg57KDxGpUMZx/9jBQyJ1VmGgM/GTm+u1Bc7TOPb25jru8yP5tjf/ObHP+7v2ByOBUA13nep8ONR1y9ss/e5WsY6/j4/Z+xCIG+3LS6k2NyDkSdOcqBn50FzvsF2zdusPPcXY6nxzx6+IhRHwl9z/f+9I+pmxGhdstB8rC58ou+lILLl3YxXUUqq6t93xNCT8wt57NIKuSNwcFbni8v+wip28q6eNnaUSRhi5XHxpiWRn2yTSM1qEKAm2Kmi7eGtk8UeWa8lqEIScxCBmkgRRaQigHcWQnr+2KE570jucwT7TGuYdI0pHa+/B2gSAVJ7lVJNi2sE+aq9wprK7YfP+Lq/+G/4s7TY7RVfJ9Mi+bmaEwOHQcpQRl610S2as9uiNTATQwGi+96grfcr+DcxKIBavgt1XBzf5vxZw/Rpz3v2cjPJ2O++jff4uPPHzC69RLd/Bh+/31cFC64yYmz2vHBbEG9uUEzGnHl8lWauubjT+6xs7vP4cPPedzOoWpkMNBl4qIVWSGtyM5geo1yhuQ0WUPfdfTzlvOQmaZMij0HytOMxtiNHY7O5jy4/3O0d7jK8V/8F/9Tdvb2kP2ZooFZPthBImaIvIGYoFTC6YQrdVQeNIBTWDmxG6nX8tAYI+zAAewtLYrwK5avI71GYgB5hLVtCoiX87DBmIQdoMQrwOqVTMIAEg7EDFNknIwrDONE0WsUzKHtgmAyUYhLbd/jmo7z+z9m7/I+xm5SnT6k8sf8VMM3/BhL5DT2XOkD56lnK2de0IazrJh3kac6kYPhU595q/H8JRabLE8OD1jUC/zhETDnZyrzB8bwjZjZOD8laEWrFH8xmvCdtuJT1/FCtKjcsxkVJlv+pRnzb/QMYxtGu7vUowbnLH3f0zrPV7/xHf7o9/8F3fyMT9oZ5xuOdq5wSnwXUogDZ5scS+3VywAvU4goKLqYmKeA7hQH0zM6eqZhTpfgw8U5MStiF7g03uDS3h5np6e8+5MfM5pssb13mfHRU/727/xtfus736ZydqnLWFq7JfnkwoWci1QNwz9/eZDvlwb4ZHVcgiWrLBcisu4Rpd/HO4XWWRhbOheKsrxh58pkWWliVjRjh/NONFCUTF2cq8r+uEz5+sWCuJgRYgdK6NS6MGKUNrJaU9Z/FRqTWpSvyDEVC+mIsQIYDklfQVkpKo415diFDWOX6wOmoPxGGZwTJpfWCozHji/jRnsQ5wUAWZBTW1D1jLIWHRaErkVE5wPKjDDGy5qmChggpp760vNsvPob7Lz1m8RsZB3OmLKWWxbxc5bvFWHwQURzBeZxYdKVyze+yH4pD1z/Ko3zIDz97D74Sqsv/8LnXf9z/ZiWrzSMLMrXOqi3QrPV2s9Ed2URZH3QmIQtTNGUoeuFOWDN4EgmvUTtbHn/8nzayLpWQmErT+VryAJWhHJ+U+hEHyQsCO0UlXtEtLb8nMIkLRN+WSGUz6iy50S9R7V1BTd9hFKR0Il2jmhQymoRuTAntUFh0Vmc/MrbR8BLWdfQxUgio1HKYkyFdiOU8linAYP1FbFrcVYR+1Y0fLKsV8oanSoOgRaiJmqNtiPYvMn2nW+w/cZvoSc7xLKuonIWtpgazpiAKxCxRRcr5cGtdR08HmJhDTxeB5bzxZ8tV79TIsQR/+gf/Wf86ne/RR+CrPw5W4wbBCQQ9pxaNcUpM4gND/GsKEySsu6ptPw5AOB6MBwxsg4u+iryp7OW+WxKFxTzfgCIh3AV5rAp7Eq5DBUJTTvsI5WORYA9Iww8NGhLVTm8M3KDRdi/OUVUCvQLEdGdp1OZDCLsGK0FhNOlwk0p4a3G1wqtIzPT40cjLqUor60NYZ2JrDShH1buRFvPFvZKFENSmXhrcZFMWWQByBKr2thlIZGyANxaF10ulYsuZyusOaI4r2olzbEqpg79OSlr0UB78W123/qbqMk19GgDXzcC2Me4vIastQXsG4AXUFkt88LqxqdWK1NlFTyX1fGYJCZ81bCxucXJ2RlN0+B9xWzao5Tm6aOntNM5Z2cnHB8ecHR8woMHDzg9OyP0fYmtMozSwtDU5botiUrckcuxKKXIKTI9P6OuPV1bVtv7OT/4wfcwGv7ad3+Vy1evsbOzy8bmJlZlfvjHCsr1arSce8lrQ25jOa0GtVzxCL2cb20M2mq89XJPswbnHcZaaRBVkNXGroPUk3JPpivac2VlO5WY1VlYA0AMUZqO8h50jGRVdDm1rNzLamRhwCgBrUNfmNVGFRZ0Kv+pwjgEX1lx+1YKbaQZSVjRd8pJciTyGn0XhC3RJ5QkHjFMchWxbcvwpNzrlEHbhurqq9SXX+Ty1/4W2W+hjBFTCC36tTGEJVNUF9ZqjAmlNYt5Sx+E9SM6hlKc63HDgyhrvfcOAunsKa6folJiMT8kbExoimP39OyUtqrY3Nzg8MHHdEV/VXiMpZg3cu5kkKKpvOdJ2/F///RDvK+pRiNAMe+mNKMxXexpUofzhu9+9zv82Z/9KZ98/HPOjp/S9T1Gm8JSU2xubHBpa8I3f+Vr9F1L1lIntEHYzCxBDrnfOEPJOQVgK+LdIaSiE6WXzFGlDcYKe91Y0SIS1olQFCJBQLyuI4QOtchy0rPEttMaa4Q9KJpHmtqsWNIZaEMk5B6dOoL2hR0t6/FWsGxhbilhnIaYyEY+W2VLjVYGssloqnosAwPRXWAphu5qYsiEPgijBtH7JLWooqUlQ1RZLU8xoYwU7EV9DZ0z1jk6VTO+fhd96TU2Xvlr+N2rKOuJWfLkeXsGN/bZrzsunZ/ypG34r4CPj49JR4do79B9RwqRx59lrm1voZuardEGi9mczcmYEBPtaAtfGf7Vj96hH1V0yPWUYo+rGja2d3j8+QO0ynxrssP52Yy9LnIjO3bHY7SBz7TmTDtOTs4gBXY2N2jGDT47Fqcd/7bNbL5yhze/+iV+MD/hyQ+/TwwdKrX07Yyvfeu3+Mk771DXjhh6YhmCUu7BMUQWs46+F01dV4ZMaI11lqDAO4fTBuOc6OMNdWMS1l0KHd1iKiuJBWCxhUFvy2DemVSY6oUZjGLWSb50OtM4ibVUAkuX7SHnxJggJRkWKlOkODRlK6jD6kTKFkWHyhrvPIu2FbBOqcLsElaG1hpnK/xojxR6YcwbQ44R66QnsdaArRnpQdfZFGmRSNV4+i4hRrOSzETLUvS8IDCqNxh1ielXvoI5uE//6CM4PeHXkudXsmFTJdzpEYc3X+AH1y+zCC0kRd8HUg7M+g7VBeZa8fTT+5zN5lQsGCdZh/u5MZw0lsMMHxjYVonT81NGT55SOUv7yQGpnWJI9Cqh6op7znHtynWu3n6e2lluXL/B5sYmpo/YFDlLPdPYctK1nI4rqquX0Vev46zhn7/3EX/54Ed8dnjExpXrvL0x4bP7n7I4O+bFl+6W3oPSDMsJvNCHlFoyxsjs5Ii4OCpmP+VxeRjmyuZJjKloj2XykMuMpg+S75ROOOTzHxhOKQ295TDEz0VaIhMYtGMlj9YOaqfKQBAmzgjTWZIcWZU109L6DBsPQkawWG1xRmOcKU7fIqHRphasxdYbGDXHVrX0j8oK+11HcpQ4BE1VNVTjEbHvyaln1BgeWajjDN9UtNev83Xm3BpVHGnF8WjE4uo+T89mpNQzCz2d03RtZr5oWXSKadvSzWfM2wXTvqfrAx2JcYbj6TE3VUcfWoTPD93xMR+9+ynRnVBNNHPj6FLEIQ63SWke+BHzvmNn9yo3r9/iW9/+JgePnxSQbsHho/sctQvmtCQtBKAcT2Cjps2BpB26sixI9FoTjk7E7Mg6TrPm0GTS7hZZe9rzKeNmA1ONmLUtf/mTHzMejbBOZKCG+5tSXOgjJCOl0vtIH2OUbCakopOstciS2MLqNDoLGaPILYm6iFqSJJSi1HargecgC5ULW1VnkR1wRaPRWtmoIg/9jegUS0eml7JGw+DWqEF+wkp9jAzjVKbUO0WnOabCTlNkUyRSUsvo439OnV6j/8Y3OM+a/faYy3fnfHD4iEnbc6lLnIYFu8/dJh6fkp4+YTKdkeZzXp0viLrlS6YidInNSuOtJTWK9+OMhQqA4QPd8SOl+DZa3JUTZGPwyiLdrogd5BzYZoQzhk91jxuNaaNic3ODuy+8SMqJg8OntG0L1vHi3dd5752/4Ml8ysPZMYSWsR0RFEV6JRFyomtb2rbnfBGYpZ42R2JhU4sJqgDlyhvmuebfPPyMeYrMdcXu1haPzk+pRpsspnOuXbvG9Rs3cZXnwWefobqOV199lZvP3V7V0MJYkphKa7lsGDKs4TSCy/xHAPC1UdG3peEuxasxQhOuiwOZLXQ3pVRh6mVcVYMSwWyNsEYarei6FpUybR/IeYpKXQHUZMqf4hpYM7BjEKp9FsoHSmUqI6swSml62+MsNI1nRCeaUEXwX8DJlT6YQhP6JMnWOxGzTEUg2skFrCjUZ00R8nbY8T6+2iK25+QwRykxU9BlNVMBeRC2yaBSRllP5b3Qsm0lfFxdMXnu61x5+++jN69hqxrrK2mgl+4+LJvdFKWRlaJkED1Ra+De6i9LYI2LAbREjBm03yho8kANXg+0coMcXicV8KbAccPflr+Ry877cKNmeYirF1ZDi1x+paznZbV6VjKEqOgGqYosWmZFxgfjRMxXWS2JTMvamG0qElrWaNBkRJhVhUTsOs7bE8gRYlxq3BVSgoi6F3q+OLjpJfOz73tZm80ZY5KsFBsDTeR+iMSzJ7jcgRE2DUkxaRzOibtu7HsBm42IFsd2Lu9zoIUqcAlApr7aWJSpCpPPiY6NMRhVzAeCTG9iESjXONCZTAtKik9jPEo7khnjL11ncufb7Hz5d8huQiixbwojYfW1BqiVCeTAEjVr061n1ybWgd8h7C6AvHn1/eW/FVza3uD527cu5JgvAtXPgMrPJMKLrNTV616I4mfA5eE/rRS9NXRRswhi0mK1XF+yRavLVplMfJXSLELGWjk31lqs8SilJSaz6D3lJDqbi8UcnSNkWRHRWqHzoKWBsIm0WsaiVZL7zODmWJgEKSdQAa9aATsUS+fZYRVXND5UAaQRaQGnUYmlpqiAzq5M/wy5aD5lhHEQUxbWrBZRbG0rnK/l76hC9x/cvkTrIEdZH4kxY10FtmLz+V/h8tf+DvbSC0QMVd2UqSMM5iuDW14s+nHWykRaVgulAEtJl0lqWmmYFAB0XUd00HWMOXP7uRf46OOPCX1H3dRMz0/ZmIxYTE/4yQ//goPDx5ydntK1LcsNHK2ovMVhi4asKtP3ATxWyxgTtorEl7aGS3uXabuejz78iJwSi/NzdFjw9je/xe3r19jd3WUymdA0DaFbSCym9UGeMOPEeVvuH8baAh6LvqvSFucKoyamUtwFYhRzmMVMzoVWAkhXQ0OrJMa8N1LspCzSBk7yfA6p6OWqItUgMe8qi0U0Go0x0pgbaUDl3iPi1hlZe5fGQxXql9wRNArrnBSwRgDlgQEBCucaRC21FRC56BRppUlBVpqU1RClhsjtDBUzoElZ2NfJ73L9r/9PGN98k5A0ud4S/ShbtGBTXoJ7INdVSklYrSj6rl2yg+NSwzKzMR5T1Q3d4SHOGqp6xGI+Fy0b67h29Rq/+7u/y+npCT9796c8eCBr31//xjf55ONP+PTePabT8+VQbEhGKUhRLjEnsT1ftLQhMutarNK4qhYWvVKEtmV6dkqOkYPHj3jy5BF9O0NpzUt3XuTluy/x6iuv8sILL7C7u4v3oq+jylBBpE+UDENzWoJg5FxyV5EAiRFUAV+0pao8sl5rRC+qXOtt37Fohc2uCiCrCgCjGfQXFX2M1M4ysGZke2PQIUqFrZCXDFadZZ1bxwWLbMqmg9x7+l7YnlkLwOysgVwGnEXGYFgfH4ZNoWiriUMS5ZgC/fwcjcG5hhg7yLJ2C7rEbi56fBrjfHk/RiRhlEH7DezWdTaf/xL+6uvYnVuY0QbKeXndAuqGlDhE8d9cvsWLV57jRr+A2YInH3xE2y84XfQ0zpNihzWOnz08xL+YuNJsiu6qz2TtyDEx6yUn9jFyfHQAKTOdS9Nn2o6T01NUhrHTvLQ9Zs9pxrbC65r7bSDljh95R/Cek+Mjzs5OUMZTTzZ52LVc+/XX+O5Xv8Tu7j4x9rzw4m3+8od/Bsh5OjufcXR0wmw6ZVTXdJ0wItfrgBQjfryFVwmdM/W4QpVjzjmQ+kAICeiJ/azomhVGlNAu5ZpQGl2mKJXP1K7UzqbI0aSVGVHMkktqp4k5F8YddEWyw+iyxlkGQbFsEYgmksRpSkoeb8QFO+KBwtZOgVEl7DxdmmZvivOxKU6vRFwlGpK568GWAaNCtCVVBj8id3PRhjaJhCVkAzqgYgA1bHAoEb+vABW5VAcOcuDR1cvMnt/jj9/5iPH+Lvmsx3WRsQ5smIbmK2/z0fk5r3/tS8QusLW1Reg7ZofH2Npx8vQQf/4v+I3Rgv3UU/UwSplx11PZjEkaVMTO5vDepxz9n/5foBLj0xMud9CrHuPHnHvD46rmzu4GbrJBmM9oxmMmWzscP3nEv54d4ra2uHp1H33lOieuoXc117/8NZqNCT/72f+ODw4OQcEoBXSINJMxc+1kIOoryY3LpmF9aJxXfUqSQXYMQeIglhXFPGz4CHNJK41P0FjZphCThAKuKOlbfSEZqJKbBlMgGerqstmlysq5ONmjBHT2xuK0SM+IzmIZVOYyUFHgi3un0YLiCNjscdoJU9PI40LbkpB6PpuA0ZbTRcaxoLIa4yq0raQv7s+k48pgXYX1Da7egHSKsZqbl0Y8ufwa/4+zRHsy5+mnn6DZYGtjjG8sfTNm/1u/zh1doXTi/fff48bGFrOzM2KY0c2mVMYw0pqjpwd0D5/gDOgnT2lm4J+eoD85FJdX7bjdWfZD5qP/47+ifusGx/o+3Tv32MmarBOpMmjveTdFVDXh6tXLbGxv873vfY/NzS2uXr/OwZMHVJXnoJ1xiGNiK4yuiUkRF5G5VyxsoLOKHs08R6Z9z1HfcZATh8bSG8Vh23P/6SF+e4++nVFXmf39HcYbm5ydnCBbanpJZMipxNnw32AMOMSe7OlTOSEKpZTXDOnkMTHKgEMNTHilGEh3ZhhGaJGUIg24jxxDSmUTSonRlVapsOgToWgvSu/UkaLcdYX0IPFNFqzCW1OG73FZo6QsZCWtNN7qck0JqzkVk6bxWAgvcfqYj9yY/9vhhJdeeBGdt7lx+UXOz2+QlObdpwccty3f+s3f5mw644XtXR4/fIDqEyef3mfTgP/R91k8fsQ3rOLYJC4lxXkX+fR8xK1+ygu54reiZTdrrqpLS9PU12YGVOZWJyZKNnrAMdWWgzgnxMCVa9d469VX+PrXf4VmVPPgwQO+/8Mf8Nnjp1x98SU+ev/HzBdTfpBmuNTyuD0lhXNUjoJHGIs3FZWpsJu19PVGcZoST7sFp2nBgjlzC9ZbfDXC39wnXLrM7uYOVz/7lCc/+iGmrpmdntJubTEaNTx8+DmHB0dUVcXJ0yMG7eGsVzWfWr9XMsTbWp/8LEHql/j65Rl8WQQftRZdNFV0JzRGaMLGLVHyHLOwRGICkwndOfNZC7FFK3EiQwlMaAsl35lcXqMg07a0BBmMlURulKzxakAZmdxaIw1MCAHCAq0MnbI0KRKjLmChfOZmYE5pLToJKCrvhVrJUHBC1hFjxKlSLiQrCUEF4uJUJmZ5ATEWAdQWZeX5VHHvGpxrjPHkLBcX2aCrHdyVG+y//us0t79CtjXOy0qcojg+ocpnJJ99jHGpHbSC2NaAvOGhS5pJXosulkBNkedbTmDlOlPo0lQMT7f8WoJza3p+A6Cy/vrD31n9bCi4l//KKzhp7T5eJmeaZZleLhLrPMZo6qYiJY2zRSS3rDuKqUMvq6mxo20XRUizMEJSlJVZ5P0LyGILO6cwZ+Kg+ySrebq83yDZV4pCM0xrDJUvtugolOnw2qGzwpBk3aQqn6eGnHphUw2rPSoT+laYXkacmJWR1TldNESMq9FWiv8Y5mQ1JyURnO+1kuQd56hsBCzsewGI0KhqDCmXNbEKt/M8l772dxg//3VStSGFj9bU1iJ6N2mJqA0sygE00UoXN8b1QFgBHZR4Gs7rs1/LG+UKbV4D6i488sLvLJmBa8Dd8J8aXnc9KQ5M0LwW76vLZhllA9AsMT5cW8N7prCKE1oZrLGoIr4urmqmAOvS9PWhBSJdCCzaqQB1yMqQK3pVA3icSaIZVYDCkAdX2Iy14qIqbBqZBApHsDjfFrZbyhBJqBQI2tNHaYhF90/eWIjCAnTDStug3YmsISS1+pxTUmQjos4habyvit4Q5ByJMWKNx/oRCSeguCxYl2s4C9hjHDlCShY3vsTWS19jdOMtmue/gt/YQzmHl3E56+v9pjCFl9d9Af5k7d4UxtjAGJQ1KZNSMQlZsUBjTMUYQRhvIcMbb77Jp5/e496HP2d7c5PKWpra87N3f0IMHVsbG+zt7dM0I4wTuQVhZFics1hjl6AeOS5B5UxhtarCuVTy2ccsLnhf/9rbkBOmGnPz9m1eunOHUS2aos4KC2g+zaLBZGR11nkBVHzlxX21xHRMPaSEItEvzgRcKWDEUu8MGUTocgmFDMrImq8a9PKUJitoQxLpASWwXCi7ASmBtXIdaO0IUXT8VOoEIPENKspn3kfR0ZLPRe6p0pQWN/vSOPcDu8xLE5NzKqueipB1AWhkKSrHFl2Yw1pbKYwUZNyQDEBZjILQZ5wf0y563MYl9r70Nxjd+jLu0vOYZixGV8aWomml+5mHe3cWVlAqf4ZQNB6HQh6pO/oQqHzF3t5lHj1+TIyBZjxmsZgTY4/3lhgjt28/T93UfPXrv0K7WHB08Jj79+9zNDpguzTZ59Ppkg0Ag4yAAFdd10FpOIhZ1vO1xvmKvuhxeVdzenpODD2npydsbm6QM2xv7vDGm29w9aroO1otwwZjpJBPRW/GWzETMFI44Z3FGYcpeoRKZ2LIGKdJQBtalIrMZqdkAjlKEz0MQ1KQ+2kSUUZSingjz50Ka0Eh9+ZBhyiXOBvyr7TQg2YjVNbKSp02jE2gdWNssEwaJw1tMVEGYUHZshZJSiQlE/+YwlKTypqamMJqk6IML3TWotkMZGXpu1ZMR7I0RFq7wmYcVtxrUo6QQNeXaG58me1Xv0MaXSa7mhbNos+MlWFZz5ecG3NkNHJ8ngM/+PwRB59/wvT8lHqySRciKgdOnj4pA1zNeDTi4N4HfP/0iN3NTTCO8WgEKfDDf/enQKZylhu3n2c2XRBDT4iB9vyMvf0dqmaMJvP7IaNHG1y9tEtlHTG2HBwc8vD4iOvuOVJscbbm7PycgOb217/K/t4+57M5T49+znw+Y2t7D5RF9Azh9OSYn/7VD4X97SvatkVBYdpJPdG1HbTnxMUJIQe6hTAyYs4CyqqEU9L0QhJzKaWWcgzWShLTahiK52WtH7KYVyhVdNFKDhOmlgzkqhJ7EbBa7i2mFHJKye3HarUc5uSkmEd5fW+HFVtNmx2bxe1Q1sAzKUvz7pQkWz1sVRi3ZOTlEOlDwHnPMIOMfS8r3EXsXlsLSepLTUZ5I3VdOUatFdqIw7OtK9rrl/nXB9vgxmQs33/wiJACVT2mazuuX7tCZRy/ee021b1PCPM543GDpkfTg01sb45pFwse7O/zv3n/J2zmTK0MVddi+5bbzvOdZsSt45bN3LHfwe7DE4JWkDQdmejHbE62+Qta1PYtPj+as++eMPKWejTm6uXL3GgMl557nltf/xW2bj9P3r3Eex/e48Wbt9na2iHFxPMv3OXdn71LKMZqbd/z+vN3ePmtMR+99y67Oy+VlblhiHuxCR5ydIyRLkAIkhW0FlLBwLJEQaNke8wt74/lXk3GOzFuzFlWtsXQaxhqy3noo9wjY+nDujI8dFpIAGOvqYzEWO0r0c0lkRVU3i6lWgY2Vy69hjYWpR3GeGIWozNikOFGYcSTpM6LxqOwgAxUyUpcjY0DpYo7qsgKpZAwzlM1DbumYS81PJ1MeOxOePfRI54eHaHOZ5BEA/bvv/wm06ZB5Z5F32Grmon3nE9rnNtkb3+Pw6NT/s2ffJ/57JycEtdiZH/ec6IiP240O7FipDP72TFJcLmL6B8/ROvESE04vloxN4ozb/krq/jDk2M67WjGNU8PD8gxMNrY4OaNm7z/3rvsbGxzte850TUHoUerOdkZ8mTMqdc81T1Hfc88Rp7GKW997SuMNi+hnx7x5//yv2c+m4tmvXFcsRbjHO//9F1eefU1rt2+zR//m9+/MKh9ti+9AOyt9ReNFVOkrpd6tOtK/YMIRDgjmz8y2xLAT5FLHyBxl7PkIFkMLtuOSQbuqQDCw8Av5gGwFsaeNYIJGC25NifJfW3ZBBC2n4COzojTfVw+p5X8N+gzmuH+7LHG4quKnCM6KXKzCY3l97//F2RtqJzm5tXLXN7f4yQpsvVEMuONBtdYRtsTNJbTruf6nTv8X37yDhsv3eXg8ClPP/8Ui6apHP9bPedrGw1jEmfO8qGKzJLBZI3LCpvFcASVWKjEwikemsifmAUfeEtV1dy8cp3XXrnLn/3Fn7K3t8v1q9f59re+wX/3L/8tkcze1WvMH33GjY1trvgtejTZakJOHOXEaYwch56TcMx5zISmAt+Qa0OeNCQ1gspQNSM2r99m6/J1Dg4Pefr0Me/++z/g4YMH6I1tvHM0tacPHe/+9Cd857u/ypUr13jv/Q9oQyQO9dzQrA55ax1XKfjCso8u9Xsu+si/zNcvDfD5uqHa2KJqGpQ2WGXoYofTmb5dkGOiD+cswgJNpKU0ukqjnazzWLPGGUpymbRZHE6VFoqzF3temTBrA8QyNRR0HITFRxYK5qxPGGUJIYPpMDozC5omZqwW5ozSZfWkAGTGjWQdUms0iRwDyhisccKQEKi9MJl8AR0TORt0boltCzkIA8JVhD6Ru0jSoK0it+egjIiaG2lqsqnZeuk77HzldzAbV0jGoa0kaVNo4X2SVUhV3m/O0owIBRjWo+Liv8vf1wCQIZqWBKZ18O/iUwmDogB5g5vZKhiXGE157tXvr0/OYXVDXj71M+DPICg5wC65/H8q4xRVQKSm3sSON0ghkENG5wUhFN2UHJfrjEpnrBIWUlQUVpQuKxiFKj2gdmT6Xphp1qpy/sQNq3JaGFAF6NQFDLJGpn3W2DI5ycKiQaFjJzpVGFDCHLCFqdLHiC66dRo5hK4T/crOOLyJ2GpMzIFipyqfauqJ3Xw1TTJOClstOgupNP8Zj3EVqpuRs8X6Ch1rjHf48S7Ni99l+63fJja79MiNoq4sA0jHskBXy/OQyoqvBARLYHg4W8O5HFyuNQP1fAWnDV9Dczc0dgP+toqr9Rhdi6gBBFwDivOFeB3i/iJrcF0f8Bd95WVsMRBrl3loY7yBnW8JXVtBjh0xBWIS/Z+sMjqLRp8xwrTLDE2KTHudysVpV7SrVE5FF0qcr1IeJnYyuQJhNslKtV4Cf6YwYEXTMJF1ie2sISxYJM88yGRY9DsEeK69wxvJF1DkFpWRosd6QowMjmw5JQgZ5zzGuOV6EWSsdyUPC2tLdGPkesqxAHLGy/Vha1RVMbn1Frtf/R0mz32ZPnYCHHlftM/kmlxdV2bJPhw09PKw0qf0MvdkAGPEOVVlMKaAv2XdO8vq+1CYCzMocWVvi7sv3GY2nZLLOTDGoI1a6giumKksY2jJSS4M718oaTCAyWsxJWCfXAtCuiyO3sXFexBzlkZTMWk2yHFO3y5QMdG2M7rZmQAqpdAfzCsGJrtWq+Z0cMq1qsQKMgyptMEwaPkB2tD3cfm7cl9YiX3HRHkeU6QukgyqECDK0DENolNnXYVvavrZnJiEraULAG6cI6dASRaybqS1GHkMTpG+AjS1cZCi6N+FTs6JtSisXJvFlGjJtEcRegEalBsxuvEGl+98i60Xv0L0W/jxBsb5wjQbzlfJYVn0cpOWwV8Iou8YQpThTUYE+UvSCCHSh1jWZwy3bt7igw/eZ7aIjEYNx4d5yQjc3d1lPB4zm57z9PCATz+9x8/ff59HDx5wfn7OfLGg7XrRNSxDvoFpO6yT5UxhrUsOHIYV2oiExM7uHjFGjg4P+O/+xe9xenbCzZs3uX3zNm++8Saj8VhyiBZ3PGkKhviVYx2Pd4lJmJl9DKQY6OOceRLX7aExHeJjWCfLgwJAORc5JVmHNivtn5wzjbfCTNLr+bfkZV10LEvO1bYwNMv14KwmlWGGs6KLXOsObbdoaqmHTNHSySngfFNkVYJoo6phYCYAjDD+DMr4ZT2TYhRNx5wL818QAFPyksoR58RwhiSSLsbWAhrEgKo2mDz3K+x85W/hdm6T0bShZzTZAiXHP9RMMUZCWfUWWQhH6ALOWRah52w2QznPbDan71sUiv0r17l67TrtbMbBo4d8du9DnDUsukDla7p2wUD7WCx6tBVwWRfAFWM5PDojPT0quUne573PP6OqPRubm8SYmCeYTU85OTvjknfcvfsSDx9+yl/96Ad4bTg/n9H3PVXtaeqGrY0Jh4ctMQaePn7I9WtXefOttwhdz1l/umRfD0zRxULWn3LfsdRQK1p1Rs4gUBjmCQHykRzkrC7aawpldAGRxe15HjMxGZRKeCtVitVmCda4AtoNg1hnBk0tAXyykrrJWgcR8kCdVuAK4KJLzticNIRjT1U5Ad40qNwLg0+VtXQQAz2KlI0OhGyI7ZyUC5BMub+atdo3RpSVGk8ZCzmhVCzXTELYszX1eELdNNhrL/DkaeDxg6c0M1mt2720y9PDQ9r5FGctjx89YjLZ4NPPPmB2dkIOl+kWXeHjZyZNQww9Te2JJnNMRm1tEicbfHZ8zNHxIUe3rnO4t8/xez/npjfcyBZywDi7PGubWM5N5F/rQB96IGLDjKcnLZPtXa7dfo6//u1/hPEVrfXcJ1EdH3P92jVyjhwcPiHHzOb2Nl0fMFoR+p6Tk0MWixmb2xvc/+QeO3/zt+g6GXINFeHQSyzbFwoZQAkwa5WAw2uzS6xRRVtU0RcdvZgVKsqmWWV0YXQr+ghamWVxOqx0U47BWAFhnCur3taXVXEQxrwu4M1K3mbI9TKokwOTYbJBHMRrlHaQCnhcKt1ELtr20HiLrcbY/kRcgpVC5YDGYasa1YmjtbG16N6GQD0e0fcd1jTEkOlNxcbGhJs3rlJXhq5PPHr4iL5r+eiDD7jzyquMxxs0zYzpYsF0esbmxoR2PiN0C7zNdIC+fJU2dDwZj/ng409pF1P2XnweP9pEPX7AKy/eJi5ETiK0C1KGk9mcs65nkRJdSsynPeddz3ijpqpqun4OxuCakfw33uTapX2uPX1KHG3gtjZ4YgwP2jlnPuJv3uTK7Rt85+4r3Lpzl8cP73N0eEAfI2bnjJc//ZQf/uAHknuMxTcj4vSMGDJ/+Zd/RVCK0HXUlS+14wrAW/UlK3bwsgfJInOTurQkiagynI5BUddWVvSXmowZX5V6pGg5p5TxviKrKHqbieUxZDTG2KXsloiMSQ4LaSBdiIwAWbYtrLWi+x0jdeVonJhfDtJEwlI05CQayabkxaHOkLym0coWcovDOEtf7bJ/bRt8I0Z08wUf3bvPhx/dY2drg0u72+xsbnB8cgpkmrri/oPHJBakeE5P5t2P7rF/9SrjWy+ineXzDz7gIwsf7I1YdD3nZzO+vHeJrY0R/bzjdHqMpWy56cxZ33OWMtOUmAeFr2uaquLuq6/z45/+lEv7e3zyyT0+vvcJv/Vbv8FX3nyNH334Mddv3eKd+/f4o+lTbmjHvPZM6wpqT1fVuHqEqmoWfcfx6TGHx6fMz89RzZgXX77Dt7/9bW7feo6t7Uv8k3/2T3jnJ39FDD1/8kd/QGg7lHE0xjE9OaUbGRKbXLt2jfPzM1586Qr9TxZYq5f9ZWYA9oZ4Wutl13C8FVbyP4zRxi8N8CkybWgJp1NC7IX+TlkBKQnZKJYsAim8JIWFkGh7cdHyRiZXphQKWpUmDorunJZCgIwuSLcqTVjO4Kyi7RKrXQFNn5Kg3osWEwPz4MhZ9LC0raUZ0ZkUI84YjBsDmRhbUKloDSGCmV0AElrXoEcyrctzuciymARAmR6VVeKYBwAGHB1oJ5Mla0nZMb7xOnvf+AfYK6/RhUx2VlZqjDjcxdIED1xfYRyUlcwVuiZv9wIQwgqpU+uAmlr9fO1rGWh5eExpIvVqPTevJbqh2b442WCFQOf1QF3//jN/fiGShvYYeb8l8JUShs5iMWV+cozREWdkmcsNbqG5MAqSQmVxzGHZYJT3URq1PCTvJEwS7wS8SyninTRgAgSsqP4idD9YnEuiDbGXz6vo9OQEoZ8S6sh5NOhOCoiUZeVHKYiowi6FpKR5DzmhYqLLFjSooo1lrOgmpZjByGocZR1TEoaAFTmJyHzWCttOUeUmoW1DtXuV3Fxi/5t/D3P5ZfokGmfeFgeuTAFTWFLV07CynoTdsoaqXYybtfMvZ1A+t+H8/eLzvB5rF+PqAhC9lhSXIE7Ka3F2cao2vNbF32f9yddffTlBIa85Ga29r8X8nLOzIxRpqP8LC09iZdDFG+KBFbyGMxpfgL2BPp9iKpO0tLpscxbdqnI+h0I2ZUihgC0G0UVDmtsEdMWdLWSgW5DsmNBaKgc6Z7z1wqwqGom6OO+mbJbTPwHS4tJNsqo8VVUJY7Q8Pg/Oz0ZBKgxrMiq2Mm20TvTPSj634wlm+3kuf/N3Gd96A9yIhDiIGyMMoVzWaRRlgJCysG1KzKQ06F59MeiG8zQ4nLEeC0rcsZZxI2gJORuys4ybmt2dHQaQXGJ3BdoNITKs+QLlWOTaE9bVADSux9NaDC4hwQEEZxWXDGvgq2tDXiQzn53TnRyK9EDKGJWICDCnS2SJXmfRRSzNJFkYAyHKcVgrIsypuPAOsTs4I8fyuRqDiM8P8YwYdaCMNDdqAPyG61d0X1VYkOyErBy+lmZxKBCdr1FZAAVVGmnnhIlFWV3XWuLKVx6tLFkpcurIWZpqRUDbDQadTeU8KSyK7qHQ9WPMuNEWzfU32Hnjr7Nx602yH5G1pbbCuBr0tjKxxIuW9U0gxgHYkxXvEII8vpwllKwXdl0o999M14nRynM3b6FQpD7gK4dzlax1h8De3iV++uN3+OSTj7l//zMOnx4wn81KjlY0dc2orgFhq8qnmi/kgiIzySBxMcSpqzxZa2bTM5qq4vTkKR/8PHD9xi3eevPL3L3zIs45ZAioy7WxMqRZxmBKnJ6eEE4PqByC1qWAUYqoFDlmIsXkRmtSjkV4PmOUkZWinMs9UoYX3igaawlJwPTKIHGgFIMiiTUIbBczBT2RzznI4A2EzayNrJGrEteGRK16Mb/oNH3Xo7xo6qYc0X05j1ruYVl5tEooV4mGjhY4CSUOdsKqFnDE+WFVvMbVDTksyjWvACsrwdYDwuoy9Q7Vzk12v/TXaZ77KknVwrJxFaNmLEDDMEgpbOJUNB3JEEPAay3MVmvZ2Nzi/PRUPuvBQMIYvvGNb/J3/5N/wNnJGb/3T/+/9O2cG7eu8+HPP+Ldn/6Ypql5++1vYq3l/Z+/T9e1+LpmPpvRLhacnp7KPVjLZsNw/q0VyYSUFW3X0XUL5sfHvPjdV7lx/To6Q3t2wqOHn9C2C/oulBV9uZa9r3j1tTd47vZtnnvxDnfvvsLuzg79okVZC0Z05oZ47ruePmRyKI1uiUerVWGiS64LJW+K3EVh8IXMYFwUyvpkTsNQOmNtKBsbAoD0ZUg25DNjFLoMclAyGLDlXmOcbEU4o4lkjLXE2OOcRSPMr0Fv1uVEMg5vZcCincaYmtAFMTQAcmH9qZxwVYXSlth2ZK0hDcO8KGyerMWRlw6loFss8JVDxSR9hm5QrqbeuozdvM7GK99Fbz9HUp40uYT+5L8l/uzfcd4mHn/+CR9+8AGj8YTKOxKKHAJPDx7zz/7ZP8Zqy8/e+wm+8ozHIzYmG2jg6pUrAqi0sv4/PT9nNpuzmE1RfeD9jz/hg3ufEkPgz5UCNKHvsNkWvdB+We9o73itqlDW8/G9e2jbsLF/gxgTf/HDH5BK7FdNjfMWZz3OeKxzNJMNtre3cNbJgLwP9Oen/Oh7f05Oka2NCZXztItWhvKrW/SF2k1yepQYM7Jhk4tZxjBJNsiKfEJW+VMuK7ta4ZXBZCOupkZyjzWFqYnCOsuiXWCsmBDkPLCujbDlNfRBNLhNYeN570ihlVyuRK89Z9H7iyEsmXtyT5JtjRBmaK2JUQgGaBnW52ywtqZSkU65ki+HVU9VfgcsBoXBaEuOPTFHcnCkRc+o7pnPz3nvk8cYV/HowX2pR61n99IuRwcHfO+P/ojv/em/Y2d3n1FTszHZxDYjrly9zNnRIWQBYSulePjZZyQFrVKE2Qy05uz4BDtrMV3HB0fHbO3s8HDWkXxD3wVaHZnlnr7vWJyd4ryjqiqUsfQRdvcvc/nyPsdHx8SU6GPipa+9zeuv3OXStduM93aZvfdTnvzBH/ClX3mbpBTT83MenBzy5uU9br70AgcPH2JyZnt3l5PTY/7yhz8UINRoQkgcn0z56re/w89/+g4xBBlgVHVhbOZVgF3oa4Z+eNB1TDRe03cZnKP2jtl8TlZgHFiViHrYAFM4azDWE0MsxlQSe/Sx1J5iCjT0qcO9v/IVtdVQzMgyEOcdVouuYyYXbc+0vMfujBs2RiNC1xJ0XTaNfCFUSc0n5i2pEIxkKG6NRilH1WwQ+07iq55wPFtw8PgRs/mMuqoZjcacHB8R0fzs/Q/Y293jn//ev2Jvb5/nXrhdtJ9HnJ/OeXp8TlOP+PyzBzx+dEAzGlE1Huc9s+mUk9kMjbgOf//oEeZMdL9DCmUjLRJCj/eeru+x2hBToPGerc1dal/z3ic/4pVXX+bf//EfUzU1x0eH3Lh8iX/7Z3/OjWs3eOnOXd7+9d/AjmqOjo8w8xmfPnzIk8MTbMro2Yzz2QzrHG9885vs7+3zyisv8cYbb3Fp9xLeOVLM3Pgv/8f4yvHw4QP+0Z//GWddwFc1SkMKPS++dIfTw0M+/vBDQki8+urrnB4dsbO9VWqAIlmmgDRkspK+1lLZMLhYklf+Y2Dw9V1HO18UJhNy40ZoqYP4bZ8BlaitwiEBLoahii6JOHNKwphqO6FMN06RciBmaRRMAZtyhqQMoYtYV/bHQZqAJTgxIOuWyWhE7BPeBKIa4azDO4dxnhw6CfqqIoVIDvNSgEYBGY00JTFFsBaFQ9labtRkrB9BbEHJRWOMUOxTAKOD6A2GUvQkSMriJvvUl1/k0lf/Nm7vRWnOMVQjV+izUpDEGEqjKAk9hLjU71lnzD0L8A3/Wk9MF77y+l/XwJBhbAErQdE1MG8dCElLsGUNVLkA9uU1YGgdlOECyMdan6tWcS+NTvndgQWQsswPQ8jUY0PtsqwC5iwOe1lWxnI2OCuFpB1uftaijVjex77YzxdtyKEgFN0l6HtxzvJWwFqFMAJTNpA1XV8EVnMugIewKTViM66sTEemnWWcReAZLcBKDH1hFMg6XooBZS0eWdczbkKKC5S2aOPJRGnc9Gp1EZQYbOSWGIK4jqoo6ycxkvoOZT16cpnxy7/OpTd/AzXaJmqHMoa6krVKicnEAEsMEyvRP1s1hwNIv4yYJRpyMWaeBfvWfukLv78Co1fxmdcfmFcxlH/hf8NzrWJrCP71+L8Y+7/gOigF4HAt6PLtwbghhIwyikpnKlsaXcp5NyKZ2YWy0lsMKwByXGlZaiP/HlYodUbAaaXokzA+vGHJeslKmMdyvlXR/yvgfhYgOyPgvzEaQ09UvrBUFLVXkKWw0Igg/ABFWTcqTDz57Kw1ZfACRjkpcI3YuCvjZQJYihBlDbmPpNgVVp3DulrW2+2E5taX2H75W/jt66jxLtG4osdqChM4iT4ka8BeWfcDJJ+ssaeW2WntXC+/lkXYWg575kuhCikyUxD95U9W4LBa6xVWryEgayq5Kl+Iy9XLr/Lu8FxDThtibz0Wh+Y0ryW9nIYYT8vmNAHOlHVFKG6h5Xm0JkcBd5XKS6dGhWg5mTJr6GKm9roAg6JHZZXG5ox3A/CnQOnCKE2obFDK4+sRsZ8TewG4dDETSFlh0pxsJ9i6oVu0iAO9pRmN0GRSlCGYIoOR6bFxAsZ658oVVqQDdBSGqGkw1kE/E01RZyAGQh+pTEBlJcYeGOqdm5grr7H76q/RXH+FPhuitngvjc8g5TGYMgnzXsAfMRuSz90YS44BYzKKosfLsKYr691Ga/q+ZzFvmS9aZrMpo/GEvb1dZrNTusWCrc1NDg8PqWvP4ZNH/Mv//p/S9y0axaSuubK7XdjbFPkPvYzPmBJ9yd8XTGLyqn4ZtKX6EOlSYrSxQd92WOfYu7THr//ar3HnxTvFbGKVhwd9weGeLMwi+Uz02ppa33UC5ylN3wuDvbIiRp/zIAog+WnkHX0xsJFVRWG9hShgtFaiqejKABcGV25ZUZ33oolmjTSltrAerHPSpPaifeicmK94byH2WALGiY6u1oZZ25GzpqlFIc1Y2aRIMeBcIW4VQCgPQ8PCnJKhlxamohLxbG81YTFDkUq9pyH2ZSW3Qk2usPni19h68avUuzdYhMyiTRgfsNVI6rNlniiM9yz3BJTUFUOe2tneEQDfOnxdo5RisVgwGk9kjd0Ydi/tc+P6TbiueeXV1+kWC9qu5ejwKfc/+YgUexZty8HBU155+S5Hx0ccHDyR1XMy4/FouY69HIaUmOv7wGLREkOkrhtiSsymU5ra07VzTmczDo8Omc9nMiS0no3NLe7ceYmXX32NmzduMGoajLUYIwCiLXI1MYS12BVAc1xJoW8NhYUrkhEhJnL5jMqcRgCEJG6jvhiwpNIn1FVhqyjJe42zDJk6l+fWSqGyxjk5HoURYN85VIiyRh+60uhGYh+WrtlDr5CL5ubA8vY6sVAiJaCtXAvGeFKOZYgQMNbinC4ApbDfs4l4W5NCQga7Ukdoa4uTeMRUNSYF0SX1Y8zeC2zc/S7VzS+hx3skUzFvI947cYrGUI020FozmTTMxw1du2A+m3L5ylUWIbKYnqO0oqpqnn/+BQ4ODpgvZjhn+OSTIxbTKY8ePWA+X5CLkeDJ2SmVc/R9EE1Upctav8gkoWQgPMi0oC0pJ5z3bF/aZbZo0Urx+Wef8dJrb5FSYHZ+xr9/5/toWwAxY6i8x3uPdxVVVTMeT6ibERvjEefTc2IIHB895fj4iEuX9vg7v/03Ja76UNAJtXbzXaY3IBcGtpz/2gpLr6nKedOiZ5sTxRhN47TBBdGIrayAapNaeswY5f4lAwHJK956fFOT+p7Yd2Tr2Ni+zGJ6KBs6RoDdyruyOqvR2uOsIoSA0qXmVmv5r5i7xZhLjaZIyopRlTFYLRJOKQYhvYQZQcmgR6lU4lHyW1Uc34yxKFNqLmRLxPiGNiaUMWxsbTM9nxJDxzs/egelDbdfeEkYxF2Lx3Pv4w9JITDa2JQPO3T0/ZzJZIPL127TzhbQBRnEhAXeeVw1Zr7oaE+fkFLP4fERugx0hyFDSrGYWsl1vL27R9t1Ig2jFL4Z8/P33+P0yYMyYM2Y8YS4s8tns1P49JTx5ha//Xf/Dou2pRltUDcN2ige3v+cwwPRwE4xsnj0mCtXrom0S5Ex0RrOZ+ccPHnCN3/9N5ifHNNUYt7Xdr3kyLyq9b5gKjnct0vu8r6iD0GMHbSWDUNYysvUVVWY/9C1EWUVbSw1XuEhaSOgbA7itJ2j6GDbcp9EgxlA25zx3uKtoarqwgbMKLvaemmasdznrEVnhasbkQFKsoehdRmWZF0YgDIUN85jTS3kF5QMe7XB1SOsmuGM5unxIT9+50fUdc3V6ze4efs5Ukz8wR/9IfPZjPFoxKT2bIwnuHrE1atXWbQtdSPXegYW07nImzRjYRyGBX3OKG0IfVdAMOlt0Cs2eOUrQt9jrCP0EVs2IBWZzz79hJfvvkxdVzy+f583Xn8VT+a5556H2YI/vfc5ze4lfGW5dvslXvn6t9je2mRnZ4fJxkbZLjHU9QjnXOmnFbPZnFa3ItXjvWxVGct4PGE6lcFt7gNdCNw/nhLPW1594w22Nnd4/OgR8/mcy/uXS8yrJalt+FqmsVUrvBZsa/31L/n1y2vwJRGbp4grZyOFZIiGjOyPe6ewpakYRIczArg0VuG9wZbVhlgAwpCLY56CGIpGhRKxZ3IQAW+lmYUeZ0UU2mgp+qy11FUNKPrYY6zHxJbejqSwy4nYzWTFLGty6AszR4oKo0Fbi1YGpaVQFAahIqdQkoECvUGOHdo4cuzIypGTuBMao0WrRWmyGzG6+hKX3vxtxi98DdyYoAzKerz1S2ZHhmXBP6xBDjp7F9hKzwAtq++vf/2C1netAV0Cbeu/W5qBQf8hFQR5HYRZrvusaRUNLBrWwJtlw3wB3Fv7OZR17BUzB1UOrzxunVmVUkKlxOZYmpCcDX0UhlIkL2MKBX3IJCNAstCTBQxJKaFL42kNpBhKAS5rgn2Q+PNaJvnSLAojbaUPo3C6rFZS9FyUKdqMsk5tVSKaito5mSQX201rPbZqBHxIsvagtTitkrKsjGcxDrEFAMTo8tgacDivCV2PnEULVqOTlhu7rdH1JTbvfoP9r/4d1NYNIvJ+fWk0WQdf1QrMSGkF0krDy/I8XQBdBsBlLaYusKDW4u/Ct9bjYIjF4ef5YqwOcZVKXC1jbC32V39fAZAXWHhrmXOIreFrfR6cyaITVcCVdUBTlZVHW8BhazQqiataKjbzMYNRqbCBZSosRiel2UyqPFf5L2dSEhap0QmrynOXG4BCjHP0MLXOor8Zs0bkyDLOWSptMdaycAmdKoytaUzGV64AimCtl0Yk5aIpJ0MS62v5s+gK5tijVYQUMbowWa0hRcBZjHbo3NJrXVZGNNo1mO1bTF74Blt3v4HbukrIWjRDlcbYoqm2BjgM13MMAwAhsTec34txMZy/fCGGlud//fwOsbbMkcPj1mOFJfN5KCTycoVz9XvDEGVgsV6MtbX4XM9jrJgFz8az0noVb88wVIc/tIaQEyGW4c7QJBctRWIuhiPrMTwwnZOIgzuDQXSBrBlWA2TIYRjcJ+UYJVYNIcYSv+CcNBmxn6FUAi3F38AATDGjY0/Ujq7XVFlTjxyNr0XjFHGjdc4TQ1/WhYprtRq0XzQp9qAzOWZyiOjcFXaeuIkbW5OZo9MASnl8PcHuv8re2/8pZu8OuIqkLNYWuY5yjpQgWEvAZQWgShGsy6AElUsTpET0O8k9drCUjUrAEecMZC9bB1oK5L/xN36be/c+JPQ949GIphnhC9OVnLDWSNNTTJ+GNVlK72CdI6bI6ekZXdsWNmEuS7GqOOE6qrqmqmuc89iqou9l4Le9vcNkMmZnexdfVcL/yJlcWGPLWC6MUyhr3OU4QpCNgwDi2h7BaEtQwoKxWsDggSESkzCwKiuufMKKlXW4Ngoj3tuiZZsl7wz3l5CH3JpLfJjymWhCECZpSrHoQEmckYURk2KAlOjzAuUE5KWwC73TpFjWa4uTt/O2MBUM3o0IKVKZDMpjrS/mBQrjPYOBQ1a2gDlpmXuVdtjJLn77Chu3v8zOq9+mtxMymnmCejKRYUqJO1SpiaIA4jJlzsVMYmD2Z7q+ZWtrU1Z1tWZn9xIPP/+M6fmUrW3PeLJB23ZcuXKNxXzBdDrl7OyM87Mzzs/POT0+Ynp2zMnxMUfHR5yfnzKbLZjNp3RdRwiDS7Pcy0xhaAiwXFzNjegXgzg3z2bnPPj0Hrdv3uLxg09kQJAVzWjC1as3ePHOS9x+7nku7V5i1DR4VxorLded0bJREPPq81ve7LI4gsv50bRJfu5KLIaANLBKiABIlU2IYiygynVsTHF4zmKQMRSItXd0vZxTMb0rGw7l/aoU8c4JwKIyoesLgxiGFWdTtNWslXzY9RFnxY1UoWgqx9nUySpujiJdkS22bjAkjHaorDHKY7zIGpBbITYYh9UJ68zS10UrR0QME1LM4Ma4Ky+z+9bfxd94i1ZVdFoYqgbLeHMEWZRuAS7t7ECMtLMZSgW0UcQIo40NzKKXYUDX8uabb/I/+5//L5iez+j6OdtbW8xncz7/5BMePbrP195+m+l0ys/efY+qroDEZ/fu8eknn/DhRx9xenrKxuam6MCGILmnNN0hJrR1jMYTrLN0bcvGZIu3vvZNXn3tTT65f5/Ts3PuP3qItaZshZTBtCru1lpW1n3VsL29xWg84sq1a7zy6uvcfv55XnrpLvt7e1gtbNucV8XbGr63zKspFk3XIDWbNcW1M2W81rSlqTNk0DKIUAQMxYRAKfoQCYjTsaTOof9IS31PpcC6YoYWImRhZlZVVQDrQRNS4UebhHaKdwI8xUIaAcmj2nj5TFVf5Ihl5ZZCaMixL/EcZd2yn+FGG7i5wmSNr8aEIKQYugXGOXw1AjfG5gUpJaxzWKVRzlBPZViViWjrSi8X8ZXcX6bzGYvT06VZ2mRri9/863+bx48e8OD+pxwcPOHg+JyqbthxNaPJhNnTh4QYiElx+foN5tNTFucnxBBJWYZXXbtYrZtqMVfb3Nrk5s2b3Lv3MSlFVGg5P37C8cEBtTOknKid59EnH/HP732Eth7rhV1ZuUqAUudlXbOpaJqaUTNmNBqjnQDJ27uX2Nrc4uj4iNR35G5OtpZ7H/6cqzev8e5f/Blfef112kVLr4f+f9DzXJNdGQZnJfZiiPQBdBBjxb6PhL70+THgKo13IlUyFGyRiIrCrtcKKicay3EwRzMJjcJVFm1qtDPk2AnruuvQvsE6T6MzKXbkFEkxEVUuhlLlNUEG+NYvB0+awTRNE0NPUgrnKsl/Thitvp4QyyBCk9HOoNOCNsxFa9S5UkPB+ekpp+Mx2nuePHyw3LZpF3POT054mB8Tc+anP3sXYzQhtBwczKiaEbFvqauKphnRdj0UmSOQ7QC51spwWxm6GOn7XrSErcH5Cu8rJhsTMmI6EkLky1/5Ku+//y5/+Ed/yLUbN6D086++/mXm01M2Rhv0qUdjePrkhPPTGY8eHGGcsGitNTRNQ9M01M3grFxk0qwY8SgN2Irt3T0ePn5EymK8YxMcPDnmKy+/QGrneD/inXd+zOXLVxiPNujansGdeTlse4aBvGxO1Vqglbz2y3798gBflFU+Z6DygrjGpIhRY3zCa3CFkx/LimRMIvRtEUtzyl6+t5q6khUTpSyqrH1opKm01kmhQsY4T99HjNVUXksDkSimFAq0k+LYaGKITEzLganJUT7MQSNGNNFMEbyNWKsEoLNi1Cw6fUFWP5W4YWbjMClD32LKY7R2KFvR93PZZQ8KPb7M/hu/yej229i950m6JvkK7RzV2jQfhqlmXiIBS2BvrYscVkD+Q43v+td643rRWp5lAwQsha+HZnxgig2N0YUOtqxsXgD28qB9td4or0CfZXPDRabL0AgvD4ksbA3WXi+visacM76y9AZCKu2tHqa1MhFxZmimZZJjjKbyBkg4ZwhdWk6UhmMVvSJJvtZKoZBTBCVAmyq06ViUTrURIFgMJyRhW+Nw1hJjYlyP2XCwcKOyjiITTyliNTmKu6ou7oLKuLJKkrBGptjGidutmE/LDdkYEZnPIUgRkTQBqCZ7dCePMfUuu6/8Blsv/xpm/3mxkNdGnH3XYoGcl7KLKxCjFEprlOCLgPI6iLIKpBVWcRG0WP1DLR93gal34XguPsfw2EEUf4iTQQfwwnM943C1/nrPHsn6sUkTNLwZtQRehm/lnNEqMvJSsMn0Sy2PZ7icnJGVWKcVRsnk1yqF8yIbnzL0sUzjSKSk8EYcGdG5ACfCiqGIhUcRqSpxJ6BJHApYXYpDPZQgCkPA+hoba7yWpqaLLd4XkwYN2ooDprOVrBUrRzIO4xqs1YR2AWkOSsxZrCkr71bcl7VzLM4DyjaYyTU2brzC7t1vYLZuoTcukbUlGXGRHlZI5DNfB4pXa64pSVP+i4CzZYzyxZN4EdRbfrPklotx+YVctAa6LVdz14C9Zbwtf8ba8+S15xbJBeACaLz+WgCDccIQb/JxrD/XeqzLIEGXodUALGeKJpV3ZQ1JdGOlWdfLtcPhuUJ5emuEyaKLsQuIjlsMsbBENX2U+LTWoogFDEgCvKkMJKyTQlE0zTQq92hfU1WOibUyQR50O4seotIGY/oy8JDiyBoNyiIi5g6y6IgZ68nGoYlo16BMIytuuQdbE9yYjRuvs/3yX2N062t02pG0wbtqudr5bJGUliycYeV90BJdgV/DuRRIvayxa1VWARTKaox2eG9IzSqeMpk7L90hp19d3vPkNYe4KeBwFMfsZd5aAxxDDIQ+XLg3ZxTKGqwxwuTWZqkPLGtfwzspReLA2MuynrZcJS/nf/k+l+ytLFp1yLq9sWAKAExhiI4bg9PSEMRY9J9AQByFNMlZ2H+VNmirQIvkiugT52X+6qOCrHCVgyyDOWsVloxTogGknMN6Rdu2YgajMqIlmZaDODI4KyB51hadO8ajZqU7mSmMLXEaVrknJ4XzNd5WEDq8M8R2gXZ26ZYak5LargBgWWmSrti88zaTG6+zce0OenOfLmSCE6MW4yu0dhfyQM6ZHNNSHxMUfR9W6/wJ+tDTd72s+TnP7u4un33+KaDY3NpmMV9wcnzEZDym8iMmo4afvPMOh4dPOT055OzkmNOTE+bzKYvFgsViISu0vTTQMYZlLpXmVC/zkugFm2JgJLXP2flZiSXJG5988GP6vuXg8AkvvfA8zSuvc/fOHa5fu8Hm5iZ1VcnGSwH1VsyTosO4XrAt+xa5Zvog9c5Q1+YMoeRE0c4TwCjLZYdRCeP0ku1ujNwvB0aVDCMRfTNjMFEcttHiYLpoe2GkF5OiFPqSA/IS3DVaVtG1MWUAjzCIs0ZjlwOJ0Pf0fS+gXWmgUV70s50n91N57QgoiwVpArOFStirKQg4ZZ24gGNqsh9jL79Ic/01RjffRG/fwk22mXc93svK4sUYW91BLu3u4Jw4zEx29mjGE0I45fT4hJ3dS0xnU7COr/3Kt9DGsTHZJOsNyInxxPLyq3d5/oXnmC/mdH3Ptes3ODk5Yno+o64rrl27gjaKg6dPaduWRdsS+rDMnSrB1vYOg5nK7HyKtsLY+srX30YbzcHDz4kxsL29g3cOXzl85XG2NM3GUlUVe3v73Lz1HNdu3GB3Z5d6PMYVswijB4YRJJJM3YcoW6a5vMz9MZYtCBE9ww0melqjrIJOWMdOKwENug7njBBIstRhwlyigJEZbWRrajwaEWPEkMhGk5OToW1aFK1OWaMkBVCm3PMghyCbEhrJ7QyrtYOju5FV7VTqPiVDKGMURDG+yEq0gq0yTEzPvLco5QQoshXjSqNVpOtbGXS5MRvXX6Y9PcJtbKPqbeqt6/j92+zfO8M+/RNS3+HrEd575vMFfbtYygYMkhEhRmLo+fa3v8MLL7zA08ND/vxP/5jNyZhxXbG5tcndV17h9OiQ0Hc8fPCAe5/c4+jwKYv5goODA05Ojjk5mzKdL8pnbHnuzivklOnblsMnB4SuBTTn0yl5tuBLX/ka2iSu3b7DZ/fucfDJR5w8PZDaYaiJlIDDSolxk3WyOu68o64EoGnGY7a3ttnZ3ubo+CkKzcHjx1y93fD4kw/5vf/n50yc5fKv/zrnZ2dU3pfBiyqO85LL9NCPrlIboQ+4qsaoIBqgKixlx2zliza6SCCRIm03x2mF9x7dCFPdWrkXtbnHlq0/axp8NZLcZi19O5VhoXE0m5eI8ymuarAm006P8V5YoaEP1JXFaCsYRDkW47zUFSmgVSK2C3zdFOBYF9BcgDNSoHLiJKuaRuR4cmJn7DE64V1ma/eSsBbbjun5OZuX9mnbjr5rQZf7eB+IITBqGr7ypbc4ny/Y2Njgww8/QmtDt5jx0p07vP7Gmzx+/IQnTx7z5OkTTs+m4miMImqp1YzzPPf8HZHiQLQr264jpAipp52f89xzz3P1ymV+9u5PmExGvPji8+SUOD874Sd/+RecPT2i6xfopAquwlJWSSth7lkrxiKj8Yh61FDXAvA1owmjyQaTySbNaExV14yahudffJn3f/ZTjIJuNmU2nfLZx5+wYRSv332ew6eHvPvTd/n7/+Afcj6dFYDSFKbgSqZnqMyW2MwFjGbIa5Ff9uuXBvisGQSSjYBfCMDnHAzNXCjF9MCCSrnoHIhiMyGUabABb0uSNKKXU/uKvmtxvhZ3GiCnhM4BpzOVr8rUOIIt7ASjwTpCaEkdxBSpxotiRe9RKqJ0xliPzn1p6DWYUBpcj3ZjYjcXRkEKcpyLqYisFn03RSIbL6ugSWHQmI3rbN/5Bs2Vu4xufwlGe2QtDj7OWEn6UNhJrIqkZcEeCnI7MFWQBmEdcFkfY11A4FaASGkfCmhxsVkeGuVUisJURIuGtdNUutsLvdMgBFrWOteb5GeZehea56WOU3m+oekvjxsExpfHtXxBLnxvkCLMyNqA05oQpWi0A4OCVNgiBu2sTPYLWJFCL2wUa4h9v/xMB/dOyGvgny3C87mI2me8F0ZKSsJyCFEeL25cQ8IsTVTqRE8PcTF0RqGNE9DGWowyoC0qR6yvSCmg3QSji+aaH0PqRJeH4rBpHYMBTYwBYxuMG1NdeYuNl3bZfumbmL0XyMaDtaIXouQ8DZ/nUCwO5/4LK995AMhKQ/oLkLJnmUsXgJgvPDyvYrGAaReA3vUnWoub/9Bq7hBD6Zl4u3gt5NX1tPzZ2ossX3aYpshP16+TnEVDQyHXZ9KaPg2TvRVQoBAXQDEx0OiyLhRjLOuhhZWnVg69A/vPmKIxqgYulsJZWfGwtkyWdCpTNREe18bgXEWMvax8x4wlYo0loanrmqxEGkBYHAJOa6WxzhMyhTHsqJpt0IYwfUpOIiyvsKJ5ph3Gehk0pCyOkftvsf/Wb1BduYuyDRgnBgi2WmlMAOtadas/V7ljuO5WMbECTy7GT17+kf///Ht9CHEx96zy5xfAvuU65FpOuxBna78zvGZexa2k6rwWOEVPrUTFUCBeeE/DX9XqSYdjSzkL6BbK+j+UdmBYtxHsqY8ZhazzpizFaCz6n8TCNlVKVg0K6KONxrtMl+RZM8gKOIPGrUJrYcVnJM/2UeErK6YAQe7eVmtMalHaY53HqYBSsRTG0jCnwuJHW5mCurF8Fsaj3IRsR7A4JM2fSjFZmiG0xfgtsjZEs8Xo5ttsv/gVmqsvoSf7RGWJxuKdK2sk67nsYq5SBdJb3mMHFtXy/KYL4LKcw4zKwyaYMICyXovfPOgyZqlkvpCbhscMYF65rw/DrBJjqRyLpIY1TcZliJTzUXT0hh8t3ysDYClalXFg+w95tTxqGX/rMbxsjtRQjaGNodFGVm9TJC2NAmRFD6XRSnRgw6BXa7VIZfSiXRhDMRBSMiQLMRMSeGuLgYa8i8pkaleclZUmkkghl8EXoneTouSSAkw670hZXLGz9qjUI31TuW8jRirOWep6TFicUm3uyr1RBWI5V66qlgOtFCNKWXQ1wY12cBtXmNx4iebqXeylWwQcuarBWGwlrPvhRjEw25/NFaoMZENZi81ZgNy+6+m6nq7r6LqedtFx++Yt/vKH3xe3zbqmqirOzk5ZzKfcvHmbn/74Hfq+E6bE2RGz6RldJw65MYpL+JB4xNiiRhfmuKyDFn3SclwXZhCFpT6fL+hDSww9R91DutBx88WX2Nze5tvf/Cbbm1t457HOLs+X0gPDRS1zmiqd77NNygBEz3tF6sSAQGaxBbgb7oNJ9Ch1sRw2OlM5Q+UdbddhFaIVauTxUs+JiY+zQgCIRds2pEhVmTK4l3X9XIBxrWRTwhpHDPPl8aassMbifE3bdtjak0M/SCpTVxoTGhlWGAOqQleOvJhJnWfHpJ3nZShx/HOc0iIBoy19yphqgqu28JMd3O5tRre/hLn8Mnq8SypAjzLCdK+tv3BvXNbXZX0/5cylS/tsbW1zdHaKsg3bOztMz845Pjrk/PycEAO+atja2efJ4VORcwgd3XzGYjHn/PyExXzG9HzG2dkJ52dnzGYzFvMZs9mU+XwuTfQgG1BENE1ZdTTWs72zx+GxxGXOEectx08e4nKkXyw4PT5hc2OLjVo2DKwzeO+pvBi8XL12g2vXbrC9s7t0OTdDvkGYUIPrZMqFEVv6lFVNsVZ1ZvmsJo0jFCDQOU3fxcLUK7mkmLTEcp9MqcjaKMpgyzEaN4R2hphbDbGeqeuGvp1jrRNDBN2jTUZnVYxWRH9bKzExUEraal1AM0UBG1PEao2tamLfk5QM9mLqcdaSyjqfUgiQXDlyUsQOqjBjYhtGeizroApSCCjnUeMrVJdfYnL7LezuLSbbl6HewTQTtPOECLfcffwf/zld6KmbEb6pmc/n/Pz992Srzch58lVFnJ7zne/+Km9+6Q10VmxubfHKyy+is5Br+tALmL53lRgjl/av8fIrr3F+dsrx8Qnn56ecHB/x4NETPvzwIz5/8DmnJ6csFgs2NnfR2jLZGHF+foJSQsBRVc14e4/t7QnT83MWs3MODp7QzecyLNUyGDJalWGi6Jn3BUNQSnO0DAm57mOWVVltDNYbKqO4cvMmt5+7zZe/9FVeePFF0dsMiawzSesy3Bzy26oTXeb1PhRXbtHZt2VbrxlNSj3Zi5FXzGiTaSoL2eB8TQgB47z0kEZWcbUSFrR1Iynj+jkgBn3Oe1QUxr33mtTNyAbBEaxHk7EmYS1U1ZikNLlfoNRgZBeACFphqgqtDFmv+qOqrgl9WzZqFL5uSNqirYOY2GKKtyPmQbO5tc1oLOdmOp0Sup4r168TkuhPemt48uAh590pO7uX+F/+r/7XxAwbm2NCMYE6PjrEGsOlS5cgJUIIPD085L/+r/8bRpMxi0XH/c8/5fzsjHnIvPLqG3Rdy72P3uP+/QfF4LCnW8whRZwROY9HD+7jb9/g7/3dv8tnnz/EWsvh0yc8/Pgj2WpABkSDrYjkmrS8R2pdZEGqSowplZbc5CxVNWY82WRre5eNzW12t3epalkZzqHHpEA3n/Ljn73H+z/7KaHt2Nje5tL+ZaazOTklqkrYunpgl8sNclkHfuGr5Ln4HwODLyRpArs+CfhlDH2nsHZYxRUGX86iaWedl7WMKD73zmgCmUllGdWe0AUp+mOi9hWgaGq5CFIaNC+86LNYj7aG1C8EyAEZ8ZAJ7Xm5iCw6W2qdyaoWrRhnZUKsjGgH5YhSAVMmtMqPUbHFW0WOPWiHVn1ZO5Mbl7FVeXcKVe8y2rnJ+NZbjF94G711He1El8GUXXFgrbFcc0gZwJaYWK1Grje+BaRZb2yXlPX1jngAXuQCvoBvPPP1RfYKSyBiCe4Nv1wKuvxME/yF/8qT5eUxXDyeC8cHy/ew3ryspVOeQTHl+bTD+REWuVhUr1AqCEBhLCg5rzlKs6ULM88UJzaUEt2nLI7LGVkfSCljjaGqCphcyRq3tiJiKpokwnpQuugzWodC1opyjOXm7gl9z0ajOLZjnK+orJOJgfGFBSg3KWMNqR+OXf6ttEfhUKlDzCoKkzJEWe1wY9zuTSZXX6W5/BLV7lX81jVwDVmvJp9DKzqsQC+Zn8O5X1/lWiEwLFcSl80kq+dahutwHldx+ou+1uPh4mR/KNaW7ShLMGZ5bGvAxzIe81qjvfbSa4ew3tAOQPovOjA1NN4ltp9VR5DjGBomLVT50Be9vME1UqFVxFuFUbI2plTRchwaoVRYpSotC9jBVMMUXZaYApU3Uvj5GhtnWOtp6ooUZuLWXLmi3WTRWj4fo5U43nojOlbGAr3ofmoBnI11BbSQVRlta5SS1UwWJyIrEBZopYhJ40cTiD0oA36L8a03aZ77KpMbrxHtCOUaMFIA6LU4W52vdCEkVoDaWlwti/TVCfkCkPzMzy/kvovfHl5o1Xgv/70CXi425fLLF3REnwVrWNdEW7tGBjR4GS95zQFrBdisUtpa8D/7vtb/zAKqhZCpPPQBkmwfFm27xNI8IQWMLaxjLWJqOUNSRadKK7pSGDjrCDGJxkkQICQmYUqHJI6nCmE/LebnGIysPWSojWVpKGNl5doSEW0fUEXjTxwfRXdmaWygwLgJqprIgMzUkBOpn8lunhqVdSVQ9RbN/ovU+7dw2zfZfOFLqGabqITFpoyhMq5kibQCY9eu1wFWkBiMOuM4eAAA9QFJREFUq7zDs3kkrf3W2r0nZ2kSSl4YQItcBh4o0c7MxURE8sZKj3aIMZXNKl6XmsHyM4MtN+V8cXz1H06hy+NfwiZKLU1pcpFUGAYTee15l/lbDdIXAwCnUFlYRSHL+qNmGJCJW1/OwhrMiGbYfLHAGoU3TjYxUpQpu5LPwxgt4K/KxCw5akxhtnstw4c+Ykwsa52iLyorwBGlDCoLmBf6VgBuJWtoOStI0uiEc1ld9laRioafqTdks4KIVRHtR/hqJHpwsZVGPma6IKYMWXma3etMrr/K5IWvMdq7jR5vk20lOl1ZGkIpvjV67Rw8y/odoiilREphyUoenHPDUl8xLsHYGALP3X6Ob33zr/HJvQ9Bwc2bt1nMRdNHacWDR58PZANc5dmuLsnx6BWIulon08tabzkkWTu2ZT4rcZdS5vj0lLPTU05OjtioG6bn54yahldevMNXv/o1NsbjUkeYZT2hSgMt+W51fQy5bWV+tMqVS5CRjLEaqxVdX+o2lagrj7iji5mZUVrqqyxagUqBtgadEoO5kwwRMir2dCmiFFirlrlwaOJyFokfAQOqMjgtLt1WkbBYY0VOxTu0djgVSTgygZBlg6hdzOiDIWrQWGw1QeUeFIRkBKSjJs3PxKk0W8z+dSY3X6favYnZuY7fvoId7RB1RS5azEqDHerqZXytBgMxIWBPyS8D2KaN5+7Ld/njP/kTrPfsX7/Bw/sPCpAsLK5bt54jx8RP3/kxZyfHTM9PiF1LioHz81NxaO8Coevouk5YOH0nA6FcBgVr51grVRiVlpizSB4Zh/MVOQXaxZwPPnwf9a80XddTO8vV/R3atsYYzWg05vKVK1y+fJntnUuMxhOpW4repcRwGYIu5SxYfq8UDmtD3xLdQ6xlyCkzb8WN1Fgta9TOYI0mk6icFnMB5LF9zDgUlXXC3k0RdJCez5XtHyv12cAWGzY50Apd9POIPeTCXteK2vuy4ir3QmUsrjBXNaCdB61J7VRWzytPConQBwE1i2ZkCgvRAsxSg44mI5wdkamZ1M+jqw3s1g719hXsznXsxjWq3Zvo8SZ9F3BVtbwOB0mKvb1L7F/e5+yjj6mbEVevP8fx4TEpBGLuyUDfChKfM1y+eovQBmIf6GMipw5yoG07cuiZzaacnJ0zm804OTrm7PRI8srZGUdHxxwcPOHs9JTFoiWkADkzn8/Yv3abJ2dnLOYRlCHnyNPHj9i/9QL37t/HN89z8OghsZM1Y+elZzd2qC1UGaabpSGn6IE6fFVR1Q2TzS12L+2xvbvLxsYmk61NNicTJhubIqnhPbbUN2otN6qU5Z5UBhdc6JPlzxgCMbSMRxUkkeTQyqDKECD0EecqsnfQn2BVhRhWiuOytlYAwphIOYhUSpEaMM4Sco/xrqyXG1zVyKyt3pC4URmtvKyl1xOsryGJcYszikU/B1WkqIxGaVnhjV0oEiUiu6GVKkZikIPCqBpd72O3rtPs3URvXOHm5Cq3+Es++fwhE7fBzVu3efrkCTH23L/3EVdu3sR6T44dTx8/5vzslLoZ8fd/93+EdTVeG2azlhDEpEyGhZnPPrvP+fk5Z+dntF3P177xLbyvmM4XvP7mV1jM55zOFpxPz1gsZoxHYxkuaotqYbqYE1Lm3uef8fzdF0lkHj9+wuMnBzx6/ARjDNOjI9pWwGG5tGxhLmZyjnJ9ZlUGqZkUe/o20ncLjFJ0c8Gr5r7i8YOPiTlhTIWrara3tzk4eIpGcfz4ETt7+6TgsRsT7t65y1e++nXu3rnDqK5FozaJdE5WSWrHcoNfxtnyPsp68/AfB4NvmJCnrMiqIfWyW117JR+gkSSFyuIWkzI5prKKIiuf2kBlzVJLJcUgIEpW+NoR+1aKAGPxlaDO1gqgo8iyXpsjRot+Qk6iWVRVDmcc7aLD5QXGb2F1g1YtmkDOAW0VGrnwtHYYlWTqknpidhinSLEnhYAxDpVlxc00e4yv3mF0+0vU199Aj/fQ9QhtLCuLdLWmY5e+eENPiYtsuWXbuCom1wCXVbN4sZH+QqNwERtbf1RZE1s9KOXCZSo3ohXwUh7zTAM8gCxL4GXZVK8xq4YmZ+2g1gHF9X8vOfeKL7zucNRDsWq1oY0RY0UItG4cOUDOpkyYddG1gMpYjBPqduw7tJNZXogB6ywosMpRVxU5DqK1uQi2i9C7UZakeqy34lJLwlmLLhOSmKKs2hojrpFVRTvvqWhJ2dKMGnTIuFomf85JYs5GY5zBqKIvor2InWpIfYAc5WNJBjPapLn8MqObb7Fx63XUxhWyFQFeW9WrwkiVVbS8DrKWzy+z1Exkeb5WN64lKPJMt5lZO5fDY9ZP4lqcZZ4Ju/UmPHMhPlNaf51fHFtDMbdkY60BLs/G+4Vr5xlMZdXIrw5wmNKp5euvmAcoeW1tiuOfFQUc7yzeJhZtIiZx7KuspnbDsiws2lzWmGTtwzklIvApiCZXAV6s96R+gTaayWhM5VXRyVOMRw3WNRjVQxkOKGVKUVMYKXWFc5UMTLRh0lj0DHwlca2VERZCauUGZz0Jiw4LEsLmy93ZcoVIO4VSHtwm1dUvsfXCVxjfeBU2roDxZOtkxUDpZf6KAxic8jJG1s/lYOByIabWz+fy3Dzz87XEtQJsnzmpz+SV9di8yLy7CNANf09rIPJwPM+yRpf5bBWlF19fwaD5uYqlVQZfP96L74kvPDKjRMfFebQBlbKwl/pOgNQUyCmgtV2CNTlL8W6tKe9HzIG0b0ipx+lEpmialDU4lC7sc3FTs9aIOyoabS19H7De4tTgTJ7wdY0VCgLZJRQBrEeZjtiJKYJxZRXTSCNPNqgcUGFGDC3KiYO8cTXajlBuRLX3HPW1l9m8cRe7eZmAKQw+GYpZYwpYqlY6jUOcXQiFlVHJcG9bHwasALLVCRga6VXcrlDZC8De8mtVgEm4rM6oLsw4NeSVNaBFagC9nLZdzLODZuAaEFMetMpzq5fPuTT9a7qCw/tXIMzGEtfrRz+szA9v0VpDKhpjzkLljBSeEazz9IWxGUOA2OO0YjJqCN2iOC0j5jllRTpGGY5ZBVoJq73vEs4qvLNFKoOlPqmziq6XfO6rEaS+GEz5YqQmzCpvFV3XU/mi22gdzkWqcU0/ayU35oDOwpqx1pNtRe7a4rhnxC3aVDDZZfO5Nxhff5Vq/3nqnStMz85pradyI5R1ArgsbxBZVgOHHPFM/ZWzAC7rOsSpaCAur8USG1ZrlPei81NXbG1tcu36NQH8kojOp5SKhl4smsBrw9TCUhtc7Vc14yov5uGmp1iyn5a3/jKMWj5EyxpjiJFExjvPZDyiqZsiV2JE6F8PfIfhcxgCnhWLbzm4EyCPjIB2yGNGXuGwjGrHou1ovJMhQwzF6TvivSmO3mU9ToswfVZF41AXl1qlUVkGW+SMtfLi1kjdp40lpUBMGaMyKkdUtmKyoaT+Mb6Wui+KXEY92hRWZI6iYRx7cdXtAjGCMXOaXFM1FRaNzpEQE6baoO4jSYv+6NZLX8duXmZy/SX8/vPkaiLgBWXF3Ric6L2s1TkX70FDDhiu7WHoH6OY7Mznc06OT9jfv4z3jo/ufYgisnf5Mp9/9tmSuDBpav78T/6QpqnY3prQOEuXNJ8/fEi7WBBCR9t3zBdtuS9Ik+uK0cMSuFVqGdOD5pcic3r4mKoZi455SnRdy9nBAz51mt1Llzk/OMVfvcKdO3e5cvUqWzs7NPVI5JJsITyoJZemxOygjbjKXCum6LP1rHxPFFvk2hy2oazxVJVjNpWV45AilVt77pyoa4crcquurui7nmYkdbRREPuWrAXAM0WWRdZmNaQObYuRShn+kpJscIVQ5I2EWaxUxrhK8puSftcWB+fUR2F4OUAZnJV7ZtNMWCwiarRNM7nE6NJN7MY1xvvPYbevY0bb2KqWe/zgdo8McgdDAl/bVU20rHPAesd3fvVX+ezhA84PD5mMGza3tjg8OFjeZmLoUUbz+pe+ztUbt/iLH3wfsmhEe6vo2jnn03POz89o53MW85lIBiwWnJyccHp6ytnZGfO5rICnIOYWXgvM4I0ihY66qVAp4L3D+zGnp8d86cpldi9fonKO99/9KSplKuelTnEWV5igznn5flXRjMZsbm2xtbvD1taOgHkbG4wnm9RNI5swpZ5YDipYbZssCQeswBapN/KF+/R6wZFSpBk1ONWTOnGgV9YyGJdZq9H1mMnmHmcPDmVg1Qu9UzRiHSCMZJXEHMM4D6YWRl9eCFhcNcvBSWyneGoUQgwwxpRtxUxupyWXJLJ1kBVay8A/h5acLVlbcr1Jdo64aDGbl9E7Nxlff44QFW68Q713G7tzjVBkCIwxVCnxq7+2y3/7j/8/9F3LK6+9wqeffMrB44e0izmfffRhMaCI4nCvFG+//U3u3n2VP/nTP5W8tZgW1vAZ09mUvk/UVcNoJCux1lkWi475dMr52QnTszPms3Nm8zkxZ1648yrKOObzOa6sUncpc7IQo6nHj54wn825efMmk81tPrr3p9R1zdPZVOKlSNloa6SPKhun1kpMaJS4WQ9DNK2ofCXSNcYwmmywsbUrQ23r8L6iapoi/2ZomhFbOzvy39YWo7oW5nCR78okKMaIORedd6UugHvrg9nlNkbO/5EAfEgRaaqaZnOT6dEBrpI3MAj8+kZ2v2OfMFVFmEUqU2zrvUcDvmno+xZlDE5rrNFUzpFyi7MZU9ZHjFZoL3orvt4i9OekmJcmASQFKlGVJiH2rQSGCXhfk3uFNTJpjlGosqSAJmFUJCXwRlgMGlDKChOmHuE29mmuPM/GtVeprr6KGe+RbIV1dinGmPLQAGdhUF3oX58F9Z5pVNcAmC+yWmC5CHah11w1NatQUWvfK785ZHq1Au2GAJPnHEDDVUJTrIqNVdNbAMsCXK4Xm+sT7i8AMXloZrnQIA1roas/Wc+nDL8lzx/RJLoggrdxcGU0UsSF0EnDWZih2mhyjsWO3pFCL5ORahBAlwQrsjVl4ms9Kme6mMlaiQaZyphKBLlVkqLZWkfu5Xw461DFDGN7o2ZqE6PxFindF9fKQd/BaFSxKY+hXTZjhlLcJgVqhK43sNvXGF97mcnzX8Xt3iZgUJUkOFOcLYdAECOF9AuBs6V5xrLqXzXAF5gwzwTWxWZ07cfDZOuZOFz/p9w0V7y4XxTKw/NfiJ0LTpIrcOaLMfXF513+dRlGcrCrBeXhWlGlEVHLy2H5MwWDtpPVmmQll+QUBeRFVtyMVjibcGq4nESfyHl57VFdC6sgR2zV0LVTnHUYJy5u1lpaeqyRBkVlmbgZ58k5Lo0KKluTyhQ9RzH3MdbRjMfkJKLkKSdhOViDtcgENvRYo0jJo0wljbBKxC6QlSH1ch3oaoN65xb17g02nnuD5vpr2K0rRAzKVQJmGwG+U6asfa406oYafL3JHa7hZWQ9m8/WAidf+Gf+4t8vBMxaHK7FwDKvrLNU12PwGeDuIjMvlZy2fj0Mcbj+0s8czSpoGBrr4bjkNYHlqsf6dbcWqdIFSw+rpemp64oY5riiszcwVqDoXmkrzvGhp6oc/z/m/qTXliRJE8Q+UTM759zxjf7cn3u4e0RGRk6VmTV0syeAE3qqBQlyxw1/ALf9cxrgPyBIAgS5IwrkgiAXbDRAkGw02UN11tRVmRkVEe7+3rvnmKlwIdOndm5Us9Jz0ccj3j2DmZqqiOgng4qKbqs5DocF0G4OBnrHYREc5wnraqcUz4tg0hlQW8A4+Gm10zShny++zajZQRcCHJfmxuhsp4xuHcvxAEyCQ1OozFgvH9E8o272rZVxKAcUduDH+RNkvoccXuP2Z38Lj1//MU4v3mFttzjcPUI9U0yn2eoLShvo1J1HpZcAQEoGe2XQpdQkNiVYIbbVlmyySAlYtlTr78hz7oIF9NyCqx7Hsz27Kp6eMqRxKFOr69kGoIdZdpN9aVv0At95ALBMKUUG1DPwHBM0gos+H5o0XNSc1m1VrG3D2lfMbUaH4NPF5KGJ2T/TPGHdVnu+CCaZsIjL+jRBDg0H36a09c0wahIsB8uCtywrk++lLdB2wOFG0LBhmhf0ix32o2Jbr/plxcGDlafTCTI33C0Np9MDTqcF6GcP8nRgvfghQQ06z5gmgUqzhYr7zyxb7yd/iNOXfwA5PULmBaoWcLu/eRzmp82z3SIY8cOwY0Mt1JLOGhxFeMBVAN8U1JpiUoFOkcm8IE6pT2xMZ5JkgWRZ6ZmDjAtvSg/1XKUh4HgWbcfp2QCM5vk0coA7PSdkLDvlbfpvtMYx9Du2IFnWhNXWa4h6lQKRjglih754YHjVjtmzErXbLos2T7hcLjiI1T6efQGtwYKZ8xyH7Nj23U1q6+88TxZQOM1W0/hwQrv8gFUmzO0O7e5zzBDoD/8QbVnQu2VkydLw8HCLdgKgG27bLbZ2wHx4wPzwOW4++xnmh89sy+2LrzCd7swGk8nKVjTxUyBruvJhUqOMVdZcBPW6B32719fsm51nfTzOePv2Nf7uv//v4s/+7L/CDz98h23d8OnjJ0tC8N0pr169wDxNOH/6hF//6lf48P13uD0ecFqMxsG4JnHghS/c9Q2Xy4rzuuFpty183TbfmnnGrz5+TD06TRN+8ys7WOHd67f403/t38Af/40/wsPjI+bZMvWypp7bjoVxUriaqyeFV6MtUAAc+qB2c6jVnO2AbraNfxYr1n++nDG1CZsftnI8ngARbOsZ0lfMrWOC2oFkajZZmyZgUkywgE6zKCTUF0fbdMSyzOjnFe1wMiwT050yNa9bKphnK8uzbatnerW029rUsBxeYj3dYHl8i+XFezz+5A+wvHyP48t3mE6PkPmILpNhmnt3KgJMdKCCWEBqsGHI1rEgrZ0G/PbNW/z+L34P/4f//f8O3//m13h88QIffviAdfWSRX3D48tX+JM//hP8k//qv8TUYCU61gsu54/o24rzp084rxYgPn/6hE9PH/HDDx9xWS92uEa33UyHZbbEB8eWroofPnyPp6eP+O7XvwJ0swN1nlYIJvyn/6//B/7Vhzv8x//f/wQNdvjE27evcXNzws2NB4RubvDw8IgXL1/h5evXePHipWXkHU9YjkcclqOVhoAdKpFZzz7HhOzSsXxByZxu27XtOfgcink52sFnJ6u/qLoB6OhnQNoCwYRPP3znJctmHE4HqIodEAorE4GmWA5HbOcnL3HzCbJthnmHW7TpYNn2lyfTddjM51Sx8hHNsgXbNKPpBpVbtLtHtPOG05vPIdMRl/MHHN+8x/1Xf4Sbz3+B5fbRMtFuHiCHG7P5Qh94YH/q3eQXwKTAt99+g7/77/1d/L2/938EoPj5L34PHz9+xIfvf42+dTx9+mSy2eyAte9+/R3+t//r/xWezmdLepkn3N4a/x5fvMDNjZ0u/Od//k/x/Xff4Xz+iMvTJ3z64Xs8PT3hfL7gcv6Ei9uuv/Ozn+Pm7hGv37zFP/2v/wnuHl7g09MF/+TP/wL/w3/n38fbNy9xOpzw9Tdf4+///X+AP/uzf4j7mxMmdLx4uMdxsdOtVeywkLlNOCwzjosFMQ8HK5VwOJ6wHA5YTjd4+9nnON3c4Xi6wfHmHsfTLQ5HC+pNix/4MS+WhBa7I6IuulYcRsgG9Wo4jrOhm6+kbLA9/luxRdec3hnH0x3WD9/h7u5k2W5Lw+FwsiIt2xmTCKZF3NkEDocDtm4n4Hz68BsrSgpTOHObbNVENncazOiw7ZCWgbWtYnXMJtsu2y6fvKh4x9btRKveO+bjAdtFcWpPmPsTpsOM1m1PfLusmA92ep+dDG3pvtsqkJu3uHnzLW7f/z5uv/xDzK9+gun0Arrc+irOlEeBwx3GNQ+hqMMwVDHU5gmjqZyN0Zgq9yYkwoyl62BgXVtWVjiPJSRpQCaIeXFwD2YweCFbUzdKWGmEA2Pfceahcht8HZD3Ze+8L9Qj5Dck81fZZKq4XFYfarP6ZLAMq8kLWC6T4HCwk4zRe/L0cFhwOXdbSV2sPt00NcsEXUx+m6odZjHPOH/6kPVBBHbgwtSAab4z0NYG0Y7jEUCbAQjmacG6nu0Ajf7RajtuK7rMuDneoPfVgFpt1V67HeSytVssr97j9t3PcXz3cxxe/wTL41vocgdZjhCZgHnCyeuJqBs25dgq8Xd0OliawrAaV/+LHyHDwUQdrslv2Qe5fmmJVvcs0zxoIB9TslvzQUtuONBCcscywaKf8yANxOhDboxnu/GZl1D71bD4fJpEobM5FwLBzbFh3VacDhME3bNUvFYd7LTaw/GA0yTQfsa0CBZZrLB8sxqbswhw9BqMomYIel0P6AZgw+3dgzm+bkhfPn1vK8ACKw7dGpbDDKwTHg+bH/JjJ+IqJq9FasGQdbPDDdY24/TySzz+5PdxePE5Hr79YxzefIPeTpB5gUwz5mnCQcShwVaRcjsr44vWoRl7PKtriP4kJCVmLLvDLylP9X15S5p/f0v7/jmyJBJ/XZaynhrjWvYlmU9jGGVjjPbEN+SYhLDRJYmH/L03fvEMYukbJlgmlPhRutKAabIMINUO9UwB7R2n21sorB6tbr5iKCuOhwWTKjBPls2+TBA/4GJeLENnW1cLLIud0ny8OeKoG3Sz01TtBN7JAjKLBZhvTh3H/sFq2shS2+D95Mc2TWZYTifML97heHqBt3/r38P88hvg5gWm5WgHCKmgLUtllyXfxoBHHxjrvHqmvAAvco1E5mAf4YCGRMnQhoL5zcwLDaUZuCBtnDIZWyiH7yjYEtvRcixqkpNix7LtcjsEgvayJyG7oefjSy8IlYt3RZ/z2bN2paFjw9rhBacFl8sT5slqeW7ns22zbQLVDYeT1Qhbmi1IQCboPON0cwusZ0Atk2WaGg53CwSWgbf5YsM0HazGT1ds2wXNt/HKPKNjxqHZNuZtmrHMHtjuiuUAvFo+4e7wiNPhhPP3fw7xU0i7HHB68RWOr7/G7dv32H74DjfvfoaHb/8G2ukl2vHWMv3c4YYCOthSFKjiWrXJgxEX9rJyZRvt7SiBB08U0gXaJAM5fj6Y3eM2pAC755Xc5/OHgBqFkHd4GzgngO2iSYc2JB+Z9Z8SFQHzZrtvTIG3wlcab+4jTopJ0c2/n6eGSc0eFtjWsMNpRuu2UDr5ARp2wI3twDkcZqvvqGartG7ZfYeltkzOfjiVtOZbm5tvZwS0b4Djy+FgB5MtywHa/aCD6YjDcsA0HTHNF2xdgNs76NMPWE4Tmixopxc4PHyB5f4V2s1rnN79DtqLLzG9/BLz/RvIfAJk9iCeOXdTLMQFLTVOYmcekm50fg4HT6Usmf9QRdnj0J8HPD7e48v37/Enf/wnngXaPSNyRV9XC8r5wS7nsxW+V78ukgs2zxa1mrjA1jvWiwX07FRU42ffurff047besdlXfH09ARIw+3dHQ7HE96/f4937z7H/f2DH8hiGW7iGZcRZM7DkeilHlguB5jFu+y4nHvPzEl0PxCtNdzc+CL/csR6PkNt3Quzl02YlxnTZHU50aPWn2KZmh0Q1ATic+GwHKDbZgdC6QFNLGDZzxdAZsyt4fzpgsNifojK7PaS4ObmYAeSLLdWs3i+w92Xv8By9w6nN1/i9vOfYr5/gz6d0JajZVopINNkxTCaeO05m7+WKU6aR1lu6vCynt9356HicnnCr371K3zxxXv8O//ev49f/fKX+M13v4HAMpY+/PADfvjhO3z8+AH/6B/+l9jWDTc3N9jWi80xXX0R1zKP46CVwzLj8PKhgq29AtRb1CTtViPzsm74/ld/geNhwocPn3A82e6627tbfPfrX+I//r/+n3HuHa9fvcLt7RFvv/oSL1+9xqtXr/HqzVs8vniBu/t7HA6nPFnVDi+YarulcK3QwkaTLwuu+luE7S+ILNAx25/1RC0MK7bzJzRsXs/OsG1aDtjOTyYD5x+AWe0UYz8sChCs5wumww2an657efoAaIf0i82VyXbbzKd7bOfNTnlfDsDxiOn1l7j7/Hdw/8VPsX74DrMo9PSA4/0LLLcPmG4eMd88Yu0CmU+YjyfDYZmANtk8jvqWzQJ6k5SppGGvQHBZLbB/9sOhXrx4xN/5O/8K/qP/+3+Eb779KSCC3/z6n6OvG375y1/isl6wLAf8m//Wv4WH+wcrAdQaDovZiJfLGR8/fMA//gd/hqenj3j69BFPHz8ZTl3O6L6Fd3NZhdcrVij+/t//L/D5T38Xr998hr/8i3+G86ePmG/v8U///C/xn/xn/yX+rVd/B7/781/g//Of/+f4e/+n/wtubu7R1u/w+duXWBbboXc6nbAcLCv3eDjidDzh5vYWh8MJp7s73D884u7+AaebOxwy23jJ7fktcd5xrVEtWnGgCpOMbVoy1cwWDG0tudPweT8m9MN/CwJ80hruH+8w4QydbHrcPdyZ8b+dscwNs/hx9IutqsGCs7g5LmjbJxyXBlU7UGNZbEvcPNnR9IBtxZgXsUMQOsxhgW3N1T5BdbaVouMJfT3jIBvO5w3HxbaSzAcrDv3m0DHrEcvSLfh4WkygWsNy8wY3b77CzbvfxeHVN5hefIF2/5mdRuorURnQoyy42JJRzJE6wIBWTsPgz+wQdkrK8xjcxmAwn5SYjeXjPJShGLKV4voArXymCK0slqKk+EgZKKFI6dqrz16vQ93DGMY2OEk52uxj/Fr9o47n2+pUbCe2wwmsZpnqGX17wjzfYJpPtsVNLIV58ZqP2/kJx8OE89MFh9uTZXL2FfN0xDwvQJuxNElFfzgc0OYjpuWI1s+Ymp3iczi9QO8bjvef4fLhV9i0o2EzwG9WtLQJcHeYcHfumOcbO0HtfAamBR1HzDf3aPdf4P7dz3H/xe/i8Opr6OklsJwgHjSe5pI1dcbUQQDlgCSNuC7V4IQU8YNP4biEo5s0zuAbOxcY2rjmXH3U8ePAv+xX2bdgozeDkgD4VN8wgq+D21pzEKOjHt0cnP2Mk9fsyBm3c8q8R5ia4GiRDkzzjHVdIVPDslhNxWWxEwWDZstywKHZloBlXrAcBJenJzQ8wXco4Hi6xfnTBzTpuDkeoduGw3IwB1S7490Bh7ZixgzRFcs0Yd0AOVjtUd0u0H4BpOH84QzVhu2H/xSnqZvTvJywCbCqoN28xM3bn+Hx2z/C7euvMN28wPz4GbDcWmA6TiMk52R/+ArjR2BaZKukY8l/CVMGGSUhqfeEgfugWfJNuYWS3x2/+Hk8T0qu4nvPPKZtunFPNDFkD2jF+wBUoCBCev5P9aiCewXrPHfqu+gX0LDMltkLaJ6e19qE440VfrdFLuvbMs225VGBrmczULHheLCtAbbksOFwmrCu3U9062jHBRO6BZYntQLTyxE3U8N2udgoHH8UllE6H24gumE9nyEbcOzfu5HUgO2MT58u0Pkey80LzC/e4/O//W+jvfop5ttXUJnQTveedVynwTana51EOzptydeQwaug3vXC1IB3z8zplJM+8nmPk9CxImcyLJzQ0KlS+tXEogJ1/Nf3Muwwse4b7ymHjTN+or/Uy+ouz4cQMSkjM0JH+Tyf68s8oRuAZU23aQLWrl7A2urCbtsKaRMOxwMunz5imhfM0wEQO0lXLx8BAFYOsmE5HCyItm2WRd+OEOmYlwXbumKZgb7aCc3TNKG3GcvNS2yffg1pilmt9IVtkbEDGe4+/XN0eEDl9nOc7t6gyxGvf/F3cPvTv412Y9lCTYDe7ACrKJvRxDPcw84JHOAFCydcBM73csRyVjUXNWUBgTckw5Uhrh6wcE0l8PPR67p8VNw7RvF21ykCfVgO7I/JLyCWNejbQvd6bjwow34TVQsgCG83Zw+FZoX3JQOSJGwmxta3w0EwwbKN+tpxOB4B3bC0bvIihk1b38z28S3c3bd9N5FcRJv8xMNt3VInTw1W027xjPl+xnTZIGInKaN36DyjzTMOyw2mueHyQdHmI/oKbOcV0Ibj66+B+QF3X3xtJQNe/QTt4T16BGZ8QW3y7X6RNRlU7wBE1QNjZKO54RGW/RCcYl0Ft3t62TWhNhjKrG6UzdfZawFvPfCxJ56qap6Ias5kyWtek5rdg5LPHDSVdTv5gBWBB1EsSBA4aqVEKtPM1hlK346LOTvZhh9gEzJJvogFY2JBO/odwlcytxxmyJPgcrngNC1um/kicxMc5uZBvxnz4YD18hHo6sFIwbKY3LfjEfPxiI/ff2/baTdYgHU6YfaDfDLQ3hXbumGZD7C48hE3r77AKjeQm1c4fvYVbt99iZvPvsXih0Utdw9QWTwj3w7oaK7rI6BLMzOxJn2tQY7Yfil6MhapL25OreHN69d48fgCv/t7v4fVD/+5nC94evpktfK2M84fLSvvsl6wrhsuT094evqEfvnkpQQ2bJsFiNUzTFdfdOweDLaDkVZALQvJgn4bni4XfP/DJ3x4OuNyWfHdb36NeZrw3a+f8Pazz/CXf/GXuL1/wOfv3uN3fvY7+OKL93h8fIHD8eSZoFPKYqMtt+PJ8mQXiNcJZpxPugGRsU3Tsew/n8cpx6jrVGBBqNUOj5huH6wkyew7WLaPEJkssCxW1/B4OgBoWE63+PSbv7BtsMuETYHj/WtgecTp8RWWxze4ffc7mO7fYrl7gdOLt2inF2g3L6BtRmRaawQp3abqfUOfLJEACmCKsZvOmcjmgMtF19rhEtmevVu27rpueHq64OnTR3x6+oTHF6/w3/sf/PdxuWz49PQJ57Odsv3D9z/ghx++x/lyhm0g6bYo7bXnPvzwPX79j3+J7371z/Hp4wdczh/w6dOTBY3FaqNusC3FcxzS6qVIVDf8oz/7L/Duy5/g66+/wT/7r/8R/uk//We4P55w+fgB/+Af/Ff43/zTf4RX9y/xl7/6JVQVX757h1O/wTwJbo528u3d3R1Ot3e4vb3Hzd09bu8fcXtnmXm27XfOIF6TWPwKPWz0Ff8yFsVCiFxSLMv32sQf/ST1cynE7d7MA2M7NqQQWd7tx7x+dIDv9rQAnzZov2CaD3h88YjL5QP0csHNwy2gwDIB/fuPWJo5zPe3RyzHo60Or8AklnFy8mOg1822b6xnxen2HtvH32A+HNBUsWG11NTWMDU1QdYLtrbYlpJlgWDG1DqmecK03ECmA6b5iLd6wc3tl5D1B0xvv8Th9U9x++ZrzK+/wnT3OaabB1w6MJ9uLEvBrBAbqDNz66FEPdV9CPaxghwd3QDpMgr9B5QAhMYKBfK808MOZzk6YbTFwusAUHyPxtan0eDj7Z1lEJDhujNoS+EiD3Mop7UCACmwZPTsHaix9HnRxUeRAZypWbH308lW5pofLIFNLUt0uoFgsxoZMtmBAFB0mSANOBxmLKd7q9eyPnlmzAwrnt7RMKFvF8zLEctyg/VyRpeOebrBhNVMoe2C9ekjRDc7yffcgd7QdcLSJtsKIhO+vFPc332DdrjD/RffWmbeq28wv3wPnF4A8xGAbTGRVgqLs4eGWmHhECC2C/VRNrRW7IG6hwFjABQF8YR5mFc8I2+aoDVyqbi3/45fufoPNkxiXnAgZif79FtZdRwWquuqJ/SRn5mO+rUbX/0EptbRZoHIjNYUorZyM00LDsc7TLj4qmaHLBNO9w/Q8ydcnp4wnWyRYpktE1m8LhL6BYeD1U05HY92Clqzrf3bZcW8WCH5vl4g2LA0Own5eFosXXtbIfNUg1JApeHN8YzTw2eYb2/RHj7Dy/c/x+mzn+P09mts8y0wHTDPdipi1tnJ6JQRfKMajXyIj21LY7ygoAMJie5kI8nOdI77mPK6exN4BX7mjvd5NVlmCJlnmbr+rmRrd58SNg0YjfwtnKXc9oh0Z65eaWMqsKsCdyWXU1NsukIm4Lgc7QTayU6KPH/8HvOEdOKWxWqHHBYrKr9tDafTDfr6hMM8W00qXKASdYQ6DtOCdnPAenlyvQmgG+bYaeANy+EGgobemx+WYbVLt48XyyTDhNvbB7xqJ7z47Gurn/LiM7x//7tY7t/i+PJzYLkxXJMJy+EItDAy7WU6ZsQ0265wzYsMtKQuY51SC166Jya9YyzkVx1wxRgCErxoh7ZSaP1J/Ro6s5QrPUvGRbPBLig54ED6cOjLMKKiA38uZzfCeDI8fy/LqrB6T3PDNBt/tXdMhxnoK+ZpBjwALK1hORwhZ8Fhtm39p9OCZTmhr8AkHU/nMw7HA2Zp8JQrq4UnDW064/J0roOuRAGZAAEORzuAzEoz2/a9TcXrrllNomn2WnLzPV6/+ynufvInePHZl5juX+P2zZfAtFiGe5uRi5ZAnnofZOBtfPs5H38t6FFYyNcU7XS4r7AM13ylewc7y3mlsMxOiA4ykPgm1orJT8hRZIEaDuXzvcu2JVxrO+0gOOJbhiNjxYarbPPxLVeK3OmQkRui6Y6eTKt5soMD7KAqhfiBGsvsi/bNTthdDkccjiecP3wP6IZ5NpmY/STmqQmmZYH2juNpgcAcwMNh9tInhhfTtEDkAHSXucMRvc/QdoOLHtFPrzG/fYOHd19jfnyP09tvcFkVt+9+AlluIdMRXRo2AJjsgJhcaI2x+Yg5UFYEHPWVghb5CVMGG2tvt+0CbRnQDaa5DFkjDfOkULEs0chM52cZK4Taqj5wLc/gezi1GWTWwFuTQw40J9JkwJN0rm/Pt4MUxjn1PC5WYK9kKvo6Ymb+Rrbjtq1WKkAnSFfIZME+Vat93dC9Bp7g/PEHK3EB9W16M3TruFw2NJlw+bii99n8icMNZl2hOuPp04QmD1iOt1bn7HiLw+MbHF5+gbvPvsXps29xev0VZD4C84LDza2hsvNnFsmto0G3vT2TO3MC37XkZLBvQxSYtxq1HUuXkMLygIoduKbzgpubG/JZuyeSWMa2beu1k8G3zbNA/f3m73vfcLlc0LeLHT4R28tVoXkIlfnJzXHvsm74/ocf8M/+2V/gH/+jf4gfvv8e8zzj/Zdf4f2X7/H+y5/g/fv3OB6P5tv5wVYhd3HgThxoRpI30lSq1nfibtpxmnIY14a9OehPqpuPnfzZYTMWoFvahMunH7CeV4iseTiZ1a++wXTziOnhAdPpEQ+ff4OH6YTbd99A5xOWu1e4ffsTtPmIeTlhU0GXhjYthguNt9H6eJt4+TDSB7KQjUxzB1oZsWlXaGaSD/aGFl2mJjj5tv67u1tsq2Vubnlg1Iau3b5bN2j3hZXFdgGtlxUfPnzE9z/8Bv/4H32FX/7lX+Dp40eodPzw/fdYLxdcns7o2vHp6Ql9tQMn19UPfLnYlu/z5Yw/+8/+33j3/id4++4rfPfDJ3z8za/wAMGnTx/wy/MTfjnfYNue8JMvv8Jnb1/jZ1//KQ7ThLu7O9zfP+D+/sFqSfvhPsKHjuUMzAmFsKXA38dcDJkS2IIYUDYu019C/kfsA103mqVuCwjZGvjxrx8d4Dsugm1eMU221xp6xu3NDdrtCYdpxtPTGSKCw7ygScfx7h6yPtkefb34VjU7FWc5HiC94yCALEfcTAfg/ITj6c4ktm04Hk5A3+wUU1FsG7DKCbePr6DnD5gXQT9foA2Yjgt6u8HN/TvM7/4AP//2X8H9my/RtePw6nN0seKkZiTYKsocNW0EVkdvsykxnJYXINGrLkuCRyo+Nq5ZWQegU52ygeEF6GGUJhCBr4tnSK4y2G1sULroChn75NSko0rpx/F56Ee0m/d7H/g3uhaa1QJrvPHbdQTA+pNGC/1ENFR4vbI24XLZME+ANLXad2rF3q3o7IYuwN2LzyCyoH/6JSaxQt3TtJgzsdrpRaIdXRuWwwnbuqJ1O4kMMgNTZEzZd1sP0JyAyxmX84qtb5hkAaZb6OEe06vP8ebbP8Ty5md4f/cepxdvIDcP6HJAV8Hx5pTGk0wt5ShXQruaUUhGsimeAmUQn5KuzzgfyWWXuZDDssPIkiKZYoNVXUTSDyDEeR58yvBgZbP/nArFG46tIiWDcjWmEfRCEcUKMj1/GNe+t4IS/utXzW07TXFdJi9ev6IdJ8wyQ7y+lIUuFjT1LUBtwdrOuL2/86DxGWbHNczTAl2fINoxH05YLxu020mB03HB+vE7iAcDdVuxzLtTL9cz2nSEYAMmCyZPp0fcvv4Kt5//AtPrn+H2/c+x3Dxim07Qybb8ttnqrY1L4iVLJme9YERh8sfZolrMZ4XEQRaeuYEHGXi9YocmD/YKLvlDfOaf6tlXLQ4YW3NJh3GwI14OP+NUYfEwN3igtMIuv0WO8jUEK1Fx0wHrFTc3E5bpAZenM+4fX2Kaj5iWGZfv/zlOB8+KmIH1smEWwel0tNO9Z7GtZm3C8XiDeVoAscLugmYnzh8sGw/9yU+EP0F7z9Ml0YBlOaJDMMkCmRf08xO03eH46gXmh8/w8MXPcHz9DW7ffY357jWm0y1kmrxQuBlObZ7RPICT4+uKDXv6O2GSKM8sjAW9mbfE42KHY6eGPrW2UwMP+vRKqkq8QoDdKAtnwrYpkhTsMCr1p+ZTcK2nSQZZB6esKmWZqo9xh3darQP124DHbgdkhmnqAL7ftoZa/UXB3AGZDziebv0QjQ3zMqPpWhnp6FiaYusTDqd7NChEzyZ/0jCroB2PwOUJ27bh09PZtpNPE2SeMU9WT9mr5cJ270xYphPWvkLQsK6K9uJL3L75CotnLmznC06vvsDhs59hefke7XiPNtuhHTgc7VRcFM9yLveR1szqxLq9vsz3WnKnoxwO10k4iSM/9o4SokkHsJSdvRwBPp49/pWdJntZSnmOwEvxnl+VDWhglI5sfhV0cscZfLjQ3kF5hnYxZh63j3iaG9Sd9HluALodpLJtWJYJx7mhdxt7X5+wLGL18+bFgjLzEcvhiPXpCcvxgE/f/waKBU0a5tlsxmk5OOQIdLrF4eEF2uEFjnf3mB++wPz6Z3j48ufAfMLxxVvg9GBb35wei28ltZI7Vbcr5mFsFef5z6IVei7sYfB1wPg+6JXtjHbXc/TlzOAo5JQHWGX7xnteTOF701aK9l3sJg88hYwUfhZfIVEjVqi/FngYshhZhkTQ/JCRevY41/aBRc0BBR35WpY/5IWBcGYWCy5ek1bFypy0tuBpA+6WxbLdt47zZYVIQ5ejHajYF6zbhLacMM0NN/evcHj7U8yP7/Dwxbc4Prw1+6sJpsMtdFuxrR3Hx9dotw+YTneQ6Yg2T4CKnb6bW6srCMWv0mVA2Ptg/ifv4f5C0WavO0Z5it+rXivrgUkaevN87m51LLWxXEfbU/aRg0C5Wy2DQ4apXAKldI+LGWX7QsbaY9pjjHHQSsgh32PYJ6IZzAN0n1w8Bo1rUqAI6ULv7UyT0H1GM5bT3sdGWTznZcKnJ8W0WHLJ5eMTzjjh8PoNHt9/g+PdG5zefIHT4zvcvfwMy8NrrDphuXuA3Dzicr5gOZ0wNasvqvOCDbDDOkRw8AX4oB9vyx4W81KfkP3gf5M8rBvJUk/scFJFwoj5Yr4w4e02EfNPUIfjmB6kOakd27ricjnj/HTGerE5c3tzh5/+7Hfw1U++xratOF9WnJ+esF7Odf2nj7hcnvDp40fLKl3Pdhr9ZcW2rXi6rPjh0ydc1o94fLzH8uoBv/zVb3B3e4+H+3scjzf4+puv8ad/8qf49tuf4v7+AcejJe+0NmUwtGhQWXrsZ9M0qzES/sR8DvGKPAnl+9kWSF2fzKOb4yPjvQxxpp3p8Vd6/egA3+EI4DjhcLh3x1QxH+3UNUBxuruHrk84zCfM0nDRhsPtI07HCevlB2gXzIcT+vkJgGBaJuhmwjthBSaFNDtpqJ9XoG+QtkC9bt58uMXmp9Fs0w0gE6bXn2O+fY2XX/8ephdf48VXv0C7e22rvQ4iE223zYCdArpFersS4+h37cMqm73q71UgjLfp1lWD4r/6TIC/u6uCQuxWEwjFi7d+WGpoXRcBJZAQxhPYAN3/5bFlUOrK4Ktx2Pe1CjJsRwmykqc/AhGPPPA6HLANXTccpgXSZsi0ARDMh4bLU7dgy9MZy8mynebZimxul7MfKe6nH2KC9A398hHzfIAsdxbQbTOkAf3yEW2asa0r5uUW6+UCabd40gmnt19Cbl/j4ctf4PjqS9y+/Rqnx/e4tBltOVgGC3wrhRTfUlJCPhTI4t7O35QK3+LARk2QZx/Y2zs0bDENBxDsQIcN9SFSQ/TOn2UcQwTikq9+obJ47kAsDOErgxb78aBkLY1OjC8d3+y3wkVb+4Km0WYCPGXpxAm7cYpgkw6dzABBBw6LFdadJ2B9umC+vUXfrAA2zmo1RyfbIrVMs9ev6ejomI/3Xid0hfZmtacAPG0TZggmNKvFJpE4rIDMkOURp9fvgPket2++xOnL38fNu9/DujxADifbRukrwwutEAffatvzaFgXfNXKb11TeDMG+TRFJSifDqxWYK8Tw55VVM8qr/HLIS6ZuEL4sJMTxqhQlGMGz07pDoYRzc3MzHq+n/stdMP8zBvrKwU8uBfG+Hjl6zcvcfnVatuF+kfI5Qnz4RE6CQ4nw52+rWiHGRM65ibosBqOh2W2TPh2giwT5nbB1G31eZ4ndEzA9oS+bVjmE6Z2wNQ6ANsedDjeYLl9gfnuM0wPX+D02Te2qvzma+D2NQ43j5iPN3aSpddYg5+2ycX3FbBTViOwGjTk+RXS4VsxwrAeaazXvGH9ViqsZMz/5lZMMtygOzmSAZKo/8UYk+Mx03zQi2WdDfMp+qHU3nVQecS52IYR9zAexg/xxH2wZXjtxvy8/oYdQtVnzALMxwWx5edwc2O67tN3uLu5w3pZARXMohB0LMsJy/Ee2/kjDocVTxfgdpnRFTgcTvh0fsLx1k5i7Vt3p8QCOLrMfirpAdO8AMs9phdvMB8ecPvV7+P27U9x+vxbTKdH2Nbf2erdxNa1aSq8WRYAlX1UOmfPh+Jb1USme/ha1qchr0l3xjYZeIQdLxUYFlqv7TmWIWca/eGOJfSwk0nPy6Le1H44xNxYmQF9kJnRxiS5YbtkZ9uVuig6sv04tM30bM0Cyy0cK0GbABXBfJDcJIM2e72vGdoF2DrWTx/RMGGSBdPh3rJKm9gJ98sRd29/gt5ucP/Nn+D2s9/B8vJLzMdHrM2CeIfTDeykWMuEaY5b4gcbpZMW/Y0DbUyJYP9SXB/etCMqmMOFCSMNn/0t8IKz5HY2HuvssYaivRMg6+cyDws399tAMWBHZvj7MyPowQHHMfChibF+gSu8Z2jH35GnPNoXu7k0LPxf43E89nA44Hz5AYc55oVgWzfIJugqWLFgvnnAdLjDfPsC8zwDh1d4+ZPfw8vPvsbp1XscTndYVbHNJzw8PmJaFjugw/vXmHbNt5AP22p1T+7Sh86zZ/FKgvJg1WJ06KH/9rYb+4c1j9M+EyBOgw97JWQFavhhdLYCH5EoEjwOeYsgsCr8lPOdTGajCCXm8iQsXhjmhI82t5lyEDDHUPI4KH4tOWdaMdVjfo5mvz/MaTIuKlqNxjwxHByU5r7Zuz69wPGzL/D49i10fsTLn/0xXnz5c9y8fI9tOZrePJ0Ate3X8+GARWxbu0wNx9Mt4NvZl8NxIB+g2JRo0dl3qzEOfhvboz439xloxkMPxGbpj5LHODxTQgUmRe26CFSzPs3SE67r2zTh2E44no7Qfu91P+PZinWrw4M2P5l721ar67haZui6bVYP1DP6AIv/hM2Zy7it4XRjB68cFtvtMkXdT3FNHZiHOgBrpCVy4SIoG/OjtsfGQn75PTQLUzTZrriy0/gmCXrE72QTlNIfnvJjXj86wIdNcX93gky3mBqwrWc0tVUOORww+6EYkxwhyw1uTndYP/wSDRtkvsXcZuh2QZtnzK17rWPBjM0cBllsW2RXbGu3GlfLAhzfYPr8D/DwxS+wPLzF5emC+9ef4dMPH/Dud/4I23TAfLyz1TlPzQ5gSN2immm8A+AiGO1b19Jp2e2JZsDeKasBjFE1NVBwb7/tagINfXAU27dlAM5KL5wNUuCKdNpTcD2YyQZFKllWICFw/JcEWIFhVZM6V2Ojn9i4ITNkd022nGMJwyPH04HDLGgQtOkISENfLTV47Yq5WRbfJBPWyxMmbI7pMzouaFNDV2A+3GO9nK3OIzomVavV061vvQtk69i6FTztxzscv/gZDocHvPzp30C7fYvTi7eYbh/x4cMTHl6+sufOBztMQcrQilR1zdHjSuYyvhTgO9B15AkDwl5e8o40uovuo6wmwa+UbhkLyCL6aSC4QmSDplaY4zf/hdLCmb97Q+Q5QzkNXVJmV7KWRkj03Q72oDW+/EXpolLX8XykK8+G+7qeLXtPN6v3I4INDdIOMKNoRZsFx7nhgo7pdIsjLtDzE0S6paq3hnmxen7oirmJOc5YMM8Nl7PV8YA0tMMd+rzg5vElNkw4vvwc83yL+6/+EIf3v4/p5hXmm3uoTJiON5A24ZgntkVAz8e09WElqASI6Lmn+6DkSgY6O8ckMWTLjfP7t8jktRe7U2KZfbJTjnRXGULxvJobdbr3tfM5bF3aYXS2tJOtfJaE3Lnk8Ar01VBL9vbB5tG8RfUHgKwrcPmIuwWYDgvOny6YLh+AGVi74HRabKuZqmUqbx3tcICsHyDSbEFhOQDbR1w+PNnpz10wyQaI6c3j4YCtzzi8+SlkucX88BKP736G05uf4PDyPY4Pb3G4ewFtM56eLjgcT74l3RzhyYfHs2vMAg2aIw2iIN31gtg18XiO19wX+lvPFRhW1/WjHF4ZVKy2R3buAZCcI82njTIdzm+v2xNTqU/esSxl8S+YewPeJbbTMBRVU0s4u2B0xuL3eLYmt4rcyzxh3hq0CzoWLLPgsACXp0+YphMwzcByg7l1WwQTYF6O2LYV69MHHE8H9EvH8aiACo6HGa1vvu1ScTkrRGZsmNDajK0D881b3H/1B7j//Oe4f/ct2u0LdLGs59PjK4hMebp4a7GdNCoI+aFSsOcBZiPmnCauFF0x0DYn/sBvQjOSpbgpbTYwPXf6l3i+119BcF5guJLB7Pu1Qa8kkHWvjPgzNCTj/TzOYWhEl8HjYawP7GSsHx37/ULzlT0iAsiEw/EW89ywnj/Zrptt9ZNbJ7SpFn+n5YC+WhbIfHMwGbx5YTU8T2/w+M0f4csvf47jwxvMhyM+PZ1xenyN5e4F1vMKLCfr7jQDy4zZC8pPET1kTPcxdXcgeX4GXfNql7OylUf7aeTDTgbc6Cco2onfzh6K3/r+++rjoFNIFrMfwI4PPo8EiBy/wmjJZ1SiQ9S6jmfYts1GQUFzRsOSkhzY0E+ix9BnjB/U2wjMI4uTxoPf+ld9bGbPW7Z6387AckK7e4v7z36Gz//wX8PtFz/Hzf1bTHeP+PWvfsC2rbh7eMRyOuIwH9CWA043t+iqVtrJ/UWoHZ5mfuMYNInai9gtUvHc42mmDupDhhrggUylnSwjkUq3sX2+u4qwL59FdtIYEBwQEbaFuA++IVxeFEC6mu48i8uLamX8jugTvKF+ao0b4SNF+l7iqiICgylvXX1xlOyvK9nS+u2KMqC2CZNTv+/nvj2LvzNfzgwJmY/49n/0H+DVVz9DO9ygTYvh1zTbKayAZXEK79Lizti6gQjXei2i1XfGoQxAsdxkYhIQpzXl3HEZSns4D48qGhdL7LMAWefyOoA76oDol9GF6w73bNOC0rBTo5trUrWkiRyuy7NhCYr3NkAAfsgMInYRT0TFMYisgrHv1GmegMPf7EfQmPTAKEv2G8eN0t4YMBy+8MZzi3aUBG1kUB/26y6gfCXEf8XXj8/gOx2hH29wujnh/PHXwHTApoLTrUWm108fMR1e4nD/Cv3yET/8+p+hXz5hur9HawbMgo7L5Qw9HAG44MRW2ekG7eYRmI84iGK+e4XHb/8Ujz/9V3F4+y2Www2mZcG2XrAcD7YVRKbKYiFFGUwYDWLJlTComjPiWyVZacF/L7VTE8CYzTWDXPGQO/ScE5yGYEqElDD6T5E6XIMJB6MmSCifwkTNQFFMiAAtdopT7PbGJxsVDKFp3Izfy7VWGsZ5lcHxrPSWFolJz+AosBp6/XsFpgmHw8EAdxJoX3C6ubETJjHZ6vBmJ4kdT0cLpqxuROoB83LC5emCPh9x2exgje3cMN+9QFvucPPqK7SbVzi++RaPX3yDw/0bTC8+sy4uJqOzF8l9cYcE29j2wRmTJRM7WoRc7mvpDfxhoI326jtJ/peBxIZRXDfwdnc/hOWRlJoAOsgaUvzKQNwXAuVg3zieMTBZ1yRIBr005g4rFZKCHViXgxvGJgX0nnmRNA8Gf9JGwshtOC4LRBs2TJgON1jmE0SfME2CflFgPkJlxs3dAU2f8HQ5o6vgcFwwNWDtFyyToK9WSqDrhE3sZGedD1bf5fFzfPaTP8GLb/4Ih4c3WG4eoJgx3T5C1w3z7R3abJnH0zRbal9gDtSK4mNDGjCqtTKKsQ6KnfgFohcr2yCrFlWY9Ml7NjhptYrkgulfK6HOIeEG6Zk6frd77IjRxK/9ogTXFeJg+SB3Vz1wgl3DmPW5ARTn5J94ugKJ+ZWFm3i2Hx7J9OE04WM/Y7p7wKwdmO0589wwYbLAyu0dBB1tWiCznfi9bme0aYL2jsvTD35a4oR2eI3eD2j3E2S+w+HuNR4//wZ3X/4+7t7/HubbV+jTXFksXu8qslxOs+thxwCl4Gn1nYhFjuzemH6OqDynBz2Tcz/0JhGdaN35Hvp5z7d8tvJHLwYf+MGGohtfAWn7rWWI8QGjLLFMpu58Bufyb0nHGGRnOS3Hib9D1GRzBlWgi52/GNk4v1WthvAyHzC1I24eXuPjb/4x1qePmJpiwgVtUsj6hGk5QvSCPk1Olsmc6NlO1zwcDlh7wzbfAacHnF7doR1f4v6r38fphW2zlWkBpgWH2xdY7l8C08EPKTAnKLb+SRrs9t+2daj0DBCXbNHYxOgWp0WGw8Bygbx3nH+lXwYULL6GiiYe8u9X+onkImSApAMsnbkIphjuu5JfRc67MUPe70khuH71cOqexXWSXSJqiFHN4WgrrtVR70Ophh/LnY1GVdGmBZePdorp3eMLHA9HfP/rv0RriiYN29Yg8xHL/WucXn+BPj3ixav3ePzqd3H/5ic43b/GdLqDTkdgtjInEIG2hpMI2jRDW8Nyus5KY/1o7/eZwk5QYYbbZ84+HmWF74vvxu9Z9oR/SpKONqHSBQyr7K8wXV0A/JYRNxIGdtI0ZjSJlQ7RCpIrjYeokQGYwU4C8mRw/jKDj3u8HGgn41zW8b4Yfx6+JEJlaeBZ20TfnBeC+eXXOL34Aq+/+gZ//v/8v+Gb/86/jTe/969juXuD6fYR27ZimhqW4xHv7j/DtMxWk48CVSrA5DTeNgrAxFMSYijoEgst+1HnaeopQSOWJPTQxBt4VnSLnhgPeWtpYUSRvmSmdBVnifP3dW1mrFMGWAfpJgqwaLxzH81OY02wDtbZLZHJp04r8utS56s/QEIbSyUXcMAk6CyKyk60e0seR77sfdA8sLKojLBLiyVqmehk65qsNcyHA27ff4vp9sFPW50qcCW2ndgCvwC2Sjhg+4P10BXfRSozFFSXnewE87kIG5JnPCc170mUJlxnvbj3//ZzOf7dxxLCH6t6suFTJsO9XyTqPm5eGIhrJSZhYnL5C6UyS8czMkWtWuH5nM/oyR9TaGTv77H0Gd3MtuxgxxHf8oq+/77wNa7jEGDMFfsrRI5ri/av8vrxNfgOB7TzEZeP3+OwHHFeu9VbjnoIk538+N0v/wlE7fTHNp1w0Yb+6YJtNcE83L7Epg043eF084j5/jXuP/sW91/+Ae6++Dlk8rpXywnT8YTD8Wjpw6G0ZitsH1NqqFdGAhuppvZRM8CSxU39unppTUwYWIZhlJNgtBETKCqKXtdwNsmA8X7nuCUuBLai8HVlTGgZlHMUSi2NMxq9+wDP9WRmAELeSzI+XMO9CvNg7xQFqCcADNePF/J3owED3N7eQC6P2HTDIhs+nRWHwxFtVpyfLpibYmoz+ia4PF0wz4LDJrhsF2zbhK03YDrgw3bC6ds/xed//G9ivnth282mxer8HG6BtmC5uYFMCzkidCKdlFMogG3rAAA/2nuQowj+XYEJERTjWwMRPjlZdzSV+o54zzQbHOfgyc5SG41eDr4gVxryeankvPVebecik4xGTDoF/o2ijOfnHN2x3yV/w0uHP+NcHRxyHqzsbvKP4l+q1M/ZZ8saOd29wmG6hfQnbJcnzG2DbrYyN7UJW1e0y4qPnz4AfcVlBToatkkwHe9w8/ZrTNMRj2+/xfH+JU4v3uFw9xLHuxfo8z1kPmK6e4muzeu3mMEwTZbOP/ofCt0I0/ZRJzeIC6PYmFEm2o7uVKNxIBDjDQaFmD1yLAylnqtw2QQNQHTgH+v3Z+cDZV1EJlTQYa+cA6P2q48pc5TpNGDsTlEPU0TjPpTFulMNcVM4PTsXacQ4vj+MNijW8wVNZqznDYozpvlgpSI2QGA1g9bLaifJzTM+PV2wtAV9euHbjo5YHl5iOd5hmk949zf/XRxf/wSWyGcZn20+oM2LZ0m1WgUmdm0u9/HqvTAkjKYyxEwXDjwJoijRdWc48ZwH/R73S/A6QDMN8+C/O0w7Wa1PMVl6OiVhYbnJiFw003puyM+gn3ofMIX19N4YHpyrMJ6VswWQ2BJYHNuEonHGwRhUOHdDDa0c1jiZai4XG+LnuHaaZ8x4sKyXpw+YG3BRP0gDVo+4y4RJJlyePkE7sByPeNo2tNMjtuMJd1+8x+OXv8DjF7+D0+uv0O5eok0HOwhoPkLaZFtxmy9KCMbtMxTh4nmac0i5FpwVaC+x0tG2+y1SUPR8JqtbNe18gHZXhIzmKnvR98oxo8fxZ5b5woIaK5Bx5OLrju8Z9MsMFySmXzs8PGTehqvPtvnbID4X6nZyuA9o917yG2Nkx5Fptl0ukA043d2gr4onUUw373D3+h1e/s7fxN27n+Pw+BlOL7/AfLqHTn6ivDTYgSwNF+22VXtqlpUnUkTwh0a9sWFccPQl3WKL/zsLlBctfL6J64jCf5fPxGwM23cZ459bdC3+J+wHipGpWJgxYOPOuf+tsgKkLyRRq4/kqIJhu11LYs4uB2zAMqak0XgeBKw+Z3s65rH+CxnhoBOPHcBwsJL6Z+Yo75hWovu0nPDzv/u/wMt33+J0/4if/Gv/E8y3jziebr2mYsOxxdY9QGY4Xzu2Zw+q1EGOEbz3AE6u0SvL/hhwiBPtUm8OzSsCd8r2CiLXghp24xX4PE3dATKuS1bjGdfnBuVD8hVQnCVayDe23gh3DRH82utKk5uy98cARXSybJ6xO5WpFUGylEmnjUBBH8dFEqJ9JVnotWzS3MqA5miUDfkXmS0Y88G39t8/POJwOiHEfNs63RM8Zd4NTIDAs9Pi/xFIJ+zt62jbF+4L8Y18flWMWxViWITfrJc0sDsooLtb6j62t8f8lMKskGfjn+YBFGxgllVcGGOXlG99ZWeTcmY/Mnuh9Fl348h3kvwfMuoZkHeZCbz4UXgW81lqrqU9Fv6PpuzUYsSulFViKmUqu5wJJOftVfbnX+H1owN8n55W3EwztssnrC4Ah+MRTx8/GM3ETlQRUVwuQFtucOkNh5vPsbz5DC9efo67t+9x9/Yr3Dy+xXJ7j+XmAZsXX765u7P912IFeys5U602giZlBiWisOK9LYwkB7C+1XYh5mkY/mO01v4OimmYuv7an0a2N5L8mr0reeXsACkI/BfDVRzAK4HpvdNk0hSeYYJTn6wl2pIxDKBoWDfG40jQhY2YcUx7sORAQioNz6QYqTIaSGS5oKugqWA5niDbGYDg/NRxPAhaO2A6HCDHB8zHW8zaMB9OuH/7JdrtK9y8fo/j/RscH15junlEu38NaQfbsjvPWJY5x1P0ZQPcnNl0bmtg1HlS8cOppCDlxECPK3ljQ56Na0l+F/CIifVgRDwL2g5WZZWRwqW/jFVcg0Jy4KQodvIHRObLKG/GNzJeaR6N3zFhRzmN196xGglJ29gAMhD2qdxIAM4gd46kXqfTEVgXTKJYz98B68Wd7Rnt5hVwPOHFZz9BW+6gKmg//ICny0e8efMF7l58hunuES9ffYab9z/F04cz7j//CuvTGZAJp7t7bFvHMs1ZrHpuQXuXdShk24oWhGu1QLEFsRLTkjUD74FyKEbi6fBPadbBuCec1LphUFoDw6ONwREr52h8EnafyoBR5WsKjwuSSAHT72n8usIdDV+eg4HJRDG/PoyVoX+6C07EP6RDmALC98a/g2Fq91zOG84Xxf3tDFVgXTsEDbd3r4HDA27efIG7V+9w8/gZlvs3mG7f4PTyNQRiZQGWI2SaMR9uLNtTvIZZs1Msa0U4xlwyxfwqPVWvyAzXQcZGp6V8jN1eWAQ2kRMDDIaOf5G/9Xpj1+SKO7VzNaP5ReNSdgzK4bFh0kWILLLn5gY51yRTQUP2r8LgzcODaNKo8oIfBuEejM2BevXiU+6rL/4+x1cKV+k6lvYNB/S2AuvFMvS2CU0Oht1tAjBhPjzi8OIdDoc73Lx6h4d3P8H84kucXn2OeZohbYYe7zEtR7RlwTRNmNqEpcmwIMGsMdJRAEpj6mgSMPGilKjZNiR3ISu7WUV0GYDKucu2V2RraJpSyaf9Vt1dm0OLyftRvvk5rB/382UPBIk9QMmBKmpxtwI3kb3I/Rs+c1vcf62+8zX8eQhcO7lL9thhrvvNKdmNpTXcffu38eLxDd5+8zt20vbdK7TTA+TmATKf0NUO3fi0dkx9xvF4A7TIYLHATJN6TmYU5dDcro+xaWFL2DDWJ5t3G9GE6RO6Ljki9IggP/a7FbwNsoNCn2jgDl/qny35psZTNBuUAs0TRdrI9U/1nWSFEWzvXLOMpBURQavdfQOPyTbMPmb/yJ0eb0LMunq2X5/YWeMe+rYHvhpoglmQIW23NuHNt3+E4+kGkIbp+IVtdIAULzwwts+e4Qc2aVVX1gMVORZVqw8Zfg0Hin0wg05R7jPJ2mAvVTBgxI5h4MX/wJ4MaDvvgnZDvTYiFA1zrMcutS2/7kT6bgo/6RxsOGebQnLANBxNeaV5osmDwIzAGPZErF22YulNXJu6wDLyy8eJvu12fDi19/XCY8Ey5ER9jMNwpSXWQwTndYWs2xWfBt0hmgtaVruRF7fs2fvs86BDDFKIh1lfOPqhqD4h6MD22WgXXdu/9bmDYw2jLzjci92CZXaJQIvwOjPokkT1IfFpbyNAQafR5XXVhV1cJOf02N+UUsWYvOW/DAtrO/zlZIK8g4K9ms+QOvW2V8bv3taNmarEZ8aHCHCGTIuq7dSScVx/ldePDvCtZ8W6PuG7X3/CPG04HQ/YDkcsb77Gw/ufY7p7hbad0T/8Elju8ObbP8Z0/xptucWrz79Emw+ACJ4uF8xtwrSYc3KcJxzpOV0xEDEQpCYqfLKaM9MU0K5Y89jwnmqMma8OQJWRhDQq+TmDDO2MqYzDOoP2QlPZUDFxSqVW+jV8z3mkYO+zkTSVcQFo1fgZIvwEsCW4rhx4MAzCg6IYRHUAh1FwR6C5AgUmtA9DPGU7jWN3rPjeWqWorW4igk/nFe3pjPtlxu2bb9B/8wk393e4e/0lHr7+G3j88ncxP9jpudImaJsg8wHTcoBqBA6BeZlNxUwTgCry3PNYpxoXbwnIcXnfElycF7a9uyfHRiLrQIqQu3o/PiPvD4VEq9TJHa7fSPeFOzMGc8i0yTHU7yOWCLpvbbHybnZnbV0bacGd12F843Wj80BOBUK5lmxenbwWvSCFks5ViVcCsOkJnrtuKA3BBa25hvE1iR1E8PThEzA1LKcH3L/6Ci9/52/i8z/813G8/wzT8QHn1XBlOS744bvf4Hxe8eqzd5B5zgDe6a11aj5K9mWaMMxRGYKjrJD20KP5O/ObQarv7mcajnjAT/D2hJRXYNQzxca5PzTRubl8n31kGY+fBbCMqjjRDwi+sKwq3biXnbisaMP8Zdncv98Bu0aHgDERsa7jNjIuxdZpYiub63WvEL7E93NrEDkA0xGHh5/g/ouf48XXf4AXX/0CpxfvMB1ugemAy+WCp6dPOB4P+PTpCa9evfaV4Imy8spIjC51KCQy4MKQ4DmYXfeQeBq4iu6nyI+TjGA9aB704rmeauuZFcz8LGTkRtvVPxKgIYhQf8oDjy4MRjzL4lhNYLwvcEgZO3kRToun9LfHtTGXk7YoZyrb47/0vcvd/hqADVsMNOTvBoVPupTDWvH3ctnwcTvj5v4Fbt9+heXxNW5fv8PxdAfdVszzCYcXX+Dh/TeYDnf4eFnRpslrMtpW7qm1IfMg2lcFRL1gexkGOfdTd/I/IrsTYoPvmveOU9G5ngLIdBjxPljPOAJ4Pb/4Ndc4IzAztDqI/V7O1R0PthuFfwddjvEVgTtNmyPmCQZajejPuLWTIfA9ezmr3ysQicIAkpeSIbrfHZHheR4cGp9Z/ZTpgD/4H/8HuH94hErD+XzG2jsOxyNULIPl9nj0RYhajgYqc8cOtBvHU/1kHK7srMxa75pZGFeLUDssc9M8MX8wawTDoUtXWRUKgHdCGKlSVqoto5nyQvygI+jV3bIRGnfg0XDhtd6NQwtCLgfb3R/b0AY7d2gteEtyTWKRTV3xfbjeMXRXT5rt0utAMu0y0cK6aKc6WRlCZYt7BhoU8Ixdy9A1pgoE204bG361PDgj9N22lS5qkTEKZlkve8g6R3JRuMJ9i+8EMgSJkwVDwH6w9kiuQocWzS34/lxCACevjPNWh6bH4F4lV9in3F0bEyQ+ay022EJ61XZk+yDHXp0h82hPn5qHNmd9jCXUOfCaG0Pnh1KILKPpbQsGHItt1KrjMzg4iME/tede1g1yuRTVIlDuwTw7oE9TaLbeyzbhv+K2StqqhB3Y7+YregVfc77GK3SOUHmP1FlFv5RUV99DkHjYOUY6IecbYQLrw5j9WvbXOGL6hnTkVd3ENKrtXpYT3h105R+mHcXUiq7zM3QHeyzDhiNhR8chIuxlGYbbg7ZdcDweHxl+A56C6VLJT8EEJXkhxvzo148P8PUZ6zrh/v0f4+U3f4ibx9c4vf4Sb3/3TzEdbwEXeEutt3o/UQhdDgsign6al0EOu281DaEZhAtIAoq/B9SV+mbBiQQKNh3sXzYi7Q9NsGfGKMCwbSPrILDCitY7r1LHPRiFWc34KH5KthnOeghzOMBgIcv9JZrAUnNKiV67VYWiQM5gpX/YiRmdfKmx+OcMQpBeY3MjgHs0cwk8A8CAZ4gefQ8FY/e/+vm/guXDL/Dqi6/x5g//DUy3r7F24NOnM+5fvUZrE85PZ4golnmxE4yWypLi+VMhVs0tM2YTlPPGApBy5ABUpzD1qJpKo2TnWUuphIK5Gm5q6J0ylCFgGP0aA3cj+bL+TvIA+bn3quc4/kZKL3iZslqgH2PsSunzJhTVNxpSyNRgaOwVEokXOyP2cwUCtJ6GlA3xQGSSbIeIw6NcUaQSLBBNeU8jU/Dwzd/B/d0dTq+/gKDh5s0XOLz6Gm25xdYVT20G1o5pXky+liMe3t4Ngd8owiybP4rnHNGLA3UCkrWgwXN1Gl1m48TvbFf3M25PDnagQtwI2xRX8kXdrX4S/djtUGgG8RNTleUt+DguYAyBFNS9IWZXjkL0U3f4OzgPo0xdzZvEcAnNHN3xP4UR+fUQiBkGhAL7keqMide0FTz84r+L9//6e7z+8me4ffslpuO9nSgJxapWdqIBmI8nLKcbTFPD3cNj8qBwVGsusmGSiq1wRVD6KH/pfQgOB07u6Xc1BpIfegTCQ8gsvN19nOGWdN23TSffRYbV4GQHnpFBFHM4DCxxo+x5w3PUUeMJaM8dpEGyh5C9+J5PbfY2Yns4ZUY+G4hJW7GEPu8gu2MvfyOiDLMHTN7YeHh8+3N8/Xt/C1/9/t/Ezcu3digBmp+QLFgvmx145ltsb5UyWyRkzXGZdZkDdAZrdwBUjnI57ZHlXqZLAMWoIyiJaqQdYUK8+PbgTXx1haHg+WKvqnuYpLfv47OPMefb7tlaLCMb4Le9OMitzPHBmNo7eSF/WX92kCe7jmWyfisnbJShkEHubemI66CiUG/ouaTPAMOtDYJ5mnG6qaxiEasND5D+Zg3vwZpxziD1KqAemAnbfLvCuMADs1d6wjP9STqkk80ym4JDtiuIVju67qTWGx+dUFAfazwoude8E4Dmjgi2eYYneJ/LNvTviY+MiwPeP6Pjk8s7nE+9r/9iDMv3IQcDBlEduJAPWrSOykLhd4z+UI1Ge8+DBYZ+61gvMnAaUjXNJonM0LBtO9ZNkzYGcS3H0XXz7OF4ClsEsUtqjynRUyADrdoH0arWaGQV9UDIx6CvfN4xrTlYuD+4rwdRojOMcyF7lPQQ07rRiCSbIDnYyZIdxBE8q+ewP2rTaD9D2J9ibPFxQkmwBxL4vB2/Z4gcZBgjtqhgnDBRyy8OqmOMiOv8tO0ySIEmVku2Fg+iXx2r77xp4QuQ7jP9oinbZYUIdBcwuiIAShYHqAq+EI4wDlfbHBgd4x1XMYa4X/l9BRBB9PbBOc/3ko1n5MK/EH4a0ZHGy2NkPZjwvJeP5w7/jN8GUsa8Byz5x76LbNpOtkPemA9kPS05sJw59JxIXMgG9nMxaZH5yDRt96jxL/8S/W3e3P+fr//lf/gfYnn6Dl/8wd/G/OIdlumAeVKrpYEIPskOwPzhQBrig80eIB2f3bDMQBiDeO/EiB1ogpTU4GSwEKSooMwHYq3qaDTumDg6l/X73iyI3/cToEk5GPFsDgQ+V2xRVfMQEaF/s4f8CO4ugR63hed+owlV3z3zmfo69I+/v3KsSuD31yYA7SbC+ekTzh9+hZvjHe7ffAadlkwHb2k4miMsVAsCZHRX/zXm1LOvktnqrwVadKBB6TDWLhXYC6dyLzNMJzbQgpf7QMDAI7JFE2oGQAFGeWBFIsM1V87ycD8F/YTA5krp7sE0Ap9j3wdZcgZfG8vi9Is2eUVxlM3q9vPjuA4E1PhZJDlgH0Lx6eNHfPj1n+Pm7gHz6RbaNzv1bzliniZMU/PnCpiBsiNRKAd2rAYDAi6vrcZhlmofgh/PielQl9MHFMZxKSR5RrMVxnAQP9+z4tsRnQ2VwUGhFyu06EvRd3z+uPSykzmUvFw7EKQD8jv7neueclujn1XzcjDRR2jOEZQC2DlsdglhTcjvbgyD7igDDFB8+vgBrQk+nu3k5devX2GapnRK0kgMWUMZ0yFD0e0I9lpgOS5wx2UwLhTw0+FZ77HxHrqT5SHvDRruDMKYYnuzND8zsPM1ZExpkbHm6C44l2wKu2KYV9w+oeogajus+C0m0FUQxP+OgWXvP81xlk2+TlCLI0Mgei8xjJ2/TUlhL1cgI7gCM1wL5tOHH3BcGqbDDda14+HFg8laZORB0h7jGTxiVg5yz3lAbWdJK+Gsce5ozPwYhjnYGOO8fx4Hr+WF73mebvpbPw+6gMb8XEuDnDN2DBiApBUvINWluzkREKHDzfl+dHTq/tQdNJ5y9sfP0Apkdn6gRDbtSBeWa174Q+q26mP07OnTB3z2/gvc3T8gAsO5+DUELmoO8bMGCWykKwRA1pzSCvIR+fdL+rK/YIf/40tzHsSLnWLqdqLfXg6eD+sWdhfGjbwvwl4r1t8uy/FYHZpJOj9z2xgkR9JmwCzSmfsAZuIf6YLqy3VQeI95yg9NrKwgRNyz7298JdKw9S3l6MMP3+H28QUOpxv/XdCmhibNso0xLoTaNb5wEbpR7TCy3v30cIzyxLY6E7WSIOz7FoEi5teOl6FbI/N0zyS24RnfiAP5257vRspgHM0DDkTV1bvOsfe6wwy3OQI3YnE99T3Z0TsTKiFsPw33iynVv2cCybqTQ8K0AYvo//btGDjLNhTDs8sW3NOkngUR/PDDd3j17r1lIvuVbBeHbcZxg+r3mHAEjHZNciuyfHeYezWZtWQlRYb0Qc3/vY7RsREaInem5nlgCcuRXjOUH0VfjjGMEWN4ASJs2fFuDNfnR5oPBjXB78L0/szC8h7j8j3bcvu/O5tqN5LCBx88xaypzxEDo0xlI062XZ8B7Yp//ss/x//8f/Y/3VPiX+r1ozP4XvzkF/js8/cA4hhkQZdmjiuCcAraDZj8V4gdz0zgywFBocHHSZAhWLxCF88xkNZkSgglG+UllG4wEjdsq9goxwBtUdsZn3snkpkbQFEnAY6CzkGWUhuj4mRHmie7uNIKaoaRUZlVNTnzYUPfC3RyXCKVpch1mJzeWjcOvz1veDjQP2d9EdpXcK+Ckjkx2Klzth/u3+L+zVsIkCu4RSe7aIVlFjDGjF10Pg2fwykp2vWNMhFIaXL2UynX0YkZHue1P0oeixxCNAd8dUdGIEn2u8KI9GBFXTOmK49qi00SGmJdz9oO4dxUncerIFlhYiAr2Dh7Dkz5L8PjIKOI+Sf0DJ8PZHyOmTreE4mrq7d7DkdGb9Cr7o8+O5L4s+ebBxwfXkJypa6lTGWtwXiuVkAk5sTe+TXaC6KOm+GZB/JWVk5hDFd/EbzXcd4Gdli/Qi7od6obWc0p3VsBsXy+hCHO87OwaHBMCJNirJ1WqyPGtN/im/OADt2ootT1LKYhF57eB1msK2zYSfY/x6Y6zJOSRaJizFOWMTDNr7GuAl0AOygxlvHi+CcBHQDQ5gPevXpEm6aan35JGsFSzxcxfVpqqUAl61f5acuqirX3WNIv7PEOxQJTza/CiuSv0z/oVDpSBxmJeaYAk2HkpdIGSd1d53+7Y3/vpR8GJyv04qDTHZd3PCr3S2p8gyywjO0YpsV/ROvPHRKk8bnGWXJYbWYtuZQ8GvhgOIvPecZu0ut0Lwf3wO8du/M6v2863eH29j7pmJCnsauALQuhuqZjICbKidhWNyQftHds+TyybtjqHZDacWij/ge/k3PsRCMxDU6XOh+ixs84tb93/2GPCzELKuMCQdBB3ruOmPIMPFzJFAf5at5SMAU6bCUfndrAuaDh9bjZhtzr3/H+kquS6essjrHvtRUvrxDxOU/44XNBCkSQ0qBjP5RkIjJF47/s0wa61uWP5IkPorE+sGw5arntlPLtuxlC4speNJtdVJ6nQdAz9HE+57/5JYOeij4WzTlDN+cuzWt+hQwUnguG2JJc31YfdzzOa38LhpKsshwCGGQvZCPsQuZv1GE23RrX1aEaeTBIjEckd5zkbgHUfM6TS13W2tQwz1NBTFd0bOiUTVWL9qZjOnrhLOHuip7fsc3eRLBuG1orXVL/hCRsCechh7mb1e9SqUSVayNhh+UgnTpgPN8nw5/ob+EyG4AE1vFe9rpP8xLWO6o8L0fcZDtxP5h9T/dBkrQF6Lt4w4vO9hX53N62uh0tIB84+KKGK2HvFUZYa0UNwg6NWzn7EDkHwmYmSw9Q24oL1YHCLM92T2FY3FuL7UEkqd0+Ot6zp7Nd1jGa2G7XkU+2r9satBxVI/U6M2pDR3jQ0TPkhsUDpWmQ9lpJcDx2iK3k/OAvB3Pw2h7L8epu2uyw6Bndt4fRhKnhS+UhGf7kZ0kfbn9f2pOutxQdJUZtkIWYb2XHkn7iMcr10tNf5fWjA3wSE79RinTXdO6G1wB0SMBNQ1EDSDS3QIpExoLUaWrasXFNsrRYNJ9jxNty0rcW98aE90t3hXOrKU2hSGMxBYAjrgxQ7GBq3peGBBvtrtT2wlL4KAVKPp44NrsMi7i33PoBTsO+or6XapexYGYYeVTXrZTeM5ONgV1Rkz74wUpDKNcjOgGiKw8l6UAGjl+/9Q3bulaAc6fXuCHh7xMULQUd2oFGWUVqtRrHx5FydkVc20FJ7q74Nyokoes0D34IgCkQd1gatJvbkX6qpFw/CyWnCSzBC0MQpwUbFAOEEg2cbk7YAhyXZ5/X5WhLykCtkD3jVAC50hdd3yt4DNdyoCd+D+B0uvVR1tIYFp6XlYkyBgV1eN5eeoIvXcNxNFkBNkRwoyYpZ38p0bpajjFoV2jfEr+iS+L9EweRksIdpg19NDmxgtCFU0H//cr9v0gZGqkKn7qGcRAOB0im4I5JzGuXzx5yo8itDt7HOBE1MziuuzLIvdG/D59BWXlAbe1RHxtvSdKgb47Nxy9Um/AZw1ShEA++WpdLte+V2V5m892VoUz38FwXHe7ramUCdOuh+53uwqI28BSOt00kMxEAO2xJt831muN873YqsxtTcdqi+vuSGcUwbNZdMLng0hJGyob9fB6CEoRjFUBmnbrDTJHCmHoIZbQWLQVCQeKR7sPiGJviapJ8zSfSnEpBEDIaU0y1nFfV8TfG08LjsS3QdUXfoh/LFq/4jzJUPeagthOGFoIIk2H4mmUcYq5L8IE7kU0ZT3IOe5DHMT1O+4syAoE9LYMNOrTDRvQVtoVgQGn+YaylOoiFB55p3MGb0bYoTZC6EeXwaa/AvPVzh5EU4NjzIbbfZVs7HjPk7YO9Nabgjzx7b56GicAspA0YMjj2S0e+J01kqDXNbeZnrwkYdrjxtO3GtqOF7IdiHe9dsfU6JCV572Mz+z+wywP6nW2YsH86IsgbgZqwE1JHwWQwZCLohGyDCAutNgJvanIjFuDIxMn2qDx1/HPF9/0rbK+YdomFZKVeBTJChhNF83HZR1XJBRqeLyn7KTcY5o+OH5J/z+HTczgZf0YZG68YPsfjOtDRSc0I4pTrzCSlYUYQj0+jDP2T/fXfLucLpD2l3ZsLXX7n2uNAMusQ2zbppzmvWhNs25Y8yEVPlr2dcFTwsPihROnCV4Ur3R3202IBR0JynvNCLAZ+5718PDfxaI/n2Se3MUa+7/pFegp0L9NmL07DS6ivSpibdNGSD8ay1KljoyyXpdfKTsotxiRj8fhGLKtAIWFj3B+4IUQt0qHbuuF8Pg9jZ7qGP9JCrloDhjhDZfJFnCBubsFHVB/KnwuZB4Aqt3RFchFsnQ4BySGwXRa80xxe+CB839UzxH3oYTQsF+QjS1ADSaCyZcZGhRuL69mK1JAHu6j0424xf9CBg8kwtrX7zDiWeoNLASjfO47fTpWmZAileuJF7MI8muvXfbxazvxRrx8d4LNg3GZF4sWLm6JjnqZSXQEEOddiSGEod+jmQpJakE/AVWy9Y0sDwRgSdV1spQeeXu1bxJjgDsoxSTKI8AzyjcEL+7IPDiRPPgyFPeuHmDQpjvlsbwVp0Aizt4x0RZzYVMEWCXpVE9UczZ5h8sTkDrrFuMnYghTgcW+MH1rkIZAjglwZAaXA43NHmdXVwDj2eOYww9lqhHbFtm22+uq/BVCaYo7jtv0/ISXhLO1w52SrfmegWSIzLmjt1NqfThXPjmsDPN1ZUH+YtMoASEeYgDbGm/TK32qKp0JMxgMcINg77QPtaA6EYVTG8t6cKoMqeKgkL9zfuGBvGNTfChgNhuIwv7gt/4cNiyKIPXUIAuRjRxDmlxtkAKpYMPG7gJpRoKjSu2LdnO99/9DClQxcCSgbKghoWz4iICk0rDqtVNwQ4KAUGWs0YcoQcEzYSBslbdzBIXzggMgw3/w5aXj6izN56vdx5armVhm2CGoqKeCYj2m8ohQ1A85zhiLjPUp+VGveADsZo9dzzi/zjkddWWFjm8Bzn+nFNK6pkfcVXWQYbwVnjMZ962b3+21h2GWtKYlFLj9ZMri5dayo7PaQo+bWbMhdZSQXgdO45OEIBXej94kdNb5yyjcSwb3ioX4CxUMolLYPDWN2Jgz82csvdzr0l+6MYGbOM31Tujd+H9TpM3I1LIgpYWTg5B67A9d3GJiiQOMNPLrWiIXDNJoreXxuYWXvgJutZrZUvNagtfcnnOLYphaTImyg3NamgHqNquyXK0RVYNuUJgIFUJLIhcX8utIzTj8Bsp5hqobIJsCoG1QVFRP0jCyirJ0aiJ0OimyN+Kf0+l6eWB+C+B00Yijbv2oKkgxGF0A0I53PTsVv43NdV/ISJGc5ZtmMXsZ8jwLjeT+Q9YsDK3jrZC4aFpuqbwo8nS+Q+YywyFrzetyteKHbhk70DBsXqPksEHTY1kmjMQX3CrSrjZTnsWfBF6Ds2pAB01UyYKjFcYrurMMGMZYxaydpQ/eEjRALDGH7xj16JS1Vg4/xzt66AxmBEvKTEK3Gc/NG5nlhf8zxUWeh5NNfw0nKhCkhP9Emv6oedPktWmS2UWfaIX8vOb+zV1o8zMHsMDDsjK6etb6uCB0YHY6yF/sD49L279182QGf7f269czeiz6GDVgBCHveljsZ6rrw92KnCmcIQeDJMkUIVUA4ESEujeEM/BoIS3JXOFj3xyLm9YvxmEkNInfNc7pud/+AmbuHDTgRDQT0Jd91vC5pssM46u1+F9H+OWlSh64VANKqLrf6Z7JTov+Mqeu6ok2zj5cGgKKzCOpU+3XN9vOUZscz65dj3YAN1ff0K9IWR8rPSHfvY+Zb7ILGgfeBHZSVF75A4YkPloicNXfZ5xAKbPNck5z5hm2MLxo6nOZSXBD2W8FQ/sYcD1Ef6hayTIjkfBoenWMaZYlfzx0qONKRcIqwbZgHYReIjPPM7QvGFbaTxlH++NePDvCVarJRmtC20fgihRhGk89k/y6cmObNmFMcx9prV6+ragohFNcli+eakFpmXpZDLgXrEyEMiTDQfuvKGxt15ASnANPkZ6FOBzaVR0C8FEDlXmX+O94vKGXl3SmBBhkTlI2lPnFyUvNwkhcBjPRMaBYvt8lvr0iP1+hX3KIFEvEarjNNNdCGs69KBsjIyEkchtm4sqW7d4bLEfwsGvOpXVHA24jnmVUIhXwNYp2Pudai1fBi4y7rgNGYEiB9/JEZIA5EugtUkRwoJLexd8/wYiMj5lIAZMo2lPjilIg5FpcTbYOAI+jIMF7NsaaJMoIOg+5O4Vo7PeUhujbIHM2veEI+k5AynREC5RjHXklJsnJczeY+Fi9qQlmLLM8mqZdtw/myksIyB0VEMA1K2LKm4AsQIF4J0VlVd/VLeuq3LSlAvIv3XfO5eQBf0o+VA64VOv1mq+QBTPRnJyu1Ek0YoMi2rjFpnCOB0eFzCPEcwJAhXLxXd7gqcySex7UIldvR6wDMHosHQy6etf8u51jRhN21eLdX4DQFEBiCYW6Xo3p1KeGeKkzWIjNZBFOzEheIU/wcUs1xWYHAttC52XG14J9Qpk6m/xBQhV5Oeo2LYaqegaUAGqC9+yplyKw8awSNs/xaPiKIkN0ImSNdGrTK7fp0rzMrZS8cyNgCFc8WanwUT8KBxK/A83guY46mnmL+cUbS/sVb3qP9oV8xLalmSRmLsVrPbCucDIxkPTU+S6+uyT74tdu2YV233AppDqvZJwpAfUtbWVEYHBEFHYxB8lOdVFIdhbFsl1TWUWGxDPyKMZN9U0CKcHZQl6Y+sFi3pm0QQavcxsk0T/kjW4gYrW64Mu0BDGPOeUit5/jlut3hGXtbas+0uB7AkMHzDPbl+8FmC9ryduLoVuBpJzkjOy15ex3ACX3Jwb5UzdTv4EOWP+mKbb3YQr2OmEMUTRtbRIfFscpJKQzLh0tYmUjdu7NyRlsNjO6/RYcAFQi8ojV1xZMb8jOIni7PIW+sD0WqD6mDmfYCDPkyAfRMO+rQXn7HsScK0ZjH60qWy/4u7AhHdmfTkRw+F2BOOoYSG/pHejbNlZ3+ZjNGImjJeGP9uKwrWp5simwz8Cd2JUxo6KKVvanwchZB2gqKxoK3CJWNyN/dF+0KLo+S/IsbQRnGuxe3V76fL0iEn9lHSTU68aJFDhdpF0oEu5wOV/NglM2xkRhbyUfgwK6Vq3tA9Obr6jE6yMTQn7ivFy1Y/2EnX4McZ7sytBlzaLRBxaGIg1Fx6i09L2VrfClsgWzdtswmRqEmIlCXugejn9o3i1lIE2wkJ2HvhM3EtN/IxxkW1Pze0hXxFU2awOy4JqHY5Y4OcRz4QSNO+rHyDEwHMhlB+He/vvRNdpjmRtE0SR72A0KHXNuRrPuG3+vDcF32kcZX+uF5zKr7aW7TYNJnSBzmQPx+boDkKeYnUHomCBXyqXnIx499/fgMvt6xbat/sD+xbiOudNkgim22Ibwi8O22IIxQElYj3rYZU9btkgomDUUnmMoGIrcD4jNkGpxA6ywH8UYdZMASapZXacPByFoRRAOkEcvBi1rhL2EuxVerLr4Vl5WpDlBajvwwrmsnOJ63N2D216mqrxbF+KTGkn2rrZj8GgIoUEDFtqPGxNsZWxyore19POG5cQJQ1Vq1CGvPUI8mGhJAwxgYAF4Ua98wtYbrlPZ6coCkqtX7SJWiYeiMCpYB2bJTPDjS+w4YkZqaHX2b1HaNGRzUZ1I6BU4VnMo+R/8Gnu1XcZDvpRrN/jzHV8K5KzqxYQf4XCYwy/k1oK0O8jvUbct/yvgrA2dvYpDy9/HIlZyRGc/8pWcwlIaRGSd9A8jM0OBl7+uQ1Rmy0iIqohiyBnmRwW9IIxHRZ0FiZRgGYZSmXEAGOYxnPSvDZDiaoePKMPcplPNrRkm081uCIunkl9HCTkM5c224tYK0uz46BkVtuCzvQDzlGlc2D6p/ZciW7gAwrGrGDz3xwXEOIUtaffcxDgYeqAh9ynC8R+JW9YEXl4qkJdPV7mAMpMyZIdc7PFu954XpKOf8D93o+oEWseL6xKOumZFlRp3CzydyvNAsAxH4knpus4dtG235QD2foT9mWpB7nPIVdGGeKRQWztShXb4nXl09ECxF31Y/07xAjZ2JnyzXgSm1PcznxS5jO7ZTjsGLmna53dIfUsZptdvzeTVX+FTzIohhWU2Dmj81n9v13AgLm+Z/uMKhE+JEyMQ21VKjZJfN8+TtN2xRc2qcFlk3ufDqGoqqXVqYFQ8eOgFDPs2OK1wLeyN1HE+kMicHGRkDaQBv9S8KyyBfCExknCM+iwpq/4ENcNii57fKbuDWRB8/03yNxiqAt4dxffZvXHv1e7SUBQmR+BrPCLkeIZLGDoXGIlIBBF0qVGNTEu8GLJYRD7fLalmiKLoKTD9yKYiUP9dBQYt9jdCQh7CP4e9FtRIJ8lF75nv/qO5xfB+LpYVP4TwKPbVkoth/LXsjTfPh+RPbo6p9sBvCcc5ns2EUuLprg3mpiBIbZd3Ae8+yFs8LfCgcisWbXZAup8e4kB6/lQQh50YGlCFjMHhHk9K54riF+kx2VNYIT3rXtetlRWtr8q+RYgh/R1Bbdc3Hcg+tB+3r2iatDpHQ0I12nn2ONYIjRJsYT8g2BxOC12mLd8Y6k/neex6gGCSq4A/bWhTsIXrzgnQ1UeNLmvj3o48QDyxRBGh7fmAdCkcLh5A2EovsCIvXMrsPEsdle9thfC/DfTzV1PnAejX037A43RrpisB3xpgxWxmCTODovWdCSIw35Gai7ZrOrqRd+OMg+wqoGoEiltSUOxdBuJR+MAUDg+7gYKX9Mx5M5iNkPyTxFwMfAf8M2u7sDxK27ZOQ7JMUM8T/HcSxhAqBr3mxUvkDEG5J4CR9fwXrhdWVlHCtHwc50X0fbD4GH2te+s+sXPz3Eu493tccHcbLVxBW2DPLNma98mNfPzrAt/WOdd2SkCHs3L+td7TJDIYtBI8mAQtIgqMLvtXiq5TmCLa0tmNiKnhx4LaXnaq+B7tSJKE8bEbHVEAyJgidE9J5uZ8Q+5fQvwV6MUFrVSQUCPxjozp7cUf1PZ43BmNyHOxZcadYSUtlXwzGATsLBNbZxLMK+rlXGT95JDlAY0bSgJVbdrKsbySQ+8uyD1ZvAZ7x4oA+DNnRQiNI4EPyNkVgWQzV5QzwSihgWtlYt438C3JUnzHiyqkDuFJp3Y9iLgEI6TafBwVUCY7RV5fXNODiMQAZ0lK8RBGHr1E30gdg5M5kHz245PMsLuFANbHfp1IZClnfkQ06BmyibWrFnVHCfAxFkduw/IfQHxnAJKdDAF+9KiVfz6uVoHj1vmFbL6Nh0LudpivWiax95nTZtp4ZdyXTHniUqssQtYJK1MvxzYUC4ew1l4eydsGOwpXCC8MUpfQAWNB70yJxXM9CSIaCuLHfmlCbknKyz0ao92QQDs0ysF0HEnk1W+maCCr2/QmPeR1Yivwzy5W3BQ80xPDpTQRRk65K7REWsryzQVOfd9/R+Ae593tVgU07tnVN3bepyd+UJzabLNl5PbFd0uSW1+dDFq1p22cUW3w6won27ODtWld3tRIXI9bU6jE7CuOKZY3tynDR0qeM+cHTeO4Y6JKhnfortXAjUphUt4392f8QctGfu06zfyV7JKv1S4gJHeiFkhEFHQrkRsUgA71kkJ0r71/RaXzlEoc0dK87F/bS2H/Jmq096pnRPFkvF6yLbauOzODI0AuncV1X56XxftvodMnAYa0SKZBaLFCFZwdy/xR5trYCtuhaTssoH0i+Fm30mcB9YWUnbMrfQm7gMqx1T9hBgaeD/THM6Qj6MEbGFKBnsugGL7iZNKjqq5CxeH4sTyXGDXOZMSZwU+s92xGg+6onJI/8OcYYfBHYwmWUuYnx+r1dMbYy2uAcqFFY0GWa12EezdOUdjo70AN/1RxlCLB6XVIIyvGVCER6EJhYUEkFA9nyJY65OwYhFoLzML+QLQ0Hvq7e41UFCEpvVJBhdIw5WBm2a2SHlS8kaTuXSSR5/8i/8X06xETLvMYZF/xThOwhg3YcSOV78/t9jW6MWfZsu7nGrWdkv0jBxB+Wn/zSy8mEv9j2eB8LsYB2qzsbdmeUoOVFpalJPr15VC4Cbq0JOfFAl81tzDr8rjnOqWrWVTP9OeoqASg7C6m3xbE0+ai1+BrSpEDah0EHtq0GOwzj+EIOOZCU+prkN58f/JRxW2KYBIGVjH11r4w+MYreJQuFO4OvJCVTGdhkuzFwJe/F7rodntEz2T5jPzkTbeAJG3G793uUe++t40v2wf+/rivm+ZCLXJO3p/DDGUlfTG2ysa+u88juT/Y0BW8vjp1AHJiOjqaOjQX7wI1h7CUTbBvGlvBoc3M5qTaLdRV0ogaItknTkOFBK2Dod13H99cVuagU2BxX7AD8ikdaNkvyUGmHRd1YJiBh0FWCj+wWIvJ5QXeyg4sl2J8gy3Mn2tH4jtoNxRZzLHSu7rj+Y14/OsC3rhsulwuEthP1bcvaWOF0xLHmNviWzA4BMefCB+sAdu4XV+qahmhMhG2lOhyuROM0r6BfbW3rJFzehktHCB5vdw00NOXuisWJz8K7F+wAqX0ADgBtuenDtc55e2xcq/UMXoHLtvaWi9ZVg7Ou8KK2OvSJBVT37blmD3wN+pYRuhPW7HehpTUnYDkdxFWECiKXwhqc9iALda33brLlSlU3d0Rag7rMRfA4+lyPDIOt0zUsP2IB3q2XzMFX7yUCHa2UTU7S6mOt9rKB5QG0ARgRlhg14ZOb+l9pYJJKY4jsOzBkXQetJ8cCVWw/YOC3R9Tzg06c/p29jVXTAKC4no07l+MYQ2ZoRFuDNgXCaAkHhZ9pcBFOsNN5h3Upe0LUKBLY92Qg8XiGvrDCCXK4TK7rinVdk94lP2vKf4/NtZFxN1lWqJUJ0jxhMnAkFEWe6hX8o3GwcWLoYvWHBPC/tUofARl2OMxYbWEzo7Y6lkEwGj00D5QMCgUUkaGsV9tYco6G7JEFyQGwREiNRlkuxuuBcBY4WFEGcV3Phbmrjedwl4DU67PG+LTakuIxt5eCQUhXBuYwhVP2+XLuybXdUIZG3yzAx5msIhaM7docK+GZd5IGeAhtwE44vLxyG7VxocjtmJGRECUrbPuv3bd55K/kHnbS/c7g3Dhr/epVmJE01MLRwNsIuI6UClqWXJYROQa94zmD2XWFO8/0jpi3lz1BZWhdObapwyPgRz1WJD+thEJ0Umlumu0zBC3Z6CP5GwOcZX/ob9ny1blNYFipZ6wxJ3GDQrGt9n3LbHdxOQLg9lbMRxGgi9l0vVuN5Ytv2S6nzmXCy1cIJJ2pTQ0r2fFgO+S3Y9RuOxWoPmBeT2wnmg7YKhXQI67x1K4xwOXcV16zdhY9P+93gg1OMBuJezuQOxx/NfCNJIp2lDz7WTmwXDKhu/a4C/kd6cbclZHzjORzNy93hKZnjroTHliOBdnc6gjDmXDoggTpALr91kSyTmQTSwqYWqst+XlvBTmKnBxAKzxM3B+GU99kPexsaB/EQ2JYfp8qz55f5dlIPnzOBl6zPR+ykNMn6ElzytRu0Xz8o1d8SZuCnpV9VaRS5oBOZH0PuJTjGvVgylxm8fHvdf1QigGV1e0GWj1bNWnDk4dt0j2211QvPbNtHefLJfXKJJNRQCQXHFz1+I4MI0jPrDo4Ztlz4tDHsL0EgjUWOaCQzfnYYD6DY2hrbdBRsWMi1XAnGSKMDxwuXpWODOYFdcKOAdEhbTbHbkU9K+7lPu3UDb0vvZ9TIdoG4Uns0CKGaL2hlwy4k7i1ww8AaRsMfFbyO8C6oTqY4/dOS2u+uFUDyC45VnBfCdFIbyc0j++9e50OlYqSF0b/wofWxGIjTZIPHJCLLb5r+LFkt8W1IzkFuTNMC9+CfoGHtuixs2ljpxz1rxbI6lCseFVADtmXvQ+bIZNBL0j8r9oietZnoTEqNFY0uG4+txDfJR+sjbE2KDGL/gbfAmHUMWV0HkcZ5b9hDwQWs32jFNxL+R74aO2n7g5dJLHQiBDsHa12Qcq/4uuvqQafKcTVs0OaCHTrdmqkUA2XPPmlpyFdwk+TwwceAb0I0rmE2v1UXD8Bg/ojgtzWC7hD4v0MTROOjt1lE6Pxs5w/uoVACKL2WhlCO2FSAI0cEwQAk9EaEwzwmmw8R0rwUgCAkdmJvhjBy4EhBYkUTdYGyh0cDGbOn90q+VWfXRDDoWpSYFutlJK60v/RZ8og3APHXnENzp2nRsfDEjR9ZaJvGz1wVGBM9wAv658FX8JYkyCRjkGZpM/AD0nQ5IAlBy5ZA6Yh5+2PfQuK0/jheOe4NyoAVIYkKf+U250MZLYCNE9zw16m8qtrR4uV+BBEBmpVN8Ze1WyzX6NzEU4TjTNGFvK0B2dhheuulY6GCfObFTVQqyn7IFB+ziHZm75tuJwvZrB55rBlsnVM00Q19PxwF/Q8ucocWxnokivF0rBiHep3hMGQDkuzoA47tjVMv94Vy6bb1Zh461/gT/I75g7RlnkZjkEtXsTvpRzDQC2HyJ/BgOVPuM67QcrF+NXOwdVRZsbfCzOGhYvS9alErxQrQnoCp8hYGhqpgcfvV/pG61np7F3fPuI5rtvo64ptW9Poz7o+0rBuF5c/gUiDbGHwam2HVk1d2aTlad0ilh04tQkAcs4ZrhBdEcE3d3ayrhDSwIMIqAgkUVJKZoKPqCz8MoIknznyvacujVZrtb2w2sjlDr4/r6zMEY+uGECXRJusODt9jgULC4QRBgG5Rafa2LWZvK5gjCYW0yN3dCgZ5/fl1HLwONuje3c9gUKHgF/co4iFi80Pg/KApkQgznhhdNjQRdIBNmyK7W274KeGgwWErRHji63duTWN5C1vSSBXx/rRWWZno+yFmpdVvJ4zFsqRCXkv2reU0aJj6c9Sb5oyHH0d7Cr/kuv7hJwELVLNcv2xGBPK5mJdEHyMQxY0Pz/jHNPYo885HpYjAqIKDhaeMiE4cGJ6dRyzDkPhPkfPbf6u24Zp23KsFhgR1z/2zOa7MGy3jtnfG9GjJ4+rPEzo3bTjtgj07WUxBXIwS5N1JGcD7WkBSarhKx0hyWQZdBpfF0HzLbKjUx8hf0PUwaT7U9fkqJU+xVgIvzHqZ5O9GsNwUOBuB8+oP2OexHtj9oAzPCep38MhRDaQQVaqTEH9KdlSvyYCsv5chvf4rrqRs2PdVkibMpi8yWaypWq7FkCn8vYOxM4uRSafeJeNFxsvpjZsfijCVkJiNOjBBxtH+pmw9vt2HZRmbIe3r6iDjAbcIsHNYAPpD/aReFdb3HMlM4lvFlRhdV6/gf7q0NzexmLdNOrYenba1HG4Jctd6rW6ebDtqNFR54bOyE/Vgb2dIbvuOTawvsgZ7TId8yqU7l7nsl4r3ROBVfMTPfxhtCL8AnwRA1Q/nMfkz6rM+qgFWXQcbDfwPKohmqyM2aDR//JR2Z4jkpEvm7bzznaL65B6ougzBCdzWDv+YZSFtBf1mufRDuPvtc+wE14UJgIkV9ZxmgccaKR+CT1PGL8Ir40wOR4OymegGUAWP3Q5SVu8KmoMds5Opf6VXz9+i26unABQj3KScNRqXCmeYfuhjvumW9SXaWzml3ClAoh0UxLWwObc5qBFNMDASMJRAYAmFoREGYOxckjmp1+am0zGyRT4u3MAlerSWL+VJmzelDWFQGMZ5htzOgyJ3HIyrl6wAxy0YSUxZCHsxwFXgGn8EW1RzqGgJf8iNbboSy9W5j5T0vBJxcPBhGFe0pALVLbNskXztFetbZLpxPdev1PbsdoBhQdtNI0si8ozzdP6cB0cTkkbZM4AASlPrMg4IIo0cIccyPomlX8ph5IRGhvJeOluh/h4HH8XK3hC7ZAyLsd8ZxgkGQIwC0z3ATG+zpTbNeBmJj+B6sBvjVWPUWHnpzBQJYLLyZ66aieDiR0yBtCjTzH2/bhjzm59w6zq2cji2aOGS91XikOmAsRbaxnY2Laqm5IOigJdLDCYGVAuR2WcCbpnPQwONBl3TNsxqExzcafMxGVRstxP3D/SMIMzNAdS5lsV/Jbgmw6cIszbyVM+s+b6PtDC/eatar0/p/itUd05b9GdnGfBe38fcpY06/qMXNbYrd3n5kcYMKMsM+YnbbSwLmlBlnJsi0zHjOyodAq7ouuachJBZrtGMgio+azuMcLmTgdjafQ5gMAxSiogsw8sZ6bPHvtCXkayjBl/Qdud0ZdztlcmWI3DPme2AYiWIbPZbnYtDSwhSS1DrgzN5HdgW/DOBBNxst1+WzhB1tVcM1kdV9hLB3mg02/cZ6UNbScmR/YIyNHVQYfz/UM7Wosggd3abSfF5XJ2h9CzolSwZV1aqrWoQJuazz+tTJje0V2vRD2yyMQJ3RsGcrB9XW1RQ5PnmrxV7WkMhyyLtCH4FVvoEwtDnxOPJUWiKJO2kQ/IeGw5SxzMHWUVqWsCzwc+pwzGo8r2C92tMT9ovMyrkHV+T2QvvCSbIn/bvUY9Xd8VGVyv0MJ1Xp90GW3Q0PG8LXKPgYX9LtOxL5KuVcB1Yc0HwGQmdJyqulwo7WAw4qrwIUJB4gB4DwAWh4r2PfgUtUtRkAFkdqrJs/q9ycIhiy61idYz0sJwuRvtNSo/gKpZW/Alqc8L7Fk3PrssNvAH2G1xHnQjB5DK3SmeFHgwFg64GFSNS7VKaJgv03IeDXZVsWawEzOYkPMLOz2ItG+v+1mBwsDF+D2e3/u4jT/tJX/gYNP4a13rVNxaDIzumeCpls+59m3Qo+Wv9Szt05rxpTXx7eXWi0wIIV0TfYxEF7Ox6v6kk78xfCR/J/vtstZ1mGNZsilpMmZDl3jT2Anb4rlXQUPmaTTEcgQkIQdfgfqdGaAIbOQ5Bh/PWE+Nx+k9oLHtAp/AFb+jWyJXXw+/D01n902WuirQN0wDbpffbrxrZRt0xTSZLpsy4KNQX0jNmtgyYqKIYPPayVtn29DoFIkHUa8xdEXY6GFb74NyQ1DPyR72Cvu1z9J0R7uxba3EEaJ9cJZ3w4Z8kPbIC/f2VgYyVavvrnfYhmZWc/vcTuidksnSRT4i6nHRZ5AHuiZ299U8iH4BIlz7GwPWFW1c5pOeI5ZeS++//Ouv5ZANXg2u1Te4wzAK2ZQGoG+17VsKrgDoVwQdieIf8peYZAM4OxMNDF0hhLCS0Eim8YbxL0jDCtHWuIIZ25qiz6aUyqnoXoiVlaSQEO2N+oz4RnvxnlCWVxJYkkshwgU6ZsYIVB1U14WU3rb1YdUnMjiIxINCUOdbKvA0qH7bi7R9TEjvQ82ccaVgVPBBh1BY3R3d2nJtoEvbxUSgm21Bal5I1/hTBbtVt2w/tuNCkdsN5Zl+ODXSWBJjUvI/35fXR4Bob9iRrYCZDrxG9tE5T5hG5jHVnakA5X6l5roWErWJcDhdPqLdlMXiDb+4oDwbYq5Pil67Iq8M/EwjJ8j1b9Xb3D7PcBiAXRfmLzWP4hk7+vIcCFzA7tnb2nFZV4gqWpvSmG0tsgUa5mmqFgXofcsC+eZAYzDKImgQ5AiMAhSrZ2vkXNu2HHE4mbmFU2Lxg42fsJ9NWBrRlUcfxlEc2JBSFfRULYwbSFaGCDBu52ZlGljqzCP2+BzIhQ+SI38/FK+PZwJO+8LIqIMzKGJvJ1fHYstMOnLhkFWAgMfGix+kaQcFHX9GtcxjKxmkSYJUGBpasnBF1YIfy6EclJKLyHpnZ9if7rSKhZbWBNhMTmKhBmIZDOLzMxYPjCZIpzNlX5Hbvu1wBZPNWLzK+qSOTawXUr96OwM21t61wWiLm6+NeIFtAdoFYDUMWtYZrBJL9pg/LIp8eM5ehrvTfgiWsWHp17FuHPTaMBapvhgglqykOBQuGnWuMVnp2kRbnldDP+t3dVnjMUQ2nAWWgNbGLeGr7h1YoK9byh9W68NQSLy5HSECSAWTo027zrf2NqO/0LjCNkrd7vpx61vWXIvMBZaTYZE4+c1Ze5rQUGUeMkycdsuAc6q5i6Q0lw5/A7xTJHIgYV+6Poy7evUhVOQg/8k/5ugYLOPMW8Z83QcF6R07a7k4O8xX/6fXeJzIUETwE0Vf1YFeAQNsJ3kDiWPbViVVTN7qcJiwhwA4rlSdY9OlsaAs2HyRLTofjlVqQerUVYBfNbOuYuEgylsA8AWfkqEIutm4euoGy7gvzEbabTFfqWg9OBMNibmqxYPkA+lv1uX0E/0e/I+7RyzIdgm/Ql72uDsGASuAFjy0IKlJsuagi+epg/m+wJy9bqd5x7ZePktjZmR3dr8jeZQ7kWg6ArYwtSz2PpIxbNzFh3HxyjLeOIjE/o8AQJcKpISuAaCuG4fAvB9GpI5pfavSKJ3oD5TOTb9FylZxKCF7JfCkZJrnc+wqKhzVfMQ+QEPkx1AaI7BJkTJOTEW908TsAb/29VETnxxD0v4InR47oSJYO8pllueJHQpOL3VacIB1wFPhubF/BbqEfnQejCZkzon8rGYPl71pF0U9u+BxLEhNrdmhoxqLY7GI4/IXvNVqHyj9ELpZ/HDPHjjnc2Ty7dmhZ7NGsmeIDUFg0m6BaxEDgbTaPu52VS1SlP7PMTsAWdbnfg4Tja9Ai2m701JKW/chaZsN8RayX8TbVx93LUqVvstYEPeKMXfXv4zfEA5KFXenZ5PujhEoaosugXbZDvGZSvvQb6JlW+53T0Y29I99/TVk8NmKcDggE63gRiQ7nBEAaVCYPdh2hyMg52HfNgARqXYHJgZM23N73zzr79pw4mhw7EHvGrcT6KZwhPNXtdyy7y6ECcZRk8qZLH5yLGf6pbNFL+7fGOihbYshRIMw7u4FGVsIYWDgq4BjTrxQFlpBx0ohddDPa0DbDHfBGn/OUDxYQSd0xviC/ELARsocpWzzixwdz5lQbH04zTFW3QDk1skADUChbRwrPyJW1oaaGCGLCSJlZMYEFVq5jMb4NNI8KCA54wqAxhYGPcvGXnZHYwgpF8FfQQSbSzbZ8NwHJxOggl+JvEUYNe1NwHbtZJayJR7CaRQnCw8GJpIHoSj3BnjRa5TxCJapMyb6MZ72HPShoJ33auAD1dgMvsZwUvmRNlrXFW1dXRZWTNOUtVqkGc23vpFRaGOa5zn7EZkLXbfEw+SGz+fNHZsqMhzbMUs+lU+EC1lB1M0oTEo5gZ/xnHhZSpmv5Vcp/uCfb/lwIqd5FHSPz9Qvt5kQgZk0CkIZhtym7NTiSAiSEl5xsCXYWjXBPPjTxlIJua2KDASWNbBMscyRDkpjInQRSkbJTBysiP3cTTjO6aA5P9kxMpp1rJc1xyAi6KK5GhuFuQHTd/M0pTHTpilxN7bj9i0ySjvWVcuAcr1l9YAqWMd1Se3ZFlzufdz+LcM2E2szMg7SsMnt/5JyGsH+KNERB9GkXnfKcqAs5SP1TuDcGMgiQB8BLrs5GuvEMKOn9324RosvUZeSMW0wQClbu7bG+yD8D5+GzPMrHlTz1tv3gu+8FZW7nQFHJYeX+s9G8T5Yua4b2mS4dLmUg1klA7jwfBxiVWUK0MsRtpIZRg87/c+J7u2s22ZFxr3+HrZxOyq0Dufg57pk5bzuLlPcR6N96YBwrnNLUpKbgowo2hVdgKpJRQt71Mdhog9ZCqREaDt3vbORQKuGJYByiLWuHeWP6iymepb6LZoPnI3nph15nfkSOxaCtkY734aou4Gh6nVa4CNsJKQ9GH3ooZt3taDivshkz2fHbxqLZbXANjg6ZuDk2oBuWhCAXaZvdFrgZQSQCyQSdUedPt0dgCohcP26ssOCm/ywmFvpJJJeCzmVOsAmbQ1hprIskn0yHF4w/s6206CuXafVtc85wmF/lS4unKu291spnXHZN2XZFtSBNlJ6MdqqpUjvY+h3xjupLEPkdfWBbc2aboRrridCT25qAbitr5np3gnjgg5dZbASOaO0+SEal21N2htLrQ3b1kvBQDFZjCxk+FxpTUYeZ42xwJugkSYW5eID6bQSO85aLqxMHQpFnvSr5dtwwLR4yziHf8F1/BXJKf0WPM6DnVI/E84G7eMG1uWI7pQ9l5g4yLxWP2RMjRhsU6dldKzwb++j1Qzn3SDp48U1qlCvZ9+3DWgbwt1tIpBmNFwpiMwJNGMpBqRfabqr5Y4ep5y1GbYxkX/zpKTWmuEMhIK6QvW3x0xCABZ0bhj0X8gu20BDMNB9APYNtBiInXAOzxtLV9QcTh2bmIZMEsv7+FlSMp72D6oMSY4vcavGWM8C/eZvXCbLR6jEAHu8Fn385n2WcM45ZU6h6l/SPA3ZDx+551yo35myu+H9lV4/OsBXq3VbEkt7pSx3D7ykgoXXooCvcsAi3QlQW08Bz3RVUjoigr5ttC1IcnKw484Kr2ovRPDD7huCTQTsIXwsrIlACRi1PSrhSMvI4ih3AjhqUmezJOhl+I6c5SDg3piIcQyrc6GoaVvVfksQZFT4CDqnUdjIyCzlHoIf/a3x4pl+owIvSpAdIDc2P1pTpbNS4fWcYNbO1KIWmtfd2ELphgO5uSOyoXnwL5vXWgXj/jWUgZyGMcmIQAPvAVY8yWEbCDtsuT1gN6aUebJceJU95sx+xURYYYlUnb4ARcEgDxFca1JBbOJS9puVRRrd/kqDiu8XqcwEB+gwevkJg5xQvZu9Atu/BkNbS66fewYHH3HlzGGQ22HO8Ni1ZFG8fkprZBg6rvWtsCK3eLhSPPsWcolxezYZY1jQhDqfqfZmJGkVdE1B8j9SYsSymYYcohRArYTuaRmfWUYayZgZLJKcSYyIvooHiVy572zCGqcr+HLia8sj07+wTPMZw3ayskEHZQkgSywE9tvzqy95P+hzZBKFDqF5UoaIgkUzpuje389elyUyrtYR7cwQILzwH7Z1w1nOaE0wtamM/F51GKM+Wsh/LDxt2+r8M/lZtxVRSoBr0AZ9aus4yWIYT3Dd0gHEYtWge6zn4ZhANDMV6oTVUUfZtswyINMO8A+hVjNLa2e4K8kG9yEpH7pWS3ZK1MdnhtEXeMt4YhgW14QA+TZKoHSFVoDWu4pwMlmW4Fg4OBveZZ8VJX801gjQVFOhIyhQnuMcf0uD2mEhaDfoMMBrhVbQY5o8CxQeqIHhweanx0MqYz52RcRvHLyx7IOa61HaIJ39MJ5JpuK+3HJOuBC2EttTLBOlhyqrhQ1qxt/IuGDpKXsr2pX0V2pRunY/RLACqcppOza1PWIU6eDQqSKD85MIMeBiLU6HTNT845pdykPIjJG4tqaLWvnpRvV/CBhjbGVDki3qukjJfk5p0uvtoUGNCjjBs4J72vUdHbrVnGptgvo2cebNlryxE+wl3odtpvCAWjE2yvwAANaq1y1A+SVBtKj2ApjtB5LfYTxGByuwHpmHFBAJm/YZWQ25TLsqWiSbmX2XUS6v9Xfa9QKQiZ/8lqC7K6HAJsataDkCtmPNzpwhyMDtlf1E2aMctCNo1pKSuMvp5PpGYzxBQ5CM+3uN5426bKCJ2wu9b4jT2WPeW9aU7ana1E88BTJ7L+wdSPmeAkl/1nSbky3mbciMB5m7mskZunqjTEDb0mmy0yzP09qkE30DJ0Ke2G7PIFXQkAR9H5Azlu+SBrz9ErWitYl0ya8q/RCyxL6HGuYV2Uvfhw7t5COGLIcMsfzxtuTsVVwjhZeFq6Wvw3AIeyXpEs8DyYrjngPFSAuiXzyX6+xGfxjFTX92yGa7dWKhC37CKvuTTQSXi1Icg+ycUl0mu6lbnfLJj3FhK/yR5JQv8kYgv4JI9uJFVBPzKrNjNpDUzjWWm9DPOfeRujn4NSw0BLVrSl7b3dEnVHyiFnjoUsUwntLPbDcEn3dxHG9Agn9BbMbxol7JdWTtZVKL05Jtyx1/B5uLWw67hmxBvoj95Gg7dxmFnVcz80e9fvwWXain0Hv9Nveu+rahiwnn+XzGMtuj4gSjTDNulcYayj0m3rapK/YGjlJD7GQthdf8I8EDKqBmTXkgMVYkYTTtug1p82boTt7CTjZpOxQLscjuNMF0sFvV3HPhyUAjy3LinT47IQYAC6VFijZkBMAQPCghqVcKnR/jXYExybqJ0Ylw1qKFXCnPZ0oZNIj+jOZzGP5sABVo6PCZIWloK+gdk7dHvTMzciMQF6u55tDGduyawOk0aTmnNskq9BpgFlvEDTy3BDFmTIKzFEilhopx+fIOF9pk4Az65hbhsl5y3MzPMNZSHlo42RWWSKBTAt1QGAGWjnzV3bL2NPhF8hUp4NGPDAI6fRJoQSuP0R9X4pE2HvWeBtqxEbKjT20jqHuKOwPulugNchUXsfGCbIOL+eaqng+/bx1tsuwRaYCuFkiJeR2B48gMnKIQvcu3yZzJj24lD/xK50bEcbO2ZiqQspWnXLrsblR7Y7+YEJgGaB7A4RfWXHW5zBogROWcxUMWQeFuZcy5FHkWiwoQR8XtlXI5tCMqbYlZzqNhGb+CzSzPaeTl3FKIVEbY1YtYHvIQwb39ISYVJKZeMdvGaTl8n+aFf5exFup30IwNaVWri7ZEtrtarUfjHdDaRHhd9IZgOLTC6piFQaZYPThdgXHG7lqxjEM5Yq+E5m8RmDX8n6aqMRT4NgZpImgQBhPRvJeTnVJA8sF1Z+J6RSySVJBnjxFBYA7eMdu5ZlTKV+okCoyxcRUAELyW0nvhqEQAJqCxAioAYl6F3AqG+Sk5DzlY6UGTeD6JWVwTfeQTL/m3+Bzb2XsPy6Lsga6KbV0xTQeIKNZtw3JYKguvb0OdPQD5GbAFNLNlXIeG7RWBFpDBnRggQZbKLJXKKuHC97lAlTZDsnPQ44V5IUTRntGD5cUa975lVpoFiwC6TiTtMB0eLfkh5VYADZ0SdlLgROrqDJFZF7TXb30XXNaygBSozFn/Lrc9+z896iRGX7zdqwzSeCfI+khkSgxydrUAXMI3XMiWZcyj0f4oObZSKbYbJ8bSgSzrYxkm6vw3W2JdV0DEM/cEcZIx69MIoiQ+AOUfSMt6j87glOcsXRCclcKd6Hfo2MjEMlmr8Ua9SFVFc7mL4KiZvOULlO4IrJfEyDDVEs9aOfSMY8WKZ3Sbjt8nrsEdTyqXUfzW4b7hL1/rmJEyNmzlLr2d44u5i2f6icLj6yEUdgx6Xq9b6o5vacvGfFXj72XdKIAMTGr1a1truHhSiJ3qXPakqkJpu+3UJt+JZb/13qGJUdaPCJGYDeE6rLstHjrMaSiNtpuSgZVBPJHhb1ArZSexkOy3wF3ShzweABU8C+AgfYZqsqbDzvYpmu+231LfY24PC1/Op+DpczW547vyKyW7WW1EQIzGlDjgi53kuwwBEqLRb+t3DLnmXOEoeB5h/D3/Upthg4rb8enjxu4Gt61CNhrRy82xlIvN/fOwn2yx3XArdgplvVvSo4lBTkuz0yr5JWSA/fHUKTH/2KbKEbouC/9YKega29IU5TvWXYlxA/3ZLozn/hb+ZBmFHN+oX0Df8XPYnwvexf2yo721UVnOg9ERtCAdkTuEst0kEY1bx/tR4+QgbNykYSsQWGvYCz/y9deSwbf1btt3BJjbBFXFPM8mlCKQqeW8iRTeiNAH81o6azHgmmy5mqJjUEDc0MrT/7QcEEU4Drz1owz+XHnNturghWzcBYKDEEhBARix1bkcW3TrQI1o7tqqUowGGddP0FCsMRN8+kYfwvmvLQ12cdVkGNOSBwnMbpSzG8rSjDAt4wN1WwTjFFoe7M6gzK+weyQL616p+VjDALR7RsUFmKG7bVul3aNAztKhp3zeWHQedXgFJLNoWiOjQ6sjcRolwNlH+2EGgFZNsAz0AkXXeC7xP7cFQ4bJHdvdSrHV2CN4k+a0aYpRKe0M9AzAgJW5A84wbAKcNALCcaHgjHqoIOcogZVoriZLPcyz0XzVVNrgSLBRw4q8nH0tvgh89TymZs0HDmKVIziu4uVqU7wXIFbdqlZI9SdwrYkAG9JwNJZ6+QAPkAOagf7I6N16txocLkuRrczjzgAETD6bCDYpJ0ZVPfgiQxBkH+yIUcZqYuBNBftQeArUil0b+RD3Daa1MTf5WyxLQcmPYXT2MCxIrtg5H2pHKWem8Pay2moX7m/f8bqyeZ8pIA+S0ZAXEXi3SJn6/TSOeG6IcS60DNs1WT738258U05M0S3mTegVq0Xri1wSq7Q+ro7ctm3bvSXru6RTKYCuvrXOM2NqAcQyY7ZeJzmaETjVAkVw0/sytQloQN9Cj/Zdm5U1b4t2PpY+4mDI17BiTz9GlmCqXVIaDnGFW6RDrpyaUJiux0JWKjPF5KNv5ZwG//MUXeah61Kbbzb++H7fj5o3tYBmskLB0kwrDYORtqOScVxGbLUfNkLWAtKSG4C2GStje9lX0V783h2bpmm2une9Wz1Rl4v1csE0T4Ca+gr5CTth62Q8oxZ3ogZRGrPSHHeAbfMTB0HbQ1tL2y70m4JKV/B0fsbYHYvKk95QjBnQoTITZ6i0SDqgXg+opYZ99pmpeuiZCH2DmAOZ3zzwNfQSEMHayA6Uqsfjd+6d4I6QvSqdUgtm5Uib/O10vvLOlBzFTn/IIGsVSNmV6Rjkk52V+lzXK7ZtzWvToVLFPHmdz6lOocwaxaqIKsls1wfdAPjCIS/wh83oGeL5WRO72N6w+VB+g3WNtjaGveB8yfp9ubDWUg5MZjnYF/Mxn+bj9wXDnZ1Weq6gccCYwIydTVx2EsCL/2VT7nVP8TBxrMSfnkt2pX/HhwSGzF45sn7PlcPqnIMG33juYOjfGDwZacHXALWIEd9FknSc/N21Y1u3kiGxYEls947xVGC8sDT0R2ZoSZ00brhTOjG2e6uB6zN6sg272sIGCVq1nHMhEI6p8dFpxwEVtqEZg1PnUPtCtnm+hh35xFd6Jf1Dhnb4ETK014l5qrnfxwGXOviD8WcMRPPs6CxLMR4qA1b2Ktmt4Q4h/NexfZbxwR5xwGQ/RPMvfxfbwaO35gvkwSiwwKepgYYOxTxNeVrz6j5s4a09c55NV01tCiZnf8bFLRQ//Jr4XlImiq/R/5ARsA8RGBE+n7fJi8WhQ5K2gQ/FSpKfsmtZptiGtj5R8C76O9hVxUfGLG5WBJmkULSoDMGyz5EL12zv5vODTiEbhEv8PLalwsdNvRg82t0zSLT3DXRPjDs4VIlaZbv+mNdfS4AvjHye6OF8rFscL+5bbz2LTYS2t0atPDcEYmsl0qmoCHlFcs3IUdEsXgnNeAogZVTnCiIp1r1Qpe7ybQwhkFloNxVUreDEfdUuTfCcvEgBhaTZ52BVysrulrqWlHkp3xicCy7XEozVRClhFzdylRRYyluCv30ZTkcAL6L+nuwMXhJs+4VWm8ixC+AUjDQH/85ETAoKfbYnj/U2kCfpigCbmpMYwZRU5BLbiCS3vCWYeV94S69TIQ2jML5V1beQAw1tCOaVgVvPDDqmsYU40ABVo1F39HZaVwDHOqEBYLH6F7RLIYtTzK6d6uBVOh1k9A2X9Z6ykN9Rza8hkJRKIYyhshLSWCSnOoI5SoaiOiLK7pm73tdvYchg7EP8lAqS1Xko8LHFlFnXW/ndqKXo+67AFPPegpO6bpk5plLZu9GPNZ2WwkaI4cHUxu/NCI1aekWJfEf9YoMRgBkIeR0ArTpLHGgUn9u9A9NUB+hwVuA+0BBSoygMGfic1K5aUpBRydZMq74HXjN/Qx4KC0tOwgiooHYZXHssiXbqS0kZEFD/aBw5h8kcUupvLqP6r2YwSGK3BQ93UsaQvVP6+34LXQOtQDi0Y9MK8plxww56rJy3ki/P8um9TmoL56Q1sdprUTC8iZ+uawdcxXalaZpKD8ZY85OkHomMvuxLBi2QGctjIBoYCmbTq7abhVXOq9LRapyWSXrI3+fqtyqU8civGwyzPno57NgB4TBWNzNgrjWP9wGMxO4AVzc+0uFDOAcsfxTgVbUjuUj2gwllS2kas+G7DU6VYmhP6TPoWlWzlaa5Q9c6qbG1hnW9QFrDSgZulcCAH3ph+m/y+j+5iAbbqj21KYOKre3xANg8CzoKeutW+Gn6TnIuIO0+ZB9DJmzbETGSxhqilFswUXq9Ls8JSYZfikHKHAdRQuYi0Bb9ZgeV4AVhtzC+cnAvgiYisINMIvjJhzM887Kt0zS/ANjWs6h1N8pOECQXfpIesTDJ5td+ka1Iw859zQGX98wO9HGSDNo2Wq1TI73RWIjets0x0Os9whZkYut/76vjnOmi4LtupbvDxgpbtnngeGoTiHWDnjO7dbRdczFONb8vuw7J52gj9Edut0xAIkGQ+lTTNfTNGBAdbLVn7KMB/13g+H7tgduDOI/Y4l+y0z/UIVWAa4ZW0f4q7xI6KsbMYl+45DpSwpdyfOqcgUeQ6R/MPio5ycCKD4r7ynJ4uVyANjnf21ByJHVGa7bSgKphFrxUX4iGUA1koe226rXXEIMtXULh/LSZakgKoAKOKV+oxa3U3yFrvUMjUQSU+acYSj3kAj/TyYTWZCj0U2IYyL5D8inrdofsMHYM4zBi5S495wXbNCkjLKu5GBi0U+d74UXYkMGq+H4fDI++pLxlEksFp8o+qADiqH9pDgrhIHi+SMq2DzxtlcvlgsVtNY9g2EpDj4PwxA/b2NCa8exyuSRmqKr5bq4npzZRmTLTtQLBNEnqT0VHY9nyn9K2RdlCQfsq1VOBvYGfMi6sKUK+KNjM9g7gSRZFFd1FtIadHKPWRWmfwKjy2tIPJUNPyOaMQad5EHIgKLsuxVkG/g5+p8v5Xi+UeO+DjbVgM9Aun8+7v0Za1S062G3Di3Cw55YQu+e5efgv+/prq8HHK/oRPGku0BFRbX6IAxLE7UMALCvgMCx520Gt9iK3DIn6qowzPa5vcXKbFx434yCsAxe/MC6BFIAAgpg4QK26Ns9ODCwSlMOcxlAYf0LPIUAdnMk0FN0hIMUfL3a4WSgBRd/G68No6rxaBEnhgiqG1ZUA6TCsyLAYg3s+IccOJJikIudJQGMsp20vPVKoaiO8qrsQui3GF9s0zCFt2b/YliHuhAjckaC6FnFyaFJNYjsM0uAFwrErI35bvb4koj5knQQtIrXNMSerKUA+zSvGmyeUiuRWnG0rQGanJlZcyhAtowwSJxD5Wp+WwxBCyYYpP5sVbgAkdXEYizcFQLI+RWzdG3ieqOYrqAF85LjEnOM24zX0neQjZRI1yeJzGR11fUp2Gu4xfF4RLbk0IsT7GIJhjWLFpFM+L7KffBk+54wiCs/bM9gJbE0yE9Dk1/HJ8cswbba5O9nqcqzude1Y5rkMNCec1ZP0+REyAwxyGNmt8TmyW0tJhnx0wzGe2nmKVOqaVKbBu67h3A9CkvgYcy7xzRV3bVdnBRsYWvMzg5kKX8io52TbQ30aMt4Ij6tro4Kurwp3FSMG8mt0NKS+ceOL8e26JhWuPrOxCbUASZeq3RNDy+CEeHYOFNM0+wpyZPA525pAt9WNuaK10bdnYH7btkGvqLaqVdpayYrrBsuObmX8+BirxAXPazIo80V8DX3kzy9dRLzJOe/9Dr6y7gzai+uqq0kfq6Wu0zOztSG3OIKDejqMQZUNv9gWI2nQARjmHstD8AvAgOepL1FIFe3lHA/ZG4ZUBmj0K14R1I8+WQ1kJD4qkGOPwEsEc1d3hnvfzJD2MVmd0Y5t65inVoEDV8ZVSBzo3XRu6OTYNRHj3rYN8zxldh/XpMo5HjUn2UAe9FcEsCXi9jsjG4WHEFrsDLncGx66k/+4Lpy6nmUTRnyrycYBuqjt5Ayo60KGQv86jXNrs9u90X5kknKtvsJVG1/yuVeAP+QoVGqWIMjV7nLw4VmVhT8dqlUGwmhfNj3kGgtH5eDfRAYhXbttK6a+QGBO8dRaBs03lP0wtYZpMrkKGcxTSoMWiIWxKoWhqnkKbsyL9D1a2F5eMk0ii7gSDBR1gNFgz5AOCl2WU3iQq5IF06u7A0nCPBHGrqLbsDtkJzpDVlnqTA5SlFyM/ai26zljUCd0Cstm6fmen4dATvJ0czwjm1dQG3oQ/gyNEfvSAjus5f4zziFwUMdAQhl1eV93WyrolYsFKOxY140WOWurI6CeNVVYGzUvLWOvu16srZKBocHf7JnEAgT7htWXDNABninfCDdtjFGSqrXKKA3aRh8zacCFmW26xAxjgL+nOUvyCJi5V8GFCoju8TglT/2m4HHgZPKObfMxAJI4lLpXyM4cA3rN62AzL/dBFPsQNkXZQoHj1afIbNZBtka69kGvsH8Rcho1ZZ/OT5jnOYPf63pBHK4ySTMskwq8mb3Kh2lgKAmGru6zxwJPnX6eBx652EfCCtuPIJ8oYi1Gbz/vQGkh0e2MPByHiFnxgHolTVELsvvFr2xDuD2KJwR9gcIPdVwI+YhsV+YBGUKJAyyn0TuRQZdGHCCfF+x2vsbaNY8TQMWhSEdjJy+D/QGkbLPeB42za7/KoN3b5tETASwZ7krn/tVePzrAZ6u/FlxpJo0AfBWtK6Z5cuNPASnhsL/hPJTCnjyIZqtwpXxjS4c9s1Yxy7nSapuUfJx4CYUHHYuQwWgDzNq6VMRVmiT2OZ5B6h1Ix7Bl+rV4x01YtAy2YfyGbB2UFebCxBOIi1GGAqneKHeDhNGVcxqCHpRoaSGPfXkmi0xhmSJ82ivTuQ8TMnojREfkc0IBBH6Hkohtl0XbCvakLeO/WkCkUxuVIt+mCVvvmCd3wpzX2xpBO8HqWQhK7YczPCgg1Mpl1pIiYI6ATgQYdNOkV23N9i1xTZJGZVQhDVmTdSll579mRixgtQDJqI3Lrh1fIpZEQC7kirba0HyJehnpSGaGcDGADa2QgQpu0St46nOQDdmQmaD5PpBSep2Fxz6nMybVHs/AfHxs0wQ71iONEvEFQcQcUz4fZkBNFEjbNkXPjL3IJmipcIe6lVvVvlvX2HqLvNaKQW+YptkckqjV532L8cU2oJB9ePZMGfyFh9orgMMGCbydpH+QgMccfUtZLyXKGjL9xaC3jgGMdGBRPE6D3senAQRaK7ScOTU67hzI5S26HFSnjBcqG1AyI0N74bQ+N3c0aKklN2O/JGlbijzmCLXlchfOQk6FNIbIiAY8q8qaCsfusq52InPqQgvcae80Z4wWgTPYbBxb3zBPc35fWXyrF2QuvnAZg5CpMj7Us/qKhtByQLpZjCmnkaUaxiRITxKpBuwro7ywpILZ/keCwva8jXTlsBW/xwptZH4G38Jo88B9BKc1xqQuM6WHg98DrZW2WMRw4trQJa4b4nMF7sguUFjUQTE4rnzSadCjaqdRkM/HWvrBXHY+yZRxIwJ78PHafNvsPp+zsaiQZQmAnJshJ1uvEwLzGdohzdqZZ1uoiHlafAbJaRvkiU+/jeAgUHo4RmzT1vkbQZTcv11Bl8ZBL9SBTilMAtJdFGR25rh1VJkITNCY8/lVyMh+/5tmVlv5BewMWSPbxgvJQDmhGJxiVl0hT82zK21I7ETR/HEcGpx+B/F0XhALneMYhnbCBkDRo3C55sG2a6Nr1VlVSyHP51R2rNPC5U4mw4++rqhAXywoUHDGAyxhl4WdE9soE3TjT85xHU7+Hg4H6h2gregRqMkATagTnxdm2wWtPJhIdhtcvqxMSaFc6F+mZzIs+Wjf7w+PYVs7+JTthHyFTiK53PNvy+cWH0Nfcp8GvQkkraOfArIXhuf4+OnevVz9Ny2E7fVkjZ98BsfQrW+AywwHjm0b+GRZx04786mQ11ZtRw/iIQLelVxitnEkUGheF3ISCSd8snfIA4D0W7IWeGQZ5txWkjuQXxL2KJ3wK0LyVboh9U34YKx/VGEL2Tv7RWJBoRiUfGX+kIylzkTp9SEQM2Rjla8Qf0vfhiku4IBhybjJYyYLpC7Z6wdk/7luWyRYBEMGGYvrKTGJbc8q5GE+Ecvwtm6YD0dA7cRmDSyyDmDF5qWkZlvcin5thSecsdlZ5/p/eUK4B6rivohTlP3WUsZq8aEO+YtRBD9lTwdgb+oSDwZSXf2eNHN5Liym61gnhD7sWnzhZ7iMXmEBNMUj5T9l2kXR33OJn3hgnHZfz0DKYx3wU3bFc/isg/zR/Iiuks3KvqRq3/k59VvtXqkyAL3rIJM/9vXXksEXxhWkMqti9RduNIYBmfV6uuUTtd3qbdQi2ra1MgnEshcakCsbA3gBtRXQDaNY/Wh0GEM4JUM9EtV0amwMvLqEZFyb2ghQmfocYvSMQ9cLyAJsUiFCB9DJ33dgE+Crom5UhRIN56nAXlO58FHjLuQ1IKjW6m88r/tWajYYDDBaGZYovWDPKcNqDxJJB4lMJyBAm2wLKIpGAdwMTCC6mqPi2XEkA5vWdRsqABgBh1DKZkiakxIrvFC4U1wyuq6bK+Mta11lTT5fBZYAKwekqU3G76jhoxREBAVOQ/m6zEoor13R+jK6Ap5HsEEoRVLs5YAwRNnnVJAMwkm3HklpxBv7rSsdNBLziwy0xm3RnOx9Q5OqM5HGWiinPcBr/Za6PgrXDrXPQjLseTEHsn/+2d4WAA9YGUEhjVuGgQNq2QQqKwDBPE85R9ixFGmWpaxW1Dn4GvIVspyreWqFuQHCpeixABFgaNIyaBhZVSUbMvSdjcquvu0uFC7q1K26roL39twRH4RwKubU3jjQlLnI9DC6JSmHbGxxOXI88nv5gI396XGRtRWHI1TAx8blHSqZDhkI+tN8CLyIfpT88CsCiXtZKXy7Mke0ZM1EqjT/fp5WiQGeom6Ih97zMhNRD0381ElxeoaRV9vBLGt58hPUAKvxMrvOtANgFJHxUgGAyuaI4B5nG4TTbZkONM+BlOchW59kI2U++c4ULr2VB2z5/3vXKlzeytEuood8+j+kN8NBiHIBGXhQykoIXqS8SC4eAvui16XjB2fV5S1rMu1e4lg5yCtKz7BGyznCdAnZi0UZon04Tuy8AMhtqOpGZdgG8bnnGGp8vVsdWyNxQ5PJMhr7RvNGsrD3+XIx3nbJ8QylMFpLB3+jhQ0zeizAFoutlYVHWNLLoYmxpd2hob/TG80/XCuP7Y/YBsdYFU2EXJQz7TTu7AwQJpItFLKXMu88rzZLVqkz+SkXaekZTKsMuLgiLie+AiGG2y7fnWwsAqdw5jfSzVVyAAPWsq3BMhc05T4DQhmNLtFS4+yo9gJDbEGhFikyQy+z69S3gSt690zPyxgEBnx7uO+qAGhcWwWcM0AdutZ1awV8rbROOOxF45DFTplZFeQR4oWgdh6JB3j2OiMPREkbjAK1xSUkupD9JrsgRzTBWYwpx6jMPPZlUvdAh2eOcho4TIvWiR2heyurhIN7cfuoe+nlz4hFJa6TFxcMtpwyOrLe5jERrkHoPuSCwuWyQuGZbwKqUStEF9PFlrRg+mqaWiaTTJMtrEVQOe6NTKtcMEOHbmLbL10+QldH+YFMwigyJh+i3SjPEvM5ki8G/xOmK3mHSwQDSpwk9W5SWDHUZUy2E5+sf8RHn19hJ6RcRHII8GxWZwgq2xaJNZGtTbyt36vOeSlDTfwZ5B9hqwhi3oXtkFIdtHWAThmONrkPrN9d9nLsg90bv0nq1O56MQ4FbU1wvlwy0CcimOc55cDkxHeTwXTolIvu1q8oAxWBX0XZSLYaGNisEJUrjBxYob2y/cJny90umvZMYBjrRNPJmj5CaNnSNc8HCXXbkkZM1YGf+6SLtG3gHJCyEYKfTqSh7FPqdV4EQJXiIjvQZKR2fgZPGTcjVsI21ra5nw/aPRDY1BWQRh0vGQNiAUERNmPhe8kW+/5s2/Qt7LBxuv5VXz86wIdQ5B7BBYBFF0y+EgdfpYy6aRFgmdqUKyJAEb61cmozk6BTDRYRrwcjuaqn2nNCRVZNqAI2Aji4aKAIiNdVC8dd+7gNM1Z4YxKEARzbTFRrMrokF2fC+mJGxuRFCHBNXKhl80XAKYvA0vaqCoxoJqzEaTnqE3lfWwjKAYHuoMOC5wIVgBB9RxnO8Qonp/gPPwjAL5diaCzshfGXspwMp0b8SxPsns9Px9Rpv64r5nnJ1O1wDGISh7IQBBhUnZkxM8GDE6j6eeu6JuDCizqva6XRWzZoGfVRp3CaYtsHKbRivRclL142qcNfkhYwJRAnz6a+QwBQMYKBPYAOeV2BYFzABacZLEcl50rUn1TbF8iIC8MyMwcipbuCmgFqTUYjMQ2INERCHpxIUGTGRUpD1X2hwZdx6J+TBvlbBKpYtvKGenb8mn1gw6ayCtbVHIfD4UDGu93dFWgaARjxRQZTeK1NiO1eNW5X9qEURBCHoyKMCTE50U2R9dOmloGINEaU8CkoTToz+loJeVV3azB4cjRuzDEXiB5sQFUQpDjciQ1l4DJi+QnjHkzgBZNov1bGB7bkb1mvlV8xhjBUtTIHRmed59F1oJLl4gr4FIjVaKbnHuqVMnGjLxwoqh5IHpqwbhu6rIDa4VRdFaJb6Tt0CDRryU6teaAzsj+RBetj3l5WMmqktnnkglwXy1ZBzZ+gRR44BZoPqMW8CE7nFm3HvTaFPhnrBSaB2EgKvAmjL/gcwRbF2EYY+XvdKbTdwYWf1bB2DlKEHAevOyLYzPOeZTGDmT7PahGNMdb1NusGMuqAcsrKwfNhsl2RklFYne1T5pW1p6hgXuF1V6TOS93p1/aQNVxcpyl00nRQI8gj04S+rjk/pmaLFBBgIgnetKPl1LMs+shGkMl0WQcw+/fmKMd8iyzaWrDIrWrQtPFCttIGk/GkcbZFyhnRlBPmVc2HvbEe+od1ADuamtgKVT8sfAy4lo7i8SExMmVFYutZ4YJ/TTsX4p7CcEhlU6ZhQM5OBVDH4EsEYnORweW3gvrhSJKsq6F5javoFXgx2lCFlhZUL7slAl7aO87rimVZgHX1RQyvTeV1qGIhNXadBC3suhXzPA1m4+a2V/YlbPrAMVrIZ5xXU1DozXWQ6BX9h10r/IZxRcZgfvkJMXUrSJx9MCaAvqWMaRIGjfsLY0KvcpuxxS31ecia40oslKV9BsYbSiAgXOpXp+QiZSXpicJCbzzHHmONAGRtZa9ryybg5xReARW8Sd+BiBT6iGfR5bJiWWYAVvZG3IxXsRp98zznjjH1bfUZINKGkK5cOlD4QkLpilwYEEmZUik9atgrvvhRtlIE1pvr7QzioZJeBp2SgBM9cv2Xc3IXYGUeksDU73rVvhJ/OPDI9wQv1e1I5nXoL35e+l90sEdu03ZllRl7tOMiJSf6QHIfL5GwQSKbkfpD/bQxFD8Sw2Nxg3bAKZAHHMWwAvcr/tBL9hXmJzZA5groz/OEaZ6zDEH0W0Wxrh3LYcm+xNxU1WHLeOgjmagMAaoOaMVAgmYYfaPiBImPVvuJTRFYjcWqkq3AjLBL6lfSP7tdk/wq96yem3Y7YidnigtZE0J+Y+hbHcqC1Q6t0Q6MByePCC/iQJygDB++JqgMc8bLsGHTzmR7lvSudVJyUU57xRTYJ2OsrZqRyHmnIH8p/cRr2v5VXj86wJcp+Gp1ngKsMkAlaepABNg2E+r4PUBG4UDQeZsFStBjAmrUQ7NtJSb8UQuBUsnJFAhFHwxECEfX3N9fIDBmIeSzXQlFMV9FjStfwqwhbUcAFNkLZYRVRD1a3DQKWpditCzT6y0ZKUZhFG4lbKMSRQrXkMEoNekGBwmgQx7Y8C0nOsakPHYdFVXOiwAwn4Ac7BmUxLOfnffdHJeo57P1DR7wHjIgI9gcK2/Zhj/PJlrPtP1OYGnB1Q0NFYRJBdht9EJp0SEMoRabb/+Y2JlLFpWSgGDgr0DcSSxeqevBAdRp3ic/dgouHJK98g8FEn1lx5eVTihOdu7jPWdOliJRKlhMc4Bok89SzWCW0vWDtUCgOqxmSvxWdKgtl2TgsIEQdKHZMrx2Y42vtq0Dutppk80c08tlxewrw/M8e2ZeYJ9g3Sz7yhT3NNCvr2sacdMUpz6XEgkvKQ5WYMXbppYBmqCh4WqtLl0ZjkHDIhsppsgOZKNPBvqGkrZnhHxhcEYyeBbGfjo1FFwTd9CzCLGv9HlWmlDQbp/JB9TiRjno9ldas21XOwUf4x+yEwZ+E2qy7IWcxHzzLZThyJih1cqB1aKJYZMO4hX0KWcp7RrK6NPEs6Y2tzZfLFs968lKVlRWnYgHW7wEgSIOT1H0S/fMz5YHdsShCNvWMwsdIGOxVcA1zSAdnddhLrlzE4PP/1oEbOJ6Wk2HMtmv9CbrCrOZyiBi23/UB2H06cD70GGdcI5LBPAzjdfjttwy3FxPhMiwPpeSr6EgvIFezrkKJEkZlRmc6qHUs5+pG/V6nNVvx+mgqV8XWFD9qBtiDKq24CnNzD474dTkYGoN0zxBFR50sW3hEZwTQW5VGrbZetkC9NBdko53HXwAf17NybSBYNsFp8jMdVILzTFAE0PioKuQtkE0cjprXZdOX+mhrNFLvM2spUFOURgJCm6knVk9CL7AZdaCm+QcKKoOmUVhc6t7SoCSXZi6HWlvDYsru9cwh4TrIXqQrUWmryRta84Aum2ZURNjykWywZaLIEzPK4PvuZjjGLpeVpe10r6WddxwuVygsOAvutm8gEImo/UUc6w1y+51nmw9dKw9qPcOid1BTrdNqeQFeM6NtmkcumZYx9vcag4POA8gMrdTR+b8dlkJweEDmlKuva7WUDu2c+P+XNLz6e6N8z06lcEK1TopcgjUlhOZTyTMynK76V/I8Jy9I5/9Y/nhLDDwvWSTsewPph49gzE4aUf+SWAZtPDd9ee2dbS54Xy2jOPjcgCayRswp10edlIwKk42bQJc1kuWxQg8SnruMseMl7UYP8hOwlZlfdeNFawrSy/40klWSnDCymL5LVsFEN/dVXYukrc898KPdSIGR5L2G9kUSnKa2KfUt9RTmpjD2+U7bdsOeRbEfcX3YfGNMvsT+6h0g4bMa413mCYsk86ECopxaRsPVgVN2NcJ8qQcVgB06x1b8NR3TUytWS2+PMiRxunPFyplYl32hbT0Hepk7uQHFEAF+sKviTrfPF8A0OJ/il4uwCYXrnCf55kmXyCB4+bXRYxm7z6VuVIYGbt5uA+RlZYCFHKZ8luyNJQfY6yWst8SW6I99jFcDtnwyB0XLrcZ1CcbFyVCdo/7HRz/CVmtco48pup30i6HO2KfSO1gKqhQ3zXRB//gx75+dIAvVjRMsXasvkrXu51i1WgVIyK027aVovYtt20yY2dzAZznidovQGiNagL1js2Z1IjJcW1up9wRKhQ/sFfiBajxzJiAGTTRUsJ7h061j/URXDgiKl1Kr2jGXYvgpXbFJhRZVgVn6WXAB+Us8qqt0OcUypjwewWqAeR+Z4BUq1PPYoKXA16Kaa/6rx0SXlWS3dUA4UEq1FIayaxEXlXL4tvcqDJ6m/cRBxfAeXRxYxIOIpZp6g6pjFuKckuBd+S3GdGxdYlPeGIZsVT/cTXc+NMzaDjWkOMtINGXyrQCypjcr+KlcielVv0eDa7siMCyQQW0khU0ZuVLtRVFBuXM9Bi3rKUazyzFkB0VDrENrlm+UmazdkbRg7dk5Xwt1ZVjZCAuQzmboh7SKoySQY+ay+gNl+2Cta1osO0cF7WM4O1ssrN45nCdUurGAHoZlZAsGRAYwn9bFGt2Xm/bmvX5ctVTJnQP/Ks7sKp+b3oVtVp6JWdhrMb8YEPLg2ziJxXGqv7IbsarMphsDvSiM+p3hdbJXr0MwSjKLCJDVho7K6Hc9wsIGUhS2qKE3WoeyhBG4HQQnxS6i0zJQshHGIvhiXgTXJsuDCQhJR8GCweowKeOKRmVJPO9dzw9PaG12moWAdCgSWU/1TY0NEnjN/owyQRAR/x3HRtyAVR2RGb0oYJWmemuusMquIEU873KHAQtMqgXpI/p59/F+IfaV+QMmwHF+CMYtlkPhpRnoycOj9uX9hjOW2srCMKLUXFYzpQ8B+nPsjsiwFYLhsGD0APlrJnVq0DWqQnZZ6ei+lsYz1nUdThFOTV1/5gprYOseqZLzJdmJ+aqTh74tTIE27ZhAcn2esFhOdgWON91Mc8T0a0CInA9cFnXOrm0K8RrmBaGMc+rz+YYmLO8ZUmCcFqiJEcFXkpW4g0VpAcF64KmGjpMEFvdAVTGQFfUcczWnircqR/tpZFnNBaXb94WGHMl5B3uHBh/x+1lY/tjACXottFuFNYhCPuy28KEbeGqBSZpEz3HcC0KmvMW8NAHPH/KwfFXOFC7vgbmjFgKPJ3PmKaGZVks6Nk3CGxrbszb2PYNBdZtdR1XczUCtREgjp07Vo9K3LZtia+BQVXnioMQWlu5wsGTkkOE4+jXc/A+9AzbZhVk4tpQNiczkEfmVckk8ZwCI4GlOQ4d5W+QFVrED1WlJPcaxkz2dRADCmiTz5QZWOW35f3B39hK7PRK+cksY+pU4H7cy33wa7IGL401g3lpWmoeXpa/aZQhiB0PtqjfYJmh02FGV+CyrThMB8tKnqa0s7SFXjR9F77ltlmN5HmaqCYjfGF3KhwBgG7WzzLP0U3n/YwMuvmYSmzCJmPfo3aMqdv/YcPGPYFle9smTI6eerIwImxcHZ882NGaHafvff48eyNC9tgH6olDiZ9h90FLF6boVKAl/R+p4GJcGAdosr+S/iTJMNOZdW/JSr/CzLBNyjwrbDfZqvtsK7j9OE92vgAAr2nc0Tfj1xJZ7K0OFKr6j0FIW+iOXYfmR9ViGJf3YZstaBOJUxq2ivcZqsMhLvtnFrbrEGzqhD+S44/bIhBXC0ahr43WoFcdDBJ2W+9hM7G+J12Lqu3NPgRv71aSzXpFv9twejDbaZH8UNcisSjG0HOukQyR3NayN/noiYuFV3s9QfHt4o8gbY2ge2Fv0NoXa38L5v/Lvn50gG9dN6yeZg+IO2qxj3mDasvtFiJiafGuBDcHkG1dMWNC37ZcQYkV0jD4J5o4GTQSYBKPhkoVxQdCQVHdPJBhlIrbFbkfhJC4QcSNaKtNNiBAigOJewVs8p3SlDkc5Z+U8VZOht2pPklj/Ln3HDQBpNI7OQKdky4N1zBwGoCek3Hf56H/mZngoa7YGhwzv1yapG2tSTmQk2EuxC8G0LinlJ8HR6ROpwugjdfWN2jfEuiXZUnedCiaeq20Vis1WwZetpQhVVQx+GcCwGHkpUJRz5KJMbgxmatWceqpZw3WUeGAxsmUuTpTPEggSvoUCMaqZUC7tEaOUshKdTmNxgTtMpqS9vEVwiDQtM+cKdnWcPQ4CnjCsY3X2jsyJyUAl7JPK9Auw1ykjgdBqgtZi6aMGF7pK6PU6UAGuWrUA0KYyf57jnT4Nx4RfIhXt723aWRLE5zPZ8zLhCaTF5Tfcp7Ulh43MrQDXZJvYVhw5mcaNG6kKABtgmmaUY4tb6WKe0rWjAKEcbtDE7JmkBuOGYBxuqQMi9D1xZYIotl3kS25d9R3LE2+0qmPMR6/ZjC0EErRcMtq4mxFp7ojaZHGSBiZil0BYuS10alYIQV2WCSMZ/HYclxzru30CIA6mVpJkLTwg6U9eR3Pp/nWZgtwPj2dMc+zLX6hFla2vuF8PqO1hnmZMXkA1bJGNigU8zRnhsy2dRyWJQPj4bw1tNShaVRqzBW40Vw18ULXJV9R2JWGCU+ipPkQFsz7OUhnW5GzVTNwoq+kh/bGO/uU7OQxsUfDi56Bsi3K4KpMPGmF5YU5sSBURmIupuXWKyG7JZ5W8mS6oDLwr8aXPFJAe1KUdWTonz2GhhsYNkEPLNGaCxZIVvTNsqp631AFoixjZV1XIHQd6rRlw5kIfvpC1rqZXG5bZi3H3BMI4nAXAcwGIH0nEjbKeMga8vRbsyUVOtTTy9GGaEYwV6j2mfMEJNd88IbpNk3c2HptH+OabGy8V81I7xfNdY0g/GDMO7b0rWSOMMmbIWyK/viJh+E8Q0Z5Cv57I7yNXsAHPJidELV9M8iY9a5rLoTDUgW/fUw8l/xvztccviCc+nSkPDtS1erYttmwPDDc6KhQkq1wyMNOSj6pek3Ror92z/JoQFbVU0DVtpJHP6xkgC/G9tKdEdyLbd7JLykTKLLouwdMuQA+y0NRcbSj2MEM/Az9IdKA5JtTN5xDkqOyfSNgXbbIIGPMjt1YyhYpHRX8943mKSsxrpAztj85oBaJFKkvUdiWLsLQvxG76ruSZRHkAuAYFIt5WDif+j2epdbv82XF4Th7Rp4t6m/rCpGWJ4bPPj/meU5exBzTDiyzZcc3gfuhJmHivG9T4J2XgyKfNOwcT9ZC1dayIFDZWS4tVxhexONAF9tzexuNFETqj+f8Js5U5VNcE0sQdpCU7KRgyRCcYZ+TTJiyG4cFtlGX25zuVptbSp4zSB79Zf8mcDPFoRbTesigVHehmvMt54V/YHuEbbMsfxEYrGELVrA8Fy/cDpiWg+u/NfWj/69iHVrnBQzba92mK//cvotgYGbjJc1ikpTu9NBfLn4U3ZDPCZzn04RDFpp4QpVUjfWsCyyV2Rq2TwS+S17JsEEkD5WMjHENG4MlPPjOBSjxued8Th0WCQGuY65snm5y1NViBoG7bB8FnkRfCwc7WupZQ9i0+UTovBeKg0jYebuyDyWWA03KRokA97hjKsrzhGwlD1GB/Stf+a/w+vEZfHCjWw3w1nWFTlG0dCpBab4tF81ruqyYMGVB+QgObFxkUDsmmVJRc3BPEVksaistQE6GNC6liM7BvbhW3KhwFICqO5tCYFCISfvBFb2Hs4j/X3vftiTHjiPpYESWzvz/r27PtiqDxD4A7gBTmlnrPvMwMiPMunWqKjOCFxBwXClJwkMtRZhfpwDWZ/mfTeHW7/j71ueOc2PkNGUoG3iGU3CIsdj7prKrCNjKqegI56ga+BJY5/9YGkogZ+gGSK4h03pzsSoaXNdTV38kbOW+oFJHzUVmewPSFGKOBCBryZB/8tYsluvegG4vYmkaQeQ1Bn7+/M6MvlS8dJ4kDy/njbwm5UYD272EyGJ/NQrhRTMfTZllBgKNGcgW2RQLy3QCsO7rszm1JGh2g6eu9aaA6BlYBOA9k8sQacA7eKOThJ+R8sjv6QIWAvscK58B503Uv3ceU2A5ED0v9CpmAbXIVB0cRTlkgIAgpp3rLRMxV/g3tzPXOjUB2uZNQFL88Mj5ta7sfZbAX+Vr2SuPWXAve0k2LXfYWoA7Zj47Mvuy1yL7B82F677z6LFxbxnV6k804lbniugRVFBxATa7nCyHFhfBcy8U3TL8l+Bb+wavs8gyO6vzXHKVhl49i+/rfT+oKBl5CwOw9rU7Qsvp2pVnGQCOkuXbjaqgY5IgqPVtaT1ENMsPvl1yuuacPnha7wUw2++1HjVifRa5QppNgtvn/WA9E6/7hft+5SUIob+u68J8R3Dift36G3s+ykDmnHP+zADA8rzFzUt+o7K7OC2CUtQJErCj8+MTIMtwJYfpjKGtL52Irjnrn+Q9EJRtoJYOmRzPinELAHoZfsyqphHTnWedOujVZRGNtXZDuDJUqUe3THzyyWpZW+hnE5JLVMzFAzsfcW02PuH5bT/L4cT3e+cxq5+377Q+Mwiny5oOZER+2MDX1xdgiL62bf+WArf5Bqus95GGc19cBhWRWfM0buJCE4ePbF6PcuKxwqPzFQM0hnKgc07aQyv+DB4oOST9xz3qJdr8Lvenptf6mdU+bbJo9XMdOyb+7PvGz7Rxun5R7Ws4zsFSOPF16TOpKMnY3WCuTAcLp21KYF4IwLViz8W+FjF9rkEFwqQHu8yD96XSJky2hHGucxng83ngZvh6vaIk1x1fX1/4fr9xX3e2H0CUg68o0b3vUXzMMzhK7xDrSy6BQbC8zK/bCKucmmxZQN3G1gkDpSPlQBE+zM82WNEvg/nkEelDOgzy/WsWn+23Sgo4R4BaPcD5Om9rge1vHKecjhLmJT91rGJbd6MxdVvX4+Wcrc9MPicxIY3VUC0VuIyzymkRv9dZ/SXrM3uNw72ygPJs9/LvfoGYc626/C8Nng5VBxpWA2zji2GjLtLINin3fUUgdjKrqvRiYfypbCk677jvxGbMvudFC7woiBdAqs3KWqraoJ791EGBjUxnrXR308/tfJIraEerl/enTpV86QG65DbP9abQAW1OK8ze5BQSc5Fv+vgAyA4lA8Z6XcKSdQaafdyeQDtfE+ZBIJ802chvLa5d/ltnnnIqA3cfPTolQyedTW29+qrn3q81sWYlFdkYaqGSqrhl4lVrgjEiA7RnAY9sq8KM31XMl3sK8AKerR+cIde1AofGSinnOSx/SemuvZUZ284I76o0FTnXluCUeP0aGYBO/TOZdekMlHKclVXKfS+9kvtAu8fXR0A359b0UW/dNJWVR94vHdz/lc7kmnOexGqUl+29nQcpz+CrPRPyo1B36rvb+3eM7G1vxdJtTOTFHhD8O/Q/kMH3wN9vRXE3ECqQUbfP+JxVMmRxaxHTm6evPCSjgZJw8tXzouyXWVkCGUCNQQZ/blVTyr2kSc6FhQSo4C6op1jPbgGQ8qUivdoEB3pzZQrWtRnBQ8pBhkg65goYdmaryEkH8zGX1lg5Faj6+6XjTxH9FPpAHCSWDvZMs2KweG8BooIUUh5ec2evQAFZ1DjrsOQNpCyjyf9zUEiX0OaXu9edymiuifl+FCUaFgJ2UoEp03NqfdnXajEyAihDiAKBN2mRV9R4O5WAoZR4fP5KBVN71WRH8ZlAMfmvbWeuGf/l3uhnXYNU+02eoCwtZ6A1fuHtg+WU5HqS13fnRhsP+dBYKmX1e+uGbBn75Fdf4aRiyjObm1o6oHu5PCN3HDNBDgGtBG3jKf0eH5HmJgV7pLIi3k1wFvMVpHBIKdY6ON7Pg4U4K6/rwvv9Db9vrLVwXzd8Od6ZRRdAKs5q9VZ4cL9eMc80pK87wMD4MJoZCQ4+WsIxzF5hWVkv0R80/olGUwHzjO2K1AFeYOI1T2UKNzBQi7kryh5xpKLuzj2CxZg/NVrJjXK+EowTEEDZFCoXbU4arl8H80rd1ytq/Tl3S8NFk2n82hW5jZLRYolaUhCYos07eDa+31+xOZeaLuzfL3DquR9x8cH9+oK7451ZejwT4VAJHfG84xKguLDqgid4uK5LToLZDUTJJpO8ZJ+tKpFN+ZoyVfxDYSW2+OA166saH42INde2gB28sthrHbn9jDZn+47V2lwwyu7FPVEC30qlW4YSM/P65RjxGNd314pWDjMzwbeAV8uSll5yl66ggSa9b7XH2uc2xy6zIH4wWR7St00+Fc90ubXzEh+z93KkUwHqnUvcRUfRSrk2rlc8fy5YZlg9T9cG5H3gHi/8/P7G676R9m1kYAB58cGdWQwjS0FzPOiOhqbE8u89+GteBgH5tTsSGt7WZ3SjeZ6TPVi4dIb4XiMWw+7w2/Rg0+fUobBd7m2rxPk0rJFsvS1iOHg+vt90oLLt4brshEGd7mBfbT3FK6r7hPjSweBl/BCObGZJQoYkjzMaXkbnubYm/LkcSqVfypFen+M4DNXTcTDI/9Eq5pkT4zJVP+g2yhwk11Z6HcDzRLmk8DIqYEtj2TgOd2BU4FWwKc9ev7G4/wcvaqAM7Osuvtv0ScMYvsueatXQbBGk/Gv4ujvLSvT6js3YW3LRSGyLzaBFm4rDN1m3N41ve+FIZ+uSMQ93gEFoDgwf5yDftRvu1G/Q2KH1Tx7m96TXIb3uybemz4DsHG+wcGjzvcw6vrKENqFwOvCiImKYpU0ZjjzyijuAuRQsM8R3zbIyaI2WSVcZV7zFvvdb7s4Ulm3LLspA/m6Dkk/2vrfkkc3xwLObz6LTNigu94jPZyVXZpwzkNCd9OXc+OCUbjs0KjusZbZ7rUk5OPLz1JdewWrg16Ab58cxdQxVthD0fTmgaFf2d1IetbPYlhNVKeOpK118SSbrfCyepZM5P39dF67XK7OJGQQsWVItvSyCHNeIAD7n2zCnbpoeK/jMCsNq73P8Gz4iCEBzgBn0XnU9Sf0fjjwXHpO4kPw07Y/ZwJqlz0hT+Hxs2KMxks44dYFkKz/WeLB0QGJqr8DqGFeO0wrrOAAsrR0DPNJj7bm/I88KQT6PCQ6UbbIDzH5T1eQb4P3lFV72KG0pyW77xHC17o4dvwDtrP12Fv8a/W0H33LHK50Zc0apUDmpXmDWx1oeqcojmtWPa+CVDN4jLIClh9jgo/oOqbFzboSvR4YGGXguOqbitJpblZaaiTFHu+K4H4ZeSoj6WgmBxfTjXSijeBub8uvC2aocJP5UUUYeBva908t3Ewr9Fh5YRdP35+6lGmaWlwRA7+1CMf6Tabj8nbVZJLOyb+CHcl/qbUDmHpU67WW8EYyznxqVONrhZElEWe8FcNwRZUHXAK8S59ryhtP3+x38eN/4/n4rkkZw/c5yIiQYGNdoe5dA0k0RFfIjszcI+sgOxiao2IVKV1LxvXKwbp+jwiL4J0jIvwRG2Z0oBE2fpZsbyG6ZCT0Di2Obq8Buj/5wu7tztWfyybmXH5353WEjmmPrvCTbwNVDpc+xC/gw8Do4qPnC68ZCCeW278XAJiHKwe2Amzrc5eBsLIa1oGxUwDL71WB2ZSN6x+v1BSB7cYx4Di9DuHOfOTYqefT9bHKC4IfzCMNzH3fPwjOrDDg6a6TUZYjG+lxcy8zeq+yTZtRSiZMPAoHr/buDpCvyKnfaHA6Uv2qin89cpQsYuZVMWNX7gj2+gsr4ENhYJXU4PvJqv2mPYHDBKwLeZEzxVUFarMaP/P+FknNiM/7VJX/Fw6OfJW//bVtZEYBS5F6GsI0oDbo8DPs5Wf5IvbfwrMh+cY8b6K/shxbGTNzk544m83JvDNBlDldkKXDPr+ZYruBLHRj6oQske2X+QqZqk5WU4UOygE5blUky/ZxrasiMdDrHyxBmUKADdhiN1fh5PUsGFwN21ItL+rocdsyeXVzrZnB0/OCNSYLnqnyWZ3Kucix0+U2mY0n0btxWgCIZUEsueeQ0jLuebo4T35tRK4PTC0gqoEqwuCKTBNSXr5fW+CE+Qun91/3CworefK+4ATAcHgZkr+AIlD15HoOH2aMqxsBs9xFN6xE6k3JUDpeEY04H3KqMAk7M8oKb3ruxr03w6S6X+iPg2z8Q5kKTG3x+D+p6Obi6njUrI6xuCFxlHDBLWwaOC3s6wvgOnuON4nUelFUB6HxsmA0VbNN4ZDQ2tjGyfzkOKNLpMECOj+eiU8gV6HMxB7YYqHeQ3zt/uvPG5sBTF4BxhbnxzIXXHef6gqVzJmXgdUm+8+xXwJB4NrJl3L05TQwznX4S8MJfHKjV/FGYtNiMurd9xwvvhnMh9V+TbRKZKOyk1+ZQ6qKkTFZIPRXnejUZShCV2XNN2PJcKxgj/JjvoC5rMkZjcmJ11Ch916v9IgJvY6/35wbrbFQ2WxEd2aUvJd9aql71yNyxIXIe9ZySffW+yp7x3Ms5Yw3nDDwU/UMn3ON2ejbgj71hf+jKcqMM4/rTDmTgvxPbCmxOmy6XHFlpQRyxy6qVk6FtNJqdq4lqrLtzz73sD9fm6Ol6B//1fEasujX9078HrWm3V+s5JReIp+T0oAyRfLPEtzuOA2SSFBb+WFjeQMyZSAc71zjHCa53rYkSCMQ/Nd7dJ1FyTn0DyZeevgXQ2R6fqeoyV2LM8MrUvLIPHx08WNUii5U5W9bmivYB1YP04mzjc0wOMTo8eTZrDeoYdt7awgLSbwYomLbpx2aTlB6D5Cz5rjAvtueTp4SvkbdWp+4tXb7jPQDiFe2R7+8E2jmR8NltYV0Is8nE361J8XNvH9pxRFOv4v9+GRHQcFtbAtnGqaN4DrS0WsNKuLL2bPKr6x0sG979LP8u/X0H33J8f7/Bywuu+5Kh935/Y60QgtVbLxwrzLaT48fLiXdddOBAoL072dSEGWglY3mzkvVeKvF9A+pEOJRVRFAxBo0DpOLNTUsgI/CFHEICwc78jO7PfF58tgSfSSjTeGhMl0hsqYlwP6hpKFhl8IDzyXH18slwRl3pNI1LTCYqkrNl3mRZoYyl/iwU45t+t0vl/pMOHg9kzn9z6DHzxsvJqEjehhgzyu71Eioq3iD5ul9Y6xFfMZrmHpkFkamYt1J2QZwDV5lkWhfhVB7i0YXoG6OIYI5f3nm3KlHGrw43Ono4bh52GuXW954zb/02ql9Kd36hvf83SpyKzip6P7015k7DllmjlFIU9Fxz3ZSLrvQbP9NBJeXObJ3GEd7LO/JXq8bJGfXbuiRMG8jgZ9LyaU4pyNAnT+3rtUcXw7b17btQMKB+tjRYnufB9DAY5lr4+f2Nv3780LscJkBBHo1s44iwO/LyIJWKdOCV4eVc+4i4luOK4OgaJSNjjAvLyljrR4a81HtJwfPmylFWiHF98+9aLyNPrgbyi588nR9AltTm3LuBKfnmPPNeiJC/F896Zl630hUpQIDGmJxA+ZwC5wV2aKQKZZAp2tqQNofWqjtuc9sbP+l41Aml6IWHE9AdaKAbKOd6N77d217lL3hul3venHvjWQtvPBhmuK1U83XdwFXj33v/RMbB8Aao3dmdCs+zcI127qjPyD+hJMuoznN2EXRy4NSdfaHamesygu/pumn6lKxlQ/Dd6R1ngLou3g05iX+RhR9r2tsddMOiMn9WOqMuZcSypIuBteUrbzKvd0UkGaXXrGUUaTubzBGf1F50Jlht7bqMC+OCWCZ2SEGYdHj1s0NjwpuhvJWuNV07Z8j9mf+NYfj5/a3g0dePL/Wr+nq9sHxFGeVdhieNFawFG5WVO6yy26kbDB6f9Wyf0sB1YCuIF9jvjLzSz6vYY0GXLtD5q2Cn2DHWrBuX1IMR/GVZEc+z6WmUbT2riI7wokL1BmaNko+INQ26IIbOap65YTqTlLtqEJ+TlYTO87RSnnQdv/cD5NGsTN/eb27OGTdn52dnOtA2A76dFRJlGXmszgPXAW08a+N3OaFyXe02vO5XVF/keK5x4WKW3ci+qfAsq4TG9zwzLyyLv40MUMQ7A89dd5XeKu7TDEqKOD4jtUicl9abinra4ZlJZkDD4XIFWuudpbUKZ0B3atRa+mbflG4tnQy3KkXve+Gl0jyDgC4h3PGZNiQdgGVIKpirnStdqnME0zkWpCBwc2DxVmJ82AJN16oEzhnAW7VqDcMAlY1De6HrwnhPyUQauiwdpfwsR1/w5Z09sjmvXjZLXvcNJ1RLGb6xVxBoTly7PMOw1s4ix82bTS2fHWelLgZasy7wM4dsVOTlHv293JnCQg0TMqjjkbHYe4l2+RTTq+owMlF9FtJ3sM0CKd059wuoOj4rHBt/mXl5YdmOHAPlOHNV4+wZTGfvU8ZWwHb0X8c3te/+gRvqOeW83J1Z+YS9/DvPCrFIZPhDbZXqe8CiTs21vxLb8wxyT+SMGkPngIlNHCdx7bN4IzgTJfCh+4OPyvFFjJFnYdUz6UezHDtvUF7oN+ya3oXUVVriZkMRl4cNMrSnO4jNX6WOYmC0zmnbW8qbZFFlEqKgZC9fB/eCuqc7nrlE5LGGyyhHqF9rbo0XAPFABNErc3bPdO18WY5KQ7OpKEMBlXYXX7bAf2JZyu6wPyA25vKsRS3Q//D36G87+IAAmbxMg+A5FHaWYcD0IvWyWXEg3u/ItLrvuLkuQI+rRPYaQ2VFbOxsXg4ioJRoKY3erHEp6yXxY4t0dsPkQ8CuVY2huxGjLAMkzzYl5fVcjqut0m6QuKtO/hNodWcF/2Wkt96TEfQ1MZA9TBwR9WyZOWTW3shxrSWgV6W4VCxtLRy6IIVO1W5gEYAT6PXnyJAhoK2FiM80oZO/iH0Xk/P3tbY/v9+w+wvP+xt0Jj/ZT2POie/3G6/XK94/lwAfeZA9g8ivFHj3HY5B9V6xBJNrZX+BWQawMULFtdoVX48u1PloIJ4/cC27QbN6VLaEnfbyI6Kg/UyHC9xz/2ftI/ltzpRHZbAJR7kgleaxZv299isVEcsEpGhcJQ9lpELREqZGEyTmi2IsKLAnx3YrTe9jq4hWZnb5SiNVGEDOxyrvyPdmGe4uvHcHRhkx8bAABOGcYLTumQtjhAJjX40FAzx6ucCzVQDXPFl+2AUksNPZG3XZQXeUOaq/6OYczGMRz7M213KkemZQ9c0r6Ff9uKiQ62KKBbQScd02WKsvGZMbLRkNq4wU7qNN8m3s9WwKVswZy66+q3R+d6UrA9ki0++zByX5Xg/LXd76UGq34zPR7mFql7dMJ8rJJqyzKgl0XMqYWpHxW/0ha37+qaMTfLiT7/h3z6CFZ+Drxit77bEnLfXXdd8CigFGMzvqvna5kGCaMoiZZ2FclwyivhoJ6kJvh8HXL8aiANd/SxbQ6MsjG29tS+cRJsm1HcNzHXYHzUZOWNrXsvpg0YiovoorQb1JF8QZqXG61/miERkNo1NCPHTWhENLBrxZrjEvZyoHnINmRIG/uHm7dAJxEPmKOIEtQYACm8GaJQ+po+UQIPAl1kgeKlAaK9YjwGu6Srbhcaa/nwf3a+BKGe0r22dYYIif344fP75ymwOFvp8neWSKVxyOGzcABgq9boB2YHC9EYZLzOfVQG7w36RD1wwrAQjlAM+iZIoloPYKzOn20qxNLr0JPOvZyqW0/m29LG+C1hn+DXYjNvm8+Cdw2crS7iW9eSl4DfEBqyw6H1CkMyuLzvWtFQLfhTLmSn/T0QAp+260Ff8kFzYHk/Tvb7AmzzV5TpeNIbL2o8KjGYucgxcedGIRd7wTlyHPyn3xttLKBuRFBf2qqs2xD1fwnDopLoExnTPJbeepA2gsqmRbfyjsqXnTBnWZWbIFIDtgNRuivm9GZ0PKlJRb7MPceaqc0M1J3bI4uE4cS98nZokQj9somUZZyXmLd3OvqG+M4IwY3l0YQtg9J8+VLHurZPeCA82hHDqSWVhW+9Aw8jYXZYP6JkMpzxlEiOHkv97OMPfJHe9nwl4D9zVUhcMluFInyA5M3mImluUe8Vnu5LWhtSbHDPFB2WC9nJFHsTtVzNAwmmlt95YkQPVZ2xCqeJ1/A/a+qnublfoOMzqZhct9q0BBOaklr+KDv9g10lfCStAaBIYLfEGbsmc6A3VW1oqsdgWviOP0YWI5aA6U1yt5AJShjbdyQGCQA/WJ5jgm/9Jn0Z8hmEIwk3xZ/LdW9Jpz5xnOM8RAvpVTl5tsshtrr67rUhCeS1vy0COgK35fle3Wlobf4xx61vmGed2xUqjGBVvN6avlrsqM8o1kRmzbRwV0km/KFiPOT75uY+v+lZWBtLEFxaH/ZpsR+kVSpaWcGB98Vzo31sSEaeVjoqxr60M9uDk8dT66w5wBYkrF5kC0shso49SiY7TLSJJXYBTDGaAifvR8DgITyg6xX/XBv0t/28E358IaCyN32LfIZ0XA37wQ4brwzLg1lxHQcLCkgtFByXRr9nwbIy4/wF4LDqBl7LUIxKqMwE2J5ulgin8ZknWo+X4JOCp4xIaQWSMtkyVPVum1DSDwmQL7+UsqACpsHQiUE6Oi4jTKr21tYk2ZUTiybCAMEiooGg2fZUQUkYzqKiNksaeAZ7+U1uyeBzaf8Mw9gl2Kuwvc+rkLJSo6t73PDEGIDp0EHQCLfi5wx5OlkzYMz/uNv378yF6OwXMFqoGvr5f2ztNgua9L2Xm1vrGP7D/35OdUHo5a675HFFh0DBL48xgMy7LPdm76XpDv4wcvPpVxvJP4rwPz3IOVt9P1aHEBXpoKtjUlB/bvUUDtN80t8SozJWHIyDrBHbUVBVelL3dAxklQSRAw1dwKGGw8sRp4oSCOA9AuwCkjA1RavsByagBbFI9MacWyWB5Zxv/4xz/xHz9+4PW6sQD8/P6OhvRgAKHOjEBhK32VwQsAI52m18B6otfo9zt6W/W5k0+tfpAjh8oStbLFR2PkRS5cSxePRhRwbM8nDz7rKd7nwudaLBqdqChZV4bFV2h84eqBRCex5F4qLpjBExBy4l0uIQGGwJmNje8oe2MpekQye3oVl23nDLmu/dzMTYmjnt/HRPRCQIN27lDOQb5Pa5e8K4DZjCzX3sV+fD8P/nr9hbWWepu5p+M8HS10hD4ZMWc5G29Di70eupTKkTf4IXTlfB74yItw1sL1qih0jHlqfTT2NWs/qddyPdj/jplXcrSkjix+Tb0tbPCrU0E6TCDHoKbyKSuiVKYZmMm7HdDODGSsWZmOy6Nv5lwLcN4o2gKAGUSskvBVAROLgIn6vmREnoFJB7K/bAUD4z2uvd6dNXS/Yht76Iy5Ged0QqqcjYZLM4yQ8soFdqt3GO9iXWspIn6PgflM+GAvJUQP5deN1/1KHo/Mu5klt1iO624l9sNgzqy4cDTMp8p2ly88c0pcAHfcOt4cQvOJNav2IQXUN1nQy0sRcxrp2E3hol5UDPiQd8lP1I8MQrB8qioY6IRxBcvKEF6lVzz69SoQmDr7ycCzWjPkeYtAWytHRvWJ7M5yeGRKRHkhlGnWzwL7jXEdouXBotSRDKYBqYxFL+dWP6vMtBjt7JSsrPJu49bQaG/ys2NX3kZNrMbxx6VlyUuvG9e4AVjyhxgEyPFhjHImJxah8evuEcC10v/dgLT2HKOca9i3+GznKeoy0MnYZb9VJYavnslWmLQHt8THxFUZKItLB6u3Ks9rL7Umj3Bknziaa03jN+RXztlbYgDfm+Mh3/VWPaxYWavWq8ZW8pdPKIdPjjczga2vTWt9pAoc4goxWcxnSYZ9OJDk0Amd0G0o6djlWR0SaxTFF1EVdg+LIAsi850VCeNi0snIgMYFM2ZuQgwU+p9zSWxohIm5B6hzTtsUCLtUfeBjogC7KSZ/cS+JGVWNJp7bcUTo2dGyuAufqV947hvlTdfhPdPaqFPbmacDy6yqz37nxINDZ7LzNx2CtbdQNqqckbNwRcjrwPK8hT2y6j3lWso+JdK45kvMpMtLvOaufpTOCxnpIF/NoQPwAgMOF159i/V3sLoEWLnca1Yv3vtVvT/5vYsJIbAM8nz6F6CzC/cMlFSPxtHwAxCOxGEjb3UuW5aBkHIIor0j+xhnpYLO1lO20nYWCzprjGybQzlXjm5AvYOzgpG4x/N3HBODMKwwqLZppWP4LvG68Zjk2WGglHbeRqUPyVPLlzyL7q21k0NVa13WkqN6OzNloLZ9pcHDbE8qGWa/8tZu6SrJE5R+pL6RHEfi6ZKTTIgKezXs2ZIB/z79bQff9/Ng4IlStuzX0kHsfB5w9/7660cq/KhLv+9bnumtnhqAz9UWuoxFy1JVKri1oocMb0LiIQBQhqj17aqbK7lZ3UvO2wJ9VW8cABIWDkaG0oHAgwVIMMl5AjJoAxFmG5Oz/1R3NLJEoAStbYKXgqkccuWMi6yjpWw1zvVZj9aYGQlsOtsNnl5qDKAdhmoO66gDoD5tqwzmXw6kS9e3NQPoMyDoZZNQwBp4tNrHFO5j3Hg/E2ssXXk/s6EsyzhgUMo0jT0k0LnvF65m1Ldhgo1hy8G60uFU0Tq743B6soFu+sISuKDlMa69lMva53noFxAXyOS6qE+kwH0pd/JNdwrLqdCAwvNQqcbCb33uEpQKWAK6AMPRMn+UWRXGEpUWeYGGY/XFakYRKkusFEkzJprTvAvUTyBXcTgCh+QTKpdU7Dx/9b3aXWtnqYDJzouMDlqOZz0P/uPHX9WgeQyM65aRAyrD9txy+IQCgkHN0pnZwczQtVyyshxKaMqBPTNMPGNpbX3e5CfQIId8yp/mUe5yRg2dUUqn81goxN0B43DxDHmo2CmBHB0b7rC0i+kQAAzrCQXINpssg+tlYMoeU4lDZKpdzfEcBtoosOoElFW2Atpa7Yh30Eq+i7XxPpltPSKhPOfAc+5LTmCfS+vz6RQkj/E7DbKD6oBA/8fXFy4zWPYFZXSfJVRmVn29FCXOgAccX6+vlPmu7MvljpWOqH7j6TUGzOpCBI73ypK5bnhS5vBnZvrpv7l/gJq/G6LPFvmtO7bUP0/nckmnTF+aH1o2TKxf/MgyP0/hSyORm11Bl72nGHul9NIbGmfVVN6EBS49v/XIy8/DK3goB9HHhitgAzSd6PWsVQZ5MoWAX4/eJt4sp7YMGeh55CHycpzVMIJXRoaX+DTmMTNj1GBynBvy0jQacQCeBzqHwjI9iwjx8+t1Z6/lpVvrdW7c5YAgRuk8nJpX7xhsKdCMFgb6go8W/5z6xX8xWs2Qt+Iisrfz3fCeLbRnm8CaXut7k4ZRyIXSu2uxNJNOarS/Ud6G/mcPpBhfOa5DXi7JBDT5p1YLqEs29hLv4jfyFQPJKrnkfFFjqyzvPBfegmhcCOJX6mM5mWs9Se7Qenpn3Hzm+x2Z7s/7wetlCjKYGeZDA7Ky5IlBCpcyEeCOczPqNubnCacEAyJIrGKcjwPLyqCTk95GVhVAhtXmVMjfUa9KP226NzAez3FljXcdE+dDPCL+IWvZ5jihjo05mz5H3aiy7lgAyeNeqrhkbEfZPTNe53y0tkP7VXJgNV6hTp2rHAy/JAmsurylXwBGnN8Z8zNotpwZ1Lte7viWfFjvbI5Bb+d7ZW/DuZBt99MeiJ7wYNXXXKnnxsccIF7jhXtx/vZ+oRSSrADi3l3JzzzL4n+K9uSr0eZY0JfzMuF+tZBKXq4SxVVrYwabIQ+YQUyDRHKeAbAmMzmerVzcu8xq/eQyoEQbjGshh/AqLACvz3J8HVt0h6ATQk9mYvt2Xh17P1wFbPPIlSxNW61lgmrpyYReTi3yVmCIC+iZ/etXHmS/vZX8O+kcnAvX/YLZSDuy+NvMMC7bMAgD9LxcdO9pXvavknuy1RHLmKkPSkY3nkyiHccWPk5e9MKzcfaHcL7wRDurYTcWdiFuZDUb0C6Jkc3ikkXx2dhf2bpWa097FE4/hm9rx4QCVSowUNF4kLgw+Jwy0WXD8nz3y1Y3Z5k3W8kqkSHk7dK4AOjZwZrkRQY1Wk9T97JJgM3x/rsxsG1KJE5AciyPQMm/v0n/Az34VjRSvioT7/v9HY1ws7EpMw1kHBtwtZ4PcioROKayDKFdTcFHi4ryAMHCSRWCMCNsih4hwVn5EiBwmMJhhSKlozEatBfzVf+AeIAl0IwxQopssuHoMBl9G1ihgG1KHmhODwrZVKwh8NKzC8ecJcB0gNP4nI5UaplB5A5LbzIPug50A5+ezCWlw8OSM+0AF0Aq0OaFtvI4x3KVApLjkxHv2Ojamy60yeNNkYOXeuhQA9/vNxbCmctGy4bIUnlm3MasPmUIQTOsRYGdt21VlsN1Xejp+PN5pFhDeTFbALtQjYkWUiORdwBExGNvujkSSF2tzxSVN7OygAIexj3XKqTwX5GVRqnJtVvN2NQtqfn9btzS2OFzfdZFBx3w8BdPiw4SkEdJDUsUKPTY8Nbk1DDUHKVLVly6Q8dtWf1Ie6IcZ03/IEq2kWtQkcKVJVp5OGXox8ZBfI7s4Vagh8C9Lm4Aon/g8gXMB9ew7P3j+Pq600AKfvjOG8TZRD5ADpS5LPCeSqWAW0Zfbc8wCADUSnecN4fzXMUg5bzwFkTA7pA3z74tDTDm5oZsiUZykqMqcYQDM9bo7W+VpdB4R4K0lWNj8+7OQxynZMSq1H6CRM27nxlAhiWnMrL3TUX1KuNUcqZnabSH6e4UFOgzrX1ZWuT5DC7H+JtjWpl7yaRmdKwkiGqOMQAqedj6jjY+3h2BC9/Pg+sOfccMpbkWfowBsyxz8zt1ad4UPkbdoAtPYzc+P3yUo2UtzVuGajMyee60h03GufZyz4LRrYz9We4Rndd6M8uBOrey2Dde9jrrAjvUA41Yuh2yoRyA7i1jpRuR7bwp2tzAvkBiOmx55q7UU+QROgEAYM0MWKZzguuxOXdT0pex23hs7ZzejSz6UejM6qVyPHOPMm8IQMuojBKi1b5bBg3X+P1+Y3oasjBlnMznEa/EJVYxQvUTHnEefDnGPcIpJNntkh27rFvRS3J03Q5l2nkMOmXEFPjvJYeS26CMcBkQvpKfGjNTx5U8MLFRd/hyLNOnZJF5lb6F8eCfLAizxodeZyoPQGZz9XMxC7elzuL+ovH9zGy8ckCFDOmOXfKiTAZrxqHwbQXtKH+7rOklhoUn97GU072vV6lo8miVvmU2H5mc6+eR3fjjxxeuMbLCInGj1R6oB3byJ3XGdcVNimYZIHkyg83RMuVrzQDHWANruHAT2j5x2YKnVpuXqVdVn/C+9ZQpk2wp1iqDWkdVx3b5LnfjGSViGcgOO6U7Iqo8kL/jelBm0sHMy3NgDMx78k6WESLm22823S658CVep34tWb/LUxrgnbdUEtnUb/FS03WrOg2Sn8h3ctpRlnk5sMMu4nMyI5njyt8/z8T99SO7/Oc58ObQbRnvQAQybBgw2E/tktznxi4vp7wcp5x3BhfZT9n7u2xgepXuKxBUcYSYv8r5bAsYhQpOPccyUMrGzBhyBYCrBZH4nDqPGMtcZcS0YZ7n0T70M0idSafNZpeG6JCzuo5KyspV+9flInFXvy1cZwVojo3WP5W4gFJf61tfpCNze2buDTPd+Jlu/xRWK1tYvA5Ih1L9rpV9bFPeMBOe54AZotd2kVydxcL6iX2ZMJDvo7PSk9fNDWZ0hDbHkw4NNYBrA1mxxvVmIIKbrNYkGUS9rujPL6fiSj7MPVsfc4CM9B27IfXAmtmDsGVXxu/SPiBeoV0DYDQHZP1W2xlZ8deOq0M2MLM4jrscgElzfuxpw1+V0FQ6qHr/ltNNlSioM0KfkdoIGPaArGcbtRQhZcPt4w8xls9KLO2JPazxv178N+hvO/gumwDeWD+/cX+9IEPGDD4zCpm3Z9F4JPBnRhAdfOz5xK0qIBBC7L5uCQHT3wll6jvUHhIgaGW8hD6F++RQHO199ax6OMFMNQEvJVZSu94fL//IGkIJK2vMV4qAz+cBrvFTwJBpRzYgNn5Wa0BwS0WMUt4N+HDdflsO2hSbb4yWQnuUk68A5K/f376Xs9KaxSlu61jr1sECAMz3N4Y/cJ/Ak4BsjXBo5Xq9Z4yNWQL9pqJ3zpGRkGENNIF8VBHd8cv4M51/FOOIb7Hz6rYEm5KDACeBVgfm+o63zzW+VS8GPd+UOlzG8a7E+C4qV5UjptDppQa1bR+gmDuX+xNGXPDczh9iNBDtV4SCHPrxTFSEkGfL9w+0Bd2B4+f4gALUG/U1Jpj2j9+jhv7+Dl5b64EvYI68Wfm64e93OjGzSfw1MCfwf9//GXLNoZJl2EcJCCpT+WLkEwRMLfMYpXi5dgQBxUb7HCkfYKY95HvJUjKoCMwl83rwYMuFjBPR17Qp/y2C6O07ylhgc+i9TEKf85Kp9rEnPAcCQE1udXkRf7O2hVTQ0Dz6OCWq279o/y1wyX3IcZWI9xpDXynfZTC/w//zX34fv3ne3xg+MQbw/PzP2Mc8Y5cZnp//gI+8ie158H7yu8Pw/Iz9urLUmZkM8bbogRt6hs568ltlwPe1Ib+xtFFguxkNXd7173FODMZtDhBNt+Qs518g3lrJL/uJmnbGCSyZ3SXdWfvVncmbU8R2Y6GyTaofcACyXRZy0+Tglcyu8jn7DT9+6rPu4JFzFV1u9vkQbGpVNl4jXwZeLMOX86OjQTe6LZex7PMbr8txwzFsYfg3MA0ww8sGnp//J/hnPljOBrZZfvYN7d3zXXv5NBlHB1/XK0/XpVbfI2aRDGxyx7bPFq+VGZDycbT1dPxWZ3fc0U/8Z0uQMcbmefnd2fg885tc4d+4b/m3craVLAu+YBl9BVZlbHmdjy6/ORtJmSaX+sJ17PfLPPh9K4fSJ8YjG/LIl+5ggKM+RxnH0J1nBcPz/gnzb/gEJt5YMMwmd+77yj03zFFndFzhaB0jP/+5hYCyG4mvug5TCSHntf23b38rKp35saJ66fhFf7Ull/zhuhSm4XtLnsYz+a81PvgtSQeiMFTTNbJR+lfyc93O+NBO2xyL1cqw7QPYs/OIR+t74rkNn7nWtfcr7PKeP5Pk7MzRlhhO3ks5PXu2FYD5/U/Y+on58w1HyIH7uuEDeCiL5oXHWaHjiWMNE5RfvOwLjYcKg5EzFPBosrzWGKlHbFv7rc0MGCTfcbOer6y1HXNIx1p3bv8qGUyDQPFf7o3lGnfnD4egjM72S2bPfsJ78W3bT1X9pM5lwsxnJYicdCj7v+xHoLMz9frOU7/Kq08qJ02XVcX/qjpLB5P2xiPozcSdcMbF55k84/Mbdg98Pz9r7xObv5O3ysbMoPgo3ebecVbJLDmaPsgdW8sVyi62xyhB3TAyah27f0WCPQ/vpw3Rsbjejy4Nmpyk7iJu53x7MlHjBdllzizGruOQvEqdUrhxcczcvdyPym5uPNGDzrkIhedLZvDz2J5cOFOfs+LBro+dY+9YAWV7aliEuij+7Tq1ty77nUx8//Mfv/DDv0rm/91JOXTo0KFDhw4dOnTo0KFDhw4dOnTo0P9qGv//jxw6dOjQoUOHDh06dOjQoUOHDh06dOh/Kx0H36FDhw4dOnTo0KFDhw4dOnTo0KFDfzAdB9+hQ4cOHTp06NChQ4cOHTp06NChQ38wHQffoUOHDh06dOjQoUOHDh06dOjQoUN/MB0H36FDhw4dOnTo0KFDhw4dOnTo0KFDfzAdB9+hQ4cOHTp06NChQ4cOHTp06NChQ38wHQffoUOHDh06dOjQoUOHDh06dOjQoUN/MB0H36FDhw4dOnTo0KFDhw4dOnTo0KFDfzAdB9+hQ4cOHTp06NChQ4cOHTp06NChQ38wHQffoUOHDh06dOjQoUOHDh06dOjQoUN/MB0H36FDhw4dOnTo0KFDhw4dOnTo0KFDfzAdB9+hQ4cOHTp06NChQ4cOHTp06NChQ38wHQffoUOHDh06dOjQoUOHDh06dOjQoUN/MB0H36FDhw4dOnTo0KFDhw4dOnTo0KFDfzAdB9+hQ4cOHTp06NChQ4cOHTp06NChQ38w/T/iow1GzGsVAAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "processing batch [2/3] with 5 frames\n", + "input of current batch:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAADRCAYAAABRqwx3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOz92a6lWZalh31rrb/f3WnNzLtwD4/IJiorMyuLTBYbiaRISIKgG4KCAD2BHkPPoQsBegJdUDcCREAgVVRVkayGmRkZkdF4uJu7W3e63f7t6nQx195mUdQNKy6EAPZwONzNjtk++/x7NXOOOeaYKsYYOeOMM84444wzzjjjjDPOOOOMM84444wzfi+h///9Bs4444wzzjjjjDPOOOOMM84444wzzjjjjH9znAm+M84444wzzjjjjDPOOOOMM84444wzzvg9xpngO+OMM84444wzzjjjjDPOOOOMM84444zfY5wJvjPOOOOMM84444wzzjjjjDPOOOOMM874PcaZ4DvjjDPOOOOMM84444wzzjjjjDPOOOOM32OcCb4zzjjjjDPOOOOMM84444wzzjjjjDPO+D3GmeA744wzzjjjjDPOOOOMM84444wzzjjjjN9jnAm+M84444wzzjjjjDPOOOOMM84444wzzvg9xpngO+OMM84444wzzjjjjDPOOOOMM84444zfY5wJvjPOOOOMM84444wzzjjjjDPOOOOMM874PcaZ4DvjjDPOOOOMM84444wzzjjjjDPOOOOM32OcCb4zzjjjjDPOOOOMM84444wzzjjjjDPO+D3GmeA744wzzjjjjDPOOOOMM84444wzzjjjjN9jnAm+M84444wzzjjjjDPOOOOMM84444wzzvg9xpngO+OMM84444wzzjjjjDPOOOOMM84444zfY2S/6wv83/+L/5Lb249QKKLKCNkcZTSF6ygzR6Yiw9CTlwWbzYamnlOWJcMwkGUZfd8zTRNRG4wxrFYrjDEMw8AwDOAdANZZMpORZRneeaZp5OJiQQge7z3eQYgBNBgjr7Xf77HWUuQFRmu01tR1zfX1NdZa3rx9ByiUUuR5DoBzjtm8oe87lFJUVYOdLJvNBq01xhgAirJgGid0et1xHOWBZhkxRvq+Z9ceiDGeXruqKhaLBcYYpmmiaRqmaWIcR/qhZ5h6uq7j6emJyTmstWilWcwWXF1dceg67u7vUUaDUoQYUEoBEGNksVjQ9x3OWfIsoy4ryizDOUeWZ4QY8d5zeXnJNE08rZ9wPlBXNT/+4gtuL68Zx5HD4UBdzchMxqHveFg/8s2335JnGZ+8eM5nn3zCMAx473l6emI2m3F9+5y2bfn6m2/Y7ndUdc319Q3ffvOSi4tLnn30CbcvvqBuFig0UavTGjr+DESIURFjBCJagTEaozW5ARMdhInoRpwfGIeOaRrJ85zgIzrL+flXv+JpvWW93TI5x25/wPmA0hrnLCFYtBZeO4SAc47/7H/7n/P3fvIPiURiiIQIKn1/eWsKfEShCUBUEaVBpX/i8X0rCGECN6CZCH6ACErDfDbDmIxxHCnL8rRGQ4yE4NBac3/3IJ+VMeRZyX7X4rxnNp8xTRMhRLRWaJOxPxwIwVM3NSEEjFIooyjzEmdl7fjgsd4TI9R1wziOvL27x4VAZgy3NzdoQMXIMHTc3tzw/Nkt6/UT2+2eabLUdU1VVQxDTwS01jjnTu+/qgq8c1jnOXQdk7U4F6jrGucddrJUdYPzjoeHR7JMnn3XtQTvQSlmdcNiMWe92TCOA3luUEqx2+0gyp6dzWbEGKmqmvX6iavrC+ZNQ9/17Pd7siJnt92jomLy8jynacKHgIseZQx93+OtI6jAi2fPWMxmWOvZ7HbcbR6JCjQa7zzGaBSKoqzpxwk3WazzRNJaVQEUpzUSAmilgUgIAW00WimcO54RBqU0ysA0WUKQPweKLDNM44TRcnZorfHen5617Ac518bJopQmxoDJNHbyKKX4d//y3+dP/vQ/oMg0ITpiVCg0KioUkbKAptG4cUJhCIDSCghyloS0zpWsZYioKJtSqYAmUBSa3BgUEZPJeziufaU0Me2pEALWevq2J7qJi8s583mFnWRdWufYHXbEdCaWZUmmM9zocc5S1QXWWsZxZBpH6romz3O22z3Wefp+OK1pO01kmSHEgFYKLz8IUUFdVUyjrAG0ph8mtDEYpVERRjsxWMfjes00TdRFwWLWsFgsMUYRQ+Dt29d8/OI5z57d0h4OeO/lDlBybsUIwzCl5xjJjKGuGpRSWOew1jEOE2VZE/HsDwdcCLx5+4Ysz9hut/TDCEphlKKqSqbJEb1ntVoRozzTLMtYr9cYYyjLnGEYcN7hvGc+n9O2LcvlHK00dVWz2WyZJssnn3zCm7dv5Q7MDH3fgYZ+GOjHEZ1naKOo64r1doMCbFpjdVWxWCwJPrBeP8p6VYqqrInAdrs93dvHdaqUOq3dD++m4zl//HqMMK8bqqai6zsAvvzij/mzv/hfAQrvA5Hj3wMIRBQxBn79i7/hv/2n/ze+/OJjfvmLn/Mf/i/+93z5R/8uUWkUJq3JiFIRpSMKRaYUGo9O78Fk8j1kzymUgjyLLJc5dhwJXvaz1pqI3LMu3QHH9xWP+yOCVooy1+SZbCMIGCX3SCTK54hCp30yTQ7nA+3hwDT2LOY1y+Ucgjut2bbvcN4xm83kztAGNzr2uwMXl0ti8Fjn6LqOsiiYL+Zstzu6fqQbBqx1VFWNc566LORzUYpxGMiLAh8DmckwWnPoO1AKH+R9ZsZA8MQQmJxlu2/ZHVrcaKmrCu89H3/8EcaodFZv8HbkT37yE7SC9tBSFAUQKaqSzWbLOE1kWYa1o8RyJiPPCpQC64KsaefIM1nfd/d36DwDBevNhsk6+XeaaKqSqioBxTD0LGZzOUuKksenR7yTfVFWOff3Dyilmc1mrFYrrLXs9jv2+wN1VVEUBVprMq1ZLJbcPzyQ5Vlar6AMbHcHHtdrbJBzP+Dpu46AxhjNMIxopTBqy8vv/ms2my3L5YLVxYJpOjCb1eSZoaoq8rzA+8g0erzTOBdpuw5QzGeXrFZXTJPFO8/QBv7s7/8j/vTv/0MeHu6x/sDj0/e03ZaiKOit5wc//Ed8+vFfUBSX5HnGbJZRlQV2jGz2PVOImCxHEbDWgoJMK/7ZP/l/8Muf/Tf8gz/9I/7VX/0t/9n/7v/I1c2X+KjQ2mBSnDmNFq0zgvfMmkLW9TFkixGF7HtjFJlWZBq0hslZuUuiTruA4+35ASJKHV9HXld2GeSZRmuI4f3ZEgI40v0EqOglDuw7WePRYTKDtxPL+QLrPLNmxr49sNvv8c5zubpkGAaMyVGAC46278hzuX+LPONqdUHbtnS97CNrLSHI+zzG+CF4YorBrbVkRY6KUFYVbT/QTxMhvg8X8sykuCxgXWC92VJWteQ3k8TTRVFweXnBfFZz/+4dm+2a+WLOX/zFn9PUFTF4vHcQYb9tcS7Q9wNKRYL39F1PUcj9GWIEBdZa9vs9+/2e+XIBSvH49CRhbQjsDwesdWilubm+5OHpW/7L//r/yn6/Y7GYydo2UJYZITqcDcSoyDLFs2fXlMWSl18/ojDkeU4/dEDE+ZGmKbi4XKF0IMaJ5XKe4l6IQc7FoiiZzSSukzM1UFaauilxLtB1I0VWobXBOkd7aKnSc5umgcurFVWdYUwkevk8tDbkeUVmSsYe7u52QAFRcfv8itVqTnfIWM0+4kdffsnFxSUEx77d0g5rfOhYr9/x8HRPVJq6vuLLz/+Cj1/8EWU+48sffkZV5Sij6QdY7x0+GHwE6z2EiNGR+7vv+cf/1X/B5vFb7u6/4+Lymv/0P/3P+Yu/+I9BZfz0pz/lxYvn3Fw/kxxCy01HlGeDUkTvCUFyGGM0SpPidrmDInI3SdYUUTGiY0Sb9IxRRKWQvxVP+dX7e1kfM5ljQnaK/TQRrSPRj2Q6cnmxYBpaIpHgI94H8rLg6VE+O2stwzQRIxwOLeM0UpQlPgTG0bI5HOiHgegj86YiN4o/+9O/x4vnN+w3W9quZ7uTOM/7FMsR8UE+1zzL0CmPDSHiY5SY0lpQCp3l+BB5+fLv+D//X/5PKBUoyoyi0JRljbMaRUHfDyf+IMQgd/CqOcWds1nDxcWK3W4rn0sA7yU2JypQke12k85Jg8nlXHAu4EaFdUhMbxRKB5bLGfP5jHEYCTFQNyXgyXOFj5bgLVluEr+gsNbhnGMcPftdS1kWDGNPlmnqOscHz2E/oI1mtZrx5Zdf8PbVlvW6o8hLsiwjyyWPGMcRYzR5bojKUpSwWNRobSBKXlGUOYvlgjev37Lf9ae7susOkGKGq6sbnBOeY78/JO7CMWvmjNPI5eWc1WUDcQIfmM1mkg94RVHUDKPi8aFlsbgCBc+eX+PcwH53wDuDChUPDw988skNi3nD1eUNJi/RKnD/+IbBdcQARbbkj378b3Nz9Tmfffpj6mpBlpd4r5gcjC4wWbA+oBRoE/n221/yz/+7/wrCge+/f8ntzS2vX73h5voj/mf/wX/Cx598zuPDE7/5+jd8/uUXQCQzOZ9+9jlF0RCVkf2V9kU8bRW50UIIp/0k9+L72FcjsWgkygWnQCl59ildwUeNi5EQJZ5UwP273/B/+M//o//Rjfk/Bb8zwedth44DmTGoMOB8y2J2QXSRzCjsIEmOzgx1XTNOowTLiSTQWlOWJZjsRJ4dH1RRFEy9EHxFXpy+FmOgLMqUDCuMKRiCRUeNzt6LEquqoshzvPcAlGV5uoy11lxdXQHqlEDleZ7IPsM0n6UEU/7sbDajKArGcWQcx5QEyd+dpumUvEzTxGQt3eGAC56yLNjv9ynYlffUti1lWaYNPPLy5Ut2+x0XVyuqqpIg2Hv5+YzGOse7+/uUqMr3NJlJ5FI8EVb7/R7rLGiFnSYiiqKsCCEy2MAwTUJyqIxhGIlR47xjnhlevXrF5eqCQ9dinaOKAR88WWbw3pNnGT/47DOW8wbvvZCyUQ74h8dHotI0zYxnL56TNxUvv/uOp90WowxvH+6526y5fXzkJ3/8Z8xmK5Blj9bmg42hPrh0AkVuhOyJARM9wY04O+DsyP6wxk4SMORFwatXbxit4/Xrt7x9fGB0RxJFwspgHTH6tH6irLkYcek5EhNhp5SQNnhyo1BablFlwBhFCBHrvRAkUZFpjdIK5wPWO3ToWS5r8qwk+BqtdCLxAodDi1KaabQUpRBAGjmEn1LynmUZ0zAyhZGyLFBW1kjXdSwWS/K8YOh7tIKiKtEotDGMY48hw3zwPK33KKXJ8wwVAt5alosZ7x4e6ceAftJcXa6oioLaNEKKTiPPnz2j70esdcQY6NqWEAMhBrIsP5HaqCgkfJQkbkZFPmWMkyUGT3A+ka+O3W5LCI66WfD4+MQwDsyahvl8znazY7fbykWZabwPVFWJcx47jXIBFQUhRra7HeM4gJJkRSGE2du7e+qqxih9Im59es/BB4auRxuDNkI83D89YrRmso6n9ZoYIibPIII2hkDEaC3rJUS5041BpYg9ynKVtao1ioDSUBSVnAdEnHWEIIe7XACeYIO8D61xzgMRZ+U1j+TY8bz68PJ4f/ZJcBZiQHl5C1rpRDYFvA9oo04EpVaaDEWeywUTVFrvQIhyscj30igVOcZ4J5KPI5ElQQsRMmMINqSficQLBnyIxKjQGoKzeNeTG81hv6PrdlRVhVYZu92Oq+srnp7WaDRucpjCsNluKfI8JSgOk+Vo5/DRs5qt2O32ZJnGZJLoWSuBS1mWTHYSYlXL56+Uou96YgQfIhgkANQ6ke7yDJx3hCAXrfeRh8cNoJnNGpSKLFcrXr15S1XXPHt2Q991GK0JwVOUJU+PTxA9WiPElTI4K+QrEbyXc7TrW/LMsNusGcaJ+WzG7rBHaUNRlgzDSJ7L51jXFUPfE4Lsg7queXh4oCxzbm5vGfoO5xxlWXJ9c0PT1Gx3O/q+l7vJOhaLRbpvSi4vLyS5VoqyToFlm0siojRKIcmvD3IeK413gWGYGMdHMmPQxkiyQUwkvpDoHlLyG34r+ZU18/5uOhKj1lp5TkS6QdGPA2VVpp9V8eJWE4Jmu4v0I7xPW2TXKaWY3Brr9jRNhckU2qgURKkT6Spr+Ph3kLOfIHsYTgSkUkjxTylyI3vdf7A/nJMKzZGYOL6T93sk/W4MOCdnDQq5nzMjyVmMGGOIAabgUcrIPTINBD9RVznWjqw3E7nRNPWMw3rD5cUF2/0OO1liiNRlzW63l0R3skyJrHHOo43DZEJKZblhZmrG0RJjINNQ5BnuSESkmEhpxTgO1HWDMTnjNGJDRCmNs5Yyz05nz7HoUFYVxuQ477l/eOTycsl81rBcLrm/e8dPf/oz/uE//HOef/QsnV0+FVtG+eydS+dP+jfCME5Y5/De45wQnA+P9/gYWJQzDm3LYrlku93RjyNZntE0tSRU1lEWJXmeo5Viv9uyaGZUdZV+hoIXz27ZbvZChJYlj4+P7Pd7yrI8FQ+cc4DETWVZYjIpBIxDT1GUmKi4vrhk17YcugNRBYw2rOZLDq2Qcy5IMaSpZxAVdVNSlRnNbCGE6WldRsqyoCoy1k8dXWsJoaQqS2bNnKqcsX3asFy84M//8id89OJTlFaYLDC5ibxQ9OuWbtgRVcab73/Js4sfUCj5XK4/+pgiD4x5IATNrpPPOkYhmXzaq1LE8PzmN78ihJF/+v/5f/Gf/KeX3Dz7CKNV2qsRU6S43Ci0CqezkyhFUI28ltb+t+4KHxK5F4/7KcoeJKYilSRKWkMgYNBpSUQ0iuACSEkVraRAHWMkRIXRCqJDBYciUOYZ3lpc8KgYUVrTdS1XVzeAQmPIVEaIgbYT4rzShrv7B+4f7lksF3z00UcURUamFXVdY0zOMNydihfTNJHnOdZa2c+J3DveO13XCTGiDVmeoyYrCaY2SXggBbv3ecOIySXv2R8Oco85S98PzOcz6maGDRILPDw88cknH5OZjIgQSFojr2EM4zgwjfL/Sil0KoxbazkcDnRdx3yxIMTI+umJQORwkFg/yzKKPKOpagiBsshYLBsgsNu1aKVYzHKKEubzJd+9fMB7KMuGqq5xkz+RtHmRM1/ckhcZh/0aHyb2ux11k1M3JdNkKUuFDx6FIi8yVhclh8Oevu/o+5HPPvuccRzoWs80DszmDdoYnPV4J3dN27bkeSnkeNtSVkv6vocYmc/mKHUskoZUUBm5ub3CWctsVuDcyDBuWS4WuNDx07/9Nctlzv3jG+pmjlLQdh3L1YLHpzVtu8FOO8Z+zc3lpawxwDuP1gatI9ZNxGDQEax3jMOex4dXjFPL9c0N/bCnzGtZ236ibbc83L+hyODFs1shg5UiqES3yUePkyAvxSs+EQAxCSI06VenuA6lUBoyo4k6EqNGblyV8qHjHztReqf4wGiDVsh9Nk04P+L9QHByN2kcwU+UVcl8sUKbjF/88hc465k1c7a7PW3f0XYSvyyXS7Q2KcaK2MkxThNNWVMUFbO65Ltvv2M5n1E3DYeuw8fAOE1SYDMKvKyvLMuJMTLYCWstMZDEErKHJiviiIgnAs4FtIroqsDonL6LBBex7oDWmv3+gDEarRXORe7ebtBGURQ57WFiudB4r9AqJ4aAsy7FaHB/f0+WZSgFVYqpjDEs5jPaw8TrV++IITJbNBRFwXK5xHtLUeZM1rHdtlRljjG5fIYqw5icx8cH+TSUoqkbjIG80Oz3ey6vFqwuGooiY73eYbKRxWLGs9sbDvuWruuIMTBOA7PZFVVd8vD4IDEdkaf1mufPLykKRdt2TJNl1syJgBla2m5HjEIid13PYT+IcGi5YL3u2G6+5erqgmEYaGZzpimm55fhXEtRlAQfqMoSlQvx2vcD42Cpygl0wWJRkuWOPM+Ypp0IYugJIfL09BaUwdqJH335b3F1dcN2t6HrH5mmHePUA5p3bx+4ufqETz7+gryAzWZNWS3IyxlRKbruQIhyD0UC96/f8NUvf8rUb1iv35CZyHqzoaxmNM2CaRrp2j373QZjFM+ur/jN11/xq1/9ksfHd/zDf/vfR+tSlDpw2kMfFrBPIqX/H7+WfSW7TKcYTYRMKWcKEqtmIe3/6JEyq+d3xe9M8NlxYOo6quUSjMIoqI1iCpFpnAhegt5MZeRlQQxDIg4UzglhMI4jEUcIHmunRIodKIuCPM/puo48z0/qJx886Ii1ijzPCCGmhxVw1uKs4+LiAmsnQvTkeUae5fKAtaLvW1arFbNZzePTmq7rqOuaoshZLpaM03i61IdxZBzGk7IQhHh0Thh26xwmz5jN5jjv+PblS+7u7ogxsrq8wAXPOE2MdqLtWja7Lc5avvjihzw8PfLmzZuTSsVOlr7rJQg3BmeErFFaM5/PeVw/EYGskIB0PpsLIeAck7UEH9BK41MgdOh6dvtDStAyfIw453j38HCqphoim+2eT198hM4Lvn75HbO6pqwqZlWBnzzaQFHmDGPP7dWVVKmcqK+KqqKsG2JUjNby3evXPG43hBTE2HS1mBh5/e5bNvtHri6fcXn5jOXigpubFzgbU2ACfS9k0moxk8DPO1S0tIcNbhyIwePsiNKKZjYjKs3ru3u++u47rPc8bNbsDgeU0alCETAmS8ouT9WUXF1cQpADKCghNz6sLSsVT0QfRCFMNBgjZJ/2IizNMpFrhOjR0RHGju6wQ4eRui4pipxhGAkh0nc9IQaKoiDPCxSKabDsdjuWqwWL2RLnHYeUeDSzGW3b4qOn64YTMT2OI5k2FFmGVgY7TZgsIzc5WV4QAymJy8DCMYmyKbA0WUZZloytqO222x3m8hKjNXUz4827t0zO8dGLF1IJd/Z0QZhME4Molrz3GKSiVhS5JMpVjVby/sqqZrKOYRzYbrZMgyUEz2++/hrrPHmWo9VA1/d466nKQt7XOJDnOe2hI0a4uJAL5fHxkXGaqJuacZTP33vPfDZn6AeCc1xfXfHu7TuyIqdqGnb7HQopJoREjC0XS3aHHeM48e2r16fDerFYsFiteLx/wDp7Is+zPCN2vQSvWc40TrJ3zPvkXgglIfLGcTiR1j4GyqJguVzQtq3sB5/+PIbMGKzzTM4SvE+6BUmmQ6pMZll2Uk5phLgLMZVuVSKqVMRoRZFrUZ5qdfrXqCh12xCxYyREIZ6CLAshv2JEa0mk3qtpJVzUKTCEDOfBBjBezlviMVGPEHzaMxFvLXbsyfQx9BSiq21bqrrm9vaZEBEm4+nxiWY2w1pHWZdoY9h3HbvtlsV8hvMebYS0K8uSYZqoa1E+xyAXYYj+fQUtkelaCVmeZwVt3+O8fH0cRrLsPclZJMK6KEuqosQZIRq10cxnDXU9o+s6/u4Xv2A2E5JPAcELEVvX1YngUolADMHjJ1GZW+dPxO1m/cR2v+Xy6poAQkpkGY+Pa5TR5EUhqu70uWeZVHTb/YHlfEGeZ5jMUC0XGKVou55pHIkhcP/uDmsty9WSxWJxSkKF8MlOxbQp3aHdoWfZzNi2BylA+IBRhjwrsJPHhYC3E4URxfxiNWcch6TWCycV+pT2Vp4XoiJOavjj8zgSfR8W1sqqTMqEkBSQQv4YFZnXEYIl+Cj7IggxItVPWfZF1hAcfP31r3Bu5J//9/9vFovnfPnDP0YrOeti1KJ4ToS+xMwKnQhArRIxr0BrISoigWmEEDVpy6UK6zENCqkAkBRJISblg6i6g09JlpafLbO8fw4A0aXX8URv8W4iz7R8kyhnyjD0xBC5vrkGFLnJ2W63iTiFoirI8pzdvuXdu3c8f3aLNsfAU9R+drtjCkJoHtXd4zQSjiqPKO9bFIyGcRipZzOiAj9K4RKt0UaIPiI0dcUwVCgteyqoiA+efdsK2ZZLgfSw33N3/8APf/i57H2V4b2jqqpEygvpOI4TdnLEo6I5CjHqvWe9XqONpqprdvsdY1o3wzicOjEW8znOWYo8Y9bMT8XSxXJJkWfkWUZPQOeGIjOUtWX/0PL27VtJUJqGy8tLlssl6/U6kSImKdEgM6KcybMcjWI+m+G8w2SacejIiwqrHV3bcdjv5Jz2Hq8C+31LlmXsdnvqJidTmq7vqMsjmRiwdmDeLIW4MwWLxRKlPIvlDO9H5ouaH/3oSz7++Bm7/R27tuf+4TUmMykuEaKta/foeM9+8z1ZCPzgB5+T44nOUWY5q2XN6Aasi8QQyLSoeIZ+x9XFEpPlPK7X9P3AbFZwdTGnMPDy5VdY7/nyiy+FoFOGqIwoi0hxhUJYcJU6SpTcP8eiig8qFUI/VLyC0kkNgezBQJA9l8i+KOUy6ZrQGqOUKL7SfROVnBvBO+oygwBBSWxb1RXWOZbzOXmWYa1js90RQ4rzFLx6Lerp3f47rPPsdjtG62hmc/7wxz8iyxRFUdIe+pOaWWtFXhRyzwQp/uWJKBdFsmIcLdM4kpUVznt88GiTpWcSsS6IiMB7ShSL+Ry0Ji9ziqokywu8FwJkGuX7VtWMtj3w07/9OYdDx49/9AVKRQyK+WJOlhVsNztUVDR1LXmEtWinGcaRt2/fYoxhvlhg8ozHx0fQSorI44jJMpqqYtbMJB8wmm0b6bsRaychFErNbFYQgmezbpkvKrIs5/JySd933N8dcN4wjR5tFE1TMg4d2902FeQMbdtR1QUxRu7vHyRfcpJbDEOP1kjM2lse7p/SXp7R95b1+o75fIHWmjwvyHNF3w8UuabvB66vVxChrmeoGFKB1zJNnroO2BHq2hAZyEuFyR0RS9Qbvv72X/HXf/3fkpmCL7/4Ac8/+ojV6pa221OU8N2br9FZQEfP0O9QeMq8kOKJMhA1/TQSfUxhkEWbnMwE/uV//894fPgGZ3dsBkddz7GTqLf79sC7t+8gOooy4+W3X/H8+QvKaoZGi6hAy17KDEJYIIUsEUKI0u9IhsuOFNJXa4VBxAk6CkUeAsRwJMxTiBelcE0SNqBTERuPjoHAiAs9mQ545SiKCqUCzjuUy1hvt3z77Xe8fXfH82cvePfuJYdWVHuLxZwmFfDHYZRCp/dMdkSKIZ7RjhSFxDibzZZnt9e0XUuInixPAhbncdaTFXkiNOMp9rCpyJnnWVLawzhZpnEgeiH7TKao64KiqFF4ejeehDjOQZYJUX/M7Y3RXF9fcjgcaNsDzjqaumbXHSAq8rxkv9/KvWok1nNuSnmAS6/tMEbhlQccq4sli2XDfr/FeU9Zyv3k/JRik6M62XN1dcXbd3cMvaU7WObzmvmi5sVHl+Q5oBS73YHZfEZVFVxdXXI4tOy2A7v9SHBIHoiIb0TBGVguFxA902R58fELrB04HFq8h6EfWCxrVDpTFCP7fSdnuIscdgNuCuwOB6wL7LYHmmaHD0EEVC5ivWOahlPenWcZWkmBL89znHdCeDY5IbQoJUKncezRWnH77GM++eRjtrsDb1/f8/XLX1NUmn58Yrd/R9s9gYrEmHF52XB3/w2b7Q/Ic8NhH/niiz8lRLBu4q//+l/x7u4dy8WS5WrBy5e/5u7uW64uSt686RmHiapZ8PFHn/OTv/cTLq9WvHz5FXlWcn19Sd0UvHn7HVdXC0IYefXqW774/Cd4OBV1PsSHMe77vfXh15MIQ+sTSRhjSBJch1KGwpgkkJA8RUVF9j+Wu/9Pxu9M8BW5tEmM4ySXYJ5Jpbco6Ftpvanrhr4fTkEqSPIpD8VgTIYNFuc8WZYnhVuREnP5PuM4npJd2URjCs71SR0nLUs2BebSZhejASJZJglOlmWnqu2r16/Zf9BKEmOkH3q89/R9Lww9irIsTxXso4rmw8C9rhu6vuPly5c8PT2dVHjDOHJ5eXmS3h+rx0opvn/1PW3bYq2lrCqWqxVlkaWf07DZ7dKmj3TjgM4zlP7tNriubbm8vCSEQOEcu93uA1WBHPDRByYfUNG+10J8IHHwROI0st7t+Ku//Vts8FR1jVKKtpPDerPdsu8ORCKXV9dMw8iQSMl6LsH1/cMTm92WXdfio8jJRQnlE6EgNEE3tPRvXvLy22/47JMfpmrBwKyZYZ3lafNI37XUdUXXHqjLghAsY3/germkyA0fv3ghSYJz/Oqrb/jNd9/R9j3DKAqBLKm9tBbViVGwXC2JStQUGuTZe0fZ1ASEjEkPBZ0Swskn9j0qiKlCjyIEaQUMVhQwGrBjixt7mrLAWUtPYBg65osl++2Bi4sVfTcyTZY+DMzmM/aHDSgYJyGNrJ1QWkvrVJmhByF0yqpgmqQNUCHVf+ukBcMkxUyW5/T9QJkXOBfw0eF9JMukcp5lBhc8fpTW3RijJFnjhPeBm+trvHfM5wve3T2QZRk/+OwTDvu9HGD/mmLJpMRfYwhZQGuVAg5RLLXtgegD93d3YAxlWdDvOoqyBmOx00itK6lIp01ujOLy6gLnPPvDjpuba2bNjLdv35HnObfPn3F5eUnfSyv74XBg6CcJJmY1VV0yv1gmpZbi6upCFHR7Tew7iqJkHCXYMFkmxYco1b6uG3A+ilLJO2nDCtI2FrxIvHxMkrkoytBIINNHxZC0DcSg0Do7nRX9OFBOZVJm1cRuYLQTKkp7ZQhBaD0l7d9HxacQqpns16NiQst6LLRhHI9KP0VVlCdCjyP5FwNHi9V4lNmlCm5E4dN7JlWNYiSpElLgh6z5gBJeI76/xLTmdFGBTi0hoEMkYjGIqgIC3nM6dyORXOdUZcVmuyHLcsqyIoTA43pN08y4f3hks9mSG0NV/4BZ06C1WCXEpaa/u0+KJghBpZbD8X2gpDUahQ+Roe+pqkhVVRy6Lj0jLZVg5/HIe2uqkkPfkxVSxNDGsG9byqqgrktMlqGN4XGz5eb2VqrCRhSPRZ4zn88TeSXBV5ZJIuiDKGdUVLSHlrbvuLq+ZnKOzW5PXhRyZicK9erykhik1fj57S12mpjGifl8Rp5niRAWQn+xXND3A9vt9kRuXF1dcXFxcQpglVLSfqjkXnbWoSJkyrBoZnLuhcChP2BSe0vf94SkpIoxgpa9vdls0Iks1EqCcpUSriQ8kOLSB+rTmApKR4WLkJZZUtkgyn5tUDqRK0Ri8KhoaGpNO3iGQSwTtJKqtvMTs6Zk1izouh3b7YZPPv1jnl8vyXXk8fEtr159z5/92b8FZCciXBKk1CYYhexAqRNR/2EbcQxRFAfxvaIVOK0fiQES2ZAobB9SKy/yeSt11B5BTGy6jhpDhGgxKsgeDfKsi7yAALN6Loq0LOdpvcY5T1VJ58PLl99SlBWb7Y7tbk9wjqqu+eSj55RlLnskh92+g2hRmJSIGOzkRJF86hkUXdN6u6UqSvKqOj2DmO5CrSRx8kkp7aYJnQXqqqLbiBrOBU83DCzmM+bLFc4HnjZ7rncdlxdLQFStEsMNlEXBMEisZzB4JQR+kUunw2a7gaQ03aXWwT7ZtRzjrVnd4L0Va4NpYn/YCmlXH1uZxb4kT3FhlmWUVcViuRAVa1lyfXXFfDbn0B4IQYiXWdPgnRPrCG0oixI72XTKRW6ur+iGnsuLFdvdgWmSljOlNUPfs1ou2W73OCtFlhigyCu0CVxc1KgYU+uVR2EYxpEYPCaDPAeTabI8MLk9Lk78zc/+G/7xP95xcbnk009fIG3GKyLyujZ0ZDmYzNL3T9xcPid4T/CiRrdWknGdWmYVsna1ctzdfcW7+5cUZcnzZz/ml7/8FWVR0Xd7tDLcvXuFzgwxfCp7PPq0aN6v+xAhapXI4kj00s5HIvhCKpIduUCt36vNVYSg0v5JLbyoKNdRen05U5ScoQj5q4io6CAGop8wqmRxdUlwlmA9NgRWZcXQ9Tw9beUM8kHWUd/TDT1FWUlcmJVMfiIvaiKGt2/vWC0XfPHFZ7Rdi3MpZg7SOqWVFhVjuvryLCM4f1K0VnVStDmXzkRNDIGgQCuDiiSVqiigyyKnrCs5D5U6tdJtdztWy2WyWnFY67Eu8ObtW25urlguGrRGCtcamqZmmkZ8CAzTyDiNfPvddzxtHsnzguvrK3x0bNc7RjsBMAyyF2ezGVVVU6Tcarlc8PpdZBwsIcKXX36CyQN912JtQOuCaRp4/uIKax27uz128ozjRJaVxODp+xZtFFVVUdcleW54fLonBLi9vaYsC2LU3N8/cXm5wmiYzRqmKWAnxIIjKDZr2f+Hfcth5zjmz3mekeWi6JvGiXEaiWpibmpIVh1d1+JcTLlXxeqyQmkpuB4OTzg34H3g8nJJU9d0B89uO/L3/+SHlFWDMZpXb7+jPTxQ1Q2bzZZgDT/8/CdkOez3O3RvaZolMRrawwa0ERI3K/j1r/+Ww+4d9+++RinHMDryrJHC92gZh5Z2t2W/21KXOT//+d/y+vtv+MOf/H0uL55L7hePNHgqlKrIUf187LAI6ZaRM0+KxNJ18f6ch6OlECgvv6li2muR0/6MQfKGECaCbTHKEezAYjVncXvF/tAyTRNZUeJ94LBvWW93+KD4zcvvGdqOSOTzzz8TBeThgLq4IBJxbmSaRlEyJ2sYl3LW6uoiqb3EQsc7T5FLB48yGVlQBCfnj5BFIjoo8rS/QiAqyHWGU05sL6YJpUSNlhc5TT3DTjtpU00kodayD0IINLMSk0eqOqcoIwtdYN2INg4XOrRxLOYLjAHdBfJCU5Qaaz15biTuyzXT5AhBkxeGZVNxdbUkyw1dt2GyHcZkZJlm9I6mKUGJqCnLDVU1Yz6fM02eQ9YxjY6um7isZlxeLtjvd9KKHDVd23FzsyLLj/ZiIkoyWsQWd3fvTsVd6UwUS4H9vmMcV+S5pihyptFTFBlXV1co5dlstmy3LVqXKBRVWTJNE7e3z7m4uKSqpAA8DnKPuSyyWq5YrWaM04ALniK/SLxGwerqEqMzHh7WwolMvZzhWhODYhwcPjiaZk+2VCxXOU3zgsk/8auv/yVFDs6PoJNtTFlSVhV9t+GnP/8nXF58w49/+O9grcTF1o7MmhI7Hfj88z/gzZtXfPTRJd3hNYu57L31045/7yd/zsXFFTFa/vF/8//Ee88Xn3/Jzfw5/8Nf/TNmc0VmFF999Ssurj5JyvF4yqX+NY7vt9R8gvdtvMeuU6JOsaWQwaRc2WjQKJQK+OAIPnXA+YnfFb8zwae1ZrVaAdIG0zQNwXvyqpEDIwSCh77vyfOcqBRZlp9Iqg/b0I4VsZOnhTG4yZ68qKT6K7JQk+XSChiFrKlr8WQ4svvH1pKiKCiLkvlsRt+LP4X3nrZtMcacEqJD8lcSJV+JQirYMYicdbvdJc8XTp5Dx7ajaZr42c9+JgqK5ZLlcsnj4yO3z59xsbqg73tWqxXDMHB1dcUwDDw8PFDXNd57rq4uqcqKaRrY7/dMzsqzsqJ6Or7fSDzJ/OUw5uQNuFhIhUsn5VxM/l4o8ZIi8sECfb8glVJ4Ik/7Lfv2QJnldG1HjJ7ZbMabt295WD/hYsB3B372y1/grMMHT103ElyME4e2xzppkTi2IJICm2PCEFNiJS0a8P2rb3h39wptRK4aQsSl9i2jjSi1EqFQFznTOFBlGRerFZvNhsM48suvf8OmbRnHiZjUUUfSq2lqpkHUXVorZrWoUHJl+Pzzz/n1b74SQjcE3AeUu3IxJWgpeNVg1VF5pYjaEKNGx4BWHsJE8E5aeon4VChzwdO3LauLFUVeMg42EUw++SgamllDP/S8u7/nYrVKqie5bMuiwo4BYz7YG1ph3XhKQE/tuNaR57kEnXlkdKmF3AdJmvNckp48k8TFRpbzBTEGDoc9ZSVKjNl8xjAM/Obrl8zncz7+6LlUFRIZNTR12p/S0iTEtwTQk5WgMATxx3h8eMRay2qxkHaH5ZL1dot3A2VeMqtrqXRrhTGGvChwk2OyE599+inHlr9ntzc8rTcE55mGkaeHR3b7HbNmxnK5JHqblBA6ETImqbikTbVre+qyYhhHgkqty9qANoxuTAo28eibz+fMZoZ+HEWFl86jECPTOJDnhaxrLb5zx1aJPM+IPuKSCllrnVrhHIdDi1aaafKiXk4koZYMBqK0Gaqk/Du16iYi9uj9KW1kqd0xtc5HNGhRnuSZgXD0oVMEfwwOlSREBEJUkHzAjue3Uu8DQgkbVVL6vA8AUSQaSqWfX79XAynQAYwOODtxdbnETTld354UEEVZ0dQNwzjy8Pgk62Wy5EXFt999R54XPK3f0o8T/WAZGXnabHl2e8N83rwnj6Ioao/6Y++FtBKvMZdI20g/DGy3G54/e060U1IIiRKDpPY7Sue1ikRvyXOxLKjrmkikH0fqpmY2XxAjrNc7vn/1lo9fPJMWMYRA67oeoxV9N2C0KAd9CBiV44Nls1vTdi3NvGGYJg5th/WezcNDSrgVTVXjJima9N6y3YovYFlWlFWJMYkkyjIhHLOMrCiIqcDV1DXPbm/RSotlApHlcikfcpQzd9ZUWC2J5rxpqOqKLDOMbsl2t2ffDXIXe0dTSVGrLEqmcWByDozBuUgISdVihEDzMQgBlO5ElVTRx1b+D/34nBNVrzGZkKImUJaJEPVBkjLrmKKsSa1EoSqqVsu33/0dr77/OVpHPvv0R+x3PWUxY7/fslrc8u7da9puyzDsmc9WHD0zDZqojgUuUZTKfQTOh9S6Lc9JxBhHIkOSKiH3jjuDE9EhAr8U3JE0rzEpBUkK29Smb2IkU4FpHLm6ugBqhr5jHEdCVNR1Q568QttujfOecZI2//v7J/KyZBgcLgo54Xxgvd1xcbHk5vYaFaEdhKCNkRO554/WCogyzVrLZN1pn4consGjc6CktY8YmOyU2pAU1jtWq2VSWSmKskBnBusswzAyb2Y4H2maOfcPj6zXG/7y3/qHLOY1SkHTNCgU+90OhXjSlnmFTefl7rDj7f1b6qomzwsmaxlHieOGvk/ekxLHEcTrUms5E1erlcRAs7kQFdGflNneeoILhOBZLJaJKBzJM2m7suPErJIi35HcrsqKZlanQtnEvGlABTnbE/ldlqWor0XyiTbZSRk5TULg1E3God0zn5eM0VPkGdZNbLdbQFNXc/K8YllVFHkkzw1dtycykeeW9nBAZxm7bUf5oyU//tEf0PcDw3igHR7ZbrZorXn37nueXX4uCm+dsd215GUJUTP5CU0g11rU20px//iOX/78vwd6+mFLUxfEmBGDwrmBp8fXeD9SlA37/RqtDJeXN+nMPSJwrCdJnSgQk9+lT2pMjU51oLQHtRKle9qDUkCKRzpPFEpKWqBCFHWpQiVlcESFSHATzg3EMEGItPsJP/VSaJ/NWNUL3r67482bd9xe37DbbDl0LV3XM02WZ8+eEWLEOVHddcMIaPK8ZNbUvHv7luvrCzKt8NHhomNyE1pn0uYcjoyIOnn8ii2GIXp3Uk7nZYEKcs6o+N6bVKX7uCpLrHFkRtpoCeI5FoJYhKw3WzJj6LoukRWinP7N1y/5B3/29yDd28vlHJawWM15++4do5149/iOp90TaE1RVUzWsd6ssYk8IYoCcTFfUtcVZVXhrSU3mRTqtBZVLYH1ekuInu12i0LRdiOff/EitcgWLBYLDrsNujYUhajZH54ekrjCo7SnrJZJuWrxfqKoMoZ+oChFLbtczemHjrYTNfo0WRbzJV3Xs1xecLESNfMwDNzf3zOMkhs2TcV8MScET9eNVFWGMVDUDRf5BTFKq6GPDut6jM7xRlo3nYOqrKnqgouLmu7gaPctr979TN7P+MjoHlF6IsaMi4sZhInXb39JVRe4qeKLL/6cgMYHy7/8l/+Crm8pq5KmqfnFL/6GTHdUZcarV+9QuuD58xs+/fQLfvDFp3z9za9QGP7oD/+A+bxmsi3rV2958fFz5vWcspx9sNeSnyxJaYd49Rl0um9iiiMkvjlGRymKE/sKLXs/6oxw7CIJSY2bCsKKANExDgdy46iqjKuLW+q6Tv73BU/rDYeulRZcuVHo+r0Uq7Vm3lQsl0ucmxj6luAt3oo/6WI+JypN23diJRVJKrgg+ZIVEq9IrbgudfoUheHQ7iEVCpXOKHJOVh8mM0KaTxPRB+oU15hM03eO7vCIyZJKW5tTh01Z1RijadsD2ig+/uQykW6K2WLGOE6iMlWGLItEJlCB1UXN6qJCG839/QP90FFWudhZuUDwkdXFPCnuInVVcmgPXF6ukne9xWSACqnw3zCb11g78vDwQFVVXF3eJLJtTZYZ3r55oOt7ORP6kY8/fi6q9mFgNpux33W8eHFFnpd0bU/bDvT9KJ7WVcYwHpgtSj65uCYEn/wcpYW16zvGsSPLFdc3lzTNjGkMPDxsOLRb9vuO3X7H1eUV19fXlEVFDBMxSqvtKXFAhADjkKwMDh1VVeGseOXbEMl0jlaax8c1MUj3wGR7rq+vpSAepWvSWkvbBbIcqqqgmc/Y7/d4LJPrcXHEBs2hywhhFNJ998S7h7dsNm/JjONnP/1XNE3J6zff8nD3hqmfs5wvcVNktVxyf/+aN29+QwyWTCumccP9fcfLl99QlAXBG5arj3n+/BMRmp3y7cj7+bQfVIDTgwgnqfrxt6Sr8rjfJMeTPOxoD+bcRPQOZwdUDIzjwNDt+V3xOxN8ykh7ip0miqIgyzMma/HRgYY8yxnHiaIsT608R6+7rutOgb9RCjtOqcVHBkNIQiMBb17kHA4HtBYvDYIcaNaJUsUlQ86yyrm9XZ7a/YZhOCXJMUYOh4P05mslLZZKMQwjTd2I3511jINlmmTx7g4dXdejlKIfRyEPfDiRT0VR8P3r71lerKSibR1d33N5fUVT1fzqV7+krmq8c4yDJIAPTw8k4TRCI4lMPVjPi9sX7A8HMJq7xwcZ6KDE08ElPw5NqmoqcN7irWeYekwmH+cxYT8ZjR+z9LQ2j00Wx7YtiEke6nEh8vW7N5RFzmzWsF6vsT4QlcK6gPOj6LRCZNjteNxsQCHBmJRoJWlAPMiO30c+5vc+XwFhsd2YTJ9NhnX2lHjbOOGCl2p6jNgpkyEHMfD9472sD6XZbPdMTqoJ0i7hmOUZi/kiJZAaozMWixlllpFpyMuSSKCqRYGgkGo7pEeU2g+lEqbQQdq4lEqEaXrIKkhbVJErVDRYPzGOE1Xd4F2gqhuRkJuc3XaHCxGT2vK+/f4VRVFwePWKzWZ3arH+7NMX1FVJXVXMKsPQT4yTlWDYixLPWlHQHeXCx/PksG/xVcWsaZgOQowrOLU1HVFkWVIOGPb7lqIUkiIvcrJigcnEQ+bhac3zF8/F0NdoMpOIrFiT53Lxbbc7iiLHR8exYS1Ex+PjEz4Elpcr9u2BcZpwXhRxKsp7qKqKaRyZX11RVTJ4RyvF5WolprLDSJnnZFqqtevthkN74LA/cHFxwXK5pCwKNpu9JIBVhVGaXBls8rwriopFM2Ou4fW7dwTvMdrQzOdsdzuUkQE5cZTvvd1syIsMtEreHhnWtuhck6V9ZYwWIjpEUT5pkeUf25NEkSTemUdiHR1FZQBCRHtHWRboqJOiQ58Scnjvu/c/Om+VOg04QQmp6eyIIqDT4I9jdUnrpDRN6zmJp2XtiuV/IioTmRJFJaWVwsVI1B94tMSjx1lER3UygpU364jBMroeFRyH/Za6EuPs+uaGiGIYLd9894q6KhnHicl5uq6j7weWF0vs5MjykjA40Dkx+kSoveGPf/KH7A8Hhmkg6Ii1Pt0NMkhEo0BHssLgPYz9RFHkXF5dSVI+iZGyAoIXfxpU+rmjJNbXlxcy3CY3orBUisOh5XK1wvtAUVY8Pjzy9PhEkf8F11cXKCJ5VdLMGg6HA1meUWXSZjz5ibbreP32NcRIPW/ITM7TZksE8djzXgYvzWbkWZ48PyVxXC6XZFnGfDY/+S75KOSZ9x5nHfP5jIgYHhd5Tl3VrJ+exIw9iu+Qt7LO6kKMrp138hlMIy445osZTZxRlg327duUIEh7sk1eO0qB8p5pcskmo8K6KamDRHGaScSaPEVEOSx3+zG5jSdHYaM0wTq8d0ISOE9mNF03st9baQGNoprKjCfEguAD07Tl1Xd/zWH/DqUm1utHFBo7Wvw0sX68YxqkbXkaer6+f8uPvvwxxAylZPgMJD4uKY2k7UO0EMSj2kYl1bkQlSAeY6iULEWdWtxFCRFjSOplUSKZxNvrpFqPCIEco2V0A8Fbdts1ZZGhteLm5hplMnb7A7/+5hsulxd0XccwjnT9QNt1PH/+gmHsQUe8h8kHjCkZRsvLb7/n9tkNRsMw9vjok4+LKBV8ahdEKfIix3o5Q4JSlFWFDBCRezYSUvFKnQqtUriRtrfZTJK0GALjMKIVbDc7FrO5eDaFwGQ9znm+/vZb/vgPf0yRS1KV5RnNTNQw3nl8JsN2fvP11+zbPZeXl5giY7Qjm82OPM+lXV4JIVKVFU1VE4NnvpizPyR1uQ9cLC+EZPZSHD16xvrgWcwX4vGz2ZyI577vk7JVBqDZYSQvpEvCOscwjig0y9Xi5EPcdh139+/Y7vY0zRydZRKTGrECGQYhkXY7UVegRMWvtaNuKlRpaOYVeZEl77AOHTS5yhinPVDL8BU3cXm54PLLS4Krefd2zc9+9ldcXi0oK42Lj+zb77H2gDENRhse129x7HBxz927A89ffC5KkXHk5bffcnF5TXCKfuj4m5/+M/puzWb9Fq00+8OO1eUKFyx26iVBPOy5urrg3dtXfP/qFX//T/6cTz7+HKENUnPgMY/RSpSpJKsTI23nx3b4o8JdxaMKKSTiXB8FRrLn+OCOSorxEKQll0Q+6GjBj7KmkHhE4mAvxaOnNb/4xa8oqwbr7lg/PjKOE/P5nPlcBrG0XZvivYj3Dh8iDTU+Rpqi4OHhgR9+/gMe7h/S4D65K6J3RB/EGzbdre3QEaNKsV5F0zSSc/hEXYYUv0+jEMbOU5SFxN5GiLTdfifdRy61WGY5k/fkeUFRVWAMfdcmJaLlcGi5ulyl/EUUhnmeY/KM1y+/4eHxCW3ETuTxaX1STx/v8bqumTcz6rqWwoUy2GHk0LapDV7x6WfP8GGSzgbr0apAqcDl5YzLiwue1g+JUHOsLhq0yvE+0LWWvve0fc98IQom6yY++viGvND4OJ2SZOcsITomO7BczKnKJvlR6tP5dzgcyIuCH37xQ0DIm7btiVr2btPUgLT9930PRMbJMp8vUMcBj3khBvY+Mk0WrXJ2ux3TNPD5F59R1TmLC01eG+7Xv6SzNXmuiExoAxCYzSrGMfDm7hccuif+4Mt/hHMTmS4ZxoHVxZz94YEfffklv/n611zfzPBTpO8U6/WOj158zo9+9Adorfjm5S/4/tvveP78U7JC8c3LAz50rC4q/vk//yf8b/7XH1FUM1SK2Y7dbqf99iHPnvbOsXHrqHZ9P9ImFWA1YiGhP7iT0+aMUXwKjYbgJ5xtmdUVRS5er0YbnPG0B3m+88WMru8YWsnfLy8ucc6xPexYrlbSyZcZmqZGp2FsWom1RaY1ZV6mDqKBImtOvrxZlqOU2AI5L8XCPM8pyoKGGeM0SZdSXRGi5OBaQ1E07Pd7XMqL3luTlBwOlmGwmNQCXlcZ1g6nwn1eZNL9Uwrn0A/H4q/kgcvkez6fV2w2O2J0KB0pyoKiKBjGhqEfpbiOxgbHbD6nLAomO9K1A7ttS0Tadvu+YzafJaWdZhwHxnFAKSjKjLpu2O8PKAV1kzNfPGOaRp7WLUbnRAKrVUOea6bkQb3bbQBPPw4oHahnouZ//eZOYr+64IdffsLd/VuGseXqapVUxJJv3NxcEhEPYRDLlO32kGI7z6effsRms2V/2JM/FSilybKCGCRnabuOgOH6Zslut2EaD8laqadthTsZJkvmPb0bKIqS9WZLXS25vLylKEUUstvtaJpZsrASkcb+sGaaRqpUcJZ9vifGwGQzjO7Y7u/45uVf03Y9Qz/w4sWC5SpjGj3b9RpCYLPesn3aoFB8/PFH7HaPONdxeblgt3tkaA+8eTvgY6Rt98S95odf/An/0X/8v2Q2vxR+SaVOprTvVBJqHEm+KIsmxZPqxLX404YVoVVMeRaRJAgKqCC2Rt6OjENH37cMafjc74LfneBLJt0yaECMnrMYZRrU1SV9P0hikYYeHCWxx7adYytQDBGXvIfE48IQgken9gqloKpr+r5n+7QjolgtlyiELPA+kGWGy8ur5Pcii3cYRLq+Xq9PB4lSosBybpSpZlkm1WpyylIzjRPDMNC2orjJC7m8+rEnjuKNlec5dVnx6u0birLg+vqa/X7P3f0dZVlyc3vD3f09mZF2vcxkTKP48CmlMHnGYj7n9uZG/Fq2O/Isx06Wpq4ZpkmqzEmRN05i5jq6iUJnPLu9pWsPMl2YjMk54tHIMalxvP/QUyumBYUE+olkPZEKaTG6I9PlLON2iwsBnecnktQn9YNKChalZSMGpL1KfLB8Mkh+rxR0zp9IJgncEMZeKbwTxYHW74esWDdJEKhUmjrmiONAiJFxN+GsPV14wYtZpTFZqhIePbnE867IJEn7/vvvMFozXy7Y7Hfsu/Z9kKSOUtq0Yd/zoZIIKJO8MJJRdAwoZSE4tC5YXKyYBvn8rPU0y1mS9m84tAPeO5yT1uX75IE4OUc3WLKipusn9oeOfdvx7NkzMq2SN5U7Ve2MkXWulAz2yHUmlTPv8BHatkNFLWon54WkSmpGa520dBClxSEzUlFPSWAIkb6XKYZNM8MH2B86vv7mO37w6cfkmbQFlHXNOO5QSpSzx7Y7nZilcZrYbLf44GnmM7b7PZN1tKmKnuU5uTE0VZ28eQLTNDAMomR5dvuMLJcqT5GqQ3mWi/IwDUbJLi548fy5JIDrDUQlU3ZDSGo8TdM02MkTfRSFhwEfHP040Q2TtH+NI9oYyjyjqRtijHTt4fQ8YvQYE8mLkhADEYtGpWBcWt5QJrWDi0FxDBEXvZxzMSZSKVIUEmUF55LiQ52mWkv7jzyLvh9ToKNSRXyERIajJLkwShG8E+VZ8ARvgYCKHuJvk7lGH9up5PJRWhOVQkWdSDqZNKV47wEYAR2P4w3etzZG4qnFSjKkiCESgyW6Ee0l0PbOMgzi0aWzknFy/Oznv+Di8op+8lIFPshzLguZoOuVVHHHYWS0ltV8QTOr2R0O3D88MKtFZXNU6SlO/Iz4sbpJPMTS2RSJp7bZoiglcAzJGDu1kcZIOpuNDLsoSpTKmMYRrRV2mETBcGyr8gGtMr5++R3zxZyqyNDaUDU12mh2u72QXirw3avvefX6NVprbp/d4rzj6Wkjyo9xJHjHvKmZz+ZUZYUislwu6Pr+1Eq5Wl4QvZeKrzFodJr4NlJVNdYF9rsdRus0+Gk6BbfDMJAVGSb5coo6JDJbLKjLAtUpBmt59eY12+2WZ88+om0PjNZiTMZms0UbIeaccwxW2mLqZN8QoiHaCesDdd2QmYwxWuI0yQTpVDg6nudS3JE2ZJvOiCJvmM0avHc0s5movYPGeyFqfvbTv+by4gJrNWXd8M/+u/+ScXzg8f61DMPwA4vlPE2nHNlt1wx9R1M1eD/yP/yrf0rf7fiTn/wDlMkhtRkep5Gr1F6YbirZnyrVZiN43puXn3zPCChlxJogCmkRPrhbTwQFcg9Ky24gRkdwIzqpBLUSSxFvAyYvOHRbfv7zX7JcXbBte7brDfvDjqqqmc8W6X6U83scJybrmFU1VTWjqg3fffeKL7/8gizPmZz4EOuoiPh0V8nz78ch+YPFdM5A8DIMTKamauxkU3ulqJOIUObSNqy0YX/o8S7IfjCKIvnNWTsyDFLIKYqch8c16+2OZzdXoKRVvmlmNLM5d3f39NPAm7dvaDtRA2lt2O72dIcD3kX62KMRZdZivpDWPhfE3wcoTMbs6ho7TYQ0yT07KZvlvDrs9+RZxvXNtQwsiKDUjP7QMo5j8v86ToK2ZCb5BfWeyVpuK1F8dX3H96++p5pJG2ZUyORuo2VSZJGTZVkqvshd1cwN/bAmRPEh3O0G6qamyIVUncaRsqjx3uJdGiQR4PFxTYiOq+sVi3nBJz+QAsjrt39H3WgCA4GerBB12+LmEh8P/OKrf8rbh6/49OO/RKkM72F/2PHP//k/5dmzW6qq4vHpjqenV1yulty//Z7DoefquubZzXP+/M/+lMf1PWPvWC1WfPbxp/wPf/Uv2G/v2G7uWC0uWCyvks1Duh3U6SQ+7XV1SmIi78NPiQ1NhCwT4s8HB8GcBoDEKNM+I/E03CzEiHcBFSb8dKAqFHWRsVjMT1YPzjmyPJcpndsDk4t0m13q6gh88skL8jxjvxNC+FigH4YBhZCEkx2JB4tRDU1d0R46IYxCoMjyNDwnKcBTXKuTDY2zXroktJyXeZalgXeeLJN9pZRKPo1CIEhO5HAhyLTnpubduwdccIRR7iQZsmeoM8009TLQDMevvvqKv/y3/0LOmhDxPvK03fCrX/2Kh4cHnJfpouEYs3tpoTVKyyTnsmSxmNEPvShIPMkzS6e8K2CySKYKnJO/O5tV5IWo5t6+fSvqqL6n3Y/EqLDpjlpezMnzmt3uwHJRcXG5IC8Mr159xyqfY0xJ309kWcFqtWQ+rxmnAaWEYNhsW5yHiKWsMmazit1uz9P6nhhEXViWVdrdgfv7t3z8yS0Rw37fsVjMcTay3x1OA3umyaKioSprtts9Rkvb8MXFFXlWMA4D1tmTJ+nT4yMmU5SlDPwKPjDZDhc8k5voBo11O5QZ2WwH7u7fsl2/Q8WRv/2bf0GWKe7ffsdht2YxW1AVc+bzBc6OfPvdb1BK5kBPtmHfRl6+/IarmyVPT0/MZ7fkeXGyUkGpkzL4tJdS7HIatMFxTSYC4UisH/dlKsjKLSx3TyCgcMmLVuJQ2w8QHVeXM4pM1s1sscA5R9v13N8/cnGxZLVYMSxGxuGJeVMzTYH9fsesrGnqGues2LZonXIz6SgZp5GIiDnKssIyyueTaXSeU1bVaWBalhTRUsiGvCjo+l7uq+BxXgQ4MiQtUJQlkYmqrKSoHaDreooiR6uMrhuAyIBLcTrsdy2riwVX1ytMFrF2oig1ZVnQdS3L5YIQHf0gRc2qlvN5GDoOh566rlksGsriSNY5MmeoqoKqrMlyUdiNo0vvO4rF0CDEqJvEVzrLJGZTqSMlzzO6bi/KyUyKAbNmhlIBkymKMqPvO3mPqxV5XrK6qKlreb6HfUsMEvfNZnNun92A8jRNibVCKvZDj7MSY5oM+v6AyUyyxBi5vrnCTuIFW5Uz8iJjHCamqWMcB0LQiH5BSPOy0uy2B5yTmHpDSwiiVFyuFjy/vObd3R1Eyc2enraMQ4dfNGiT8/i4xrnAxcWlDP6IMNmRoR8waWDYbndgPpe4JM/Fe9TWGX/3y3/J5cX3HPYHTFZR5HOaZsHQRy4urpiGiR/+UFFXBY8P99zcXFLNcj79wZf87Gd/Q9ftKfKMyVmqqiAi1luQUVdLUbcTTncUx3gxnkxYhIeIR8uJdP9FsZcJSu4OYlKrq6PGFlSQPem8dLZojgSzJvI+j/s3xe9M8C0Wc66urk5mszoNhMiSQqfvh1Tdtyey5+jP897zRZKIY4B0nMQ3dCNFak+TEdSei4sLuq7HJXNfm9pYx2kkzzPqnRgeH82a27alKgsyY5I8VtpV5PXeK8xknLNPXkNZar3qCCEwpdbgYZCJfzK5x7Dbyyaczxuenp64v7/HWstsNuPdu3fkJmOxWPDh1FmFkqpTCFJBSxX2pmnIdX76fsM40jQNZWpNNhGCVgxWxlQPSa7rrUwLVTFiJ3syFVdaoaPm/aSvowJHVHZaJaPweFT6vV+Yp8EEiYT9cCriMbA5Dv+IxzZrJa3AQibZU1vW8bM9tijYRMxJQP9+qMDx68f14ZyTn+Ho3xUj+7ZDKcOQfOMMor4BMeyv6gKVzJZ3ux1aKTFDNqIizYucWTNjv99xOBxk6q1Sv/UzHSeDvt+2AKkdU0VUDOgQ8LbH+wG8J9oR5Upi9DSzGXU9ZxgnfvXV18zmM6ZhpG1bJufY7/dcX19BBBdkLW73LXlVM1rP96/ecnN9xWqx4NC2KM2pTfuYvKdNI+2ikVThhovl8vQcRQHzfsLbkQ09mt1eXayo64q+y+n7EaU14zByc3ElvhJZyePjA09Pa8qy5OPnNyilqMoK20wc9i1ZnlHkZVKrjWz2O169fi2t23M5pIdBXls8LQ1NVXGxuhCD+aJgnERh2zQNZVHRVM3JdF5rI8REFMXt9YX47znnmNVJNWUMZTHDpsmeZVlSFDLEZAxWKmvJn+6Tjz6iHUYObQ/Ji83aiaZZEoIny/PUepmMk+P7fRCVtBcWWY60DWlRqGai/skL2bt2tOgsKScRA/lpmjBGVFouih8KEWIyqR1HUY9cX13x9u1bpsliTC6DN5RGJnQpDEaqqlbUNmJxwClpOJIMx66oY+B3bNmXab9JZ5TWgyFQaMiN+CZZH5Mvn4Z4nOOUqr5pU0SlIICKAecGMu2wtmc+q6irSpSYWjwFd9s9L79/zb7tGewj280G7xwXF6tkyN2clEJyVhxN+Aem0lCVDY8PT1z9wY94enwSb1XNKRgCCRhDjGlabU+RFWQmY7WcMw6TePIh9gCeo4epqIxmsxmFEuL+af2UlKYeFRRNVdL1PWVZMFqbWuID+0PLw+Oazz55gSIkf9WKsqp5d3fHervh8elJiFRjUuK5TW3tou6qa1E4LuYzoksNoREyrbm9vhFj6klaRPI0zTSEQNSKp/WaH//oioAQYVVV8fggrSLH89UYI4rxdGb0vceHwM3iFu89h67j9du34qmXZUxeJt23241Mny+lWDLZgRiFvJ4vFozjiPMSYMuzN2SZSWtVAnHx2Dq2FUkilg56GSKSZbRpwrEob0vGaYIjQasCfd/y8uWv+fZb+OSTT/juZ9+y271jOc9xE7x798DF6oIvfvApf/QHf5/MZGw2T5R5yWc/+Jz7u1doPfH48Ir10wuubz7iNGwD0j44ne4cv5CaJkSIpNLKD5FcB8rcSGsfsleUkgAtInczMRHOxFTplSBwGvYUJhJ9avlulhzaVp5flrPfH3j15h2D83R3D3Rtj3eOZ7c3ot4gkuWG3X6bkj75Hj74pIIoGfoxDUASz9DcaFQ6o7wP5IU5+UG64CDIBPjlbJbuZYmhSEW/mO4YiZeypFKTOGKy8lm54NDok69iVhTUeYYuMrpDT1HA4+Mj11eX5JmQkyHIvaWM5puvXrLd7TAmYxwtd/ePqPRMrBtTq5VmuZhLvKA03dAx9BbrHLNmhtEKpx3WWaqyoSgL+r6FKG2I7xXPisWi4bA9sJgtmKdzyllRF4qS26KNom5maK2xmw3KSHzQth2z+Zz5csG7+wcCitlizuSdKHfrkiov8JMQ4Lvdjskpbm4vOBx2EEWh0R56pjykKfVelPOmRCvD08M78rxhHKZkB6KZpoFplGmEeZGzO0w0jaGuS7bblqJUZEVkt31ArTuiHvmB+XO8m3BBFEzXlxcUJnB9OaMoLtmuX4qXn4/0reXHf/lHmCxns77nr/7qX3B1cc3ts8948/Yl2907nr1Y8ne/+GuWi0suLm9TC9IxSYkpZvsgWlKKo/c1yH0n1giQ4SizDG1yhnHCpf0ngwDkrAhRirNCoMtX2/2GRZNRVwVVVVKUhSiN5wv2hz37w4H2INMYfVRMPmB9oMplcF6MnjHvhUxNdgzzxQwXA/00MllPVcxFme/fT7LXSqMzc5qWGoKjbSWxjkqJyi6Tfa5imjCfYq5xbEUR6iVGLsuKfuphlKRXaUW3b+UO1JqyKGj7DqUyKWgreW7r9ZPc11pRVDVtP/D1Ny/58osvGPqOX//6K371619jrU3FLc1k3alDx3vPvBGlp/juSez07Nkz1o9PTNZSliWXFxfEJM13LiT1TyXnuJapv95bhn7Ah8jF6oLl8hLvHV1/kL3oJvb7lqG3vHhxhUyzdVzfXKOUFMoOhz3G5KxWK3yQrptpEqJgvqhp6jlPj4/M5wvG0VJWeRpAODBNAUXOMI7kw0BWKLpuJARP33dolTEMA1VdURYFF5dX0iEzTsyaBdM4kWWKxfISbRTv7u4oipyrqyuausE5C2h2O7E+EJWYtKEqZVIHzcDj+hVfffUvGCfoh4HnLxZcTjLdVEVwk+X7796wmB+4vrqmKgtev/6G1bLG+YH2sGO9fs3dw3dst2v2h5IffPbH/IM//3dQusT5+J74RqHwp1xFRZXO6RSrHeM5Jd0Jor2QYuCJg1CAEiEGqSjs7Mg09qIsa1tyo3n27BbvJ4zJ0XnBMEyM48i7u7eiuE1rXqc4RjoKZMjEbFZjNOKDbnRq5YT9vqWZyRovCo0PkSJmOK0Yx55xGEXM4MVDUux1oCpLyjJ/n5cqIftkwFpSHwYvZJUXP1qZPhyS5ZcQpajAshAiTdR2hdgVWBiHnhhnrFYXxDiAkmGfdV1xHNwm3ISnLCu6rhf+wTmyTHgJpZX4QstbSsqzHavVnMNhhzaBIi+Yz2c8rZ8IwZFlTjwkJxEZeS+iACGWS7zPk51Tsl7KTVKXj9zdranKmq6zeLfn+uYarSO7/Y7VxYLPv/iUp4ee168ecX6iPbQoJcMQtVZMdpICoxvZHzZcXq6o6orDYUfbdlxf32BMgEJTZyV92xOCJcsj1zdXLFcjb149sd/13N5e8cWXHzNOex4e7kTR13Y0k6UoDYtqRnvoWa/35HlOmfzCP//8M969uSMvYHU5I8s0201LkZe03YGuk8E7dV2htRQQ7x+eyIuaqqo5tD3OBkLYY13gu9e/QCnN9eUX/MGXn9F3EyFExsT5FHmFtY7H9Zp6lnPoPVpHunbkzdt75rNKPIzjgr5z5HnFNGkmB2mI/Ae33fFX6pRjxchpCvZRbSt2VZFwLPgmcl1/EId65xjGjr7dYqeecWiJPojdjnn/3f5N8TsTfFmWn4ZcSKVICKjjxpBfqxNBd5SKH//8kcwZ09AGkElr19fX0haSLsujt4W0XZq0sScW84Yiz1k/PdJ1PWWeM5uJf8HhcJDk0aVhCFnOZHv4gLwaE5HWNDPmM+m7b9uBruvEpy/Pf+v7H4dv5HmOtZYiGaW/e/eOGCPz+fwUVFZVxdPT04lALEvxB1uuFmitWMxkwlDQWir0Jmfoe4qqZGnEdHc3DBAjdVXRjyOzvCKGQJWXaA1VJpddN4K1Qlw4F1K1R6GUBCWicNMEIuYDcu/YEvjh8JCYlAnHysJ740hOElOZFhlO5N2HfopKqdP/izk/J4IRNN5btP5tRd8xwT/+Wiup/hxfa5pGhsGC9qlF1eC8BSevoWI4JdDHdYXWbLdb+jTVEe+YJsdiNqe1lsv5nOfXNxR5/t6zEE7vQx2TqaOaKQQ0AecnCOJtoxTkaYDLOFmGcaIfNvzdL3+NjwpMwePDA217oChy6kY8hpy1EGSC0TAM5GVB3SyZ1Tnfv3rD4o/mlGXJZr09Je2/Na1Hydp1QdqvRL3oiDFQ1zOKvJBWrdQW5xNZFH04tYxnxmB0Lp42yefqab1FayXToyeHUhm/+c03LOcN87m0dMxSS+Fut8d6i/aar775mofHRyEHipx+HNhtd2iTcTjsqYqSpq6pqgqjFWXdUJUlbatO7X2rxRI7jeI/iVSgnbXUVU1VVjyldpOjH6ecPxnjNJBl4tH04ZpbrpYYIz9L23W8/vprfIzUzYzDdisDTZxnv9uT5zIUR0y5bSJ8ZUlIq614g5R5zvABiX304iMEMR1P22Q1n0tbDXB1cUEMnuV8hp/N2R32jMNAWVZpXLxcRk9PG4zOyQzp3HJoI9P6shRNKaWwU48xWSJVlBBdUfb60Yz5BHWcqnuctZY2sU5fU5BlUOYKHxVxjLggisJAJKRWvSOBD+G0D/zUo+JIkWesbi5pZpJEaK3pB0lgJ+cxWUHXW6ZDImfLkmfPbthuNwxDS1EYlJLPNM8yCJ6oYJgm9D5QV4Uo+9JdUuTFyQMSwE6evMhFjWFynLUUWSat4HlO1/WMbpJWsmTLkOWZqI/je9+oZtaANtw9PuKJjG4S8opAM6spqpL1o3gZvXt3x+3NNbOmTOoURVYU7A57vvv++1OC3nUDXTeIR5eSgSRVXbBaLk6t1hLg9lg7MV/MT4mZOxZ+8pxDu0dnJnm7yXlUN6UE1zHy2Sef4CZLF4JMGKwbnBdiW4Y+GR6eJLgMIbLZbJg1DSoz3D09UtrpZK9QNxWZ0RT5nGmaGEYr/mzpbOz67v3QqtygtHidHZNiuQOO/1UQNC5IML7e7CBGpkl8KquqZhilDVWsEaBte57WjyznczbbB4ocnt1e0LZ3LOcNTVXhxshHzz/j44+eM07v+Ku//q+pqjkff/Rjntav+c3Xf8vNzZz1+i0/+7u/5n/+H350qr4a8/6++633yXtVxJH2I6lri0JTZRAyg/XQjyFNtRYiI0ZFUCnpSGR7jIFhbNFMFGXO1fKSqha1ZyByaDu6tmWyDm0yum5ktKJQbaqKm5sb+u7A0PfIYCOJZYxWaWiSw5PTdYOYYQ/jyX+4zMsTKeF9YBotdSMJkAxbEL/M4yAxo7X442lFVdXoTBIK52XIRZbnidj1zGYN1WzGqzevT0U7XwgZYL3Fhww0HLqWb7/rWa0WfP6Dz/DO4kPk6emRn/7t30prTww4m2IO3vsBlkWBIik+7SRed146D8ZxSGstijq8bWXC9iBFpLquT57KeYoHtRIbmKoqk5enxBZNU8s5rzVFkZ2en1KKejaj63pur29ZzJfMdWTfSuvSsbhcZDnPXzxj6FoOu12KUwbAUM/m7LZiT2GtJI19P1CWg7TmL5bsdjusFlP57W7HzXXN8+e3VLVY0pRFQ1U1zGZSEN1sO4Zhz2LZpNa9QNtu0VnA+QOH/QOHwzsyNef+8QmtIS88yih+9cu/pe/33L17xdPDG4qs5nKVURaGb7/9mqenl9hpi1INzm34m5/+GmMijw9biDWzZiZqqPTzny7IU8HoQ8Xu8bYJQholNVJQOd0UMdqlJEc8kwudJSsS8fILUexYDDD2B4oikBWipI0hMgxiQP7w8MDiYsUM2O1a8W+bLZjPFfv9nlmyGMiMtHOKdU1AaUOmDUYbqqKi62WgXFk0QmqbHK2zNDRiwFvpbBD1mKLvOkyRk2U5Q9ehkCLl4SCD83Rm3qtiT8bq7/15t9utdBakM6bbHwheSLkYAtMw8GQt17dXzBZzrJ0SoT+CCvzNz37ON998zXq9oWv71K46k7Z05zE6UFWSK6wWC5bLJdMwMqtrIGBURd+2DMPAfLYgNxnBBPJChBlt29F1kpRrLZNwh6Fjt5vwTtTH4s+p6XoZvvDioxsuVs/Zbn6FNtLW3/c9i1VNRGOtEEGisrXSLnh5hfcTu90WYzLmM1FiXV4viEEmD2sduLxacnG5ZLcdeP3qkbIoeP78lmaW8fBwByrSdQPWOsqioiw1Shl2uy0xelCBLNPcPrth/bQjyzSXl0vu7+/ZbreEIMOMhqFL4oWYfKTXLJZLZrOZFOM3WxQtdlI8Pd0zDJbM1BTliqa+wY6B66tbbm8+xhjxme66A7NFxfXNBYd2y91336MNbLZPlFWJdT0hRm5uP+b2xWdEMskd/AeEgkqWD4rUKSW/ffR6hUjyjTjtw6BSKChyv3S/OoZ2j7cDQy+DZKwdWS0WXF1dY60U3MUnH56eHtnsNlg3sWhmqWg/0LYdi/mCx/WGw/4gcWqm6Q4tFxeLFKf75Jk4EGLg8vKKohBByzROqMygVMnYD3z33bfc3t6glOSVKpPYQnx5pRgLQp6No/ieZpkUdoMTP+cQFEbJ8KJj/D6Ovax3ozE5LIoCFRV1veCwb6WoECKZyZlsah9PR1cITki7EEUEoSaGQcjP5XIlOcMwsFgsaQ89eV5D3NN1HWVZMU2WqiqZZ7Ok+mtlCBIR73wiv0X8cxQ3eefpXC/xCRHvJ7EyMVJMrMqKvpt48/pA0+SUhWYYemJ0XF5enAixvpe2VqMRxaDOWJhavA+J1E1DnYrrES++fEqxXC4Yx4GqWlHX4hsfCSm2VywWEku2y5H2MLFerynfwHxeCoGbhFPeB+azSw77PePYExVcXFxwdXXJOE5styIcEcI6Z9bU5GaFMgrrI9c3C0KYIHmxOucpy5r7uyeaWUNdz8mSYb3SjqKCup5ze/MRX/7wj3n16i3DMBGC5+bZNW3XobXh8mol1h5G8dVX3/LmzVvxI24MP/njP0mKy0BRrPj44x8Q/HsRlIgm3hedjr/+cIKucChRFP6AWJ6LWOIYE8pgRYnNh2FgGjq6w4Gu27PbbZjVNUVZ8s3LX/O74ncm+EJqyzwSMUWRApHNhmEYKIrq5IMXYzwNufiQ1AkhnBb4kTwahoEiL4gftFwaY8jznGfPnnP38CRTzLY7ri4vaOZzQvJOubu747PPPuPy8pI2XWJH8q2pa8ZhpCxLmdqTTJPnaRqsnabTRJ+jVDLPTfpZxGMQpD1Ra03XtScWvqoqrq6uOBwOjON4CjzHcaTrukR+FORJ3Xj/8MCsqsky8S00YvJ1Mtcvy5KmaQCpEhVFIW2QdmKzXvPJxy8gRIq8kNYcbwF1GsQhCZRMx9PJf+lIsJ5IsA/w4UJVIAdLapsFOA5UOJJG7oOk7xhMH9fBkYzS+rjh3yd/MpUtnkjWD9vKjt/n+PeHYSDPhcREyUafpomqqqRKlV5Dp2TZ2pGiEPPfEALToHj27Bn39/dc3FwlpeNEbQo+efYRL549gxjIjLSgqigajphIPaUQ8sZHggqM/Za61GjtqcuKxXzJOMjI8bKqsNaz3mw4dD0Ow5v7X+HtxMVqSTObYScxIB2SEk0bSdi9s/R9h1E1Riu6diAcW0FNek8B8XApShmmotTJCzLPpeVhmqSl03t3GsIh3oZSXT22pMe8YH/Y0w+9VIu1pilyRjtR1TJm3WTSWjSlysds3kiwnOdkyR/m7bs77h8e2O32J/+izW5H10nlxHWdVOOqkvl8Jl5gPpAbAz6wnM0xacCFTIiKwHRSnQ7DSAyR69sbxmlK5uqK/V6mTHsnQ12myZIZkUIH3wOIUbp1rNcb8b1M1b/Ml7jgmEZLXuQyTWoaT20+eVGRFQXjOMrUufQc8zwXw/r033T7S8JAWj9GjINfPH/O2zdvcVaq5zHK+bXf7Ri67kTYjlZaupUyKAM60xQqDSGKSdEQIKoM7ywBIey8l0rjce/I90+TPON7guVYKTqZTKa9fSxHRRTDFJOXqQyIiUCmFZqITIwRj5doIt5bGQQTHaPds5xVlJUUXI5TfZ335EXBoW3p9h1ucjRNQxVht98l78Sc5Xwmz3gc0hk8A2XY7A9MdqIqc/lBosZbIRsNJqlQ5c6wVgbXmDQMQGnNbCYDN6QVTkzL220nA6CCTQbDhv1+z3IpXkbH6W3zxZztYU/X91gLk7E0TUXwjnGSlm7rHE/rJ777/jv+8A9/TEDRDz1/94u/45tvvjmd58755NEo+0IpCVpXyxVFkdF3PTZYqqKSqfBoYhC/1fbQUs9qUXfmUkSbpomIYlbVNFXNMHaURY5z4aSeLsoSGYBhmBdz7OROirPlcslkHYv5kpubW5RWfPf6lZB404h1jovLC64uL7l784bVi2dSXV5vGaYJa8W0ua4qvHeUtQxQ8M4BUdocJoedLHluaJqGoshp2xZ8wFrPfr+nmTUEDUorNvutDCUIkXE88PDwC/aHNSioKs8PL1/w61/9Dd5b1o+vePXdjtX8kovVFYvZjDdvfoP1B7wTwn+atnz//QP7/VtCrOlaxx//wV/I8lcqJTpJkfrh9afUSa0nUVk88eRKgbXSChdjSNVZUcErrdAhgnIYldShXu6T4CZi6JjNKppKJpE6Z9HRSPtQWTI5x267Zxwm5rMFyyxns16zXC7IMlEsKSLTdHz2NaAJuwOjFc/XsimJUSw5iJo8K3BW7o4jwbXZbE5JVZblMhWHkIocUhyrmyapdBxt37FYLIgxpuRbiLO2bcmLSiwiUuui90FIxqrCx0g/9EQVyYuCoir55uW31E2DVoqvfvNrvv7661OBRNrLLXVdE3xAE5klUruq5J68vLxkvz3Q9z1XV5dk2QrvRbU39GNS4mZkJk/tuWn4TduxWixpqprjBEpT5NjRYoeJED3NvCHLcrquI8+OavbIervh/v6ey6tLnp62rJ8eiQr6Ue6WTGt2G3kudpi4ubwmR9G191xeXvLZZy/ohx3b3RPOB9p2wE5S1NT10ds1qZb9yPX1JcMwox92XFy9IMbA/f0dRhfc3DyX4Tv9ATs5fJSulc1mw2Iu3ryzeSNqp8Lyq1//Ky5X7zi0B1arC5ZLibeur5dMU8WrV9+y33UQFS8+esZ298BilaO0+P0+bV7xuHlDiB47TVyuPuEf/Tv/MYvltRRqT0WkD5V8x71y/P9jYVgG1ZHIyCP/EN1Rax4J1uPSVOnoLd4OJ4Jvt9+zWsxp5jPyzEjChazZ+/t7rLPMl4FZM2O1XKEPLURDP4zkSjGrheQ6erAeSX2lwI4DRZGDC5RljTsOyUgF/Kqq2G6EeCLd18akFr6+o0hT55U2hNQqOCXPyjrPMMlTzGiFd1Za2cqSvuup6orgA/PZAmUM07SmKEps38skeKXFj2u35+b2JqnTFJv1E8PQ4YPncNihUOSVTLzsx5HlfE7ne5q6ppnNpItouRBCBMXt7TVaa15++5K7u3esVhcsFjNpQ3X+ZNdjtEGbYwFDYpznz2/5/vt76ZSqDGWV4cPA1fUFq9WK9tByf3+PAhaLGXZybLcjKEvdSKvhOA4sl3OyTBiLcWqBkApGCuctq4sVfd8JEeIty9WcoiiOQ8dZLGpp231aE2Kdzrc1CkPwUBQ5ITjevn0i4lmtVnz6ySciJvEOpUIqhNc8f/6xqPQMPD0+kBfiyblMU+rHKTI9blFKzPyNlphku7/nzbuXaFVwc/0D/vQHf4/t2pFnJftdj6JAq4KHxzWHds0zc0W+U7TtgXd3D1RlTlXXZHlBP1jquuH+cU/EpLvoaNZ/1Jknr3Qvfsok8cFxKDpwUvwppWTPpX0aVUxFSM/UDxIvEU5F4bKeYfKMu4d7ri4vKIsck2UMh571ZsObt2/47AefUjcNzjkeHp6ky6es2R8O+GCpmzmTnVCkTreyoO2krfn65oY8y7DThNKyt3RVUhRzhkEG5NhpYrfbsVjMsVYIujzLsTYI0WsnlIaxG0+eg8ILCFFWFhVZ8vsvy/I04A4l54gPkaH3ZJmmzIt0p7sTEbnZbFiuZlgr3QMhhJMveFmUTJO8j3GamM9l8vR+v5MhZandf+ink6+dtZbj4KC+7wjBghL/y2EU/+XVaslxoM3xZ5mSzcqRb8gLEbLUhQxsCzHy/MUVy+WCWTPn3d1byjLHeSHQht7y8ptXOKuYzxtQkrMLWeopi4phGNEqx/kJ8ZYXhXtV1Wy38jMJZ1KkKcElfSd7xGSGaRRriqg8RZmTZ1IEcNaii4KLiwv2+wORgLUyUCzPC4ZhkPZ3Y7i9uaEsarabFmczyqLC1DC5iTyXGFbUvRP7px0+wDSKuEfrklktysm+76iqgsV8xWJ2S1PLgJe2feLb717y6vX33F4/Yza75LA/0Mxqfv7zr/jkkx/y+Rc/4t39Izp46qrGWsv9/QNVOeOLL/6AabL8t//dP+Hf+/f+I7KiJAI6pi6otPeO3ZIfdoYoAlFlKHXcr8nvXKXSfFKoTv3A0O/ZrB/Zbp7wXtZPUZSMfU/8IGf7N8XvTPAdW/6OKrUYI09PT0naLOyy0Rk2Tif1Td/3qb884zgyvqqq3zKYPyrmjmTRqUUpCkE0axo22z3b7Y4QAxfLBfP5HIKnbTvevn3H8+fPxIchVWX7vodI8m+TpL2qZPLTbrcDpC1QCJP8RDLFGKWCkxucd9zd3YnnVyKgiqJktVqdfi0MfkmZC5l5OBwAUpWtoes6np6eAPj8088YhkGmPj48nHzNJmdP6g6pOGppH0uDNkIM7Pd7bm9u6YdeBpbwXuUj48TDqfVZHFbfq8COLan/Ok5qPERmekwSjoTckTSaJqmgFkUhI7HL8rde78hkyzjof0199uH3Sb9/9HY6EpPH1sgjiUjkNJ0mS1XOIhPSgxhTZVTWzZHYlc8sP32/ru24vLigqBqmaWLfHvj+p2/4n/3lfygm0Tr10avEMyV2PuDJ0Ez9Abwlzypm9Zy6kuSgKPPUQz/StXJhhQCHtiMEhdY5z26fkWeKp+FRBodA8oCKVEWOdXIJ9f1IXRVy6DtZt3mWETxEHX+LxFQGTKYZx4nMZUjSqglBhsmgkIQ/JVJScQj4GLBWiMaLq0tseKIfR/F9NBlEJcazTcX9/SPDOPLq9Ruury+5XC2kJTS1Hz6sn/j+zevkbyael+PoThOIsyxjMZ+xXMyFxApg7UDbHpjNZtSNBOBCYkLdzFAK9rstVV2diLEsMywWM9rDgWfPbpkm8e/oJkteFGm6naYqq9Q+vwNk2u96vebi4oJD3zEeDhQhiOuwgrLM09pLo2f0e6+TcZrSM5VgKcs0wzCd0prjsBqV/uGo/lGK7e4AKGknjzENDRmE6EnJsXXSKiEePSRyTpIIrUXBJxYEojZwTsaoEyPG5MlXUc5DUKm9MRVsVfzgM08bKCGcLqNUVeL9WXBUhzmfJhcqiaplH0d0skOIwXJ9tUAngqeqZzjnWa+37Hc7nr94wWq1ou9GqqrgymS03YCeL1jO5icfvaoUw+SyLFPhQNTKEZmmVeXvp2lnWc7ox5OXapnMykGGFAnhpBmG8RR4OS/TL+v0taNfGshZs91uWSyW8jVvhQRBQxAz+Wm0dIeBZl4T4oAyCq0y8jLn2+9fYfKcvu/4zW++ouu6pGw++gQqikKU3stkW2GMwlmL0ZrVYsXj/SNNVXNxuZLPOkp12x+LXlrIa2XkTO+6jme3z5L9gPh9+ejp+gGjpA1zeSXJVpbuj2BFDfv/Ze4/viXZ0itP7HeOaXNzdVVEPJlIpAKyIAoosprd5JAj/r3kiFyLvbiaLYgCm4UCkPLpiKtdmTY7goPvuMdDN8nVTUz6TjKfiHhx/Zodsb+9f/vh8YHrG3Ew7HavOG/pxoHVes3QD4zDyHJZkSUJ2/Waw25PXhYhojySJBpIMMYym9BEDZhZPjMVKWINgxlRKpH2Xy2XYHG7yro39J1wZaqFsOKiCDtNvL5+4Le/e8ZyJIlXxMmWfsi4vtqSFxJv2e9e2c0Hrq7vgrM2ZrtZ87J/zzDt+fb7hiiOabpX2n7Nv/93/3s+//znCPryo7P7/NZqJRcp5cKeGC5FMqMN77dXOAtYdYlggHAt3bky3c0hqiSCeFN34Cw3VxtiLYyVPC8w1nF43dN1Hbdv3rBarWibDo8milLabmCRZfKOGIH6x2F4lWXn4aggAVQUMY0ySJnnGe9E4G26VgQ/72E2l4FXXdfECF5k6AeUhiROgxPbSpumFdffYpGFPVBRLZcXZmYaorL7wxFvRQyVWKTl5WXH9mbLcrmUVt5xoh96jtPA83/1XzFPk5wbvGcRvj+JLsqly2nH3d0dQ9eFdk8ZEozjxDgOVIuSJBHhocoqGZoWGdurDcMwys/L28ABMuwOe2kb947jsabpOoZxYOylOf329pbZWsapRdpvJ7zyPD49cjgcybKMppUm8NvbG7q+xXoZsI2TIYmE+WydvazX4ziy3x/IMkVZibCmlfzeSaxZrpZ0Xc/xeADE1XJ3c4e1hu3VmqfHF7TSbDdXKBWHQaPl4fGDFDPlCctVRdsICD3LlqyWG7q+p+96+h6acuL9/VdoHbNp3rBcvMPMKVW5wTu4u/2C/POU3e6VapmSZRHb67f84z/+9xgzBCfHlrppmGZLkq149+lPcSrlDA8/iwzC8ArinQ/8Pdn58S4I4sqjXHh3COmM8HuowJ6184gZO3EWDeLm9dZyvd2wWOShVTdBRzHDJOf1UyPspCg46G1grinvmcPzkmcZ3lpUJGcDYy3H44nlagVKkeUZrh+J8oKp7zDzTD8MzNbSjyPWOyIlsbnz+3cuBIjj+LI3KQiDrYQkSyWlEVIr02g5HmsRsSLNoqqCYSER/pyXeHvTdSRJJgNZPHGisQOcDgc8nsfHR2Yre4T2UsaRZimJjum77rJOrFcr4vO7imKRZ3Rdz3JZAo7TqeFU1yzXa9I88IWVDw596IdzYd/MOPUURYbzBudnPvl0zTR6mqanXGTh0r7DGqhPPY8PO5K4JMsSum5ksdRMk0HKEBKSOEer+F8MKM97/+lUk2UFw9BLsWKSSTy27XFOkWcFURACQTAbcRzRNEc8jvWm4nhoyLKMrm/I8lTWCx1RNw1JiFr/5E++CI4waZ3O8xiHZbFckWUpc3gGp0na4o1xvL4eWa+3iHA9s1yVJNmSJF7y5u4TvvjiT3iv9wzjRFPXrK+WNF1NMscs1ILD4YSznu9/+J7X5wNX12t+9rNfkmUp/TCh9YK3bz+VAXSa4p267Eci1sl7FWlZE2T4q34srYez3xkP4TmL7Mp7nLGc6iNdWzONLUPXcnN9zdX1DX/4w+/5pt5zd33Fp598Srko8Si+++EDD08vzNajdcIwW/pjQ55lDLPhu9/9jjRNuL65QisRvs/7+9mYsdlsLuxppbU0T1s5j7mQmhI2peX+/p5f/OJnLBaluBStrAHTKBFefxl4f+R8eg/zPJEVwt47s3/l3uCJkhgdEAHVMme5XNCcBoZuwjl5/631mFlKRDxW2l1HKY6L4wxIiDTUbU2eyzkSD30/EUWaapFIe20nWsDr64F5tpjJkaQZSjmqZY5SMfPs5C4X9laJ+87keSHlUEH7KIpC7tQYjB0Zp54si0kSjfcG63p2h4ZPP7vFOcX33x0Zumem0fPh/Qt2VqzWa7ZZSRQ56rolihRZWpCmBfWpIy9ihnEgD9ixOEZQVoncLcZxQquU+tSQpgXea+4/vOJdxH5/pFosKIpMEmRxymolrElrpTzH2pnVakmaJZLMaFpU0FK0lqFoksLj8wdurm9ZLjfEWckwSkIEElysMEXONDtOxx5I6LuZqbIYO6GU4+X5mevrazZLwzwf+G/+2/8jOnLU7StJbPB2xJueNFG8vO758sufst1+RpFf8+knP+Wwv2c2E19//UfSLOP29i2Hwws66fnLv/pbfnj/G+4fXvmTn/yCu7vPAgYh3KnCMyhpKLnPe+WEu+cVWhNYqA7lXBDcLWbsOR127Pc7jocDhLv9WZ/a7V5ZVj9u0v7/7+tfLfDpwGpyRmC4zjkiFWqsnSjm0momL9Ew9EF1F8u6c5YkiS4C4VncSdMU6wJDAIULgFX5wSvSJGG9XtL0NW0vPJ84ikniiOVqy+tux+F05IsvPheGXti8ZFPR4aWPgkMqulwUkyQhThKyXC7kPlycx3HEzBNPL09oHdH1LfvDQSbbgefSNA2xji5NWjZwMOZQHlLXNW3bMhtR4qdxpO8GqqoiiRNenp7ZbNby/RqLRpFEMfM4Ms4jJrDAhDGoONYtw2gw1jBOE0W1AAV930FQmbMsZRyHIKJEF/fk+esssp1dlBdRMzj1JJLgLgcbFWmSJMVa+fkNwxQEQ8LPT7YcqSKXGI18ycT3DO6OovPPEoyZGcfzz2O6LNznApZpnpmMwzoEEB+YVFp7olSzWpY4B2Y2rFcVRVESRRFdN+DMjLpSbLdbXl9fGeYZE3te9nuGSWD6zgv3SesYb43woziLHZ4kBu96lB8oipgskQXLORcuIBKNWixKTqeavpvI0ozbYsnpVBNpT5okaC2Lm3PuYsu+vrpienphMiNt15MHAc3MBo0KroQQu4gi0jTmeOrQkbgNozimTIRToWKFsuLWOSeOjbFMs1zc5d3zrFZrEcFOR6rVhqLMGaYJb7xEmKsI5y3H+iSCoJOF/9tvv6f69a9QwP6w5x/+8R95fHwkjsRZaY278BLNOQIcx1TLhUClxwnlhUVzFnOiSHM41ZcpxzSM4qpIE2YjpT1nK7nWUJQFJkzH4jgmL3OiSJiZ4zhdnsFqWTFNwsP85JNP0LHmZb8TsPUsB+i7uzuMmZjGgbvbG5q+p+/H4PQbA/NEkyZpeE4DdyyOcB7mcZYoY5aHw/6E81Jo8rJ7JU0SnPIi1Jk5CFOeOLATjTUiM5xb+pwgCc5ugXmewnsZXaJwcSyx4jgGksC+ujTkBVu4D0c/RwClgCQcPjqtvQsi3zm6e4HHishoA2/STAPYkXHqsE4KNKII7m5vkOhDjE6yEMc1PO9eSSP582TB1TzNnVzkvCWJNWmsmYdR1lytGbqOaZ6FdxRptHGUecYU+Cz6ShOnEWWR0Q8NcaQlYRwLPFpHEfM4kRiHNxa8wsyy3jdtRxac086dY4AuCBolbdeRW0sSx2RFzunUgD3zlhzeSwOYniLW6zVd19L3A7vjgXmeuH+6xznZ3JM4Js2CY0SJqB7piM1qTbmQ6ffV1TaUIxkOux1FnpFnKc478tXqwmp9u15LFNE7UPJ9dV3HfrdjWS3php7X/Y7ZWmldt7AoSxbVgrpp0IhbVWnF4XTi9XWHUor3P3wgjiNW6zW7gzRd50lKO3dohLFpppmyKBnGQYQXD68BjTHOE95x2U/O0YUoCgxT5VhUBc57muaEC2VKUmQiT5hC4eaZJIoYuk7eK+cYpgP/+Ps/EEcx280d66VF+SVZumDse1bVmsVPfkWWltTtjiTvePv2U7799rc0bU+aWNJ0iVeKfuxJ0i3bm8/QyULEuLOrKPCNlPc4pQIEXPYwwuXhYkxSH+X78z7mQjwD71HeyvNtJuZJzjbTPJMmMXe316DEYZCmckjthoHnlx1pKkURSZyQxDF9N4qDyU0UeUoaR0yDODTjJJE23boNzZdaOGbeouNImvmKFBVDGiXCZFWQJjFZnsrlXXkciihKJB6dpCJEB1cbVsRipSN0EC76YZA92RqiKEHpWERkpUEpkizBeo+3niTLyIqUrm25vrrCGcs0jBzrY3D2iqB/xn5M0yRt78NAkefkiSAcltUCjzjrbm6usfcfeP/+nqosWW/XWCPCgFx+uQwWtVboOCaKxQ3+8vrKOM6sVxseHp54en5htkawLVrE/Zf9jtuba3FkpBnGWR5/eCKJU1abNevVWjAIWrNcLikXJUmaEUcxwzgxDoNA5eeZPM1CGVQCyLn3fG6SS6DELNMkom0asiIBL+eA2UwYMzP0E2/f3UlDoY8o8iU6VvR9S7WsKMqMvq/FRdFatE55ft5zOg0syiVpugQ8TScD9jRZ88nbP+NnP/1b/umff0e13GLdkWKx4OXlmYfH9zhWjFOK8zO71x2nWoSMOK5wXjHNltF4JqvIU3HjCQJDRIRInQuiROj13oGK0NrhgnMIkf+xVgkbOAw2dTgT4qSB2JuZOZQi9EPP7c0VSZbQjT14L0y2fuL55ZWXlxeqqqAsC84lEs451usN7z/cY50hjnPa+sTVdi1uf+tCJEtEvLxcEOmYeBHRdx3poqDrWj58+MCbN2+khEZrdCTR7nmaglPWoYID3FsjTlYsZrCMk1zWu74PbtcUZy1lkVPkJYd6zzg4Vqu1QORHib+XVQmxYppm0iyhbRv2xwNRpNgdGsHRKCXt2Ao59xWlnIW05/b6+kdtpIKhKPOcPM/omoa3b95gnDz/T0+PVIsFUSLDTa/EYTiMPX1wT0VaE8UpkUMie0VEFCt2uz1xnLC9ychLxeNDj7URTfPKODr2+xlr9mw3K25u1iyXGfPc07aGthM8hNI9cSwx2GqxIFIRUZRQLdegI3b7o5g/5oGunUizgq4deHk+Mk+Wpmm5ubkGJXHDJI1DZF2Tphk+uLNXqwVpmnI8NjR1TVkWbLdXoByn+sA4jlxtbynKBcZainyBdQalIvqxpms7lNbSdq0j0rRkvS4Yhonj8cBmfUWeytnv/vEbXvbP/PGrr9jvT9zdfMZicUXbe2Y7cv/wyGef/ZSbwfC626G1lNPt9weqxYZPP/kF9anlH//xH/irv/obIp1CeM/EHXTGHilx48n/Ay9FLD60hnuJHOH5CPXHOsa+Z2hbjoc9TXPEmZm3b95wf3+PsYY0iHFRLMVhv//9H/nqm2+Zxpk/+/M/J05T7j98oCxLNtuKU9NRFOLQz5Lk430liYlUSVM3zGYizTIpdbISK+77/pJKi5OUcZqJk5R5mi8D0jzPJfYeacaupxsGjJEyOqU1LrRZgwxyPBLZl/tGFBxxButEpFtUGc5NGKsYJ7nZCS4swVkpr5omy2ymcP/WaCXvdRz2k/VqRac1ZV6itMNMjjKTyPLr84kolLQV2YLrTcTx1OAS6PsRrT3GeObJQRLhnAwYj8daxMksYxwniexrWVeyLJNiQOtYrpZ4Lw3CeSlJQ09EksU0bcvT44m+tfS9YhwcIJ/5bndkmnu+/MkdV9tr+r5jHGeOJ9EHxjmiaU8sq4o8TTB2FsHTKyZjmYeZrmvoO0OaiDM50gmHfSfJGBVzPJ348su3SFFagY484zyRZRHOO8pSUjT7/QEdIw3ydqRtT0RxwqJakRUZ/dgwmRnvoGkbyiIlzyKiSLNcVtTNIIMBp0V/6QasnVguc6yHLIlxdqY+PdF2PTe3d3z69h3ffvdAVVUsFiUOx+PLyPPjgT/96d+yWd/St/+Jw74hikbi6xVVmuJxjFPP1Lb8h7/7L2Xgrxc457m6viNWmRz/zoL6Wd4Idy856LpQzBb4s96BMgG/0DGPA1miiTVEsZQzaRURZwneC//UuP8FOPiMMXjn2R/24QJzJc6DJJbYQxDipukFYf2Ly2QMvKs0SbHKXsS9czTVWoGCz1b4YhdXWuCMOeekQTYR3lfmUh6fnnn79g43T6R5zvG459vvvuNPf/qntPUJ50RoiUOEtWnaCwdOoJxJ+K48xk54LJGOKfICM08cD/Ulcrs7HC6xUq0Uc7D9JKm4SpbLJUmS8P79e66urkgSqWb3QBXchufo8DzLYrJerVivxMkxW0Ne5NjZkMYxfugxkxwGzgUh0zTRBsCoLMyaLE+ZpsCoCXGEs/03/hFv7yzsnR11ZxjvmR9ovQcnk8skiRnHgXmeGaaPnJ9zNOPM4RNx8OzQ+8jXk8itCH4usADPomKail36PLk4x1bkIGUv8bY4lsp25w2rqsTMAqAvipI8SymLkpfXHTr8TOq6CXDNmLoWB2Xb9xcBZJrECZSlGR6NcQrlhNXh3QRmxjqJKPfjgHKW66u16CUenFUY42nb/sKzyrKcarHAWcXSw2Q8aaxZlLl8UkEI+PHUsm0ambTG4gQapxFjEqyzFGWJr2uJkYeYepqVLBYLhlEA+jqKOTUdaRqjkCnJbB1Znl0EKbkEwTyL+6Oua5ZLmQ7M48g8iWDmnDgzX1933Nxek6VBiDIzSkd8eHjA4ei6lu/ev8c6Kw1zAT4XRRFRYIfdXl+hILTXnbi7vWNSI82hZlmV5NmayUwXJ2gcJ8HN5RnH4eJWKvKcsig+lrkAwzSinETZ15s1wzhcYnfWGIah5/nlRZx+48SxPmK8YRwGVtWSU12jnCdRmnKxpK6PnA5HdByF1i2PSjRaJ/TDQKREBJPnHPCeWEMzDfg05aq6RisdJl6XJCDWWjbbDQRGmQvWubMIPg2jiFpa4awNrWCW2c4oDVGiibwctudpJM8SVpsVp/2BNEuJnWU0YygGCYL0xUQoBRneffQZ+rNrCSUiRXgmufgPhS8BIu5ZOzEPPXbumaaBtmsp8pTPP3sX3Moj2Uqcy4fjif3xgPOWYilYgH4YQvFJyqltmOaBTbjYVKVMcJXW1E3DMA7c3NwQK0sc51gzo70gE16fXpi/+FKKBKxHa0+ep4H3IdGJPM3k8w3v91l8KopcDpnGhjVzZn88oCKJipwFEx14Y2kS470jz+XwCbCoSrqupSwKrHU0zYlhGgIjVAZLRZpig3icZxlOKYo0J88yVuuKJIklIpAlxHrF73//e9I0ZbVcSpywD64VBGNhgoObwD/qupGXVxGNszzj/fv3tP14+eziJOGHD+/54osvJLKwWBDnMV999Uc8msViwWq1urjtF9WCvMho246iWDAO4sIukowyS+mHniSUW3WjlC/oKCKyCdbb4CycwlqPDK2sAPWTVBzI8yTIiDODRKtIhD4lIqsJDjXtpfDB+4Fp3uH9iqGH//W//c/49usHFsWCvh+5u/6Mr7/5Iz98/w1l5fHEQMzxVPNw/yxtlJknWxR048hiGbE79ty9lUufvH8fI4TiKAqjJ68+AsnlIbpAjP4lySJEC72IF86MTOOAm0fmsafrO4oy5+ruRsS+cSRfLXEe9ocjL6+v4lrLRZjqO0GBrJYV908vjOMgl4m2YbOqIMQ89vs9fXCpxrEOA42RgRnlY/a7I/uXvXCMz1D/NCXWGmMd3vpLmYWcoSwKKUHCe9I0CUM1K/GsYSDSEbNxJEkmQ1rrQmuhJU0Txm4WFqC34gQopXXz4fGBYZSWP/ncRUAv0oxYR4yTOB/iKKK6vgY8ZZbLPxs71qsFeSbCxO51R1EUpMFdaJ3Becc4T2GwZBiGgc12eyl+GceJoR+4vrmm73uiKOLuzR1dPwSu4MxsLH3XMUwj8SQlIt/98D27w54vPv+SarEgz3POHN79bg9KcTqeiOMkoEuEH7teLnl8uCdOYsqyYL2W9sU4zikKiUh7FOMgjN5ikVBVwvQ67I+cTifKsuTdu7d4FM9PO+IoYVEtJVVgPVkqPMc4jnl9eWGePbEuOJ4aFBnrZS5nlaHm5mbFarUiT27ZrG+Jo4jtVcr7h9/S1APOahZVwWef3XGq9ygVc//hwP39niyNWK9u+NOf/pxvv/8ayNlubrFGzpCRSmTofXZ/e3FxhmlRiBX5i8iioo8sW3HHquDGkz1nnif6tmEcO9w8YOaZq6sr0rzgq2++I8Lx13/9V1RlQaQi2rbn5eWF3W7H9fXPQEUhqqkYp4m63jFPA1Ekl6okiaXhc7GgbjqiOOJu+ybgdTp0Krvfer0ML7+0lL++vnJ3d0vbNsRpQpJK0YNzIp6f7yc6nGNBmkmjMNzCw7Kq6IeeNImpCmlwTZNUWJFa4xXMWhMpRfejSNY0D3RjG1Isci5Yrlc09UlYkjpiu1qjvCOSsQWLxYLX11e6MDCJtEZ7mOeRn/7kT8iylGkeeP/+A6DQOrpwxOMoommEQSjFTUb2hTKmXKQUpVw622Zktbzj8eGFoW95Niden0eSVJIs4zCTxClYQ9dO7KMTeblie7XldKqxzgmXrMgws6Vpa4wBAt5jvd4wjTPz7Bi6nqbuAY01LYqYcZT9+2yWiFMwtqAsM7I8geDCNcaz2azQkaeua/q+QxXlv8Ak3dxsGIaJfjjJ2oam62aSBPI0I443FFnOfi+cNmGqyedi7YRWgvrJ1hHWdvzmN/8PaZOPe/LUkiYG5QfSVHE8jfziF78gSSre3P2E/eGAUi1/+MNvWC433Fy943g44XzCl198yvsf/sDx1POLn/8FcSxIBi9RiyAofBw4+XB34rx1nZO5Z3uCM6HQ44XX12d5D718P84KzzVNYvJqy3a7JU1T9vsDX3/7LdbBYilYj6++/gbnHEVR8e0339P3HZvNWmKIsyEOvw/ei8HAzhTFAq80c98zjTN5UcrPLiBQklTc4MtqgTUWY+TusVpV9ONIFCV0gySL5D4p33cURcRJKoPuKMIhd2jrTRCqp8swPc003lvSNOf66ob9YYc3chaI44x5stSnlixPiWLPMMwkSUyeFVgjpp48y6mqJYtFxfPzU7gPjxwOJ9brLUNnUdoRRznHg7jn8To4tyLiWIXCERGP44hL63o/dAG5Yy8loMZYTqca5wxJqrBOc/dmy3K14vFpR9sYrBHhXSlo6plIRSSpZ54sxorDP44SslTYvqI3SMR1nh2b7RrwLFUkmLFRPv8VMV3f4hFMz2q5JtYz8+Qw04xTnkUpQvjNzZbZZMSJw2PJs5zj6UjT1MRJxGazCfd8w2JRkmXpZViapsKc1ZGmqlZixrEToKT0ZWhRKhUn8NAxTRPlImccPHGUSjS3yJjmkVhbTqcD1ji8TciLVXBFbvn88z8h1gl1u0dpmEyPjhS/+MUvKYs1f/d3C9J0QblYMAw9u/2O3X7P9dVblssN9/cPLFcbpnngT//0LwQ/k5bh/RNB/WxCU2HQpUKLojq/jzjGocOYEWsMx/0rV9s1s3X0XcM0DWidXPYGp2R4rvS/Wp771wt882wYJ+ENZXl+KadIUjnsaX1u8lSkWRoOmWdnSizAaf/RDfDjsoc0TZkCc+0csT27VVSImzorD5Y0v8687HaslkvKIme1XPH0/ESapPz85z9DeR+mGgTHXfs/iheDbHBnx9o0ziHy+0C5rKRWfRxZLZccDgcircnTjCiSC76z9jJVruua66srYQ55xzhlmNnIpCSKOB6PdF3HarkiThJWqxVFUQgHQiviRMDxsY6wL89MZr7EVod+4Mw0EXfkBF0nTTrrJcMwoJxEhs9i3BBaFc9R2TPXUOJvwoQ5x2SdsYHzUaOUurQKndt2f1y+cQHxBrfiOU59dgx95P35f/HriiKXyUzYoM6irwi9H6PfwtgDxhlFhFZyAT+daqKoRARZ+XebpqEfxkuDzdD39P0Qcouavh9/9OeJsU5hHdLK7B3z2IEdsPMYuEeWPMu4vboCZHNMs5RpnKnrlpfXV6yV4o4kSdCRlJpEWmHmgSKPWZQF8ziQxBFpLJvg8XikXCzQcUSuNMM8U6QZ09gxjBE6jkiyFLRw2RItTlivPEkm0SURvG0QC8WZaQOTQp7pjwLpuRBG4uMS411WFeM0hyl0xOQMKIl81qcTV1cb+kTiEvvDnmkaeXp9wTuLjuIg6MXoSGGYxaWoNLfLKjh2FDc319R1Tde21McTN1fXJLHGK8V2uWW327Far0iimHGSxl3r5SD48vpKVS7YXl3xuj/Qdx1dJy7ENEq4ub3hVNeyQQY3sLBZdugo4v3792ilWW/XvB7kYh1HMVhHmeV4Z1mUK/q2QUWKoiypW9lMiPRlTdBaLqPTNJEGhqD3TqIEeOr6FFx3ImwrK2K3dSa4OmLMMOLsjEbKKlwQpcJDJaKxEbee904aKiNIk0wYRdZilac+HciKjCSKcF4xzD3GXGSK87YCiJDoUSHOwTkXcLGXB/OV/FUQ6HVYU4d+ZBwbcBNmEsbd7e0bdrsXfvvbP/DTn34pB+EkYxhGDscjj4+PfP7FZ0RxTNeLOyHJUuauo+874kgzTgM4eX+TJOH55ZVpniiKIjBaNEmimdGUZc6cxAxdx/v371lv1qheESdRuHAFCLKXnta2qUVo1vJ8T2YmFNMHhlGER7AMRVlwOBzRWUaspEXuzIHdbrYcmxNlmTH0A3VTE0eab777BmMmGf6EfSrPcvIklVKiNCWOY4lzpRkaz7paYszEYCbe3N2ilOLl6YEsTSkXi7B+SxtqlEY4Y7BehPb1ZisOvrA2aq1ZrVbUtUTMlmtFfsp42e1I4oQ2rP9JssU4x8PTBx5fnvn88y9YLlcUWSZQai9NZ3Z2AmiPM5SXEoKqWjBNE/04Slw+cKY8Hh1HRKEFtesbYSYZGwRVjQvukfMePYziyszSTDif3jMMHXkuTWqH4540SoLgrUmThDd3b1F+w/Xmc+ZppFpGPD9/x/2HFxaLBYuyIHqzpR1eeHk5EEcrHu539L1ls8n49a9/zet+jzEjRVaxXa/wdkKpiAhp6/RhHT8Ppc5uzfPB4iOa48y2PL9foZ0eebfHvmcYaryZw1qfc7dac//4gf/0j//EL3/+M8qyIElyhsmwPxx5fn7m888/J4pjWWtGubw0TUPXynNmrcFbwzQnZFnGbv+Kx3N7eyd73TwT5xFFnpKlEjs7HY989913/OVf/WVwwoqbwhrhx1rniOKIthswRtZqlJR2TNNMrmPhQCqYJmGTpWlG2/U0Tc3VdkusFX0n73QW56g4ZhhGbCr//dfdSxjUCcdOzCQSySyynEiBtTNv725DBGgMAz3H1XYDxpKlKevtiqZpeXp6IYmlcfeMcJFBQ0c3jJRZfkGQtF1PmiV4K22fN7d3FHlGFGvSKAllOqD19jJYWq/XzPPI625HkzY8PT+jgnDb9S06FJ09Pj5eSqpmI4UYcRyzXlYURcY0TRwDUmIYB3b7PcXiBusMy9WCLEvxTtN3PWkWsahK+r7ndDpKc6/yeG9kGJEmbLYFbf+KV4arq7vQED/J74MMXaNI8fra4CzSKjxbjJ1x1rF7PrJabbha5RyPP/D8/B39eOLbb74nzzbc3XxOnEQMveF0aCjSK37+81/zcP/CbA9EsefD/fd4q3hz8xPKfMnf//3/nX/3v/rPWGRrKQwSihdnKUE8eXCuiP9YYuM5c8RUGG55LyMm6yxj39K1J9rTieNxz3a7wTnH+w/39P3AZrUg0hFJmnE4Nfzz739PfWq5utpK82/dME8Tb+7e8fD4NeM4sF1vQtonJk0S+rFlmEd0cC5DGNZ5GAcp2ZNiJ0+cCCtst9txd3fDclVh5xkbis66vmeahYXrESefMaHsyjnyogxORtnT53kijjRt0zCNA1mRkSYx8zwi5HzFqW2omyY4Hr0MeecQ/dVgnaNtailGiyVyOoYBjLWWsih4eX2hqZvLeWV7d8fUDyiV8/j0KGtuGKx7vJSz9T1ZlnFqRIjvh4nrmxvuHy2HQ42noCgj3r29o657/tM/fMU8HcAL5WAcLXgtgldkhWkWpSyqjDiW/du5mNOhZ5osUygvS+KcaRoo8hWnQyMFYni6aKLphmD8iKkWK8bRMg09BPdxFFnKRcZ2u2KYapS2KB1jrdwPx2lkUS5k/Ytj8tyRZ6nsQbOYQ/b7XXDzbem6iaenRxxyXu66me22CkMA4aYlSQJeYY1nHEbSTIOb8G5kGo/gJHlSVQXv3nyCn18pi4IkiUizJV999Ruq8prPP/0p33//Ha8ve7J8YrkU9773hnE40XYn6voJrWOSZE212PL5Fz8TTrc/b0/CYPlor/j49z8Gs1wwIcxMfU3fnpjHntmMgBRbWTPTti3LqmAYWuq6DoNFw29/93sckoKJo4QffnjPPItI8/0PPwgvuRTHZKwVxg44C+MwXBJ41rowTLGyt6fZ5U7vvBNBG7i9vQXniGKNc4r7+we221+xXG5omiYUXwgGoOs7Iq0lPaCjsIf92N0oSTs5X1tW65Kuaxgnw9X1EtQszD+rybIFfWfouj7sKzPVsmQcPvLwoggW5YKikAHvcrni6uqa0+lEni+Zp5rmNGCNLHvDYHh+2qFUHJIrM6jA95wdeXEu3jgP0xxZKnigiZlxNGgVoXVC103C/8s1Wb6gKCqc1Yz9jvv3J4oioywLZjOhlTzXaSYOuaizctYNKA8zO56fXplMSMnEmpfnV1CesswvgmSRl3TdyLFu0UqTpxF4xf54JEtK6QDwclZKsoTlqiDJCtI0wpiZaR5J04wsEyNEkVc0zZF+aPn008+wdg6sdYtSE9fXN2R5KmaFuKeoluK+dJYiW6O0FOzEUUQca6plSqQtbTMwzQYQjuZqteB0OGGtIs+XbCtxP3omNpstf/zjH6nrA2hHksFVsWKaG7766o88Pv/AclUQ6Zlv7j+w2S5Zr5fMpiNNb2mbjiRZ8Lf/7r/gZ3/6C/KsENyZDggjT+D3n99DfflfpcBZS3060TYnvJu5//AhOHDF3OOcJ4liPv3sM26ubvj7/+d/wM4TbdNQlP8LEPgcit3xSJEXjNPM8/MTbdPy6WfvSNMkiEcR19c3vLy8Mo4fL0fnuOiPWXf/osBBSQPg2Ql43rzEvTeRJTFlnuOAIssZtWKaDXXbUVUVcSoMh4enZ959+inbzVJy0B5ylbOoKuZpvjjQzs1+s7FYQMcp09zz8PRIsSiJEs2pPpEXGbv9gTiKSKKYq82Gpm1ZL1fkWQbeM4wDq+WCxWIhUY68II1idrsDx/0Ba+VQvFgsWC2XAVQuk0Hv5OIYRxH90BOnGXmakV7f8LrfMVmx6S+rJU3X4qzEAJ3viSO5LGgtUVqPCHnGTpeii3OM8uyYdO5jBBdkQpJkKfoc5/WepunknwfAf5pmSEOf/JofX5g8H913cayCG2+W9r8kDpw9acY9C5bnGI9MR8y/EP6iSIN3LPKcxaLEBg5hkec4Y2hGg3NtAO5PGOsxYdPweMZJGks9of0rZN09MBuBolvjwYsDR3k5rAyD8NHKYIueZ0u1KImimK478fzywjD0bK+26EjT9wN937Nar3l8fKbvhQM4jr1cTCONc7Db7ajrGrSiqpboTJNYEd8ildHWHY8f7kk/jy/FE1kiPBERstyl5coYKwdt75lDS3UUJ0irrjjzmloKMLTWwqkEkihmGIUXqJUijsCnUQCyStNx27VM88jz63OAl8tXmiQUhcTQcY4ky6RhNk1IopjtZgVIRXmsNbGKOOz2rJYr8jyD8K5Fcxyab6UIRFo5Y4kvHg+0Xcvnn33Gbrfj+XVH3w+Xcpu+7zk0JzbrFVW1oCxL/vjhK5SSQ3wVotBaa6rVkqyQZrgsy2malu1mK9PxAGYvi/IiTKtIE8cCmI10iAE4J1wdYy4HRYm/j5jZgBPmnY7FSblYlDRtLWuks3jlAnNRxKc8y0jjmL4fgsgOdpaIkrUG42Z0rJm9Ei5frEnTBONkqm+VCoxNi5ntZXChvJepUniv3VmYUPrigJSvH0+cwt/34rCex4GuPTKNDacQRf3lL3/Jw+MDDw/35Im8P2VV4VB8+/6eD49P8nlHMcY63j/cs16ueHp6pu1aqkVJrHRYNxR101AWJUprNpvNxSE09D2R0hR5jtII5DyOeH194fbuhjSRaGMcxZhZhFC0YuwHUIoojsQZEprTkxBXWiwWUmKjheV4Op2IY4kmRbFsxpydxMaQ5TnjPDJMHXY2OGQ9i2KNCyy2OItZ5MWl/fDu7o79fi/TY2PJEmGcFHnO23e3NHXL8/ML0zRdYsNpmkg8bxzop4lFUUq8LhNxJYojzDwzThN3d3dEZ0yFjsB7iizjzd1tePeF/3T/9Mits3z73becS6TGoROBZhz4cH9/EbCMsaj6FNxvCZHW7A97ZjMxz5pCQz8NOC/tucopIiUtrcPUy581TWSNTuU5si48dZLkZJxH5tnIsCoSd7LSUrzjrUQ8wdN1E/Qj11ca7xt+99X/jXmeef+DQKPj5BOW1R1d3+HMyNjP3N18Rn1qMfPvAMPLywP9MLFd3fHFZz/jP/7Hv+eXvxz4yec/JdIpxhM8Lz/es7gMvIB/4WoPS6uwU7wT3B5e3HrNUS5Hx314R37F4+OjRHAjMceWiwXGe/749Tfc3z/Kfpak9MNIXb9yfXXNh/sHhmFku9mgQoIhiiLqtsYRou6LxeWcNE8zZpqFURrJPirN5wNd21AuSoZemj2lZMkwGXGtGWtIAjdXvlcdRAkRKdI0YZwE6XA6HJmnkSyNMWYiKguKssA6z6mumaxhDGmBYerC+y+/R6QVQ9+HA39KnibgnMR+I83YjJxOp1ACUvLy8sLb21tu796QpDGnUyuNhaEd3RhDO8/Up5phmkjTnGbqaJpaCjyimMMPB7x3vPvkbWBVydniw4cHGZaGMq4kSdjvD/JniQVH0bRSKuJCec85jj/PE1VVkmUFD09P4oxL89CCuyDPU3bjgTTPhfOVxrx9d0Uce4wZqao1xsy87vbh0i/P1GpV4ZwR5mWa4Z3ndDpc9uhFVTCNPff3H8J5aiJNFYsqo1ovGXtDWg+MgyHSCXXdoLRlUaY4O1MWMd7WdOaEmTOKouJqu8aZnDyL8VpYuKvlUmKLPubu5lPaEV5fH1guVmTpiqpc8t3XX/Hv/v3f8vjwB16fD/zyV39DubxGqxiPiMfnd+iCf/FcBrXnYZIwYWXAZY2haw7U9YHd6wt2mpjnKVy2J5LwM/j03RuSNME6z29+/3sOx4ZIx3z55Z/w3fff0jQ1P/nJT2jajjTLKLJc9gctjeU60uRlQb8bsBayJAt8Y2k+b5uGIs+JshTnPVmaYyYT+LuKsihoQrvmMA4M4yiiRfh+p2kObndxc7jAF43i+FJqZq2Ih5vNmiiJGecJE/aZvh84NjXjPDJOY3AGy+eZZTnFopIBojtHEoXtap1BhWFV3/dMo2G73dI0wkirjyeKLL8MndMs5/e//71wiMeRN2/e8Pr6yidv33L35o7nlxeWqzV4xTBM5NlSXGqz4fHxmWmImEdFfRrZbCuyLEIpWdfLKubqZknXzhwPE2YSCH+Sp4zjzNCLMCnnp5nHp0eyNCUPjZ8gKKDDoWYYLWkag/OBXz6SZyXOajmvpTHrzZLNVUUcl0SxGBKMMYyjrGllKeUVh8MrVSXcvnk0cq4ylqpaUlULsiyjbXuyPMUYDSoiSeTeFSearm9QGm7vbphGS1N3jCNUpCSpoq5bcBHetVxdvcOYmSwteffuU8ZpYH94ZJonUJar62u+/MlPmM1Ikia8fXtN2xzY7w88Pr1yfX1HVa25v/+BarmmXEgiCw82FKCdn7mzpfwc05Uhpgt/22PMLHH3aWSeOooi5fmlvdzVrHEhqSX3sapaoJESrt1uL+efLCOOU153e5yXPajuWvR5bwyYlDNH1bgZac5STPNM048YhIertCaJJNX3+PgYUg9yjjkej7RNI82hidx3mqZmuVzz7Xff0XUd42xIkzRgkBbCqoxirDHiIDyn0bQizQM31VjMPFEtNVkRUa1ijO24e5vi5oi+UdSnM+P67HjPsVbTdp1wzmMo8oymOSEleynr9ZpxmJhnL+3vqWaxqIRDpxPM7AFLFJkwIGs4nRq0hu12LYPBcaIoZMAdx5KSwFussQyzJOW0iqgWK6LYoch4//0r9ann5bVmHDzTKGt/msNynbGqCjbXC6JI8/BwYP86MHRScHJzfcXQN6xiT5bnvO5e8d5SLnLOqDSrIHIJq2VF1w9Y54Kr0bFe5+BTsrRkHIR7maZKHOVpxmJR0XaOcezpuoEsK/DO8+HDB6yd2V6tmOeZrmtDEYoI9noYKRbSzK6jiGkexWRxOtG2DdZOJGloVVaefmgxDqa5xTlQWoaB1k4QxYxmwo0njnXKoqg47L8jViWb7S2n04R3kvBaLOHb7/6R//gP/8R+9x3v3zdobUBPLKoromRmNg1RZPnrv/o3lIsrfv3rXxNHGR6LVo6+6/jNb/6ZX/+bvyAvSlRwbEpfgkJHcpc4Hne8PD3TtTVtV4e7pOebb77He+G6v3tzy5/98hfs9rugraTB3JTxr/36Vwt8L7sd1skhua4bsZkaQ17m/PIXPyfLJFI09NMl/vljp965xOEyQUfEvd1ux+3t7cdLt/rYzgpcnGfeWWbjWFVLXnc7cQ46xzBO5FnKZnvF4Xjk6WXHqlpINCCwdYyZL26DM7/i/N84N3u+vL5KIUgiefdpGjkc9kyzJVKaPE0xk7ivpMihDXbzNYuquPwZtRZBKo4iYQpYae69u7sjSRJem4YslrbEs1NRa02Ry++xqiqiSC577Tgw6oi6azk2UmXvnSPNc5yzAVCbXC655/bhKD5HnP1FgDsfylz46/Nne453zvNMGidBnHKBV0Q4PH9swv3x5egcwzImcPuURDUv8d/gtju7C39c0iHsMXOJ665WK5JE3AVpEuOdNP4N1grDaZZL5kdIP9J0HByEcSxRSzlkip3WKS+OrHHCeWmuHIeBoT+Cnej7hjiOefP2HT/88AP/8I//yN31Fb/+1S/J0gxUzOFU8/zySpalEkmbDc3jM7N1GDvQDp0sBhqmcUBriINjrut7bu5uRUyepuD4iVE+I15VHA8HHp+f+OSTT0iThNnOpLkAu72DaTKgNf0wCMMiNFebaZaGYRVJ4948y0EqTShKYXM1dc31dsvQNhIxiWOur684nmqyKKbtWo6nPUkSs9u/CtTZnZuAFEWeSbzEzSyrMkycxH0TacX1dkPX1RRFwe3tDfMk73JVVRJLU1I/b72hbdvLgd45x2a9vkTmhmHg5vZWylOimNu7W8ZR3BZ4IEDNrZPSkIfnJ55eX/j0k0+53mylPVrBNM/UTS0/n7oVULeK0EqzuVqz2+8uMU0vYM7AuNFEUUzTzEEM9pd3QuL8wu1M0hgzC6cpSZNQPqBompo0T+iHnmHwpHEsh1ml8U7cLbM1GGeIkww7zxgvrtlxnkjSJLgAFFme4F0UmhJHcb4YE2IGCUrFeGeF8xAKM/7FRDfEMv6HXz/+dwQU7pjHkb5rOJ5eOR32TONIUUgbsXMSBbq93pBlcsn9/od7vvr6W6w1/OqXPwel+eHDB66urojSDLSmLEoWeUGkxMV95nw1bSOHhSxjGqdwSJfYZ15IOUy5qFAepmkOrbdLhk5ayJz3tG0n8dCwfZwvlLOZBbAcyRRZBd5qksA4yiCgLMsQ6ZGih3GaOLUtTdtJg7QzgXfycf85H5KTKKbIMmlLRQ5p4so5XdbAfLOh6zvu7m7xTooFfvjhg4iDsXBEu7aj7TsBWUeafpg57A+kaUaSJtR1jY407z55J+6XwO98f//Adi1w/eV6RdMLON2cROh9eHxiWS0DpiClKhe0XcsYBIs8L3l4fGJ7tWVVrbDWkOUp1hriWNM0A9ZZ8kVBmiSXZ7xIcqZxxtiZKI0usGytI3mutQwMjHeBsSrFNOM4EkWarIhF5A8cNDNNWA/KK5Q3JNlMmkwYs6dpOqrFhje3N9y/f2FRJCSxp1oW7I8PfPH5n4Ivudq+49Q84X3P/f13FMWKt3ef8e1XX/HLP/tztOr4x3/4b6gW13z201/ikUvH+V0WZ/nZ9XweKkUXuDl8jL0rwIwDbXNkf3ilbU7M4yiMroCXWFUVV5tlcGRlfPf993z7/Q9Y6/n1n/8K6ywf3r/nzds3OA9JlpEkaWC7eolGpwmraMWxrnHOkWc50zzJ3jdO6GlmsSjRcRJecEXXNLzu9nz++ScyZfby/bWhXEIH1MmZ5TnPRoo8wqobxwk2lJ51XUs/jjKACnD0ru+ZreF4qmmGFmPls3NB4EnSWHAl08Tknfi2nMOZmdHLeaksS/b7HX03hvIkGfKY4Jb//rvv2Ww30soeaZquwytFlqTMzuKVBiIWiwXHw4FxmplsLcMVJQ7XJJJ3q2kaiqLk+vqGYRrZ7XbMRtAnWZYxW8OhPmGsJU0SrpZb5mmi6zquthuU8mR5Sp6ldMNwObecTieyLCVOtPxMzCzcqKFHRTF3d9dEsbtELo0NqZGx5/buM4ah43SSBm8dRfRtRxqnlKWUzuT5gixLqE+vRLHGWn8ZQMzzhFcSb0zThLyQcqu+78kyaVz0dmK/f8HMljRZEEcZKMtm9QbtKqJIoSOF1uKY+c//N/8HrrZv+fu//w8cmxainrd37xiGkb7f0w0H/u4//JdSIBEX5OWKP/v1Fc478EHFJ0Tgg69IOM5nB9+P3iIP3s6YsaWpD+z3r1K6l2akqWKeZvqupSoL9gdhCeZZztdff8N+f6AoC6rFkn/653+m7TqWqyXf//BAW59Yr1dsVhXai8hRFAXWzhhnUBoWRYkxsn56J4PuJEnYH/YkSSosvHJBVhS4Tkot3n3yhtlYoljTjQPjWRjX4u5N0xRv7GWQbZyVvSkkjs4mhyhOULGIe9Y72r5jCvzUYegZrfB7Y6XJ0pR5HoXNWdcXfvhZ2FEoEWm0ZhpmnIWbmxs5wyvFNArfMs+yyzn6w/0D948POOtYr9dsN1usMVxdXRPHMQ/2Eefg+8fvAR+K3Qz1caatHff3B9pmBq847DvKRcyi0qy3C7ZXFSq2XN9siOI9zw8dx7pjscwp85xpshRlHpqULavlMiAwepybZSiQRaTpivvHl1BcF2GNND8nccE8+7DnzxRFQtvU3L25YVFlvL6+Mk8idBdFzuHQCOYljYAIaxRJmiOJHU8UJ8RJxhRaVNMkJi9y+k4cYsM4opSUIeRZzvFQ03UzfS9sbaUSbm9v6bqBfhwoi4Q486jIcqpfSKI1h+OOw+EFFXmqdYJ1Hd//8Ef+7j/81xDQT4+PzyyqnKvrDdb2lMUb9q8N19ef8Bf/5q/55JN3F9HuDFq5ZHAvw6kzLgJQXs71ZqZrW15enri9uWaw4uiKtGaz3qDQvL4+0XYd797cUuYZdr0CFO8/fEChWJQLTm3HbK2crZTwWucgvud5ilaKtu8gUiyXS6ZpYghnqGme0Ykh9po8S+XsZAxFnn+MkF/OZJI+sJn8nrOx4qpu23CN82FgmjH2gyTmtLSsGmMupTDVakXbd+zqI/04YIxjrA3OJTyMNUWZ0DQjZbZgntwFMQJSFimsRXHNmllKHEFTFBn7/Z5xHHh9FSTENInJIooksTB1E9dXK375yxXjOPP88ny5v3ukxXaehRW6qAqs0eiQmDk0J9lbdBKQM0p4dUmE94qumfAo5onw54lZrSuKMiXLYJp6lLa0XU2eJ7x9t6XvXqhPPR/e33P/4YnNekFRxiRdR1UtcX5GKfk1aaapFiXLqpLhKROLRU5eRqyWUiaqVcHuuUcGsQ2LaksUQ5rkjKMhTTJaOpq643RsUVoRRaIfdO1Ikow0dYexlqZuZS9JTzg8N9fXVFVFU7eMwXQyG0vXd2zSNdZaunYQo9MyI0uVoI9Q1KcjwzDQNjI4XK9X1M2B4+kFZz2b6oanx++YZhPiyTNZ3PL09A1Zarh7s+LDfc1sRn7y5afEsWe5lNLUrLDMU0Ndz/xf/s//J371y3/LJ598xm9/+1uatqapG/Zvb4jTgkjH4losU+4f3mPMRBwlHA4t8+wFyxBrtE4Zeolin5+77XaDwpAmmjSJWK+WXF9vyfLof3Rn+5/79a8W+LI0vUypojhFGuVnTk3H+/f3/Pmf/wIfYMI2bHzng885GnqOd54nMQCLhbQyOvsvBb7zrxNouqNaVBgrLIw8y1CxXLjHYaLMhV+QpTm///1XdHXDX/6bPyPSXBwXh/2RcRyJ45iqqgJbw7M/nXh5fWWxWFz4edM40nXSrrQopRgj+dGhWaZu2QUkemYFSiMvWOspyoKiWlDXNWVZUlUV+/2ePM9JtDQ/nsW3NEsZh1F+ULFsQl9+9jmDmTmcjuyPx8COsuRLaQVTeIaxv8RWzhdblJKLrvro2vvx5xqFOLA4+cylaXiaJ5yx5Hl+iSyeIdVxnF5+FlVV8fj4gFjpo2D79YFVwyXGdb4EnZ+Fc2x3DBuHNZZx7AWoPEbhvyObgdYxs7GXSV2kYnQUI6ZJ2eSyLGcKUyUArYSV45xnNh7nlDhyEnlm5NcZvJVLW1sLQ+Dzzz/n6fGJw/6Ic9LymyQJcZrwx6+/4evvf8DOE+8+/YR+mOj7XjgH08zjwwOb9Yp1VaGU4nqzph8GccAEh9k5QmtBOE0IZHycpzAN1+x2r2yvNiECKrFOY20QtsSlmGQp1oGdgy26KGVxDY1t1hg2203gfngI9uAkTSDEAZtTLReNqWcYWqZpQHUypVuE1ucI4T4VRQ5e/gzX19fsdweGYbi0HB72B96+veXqakt9anh4eLxMo5PAj6zrPjBnlPDR5pksz+n7kdnMsrBvNlSLBd4a4jRmHmcipbjZbhhnE6DHKYfjntnNAgueZ5w1tJ3EXfqh5/H5KRyA5AI4DAOb9YqyyJmnmePxQJzEqEmRFhJ1Ho0Rl5GFLEkZQ9mFlM5kFxs2CuIkwXuBh8/uYwxFh3ckiiLiLMZOYimPdMzsZqZpIMvTIC7KsMEr0HGEnxBhPric4iSiqWuiQRyW02Qu8fp5lrVof9gxzRNRkv/IRRGmvf9DbS9wBD3nplzwzuDMTNseeH594ng4kMZxcNxpjsc9eZYwjVFo60w5nRr++NVXaK1ZLNY0bceHD/fEcUxRVjw8/J48y1iWC0DKCay3pFFMZOTPlSThnR8kBhzHCX0vzhpxqTriRKDBXd9xcyMN2dYautDUeY6lg8QetJd1DKUYfB9cw/KuSIO14vrmRhyj0yTtl/PMbr9nnCfGaWbuxXEWaXFO5lkmfKPg5rTKStuhs3Lo14rn5+fLoCLPc7q2ZbVaBRRDcil3OdUnVnrNPE3cXN+gpxFrPdWypK6l0TTGc25rXK+WRAqGXhra15sVX/zkSw77A+M0Mu13eMQN/PT6ImuIh9ura7xztG3DdrsSTkqeyh41DKILOcfxdGSzXl34OEVZsjscKMsCZy1N3Qh/zThsJPEXY+fAspEW5SROw6OlgiAh0VdrHEkcQZaEuKtw3Lz9uGZba1BoiKE+ndBkxHFGHBV4m1LkKZ98UpAXCSDC4evrC+/ufs3Pfvrn/O73ntfnjqyYuL27IorgeNwxG8XX3/yG9/dfEStNnl2zffMZ5WIdRHB9OYucixrO+4Z3Z2YfZ78fIGJV2+zZ7Z85ng4kURTekZjDfkeRpxgjU/giLzgeD/zxj18TRVI29LLb8/z0RJomHE8t3373nuWiZLNagz8H/0JZlRNvRlHK3jsOI1pHFHlB24qYF8VSepFlsp7VTS37qBPoejv09OOI98FtoSPBmYyCY4iiOOzNKsQDZxHhgc12Q5KIey6N5OLbDT3H5sTsxBHonSMOzYWr5Rod4sbWyc81Dk2wZjZkiyXTOOKcFBwdD0c0ir7u2G7XGGNZrVY8vrzw4cMHxmm6cHyMMbz79BO+++47VvmSfhhoupaszLm7vRNRsmlx1nHYH0QULRegNKvNGlXXbDYSz1VaAOD70/HS5m2NiC3zOFB7w9u3t0SxxJb2+0OIP8LLywtpmjLbiZf9kSLPeX19FceWc1g7M8+GzfYKYybq+kjf9hTFQgS1D490fct6vaQoKontJgXewzw7Fgtp9J6tJc0SFmUpl1EjA06tZP1KkoRIRzinaNspnIkSFsuMqlrRNDXGasrCc3u7RGvFcrXAzSnvH/7INI8471htFty9uaEsFijtefPmU9LU8vKypx974iTnanvL4XSiPjkWSxnuiNM/lXVd1O/zthLYQx9d4Up5UPLuGDNjxgFnRoo85dzabI2ck62zJElCmka0bcw6cEOPJ1mXsrzgeDwJLiPPadpWyr0UpHFMlqT0o/BMj20tRS7zTNcJ58g6gfsrL+U/WZ4xjD1t17K9upYzo9Ykacxut+f29oZqueJwPNGH0j0PDH1PlsT0vaHMCiKtpVU8sK/7vsMrpHgvDI+8kmbUpm85NTU2NA+7gADQSjqx4jhCqwxnxXFrneNCCUDKQrT3REUURD1N33YURSFNs5FmvVqR5wXeOx4fn2j7jmqxwhhDUYg4HmtJG+x2rzjneHh6xFofzo7CUvPWk2Uxb99eczrVlGXO7e0WFTmaumaaJ47HGuNmbm8j3ry5ZR5esPbIy/MT+Jh3726kCRdLXqToCPqhwdiJRZWxrEqKIuf1dU+SerJccX21RClI0wVtM3E89HRtRxSLqFUUFeM4Uy5KIp3Q9ye6tud0akjTGO8tdhCe3zxNWOepTzK4P51q3n0Cy2XFcrkULuksZ9i2NQxDy9W1CGFmninKnCRNiRNFWZZcXVcMYyvuxGGgnwYs8mfp24Gq3JKmBTqyUiqjAEZ++7u/5/2HP7Dff+Dh4Q8kqebqpiRJLZM5oiPD3/zNX/L23Zf89E9+HpJW4tT86uuv2Ww2XF/dyb6FAuVRkboYLJq64eH+PfM0cTgcsMZQ183FAXW1WfNv//qv+O3vfot/8eKOG0eqqqQoVux2O6yVSP00G2FVq0gGnX2PjghYrZhxmmn7nnE2LMslh6MMSs7t0U03YJzi+iqTiHHABS2rxeWujNIcjieyJCNNc8auw+MYxvFf3hu1pixFRDnrA8bO4GVwm+YFaEUbise6oZd70uSxVvPSTCgNm60mSQq8V2yvFkRRzHFvw1BZylScs6EERPAMWZ6hQnR+GEQ0FP66CHzTNLFcLuh7QVkMw8w0yv1T7vKGOIlkMBsGRApF147kOSzK6nIGiuOY4/Ek6QnrUJELyRxpjr+63pDkmjiJKIqMcZSfUZ5FNM3IsBtZryVuenu7YbtZMw3weH+SAWBo0t7vdhg3UZYpq2VFmieCb3GWskx5c7fBe8/bN7dEsaKuayINXhmUMqH0z9O2DafTkZubK5arBX03hTtdwm0o4RPGZ8Lp0BGFs73wd2MWhZRbtU3HOAz0XU+1WJLnC5I4I8lS2VdnRX3asd6WqFijlKapTyyqZXDWTmRZwXqzCp/LQJYJGimOHW/efMk//L++oT4OHE87DvsjTduCUrT9kc+/eEPbHpnGDoVm99qj8Ny/f880ONJsxe3t57y8Vnz77T/grAcf8/qyY//6SNuNLJeCBTC25sPDH+n6htvbT9BqyTQIvi2KS6Q4h6CTaFbLikWZobCkiRIhNk9D0s3+fxbd/md8/asFvjiOQ95fxIdhnoh1TJzkHE4NHx6fuNluMHYK/CIDqACW5+KIgLMIFF0u08bMEH1sdgUuhz25XElpQREuYAel6MeZSEe8vB5E8R8EtjnNlseXHfdPL7y53RIlCjTkZcZkRqZxZjIzQ9/z7fc/sD+duLq6gpD9b/sO5RVmkklCmqSsVyu8c1TVgsPhEKJXKTe3V8HKKZfOcwOmUpo8T2maDuU88zgS6egifhlnZNONFUVVAALaX1bSgGq84en5KbTU5DTdST5HY5itIk1SZmNAx/TjjI4FHm2NkTY474kjOSD4MGlMU5ma4CSCaecJlSSkwVkVK0WeJShnWS8rZmtpQxwizdLg2JzpmpNwwZxF45lngcQnsUaFn3c/dLKYGYOKhJcTxRGrtdR2m1kWj2VVUpY5RS4MrCzN6MdBnAs6AhXjnGWYZoEpB86Y89Kq6cILBErKQpCLv3EK56R9VnsvQq+Grmt4fLrndNyDFzdKpMUhuigL0qRiu90QJzGnuuaPX3/FOM7cXG8pypLf/OY3rFYrqpUcoLZXVyQoEq1RWhiKVbCWt+Eg5j3M1jEbR9+25HkOISJVVUuaumG3P/Dm3VvyeQTn8dYyDNK2K63PEjFUSoNzGO/C82AlljBL4QTKMYw9ZbEQ1+BsMEoxzRN129K0vXwQ+ABulffKGiMTHWdD+2HgKylCO9mRw34PSlEWubDPQixqvz+QJum/cIk559jtRETpuoHt9oqmrun6jjhKAkOx5u7NHVVRygVXa+4/3EuLsBYbdJLKc7c77PFAP06kaUGZLUjSVBwgzQnrDatVRRTFvLy8sqy2LKsK56Tp83g6SvlB05BkKUmRSdtvcJTiYZ4mxN3y8XARhdYycamaCwdkGEfhZqQp1aIkSaNL/N2Fg7zxJlizzyxMYbDNVlhc3on4mufC61SAmSZp6vtRbP3sOJb1xRBlKbO16ETJRSMMevkRreV88VIgThgfYunOgLP0TU0aKeJII3B/G36GMgioFgVNLUJxnuX8/g9fARHLqsI6x/3DM1GUEMcJ3373Hrznk7cL4iRmmga8ccLG9ARHoHyvwxDcC4gwnZBwOBzIi4L1Zov2YMzEfn/k9voakMtU1/fi6vGCfY90JHE360BrrBcQOiFWfY6R6VhKhMZhxONpu45+Gqi7htnM2FDWkSYxOEscZyLABlbsbOWfO+uYQglBe6zZbNZopahPDUPbU5UleVbQDyNKR/zmd78LDqKC1XrN09Mjd2/uaMeeYlEwTdI6ulwtuLq6kkKPuqHre7pBGuaKosBYx7pc0NQNm+2WfhzRUUTddCJMhZhh03fYaQJv+OTTN0RJzGKxZPe6o2kavPUc65pFmdMPHXV34nA8oZSWdtZpIilyFsuK0Qo3pzEtSSSFJFleCDfQOxHsrMVpKXBxF1+YD+tFTKgdkwFSONCecRHWOeI0Y+osr8dXimLB3W2JzjzOQFosONSvHE/fE+mYzfaaOEm5vb3mq68j0qTil7/4gqeXH3h+OTAbTZ6tUFh++O4bquWSX/zyJx8dCR50JK7ki0/PnYVxf+GKBWIVzs5gLX1bU6RakAbe4ZwijZPLGrEoS2mI04okjfnuh+/RccoiyZmd4fH5mSiO8V5JZNfDZrki1pppnrHeYGaHDQLvMM4kWY4LlxmtNAZLVhS0bY2KIq6vr+W9SxKMtTw8vrCoFhjr6HYHcdopcTwnsXzPaZIQqQjjHP3YX0Df0zyjbUSsNM6PdP2IB47tkWEcGacJM4VzXGiKztIYY2WvGUcZ1MknqcXFbwQH0nYS490E0QakQGSxkMvb0I+Mwws/3H+QCLGCRVURax1YSAUez7E+st8duLm5JgtOoLbpMON8Ya8lSco8T1hvpLl0HHHKsj/uqWvhbY5mDp+TZRzH0BKo2ayvef/+nlNTU5YLplFc5M6DcQ43j6HZuKNpW9q+Z1EtKMqCYUipFiuGbiLLxb01jDPjscYHV6t1DnzE0E+cTg1JkkpR16KiHwbevXtHHLhV49ihVcI8DfTdhPMzm8360hI+jj14hbEjuVIslyVxAsMYM8w9URozuQNuHvnw/EiZr0CPDNOBaR7ZXF3x4eEPfPfNB15evifLIybTcjy98smnbzmeHjF2Zuw9SVbxt3/7v+OLL3+OUtJm6bwgEuJQOqIUoagpJGUQ11bftVgzMfY9+9dn3r59EwrqIhSG5XLJqT4xm5E3d9ds1ivmaeDm5pr7+3uGcSTPC2Zr6YaeKEoERaE06IC/iOS/ZeyMirQ0eyvPNM+Mk8E3nbS+ay3FZlax3+3QsTzH4zhyPB5lKLpeoZTiVNfc3Nzw/Py1FNIocfjP00SaivNII0VCwnmUIUaSJjR9Rz8OjJOcC1CKslzQjQOzM9Je68zFfZrGKZFSLJdyjhxGQSN4dx6U+0tqyDlx63klTND1aiV7aCwc7WmeKRcLDocTxolrVQccx9XVFXhh9z09vfDDD98zOUMcJTLEOx6QKvHAqy0Kuq5hu12S5TGv+1densVZvqgyhn7EOou3Dc51XN9s+fTzt8IkezzRdB1R5FmvStrmRBRrtpsVOspZb1YYM2LMyHq9IMsikiRic7VkCm7+OBH2ZpxEUuozO/b7ZxaLPMTZFH0/ARHbzZJquaAfWqz1gYsubLZhnIhmOX9No2HOLN3UcDrVLKsN6/Wapm1AeXSUMM8Ndd2w2V5R5Cmb9YqizJimkQ8Pj0yjoSwXbLcV1s+c6j1aeYZRYU1P14rrz9iJLFlwc6O42qZE0RVPLxO3t1csqoSyithsVkRph5stjw/f8PJ64C/+4q8BzYcPH3h6euZnf/or4kijVWhJLjN2zy+Be2d5fnllni1d08i5Eil3wzvSNOLm5poij4kiiGMRgYuAXTDW8tU3X7NcrvFq5mV/wBjHHPYOtJRZGOtQynJqpYl1u9mEM7i0rCbG0fUihDvv5BxpDNJ5Y/HIXTeKIkFhOYsxjqIspVwOeP/+A19++aW4Y73c/dM0YZ4mKVs0hnPsP8kyMIbX/Y6mbxhncefqWPHpTzL2uwHvIqqlnOdXyxVd13A4NPSdou9GtI4FN+Bk7/AO+mGkKCKc9cRpzHotpSxDPzFNlrJcEMVKRPnIsVxJAZu1wpBLs4Qizjgc9qJpWCPILCdDMbzDWcs0yLk/SwpUpC6DvGKRS8ll4BUvlxXTNJBn4no300RzaqjbDmNitFbMMxwPM8tlRpIYtIblKmW5ukarBKXF3NI0DUlSkCVyjykyiSFHgVt5d3tLFGmmWVh3Ck/dHIQfu1hhraKpG5bLFWkaMQ6DsKNni0YxDj3j2AtXe55pmp7TsaFaZpSltE5Xyw2H/Z7TqWZRlKRJwqh7+qFjHCfevv2UQpW8vL5w2nc4k/P0IMNL5T1oy2E/kuUpSZKFn8uONE24vtnivWIce5I4YZpHVqs1cVSyP+xYr7cURc5sZsax43SaSNNYynpSEdWHVtb15bpgHFsm88g339bgM4p8g51Tbq5XaG0YxhfyYoLZ8Pz6LU9Pf2Q2HeP0wnb9GWm2pukOxMk1ShV4pO05UjAPA8o7Yi2xde8sbdfw9u0tddP8/xbf/id8/asFPn8Gyiq5dM7TTJTJ5TUvcnavr9xebS8i3Xmw58JUKoqSi2g3TR9jvHKREaaYPV+SQ5zTWnH2ZVlGHqYXdX2SaKdxWCUP7SnY24cAKFc65ptvv+NquyRKYqI4oqqqEBs50HU9T8/PFzZMFEUcDocL085Ms8Sdqkqa0YLYkCRyIV+tlpeiiB/HRs92/c1GAMJaabbbLc/Pz+wP+xCNlaIAM4htvGkbaeOtZJJlneX9+/cM08gwjqzXwjGbnUVHwmMaBnHsDYPE6pSWCMn584sChw2Eo0bgGgIXV18URWRpypvbOx4eHhjnidVqJcKZczRh6nP+3qZpCoKHJY61CGlGXGha+3DgkintOZZ9/n4hNCKdm8cQgSvLEoZ+JEnS4CxwGOtCC6wNoGZhPc3GoyMf3FKxRI68Cgw6gzXCR3HuYwGBRwkjJD4LsBPjKG3EeZKBjmm7jrLISRJN2zXiPrQz//Sb3wBaLLxZyX/6x38OjEPP7373Bzzwyd2b4EySpj+0OGWcteS58JWarmMaxeUxqJ7dbk9eymR8WS1lojUPl9jLbITD1XUtyiusmVBhGuSsbBjnggSlZXN1TsCuTjlWmw1pkoTPQthtx6ahaVtGMzN3RizjWqJa6/Wa0+mEdRaLxThN5BzeWxaLReCjNIFJMZIlKc2p4fb2hnEy6Cjm+x8+0A0DdV1zc33N8Xjg3SefsDseSAOLrw2H2OWiwBmJtmehDOTMavzk00+ZxpGXJ2EBRt5RLSv6aaTpQiR+uUTrKLiRlhIXc+I6PJ5qtI6ZzEzdNqxWFR5pgU2yFD1I+6Hw9Czea8wszpQ5OOucmcCHgYbiIpQ676RYxTriWJNliUSYsYiJLDxzAQtA8OiM80Ti5dB+di7LdFQaRY2bJcJgLbOZSJKEfhwv78w5dn++CFdVRV6WwqZQ9iKsKP8RcH5xQZ9j+W5m6GsUjuNuJ7HjspALkie0XXNxX1eLirvbGzbrNdM0cQgc0rwouX94xIIwgaaRJAsCpRL3rBQtCyM1SVKM9TRth0MiXlmek8Yxrv9YruOciHDTOJIlCdZM7F53vHn7lh8+3F9ihwBd15MkEpMtchmOaK3x50O+c8HhmNCPE9ZBFEc0rQhoNjQWaqWIlAhRSYgSOysOQ+GPimDqrIiVSRIzjQOJlsh/nqXEkSaJEqpKineafcPT84tEUXVEWS4Yup5FXkoU2ApW4Xg8sVxWFKXA+o+HIzh1WSOTJJEYSaJhJwK9c44PD/fI0EzKR5IweBnGkUgpNpsNHx6eAhxaDl1REjM7xzQMUk6gFC+7HXXTfoxNuplTfZICIhXYrU6+7+VyJQfsRFw4s5EIrtbS3mzmiUjLYEdi+RKz8c4QEwUXt7CaQMq6XGrFlVPPwEzT1QLS37fMg2e92TCZE6iIKPF4Ov77//hf89/93f+Vrt/x7beOH95/y9XNhiyvadoGa+F4GPg3f/lf8Ms/+0vZy5QMIkAGCMrr4DxSH91H53OKnenaI1pZdq+vZEmMLoXXGWn5uURRRNd1wnepSq7MlvVqSd/37F53xFFMmuUcHh+xToYj0zSTpBnWCFjbGistxFEc4lZykemHMbiO5DySZxl910ucLBJIf9v29O0Ly+WCJI6lAfTNHd99/56u65mMMK6GfkAXOXV9Yr1cEsfSiJpEItAZ65iMFHzM0yyXjygiTlNej0dU4OYq50liKdZSSFmTMQbjLGqamMIwUyOoE609cRjUnsuKyrKkLApiHbEopeH5VEvLcBrOVFmehQGHgULxcP9I10k5Whzem6Hv6bseTRQSGx9jyZOdWSxLbC3C5fPzM8M44p04x9NQzuS9YC+KXFrMX/eHgI4wRInBeE992BMngk/RCk5tQz/KuqzjSNzb08g0DLx//wPX19ckaULfz5jJEUcy+JVymQMozfF4whhL2x7p+4GuGyjLPJwvS5yxdF3ParUNSY8dUmoAQ99hvWFzXeEsfPEnd0SRZhh6Xl5PTMPHwfnD4wx4YpWRWCti12Xw43l++Y6Hp+9QUc/37x9I0pjVOmezTUkzzapK+Nmf/BVdp1mvriQ5gQcM3//wFXGS8PmnX4JISOIsIriqFZxONU+P98zjyPFwkDP5JBB5gDd3t/z0T/6E/+a//e+Etdg03N1csV6t5CzctOAg0Smvu2dAM02GaTJ45Yi1IopT0BHDODFNhmpZ4ZzndXfAWk/T9iyIyIs4lFMIemS5rC4uwtnaEE2VIXYSy75+PB4ZxkH2Mi9t1DqKmMaRRXkueRNHUxxJEmjoew61uP6m0O7slWI4nfB4bIg0y34TgXVURSnRQ2Pp+5GhH0CJg0mhiJQmSSR+rhGAe5HnpFFMWZS0Q4vHsVhUKCKen59p2oY0T4l0zDSMbDYbTqcj67WsT7/97W+5e/uWYb8DJev6qXmAsJcXRUFVLVguK45HYYcXeUFRjPTDLDzhImUYLPXRsrkqmCdPXT9SLlLWm4w83wqveGjxSCKn68VpB0t2uxfWa/lZX11tiCJN19YYa5gnh3cJq3XJslpJ8cI08vbNG6JIcdiLOwkn3OhhHFiu5Weileb56ZWyLEmShOurK66urmmahnmWYbkL5WyHozCeb+7ugDWH/R4zwdDDSU0oBpyfiRMt4o7KSNOEsqjo+4k0k0KkPNPkacF28yW/6R6pjzuOpxZn3tM0HW1bk6SKL754h5kHhqHGvtYob3h6eGKeYbm4YXv9CV99NXE69lSLLa8v77m52tLWNUmakaYxSo/cP35L19Xc3n2CdRnTqLDKU2Q5pnd45Yl0xGpZURYp3k0s8pTr7Zo8E+ZammX8x3/4jzRNy+2bdxzrF4ZplBL5wI32CEJEoZitIU8TnNbsjidOdU3TtILouboSd1sUh/SdBy2Gj/PpN0szcat72Rf6qQfyy336eDwKuihNg7tNuLOzMUTaB/SHlJoN48jL645jKwN9G3jqxggP9vpOsVzKPXKePXmqiPSK+rBnHPwlbWaMYVEtAEFKbYsNSgkWZrGQQpYo6qRd18r30/eGYlHgnKRzzry5ru0Yp4nt9RodT5jZ0LcTzjvWmyXeOxbVgpvrO6rFkrbt5Lwaq3DWnlivlqRpjHPiACzLgjdvb+m6jtdXKbOKY1gvc6rVgsWi4HA4oFRKpCM+fDjy5s2C9VqY9c6OxFGCEa1W0EJ2JI9yxrHH2hkQwe90knuqdZYulDkWRYFSMctqzdAZtutlYE0btNcoNFVZsihKVARZWQQdxHA8tJRlSRRJumOaeo7Hhmq5IIoUbVuT5znX19ehjAUp7rAeazzeKYyBWUybzKNFa0eaSwx4Gi3z7ImcZ55GkqTF2oHtdoH3hvc/fMM8VLw81/Sd4f79A1dX2/D+5mRZTF6kTFMv5oxyRdM2jNPEQumAX+kxxhLHjji55hc//zMW5Yr94ZHj8XuSZIPWjv3he071I1keM88HjidPkrxId0PuKLIbtC6JlLjTr9ZLjDFkaUaWZ6xWoketVyueX57+vwtv/xO//tUC3zkmZs5xjSSRrd8YDvs9m+2Kvu/puwHh3MjJWUSRc9vqx8vn+aKb5/klOvXj1t3zv3th8P1INCqLgvZ4witpE7WBZ7NarVBxTNs2ZInm5WXH55+9uViblVLkecEfvvqa1/0eHUtU9vn5OURSNdZKW+lyuRQmXxzTdR11XePtzHK5xHt/ESCLopAp3DBQlh8B/qvlSmJ6s+HTTz8VG3/bXr7vM49OKUXbtuRZhibl9VX4McvViu7xUUDEScrcdyRZTJamNE1DFKkAb08Zp+ljJNYYyuXyIpR+bA+0lz/bj7/GaYKzQwmIkpj2dBKmU5oGgWQI+Xy5GGmtwuFcygOmaSIhCdOF6SIiGmNJYkWSxGSZtCpFcYQmJApDtFcadTymH5gmaYpDKRIlkbt5lomODhFe7wgT1ghjzy1fQUjWMcViQdO2+AC6REVEQRTrug6tJNKaJMI1SpOENIkwZmK5qjgejxhjyPOcNEn5cP8ICvJiwcurxIKW1SIAviXiMPcj51r7aRhIcmkt8l4uet46llVF27WcTieur6+Jk4QkNXhv+f67H/jskzdoFdG2A/M0gxa4dRwOMVkidvbZSYOgjkSYMmaWC7RW4B3jJBevU1MzThIrnsyZPaklSocwFeu6FmE2Eku09V7aj3BEsbD+rrdXUvAyznRdz2a1QuuYtu1p2o5vvvsOay1XV1s22w1Kw83dDc+HHWme8vD8QBLHLLdrFosFQ9vTNi273Z4oErdSFOztSkmr1zCNTEZi5MLS8eFZn5n9hHcBKG9n8qJgtzvQdQNdLw7Q7WbF8SQXuJfdK3GWYr2jGwbysqAsS/pxoq5PLIocY0biNCFLU+JYBDU7u8BQEyHNh2jdmSnlRc0Kzl15T8/Mr76XiNo8G4ydKchRCtbr1WXAAQrjLPM4EUeyJrhQcnJ2PJ0bX61xUrLhFDrEQV5e73l4/J5/86u/RulEYlLooFnIz9c7x/PLI317omlPtG17cZZaY8iSmD/781/x+PTC999+R9u04sRKEq6utjw9veCcp1wsadqe2Ti8ViF6LZfLsiguzM2+G2QdRlE3HW3fS8tqLHiEM3JBhYmviOEFbdPQDwNZmlDkKce24VZ5TscjQz+ClmIk5WVaba0V15USIHmsNUmW0vU9ddcyz4ZunEBp0iyXpmxrxYXmHVrHF9ZnUeRkWUrb99JmawGviLSmSBJ0YHl679Eoyjw8r3hiosvzMBuJ5q7Wa6w1bLYrIiXi84f7B/aHI10/XIZZTd0yjSNRkgrqwYkDoe97aTBNEpq2Zb/fUzeNAJ6jhPVqJRzaPJVpenB0ve6PxHHENM7oOGMylqHtUErRDQPRKSJOEsZpJooj0JohOBZVJCwmEbM8s52ZraWM5Peew1qqI8U0jkHwiEnihOjyjoiZVD5ffdmznbNYrwKWYSRi5PFlj0KjNTTtidNpj1aaZbXmdHoOCA2LJqcfa17332OpMe7I1988sFwuWK40mytI44JP3t7xF7/+KxbVHYkq0V4Dlnls+eNXv+VXv/gVabIIb8dZ2BNHkHeex6cH+ramaU/0XSfO3rAvpknEX/z6z7h/fGJ/2HM8nfjUvSHPMq6vr3h8fMIaR7ksONWdlD95T9sP4GTgVuQ5KnAi27Zltd1KjPtU0w0jbTeAilE6IsmSUAjmBRXqNVESY0M5wenUsCgyokgzmplTXcvZycPESBxF2HkmS1K8d4zzwDhNxCqWWK6Cum2kSMBYGYopcQQb78CG8pRw7srS5JLJVEqKbi5FaFYub2ma4K3BOYlhZ3lOVS2Jk5hx6HHOkMzCKj0eDzgcZVnQDwPr9QrvDFdXGx4en3nZ7ZgDT7Msctmj4xQTWRZVRRrcWV3XkRU5RIpu6NgdDvTjKGesNCWJUz79/DP+8Ic/iOCHD+cTKTiLk4j1omKyjrrrGENpzqndo5RiWVW87PYS7bOOOE0F9K4FaXC1ucIZy+lwYh4sOI3xM+PYs1xWVNUCpTSvuyOLqiDPM6qqoqoqcRo6T9f1wltuGpyTtXCz2fzojBnTdRNpAkobXp6f2Wy29N1I300kcc5ms6EoU4ahZ7HIiCON0hPex7w8DYHVPFAUG9JcUZYp7z65xbmZ65sKazrK7ZIsc/zTP/8d5WLLtz98z1//9X/O1faG3//h9wz9wJu3n1ImMSBFCmke07YHGRQR8/p6wsxWhpNK4ZTieGoBT7VI+ezTNxSLBLSIXDJgSCmKG3744QdAkZcFbd8zz4IncWHgHMfn5KoS8SfSwcE1yv3Ci5N7mg22qSnLAmsNSRiQpanE7NI041Q3tH1PtVoxjxNt21I3LSqSSPQ0icNzWVXkaXo5V1srjqIky9Fa0Y2SLuiGgckYGfCGQbo7r33IYDBWmixOIPLgpODreDwGp5RE6NPwzHrrcN6Gwq+EJIq4vpJnTWk5f99cXzOGssB+HKQQZJrQyopbpygkVjoM1KcTn33xOcMwUlVVuDdk5EXBZi3rUKQ10zRzfX0tCYz9K3VTs6hifvKzWxaVsMvGwbBZ3fD4cOK7b5/42S/uWK4joigFrxnHjqbdiR/aepYrEQ1Ppz1xLOgUuf/NnBnCMgiQwe16U5BEKcUiQXlFU7d4py/4oNVyQZ5noXkzIdIpj8+veC+lZuditg8ffsBYy831FShDmiTSMF+U4V4iDttpmphmwzj4MHwxmHkgzSNhKqcxbSO8sThJePvmDq0cZu5Rleb19ZEk1VTVktfXF8qyYllVeG95ev5AWeRUVU6R5yTpuSQM1qslxpxoWsdsDkSqRCtHniasKnFkwoACXnbf8eHht1hvmO2OzfozZhNjnUbrJc5rlIrQeOw8kUQykDkbL3y4+x0OB/aHE1le0nY9T6+vggHysgeeB3Vnd3Q3TAzzRPvaMo0Sy1R4NJo4Stis1nLP8mLISeJIjk7WUGY51aKkDbzDNBX8VVPXl2SLmAZ6VsuKaZg5HE+yT4XWXJQiyTK8UvTNibpv8NoT6wRrp2D2kITKPDuG3gYMSMLjhyfclOFdjHeS6pjNhMeCclxdbSjKjKurDZv1QnjqbX25nxszM5uBJI25fbMObGFPmuXc3t5RFAteXh8xdsSrjqtriclrtSJNUlarCmMN69UN+JQ0ycnyjJeXZ16eX0kSzWpdsVpKcUdeVIH9txdmesCLzWZGR/AnP/uULE84HPZsr0rSNGf/OlGWuRhe3CwO+UhjjQsNzvK+ffb5G9Is5njcXSLIRVEwDpPwTotCuIrDzN1dxXJZQVhznXUsFxX1scFbjdeKIl8IR3ueOO5rrHX03UyWCfM2SRVFkeG9Y3944c3btaA5JhvOfDLcNLOUdw2jYRhG4jhhUSa0z3t85EmTDBU58lwQPje3N4zjRJ5lPD09czicWFSJ6BsSTuL5+Zk4qeSOb6UYaVlW8l6tKsDgvST0pmkmyzMSYoxR9H0DeFSUUJWau+uMarGmbWoeHr7icPyB2Tyy3lY431BVKVrDMMhzU5Yl1rY8P3/NejWzWn1Omi7wnuAwLhiHkfVmyd/8zd/QdR37nTj6/7Vf/2qBz4TYR5ombNcrnncHaW2bLXmiUU6a+kQlt6IiGxEUtObCLjsLfGeG0ZlDp3UUnAf55d9RYTMvy1LqqAMsc7Pd0M0TTTswTDNpklCuFozjHOzC0HY9X339DVebJavVBqXgVDf80z//E4/PT9K04jzeSSvWNM+hXSulrEqqqqTre6ZZHCBq8kzziLV5OHiJa2WeZ6qqEpddiKvmeR74ForIiR12GCbZ4JMEnehLg4oo5uriplitVqw2a55fXuQAG2Clm8Dei5OEL7/4krppeN69Yl2McRNKeZIkJg1uvbN45py/tAafOYjGSGyu6zqGURq9JjPjleJwOjHPE2hxY0yzxGEuzbneBWit+CCmebg0Y0qcRAXHR0YUybQjiiK0VlK2YWbiLAuulPDMOJD4LRK/jUMsNQBfnfLMzmMnexEPvZ+Jo1ScNuHzs/NEFMcMfYO3sqhHWoQjnSQSjU0SsJbr62sen55wtePd2xuqsiCJJNLx+w+/F3dpVnI4nJgu1nKP18JCUlqabrXSwRGZ4J0EvUbj6E4NWS5CSpqlJFHEy9PzR3fDOHM8ygR1WS041SeUfoexhv3hIJyLOKVpahZFwaluqKqFiN/qY4mJs1Yq5mcY50m4XkmOd4pTfZToqBH7dRpYZ0kSkSUFxlm5+HhpYPQOIkBFIiw5a4mVpmtbynxBmsSki1IOSnnO4XikbhriJEVHEvPc7aTMYpzEhfbw+IC1lmV1g7WG5+dn5kHeWa01eS7RRttL6cS5xGC339N1HXEsl9QqtDDNkyGJIxbLJR8eH+m6Ttohg9Cq4oh+GKicxDePB2lRLJOYrCgwZuJwOjI7iedlmXDfsiJHRxKNE4eEOEVVcDTNdro4k6NYYY3HulkmiFoOl0osnDhvw2VCossKYew5J3EDraOPjjkvjdIaTRpFIWKqiLOIKYC+p9lKhMI6np7f8/z8B7755mv6sRFYdP9TaVmMxK0cp5rD8ZVqseL19UDTdEzTyDB0gKJtB5yDJIJPPn/LmzdXvOyELxUFp9X2anMpvMiyHMKAQkX6o/ii1SWm1/Y9g/IhZj9dXH1KRTTdgFNwd3Mjh6AovrAurTWgBUy8qKTRr+868iylblpxWyTSgJyl2YVPFicpBP7iPI2sVtLgJZf8gdk6eSa8xB/FYBlECq0D84Tg9JLmxD7Y9UWcgiQAdc9t3kkcsygKyqKUy6TrycoCh+fx6YnJzMRJgjWWarm87HnTZPj6j3+Uxt5pZrvZEkeaLE2Iw0AiCQ7FOI6FfeqEFXZsG6ZhxOJRccznn38uDoGuJXM2lIfMeC8Rp3K5xLiOZuiZQhNkP/RkaYZT8LLbS3mPUtIcbZxcGoE0xBMjpVDhYmuMYbYziZJIS6w1aSaOq0grUGF9RQlDyn2cvOM/TvjxXuL5gXdkzMzt7RvW64qmPVIUGUVeYMxAFK9o24GhMwzDgb43ZH8SEcUzN3cb+i5lUWVk2YxSI9VqwdPL70jjV4bxD3z93e/4z/79/5aH+/ccTwfGceQnn72jnU/EcQpaUZQpz68P5FnOYd/QdRPzPDJOA14pul5c1UkScf3mmpvbNY/Pj8RJLO7dSFNdby5xvzyUkNRtc04oM5mZ5FLy4YUliVy+u74P5RXg0fTDhKOlXMiQMIk1WZaF9mVDFMe87g7ESUJeFDSnI3mWCC8oNLIZY2VQqAsZMiUpKMFxGOtQscSpX/d7+mFgtiJ0OSUiijMWHym8Ek5hkaRgpJgiy1K6vmMIn0us5XktikzcniFhkKUFWZqSBZyKdYbFoqTIcpzz3D8+Ms1DKBkbLuzjuu6YrOH+4YHrmxth56BkyBpFUkgSyzowThPjMJBlGU3XMUwD7SglXLOzmFlc0W/uxIF8PhP2nTCLz0PN0c4QyYWzDVG0OI5ZVAuJV1spcYszcTl4YBhGoliiWPKMiyO0yHPhUypDVsQievcj9/f3xFHCOM5SODCOTNMUgPHh1yUCUxe+4nlobGXwbCPqk8POQxD4I9rmJTRhJ3Rdh/eeuo64vrmSZ8070jziTXXHOKR88/U3RFrxGDi5x3oX4r8eZ41wBh8G+oUBF9H1B8rlNR8e/nv++JWlyJYcDiJ6R0rWxjwv8PQ8PP+Btj3x9s2XOFswjwqUJklziVOqiFhZbq+3KD+TxZrloqDIMjabFWVZ8vT8yNdff8Nnn31B7BXd7iROeK0kYq8kGmudEUh/mrJ+c8M4WQ6nmvpUs726oh964lQ42D4MRcEH5w0Xrq7WmqEfWS7XdHNLlMQ8PD6yXC1DoieW+8s8o5VGRYIxmWZDVuQ4bXnZvdIPHc46LDITSuJzhM7IPjmLCJEoHYYfljgSnl4zDHjrSJQwuO/ubgDEUVik1G1N23cMw0BVlkzzhMajo+xiehCHsgjB0zSho5zVpsLOlq+/+ZooitgfZ662W7abK56fX1jECw7HI9aIa0cpTRwJl0wA8YkkXMpcXJOJI81EMOi6iSyN+XD/gfv3A9vNWoaYk2NWLUWREydw92aLNY5xGri+Fsde3Yi71NiZPCto215QR5ncp8xc8+VPfhL2iZi+P1JkJVVZCNeKCG8NVSnr7DAY6mYQR/HsKMuSLJVo793dDc/PT3z66R13dzeCDXGOJMkFWRBFeCzDOASub0QcZ0yjJVIKrVPiKA2Ig4w8N6RpTtv2vLzsgZHPPrvFGMPT/XecDpp5SqnrhtfXHW/evUE3hObqFX3fMI4T1WJD33eMc08UJ+R5yTjKmazIpLn1V7/4OXjoh2fG2VAtUg6H7zmdnkjSmLaN8H5mtgpPRJr8FI0IGlEcs1wKmiZLEjbrNT98/553b98wz3MwghjyQvP08iqOr0vcnAsbcjYzs5lIw3o7G4fjY9GHmF/yIBwKp7ssS8wsa9siOCmVQtb2wwGPvqTlirIUzEqecmo6tttrFANJJ8PE85k3jSIUHmMndvudRIeNCTF5cR2a2XI6TIyj5/VBePGnUx2wUSOLcs1sO3xoZhbXaCOxziThw4d7skTzpz/7jGnuOR6PbLdXgc9n8BjSTAQ7RYKzmnfvPqVtG9brirxcgp5x3ghLWcswYbEQ9l/fOZ4fH4l0FthtHQLfjinyGK8MsxlJXcz/m7n/WpJkWbM0sU+JUafBMnPvw6uqe6q7MT0XeHZc4Q0gAsGgW6an2GGbJAnizNyoMlz8Gr4LFxCB4MwFQqRE9qnMjPBwN1NTXf9a3xqGket1YLfbE1KgKAvaVcu17xhGx1//+pnFicAVQsfXLyP73Q43K17GjmbVs99LCcqHD/cYU6BtIWf2ZcppvMB+v2McJ+ZlgmTwLhECrFYNzgWqqpFkj04c3jqsjgSvaJs9VVVwPL0wTgM+Rs7dlbZdsd3coXJje/BwOV/wfua77x759PEeYxV9kHXKUOGWyDQJwikmcTMHl+h7T3cZKEtL87CnrAzagNIJYxJPT/f8/NNnpnlitWr48PQRrQLLElGmYpwO9NdrbrG2lKUWx15VUBaWqmrY6C2X7srhcGScxPF4PJ758OFjHqwkVu2e3e6JaXJchwvX4Y2QOqZF4Q+d/L3kSUmzWrU4l+j7jnmeobb0wyub9T0hNHSdQ6cNw1jJIAhYr1Z8+fJFMEHvcde/4etvj+hm58q7UFTXNdqJ46C0tUw/YsKYgsJWt+bU8t+VcyzLcuPxvP/3e/HClNsOgdv0UtqxAl3XoZRM16ZpQluXFyXZsA7jQFXZDPEV9l9ZNyTgX/71z/zhD7/n8+fP/OnPf2Jxyy26E0O6RY+aSlwcsjDYfAG1HA4H9vs99a4kpZBjVhPOee7u5PW+i3zX65X1en1r63xvDZ4XmdaWRUlRFSxBBDdp6RGH1el45NOHj7y+vOBTZF4W7u/v88QLNmtRec+XC2cfCKRbY22ZSw2WZaGwJdG/u/QU1kqsCBK73ZMUFpzeoymy0TXWsqt2DONwW/RBRNj3MpD3ab7JhQ7ep1vEWqGIEWIM3N3dcb12OYaomed0K1bR+pcNV4gRhcH7gHNyiP+FqZeygCVtvmI6jJRFkw+08nqW5PPFmflPVSEPBO8pSyMirJBvc8vPSFOt+Q9//wf29/d8e31lXhzX7spus2K32zJNc2YJWWJI9MNMyuDS97hXmwsTjLVcuwt122Cspe8HEnDuOuq6RTtp3Ysh4FOkfndmJEvIzc59P2CNEWFjnrn0V4ZpJKEJapH30IlDL8Z4i/BqJa4QbQzDJAwYgaxrTDFhlESb3stSVGblNHVFUUhU9Tr0crDL97dCooiFVQK2TQltDOvVRly5SaKqiYTPDbkSsaqByGa3oTByuPm3P/2J17eDxDLLCpcLU6Z5ZrvZohEOxfl8pmpqmrph9jOXruN0PsmGWCnuHh54fXvFBc+0TMQgTrrl5KjqkiVEcMLDmOblJkqcuytVYZmmGWUNi/c5Qq7QtkC7gDZAFHt50zbyu2VXcFnKYUwnicsYbbJTSq7joCTqafIBPiXZvIYoh0KXP/u6qeQwmCIxSO16WRY5jpPQQEoBF+XvWKvzBDOSiLj3+EoOFvbDM/+3//v/hRgihamYx8Tl+JW31zOrdQsmcJ0OfPn6F9arBzarj8yTODOl6ERYKCBr82ZdE/1MWxe0jZSr7HdbfFj44x//REqw3mx4O57EBRoTEeEMahQ+RtI04eeZTx8eqZsV5/NFmBvtiq7v5bAbxDmXosDuU5Sof1nU+CgCc2WkJXxxntfXA4+5IKMsDTFa1u0qRycC3rsbo9RYwzjPXPsr07LgfAQth0IlFhBCiDlaCqUtqIpC2FLR49wi1wmaqrDUVYW1ZcYFzKxqWXt3ux1FnkYvLnF3JwcZH4IwmOaZoixvz4Pz5UgIgde3Vx7vHxiGgf1mIxuN7IB+b3G/LCKKtuuWZVwYppFuGIQv6EVcIAamZeGaW6mHYaAoBFHgU2SZHKrrgCQxTSWx6Lu7+9u6qJQMUN5bzAHhvUUvSICQ3cJlASBChJZmaBecRK+NkWdtCCzeUxhxQipJ6WDLUgp8cmOtWxZS0pBkEFPYGu8Sh7cjl8uJu7sdMWqGYWaz3tA2D0z9mhNXjseOezQ//PADw3DF2CTiXmlQRA6vB1RSjKOjKieMaVmC5//x3/6vTP3IdrPj5duR128/MfTSFpuUZ/IXfvz5j1RVy93u17hZmheLosA7j8g3gboq2O/WuHlk1ZTsti2rVct2uyVGzz/90z8Dis12z7fXN2nXTP8+qi+Cy7wsBO/4+PSAKUpOxxPdtWe32XLte2wpYlzKXECSJiafh6HlrdBkcQFrS4HJXwfeXo95cGfwPtI2rTBuVytcFpJsVdEWBdf+yuvxIC6nJMUppixRKpF8xCRYbm5uGRI2deZSItHUmCKFtlJg1LYMw4hSOjNcI9M0Cfi/KinLgnHMaYTuKq87BHFI5WGENlqi8zHyl7/+ld/9/vfM08xmJbzPwlrmZWa4LqCUXPN5GFo2FVNc6E89/SQMwZh/L2st356fOZ5OOU3gZahQFlgnMbBxHGWwleTpZ/MgQSdB0tz2FkZhteUXHqujtpamrCXZEZXczyaQVEGIkct54Hi4oFLBql1jbBR3eGF5fv7KH/7u96zXDd31InHL9ZqmXhGyo0uG2fl+pGKeE0oZ5slROo3JLFvnAiQPeIzp0Cby+LChu3b42dP3jhhFDNnvd9w/3HHpXnNcSkSM3f6eGD2Xc8d6tcZWmhA7joefQNUYrbCm4PH+DreMODdSFRteDn/h65f/gfMTIVx4uPsdy2KQ9up7YTcq4UHP+XNTKVBZSRqkKCLL4XCSvZ/W4nLOjjSt9W1IUBQWKBhyg/EPn7/KngxIPlAOoxgFkhTqBO/zoESeN0VVZqeRNKlbI4VSzjmqssAtHrfM+V4TTIy05CaqSpIypijwIfL69sKlvxJTuH1GKansnJZBtTiotAwJYwRtsIU8B98jy8ZotusNd3d7mqbi+eWZh/sHTsdT3mP7233k3SK85BiywyhgjOXl7UDVtKQ8/D9fOuZpgpS4XDu+//4Td/f3HN4OvL695tZLI2zUwjIvI5fziFtCdgwbdBIEQ1VVvL0dmCfF4XBFa7B2wTvFMibS1vLty5Vp7vn7//BEDCPOL+y3G1arGmvX+OCY5kGKnKKIB0M/3FjlwnA0NI0wMDebNUZb4VT2IzpZ/AKb9SPLMtOdz8QYeD2eMIVmu9vw4WkjQ+7kIcLpeGK7afnNbz5S15ZxjMyToygMyzzinPCv5sULkiNJOu14HFmvalYrcTnXdY02io+fPuBdpLtcUUqzv7uTGKmy3O0eeH3+hltifpZGVHQ83O2Zxo6mKikrKcN5fTtS1w1Ns8upsDELzhOP9ys263tS0ry9feZ4+oGYepLag+5pWkkKjIP8/toWzIunKhq269+QkqawDSkqxmHC+8CvvvuOsqzkjOUlsr/4IIiGxRGTDOW0UrlEqhD2Yd/LOV9bCBLIl6I2WeeEHRlw84xShvWqySaBgC1KeR5Zm9NCBUXeSxVFgfOBxgqaZ3JLZpGNYpqJImrNixg7+nHEFoZukH1djJEUBfORUuZhRjgfA8INF+SEFGMkFhVYrT2bXckyOrbbHUpZ3OJlP+M8SmnqTZVNOb8kZ8axpygsCYUxisPxheATiob7+yeAnC6K1CvJBazXK1KEvr/i/Mh2u6OqazbbgsvlhJvlnitKCGHK/y3GhB9//JEY5Mw7jhPGShFW33tirPin/+0bITra1rBMM8sSGftIXST++PyCMZ5/+I9PPD8fqJuSzSpgi+IWi40xcLlcWK1auq6/Jf60Fjd2XdfozCe9XnuWacHoiof7J7pTz8P9B/7ln//M+XJit1/hfWKcFrzXzGPkcn6lKBXGyvuldaSuNdM8Mo4DttCUVZF5mRPei1HHmgI3LiiQwbkfsUW8MSvR4mB8eLzj4eGey/lKWRaURSmMZx+p6xI3R6Zxpm4qqrqg3ZQYFQhRhu4fPnzI2oWTIZ0yfPr4HVoZ3l7fmGfHDz/+iLGap8fvcsN9y7XvuXRH0J7FDSxZl9K5wIsI3rmM1PBoq0B5Qhy4dF+pKsWqfkBrSb5IuekvovjiAs+v3/6/VOH+P3/9H8bgc87JxNhatEpEm1tkWnGirddrusv1F24UEutomobL5XL73yhwWfS5nM8oK2yD96jouzhW1zXTNOUHgrQbjYvDv2f9gzjwusuFu7t7dvs94ziKPT063g6v/Msf/wi5sa4sy5t4lFSktAWqKHl8eGCZZu7u7vDJ59aoC9ZYqqK4OXuWZZZD8F4YR++bx3exoq5r7u/v6bqOaZ65dh3zNLNeb4WZtkR89LcI0w8//HCzrb8+v7DdCXh3GAZpcfPS5jhPEw8Pj4zzhNbSetpPgxx2g4gXKUnb8RxnYswFJ/k9hOzYy3Hb9/hzyjEksZfK9CRGibD5LELJxiJmUY6bo+a9+hwUMfq8wR8py7zIa8XihGEmccFE8FGgpVqsxNM036KsSpksLupsa/XZGWVyi6k4IeT0JC6RzHfGe8/9boU1hvPlSgKMLSBF2WgaI7GgumG9WlGX8hDfbdYYkxs065I//elPNG3DsgRO5yshxduUK4aUpzABtzhOp5NsPJXm3F2ze6XEucR1PPH09EAtagbWFGw3G+bFUZQFXT8wz47d7o55GTNLS7gyVVXhgljm22bDOM2s6waFRKp9iFirSFpxeDvRDxOLd+KmQWVo+5w3mHJYK4tS7MqrFRDpB2GSCV9JpuRocjw+oLQI8U0t8QJxu3raZkVMic9fvmTnSM0yL9zf77lerzw9PfHTjz8zTCNlUTGOE7u7HaUpsMbQroRXVpUlQxZ/fAycujPjMosjK2/OP3z4yHa/58eff0Yb4Ux6H24ORluVqKKkn2aWXOYwzxNN5kqcr6OUnxSFTEreAdkJVG7PtEpTtCveuZ+2lMl9meOkQHaw6uxEyizEmOTAkt06WhfEzNkqbCGbJmvl59eVlNokEZdSTCzBMS/zbfgBirqR9zlGaQd3LuCjyq3Q5OHCBR8m2mZLCAXfffcbxqmnHw4UlWceO3788k+cL1/oujXL3e9omw9cupH1+p4UirypVJRWoVNCpUhTGjarCqUkHrCMjm/Pz3z49B0hwfHc4aO476IPlLa4YQL6YaRqW05dz49fvjFN8sAmIw8U/OLWVjDPk0QAqhJlxRVsjWKee8qiwliLmydOp3MG+EqbsrRTy6Q6kTC2QGlDNwwcjm+y4UMTM+usakr8MqO0lthTFDHOKgW2wFhxSS7LjAaqohDwsNUMw0TTFByPC5euQ6vEet1idIkyCuW5oSimeZGWW+9YbzbUdc3nL18wVnE8nfjw+ITRVmLJUQT363CVA2VdM46yZu4f9tSNOGOvxzdxGmlp2lRJnptfvnwRxyhRwMzGULcN07xwvpxwwb0vpqhcvCRsU3HTKyXDG61VhprPWC0Ckojqkdk7dKFISQQqlVIW+6EoK1SSgUCKyGbOaBG2csR+XmRNVzESorA+Uz5UlFUpjedKMU0LaZS18XA483C/YrXSfP753+i7mn6YGcYT/bDi97/7HSjH2+GZsrAiMKuC+7sPjMMshws7U1QG7050l4WybJnmiU8ffgUJ+uGILTw+Dfz09V84HH8S0cn3bFffc+kG1pt7UrCAlgINo4jOYYG6tNSFQWV+zzAOvB2OfPrue8bFcTh3hJDASMtmYQyFlkPOMI6UVcvr8cyl63AxZtZnKZS0BNHLGqStYRoHcV2XlXw/ZL3pz2eJYGXX+uHwxn6/Z3HCB5pnwTvUbYWxWlohbc3b6Y3n1zcSMR/sIKIgBKKSspTo5fkenQxx7Lq6OeaXRSKubVWzXa15eLzn9fWV9XrNMIzZ4ZTh6G6G6EmpRimNn7Mze5pAaWxRUTUNWmkuXUff9ygNH56e2O22fB4+Y0vL6fVM13fZFSUb67KWSI6tpKSsqMq8LokNNS6BZZnQKmVHYcHL+YTSMuxUKEG89APr1UpKYmJis27FyTe8pzNEEG/rhhjEkaUAYzVxkX2Sc56qaqjrhnkZGIaOaXacuitt0/Lw8DE/k0aMVqSo6LuOx8c9d/uGzbZltTLEAFpb5nkgZpZof5UysrJYEcPMPM6s1404G9oSraQdVIbSNS8vL7y9vrG/X2WRUvP68kLfa5RO9Nczhf01hYWmLNnf74hxobt29MN76qQUNiTCfev6E4VZ83T/G/7LP/7PpKT4cvoj3fUrtnxkGH6i675QVgXzrDmdPSmWxFhS1yWaFVoXtG3FarWmMAWFLQS0vjj2+z3Hw4lhlFKLw/FIP44IVkZngauSpMjy3myrOPfX7PzWxKSwpWa/27Nqaw6Hw20dKsqSZZkxRtHUEn89ns5iVMioAVsUlGXFer3i2l95enhkHGfe+oM4eMtS9htFgUqJYbkyjoNE55WwAP0iCA+tlbBi8/5aoSjLSvZRVYWbZZ+mtXArY4iURcE4DAzDlf12dxt8qpRYrxqaumbdNjRtK+6o1YphGFiWwOImnFtYb7ZcLmfOlzMkeHp8BBK2EDPG4Xjgy7fPeC8DmaqqWLVrUImiVIzDSH91bPc1z89f0VpzOPVcO9nD/fTXFzZ7xcPDmuNxwC+J6zWyLK+EEKhbzdurFKd8993TbZhzPncZPaG5nC+s12uev73eznLvDarvqKJxlAHuMnv2u3s264rufGXV7vnv/+1fqOuCurFyHlwi2lR8+3qiqQsSjrKyDFdJRKxWIorOLBgjw5Lz+ZjLgMAWNdFL6kghw1utR4pCc3e/xfmRlBxNu2K7a/n29Y0QPaWpaZqah4ctbgpcrmPGOE0UpaKuCwoL07Tw3aePVJXFFg2FsRyORxYXuPYjx9Mbnz59zzwvNE3BbveEtg3X65VhPLG4E0n1HM+CN7BWrA9NU4thZJlZ/MLp/DNl0bLbtsQUuV4HVm15a4a9u7vnX//1X3l8+sgf//IDRVnTjzPXPFRRYrilKC373eZ2Pr/2g5TN8M6GlOFJ27aSWgpeOJXWcu6v2fzi0CiOhyN3uw1VIRibxUcpzFASizZlyeXtRdqqQ2Dxkaf7B5KWPbbOOLB5meiHwHW43lJp8I4L8zkRo/CLRtvAe1GHUsLzq6qCaQgsS8AtnpSuKAQJJUEoQUq17SNKKaZx5nQ+Y4xlvWqxVsww+/2GwlZE77IxZsJYJaVPU89WN2IGOh5kqJqZxa8vb9R1Q9kUPDZrDm8nLueLDO+VnAOXZaSqK3a7NX/+0zObzZrrtcP5meNh4HSaAU0Ikfsny8PjGpLmeBxQTDx/O2Otpm01fT+z2dZURUV3nTDjknE/hQii2aka44xzMuBSSko2lNJ89+n7rN90rNoN3WnA0OR495G7/ZYYHCmJc/Px4ZHntyPL5LFljdZR3MDjgNFSYHN4u2AL+NWvPhEQQbVpGtp2wzJ7YtQYPQAF3kFZG37/9x94fNxjbMT5MScbN1yvp/y5R5qmJQRBxg19ZJk80+gxVlHXJeiFsR9wbqZta47HE/O0sNuKOJ1Q9F1Pd7kwDAPrdcuHjx9o6hrnEss8c+0uKF0yzh3X4SJFSTY75G2J1nU2tZXEpCjQKCVIpmU+QjIoGrbrO4pKTGVKKbruyrzMPD195J//5Y98+fb/Bwy+xS+8HQ/S5JYMm1XJ4jzeK6boOF8vjJkvlJADa1lZyqLCx4RPkLRBF7JAay1AT58iVdugbYEtLO4qYtApQ3ptZlO8c4689xilMWjWTSONaMaw323orxceHp8YhyvDeBULan5Yltk5GFygNAL1rJuauq6oypL9ds0lKqqiYNfu+Ld/+zf8MvPw9ECZoe7WCty5rhtiTDeHolJKmkZPJ/7hH/6Bt7c3vn77Rj9MWfCq+Pz8le+++47VasVqJRn28+VCSon7+3uB648jTx8+EEKkPp5ZrVp+/OlHtpuNTDOVRAXqVYtK4piA3PaZI4fzPEl7W55ohBAoypIY1E1wBSjy666qgnEcRAhLMsWTlF6QyGopE3yFur3/cmMK885lDpc2YAsNKh8mtWTZQ0j0ORqTkgJtWZYc8VUylUIbFBofIilplIqMowDypUlTXFRzjjSiVD5gRrGVE1m3NQakWVaL4Kdzq1FC1PbCaJ4e77Ba0dYl66Zku27YblbyXv/4E68vB37/hz8wzleG3IiGAh/F2SB8JMd1dFRVyaqq6fqBw0HcapvVe8uZCDnvDdApRlwIAhxWckAbp4lmteZ69YSQ+Omnz9zf77FWHFyrlUyENptSSgiWBWMs7WrNte84ff3COE2EBCEqbFlk2zxoq/MDXMocyBPlcRaX5jxPkKQsYr2WCneV+QzWGLx37PZ7qkKm133fs9ltmadFPncfpLkX4UqVdSUH3rc3jDXc7ff0/cD93b04F9R7865Ej4SLI46G0+VM119ZgjgE5bMquFw7+mFAWWmeRGuKyjAvM/O8kLSIuBLbFCfd/cOeGKSt1hY2lz7IJEmuwShrAuJElSZGy+RE5DFZBFnmWfhipiApcC7/jJRu76XSIvhrbeS/J49W4ohsVq1gInXC+QUNN76JC+HG7vMhZIZZ5DqOEh/N3EgfAj4kpkkimAn5ect8oi7X/J/+0/9CU+04n79yvPwLST1gykR//co4vKKYuFwCMV44nwfK6vc05UdikqjSu6BYZnbGPI9s1iumZaTrs7gN/Pz1C3MQl1hyUjTR1DXTPIo4qTRdP+HcLAKWUhRahjr3+10+eEiMzxYlLjfl1U2ZN16Roiq4vJyJtTCE2lVDP1y5v79Ha8PpdJYDUV1hVKKshc1yOJ15Pb7dGl6n2d02gsq7PDCIKC0TdpPXzJgCycufFdrSNjUfHj9gjeH18Mr9/QOH4wmlEkrLQS+EQGAhlWUuLBCmyKXrqJtaHCPB0/fiZhrGnu+++8B6u+Lb1+ccz3PSRpmZfa6X592yzIyjNH4uTtY5bS1JRVRIuc1Rij3mZSE4d3PAS+xfc7e7k8OT1rSbFd4H5pSbbpXweIw1qOzwjlFcMt4Jk09rQ23kdb1zL1FKihNSIvoAxjA7J7FyrTCmwDnP4mXCXlU1yss1ME2TTPSLgqQ8ZebyFlpLhERXvL2dOB07qtqiiBDETXZ4+5my2KKipe96tA40dcF+u+Hufk/fC/C7rmsUBUYrjLYQI9PQoZihVfzH//J/Zrv+yDR0XPs/E2mwpeZy/oGhf2a12tBfLcSerhuo6t9R2g+kJAJUk+PIZVlT2oJp7Lnb76WNOHMR52XheO7kmaTBLxNVIQUSyySNqAnFtZ9wfslDIyiNYb1Zs6or2e+kiFHkZrtIWRhWK3HIn6aOorSkFBjGAa2EcxNTpKrEDXo6dXlvJWgOY0vasqIfZ96OB9DiGRYuaBYYs9OVGN8L1rHvAwpjmOcps1ETVhvqQqK33flCVZTCBO6uGC17iaauqQpx4rYZq7Is8vNOlwvrzZrT+czxdMHNM7vdXkSQwtCuVnx9/sbz67PsH8uSopKCkmGeuPSdDFzLim7s4Zx5bM6JEKoS0Wr2u20eCEihVgieqhA3jvMLS4Sowu21yzo+kSKs2gZIeL9IY2BY3pP9sqt9H4zGxKrd8PZ64o//+m/c3e1AJYbBE5xm1vDTj9+o64IQnbiQw0zdGO4f1rSrEh8mUJ5hmAhBDqXzFLBWAO8hROa5vzGO6rpku2uxRpGQ1s6nD/d8/fxK8FI48fDwSIwjpd1QFpEv52emycvzzEBdatqmwmoom4bNdsPxeOTbtxf2+3ueX15Bx1wMAw/3Fev1PUqXnN6+cDj+hevwBcwr3k+0bYGxBdf+RAheRPUpYs4l97u/AywxKebFM4wTT+ae//pf/yt9Pwi3tiw5ny8YUzJOTobm5HXCGLL6SXABZQzbzZZ+kHhYTOIuapsWawzj0MvgrSioqprL5QTAfrfOGBVNVZacrtcMeU83VIRSItiWRck8zJTW4oIw2lxIFJVFGcXxdCTqJM2vWsrmlNZStGZ/4fXZsiAie7/tek2MgWtGDKHEHbzZbimrkq7ruL+7o6olut/1vfy1d4QQMPYDdS4ImyYZWsmzpmdxjnEaZN91d8/j4yN9f+X18IqLkWkYiCkwLTMhBfwcCCqx+IWiUPz290/86z9/wXtJIIxzZJkil7dAjB11q9lvG9q2ZLu55+X5jFtmpsFji4Km0rTVmu3HR5SKHA8iqNd1ecM0WVuilKEsK1KCay9stnGc2Gw27LZ7tCnph4m22XA4XdisNjiXQHk+PD7m5k0xWBRVw+l8pdAtzi00bY13jnma2O43HI9nlJ759N1d/oyFgwYmJ4ciR3dhu9kClhB7Pn2/4eFxg9ILJiQ+fXpitW4YBin0KkuJR0/TyOVi8EtiWWTov92taNtGhK4YKEpxyXvvmGdPApq2wZqSw+GId5Ef/voTRVXzqdhii4p5XpjHha5/w8WeeT7hQ53xLpLGMUr42c6JGyyxMIwHlGqoi0TRbHLqKubCv0hZVoyznBN8CEyLu50RSYnoHKauAClfHMeBYRoEOYNCaRGvU0ycujPXvsMAbnEkpYkkQhAjilEaq6GtK6pcBObSjAoijKE14zQzzAuTc2ilOF2vFGVFU1YkBcPYs/iFeRYHugsL3sn7GoJcc0orDGJy0EYxjeFW/iVioIis8yxcYaOlUE/WATGvoMQg9Kd//QE3zzStxU0ztjU5Ji5OuS9fXtluNryXU3x7/szT0wNNU7MELyU5JJSy+WxtqasGrYRZHoJjXAZcjLjgWK03VJUhRM/xcMQsC/u7O777Xp4FqMBq1aBVRXd6xrlE0yo+Pm1JSYoxisJy/7Dm7bWnrgq++27D/X2D8zMgzP13FipJ0bY1ZVnx5ctXKeJxgVW7ZrNd35yR4zgy5/2zUdIMHdyR/XbPaiu4qQ8f77mOF1KSJNCff/iZFDWV1vl6hKIwzNNICJrddpMb1I3ErIMMjsdhztxOS1U3PD8fOZ9kPxfSgtKeqi6oVMPxcOba9cSgmGdP101oKlarRpilKVJVBVpFyrIBpfBxoa0fsNbQdVeqsuH1+QBoykIYfPM0MYwDZWXZ7dasVrUkfMqKqtSM05n1ZsviO0J02eDmKQubP2+Y55m2LXMaU4oFVUoUVqFYcP5KVShicMz5bD4M4+1s99PnL/KZ/41ff7PAd732bDd7UTvb1S2C2fcLbdvQ9z1//etf+c//+T/dVPSylINk8C67wnSePi03jsR7s2RpC67dlXkWV0tKic12S99deW99nedZ3DNKs9ls6K5XqrISBksvLZt//ssfmRdxGYbMhVm3LYWSyVhhLMaIBdwaTdtIBXvXHfjw8RFrK94OB4lZbTbSjgq3SLE0xkzMs+P+/p734ophGLi7uwNkE/jp4yfO3ZXzOYPPF2kZlSbemr/+/BOn45E//O73bDKbUCbyB7Q2TNOU3yOZwu12IpjUdSPOEW1ubDytTc77C48l5pgNRGwhdfTRmAxKTbmWXCYi0yg11+MoDT/GmBsfUeKd6dbuKZEhbhP9oigz081S1eXtd+hzmcg4jihts0U4ZmFPphHvYkdRFPLgcRHvk4gYuSEX5PeTw/IIiChibcE8T5SFZdNWPOwy62IaMyOoont3j2qN0eLg0wr66wX74Z4YHJrAPPVo/cA0TZyOp+wslSr6YRJIfyJR5FhbVZQsCvyyMMyO58NfZaoQJDLRNiuZcKUglty6wkdp6DNa4peLdzmWC0Pf5clszfly5sOHR+FNOkcM0hJYN43UbUeZNB7OJ14PbzkyDD4kYlI4L+JIyu+TsBc8uqywVY1SKXMzFxHI12v2uzvhUgwDVVkzT5NsvqwICSSJS7+3gFpruVyleSihWK0lVvTXv/5VXB9a8+tf/4Z5nGQCdjjmdlJxjq42G8qypKoqdvsdLizES2SeHcqa23WiMJymM6vVCucW3rmdIrJWHA5vIqh4hzEaawuWZWaelvyZy+el84SyqmURLrLop7QSbmjyqKjEXp35Yy54bGkxuaRCrkNh7y1zXleUwi0LRsu00VgosvtPWE7CeVEofHDYDKTXWdROKmWWSESnJHzB2d0eyEobvE/0/Zyhu/LwvF46rJnQDyVVtWGaJl4Pn7kOX1n8G5tti1aTxCZi4HL5hlILIQZOJ4XaW+pKrOlKGeH7Oc+HDx9uMbY+u0tDhGlZ5H5U0q4WnTQ5By/NWm5ZaNd7XHYHJHweqJTSPBgdVSHcyKZpOJ/PwvdayUG6bkpeXw+5REVg/WVZUdUSdS2rGmsTXXfNQxWZ2hprCSkwjFci0koaQmKJIXObEiQDKUBKFFpTZ6eGInHtr6AUOiliChS6YBknxhC4u3vAGpvRBIm6rFitpPFqHkdWbcs0iqt8nCdiCpTGMmTRZ7Pe0LRNjitY3g4HXt5e5TVHBACfkjRsu4W6aWiahtfjgaiSQNO9PLu0Fn7j/X7P+XwmvW+mAaOlZOe92Ki0JZNzFFXJPAtnsc3Rc++8uB5DbjaP0nwKQIwZ7K4YZ3mGWGtAy/Uag5RuQLqVNwkXTnhS705vuQfdTXRcluXG3sm6qrBnF8fd/ZrzaWQceqq64uHhjroqcIuibXfEcOT59Cxg+E2FLQJ1U3I+B4yBu7s989zw9nZA5SKT8+krVV2RkqIq1rT1B9rmDu8Sb29fOV1/pBsj+/0OY2Y2mxZS4nr+imEhxsDxCHd3BVVRYXVBShrn5ED1q+9/hTaWohQcxq3YwnlcCLmAQZ7XComGA7jZsdpsmV1giZEUxHleFiV1WbDMI4aELSvadsXp7Q1Uomo22WGwypvLhbKssdayXq3IxdQ479lutgy5nCnl56kx0mx8HaSQLCYppXExCCcwBkwywt6LEYUSsbuqeXy4v/FTTXaCW13IHrDvWa1a9vs93fUqjbPaSDxbG6qyIjgnw5Isjkkbrmfo+4wMUdzf3bPf7zgeDyxOmpzP3QUXA7Nz2OBoECHSBU9V1/zhD3/g67dvHM/njEqQH7C45SbgrFcrzucz7/xMZaSAJ8SQmwbjDRmzZO5rCmCNojB1/p0tbSO2GWU0RHkW+LDIzC8L2KvVWuKFSxBndbsiYJhHKQkZx5miVAzDTGk1VbXhdLzStK9s9w1aKTbbTYZwJ6pSEaPl0J9p2zXrdcM4PBNTxf3DFlMEQlj48PGBDx/v6PsrRaluxW1aabRq6Do5rG22K4oiUlcVKS3ENPP04e7GdvRZ5KrrhmXxnE5nTGFpWw3Jst89UtiGa9czzR2zP4MeuPZzdjRGBPAuRVXddcC5hDYlbXtHWzdM80yhFWMeUrZ1Td9f5dCeJK5U1TXny4UQBZFRFDLYX6/azFCUgWXXdfIMEKwiRhv2+ztx83lF066IStH1I6YQp+N1mLjbrG9nD6sNnpA5sYZpWugnccw29atEJl5tvQABAABJREFUtPPeMUVJLU1+JhHop+GGOli8sExjTDR1I9eXl1h5XVUQoS6FMzsMPdqoLLpI9Ha/22K0Zrffooyi7wde3t5uiZ42l2BcLh3WGCngKcrMmr1Ie7q1XK9XlEYiX37hfL1w7WRg6vqrlNQVhqiRgYuRkifnA+fLmdWq4uP3LfM049ySi9ActnAYo6hqKGzB5dKzWhXZyAFaB9qmZH9XAZ7nby88Pt6LO2eZGIcF7yN3d3uK0vHt24uI7VXF3X7Pfn+Xz1ILx9MRW9RYXXE5D8SYWMYLHx8/4GbPH/5uT8Rz7Y/YwvCnP//EcJ0pS027qanKgnESR944jjw9bYXbW7VM08w4OJzzrNdbrCkpCilI+uGHr1zOR4qyYn+/4unjlqJITPNM1x3oB2GUnY4DbnFUlaUsa1Ik42LE2W+LkufnV6wpbyLk589fhOm5apgWabs/nS6kCOv1jl/96ldsdjuunbh/u+uZmCL9eGaae3Hbq4g20LR15iybWzw1BIdfei7+M0bX1MWapnm44VD6vkcby8PjA//2x79yvnS4G0pLUimadEtRvL29QnbvofTt+n/HK727uYNSWKXBGHH9o0TcCsKX3W/WWC0FOSEllDb048Cl78Wd7pecKBDW+uI8p0tH+VBRGEtM4vafl0UK6Ux2Tjs5nyoUVgtvcfLSgi6IqByTzkmk99SLc56AIph4OzO3bctm2/Dx4wN1odnuWq7dhc2mxhgpl5zdwnq1Yhh6UoKuG3h6eqTvL1SVRukoDl9tOLydWeaFj5/EtT2NF+7v7rlcpITCFhUuOubFYe2EsTWXy5XjaWS7NkzlwP6uAUS0HwfN6biQSDStpm7hfOmpmhrvJk6HK0oVFEWiKCNF6Xl7OzIME7/+9Ue0UdRVC0oGdkVR8tiucc7z7etz3qMlVlHKnw6HE+fTwGZ9x3az5/ByQWFJSnM4nNmuE4+PT6xWDfZqOJ2OjOPEdrNlmjzj0OMD2Eqz3TWs15bVqqIoYb3ecjyeWWbPOC6s2nVed2eu3ZGiaFFoyqJimhwuLPz0wzPtSgwgyyLnx+1mj1aWGARdVdfiag5uQWGYJ0/0gdV6S/KynyqLhsPhQIoL125kWQQHZguLLSoK71itWorS4twICpra8Pz6I8M0UZS/Zlk6rFVoY/CLwy+eaANJKSkXy+eh9/sjRtmjazVxX1uU8jRVyTguNO2Kw9szVdOglEFnx/zf+vU3C3xNXfPhwxMpwZLB/NZa7u/ubo2y176/NbSM2Wr/3r76fvMJf0UOFu/CHfnP39tzQwhst9I2abN7brfbyaJgRAFOWtGsVzjncP3M25AbUDS5Yj6gjaWtG6qiwC0zbduy3+15/vZNBDQNZebYfff9BwqbOB47jscj682GqhTgbghStT5NC6tVy+Ic1tjMn4FhGGhb4fJI61wpDYQZNuqWBWulCe/l9ZXZO56fn2URmSasEYfa16+fOR5PFEXFvDiSkoX9fcJ4PB3BaqyDIlTiAHIOU7yXAxhiiCxuYVWugF+iccJR0rdobQgCbFZa5YYgw3vbMPyygU0p3dxW87yAirLYzlJPrpWibiqA3Awngud77HAcR7bbLV3X3T5bnaMVKgpXJnqxVzu3EOJMUiFfsu/lHpr3FmDvI0UBu+2Kp4c9+6Zm2zSowvDt5TlvWoVlJpN4R129c+eEj6iMpmlrHh7uGceRpqm5XC6M04KxecLmxSrufchRqSJfB2PmFMKxEwcHSoGWivPdfkdVFbfIUllaaflV0hDXVDXL5YI1iqosMk9LPrvNZs08ywYrdh19L04NlcSR1zQ1IUZO59PNXeW8bJBJCqsM1moRB7RCa4lX2xxPDjn+bk1BaQwPd3ekmBiuV+7u95xPZ0Deu6ossfkB/14M4r04MYZhYLPdMAwDp9M5lwms6Icrjx8/QVI8v7zhM2+gJKFzi1Y3Cdx2dAuzX4hE+mlCF5aYXVZRRWHZxEQisriZqqwgt586v3B3dydA05TyND5irRHOQggEgJQbZZPKrkoREI0VodRYLetHjs3Y7LQMwUl8cV5EZDE282qkoTGlhCkqET9iYp4WVmtxcJUl+ODF9RkcBi2sP0U+fInY5Z3PrjBpx40eic0Ff3MiLbMwJlCZ84eSMop2xePD93SXkXkeCGkg0DOHSDifMUUiLtL2Z6xjnDqm2SN9NCXffdpjzJrz5cJm1TAMA4+P9/zdH37Pv/7Lv/Dw9JE//+VHqqbhcDwzLyI2m8y+WrcNVVVxvpzxMbE44d7FzHPRSrPb3xFSwi8OpaTgxHlxFRXWAtJSqxMyRFEIq9E51ustb8cTTVPTXQeqspSoQVGIq2VZsCkw+Ynu2kGSliqfr1WQ6Oh7CU1ZFBTG3lrAhYmaWYBAXRTsdjsOr288PD6is43+fc0yxmBNSdf1WKXxTpqdY5S1dppG5gyY3u523D/co7Ti5e2ZeJGiIqziOvWk3PZYFAVJK+7v7/m7f/h7/uXf/pXr1IubSmzJhOiJSbFerWRDn7JIgxT3RKKIPCiCC1yHnkAiLiL4yXNWYua2NGglkV0pUpHhWojC1AN1G4oZbdDIIULYkuKyTEn4PYUtcrmPI/JLq7TwVeU5bozO7jpNigFyhM05x2bVgC3or4PAupFn6MPdJ9zsuZwuWSCtaWuoG0OI4kz7w9/9PrsZIikl7u7ueW8IPBxOfPjwkXEcaR/v+fThN0yjRDaH5YSPV6L2nC4jSnuSz1ELqxjGM5OPwuw6VXz/6Q5rKy5dx6op83Ct4tPHJ/74pz/y9PSBf/7XP1I1LW/HEz7EPLiSz2bTNlhrufaZsztN4lDPQprWwkZ8PyBVTYuxBdPsKeoakMGNqsVdpoHSlszGMc8zq9WG4+GALQuGYcwOkJmyLJlmcUKFFMBK2VLwgZAkfp0y18L8uzKUshCmXPSRqiw4n4/yylTCKEghcf+wR2vQRuUypIm3tzdhfqFYrVaUZc3b24GyKGnbmA9vF4kyhsjsxIWz2W6JRGxZ4EKQA+DQCQOVSFSCVAhZTC7LkvVmQz8OvJ3e8P696RfS+3OmrIS7Oi43jm6IUJUSpYkp0axalnnKMRvZ17j3PVT6ZeAcYsRqS1QBowu0gaoqYA4E5zPQfo9zgf/6v/wnnB8YpiPWFvxv/+NPjJOnLCV6pQ1MU0/XXUEFdnthm90//IG+70mZA7rJwy9jahSG46HndHpjtVX8/u8/sd1XaLNwvSpWbaK7vjEOwtKytqQoBWNBSIyDDDjXm4amUZyPFxY3k5I0WZ9OR9brLZNb8jBQopoxKGwhQ9j1+r0MJuBcz7l7YfFXuuuJVSsHQyX8BXyQ+FUKIiwH33HtfiY4Q13ck+qCOZ8JQPjRs1rEtW4KztfrrbyNBH52lEWJLS1aGS7XkWs/onObuax6ggo4Xy6CiHHS9OmiuMVJMogjeZL3rJqahBbcSFIURUVdN5K2GYVTnT5/4eOHD+TeN1nj/cw4T7lkL4D8KXVVMk65lTlpDEnA+OuVxMFjpK1ququUYZECtipZ5pmyrBmngbau2Ww2XLqOr8/P0qquxem22WxQymTXqM1O9gtLCBzPZ1EykGKxp6cHEonXwxsh44JkiGgoGzkIR4SlGKK4sZfZczn5bBDQXK8L4xioqjPBFVibWG8L1puCojRs20een494v3D/sGe7LSgKxf6u5HjoGYaJsuxBBeE7Ks1mI0iW/W6H0YrPn7/Q98Jca1s52F8uZ+bZc3//hKkazkdBPJU2cTicWTdr2rahqksgcDi+UdctTetJUdN1HYtXNK3l4XGLKRJVZVlvxH039D2X80Bdr3ClZwqOaTrmYg2HVpZ5CnTdgXka2d9tJFFxlXIqrUVkSAnKsqEsakkGpUTTVlhTAZp21bCqVsy5ndyaiteXF6z9xOIjl0uXsUaW3W6F0p7r9cBms8eHEed7tIXF94TocH5EacUKGdLFGCi0kvtYOuSyi37BLxeMkr2rQ8wGh+OB/f6e6zDx0+efcS7i83CnsJbSCm9+HEaOxxNlVeahpmBQtBIh3ORzGBkNJSaZ9/tQOL2y/4oYrajLitPxFbvb0rYrprnnOog2UNUSx1ZRxHmrDaTEOM1crh13+y3jPIiDbxlJKhJ8ZAkuo6EkIVaWJW3dkML1hngy+RwtZ9xwQxTVdcUyLnnNl7Ok8w5jVsQ0UxZ74VwnhVs85cowToKz2m43GTshzyBBxkgSY7WuIb0PGwzDsPD55288PT6K+LoONPWG19cDPnpxl0XLOMpQyS0yjH47dEyZP3m9Ot5eR+pGsVkLt3K3L/m7f/hOmqyHwD/9738hpMgffntPXRuKUuHdREqWprVA5Hy6ZuenJMFA8fr6ymrV8g//4e/oug5rDSE4Xl4ueC/pi3kKnMNEU4jg74lsNmvGcebrl6/85re/5Xjo+bd/+4FpWqibFUp5tFKU1vDwsGF312ALclO143zuiNGz3W7xHppmhfcus/8a5ilQlg2FXXM8XZiXgHeG4Gvm0WFtzfUyQloorCV4cMvI8QhPTzvu7+/wbkYrYe+PQ880OU6HnrZes93e8d/+1//O3d0TLmOetBY35t3ugYenPWVjKQq5XrpLj0oepXrOl88Y7bBazimqkAKmlGCaJ8FymcgyzWhjmcZRhjDeY7SjaSv665m62PLhg5Rovh5ONM3CX3/6yvF8uZWt/S1ff7PA9y7ihCAuimUe2e/3N6GvaVqSD3z7+sxvf/eb279L2X01jtNN8HsXkd7FoDq3bprsWFgWT13XjMNAlW3RLre5Lt7R9R1dPwiraRH+kSJilNiIXYbIy0KUH4LZVdBl5ktRFGw3a1l0ylLiJ2WF9+IUS0BUiWmWB4RzAW0N12HkdD5R2BJjLF3X8XC3Y7/f3wTL55cXEc20cJ5STCJ+Ook3fnt+Zb3aYoDVakVVF1zOZ7TVfPj0kb4fqJr3B7w4OJZlwZRWChysoawrgXy6yLquxV7vRRyoyiZvcLU85JUiRC9NNErhFsc4TtL2kzcj70Lg+2f07pgCbsKfyqw7iWIVlKXNYqEgya3VN7j6+yY5Jf6dM0g2eNJAG5ldYJxEHFBKCzBZvfP15Ou9hVTmtYqyEEByUxesrKEqLM4tjM7ngoR4e/1KyaY8JhE3pnlinBeJjj5G/vEf/yf6a59vyiLDzhvGyd0iTFrrW318Spp5ltbgsmq4DoNEA7OIvVlvBUQeRM3fbLYsLnA6n3m8vxMosxIo6PFwzhu5gvVmLU20Cq7DyMPTI/PiGMdZJsXOUxkDGq5DLwfuSD4AOZJWufFWBCyixyhDaQztqmXdrnl5fQElD9XgHe16g1+EpbDf76mKmml6gaQEjFsUbFZrxmmirqQ0R2XWYoieZUl01w6jDU9PT3JtRE9Ikc/fvnCdhlsjli4tYXLS2Kw1jx8/cDqdeD4eSErWB2MLjNIUpeXx4XumaaLLAkRMCVMI1H/uhXUoMHyXC1wcIcgkNWQWZYoyDHiP7qIElv4ubqcYWeZFoOtaBA+t1K2YRYQ8aRk1cp4ghpBLSKQV0Rh7K2goK0dVWpwX8Qal8F5ikJlYhlZyn3kfCBk6DAq3yJRRCmdkSrzMM7OT+wciISlCkFr3ab5y7UfKemYaL5y7N+ZlwIeJzWotEW+SCJW2YJ5nlIooFpblwOn8E3X1iaZcMwy9CKWQWwPFmQhyUJqdEw6mks2PrUS4qeqKcZm5vL2BsqSoMn8kSkV9jJy7jpC/1+tRHDWQpBwxer77cI9W8nNnJw4yMPiYOF96Lteey+XK958+5bi9DBWWZaEfFyYnjBhy62cKMbd/ZSx0grZuWLUNRmlKa/F+wftFXkOS93ez3lIUBd99/xEfhU/58vpG9J5IYrfb5YHOQLQ2ixVB3BazEwfyNNG0rYg6gziYl+CZ++xet4akRDhXiPPUFpZxnvnnf/1nzuczMYJ3Ig5nnRJlCkhanECmBDTalrxHBHSODKIUVd1kXpVMOElSaOSDF64lCqXlc9IamrJiGKSVGqVwmbkjra5j5hLpG19Va3FE6cx3DSHmAYREGt83KiofPNpW2kBTisTopWXNe8plor+84JwwV42RspGhn/GL4AqKQtG2K3orcONpGlmt13z79pmqavNGXloql2XODntpFW0bYWr208AwT0zTlevwyrxMuGFkvZJGcK3B+YWqEAGIGADH4g4czj+wqr+nKTcizmXXTogiQggf0TD7mSV4UpT9RQgxi6hWGsJnR3+SZl6l3ssbJPo8ThPj2OPnGd73LQpi8hk/kfj1d0+UVpjBsq/RaF1gi5JumAhdLwOZukUZYUoqlaPi1wEXl8w1Fq5eWZbMi7jQioyweOfS2izsGq3ormNmbNa4xUnZhnPUZcmHD09ch57X11cu1wsqSdvkZrvJAzyTB4Qz47xwuV7xQZxZMQa++/57lNGcDkd8DFxHadDVBnFwIdeyUfpWBFaUBYfTgfP1xDxPqIz6SEkaI62Vlud5mSmL8taqLg5sWTtRimUSluBq1cr6PS+UhcFoKUB4Fw5JIrBjVF4ff4mpVVZi6afThbv9vRS3UFEMibfDkdV6hXMT3sHp1NG2JbY03D2sWa0K2rbg4XGDWzzXbqDvZ0F3oIEJ7y4UtuVy6XALRCJfvryg9B3tuiQFw5cvb1RlyTg6LqeZEKBpdjJAMtIY2TQV2pYEr4ne0TQ15/OZpllxOByJUaFMwbUfuF4HvJPiqg8fH/nu++8JIeF95PXwle32gcX3jJPEvoL3kArh7yWJzXnnKUub4edXuuvPGN2ybu+o61Ke5VmMv3u4p79OfPn6jWme8R60NVgtLbfRS+Tu8HZEKS1CaN6X6xwp10bhvYhdRudxTQJlTL7aFbUpWDVrbFmhjMUqgwmJaRqYneNwOnOdJhmcpMi0eE7nC/vdLqNYelzwDOPAEpYcE5Q1zSpJYRhrMErlxJJivPaUpRWn4vXCOEwoLRxr8LSrFSkmLpcrl9OZEBMvb6+3cqZVu6KwJUpr+kE4xZfugi4sx+5MP44ko7Iz22Gt5tvLM5Buf9cHT1EV8uzOD5SEvF8aUOY9dO65nANN3VDYmqsbiVbz69/t6a4X2lbxX/7nP9APF/7yp1MuOYQP37WUReLSdRQVfPxuizF3KAWn01nikCmIyO4jX75+Zrvd8I//+I8cj8ecyHIC4LeWsqgZhxk/ddJgmzQqiWv4cJAylE/ffc9PP73y04+fs7O/YJ4mVIrUVc2Hpx1N+y7GW5Z54PB2YrfbYm2gbVcURSn86qRZ5shut2MaI5fLiNGJeVSckzinpjnQX6/sttI4vSyOoR8ocxGdVnDtDlRVi1IlKQSmaeHj0xPPzy+cTh3Bw9evz4QkeJ66tpSl4ElQjrKuOHdvjMOruP3WLcZI8Yt3iRQC8zSTUJljHvBuQTjlktIShnGitGJYiSFQVBXTtOSyC/n8QwqZAyZCvIuBpqxkL2FM5gNbrBHsTkg+J8JiRmBoSqOp65JxmGTY6hbZMydpVK+rirK03N/dA5G6bfjh5y8E51HAfrOlritIicWJ8SEp4Zp13RVS4HLtbvgaWwjTsn4feuX9BCQRFhdxEisl0VDRIXPjL6CUpioVu21F3Wq+//Udf/3zgW+fR47HC2B5/fqNsoK6Udzv76WcTWnu7u5zxFoiz0pB30uM1BjDNC68vL1y/3DH0Hs0FdOQOB5yLLd/xtoSYkl3GRh64fttNg1uSSglgmRVinkghMh2u8IYzTyP/PYP99gycrkc2D8Io/qnn1+wBbSrkrLRKOM5X65st2sg8WG3lzNcYRjHhbquMgt9ZhxmxnFgf7dlnifGMWQ9RkS3slhzOc0cD2d8kyRZmGDoZ1BQVy2Xs7A5tS7FAKUMq6rmw+OedmX51W+fOF6eeXl7pm1azpcLRaF5eNjx40+fM59ckonOXVGpYJ4EibRe3eOWRH91DGphHOS8LO91JDHRNJXw1FMUHFJ0hDiy2VXcPdyxarYc3xLHt4m+m4hRdINlkaH8MA6s12u0tlTViqoq2Kx3oAPd9UTTlBSFpm1XWAvO9SxulgEWUFUNxuYhfJYlbFEwuzONLdhs12htCH1gnCa+fv3M3V5RDTt+2/wd8+I4njv+8uNn+mHGxZifC3/b199espFS3kxLZGMYZGHebkUkK8sSVwpPoq4bprwpXpxjmeebzfddJJLNsKjs4zCIW0Cnm7PMe896s2HdruR7Rbnhj92FMRcSxPGd1iHukrauGYZr3iSnPHlciEFTV+IOmSdx8r1PH+Z5RmnF8dgxVPLA76cR4xxqhKeHO4lMzj3r9ZbT6YR3UVr8FJmptxZWR46FPj09MY0Tz8+vt6n6er3m+vLM5CT69nB3R8qxlE+rJ2xp2LQbXl+PzMtCWVW8HY88Pj6glLBmmqahGweats1Cm7jkZAMvUYJoZLaZUqIo7U2wk8YccWSY3IJsjMluO/mM3z+T9+nMuzPzvWxAppfiZot5SiqujOUWwZ7nRfgDWqO1yVw9OcRJcUpiHGdmJ9OLmEel71MYeb3y/wOy00Y+q6os0dYQwoKbZ14Or3RDKS2QueFYIOUCllZKomjvUeBlkQad7tpnNkVBlx+Y8yxCho+RSzfkZJ8ciJoMQXXe011VbjcSNg5JSXnFZkvdthgiwUiJxOIE1r3e7JlnT2EL4WJNC2VZMS0LwUVigMskLCGA3fmaBdjsmtQiEBurOZ2lmTOmmCNiElEqjLi+fJDDWFWWIogAXXcWQUPJIbapKna7Hefjke1mS/CR43jm2vc3rmS9aXh9O1JYK82rznMdJF7l3MI0R0IMbHdb2nWLUoovX7/I/e7czeKutaEfRxEiCsunT5+o65of+07iqdZgS2FihEXRNDUuRIZJwNs+JGxZQAb9VpnhOUwj2khUTmlh6YUYSMTcFCfTPo1GGU1wc54aSTvoNE0ieOYItlxrEl/QSjOPU47dRBF6UsxRZXNrEtZaC7B6FW6CkbXiip2mUYYEWRiXNKSSQ+i0CLRdiXjivSNGEdebpkVrLexBRWY/KKxSWKPYbtcYA9fhjXq1I8SecboyO4nT3ADjhfAvlRKnTqkVISxc+1eUqbB2TV3fEXlf1xe8c3z8+Ikff/6am8LDzfkoDmERVvteDj1vxwMRgYULG4abw+L57S2zDuNNZE0xijhrNOuVAPibpiapGU9gWgZCUlz6nsm7LLhGTpeOpq4hLVy7KxHoB+G0iLgrLYXC/nBSAlIa6rKktEbip0SU0fRdhylLkhI3Ycg4h7e3A3e7LS56vj1/Y3GOtm6wRUnbtrKO18JjG5eZeVnohhHnHT4FmqZmu99xPp9hGpnmmYhMlSOJ5f2Zl+SejEkifLNbKJXEuKS526NzwYv3Eif0QVymMa/xKW8Ibk2fSNxTaU1wjqowKJMdsFEOrubGpolMk7utp7lfG5cjBkpBwlM1RS54kim/D4F12wrDZ55u15VS+bmgsmhp5HfxQVp55b7MYrh3eOeJhWK4ypTZudzG3rZoZagqg9aKlVIoIwOk1XpLippxmEkp8vL8wtPTRy6XK957uu6SMRY7vv/+I3d3d/S9YxhPXLpXjIn045HJjWgtTkSlS4rCEHwSh7O1MiiJC/1wwBYrqnJL3TxgrMHHwDSJ8+vx8YmffvoqHDEfiORCHSVt8lVVChtuWTgcT0TeM3/ZXZoHam+HgziMopR2oI2sRTlS3m4ajC0oqxJnAi46Fr/gfOBw6pjzUIsAb6cTd7s9ZSWoBxHBR2k+XkTkCylSVhWKJOVkQF3VmCxK1FVFVRT0/SDlLLmkS2JRGucCX78IS/h8PsuepKplSFk2aGMklp2ZtcM80o1XJifu2hhlb3HpLzL4i4GuvzIMA3VTk5D26xiClLYoaUdMQD9JbM87cZiiBaLeti1h9uLI0AbnnQhJJGwpztJuHLKgXtBsGhY33fYyITgZMsSQWUHpl//9zqfMsa4yswnd4jBKoTC8vr6hlKGqav75fzxzOEqrqaFhcleU8ihleXrasNlUaKMoCs04DnSdiG1aeTbrPWUlYv5lGljiwna7pu8Dfb8QfeTr5zPtqsb7xPU60q4S69WOEJbs6BE+GDFAMlzHC5vtDrckYZCVDfM8cTkNXLsZ787U7QrnIxqJKD093WOs5vX1K/v9PUolrtdn9ruGlAbK0jAMInas2syiTjJQF64v8rwgQVrw7kpdJLyfWZzcH2+HN3b3d/z85YvEcgOkpLIbydC2LdMwcjgccxpHmFqCBTK5VVxaO43S1G2NUbl4qKyY3SJpEh+oq4q73Y7r5YRer9hsWw7nntNVEA1eceOdFlrjvByY29U6DzekxM65BR882mTki5a9XGksTd1k57oixkDwC95FhhhRuWRocS6/TwqFsPvGYcpw/hMhBDabDZv1mmkccYsM5wSJ0uGi5/UknOfZLShjSCGgrGA+mjrz/4KIH7bQcj8pee8F6SCNvglHjA6tE4+Pj7y+vjLPC9pEHp4q5mVme6f47tdSFngdXhmHhaYtuLvbZWTBTN/P9P1EipqmsTTtiuAj+/2ecXA0ZUsMcOouKGU5HS8En7heJbUyTyJqNE1LWa44HDoulwt3uzvqsmKeIlUp7lKtCi6XK/Poqas1VVUxjgMfHvbUK8Xdw5b1puDz1x/R1nI6O8Zh4MPHOz5/eZa9oLHCM46gVJGRBpGiWDHNjvOpo6orlkX4dDEExnHCO0kYhBi5Xq/c321Zr1uqUnN/31LXKw6Hka9fjlzPBz49fUfbbPnxh2/c3e0Ypp7tfkNKUVzg3z1SNwWmkM/KL477uxbnjsKltBCtJdQtdVGSoiAIvEtUtWKZJ2xR41zI94fHFoZxvFDaDR8//op5dnTXgc+fv/Ht7cASAj7zHFOKkhaJkXmWvYwwHRNlaVi1a67XK87NMvCIUZAOJko7t3coxPRRlyVJFaSU2G13jNcet3hCiFx7EaWtNTR1gTWwWzdyXnYLiwvMQYSQ9+v2cDrivaznKPkZMUW26y2n05EYPcZqvJvzWTFQVRblYj5Hpn/3fwABHxx1W2Bs4OuXI262rNo1Hz89cHe34dp1/Or77zmdjry+vLHfb9BGM0+LDHWjNL9/9/0nKbFysv4ao3l9uWBNgw+alEq8d5xPE6tVQ3dxhJALx0yJMe8pNxlQOR9ZrTa0bc3pdOF86nDO8/Rhhy1WFBU0jWa9eeDan0lR8x//4+/46ccD4+ikF8BoYrS8vV3Y7do8TFWUVYn3cs45n885XVDQDxPn88/s9jum8UpRCId26AObdZFFwJFNK+aib99EqHt6emK12uSTkmaz3qFQDH1PTInvv/sV/Xji589fCHGiMBWff35hmgNNY6jritVqxYcPH5iGmdPxgrU1JuPInh5+xd3dE4eDFKFM40hKirK0DP1wQ9akGHFu4ulpR9taUpL02GZTYYxoSUWx5eOH73j91vHzz1/YbFr2d/fMy8Tf//3fyZ7HWMqqIkaPNmKcWpynqPIeXBu0TkyTNIOH6ITDbhVpkuLAwpbSURA8m+0WAO/kbG+1IijFOPXU45Wm7JkXx9dvrxxPF7phlMe0+kXr+Fu+/maBTxpnHO9OqqaupfFn6Gnbhu2ulXjINPHt6zNlZQVePM83h04IGXRbSwGBLWI+wHi0grhI/KooypvjbpjEUdcPA+My0/XX3F4LwXuJbyVuUYt//2a9i4kYc4sUPdxLLHPKTbv3d3cyHVeWn//6I99entHK8g//8B/ohysPD1JbP03ywOj7nu12y/39Pc45uq7jfD6J08sa6kpilGVZyoNunsUS7BbJZsdAUdQM00RYFiKJh6cHQlTMS6AfJmbnGJaZ0hYsy0J3PtFde0J2FvXjSNs2NE0Ls+NyudA2wrkrrBLbaxZVleLGO1SoW5NLVZXIghgyv0Bs3eLm48YrgXcHXp3z5nKT/cIjnLMrLBBUFgPVL82jCZ3dTpG+H7MwqLLN1mGsiIXiwvlFbFG8O/cSKYitva5KlNEyEU2QlOE6Dlgtbgz53bKrJbNK3qPHEqsQ54QPgeADS4rSELs4Dqcr2so0O6aI1gZihmjmg71W4twYpgml5M+FUygRwW/PzygFLgtv4ojMd0yK7DYtD/s9RsHic2TSWExZ01+uXPsrWmt++vkL93c7lnlC56bPYRwIKTKMQ94oJsrCsHhhP1mjScGzblesV22OdSiMUvSDMPW01uJYKEv84nh6/AAqcTgeOB6PMvU1ls16jTbvLkrFME4sbpEWsMxrCjHw9PhISomX11cW7/AkwjITY2YfFtKY9++ncT99/hltpGlTacM0DFLQkiMo3iVCKSUYSiURSayIHbw/Xoxhd7dGo7NbKcd6grsxwnRmiPgoBz9rxR1WlQXOuxzhFsHFL+JcCE4cJhgZ0IRs8weJqYkYF6R5Tel8KDGs1wKqdW5GGcBHFudu0ypjNKj3g1COxUVujD9tFDaJcLjZrBiGEaOhbWtIgaqqsNnFnJKnLjV9/8J+t0ObhLESeVrmAW8jZZnyvZ0nneOYizwStiiIfiG6EWsU3i2kqBh6EavKsuZPf/0r0xLxeZNkjM0Mp8S1uxK8R1sjnzMS90hR8NXvB2ejlZQrIE2BPorbICXPbrdltxbRLKWEqWq644HzpcOWJWGSNSoifSNvxxMfPjzS1g3hcmacJ+Z3J15mf2EMyXmaqsBoi9WKwmrG8cqqaUhKc732EvFeZPOoteHu7oGx75mHCWONNL0rxcP9vUTZyxLvHN47pmlEG40NltfDAa8CySjc5DFu4eX1RTbEKUnJSy4W0sbIepUiEh6XTatfFkJUTItDGRF7q7qkqhs5iChFUpFxGvP17WnqRv6dD7jMqvrFzapR+VDn3CLOyizqhRioywK3CKfLWmFMLt4zL7NgMoKIX21TY60mBRF3VdLCIE0Rgqc0gnvQ7yKflvjONB1kxU4SS3530OtcPuL9QmkFWRB8hVKBeepuAqrVMA8LigIXHPt7ERskAlxzOp2IUQmzMens7I+8w63X65YQHc8vX3h6/Mg4nnDLCdtatJZ73juHdwEq8nqS8MExDD3l+zO0LPB+wC8DRosrDIRDbKw0lf/1x59wQThW5PfznW3bXTpiCMLYzCK7fM+AyfF8EHe5RpGSoWkalkWGI6TIbrtls2rprz0pRJrViuvhyvFywVgrrEktn3dM0HU9xtjsFJf3f8mFLe9s3EIbfPQUWhIAhTFYkwd0SdAdbl7ygFARfCQoaU60tqA7XajKguPpTD/0NE3DZrUWJEIWdX0I4uy2htVqxfFyImUGbnBRSmOMInppm4spUtYiCockRQpGq8xdE8C+XxZpEk+ClxCnn6MoJLkwjINMzeO7y07KEVTUWN1SFAZtYRhH1qrNA0xxeZe1uNvc4ki6JKTsPl1VrPIgdRgnqrKW+G4WaqSVWxItwzAxTbMcwIsVpSnRxcLd9x8oisTv//A9Sfd8/vozVd3wergSY+DDxzte3w6MgxQ1yeBZ5/tDuFJKyYBtmibaVU0IjrLUzJNnnHrGQTHPco9fLh2b9RO7u5Z5mpjnCa1ESDq+9RAUv/71r/h//q//XZyZPjGfL5n1mXh4uGO9bmlWJVVVMIxXjocLHz5GzheFdx2ZfCL7HOfRIUBMNx6rxKJlL2dUpCotiiDA/bIkKSncIA/exFnk8YCJGufzUOz9mpFvL+eH6G8JIp0kjVDVJbvNmuA9IfPC3DSTYkBnoTyFmMVBC1pzHXrI94Q81ySaj9bYqiL6wOF0pG0q+rEXh252iXu3UBYFKQ80KltkZ5U4iuq6YrvbMY6DiJJ50PvuKESpPGBOWK0wRgvKw8j5IcbAPMshMSklPMrg8ASu53Ne65IMSvKeyJpfnrtuWdAGYnRMwyitp9qQgsJFj9UQ40jfvWZ+qghsyyLtmL/53RPr9Zp5GTi8DazWLdOQSEFxd7fm5fmZ4CN9H6nrlrJQKAqCVxR2RQwTSkWK0nDtL1SNFIiRFMPg6C4vrDcr+nHG2oph6JinnqLwTKPDx0DTNhAizy/fSCmx38rgQoqDLHd3d2I4cY7dds/+oeXl7TPjBFqXdN3A8/MBo7VEplcl3z08EAO8vhwlWWUUy5y4239kv3/kePwnac9cRhmM6zz0IjGMkwzJTGK3a5mXDh8Su2abmb4VwVvudwunt5/5+vXbbT/oXODTx+9F5NtuqeuS0pa4eaa7XFnlJuyqLNEGKffrLzLYiNlZlwUr4RPLfrpujAwAhivDdeTb88+khwZrNxj7G/pp5Hju+OtPXxidYIuSVoCmMFaa2JOU6vnMkNXKQEh0l2vGcsizXBuDUgkfpVRjnCc0hs16w2a3oe97rteeaZ4Yxonu0mENKJ14+ReJrP7ud99zeD3QNhUxeO62W879QFpm5kXnUoMeH2Z8CoL+0AofBXUVvYeYpGDTGLCKZRa8gC0K9DujPwoT/t1sIxpA5O3Zi0tYe4IzbLdbqqqk6w/c3z3I4CCCC5HntwNVWTA7L8J3Nr64JbBqt7dSyu48UJia7jzJGaMoIUbGaSYFJcMooxmniYfHB5JVDP1E8Asv7oAtYBpnvPMYXbBqC8ZpxJiC9brm2+cTx+OVh6eajx/v6bqevn/m+dsFpTWbTZOZ+YbNeg9JsWoeuFwuaGN5fBIWprWKeXZM45KfJZH52xljBFEkEknk9fWVwlasVhUPT1ui83z6/pGHu498+/pCf/2Jh6cntFI8PTwQgiTXumvHH//4J2ypKerEal3RttK4XXhHioIWun+Q3oRxWDBFRVE0XE4jShnmZaEfBoqyFEZ3W0sDtdUkDL6XQketaprasFoZPjytWW9KNhuJ1H/5/AqpYh4i06SyliDXfF2VPDw80NQNKSWeHh+4Dr3suRaNLUoiC7ObmaeR0kfUOHEdx1xCqfEu0ZQlwzjJuV5ZKm0Y+wGUIHCcczmpEJmmAbfAqnnAec/Xr690XU9M7w3i6XaW/1u//maBL/rckFMUFMYQ5glTlfTTjClKuusVEpR1w89fv/Kf/8v/xOVyoc9OHLGbX7HWMF9m1usVRWHFyZKk0XKZHT5GlhDxedMl3CXhuPgoHBmVm0kLq7EKTFkQo2eapY0km/PEVqsRp88sG91pHLHaUBhLu2ppmxVKKV5eX7lcxH2okApsjWwixnFi8Qsvrwe2my11UXI6HpnmWVhnCuqyZPGOU3cRcHpR0Y8Tz4c3+nmiyk2xm9WWYZoymN9S1A3//Mc/s7iF9WrNOEhz6+Ijwc0oZTmeO/pppKgr2vUKvzhO3VUikCpR5gXtvXX13THzzjsxxjBP0sCqMFjLTXRUKhFjZiVqlTfrslkoiiJ/3yZPS+LN4fW+mL4LaDaI2yLpRFRJXFM+sXiZfqTIzbWX0BL9u0l4SibnObprlLTQaC23ZwqW3XYLCpZlYLOSSE0ikrwcgr0Xd8B6LVNEpRMh27aLomCeh1zGYAnZvXA+n6Qt83Dkp8+fmZeYRWiDwWJKc+NSffv2LNPTeb5FHpRo3Sirmd3COImTRWeBM2Y+jVGK9aqlbVo0CltYTIDztWP2nni+MEwTUchXdMOALS3rpmUcRfhbvLtFxYIPt+ZakkyxiYmqFHdGf73S1BVGlZyvnTBisgvBFAIOP13OMi293+eDc2S33tA0rThwl0ViNyEwe0c/jvTZSZsStFXFNE+3dttpFpHAFOIkdD6ABhflwAqJcV5y/EkilEZDYTTteiUFIZEM2F1uQHStdY4DvTP2pLEWYna9ybWqtMViiFH+ro8Bglz/2iux+Kd0i9jEGGUab4BC47O44hZhNqa6Zhinm3iYSBDEiROCl/amGBnnmbpuMgqgAB2F11W93zMpPwzkSk9ZhJbXKVbzlFmDAj5fqErDdtMIML4uby27xqww6srPP/0ZU6zY7VpsoVFqQkGOVIkImaIU1czLlIuJpClLJQ82sF41YnO30lDuFk9C5wO0xYURF8QN+V6q0DQNKE1SJscJtYhHSSKK4iyLNG3Fw34nN0eSWMX5ciJ6h0qycVvmmWWZWG3WRLSwjFAY5LBklcmmJ2nXPl8uGLtlWiZmJzDwxPt6VLH4gNUyeKqqhhQ8zi8SwRlGiizopgRaGZbgSHPiEE8SB1MSf1dGUZrqVjayLDPr9Zq6qTgeB9wk4ubsluxai9lhqqibmmkU1lqhrLjhkseHzIzSyEbZTXIgDRCSxhibpwDSqOz8cmuHB7DaQorMizh3tVKYqiQsE9pagaY7hyIRldwzyQURmxMUVrMqS+pSQL/L7DHK4hdH8JG6qYUXWhju7+4wWgtjKCxUlQUMwUfcMqMUlMZS1RU+RsqqYJpn+lkKoCC74t9j7UmiWjHfk5W1uDFxeM3Nc5QcDxfa5gN1uWK/uefaX4hJ49zC0I903RtVVdPUW/7pf/8n9nf3jMNEUomyKKirkvu7DZt1TdMKU+/l+TPOQ7ta4XyFVoLscLO4Wd7d6cYULH4hEJgX4ah457DKSVFNcNhmjcnua5VLurSxuGnMbYTy/VQSR/+gNUSVS74kYum8lJ5IqzqUdcn9fodRWtZz5xn8INNjkQJIWd0oSony9+MAWlEWBaR0QwugxN3cXa+0q5qu76R8xcvz3Qdxj6OVMPaqkraqUUhhWLuqSUmEoLpqsgtP3EspRoZ+ZEgDKSRaW7A4iYBL8ZYMneqqZrVZ41W83R/XwyguUIR5JutfYpG+FmLyWZBb5Jrz4ZehmQQKmaYT43DF2kacIjoR05LvFS17C51A56i+0ZS2xCPurZQHSzop1rZBG5gXQToYA0p7jElQSEQ2JS8CRWEJYczphpTbiRWoRFEVTBeHWwKbzY7C5kKgsqCqZD29XGaeHu+xpefrt58wNuK94vTtzNvbiaY1GR8S+e3vf0XwkdP5TPAKq1uW2VPVK+7297y9/MD1uuAWKCrysw8iAa3E0Wl0oiyEJdk2kaePW4xpqcs7/pje+PzTG305SjomROI0s/jAdrdhtW6J0fP9pw9stytiWlBW3BO/+vUnEo5hfiVphyk0beZLCmvPiSClTC7Ik+dziJEQF5LyXPojRbni7uGB7nplXjz/7b//D769HJi9w0cRv2QQkYRZmQvagg/YoqJZtVyvHTGJmBwzpmOZZ96WiaauMxNb2px90GzXazRJ9sXJS9y1kIK2GBxVVfD9hw+8nQ501x6MCPIueoZhoB+v0uIZf0m1tKuWFCP9MMoQ22iGaYCURDCZR4ZRnpfCt15uTjxj5HqNEblOS4uLM8vSs9quCHFimByL8+Ju8o6QRByMMRJSQqc80LWW7W7LNA0Yq/B+IXhJA5Ta0F3eOBzf+O1vf4+mJHpNCoFh7iEMdN0bTb3i2onDaFkiZVnTXRa+ffnK189HYoT7xxVVoyAlLpcTyxKzq3PEqJGHxza7uZC25kXSDPf3d+zv1rd7GQWp04IsGM/CQDYL3oEq4NJ1tPWKqqioS8M0zvyn//QfqIqWv/zlR7rrwMdPH1m1Kz59+p6ff/4MKL5+e+btUqC0576uqZuSYXIYXaKVlKI9PG6Z5olrN2KLkrJouFx6EhYfIn1usZTXpDKLzhGCywN6EbjapmB/JwUC3316pKlrjqcT18sRwgZjxLjS9z1NU/P999+x3e6xRcHvfv97+fz9jLWQXLq58JxfIMmqPy2yZmstZyemkXmasVb2hLOfWW9WqJRy0aBhthrvHeN4oamuDPPI5y/fOHVXJufxURyyYpCOwiyN8jPkWipkGJvIYrCXhIFKKBUhyV4iMTIsE3W5RqeS2VU0IXEdRAgRt53DhTHv1xa664l5eaMoPHXVYlRimB3DLPtSN89AzFxkSaKZ2xQhoYHgFtwUcgIk4md5rho0MSbcEhiGSc7674MHrbm/l1LQeXakKKw/t8i5obteCD/PKA392bHeXBmnCdA5oaPzuViMAW1T8/L8xuPTI352jFcpfajLFd31KpidRaL+RhVMkxShhSRJkXGcqeuSpm7xYUHrhFIhG6c88zRlsb0mRc2f/+2Nl29X2bMG+PmvXyhLyzR5VEZgHJcJrQL7u4brOacop1e519LEPomo5tyENhZtFZOvsWXJ4XghxMi2WTMtM2VpaBqLShaNYRjPlLbg7u4JpRWnc4e1Benljd12x/U60PdX3t4OrDdrfFQM3UAbC77/1Xe8vj0zjY6um7BF4vFDy+l0RitNVbXEIHz7YRxwS+T+7glb6BzBlQROVRdsti11s0cpD8nTXUbW6w1PH3bc7VvmeeKHH34ieKjKNW5RnM8XSA0oz6qt5dlwvbDfbSkryzLNTNPI8/M3Xl6e2WzXuLiQ1Mx2t2azXsvw0AW8v4qTsGiESegjTb3K+1qk5MpmrmmU8lG87APLqiQGxNkOHA9HnE8knc+TKgGBFN3/j6rcL19/s8AnzbfvMRQB9YYYhZ0zDIQQWKaZ3W5HCD4DewPn8xnnA1Xd3BxVy7KwLEWOV0k+tDAFZVXTX85MQ3+LCxaF8MACMmXTRkN8r8QWgGbTNHTDO6NDDuFayUbYanODqwOsVzLty+ftWxx4WRyb3TYD5x9vrplvLy98ef7GvCxUmQMwTRP9JO2zVVmSoud0OlE3DXXT4ELgcj5yOJ2JSeSru6dHvn17JnjHNE+YwqKiZz4swrOaF7SduY5Djh94CqU5nE9cpwFdWFzwJC+MnaIqCZmL9t4wrPPGalmySyuI68QYgy0KbI48vUOC3ws0QgbGvvMRp2mGzHxomubGQHzn771vdt5Zd+/svqZtQcuh1y0L47jggmT8Q4LFR2JI+cD3y78lCcxbadkMWBPyFB8Rw6yRRUqLEKiUNEgprW4NvXMGwTsn7EPnvbRVerFoF4WhsJqUZFHRRuC8+7t7Xt7e6MeRJcgDQxsyw6ZhHAZO50sWBgNJiSOF90KSlHCzo25q6lWL0eYWReqHIV9rifv9Hcs4sOgFUxgiCJsoxTyhk41TTIl5dhyPF1bN6hdeYW6UEqeosJFCililc7xNYRR4N2dGHizLnFkUwtSIMbLdbqU+vh/Zb7Y8P7+QSDzc30shhNIioGRBMUYBnr+dDmAkJjNPM0tw2GRFAHW/cNBC8FnQT/n9Ak0gBi8inrKYqLBWE8LCbrdhmhcR45HPNSFTbGMMlS0IOQLu5sBmvRYHJSJSW6OY3ZSFaml4rfKkc5rk9xdrd8q2f3J0NtC0FaUxUFqGcaAqGwgSJdMKalNiigIfvFyHhZEBxHzG5IKNd/eKuI5lnYxBmouLSpoKnZPfJXgHSeepvWxSyrLAmHRzxMYYhG9ZaZL3LEgkwSBTeWPh4XGHMiXTcqLWAjqX9mYlFe5JIh0xvK9vDo2SUhDvWdRASjOXy4FPH38j7pzrgAuRz9/emJcoolRWsL1zIjgkcVT6HCdu24YYAtMiZTwht0P7xXE8nqjLir67kpSiKC1lUeYHbsXD/R2X8wlbFFy6nmWSgcrT/R0oxcvbCz6CMQU+OPpB4N1d3+d7RSSAopLYnPcOo4TTOAxXgvMUpRW3pVaM8yxFG1pnmLtwmuZ5JsXEum0IaaEopEV8nOU+qquGc3eR1ugE47wwXxfQuXyjsPkBbhjGXlxPQQ7c58uRzXYrYlpMhOgxBJbpTNddKMuapt1LU3mYCGGmrNZ4J0w6rWSDGVNEE6kq4anMrocUaaqKoixxyyJOzJRIOqKisEoTSqbuiIg8T3IPgRbHnNGsV+sczwls1y3WJIbrkWWZhd+jo/DJYmTxDo3BWLkuVu2K4+koYH9DRgd4KcjxGRmRMq+qKKjK+ha7nkY5yDjv2WxEVOqHI6v1ju9+taGqG4YeulPg69dXQkjUdck8C2YjxsR2t6EqLUVh+PDhA3VjmZcBrRWbTYuxK5zrKMpASp6yqFArLfcIEGNingU14ryj0EbcSCEwL1diHDl3bzSrNcZYTt2RcOmlNGKRwiFpEJTf3aNurLD3iGe7apj9kq8R+d7aWKL3HN/eaJsVQyf/pm5rvDas6oa6LNnvd5yOsha6EAluAefZ3kmh15dvX2VPkNmr3k+8vr2K+967mxvR5D2U3DtyH4/jkFmBimkUNmIMEbd0KBRFVaERkTp4aQetyoKAx/mRpi7RFlwU1q6Pgc9fvrIEaZdbvMcFcSqmmNhtVozjkDmOCzEEaa82BV++fhYWzuaelDQpQQwLYblyOX3B+5m6WrPbPRLTxDBdcG7G2jsUEivWSrMs4gJcMptqnmdsdgdUdYG2BcH/woCW9rvINI3imMLnfzdiTEPwmmEIRKS9NCZPWRVEZAN/soYff/yB+/sHKR9ar3h6euLz56+0bcvXr9+oqhqlE+0adtt7+uEFYwpIwpz87lcPpIgMBlygbfa4RYYq9/sn5kU+Q0GpRGpdCnN4XLCFxttAioGHxzWrtWKzUXz4bkNdGaZ5pOsPbHcbHh+feP7yzF/+8he2mzXH45m/+4e/p2lqFIHNZsV7MdGlu9CsZQAUo6NuG679RQbOJJybMmxeeG5FbmaVoZmhaVfM80jf97wdP1M+bei6Nbb4By5dz+evz3T9iMv7A5SiLkuJ9Of9uHNR8CMIo/VyvuSDd0TrlFsyHTolXAhYbynyPeO859J12KLg+PbK2PdYreiHntfDK7/7zW+ZRwGk16Vhu5bigMk5TuczqCQJDz8J9iOnMWJK2KJk6K9oo39h9d7Knd4jstxwOCknSnb7Hdf+infvCBto2hLFTNdfCNee6n3tp8aHLOwJZUZKfDJ+oywreY3BoU1icT1dd2K9XuN8T0TRXd8YhhPd5ZX16p4QJEbZdWfcfKS/niiL6nZ2WJYZW2iMruguHd7LNdidF05HyZI5lyiKClNoUnRoGxh6cYe2bYNfBLVibMIWlt1+DQjGxxSGuyDDitNRyqus1bglslq3bE2DXwJWWfq+4+7ujqoUFvHl0qF1xeHtTFUV/PGPf6TrOoZh5OHhnuPlhC0CRXFHWWgu3RcRzpaZ/f2ey+WMVoaybDBaUD3OOfprx8P9B5pWeOen0zmX8dWUVQtKWJrWaLxf+P77B7777o6iULy9veRihoLoC67nE95LysFaEcuUgk+fPtBdO9wyM4fA15dvtCtZaxY3UDWFGBmS8JvHcWSz3eLnBWHsyXWmMr95nmdSEJ6zlP3IOeRyOaFpWbWfJHK9RLQpQIkbMUSJi6IMMS0EDKtVS9uuUMZkh2UPJJQPLG5CG1jmDu8namPphwPzPOKrO9arDwzjVfbuKTPvVGKYLsQ4c+6/kmJPP56Iace3F8Pvf/2PRAQ5kpCmUVtYChLzLAUJGiPN732PNlnAy+m39zPpe0InIIOYemUoGsNmXXE698yjuA6HocfaQoYh7/uRjDVZlpBTThqVZlAWY2UIOw9L3p8bwW10/Y29d+2G7Hyc0Xpgs9nKsEgbTsczECmrUjoFrCUhfwbiai5LixtH4R2myHrTUpaa/X7H6+sJFFhTY+1C0zjmxTP0I48fWrpuYJ7lddeNxEvbVck4SNmMNZbzaaKqKoyxjL0n3Wm8k/KVsqr5/vtPHN4OhCj7g6YtePrwK3bbDcvsOb51dJcrZblmt97hnWN0PafThe16x9SfeHs5cX9/R4zw+PDAZrfl5fiKLQybTctw9VzOE9MkyKPHpx3rdYvWMQ88LJdhIHrFZttS2IqijCjleHi8I4TAy8szbnZ8+/KF7b7k6eOGT58e6a8jIQSu1xPBD/J8pcDNgRSgsC0kT/Ce7777xG9/+1uWZeZ4fOWnn3/g44cndrs9w9BnUXyUNavSfPh0R1Vb5tmhlTiv58mTNorNakfwgWHq5OwQQx4IiCnHuxmVBNURk6DCpmmgtGtiFMST8x6fmYBaCw87xUAI49+kzcH/AQKfzk15MSv+9/f3EuHU+gZ21o3OZRrS7nm5SOTQFrIJXq3WDMOV9XqNNUaEwGmSC3/TcDydOF0uhMy4iiRGN3MZ+lv0U1pLxNmwWq3QStNPI2PmfIH6pXk0i5Faa4rcutM20hqptaIoS87nM5fugilkAa0qAeUOw8Bms+F//6d/Yn+3Z5hG1lWFNZa2qjFlQV3X+XAws80uumt/5TqNjNOMd3Izfvz4kXa1Ylzkd3UhMDkRaworbghjLefLhXf2ndRjrzmeT2BFEBJxM+Ucuqi+74LbZrMRV4KPeVGTiMs7nBTk0P8+OQeJNYfgMi9P3YpMjBFGSNu2/28lJU1Tsywi9P375l2tTW7kgxgi12tPTLA4KdJQ2kgsN3DbAJHeLbTZrRATpdEYE9ntpdzjel0yQ0sOaNICyi2+LVwBiQU3VSWbFGtk+mQSWnt0YeX31hk+r5W0+4RIP8rEpqxaeY1OxOYQRAQssttNaSWQ+szye2+fFG6PbEqrsmS/2zMOA+RYbHAykSqsFeEytxZWdcXz4YTSiiIZ1k2DIbH4JfNGLN5HjucLwS+Mszg+rbUsbkZriVLP40JVSSup1opp6FmtWiAyjiN1WbN4J9GVGFAoTpcz0SeM1vL6jcZEi1KaaRYRv1k11NbSTyOLW+jfXkUcMyq3PmcmSZL3hOhRSKxIoMoQtXDGChIh9EzDgDKlxAZtQQgTxkBM8n6ijESKczGNWwTormKSg2XMvpaEcGR8whhxeRqvZIodQWOpixJrNdEXeB9RQZichRGR27mFTx8e0CoRvTBC102FyrFYiUqbzF2yrJqWSKLPGxoBE0vhiDQvipMwZI6TiOYLaY4obZmnRRhymPyQl0iURBcd1ootPWYXgPOLsDWsIiweFWSD571ERY0OlJVCmUA/nBnHPrspAkYZEXkwtG11i+pvVhvapuF4PNH1r7wd/8r9rqC7XkBrLteeH37+wjAuBIHUSOzAGN5bUsX5kt2PWrPMi7DhkjzIb+3oCLuiMAVlWbPZbYjJ0w/CD319exP7uvN8/vqV1WbNb3/zidPhxKqpMsfvjsUlDucz7w3ap/NZ3BsZFI1WrJqWoe9RSkp+3oubQBpu39tySbDEhcIWsjlSAkwujaVqS1ariv56YHYBW0qcKEboc5O493IYFcqjfKmUWLct4NEm4vyMD+KoXdzE589/5vfV31MU6zwN9hwvL8zTiXnuSammrg1aW5b5jPMTxkYKvaV4Z/ClJBPCEJmGEas0JIVSliLfJwol97H1xCjOyLKoIBmsgXEaKMyKaV4YBkfdrLBFBsTnCEkIju46cY0TSgXOlyMuJD5+/BW77QM+JBLCcRuniAvCWGvahtB7ZpfLHFRCWyURbifuLWPF9ZYiqJgkGuYWjFEUNvLwWKGN5+HDjvtHgRhfuiMxrXj68MTPP7/y008/s93u2GzXGKv53a9/k9058gwuiorL+UI/nnl42hGix6qEsdB1B6ZpICknPEDVZjE90bZrXG7HbIuCqqq4XDr64ST3yL7geu1wIXK+XPn89ZlhWgj5BGesprAySLRGeDLi0hEhqb/20gqbWUJFYSFKLNjFQFnUFGXJ3d1eBoPdmaIuORyPdNczisQw9BRVyR/+8BuOrwd2m4aq+n8x919NkmxZlib2HaLUqLsHvSyrklRjptEtPSMQ4P8/D4Ggu9DdVVlJbl4SxN2NKT16GB62ute8jQgKDwiRlJsSeTPC3MxU9ey11/qW4e3DEbdEzrdOzkxZvtMv5UZKKUJKa/u64CKEgyvwe7XiKtwKSdcrI1CtjsDDYc/pdCJHKaUoK0NTa56fvzJ7S8QTgwhe3TAKJzlHYlL4GF6dRnplKRWFIbNw686vi0WbSobhTN8nmmazLu8y0zww9l/oukfquiDlyHbboJRmma+E6Fmcpa2tuA1jRBNFbLEFMTi0LlCFpWlbjIV5cTK4WoNVmsTIspxwfqRt7iSWrDKoCWEOCpy7bPaYokBnszKDRsoM4zgzjjPGdOx2Iur8+NcfeXp+IqXEdrfh65czdZN58+4DIUdhsyYYhom371ou5wtaG4lGtXtilGRBTpppHtlu7zBGrd/zgrqx1I1G24jWmaIQJ+P2kPnh+weshSVMLE7z9cuJstjR38Z1uW6JUZZ033//HcfDnhA8H95/EKZwiKjC0DRbUvJMszCaxmnEh0C9uj4XFyhLaWqtrOX+4QG3eCkbSfJ9fXEyztPAOPVUhaMfBk7PZykxS3Lyewkn5STLX4nfyOBtXwqyUCwprqzXF6Er4uNESjOaTJ4DxtRoc09wjml2cLnIIne4sThpMPZhoSwj37z/Fr9kwuJIIWC1wc+9zAw5r4UEspxXqwjZtg3eB5YlrCkZtcYIvSBbVtSmVkrcdlp+b7fbs2m3PD8/k1MmLLOcq7Nm8T237pHAwv39txT2iHMja3aFpBCneo4Ya7C2kJIMlUl5JrMwjmf64US70XTjE6TM7fpE9Av9cKWwzSsOJAUptuiHgc1mBu24f2hISQpbPn96IudMXRsWn2m3mu9/eMPT45XHx5HZDZTKUjdSNOFDFCGJku660K6FVuOQqCvISLx8u99yOBoSHqUrlNLs9zva+g11XTCOM91lYugXtts95Vp2N/YLw+CwZuJy7qhqy+FwZL8/cDgcKArL7GfKyhC95jQMuCkxjZ7jXc3u0NI0ktopi5Khl1Kbumqo6i1ZT3g/8ObNPfO0cL6cGIeZYZz48M2R3/3+B2JYGKeBFBf67iZzU9CMw4JWpXyOi7jLPn54z29+8wOPj4+M48Knz79wOB7JJPqh4/HpC+o5U5Sa7a6magx1vaEpd4zzgnORumqJpmQYb1hTYhorrtFhpKxqItLcGuIi1/5mQ5/cyvFdZ49k0KLbSYKHhXm+CG5IaVIyJFUwzokY8tpsGln8SEg9Ppzxc884XOnHK8XthXdX4ZdMblqylpSWLSqMgnE4odXEMDzx5cufqGqoKsOydFwuX7kd31KWLeNwIysp6hlnEdEVEZU07XbLuJZr+iC84ZeFjDjVFVonIKJVQKmFuoayNrx5t+F4X/HzjzemURYiOctMrJA5NeeItZaqkjnjxZDhvceHvJ6xFxrdEHLC+YA1wqYrS2GPHnc7qrIkxsxut+WHH35gHCWC/Xw+0fU9RVGRsrRVb3aVqBkSX6JpyhVbJE4ysPS9OOkVlj//5ScUClvB7q7k3bs7NtvMNFX0neEvf35EqSSFLTW07Q43R8IS2G0PFIUYU4Yu8emXK1UtC912qwlxoSgN213Dpt3Qti3Pz19QhNcUXNu2nC8XpnFBpxK/iB7gfSDFyHa3ISb5Loxjz/PzE8MkRaTPzxdQCWUzbbths6lpmoqhH9gdGoxVWKvY7zfMk6epN2zaLdZIEqPvHHf3B6zRGKMYpjOZYV3yCP/x/v4B70pSikzTIku+ynK7zlTlwmazZ7c98vj4SFWWhGXh3dt37A8Hfv3lJ7yPLM4zOQcYUlaoNXWmg+ZyunA9/8h2s5f5ZXOgLBusrSltQK8JxbZpQYnoTkawOCuWQSkpBXRp4tqdOR5vbNsj/0cpTkqyepal/z+T3/5Pf/2bBT6JWoXXqKYxZhW4DP0Et9OZ/eHI0A+42fH1yyNNU1EUBSolaS3ThrosXp1gZEVVt6SceLpeuHU34U3EKHn2NdKUFomfFda8Ota0EnafUkpq6FFUtmDbbmTrnIVHIW6zxN3DkQJxPxWlwRjhufVTTyTinYhbbdtSFAXTNPH8/Mz79+9ZvES9Cm2pqhq0Rkepnc45oy20bcs4T1z6jnkdLGPIlFXF+XoRy7IRWHdRldiccLNjmCaJzqTE7GaapsXkLLZX74lIpAxgcX6NsupX5+NLi7Ec3BN2bZn1wa/v1YtbQYZebTR5jZ0Yo9eSBhnY05Jeh/fNpnp1RYW4rAwxeLVCIrGkpmmIMUiExWgUsrVwS2JygaQ0OQij5aXYhDWuQ/5X4p6RF0m7DbTlyOITTbGR6nVrxEWkRMTAiKtNlPMFayNGN+SccM5T1Wbdogn7ScoHIs739MOZv/vN73GLwy2e/+V//39xOl+YfVqlRtaHiLzH8nOZtRFMShX86o7IOa8tkIZxGIkuUViLX6QOXmIYBcUqpjVtw+V8opqlat0o2e58eHNPNxRcbzeWkIlRNsjX65WYPM5NeC8uQa012+1GbMir1DBNozBn1Av0VCI8IUwCA7eGQr8UOgQ0GlsaAg6dPMfjUZxniFDTPfZMawQxZeHJRSI6K/bbHfM8roflgF8kLqN14tdPP/HtN9+DKkkhkeJCSAtD98Q0dmzaA5vtEZQjxI4lBGwUC3yhrQi5yM9fVcLhJEurdllIxEViKAFtMjoHchKIeYoLKkujWNIRFw3z5CVylyJlWdA2UtijciYnTz9eaQrL+fSVh3fvUVq2YLlP+ASFlRiiITOvkQJrpcghZ2lpNda8ogFSCpRlidZWvgcxoJGBSko5WPlQkcJarBI4vzYv8db8WnZAVSBRrEDOWhovlXBHXRiZfViH0EBVV69Rh3GUDVfTNK/X6f5wENew0Rirsdlw6y5smlGg67cbn758fW2EfYnOF0pcCCFGiTUGYXK+HIwk8ipXjdH5dYjwviNnTzcmtCp4qB9YFphGeQ+VgsfnR2KUhszRXfj73/wd93fiIgnBS6O5n1Cwvuf/6qYgS8N5aQtSzCxLkFi9MZDl3leVxdq2Kb8v3DNp5/zm4wf+/ONfIAu7MMdA8InZXbndntlM95TlHShhlgFkLc8UF6SFsywqjFKMY4fWiWE4MU0Dm82GfphYlpFl6ej7E3fHFpIcJC+XE7M7s4SRe3skRTngRT/i5kGeq/sG0owmEXNkGuW+XhTCHrO2XDEO4tAurRRG5Dzjfcc03ajsvYhMZFCSgxIRVqHtim7QInb7uMg9Iwa62xMxjNx64bg0bUlVGWbnQQWG0QGWjdqvTvNl/Uwk8riuawCwhSwCzMqKU1kQG9okyjJgC812V3L/UPLw5i3kzDTNjMPE5TpitKe/iutcIU7tzabl3bt3aC1FVVUlpRApQl1v0EYcWPM4siyZjBTxtI0cyMUFIfDspm5oann2HvZ7uZ9pjbXiBL3eLmyaCVfNnM9nHh+fmZdAWgOkmYzJihQiQedXcdlau5byyLU9zBNKg8nI+2AyPg7k5BjmTI6WO30kRymgyumGUplbfyH4mYQnTYHNBnb7O6yRiLtRSvAHOZNTXKPAgpQAMEWxFg7ZV1e+bJ5L5pXzaawmRXHKS4u2ROO//fY7xlX0MUoJt1MbFjzX2yd8WDgeP1JVb/FBfu6M4DkSiaxWfqNCmLPLhDYR525cb19483DP+fRIVdUSwS4r5rmjKg3RS4x9GDu6YSRS8eZuS04enxKZyDT1oDVV0WC1NDz7vLD4BWNbikL4syE4tC0IXmJgYUnUqkZXGU3EqwXyhA/i9MhA3WiydjSblrI+0I+Rxc0YJAoZoscgC2xxiU+cTlf2uxZtFMfjQZIPVhGjY7ffoGm4nr/iZhgGx8ObiqK0GBspbIlGMQxr6YwVkcjaDCTu7u4ZR7cyTAs2u5Lf/uE9TWV4en4EAneHjfC5wsLj10e80zT1UdwU3YIxJZvNluPhjsfHL1R1gbGKhGaeHT/99BPDMK5xbU+1MWx3LVXV4EPCuYEUX8oGFClmdtuDLCCnmZSFs4RShGVl2ZK5XK805YWmnPn555+JQZGV8Jm1SquTJOOzICRQJYfjEbLC2oJ+6Mk5kZdADBO2yPTdM8EqknKM85mUEsfD96Ro+PT1q5yfkqAx+v6G9yOny6+kPGJUwi/PfHh3jzUNMWfmyUn0viipVKbrbuusYcmFZXaOrGCZ3auLLpPFQbUuAtP6/M7ImVBpjTaWnCKPz498/foZBew3W2L0FKUmBsftdmaaupWn2rHfb/ApvQqGMSYSKx97jcTL2dmTk2dZBubpgmZm6J+Jy8Tt1jFPA8M4YG3JYXNPVcv5OK/ukrbdURQlVVnz889PvH0jotnT049Ya/n2hz27fUVZZYax493Hhvs39/yX//I3OcdkaLcl3377juenkf42sd8fMLpgHCamMZKCYrOrmKZIUXjc0rHdVKgcaeotxmi+fP3C8bjDL2l1Xu+43m703UIOisXJ/OMWR1NXrxihFDOLn8gkunEgXjM//fQFWyVMoXj79o6ijCzLQlWJo9dY2O42vDDbd/sNhS3Y1CXDAN98+5FN25JyYHQnxqGnu1mK0kg7bLFjcRMQWZaMMRvmMVJXlqbZ0NQ7zqcb+/2O2U3UTcH1eiWEwOFwZBgHcXUiMdK6abC24Pn5jJ9PKC2L3rbZklPicr3gfWJ20vzeblqcW5hnh1m5s8uy4GZh+So1EZIUAmTkvKi1CH1hdgzjF7Sq0EoDJaWH7eZB2IjDdTV4ONz8RN9/wvkbsxuY54lpkOSU2u7Y7kr8ciapSEwFrTqQ8kTf/0JRLJwvnwi+p6oayJkQE27pGccby27g8fkT0zzx5v17cpKopzaG3fGBEJyIbctCyGv5FFESPkquNaszSk0s6UaIE323oIfMODwTI8wuonUh+I1lwfuASqB1QVFqKUBdsU5YS1WUVFW5lgJqyrLG2EJc7j7S1C1VVbIsTrAKKbDf73n77r2wNK3h/v6Ooiip24ZxmjhfrlyvN1LKzM5hrRYet9Uc9wdsofn10y/c32/RWjFOns22QmuDfYrsd1v+/vdvyEhBVNf1uFkzz5qsXrAncH9/4OHhwF//8vSqCcQgjNOcDeSKFBTkwDzKoryqa1TM3M4TT18vuKXnm2/esSye6/nK/d0bPh7e8+nXR2pruHU9dS34oLK0vH9/R8qJ8+lK07T0Y884jJyvPUZbtNUUlVoTY6XMlP1AVWvaTS3mhiSCmHNn2qZlnkeWJXC7DlhT8eHDOx4fv9D3Nx7eitHop59+pm1bDocHJidIjJikWCljmJeOee744du/I4TAu7dvGccB7xf2+z3LsvDhw0fmyfH8fCKmTFFV4lhXBdfrjV3a4JzHh0hdt9zd3ckyoGi4PzxwVYpxvlE1jeAcvKTPtBJeoF7v+8GLFmEta0ILtM7/yu7NmWFY8MtEXOeqf8uv/5+06L7Y0L33pCgKrlhQ1frQk3+vriq+Pj7yu9/+PVVVYlcLez/01GWFtZZpmiirijBPfF0h/UkBWjLnrw9MJXbb4AMpBqqiRJelZPNDxK/xs7ooef/2HdYY+r6nLgtuPkjTjDXrzcuKMr46EfXKVIsxro3Ae6Zp4scff1xFLml9OZ1OIvZMjnl2OOfYbDeAPCgOd3uKsmB07vUwkLO4prJfmL1jt9nigpctnJYt6WBGuu72onUJrD+mVRwM69a7JKZ167C2cwKv7rmXoeKlxVdr/frzNU3DS6smIGyUtVn4JZqsNMLtKMtXSPirEAevB7UXwcto+Sq9ONlemrucj4TRCYzay5bXuYAqCtIK69erYw9W5NQad81ZmHtGBbSeGKZHympDVTfESfg9EnmQyJ4IP5mqLjFFRusIBIpSE4L86SFIk9yyirwKTc4LXX9mWRYu1xtPzxe6cSYEkcqU0rR1LYKFMVLGEWVokvdC0XW9DDAo0IrCFITgMAZcSCQqmqbm7u7A+SLtaCkEhv6GteLief7zMx8/fuTDu7fcLjeq0pJTi0IxzQvnW48tDG6Zha2ytk2/iDmsB8yisIAIJsqI8O7CSxugtGgqo2iKElsaTmcBDzd1RdM2hOVG132mrDXTqNBaXKhJCWsoKVZXRlo5YQJJxwhrYxpH2d4m8N5xOn9mt2tom7crXyzw/PQL3p0xJjNOC5tNsTYAn1FALGuKYoteiwfEnWWY5wWNoS5bqrLCWI1fHKgo5RXaA57J36jKGoWwt6ZpoLAt45QZ58TheEepxOG0LI6QhC8yDT3X2xOu1Dw+/4qpNYf9W7CGmBwxCqi+rhoR5QtLXCIpJPIq+mA0FoPRcmjY7nYCi/eeGDxKSwysLMRhoqwIvsF7UgpyiGc9aLDe87Jwt1KQa7a0JRo5UeuVU1RVNTEbUpLCmU17lNKJGAT6rKTFzLllLcqRwWuahBs0TRPT8Mi2uVEVM3/8lz8TYl7hr2tUP6c1piNlAfvjgaqqKauKaZ5fi1a8lyKCsCzMrsfYwOy/4JaRu8NvyXnH5y+fV0evxxaaceoIYeDWf8H7gbq0aN3z+7//DxgN/TyRUSyLo6lLrv2Vl/odW1UibmgRYYZheL03+GVlWawcx7oWx0WMiaKsiDHglpkf//YjbpopiwK/LJSlJqfAPF0ZxzNog7GtIAVSxphiRQtkrBEBKKVARmG1IvieaXjCLSN1FTg9f1mF3JHrRSJSKdWrKC5xKGNeOKLihvZhEfFZd+w3O6yOaKsYp47FOxoayqJFKbnf2KKQzbdeBTWVsCYTUkApz+SuCJjbUlYaH3revP0IqeTx+YLCMGe5t8QcQCXmONB1J0IYORy3q+PvmcslsbhEYRvqqkDpUpxISr7PLz4brTTaKBFFFXLPJRHjQgwIioHMw8OetvmOp+ev7A9btu2GHCN9N3E+95RFjdItp9OAdxL/2+0PbDYNT09fadtaHI2zw80jf/nrj1gjImdIPXdvt+y3W7w3aF0xdAumrRjdRCZSlc3KyJTEgUQCJbrsg4jF8zwzDU/smitVOfOXv/x15bGp9dklIkYEYpJl2X6/Z9O22KJkmiX6EXNAK49WAR9mFjdTlNCPn1n8xMPd71Ac+PT1C4JSkEXcMHX4OHC+/MLiO5ra8tMvV/7jv/9/YHQWTtci8f+mrnBhhpfIUimwbpI8p2632xoZE9c7eZGFQU6QNVrL8lAbYSyHZeFvP/0N7xxWa2lkzwGjNf1wZZ57Zj9iy5asWpxLWGNBqVdup1n/E2MgEymMIsaJvntE5ZFxSIQwMAxnYpg59Vdpkn3YvDZ2S6NkidUV0ceVbzbKvRNFjp4cJ5SJayt1YBzPKL1BYai2bwgrAjas59embSBFYvRUVXo9gA/DCZQWnqouGIYrbx4arBbX2zyvDt4YicEx+YVxnCQWHEZ2+x0+BA4bccUNwyRDWDQ8PQ18+XpFaUkzvHlzpN0mjIH9fo/3C3XZYkxgngJN01LVFXVVUlcl3377DUppTqczIc7crjcWf+Yf/uE3PLzZYm3BNAw8fnmmaRqUkoFnmqAuDxS2p9k1FHcV33z7gdvtTHfriSlxf/9Av7YU9r0Mam/e39E0tTwDfMZ7cHNmt2nYbVs+TTMpCl/T6oKcJCGTCeLATBPFyvSqKi1O/pXVGbMRhpRey3/igPcTtt2QEejyPA84F2g3W3lWjx0h3vD+xDCJGwjW71VpMLpkmS809YZl0RRFTVVanOtBTczLE4+nH6nKzKYtmZaZz19/5P74AyaKyyyGxOzWRSkJnRWH7Y7rINzwkNKKk1lPr1k44GaNEcoyThi/Rpv1XBtZgmPqOzbNlqau+c3ffcfnz7+IKzXNTJ8HERgLy+JmYpxRWp59ddXKdZWNLFuTh+SZ/cAy92yainm4ssydtHs6abUNPlIUFWUhM8TiZ7a7AzEHJtet88KE3yzEPPD7P7zFWMvlcma7t3zzzT3H+5q+68TVojOfPp3k+1RLK31OkcP+nqZVIv5m1llEnKJVVZMzhCURQuZ2HUkp4eZACJawSGlbVSk4aLx3XM8d7958w7v3D1xOAxnNeO4p1qRRUdX83d/9huulY+hHHt4+8PMvP9H3I/0g6RMbEnWjMAbaTc04jGsqaANIUkQbmUV3+y3BR27+wuU8UpVbvv32A58+/Ur0nru7DeM4cPrlxN/95rdYA8aUZPTahr3hdHpiHDo+vPuGptmy3e7puhs5iTCvlKYsS27XjvPlTFU1XG9XylKu5zf2gfPlyvmp4ze/+R1vH95Sl4Jb+fj2W679mbbeUVXVOssZOdesCBu5zhTn0xmVC8axo27ek1VGrbNhUWRCGHDzWZb7RtP3M36R71DX31i8mFFIE/N8Yhye8EEE1NKWRPUyRya865mGnqo8EKJl28Ky9MzucZ0pF4pKEaKjMS3zPJGi4tY/s9lsGMZn/vM//mf+0//8PxGCNPO++/CBzbbg+fFKzjLrZyIYDVlWalplco4okwihJ6UbqEjblnQ3T3dbsFbSDSjwwVHVBdYqlnlBKXH+sgqFRWHXf8r3L8WA0mLYSMmz229QKMZe+O113bLf7Ykp0LQ1kFZe6MD9/QPH4wGMph8GccAfd2tMWFEURs6lfmacFt7u7vjhh/dok7ndbhSFJmeP1ok//LsHdruWEAUPRVaURcU8RcZx5O3bLcviMVYE0GlyWGt5eDiw2x0hG2EChpnr9UxVGbk3a4XRltPzedUHKtwSeHjzhqpqmGfH/cMBsudwbNjvf2DsAn0vhUF3xzvevX3gzZs7QgicTs988+1HQvKUTc3p8s/Mi0dHjS1r/BJ5PnWMc2K7NyilOR6PpJhWwc8w9I7Hp6+QMvvDnvs3LdaWzOOFp9MnMo67uw/c3e94eDjC2t6stREBNSoUDRrB7/gQqBvLf/kv/0jbbHn37gPjPNHPE/vdlqqu5PNZFwUy5wfKasfhsGcYrmy3G7779ntxz+oC0IJzU5ZtuxfWblNK4kabdc5fr7WyhBjQSnM4HOUMU2rmpaNtFupmj7ElcS2di0mWof/WX/9mgW92ApBMKaHWgbdpavq+e41wnU9n8hpbysmwuIW2aZnmmWmtmxYni6Fuajm0nE9S2KDE2OUWv8ZLpY7+ZbBVViJFL0NCWNs8NdCUFe/fvMWsw+v9/T2n8+kV0l+VJSqxxlRWd1aS4RCgrmu89zw9Pb3GzIzW3N3dcbnceHx+kuFFW6qqIs6Jx6cniZ8shjk6rDFc+36NcVqBS3thDCzeE6JUfxdlIawuv6CQi2Ych9XOLx9026yFACGi8CIYJoGDvrC6hB8gr/Ul1isgX/NqaX5x1tV1I2JgCKvgJSOZ/Lth3UIrqrJ+jdC+cEde3i+1xp+tta9sM2tKlsULH25tftMq4qMUagj/Tb3+XKusByRKaynLYj24BKwOPNxXGNtxu0rVek4FMR5QSRHjQlEWIrSEtObfV9BzdCgVAGmyeWFEal2KPVspaU9dhZeu63h+emZ2CyFk8io9ksHNDnE3GqqmFu5VVUlNt9aEEHFeeCVSF5+BgWnusaYkxB2ZDZu4YXILwXsKawhx4dKdMTZLc9hy4d/9/n+grDQpeqZ5RAHOTUBeXa7x1bEpTZUCAO76DvhXBmJY49qm0CsnU26Cxsr18/79e4kNhYQ24J2nMDBNZ07nXxjnkcPhNwQvLYhqLcVJOYkLTWtpnc3glwmjPcNwputO3B0f+Pr4KLFnPzD0Z5rqCLkges80D/T9lcIk3r97T8qOlBNxcTg3U9iapjJYm3EpMM8TNtk19laQkkdps8YHvGyO2xqjEiFOLMsVoz1gUBGKQpHzTFU2GFuy+InClKiAMH9yRJGYhp7L6TO2yMQ08/T8maopmFz3CmL3ywyI48BGw0sb6EtsW4SzFxHFEMO8fiZrpbvOuHnCvnxPU8B7+dzyyklMa0xaKWlvrIv6teU5BHEEyqWj1vi8XQt6KnIERUFTbyFnTpevwFrasN4jq6ph8eGVtbPdbkXIj5aURfibnUd0cbNepR433zBlvcbhLTktTC6wBEdZlNz6G2RHDGdcOHPrn8RNVmiykp95Hg+0TYNzC1VV0TQVKTtgxC0nnp7/irURazZcbol++A6zq1e+ppZ6+nUxoLSmtBWsooHWBh9FlDEvMaYUqYoClCYnieT7IMUVKUdi9gy3C4WtaKqK77/7htvtStOUnC+/yMY8Bobhym4vDji1buZCXpsbjRHnYfZE7zGFYhpP+OVGip7L2TM72fwOfY+1BSFMbDaNOJqjsAINGjc5ZjsxLzN+WbDKoFG4ZYBClmgwoZRE+4QYoICSJJ5nyrKUhuc4YYuEyom6sgzdRdyatkVjWZaRGDaExVAVgokQIJtHJU/TFCxLZH9oZPOr8npvmpmmC1qLw2m72zBNmXEaadrNylLV68AfsbYU17AWflBcAfqsAq3YwD2bvaVq35IinC9nyspidEVZbIhBHPbbtqXzMx8/vuPbb78j58jteuFvP/7Ew8MD23bD7TbJfTZMwuL7sMcUwkq0Zodz0hLfNDtsaXk+fSFnjVJmZalAVW0E46AEU1HXtTxbbClxEwXzEohkESdIqLzg3JWmEld1xhJTxTyPaGMobCnO63AjxmfG+cxtODONPWVh0Fq4nW4609QbaeesGuqmwPmOlHuG4ZHH5x+p6oixNd2w8Hz6xMOxYJ6FCen9zOwDpIhOWbbzSjE7QaW83M+1VjLAIOVGRolzOqaMX8LapKqZ/YhfZoYxsWt3vH1zT1NXjPNAVcDT803argvNPI1s20XOYzHRNhtQInyTMjpLRGocr8RCsSwd03DBh5noA9M4E6Mwq2Ic8WEGvBTa3KRpNoWMnwPeBkJpVtazXwX9QDfcOJgtyyJNl4UNuOlKWTdM04mcWkwuqIqS8IJ3iQmlRdBJwUOWQp7CFkBgngVDMo43tArkKNcYGspCMTxfsEn4s2VZklKibSvevrnncr2QyJRNxefPn7lcbsxOioCqGso6C+vMlDw+nslENptSRHtbEuJM3w3c3R8JPjKNPV+/njke7jkev+dyOXO9JXY7w+Vy4Xa78Pd/91t2u4Nwf9yCUjVV1fL8eGHSC+/ffo9WJSpr3DxzOOy5u7vjp59/4nw6iePKLcSsUcYIiiFJhPqP//yPNNWB4+HItt1RFyWVacghgVEoY1fX8sA0TnIvWGOZwzCRk6bXVybXUxUtmBqjtRRsqcjtdsa5M1W1Z5oW0Pfs9z8Ammt3wvuIwjFPX+j6nwjR4cPIssykGKirisPhDTl2BH8ipg2FVqTsuF5/xpiF5+e/4eZnmlra7pfgOV+eePf2ey6nJ06nC4fjAZUDXX+Tspz9vVzXr0kNgTMkEFHcaBSBhLjVc4KcBFJflvIMD94zDlemseOwbagqxafPP64N54ZlGQhhYZpnXBcwusRNHU275XR7pjiCMnLelTN4IoaBaTwzjVfq8o6UnZxnxoHt7kgIEe/DyswWDt3l8sRm0+L8wuX8RE7CRdXGYk3Njz9+oW4K3r694+H+jmZT4FxHzpb+NmELw/ffv+PTrzfaxpByWEuuAo9fetp6z7cf364RZil56/or/TiwR2aPF15dd+rwXriru+2Wt++PGCPuvcNeeGb3dy33d1sRBXPAzfDuzXvef3hgv9uQYmB2A+/fv6XdNPxv//t/JoSB2S80FJJSyo55Hri7t3hv2O/2GKPp+5GqtkzjxPl0JsXMfrfneFdSlQW3yxe+Pv1M02qOdzvaTcluv6dpN/hFWlW999TVFq0yRVHSTyNN2/BP//2/st0e2O12dH2H8467uyPWFJxOZyniMZZ5XkCV7G3NNC1s2j3b7+9om5aiqLCmpLIFXe6pyw11W2KsLGjdNMn3MSY0Bk9cTdwKbUCbhFIBJW1FQGZxM/N4JcQRN0dSYfF+ZBzhfGl4erwQc8G3336HXzoWd5P7KdIc69xIVTVoo3DzhEJcYOP0xDQG9ltLTJ4QxtUIshDDQtnUvLQRl2XCFpkl9IzzicVf+fmXP7Ld7vBh4XLJXM7PaFVRVVu0lrhsyqA1WP0y1y7E6IhhZJ5vLE4xjpFhcBRWEhwoYenZQvBgdVNRFIoYZA7VWth6L+kC5+R1102ND462rWmaDZvNlrqs+fTrJ/p+lGephqZqOZ+vPD2e12erJAyNtdTthmkcBX1lDW/eHtlsah4ejtKqHEaeT8/8+Ldf2O/btQlY03czxszYwnL/YGh3CpShKnc8P3fkNPL+/XumMREibHelzC4xMk+Jw+5IWTaUpSWDtBG7DlN47h52ODfT9w6VNfOYyCoS08jDw4bjcU9RGt6+faAoSnGSx4kUhI/5f/u//1/59ecTZdFyf3fHOPScTmeqquTPf/4js3NSwqHVK07H+wBFpqkNh+MGbQLn88B2O1BXBYfdlvtjw/PTlWkUIfbhzYa2rZlmR1mW/O4PH9nuhN3nw0TOiev1wvOzlEJWVcnDw3vquubL1xPKZHaHkjlcaTZKzrY6sj/sOV9v9P3walITxmRBzpF2UzEMPTFOaJO4v7/j7u6IUQXW1DRNi9WWqqwIt0AMiRQiiwt0/UTXjaLfgETCV0POMPTiEi41xgSM9ex2Dfv9A8PYcesvuCBR3X/rr3+zwFfVDbYouV7ONLVsy1EZYw1dP2CtRWnPpm7ZtBvKomAcRr7/9lvIiWHoZThKiWxWhlMILCGQFJiipB+HV8ZTUQpzLnjhCpTGUpUF+91OuDAqY5AoQ1EUxBCYvWe/3wurbHVzFNbSlA37zZ55nrFliZs8CXGUpDXKOww9VVXz9uGevu9XoKK4C11cCEuiqhtCzuIwSZnd8UhWcLqcwWiWeZaY4+o6/PDxvYhKN0+IHmklWmH/a4lmTB4fPNYK2L6qKmwh7jpbiLW8sJacxUn34q57cc+9FGoURfEan45il5CImhJ31UuMoK7LdUiNvLQIxpBIL/PeGjl9cQPGGF+3GkZbpkkcjEVRyBDtAmRNSl5EDaUZ3UxEWFw6SfvyS9ugVoqqLKkrGZS1gsOhxlqFVleiv+KXEV1BXQWJzWRxG9SNFFG8iJBu8VSqAjSLdwISLUvZ/qzFHdoIn02bLJthv+Hr10fZ5NkCbYTFpJC4Z6JYMTASE01Fpmka+n7AuRltPDqOqBy5Xj9T15qcRsbpijENh93vcIvm8+fPa3RVgQo4f2OYnvFh4NY9c9wdOV0O3B2/lUjz/4FpWFUlrpMHlohbHh89KSdu/Y0c5SEln7NC9Fq1OkFFHKzKElaI/Z/+/Cf8srBpG4k8lpqMF0juPJKyoW4mUjaARNqJ4iYp1uhjSouwX4iEZcRNJ0gD8wTj+ETwkXG88fxsOR4/rIyZsDbWZZS1cv3ZjtnNzG5a45wTVVHglwGjNcPwyHa3J3pFfbAsk0ZRkpVCFwarzHp4kM+2LGCer1hbUFYFxhbM08z79/fEVPL4eF3jysJuyzlQGFh8R84OY0ru7nf048z59Fn4hqamrlp2my3Plx50IbGulcGmNWirhLHJ2vqV41oaJKyNvB6wtMoURqGMIbhAQhx6ConfGCMb5biCh0MSfyh2ZTaqDAkp6ACU0fz6yxeuj3/jeHzLZtOyabZYDZfLMynKz7rdbbHWMgwD0zRJsUuKTNMonNQM0zwI09FWZGUkrooi+4Gx/4ViuyGrhNYlJMO2PXDretw0Ev0kwsX0M7O74NzMPA903URRWO4Ob1FqJKULKTYYvQMi3fALWs08Pv6VoX/i4c0WHzpygsv1K8fDO06Xz2usWcD5i5upyprj7sDpdqFY7+9qdTRGpdahMRDTSM4BhRHeVCFsxZA909xx60588/4HNpuaxY+M04UYDePYMztH11/Z7zXT1FFVO87nM/f371bXXibngCbhw8jt+sx+38p23E3Ms6MsG9y8UBQSiVPA7XZis9sR44ybJ+appywKysKs38nM4hYpv/EeNNwf5eCLCigCMWXO189oNmw376jKliVKpNy7ibYt6bsnyIHgPWVVALIcu10vaFMwux5FTYigtYjOrr8JD09bhuHCPPdUdSG8PKAoDW6ZUGmmKBJFWTPO4u4VSL7BFGshCBJBFQyHPPNe3c6wRuMDPka+fP6VqiolbltItGHoZ6rmyPW8cL0MFKbi97/7HU9PZzZNw/V64eHugbqu6bqOXz994dbdAI2PC9pq5mWhCiXd7czXTz9yPLxhu93SthuC11ww5CjQ+qpqsdYyjr3An8t/XQ4ti5MG2bkjRIfSNUlpCmuwSuGcZ5y+UNp2LXKx5GTZbe94vpyZJhELfTzTDf+MX4RR4/2Em2TJdnd8C3TAM36pMOaIUomu+wWtZ06nH5mGR9p2JzGjnLleH3lz/5Gn519JObPZbolBFqhts2FTN3SDCMvLIssqKRUSRpzVSmLh2hPDgilajLaUVSNDe4p03ZmmrGnqe8Dz+PSItVqWeGkhLJHr9YZ510qstt7x+dMXmm+/RStxMuUUsYVhHi8MwzN614JOoBXDOLHdlKu7NjP2A1VZMfQd3ebC8Xiku50YbjdhZ+0rieS5sN7LE7fbjXbTSuu092uUS8qxpnnG+5nuNlCVR96+2b+6CnPORALGRvrnM8bIvWLTbqUsCEV366UYrtqyaTN1rYhRiQCZE6QJW2zYHgtysnx8+4E3D/dsNxuG8YZRJd9+9x3HuyP/6//2/2QZBmKOKFOQsrz+2U1s9yIy39/fkWJiHGaszdwuPY9r1HS327PZRWw1M3QDnz79RFVnttsHabtVBT543OIxRuOWQFO3oErcnFBlhVaWL5+/8vbtG7rLVRi3YeGbbz7ifeR8vpKzoigqxnlET4lm0mv8Xpa6b9++p222NGXFu7ffcLo84sLEbtvifUIrw3a7wy1OliJFyTg4ZjdRlRMpOlS1Lo7DgtYQ4sg8n5ndI9U4cr3cmKcLm7piHDTnfqbZbDBqxrkT43BaFzmZwliwRu7L0TFNj8yuI/iKbftbQlpY3CNFCSrPlIVCIa7zsHgul0cul68M48J//sf/ld//w+9p25a+v3B3d0+7K3h6vEj03UeMUUKWSYIx0Uphi0hWN2b/jJsn6vINVf12jc46yJFpuNBdz9wfWuoahnEmesfh7sjp8pV5mVAKNm1D9I5puFBYTX87s6lLyt2OwXVYazAqMY1XhuFESh4fG3yYJAWEcDOtMQQCbpqkGC54FBGlRIAhyxlFWGqen358ZlkS50f46S+fuH9T8vGbA9t9zfVyo+sSWnu0Luj7hRAz7cbw3fdv6buO4/4NyRaEMLOEwG6/o6gq0AVbdtzfHxjHketlRKuK4A1GK6Zp5M12L+V3hWW7bVYxzzP7jpwS22NL3b7n8VNPWQk/+U//8he8X5jHgX/8z/9P+n4m+oVNU3IbJklHlDVJJ3b7kvuHA9fbha7r2bYNbV1yd9hTFy1DP1G1JYdjxe4g74fSlr8373h4s8cWaXXBV3z5/IVxcsSwcDgcsRs5M2iVadsSbQJFlYlpoqruUebA+XyhWRZinATrUYmgUJUFZJimGecm3r97z7u371EUFEbmDx8S93cPPD6t2ISYsNquTklJW5CEoauUsMHbtmZ2HTkHDvsddb0lxIVhTMyukjNnCiifKArNPF3564//lcvVsz+8Q+lZzkMpCFver6m9HKmrhsmNjONIJmEKyxKEaXq9fWWzaUjr0toYQ1PXK2dVZjUfHOfrE26ZeTr9gjGeEHqu1xGAcbxgTUNhdxzvxHSRkpTiLV6WYePoVkewI4SJlDwpFbgpUBTSdByiR0uzDVkbMBldQIleFzfixM0+cTgccNOMLRTHwx6Uoqq2xBioK8t+23J6PhGcZx4mbFXggyOFhaZppIhDWXKG2U3YXNE/SYEjawNxyoHdoaGoIj4OVI3hd7//Ow5PO5ybuMQb1/PI9RxXVx70N8vjk6MsLUMvz7Z2U/Dz386cTiIm3b9p+fDhDV+/fKa0Fp8VKYEt4P7hSNNmYirWaPFMTJq2qYjBiBAfHE1rpKRj7kmUCOfeSYxZJ0xpKauW//aP/8LQeY7H+5X3Dg9vHtg4OXcU5T0/8BEfE3/56y+cLzdiFtay1sLWS1lTVYb+NlI+HEhJcT6dmKaF7WbDdz98ADxKJZqmoLAV9292uHnGB8fsPKfzjU275be/vSeEQN/35Jzp+itx5VEe7448vNny5s2/5/lrT4qapyfhatrCYrSibTdstweWsAiSbRJ5LGZHUcgSOyVpKxYjGrjFYY2VDoZmQ1GIU3OaZlISMdo5t2JJFGVZ0rYbQHF6fkLlEk1LVR05sMP7Aa0WtA7YfztA798u8IkDZBG2hBa7JUqtwp7CrDBlEfEi59uI1TAvM867tdU1MjmHXSN/l/MJ5xdSzox9939wqcibNM8zViuKsoCUKQrDNI0y9CJHV2Msb9684fL8zPFwRClpshvHEZQ88LTRPD09iftuBWo65wTanuQ1aa2p24Zms2V0jvPtxrnvxGZOIJAgzGRdoixs2pa3H9/wxz/+C/PamKOMFEIs3lOt8dl5fnH1iBAJctCu65phGPA+rOUVL7zA/CpyvkRr5f0X1900OaqqRutibfKR3/9XYW6NzaYoRQXrRv/lz38R9kIIa9uO4Xg8vv7+S0T3ReATJ5i8DmvK19ev+FdAslJQFgX7w4FpdhRGYttuljZcyJTl2rYL1FVBU1vGYcIaTVUo7MreGrpevlMqYsuF1k64WaFMRUqZTVuzuOH1/RELumWcBIpfV9J8+vK+SHxCxFGlLXVdrIdEiX0rpVA64d2Nab5w2N2vXL0Wtwy4OTDN0tzp3EQMF4bpMyEO3LonrleJirZNQ06eHAdy1iSlsLYiJscwSaTm6fQ3Qhioa80SMp++/IW62srmdpkkajMNxAyo+BoTP1/Pr27LnBTGGuLqkFQKtH2JR2RCSBhdrEKfYxiGNZZb8903HxmnEWUSy3JjGHqcC8Q0Ef2ItTXOO+p6g0Jj9Qu/MaDywjTeqCrNNJwZhyvez2s0ZAZl0cqwLA7nOh7e7JiXQI6BHBPewVIGlsbjvMM5j9ESu/XliDWKFBNVFViWC9aWuPmJFFu0OaCVtGVqNCorUpxZlhFj1BptTMSUiU7YgLfbE+SSsijWbfUL/Nui8KBmDnc7MuIE3m2bdUM+Qwxs6kq2YGGhaqr1Gpa/P0ZxZZZFIVEcMs4vwtFbS3BCzFRNCSZhrXAgp0kiIlL4ITH6sipFtE5ehFursGuhRgxB6u0FRor3nmWRMoMYM9vNlrdv31GYinJb8eF95Pn8RFXXaFWsrlPDfn9gmAaaZoM1BcFfUXi6/syH93JtkDNhEQBv8BNufmbQF7TO9P0EyfPxw7/j+fkTTXPA2oSbT8zjidHdIK+Oa1tQGE0IM+PwiXk6E0LF+3e/I6fM0H+iKAIx9lSlMMSm2WFV5vn0K4f9Gz59/gvd0PEP//B/oR8vDMPMP/zuf2QYeznA57TGcpM4JVJCFRprPG55IqWe4DXbzUdiUuRcSYud6+huX/F3R5xL3PrP1FWB1tX6XeIVYXDrnnkoCsb+zHYjRQjOLWgURidut8/Mrmeb5FpNWaDOrHyp/tYzjj37/Y7r9Ym7uwPTKFEqayuUFo7VOEworbBFxXzuQWmGbqA0iqoqaJuGq79J9HXxTNOFomgoQ4VSpbgxWAhhvT/FYb3nQvCJXIBfEt4PNNWOpi5panHniJOqxyhw08A43DBWE16YqYg7dRqkGKCqMtZWFOWWbVETFlY2W6YwmsIo6gZSnDE6w8oyUaYEjMSIrZICmSQsEu893i+vcHt5vljG4cqH93dcrxcBLN+uzPO8RhCluOrp9MzsZnFYTwN+9OgystneE6NswDebHe/ff6AqW+qy4d3byJenzzRtTWFrYawqy3ZTMblpdbtbnHumMJpxukq8RQ4c4sg2ayRpeqbTFzTyOebkef/md5yfPtNsjxRGMwzPuOnGNA8SIzYGn1cuZJiZp2fcfMX7gg/1bwlBMQyfKcpEThN1Lcu9lGAcb5yvX7jeHrncvvCnv/wL/+k//Se6YeB6G/jw8X8krvdkYV1KvCmlIJe4ivIsVAPj/AXvJ5r8lqp6R4oLixO3aN89MqF5c7+n7wdu3ZnjYcc49bi1pKJpGpZl5np75t4opvHMPLUUVYGbx/U+aOiHJ9zSU4vxWbhGMb2eV+Zxws2eutH4ZcbNHSGUxCDlQE29eUWY5KQoTIluC+bJSyHF+YZKcWVFviBG5DpevMMvZw67O4pKGumX1XmkgmfxM2qJGAXTPFPWNQopBOuucr2UtqYqLORE358wOjOPVw7vN/zm7x84PU00TUlVF/zlr38GMrfrlb670fUTMQQKq+W+7TVWl8QIZWnYbltOzzfu7nY0taWsFN98+1aWYPOMLQxVk9kfNpANMUohwtv3e9592EEW3t8wTCxOWL2bzU4WRcFTrgVcSsHT8xeatqKqKk6nM33f8c0333C9duJcjBEVAyEGjoe3EhdNiX/4h39HoZsVc2LQusSahk174FjfYwt55o9r1P3FcQOCiJmmkbIypDyjCFjVoI3Fx5mwyDM8Iy5PdGBxF56f/0I/wK1P/Gb3W0K4MbvbOkAVXK8dZVHIfa4qyWlgu6sJceF2nTjshK/tQ0fKIi6kKIziF5HDFAn0go8do3vmp1+iOGTmgXJKzD+PxGDRRgpqshIHvqRm1jOlWnDziHM9ixO3otE1SiWm4UZZGGIagJl5ubBNmpAm+rFHFZGn58+E4GnbGuc8EvmbcFOPVp7F9aTWsiw3YtA0tTjr+v5G29ZcbzfIeV3uJ0ENrG3vd3f3wlf1C8viuN1OeB8oCjlHDcPAfhf45ts7fv155DY6ytIwj5lff75hizPex9Whqvnr5caySHFf21T0vWOeF57cCUVNu6kwtmSeZVZ5++4gLq9RXDNN07A4RV1VLGFiv9+zP+xX8QGGUQrjqrqVwh9doVLNf/uvfyLOht/8sGcaZ+7v77FGcX/coaxacTVw6zr++KefmBfPOM0UKOpaA4G2aeluI9YYdtsdj49PjIPMRr/5zbdk5UBJ0/Z22/LxmyP9cGVZAl3X03eO4/GO/T4zrIVeIUbGeSCjuLvfcTgW/If/+Hv6zuOXzDRP5AzXy439brMC9RWmKPnmm2+4XM9yBswLm01LUViMLmmqVkQUDN4vtO2GshJcz9fzI+fLGWsLKf1Dop8vM3MIEUVg7M/sdx/ZbbZ0w5nSSjy0LAvG/kayhnEY2G13FFaRWRiGMxmHcz1ZSbFXiophHrhdR8bRUbfVujAtXhEwsiAbVrRLQutC0gIpU6yopLpuUcA4dqsRY6bdFGgjjdjz7FYMimb2kfLtHUuYcfONBIzTyOFwR9edadsHpvFCCAO2sKhcvaLBXrjry+LBC4N2nhdC8Ng1XlxVlpQiIUQRAw1s6ga7lmzWdYVzmb7vmPqBum5p25ZhnNkfd1iLGBK8R2tDd7tyPB6oqorL7SbN4tpI2shH0Jbr9RkfCqaxQ2nRON6+fYP3M2/ebvnwceDzp4G//umRpm5QKjP0Hl9GvFds2obL88Q0ekBMP1pP+PATVal5vp3R1Gy3kZQ9WmeaTcW2bWVpl9dSxbiI5hDFjVyUBU3bktK0PpcXdrstOcnyPwbD+XTmdgpYXZKT4f74ln64cXe/E4HK7olxIanM4hPH+9/xp7984pdfH0lRsdm0bLc7np9PXE43Pny4Q1Fyer5xvcjZqyozbhZ2vqBXPN7MaL2WkCiZvX7797+j63rmyfHp02e+//57tCk4nS60m5qqLChLmKeOeQr803//K1W5ZZoi0+T44YfvuN6uzM6hjSUty4qWE/zHdlvz9u29LGbGgevlCf1dQVlIuapb5jWNJxqT1YY392/wMdAPA8PQE1bEi1KKum4IwdP3V7abmX44UV9/JqWO6/VpLUl8QvH/Bw6+59OFRAk5C4ywbTjsttIm6gNLfAFrF4zjxOXWCVMLTduWawusgZQkA60U3STWWJ3FpRaCRHirUtofq7Jg2zaUpQD3S2u53W6otbnUu4WyqvDLwts3bzFGYgvn85kQRKDa7A8SN1zdN+M0MznH5y9fUEqLam4sd/f3XLsbP3/6xDRNLEFs7C+p0qKU0oSQAsZaxmnmj//yJ6ZpImVw4yhCVyVOOu/9q2AG8FJeEVae2zzPq8orjX4vlcvSVJNW9VvIU8si5QEvLazGynAIsklkFeViFFtgSoGyKISdk9LKCJNqZoDgI1ppafTK/wqof/lyzvP8Gv8timKFRcdXyH0IgbqumUYB98+zk226EnD1YSucxRDCGi2QDdPQ9yw+UJWK7baiLKK8puwpq7Wp1gi7yQeP0p6qnCFbFlfig7wGiRayxsjsWuCRVtdPIngRLcqqxNgSaZHKDOONfrhw3B0g2xVAqygrSz90TNNnNo2n7zvq9sB+++/QtUA4X5qepumRrvsZpeMKiB14AcgfDhXOfaEqHTHU6OZACCPd7RdiHBl62Shb2zK7G8N0xi095IJffv0zb969wxSK6/mM1obD7h1hmUkhkpQMRQp5gNnCohXk7AhxIPiRwm7RqqAoKmL0eD/RdU9st1s27Y7r9ZFpHmjqEh8Gcg50twlTeHa7E4f9A/MwolKkbrbyXc1gLAz9E8PwzEFvQC1AFv7b9sDsogi0PlBV8Pz0hc1uyzTd6LsrOUWKtiVnEeNSkhv64hZyzFRVgTUVMXiqqmB2CzE5np5+pS7veGi2EhFERGBjPEsYmeeeTKDdbFZHl6XremJSNPVCWRaoJCJuTJ5luZCCkiFt7ln8ssbzF4w1KGCePYUtmIoS6aeJ0qi3gC5AkakKjS2k5l4OC369VxiM0WRlQEVyXHDzjXny7Pf31KUmZYmPhhUXEKMXdEHOoLK4i1KQwTxEEtLiF1exbhxHNu2G3/5Pv8E54fGxNoRZXXN3fKBphdfiozQXxujEJUYkF8KZmqaFsszkPGNIoNZWTTfhpo6YHPMcKauClB398ImnZ82Xzz/x7Xf/A3VV4VyHj455miEb5tnJkJ0SSo1r02+gO39muy1QFCzLbUU9iFsop7SWY0SKEhITw/zEz7/+lcNdgfMBrYtVHLcoVZGS3JNBmnN1Zi2SmPH+zOIfSdGszVzvGccrIc7EMBLiwDSf2G4VOU9cro6xsHx5/AVlZDjRWgQvN3f4MDIMJ47FHjff0Fqam4fhRMqBSyfqwziKgJNCJAaP1tKe+BKL9n5enXL69R6sWuGlFtbidWS73eODZ54WOtuTs8RiUpI41eI8t24gRmg2LcYkktIoFfBe3DLLMq3CUs/xeEdMinl2TKOjqTuJOavI7GbGsWOeRqZplGa0GLCFuJW1UtRNg/crE9ON0jSeA00hxSezloi0NRGtFmwhhUzT2FGVct81qkCpkpSURGKMDHu///3vGceRvu/xi8TJdvvj+pyUdtrjcc/5fOLr1yd+88NvCcHz/DxwOOxfGbBVVb+6IAH2uwPXW0eha/7jf/gPBC9ulRQzZVFSVxve3L+j3bz8/+ByuwAS+1xcpCwNm81G2kIrRU4iWNp1qRnCxDJPpORwLlEWlpQdXfcLRiW+fv3Ed/W/pyotPnYyaC8Rj1vb+AooFBMTWidsaRnGgetVU5YbYhrBZ1JeWZ2pQhlIBGEbpZHJnThdf+bnX1u0kSXrp89/QqsWpTarU+xfRdqcEikvoDwh3Fj8heAHcspoKlCJaTjTtJbgR3RhGMavbDY1k7ugOrc6YW7UdcntNqMVBO/kPpwX5vkGlMxTR1kW+AhdfwINkxvFhWIlHhWCZ1nRIPf39yzeSaTQzfS3K8F7Nu0O5xamcaaq7pnnSF1XxBU9kMlomximmbKyuGXBFgVVhr4fmCcRDI+HOw6lFjZRmKSY5XYlLBHvZ9q6Wsu5BLDd3QackyWwCLrLWnQ1MoeF2Y08P1757//0E2VRcbd9x/l8YbfboXSirGUJ+vGbe2L+yPPpwp//9DNKWbyPFCbKgKsjVbXhdh3JybDdbrhde8hwOOz48PEBtEMZh8qBb77b8v1v7liWmX64cb3cmCYpqZgmube0LRhruV47TBF5/2EHueN//Pd/xzAs1PWW7bal6zrGfqAwdi3YkmV42zR8+vwLxkbef3jL23d3qFRidU1RVihl2G4PDOONHDNYxTjO4kxbkS5Ga4rCiNBSlDRNRYwTVmcO+z373Z7z9YkrPVVV0A2eZT0j+xD49PlHhiljzB6lHfN8QmtJt3ifKItanFVVy/Uq2JOyFidnSI7T+RP3Dw9AxPu8ui5aclLEnGQp6We+Pv7E5XIjMeK8ouslTvjr5wtVsacsj2x29/jg1vTKwHazX4veFDFIi693s5wZhhulaanqzDw9EoIhxZHFD5xPX9BqxljD5AbyLTDPPcYKU80aw9PTI9vtDpC0yfG4YxilcV0rhVGNCMbaErxEM1mXXWVpOZ9uWCtYk3EcpVyobUlJhCmJjhmmURZC1iru3xaEsKHvJoypVixSImeFc8LaW1xiHAM5K7JKLMuA0pkPHx745W9ngpdyoKK84+6+lUiltcyTwy8ZsMQ0CeaJSFEoUMIazTnRdwPaQFlWdLcBv0SSN3z69We8KzC5ZBoD33wURtb+uOPtwx4X1uKwwnC91diy4J/++FeWlXu1P9wRguPxS8/hrubh7p7bdeL5aVjPgTXTNNFsDCkVzHMkFAuzckxrFHa3O/D+/Y6hd3z5/BUyvHv/ga4f0BqKqqBupCnWL5l//u9/oq4O3LoJa0ru39xxvpzZtnuUknIycYMKOuT+eI8p4Hx+RlNyf/cWlTQpxZX7VuH9vL6WPXXbcrle19IkEdObpqGuK56fn4lBQdrQNJ9p64Jb90RIIzmPNLXFTbJsKIpSuJkKtIqcTp/pu2/EFYycN7SGvhvxPr7O5g9v7kTY6gbm2VGXDdfL9XVp92Jo0cZgipKY0lp45V6RMzHJImEcB4qioCxLxmGmbQvQma5/AuB2e8JWFr94lsVitEfhBPkQHa2R4q2wOg3neXl1UOWcGQdHuxG3pFtEkMt5TWwp1p9TnMp1rjC6YJrkmXTYH6QQIYLSmfuHA7tjw3ZbY7D4JfL58xNt2xBC5OvXL/iYVpbdvJ6fapSO9P2A0RuUsszTyE8//UxV1hSlpm4Kuq7DOXF5dt2ILTV3DzV1UzLPgZwjMcqCKyWZE8Ypcvew4Q9/+J5//u+/MA7SrPzu7Qc2uxrnRvruxR0p9+aiMJJW6kakbGziegFbCNvQLQtlKdDa26Vn275h6ERYrArL7Tbw3//pj9RrAWJd23XBMaFLTUzw1x8/8enLkxg+tOb5UUxSl8sNaw3nkxh4/BI5PY3U1QaFI7xbU4PKcHoeuFyvHA5S6Ljf77leL7hJjEfn8wlrC4pCEGFkiVobpdEqr/fDCjCkCMZYlqVDGcPx7k5STbNc38taiFpXBW1TUZWGotCgDcfdnrh4krI4H8QhnzzL8rLMkuKucRLm7PF4xzRN63CS6boB50ZJOxJQ2nO5/o3nc2SarpSVIuaJXfvx3yrP/dsFPhcDz9erPGiAtm7Q2lAUcnj32YvFeol0o8MFaTl9Ot94X9xRFaU0/jjHvEgZhff+te22sAURca14oCosVWHxy0KKkd12y+VyeT3IC9BbWr1unajtx+PxtRBj025omoa2baVB0opzph9HumFijpGc5M/eVC3jPOCWWS6eeY0cr0wqv8jBNMS1CCDJ8P0CljZakbKhbVpClGH/xYG4LNLMo7VmnqVt86XQQmK26yZhFf+MsfL1iC8CgoScXvhbILFcgyGtLjtlCpQWWH/bVPgl0bYN8yRcmpwy1ihhGKJW+6wUmPgocO2qql5dbyEEttvtq4Mv5bC+Po/EhCMpBapaWop2+xZrBBK624q4IIJjpqwMi5Mvd11LZLUsQamZTWuIITO7hcU7Up7QRjHNsoW43q7sdoaiqERUrBrQmbI0ryLqsswoHdlsZfseQmDxM7vtDqXFwWeMYXEOrTxhzfIreIWQj0PP4jtm98wwzkzzSD98ZdfsIG54+vrE8e4tKMc0n1mWUb4raDbthhAW8noo88YzzxfIFbvtbxmGM9P8hDUJY9O/xmijFH4IDB/+8rd/5Nzf8e79e7rhwv39O5oGPn++orSWxla9Ap2zCJroSEo3nPuMDz0xH9lvfiCswH7UzNB/JYWOt/cb+iEyTj3abHl6/kpMC6Yw1HXF9XqiqRvG4UKKjqbVuKVH5UyRFdP0hFs63CKbumGQbRRZ2q27W79GDSfIC9GPpOjWg4p95UKqrKmKEnaWS7gwzwtfvzxzf7+naizaGGbnpJ05eG7uxG53L03JtoQcUCozu4lhHKnrgvPpQtO04q7zib6faaoNWlmUKpjcBGkhuAFdGHzw6+a8XcUMs0bZPfM4s6gFrQ13dxvevNkzOXHVaqOxNoFaKApNWAYKq/F+QWVNUWxJQaN0wpaaee4IfsSHRRg/KaEyxATLPFMUhqqoiFmuqayEk5lXCDzI5iorwQm8vI/392+4vz8Sg6GwDcaIU2Oz2TM+9qQig1EMw8wwynCilcLnKPEP72nagqbVhHDhuPvAptnRNAWnyzM5l5wv8vCTyyRwuXylH248n8+8//A9s5uJSg7YZVnjl0RK8t9nNzLdekxhhFUZR87nn7m/fy9uWR8oigKtwOiCxc/EuDBOF74+/Y1ufGQJHZfrZ2KSe18/XCjLO47HD4QoAr4PnrpqCYunqJCBKywss8esjMmiqAVMfzuBTgQ/cT7/jDETMSGxydKIG2+75e7uQN8PFEXJ9XYixAlj9szzjXE6S5OfkvijXctTgvdsNxtSEiAzWZYUwn7bEELgejkxO7/yMaEferbbGudYXZlrQUJbM80D11vH4Xig63t2uz3L4tfCFIkJxyBN1jnk1QEXWOYJs7JNq0qGce8DCkvObo3+LOuSZmGaB6ZxlPZYH6nbFlAURUlYPNEHnF9QKJS2r0OuMYb6YGkbGUT0K7x6wbkOt9xQqoZsSSFRmlbE45iJeMZx4Ncvf8IYGTZjTOsSzzAvjnH21BvY7DMuwA/tO8ie3W6zDqvjyl816+dQsGk3TG7k10+/UFeav/vNA8e7ncSebEtRVhhtqcqWvr8RvSzvhmF+hVSnFFdWHbhZ7g91VeB9z3FXsGmltffp9BnvS/RVmKk5ScPc9fbEMAw8PZ94//F7pom1cKDC+4xfRBAty5ppHpldBJMpk2UJM6fLJ96++YhSaXXcC6xeoVic3LO6/synL3/hfPtEyiPD9LzGKAtu3YmquuN4/AalLWnlwZDl2S7f5UAMA9E7WWhMHWVxoSwiw/CZTA0seJ94/PpX4puH1cG+sCyDoDi05XDYc3p6pmk3soBIDqUD0zQzzT1atxRYNOBDxLvlNZ3Qthsupxug1khwh9ZaYk8hcLtdKMuCyzCsrhRBUlirRXR7YZJpxeX6TMwL9w9HxmmgaRqauuF66cTZhEbrwPXyhc12R3+7wHZD8BPkJKIcmV1Zcbv11FVDXbeyREBc5fM8yfMuJ4Z+ZOgnSp1QaYN3CWNKdlthgx2OLW/ZSYkEGaUzh7uG/X7DH//4I303s9u1vHl7ZJ5HbpcZReTh4R19F7icRvwiPEu0sDFjKohBzgwxLfggcdyPHz8ijfMbvnz5yuIWdrs9t+62RmMtply42++Y58DTY4eh4sunz9Rtw+V6ZbvZsdtt6caR492Rx6cvPOzfEdLAbrcRPMjsuTu0KGQozDmy2WxQOq2Cz8I0OXzw0jasLXVdU5SWpm05n08UZstVP7PffiTGQMoBpSJVVdL1kjxY3EJV1ux2LT5MDFNPSo5x7IgxUlYNOXuG4UbfDez3C1VdUVaaGMUhb3QlovA0EYJE+xYfeMFAZxTb7RbnZy63E93QUzeWolCEODOOI0YbPIYYM2/eHhmGCwnD0J8pbKDvJ3a7lhgHcp5W18+CX2bG4XktFHvCOItzAVRkmm6Mk7CetZZYcduUTNPMMisKW7Hd7qSEr5Dv+jj2KCX4ls2mZZpHbtcOgEJJMqkfBsH5mAqlNM4tpJTXs7FbmyoLjDmScmYaR+ZpLRzMhr/97YR3mbpRzNNMURuabclue+T9+4KnpyshzGw2FTlLm21RSPv2dme5f9hyOXspbmtqQOH9QtfdqCq5nudZ+KjffvtubZWNEu28XmlaS1EKSqQsFgpbcbr17DfvCMvEPGa2dUF3G/nnf/ojdV0SfKBtK74+fkWtrd0ozX/9pz8SoqKuW9w88vPfzqQkZX+FjTw93zC6oL953JyxtiZ4TXf1GFNyeu7pui/sdlumuWe73XG9PvPu7TtOJ4n5fvPNNzK3JVkcbZoGuxonUlTkpFkWEV9dXCjrmpgDl9tZEBbrM7koNG1bsd1VlIWmsjW3y4xfHOOKako5EUPkdutQOmO1oR8GtpstdVmtiZQSUNxuPVqvfHbt6fqfmf76hXnpKKtECCMJRz9cyUmx2+0Zp1Ge91ZRmMwyd/hlEib4NLO4lxKzQq53K0xXmwSRklISHIKTRfKbt28Yhn593o2vc6C1lr6/sd1uVsOHNCOzIli8T4zTiPeBu7t7+uG84qEmWCRmPg2w3W7wbsC7kRC9uPFWp3rTVDgnRVPlyluXkvlMVdVMMZKTtLznnCnKQlAkMZGjlGQFH1fnt2fTbjBGjAeLu1CWVkq+nr/y/ccf+Pbb7zG25PR8oSorLpcLKFbExyScaFNgV67r0/OJsjSUZcHiRGzfF1u6rufrlwtVVfPtd3vOp4l2U3O83zIMI03TcD7dWLyn3Ujx0hIWysoAll9/eZTnpl8oCsPXxy/cxyO2MIyDw1iZGV/clg8PR3FyjhMpSZJQ6cg8jzJrZE3bbEjeoqmoypbJjByPD4xjzzhM9LeBn/72M5vdntPzGR8WtFWUdUnXjywhYAtBcSmlOT2NoApsVa4aR8Gp614Z/rdr5F/++S80bcm7dx+4Xiaen3rGMVJVdj3HWxEmSXz77feUVbmm6gSl0t1u6MMeNwufv22O3LqBbz48oKMgZdyy0G6PlHXJ/Nnh5xnnhFu9225XlmLEL4rr6UxbHzl8uFuNY2dQ0jVR1w3LstD3I6Y07Pd7+r4n+cSm3fLp02eMsTg3Mww9ttBsdzsxxuhICBMx3+iGmYxHq82/VZ77twt8AlCTDfa7t+8pWYsusjgw+vHC7AJLjCxhtZIqRYiJp+czH969QWlh5LxEzV7ccbYoRH1Fsd1sRDhcg8myHbNcLpeVC+BfxbO7uzvcPDP2A/eHI4+Pj+Scub+/56WEwjlHSolhFLdgWVWcL2eKosAtwstbUkBSLJlxngQQrla1XKY1YlpQKmOIr66dlCT+kPA0jWzBxWFkXp16L/9smubVFTfPM9vtRmDyKlPVctCdvPwdKct2rWkblLZ0/fAqCIYYBNweZQO02wrEMScvMZPCoLB47yjKEpNkeFqWhd1uJ404ifVizngXaNaNqFJKDgvWrvXyqxMo+LWtSZpbjd3K5t9AWclnlYJfnZWQ1EsJiockyrr3C+TIbtuu3DFx8fjFYXWGJEwg52ZxyRiwRqGIq9Mo4FPEmErcI/NMURR4v2C1EjemEx6hsS0xhfXGLTZxtZatOD8Sk6cpLbao5HP0mRQWFJFxGlAKjI58+fpHVG54euo43h3FKZcm3DJjTcnlIo6euq5YkiflKFwHd2PsF9rW4oMnp5mkNSJKRBQGvwSaJuL8lWWZmZYT85cTRemZF8/1Fhn7Dmt3aFuxBCkeUEBpDYlAzhMx3piWs0DKfaK0B8gt03imrDMxim24677QtDX9+Iy2C8+nz+QcqRsLCEui788o7XFLIPgGN53QRob7rjuBkuhB8OumDE3w4sRr10HPuRm3jFyvXxmGURpfQ+RyubDdtbjZCRw2JMqiEjcLkXFylLWVB9/uQNcNwnucOobDM4eDcJ2Cd2ilGPtOrOZTJGclWxofGUdhRM7jzLbdEaJs2YfuyjT2OKNo2xalDdM0i/u0bokvkba1YEQbKTtoNyWbxgjzBAFaG+2ZXM88XamrCklmtkBcSwcyMXpCGDBWtprej8K5ciL4l4XCmkTOs9TaZ00KkaIsWZxnu6kJYRFBhoAp9BpHFxv6NI1YI9EOlMQzU4ocjgesVQyzCKDOLYAnOIc2hqqWWLE1lu52ozQnmvKZ/e7ISxMreKq6Wjezlr4fub+7h3VDFvxIsJrFichd2IppHLhdB+Zpoa5LmrZFYXCTB6Q1fZqED6MUEiVKmWDiyoPTjK4nXRMpO/leqsA4drLYyDNu8hwPB3JyAqPvR0hH+mFkv29IWQpSqqrCzY7JfaWu5YA4TE9yqMyR6/VE1UicQ4qZEkWh6LsbTbvBaOFFtpuWGD39cMVohV8mCquZp0l4lFmRY1rjd3JdO7egtSUEz+n5maZtqesSWxiUMqSQxO1gSkigMFgjxQ3DMOLHkWkeOd7tyQmKomSaRgpbUlc18xyw1jBNHcvtmegTi3NsNiKIK2WYJnHSTNNMWTQsiyevTr7dPjNNPbObcdPMPIvAFltxIqYYaZsN3XKju/Xs7+5wsyMlOfR3/SAuKj8yTQt1VQsf0yoUAa0jix8pbCZFLW2qNpC93MMhUlYlf/jDP8izHMvj4zPWWqy13LpnYoJ202Cs57vv7/ny+cr1NBKD43y+stlsuN1ubPc7aZ7PicPdHY+Pn9nt9+S80DQ14ziKAK6Fyzo5B0pEHVsYxmnELcuraDiNI9ZaNtt2LbdRXC5nrN5TF0/sd0dichgrYmZVWfouEpSmH0bevnlDSvLsCn4E0usiqCprhv7K0+OFcfBsd+K6sKZgnhwpqpUFLIBzY4RjSFqfGSvWwy0jl+4rMU9stjUQ1ga3hRQVLinU4Q6jLNNyEWezsmhTkpIMPT5MFGUp0e1lZBi+YvaRaX4mJmHxzNOAUoFqrOQ+ZDLGCFPUuYmm2rDdCtuuLAuKwtB1V1SWlvEYPEPf4ReBjStkIXe7dbRNJiZwThhvYS3/6vueg9+y27XMk2PoOqqqoSwrltkTC03bNqS0ME2jFB6heHP/jhyhaaSxMfhAWZQMQ4dWimHs0VoxPQ08Pz0RljtQmWWZV3eWlK5YU4gbrRcB+XbrOB524jaZBhHStcEYGaSnaWS32/HT335hu92w227wIdBsLU9PX6maipgkMvjP//RXYpQo/vXi+OkvF3xwuDmTs+bXX55RueJylsbpoiyIXjHEQM6W86kjBE/TVjg3UZYl1+C4u7/jbz/+xNevz/zmh99idEEMkfv7O6pSY43EiR4fb/ztx0+8uYevXx/5/R9+T11XnC4nwX6YdYGrAm4JvHm7Y7drIQceH08UuoIokUClJep2vV1IKbJtNhTvC9wycz5LFFQp1qIsy9PpRF1eseqR0+mvTHNDNzyxxCvCoIx0XU/bbKgqaRhMyfP49Stj9x2FyajVURZ8ou8mClvTdxO2KKmqBr9ExnFGq4KhfznDy2dkjEGvzlG3iBuz63riUVwry+JQCkLwVFUtgHgVUGph6J+YpmdCCrjFMc2y1LCF4XR6JMWR/X7LPM9UdcUwdRijWeaBut5CThhtWNxIPw5SEhcTh/2OorJMTgqJJic84HkaqauK7UZijcviqAp5homwbZCiME2OmeAjZdmwLLJIvXUDKYiTaL8/sDhBJCllRIjphdVZ2ApjhWv+5mHL/UPkehmASFvvOZ0GpnEmhMzQBzabAlsoNlUh/MQF/vrnE/d3D5Rlh7Wavh9IMdI0jTiPkif4uN6DPJtNS7tpmKYJbcTZCYFpdGhliTHT1BWH/R0paA77A0YF7g/3PH79CrQ8P534479MbHdbni/ndfmkJOq5JBYfaFopfZrHhHOB/bERc0aAJcxorSkKxeV841/+JVBWBd98/I7zaeLx6cYwJCCsy4+K7jbRths+fPggJXfdTZjT/YRFYWoxVWx391yuA999946sZs6XCyEE9muKLHQd4ySi7aZtxeUexSwy3C5smnv2uwOLC+J2MwXWipv8cjkRcqCt6zUFVVLYkufnZ5TSnC8nrDGkXSblGecXlpAZ5ytqWkBFbFHx8ObINHpyzuI005qqqrE2czk/klfnYFPXTONtxWYkQoq0RUVRVSQyVVNji8A8Luz2BzL/ikZI61K2rmsW73HTJKz3GJnnRWKsxpKivAYpCowoFsrKklIQPrvOBC+lfMaAcyNBKSkNWcRp11QtKaVVsAroNYUhzyURwQGssYQkMfamLdlua4bxxpv7e0ojnFJrCpzzq6klw+rsKsuG8+VKu93w9PVGmP9GUdSMw8A//OEP4mZ0jvPtyjQ5cTa21Suqp64LxnFknEYKayhKw+0iLPK3b+94/1HKcdwc+eb7DX0/M4w9wxi5nq/4JRM8kDzL7LGVWs1UE2NvefvmDUZ7OecR6buJlDLL4mk3DVAy9B2bjWUcncwOVjGMDu/NGuMP+BAJy0QOJePo2bWWpin57f/8e56+Xnl8/IqiXfmpmX6cUFa6FjZFS0iGsm7R0a5FP1L2EmLEWkVVlRyPco9/8+aeu7t3fPnyiFKZZRk5Ht/T9SIG+qBockFZbDlfnri/axlHx/6woSwrmrpidvKZT/NIYQucG3n35lt2uz0xlnz85gOLW3g+XVE5rzzSTEyB3VYKQ67XC1XV0rQN5EhKhhw1ZM3d3QNlWa6orO2ayszCV0eY92SFmxdSzAzjxOPXE8+nM4fDgXazEUSWKdaSVI8tEINIpQhzpK4qtPlXFNv/t7/+zQKfUoq8Cl5WZeZpIgXNm4cj3TAyTU6g/IVFrZD5nBUGwzQ5+mHkpVFndo6cVxgzEgOdJ3HZNU1DURRM00Rd15RWDuKbdvMq7r24ga7Xq4BlrSFGj7FmddlYZjcRo6ZpG4wy3LobzkW6YSCmTAoSjXv583JOKA06I26aJK9fmC4LSicUka6/kGKgqA4olQRhnUeMhmWROm+lxDWmlYhKdmXC5TUSVJblK4zfLxmbAtYoKmsARcpxVegD0peRcYvDaIM1lrKwLNFxPO6wxjBNF4KfaTZbYkqURUHX9xgjrXraKI53dzw9PRO8CI7LIvw+rdSrSxIFRhvyanOOa5FHXEW/nCLKGKzWYORApJWA041W0ha8ioF6BVqnlCQiHeNaBb66iJZAyh6lA0WZUYhL0lrZpG92EvGSopCesqrx40JwEMNCDHKIFDF1Wd2HIo6CKPviFqhfo8JaZ4xNhDDTHGoOhzvmeeZym1cgbJTtpjLMbqKwDr8obl1CqZlpOqN0xBZWmmhtvR5mLX3fU5SGppZoz7JyvPb7Az4ua4lBQVmU+MW/vu7r7QsxQsrj+vdeGceJvjtRV3ds2jfs9m9w842iEmbRZi2M2WwVIQzSJq0t09BR2ke2m3tuwy80qUApj5s9Xx9/5u7uiPcDXbcIa4NM07QEn7lczhij6bqOu7s7hvHCsvTC1zSNRMGBxTm5t2V5aJ6v3cqs8txul3XrL210Oat1y+eQlmi1um6kdVk4H4nL5cLD2wMZhZtndpsdGiX/e5GxJnK7faVtD3TXK7t9Q4oSSSrKgkop+n6iKDJFWckGVQlrZ54GfPBM08iwtlXbolyF2VqcL5cOvXITXmJGXTcAiv1uw+IDVq+Nz6tIoZTHLT3GSGt0oS3WJnJUq/jqsUYT0eJIWCaMhqqsUN6jVVqH0BvT7Gi3R2JEnDUqrMjshZwCKEuMSjap2xZtLviw8PXrhe++tWQ8RaEpSsgLXC4XTFFwdziyaVumaeSSpHhHinZalLJ8/fpMWewx/Lqy6AyzO9MPv66ieuLaXdjttmtrsDCCvnz+kR9+85HCamIUl+E0OpwTRqRSis1Oym9utxGVxd2rlMIWpZT7rAucoiiZl5llcUzTzG63J3hxqj0+fWW33b5GepumZXFnnJ/phzMhJMAJ5N1oTk9fKauM1plEJinPOJ6ZxoUcF2lwNGYVUkaqusQtnvu7IzEnibwmRVFWIvzEwN1hj1KaaRwwhWZxwh4SoV6RdGYehSHjQ0SbgsvlhtGW4909Ocvhc7vd4tzE6fmZw+GeqqpYlrRCjYtVjCvFGbG1lLamuw3UjSHliJs9l2uP94nL+cJm0+DczPV8ZdM0aN2sz0VxtVtrubu7o7uNHPZH5nmm7zruH/bSju0Xykrc99YW1FWDW8R9eD1f1jhNze3SkZJ8b1x0gkhIicU73DKitcTLay1NoG4ZaOqClBZsUWFXt3ZMUBYSw++7kTqKm/90OjNNE7///R+Y5oGiMBz3e8rC4JxncYmvn098+mVkvzvy5ctX/uN//I+M48DT06OUTFUlOUrhjVpjRNZCip5PX098fP8dKsVX3qWxitPpGW0MD3f3uKVlmqf1PCBuWmtbFJqnp2ea5g6rf6Gq5Jnm041p/kxRhNUh4zgcDsQY5Lsy9Xz9+je+/fYtdSFuz5Cgu40oZQlB4kObTY1Wlq67YHSBmybAUJQFyzKLGKAibdsyzTN933O7ddzf370K+l3f0dQNoAnRU9cbxvEZbRSX6yNaW1LUNM2WshQw/DCcOd5tWbzwRYfxhlZKMA8rb84YwzSPLL4lZXFM73YbhtFhbcXkFqq64Xa70DY1m0bA3fJ5FOsiSAalGCJVKQzJtm6FE2sK3NKRQqZpNuz3B2lQNwXGlAzdGWtKyrJBayX8Zy94EHFv7SmKEh9ksff1y8DuIGedlOF8EYZWaQtykobDaezRRlGUdi1vM1R1Rc6JwhRYW6LUQlU2KKV5fv4qKJXCAonNZsM0OrbbHYUtORx3tM2W8/OJGDI///QLylrKpuTL16/YwgARaw19P2G0oapqQoLLeeWo7kphpaqSvnPEAItbOJ8Df/kLlKXl/uE9z08zz6cz93cHZjew2TZoMvPsiTHw3Xff0mxK3DxSlxW38437447bcuH9+2/Y7y2z+xub3QGlvzA7x2a74e7hjsenJ8ZhwhiFypndZkNhNNYI8emb9x8xysIq0iqT0FqiT9O8pl6GnqIsePNwzzhJO3KMmS9fT5RFsToSR56v/8TyNBLzQFECKqF0IKXIOE2EGCRxYit2m2Llbc0sbmKYFoZhYRhm7u5aKStQEGLAB/eaKJimCXVVfPfdN/S9FFQM/UQhf6EMZc5Li/X6T6UMIWSUCis2ILLfacbxwuJ64orjGIcL280WPw8s00jKC4uTxvOQlTzTR4lv1nWBXzzj2FGWIqYtXp5zm01NWdYorRnGURakWVGVBdM4obVCaWnv9THhXWK33a/38YnddifO56IihrR+NoGyqrgOV8qywWiL0hZFJGWNtQX73Zahn5lZeBvv+ObbI89PPX3v+fa7O7q+o7CJb/dv+af/9gv9bcZ70MqD9q9LfW3AuwRZOIDjNOKjxeqKoe+Z55nDvqCut4zdQF2XpGAYhgtNK88dKU7wLAssi2caBxQbhn6mrUuaTcFvf/sHfvzzL+IyjxFTGoqk8SkQ1896fzyQVKZsLEq7FVmUCEGi8jlFjsc9b9484JaZbz7u8F7Yb+N04+3bNwzjiNJW2n6Todk0dF3H8VAzDBMfD+/XRYYgPBY3ylzmZu6PB3a7PVqXfPzmI8EHnp+e5fm6opbkOr5n6Ea8X9juthSFXkvRYJoW3j60VGW9ni1nplkSEiknYs5SVBgCwcv5xYfE6XTmeDySs2YcZ/aHPSHM1E3D4sWx3fc32q0wU40u8X5mtzuw3T3w9csjWgX8iiPYbFqapmaaF5q24e27t4zjxPHuQNedyb3ncJC2Y9aiD2sL6qZimia8j7jZEWNmGt3qGp3XpnRZEjnnKYsS5xxukWdn0zTUTSXphOhfsVExJtw0Y5RaEQjQbjfUsSGkKO8JrItVwYCJgUVKJ0KI9MOIVfK9RVlsAV3X8xKjrIvM4mQZqJVm6B1t62nrGjcvBJ95fr5y60bGyWF14OefvmBtyT/+v/8bd3d72m3FbRBUS4gZqIkJWQZrcZWGQYryJCovaIOnxzP7w4Z5DIQI7z+UvHlfsdlu8K7kf/9f/kJ3jUQvTsesFZjEhw877u+3/PK3R56eztRlyzhM7PQONwkTePGept6TUqK/BVQOGDPSbhuatuTNuzsu5xspGtzsiVELIqgxVOUG7yObTUvVGLb7iqYtySpS1tX/h7n/6rUky9bswLGWLdNbH+UiUt9biRIkiiygG+BjA/3bW6HJKoKsKt6sShkR7n7EFqbNluqHaX5uvScfOoAEEokMDw8/e5utNef3jcEPv/pH/vK3H/np61ecD0St5bwSxDTsXCAmkGcGHRxaR7yfeHr6yP5YoZVinh3/8I8/4JxdwyEWVFyTmGBt4LL+/ppmIs807W3AWsvj0z1JgrwHNRz3B/I8ZbfZsFjP68szwcvy4/H+jm9fv+LsjLeWvMzo+57UGLZVjQ0LfSeivDzPeXx4pK629H1HlhaUpTAa8yLFh0A/9Dw8PFDVFV++fRPEU2LYbfcoDM8vZ9q2xaQJ9aZmWgau1yv74xY7TtKkMOJ8mKYRFZa/dzz3f0aCD7Ispc4MWao57h/ouw6TGW5fWxbnSbXi6e6OaV54aRpCCKK3xnC+3UgS6Pp2jc6nEANlWTBPM1EFOYQto1TqgDAF8AEfAt3Qo5HL43f5hESlI3WV4+KEd7A7HJjdhIsWoma4jnJZQ8Co3gc8AR0i260c2FSUCkmIHoBhujD0A48PP+CCkgGMt3h3o7n+hEkjRabI0w3T3NFPz2TpBwgHMd7qgLeRLNGEaJlHS14WLMtMWUoNSoybnkQnECURZHSJCCkCznUotgz9jA1RzKchUpUl1lqIjqE/43xHlil+/vknHj/+kk19JDGJgJajx40DxmimxVFWtZhnCNhpITc5abLaWLVsXLVWsh2McpHTSpGnwjKTdKAXplqaodFYa+UyjXqvIP+3Px95UMuWzZgUa51sTHWkKMzKoxjxVoZA4zizLI5jumWxI3leoZQnhhl8xFphIOapQRuNSjRhUevw4PsAUcDigieM74KYy9wyTgod99Tlke22Yp5blBrJUtbY+0BQkmjb7/eM48L1emGeL8zzjdmNYohKIm+vz9yuLZttzeFQU5SynR3HCaKm7weU0vh1GLAsC2VR4rwYemKMnC+vxAhpmhCjkiqQQqCzccLaljTd4fwFP8nLKksFAluWFcNwJc8N0yzGzbZ7Jk0jy3LF+gTnrfDbRsgK2dakmeJw3NH1I0oZYUEUUoGtNxusWwidlQtgkXG7NvTdQJan5FrSoE3TkWel2A0Xy/c4btd1DGPkY/oB7yPXy0UeklUtfAsdqbdb7DKt9VjI85Kq3Kwae0U3DDgfGQaBYzfNDZ0k9F3P5XwBHrDLLJ9xazFpio/gpnnlTiiuV2E4OGfpu44YIEky8lwMufMyMg4T1nrGcaKqNqhEo7UMW6xdUESOe1HMZ5kwn0wmdmA3D8TgcE6242kWicqBDhil6NqWaWzWepmm0AmJBmsH8ly4INZNOD/hnNTfimLDMgurpF06wAsoeBzRuiCsApU0VWiTcjoKs6zvZzabEh8W4srkWeaJQGAa5KV1f38vLxMlFZK+a9ck8IyLV76+dDg/oROPpxfeaJxYbKAbQE8dZVlRVSkh9kzTTeok48BioekGfAgUZUWayWVjHEU8kaiEcRD24g+/+IFhkDpA13VkWY5WCfMkIpJEpyurJkWrBGsD87IwjRNZmtO0zzg3M44dSht6b9lut9ilYRobQGrBwnDNmaaRcZwoywrvFNM4kiQaY2TQPAwdu+0GkyQ0U09qsnVbl2IXsZ3GKKxTt8gAJ1EG7wJJkZGlOakR+2aSKFmUREXTtHz48AGzVsITY8jRbLcHpnXLW28qwrKw0YZlcaRpQZIoum6g7zq2mwpUzuG4p2k6nI3EoDBpil0cRku9vt5u6fsJpRNJakVPROrHIURuTYNJEpHzuLByBjVZWnC9tJIi9V7SInkOUTFNlrAePKqqJklzYStlYo2bFyv2aK1YxkGYpDhJ4ASpEzo/48dAYhwqFqRGnh1utlxuL3jnyHLD58+f1u+RIrqMsbeo0jJrxfH4hDEFy3xj83GDXRzTOLPdbenHTrbYfUtYxTdlUWASSFMwSvFwf0dqpH6jtUcn8J15O00TUa1pWJPw+HAvqAgvF66+H8mznBBmrH/l6+uFee7QxhEZMVlGZMHaSNs2RARtsT+UaCWsoGnuGaeJZZGNt3fIsC1PsT7i+0kMvIjcpOt6fvjFL+iHjhgi4ziRr5gJpbTY4hKzspxEfDCO83uKIU1zIKATxbL0GJOxLIGqSuXZ1jTYeWaaDCGA9yL56vpWpC5FxtAJM6neFjhnGccFk2g2m4q8KLnd5HuitAw0hmFErWIFlFhyE5NKEnZeKEoZrAszR9IpIShSk3HrbpRFLZf9ccAD3kWKYsNtamkb4fmVVY4GsnXREAlM47hC252wAqeZu7vjys+zaGWYhok+y94FY9vNFmKk63uKogTWhXHCavvsBPid5wQf8C7glAxQgocYNM/fnvndbx/5x3/8LX/649/ohpl6s0enmtlO+DngY8BOlu2ulqR8VWInwdiEEGRxKxEAqqqiLGpMklF8rOnaga5vuZxv/Oa3v2McLM4ppsGhTun6M/XURYGznh9+8cNqzQ4Mg+V2uWF0yTSOfPz0gNaGsszJ8xIArZVc0JFLWV5kYtAdWlmqZ7kkHoeJ3i7Y0fD73/93xCg8J4M0Ubx3zPNEVIHdbsti5bmWZinPP36VKva1xSQJdVWj9AJ6xvozLvSMiyxG6vqIdwhnN3i6tmezKdEqMo0DSonsQWlD182UVSmfz7Tku0VUKcVmu+F2aXl4eEQbxXdetDxbM7JcBmzWSV2tbXuslXSzSjTjNDBPi1QoTSDLDcPYyOc6eqJ36Mwzzx1Eg7cL0zSQZzllUWGtJAG9k4vx98/tsuQYo8ky4VmnJmWZLH23ME6W2/VG0/bURcE8T9zf30kTSMklsGkalsWR5yUhSOXx7fxGkqQQJQG4TCOLdQL3V4quH1isxaQJWV4wL46huwESqAgBnI385eczMXpOdzX1VnH/4USWGb5+vbA/pCQautauF9yMNHX88MsTP/ziiX//v/yTmGiz/P2u0N4s3rJ+PhVzCEy9xy4jaM/D4440CyRG8+WnF3zQNDcnXMVEMw6BstjjnLCZs1zx9PnItX0hqpHHxyOPH/6R//f/5z/QNK3gLrqB76b2GLyw8YyRWmuiicpTlhnbXc0x3TFPln1e4GxBYo5M80ziI9ZOKK2ZFy98xCRh6C2pUXz98szhtBUhTpVjbU6RlRwPJ/IshxB5fnkmBk+WfU8HXVimEb2rVzi/l/rvOBKj4npr1+9fzXa/Z7GWppdzfbWpAalnJzHh8fGR55cXYf2mwm2cbh3zbOm6gf1uTze0IrlbRswMIYhEQM70kvDa1hkPDyeMyVlmvw6KPYnR+OBJsxQXAl030LYdeV7wcH+3oqfkM64REdylbbGLMOaOxyPbXS0J2EUY8tNqi0/TnDRNKdchoFQcZVn4/bmcFzlKSfDEGMPleuXtVRKidb3FWnnHyf1RGIIJvKOgVhQ9dpHhWZola7hEliT7bcrpvoSY8Pp6oywr5skyL57b9UqiDHkasYvMJrpm5PJ65de/+hVKy5KqqrbYueN87tE6Z7Pd8Pz6hg0z213B4bhltjN+dMJ5G/W6TFrThDrBGFBGkSkwacmuruk6sRP/6jeP3D8U5EVG0zZ0/YXf/eORv/zxRt/B7/7hE6eHnLZ9RWvFssxstxWJNgydxeiEZQrMQ88yWxlQ76TNmOoCa72cO7cZ18uFsqxpbqM0/hZFagpiVJzPHXVZ45ae3X5Hlis+//LArflKluZ8/PiBw2FPksHPX76ARVpICM6HFStQ1hl1vWUcAzpxlJWh7W5sdhna6JW7P7LbCQ7sduvwAba7mte3K33fAZr9/oDWmr4fUcqxWPlc7w8VWZaw328oyhQCvL6+ssygYsnpdMcyeawNVHUps6Z5IitS7u7vuF1vMpRcPJfblXmeeXwUDm6iFEVRr+xpGEe5R1WbWpA508QyW+z657zZbej78Z8FUKkmTTOKIoNWmNfj2JOk6h2nBlGwFOXfP5v7uwd8JjXsdjsMnufXFzb1hmkaeXl7oapqfvXDR5rrjd2mJk8zgo/YEGjado28esb/xigb4xrjzYuVqSMDj+gj7ybXZbUWJol8gHRClmUURcGtuaGUoqpL6irHuhtt80ZRRoYxoHTJuExAfJ/y+xhYwoLJNErJwyJJFIu7ydCFhBgDbXvlfP7KdlehlbxslmWibb7SdxcOx4phfJMovr3h3MA0X8lMSprscR6iG3F6IkSPQiqwRVEQo/xziZHEQGocy3xjnK4c9nfYRXhUAQs+Mi0RnZRk6RaFpCi/W3atm7m138BPDFPL65siyxRJyAlxZh493sFmu5d0xbTI3xsFGImKaKMIa7IqSdT6kLXo9SAdfHgfRpkkAYIwdexCCB7v3Xpg8Gw21ftD2Hu/cqDk1zQmWVN0isQoYpSqmU6EA9gPt5VdGFblume73aJVwjgMlGVNDJp5spR1iQgCJW1XZOn770MqdwPpmu4yJmEaJ4rU4BYZoM27K9fmL1h3ph9a0twxTN9Q2skDqN6x2W7FaOvhdn2haZ4xqSJD4tbL7Om6jqraCFtyWSgrYUbaRcQAb29njBGO0jxP5HlOmqVrQqzj/HbheNxTlOXKSMikGlhVAssHrNc07c9cLz9RlLJxnm1OahzzbBn6G6nZEqyIVaZhomvPzHPPdrtnUQKvnuaJyhZM04jWkBcFIUasd6RGNslNe2O73QjzYhpJUwHchihJK+8CSWXw40RRVEQvaad+kIP98XQkSTR932KSnHkahHuVFzgbmLAYo2Vg2I/cne7wTurury8Xqm1GvclX7kLLOC2kSUIIIq9ph46ilNSdUoukhTWgFHVeMM+O7Vaq5F13Y5llaJAYgdfbJVAWlVR/ZxlmiG2wxHup6YFfa1gpVbVlmhemeZIKT7DkZGtd37PZlBK7NgmKCU2Bd4qskrquUpq+E5CwVHOEPbRYSfdZawFJBEZvMUkgrTKC07y+3dCJpBu0jmTpag6Pnmke6K4tZX7g6ekz4yDsIEn98g47VomirjfrIEOT6Jzz2wWdJFwuN7Is5Xg6oPRMVBOTPRPmmcCCTgyH44bbdaLIc8ZpZBx7tpuStmsZhgwfLHmW4byTxcDKIDFJtn7fFbvdjvbWU9ebNS2jhcGziCChKErmeUYuu/q9Nv1dgDQMsqBRROFXhEFsoGsNOi9SnB2YlWGeR4Zx4cOnD5SlVMMB0kzMgSZJZJBORCcapcWGPo2yce76gak/y0Y8eHyWkq3PlqqqaN5airKS6kySMozjauWUw2U/jNi16uBjpGk78iKnqrdM40Tfi1lP6+R9OCLp4oSyrOXz0nccD3eE7+nTJQjk2gZiTIg+4lXE28g4TyLPKD3zvEgVIs1JjCAA7OK43TqCl6TuZrNlnuWCG4Pidutw1lPXW8qixs6OtulYZkv8vpBYF1IgWIe+n3A+8Ph0t1ZxYLETJpVDNUoYNIudUAiz0pBKImy8oRTC/Gwc2+2Wpw/3ZJnB2oWvX78xT4FEB6oyZbPZkGjNfr9H69c1VSiJuCoWsuV2C8kituu6qjArw3aaeuZhoEj3PD1+YhklaWcyEeGAHNpUIvWLaR5xTiqA5/OVLMu5nK9UVcXT0z0qkSXk4t+w80DEk9qS7b6iuU5s6op+aOmHjixLGKeGyhq0Vhz2ey5XwWzM0ZIkApn/nkCvqw1t27Pb7TEm4bvsw1qLMSlZltM033m+IhIap1lkPU64d3rFiugkoBK3Xp7kEpAXJc5PqGXBWhnKm0xT1hVDP+CdIhKoqgKl4/rzkPaBNDISgo9czwPOa27XHq16pmFingYeHx+FGbq+V24vLWUp7/YslXead1IlNiaTS9psJfkU4XK70Y8jeZGhlVTJr9cbVblZF5KQpek6fA1sNrv3Otjd6R4UXC9vpJmhbQVBUuQ10yi1R5Nk2MXT9yN9P7LfH0j0Wi1KNig0XSu13OBBcmuKu9P9KkoLK1bD03Y9Dw+PHA57pmnh7m7H9XYBbfnw+YGqqvj//vv/ja7rAamLBS/nzBAV1sW1PhrWVMPCbvfIx48fcX4CFB8/Pbzz00KING0vg7QIXTetpkRNdJY8V7y+nDnd7UmMpMb2h2JNwFXsdxtCNDQrx81aQSMMgwDYldaYxFDvdhijSbMEk0Dfd5KsKQqO252cFbVit9+uiBpHluXkWcbiLMMwyXCuG7lcGy7nK09PGVVVM40DkYh1E1kmUjM3KhJtpH0TFhITKHJNngnL0C0T1k10fcvd3UHOdUsvS5EAVSlVsdfLV/LiEZOkeCvVVec9ZV6I1Ry9nmcjfTeIyMV66mqziiCW9X9zjOPIdrujqjeUZUbEr8zolGWB6BemYWC322ISTVWXmMywWMu0jCzzQr3Zrd9tzTQN8t1MFJttTV7ka1rNUaQ54zgwT44sqwjerZ9dJ3zsKAzHxVrSTJYmy7wwDANt27Db7dhvt3gnz/4kSZi7jv3+xPFwj7Vyvj6f31buWZRzfBC7cdf1stR4PPL8/Mr9/QNVbUhM4Me/PZMmBf/y3xz5w//xBZ0E/s1//xvKGhY7cLv2/Mf/+E+cThVZZnh9bVFBsSyesR2JIaHtGrbbI9lWU5Q5iRHOmXeBy+WN3X6PdxrIcMtEsi7ObtcOk4wE5znsDyg18fnTFpP8gEkUm03FdrvhX/yLX3B+u2JtJFjW84dUSX0MHI97dALTNEjafZlp25a6LimKAu8t211Fmhm4CuJkt9/w8nKl72Rw+PHjZ5Z5FhRJvzDNwu3cHyrKIqOucrQONLcry6wIMefp6QN9Z0WstQ6Sl3lmdxSe7jQuVFXJrbtyvdx4eHikaXoUkOpcqqsx0Pc9Dw/31HVNDIF5HNFR0d5advut3LGso8hENJFlKVUs6Psrw1hQb+R8JqnyyDSKAK3rGu6O91KddDPT1BOjfK+9t9h1IN51PW3bstsqbjdh0GkVJTUbkPaCE777fneUZ2b8fj8NtG1HXW9W3nxOjN/P10oaTuvydJ5nuk44klF5joc9WidiBZ8WkR/lBfMaKokxSOtjkqVqVci99fuy4vu503kRETovbS9rI6+vTgzHgzS+qirn8eEgSdeYMg2Orp3WpswWO6USUjLJiquK0ko0Od7J9/Hjx49MS7uyiQ37/ZYY+1VMM1F48L7jdNySpxVox36/wQexpOuoOBw36CSQZwXP3xqSJOfnn24kJvLwYPj8ywLijrJ0NE2DMTnntxvD6Pj973+BUoHza4O3iudvN9yUURc1T48fOexPdIMgpiIzWaFQGPpuocj2jINfnyGeRUcReSqws7QjsyzQD4rN7sT/7f/+b5nHhXmyODfw8FDzm99+ZJ4Ct2vHshq894ctkYLtriLLC6Y54e3tBdC8vl5Y7Mjvfvfr9Uwpw0ARCPY0zUiaVnz4cIddPMsS+PDhA13ToSKMY0NqcpGfKEF15VlK20jVv8w37PePmKSmyAVPItJOWYxqrVjmBayibTrqssIFqZdHRNQCmv12K6EhIzMh7yUIoo2hLIv/hrW4cH93Wqv7rdwzTLXe82EYhZMZwsIyz2TaENzCd+HpNFnKNPy947m/f8AXoyQBskSqm823LyQJeGsZ557f/up3sIKGCZ5NVXDrurXuIoIJ6SGH91+vrmtJOwFKsYI1xZSaGkNQiswIZ01MmIGHhwemecYHJ6kKtzAvkXm5cWl+ZHKvbDe/xS8WH4XRwjrkkF9XeH9KQ/ABWOj6Z5ZloihrrtcrfTfifE/Xn9nWJShYbEvX3+i7hrJKqWvwocP5RThG4crDaYPWARMio7+xLAlJkssgISyIA9WIadE7NmlBbmb8skAYmCYgJCgNRZ5hksD24x39IJdPY1Lm6HF+QRNxfqZpLiR6YbMtmeeGpnsWuHlM0cqQFSXTKMalvMhACc9EUgBrHceIsESmymIx1EqSeC5GEqGiQpD0YwheEItakZc5RDk86PfBrZIUzpp++a7q9l4Ohkp60Fi3kGtHDIscZr1UGxMTZRs6Qp7JUDdLNXYGgagaEpNwWxl4GvVeo1nsgjEa74XhF6MTTmCa0s0iGIjMdNOPDEukH65kmUJpR5IayipltgOxle30bnfkdNrSdxeyPMW5meglAj3Pcomt681a9zSMU0+WCZND60SSPJ8+4NYNmrWOsiyp65p5Fpafd54sK+Ri5zy2aRnGgTIfeXw0tP0LOrHMiyUC/XChWmP0shHLiUrJC7/MV9h4RlVLvWCaR3a7Ld47nLM4l5IGqdg8v7yy2+5ITUrfT4hETQ6H8zThQ2C73RNCj/MBHxQBBUoxLTPOBlwQk2FVb8nyHL0yzJzzK1dGXuaJkch9XW3WTZumGzuAlbEh4pa6zkTQkmSSdhosxuQ4F9hs5JkxjjOV1qSJwa81yPPbbT0QZGuCxeK9MMbsIlDncZzY7fYMvQxHJDEqTNC7h3uMKdis0elpFJZXWVbkecpw7fDRUuYGbcxqfpRDUlWDR6P1ah7VEaU0JsmY54X9IZWBqp3BeigySYt6hVaRvruQ6EhVbnDWkuhImsphJWoPcRaNvAskacGm1pwOD+uGtiIEYRcty0JV1gzjyHdWqfdwubbcrjemeeDDhyeKvMT5meDFrBkJAvYe12RWZB0sBopCs6kPvLxcmOzItIxYv7Dd1ngf6CfH6binz0Ye7u94ff1GRFPdn1jmBaUTfJDUlIgiEqyd3y8mUgGFqioIQep4aZrKc945dvsdVVmQJMJx0zohS1P6fqS9XTgeD6ASyqrEuoR+GNchs1nFR45Cw9vlTGJEfLHdVMKHmaRqMg4TKkiCU8xxM3enIyrTmCQlhEhRluviytL1koS+u7tbk2ky6B36nqcPT1jr1kOAVJeTMltxEgathQ0FG8pShusxhjXZt+DchTJPiSCD504+i9HLhpmYrNbKwNCPnI6Kutq+2/XqupQhR1HKn/Ui5kjnPcqJZdxaT/BhTffU3G4N1lqqasNuZ2jbVgQ5RgQ0i11QVtKDznqxfSpZXomQKpJogXDLkmdNmsVUsAYmrEN3R57uWOZIryZeXy88Ph4Zp57dviTGnroq2W1y6k2JW0RYVZQ5IUgyUSzvJ6mLZBm73Y6+72SBhiQa7u5ObOqcbb0nhkBV1+Rlzne7fVnUDLkkhbtOuKuXy5Xz9cYyL3z69EkA1CoyLyM6KfFueb/sZ3mOD548jWw2KWWhKYo95/ONyS4M08zWbdjt5DuiNNzdHbCL57Df8fL2TDorinwrw3gS+XvqCmeFs/v9bCRJcEXwke1mQ5JomqUDJQNx5x2Hw4EszzBGrMpqtUwTI+e3V46HA/luS1Zk7NM91suCapon9rsDfnI4bSUNGANplgiLMM8YoyWoiLWRvu0xRgQ5fS94CGutnPMSwzCO5HkhSAelaLsWHzyPj4/kWSGpba1w1rLdbTnd3a/VLc3l8kaaynuiyHNhps3CH9OJ5lDvSTPD9dIwjiPD2Atncb3YhRjRWgYubnHM0ywpnGGiqgrmeWG3260MxxsozdAP7A871Coq2Ww182wZh4FxGqnqUpYM80IM38+MGmcXDvucRB1YloaPHz+y3ZXkZc3zq8hWglO4SYHS4GFaLGnuORw3MsiJM9u9vGvmZRC+nYJpEiB9mpXcmp46wLzzvL1d6LsOpWG32zMOE8ss34dpnnj6cEdZZiSqZLvdkZmCfhiZpoFpkiHT4+MD3759Y7vdMs0T5abg7u5E309sthvGoePL66uk9VMPqWOZbugkpSxLYoxsNjIcc15zOPyKv/zlL/z89QtFnnLY7yEabpeOrus4ne6EnXl943hXElZBm7Q5Al07kKae/e4oSbS5wxhwMVJWJToBnWgW62jbjqYZ+fzxM2lqGIZ2rRMb8jzj9eWNZbZcL185Hg+c7g4rfqBiHGaGOKNUXBOjubBP1USWyeUsywsZkms5t35PCv3pT38mS3P2+z2LXdaWxrha4wsWv1DmFcaksvBaFjEZX1qcC5LiQLBGEZiniegV18sN6wKPDw+CPZjFdj8vi6TZkxTnHeMwURQFGkVRZHTdajEfx3XQLd/B4+FAWVV03cg4rs+MEPHekWcpdSUD82maMMaQZRlhdPzwwyeImr/+5fn9WdO1HfcPFb/53UnwK90rX78uzEsg0RqtDY8fa1AL9W5L28xEv+HHPzXst4/8+te/oKpz+kGWxtYN62VZ450h+IxhCExTiw9S24yLJIWXKHB9Hzu8v5CV8N//2x+Yx5Gm6RjHN379q0e65re4RfHnv/xEkkpCcn84UOSGclOCSvjDH/7ENFqyLOEPf/gL//pf/yNpKqmvYRgxVqQXTdOgVMbTx4MYdpOC0/HE7Xqj774zJQ0hwjTNGCO10L6b8Yvm/u4TeX6gay27HRAV7r/Y9U4r94W+k+dIWUryNkYZKGidsqkr0lTED5JGEyavnD3C2jYYOR6P5GXK7csXYvTUG7mfem8py4JpEgHGPE/rIloCG0M/Mk8zZZkxzR2JzlYWfEWynsve3i50XYsiFU6eErNpngnDbX/Yo3Rkmka549gFlNzFYpTz/Lx+hvO8eK/ZLstC2zUkiWBxksSIPMgHtttqTdAbhnESjtyK9imKEp0oEQatYRHBabHCOP7bv4R/b1L539PMkOWG0iQ4u9B1nuAtoghNmRaLXRbgxm67I7qAXeIq/ZB/hx8+fiBGxe3WyFkoUdR1SWIUZVUQkfuIu7X/nD5MS7SSoZBJUlAJzgYWK99RHyQMstkZQtRoJc+Dx8cHWWrPmuvlhrd6tfFGTndicf76dWKZIsPQrAZeGYhneeTuwUi99OmObz8q7vYf0QYijr7v5Cyfa7I043K+YRfFTz+90HfSQAoBEqXeQ046UXx4OlEUkc02Ic8Ci70JcmmYeH1tuH/4zP/0f/l3tG3PH//4Z56ePhCi4+Fhv37fNSEq/viXH/n27RsvzxfSVLHd1iyLl5DTulSbpnFFJMhSMkbH4bhnuz0SgwS8iiJlsylwfmaaLNdLS1Fo9ruDcBRZsEvEO8M4TGzqHUUuC/zddsdiZTiJSsgLaXJ5J59VqeLWmNSQJAbrRSDzXQoW1nPOOE7Um4q6yjjdHciL700gcQfkecZut+d4OtB2LX/5y58oyoyyrNbvjLyDvjdRy6KmKKq/dzz39w/4lmUBbVHRsIwj83JlsWf64UpdbtlUOY/3n0FBN7TCtLAzZZnTtC1ayYvapMV6IIwMw7RWKA0+OHyQSqeOgIpiTVuHe1mW4a3jpy8/S+omNaJG1hpFYBwv9OMbPm7QpiVJvgPvDd5FYgjrA0cqk4YEzcK8vGGXs6QF1cLYvzGPs6jN6wO7zQeSRKETqTBttluc81L9mkbsYvEukGeKEEaclU2mdx0ajbOQ55HgKiCXnIrRmFy2SApLaiBLE7ruRpqmEr+eAkmykGUbEqXJjCYgF/EQZ4o8ZVkCx/0BHwaUEmuxm3uUTlAqpS63RBW43jrKqhQ4r5KCi9R4A2g5FLvg0cR/jtrGlYmXKpJEkjDWBqx3RKRCGhFldyDgFotZzYYiFonrlFqU0WJQFqZfgiY1GW7pSBNPDBNlntC2wlpIE03XCZ9nu9kS8UQ1oZQGPMTvCvmMEOSFkxfZmiBy75HzEMNa15UtfNf1+DgLIL0opRamF7phoCgyEh1FJT9bNhuZuk+jXGQXN2JyTbEecrtR2BHLbKXK0Xdk2YY8L4keuvbK3d0dZVmul/yZYRi4u7vHOb/CqEWMkhhh2ZRlyTxMa+IrIy/FEDeOPXkuA42wDi6dXbBuxvvA5XLldHeg6zsKSnz0UgFbZpIEiiJjt9tQFFKzi1HR3jr6YabvJ+zsxY5tEk6nI33bUO0quq5jHkfy3MqW2wkIXarlKaDfNeDH44FpGhmmjqos8F4MXMZkK6wZ9ocdyzLirWO72WFnRwyw2+3wwTGOLVmWYJczzga8i2tVWa9wbanQHI9H2fItMoh01uGDWg8VGSEE9rud1FVCFPj8ZMnzisfHJ4ahR2t5JArEvVi16XKAuFwuwr0aZ0zbo7Rns5VUaYoiRhkkt23LYsd3ZlZVFGgduF5f8T7KICovWBbP7dpibU5VJVxvF/Z6JwderUmSuKZhLeCZZ3k5lmW5HtQhRIuzPYqCxXpSpbneZIO92YjtcLPZorVY6apNzZ/+8mcxQxYVp9OREALtzzduzZXdbkvTLLy+vnC6qwCRxBTr92IcBigVp7sdiRYjV1GkRLxE0I0Rvso0cz6fqcuaX/7iM95ZtpsKpSJGJQyLx1nH9XbDB8f9/T1ayUFjmmfGYSExCZvNjizLiDFSVTV9373zO80KtffekWYiZbieb3z48Elq2l7qwCEEyqpiXiZ2u927zVYpJRe8fuCwP+KDpx/69yRtnha8vZ5J05wPT08MfU+MkhRZFk+amfdqSFXVECTdnCTfbd5u5UrOcsEoc/qxwwdPRJgiRWaoqoq+Fz5VkRcYk1DVNUob3NIzTQPL+ozURMoqY7vZkReGvunXQ7RaZSs5IEKpqqoYxlEWDOPEbr9FA6zc3GHo32HBIYK1kaGXyrRJUrpWknx9P8pBL0mk9hQjRVESfCB4xBztHDpJGPoRrQOZUdR1Lsy7IM8I6+w6BNLM8ypDWizOSkrKLoHreSIrJuZlxtqZx6cjMVru7jfsdnt0hK7r6TuL94a6rnh4uufLl5/JMqn6HO8PKCWJgO12R9/3vL09s9vXDL3H6IXgGkJIqIqKEAO73YFlWVBa8flzyZ/+8heapqWscu7u71lc5NvwjWvTsN1uaZozb28v3N9vmJcexfr5HGQASlDs90cA2qYnSRBQeJRLhg+Bpu349vzCbrvnw4cHsS5XIt0yicFZyzxNNF1LjCdMatYzT840yWFW0it7kiRdU5Al/SDJqCQRPlrw8uevtOF6bfjpx6/88MMvqasK5xzD0NMNHXku78osz0izdOXXKrRKuN3ESJ4kwpv0QcRFbgmSWm97Nrsdx/1+RXKIsTPR8oxWSbIu6TRqPQOkmZz55lmexz4EtrstVbVhGCZutwaI7+e6NMnJ12ZHCJHD4SCH2DRlWaTeaxdP9ApTZCu7V1OXNWVe0DeDiEDKklvTUFXFWmsrVgGAJOVCjEQXJfVpZPlnl4VxEEmDUsnKV5M6o1tZrN55prnFZK98+HzHb/7hX7MsluulwTvP737zJA0Op/ny5Zkk0WS55qGs2OzKleWV8de//Yi3Ukn+T//5P/H7f/E7dvsdEc9i5/UyPXC9tqR5xoePJ6x1OKu4v3uibW7cbm9yPp+DGKldJM8UXdeyjDdMUrHZ3LOp9ui4JUlSfvnLX9I0t/d6dV2LnEQnIpoLAakFb6G3Iw+n+5UJB30nz82yFEbly8urDIWQ9+/zyze6dqaqqtWiW2DSOy7XZ263C/t9vjY1vpuhoyBqpp662uC9XWteCff3R87nC32f41yUy1lUXK4XjFbrO7KQ5b8TbvY8T3z48JHId762p+8HmlvH45MM0qRl0K/mbrVWzM16rr+t3OfA6XQCZKnWLz11XQnIf2WcZnlG13VoY9jvaxItn50YJBEqFWBHWT0gfGhPXW8gauwUUMDpeGAYBhENJmYdgGiGoaHpGoqikEUDMI49y+L49OkzdV1zudyYxhGlEkCEBfMizY5ECcU30fJnM44TdhEGmHPSUrDOcmuuqF2CwFG0BBB8ZLstaJsF7zsUmufnVobkk0NpSZT/5//dUlbw+Zc1n3+5YexylH+gzO/ledje8GFhsTNJooTp2vT0/cK3r3+BmJCkBq1YB5oGrTRVWfHx0x3bjWG7y1BqZBwCdoqM3cTl0vP4WPLv/u2/pmtnPn+653R/RCeeutJYP2GylG6YeXt74fn5gl0W7u4qGfalkRAVMWqm0dJ1I8bIoj3Gme3uwH53zzR6iiKnqh5YlhHrRuHKBc1+X5HnGzJjGLzHuZS+6yjLmuPhQNt2bLc7rBNGY5KmlGW9Gn1zsqykriHLZHCFEgFl6KKwRa3j9eUVZz1FkYoI5NOT2NdXczxKc3/3RFlXfPv2ZRUGFFRV9c4zK0vhSx4Ohhg9l8srQ99z2J9kSBYD87ogEMGjJ9HmPSk/jsM61K/J8kwqwLNIUXb7A8MwriGD7J17nueSmHZOmg/DMEj7S0m6zzt5JwpzWVhndf1Ekpj17iML1SSR1leSJO/LtnEc6foOpRKU1iRqoqrlLgyRvDDkmeHWdoTZsS9r8szQtwNEsViH4Nf3ZeTyNnO7XKmKgrvTHcngaJsBAriHyLdvP/KrX/6ath2lbtss7A4nttsNP3/5kTSNFFXxHiRQWu7Oy7JAlMFUmhm6fkQM5IEyJuSlIjEiE5umifP5wjw5nAtstxtOpzsCHW8vDX/+44VNvaVtAmka2Wykcn+7Wt5eznz4WLH7h5LtPmHoBoY+4KeEtEhBh3Xg6KXNQck4LizW0bUjioTdbks/TmhlICZs6oq6ztjuSp4eNySJZxh6UpsTbIKKBcvQcHm5UlYWu1j+1e9/R1HmzMtAoh0kkXnq2WwP/MNvf0VeZPyHf/8fZSk9jLRNj9ZaGJq7/SrZ6smyQvBaGq63M84FgtOrAGVknAZMotjtN4xDS5rWNLeBvn2DmDENjrfXeb2fvvDD51+syewtX758IU1zLucb948ZSZIyTD1ZWbwPi7M0w1pLlmV0Q4/REnxKTb6+LweWecYkUaRDtTCCv3175nIRycrL6xt3t/t1UCmtQ+cX8l6wAXmu13OQw7tADP9/kOAT42VCCBPW90zThdfLnwmxJTEnvjynlHlNktwBAqq2diYmZt0mC8tnmMb36aW86LUILWCtcMp/iHE11QozwjrR0DtnKfKCu7sHEokb4dwo1s3BEvxMWc8kiRH5QCLprhAAFYEFpRfa7kaRa7rujaEXcOMyLyzzRGIyUlOyLD3WtVT1kZcX4ec048BuX2GtDJnGcWRa5PdpEs1+V69Vmoi1YlBpby/Alqo6kacZLhoikdQkeDcyT6OkKUD+nQJi9EsjeXrDu5JIgtGREGa68Y3cVFjbMs0tWZ7grDyYY5SJfaJz4QEq4d/F6N8NvzG6NbmXoJRwShRxjb3KQM5Zh0qc8IecpSh20uU3RsDGdpYhYdDrUFAJA8Ha92k3SHJSLhAwjANZmhFDWLfuBu8t3gfKOlthzRN9P8hGcKsZhhYfHEprsiKFbsH7kqGTQyDrVzN4+fwEL0IPrTTWyiFPK7MmxkTN3nUNRaFY7IBJFSHoFeQ9sqm3lEUq5kuzpWtnIp5hHKjqisQktK3E2rfbDfVThdLw8tzgbYnRsj1QKuH55ZXDYc9mU60Ab/l3K4qCNBUmTlVVTMsCKzfFOo9JU3abLVmevNepJWVimKeBi/c8PNwTbeR0OuK8Z5omgg9irlpaQhTwdYyRoswlHfWdq6hThqGnbQfuDnfYRarbeZoxT5K4EsC9mJdjFNbdOI5sdztRt18aSUjohMPxKBKdjQCN52kEBCwrQ4J8NRDCw+MjWmdc3i60bcc8jQzDSF6klHVKUUjNrr2N8gD0cRXSyGDj/v5Bqm7zstZsM9m8ozFJoG2H92FknqV03Sh1Biffj8vlyjzNLMvMbr8jTRU/f/mZ7XbHdltjlwmNpGdijJhR2I7zNFNVJSaJpJmkbb4fPmSl6FHKYW2LtT1lscMukaHvV+5bTWoyhrHDhSiJiNTwdr6wqTYMg2cYOso8x9oJnSTvFUI3C7vTe0tCiV0is+t5eBB2hXPCgfhunHRu4XK9rGlNset9/fqFYRioqpLUpGISVtB2Z27XK5udXHacc/T9QIzhfbNaVcJwsU4SC4oNt9sNY450XS/1cm04n1/XCpDwVObZonVC27Y8PDyQpsJv04lE61/fzjw9fliTZIq2FQaUGLjBaEM/SEqnaa58/uEDINvvaZpXOK/wV6QCLZzGvMzYbnc0TUP0vIOfu06qwtvdluAdu/1e7IyT2Is39Ya2aaS+7sPKipk4v53ZbOS7GmNkmeXP4eHxAWst5/MFY1JJpSyW83yWd49SsqBCY5dAv3RY699TvCFEXl5eCO+cV/ms78otZZ5i3UTbNAyDoukaUlMRY+D8dn4HUk/TuMLiF9Isp84y7GxJtGIehrUma9ZnZMTPHr8Etpu9bPqnmbZryVa4sPdSmSiyFcHx5Y2ilG11DEG4c16eIV3TUhaG9FCR5wnd0OC9pOTnZUJp3j9T3gfSXJhxURs2mx1td5YkyuDp2onEBNIMmlvD1C/U9ZHd5gFVF7ilpCorPnz4uA5I5EJlUvN+sRCOoNjoptFhdGBzt3/HRHRtT5aVlGWJtQtvZ1nsZVlGojU///wT/TgLVNkk1HUFBKap4Xo9k+eSdJ/meeXeeSBhnuWCGEIAFeQSrxau1yu7/Y6hH3HOMc8zl/MbwTuqTUWSmDWNaGjahqcPHzH6n41q8v+/8PDwSIgyeG0aufSHENEqITWaeV4Yh4Fh7Lm724tZOHy3Gtp1ACh26SSV5Zn1jt1uNcR2I0RhP47jjHeRT58/EIIM84tTxTJ5Xl9ukiwzCW3XolArsy1jGHr6pqGsc6nAOcdsBTexPwgr9NtXAZMnWr7/yyLf4yLL1wSgQOcv5+tqYC/lWRBlwfy3v57XyptckpNEkAtZbrB2ou97lmXieruQFoWwgxu/DnPMarTTFEXFPC3s9nsigXkUwLxdHFpJY8AYGTaoqBmHQRitlaLvxC4ao6euEyITw7BgF7heerztOZ0e+J/+r/+Ob19f+PWvPnI4bjEmst0nWD+SpzXfXs78/PNPXK8t8zxx95Dh1rSunFk0bdOzzHK2CsGjdeDp8Z7D4ZFlFqFbmkrde7EDbTuw2aakiaRalXcEl1MVd8xz5NOnzxR5hVaJfO+miazMVy6iJzf5ahQWxuP1duPp8REbAgWyQImBNe3rMEasukWRkhd3lFW5Pu9STFpQlgW35gooynKz2m4XnF/WIbKw4Lq+xxhDcBHnI2VVYZKctu/RiZLLZSrp6WGFo+vMgJL2xDzPTG4GpdbPizAQp2lem0IVWifv/Lqua5nGmWIV+pkkY1gFT9frWWSC6jvjW9ApWivmZSFLpa7nvF0Fa8IAlKqvYx5nDgdJvYlUJ2GeJ0LQVHXFNEoTZ/SjVJDbyN3dI+M8MwxyFlIqcjzuSIwMRYJz5HlOluXvy4R5XtZ7ViDLClkoKkmvj/1IXYvsLNHCVlMKrF0kFaUF5ZFlmVhbF8+PP34lSzWPTwe2O0kJd83Ef/7PfyXPCrK0Jni/psu0pJCfe2JMmKbA44cMO3u+PT+TJTNZVkjSL1EkOqNpbljn1uZUgndynqvqSiRDSUEMmt1xR5FrorKUG+FX9v2CzxKCzSiKe1TwjN1Cc3nBe/jwdCLEBe9Hhj5gvcVeIsok/Pf/3e/5X/79P/Hy8spiZYDSND23242qKslykWJVZcXiLFmacr28YmcH0aC14dY0TJOIJpyHODuKBdrbG1PvIOZ8+9Ktn9EXfvnLXzBNM/v9gW/fvuCDx3eD4C6ilvOfNu/PdOfc+3/arpWzf1qg0LS3hiw5EBJFXmQkRnH58cLlcmUcJ97ON+7u7pinGaUMy2zp2o4sT0kSgLg2dzxJInfp3Bj2uz1tPzKNIyZLiUh1uyhqxkEkINnKqe37iabpyPKMeR5FSLhWZU3iadqWGCrSPEdpSUVP00iSGDEma7UuSRe8d8QI8zSTpRl5VpDn2XtgQxamy9r6s8zTSJJUNM2VGDeY1GBSqf1+D24URU6SaOEDak1RFnT9xDw7rpeO1CTyc1p5q7I0FgmHVlIbb5qBLC3WdKZhmmf6fqCqKs6Xs/x7GENR5Pyrf/WvpJr+9ryaqAvaTjBF+conFQyXLBOEBZkiYRdNCIoYpJVwOOwl6KMM89QSgqIsc15ev1HV8v9/e7a8xjP7Q4m3AQIUWcmvf33gr395ZhgmLhfICzFRhxAYlpE8Bn77D7/m+eUryzJhdM7t2pMXqQgzV+5v24g8ZLfdsNmUPDzcMc83xqnl7WKJ3uFdpCp2TIPjsHvk8eEzaZYLdsgHTqc9zk+y1I4BozPObc//8//1/+Dx6ZFmEFTRx493/P73v2GxA10nC+3m1pFlKdu1SXa7tURvGbuB61tDWWwFTzH0LMtCnucUVUU/yDN/GGbs7EiU49PHX6/vxoSH+yfSNKVtW5IkZbcTSdswjeyto+s7+r7DReH6C+cx53DYrclbEbeCYEOKQnE4HPBe7sKuW9jtNnjvuLu/p6i23G4d/SBhkd3uxNvbC84upJlhGEa2+5r9bodJjQRixl4WWn/nX3/3gC+4hWV0jNMLip5vL/+FcbpxutsxzS0tX+inNzax5su3P7Opj6um/oZd3PrwKGi7HqUkCaCUCB4iwoLTOJSfcV4eVgSzKqzlZXu9vpDlCcfDDrv0NENHnhU4P8iwbZjpe0tR3ijSnHkcCUHse8EJfDXqibZ7YRhuKFVjsrgeIB2bTYmzHdbO2MUz9gOvzz/xy1+XDF3LOIoJ03uxcJlUjJzDpSH4QJpo8iwVI26RsXRS6xjGlhjn1XaXkWiDdZ6gF9wiD8NIxKwQ6kRnIjUoNEU2kqcZSmvGqSH4EcXENFua9kJiJCXonSJqcH6WqH9wa+w05bDdsiyB4B2Z0etGWfr1dpaJ+zQHEi0cqBAjeZ4Q4sQwNFg7k2c1SpmVkTO9swlUlMGkC15EJit/T4qcYR2ciSE5yzNJ1WixsaVZxNvAOFqWRIZyzgXGwTGNjqr6HsmWWPJhX1FvJD0zjRalNGkmLwcZBse1Ny8f92mc3reiJtGkxvDl+Y2q1hyPBdYNaBVJjaa9XcnzknHq2W53IiiYJuZ5oqpLnJXD4bIaOF9f3/j49GE1t3nqun7fOFlrWZZprd6JKdqHKMmXYSRECFFR5AXL4lBreqLrOxlejRNFlkqMmZw8K/nrX/5GXW/59PmjpIWs1JrHcSZNM8qylCixj4BBkayJkoQsz7ncru9GYbvG/Yssx2hFfTgwjGIFc4t7Z0QKK0yzTAuRwP6wJ0kSvn79SprmFHlKjCurMbg1DSiD30QJXLdtWqZp5v7uDq1EPuAc2NkJ70gZirIkyzR65Xo03ZW2vVHk9Xr401Rr4kU4BxnCSUqY5oVdUTD0Uned5klqnxGReigRuZgkZZ7EYJeajLKomSepPFfljq4biVHSwKw8qmWxLJOj7ya0kgtKVmbMVvTsPsjQWIZsDusmYlSYNK4vuwSTSnLLupmub4kIr8vaBZ3LRUvSGmCSBB88Js2Ec+S9iBTKYmXoKMZ+lurT8YD3kl5TTlIx356/cTwcCNG9p3QeHu7I84Jx3pCmYugsiozL5YLWhjyv34eJiU5IM/mzjTGu9akCZ1vm2XE47AlBE5nX9OdACLIRvZzPfP70mclOHI87lkXq48KZs+sAzq/pXkVVV9yvbLfEGM7nN5G1RIDVhxoUdbXDWrcmC2WAk+iUuq75boKVofayfm4VBM3QT0zDQp6WbDd7vGve0zveWw6HA3aeSdOE67Wl6xq0Tthtd3S9cLwEHn1gs9mgdMTOcrgoSzkE+HV5obQcnL1bUCS4eeF6vXE6ntDoNQGusc6TZwXEmSIv31mqm82WsZ+YvaXIMqoiR6nvKAtWttOG3e7A0I8rE8ZgTM7pdMQYwzwv5JlUwaKPLM6tchKLThKOxzv6fmCeZdiNslxvDcv34X4hF+4sy7jdOrI0p6pSvv78hTyvZCiKVH72+xNE/54egsgw9vLetJLYUEiFXykoy3LlYUnCusgy9oc9Wa5JDCsofCQvIM1yAWAPkOhKKqyj53e//S060Qz9uFb0BZacZQnLYlcxwGoptV74aMcTzsv36Hvy/PnlmdPxSIyrmGHOKUNGlqVM80KWW/KioCxyXp5fMImhKDZSh50mYYoWIuvxznG73jA6JTFyidrv9syzXKbGSThCzkuK9Xa5kD8+rsuUFBc80ziSrxeURAsrxlph0xVlwf6wl8R0knG9XNcL08rpW2QoVZQl4ziyqTeSxrceRUJdbySxZCLb7ZYQItdrg1LfL93CPnY2sNvu6bp+TUooLpcz5Zr4riphGVk3MvQTh/SESRKmaWEcb0zzyMP9aeVeWpxixWoYslzS3GipxaQmYxodeaqYF4edF0ExTLMkF3XEpIayKqnKmre3N+HguYXtdkNqDL0WwLWwTyWhCoE0kwr26XQiTXPhRPkTSZJi0pTHxyc2db0uEkrcyhqOa3poipauuVFVNQ8PD1yvV9qVAejXJdr5fME5z6+Tj0yzJDWMKfGLIU9PvF3PTJljWQbqsuLT3ZbFtsToGYeBiGMZHbttzv/4737P//of/kjTdAw9NNeO7U6WJ5uNnCdu14Ysk/e2SeB2OxODMBqTNMWvA8qyEqZu1wvr9+u3KzqUtM2N5vZXrA1s6h0Pj0+AnKdTk9I0DVkmw6N+GNluNyQmYbfdrsnxwLiKn6q8Zv0ac7veON3tybKUzz98YpxGvnz5xvPzKy5E7k4FRZHz9uZYFktZF8yTJdF+NTb7lcOVUuSF8Ij3R7KiEv5WlDNUUWRU5ZZpdhzvjyJqmWZ80O+ptxAGrHNUmw1dN9L1A2mWklQyYHDOr6m870wlqGrhYn8/EzQ3EVA469g93tP1NxHJrcOwEL1gIowkGbum53K9kqYpatFYK9/bLDEEa9clSIJzM9udLBJNIv/sNDOYTPPphw80157r9UJRbCjymtvtSr0phVM8tBRFzvF4QCu9LgQWTqcjbdexO+z/G46g43a9UlUbqqpmWUQ6NC8jZVUBkbt7SYC2TbcmaieqKqOqNuR5StP2ZHnKn//0N/JCuGQaw8uz4C6K0qATSDNFnhsOJ2E6v70MbDcFMRTc3z/y9jzj3MD/8D/8W15en3l9fSXPyzXVVq026Yy+mzm/3SQMEDWPT3dsdhuca4kqcrvdGLoJZwNVGZlGz2F/5HT/gdSksgQ0muNdTdef0abGWoftDf/r//qfOF9b9qctbdvx6fM9//APv+Dufs/L8wt5LlgNpeB4OK58t0g/dIzDyOXcsd0ecDZybRpZ2GlFvZVlRAyCxElUzuP9PampmEbHp4+fEVmgpISNybie30hMgk4MwzTQDS1lXa2L4cBhvxUG2Ti+3x9k0FOR1SnLPNP2N2E+R89mu+EXv/glXTeKXItUuH63CzpVWOfkjLLfkhcZ8zzRtDeGQWRUh80OkIVPXM9bdV0xjoJMqaqS66WR94hOuF5vPDw8rIsqGVZ4v1CXGzHTtwjGakWqyDtHzMFiTBZG+7JIcEAnkbs7GYI7txCj51t3oayylYvt3rnMXd9S1QWHg1QsnZOzoIhKAlE77OKZ1yVF17X03UhZFjTtzDxBVUWsiyTfBZIeolIrUx4SnWC9iHGWaRbuZm64Nmf2uz3n82VtVQjGQUSUiFBrd+Dt/EzTdizWSurt6YB3rAIzERqFeVk/DxKwEQsx3BrhG5ok59e/2dPceoZh4tuXK5tNRV1tqapcavfDwjAId96kM4ud6XuHUoGff+wJQWH0lrIu6G8OnUA/tCgNbddiUrM2fgpUqQlBM/TCn7bWMi8DKinphgtVlXL/eGCZLM/fOuwcMCZidEbfvbKptmxqubuUVbXeaR1VneN84Hzu+Z///X/meuu53Cx5ZdYKuQQ3vj+Lj8eT3JmMMLTT0qCUVJ9DgDyLQIL3kTwrqOsNMcSVZ51wvbUcD3u2uw1Pjx8p8w23S0+eyXvser0SY+QPf/gnzGpR3+72K3O9kxmB0VhvyYxw0r13JEku4Q0U3nuKssIulrIsSVPD4iIqSbi2LT5YpnFmmGaavuH82hKCNI+MSag3xdrka0iUWs/lIggTHJr+O6dz/ycM+BLtCaGj7f5ClgZiHEh0JHq52CZacWl/pKxLfvz2HyHm/OpXv6Mbnokh44fPv+f1fBEOH6ybr7gO+AKpSUgSy9T/jI8DMWq29e8k7jrLxrTrX1HDwt3+xMhA130j2T1yvb0yzz0mTUnTkqG7UpcCFNVKc9jnzLMcsrIisCxnpqknNQGtZKMtGy5JAizzOsyZLDHM2PkKcd2YIRwJtJEDhoncHe/o+57LRcQfu70wuwiRiPC/mvZMWZTvybXgLSpx9L2AuXWiafuBu9Mdzos1WI0JRT6TpTPOtpLM8pbb9cp+v1uTjtB2PYnW5IVCRSXcIjRumUlqS54LH0dpg17Zg2niaZsXFLLhDzEnTeo1FaNQamGZWgjLyi5YpEoY5VIWrcDQnfPrZtcLfFRFqirFuhmlHDFqEqPwwePWCnaInlSBm2eBi+YFdu4IOoriXCdkWUlVbfDOkaR65Tic0VRMU8Y0a/JCgKBSxY3vFT8QxqMkBMW8G0Nkt9syjDvapqHvBJAblAwH+37AWr+C6Ke1quCpqpws3/L6eqFpriQme5cudH1HUeQs08jxuJdN+mJRWtN1Hb/+zW9ZFuEfCoNvZl4s1WaDThJuTSuJ1KKQi3At/IaxH7DW0XVXTHbCuUhZ1aC+A2pnjseDcAldxvV6Y7PdopTmcnmlKGqGfsJbj12sbAxMQmZSylPJMFiuV9lcxCgVwr7v2W33pKmwpUIIa2Q/4qPneDqSF2JLc87KS9EKP+Tt9cwwDOx3B1Kd4EPAucDzyxfyrMCkGdYHwjgzzSNlUdMPg1RYC7FRhehY5lFAxPNIva2pq907c8N7izFmfVAuKKXZ7fYoFekaMXN7B/r7xh4Zqo7jSF2V9N3AsjimYaY8VhyOp/VS8oX9/sg8O26Xjvv7I2mmhJG52VDmJS8vX3DWkmc7YpSq/rSq3L2Xn7kM72VLXlYF0xhItGGzqSSVESKJURR5TVoY3s6v5PkkuACTcTgdhckXPZHA4hwmlfpcCFKLNEZj6loMts7TdB39KNv6eVlQEc6XN+7ujuQm5ze/+RVdN/D16zfO51ec93zafZLP7LIQonBbnBNWT5YGtA7EoCUJaOH8duXu7gGTZIzjKBzIIEbNoiiAhA9PT9zebpLEzGVTqbXCR4dOK/Z7GR7ECHW1k2phEMZMWdYozZpQSJkXuUzKz8tSljlplrDdVsJiKwou55u8dIsCnQi/dRxH2qbFrIbAru2FA+ZmNnWGQrNYy/39PZtNRWYMzouZsCwyfvObX3E53zifz9zfP/H2dpZkxjTR9w1parg77VFKfuZ9P3A47hmngcfHe9qmIzjHy+uF7fZIVWwZh/kd0qvQnI73TOOMtR2Xy4XDYUdVVyx2JsZAVQsw+3o9E2KgrkqckyGCNpIWD16Snssysd/vOBwOtG0rEpCmIc/ztcqsUVqjjRbWKpIOdD6wPxwJ3uP9jXmypGm61tMs//rf/Euut05SpybB5JJmTVJNmmuWeVjZPRvSPGO2E+OUorRjnAa0NmRZIWD9EDAmXTltM303UBQbyjyS5ophilgXyPKcxcpmnZDz+tKhfMbPP75yzmesDdzfLWw2wvjsuo4kkXRunpdkqbDGqkqEIHf3d3JJUjDOM+M8Y+1mrSdbXl6feXy8x5jI508fud5ufPvylbfXN6wPPD19QK2psZCAyTXD6IjBUZUJyywCE2OE13J+PfP5hx/wTkDii7VENIfDlkRnxKhI05zbpWEahd+klCL6sMoWNNt6Q9u0MlzZZ0y91Pu6oacsahJjVhthtkqsrCTWZrvWmfQ6wO7ZbrZMk10HKHvM+s61i2ecBDD+naE0zzObUoZdiVpFZ9Hz8PAktatxhhgocsPd/YHjUfH2esGYnE295e3twv3pgRgdXdsK92i7wXlHjIrm2vL49Mj11nA4HLhdroz9wPXWYZJUGGaLnEHmaaLe1BiTUOQlbSs1nsvlzOnuQFRRLIXBsdnVeO/oBjnXVVWFXRyzHUEpqsqTJtmaMJ7Z7Xbc398TpIsoHMNGvjdTPwi3VSvqWv75wzBIPchL8yTN0pXX6kSwM8yM0xXnEvLUE6Nhv93z8cNHyqJYIfMFdVWQLDM+KJxPmBbH//I//2dCiKSFYRhmnj4c+e1vP/D09Mi3569rmrInTTM29Y4sy7k1Z3zwNE3H+dysJnjH7SbphKcPJ7S2pJkiwTCNFjt1/OLzb1lm1ot7Dci55YcffuAPf/gv3JqWspBn8NCLEfY78Hy73cgCarFyDiMlMakA550XoVc/i4xOK3SCpOBuHT/++NOKWZB38Di3FOUDZZ5QbUqUVmvyeFyT+AV3d3e4oHh9PUvF18iS83sCTREpC0lXfvnyRer50wzKvzOkHx6eeH55oR968ixdP1fCTlJKk+cZVSXoC+/l3SsSpZIiz9ltJa1elgUxroMGJU2QfuhkcNA0sgxLZYg5TcIEds5SHQrGaWKe/XuiNPLEbrcTK3HfU4RIXRc4F0l0yuWtI3ipWCdJyuPDB3yYSW8yTPjOeJ1nsQFvN3uaVlApzluRGi3CptVK4WNYz5vTyueV4dQ4TtI0MimbjQz8nQ90Xcv9w57DqebLz88Mw0iMFVWZk5Vw1CIhGwfLPAkDu28v6+La0Q8WpS6UeU1zSyAaEqP59vx1RWjYVcggldSuF9NymnpC1DIwY6YoFSHObLYlp/uaaXS8vDQEb2jMgLMOZw36vqD3luv5jcfHB4pNSl7lYqiOipfnN/72tzd81Ey2JTGyrL/dGo7HmhAtRVmgleG7DEXSwo6y2KAOKSFIYCQSqctalq4x4Kxc+BvfUxYpv/7tZ3bVnr63xCDX7OfnZ6y1/Nf/+l9RiUGblLwUjEbbNtJaI+Ldgq9KnHXkeUKRZUTk5yNcYkmn9d1EagzD0K8LNEvf9dyantu1xzn5e4oi47itCWGSxD2Boe9xbsFoTZ4VhJCgTcLL6zfSvCDPqzWskeJ9XJNyira9MY1i7/ZecCTfmzRaGaxf6Pue9iahBO8Fw6QQHNYyj2QmEZ60McITNAllWTD0I23bMU2WzaZe226Oz6dP1HXN+XyW2nmU5WSMrHfMSJaXTKvoocgLTJJK5XRZyPMUk0hjw7kBDYQAdg4kOnn/HqRrcy34QFVVOOvRKojQKQaqSoaMRZmx3W94fnljWizZsvD7f/Ev+Pmnn9kfdiJDtFbOS5P8Xq/XjseHkiwVdIT3kWg9GmkR+BBRMTCMA10LZZGQFynj2LLfJWx3FbdbK6KdIHzIotKcTh/ox25FVMjP6/V5kl9PgzEZfSPJvNeXM0blGKeZ5oHEiIdgHIU3Wtdbfvr5b4Bw+WL0fNhVbHYFv/jlHSIh8+t5SWGXHEVGexvpulceH+/Z7x44XxqZ3WQFt9soQrUykmg5F53uDrig8UHhXWS3O3K5fOXHv/3EvAwyLDNiNnbOs9vvuFw6liUSg3BC49riMmlCoXK6vsc7+fMTcU/AB4tSGXmhSNPAMN5YFsvlfOV26/jw4SOn0x3/9Y9/pK5qNmnKMk0SfFjRBc47xm4E5GyWJHK/K/KSaVlITU5dCSdzsYLVisozdB1JogjBYe2IczOJ0bSXHqLgBrI0pW8HpqVnsyup65wQw2r1FT7m3/vX35/go2FazljXrZ1uRwiOED1aGzG+pQHrOobhwuv5TF55rB/IzJafvvwBH3K0liGBFEEVWa7XFIhj9i2LvbHYG+gEkxzI8h3D1JClCagRF2b64RtaV/TjmTSFy/Ub0zxSVSXOR3xYaNo3tJaai/NbFteA8mAl2RSiAMu9d9R1TQieYZBtX1lKvD1Gyzh1vL09syxS81gWz+Vypawe6bueGCPBiTAkIhe//aGm7+WA1LbdOgRYmJeOZbmSaM88dmiVMk3yw02ShNPxBMgFUmvhTjknXK7FTgQvdqN5WhiykaLM1gqkkrjnMEoLORogwblA3zds6g3By4DB+wWVyLbRuZFl6WW7jwW1XRlJkSTxZFkiP4csY1paily4K6kOmJw1ydOSpik6UfggcNjEKFwQoYMPmuATlDJS7wWMBmMiiRGAtooJSwzYxUmaoZ/59OkjWa7phxeqVADGyZrQGMcglRntWeaFssrXuLGYe//Z0iSxW/nvCU3zfQC7xwcZzBSFxL0PhxPWLlwu5zUdIOwK2Yy1JImiH1r2+zsUcT1sNyj2UnvMU/q+FStOUa2pIhnuTeOEAqqqQmu3Wn3kggZhTXEJD21T74Tr6ANZlmOSdK2BCh9gWRaOxwNJovn27ZXvNuq31zN5LofzsigIXkDwAu0eqU2JXWay2qCiMJCkjhuZp4kiK/ny85dVnODQSSTPDUVZkGYZJkneI/sP93fy+zMpLy8X0rQgUSl2tsQQUFo2l09Pnwg+8nZ+BZWw3YpiHCRGH2MkBMf1esG6hbqWg2RVbd5rl8aYdQg5czwepZrXD+R5Qdu0ZCtDKkkMYy8Xwl1d07YdwzCzqTdrlX6ibXqpGVixBD89feJ8vhEja5XGsixeOIoqiLHqZFAmwQXHtEwkPqyDTY1SKcFLrd7aQAyKcRwhLoQgaddlsvT9xMPjHSj//pxZloVlmXl6fJLUjZMBpopiA1usCBbsspAaMfkprRkXT5KINGYYhX+YZRn5ylhTIdI0LT7MbA9bjBHuaJ7nzE3Ln/74Z7Y7ubj1w8QwNpQ1VKUhzfL1zz1jGqVWWJaVwKYbMYUVhdiKY1A460iN1N8PhxOvr2+0bfMOVs5LGSRud3sulxtt01AVq71wkUtRDIqyOpLnOcMwrIN5eZ5stxuqqsKkUp+vNwfGcUAnijRN363Pt9uVNM3W2nvBOAob1aQJ+221SjcG+q7ncrnw8cMT8zTRtT3eeXa7Gms9p7sjb68NXTswDgufP31id6h5fo4kiRijp1GGsmJarDlfziQmYV4HSZKGyXBWQOxVWYiQwQemsUNkIlsSrbk1DT46dvutCDSsDO7ruuD5+RVr/fvBe1oGST4v7l0UEYIMlHa7HV03SNJQQd8vLLMcUCUhU9F1w/vnW4ZCgTwrURjS1OC85enjR06ne/7xX/wjf/7Tf+Ht/ML+IAZgMeNGQIaiyyJJyO32RERwACJNiWy3OyZmxrFj0cLQ1UZTbyqUMvRdzx/+8Ee57BY5n3/4QNNcOJ0OPH9r6NuRRGU8Pf5A305kWYkMKD0xRu7vH/nbTz9xvYnxPEQYhnFN8QlfqyxLxKY7SpU0K0hMSl2JlbBpWqwbOBx3qzk2Y7/fc2s6vvz8jd2uWp81PcyOqtZUVSrsMSWJrq5rWRbLcXcUYdi8yCKgMMyzmOZVKn++82S5v3vgx7/9jTQz5HmP944sT5mmmarecLu1tNcbxboInCbhN+VZkNpokryzKY2RX7csK8pCMBFdJwmZcRrezzW3243Hx3upM5uMPC+lQWEdwzgCgeJUAsIia26NSLAQJtf3qtL+sGO7LZkmx+F44HrueX29ME0zHz9+IDGy3Egzg9YJfrE469lu92w2e86XK34Fy8s7qkRrSdV3Y4/3nu1u835RXGapP+73R4aho2kaqk3B3d0Ra68sVtg9m03Ft+dvDMPEbrchNTnTPKysOlkOaW3kAtSPnE5HNvWWeV6o61qQMEoSy2maolWkKCqmaWaZHdPsUMmynskS9vsDMUSiT3j+umCtYlOn8sx5iFSFiGFut4YsTUWYVuaEkDBOnr/+15/50x9fSUxKVsj5N7K2HrTYQDebLUoL8Nw5sY1rnVCVFTHANK6oFSLbbS0VTRtJilTYmMxkWcq//Ff/QFlsGftIakrqaicJemv5p3/6g9T6TU6SpLy8fqVpWjFh4snzlHT9vGi9ENw/y/GWZeG43zPPIypIpc6t7+/FeawLK6w+ELynyEv2x5JxaNnujpSVDFPkUl4yDBObupCltk7XtI7leNjRtqOweFF8e/kGIaFpRzF9RxiGiSxLwXvqSi7/mSmpa5EN4KWVkCaGqiwxa139sD/R9R3ehZX79J29WzJOHYfjlqLImWcZbg6jWEHv7g5orcSQWRRM42p8n0a0XplqUfH29opWhg8fPrOpN/TdwPl8ZlksVfVIXZdczrdVZOAYh5F5lDPA16/fQDmcmzmdjivzWvA7v/zlr9ntDpg05dvLV4LzuCUwTf0qsNPc3d3z+vrKMAxolTAvE1ppxnFZa+rC7DQmRX0/syBDb5MYIorgpeKcaIUuBPETYkQn8Pi04+2lo+s8KBF/DI1mMXB5HcizgsRkhCiD0aoqeX19e0f1GGPWIQ5UdUpZGT798CQJKmtRytJ10Fw8weXk2Ya+H7hcGkIwZElNDJ79/p7d9o6u6SBZyDKIMUEnCf/yX/4DL29XsiKj2mRcr898+/rKNDXCpis22EXSQWVZME+ecXRkWVzrstIG2tQVbdeLNCcG2rahKA3HY83xtAU1sdnfcWuv9IPldu1omp5f/OKXfP78A//bf/zfOZzuCU4wIFVVi8E6wNDJu4koidqwtnzs7Dmd7iRhJ3EY0tTQ31p0ArOdxQ7rJYzR3FpSk4GP9Cl4BpR21JsCo5UMCXvP+XJhu63kcy8wb6o0IVqRfjkXGIaWzWbL589PdN3I+TxiXaCsRaa4LBqVGJZe3jFtJ4v9JJGGhlaKRGtpo3hZVscY+fb1G7v9jnqzYVnm9dz6z+KMsizXJJPicr4yTvL9ykzK5XJGacEPjcPAMDgSldG3E2Z/WPl76xtL63WBY9Banqtpavgu8Pz+ewvBk+UZMcK4tqqkBSFpyLu7e6yVO5osjQVXc7lemKaR0+nA29vbOgwDrRPqqsZ7y7cv38jLCp3oFeMhw0S9SicFQwZt1xF8hk6gawecFTagUrA/1lJxN4rNtqRrGz79sON4l+K944fPn/k//tPP/PRTg9EGZw3nV8vt2rDfHqg3JafTAaUjem0U3m4tSmm+fPlKmmqUDqswJOfjpweOxx1fv36jaXvqcoNuc/765xeUrfjNrz4S/ZV5ctxuPfP4Z9LUUG8qliUSvMPanrxUBDxDP/LrX/2a093ANDtccLydnxmHmbe3Cw+PRw6HPT/9+IxWOUTNZmNYZsXry40PH++pqoyu7/j29Y0ir/ExkOVArld+dcnd3Z7T3ZZNXQq/ferJC/j65RvNdUbFlDQtuL9/4NvzC857EXbkOR8/fqLrezRijh/swPUisrk8zzEmZehGiqykrmqmWdBJPoh5eFwG5nlmv98SSs/5Jpxyk5TEoNBka2MpcNgd8SonTeWelWcZSsM0LZj07x7P/f0DvrZ/Jkkl4eZ0IM8NSstgSoyAcGteWOzCODc4N3C9vuD8RJr2XM5XiuKe090Tzs6YVMyFVblhHGY225xp6vFxJOoZ5xLa/meOeWQYnhmUIzJil5mvz3/ChzusnWi6N4axwcdIbgp0iFwubxhz//4gud2uzPMo+noEWMt6UPkOSU+ShHmSDZq1Ao7f7beSXkg6sqzg1pwZx4W6rnDOr1XQiLViRxLZg8gHIpFuaEjTHK1TUiO2waY9M01S8Twe92sCLoL1KC/GvDTNxdoWpfK6LJbm1mCd1EOnaaHebvBeLI1FUdI0FoViu9kxTwvL4hhe37i73zLOLfMYhFUWI1mhxHYcLSEszEuP1hnGOHmAqwTnLE17Xgd2ApMPmWxxyrLA+8A49cQw4lzCZlNhl5EY15eFn0kSiUPjc1CSJjFGY3SCTiSJ5qwwHcdpwLtAUW0IwTPNI9aLRjqqkXojiRi7dNTVx/eE1LgMK78xwbkF7xdCjCyLpa6FRTPP8ucR1uFM3zlSU6JUxOrAHK1UYEyC1gnTPPHD/eMKzRyJ0ZMYxf3DHXYJHE8HinJLexP+mPMLWZ6uQ7kUnWg2217XTRgAAQAASURBVB23mwygBHo7iw1zse+XCfm9TSzL8s7g8MG/M/PG0a8pxO+SE8tmW9G23XtCcZ6lokvU7/+8t/MZk0jSY5oGfv/7f2S329A1Yh/UiebutGOaLJdzw2ZzoGl67u8eefrwwOXyymJHyiqXGqjzuMXz+PCB6+Wv1BsZBt6uLc4qQKC84zhKkk1ppEKrV3B6+c54qlRJlkpkX6DnAsf33qOUYZpmmqah3shmbZ5nbreGh4d7vA8SHb+/Zxxlw+OcpR96ijyn3mylatRLdcFaAcyKeVRTlhuKMgfg7v6J4+mBjx9v/PjTn8nyRKox7Q2PxdqBzCR0XYNzC3mxIcTIPA30fUueF+8geGvtP3PQ0nyVMRTYWYlS3Wu6thdpwnHL6/nrOpjPQAWmeRCZg5Eo/n77gW2958vXv1EUmpmFED1lXUKUempZFpL+UQlKS7IzS1OO+70kkrXYztuupd7m2FADkbaZIEoN3yQZD48nxvHGdn+krEuCcyzWYtKcfhjYpuk7R2mzrYW3cdxzuw5kac7QD3z7+pU83fD68sbxtF9TZw6TSZpPmFIJd3dPYln1XhJQer10rUD74+FE1/fM00RqpG53uZxBRZIE7u6OiDHQ0fUtSaK5uz/Kwa8XrlPX9eRpzjzOeAWgVsHAyIenT3z6/MQ8z7y+vjJNE9vtRsyE/YUYU8Zpws5S7/3y5Su3Nmeee+7uT/JnlqbEqHl6/LgOJBxv5zNFXtFru4pSFKfTabUmapZFkrLWei6XG8YY7u/vOB6PFEVKWZQkKlkrgFeqqn4XHyglqaIQc6wXecF+v0cp/Z4kbNtuZd3J0OJw3BGCxVp5b4SNoihK5sXLMCF+RynEtVo/kOYp58sr49hxvbxKYlIfhZczD5TVBlRguyasuq4R1iKQZynWGrLssCZOA6nJKIoKtzJZVdAicckSfDAYXVBXhiz7/t7NuF5a9rstu/2Op4ePbOsDbTWx3Rwk+dENXM5nea6NE3lWQoTL+cww9iRrdfX78zVNU2KUZ6c8Q2WZeDocGIYbJhHDXj80bLZiw5ztwjQ5pkksyGVRszsWTHPDdn8gzVPsLKyfsqrxIWLylMtVcBkiPwnUhz2324BG07QtX3/+Rp7VvJ0vfHh6wi6eZTUNB5AUns447MX26r0j+kBmMoqVW6u0YrPZMU4j8yxpyXmydO2LcHWi53Q6SNLEOdq2WYfGW46nI9PoKMuE27UlMzm5ybFO3j+ZSWluLZvNjqcPDxR5Qdd2vL2+cTgcJA1LXNPLC8M44qZIiIEff/yZPE+wfuaY79b0t1qZOx+pqpoPTx/59vyNoijpmmF93msOxyPOesZpksRcELZTMwmEvSwrHh7uJOlfiJXxcNgzjiPntwt5Xq0LTeFa5UUu7Md1GF6WMkiUsx68vb2trCYx1pZVyf6wW/mNltutwTkZ8plUGhhpmoqAwzmWRc4t43RAs6HMUl6+nXHeUuQbsqTgtb+w3W7IsoLL5UySWrI8IcaEqkz55a/uaZqZoszYHzdcb9/4+vVnxqkVLlm1wTsRe9T1ltt1Yho8OonEqNYzqqesKmLsGYYe58KK49CkZqKqDdpMVJual5dnVKz49vWFGPW7pOZ2azid7uiaBo1gNeS8KVW7sixXUR1kiVjN9/sSY8y6lIREGa7XC0pH+qmnW9+9za3jx799Jc9SHu5PDKlm8QPe7eiHfmVsO/phwoWANoIoiUpzPBzJi5RplsTy5SJV2LLKmMcoLFSCLIOtoF8W6xhHy+vLWVjUSAMhNeYdrfJdxjZNE5fzV/bHAzqRAeWyuHfpRpalPD4+Snr0LBVpk8rFuut7drstEQWrpIEYKLKKsiq43RqqSgRN4zjJ4j/KwvN71frW3DCpFhxCO4FSZGmOd2JTN2lKRKFTxfV2JV0xH8aY1aR64HI+M69iJeHaavZ7ef7ebpJwt9au/CmNMgn7/R5YWdXBr//edpWBSErSu8j93W7lDmpiLLFu4XgqMEaYXZttwY9/SfmP/9uLYJasprkFlrklS0rqTcV+/89LWpQgHOpqw9evL+z2OZ9+OFKWmqKCu/sdWZby889fGQdHnhZoFfn5x4axg3/zb35L8M/EA4zDzJ//9FeM0TybhL4dCcpLylJb+f5HzdPjPTrRjPNM33dcLy11bbh/2PDwcM/b+cI8ewkYIMOgtmn48PHEh48fuF5bfvrxGVREacfukJAXJfv9ge1GJARZrtnvt0xLI0PJ/sb1bcH7hJ9//sLj4yOHw0numnZhu6tJ03v+OvyVRCdr6KBdWXWTCK1ipMy/o0Q8RtdYtzAvjsvlzN39iaqWu2heSLUz0QXeRewyYdKKw+6eJJHlYFVka1hFkshiW97TDcL+HMaBZVqwK+YiMXB32pHnGT4s9H+7cDo9UFUSYLlcv9ENct/XSlLBX79+5e7hjs2mJFGKrm3Xe7OhaVo29ZaqrgkxCJcuVbhpgqiYZ0eRC399Xmasc1jn3o3DRZFSFOnKdI/0/cw4OubRCdO6H1CAc5GQxnX5JQz/GHlvdUlaVySQhLhynhcSI+c5SUwqfIhY51Fac3//wDTNjKOl6zrSVPPly8/89re/Zpwmuq4TRI5mDZNYnBOR1NOHj5zPFxHIGEVUfkW1gMkURZ4yLTM+iASTEGnaliLPSJKMw6EmRr0ueAzH05a8dNw9yPD8p78+03UjaSYtPm81/exQKhXM1Thxu10o6gyTJlg7CQMbWXreP244nAo2m5SIxaRxvTckqJgQg2GxChUlnZnnFUUx87vf3fO3v/0N0DRNx89fvvL6cibPM9JMY+3AYkeSJOHu/p7LteHa9Mx2wfmJEFnlYRPLUrDdVsSQcT63xBj48OEeky2c7gqqquQp2XI6bXl9a0jTjKou2W0luGDdQpqlvDz/zDJvpVEUJFUcvGW/P7DMkfPbGa0VHz585E9/+TNiRzek6UlQFMAw9u+m5jSVhXxRZOs7UeYDSVIwDAPTNDBMPbMb2e83YiMPjs2mIk9Lzm8dP3z6wLdvF6lAl4au7zmcNmvCVLiGzjlh7Gb+7x3P/f0Dvr5vKaoo0dbgmZcZk2Srcn1NlAwNixtIkkiRi4XUOQdR+vK2feH+YS+MBRaa5oJJPtLcWopiz7xcMZkm2AQ/O6bxlbLMmaYL1gr3LXr5YYxzjnUzOonsdzuubQMKTJqx2W5AQVWLPa4fe6ydVujvjaZrydekxXf4uiSlMm7XZjURlSzzjHOKTb3nerlyuzYcT3diWOkG0vWBoVRC8J4sLajqmsu1paqNpBLniculJXjF8/MrDw/3vL6dhaGxvnBZa7+pSTkdHxjHiYf7J8axp+u69UAhk/+yKEhNSVmUTMsIJDRtR6INWuec367/zaXGYsyRaRoY55mYyDYykBKDJdFBzGBxkchpHLHWk2cbpkl+jXGUOmSapoToiFisE5sjTMCCs4roC/I0w+hI016JcYHUoFBkmSFZrTNSLbqx3aaYVIyus5Xh2veqESoI6yEtZAM5WcoyQJQtttTL4nqZg2kWK67SEKNw0Hxw64tNNu8xeIIPdH2HSWu8h3pbsN3WxABt03K7XQgx8nD/gDGGPE+FlVeIvc8uC2Uh5r9x6Kmqmj/+8Y88Pd3TNj2osHL4Ilma07UDllVaIJIniFDkBXVd0w8dIU2xFoqi4Hi8I9EJJtG8vZ0JwVLVsrVKTLIKKVL2h+1apdZycZ8tfTe+pzaqquLt9co0LaRpRpIkDP3A9dqRZWatsEkEWyeGb8+v9O1IXckA7HK5sNlKMsSHwDINfP70Sw7bI+PdyLU5U2+2TKOwhoqVrdR1vVx4tWaaFvrhxjxbsiwVplCqSBLNbrOFwGozZLWmDhBhs9myLAaTih23KHLy/PH9cKuUZp7nFfYcKcuCJKlBQXMTJlySJBiTMU49i3WysSkrhn4Ss5GSqH5Z5my3Nff3B6ZlwhjFOGrqusRa2FTVymRYyNIUYzTef5eHCCMuyyqcEwupdx6dCE9C4vgejVixmvZGlsvQapkXqqICPPM04ax8NlUi26YPTz9gLXz9+o3Xl2fqjaGoBNbtbcowtlg3E0OkKAv59apKnsOZITEJPkSen1/RSaTve6Z5oW06Xl9a2rYlyzMeHh4ZBhlqeBel+qjWCkrbypBJQ9e3GGPYZBvSRGPdzDxPnM83ijyjKBOC9ZT1hrwo0UlCtakFfLzIoGHoJw6HI0M/UFeSBBYwsgy8p2nk9eVndnsxJE/jRASKQrbYdZ1zOO75+aeveBc4Hu5xznJ+u/D04UFEQmuNqHczh8MOtKdpG5JEapLX643dbsPpdGC3P+D9hcvlQpoZttstb+dWLs3ekmas74GCokq53W5YO8vzJ0hNe5nFyGVM+s6y2e/3xBi4XM4iMLhcyDKRx5SlVEgl4TgxTgtZdi+AfyvJuNtt4Pnbj2gN+32N2deUZUXTXkhTgd/fxobrRarT4wptf3h4oOtauq4HxMCrVwbo9Xqjrj37/Q5oha/YDwz9yMPDia/ffuR0v6EqDcZEXl6eidEBAh1/uD8yjBObzZaoJL0clacoMrybaZse5y3OzWta0TNOgyS4rbDSTFaQJSlploKHaqMZBqkFD8NCog1p6jFmQCeQl4q8CPz88xnvIrdbR1VuSNOMn376mRBgdzjQNjcSlcjzZJiZlwFnxQ77XcCUr8nL/bGWmqsx66Y/4fXtBXTgrX1mGGfaduF2G+najrzIeHp6QDWBxfU8Pp1omwaFNANubSd/Bt4xzRNlVVLUssW3bpF693ClripOpx3LkrDd7qk2FWmeooxCJQY3O27XhmVeON3dMU0DdSWJBq2lQlbWcrj8+vWZ+/v79ULhAL0mvCT5uj/sOb9d6PuR/f5ECJ5b01HVFSFGQjDMk2dwHXmWcdifpMaTGPKy5PX1vB5Wf0dV1dzfP9L3LV3fUW+2IgqYInW9oQ8Waxf2+wMq8eTR0HYtyzLLYTtKqtAYw+vLNxItVSFh2ghE/suXL9jFyTNqEilHmgrfaLPZEmPg7e2ZskopytO7NVSQAQ3fvl3Js5yyTOXCWZZYP8nArchYJsvLyzNFKYnMrrtxPB7I85yu7xjHgSSR9JKcaSK325VpmjmdTrKx94Fxnrierzw9PrLYkXEYGYaZDx8O70b18/nK9e1CWeRcVoaVjRNZHolKBsxGFfz2N7/ifGkIRJr2RtuMOBepN7kwzF6vtLeFLC8wiZhbn19e+OUvP3A67fny5YVhmEmsZrGz1PsKecdudjmfPh3ZbArKPMX5jqwIfPnxG6/fJqpyyw+/+MzT0wculytKgU4UP/zwA3/84x+xTpbdl8t1/dnu11SaMFrLUgZNzktVzAdBj1TbklLlNM0VVGC3E2NokYld82C26LReF8Sy5FNK8+e//JV5nun6jtRITXuparI0F8N5VqG05/7xRFXV/O3PL/z85cx2TQNdr1fGcSEEOe9qJTzZNDOkqYaoZJHsHMYb+n7EmHS9cEkifBhb6nqLXezKCFPC310W2rZfB6EHlA703UBVlgz9yDAEIEWhWJaAiyNPT0fBbqTJWssc+PLlK1WdSz02zSnykmV2uBDYbneoUHB57ei7m+xG2a/YAmnBVJXIQCZnmaZhTRZ1LIsMqq1duJwvnI73RBQvby/kmchuhrFHJwkbkwmbra5Y5knstsuMtVaYp8tMVZbyHEkkNZ5lAoLXWmrWRSnnmv/yT298/WmhrDRu5cP3nVTXvQqcz2f+f6z9R7MlS3ZmCS5VNc4OudSvs0ciAoFAApmT6pqUSA/615dUt9QEiQQQ5DFnlxxu3ExVe7DNPXPc0S8GIUGfu99zzFT3/r61ul4St9vtGs9EFBmyLOF4OpJmK/JcE8aWOJYhVxTF5PmGsbugfMY0aIbeonVM17ZoE/Ddd9/x6eMnsmX5cDwemIaJ+4d7+qFjGDua9iNRHHJ1dcPHT88cjkfyKgFliOKE4/ECylJVJYH27HcXsizm+npNUb4njhVJqlmtr7m7u+KXXx8JgpKb2w1BIE2RcZyY7MTu84H6UqNYBiFuZnu1xc6Gur6w272w2Wz58OETRSkJsjiOeXj1QNe1RLHUzQMTCBfXK+IoZhxloBAnCfvjkb6VtPd2c0WWJnRTK22WIObLlxc265xPH57kXNbFlKVI/MQQ3S5DKmGtbbdXcsZRjsPxgJtFyDVr4UZHkSaKFF17pCpj7u42PD/tyfOMOIlI0ojTSURPQ9cRBiHr7VqkRFqWjnGSLtxomOaZfpBhS9OcKauMbZQThW+o65anp2cu5/pbIj0IDDc3W25vbxiHkWHsmCaZMWy3G9J04ulpD07TtSNBMC0NQElDee8kCanVIhW0fBN3giDCrBeGqQE/SGpOayN1cRQeOByPXM5iDO+6ljgOSdIYE2iKsuCvf/0r5/MF58Wce319tSwWI6IoAmBdlaAsYewZbUMSB7RdJ4NyOxCHAUkiw/soijgcTkuq3CyWWWF0102NGTR1PbK9Kfj8ccfueUJpQ5YHtI2gBOZJllwDA84N9MOJV8ktcZKQpLIUyvOMw2ER/TQDfddQrQrOpzPGBJggwk6K3fnMPBqeHw/EYcZ//7f/zqqqiKKIsijou577h3uGfqTIU16/fSBJIj5/+kDTnkmzlKra8Ph85tOnHWFkSLOAOI5o+45qXXF7vyIwMV8+HzBmRZzIHXddFkThjFYiBbq5qziejjg3oVXOy8sLTVPLMzZK0DqUv0do0Gj8ZDAmZLvZcn/7ht3uwPlyZHfY4ZznXDcAXI4n3r99z/G4p2mbpWFnFiSCCJqiOObUNLSdLCCDQPPq1QPd0KIDKMqcYaiZppG721vO5zNdf+Lp8TfmUZOmOVW1piwKnh4/s70uqVY5k/ccjzsUAZt18feO5/7/MeBrmKwYUuZl8ywxWBingWGoaZqvPKge7yyX85G8yPHeYV1HkgRc6kdhCdizQDEbvXwRNcfDE0UVialoqe+dz8/0/UEMRU4Oh3aSw7OdBLC5rir5Ys+WMAiIglBEBasVDsc8SPR9GiY0mjiKcdYtG39PkqRyOVdq2TqcuLm5xTpL38vhN4xikjSj67oFeq0W+6PGW8tms+H5+YVuGAkj8L5ku1lx7gX+70HqD4s5abu9Eu5G15HnBUov1i5tFhi6AGCDQC8iBoG1z5Pl+elZ6nt2Wv6cHF070LYHyiKnqoqFi2CFoTBDmuZoreinEa2EeRhFEcMkaTsJOZ9QOpNNixLraRBEdO0C9nZSlfReHppd2yPWxQk777i+vmWaJ5ybiOJAathqBtUSxjC7CcdMlCh0CFpb8BDOAfMkw5owlEpqHMfSszcao6Dt5IJnjBaO1WhQevm9LyZCGAhTC4uYYxhGuVwG8nK1zrNebUnigK6bKaqMcRQAujFyeB2mCa8UTy/PAlBW8tLNsoSnxwN2kkHI09MeowQIbZ1bgPtS9XTOLxdtvaQsxsX4rL5JSIaxW9gyhijSXC5nmqZj7AeurracjifevHugqirGcca2g9SO5pkoCvHeEytNXfc4K5Y6kdoMeKDteoZh4v7+NYExTNMk3xkXivTESEpzGAY0Bk3I0E/C4Unib8m5r/Y2qYAGTIutWSEvmLJcYWeHYsYYYXnNVi6bm+2Wl+dnxKzimMaJqsqY7bxcFCK+fH4Er7FePjO5jgmjELErS8rraxXu9vaOl5cXyrIULtAiKchyAaJO04SdW+IkJU0TplksSOMo0oOyyDme97x995q+P9I0FX/76S+UZYTRjjhWOGcWOLCwq4ahpSgzvJvpWzHJOu8JQ+EnNG0rFSKtma1Fe08Uh1J7HD1RmDBNjjAKwDu6VkD9L8/P3N7dEIURWln2+z1xmBKFhq678Pnxhba5oBD5hgyOFYfLmcP+mWq1XvihHUkSk+ciyJnGhaEJUiXNxL57aS6YQLHeVMK+Wwyx3mXEUSxogvWKLBFIbtNKUjFs5NUxThN5UTBbz+V8QRtDFClu7yvuH67493/7KKnUVUEYGU6nMyYIOZ9EhDSOl2XAVuK9YraSTNZac76cyfKMumnkINjW9GNDWa6WmrunVZb6Iva73csR5z1XVxtYBr6H3YWudeAjQpNwOnfkZcCrhzuen3aLkTCg63uenp5F+qAUq/WapulQxlCUBXYa2D1+YX84U5SSevwKvlYqRSmpZHedAOmHYUBNhmmynE8XgQYrx7m+kKYZSSKb2Sjx9OOACTV2HrDzxHqR1kxLaiaOUl7dv6Gtf2KcWvqh43wG5+TAfDjuKctysUJqsjxFK0WapguDLZMNtYJ+kIRrmqUc9hfmyXI8HLBOZAQex2pT0bQ1r1/fsd5mmGXoLWm5njBSy0FdczwfwGcM48Q49azKhPWmJE0149Qx9IoiT5Y0riNNZGPfNlILiaJosa4Lo2eeJWGoNISBI81ittuCd+9uyfOENIV5uhBGEx8//cJxP1KWK96+fcP19TWfPz8KJycKeHh4zV9/6hFLpgxjnbf0WUEUx1xcSxzG5OWMVgHjJNw65+V5muYhZZlxqS+EoaEqM+xsSRMZnm+uSvQ8SY17VRBHkrLrehHeGC28PutmScdYx9jPCyw64u5uhZ3hv//rr2R5RlkVwg7d18yT51K3xLEMNF5entleb0Fp+r6Tmlwm0P2iLBd4O3RdTd/Xkuhre4JQWJ1t07Hb7Tmfzjw97rm+uSKOhaPWNA3n84ybQuIoXYb7R7774QE7L1byNCFdOEjes9ggS9Ik5XQ6U1Qb4iRh6DyHwxPTNLPeVORVjB0l2ZcvQiTn5HJUFLn8Pox8V9uuJY5SqmrF/nggDGNePTzwsnthsjPGWklGID+jMNKUZY5zX02ujjhOeXX/mrb5hXFwBOFE29UM04VqtWz8i4g4ialWFXEs4pTVquSrhOsrr3KaZrp+Is8EIfH8fCCJNYfDiXEcyIsCozU3tze0fUeahqRRxv7lM95DUeTc3d3x8eNHkjDisNvR9z3Hw5Hb+1v6sWUceyY7kmQxWZrx5cue0+lEnIb0g2ezLejaicPhQJ5nBCZlvz+i9Yqb2zVx9sB2WxInAZvtO/a7lufdnu3VLZslcROGMoA5n/d03VkG+nIcwrqZ6+sbmqbn8fGR7XbDZnNF28giJY6EhSsSsUYYm6GwkbS2Uj2eJBU2TRO1c5yOe6Z5oB9qikqSvXEcUpZbToeOm6tbfvv1A9M80bUt9683JInUjru2wy6G8zwrKXIxOH76/Jmua+haaetopTCBpShC3NxTViHpwRAaRRJF5FnOzz//SpJkwthLYvq+Y1pg/FGU0HQ9QRihjZytr65vyfIcpeD+/oqylPPObidpIBPIcj4IDEGoqapSBu1DR5ZF9EOHMRrrJo6HM0aFnM4HXj1c048jSRTRdC110/PjD9+zWhUcjnucU5TFhiyLORx2dMOAVgND65hmy/6wW/iAAyZIsLMDpb8lYr9a073z9P34rSbcdQN5ni+oHTlHay28YoeXEEYo7MS6rgG/MIxLYr/GaM04TnSdmF/7rud4PC2tkq9YkYHbaMth37LfTZRVzGw9bTvRdz3TqLDKY1KpSQ5DT7lKhAk5wvZqRVmUeIRf+vzUEcWKm5sN4zRznGphTLczzbmlax3HQ0NRlPz7n/+dV3f3tAuO4rQXfu2r+1vCQHP/+m5BvZwZ7cD2esvhcOH55X8wjjOogawICeOAJDX88Lt7qjLjfBjAD+SZ5rD7TJobsrQE5UiSABOAUjNNMxEdYo7HA9bNjNPM9faKfpho6zNGgSYgMDn3d/c8vHpP07T88usvfPj4GWMCTscLWiseXr/i4eGeX375ia/yuDCMv4kL40R+RnUj4phVVfHwwyv6riPNQ7yf0bWmyHO+PH5hmC48ffkk79+i4N13v+fx8QNehWxUgNOe+nLAOcV2c4NWsN+dMAHLwizEzY66H/HKsV6vGYeO+iKoiDKPeHIjh/0Tb9++4dX9FasqY384cJla8vyKclVRNxe+ChGdF+ZhWeV4C+fLgSIvWK0KmubEOioIwpAsM1SVDJWdlbS0dR6lLH3fUdeyQMuLbDmHidzl7dsH2nrk08cnsiyVBhwev6SNrXXYWYpEwu4Eh/8mD2SRMX41zWu1pOCsRalwWbY6lFFkec7VlRWOaN/x+uEBa2eapl4q5SI8DIJgkdvIbCQIAjabNWFs6YYDVZqSpIbdbiCOQ6Io/8YklPcabLdbpnHG6JDt9orn52faqScKhRUXxQFd41E+oixCdAB1PbBaR+yeerwz6ECRFYnwM2NFmkbyOdaOzbYiNDHOVRz2F4ah5dXra6ZJoYg5ny4oPeCt1L5BhsXb7RWPX164vd2iNXz3/Xf87a9/wVnLzc0Vfdfy8eMHgkBCSklaoYzm3/7jb/zy2xfGUVLJ0zRTrlKKwvD69S1VGeOd582biuYyYueJZpSh3ma9om0bhm4gyUvyIuOvf/nI5TLirPycj6c9eEjTDK2gLAviMCAKUr5//wO/+/FPWKu5vrnhL3/9C/vjicAEFGVOkWcURU5V5mht2R9fpLa+YNH0Ur32yHwh7jrGWYIex/OJKA5o2h7wxKHhan1F3ZxQCrZXa1arGz5/2NN1M5vtNVEUUv/2M1c3V1wuDd5bwjCmbQfatv97x3N//4BvHAa6vub16wfO5xOBUQxLckSpma6tiZNEWGkmYFZ2SWb0WOto2467+4imeWQcRyYrSau6eaEo1vTDkb5vMIEniuShE0ch0zgQhpo8E9josalJ0mRJEfYCyXWOMEw57I5E4UiW5/T9SByLBfXrJmqeZ9arDTiFs9A2Mqxj6d/Ps0R55eXZkufZUvE9y7bARHIpQWoOIOwenF34NwVhFNN0Z4Ec5xY7y8vUe4t1Mtzpl1ScwuCsWirKuWyh7ExbS3Q3TWPyrKCpe6bJ47zleGrYXl1RlisudU3bCm8mDBOiyKONDGHGqSMMAvpTvZi+BFjvrMSPPZ5+GGnamtkN5HkAwUgSRzTNC/0woLQmiWPGYZSqzqbABIrj8cB6vSaKA4Jg2X44+fVZO6IW7kPb1CL1cMII0YFfqrsRdnZ446mbM8PQ4pwXkG/XE4X5kgoZKKuQIIhpmpYomEHJplB7D4iV0yiNn0eiZKLr92gVsCo3NM1I3+slhmyxs6NfLjpaz9zcrplGEZD048hut6Nar+iHjnGcWFUriqKg7waGYRSen+/ZXq9IspT9y8AwzVSrimkWS5t1wlbom36JV8cL+8EsoPQQZy1GJzw9PmGt5/r6Cme9VFbjFDc7yqoSXozXHPZHhmFkvd7QtQ0vLzuur7Y0dUfXzswjzHakWmeYwBDGMXlRMIyWDx8/Yoyk0srVWsDq44TWljTPuLkNeHq80A9S742iCB0FHA8H5nGiKgqpS7UNbrOlbWqsl8j/8SDppaJc8fjyTGhC2r7HO09ZrZjnkevrDcM40HY1RZEBAvOeZ0uRr1ivb/j44TOoiSQ1DEPIZrvifD6RZrEMsRp5eFv7P8H2ZVkxjgPOSbWm71tW65LHz/tv1cPAyPb+cDzIhSXS3L+6YbVOMdqTZwmBCRZJSUJRpih6pnHABCn7454o0qzXhVxgbc80y3d/GEacE17gOE70nSQQ41RkEfM4M1tQzAzDTBxFslDQmigIWVcbdrsd3m9Zr1dcb6/Aa6IwIAwVUWi4utoQBGuUEo5kqAK0FjD00A+kaUoQSLq0bcUcVlvL6XhkthP9cKYqI5I4JI40VXXF6dixWf8jnz5+EbjsMHL7ekOWGZybudQzfTcwz444SVhvKkCx3x25XC6LoVMOTnGiyZZkYbWKGMeWINSUZcHj4zNNe6aqVszTRJ6ndH1HnAhnVFlFFMeEcUg39MRpRl7I4frt+1dc35ZczhcOh24Z+Ed4HFUlFf4oSmjbWhh1swwZxuHE6VAzTzDNHe/Te5GQFDmfv7xQVtU3O6ZzjpvbG7kYnM4CHHcKN4c4N9N37VIVv2boOkwQLIOqhN72y2IFLnX7zeKb5Sl5keLR1HUj6ZpIEo0oz/39DZfLSWDqgWa9qWjbAaVC0qwkTXM+f36hH0bSNOb7H9/SdSc+ff7A1c01WZaA8njliFNheGy3V5xOJ+rmwjDKAaRMCw7HI2mWEkZifFVaxCfDNFKlFc5lnI5nMYCNDucilBfWZz+MjPNEmufMztP3Z6y1XC41RVkwTS03d1IDmmxPEAXLn48hdR5b1+z2u4VjEqC0VLsudc00OtIoJCsittcZ600mrKAgIDCG3e6FaU6Z5xyccMakenrN+XTmy5fPrFZrLpd2aREoruOIPM+Ep9NNBGGE0iHT7AhCMDrEWhlWBUbMoU1zYhhbnOup1jl4T16kbLYlp0PP1eaKX3/9jZGZrm24vl0J48WO9KeRru0Zx5k0y9hebej6jvP5QtfJd9/oAOcdSSowefzM9XXO7qVBKUee5zw/HTgeJA09zyNFkTHOE3EUMo7CZkn1V7DzwDQ7ymqFVvDu/WseXl9R1w2PXwacswtfDzbb1XI2WSDS88g49azXFdN4YXdpaJuB4/HAqzdXXC4XqZTGMZNtqVYrkjji6fGJ7eaKsio4n4/sDyeGCc7HBm9lCTOOA6fTiby8ZRwnolCGC3GU0PcDWhmiIKFtB4JAM/QyeM7zjCSJKEs5q7W9pCVmO7NeVygNh/2OeYLNZkWcLNZLHRAnIUmc8stPkuZN0pAff/cG5zt++fUnrB+lqqe8SL+KlGm05EWxpJPPKK1oW+Gq6cDQtWdhzUYhSZIsaQbFMPZEcYgJNC8vzwzDQBCmGBXSdBf+/Nf/4OH+FXEUkaUJysObN68JQ2kAfPfjdzTthefnIzMNq21JU4/8f/7vvzDPEw4WA65C6ZA37zasy5zd7ozSKetVQt+eqIqIKACNI68ygtCwOzwxjh3jGPPhw88EQYJ3sN6saeqG81EEKVoZwqDiZnvLdnvLx48f6ToRYNRNDcpz2O95+/oVp8uZYWyJ4wITaLyT81sQhUvSrsMrTRSG3N090LY1q817TOA5nw+8un/gebfjdHnh5ekX5kk4ipvt/TIgMSTpGu8Vh/2BLKvIsoQ4DWi6RbwSRcRRzGEcGbqGssiYhp7z6UhZXHNzXfHLL08kUcTVzRU//viO3f5IU7f0k+Xu/o6+7wiMpP6zNGN2M8pIY+F8OrHdrMFZlHLc31+htGK9WvHTz78Kg1hLXfb6WrAQx8ORsiiIopCqKplnuXOkkVSyrrZXgomZHCoJuL+/o6k7xrGjazUaYZJV1Zph7DmeGtQio5pGS103clnuOxEdqJzZdoBnnCbatqWqSqJQxAJZWlLXLX0/Mc+OPCsX8HxAludoFIfjURZBWbYkmRR5nqJ8yjh1RFFIU090s8VOnijOuJzbb8mraVzs8NbjbMDTlwthGBMFBmMcYSzPml//dmRCE0YBeZWQxIaskNSQtcJql19/9Q2jMQwjd682KBWDt0xTj3VWatJmIisirq83rNaSgAsCBd7x+x9/5P98+T/pu54izbDW8euvHxjGnjwvqbue3z79J3/5yy809UAUi2iv7wfGyZOXG5SeOV+eidOS776/Q6uIy8ULmy8tqOszx/2Zar2mLCt++/VnpkHLXSEMRTZwesQYQ1UWVEVFmuTc37/hj3/4F9pWmjN1LUtNvOL9u7cUZUZZ5ijthYvX1t9kGlEU/8+le98taAFougvhSWzhnpk4ClgVK+rugjaK+1e33N6+5d//7VeiKOXu7jX/9m//SpxuOZ8vxLEEObp+5OVF8ARJEpJl8m5umw5vHaEJCCKDnSe6bsJjyYsEE8If//gDz88H5kkac+PYUpU5XVtjAghCT6A90ygcfJR8BlcrOcN17YmuPYGL8EzsbUOThCJ7G05s1hXH05mulUDQONVLgyHBWUvXXQiCnKY9gtfMk8fOmjDy2LkjDBXWSQL7K6cXBUbJ7MLO/yujTxGFIVpLTRfk3ooH7yxBkGICTX2pSa8TtpsVx+MLYaRJs5SmOXE6nwhjOQPPzmO8oevlTBhHMVVZsnt5QWlPOM14etIixVrL69e3tG2zzBicLE+PZ4yOGIaZLJXFwzx1XC4T82wxyi08bkVz6ZitLLrSwPDP//IdXQv16Wes1iSpJk5kkW29onDRcg7Y4eaBh4c31LXBWYPRKfPol7PMQBzHyxIjI3y1RnnDqlrjUayv3hIbkSs5P9MNLZfLBe2XJXAQ0tQ1l3pP23c0Xcf+cGYeBcUhSADP+dygdMCvv35hHDoUjtWqIi8kCBEnEfv9jvDkGMYJYxSTbSjyFVo/cz4JGkiYxNlSn0VaGUQkcUmZr7i/f+B4OrLfnQHIs4zbm9vlZ/CaeAmRXC4XdLCIDLUhioX3XFalJP7PtUyIjdjT+6HhctEUqiQKI/puABcTRfobOiPLcoYBTBjw/u4Nr1+/pa4v3N7dUzcNXges18XiKGgYx/HvHc/9/QO+oiho2m7ZwMvmLYpikiRdLGgxeCUv2U4YNc47mqZZXoYhcRRgfS0Q50kxThNFEdMPZ7wLUEpe+q8e7r/VLwHCQODZSnviJCQvUtIswRjp3p8uNU09yTZJzbStcFK2243wQ+IIbTz7fUvXycG87wdhQxnpz0dRwuW8o6rWJIsR83Q6E4aGIPg61c8Y+5G+66lWYvAE2RS0bYd1HUHY4f1MGMbUdfOt4joNwoDp2pGu69FaUnzjIlQYh4kwCPBasd1e0bRyOLBWthNNKyBcaz3Ow26/p+t64jhmu/2q8pa6o1KOYRBWjrWW06klSTRxFJKmMUEo0PjZebTRRCZh6MWwY13LMNTgpUJzri+0bUuWR8tmrl2q0Gqpb04EQcxutxdumh0AR9e3hJFhHAbSRPTYfvZy4Qog0JKW/JpSPLcTxni0Nrw8H7HWYQJL1wqLqqln7HQiz3LSKCKKDEESM1nPYB3aTGjdMXUnymJNmjhMkDB0EZ6ZskzZ1TD1I6/f3tH2J1BQFLL5HceBNM3pupayzOm6ZqknaNpGIMXGKIoy4+o643Ie+Pjhme2moqwypskswNAQ7xVxEnN5PqONYr1do43mcDx94wEdTxPX1zd8+vwZpb2YvsZ+sRbKgLTrWpT2jMNIXbdYC2EEziZcLmfqpue4lwdM3w+czid++P1rwkhgsE3d8t3370mSlN3ugLOe+1f3ODfz/PRIVs6cTyPzbDmeDmw2G9liLOII65zUCqKIpq0XBo1IDuZJZA9XV1uCKGK3BxNobtc3PD0+Y91Ema9p6zN27gmN5+Z6K6kto4lNQBzH7He1VDHjkPv7W87nPb/9JvIEDyijqFYV82y5vr2Vn9UwcDwdaZqa9WbF4XTAuYk8WxHHsVj+nKUbetbrNbd3V1zOLZe6YbUOASd1gDCmH8R46dF0/Ujb92KZjiKUkiHg9mqFtZ08w+IKO4uIom07DscjJtDEifB77OzYXfZMg2a7fsPQClPKBPL5qeuBaR5xXmFMJOKDfuZ4OJPnuZi9F3X609MTUQR5HlKuUpq6weiNvNyCgHmeybLsWw1DZAKhJDXaCz/+8B7nJk71kVcPr3h+eaRuduyeR/rOC++suOK0P6KUJFymQcyMRb4iy5IlUSjfgziOSSI4HA5477i53dJ2DWPfc3NTcdif+PTxN+LwO3788Xt2+yPnc0PXtVxd35CMqbDFnCdOhPGilEMreH564nq7xbsRxcz9/Yab2zUff31kvzsSBgHKe5Saubvd8PT8Qp7HBJEmy2NhlUUpx6Lny5cD66TEWuEwmcAIG3AcOZ2P5HnGU7NjnATMfrm0GGMwQUzfteRFyt39NdbN7A9HtPmf5ugwiCjzXODNQUKeld/kSmkqJlttItbrNW3bcTweWa3Etvv0/EhgRDaRJCFoB8rSTwNMGqU0L88vTOPIDz++Z73OiRNHlLz7ZnVrmoZxGlFovPM0TU3bNIRRSGDMYpmW9980DxTFmrxIJO2RpovleEZpS5xqtIqJY/lOxWGIs/LdjsKErp348vmFKA6YR0hiA15xe3OL0chyx2kxOfYDgYkXHq8iTXOyPAU3M9uJ/eFImsqhSDilkt6zbuRvf30iWoyXaZqy3z+TxGcCDNMIWqe8ur/jd7/7kU+fPgjwHM/lcpHE0uXM+/fvOBz2yyJhRZwkkmC3YtVuazlIdUbYmjfXdzL02iwb3MMTd3d3fH585HjZs3vuGQe4uRGQ+8vLI/fRijSJ6Kaey6Vhs7lejNTDwkYzpFmKSmC/PwCeLMu5XE4467i+Lnl52fHp42+8efuG7394w35/4nA80bYNd/evGMaeaeqFlRuGDEOLDwVy//z0mZvrG9w8ME8dq01OtZK645fPTwRGARY7dWw2BfvdkSAQRlmaBGRZxJvX12xXW3779YmqeoVXcu5w3pHlKbOdOR8PRNc35FnBy+5Amuf0w0xdd0SxCMmauuH1mzsOhyMoy/PLM9aOGKO41C1aBURBQHNpCF6nFNmKyXa0TUuaLMmH40CWSXX9y5cv5HnJPAuMG4TtGEUpWREvLZAJZxdW0+ikntl3vHm/Zr0N6YeJH3/3Hf0wLvV/qdI7K+eKrvu6SLQoB2EQEsUxTXNmHHvOF0+WlOS5DEaDKCVKQpRyOD+SZRHaOMLIsNmsePX6huenZ8JIFhC319/z3//7fyfQmrIsaZoLf/7zXxingTyvmOeAn/72yF/+8pvUD41ehieOKHHcvVpRlAbrT1zfpoSxIVRQNx5jDKvVhro509QNWVGQpAk//fWJoTd0nUapmcv5wtOXlsAoNpsVaZQSJgnf//hPfPfdHxiHmSxL+M///A+stWw3W9IsIS9SVqsKHRiOJ1koohYEzYIV6PsOlAzdkySmyDPCKGLoLUWeUpVb6u5IFIVcXa/I8jUff90Txzk3N2/4v/7fP7PevGUa3YJYMXTdSF13BKECNVEW+VK3k/O5NIUMwzSChyCAooi5u90SGjDaE0ea7aZk6FqU11RVgZ0HurZZFqojSWxYrSv2uwP7/U7S08rTXi4YLZZ65Sde3cnZ29lRIPl25HQ84mYLRhYIzq6x80ieJgTa0LQN4zBjtCFPE/r2wul4QCmD1pKsDIOYX3/9wH92fyaKQml+zDOb9ZZDcyCOY75795rfPvxCFEVkSbTcAQZ8HJAXa5ydeNwfuN6+YuxnkjiXs4xJ8N5wPOxwWPIyJ4gigoDleQ/z1HM+DWRZyrAwgp2zPD2/4K3BWY1z8ucVxRHDENA0PVHg6LtZzr5FytP+TBQK1+392w15UbB7avEWklSjg5F2mKm7M6tVwXffvaPvpVVidEhTn5gnMCZl7B0vL3u8n0jTkNgIYiSMMqIgIU1TprHhd394hZsisIqff/5J4Pd9z+54JAgCHJ66rfn1wxOni9TpplHOUd47qdZFmvNl4rcPz3g3kGcxoelZrTaCwslyTuczu5cT0zRiAsXu5UgUxiRJxvnULDK0GWtFzJMmGVGQEZiEJMlZr7b89PPPHPZnvPdcXV3x+uGB3377jSg0zOPAcT9yf3+HUhqtjXDJI0m4p2lKfT5LCrZI6YeOvp8Zoog0SaVFNwREsUhSrJ3ximXRGfDHP/6Jqlzzhz/8kf3hI00zk2UbwshwqQf6XuyzYtPWhEHE+XQmCOU75pUIGcIoYBhamq4hCGN05ChWETpwTNPAsCxjXj/cSIvPKJIwZZp6sjwEBdM0UOYKowxV+YoiKwhCGSA6P5FkEc5Z1qsY5zzr9RXaGAITsCo1cSKMa+/h0+fPks5jIorlu+9mePVqxdin/Nu//xnnRAAoP3NBLoSBWqRAHvVVthQGpGn8Tdw3jiPO2SVwI+xeWN4bzvKXv/4H4OT/Lwy51Bei1HB1e8vLywuTVeggWqzcM85ahl7OX+t1iXOyWNIq5LDbcT5LAnyaHEM/8bl5IY4TzoeGaYbTYcDoEKUN48IXTaOQp6cLdobttqCtjySpQWl4eXnGzQHaeILAU66EazkMM11vOV8Mq/WKLM3p2onzueF4rJkmK/fzccKEEIYG5yaurleEgeF4PJPGIWmhOR5PxHGGZ6TICj59+sB2uyWOErq656effuHSNKRFzuV8YZgm9BJOMUZhkHlDFCu0EdZhmmaM40jbnEUCmZcMvUPriLxYcTp3C2de3kenc0cUJtSXM9PosRa6dhIxUBCzWW8osozQBBRFwePTE58+fJFU7zjxX//rf+Ph1S2n4wsvz18YR8FPJEnM5ASNcr6ccX4EpTiddot8yZPmKddXG6y3NE1NlqX4JaXqrF0+Wwl9Jw6HuqnZ784cjhe225ulur+h6fYczi0iXZnRWlFWBXme/b3jub9/wKeUoqqqBXapGMdZeBXqf2qs4zj7xlUSdkwvkcXthjiJ8cj/Vi2Tde89u92Om5trANI0Jc8zmqZhGOTwJ1UP6ZgPvbBdysUW6BYjTT9MnM9nqnKNQuC9eS4foK+w2aZpFsisAWAYeqmeZBHnU8PlIvylsizZ7faAWoaXA6Aoi5JhmAhDGTDKNkxqIy9PO2GiBAbrRtIsIstzijylbV6kHmo90+i/WcukttILv2OpkiZpTtcO8uFduvrC2BDQhdRcgm98EBBg4+V8AZSYXb4+aJwlz/Pl9zpxuXQo5VhtIsIw+lY1nmcxxnytXhM4nBvRJpRfbxiTZYp57miaBu9F9DAMw3L4ktReUSZ4NxGG8udr7QyIQctZGfAqA8rM2HkijAEFcSybLjsrvHMY43nz9pam6Xl5PnE+WqLIkaSG1TojjAxROlLqhLqV1NnQScqjaU407QVnp6VGKsmRq+0WZ+HLAss8n86stwUKQ9uKFXPopYK13q6XQeUsnMUwAu/wgPMzURQwzT1xBG/fbPnw4UDfVqRpyqpcsT8Iy6AfBtbbjbATjdQ3q6qUyLheKnRhRJ4llFXK1U1CkkScjjW//fJJLtzJljRNeXj9Cq0Dzucz09RhAlitS6IoQfuey3Gi95BEKdM44eaZ169fc8oueCvDiXma2WyuSdOcp8dH2aSYRIQF9YXVqmCeeo7HA2FkmGdJiHXDwKqsMEY+N2mS0Q+9DDQyqTQrY7i+vqbvep6evlCUy3PCz8LtSBaTaxTQdQ3Om2XbMfOy2zNPI+/+4XuuritMKJVplCOOQ7puxOMwgaZpG7Qyy+dQEmbaaIa2x7mZLLWUVUZdd2R5ivUhWjvGsWF2PUEkW5iubQhNirMAhjBKaJtZDrRRzDx2DO3AelVRlQn4iSjUOCtw/yCIFkisJLGKIkcrzzB0dL0jCCOiMKGte5J4RRjFWDuy2z+jlGyB60bSZ+fLhc16u4BdPadzzfWVWFmHoVsOYzBN88JxlFrBOMrzxhip8hkjQxq9qsjznCIvGAdhMt5cJezrF8IopKwy4mjFx9/2xFHO/d07/q//+zc222pJMDvmCdpGas1RJBX3NMtk2eDswhqRV0p9EZ5pEHnevrvj6fEEOIyCPIvx1nI5HUiTkMB4mouwv/AjSQx3d1t2ux31eU9z8WRJzPnUM8+SPMNNvH/7wJcvn8DlaD9x2O9Rzi3ctQnlNwxtAxiyTBMEE3hLGKTYqaNrJuzUCJcoDgS87Dw///QzSRwxzwIc325zdo97bq7vyDNh4SRphA48u90zWscUZco09oyDyEiEb5dQFAWghF01n1hVK9I0Jk1u6LuOzapYNvUhl+ZImm5o2zNJkmJCaBupy8exwOuVmnBuIEkCqtUNj0+PaCUg7TAIFymL5nKWy4TRBqft8tzPmGy/4CWgKFKGoWEY5XCitOXmZgWq4njc4+YJkKWQ0QatDE7N7HYH9i9iSU+SjDCYicOZ1cMNbbMnCB1h+PVdDrOdl0q4J4gDpnkkSxOaWqqxmgCjxXTsrOfXn05st4a69sBI152WepmiKiOyOCCOcn73hz/x9vUPTJNwBP/1X/91eZ5tF/ZYwXa7JQwNp/OFeXbMk5hG8TIc6ceeoJGERJbEC6g5pKkHqiLlanvHsd6RZjHXNyuKYsOvP+1J4pJVdcsvv/7M3e01Q2/xzuOc5nLu2O9PhKFa6syF2D2dLP6k6udpu5aqLDGB54cf3/L0eEBhCYwnjgzrVUFTn4ljERN1jVR2FRNVEXFzs9R1Lkeay54o0FxODfN8WUyeJ16/uuHp8RE39Sg/05zPhEaWg23dsFnnjG2DUga8Jc8Vl/osl5Cpp3ctXXshjWPiJJLBPp6ubfkf/+Pfv8meurbGaMU09lT3KVoJriMrxD56PO6pypQ8j5bamWYYRl6eD6SFIs8yvNeczxfatiErcvI84+Z2g7cW5+SSJxUZEXZNk6BU8ixlmuF87tDMpGmIc8MCrh6Jo4jNes2nL58Wc3G3sCTFnNj3HfMk8oh5lrOcxlNVFSCCKxNAXuWMU8c0tyRJiDYzqzzj+loq7YfDC2EE623I3f33dLXUOZ+en5nmiXNzwS5VyWGc2e2PPD0fOZ0b9ie5oDinMIEgO3SgOB4GflEfGPsNRR4SRRN5mTOPPatVxe7lwG53Zp4HlFb044n1ekMQXDjs2iXhDIqMeXIkUU6gc9KkYFWtWa+veXz8xH5/JAxjrq8l4eM9vHp1B4s13oTBNzZukgh3tizL5Qw7YQLwzDTNQJ3ElGXBOIxcrCdKAhQhXd+SlylBoMiLnPfvvmddXXG1ued0lKFBVRRczEjTdAI4T2QoaFQopuBBzNIKj9diF9WBkWphHnDlc9p6wlvH0I2cTyfubq+YpgF8S5pYuralyCqCMMD5mSyZqcOBh7sVWSZ3iGlq0MwkkWYeB7IUnHeEofDvrG159+5WPj9tz6WumYeGvmvIi4rAwHqlMTonzRKG/kCchBS5wOSTOMe5nq4bSVLDfv9CWVTMdiAIPJ4OO7cEBpr6iSR25IUhz42YXL0nzwzONkyjiBqSJKC+HDlfLoShIo40sx3RRpIsRjk0E+/e3nI+i3CjKjJhp2JR80gUC3dPETKMM/V5xDlFFHlhp1tJ76VpSJ4FfPp4oG9ntA6ZsNy9Knh+3nM81vT9iAk1eWV4eH3Db7884yyM47zw9RKiMKTvpfXQNB1hZBhGRVFlOA9hJDwy5ye00sy2Y1zOI85r8qQgjVccdieur6+oqorHxyd++fkX6q6lWq05Hk+yONURo5dGQ5wE6MASRBZt4M2rex4eVpyPLzJw8iP1pWeezuS5JOqb+iJV73Hk+fmEs2YJYowkacI0WTZrSfjc3b+ia1q8h5fdM6dDy4cPnxn6kX/6L38SlnikeHr6BEji/s9//jNRJixt6+R71XYd49gQBhEKj1GQ5QmhCUjiSIzsSjEME2mWcjwciKKY0+XI09OBcYTTac80dcSJ/FlqbXFuwgSOzbZk5Q373VFSyWFMGGhgRiuDteMy6FMo5fBYZjuwWVdUueL2qmKaHLP1PLx6Jw2ttiOOI4oixyONKmdFHuW9ZRx67u5uCIy0XsQMrnBeBoUyB6hk6TLLudIYTRhdf8O3KKO5vc3BK7HQKk8UGLyT4MfjZ/8NGzBNMjSJokjEHUjbpCwSLpeWPCvoernHAkutNlsqspJwreuaOA5Zr1acLyfCUJNlCSIT7XHOEgSGw2HPOA2s1hnWGV6eDszTTDM1hGHEel0RxzHnuiZJYglikHA5nQSPMwx4pxdTumMcLePI8p6LGTpL11uapsdXCe/e3/Dn//jCb7/thWcfacJQ+Lz1xeOxrLYB1zcpQyfpRGMUzsHT0wvOKqbJs6pi1mvBiSklQ88iz4XfXsbMc8f5ciEIpXnx8y8/EUchxijiSKRoeZ5TrVZU5Yqf//YbXoHXguRI0pzD6Qt5WYIHrSGMZDFmNBgNd7c3RLECM3D3asPNzR1dM3H0HbvnE5ttgtEx+8OeMNSM88zz8x58wDAOGBUu7G6RGAYm5OHhNfXSzPntt1+5vr5htSn56ee/MQ4zv/76s0jKypSX5x1N29D3Lc45kjxmvanYXq0XQefAvJyJ7WSpz2degoC8Ktiu12KzVyzCPTG8oz3KyL2t7yX1HwQyKPR+pB96nG9xtudyHlhVrymrnGmcKMv8/7eh3P/y19894Ht6FIvu9fUtxoREYUzX9VK9CAOytCAIIrx3pGlOXZ+FBaWESybsGEeShDw+vnA8nnn95oEwCyRmOcofTJKkEgldb5ahk0OhqS8d53PDer1dzJAp4KQKNfpvMPYoitBGY7SRLZn1NHW71IdloOOc5fr6irzIeHp6XJIDyWKUuuC9qLunacA5x9CPDL1UeOd5piwFMnk+nTAmoKkbscNoyIsc5ycupzPz2HM4HoQdNyuOxx2rdS6wfDtLzXCYWK02YppqluqXdQTGEAYG8MyzbDzX6zXnc/1tuPDw8EoeNvsLakkLfP7yyHYrk+nZSm0ny3KOe/nSp5n8jL4aeL1HYqraSPVwHMnyhGmGaXTkmZgzgzAlDCPCUJKT+/0zZVnQdQPb7RXzbMXGF8bUtVw8ojBYqsIJYRiI+TJgYbuI1exwuHA8XrCzcMqur9cURU6SZJyOF7q+J4wD3ry7JooFAHu+7EmTDWma0DYDV1clqDOn8yR8p3GkrS9UZUWoPWkScTjUC4z+niQxIi8oQ8qq4PnxhfrScHNzTxBpDnuBpyZxuujbFceDJLWC0FBfGpT3rNYFT49Hnh+fePfuLa9f31CtCj58+Mw8Tbx6dSfQza4h0AHeW7y3lGXBpR44fT7y+uGBvqmJ4xTnRooiZrst8U7j3Ii1A0rP7F+e6dqealMs5i9HlhjShy2ntMc8WRwzcRSC99TnI2M/4G3AZlVwc33Hh98+cT6dsd4xLi/FoesJA83733/Pp8+ficKAJI3Y709o7Vmtcywzu6cDm831t+RuGIghtW07di87ykpqVJvNCqUUgQmo66NsjIeW1aqk7S9EccgwODGMOk0SyyXYGIf3E1dX628GyHkaaOozxojEYxwGkcDE8XJBi0jihGGU+n7bXViVV7RdvYBeE4JQcXO3ZTtPXOozUWjQSmC78zQvxuoTnz4/0taOJM7YrDPaduLmdk0Sh9SXHUUhG29rZ8Zx/jakj22KxxJomEbDZC1RmuJdzNjDvjmChtdvXhH1MefzntlZwlD4aNMsNbc4FRj5PDuyIud4Osg2Es/sJvp+putaqnxLkkSEoaasSqmWziPey1bpeBTjYJ5li21WkrTOeYahZ3tV0beay2ni9cM7snTNqrzjdGgJQqiKEmM6mlpMUcVXIx6LTcpOlFWJCSThGacp3jnhZFUxdspxtse7gMtxRxBE/PDda4LAoplRuSKOPEkaMowTgelZlYqquCPLC4yGtm8W9IPCbxPSNAC9pqoi+t7x5vUtq/UGZx0fP37ETSPj2LPZbAl0TBhcC8sz1LRdTbXNiYyw56IQuv5IWSW03QWtA6JILfXGiSRWeNdS1zVFWS4/95EiU1xtIobuha4fuL66J44009DQ0eOssDiNmamqHKUm8NMiPghp6oY0SzifnglDhfc9MDNOniyriIKEpq6pKs9qk5MX/tvA63S8kGVSAcRNDJOlaxsufUscJhgdMI6yVW+ajmmuGaeOokjRTCSJ5u5uw+xm8jKnbRpQI2FoWK9SpklQEd6qhTc4sNpGGLPmchoo8ivGsWccJoahBy/8QtA8P7+QpgKBF7aZoWku7A87qnVJmqYopeiHA/0wExuH0o7VOuPDrzWX84A2AgTHz0yjEt4nCWmypirXbNbX7HYHDoejJKVub6ibniAKub3dEoSatm34mmpQWpNmkTA981z4OvMIpMzzyOUsxmkZynqRfARyTBrHgaJMAVnIvH//Pavymtubt7y8HLgP16RpwVENMpxoa7ZXayIMgQmXxVxAXlR4ZZm9lW31NFGlKXFi2W5zlNPMg+N8PGMM/PDdK7QeCY0nVJCmYqEdhpk0mdmsNevqlrJcgfJMU0teZXjnCY0njlLS9JYiz9FmYHuVs16tcc7z6eMXQgXT2JPnGduHNet1inMKraEfW3QQksUrhnEmSyLs3BAlnrKKOR3P5FmGMROrKqW51OSZYegPjIMsTvNU2IrbTUyZK/r+hbZpub15Q5YanO2ZBy8XVR8Als2mXFIENVkWE8UxXdvh/bg8Cy1ZnmPncRlqjVxfv8LNjmnsWa00m21JlinapibNEna7mihS5GmEJqOpO06Xhq4bGIeZMq+Yxn6Bo2vO5xaMk7NpHBIYR5pobm5XzFaGbH3XofWMUp6yCPEuI00jPj8e0boiilLyvODxyyOv37wmTXM+ffrIx798pO46iqJY4P4ao0NGP5AkYuFUZiKU0AtX22uur+85n75gXY0OPF0z4WxLVW4EydE1hHFEP4wcjpKUbJeFbxhKtbssS5I4Yb3egPVEUczL7pFPHx/5/OmZ1WrNn/7pD2yvVjw9vfDzz38jzzPyImeYBu7ubwQArqU6udt1ZFlJkkSsqlx4Sv1EHEf0fSepyn7kOt0yTsLXrZsLnz8eaRuPNp4oDnh4uOdw+gBe2IpB4CmrBGWkJte1HUkoiQ3vRVKlcBRVhrfQNDXRYpQtcsiThHEeiKOZh1eyQEnSgqrKCYPNUgHymKWCNU0Tr+7fo7UmCELwSuRu3uJwuHmLUoppnlGobwzmebLy70/zt++3CkSMBiJeEEu3F/C+c2h1xfPzTrjjl5Z0HXN3tyZPpdn0prrDGEjiiPsbYQW2Tcc0GzabNUopssSSZmKFdm7GewNek6WO7SahyDUL2hmjAyaboZRlmkemccSoju/f34BS1Jcz2oRcLg1FVgAzuBk7O9pWkEBGh2ilcMjvVeQMllcPK1brhI+/NfJcXEe0XY8xiq4diWK4vS0pVyLEaJuRJM4Ig5jTsV6Wjw6belarDcMgNvevckaPWN3ruV+wTgPX11d8/vSZJAlYrw1etziXAJ77+1vCKOaX335je7Wl/TQyW0cUJzLAjqTxNU4Ts+3Jy4A0zYjTkKYZ+PDhM2Wpub4thZusSvYvLfPsKIqKcZRlmwkikiTHBNDU0mIQqVW0CDMWEdAsyR5rJ25u7vntwy+cLwc+f/5ImkUUZULXXTifLux2O4Iw4O7hjig15GmOneVzZXTA5VxTXxqiKCSvcvJKpAtFkRIEBm89aE+1XvHp6UzfDWzWa7rmBaUn1uuMn36tKauAw/7A3e2KuEoXMUaG9zPKe9arjM2m4ve/e0Pf9Xz6/AmpJmakacx2XSzIkUwQSAuvru16QWorSKJosSTLohs8s/VoLaGSOIRAzRit8U5QAVpLkrGtL1hnybNcFr5G43HM88DYtTgPQRwR6Ii8TFFK0w8t49yjCVAmxDvBX4n8QMzT3olkwzrPtLD3nZuYxomWlnmecd6SJHLm+GrXjb8JT+TX2vcdUWwAxzSPaJMQxSHWzwSh4XI5kOcxaR4wzY6sCJk6/w38t9sfieMQpS2fP+4wgVSghxGOh56umxbGvWGaLVlhWIUJCsXl3GG9w3lFmgY4P9I0F16/2XI61eSl4fZuBWqg70bmqaV4l/DwesP5aPn44YDyEUkiduXLuSUMY8Zhxi5M1iRJ8H6kbQeisyxlPnz4Qp5LeEkbR1lKqyKKFWnhCYMBRyfIqN6zeznwsnvh1et75g9fOByPXF/fEIQRTSPD33Ho6fqOINRsNiXzNPPzT4+EHx33DwnJdyH74wtj7xkHyHORyoVRzDiODJNYw+9u73l5OfDbb5+xs8xEnAVnIQhC5mnGORbkh9xlhv7C/cOGjx++sDs8sl5tyIuKOA04nkaaoRWxlnGgikVO6knTGK0z6rrFhGCdo24agjBgaDuqSoa3ZRUsLVBFGMf0UyNivbYlTQui2HBzs+L+Vpb5l8QTXBfk2Q1xmuBRzNOEnae/dzz39w/4rq9v6Ib98vIyDMPI8XhcBnGKJIk4HuRSLRHZAKU8bdNyuXSczwceXt+ijQcCnAPvPNbNYoYN5QN5OEiFKo5jnp+e5IM5CeR1Gj3eKeI4lC1/VZImOZ8/vdD0HVEc4ZXEtfM0J4mFpTLNMhjQWiye26sNYRAAjq8GnX5q0TqkbTuapqOqVktC7aupdaAq19R1Iw/6hZNgjKFrO3CeNEvAO+bREhcp0zRztb0mL1LaZiSO5KGy2WzI85z6IgkxGZqEktCwkzBi0Ny8uud8uVBfWrJcOE/7/ZFplOFgUzfc3t1jzMA4ynZtHC3KhJgwQqOWVEiGRzYdXdvjmZd0pVrsQloOVFZUr/VFKnv4hH5o6PpGuDhKHg5N02FnxziObLfrb9wDrQzWKarqiqapmeeOLIMw1GgjFevTqZa4q5ME6DjIISMMI4o8wQSKz18+Y1TC3f0K6zOurnKCUAZ7SSLVyXGqMVqU5+t1Qt3u5OA+O9q+Q/maMp+5ub5i7BvGYQKvKYstTXOhaz1NM6JUTWAMioDHLy9MdiArEtI0WWqyPXael0usEbZZ33N1dYX3mj/88TseP+/xdmDoPc3lwvV2xeHoCLQl0DPz0JOUJcZEBKFitcoZBmFzzOMJpRz7lwtZnhCHMW4SA+KXL58os4jL8YX1quDV/RVtWzPNI0PbSk1W9ygsoZlYbVe4WUQdceQpknyJuU/UdQdYvnz5RFVVKBxKzVjbgtPU9YE8NWSx2I6a2hOGFq1EaFOtcsos4bR/ASx2SSbaJaUTR4ok0WRpSt+1wpBMCpq2xvsRY8TSFQQRN9dr2magbVuKYibJAuLE4uxAtBx41qsc5VMCrWi6iaFvGQdLWazA22XLOHE877G2p1xlBDogywKub4RHs94UtF1DGKXkeQwqxFmHnWasnUBZuvbMze1aTMezJc8q+q4jjGTIP1uLd3A8nCVVGEVEaQTKUNc1+8OBalWyvt4swpeRrp9RzlBfJhQSpXdWLkRxkjK3jfBzhpGuaciShPtX12yvNpwOgkG4vb0hCB0mcESxQSlHEGoCpYgTzTB2XOqZOMpI0pjb22uc9zSLkazrO/AO1zq2NxvmaSTPE87nE4+fWo4nyw/fS/rwu+/eszv+BJ7FXg3lKiWMNXYW4HFeRDw/PwvHLZJhTlWV2NlxOh1Ik4jQhNzdCufKzhOvH1aEoVQxqpWIT7x1gKR+5kWkkqZbFEjNNBCT5TBZvAflr/HAMJZEQcDvfrxZYM4iAHrzsF0saZKIAQ3qTlxoWtH3ksAehytOpzNRnHI81eT3G/JU8/z0xJ/+6Q/kuSyAjJJD3TiOhJFUcqdpYravRNYzW5QOsHPA9VXEf/uvPxInAn8OolAAz9birGwAtTbESSocGA/zkij/+ZffeH7e8/DmLet1yTxNOKtRPqdYCZ+jbhqcbUliT7UumMeJNPYUeYxRGS+7g0CBrbCDxmnETj1JtSYINXluCHRAFEzEcUDXj4zDUVhy04BWIkVxVi7QWsckSURRhBQFJElKmoZ0/QDMeBzXN7d4NRGEBmMUEGCdJvAK7/XCuInJ0nyxAzox5EURVXnF+dBSX3pOx+5bohelZCE3TsIhTTOqaoNWIj76/PkTv/32mZfnA9vtmn/8x39gva7YHQ78+usv5IUAk+d54ub2ivP5iAmEFTTPPWlakaQJ1aoQqUk/kuf5Ik6R5Pt6XdLXI0mScD4f+fjhTFcbPLJhvbm54lILr8jOI1kWkOUBcSIWy8A4FAmX85E0y9FKES7mPTuJZKDMM/IsYFVU2FmaDr///YYgkN/7ei0SBQD/lSWE1J1eP7wR4VOcEARiCBznEaUM3m4l2dzJu+z9++03xEkcxbx+tUEpIwtX7TFaobTUrb2CyU7yLlEBh6NwVY/HC2FUcrNd8R//3rBZxdzfv5EhMw6jlvqbnRZmnaHvezwyLPNOhsDehmy3iv/2394Sx4ogVERRjANBFbhp8RbKgvKr0AYUQz9xOXf89aefmeaR7374niyNyJOEaVJEYU6chiitaOoG70cCM1OuCtxsmceJaJ1Q5BHPL3umoaNrR/K8EFv4ODPNA1fXG2Y7kiSGQHu0GimLQCD6zQtJkjKNA4P1FEXB7d018+BwbgI14XxA34so6N37NygV8vHTR9bbLZcPn0nzgqYdaNqOIIwXELxlGEaSTBHHEVdXK5yF/eEzRQ73D9eMkycKU54+X+j7YVmcN/hhYhoVfce3541SMDSNcHuBsqooy5L6fOLz50/c3V9RVjH/43/s6PuWOBEeVRB4Tqczp/MB7z1FVVKtU27vrgRz0YmZfprEdKt2is32iu1mKzzcICIMQrwVm6TSCmsFWZCkCU3d0DQ7jP6OfjiAbzntLJt1zuYqIU4yhsHz9PjIZl2SpyHfvfsjKM3j4yNKObI8E1TGKidLY5EMicGN2XqmSVI1UvuVZZNSHjxiPJ0HOS+4WQD3oSKKDNqI9KcfJL0ZRnI/iK28g2bboZQmDKVpogi5vZFnczc2GDNhTIhaUqwysCgxOsBax91NidKGthmWoZlj7CMu9Zm725xqEZNoJcklrSSVpLRCo7H2drGBzlgnQ0dnNetVwL/883v6oSHNJGUJinkxnyv55X+TCCg0Rr+R4cosibh//dd/p+291CTXKdVKRIVtM3A6zbhW7ktlkeMslCvD/+P9PVHScXV1RX3pGfqZth3Jy47rm5BxsHz49cg8eXyk0UqWwPNkaZuRsvAYI0MNbUTS9/hlEvP5LNbrMBApwNPjfrGLOqJ0Joha7Bzw/LzjcNxjTIB3liSVaqEstFZyf2tFIuetZ5ot7uxksOEnHgPIC8N/+a+3nOsT4BnbkLwoCQMRORodYIOZJA14t7rlt98+E0QzSVLQNj3OznjvSJKMvuuwVhjDSlva4Znf//EB63ou9R4TrqlWW+I0JJ0TYqtEOtO3ZOVG2kHeURQ5dd2x3W5pLj3T7Oiagal/pipLilySzlEUooziuG9p23bh7gbkZUSRhazKhO0qpu2O/PEPb4nTjGEcKbKM4+nM6bRHecfD/YqrdYbRMyaF3//4ennXzMzzKItqA5fTjsAERGFIGMakqRjrvXfoJJQz79CDDiV5OQ0YYwT3MAw4PzO008LO1stQ3BMYg51ntBIcjfKefpyZ5mk5h4nkAO+x8ywCIRyBkTS2fLYdeI13inGWn4n3X//9GTc7xmFAqWEZBM58laZpLZVbEXMopmmS2YaW8EBcJhRFyjgNzPPIfr9nta4E1RLI8lBpu7zTDHVo6OtBlnKjhCeM1sRxKAz2QNLNzgoKK44D6qalaTpu7lZoZalWOW3bUZRrDvuJxy8nrHXcvL7mdKzRBv6f/6/fY13L83PDYWdRaK6uCvLSEARSaZUzoQzo47igXK05HS80TU9TC9NazlklbXfh8ctxCQl4FPKsm+3I0J+pqhjve6yrKbOI/ZcPHE8j8xQRxYrVusB6eZ+EsWKcOt69e8Nf//YzdV0vzyLFNHr2+4YgBL3cZTwXrq4jhh7KckueVuBjPn16IQhjptkuJwPH4fRM251ZbxI26w0vzwf2u5px7JmnDOc9682KMFBc36yZpgt5FVOt7xiGGjsDzIxjSxQZHh7uGIYZD1yaE9M0kGYll7qWdlicykxDazwQJQJdnMZhWebAPMt7B63Z7194fvnCPE+ShA00r1/fkUQByo9kaUCSKIyFopD5TNeOhCahvjR/73ju7x/wBUGI7zzTOAEiD1iv15LmCUMOhz11XaMXsuU0irUmTUu6tifPC0mbTDKtFIvjSJLGVFXJ+XzicDgs0PiJ3W6H0mJlMSambSRCrrSm7Vp0mGOtW2K9Zjngi5kxz3OeHp8Jv5p+jSdNI7JstdSJLXEinLW7uw1dN2LnlM+fnsiyYqnmjoBf4NUx93f3NE3HMAx8+fKFm5vrb+bOIAioyhVNdxD4fbIS+K3tCXQMyuOs5XQ60XahxJYD4Q1Z62SIZGcxxWapVJN1wDiOAqo2kkQ4nw84Z0mXwY0xmpur1/SdVKSbpllg5K1EnGGp9Hns3GOClHn2DGO3QDUTAhNx7oWLqDXk+VcTo8HoEG9jVlXA5XJms60oy4KPn/bY5ZKttKZvhE/RdTNGBby+/5HD7t/wbmIeR+wMWS5R6HmJUsMojCytKQqpgKw3KybbME+O/eFEGGuurnOm2dK0PWEU07YNznn6vqMqcwHi92cCg9iA3cxmW5FnJTc3K7I0wzpNfbGs1yvubm+5XM4EoeJyOi3g5IjZnpnGiX6x5rnZoZVmt3uhLAq0VigjL4Y4STmfL2zWGyZ61qsI2Yh6NCPYkXevN8SJZrPeMkw9eZahlGe2I3muybM7sixdBqzy4kLJAOHd6xucdXz3/oooivjhu1sBgAcB4zByOJwIw4AoChcjowworZ2Z5pHL5UKW5jw9vRAGinEeubsruNpU/Pqr4+pmTRRfybbj1YbIRDIAxVNVIjpYFY5qVdINHXEUYSdDWSjevb0iijUOh14qaKAWjoVb6nWvhOHjPW1XYZ2AzbvjmbK4Isssipkk9rx7e00QBVjn6LoLl0sDOKqqpG97osgRBIaXccD5kUszEUcxxmjatidOIsLIk0QJ8qwd2Kxi8hwcA0UR4KzUXa+uVvLMsJDG6+WCbinKgO2mpLlcaLsa1MB1vJLkmHJU1Zqnp0cAjBYnVxAaoighiRO00tjZLcnGnqqq2D2d8c6TpDFBoDEG8jymbRXH45FhHJdUYkdR9DgH5/OZ3e7Eu9cDj1+eaLojm23COFqiOGS1rjDknM9nrFVYO9E0NefziS9BwHa75fbm9tszMwqD5eei0CZknCz9MJGkCUHQcDq/oM3IOL5gdMPh8MJq9Zbrm3RZjCh2LzuuriqyNOSHd//CPE18fnpEadisC+Iw5OF2Q1HkS91hRnnFOAonTszLE2EoG9owDBmH5XKPsH2CwC0sDfln+RkNYjhNErQJiEKpXExzIyymMCQOQ8pcOCdt1wIOvVyUtBFLWlUEsvgYZq42OSjF7c0apQKqwvBwX1AUkaTqmIkiUN6jTQh4FA7vQ0wQy6HUyXNBE1NVMYF5wLoWrRFmE2JpE6ubwJ2d8zirMcZgnWccI+CGotCsVgmvHlZL/Xbk5fmJVRXy5XHHw/12uTjIdtzNDh429MPE7373IBfvwS6sQcU0LVUANxNEUmWPw5gil/dMGAScLg15VjEOjmmeaC8X+kF+VllSEQaezSamH3fMs0apjtDMFFXC7V1JmMwoNTB0F+bJ8fTlmTRPubm+AeUY2555mOjbniROGIcJ5x1pnFAUMXka8/njhZenmmm2C3dFo7SWg/1S98+ylLEb+PTpI7e3d1RVxp//88+Mk2yDldYEoed4vHC+HABFUWSUq5TNVbnIQiyKgHEYOJ0OgOXm5obtVoYTaZIShIFMwpQDrRlHS9MMVFVJ15wZ+jPGjNh5z9i/0OiQzdU7SXdkGU09cDodubqqWK8K/uF37+najqeXZ5T2bK/XhBrwdkmmJzL8csKSc25GqxA7RwuHbF6+I5K4l4QBBIEMAYyZQYF3M2NfY2dLkqZoE1MV8bKU6JbvSARqpCxitJKKqnXL0oEZE+qFjeUJkoR5csQ3K0wQsFnneC8cuzj8jiAwlGUMWJyXerhWIvKQN4CcscJABolyWVAoFbNZB/zD7++wvsUEy3fCO9ARmmg5ZynwMhyyTi9DkoAiUyh9y/ly5uE+pywL8BltU7N7eRZO58eP3N1uqMoN1s+YQNLG/naFcwrrPP/4j++ZRuEjRWGMdVaaFEtt0fqZtm7Is0zaD7PUvcZpwiiDiQ3jODOPPUNrAUcUQxC1ZEXM1J95fHzkchF7uHMzRZkw23FJ5pZcmvYbz3SeHfMwg5J3TNvs+agdm63hn/75gdPlLHKABqrVliTORcaTFgxTy2qdcHt/zZ//8xeGQT4z3oHWUl8zJqRrOqIwwjuHdR2T6/mHf3zL3/76K/vDM3d3t5RVwvEM84JRmecRo+VcJUPXDGc94+BERtL3xG1LX3esV9K2iKuIIIlQRqEHzTBO9INcXpLEc3dbcb3NWFewXhdkaUlWJPS9LFIup4bL5chmnXJ7c0uZR+A9ZXYnnxOUfFemkShMmcZ2McsHhKEsv6yV70USh7K80GCCEG08WZh8W3A7N9G0Pd3QkiVS/TvuD4soqiKNhWk5zSMKj9ZecC/Ky0DcO7T2aC0tG+EpTSKe8vLfwXq8tUuDyaLNgJ89qzLlD79/YLY3KEDriXGs5WypgoWbF8rjSGlQcpEMFIRKSfU/UMSxYbNJmSYPyqKUx+MJvfs23PsqgXLLd9N7i8IThDIw+f3vX/Px88TPH2PyPJXUSxASRTHrVUrXHCXplEZoFfD50wvb65j1JubDhyd++nNNaALSwnP/kBIn8ve7u1/x8ihJvK6TerkOE7RuOR7PlGW+LM8jZjtwPO/pO6lr2nlmsxExgwkseSFiOqUngrjncK45nluybE0QzKRJQFFG/O4Pr/jl1ye0hvtX9/z28QPjIJXWIBAER9dJAGEcZmY78/h4IsmkAr5ZXWHnmMcvL+CXhezyDn96/kgUO/75X96hdcjz05mX5xq8o+9b8uKBV7crTqcD2mgm27G9XvHdDzc8fj7j3MTheCDNU4IopmtHVN+hDUtiyHA47EjTDKOF6xxF8SInG9FKEYURSsvZYZonTvsTjy+PIlvwoI3nhx/eEmlFoC1xqGTIGYiwwVtFfR64nDtev3qPVp6qXGO0IQjkOzHOI+NoMTogzxN0mco7MotlyOw8znmUd3gNWsk52Hn57LVtQxCE8sz3koK91M1yrgtIsky43tYyTTNKGVarNQp55gvKKCA2cg5wzvH0/MQ0ORTCZtxs1pIwUwqvNBiFMXbh7E1LYEWhPN/ki2Govw3xgkDuTG3XytJ2njHGoJVinESMIoxo+d7J91CYflVVoZUmMJLy1xqSJCYIA+pjDUCcxAz9hFLy67fWMk5i6R0G+Vk7C6djTbXKCIwhTkTGFMcph8OBy2VGEzGNnjhRFGXMbnegaz1lGfLTT58Io4n9buDx80AAXN9HFFWJ845haLl/KGhrGPqZruuXlGpAaOJl8RJT5MnCjt3SNL8RLC2Ky7kjWCc0zUia8W0YaoKAujli4gBLx9PuUd5/wcRqnfHq9Zqn3SNxUpFmIdc3W7pOxKZ4vdwHwFm5NyqMnJl1SJKElGVJ1zrOpyOniyziV6uKphlFSmng7btb0iRa3A03gmQ5joxjxzwPXL/akGUBnz6d0cbRD3vSNOP993c8P8owsB+W3rBROCWf26oqMKEhCA1hpDkdL0RRTJZlHPYn8jwXBFXbigRIKaI4QWlN09W4ZuJl9wRaBLG7Q08/dNzf3IGa8VicGzmfjzjfUxU5dnLsdgc+fXzh1d0f/t7x3N8/4Kvrhr6fyLKCtm3/ly/VAlI0AdVqxTj2C2dBQJNKyYQ7SYTzFkUZ2shUPAgqnBOD1DRZ6dX7AOcUYyc1imm0RFEKaJq64/rqitv7G4axF7h4GLHZliLbODQEOmTsZ9Ik5/3796LbvhyJ4wBvFX0nDKMsKTnsDkSp/N4u536Z6Ds8aolZZgRhhPOKw+mMnRRVtRHWzOlIWRasVhvabsDhubm552X3RNv0VKGYAedxpOtmvPdEi21wGGRwZ3TANMklNwwDwnl5ADU9JjS0i9RkmsaFOwab9RVdOzH2I1lakmcF37//jt8+zkxTQxpk1I0jzzPsPFEuw7NmbMnSdBlmGbE7Lg+iKAqXlOMs3f1AOExKadpuIEurxQgZ0bUt3kEaL5DMtmUYJTadpwVFviUOMwwhz4dHigrKVfFtkOmVk3i+0QxuXsDJESaYadoz49RJOvR0xhjZSgx9wDA23L9aMS0m1SyLMdqSJuDdxPFypG4bylK4cHN95N61mKDE+Ii3r1f89S8Xmn7P5qqgHix2cAxDt7A0NgSh4XC40PctYSSX/jyNiEK5MATKoL0nCjSTm4lDTXmdE4Xxkkb1xPErjDZ0Q02Ri/XSef+NTeFcgrUT202JVkq20VoOhsMgTJSvVTO7vGjUAhlPYoNWJQ+vrpimkXkelssuSyIvwHvDq/sVdoab6+WiO454Avp2ou8SilLz6uGGKA7QekWglYiCjJhCPeD9ZnnRyibMWcNqFfG//29/Ypo7VOBQWrIXACyKesWSYPIQmADnYRotHz5+5nNoubtb8ebta5ydGYeel90T26s1L7sd79+9JjDCe7BWBqbeKYZpwoTf0zQDwzARhbFA2sce7wUWO3QtWmmqMsY5qFvLuT6T5wWzd3gHQ9vKIFMFxEFBlhi265hxuKCUZRwPJGlKWUbc3BXMtsaN0NYjL4/PKBNwe3sjdZq+Zx4tfTssTI0ZsermrKoCjeF8qjFGkSQhSs8kScjmao1TUBQlT4/PHPY76qZlfzhhAs1kJWqutRhzL82FzbYQwGvXEqmYMDSYIMc7zzgIQP58Okuyekkfl0VJHAYkcYzVklzo+5G2GwhMRhQrrq9K7m5LHl8cWRlQVa/J0pSmHsR6er5wOu252mTc3dxRZAHWGorsNSh5WU/TiLUTfg64nFqiKCSOYsLQY+cJj2zCrZ2lNmSUcLG8o8ilumjtTNcNy3siIVABQ9dL+jgMJamr5NAmDEs5dDgnDFGlWS5dBpBLmFtSGN56vFfgLc5JumgaBqIooshFljLPHd4H2HlisEqMy2Eol3/vYUklWSsbv64dMWZmXW3RyqMDkRvgHW5Z+NivFzwt/7kKtJjdnNSyivKB7757wLqJaZTaa5oovvvuNf1o2e2+0LYn/vSnPy1A3kVOZBRZmtB2g0iCyhiFJgwN3ie0nebp5Zmbm3tur0sCLX9+zoN1JclOk6YZzin6fhJLppdNcBQUhOHM+7c3fPzSMM2W/+P/+CfyomCzWTEMNZ8+/8Z6VVIVW8bB8vT4CTsNdO2F02XGeU8YhCRJirOWtpGNprUjXXuiKCruX21ZX/+R//j3Xzm6hjDUtI0l0ObbUNhZyPKcpjnhfI/1Le9/uOPDr584HANu7m5YrTPq+sg4zYSB1ExWmxRn5V+XRSF8m0GWBF3XcTnXNKea66sr0jSlqiqCUKMDjTbQ9R39MJJEMWUZcb1dc7Uu+VJ4ynJDUZbESQTOMfUju90TXdvy6m7F9SYniSyR0RTlDUopxmnG2VmSCNPAZeiIooA4lsrVbD1Ky2fCzpIYDvBLStWT5Tn90NOPA9bKWSHNUkmaesU0zMShzInwMuT1yNJTcB8eixX+rXYYrZfPp8NZJ91QvHyHF8ancwN2HnAOojDi6irBzhN2Pi9nmo4oyBaLd8A4TYDFKJYUhQz4ZEGTY5QnDAwBAV6Jgd1ZK4klL+NB5dXSsJClkVYGbxxJnLPZFigTiEl4GPB2piwSquo7xnHieNzTNBf+5Z83MHvMkvDWSYgxhtk6mrYlL3PKKlrSJIah7zhfzpwvLW9fv2IcBkITypBsuXiuLymBCQHD5VyjlFjDh1GSm147grTn85dnznVHFCeM08RqXRDGE69erzifBpIk5c2bN/z62weGaURrgwki+t4yf/1+G8M4TVzdHPDayGd4dUVkCj59fMZ7LRdOPEo7Hh9/IQh7/ss/vyaKY/72t8/Ulwnn5BxXrUqSSHOpQWnLah1xdZ1Q1yXehdRtjdaa69sb6rrDOcs4dgxTR7Fac7lcsNYSBSlfwdlZlhEH4ZJUkBTcPFu0URx3B77sPjJMgzyTIsX3PzygmAmMoygD+mEkL/1ycY44HvagDN9/9zuqMiFNQuE6zyNKCZ/MWUjimKq4kuQWM1pGagBoo1BGSZoVj1OecZrRs0y4VCDojMulBjxZnopIz2iUUxRFSVlWKK0wYSAPWuvQRi1M8ZnmeF6G1oYsj+U7qBVgUIHCOkk4e69AyYBOKdAK0iTEzg4TeFKtcE6CAd4hzNWhX/iwMeM0y7tDG5yzIrQzAd5a2l7Oh5WXpKQKZLjoHQzDgPOSKPHOLYMxhV74rErJoGOa5by0SUpOtdx51ustbVvz8nLgdBjoWksYw5vXJfOs2L+05HnB6WDZH07c3FTc3Jb8/Ocz1hqaQmGUZZwmwkhxc5dw2A0MfcdTP5DEBUYluHmm7wbCQJMmESaI6foLYSDVzaYdGEcnwg8vSdsocjg70zQHoiSlWAfsn3dEQUjbeGYXk6RSNyyKiHGCIs+Y44hxlKFVEISy6AwUSZpxd1dwd1dg9EBVFkx24HySlo9zE9vtFcdzTz+MRFHE7d2aMJLzRNcrjmeLnWYulwNNe+Tdmzfo0ND3I9o6DsePVOsKayvaZpTG0SgymXmW5XC1qkizBKUs602J0SFlseHzxy9ES/J7DjQ4uY96D8PYsz8cOZ1PHE4vbK83nM4jh8OFMkuJIvnZn89Hjocj1arCBHA4NvzlL79QVRu+fHrhcNjx+Dnn7es1v/vxtZxbrBh6jQkIQnl3eCwaDW4Z6CknJyEnn0+P3P2dt1zqM2EQEUcJVsmidb3dLu+WWQb1XtH1A13XCfddKXb7HdM0ymDcA8qS5RlpIin+eZqJ42Rpdxic90udXJHEMVqP/3OR6mW5KlgweTYI49Au7ZSZeZa7uAxGxRI+2plptgSBtCxAcT41S7IyY54n2rYmiiJBDE0zURTiveG4a2iamcupx1sjjP0gRKFxyPusnwZJs3tpC7bNAH4gjARH4r2XZKPXzGPDl09nrHPc3Ka8e39N38/sdw3eG+q65fo24h/++Jrj/gP7545hGhj6mZv7gCSTRN9Pf97jw4CuH2gu0zefQVnkOG+ZxoGq2nA67ynKlDjK6PsRlKH7OqS0EvpIUsFtmcDTuZlqG/Dy2DKOgRjmQ+iHI/f3FUkcMfQD0zgu9nbFPFoCE6DUIitJAooi4tWrTHirbc+X4RNBUBAnpSTsTYhGM/QDw9gCM3kWYL3gnMapYbatvEeV4vHzB+5uIrIi4+5VzjSPnM4DkxtQQYgKZpQFEyjiNBNO5jAThQFxmnxLPRqjub65IgoSrNU4K8iD8/lIEoYEcQRA14rTIM0C+nnATh3D3BNEAWEkHD8dzBRVRpImXC4dLy8vRLHH+1fMdhIWOG45P/19f/3dA76+H3h5eSHPc4IgpK4vUmvzjjSVSmPTtijlCSNNFGuSJBdgcxTQtDXrdUHTXrCuJUo0L7tn3r59Q9+3KKWJkxg7w+l4YRx70jTm+vqGy7nhchaGmvMCv60vNX3XcXufY4KA47EmTiJ2T2fatkNpw+PjE+PYE4WKLC1RSuGs4+r2mlW5IXhv+Pz4M0VR0tYz1g4kcUq53tAPH6VusBy0rfU8Pb5QlDk3NxtQbvkgGqqqou1azpcTQSCMDYciz1I61S0bEEuaJ/TtgLOO8+myRIZZDuOOsixQStH1HdaKdCRJY4lLhyHDINwf2UqPRFHBpX7m559+w/meskiYnSeZNUZ5qnVFHCcMw4SzifB2+mY5XMjhBfy3w4FSIvSI4q/2NEOWxWgtmz2tNX03ooHT8cT2WiQQzjn6tiUMS9r2SBxWtN2BsoxJEoGqDuOId46yyNBaKg3j2C22Nk0QSIXh+uqGPAXlE7z3rFYZz0/PDEPDw8NGkj/akaQxGs/btzcYk3E4fsHOmuOx4eHVNbvdEx8+/iSmnNDQtResE8ajDixFNdHvjmgTcnu3ZX/YkcQRcaqI4pRX99esq4LVP7ynvtQcjwcA1us149gTh4aizJdkkWxMm6bBuhPea7IsxPlFnR4njKMnRMulKRJ78Dh0KDWTxDF917Pb7dFas91sSNIYh4gdrJM0gVYOhUMrT2AEhaWVvHC9tygjBwG9/Ho8Mqw1dsL7me02Jcu+k7qHGsEJ6yjIMoIwJAw01gmU3DqHWhJMYjpVAm1PDWYGlEdhmZ2o3jV6GYbMBEbJd81bQBOFhj/8/h2/+/ENs5tF5rI8sIviNW0/8PHDz2hleffuHcqDW4C8YRDifUTTD6RXKWGwJggMSkmK8/Hpi6Rz7yuUV4RhLC9KW3E4yYDeO6gvnTCdEk0YCUsoDC3ffXfLh4+/cnef8ebtn7i62pBmEc+PH3FeTMd9M3DavXA8X6jPIf3QMkwjURgK58I62qYjCA3OWuaxZVUlrEphWg7jgAlm6qZBYcT4Nwysq5zd85NshEJBBkRhKJbhJGF37IiNo6pWtH3Npb5wvxH+mEB0Q4IgRitNlkk6aJ6Eh+K8Y5wngshQN2c+v3xktmILi+OI73+o0GZE6Y68CGg6S5wYSRaomNPpgNEBP/7wI5sqJQ4EISAQ7GWwpgxVkWAC4cR475bUgsMsVrKvpmzv5FJf1zUa/e1ieDnLIF9rRZ7J0NvODq0D1utMBnnLP5TWy2ci4eVlT9/2KDRllcuFOgxRmG/Jao9dqopeBmAIYyMvYrnwOLewSJIFMyALjyAA/AxLzUuqG0aWPc6SJAlaR5Kk8vbbYfJr4sp74cB8lXkEBhxODntjK0kMLRUUMVKGGK1lS+7BuZE4TYiSGG0U0zgyTTOrVYXyIsOY7UBdd0uNNcXbgNmO4Bw3mxV27JaNukCanBUBR6Acduoo8ortqsJZh/OzVJJNSlVoXj9UbDY/YL0TaZLyzHOD0ZY//fE7jA5xk2McZ/73/+2fZXjooe0Hmq7He9g97wjQaAVRaIiLkiSNKLOAfT/z+PQRY2b+8MfXRFHIn//jI+NgmUbZ2JabTCyQSQ6qY3Mdsrm6pe8agiASxu9yGGvbHmstdX2kH1rWaUnfi2wjjrLFoqooi2pJFfYoozBBIMOVwPD89Mzj/hOztZggJIwCvv/hNc42KDUQxY5pdiRphPcabwM+f/5Ctdpyd3tHVebLwMOj3ISfB7k0mIgkTzGBXLJZSifgCQKN1/KuBcDB2M8M4yypMSUcYbGMyuelKspvCZ159pTVBoVinp0MObQkEqMo5bA/0pwbnIOizAT8ncaAPAOkIjvjnJNxifaEgQzOsyzCy5uEOI4AScIopUhTQXrId3X+9v6TBK38fuxsiZOYwETopbJovlYJ54mhH5fzh8hIpDYsz4hgGfKNUy/ffw9MIyhIkxitU5yXhUo/OMJYhDxBaBiGlmGQBGYYillxso55Hnl5FuB5EkVoLQnoKPBs1iXD0BIaI+/VRapl7cA8dmAmqnLD+uFOPut24uPn8dvP7dw8UaxjwiTg8+MXoiDiUu+5vssoq5jd/kRe3tL1M6tNISzZ2TL2HghhSV4FoebqesXVzRVh1LKpNjgf8LJ7WZbqAVdXWy6Xnr4bKYqMt++uCUKHdY77h4yPvx2ZhonLZU+S3HNzHeH1DNrT9xec77h7qGgvmmF0aCNJ33mSBeR6vSJJDNEiPeg6R1mVXM4ifrm9vWMahuXM4ZYh9sDx8sLpdOB43LG92XA+HzgeLqyKDJwMuA+HPdN8oqgqrB356acv7Hcn7u5ecTy88MmPtPWK797dkCaKtutAy4ArigK0EcSVUQblNR6PdxAYjUOeQUoJX+98PqN1QKhDpsmijKGsVngvCVSlJWV0Pgn/eb1e0bQtwyDPVJZkUpIssqflrygWLhVLsTwwwq7uumZJZ4/fGH9qGXgrpYiTEPmGCAYnDI0kl/FkWYSzMqTTWt6Nfvn7a/X1PSH3AaNjtDY4NyxvD4/CE0bBsuAVgIrWMmD0yCU1irV8D6zIz5QW4YV3cD5fRDzg5QxureOqytheldT1RBB6+m6g7c7cP8RUq4DTccaEit3LSN85vv8x5f51ysNDwXFv6buBNKl4fjoIUy5MiJOIt6/fsnv5wqos2R+fCUNDEKTUtdShL5dGFutJJO9gZJATxjH1ecKEIze3OcddI4btLKYfzrz7bgNu5HTuqC8XqdVFMWka4v1MGEmbwRgYp57Hx44bH3I5n1mvr1mvb2gv+29NM+/UIiacOJ1OlFVEliRcXWX03fT/Ze6/ejTJ0i1N7NnCtH3SZciUlVWne2qa0xczIMALYsB/zgtiwCE55Ez3UaUyM6SrT5reghevuedpECQ4KF4wUIGszIzwDHc322K9az2L3YOjriqO+68cT4aytGgLx5Njs9kwDorj8QsxZJTlgkVe0vdfcX7Eh8DhsGecBDekNdjMsN8/4byjac7s9xlpkmDms0XTnFkuM968ueLyqmLxZNjvH7HaYTJFXSZURUmMUaKfbc/p3KBMTb1Y8N133/L4uONwPJEXmUTOVRR3fVHKOZYAs6AXESEtziUcaubnMbeZW5OC0sJnV7BZLcnSDK3sPIjQMK+l1lqIAaMNq+WK9XItA+IYePXmlUTPnfCtrdXCd3YRP0V0IUMNmyZAoB8apmkkTXMm53Be9lWtlZzXAFSYByHiPJQv4XOj7jQ7ZtXLezyO4lZWCK5jGAbyIp0HuZa+G4X7ZiLrskb1wvR8vG8AzdBP+EnOWU7FudwikmWZGBycOCNFXFR4Z2gaRzpp0jwSY8txfyYEQ3OKFEVF07QYk3HYD5xOe8pa3LPaKJxvmNyZn35/zV/0E/t9wzQprq4uselImhry/FKEerPg//R//IWhc5gksl6v2G7WHA6PVEXG8Rgo8ozD4cjQO1wQNFFdWRaLHGMifd9jk4SLiw1j11MuNP/++oZ/+cevjJOnXlRE3eIj+KmT4dGpIQYZ2hVFTm4lIaNUwAUxOH3+fGCacrabnLJKqKsFzVnE2CzNmKaJPBNMmLWG0+lMYis2mxVlXnN18Zr/y//4r2yWa7abmjSNeH8mzSyH0x5UJMtK2sbj4wRaBrkKWC1XtN1I2574/OULFxdrRtfPd9cIueJ07IlB7r+TGwh+QKFYLUW4jtGxXKy4uV3w+s2ax90Dn758YrPOieTkpaasM9Ii4/RV0G7j0NH2HcZK4cd/+9/9N4Rp8f+dCPf/4cffLfBlWcZqtZ5bZYX98RwzFTdFYLPe0PV7xmlEzfy3vm+l9MLK9G+cJGL5vAFP08RytaBvB7LU8HQ+zpwZi7GK4/HAOHjOzZFXt69ZrWpiFIbcOE2cTmeWqyWJTdj3e1ARa7IZJim8vhgc9/f3LBYLsjSdnSCap6cnrBUXnU3EJqqUYff0hHOOx8cnsiyfhbaU129v0EpxPh8w1rBerzmdjqA1SZJyf/ckuW1l2V4s5eJm9AxAznl63NMPPWVZ03Un6sWCzWZD17azky5lHKW99OH+ib6vWK6W5PkMVX48slhsKIoMH04s1xnGCtT946dHtI6U9YKLi0seHx+p6yW73Z6IZ7PJqJf53IRkMGlC38n0Y7ncSPQ1yoU3zRJ80Iy9IwaZMBpjcJObC0mE6ffp0xe0NpRVDsGhjQhBSjmSdK46z5VwGayRaGAiDU1plrLerFgthUvVdS1t23E6DpyOI30nDKxxkibkPC+E58YobapGs6xLFouCGC1KxxdA+um05/JyQ9efOBzvCOWK4/FIWWYsFhmr9YJD43n//paqWoGaKPKMtu1pzg1KSYtVnWeoMFFkmvL2Qiag00RW5VgTCK6jHbu5fCSZW/2kYVRpQ98PeBfwo8OPYgdPrOV4PuHcSFUIjyLGQJplXF5cyRQhkca44KcXYYAIp6M0hRrdk+Xi9lQzZTnOcXKPODPExSGLapY+85ccdW2IUeHc83RYk1ioipRxlAbIOOc8InPs0EfZPJUcUZWSTdM5Kct4diylaSpOKqUhzo6EcZwFEjuLjwIzVyqZzRuafpRmMG00iiAgY2NYLus50u2Zho7zUdaGIk/xXp7d9aIkxCANzjYV6qqKxDCCH4jKU1VLtuulTOumBhccq2XBotK8fr1gtXmHtQl5JtGsaep4/24jESCb4uqc1P5AP04SSZ8k5qOUtJLFIF+b1KQUi5KqTKjylECk7z15nmJtxI9eXGEh0J53oCzDcGSZCXtoHHvWi4IsVXjf4HxHhmV/fBKwvhvlEp5qpmmkrjecDrL5Xt/coIDWTy/g4BA8D48PHJtHHh7uWG9XHA9HHu6/8u7tO4jCIjweDjT9idViiyPwt5/vuLt/4tWr1+wev/IhjHzz7obvv39NlmrhWCTSdGmMQqs4PxNyGXmOdGitZkcPL6Jb1/VUZT2zUuLMcI2z686DNpybVrhs1nI8HZmmkRDdHLMwlKVEuOuyIksLbKrROsy4BEVq5HAwDiOHwxljDEWRCiOVOcahNWM/zlNdgS5bawCD9x6t5ynwDGJu21acFWiypCDL9HxwlPIS54TNUZal8KBC4LlgynmH854wSGu6D55xGOeL4/MBE3a7A9oY2q4nzzOSVA7xy0WNNTkhThglB2BZb6Bre6ZxROFlgq8VxmqiUrgpMPQ93jNHZQw315dIAz2A8G6sTdEq4MYJrSN5bknTAjc7zyY3Mk49XXfmfPQslyvKvMKHieUyAa1J05xh8nz4dIdzcHl5Oa8JCetljTae9arGGMV+P1BVOW/fbdAmEHzkh99t+fDLA34a2e0+8913l6zXBbunI56JYdyTJgW3b2q6RtEPvcRvRxlSTNPIarWiKBLqOkdpT9+NLBYV55MUEKw3a4zSBD++cMvcNHE4PvB0uGe3e2RzueZ4OHLYPbCuSjQRozS7xx1BdazWW7pu5M9/+UTT9ASf8vPxF6pC8/79Lb//6e0saAeyLJ0vR+LsUbOz59l5hDw+s5ggbKpx6JkmT5VXsj4nlvV6jVLCKw4+YIyhaTu0sS8CzTTJehiiuPSCDyzqBWVWkiQZWWZBx5ezT5qksqe7iePxTHQRYxWLRf2CWbFWXGrPazggDt25edq5EZuk6Cjv+zhOMuTyQTABOkHhZX0mMAwjk+vn/TzDWju7niIKieZ7JxGu58+jaU4kWSpfv5lBNk1SmGSShKaRtsw0TXh4/MqiKinKGtmCZMCVIBfAJJVCt845FotSKv2UIjGaGMXZ27U9RClYSBLDm9vrF6EkxoBBhjGJdaRZSlmmaJPy1HdkpUSNh3ZisaxIU83xfOS7H66YhoG27Tkdz7MAZCGTgUOaJXPbpsYYzcP9nk3wnPYNy9WG1eqCrnGkSTWfQQJd15EmkbIQAUyhqKuULNXESRHCyOcvf6WqL7i4TOiGER81eZYzjY4vnx5Jkor1ZkuMiofmaU6LTCg9sd8HYvQURc40DQzjQNOcubv7SpGlaKWF+dqeyVLNxUVFWUVU0jKMB1Lr8caR55qiykgzy/l8phv3XEw3uElxcbmlOQ98/fr1hbt7Pp2Y3JrKFGxWG4KSdyP4Z1frSFQKoyxScGGY3CCuNWOJKNwoQ+gyz8hSKZNBi8tPK+QCFzxplpNf5vOZR5pcY6jx7jlxk8xRRHEQ6llIENdqR9d15Fmc371I13XsZ6dflqWsVks5i8SItTnBe7wTx2YIniRNSJNkdkeKO10+Hy+OkmliGEa6rhNhU1uyrCZP17PAL46kaRCxvCzLWVCUs6A2Zm6FHDmeT/N/M8W5iaZt8X5L3wemqaPvPU8PDdrIkK/vFP/0nx+ZRke9hJvbDdvLBB8bIoFvvhOh4P6uwXvH7esleR4YhjOv315zdb1guVzzP/4Pf+LP/7wHnXBxccUPP35PWViyVM7C69WG/eFI3w/yfVKKEByr9YK8iIQ4CA5nu6KqFvz4U8bQaPpWnsebNyXvX9/w+csDQy/7lziRxIGbZZYkNXgvrawxBM7nFpsoyiJydbkkSTIxYBQF1mbCVE0SjIXUpoTJURcLxnFgaMVtH+LEjz98y+3tgjyf0FoKs7r2xGF/xtqS73/4lnGA/a7leDhSFCXayDqVOk2SLgTBoaAocp6eTsJ/y1KM1RxPOxb1QgTKRCLbea4oqozNxVv2h2p2vSnwlu36NTaRCGlUkX4aWGuF1o6ffvcG/fs3RCTSXWYWYz1pAgphnen5YwUlw/2uPWOUIcvEHBI9uODRSJnFs1BWleWLEO1ChKjxPnI8nhmnidQayjwj4Gdnq2IYepSGsiiFP5lI3J6g8BPgLZfbC7wf6YeGgGMYe8ZROHfPZ0uQ4bDWWjAbiDtYG01ipARBEClxFvUk2u+ce2GpzbY9iaIaQ5JYplG4xdM4zbw/Kfq05kRZlTSnETeKIUZcp3KuxEWcdrL3z+fjLBPO/jNKResEQuR07CmDuMO1Mjy3yyfWYk3K7sHxp3/6Ql4YssIRQ+SHny4wtoKQ8nh34He/f800DWQ5DEPH/d0Jm/RsL0pevSsZO/jmuy1PD+LW/fbb9/NZMOLcQFkWeGAYHH3nSazElIdxoCiXLJbi7Ou6nru7R8qy5vpmw6df7yhry9Pjjq5PefftlqLUPHzt2O+GmfFsUdrOJSVWnNZKk5gUH0aasyPPRxZVTrIucT5gbcrNzRKi5nDc49wkJrKsIM81BMVf//IzCs3945kQNatNxdt3N9SLyDjtCC5Q5hl3Dzs+ff7Kan3DH/7h95yPPfd3B56enlAkrJYrDocnyjKnLAthbida2J5ZyTh4jgfZr8uyZBwasjQhSQ0ojzWKtjuSlyVZBq9uN1zfLPEzMzVGBaFgtazpuo7JTWgLUQXGqaU5Nby6uWW5vPx7pDk5q/29H6BtW0CmPXVdCTg7kebUoshxbuLnn3/m6mqLUpppUmiVoa0IDdp4irLg+OXIcT+xXl3jnOPrl6/z7/d0bWAaDG0jUUv5wkrz4XZzyf39A4GWi4s1VbmA2Agkt2uxJuP25ooHdeTX/T1dN3B5vSXNLF17epnUj8PANMrL3fX9zHxTwuiJmvV6w9f7HWVZUdcLdrsnsiyRDH0EFwOTn9hcrBH7sVRx1/WS7eaKr1+/Yq20IjXNI9uLNV3foU1BWRXztKTg6vqSLEslNnQ6URQF+8OOaRpY1Mv5AlcwDiOn5szV1Q03tzecTg2n88DV9YLJOep6ycPXk4g6MRJDpG27uQWrF7HJRK5vtjjXSOY/X87QdzlAHw4nsiyDIJ/P8dDTdiPLxQ0Cs7ckicWHnvP5iPPS2raoF5zPLVpJpDlJMozWLBcXDF1kf7hjsy1Yrxd0w8DkHHqc8L6fnR05U5zIU0OSLvBezQJfxzCOIjhOHh9G1ouCosg4HkeaZqSuPHalMHbi4eGOfthxsV3x9eueN2+uaJqW7UXN/nCPdyPdOFFVS8axw6ga7wd8MGgTcC5wOJ55fDjx5s1rfBgxJiGi5w1iZBhatLHkeSG14S+RQHEzgFzggpLJdpyFvqGXWKmA1D0ROWhITM6RJQXTOHI8yTRouag5nxt2+x1RQ/Ti6iqLimEchZOU5RgLWZ7Mk3+LVoZzexZ49zS+fM9ACcjWiDNDnDxB3kmtyZJSYrx9i1JGYmNB+Jnee0KIc2xWmAneOfqhl5glz1NlaaKLiDEpOPlvBDeJ8Bg9XSNw2Zkbj9aK4/GEMobD8chyuSDipf02y2ZemQCjrVUvU3E3TfTRUxQZIHZFad8KtE2L95DO7V63N1cy4VZzhFJr0qSg63sIniyzEgsq5jm4F5EjOGEopElGsqixVrFeZ/iQkqYpAcPHL/cMg2ez2eB9oCgyqjKjyCyLRYHVME4jMYlzMYxltaiYvERX10txBrx7s2WcBlbrCjelDG3k6qLk/bsNy43n/ukT43CiXizpukb4JWjKsoAYZu5oz+7pgTwXNqFScDweKIuM5TInLZdM8UjTnbDGYfREagNVmQnXsus5HI5sth1Gay6vLum6kbsvX/F+YLOu6IduBpGnbNOVOHZmWHwIEWLgubAHzBxtmuTwpgVmniaWIl+LoDTHRpWVibE1hhgcxhouLrazSO25ubmUQ6cXQVorSfVJnFAu6Flm6ftGIu5K0TROIkxKy7pGwFgR7rpObP1pmqG0JUn0C99Mza66maQ3pxcjaZLOrdANIXj2xz3Rn9msXqG1JrEWbQIxWJkST6Nc1pIM7/wLv2YYJ7SCfmiJRBHGXSBJE7TWLJY1Tdvx7PAaxp6nvbS2jcPA09MTwTm01rx7/w3WiggeYiRJpOHPeUdVyR5jNfh5nfJeylL6oWOxEO7os7g4jJ5xnEhMRnSO5nTGWHHnWqPJ53KoDx9/5nDc8/uffo+pS3KkHMKHCY2lbc5E71DI5dsFh2sboh9ZLDJCyMjSBOfEGTVNkTKxsk+lwqRCWaZx4OnxA3V9xeYipR894QRKTaR55OnxjDYpq9Wa07HHuWn+mdA27tkcSZZlDEPPOHq6ruPx8Z6qLLFzKcvpfCLPLBeXNYs15JXjdD6R2sDkPVmmyYsCpS1t1zO4A7fBM7rI23evuPv8wPG4IzGWqiowBnz0VHlKltqXfUH2ZrnYGy1rspnLEIxCBCalCc5TZDnrZYbWVtyX8/UrEskTGVYm1rBZr/FOziTl5QVq5htJAYYBFfAuEpMUow1pljBNPdMkRUfCrJTF2FpLVMIbQ4lb5NmBYI3F2nR2Ckn0DyWxyKBBGWAKaPVcRKA4nxqaQbArmjOb1a2kFNCkOp0ZvEocDcgwQlISAeeldEscwpHT+cjSriXehMHahCSNLFdL9scDMQbGaWB0gn0xVmHcyOPDI845hqHnzdv3pFlKmsoAx2jFNBdIGGNIM3G0GKUh1cQ56tw0DZ1W1HPpm1KGybmZ9xYZh47TaeTq6pKqSPjhdwljZ/jTf35iHCKLxYJqpbi/l8KS52KxGMMMOk+wiSLGiSSRd3S/P8/DUMNmVUnJ3Dhgrezx4+hI0xSjkUbwpqeuVlhjybPAoq5RwfDv/uHfcXlpqUqHsZH9/om+7xgGh/cJ3373hvNxEjerUlxeXvL161f2+yeWK2mGl2daMQ79PKROybKEpjuTGgssZ8E6UBaG5ari6vo77h/uUfpGihNsxeX2hq7v8cHho2cYB6qiYlXnfPP23xOiIxJnQS5iE482iKIQQaGeF3z6cSAxdr7R6JeBmTVKHBraYqqSssjRWuLZOihGHxiaDh8cqTGkqZRySITbE4J8XdOigNkV552UMyQ2J01SRjcQw4T3E23bkCT2xSVujJVoYVnKnxdwQdxYbvQ0WthqWZZQJCnMxRrCgIwoM3MZ3TCLEJqqLClzKQuc3IDzwiz0816olJJSirkYapomxkmcfVmeCeJo8jP03TBNnhB/K9jzPuAmxfnUobBMU8R34po57kZJ/gRF1yqG4ZFqcSFOwnzBf/q/f8Y5TVVZqoXgDz5/OjMME2XVcX29Zr9rSWzBj7/bcn/3xOs3N/gwzpFOKVeyc1Ot1h1hRgS07XMxSoLVenb6N6RJ4HTa4wYpOOr6M3WdkeeWzbbm04cT948HEX+YnTiKl7W2KHP6rmMaPc054C4yxjGSe0XbNaw3t6iY0g8t/XiiaU5MieLd2xs+f7rndDwCmskZfvjxW4bxxLmRO/A4dJRlwc3VNb9+/Ip30pK63z/RtoG2m9hsLumHgSzLeP3mGmMCZSV35xBlqDiOUn4lUcEt1mhps3YjejScTp56maKio8ql1bWuCqLTeNfjXM8wdnR9Ow9vHjkfThSp4+pqLcaLLJHzFAHvHGHGnkzOkaY5iZVznF0sZLATn+Pd0i7snUQ+kzQnxDiniyQyb55dgCpglPAjFZHzuQHijD9JMSZ/EXy89xhjRCSLOdvVK8p8w2q95Jdf/4WvX3+hWsq7Y6sFMfrZVCSO3mqR4CbNMI6Mg7jxQgiMcZrPi+LOEyxCgp9Z/c+lM3J3m0XBLOPctGijqOsl3377jv/0n/+JcewZBs/h0GBMKoU5o5f9PUiZj7UAnmFs2WxWhDDNe8kw76cFEWk1F2SKZxzkLjOME825wczpp6GXss7EWIILeKfI84J//s93eB8Ze8P91zPKfOXmdcb791v2u5HPHwe0GjnuAkkycNh5rF6SZSl1XXE4PJEklk8ffyWEiaAiy/WGGM+ApusGQpj49rsrklTWC2HfS0kfUfO3v/2C1RXD2JBXkaubFefziRAG0sIT1cBqXQiaLAg6apocYZgjupnFu4jONETD5BW73Zk8cyiVc321xjtYLZc41xO6iXN7ZrO9wbkRrSzntmO1WvD+/RXRDXTDHm01u90dZZ5R1zVXVxf0M3f308cvPNwfcSMolbBaLjBJQpZlXFxckBdSmqINaCNIofP5jHOOJE3I85SqNHg3oo0nzSxj3+F8wvnsyArNMLS4aSQqR70sKKua6BKMCmgiysDoRpr2jMYw9o2wrPP2f6Ua9//64/8HEd2erj+ymF967z1N01JWBcfTgcViRdsNaJXS9Wfa9iQtXmcRj0wSaJozh/2R06lltzuxWlVUdUbTnDmdz7SnSNcG8jzl558/8vrNFVfXNefznsenRy4uNrx585rD/kjb7tluNxRlxv39VxKb0zYj3lvatmEYpakozar5ghVesu79MOB9YBgm2q7FmhylNJvNhqIoqcpSWuqmfr6gKm5vbzkcDvR9x6IoWSzk8mC0oawEZnp//8jkJn7/Dz+y2Zb8+S//Qtc3LFc1CoSZNTpAIpUfP354mYIkSTK7G8WBtNkuac49VV2z0DUhjgxTyzidKYpCLKOdTLzFjWBI04Td0xmlNSFo2rZjvSlZrpbz4Vfjw0jf9ViTMQzdS8Q6y2Wydzqd0NqQZQV9N6FVSp5pQpSSEGmG1DOnQTP0PenFlq5L2O+OrJYbmubMbrfj+lWNUoG+H5jGgcl7ytqidSpx36GhOTfYJGNRr6S8IYwsVxuMTjg30uhX5BVJ1tIP4nQsipy27RiHkb5r2D3tGLqB6FPGzvLP//iBy+sKpSLpdcboJtABojAltFIcdjvywrJabGnOPZ8/39OeA237K6fTE+tFyfu3N/z7f/ejTEeLHJskM/nlmTP0PJGZYxRRFvokSWbxI3A8HmRyp+0My7Wz6y5glLQWlcWCNClnl51MklyQy49RhtSmRCC/yF/cBcZqxlGcK1mWCU8JuZxNo5/dUWuMhXGeCsZZaJCCQ3EOzCYk8AE7FzEoQKNoGxFaY4wQDIktsMaSJAkhCNNCnB0iSOiZG+ODMHD6YRBuR3CMk8Pa9cthOMZImqU0XYfWMEw9IY48hIlXN684nRv2Oymt2Ww2rFbbGZgrRRcheJruRJrJIp1lKXmSwxwV7vuWYWwFjmsk2jmNjtF7QpCN388urxgnQgCTJNSVOJN++ddfWC5rlqsfsXPjpHPSztX1HW4a0KQYrZmmQXhFU4dZ16iYCqMD2cBcCAxTh9GKzCYEbcizSqbKlcKYkiRVjFpxsVhTV/C7H26430fef7NichNP+zPbfsM0SjQyywWa75wA1pVWHI97rNbUdT1PBB3LVc1CeS4vv+fh8QHnRobRkWcFt9dXWGs4no44Av0wcrFZUxWGd2//8PJ9LfOMNBXQv9biSBCVTUQwH6OgENJshuNLbFxLRkkOWApWywXa2JdD1egcx/2BafRkaUKaSTQpz3J5tqKjrkuMlY+rogiK+IyL7S3ejxxOd0yjFPYkiX0Rd3wIaCuimUx3I8Mggw+tZR3WSsC6WZagjBF30+xGZ+ZdaeQQakzCcpGIyO0DRmfCC4tBRt8zS00pXsTx4/E8R64VeVGIaBgDwyQHahHVLb53EvPuO4ZxIkZYrddMzqGi5ngc+fL1K9577r984fJixeX1QFUs5tZMKWH59def6bqOP/7xj8JtIhKU7A8+eKpF/dIeH3xg8o5+jkr2wwBpgfMB58R5ZxOJYPa9XMqqckFEnIZVtcBqTVXkaGtBpbhgmZzlw8d7np6OFEXOYnak1lVJlhiMhiyxBD/St5FFteTqYkXXOs77kfM+4/c//Z7tVSTNAmmq2O2Os8gha9erV9ccTz19L4Lu1dUVnz9/Zn84SqGENlR1OU/qxWEpAw9D0xxJbEJd17Nw5SlKTWVSLi7es9vvCfH1PFjJuFxfizAyjozB0Q8jRV6SJZZ3b74RoTQGstygrScxcqGZyXIiYitxbU5uJE2lMdh7cY5KzFUYZlpplsuaxKYMozTJOuc5NyJe51mGNYrBQJYVTNMAHqqqEqSGFSdX9BC85XLzCq0jD48fGfoe50eU1nNUNr6ci8qyQCODAR+Eo+hdYIgjXZCv3TNHGSUFORJDFxi9fr4gKU2eFyQmAy2uCatLsqxgv38CHV8GhgCTE06z9x49uy0E6ZLipoQQJrIiY3QDwQmXbxgGIp5hGuYIp+by8orJyd5+OkvjYde1PD3uCWGiWq5ZL7cUeUqMgXxuAv5f/tP/zJs3b9lsthACY/C4SZpRjTWsijWaeWgVIj4Ms5sxgtJEHF078enjZ1arFY8PR4YmUlSR42mPSRasNzUheh7ve07Hk8ShlZq/1p7ciqCUpinD2OEmx/k40m9y1EqaW6fJc3FxjaagaY7shjN9f0Yj/Okvnx9p+xZFyumsuL5+jVKSmtgf9hgtTOaI5uPne1aLG4oi4/HhxDgp9vsz799+x8ePH1gsKy4u5SyWJHaOuFnivn2B0q9WNUWeorSbz9WWtjuzTBISE7m+WDD5iTJfEINGxZHgB7q+ZcKJINvdEaaJn373PYtlPjNE4zzI8cQg626IEm9LUzNzs0TrU0oEYjeJk9QYRZqVIixYhUlmvqOPaKOwMdC5UViSacrpJAiDuq5n55xwXb33mLmoxJqSulhRl9dkueXPf/2fGcaOvLBUVc1zG7z3sv9FpefiAhG6VQyCT0jlTDcMg3C1Y6QoBfNwPrdkecY0TqRpRtTCNpbVQzaUsiiJZAQiMUjhQN+PL853peZyFSKpSpmmkafdbhaFJekhhTGd8PiMxhAZh5HzqcdYy+Fwkve3Sul7cbFut6sZNzTw+vWGoVf86z8fcNOe7mwJPnJxO/Dum1vytOSvfzqQJjlfDwPn/YlpVDTngFEZVV1wPp/EudLsOZ2OJFlKtViIS8qLwN/3HT/+eMubtxVRtXivOZ1OWJuRJoau69FkHJsTq02OTSMfP3+grBZ898NrinLFv/yzuKtjlFKN5tyDijRNKwO9RAYbQ+95fDxyPHWsl5ck1hKDYrVaEujR2mOTiE40aZ6zMgm73Z6qzmmaHevXr8lyy+HwiCawTGpG50EFjscj7ZmZiWnRSrGoarIsp2tODH1PkkacV2gNqc04n8/0/SBoisxibMBoR1YEcizH4xFrU2xaQxxpmgMoT5FdkNqUusgoi5Qff/yWL/eafuhZv12yXlR0zYknPbFcFFhdYU1CQDGMct5PcvMSTReBVEqU5CYwDz6NIs0SOffp2YX+XLIXBfOgZy53og0X2/U8WBxezmdZLk7Y5+G9rIXCwlMYrCm5vfmWLFnw6fPfeHx8mFN4gWliPr+KIFKUFcZYvvl+TZLkfPr1iU8fHwFmwQ5xBUYRIJ2TIaf3UQQm/Zur3lhx+rm5tMq5URy4KIiasffEaBkHT9+PWJvQ94OclZJsHr6IkUNpTZpZ3DQyuTC7fuVuZKzscSFIovHx8SvHY0NdFRgjA+k8Kxl6R1lUbLcVgztSLeX3EWv+H/+3v+IdczLI8fpNzfVNTd9GUiP7zXHvqasKqw2nY4vCsNlYmuY0mzH8ixkA9AsTVPiEDud7VusVNgkcjx1KJbTNQNcdZnyDlDctFmtC7Lm7e2BzUfHq7QpjBrQ27HcTzkFzagh+vgeYSBYSslyjlcFNgb71HI9PrFcrri6XuMmhdcI4jnNKrSTNao7nE947mm6kKEoWiyVPD3fc3txSlIauPzNME8RIuahwfprPfD1GpUxjYBqFEZ0YwSllacbHj7+yvVixWpdM00RdLmibfhb4IpMbGMaa1TJns13iJo82E8o5QWeQok0pz48f0UZKjcLUkyclWaL57ttvyIqJh8fPtF3H99/9wOKHiuNeTF1/74+/W+DL85zdfuDi4mIW+GZhKE0Yp55x7LnYXDD5njfvtty+WTL0I/d3E83ZSfOl1lzdLKkXNSALrlIBpSPv3t7y4dcdxInzuXl58ZumZbPZMvYJEZnEP09AN5st5/OJ/e5EWUbGMdC3PcvlgrbrhcUQHd71WKs4Ho9sNxvSTJpQ1sstIYw0535u7x1p247FcglE7r5+ZblY0g89Hz78KhO+VLNclUQ1zJl+8KcTISJTzlSx3uQo0/O7333P8bQjTS2P9494J/B8KVMQfou0slhR1489p7N8fpv1xYs93yaWLDMsV1v6tuR8PlOUCW0rX6cQxdX1cL/j690RrTT1MiG5WENIqMs1h+NnFosM52XRHseRPM/I0lLafm1E6WQWqFIgISCFH0+PB7777i3r1YrHxzt8mGa7fyGOsXFgtVrjncMmz/Xhz1BN9RIvyrOU4CfSTGzQeZZC0PS943xuyLKUJLVMQ+Bpd4+1mqZxDF3Ht9+v2R9lCtr3rQhMfgACq+WGf+n/PMeHLH0fmUbHNElRSZ6X5HlNYVOMjng3ErxjvztzddljteaP//4fuL/bs9s9cbF5w/XlmuUyQxtHnmbyCgl4CD+ziMbJkcyLuzDIJNZhjAWtMSby+s0rET1CkHY1YHLTHOtUWKtn0UGLM8BHyrJAGYnJEubUKbLwT64jRHn22qYlzQQg/AxW327XaCUiitKKpj0xjcNLq9hz63WS2BcRUkU1X+xHmONMZVlKQ2IITG4EREgbZwfC86YVY6AfJpyf5FA7w6WLopqfBTg3JxKtxLk0H9x9EIGh7VqU1lxeXM1uWMP9w4nPX2QKev/1C7/7UVOUS8pCmpizLKXtzvzLv/4L/+E//NfkWY53ntFL0YHzjrKqSNNEFi8VmZyjHwfizDBLE+FATYMnzVOs1fRDJ3cCH1kuVzKpb3qKPCfLMsrSglLoxDGMik+fnri/P1KUOYtFTl2nLBYleZ6QWJlM2dTgeod3I8fZuXCxlXKGfmgFAp1o0jQhNQajIqieotRsKQlxYhxTPvz6ic+fP/Nf/fQNi9UCNznAcD5NdN3AcrlksawpshRp1jMEH9g9PbK9SNE6cH25ZBhaiqqAqPCzIyEGL/G5aWT39MDYtfzh99+zXNVyYAGe2zOdUxitcXP80hiNibywRyW6PfHcmF3kBSZ5BsOL0+BZJEwMlLnFJeJk6zuJEdjEYlOD0bk8o04ayFQwFPkFF6sfyNIFf/nlf2K3O1DWVgTs6HHOvfCP1Bw1L4pCSoKynCzNkKlrIHg5MMYoUdev9/cs6hUEyIscrQMqCkdQq4iZ291kWB3wYUQbmJwjKxLc5OQ9V3EuE4pzEU2k7zq5OM2XsbZvIMByKa2lT7s9aZYyeU/b9Rgf2D3t+fLljsvtFeem5fr6iqt/d4EV0wwC5tfYJJnLTqQZ9LA/sFysSZOUqsxxQaKbMQpzi6jF4WgkijtOA+HUsdlsqRYLLi9vcU4aXsPcHhmC4eryLdlxzzgOPD4cSawlS1KSLCXPLYktGfoj1hT46Ui6Kri9uWVZp2g1kWeWEEbhGGYZeZby6eP9fKFMOB4866UUfeR5zun4RJoqVqsVLu75+vWRzeoVi2rB/nCmGwa688ibN+9xzlGVOdvLBUWZUpYl0ziJE07JZHq73ZLVhqqUCG8IE94pjocD67U0bm6WJaMbqMqMGCec25EaEeSUEezIcXcktYqffviOLPVyAYmBqOSSGqK0OE/TRJamEkvRyTwUkyVJWvw8BBk6Rh0gxnlt/M2FaC2URUKeintr6Efyua3WJhkGGdJIU54hBE2ernh19XuKbMvfPvzP7PZH8hzyQpyo0hArLiFtBPGQJRnGapqmoSqreZBiXrAUkYjznuPxyLlpqKt6BrILY9NouQZqJTHTSBB3tQq03ZE0N0wOaWT3bhbTIUkTpk5cdc+ijThihheXUtucKbJSkh7e8/C4I8tzXPCMXYfWKcfDkf3TifVmw263Z71e8v33P5BYhdWGYo4EZ5k0DZ9OZ8ZRxMDLzSV5lpNlBWWRyNoVxAVstRFwO8yx/fmyq2Swdjweubjc4pxmvzuSpzWn9sRqm5OXhq9fv1KUC25eLQih4E9//oibAjFovIenRyl+SFJLkoA2DpRiGuHu7oh9OrFYLNmsEtwIdVUR4lLOa0wYa6mXC5Ki4OnpwOXVEqUHbObwceTctGSZZlWK61+ryNPjI3s8+31HmpTURUWeptxeXzN44WiPU0uSFqRZzqkfOB4OeG/ms2hAqYGsMJRlweHpSNMk2DRHq4muOzMODfntFWmSUuQJWVby7ft33O8+Mg4Db1+9o28bHh6+EkJNVeVyZjCWycE4eZJUybs0D5IkUW0JsxsnmfdNYi6xVOYzU4wEMYnK75nbGi8utjMwX4rVsiwjzVKJzs6cY4l2RjQWqyvevPoJayr+/Jf/hb5vMZYXx5VzwtvLs4I0zef9RpEkAs4HyNP0RUi3Vs5DcqwLHI5H/vKXv7FcrCnKmiQRF5e15iVOmtjsRQB0Xp5JFwZMCoP3L/gV5yemcUZOeM/kHEkqA8gI9EPP5CaccuKoak4Mgzj80jSlrsuZvZlzcVmR5xLfX62XBN0Cnof7ieASDrueLHPkmeLt+5r1heHprsUay/5pJMszoi/YbJZcbBK6dphdv4au7xjdSL2QC3sZa5x/xgvIvWF/3PE6JOSl5u7riaqqKIqKu69fSdOU7XbJelsJFsL1hAhN12BsyuG4I8k0lc7xDs5HibdqI4VXy1UFDBjjGEfPNE0sKkueZAxdC9EydIGxG1guVxSl4e7+E0M/0TQD7969pswyTucT2nj6ocUmKZ8+/oqymvW65vbmgmWl6FuLdy3HY8tiIZgFFUSg/vr1jqpOiEhMt3P9C6pjHDuedl949/ZKXFNKIPyXVzWn04HTOZBlBpta6rImS1MpclJS/vC7H77n1Zstd/d3+Gng++++JfpJnESGl3SDiZqqSuWMEgPRPntPZbCrZpFPkkpIj5gKsyIgv1JpzTODWDGvj1HNSAr571SVnd+HOYKhmEui5kGYkn9utMEYxde7vxGjYre/JysgIf03VItImopz+DlB9XC/43TsmEbmNc4ILsjIrzfGzCVOhgl5/rWScz7zmvE8eDLGCLd1chz2J4zRLBdLzqeeyQU5B4eIVoo8K+hjzzhKGUVd10CgqBLS1GBMghodRNknh2EgRpgmcf5lqeb6+oZ+aEgSQ1GWDH1HWeVUlaVrevaHHZe3OfXScP+l5Ze/HWQApiZsEnj9ZsnFxZqu6/n8ac/5FBmGiYuLDd7DclXyzbfv+fWXz6jZzdj3MlRwU89hvyfNc6w1FKXGupQ0LUkzuQdmWUGMJ6pqidIigAYC602ONhOJ9bT9SFGWPD6c6fuRwy5yODZYU1DkBYuq5ng8y9qWKCY/UJQJMCOPeoexltViTWIszelEkhS4echZViXLZcnd/WdQUhySpCmn84mLyzXaBpwfSbKMqlrycP+Zi+staarZbBYkxhFchZ/gcGjme40mz0o+ffxI8JG7uztgw8XlGmMteZGQ5xXB97Obb8ft7Su6fv/ST3B5s2QaR/qupesbfJhIU0lzVFUGs0knKkVZZbx984q3727Y7Z7QSrFcVGxXC8bh/w8YfOv1mhBvmCb5omdZIWLbzOR6fHhgudyitKfreraXFfUiwybw8cM9NlEzD2LCWMP93RNFUYkFNLE473n3zRVNM/DhZ4VSNeM4kKUXdO1I2zagPNVo2F6u+Otf7vjP//lP5GXCMDqcP7GoNzyc7/j22+95eHySqEOe07UjXd+w2azJ8oSmaTg3Z/b7hq4b0EYYCF03cDweqReO5WrJ7atr2rZltVwjjUGRttsTYkrXOYpsRZZlnM89wTnKymLTwDj1LItc+AlhlKmHj3TdQNvIgjAMR8qymPlPlv3xAW1gs12hlaJeiOtrGAeWq0JqyI1hvS6JoUMTICjaVko8hqHl5mbL7rGnriuG8URz6KnLBE3AGsP5fGYYO8qilGlhjOz3Z7quYbtdsFxVTONI1w5UZcXDw54kqchSS4gDNvHkZcbj/cDp3FAUkxRldD3r5YIYI4f9CXttqRc1ZanICmGUXF1vaNuWu7udRCrHSWKqXj4Ha+3cmCxQ7r4XobbvD5zPJ+7uRY3/+OGevh/45rtL2vbM/vDAft/i/cDTowMyFquMq2upDT+fO5ZLR5oo6jrn6nLBYX+a44NG4qXeoeKJf/iHSxb194C4MJRyckAkwswHQSt0InHXycmlGSWFIePsdiuKAmVkapckVvgUTqKi4+g4HY8EH8iznOAdaS6V3MyxvRjDfIE3KJ2Q6AV1+Yr1asMvH/8Tx+MTdV2wWC4khoDwWIZe3BZYRZEXDONImZeQ5xgtvIhhGOaWtoK+6RgnR5rk6Dm2phCuRZgZGyg7O5OkjTNJFVPXkGZ2LhSIROVRJqFtWrJEuGLD0NMP0oStNEzjSPSB1WqN1oav9/ekWS4FLK2ArR8fDzTnjkW9pjkPvH51w83VDWmiBbSc2H/jxpICk4f7J6xOxFFkxFUW52iGNpbopdELNMkym0XzkXqxYrO5IDIxuQ4fBrS2eGewGq6v3nA6nzgcpD08S1PSJCXLChJdMPYnjCnw/kia5Ly6eSVChnEUeY73A1WeoXTGsq7xQWJ2xIDV0h4tLbcLOTRpEXtRmuP58UUAi9HgdZRLapqgtQc1YJOEcQjsdjuC1+R5Tl5EvOvQNrBalpwO7SxyR5I00LQH+vZMlmxJs4x6kVEWCe/fvuHhEBn7ljffvsJPNfcPD/I5VJlMAm1CP4h7MM0SohKXXJoYdNT4wDwpNbO4P/cczocKH4QLFGKcW3AFilzVJTEawuSJSp5/k1jC3LCtlSIoNTNUNFW5Jkkz7h5+pet3wuBUM5P1Ocqm5TkRkcIyDiPoeZiCuHGmSWDLSZLjo7gXnx6eCJPl1au3KAPT0BLxKCeuurKscNMkQrixpEXBsX3kcHxkUVU8HxSVtvTjJIUiZk2cD4TPoGjnPH3XSaQ/VmRJyma7YXKew/Ek6+l6w5tXr1mUtRQG2IRZW0BpcQsOQ884u9FDDGy3lyyXK3a7A9akuERg2NoIL2uY3UfWGvIsnx3dkaEfsdZgbKQfzlR1zTimDENLIHBuWtbrSxSRr18fGYaRLIM+Olo9sVpasiTh4W7H0/2Brg94r8jSnMNujwoZRjsSu+B8PhKioh06Lq6XoCM2yXl6OnJzu5HW5NQRlePUnEhGzXa7Jc9SUmt4enzgtA+cjg1JklMVFXmScHt1xbk/kucJIXb4CDZJOJ96drsdMQhjqyxB0ZNkkSJfcNw38rmOislPNM2RaezJ00u0hkVVUFVLfvrdD3x9+sDYdbx/+55pHHh4uGezWaFiTl5kMiBzEz7IZVaAzXPLZ4wYtDgjjBE+Xa7mlOyM15jFiRhnli0IQ84WEPV89oqYxJLYBBdkIIQ2UrbkA4qEIltiTMrD00d2u88sFgUwMbmRoZUIX5pmWJ3Ma6O4ydwwkSRWGI4ztyhET24z/FxqcWpaPn74zLs333FxtWEcO2L0KIRnZLShKCv6rkd4rY5oF/TtiaenO8qqQCvmd1Key93xwHa9lX3Gy5qRZokI1t3I8XREKTnoZ1nC5dUVPgROTUuMiqrMKbKM6CLb9ZLry41E8+eLq7XQtY3EjZOUfhAn3vt339I2Lb/8+oF3b97MF7wwO8ciwQf8LBulSYJNEmySzuyzjq7rWa7k3PPhw2c225rFYkG9SlmtNuyPB47nDmUsVZnQT2cWy4RpjAx95HweUXr+3kcZSmmriYx07cg0ThR5yvVlwdj3TKOWxMbkWNQ1aaa4f/xK0/RMTvPu7TV5ltGchUXa9x3KaD58+kySJWS54ebmgsNTxLDg6anBB0eZl8TgiFESB233xPXNhqM/UleKw34vg0AsX79+5ttvL9lsapSOTP7IeispHtM4skwGf0WxIk1m4Ts66rrmD3/4ibftJZ8/f6EsMt69viW4EZOEGSMibpssK9GF7C8mAjEQoybGCZTwU7WxxChpF+Kz4y3+mzVYzXutRQgSmmf+13qbyT4U5HcprTFaWHjSNjunNNTE3cOv+OA4d1+pl7nsc0RCkLg4RJQy4n6ZBzrOudllKO+WDL0kBqznNcHNxU2gGKfAm+0VWZFxPOxw44gPw+zyDPgo4h0KQpxI0oxu6Pjy5QOJ1WxWK4ZxABQ2zejHgf3xIAPkWYAxVtoiQ/B03UggkGYpNzeXDMNAWeYSX06Fxfzh416SEjFw/aqWCHWp+OpO1LVlcp6LK0FB3H8d+dd/vqdrYRiDRGuN5+lpx+tXb6Twaxw5n48UVUq9qOn6E8YGlHasVgtJUOiEpjnz6mZF8FI2UBQSHTzs91R1hrWKSCsuYibOp44QFbiJPukoy5SuD7R3Z2ySst4u6NqessoIYQQtJXBpKu5GmypWmw3lYkFz7kmslAbO1ia89yRpRlGu6Po7/vLXn1mUOT98/w0KR9tKSd7l5WuKoiDLUryDpt3jhpwsN7yqr2lbJ+fdMBGiomk7mu5EtSixScZud8THSJYIX/piu+T6ZsWf//SPLJYLLq4uMUbhVUbXdRiTUhQpVVXODk7hbWsla3eeGn787j3iQJPWW2muDvMg/lkxiy+4FRXn90eJQPf8/72KEA0zMWJO/UjOxyo9F+DKMPT5mZ9PKsAzF2+Oys5x2RjVvLIyv3ci9E2+YWobUGCLKGxNLGEWAzOrpUFbXnI0cD552tYTZqReQFyU2gjjdY5dEbwnyQTLIi3yM3tvjsQnSfJyL1wuV5KmQNH27axzSPIkRuZEUkKW54AMx7u+pSwzikLclz5MRBwhQmYS8jyTWLwLKDRNO7BclFxsrzgeD2RpzqJe4j386V9+pWkG8izh8UmTFYqLiyXffnvDw8OB5hwlsj8EPn9ouX94oKyW+NEz9IrmFGcX2sjkpJCoHzqSNLDeimO6bUferrZY64jKsntqMRMYA2WxRCHahnPQdSNtd+Zye0GaFZwPPYqEEBSHfUPwiiStCU6xuchQVPz5n+85nQaSJCPyfH+WVvEklQGXTRJMokgTRVSKoqo5HXtQBm0t49BiAuz2DzIYqJdkTcHX+wfyVJOkkBVLvj58xhjLoiq4vr2R85gKeD/SNA+kVtqFb26uuLvbU1c1p2PLol7ytH8kKsfD3ZMY1gbHw92R9hRIlIVoWC9L1puSX3/+SkRxcXmJtZ7JTQTlaLqB7WZNnqWUZY5WQT4HBYnO8G4ixh4TDTeXW8E4zGij+L9Ch/t/9+PvFviKPKMoc/b7PWmSEudGoqvLFV1/5tfjkdPhQFnnnI6O0fVUVc65bbi+3XJ//8g4DTJdmgZWa7G/9sOI857msCNNE9wU5g3fslytOJ6OJDZnsaqoqoIkhePpjDKGp92BOuRErUhyy+A6lPGcmkeU6cnykro2+CDVyEmmOJwf0cpQryqmvzrJQxuxboao2F5sSBLNMJxI04TrmxX7/ZEirdkfdxRFOi/Snm44sFptscNAYOCHnwQaHjmxP5w47B+lMRVpvkkzWdi7XqN1ijt50lTTDWdQnrKUQ5hNLJM/s9ws8F4T40i9SHFTh1aW21cblLKUZc5qXdA0CfXCsF5b6jqh7zumaaRaJFxcpYzuQJYnHI8dWiXEoGYWgKWY4yoR5oKIlDwr0KokxhNaR3FZMrFcl0x+4uPHgaouGfuOYQZTd13PMPS0bc80Oh4fH1HW4uJzW2/K6bSn73qur68FOhzEeWDmRk2lFLvdjizLWC4XFEWOMYYstWSZxIFD0ChS2mZiUYkFO0nlgHY8DAxdYH1hZiu5oW97Pn+659Vtjt54VBxRMeAnj/Oec3OiazqyzLJe1/TtgTzPhLUWoR86VBBA/TAMLBaVMCeSZHYtyXTfGDPzvuT/K60E3uwDUUeMlv1R5wnXV1vG0c8FFQlVVcyg7ecNT+ZnbopoDBfbd2xW7/jy9S8cDnv0fIhEhZkppuYW1WQWEyxGG7IkRekU76d5QpVQluUcrXXc3z/y9HTg9atvWCxEUBcNUzbTqqxBKbq2I0k8LuvwIXJu94zOiNXeezwRFwL784nt0kp00XmsFdft5Eba5oRG4+uSNC25vLog+MjpdCYGqBY1VqcM9cBqucGY13LRnNuBnZvwfq64D54YIt999z3n05nD/gTRkFhx7Cmjcd5Jm7ZSlGUhTD8fZhu9laarGMjzBWpMmaYWufoabq7f8PnLL3TNI8YqtEppTue5pGfJ+TzycHeg6TzTGDEm5Xg8kNoSYwKdjRz2OxQRm0jLaVbkGCPxT6ORtrFhnl4aOSDJZUhA3M9+BKIisylvbt/w8eOecfCMzYmyWHB398Q0TXif8unTR77/8YrLq5o0TRj6E/Uyp+vO+GNgtRSn6Xq9ochLKa0gkmcJf/jDT/TTNZ8+fiL4ke+++waiQz8XqujnSWxNLCJ+doOp2aXgI4SoMNpK1G6OF8X5cGesRgVxtMU4R/o0GISZFLxGJSmo2fUT5gnvXHRhlBbXhtIcT185HB/woaeogjgVowLsLJIzX9JEPHkugIpenLvPB9tnzISwwaBte5KkxPmISRJQnq7vGIbu5XB6PB1ZLCX6T/QcTnc8PN2x3z1BuGS1WqKNpe3GuflbmJnjMFDkOfWiZJpGthcrrswFnz5/5MuXD3zzzbekacY4TpxOLY8Pe/Ks5P27S64ul/I1mx29SknZ0Tj1Mw9HAPTPbroiL+i6e+7u77DGyHAqRh53T+L4spY0STipM0maEmLk7ssXlqslX+5+pW1PswNSYNTWJqxWa4ZhgBjYbjc8PjoBnv/wE3f396SJxWpLXS+oq47T8Ymu6zkeT1x+e83FxRKtBDycJHIA3l5seXh65HzqGAfN67eXpLagPQ+kOZybA5Eog4A8wRjYXqxmcaKGcMZPc1mD0SgVaZoTf/3bgdtXW5x31OWK0+n0EsP5+uUj3/94zXKZibhKy8VVxak5cDj15LlwPutqdi/PjuIsy/nd737gzXDJ1y935Jnl7etrQT6oOP9UgmGoChGHYoRktl8T8EHcR+Kce3Y0gIgFSAO3qASAmV0OsyMJeZ6F+RXnqGvEImUqIqYruXNFzbl95Hh6BOXIK2kMDUEKZPIsR0pwZKN5vvQ9F3QQA36cI5DTb84mpTX96AhRY21BkuTkeQEq8Hh/J25IL7yvc9PMjMeAtZ6n3Wfu7u94fLpnu1mz3WywmWUcJx4enmiadnbpIu/HVlrqyqpgsV6BidzffyX4idtXr+VycujY708cD0fyLOfN61te317J3jyX/DgvOJFpGl+4S03TikNLQ11U1GXFqTnz9PSI1prN5oJpcjw8PYJSwmG1lizNSNIEUJyOR5xLZ6asODXX61wGgsbj/cDh8PBSaHI8nmYOpsDa27Z9cSU1zZG8SGfxx5Omah7yKZQyrFZriqLmcDiRJhXOzSKvEZdztagpiiVfvjzxpz//javLBd+8+w4fOmJUpGnOZnNFnhdoO6GVYpo6sB2biwprCwwZSZaQZhnNucHHAR8m/vCH34nbRAn/aRojZZnx5s0Nv/76Z4yF6+tLysKAEWSN9RabWqqqnC/u0uyslQxtFouS7eanlzggRlyt6vnOrtSL6/k3Z5CZn9Vn7AC4Gdhvni+O864jv0XhlexPEYOKzMzXeQ8Kz3gJjYpKfipQUdQLaxQxeFxoObaSEsmqIEgNJUKhff7zEmXoGJnfozg3S88R4yCiSZLImuq847n99+7uidFF+uOJw+nIIpYMfcv5fELaVefzVXBcXV3JO28Uw9BwPOw4HvYoFairXJjESnM8NXz9+sDQDy9layF4Vqs1Mfo5Yr0gzRLas56Hpoqu71mvl8QI918PPN63xAj7Xc/Pfz1gk8jrt0vevV/TtZHHhyO7pw6tDf3Qs92uSLRn7M74AF3nGaeBvv+ZxaKWoYWFSqckmWZ1cUHTWCkvOWmGPqdpOtLU0rU9xkLXnXHeM4494Li82lCW4tzxXtM0HdFHFssF56bh4eGRoqwoCjgfn7l2UcRuE8lyTVnYWXQZQcm1eLfbUdcLykrYX+M04oMnTXL67szXL49Ym2F0Ql2tyazm8emJ9XrFpw8PLJY1VVmjVildO3F/t2PoJ25vblksLvjLXz/Pg5qEjw9fGPqBxXJBmmnOTUM/9kDG6BRJkLX9fDoy9Atuby9Js5QkEwa2O03sdg+Ur27Ic2E5aq1JkvzF0aafG8mDpGq0em6SfRad4yxAx/9SXJh5PWEWxV78fLPwJ++mkcBu1HKPjL99DBHu5GODIqpAQES9MA+vVHz+qPLeCidVijMSKwK/0iJSPu+PCl7OmsxOcj2zP2V7jaSJQaXyMWMIGAuDG5lGR2JFCIwxouwzmzGQ5eks6vmXwhrn3Iyp0lR1QVakwu83CmMlvj6N0rSbppK2Cj7Qz4xRYzIm18v3O1VU1XJuiJYBgFaKJBXBKwQpntLaUNdSBPnYH6RRu/dEr2mbQNdKj8Fpv2dzkbNeV3gXOB5G7j73PD12vH6z5XzuOBxbYsxwTs5M4+DZP4nzuG0bjA3iwk5rbq7esXs60J7OuDEh1QuUhnEa2N0rmkNPmmWY5C1jNBgF+JruPKHwdN2RcRpIkjdU9Yrd7sTd5ydevbYQHEPvGAfNlP5WqpVlkbKCNFNMTqFMRBl5ro6Hjrr0ZGmNm9FjIXqKouJ47tk9HXh6POMjrNcX5JnmabdjtanQNvL0eI8fK5bLmqEfOJ+PPD2eSEzKm9dXGFvyyy93DMMIHtrTmY+//MJyWVEtcxbLCudFy4hR2sfD/KweD3tOx4zNtkarhCQRNmZaWB6fzgxtx2pZYXQ2c/osWZIJjkxp8jxDOUOYBI+jlUTflVIv79nf8+PvFvi8b9GqoyoikY7Fys4A2haVT3z/7SXbzTXGwOQ6ijIFHdkuZUr86qogzVLGMccoS5KkpJnly5cvwizDsFgsWK5WeBdQ0eAZOJ9PWCOHi8P+RFXXnE8TF9+84XKx5NzuuX11S1mJqKHit8L0GlvquiJNU47HVNxSMWDsGoKhyib++A9vaIeUvBC7prESw3RhxJg5bmItRA2IeOKc45/+8Z+4u7/jp9//xOWVNP1MrmeYOmnta1qKrEbNLb7OjdxcFMQQ8eE1p+PEMDiZ8luFcyNKBYoyoetPeB9YLVOsgaadeNo/UZYL7My3apqeaZzk4OMD69WSu3tN0z+ik5Y4wPqi4PXbFUG1oGr61rF7ONE0A9c3FyyU5XQ8MfSOrutJ0zVd4wUUrwLrTYn+XlrONpsNaNkws9Twhz98g7Gah69PfPgwcjyeWK0XEukKkNqKLK9ouwPL9ZIksRwOR5rmTNt1/PzzL7x7/+aF55jnOcZYmkaafEPwbDZrmrahaY6UlRxCgtdstwt8AO97+qGhH+RC/PTQE0NksUrYbMWl154FDL65SNDWYxOFscJT/ON/9Ue+Pn7hdDzx+59+IgRH37ZU2QqjpG1NK0ORVoBMhJMkmVuCZ6HiecNT5sWCLrwx+Sv6eXIVZgitHA4TK63Li0UpU2gtr3iSiBX+mUkR5kte0z0yuoZD84l6YUBJVNUHT10tZ4edfHyUXPaHOZJLkAOAQOglCizxYk+WVhAblsstVZ3Ttsf5oqMYRhFvjRbX0Tj1uCBOqY+ffmGxqLm6uIJ5Ov20O3A6NUQPQy9Oqs16ifMjy1XN5eUFnz9/4vOXD7x7947Ephy7nt3hRHPuKYuat29vMOoZeGtmELA4V4axYxodwzihohSYLOqFuErOZ/q+p66FcXL3cE9EkRc5RskhyloLUfH16x2r9ZLPX37mfN6jZ+i9sB5LJodcuvKU9XpF2zb8+ONP8t85nUjTlArL9fUVHz89MvRzm9vtDYtlBWGiH3pMItwQH4KI39M4r40TqU2xOqeqVrKRuUFaH+PzpeaZcSebgAi6nrbtaJqei6sLvJuoqprjXhrL00xxdb3m6eEzIcLFdsNmm5GcB4ahYRgDidUvF6/ncay43SDPLH/4/Q9ozBzbk4hQBPjtbMXzvOk5io1CALJKo4wIauqF2/Lb+yBibZx/PgsXUWISYR5mzREW9bz58dye+DwEkBiK1qCMxLGFdSQHO3HtxRfWpID7RTgQtsgzr0iEnGe37DB6nvYnvt4/kecNeWl5dXvBel0SQoE2hof7e/75n/+JP/7Xf2S1lLUOFUltyuePXzjuj/w3/81/QBlNXuRUVY1355dpn1aRjx9/wTnHdrtgnEZ2u0cROo3h5tVb0JZhCrggX9imOVIUyQuWQtxdei6lSLDGUpaFRL8E8If3nqsrEUhiCOJomy9BPgBK03Qd0zixWC4lphygH8VpHuJAiDD0jTBmpolxdCRpTlGkLFcFq9W3WJvQdmcWtbQAjsNImsLbt9c0XcvoKzbrGm0i3o+MrufUnGeBfsWiXuBDR1EYzseWD788sNnkvHv3itHtyPOcKqlxfiLLEoz1TJNBa48bB+Haao01KcZayqpi+DhyPnfEEPjDP/zAOEkDntYGbaCsE16/ueLL558JwXN9fU1ZKYIydH1DElJxU1ciFMugRtw50zhSZCk//fjdLDjM8Z74fHn67TIUQpwdRLIeK/3sLtIosYSjon7+HfNQRc/Pr4h53nvCzOIS5qWaI01xHuLo+VyiiC+DMgvR4fyEtcKI08wQ8dl6oWaBIkb/cnGL0Qvfa/57iC9CZJImMnQIUsT04eNXptHz66dfSQpFXWYslhlKFWht+Pz5M//66z/xH//jf6TIC2EMErHG8PSw47g7sv2Pa7nYa0OeFwy9Y5qksbWua4Zx5K9//RM//u5HLi8vaJozx9OBoRXhcL25xiQpTTvgZ/fw6AbyxLA/HGeRT9Z170QcD0FKDVarFc7J10drLW6YYXb6JcL9k0uzwiTpy/siDdciAN7fP+LCmr6TUoTAyOVVQV3XPD3uSJMlbStxybKuOB5P7A9nLq9zJtfx8VdPczxLBDgBpQfSTPhWSjsEIp8CsudcXVxSVTUq2hdeT5IYjsc9Hz99Ik0qtNaURcU0Ofa7J7K05OHhwHqzpKoyFJau7dg9HYko3r67ohs9H37dUdUXjOPE/rgXlm1ZkqaaX375mTwvac6eaZQhSts24uS42oiAnBu0cfgw8vh0z6ubK2kxRp7pNM2wJkGhSW1CxInwNrcyKzUXIswuPObzkrB9/40YMP9VK4mcovX8Tsx7jI4v7iV53+aCNC9pCHH6iaj3zJANIf5WDqbU7HIexM2sAaYXlqmeHUYxzoNbJbFbBfL38XlI9+zClailDEkMzK6iWYYkhkBz7rm/35MXJY+PD1TlDet1xWKRoeeh9z/90z+y2+9ZrVYs6noeWimKLOe4P/Dw8ECaJLz/9j3CsMxZr9Y8uj0hKBbLem7xnPjzn//CxcUF2+0a33v6XuLKdV1xOjX8+vNX+r7HOYWeXVNu1EyDoCB++cuZspbh+TiKe6hvOxbLhN3TxPnUECIE5zA6oSpr2u5Mlk1Mk7RE92OLJ5AVFav1kq6deLjf0TZeihjihLUF2mqsFR5jVVYkacLx0PLLz0+kqTSLf/3yxM31khA0XT+iVCTLLFdXBX9JT7QtlGVOvUixKTjXoo3m8mrFODYsqprT+UCSJjg3D/xsOjOmU4xJOJ5akqSgbSYO+wN1WRIrS1UWXGxrtpuK8/nEerUiSVLOTU9iK25uCpbLJTbJyLMFTw+PHM0ZpQLrTYGjZbNdcHl1yTCNfPz4IBHqwWOtoqwWpKkMw7ruzOePH3n19hV1XVJ8+57UKooyx5rnEj37cqYzRhOes+A8n7We3yM97znx5Z/8F2e8+ewlf/+sCs7YkajR/+bfPZ9VxW0uxRrybj7vhQoVhFH8/N/5TaibhTgt6ROUOONk+/ltH4qz+h9jwHn/XwxoZb3QLw5Am2is1Shl6Qcng/LnM+d8xjdayzsdZd9M0xTn5D1ViCCfF/l8BJdm7OdCmjgXyQ3DwDAMhCBcwcvLCyLxZW0ehpGyEt7xNAVOp5b1KiNLU/p+lIGbkzWw7x1KKTbbNedzy9BPTJMUNSaJFhxHkrHfyX22OR/5+uXIYpHRdQOgSRz8+usji4Xl/Tc3HB49m/Ub6sWGGGU4U5XCgE6ShKosWa3W3H/ZMzQWHbdoP5KnKXmWyIQdz+ZiSZrl9IMnxkTOMsqS2og1nu0yYZw6IuC94s1Nyu2lJ88HwnZikZ/pOxle2iQSwsgUWpQeyApNCE6YlO2Zvmsosy3eVegkI8nAR4dOBOe023VU5TXn88DuYcfj/ROrteXd2y3bzZYsT7i5uUA5T1nW9P2EVgU312uSRFyywacoXeKnnsPpjE0U33//iqAdzdBQVisWy1t2+yOH/QNBeZrWU1aWq8tLiqJEqcDkHF++3lGUOde3t1xdXlPmKVmWUmTCddZaYUyCJkHJGAqjNSaxv+19/Fu369/34+8W+LbbnO++fw9zBbu1muDlJSpzieWlWSIHFlXPlsSI0lLl3Q8DUkNdycYbAlmWcX3xI1pZxqmfD2azZVZrYsy4vsghSsOOf7MWcWJYEUhRHMlyzfVlxnJZoJVMuOTSlMM8XduuVxgjU0AiAsFMFK9vrjg1EyhhXxAlzhejHK5Az3BIUEom8dPk+Xd/eMv7t1sWi4qy1PhgcC5hGCNd3/H5wwf+4Q8/sqwXGC0gU8nhC9/l1Y0cnqWcQUTDx6cHhr7j9e0NIUTSpEDrlGmqWa9yjEnwQdN1I9Po0VWKUQmLOiOx8O7tmi9fj/y3/913VNWC5aqUds3dE5dXa/reEcPE5093DMMZjiNtP1AWC8rC4iYBqisd0CrgXctqYdmsc3FRmpTTYU+IcrB6fNiRpDnn84k8vyQvNMEnEAw2kYPc+XzGhwITmd1hmu3mguOx49df7tluewFSBj27rCxlUc3wU8049KAD2hqa5sTT7kySJCyXNafzmSTJmaaOqBQXV5fiDrytcVPk8yc5ZOSVYbVe4r1MaYgiKL5585brV5cc90fKPGWx2AhTLjiZGM3OCGvNLDqKMw7kOQjzxmO0nfl7vwk0Mc68rujnfw4yidIYLZtwmAs2lDYyMUOh4vzCR4WxBh0CIUx0wz2DU9jUEaJY0bW2c9uawQfZ+GKIBCUutTDDb9X8XIvD0L64Nfpu5G+/fGSaPH/5+Z/57vu3oAJFIS6svEj5x3/8R9brNT98/z0KgYM7pzgdTzzcPbJarKTEwEa0PqMwDKOjWixIjeH+4YH94YE//vHf473jdDoAkS9fEl69ekuS5oxjIEbDOE003ZnESGPos+MuCJYEZXiZPmuYvy+RSIUrC/zkyHKLMcgEZ3IYYxnHgbHthKmGZvKBfujJ8oTAiEIawsdhlKIBZNOvq4LbV5dodYP3A8FH8txKq1MMbC8Kzm3O6lCw3SzIEkVUHucnuk4m2wqoa4nghuClmCNqvIskmXAc6qqkGyMhTjOoWM3pA42KIvSaWeT0PtL3Az///IHEWsZRyZAlyRjHM9PUs94s8GGiquWyiHLs948s6oL1zY2Ip/MU0VqLNRlWa4JS4jbSs3V8nuJqJTDc5/KSGOTZf+YNifVBvzwfMqcMv50a1fMEeBauX34vLwcv+aUSuYiRWZwLqMg85RzmKXWCUpEQ1BxJkTKAZyakV88b5xwnmTmXz1LK1E9zMUbETcLPe+az+Cnw+HTCmDPb7QqjL7CpxftI2w18/PyRvMxp24bVYiHxLBmTo5UArT98/sT11Q1aJ/SdANWrqmZR18TgWK/X7PZP7A8HQvAsl6tZzLb0/fRyxk4SKYRQSrF72uO9o14siSFQ5iWJSRlHcU43bcPt9c186RpQOlAvCvk6A30nLbLr9ZrJe/K8nAtyAsfDka5vKLKcZb3geNiTWENZKA6H/bx+e6a5OMi7BUV+La3fhx1pmr4wzYC5YMdT1wmHo6csNEVh0FZKIZZLaQh/2Ct2D0/cP+yoqhXGGmLwdM3A490jSVLy8XjHci7hSmzCMI60bUvbjnz7zTuIKV/vHlFkDNPE0/6A1pbt9oIsN3z89EnaJ0fECa0t5/OJ02nPei2T6ryYI5k6cjjsSOyG1bKW5jctzj07r+9SMNFLpGJ+hp9bGrU2L8LZ/GC/7Adam/nXzPvDi1gR5nPFb0Mg1NzkHMAYcYvJ8/4sIMilJ3iPj3P7ZhRG3L99R2JE9qdZPAxBRAgRujzwbxxG8zsqTlnhDykU0UTAE52fOZyK6CNdN3L/sGOclrwZrtmschJbEmLkeDzz9f4LWZ7TNi1VWWGNuKysNnRNRwieDx8/cn17i9aJvF9tT5blbC8uUATc0VFVFZ8+fpyd5dNLm2/XDWjbELCziCdgc+8mWjfM2Ahx7ldlxdC1jNM4N1srFosF19fXTG6kH3qKOqdclnJJVoquHQhT5Pr6GhcjRV7J19sJXqZtO7KixLVSrlCWC0KY2O86Pn64Z7mo6EPP6dSy2Swgyho9nls224yiyNCqxftAmaeUlSUrDCGOVHVGUaZMY0tdlUxTi1ZIWdqqRGuBsLddLxiTzqFI2O87+m5iu11CdMQ4cnN7y3JZMowdq5Wwks/HjqIoubhYkGYWnZQE/8TT4448KyBOXFxU+DDyzbfvsanm8WHH08OOvtNYq2aEipzXxqnn69c7Lq+uqKqK9+/fkFhp6bRzG4acc+X9sMYQlUXLSEjWPq3Q6jnqql6E52fOUQheRHSjUFE6OmX7MC9nmWcXhPd+FhHkexmDnLl4OfvLniKvqJdkhZLzl0bEiOcyMjW7aOMsZoR5QPS8l+nZ7fQc+1WzQBjne0Nqxd2pUC+MP6WkzV3PxWlJmtE0A8djS5GnvHt3jVIRY0R4/Pr1M6eTMOjatqUqSxKbol5Kehw2yXjcPVHUJXW1wDk4nc6cz0fWqw2r5epFsN6sV5ybI6fzacbJJLPLVBGD4XQS15/zniTX3N6uuLy65M//+oHDbqRtNG07UVZhTiNIiiTJDKuN4fsfr2kb+NufD7jJ03UDMWhi0PMamktzvO85nc70vWEcAg8Pe4ZOzg2vXq1JUk+Mk7imTEKaZpxOLVmWcnmZst8dOR6O3Nys6NqRp/09WRZ4/fqK5XrJftdhU0VsPMF7zqeGJDU0bcfx0IphQEW+fLlHayjLWrATiZvvIhXr9YrPXz7wcP/I5dUt5+OOulqQZZaitLz/5jVFqWes0jV9H1DR07UD3kWyTLE/HIle8eVDR99q/CJSLxRv3t+ADfz1bz9z2Ac2lxdkucImkb4LxGDQScrnrzvGqSExQQburTTwrhc163X9vLDz7ETVyqIws5NPSldehkjxt6FuVOrFrTefrueXQvahlwHt8y+bhcLfPlp82cvi80BezYLeLMDH8PxrxDCilTCajf5NoNNazrpGCZomeMH5KH4T/0XkC0Rt5li+/Ltns7vWCmPjXKY14bye3335/UkiWoKKYtiwJp3vcL8JeM8f0wePmZu4hdEsjEbh5POypydJ8tJm/fgoTs7b21seHx+Yph4dlZgFJsf5dEYrw/F4Zr1e4b1jGj0hyDlvmgTrVNc1bgp0nZzhtlcZt68uuH21xdqE/+v/5Z857ieGQb7+JlFsrwpA89Pv3nD7asN68S23V78jyzaU5RajC5TJQClhsM/3zyxLxFH9X6m5REnNww54enrg86fPfPr0maf9jqfdcRZWZe0ty3pOsZWMk2GaUrq+x2hL8HJPbpqEECzTmJImCnAEJw9TllpQohv5MJEnJXUGy9xjEkPbOcxoMIkmSS7IU8P5fMTqK+qyRoeW/LqnrBJc2LFdr1Gxojl3ZOmSEDp8yOj7huNxpG2fWC4D0TuC9/z5Tw8Er9isNcoOfPNuQVYWfPjwmePhjjSBzXrDftcz9Sf6MDF6QzvAx897hqGR+wYRayN+DNRlyXpVk6YaRSRGM5sYNIoEpQ1GGVyYB0/GvLwDz/H4v/fH38/gW+XUVTs7azTTODE4h9UBrUaSJEUrh44QgqM5nxjHgaIoSZKEuswFXuyFT5FYO1/UJQbkfY9CFP0Y3PzyyhQWZQhuIkuNWNZ9S15ofvzxlq5bQIxo5RiHAZVZcpsJeN/PKn/w4JljEoHz6cx2vcDYhMRkKOVASVmEws73QlkorDYoZV6iXolNqIua66uACH4DISZkSUJdL3nYnTifO0IQ4PY4uJeNbZwm2fjaBiKkqbSDTW6iKjKKTL4myXP800eMDqgwEmJgtVhyfbEkeMXkOkbnWSwMi7okL65483qBsfLwjGOPNZHN+jXGaMZcU+dXfPf+EhQM08Sh6enakd1ujyWnLEvKSpqYVnUtRQBdj1nK93ByKZMDN3mIwuX6/rsbFssli1ri1YsiIzGO1SpjqS44nXZcXV8yTQPDMNKcz5xPE2lS4peGm5tLxtFzOh3Jc0vfdyRJRpI4srwgK6Q9qOvOBAJGSwvkalVgE8Uw9ny9fyBMqUwI+56PvxzwLvLj76XqW2tx0ElTmnlxJ6XW8OrmEm2MLOBBBEDZ9swcsQgSDZ3jTwrmGGKcp6lmFjj4bSo2T6OUsjxvojHIduv8bM1DIqIhRnF1xN+cfm50TFNHkj63gip0lMOwTLXFPqy0Evi7Eq6Z9wL5N/Ol0jtPdJBYPTeXCoT2OTpybjp2+xNRB14NF1xsFtR5ho+Kn3/+G84NDEM/xxUsRmsSk9C3E6fjiQ8fPvDum7dok0IUAH2W5mzWG4ierj+TtJanpyfSNJFJHQCatunxyCXWWEU+t2sd9oe5vGN2UOYZ/dAx9gPjNFJVJRfbDT5MODdQVtn8PYXgAsdjQ1UvyHwgywuU0jjn2e8PnI4NRVawrBfsn3YkNiFNFIfDga5rXkTgsszJs0uSpOLp8QFjFFmWkaRSTBKiRIXzLFDkUFeGNAWFpyhT6uqC4/FE27bs9yMgMdXEGpIkmWMnc6FHzFEmELzj3ByZpomnx0e0MZR5DVHjvebnnz+wqBa8fnULJmW/33M6nuhaidrnpVzeV8sS50ceHu9ZL1ekacrt7S0KT5qlEtsmyKElyjNu5va/52dXDlbCp1RKfj4/x9pYjJoPaLPwN09NJNwxRyt05OW9YD5AiHuCFycSswtJoVBWfm2MATUznZ/dEXLAehYCn4si5LBltHwso5+7S+X5cvM7G4InBNlBnQv0fcM0iYMny9OZ2ZeyXK64vLjm7u6Bv/3tE4tFxmqZ45y0hd7e3AqUPU2ZnMMibhpjLP/hf/NfM0wTkTAzXBTGKPIspcgzQvR4N7JcVFxfX76I8lmW470jSVLKasHxNNKeTiwWNVoL++rnn/+KtQnffvsdi3pBP3M2V6s1RZXPAtzAOPZzA2oA7CzsBIy1LPIFMWqUR/amKOOGbpjkexsj3nnqqhRddD58p2lCmtUsFkti8MQQeHwQBl9VlgxDhzZ+Hp5p0lxcT5sxA7YsFwnBDy9MOjcOoD1aWYYh0LWe+7t7jE65fbUijD1Dr7i9uSZLc5xvSazBezgdesYhcHV1Sb3IIeT88utXpsGR55GxP7FZpSgL337/bm7fPbB/OjKOCqUc22WJNoaqyhmnni9fPnOxvaAoCr799jusgaIsSIzFIOKv1pIMSIxFaUEAPD/jAvqWCLnSwjNUSj5XZUSoe3HkqtlhhAh2s65GDPMtSs2OvygxpejFoa1moUMu6fLMW2UQeDNYZYn+OQL4m1gug53/8uQoMaH5ghSVvK/eyTrkA1aLe3CcJqapAXgpABLH+ZLr61ucs3z+/Ill/YE0UWSpmoW6ltubW/KsIMtySRmkKZOfGIaBP/zhJ3HpaonBWaNwkzSa13VJYgzeeYoi5bvvvhFXhVJcXl6z3Vyg0RRFiTE5Xx92jG3P1dWWLE04H0/8+usvxBj48cefxCHqA3VVo7SiWlSgJD7p5wKNJLOzoCLrzoxkIityIgaCmpsFNVFFDscTT49PLOqKcRjnC6q4MLKsJE8Dx0NDWZZkWUbTjHRPR/Lc8P33b9HWkOeOv/zrkeYkRSeT8+hRcz4PdN3Ejz9tSLOEppFI/LIWQX4YR6yBLMuo6luenu748uWBq6tXTMMBUsc4BFarlPffviLNAmWdCWrFG7reoZSdI9d2btDNeLg/s6pTvB745t0Fi1XCw+M9Hz/+iVevX1NVwj2zVgoS8uKG/f7I01NHjI5x6KnrFYtFzXJZsFzUxCCNxrKiG7I0nzlXBlQq4pDnRRzz8ZlDyEsEUMD/Stw23vNs/BHzubhqtTa/ccOiDKPE3q3nwhkv79Kzgw/z8j2TsIO4/eTjyKb17LjQKsHFEa38HPGVRt8wM4+tmgVFHdFRM41u5swGvJNG5q4TQLvz0tyepoYkTUiTFGNytLbCG24bvny5p6pTXr+6EEblOJJlOT/++DvSNMUYKaKKwTNNPX3f89Pvf2Ka44Nag/NSvKWVIk9TlnWF1WKm0MDbN29IswybWMZxpKqMlPhZeS6cH0kSzet3a7774RXbixKbKLKy4+Fuou+E41mUgeubNX0/slrnXF0vOBzOfP78lbdv3vBwn/LwpWcYpIgxSVIZ5MVIXS1AZYxTw+l4xpiEy8slfR84Hk8oE7l5dYWbGsapJUQpjnr77pa7u3v6ThyHzgXGyVEvClYbEbN+/fUr5dMeo0tsElFaGlwjAdXKGYRM8fR4Yr1OCU4xBUd7HjnsPvPN+xxjnDC0lWK7lbvSr79+4fHhSF3nFGXk+naJTQPHvSf4jMwm86BRE90aN058fDyjVY6bHKfDiE0yaWW/2nD9as2nL1/5/Y+/xwVPN3a8ur4lUyP/08d/4ebminHMcK5D2mwNiQU/BVQaSbRBh5mTF+f2Wy3nZbmrWojJy74DGsLzoer5jMS/ERaeHbTxt/PcfNMQMU+csigzs5BFFJpPbnKX8YEQ5yST/G/mVc4D1xhQWhMIL3chuduLmK1MBB3nFms971HP7/az4Cefw7MDSpy+Cud+O/mNg5eIPSIoi4AtrOjgPVmhZM8FvANjNSEohn4E1OzmFOE+ywrqRTU3dXvSNJtFw+Tf/BXu7+/54x//SNe2HMaR07HltBjm1IliGiU50jTS/ns+N4CSZvN5iH1/f4+xkapOubgsuXm9YL3NqOuI1hP/u//9twRvmKZAPzQ4f6SqMlK7xLDmevvvWdW/Y1G9JcuF3x+VuCOLqhDn4XxObJuG5aJgs9qKiWJGc/3rv/4zf/rLv3I4Hvh8/xXvI867uSRo4P037/nv/w///WxckmfNh4CUsHm5g3nP5ORnCIH4HH2eHJMPjC7Q9i3DOEgEfxxnbuAAVjP1A+euxzmHd+DDACR4v6ZrDMqnaA19q1FqwZeP8HSfoFWJVh6rK4nPqprJL0m0oj0qEltwOLYQNnjn0CZnvV1w+yrl6WnHZp1RLzQutLRNx3qtOB0mpnBmXW7QNnI8tRirqeslY3cmz3PG8Uya5BgjqTqjFDL3VfNNRGFNhiLBqAxCmAdbmqDlOe57/u4ff7fApxQMQ0eWySU9hEBVlbhRGhNPJ4EYZ1lCkhqsyYnWoJSdmT4zfHaezk2jY4wOhZQnWKvn2mY5FPwWF/Hz/TEAGmOUTPVTecHTVC45wNxe5edY0MSczpq/oGa+zAXKshQ+WAhz/IsXLgfIQyrtr78dkOMMio14lJovjTFirMLMzXTBB46nJ16/uWacGpyfGW3ayiYc5t/rpUVHeGCaLM1nXkSK988Hg440kfjV9dXVy2REKS+Q7SQnnjviJJXRIU9kgjg7YIY2cDoeOIRHLi63pDYhGI8FjE2oioRzc8IauLjY0g89MTq0TslSOzceOrQK5IkmhIllkaNtgveBq22Jtpr3b5eM00Ce5nivyJOa66uc/+1/9zt2xzvaYUWaWNqmJwaFdw1GZZxOPX3fIuxBy2bziiwrOB5a7u8O7B4bqlpTLwsWKyktiFHz8dcHul7x/psLcUU5x8315TwJSrj/ehA3D4Evn+/5h3//jiTVnE9S3Z2mCVpr0iRBzxFaFV9wr/MGyW9uDORwx9xcKQKjxsyXrWdH4/MJ9MXZxPMUSS7QzxMgyTGqeSgWn2fZcvFRCo24Bo0Rt9Kzi1freZOd/6TCRZudVi9/drlw+hCwOiHqQHCeYXA4N6EMZJnFWktd1VxeXDMMil9++crl5ZrEaGmXchKRefXqNYvFCuccibUSE+1avvv+W/x8aO26jiQF7x1Wa+qyQEVhJ6wWS66vthijcSFIocGzoFEs2B1ahvbM5eUFisjuccdf//pnlssl37z/FpMoJjeQpgmb7QqbJLhpZHQDz7EB+fznizORxXKJ0gk+OnnmkPdmnALWWIKT9sq6qok+QCJ18XmRU5QFZVViFJyPDbunTxLLNpphbDG2xFpDlluyXBwERkeqKiH4Ee/loj95j8001kHfdbKWTVBst2grApki0vUn+uFMXmZ8/fqZ42mPsZahH4hB0SWOLK3YH058/HDH2ze/I0kM/diRZwIZT5KU5nxme7mm6wamscVNI8PYkBhLnucsFgsut2ueB7cK5EBIhlJGMAQ6lefs5bn/7Vl7diKI62ee5T6v0y8cljmWCKioX0Q1PV/SlYryrXoRN579SM/eVi3vCUYm0/P78hJ3f1meRSTUcwTL4/7NnzfMBw55fmVCJn+etm3puo4Q/cwdEnHT+YB3PbvdHucdm82Gqk7Y7Q/SvofGmISqqun7Hq08YQoo4wghsFiu0Ubjg0DUvY+oCK9vbzmfzjg3MfWdRN/mqJSbvLQ4pgU+iJ1/GkfyLOGn3/3AMPRkiSGr1yj1HXmWs1jUFLlwS+VbFLl/uOd0OuHcSJ5lLFdLcUJrg/eTCHfB88tf/0LAAJZpDPgYSfOCPJECDmMTjseDNI0aTZImbDZLYlwQkObt4OWQttCWNJNiLGsRoQnh0E1+QqFZ1AlVeTEXgTim3ksBUCLt6ZPz3H09cHnxBj89MgyOjx8eubnO+OkPb6gXis1VRQyLuZnXY0xNnnnqes3x0ODdyNPDiTQtSO3A+7cbluuE3eHApw9/4ub2mrJIZL/Ulq7vybML9rsju8eBGB3OS5lUUZaUecZ6vQTkkKZnF4NRws7Ss9j3DOGP4TcXqwD7fzsrqHmxlz1kPvzOBz/iLJZHecyJoOehnIjd4r4QSLM09j2/I+pZlJj/fGEW1H9zBc6OBzW/rXNcXmKIz+4IGQqFwEuRhEQLFW3b07bNy3lKSmlkGu0mz/HccjyeCD7w+vY1SlkOxxOLqqDve4qiJE2KOQpvpNysG5mcY72RYh8fJYIaQiS4wKubG4osp+9aTocdVVWSz6w7ouxFdbmgbVuijy977aIUx9gwNPhpIM9T0iSjrAqJCFoRJoVfqRnHXhAhfSf749yoW9eVOIW9FAAFIofdjn6Y8MFIhN170iwnNSm3t68JfqIo4jyItbx7d8XHjx/J84Q0XdK2PWkq57HtxYoYHH/96yfSzKB1+mIoa9sepQLH2Mu76iN3Xw+sVyl9OxCJNNnA0/2vfPfd9xjj2G435FnOar3m1fiGL1/2fPm8Z7UuKTPD9fUlznnGYSBNMtIkpW3OZHnNNAW61rF7/EKaLjmfHH0zsK4Vizrj3ftromrJcri+2YjQO0T+3e9/4P/8P/wJHSOpzTgderR2ZIVF62QemHpszDBREZ/Zdsr8m59qBv0LO0+YoqAxcrlQisk52ZPnSJ6OEINAzgPPDDBF9POeFKWN9jl+HpHom9IiZEcfX/atua8TH+IsgDjERatlPdfPG04gzGkdNUduZT+bz3sqoIgEJaD+6EQs1FqESq1BWUPXDDw3z2utKIoCY+XPMgyOYTrStB3WGtIsZb0uaduG/f+TuT971ixLz/uw3xr2/I1nzrHm6hloQAAIkSIpQSJhk7IiJIcvFOFQWLJoW/SF7PDfY0c4ZFsOOWSLDNmaSEoMQRIlAiCABhrd1TVn5XjGb9zTGnzxru9k6VbtCyeiI1CVlZknz7f3Wu/wPL9nlTGd1HgfyPOCcYxsNy1N0xDGkYgnxEDdTKnqGh8c49in5VpAY3jy+AF3dzVjP7DfClakKkpiCngaXH+vbHLOsV6v0Vpz8WDOfFlhLfTjirbfcjSZ896HE979QCfVnuf169c4t+Xp+0fc3vT86Z98gXewb0c2d88Z+wwfHFVd0DQ5/bDFuYFmatlsVmgbKArF0fGcPM9YLEu6LvDJz/a8fnmDIlJPLHkhCqAYPW/e3HB1uSFGGXY3TcMwDnTdKNZ2panqBddXK4waMVZzfDrDu8A4OlGB98KdfPfdExQ9q7gmLwqGYaAsKrZbWf5pJTW/D47b2xUvX16LTTjTnJycc3z8mJcv3vDZzzo2t6IGVDh5BpUoXIehR5sOpTuCy9E6Z7ffkn/hqJprMjsHrSirBmVyQlR024zHD36Fpp6wve3Jy5xHjz/Gmp6uf87qbi/DglmJc/Zw2RCwMqAzedrgZ0SydCcIpojknpDQiXj/c4d749vqPGImA9mkHFeH2isqYsJOiNHj28NCGRKGmJpuRDUnogVJrI063IsfDrUkQe4fhcJqhbZ5GvjL7yPLMHl7Ay6JeVJ4VVpKjwOEoFgup3T9nuAV293A6GNazivOz46oGnkGFFJjexfJc4VzgarKGHpFu+9wo/y9Rq3Y71RCOqRk63iwB5PwUhVHR0vevHnN2dkZPnj6oWO9Pqiwhf2a51lawM/JrASlCFtSHEzNZEYzLUB5Tk4mrFbX1JMZzjsyYyhrUfttdxvGceD6Zs3Qz5k2hrvLPZ/9+SfA10yaBWcXD/ngw4/5lR/9inDsrSWawNd//jm3NzcYrZlMKi4uFsQog28fAj+uv8cH7z/g5vaWth8YO3E1hSAPwenpMUVdp140Csc7WVZdCqILKUwwKo+2CpNb8iChYMqICtA5SXsGQSMYJT2pR8RD8rHKEshHSf3t2w4/yrC/7/b0w0DX7mjbLW3X0bcO7xz7fsc4iHtm13agFEYVZNlAlmdUxWOOFw3XV79Aq8CLF1uKoiHPFXEc6HZrHj644JtvvmFSz7hkQ154VqtrnO949/0nZJlhUsPt3RuGsSLLztjuBcFUF5WoVA9DaXRCVIjC1oU+OZMOAh3/35s1/A/98UsP+GKQl7BLiadKRYJ37Pf7FJUdKesCa01Sa/UC9tWw32+x1iY1hKMs5VBdr7dopWkmDdPpBGsztMqoqgVdt8X7gb7vUmGqMVY2DMbmKCWRzW4ck2w2JysyUeAFiVw3xsqwa+iFx5Mg0EoZRj+QWQ0I/6XruzRkNAL5jJGopEHsO0lI1UoGXX2/Zb44SsoF6IeO7XYrBUoYcG7L6m5PmcN0Nme1vqUferqh5fTkjNlihhtd2hpHur1M9osioyhybCZpOzpZZkbfU1fCoVBK03ej8LHiIHLh3rHftRh7sBAoZpMZX3/9jF27YbZomDQ1mS1E1aUc+/1IkRUMQxC/erS4fmB7N3I0nRCcJLGVhSTadl1H2+6pqprpZHZ/YQ3jnqKw5FbRO0dVaIq8YznLmDTHwJyvn79mt9my24liJDJy8fCIPI9YHVjOi6R6iew15Don4JlPZsSw4/rNDW2/p2kkcr3bGz779JLv/+AE8Oy3W3yQYmXfRapqgtEdWsP11QZrSo6PnqCV2Hqsze8H1SAHtVLfVi+BNGZpAKiTdUpFGdDFA4fiwBMj/bt04ekDLFYsvCGEBI0NyYarifgUPnJgRLg0PFFiZYkJspwYMcboxG0SqXuKgCMkZU0kpR4m5WhwI7vdjqEfiMR725+3hhg9213H3d0dymiOjk/Y7QbW244803T7luPjU5zzoGAYHG7YJ66A5vHjR/joCd5JUxQiF2enTKqaYRho2x1VWVKWBSF4eidDvdwoos5Bg3MjTV3y8ccf0Pd7ytygiobHjx9R1xVVnVHkWUq/zBn9wPWbS9brNcZoptMJTdOQZzkKRT8M+BB4/eYNu51sTMcx4kLEamGVkZYLt7c3TJpKLEdYTk7nEkaJStbgkbqpKYsS54WFcUAT9KO/Tw82Bo5PmmS9N4z9nr4fyMsMmxnmiynTacNut723mrx8+YrdbotSineffkzb7tlttrT7DoWhbwe0yjBWhlAYzfnFA05P32WxeMS+63h9+RXTpmbxo+/wJ3/0DbvtlrKs2Kz3KEbK0jIMh/PPY1Qmtvd0NqBMGmBYgheLaFQm2dTsff3nk0pO7qrDs0qa+6n7x52QVBFp2KeVgaCTMkihTCogI/eQZVEyhfstsnDLIPrwVmkUw/2Q5IBukF+XtrvKS4OnYAzhPqHNmAytA945xtHRdntCEJuqjx6bGUnD9TJo6LoxgYdlUZPlimF0dMPIvJkzjg7Xj3IGoMnzCpPJoD4EzdXVDT6MDOMgavGAqKHrmsVylgKpUpOrNLv9Fmssu81Ofo1O6kZEoV6VGculpKnPF1NJGCbigzv0oBIQU2RMp+cAjIPYd6QITUMbxEq1WM65vLpltRbEQkSjd1tR3zQVuRU8Q4wNWseUguzlrEPRd6OgKoI8OyjwyHJFp0nVZrMV9qSVpNKqqNGm5N2n7/Ly5UtQPZ4B5zwxWibTmss3K26udzSTgsW84uLiCNTI3d2WIiuwpuJudYfNarabjrYduLnpIJb0e8Nm03F8VNM0JY+fHGOzkWZS8ODhKbvdlnEc+fjDJ/zpH79AxUCRV+x3e7TyTKY1DNLWuKGnzjOBSMeIClFUoth7RYQotWXJopWStNMY07z6YEeSKyDeK7nT2R5kQO6cDA5AJYaezLt9UAkN8q1lU4zp939raUfLMJE43isf5E082B0TM1hxjxaJ0RGQYtJFCW0iiiKLqPBKBtNt2+JHR13VYiNM6brCpgrsOvn+12XFdbJWOz9ydX1LZi1NPWXftomBJqqNqqhBQ1EpjM1YrTZ47xiGXtSJUdTmTV1zcrLAjdII2UwUWrvdHq0ifhyJo6d3A8PYozA4HygKy2R6xHzWoLTiR4sjVJQGVqyfsj6LBMZ+AANFLkO5LMuo60bYa8HhgjhLgg+s13d0/cg4KpTOQVmcg7v2DqUiVkdQR2gbCThubm+4W+8JHkEeWMPV9Y7ZPCf2niwrgYrdbmToW8pKY21JDFHOaWsZB1FDPXlyBHQEH7E2o933lEXJft/S9zI43G43hDhyd7fmm2eXTBoZTJ+fn3J2esrd7SVaZezGPccnNbvNlhAC41Cw23pWd3sePFhirSysLy/fUFdLbm57pvMcoyMuOAye04cXfPHZa4pSkRcFfbdju7/m3XcfMZtXRO+4urzEDQ25EateVUkggZzduSibQmJGKo13EHEynAhK+I9KmvR4XyPFZJyNadmjkgrZJFxKYvHhicqnIUB6D4AYPAfchfxalWq4gB98quvS+C9CdD6pA9O7h0vKvqSKDY5DUigh4pBEX4MhM5kMzZVhHD1tuyfESFEX1KZKYgNH1ztAHAV95zAojIaqsGQJ/h+SQr3OMvb7juBJNY4kS1ubEwLozLJa3bHb74DIMHT36t4sMzSTCUfLBcTEdlaHYUnHMIx4JQqmEALL5ZLprGa73SRhg2cxn9PUyEK1H6mbhudfX3Fzs5eh466l7zVdq7i6kmHyMBja4Fku5sRosSajyEUdGBGG5/HJBK0h+JGymFKWmt6MeDdwdjrl63bgm29usJmmmRjqRti7ZVmyWnm6Xli011dr6iYnyzRZJtb5o+MZy6M5RluGYZNUsjCbVZJeGhQ+DIxuwGgvy8/5hLK09F0gz0q0znBjTvAZWVYyrY/51R98zGx6Qp5XHB2dUWcN83rFr/04J4bDeWrv+W9t2zL6AWMVMY4MgzyLzgex15uCfeu4urzCuT7dFxFNKV+7KzGmoV8P/OJnO+Hs6SXGHHH9RvPFpx5telFXRWFuZzanLCJN/QVRDdjMom0kT1+XqACtsCpNTEvOxK5MPEulE5svCJcV3QMuqWEP9Z5HByd3kRdWnAzbZMiuUnLo4e5K6hy5w5SWQXpiO6v03h+Wu94HBj/c90WHQVqM4IPDx4B3njKXOkenmtIN0vfudz11kwOCMthuxfUzonjz5pLHT8+5OD+lbVcMRcAqRZbnxAB9P5JnFZdv1oxDYLXq0EpUl92+TWE84vwaup7gXUqbtUwnNV98+TkPHpxR5JZJU6OIbLf75Iw53P2R1XpF1w0YI8PWPC+YTiXdVb7/jucvvqZuMgpboiKMvafd7en2gdvrwO1NjzWntPGU/V0BIeUERMft3TUv37zi+fOvePLwlO//pb9IURZc3lzx/e9+TLtv0Qg65NWL59IvOifPasLNnB4tMcYk90tAZxmZlZ5EaZNcZwaDDP2NtfgYMVZcXoS3imwZdju8CyJciMIhD8HT9T3jIHV42w+EEBM6ICbFuk3YLE9ZGlRlmZsarY/lbonC1ZVzPfUV6e/jhoF/8kd/xO/93n8FRNpxRO8jxnQ09Q2zheX6boUtSh4uFxg30PUD67s9m/VXFKXh+Lih2884PV5QTyuGsSU3Gq0i2mTMZydUZUm3dwz7axbLKdNymgbbSbygPBF3r0JF6SQKOihRNfcqnl/ixy894DMpHXG73VIUBcZoYrA0k0ak9tqnoYNAEfMip0z2Op9snc55ykqm73UtUGJjTEojk5SXPI/sdjcoHemHlrvVmuDFwrewc/b7Vg60IlmQvjUMMUrgmfIByOY8EslyQ1SerhtS2qvDDYb64gSFKLrEPSgqvcGNkoia2Gt5YdBGmHe7nTSDXbclBoW14nEvyoJu3VI1OcpMUcCu7djuel69vGa13jK6nl//tRlNaVOwiEhof/azn1HXFcujJ/JC9PKQuzAKSNWKVVmpyDh2DKNHRXkZ3OgJwWBMSZZ5Ip6+H/HOc3x8Qr63rDcbyqxEq4wiz9E6w84a2tFwdX3Nq5dXHB1NuTibc352TFFY6jIH5cisoigzmomEhEhxbDHaUlQTQijEymwMVRnRyrPdXVHkgdh5aTi9Yxw7sixPUuWeEC1FVXJ6esTF2YkwmNqOl92NpExNJ8xnczbbgdxWaKNR2jGbV+y2G06Ojrl8tefsfIlWgfWmo2pqlN4R/JbFUY3zI8MwcvLgIYv5EqUPlsJ00SixIRIPl8lBki6D5LfKiPgtFZNOBSMQkqguXTTS5Ekhq7VYrAkKFW1q2A7pqElddFAqBblYxT7lMUoOR2PEviuHVkThIbpkc3rLdyE9/0WWic2UKKwiDbP5hKhIbCaxG7e7lrYdmE2n3K5ecHS0YLvZcnmpuLg4ZTKZsd3u0nulqKsJZV4BEZtl7HY7trt9UiyNUmSYnLqqOFqeirItKbe8d/J7mXAPp8XIxR+8HHKTac1yvkCpyHI5x7tRLnCtCEo4hN6P1HXJbDZNn5enKqv7TRIIyH05n+HcHW8ur3BBotgzY7h885LppCIzSNqjjmgtXD2vPDEqPDAMB3j2ISVMEaJiHEashTYpwYQnasmyCqLi8cP3ePXqa3xsCV6SDqMGrSyLuShMu87RNHM5P8l4/OBjNpsb2v6S6XTOfr+n73vmswXGmrQNdAKRH5QUs05RFZqysjz7+mVSk2Q433Nzc5vCIebM4oSbmxucG7DHx7T7Ttgb2iQosrwLxlisyRlDJw0uSQcUZPcb71WjSQkhfqekFk4J0sqgQlKhxhRMkBQWoFBpCwvq3u6EUqLKTsXggdunOGy/dDrzDirCeJ+0KX++Bx0JaejlkoI0sxkhKcWtNng8BoGPOz8yuIHNtsc5j7WWPM+E37Vds1zUKKVomop6UlIUOUVeYu2I1mLZDE7OBq0Nl1c33K3W7LYbprNJSoIrmU2nCctwUNKJcuLm5pbgoaolVGg6mzD6kWEYCCFQVTUpbQUQ6DfRYqxhHAd2uw3O+TTE9xyfHEtaaXzLng3Bp4I4pDNTcXK8YDad0o9jas52sszShqoqUBHc6MhswaRpGN1eCvygUEYToqNte9r9CFhG5zg7O2G73WGNJs9FDVVWguFQCXmgo6bIZxAuUcZT2oy6qVjd7jBa8/LFDQqL957l0YInTx6y2dwSY6CPPbNpyXq1ZTrNyfKK3RZevrzi4YOnBFqyTHN7c8d8prhb9UymFmMiQ9uho+fp44d89dVVej88+3ZLP9zy5PE5TT2hrnLevHmDG5fkxrDRUWzKKRWTpNDLslzwHkEl5V0KbCEx7A62ppjuDxJbMsa02BFlNPFQzGlSdPb9u0Z6V0hKpYM6wUfPYSEc0v2ikkX3EPZxmP/FGHBjLz8f5V1VOuKjA899qmtuLdGFFNahZCbtAmVRAJHROfp+ZN/KgKGuazSG9e0KFRyPHpxSVSVlaambirLMqZPdPURRTKooQTbKaG6ub1htNtzdrbCZTQE3hirPmc3naXAhaBatI9vNit2uTS6RiTAalaijhkE4qVVVU5SirDxgSayW5ZXcORuEFS2qWZ1pJpOGzFhCAuqrVN+FIMOdLBfuYlO/y83tijeXNwyjY7/bMmph6i7nCyZNxes3gTevEmtVWfZbRdc6nJPhfd1kbNcBYzXr7TUPH5ziQ6CuM/r9iDUCa5/Nq6Q2hqxQZLklBAkDWcyW5FnGOAwYY6jrOtWwPc717Hc9k0mGsQPHJ3O0cezbFu8tNqu4vr3GDXfMFwu8y7i+XHP5ektdlxwdnTBfVOx3f87Vmy03t7conTGdPabISrxzfP31V7x8dc1yccbRsfzZZ+cLTmJJXWeidMpz5vMlk0nJzdUt8SjQNBXaWvyYmpoo900Mch+GEMTqGrQMSChkCPitwdpBuSpnvAysRdkqakEdkYZYa8JB/a1UqvsVxuRp+WOIQQKhgpdGVmotn1APqYdIFg1ZoqSh+rfCM1xw+DDec2GVlprXmEyWI0SMNkQrS0KrIzGO9L1n9ANd1xF8oKoaiiJnvdoyjC3zWY3WUNUZk6kEEZZ5DlHY5tpk4hqJQVSPKnJ1fU3bdqxWtwQiRZGT5ZZMW5rJRIKXMjlfdFIzbtbbe95YnhfkeYYxmqqqkrNJ8fSdh1xevebuTu5CUBSlwo2B2+6Wm+s9L77pZHHqPO1uyzgKBsI56NoggwI8gYFhHEFlEog2qymKjOlsQt+tGYYRrcUBVRnpS1Caqil49fKaLM8IQbjs3gnDVTJGOmazJdttR7tvJem7yMhszX4/EHEsFlN2+5bN5sBL2xNClAWYUrS7Hq0DwUfa17copZjWx8zOLnjnyQ+Zzy6o6gVVNSWvalHvZiXWFvggydqHkK7go6AZUk3qhgF0YkmSuI1BMwwjX33zNT/75FM+/ewrbtdbOXeiQivDw0cX/IXf/A1J400sSu8cfSfnYPCC/3De47zDe1m8+BAYugE/Ora7yHYPw+BxfiCEEef2ssRyoogN0aNUSM4BwUxFAtbKQl04kZq8sOQpYTmzGXUjgR9VZahrR1H0mExJHZ3+ntJDWUjLZAl4MvcMPpWUkdiUcJ7uThG8Jy4sKSwtxPuvc3Qjw9hj80yEGUl0oZUo3UWVHunakRgcZZVRVZJ2ene3kspVyRD39ZsryiLQTCyLWYUxmsm0Tt8jzwcfH/H69TVXbxS3N4oYhF3nncek8J6DC/Hi/JSyLFivbzk/O6YsDQ8fntJ3W7Q2tN1A14/UdcMwdPdLZqU2XDw4xlrLy5dvGMeBZ988o2kKzi9OODu9ABW4u205Ng2jG8jznK7bc3010LeWk9MTUA1VM6MpK14/f4mEd1uO5jP+pb/5P+Jf+J2/wt1qxXa/4eT4hEcPn6Q+9lBpCJpDxC1Sy4fxsBhMn4mKDKN8jh5h/fajqPqCF2TA0Hb0bsB5wcVEH5IgKyPLc46OjpifLGTxnuZDIcjz7WNg9AfVgBI2XxocayXKeufELdO7QRSR48jYi/XXB88wjAyulzrapZrGBap6xtnFQ27urvEhSs6Aj9ghsNloHjx8yvHxnEmT0e1fk2eOX/uNj9hst+x3e7rOc/5gxvHxHJtpIrmEsiThmQRbif3ZaljM5lIGQnIwKaKyGC2zKOcPTP5vq1j1W5HQL/Hjl7foEvHeiVWoqu4vYaU0LhzUSFKYNk2TGOeBad5gFlNIlpfIkKb+UuTGFAbQ90Oysjh8dCivKIqc83MZwgH3nIh+aDH9wSJhUgGuhK2CEv6Sk62C1iKtzZV8OBCJwZBnc2IMjK7HZvremiYKFM1mvUkMHk1ZVkkd1qaHXuzGVSWMrOvbG5yX4iogipf9vidGwzhGxsFydvqYvDDEaCnLKm1QtAwUB2GdnZwKD6goCqyVBlqSHuEAJM5zTZ4Z+q6naz2LxQlWV9ysIs7tiGpM1mNFU89pO0ffeq4uN1gLWa6ZTU6IFGxWA1rV1JUwVMoqp213GFvTto5haGkmJVmmqOrifmCjdYTo0MDoRKV2aCZC7BnciFKKvJAL8OL8AZ9+8YrVes901jCbT2j3A5ktyPOCLMvxTqCl08mU3UYzm03Z7zY4N0pi3mbPm8tXHJ/WvP/RklfPtwQ3Utd73nv/jFevN/z8Zy9RSlPmCqUCs2bBxYNHvPPkI6IvyTMBoRttkhJOpVwBGXTE8G1FhkpvarwHyUYOQ7y3wzVRJh02U56QNsXBy6/xMd5bI2NS/d33g/EwwJAi4PAj6GTbjTEdlm9tkD66pDhM0nEjA5uYhpQhBPbbnXwfipyIqOV22w3DOFCWJQrN7c01MYw8PD9mOp2Q5Zq6qSnyiqrIsCbx2YwwK4qiYL3e8OLlK9brNfBWcVpVNbPpDJsZeQa8x/nI7c0d4zhSlgVlWYgF0Bp61+H9yGw+eWt7S4qgzIhcexj6e6Wb804UcfO0WfJvbQZymIplwEdR5tRNxfn5KSEqdrt9StD1FFkufJveicKwlrAC+f2E+RmjZ7fd03Vj4gRZlsslm+2O6bSiqCY0zTypz2KybFuMzhl7UVba3DKZVOl8FBaKNDBJVecLVCwwqmC33eMZUUbhwsDd+lZ+fSMD1f1+DSqnH2A2g3Hs+frrr6jrY5pmynTm6K/TcEprskye/dzmTJsps+mM29s7urbl4cNzplPhyvnok1VY4xxJLSE7mpi4GnxL0SqP7mGirZIFK9wPwa1Jm72k+jqoHwLClVTm0DDF+21uTIWsuk8LFfabSo26DLm/nb4b0PqQphvw4yjbOh8oyyKlX6t7tZXWYsG1mUj7nXfUTU1eZBhj2O12YofP4L33n6ThgaJpGoRF5ri6u6TIZZPYNJJWOTrHbr2DGLk4PcE8OCPPM0Y/MPZDKnzkDNDKShlrDCcnFxxs9ABZtBifUZQV1iQrv9ZsN1tW2x0KKIsaa6N8Zs6gsGK7MJIU6kaxSBidrNakFL0gqutIxFhRVYnSyXB8MpXzwnn6YZBlTV5Q5DVFXuO2QRT55YS222G1oSwNw7CnLCd07ZCUC2JdLotMRMvhUJhJk71a94y9w2pLVD3ODWzWA5ttyzfPX2MsFLmhmeTkpYT33N3umc5m3NzcsV17Fosl3hVcvb7m9es7iAWLxTEffNDws58+44vPXnJ1tUGpkvnsIcp0mEbz06++4vWbG46OLpjOLC5EHj06QukJTV0mDEPByfEZ06kMw4lzmhT2JMzShO+IEecgIqyuGGJiqZDUCdyfz2ltK+/AYWEUpILKMvMtS21MCycZlpu00CAcxoNId45s5pURW0wMHmukNfJpMnhQT8TUZCoTiV6aueg94yjKybzIhReIDCEw8o5oo3HBMY4D4ziitCQ0ZlmG94dFKRyfzFFKs9lsKIqc+WyBzTKGvuPm6hZjpeaylUVpRdvt6YdRmI1VTV3VNJNG7qRRHBHG5jL0iUGUxIAylqqupE5KeJeiyHFpIWb0wS4V2Wx37LY7WcRmGWVR4Fxk6ANtu0PplrKuKHNJRvQ+oKJKsHWhTMkVLGEfMXRkWcZy3nB2coSxJWOy0bixZ+g6QgjcrQP7fc84wunJgqYp6fsNR0cztuuB7UYsO0VVYHXJ1dUtR8c101nNV5+/ZOg0WSZDzRBluD/0fUrhVURv+Gb9EhVhNqup64rz83O2247V7Z7ZfMpk6inrEu8HiqLg/Pwh89mM3eYFEc1ssWDoB1CKzXqLNRlPnrxH3w0pvTWjqnPOLpZY46irCfPpkn7Ysm/X/Nqv/Zh92+JGUVwFKo5PChRpwR9HtpsWoy1N01CXOcvFHIVlHHyqpUNa9mSEoPBxQCkZAsRQ0A0Nn316xWefPWO379Jnk8mdns5EiN/iJztUWjwLtjJKkIeR59gYTZblFHlGM51Q5MJsNEZJ/ZuBNRqt433IktGS9Cz3nZPgtxhxQZjPziW+ahSFtlJyLw0h4pUhM4YDtiK4HnSkG/bECFU1pWoymkZs09KUQlVNmE4XdF2LMYamqTDW0PcdqzuxtFprKUpoqpxIlEHH0AKe6bSmrguapgQCzo2EgDiA7IFRi9yxQJYLaqQqq3u1b1GIsujVq9fMZjURx9HyhMV8Rtd2ZLkgl2zilJVlTZ7l3F3fMbqAc3JO9K0DvCyokJC3LLP3ixDhl5Up/O4181nDbHrK3e0d3zxbc3yywFhFU2cUpSUv58znM7JMlvDfPLtiddthdIbWjnFwWKOZzyW0qSxKxtETHORZg3Mjy2XD9Zs73CDqutE5utbjfUaeI+zz3lEWEx4+eIfZ9ISjxTvs25KIx8dI7zy5i0y1IRpDltUUOr9nsd3b8JSn6/a07ZbddsNqveJosWR5tERF6Y1evHrJn/7Zn/HNi+d0fUdZGPreY41hNp3yW7/xG5ydnwM6CToCBJ8W3TotzbP7nlQGKAZrM3H0hJjCoZIQQUktJfdYREcJr4spCGsYesZxpB96+V83pF60YxjlOW3bjm+ev+H1y2/Ikrstz2B5BN//wQmPn9ZoenyyjYMiuJF03XG/GFbC2dYqBWb4wD0xOb69H0NSOgUvYqJDuFSe5ZI+qmSKEFXAMYprwh0Cr1QSzUTWq47NegBkUOh8ZBsG+u6KZmr41V99wslJwWwqAz7vB8qqYLfbEkPg7KJiNs+4vnbc3e0p64zba4Uf5c8yGIzNmc1mtK0s5X3QXF6+YRg6zs5PePHijdzjSd0YY6QoKl48v8Jay+efveDoaIq1ls16Ky4BZXn18pqyzBEhvkZR0Hd7FIH54ogw5uy2A+iK0Tm+9967DPuBzz/9AmtKFosp//N/9V/ld//6X+PN60vOHlwwXyxpu4HPvnjG8+fPuVut6Ic2sahzrM0xmcYog9X2njWNilLbKVlc29xiMovNLMYo6aej8LNtZoU9HJW8p4jF3QfPft9y+eaSo6MjDq6fcGD3HYQCSXFPwlcYrNTy5YFbLLx6bU3KgQiCY0h9cFAHnILwIJ3z/Oqv/Zh/4Xf/Gtc3b9hsdmzXe7p9y3azZrO55Xvf+4CHD5YM/ZbXL3/CbvePWK9XlFXBOCqG3rM8qikrTd00rDdrhqGjKAt5D5ViMplhMyisLDJiYpMrBF9hdYWxEq5qlAIjfQEHrrlS4qr4JX/80gM+bRRNXWOMTfBIsXbs9jv2bZu2QTXOOZqmBiJuHCnrUg4kJTZCrSqMXjCbzsmygi+++jO0GbGZJsuqtI029H1PcsCmRFmIzjOdNum/iYyjqB8OsN7r6yvqukQpZNviNdaK5F+lg/IglY1hxOYRm4W0wYJh9KkgIgWEVGhj8F74KNZqYjTcre4Yx4E8LymLWpKqjGJ4dY0PgaqZsFu9JkQ4WsyOVAHmAAEAAElEQVQpSwnTUESs0elwHQAYx5HT03M2mzUvX7zm4uIiKd3k7zS6gX4QaWtdVeRZhnMD2/0ONNyuX9BUC6wVlYHzoniryhlRBa6vV7S7LTrWBF8BAa0rxtHjesf6Zsvqdk1VwtF8yfJ4gTbgxp6u61hvVpSFpSgzyrKQpF1lyWwlQwpjUbg0FJOXNqYXV6CvokQLAS4v73jzei3cRA+vXjmG1vE7f/UvUNU5y+Wcwh5zffkFZZVzcXGM81Oev3whcPte07WRqjacnM1odytM5tntV+x2a2aznPlswmzSsN87Lk7e51d+9Ju4EZ6/eMXRcYNC4Klqb0RyHaUZxachwrcn6gdVnhKL4WGAdrDSapVQ0sqkw0ouVwFAy1Bc2ikpPlEGH0Y0imDS7izBZ0mDbhlwHP5w7qW9MUSiing34kZRzeV5jlaKPEFfAQ5cqK5rGYeeEDx5WUCdU6kCNzi0VhwfLwhRGHplVSawv6FtO65WK/JcVKZ5UxOVZrW6o2076lpA2mVVoJRsdA6JVbKpl/cMFMvlAq1NGv5LwWnDSBHlMExVALtdy2YrZ0iZyzPV9yOy3dNUVUmeW2JQjEHA8PL9JG3zDG6UraA1shWZ1DnKaKZTiX0P3okiLxgym1FVU7QxjKNGaYPNLGPfk2eWLAsYW1LmDd6LqiMvSoo6T9t0LeoEHTHaS9qo92R5jvctw9ix3Y/yxYVMWAsOdq1Y0+qqggit67hZX1OUsvkefcDmJW0/oK0MXSbTU/oRRDXWACu+852PaNsBa3PeeW/GyXnJ06cLYWKII4J212O1pcxKykXBcjGnrgU6LINq+UwkrVMuJJmZhvR9j2nTdEg3TP8+ynMsQyrhhMmDd/g0U7xZGh7aRJlMesA0Mxc1a0hnhvD75I7RHNS0IVmWDoD1mJocd6+4MUZjs5wC7ocmHs84Orqup2kaSUYzWhh4qkBZUV4olKS67nY0tai2JtMy3RGB66sVXTuIXVFn1HUtEOlg8F7CEBQjRjWoqNhserpWcA8+eGaTBk3EeZ+szgE/CK8phhEQLs2YgqAUYLUiLwx5XjObneJSOraxGXmhKKuIMTk+hGSrkHdCJ46LsGhEtaLQ5EYUx96JYmWf2DIxOkLoMVZsKVkORVbcJ9HNZ6f0fc/D8+/w6ed/gA8tyhpOTs8xylIWA9ZmlHVJ8B37/V7wGTpigEwLqN4m1mkMkc12RVBOmhIz4eLsCdt6g3Mdp2dTgfQvjgnR4kZHUTTCM9QZm02PG0uOl09o2x1Xb+6oKkU9MRwdN0nZVtBUSwZ3x91mw49+9ANCgN2+h+hYnhiOjkpizMgzURHtti1Ga+Hw5Tnz2RRjcobREbzCmPT9BGKQu/9QexxsR+FgN1KH5Y+EYmiUgPzh3rLL4TmOsjFP/wKT7g9J75Rz3wUZzon1RGyI8iykhMQg23OlU3o6gWggaMvoNfuNZ3TgvcY7GWaxldfVuwFUS4gjSpEGByN97zjwYBRtusfln7tuwLtIWeR4n2MLzXq1Yd/uCH6k61uOj844PT3H+wJtouCgxp4sD8yms1TvpM2/7xnjiLUlZdGIAsSDipYyh2DTEvgAbg8j1kQiPZGWiNRxRhtC6DmcEH1aKB1lFtQSmxvWmw2Hj20YXeLcItxEJQpNpQ3apBAVfFKfeELoMDpZJ3Ugy2WgdHRc8L0fvMPd7Zq+A4KhKkqausE7jfcyrFFIXWnRGFPQD3uaScnqZofLJPVdgnlG6omEbeSZYmgjZVExnzUQI++//z4xRrabjrKY8ubllmh6mmlB9FCXp/T7ks/evGDf3vKdj4/54s0rCRiZPcQWmmbqKfMly9kTnn3zBZP6iLp8zdHSsDxqOF5MKTJNJKOZNITomE5rLt9cM50U5GXOdGrY7Qb6oaMsM6aThrqakBmDyXPyrMI7SV3UJqBiuiu0QzHHqDlKW3xQbLaGP/mjb3j+vMOYx8znBfP5hJOTIzkRtTRrb4fn6ZlPoH43jrgg570EkYys7/Zs9y02U8gDv8OYDGsyqiIjzw+qV8XB5nWwE5rcJEC/qPWtVVgTqcpCFoCmQnQMEZQ4MSBiTUZuTArsgOAHFA5rwA0GFWTwkFkH7BnHDWUt1snptCHLDOPQc7u6ZbXaMowD00lNUYiKHO1R0aO0/LnGaupJQZFnjGMv7zP+bWBNU6NURtu3cr7ojKbOcMFxSIuWpVpkHKUu6vvIm9d3XL65lYFylRO9ZX23x1jhm1ubcXtzwzi6dP8b4Ql2A8ZqnGsxJjA6TVUXnJ+eMQ6evhtp9yNFnnFyOiezGd6Bpubu9pqhW2EzRddvOT6dE+LIan3J2dlJEgAYtptOMChjYHV3k1xfUot7Hzg/P6YfBp49e8HxSUndLFBKwvaUEuWocNQd3pdoKnILy/kFbsx49uyGL75YMzhZvNus5uLhO0Rl8FEQUA/OHrBYHrNYLnjw4IKzkyN2qw1KQ1ZaXr56xhdffElVlsxnU45PTkQwEALHp8d87wcfs9mvEQ6rBArJ4CejqWVBG5IbIYpsVe6NIFLvQ//RdxLgMDovQ2bv0hLHJUtoTExg6R20VoTRiwrN6PtgS5vnlFUN5qCGi/fOGa3l7/3ZZ5/xd/6f/wHNRNLuM2vxIfDZpzum84aHF2fEOOJdhyYwhn1yJiV2bMIHxSAjvJCwPzEkRSoJ6XL4oWRxLL2E3IU+LX7TrBClSJzREe+zNF+QoIy3QfbC8ROskKBd6qbgu999zMOHRyyOcvzQJ9xYzmp9R4yG3NbkWYaxW+q54nyYsl9bPv3ZmpfftJRlRa4L9vsdX331NYvFlPl8TkTQY8Ijl7Tgdj/Q9wPOiJhns96nOt7ig2ez2TCZNuSFRSnLODr6vmNnNQ8enjBpZgwt9HuLHwq0yvGjIssa+lG+h94FXr66IssaHlw84H/xr/1r/MW/8Fu8fvWax++8hzY5//V/8/v8v/7O3+HTL75gHBz1RARGzkkfOTqP0pqhl7T6g5hFZhQKEzPGQZSjJjNkRZHCUCO5lRRyk2Xkec5sOmdaTXj/nff5jd/6dY5PjtP9kNHuW/IiF+xUGt6GIEIbHwcO/qFDHw6gklDmQJoPDvS94w5CeoeUSkvLxFhVCaOSVRmLo5n0pUklLorYmFSIHgM8OH0PTcUf//TvcnoRicGSFzKwRknQh8az2qwJccLJyZmIBLYtRRlolqeMo+Pm6kYC8KpGOPpYUXgH6ZXk3kl9vTr8rQ7OpP/hP37pAZ9AAaVoi9GhdBTVjyrk4kGGYsaKZcJosd4qLZN4ndKcrJnz7uPfwNqMTz77fYZ+JC/Aq+Ee1lhVDVmWJR94SKoHyLOCtxbKt6DkGCPb7Zbn37xiuTjh/PwhKpqkjBsE2qgjTV0nxY7CGcizNW8uX+JGx2wxxY0eo3OCUqw2W6LSuG2PGyOzeUVZiG2vaRrW65Hdbk1VVeS5YdN2rDd79m3L++9N+N4P3qHIM7R5ayNTyuDGkA6mSNf1WJuRZQVnZxfc3d1x+eZaZK3LY25ub2XbU1eyrd5sKfMcrTQvX71iuVyw2rxkdKs0VNKyBdee9X6L1oonT05ou5KTo6c01SnrzQ0hDphs5OxiQe8Um/2OIs+TWiuw3m5SoErGfLZIbKqedt9KmILJUWQcL8/lwhlXKBVwTrgxMeqkikqqIA2jE7B8WdQ0k5JmIlyR4+WxcLqUIc8MozGURUNd10ymJSFG3lwpNpdrYlRcvm4pSo9Cc3y0gBgoswUPLiY0TUf0A2VpmDVHTOoZJ8sHtG3LyQ8fs+u/4CCLdT6mrkxUE8GH+6Hq/bAMkRoL2Ftj0NJkpI5OttiyjYIkP0+/UqXhJqk4FUtXsqqk/5MaVmG0JuA4MP8O8fGH4V6IkmYk/xywuVyIxsgl6KIEvBDlYnYHqLtWVKVAVjMtBZG3lnEYqeoMm2ccncwxRgZ7NzfXdF0PwVNXR5SlWO50+pq0kd+vbkr6fk8/tDjvUIjVsawkWdOktDoynQa+cIhityanG/bsdnvKUhLWyqpEmZyhh36AqpxQFkf4TC6Yu7s7xrFHKejaDudbiqKS99g5QhgJmKQ69RANZVlxep7x5MkcopcGzhpiLDFmQogZ/RBppo9wTrhtm/UlKkrATpHlUlwMkb7PCdHTdilhWamk5HEoNaDNBGUUbd/SDVt8GMl9QVlUCc5rsTpjUSzlco8BrQqycs5k+pQsEyVBZh3nJxWz2RFNM2ExP0KpApvVlGVDmU/4T/6zf4d+fMXZ2Qlv3lxRFpAVGVkW0DqjbVuMzqiqhtxammYCRAnykbwijMlRNkMhg2ET04APGUbE9NwKU+btZ3iwFx4+TwiEKCnBMSSVazzMXcWqa7Cgk1qPIPbzEHB+QCHq2YPdUYZ74/1zLoD8iLHCr/PeJzaYSgVc2tqlQ+aQpuyjsOecc/fqA6Wh6zpUlO1glsngV6nIvhWOUdNMpCEZWqqqIM8lSTb4yDgC/pif/+wbfvHZp/RjR14U6fujZTDUC+PVZAV5FjCklFWTYXSGMXnKCBAbQcTch/RsNmvGvkWrgPMj3//hD5nNZwlynLadQeGcVLgS9gREhXcBH0XRZ1KQQgyH+B45y3wKvnn98iXDsGcxr5lOLR99vECrO7b9htXdHU09oSlnLCdPmJYXHM0vWHev6MeB3f4WFcR6YaxYpiOOzX5FWeVS8HQDi9mScRzEkaqcgOltQddGslCw2zpurvaUVUaeadxQsZw/4Ztnr7i9ueSDDz5gu3lN3/c8yB8xnZZo7ZnPjmnqOV988Yz5/Jjr62tOzyuOjpc8PD+lqXNUZ5k0MjBqJiW7/YamzlkUU2azkmEY2W42lGXNbDqlKnOpVcpMVCbOpWIxx+gCoyusyTAxux/uHZhJCrD2rfI/RlGmSgej7lXG6gBlAbQ6TL/TMicldmpj0qIk3Q1uwPnhYFQnIE2YipqQBlwHHiUqYjOL05btXclP/skr/vzPP2O9uyMrcqq0UMhNgVUaa8T2bYyomLTWaGUZvb1XtmmjEz9W3vvgI8FFhqFnvx84uzimKDLyoiDPMqxxuCHn6jIt/ZTBj+C9nCmXL2UgZzPhTIZU0KuDUN7L99AaWYx5L5DuGKV5JXjyXGMz0CYwW0ZOT3OqSpIQhbkHJrOJgRNByb1Z5Xk6T4K4I4zmkMQI4FyPzQosGaPzKeRHDjLvDyFwCqdUGizIkvH4tOLF82u++XqHimLhvb19xWRS03+L6fzkwTmbzYbnz245PjMsjypePNvhXfrLRyPJq33ADYbMaIyOjIPj9evXPHp4xPPnX4raWVmqOqfdV/iY8ejiKUVR8ckvPuX3/7uf8uBizq//xlO6fktRKx4+uCDLPUWhmEwzXj3/mvm05sP3P+TqzTWL+YzlqSYvoBtu2axHULDvd/R9y8nJGahIUWY4P9L3LZnN2Kz2aF1ysjxDq4ztds3R4gjnIjfXayaTYybTI6w+wZpzTPaIo5NHGGUwWUEIGSenOR+8nxPJ79Xi3ktAClGJqiSpXw4KeIK7fyecT8sqhGP55dfP+Ef/6L/jrn2B94HM5lL7G8sHH3+fRw8epPo0JNWQuBRiCIzBp8RIj/cDMTqiF9vgODgRE3gnCijvQXli9PjRSUpmBJAAvRBGfOggCvqjbXsyayhKjbGBPI8slpZ6MqCKyLDvcONAZhXLxQKbS4ib98LsFGeST6o7Ufp5PzIMgX7sgJG231MVNbNpI1wqZe4XwIegqtxmCeFwUE1FmokhBksMGjfGewVVVU4ZR4fVJeu7Fuf2xGgoK03EigrSgs0sMY6ADGyyXBLk89zQD3txQ+xHQrBESt5cvubJ43MKW1JVSx75yDgOZJmlqic4N+C9oyxrdtuB607UwtN5hnNwMTvl2VevMCajLEvu7jaMY2Df7mnbPUfLKdZoXr+6IbMKrEZrR57laJMTwkBMrMyT0yPqZsbtbYeLGq8iOtcslmc8ffohRT3j8y+/4na15fT4grttx/PLT/G+wxD4wccf8i/9zf8x5xcnXN9cEcd3uDg95+BQ+/LzL+6H0yEEQZjYCFHjvMJEsV6P7Z7VzU1aVsvZrFBE71NfAnlmk2pIk1nLbDajmcywWZGcbyJ4UYfaVIU0XJMfBn1vfYwpVIEoNl8XQ2LshnTmCeYgDCMnJyf8y//Kv8zzFy+4u7vFjZHgHMOg+ewXLU8f/zqaEccKxSYt08VSG7WIFzJjU99Omh8ElDb44AjR46KDSBqeI6hOJETKJ+SItRa0oCTAk2lLVmZIVkNalBkJ6+Rwx6ZBvrWW0Y+gPNvdin2bU+xq8kxqWecEkfLVFy8JPk/3Y2B6ZAR7EnvKytyHyB2+j7utBGXM51Oms5phHDg5WRKCZ3W74/Z2c7980yjpy6Jmt92RF4bJUU1RKs4vzri8vGPs3zobd1uHjp7MaKr6nPXdgDEV2mR0Q8fQO0bn+OzTL+kHePedD/lb/8a/wW/+5q/y8puXPH3vfXy0/Af/4X/Mf/B3/i5lVXJ2foHzMfULOtnXxfZalmVC58jAWPjriiwrGXtF2w7s960sA50joMhyk8RQA6EPrHc7bu42mOj4J//kD/jv/vC/5X//v/s/MG2k/h2GIbnk5O71Ae7WG37v936Pb775hq5rUSqgTKQsa6yWoaHWhrwsKItSFlZNQ1XV2MySGUtdVdg8I88yqlyQZhENWuZGWiuxV6vDUpT7hTraEoOjqhf88Ed/lS+f/wnbzZccn8wJPnJz84bt7o5x7JhMZsAUbTNxXChDWc5QasvQ9ylQRTirRmfEIEKncRw5uDtiBJ3YzjEtiJT6pcdz/79J0X2bhPs2lKCsMorqcHEg6q5M/jgpluXF476pCWx2b2i7FfvuJbOF/NoQ9T2PTxJERX2glQxEhnG4l5bHGOh7gcoegi7GcaSqG5QpxDpLZLW6ox9aovIYq9is15KahiUycrt6yd3qkq7rKWvDdCpw2Bevrllv9+zapHDIKjbbLc+eveaD996jLAuev7jj9u6SGAMnp2dYa+k6h/cS1Z3NMtpuR4wOa7NkWTg0ypLouzwSeb1WihADS91IkWtzlHbM5xVFb0BbvA+M/YgbIUaP0SVaFynMRNh2Nzd3bPctbSvA9fliKqyhuqLtrxhGuQylth3RpmM+zzBaUVcV00lFWWWU1RLvJux2W7quhZijtASOaJ1SSYeem7sXlEUDyuO9qD+22z13q5vkTbeEaHn+8poYPOfnR8KjUwoCVNWcL37ximefXfKjX/kOT58+YLvtCUGg5nlu6XuVVFwVp6c1Kk756qvnDMOOMEYuzo/4wfd+i3/8j/+YfgNNPSfXNYvZEScnZ1hrmC8W/IXf/Ov8J3///yhFYtTomJFmbPKiHRpjuFfThXv+mE7DMzngtZafP/CVQjyo5w6qA02MWfqexbSxeas8urfsJsaV0sKr8v7Az/Iy+LMSQx58SPYu7i8Z+ToOjDQkZTBCVVVkuRVQeQyMg1jftRYZ9dB3jGMnAzcXyaym3XU4L4yJo6Ukmw1Dd68yCRGKMkuR8j7J+Fv6YS/P//E5eWlEFWsM/m3vJJu8KArYA1dHeJwBl9LUwLPfwWc/2/Ls2QuMzrB5mbaJAjvWJqI1FNmC6fyc1coBliIX+43ROdPJlNvbDZvNDq1qdpseyztkuQY8aM96G/jZT2/J8hT6Q4co2ByoCUZLcmZEnnWjswSyUW+bPjfy6tULfv6zP+PRo3Nmi5HlyYSqOSGqkr5vmTWnVFVNVTVU5ZzF9IQib6iqCSoFxTbVkh98qMiSgviQ0CkHvijlXGJlRSJhlES4169fs1gs00LFCr8GgMhmtaasKo6XZ9RlzWq9YtI0KGW4ub4myyyLRU1MG1KjlCyS7oMFpCGXZNAUDIF8DmAx1ibQvwyitDL3zdmBOSYJz4rgQNkcm1nRBSYl4Oh6MiIuiH1MK5v+bBns6WTZHd2AHz3KufvnSGlRrHoPMfjESM2TnSMmxahKVlpJ2RudsJNslqdtsabrhFEp9qgGYyzEjLYT8Lw0KSVuBBWnjP2Un/1kzYuXlrr8ER99dMaHH79PWeQoY6jrGTEairLEmPT8INbcQ/L2gbtxzxjRVlR8Y0oWdSM/+ZM/5Sd/+md88eVAXqzIsoxf/dVfpa5lI2htLkqjlCAdQyAk+45KSXn6oDBLaWcxiCXbe89/0/0ef/j7v884lmy3sOuu+OAjC3HPZiNcoKo4ocobNtsdz5+/oo9bMIGqKNm1OyqdsV/vCCHgRofzGVW1ZBwgz0tOTp4wjD3jGGmad/jB9z5GG0OeN0ynS/7u//vv8sknf86DszPqesJqtec//Y9+n8Vc8fF3HqLwdP2Ghw8fMpsXOBc4Oin56ssvaJrv8t3vfMxmfUlTVSwfH1FUBudXvHp9SWCk7Xfs2x0nJyfyDheG0fVstxvyLKfvxAp4lu7tzWbDYj7De7i9XTGdTJk0BVqlOyJAGD3aCABfJ2s5gArp+Qe0zmSobUTlEPH3YVnSvaUGOin4lJKz0OQyTItKljY+WZ0VQXAlKgUsxTKd9ym5UYMbU6qvyohhzrPPr3DDY77/nQ+pZwUffvQ+88UMY8XWhY+ypTcyGFMKsUT6IJt0f1igRhkeB+Sei5G+G/iv/qv/mi+//AIX5oz7gN/A48dPOL84SbWYDH6zPG3Rtehrs0wGpCH6dI4K9QyVbDo+pCWwDFGM0Qyjox/E8v73/97fZ7dZc3w8hzhyfBYo/qkMm424wdHUkl6p0h3pvQz5jTIoKzYekOVGU1f03f7eHkRUdG2fFqTmHosSA2RGEirdGIho+k4aotWt4/ryjvOLI/a7nul0SgyR5y8uCbGnqguG3uFcZLdb0/V7FvOGMDquL7fkVri8yjiqKhfOYJThg1GWogocLWdMm5wsCzx6Mmc+b8ROPRh2a00zXXB7e8uf/fSPGcaeSZOxWW149tXXHJ9lnJ8eM5kUuFGYm2VRcHFR48YrTh98wJsXrylyjWbkYOsbgti0i0KYT845jo+PGQbHet2z33fMpxXHy+W97a7IMzK7lGbPOSIztHkX5y7oQslmqLncOopqLtzcIGdxlheyCFJvQ2KUj/f33egHejcIRkVbQnCMQ8s4DnTtnr7rOD0+xWSWy6vX/OEf/D6Xl2/wfqSsclFKR3j86BHf+c7HMtiNCqXTMiuK2+LgBNBa1BU++PsGUFBEqaDRcodJiejkl6V6T5YqMkT20ePGTgYHXvH7//gP+IPf/wPOT49RJqLUQDMZ+cGPlpRloO3294qmLM/xUSbjzoNyGuc6+mGbUAoTIgEfJbChHwe22zuGYcfZ6QlTNSFEc6+U8uEw4oGYvnYfQmLQlnz0nce8ennFzfWeEDRFUQp/c99hM1guFkwnE774/EvWmxalFVmW7vExst2Ju6goFWWpmcxKptOS6bRgNp0QwxSjc148v2O32/L+e+eEsOfq6g3DIH1DWZQoMh49fkDVFHz+5S/QSlwcq7stXefuAwJfPH9D1wXyLEJ0uDGyGfdst1ve/+CBKCczTWY0dVmQ2Zy2ayW5M7Nk2YSqnHF6fEZmYLu+Yxw1zkut/fDpIz766Ec4r3jx6gXKwrsfvMNseoQbAypTRG+Jfctf+u3f4N0np/zZn39KUVa8/97794t9peN9Pe98SJZz4TzLx6DBm/vBVkh2RnFXSF8rKdFR7I7CiMA5GeyMbuTm5obZfElZlghbMU/P6sF18Xb5pKK6t/uqpAaMaekUEZQQPqCMToxmoYU/ffoUrTUhCPMseu7Za0RPZnIyo2m7N7y+/GP8sIUo9nIJJTvcJcK41Ebsx0opsmjF3hvEtntQ3B1UITJEOYQKylcq00tN9Eru2Pv0+pA4gCaFVby9A8ZRhqtDP3Jzs0brAfX+Q1QcWCzm6DRMPzs/4vNPb3j+9SVDB/XcUFYGraFvc3FCWIXNcowZUXpA6yw5gQbu7lYcHS3JbEU/OA5YGZBnC0jLaqibjMVyxtn5lM12Q5YLRqaoamIQnqCOI1UxoesdVk9QuqDtOwYfGVygHwOXt2s+eOcj/va/9W/xg+98h5fP3/DoyTvs9iP//t/59/nJn/05H338MUPfcX13x2w2o6xLuvROKC3LvLZtUUpzfHKEUoq7u1sgstvt2e48u/1I1/epjpEeoR+lr1TGgo5oYzExUGaWp08ecnV5x83NNdNmSkS4nUprVDCJJRn52c9/zj/4h/+Q7XaNGztQiaeu87SgF+vyoX72IUi/nDAPAFqZhGqzKXDGopWhqgUJYq0gJGShWzCbTTk+Pubk6IyqLFEEXIhU1Ywf/eCf4Q//6Jq27RPWQbBqPuHoxKkmHGuioTQnjKFlUtfUVUl5Ia5OjRYrvy559fKFvI+hILMFWgsuRNxJHmsKftkfv/yIUCnxPx9UGkq80VkmAzoS8PltIogUrWJllA8iakVkz6urn2JMpKhAOFYaQ0FRpGI1pq11Kr6iDwIJ1RBS1HYpqRgSKuA8l1drXry6paz2lHXgeLlkviyIUZQF3zz/mq+//pof/+qvUTepwbWWsc/4xSfPCCHjO9+VJmo2bei7jugVZ6dL8iznzeVrbq/XrI431HUhD7uKbHYr8iJHm4lMp4Mk1Y1DpOtlWtx3vcjSvce7QNfvUSqyPJ7TNCXODegoKsHD92692lHkDdM8l1ALkzMOI5dX12x2e5SFgONuvcVmOTFEtvsOhabICqIPjL0jFrDd7XDjgE2gaZO84lUlCblnpxmLeYYfe4ZOOCZaBWJwdO2O9fqWEAOTZsJpOgCU0rRtR9ttmDQz3ly94e72lqIs2O033K5uqasJ1lZ8/cUzfAvvvvsen332BdfXN8zmc44/vuCf/u3fYLNZ43zPJ7/4hKGvOTl9ih/vILokpc2w5pjjxQVlseDN647prCaEHWNQ3N5tmU9nRBdZzGYsFjNOz45RBLp+w6MHH5NntRSTMWAUmGhABWFFagshKTKMflv8oYjY5KlX6WL0Ym36VvLNYeimdES89zllUTGOQ+JhiWLJjR2BMW2N08UUBHB/YFjIMyLFiGxwwRjubatuHDFaS/pTjBLJzYEbJgymcRxp2w7SQNZmGSpKAvaBX6QUFEVB8DIsN9ome7uWLbox6d2SpOyyrMjzDOdGbm+FRbDbr7GZhD9ERqyRIJdDxSxnYSrek+Ln9atrsrykaeYocrq25u5mzi8+WXF3U/Lg/AN++CvfYzJrKCuBdWdFidEGa7K39pIDRB5hywQfEu9QMQxeYNxxxPetDLK0Ybff8J//g/+Y7W7k9OwUay3f//53aSYztBZbnUp24hAS20+Lik1pI0rLIOnBRXHEZgN5YXHDwNWbU/6Zv/hbzKeS7JtZ4V0dBljOpblxFNh3SIW3sunicoeUO3ko4r2aTaXchXivonMpbOLo6JiuG1hvtzJUnM05Wi5xTpJ088yynM9RSkJCvItkRmzlIcpzPrR7opdh8+AcRSFQ72hS13NYSJgC0Fgjl3OWWbw3SV0qhZfJDP3QpULLs1rdMqkbilimOwNAmF5E4fYcLs0QHFme4QfQaYOt0lAxXR8cwNUR2fIZY1GHrXRiv/lxkM+OKE29ilRVCSiGwbFZrcnyjKrKybKcuq6ERdN7ogpM5w0qnGKzJcpMyLMTrFlg7YL3369kS5yA4GJlGO+tjvetVLL+v53ky/9sJgzYA0MzVa30fctuv2e7a3lxeYUqCoYYGbuei/mC2XwpFqnMJqWiEu7U4fdIVlJ4++91+vq89/LMIoO/v/a7v8s/+zv/nAzmhoD3A8fLnK5/yc9+9l9yc/uCi4uGbduCKvnmxS2YnrqpaPVAUdYok5GbnK4TRt7x8pQnTz5kuXhIUy0oi1qs38pC0KA0ktYmQ8bFfM6PfvA9bBb5yZ/+hNvbFfu9J/aau+MVKu748P1HzBdzuu5WFCkm4/HTCf3+mieP3qXbrbFa0ic1I1FHOrejbXfUTYXuxTGwXC5wo+fmbsVut6M8Kjg+WiZtY8QozWI2F06gg+gMVsngQRZagXFoISl3TCEptdYWKGXuv+8KQ6bl7DM6wb+VIWhR9oUQhaOnFX3fE2JgHAWUv5wvUlgKjM6m4s+9VWmmAaLHyxZfzbB2QV4tUTrH6BmRCmMrHjzMpRZTCZsRhIWFEU5p9CNK+eTIQBSE2qIzqevKlE6qtQy4DoDru7tb/t4/+M95+eolSsN6t2EcRhbzBT/8lR+l4XJIVladVEQkbIjDhYQsiLKMEHu5fO+0Eq7e4T0PPty/G87LkPRHP/4NXr96wdD3+OC4vt3w1RcZP/jBd2mHK9y4x9gepT06hTqE++ZPBs/tfmRzt6PddKA8WS53ofdi+TI23qfWj86z33RMminW5vRdIETP6JzY1Lzm6mqFd5a8yNhs1uy2DjdAPS+IQdG1I13v2Hd73v/gTNTnLjKbGwmnySradkdkpCzlmbKZQamD4g4uzhvms0o4yCXYLBCKyGxmGNwbTgr47eX77HctXTtS5RXNVBFoKYqCusrpVSCzBk2kqSw+Axeec/7Is20DxsrSqqqEGysgeFnYeBfpug7vA9ZY+rTgH8YBqzTb/Zq+d6zXW5bLB9zeBj77ZIO2X7PafoXQJTTLozMWR6dc3VzjgihEDsPMpinJi4zlYkmTeL51mTGf1zQTCUZ48fwbWWaVGX/2pz/h9uaG87MTnr7zlLwomE4bHl48YrdrGcZBej8lPO26rrF5eb+8FczE2/tIp4WU0kCMDGMaqifMSvAxMQPl7j8ox9+GqkVc8GlI7jHRiLU2wjiMvPPeeyil2a438t44WK/h01/s+e3f/piTk1OUXjO4W9wYCKNiGFpR0McRDTTVBGtlUTy6wDA6fvH5l9zd7YgIy3S9ec56veXJg8dU9fTeAXXPOEvKe2sl+bKsCoZxZNe2TOaa2XTCbjfgXc9m5ykKUYptd3tQFnHmRLQSlVnbDRgRyiRFkCUGz9FRwXe++5SLsxNuby8Z+8CLZy8prOLRoyk+tjx+MhFFe9Dc3uy4vr6h66/JyykXD5bkecHr12+YzqbUteHqzZqhj+y3AT9adp1HaUddFTSTjLbf8+UXr3j06AhtDMfHR7zzTsXt7S3eN3T9CFExm57QlMcQDG27ph88AVjMG+bHcx49ecLJ8YJd6zjuF3x09oCAZug90UdyG7m9WvOv/Et/g1/78ff47LMvefedpxiTc3l1wy8++3OePfuKtt2z2W4YRof3gl8JXovuOnI/hMiyIolWRpRyWKvS91RcARKKlFPYkrKqOT054ek77zCdTqhr6S2DzVLPpjhUSKjI0LepfwoJ5aAS6zUtApO1VWkjfDBr0tA6KeLgW0M6CavT9iBmSBdE1KgYmeVHoL7H69ctXbdHwikCaCWp6YdhjZZUVGEwS8CHVlIHk4JuSC6HkHA8B4fHoZY6oF6kDrTYQrxW1ooYyKTlVewCZWmISoassqTwjK7l5mZDWRjmi5o8l6H06emSsweO65stLkSuL2W2YIxB0aGVLI+LvGQcBDNR5FVCfoy0u5bPP3/G9fW1BHmGkNwOYoeVRa6cO33f8/r1S04valwYmC1rHj89Zzo94vZ6x24TUaHEBYu1FSqztH3P4AZ6L9ZsW9R8+P7H/Nv/m7/N9z/+iNcv3/D4yVN2ref/8u/+e7RDx1/4C7/JMPas1iua+ZS8KMgym5LYRVXvo2O33bHfdaIajZ7ZtMH5gHMD49DhZctyf58KE09JEBsSiEIMDCHgPOTbniLP7+uNw3kZAmn5qZLyOt73MxcPTjk/O0Jb6U0mTU1wI7v9SpJ3vWIYR8licHC36tlsnAzSIaU2B0xMDHulOCRDi+oaVBA15ayZ8O677/E3/sbf4NHDR8JU1obHFz/gy9mfstr9jNHfMPRbYogiCBkjw+AwWURph2Zk3X5OjD35wwsyk6MxWJVBNFJPqhaUF65uqMlskbBI3CvG9fj/Bwy+LM+w1qWNJ5BKZOec/AfxnrDEgeNyGPYd4pElwTH955DUIcJYkWlmvP/JyEEKe9g8SPN4mNQe5MiHmGQXFNc3a7K85PR4wdlpTmFk+3y3vuXy8g2TyYS+H5jNZMvedwKmXS6X9KPj9es3LJcncjivb5hOFkwmFaMbWCyn1PWH5LnFB3j8+ANJlLUZddlwt+4Yhp6TsxOMgZevnvPNy685PT3h8YNHaCXNsa4s5xcTlIZhaBMcV7YuooxUkhjaFFJsDANdJ9H08jEWNHWODyPGGhbLJTYzlHkuVukgVuSiKOi6ntvbO2KExWIBKqKUl+1/ZtBBcXJcU+YXKB0Y+4G+l0O2Ki2zacNkWtEPPd3Q0TQ1bbfh9evXMu0/EovuZrvh7nbF4EaG7SDbYISXUeSWH//4x+R2ycnyHS6On2AyTVVXmEwgxifH5/jQsmvX5MUpVi3Z7Xr5zPuRly9XvHy15eHFglf7r4hEptNjXr/aMw45MdQ8efwdfvBxQ54XbHc9L1+8YdJMOTmecHr6iDYBnHWURMPgJE0KI9tck+C0Km1jVVRok6F1hjEZIYrVmqiwprhXQMnl4SClXnbdhqpsCH6UDZI19xuiA4hZOHsZVqXUv5Ag0pkixBGLJnjZZIQYSLku5ClhjyhWR+cdaJOGUZLS07aSupVluaiSEItIhWxnjdGUZZGGY8IkOihduq4jRrEyWiuqUa0N0+k0NUKOvh/47PNnXF1f41ygmRhuVzecnhzx3rsfoYxC6zy9xolzgCeaDpNX5PWCvquo1QPK+ozF7Annp0d8/wdLNDnaGkl9NOmgUKQQHxn6aMQeI4ENkhapjUJbwI8Ya7HF4ZdqOtvRtnteXL7BuZF3P/gB1zc3FGXBdDpleXxGniVocjqytLbYBO4+8BfFckpaIgbOzy/44a/8qiiv/EiMA7c3iiKrKO0EPwSc9+mkG4molPaXmIppkCczIE2IEe8PIRbyddyHS3g5F70PVFVF0zTs93u0FktCUYiSl2RXtcay2axpdSs8s7zg0cMnFHmZFNIGY3Ksqdhs78hsRq4mVFUp6XsKAcvHw+WbFi/B0fZ7QNhx0vyE9PxaMDkRJ7BkPC7sGQJkUdJ1D8+EhGjIENUosY86N9D126QqSltmJCHapM9B0k3F8uDjtwpNZOGglUEZkeIbFLau0/c6sl6tGQf5O+23Wzbrkfl8ymKxkIGMKUAdo/UFZfGQSEM/avYtjA76boMPW3QaIgv3LZLlSlhNmQygizyXbbXJMDbDZjrZyhQmiFRfo3jz+o3cnSbyB3/4B1w8uOCf/u3f4n/6+H/Ger25h2aLhd+k90i2fs47lBeWZ11PhAETpYg5cHxCSJt7k7bfOqIiFLxNDNcxDQKBqjrhnXfg2bN/zNPHP+TyVUcIJfP5Q/LSs1geMZ8umc3mjH7k4uIRVbng+OgBZdaQZzUhKIKXcymMMqB2obtffMnSBKaLyMN3N/Rd5J/6rQdstzNurrdUxYTJVDGdR1AjRaHJsvK+BsmtwjDi/CuOzxReKawNjGPPZNIADfPFJKnFVEoeTjadzNJ1PTG8tTJttmtym7Pd7jg5PuH89AFFXlGUBTFAUVYYlbHbrZjUUwHBTybEKO+2D5FxGNPw1uITl7hLymZBlxwS0xUmWJQV90BEGtRIjws7MiT8QRGISiW3gwwGQzSEmDO6JYEFJptDmDDuDYMTd0PAYcxOarVMVPlGS/iPNpo8N2QGslygzocQHB+RtPGEh2j3a7a7LW2755Of/4wQPX/lr/5VFkdzfvdv/C6vXr1MqX4SaFFVDccnp9KwHRQLEQk9UFKbxeDJrPz/pHrOBzgkcktReGgklTy8pIFhCAQCD58+lsYvBAm3Ch5DILeK7foFr9/8Y2J4DvSMQe5OlbAwIAzB7WZg6BzWWEIcqOpMFmNBBvJd31GWEgaw2w2Mg2ZHpChgvZHFhRsHYuzZbCx5XuB1Rtfu8V4zdBE3WK5fjxgr4WxFrdjve559dcfDR1MmUyMNe1axXu8ZnGIYOrSJNE1NkVsyqzlaNpycTjleNpR5Rt8N9K2nLBpsodhsVrTdjqKsmeUZdZlTVcei6sex2UhKeN/1SUUq96TSgRC3XK++IAZDYM/tzS2nJ2esVrfs9wN5PjCfzZjPFuz3LavV+r7md+mcGccRtMEWJcPg2O096+2O25sF9eID2hZad8tkMeU73/s+ZTHjm5eXZNWUXAuDdRzE4rrrWm5WN7x6/YKx7/DOk1vDfFZxfn5MVRT88//8X+Ps7Jy7uxU6Rva7HUrBs6++uQ8e8F7e68O2RQbMklZ8WNK68WD5M9jcykghSBppVJK0ulyeMJvNOGxmDqnlMUry56FP0drcc8QOoteQhhAhSPCB0oonT5/i/9KI8yTm1UjwI4SB+dQyuhVXV7/g5vbPsHpNzGQZb4xgK+SdNuKeGHuKqLl69oJnzy7pB4RrVQpb+NnXbyhsydOnEoRoTUaMinF0qQZV+JQuHKKnrCJP31mQ55rZbMZuN7LfeiAjeMc3L57dO6La/UCMlr535Fkkpv4LFSnynLLM8X7Pfr/j7m7N2Hv2mx3t3rO6HWiaks12RdXI2ToMO8Yx8ODhCSenEz797BPK2qOMYbXesm/3GJ3TdSO7rWO16ml3giJRGMZ+5K7b433GbFkzDFuefXVNUWl++7d+le99+D7fPH9G75QMB1tHVS4Jg2Gz3omwwmjOThbUk4ZqUuPjSNtuqfIZTx4+JGJZty1ZSlzetxv++j/3l/krf+k3+MXPP+G999+n6wP/8L/8h/wX/8XfY3BbbKaoa8ELuaAIoeDTXzyj6zxR27cKaaJY+dIi6ex0StNkONfeC1yUMoz9IB4TH7i6vOWjj77Lv/6v/y3KYoK1kuIMJqm7Fbvtjt/7r/8hz59/c+86ErHBwcEg/cjQi1L3wNWH+FYJlefkNr8PsrTGUpYlZVWKYrcsqKqSSTMjNzkERVk8IM8fsdt9TQwdACGln+tMJ4W29PmZOWCMEt/520rTtLBVSpLNv61EPNg7URGT3j0Z8KQls1bUk5wYPGVRpP7ZS19ipDaGyOgCo4tcXt0x9pGi1Fxc3FI3FfPlnBgH2nZP6APeiVKtzPO02LMSTGEKJpMJjx6fonUkeMVnX3wlXMp+EIZwrsn0IfhMxB6TSU1RamzmGEfHcrG4F03d3twxOo3WBc5p8mKC0jltv2MYewYnTOeqnvHe0w/5t//2/5YP333M69eveff997i9a/m//d//Hzx78ZyLizOeffO1iB7GMS0k5FycTqU23m7XRB+5OD9ldbdNvaOlGzp2u46hl7NHgiOl3/UxJlUqvG2KJFQDpfBRse9H5oVJ3FCPLPYPqtEkzlCaPCsYhpHTkyW/9usfQxzpXYt3jkljyLOcYVD4IAxPpTU+eFxwvHk18MnP7xi9Jiqdzt6IOdQhKnB8MqWpBNc2Oke73bO627DdbfnpT/+M09Njzv7Fv4lVshDM7JzZ9CHXd5/go6eZNFy9uUIbCZn03tNu9lxcPKDdbyEKkmEcOwgBoyzR+Ps6Z+glVTuzspzftRsOlvMDO3D0Nb/sj19ewXf//skXHlLTeThUDj8nNiojQPv7YaAMMkIQv4vSkr4C6lsScn3/+xzsv8Ike9vIGW1xo6fdb4n4lBglqZunp2ccHV1zfb3iF7/4nLo2zKYTSa3ygceP3kmR8Jlc+Hqk3Q88fHjB46eP8DGQWbEB1lXO8kiaptX6mrIsUMoxmZUSrKAtWZYz9D2HNOGqtDx8cMzoR5SW7dfZyQnT6YQ8F8ivQixhm+0du+2e3X5Dlmnm85mEHBiTgMGR7WbPmzc3kuLmwHtpxvLMEBAY5m7fkeeapq5gOqGq8gTZDwxjByoyX0xls5gOVqXFEtD1vfD0rMGakqoqODk64fb2Tv5uaYMotqGMqrQyMGkdRd5IOMjJO7gh0A8t7747Zxi3jK5lPj1JHAeZeMcIbuiF92P3mFzRDiviOKDIqcpzNhvFV1+vmMwijx4cM7gz1tsSFxZ8+N5T3ntqOD15yOA6QhxT+lGgqSYUZYHNMnwM3LY9L16+4ptnivOTkr/8l39M8CVvrl6L7NsYNusNIUgim0jJD/ByjQ4yfNFKtk3BB2EBEWX4kCwbKkrGUV4VtJ2wIoIbWK2vJLUyKxLeT8uiK8J98muyuo9ji/cjRWkpjMG5HqWlAbeZpLsdKseYDtWIDK1dCj0ATQgjCiiy7L659d5zfX1N8BB8ZOg7nOs5P5fEz4OCTOT9QJQibRydBBKU5f0FrPVBuehp25Hn37xBG0NRVZR1wWqzwftLTk4vmE0sWV4QnJYk2hDJS4NzOX6cURbnoM/pxpr1q8jX3+zFOj58IZbJTKTXQ2I4dkOPHx0EL/JrA2UlrChrJM0vLzKqssBkljzLKPISpTWfffYpp6enNHXN7WrNowfnnJ6dysWd2ILejQyJ8ylJpEbsCCFQ2Rpt5GvQOhB62TgG7yTi3XsiATeOeDeyM9J4fOeDd6mrQjZIUThSYrg7PAhSrKBAxZi4XLJpQpGA84mhEuWfZSAm7/Dx8Ql937PZbCSAB5PUM5HoJDVzmmV4P7Ja33J2di6DYyvqEO/lgnRjD9FIg2QU7TAQOoe25n57GlNSZ1AQvNjrQhQLk7gpDhY7S+yNDCUSQ2++qEWd6Ec08msknNpz4C0Jh85jrSgzhXkiIHURQEpjKsm+h++buh9eo0XyHSP3ygytoe06Rueoqgqj5YwliCKo7TuauibPjUCwlUWrBzy/LPjk8ytu7p7TtWLF806GcnImyDbdakWWWSbTmuOjGdNpw+gCd7crmumUtu344utvaNsOhUC0c2to6pKmrrHa8N677/KX/uJfZHAjmc2JKvDq5RuyTIrqrLBkxqRAkEPPKs9IiD4xVzMi6j7V9GBT3my3dH1P13e4pJrz3gkbZ2iTPVkTPWglzdLx0ZzTk6ccL1coVTOf1WSm4OMPvsfiaMrJ6SOIOcfHp0ynU8qyJniTVICB3gu7RRYW4/2wR0JU1L2KLcRA9I6uW1FVNc3EcrSY8dH7D6XpVHv6YQ8xY+hHQgySFBgceW6wueNm9SXWFBSV4+r6FaenZ6xWK4ZBlmWzmYCvu65jvV7jvegXQwhvhxPApGkY3cC+3aLNCT4MKVRLvv59O0BYo6IUaN4p+rtNUr+JOleaqwijKEtFLZGYSz5itb4fjsRo8QNSjHoPKjBfTOQc8mNix40yLEvKohBkqPLqNdyuB5p5SedGfvbJH9DuOsYgbNdh6PAMokoKyLDRHYpoQ12XTCcV00lJ09RMJhOc8xRFRVFU1E3FdrPi4YMzHj16yOhGYhCg/9D1bNdrFIbZbCYDd97yYm9vrlFaYbVNCfXqXh2FfDmgYDqd3iNVSCyocLgWlVi17u2QKajrYOeKSjhRggiJaWGSMzpFXT/iwYXn1euOcfzmrQJkDPdb8jy3lGVBXTXEEMiyJvHCDOMgqsMqb8iynMvXL+hGR9Ms8MHz5uo6LVSEp3l3d0denjOZTFjfOfa7kd3G0Xea4MWy6ZzwYKMqaJqau9uWT39xxaSBv/KXfp13njzmy6+/oh9ahrElRM+kmSTFmqcqM06WU2IY6VqP0Rl3my11U2Ms1E1JURfYdEZIeEBHVTaMXlA319ertJj0LOdTyDOGsSPPLbt9T1lOmM0bmknB3d2K9WYvKdaTBdYIv64fZHF9tDzi9naF83B1dY1WmjeXGx49eofNZs9qk+PcjN5lbG42gOHdd5/w8fc+Jka4vr1jsSh4PL1gu9/gxk4C2/CiLE1qEqsiYXBUZcFiPpc/e77gw/ee8NWzl9ze3vHOk8fkRXY/KNFa412QBex9J6K+dc8Klwz/VpkfEc6iilLfKq1QmQQs9X3Pfi8J6yG8rb+896LiP5y/JoijjHivpj7QSYTRG9ACtE2oBoVRYHNLCAVaaXwIGKYcz2cob1lt/xTULT6MSeUlv59YxQLGGHoneIyqEvWjnJGQZwoVLa8vX2MLzWJxxHx2QnQGNyRnih5BR9abNdutR1MwmzQ4N3B7vaNrPet1y8nxOS4MNI1lcZRxdHLE+cMpd7e7FKohNXfb9lxfrQDF7c2aLFe8erHn8s0vUMEydmJR3G0HdruRn/50ZLGUkLWHjy64ub5ls3XCxswEd4G2bLe3tPue1d2W2+uBbg8qipPJ+4jR4mqJAfoucH215eGjY5RydN2eyzdv+ODp+xzNHjI6zfXtllA44TzvO/b7LcY6jo6W1E1OlssZqnTPOtwymxUU5ZQYwESFGwe69R2/+eMf8S/+7j/Ll59/yePHj2n3A//ZP/jP+MM//H0Wy5qynpLlCu970JZAQddZtL0kr7So2gmoQ7hYPCwoPeMYOV6eYGyg67bkVZYWJpHcaqwteKd/yk/++Oe8ePGCd9/5KC2yxrRIkWf166+/5o/++I+kF0htdZZlWBTGJAbf6Nl3e27vbu5VTrKMkmV6jBLmEbwonuRrVOIE0Jq8KNA64+z0gr/8z/wVHj54iB89dXPBrj2WQbpvpd5NZ9Ch5iVGxhR+cvj6DnXxofe/nyUcFruHd5lDkNjb97vIs/t7QinBLWSZvr9zvN/io0vCCkEVjKOowIITtW7fOV58s8JmO6y1GFNwsFrLgl3s+kZLvVwUoiK4urrBZDLksaag7wasMSwvzrm8vMI5999zTBmjqeuKpik5OZkzKSYpyLKW8BpVEUbh2VbFEmVK2q5n9AHvIniY1DPefe99/va/+W/x8ftPefH8Fe+9/z53q5b/0//53+GLL77i4uE5+90uDYmF/+dDSIFOmoinqgqaqkapQJEXTB/N5HNVisENbHc9+63DGAklIypcCHTjgPMeq2Xw60Ngvd+z74QXHVwgUwE1pEG1T0vxIPdxTC7QSKQsy4Qrm0sqL5Gi0jhn0TokB4rc/cMgz3mey9JyNi9QdiMc6+SWSU9FwjpoyjLnaFkSydMiyLC+3fH5L77m9nbD1988Y7PZsFwsReFscs4vnvLVi4LCTGkaw12+ZrvdUhQVk8mE27tbttstwTuOlzOc62VZoCIhduzakcGN+BjJjU3cXiuD9ExcT/0wJEyCxX0bafU/8McvPeCL0RCDSAsljTK9fN8awMmUVhq/qNMUHnWvwBA7hrlX+OmU5BSCTFvlIRAf/jAMaYMrL7Fzjt1ud18E2kzdMwf6fuD6+orRO5rplPk05/rqjiyxVATUmNF1QyrUB0zy0k9TIzCOo0xivdgvj4+OyGwmdjRrmNQ1znu6tj1AE9BKMw4DfStJt5M6JysnzKdTtF5APGd0I5mxeO/SlDtgNCyXE87Ojuh7GaRplRouZCM2m8rl8urlJZtdTz+4e0DwyekiJbRF8qymKiXoxPkBqzNpuPpR1DdRhkmTyYzdbktZ5RAjmZEo68NnICyMY7zfosxIUYptQisNSmDyzjvy4zpx4SJNdcTd8FIKHTR+1Kzueoqsx2bSyHfdDu8NmZlSlgZjA223xhZiS5xOT/j0syuWJ9/j137jtzk6WgjXL9p7xYdWFq00xljZHETZhKq0DQsh4KJEaM+ItMPPuXjwIXc3N/zsF8/54Q8+RGmfNlMR7zsmkwqtCoqiQBktpsgQiV5S2WRhNxJw7LutgGCJCdovKUBGWcZW1A8hOFCe+aJJG4uk2AuiUFDpknLOcwgaNTYxGXTAuRGV3gGb6fv3wqSQGkA+//Q6q8OWAo21OTF6UXEphbGymT5aLglekm7d6Dg5XgiXKF1Uh4L08B4HL5dRFrP7w/AQYiBDPhjGngePTum6nqIqmM4anMvph5bPvviKaX3Jhx98xHLylPPjp9yuL7nbvmaMR3zyacYnn1yx2d+mIB6PtSPDOFLmOUfLBY/feYTC8PLNJcZW/OKzz2T7MvSEcaAqcmyyGfiIpBKn9M4QhF0SyCjziqPlhP/13/pfyvfbe6yCPNPMmupe4TN0PcF7ttsdu/2eu/WKPM/58KPv0CZO0/X1FX/yk58wtB3jIIPz4IMwFhT3qXJWRX7w/e+wnE54752nQJDG9D4OXsgmB6FKuuUIKqZmV4os73xqIkQddy9vj2+Tw7uuo+taskzYIJvtDhUhsxm3tzdkWU5wjrLM2e3X+HAkm7eQzl6j6dwgQOGowEnh5pzD94GsKO4HNCBbuxDDPXMPpHE3ShM1yRoycJDhH4owhRQFKm36DioeOAzVk3o5fUu89/J7KlJyoAIn3yutU5NCkM9UvQ3pkEsIUUGlIq4oq/Rsp++1idhMBsJSdBmUq+n6E/pwBsbg9StUpplk0vQoApm1ErhhDUVeUFcVdV2ymE2ZTCogst91zKYN5XTC1c0N/tkXFI0VvlYaBHXDjpvbV6zuVjx58oDTkwWffPolDx+KOmm7W7Pft1xfr9jvd7T7HXe3t3T7Fuc6xnFP222T1TXStj2/88//NT766LtieYuR1XrNf/j/+Y+4u7lm9IKRyPNCBuQmqUJ0OpMwuFHRd46qzvjd3/0XODl7h7quWE4a+nZDOKlp+4HtruOHP/wx03rO2PaMuxEXRlHaB5/OK1G5+GRBj6lIT3vjVEkIG3A5X1CUOQSHy0YUHVU9oRsyul7Ttr3YqhBGk7WKrhtQSjP0PXnmqOqS8/yU3W7HZrNjvRYFW1HkDMOAcyPOjdR1w2azZ+xHri4vybKMm5tr3nn6FDeOzBcNm+0t87kkIg+jDKCjFtZQZgzRm3vlT+8GBE9SEvDy/EUSuzJIsEwqOB3pdYlAFCWv90HOgiAqhRDFfisNigQKEA2GksGVfPmVY3H0Lt/94fvcrlu++uQzlNVU05qJUaACWjVJRQdNXdLuNsQ4psFywbSpKKoCHQ2T6QyU5u5ug4uBP/7D3+ebb77i4w/e43f+6v8KpTSffv4lZ2cPaOqSqirTkE0aAxm2C195GNJnMgyM/Sipnj7gx4hP4tHj0xOyPGMYRqyN9L3UcG3X8TIpWduuZRh6hr4TJWgIdF0vKjzv7oeuIYpyQymBVR8vjvnORx8xby4o7CPa7oas6On2HVfXN+LucB1VnTNpJpSVJYwjeSGLnGEYMaYkwzKMA23bs9vvQStubt4wnx3RthtpdkOgqhvqqqQfPc++fsPNpaPdgRshhIMyQU6z4DW7jYQ2PH33lHHcMfQ7nn/znAcnZ1ycnrPZbSTwR0kC0tFRQ9veMfR7XB+o65k01FlBUy8wNhDCHpeSM/soQ8rJZHJ/fotacUdVTVitN4QQGXrPpGnS0K6nKEqqWmyrm82eA6e3qgrGwbFabchyeR7LMmcybYjAl188S5a2KVU15eamZbtaYooH3K5aIo6z01M+eP99Ts9P2e1l2bCY5disQmeW4+Upu92Krl0n9XQagsdIDjRVznJ+zDAGXr16ze/81b/M3c01GsW77zxlvV7xRz/5I559/SWbzS3ejfTp+ZHTRqfPQhR0NhP1VRglZZ5ohOGaBg8+BmyW8eF3vsc/98/+DmXZJJXv2/7HOc+f/fSnvHr9knHspabyPoVYyEBP6xR+ljhQKgrg31hZCBmbozMZEGRZTp4VzJopR/MlmopJ/Q5X15/Th5eMfk9dNeLMUXKHOjdijMGFEZMZ3n//Xfwo3OW8MFy+eQkhZ7fr+eKrZxxttnzwbsXThx/z8PwDnj//iucvP2MIHRGFihn9qiCbTFDBY71jXlkyOjSGqlI0zYJdu2EYWkIMHJ1kzOZLVreO/V6x3uzY7yWF21goqPFDxthJkEfwgkfJC4s2kZsrz93tgFKByzctk1lGjBJyVTcVkEG0VOWMfRbpujalw4P3A87L99lqneqjgTgqdIy8efmGx0+OOX18RpXVaHKOZhNW2y1jt6frAvt9zzDsyavIYrkgyzIZ1ihFVU5YLE9wo6bttwTEyUHwjO2O7378Af+Tv/nXefHNcxbLYwKW3/tH/5DPPv85777/GG082kjt77xC2wxlata7LdHAAUcSg76vZw51OGj60fHZZ1/x4YdPqKoSj9x/WWYxmdQ51WTKyfkZm+3mXuQQ0xDNJyuuNobXb96gFPzgh98nAmVVSEBLCiLTxjIMPV27R+E5PZnfK+JijLIwcmkx6MQZ5ry8K/t9x3q94/Z2RbvvaCYNx8dHklSspsAJLrxG41DK4/z41u6e+olDb695qyjUCgnF+Zao4TDcO+CKDkO+w6LIGpkjVFXJOIoicxzFWrtc1uy7TriXnnS/WrrWs9m0BC9DtywzSSnZ0XcjNoMiF0W6tRqViatEhobydYmy0eJcx6uXV2SZ3Ot5aSlqhc3Fvhw9jAMYIxxG56BpKllGesXnn37N6clDquwcP27Y7Xd0raUqF1hbMoyyoA0uEpxmMT3iww8+4t/8W/8G7zx6xKvnL3jy5D1ubnr+r//uv8eXX34t4Wxtm2YOcj8orUErvPMMo4T3tO0eCJRlTl7kkgae5xRFda+ClrmMPIMqQmlyanLGccQNMnxr25boHXWRk9mMzGgmVcnVq5ci2EhOBJ+GjEoLskUhM5wD+mgY95S5QhmFHxzeu4QTSkIKJ6EZo3LobECbXBTU7r+nP0vLP1Ax0LU7jK7Ic0tE+rT5ouKDj5/ykz/5hDeXr3n5+jXL5VHqvwzTyUO0adBZi48j0/mM1y/eYEzGer1msTyC5IjrhpbZbILHc7vakNuMwY203V444FlG2ymKoqDICwRXE9jvdgzDQJ7nZHnDL/vjlw/ZILvfiqHeJt4cpMaHpk3r5Mc+KPJilAf9oL5IP39InQspCjzdjUnGyb3sPkYZ9g3DQNM091N6efAk0GK361AYmnrCdjdQFDWRjmEYmc1mAvRPDICisCny3TKMI6vViuvraxnwRY8xUFc108lEHnYll/QwSPHXdR2TSUYIh6jugRgVeZZjrDSP0qQHST7KM/peEmhiatCbpqKqarSOFOUhllo2XYCwPmLPfF4wmz/BmIy+69FGDqJDOpIPgdlkidKR7e5Ovpc6S5uGwGq7Icsq9ruBIo+07UBR5kync6xJUnEtzfFuPxCj8HhC7HA+Env5vplsjzE5+13HbrMRiG2WM4wD1zfXaOMpypqoHFVtafs107zBWMVk2uCdQTOhrpc8vPiYrNBkRUbfB1xYcrd21Isn3O0VV+s9XXtN320xSpr/qqoYuo6ryyumsxludGIBMjKAPVgiJJXV0u7XXDw84/jsjJ/+/Oc8eHjMclnRDztW4UqKLqVw40jbi01JHWTUSbV06MlEfqxwURo5P0qTLA5BjXfcP9s+BIyJwMjoJP7dR1H7RfS3Nlai6lJa4fyQEnCDXCYBFIf0UlHIik39oOCR90osYALqlqJWpQvJ3ofaWCuHa1WVRIJY/SSqkXEY2O1alBGVXmaNBKqk50oO+uJ+yAeBfujouo7lcsZkMqFuKjbbDVfXPW7I2Kw9R4uG1d2GwnSsby+5uv0GU1R89mXG168jdjLlaKqYTEoZiCuxb52dnrBYzMnznK7vOT874dXlmjzP+eQXnzBmmqP5Ge++8wSlI1qn7jFCnmeMXccwDGz3A7/47CW32y3OdWQa9m3L6fGSL7/4nK+//IK+27Fv26RULFgsFoQg9hyrIv/g7/+n7PZbfv3Xfwv9/2Xtv54tS9LsPvDnYuujrgydOisrK0t1tUQDDTFNAiAAAtQCVEaCamz+mhmbN77MjNnYzJhhCA6JbgCEaLSsbqDRokRXZWaIDB03rjxqa3efh8/PjWy+Fq9ZVlVG3bjinL19u69vrd8K0NYNm+WSr3zwPlVZMJmWFFlOluWkSUrb9fzRH/8xz5895f6Dh+IUPDwgy9I3LqYgDx5U+NLAUv6cCGHesetkWrbjVsi1qbVCB+i6luVqKYu6TZhMJngXWK2WXF1ecvPmLQCapiZLLUUpDzcfxDHRDwPb7YZu6CmKgjwvKPJ8d5lT11tpsRsLkrQkBtFj+2ss/AixnTWAV8J3+3JraPACQFYxpifxqBAji0FKKMJuYhxjyruodTDXTj3nPTpoeeCPDqVGjNYEvZMDwanYGB2dhDpOgI21clfEU5qO7b0+RO6mHwk+o91OcNyh7jMefPGAItUcvLXA6BCdwobEpPJcyFLyJGc2mUYBUVzN9bbB9QFUyjD2bLdrPJ4PPniHxAayxKClW5qhb/n0Rw/42scfsd1upWRiteF//pX/hQcPH8haEKMMWS4bJqstx8dTDvdLDvZzcYTbhE9//IB/9k/+Ee++8z7WyrBrHEeauua99+6xtz8lSS3aWJT3ZDaRaXpwwqkylqYZ+OKL5yxXK56/fMHXvvour06uuHOkOb/4EXV9TlHe4etf/4TpbE6z6XHdIEiA6Oq9bmbcCdEO/LWDZlcuEuLloaRVL3j6tiNNLWVVyaBQReF+AGtS6laaEecz2F/MREIeBoxJ5bVJkrhJDdeH8RBgtVpFIVP2EGVZUuQTPv/8Pkp1HB4eUlUVbStN8UWRkmUJ/bCOA8NOUAfEdTCNDW4K1KjYbLe4caSqZqRZHndA8T992JkWrn8gvSs7CXHtR10XCVwXDCgRBbUhugITujbj/sOag+OvU8yPefX6JWeXl+wtEm7dPMIH4cgpvRtOGfJyhg6eoZviXEeeppRZSpFJqcF63cjzxBiYVTx7dcp6u6IsUt6+d5vjowU/+OF97t17Cz86nj17whffe8LZ+Slt09LUW8axw9hAUCNNI8Usy6ueq4tanPHIYVbK0Hru3r7Jf/1f/ZexxCy6Mwj80R9/n3/6a79GQJpqkyQl+DHyaQWOTnStKoRvFqKaErxnbOX7vH59wl/6pb9Enr2NXz5luXzIer3h5ORCXBM2kOeZALeNlG7IkCBcA+SFL5owqRZU+QziwDTLCu7duUNdd6xXK9kDjI4nzz2vXjS0NfRdbAHXBpSUmMggOuAGaLYjTx+/5r33Fty+eYtZWTKZlORFxq07N2TY1HXkRcF2c8XQt4wEqvwYvDAZk7yg6zesV0ts5un6Dmuh71rSLKfr+tiKONJ1HU+ePCVNJ6ANYz8QhkBZlPRDR1WVlGVJmmX4EJhOZxRFgWLD65MnEARZkaYF1mqSJGO5vKIsK46PF/igGHsPYc5yWZDmd3l1sQIDb929x3tvv49Csbw8i6+tRylL327Rg8OPmq5ZMnZbglUkSni1wgjMONqf4b3i1cuX/OKf+TMYm7BcnrF/eJPPHjzg1/75rzGGkemkpJzOyVPN3mKGUp7tdkvX9WglGJiyzLGpwhpxTRljhAsa5HUdXE/b15ydL/m1X/vn7O/t8/M/92euXUy74qvz83N+4zd/k6bZMI5yMHaIU5YghTFKaYZYCGWNwbBj4EmBjPOKZuhRRuGd7POKtOCX/tyf5Wd+6qcwdkJV3aVZPoXQ4J2/bvV2Tg68AKfn5zR1yzA4irxiMpnQdg1DH3CDpsgOqSYpi+mEzWbDsxePePTwAev1Gud7lJXI3jhO8CMkJmM+LdlsNiyXV8xmC7wKdKOUBl5dbtjWK+E5W03XDTx9smK1bMWZohO8G+IQeLe/kf2owPS9DGFVILWWNM0xGobRU2/BWIXzI863OHdGVQpKaTqpeO/dnPp4oN6O1HXHZtvL/aYGlBFndZ5ZqiqlSC2r1YqmXnHv1ls09cDV6RVX6zXbeqBpe/p+IC8S7t47FAFBJ+JG9zCdLBi6gabZok1gOtkn9D3d+pJbN475t//WX+fi4gJjU5K85Pd+/1/y4NGn3Lx9IA5sjZwNgsfaVEq90pyi6Hjnnbs4Jy7u4BzBjYxuiFgHSbd5N6D8yDh65nsThlFYreMY5OfvAk1zRtM5Nk0tjvHgr58/IUBwgbKsmE7nmESxf3jIp5/dZ71Zc3BwRFVWZKlw/3wQ7liRWsoqxRj/xrXms8hFjUk8maleY7OCM9x/8JSTk0uWqwvW9ZpJtQBdkBdvUTcP0XaLH310znEdN999aDTK6GuzkLQBcy0AAtFxtnumqOv/vnbx7f4hyPAJx9GNKV3bge6ZTFPaRjGOkjRwoxMziLJoq3FOXr0sTckmgjDabms264Zh8DgHRZFhVEKSpAyDw5pAkibX8WdrUsaxEzSG9eSFoSjFqbfsGynSsm9MTdZaDg+PMcYymczJk4LNuqHpoN5mLOb7JEke0wYdwzDgXODG4S3efes9/o///X/LjVsHvHzxknfefZ/lauT/9f/5e3x+/yFHxweM4xDXCydmj1gepa3BFjZiBVwsTHXYRK7ZYewZ3UDTNKAM3su93vomlk3Jntx5R9/3bLcy9AoosBZlLIaAMSlj39N1Q3T/wZsCPEnN6GgqyRJLmef0XYvGkySSKLN4lDUySBnFZNX3g+yjlCEpNEqNaL07/arre2CX/AEYugG8J001SiV0rQiv88WEt9+5w/Mnr3nx/Dlf+9rX8KOsXVk+5623vs6jJ7/OtllzsD8ltSlNI+kX4dBfUVUF06mU+PRdR2IMA4E8y0hTHfspPNvthovLNQQoikoEV6UwVov4HQvAfpKPn1jg86PG9eLCCLwRQHZVvyFuZI3V0U0g1mIV23CAN1DP69FYjPEgVtndplgWyRA32wN1XYvTahdtHAf6TjL+eV6ilOLy4rUcWIsp+/OCyWRGkWUkaYrWjqqq4qI2MvYj4+C5XF2w2awZ3cjBvvBLbKKZTqbX9fI7x2DXdYQQ2Nvbk8ODUSiK2Li1E0E0TdeyXq9lYcwziYAM/bXAOJ1OSdNYYODkkJskCQQVYZzSvKbi4dQahbFBnDpOnALjKPZ0tJbJ1qDIkhllVbFdrxnHniS1HB7tY3TJ0YHwOCaTGaiBEMZY3ewxdjeB9GRZgdaabbulDcL2qMoSbSF4TWILjo73cL7DGJhUB2TpAUk2Ys0EXMfR/oxJecB8fsCkWkhzaD7H2orUTmOsUeO8YtuO/D//7t/nN//l9yG7T9d0KOCnvv0tvv3Nj9mf5+SpOGC2mzXnZ2ccHu5jtSLPclxQfO/7P+T84pL3P/qA/cUe0+kUZeB3fvd3uHl8g9VqxdnpKfP5XfphA5zhEUcgBBJjRaR1kKoUeZaF66s7eFBa3GwGaU8cowijdge2eKDbgdR3Ti0XYsSVHX/Cx2jcGKMXu5IMmQy5USKQxiYoAkRniFKxgAEtwjZcx8QUIU6+pClox2/aWZVBFmXvA/3YR1eVgKSTJKGLPCprdTykCnPBxpimRKzlId02PWmWcpgeYIwmSxOuhpEym3Dr6ACjM5wXUHTTXjCOPcU05cnTltPXt7DWc3hjwv7+hDyzsuHTMKsqppVAXZ3vmVYlda+ZTz2Tasq9O3cIvme9vMAHx3KzputFjLQ6J8sHDhYl1aSkqDyf3X+O83D7xk1mVcF2teTVyRnPn33BzRsHlNUdvA/MZzMWe3soBcvlknF0HH/7Gyz25nz3d3+Pn/3ZnyMEzWIx4+d++jt859vfgtj0urPh7VrTlssLTk5e8Pr1ay6vLnl9fsbtGzdgF8VQGmlwloO9APBjDFf+WBg5uw1VeCNihehW2wkDzknLJATGwZFlObP5jKHvaNotZVkwjj15Zun6GpsUvD57SZ5nJElCXlpyleJ84OLyjOAVRZ6T5bk4Hbyn7weSdHcNIcLQDtYcwc1am+vNpYruOhChDi3r/q6Fd8fVAxGY5FkQsPHPxNTt4+5OgbIY5OsoDMpIvONN4nHX3LuL8BG5jJEEG+IkMBaXqOvNZTyAKMOmNoRYqPH5Z99jMUtZLEpMIpvFnRPRjw1JoslTxaSckqWGNFHXLaBplpP0jrrveH16zmefP2Zv74CmGXj8+hXjMKC1JbMWi2cxn/O1j77CyckV2lh+/bd+ky+ePiUohc1SEfkVmMRIZCkotM3AFgTjwRrysuCtd+7y3e/+K9p2S1VKXKkqJtw4OuDevdvkucKHUTigcR0a+wEXJAaltCbNC47bOTbVnJy85OOP3sUNlucvvuBq/RnWaG7tf43pZIF3nqGXOMJO1HN+J/AhEaHdTC9utHZRTMIbR18/9PRdAyicswR8LG0ZWa+3vHz5CmMz0iyHYKi3LdNqwugG0jQlzyaU5QRFiA3I4q47PT2j7waUCsznc4zWZFVJU3cURcnt27dwTpxhWZay3dYoldO2AY+hbldUZYFNEyZpCUoKMS6uLsBDWVVkMR7ivGIYhyjwhWsHUlDCldsNKkVA8tFNFIsn4iXufSBJzLVgrrXcOyZotm3BZ59tWRx+RDsGTh/eZzafcnw0kWeG6hm9i0OiEYzGq4AblhibSAlD57FKyrSqIiV4QRKE4HFYHj494Qc//oyua6gyy1/9K7/M2dklRTVhcJ5f+dVfZROHAa9OTtiu16RWcev2IW+9c5eyUoy+QSl4/HDFD5vnOJK4xwNUIHEDz1+95MmTx3zt469DEKeDR8SLrqt5+50b7B9Mmc/2yHKFtQGCHL61VoxhwJCiVUrfCRTcucDlRc2PfvQZj558wXc2KxbVDGuO6TePWK1WdH0reADtWSwqlsslaWKxRp6PSSLDVe9kXWuaLW0zkOdTaYcsMpSKh8Kxp4mtsmU5YTYt+OCDmzRNTb0d2W5GtpteYsRWY7UcltMUylIE5M3Vknp1ib13zHJ1QlBTLl9dkueFRJ3GCYlJuXX0IVrnKJ9webliMsllQBDxMZvNJZeXF+SVYrlakyQtN24U13yo4AaKbIobFefnV2hlqDeNDEBTjbUjZSXokK7r2G42JEnKYj7j4GBB1zqWq1OGoeDwaJ/E5Jy+PidJEvYO92jqwGowrJYFxtzlatOhE1jsz6hmGXW3IVEZaZqIaA8M3tPULW2/wiaBNJW1XIkqAQTyJGF/fx9tUh4+fMZb77zNR1/5gO//8D4HR7d4cXLKP/xH/4SgAmVVERA28uDh9fn6zcKDIeBplxuafuTWrWPSzOOdMLzZnSN6xaCAzLC4ccidt9/m4Rdf8Au/8Iv4iMqxcRjhxhCH3YaPv/ZVDo9KAfnvntPxHDMOUYgL8nedE16wd55hVLSdY/COtul4/vwVz5684l/8/u/xla98yKwomU3vMfinBDLGoWG73V6fH7JMECwHe0ccHNymHxq6rmPoRxQZt27ekkPmqHGuYbtsqY5LlBrJckWaTSNSSIprLi8q8ryiKkp+6pvfYhxH/vE//2eYRKFNiy0gzzX3sn1GV+FGidJuNhvefnuPx1+c0nUaP0LARm4ghCCFOsYo3BhjdgSKxGL0SJIo8jyNztCCYWwYR4vRlnbbc/H6CUrBdDqh6wZSm0PuMVpTVSXjIM+dvEwoK0ViHUkSKNKEmzducvJ6RZIlvL44pd1MGENgXW8Z+pYkS9jfnzP0spcty8m1o6hu5IxXTebk2R6MgdXFJfNJyX/07/87bDdb2n7g4PAm3/vB9/n+D/+A27cP8K4Vbpo1aC/inpyFU8ZgMWhuHd3AY7A2I80SEq3Buxihl8Fu13R4NzCZpeztZWBEhNluBh4/OePyssV7zTAK28sYGHoXRb4YZVWBajKhKCp8HJyM48hy2VA3J8IVD1BUBSAJoeODGQf7FdrEGGs8kryJvO9SXruIp6WcpHzyjfex6RMeP37Foy8e842vLwgB8nxBXhzgWWFs3ON6h7k+l4jgIwUfkrjQSjGOch5+s1fcue7eWGl3z9Lrf7xmHMR8oHXA2pS29qzXPdZCksrXc06cvVoZhlFip2maX5dfaq1Ikohp0hZjRoxNIrNQU2SFnDnHgEmSyDoecX6kaUZCEBdrrjS37xyQpAlKd9f7AGsz7ty+JcPVvuPly1PyLGExnzM6Tdv1eJ9wfOMYYxMRVEUZYxgGiiznw/fe5+/8V3+HO3du8OTpM+699Tbrbc/f+5/+Pn/0vd/nxq0jnOuEyek0pS3jtiQQ1JsYthwrnQxvTEqeJfR9jyfQdh1d3yEMXM0wCHc+eMfYidFKaXFJek9MUTnGfhQIj/NsUovVWrAWykSNJJYjxn3Pjs2e5xlH+we4sEHrhL6TRBVo/BgkhelHjEnJc4s1Bu8cWlnKIkerJTtcyO7EpJUiaI2OJoI0t6SZMHOTBFarGqVGbhwf8OzJS84uTun7HqMMQTu8gjw94OXLM9K85vh4xt7+jLwxbNaaVycXjONA3yvyZMK0mlDmUqr5/JlwL6tJxd7ePmU5oSongIr7nR5jDG3bslwu49615yf9+N/BwReiAr9z0MWpdPzTEJsfQxT1ZIf/pQbdaIff3as+7KZaPePYYbXG6ERaALUosVkqTjulAl0vUT5jDXmekecyvZebWvHeu3fphwEUzKo5iZWm2/OXpySJtG/NZlN56OqermtJrOGtu/cwVhTtrq+p6462SanKaRQ25CKZTEp2pSHSJrpz2ogLS1RZKUIIIY3tc440TVksFizmcsht2q1MpBV457HWXseaFZrEVmiVE+gI9CgVm3mVxpo0OtVSlJKikKHXaFNyuP+WxIlnW+rmkr7foM2Gvl3iXUORL/AM9OMVXb+R6ayRpi+tDWF0uHFA6xSrpjTtSJJOGX1KoUuqyTGL6W2KYhojtIbpdI+PvvKvodBYW8UptnBMdGxZ9n5XzKLpBwUkhMgV+uzxGb/zx59DOiHPCrpGmG2vTs74vX/5RyTW8dPf/DpdvaVtNrhxpKk3zCYTbt++y+Mnz/m13/o9eq/4/uePKbOc+XzG3/hr/zpHR0esNmv2Dha8fPWawwNL3a5ouiu0NuSRNbBtPXXT4JxjUk3Ji+qN+0LF+Lj3+PAGkH9dIhMFvmseBB4fIbYqkisEeu3+1MRpN63axQflvpGWavgSz+VLLq+dOLL7TtZoRu+jEB3Bz/Frj9HuruQHkXioil8kOgDFkaIwibABlArRcSb33na7pW0liuKcYz6fk+cl7yykRXm9XrFcXjKdzJhNdXwQjsyqA2azuTTbDnNevJxwduVJCsXxwZyDw4I8twQ/kNmEaTVhOpmgAyTWMHrF5brh5dmafpA2Q5QmMUBQPHj4lEdPn+OioKqVwqien//pj5lMKzbbnuBHMqP4xicfofA4N7BeL5lMCvIixVrNq1evOT07FZFilDjO4eEhH330IR9/7SN+/bd+i6ZpKLKSaVUxNDUhjFitcDFCIC+wQ6F55+27/OjTH1FvVzx7/oy9vQVHB4dRiIPgxWYuTbnueoCh5C0mKHX9+yi0sLW0RFzUDjGhYLvdsF0vKauSGzducnG+JoSGg4M9uq6RaGc78PrlFWVW8s77tynLXCb8Y89mu6aqJpSTXFpkqxId9PWkdBxHlvWWLGjKWBITQsAhXEiJ6XnQmsTG9jW4jg/vChykoEVLZbyRtUvFTaN3TuIgOytjBOKKu2/H+xCVS2mia0+zWi3j80A2s9Iqu5v2SoPazkUY7YVyF6r4noWddyih6xe03U0ms3f5/PNHVLOM/aMJ49hes5dUAKMDg+rQwWB1Bl5ap7tmCxicB5vm9EPgTz59yKOnz2n7gdt33+Lk9JST15tYCDKSWw3jhv/43/4bJEnK6AOvzk54/OwJNjUS9/TitBWHrmZ04qR4eXrJ2eUSoz1loXnv7dss9g+Yzeecn59RFhMU4ii8eeMGXVNTTUoya2nbBhdC3Pgg5Qs2I8kknrR/sM+zpye8enXC6uqKg2nKydkZHsXB/oTbd97HpjPaRriNzrvoJgkxIuSuz9YhTmtDEDzBtbgVd2ASU+lxjFxeXJAXOfvmQPizo0RXu3bAec+2vogL2EieZvgwMpslVIUB7+nHnu1mQ5okzKZTDvYX1NtWSkqCZz6bMp0c8sUXz9k/2KeaSGNykljOz8+5uDjHuRl7e28xmRQ4P7Jer/Dei8tpUrEo58xmMymkcHLPN21N03UoFZEJu9c2KBKT4AkypUaGJTqK9rtBIbvLPiBu2VyiU9amoBSbOudHP9ow3/uQk7MlTbvhgw/eoSgTxkE22H3fyj5Ca6xWEUQv7KfEGFI7MC0r8klBVZagHOMAw+BJi4Lv/eg+f/LZY9q+R/uRv/iXf5nbt2/ygx8+YDLf5zd++7t891/+AUVZ0nVdHHB6mj5w9fkLruqaX/jZ90gT4UgVRYZOwKHxMeuxuxOr2Yynz5/x0Ve/xhgPDN6P3LxxyMHhlE8+eY80F3cQapBoFxpt5IDnSK6Zt0URCzq0Ye9gRtc3vH51wbMXTzj85CP25ncY/B5JMnDz+IA0TXBuxFhFlsszP3jL2/c+4tXJI5Tq0XGQkRUJwUlx2mQ6Z7O9omt79uZH6JCQJSmgyNKCrtuSpw6rFcGNpEazN5tQtz1eecoqYz7PSDNHYqEqKup1wuX5Cq0GikqR5oG79444Pzvn6uoUaw5xxnJ5dcHlxUiRzlFY6m1NURrBi4SWojhgf5FjUsekeJskycjylMxmGAaqoxvsTe/SDyMvXr7A+8DF5WtG57l5cIMsT0hsKvsThKNZb5ZUVcXbb9+hbQbceAOlxUEzOsfLk1P2Do/I0wndpWK1DihzwLpb0Y2e2UJYfiYxKGvZtAMMPVmSkKaypy+nGam3GC0R764fZG+DpF3mswlGaR598QybWv7cL/5ZfvzpI6azPVZ1w//37/1PnJ6d44JHmyVVJRxVglTUq935Yxce8gHUmrodeO+9QzQ9bdcDiq5znJ111M3IEAaCybBZKY2xAEipGH7EeU+Rl6RpgU5Sbt4+oqrk2e+DoFmuNX6vCSTgdqII165mlMYHI04il3J8Y07bt5xenPH0xXO++v77oDPS9Banpy+otxfR2SbNzTvmsjEWbRKyXJIM49CCGyizBG0Mk1mJtRXTYiIlBcTCNkfc68nGcLU0aFNweXrOyaMv2NZbLi7PcLbGpjV7+1OqypKOCUoJ33hSSpys3vbcvnmDl68uaJuernO0TYsLPS5AVZYkNoEB2qZDac90ltH1Ww4PKm7cPEYbQdpoDXXd8OzpS67qNYk15EXGbFqS7GdcXYmzejqrKIsJt27fJcsyzi5P2WzO6LsV+wdThq5jUk0pqhnLVaBuM/pg6fqBbuwpSs3+QUmSedLEYKzianVJkhVsNyNox9Gtd9DZHlrn1OuGIi/4j//2f4SxhvNXp9y++w6Pnz7jn//mP+Pdd29hdI8xSrjTXspjUOJgD87hvGboRvqhZnSCkCmKkjy1GKMZOnm9CE5aUvse7EhaDKSpDOS8N7StJ4QMT8CYjDE2h+oYZ4SdEcCR2oRbR7d49uoBmXWUhUJpi/P2euDpNq202YaAHwfu3llgUjFfEOLgOp4FfERwCANSYxKNCwNBjRze2ON73/ucx1884ZOvfSOeaQxWH7Jtn+JdjWBODC5EM0l8HkpBXYyN9gNd1+9kBbwfyfP8Osm3Y4tLqk+em7vP7XqHjrimtnExru9xyU7Id2gDeZ5ijUYFKZjCKfqI8ciylAFFCANaISiXJCcEcf/1Y4/SBkXK6MJ1osqHEAfSiry0LBYl27om9yXe9/F90Yw9PH92Stc1KC0R39msYj4vqdsViiP292+gMxtj0SNBOUF4Kc3Xv/oJ/83f+TvcuXebZ89ecu+tt9lse371H/xD/uj7v8/7H9yTgdY4MoxyUnSjDAAFR9ThWmkkNkqRJsKGGwHvUpTWNHVLXXdRkAsoZelazxiTRRopvGMUZ2PdOdqup+l60V6CaEE2DveLREemsbt2t+8MU7JX1yQ24+jwmIurkdl0QQgt9XYr2JXtmum0ipy+FKUVWSbDMm1gU6fASzTttR8ixLPIrvyjmlYcHu5TFsKw7LqRqsjwfqSuAweHB6w3K7q+Ic9yggqMaKbTm1T5nK5f4vqe5aaWsrIs49btGzIstJY8TcmsONC7KBQPw0DXj2zrlqbtqcqSoihAeYyRePNkMiPPi3hfzflJP35ygU+9gV3Crl4bAccjeXofD1dK7dx6OwU+Bli8qLjSHButvkFsllrzpxqp3PWLtWvplQNmEjcM+JE0ndD3cqPneYHSZYwUKi4vrqi3NcoIf6C65m4NcUoh03NjFd739EPDMAqbJMuEV+D9QOBPsziAyPYRwaZpWhE6plOm01lsqDRS6BEtqeLMcQK6T4Qd4b1nOl2Q2JK2XYkIA7GRM2CsRHa83000FH4MBAxdOzCODdumZrOpmc322Nu7QZnd4WT1GZdXp3jfkWUwjD2JNTT9iq6rcb6Wg2CSMXSKwxu3yNKSoVLMZ7c5OvgIpRLK6pDF4gitU3kvtZScEPT1g8xH94ZMoUSUavtdi24Uc9WX+Viy2XHO0Y4jf/CD77PtB2yas6kblBa34xePn/LiVYpWI8+evuCv/5W/yHu33sUaaXjCydRKrP+JsBJRnFyu6FxgtVkzmUx4/vwpt+/d4vkXP+bhw4vY6APresnVUjZtMtVOGZuGbujJ8pKdcwpkndBaQ2w4VerN0UXtpl3XRxmFUUoicXESJL2IIvBYI7w9EHaE3Bfyvu8aa6VpWkksuevo2uba0ns9yVI7a7i+jkyKU8+hY7Rk2B2sr6Ny1z8igRBZHGKb3jmhdpD+pmm4vLwkTXOsTZhOZ/HBKq3OOsaZZ/M53kNqLVmSYpNdSyR4nXG1XXByqemCY75nuX0zx9pRgNA2pcwr9uf7GG2ktMIHurbl1atTfuN3/4i2l9VFo3n33m0mk5wXr87onWH0MiRIIyB7te2Y7+2RWIEiB+f4xte+Sr0Vjt7Z+RmEkb5rsNZwcvKatu+lPS8OGyTCn3L71i3SxLK8uiTZTzBKXquuadFFKheyEtFdXn9PWRbMZ3NePn/GF4+f8P57H3B1tWZvbxHdzF8WRHalGR6jNCro64eSZ7f5UVwPUD3iDPVQ5BlZZhmGjtVqxaNHj7lz7zYHhwtsAsYG2ralyEsO9o9EHANm0zknr09YLq/wHtCaLAtkaUFirLg5u46yLCmLEqNkwikxu04GAUqGFCHyGYzRccgDBCkvkIi4ZRyFxbXZbtGqx+gUmxjKMpVCDRV9skGmr0rJsEMYJxITH500Xva+o+96fICr5U7kk3tGaUizjLKYyLppdq4K4lov0T+8Yhw8Wqd4v+BqNaOYvM33Pv0cwsDh4QSle7R2Emnb3TDBURUFVV5RZBPStACvxfWjNNt2wAd4+vwVDx4/o+09g1N8+tkj6rbDhUTWcefwWPbmB/zCz/0cV1drUIoHj+4TwkieGlIrrFPvd6sCGDRpHl1RWkfBFZIk5/at23z1qx9zfn7Ge+9+iBulGff27bv8yZ/8PkUV8PQxIirrlY7FOUVeUlUTtFV03Sitc2nC69evOZq9h9YTvCtI04rETgjB4LwUdyjCNVrDx/vHOa55QNcrZBT2dkvPbh0aBgchIc8O8b3CDROSag9tHcWepvzmIW3nePL0KQrNxcVrzs8veffdd6iqPDJ11XUByXK5JM9z3nrrLptNfQ22btuWrus4PzsnLzL2D+YkiZT/TKYV49hJQ7jRcu2NxOhbH12h0kA+KQXXobSn73um0xnz6QKtkmsu7tD31yKmiXGYNweSa/Q+u4ZzgK7r8d6zXrVYrbCJohs1n362Is0/4uS8JeiBD7/yHkVhcb7HJiIWGyNFMy6uI2OM13gnro7BaIwyzOcTtBHhoe06lEnYNI4Hj5+zbVtUGLl7Y59/41//ZS7O18zm+zx/fco/+81fZyAwNiJI6jSP2zBJcLw+v+T5i+e8+9Z+HFiNOFwc88oeUa4FTWI0r05eYoym7zxGC8v56Gif+bykqjLS1DP6uA7E5yYEcaTH61fQJV5KrIzE7u/evcHZ2SUPv3jANz/5mLK8xaS7xXyeoLU4Dtzo0cZQlZUU76T7BF/SNoGgWrJMYPRKi0uo7WraswZIwZe0W0cIGqukNdiNHms68jxluayZzzPyogCfcnh8jM0Ul5cndP2ScezY35+i1cjh3h6Lecp8kXO5fEGW3yJJphwezTg4KFEqCDx8L2F+YNFeQUhZr1o2dUvYel6/PmFS7XHv7rtUecUwBKpqSpFngjjIFN53GDYYs+G9d6f4ELjXv40LHVWVo7QjBHm4XF0tmU5n1M2GfugJOBZ7i2unzjg4AoaPvvohWbLH00ctV1cFmD2W2w2rzZLF3pQsq5hOJsxn+/Q9jHEdaPqebuxJEkuaGPJMOI7j6JhOcvCQaMW0qqiKCefnS169POG/+a//jvCuSVA249d/7Z/yo0/vywAogA81l1drjFUi1mhxOGoUg5N9iosom5OzV8xnX6XIBoa+IU2mfP75KX/yo1cMTkq9vJUkxI35lGEc45oom9ZxdGhjKcuSV6+/YL0+IEkKdi3ZIe51d4MNgKEbr/ETu3VR3MsD1gpGR5uBr33yHr/73R/yo09/yAfvvQ3BosKCNJliZz2o2N6rNcpIFN+NHjc4tG1JtOZgbw8T7xlpC03FjeVl6KCUiXzAiH3BSwomz8mygrHfMi1y6vUVV8sL2rClKALbTcONm0dMp1JMY7XwfpUOLPamTBcT7ry1R9+PeIdEG+sNRHTMbFKhvaKtG1CeJFV0XYu1itnMivs0LcgyaZz/4MM73HvrFl0rseQsS9Dasre3YL3eMJ1OOT66QUDKX8pCMZ8ekefHpJnsm7pGs7wKZEUJvqSvW+r2ivki5fh4gdI91miyJAMMxmZ4pZlMSorpMWleEIJmebXGdT3/+d/+2+zv7fHo8SNu3rrNq5PX/Oqv/s8cHS/woSOM8h4J9zHE2OObUoGuMZy8lD3rMI4kFtJoOEmMNK+7IO0vwwDdMBJUhU0t41ATnGa1Ujx//prOCStQM7LZ1FijGeJquzMM7ArMbt28zdMXn6JxVEWKNpbR75zVMEYUkA+etnNs6o5qoq9NKyEWqRktZ26JX8t13HYdm62UTV1dSkPqkydPqZuWLMlQGNJ0n7qdYJMz/OBwfsQaYdC7iFXaHbOCFwRRnqexFMyT5wXOjbE8q6csCiaTStJNSpht1upro8zQyzXjgzQBg6Zr4+9gxTI/DJ7gBowAAYHxev/SNC3GSPJK9pFG1kOv4+uhcNpTlmnULd6cqYxN0EaxWOR8/MnbFHnB65M1adYAPUoZhiEw9IIXUUDfBfJ0DsxQes7R0QcSGaaPJg3PdrPF+8DPfOdn+O/+2/+WO/fu8MUXz7jz1lusth3f/e536bqaP/9LfxabpFxdXXF5eYmLaS2U7K29d1jjKQphqysURsv1KKgVsCrBJpb5PBN9w3UoDPV2Qz/G4hUN4zDEIi3Z39gkQY8jahRjye7aQmnSLCXJpMRSigLVLugQ33gZOEymcz6//yPquqUsFZPJVBBQdcH5+Rlt11EWlXQuuMB220qDfcgIHnH5qcgp9dI7QNgxQMU9ulv7jAqkeYInIbGWxWJOU9fU9ZqskJJJD+T5Hh9++An9ULDZvmSzbeMaKgWWZVmwv1hwMJsJ8zie0+fzOavVmmEYOD19zWYj69bh4SEH+4dSuJeKppKmKRDoup+8A/d/F4FPhADYqfneC0R+t6VT1xbcnR1UPnacHmvNNSxT+GCegJGDR5AYoxg3FJvNhjQ2K2VZQpolYgWNjgGlxL3k3MgwOvphJE0TlBrpuoEssxhbkmUJO67VzhqplKKqSgFDDy3duKXtGlbLK44Pb5FmitFtY2wsROGD6xt/1/S2XK5QSnF8fEvciM4x+hhLNsL4kN834Pwb1LhsWg1NUzOYEBesAfDXAoqPQlpTD2JHrSq6rqfvuuvXe+gBFJtNgx9yrtYtV5cNz569oKxyrNakSUI6SVAkKFUyqfa5ffM9bh5/yN7iLbJygk0KUpNJXMKDc1FoAGHEeYET+9GxY6rsHDe745xzcXMTlEwAdtcLsVEwSFRB2s4UF5uaz+4/kL/tR7FxK1HIQ4itnSHhYtVytdrw9t1bUSB0RD2Lo8MDDvbnXKxbfKzJXm3WfHb/PgeLkifPnvKVj/4STx8+ZPQpNkmYzObMFwuBdzphWHRtdx2PFBFbxYeQF5ZXdKUQpLBlJ1z3fc9ms7muvG7bniRJY+Qmx1owBolUaTD6TStq1/dRDImRxuhEGkdpSL64OMfFYhmJau9y+wKlzrMMo+WBqXdcPrgWsLUStqAPcqgfhoEsy2maWg6gqY2tk+M1H2InJKZpys2bN+U9jWdTbeK9H6TZMUkSbCrCkFGxfVjFCU6asdqmPH2i6PqATTx37i0oC4VRshkvsoI02uOrsqIsClbrDVfrhourJZttQ+dlYm21YzqfcnLykrofCMpgE0PXtbR9T5lrul4GBk09Yk3C/uGCu3duc3F2TlN3bDdbYEQj4OarqyX96KQtMjbFzidT+r4ny6U84/XJKw4WBxhjZHN/8oo7d25eGyGD3nESkSlxU9O0DVerhvVmw+vTU8qyRKsdlzQWxLhdxEDuIKK72ccx1J9uC5Nrz4YEHzyL/TlHN78ihQMYlldrjJEm1R0D5/j4mE3RU2Q5+/t7TGcFq9WSLM2ZTGZ0bU/bnbFardjbO+DO7TvkWUZi08jZSTDKXkOWjTHouB51Yx+jDfJwInhxWQJVVUkjLJBlOev1hvPzS/puRGtL19V8/LWPpE1Q75zgUnzhnLghgpOngqzZI0MYqYppfO00ebEfv61wqNbbNcYaYeMYfQ2bfxPl8IyDi3D+hK4reH1SMN37kB9//ozeNdy6ucD7TtgHcWAVCOggA6nEJhRZTpFnWCMtmX0n0nMI0HUjz1++pu8dLojo23ejTH+dxxpNahOUH/n2J5/w1t3bfP7ZE5x3rFbnHB8vMEp4QtYYbJqgETiyCzJgcN4JyF2BUp79/X0mkykHBwuePHmONoqhlzVsb7GQQoG0wCRxaq00o3MYbcjzEmPEjegGR1s3bCO0u6kbhlGR5/u4YUViKqypxLHuPMM4RkcaEIc1UqrB9Z8JnzGuafjrAdlug1eVhxTFN3FVQWJzqioXx693KBUokoamW1FVC3kG9e8xDFv29gUE7sMIKK6ulhAUeZHRtg0hOKazGSCtgX3Xo0j46scfYKxlvb7CWEvbDRijODjY5/Bgj4ODA2yi2Ww2zGZ7bLdr2rZjuVozDCP7+wfcunFLINRJJuKaTlCxLdV7ERSJboeu78jzMt4LUpoxDD0gfCQpBwtkWcFyueTyas0wNARvOX0dIP2Y5WVHOUm5dUdiq13XyDWpNRopMhlHgWhro8gLg7ZEB7DCeEVVlOSZwQ09Yy+HoNHBH3z/h1yuNmjlKFPFv/Vv/lUO5nPu33+OLaf89nf/BXU7oE0KHoxR4oSLjcyyRlkuLpa8c28PHTyr1RLlRSRBIcmHIDHYaTGhbq8IQdzVysjeL0tTDvb2Wa+27O/n5NbKfsuF672Dib+PxzPqKKT4gAqOLLXsLaYs5lO26y3nl5cc7+9Tlfdo+xalLgjBk6YFi/kxy+UVq/WKRxdPGDqDsR0HB8IwtSoHBtqmR+tEhtTkjIOl9fHwOQxs3TYO1ODWzZvMZ1PqZsX+3h6L+SGTWUXTrSmKPYyZYLXFRqSLUYq3390nBEddN9TNRjhdWgl/SwWUE5diVgRM6GnbjsncYtuRPCtI8yPOT1c8ePCAxd4R+/uHDP2Kk67h+MYhZTknuIzEKlAmXjMGikDbrunaLc61JKnCWkWWlWRpjrWa0YmDpu87nBvp+5Y0zVHKcXzzgKcPPctlDrbi9cUFy9WSskqZzytu3rzFfHYDHwzagDHuet+NF+foroGSsHuuefIkpcoyJkXJ1dWKP/6j7/Mf/Hv/HnvzOZ9//ojp/Abf+/Hn/Npv/BZBGwYXB2Fe3DPOe9zgsdaTpeYaC2GTDB0CbdfQdSODcxTWoEZD0zgeP75kDBVeGWl19APKK+qtCMLjOGBUKht22Xhy795t7j/8Y16fvsIme1grPGbnh+vzz+7ZPXaCHLIRu6OU7JmUG3He0Y0jOMVkUjJfzHj67CV978mSnCSZkef7DOMWEM6d7Es9XkXOtqoIjAQ8xiQYJc8LVGDXrq6Uj/daRGrE/ZkKMphz3vPo0SOK0JFkkpnuu4HuamR5NTKZFlxcPpb3KU+4eeOA+bzAJgpjN+JoSaTI0BjDfFGw2Ksoqoq23TL2DX6Qs1iayXB+Nr2F0kr46POcNDpyXJXTdyPW5mgStElQaMZhoO96ZpUMWao8oR86MIpQlqRJilae1Gi8L3j47ATvbqGMoakH+qam2645WOyx2VySZgFTFvgQkwlOU1ZT8vkeOpkxOoVre/q24T/4d/8d3nvvLe7ff8TNm/c4v1zzj/7Rr2BsR2JyEQ6Uu2463p2LRzdec+VevjxjvWrpnSSaBuPRVY41ijAKgy/+VZqtFEtZK/e6Mj1a5XR9oB8CIWJ+0NCNYzxbBTTxGlQipPggTfLOweACSVqQpw11O147neRzAaXpR8d627DoC/DD9dlNKy2M5dis672jbmoG16OQvWbfyn774lJY9rdv3sIHRZpMKfIDhvEVOhEhfGf8+fL+1jkXE2AJgqxIrwW8EHEPdV1TFDl917G5uKSaTCnLAuc8oxPxbYfpwHthQI9yNpZoqsFaccaN3uEQobOPbnqlZH32jusyxOsiUfGyMQ6OPIvfI5aoiI4hQz5jDLPZXITuzcjVRc1quYkGEQMUJEnO3mLB0dEhQ99TliWHh0fcufsu/RhYLq/k+YikLNK05OuffJv/03//33Hz5g0effGU23fv0naO3/md7/LyxTPu3r7NpJrx0Ucfoo3l7//KP2C5XlIWicTfh5622xLCKAOkuD6G4CMeymKTJHJjpQBGKdFOtDKcn13RtR3GJiJMJ6nkGIMiTwzODSQaVGIJyU7/0dfPtN10V9IdARyS7Ij2S601x0fH1HXNq5evuHN3RpIkhCDFRMfHx9R1C8HQdY48y+k7hxsUD794wDj0ksgrCjyw3qxJtJzjvQsMg6PvPWk60jbSXJtGPvfLFye0TcvF5SUXFxfs7R/gBkdwYHRKUexRN3B1taHe1uS5DDkXe3us12uuAuTGSDmlkXsmzwsZjEW96d133yPLUrquZRh7NJo8L2gaQZvsDGA/6cf/DhFdBUFjVCqCXehFtIm3AAibKUTxgyCQcvkIZJkVoKAySKuuxO+8H7FKR+cd1yymaWztGkZhWrStCFvWJOiQooxnGLo4DdMoLY1HdS0vnLXCRmrbJjoBu+uDhvx7L5GczZrHz58xDIqxH2jqZ6y2K3HxpKkAeYmxTOXjomhIU+FrXF2tGEdPWRQorXl9ckliM45vytRjt5HRkfPgnDRjbjYdfefRqsFYx2xeXjdy9UNHkllGp+j6GG0KI3XdSnuuUvJ6eEWSVszn9yjzW5ysX9J1AcWUMj9kb77H0dEB3nv2999iNr/BYnGLSbmH0bnYo728voPbtRsFQrQOXd+UYdeQLA+w2ASBUKgCosbtrpEgbcA2urKuywLkwO0JjMry9NUZJ69P0UoLK6wRBoCXLySHSMCj+d6P7nO1XPGLP/tT8b2T1/PmrVt869vf5Ne/+/uyyYiC75Onz8iSe2y3NUMfyIspTW/QfYfza8qyJM8yIDCOA5NJJTEsJbyvnYhN0OBDjI3bP7U4OheiAq+uYbRFIeyy87MLlLKR5QA3bh5Gx5JhpwgFN+AYUViBVkexkeAJQaZmwcN8McM5aVAeB8dmu6EfWsq8QGtFluYkWQYhCEjWC1tPIibiMmqHThqHkcO98wP90AsLKQTC+CYqvmvAVErJxjFJ4iI0oJUhTUuk8WjDeL0GeJQyeAKDS+iaI549SWjHnGFY8t67e1jTg7ekmZQ6GG1IbRKvt0DX9XRdR1FN2La9TBiVja+vZ7FYsK23wCkqunRBDvvOQdtKy9um7kDDVz96lyJL6NqRi4tL2rbFmMDYtzx58oTT0zNsmhGQaLI1mouLCwD+1b/6A549f8pituCnvvUdaTvKUu5//imLxVQOEXpXYiJus9Vqg8ezXC4JYeT169cspjOGXjgoWit2MqyKjhQRqmJ8L8Qo9c7Cvos5KhGb+364ngoLfHnEaPjww3fYbGrOzk4jiyXEKZ20Oxt7QN8LA64sK5zzJFZg9bdv36UsJrjBM/SeshQI+ziIE2c3Ed5uaxFujEFpeaD1XjEOEh1qOmHUGa1xahDh3Evz1vHRIcIpDPEA6a5dagL/1RgUxqSIYObZtbHK3Q9Ns4YYfTfR1b0TSifVjMQYZlUiJTfWythIx/IiF+LrovF+wulpQjV7h2evLthst9y9u0BrjwviTNpFH61JAEVqLdNiSpWXUTiXZ9I4DvEwmdD2HedXVzgf30NZNjDKkBiNwqOCo0jhL/7Sz7FabQnKc3b+kukk52DvHmkiLlE/jrRdJy5C5VHOy6ZICfOtboUr5voGTeDi4pSri3OsVvRKEAJJYpnN9/F+pEwzjJKNa2ITYUQN3bVTfHQjdb1FaU+77UhKw2YzUBXHOD+ymFVonXxp7Crc190QxI27pmUFYkQQUU/r2IAWZHBEkPdXaZotXF2NVGWgVT31Rph5VTWnHzq0TgVSnHZy0JhAvb0iOEfdNlgLGE1ic7IsRVt/LUoQ3UHSugppYji+sc96teHx45eCQdCK6XRK39ZcXjqKosRag1IiECeJlcIta9jbO8CN4bq5OC9y+rElOBe92TLAXK+XaDTGStvsMPQMg7TN20TTts11VNGNg3xNF8izksPjitHN+OyHDdYeUrucclJxfKNiNjOEMJKkSRwsyrNPWxvX4Z7g5eBkjbgvrDZkmWU2zbCRg6UjJ/izBw/44skLfIDSKr763l3+/C/+Aq9PztA25enzl/zox59L6UfkzKY2IdMBlUUoedD0fUGalMK9HEe6uuF4saAoDyjynLpZ0XVr2cTawHrVMIxt5F25uGO03L7xFi9PHjCbHGOjizeoAR96FFpasb0SN9LoCQaMSTiYH7Be92w3ayZlzuH+IZdX59w62CfRx2zHl5jkiqLMSO2cxJYMwzneacqyIpknEAqUkmdP04x4eoLTFEUa11HL6nJgWklZkkb2ckmSUhaaG2aPritpmpK9vQXz2YLl5orgesosQ6kUowxlkVGUKT4MJDYWqQVNlpZ4H9isa05fvyRJLHleMF94siJh8DU2Ffh9Vmq0GsnLgqPjis26p60NTbslywyDqzm/GOi7gcQkBEZskjA6T5pk0javSvADWWawNjAMNSGC1FGetuspilxwG0aTZiNZUlHXFU+fbDg9VaArLtdrNvWa6azi9q1bEd6/LwK+H9EoytwC4irb8YYDAwEnpQqdQytDkVmqqqBpO/7oj/+Yn/uZn+Pb3/gGP/rRfarZPqeXS371H/4jPDIUd7EATWstIpZWpEmCUQOJDeSpDMfRRoZ+WPLUUk4qtGoxNmW1Gti2AmvfuYhU0Bgt4qbS6rqlNcT4vVdw68YNEYWGUbAaTniyKBk4XR8wAB2HvkNsO1ZaYxL5M+cdxiaMPrBarUhSy3pZ8+rklHffeguj90n0bfpwgk06jM5iqV1LCBqtLFWZ0fczmraOgwWFVrKH9BHto3fc3xjdFFKbrHOSlug5ef2a40lKmuUoY5iUJVfNRtpSG0eaGow1KJ1zcrbm7OqKNJOiPxVk0GGNiWVO4qapqpKgBmaTnDLL0RrSLBG0kXMoIXzI5wVxHzs3YnSCGz1ZkZJnFd6DLhSu79mfC9Ym+JEszdHTiqBECLRa0/eaP/7eFd59BFbjxpZhaNmst6w2K+69fYQxmtE1XF6dk9gCRcbBwW2UTknTCijQKmFdr/k3/9q/wTe+/jWePH7OweERm63jN3/7N3n6/DOOb5Y0nYcWdAjRkS3C1TiOGC0/q7HSzC3IHI2gaLUYKLyiHzv8OJKlKQYrDLqg8E6hTYbS4rAanCS3lFIYFFbLWXXHaVdGklreRLSI0hweHtH3nhcvLrhc1YxDFB3NzkX1xoATgqLvRpqmJTE6PkPl7C5FJBo88Yzgo9tZBi9VWbJYTHn8+BUvX74QzpwKGF2imTEMBq1dNLbwpe+5O2OYmCrQ1+fkIZZLhBDo+i4aDzTlZEY1nfEG9SVGht1gO4RdelBhDDL80jLIkNItwUPhtSSsjJVno7boYAnek6fldVljluVypo0iXVGWTKpZFJ8S3rr3dtQyFNYajo4OqSYZm3pLlW04OliyXm+Zzg/oOou20vRbliXj0AMekxR8+vnnoGRYkCZWCjGU4Rvf+hb/xX/yn3Lr9k0ePvyC23fuMgbFD374fX7nt36Tn/np77BerejbjtOzKTrJubzaMIyONO9ZrzckSUWaStyYqM0MXYs2gXQizHnnnBQSJqms/cqQ2AxrE9556xaXq1bOVQSshixJcU4xrLZ0dU2WZxgVGMaAG5ycE3xgUk5RBMETBcHkOC8MQHESy5n9zt07zGZznj9/ya07uUR5nSSGtNZMq4pnz1/z+tWK46NbLPYWeK+xxlAVCVfLNX7smEyn7FUFITh8AKehbzvatsOPTtYeZWh8oK5bNuueqsh58WzL6vIKHQLBDyJgajC64uJyy/JqS5YlBC/R6qODQ957511UADd26HhW2onXeSGpQBvxLKg35pnEWJwTM5ekuMJ1edJP8vETC3xpMiNP5SLseuEJBLWLYorTRlvLOMpDXBuFVbsJt5MXOYw4L1G4NE1Jkl18VV3f4PDGCjwMI3Vs9kwiK8yN8uaUVUaRT0lshvMCuQwB5vMMIDbQDDG/LXy8cXTkeS5iW+hJrOXl/VMePDglKE1mLJrA2cUpRZFydHyA0alEi41i7McY7VZsW8dkWlEUFeMgB/Asy/ng/a8wnRxxdvEAiUHsDuyOgIpxVgMkVGWOD46i1CSpRgWJ11mborFcnF1gtLQmbjbb6FIR9t75+Yr59ICm8dy+eUBQlqra485tw63bM95/7xM0M5I0ZT5fUE2PMCaj60cG5+mGXn4vRKABovYUq8yju2jXhuXD9U6IgI8TwJ0DCfndvADVffAMbb3zdV6/F2maRiut4osnz+WgqAKTKqdv+jc3vTHkqTTxjM7x6OlrTpc1STnn2eNHbFZrnHPcvX2LvKooJ1OIynjXtaxWDXXjSNKSi4sVs9khXb+iXi8ZTp9ER8bNa0bYzp25c2EOgzzcTIS91vWGNC3jtSYPob6vcU5+1ixNoqghduAsS/Au0HbbCGJ2ceI1Xjvx0lRiQTshxxjRTd0gMSRtkTaryKeRv6soi5TpVK7hcRjpxx6TpHFqbbGYazeNwuBdiNwVzdA3CAOtx8RomUzRQnS47qZr0n5qIkshsynrtsFpmZR3XUtAo1WOMYpxqOWgqTOcOuDVa82mnXB+dcmd23vkuUYxkqcFZVaK4zAKwtZa6qbl8vKS9XaLyie8PjuPbsAYTQ+ex0+eEnyQyKkXj1WqDUOMv7StuFN8UBA83/rm12gaWROePXvKZ599isIzDt11HFcFccx2dS1RhbrhN37jN+i6ltu3bvL46WNZ7zphyNjE8vr0lPlsJvf2Lp6KNNst5jPaaNV+/vwF77/3Aav1hr3FXD43Ci3XzDL/pXvOexHDd9fRtY1drgEXG/XGYSS46P60is16w7becHFxTlmW2DTh8OiQ+UxA0sPQRweAOC+rSSklQkamD+PgokMnjTBvJ6VISkFwBBVIrLQv98MgB8q0iKKPjkOOK5zro4A0UFUTrLWy9irwCIskzTTOd7IZ8/Gh59T1Zi8EHQcCUuxCiA25KuCiS8qYhLYdGPqBcQxcnS3RRnN4eMB0Nkcpez1UQVZfglMEl3N6YrH2Iy6XlpcvX3Pn3gFaDXi3c6DHiLxWWC3TysmkZD6dkWjDeC28OhJrUTohdJ6Hj59ytdrid5vw8KYvzii5Ga1yfOXte3zjo4949fIcBaxXl4zdlmHr6HdlTP2AC56mbcSh4uQ0JO43de0E6+o1F+cvqeuay8sNbVND0HhkE7e3t8f3vv97vP32MVo5bJLg3Rgj/xqbJBij2Ww3NE3Hdl3z8MEXLOaH5Lbk4w+/CaGgaxVd2zNdqLiaw+CdCNG7Mq04/PFxHZFnRWSOsnO2eHEoqSBFV2ND3ydkecpyfYYyNf04hWCwKZgkxTstLXAo8jRhvT2/jsU5J07wtu3QxtH1DVmWXYuPShnyXJi1y8tzTk7OaNot88WCoAI3bx2zN5vHOLZhV97i4jR2Pp2LayEOPKyVTXzft7gd1Fxp2bwq4eISoO97mq5hSAQErbVlGOHq6grvR1Jr6fue2WyGMZa8LHBjxoOH5wT1DipZkCc5ewcVs7lFMcTYurgdJH7kpIHRubiW7J7T4h41SRrXSUfXtFiTgbJ89vARP77/mN6FyLTz/Ou//BewynB5sSSb7PPd3/sXMVbvsFpeQ42jygxWi8k1eFBJwd3jA6pUM4yOxCaoYFldvOLR+RlNs0Ea5QPayMZ4vVoyq/Zp2za6/ODO7bs8ePAjslRhE4cKHuW2GD8ABnSKV/b6IK9NKo3RAywmM3RIKIsZXes4Oz3Fv/MhiZ4zr+6w7c5Ab1jV55ydnlOWBcfHRyxXV/S9DEglUicDKmMLpGjaSYlK1zMI3o263aBch00NzgeyrOLg8EAcEu00YgNGFvMSr3KszUmTCVZrvG+omzVGFRgSNpsNid3DGgVGY6cZRV4Qgufq6pKTVyccHe+xtzePEfBd8RIMTqKz01lCWSqGoZXDrlIUhaHtV3QoRteRJHL9jc7GCHeDTQSn4lxgHDyJzen7hrJKmcU9+a4F2Fhww5yz156TVxkmmXO1XbNctxhjODzc54P3P2AyOWAYPP3Qy4HFSyzVWktid1ifEPeZgXEYsTpQ5SlVXtC0PZ/df8zNW7f4q3/lL3Py8pS8nDCM8Bu//bu8PDklSWUYqPBoZSIDWwQ+YzSpNVS5JouD92HopYQueGZlRRiHGJ9JOL+4FNFEuchU9mSpJVGevh1o6i2pTelHaVfeiYD7e8dU+YJ6I886WYtcFB5DfFwHOdBpQz8MIuYZyzBKO6Xwt2Rg6iNyoypzLtjy+PET3n37XbzXJHZG4gpQ63gI94zDiA8jWjnWq0spDlA6ut0M41hL4U6QtvldFMz5HRsXvBMXV2IMfR9Yr9bcmh9zcHjAq9NX3Lx5k3D+mvPlMrZYQ6oMwyDCzuAU3RBTI96j1YjRAWOcvB4BXr1ckSSaqrJk1pBnKTaRM05RpCSpDCCyLMEmUlaQWGHSWZPiXE8gZxw9Jy9fkljDdFoJkiaMjMFHp6LFdwluMDx6FNhsJ6i0wo8dbnQslxuurmpMklBVc7m3ydHGU9cNQweEnNn0Jnk2h5Dz4tkr/uzP/wI//3Pf4dWrc5K0pOkDP/zxD/j+D/4FhzdSkmRgcFdsN0vcMMTzZbgeEimMXJtKsbpaMbSBgJU9l7Z0SuG9tA6nRhIwFk2V52ybju2m4/HDV3zyzXukecJ6s0JFuqnWHhtGcIPs6YeOYRBMlQ67ZIhmPp+zv3/Ei5enjF5JpPt/02O7Q2koROTbRaN2BVohOPpB0k1+lNKYNE0xVpEkGW4IDH3D3TvHLC+XvHr5FK1+GhcU3lvwM9xY4M1FFGF3TqXdHl6ur8ENjGNL349MJhNG5yKncqQfBtYRyzKdLtjbX8TIsAz4TVQ2tBYxaBgEqZWkJqK/VMQeSSGcsgarchKbUVYT5rM99vcO2VsccXx0g9lsQZpnZHku5ok0E1Fdy5oo/x2/pwLvpHAML+VK0uTrGYfAarXh+9/7Plle0I6Oduhp2waUYrVdkaWW5WoDgaiTKGySAgl379zmP/tP/mPeefsODx9+wc1bt/Ek3P/8c/6nv/c/8sG7b1PkGVsn6ZS2q3Fty4sXL3j0+AnL1XPywpEXM5J0JEstNpG1MU0NVeXIc4O1CpSP91bCZLInvH+bMSn3cKFhtVrx2edPcW4ksYajg0PQCZ/ff8x6vWGxmKG0o96uWS1rlBY23f7PfEfKOcYBj7neX6mg4mso79liPueX/txf5H/5lf83z18856239jFW9n8oxWbd8eDBQ/xQYM0SH+D161NevDrharVmHERDSqwM5bM8AzRN25ImmtXVgoODQobz/UDXjpy8esXx8W226yvGfuD89BwVIltRA9qymB/z7rvvc+tmxdBuWF5dyNBnHMCNBARPtbtfiqJgHMWMJqgEZO/unZgynEdlJcaYaA750jPjJ/z4iQW+fljTj8BgAUdgFHFI7ZrixAHm3EiSaoyW5pU0FeeQMTvnnxwGIHr/gopsp91B780vLBlueUjVdR03yeJ+2WyWFGXBQQTZCwNOHnjSMmmuOTxpmkbYvSwK8tBLcS7QNgNWp0ymFcG3GOMYRs+LF88JNBzu3SFP90n0jKzsqZslo+vY1lu0ssxmC0ZrSSOA2bmOur7AWsMwqMjzsdR1TUCxWq2oJpWIk0mO9w6tR4ZeBMc8z6WaupUIbuu2jGO4job2fcd0mrC/P2U6mTCtbnD3ztvMpgvms30261P6IePVq3O++tFH3Lr9DsPQ0/Xye0nD8QAIrFr/qQiVTPqc2zGDrv3cb8Yvyl8LEl9uM/IRJhyIufcvXbQPHjzg1clrPvrq15hMpmzajoePHvHxxx9x895brFYtj+1zXrx8TizgxGhI80wm/jHK94d/+AfCK/OGgOFsWcNyLfBWrbBZhk1TQj/w+WdfAAOvXp7zyccfcnGhWEzvsLcvU3M3yFQhsRl938VY4BiVeNhuNoBMQZU2jG5ktVqxa8htmo04v6yhb9toAQ8UuUSjldagKmxiAOGH4WVzbaOat2sbHL2PzUECihZXqiLVBm0swQfqeoP3nrqpGd1AnpfsLfYpbYaK7iaB5sb4izKMLnBxfsVkMkUbhw8dzklkAjzGapRXUQBUMWoMxAOFuBjEuZrEKMYwdGidYE3GbHoL7x3r8QKfOJSd8Px5wdmZ5qJpmM0KZlNLoqHKppS5uFT9KBG7vuswOmH0jrprudqsuXh1zvnVGjAxGePxCp48e8Xt27ejMzK6RxONshaCY/BGANZ9x3xW8PHHH7JebenGnsdPHjEMHVli2W7WbNYbhqGn6Vq22y1EoXFvb8EHH7zHnbu3qZst//P/8qvUTU03dCgdmM7n/OjTT/mpb38Lq3bCt7igxnGkKIrrSP7rs9eM48jZ+Tmz6QSvYuhdyQBjJ+zJ1FFHMd3HYcWXDFPR/bTjHqZZSl7OY8xPYnfeOWbTKVpr1ps1fTenLI5JZ1N2nEyUJzDSbBo2W2kVV5Gpt9nUJH1CnhekaSK8PG1wfcvoHdZYhqFnu15DjNflRcrQvWmXVKhoiR84PXvMZDJhbzFjWlYoIwMSP3qCfrMZc04iRuFalJGYvQoiBMnzIbDdbri8XLJtaoq8YDaZS3PwbEpelHT9SGL3caNhs1mRppossygMqATjb3LyoqEdbtA4ePb6ObO9nLo+p64HyrJAGUWaWbRO0cj1XpWV8NeSVIT3EQSfDVle0I+aB48fc/+Ll3SjrJHi8Jb7eieQe9eTMfIX/uzPowNs11vqvmG1vOT89BWuE+EnSROMFgeic56xH2i7jmEY6J0XB1+9lViEVXz8tbdR2vDwwSlXywumkz0GLy622WzCerXlyePnTKYpeZ4RfE/Xb8iyjFDLgaTtu8hE61hvL9lsN1ib8JWvfMS261ltLYN3cRoujjw3jtcDDRXEkbqLzMkAK/zpTYsMMWVTrjxFGZiGhrHzDGNJkiRS7nJ1hTGWoEaSVFg3SmuJz9HjwiicSZUwjC1pUtL3DUmWkhcFRZFiTRpFvx0jUuIueV6x2Wzoh47VekVTr5lPKnHVKStxpyA8rW6zpWkCeZ5fi2bL9ZYsL8izktSmWC2FDUPf4II0mg/dwHq9vhZPsyxjHANNs5XBZwh0QZwSZ2cds8khi70Zr862tM0cqw/wOiXJFUna0/cdQ5BI1m5N6NoebWRYtNtDeSdHpa5rGAZPYiypSeiHgUkuXOKzizXPX57SDloc92HkG1/7Kj//cz/Ni2evsEnO8xdP+ZMf/gFh2GKtQ3sLyknzagDlPX2zxQTBj2wvod+bcLXs+PGnP6ZrY5nA7pDY+djOLhvg5eWao8Vt2mYtQ0I089mUvne8ePmEvUNPYjISLS3yAUff1yIgJgWohGmZR4dMF0VwHcu3Gi4vLtg2DWWS028Shj5Fp6CUx4eOR188J7EZ1aSUeHNwENy1673vPCoN9P0AyuKGHjcm9P2ATUaqLCPJDHXb0/ctJ6fPSGxCnmc437NrGdeJgSDPFuEwQ/DyzPbOU+YJzsn7NnRDfJ4nzOczZtMFXd+g9YhRWhh4MdousHkZ2iWpMNyyQtZKN6Zo1VNEMWmsNwRjqPuazKQooxn6nqATBh9IrMSoEmsIOxyD8gTnUZmOpTeaR/evePLUkuY3WW4blsuOcfB85SvvcOvWTdJM0BrDIAOYsiwJQV9jG0TklzjhOHQMdcuklOKqRTWhGzwvX11wdbnmP/vv/xO0MZycXzE/uMlnnz/ix59+Goei8jMnJr/eww+DF6h868kmCUSnz9g3KCxlljF2HWPX0m4GbCUFOFdXGxILeZ6wf3DAfD6hzDMy4/ni4UOGvqEqSrp+wDNGYcST5xm3bt6hbl+KqOckFqliosNacWE751htr740OFIYrVmurkB5Fos5gUCaWIo04d23btJta54/fcjY/QLWJNh8waadoDiN0TpxDckAU4OTlto0KTnYe4eqXPD69BHdsKJpN3JwR1owx3EUN4necTFhDIJbGIaBEPT13uX5s2fk8ymL+V7krHnGAXo9oo1hjHvkxArn2NiAUwETEUuEgB/lGdB3I0Z7Ef9CIEkURWmZTFOms4Jy4ikLQ5LKMDd46MY+4iAUUuQ3EaeMCzRNTVmWMgxXEIKlqS1Pn67phxsUszlDPzB4R73puLzYYtOSslpw+rqlKGCxXwBO+LPTijQ/ZBxndBguzl/y9a9/lV/+5V9iva7p+oFysuDJ0yf89m//BsdHR9y5tU9RJgzjwDI74+LilMvLU1brc5JUsb+/R5rlWGNp247nz59xdtoDRowTSs5dZVWwN59TVTl5jD4qJQJ7V3e0TUNbD6R5YDaDzeYZQ29INGRGE9xdETuHAXxg8E72wsi52xjDJ1/7hL//q/8/bJajVYHsMqOsEHaFfUDw6BCoygqtHH3XyjoQWcdKafwoqQzvPWEI9AE26xptC9IkMKtSLs5eMXQdIAxGq/cI40RKRHSIvGqI7hGUEQNQXbesV2uWq1WMvBr29vZI04y9vQPm0zld15EmGdZmuLFjvV6RJAnO5VGI9mjtvsQrl/2G/PwGgiVLc+7dfZePv/IN3nnnK9y4eZuynGCTlNl0zrSsqKoKk0jEsm2H6PIj3kdxQDEOdF0bjUsNXdcy9l08F8tQQRnYP7zJt79Tcv/+fdbNFZdXl1irmc1mVG3O6esTWMzY25ujY0x2W7e8ffsW/8V/+rf58L23efrkKYcHRxBSXr085e/+3b/H5fkl7t4dMR5El2I/eNqmYbO+JEs0eTbh9ckL8mIkK+K+VUWOs3akWcNsmlOUhqI0ZJlGW023PJXknQskakqzSfnBD17z/OWSLM2YTqRMc9sMnJ2dUVYlVVVAcPF8taGpL9G+kOFOEOHSB7nOfHBScLLTexCH5c/+7E9zdvGM7/7uP8b7wK07M1SAvh/5kx8/4tMf32foE/KsIEkt1ia89dZbnJ2d0A/iuhvbWCYzilO47VqM0bx8NcW5EmsTCCnPn51y89Yxk1nByckZSgsSrmtbxLKkUFiyZIY1OfPFjERXHB8t2LHqh6Hj8vKCSVkxnU0lreK9pAPSNO4/34h4RlvcOAgCKstiGlBHnSjhJ/34ySl+cTOkGPB4VCxP2Ln3vB9oVku0CfhRo4yOgl54oxGFiMyPK4tHSTtK/Pcv35w7mKfWmhAVz8PDA7wPtG1Hmgqs0FqJiepdJCuE61zzbuLtnI8xSx1/ZoVWlm5smc8nFMUEpQ2HR5bz85eo1Yzz1x2EDWE8596t29y88S0ePf4hV6tTlO4xOgM8l5fn7O0doHQE++oeTyMbbz8w9h5Uxtl5S90NFGmG7bZMpwnGQqLEXTgMih0n0BpDme8xyfcJtGgr7KS9RcFyuUJrQ9f1WOtAXeHHnnqzoigN6+0TjB25eeunuHnr7et4n3fRLrSDUMb/PcT89586kH3ZPRR2QpS6/v+CF/DwTqxwo+TWvwyXDXAdOb64uuLk9JTB/wnHN+7Q9J6m6fgLf+bbTKYVP/p0RZJMKYsMayWeaowh0VKx3fSdTENDwA8uTskUZ30vjcpFThpt2N4HBuUgyYCE1xcXfDtLuLg45+ZxkOlgCBgrm+W2ldY05UWU9mOP0oqqLOjHns1ahNk8k2hQiBuZtm25vDzHaMtmvSbLM6bTGbPphDxaloMKeDcyjBLNUUq4DsMYK+J9dK7GWZqP3L9h6Gialu22xvkQW7cyjEnYX+yz3m5AyeKndSaWZO8x+o0QdH6+5PxsxWy6jx9kQvfDH/6Y9eaSj776AVprjo6O0Fr4fEWRoTXRwSWOwNGNMbIJsqlWjEEYXGlqUKonqJyz8znvvvMzKJvyG7/5a6TlPuvNiq98cBNNQ6oLqqLCIL9/iIdAbTVoWK/XXCwvCFqx3tS0nceTsNuCOK+om56nz57jvBfBN8KEjQKNxQ3QN4FhaHnnzg32FgvOXz9hs1lz8vqEfmjF7VGWKBR104AWVmbTyiGdGD14+PABDx89FEGlq/G4aD2XiPGv/fPf4Jvf+ISD/QiYD2CTjNG12NQyuIGma7haXeGDo+laiWBe31Y715NEsm0sRvHxAShQ7jfONh2jq7thiLWGvmsw2jKdVkyrSVyDBTJrjGYcB1ZXF1STijSTyFmWpShVxWm+bMKNgaLM8E7ERXmnDV4rgt7liGUztre/R5LluDFglEGlKW1bywYEWWubpuPO3XtsNxuWyyu2mxqbiBPWJpbpdEJeWIy2BAVNbLBOUomGqSCiRdd29H1HWU4knlGWJGlGvW14/fqM/f0DulbeM5skMtGnwg0122ErjCKvubx07M9vU7dreia8vloxBkc1K1lenuHcQNc1FGVBmk5ROIa+Y1KklFmOVcLgHFxgdLI+p1kOKuHBw6f80Z/c5+xyI+wpraOQKqKXtmC1wtiUo3nFz//sd7i6XGNswtmLJ5y+fslqdc7qYoUbhWWTZjk+KOq6pW06rtYr6qYmTRPAc7W8JPieNDO8+94B1ij6fsvZ+Smz2T4hHkoh8M1vfYt/8A//PgcHC4rMYhO5b7NsjD+nNMhZm3B+eUHwI93oeP7iKU23YQRGp+jbHhXeRHTcMF4PcXaOFdGh3wh7gnKQ5753ProEdg7hkdkMtB4JvqXdKpJEo5TB+YZtcxU3TANlKa7QsR+kWGk0dEixjrUy6Om6Dj1KG6A1A2kmRThDP2C1JTGWxXzGwd6+PPqUx/uRvqs5vVqyWOxTVhXgSBPLbDZlx6sBjUltZAQGhJUbxK1ptBQzBAnr2tRyeHiITVPGMcQSDoWxI7PFAiDyYkpu361YrxNenUy5XC4o57cJdkozNMwnGamV5vDRyTO43mxkMh2CIAp8fL3jMLPrhV9pjCUEDc4Ih8ykhCAb8ovLrThntWaap/z7/87fwLvAat2SZiW/9y9+h4uz5wQn8fDgR9oEqnLO2ElUeBgHrLKM/cgf/eFTPv1MM1vM2K43bLe9fG8CJrqkRSzrMVqxvLhCv6+5JvcGhzaad955l88efJdvLfZk8MWIc8IDAkXXdzRdT15UnJ09BwzgsSYhzxfUm5rtquXk1XNenbzg3p278TtMaJuX1PWKrnckSU5RVLKeIa5ka3ZNyOK+7zpN3ymSFCZVRbvpeNOMCdttx+gkXu2CRwfPtqkJIVwP/CR2KJEm53pGF0isZRgblIa8yLFWWjeH1F2L0eMow6EizxA8xQ7tIreScxHIjyIMb+LwWoM1Entuu4HX5ydUVUXfOp49f8Z6W/P23Xc5PrpJWU6BQNc31xiCLBd2qjWJOJJMwKF59dLTjkcsDqecXZ7Tdx1D1zOZTHjvnQ9QVnO5vGK9rkltytHh8fVgysbyKynjkffLWE1iC/Isp0xL+n7kat3yxeOn/Lv/1r/NzZt3+fTH99k7vMHJ+RV//IPvxwINzw7XsZs552mK0Y6u9WirI9fY0Xc9idZk1jKtKspS9jWvX9Rspgm37x7x/nvvc3Q4Ym0R0xgtQ1/L1/E9bdsS5jF+65WIE8FhTMLHX/2Y7/3giqqa48aOfmjwwTHJihjHHCJ6SM4YmiA4BA9hHKjbrbANM8ukqsgnCUO/htDw+tWl/H9JBSolT/dx+gVj1+AVON/HQ6Fl9C5GE0dWyyv6fmD0nqEXkd3rgI/lH8YKz07FVMYOzbArhPBehD4VDRGrrhNW9XzO6DqJiQ4jvpPob5Im6KBBZxAEOSRYJnU9HBYmt2JEhvUKxeg1GEs3eJarhixtKCtDWWmKImE6XcRBOTgvKKLgQHnhmw1DwDnD0BuGHq4uW9q2YG/20/Qh48XZC4a2jvFOw+07b6GNRmsRH4IPbFaGJEuYzI/Jiht0TuMaqNev+eSjd/lbf/OvgYLVumbv4JCT1+f81m/9Jl3b8As/84skScJifsDx0TGzvYo//v6/5Fd/9X9E05MlKX7MsUUlBhfnWK1WjKO0VatYotZ1Ldv6iuXVKUd7CxbzCTbJ8GQsNy0vT07woWHkhK98fIyiwA1nPHt8ilWGvcUeWnlx0cekgtlxuGPsLzDyjU8+4bu/89s8fPIF0+kUlCLLi3jWTuPnB1QQ12eepZSZxVcVq82armvRNj7cUxEmRz8QxkDTDSw3Gw4Py4ghOuLpk5e0TU2Rz/DKYy1k6Ywh5Cjk+nJO3O+nZ69JE0tVFmSJRc9mlEVB07acX1zgXGA2nbPZ1KSpFS6rTkhswWpVc3lVU+QWyMhzy664R4oUZZ+WWDlLEzRpMuHP/9Jf5msffwdrclyAq3XH1VrOM1af88G775LlJXW7pek6ttuavneMg7t2BTs/iIvLO9kPIG5SYlxYhpliEtEa9vbnfOdnv83LVye8vi6589y5eQv8yGp9Rd1sWOzts9jb4+OPP+Jv/4f/IR+8d5fT01OSJCNJKs4vN/zKr/wDnj19wtA1DNF5fv2Pg77taeo1hJEbh4ecnLyCYDk7XREYJbYckxSywjcYa6JrWzGZpNhUElNaKbTr2K49Jycb+kHhXI9NM5qT16xWNfuHB7x17y02yyV122KUlwZirUiMJi/yiOSQgV/X1FLYJpZz0UjiQBwFv/yv/RW+ePyQf/pP/le+/Z33uX1bShwfPXgkhakhZdXXKCUlOa+sYuyaeL62WJ2glaPIC5puxLggZiY1UlUZbnA8vP+Es4sr3nr7FuPQYKyUVQ5DJ8Npp/FOCU9YVxAmDMMFOhlQJp6FEHTJZFIhgqBc0y6WeSQ2BROF8cjjFLMQDGNH027F5W2tuP58xU/68RMLfJ4RF6RififsKBTOBxKb4IMjSS0hjPjgCG6MCrpM22RDR7wZwrVII2KbEqaD+tOAea0lSgQiHu0YaFl09YWw+1oqsq9CtKCmSMR3uHabCVvnjVLqnOPlq5eRpZRwcLCHJtDVOdYkLBYJ+4sFflRs6nN+8Nmv0nedTOqHgaoqI0NChL3lcolU2JsoNDnGXqYZF5fnPHt1BipBB8W7bx/QNh02EfZJYkqJYwYRW7bbRlpvsjlpmuFDwzA2dH0vqrQ2lOUMhREmoTLYJPDi9A9p+xdMkn1u3rwNQYQoqaZ27KCmu4OZc45dZfXuvXjzhofrz33Tnsybv7uruka4U28cSV9y98WvlyQpXgXq2JCqs4zzizP+x7/7D9jWWwZfElAY35IXGdlkQpVVJIlwKyZFFZlxI4kx0jhoLbu2YlHELbtoaWyCJxCYTQrWq3NOXjxkWq4pyyFOjWqKQhpDtRaHKSEwxtYydCA4H1tIdyDzlK4d2Ww2146tsqwo8uL6tV2u13R9F+NEmtENzOaTKKaI0NF3Q7xOs2smhoYYDQ5oZWIkUzZWl+dLplPZcA3GkyS5MACTGX2nOD8/oZpY5rOKYZDIYdc1VJOCrhNxYOhGbty4RZqlfPHFM/b3F0wnc8qqomlkCrVYzBEgrHCJkiRh9D27JkitDSZIzPXqcmSlO65qw9PnCaqo+ez+H3Pj3j2MLdi6FGNTbBKoigmJycAN14w5myQkScLgHJerK5q+A52w3vb4YGODXXS3XYsGiizLaGMRjUaRJxlaG7I05epyzdi1fPubX4+gbMfl5QWXlxckVvHX/ua/xfvvfcBsNgUt3MP7Dx7wf/9//N949vQx6/Wa/+F/+B+4f/8+y/WSvKhYrZbCrhulrOHGrTs8e/6cf/i//jPee+8dvvrRh1I4EsUPayxZLhPczXZLVZZs6y12OhFNPYhLIuwWxJ0jStqF2DV07VzOhBgzDW+YfASNNZkwKoIIyTsx1GrEBeikkbGpt9hEHEpyzRW8CWc46noT4xBxE+8dSZIyqaYYTXR3GtIkRWkDypKYjNQumFY32dZLlutnjH6N0p6pneBGz2Q6ZT6fiTgz9jjvKAppQM2SDJSU3FRlGmPLkZ0UAn23JUmy+KzRlNWE6WwBAYZeJr5ZOqEsZmybDdpAWVRUxT5aa7phiQqB1abn7HLg5Pwld9/6iGWTodoV2vcR4HtDojJqx2gJJDalzBImRU5qE6zSeCeRam0STGLpfWC5XvGDTx9ytW5wREtBPMgQQizW0OSJwrU1P/+dn2c+m3H/1WOcg4cPH9A2NbdvHvFz3/lZUptGoL1hU7c8fPiE3/3ud6k3NY6Bupayo65rCH6AoHhw/wHHxwd433Nx8ZqvfPAxjXfXhSVHhzf5xte/wz/+x/+EMk/JspRJlVNNU9JMkxdQFIaua9hNdYZRYth1s8FqyzhC3bT0Q482miSx1Oudw5vo3JMNjhJ1FhcEM6CiO1XxJaB23MyJo02GVHmVoBCG5na9lIiL85xfnnD18IpbN+4ym+xRVSVKCxxb1vlAmiaUZS7uFhfiUEkTgsaoAa3AJAlDbJl1kZXlvZQZ7e3tSVzIh2uuo1I2Dgn76MjfiIjW9XSdRKSTJKUsK4ySe0SrJLrsxY2SZDlldoOiOGC1OWW9fcHgaiCQphKbvNrknFxapvt38MWCs/MVRTGi4zPdh4CxBu88k2mFv2a1RBeOd7RNTVkUGAXldEpVTCAoEp2RJJkMwi4uePDoMev1FmVyEuP5P/z5P8PHH33Ag/tPSbOSV69O+eH3/wg91PixJ2iZUltTYlSA4DAmkOYZ2htUkTG6jLOLMy6XHQJKF56s0TAOPU1dC9PGDgw24/ziXNAUQYZZwmqEDz/4Cj/80e9x8nrN8dEUp1qUsvSdp2vFOWFNzjCMpFkWr7NA13u29Zaz8zXjYGi7NY+e3OfWzWOUrXBtQduK8zVJMhJbygEzojhC8OjEkpmMruvoup6imKJNoKkb8A0+KNpuyxAanJfSEa1TtDakRq4BraXwRWEiz04cr945jFbkWRad2iJ2j/SgBNXSDx1jM5IkqexvEineUjru2YK7LroSHmsU/cIOmC/4l9EJe7rrevqh5uzJSybVIbPqDovplGl5QGIOCF4i3nkmYoxCBt/BO4ZWUZUTNvWKy+WK3u3Rs+CqWdONnk3TYpOM/YNjOmfYrpckVnF4uEdVTtAqpe8GGe57B07HlnoZuGvtqaJjdrneorXhs8/u81Pf/jbf/uZ3ePXyAm1K6m7kRz/6IcG1mNAxLxNQuwTByNh3jG5EIa7rLEtJrafMM8qiYDGtKLKcRCUELc/aelOz3W5woww2V6svuDq75PzsTL6WUWgcQ9fRNuJIl2tlRGkpAwtKcefuXT7/fE5TD9y7u8/5xQlBJWQ2pWkCo1akXpMmgfVmLSJg15ImGbNZhk0Dbdej8XTdhsRA8B1HhxOePXnO6dkJd+6+h3eaEAoUOUkicTDh5wrf0wcvDjnT0/UNm9aImSFE12xwX9q36XgG8PF90Ndgd200zg1cXV3F9nGDG0aWyxU21aSZuCeN1igjKIM0Sdg1Svrr1BXXQjS7s17QENdDlMImOVk25+aNW7TdlvXVOfXK07fQZIq+GSlKS1lMSDJZu0g0JuQMvWXoA+Ng6DtLXSueP28JeE4vX3F6ecHgO8oiR6PRRtI8Slms1SK++EAICegKz4LlNnK++w3v3LnJ3/qbf5M8y7j/4Ak3ju+yWtX87u99lwf3P+O9d95iHATj0jVnNM3AvXCHzWpkHFJmk5uUVSbNxEkakS+OrhnBK5wbhIMWAtZEZvSo2aaGwMje3gFjUFyuLmiHBoXj0cNXNNuaDz98h69//BVOnr/GdR0qxLSPQlxRXu6LLM/is0zY2lmW8df/+l/n//x//b/w7NkXGKvEIWcSJlPZ6/sAQ9+QZzU//wvvcnQwJziJvi6XI0rb62Fe2/XYJEUlmpOTM9669w7z+T6KlDypefnqhLrZkGW7IXJClizAVxDkvTJGIrlHR8f42K4NMJlIs/wwDBweHbPZbJlUU5LE0naythVFTpJUfPTBe7w6ecpmc0LTaKpJFiOuPrZ/6xj3FrNInk349jf/DF/54BsoMol+aimTCEQ3GfDo8WOevXgeS8Qibz9IweBOwzDGoBMjEXUt38dYGe4aHdmUSIJLq4jB8YFbN2/ifaAbOpZXV2xWa2kmT/V1Y/n7H7zHJ1//hP35gpfPTri8vOKdd95jtax5/MUT/vAP/1BMRM6JU9bvCs2ga1vatqFtatYR56W1oWtHrM5ZrpcRVxPLMXc3LOJClusplgGGQKITDhf7BK/xgwwzZ4t9hkHck7PpgtxmXJ2dsVxeMZ1UrNfr6Ny0Uq41m4pzbRBUEjGpJmuEIkRzhPeybyuKnP/sP/8vuby85Lu//S+4d2/KYlFyfrYSnjxdXHMUzTjy7MkWHUv9gjZxDVck2rIdR/zYM4wNm/WS09eBzabm4aOXfPTxx4zjwMVlw2p1RQDW65WcsVBfcrmWuG5GN2aY0qDNFmVqSTgZIwz+mGgUnctcJ1mUVzLwGQbGoccHd122JMkvKdqU93LOT/rxEwt8g+tpB8mPm6jAGq2jaOZjbCRci0RvmmffCD+Sh5evF+KhQPRQpIY9gmlB4ghpmu7ocNIQFcd318yq+LACRAjz8u9FUTAMA9ba6zjYLq4rGX2Bex7sH3Djxg2G3tN2Nd7D0eFdUVVdQ9vWzA8PSRKNTTxlOcOY9Eu/w0549BRFRVVNI+xb+DGJDWgl8NS7YSFTP+coK5n04gzT6REAbX9+zUDLsxJFBiHFDyXr7cDB4RxfNMynt1BKs5gfRrFJVPFtvebs/DFJ2vD2nZ9hNrnFrrbde+F3fVnc+3LEdsfn+PKHCm9cfbvNwJcjuePoRBjcWW1DNIDHvzfGRUhrzVe/+lXee/990JYnz87xSvOX/7W/gU0EROnQGN+j+p4Q22issbRdK99bi1jX9wPKGGyWsb+/T1PvmgWlVGDHDtRBwO42SamqnOdPfsh7796grAasrWPpgTwI224rVm8vbg+xMofrayrL8ujOAqMyqiJDU1BVFc530lAZAmma43xgvVnStS3rYSBLU6qqlANX3BQ550lSTa7lMKRis9k4NGw3NdpoiqKkKEuq6UziuZuOetuIOBNf3yRJmE6OmJRHlMWEtj9DgN1b6romSTPKIqfvHdvtJVmWcfPWIUfHe2KTRjGZTEAr9g8PY5U419d2miagkEktEr8chz5eGMIqQwXavqX3ls8fPSKfZHzzO1/j/LyjHucsV6/wxcjezNCPHiWXBMZk2LTAJAVNU7Npe9aNHNYGN3Lr1iF9Lw7FIXJshl6iirPZjNlkKlNkLT+bsDl7mm5Dlmk++frXWK9rnHO8OjmBEPjww4946613UViC1/Le5pbDw2Pu3LxFcAMnJ6/47d/+bhTUHGmScX5+ymKxoK7b6/vhW9/6Dr/+67/On/zJjzl9/ZqvfvUj9vb3WC6XlJOJrCltj3PiLF5vNkwnpZQN7CwOu91DnAD5a+Fh54zefWr4U2toYg+YlxXb5iVKjzgv/JIdR8oai/Ei6FVFKe6TIBwhaxJxNVlL1zU41wrTSUszuDCbUpxzbLZrbBywZFkl/1tZjKkwzLl9/HWO9t+j7ZY8ffV9lusv8GqLwkdcghaGZSFuAR/EaWKUZdcQbnSCcyN+FFeuVlY+z0ijWpZV0R0mwpHRBluklNUUgkTi81wKl0bXcLl8FmNyQcDZ5YQhrHjr3bvcfesem4djjDy2DKOlbQbSLGdvXuB9jx9HlIr2elvhfIKP4o9DnE/tpmPdNJyvWrxJSfOCZttgtCbPM5kaW2kmSxMFY43H8Bf+/C+y3bSMLrDarrl//zMePvoxf+kv/Dnevvc+s+mcajKhLKeUkwnf//6P+Ve//weMQ083NOwfHDKpKs7OX3N5eYobFT/8wedc3d3gRs/5+Rlpaun6VgpD3AgavvHNb3N5seK3fvM30MqzKhLKSsDY1jr2DiqKMqOpHc5p5tN9DAnrTc3N4xu0TUPfj4z9QJrnIhpF0T2EnYNfiiPkupULV84eMin+3z47hmFg9OLIE06pQmOleOTyOWOvSJKc7WYkuCl9O8FMb5IlOeiRPIsuf5dCMKBHxh7KYo9m22Nsyv7eEXVzRpJ6mnZFN7y+duVJiYBE+3UiLeMEhVYJ2iAiTYC6HXBjLJyy4EbhvGR5ej0kUlHsyzKFCXKASswEoxbc+v8z96fPlmXpeR/2W2vt8cx3zLGy5qqurp6ABtjoRqMBNAVKBECI1GTCUghhSyEpJMsOSRGSwv+GHXTYIQVFUVLYClGkRJmDJZLiBGIg0KhuoKvnqqyszLzzvWfa4xr84V373OymP7n1QaejOjPvvXnynH3WXut9n/cZjj/LweIRq+qMp6ffYLl+gqcmBM/zE0/Tab7wlS/w/Dzh2aWlarbsLcakyTjuCY3IkxUkxmCMkromTXZT7+l0itGGNMmYjmYkWlhZZTFCmxQXPFbBpulIswKl4WB/zJ/6lV+irjqqrYQxfOvbf0jXLBmXCQ8fvBJtHBTWBfb3D3l+8ozHj39AOR6RJ1lMD1Ws1h19P4BNAhRt6wrbt+IVqtnZs1xcnmASomWAkmbUOsq84Ku/8E/zV/7qf4H61IzZdMTHHz9hs25oG0/wmjRLyPOcoshIMkhTQ1kWFLlitb4hz6bU7YbHj3/Al7/0ZbotoGfoZMIo6UQ+7JUkyTcbNputnHFB5Itd5zA6RasEhYv1pAeVCnsseJQakRWp3BO2Q2eOrmsxJsXaEBmqUrta21PXFWVR0CmRsMuAGrquJ03FSy4Ei3MdKChHEwGVvRNmZioWGsJOsbGelVCJvhfPXKUl5EWeX7GtNjRNKwB0cYCyD5hNXyfPJuR6SqoVLjRY23J9dUqe52RpSb3t8N5g60Oen1pUPuVmnbCqDVXd0bQ9XWc5PD5m2wb+4I++T1mmvPLoASoZ01jxgetdQPlA73oZHKGEedV1lGlCSk7Xe8pyxNNnz9nfO+ZX/5lfpa0dq3VDXoz48KMP+MY3fp/xqOBP/tJXGY0k+CZJEgLw0UdP+Iv/5X/B2eUleTGlqjYEXzMe52ituHN0l8lojAqKtmuou47zszM29Ybyt0YcHx+zXq25vrjk5upagkFib3J0eMxmu4reXgMjOUQ/Ts94NOatt97hL/+lv8hXfuHTjEaBNAebF3Rdy/XVJWhJtk0MBC2MN0Fpe4rcMJ8f0bWdSMt0TpI4Dg4noCzPTj/i4csv4zrI8yOqZk4Icr4blWA7txtS6OQ2eEoSdTVJmuyCoqz3MujTMghpmnY3RBaJuqQaN01P01RMxiJjMz4Q6T4MXrb9rjlVcVBjhM0SBxwKAQuVj7ZLRqN1TpYVTMYTprMZ+3tzXn75DQ73X8Zaz9npUwnRUQqT6BhaR/S3jWorDJqcpu1ZLU84Pb1gtWywTuHZp7WWk2cfslzfQJCwpocPXmK5XKN0QCuLTVKyrCBJE1Q6gnRCNj7AOEXbbJnPR/xv/sU/zcH+Hh988AH7+4csVxXf+va3+e1/9JvMZmM++5lPs1quCCpgfUfvWjbbNdtNxWS0YH9/Jj6DaSZsRRs4f/YhmR7Rhnpnu+Os3MsBjfWw2naMpwua3rGpapbrJc51LGYLDg8P0Qq+9f4Fs9mYhw9e4+T5MzmvGHq72z70RWskacM9b7zxOr/xG7/Bf/qf/t9Zb64JqaIL0DRLsa3YblDKkedznj37GBUqsjQlMT1F7lmurkUF1vdolaJcwuMPLrm42OJcyerGkxclzoqCo2k3GHOHvhPGHaqka0ErBypIQIdSOGsx+lbVsiP0JAlJlsowL9YWWW52IErd3LCtlljbkGXS80mfIIM3rYUAFLtYvFO89eZn+NS7P02eT6LVg4QIGWMkfEyLd+eoLMjLgjxLKcucIi8EKEwSktSQJql4AqtBbShKRZA+LjGDV+oto1WCgIgDbEUYcimdePglg0+t0iSp/HzbOpIk52D/mM2moet7np88p6orEgVpnovCoxGiQ4qi6TrW2y0XV9esN1uKcgRBs6m2LPZmFH3Btt4Qog9q2K2RWJuJe4rUdEExKgv25kecnJziXGA8G6ONZrOs0MbQtDVP1ytm06nUmmos3rqBSHhImU6nu6EMOtoQeWG+3yoG5T63QVh+49GYf/Pf+rf5c3/O8kdf/33We462MQR3Sz6S4XG8gE5kuQLtaQm2i754MlpwtHVH13j+6BvfRasxV5fX9H3NeDzm7PyMi4sli8WC3jqCSgiDxU5aUm1GnJ0rEqM4vFOSFhs0LeLrGJPLETzL+4CzEU+J/q8C9uYY5UkShXUSJmlMSlFmeOfo7f8KQjZEphClZTGWWuQCAs4prQhqAIqi4XOcLuRG/JakOBXviPhT8Ve5CQQYi88wrD41HChqd9gO3xfTdWlO8zznRTnpwPYD2G63XF9fx+ZZooyLwkT2liRvBd/TNC3zeSFeeOUBWXYvmieraKCaxFcbvQx2YGQs4JShzKc439G2woqaTFMOD0vu39+PZqjiT1IUY/ouZTZ6i6vlU6rqhDy/jRFXCtpuTRMaYMLyqpOGPnohLJcrFIY0HWGD4/T8CZv1DQcHE8b5Plpn2CCLxzv3Ah3/h4G94RrdsqTi9X1BsTt83Q8R5BEoVEq2ChcZghLbPgAUKkqqpHlPjcF6mE73UGbObJHQWfFC6zsryW5GE42uePLkCW3XSeBGkqGVokgLdEwim+YlR/M9TJLQtg1d11HkwgZKI4ujt4qTk6dU9ZY0lddYVesXZJCSYGP7jjTJyFKJuC7LAknAVUiYQEqRzjjYe43F9AGX1x9zefM9ersEbRmVJbaXlNHpbILRSJEeablZmqOU+IikSYaOG1yqExRplLFZpvM9jBb/m+FgwSuKfMLhUUKRFzjn6awwadtuRVVvsH2DNiKDKcpyJ2lMkoTRSLO/P49SeR1TvmQday2TGWcdSSrSIpFfdxIZH2n/WhtG5Ziub2naRjxTvBKgUKfM5wecXXd88jOfpqobvv/9j1ltC5abmslkxqbqcakni+lMXiW0veHi5pKnJyecXi25Xm7xXmGDp8wLtPLYvidLEwKaLDVkabrzqRQ/mqjXUQqTpBhnuXN4h+PDY558dEJve87Oz7h77x5/8pd/mdF4hO8D682WrO/RaUJdN2R5SdtL8pJJEhKt6TtJkz09PeWdd97dFRhDGMlP/dTn+Sv/3V/h+9//AV977+uY5Nbv8+LiCuXhM5/5HFlesLpZcffogEjh40Ubgoikx3sp+tD52wNw8K6wkW17faEp9assFu8ymiZcrz7i9PwPabtrtG4ig8mIoXRMxvZeZDTOW2Eo0QEapcbkaZz2p8K8BjETr2thDcve68R5TmkUGWW+j+21eJKElL3ZS6AalpuP8L6LQw+RLwi7uIQYvGCdjWCyouvE86Lv27ivtgRErmmSTApiJ36NzjowGq1BBQE/fAjoVKMIWFujVCIhSMrgVMnpZU6aH/Lw5Tf48Mkpz07g9PSExEjyaFlquuBRWpjBeE3fw6hIWK56jNpK2nOeR1N3S9t1rOqKdWUZT+aMJz3KJCIhTsUQP14qEh3ompbPfeYdXnn5ER988ByVZJydn3J5ecE777zLl77486QmY7Nt2NY9WdZSlDWrdSX3e7BkeUo5KnEe5vM9qu2G8bhkubnh8mJFYhJWyyUQoq9hZNG5gPKaL/7sz7Jcr/i93/1NvOuwnaNve9IUqqpmPB2x3XQcHj1kPJ5xdX4ZGccJ601P37PbD0QC+iMee/F8EBa+vgWxh6+/8N+LZ7vRBoXsOVmZcnr2jLpeE0JCavaZ5a9zdO9VinJMkmQkKLzr6JuWm9Vz8rQkTSZYV9P3PW05YbvpqZoWbyfsLx4xn49pyits/z5Xyx8Q2JAmISaiyZrUKu7XQeHi+2xbi/cpSTLCaIW1PanJ8PR4B8dHj6L8qgEc2gxgppJ7pNijrS3dyKJCycHiVayr2NYnXJz3nDw3fOrzX+H0OuFq5bi8WuE9tJ3i9HyN71sODyaUxQjbtzSE2MwlqMYIm8VKXHNZZswmU+pakxpFUeSoJKd1gY9OLnh+dkHjFPcePmSzesov/eLPcO/uHb7/3Y8pyzFnF8/57vfex/Y1v/orf5JPv/tp9hb7TCZTyvEE6zz/8B/+Jv/Jf/r/YH1Tw9RQ5JrNtqauhU1kkoQsTZkvppw8/5iu70mCxyODoa5r2NYrtBafQ++FeSwVRODevUf8ws//Gf76X/tr4B3Vditr2YsCIEkTkqSiKBImkzHaBCbTwN6eoWt7ilzRdh0Xl5fiBWrB+wznM4IzrFfbCOz3jCcl+WhEU4sMcLVZUWSSpF5VFegUabpSAgatRygyFvMj1usbtlWLzgpUBKv7XuRPbdfgvZVGLQQmkylGD4NwEwFtUVS0fU8aPXqcA5PKGpNGF0BjLfRdR5aK55CcP9JsOysp7gqRffeuY7Ws6FqPtT22D0zv3uX+0Rfx9gBtxGRda2FdJalis6q5vHzK66+9g7eOq6tLvvvd3+Xjj89Z3HkNp6asqnOsW1OWKUfHx7ig2NYN9x484vjuS/igqbYGr8Q6R+uM3no2m14qdRUTrR1oatZFx/7+nHVdcXm14t/+1/818nzE9777MeVoymqz5mtf+30+evwBn/zE2wTnqTcbGBUU+Yw7x8eURc79B/d5+uwZVbWWc8r2LFeScFttKvK8YP9gH6UTNpsNF9eX9K5j01SStq4MddNQN1tCcCRGURQZzve0XRNN0G/3LyHKyHp+4823+PSnfpq//tf/Bl/++U9SjlqSFDQBk4EPGhs6dJLQ1I5qbbm5qnBW4R2k6Q3basvh4QF9a7C2ZzotyfKUZydPQAU6Kx6Yrp+AvkYpCQw0WokPa3CkqaHrrQy+dUx0TAw6Ag3BDWFdmqbpdooUkwhgYpKEsijIUsN4MqLzUgeHtkejUUr28zQdmlkB3sRyQepURUqmCybjOZPRlIOD++zvPeBgf5/5YsFsPqVpWq7ObzCqIEkL6kqTZjkPHh5jdC6J3VLtIPFpsa5Dah8fHNnIMpod8/Dljm1VUVUtl9cr1tuKtByzt15yc33Fdlvx4Q8+5Oj4Luv1ltl0LkMlZ+mcZZSkTMpSPCKdpzCeX/8X/wwvv3SfZx8/xyQFVeU4O7vgf/47f4fr60sO9qZs1mvxnzZJZN9K+nxT13zzj74lEj8/7P+Kpu3o+15qbCWkE++8BC20PTZonJPwyKvlFrXecrNco0zC4d4dHt5/QNs1rJZrfIDvfu8J9+8e8sbrb7FZrSI484IaTt2CDIQQvZzFzuFzn/0c/8qf/Vf4C3/hP6Gul6AC2qTU3qLxJCawXa344Hsf8vzjD1itb7C2oyhKNJ5yrCjHIhU9ebrla1/7iMSMWS97slT8xJLMcHlzzsXVBffvv4oNEpiESnFW04cGlJwTaZZSlCVEVdmL9cHA8BfboSGUg13t7al2OMAQsCN+tFGWmxqyXAbZhMDLL7/Fu5/8SRJTonVGkmUUo5LF3h77e3vcOd5nNimlt8hMrJfVTnkgf5bkaxlgCcdL0k/l7GIgabh4nsWfIZLkJJBUwEB56QqNKHPsCyGXooQA52C9aSRgybdyr+cJd+4c8fSjxzhn+a3f/m2+9rU/YG9vwWg8IS8K6qahKATADIBJNPkooSxHLPZnVE3FZrUmhCCBSL0MWYNn551MkOCXV159g2Zbs60bnLM01ZambUiM+GJ2bUs5m7C6vmE6mUTfPlFPGq0ZTcYcx9Tx3vbR3ioO+30k0QR16z2vNA7x5D7YP+D/9H/49/hz/7f/K7/zO79FcMIWjg7/AhS/QC4KXpRHzjkJdnWOrumlv1CBJx89Z7tucC7j1TdewySa0ahku92KL3PXstmsgSDyXFJCAB8sxpRcXxkSNE1d8dpbr2DdBWliqNoa6ytMIvu6Ion3okGh6KwEBeZlhmSzenzQpFmBc47xaMJ4Mubs9FYh+f/v48cG+FQEzLTWePfCzRipwgN9dYiWN6kCZeTriSLPS5q2ZljMwzTzlgWnf4hJNhjYD5OcQU76YhyxUmoHXBljdiDU4ME3PI+1VswzjeFWRjt4pcjzjkYjmYZHRHb4GSLLEOLWrQajWnn9fd8hkrkUxYiX7/8043KPql5xffOEtj+ns1dY18jiUSnT8TF1u+bq+owPPniKdQ1HdyZ4F41qCWyrLVkise3WgkmN+BI5hzYJZZnF9N42ov+e+aKkzKcYU8rzWJHlucjiG/4brtOLYNwt8zJ+7UcAPmFBGinHw4uyyWiGz63894eeJwK0wVvaTrwGjW5JM0M5nqC0JssS6roSD6HEkaYJR/cOCV6MizNt0PGmNon8/vZQgLI8ZDqfkCRaAi6cYrNpOL1ccXbyMSgxAm6bHmN8pEfp2JAmTCcFtne0TUegx3lhUWqdkKQ5ebogUccczt9mPrvLqDggTXIubr5NYIUYQCvQsqa0Vihndoew25nOK7q2IwRJFtImQSthg6SpxuiULEvpujZew440ydFxbW/r7W59CzAiEvSdoTyKohgxKsfs4u2RpsD5gEkEmA8o8BrbmbixeqztCN5iEkNiMryC2WzOarViNBoLZX4ywnmHc5YkUXSdZ1we8Tu/+33WjeG9995ju97S9xlel2SlYXl5xGuP7nB8sGBSjuhty9X1Nav1itVqzWrT0FjFcr2hyEXCmaRyT89nU2GfRqbuEMzgQgDnokxX1oBWiqaq+NTP/iQ6Fu9NW3N6dkKSpGw3W2wncnxjUmwIhKYVZquXQzovxpRaYa2jqmqStGAynjEeTXD2bLfeA57xeMyf+tU/xdd+72usNyvxdZmMODo6Yn9vn6ODI+7cucNmtWKz3dK2rYBILzxkj4tM15hcuMNGXgBJ/Au/T9OctvOs1gplRij/kId3jvj42R9i0g1du8L5Dmc7Ktsgl8qjjaTDhhCHLV1HUZbkeYK1wgpIMyMAb6dI9BiVaJJE/EuMkcn0cnXDjdsyGV9Rd6e0bcPl5Rn5yNH2DcELo9YGjyIhMQVFPmc83hNmYHVNa69wQVhvSkGSjOJbVj/C9JLDX5peBbjo7SPSPu8trhdJ8RACJOt5zOmZ4h//wYf4UPK1r3/AzcrSuRE6K5gtpmiV0XaKskioVo2wcE3KZDJhu+1ItGdcjBiVKUFLWIN1gd4Z2tZwvdqwqVqyTFh8Q1CKCioyG2RMG6zl53/u57A2UFUdKMVHT56wrbd8+tOfYb2tMHEiKEynnkArnk1KU7ct43HB6ek5k/FUDI0Ra4zj43vU2y0ETxXBCmE8yxoWL2M5M//4V79K39R84w++RtduWa3WKC0SQLTCecWonKN1wmI65d7d+7vpa123EBvGgWXx4pBoGPQN8uQXi3UffYKE7ad4kf0taWISeLBeNaRpRpblrJeBR3df5nj+eRK1h05y0iyDyNbO5prN1nN28TGvv3bA9XVP1/dkRUvVVGTFDI/h8npD2wcg5WD+eYw+IssrVuvnbLfntF1N13QyWLAStCBNq7yvqmqYTETi5b0mIOy5ru1ZL1ucMygyTKJJ9BQT2a/Xm0tubjZMJ5ds2mfUdcPN8pIks6yWmu/8Yc9rn/gyjz+0PL2Q5PDeOrQxXC9r7t7ZJyvHVE2g7Rz4FBsQD9rIxu+jL1CRp4SspF97Mu2ZFIbOB86XK04ub3h6dknbdahkjG97DudT/sQ/9ceptzVV1ZBlhu9979ucnD7l4OAOr7z8Ftt1T9/dcHPTUI425KMxSuXRi1WanK7t2WxbMf1X4q/56KWXaRvL4eEd1qsVHjg+OuJmtcQ7z2p5HRM9xZs5qBDZfNDZwFtvfpL1lxv+6n//39HUW8TYF5RqYvOmabKMZusYT8dirN1tqJuesgwUeUHfudgIaAIFIYxou8DF9Rmj8ZQsLXB9ElOIPW1r5WtezNM7a6nqLdPpPmVWSL1pUpROuFluxYA+yopCbGqEzSH3vHjwuV0NJJLcyIzQmoH1qtDR/gCMUdGSo4n3jdh5iHxNi8dZtKQIxOCYyCARr2lFns25alrOz7akZUpRjnl+cs2kXDMu9kFJsudkMqWzlrreYtKMYpyy2mzYbAznlxXf/u4J+WjKN97/DrO9PbI8J800V9cr2qYjy0om0wWu85w9PydNR+A1QWtcUJGtLfYsQupU4LPdAIt0RNAlTz/4Hv/8r/0pXn70iCdP5HnarufDD3/A97//Xd58401+/is/T7Nt5DzebgRgUZrL6xsImulkxHLZYL14fDoE0FittxzlIwFijeN6taH3csbeu3efxXzBZrUhu5NgVGCzWQmLLzIy2qZ+YdAme52wB+V/tu/56lf/JNvtlr/1//kbvPL6jDw3pIkiTQ2T6YJyPKFpar71/kdcnDX0rTDUiywnNeLp2dUbylELqmO+11MUJSfPn6O0iknEGeX4GOcu4sDc0Xc9RVlQNzUBhdEGnQ7Mf1EehCBeytvtRiwnyhEgHpEBxEImptaORiP29oQh2XctShmMFo+/BBUZz2pnPQSaJEvBJ4zyfd595yd59aXPcPf4NcaTsQzYUOhEMZtPmU6nLG+WXJ2/x8XVNZ/5iTd46eWXJazJOyCDoGnbPgL/NvqGd1GOaHFtTW87vM5RacF4MmI6T7j7IMH5QFVVrFZLlleXXF9fcXFxTgiK2XSPDx8/wQXQiWY6nbDY20MHT99uUc7yz//zv8w7bz1iuVxzs9ywv3/EzfWWf/Sbv81HHz1meXMjgNmgFhNmB8E52qambVqefPQkequF2DtqiqLk8PAA56UnyfMc21v69QbnAiZLSdOEO/fusVzfsFzeiLd1kpJqw+mzZwy2OM51uK7hyeMnaAXT8Wj3Wqy1GJMKwSJK4Z3tccHuejMI/NyXfw7vHP/Vf/nnWW9XWOuxfYfWCcH1VJsV3/zmd3jppQcs9g8iWNhTVyu2XUO66tlWa77zrVO2K4/Rju2yYTwaUY7GjKY5V5dXXF5ciCrLdZJAjyFNF8AWpbsIJPldVz2sVaWcDCy0fqGGuK2TB8LOzjJKqwikCRlfwD61qwuVCsymh3z63c9TFgu0SUkzGZQu9hccHx3yxuuPmJR5/Eylz+h78fJzToLwFOBign1APLCFpSekHhc8caqMBDbF8DGGa6/poyVPGGrUCKSZ6Bd42wtEGb1XrNbbaA0kmQdHhwf8m//Gv8HN1QX/8Df/If/oN3+T5XLDbLag7z3Wi//tu+9+jsl0KsCk8jRdhXdyT/W23/WNKEXXNDjvSXSC8x7Xy+DXGM24GLHZVBweHcnPJwa0jvYrMkjerNcsZhMW8wWXF9eMx1MUiv2DOZ/97Gf57Gc+vTsDlfI79qqLey1ObFEG/MF7T287ur5lMh3z7/w7/y57iz3+zt/+W3RdHUEJIepoE8NdA5HF2ULw5IlhtVzGHlrANmsNZ+crwPOt73yL+WzOa6+9Rt/Barmh7yR4cjQqubyqUEhQWQiWohgT+hSnPcurlJuzffYPZ7TVFdu6k5C6RMLP0rQQLChJyMuC3kK1rZgrISZkWYKNTHuU5vz8gu22wvZH/LiPHxvgM0aTF5lQLJXFGKHbDlLHIUBAGeFtCy43sFB6mq5lu93Q932URLooO0l2HlbyN15gBwSEypsIMCeNniRVdV3HZDxlvV5H779Bf2/ipnfbTEuy18BYE7+nJBkYfskOiAlB7YAEGEAqAd2G9zd4WoBsTlmW07UpWTLF9TlPnjzm3t2UVB/x6P4dVuvnPD37Ot5/TF6MKLIZSbLHer1GG8/iUGH0FK0MbevYrAe/gTFpkuKcZrOpOT4co42kJvkgshijE/K8BET6GZwhz+aMyhneOzE5jt5axOvqXTQHDXLjDTLbHS8xcNuoxocCLMMBp/6JqcuLgOHwvaHZHGj9eMVqtaVPCvpoMlmWJccHE+4eTjH6SNLhUrnhjblN2fEq/BA7VBiikqY4vJ6ut6xWG05OnnFxuuT55RXjcs7x0SHXyzG9a4ECHRZxTVpS4/GhQ6mUu3fvRJZnH42wxxAknbltHCpzXFw9B2CzXaF1Rp6N2FTXeGdRyhCUizLrBEWBJo1swRbvW5EBR2NrKZzA+54sS3ax2TLRiBJGoyNo6naF5vDaRQLnd40vwaF1Eg+bIMxDAm3fxftXGoK+bwkYjCq4c/QIkxRcLT+mai8ZUks9gc5azs7PUQq2dYVOUtrVFq1yelsQ1JTOJpyc9BTZjDTLKLMJ1bgRk2rB92k2N3zw/S2nzwpG5Yi27bm8uqKuKjbVFusCTeOom5bO9hgtU5DDo2PyokApmC5mOAd9ZBUFJbN0hcakCUZpXG8xKD776c+wXG4kmWu9ZbvZUBY5dS2+TokRQM96HxsrR54XTMZTRuUoSkcNx0d3mU6n4mXpEd8oxC9PpnqO+XTCr/6pX2YymYj/Q7zfuiiFubm5pq4qrLVCyy7KHS1+2DONTgSoxe8OO4bhSZTA7DKtgzR6zjmsazm72LA3P0T7Ca88/Fl6u2a1/YiT82/jQ2C73uLxNE1NWeQM0u4szWl76F3F1fWS+WKEMYquk/v14uqKJEnxriVNE+ra7YYmQk3XrLYb1vVjtJKGtaqlUcenqDBhOj4iTWe8/tpnuXP8Gnk2hhBYrS94cvItHj/5ffr+iqAqiJM9owU88IEIRkqwDfjo2SbTTh9ClIgnKJUQQhrZeyldD8vlhPf/aEXfFgRluLq6oWl6rF9TNR03FwWL/X3G4xGjIuf89BnbzQoVwPbudkIIjMuSg8N97ty5QzEag07ZVC03MRVd6ThMCgKomdgQqaCwVcOrj17mnbff5upyibOOTbXlo8ePRRZVNfRdj9cehSNJBLgLOHrb4oKnKEYUeUmel5LmmaSkecloLJ6OSucUWcrd4wdMp3Mpil3Y7e3DQaqU5ld/9dd4+61P8MEPPpAJfZkxnU4YTcbM5gsmkwXT8YzFbMZ0Oub87Iy+d1xd3UjKppVEZZTaTaL97gwQViq7ozvEwcKLoDXxMzU4q2jbXhhdXtHUluWqZrXt0Trl+uacvXGNyeYoDHVdc/fuXay1WNthdIJOHNv6jDt37/Pk4xuenrzPZHSXLNH0bcdoNKbtambTfbROmU9eZbW+pCxGdFaz3p6y2lSSMt9W7C0WOCcS9jwv8PRsq4aua1nszUSuHRNhr5fXMoxpK4qypGlWqBiGY7RBa8tyU7PcfixNFIrtOuPv/93HdM2Cf/yN/4HKZ+TjQ44fPCAtS1QQK4SLswuU9yRG2KzBQecgqMiyjmqKxCSU5RQfCjoXmc9pwqruubpe8/xig3MjSWa2PVW15F/49V9jPpvzvW8/Ic9LlqslH374AUZp/uyf/Zcp85K+s1gHvrUEGoISCapJSzbVDdXlFa7vafsgqdhoymLMxcU1eTYiTTLSGG6iSEgTCYjyjnhva/quj7Yusrs576nsls9+9rN0bcP/+7//y/FeHEBjsJ2V/3qx6+h7SznK2FRb8lHDwcERHz9+KnWq6iAoDCO6xrC3d0SajRiP5hzs7/H02Ue0jezBbSvKEa1TtEnY3x+R52Pm032urrYEbfG+p902zOYjHIa+dzKRH2pfAnXTCGCXaPKioHeeLEmk5nJiHyLBGAMLRGSPZVmitIq1cYaPYT7eW2Fm4WnrJgbFGVIjIUUOjQ2arnVkrsSFObP5nMl0gklmjLKXyMoJxWQknm5YrtZngCRUT6YvMxo/om08aVFz58GEL8zvcrPeMrlecXW9ZDSWoff5+Yp6W2PtimfPTlAY8nzEnTv3MWlGkuXsHR5S5CPa3qLThCEpeGjm86JgOp9xdvaUT73zNj/z059nebNmtdowHs+5urzk93//d3n+/AmfeOvnWS5vhPmnNTokwnBtarqmjkoPSascmEuyzygZgvWO1fZSEpabmiw1HO0fYoLm5nIpzOwk487hMfPJmNXymtl8RpIK+0cTcK4XMCZ6KYNIyp3zGJ3yz/7av8R2u+EHH36Dz/3km6AsRiuaynNxXvPNb36LauPoe2FjpiahMuL9OR6NSHSLtwqVeOr2mq53VNsVRgmJwjuo6x6tLTas0HHdtJEFOoBOSokKIwQJMrExwbgsxU/cewnbcEGGooNUDhTaeMpRiUbRdy2jUU6ngzTy2AjAeHrrUfQYrdA64fjodX7ln/51jg5fwvYZm6rnZnsW6xslzfizE0ZlQVHkPHrlNd58K+elVx4RlGJb12zqhrbdRs/olrZt8a5n8JALXuSEKoiEMDEJmBSVCmtVpxlGGw73D3e1klKKpqm4uVlydX3Nvfsvcb28lhrLB8ZpwSgxHN+9wxe/8JO88/YrPHt6zvn5OQcHR6xWNTc3S77xja9TbSu6TvyyJXzO4AliV+Og7aykYiYZRkla+MDgOjw4oCxKTq9vmEzGGJVhkRAcuf8d49mCum25vLrCJBoXBPw4Oz9lXJbY3nLv3l2urjeEOFhXwdPlKdPpTNZl12GVxUb2oLzP4eyP6epNg7eOn/3Sz6FU4D//z/88m+1Gwu6i6s2YnOfPL3n+7Aq0IUkNRZEwm5dMJjlp4vn+957RVCHWXBZrYb2Wukengb4TNmmaJfS2i8BZiu1NTJbtpXaLYZp4AfUkWEXINjp6Zg595EDcGXoYGCyjFCYGzhwfLWRQFCKgZh3jcsEX/9ifYDa9Q9Na6m5FVo4pypI0Mdw53mdcZpFFLuC4nKkydBZGrNux8aT/lxrd2YC1UQHmw67GCUrwARe95vDySXsGJmAMuoxCRAlKcbFuUrK24r+xqSo5+rww1qbTCfPFlFdefsinPv0pPve5z/GNb3yTg8NjFot9xpMpaZaRZRkvvfSA/b3pDowLwb2g4pNe2VpJALZ9L3/ue/qupa2kD+vqVmwEuo6m7ajbhrZp6W1P7xxNW9O7nt52GJVw9/jB7v0dHh3wK7/yJ3j77Tf4zrcfS33fW5ztcM5Ev/GBRKR2ve0w7LOdo3aeUTHiX/vf/+u89OAR/+1f/m+4vrlA3AlEtTUQZ4KSNdEDmyCe4sM+FILGOqkx0lTqsNV6y3e+8wNh33eiELp37x77ewsuLwX8ljTohrQEk2n62pKkOc+fn/Hm61/C+Wu+98HvEbymqTvaxlKWObZ38u91PaiEcjSl2kpg4Gw+JcR91hhJprZ2Q2Lm/LiPHxvga5otTdOTpRlJGoXk3AY1dFFOmSQSke2sJcSkS600be9AB9JcGEp5UdB3LRdXV6RpFlM8xYfhRTae956c/AUACZwVv6m2SSIDYAPIVHXw3hs2hYHhNzx3mc+FidFv0EqT51PadovzVTwsk2gEKVNgAgStUEZkYv6FTUeMt3tUmKJUhtaBTf2Ub33/I/Gn6u9htOb+3Xf56Pkympef0ten7O0dkmcp16tLWfzItFoCQmSS1duepnF0NqXta0K/FM1/AK1SQNO0lvOrp1xcPqcsAtZm1I3FhRatS5yNh3m8gYRNJ42Wd7eSXbiV1Wp1K29+8eG4DUJ5UXIlNNlb5t7O1y82gUopbO+5vLrgj37whNOzKx7cuUdeaA72RvziV36WNE1YrVfsHRxQVx3rzZr9/QV953l+espsMeXo6IAnT57jXMNLLz3iyeNnONvz9ttv8833vyesrWZLU7c8f/6MUZEyn89Jdcps8jLnpx+QaPEaQyVU1YYkHViYS2FRKIUOGtv7KBHs2W5O0eqKm9UTTi9LnLNUdYVJOtLM4y0kSYa1Hq9Ljg5f5e7xa8znh7RtzcnpEy6uP6Tpz9DaIpIQLRJGLxRj20sKnhQqRgI2uh5jZAMaQNNB3mmMRptbEFWbeIiiXgCsQzw840QKmeAMcvirm1PaxlF31ySZNPB11VOMZjibEEjJy5Iky8myBUl6BxgxSycYU7BPyqOXUz7zuY62d6RpSQiem+UVve13jUrwYceGHe5hb53IGGxH07Tio2GlQNhsNoQQaKOZdtt1FLmELtRNQ7Xe7NKXVLxnstTwybffIk0Lnj47Ybvd0DQVdVWjgMcffsRkMiExiaTWyoKX4j/LeOvNtyjLEdPJlMl4zHQ6ZTafcXCwR9PV9L4T83Dl0EEI4847lusl23ob98JepKQeeOG+ct5SVxVlnu+mvMSBgY/J4kPoqJx2t/fc8LkPz5XlKUmWSRR7yOgspGUidPNty3T+Gm++8YDvff89PB3b+pK2rUkykXj1bYv1kjzrgwMD261D7HwCSWowmaEPElDQO0vb9zs2aB5ZLWLLQJTvxGQ+C2U+57Of/OMc7X+CQE452iMxOauNsLeV3ueTb/8SWo/52nt/GWvXJCbgFaTGoLRIsgXYczgbyLMpWZKK5wwaQyFegMmYNJ1Q5HtoRhASbPDszUfcv2/onKfpJBjBWkvb9bRdT9fLoCgE2aPsO2+yWl+zXa3lcO8jg6CVodTp+SU3yw3WOdJ8RD4egRHZkxQPhvF4LN5oicGkCX3T0dVbvvzFfwaC4vnzc7qu4+bqgvOzM2zXU9cNtu8JRpKUnVV4b/HBYm1NnifsLfYpipwsyzk6OmZbbXitLKKvk/gVjUdj3nzrbQHPtKHpOlmC8f3pICFZmITP/eRP8bNf/nmMklAMHxyDf4/zQSwAuoaz0+dU24oA3FxfybUPg+9ePBtekEqoOI4PDEMjqbcF6Ivfc8QhggRf+L6ns47EpFzeXHGzWjIaj2kbzw8ePyY13+O1R0do5cnLnLOLc8ZjsR7YVDU3ywuq9ozr1SWXNydstzd0ruXtO/eYjaakWUnTdGzrjjIPNM2Wq6s19x7c5+WH93j/279HZ1c0fUPnPdfVFoVC9z1pbxnlBX3Xo0zBZmPRCnTiKYoEkyisc5hkRG8zApmwYM0YY/YIJBTFOFqTBK6u1lxepiTFGzT05BNQDtbbcz78/hWzxR6HB8dobfj+dz6ibSoIFqNDtFUQdunRwSGjUUmSJ0zH+6QIaqSM5mq14fy6l4RflYj/npemsK02vPLwLl/6wk+xvN7QthZlEp49e8IHH/6AgMhHbdeJ16WR9dV2AaUrrA/k4ylV19K2snYD4JxlMpmwWa0YjabY3jIqM7I0psAmCYfHd9hst/SDsX9q8F0rvr02DP2ONB9Nw5e++EWMUvy1v/rf03WdNEeup421XGctdtVzcnGCjx6Pz08uIMCjBy8zm825ONsQfGC7rMjTkqDlXvVO8dFHj6mqiiRRO3CyKEup+Iyh2tZs1jcsb67pOkVRTEhTj3Ut18uN7KfpTAZ0CvooNUvzjLZtcb3DJNJkWCv1VJYn2F7q1vFoLDLaIE37pmoklRyFU7CY71NVW2E354a2tyRJBiojuBKvpmhdkucj5vkeWs0Y5Q947ZWU7WaNtY4kyQR4S4QNhknxIceYSQxGUORhCijKsWIWGZVyByNndVB01tE2LevVkpvrSy4vzjk9O+Hq6oa6avj48feZLRZMF3POTy2jyQxlUtI8i0xDHV2WAnmSsL65ZpQl/Nqv/gk8jqfPzyiKMVVd8Z1vf4sPH39Atd1AcKhg41EowIpzwvDoXYtXPUqHaBXkRVkQRCk0mS3EtmC1wnateFe2DaubNbZfMplNmYxKmrbl5NkTvJdgCms91nUEFVBG4XsbhxICeLlghUUZQlRgFPyL/8L/lv/Xf/1f8Tf/5t8hTRXjkbCgt9stTeN3DakaBh5K9s1NtRXWTHCMxzmpSUlMRmc7Ei3Se28dISRIuLLDxX7Ke5G9ic2M2A4Ne3DvpTYxRoKf2r6GoHBevHZNrH188KAVWenRxhNcR5mnZGWC6jxGKVIje1qIjKREe7QJzKf7/NTnvgJhzPn5WkKBtEYZFRVXArSA+E1a66hVT5rWXPzBDcok9JH9KjVi9DGD6IVoZFCWiE1OkohCKkuz6EMpw2rx+RM2pELd9p9S5aK1ore9PG9UfiWJhE0lmWFUpuADaVqQ5xPaVlQ819dXLJfXEALTyZTVas3FxSVFXmJSIVX4pkU1LetNhQtIOm1TE/AcHh6JR3jdgDIUxRTnoG6l+bfBk4VAs91y0y0FtE8Mk/EMjWZcjrk8PydJ5PPqu068u9OMNE148PARDx68hNIGjzD27I5M4eUOVjJ0I67d0Es/8KUv/hyTyZi/8Bf/POcXZ7EGCAIqS/Kb1GEY2iZwVm84Ccu4hhMBIp2j7XoUmvlsgUk0FxdnNHXNdDImTYywtILB9TKEtH2UrcYpR5IkqMTQO0uWlpElb8WTOe6nQzkcK+EfUoiBEAi00dzZ22NTrWOwhSGEhE998su884nP8eTjU779/h/RWc949B2+8nNf5uVHP8He3owQ01BRMgBN49oNHtwLJBiR6AZcL4CfN4okle/1zqGdWB/F0y0y0V5QyoV4wg2/Dv1cGAbJfrdmFbJmbdviyzwCfEIoWC6XtI0oX1569AiT5FxeLXEBOmehFwLO2dmFMMATI3J8RH2XpgmJNhS5BPD5F4AwGaLEYUm8e3cAXAQah3rSBaE2uqhEC07tajyTaMbjgvl8RNN2VPUW6y1GGfEzjt78xGDA3SUhSOJ4gKAUne/orWM6nfJr/+w/yx/7mT/G7/zOb/Gt97/F2dkpdV2zXN8Iw9fKOSqM/D5iNLdZDSE2VwLmCRZUb5u4vjzj8ZRf/MWviow+WGx8TV61OL8lMYFGeRSG7bLlo4+veOONY8bTQ9YXzwkoOmc5vzxDafGnT/ocpYwM8KM1nPU1eaZRWvb0UTlBG1E6/biPH/sZ2ga+9f4HvPzyfWbzCYPmfQD6RJrgca6P7BNHCFZmCDolzzPaVgCiSTZGJDo5SoskMAQXE18Do5FEeadp+kNS0oHOImmkAecrrG3ETDXK98S7xMYfl03/lt4LKDmce+vFgNVdQUgwZkqRTmi6ir7donWIoKPZSSGJjW0It5tN07QkWlHVqx3rZjSacHHzbc6u/gijJR2xtxXOW8DR9i3vv/9N9vbnBHykqkuCUJZlkpAG2LoiSeYYHSPNCRgVcN5gkpz59A5Pn5+gjOL65pr0qKSuPV3nEWaiiZKDNrLAIkjqpFEb3sOOTWTMLYvrBbn0jz7+CXAvspteZPHJN4mSPc3V8orHj9/HbrccHe0xnYm/1vXymienJ/zh17/N3/nb/yP/4X/47/Pee3/E3/ybf4P/4D/493j84TOePb+kKEf8iV/6p/hz/5e/gDaO/+g/+o/5r/7L/5rt9ob/+D/+P3N2diGyCjqul1dstje0lTR1s/ke89keZ2ea5UYkjIvFGBcsvpdJQGtXJElC37ZkaUrbdWLKi9DBPR11t6Vz0R8vk8O07QKKEQfTN3jpwScZjw84PnqZNJ1KEizw4N5PUjWn/NY//h+4vP42ihatpflKtMgeBrlFwKCCIktGONfj6RFp4q1MVZbiACDF1NVEXqvWMjHfFXJOGB/iK9XGQIqevm3YbFbCvmrWjFVJ01iU2iOEu8xmDxhPjsiyKYmZoJIJ1ucoExPUgqXva54/f4rWCKiuREK9NxuhtJH3E0RWlOfC4lBxOm2tk6lt10QA8tbDMUQvCpDGbphIavUCRR4dN1ORzkwmY6aTEdc3S5ku9a2YTWu4vDznG19/j+PjYx4+fMjeYp/FYsFoPCYvcz73E58liczgwURaDo6eq6tLkZh5F5PYblmqcvBJIiixgFfIHqUhMl4DLgRhNQa3O9QGBhQMzrZS4L54j/kQPT64nVpVzQ0HR1PGownrZQsBzs/PSFPN1dU1TW95+NIxe/NHnJ5/F5MYUlKuri4wRqaltaqp64a26VAqYzbdI0tS6maL0pbF3pjZomDwYFRqYEfI5+mH2Peg6HorvnhK0fWBJAlcXF9RFGvOzh9TjkYsFvs0dUdd1Wy3FfP5gtQU7M3vc3Z+TeuruHd6fLCgEtpOYXTOqDgkSQ7Jkn2ybEKaj0EVBJ1jkpIkKYTd2XZY60jjPZJHAHjwafSIDE6aosGjFUxi6LpOjG5D2HmGOq9iInXPkLjZWyuJ07YjKGiqlvV6w2pT0dYtdd3Q1xWJHnN4sODNP/Y57t+5y0cfPZcERydSs+1mzWg04gff/z5XlxdMxmMxFsdIqacVVd2wf7DP/sEeeZ4xmy8oipLxaMRoSO8elUzKEWVZUJYFq9VS5BSxEGMY7ARZRc53XF6es75ZvjCoienqPkQWjJOpckxuVsBmvd6dEdKMJHRty05GMwwUYoG281iR1YOK3p4hSGPZ9Q6Lp+s9bduQZQ6T5hhdcnXVslo24BN+72u/w8Heu7z5+iMeP35M07Q8f265e/cOn3jr0wRzwUcff4O623CzukIpuH76PuvNhi98/pfZK+5TFClJknF1cb5jsT558jGvv/mIO3df4Xz5bVKVEEzKar0kTTK8DyTGcNFc4HrQKqMoRsIm9x2j8Zh7d+9R5HPyfEGa7TEuD9FJJibeYQJJR5pmMYBCc3wv0PeKuu3oOvEn67puJwlqe0vbdtRNx0t3j7i6vOD6+gzveuq6p2k61ssly8tLRuOReLeUZ0z3DkEnKGME8NCGg/0jTCKAiCIQnMV2NX/m136dMs/5+KNTvA/U1Zrvfe+7XF1dMi4zuqZBF/nOCNtoR0pC3xtQHhc8N6sN1WaF8rLOiqJgMhHp62a7ZTYrSVKNSsQrLy1KHIGsGHP33gPG0ynqXIzbNeJ9qFBRryXnVVVVfOELP8O9u3f5+3/v73F6eioSNI2oFoqUcpST5hnz2ZyiKJhP58wXe7z68quyr9GD69hc35CNalSq8b5jubohzzT7+/s415EohfOOqqpo+y7WjhpCDGLKpfZquy3Wt3TeiV2NUT9UP704gLvdw2W9+8hE7vtA1zkIkuhsQy+yMiWtXZpm2N6yvNkIcKlSCrVHoufopKTIZ4yLe8xm94QRjXgxKpMwmY+YLib8lf/2L9FUDR8/fcbdu3c4PDrgtdfe4NFLr+K8MI4Vit4HnPW7M9dFph1aRQkRyLhQxzN4kE+KR13XWVbLFfW24vrqiqfPT3BIgNLl8obLpo1+sJAmKbP5lMRb9ucFf/pXfpXJqODJ4+fUdYtWKcubJe+//z43V1d4K02gMDG0sLuDBgN1U9P1rZxJBKzr6Z2kfSqno3l9wtn5BV3b07ctRZ4wmUzJs4LZtGC5XDIdj+h7Sx/3pcV8n/F0iveB6XSBMWlkZotfloSfWDwCBgQUdW1JTM6v/9l/haIs+dt/53+kqTeUeYHSKUUhyb/WOWxMqPfOEYMsadqKTbViPCmZzxesV2vm0z2m4xnPwoXUOcHgnCIEhwsCqoDCxUbYR1sLH8E+YdgTpePIWaDiZz1YG2n5XLMs4e69GUf7U4oyYbW8prcdSivSRO/ODaK9h9E9aap487WfYD59JJZDotwjyww6+pXLs0fYIt4PIUAXE6CVc+RJQloUJEaR5ylpmmFMQpZLAGGWp6SZpFWmxsjAwGvSGJxoQ8CF2xvNxT9IHxhZVQxsLz8QgfFOAqGca2k2wrhrO0sbQ9H6rsWHnnv37/Ldb38LrQPf/ta3+aM/fJ+yGDGZzSjHY0wMzWiamnuPXiKJ6o0QHFlWUBQFxWhCUc7I0hzvHNO9Aw7v3qf3nSh9lAEM2mj5jFxPog2JMcwmU8pyFNngovJAB/I85d133uFLX/oZsqxk8BIP3oskdgDBosfZcDJ7PK1zOOv53Gd/mrv3HvKX/tL/kz9472vCVOwtKAFo+raTM1zf2mEFQGtLYm6TQsFxvbxiub5GacV0OuenfuqnMToh2Bii6RVNLaCLMqLE0jpgvZMEen1LANgFcnkJbgGir7Ew4/q+fyFsSJiqeZ7zi7/4i6yWa07PT3BhSbX1vPrqm8xmxywW8l7GZcnd47sUec7R4aF46jPs18NIQ2psZQQ8dEGklcEHTAgQs3IEtLMy8HVmxxJz3uODsJYFdHK0XUtn3a0nYhjqLCE5EM9n53uCj9kGzu9k6njpGZwLVNWWFQqlZbiIUmij6G2H3cjwQSvNannN6vqSshQFlCSbIIAmorjJsjR+plrA9Jj6q+JRjLplSAYNRqndz8m3k129Jz6dascO7vqe65sNp6cnbLZr8JEQFuLQIn7SQ3aBDCmCjASU1OoD5Cl79Yy7x3f55/70vwB/msg+bKjrLX3fU1Vbuq6jrmuqqqZpa0kUbmqquo5Bcb3437pBJiyvYzwq+Zmf+SK/8Atf5fLy5gWVZ2B5+ow//Jt/HT2d4ENCb+UKPj854ROffMB4MkNf5zRdDVrR2R6leqwLuM0mEgUsknasGY/GFHmOItDbjnKUsrc/ZlT8r8CDL00Tjo8OSRIFysmG4gXJlQmMJEY6b+MiEtnFYJKKFwNGpYwwoKKJclP3JCajHOUsFntxOiM33S2QJI1FW7Usr9fMZlKc+bAGJVIcgPF4TN/7KPkd5Cy3wJO8phalxWCcIIs0MWMO995gMX3A2eVHVOY5bbuVQAkvDaFSOnpGqd3Np7WwqNp2S5qOcBZ6W4EaNoAW6ze4kJKmBa6X4rWuWiYzSTBVKFzvSRKzky77GHTgrCHQ4THUbUegJmdC3wYSlXB28YQ8P6DIx0ymY6qmITUN222NswGTRJ26d9GjQWjQA7gwNGg/zMi7leoCvFB7R4YGt1OU3d/3WH87Xbn1YJK48LrruV4uCXTcP5zwg+cXbFZXHB7cwwXH46cnnFzecHpxzUdPnnB2dsHFxRUnz0/ZbiVlsWm2PD95hnUtXVNxcXHCtt6w2m74+Nkznj59inOezXbJZCryZu0txiRyeMUJX7VtCThurjekaYp1PZPpjFvzaQlv6HpPb3vxH4mMUMGXPcokscCUtKyjw3u8+6mvEPopXW/ZbFrSVHNxfkXXWYoyZ74Yc+/OJzg5+4C+u0JpizYKH+XnkiglV9pozXg0wTvLplkCimTwzwsCmFrn6LsObRLyLJX2Ogwx6Lww2ZU0WpC10LYtIejY8DvSVFMUU9L0DovZKywWb6GSPZQaAeJxopMClCQTqWBQPpAkGU+ePOa/+yt/lbfffouvv/ceSap57dVX+YP3vs4bb73FdrtlMpnx67/+L8tB4UXWELzDDjR3LwdEksaUpRB2LEQpcLMdgFTkOaMsJ0nEKNp5T99L4+m9p+8a1suKtm/YVmu8t/zxr/4CSitefvgSo9FIPLxSYQP64Ohsx2a7pm9b+q6X1N5YLLdtS1VvyUvxBgvRBFZmXGoYxgEDcxW5UyK4JGxJKSLarpOCNMi6kZ9Tu/tFpBLD4Tnsurfyx+ClWDq//Jib9ffYm7/EfHaHg/37oAw3NzckeWC9vWC9ycjyhNGo4Gp5SlWt42QusN5s6Doxr7+8XEFIGRUtRV6gdeDy+jkPXz7kpx9+FlxH01Y0dcvdO/eoKkkhr+uKPE8FPExlb9Zak4ZA017x4ZPf4eTku3R9NPONU/I0KSmLEadXitRA3S1BIR5YIaBMRrA5o+IBk8l9RqN9yuIImKPCCNHmmJ1EW6fiI/QP/v7f5g+/8XWOj4/58MMP+NSn3uXs/Jzj42Pmi33me/u8/sYbwmpJMjabQf4w+Emmu33QewECtTIkiUen8mE4Z8l9ymwylj1AC1shMyJ5TqN8LknlWphEo7xIi7ebmr4XbxG0lyCCkxOePX8GKLK0YDbbY29vj8l0TjkeSaOTphgTC6sYhqMCuH7wVBVQuWtbAQ6rSrxHlMg9gg+RfSGLSuQjAdveWjYMa02Io9JIKgJahd2ARsKhBkBD1vowRAtxmssgzZInkvshPoeK4EeIk3KApulj86XZbrcURcHdeyMuLpdcX22YjKYspndJU8PFxSm9rShHhvF4RtdfcnJxxXL9nCQLrLdLnHPUdcN4PKVqLvm9r/9NpuM7TEZHvPrKO8wWOR988D6b7YrZYs7jJxVJ6kC1rNfXrDZrscTwjr4F2wfKtODyYsnB/kvMpi9zcHDEwcFdZuM3GI/3yfOFXGsfaBpLlhqUiRPwVHyA0lQ81LKYLL2IRt0BFYNzbv0K1a6ZUvS2pe/FI9Q7zXZTc3l1Q7UVBtlyfcNqu8F5SSO8ub4QTyVlWJ6fC1PEeQncCI4vf+GneO2Vl3n8+BkX51dkacZ6dcPjxx/S1A2ZMdRVQ2IStPbxnpCGsAkWZ1uazRpcz3wyocgynLeMRiNm0xnGJBweHTOZTqjrmjffLhiNyt0kvSgLPvXpz8m9HpsfRZThReWAXEtPVzv6vufho5f51//Nf0vWewQmtJYwKaUViZGhjHXRqw8IXnF1taSua7R3+N6RAjpLSU1K8Anb7YqTk+fCyFRQFDlJJqye3vrd/U4vgGmaGupWQIE0UzjfgfKkSRbrzEE5YlAq/aGhso410ZBSrqLMejoZs20qAUNRuE72CuekMc7ykvH4NQz3mU1lr1c6papqqtqzWm9J8wytU7JE43XK5dWad9/9CaptzWuvvcN3v/cdxqM9lMmY7R+w3TbUVYt1fawBdCzzNDrRsrciAymQayNsMAVaPL7SNCXLc5z3HOzvY2Jtbq2LNZNjUzdcXQsDUgFJklKUOXuLKY8e3uPBvbtcnq+ptiK1r+ua9XrJkyeP6dqWPMtYLVds5gK0aa1IklwYI3XNtmpYrSrWqwpnA2U+gaAhFbnq1eUVKijmsz20WpClhqIoyLOcbbXh5VdfxmhD2/dM5/vkRc58NiPLMhaLBe+88668J++jzC5KYIn72NCsouh9j1KGf+7P/Es8fPgSf+tv/Y+cnZ5ibR2N+QcKRMBo+YMMmxwggGG/dCyXFWUx4lf/5M/HcLWACo5qvaTdLhktNEqloNROJtdbIR4kJpE1pxIyI/XSMBj0wYoaqA+MRzmj8ZibmyvEy3nEg5f2GKuEbb3h8vqCNA3s5fnOvsSHROxMtMaYnPnkDq++/Bnp4/DCrQwOFVKUE//IoBRJnqMTYdcJ8ywlS+TX6bhkXGaUo4I8y8hzYQBK/aewMRzEvgD0eifeh03TEtAykNOxD/HDQNSjgsK9YB0h5ImIqPqhrxF9VnBO6mjXs91Wko7eS5jJr/zKL6N/5Zf53X/82/z2b/0Ws+mCdz/5KdI8R5kEY1ImswnT+Ux6yyiLClGeKWEkIskfBm0yBO2w3kYATuSkXilEH+VQTupiFQeSSQwnAPHwms1HfPazn+b4zj2efXy6Y5k5azFKEVPZho5td/YPPri2l8ToO0d3+D/+u/8+JyfP+eCDH3ByIqqXuq5omkbO9+h13rbtrgm07jZNWSnZdLXWzGczvvDHvsgrr7zJ5cX1Dnjsthve+wf/iE9/boGaKEJMF9VKU9cN3nnStMeohBAGybn0Qjb0eAT81FrvfD3l70evSOu4uDohSRNeenSPzua4Pmext8AYw3K5JksS9hYzrG0py5I0zWPtrXZ1j9wrQ9idXDgBz2NJE9mQKPH5S5SsbQH8IEPJZ+mlZgqZkICKIsO6QGd76e2dj+QBj9OSOo9WKAsWi3VdZLqHnaRW1HE6vj6xeiAEjIE8T/BNJ+tnsClwHVXoUcEKo1apOGwRXazYQTSyR8QacahDBum+UjJKEHKL9CfRXlOGPkGLSZJRt3WfkoFREv0hu6j60CEG3job8aBIXIi4SlBy7Z1c9B3hSWFwWK7aC1FfliVFUZDEoMXRaMwQPHU7sB7wqFtJ9KBMHCgUIXix/YoD7DRJuLpcSTji0He5ns13P2D+3Y8o3nqFVT6ij0Pwk5On/MF7Aa8uaNs1y+WVkGcSFetkYeuWxQjvHSenZ2RpSl1VZElOmuZst2sCltfCI/Zfn/LjPn5sgE8nLbNpRM77DvBYhxj8ayOmsLvNRTyFdpLQ4CRavPUU5b4AfsqQZzkEaRhD5SiKAq1KAtF3DNHoe+95/uwpTR2YTe/QdyK3+v3fe49ylHD3/h7j8Zijo2Ohg1c1k+kU4nRyMpnETasXnwfvIpAYJLjCN5xdfMDNzTltv8HZDVpD38tCSVLDYADpvI0IsCd4S5aPGI1m1FUbPVIUdb2lKKQgUURz7LalayX9rByNSNM8em/F4yeCHFVVobUiTUu5fh6cU9RNRVY4+s6TmDFXyxOKcSBVI+p6zXiSs15XEKcgdd2QjUrysiRc30hzF41DYw/GoBYcUoDC7tMeqN7sbgpgh10MFOPBHEz2vR/25gN23h/LzZZlVbGp5EBdr5Yc3X2ATgLrVcUHHzzm+M4RX/rZL9K1PcfHd/n5r3yVEDRFUfDs+XMW+3tstjd8+ee+QMCxXN/w1T/+VbquZ7la8fTkKQrN4fERVdtydX7JXlkSVMO9vUNcgPOLS07PnpGmOaNyQmI8q/U1WX7D8d19DvYXKDy9bfAukOeleLAkKgIBJm664oGklaHv4fT0Y/7gvf+Zo8OXOT87lyTWxIiHz8WSopziP3KMZ4osy+K6MtErJeB9j9aOLNXSmJiUuu7ExzJ6DyodQ2eISasOYYtEOr4kTkVph/foTIpwAcF6kcm7DpMkTCcTNpsNZZmh1IRZ/jrz2Wcw5hgfMpzToAQYThND03eE0BHQqBDQifgW3Tm+y2/87/41IPATn/s81vYoBe9++rOkWcZ6vUKbVNa/7VFILL1OFLkSyXxAwLQhbILIJB3CRBKjSRIDQQA8F03/XXBYZ+majhBEZt3aVgxybYfzPSjHdDZmNp5Q1RVXV5exsDaxkdUELY2VCi+wnYJ83u+99wc8efoxn/jkJ3j19VfJVDoIEHd4hqz/2yQz5f3uM9t5dapA3XUycY/FXlC37dVwoMFtiNBtwnWU8sbDqm5WfPfx7xBCzrg85KUHb3Owv8cPfvAtrm/OePXV1zj9g6+z2BtRt+c07ZLNdkXXdozHY1AGrWEyn1HVFYv5PsbkNE3DbDrFMub6+pLHjz9if28OypHkKderZfSgcYzGuUiUtKKuW0yiKQrxLwy+p67PaZolicnofU/XtlifgZqyvRFvOQGye1AW6zXBvOk8bgABAABJREFUlezP3mUx/yRZfoegRwSV0dmA0mI2r4jm9hE4DTbQNi17+8d84Wd+Fu8caZZzdHSX8/MrQtB89/vfpxyd8OZb79D1lr6WSb3Ww2coA6UsguQoi4lFTuINSovpsNFjaVaNJk1TVCoTzzTec8EHetdjbUvfWZpdIedou4q2a8W2Ijh+8as/T9e2LGYL7ty9J0UtCm3Ef5LIwGgqYaL2tpPm3zpwwlqR5kdumbZt8OF2gOZjaAzBR/ZrLGoGECQMIxspWIawrPiDsJPZKlSiMV6TpNKEdVHy/OIjDAdKGP4dG4tHdqdKiEDf0Nyq6N02DP5keJGSZh3apBgz5e03P49OGi5uvk3TrnBbWK6nfPD4D0nLCsuSEJDmPc8pygKtDE3TcL38iOenH5BlMz4++TZlkXF1JUDhYrEgzyaMJikurOnshrZt2W46jo6PyMdz9mev8Mqjdzg8FHAvMXN2k0tlZPCRJ6S5oqm2/Od//j/hpQcP+Pa3v8fbn3iL9WbJy688ohiNefvtdxjFJGAXAn0rQUGJDrvBmYr7hfMust6F0QXCSFrsKY6OjuV6KhmcojxNJ/KsphFJede1NHVD34u31mg84mB/j3tH+6yXG6ptEwcOAjovb67IswxjNH/v7/5dZvMZi/mcLMukNgoOFzyrdcX9u8e88ughWZZGuZuEQpWjEXmeiz9kmjEajSmKnCIrGI1LijJnNCqYTWfc3CxFxuqFKeecFcP0F4aDg+XLzc01VSVp0kZpeu9iXdZL44wwl/AxLA1hCHgfJ/RafFpTp1lVW7btFoKwYbZ1y8H+gsmklPdjFJtqQ5JJGIV4RQ1BcFF8ZQJd09C7nlR35LkR83xrX2DX3wbG9X2PCp4ipnBLuqHsLZttjzKDD6UEqGklfs8mgSSdEuxLeI5JkjkX1zfYPoInJiXLR5ikIMlzkjShbTs0gYODO+wtArb33L37kKzMSLKUp89OI/td5FqCAmkUbtgJUAEBKiJ7Z/BsluG93kkjDYZMEdlasiRHhYSS+cjaC7wSAcJYG8ZraBRcX67pe2Fcd5341XadeBQrAmmS8Ju/+Y/4e3/3H7C/f8hoNKIcjcjynKAkJMK5wBuvv4l3PUrF4UqWoNEEL/up0OjjOC2w+4yEiO85ODgUppCSf7MoCt584w1eeeVVVsstPiqSPAbnhXHqlQCgSilcEPZN13dkfcqXfuZL/PRP/RQXFxdstxvatrll/WktrLYQUPHM0caQZoY0ScnTnOl4wp3DO1xeXuG8pXcty+sb6utrZntTXLAkacq2qmO9pHbptkmSoJG6JctKuq7DxjAb0PR9x2q1pmranZwTrTi+s2ASJOwOo3jt9TvUTgZgi8UCrQzr9Zau76m38NrLnyGENOIjtwPMMDCTUGRFgjaGvCgYj0dioZKkLOYTHtw/pMhSFMJm7TsrDPxeerO2dxidSjiNtbcMNdQuwCCo2+RU7/2tHUrE8PwuFVTqjKDc8EUBjOI5NxA/5Ny2qFaAjFQb0qJgsTfnV+79KT79mc9yeX7FYr5PVhSYJCEvStI0oRyPZXCciFpDDcMtPwyzBhliBI92ChCpQ7VKwKhYB4vnYaKSXSCPjlWiXF9LlimS1HBxfsXp2SkD+8k7j9fx7A4DsBErzOBj/yfns3jhd0wmEx4+eIlXX3ldWLvxXnY7xdxgtTSAxQKSCCDjd2tAy0mOVorVzZqrq2uph2xHW1/hz69prxOyosBpAa1UrzA6RTIlNdYHqqqm6zpmkylJbghaiD7OO7bbNdY5JuOxyEtDiGBQz+Xme2gNuSlRaIriLlmeEbzn5uZmd80HFdRqtSXNckAGM8PAdBheom/3tWH4HkKQ/TPW6S+CqLKvJMIGdrdn2Y7NHSDROibnCrs11Z6QGIK3kh2QaBJnaNuaqm5jnWRjTyJPMjAZ5UySPTVNDW0XwfAoBXU+0HUe0xg5x7XGKclF8NFzcVAEMfTr8blD3J+IUl1vBXAbFIw7PCAYtnW9W0tJtEAbarEkSdg5QcbhXW8t1tsow+XWQy9O54TIMKi3JECRuK/0fc92u32BQah/aJAmJDC1+/OgdJOhm7zfoa/03svZruXf27oNTdOwXK2i1QME19JubsjrLXQVvU5onUYFTesqTs8+YrbfkBcatQ5oIz34YrEANJMgvpIYz917B+zv74HTrG62FEVGWR5wdnbKxcU1i8UVP+7jxwf4tELpQKDb0TJBbghnO3xQu8NcCHheGhak8Wlay/nZNc5eoJRhsXfAbFJS5Alau+ijoFmtz1muLjk42CfLCpyVQsn5QFnO2FYrZvOSEGrefvstbpY3XF5ckRhJlc3zglWzwjkXJ6aKuq4jYJAwGBv73WRHWFjGtPTdBWmaUaQ5Td3KQtCatpEmpOtFZieMhig3alusCiiVY0xJ12/JsgQffJQS327wIUBRjqjqhoDQlgepk4meTreMHRiPJ9R1pN2bGYkx7E1f4eTkGcEkbKuao/2Cqrpmu7mRYldZqnolTVhQOzR7h0Yg0z3nfliC+2KBPfz6T2xUDGBGTO0abtAQdtM0oci/IF1Rim3Tsn94l/Fkj+vra+65DJ0onBWfo6PFEW+98Taf+cRbECxZOuYTb78j7BWjefPttwjxuY+OjuLU0nD37p3dBDrNcpq6k+YxMSTvvsN0XDCbzGjajmdPn3J9vebDD08YlVMmYymWIHB2fsZ4Oub+/TFdW4EWmffBbEpVSRpr29TkeUqep4QgCXdpkqG1xfuK86s/4vT8/SiVENZLmhZkWYFWGZ11UmhQkSQiG2vbliwtqKptZL8qkjQXgMkHttuKvm+ZTKdkeYp1YPuO9fqapmo5OjokyxMGg1KlPE3TkmUpqreID0lKGllIWSbMP+ssJjV4p3BuQasecHmjSbM1Js0px1PyLKWuxURYUktFThDihEq8IzRFPsZ5SzrLd8y7g8jzvn9fxU+HCFL1kYWkSEyymy4RpNkIKJQZNm4BQG3fsllVOBtT1aw0h50V4Mg5K0yQMKRQBbwTpl3w4iWz2awJgQjyO4xJCWkgMToWfgNFX4oUtBZmoLO8/OgRDx88EL8oLwCn2t0j7Cblw8E3UN2ddbvQH0nFc1J8/v+453b3U3wM98+wdwweEiEExuMR+/t7bKotrT3jex9e8/53OooiISsVH378+4zHC9pLTZH3TKY5RbmHs5aD/QOSNMO7wGazYTp9iDEpddVxcLRAKSgnhxijaNqKy0sBmfMiZ1SWWAuJMfS9yCRkyitnQLXd7iTYfd/iXUdZljLx01akZ52wm3X87GXqrPE2Jc9fxXYvs1rPyEMi7BST4FX0SdFSVIkNgyJY8EpAv1dffiOCqoG33noHozVvvfWONPyE6I9phSmqFcoPHnwO1K3sXWtNnuVRqqBjKE5MVNcGjRczYtvRNY2wuGOivO1l+BP80JhEll2Q12ydjcAklGXO3mJOkqScX1zsJuYif80wP8K6FkHDLQh3O0iBDz/8kG99632cc3zyk5/k1ddel70yMu6iWWWs0W9X63Am7MA9NQwPhhF23FkVNDEZU6NiY96/wOgLA5Z4OwH2RHKqun29PjbaXorszKS0bUvTNHEvTVlvt1xdXTKbTXl49zUAPnj8HiqpcK7nwb1PMC0PyPOf4PzqKc/PPqRta1brLeNxyXQ2wySedJJinSUvPH3fcbP6kKtri0kgzRVVc44LWxrryQrH0fE+Dx/O0Iy4s/8p9uevM5+9jkn3CTqnC4EuTsNMImBzUPI+XeeoWsvP/8I/RZokpNmIO3eO+f3f/z2cU/zD3/xt3vrEp0nzMXXTiN+uj8xlEyVtWgptFwJKZ6KoCQHruijxlIJ1NC4lJMnLmZ4lmukkiQ2GMNq0Chgl9Ycb9g3vwXmurq9pm4auqyNbrOfRo4d0fc3VlbD6jo5KkjRnPt9jf2/BZDplNB5jYhBakiTCLE0E5DPGxGUpVbt3MXFSKQE3gt8xZderNdvtlu12K+spyrh/1Ftp513qHHVdsV2vRTY8yMYjk0Or2KzHxsYTCE6GikPzmepUgjmCk4RdLwPb2WwGsAPiBlar7OGQ56n44PYNIU0wSSJgSkhJdUYSPUH76E/64oBzCHrTcf8WtquCMPjy9VJ7RCmQs1L/dn1L1zqKkJGoPWo0k5Hh5mZF0AFjsnjNkwik95FxHEgTAUGlSXWgE0bTGUGJf5TIoUBHKaBIrDwh9DsWrzgSKjCBNBU/M6UCJpF9Xe3qwhjWEIKw64NC+WG/cbtm2kaARWpFF0FDqb2t7Wkaqcut69A68Eu/9FUuzs74+tffw4UtP/3TP8FstiAvcrRJmc9nTKbT6L1myNMEBfH1ATqglUEFuUY2WJFCxnc2NLu3ChPpY5SWRnAI3luvNlxcXMgeTEB5SW4ctsXovCJbqw+Ao2ksl9GP8uHDhzu7G2N09AiUXdc6aSB3lkJKniM4Cx6ur2+iZLIhBE8SNEVv0C7QeMdqvZFNWWtGo5LpdEqSJJycnFBmOYlOqKotJklQ2hCsnHWj0TgGL6nodyb1RpJoUlKarmM2nzEqerpQ4HyL1o4kkXCUxEzYm7/JuPgc56ctdbthOpuSpcI89sieJRLbjLKcMJlPY5CcJJTfu7tHWSQQPE3d0sX70UXWXtcHbO9wOzBDlAvW+XgNBWzwRNsW73asBLFV6XFx9uF3iqKAVj6eQyEykLiVmb7ARsckO2a8kEHEMipLc/YODmjqjqptMYlBr9eyBvM87o+i8BpAoaEXHkA1AfyEEWyUjoEMw94v7KbAILFOGDz0VIiMUYZBnMP5nqap2Gy2MUgxKuWG/ZZdtAO7U99HdmSA0NsYLNVwc3NDnhfkebEDRnbg1lAtRDDIW4dXyGtW0W03MrTwgb5vqaomkmi8qPmCx9Y9p88vmc8O0ImnLMTb1qphDSYQFHle0LWdeJhmKW3bs1xfUlcNVS3J1vt7noO9PelluhbvMrIsxTsJ7DImYTE/IE9zqm3FenkTAcINR0fHmCShd566kaDKpqnFS6+30W8vAqRx0JkYTaKjl6jWkqiOeJgPZ4dYOwR6J/7Ngy3Vj1o3DDXm8DVZmxEolOIIay1d15KkuQx0GeTQw967w+UQVp3CaEU/3AtKPjfrRNmhYs2itQavCOo2fG2w4xoe3slAQGu/qwF9ECn8YKMxqPyatuYf/v2/xw8++AFd1+zeV55mfPnLP8c7n3wnEhdkT+0REkbfp3HvHGgSEdBTtyt2CBocAMdh9uxDwMZ6e2AnheH6DAnF8f0PQ52hxh3sZXbD6Og/vdtAiKBjEL96FXpsV5F7CcWRgUmCCobetkKmSmrysuPevbuilFBxLSslgHXTsNko8nSB945q03LnzoIsL2jbhvH0ASHIc/+4j/8FPPgcwVcYA9PZRCaBcXJT1TVaJWK4rgVNVQpOTp8zGU9IUjFIvXPnWJJ3ViKlG+VTttst43GGIuVw/22SJOP56fv40BI8LJdLNpsNs9mMEGTyv1pfMJmOWewtOL43R6tXRXqXpSitODw6jI1gBCbVbUqspGSKdLTrhCqcmDTuhY6+A6+Gw1xulCRJ2G4rHDI1SrM0bmwarZKYDtfSdR3eO9po5hii9wNKk+hUpCTOc3l5A0qKitFoRNtJ0IBzltGolHAB25HoFmPGBG9wfU4ymnB+eUnQHR5PcCWgqdpzmrbC6BRru93ky/vwwqJWEROPHmfhBZkh/6RUdzhU5HHrLfMi8MeLCHzEJ3YhApFpFgLU2y3btmdv/4B79x/y4OFL5Jk0CmU+kqQvJweX95662caockkf9cHtNqUQDZVt38d/S3Hv3ks8uHsP76WY7ruOp08/4sPTE9quZTZdcHV1SZbD3ftz7t97xHa7BTTj8YjLy47T0+eUo4TpeATKkRepSBaSDGMUs9k0XjME8OsUeeYI0dMrIKlRWZZJ458oguqxXoqE3smmnqZSfGy3PSEIVdo52ViiqymgSbQhL0a4AH2vMCZlvV1xdn4iBTUGd3rF/sGCIhOJoTJgkpyuF/mGMQldt0WpQKINKstFJtsKAGHtnBCOWVeerNgyUVAYMUMNuscEYQzoRHyIBs87Haf3kvYtYSG7Bj4CUlqJBM05i3eWPDNiJh1DGdIkQRu5J3WcrmhjuF42rKuK9XpNXUljH7yLUe8W2wvAJwdabOxeWLMC0knTEWIDJSylWyaBCgrvFUEbOQAHkCM+F0HkVD/3c1+RvSQ4nj07iQyIeED+CCCOUlGGkkJwNL6RgBvno9F6DDrxIpVVQe/usRcPscG7LMT7i926vwVKVlcrysmITbvFW8t4XEb27zp+5jVt2xOcJI0uFnOMEqaTUgprLfv7s/iyDf1UJCVN25B5adAzlYL3sbCBqt6ilCYzhjRLabqWgNgh1E2LQjEqUvE37XuKfBSDGTx120gBFhkq1kuhkxppQtJ0ijb3uak8mV2SuZ75TFFkZfTSkYJpKIblI/J4RTQ993GvVWiTxuZFvDIJInlxLnpCIQ2Hty1KRa9KL0xrozPSLI/TQTHCddbirKVqN9iuE/9K2wuAYiVZMXgBg32wAmY7j3VWzK0HydFQ7MX9d91uUFqM3dsBqFaaIrNybzD0fi4CAwMIrHZeJdY7Tk6es1qtGI3Gck6tt8LUDINsiB/Zy2V1qd3vht/cfiUQdoMKY1RMrpX3vKk2u8JV1u6tv95whhCZvgNbKQSZ1g53mdaappZGYDQaCWCoFUkaePnlQ9rWYe1HPL+4ZjY9YjzZwzuFt5rJZMFkfIf7995kb/oh8/keddWzWMxZrc/waoP1F/y9f/C3SDLFtqpIk5w0SxiNRlG6LwOY3nZMJjld4TCzkvvH91HuLtv1RJriuQIlyYZpKsNK8bCNZ50FrRwqaF555TVUUNy/+xAfHC+/8houeN565zN4p7m6vomm1rcTZ5yLE3Ut4B7DgEAaqjRJZN9CWJ1pYqDIxXxdaEjxCJdi3vfyfK2tBMCLrClCwPqYlNfL+ei8fJ6f/dxn+Kmf/kkuLy94cP8l5rO5vAZkP0uzHIIwdawV3yEJiGnj5x5ivSFMQmd9ZKr63eQ/eL/79+QaGLl/Y1l6W3THIcvQmPrbEDdCXMWDskDFAy+eN7v1F53jhHEBWZZHVqsXhlmQInw+n9G2NXWzRWtFlmfYoWZU4i1tnUPFoZZzFozsM855EsRP+XaIK2eMNkYYIEajjWEymrFerUDdJtnnabb73I3RsW4URuZ4OqPeGs6eL3njzRKHxTmDDiKfN0auVRIGyxBRiLQE0iTHWk/TdhTFiKDEXiSPUmaRNkvSd6JEbZIVpXzGSpHoBG+FTd/FayFAcLR3ce52r/PRzB+P8o6BgD+wTIazaghoGFhFIUhiunMe28dBHOL7eXR4yL3793jj7bfp2p79/UPSRBqnNMtJ04QiL8jyfHcWE1UK3ovf98CmF7bNsEcNTBR5T7JX+x8C+7pOJIfOOZq65uzsIgIYSFMcBpmnerFs3q3fEFQcWNToGGahIqvEBwFZh/sFJTK/AUwi+B2o4rzUlBFFQHtYXy3ZrzUhC6RZumMwaa1ZLlfCgNYCKndNjfWWLBfZuQCJEnbz4iNJUto2sN1uGE/GeO92PrQil5Xk4KapAUWWTnlw75jZ6B7TScbjJ09YLpfc3FwzncxYzPbQScLv/O7vstnWLBYLHjy4z8HxPo8e3GU+l2G0Cy7uLYmcjTaC7sowGpeEUMoeEpNrnQvgDBowEby2XsA8HzF55xxBqcjkDDvAwLme4MRSJcT9ZDiEZC3LoDrEfapriUNit+tjhrXsAnR9Q9PeAuJDGMhqmZLlGSYxcu69AJqgBv8x2YdDBFa9cy+sI4GgB6aTUobA4JUepbAhRGA7vHAva/Ax4CxYEW+FsAN5pH64HRzvZshKWGG9lTTyqqriaxZmUyyBd++fEIcpENmocj4Ne7+cW4OtTqzRohVUcAGsp+sUVQNZ4fFVTfCOLM9FDaFkjaZZzt7igOl0RjouOD8/R6sUrR2TcRH9Fw3X18KCSo3BWvGC1jpD65LEHFKWDzFmRNOsyPMMpRTleCThVCbBdj2bTUXbtLRtI/t+kLrNeYsxiul0zN7eHtPJmDyXEL/4qceLGe1ROvHz31Y1N6sN69WW9baitT38CIlmFxyyO6PkT1pzC6oGAbm18biozgq37bUQJUIkWETwN9UJbWhvh4FKRZupHpNI2I6P5yHDPhbvkVtCj3zWChO9LWVKK3ug2tmtDD9cbTd88MEPqLbb+BoFnLxprvnud7/No1de4sPHj3n00suUZYFG5N3D/TXgA0MfRVzj3gdp4JAAxeF9Dz0eIeza5KFkVcPfHz6hHypu4xnAC8zUeD/e1g1hN/P2QWyuggu09ZZRotnYHofBKpHutm3D9fWG2i4pxpClCYu9BUWeiKd0nhNwGGVZzMZkcVjWjiU0yTknoZheahGj+LEf/wuk6NbkuZKCiQRjxP/I+YT5tASk2NJai8+A27K3d4j3CCuuiHHYNrC/p/HOMJvcpWnWBDq0Uaw3F9Es9VbylmUZ0+mUyWR6O2FQ+7KB+4ByQulWw9QD/0OTQ4UwxYwpAEmfTZI8NkziR5Kmmj6aXCdJio+LrW17+l6kbcpoirzEujZOhzQhJOLBEaQw6PuYXujjTRqR485asrTAB8V6XbGpLPP5POrJM7Z1LyEEPtD2Hm2yKFcoWMzvYu0IrQyb6pJAz2iqWK178nzG9fKCqrnABwF1vIfZbI6PcpbBt02uq0xxh40lRM+KXWEGu0Y0xOnKAI7AwOS7LYris8g3X/xauL0DVRCW1PL6kr/7d/821loWiz2+8pWvkGUZ7ajl5vqG/+w/+8+4WV7FqbRMYvXgfRLiYRg8WnsGT7a+Dxid8e67n+E3/tXfoChGgGK1WvKX/pv/Rg4OLD/5+Z9kMpmwtz9m/+gBXduiE01ZTvA+8GB0TFnmXF1dYvuWJBED4jTNZNquDT0hpjPHgwuRQScmkYKht9EjSBrxupXpdJKkAmACKOh6SanS2tDWLbaXgspEVkaaFmR5uaP4j0czJuMZaE1rLQcH91AosmhKvNmsY0Msm3mei4+IVhrrG2GxxQLfmAZjEvJ8hNY552eWP3jv91lVkOYZr7/+Ol/6ws8SUiuMlRDAyPvRSuO1xyMM2DQRY3fwaKT4SIxIM7RWu5APmU5Y5uOS2SQjyxKyNIn3xu3aQmucg5ulBBY416ONpBNDiIWTxboUELmGszaCD1bMkQfmXhAg2w1dXzw9k1RjvcZjsT6gfRYLkyhnFCiJAdDuup7nz55HsEbuBeci6yz4yOQTaeX+wSF37z0gS1OCs9zcXHF6dkZVbQmIpFrOVhX/nkzThwJSbjCNDrGQUh4cOxbxAFQeLO7wvT7l+9/5kLZtSNMchyUvkmiqqzCmomsr+q5jb6+gaWr2F1Osa2V/2+0FQWwFTIr3PUUuydyBEF/rMH3Uuz2j63uatiUvcpy/3TOzTCR6WotEdGj0xOcxxZvYkCm5wkkikfW2z7i8hJOT9zi+84iXXnpVQonahrau4+szDAWBScwAccmQJBUz7oCAYbdelrG4tZbMaPJUvLRSLayKJNEE5eVrqfgJKqVZrmq221qMe20fgXD5L1gX2Sc2fm4Dw85H8MKJbCuEKI8XVqkbwL24Lw5DW7wUXUPyrPc9nVUYLcCriqtxADZkD2bXvGql+OQ77/DFL36Rg4MDZrMZ3//eB3EPdnFNq90evZv8IsbNt6DyiwykF+UnYdfodH1H3TVc3VyJ36q7/TkVJ7s+ai8G+PAW0DMvMCrkYYyJgDO75MMslWK8yIXBbvuezn6MXY2wNiXRS6rmmr3ZfYpiBjRs1hc433Jx9TGr9TnWN6Sp4t6du3zw4Ydc36wi+6snLxP29hbxPPRsNhs++mDD/XuH5A/voPYf0fkxaCUg2aqTELDE4HqDSVLSJHq5MRSSmqBVJLAPaebyufXWYQiEoBkYzyBN3jAHGwIWlNLRS0uTZrf11cDEHO4p58UQPjhH8APQIvuSsCelAbauj/uh29k2iFcpu0GkNBfCIrl3/x46UVxeXUVzb2HLaJ3uBppSmOo4SHM7/zxpAgebgaFpEPbqarnk9Plz2qZBa8Vrr7/GeDqJwLA0j2q4GC/8MjTKu3UWr+mLQOBwFvvhQB5WnAIlsJEMEwygPCpoRmWOTgLbSmxYsjyJAVFIaIBSrLYb0jQRs3gXUEYRnJbmVStMIoFRxugdi08+S0WaZdIAA31vub6+4kXWIUpRFAWulyAbYRYr8jxnNh/RVIrr60CeHeO9+DdKIKrUGT4ygawTBYh3HmUdprM0uqO3ntFkLIxnLX9X60CeyFBtMh4xnZWUmbCVNrVlW/XYrmfd1ztAVRo7FwPm5NwaJJI+BmIRPMH18vk7OTN88LfA2CBF9MS1EmSdREab+A2GCGB4nBWGBsowmpRs65quXcVzSPZ8ozVFWe6aOB9lbChpDEVxcAtMyDkQmS8+7PbRALu9WvbUeGZE9qkP0oYbBSHWB17d9pHD8wc1eD/d1r7eO/o+8MJ290PrW1ZnBPHi3qnCrdRV5NJSjaRpwnazRbOPJJ7GBjR4NquaJEuxVhhTBk1ejlB9R2cd6Ft7Fu8GZoyAiEmSooKiq1q2ZkPYP2RbbWX/GenIDAuUkxEhQKIOyJOXqRtLlhke3r9P3VSkacrHH3/M2dkpVzc3PP7oMXeO7zIZT9hut3znH7zP/p/8JWbTN+NeIRJPk2gyhBVlI5BlfcA50HmCcZ409+Jf1rnI3gsEDMY6QpIQMmnQhwRN73xkIfnIDAXbI/tvEMaOJ2CDgNgaAQyd63cNv3xOw2BMeiOlBFjLslRYgkO6R3CR/edJk4GVdxtkoHQkVESw+8UeSQ02LiDgCQGDIqjIQAaaruab3/wjzs/PdwzY2WzGu5/8JPPo/TdYw/ngblV0u9c+DLf1bv3pOBTw8XrEm2UHg4Q4VB6YVD6ywO1uWKR270O23RC/pCJAIz9jfMAqREmmPNuNxtSGfGTpXScDBRR5OSJNM6qqxnpPahJWmw2hqfAeimKMNjKA0CowHk24ub5mvakBYS47qxgVh9y7+xOU2SskWUHXa7bVlocvvcxms8EkwngNwWFtC5WnrptotyVD3CQxHBzuc//+MaNJwWDjogI7Bt7uIRdI1AipwRWBwyRjb++A5WrL9c0Nm/WKutrEaxq3KXV7TIUge7NCy/keP6PeWtK4RhVKJK342+tNkM86xDpCKRKj6G2I+13cR5xYmaFiH65eGJ6FIF7WPmCGeprBkmLYI4cBR5Bh8UCND4EsS/j85z/PqCxRRslgv+uYjMcUoxHKGPYPD0iLNNoURN93J/e4/JNytg8+tcT392IdMPy6u2/i/wtJQihLsQ2T++gFcG9gme/YwERwVEXwcBhAvvDBBobrGrCbDcYFrA0kylMT1TuuR/ctq6sLuIL9vSnapDDNCfQ436OV2DI456haIUJonZKkhoClHCUoRAWQGMOP+/ixAb69vQXz+a1E4LZAlQLUaINSYiKsFQQvk440laJWpLwyvU1Tg84Nnb1AGSl0fLA0/YbgZRKQRIRzMpkC6gVTbx9pyCpKFeRuca6NhTQoHWUIEZTJ8xLvpZFr2woXzWlFLmFjem0em/oOrRR9J/K6vBBKpjGG0InxqBRBNk6jFRoxAkaJ55KKB5do/+NEWImvXprBwUGG1hmHh/e4WV6DMnR9j7eBUTlF64TRQqLFV5sz6gayNEebhoCnX1p616N1xXx2wNVNQ5Yb+r5D64TEyKbnvSzyJJUiANg1BD/kmzEUoDvpV9hNfnYbefzVxGb7RbafPH54WgHDBiEJy+Cp64pHjx6xXK7ihE6YIY+fPGa5uqHtepy30vgFMZMnhJ1vymQyE5l4PGxkCKY4PX3O85Pn3Lv7gCGVZzab0bYtSVEyUHRHZUleTmWiEan/fW93U/T9g4VsXqncLmKcmRCck+TIrpNiMBaSeV5gTEIdJ2BZksf35KMfo4AArQ00fUtZiqmw9wFnrbDhjBzoIplWpJlhNplTbSt625GmiQDNVmQJg5zwZrViPlvQ9Y6AIZCwvF5SluVucqyNITEp1nkSc3t/OicsvqdP1pyebnnptTeZTCecPX/Kx08eM58syLNsl4ybphl5lqGMifLiRMAMRLpIiA2IiqawgxeR0eRZBPzSwPXNBW1di4wskYZ2XBaU5YjxbIZIWpRMfBKFc8IiI4jsVqRGaWS0yHoVqUGL8o4+NrfDRBbvI2tr8ABSMazA4gg4r1HR3Hfwaxm8SCTAQIq3gI9swPi92ET6AEZpHj58xJ2792Ox6fAosqxksdjHBU/fdZg0jR4mDM4AxJZvB+ANzSvx8Ao6/hpuf653G15944i7DxZcXi65OL9iVa0YvCnqupbiHRP3R8PF+TW2a1nsTdnfP5DmN0rZ+r6jr+oYiDImSWTvyrKMNMvinazjoEC8RPrIOMmyTA7OIGlobSf+adrEMAxEPqaMwsfSIkkSnBKzYRUMbZPwja8/ZrVO+MEPPsaQMHtrQrBCjXfBQxhAOy177S6tTxpdZeWeJLJ7Br+4oBKS1JBlhiIzGB3IjCT0lUVGXmjS6KUXlKaqOy4upOiTtDdpSNJUGBmksRH1fscodU78vsRLTNiAQYF2DhXT0IYU7KH4H8A1FdeAMdI8y9DK0lnITY6J4IkPL077xftp2J8PDg+YzxcAPH369BYQZgjXGAqmAXYT3o00IIbZbMFsNkcp6NqG7XbDdrOMPolDD6rpu57T01Papo2Fv0yepZEPO0xwaIqGL9w2SbfreABMh9Cfvu+E/ZplO2A9TTNMIsBHIGB8jaLBqS3Pr56QpVMMmq5tEYPyGp15tA8U4xn7LuPw+F2quufyYsn16gqUp2kaqqpGayXJmcUYbxOePe45f/Yen/zMF9kvx1grSaFGJ3TRu8skqfgGGbFnSFPxFA0qYDDiFamUsDaCSD3TLInSrQEMlX1JxQFHmiXkWYY2OdbKX3W+p+962kaaSesGQNnfpiRGiZobkjljgqKPgLPsaWJDokNkHsYzU9bkcP5DYzuatgMCtnW0TT0gv3GwWewAeR00BAGDhwZEgLrb83/4nL1zfOMb3+Bb3/xmbGY048mEQ+fFIDs4hgnPD4Ek7kXTbB9fq6ArQ8jB7Z/ZNS/E+0MF6WQDCqXS3b6d6oREG9q+kb1deZJUxzAEJdYDJpE1F+W0SsH+3h7j8V0+evYtOleTp/kLoLbcbwNIPTC2JB06jybyAqb11pJlGXVdx5JJ3k+SCJhbVw1NPSKoMfcfvMLJ6YWoXzLxNRyVY7IskesxgGlaGiTvxB4gzXJMojCJQms5w0xszFKTsr9fMCrFn+rqasNq3dPZeMpFS4EBoLsdCg8eXrEhinUdPgYgeIvtHT6qFDwDg89FIBYGeTLBIcEP4KzfKWyGWZyTfEWavqa3PW3TynWK565RhrYWYEk+hMG3VnYBa/3tulED8yjK4vwgyZJ71AfP6ckJTz/+OCpCPIv5nLc/8QkJW3NWbmKCsKli83kLxA3gTATpdDzR4zX8UYRvB1DDTv0k6CeAEaVKYPf3gvcCfnsZkgQcWZHjrYsScEPfu9iDeeq2RdHS95bRdIJ3iiKfRPaODCpCBIrqpkWplNdf+Rx4RdskKEqMEhaaDGyN2JIoRWomKKTva9uWLEkgBCaTCcdHRxwcHvE//U9/m81qxWwypa23lMUeRZ5TVQ15VqJCZOwO//M+smV9JDvFQeYOcJLBR5aLb2YawQ+nEA6UksY4VRpnbgOghrVnfYLP3W7fdL2lsx3KK0K06rC9p4+AteaF1xf3P+IQNnhPajSdHuydBOgQxr7FtjVGZbf2LUpsZwSEFxuL4bnlnQ6VgLoFVIIAalKCKh5/+AG//Y9+i+12I0MK+Wlc3/GzP/dlrq6umM3nJCYR9pmy8X6T4a0OKq66F5hL3J7McakKgCWnA8MLHQDCHxpAD7qCeJYF2dQj5hN2QSND1TDIhxWihGAY0CpHlopSouskVb7rxINxXIxiknpLZjIGlZbzjqZrUEFCOLJMArGcVxTZjLtHbzIZPcS7HOcCq9WGLC/ZxlCh+eKA0WhECJ6ua+noaJvox68Ce4sZr772iOl0HF++250zagDzlFylEBCWdjAIGzLItdEa5SDLCg4ODplMJ6yXS64vr+m6Wva3EHYWHAq4e+cOB/v71FXD02fPRAra9zKUDA4V96lYXO187QhD5oGMDdM0WkbY6OOoDX304EySRFKACXglxAs/sP/jfg4BpY3UD8PnGIf7w6BWeE9y1pdlwS989ReZjifRhkhq2bt3Dzm7vOL9b32XxXwP7wJGBVwQ9t4Ox3nBdQYGyXIkAQzl5ACGMuy9cV0xgK7xuqiBrzrsqcP+eXsv3yY/x2cYQPcfeezsnpzHtS1NEtBJSt9YrNY7haRJEqaLGcEGNpuabbXhYK9k/2BKUeRk8fNIEoPtfZT712y2NWma7PCJIRD2x338+Cm6iTBvhJkgflJivt9HM3Fh29leGBsDM6Lr+tszVU54AceCNHmSihZ2B3OayZ8l1CATFlZsRuXr8ndU3Gj73mI0JGbMgzs/Qde1nF19E+hRKqaN9luaOkaT4yLolGC9ou/lsGxbMegffGWMUSjtYtIdCBA+MJNiYAWGIt9jWt7jZnlCojWWihBk0rJc3qAVtL1FJY7t5lIK3SSnrVuefPwM5xtJGcumlLMM5zs2my12s4l7rULrKc612LCJQIUUS9uqo+0ajFF4bxlPRjjX0PYrOrvFOZGNGq1f2KR/9HFbpL44hRyKuB9l5Vn7w83a7feGSdEPF+WBwbdI8fDhQy4vL7l39x5pmnL3zh2m0ynOWv7Vf/U3ICS4oLha1ZyenHA0z0kNKK1RRpOkGctVQ5KO+NLnP4Uy0jTnecGDBw9Ikoy6avje97/Lz3zxC7z//jf5/zL3n0+2ZWd6J/Zba217TPqbef0tc8sBBVTBA91NEkCTQ4ZG6h5+4MyQilAoQgr9W4qYUWhiNDMcMobN7gab7G6gG94DZW656136PG67ZfThXXtnFmakCAW+6ETcqrw3T548Zu213vd5H1OOR+zt7jKfz/DBsVgs5HNMcqyTmHXvXAS0DN75KKVREeTxdE5kTXmeD6ydNJUpvvOBrChx1sox6qHtLCaTa8XoDJUYRtHvr246nLUUZYn3nrTICF7hg8VokYqfnp3graduKsbjEfN6gbWWNE9jcwaj0YjeVzJJUmazGQQtCakhkGcZZVnQtnIddC7gcYyzjKau6JzGOcP62jpvfuYN0jzj9OiUF1+4xb179/nJj3/MP/2n/5SdnS2++73vkec5n/nMmwQPjx8/QmnFxuY6RVZErwjIYjNioleTSQxZkZEYzW/f+Q2PHj2gTDOyNGG6NmX30iVu3rjOZNIwqmr29vbI84y0ljACr1RkUDVY12I78eETn4pOvm5brG1RKlLQY5PS07kBhpFoiNOy6LWhjJJgVq1lMj+saznUjZEi0iOgitECjsqaB20SLu9e4daNF7A+UFX1INWUptwxKksyo5lOxkMhJ01xj/AMp9ynrjN52gqvHM73gRuAcmR5IC8yNreu8PIr1yWhOoQICndYG9jZuoJ3DYdHD6mbRtayA9u5QarbdSKnVUqTZZvUdUU5ytFx0CGJ22K6K0nlCgMkZUJrJUU8TXMZynjxtqpbkZsmSuyEjZH79kC/jv5UIvHOqRawWliuXxfmXlnmPN9/Sts9xphE2NNKmKlZVjAej0mDyDpMYkh0Qh+cIhJYg+9iIZVolJEC6OzsjGq1AB/IM8OozFlfHzOZjNjY3IhKGrn2yyIlTUXW6KykPoc4OPCRTeUikOy9u8CqcATnaLqWumlkD/RBpLveR+mV4sKHLUMorelUPxlHigvVxYKrH7j0hYuK61TWke0sB/v7UrQFT4jBCBF5iyCfFGahB4u1Zmt7m8t7V5lM16Osu5UQqa7l7OSY/edPqZsaH+V4BwcHUWIhTERlzgt9HzyfSoTuoet43YVYrfXDOxVR7mFQ5i1tK+9lkmTCRguQmFTYZJqhyNUmYFKw4YiqaeK55aM/WUrnOqpqSZbLpHQ9N2xvX+XwuEDpBIWOctOO3Z2XSXXG3U8e8uBjWPiKs9NT9i5dGVgXrW2jYXSkPqQKlMibfIi1QpJgFfjOiVdplLYURUaWp8JYJga0ZJo8TSjzjMk4xxhD01mePj2l6lppWmyUu3pLn1ws0n1pAHtvRZFLRgmZ9+cgsupbaMArWhcZppFh6fx5wzl8Rl6aTa0kNM16YTb0Rv59Ce2jcbzvi30l0tEeRx5K8Nj8joqS1157ldFoxK2bt3jxhRc4Oz1DB2Gd6BgqQ1xXARnQDnVETJvsm2HiV3KtqAuvIRb6wdN728m3JGE8rHtMIkl8W5MN9g/26WxHXdVooyQdUid41xLwWNsSPKQqcHJ6xNm8BzSRpGpjMcm5dH42mzGZjFFeGrIkSSGIH1/byhq66E/segZkvHkvSpTlHLa3bmLSnMtXJoMXmNZw/8E9skzO+/F4QlmUTCZTMgWYhDQxrKolDx/dxzrZ58s858reNmvTkt2dCUWeIEFicWCoVGRFy/umg4BFklypgCSCb9FTOYC3Pu6JDpcYvLeETIAM6yw2RPDZXmD7+BCtNiLrqmc2o6MP1QWfuwj0yDVjaG0TQ7DAKUcX9wKjz4FdIYP2Bu3n60d81yLbPvRNreyDnXX88he/4OOPPh6khmVZcuXqVSbTCS5I+IbnPIU0DKCMPJ+ge05JzxT0DAMOxbBm+72x/5uc+rI5Bq8IdBG0jfeJ9ScKti9t44LGOkNwSoA2D0anTKfjgbXoMkuR5yyrijRLY+J9LR6TtmecR/9EpSjSKZiMaTnGNh27e5fZ2JugUkNrJeCvaVq6tmNcXhrAxxA8IQZBLBdLjDYcHOyz//w5WWL4R//gD9jY2OTps+cQPNVqyXwug8fOOrqmjn7KHucCdWujf7jGx2Zc3kcXG/Neps9wFrrIYhTMWFiTPbjXB704153Xcwjw770brr0Qgeumk+tzSHv3PcjYr/m+vxHmYWcjM+78Y8apgLMao893KfE87HHoCyvzd3qqXiLYD9OEhCEg8O7eLnl2HW3kftubm7z44osxoE/8JW1nCc5JMqgsSrGhuQCCRLyGnhCjBKkegL6+9tCRaXy+f/YoS2Qn9oa79JY855LRvh4g6AHgVt5RlCWTS1dYNS1C5DXoSM5p4hne96AEouy1w+EkLbqzlGVOqjOs9SLLVcL21RqKYspkusN0ssfaxha7u9usr0852D/mvffuDB9Slkk9sVot4x5sKfKMa9eucPPmVYxJ4/Pv9+WeHBAtvuK3nOtBI3kuzgU6p7Be1rMLwqJLTM50ukmWFhwfHTJbnMmZ53vWu+f4+IjFfEZiElEh9SSbAZCKe1b/fiqEiazUuYyac5+//uN00fM5eGQIrsyFPerCz/UAcBwu96CbiutPEdmC9EStXhkiz321WJCkCWkkxRwdH3E6W+Ci53WPL3jnCc7KOdPXCj2QN/Q/nnMIUw3LScVrI6h+r7wwFIzWPEPdGYuQ/prtAeL+DBt248Cwfi/eQgCnwNmWJli2v/BZjq5eZfXLDyP7MMQ8iAmf/9w1USaokq3NS9y//w5J1sZr3pBHyziFwQRhU4/HekiqlkFi7yv++91+b4DPeYMPhXhy0OF8S6AlT8eAI8sSNIHExIbEB+q6Boj+PYE0tcPUpZ/shVgEQWxoY8KhiZKuT0uG5GadJbjo26XFz2JVLbj/8NdC9Q1nJKlntZJJ6XQyxvtWFkZMwrFdS9eBdQGjEXmrkws2SQwtPk5lRcbmbCBVCd6KKWxeTLBOUzeO1dkMDMNkMk0T6rqicyLdWCxXmDaPMq4QGX0JRTnB6C1WqyWHB4fkhSfN4iaqpFEzJkcFTZqk1NbinBxGbdcyXy6o6xVbG5tsrK8TgmOxnFFVS9bX46EidA3OF7v89dMeE5JoB+fGoP1F8mlgsN/of4fWGu8nUhJ1Xnh7OSzaTnxcXn/1NWzXMRqNqRZLzrJT7n1yl9VqhQqBk9MDWtdw72SNvStf5B9+5QapXjFbrAhKUZYl3/vlEb/66DGHf/EdtFuQ5TkbG5uEELh27TrXrl2lrlekqeHtt9+i6zrmZ6fRbyZnVQuYvFic0DTtwF5JUynI+9TmEIIYz8apmY8sijzPIjMykVTRcC6z6Wn5wnaQxDoV08QWi8XwHppEWAVpmg1MRh88SZEBXuQ3PpDlBaCkMOo6mqoGJX9v6po0KZiM10jSlLW1dapqiUkUs7kkniotDBiI0eFKEpmt1SxXNW0ngSHf/dvv8uZbn2drc4ujk0N+9vMf88GH7/HNb/0Rjx4v+A9/9Re8/NLLfPUrX+GD9z/kX/+P/yPTjSn/1//b/4VL27v8N//Nf8vx4SH/8l/911y+use///O/4Nmzp3zjD77Oiy++wPP9A377m3e4desFXnrpJSkE85TZsubX77zPdDJGa80ffONr2EY+r8ViQd3UtE1N1wmAN5lMmEzWhutyuVhydnLMchUbYWQv2dnaZDabsVpVAyuhbxyMDhRpjnXt4MXZJ5ZJQRYb5HDu5+PjhNlre35NBJhMJ9y4cRNUnOx0HW2z4ujogOPTY7xzjEYFm5sbFHnGarWkyApM3AMvFo7nLIYwHERBxyl3AEIPXDqyTKajXVtBUBglIUcb61OyoiRLJ3zty3/Mvbvv8PxwRNstSI3C+Q7nPMvlKsrNBfQZjcZobeIh7eLkKSVJ0ujPEhMh45TSGIOOvlZd15GaIhZlDV5J8rLqQR5EctgDrs5a8qwAD9Zm1JVnc+MSn//cW0yma2xubDCfLfh//Q//E3/6p3/K3uUd/uzf/RkvvvgSn/3sm3z88YeczU5ZW5uyubWFd466qsXc24hUuCjyYe1rk3Dng/e5c+c9XNcxLkqKIifPE8oiY3Nrnbff/jxvvfV5tJLwFzBiBeACloDrxA/Fuwi+WB+Z360MXiIL3HVtDOGw0qD1V7z3581DPMmGogUpI43W8nP0PkAeG3r29DmLrzct7sv0cwZU9FYdirbzhqKvenwIoDTXr17n5gsvopTBWk/bdFF2LN/P8oLtnUscHu6zmDc4L4ORNMvEkzOcXx8Dlb+HgGIz40OI0g7w7vwc6QvjKno69hLn4KHrhMlsjJHr2UemdJHL2aOCsLJjcE2IIKGY5wfE3zgCvcpjtKaqlizt2RB8470iL2XSeu3KS+xtvcyDT/4CFxaMJpuU5Yj7jx4AirIUf9jxZEJiMvEgRc5LpYSBRJDGWekkDivFGzFN0whUWTorDOosTSiLHKMsiXEICcnRzGs626K0l7Q9nZPgsNZc2G9kqp4YaYJVEABSpGhOmmBr6cNZXAw0Qstk3nlHiNP9HrxUw1nOAEr0QUluCBWQNESTaAnvGNgrAuOq6AmlwsVZxbkn3Ze+8kUuX94jz3LKouD46IizszNpCrUMnS5O0i8abPdgsAKC7xMMOV/7/Z4op+1gidJ7bQUYkqlNKmz0uqtZHM5xzlPkY1oyTBqgXRK0+MsJ67eUZq4NzJdHpJkG3ZBlRoZmhoG555wV5rzSMgBAGNLCqhAPWZBACGvtcH6IJFuYVfP5DOc0XT1hY33MfD5jbW2L58+f8vLLL3N0dMKHH37Af/1f/Zd89NGHtE1FliV89PGdyLAvSLKcu/fvxzRAGbJ6ZymzhGtXd/k//5/+FTGbENAkSUFiutiwahItHVeiDEFBN6wHfc7K6yXLoU/LdlxMqZThvxLvM9dFQEWUGq5TeK2xtgMvazZ4j4/saxX3FB8HxAoh0PXMIBXXo7MeoxUmywYmCoAOYvgfovRL1q/DBAXh02CGj1Scsih45ZXb8XNIeOHWLba2Njk5PWU8HsvrUOqcOcOnh4dDkx3X/iAT8xE47zvJ+NO9kiBE0FqGMcNIZJAH9yCJ9Y7RpMRrRVrkKEzsVawA1MfH4tndyVCxZxTlWe/zqAZLjhBB9C56QLVqxSePPqKwE7Y3dnny7CGndYrOBPTtrKdtLMGnFNe2JE1eZdTNCkIgSyUoaW1tjcdPntDZhiSVkK3Hjx9y/8EjFrM5eZaxWlYkWUnTNKyWc+m/rKNtxGuv99kUTzzxzcuyRIKDDGRGwo2cF+sDaxvaVs7dtq7jsC3uBwPY4c8l1f1J6/3wWQQfLiRrRvaai8Bw6FmY53uOR4ZxJgIKAn0JGOedBG2pNBW5d4hrIloVxMUI0XrKR8StB401/VAiDPvhCy+8wKuvvRp96qQ3uXn9Gkpr3n3/faZrItPVQdhcie+v7PPX/L8mYnx6wNhXCi7un8H5mJLbA0Hq0z9zAchTEfgGeZ+D6kE/H88owHvyrGRj/RIVTynygmolae5ZIYpAG5m+aWoIwVNmJV3wdF2D0YrJxjqrqo6MP8fm2hYgJIf5wlDXHdvbN7h25UWma2uUZUFZlBzqM1arCqXE7mO5FGBvsVigFVy7cpnXXr3N9vYm2sTApqDo2b19zdS1HVVVUddSP3dW/A9TY7BeQtw0Gut99Ht29FJlrROyvOTSlT3Uoeb46DAymwUtnM/n4ifpPFkm9WpPIiECfQLEDmYtUcllMPH5yeApkCUpbSM1ZM9qRoudi7B4I/u9R810P6SVzyyWWMPPC9s6xL0qrigf9xgna2Xe1Oc9i1JRln7xiumvJyf7OC6ClP26ckPd0Ock6LiDK873UKX614KEFF2ABuXMgICjD1CV4Vl8pNDXyud1Tl/0fBrIhs5LyI93DWntKC7vcpZrqrbBeyPDIkCpRPZb7djbvcYffuVf8Wfz/zu1+xCUox6GzwzYQFGOMEaT5/nQ8/W1wO97+70Bvjde/We8cvsm8/mcBw/f4fDsfRp7gHWBJEnpKfzQ06RFgqO1Jk1GURpSo1Q33M/odJjAh8Aw4XTuXLbWP8ZFQ9wgCAtVVUVw0FLVDbU6o206tAkoLc9Jim4gslI8vSeQx3kTI6U7VPAkkQ2VJBefl3iDdK0jzaWIq5ZznBPZGcqRJj76WxmcV9R1LTIuxKNF6ZTgc1KTkZcFrbUENGezGYcHRyjt2N4ckeWGsixoaotKNJ0VhkNqjExXo0TFWimcjNGSjhVgsahxneLF63uMis3zxLDINvEXFvNQKMfq+RwBj+8v54v+YlqiSGXN8Dn0EzM4BybO/cLEsBNlBKypK0KQ9NumadFa/v173/sey+UyAgUCoi3ULV649SKL5SmpWtJZ8VNb1XOwDfXsmPeO3sNWZxg0aSqf9dbWFl/72tdwzom81hjqWjagoijY2BYpdgiQ52U08XWUZRFfAwKkNQ2jshQPnthUOcBakTGVZYn3YNuYRuuFZZGmOdYKC6XuWtJUZK49FRekIEzSJPriySaXJBlt21BVlTDgTCJFNJ7OBvKsEJ8QiFMRxXRzDehlt4o2vt7OisF2HIpHia7D+97DJhfz6nzBq6/u8vTZ+0zWt9hc32I6mdI1LYuzM4o8xXvLk6dPcc6yvjZldnrM4eE+3/jDrzNeG1PXNb9957e8H8GTqqq4d/8e3//777N/cMAf/tEf4oPio48+oapbjo5PSdKnbGysc3p6TF2tODs94fLeDlrByckZdes5PTtmuZxLQrUVluWVq9dYX1sDFFoZ2rbB6IwiL1mtZuw/f07TVrF4lwlvv8/0IIhSSgpvFGDiFFgSDQesIvRT2x7giw2ENoOMvyxLyqJk99JliryUQrNpmZ+d8cndj/jBD7/Phx++T1EUfP7zb/LlL3+JPE9pq5pLW7voXIqJfjh6btJ+Xjj2zXUv5QmxYPLe0XSypq3tIBiyLKHrhBld1SvSZMrm+hWeZg+kcEhTgncYk8SmUxhvbSum+21rSUyK0uJJl2XiRyeMqmRo3kJwBGUIPohfSjphd+sFxuUWGk3X1Tw/esRitS/ptyrBe433wpCuVhV5UTAeTciTEkVB11RUq5r337/D7VduowPcv3ePqloQcLz77m/4+S9/yrVrl7Gu4ac/+xF3793lH37zH/KFL73Nj374I/7yL/6Cf/7P/znf+MY3+N73/p7333+PL37pS9y+fZvZbMFPfvITJuMxt195neloLGxXFXBdhdYpd+8+5NrV66xvbEAIIlVdLWnbmqZu6Nreh09sJ7IsFwmp0RAMHkvXNLRNHSW6AnZ5pGHTiZHG3/bNXgQhgjQyKojUu417qUOkFMqcy0MMhl7GwLCLf3rariPrQ0WZGxfWDoAxKZevXOXll1/FK/A2EKJ3rKTC2chckknuZDIlTQzbL78k4J73+GF1xgKJc8Cll0D0zGd0X+yfF2PEry6uK0m710MjKntignchWnWIakAbOY98CLRVjVaQxrPae09dVzHd9Nxbpeu66OMJqIAJwjjqupqm8eTZJrNTywu3XuPtL3+Josz527/9W65evcbVq5f5wQ9+yO2XX0HrhKfP5sJKThPSLKPICybjCeVoRFkalJLzUJKma95//z2eHzyPTIGC9emEvb1NLu9u8uYbr0fyXKC1FpNmZPq8EddaxeuUIY3QRXBI3uZeNhmiN5obWFXCLBB2bp/2p728d13bDXtcD3n0gIV4B8p7rp1IV0MEN5xzkswJUV4UfzpK/iQFvb/5yLqUtuTk+ESuq8i+7hvnHvTuza+1FoBMiQBvGESKH7AETRXliMl0LbLp/TDorFZLXPSLOzcw1yg0Bo3tarLxiKapIqPJMhlvsLd7naPjZ2gT6PwSCJjopdt5S+cso2KMcw0KR9v0SZdyHVpro+Kjl/fJb+2DPfrzvetkX5CgrZy2sXivsZ1j0YnvpzYF49GUohxzdtqACnRtg1YyJH/zzc8wm894/933eOsLb7OzvcXfffe7/LN/9s+4cuUaf/Pd7/HRBx+gjcaYlNFoxIsvvEBdLek6z6PHz7h29Qr9LiL+Tw5CTNuOQERA2Ec9kEEMRugbJ9c3JXE47Hp2c7AxlKgHn925R17PyorrMzg/eJFKnS77YnQtuwCggEmM7L308imxljBG0luDEiaPiwPtAcwhpgcHD+7CDqRAxZDAP/yjP2JjfV0sKdKU69eu8ezZk3idEMF7TU836XfAAdDusY8BDIk1dmS/qBDZx6pnoMYaW6lYKyvRzcfnLRx5uZYEsPIsVyvcomIxl8A2pS56D57X58bI8C3VcnbLoC4Z9mTnXHwNFqxDq8jywRO8ZVUt0HmG6gKtt0DOxuQWV/c+z97l1zk4XLKzlRMQVntZltFyRXF4eCBWR2nKs2dPmS8WLJY1SsNkOsUGT9O2nM3mtHVN10pghe2sMOucRRuYTifsbF1iujZiNBphIpjcAyvWgbWe+bKiaYXpXK0qquWCxXxOE+1DxGer39fccE6p/gSK9bEwaKSX8t7KOv3UqXa+q2k5ikkTHdmBDMCzx+OsqKXQWoZX+PMBTbwp1csRGa633t+R0K8R6aGSxDAejSlHZZTmw7KqmJ2dSS3Rg8gDYUOdg4vhfK3R7/F9rdm/P/H67ock8nYFgr7IiPod9CEMVQf0ffvwLR/rVIXzEgTUNLW8riBMw6YRZUjTNtiYrmytJY21qbOecZZHT2d51M52FHnJeLyG7RxZUshaVhJS1rWK46MlKjwmPTggzwvW1tepqoqbN6+j1FUu7e0wHo/J0hTnLM1qRZ7nzGanNE0lvy9NoiVCTt3UHBwccXJyJjLipo3hl7IWtUnIkmywUEgT8WwfjafC4leansuptMaQsLm5BQFODg8RJq0E2GmdERIfWae9HUc31G3EgKXB3xGiH6Ua2JMynNYkPRsdLYqJfjCjI6uyvwK8qC7U73y2w6/s+/l+7RD3z3DhmujBMYi+sxeA797/jrj3Ox+t21wELEFhLuyJ/vx30wN2ml65EAR1jkzwHqjswTF5vPNH6Mcx/fO8MNwhDKA4CLsxBFGoEoeDTnkZ1rcdRid0VU1b13iVomPOgzGKLEvjWu6GvlwIbI4Qg2OU0tGjV2reJDGf6veMSQbP3t/n9nsDfGWxw3R8lbLw7F26zeHRF/ibv/t/UncPUEoCBohMsCTKWDOTxUWRsLG+Q1Wf0FqJF5cQgf7FCnjivY+NU3K+sYSA7TqJt25bjEmp64YkExPkpmmlOUWjtaEoDNZ1tK2Vx9IpTSNMC+J9ZHqZUi9bUNB1jkRrVJqgTYKzkBY5XSfsBe/BO1gslxidxOk8OFuhSNCFmA0vVrXI/4KEAwQnsdFGO7TJWVUr7KpmuWhZrSrW19fZWC/w3jEajSlLFZkNIovIMmGLtW1LmoovRqYzuq4jTxLSPBfDbS/ehqNyyvr0KkaPKMtiSEJsm/YcHI1IQX/xXTx8houiP3d6YEH1ctVACOd00qGxvCA96f+4aFYcEJr/nTt32NjcpMhyquq8yH769LEkOS1XOOWiy8OC/+W/f8h/SCyGGhcU9CwEZ6i8IXVz6rohTeT90FrxfP85ne3Y2tyiqqoITtoBCP7aH+QUo5YkySjLcTR1tkNjBkEMib2nadoBzPRJSmoMJslEUlAHsqTEuY5VXeOCGPC21mNMyqoWsLepOyonk6oizwlBETQEH+ic+EzJweyoa/mM0hRWq5Vs/iohSXJC0+HiJF0FRXCK1dKzvbWFNpr5fEVbQzmZUhQQfCcAmFLkWUnddMzmM2nwlGVV1dSt4+H9FWmquXH9Bl/+0pdABd777W+xtqUocpz3EXxtyfOMpmtYVAvquibJRda3WM5o25rRaIQLjtPTU9quYToZQ4DFYsaz/afcf/iAZ8/2mS0rXnrpJdI05d779zk+OiBLhUFZVTV1K16NTS3MvaIouX37FfIsR0fAVXwcdPT9VJgkY21tnZMTASiePz9gkIlfAK97GVvnPLaTpiZJU/G6U7JvFVlBmqUirc0ysiwlSVOMTsiyDOcFPCYGwDRNQ9d2rFYLPvr4A/71//yvefToASEmRlXLBavFnK99/atkSYp1lpRsSIRVfYEVCzCZrkW2bejBRXXeQKjeE0nu46P3m0ijU1rbsapOmc3PUKQEoheKF7+buuqYTKZR9pWQZYbVakWrOrIssvoQ7w8dZThZlsu+GXrJgkdjyM2U3bXXeemFL4i3VHPE5dNP+PHP/yNZ7uk6F4GpnNQk5OvTGIgiRWBm1tjZ3uJsccI3v/VNXn7pJT54733msxnTsRT3Z7NTjFGMRgWz2RmbW5tc2t3m6pUrPHr0kPfefYfDw0O8d9y7d48f/eiHfPjhR7z11ltY5/joo484OT1ja3OTvd1dXnrpRd55513ev/M+Tb0kL3IWyyWPnjwlzQpmZ6ecni1ZLBe0bYOPDWuSZWxv7zCdrsV9OU5YnaSxVqsVi/kZs/kpi+UyFmKBtemUK5cvs39wwNHhIefyLmnOZGIqwTs+TaPcXcViWaasIQJpvUdq79Ejxf35njtMfmVXhtADfrJ8tne2efn2q6AN3koCXFvXLOZnnJ4dx2u5Ic8y8iwlTVMu7ewwnU6pqxrnHHme4pUAID0IPTQHQJ8UGUKAaKJP6IHICJrHQkiGHy1JomPKromSfIfWMijJi5y6raMVVmC1WsYhiDlP1rZ28M7sOhvZqfIuKCUDNx398fIiI6jA6eyAcb6PeTGnaT0mq1ku5tTNkqdPH/PCi7e4e+8j3r/zDl/58hdZVS1/8Zf/nq9+9Sv88be/zZ07H/D+3U947bVXWSxnnJ6eYpKMvCgwScpvfvtbjo6OY6iR2DkcZymffHSHtWnJYrbgW9/8B2SZwegEo+S665l1RkWj+x407ZvVKNm1tqWz4rtnnUjcuu485bkPSzhvGPrmS0Bdo3sWsfynL46VEh+5NAKrUiNIk2WUisBWL5ORnwrODWbX4cJe5uOaXbZLeq+pvtAW0LJnCsja8cOA2MXnIsV9kpZsb19ia0uuPwFPNErLQK5qatqm4vjgkOOjI/F7QmwXWudovSNPCm7cuMXxySlPnz6Rc3N5xqqeUzdz0ixFRQnYarVkOp2QpRmZyTBakyKse7H/VZHBX6CVBM+1TYdIe2VN9jLDNE3xwRDiPp1kOatFTdd5skSTmBSjNZNxTt0qJmuXyIopRs8I1srWrwTQ2tzcoqkbnPesT9d4/vy5sDmM5uBwn4cPH0Dw/NEf/iHXrlzhZz//BXuXtjk6DiSJ5vj4JFp2KJbzioOjM6qqw0UgvGfB97VQiN6izvX+TFFe7ALWxTRd18vIo0UB0sz3YNwg51Mi/RVrg1htOhkgCRhIbNjk3O7rS42kRzsr7BnrBKxxLqCtGWS6Pu6jOu57KH++/wWBXfsql8hIUUg6b5KIn9+qqnjvzh0W8/mwd+iekdI3s0rsKPrOePBck78Ig/AcPUKaPnW+/kNklHgJgAnq/CwQMqITiZ+Tx+ic5fnRMTdf2KbIctrI1NNaSR8Vzn2DpWEU39u26eQ1m3QIxHFeYZSha+XMylLZG9dHWxR5zvp0DYwjKEdZFIyKK7x48+tk6VVmZ548H7N/eEiWGra3NgV8NRqtYD6fM5lMWJuM2dvbo2k70s5KE98zqGZnLGdzmq7Btl308u3I0oRLu1tcubLHxsZa9ItWg6zbebD+gmdW9I9VOpDqjHSaMx5NWJtuMl/MOZ2dUK9WDDG76vwzGpUFV65cwdvA4dEhi8Uisp77qIFzMKMfYqi4FntwVSshnPSNu0A5HheUeNd6DfrTTM/+drGvHb4dAqhzeKL/2jnL6dkJZ2cn9FLlnhU0LEl1Lhnv99+eWdjfsa8v+zU4MGTjOgwI4Oz7/dufr3VU/5zlyQYFZgBP+mTWEIeJcn7pYKI3YcBbWMwWNPc+prvscC4jy0q8V2KJ5L2AZ6FD64ZM5ySqo3YdOBlKaqWxNrCYr9hY22I8Xuf09JSjwxOaNgddsFytSPSMvMjlrEoM07UpL966zubmGnmRk2YJSRL3AS/MvB6ECQqqquHJ00MePHhACI7T0zPu3bvHJ598zMP7Dzg7O5N9z4vKYG1tyvbWNrdu3uTll26zd/kKk8kaRTlmPJqIUmtQbXi8Ex9511lOjw9kiND7yKrzteBsK/1DLy8d1uUF6FnJGdz359HYjzTTuCoQfBd/VsfBn3y/X2Oq3wqHFc/weBdjakP8fHtxq7qAAoaoUTlX7cnQ0EVANygJtwmx7/IuyuLVeT6Aoh/w9Xslw+/uJcqDVDguNd8HsWotKiwF6GTALJyPtjr9WRLPht5CwUeLk/Nwi2i5E+T3apDz3He8/4OfcLAxxlU1LjVo7VC6w7uG5dyjlCPkEjqXmxzrDE1rSbOMbFTSti2Gc0Vr2zXkWS6J0GmG9TZaVPx+t98b4Ds5PuWjDz/i5OSMa9cu45zh6uU3uPPxPVo7I00lLTd4RWfBJArXiOzHGEt3FidOwQ7orhkOKFl8SZpGBFS881Ij5qrBn6fhBq9wnSMERdvUjMcTsiLH2mUMQmhIkxxjLFobXJewt3eLh4/vorX4nDjrqWuhmWqdsDbZpCzWmM0PcV6KuOWiJc00XedIk5SyLMQzwke9urVkJhW2VtvggqGzGYlJKLIs+oRVLJcrAo66OcGHQJmPSLSmzEvmZ3OmayVpqqmqM5pWRyBIJh95ntFZWZBJoiTAQwnN1dlAUYwwhaSr5UUJrmR75wUCCUUuQRV13dB2bfRniltEBOP6Ar43Se0L8EBEyUPPxpDDo2dEDRMoGMC8Hii8CBhaa0HJAf/o0UPev/MuCkXXtdg+3KKrBXzQUZ4aHFlmmR095yyA0RkvvvQSb37uTdJMKMgmSWJYhRT4f/3X/wnnLIvFjMVqwde/9hWM0fxP/9O/ZrFckKYZW5ubaH0NawOdbVitxPvQGE2WpcMG6z0U+WhgzgQCTdtiNYBhc+0mb735j1ifXEZrzaI+4oOPfsbDJ3fIi5SuFQmipHMFbCuhG/J5lRgjjD4VDxRnxRsozyaDUWmSZFRVR5qINDvNCrS3GG1ITMKknNC1nsVqgdIelRjyUUoIHctFDb4VaRCB2XxGVTdUdc1oLOm5STplNNljZy9QtcccHh3yzjvvUK0qxqOCl196hf3DfYL3ZFnK2nQqHnLecnZ6zCef3OXGCze5/epLtF2D9QIOaQXLxZy2qSmynESDa1tmp2fYtuFLX/wiX/v6H/Ds2XPm8xmz+Zy2a9je3iQxCctlRWcDXWR6GGN46aWX2NzYpK5bQADbtqnp2k4ksV2NtS0mTRiNxywWMim2nfiv+OgTZbQhSVNh3SQJaZKQmITRaEQ5KkUuFaduIjH0UbJvqRYrkREoAC0SMy8MpzLL6dqGx48f8YMffp8sS3jttVdYLZcc7O+zXC1597132dre5LVXXxsag2EqFpsdOC9g+2v1XNpx/jOSzJwMX7vIeJkvzsjzEjTR26ZDa0PbdBgjjMayGBF8E8Frje0seZEzGo3EMzGGM8hUUVNVQjNXOqaG6j7VU5rw2XKfX73315zMnlKtVsyXx7RuBbpjuWwwOic3OZ1LSRNPkWcoLTKLPBuDX+Po9IA0zfijP/wGeZ5z5733mc+jHDTAcrlEa0Ve5DRtTdtWOGciK1DMbcfjkixPmS9mLJeLmICdMJudcXR0SF2tKIqMxWLGJ/c+pukaTJJycHjEzvYGTV2xWlZUq5bVsmKxnNM0FbZtcc4xXVvn2rWbjMdjvO9lpJoQHNbJxD3NC6aJppiM8c+esZjPUMDpySmrxeKC/Faa3t9t+M5FaQKEWSdrcEhV7gv4CJipfn8NYlEh56whMTlJImC0pBtnFEVBlmVcuXqDohizqipsJ8y9/edPuXf/Y378kx/x8ME96qri0qVLfOYzb/CZNz6DMZrFYkFTVThnuXb1CkWRSUANDE3KRY8/AST9AP7Bp72M5CaNSp6L8bXITgT4S1MZotV1jTMqJriJ9DiP4GrTdZHBXtCbdfcNeQ/w9UMnpZA9v5qTZTloSLMMrcB5RZaXbGytsbEx5fmzZ2gVKMuCjz76mMlkhHMdBwfPef31V9nd2+Xw6JAf//iHnJ3N+MY3vsbR0Qn/5t/8G7717W/z7T/+Y05PZzy4d0+kGKknJBJas742oa1rtra2eP78UBjb6ZTguMAUbQeGvngbC+Bpoy+T925IKu+sxXVdNCqvI8spTrr7yf3FuX1s8hiAF4a02iHhOQIORhtUaFFeEpel9rUSoNRL4OhVPsJXVZHtJ6Bzv9XpITX8vJ3oQY8LbIAIdl+U2IWgGI/G3HrxJdY3t857ZS9+R8F5YTnG+mf3yhWSLOPg+XO6upNg1Sxl88oee9fXOVnMsNEzt+tWnC2OxXtLBRanS8qypLPiW5amGZNJQsCzqpc434myg4Q0HZMkJRvrV8izEq3HJCYnzQx1Pcc7YekpFbC2leTh0IGOfs9R6uWiZFrCwjKsK5mOb1CWG6ytG9mfo0dw1zakiWExP6PIc1BwdHTE5uYGxmhOz844PT3GGMXVq3vsXtrij//4m/zN33w31sTS6C0XFSEoTk7nHJ/MqepaBo5tMxihqyDXYpFnbKxvkmQ5OpH0epSwRzobaNoa27ZUq6WA47WAnCbuYYSAV71tgEi6iHtY8HEt+yhZjOsznnTD4KNnymVJRuNbSX4MkdHbNoyKfJCe+b4R7evTONk4x1jO/132Uk/XNhwfNed2CiqauGs9gOuhBzAieDlQDy9cUwOoHQTM7H1+TSJs3yT6EjtnRU7bdjRdEx/z3L5Anl4EIaIM3EYWyLJaoBJDlqYkqfQJVSXJx6KUSvFexfNfftaojNY11LWsw6wY451iOtphMtmiaR+xub7J7tYO89kpNS21bxmNdriy+xZFfpk0m5JkAl6tbayxmM24e+8B169fZbI2xXpPXTXsbF9iPCoGS5nLl/dYzM+EmWSbWLfVUVLcooNjY2PCiy++wM7ORvRgcyjlIEg6uYBmGhtU9GQWT3PrQuRSxrodRZLlbGxmjCcTTo4OODs9EtVNiFkpcf9cLRcRdxYGqncdWvU2InE/6xlJRHkg0hxIGIjYQ1kryeUeJ4AEHuMRcC8O1vRA8zxfM58iWwzLUvZFYfSf23sMa7cf6sXn433vfRsZg/G+6uLjRcmsPu/q+BSrajifNRLUJ0MTE5PjdXJuJeOci0E0dkiTHq4P5L0McVAUoke8Cgoc0DqWZ4fsvXaDLC9JjGJjYxdFijaBxeKUql6JfDHJSU3KRjYmN2KR1DYShqGMWC2gFOPJhKZboU0JTDEmo2lbXLBY12G7luAduztbkd3fUDcSEKZVIE1SsZqJFg5nszM+/PAuJycnfPTRh/yn//RXfPzJR5ydzsSTNAY7RmgJFT1KjTL88PuBsii5fPkqX/jiV/jKV7/OxsYGo3LCdG1dzkzOyTLrG2t411JXKwGugo14gaXrRMmVJuLhrlBDn94jcpIDIGemVmrIJBAvcRnm2E5qS+GwyyA6hCAHtgr0ycqDXzNwLnyNXsnhfF++aNR1cT0O6eMX6rv+uQ2cutADctF3N9J4gneigrywyMOF+mG49uKAMkkNk8mYyXTC+tom5WjMeCSqSusV1kHTNhKkVsmQfrFYsFqtzv0NI/tcfeo599ckRJwSWzVimzJvWFYLXOuxpiBRHoNjMi1Js4BtW9p6KcMEr8iSnDw3zFYzMl1gvcMFIf4kaSAtCkKQa1zrhKbr0FGp8fvcfm+A79HT39LaDeazGaeLD8UbQ9coNEmcZHpHTCRt0HEC3LZdPFA9vrNo3ZJnqWjIU2FLLRYLnLNsrK9hjAQHBETS0VQ1eVFIs2ME1c2LAtCkSRblKG4wM+59/0Dub9jg1rVvcHjgqbp7dJ2jazuCN1G6o9Eqp66k6W2blq5p0ToQYkpo1/lI407ihEPRdlAUGV2LbPrK4FzHciW+eEUeUVotRqhZft6p++BwvmG6npIXYrhsjBaANIJqfWOVFyMp9LIR3ido08XiUQ/TjywrsV2gzEtWy4oru2PyXPzdFotFnCr3m3EYqOshXAT3fvfPp/99kDtyDk787q3/954iH4JIS8SMP2U8GouMsFqKf0jjUNriQ4f2HTduvExVNbz26qt8/MkHLJZz9i5d5drVqyKrg/i6Y1MSZTC3bt1CAldEWvvBRx/E5lI884pCAADvAkVZYp2l7WpJnVIG76VBlGmRNBdJpOwanWAyDT7graJaLbh39xNeurVG21mOZ8+AhCwthblqDEJyFEBjvDWm69roZZZAMHin4ntk2Fi/RFGMhGGCpWmXtF3LdCJ+KyFIApFzHV3b0DQN+/YpVS1pPNpA09ZkWUGeFiRGTLQXyxlZloJOyIqEvJjSdC2b67e4efObGL3GnfAxVZVxNpvxm9/+Grzi1duv8vrrn+Vl/wpVVXPr+gv8y//y/4gNlrrt+MpXvsLe7i4mT3HWsrOzwxfe/gJ5kmKUYlwWbG9ukGYp4Dk63Gd//5mAR86x/+wJRZ7hbMbu7jYP751x7epVmqZmtZrjSWibGu8dN2++wNWrV+laAbW6rqNerTg+PuT4+JiqWqFwFGU+eMoliSZNxxSFJD+WkYknKbAhNluBrol7RQg0VU0dZKJnW2Ek9OyYIZUNUKkconVdo0lYX9/Ah8B8ueS9995hNjtlY0NSlLa3N1nfWOP999/n6OiQd999l5dfelHWsFyIn2poBllwvMP/1hXWX19iY+CjbFQo78JUXRK0oiw2WCzmrK9viIymPcVbT1VJgWO7Fm0MeV4KE4aA7TwkwoZoW3nto7EUTmUxwrmY4AmkCZjcEIIUuifzT1AqkOaKYME6hTEZ49E642KTAMwXp7Rtg1JOTJIpGI932Lsy5uDwjB/++Ce0rWW1arh56yV4eB+iT+VoPMEkCdVyyYN7n7B35bKYLHcNs9Nj8iKJRY0YKBulSBNDmYv03doGZ1uSFHYubWJDIB+VrKqaxXJJVa1oW8d8sWJVr2R/amvwns2tbV557TXxHOlBjaDPBxvB43EivUGKrc3NDbxzkY2taLtOPu5++KHO/RbFLkwaws4GAQLj5NYYQ5LK//M8IzECUud5TmYy8vS8cTTRl65nFxRFwSKme/dnpIBglTBP65rHjx/ykx/9gO/8h7/g6OiAPmFx/2CfR48e8PDRI/7oj/6AtekaXSspnZ3zJB4Z1F1YlyFWR35gWfx/aGZiy6HQAlw5L6ywoNA6xflOwoaCJksLlotF9I5soxeuR2nxIc2zQtjuPgxrMQRh8Q0gve+l+oo0STk3DfdU9Yosz0El3L59m0t7l7h37y5pkqFQnJ4es7G+jrUiX0sSg9Ywm884ODjg6tWrLJdL7t+/R1VVrK9POT4+4uOP7tLUFbs7m3zzH/1Dqrri0aMnLFfzKMNpufvJR5wen6EwnByfcHR0IiE9XUfXVRB6DzwoyjHTtQ3G07VB0uF7eWTXxfChhpOTE2azGc61sZANRANPtja3GI9HHB8eS701VLP9ugwo1fv9SY2QGEVno5eNl7UqIxDZNYiBX1orglfDPtk3M0O13NcYQ5MbzkGWC2tH9eBMiDYU0zU+++bnyIuSzrpYlF9gYndNPEfDMJ1LInPjsD6U4Uc2JqgdHjw5IiQLmm5JUDU+2ME2RCkiy1LqtTzPMEZFJililxGvIWc1o3ID6zx3H7wTay9HmgkTDwxaFbSNPBdRPMhrV1qR5RlapRD6xjVhc+0l3nj1G2zu3GD/aMWDh0+xrWfv8hWUNiTGcHR4wI3r17C2YzwpAc/J8SEbGxvRw++M+XwGIXD/7sfgOlZVy4OHD9jb2+Vgf58sTWm7jqaxLJdLVtWSpmlwVtgKvVz+8t4u169fZTweEQI0bWBV19RthzIJXSvJk1maoEYBv7ZO1zYslwtOTo9ZLWaD1Hpg+irP7u4O08mU07MzDg4OIkARmcqqB7n6wUcPTMg5qXrPEQaYhN7wXcX2RoUAKtoTRGBQsAx/QeolW5NWPegT944exOa89r14Cg/DjMhS6QFr76OntvfC3lKyj00mUzY2NpmsrZHnBX14X0CYql3XslwtOTk95uz4OCqYYnp0vBaVD9BJ0ERV1YRMnnfv+9wDe/3e2nUuMmMMzrc0dUdTzdE6JXgD2rC5scv6mmZUTkGlNO2E6XTKzvYOzw+e0qwsaVrg7IjT0xZnz5iuJWRFScDT2o6NrR22trY5Ot5ntVqQpjmvvPKqrCVnefb8Od57NjbWMVoAT+nNZLjonUXjuH79Ci+//IJYiBDifhIIEWhwTlQAIsuFznm6LlA3rYRyhHN+kzEGTDxdNGxtXSLPUg4PntN2MWQsypYXCwkBCCj53UHWUWyG4lktn3s8imNTfp4o2ttGCQgTV2UQhrXWPcv5d3ul86/P19f57zy/h+y58RkM31MXU0TjnQVH6ffbHmwL5yysT/2+eC31TOpADMyCtc0NNjd3GI9GIjONzDPXe2g6N9RXp8dHLJdLbLSKUZFdr0QnT08WMUo89bwPpGnCuCylt00TGdT6JSFYnO+kl+6kLlm1S2rjyE0OPlCtlljf4oKPZ7OOEl3FZPQiu9sv4UPOfDHn6ZNH7O3ucu3qNZaLBc+ePefZs+fx2pKeuSwLrl27wmQ6RaF4+PABDx8+5uHDB/zZn/07fvnLn7NazWUlahOVQqLw8UAf6BKCo+2aWAt23Ltf8/DhQ/7++3/HN7/5Lb785a9gXUdeFKRFiQRcSajY1avX2dvdYTwZoSIg3HViZXN0eCgM2lEh50TX4WwXryEZOrddK39aCW3sbLSR6TpcqPExtKyLth49814RYuBv3Avj6lIRKByYepHxIim6/2uATyTest5+FyiT3t8Pe2sIIaoQZUjUl4h9tSD7dLyyohVCrzRUITCZjLh+/SrXb1xnbW0q2IZHwnJCoOs8rYPOQtLk5MWI0WTCxsY2nXWirlnMODw4YLWUenKwUPid60MGpB5fN5RdkIRuJXZILjiCdShqUVQGIVKlaUqeZ+R5xmrRQbCYOKA2JpGBLJo2JrVrrTE6RemELCsxpPy+t98b4Hu6/xuWjaJta7LM0NkmboyWLB3RRLDGWofzAVd3JCZB64y2c4D4nc1PF0wnG5TjlMXZguVyJSELXtHUms2tNdLUD4smkGKtwntNaCTiGiUT+KIosLbG1pIUlUSGidZmkIiKIW+JJPZ0pEaYOzaIWa8Pjq47wCSGNAPvGopRJodVUAQn9GCjA3meCcMgSanqU1ar5nyyZnSUfAbaTgC1fjqsdGA0GqGVoussSgmA511gMa8xJsZ+O0tAYujTRPwAuq5Dac/m5hZ5Oebp87u0rYBm1nZiQB4UhJwsWSPLSnb39ghB0oiOjo4Garn8X+RVvRzmXN7lf+cwulB809Nwzy/ii/cBBsNvlBzM4qcTsD7EVOWUthMQtffPWY8+CV3bglK0TUue5dy//4AQNGuTLaqq486dD3CDNFiYH5KsfC7TDN6RGMUiSXj2VLyI2qaJIEZsSvQ5a6mXIklzrMlzI02n85G6q0iTjKHnIID2rLpT7j39GSfzR8xmS6xrSRJFZ2tYKNYm20ym6ygU89VMJvvJhLLcpihzgu9I07MIdmjqakm9WsTXZDGpIihHqyqCh1VVoUzc9HxAG0MwnnKUyGswirwYYztL3SwkVdckFCMBFk0QzxIV5VXOTVktMvKR4fKVa2zv7CBhCZ616TpFUUTDf2HBJcZACLQxKMdow87OHk3X0NmOJDN88x98E28dddUyKsf8y//6X9JcOIC2t7aYjDueP3/K1tYat199hSRRnBweoAjcef8Oh4eHfOnLXwVlqKsVWzs7vPzyy8JCXdU0TctsfsrTJ494//13+PkvfsHTJ48IwfHyyy/wpS99mcuXr1AWBbu7u2ilWS6XVMulJFU2TQTErCSGti1NXdNaez729AEB/H/HmwIIOpCoFOvFRL03S62bhidPn/DJJx+TZWKQexZTbUejkuvXr/DBnTscHhxQV7XQ5L2TuVoI9OmsQUW/Lc6ZXH0x2Vd4MkQJNI2NfbKOxbFCEWWLUoJQN3O2dm/gXYJROSYNaJXIVCokoFKs1cJ2VoFyXAgDc7UgNVBOCvJ8RFlMmYynqJj0XDUL6naFik0qCOMyOh4JY1cnJASqesnZ2Qmz2RlJKgVxmY+ZTne4deOLJOl1rH3CfHmXH/3oJ7SNZe/SZTY3t5hMp8xmc1577XX2dvew1rG1vc3bb73N02dPI+iVc/nyZVbLpRhNu45Ew3hrnSw1nBwf8ejhA1QIvPLqbf75n/wJq6ZmY/M5H9z5kDQ1vPm5Nzl49gxhTTc0TU3XtgJeb2/w1lufwyQZ82WFs71EMsikcCVScu/E60z8NTQaxWhU4oNltVxGgK1vyIycScYMDLskTYTpkSY471BBTNLzomBtfW0onHtTZO/jlN+dn5OSpHgeupDnObP5XNa9k2YmSXpP0Jr9/Wf87Gc/4a+/+9eUZc6NG9dou5rVqmI5XzCbn/L+nXfwvuGb3/y27IWxcBfWVIjNNeesVN97i8RCjyi3DAy+WgBd67FthtYJ69OUtltC0HStY1ysidS8FdmzCmOKPGCMJ80ynJXVnqY5ENAkoBVZ2gJODOAxw/mQmJzxaCQSiaaVtDrbYn1L04hH1Esv38YGYVSnac50uo5S0kRsbGwCYWCBlkVGU61YrpZsb29hbcd8PqcclUwnU9q25ej4gOVqTlGkAoZPRly+ssdHn3zC06dPqOs5rm2j3L9lVa1YrQRswXW4TthUeZ5z/cYttnf2cD7gtaFumuhno9HGxAAX+VyLomAyGXN6csL87CwO82T/SI0BHzBG0XsnKa3PwZN+yh5ZSFoLgCNJlv053/v/KdxQi18oyn0fbwCEvsgXUIS+IeiHGEPq8lBIxN8h7cTW5jZf/urXSdOMqm7iAC9KsruWqlqxqhY0TU2I6bajosQozbgsKa5dZXNzizRJcc6zf3iXD+7+NW17RpYptNFMJtPYjHsJVIkAcO87bLsOgiYJKcZMmIy2WF+7wptvfIPHz+7x4f0PZA0mAbGpMQI0qIZRbmi7Fa4V5lKelzhvCG0TvboEmF5fu86LN9/GdRs8eVzROMv21iWqasWTJ0/p2obpeMLn33yTRGsu712iaypUcNi2YfPqFfI0Ae/IUkOZ5/zBN77Ga6+9yt37j/ne9/+eosipshRtDFXdMDubc3q2oG4rnO3AWaBjZ2eL1167zc72Fr20vWmj4kYJQOn6BEcVerdztNEkWcZEr1GOSuZnIw4P9rFdE2tBqc9s11FVK4jMFPo9QQmwRwTQAIyO4RA901QLC98EhgFviCCf0r3/Ub/43LCWhtPUx/U7mOcR174a1vRw1nMuhesZJATZ14PqgcXeKiGCfVGeu7a+wfXrL7K1fQmlDJ1z0TqhD8/wcSiTk5djinLE2nSds5Njjo+Oca73GvQoxJstSROKPMemGh/kfXHWDu+tMQkECY+zriM1OdpkJFnC+nhXzv2uZlnNOTk5ZbVasLa2xmR6iSzLmE4nKKWYzeaQBIzJ2Lm0h1ZTDo8P6VxgsrZOluZkmUGrwN7uJd783KuMRiUhBL7//Z/xwZ0PUUqzWM5xwXFyfESaJFEGGxNunWNUFrz+2itcvbo3DGV6OWAIAR9TSquqZVXVVFXLYrmiqlvaTljKWSqeiX2trrSAp71EPoRAORoPYVFt20gNpTXeE4PuhPWJF+UO9OBUiMM8YYTKMKTfI8/tCURiKv6JgnF5CeMzelhjnouVZA8icL72B4CD3/m6J1R4huTQAEH5YY+WIZD4ogurQF5bL5vtweL+GgjBC10YUFoSo69eu8KNm7dY39jGek1dd9H7Xfp44xwdXfRnLiiLCVsbO9TViqOTI05Oj6jrlVyTKhIw8PRqe+8cyhiKSYbXlmpZU6/kHDKJJuDiMMUKWFV3BBfoMujqikRr8YxUjjTpfeh9VAHGQakvAYN3K372s5+igucP//Af8pWvfI2uFVZyDzT2CeRaJ9RVw73793ny+Ck/+MEP+Pf//t9xcLiPcy1ZnjAalRRZQZGXsUcvYt9th2HYcrlgNptLKrTr8MGzf/CUf/tv/2d++9vf8Cd/+l9w7doNyvGENM3F1iB4GiM1Ttpl6KjA0MaQ5SVKJ6yqBufg0u4lynh2igf+BSl1XCH94MtH1nTTtsxmc+l9koTJZII2GtdKMFzTtXROQri6yPzv2o62aambRmwQvI/nraiBrI32C0rR2yioGBjTn+Hnz/H8eRHZeNa2sb71Q3rukLIbOxjUUErEMznj1dsv88rtlxiNRjLY5DxczHkJLXVeLBs66yJ42A8JBRsoyglZWrA+3WQ5n/H88Dnz+dk5is9FrEOeX1ctyDrwOqX2rZCyrKW1NeUWQMXsLLC2PhbbIdswna5zPFe0qw6PorUdo3JE01WooCSoLfr16qCpavFJzkzH73v7vQG+NFM07REoqBqRV8pUUtO6ltY1cU8Sj44iTVnVNnpYFXSdoxytk+Ylm2u3cL7i9GxFIGUyvURRFHhnOT1rSFJD2zVR5qdZ1RIgUFV19J7QmMayWFYYo5hORmiVDtKKRGspoLQnDIa8KVlWRKP6DqUCSSpyYmc9WEfT2Cif7Njc3MRoLbI9Jammy37i6TxtK4EL3gestyRaAiXmyyUEQ1mmoBVN01KOCrrOopWODb2jLMeMy21CUJzNn2KtPI48V0MTPVGstahgODx8hg2npJkc6uJTE+i6llGxxks3vsyVvTd44dZtCZBwgf39g4G1AwyNV2+C3hdJvwvi9Qy+3/03+F+Dfv1j+yCHpI1SNBsj7p0PcXPMWK4kSbbfqHZ39xiVE05Pz6jqJbazLBZHw4TWWjHRPe8CIpbZL2ptMMqgtbDFtIbxeEyapBCQiXXTgIeuETPNJM0upN6qCLLJBpZlBaNiTJ6NSNMcjyQIKiWF7GRUisQrQAiGvdEW1rVY1+JdicKgdcF8Mce6hqqas1olaC1TmK5rMQkYoyiKTNJU44aslEwTlXZY31E3LcFrQrBoNH0SrBc9j/jGDNdmBpF1aJ0jKJl0lsWY1aqWiaf3ZHnGkyf7PHv+c0aTNUajkvF4xGQ0IU0MOqYCp0ZTpgV6NEJpPUx/ZNKohs21n6h75wbTUjFNd+RlzngyIk/EGP39D97HdZbDg30OjvZx1rG5ucH62oTj41N2di+ztrGJ0gmT9U12L+3irGNRVayqhtVqyft33uVvv/vX/OQnP6ZppDkxKnB8/Iz79z/hn/yT/4xXX32D05OTAbCx1rNYLofpSW9c7cMFtkr04BBmioARfRjesO6iB4rtpADXEfhdrJZ89PGHLJZz8jyNviwCQK9WKzY2NphOpzRxej0kWYVekttPW6VoHK4pf24yfhFQz/MclWwQz3JGozEgQwjvHY2tsU4mwOPRJpPRLqPJJYyWpN/Vakaa5qRJQQiGshSvRK2VAHcYrFvhvaWuF1jbcXR4QKpTrGtobE2apTLMsMJOEbarjowVORPEvD0QaEnSLjIDPU0D08kbaLOHMhM2trZ5Lc9xzjOeTBmPphglrNSmFYnwdLrBcrXEe/jMG29y+/YrVHVFs2r49je/TVVXWGuZTqf8yZ/8CYvFQiZ7rbDFNzbW+O1vfs3rr9ymdY77Dx8zOz0lTQxp9Ptp2obFck7XiI/ZeDzii194m/X1DY5P5uBFYmY7y+npMUdHh8xnZ6yWi2jSnDAZjyhHY4qiRGvE0zEvRQZelhBCBGJKkiSJ8hD5lF2UDzjXCfDcthImU3dDwIfH0TYiXw/23Dfr4r7cQyp5mVOvBNQOCopyRD4qsN6yWM756OMP+fFPfsTG+pQ0NeRZQpIarHXsP3vOw0cPWK4W3LnzHpcvX+bNz35+uL7jr0BkSRfAIcz52RH9XnqZeV+OhhAYlWtMpi8LyGRa6kY8WaaTAkVOGUOilHJY17GqjvGhjhN4RZlvoFRGlmYUZUrAUlVnVPWcJJHwk/F4LE21h67tSExBno2jUbslTy+zvnaL2ann0s41Do/PePp4n62NTV5/7Q1A8fZbX2S+mOMJzGanPH/+nJdffpEQLImGybggBEe1nINz5FnCZFywmM8JzjI7O2a5nHHrhRcxieGd9yQ0yFoxt2+aDu/FVqLrWrztwDcEOi7t7vD6G68zGk+pqo7FsqZH65SO7lBe3l/XbwYoynJMFhNrD/afRwWFH8KSzgvwCO4N53ovFQ/D1/2u1IMl9kLY1vlakL0qxPTUi82Hj55sslakke5l1CLL9CQmJU2zKDEUoHs6XeP1Nz7DaDxluVwNdUTTVCxmZxwe7nN4uM/p6TGL+QxrOybjMbu7e6yvrzMeT0gSYYn44AhOMy4vce3ymzT3j+m6o2GIEoIMIKWJO7c+0EkCIcW1hlSXbF/a5o3X3ubzb36DItvhyfP/ltn8iDTJyPIMtKFqKvJcfPdQnjw3pCZnNCpiAybegz5YXCcput4ZlktNYhpUAiYVkLAsS/b2LuOtlfUUAseHB0zXpqytrZOmGV//+teoqhW2a3j6+Ak72ztMxiPWJlM21tdp6g8p8pxXXrnNe00tvsCN2HWs6iVd06Dw5JnmhRduc/PWdUZFAUSPzQjgd1YSW0OQ4AIVJIjEKxFbDdInBHiejNfQSnN6fMRiMe95Guwf7Mf9Sg8hOyRc6OoCRP9FzwUSUtzbjNFgW/AyvNeI35IOMfQknO+D6DDsOeKrFH1Nh32of9z+Vwxcjr6QkecRmV99QnYYgJ4Lj4Goe67dvMHrr7+JMjmt9TRNJ++JjgFrzkbzeKK3oYzzitGIoigoyhH7+89pqpj86RwtQJ6hkhSwEcCKcnjvGY0mdF3Hqloyma4zSjNOT88gGPZ2r7G38zJZOsaHmsOjJ+wfPsVrS+3OYJVgjJwhR0eHnJyeUG5OwATW17Y5PLT84uc/55XXXmfXdkxGU3ZubLG1vUWRp3StY+kbjE7I84I8zzk6mtE0HXmW0zQNZZFTVauoOuiYjEa89MIt1tYmwnBJDMErtDGYROqY45NTnjx5xtnZXHxiG0vdNHSdgCOJNqSJeJtqrSnLkvF0XSSXumeRh6Fe2t7e5uDgOU1jkbAC2f9CiGxKG8jj59z/3IATXOh7LoZcKcAoSI3GBXfuN9uDfvFeQfVMPIZ6jn6F90OwcxpRXHcxIMT72O+IvF5AFRWHuP39JbzHuY7EmwHSFlzax+fcs6Q9KE+aJFy+vMfn33qLrZ3tSEoJ2CaylJ0McgToCZwHdglrTumEspxwpShZW1vn+HCf4+NjOtehenBTR48/HK21TIqSYpzK63GthDDFcVBVtaIQ8T727gqnBWASkCaC/tELOwTQOkErhQkSoJSkOd47Tk+PUUF8zEHRdX3QHohPvQxyVlXNkyePef7sOf/m3/xb/vZv/4aua0iMYTrdYG1tHFnZCVppxqMx6+ubwvqLhBJrpdafz+ecnkp9MF8sCYgN1Hvv/5bDwwP+xb/4L7n9ymuMRlMJhPSe+WJO97iVgRthCGpKkpSHDx+iUWRZxmq1knCQOKARFWMMc1AKebv1sDakN0nY3NhiVI5RSg8J70IocPK+a+h3xb4nkZC2T9ttCfHED3VL10n92TZtJEfVVFWDd0K+alshY7TWEpyLIRZB1CRKBhHBxxpGa2F5KvGx1EajtYRX3Lp1k8985nW2tjYG8E/29jhk8lLbOUcEIsV71PueNRgx+QiGK63Fq319k9F4zOHBASfH+9RNE4lJcvaIP3QQdqoNdGVK3S1BKVzbCtt1fcrtV17CmBawqJCTGM369Bpr46sE3eG8qO6ct6TJmLJI6ZwjTUfk2QRnJQjNuxal1vl9b783wLdYnqGTE0DkMXbVgyQ6NjTCmIHY5LeONMkIPhG/pdBGWm3KbHEKqqYoxHzaOWnGy3LEcrlAd8IAOzqaURSSmGO0lhS3oONUxZEnGRCwHTSNRekRypQs6hl5pvBWGnUB10raRpGaQJLkOKJ/UoA8HZHlI7quZTxyVJUg8grxUOupoFVsOJVS5LkcYEorlJOLLMtSYW44FRkDNVVV0dqWMhcmgcg/MySiPXB6ekaSjGhrj8kKglkSEFqtNCnQ1kbCSZKWrus9uKKJvU7wtmBteoWbN15hc3ML5xyHh4ecnJyeA3C9X5dSw4Snl9T4ITH0vOjtp6S/S7+9eDun454XVp8GBKXISlNJdDs42Kdta/okJ0KI5u2B4AJVteLcBFb8a5yzgCSnAvg+1RSh5ffJPFpBnuVxotczFj1d29K1kn7ZtTCdbpCmGUopRqMRVTXH2xnTiUgBR9mEIlvD6AxHoGrmtO2Kpm1oG0+1mos0yosJqoIhBUcYmxWz5RmLxSwmgAXG4xGj8RiQNMe27STxtmkxURIUgkcb2Yy6VqaUaW4gJHTW0tQVgUBZFKCi4a6Swraua6wVSYxIljSEhLpusdaTZiJ1S1LFRx99zPHZI7705a+iVcDbjq6q6TrH/QcPSdOE0bhkVBTk8U+SZORZTp6KIXWaZujERDlTjkoFbNVG3odB2tPUrNqK69eusbe3G/2kOrpY6GqtmIxG7O3usbl1ibYTfyIB4oR63ScW37//Cd//4d/z23d/w2hcUI4y6qqirVb44Hj69Anf+97fMh5PuHb1Bn2KblaUMdVLCpfeaPXiLHX4quecR0DiIo/POYcOevCbLDNJ2T47O+HRo4diNq0Vt269xHQ65ezsjPv379FZy/bWtiSfeY82Bhe8xMT3TY3q+wkpz3rgvX9OPpx/3RuaK62xbcfJ6TF5NmI8mmBdIFcJZWFwXU3TOAiGuq5QyrNczTBaWE4iKzi/tsejEc630c/NiuwCT+eEPW2tQStDWeY47zCJeDHJlNhhtCKEjuWqpihK0hQ62xIIjCdjJBU0YLt1nu9XHJ3+mvWNbdana6xNp2iTUo5Gw1QvyRImaopC46IfYhqbTmvtwKIAqJtmSMve291jZ2cHazu2Njd44YVbsbH0/C//7t/z9hffZnZ2StdUTEZjPvn4E549e8ru7mVmswWL+YokS/jsZz9DUeacnJ5wdrZiWdU0bcvhwSFPnz3m17/6Be++IwWctQ15JgmMb731Fq+88irlaIJCsXdpN7LA5Bw6Pj6CoMjLAte0wzqV4qnBug7X2ejdGmJjGYY9sd93g+tlOeFTg5YwYC4XbBXiXtenij99+pQf/+iHOGeZjsdyZvkO68T38taLL6AM3Lt3D9e1fPzxx7xy+zWK2PwPTW5/LsTf2Ycm9N/vzb1/9/yomlNOjn4lzz0aLee5hNlolTBfHkCANJNrqqpX9AnGoDnllFhbx6kxVPWCcpSyWoksuiiKQZLlvWcy3iTLRiJVC5qXX/8jNtevYe2EUXnChtdMrk0luKFpOD07I88LQlAsFhVf/eo3OD46QKO4vHeZV27fZlSOYhqpYnNzjSw1zE5OODzYp8gybt24wX/xp3+C1oYPP7nHb377HgrHC7du8PjhI5He1bJ223ZFcB0qWK5fv8Jbb3+eNCuoGysvUvXyLzPsQT1IoBDZasCTZimhFSsKAaePBxBD5Hw+Sk/lc9H0DCbxQXbWg9LDPtN2IssmCIM4SRMkfVWRGBN9jPo0OIMxaVRDZKSpNOLGaBKdkKd5bMKl6dXGDHLb86Ghjkw6Q9N0Q2PRVDUHz/e5f+9jfvqzH/OrX/2c2dmJMJlCkKZ17zJf+MIX+fKXvyxDlUaUHf3e0FlPWxc0TuRCa2trg3JCklLFU2i1ajF6xM7mTV568XVeuPUyly9fpsjXOD1pefjgPvPFisl0o6d40TmPTjJ8kIFyf8vSTK5hmSyTFyOKPAJK3uOs5unzZ0ynAZMWFOMRWSZ1bWJS8lwS27WCy7vi+3s2n3FycozSwkqdLyvWN7Zou0CRi8fv3bv3+MH3f0hRZOzt7fLs8Wb0KZ7TNCu6tsa5hum45M3PfoYrl/cGUCugaFqPcxrrAnXT4WwYEnKtl5RduWfPppPmKCCMvrIsCZubWNvRNE0E1jQXwyGstVKv9b/Xn+8pAzmu/19kh6SJhH30XpLeeUIiwXbEulUAkvgBxL2oF39KyX/xgc8ZVee3Pl6BOBDsHycyUS/CNCFQ5AVvvPFZXn/9DTqrmM9rLryUwcpBasYL3poxAKcfFo4nI3a5xNPHT0RqHzxWZ3z+S/+I5yfv4JXDmBSQULm2beSciP5gtvPC9HUMtg1ns1OcPUZpy9n8mLZb0bQL8nIkqeRIsrbroMhzYTh7TZaO6ZoZjx895v69B7z44ot89rOfQ6M4Pj5iOp1SliVFXkqdmCW8+OItbt9+CWNgMhmxsbHOxsY6o/GYUVnQ89mCl9Tvtu0IjcgLl1XNkydPaZqWqmo4Ojrkgzt3+Pijj3j2fJ/5THxxlRFj/fXpGttbW7zwwovcfvVVuT6LgrKcUJSjwSOv90FcW9/g6OhQUnuVlp4jDqc66+KA1A+stxBkT+3rshB6UNUN563IA7uoYJC1Yn0gSVwEVPor5NPgXs9kFoBPnRsEBkDFXiwodIhMQsWw5of79zViTJ/2CCAnY+Lzwcw5kUH2+XI04vOf+xy3X3mZNMtobaBzjrZzdJ1UnUEJSy24c/mlimFeOu53Ph78RV5y6dJl8qzg+eE+y2pJz0ANzrJYzcmKnN29S6yqJUkayLM+Yfy8Bu33BRW9EVvbYJ14ZBZ5LhYNJmBVDIiKn4sGsX4CjElYm67Tta3UKlpdIIgosfJJCzorLLunz57xP/z3/z3f//73UcB0MqYsC8qRBO2laUpZlkxGU8pyFAEyH5l2wnw1xrCxscHNmzdZrVZ89NEnPHr0iNYKsHV4tM9/99/9P/iv/qt/xWuvvUEoSpIkxYXA6WkVB2MxvCXuiycnx5RFgXM5z55Huw2U9JkKlEqGRPYkAoMBMEqssIzWA5tca40yOnqMi42LUqAM6Bg6amLYhDonng7YjgwUjZzlaRYJBQz3NyZG01ys87wfHqiLe9/J8QlrkzW8k+veOkvXdTR1G8PBrNTRueG1126zd3k3vo5ogYb4JVsr5BXvQuwnLHXb0jTiy+kiONnXFfIqo3xcybWRpjmX966wNhnz9Nkzjk6Ooj0NaCUs3GW1ZFYqstzGQazFek2eGtY3xlTVAqWaiGVrDo8OcVbhrGI0KWltQ88Iti7Qth5lEkLQdJ1HYciShDb2pb/v7fcG+LTRA7LfNpaANN9aG0lts448L84BH0tE+kvSNGexWOF8S1GMaNu5THQGrzaZKgTvSY0kV87mZ3SRdUMI5HnBaJSJASUJaNGs53nGsqpxHayvTzk8mtG5ljoB8Qny1HVHkW1g1BRjHFmasupWGK0oyoT5fMHZ/ISqXoJyJDpBm8GVFUUCKhajQdJp+sz0JElYrpYEFHVt6TpJ36niFG5ra4ftrUsY5SjLgtVSEmRN0nE6f0zVdpTFJlevX2exOqWqHW1bC5rdpwkroUiLj4ge/ABHo5zUrHPr+md59ZXPcmn3krCkDg852N9H/EH6C/DcBHNYTuq8CAE1gHrAQIMdJpyRLdBf+N6JX5NzDmdFxtMfJAM7ME7IDvf3SbWmWi4l4U5BohPmZzPSJBemrPcxOfB84pXqPGrWVQTsgkx+4sgrMeeeSn0Sbtu0mMSIF4HzMfhFXsRkvMHGmkhYUf2EuiXPc6xrOTk+4iSc0Pvk5WVB06zQRta/bWNRmkhKdJ4Lc7CuOwlE6Vq6TpqnyTQnScQX0iQBHzp6eXSSirzQKM1iPo9prZkUPY0kRnsvvpIEhTFpZJCJh5wCtBGWoo+G6pIyKawhpTXOKWEfah0N7A0EWMzn3L/3lNdf/wxbG5uoOCl6//1f8+d//meR3SiAXZ7n5EVJnmWUZUFRjCnLEUVZMl2bUI5KiqJgPBpRlvFPXjAZy/fyoiDLEtam4qGWpRlKaYxJyHJpBLM0FakDivn+EY8ePxFWgnVc3rvCzs4O+/vP+enPfszdu59waWcnMo5StNbMz055cP8uy+WCp0+fcefO++ztXmYIh/EyJ3Tx/buw9M9BPblA6D2lBmFZQNALdc4GCF6KLxOp+ocHByzmM4wxbG9vS/LopUtcvXoV7x0PHz1gPBkPyci9R0ufvdY37wRi4i/n7BIYGikiq6+qKlbNMUSphjEJneuYLZeS/BRksHJm9hm/PuZsdsSyeUSeG5LIDuk/4yxL6bqWRKc4V2OdHGTayBrVUa6cpQkKQ5rmccgsIRDCONQxxZQ4FPE0TYXRmUjCg5OwBGdJkoK2tdz95B6bW2Ju3FQVeXrSe9QOktU8zyVtKs1J04REJ3gjHmhpmkmsfQRBi3IUHz9hOp2ytbUxBN6MJlN+9etfs5jPsdbyzm/fo7MtW5sbERzTfP3rf8TLL99GmxTvPXmWsbm+FQH0BJOmdIsFH3x0h9/86pd893t/y/PnT8XLJng0UK8887NjPv74Az73+c/zrW/+Y9bXtgYTdBtBvNVqRVIZwpn4EonMtue4iGUEStO5DkIYBkp94XIO4MsqVnHtDsOVfp3a82RwpQyjUYltWo4PD/nNr3/FyfEha5MxJkmYz+fUq6V87kmCKwquXbtGW9c8e/aM/f3nVNWSsizOz8WLt4EFc359+Tip7ZuogSATb2KtwLAemygNkWRoRV03FGWGUsQzQ2Q9wlxeYaLnv3MOj0IZkW/lRYIokWTCXI4EVPJeUrmbxqHNJp/cfcDVKwmTNcv65jp71y5j4pqyneXSbgPIZ2RtR3CWMi+Yz2bMTmZ85ctfFY/gpuMP/uAPODg4iJPtjjzN2N7eZnY2o64qXHB85y+/w7u//Q2vvf4qb33+81SLhYQUdA7XSZqkwnHz5jXefvst0kwCttqmo6stwYmtxmq5ol6tWK7mtG1zgTkFeV5QFOJzFJwjTVMmk9Fg09EP9dquEwuQJMHJKF8aLKUpRsUg5U6zBGOSyFQIYv1QFiJn1dH3LO5fergah9gMiGEI0hzHBPjgsXFtJomkdC8j49bG0IkkzShHE4pS4VzHarHgwcMHvPveb/kP3/lLDvafoFQQn1cFwQor7tmzJ/zVXx3y4MF9/tG3vsWl3csE7yXMIMhwaVSuM0o30CrBeUvbNEPgV5oosmzC67ff5HOf/QaXd19lNBphXcfx8TGHhx+znNeSnN5J6FOWZBF8j2vRhyFUoWlbfBDmrzHCkCWC9mmSYluPtTlpXvB8/xmt9WxubTIeTUVNUFqKPCNJDEVRMhpPcc5x6VLBtevX2NnZYDweYUzCD3/0c37y45/ineXOBx/zyd27HJ0c47zl4w8/lFCr2ZzFYjWs6cu7O7z1+c+ysbEOCCMUrePA3VNVlqOTUw6OjqhWNU1TSbJ4IL4mRZoIIFuWI7JMfAz7GjBJEtbW1zk9PWFVtWKJ46PEDqKXn70AuIWhiZa11eeTRqUJYJ3FeSSYIkjogY2BErIb6sigijBHHDoMe5I6H0KoIZwghhFoLX59XBiYBEBplBJLlIHBHL+ejtZ4++0vcO3aDawT6wYXZA+RxPiauq6YL2ZUlTDiO9tJHWA0WZJSljmjcoz2UhXsbO/w2quvkRSFgDxdzdNnL/Duh9+j7o5J05ZqJRJ8sQIyKGVQKsE2MCplYHN49IjEHNLUK7QWNpjSLVnqCLbFdR1FYcjTNK7PlM6C1zl5OkFRk6Ul1eqMX//6Nzx8+Ig/+T/8F1y6JGydLMvlnM4L8rJgfWPKuCzZ2trg0qXt6GUpvmV9fWrk7Yxgk4BFzw+OefLkOcfHp/z4xz/iF7/4JXfvfsJ8NouJ2MIcC/EzSoxidnrIwwd3+fkvfsp0MuXlV17la1/7Grdvv0KejxhPpmRZJiyZ4EjTjNde+wybGxsi5w3EgallNpuhUYzHI6lFnZzDwriN56o/t54QbE6ICF3XsVwsaFsZImRFTpaLJ30I5wECEacjQm9RCSb2Fa5PDY+9nXUWE4cs4tfuh3qAwKA+EcmzrLPEi+1Hb73UM7p61pbSgWtXr/D5z7/J7u6eDIitp21liNPUjqbphl6+axpW1Yq2E5KFtFlK7JZMJuQXawXYV4FiVHJp9xLt45bFYinXn7OEouDGG59lspnTmVOS1GJDQ5/I7aPCyzmRPGvkNWQeTPCoFMo8J0dCVvpr3DqHdy0bk5TPvPkZus7x9OlzvvLVr2M0TNYmsSe00XJC2OHWeU5Oznj2/Dnf+c5f8sMf/j3eifpjOp1IrZnoC/7dQuRZLpcDmzFJpQ7NspSykB4oy3OyLOftt9/i+vXr/OrXv2I2n+O9Z76Y8e/+3b9lMplw5co18qJAxUFdb0jX+zt75wg9UBt76KZtZGARe2MX6jicYwB7fSAONWJET1RQiAeq1It92vbwY/IVJhGrK200qeltJqIFiIk+9FrOamPifXt7q2iRpZQawGiDEuwiIolaiddclo/wIZCV5yqPyG8A7zBJYHtrnaKI53rEJ5yLfzy0NrBa1JydnHJ2dsZ8IWQs21kJRYy2BUkqA+NyNGZcjqV/gIFdqzRk5Yjt3T1qazk8OiDEAYxta5bW0+3t0Lol9bJBETBKoRLD9qWCzs3RymJ0inU1bVdh0pbT+SNWHbh++BTPn7ZzBAVJDK7x3pDolOAtafK/UVP//3j7vQE+F7X0RqeYPBEPPohm/5kwyQIkRuNcizY5SZYxW87x87PhIrad+BKJnEgAojzLJfgiCTK99AnT8TZr05YQLHVdC4W9yARs0VpondrE6YOla6E6eE5nYX16CTHcbwl4ltUsMusC827OyVw2y6ap8M6K75FWWN9RFAWpyfCRBp/kKV3r6awUsMYozmZL1s2I0bikaWpA/CsEMFa0bcXG5oS19RFGx0RVX3NyckxiJmRJztUrl3n69DGJ0TRdzdP9ezjv0Ubel9WqxnlHUaSUI3NhoiSoe5GNScyErfVX+OoX/zMu793AWcvR0RGH+wd456Nnl6X3O9H6Ysphz7A4ny31dG7ojUT7T1/F6U2MlQ4MU2mtNV75YfPomzzxuvAYrbi0tcVXv/hlXrx5i67tJP3P2djQ+YGl0jMTLibxxic2NLsmRqtrJb4v/XNPEo3Ssn5GRUmaCoCQZ5Lqlec5lfslT/bvoOMmJZIcOaC01gKqKikcdZbgw4rppIjTV4/OQekQX6uAdU0jEt00qEixjuzKyFYzRgCtruvQSpNm4hsiB1tKWUzoPVqUElCtbmuRy1pPZx113UX2JTR1EGmC602phXavDENCUKqNbBpBpsXeK7JUpAN5XjAuxUxbWFDS1D56eB/bNZHNCZ0XPzI1P0NkJkYkEpz70/h+qq4NWZqTphl5XvC1r36Vb33rW1G6mKETLcwMk9F1NpqPymGRpIkkERrD6ekJ+/sHWCseYuNxSdNU3PngfX7zm19LeIIxlHlBGdPzdrY2uXZ1j5/97GcsF0vu3r3L5958i42NDXmmCrx10SZHR6YBQ+E/+KD0cuMI+sih2Ut5xXuwa8SXUCuZIDZNzf7zZyJ/zlJOTmasra3z0Ucf8fLLL3Pz5k1Oz06wXcdkOiYvxLxfx98mzca5TN6HIEmDgFLRkNufs5z6pkrpgHOWNJX0Z2tboI1yflBJjrMdZZGilCfNAk23oLOJNAGdjZ+/JCameUmiDUWeUNdVlII2JFqTZTlJKiEIVbUEJN2uaZq4L/TXehCPTfqa4xzoF5BKpAnBBR4/fgxqi6tXrqEQf7Af/fRH/PKXvyTNUkbjiUz/19cZj6ZM16ZMJlNGoxFFkUvQRATFxRw/FclOlqGAx4+fgoIsMYzKgi9/6YuRNRAlK0rYvuvTKaPRWMByDE3dDpKsk9M5JllHaUPbtTx8eJ8f/+gH/PVf/xWd7Ujje+K9QnkXmVCeqlrxy1/+Aq0M3/72PyEAy+VCZAXIY6f5SJjFXXeBOBIIQRgdQbLFCIrIzJILLvSLJl6AUgRGs+C++QgyBOmcsBeCDmQ6IU1Smrrm+PiYjz/6EK0gzfo9ILCxtYXWsFguqasVzqVcuXqVw8NDVosly8WCne0dftd3r3/uF5nc/efuQ7+2IycmxrIJE3Qi9gmBuPelAvzE67EcF8OZlBeJ7MmmP18UQUb9IoVOEnRkSxujB+ai74QVnqYCkhAsJtHUteZ5/ZRF1TKeTEnzgjwW6kVekufCVM6SnHEpwVDSSK2xs7UrEiLvWcVkYW00e3sSsrW+ucbVa1c5Oz3FB/jzv/hL2s7ybH+foixYzGa8/+57tG3L/v5z2kbYmj5Ybt9+gc997jOkWYZ1nra1VE1H23YsZ0v2Dw44PjlkdnbC0dGhsHOcI89Ttjc32VjfYDyRNZ0XOShhtm1ubDKZTKVOMwatFLbrmE6nmFRAbdH6iDdcf44H77Gd2GTUVR2HWzlKmUFSFYZz2w3DCO/D4DkpvsJxPTgZ1noXZY/xHK6rerCgCEGxsbmJdwKOLJdLnj1/yq9/80v+6q++Q2Lg5s1rgCdJE6yV8+T05ITVcknT1nzw0R2CUnzrW99ma2sHrZXIGuOF46ylbR0BR8BiVMnW+k32dm/w2de/ws3rr5BnY6rK8fjhPkdH+6xWqwHAk6m9Gnwwe7mp0koABR+oKvH8Qkvzo5UwJLMso2tEchxCQpZN2dra4e//7s947/07bG9tc+3aDV544UV2tncETI3MiSLPma5NuXntOtF2jqaxpIlhY32Tl156icODA96/8wGrqsJ7T5FlzM5OuX79WpS9a5y1jKdTXn/tVbRWnJ2dRQ8sT+c9zivm8xXPn+4zX8w5PDzk0cMHPHn8kMOjQ5quRQOjMufSzjY3btzk6rUbrK1vkGclo/EYY/QgRU/zjIkxJFqGjyoOLdqmpSwKGeDGdUkImMREuZhsckkidjfyHgsgYjuH98LGKvKSIi+Gz1fkZsIu6UvJHnQkAhWR5xeBmBCDOOKAJPSfmdwvMT3jqDeG7yfjnvG4ZHd3j85LQFLdSlpn1zpOT094/vQxy+WMo6MD9g+eMTs9ZVXJsG9tbY2rV6+yubHBaDRmbbqOjgmmxOGHXBQjLu19hi+Nr/HJ/b+jcw9pm4rFckmWJUhirqGuZ+L1bUQl0rQNIVSkacC6lqb1LJdzyiylSEoyo3G2pa6WKJuik5QsH/OZz3+bl1/5PIdH7zCebNB1Evhzdjbj9PSU7e2deF45mqah7TqW1YosMcyTBGvbyAoSP3LrZBBmFKytjdndvYTWmq5zfHL3HvfvP+KTTz7hO3/55/z2nd9QVdVQX2e5Ee8qFdUtvcceItNUSrGs5rz7zq95/867vPbq6/zjf/xPuHr1OqPRhDRPJZhJCUGl6ywmEfaw9EGKNMuZzWbUTcP6+npkP2bS0PfsTaHoCfire9ZzoAiSyu2iXUaSZZLQrgWIEv2tDOaHGqQ/v/rUeYQFJH6EPZuvh7RDBDs+zToNiFReIyxC6V8M1vcS5Gg4EzwER5p4bty8zHgsfvSdtTSRtdc2lrpuODs75fjokMViRts21HU1BKcQAkmakKYZWZKLLHpSkqW5pO5qqWuvXL4qHtgx7E//0T9A2Yb54pB7T97j0bN38WqfoKycNc4PxCHvwfo+Fb4dWOq2k4CtNJNwzRDEI04TSFPNm5/7rPSVnefmrZs8ffxYrllnhz42TRR4j20bTk6P+MUvfsF/+M5f4oNjOh1TljlpqsV7thDQ2rYd9aqmbbuhV+gDMGWIY1itBJvI8zySNALr6+t87Stf5Wc//zmnszMA9g/2+U//6T/yp3/6z1EqkjYg+uYptAYX3FBr9JE/MpSLvMy+rrkw0KUn0sQeQgVxShOpuvQXKtbpKoYKEfogn3M8oN/revKSQmqcwY5Da0APQG9ACDkaAQSV0qhILkkiG1PHAR5e7IgWi5WsSqOHXt7oqCj0gXKUDfV5CAhTL5J56qrl4PiY58/3OT4+ZDGbcXZ2yuHhAaenZ8xnM7q2IUkM4/GYzc0ttnd2mEzWSNOMIi/Y2tohz3NCUDhkL6nqhu2dS9x+9RXxHPYB51q6P/hDXNewnJ3wwg//jr/5j/+RB8+eMNkomKwprJ9h4oDAdTJkzbOJhIo6S92cW7jleUHb1YxGY7wXdn9wnqYVgkaa/P8Bg08mRIbE5BGEcSglIEm8A2lkk2it8NZHZkfv+SJJOgBFUUSvO6HyW+tYXxcvifF4zHi0ztnpDK8czsJ4PCEEoTl6r6iqliTNyFJDmpaM10dUlZPm1cu02buWqlnhfUfTLkiTgqZd4FQFCuqmRitIUkOCQRtD6mO6rzK0jTDA1te3WFkxeM2SAq1HlOk2ezuvsayes6ru0nYNWZZJum2i2N3bRhs4OTlg1S6ZTnbIk5K1yQZX914lTTSdmzEer7NcnXA2X2ASeV+ta0jTTDZtEwTNJlDXlTTyyjAuN0nNNq+89DW+/IVvMZ1sUFXCtjg7PZNGOpx75fjgh8nlRTmMFC3n6LHI9tz5lPLCv/ePdb4e5OByIZoc+zB4g/SUX2OM+NsUBdtbW9x++eX4fKJvEBdBlvPmsP/6otffxefSb26ec4BGCt7IMOyb5hCHXvEwrk8CaS4NoGxYbtDJZ1mK83JgFnmB1h6DxrkuAkUK61oInqYVD4LxZETT1njvqaqaUSn0ZZFi+IGRYK2XWPYkiQEqGdauyJKMvct7zOdn0b9ANoXeNLkHVstiLECVF7Zk8GLmnOcF+wfPUATyNEVlgV6C1TaRYZCmqCynrluyJOP27at4ZpLAq6TQTpKE5WIpjUpAqOCBIWxCRUzBJBlNV4MWiXVikpgsaGl8oG0bqmrFT3/6E77whbfY3r4k4TcqEYaX7/jOX/4V77//Hl3XkmaGyWTCzRu3+ON//I8lqciJPHltOqXIMz65+wk//9lPWC1nQmd30DSBZfz7aDRifX3Km5/9LD/76c84PTnh+f4zNjbWz9lD3qEGXxSxdJXpkI9AnxT4IYIpQQnQZq2sDeslEcxHOeV4PIkBGxXHJ0eAeL0URUFVVTx58pgXXniB7e0dLu9doVqs2H1hhyuXr0Y2qpxg/b44wOqRqNczn/qDHCdSDR/lDGk0v+9DG/rrLTEm+jpC1zVorSjLEbbS6LzAtp4kkTRplIoeLWA7S2PryGjw6ERTlOWQ7KW1FfAlpqT3Da0wicWbqE/0SxJDWYzY2NhiPp/R2Qat0wjkZxgjqeAgckAJIPQ8efKQ4+N9ep8NBrv+Hjg3JFkmnnbjkvF4zGQyZXNjk7W1Dba3ttjc2GJzc5Msy8nyRPbkLJpxJ+mQQpulCWmSRFBamoTn+8ccHp3Q1LV8xpOStbUJ1jrufvQxP/7+D/jxD77PxnRKUeakqRFZdmKoFktOjo+YnZ4SkOvgt+/8mu3tbb70pa+Kn2fvaxa8/JxSGNWDGlHS0jPgetZJvyhkUZ5bNYb+W/JzcUeOjyWAQ2sbHMIQSNOELElYVSsePXrIbD5jMh7RtR2jUcHtl15CaU05KpjPZzx68IC6qVFasbG+SV2taNuG8Xg0SHSA2OiEyPbumQ0X7BlisXmR/TDYQkj0PFprskyab/FTNVG6JmeOc44umkM7L0EmWZbHx/o0WyGJzOfE9FIUFc8jKShVAB0Sjk9aUl2R+RbvOp48fM5itWJ9Y5PJZEKZlySJAMjjMjKR81ym22mK0hofkKl9mrC9s8Xauvi+2c6SJgU//8UvODs95Z1371C3LUHBuCxx1vLxxx9z5co1RD0kjPire1d54cYt5vMlxyczVnVL3XScnApjcLlY8uGHH/DLX/6cjz/+kMV8RtP13q0Cnuxd3uULX/gSn/nMZ9nY2mZUjkApxuMJuzuXSNKUvl/df77P6ekZ65sbKKXo2gbxtKmGs8s7h7/gu1NXFShhUQ5Jgl6YLD2IR2BY674Hg+mZp/15IjVhkiZ0ATrXRYUAJGnO2sY6SWKo6orDw31++9tf873v/g15ashTHS0aRLbay1t2trd5/vwZT589pW4qHjy4x09/8hO++c0/FqanjeEcq5piXJKXJUrl7Gxf5sVbb/Dqq19mbbqDQhQdd+99wny+lAGu74YmSMVrlriW+zRNGXjIdbuYi0KlKIrBm3a1WpFGj9bgE2FwUTDODRr5mbpa8PDhjIcP7vOzn/6Y9fV1bty4yfUbN7i8d4X19XXmizHL5RmjuC7zoiBPMrSCWzdvcPXK5WEAZwyMRwVr6xtM19Yoi9Hw2WWJYTqVYCUbZUJd53l+cMT7dz7gwf0HPH74iJ//4uc8enifOtqnON9bpoAKgc6K3cju7h5vf+FLvP32F7i0s8coMqgEoEu4evkq08kkSrpleLVcrDg9OWE0KhlNxijkvi5K0qTpj0ByLEQUEJyjaWra6Juc9eEow14AzktTbvpGNw64tdHC5IjAiu/3WhUVInEfJYjSpSc2dNbKsOVC/Rl8IEkzyRoJUNcNbdNKDfD4Mc+fP+Pdd3/Db371C+7e+5i6Xg21eUDqjrIouHb1Ol/5yld544032NjYxJiE07NjODuls6IKcd5L2nHIeP70Oat6KRI2peNQWWoQHxzVchXBsTQqDkQZBZp0vWCUa7JEerG6qTg5Ocb4LL5369Srkgf3n1OUJZev7LFYnFGW5TnQGfd85xy/+vUvaDvLztY2O1tb7O7uMjubCYDbtpGFJjYjRZawsbGOtYG2rfnkk3s8ePCQ7373u/zFX/w5s9kJaZqwNh2T5XGAF89vUOLXF2R4sFosWSzmdF1LAFEfdA2/+tXPefLkMf/5f/6/57XXPsNkMqHISwIwn8+Yz+ef6mUCUFUVi+WCPM1ZLVdR2ijrzcd6rEeKQzx8+9RREAmjpBtDqKoBbJMFpoY6T87EyAZMdeRaRYBFS3/d92PD4Llnjerzc74Hn4X5FFUEicE2Yn/UK0+00pGU4dCJBLQEAjaSBto20NSWw8NjHj15wunJIfvPn/Lw4X3u3vuYZ0+eslws4zUuoUTbW9vcuvUCL774AhsbG5TlmOk0Do+UIcmzuFdCCJpgCjAZucl5ZXqJnd3bvPvBX7JcfYwyPoJDajjv+z1V7EAY7EskLDMGjETWuom1W9dK7991DU8eP+bDDz7k29/6FsEzSLK9dwNj/vj4mO985y+omxVr04nYSMRrqSgKjDKsVivaRsLjptM1Njc3h7q3qiqOjo9p2obGtNFepYu2XWI9tr6+zpe+/EV+9OMfc3Z6htKaO3fe486dN/jc594iSXy0dhJih4+s5BCiZYX3GKUimOk4193F2isAMW16sELpy8MQ6KKzh+7XLLImhlox9AqLWLPJQpP7OgH4fPARJNTgzklA0V1Chr0hxHUsQTADwVmd33+5WFKUpag/dP/vRHagRnnpU2/evI6zW3St/F7rQrS1Oebhw0ccHB/y7Nkzfvnzn3Pn/fd4+vSJ+GZHC64BolTib1uOSq5eucbrr3+W1157jbOzY8pizMbmNjpJcM5T5JnI/o0mTTO5nkxClhXY4Cg3dvlnV1/iC3/wj/mP/+nPeXryPiZzmCQK5oMCr8XebSz2aPP5nD7pvCxL2raOeJkMYsqyxHYdTQwP6wOAfp/b7y/R1WZo1ELwlMUY5y1JpL7Khyw0cR88dbPCahfp4yKrUkghlGUJaSaJi95bMRv2sLNzhbZ2PH16QNvWlKNMTJizBK0TsrzA6IT5YsGyWuCDpm5aVnWNtQ2dbVitFqAc08lUJIHasVzNeOHay2xsXOZkfo/54lQ2kfFYJBxNQ12vpPDUAa/EvLeuPM6uzpvOULKz+YYwkNSEhw9+Q1p2sWBVpFlKOc5ZLlZUdQVBsT7dwegxZbbOzvYl5vMTrF3QdDOUFmmb8x2rRYXWqcRAZ7lIIYuEplnhcNGEc4wiZ31ygz/8+v+OV17+ElonnJwc8+zZPnVdD4dvfztH6QXa8H1q5wXmSH/ri6mLFycwAAiDpxMROKOfygNEeVds9PtD9CJIN/g5wMAGvAjq9b9rYBn+fwH4+scJMckz7k+g1ABZ9iBJxFPErD60JEmKMYYiL+hsQtfKlCoET6JkCp/n8iitbYSqrATs815MtMuikGShIB6DeVYwmUxYLBbD6xBvPUgTYROaaBKvtY50esvx8XNMIqnUqBBToMUQtWkdipi6ExmGZVEwm80EYKprkSrGNOG6WZEkAjwko5TghDGVJoZkMsY5R9POMNqzt7PNzRu3GI+nGGP4zJufY219k2VdUbdSpHZNTb1aikQrBGEgpKW8uYk0pmUW/RSHaZNnPp9xeHjAxuY2SktBZoxMKReLBU+fPuXk5JhXX7uNc4679z6hbiqc7T1pDOvra3Rtw0cffMDdjz/CdgJ+WitSvSxLqVYds7MzCJ7xeMTlK1c4PjphdnZK27V4z+DR6EMfRuAFLPN+AOyEHRt9reIEVIBUL1IsoxgVIwiBosjZ3NxAqcBiMWO5nBOCZ29vD6VguVzyxS9+kclkQlVVbKxvUBQlX/nKV1lf20CFSKcnVoQRyBJ21oVr5cL1qyPTQBmRSBCy4XtZlg3MV5Mk+M7K9FhZ2lZAZ5VuRom4pmstZVkIQJtoSVFUinIs9PlEy3TORz+vNnS4AEFpVKIGlkqWpUAaiye5xpKkxCTC/T85ORHg1IkfhyQ113hXcuP6NSbjCSoQCyt534SRGPeJ+A5IKrvDW0drO1bLJcfH0Xw6emB6B2Ux4sbNm/yLf/Ev2NzcIjQCgFZNE2X6RI/YQJposjQjS3OKssCYhJOTU+aLBV0cSl29dhltNA8+ucs77/yWn/z0x0wmoygTNayvTVhfW49FpoCrjx894t333qWuaxaLBe+88w4vvfQKly5dEl5JQEDVIE1qD+T2wEjf1NKbBEfwN66WgTXne0n3UNhFcK0fpOkE14rrlAqKRBus7Vgu5zx+9JA8S/ERnL398ss8evSI+w8e8I2vf53PvvEmGsUndz+h7VrWN9YlyV1p+cziOdEDRcO136dCfwrgixNmL75uA/NpAN6MAJ5J7+UmPrtt2wxnhbVSCKdpQpnm9A38xSatH0p1XRclNuI90ycqGpNFIFTFYAONimFdSWJ457e/4ue/+CVJmjKdTNjc2GJnZ4dLl3bZ3tlmPBFAv8hzirwgzQqyLGdUlmysXWIxW3B8fIqJ9glZlvGFL7xN17R0tqWJibmJ0qyvr3HlyjU2t7bJ0iICW540UWxuTcmLhLqxlE3H4eEJp2f3+fCDO3z3b7/LBx/cEZZ1VB2AWHB429HS8OjhfZ48fcSHH93hH/3Db3L9+i1MkuKU4+T0FB+bY2sti+VShlW2EcPv4MCdsxRkTfpzGbqR9GdhSZoowRaGfu/PNEyCIjtAxzUvLIK+QdZybQdIkUFrvx8GFGVZMBqPsd5xNjvj7scf83ff+65IQY1hbTomzxPquh5qUWMSiizjlZdfJstSPvrwQxaLU9757a947dVX2d29JHt8CKxPd7m0e4tXXnmFG9dvs7l5FU1OXTkePzrgcP+ApqnxQTx2dUw47CuQviHq996+NsrzfBh49OtTa43r7P+buf9qkiy58jzBn+qlxp17eIQHyaDJkECCAwVSvKoL3UXQPTLb+7Aiu/s8T7MfYfZ7bE2vyPTMyKDJdDWqq1BANYAEy0wkjcjg3Dkzbpeq7sPRe80jq3pEdjAPY4IQRzoxN7erV/Wc//kTVyOEeNqjyA1Q4ukAbVpEQZMqsTmKRFJYFqIu2dmdsLe3y3vvv0uz2WL9zAZf/tKXuXL5CpNYWKbCNgrwfBmktlotYb83Y5rNmIWFrrw2o8jzgjwvKIqMdGpQlHS77VrJsLW9xe3b93j05DF//f3vc+/eXbIslUG4p+v7trILwBjHorPs7e/wgx98n5s3P+T3/+CPuHbtRh0GgqW2qODU+5hlOcPxkMlswkIpAQjKgtEVz13XQ+fCDUCMEQkb1pJmORapfRTzgV11ntfgCMopGZyPGqcaYreRWSVDh8r8vRrAFWVBFEaOVUbdFKMUWvtcfukSxgibP0tTTvrHPH++xe3bn/CjH/0dDx/cQyux14liAdxKU2IcuzVJpty7f5etred88OFL/O7v/j4bZ8/h+QF5UUq4SWnqeiUvcvxIsxD3aLYi+v0+0+mEOG6gtEduClARQdQj9CNQJSbLBARUsg8Xs4TpZEQYF049Yh1TStRJJ/1bvHR1yuraGl/4wudoNmNuf/IJ08nY7XFyPvm+z8P7D9ja3gZrWFxY5Pd//w94443PkmVFPeC2VuRt62vrtFodkjTn/r17bG1t81d/9X3+7u9+AFi63S7NVqMmgkgafZNOp0PcaBBGAvZVa6LMc05OTnj85Amj8ai2DDo43ON/+p//NX/6z/6Cz372TRmC+j5pWoqNiK2SO6nBGbTUPlmRMj4eyfDo1ETttP1EhWKoaoihxCPcWieftTWkgnbbYuXTLfigoqz3QxxgKHY8p36L299xZxX1/QeqQnJQRs6/IAolFENgFjTKedVplLKcO7dOkRtm01ykjHnJcDjmyeNnbG1v8/jpE9566z/zyc2bJMlE/JMdeGNdf+Ud7vLw4V3effdXtFotrl69xle+8lWuXLlCr7tAo9WmNAX946NaaiwSe0NRSj2WJSmhv0DiR2BF4VO48JTKkkuGfmEN+gFMJykbG+dYXV3hwcP7jEdDQAZMk8mE5eVlsjTnypWrErTUbssZmef4YYC1hjRNSJKEX/ziLZ49e0oUxTIE9sUyqOMCNCaTCQa4cvUKr73yGp1O9xQjvXRMPcOzrefcuX2H2XRafy2OI7RWjMdjoiji1Vde5pe/+hV5ljMzlnfe/hVXr16j0ZBUWFEFmnoAKUFrxgVDKExRujUmK6M+ZxXi5X16HbpKUQL8HBNOn6qT3fFcMaUxLmDQ9cnV80q16dj21iKWh66WQ55EVfpZWyWTVxYJlXe57BFFWVCUGYpIfOJ1NaE2oCw5ygUzLdPttDBGBv95UTJLM+eRvcvDhw/50X/+e27e/IjpaERpxJ6tEYfEkZCgKn/TNElIy5wsTxgOB9y+c5t2u8Orr7zKV7/6Na5ee5l2u0u70yUrSpS1TMcTimSGWDy4mtoTBq610F5Y5598519w684P2dr7iZw5FrQHaFFvxHGLdrtHXroOyq3lCjeRMBCpVWezmTAgtXYDjN/s8ZsDfMpjMhED61ar5QA/jS0t6UxSbn3fr2Uavl8luyAa9nGC1iGNuCWS17KkEbXwVETcCDDGYzotiaMma2ttJO1HMRwdysaQJgwnQ7I0Y5qMsaqk0QycibKwn+IootNquXSSnBzxexlNTuh2VrDGI5lNa0pztblba8V/x4qJo/IUURhRZIbA7+LpQGSadsTO/geyrvU6QZRhbUan3ROGlucJAKEXWOxcYGVxgSDwefbsGQrL8+27gGxifuBTZrmkKjYi4kYTpXzarfY8IVUZAt+Spym+HxF4bV59+St87ct/TLOxyng0ZWfniSDGRoA1rD1F9z7l1UCNH8gUyVYbxpw5MvfOs7JBuMfppMbq49x8Vc/BNagXdOUddfp5X2AGKl48ND/1/Ke/9o/9/4oFVQOUrkFWdn74Ai+Afb4fkKVysGbuuheF0KFFPhthbekirk3d0KA1ynlcCBvIp8ilGGw0JBEz8COKQmSTnq/wfS2x72VJUWT42qespxeWNE2wtiRUEabU+JHT5pdSuCpnmLq0uOImbjIFyPLUycwkaVN8kqr3Q4x9oyiU8jjUGKOxJiRLcrQHK8td2p1lyjLn8PCANM3xPZ+vfe23MF/VZCW8f+s+eWaIvCk+lQGqmCEnyYzpNGea5GTpjOnohML5dKSp0NmtLdnfP+Dq1eviZVLIdNx36ZYKRbPV4tr16ywuLfLJJ59grCUr5N6IGjGNRoO9vT1u3vyYLJdJx9rqCufPn8P35TpkuRSKEiIBG2c3GAyHJFkmUgUj06asyOU5nO9nDRoZQ1kUGCB16bee50FZijQqiugtCIgTeoEDD8S8OstShsOBAxA0rVaD4+NjkmTGbDbj8PCQTrvNQq9Xg2BlKRMvbMUWsM6PppJ+nQKy1fx+PR1+o7VGW2l8siyrAeaqIAqCwBVlzr+ltORZCVpeZ+nYKFmWO6BdTGeHSYLneTTCgDCWokuAHVXv9dodZMaU5IV5oeBUWl6PsY6urzw857fo+xqjDVpZtNV0Oi06zRbtdouFTte97z5x3KQoSzyH2lkUvk/tnTiXLZg6vdVYg/LFO2lnZ5vt7S0WFxdlUm0kgVwrw9279/jRj35EmiYEnqLTFgbg7/3eH3Du3DmMyTFGUg9bTZERjYYD7t+/x89/8TOgwPekqW+3W4SB7xIihYURBAEbGxt0uh1+9ctfkiYp+/t7PH36mKWlJRm0VNN3FKacg3PVDqXsfHBSfZSC6cUApHpAY+eC+dKxULUSf5osTbBGJpmSrp0zGPbZ298lDAPSNOHS+Us04iZhENJqtnj5xitMpxPOrJ/hpN/n8OiQOG4Sx+JFo5z0skrPtVSekdVrcZcHKR5NZSRuqY3kjRHwPMsyZ9shSWsitdYYUziWq3ZT8VD8LvMCpW098a8K/zyXM7S6T0SCYepBTJ5bdy5V75+Pp8USQFLYFYNBH2NysqTgOJtxeLjH3Xvi2xOEYu/QbndYXl5hZXmVlZVVVpZXWOj1OD46IIpjgjAkjkL3vU1atiH2BNqrWSmtVkN8Hb0A0IzHM5cOmVKWGWk2ZfPcGSyK4WjEzZsf8/FHH/LXf/19+icnRJFPr9sk9AMMJUmWkUynJLMZDr8ky1Ju3fqYweCEP/rDf8KFC5fxg5CDo8Pax7VwTb3vy/udZQllPcR0a00pKk9SIW0aJFwDB9BJ02FRzg/NSjdRn+una4z5pmbdcwkIYygLWUCl8/NsNJoEns8sSdjf3+e9937NdDqi223RbjaxpuTo4BhJNC8dK0uJ6iH0OXtmg+lkwu7uLqPxCVvbj1lZWcBYy+WXrvL5N99kZXkJPxCm3u72IUdHxyRpRp4mdSODdQESpmKMvMhK4FQpA6JKSZJEGmFv7kvkB4Ekrysl4WulluTXoMXa8nU2z72KpUsYNYkbbfI0pfAN2jW77h1klkx59PA+yhouXjhPWYo/Yuk8uEwicmZpjgMi57e6vLJEo9FgOJThRZaLBCzwPK5efYlOTyxC7ty5x81bt3nn7Xf467/+PtPZlCgKaTdjwiCQmkIrGSJZy3Q6YTjoU5a5q67E/+j51hO+973/id/9nd/nzTe/SKfTRSnNYNAXkPlUjVkaSbSOwwjtKUbDwam/WTnAQ9XgrNgJCOhcVXdGKTfZmCdCcwpgUapqeufD3irYtJpNSCl5iqECYB3jwpP0xDTNaoaRQSSenU5Eu9MiyyThtT/o8/jxY95++23+5m/+E0UuXq+NOMAPtAuo0Q7YS8RDajCgLA1ZnnD33l2GoxF/9Ed/wuaFC6AEEC7LAhxDusgTirKg3fLR2nOm9w5Q9zSBFxA1erz28rdoNJbRniGdToljzWR6iFaK3a1tdnfvY53Jfq/XZTrMSNMJRa555fVr9Md9zP4BnU6Hz372DTbPnuOTT25R9XQVeFqaspbHaQeOVPvyXOml6S4s1sOiR0+e8ujJU/7N//I9fv7znxMEAa1mLL7Kvpyxvu/TbDTotDtEYSw2L06mXVn0xK0WKyurXL16lZuf3OLBg4fVVSfLUv7mb75PoxFz/foN4kYTkIGSW1XufTNYm6NKgaK0C7ArrVi5aBxw7B5Sd1Tcu+rsk5+ppI/WVP7N8g1KMfdaswaLFoDx1NTOImnC1pTyKSUjD4Psj7qyEXJpqNUgGjR5lhMVsWPiuoRpN0yzQLvdotduoVEUuSHLcvYPDnn06AlPnz3j7374Q9799dsk0wlxHLK0tIAf+PV9Wqk1xuMRWZpibM5w1OfDj97nzt3bvPrqa/zh7/8ha+tnaDRalKVhOk2kx8JQYiQozRjyJCHJRF2ilSfqkTQnCGW4u7CwUKfHBkFAmkqwZRQbjo8P6PePRDEXCWiHskxGIzqdrtQ5RcnS0hIo65hwFuUpikLW5PHxCb/85c/xPI+mS5cNnfVBFVzZ6fX46le/xurqMhrNr371No8fPxYGKZZ2s8ni8gqXL1/mO//0O3z88cfcuXOHNMuofNaNMWRZxvLSKpcuvCTDkjTh0cMHbG8949JLlwVxcyw9T4vqgIohi4B20seY+Xmjqj1LBmUSTCTncbV/aSvXXtinbu3VEypVaZjcwWxODebkuUU+Pt9Lq0jzKjzDuPO9GtbK01dDXVODfQrx5Y6isCZYVMOBKmRGa49Wo8nZjQ3aTSFcZbmlfzLg3oMHbG9v86Mf/h0//smP3ZrQLC52HUEnklAxV7NIL2XI0pQsz5hOp8ymEkA5Hg945923uX3nNm+++UV+/w/+kMWFJVrtDn4QkBYJx5MJqUvVVUpX6nqMC5VKkwl5MiVQJboUBaBVJWWZkGZTPB3QbvUYzxJKKzZIMnQWQkZZlsTNCK094mYDSrE+OBW0/b/78RsDfHmeS3GPMCHEXDWabzK5EQYZQrvUWmKdPa0hjPCUpdtZIo5beJ4ly1OwHmWpKIop4+kEi2wIRaYJQ2HTaWUo8gxjDX4YoD1DHGvCuMl0Nq6ZAJ1OF4VQOoMgqA9RpXzKIkV5OcPhAeiSVit2m5drrAkdk64k8H2MkU0njjucP3eVTnODoig5Gd3l+c4nRLHHYPwIL0jwvAZlaSiLhGazSSNaYmX9GmfWLjKdHLG7/5RG02c02WM6GzlvEsPCwoIzsJb31FpJsRKjYk+AEuPhqS7tbodLF17m1Ve+wPraedLE8OD+I05OThwiPAfoPJcWU7F65LltDfBVIMF/SRb7jz0+DbxVgN+nmX6nE3c/zQSsjY2rRrVqX+3cC+C/9PgHX1OV1OfFn7NVt1mNZu1p9p+kb0kqq61NhUUD71Elm2nfc54Lwkz1Pb82wQ2dXMDzPMpADr0sS901dMmAWksSIfPD0RqDHwp7Tw49F4ZhXXKwa2jlfRKT66IQevhOmlIWFu3JwTGfYBZCnbfiRWKtodVq1wBOaSHNUxpRl97iBp3OEk+e3WU0yMBKU/fkyWOOjk7q4sfzfLzWIrfuzXjp2sv81pfO4tsR6WxClmZkacZkNmN/XPJk+5hvvP4Km6sNbD6jyHNGo1H9fqyvr3Px4kUsYlQ8nU4ZDae88sorfHL7FhbL7s4OT54+odPpArZmRDYaMUrB8+fPePb8KdaWnFlb4/z5c/zil79Aa8Uf/eEfcf36Js1Gg48++tC99x7tdoc4jh1TxXBycsLx8bHEtZ9q1jzPF+ZlHBE3G4ShgDRxo0lYyYjcdDQtMrLZjNFoSFEUhIEkbO1sb0k4QCGT5L29vXrdB0HIn/3pn3F8fEwlwxPGw6lJHDgg5FOfc3dI1ZiUriGvklELU4gPo2OC1mlxzgPDFIbciHQgimKG0xJlCkxpCTyPLC3wtSLwfco8xwPCWJiZMs2We0xqBkWWFqysrJIkGWUh+03hUsKqZrYCA42TcGFLCjRhVEl/pJDRXkmv2+LsmXU2z26wurrOZDLhL777L9g/POG4P2I86jMeHDIcDZlMBMhOs1w8VUoJOfK1JNr5SlgR2r2Og4MDucZKSozKdzRJUg4Ojjg5PsTTcO3qZdI05eTkiI2NM847SyStS0tL+L7P48dPef/99zg5OcTXEIUBQegxnY7ppyllkaM8j0ZDPFgaUUyn2+X6jRvc/Ohj8ixjZ3uH117LnDTO1VLK1owSV8pR1VvSAFT7mnIFk/uWamBjhWEuTC7Zc3NXQPvaZ2xs7VvT60nBnCQJR0eHTMaj+uzWWjEYjegtLnH1+g2KsuT4pE+jEbOysspJ/4RCKy5fvszm5iaeFwhLwM4BjhoQmS9b+TvMKaa126fFq0T2yGazKWtGOwakk5lVazmK4vpe8jyfKIzqvU38woSVEoZhDXT7vhRUYgquajBeziNLmWeEQYdms4NHgO/5hEFAkqaSulsxgIwMBayS97HIM4ajAVvbz1BWo5VPoxFz9uwm3/3un7PkSWpzmswkOMINghQi1fI9xfEhzpQ+ptlsMplMOTrui/yuFInJjZevYlGMxyNu3bzJB++/x1//x7/C2pLlxZ5jgUnicBCGjn0q9//uzjY721uURu6L7e0tfvT3P+Q7f9JiZXUd1NzH170hLvVYWCaVjFGuoTvHzfx6uWMXW9lwaFVL107hd45Ycsoj6FP7mq36CrdGjBUAAGQNtJpNrDEcHx/z8P59nj17QrfdottuUxYF08mUZrPF6uoyYRgzm03Z3dt1AzN5LRfOn6d/0icvcg4ODsiLHIzhwuZ5Op0eR0d9jg6P6fdPMEVRA0qVzNPyD+uX0wvcWmF7pal45cax1JNhGMoAIQgce0nA7cp/Oi0KisKSZzkmWqC5eYFma41xYvnGb/8uD+7d5vmTpxwc7jNjVr0SLKquIySAqpD3rzTg2Llv/eznpGlGI26yvLTI2uoy5y9KsmP1r3B+1UrB2TMbLK0sk+clt2/f4datT/jbv/07fvWrXwKWleUlgkDunyhwMkklZ3Oz3ZH0W2Bvd5tnz54ySxPnpWUYj0f84O/+ltIYvvylr4ikHpHKzoPcbN30owRYEUuMU2FBbmhbAXiOa+LORsdycTK1GrBxg4cXMdgK5J8v1Gp4Uq3JmjVd/5DszZ4OKI34SBr3dWsNWvusrq3SarUo84J+v8+9e3d49513+OHf/oAo8Fjo9Ah8jzCU/SKMQuq5NIazZ87Q7/d5+uyJKD9KuW9/+MO/4zvf+acsL6+gnf+zdQw+Yc0GzGYjBgMnnfUDZ2WQ4YcBKC0+nEEDS8koGTIdTzGmZDg4YjQ8BoSBGIYNtNJkacpkPIFgiXa7zeqZdX7+y3c5c6ZkbWWZjbMRS0tLWCPrXGkPrX2iqMHyyjJZkjqP3BiLnG+VZ2UYBrTbHSyK51tbPHr0kL/+6+/zs5+/RRxFtJoyMAtDD7Ry/sstTCFyt4maojzxsKx6iTiMyDyP2XRGu93mi29+gZXlFd559x2yTIa1g+GAH/39D1leXmZlZR0/cKFNpgIwTD0M0koAxNKdr8pdZ4N11i3VgWfr869iple12qeWm1tFoE8TEeTGdf/fcaVstdYdbFjhMaraKK37UDrmX7WJKtk/tdgCVewuxz8SRYbns762xuLSogBYWcne3j537t7jk9t3+Pf/7t+xs7dLsxGzcu4svudCFzwBf8VzUHzvsmyZLEs5PDxkNJJgkaLIeOfdX7G9s80/+86f8tJLVyT0zDhfVmMoKOtU0ypQKyumwAxNgLW4M1xAxCAQgK8626sBXqvVlrNd+65GaFDkGbdufUgFPBd5hudrJAE8F/amEb/HLMt5+Ogez549pt3uCLkmDun1enhaM5tOWVxc4lvf+ha9hUV8X/btbq/Hzu4OL126yMNHj1haXAStieNXWV5e5ktf+hJRFHHz448py5wsc6nyDox96aWXODzcZzwZUxQZn3xyk83zFxwo73ztlRKbveIUEFZWwVPl6Y3JIcZzexZlq71PsLz5iazqAChdne7q9BI9fa4p5vuhdZiedfv2aQa+O98/9dP11+r1LfVGlqW0W205T6ksEeap0Z72WF5eYmFBhnBJmjEYDLh3/z5Pnz7lf/6f/ydu3bqFH/gsLvbotluuFxaySBAETt6uagaf+PtLkNFslnBy0qd/0qcoC0ajAT/+8Y949PgR3/3uP+f8+UuilnT1ZlHkNaO0sGKH5SlFaY2Qw7ICjSJPU4LQc6ozUZ0UeUGW5Y4IUTCbSShVWUrITxCGjMYjSWH2A2IHamt+c4Tv/4AUXcXK8jKeJ3T1PM+wAYBG8A+PZtxhobfsCp0ZloLJZIAfefgtMV89GQzJ8sRtHJYsm7kiTwp0pTyZmhlZ4Arny1FYkiSTBFSrydIcrQLKMieKYjFtzXKSLMMPIjxfFiZKZCBJmjGeTNGhACLTZIS1GmuEJtmII5I8YWGhiTUBo9HE+QPmHBztUJQzxtNDrFHMpmOiOBL5X+lRujADhaLI+sxGN3n+/H28MGM2zUiTkjgWYC8MYvxYgJ6iEKP6dqtNFDXJMvHEq0DHXucM1y5/hpevvcFCb5VkZtjbHnB4tE+ailnjnEVja7aNcTKCijZcFa/6lFlwjXojFNna78s9Pt2cffpzn5bNVq+lYu59usivvm5PbUbK2BfOvaqmk6aR+Z5zekM5NQ2rEnetu87KqrrhPKVSrn47WZ4xSUY1yFdNh3SjIcCckjUTR5L8rLV4Kll3uEoDmtd/J6j6ELNWmkprXBiI2+DdGwQo/CAkCBtkRYY1Re2XprVHXk3ftHhGge88T0Ap8e1y0CnGWHIrstmikLUXBD6FSYiigKwosMbK8wNRHJNmM8DQaPpoIoyFR48fcnh4jFUCCh0enpB4bdYvfhvjNVB+REhGmaVE7ZAyNpw7fxF9kPPR9j3ev/0EVXboxQGNRovltXU8T+EpVfvtNFst2p0OBwdHjIYTzp/f5I//+I957/33GI+HlHnBuY0NbGnI0gSAZrPJeDzi0aOHTCcT4jjm1ddeJQhk+r25eZFLL11iNB7TarXZ3LzA1tZzkiRjYWGBuNHAOOn9bDpzaZLtGthoNpq1HLQCTfJcGIqz6ZRBkrrkLNcYFQUnRwdMJmNJEnXs353dXXoLCzUTuNVqc3JywurqGmfPnuXa9et88P4H+H7gfIfEJLzyrKjuuYoZUN0j9f3gPr7QFNsq9EMR+AGmNIR+IMlrngal0f48PbvZbBOMAiw5ge+RpSmNOHCNFMSxgLumFBlZEAX1r68YVtbqer/JXeKkDOq00O7VHKAWY2PwfSWgiSkZj8YUZUEYhFgjpsST6TGPHlmeb28Tx00arTZr8QIPd++xvNrj/OYG2jXsuYUSxSyZkU4TxsMB0/GAPJmRzER2kRXimXp4eEie54SesFmVA0hbrVYNJDXjiK997es8fPQIFBhbyn5sDFHYYGFxUcIoHtzn5q2bTsop8uTxeIzC0u31CIKA/mDANElIXWhGmmecPXuW/d099g8OGI+HTGcT2q0OZSlm26UpycpUvBDBDZrm3nTifTIH86o1qqAG9MoiF5DVMeVy44qIljBywjCg0+myurqC74s0fm93m3arQZKkLC70ODk+ptVqYpGvP336FGsNZ8+eZXl5lafPnhJ6Af/sn37HNXdujXJ6iVbttZWGRIldkHVDpPl5M1/fFktR5mSuGNcKJtMJnkuvgznQV5mSe85TTwJtQgI/rO+FMIzqFDXf3ddFIUmEQdSsk1zDRojnxfQ6y6yvXGd5eY2iKGh3F5ikGVmaYAoXeOT5c5DAyVAk9U4K1CzLePr0MU+fPmVhYUkY8xhKW6KNZWtrn6dPn+Fpj1Yzpt1ssLS8wuraGlmWMZmMmU4n9SBuZXWZtbUV0izn5se3+PD9D/jbv/kbAl/Sq/1AfILiOKLTbqOdpBklDI2N9TWuXrnCu+/9mqMj8QXd2nrG+++/z7e+/Tv4gQuksvL3gEEhMpPKx04G+ZX01p039blcle/WKdc+Xd4LGH16mCf/TpmCuzahOj9zB65ZI7YJge/j+ZrZbMrJ0SGf3P4YKOl0upRlwXQ6YfP8pju/Dec3z+N5HutnzvDk6WP6/WN5Ddqj1+uxt7fHYNB3SZyWg4NDxuNJ7dljXIqlcjYBp4cvp72hTGleWOsgDK7KHkEYXOJTJc9TkiRTAAcihzKA8OW9joIQbSKeb+3yfE+zezSh2/a4cf1lXnvlVQ5Pjnn+7BnPnz7l+OhQhgHKgI9jnbuURVNiCwGbHjx8yPHhkZxDjZher8d3v/tdup2Ok7+JHFMDrWaTzfObaO3x8NETPrl9l+//9d/w9ttv02zEtJxMsgItO6027Xabyn9J2NyKdrvF8vIi16/f4MHDB9y+fYfCSZAmkzE/+fHfs7S4wJUr12UIWcn4KwMKI4x2WWvWDVIVpQNYFNaFFGhqerO7DjL3MI4JVTFQ3CqtEiTrz7l60er6v6tGtVq7yu1dNXDi/r+1uOEVWOUYF0qay8WFBQqXbP3o4UM+uXmLv/vBDwhCAQ7azQatZgOtlQsGKea7pxL597lz51hZXebBg/scn/SZTRO2t57xi5//jD/8gz/E832sEeDTmBztG8JYU+Ry1s9mGVEY4HmyJxkKwqBgMtvn6HCXw6NdBv0D+v1Dx9ZXoEQhEgUdDJDM5FyVvaRNGMSUhWFr94DxeEzo+3Q7Hc6sr9Hr9ugu9JhOE46P+1y7fp1r169hjeX5s6c0200spWMlFmjt02y38IKQ/mDEo8dPee+99/jpj39EHAVEoU8cSUiS0tBsNdHaYzQUb62iELWVcj6qKCGQJGFIHArrTxReKWsry3z5i1/kV++8IxI4z2N76znvvvsuv/M7vz+/h20VlOfWhxVJndzv1d5IDdBLP6UqXIUa5D/VY6jTa7P+vKp7GmlQ5ktYlltV6znARhxr5/vMqQ3YKk3FMpV+SMA8Y0oBuU31d83XvLLQbrVZXFpCKY8kzdk/OODOnTt88OFHfO97/wvJbMpir0ezERIEsm67na4LB/Jquye5xUqnpFnj+PiYp0+fiLKoLNjaes6/+bff4y/+4l/w0kuXsUbJcMyIbFhSRa0b0krCvaeEtaYRck1VV1cDuzRNHcs8B7QEHRWFk6y68J0y4/adX3F8eECnuywsYFuK3UanI+s5DEUFlU559Og+586eoSxlqNB2IFGaJHhewJe//BWm0xmzWcLm5iYokepu3tzkwYMHlMYwGo/59iuvsrGx4QgJDV5//XWKouDh/XsOyHRZAEa+vrS0zCyZEvgeW1vPSJKpS2C3WK3cUFK87E0hFgTii5rPbQSq66pUvXbc7LfaCVFI72spBRSfL8NTvfeLow9Zi1V3aWtQ2lafVxXgJ/+tqu+28yC1inAjjER5nrJw/oelRSl7yo/ZBVUhvd7CwiJKa9KsYDKdcOfOXe7evcO//h//B7a3t+ktdGk2GlL7dFp02u1aMVmWJXkuQL1VWtJ+QyXSWWUxZclCr8dgaZGt51tMpxOMVTx+/IB/9a/+kv/qX/zXXL58BeOGZjjbjzlArSjBWSpkFGWC9jS+38TaQtQUxiPJJjLEMJ4bAhisLV2wlartYioCV56lJKaQALjaX/N//+M3Bvia0QJlYQmDJeJWSBAGBKEmSU8YTwbuD8o5ONhyUwRDWYiRvud5pFlBXiSkeSoMOyOIted7BF4g3k9GijNPB2RZIXuinheHcdiVSXk6QTm5CEqR5IkrunMJOnAJlCLzyciKDDwPP4pJ85Ky9Gi31igKmRrkeUHiJsDT2QilfJRWTJIBRfmQNDUUxYwo9CmLHC/wRNKpPbTnE3i6Zq9pnbOwoJhOcwbDY7LUYo1H2F1gcVGKJjHo9ojwnUeJT54WZLkBWxBHHV59+U2+8NnfZbG3wXQ85vGjbfp9ofN/OgijSliVBkg+N/fTm/vhydv1IjBnTUWZFeDB1CyjF1N2XviZU8DfPwAM1ZxGX03B/zG/pBrQsEJFrhgrn56EVddeMX8ddR1mcAbvc+bgaXbi6b9ZucKg1azSGTXNuOG8IQqsdQCFsRS2xJiMM+srDAZDylRYBkWRuamMgHllaSQdy5ZkWYnnBfheVIPN0oyLPK10VPFOp8Ps5EgARWNEUuwAvCpC2/MC8qxwr9M4H6ACpbUrgjWeF4ArMhqNGDBo43ytUGJ+6gDJ0eiI6SznpH8C1ufM2gXyNCLwXMFbyua2urxEqtuEQUEzNmgrnhLpxKKtZA5mWcnR8Zgk9Xn7vfd5++8/oeVL2urG5nnWV1fptJosLS5x6dJFGo0Gi4tLbmNTjEdDbly/zvUbV0VS5K5NlmVkeS5BCL7P4dEhW1vPKMuC1bUVfN+n2+1y+fJlvvylLzMcDtne2SGOYl566RKj0YjhaEiz3ZYk7CCg2+7RaDRoNptu75aiIUtSxuMxeZYxmyVMp1PG4zGj8Vg+XxR0uz3OnTvLtWtXaTVbHB4c8PY7v+RXv/oVZSnXa3FpicWlJUpT0ut1+ef//A/4+KObnDu3yfVrVzlz5gzvFu+jvYAwCGsWxj9kvtoX/vvTj+rT1fTf83yUFY8VgyEIPJci6pK/wwBTyBS93e6i9jwnQ84kiMMXeaJFGtkiN/iRJCzmWSEgi2v8ZW8Q5kjlXSm/R+QinvPdrKbH2g8xuSErMkwCpZua+VpjjUKrAsuENDvh5sf3yQphO86yDFpr9GervPq5z/DqxYiIkmQ2YzCZME4zDvtjtnYHfPbVL3Jtc1mYo1nObDYTL6eJBMWsra2K5YJSFEXJaDhlY2OD1dVVer0uCsP27o6kGXoiaa0SvdttKfieP3/OJ7dvSwqrkwCWRc7585ucO3uWdqdLEAQMBgMGgz73H9xnPBHAJvB9rly7ysHRIYURT5A4jsnzklCFTGcTSdYtq0LCYBxd//ReVhRlzXixrqgFTRj4zkQ4JopDwijC851kz0iieWVULVYBCdPJmIODfYLAd6n0EWXpM5smaF8axMPDA5aXl9jYOAMoOs0Og0EfaxVlIcm+KJd6ZpWADk4aqqjkl/O1ehrsAevWk8jS8zzDC+R8V1oRurCuigmaOsNwfQoorGQech+p+TloJanMGkNe5q54l9S3wA/wrUyTkzwlzabEfkAYig3AaDrjO3/2z9neP2Bwssfw6Ijd7T1OTk5IkqmAKRWDzSrHJKnOSsv+/p7soS5kwpbSeNy6dYt33nmHIhO7kG6nw8bGWf70z/6MtbVVsizBmhysIQwCzp87i1aKe/fucfv2bX74wx+iFM7wXdjnzVaTKAqZJc6vVEn9FPoBMzfE+K3f+i1+/vOfMzjpU2Q5t2/f4saNVzh77hwVC0XOToWntDOJdsw1NW9uqQA518nOYRHXKDi2K1jnWYY0JzVDq0qalN9XOvqTUoh8JQrFJ9VWgCGEUYixhnQ6Ym9vh4P9PeIowPMUk+mUc5ubDEcjfv6LX/LFz3+eRqNBWZasrq8TxhH37t0RVp4tWV1b4/jkRHzL8pRzZzdRSibvtf+pnXvlWcQPtAJcZe264cqnIO2KTSFggHXee5qikOGcsVakQ877KMtStOejA08CvYKIbGq4decmiZmgG+f57GdfZXbynIODPQyaV974HJ998/P0jw7Z29liZ3uXw6MjV/+mcwC1VPiBpixKJpOxpF7mThZlLGVZMb9ljwnCkLNnN2k1m+wfHHDrk9u89bOf88GHH7m9z6fb7dRAe7PZxNceaSogJgrxyvQ0yWwq9iRBwCsvv8Lq6hq//NUvmbmggfFkxLvv/pozZ87RarZBzUMD6rrSgS1yT8vegLFii2IVtZ2MqtakrFB3cjqTd/d9juNXrVGXmYGuGtzqSn6qPoRKvquovF3qetOUzlbDvQa3J3U6bbSnSdMZ+3u7PH38mB/87d8ShQHNVky32yYKAsq8YDpLJfTI2YYAeL4mCKQ/CaOAa9eu8+jxIx49fESSTHnw4B47n/kMZ89tYtxZbKwhzSf4AUwmCdoLJCXS81wqu2P6WMX9uzdJk4LJ9ISizCitDLCMEgks2qOwMlxa6PUwY8PBNMPzDMamlKXPzu4BH+48oRkpXrp0CVtmNJoNXnn1OsbAf/77n/K5Nz/L0eERB3v7ZGlKs9moQbnSrTethSG4u7vH3t4+//Gv/gPi494Qn2pKAQKbTWHdJAllnovv5PoaUSxD1cl0wmAwYDabyVA1y0mcCiPNMibTCYtLC7z22qt88MEHri4xfPThR3zuc2+yvLziABKwVlEl3ZpSBhoawJSYshBLibLygNMOtHB7gGMaVMBy9XkBkCthraw47X52Dv/J2tW4e0BxCsuTc0Rx6gfcZ9SpdV2BlFWarDDs5HycO5AbtOezsLhIs9kkywtO+ifcf/CQT27f4d/+239DWRYsLi3SiCIuXDhPEHokU3lvsyQVULmU+6JKRdbOB3rz3DlWV1Z4+vQJh0fHlKakPzjmb/72r/nud/853e4CpXUejzhvQmMxZY5ShjiOwBT1cNvHq62drC1dQCdobZ0NR4QxhQM5PawxjMdTQj/DV4ccnsBkekzgKwbDGXamybMMrYTxnuc5k+mYw30ZujYaDRqNFt1Oxw0T4Y033iBqxPz63fd4/Oghf/In32F1bQ1fe3zjt77OT61hlmZcunSJK1eu1GDknTt3mE6nvP76axwfHjIaDijzwnnqyf22sNBjf38XY0umsynTyRi/swB5TqmUSw0XYLzyayyKnCxN5x2xmkt1PeW7dVOd0xWz2amFbHU+uR91x1a1Vyp9+kzT6Mo+Q1PbCNUgtHJDk2pDBTwFhTFUWnRRGwu4VbrGdDqbOWac4BPVfSPnq0X7Ae1OB88PmEwS0jTlydPHPHn6hH/9P/5rtre36Ha79LqiylpbWxHSVZYzmUxqNmhZlPNe29NO4i99jqdEebe2ukKv22Fra4vDwyOs0pycHPLv/t3/wn/1L/5rzp+/iKd8UcbYOfu4rMm+JdYUYAu0r/B0iDFOFlyWFMWUuBEThi0y04eyJIyC+m8PQhmwFoWkP7caDSo1iqc+fR79///4zSW6mcQKm/IEz/MYHfZBFWClwZQDyyeIJUjD9yIBIZQizRLyPMHzJNHPGEOS5PUN7fsezTiSX1QKgFEZKJe5bAK+F1LkkqSrVcR4fEKz2SLNEsbTsZPrNFDKJ0sFoFGIt4+lwA803e4Sx/1DRoOUQC2iVc7J8DFR7KMI8bxQQMzQIwgUeZGQZFPQEYaM0chgVUq32cUPxHMtSXM6rS5ploBV9HqLwghstJDQEdm9izLHD6TJDaMGRZmDlTQjayxh0KIZN3j5xpu8+vLnObN+njTRPHu2xeH+bp06LH203CRzU2fprKr3rKpf5tKaF0G9Ss4Hc2T/tN/C6Y+nAzOq56qarvnGP5c+nn6u6vOn0+Yqhl9VAFRSjMrLy9r5ZHX+PJVfxampF26CbecF42nfv+o1vigrNkRR4Jh1wl4Ig8A1UnoOVCA2tf1+v3498vepU6/TOrmsoaiARwM6CCnLnPFkTFmIlFIhz2+LgsOjQ4kJVwFZMcNTMi0O/YAiS4nCGFsad/BZoiCiNAXj6chNsyQ1qtMRavtoJKDU4uKCM/gtyFLxV2tEkWOnpZw//xKtZoeT/gFb2w95+iil1VomCkPSNCXNE8rCUJBRqAc8u1PyQbLKci+m3YxpNhsCxEzED0mb57SikEa4SuQmFqN+n+lwgII6cOXll19mOBjS63bxPY+iyBj0j91GWoGyXs2AanWblGXJ/v4eO9tbBIHP+vo6jx8/5sz6Omc3zvLg4QNm0xkHhwd8/vOfJ45jup0eo+EY3/OJowhTlOhY1sLTZ88ZjyfMZjOmsxnTyUR8Y/LcBewkzGYzVlbEV+PSSy+xsLDofO3koNw4d44/WPxj7t69x8mJ7IGSKOrMbZUcLKPhEHUObt++C/js7+4RuEAX+ymfvep+cvD1qXVtwGpXiJ4G1yspo35hAlzde0WeU5oMrTMCLYlelUzRWg1WiTQcZ7bv7gnPC5zRusH3K8lvKZJtz0MrMY43tgAkpbW614wx7jVZJ+8VAETA1MTdJz6hH9YglLVQpDOGoyOyXGPRHPX7nOT7XP7MX5DkIUHYhkw8X1pxxPLSCourMY8O7/LOzafocspar0EchnQXFlhaW0UraLdaNYtzaXmZNMn58KOP8bTP7/zOb3Pr5k1mswkPHzxEpq9NaRic7UCrLf/9+Mlj7t29IwEtjp147foNprMJDx4+5Itf/CKtVos0SVm+fIU4bnDrk1ukyYzpdMbioqT7NlstSgxJljCdpbRsk/6gz2DQr/dfKaIsnhaZfBSHRFGM7wdiAB2GtS+R+PAIOOPKNvFZdCxSk8t9VOQ54/GIMBD26Gg0YjwaOfuKkiAIuHz5JT755A7j8ZggDLh69Sq+73Ht2jV2d/ZcA+7WHtIcYpA0vlPFo6WaWNo52HdqD39xL8ft1c6ygTkYKP6dsndXVgRpmhKHEUoFLzQ5vvNkstbWvkTa8/AdiOB7vjADTg2/oigiw2M6HfHs+VP2D48gjNg5yrn3pM/FtR7nN5tcvngZHQS1ZPn46JiT40Mmwz7JZEqapRgX7nB8fOy8UAOUVuKHipzzk8mEYb+PrzWtZpPpdELukiWrf8YYlpaWWVhc4vikz+3bn/CTn/yY8WhUD3z8wCMIfWG2nRw7WamwQbXv0242yXwJQGu2W3z+85/nZz99i8lEGuJ79+6ysrbmQBtFZfBZ3b/1/uOm8boC7KorXwVzVXtVdZ0rVkF99lcIr0v/c89RWseKdCwDT2tsUTp2gkjeqsGOtSWT6YTnz59KA9pbIM8zVpaXabdb/PjHP6bVbHLmzBmKouD58+e8/tk36HQ6pImweSXILRQZlhcQ+CFra2vo+Q2H0hqPeW1UpZvOawcZdL7Awnd/XjUs1Fp8IqsvC8hXCFs5DGX4ZwxRHLl7NJsPQcuc6WzM3miHpc0zRI0Wq+3znD9/jqNRwk9+/g43rl3i6o0bXL1yRQYdgwH7+/u0Wk3C0Cd3QVCB79Nut1lZXWUyHtNuNWm41ELrAEhJM4Veq0On02WWZHz00cfcvPkxP/3pTwgDT+Skzmc2ikM3HByQpRllYTC2QDklQeh8X6MwktTuPGdhYYEvffFL/PwXP5cGXWmePnnC0ydPuPHyy2CMGP9XSkQj77tW1KyValtRzh6i9i5jzoyar8GKSXJqJ5ojKe5r1eChgviqb/j0OTxn9ykrwwyxuygdtmjdPaMJQ592q4MpZa3u7Gzzk5/8mCxP6XZbLC50UcBsOhN/TGvxA03cbGOMsJOn0wlpaurAo8IveOniZY4OjhmNxgwGQx48fMjq+hnno1tQ2hl5OSPPRuIHZpR4RmlhPitt8QMospSsTNEeNFsRWeqRa5+8yJ0vqDT5VTBEFMXiE+2XZGaPuw9/wtqZlzHljEak+fjj9ynzlNc/8wb9fp9Bf8jC4hJae3Q7XX74dz9kZ2uLOIqk5izL2r869AOUNQz6fY4OD/n7H/09/f6AZlOAe62V83gNSLOMoig5f36Tz3zmdTqdDloFEqiWTEncfb23t8e9u/c4PjqqPdRtZICA0WjM+c3zHO4f8OTJEwwlg/4J9+7epfel3rx/0fP9ypQlvlPkFEUhcmg3eDCn+pFqf7Q1tdsBLNWQwpo66GoO5Z1aoNadddYFDZ36kqrX+KfZPNWZN7fuqMDtCnCxbtiilJXwLgQkiuMGnW6XojCMJwOePnnOs2fP+ff//t+TJAkLC11arSary8toTzEZj5mMJ2RZRlFklBbKUoAdzxOWZeBroiDEOGD/tZdf5eGTxxwfH2FQ7O1u8fYvf8G3v/3bEh6YF1SOhxLyN8PYAl+JGkHCI726joTKhk4k+74fOKluQVlaoqgp/sUoGnFM6EdoVVLkO4zSXTzVwAtDyiIizwsGA0MQiMrh+OiIKA44e/YMo9GYpaUl8WBXmsWFBS5evMT+wT7Pnj1zHrg3+YzWHBwcMBz2+eY3v0Wn22Nvf4/nz5+zuLjI8+fPee+990jTlMuXL/PSxUt8fPNjirLAKoWHBCpUPtlVmGCeZe6MkUucFrkLYZBwOxQMhn0Gg4E7nypw1adSzFR1lPb8quwGpV2IhqwqkZ5rB7CpObBcVL518lxGlm+9Nq3bn+WCVKDyfN80Sk5znLWHrYFAt46dTYyKorqOVKdvBw1xFBPHDbKiBFOwtbXF7u4e3/ve99jb22VhoUen02Z5eYnVlRXSNGVw0mc2m5EkmajrEJ9POdflTchzISn4gYevZY/xlKLdaHLj6nWazefs7R2gtCZJZ/z0rR/zT//pn9GIm1inxqyITqaQe8yYgjxPULoEB0B7nnK4gZWBtfbQyq+9+EF6n8IF92klPViVjwBSk3rqN4bnfnOAb5LsMU2e4HsB3c4C7W6AtZqyqBgoitksR6FOefOVLo2nJAgc2OR5eJ6wlIS+GtdAnqcFQS2KHO0Jmyr0A+c3JkbUWnuUxhCHQiO3BsIgcjpvRVkI8l2WCaaUYk9hmUwGZFnhpgAl1pZoXxgDWZ7QanURbw0FtiRNpkSxoK5lYQj9kMj3CKIYa3OazS6jUe6MwSHwm5RFxnQyRnueY1/gkHJDXkhhr7TCM76baPs04hW67TWuXXmNy1deY3nxLNNJzrMnRxwd9YXZYUqZaDJv+iuPofk0tAL2ZEFXxftpoOs0c2gO5FGz4KrHp7//vyS1/fRznk7ZPS3XPf3cp8HJ00Dh/PfK91VF6XySPv9bTj+PRNVTg42f/nr1HoBQpa2WG68swXdpXVmWYYyqgc/q9xk3YdKewlM+WVZN9j0qWR1AFDdI05TxZMwsyZnNJqDc2jXC9sqKHOv8FsMwImw20YWw+CgL0rTEFiXJbIAfRGS5NAnKugQ6z5dpnRWa+3Q6YTSeil9UloCbQkvCZ0+KS1UQBRF5UXD//l3CsInnh/ih5c69WwxHpXhVFKVIA40hCCLs8R4nzz/m459babw87cJDfIJmh9LvMMs0+fiQrBjhIb+3AjKVgjAI+fCDDxyd2uew0cDzJQG7cMmtSik32TOkmXi/ecEio9GQx48eMh5P6HQ7Mv3d2WU0HKA9zeqqbPb94xPObZyl2+2y0Ouys7ONAqIg4mD/kPv3H4mnivNoMwizoihL9g4OmCUzkcfHMa+8+irdXg+tfQ4OTzg4PHGedgJmBI7V1mg2OT45obTWpdwVKA07Ozvs7e4yHA7p9we02222nj/j2bMndNpNGlFENeut1ie8yNg6/fnTj9Nf11oTeiFFmoGiTpyTAkCKfK19NEqACGOZzWaUpChlSUuRgXhOXpYkU5rNDkkiflLW8AKAV5YlJWKhUCWdVq+pGi5UgQZ+IGFEWZbj+zFaS6K6KQuajaZLcCzwg4BGpLh8ZYVHj49Js5KFhR5e3mK126QVe9iyRNvqHiop84zjk5zx2Ofh/R1u/fLfsxj7LC4usnnhImfOrNNutuh0uiwvCzi7tr5Br9ejGcccHh3z+uuv0et1uH/vLufOnmF1ZZVuu0OeZRR5ThiJR9rJyQlPnzxhMOgT+JKGfeXqVdJsxq9++QteeeVlQPHkyRM+/uhjvva1r3J2YwNjDDddcZckKWtr67SaTaoEbK00o9EI3/dZXlmh2WjM/fA8z/mCVuniSE1VShMv4TAFyXQqXh9pRp5lpGnCLElJkpRpkpAkM0ltLQqXqCmsy+3tbYpyLhloNhssL6+Q5R9x0j9mbW2dV155mU6nw2Q8lcLD90VaOKcYuP/ZejDjVm29jmv/rE+t3VrCizD1q6InSVPX5MXgQCuR6gbMprO64RHJlYCdpRE2s6eMNGlWWFLWIo2qM7M3xs6NoE1JbnKUajJLR/z63Z8QhC0yA0M2CJc2+eKXv0DTjhkNhxycnDAaTolaK1w/c4WL59aYTU4YD044OTzm6OSIo6MjYYXlmVw3W3lmGlqtFs2GJG8Hnub6jRsikXRsf7EEENb34tIKxioePnzMnTv3ePLkKUHgO0mdSDyTZEbge5zfPFf7XE0mE477fYZORpdmKUmW0uv1eO2113j33XexxnB0dESazPBabSqEq7QuGbcUKYpVFletnxpoUQ84KtuPT21MNWRS+UidHsrJ3j4HMitGcFgPBCpTcp+g0yGKQrIspd8/YXd3h0YjxgB5UXL+wiU63TavfeY1FhcWCaOIZ8+f8fY77+CFAV/92tcYDgbs7e1ydHhIaY3c+80mURzj62odSyNSycFO78Ev1iFzprX8ndR/H863q1rDFWinlMb3Y6LIr4d/WTpzPkHGecCWWFsQRoaFnsc491lfXZYEz3Qm55UO2TmZMvvoFtHnXqbTiGk0WywsLvL6a6/T7XaIGzFxHLO1tct0MuPll2+Q5zl5lnF4uM90MnUMAknNLY0wenq9RYyFx4+fsL29ww9/+EOsNXjad8xfuZdHo6GcG64O6fa6WCAvCxmSzcREP01TojjCYjk8OmRleYXPvvEG7733axSQJgkP7t/n8uXLBH7orGwqaxXxvPSUAAG4UCyLM25XMliwc46UDACoaE81LCIflaMTn9qXXjCTr66fa3bV6S2sQm+d5x2IzUSVMlulcGutaEQxjSiiSDOODg559OABDx7cZ2Ghw+rKMkoZkllCmiZ0O11euvwSnW7beTNJjXxwcMDTp0+FzT2euabe59Kly8I+K1L293bJswRTKkozoyynlOUMpTV+EFIUMqgLoljksMqjyBLwpUYNHMg8nkqSvNYBYSjnsDUKrI8fRPLe2RKlDX44Y5Y+4tGjE8JgzMLZRXqdHoPhQNIpw4TxeMrCwjKdTov7Dx7yta9/jeOjI8JAPIDLonQpoML6SpKE0WjC3sEe7/76HRrNBlHkEcWRA4rFBzUIQ771tW+wsrbMk8ePmIwnXLlyDWuRwLVbN1laWuL8+fN89WtfZXtrm5sffyz9Y1lgjEee50ynE65du8qzZ89kfYaax48f8dnPfQ5fe+BZsFUvMR9GaSVJ02LTIMiLrtNB3Uqr+i/mAzZZN47+ZJG1VgGBbt9QLmlUNtRToYWO1TRn5jkmeLV+lZ5/jTksbU21R3nz60elgJIws3a7RRzFFEXJ4fExe/t7fP/7/5Hj40OWlhbo9TqsrCxhSsOgf8J0UgVQKtqdDkEY4emAyWTCdDoT6azxsGVG6RvnmQ2XX7rCeDLh+OSYNM344MP3eO31V1lZXZe9FUVpxSKpLHMMGWk6deqLaV1nVmx15Pas7YfkrJChZCOOOTwUJnOUR5i4R56NaDZbMhiMAD1FqxbJdEyWTdnbHVEaGI5SPE8sIFotsexJkwylYGVlBd/zePzwEUeHhywuLrK9vV2HeBlj+MlPfsrConjzae3R7fZ477336Pakfj48OODixUvcv3efxNUjYuGQARJQFCFp6+PRmMXFZTlXna1TGEoS8s7OLkkqgU3Chq7ZLahZZYcz77GrRXbaKgeLAEpKWG0ihVY1hlANuSqfaqUVyogqQynlwCheOBMBFwjhPE7d98ynKlro0ojsvxEGwnqrtOwKKv9ThabZiNFakWcJk8mUfv+En/70J9y/d5d2u8nCQpf19XXaraZYmkymzKYz8VkuZHC2uLhEq93E9zwsmtFwxHA0Yjgc4uWaKPRlUKo98kzW2LXL1wDFwf4hWZpw794d7ty+xeuf+ayc6w6fqNin1so5UJQJhZmiPFHTGGPAMVxLUzIcDer7sWb/2zlxStRWEZ7nA9b5txdYPcdN/vc+/g/w4INOu0VZiDTRK+UP19oHDJ1OS5Jz0sz5jkrgBZT4vmxSQRCQl8b5W43x/Yg0naEVhEET4XMZlBJ6ZFGUdVFfSWlFVitTtNksoxE3aHmSZDUez0D7+L4ijDRlIdPLKFKgSzY2znJ8+xZ+UJDku5RJTrPVkkWWp8RxhFKaZJagdUArXsXzQsTayuDpJkmSMBzvcnR0iB/4RFFEkZd02suMywNKmzObTGg22xSmIA4bZGlB4LdpNgOmyYBpktFpnWFz4zpXr7zOS5deJY66jIYzHj/ap9/v1w0L1tY3lRSZn2alnQbTeMHPq2LMnZb0ngbbRBbhntvdpKd/dg6O8cLvOw3kffrn/rc8+yqG3Omvn5b6uiFp3RC8yAJ58bn+MWmwTGPUCzdV/VASBJCVkvIVhjGlEWmq50uTVk1EPC9w75chd2ECoIkcI86YQtipCDU6L8Snr9Fo4fs+nU5Lwhj8kCzL8XwlEx0r6claeRgjrzXwZbJayQkMFj8MCcLIpf7mUihYhTVSsJZlAXlOHMWgdD2tbwQRSimSWUGWWUpjKYsMZhm+F6I0pFnGYJQSRj5hGpCllsJKAq40LIosmWDKkjiKyZTIZyt/BaVFAqy1TIZEKmzAlGgtzBlP+2ilGQ4GzKYTzl/YJI5i2o5qPRwOZZqkFKVxhuaeptftMhr0mU1nPH70EN/XRKEwGy9cOO82UDg+Pub111/nwvnzjinVpdVuib9ZadjZ2WUynZFmuUu+QqSkxjBLE2xpOHN2oz68lVKcDAcMxxOsUs7fZ+5tKdMXOZ9EsiRTsiIX3y6tFP3+Cbc+uc1nP/c5Ns5soJTm448/ZjQaceXyS8JaOc16emFt/8N7pW607dxPpWIR5HleM0gqE+KiMKDnoHrhpoRLiyv4foCyHsaW6MDHlnNA1/MEuCzykiDwQInPXKvVAoqaiQfGeZlYAj+s95UKFE/TjHkit9wXnpZCXytFmkiQQeBDWYDWCesbDY6OAw4PEzw82gEcPn2P3caATrnIardBHIfEYcg0z2m22pgyIQoVzW6H0OSMhkMe3LvH1tZzfK2J4wbf+MY3WV9f5/jgkEYUEYUB1pQcHx2yuNjjt77+VTnIcwmpSLOMoizoRF2MMezt7fH4yWOUssRxTKvVxPc9/sN/+E+EYcDq6ipJkvDwwQPu3L5NI4753d/9PTbObLC1JWzRJE0lBCEQZpfvB2ycWSAMI3zPq1k91T5XloZkllJOSpJZQp4L6CispJQ0lY9JMiNNMtIkIUukicwK8X9cO3OGc+fO0Wg0mU6n3L79CR988J4AsL7PlatX8DxVF47j8ZgzG2dot1ucv3CB3d1dptMpnvbpdHugPHw/rFmXVTFTVS+VpUHVx7wIkHxqKIR1wIrbM/Nczltk763CiyofpGpdV16nYRhhDKSJSGZVLs9lccbIRYnWHn4QoLWcNaEv+1CWZWL0X8r+Z8wUY8dMJhmjacZ+6nHl/OtYE+AFkoZ7+cIFWo0F3n9yws/ffh9faS5dXGZtdZnohhjv57kwYlZWV2vZYppm7O4ccO3aNR4/eYhCURQpk+mkBnqLsiDLxVer1W7Ranc5ODji6ZNnvPfe+wK0KBmWeEIJ5LXXXuXcubOMx2Mmk4nIpDY3KYqSp8+e8vz58zmbxVqWFpdYXV3l6OiE6XRMMpsSR5GwkmzlK2VI8pzcZDgIds4k4dQZaqWhrOTkFdhlykKeyzr/tPqcdme9k6qZoqwn4nHcQOM8JRW1V+TC0pJrviaMRwOOjg5ZXFyQ4DalxPMy9PjCF7/AwcEBW9tbJInYKzzf2iKKIjY3N9nb26Z/ckKelXzhC19gfW2dSxcuzmsFqgGjqWuK6u82FWh9qvGXv/90jSL7tbBcJHiu2+3VgGGnvUivu8by0grjyZCtrftMJn1C5xNdNQ5+mHFus4MOYlp2QivSGO1j05zprKA/Kvj4nV9xuHWfV29c5/zmRTqdNrPplOlsytWrV7h8+SWiqMG777zHl770ZT786ENGw4Fj3GhnC5A7o3ZDFEXEccR4POH58y1+/ev3ODo8otmI3cBYWJSzZEpZFpzd2ODa1Ss0mk1ydw2jKKI0hoP9fR4+esRoPIZUAsGCIODg8IC1tXXW19bZ29sDYGdnm0G/z+Lissi5y8p2RBI/Pe0xzRMBLVzyixx1CnFumoccWCqPKeWAvlMoXWXbg/tU1cli6sAYYf/JmjY1cFLJySup7txyp6hUHW6dBNojalTqnYSjowPef//XtFsRCwsdwtBnOOyTZzmvvfYay0vLBGGI73m8//77gPjura2u0Wl3ePLkMfsHe7K3pSntdptWq8V4LE1qmgpDtCiHwBSUAC2eH+F5lul0SJpO8PyAKIjxaGCsnP1ZlqG8AE1AGLQolUfg9+h1Fui0F8nyGceDPfIiq/evQqVYk+LpnDdeb6BpkUw9RqOU8WhIq9VhOBySZRntdps8q3yTYzytZZBS5GAVYRw4tZYElL3//nvMZhM6nTZhFLn09iZ5nhGHDb717W9irOUHf/u37Oxs8/pnPsP5i3LvplnGdDrj3r1fcefOXb70pS/x0qWXaLda/PrXv3ZAdoHSwmpstZqc2zzHwwePSJKE/b09ZtMJ7VbLyZ09VGlBCWEE5c6lsgqrkP3RKOtqb1kfSgGe2y1NBbQ5IFA5NpMpa29IrVwarQOrZblZlJkDhnNQ2rr1Pn/UZylVb1XtT1AWOW7uXKEJVHwqP/RoNUQpls5mHB7sc/v2LR48uE+v12VpaZH1tRXGY5H1T8dyPt24cYMzZ9bRvibNcpT16ppyZ2ePJ08eM5tMwEKZlxQu6OfKlSsc/uqQosgZDoc8efKUpeU1QBhVeSlhmUoZjJVBRJnLuVx5eoZhQBBEToJdunu32pkllGd3f5c8FYmmsbCxtkLkdylzUULl+UwGKGGKF4aMhkdkKUzHBdrrUYVFdDptYQxGohxYWlqq9/CKAT6bzeg5r+WjoyPe/PybHOwfcHR0xNVr1xmNxhweHtFoNgiCgP39A65dvUa31yM/Pq7D8aogzDzLKMqMwA/JS0mZLkrx5Ww3WzKICkLObpyjMDKMNca4oIacLMtdOvW8/7enhk2VHFRITLImTvt86yrMsdofawCbOXLsph6VKkIsvuagItrZPzlG2rzmc4Mz93PT2YROp4PJSrSdQ+EKhVGKZtgkDHxMWTDLcg4O9nn2/Ak/e+vHhL5Hr9tmfW2NTqvJaDyqVVZpmrO0sMgbn32DxcVFZrOEKIppxLGQGdKEsijZPzjk8eNH9PtHULh71hgH9mluXH+Z4fAdRuMRZVny3vvvcvnyS/hhoyYXVf1aaSV0LS8T0OKtqADliW1XWUhPFkcRvhczmYywOq+xq6IomEzGxHGDwi8dnmVd7Sz+i7/p4zfnAFoNKnCSL0H1m46dUAEunucRO22xyGiEAp64dLksy8idKXuz2aIoHEvK91EEYD3yPCWKlUssrUInjFAgPZ8oCrAG8qKg2Yyw4AzmPRaXegxHI+JGjO9BHHbldQShSIR1RBBEhIEHGNphh2arzXg0YjjMa7pw4IWcO3ON61e/TFlC4AdkaQbacDx4xOOnMwbDYwno8H0Wl5dIZhPHiEkcMJai/YBkVhB4LbqdM4xHI1rhCucvXOWN17/O2upFtNYM+kMeP7wvuvLKMBJTLwDPqvoAUvZF5P7TAJ68735dkJ4Gy/4xUEwYTmX9udPXswL56p91d2n1tdNMwP/So3pddapcBWAwP7ygAghVvXmdlgKfflS/z1o3QaiK9H/k+15gILrCPk1T9zkFSGMjG5wiDMI6lbBiGMprALBzqq3W9WFbvddYYfkppSSNFy3hAQ0Yj4d4ysMLRLbqaYstCnwnufZVKImNFJgiI01SsqxwTCi5daMwJvRDJtMxjWbHsVMClPLE4wcNBrK8AuNkA06SjGazQWkzsllCmhQEYUTcCJhOLMZTGL8gIRGgp5CUPTHZFg81zxe5mzAdU0BSPHHsC9+FPWhPromvAy5fvsLG2XMoBcPhiP3ZPqUtacSxGCYrRRCG4s2nPawSicDW8+f0j484PNgn8ANCP6DdavHKq6/wn3/8Y3Z2d2k0GoRhxNe+/ltkWcpwOJTrURqSNOfevXvCANAeypszLKToFwZA9d+Vh5fWbnqo5Dp6ukpH08L8Vm5632g4QE2kkKPhiGZTGJz7e3soBePxiMl4zPPn2xR5TqfddcV2ZZDLC/fhP+oh6QC9ih1drbfSMWmslYJHGm25N0sH2gF4hKRZShCK76j2qBuNCkBM05QilyCXOHaFb2mI46Y0V0bhaZ84UmT5jCzLMUahlew3FaNvdWWV3d1d0lQOKgGESiwa3/MxphRAygEtnmfI8pzh2PD4yX0Gx5o8B4NG6wfsP/4lvwg8As+j3WjQaDZodHvES+eZHheU00M8Y1Geh++miUWWkRkBjp48eczS4iKTsqR/cuyusyVJZuTZjImislqSwzvPkPCGgPF4xN7+DlvPn+I7qejm5jnCIOTKlSusra2xsLDA/Xv3GfQHnFk/w/raBivLK2R5xvr6GWazx+KvqWS9KMDkOYWf04hjJuMR29tbTGeJnBmzhKI0taeLMYbhUDwF0yShcMBNXhT0T04oi4LVlVUunD/P5vnX2Ng4S6crnoDaeXBaY2i323z00YcyKPN9aaY9jfZgPBny3vvv0el0+epXvsJHH3/Me++/z9e//nVee+11GlGEsoZWqyHhLaVjan3qDJl/lD3y9OMFkE+p+dTTPU+aZg7E8ushQhiGpxQAInG0rpHSKqDV6UjCosk46R+4QCIBAIuiwNMefiB7uDCTM2EKJgmltVij6PYsm5sdDg4N2o/I0wYrix0oS6znCvI8Y6wSdoclu+OAt372S46PVllfXqbbXXCJ9wJ0TycTFpYWuXr1CtNpwsnJkN7CAp/97GfZ2dnhYH+Xk+MTFhYWCIJAXktRYo2l026DhWdPn3H//gMO9vcJQ9+BYSHdbptvffubwliIYu7du8fNj2+itOLM+gZXr17jC29+kU67w/3797BWGLujYMTG2Q0Oj45BQV7kZLmcfUVp8L2ALM9qT6vTBa00uMaBenaeiOxSJ7FSe1S1BWgZTLkho++H+L54V/mOgRiGEZUfcOBY8r7vuevdwPPFvmE6nXB4sIenxYvKlCXNVovnW89pNhuMx2OGgwHKKjY2zgqIt7HBaDRiNpmwsLCMHzzFKwxXXrrKSy9dcsMYGahpz0nAkD3AzBfr3GfIzAGd2t/NvljneJ5HGEaAqmsbgH7/gJPjYw4OWhhbkiRDPE+GQdqdo8KUMyg9Zn01YDj8FR9+sM/ZjUvEcQdshCag11vk+PCYnx3+jAsXnrOyvMLrr7+OMYbnz7dYXV0nisTaptVqsri4wJ3bn5Clqfu7NWVeUDjpe6sRk+cZBwdH7O7t8cH7HxDHEUEY4Lk0YGMEdPvGt75Jq9nk6dOnPPvwY46Oj1heXua3v/VtegsLLC0usbGxwYOHD3ny5Im730TapICrV6+yt78nMtbJmMlkTK+3WNevpbEueCmgxJCmM0m6V44E4thOpwHnCuar96DTzGJU7Qda1YP11TKnZLaO3VKD2PW25UCTU4ya0tWBpgZPIAojuYfTKcfHx+xsP2dnd4eFhQ5RQ+qzPM/ZOHuWuNHgl2//ii9+8Ys0G0329kVaeu7cOb7whS9w7dp12u02ybsps2RKUQjbZ21tXczgy4IyTylJKOwJqITCJGLZMs4pioyiSF2fpQl0QBy3iMIGxng0og7tTo/l3goLvVV63TW6C0vEUResz9vv/YCD419IMIpW+IHPLJ2hAiiVU0wFDcJGkwW/yfHJI7T2uPvJHTzlYd1+XrG+lO+LokFVaiMt/uZJwmg05JNbt2g2GkLoCEO6vR6lAyy+/ltfQWvNWz/5CScnJ/hB4ALO5Ouj0YijoyOiMGIyGcv3aI+rV68ynU64c+cOWOu8KCcYU3Lu3Fn2dvfIMgnCmU2ntJstxyQuqAIIS2PwnMx8OOyTzhJRbjipq/CeKksjKz5lbmkpezoB0/H61HxfKXCe41VNJ4UdtdUPp5jD2HlhUu1J8kH8X10dW3lra09jyqJem9VrQKlaOp+nGSf9Picnx/zsrbcIfY/lxQVWl5eYzaak6Yw0zWh3Onzly19mPB7x3nu/5ujkmCTJiIKY117/DK+//jqdbpeNM+vcvXOX/b29uuaczRLanRYbG2d5+PABWZbx+MkTXnntNbCKLEuc/2SK0gkUOVEQY32/tp4C69ZRIjWmdu+PtbWMtiiljglMQLfbQymfxYU1/uR3/28utCthNOnT7x8wGB5yfHxEt10y1VPiCLLEw/cVvV6PRtzEmLn3ZrPZrM9OayVc6LXXXuO1V1/jF7/4FUmS8fjRE5JE/EWLvOCrX/0q9+/f5+T4iCAMSBMBBhsNqZlkICaEjCjyiWKfaf+YvNRM0xGllT1TO1/sRiMmipp4OiDPizrYqDq3glPKhKpHBUtZiJdzWUrPWDpfeRn4mfoerc7sopABap7nlGXhiCB53YsYFzABuk6Xrlb8XFFX+VPaes1ZY6XOSFO63S6D4YCKDahVxS2V+qDrBshZmjOZTRgOB/z8Z2+RTKesr69ydmNDbE0mE7JUBtrWWF55+VVefeUV9vZ3+fGPf8x0MuP3fv8PCMOIPM95/OgJjUbM2uoKZ9bXefz4Iffu3RUsBUtmLEalaM/j+vXrfPTxR2it2d/bY293l41z5zHGDUCt1DZ5XpLnKagcYzOKVPZGz9PCGrfyt4VRRKPRFC9hN0gqXMDXXG1ZCqlNe5SF/I4o5Dd+/MYAX1GWlPkUhYdfSqqbyE6lYZxOp2jtsbqyxmQyZTIdUZaFQ+alENJaiSxFKwI/Io58ULJYr125Qf/khKPjAmNThBZp0VpYVUEQApqyRIrroCDPS2bJjNlsRqPREL+mRkDoa5SuGGU+ZZkyGQ/otVeIwyZFMXaod8mgP8MPIjq9HrPplNhTKOsTBgtomkymI57ub4NSDCfPGE93SNOEKGw6uZp49aXFgCxP8AKPRthwaLqiKHy0adJrXeSNVy9z8cIVWu0FsqzkYO+Qk36/3lSsk7BUG753iooL1F87/e8FPz230QvKPy/Wqyk0Cpc4W01IX2TowZydd1reW3/dzlmB1ffIe/wPmRufZgyelsGcfu2fBvms5YW/R6ZfzvtHxljC/CqccScVMALzY9exOyoJh7V1c2mxTo4igQKeL6nDRZnh+yHJLCMv5uldIFTxVqtN5bnj+x7NZoN+f0CeZ47h5ZPkKWEUoJVHlmcURZ8oColdiq21BmtKrJIDQmtN4Ef4gfiPKCvFracDWo2IXi/ElHLwRVGDIstY6C2BVi6OO3DNBSjlOcNOCS3xnWSr3WqRFSl+IEbMURTiFz6L3Sb9o6E0Vx5kaSpT3zSl0Yx5/fXPsLW1Rb8/qCc5nu9TZiXGFKyvr/Lnf/ZnPH++yyxJCXyf/f19Go0Gly9f4c03v0AYN+S1Affu3+Ott37CZDJhd2+X6TQhCAN5j62aB61YSyMOabVbxHFAFAe88urL9Lo9Ll++zMnJCW+88QZxHPPk6WMCP6Ddass61B6z6Zit7S0JLQlCl2YsrEznb+2KMOXkxDK51ko5rwr9guxbeg1dy5cAWq0W/ZNUPIqGw7rZ297ZRnuK6WRMkRcMh32sga3tZ5z0D1hbWxXJppr7Y2qlnTJOi1Guqhiocw+rWkpCBd4H5Ekq0gGUrJFC/EbLWk4nh1IUNQmDBqWdYk1JVk2oEXZQEHrYUjzNPM9zzXt17wrwWZQ5YRhjrdwLQeg7BqDsNXt7e2R5KgmiWpHmIvc1WQlBSJok+M68t8hSdAhy7kVEQeTkaznpbEyW54Ch1Wqz2Ftie9AX2W9RUnofUOLhKUUj8plRgpmHSmjt4fseH7z3HrYsabebPHwoja/2PYb9gZtoGipvrdIVed2eDIP6/RO2tp4znY7ptFp4nmZlZZWFXpczZ/4Z+wcHfHLrJt1ul2988xtcvHiJdrvDbDpllsxYW13l2bNnlE5yrlGUWcH28RbD4Yg0TRmNxqRJwnA4YjKdoT2Pz37uTZqtFkEUEvgiWdrZ3SWZTmk1WxgsYRRx7cYNet0uy8vLxFGM5/sMRiNGkzHGKpSyGCt75GQyETayLt17mOHnvhhOTyaEQUSR56yurnJ+8zyb5y/w3e/+BZ72+F//3b8nmU05u3FGDKArFotblP+Qqe0IM6fOg+ohA5Y5MO15mmazUf+8h4DrlV9kmRtXnMpZEPgBeBpfSwE16A+wSIp4npcCAOr52WONrf29fD9wr8lgCkPo+xTlkHPnWywu+RwfWZonFr1/C662CVoRnU6XNJkxS8cUuWZwUnD8/A73b/+c0NecPbvJpUuXWOj12Dx3jrW1NfqDAVEY02g0abc6HB0d8tWvfoWf/exnpLMpC50uV65cQYErrjPCuEmjGTMaj9je3ubmrY+dj1tJxwUevPr6a9x/8IDlpSWiKKTT6VCUJUf7x2jl8e1v/zZLSytcs5CmGdvbW0izVLC4tEzsZOCFKchLAYqTNBMWxHTMaDRywU22bkI9X4B7T3u1b5+nFF7g1QnGlRWL53kOuNJOijo3ZK8YAtX+VZSiwsidcXhpSoqixPfm4GOaJOzsbtPpCBtqPLFEUci9u3eJogYAnY4kUj/f2mF5ZZWyNOJVZC3tdke8jpKZNPL12gBrSpRMfuqzxrghjnUSmheiMSu2DY6+7VQUFegEljAUWX3VVEm2T4lBmKZBqMVLSvtgS8JA1mNZFihdEjZPWIoDJtkRH9/+EK2WwX8JnzFx7LGxeAaN2BwcHh6ws7NDs9FkPBozHA6I4waNVsze3i5nz57hn/+Lv3AeaAXGlhRGk+V5nd6XpSnHhwd88skthuMh7ZbUsc1GA2uFpf2tb3+T0XDAX/3VXxHFMf3BgOFwyGuvvUpvoYf2NIPBCYPBgOvXruE7C4DKuygvctqtJr1uj+OTE1mPWS41sZNpxkYAAQAASURBVMYFn0gqexzHJMmM8XRMkee1L2997lmRk1dwXdVSzveiU2xiW9YXrvIrk6TkF60DKg8/Y41Y5Zzas6pEaWGXlPWepZUmimOaraak0Wcp4/GIu3fvEoUBiws9kYdOZkRRxJn1Df76+39NGAZkaeoG8e65w5CrV6+yuXkea+H8+fM8eiQJnUVe0usuEPghnm/Ji2OMmmJsgqXAFE0ir4PWHlErAgWNuMXy0hk2z11h89xlwlDY4b4XURYleVZiCsN0mrD97JgsO6AoDCdHfXylyWzJsJhQ2pxGHJHkCXgS1qW0IQwTdMOSZ8/pj1Imd5/ybOsmF8+/QpnmnBwfyff7HkEQEjeaNBtNmnQk5GokCe2D/jFRGBAEntjlOLbf5SuXWVlb5sc//gn9QZ9Ot8PBwSFZlssZOZmIV7ID3qIocn7JVzh/4QKe77O7u0f/5LgOKZjZhE5HpOx5PhYwNM/E7sIxdLIslT2pKInimOlswvHJkQx46qFqxdDz6jtf6VM9WAV8VNtFdTZW52IVTHAKeD4N8KkX+q85wHfa97xSWVVy3bLMKYtCrBqsMKr1qZ4rCEOCMMQC09mUo6ND7t25zfHRASvLSyyvLJLlKbPZlNwFU37rW99GK8Xdu/d4/72PyMoca+DixUtcuXJVWFKNBlp5vPzKK8LW3d8TH+sswU89Ns9t8uzpU4qi4PjogCydind+lmBtTlFOCMIR1qaiKKn6UoQokOcphc2plIGe7zl/xAiDoRHH5FmOF4BxEnOsz9FhQrvVIg67dM+c49J5sbeI4ghPKwk6m83Y2tnh33zv3+J7QyFG5MI0lR4gYHFxkT/90z/lX/7Lf8mFCxfI85y/+g//kXa7zd7eHtPplLzIGQ6GtNpdhsMx/93/+7/j/ffe4733f836+rpcz4pMgHJ1ssUEBa+8epGFpascHh9j7ITCsfgkMGREnmZ4/pilxRV6vR6+Jz7EeZ6RpRlTa2RI7wcScOckzXEkIXuys9WVVv2vCsEyZh7cJiw/W6sfBEivpO6lKEgKee15Xrh/GVkuSp3qvCsKQ1HmKOXRaDRptFqYonCKuMoaRUgjFakjasREzRiDJclSJpMJh4cH3P7kE+I4YnGhV5MmZklKUZQo7XP18iVeufEyt25+wls/e4v+yQlra+soLWfEZDblZz9/iyRJ+PznP88bb7zBlStXCcOQB/fvYtywJstzmM5od9rCApzOyPKcp8+fsbZxFosiL9x7USrnP5uhdIpCehxTyr3meyHWGGZJIr2gFqWfdf6mWEuWZzURqCytU4wWDvxO8f/PINENghBtheHUiBtukRhhJnl+DbaMpycYI41GEFQeTfIcSZISBU2R0SiZ7qLk848fP8TagigKQMnCHY1SgkCK/CgSvXZpLJTCOmk2fFqtmDRvnWKUOfRZVQmmAp5k6ZReewVTgO95BHFEnntMZs742fdBRQyHY1qxoSxTHj35iCdb9xiOBlhT4nkFvq8IQp+ytFRzmuF45Lx/PDw/JPRbBH6LM6vXeenC65w7e0Mo8VnGaDRmd+cxk8lELngFQCE3wByjOjUmkrrbJe28KIX9dKP1adAMqEEU0JQU9eFVPf9pQK0C9U5LfZVSzjRyDgCeBgY/zZarjrrTrMGaRVWBdqf+VV/3PJc4deo5tdYC8On5BMEYg/YV+oVp2ItAoyNm1UWVUkq8v7yWACBGWKRZlmMxhEFEWVjiqInn+xSFX/s/hKFXv/YgCEjThDAUD0mUwqq5p5H0SM4Nw1pmkwl56qED7YynPcBzHgeaooAw1HTbC8yyBJ2l2NLQaDYlGQgr4S+lFZktiiwXQ1ZTSjJaVuQ1A6LZaDIbj/GMFCVZVlKUVorqFFSoUDbkwoWX2Hp+iySVteb5p7zclKbdbOJ7LwaslKYUtqyGz3/+Td747Of43OfkXphOpw7k1/iBeA9OHdU+TXOG4xkbZ8+ztLTIxsEhxycnzKZTjo/7HB8fOiaPxtNK5MaNBn4oUuY0TRhPhviBz7e+9S3SNOVf/X/+FcvLy3znO3/CuXOb3Lt/nyAImCUzhqOhM0AVr4xqmqxeWEfameJ7YvyNSHbq8Ay3hgQ0CmswsEppAmEO20wO52bTMh6NMWVBb6FXG+muLq/i+5qlxUXiKJSGF0thXRagmbNLRdbx4r2rlEJ57uA2wnzLjJOTo/CDqL5ffe2hrMELfDwvQilDq9WVwtDMJ25BEFDkhtksJYwb5HniGKse1noEXoOylECaKpmtyHNAJCdFXgpr0xjAcxMvpCBBfBsDP8SUHp6KaTelufV8kc+UJfheRKvdIogigqDEGk2ep6g8ozQFWZpw9doVPr55i9kkcTL4qTSQKMogqFmWlYGtVgrf8xmPxoxGAy5fvszi4hKHh/t0u11KW5ImMwc6a5l5KCXee3HI4aHYIzx78hBlhdHXajZpxk3yvGQ6m/DJrU+IopjSlOLFaAwXL1xklswI/JBet0ez0cIUY9IsZTQc8uFHH8qk9+REmgonmVNKEUWN2vtjOBwCLhFNwdlzZ0kmM8AKA88xCvOiYP/gAJw/XgVqAXL/6Ip9mxM1GuRF7vz/xuJhV5ZMp1PWLq5x5sxZoihidXWVy5evgFU8fviIBw8eUJZia6FcE33avuH0Y75e5/vwp88mSSKcW0qgxJ/N83zmnlyu6XYScpmUSzPjeT4FBePJ0L0OQ+QkYNWZobUWGTpiqyH2IVXDpWlEsj972oJNiZc8FhZ6fPvMN/nv//J7/A+PbtNbWmRtbZm11R695WVCr4NWU5aXesSNDkpZfO2zu7PD3s4OhweH/PZv/zbWKo4Pj1hbl5CfPM/Zer7FjRvXefn6NbRjepWlhEuUxrhrYTg6OmR3b5u9vV0UllZbpOlXrlzm2fNnvP/r9/i93/tdut0OeZ5zeHjIuXOb/Mv/y/+VtbV1TvrHtDstrly5Qr/fZzad1szfZqtFaZzfrRssdFptskASyzutlsjIldR4YRgKm8cLatZnFRYxt9OQKzqXl8uUWlgDwgYoCzkr8iyvpazGSNpdkqTiI5llFFkucqnAo9vrMZvN2N/bZ2l5iTiOOe73nQm7k/cqj4ODI+K4wZkzZ4jimHfeeZc4Drlx4waKzK1DARxq3pfrwK2RFN9PM/7rlOpTdYqxLo25qltc21b9pOfrGriRIXRcA9hVY2StRXuB/IwxFCarm3o/COXaeIZGqGk0CrJsl/FkSlAMWe7GaC32F0VZoIzi6GiPSxc3yTKPk5NDFhaX6PXaHB7sMR4564tTtVBZGvIsp9FsYYyh3z+hPzjh9u1bTh6raDUaBIFHkhR8+ctfZqHXA+eduLuzw2SWsLa2yrVr11FaM5lM+MUvfoHvB8Rxgxs3bmCtZX93l9KUZGnKLJmxsXGG4+NjSRRGgAnjmCWZkw77QcBJ/5iBkxbLvSzDrWpoU1aDY7GId1JqlxrvrohSSkBVV08Xzv5AV3uQUu58M7W01xiRSJbOv1qjxbMxCjFFjh/49b7SbIgH4sLCAsYaplNJQt/e3qbdaqIQlihKc/HCRW7evMl4Mma1sUqW52zv7LC+vs61q1f5xje+QRRFdQL3+pl1Do8OGI1GmLwgikKaraaTWBec2dhgaWmJxcVl2q0uUdSm01yUGrGc75dJkjI4zkiTE7I8dSwU6qRhCfabEwVsWeKjyCnIfENZ5IReSKQjkeK5f9r5ECs/BbON1U2myZhHj1M67RWUzhlPU1dL+UwTUYM0m1PHnp7y4P49+X1eRLfTlmCgNMX3Aq5du8Hu3j7Pt7bQWnN8ckKz1eTKlavcvXuXo6MjNjc3+ZPv/AmTyYQrV65w/fp1AEbjEY1GzIULF1wonnHhZ1CagjiOmIwnTrGQ1KwpkNTuAGCWsre3S6MR1Yoo2RNkv7AoijrQD/SpIahYTohdQSW101oLwOyAlPn553ojNxCz4JiCc5BQhsgVc1Veg3EAn3ZhFKHvE4Uh09lMBhBKUUkp4yim2WwShCFJJuDbZDLmgw/ex/M1vcUuWikHnIgv52uvvQ6uH3/ttTe4fec+R8fHBEHAF770ZbrdLkkqQMzzZ8946eJFrl69ymQ6Is9zZumMoiyIAp+FXo9+v0+Rp+RZjgoVyWyEMVOCoECphCDQlIUijpuEfkCWC0AUtWPZ660ly5y/KVoGMwryssRTATrQaBVTFCFlGZLmM4pRdqq/VKeAQ4XvKwcMt/ln//S7/K//639g/+hAPKONsNmstSwtLdHrSRDLeDzm+PgY7WkuXjrP8+fPODo5xloJZtvcPE+SJAR+xLe+9dt85atfYTqZMBwOnX+orJFKVVOWwnzzQ8OZs13ioMnJ8VEdlJNlGaaUIV273RGLkTCQ/kXJAF571ikbQ7QW1p+w42M3wPHxfI2nJSjJC7RTOIDvR/heiKflrK9USY24Aa4uqJiUFZZTDfhNOWfrG1tIQGIpbP6ilOTf6Uyud55n9Z5sTFEPfSombKslPtlBGDkgMSdJEu7cuc1kPOas2+vKvCRNxTu2NJa1tTVu3LjB2+++w89++jMUmjCM6Ha7ACRpysHREaPJhPF4zE/feos0y/j8m29y6dIl0nTG8+fPwJTkZUGSzvBDj9XlFT7e/YiyNDx5+pjPfO6zSFBrhjGiWLKlQekRVk0p8kRIa67vUiAKVCVEkFarRbFbYJDAFPFr1ARBKL6nCnxfO0sjhe9HNaHkN3n8xgCf7/t4ShpbQb6FTWJK8cyTBMUcS4RWgaONu7TGQlhmjUaDpcUVplNh3SV56lIdFXEjJC+kCIgiMaLsdDou3UkaljSVtLqlpU0iP+Lw5D6lKQhCKQo8L6DIBciyCKhhlBh3T2dTzp3pEIYxQYBLO8vxfJlSNRpNsB5lkeEHAUcnz0izKbN0ClqMkf0gJHJ8yixL0briVoaEQY/I67G6coYL52/w0sVXWFzYIE1yBoMxB/uPGI/HdUMii34OoChkeGNOFdKnAbB/LMm2kkQA/+D75cOnjaNfZOed/rnq8WmpYAW2zQMv5sy8Cmyrfu4fS649LdM6/b3/2KP6dCX/Ow3+8anfW79np9ginw71OE0kqd53P5AGV1kpwsMgwhjlZGI5aVo4kEXVqHs1ycBaciupx9OJxMmjwZYGT/nOtyGl3WqTTccEsYfBoJWHtj62MKRFTkZBGDQcwJih8EnTgjI32ELR7S6SpTlZJhNkL5AGYTpNBBwyBWmSutRckcKPhlMquS5GPFc8L8aUmlajxcrSGloHrCyvs9A7S6d1hsnoL/nl2+8iYTdNkjQhSxOmkwk//elPiWPnG+R8VMQXAxYWlvnKV79JaTSlNc5PStI1Dw+OGAyGtZQ0z0V2MkkS0iRhMJpSlhZLiB8oFpdFdjccHJNnGUqV+C4VsMhTslQkuLt7ezx89Ig//uN/Qq/T5cmjx/z+7/0ef/7nf8ZHN29xeHRMXhRMJlNHL583akp5KBxgbJ3EWgNGkkEV1F5xynrOm3EuPTRlUk9jrJJ9xdOaMs8pSsMgH4AV4O/46IjJZESz0eClC5fYPHuejY0N8RtzprbGClukYoLUU+BTgMgLTFdsnVQpRu4BSuzy6ml0VDcjnisqMsbTIXkuxsJiryAJ53mW1JO88WhMHEUURYb2IA6jWkpblEUtnfQ8OYjEWFlTFAIgR2EkTTGOCamFgaSUh/YDrJGi39OW6WxKI+6QJhl+FGA1LC21GJ6MKQuPIPDJMilvyzJjd2+bMxvr3L17B8+rZAJuGGEKMRkvc2mwlSJyxY81MEtGDEcDrt94mVdeeYVnW88ZDPsoK2CZBFCI95RIfo4pjeXw4IDt7S0ajcg16x537tzmyZOnnL+wCcB4PKYoc9bW1mjEDb7//f9EHEV87atfpdls1N5p7Xab9z94n8PDQ6rAHlVP8sV/bGNjHaxh6/kz8bc00sBWgG29MWbzBM7qdVmlahPwStJSTWy1JynhnU6H8WiIMSXj8YhORyShMh1N6C10hGCgIEkTbn78MW+//Taj8YgoCllcXBQplgMdP71/n2ZjV//9v2XbIOeJdQUiJLOkZtkaXSVTq9qaoALBjBGZaXV21YboRsC/PBeARnu+hF54QW23INLn3CUT+7X5dFkUoHLCQJMkM04ODnj48Cbak9RAP27SXDiLPylkuJFLQFehxC5Ea4/j42MG/QELCz0G/RM6nTZKGTwt7/GkyOaFoBZmXO7qpygMnGRyn6dPn2BMQaMR02kJe29ldZmfvvUTxqMxR4dHtergz/7sT7lx41W6nS7D4YDRaMTBwT5nzmywsrzK08lTxPsqodvp1KCdLUv8MKTX6RIEMrQQkCYWL8o0q9OkRe4j03OsyNgr+bjIfKTIL03h5PcCKJROjl86uWGey/MkSUKSphSlpKvGccz62hnOntnADzzuP7jP1tYWo/EIa0qWlhddw27xfO0kU6/TbLT4T3/zN2RpxvraOt/73r+h1Wrwp3/6z3jzzTf5xc9+IdfO92UvsBZTyl4vI0EjwN2pQWYFeHx6D/7frJFO1ShVE1XVSpUX8OlaJs8ywkA8lUwp3qd5VoCWYCJsiXVG82GQEXk5O9sHlKak3Wo5dpRmezul1YpYWlglSWasra+jPU0yncgQRM2BMUlW9fAQdmyappycnEizenSI7ymiMCCKQvI8Y3PzLGtrqyglMrbf/d3f5Qc/+AHdhUW+8pWvUPmTPn/+nMePn9R73Oc+9znObpzlYG8frSxpljKdTOn1FgjCUM4MxFKiKMVvN/Yj0kQxHPbrvbsaNFe1rfZ9qkgNAeh8wqAC7XXNlPJcMrwkkbum1AGEphRQ2ff9elDheWLBoT2v9tiTasUFrxhhaVS2HFpL0FIlvUtTYT/1T45JpmNeeukS09mUsiwJfJ9GHPP82XNWV1d5443PcHh0yGAwYHPzPO12h0dPntLr9UhTCTFZXBDgMJnJICuMAr71jW+SZRk3rn6Br3/964RhIGBKMiOZJRwd9knSXWGlIB69LsMI414/KGxpHeCg3GCr6g8MSkMQBrKvWulH4jgmVDBNZ67W0G7YXwrT3hZgU6wdME6mbO1+QjKL0N4CjUYTT3tERcFAiReY7/sMBgOePX0ivs+h79h7cgYuLCywsrzMxhnZCw6Pjzg8POTixYtMJhPu37/HbDaj3++ztCS+oufOnSPLMtI0dUC8ZWNjgzt37jj1UkHF3oyiEKVsXUeVtqQw4o/V7bp+0A/RnkcchwJKmALfCyQkxFLXVKe9xysvUmPKeU1nT/VuBtf/yPqTcAHqQZl8T4lBVARVsIt231M4coE1lY+aDC+jOCJLUwFjo5CqLRSlXMjCwoKwmKOILJfaeTDos7OzzcJCjziKmE4kqMsay9mNDfzAZ3dvj42NM/hhyFe++jV2dnbYPC+163gyYTQa8dZPf0qj0eDcxll6vS7nN8+zs7MrMuxZirKwvLwitii2pMhSlC0o0hHNdgF6jDE5SktSbBxHTKcFWZoThpKuXYHkWglQVZaglSj9fK/EqMK9rwKc5uW07jPnj8oyRKFKRZ6L5dV4PCFNMun16zpGiEij0ZAkSVBKPMdnsxk7OzvkeUaz2eT/8f/8v/OX//3/l8lkwje+8Q1WV9dFEvr4Ma1W050BltFwxHQ6QXs+hhQ8K4y2zOeXv7hFwQnonLWVi8ThChhFliY1mzDwI2FJa4AcRYHWht5Ci0Zb8g6U1phSBlByw2v8QDzbFZKqq/AJ/Aae88sO/cid+SF+EDgLJkvgB/J5d14GQbUP2xfIDVLvCHGr2qMDl0GA0nQ6QkDIXfBSnud4nqpTu40taksOaxRZXjKbzZjOhBhy585t4jhic/MsjSiSYYcxKKvxfY9XXnmN4+Njbt26Jd52bhh58eJF8eHd3mYwGEgCfBSRpinv/vrXrK6s8ubnPseNG69wcnLCLEkojPQNk/GYTruNQpEkU4aDPlmSEAQxyWwMJBRlwXTWp7T7rK1HBKFC0RD/TWuwyvkXO/A/bsRUFgW+7+H5uh6AigenqoNhrRu2aO//BACfMaaefgRBSOAkgLYQuZPneWjk5ijLFOUaMa/yYHI0dWEp4FI5hf1RFoYslUmvH3CKTWLxPMXMNQHWWuKow0JvnSKbgSopigyv1qaXmGpjdAe5UvK6ppOhyNB0SJ5PAU905x41aGdVQW+hgzKWrEgIo4CSBl6Okzm0EQ8yiKIuvhcRhR2WFl/i2rXPsnn2Cu1Wh2QqoN7dvcdMp+PaQ6CiZVfAm1Zy2a2p/I3sqdc+L3aqoroqOKXALmtvHHDP40AIARKq6Y+sPFO+aPBf+6V8ilk3n9KbFz6e/h6QguE0gFd9PP39VRF9GpSrfva/BCy+KO+qZgEvgoOVQXdNgz8FLlbvRTVnr38XljwryNNEZGCFTBp8P0Qh4QEyCfGYzaZo5Q5gA0EQgdVSDDm/EWstvts8tZN1CsMgBKtZXFymNDkNrym0chWytL7G4eGBJFLZgjgSqWJRKHKXtGSNT/945iRrsdxjjpHg6RZlURJ4moyETrNL4SZES8tdlPLodZdZWlym1e7S7SzTanXpdhbwvNBRggsGgxGj4ZQ3P/cmH358i+FwBErkMkUuac95UVBMxzXzQRi7oHXAV772DbLM8ODBEyaTCUmSMpvNakNv8dosMNZSlKaOf88yaSBNad29KtTwshD5TjV9qrwwk8RQWsve3h6Fkyil6Qy10OWP/+SP+J1v/w6jyYSbt26KAWuWMZlO8HwP35ubAyvlUfk/Vay+ynQWVXkqSqOm8Qh858GnBGjwPc+lxHpoz8d3zVMQBPV9FMeSariw0KXb7dDr9mi32i6QogKr3b2tPDyETQCgXHQ66pSMqLovEaYeLpzAGmmUPK0pCweylxbjWeLauwyKwpJlU4LAJ/AD8sSSJnntxxZFgQBxRhJwlZID3SKmvs1mAxDWV1kK2zDLcprNFrPZtL7HxUPMEMchRS5x91jxiPE8g+/HJIkkvpamJJ2VKOtJYqRNWFpo8cwfo7VHGMYS9mIKjDXcf/CAhYXFej88vVcZZUhTCaPAWpZXl/lv/9v/FxtnzrK3t8/R0RFnNja4ePElwrDB3/3w7/j4ow9J04SPP/xQfFp9nzTJatDJOpC3020RNVo1UDedztja3mbj7Dp5JgyqdrvFhc0L/PCHP+Lxo8f89re+zbUrV9nZ3wF32AeBRxSG+O6ck71NOjGZ3sPh4SEnJ0MCPySKxdPW094Lf6/2KrBXu3NjPvCo/UCpJNWqliprpZznkfhJaVUyHo2I4wazacLJ8Qn37z1ge3uX1ZVVjo9P2N3bZTgcMRqPWFpc5OhYfI+azRaBL6BhdR99+iH7LBWB6tQOPgdFKtsW35dBS9SKa/NoPGFDe54UlnKWiBzC8wJ0IPtvUcpgxfO1SETyzDGQLV5pCIJQwCckTEES9iRp3HPJsYHvCztVwfLyGmvrZxmMHoE1DPpHpGmC1T7NzjYrK4u0ejEnhxOwvivm5pPyn731FteuXaHVarO9s8Pi0iJpmjLo993fYBxQ5Tv2lqLRFKb4eDzm6OiAx48fEniaTrsFyrKw0OXxo8ccHx+ztLhEFMU8ffJUBpXnzvLee7+m1Wqhleb9D95nc3OTCxcusLK6zPbOVs0UVFo7Pr2YshdAliaSXhkEDAYDtp5vUTqT+tlsRuH26rKsQE1D4lgGlf2HtZY0zciKDFPkDnwVyc/R4SFFLjVKGIb0egv0FnpcuXqVM2fOsLS0SKfTo9GI8Rxr4Omzpzx48ADf9+ktdBwjJhdbgTThi198k9dff500KfjGb32T6XTC+pl1XnrpEufPb/Lnf/5nTKcSuiFMewFkpBB3LGkrQJNlDkgLm+dUTXaqZpEhkazfTw9Fq8eL32+dXUNYv/8VwGyNpVBS10qKnjCKDDl+EArDGoXCJ4p8Fpc0+7sjRsMJh4f7WOMGX502J8Mhl85foj845vGTR6yurWJLxUm/XzN6BEz2CcOYhe4CxogkcTQa8vDBAzAlfhgQxaG8L9Zy5fIVnj19wsbGBp7nsbS0zB/84R+hPY+joyPeffddGo0GfceqPDg4YDAY4HkeKysrdLtdTk5OwCrSNMdzILtB/FJlRmoI/ICFXo/Ql+avkhcqT+RNlc+U54sSoEoMlaHrfPCrlbO1oKqb3dCsYuRVtbOzy7FuSFuPh0/VutWwtE7uNHM/WwkO85y0eEqW5ySzKdvbzwld2nWRyx7W6/Votpp86StfJIoiFpeWuXXzE1rtLlvbu5w7J6//3r179PsnvPGZ11laXmRpeZndnT0Bcv2AP//zP6fKb3388L54dp7aU+U8ccMcpJ6yVol1IcYpjOY7sHGss3pQCSjlETfbTNMM7YdgDJNkRqvTQRfS1LeaTZqtBsPhUN53q9wQvMALU/wo571f/JpBXxOGTc6dO8eFC5doTdscHx3hByFHh0ccn5zQasa0222azWbNoltbW6utGXq9HgtLi6ytrfHhhx9yeHjI+fPn2dzc5JNPPuHWrVtcvnyZ0WjE6uoq4/GY3d1dAt/nM69/hk6nI6wrrel02wSBR7MVoX2LoaS0pbvOBk9ZAu3RCCK8wNkQaEW71RJ2k/bcAEnY/hVree6/LUynyurDnlqHc5/uyiNcflb6pVNnpSxS91yVygQqD925D5hjShdWZLV5jjUGzxOQRcAYRRC6gSsiMaxCiJ49fYopchYXehR5xaaWsLSzZzd59513OTw+4Rvf+CadTpfpbMb5CwKcvPP2OzQbETs7uzx48JAzG2cYDPv0FrqcPbfJ7t4+vudjS+nh4zhGewalCrJsIKxbNWI8HdJdkJqmtCWagJOTIWIT5UmvXZRY62xijMG6lNbc2Q1YDHmRYQ0URYpVitBfpSiEFT1nACum0wnHx8dMJlNRhGQZaZaRZwVFXhJFEbNkRlVKHR0dkiQJWmtu3rzJ22+/XXur3rlzh//mv/lvePnGDaI4ptdb4C//8i8JgoAbN27w6qsvc/36dawx7O3vkzpGYO2RR0moNZcuXWOajAgCmIxnDKYjCUlzgzMhS2mCyBcPW5XiexmRr+gttVhdi1FKyAjT6ZQoivA9zWA4Ji9mcq9b8dNM0ozJTFOWYmtmjRZlhzsPPe1TWlHkqP8fc//1ZFuWnfdivzmX2T595rFVdcp1dVd1Ndo3TAMNgBcXhgAY5CUvQYlS6EEMKsgHvfA/kN4VoQj+CZJCQQZF4pJxqUsDugbIBsq0r+oue+r4k3bbZefUwxhzrpVZrYfLfuFGNE5l5t5rLzPmmGN84xvfMElkC6ZJjrUpNknJ0qHo6Qaw20CibLRc41qZCptgbEqeieRSkmakiTDCg+Z9miTs7MxAC7VVWVKVBcV6zenxU548fMjWbMJkOGS9Xonf9zJg9PDwgL3dHa5dO+SP/uiP+PGP3uHJ4ye8/NLLHF27xo9+/GPmqyU3btzgtddf5/T4mL29PV5//Qt89pXPsrU14+z0lOfuPM97P/0JWZKqv5a8VIorG6qiptxUWHJ821AWDcen9/j43o/4zCs7GLOL1TihjnqzTtmQUJZr2sZhTYbzIk9XVzXL9UIKU76TDRMfYmgax2RUfyqW/l/7+rkBPqFf57GybqxhOp3i21ZEwJGgyjlPkqDDIsQJDgZDHZjRBUrCsnFY47CZtIbJZtTEwKDV4RlpmgnAlRhWqzmPHt9ltbhgub6Qts51RT6QakuSikC1R1DtqqoYDIUOuinWyCAPaSdpG8NwENqZWrI0YVOsGeY5zhUM0gnVqsT7lDQbkdgR+Cl7O9e5du0mzz7zEgf7NxmOtimKmrOzOXfvPmazKnRr7lg33cOFAD5JG00ArqBLh7pXDEBcNy0nAIVhsV5qUVXkK2iZ9CeCBfp5f5P6WWyMPk29P7q8z87rg3rhb2HTDsfqvz8ES/3jXAX95N+O5RGDkwh79F9GnfPVdrBuqmN3X5VZ4gN7pGGQZ1RVSZ5leC+TFq1NWC4XHUvEyjTdpnbUdUlVtsrQMaoV5kVQU8HTzaZgOBjjvYAvknx6vE9o6paT4wX4nCwz4C3nZxuSJKMuG7y36jASvAvacAnD4R54Kw50NCRPhxweXWO2tc/WbJfhcMJoNGE4GGFsgjUSmKxXBUVRs5qXnJ0c09RNBIpFZNizd7DPb/6lv8Q/+6f/TKa1eSMgS1VokNxnXMo53bhxG+fgL954i1YHA7StaMdUdRUp2c7J9zSt6H+1TRs1EJqmpW1qcI3qeDZ4HLOZtJO2LgjuJjS1TOW6fuMGr732Gnt7ezRNw3gy4fHxUz54/wN+8KMf0LQty+WKVoW7jbYKi/1KgJ4ord0qcJekFmMSksSQZgIKDrIBg3zIZDxhOp2ys7PNdDaRwR4DqXDhfZyOBl3QJxUuMD60w4Y1GtZ2PzGUQM542/3aCIW7Y+FeZeUGjTEI2iFSIUtU1y+hLEstnmjASIoxAwyJVpitBqyO0Wikk867idpefcBiviAxCdZbGmUbe28oippBPmZTSEBRFDWpNTRGEuKmbsEb0f8pnQyXqD3G5FTrEmsS0mwoQGmWc+1wys1rhp8uHjAYDKjrEXVTyeTNpuX89EyeGap3o76trqvYApclli9/+SvcunUb7+Hg8IC9/T3a1vHo8WOaxjNfrLl+4xazrS1uPfMcy9WC1XLFarXh5PiEi4szoCXLBzrJcExZSnUuyzIMns999nOkacoPfvADlssli/mS2zdv4euWv/Sbv8nt27f56O5HgEhFPHlyynx+LvYSNBetjQAfoEFlTUHBerUWYFoB7tBqhJE2yeCb+xqR1loSIzIGGElSjE1I1CYTK9P0Li7OAcdysZQkwAt78+TklNaLULY1hqppWCwXVGWJcwKyjsdjxoMxR4cH7OzuxsRZtF2U/WLC8wngpQTclws26tcNMsAlSQmM1DTNhFHnicWAJEmihlHTOLJMk3uPDtWoGQ7GonNV1RoUh72l09MsVMdloIyH0P4zGA6oKkmKd/e2pOKqepxpmlC1JeWqYu/FA7745Ru88Z13efjgDOdyXf/Slr5aLzi/OOa5555nZ3ub4+MZs60tNusV6/UKYwILxGNVbiTP88gaePLkEcV6yXg8VOC9YW93j7fefpvRaMQXfuELPPvsszx88FAnOJdcv34dayx//D/9MQCffeWzDDJpERddsyJO2/ZedI/LouSimPPgwRO899RNpX4xxXnHhx99yGqxFAZDsRFdzVaq8k1di66sjD1ntrXFeDJjOp2SpQlplrPeLEiMZWtrl/39fba2dcL5ZKJFhRzvDefnCxaLNYNBLkML0pTxeCKJQiL7eB1agtqGzXrN/t4+RbHm/GzJd7/7XX7pF7/Bi88/z+7ONq9/4TVuXL/OO+/8hOOnT3BtwzDPGWQ5TlnnOoZcp1lq4h28ci8GatvQ8h3a5aALyEPcJntj0D8O67CvN9yPpay1OFrSJFVGpPw+TTKaUAxNLNYkmCTBuIbDowH371qKImO9cTrwQeQqyrLg4vyc/f3fwG887/z4HY6OjsAmwuwPBVUPaT5gkKVcnKd44Pz8hIcP7pFnCdPJmEGW0dQNk/GY4WDAv/7X/4rd3V1ee+01iqLg3r17rItNZPPv7OxEVvd0OmW9XpOlGZPJmP39fRaLRdyrnHPkg0GMaltt+02txXrwzjEYjhkMcx2QVbKYLwCDNYnGfcL2bZSpLpuptEwa78MD7ArSQefYg2uc6PKZEJ8KS9Iqj83hdMgcMTaS/TYwguQZVlWtrNqM0XjEeDKm2Gy4+/HHbG1vqVi9fGY0GnF4dMj1G9dp25b/8p2/wHlDWQkzqXWO45Mz/vN3/pxbN64znc2YTrfE/tMU0zas16LPOhuPJGbwut8TeCACUmtVJ2pngmqPmjB3WHsDTHeYLp4DSLDJHoF5kg5KrJVBIkUlg0nqynJeFkCOMZBmKVW1YndnD0+DtUs+88oz/Pmff8jZ+Zqnx8d8+OHHPPfscyyWKwxWNNKHQ9JMhjQK1VDOYTbbJrHCZnW+pVxXvPfeexFcOT4+5uHDhxRFwd7eHs899xz379/nT/7kT7h37x6L+YLf//3fB0SbLwxAS2zKeCwF+zSXoTY2kTi/LivauuH++gHGG2ZbW+zt7/H06YKm3bDeLDBG9AQTm4l9+CD5oAPZNFYLhTeRhVJNZbr9BwSkMCQxFwlSKc55ZalKBwQk2hqdaGtwizECRuIV0O4x5VsFnAHyLGOQS57ctC11JTInrqn46MMPGI+HTMZDlsuV5DdJwmg8Jh8M+Ojju2yKgu997/s888wzfPLJfQ4PDyOIsbt/yPd+8CPq1nF2dkE2GLGzuwcG0UorCgENfcvO3oSXPvMM3ldczO8xnebYzONJuJgvMdaRph6LSr+0Do9lsaiijIy1AsZnqp/rgdZZHIbWJZRVGSe5Oi+AkbxRWP3L1Zqf/uSnnJyfSA7i2siodK0M+suyIDEj4OjZ2SlPnz7h6OiQJ08e89FHH+Fax61bt/CpAGp/62/9Leqm4R/+w39ImkrH1k9/+lMlHpS8+uqrfPzxXTCi6Q5CQHKuZbo15POvfQ1jEg4O9siyjEylfkLxoXUtm/WG8/MLfvj973Jy9oijawfcvn1IktSxLXa9WSkxqhIN2NSQZZbGVTpMCnZ2cqqmAmSQhmUg+VdrIjBc1S3FekNVN7TOsilb6tpFEoa1GXXpwedACsaQpaLvmGaJSjxkQIqxKYN8qGQB8Zuh2JVlOU1Vs729JdIDo5HqR3qqStrj67pif/82SWqol5V0eal/v3btiCSVmHdvb49f/pVfYn6x4Pj4hPfefw9vhIm8KQu+/JUvc+3oiBeff4GmaTg+PuHp02Papubg8IAP3n9P2Idppi3FDYNhRpZ5jGkoyyVp0rJaPeGTux9zNv+EF16+xrVrOySJ5PLOt0JOq6WrxVqLTWTi+3A4JM9HrBcXcQ8Z5kPBm9pW5zZ4xqMZYNlsSkJX0s/z+rkBPq9YlHOexBra1uPalFE+42x9LIKwtVRDvS6+LMk+VRUNP1dVyXCYiJhj7ZlMdrBGRnO32qpgjI0Bpk0M1jd4NyBNRrzy0kvcf/g+Zxf3tdIrjInWNWRpzmpd4E3dVbLHkKVpBLxGozFb20POla1grVHtmxGudkgXTU1mt5luXedo/zmevfUsz9z6DKPhNptNxXKx4uG9JZv6iYIaodIoe2ocQU0nkOoDAOU/DXQFEC9JEhUZ7wLK8ArgUx/U+1kMvKttseHnPrgXgtLw/qstYP1hGv02rJjg9SugvXMEFOi5zNDrv787pw74uBxAS2tleN9VJmBki9Ddx37VLH5v+Nc58iynqQ1ZKvpdw+FQqPAq9t00om1xcnKKVXp4XVfs7Owwv1hjjGGzKRkOB1hrGAyGFJtGp7dZsnTIZlOTpRnlplbmjFRKDQktlqZuSbIRkOB9w2x2yHSyRVXVJDZle7bD1vYuOzv7DAcjBsMho/FEK3NW2WCGoqgoq5qmblhc1ByXa8oyVIK8tFqFamGY6eW96s1Idalqam7dusmv/Oo3+c5/+S+cnZ6Jtpr31HWJTHJ2OC/aXnu7++zt7/P06YkKrEqF0zsEwNPJZF4BvqZtIsMwTGkMfxPx2Rrng2amaKHlmSexMJ/Pmc1mUoUsNpyenfLiiy9GX7LerHnz7Tf50Q9/yGKxZD5fsFwuGI7GynhCBeGFKWzVH1krwsZ5npPnGePRiNFoxM72Fjvb0t4wGU+USaDaJkZCsMZJy7QEcWFtE21O1o8AfMLK9Z0/1B6aIPAd2afO9Z4TMRnp1rQ8v/C5JEnIk5zEpArWyntsIkGhc4amlQp0VWm1tjWk6Yg0Haj+l4jdWysM1WKzwbiWfDBkuViSpkOyYc5gNGJzeibXahIm4xnOSWI6Hg0xCPPUe8tm7XGtZ3GxEWbzEEbDGYkZMMiEnXdtf4vRaMr2zj6j8Yyt7UNG4xnf+Oo5/7f/+z/kyeOnJGkqiW/U+fLQtFrd1KlqbaOafBJIH167wS9/81c5O19IUNq2FGXJZr2hrhs2RcXJiQR7m1Jae6zJmIxn5PmYPB8qa9eR5dIebq2JrJejw2u89tprfPGLX4yMFeck+PuFL3yB+/fu8+WvfJn1ZqNrQ9bexfm5TN/CRQaACEgLMzNMSRcmhhSdnE40TBS0FQOzyn7rJnibXoLR+dLA+TBRY8UgA4mAOFUtyyXRWq1WHD99SlFumEzG2CRhsViwnC/Y3z/Ee89gMOT6tevsbO8wzHJpGzZh4JHmmK0LlRkIQbqypNqe78d0BQanYsMmScizlKIsGQ5HVGWlmpiyhkRQWr7s6PCQ09NTZe0EEmNgo8h/ZWkaW6qMTUiN6J16V4G3OJcg0hopdSPPoG7PuP3clB/8sCSrUxGpdw3WyTV8+MFHTMYpd557julkwQ9+8DGplbYqmZbn+fjuR9y9+xGTyYz9/X22d3a4ceOG6l5pW2AiDL6mqbAWVqsFRVny4QfvicavFb2X1CbMZjO+/OUv82vf+jWODo548603yYfCYDw/O+fWzVvMplOaumE2nXJ0eMR0OmO9LhiPpjgnE+MHgwEvvvgCVSEtyru7hwwHQwFke7FZWcp+8i//5/+Z83NpsfI4om5ZBKiFBXR6KqzJF154IQ4jGE8m7Gzv6LCNhBZoHJyez2nbWgFbjY1sxz5xrWexnJPmOQbZmzbrdUwW2rbhwYMHpNmAu5884Cc/fZdnn7nFiy/eAe/Ynm1xdnbOh+9/yMV8Tutarl07wlijhSIBfp2TANsbF6APRBurA/K8vyol0hUM+zFSYIQHhkI/pgqDRbzzkY3bem0/0++VVjTDIM2p60YHTsn9sVj29jIOjjKWq4LBKpPkTOhE2gLd8Mabb3Lz5k2SJOPxkyecnZ0zyHOm0ymHB4fkg5zUNTx50sr0bed48OABRVEwGORsb29FX7a7u8t6vcG1nh/84IesV2ueu3OH+cWCOy/cYTAc8snduxgM3/rWr/PX/4e/AUbiPBlKU6jftJfiw0EuUgd5nkWAsthsePz4MVmak2cpy9VCW0k7aRd57rKHhoKk82GvDEBeeGYqB4Ow2oTJ0+IbJ23BrsX3Jsz71lE2VdT7bJ0j0UIA+Fi0dF6e3+7uHvv7e0wnU2azKecX57FV+eWXXpTCe1tjreQYrvW4tqYoSsqyYj6/iBpZaZqyu7vHeDzm2o3r3Lh1i9nWtjBh0oy0lSKHRew++L4YTxiDV7Ba4lovxZ0eMy9sHM6D9T765pB/hH1je3bEr73+LbxvqOo1TVtS1yXzxQXr9VKGHrQFjpYkERmDTbHGVQsWZ9o6n015+aU9Tp56fvKTT2ibUtn+FU1T8fjxE6xJuHXrJuNeYi8EDrnvn3xyjzfeeIOd3R2atmYwHHDr1i3Ozs55/OgJIOBwkiRcv36d//gf/gMXFxccHR6yt7vHtaNriFabEBJaZ6V4Uq64ceMmh0eHVKWA5KcnJxSbQnXPVPvMNTjfkGcJg9woMGK00JZibUpTS9uuFJBQiDUAboaApHplqUq+F/ZmkTPxXotuqdV2aiutnA71J1lk3npPLHznqelyvgDk4sGh52hZLpbs7+0yGAyYzCYMRyOMNywWC+4/uMfe7q76KAUlEst0OhXN1s2GwXCEtaKvmSkTSyi3hulkxh/+4R/yxhtvsNlsIri/2awZjcecn51jE2jbgsEw4Re+9BmgJcFibELjamE1NZnEcXmKzcZsyhLnpLgxHIyUsedESiJNMUihypMr0SdlNh4SWH9pmpKnuwpqycTmDz74kHsPHrIpi1gUaJpGCRcNTVWxzkUfNOx/xojd/OhHP+T69b/Er//6b3B4eMS/+lf/mrt37zLbmjEcDBkOR9TLBd7DZiOF4Zs3b/Ibv/EbvPzSS3z40Yc8ffpU82HJhcqiJM0yNpsN3/3u97E2JXRyhOFwaarXkg/I85zxaMz167fYPzjg9u3rjCc5w1HGaJDTuJa2rWTieNvQ+gbnK+pqw8nZMWW7YbMpuDhd0riK0TgjsTmDPAMasoHHU5KPPQOTM5nkNG1CmmS0raduZECU99A2hk8+fsrFSUNb5xg7IM8GhLTdJiJXc3GxwHtPmkhXEzYM6ErIBjl5NiAxCdev32A6mTKeTtje2WE8GlOWJR988B42Mezv71M3tQK6jRaspai02WxUzy6hqiru3v2EJ0+eMB6PyXVI5dnJGR9/9DH3Pv6E1WLFbDaL+EvrPLPpNoOhkBrSNJMC8TBld3fCzZufZ7VesVx9gjVDtnY8n5nOSPKX8abBWIcxogUc1vzW9hZFMY+xdlVJQfT8fIk3iWqYO0xk1TvCcMMwgESKCP8NAHzFpqSoFspsKBkNx3jfcn5xJm/woi3jEW2+NLUU5YY8z3ttEOLIyrIUB1t7rZ6BTdcsFysWizkYz97Onib9uWjyNQ2OAcPBiIvlY5aLJYkdMBrv4fya5XLOydkJ+/u7rIuK1nuaspRjJxmL5RPefe/PcH6DsfD4ySPyfCgG5ROc8bTViHywzd7+bcajLfb3D7l27Vn2dm/gnYi3P3m8oCxPlLWolx6rZaESo2lHTOSlchAZPypaHXS/HEGTSDZhSb4D2EbU0BAmh1aSVWQ4BJVAF+j0AK/w+6tDMfqvcF6X2Rbde/t/7x//KoMvvOdq6+/Vl7WJgn99CnufgRc2yh7y4Z1UbAkgqcGYVEWUe9+PlfvpuyqhA1ov932UjKSS4x1NJRqMbSPXWRSFgjdGEzJJmsuyYWdnl6oswUj7Y5ok1BV4k1GsS2HYZAkgAzqMy2haQ1W2bG/tMchHjMZTtrf32N0/ZDbbZZANGQ4mDIZD2ZA1KGgbqTaXhWjQnZ1UtO0mBp7GGGlTI7AjvX6WyBgzYYJwfI7itOu25vTsjKdPn7JabVis1hRlyfPPv0ie3ePJk0faSgbepxLkpplQt5MAfiag7W8RfA3Ang8taSKOGkRmQwuNULD0dzhEF9IraCksImskMBGGmVTniqLgwYP7HB8fs7W1RVmLhkJRlqzXKy4uzrHWsqtT/vIsJdX21CyTwHoykfaQ7e1tZtMZ0+mE0XAk1bQk1ZZ5iYclSRNHLmCMlnGxtEiLeGqstpih977PNO2AHB/0WfRY1hCZJWFCGoCPAzYMFtuz6f4gHQXZ04wkyST5QfyrIyEdjESMufXUbUHLmjTNWa88ZVWxXi8ZDESYt1XQ2ztDZlO8M+xsj4VVWrUsLjZkyYTaNfjW4nxGlo5pa2EdZvmAfCgt7KnNGY8m5M+NyLKcg4NDZrNtptMt8nzIcDghywZKX5fkrSxqmrZlZyfhN37jN/hH//ifQGnJskFMaD0tPXUB2WB9KABYxuMJX/7y17h37xHvvfextGSojxKdwVZAZi+tHu25k2SvbTRxlCQvsVY1yVLVgJUCS902DMcjfu8v/x7ZYMCmKPlnf/w/ce3aEX/19m0whhc/8xLb+zt88MZHMs3TGFrvWa031LWA14lOXI/BnRiZgP8KDBPfYzFJR+U3qkljNHDqQK0O6AtGGGylruoOYHYyBMC1MsH19PSY4XDEZDpjvhCNnjRNBPjOMg4ODjg6PODg4Ij9vT1m05kUx+gAD0toOQrMT91ndN14ZzBIQh6GFYRWOKNMzyzLaCrRZLPeYnxCng2j1meSiG+XKaQJ6+VCKvdGEj6ToJXvGpMSdXCaugaXUBvRMaxbR+tTAcW9VdaUDPdIs4STs3fZ3qnZ2jEUlZFAPjCLnWe1KPje2+8zGj3EkJGq9EeWpKrJVbFaLanKgtOzU+7du8v+wT6DYc5mU+B9y82bNynKNaenZ9GPW5uwWm+4OD8jTQz5UNoTE5UEePnll0Wzr5L214vzuUqdJDx69ISXfuUl/se/8Tf47tvf4/q1G0zGE7LsQpiQCBttNttid+cA72G1LpkvC9XFE2aBUZ2yum1om4YvfOlLfPzhhzx+fI+y3ER/EzZip7HEtaND7tx5Tl2dDEcCw2IhOsPC1BEGpgEV6+98mjzfRIceScwwHAwpiw3OOVarFfv7B1hr2RQlx6cnTGfbVNWao6MDWifT7Iui4Lvf/S7T6Yz//J//LDIXb9+6redmdMhIx5TwIfSI0YH6aYvGb11LqOl5dBsYpVqY6cT4JXAXcC/BqXRCYGdbZSamuRaYPaTjlPVKtKhlcFPGel0QBukYU/HMs1s8enjBYJBQ1kYYA15a9dqm4d79Tzg9PZOulTYAUy3Xr99gvlhIG1JTq0yEsGVWqzWjPCfJkksMxdl0RlmWUZ/Qec/Ozg6LhTAl1usNbdOyXK754P0PGQ3H3L59i+VywWq1pNgU2ESSuuB/67qWNuw0pShXFMWKxXJJVVaAxXiJJ6XVXhiOaSKtYIN8wGg0EvvUeGE8GTMcDKO8T54PSKzl5OSY/88//adUVSH7tIfJbExmExmi0TgdyCSTNderFQ8fPdY4UMD30VgkNrI8Zzbd4tbt2+zu7TGbzdjd3WV7a0u0nYqCf/n//Zecnp4yGIp2G95jnOzrbdtw//49fvijd2Wa7vXrnJ2dM79YsLu3i3Oe1157jcEgJ8tSnn/+BaqyEu1kBTNns7EWmBzeJnTCHWgBUGM7BZE1aoGQJ7TyHo+n1XjGGO1eiXE61HXDowdn2EQ6CjAJg3yPva0DDnY6xr/VfUFD49hd4ylo3JqyavjG11b8o3/8z/hX/+rfslqvODk9oa4ryrKQeNHAbHuLLM9EGskY8lwAM2MM9+7d4+nTp7SuYV2s+dt/+29z4/oNPrl7T2Sh8ozJRDSrX3j+RS5O57z/3vt89rOf5fDoEGOtTkSWYmRRFayLgg8//ogHDx6SpTk72++TDwYKGuzKuSUABVvbKUc3jjDUjKhJ0xzvawWxW+YX54y3j0iMDNlLU+ncKUuZxJumVopCNsWSRAml0L1S1x60Tdo5KNYNi3lF20LrpG3dWvETMi3ccHJyQl2VpNYgXIdAntH4EGEOJUlGluYcHR0xnUyZTCYCltYNDx4+YD5fcOvmjagjaBSITNKUUmVz9icTvv61r3F2dsb52Tnz+VwYXFXD48fHHBzs8Q/+wT+QezG/YDwcRqKMVXkZDKTpkP2d24yGQ4mtB6LxORyOSTOZijvIRyTpQH1so0yvAYOBAFzGSMyQpUN0Epp4au+YjIcoQk2WZnz00T2ePjxV+3YsViuKsqSuhYAg019lUFcY7uPXKwZDYY7L5PMMj2G+XPK97/+Ar371q/ziL/0Szz33PG+++QY//OEPwBgWizkbbeN1bcPXvvZVfvu3fotbt2/y+PFj3n7rLYk76zrmpHUl01JPT8/wXjTirOrZJdaSJl1nR+gukrZ7AW6fPH2qf+/ILiJhJOsnyzLyLGUwGDEYPE868uxuyayANANMqwSWGmNbjK3YlBc0bSHg/xA26wLX6MTxtgFTYm2BzR3Pv7RHcW2bi7OWomjBSbxTVyX5KGM+v2C1nmNtS9NKcdaYFJTc1DReh83AO+8MGY1HTGYTxqMJaAH1/sN7DIcD0kFKuSkpa1lTSSosxzRJ+JM/+RPOzk65ceM6e3sHlEXNfL6kaUJrvEgppDbhhedfYDEXKYrBcMjTpye8+MLzPH/nWYbDEev1BtpW/VnN0dGQO88fIVIkG7KBI0kd+TgM0AlEMxd9rUykl0EZbe0wyUaJaQN2ZtdZFU9xTtZWlqVk2VBxMKsyELLfSVt0xs/7+rkBvloXiLCEGtZuyWazwiIBSZIMVLOlxuBo6g2taymKDcOBTN0dDoc9ACjRartlvdmwWi8xiWVrewe0eJAqi68sK606DoASYypa0zDOt1gtL0TguYU0H7EppVK8KaQvv6lrmramLNecnT8gyzJa3zCZDnAuwbuMYb7L/t51PvPy69x59lVGo22ayrHZbFgu13x89kD1GHzc8ELRJm6yps9WE58U2HZt6zC+Y8CFgOUq8BZBM9uBY86DaMb0W0+7+vNVAC1UT0ObbUgCA+jWFyTtNMnspc/2j9t/fwAQLw266LHrrl5PTED1ff3W33AfApjXF4kPn+1fs/zZ4CCKWwcGoDHdeSjRVP51PSYUhrpuGYwGLBdnwuhLE3wDTVkzGIzY2t5mXRTUtWcwGOAcovniUoy3TMYzMIZyU+OahKpOqOqGapMxHAwZja+xvb1Llg4Zj6fs7x+ys33A1myXyWTGYDgSh+EkuNqspcJ7cV5Ke0DjLk0sEhtqJbkPm1wAXHsAcHi+IagIQwfwQOIjiIHel9FoxNbWFsvVRtdWCd6zv7/PbDZVLQGhdtfasiTdMR68aDnJQIoW7ySBCs/cRRqaiU8iCGCH80VbFKSY3A2PqeuaKklUW8czXyxk4tdmrXYqk4/bpsEjLIjNSooCo+GQ3d1tppMxWZIym03Z2tpiOp0xnUzI8jTqRYQFmqWZtOv4UE3rrU2k4mdtKjEGWmVV/SQDWK3QBnZZaKkMlfIA7gfgPzwXH2ycHojvHFhPGJ4dGMAByHJeKu8yhVfYpUmSKEPS0tpu4AbI+PZ1s+TP/+I/stls8C6XFrsm1epRSp6NqDaGumpovXxXnme0lWU0mjHMMpzP2NsXNul0usV0ssN4vI3B6NChAcPBkMTmyMQZo0FVFbUYN/OGpydntE1oiXLK4BTNpNo13LnzPL//B78vDKIzYXoWVYFMofPxnjtCC51hMpnxmc+8QlE2/PSnHwiArW27ceqXa6PmTKNt48b7CN5Y43UoiIJsPoiUq95p03JyckI+yDk5ES2h8/Nz5osL3n33XT772VeYry544803+P73fyCTcsuKxXLJarOJ028l8ej8YWAbGwXuArM0tO8lCkhYZaAZDEmaqFYjYDyJ6Ynpa1EiBH3D0VALSaox62WqbtM2cYK7MSayKqaTCdPJlO3dHXZ3dlUPMBHf6qUiHSZQ0wp7AR2WEaaIBf8vDEZ5hjbsG67BaYLYto7NuqAdOK1gi2iytIqitpUQGHrGyDCcs3mQTzBYnWafpCnjyZjVKui26NAqk4LJGU+3WCwWUs0vWkAYO8ulTJRMkpz52Vvghzz7zAEXZ/do8iGDvJLETO10uSzYbFpGw4kIRatPXa+XCuJJom2NTMH9u3/3/8izzz7H4yen5NmAL/zC57HWcvfuJ7zz7ru8//4HfOc7f45rGqazMbOtGaPRuGOqKtOmLEuePj3m+vWbPHr0lIuLJbdvX2N//4DReMJf/v0/4Bu/+Msk1rK1tcUHH3wggW6akqYZiU358MOPJfFwjroO60IE51vvRB+zbnBtI8OUWhko1jSVtDgGwpARwCtJLUW55oMP3ifPR+S5fE+ayb8edAKvVRsS244st+jXOuAvsZat2ZTHqxWuNcznC7a2thB2Yc3F+QUPsgc8//zzvPjC8xwc7LN/sENRrFmvN7z93e/y6MljVuuVyhZYaR/NMvAe6xUH9wiojrkUx2BCoVZ8c9NKYpZaq/GJgHWhUCsMB9GkFY03bbEliRqyIW5KkkR1pBLaRnT/bA3WThgPZzgPVZlSFTK5u6g9RVEwGu7w0gt3WM4/YL2uRJpK15bznqqsaJuFiKtrDCBapjnn5zKl/snTJwR273QqLPU0zxmNhxJLoaxwFSZ/+vQJSZLw6quf49atm/zwBz9guVrjPAyHI3Z29njxxZdpW8/du5+InWVWdQUtGBsn0xpvODk95eDgkLff+i5pmnB4eMjv//4fSDyUD6RgYT1BRiNL0xj/ZlkOeKqqJrDkJUkKYKayPTdrPrn3Cf/8X/xzVqsl4MhOLDs72xweHLK1MyNLMwEhbcLp2TlFUeJaRz4c8KUvf4WXXn45xsImyHloS+d8PmexWOj+UuG8FGakq0KrqqqN27qGTVHwox/9iO2dHV5++WW+9Wvf4vR0wQsvPM9gMGB7e5fXX/8Fsizh9u1nuHf3LvP5XOO9hq2tGd47mkbXTWBtCfIh5uo7QkAXbwE9gDrExhh08jAx7vJWYvaqrbGtxCnee1bLjaxzY3A6jVTiIi3meGhbT+NqGqetyUiM8ou/+E2Wi4r//J0/4/j4OBZ0Q5FgOp1KkVxf3nuWywXPPvsM169f46OPP2JrR9b87u4uN2+V/OIvfoOmadnZ2WK+mJMlGX/7f/O3uTg5x7eOr3/1G2xNt3n69IkyiUXOQVg6KS+9+DleeP4VaffUPCEA1at1QYrh5s3bPPPcDsOhFO6N7eSl2kaYzFmaYVWDdmyHUqjKUvJc9pumaUnzEVhLarQd13tq7frwziooKOx85xIeP7hgfr7R863I84xNVVBuVlhrePz4Lk0jOqQiMWCIsk7O4rzBIUwn63N+gCFNM/Z29/j617/B1vaMN998K65vFWgEI0z3LE2ZzWa8+tnP8pu/8Rs8//xLvPX2W3jvWK9WQEKaDhkNpzz77HM8fPhQbGS16GJUm6j+LTQ13Hnus/yNv/5HZDZhoG39BiOAjzUqNeAU+HFYg7DGnFMyQE3jpdjkGw82pSo63dfNYq2MWQHnz07nBJmSxjQcHR5wfn4uHUUKbEuRWDq1DFC3DWfnZ1w7OmKz2jAcgkkkDvvoow9JbMLXv/YNXnnlFV588QX+8A//gPF4rIN0HF//+tf4K3/w+9y8eZOqrPjgw/f59rf/jGJT0FS1DsupKDYyWfr8/JyyLgU0lruGTPdNyXpaxmHiqk1M3EfCvUNjwUQlXGIOYo3qjadx7QvbsYuDksRK/pMmWONJ0iGj0RZpakizlGGWMhhm5LlM7DU0QI1NDUW1od23FNegrSzL5ZrTs1OqqmZ3d5vd3T2atiQf1AyGgtcUm1qD9YT337vLu+++T1M3tG6JOfdCZHCAk/ggG2QMRwdqntIJhhIm0iSJMfGHH37E3bufsLOzxzd/5dfY2zvg7OxUAFov1727s0eeZfy//p//D5bLJZ//wus455lNXxf98SSNQ0TqtuZ8seSFV26TjVY4VzMeANTUVQtmCOT4psEaGQBrjNjhIE+pqgpprzW0bclieUFiE6rKyOd8pfINogtdFo36ZP3+qiSxKQz+G9DgG+Q5g+G2gim5PAjnSG0uE6lUuH40GrHZbETLxiZkmSHPRRuhbV0UQU4SqyKHsrHYNKGuGvLBiKYJqH5O0OAYDoeAMHmGwwkYODl7iCQAYlh5ntA0pbT9Nh7nRCukqSWozNIhg3xGko7Y37nJc8++wv7OLUbDA4xJWa9Kzo5LHpUPhCKqG2QfuAIuAWchsO/jbJdbV2VaJb7HyOkBAVfBMgmGJZUNoEHodO02dFSsmwjaheAkGHq/za8/oCP8PbRS9Fl4V5l9fSZe0Ne7ytoLYGI4t6vsvf57w0ACwVfspesJbBCjdOkAzsk1dvfUmsvn0GcJxmfkrwCM1pIgzrB1NZPJWIJ3JDGeTnLqynFxVlA3HmunFJsWa3KGgy2ybIL3CWkiuguza9vs7x0yGs0YjSZsTXdUf2DAIB9pkCF2XdUtZd2wfLKgqk9xrVaU2i7493gFyUxkdHndiIMoe2jpC+CRa3rC0YgodWTvBSAttrSoGDge63WC4bVr7GzvUVYVZVGyWq9YrdZSjV+vKTYrNkVB3bRUdSOBhpdKTAiyAyMngCWt83EqXeuUJeUk0Td01WMJFNvYkhMEheum0e+sGeYDLrxjOp1gDCwWFzRNxVoTuKZqpAWmKskHA6bTEbvbOzz7zLPcuH5Th0uILmdoJwx8jERtz5qwgco5BVZpkoSpcTYG/AT71gS1W8faGm67llp5giZORgvXbE2ig1sCa6S37q0V0f9YjPfqf0z8Wew8AZ8yGE6ZTKYa2Dbxu5vKsClKLDLdfH7aYMjI8gnT0T77WwNGoymTyQ6H+7clQU9TBrlM+R3mWm1NcoxJcd5G/Yimaagr1XDEU5c1m1WBd8JUC9crAFwbr81pUuCRZnHXik1UZcFivmC+XHI2v6Coaj73udf46MP3uf/gHqlraWuvx5Kpdei9Go+mHF27wXpTsLl3Dw13otaKMcGnqGC6F9aXgNQqgOwV/HYNg0HOOBvhvExbG49HynppWC5F9+ull17m/PyMF196gdu3b/Hyyy8xGA3xlefBw4f88Mc/Zl1sWK6WnJ+dS8I6HEdNvVB5Dj7OIsFaGIpkE6NVvQACBq2uUOnT4S46gS4Ac4N8wHQyYzweMxqNGAwGqsXXAYphz5A2n66YFBizEHxqJ8ZubGg9T+I+6LxOkU6C5qQBq9y+UKAKYENYCbG4U0U/1rQeqpYkkeusW7EOSaIdnoRW9WaHw6lqMknLmqzPmqY2pIMhVWkwjMgSC95SVhX4lDSdsF4YilVC0wwFqEkS1Qc2Ih7tRFt4ONzi1Ve2uHX9df71v/1PFJtC2IR1Q9tWsr6dtKSgmkhhy2+bVkEWaf3/vd/7fb7wC1/i9PSMjz6+y4svvMTHH31CWZYUVcHBwTUg5Z0fv0uxWUWBeQGjK2yWU2w2PHn8mP/07W/z6NEjXv3c5/mt3/pLvP/+h7z44ovM5xcAPHr0GO8967pmtVpxenYuItZFBR7V81rigaIsVVpFnlHVlDSulSl/ZUFTy9CMshTWocg1dOLl8jgF0FivlxSmwJoFqTJI0jQjzfJQpxPbzbJoeyAFijQNE/nEP4gGY8poOFJN3JaqKDk7OWU0GuFcy3w+J88HfPzxx+zv7dK0tYJYBY8ePeL8Ys5ytWI+n3Pt6IifvvdTxqMxk8mE2Wym6yRVhsGn45hQMZWlIOtQCi9SkevHfwB5MmN/9oUIAhgFqr0zOGdkKFNoLzeyVrJU4oNMNWKbtpW2rCynLGqsTYVdgKNtK5yDzzw/5vr1j/lf/pd/y9n5uU4sLmR3sA5cS7WuY3G2aVrOzk4lsby4iAWr2Wyb5557lmJTClMtzZAY0+rabBip//it3/otvvnNb/LRRx/xhV/4At/73g84v1iwvb3Nl770Jb7zne/w5ptv0ja1TIr9hc/zhdd/gc1qI5utgk2D4ZA7d55ntVxTbGrygeezr7xKXTuePHlKVYVYqNGCjI96doFtVJaF6r8K2O2cI1F2W101OpTHYJOMr3zla/zwhz/g7Ew0sZ48eczp6Qnj8Yy9nT12d3a5mJ/y5PgRiU2ZTrZ49bXXuXb9FstVQV1VZFmqHRop1ipTOLDpdN8eTybMLy7wXopjwjq00vpblsymEw4OdrmYL7l+/TovvPgSH7x/l3/0j/4JW7MZ3/r1b3F4sIfH8cbqTbLUcnF2Tl3VNFXD3s6+QM1eJnCK1AKxsIM3JKazW8HRojcKCzXa6tW4HoiFcNH0lhzGeR+PI+tD8oi21OEOTc18ccHTp8cs10tKbUnzdIXn7e0ZX3j9dd776U85PTsldG4UxYYsy8QHea/xuOX8/Azv4Rd/6RfxOO49uM+LL77I17/+dd5++22uX7/OarVksVjwpS99kReef5Esy/g//d2/y4cffMhgOABrefTosRbwJFat65rxaMxrr32ePMsxpsuPnHPM5wt+8pOfgre89MIrTGcpeSZaonk2wFgisGmtTKO21iOThFvx+VkqIFWSynA9Y1XX1GGtdLJ5g8bAMgW6riVuz9KEwS+NaWvD+fk5b7zx5xwfP8VkFtc67j+4z8X8Qhmpynz3VuNP8VEOH9sDaRsgJR94fu8v/x5/7a/+dVbrFW+++bZMh0VAhTwT7VpcS9s0vPj883z+1VdJk4y6qhiPRjx/5w7v/uQ9kiThC69/gTt37vD222+xf7DDbCZt6jLAa6za5do95EWT7eTpsQ7MAOMTLS66mC8IiSXBKZPTaU6DJw7T6HZXjZN997uQA4EUk1MrRYU8z7l96zYX8wX379/HGBdXQmIslTFQNzhEq3oxn+OcTHMNexbO88EHHzC/WPCFL3yBO3eeUxtcsVmv8Rhef/11ZuMxT54+5s233uIn7/5UGM5tS1nJhO3FYk6SZBRFwdnZGV41qq21+DAszQrz3Ua9RgHTOxkWaeW0GveFwpRgK2E/kmKr6EJKHpJlGd47Eh2W4TXTCO3hWSqF4Lpq8U7AP0kzNf/WvCfLctLUkg2EwZulA0bjKbfGU5zzTGdbupdLu26SCgiZ2kyY7N7z1S85/v1/+Pf8yb/7NzoIRABXTW+FOYjmjG2DNTAZTWT4HYambmjahufvvMBbb34XPDRVy9bWFnt7B/zFX/wFq9UqDj3c2d7BOc9qtWY228KahDsvPMPh0QFlUUW8whirJuUYDCwmqbFGBl2VRYlNEg6OdlksVhSuwLUp3umgHucAiZPCIFdsyrvvvSUMwc0ck9aUdUVVC4lBBjWOYkGmaRpm021hHledr/6vff3cAF+e5wyHM5q2YbNZgYHUpvGEhTkiicFwONIKlKD1ReEoNmc432r7gUzLGo9zaVGwMkRgNJQ1Zo0hS1O8Jv2J1SDTeF0A2pZjDLPZjM1mRWNadTICQiQ2J7U5eT5jd+sGR4e3ef7OCxzsP8N4vEtdtqzWGxaLJWcnT6iqGllgoTUzVJ4SILSUKnvKh6mibQSYOnckL2GF9EGyLvnpg1990C8kRt55DSaQzTCyQIiAXRyWYa1M/VXh40DhDZt6qCaH9/f1+66y8/r/9oHDq8Mz+u+7ChJe/fvPfnXf0f+s2M/llmD5VwPv8FkvNhJ4jH0gE4iDAvrnYAxYRhi3S7XZkNqcFhE8tz5jazJmerSLMUO2tvaYziZMJjMmox0G+QSbyACLkByERLQqG8qiYrXc0Lo11lxQtxIAxKmXUXNLK4O9lp7WSbuw0yAtTt7CKbXZXbqWy1VbFCjUacZ6ofG9ao/xHvsOLAUYDYfkacZkOGJ/dzcGYwLmVOpcpRpaNSJIWmw2rNarGIiXZSnTqeJ0LtdNhfJalVPkURKQJuruBZZVEB4XlnBFWZdKs69Zr1fMZlPSNKWuay4u5oAkYOPRhBvXbvHMM7c52NuXgRiTKbF93eja6wGmgcGB3uXAojPG4hBnHJgQUhVT0BTR6ggtW6HdNtxr17QxyQptu/J1JvBCMIj+SQDgtcgLVjTLhCqoVW/5a1wTUSTeDciSA2wzYXVqmA2eJxlLW2mW5aR2xGg0ZjqZMhgMGY0mSt8fayAqbeASNybUdUtdiR5RUzdcbFqOjxfaJqkJhA9oRlfwMIK0y7X3ACMggs7iz5DA2zmgG7LiW8eDB/d58uQJ88WaoqpYFwXrzQabpmxtzUizhFzPDUQvUIY45SQ2F7CF4POMJtcoEKTn5gJwpIUE1+qtDOtRhNjLckOayr4U2sPB4JzY5OPHj7E24fnnn+Plz7yINYaja4eUVcndT57w7k9+QlWWrNdrNpsNrW8ZT8ZakRVwLklSbcEwkZ1uNVgTNnUqrWdZxiDPyfNUn6Ek3rPZLE5rzvM8TnMOLxvANAURnevY0qKJJjZle1p90Ud6be9VINzE/Yb47MGTRAzQdDZgpDLfLy557/Gt2K2JYLVIU2TZhMwKKzTRNdNWHmyGawGfUDeWLB/IufsB40GmLV1o+zTkgyHGC6g2Ho/JB2NSm4G3ZMmAfDDGeEuW54SBG2makaSiCZMmucoMWNpW9tmiqhmOd/gn/+SfcnzsyLIGjxQuHNrepAzfjoUp+3aWDfjMZz7H7t4R/+7f/yeKouTifMEPf/TjyCStygrnoSgLDJ4sl2B7OBywXC2kIOgdZxdnDIoh77zz4zjd9s6dO4zHU9566y2+853vcHCwx+uvv85nP/sKaZoxGAw4PjnGq523TcP5ciHtSmEyKFbXJ9KG7FtcXcmE3Vp+BneJqdZnwru2xVkZPOPweC8+XwZ6ZCR2g7HSepskKX69jslMAJyNgnwyUMZiTClgtpEC8WJ5gU0si8VChiFhqDYbzk/PkNbFhvlSWlATaymLivnigvPT0yig3rQt682Gsiw5Oz9jPByzt7fLwd4+ed6PU6SYKq7O6D5MBOVE8F1jMb0nzjkO9m7zpS/+thaoVDDfiK8XnWp7aS9G5ShC4aPVQXBtaI3aDsUcS9PUOF/hjbQ43X7mc0wmu/yzP/5nPHr8BNu0OBx4q4zPsNYl+bt375MYC1qbMBpP+dVf+xb7e/u89eZbzGYztY9S9yPLarXk5Zdf4e/9vb/HjRs3cM6xtbXFcDjkxRdf5q23v0tTi2zIRx9+xLXDIx4+esj+3h5f/MIX8cB8Mb8cpzg42D/i+rUsane9994HvPuTDyLrMeg0hziyabRlP7Fx0EIoMHvkXrc+aEJ3u6tM16545tlnSbOEp08fKtjjWcwXLOZL7n5yVyVHLDvb2zx35wXSNOHJo0eghSirYF0XF3hMosxqY7AGhvkgfv96s2FrOsMh51XVDav1mm98/Ru8+dbbHBzsx2tbzJecnZ3y7W//J37ll3+Rre0Zs9lUdBG1RdcYw+7uHpuiVJBRdbA1BghgX62tudYmGoco/heKgjF2oIsh0FiZkL84BbDk7532dQDsBGi998k9PvjwIwHnXEvdNDpQTfTN67qmcQ1NXVOUXev/cDiiccIALnQQgzUiX+H1XIqi4PzsnDt37khh4s9qfud3fpc0Tbl58ybvvvsuf/zHf8x6teaZZ27zR3/zjzjaP8J4ODw8JM0z7j18wMPHj6L0TpDhdg5+8P0fRXvsg57CLLYYEn763vs4L23j1qb6t76UUeCrOdWaa+M+G3JOiXdSvG/1Par9GZ5fK11r1iQ6dMOrtrPVNuGW8WSLgROpm4v5XLowyjUhHgy+Q6QnQ2Fa9u3UJEynU37hi19kXVT8v//xP8a1Lav1mqBbliZGNEO1sFeVBWVRiv6kC/phFwyHQ37zL/0m9+7e58b1I/7Fv/hjnp48YjIRHckvfelLfOMbv0hdlqxXa52ZIkDTZDLj+PhU/IpNJVeLQ40k9giSU17XsfAQOkZ3iDsieQaifxbGaBA0VkKE7edF8OztZ9gsV1zMz2U9eB9CFvHDRrCF09NTdnd3aJqastA+G2Npm5aLiwu+/e1v8/3vf4/bt29xcHjAYDCkqVs+eP8Djp8+4eGjB6zXaykYNzWbYsNyuYgkJikyPBHfZQI5QyE5q9p/pmeLWsyPYKPmERbZF6yRtW51iJpGbHLeiY3yXWHgXmLTDiMwwq42RlqDrYEkESxGPTC6ZRGGwIR4TgBy8Q1pGArTy/eNxoyhgJ0lmcSHiP8cjaa8/vov8M67P2a5nBMnQ5sWECaq18JxlmUyadc0CmZ71qslz79wh6OjIx48eMDu3i6/8iu/wocffsyrr77KxcUFs9mM1WrFYrHgN3/zN7l58zYvf+Zlmrbhtdc+z97eAffvfSJ60U7ARGMgTUcUm5w8GYNpwTe0lcH7hLOnNXVrKYpE2KQmUSkAR1VZ2mZIU9W0bc0gT5mffUyaGTw1rgLvJ+CHeKAuM3EFieSKTeU5rzaqu/jfgAZfWZR4v2EymQittpZW2NVqJSKHqrUwGAzVcVd4L0aWJinb27ukaRLF/0VQ2DMeT8FDpZNw2qbBuYYkG9DUDYN8EBe19w35MKOs1kjyZSnLGu8y8nTGcDBjsD9ld2eX/b1bHO0/z87OEWkypCwb1qs1p6crHty/q21+jtAaaq2hbftJUdA1E2CvY5gFps5l7bd+a2sHXHUTD/tgU/+9fcZDv801BDsyFbirwPXZg42Cdq7p2mbDsRKl8cbN6ErrbP8VPtMH3MK5dFN7O7AyHCec59Vj9+9J/3jhu4KD+DR7sdOpCiy0LljRY2vw3D+PT4OJHeOgf+9eePbr3L51E2tSZtMxeZaTpgNhKmhrq9iggFRVXbFeNSzna6k7NG1kAcXjCiJNAOyMcQK6+e4ehjfaxMaPONdiXLDrYGsKoPQqWP1nEp6lXJeP4F286kB9huhEBfDwEQwV7S99bt6SZPZTz1WGa2S95EWvMdq+nE9d15dsWQC+lqIoO8ZX01CH4FV1wJxzUeOqroUOHdrF27alrEtJiFsBn9LMarIxYjadMRgORWsklylgadLpU4QA2JDijc5f9uEeIroP+Ev3JNqmlSp2sFG5LgXzroDO2ksYn09Yb13zPHHKqLWW1rvIxO2327YI0xGAxHQ24lDmzGXw/MU7X+YzL70g6yeAEy48a5me1gZgGMtm1bKc13guevboo71eBfYJQCMKhoVrdF7tU8FKFwKmoBPaLxagLK+kZ0PaZqIrwFgJ0J3zmOQCu1zSOkdTV9jJhCyBptmm0bbS0NJb17K+nIemUfF112iiHiQApKUTr8LsmhjKvZcW3UsAn/N4hKkXgsjz83PSNGWzWeO9aDednD5lvjzn8OCA2WTGw4cPePL0KecXF1R1zXq9ZrVaUTcNo9GYxHjSTJh70n6RqpyFtKLlA9GZGo9GjMYjptOZtvqPGOYysT65BAza4BbkSfnO59r4N60S64AEF56hDu3wgtjEZxmA/86/igkYrQaERDaAHhhITapVd/VlWgjq21EAv1qZMqRBrqyrawd3+OovfEk0BbUYJRpEGaPhEGszPF6D2K5wkWlw2bSeuu6AOaO2KhPLEf1Rb2jaWooMVRgw4vGmwbmKphJgSjS+oHENtQrjTydTvvXrv863//TPePzoAXZtKaqN2Jlz0WcL8CUB99bWDjdu3GZ375B33vmpxgthL7ZRNzIwTNu2wSYpCY20uKaqa+obWp9wMT/nc599lZdffokf//gdrl070iEGKaFN+eJiztnZGcPhkN29fT768EPmiwWVDtKRiXzncd9o20b2RfUdjWuFBeKdCHa7Fh+KRaYL4qVK3dmdVw3Sbi+XRNkjexDa/Om8aJ9FUDQUWYyhbWuqkNT0XY8X1+q0EHSxuGA0HMmUTSctjGVVkKWZsv0EwLmYXwiTdTqJichsOhPB+CRhZ2ubremUNMvwRiYyWk12QABJb3pFOHraq/6yH06ShLJsePDJWaw8fioe8UHzrNtbEisFnFAMx1hc2xVH5Pocq/WK+fKMsqoERFpvaJ3jy1/5Km+//T0eP3ygAEsdn0jrWgJLJxRkjE3Y3t7lpc+8QpYNefLkqRRNBhnOWZZ1QaprdblcMRwO2NnZZr1e0zQNT5484V/+y3/J0dEN/sb/+Depy4obN25xsHvAg4cPeP21z/O7v/07HF0/5M2332K1Xomv1qFltW1YLlcxjq7bhvWmUN1r1F876rqMHUBhOFvbSrHNWJkWive0SGHIG9Eg9t6J3lXrlLVVUJQbaX2KNhuKpuorvciv1E3Nxx99KNrI+Yg0G5DmwkBNlImZKDsl2qiRMChNE9Xvapmfz5mOJ+o7HWWx4eLigueeu8Pf/Jt/k2vXrvPo8ROZEnmwy2uvfY5vfO1rfO5zr3B2fs7F/IJ33vkxVVWzWq0ZDoc8evSIi4sLtra3mW1tMxjkCghZARxND6oK03W9VzVJ+b9E28C6olyI7fqxedfmG4r44iecFmAlfqyqmk1ZUJRSxA3SG23bsNkU1HWlMWOjcXMNxjKaTCSh9gbXeubzOcPBQDo6tDDlvOeDDz/g6Ogan/3sZ7l1+zYvvfgyn9y9z/n5OT/+0bt4J7qo9+8/4J//83/O//BX/xp5llPXFawtP/zhD6Wo1gqAXpUlvvVs1puoa9mtz7h7YkyiuWjoD9C4L/ojyT2iVAWCJgVNYNHcvJxLyRSh0L1hdM/T4qw4AhIjrf9dIUX8ruwT8ozywYRnn73Dgwf3WS4WtL6TKgk6qF7PcTQcc+PaTZ577gVmWzucnp4RctrhcMh6taLYlGzNpiqRIhN/y7Lg0aOHPPvsc3gPf/EXb/DtP/1TkjThb//v/vf8lb/yBxgy3nr7TYpqSdvW/OqvfpM//MM/pKlb/tN//I+UVanSLw1ZmrGztUNViZxHm3iMJ7ZZeudxJsQNod0oPAu9vJZLTFJQEkOsQwa2Xyg+tSQm7fxwYtnb2eUrX/4Ky9WcJ0+fqo7oMcv1CmshrWuaWtqDl8slg8GA5XKpJIWadij5SJqmnJ6eslwtsD9NItPOOckDnROAuypkpsBqs2at5AdrDScnT2XvRYY8GWs0vyB2ATkvmtAgdhPuTrffyE5krd5Do3bpNSXT7g+j0j5ewVspnCV0+bRV3NBGKQTvu+Iyut8Z1aE1ceq8SBml1up+nuj+LXH2pYBU/Ueq04/xqOYyOF9z+/Zt7t37hMXygtC+b5SRXNcNRVkyHU3wvoqxSt3UPH36mBdefJFf/bVf4V//q3/LH/7hH8h0Y2/iJOPRaMw3v/lNrl+/zuHhIX//7/99vv/973NweMALz79AXVXcv/8g6tK2TYPBMxpu8au//JfZ3d5ioIXgplZyim8py4a2LcG3ONeodAesNivqusVisSal2GwoKmUoeik02LTTusxSSz7ISJKUtvWUmwqjkhtleRW/+F//+rkBvrZtqSqZQJjnaaf1lFqcr7GJ1f7jWvSaJluUZaXIvFegDowPFSdZoN4ZiqKkbkutwLQY4zk/P2WQDymbCu+9aAqZnLr05Ok2eXZAU3sOd25y69aLHB3cYmd7nzwf45ynKGTK7d2PjiPjzRhlKHgBAELlFtAKQReoGYgtjwI0pWBacfLGxMAsvK4yrPptq1cBslAJ7jPPYoW8B4oBEsi09FgeHUNCgJJaphWZbtJSCCo/zfqSV9jM+3p44fN98Cr8/Sorr68lKPcGgvZSYDH9rPvQnQu9BOFn/+t7Dl0WzeXW39DmGCdR2uDhPm274f1bsyO2ZzeoqpqqdCwXBXW90GcQWjS92myXAEsCGdp0gkiaVPQCtTxUQGOSjBiaN6pTZSyu8bS+kcmLbTd4BgWaZcOWTV+OYCOI1CVpWsVrJSDpJ9SE0wJtGQ0JTPesfNwrO8CqrxcUfp8GYNnKPQ6X1MVBnjQdXbILECBna8tcshlrjeh4GSJYYMJEC70GA2SJMIJb57q2GO+EPRkHVnidxGhkHWsbo0zSUmgvsYSqdsAl4oZqdDP14YL6IHIH2HWvn53AmZCNdrWrDiiNwVyPrasBV0jOReevu9deE5gAMuNtVCcMAY+xhuWi5OG9C4wNm7HpVffV1oNNoEGgCm6H+xOCfXx3DrJGWr0eq2Ck08DgMkOvf5/ietTBKv3iQd1U+t3apm3Chi/3ZTQa8eyzt7l5+zZ4KKqK5WrB8dOnMt1V2aLrYq1JSEtdCYOgdUGzRabjtV5aD12aRHt3zmO9ahuqD0i8jcCfdZY4KdpJC1jQLnPugu3tLYxJqCoZ5CK6JkOePHnMWXqKNaLzVdcVFxcXor1S19LGn0+YTsdx/Q1HQ7a2tpnNZozHE6aTMcPhkMFgSJJoSwaBH9ollYbAyAv3VYB22/ODfZAk2qmCC0bZKGHjk3Vno117HyzYdeuFK/63vxx8PIv4Y+d7OnuXdeqUwGCiHRljSJMxeXqgCbdcdVN6nDdsVjXWtgJ6m26fCUGoJGDS6hTYj0FvKp5vD3zGCCjUqhZStHVvaB2cHh/z+PFjVus1RVXSNI0wkp3j5s2bpInl3r2PwIhmS9vUqiuoK8xaBoMR2zv7NK3j/v37qkdGBMrF7tWv++DHnGqXGdE1bvt7shSTHj9+zO/+7u8ym23LJMhKhnlYa3n++Tv81n//W3zzm7/Czs42b7/9Pb73/e/jkQnozjnOz89YLeZBwDY+38CEcnEfJvqXLumV/SNU6AU0SyLALxeW9J65AKtZpnIGEvrGmMqrsfn4cxfDBO8rYBokNhHWeFnhGpF/GE+m1HXF+UXJerOWwqwPRQ4B0LcmU/I0ZTwcsbe3z/VrR8y2ZOiSlYegCfnPslfXxTHKNAo+/CqIJ8WVluZK62Pf9oOdhcJSAE50xaj/VxDYO5paNJ8fPLzPkydPKRuZAhntsWmoypK9vV3qquDk5ESACa/MhzRVViAYXfe7uwccHh5R1w2ffHJP7NCJ3tdkMqKqUh3GJdpy77//Pq+88gpt2/LkyRO+/e0/ZX6x4P79h3zt61/n937nd5lfzHn2mdtMxyN+53d+m8989jN8+PGHvP/BB7Fjp6oqjIf5fAGYuKe1TmQRpEgqz8GL4eA9CuSFLhm1My1aepDEyUl81iog3dQ1tJJ8OV/rPtQxJXtQWLTlALCXRUGZlWzsmiwdkA9ysjwnSTO8F30qELZq2LOsFT89Go5Yr1cUqw2b5Vq6mZwI7K9WS+7dv8d0OqNtG9brFYNBzt/6o7/BzVs3eOHO84Dn3v17/Of//GesNxuKYkNZVezv72sHhAC7xyenHB0dMptNRUYDBXi8dgI40bUNg5hkjXuc7fStJS5rYvzmtejrnTImrSTYQZtK7FdiT+9bprMJW7Mtis1TqloGY0XN514BLQCC6IAA2kYaoBx443ny5DEvvvAibVNHn+69Z76Y84Mffp+vfu1rvPjCS6zXG+q6ZrFY8t3vfo/VSsDnvb19trd3uHf/Prdv38bjef+9n3D3k7vUTU3dVDopVQDmi4uTjpHZi0s6EETiriQUr3t7YtgAg78SkEV9ou2kXxIt4ro2DFKTQqhV6Z1QzJUtSu6rBS0yyv1z+m/b1qyLDXVdUZQbnMriJGmKaRXR0VdgZmEMw9EQYw3Hx085v5graUG01yTXFTb0aCi64mVRwUAGbj16/IjDwyN+8pOf8O/+3b+TtWk8Dx8+5Fu/9i0uzpd84QufZ1Mu+fVf/zV++7d/m+3tGW+98TZ3734M3kku42E6m/Lo8RNG4yWj4YjhaMQwHxCmJWtIqauyFyub8HuvsYkAgNGf9iQiQj7W7eVdbuxDTG+k43Av32M228LjWa/XPH36lMdPH3NxccFqsaKsKgodkuK9lzVYlgyHBVVVqsxCysgNtWBgY75e1zVVVVAUlc4mELkgozrUjx/JWpE1ZWUgmDHRj4Q90dKLoeMeI4s08PPatmOl+it7iTXdHuC9JzGG1hsqZULrTYtSLB7JlctK4sCQE1ir8WHv3mro1u3lJmiAm7ju9SnE5wM+gp9O/UuQV2lbAVDTNKEbFCTftF6tOT+7YDQYdprGSpCazxc8fPiQr37lq7zymVd48cWXRZbj/Jx3332Xf/Ev/gXee37yk3f5O3/n7/D48WMODw/5+te/zs7uNtPplPffe4/j4+MYhwnI58Cn/Nmfvs10PGI222Y2nTIZbcngxVwkStJ0TGIhtZ6B6mBvT8AjeuYGnYScCUPXWmmFBrFta1LtaBDb9C36LBxZmvDJg3v8vK+fG+ALVZ4sS+PDXK83MhmxgfFoGooXeJ/gW4NrvLaOSc97UZR4A+PJWGmsFk8jQv9lIbpExmASi2XIZm0ZD2aMxlMm4x12tq+xs7PL4cEtDvdfYDKeYm3CelOwWq04frqiLE9xrYtGxlWTda6Xryh4oew5MBgXWr50GmBk6sknnO992nQsNNsDUvqMtZjs9MCxPvAX2D9XGVp90M/IF8s0HOS6wrTCVPXBroKFjWsuMezCd3aT37r3hv/1WYRXgY7uGjpQrX9f6rrR62t7QIbt7pvrg4jE77jKWgzaZ13VVZyawgK6WUpQg0dYjMH7GRO/ow80hvt+fn5OrtWFvkMKwwG871qvrgKv4R70X4HtGSZhdnYkyWz4uw0t5gTWSRsDrw7AbPXedqBq04hYabif4RwkETKXziU43Hjf8RGwxHdtlMYYLMJ+TdJuQl3YbPvZvLHCkPEaGEsQiXp+H0GEEDCBUM4xoYJkewCSJkeJnE+SWAn8lOUS2Ug6XSpsNs7pNue6+xUSR7ELEYsXURrVE9OEWrJOXf/BDVgBAK5uZiH17YPLP/vVIRw+xlzSfmbjPTSqK9jZEsZoK7awhkIAGDZteT4BKhR772tvBgq/8ivlfjWun7/oeyG0ebegwVFn1wqN4j04G+ym+x65Nllbss4vg3YgOio401sbAq6pd4jn1JcwMGovBH+mxzLGICQ3S5qNGAwS9na3efnlF/Ctp9gULFdLlosVF4sly+WS9WYdE966qZUt6nQQkgScjWo6ybUr4Nd2gXR4xG1b65QxE5PTcAzwjEYjCeKqirouY3usVO8tbeNYbzZcnJ/LVOI8J0szppMZR4f72lY5Ic+lhTIkmSEQtZqkGWzoIO9eRp5WkqSE1vkAxngjlhDR5WBjUQpCmEkeNXft8g4BW2fyujYCW91oXVbtWMA5eVtYUx2zHWXYhEEM+ruwHxoTmZzQKnlL9EmLQiu4VvdMBS47pqVWoNW+mrYrGAWIKQRrYmPKmOhQrEv7rveORm1dAk753rOLMx4fP2G93tC0oje6Xq912meJ8y27u7sUxUhaJwOzXQFmEN2Z9XrFZrPu2nZjQGyUxd8xuuSShEkxnY0wwyHHx6eMxl0CltiSs9MLtrfn/LW/9tfY292nLEUm4dVXP8uzz/0Wr7zyCjYxvPHGG/zbf/snlGURhyMVxYb54kJlBzp2uBqAsEiTEBc4ZbCJu0ySrkWxY790cYFNAmNCirrGqi9EJ+NGByn/JZpzffa37GlhMAVe2O2iM6UsvbJkvVlRVaUMSalbRqMxeZYJy9cIq2dnd4+DoyMODw7Y2d5hOpVhVlmW6nCaAJb7joWu9u0Jbem6bzrZEayxIrreWyP9GCp8NrBQAhRgwr6EgNsEf+0crcbGTvVL5e9yn5qm5emTYz66+zHzhbRU163ExVVVUiloVFcVZSUJ6WQihey6bfGtgNdNK0OvvBZuNkXBwwf3ybKcTNtKx6MB8/kFWSbsXheSb2O4e+8u125cJ0tTvv2n3+bxk8eYRAagfPzhhzx98piqqHj986+xt7fH5177LE+On/Ld732P45MTWtfQOmHB1mXNxXyBx3RAaO+em8jslP0s/r0XswW5gH7M7ZR1ipPBPSEubttaBsLExS+xSgAGo0s1XewJop/oCFrDlcQtVgelKKswSWS4VqL6qKJPleE9lE3F8ekJu3s70lZc1yyXS7Is57333qMoSvb2D9nd3RYGVVPzox//iIcPH/DOu++wXC5ZrmRvy/MBg+GIsmooSmEBjbxjtVgwyHMSY7V7RWKyfgE+yDJEHdzYkRMYfkS7lz3YRFt1DqzKLUmcGXIO0Tvc290lfSWnqWvsXCaJVpXXgREWnwTpmpTWQmok9vW+BR9Y/BJ/n56eMB6NdGjiEK8DBO7dvwcGvvqVr8nvvefi7Jxf+eVf5vqN69R1zZe++EWefVaKgR99/DHf//73+NEP36GqKppaJnsWm4KmaVmvNzIMQof+BOAkmlLAPgijCbSVMRae6e6DAiOhWBXYkY2uO7zXlS/sY7EdKR42OtjBO2Xz+bAOHN6ptnHb4NqW1tV630JXguyPaZZA2gchQ6wl51ZVJScnJ6yGa5WlGpCkwkRNpQ+Y5XLFbDpmMh7hdHhS0zaU5Yb7D+7x+dc/z3wx573332exWFJVJaenxxRFycHBLv/bv/VHfOlLX2Rvf5f3fvo+b/7FG8wvLhTk2tA0DYPhmHv3H8r3J6I1N8hzptMJwzxnNp0xGg1Js4TEhF6Xbo/uF9rD/Q/X2sXFyvrSwNkYg03FxrIs00nKyAA8b2N8NdgZsD3b4s6dO5RloZPB13xy7x5Pj0/U79ZATZJYmjalbkrapmG+CC20SZw3UNcVm82GppYupVC4r+pKChsGBsNcfEiSgkpQoHlUiIETm8p1G2jaQGKRrUoAeBmEFQq6oPuXdsRYY6XlXTu6Qq6XBF+o+3QoKhpCXKSFkOAXnSHR/Sr4kCSsGZJY8LK95yAYnPzGhSKLczRtExl4oXDmAwHAWjLVCgxJWchdT05PmE2mYv8+6PIJ3vHxxx9yeHjE5z73Ko8fP6UsRXP4rbfe0k4yzw9/+CP+zb/5N3zrW9+KkhDDwZDzszN+8pN3KYoVTVPJwDfnwaTs7BywXNes1zVn5xtSY5lOp2xvbbO9s02WylRnY1H93i57CcxIvDyrgIjKPXZxjw9SPDF/c5c79ObLOT/v6+cG+GazLYytKcuatjFMJ3vkWUNVlRRFAcM0BlLOQVUKCltsSoq1DnYwGQ6DDFIaYEhwrWM8mjFIDZPJPoaM7a1tDg9vsL11wO7uPrOJTCbFyGjioqiYX2x48vhMq3gNgSnUts2lllEg/s7ajsnUtbTaS1MUA9BW17VunN2t67ex9ltir4JV4X/h50u6RL2/9Zlw/epvAPyCBkk4vkx2daSJtumYrgUwJD/hu/rHD+1JP0tL7zIw1f0cXv17GTbHru04LF51PL3ASc6D+PvuON197rPH+vexzwoQ+jwRvAMJ/IIQfRrAyR5wcPVed47CRQAtYD/h3/41X223dq0kQOF5yDk71W8yGNNeen5yUK/nqJW6S8BoAE3CNXVAnyHBe9XYMdra1KtAyvf5yCCNQChalVQqNZ7oREMCF7y5VS2sMNU1sWkY1CT3KoBdeGwiOm1S6fWYJJHfW0vdlh1opEFmmiVqz0m3VmJYr4GmXqtNdMK09aINHZ6xtnFZrNw7py2Xek4hLDN6LYJnqW2oCKonJJGX7ftS0k9nb0ELKPiELimIoZT+3RJ8fJIqyNN2tuMtGK3gGv2e/hqyqY2bbBsAvzTtjDF8j+2ARufUt6H4ZFirHZVI7YHIdAx23AeoQyLlXb81M7Bw5bqdsgEkuZfjRxDPeUGK6ICbflIgSYQP8AtBKqD7u+99h+iddsxqAZdsKsEOLgEr7QGz2YzmQFh7znfMZamiitjtelUwny9YrlYURUFVS5DRtjJBrW1abf8SBqdHgJ66roQmX1XSPqltF0EzqK5rxuOhtKKcVnreiYLuwi4xXkSItyZT9vf3OTw85GBvj+2dLba2tggtGsG+ukKBQYbg9TSf6HxwABLCvQtFC4koQtBE7/mZS4DvVdZCaOcKJn21gCNrPDBdiaC9Pn21Ofl7V4xS9pbaeX8fSdKUqnWX15xmmgHssrofhOGAYKkbPYbrGJ/Rd4YA13tc08Y13N97wvf099q2bSEJxRUf79XB0QFplnN+fsHFYs7p6RlZljEeDcmShKouyVSbMdyjpmmomoam1gFaEQSVZ1M3BYmuocZLWCznIoWd1jnQwmKSyn1bLBaiXew8RV1hbUaWlnz00Uc0TcMrr3xOBjh5z7PPPstsa8oHH33I3Y8/5oc/+hHz83lkD5VFyenpGTZNSE2KsR37INiHsVZYR0aSb2m9kaedpmkU2o52FZNddTnarpSGqc76/BNtbRJ7CG3p0mo+GAwEAM9TJpMJw4Ho5UmLo8RnWZ5jILaShdguWGqWpgzzTEW1hXHVegXXjLYc0YFcls4mw0CrkPBHoM6HtilNOgwRoHVevGY3QKhji/YLGPK3DkiS4k3n/6MdulCIu8ww293bwaYpH9/9hMdPntA0oldbljIsJTEJbWL1Xo6p65ymqUmaUMiAvB93EoqAnqLcUFalshNrhsOMeqvGYGjqVsADGopNwfe+9z2+8pUv8zu/+zvcv3+fBw8eML+YMxzlnJ2fyn0fpFy/eY0Hjx7yX/78v/DOu+/I0KRKkl6As/MzlqsVJjB3IqCkcVViYlEvJJ6GTj6jn/T7WMzs7n1glVvdO4w1JCaNe2twBXIs29m9TvoNTjAe2ThqV2F01HeWpLSJ1TjKkqRJtC9h8xgF9BrWmzXJwjIYZFR1jV+vlQme8uFHH/HgwSOmkwmTyQTnHKvVms1mTVFsWCwXnJ+d09YNezu7VFVDm8h+n3rLarlks15zfn7O4eEh+zu7pFmCt13HjTEGZ3p7vUHUhMO+gNH4z0CQGTJERlEgNwRPH+w27EUe2J5t8ZUvfZnFasnjJ0/45JNPWG9WlHVKWQozJ0kabJJITtZ02nPeOB101fDgwUPuPPcsQb/ZITGLTTMeP3rMf/j3/4FXXnmFGzeu87lXP8vXJl8lH0reM5tOOD895cOPP+att97i5PhEAPBSBhusVivND0tOT09kHeiaDjqDalQKfMgasapPJlpuorMaNEOlYK1SEDYUPQXQc97HWDuNLDKDpFmdr1U8Wm+trNVWNFgInQYGr9rUIZaUGNT4sN/p/+vZNb3coWpLGfxhc+q8ksn2qjkbQPPlasnRwUFk0hbFhsFwwOMnj8jyAf/db/13/Ppv/AaL5ZKDgwOM8RTFitEw57XXPsdoPOK9n77Pn37723z44ftU1Yblas16tWEwHDIaTyjqlsbpMC08gzznYrUmMTJYZDwasjWbsbuzxXg06obFqK1Fpn4ApEMrr+86lLqCgA4O1JikUeJEaHVOrJUYPMQl1jLIUp1kvYNznjvPv8Dx8QlPjp/y4MEDnj59TF1XLBZL1StsFWySfNZYYkzrWodFYuAgI1M3DVlmsTYjzTpJFmuTKEki0+XFLvNsAF7jzraJ4J3sgQEokvwx7jNBo19tQWJiH3/v492Xe2QQCR0ZHNrtOT58TvPVNHRiBJJPwBG8nFdo2w+HCMNNJX/WPE2JVd0zVTM1BqNDLbu/BVKDsLcX8yXHJ8fs7exQN8I4TpzF+ZTlcsWP3/kxw+EYp3HiJ598gnOOGzdusruzx/7+PsWm5P79+2xvb1PXNY8fP+bjjz/i/fffE43szZLlYkHdNkwmU1osF/M1aZqRJeL7Thcr0sdPNT6RwZppmspwKh2QNRoOGQ1yGT6SZGFHUrsMNqu5LCIrJANWQtwe4sauUPPzvIzvR/P/Fa//y//1/0DdPGI8nrBYbBgPhca4KeYs1+dYm+p2KT3JbRPa0lKqsiFNc6xJmcz28QjjL0/32dvb59rRNba395iMZaCB1yS2LKUlZbOuYrLlvbSK+CsJZAju+8bVJfV9Gq+/0iILEfmgazUNL+9M/H0EmMKm2mM/heP2GXghKYt/14SkP5FNrqdfPePS32LbbS9xCkBTuP4gtN61MhH/Hs4r/C4c8+r7+sF8/7PhPeEVmHj9310Ct+Rd8fdhoEH/vl29xu4YXZuMhheEpxMCv0+fz2Wgtf9779XpaUA9m404OjhAktJgJwHQEXutm4Y8zyOrRAZhhKpmlxQI8CdaFkE7rrvHojGUJN1z7nZmYV52LMWOARDGgXfMv4S6qWLVuGNXBkBV7CxJkhiXNa7RqXNepsW6AGR1gFfbtnhHDFTBR701kKSmVZ0OY1KaumtxF20KAdUCcB5swhiwPkxtDjYpgxVQwKpv4+GZWTo9OWETSBXIaDDUrdVQ+UgkUEeBXgOhmmdsZ+99u7wKZvRBZ3kAJoIYAkJ3dtkFF33blU3U0IH3HWAc/AQEAK1vq/0gPNjCVdv2cvMv+SPvPan1XD+8rj8HWhY6GdN+ah3Ea9SqZ5geFYfuJKanr6dJa2h/c53eWGgFNkYCDGOSSyCUNd06stYIm0L9btPUch8IbKZuTcg98SpSLjZXNzUWS2pEpLl//eE+hvZxgt/QQUjSOtTgvAj/l5UAeFLccLR1Q1mXlGVFWYlQuFMW4GojkxTLsmS1liRssyloXctwmMfBG6I1O2AymbC7vcv1w+vs7e4ymUwYj8fKXutapLr1fkWX06sg/6f2sMtTOzsQWlvd2lZA8R747L1XBoK91LIVj+Eu23/3PUbaclxnL85LYtQ/h/Dq73Gg0gUKTGI61pd8gdfK7uV9Deu5ce1mXNNBPcq1HYjZ32t/1itowETNSt99NvpE/X3Yi9sI5phL7zPqf9rW8eT4hKdPn3B2dspquWKzWamwfE2lDLrG1TolHGWNKoisfrufMAdJgv5a8k4HKLUem8DW1jbj8UjZoZmyWwYMhyNGo5GAYlnG9es3mE4m5IMBRVVydnbG+dmZJMtFxWq1YLFYsF5tWCwWgCdJhQEakvwQ7tiQdKj7tIkCF+ERhWTEBpHuwBLSCaOJTKTN84wsyxgOh1gd+jKdThgOBoxGYwCd+qysOtVeTkKSo7iCIbSyyt7fIgmwlnHiHtffo8L+7XzH/EyTpOdjfWxH7IBKaOlirWAL1hhSm6gdqe04R+tdHOrQt7Oq3nD98FrcT7vCZKeT6UIFHyKQGFqwjaKl3nXsetc6yqrm8ZMnPHj0UFqslyspUjQNRSWtY03jIhu8aZy2q3aFj9D217atAGBOpTHwJEnKbCZTXre3tlgtVxhjdDr3kOFoxGw25dVXX+Xw8FCG12Q5w8EQgLPTUwzCyvzhOz/mp++9R101rDcraVktCi7OLzg5OZEEVe6yXGt8DhIPWEWLne+mefsr8WF0GbYrkuCR5FPxDu9dTPqttkyG/w6gTpAR/Vmv8Gy1zBJ/ZyD6RdPzM31b8E4khbIsZWdnRxiBXiQZxpMp48mU6XRGmqTkmSSCVVXRNDWLxUKAKO/YmonGsOhCZ8KAEiOMTMIsSxkPh+xs73B07VCnaSYxruvnEN52e0miA52862IGg6WuSw73D2LxW/x2YPdJPCAFjVZiESPSHXVdc3x8zCeffMyTk6exzTEUP8qy1D1XAO261kKab8G1bG9vs7u7Q1GUpFnKdDolz4fkWc5oOMZ5x3g84tq1I7Zm26LpZWVAxNMnjzg9PZXp5rVoA65U+zZ898nJCVUV9EbjQ5ZnHGJCjXsTBSlkzxOwOTHaYuu9yL2YK3rhSGtu0+rwMLVfQwciekLRJ4AyxFhWTVi8Qohv8RGA6YN3IQOKe6jGX327DYU+44WQktgUk0qhJUkzfXaG4SDn8GCPtpXCaJZnTKczJtMpo9GE3R3pOLh24wazyYTRaMgnn9zD2oRr166zXq/53ve+y4MH95lfXLDerDg/k8LS4bVrjCYzvJG2dolpWhn4oJqVQSrBYJiMRzx7+yZb0wlR+Le7c5oOGbCau/vgV330A94ZimrN7s42SZKI9p/put4M3V4fwfBEdOn6e0KIGbGGuq6oyorlcsl8fsHFxQWnZ8cURUVRFKzXK/GzVU3tamlLbx3WyDAKycdFU9coqSg8B2OssHATy2g4YjQec+fOc2RZxmKx4N6D+7GwHPaVpmnjQMNgO21vgGcb9zGreVqD922MxcI0cln3YkChIBQ6apwOgAqvkKdJMVbZfkAc+pjoPqogp3edgqXkrpcJTtFXRoDbR18T9mmjefju7o7q5Bs2xYY0yxgMhozHE4bDMXu7h7z66muMxxOWyzVt25KmMn3+lVde4fr1a4zHQ95770OSxPD+++/z3e++zWazYrNZSnv2coVNUg6PrjOeznA+CQtLgUjZXwxoIbGz3SzLZF9NZBrxaDhiOh6zs73NYDQkTa0oAikBS8DNUFA2lwD6cG+W6yV////89/h5Xj83g6+qRRh3sZCAYL05o57LFBRrRtQbgJzZdFdGcSeePB9xsHeDnZ0DZrMdtmY7TCY7jMdTGR7RykJbr9eUZcnx0wuq+lj7ybuWm8CUCG0iTePjWm+buktCTbc5u5jQ+PizU2qm98p+Cxm5Gr1oeQWnLWK63fE+DUyE/10efuAuvadfZZNgrzvHkLyHDTYkeuHfkChdAhx715mpyHR/8ffP83IiJw4/HOvq8I3++6+CIpeDh0+DCOE93T0It1ZYCwH86ZKrADhJu26//aX7b33AoK2YfOqc+uffgUCeMODhEiCryZ+MqZdzvsSsshIApUka2w2DAzUQKxd9wMVYumRNHWEAmkCGdQTWQNs2XfuSD5u9OMjQOxfA2852PG3d0NIDivV7A+ASgMiYJBivGjwmgk2BGu57FUIBSWpCq5RHElyxeQFtEm3bSJVJFYdVIOceWJpha3ZND3DSak5YYqIZ2Nnipeftgk2LvQRRbc9l2+ieO3HzaV2nr9e2YZBDt7FfXTPxGFp8ABf1DOW9mo6E91/JCi4BcXrO/TVy+b997/8gdOAGtlYAUOVS2k8dg3ANvUDVI4WC8LNNQiJ5+fqu3mdjUD/pIjgqSWWX/LVR7DcwYlBN1OC7uuuW0+t/Z1cAcU4YFbJnamCs2l4CqqR0IrtGwJG2iQBVZjNty9IgXCcFXgKWWmldEPAhBG1iZ8OBVEUDoBELOkGXzhL1bAwQxMjC+nPOSTVVq+sBxJcJ8CZOxQ1tutIN0dmzBFnazhiHN/XA3cA2RVkBPb2o4NP6NtsPlDo/awgMhFBFlb2xjW2v6DPyzkc2afDj8ThBtL23D1hj8fZywti363CdxoSJbKIr1KjOXQCPYyKVSGBr9FpaZIBC15LcsTu7e/jpqmbfx18C1AngtIuf67PpO/CFWPyo61omtnk9CS+i20dH++zuzHDuecpNxXI55+z8jLOzc5arNVVVUjYlVVlpe5WAL847KhWeB0/buOiT28bHARaBSWC8x+lExtVySTfdWuy+LCvCtFmr+i2PHz/gOBGQrNUWdNeKqPzF+Tmr9UoF8GtG45ECAJbEmm4IkDVxEl6Wyb+JTUhSaTvMskEE7ga5tHYOBgPywYA8E7tP01z0ytKMLAtAoSXVmMpABAV141E2uScmV8HHdUqj0c1540kR7aL+fioDciJ+o0m0akwG2QgTWJ4eq7IbwYYFvO6msPa7B7oiWdg3Oscf/h5sq8/I6+/ZSWhVdJLoNE1Llmd6Np3tBuAp+PYgzWCMgDg3b1zn8OiQxcWc+/fvcXz8VFqOEtmHm7ahblvapsXaGu9TPJ66lsFxmIS20W4OJ+wuUXJpQRlkWSpMksRa6rrBmITUyST1xXzJX/z5G9y4cZ0bN26xv78nwEvbsFgvOD054ZO7n7DerCkKaSEuig3L5Yq6qrmYX+j9sBq3dYAxug8FdnAHKPc0okxgQ3TPPsSLl3wQXfeGFxSdSyytOPgM+W9jpT0rAgpatFUAJTFBi/gK21+fT/ApYcK0xB/allbLwJPpdErr2gh6bYoNm82aNMnIVBetqmo2mw3z+QXgZYBYPkC2JVk/o9GYJE0kv3Gwvb3NeCwT1Id5ru3nSbyDXcwcES0AEptFwC7omgVbu+pTI0CNhFEd8BduqdhuZlKuXTtid3eH5WrB2fk5T0+OWSwWlGUprYtNQxUm7DYNTZ3pwLWK1WqFMTAcDtlsVuAdw2FLO5LJylkqU5cfPXrE06dPCYPPBnkehxgU6zVFWbIpCh2QIDpwZ2fnNCHWvlQk63TKUetCdWFj/Oi7FklDiM/CXqu+S2MoC2TWkoZ42HXv/f9XlPJR4zvYZ8hx5QChLTGC3D4ALP3cznfn4jsZHq8xTBAJkFynvhQ3WAsnp6fs7e2Cbajrhs16g0HBXwdn5+cc3rvP9vYW4/GUICn0k5+8x9nZCUUhepGr9Yr5xQVlUbC1tUOSpNRVjbfa4eQaDA4Si6sbGufJ8hxSw2Q24/rRAVmWy9BNuq61KCskNwDfEgHNRME55xuVBZEp3GHw4aV41FqM79ZxWBJCIkkiW9soXmgD+zsbMBrIML+bN24qe+5yUTD+z3WF57YJHV2aK1ojxdamxljDcDAicJgF6DNdAc0Ydra2uXn9xqVr8N5Tqb5fKJQ2Tpiv0pYuUg5VJeCjb0JnS0XbOpURaeJ5xwKx+r+2bcEFUpTDBSDZB/tCpBC868BAjaGdDosKQ+vC+TplY8efezlY214urIWhjH2ZoPPzCwaDnGtHR9o114KpIiHm/PyUN958g2efvcMzzzzL1taMQT7Ae/GRZVmyXC5ZLOa8++6PZUJ5sWaz2XBxMWe1WtG2jtn2lDRJKYsSTBp9hYGoeS15h6GsBGNKkoRNUURbTLOMoqw4n895cvyULM+4fnTI9nSmensqw2SD5h5xP+r8NT17/69//fxDNhpYr2uGg7FO9huQD8dMxjtMxlvMZvuMB7vs7u5LRWA8YTickNoBNoGqriiLirKsefToJFZ7wutnsdeE9tlPlsXx9gMtmSjUJefeaZtarHJYdRqud0NtnNQWQJ5uk5OAOGwGVxk0kkR1lZYQOIcqQJ/pFz5f6+bfZxX0A0QQUdDwmYDeX60yhL+HwLR/Xn3Aq5/k9IG3/sYTfn9VZ65/fv2fw2fCxvKzWEfhGgOTwvY0vnzvOYV/+//dBWJ9pp5+v3z5z/y+/r3szrG7132wpUNZRMekUQFvm9ioyxQ2xxDwR+06hLlTVVX3bOmABTm2jRVkaTfRISgaSAubUCjMxhuk0GKkhUFviVPw2csPn3IIsgasOmwwJqFpm8jyC0BFuEfBjrIsjfemaXTKVdsQJu91VWAXKxfhO8P0zURZeN4JENRqAGJtGn2UsBfbCO5JUEQHqFx5PgKOykZjjKGTXOfS+4M9xGdJDJUu2Wtsf9bD9G2mfyyM6c4xRGgQzzl8h7EmBm9X14XYR6e1F16RYQYSPXg9H3wkIUh7R+97XGC9SaAWKPYmoBghUzIqVo4k/YFib4Pwc+/8goA28dx12IvvNuskSQmM0QDYSgIm15PYrq02PA8Tk/hQEVfmH+ml5yOMDKI9h+DKO69Ai36vFW0T5z1eK5zee3zTFUbkaXe+JE1TaFvRyjIBo5FCkE1tvFeukQAys0mnXagt4GmSSHCX6fnhdVJrd52Nsl2ttdKWrEUfPFGgHtMG9FOq8Ipc9Zmkny6KKOM16mvqsJimiQWeq8nX1WP5q8xSH/4ulx8YatIK2322AxCJn+/kA7yuDXdpfwrnHttTnOvtVY2AKkZasoIP7593KGY47/FWpl6GvcpaAWlCy35gFnofmx7EJyuzu9WBFMYmsYhiuMz0TJIk7ruRue8kMQvXFa/Be5I0TH1VVpuHUT5ie2vGzRs3cM6zWm8kjqk2zBcLlosFp2dnFGVB3VSxbdzFtmSZ9tnUjbRcugavrI+2aWQojD6f1WqtbZk1w+FA10rQ/QtC/QK2GX3um2JDsREGS1FK4GmThOl0ElsEx6MRO9s7ZGnGei3DKba3txkMhzrkZaDAXhZFxVMFs0MBTpZfqPQHWQgBA8LgDfFhQfD/8lRnjAb+vbgo2GtYEk5Z053QxuWCoUN8pFdAOlT9xGfo92BotXgorORPA3LCQLissRvt3/t4nBifaZtmAP6BOD2+vwZCEnUpyTeepqk+tXb7MdflWEfZ+caTZpaD/V12trepG2EVzxdLHj16xNnZKUVVSGtkqwCKTqTP8wTXhqKvJJsybVwTUi9Fi9VqhTWW7e0tqqqO665pHVmWMxyOefDgMcfHp3F6teoRCIOxqtgUG8qyYq3tkZt1wXqzxhhDlg8IrZeByRC0iFrX4F1LlgRfG9q5tUvBuajha62Njbk2PGdjNKqQ/05s9zzVmtTGOsC5s6cgFhLNLO7jYc/zPTHUuI+7jo3dqNyDdBWVMqyjLKguKqqqklbc1lNsNmAM52dnMWYOtubaljzP2d7aEnakl704zwcMBkOuX7vGwcEBUnhtGQyGZDo0oQ9KX45peoWdJLnynZeLvmJtPjJgwsT2AGC2bX+th7gIwlR6m9g4yGB3b4/n7jwnrKZGpskvl8sohF+UIuNUFAVtM6BpahnA6CFJDZvNBu89RbWhKgqyPCPPcqoqJ7UZTlt827alKAuqsqFtBCQNLPy2aVku14AnHwyxGGxqVTfRErtD9J5guMQcBWj1Z+8D6OfjjY37sRYSgm2I3SRBthgbnq930c76OZwUDCWoDt4uANptHNQRzFLZUV6slugrFHDynQNtgu/Rn+umpVWiQtvKhNtis6GuKlBwta4q6kp1AJsK51ryfKQM9rPIyJap1qJzuVotWS7mzOfnNE3LeDwmyyx1WeJNjbEZLlENy8TG1nHnHFVZYBuLaxpGecb0+kiKfr7rIutiDtHwN8YI4xplJGt3SPQVePIsj7GuiXGrxWmhdTAYxHsU7rntAdyXc/ZE3UrIbwM8LosgSTNsPrjib8ArI13iufCMOluJhSzXMdv6a9cai8kHhGTSGGnnHIdDaCIWc339dWdXXbderYNwWifFx6qsFHAX4G9drGUye9NQVY3o0mmxsq5rap0wK5OPpSvMtZoztNpKLDS1TkaMLt/sg3ohJxHwj0t/E7sT3ck+i/j07JwkydjZ3WK9KqirFtcoG7+VdfLuu+/w0Ucfsb21xXg8ZjAQ+ZK6rrm4uGCzWdOoj1ivVywWczbrNU3ViLZellCWBd4kGBq6YqqV+2wEoBMg2WtsoriKD10YDpdl6jtayqbh/qNHpLcStrem8oQ0d25cN2sAvHb39clMP9/r5wb4EjPjcHeL7dk11cfbY2/3gO2dXQb5iDQZETSPiqJgtVlzcX5MU0u7Xac50r0iaOE7dkP/f5IkdYlC2ND6yUN0kN7HRdgf+R4SpgC+hYUQ2lrDTb8KEEGYttVDvtt+ItydZ3AQgVEXKrod0BXaCW0Ej6KT7v0czrvfQhsqx8H4+kFhH8QKCy1oB/YByvA9/c/2z+/qM/lZ90IC0zDAAeg/gyv3LDyPfqLWT0wvM4u6BLL/DPvtsP4KcNE/t0u2oJtyP6AJgKg8O3G+IvjWowzTJYZ9Z2+sia1tgXX1szQDr15LfG9gWiBsAjkHaasIwULAHEOSm2Wp2KoxqrWoI7eTRJgBbccqksSpO2eDxbmGsEGEe2isoapLbNKx5cJnumfhLiXvIXawvQA6BIQBxAlB8VWmnDjL8AyUPWg6+4jJESYUy+O5hHUa7db7CGj1QtkrttO3CwWKL/3uMrh49Xr1oWkiYiLbsH/smPD1jtG/7m7N9CZRGwGBOv/maHqtks50ia7RTSQmiQFsu2T33dqNgIUKuzq1b9mI5JWkorWYJJ1OoEeCWBfB7AZjIA6k8D7apwSYra6XAJyk8TiBldrdW68tv915OB9a74K/kcsQceBQtJBRexaDU5/uQAg87WX2c/+5W2upm26YUJqmmKy7jjRJ8YmPvjnYblSFtLa3vgFrdQCN0uutzFpv1c6DPmAAkMSfdPdGAs5QAZQLuOobgMgi872AB64MVuoHfwqE9fe/8J2ffn+wNxsHGxhNYmLBB72fvYUSzjNNhQ3ken7iEmv5ks8QofGQCnkXAhiDb1UoOdgrRm1cGVYK/gTtNwkAJZTX8djyc2+9hEnmNgn3QN4r7E8urecIbvaC6fBswz0N9yNJuvsbGQVZhm8d3iUEUHp7K1Mpgx2uHR7hvKcoC8qqYrVZsl6vVFKklMmndRMD7kqT31CJb9uWupLWtaqqZDp0XVFVG4oiYzabUpYbFouL+Gy74S4JdSnHdApmWG1jHY1Gsbo8HAzYms24dfMmR4fXMBiS1GjLUKLPzEX2gjHSrm0CiBLsQx9BajPSJNHkv5vuHPypsZZM91ohpQffIPu6c31fFlhakkSJNo0KfQdgkB7wpcC8wcQ9LHynMSjLQIAI7w2o7RhNvGIMRLenheJdiDs69gvRh4Trj/8d1p2eX4i7wtqAUBAK688RtPA8/tIajjGR83FQifc+Tt421pB4Q5IMGeZDZtMtbly/RlEULJYLHj5+pMlMISCzMnbqWpI213oabdFqGhHyb1qnjKqSxWKJ9zCdTijLkqapGUSdUvGZIPuviL4HjSVPURQqZSDTKAOrJEksk8mExKbYRJih4ZrFD6lEiSHqN4aikzDLHUka0hXxA9bq8L3QbeAlQYr/bXVqK4F9FVrOhaFrEyliCkMyI8+yLmG3XQt6KLKHc8oHebfXmCQm+sFXtc5RFAVnZ2csl0vOzk4je825Tnqn0YJEpppco+GY6WTK3v6etEgOx+TDIdPpjDzNZMhgiOl0f7dG2Ua99SP/P+xJ4teiXE+o+fje/sbl3wW7Dj4y5g5qy+H8495jTdTnCjEiJFjjybOMYT6grmtmkynXj67x/HN3ZFJpseH84oL5+QXz+ZyTkxMu5nPWxYbNuiDVYkzjazKbkg+0TdmKFIAA9+If26bR6Zfd3umc+OEsS8iTTPS00pQkE/ZzmqRx8MVoNMImMvQxSuEYKzmqxgwdGNoBJ96HwkQofHUtht5blZPR4rwPRbI2xr8G6S4IU6Cl4nY5dg3+uO9PfGTFa8zdA8AEsA+xmOt8loPcNdq+aWhq3ZO9dOJdXFzQti2jwZCqqlguZB8qy5rxdBa1UQM4GuL1siw5Pz9js1nR1DXTyYzxcKgAqSYMrlHmWMtoNIzXJnGm5grOc3ZyAm3L0eGeTCttJV7uWLouauODaK96xQNsEtpqO7aZ+AjJTft7e1fIS1QbVoF6tLBA1/0T8r8kSWl0grH3oThhSE3n/6F3rhDZfPL7sOK62KJVvQKtt6s/gv6Axm4NJ9o51u3BEWq23fAnE7/Pap4t61+0+ls9vhbpYvynu1jvdzEeaWph3TYNFhkY1DQNy9WSzaYUjcGqYr1Z0ngZVlcrS9dp4SiQOwDClO4AbHuQ4oiTQqbc84GCfJ62afDIZ87Pz+J+UWw21GVF01TUVc24bhmMRhg8y6VhtVqSJAmTyZTT01OEPV+xWq8pi4KLi7kMQDMwHo8lhqkbSHT4hZaQwl5ujey9ZB1WkaQG5xRPsLYrhuY5g0GOTSyj4YBMW7PlHiqLU4HpDkMRn+ViS/5lDOa/5vVzA3y/9PW/zIvPv0CeD0nTjLqqKauSzbrg+PipiMMqQBUQTolaNF0L1ui7VigIQY0E6v2FE159ICpQQoMTDRtNXXfV1LDo6rqOxwnvk0rYIL63D7KFymr4/j4boO8wrmoQhXMObIHw+T5I1//cVRZfH9jrg3D9ADB8/lMAKF2y379f/cSvfx/6IGQAWvqARbjXV8+l/2p000sC0o0GGb33dp8zGBOCK6Kj/FkvCZqIbXUhyRegpANouuvvT/wNz7iNyHgEQWLSHIYJXL6/1iaxIhTOo/+MIACpNjIzwjX0bUHsRBN+TwzYoz17CToDyy9MeLbG45MEXMeoiSCj9xHMa5oaY6xo7FgR9U2MDCKIDjUCQNJyW7UVxhphEabCfgjXFkDv7vF22gzOg68jEgOJNFA1rbbdho1NlPglGW+F4h2SvgC0Gr0RkannvSb6ROAmbISCa3WAYKiQCoIg7C4fbK93vwxeE8TOxoKPCZtfYDQEOwqvPljR+dnLoFw4of5ak/PyutH27TOAmtJCrbmyaLy0HStKnm8YZ6IRh5f7nNp+9djH9RXPzkow1YHa4XvVZuPlSaU9JH7hup0PDCgbg/w0tXGNyJrzanNx+eG9+jmv7QUmQRiggIJmOLmexKj4foikvIlTDjU+xVoR5PYKhIbWfYwA65fXjwA6QVsIwDhI8yz66LqtLxctvBfAILTv4YUur9NlZcLcZd/ZtlKQ8kkiui+gAWVDAMeMQdhM4bmCTnY2PfuTYD3oGVprZbK7/p8skSiFHO9xCFjRcdUBFItsDRPadC4XVqKvMgDdgKPoTOkz9EIyrQvNewSv1P3XyB0KoJ1zzaVkUI6sia9Gy77ng70m6wYb2b8aUca11jauY9srSBW18tpWGGTG4u3lPboLhrviGnQM+lCASdM0Jqzx+eIxCrzjDLkmcz4RcX/X9gEY8Tvy/GRNZTYlJZFnVtdkSYLJEoZuzNbOFmkqgGJdiSh129TxObRNo4w7mda7Wkk7Y6XslrKsmC/mnF9csF6vWM5lWEai09eatmWzKYgtqUCeD5gMp2zNtpioiP90Kj+PxkOGIxGJNlgG+YAkTUhtn83jhWFhrYLYoLTcaIoCVMm/1lqSNKNpy5ipNM5Fpq5zTkAbtdA0sXH/8q3aGh2Q5Y1igB5tk/e0RgpV3gff2u0VTg/sWk+fNWsAowUME/1Nt6guxVIgfliXhwmAvrU9Xb8eMNKGNRmcUefr+69ubwg+TNnEWlTrs23CK9qujE/S+yegkvNhiqbv9jUPqUmYzaaMxyOOjo6EmVFVrNYrFouFxuUVi+WCoijYbDYURRF10NpWEvWykELier2hqiryPCNJDeVyQ1auGAxEDzJoSqU2jSyqSlv7+tpQxsNwMBQgJU20fVuE5vd2djm6fg2L4fT0DO/FTkbjsbaJi32FQSzR5muRbciyjEGWK1tbi7g2FB9kvaYK1IX7alwA9ohxiW87xqX3XuOxLl7oPx2JR9U7R/F6Yituoslh0NgM9hmGsVm9JghtlOjnZPOzClwaBS8JAJ7hkjxFd0Jhb9f42IbGb/W/KMs52rmsAe+c6I55ZNqyj8tQl52Dtm+/3e8NAlIbbGS9Bv8bbN5o/Ha1AOS83OvpZMJoOGR3ZxdzR963XhecnJxwenHK8fExT58+ljbDck1VVVTLVQTdvDd4JNaVeMTH545CrhbDZDyLeqCpspHzPCcN9phl7O7u8OILLzDIB5yenLJaLbHWkg8GmoPK9Qa7Dq9+NxU+sHd079aYweuQhb48kOjbqgyP7TqehJXqRGqle7xiq8pmMkhxu65Eg1udFaHICZclKYIWoLBwhalWllVs0SyLktVqRZYJ+/Ti4px6KNpmrXNsNiVlWbMpS3KduB1OKuzJdV1GPzYcCpvcGyPstWB3CpCl2YB8IAUCXIOxCYPBUHXMUgHs2gbfeNJBitfenTCcyhhLMkxUY1Qm/iYxPw3kDwHFmqpRB6kDJrSd1PZAf/DaXdD57VBICLqoXkGqALgkieSHAp6G9dsBgv3ibBKIL/T2BicSS8YYuV59R0A3fNizTJczX4pftUhurHS5SAlKi2Uhx9Y4M8R3EatIVPLAdftnuA9WJ0ZLvpyQZRIHDRkSusC6fF4KI+2l3CXIVzUCAraNao8qyOedrvM1VVFq/uFwSC6yWqmUSC1s302xoSgLmlo0NDdFQdu2nJ+dS9dCnmuXhOggF0XBoBiRpqLtG6TUTk5NHJxXFBtWqzVVWVGVEgcOx1OyNMU1ksN604C1OF1XJqR6XoFf40L7WlDxUcID0fbSLOXa0YEMjElsBHA9wgj2rTz/xnn9e9dWH1h97ZW44L/m9fNr8FWO09MFdX0iWh/O4XqO5mpl30n2gyycNjr8AHRfBo58L6HuT3uVOxV6t8N3hMXVn/oHlwGgNE3pg3ZpbzGH9p24sfeCun7bRkyIY6WooxE756Km3VXG3dVzCccN39EHk8KG2a9yhuOE87/aItwHla4Cfv1zCT/3E7PYphICfOdiO05/U+trzoTrMepc++cfklRLVznpB9TxCffOsf8751oB2RTIc733hYCm/xzCsaNeGP24OSTLHRss2JMI3YuIahD39grOXAY1pZ2lf67OGfAh8SPaKojzlWEbEoEba7RDTyuhEBNZSYRbveYwurxL8Pv3KGxGIUgQAK6VKXqqk2e8TotKZMBAx2wQYC5J5dlneQbGi26YtzEICa0LZVkqMwS8ThWTKb5SLRI9h5Ywardrw26jDdnExomFNknwTRsDhDBtONHkOEklOA0U+85WxAk2gbFnrThdFeT23mOSBNeCNUqbVtqGiRt5eGYunqes0Q607fuqbi0Rg2e8VFiSwBTyfcBS/+eJgEiQEQjHstbQqk5oCHycbvRpetkVCxW8Ww8JXUWvF2HFsMT03hv8Y7AnOZACTbbzzcFXXQL5nOsCx7iGRBTYe2FtyBCWrn1b/LIVcCb4+Z5fjgm88zRxYq98PlTSwxoWnUsNGBya6ATWoNpL2C01iQhAVbdmVAMPaakJepeRZYvBO5k6btAgKfjlXkAcJrVKMoa0QGqMFVpJwzGjfflOu9HaVIAu1UP0qkEYAE+M6QJCBTSsMdL+57QNUIPSgCdLO1tCnJhG2DvUAIxV+w97jQHvMIRIRO6ZBLlhf1Ucpcfu7ReKRDsxXFOfLa7XcmWvjGxfI9qlAsgQ963EJL1wutvzXWRu2ugH+pqwfduid7xgw/0kvX/+/T00xAB9Br0kuJ0EQih4AbRIcSgUGuRzYc1o8G3C+lK9Xi0YhkDYWtlP8szR1C0+HxAZZxZ2d3fjs21bGYCA97hG9p3WOR3+UgrbT9uaZTfRqnGSYqyJk92yLFcmlFxLADnlpoTYQ9rIvNpHX+M3XJdajqx5K6uhaVtSBWDE33uqqhKGkRHQUVyQ1+vqaRUbaF2DtWkvseqx3I3BWxMBDWuTmOSJjci/wdyFCSfrPzgsa8IUb/mdyGBcjj8kTrxclDV0sYoJIKG5zPoPtq0nG7+7A0HEBoKN9ZPueH36uyRNsP6yrElYD/F9Xvxjl+gF6YwQ74rmnE2kEBO+N8lzBnnO1mzG9SMZ+oEhMvXKzYb1RqboFkVBsd6wWC05Pz9ntVpzfnHBarVksVyQpoYsF6bzarXsWpYI+5ycp7BapOXRqrB/NpaJxlmWMRgOGA2HDIY5o/GI3Z1dbt68yTAfiMyBVXZ0koCV5DHIQgjY1QG88ky8/k3adZ0yyvsbvu2BEeH+X/URPrn8DK6CtNE+4ucuD+YLALYUt0Kc1MXfATTO81xqfyE20lgUiHmJxJ6dCHsonMohuuJlmHgf1knfiA1d4b91XgHCy7bfti2mnz9o3BvzpEs2d3nidP9+9EkOwd6DP/5Z9ixs4U5jLHwuTVPyfMjOzg4v+hfxphsIU5Zl1HirKxl2UNUN66Ls5VByb4SoYEiTnCxJhZWbJKRZSpKmpMqwmUwmZHnQMU1ItOA8Ho0VlOl14RiRODDGYD2xaG2CXyHcY81D6eR8jIKp4X7ELjJxjMgOEZh/iAZr61UuRPaEACo7F9p7fQSBvNp7AJiaRqaW9vfbEAcFjbUAdgizqmG92fDw4UNOTk44Ozvl7OyM9XqFtdKiXbcNZV1h7SoSVvrxcpqkDPMB+WioQ5Ny1SVWSYc0YTwaMxgMuXHzBlvb25TFmvVqzWA4ZDIak+hwgpBvBHAcvT9hWQdgNLROJtbEYmEXL4R70ovNNB4OOWIE8zU+7ufwlzUKgzuRn0NO7DykppMi6efeP8vHmF78EjaxrutNc8ce4SbsibKW5N+mbUgy2z1jtR9r0CEdwvBzQRsvDrJXpq/V/AiJY+M+FLpvnLYoJ5bWd/mocx2WE2+m5mTed907Hb6Q44d9lquPuWd4WTrMxvsOcwjMvqZthSimhc/FYsGjR494/Pgxy+WCi4tzFos5w8EI77wUrMqCZLUSLew009y51Xy3VXZgLUNNvSXLhgyHY6wRSRdvLVmiQ+h8YFxKfGut+BCrGooY9PqJsXd4Hq1rmYyHDPOMxEKaGB1s6TBp0osLjHRyOa/3W/wgV3L+n+f1cwN8q9WSxXB8KYi76tzj9BcnbQn9VopwMXFiaT8YBNTLxaqGJDfiqOq6jhtOSATSS+h7B4iFY/bbnQLQEwLbPh03JA79RKB/TeHYfTZAv80iMOLC+/vIfkgM+5p9V8Gnq/eyD5Jdffj93/U32qsBbTjHcKw+INc/XriPfeAi3Jdwv66CAhDa7kKi2QFZfWfbBbh9huHPOm9ZPHLcwLLrLaQr59x/Rt6bCD5cvj997cErAGhi4nECiNnXvRJn1yWa8bq96QUrXduzc210ApcBTnvpvkm86mNiHZJMh1NtqABSBS09BDCxWqUVFx98Lp0umla7rJE/h3tvNHiI96VrjXVtNyDDtXJtrvWq8RCSnNCeIWvPJmlsl4uJfd8OejYsLVpy1m1bS9UETQR95HpJ8GQMaLJMTN6TWH0PCUtI5BLTaRL2399PssLzDZUna0I7WhtB1U89X7VPNWrRD3FB264P4F1mzMZz7N0Dp+ARht55STAdvq8LpnUD6K2/cMwIGPruey7rSnXn0C9YGGNiJT98V/CH/SAdL+LqYU1dYvuizEukwGIU/BUgogGTXGYjR41T0wPMxIxdpO1fBv2tti84gMZFFo9T4E8CkSQWk6yR9RAriaimmz6+wMAJ7A6vCYFzor0XKu6SgEiFzfXACWuS2BKFTgFOdRDDp+xch1tIctVqMNr5FmMNad/X4UlSqzo/XdIcNHvQczIKugZqf3jP1eevoWEEmaWAEEBeOU7wT9IurdfpifYYAReDgIP63f09qQ9YxGsPz0/9ISaA8V1AnWVZZDpcfXVFFVlnTVNdSih/lgxCf732CzJXwfp+TBHeF3X+jPnUc4x+TH1u2LNCm7rEHjpRVlklbVyjl69JGGvCosEKaGZNQpKnkTUrBcbAanYK2ujQC2A8nIg+qg7kSKyCsY5u77Ad21Ewa2EPNW2tjBwfE1dZ5wgbEaIt9u+H+ItE/V0qz9MYoIp74yXGggeHIQCf6PeE5LnfKt00FaH51cRz6N9/34vtfJxeaUxYNx1oHLRQhZDUaVyFWEUf+qdAvviMej4x2E0AW64WPeM+3Hu+zvUASLp4r/+6xMDQ19XW+5hEeXoC8UTfJUvTR3uUWE6fPw4B2Myl+xyO57SgklidcpzlbG1vE5nHrmvJKsuKTVGw2gj7b7G4EDCwLOS9Xvax1mlB0FjSNCPPhwwHEyajsU4+HQoYmKU6CVomjqdZB5BF3mmqyXS4k95gbApGnqfIRyg7TYuSGPl8UCZJFCSx2mYOKOP7cgE8xKSeDnzu+5NLzyLcwyt20n+u4eV9B/QYtf8AwkVvp+uh3zEh+44AFqJz1XWWXAYeg930BmL1zk+sXxl2IWYP1+S7a+yAjSsvo3bqjU6H7AMOXdxdVVW0s/7f+/JGl2PcyyyifpzVt9PumnSdmYwsyRkNRpit3binhRZXa0OnSpgaqvkVMmjEuz7wTpT+MFpAiEVW73Q6ZgdC4n1kNAb2ktGVliYpsbSadrZwNe9yzgljVAF/mehaSV7Z9mJAlSoggKwWjFVg1QvDzOm1J3oel/I/NF9yjjzt51hcOp+rOSGae9Rtw7PPPEMwsjAQpdKiUhjQ1DStDG+qa9pW2HGJTRgNZdKxtQmj0ThOTgcBxLJcClAh/rHWMhnl7G7vAFJoytJEdG7p+TuQLirT+W5rjIAk+nBa10Zf2flES1t3hJywjwc5kqvPKOR8EWCBuL/Je7o8PWAOIQcQgE8mQ4eiYHwu6t+kG0E0A8M9DtfZPUO6DRBPnzccgC9jiCzEuEfrccK0dN0Vo6xQ33dYxVJCDioxfMewDfuKTVRF3nQazLLPiiax1TwtMRaTdrrNodMmrKGgW+xdj/VM53O7PLWTfAl+SXzFBLMXWJmez7z8srSOr1acn59xfn7O06dPWSyWlGVBUWwo64pyUwr5pKnweAbKGDVhLWPIBxlZlku7uU7MlvZzLdTYRJnhCVmWs7O7g00sVVlQFiWBMBD8YL+InCYJrm4pVxuGezt6jWH7vtzt0q3F4KdM7zx//tfPP2RDtWSAS467H7j0AShrgqi/j4m9vKfXBkbnmAI42G1MOqHTSEWs/x0hYOoz+Pq/C5tO2JjCZh7YcP3ANkxG7IMW4TN955llWfx7+PeShhdXDVo1gXqJX/jusiwvOZ+w+V+9p9AFnv0ApX+eV+99n+EYrqMPKPSdXThn6LRkYtLWe86XKOpGnFIAO2KCR2+Tp7/haBuWF4BAPiPV6VAZiIlmL0AISXOskPWC9W7z6lhkl5PAvkC8MljgkoMP9tAPSOTaoQ8QBnAuVI9arQ4lyjoULSMvrDMvQEKo3ERHkKbRcYffx5ZrPUW5DWo/xsd2YJtaDYS65LOftHRBvbZFGCMTxboBa/oshLlKL5gMYXCappF6f5VdmihLVVgWqVKMQ3WNmJCFVwcQhepm2CY6YLhuauIUayPBvEy9kgDGeXdZID8GcEGsXQIBG7UuLoPBXeDpNDGLaSIhBO8ndFdfXVsKAX+L9z0wQb0OznCu26S775eNvv+Y+j6oH3z1v/1SctILnDGd3lXr28526SrQ/YRPfORVoLsDFuN5GuJEwP6mG36WY7lP2URfD7R/H42xtE2reJG0+YZqXgjp45qyRIF8r3brbbf25DloO7EG6bKPdH6u/8yrqsH5ptOqpIlSDuGpfyoot90aDf5E7KUNpM0IxPTtRLRvwkCdTn/FgAY7XcLX39NiUmG6ir43CkDpEWLiqUC0ifYXbFZXV7AVL/fM+e5vnZ/R820dnpbECpBk6NYTqmvWulaB0svarFcZHf39KtiEOILLiZ4n5mmX15Yx0a8757TT8nJxKR6XjpEe7mPY27qAtltknT4ol44R7LRpatI0i3HFpT0AWcsksg9ZY2l8t/d4L1OChTUqMYgN7TrafhHaWPBe9J+8VM2d6gh37J1wXgroGtOTB7gMwnkvRQ2Srp3e9fVDvYvTucP9CrYW748hxmAh+W1dsDm1LQ3Q00TWWEt3jP4a7x//aux19XnEfV1TZgjarlqy8iauS7UOglYu0W9L/GAUUIzf4W0Hzic2EGV7PsVfam8Pn7saLxE+5/wlO+vbVLivfY3aAFBdlWyxVhKIUHDp70lXbfb/197fNkmS48rCmIOMyJpzrumaJLNH9///Qkn3OWemK4Mk9MHhICKq12Ta2Q9as+TabHdXZcYLCYKAwwFkICS/rs+lIJT3DX0e6dL1fns9Opu4ROMZwDgXa2bJBL3HcRz4irp+crInVL+Xyo9dKKW5K6jU0NsrWEt3BpQKcq48J1mY3aLEhR5daalrELCpdqd5sEoX7gECd7hZ1ihcg3q6dwJAFjUX0/b7sc53kFXzVwNgz7Ir1a6sYKADQHTLvNkQ0i2S+S3a+j9mnwjEdEdV8vsevmd9OXorbDnbAOkG1u6Mzz1l+2xfS2z1OJrDOde7CfioYF31ZxKsbbuWePU1nvaUu/8IPPL7JsSS/zb6BPXcZNkc2lI8JHlN1uisgIbDIu1ZZ7H0hNhuHgFtvWt9PlPkA7jZTyZ7Y3GyNEcarZF9r0PWbd1+r2HN0/KEgJdcF8v6282B4YPHD3ZQr+orBRgsbGJrD9uifOf2DBagTTC9Q0Dxer3wP/7H/4jzzrKGrppeWG+yFmjjho9CG0P+I1hj0kpQ2ZWZ45G2Tp12FEbnKvtsDDYmyyYZXp4b+6yfka2ja+TeXTOBruWeW67au/p39fkF7nHPjNv+1uc5nyvPIuEPz88YkHoPvgGwCnYZZMeGP+AAsoVQ2AJtr2GWO5K+8g026hzlvXewzT0A9GI3IuxIgYsGC6Yq4B7dpqP+cbOGdh7xGNIn1OEJRjkv7stzjwEM2NuivKzcn1ae925v199X3dFbxx9fX/i//M//if/1v/5XXn9e0XV3Tfz5/SsaT/1v/Pr1jb/+/DMB6hX1Os06Xq8TzQ70fiQbmqy/lmdhj7qFf3z9gf/r//3/hq+vF9ac+O//+m+MOcjI7h1H2yQyEnosG2iiGUFto++3rnUDX2WLtHYirPsoN2UR/vx7428DfE+jCKiG8y50vo2XsRctOulc1wXDRsN13ecB4e7ZZbcy0bSpgUKBjuu6e25cOaH1GauB/X6/aTiH8f6kmusdnmm+1QCoP68GcFW2eUgWkK+CaxVwk8LR555O9Rjjdm8d5M9I/DMiqeeoKU66bn3f+p3qKNVDg4651mAXYte7pEHkv5eXrZzu985/h65bazM/np3C6mHHRgk7EruNs3rYbeVcP9MaO8FVAFFKCGjFiGiwSCPoveNI43rBGlMrlnuy0eSQrTW5cQMIMkPW5SMohIzINSPr1dfMtDw0gy+mxu5GJQjnfEHdagGyRMZktHXZBp5aGCw0xLhPj3anWfsEPA7lZsa6AQnsdCzbMo4o3LprYcThcuw9mp91jwMvQN5O58PB1CrVbYLTUOnBuBIIond+As4yVua0PDB+pJJXmfUdBZdhXGW76p8tX7o2srujRPCn8QQa666INR2rBtYP035vsAAl7ylCTU5pcZplGMhQSrae0/FPveNkJ661MrXk/mwlsmlM7VK4ukW6ausGsVMkFzv6zneZcaD1fgTLbxekzfdovH4/Aqxofku3313LVhhttoExWrSQQfEElwRSJFhQ9FwF7Hs7cp3mXOyO6x7yMpPBpxQrt60X3B1BrIKo+CqOvtYqwB1gvWNeE5jAcR5ZfwyxpwEasKqwt+CwpWirXDfktVuA2zuFeYPhvQn9D30RNf3qe/M60sc3EfihxyFQBA2qI6J1h23D/XeBoXpN/ae06DHn7TxK3f84A7RmydpagzJYdHh1LmsDqgpC6zlUcuMZsa/nrwa/b8FIvafr3Bz/5UCTw6eO1T1raLZDhp4AvziTnMCg2JMAa3b54l6doUvTnoiz1NAwI4jTQhd3a7uIemPh5+kR1Jgqj2IMjPQ4P8rZXtm1aQOsEuDEToO1CMDBECwXysntbLYdpHjKQh13WQmgwgXohRTrZkWnyuCuz3scjSGMqgckfwgHCIiC5GJO83NHZ7Rea5oBXEi3ejrRwAawZ3Vk8GRWbRtJYGuVtwT/Hvbhc670fjr39RhKsa62S343npspW+3HNRWcPM6GNQtLLer7WQD/FajYARB9FpjOwJq5QFk5mfo8iAavXdN2BdggsGvL4X73LC0Q7591fO1uO9/3LQEugVkCRG6gnSM6pT9s2gAmnnJTwS797mnH12eQ7tlnXPF/7PGSIeS7A2cBXranH89f7gW/vX99Zp158M3+HYPd44FqI2WU+OYjVPkUKMV9wD1Q3w3YJYwAZAmi67rSF5I+fr1eqUukz3UtMdjEaJNO3yQJyUAHPNhcqDpFci9fMkAyQ5Ty6PfrxBryLIpi+LYZMhuMus9tlcffBo2cIJVsMMmI6rjfUkNLdpjmYcvTBjfqeSoZ3XuSerEV+Xv6PpJjBWz0DE+/8vl+CgyMNTfACKBFejPiegIjsqaeFX/UoxOtO4MGxwHAcfbMEeV3vOjPkHn9azmbKTz9VaX86/0I3K3d+bizuZYC/qa10pUF9l1XbrVqi+Sz2d12FU7QolFP9RH397SX72t+Px+L3pKt2vHjDNCZuCbrLIqxTdkwjDm4Tx4gvWzCjp1doHlaaxBrRhAGiqmnciibZFJ0OpB66Ogd04Gzn+WeHtgKL/rEOerz1fmV72QwLLFtgxRxIxg89F3qIafmn3E2Sd5f54nWXgAcX68X/H8C/4//4/8ImY37tk2aYK3XBmajhUuqhldhk7FpSfEXo0xIe534H//5n7d3ZUp0+EbPfdpZUoe14e+BxefZdrM1rG3/9G+Mvw3wud/BKTJI5BDtTi23hSso8xjXrUPR0zmrxjoQRlocDnm/h9GkzVlBILFLKiBYmXsVrKMRedyYePqZhFvXF4hYowIVoNPnZCDqffjud1ahDMEKXlalrOdVRK0qJBnawJ0VVI2SuomqIaO896eBrntVwwd4GusEaRa8zFUFZ2ODRAHr/jCG9AxVhsTm1O+kHCGD0+w2z1UxcK1/NizRdbbyNbiPANOOIo/bGKHcHXfZLXOgudZcbaMq2D5AMW6BpfTYODipgBeL9pttY0bAwBTu4nufibXYtDcWuu10A8d2jAQuVYNRBqHkadeloFLZjjHyAGaEN6JvDUBHpG4FSOWWrKeULfebfHK/LZztAFNrwviPazbrCV6cx4G5Rhp0KgZtQDrJz8BBa6wP2E52tZvRcbgeeHT+tlGnQ6eyMSD3pdFoXO6wqFdhYFSY991Gdl33NN6bouBgzYdi1F8BiLqz8KxyjHRozTlhpbRAdRKhKDcCrEU0U+nalw3wcOxNEVYvUXU5YGHodpcNhzQyonQCZpFnnxEFb3Focg9l3b1FwCp1ULSS7+3I+SZYQSMw92aX7o3DMkAmGe+pnzNSee8AXs+Iqv/mnASt2wGHmKaFdaFrOfeJNbIMu1kCcPncAZgLlO6NxZ8R8pjGkYPgQ6vM3zAS1sI1RzgYFo4tdSJZXz0NQENDP6LrqG1ZNQuA2HgvHq4BG6vuHjaoSoNvRAqkHAoFLMSitV3fzw0w1sz06ERLkZahg7JP9qjvKhln7R/cnKCqC7Q39XNrFs16BOKK6bt1snRLNUp1Xmp/1DOuysizDAfPw2C39AMzikCf7cjaSrmOYslFeugcUVt1TTgM47rQjwom6gyT7il6tAAxR29Ytjt+VpDBFgJEFOi1d6jSfja7goEEBMgL3X8Gy6I4TZoP6Xmt281BKewofX+jfmF4Jwp3N1Tze7m2wIxCDGIvVWfD8rL77Ffx8Ba5u6yZJEP4Prc/zn/T/BqazqSp+XOWEfCftRrlODTSg1OnP2W7ghf6/pj3ZjPVPqrPVm3PKvvSM/XvclipO5DGvsCpu/MUQEixmfghnUdK9+SENyf3xgrLgl8RE4PBy7RVW7AOcq8zBbY6rXS2EPs73h1bb9RzmIBSPIPsO8lSaXSie+gsAH6mfO40y592nuap2tGygVzOpv3eQa26rMp7tV1vzM3Q2x7zXf0Gzsm9XEAFkfn8MWO27Yttg/Z8d/25fZty/tidpSvg2nzLTQ3S/85Xeb7/rslstzP2h86wDZJUHXyr/QncWP66X7W/TKAX6tmq9VLQxeIcDhArmrSps7Kuu9cvOoRHR1aA9omySEYhSNQ5qPrluZ8NO+hVy0CJgdNCn9f5ufs4xQfKBg7S9VsH3PZHuY72Uv25nvUJYP14p1DAHjZnkhVjn7HRQtkLFM0NPO2L7owdhO0WtUDNQF8n1ipftey1bRvV9d+AziI6dTuz55zhKyk4tCKzZp91nNIt75qfOle633OtxVStpJlayqvKgNZT6/8EcG81GBHNO+L8qu+6VoBH1rFZuwJ5kX7LuMa2ESOAKFs3QVi7k1oqUFp1UPUBn/NQ/1ONyqeu4M+2TVbtsB0w3fiBxca2OMm8rEfrJTXbLH29lO+0PwMXWOF/tmD1T8pha8gSTpSrxQaMKjAK+W0ky8zo4Ez7OXToYXDf/ofFs7op4MAfMs2enX/VwKu3FiSeEoCTvejCJo6bDk55XZWItBn1f3f8SwA+eMO47gAQgGRRUUotX1JCel1qkX3f+PVQqdEiYDMInoaXDP96UN8PDrvVy6sHVt2k1Xm8ruuHo1Y3BIuVXpl7/zTgzEj7FUuu3r8eqNpATwp9vaYU95Nxl59dYMT+N2m4T2VU7/00cH532N/ngC7GZoWEg+jIlMlaSFKucgslk+kzYcS4sx4b10SGjDZiA0C66tRBYgYV0L9wN6S3bCDWasH9nmKhudvAZU0zvjOWaGAN5um3nXbwZIZkR9Ui/72T4rx8Yfra3fLc4Y3sIRV3X0ZnZkZjEQSdeo7Bw0t1s3wlkLLek9Rgdx6skdrKunhk5jUzHO1MhgbCEK6GmqJPVSZZVydA9y6AtWcKGHXwLhQKWwQaS8q0O+AjDs3zwDKygghwyoKL6NNJAK9H7cTlk6CE69BmFLqB7IvWWZQUuZeR7etl4B2vk+Clb4XeFJUxOsRixFBHhaETslUBHrgAYdHsWwKarfUAyHdTE6Wep54PuVWXpI4OxL5fvnBBzYPCMBHrIUFyOqyKJMpZdvCzMsbcPd+HKXdR9wtIJqdo+ss3yEiDKVIc96kW4C9Stvl5ghprFhainLYC8vezwyffd/nKehxrLWAh0xOHj9jr2/jkHt/zsbtJRTQuDGGe9bzHcfSbg0NjW0XXcTtTlN0DV0pEGMMNBJv7/RyBDLF4j7U8GmkQTFXNT7Fups8CZbDphtiQ3uiE7DPywMQM8aNx3wJgOh4Gb2us1WfmMG8YcyWgt3wF62VlA455DToaqEazGH0CYsko3Qb3dorSy44dIZZgDcbxHe6GSBrnzshyOhslKl31DQAsdSkOGVFhc0ewemIv9qNnmQLKquE72HAwoK3EOShbsf4HLWjAGjurumFcBNDaSQ+nRSMfdlILuTOkfEYpSHQjNOsNuOab8+MtHI478MTzqDCbbZfdQCM72WAEV3WMSD5bYwqMQckbBO5jM1Kf1r0p+Y5arjqYrQS3sBku7jQqX8cXbBmGXwBYf4uAyUyjfMb3eupHzzNfgRkLXWVGUCrvg7XT5aIZCWzbDVvu4kXMMdaVRb+3MSzwrjjHZfA6PYMLCIdUTTcom8BO8Y1OeaHjk4OvNSnOUr2He5TeqDpC9y92lO7B60SNRdRsD0DlSXQmZyqkUu3U1Ro7UChIEog1jxfb2QII591hkP0X55VZYAjbbhJ4uqJZBtgmIO9p2qdx3hGYCydLDHXrUdRdNWA9/mN9sx4byWDw0FtHaztlK54lUL20LZZFWpchi9DrnDGw46DA0DrvGrl2pUUsP8KglOMeFACQTHM5k61b2Ge0LdnkiTpLayG5V1OU1UL3rwWzIx3MtLHj34g6yeae70Cw1OCl8eATEB5jMPWtObw7rhl71bHPWl9RdF86oCWQ8wTyckfFPq4gdS15VEFv6bGq86qfUUHd6q88u5jrObYtH/Na0uOVuXEeR877CnBHDeKuNdkwrtji7o7rerO+1nmvz44AhjruZIsKwumz7l7q1y4gziRf9APTr5ia2wcrO/XtJi/sh0TsSYQtxjWac+vtep4A9zJTu/nkHXyq/qz2lpW15r61bAp2B/R878PHWumZZYU5Ddwf8275Ui3VgVEThK4PmTZPgAUeAWZ41CIMGyRrzMV14/otbHeDoUXwkp9pOZcjO5wiv1uH5gkhB7XhnWx8+nuUTdMaWcNYlEk4cJ7sMpykH9mXjZkYywk6KfV8+5vqXBv+h+9nEu7xw3aaccD2jt5a1iGs8srz5JV7xwOdct++9n7P/R1dh98x2CKBY6ctyyWK/RLZGjDDebyg5kCyO3bZkB3gUemTFY5SE/gJkijqnnCEPiJwEPXyncQSM6y2uIvdU1TNwOB+6qaW9XGxdiag2ZarmhmqAD5URmw5O0GH/hvXgA7aDsu0deDeiDQzlLAzsn4bDC9nV9oda9sd/+z4+110v9+32nE1Cl1RZG2gm1FfwJKaWivBrsImQaldiJ6HRH0G/gCs69UaXq9XTmZlCGpDPrtJ3g30DXhVg0/vVdM7NQQGVZZgjYTpHvUQrfOSkfzymfp3Dc3LNmDbDYDSz/T8eh599xm93M76ft96z3rYPo0OGbiVZSPlKraBPm/YoGyd9+r48v67SK3mNQE61WuLez8Zi4CimlvmdvrtCQFzyx3eLB3jJ+Dl7hjXSsPMI4roLmWjyM99vtNx82LABZthzREgQMwzBJAxlWap5pgrPas6UTQiWzgwGXhfSj2lkzI9OkNufQmBnFvGt5K2WrTJs+xUApJmADtGKY2PzBPzDa5/v+nw1ppjutfr9cJmF1l0ZOUsjGvgOASUT1KaWyj81CHI9Wg9AFBTJyOBzpXdCSB+72FMwy11AmVmwJcVOUKsEzJyJocacSiz+QnX9w4sS16AfTQF4Lc2KNdM3cA8ikNTblbMJ1lVe+/L+aLclsK3IdOtB3ux0ZDK4ufnT2ayBeKR6d1abHjUtnMI3Dv7zzVkis1mG+3IM6eo93tA5n3tdPcazNgHHQ9ZOXS99Zu+1Lr21kO+J47ImW0mwI8BgNaqMxRyEM6Xc2Om0dBaA0bVN53Fs41pEj1S4qcvKJZnYKoEuyNrTvneY8zQvS33qq+JOQYS2Ih57EcHZujS49iO65oBhNBRtrYNgKNHkwM1ECkOlRvYKWzus7J1Y2WsYJxKBR5Hx5y4GYLPkeCZDC4BDOvOgqzngv4t3feM+v6js6s2a+j9KM5oPAciDQeWzswGO1cCRdPvZ6YCLxZgxjVGdHVnfRTJgIBbySgM5ezce0/NkizWHr6iHlSLxkV1r26GRY1qU7ftvZCR3EUdq0g8gZKQNWfd4llAlqPvcibu21iFdfSMuBMS1NqkEdmqzUA27/u62Ml8sTsk0SHbHbcdaMbubs0sU5UZUFxoa+sXgVFmNa2RbLoVhravQVlSylYAklPAbQAjzbYTu2VVAMh2durvdc/KNFLDLa2L8OhwTTPw0xCM4daw5krQrdqsyPveWWMCALDuzda2bUQmgYJA1QGvcrvZH8oiUH2tYEWPCeILyhYJPTBV32rvseUO81KfK5a2gmF8R4Qt9qKsH4aGI2zSHQzQGezwbGjhzrOsFQZ/2l4hr8CDvbRC50PP7wnkSoK2d+cs/WHbzha4vCwYG0t6n6uqNarrx7/z/FYaH+IpdcYQ9AuZRwRcwimfoIMOR95nQUyufe4cxwk2EhxplzRTnbuSjRONvawBcyw6uW2fEXsZpW8s0swU0mIzqFb0FCdl7Tpm8bvs8tg67ZaUnZ1OXYOaCho8yQTSI1pL/a7aGBUArGe91kDlkuq6yHaUD1R1ZL13nlXaU9i+EgM/Yuq3G4hZfch8HjBz5klmqPtR5Y9erxf9UWzCRHXKZU8LhLCmz9W6sJUZFb5c2O+tt5v/K3mS3sjzrgQaql9W911Nia7nUb0uJYVyoXnW557so9Qn+V3J0h1wqs9R59PDXwIESpbssbb3KssT7TqTDIbybPclPa2zpTL3HWrc6Y7bu8jerM/Ye8f1/U4ZvMkVto1b5xlQVuB+XvmeTUGKOMf1zgSJwk+FRU12YNkO3MPqGdbT59X7994z5d3hsLPU9jeEv4bbuzztLv59P5PmpcrHk1FW8Yf92V1zX3oNxgZYaWcsx7Wu9Al6gJva50vgIlpk8k00BOZgHf0o5IQAU2WDqqFhoM+353uuXx1pc/eOLrkszOuUZdQajmRUr8UsOu6/IIXovI3yD0d/5d50/AxmVBzmaQtXm/lpL7g7sC/zT4+/DfDJOJbx/WSXaXGr0NU/9ZltsKybcFYDSkLPlKZ7d9I6eap3AODGrgN2Y476X41O6bMCGKsi3YbCdmKAn5tHn31uNN3j6Yg8G4k85wR4Gk93cE4RTIGXlbmYQFs4Rs/PVCP5acwKlKk5+trgz7WqijTBqNaiIDPpyR4GvIHKSc9WN+XdyFG+uhz4dnt22lm/R8UFZsio0FrrelW5OxhVXJOsmUrPrter8hgzVGT4nvasP6nYqKDGmOG0U/FhrmALSUHYdnLcs3jnmCONNPdgTES3TqYu7rkjwBfAX6T+Lo+uc9iO/Y5SdbIlADS0R+2VUGrqb+tFBpSiCDE4aAiLUSanIkGoIls6MILQEA40AUt3ss7UQQ9rZp0pj5Q10b97GuY0hKwUNJbRwC6gSrcfZLpi14t0EPRwJ/NF7z7rWupnYdwSUJoJrFYZrjqhrmU2Foj9fHZ2CD56346iwBOocL/lXHkBMHR93dsdyczkfmxpTN0dHNbpUa0aGhJFXmlx8F7GZgLm25kUE4wCp+chGzB16dqOddUjVa/BgNeLBW35bzaNYdRqRXHf2APnCR8R9W5gHRfLp/2R6nlz8q2T4RG1gDg/jjHeaL3hsN0lPefoiFIT0RRkjoHz+AohPmBgnSPpviPShPpBmbnGhV3P0DK9/OiMUD7Zbh5OCUB2VA+Gkkd6LMHNKGot9oh7GBvzxnhcvhs8kQlcDQzN7wzDnHOYz1HO7A1oy4gME87vnWefc/48q2L1f6R26eyoetvMkg2RBhUEQBtaOHC61xjsWivjTLq4ykLW81qhw+hZoR/cewJkMkDy0O3udyDU3dE9DHeP6HbUVU0/yCprazs29Z1r2loG1NYuM6ChGlayrerz1bnTja9rAgFmE3RRCClfiUEVAaVG41b1y/p5Ys2Bbj2YgmwKgkUQooXBfhwdyyfG2mDrmmS1OPa5qVRauGPI8YquwapJqPIEN1tWTIxmP/RI2mrlzVIGQxaeQJfmvs6r+w6upC3jfpNv2R81iJtGeDBWqr6pe+gWiGw7Per7+/u2fgA2S6O8p7snE0Q/672xcl7qYM5RBgNxPxcI8sT1TAARz2Wkc7QwJ78zIhjR/ECWxzCxYnTGWpRw0LUMRzty7jZwjpjfe/1NRKDAjnCQAzGroEO1n6qznj9nJybKzXIAPdZ87/3qWwCIAL/KMyQ1Lj+j90ybD0ZmiklvJGSJeI3b/Mouut4RqI+g1Ywgg5DLSB6nE6ngyXLAxNT8eY7p64xHM3vAw+4zrYP0dTQ7Ebv3MIKCK86LMe9NdPRgFmdFb2SJ3+3oey2+3znR1c8QiFdt5roeAs9ca/i4XyUs1N9Rz8x8bwV1tJcF7KHcr/pAz+d5+qnaA09AaC12SK37uP739fVViBzhGyqA2lhWQ+9Sy5HAti766eSXciLFt617QX9X2vMzAyxtWQE48b4s89PDTw5WnN19zGrTVp0imdEz7v22r6HPcq09s2ee/jbPowjSG276HACb4zQDumom73fXu46LILV8Q8kgEB18zxPv9zv9/jEGjvP4YcsoU1BzphJdv379AhApmWuWIBRtZ71rsgnLPK3Fz4250IOVamYJ+I11B9ae81MzDCsAn+fN3Hvqud7Pv1eZf/qx1d+twLWeTX5Fvcd1XYCeI+Shh83JAMI+b2W7eMr0whhPnGfjJdNVg+5+hstXf8r/fd8Aochv++CJOdU5l491w2baBstvtnF8XriShc9cA1gp37d9sH7otfrnc68/wfZ/dvxtgA/YAqBIx9PQqQKmjSNBlhFbF0KjCqP+rQkQiFcPHzkHMp6/vr7y5/p+FYZ6LSkAvUt9DimBinTXnwH74KoAg9It6sF1N3bKZn0aZjGqcOrfFSCUYFjbDpI+p3fWc9dn1fxnVLX8u76nw7P7G53KOyhYFVJeA6DRgpWGwzXf5X6EhwRMyiisG0PPwHsUVpxtMHGs7RxLGdZnT0c3nDUVIdVtavqGNrXqOdR1qbUPdrSYoMP52my/p1HJluoEJJYv9KPhPI80pJnCS0YXU3oFsNCh4trfHcw8fH0boisMnWaG4StTdTYoNfGuqQa3g5tgAg3IO9jN+zQ0o7OnWgK9NTg6HecAMFVAV+vYWkNvR9SIc8D23qOBV1mvsbciotfbjogQfCMN3mDomW5FpyU78hUFK+A3/x5swN47U4VvDIq9r8Ya0VWQJnW3hnkNZlsU49HUdaGsSw1yPOVAzoOMrFY7CAeglQcWCKDXVHo6VrrHdrgkc6kno6ahpwMDNn1AOHUBwq44lOVMpWwpYlrTrJR6CgJINX2BztI2pPWuepcK+ldGdu6tkFNGNQGgoXXs7rTO+ji8F4HV3iPFD7jpv3p+5Fqsi6lrS122PB0tGYJis5DpuoNIYnIc/UAP0HqOgfYiq2Y5O0BOgTUOnK1jOVPMlZ7hIYpe5sjdb4XzOzxlcvrEcbDeiopHcy82dodcu7OwqQ4mqa43g6Xuc+Jf0gcDa9DZ62Ho67vbuUUC0vWcGVFo/2kg1p/VEhbS9dUx0jWfRqXkIYHTk40sCLaPCJKofADvO+aAg6xRw64lpwh88w2ANTOmYwpACCaSQAI9v+rqznmhteOHbTLnRD8ajn6QFRjpzrWujmTzCezVObgF7xBpsQLvzW9dSGsNoGpP8M9wcHqPFFDOk9HSjqUv62Tb0cj6+2aBl1C/xoLiPS60NYPpEvZbP/AeM64TwIx04Vw4wo5SHVfKfmFpodpzTJUWo2uPYF5gAyflFfa85hxAGyzPBguZl2OYPFxrrIEKJEt1xYOmIwqwQZTjJhdai1y78lAKJL4v/6Hrqg0r/aI982Tl6E/9bp/V0RTMgd2sYaKbYyLWcu1zP21E6dgM3mz5k30kpivnbZcGkRw/wYMWgpOVSuOM4HXD1jHpfs1DsStgrGW7FlObtH64d6rVe+/6jGJnUVezlEWkgzVP+2655okAnIDpwBLDfvEf66Prm/agzlFDMnYyMAYHFs/lLB/TGryL6dwxVKtT11D3VhIjaSPFuSM9ZGB2RpZ9MS8AKJi2Cgs2zE4JdY+sgtBFUyC3CbyuDjWwawBW9tc9zayCZLn2AtQevpD2gP6swQ35JD8AMni8q9/up9/Lf9LQntOzqwO0GYPYXZkpNdgedozk6He+XfXlqh1Z9Wzd97LztIcq0YEy59nIzj1qjqUeIaOZ/0Y2HZH//NQB1Z76CQIin1vX0FzWOdMzq7ZyzRrx3MKxL3HXtU+bQmrPDAneqcwAbjBUsXfb9pESG4jzXnYolrzCAtQgbMHQTdXmTqJH7E3NT++dzSiwfd6nj32cJ3WctwRua5ag5FYyuH1yg4BRmJU66JOZJ2tnMrXWkol2HAfGHJmpoeaFdX4rCJRzh22nwmjD1z3ElNOVnch/h188gyOS+apn76WV7iQi/fncF61FZthaadvOxdIWPRpn1KjdcRyYRSfXNV5rZdr+KpkR5vfnpD7bz1OHu7PsF18wfk+JvvmGfgfRaB+Q3V3fs7VdSkDPUPf5Bl4HSAzf8/t+v2+kIoGdT32qffkE5qt+/LvjX9JF9wl+JQjxEBo5h8dx4P1+5+9lwNbDox4Quma9djW6q0GTLxaFuJ/pEs/DXAtWn0HPWt+tKgBtxOpcA3cGYH32GimoCHkF6zYYc0/LrdfRtSV49QD8XcrVptTuua0A2XNDV2dE/x7XHTBMBmWZpx8ywS/c5vMuKyyarWikQEDNw/Og4oGy50dzP6NrmJ73CeRuJ8oiNU1zxFTT3Og6oBy4wlCHIwutSz7M2jYoQUP2/f7ZsZhyOfZzrpX1GdYiy40KjPOlejtrXjALx8YQOfgb3G2tRUHSADXHTONQMspnQXTrjD8dtw6Omi/VCXQsAnQBfmjerutCOzbVnPXbPD2j4zgJKq6BEesi+TCzaJShro9xcewDv+5hrVfOoYzacGjkhI1Fp95tRQSJQKOh1IYpB5yAlOmO0w6ofbvWZk0CvgKZaTQXlpLtrtnVSdOfz/2ln1egk8BdmM7N80Ds1tl9LLa6N8sUxV72q/YO7zF/3NvC6OXccZqrAepOENlngMEQ5VxMW4PPbeRvx5LOSj9YI9KXmj7saNPTGK73rPpX692sBfjV8xCzPMpCj1rbzAnIiAnjh95JrvEcI1h/fAfdL/VYkQXpgn5GnQ3zBJVbb1mPTvecgwbbNd7UWa1hXQ6goXnPQMEN3AQdDIGnrZ3BbDH4mLiUeh7NPVSCIOuWNu774zzDGfCdUuURJTWBI4CBqY2YYoByjnzG7yNgsYy1AblG3DctmsDUs0Z7tBqbUpqqJ1J1SF37m+HjOpP2WfI7o3Ofn9S/Yn+MOW6yX42j3qJ+Lyi7c06cxz31O2uZ6foWQBMart8w5vWM0xflvVX2bOzJo4eT7lHWg7q6Pit12TNV2H/sj3rmI1/fE+DXXFZgiXprlyKQs64ggcMJANiB13Fg+LrNfYRxssmN0srXAg4cWNeOVjtKg51ZUlNsZq0lgaU+GPRBJ2AxnWB661YAiFJ2QnJ2M2I3O9g6AW2t/ZgzatwgAbk6p3LwUdcSSD2un7Lrd7Gtir26HdfqKO15fso6YFEzd+tp2WUVFH46yDd7qdhZv7MjbwAxItgXndn5MDq7ti1ZHRjOgyFfTtdeYsZKzjoUaOO50G9yW23o1jp0ZQDk9ocd2CBb5sgaUQzS7ZIgMGZ1mIEAXTBf3NdO2QayVqBKG9xtybCb4XGeWZYhcc2rx7ayltdgKjhlTWCoSiHcbZCQy5g2L58nWBjp0hE8Y63xCLYE+AawGRMCrL/mRPOojwfps5B3C2jl5vTSMWS9v5CThWhcwDMku5EEoK3ZMwM6eIaybiD1sC89V7vJdPpt2tfYOldzLyBEe+Mp39WWq2m3dV75XluP13O6njeyP6pPVveFrwj8Agkse/hFzVjvLEv/wDDHBUTQoPWe59OaK3WSrl39xipzesfq/+mZBOhb2OcNZMi2zhqrzdiICU4QkmeKdC/1fW10uPUHUxkBBjpXAEi/A/9+Z0drncg2ko6523C0sXfQmD7BBpaeNt7dh906A2Amh4BoXptplzdQ96braIdIZrHa7dyRvGiN9DP5OUrRPfr5g0hUdTmAH0Gy5ez47EvlwWgXrWDSy5+6+UrxDMdx4HydLG3R977XXlKGUfozDrz6i+UE8qwYEOlBQ89b/dgExwvwJ3lrveHsB8aYmHM3+KANxrmprLHqR+paOt/HmrfmlM9g5FMf8MxdYFmV0uBsLer+/VZbnt1ugOCKua92IwMpHePa++GGT5S9rWxEnqs95761wJcQezTsCs19zTKVXaQAXcpijHqe1r1VfTP1YZjjHgzc+ryc2WXe9Rya61qmjd8y/N3xL2HwAbg97FMQnpEbKao5J97v982I1WeEgNZ6aBXt1ORVkEvK8WlEm7HhQj18JCACAGrqZwqr3yNVdwBn/TgI9N66pkBMPe8tCtruqXPPe9QhQa5DivapIKozVIXyH9F2nwZhFebqYN1/V4tXqsvd/TnWWrKO0sCsrDzVXFhMdk+lUztakTUwUevo3VD0SHPUqBvr6VDdGYEb/KEd6Szo3TdTqocRIODkGU2UTOu+NVK0jRlnu/k5oTpsFAZFt2JuA7DgWhDkI7Mv7gvPwvLX+00mSli00l2tdYw5WDto7YLL7g60e0eetaKLmyNSw0z+NUHD7pjzSlboCtCPLL0wuEy1ZQggak8pRUMR6HkNnOeBa5LN6MR1ow6FGD+sPQgd/kZmFB7K3RZrX2yjW5Ewk+DRiJL8Nsvn5YEfqdirMAnamYcc67Te627qIEPIxyqyXvesO9f7ODrOs2E323gwqSCHTm7SloNqMNcU+jVnRu+YInDfb3r3GU7EE3BuLRheTe/NZ+H7M9LYjqjr9R5osbZMDadDuDDBWnkCTbYRWJ9F+lf7rgZoWhzCPfYggeMATyxqG3bLn/P6u15i7j/fR990NkPoRpT2zjygM9VagISScZUNeASPxIStRogMWAKfi3WPukVdKJOfux2V6Dbc23HTVeFnwlCYWC32ryHSxlj/5XwdZW8FmB/7f0aKuTsytc66hXPB+p1zrkyntnivuVSbj8yknCMrhe6VHuyG4+Cc1K5ywF226rmhOcgIsqeQ3RgMko088+dIPVODCwbgPI90PLaxVBztkN9lrAE2dV6g1uhZmHOgtwNf/QV4sE7bPmPk/NQg4Rg0eLWHaa+MAJLowqtjWtbqEiUM24jWs1ebQrKX56uz9mQaxiX1v877Blh3HWG+Z8vzRPI7ptIDwylaK5ZjM9V6pFYadK6WM90d7aDStN72HoqUM5VtMON+ZUCh4/v7F9SVGunEEcCAezSSsWAxq8A7Zc+i2LjWGEDWR6Y0WTZ1MNwDRNURfQYdqo3G30fwouh6M8uatr6CDdV+pn1rP3DetsMkMGF4ZbEi5WGpBmteS04230tdmLUWlrYTQXztZRhTzHlsiPGClGMCZpKHmHcqGGwmHI+iI9hVLZoyaH+pqHx1aOocStZgBnXA1HxvuwtRy43r6rHvrFt6UALo4Vsm9YBmjaUfcAc+12RQs4U8sVt96C2QZe5mTO+rDpLJ7qFcan2qTGmNbw5x+fsOGpHBl3bmcpCWZwDINCdL2gGbgLf9nbmyeQbcGPgr81uBmy09AaZj27XdDCu2GBt4AZkWPIPp38AzJIBA6oYHQ6r4aND8DeD9vkJPU+9cY4PXrTWcx5nAi/aR9loFveu71bO5zimArLGon+saks0dfI004rkzHypgIQBUvh27a6oJAG7v3o+O5nsPE3i5Z6BpHeSvVjkH7j4HmaQhdZHp5NPhDTjz+3Y7B2TT9dZTB0jfST4pr37rHl/f+Xcs8+p3m4wMcK/LhpPuTj8Ewb7FvYRTnY8MGHODU5eHrp+TpVYUQLA4o59+Zl1fsdw4FyR/IAgPM3wLupATlj6a3XQscYOFGnievn398zxTz1efe67JDB3tL6OcqMzRLTCBTSA5jgO9dRyN2UDd5IdS51wXZY9nHCLL46At2zvLuvR4d0TQtuzHuq5zrryuF/u26iPu01cGuVTHvXVLnVDXUv7K/jcD/tRH21fONS8+jJqGXsHyXosBUZ1n9D1rGZdiA8QerzZgxXzks9H2/skGlU1RmXXV13dfGJPNGkkGUF3Co+gZBkqs1Xlm6aLsgszIwQ3M8zijqg9Xddn7fYHBdgV9drbmnYmvYKcCd8h663X88O/+yfG3Ab5aTL/+VxeyGkk1+lPruwlEATb7REIuGnMFWiQg1SjfxvlmnVX2hkCIqlz1Z3VWKiik69RDq9ZlqKCg7qPuu08nu27KCoJq3MGhdXumH+huOVgr2FQN2Xr9ev8quPV6+lx1TvT8WgMBN/yIFLxhzj2v6cQ022mqiFQ00EHqEf3pxgxI1dDwqCFEx9Rh4fg0u0cQ6OzeDfu6tpqHexRwYc6rAA/savU6z0hhDIYTQ5g35aj1eM5vnacKxCqFdy2+q89gOQDZxbOmoY61UoFMj4577rjmm+y4AGnSsIxDofWDYNeY7HZkhrOddEIbHVW1JD3Pk0VDj52KMX2g25HNAM7ziMK/FulqO7WajgYBmbUGxopIUziPkqZfv/6ic2wtm6t0hNFtkZojsDOKDGPUgwg4mvZ2EfqmfRZGj4kmvTISYyYDQ2lnrD9ovrAmcLYT04pxA+zULAOu7CAsYFk4qGNdI/f/EzBVYVmBh3wmAPFM1TiPqoxoZniFEcp35yRK1kERRAOj0HL6VKweES/ldx3nb3Sx9rSeMw9FBAUgzmCHYSToRGO12YEeTR/muKCu0GuFwbsW0NUVa+u5p3Oov+9AgGGZY46Lzo6D1zE6RjL61lphQ1L/9GZMw7E9V8d5wALkWMv5+cYoPoEPRs/WovPVwukUkJHzZJbdyHrrcGtA1/4NILAfwLhYRzMsBTn2YmrAadzWzoOZZtaQhZGrDlmx962xqDJCR5JxQeeNTVQCSAqZEht1Rce+NQYMLVMLub8X97sHgBG/axbsXZ/wuaJvgrgnjjGr0e/qqYkxx+3Mr46cDG45UxVEUZ0gdzK0EECUOVNLzYH3r2+MKOVgbReB57kfUfpmm92zHF/HC+/rjR72BAN5M/V974bXwbTRBu7LnmD5zK6753GEGMb6HEyvwgTMmZ6ddYZaSwAUHsETI4giYHgssooNG0jurbOrdegeX5GiBjqbcwC4CLAaADtaMs2xDOp2at6wZnQHXMCag7mR2KD8eZ5ocf8Z9fEs0vsX+A6+HBZg1goQm4DKhM2o5xfGOjuYE/BEdF2UYax35Lm0QaClYFDiQTxjaUQLxBmlZMEEK2FvYzgDw8vRQhYEW2kPXT6L/N0BmWobaC9OpWSvDUBkUGfiJtM3EKK1mIM4B8dAMwYqyUOWQ96iEY/nXm1xprrj5ii0fO7NOmkBtHMHbZtLe9/XROtcX+5lh2OlzWGGYMPwChY41WatpZdCmew9mVC9dzQ7cMXZzvMG2AHWqDNm/KW5Q7V5daRbUyBINjD3oguIXJTd1g0+FgOItteM67Z0zMc1gF2eopTmMM+SJIdqBC7foB2XIxz+BXPq96Y96JQ3D4B0KntRecMJjihjALmuXJL4jO85ZeAiUTx4dEkXK7/lfT069AKOySCQ3wP0bsbgsy2wTD11bPfQN2KgOeVPNurMLu+hgxoZZtYR5+Hi/g7Qd8b+dBAgPY9XBrWWA80OpLnrcsLvfkI976uP97TJZX9Xm2eMwVqOaUt61tf1qPc7RySFl+BMs04g28jXYQChofcjy37ADEdvuMY3agd79w2k1HeQfVf91hqg2X5g6FDwbIetqEMd9r07YNKDHUffZTnWsjwT4YPBmJJZwf8Qqe4N51F1m4BazpNYyZVlVp9VQRTWjAWUMxEWPdPKfaK3k/t4rgSeVzDD7sy68EVcOieeqxnmcnbXjk7cx3FgjXs5Kc2nNe4FERI8zuwsEeMMzPcQE9VHhrFW8k6pZpMxC3/0/R6pP4GdBv2sDYm4W29RHqk1rMEMIRiyFM/1vsq785cKhhFUjsZpQGR9sb6eRdq8mk8YyBodHqBWNEbyVoE7+e3xbGffHbNDPwvHeL/fYe8GCB0+wZwsWQC7B7iqHMt2dHd4bwmWv683zq9oKqPyLc1wjTfl3OivNdV3jzOzt47X64uBjBVnPbS/drpqlkhB1AOuBCnpVZCxmHWTc/+wa7sA6Qoch1UMGO6N9SyIzi26Dc8rVALXWvc66pkSwXbpBA6WimHvhx5le2YAsI3PtnbGSMW1boBpL2nH2AzCA/uziSEUGf5nx98G+KoxpMl+gkpiOFW0VQa2WHC3SGrbSOhWiPeUNADJ/qvPcTfGNgBTOx2lAVquCdxTaZ+gWd0k+rNSaSuAJiBS717vWx1gs10QtD5vNS43kn+nxQO/KdhewKc613Uz1JoYTwBSEY/6fc1J/blAFucJmQel3lNzNeeK9IXtKALcOvWZqiE/ZsiDe85PTVfM7+nAKSh5fSfJ1hNMrdED/pvG3XkcG0QNcIGG2ILZcUPjawRFtN5q3ORcBeiV6z5ndt9p1tBlsM+VTVJghnYcGHPBx8Dr64XXybQYn46oY8qITqR0JpOgRyQGPMwFaiOACz1ntVvPiG6c55kdq9wjTXKBh+yK9W33FPJcO2OXyjM6VVcjZe/PLSNaJ8lT7a58k+Owsat8U1dEx6KYRxp80ZgilDyAbPrB9QyZbnSeMsppe98KuKoys+bEFX//Ol8pu9UxBBzLEcxBYPnIg5rPzYhgMxawVqfZsVaCRDK+oG64IJCh9DiKpfNdvW/HOe5vxiia5r4GWDRvuQ9XGM+JyhrmmNmBs+pQOAsha54quL8BVk8HSdG151r7chzRtn4NsfcAdWatYOSY4dAaWQvSKWLMEVCm49jA/cJ0tWj0dHZgKaILWDbTONJBG8EEWIupNEyj3UxSrtuM9WQ5gBmALbSejcybbMjS6JD31mncO2v40ShZsT7bCYV7AncWzEUPj3qhbYN8eTasWY+9wn3fIZBbTVGkixVBT2C9BLVmANNhsmvbhGMZ228xteKIyD9i/qq+3fuzpPs1srEpFwWksKjXJRkLkOhoLWtU5TM4Aqzb59+KOm/ncWJGoeazrP8cK1m+lNV9Tabg2K6FReEIEOwetQY28yy7HLvSpLf90NvBz4I1YRllNvR2hB6lrm2tRZMplofI62ktLk/nVo41Qv+q4QtsbqbmEgujBejZ0+FCsOFEFWoWdb1kMqpcQwtASsBxyGk/GlliZriGZ6fSTMnq4SIamxcIFKNhzUDSNS743OCdFYAJthsyOGYa4jJ4G3YaY4LCRdY81qE6DSg6x92zcYVktToR/LhAxX0GUTdQb+isF7iM2HtpI0K13LjHCD6zI7ayT/j9LX8JODYkG1MM0yp32p/7jI1gACMEkL7e9qKeOwIvY+50aAGJISNTLFEnQEV9uxmhcy64qWkMgw5H73i/dyCbQLPYljpst82o59e+n1HzUHuaz9xu+40O886CAOxWf8sc6Uy5W+pBygGLsk/b4C5Qat3Gs/nkGeWNDNfWG8/2FXMLAkYCucecaJ01vbwYI6wvFdo69qCyMGR/HCc7sgsw0ZwzuKB1pswhbC5rGyTNd6PhgjAoILtATDyl2/qMe8eZP4L1TxvHdpMvA4PoXuYqzoZV2Jh0Urc/QFuCDB8BfLsucMPr9SLgUHw/YPtUulfdw/qcL7DcS7s3E6JtAUBn5NFwtqN8F5l2fJ5nsHa0T++1x9yB//iP/0z/q5YvevqllfixfbxdfzyBwEYgK5vPmec+bIcCbe3H9Wu2D6AOqzzjiSmVbLZIOZxzpE5bK9ZAvhcxzVtA4+b7hb3rAZRQdhvtsXklu9+MRIsV32/WYIdqeQb71XZ2BX2LbZ8QBOI2Eet4jnV7nu0blsy42Fmak+WOuQqgmNj5BnRa375WvV76tL7PC/m8m9jBa6lWb4/yTe/3myVZwoZljeYd+DAzfH9/w4z2IEG9APMbfsiSbJ4eQTyU589svvATKnnk6AfBRWy7RDiJ6rvVPUa7Z2AhQF6UYEK769lMXbddV1Lg53tcCYLOSeYv7Ufuz70+weRz2eEbj+Hz7JIOwG4YqFImC56stekrdHtkZm5z8lYP391xzcF3szseQJHztNstUD0PwoIH29fDBnEzHM2yAUtrOzvCMdHtfNiCu7SCG9COA0EAhMpNPXErDXfP+7DG/8ZZco9i60TpJ9kYf3f8S1J0qyIF9mZea6UQJWr7YLw9Ec76XY0sMomtJDWhFVSrAJnuVSMZ9XrPoppSFvW56uao36kO1BMdr9+rRto/Yn09aevABi6fEbE63xUUrfOQBrHZj99vo/MeZZNQSfFUVF2/q4pLc/ukreu56veA+7vV5/jBxHRHt31QVWCut30wUPgtizzXtavOZ3131uCrBuVmXPa+AUJGc/SZcMKLIVuVapW5ergmABoGqi/H9IlxXSxE3o6oeXCQHXKpxlHfziRfDONipLuFYScjLjy+eG4WpYd7cf5agqsLHkZsmLFRt2/NlWlmmgsalbjVUbAVe6wZjuMZxaQc/nGeNNJnOL4HDTdFVVSjRsCI7qd57t7Qy+G693Kkc9Y9RsuODnTUxHJbmTaiorvppPkGlcW22/buXvt0MAPQrnvAChAgRtJW5jr4tE8iguQCiaJezKTzTeeMIITSBX0hDC3E+8SlI21c4AoCfBWQunIeo65ReYe6d6txxIjzdlLMEBFMvcN2wDzlAhHZFfgba9LlPCm17s4CTt0BAZ90TpgaStlo3XDNK+e9gYa6WCk99rYYGmxosPXmvCLCaTz8ydTSPow0o9bhvnXO6wxHwRBzEfoSjsP0/DqbVuoQ6RvJ8oxU46MfIWPAHJEyDBDMFAixyIYwK7VME4xGGrc94DalXnKNKH+9gDvSSVNAijPtTo2FWovOoGvCjN2Ed2SxMsnvzpgYvNU4790wxs9Ugh1Q2mlUnnq5MZKM0DdL4Kgnq3hFin4CankeUZ5Y7mLuVFWzXdYDW957RPdb6PKjn2it39j07kzV5RkY6ceTDJExxq02ixx3sXsTfAu5Y7MTPvfNsQJTdBYI5AOMKA+fokIRFIr9Jz0iW2JBgbFO4Mc9GV/eyLSYY6AfB5rvemhkuzdYV23FdTPgm21d0Tuj0WcPBy3Ai9aYRpTNOmCwg8auddkxBp8T1tVAjAxSFsembvj163vrG2eph+zGjWCrBhuxB6+/tZ41MOVY3JyT0BtV/igDkai6VtkXd9l8rg8MUZh8O5Vk48xMWReoTD0dZ3KjY71C4Ge8vzWDN7IdUZgd1ZlsjTVpn4FIARM1cPi0326giAfDwCwYmSucY4S88b6vM1LgI83/OA4YOloE6WY0GEqnbS0+P3qUY5CNOPH9rRS4wmArpTEIDIt9pJIyAtn5qVmAQdYulJ1Pm6U61rsWG3lALZxnOUJjAeYL4cUnQFxtYP49akoK4Is1g8UemJPOt2TGmRaobA4CqsAYF8waU96kDy1sG+1PBMqiM9j2uXcckkPcznHqPDmyEFKLFQeJOlwbPOtm9m6AtyxEn/Z+6FPpp/M4yKGKYJj2w1gzAjs6k+/2ud6v+gSttQAWjmChrpzzZ+mGandpzwk4qX6Q7pMgp20/csv7LOAO9ZShPQgP0gVH2hZ17+/zaeH7+zsd633/LRv6WfXzBIQch87dBaDvmt5OZriZYXi1fVQaajd7qO/3rC/IR2F30R/BpgRUle6MDG7tbvO7s2e99hwzsqsWrG2A31sEYxUUagy00fa0HbSQP0vvG3MJUYz9O2nrJJMxfIhmFnYt98csAZece3uw6dbKNZY86DsVF6Cu5M+PsOOuqIeXa7hWkhrElPwdyNdau3Uxn/Nebz9otfkzZu3JX1o70LQ2EWfLcJTXiXrhrRkbs0X6+IwmkRXvUCq3Sh/oeQU0f3193cBA7bka8KnAtHwVyUSdi3oG7WBFYYAiMBcwDVdnp7pCH/3I826LKtm/eqdrXLf5lD75+vpC79GlWOV40of4CW0l7hLyVX+u3/V6ZjY1+3Cylpfs4GAKOu0H7pk9b2Kn1x4RcaeN9cwVwPsG47R+zyzR3UHYI4uv3/S2SBTSinUNqgr4Z8ffBvjm2huiKvvtPGxlWnPYq5Krik7CK2EQKmxmKYT3ugf3SM3NGAJ+PIP+TKEoOe16duAnOKjr1e/c0NbyfYFk23C6v6NGNUgrSPm7d6iHWjq2c9fS06j30u/q/Gju6nP97v31Z20TXQ/wfXAKBLkXltzgx515V9dBQ9EJIePVyK0G2j8aFTW/g0PVYbyzF/X7OgdybhXJbNhAB9MskewPzh8w53UzLOucwElXnyNS31bUmMAkYzBADfSgJC/WExOQYf2gEwYxwJBsvBVGHWvKqL5KrU+YcQGYA1/HC6ohVZ9zqjaPK/IShebRf8h0a42dRlEK8BuZYEy9sbDEGuYVKa6QE7TXIw9IINMtVKenykrvPdhcW2YYUY6U32ysYcn6nGPS8AaAcOJ93h0/a2KskQaud9zO0m6RLgfcjCzFO1AoA2RlfTvVsTiOM/aODKHBAzEMP6URtkhrAFS3gYbAmDTEe1MB+ZXA3nIHpmMa17jBApjdoHc1hqqjnIB0pDsmqOsOgGw0Wy0aQbhWKYG/MQfO4wsWQN6UcRXA7Voz6xRSDncdswoko1Vdg/3+1vDqkS5sDdN3cWQTrO/7IOf3+y1iaeH0uUe6yYr09GCUjDHhKN1enWkG7LJKcG3NlSA65SLmusxl66xF1npLB0uNMMaYWd/MfRHcgViaO8AAtHBKVtZ+UQBjAwUt0rMsnoeQTAvWyBG03na8CGxGehlT32fUFqSxViPeyQKAExjS2ijS6Z5M3jFmnkHaLzd5CjugR53KMRZ6j2gwW+TBQQAWDZny0Wl9wSPtR3NTdTifOaarUFwEuFf5EhCr+oWSCen0ZG7E+qtWzTO4h5jfEXsIZrsmJbgPDkPWO6tBpTkHrPeUITI70lclY3Qxcj3GiHU5geg679gBRabkkFlqbdc4TXsp6uJJHykC37DBI11rBXC22kL3DqwNsjBNUsb5TJ1e7QULEEVdAKXHHGzE4+pUDel6sgrXpbM8wPDzuKWRt2Af71SyzY7SEAs6177Ym8v2z/R9awpiIOU1wQ6PY8oT+4jnjQi8kbXMewSDB8hGJiYAO/UnddCKepI1syLPihKMvJ2/xSH8nb1ZzyK9hyUwJ0YvQbA5Z6bP53VjL6850Q9LDKr3ljWbBI5xOtlMjCmOKzqob/liyYbf2YELQKRxOtJp5n4Mdlzqe+nvEHY4vN2d+Krb11qME9iev+bG/eCeNVPF+qlzu+VHLPYN7rVImfe+nak5AxiJ93vWlHvW7Gy9Y0TgqtaR60x+DKBTKeuW16V8y0JzKKrceuyvxWL1rFtrMDtYZmQBwIR1pHMtsGTOCQRQnOsPxyrOv15UASz++85+1Xg6rqgOtBmwLG33nYl1Dybq72lDBRBTbagKuCSrVkGNEmBJMEMB2erXqLup72DT0zcEdkbY7wgX6VcNlc6pTQx1XlPAWatPQFWkqi+e/2uMrDf83PNbrneK6ev1wrhYu5eN6e5BtzU9xIO2M+2rFkG9hTUnxkCmXdb9I0BDgfVcEzDIofRnfY41LslGhOZcdrlKuqBhXu9g8EUzDjDIDgeOfmZaLudz+1wCnNIgeMhc7x3jWvm5agdsndM3KO7bRlhrpZ6cKwLx/cgzE8CN2f07nKKul3s0Pih74z/+4z/23HqUIIo5kK1d/XRzhzsDchuUbWlnwUsQPZ5/zZUBfu0Vvd/39/dtL1QCgvZZBQD1s62/7l2ftZ9Y/3qXLrn7DSXjqQbdnGurngMZTCx6o7cewZiNt1S2pOxDD/vCvYBc6OE/cs+l3VveIzGVqH/MgA1JL5zjyMAwZZBw3sckixswmPsuiwQPHywyVkIeaMcryIAgkhieeErVKXUNzuMMG8Iw5r0RkS/qjJp19ZTJf3b8/S66kNN+F6L6kmvtzq/A/fDXfxKItVYaqaqFcHP4S9qlPq/76HP1kH/+W5vht1ThBzBUD8p8X9sFvHXNitwDuB9Yvmv/SQjqZnkadXq2p7NR02q1oXSvCsBU9P4J0NT7VOFLRVyiy7fNA/xWeKWEn9cFaqrjvk9VDjVaneuzopaN31MMe2vwofSlfXDWUcGhug71PlfUUKtGxVyTxqKus3ZqMsBmDxa15ADA5n0zU3HcZXlMHtLudIDMaCC01tCMdbauixGCrN1gwFzAAQNsf7YZsCYNNXcwxdfI5mveQuF1WGAIDgR9vOE8FbkBZtS22nsmItSRsuZO5gRBm8pufHRhsnsXNjVFYaROKYAL6o615SsiWGV9YIxQ516epZlMyiCN4RbXGFFDEXD0dsYhPLNA8Vpkkhw9OlaFEb7mTtOCs16LIYwaJ0tTRVzroW9m0RRkBhAVCjnBhAPX9Q4AKmpSWcO45nYiSQjgdxoAhMHmC9Y7C7pi0+rNLRohMPLaoANHUc57kGTNlUAlQYW9FxW9q3uYna/YsKX3Ix1nn2STtqZ9rrS1bXC/Xq8EhuacQGd6jsXLnsdBhwSi+RO0Ntt6kM/C/9gN735emFEXXMH0gBVGdzJHClPaWjLBDDs9g3Us9znhAaLJsBRgx73eAtjCNmhNRkOn0es/AzjmYA27qP+3FsET7qeVIECIdI4dSBoh4xYgewQYArWwSD/f9jDTU8QEFOM3Dax/UILBlmfhajbaCMcePYhlCYvfnIOtszcIUZ0nfZ7zvUHJBjGvg8VnhKIPi7qAoR/GHDgisND6ZnOzuYrWeMsGWZhKObKIeI/cG6213JNrTay1534tGZIBrM9JINILwJdGXDCqw6GAbQDI3dHRQ4C4NgJks3O0AjbSK9KfIO7Uz1ewyLSH6dy2o0VgyXZx8KkzbJeEkF6CG2qjqQSLAlSQrdVav3cajrqHrBNFAZPR3bqlTL/ff2XKqdadEfRwbpTibR3uI/U09UwP52EEG8LZICH0bDMBsQDWTzvw/k731LObDVDstmqXLPdkDqZMg2dxD2a4amEZEHVtNwg/sdkTegaDUjH3+/kky1i2i/IhK9DnMLR23s4VOVLV1qo2G99zB3JXAU+p5/dc6zMjAohHPygX0rfLb7bzcRxoCRgxU4C6agfhmu26Vtr7AhGs6GQzY/MMVOd4BXM62B4PwMPDqRIb6D0uBiv6nUUL2ewlZU9sZxjPeZLgWZZBel7OZJ3TtYDjeMHXxNkPuJ7V8pgo9mHD7vBJNt0aIauFZUImb8vgWpqFZjiPE7d6sb2jWbBtzTPlMZm6W03y+iPWbClQpPt6sGKpRy1tkrv/YGbJ6Es59PqeAv3KmrSGOenAai2ko8yQZ7X+uwWM4gaObTe2tmuf1XJLFWx4BiHzOUZlQyGvUQHCvTcEWtC+q0AHdfvMoGUFb+pcKa336Afe1wWzDdhoLkFLHLI/5rywwECumEgAsMb256qfJLBpRpd7N9Z4Y3mLg3vc9lqnHli7rJDZln+um5h6C8fRbx2M3ZG1v5WBQXnm3m62fXexwAk4rfR54Az6r3lRb5ZmAtYbgWZDkAfEWmvwAEpn6EudXakDG30VDc7ninP57t/q9z0apmxyyz2bI0tiBVO82kJa+0rIqQC0vl+xBNm/Wovv72+uvbU8n+GAq2O2++25lckxVpwTD9yB67H35Cr+51y7hJnkQLJfz7S1dhffJ/aSINq8N+p8lhcTaL3t0pnlsSTzuue2/yxKrIzcfyp1tX0xT1LMzUceP9nsAEpN2iAsTOwyNrkm++/1+S0yi6inLFxzw9FP2OEYI5r4DWEhYWesBbRN2hLhpcqlfDt3xxJY6AAeTaY0p3UdhBep7vBxcD3SNrO7TG4Q/ifO8f/r+NsAX42SVOWr1sEVwBF49zTe6jUqqi6BVG2HusD18/UASPAAe1Pr7xI8YCtQHS712bQZ6gaqG18/e86BnqUeWPUg0vuc5xlAyQZBatSlGtN1QwDbMSRIdP1Ajp9ovkBS3aNu0lrvokYDngfT853D3YNSLedi6koePOABsR1Ax94x2uQtlKeUYkQ3W1WwBIqWuoIhmEdlXatSretaZaTOUZ2HeBoCQcYDemKzXZ5r31rLlAaBQdY7mXO+bgrS47lWdPR5vWIvhNFYU5ndPWpcbRA2n7uAWwxAlAiJIRoA6B1aWHAeztmV8qiR7Fcx9xpYCw7BCGotCvvKCG8YazNtaXQvTN8pRTBSz6nzJnCEwxEHoZymKpMy8CVLlF9FsTve15vMJGNUcYbxASl1i3TS5bf9YdYwxwUU4Bux/r11gn2Da2rB0IGixMX4o/MX/9b3e0e3Izut6XcWe8mykplt1lR0/l0tIry1JX2pVaj9r/tor7VgTCgdoEWdnjtrlSDTdV04znuxV8l8peR7AKd//PFHGJqhG8WSMQIv3F6M/pJNqb23DUwBWQKIVuiCuTbD1GwDVdKF7nTKxpjRUGEb/Vqbs/U0LLg/o64e9t5OWfJtOCEcshnpz2ZRH82BZkemjVZdkTrOF9S5rEc6em+AuWFBTh6LuBNoW/le4cqlwW+dqVpWgC+BOlpzsjfK+YXCJAw5dPR9T+nNtbAUmKh6X8ZeAKjLF5/ZAHRGRW/OR1iYBD72GXXNgTPSkFoY9C1ScTwZecEM6gfgmjvVLTtSflQzZcyBizMPqeye+y0K4y9C1WTDSGZ73JfOVw95IYgef9eZGwySNT0bN+3DgbqKTgeN99fr2IYeNWeCA7eASNQiJGDUyXDowHvQNuneUx7Jpp1gHaIW9V921Hu5R31XjwZSO62rHUy1ls3Ds+oAfMHNs7v4WmRuKg2p2j3uUUcJlnsw3+WqLFoCMz0a0Wzng46hL0dvBwyN7PGlZ4/ACIUv9FPsU7+n4Bk2+yd1/uS+XMGywCTQ7NHcRyAGyj6PGPr9XWVroLD9yxnXWtDVio7VGrXQEZoLXfM4DgboluNekN/TcY0f0IFYK4IKBLOv6Xi/v2MfeYJ4cGQZgbUQtlPs7wJOAzvFSvpM8sj5YtBjTNYM1TSQOUiQcY6B9/UNBiajVphvh4OgpYLsDEz1bjhONlKZg53mM3AdtZAI0iIK75Op44xKcD60p+PdtXeU3bFWlIdAC0CYOnaC50E/DvhUmiNTmoFiWyzL+mDLncHJsDkZqNX5vX2B6kwbGlSlxaOQephLcYaX2oMoOtkI3i2qjwTVJFcdhhX2aXfuDd6zoR+SczCgJ2Z8OHAOMUssgwSUAbA8h/uNoQtwX9raYEeemVkapACQxQZwJ3h09pPZCLIrsRk9Bs7ldV0MFBeAm99X7a5+s/d1dj+HbI/qjNf03epbVPmUbVyHQLvc42szwjZjETttEiVYb4QpKtPItP6Qbbr91/M4UyfyLCssnliyMUekiMa518nE9qXAXUtfWL7Z19cX3B2v11cBXyOktFYEPLcu2rJ777Qq3aayOJYQTwEIPAgW1nZwAPscMIFXyiIR0BtzPFQKQvPVO5QQTICTwUEFrq3Ys8pIAJANCGoWGoAEyWpWFYOyO+Xb3W+19nWPbX9un7ACWAsL//mf/5nzUf333nsySd39R1mgP/74I9+fdk7496GDezswxkx/b8xgsTfaKQwia96p18/jyKZtN/svjrW9XgzOtN5SZ4tBXc+Iep05WCO7d/o3tJ0C4PSdgVdJM7qG9tNUtoF0WuuBUWzQVXYdA5ITyxB+6z6X3+/3vfRD2HVii1dwXiUd5O9soD3A+SUdzgaJyUDNsl/7/Icbm8zJB7ZIMXaPBoFGv2RMgtprPw+s3UgrNXCV/sraeg7BHmV91Du7+LY/H/pNNtcq+NBaC2MNqNiKWdSI/vvYHoB/UQ2+ujjViNJIoek9J0wTUHPDgbuhWnPma1fCJ5AG3FNP63eU76573IAKbCaMnr0ukq6re+oZ63NKGH8H+GlD6N4bPAjD71YoeRdprAf0M5JRFVMFN6UEKz14A2x3gCtBpah78rs51Uas79Ta7rPIWiYq4tvg48rNqPSHvT46SAX07Ai1mBpUdp4bR8XXE5mPFE5xMrLTAABpE0lEQVTWN96RVKQTRMOOqWQ/uyW11vB+69DdkVkZW3CH9YYDZAMZgGtO2BFGre8GIHnEyUE6ejowSuvkKYVwtrdcGliwvMpOg8EOy1QKRcOVZkuaNwBjt566hgLSsogoaCgvn/s57adDoc/TeA1gcZGyTzYWnYOh+hTLMTHDmSCgpCYFFiy74zjSqOq9s6h1EA2q8WYWtSzGRKerm+kJXfXTPOY/19yD1UYjxXWINkbBLVID2wJ6NPtYPiO9LVgBDtYjbIZxXaz1BkbT4Yu1zyL9U80r3BdsgUXz58RqOyW/m9IsNNdk5h3nCQ9GgvYOLcxgrFiDCBhKL6pMSbEKZPDL8XUg6/3MtbL4O7eW7ehp23NNQ2wbBDIMK7DYrN+6k09MzOHBjphkix1IpiejaQ/2cdlPMxisZz+3vK0NpCmVh5twpZGdxqUDRzhM4dtxD8FZH8aCsRDzBwRtP2SF8yM9gyh27hlo6AdBFxlndGAbbA1m9Z0tATvuU66t1rGZZX0jOtYCeJGGoLBeBkIUkXTY2tFU6vnQraFD0tGJQvLqdErZtdRNBr6XRY0YNAIzBjHOQhnAk3WjsZ02pINMllisQeiehdAtAThm7c5IC0UYhRZKxubu5IciF77UJAVp1FaHEdJvTpDApQeXwVYYo5Hegs56MNorI7reiR1Adimft9tma5/nie/oDLcmu8zRyUOmi9IG+NkYy4zp+b0dBCswA4Dg+XQcB9bFrtOt8SykwQjqHtspk277TB5zBIsnUvbWQr+Codt2/aeYRT4n2BiJ9hDIOosz9Yjzf6yZDZjcDE6iNroBOHmRqbqyFrrGdUZT9xuA3lYCYWstLItgU7C+r+uKfY8s8I215zLBVkfM10JHsLaHnG46zG4zQRUPeWDcvGUX60koKABzRdYt6n9uMEZBCAciONhynTj3Y9chC50oUOCwCAwsMWWQthLBLuyAhmwfr4wSTztAqX7SG8sFUDDQJ19E+i+Dg86i5msNsrtAZ5GFzsNWtANmCvTpXCe7TXWa1mLK/KnU/WKnyrQ7OksX0A5fIEN417ZSgAXR3IBNrbp8KARXJnRlnJcoHb5LBgfnrKVOHOPN9P1m6JAtgQSlV9T1o5PbC7s6nDpDdHReMKwEt5avONu3vmNAbNvA6oYs0IvyUUtZ8GdmwPK5ma7GFFqEvqI+M3gAJ+aIQJLFmRO1Tt3haAwSxBnCPa+ADaJXg4GdmQ3euOdlA6mgu6fzyKCw9c77ZyeNPaq/w+YaAEYAznKenSnQEUIHfGGtgX6+8owSGOjuODo7vc91902qD1R9EOng6hNS3uOMo3Ebe3cHL2WT1MD5rWRAAzAp80c/YUY5Zrfc3UwPblgBdMgX1Lq3sBd61IFMoMdVT3biOE8G+CR77sEipZy7Kw07OjQfB9baRJb/+IMgINIOl/7fdS17a5hg3VvV3jX0qCMWwcMoOdCjo3wCCWECMHDmRYYNAn3Ps+VcZ5O6KO1BQEesLCSDfPUDrfHZXfaUNbQOnGc0kYr3soD+YEbGld/rx1eGps5UleU5OpmuG7w90NqW5dZYAmXG/yqQ2I8Gn/eURjNLAoL89nr/6uOnL1IYfHrur68vjDESh/DInmi946tHR9cA6AzGNVyswzp9offS1CKCNmOO3QitWbIrc246g3ZsSheN86wz/Rnbj9LnyY6N0kQxp3Pp/AXU9IXvPenrYLNBtSeP3tM3ByxriM5Fe6sfBEW1F1vrGdzSOSFmOxp9OgG8vqS/yDSVH8GMurttWnUH3zeEG4igN+1xNiocPC+WAqvAGsoUFVIRutWdQRaEPXgciKMVDtyCEOmrHgEmS7YRLOTQ/TwPN1u2YieyASpjNPGx0OnZnM8YuFph5wtj+FdgfP8SgA/YgI0O003j3ECZIpPPtL/KKks6dLmOgDJ9XyCXJrXSXitwqM39vN8TkKv3qFEibfBquCl3+pm6q4UVwFMVyjNlqgKi6ejgDsRpzqoy0vxWYE73S2ZWuVYFXOs8V4RZ6/IETOvz6HDmobrTbTcraBu9lQF1ngfm3Kytp7w8AcTsJGmbQcEDftyMYBOYsfbz1ncX8+85t/f593x2640KbU1gChSj5jYEG8s6akdgQCDZAgJ43eCFHMOQtzHjcAWaaevuw44MMsN5Bo23C+wdWbB2TKbdzmBGZlfCMMt8rSjOjHC6G7BK4e5YawRodx4HfMyIGEV0YzI10MPYU3etVFpQ/b0dAeq94/X1wlWAZTFh0yGQLGk+l9hqNLDUROfoncBupHaKgcAaIvSERHlH0Ki5vgsWTEkxWlYA0EqN1vsxOuJQp6cus3ZOAoWmSURG4AgaA/2gw3FdM1Mb4mGi7hrraf36/isAisogDQvJGpqxTgT3VkunB74BH3ckGDCuseczmjmwEP9mpVDeWKdL+1rzIH31ZOc+dQ0g8KZlYXA0gso9AeKth7jeI2uTWVMUtIXz4bfnSCDLd9oI/MG+OY6sXbZ810uyQBK0PB09nOOIgmElcN4a5Z+7jHLTYu+mfEQY3iJVc7qzCzIIbE4gjRmCxSvSC7kPdoofywrUej0E2FdhSXB+rxXXK63CtHfntXCUfZNR6dYiBZvi0wUYxjMIZBJbVo69/NGn7tN/53kyCDAjJdj43MlGMj5nU0Chd4x5ZfozO1KS2TWXOuy1dGwFaC4xKtVUoUcjiXjP6SuKlLMe3jYgVa9l1yU8jxPXfOe5Q+M2wJtgrq5J8LE6hTofeD2+SxaLdxqmOtd1vn5/f99skBrgu1RL5+AcSa57PxLYa30zXVlPMozWMHTh4VBiR7E90K7WdqdcC7lVoyCN4zxKfSruJzIzwS600QY5WQVxPlDueQLx6FHjFwuHl3pVgC/1oMF6i+YeJ4ZHmYQCksKAcV10cKOupMX1POaf72rJWlTa5YwGMMAGfhMQL6Df/j0ylUxn7D77d+ByrW3vAbteoz6vc1rgfLOG9683EpgJgKzaQb+7z/O5eU/PFGqxZqgHZBuGE2L73fScRwQMzvPAH3/EvIAp1WR0e3wmbF/wvDj6CfRtp2quqJ+3XaKzlTYJdWprLfTPwAoG17MGVr1uawL+pWTIJNE9trQ+slMiBdHMooapR/H/HcBfUBp9S0DE4ueqtwnzqEks+eA9m7UoDyD2tuomBssQlQEULM6s66lz1KGu8HIKCUCFzQGjrRC2mxoCWYD10sUMTNJ27QEi612EESIAGDMeXws7cKkUaZ+LNVhtz6lsSNmBkF3p9xJJedYDwaIJhhuAGbUDtX+5PpugQbvesXygtSOzTwCBLvcme5WIIb15BDCgdeRasXa1gvLUYZ41rWo6a2VSy84ho4ayd0QTIMrySGBGacF8J2BOi/p2d3ajfBaVQxFor3t56IXelblBQL3FWTDX4D5sHdZ6lgXY/oX2jWy9bTcLcNt2pEdAmvtWwQCAtaw9YOS9x0r6vqsOfmmquMjEUrMnsyjZID/INztaYCWvrbpvQRpwAefByIr6ejNY6qkfUDLPxLr1AnIXuax+G+WzMNEfa4R456W6ajqnEKWPUEsa7O/CNoliy7SljwIg9ZzuvdOVd7M+rc8Gu6PWo+y9BHVKbfLyTApkpR0RZwDsjlPo7w5DOwJPuCY8WBIVH6n+8+v1gp8ea0VF0nsno60JtAbWagmq67vpH+b5ChjIcG9hx0reKojP85w1+BRoY7xw13y8kbfEegt7bfsi+LFuNcX86+uPXIM8pzprErMB32bCeazrDSAM+5nrAfQeTdvGVZ5hB4KrXVB/V2XR4roid5htAE9zmmfZ2mUInr0n0PceqPKb+6n4Z//s+PspugIcyoZ80mFrnYTbpN026vwxSfpsTSXVZqtU33oQ6BqVCad0l16MyHpoANgHh2/FLPBMm2Czs5DfqYCZnIqqtJ/Cc0+52HTzKlT13fUudU4rm1EbsM5ZfdebgozP1RqHv82DLyCpnj8BwrL2dT163EvgK4WfSHtlBz2B3NszTjrRWsu6xtUo34Dl/r7ebR98TO+Q0aFrVGO/h6IACghpMsCUkhJRFmcKzAan9maUfFVZqc/T+wF0Rlm2obMPfwOZh3T8+L3reufnFpyssOUb6V87JabZkUVZUwmbgMoGsziQVVfDCBiqfpJFMfUlRqE1uC1GoezYKQ6dDCIpaK3zGINptdFyvDZmWS1qNLWdgrLGQree9xkedWbagQa1LGfUuwfIp/pp7gvHGTVV5NyBxgZrxpDJsNbCWCvrP3gwVNg5LIxJRfndIDZE7ZSqd8j9cF3wjptDKPkT4CAjR/K9ncqWzkIavUdnmkYU9mZzAnadkhv+DET0HryWtqn2Ag+rYb4jYBu4rwA3ZQ2MPpa0B66J53y0HkYrlcieG8xse/96KaK80mC/6fK52L3UyUKcKwpLvy8Ytv7LwFBQ8q0ZrtgzBrG/LHTtPi+oC3qCx2Yta8OYBZgErrn2NkG0lefXEQzNWmNIgM9aKxjLjE6nYx0pzePiuZDdyta9SDKDFDwbJibTMBdZMsDCnGSWVr0PmwHKv7L76ZxkkTFerELNhvBdi6zKoJtxDzpAtcC4UpyYjsz56U0sEEeLtOAZNT/d5nZU18prqX4ZQb3CfvcItASgTraXs9j0Whk80PdmgClfX18pY6/XC2vq3QnOn0ZgsveDDONIq8u5C8CpBtkkWwul22I9yaykejfV2dk2yXVdMBi+v79hhuzYy7fehvw1BqY1FsPXfopC6GSJaj+31BNyLndjp5b1jBxkA1/XlZHdNHYPyt+8oozFEggezxWF2Md77DMn0pybgkIB7NGhlfxR57s504zPE8O3wfq+BFovvKLUiFJ4OJfAtUaAi0wZbZk6uHWC6lWxa7bqoG5H7FY7KZ57YdeUYuBn15TielFrvt90xGPLAgXUcd+gYHUyeZ9SdypA1tY306uWZqj2CR1i1uNSN8nW6CiPK2qDiq2R7zMBk8zhpudZtmCnKgFIdqiFvDZr+Po6wvaIjoCvM4JBwTbtDcj0y9p0LdhgUVZEekPdNnk+WNZkZMdQnYUREPMVtkA0tQr2YO9H7NkFGSjVP9Aa6DnWAhpW2tUJ7j6cqxUptXUka6ScA7quRRq95Pw4jiyvcHOmBChArE++O5xNO5Di0AQTcr9GEEP5mtbKe4W8WiB5VHMZis30NwHmK+b9Sh8oWM7ODb2WkiLDjid9LGA+BxYCvAJWnHEJ1NkdxAp0lbCMEfQRi0Z2QW9iswmkpK7xAny1qFH4en2xhMpaGaxcy2+NgM5z2/iIeTnPF1Q/jbIR8j4ZYFSq/jNgbEb2De3wQX1f7G3a7PdsqtYaDjvRvSfIJ1nTPlYgFCHbOh5UPsR91xUTyEwbwnEcZ9q3c8rP8pQH3et6vxmoD7agAjACOQT88fOR9REAPBbP8wWPciGbJLIBzvvPJItrVWJEy4ZKtzpwWMFG8uKjCFipdRy5VgwqcK1UagpeGj9G0LHuza1nJqqtQ3Y3Ug6egE/ubdxxhhX6WkEgXTOz6maRCZSMqdbw69cvnHG2Vh+36h+PYPlOlV5xVl/oFnvCqy+0bjhEHQT3t59lAPp5sH61WQYUWyNDelzs3H0c9ClY8mcHqCtgScbnnpM5J0H5Tp/V1Nivk0HH92BN8fP8us2ZQHdgp+KL0FHB9t47G9tE2YiUjVC4LbImBNgvRKmlMfNZla5eyQZ1Lc7QjTDD0Y+w+zoyO7CH7MyZZ2CVM/nk/esA3Fi2AjzDxrynPMterD4tgbw7YY01ioErbH5fd3yk7veK1ciX2P4KyToC3KvcSQ88SVH/zPj7TTak8Nu9rXrdMFLAqWDKxFaH8wmMadSfKeUWuEdg6qFdQa27YVHrVdyVx90h34afQItqQAD3GgEVhJOTJ9CxAllPhpyeWZ8FsJ3EIvBSMLVIva6nAtx6nrpZKnCo56tC/OvXr1sDED3Tk64speHuJL4WIWVEeGFG0whtFD5f+d7azVPq+lcgeMyRtb/y8ElFb7e14vrix5oK6eehSef5CeZyqN7iBWDLL50HAjLn0XEFqOuyFFH+M9aMqEAjgKx54yAbD2FQu+2oGsqci77N5zC0pQYaETl24H29w+HftSi6amt41H9oIWPGIvU7nTeYB+4Y16AhfrTobunJypRS0UGm6Pz0CWQ9NSqt1/kKZ5rpRvO2rxbe72C+BFgnMCgd0JjLBVLAW2tYY+JaBAv7wagQo4VisRi8O96T4GdzoDU6x9Pp4NIw2vUrACpjFnT3qDPEx6DTNoCSPiqFrC6cKTf0A1J2zSyi9+sWiRtzAB1l3yy4M2r3irSna04oPWJcA1jANdXdKw7fANZqtJH7TY2G9jymg3eeWD5QO9npMzWSVPWlGgdU/TYwcfQeoLIMu0hZLUZx1aPSWwI6d1MlD4M9QJxGGfv+/o7mIffUHgHRZHN2jLW7WKbe6Q1nOVPc6QBqHqazHhNTWtRxmU7QckeID59fKVPNsMzCoOk/9C0BaDow5ykDLtI9obUQ0GbZMGYHNkoxfWO6IZ8fdITXPXVEMjbGzMqOTHPtCVxIRq0ZrkkZb3F/OSFz3B0a/Vm7ySmdlfMcLI9VHGpHOqw3RwpIffusV8bF9Kjr2DItA04mg3TbBgY95bYC0RBDoOnfhjnI3vEARsgU5/673hdZEI/6apwrpsiSGV0ChWPeANrqROi8lLOlbsFab+7NkMFowHT0aCjhTJtWd7rzPPF+vzlf1nG+jgiIiaVKpuh4D3z9QaCToOLdeAQUsJtRL3UDgqp/A6NubCjOohnTfQjJUOa52CDjPQDdFnZd37XUdB4fweS+dWw3Y7Og3MOINNqJMSeO44w6vRvUMxCEnJMpcCMCWjWAJhaFatKYN3jMv7qdwqjfq/7YTko0yGoW5T4Myp2vtoR00CuaCjAgYGQ8ZkoVAeebfekRAJkLCqKReck9uYrDJ7toEdGK+VbTkv0MtKe43yrrWvrD0WPdJuagzYXAmd7f720rZZ3RDZBXZ0o18OiUFpZb6ByBPrVutRycfT3ZWaGvIpAVsDesdMZFzL7FubfWDDuLbBXtdzpyC3PsGk2yYY6+gZ6dloxkHnFNETbRKjYJyKb2nVFgZllzVnIgNiPv3XZNWoBytxYac83CKYs0MPeIy4buarTpWBtLaXMrf05bKgBm+SyLNXv7EcDxnLL+aB9bMC898Ktw6gUbZp4mBCbI3t1nSW9MXKuBEES6poZsgvP42nuqsZzKiDMxA0QeLFvrPK9bgwdDVkxg1RgUMNaipIVAI637Cl8mIgbUx2e7FePnOiRqn/sHqIH9icSbim8mZrnmpYI5FYDaNl/YVnOftToT59wZQLmnFvJ3re1Opfd5NQbo0o7suK4RwMUOItRn641NywjazDgrPNeMepyZL9y7m1HcWgO6RTqxBRmEdcaP48jU1LWYIbDmgMGhkjYKghH009lvAawEIF/8hOahp7HBuGrL3EG9Vs5ay4Z5Zgb0O4FHbpt05HO9HPvcSFBkbhJHPdMrOUO+vf5dg0qSpxqs13LqXXRuV/t5pL+4QTPqBJ5jcw58vb7y2fX5bKi1FnqjLe+yCQ1hd77Q14rU+E0auq6R77HBxR3A4O+pr8aa2QCN51LP71ffGk5fw6BGgvfGqM0syyDUbrOpW8ocZkMPU21mBo8qPlNxIq3bNQfg1BnHeYQfzUyOr68X/vrrL7Ar+hG1lD37ElR85v3+TrueJTs6zhcDJ2dcd4yd+SU8Qn7AVIAz7KLeOnC03COSuSpL1c+qhKWavguw3Mr7uuBWat7aHcf5O+Nf1kX3qSyrcquTVpHN+ru8nt2pqBLECloJjAA2nRPY0QMA+ZmKOIt5AOzFqEqhGnsyyuoz1o40dRGfkYOnQV5Tfeo7PZ/3HzUlkdIXCySBobKJKthZwdXX63UDELUJND93EO3eReh5EM45gX6kUXIDSVu7F0xPRcq5Vl0YfV7vp+vqAKpgxJYZOc6b3i6njd3Z7ixQrS/vtdM0K4Cj++jzKvZqrUXBdsALeyQNVWOazIq02kqZrszF1gg0eBh/rKdzp3CnAbJmRimucUU79QBZjd1wv/pJJ74YvdccEQ3e9Wt6M6YWRVV0rncxgpZFbSMDrPE78dx7H6wwkgE7Ol7nCyucu+G7G/aaNAbHnFE/0XKhGkCWBlE4uEfBbCAdN5R9y/Q2OkVzTDrv04G5gjk5c97F4FHEMhaaqUjBbOpR+8rhOI8ea0UnU3LGAuRkq+jwUASx6rBUvEVmWTg+9Aru3birQ/P19Qeu9wWBJXNOvJOdSYO1RwoIv9OxmkUNj3sHsbrHaVhIlwWbZ87SZXjrFOmQDeBuHQNYgEabhXP2HrW2dorcewycvSc1vUYptSelL2u3Rhkb/WDqniL97XyFY3QPUEhnrbELyivSLUDMgIiEK320wexgsf5Y89Q1Hh2VIYAU6G0HiPT83L+U5TlVz4kz1Kzh6NsAIusyOnulno9OlBZs3wKqY0XdjWCAwHeDGaW19XbcmjG4iy8SWyrYMNcgm4sySofwGheNfGvAWpFyWg1i5PvrHWSE5vkVKdiGzYSSk++umjI7OBXYXKyz6hvicR4h91OdZ0XWZwSnDms4vg6856/bc44x0Szd3J22aveIt9hykssxJ2wJfPN8H0dh8x+R4tE6+h808uqZV882ygCZwk2OcQR4GCMRiOssil/Ost57pApuINzCWRdjOtcckaLlqo/aNqgUaetZ5NqAI9L1zSLYUUAjsbf2WkTaTNaCagyKGLIBji01PSHA5cvh7yhQHswRc+R8K/Co91qTIL5qoFkz9HPXLcTaZ7T2Rw9AB9i2Rw0wOpxFqE0RbaXQbN2jP2UvaHh5zgQSir7ZOoF1d/cZyPXrERowU8pdSfkKh5ry2zEG2W4W9QkDu4k1uRdJN0MEO8j8smABKMo/huo6FxDBQ0fAsrZS2h6RBs17biaPu/4jK2zPC4Mdub9BnXFddNZbO+KdyUR9ZtBIXrkGkUnhAppwW59mLe0gXlRBid1oQ4FDOcxqFOS+15DX3bWdNyblP2RAQFsyixB25NjPngzmtbLsAed+2zeSoRbOufUGj4CjakqJiboCIOW7CdiK87p37q2wGVbsfffN7KFcxL1wMBDrO7BBlr6l3YHG1F3OTwcgxxx4Ha9979T9Blv7TJactLJPtBfe3++9T3tkWjTgpbImwVYy22CHmWW9S11r2xQ1SNDQWjl3qg2MfS3W0pu3vUu9OrMOsWpr1bXnZ38GOJvNYBvdbXCNJ2Gjh2zrGmL+kbkUNTuXJxhL1q7KkWz/qPo8Onep12i/mfVgy+91edal3yASZ9LiL2R47aDU0Tva635Pln9hwB8hiw07g6yb0Ua9BtwmkgwAMdAVAG1lTZmy/Xq9Yi/efS7dWz+76XP/ydCt69SPnj5ErjnCVVBQO4KQZhZNp1rRrXcsIf02bHtIMiD5rGtTU8yrv7hlY/uE6ooO4AbsyV+v5+OYA8uVOh16yjYhRnthjIGJwWZincwzumrMLHi9xIzd86a505xI//K9ZKdSD9qyrP3PoOf7doZL7ugDAjDH/PXrNgfS5e/rSsZ7Bo7Ch6r159LudGa/nMeJ8zhhbfsOehcFlKQPidlEw8NOP+B9XcBVs/mqHbr9ppttFeegjDbpP+6LCIrl3O3OwFbWqGOTiCRfNeh3s91D9oTpSP70ueM48OvXr/CbOkbIZS0Tpxp9f2f8S2rwaUKeYJz+XVHLJwD2NKZ1rXpt4J5ypmtXMCqN6fjMM+2rdqWrivepgLSg9bOp5Oe9k0wdFbj7HUip6H11rp81Tmhg7vbbtwKfvlNA69z9DgWvkY4EGx6KDrjXmKrMwYo215/1o+N9zbSt7kBBQeoRDpE7XucRBax3/QR4sDK5MyMCM8MQ0jq3x8a9MzV1/ytThvwH5ZpzhUgx2QZ2BQmva8uFQMino6e1SQfCgfM4Ezh9nexKBsn/4vP7HEDfBafNlItPJShQca8nU1zQWP9xTnaA7f3e9alH9Gw1NjKYFwurt8n51MEPeDgREfUP4E7nwnkQZGGdKx6sM1JfmUJgWfDax2aG8X0arnfUm4yaS6zJEXWCwhhVWqQbHWNfCHo7/8E6KgfTlxHRbzNMj4LuB1mCUoz9OGALbNARaVqa8+M4+bvlWcuQkjFxDaZT8NlZ1HuOmUZa663IO6OWkj8a7YJnwilajO4zwhaKPlJz1EF5H6K7Exg7k+2GOWL7sIbKdjrpZG5DWDpwTunMFg0S6Pxd15uRqn6vz0EZ32ytynSlA0oDgjUzyQD0AK/XWsEGHTi7Uj3v6enbqF43vXhnr9FBaa1loVzHruPTGtfCgsFKygx1xYoabarLxzkqjocFbOzGbs9Y6J3z0zt7UxHcCPgq/EwxFzXf0gkE70oUDQJH7kYk53czmRGync7oqHpMTuzOpVV9F5ixZt/Crk8VjoWnnPH7qjcDU4e2iTHIgJ2TbFjDPhf0vHLKq65/ngHPoJF7dKG1SH82slOPFiDLWOywF3KplBwHv2dA1qgSixlm4ZwhjNt74ItrFrWTDHCMNHLmuJeS4PwEm8MAuIBnsR0WWc9LaRUNTOmSjqSunQHovl5npiMj3rlFLT93xzKB9uJORFAgaqJ5MKFUA6t2d5f8XWNkkfIZdQ+PTvbz0XfZgSPqhkkeej+g7oI8l0+YL6aPRZo552RtoBJI/ZHn4XScUScqliOduZG1Dgn4a0+1LzKp5UTOOfE6TgwfGfQQMK1903Cw/EHsc0jnt3ukv0UR8es9gt1APbHUPRWyhYI1qeU2Op1iWDUjkGhgkEd6a4N3d9sx93ZxkI7jyE7kre90fwQYUyPxshe4ZwxnKUNCfUMgAwCu8U5ni/t/ZU3EZwmUOQeuC2nrVJuNjOYjJ9Saox+hzxr1ONNmHUpRVC0kyuBKvcn9GvZbZ/DCQfmYhe3SmsGnh37arKS0i6iQISDRopSGNe7JiZAJ0OZQ2qUcVAYFCGYTMKpOW2XhO+S2c987dWJZi6fuAoBTDn3sWTnM+kxvDcbW0HyeSWYjQsaYgqVzaANx1AMIkH5lfdc11V3W9j40lotxjxIfspk9mPfHmanzHroUc7FDsYLa0nUgUCCwPcVXvhBAlmKL7IeSPqcsiKSkxQ7TfqpnOmvhMT0dxf6hTS+dsSJgfeQaiaXNzu08rylHO+hDuXe8Xhucq8CP0sz1zDqjKyNmB/IpRzXF2MyApRIJm9ml7CGCd5vhLbviR5B7MRgMY9BcDLs5B1ac/Ws6Xq8Tjo45th9WQSQNM8Mff/xRfJMIGmSqK3Jf9M7UxzFGljcgsEsZpL1W0mFla7rY8GJCxXnTInulH1EKSKV2Qm/MXUNy60aeYUf4CAhZmcvRfJe/yLM6AGjKxz1bb+vZ7Xvcgea7X8ogkQK3rDNMJjx9kbnmPmts2zTSqRqt3zNNKjDjvskvT+BPz7qWp4+u80rfV0fc1sko29lWRUeY4TyjtMJl0ZiK/rQC1NZ2CTKx730x4+kaI/wDgzntl2vQz/3+RWZ/Daq4O/oUW8xTZtfkflR2mif4N/E6Xptt3EjEeb/fZV/idg/5Er3dy2jJ/lNQCKC4zrkww6ZC47td14W5nDXvofIHIRu+9WCeM7E3DMB1KRMmZMd0jjDwfh4vjMiG2tgI9fHM4MA+L66L/o4IFnneHgc89I7hzh7dIOgsfQgeabbcCLRxr4nzRfxH8iq5PA7iI3+8Xni/3zdMZkPV//z4+zX4CvhUjUD9XZtGAEV2lTG7KQF9r7KwXq/XbeNVBp1+VimNFawD9ka+0303GFY3YgUXn8AZcK9Hd6OMS8nhbmDUdzS7RwI2Q2F3bqnR697X7bkrmKe/swgzmSgbrNqNN16vF67ruiHieid9T4ZRrR1Xi5zX96exi12/Z60sEsm5YW0HORrtPNDmotfrC3MAE7s20Rg8dJW62ZNRsg+POVUfhnW+1OlNaaQyprbhsIoSzhVKx0kOueaP1+5o5jj7kYfe0Q/8+vUX64g8QE4aSWRqvKKe1BozOrxGZAh0xP84X/x7iTAdveNQTQszHMeOpgrk9EhR8ek4z1eAJ+eWz0grtMX3WMFEMfOcRwBRzJ+OEjsxsWaO5obGNyPBLI4awKSYcW40JK2AEpEW3Joi1yvAPT4DIzorGVcywpT24u4EFmG4BtPTEGDvEKsBtov0gpGX88V0UWI/Ks7cMWakGMJgazd4obzTcGFNo5aGOoHEht6ZhtVLpJT7abMm3HzX02p9A2xNxhDTWUek4zTVw4JhzCuc86i90BzWWY+iNeCI4ml0X2gcqWGB2TbC7o7pzM92ayEHBOSaui8XwIZA3daHyd5a94hVSEQ6YXRS6Rz1I67h3E9PwzWdxrpHQi/VA0vrz6YqZETNxwHZGiPzzZjyhRlyF5aGHFiDZddBHeJHpKrMxVQTdSi+OWXOvz0DRjIOM0gFD1abwYzGB0F7gijVGOQZtI3JTGc8CMysxSg3WTMbOMXenVCKqyBpd4saTIFIYhuzAEFPIM6fxWYxsSL7HUJue++RGnp3QKpxomsB3CMsfm/oJY3H3TFqqnGzlN2G2F9TIIcDvptqhPkL1h5TCjGfeLpjXhfe841rXeWMj5S6ta3MembToZmw6VnHcroDrQfgzwj2cIfH2Xier9yPGm7AWCuYdgjdxI7KOmcZoVezqWCiWKRTuqLIYgoKGAXr2IUsvzodrQbD2Y4EAXvfwPgy1nTiGs0wihfe12+Y5w3stNmCbeqWjuZcO72T7xjBGlg0xAqWJqLxw1EYNQDP7UbAW3pxMx8mzjPORSBrDnrUfT0CfA+7GmK/rUXmJJzAEXU4OwYj7B1r7B44Bu/REPhL/MUMaO6ATxw5HwoOMGmI4AvP0vH9jpTKLd/an9JbK4DsaqALINW++AFuOW0hgTg3+0yOTjoEcjbIrNXYtqJsmXaT71lqSNHxWzlH+r4FM93E9vbt2FZwTw3JrmgIwJsEY7fWUCp6oNqwO2uCZ/qarCG6sHVFaCvWsY3aX9q4vasGnJ5dqcBAi7qaZJ9GtkkGOu5NO/hvpG6oQd9qn1d7lwR9OZCbSTzHrr3mtrMmaDftmnWmwAkM/SB7WwE+xNk247wYHjZVgh+2ywlM4Ohbx8y5ouGMWDFhPyOYV+aZ+ht4O4E+N3RncxpE4EUOtw/VUUaZa87rGAMIRnyL89MDlHDQ9hC4wwZMstUvBjDjfzOAcDPDNd43RzXnvDAP17r7V5JvyZmCKLxmAUEllcXG33YGOwirZIn00+08M57ZxxFBRTfWqw79A1j4DC1BLjWZUUMV6vWtR1fU9e39AIzpkgL64bsGWmutBFL2uav36H3bigJHMjXenUFNI8gGI4NQwdj0kW2D5mT0rgx60IbqaZuY9J+xqVJT5k2LYJYZYLs0jQNoRh+slu3pvSUAlHvNInCb7xo2/2LTOWsbeEyovuhL2Upr0e9BZEZMd0wxo93gl2P4yPJEqa+xbZo611Vvpe8RdeEkc8IYzuNMJrm7AKR78Hrrv3tQuPUeIP49gKWA4xhX1E4kqaI1w3q/0/Ylm5jBlX4eSRBQwxX6YlHKCIZff/55swPWWuhR81LPxzOOn1eZADif+/g68Ov7m9rB6KfAmB0iu2qtBctzCRF82+enjgvp/gzmgdagsjMUQNy/RbCfDRMtniFYmyEj2dE3gLijb/2vVGMRUQwRjGgdcwx8R03ao1OfWRBLzIhZLBeBQzgMGNCTjBjwvi68A6/SaAVfemZr7XJEnJsxB1oE0a9J8s37L9lvZD5fkS2I8LXtqgxIYjLf19+H+P4lNfiuMhmVwaHfV8VWBXM7dffmGBVRN9uMusosk3Gma2iCa4Tnd2DbBo/uXSU1sRWVfr1e9+KX2Hn99bs1SlANjWfkANiKSNer4NvzWQX6iQqtZwaQxTmrwGUUrHSSqfep61VZHMBPQdXn98G2Oz9pnhAH9p1GD7QWOftzQfTpsSauOWCdKZ/HUdrY4w6UVlp/dVb3M+3ir3qnLU9KHdjvpu+ttdNKkm3oYeCtYJ2YYQVjSYa53r1u6rkIUDbb4O09/ZHK5WzBjIwI2VoLv4KmfL0DTA12Rj9C4eVhb5Eygvh+GC9h4KAtnMcLv97fqJG7PR9kEqkDWJU3C0dvzKCWI5zNZtHpqMoB53VkZ0WmQSShzZTiILYdwqUP56uVGkSuKJsVfUFjS2BIM6ZBcF9ZfDRggmUpg1u/3KP42heOhfPoOF4H9BUeXFVfIEGvd3SrZbOMnbYhGdgytH8uo3WtlZFdzZeMNY/aXYcFq8VZkB/YKXGMBu5o4d1B/H1tUveFa1B+e+tlD3iZm70f6tzw3VnPTeAVjEV51Wlr6yUWzK/P0CMqPEess3vWnXN6/TdjXvuGRub+95OFDcihVaQ69PMR31+FJR7sxTEIhDMtUQwJrkHtBkkQ9qjo/63Okhwy6x1MqZ9hPA58vV40glbUxGuG5SMau5Bhxuxchx0EvFakvrVGJ7NH4wrznRLGqGhh/zrZnC32YKZctoavqDXnkB5AGG3scLuj9euHEVKNUxnUMm416hknh+D7+/t2RlaZrAEnJa7CKvgdRqGTGZMlGAJAIUuOc9YMaL5ls0cpCK7Jg00bz9LOHfndsr51pPs+X7QPKmtT4IrOilvJijC+akMqlXsw2+eIQak4I2SvY4x6jhNsJDCNKEFwhYOILHa+z+padJr3WHOlA6RAKhk7BOnosERKzBEsyhngp5ztkDszFqnureN78DPUL3JcOlP5nLqJ81V1DtdzvMVsBCC2TyB6FoC8RYq/mfQy2UzJ2DY6UakXYkYJZu91a8bIf+ti47W0AepaVucrbopmYuNsPf/UN3ISUycEK8udASUBvL9L7dv7pZSlCcej7pN6v8po4paJ9O44P6odpjlQKIDBgm138kI8y1kPkAGt5VsH6GxGU95wJwAUIJkCDz/HtpelQ6kDnMyzsEl6gLlzRKfQeM4W3T/3+7UE9p+2lO6fWS1sKV3kajMfxBAa18Rxkj3Fs+JnuRRoFykLxFqAx+ctU8ex7fWVwSyeD6ozpjV0eNSws2T/2RKD7el3INONWzf00GNrTshENWsQyTnrPcn+hQcQyxIpyztYH6sBLkKCgB45rvfgINlYRpB/xZwawqkOS81DP63C7mx8guM4bo0Kk8VTAiU1JU/jaT9VP0W1RfWzeg7perpGlb86r74KIxzbaa/D18QRaY1zVB9jpZzU85FgAeuEsYOpw+fuokr9fiWjfLXNjpZcC6D2+K9FvcTtcwhAU3OECOxGzbO5JoHkofO6llLYAdXqZzKtX3rbwqdwqEa4hz2keWLZG4oBm/8daFm3k+BStZk3MNmT+a71yZeFl/2NfFeA2SbcDGFrFZ1b7dXeezR2ueMCratbONdePke1k6svGZun+GN3TEL6gfbXzvra71QaxsX5JyB7DDZxkv7g2RABgWBPK5tMOlTvPy42v5C+qfOrDJ8bSO2b0GPGIPbOZpPNs7ELAZdHjxqLheCjZ7W1z6q//vrrjmXUmpcLUD3J6p/XwPbeFxtX8WCn6t3q9fVf4gidJUzaApYVNupcgEUTrSB9bPuu4Tye+Akzks7jxf00Z/osGWwI++yJtSyVcHHns/SOnv4e3//6fqOZZfMgvWtNx9bznccJO3YNv1pfcYlJfxxlLrYuqnhQbqK/Mf42wFcXtypXGT0VWDvKS1VjWsbTU0FXgOoVFEYdFMBdoes6OmS2kYz8bP236LE+/QZQ6lrAPrR21Gi/g55PNRXqM2vRxhiZ9lkFSpu5ou16F/1Z31HzIyHS92p6Z71mBTtWEVTdS7Udnoi0BLUCiRU0qBtdjmel6kqp/fr1zd9B6QnOQ/boyTAbI7rIwW+H9G6gImApGFj2s8aZnq+u266Vs7vDFWmF6mtJBua8U9MrmOfhHFRDZs6JV3TTFbBbm77oM2cy6RRlkqMbEV3f6etmFuzHFuwK4IiGDGNewTizjAyPMcjc6Jw/dW9138xZOWfNOiN1EDhdIqNN6Tmcx/n9Brvleb7T7kbcMNbKLprMbIk6l+HQXdeFboiuqm+EB4vlUXi+MZW3HQ1YNGYVvdyAWxQhDlbIbpxBp1+1aZ4RuycQRgc4IoGDAHPvnYaZLyy7d26qgQPO5WaD/g6IqqyWqs8S/MRmXPERCXw1Yydq1o6k4W6LxfDnuHAcJyN+y2977ynvutdxsg7XmPcan/VgPY4XdqQ3nLKjM92iRP2UvsHPtB/v1dqWFV7/SN1zNMvPxVYr6wKoRhOjxxvoJHhjt3dNQw77AMy9H/+jxRtsM2c9mykmY+vwOVmvDmQIEIynUXSNwchj7BMySXs6zj5HgosrHKIZ6ZXdLOuOjLnwPa5IHbQN8BnfdQ4yP3xtZ1w1lFh03ZieeRyZ3kvDpKdxOaPpDNkVk8yk1uCmTmw9ajwC73nBbDPFn8BqdaLltNXSDHnuzZnzU8+rykxMg2V5dDvbZ5F0oN7nJsO51tsI9OWwSMfJgs6+z75mbZeQL87gHDM7q7Kb4VFAnp7R3c2+33UE9U6tNfgKYAodyyMLwRds7VSjHTSbuU+OgzpbbEM57Cxerm7yLB2wWWNHOoIW77QKouArOtV7lEZYYpPtzIbli8zWSIV0gVBz5vajUxT7xwmEv3+98ccff2RKkVKU1lo3/UCWqgEWjT9iX0kLmVl01AReveEaIxiP3Kt/fJ1hV5DpvoTpm1LNn8Acr/86pftwk51YsGChywnrN7msulhMMTlRApCqPUSA6MozqbfgxMpBjZR5sfhasQGqHfS7wEtlvD5txZpqmPJdAMob2FmMf83tirq2tz3l3EsEMi1/X8vUKOXIsYMaHuwCmEeJCYSjrmCuArs7dVD143o3jCjLAdNeoufNd1Qpjrv9rM9onhCcnuM8sdYgWdfFkGXaMucHODK7Q3ptRsfeAKN9B8/nmKkvXABhsE0OKx17FRAiKktnPlImHQBCDjTPZqy3B/cENq01tNgnCPlL/weWDv0eARguAdrbRvSl1Or4RpyXBgYKDLQhqB9kn0ejncW6WbVEiPSF0nzJog67OGpmEsQA930M2QWyi6pcVp+rZh7VfVDtM8m8gm3K8FKTh6qLJRcKrOjfVR+YWdoPFfTT/W92U86LSrT0+zuW77ojABiC1AwUbBYt9/AJM8qEO9JWVGBT7zPHRIgZ52YFmBrnZzKZfZM/NE9sMKK60fe00jyPA+hxmuIwNCZURfYIAxoezQeCMTt3HUGx1XQ/ZaZojGjaRRGkLUbd7Tkf+9k0H7I7GaDd8yOxV5o3Ay4/ag5b7Ia211S6chbi0BgXVO2E8qnyMYUEga1z6781lwrMf39/3/Sv5LOeF/qzknvGmBCDlGsXfmJrGNe4NfBYa7J+52IgeswrmLttl2JCpCaPK4MPekatkRddXkHB8zypx0F9oucff13ZhFPvXYHNOsfVj6m9B3RO1TWqeqDiCjm3vUNNpyrzu+IbmdkDNn60oh7HGMGkiED6cvgat/VT3JEBf0SzjBW21bo9fzbqMbEBZSsEqzPKK2lOZgHiZY+erxdWAfSkq+Qnaz4SS8FOaZbMVBCvzv3X1xfe42JTEduNWp7Bin9m/EsYfPWBa+fBCmK9Xq8fkQcptMqIe6K9mqDqKFRwRICH7quNqkWoKH/9fGst6ljsfOo6NLn1GnreqmylFOp16/vXCFUV9GrkViAzDbrWsm5XBUEB5Nzp3s+oWY2G3dD5wo4UsPcEBH4HKihix43PjdG7ZVH7eTFN9L9CWYrO2w+yMHoLpRFF0h1M57nGmwdHUSI7RVo0/BWHxZ1+Xb/zBHzVca4q5f3+MjA3CGt23tZFhohSMznpcSCtiJBPRY35u+cBysMNGFcARaE4jteZqcyS76okjuPANS8CULTuyHDp6kS6WBw9nv+wA2SJON7vK40CyTuMHTZlyExn5NhgTCt2z1b3YqIcx4ErZI9dEzUFnjWxVhzcftU6OZyQ9/t9i3p/f78xbAS4u8gcQGeKme/PbSAngMw10hkGEDUE75FjyaeA9puO6BHRsh0AAJBAqWRGzvschUWFeI61jVjJXgUxtAdr5CVTzwGogHkyNAxMC7bOblhxGEDpc9iR+OfB+gQz+U6k77djO41VnxhapPncgxzvoLJ/fX1to2UyMum+66PpneF3MNCs0Xkv+q/uufM8dkmFiC5bAfZoXEeBZvNsMnFdbzSwyK+BVHbVB9T+ZNHoqGHRDsxwxizAAtUw6a1lUxAZ+0x5cWCxLPp0j717Ua9pjpyMpy5nBpvpkKl7ISME9JiS5uGVcb0IGrB4uvT4THBvDc3tiHvp8N96m1UO1Fl8ReRb6as9kJO7Y6M1kIFVzwHJsnS6mBkacjTJuj3TealsIK01rzUxrncCEHkNvzuZkL6IPcEgy4o6fTtYySDe3A1LAKaPAlkPEIsO1FwT/ezB8Nr7krK107PFgGfKzQYc3u83vr6+mLZYAHwz3qsXu2BHWfWzALNN+xOpE3aEdxEoao80pKkOywy41J8DDUe49wlgrWiswkMIr9eJ63rD7IS7isqvcBZreY04i2O/ni+u519RfoL6cp+5VWa4J2YAjIYVachWzqHWWxil0ZgpthhrjSn1VWmkM1J5gnHtrA/WW0c/ORe/3r9wNJ45M4BbyXM/ohaRAq6xHk/2hQeY2PpufvTcGzBj05zW0I6DwaoZ3URD93qwYVprAejEGVJKDkguZD/OOTNwVO9ZzyrtpRpofer0altqr4pBytphOxjLz4fOccFlex/U821ZyXChMuMeM8mtbEk+by0QTvsTCXanzuEhQ9umv1JuGeNatzNjedTuTDAn7GjZ6B5NVxbBYa6lGEKhl2J9ZpTfcASgsjYLgg5dMIAag6bqtCsnUHqbGQP83JqlJvC6djCptfw7wbLQr/0kI6mRsa1AW7W/AeAatd7mTF1Vz/e1FqwbWgdsEZDkQSDZ28DssigJIV9KNaVCz9JGR0k5ZFppC8DRGDHQJ6GguOyk2vSmsu4qqCP2t/yS+tl9z+0nJXBVCBGVrbQDM9sPknzXM6yO1lkm4UmWqICFGrnc5jvOt6yDpuZNvWMNBzwCmQ0hjzuTzCIQz3VR3dIj0mGZLdN7x/v9nStCtnI50ydBcYGI7gvHecLQYu5Z/L8CAhWoYFCtx/4WQMnzpS35u9Kdex1qwxtde0YglEHFXvx3j0BWy3OYdscs5XdiPhcec6xnuoOvZERbfqY28co/H3pQ89Vb594wQ62X1tu57aY1dt1Ov/v/1ceV3FZfO/2lkD3Jd/1+JQHQx0TqwQSzx65dr3dure06pmFPrbHBonpGKeBacZPtz/RkW1O2G86wh1ZpIHSELVP9AA2tkUBE2R16Fj139adqsKrqLO3Jun5chw3MVp9Fc6u9HbOHtZxlOlCCdFR4WYZhLjK3ea293xlMqQGGFrbt9kf0HCw3Ij3DoHrvR6nvjExPrmewGcsZoPP8NX/K+x0vmuX7tYnKxidqqYHGWtEx53NOnO3Ms+vvjr8N8PWj/1DEMhIrygzcI58AbkLwTIGQIaIJqjWEAPzYcLpvdTIkvL8D8bRAqlVXD6Lq0Ov5Bd7pPom6FzBFgI0W7ulsVYPuCapVAVF0S3NQP1edMX2nRmqfAGk12p8gRX2fKngaVcD1Pd3ruq6M+qy10nhUqqAAFrMdDXAEGHtuoWd3VsvI/tOJ1ByLjlxZB6oLUZ+f67q7HOv7G7hUOsPdaKgKVvMtUIDzuFPrsHZx4W3IBOXeNMfF6QZTM9qBqAMQ2a1lrfjcC+/3RWCrGc6QF7NOIAdUSIrQAQggY7NA6nOFpMEixUOsyDFo4HdjxInFxYM5tID3tffimLtGyFw7gtUaYI2A3Vxi+XV2YI1iqu/3hTUcr/MrZbG1htW2oT3mlWCS2S7oDpDq7HNi+YQ6O+lAEJCmaK/kpTZ6uK5g/PpK5qg76y1a2dvLFyO3thlAAsbMIgU3HbKtF76+vm4GjH6u+/ZDDgy7srVmmIuGIedspXOjiA+dF8pXNmLAnc2c/474v7UDZvvQqIETRUmrrp1z3grJV8BUANNxiJVK2vuuwdHIThUfxBadocA7yCoyqPaODL3qLMrAYo1CPtc134w6j5ndmfMQbfcmTt/f31mnrDd26Zxzoh1K3UvL6248AmkkW4BFvlYy2QwR6R/I5gnmZMAeB8GMtdh1kUZIgAWtw9Q45qZvtMe4B8fF7o9HU7CD4KKBrCnHImO3GcYMpmMYDFlvShFKZ3RTdaS0fjW6+zSu9Gyao+qw1dTF1lhPVSnOMgh1FtVzUmCLrudOcHXNlWcz9+ZMlpmFY7IC7He3YA3uxgWtt1vdTjqy0WxDTmicObV7YwJUy4C2980RwQXtZ4EmtDtUYmIm+HgcB9bYDUjmnHi9vkCGaDQGGOwmuPI84B5YEdlvjd0nl08g1pZzTfbbXDMDJrIvXueJmt6yFjtjv16vsAeoG+eYGNeCis4RmCWgmB3hy7q3o6e8t7KftJ5aX8nL8hV11SzBhbUGfDgOM3aRpWcHd3ZCzjWak+C6E8ylw+zBECv6DC2DPCOM7LEG4Ezz6QdBurF4jWYMvERMIOVcYwc3wj5r+3zewGUE8SLFWCCtNWBek3WFfaEb08dVlw3ucLObzq8gnezU7/GzBvQGw4uzLaDNgi1qrON2tBa6hPJrzk6X27naBcG1D81Y8H8Gw7dHLdIEZhoDd90YsLAV62KG3s+0lyzWroVucr/ijNznhgIs2qOtHWSegCDWmguv88C8CBgqg4PPGMy4xQCvzrMZbCH3hWvJ5l8AWtZKcyzMqdTlmAul+zUtUe1ASnmXLSAHMW3zFuBeixStsCmaO8b1ZsOiHs0qvDYEiJRdE1BKOT+MZ2Jlnco/kQ05ZjQcKfIgUJlBCTnxXEcFTM0M/WiwCQB0fscYaOo46gxqqUj/GIMlZ6wnuJDvnw76yhTMDbjEfEJAMgEGfUb6UnL3/f19Ow+kQ2q98q3/t97RteqZUsGABAqKD/DMOpL+kF2j+a5ZYvpPbCExfvp5RCMoOu4JSJjh7F/xPqwRXYEmNbrSfKiMjkoOuMtXqL6sAS3O+WJjiWawZgQvoMyFe8ryU4fQxiUQ2K2wgRANgoL9rz1X/b/jOEtAyjJ18TzOZOBpHuv8ya42N4ypRpHs9q6za/tt+PHsFVCsOhDY6Z71c8u2br+DhttGfto07/f7zvrE1jvPQFCVuaqHJV/neWZprvqstO2v+A7ZnCodIblXLdfNHGwY440RKemGA61vP7OeWw7u/+qTVoITG9Hhx/y9o1Gk9lPr1P+//vrr5uvreqqXqv0irKHOeQWjc10ec9b7TtfXMx/HgX1kbjumYjOyY8RTDslHN5VUIRv1Gm/MNXEcCqS30FN3v53PpzRmPevOQpSvqFHXtbKL6aPcyRXV70r79n3d1qFiWIk/LeraqvskIzVo8v39jfP1oi04InBsO6Ps746/DfBJ4VVAhT/fqQhPUK8eCvq58pTFWpMx9jTinshosq3WTt2VgVsPowr0pWO/djR9K89Nja2L/0SqK2OwKiI98/Ndn+BkIsO+WYfAVo4bxLpvknqP6nxUMOx3jMQn+Fc3vpyq6hg8FbPuIed8g5IVzKQRkZsv/m8pzWjuKAeMIFXvZJ8Nv34ocD6bnveudHSYaLPqkJEByBb0u5bJHcgrKHqJhleQNDdlODHmqhEX9e8ea8YDc9fVqBGqPadkMZznAV9R38sHruu+h5atTMeQ0aqi/L3tTp/uKDKwHtHK7ZyoVbpSSpY7erCpRCXvjUZD6xYR512zo8p2Kizr6M0wHfAZtPzmUZ8Cu3NhiwLGYTT1o8GH7/Rc6xjXSqe/hdCMMaIgvPYXcPQz9M0+zOr+4L6duaezgyl217wV17JmiMA3ZrCFnoZi7hFr7MhrAWxWZ6ccXDVdhc6uiePFdZ0AmkUtHaaMoBjBXGNG5dJZNQMUoU7nJJqMADc2gJg82q/an3AkKKq9AjC6TcfaIOIHDxWClPSkd/0kMzIwxiAQoi5dkh8V3XdninkLI9LXNgJrcxKB0ruYfNTOgvYPo/RjDDYUaYyst6Pnvh1z3Fht7sFhWI4x3rfDuRqsNLa4ludx3hwRlqtqmGChaJ5jnKtoicGOXS309JgB5hpTRgMoPI6GuS6swYg6fINtqhtlFjXCxFjqdNaZyk6nF4ts1t4a3JQKxiL3IwAvshIsOikrjWRsBy8AdASwZME4xj5at0HknntQLEgZr0ekwziAdxjB/XxhhAG9FjvCtvNn/Vs525jOhktRn7PZgeN44Vdp8PTsYKco/VqTadKNZQ3U4Kmm4hBk1rsOzOgQyww6yuvrFUGBuYCDLDcBFBZOH9adCW+QDUCG61q763itY8a977jGzLR7d9bFadbwvsgWzTqurUeK4gqAyxIYGGNgrom/fv2CAmgrHKxmlgCZ28JcSn1e2eWdz8N0MAI4rOVFOVu7aczcjLnqYKsDYwv2XcwwweqYM+4ltiIAWshl7Hc3+GJNOLQoWwDg6+s/2GVvMIBDINyA6QTXG5suzWBMscZgcXatBaPznrEgfaJ9RUDKcikpJ9SLx7FrF/LYsWRLjUnmt9LxrXe8jhNXnJfWGmytaC7VEqgVcCHZ1/lZHbJqF25nm+xhPQMsOncuBgCOg6Urxpyh0mU3qog+dYXkWPdLB7aw5C0Uj9aiQKRQ6m5rbN5wngITxZ5rUXZusVA4yBg5+is6McuhUio603ndfYOO2I5jBv+nUqZ2qpkK/iOCDWFRBjvH4qy5zy3P7e2LVBBxRjfm3g70ToCmH9GdXPUBse1Cj3rADgDqAA2mhwMBqiGCDgJOHIUFDiAamIlRgmDSreW5hmmlWpwL7CgTZxHZyTAvcxD6b4xMw5/pI4VObT0DltuGirmMNMtqw1NOFTBRXbY7IPfU5ZWdkhIU+yXrhLrfar3yGsWnCIBLtbF6PDv3LUK/IfUewW1DM85F3U86OwimtZsu6CV7yMB9PRdtBtbR3cFE2nBR+iGAgvf7V9oBksNbwLTtbrWsUcm2Vzrba/NAGVv0Qy6sawDXo0Fe2N+tsb4yyt6VnqbMH7FPLJ9bdhXX03Lfva936jl29Oy51yS/0mMK1IbxiOXR2TwYtTWIuH2r0lU19raAWTG65Tuz4/e9nJTs8yqb6V8XmZKwWtsZNlnaI/QAfAeSq3xW/MBiHtKXXwtoBPV1zXoeaizp4MWzVKzdJCG4Qx2Nj36AbLG1/WuQCMKO7bvG33mctOHWijNgk0A0x6qbLpP91/cvynDYMwK3VpAaZHNayOvXH39grYVrMitAtfxr74Rco1ivuRjEraMG7CuIbMagxIxArmpQI2xH+SutqcFGwxGyvVQPOfzXfjIoK50B4xzNyCp46hvN5VqI0kWWwC8Qe7nTd4Bvf7vquHG9w766ZzPq3601tBdrnFYQbpX1dSAaidx7DFRwWXhT77TjzBrs2I1SLdb6745/QRfdew03YAsNcN+oT6OmOgASJk3IbbMCt8muTto/oobXKLUmUwi2flYnWwCjnjOjFmY/nuXJBKzPD2zFr3vp+QUUVkS7gn8VLHwi5YqeVaaF7lmpvk9lVp9bP5Pg8TtKWWCktvczfr6fVf9pVGeZTiQPnd4ZxVRqq1IZANw2JK8Xxuc1AihY6aDrsBYyz2LpLd51t0HfhslmWW4weNPf1TSAz9jisFdjCqW4CFw1OvFROw4zjIoOdrV0sv+mb6U25m4U4bG7JQNV6c45sa6VkT8hTIqWui9YR3HGZkZXsMj8WYMAhGQHUD2IALpCIZ7nAbP7/HgcPMfrDAZE/N4cq8UBtwA7mJ5GpU8D8TgPAIVG7aSFrygAvNaF3k8knV4Hku+C0mM61opwu4qsusHagXbIKVo4GmvyAIZlhh51+dgHwlN+qk7RvjS7lwsYQ6wISwOSAXsBLUytNGMbdT13LYisUfeA9mXd95J11dVYmuNucOxW9E0ponMhmgWTrTfUEMPCUYg94BscNwewyJDp1jARNPXlsH6g475P5VBJZ2zwMyKNkW4vJ0IAuYxE8wX3YBwVZppYtelA9hZONPfTHAvXEhWfRsIqjiZBWhrrLFC9DVI9s57FmrFAePmPLIVwOJYc3R76Q3vufn5UhtI90NRZUHutAMeiDhcIeCuFl+xZOn4LBlstdN6F6QTNDcD51clumOWQdjqGmq8Z3cOPSHV2gIynRQZFPxpagEgHO1CgjrkcV8ynL+C66IwnoI4StBiTKa5N6Vk0lnrvZPOEjhpxvePoZLSCjtAqe6ABoePARkTArWaJ/qz7J53sDIQQDLV20BleK1KlS6Mia7vumTO6O92D7UA9rpolvfWbkbaie3vvDa3YJR7O8XUtnJwCGmXFDtHeHWPgLEbYmotr1rYeoGwHC2tNoASb5DQly8jibAiwjRLeAOt4X9xL1gzv+O472K0TEz2MadPubmS6NXT01dCtY4TRyzRY6hd10HPzYHB1tJBfQ3S9hIWjReZWFmc3NomxdDIWlFLWFLgIINNCl64AEMYVzPr4OYKhTzODLvZYE2c/4bby/OvWMI2gy/tNFtLRGjwcXM5/gJ+x9y8Fz9a67em5JibCjgggRmeqGo0oWKc9qdp9rJMb3QdNoBLlPEHT3tKx26D0yhqO1THUv2tao75z1eCFK9q/6xQfbQfx6IQ6nX2faR+4CwDjHq/gVu/RjCUYrXwV1k7e7HHWZIVblErwZK3RTqO+vq5B2x7A8NgPToBvTWYFNDP4XJgRvOs90qtiXtXcQGdAZqt04um1XqmCFpV5ByiThDZBZSCTIHDBGusuXqt0bA22vBV7r7UW4Bzvg1hz74YRwLeDgUG4Y2HufW0NC7u0gj5LsG3tmlICW9cCu7+reQGDR4j6jwJPHSv2UStM1YkuUG/N+L50WYCLazKACx4kC1GbdjFQyhQ4S7baTaFbNFppdgNdKnham1UpEC5Qpfp40qG1bnhvHQOb5YXoZjvWwnl+hW5ryXrpvacNPiKVcUb9PF/ITuH94D4YF7uAkpVK0/Lo0imG+V4MWkN7KZ4ldXgLX2XAWwQGwral/Gx5IbiGBImq/WkNybZ1n/JOaEMYqDUboj43dUr3DmsH5tx+Ka8pu5Ts5zn2unC/BJgWvpkAF3YF3iVQyL6N5/ce12QdyW2a0H9RQIdgij/83s1g5f7dTMptI+8gR+7hBOjCtzJLENGaOpyqJIJH3fPdAbwCiLORcTnm2H5xa+jYTfw2pnDHISroWMEaPa9kmjW77yUrngA3EAHABGx26S4Y3wsRUGUtY2SJJZ0X1hqZpDPqkBab9GxHsZMpj6mPqewh0A5mOF5Mp2VmC/++/bctu0m4ugg8KitSc1mZjBXMRzOY7wC4hs60CvC11vBr/IrAA+Bmt4DXsg1QK/jGEgkILCJAPiMhRTZ8ZlL5oiSFTC+VXGhFL8S8uoc9L/0EBp6+v98ZBKr4SzJ9Cz6VoJ10oSNlFqE/NM8EGdk05LquUlpjBwQqMUs/A8Azc0Wtes4u1riTtP6Z8bcBPo19aO9UTin5ZEsV8O0fgUf6fQXlNCnAPUJav5uOZgG+RC//HfutOotCVm9ocI0eFOe4Mvfq+1bEW++vyE79nT5fnZn68zsotG7v01pLpat7VMMHILhQlZMUl+ZWG5GU1APuuxbKjWLqahXuN+NF19Ez7LnkdYweEJlg1+87BFd5YWQLeU8enDxQ9Nyay95VeFZG9HYmmSJ2T0NUCgYVu5h12+mUkalUNP4OAGzXnwCLOo/xjufiYaW00jGvXAsCW4wQjOuK+fHN/ItoT/NI6X0o/d57pOP5TS4BRPc3RqGlBJQukw561jShEfW+3kXGg0kZLceXexZY3s7JvWmMmDT7+yr0H6AZOvrRcTaCnL7Kc6+VxalbzDMjqCUqhYbWjRFjgeZh+dQDvjLjJA9P4E21iRx776zrkaamd9WzrJWU+uqQbeBng5S6fx6SvksEVICx7n8xEMYYOFoHjODyjV1gNFqmQF+LdLhr66MaCQWQxiiaGhMZJkYw3XwDHUXnyLnU/lawgI0eVPeSrFClA1J3EMytjAvNg+YM7kzlLrpIAGvqfRBkfwWQu0D2WO8tmISqm+G3/elOUHbMFZFshMEfRkXrYRBGhzC7B2GeHf+qPk0jJvZXfx3JZhljYGFlmjRfkzUTfTFlcIw3wVGQnbTWAjoZysdxQN0FFLVVrRuAYEbrLVgiO+2czIuOa1yYg87o2XtE7ouRarszsJnhj4jMYu2yBVOM6bmy/mnvlvMqfXZdV15HqSBd+vERSa5nNYBIBbsH3mpNMp3LjugYbWGwytBxhGPHwIL2vGpiyakcGdghMNxawwgGoMAm6QJfE69zp8B4MFMQQPkcF2BkUtN4LqUmYu/CPVnI2nNmQFfxddyBYqYdElh9BjSrDQQXK2nrDDUC6XTjMcYI22Ub2S3KJxAQ6WiRFrbc4JjBGLHcxwi9ICDcgWjuxNQ9nU0uT1P2ECydxhUEDgPiHItam8VmSb3prGGluo1mNFrXmmyO0BvWICOPgITjmu+cl+M4cEVznfk9ksFOEOhCi+Bhj1qWM1I2gQCOFaxy/WlQbVp3suB2gPaewq732OCy4Si1bLWW9czxsrZ1X5rvcjDVzpROq7aeu+MMx1QsiQYWAq8Osj47BhllrSk4twOKK4KVkkk9G3DPXtCfCl7uICmZKUcAgrRj8m1jD5HxePSO7gZYRztaAiLWOo5Id6d+pm2luR6Rxui+bZJ67sIJLLC+KoM/Ah7ySQKEGJHOVM8b2SuyM2bYrsepchtkrbOLJIFmBmhm6kbdSs5zHbWrtNj5iso4yKJLooK1dHBN+8wdjKhYgEEN08cGidbMgIBSqGesM1MvJ8ZaaGADsQRK9Pt4b1vObAETK3KR+Sl5ijld7gxgHwezCYpOk4w+/Zoqy7+zg55ngc6Bqi+We4IR7n4ra6T78js77U9NFuVPzTkIbsJLp/N9PtX6fpVlU2sGps2MDfAgGN60a4/iV1Lu5vzpT+nvfO+Sarx2HXEAYf+PPLc9A5COieoTkRBgiA7RINBnAQozALU7tFb7VUSIuTaTLn1bJ4NbcyrdQP0auima4tTGfnkugKVbrveFZFnm/AqArrYz7YyVJQDkmxQCiHSkR3CIgou5dpac1tQe+1EAkYJsaWv4JplU/aK6s+6OX79+JQBY7cGnz/2scS8ZMt97xcNGumeR7Wesuuvpy9Q9d5UsiHXtutMKjFdg6DgOAtuhr2rJjfM4b0Sm7dsKJCfwpVRkXW9Opjo7HK/zdWM29s667GutGyM3+xnEc9eMyjpndV8rMCVSVZ2nynhTkDrnK+v3epY7MedefcpGnnkdUQbG03fwsLM9upFX9uectIXo54glLFIV7ccWz6m921rLWtYLDlst91fVmakXfJf3aAEoq9Z3TTV/vtM/M/42wKcip1WBPxe9RoSq0VTZFdUI8cfmBHatO2AbR/Ww0XcrZbt+FrizOQCCYTX9NtH1ssHrJGvi672rAqkLWK/1RIprWqmUUn2HOm+apwq+9d4TOdfcV6BBm1ZzUedVCkoGoxxiPbeel4aVpWJ8Hu4aQtf5bAXcHHLw7utY26hrjnZ9L3VJmgnWCSABkHRqRdtrWtZ51q61il6Tpr/TnQ21i2w1wKtc1Hflf1uWpAyqMZLvsQYbh8QhxjpRHsYgI+Xs5tlv7bWrgSO2RJUFAJsV0sk0k4NRCynXPTbnwHHec/iprBVRNLRSSLYa0VJ2fAZ2V/XpsEaj24OtstaArajHYzQAVITal0HRGEVPXi91lBbwSyXee6fjB0bvaOPudaoM4cq83Ua9DKhibJX9WA2EOWcCY/04oN1d56Hu17qXn8BFdb50aNU1EDNFgMX5CuPJ2EmVcsbrDgw0b3iPd2ysljVyWrNMpWst2rDPhTVmzqMdjIAP8OB4x0Gr+yuaJLBhH8JWmjXYDYCs7y89M0Z0mK063DaDhs/big4haKf9SMOb4DawUyI1b08Diz8H06wHmaR01EjBOtqB6QZ1GX3KcwJJa9PiuT7B7HUn6OUCKQgEZWqwQIHBBgbneeD9/QvuTBcYi8Dk0QNQWzQkBMhx3pk2dvQjwRsxXWeyDyWJDCDw2itAmt1V9glub+c50m191/vQOr9eR6TEMsJvILBgRgbWH3/8kWvbWoO6tWl/TSitiWDazVgJZg8a2YiIrqpiP6nZwbjeMGPHbS97tr7HKsAL/6Muep2sHTTnxHGq1u1I3SL9I12h65GlNcG0JYZ5mxlrSq4LwxdWpEprr9TGVl5ZKjBgWXSq3cG2qoNasT20T7Acl+9IrnTLnCudqs3AH8WQ3yym0FCxRwNMj3p7nCfWKnOlDDcAp8oIBFvLEIBeGMlzYAr0spZ1vZYtAsqtZfBD6fStOXwRgDJsu4PnswJl33nuwlTHL85JlHIbRjCQskrAHovvKOM+zwhn2ujWO0iHcfkKuTNYpFsagOZkheqz0isyqn/99Qv9KDoNhbHUGq6IqMOwS1tIITtlaUEpNq2wJbiesptqsFiMCekpYAMRYqOolho7069cf8310ZnGZdPSmV/L0Vxpx0fu3VV0shz8MXct6R4pTbvxQ6QAY0X6ohodIK9BB3FmoC4d+mBdbd1NMFlnfe7r0COEDHZ5GT4TswF4Dwdsg0dyDnmWSr/u56r6a81B+UUwagKkFiCguVhzkaXa7gH2OrLmJlg3dylNNrrYLnf0ZhhzM2u23bvBR755jz8dHk1A0E+g2D7wqJ+YssatP8fK0glk+G37hDJrsSZMa1NQGWYbbHRK03fU7JIsVmCh/lnlrtrKOkNlB1cZk32k+XyyWKSvqm1WAbgKfFQfqvo/srmtbVDmuXZP/4vy3jOAPefEO+qi9b7TP8XIESN+g5sDvccZEueK3kd7nzaiGrYMKM07bcm18nnUSIY1VQFrPHsUXPXoOJv+QICB/YhgKAucAsANoADEaqp+gcU+/30GnfRQixT5ZOf5But2WZcNempOuUe3L0b9w/2fBrYvZhyY9gCAfmA60EA2JdyjFrEA0rXrTRYZq36fgk++Fo7yPOMaeF/vrAlfh4C7qiMl47pHkhBKILuSIRruNeVoqzBNVJ15q92sddI9a5A8f15An4qVAKGXS2ms67ryfM5SLGJOXrs8hd73thecpaE2KL8DF+f5CvB8g4Ksg0sdoWap13VlPdrqn9Xgkt5fe3fbdXwO3UOkpOc6Vd+Ktk0ELBptjdf5gszIat9XcL9Zj4ZejtbADIBgq0sXaB+01rJ80nUJiN/1/1trWdqpgrlmdjvrGYTZ863rV2wqM+pWdOZ+7MmKj/2d8S9psqEJBjbQAOD2clp4ADdaZwWVKrimyXiCffpMBY2Ako5QDp4NKu17V8dc96npnfUQ0X1Safwmba81FuWsFHZ9pgr08wB6ApP1wKtgKbCNwNpRR//VTVCvpc0mpLg6VHXuVRtB73J/nh1xqM5JrcGnwy8VoFmkETpZS22Ds/quCsHua3reby05Cz+ZNhvMYY0SALiuKF5qOxrdAli5wpDZUchqhNxTelIBjgUVRanGpebnCQJXAEFO4hhXMrj4WVppaxFEkdE+oi5MlRefwQYB1/SPrz/otEWNja/YOytYEDMMiFpUey0P42eneedzB7Di1PI3w6uC2hvkii5ajbXHlk9YFIllp1hGqEWVzrXqjJDI0W0NWUcpdcMC4FS8Y7xzHVhvC2l4Pg037UkZZWYs/suK86y3oyYRtci35tmjsyRwB6b+0do+91c1jPQ9sYXrzwRe6vC+gSNOswsBdI+LKXSwyrTgM44xgKlnCUp9O4C29QBBqS5/gCzFAB0rIFr1CZ+l4fVF4LW3KLiOYtRjz/82ODxBjj0XWx9v4P5KI9GawSdB3zlXsFh3J9bWlea/D7VM3zKCRihGlcDqa7Fj5+vr3gm76j93v3cja1EzcA0C707AZDmjb5Act70PknX0vujIgiBjs5a1nVpx4NYtcsuC89IhcvRp+Ojd994FFpoB83pn7S3Na+r7eL7b2dkMPoMp59s5mysYcoZ0OtcKoP4RXFGVIhpFEcVuLVND5NjnXpR86IxrhnmtdELH9c6zGQ6Ma8D61kseDmhzMm60t83U/ZIy3c+TZRJCDhGyq7159F2DZsydmiImtuZeqTUEtpBzKMeuyp90DPU60xczkOV3R/RpnLl7AKI6Y7ch/bQR6vWOfhQA1JnRWz6nmltmB5Y5sPa+y7MfPIObNwI/k3aam2fdKc2HGciwMIFwBgtQZsx7qoo7AXbNc9YUCqYH94Lj+5vy/To63tdFxh8cleHhaGFE89yWLrnGgK8B83bT9WtOMgIjeKeM9Qal9BswPOXuPE40KNg1c/9TH6wMMGgdNH8Az+W4YqSydkT2X8h4pFjF+qLIrZgzNQpfz4/KCJGc/GD7FYeJtEsBdHFGT4Ku1/WOdew4jp5MgyqXVRf23tF82zCghEHOuPaT2Wa7/zx7EQEMxRPivI/aw++3nqnhODukBhN4RE1b7iBZtjLE43mWofU7Q7LOJ+/7c/3WYimI5o3Bn7miAUKw/KO5D/UWgymuFPNytuhaYy4ctojAQPWdmE88xwwmHcE1zTyfcWFOh63MReC7e8lsaAd1ajAweeZEyY2pusCxrmtEuQdlf1hhl3uuzbIFBIDP7r73GlBiNlU/qgIJMaMJUniR7Xq2Vn/q/X6nrVx9A/1Z7ea1Fr5eL8iukQ+W4EPOn+8sg1gLNUSM6Uyf6+kLPR1jfUbzwHMLkQljUVuWZTH0nF+vr2zewmeT37RJLQBu/sEZDZJu52nsQWb9HKl3+F73eb8TXiQ3IaMgwVOBzNZ27ba6PxKkLTZqNu3B3S+UHlcDln52+Nw+6HICb3VfvN/vKJWz/cz0u8dI9jeMmSkAATzau6HTo46hQI3lTgYfVwMIXaSUR9nW8tErCDyKrhyLIFiVoad/U0GXpy3/lNc6p/UMfL1eUFOeepb32C/S/dVvlNw9dWplrPWSPXXzV+BZrkdEguM4CFDjXg4K2Hq/4ht5vainK/loUf5oRB3410vNyPZ7z2DnyyeWnfR+v28AfrW/9d26958+m9ZRP6v6QHOXLPTecb5e6P3Ar+tXBF0ie2nO257THMjvwKR9ypqAI31V2pbr1oF9mWXZGl3HvWXN5bU8muyJvXcP0i33m87Sf1pLXbPK4moTr6M0iCnErb87/jbApwKudSEFKmnxK3Amh7NGharBqEWvm1jXkJEmoRUtUhNVGRrPDSxnrQI61cDSM+jeZpYMv+oca1QgoDLxgOJYzV2EsYJJOiz//OvPVNL3A7awgIpRU9Fp3a8+c2Xs1U2iuZATU4WO0XM+lyjB1cirh3+NatR6d3Xe+WcctAeLeesZOO7pGTLu9Q573SKltBz2er9tNG/g835/XlPr95wnKpF705T6mXGNVKIJUuMeKalggTamUgieilyF4M0swTtrtovcVjkFnTwxwNjZdlPax1VB847ed1RmG13R5KBtpZ97y5kqvGY0JWBLvQQoJdOVKadIh00DYq7ewRIFgOFb7ofqILTyXmuxEyLaQw7oYF+PeWW60n6feghW4L7+rPn9MwR1J+a8A+jArgVGp3f/7rnnKmhfjda6vpKbCgjq8wQ3ZTQQvH1GPpd71K8LY6HdmQQyKkXhpiyShaV5EAOw7vVm931XQRntV875/QjwuK4MfOCeqkaWomdar3QEr/k0NBvOoM+riLq+c/QedTf2fFTdXXXz8HGbj6eRdDxSEtZaaWSJfVwNttbYJIAHOosWs+lMGGGqfSiGiwByi/omxg6vmcbbyByaUaetH3f26Vp0IObym5xIXwXRInQBCUJzjgT+6mdzTRUE77ueIoETfp8yd+Z6jzVZdBlMiVfaVsc+C8cY7LJY9FqdO9gurl4DP2KjinmjtVlrRffWYBf1jmvRJmjaq/hpiPNd6eDW955rhqEZTlxrLBaNfXaQpbMNqMpi3YX8t3xJL34HmyP1SWuw5cnKrYX7UfaedITmYKdah8HIBYszc2YX+MrMqvtTjr30Q61zWZ3XOZmuyU7K90L47is7bibDLh5de2OuiekDWKpvG42YWtRFIikOTSBJMrHoHE+byRq85kVdbgQxUwdGOrOM3jHV4ZS1Iue1bR6uXRj1jWywGWeUBZB+vKI4e9outWQCojYP5fd6vzG8AFnFHqw6kP++g4+S15THslY6D2aUM4hdu/cPSpOl4jzqWX+vv+7A3HaeYyFMz099rM8o3Z8ZFA737dxW524Up3e/H0czNsqiLhGA/fvsE62FgkCS03Rm/X7m1PvWelB7vWey5/Z8RLA26sG1vhkhW3dvNsWa96ZwVZckgBHvQG6QJQOS7FLdn7JdZUr7henpFAl1h7ZI12S2BvBWMEbzH6wTNHVZF8xnqbu3E8s6YteQ37BynQXw9DgvU0cXOQCQoKEPMnbbAbyvgYaWjWrC6L75XbpGtaulNysoJ4BtrZUdJyvAU4fsL4EB9VwHgPd15Rn7tL1/BwrU/a7PMBX8nkml78j3rGdXDfL03plmarsuGQM+7JxLJhPt53ekJWp/IIOynuBCPQvNFJjcwONxHKyH2nfjJABJDHk68xsYEBgC1kEDgzbHse83Rg0kelxzB9Xoc1Dy3A2t4bYW7l4CiNzT1GPBAkw/ve+soci6uO1ruwONshfot+gJQ/c0MbMLA9wi+we76Yn0qoI00mey9ar9Lf2kBkFLZZcct87nmu+6d9Za+P7+vp2vum9NR1VmnORGRCXJWmIYa910wRgjsYpXyZqqxAs4bnZj9dFfrxcbThX5z8BN6OCKp4y5ST27NuMoGMT+7Pev7/xs2qZ9n5fneWK937fyS5JpzdkNLJ53olbFceq5WP1K6ZSKy9QzsmIK13Wx0Zw7S1k1licgqeO4zQ31ohpMBrP53M00+RHPwInmVtgPn0tlRO5rozIByj6UXdw6sx9qd2HJQpWTqo8UJH/iKc8z858Zfxvg++v7z9uiaXP99f4TAKettRKF+8VDtWV4ZIOEOmy1yOehIt6bpZTxsBbdWLHZFkpjdHimpcy5bvnr1WlhZ6aVRmFSx+OZ/uuv/zNTJSo4Qwd1p2oqIqh3qJGVNMijcGjdIMkILFFNMnFafladglpv+PP7v3mtsRkbAvyO44CN3Y2mNRZ8lzNIh6BsmtKdprWOo3X89c3oK+dnxnVapsOR9LVuh7PWa6eKbpaIDbDQdSji7E5z6YDk8/z6HuHh+m4moHsAyeQYwfjSwcazouF9/SJLzFj4OuuqRde+OSdbugeQRYejZ3H4//5zlnXbhpiMdQaglEqw5WQt1VwS+LAdcB7CCBmskUmgRxFtFQXOtI041FjMn8aG/bdlpyi1ONe+6gEEck2o6LaStgQLOM9hUMqQ0l7wqC0QMib2UnV2kvodoNv0iYbdYIVzEqDYUE2xrSN6E5NFLCKF3pEy3NqudcDnC4CgN/ivvad4gO0ObQI2W7d0sM7jxF+//gp25H627/eb8hMMUoFmhq0TzCLqE0aJXUJekNEyARBpt8S+SOAm5nKulYWENefquKd6cg4AQwY6048cmx21ogadZFo39Ig8u3NuZqQ3ORRIOZjyWGpAPqNbMiDkQCvSLN2qQ0gp+NIFZrsTK1kEO/VizplgR0s6vFLMNyMAJlng5PKZkE6z9IwCAErnlu4Zc2T6BXWcdBF1x1/ff+b7SdfQABnpEFsDrkGA5miqR0g2ZQuZ3Y5DsPPcMyWPHRaX+ibg+o7GCH/tmkQ7UvffKYdzzEwP5BrP22fFWFStOUW+1wp9YUrTAuz7XtJiZS3HCJ4IJEu/kim/WdNxOf789hJ4aDhU17CceTqP1prAezt1ZKXE/Uc811x7n3oUIm+GFgwkXJZA8u7k6Zg+8P/6f/8/oQ1H9pRl6i5MBe/3HMhmEEWRGtzx3wIcnU2NjkjLgOZ3Bfvjz5LiHCPlHtG9cYnxLeNfDjKZFbIjcneWc9F9RYocAT51g1zBIpM+OCITYstVsJTaPTgo3URABTulM9L6uPYe+74w9+N8nGsCfwk2CAfiPFmTVQGg2HcWBddnpLc4HOaW+9/dCRy2rR/llDk3HuXG6LTxvSd+fROINrTC3FD6M5V/71FjMAIFLAHheR/pADFcez8ypdbjXF5ibcFu552eVH+n0hHAqCCApXzXPcB6PzvNhp0pLVn7ZsB//fl/5rlb5aGeITpzK3NuAy4t2Z/LZ9aiVCDBXew1D31pea5KH8450PuBmsZLFkLUVTXdJ2TXJ44edVqdwDJM50BcN2ZODQHUGTRlTM1jgl2nGsN6t3SsUWxq7BqtMgukbz3WRTKl91OTMnbdrCm8CtwKbAA2i9Yz2LzWIrOu7JUWILdSsnReKFVL6zWnQBcyhY/OoPiYE9f8BkDAXXPgANR9PAMlCHbwHMWmpLxc3wNjTtqm8b7mhrV2454xmRIpOwEAzD3trCOCdtcYeI8NFOLxN57V2540oj8Y88L//q//nbqO87/w33/tRoTVSVUWUNr9xmuNaKCnoAcd475LgoTd1NsGVSroCAPw59apaTeGL1IZdh46tbdGH7P4Kpwjj32768G1xjqv8l167wx+yz8swZQNaCmwUp/Jy7tzDvGLz6mmJb2p4Q3SBpFMSca3k89/K3WedhHtmh41vrOjcrxn9Yt9rTg3NiuqNZ5/St0FqMN1PWD7XTUAWXWSu6evXkHJ9J1sC9cM2512Mf0F+koMzA11C5UNGyaLbAIAycZmaZcJf5MZuIo/ZWbw4WknwD1l4b/+/C+8zhf++v7rBrgApZ5274Ev4LYmVZcKT9AZcZ48m24NGEKHKJAgEPAe7HD8em/gd/9HRtnrOFNX1X1g37vsh5mh/RV2sTZAHGOJIdjGO9Z/U/ble8m/Q7DuAbsRWY7jwPXnewPLfyHqIdKOTyDuz1b8P9nI20eb6cdb7r/WGtezbdKXvsc10zkQGWlrYwqqZT/njLqklLHeVZ96RfmedmMCYq09T6B/VIP97otn4AoS2NplLliblHJyzU1WWVEGJNAJ+r1vytdxHki4UA7NW7szdHcAgOd5Qp2G3+FnCv9wd7znG393mNfQwWd8xmd8xmd8xmd8xmd8xmd8xmd8xmd8xmd8xmf8W432//0jn/EZn/EZn/EZn/EZn/EZn/EZn/EZn/EZn/EZn/H/r+MD8H3GZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ/wbjw/A9xmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8W88PgDfZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGv/H4AHyf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rn/xuMD8H3GZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ/wbjw/A9xmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8W88PgDfZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGv/H4AHyf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rn/xuMD8H3GZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ/wbjw/A9xmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8W88PgDfZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGv/H4AHyf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rn/xuMD8H3GZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ3zGZ/wbjw/A9xmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8Rmf8W88/j/LHhpQ/ka18QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 15/15 [00:23<00:00, 1.56s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "results of current batch:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAADRCAYAAABRqwx3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOz9aZNsWZaehz17OJMPMd0p782hMisza+gqdFUXugGwQQNBAJJoFE1mNElm+iyTzPQj9B/4N6QPEkUSEkSQIEGgG93V3dWs7hqycs47x43RpzPuSR/WcY+4WQ0ZyZKZrMz8Lcu64RHuHuHuZ++91rve9S6VUkrssccee+yxxx577LHHHnvssccee+yxxx6/ldD///4D9thjjz322GOPPfbYY4899thjjz322GOP/+nYE3x77LHHHnvssccee+yxxx577LHHHnvs8VuMPcG3xx577LHHHnvssccee+yxxx577LHHHr/F2BN8e+yxxx577LHHHnvssccee+yxxx577PFbjD3Bt8cee+yxxx577LHHHnvssccee+yxxx6/xdgTfHvssccee+yxxx577LHHHnvssccee+zxW4w9wbfHHnvssccee+yxxx577LHHHnvssccev8XYE3x77LHHHnvssccee+yxxx577LHHHnvs8VuMPcG3xx577LHHHnvssccee+yxxx577LHHHr/F2BN8e+yxxx577LHHHnvssccee+yxxx577PFbjD3Bt8cee+yxxx577LHHHnvssccee+yxxx6/xdgTfHvssccee+yxxx577LHHHnvssccee+zxW4w9wbfHHnvssccee+yxxx577LHHHnvssccev8XYE3x77LHHHnvssccee+yxxx577LHHHnvs8VuMPcG3xx577LHHHnvssccee+yxxx577LHHHr/FsL/pE/xn/+y/5q233iHPc/JMMwyOECLWWtqmpesHvPdYa7GZIfoAKXF0fEjwnq4fSCis1mSZoShylqsNzkeKPKOaFHRtR0qamEABRkOWWcoyJ4aANZaQEqTEtCroh4GmabHWkFB471EkiqJAa+E0iyLHe08IkZQS1lpSSvSDw3mPVgptNHlmUYA2mqbp8T6QZRnWGmIIoEBrjUKR5znaaGIIuBDpuh5tNNZaQkjEGJhPK6zRhBBxLpBIJBTXyzUXlwuKsuTuySFVbogRrNXkRUHb9Ww2DTElssyiFRijcS4wDJ6iLNjUDZu6o8hzitwymRRkRjOdTnbvWQgRbSyD86SYGAb5fACMsSgFKQasMcQQ0UaRUGgFpEjvPCEmSKC1wodAkeckQJHI85wsy8msochzjNEopZEnllcLIP+MX4+P/jrSa7cUJEhKfrD9WUyJmKB3nr53XF4vePr0Kf/0v/gvCAH80LJaXOL8wNAP2CwjhsRsNkMbgxsG/qP/7f+G97/7t1AKtFIopVAg/yqFUuPX3P5a/ia5LX/97udADIHVakMIAYUipcB8UjKfTfDeEUMgJYXWCpNl1HVP3bQkpcgzi9VgjCKzlr7viTFRlgV5ZkhAXbfj71cURU6RWZxztN0AKFlv1pBSZBg8g/PMZlOssTg/yDVSFJAiPgTyLEMpRYiBrusIPqCNxmhF8AGbZaQUx88hAQmlFF3fE3wkyy0KeT0xJqqqJMsMwXkG79Ha0PQDV4uatu3R2jCpMg7mE/p+oOt62m7A+YDNLBqFJnF4OOfiagFKkVvDycGUSZFzuW5Y1wMheMqqwDtPVRZAIs8tznkUCmMNKcLgHEWRM59VWCN/o/OBmKDrHDFGvPNYaxicYxgCyshrraqC4D0JsNpgMwspEWLAaI02hhAiMQaKokCpREpgtMZYwzA4ALLM0DYdL1+d8+VXT2i7jpQSKSS00RwezjicH1AUBVmmWS1XbDYN19fXNE1N17WsFkvatgYiwzDI7zCWf+cf/RM++Fs/+tq1K9czt26rv+n6hls/u30d31z/t5+DW9e53Nyuhq8tXgVt29E0LZk1kBLDIJ9DbjTOe5q2JylFllmKLMNqRWY0WZYRU5LzISXKssSYm3qUcx6lwBqD2e6ng5M1kmcMg6NuO7SW/TfFSJ5bUopy+QIxQtf1ZHkmzx0jzke0MWilCN4xnU3Jsoww7pHaaPrejWeGRimFc54QAiFEMmtkz4yJGCHEiNEaaw3OebSxrFZr2rbl8OgAoxWbTU1KoDWkmFDakGcWH2Tddr2nyC2Z1aCMvCcxkucZXdcznVZMqoIYIm0/sFhuQMFsNuPy8hpjDZOqpB3PRJRiGAbKqmA+mzL0Aa2h73sGNxBCZFN3nJ1dsVqvsJnl7p0TyjxHEUFFiqJitVpTFgXee6pJwdAPNE1HiJBQFLlFa02KEec8xhrOzi9ljWg5F/p+oJpO2axW3L875/s/+n1ki5f/17tbcnU1fc+Pf/YRv/zpn/Hqy19x/81v8O6Hf4u///f+kOl0PL9QUrlU2+tzvJZvfz3+u72PUupr+/mtdTNe49t18tr1//X19dpjbs6F1xbIrYMtJmj7nuVqjRljoBQTIQSstWil0VpjjEKRSEn2Xdm3BvphIMsyvA9YraiqUvYbxXjdB5xz5FlOPwzkeY41EqdleSbxmJL9UNZERClFSpE8y0gxMIz3scZgjZF1oMe4QBtCDKQk125VFVRlgQK6YcA5T17kpCjnoAsBkL1xe/Y4F8jznBgDSkm81vYDm7ohzzIgMTjP9WI1xkCRw4M5BwcHqBTGdaXxPjCpKozWpBRQ2jAMA1ob0IrNumY2m+LdwNn5Fat1TZ5nTMqSECOvzi44PjygmuRAou09dd2TWUtMjrppMSbHWMPx0Zy+bbhebujaDj8MrJZLQnfJYn3O5fkF00mFNoaHb3/I7/+9/xkvX37FZ5/9lL5boBJYnfPky4/ZLF8xmx5ycPwmzg307RVZdcSjb3wfHxQkjzKWNx+9SyIHE/mLH/+3vPngLV6cPuWtb7zHP/lf/K94+9Ejysygxn3SSNBGTK/HXCFBiPCLX/2K/9c/+6dYNG+/9yE/+tEf8OajR2it0EQUcRev/dq1frPtv7YmXlszt7/3/2UNsbv/zeN3X+8W8e3z5WvPe/uxIDF1GiPSBCEmYgjjea0IUc6AFKKsNxRt25JZSzbG9drIOzA4ub4Y153s5ZoQPOOSoSoLMqvxIdB1g8SVLjA4v4snnfNj/iFrp+8HUgJlLJtNjfNO8gelSTFhraHrewAO5lPu3T2RdTA4QDE4T+/cbr1s95+260kR8kzOMFLCWM3VcsOvPv6EX/zyV7x69Yqj42Pef+89vHM0bYPzHucc6+UKV5/x87/6L8mzEqM1IQ3MDyZMq3t859s/5OXTJ1xtfgFJ0Q8OzZS3vvEDHt59k841fPHFXzM0NYOrIXqqrKTMJwTXoJOjLCzeRZRWFMWEw8MHKJ1wriefnvDDP/xf8/yrn7NZvOTozl3eeve7vHj6BdYmLs5PufPw21Rlztnzj8jyGcf33ubls4+p11copahXV1STI7S2XJ1/STk9YHb4Dnl5yOmLXzKfTlFZxcP3fsj9++/w3//5P+NgPuet9/+Ak7sPuXP3hOmk5KOPf8FP/s1/w+Lqkvc++B7/8B//LzGZxVrNw3v3sNZIbkPaxVkSX0j850Pk8y++4M9+8uf89C9/TG4lVtP5hP/9/+H/xMnBEUrLZ62VGfOjv2F93F57ty7011bNmBepry2I2+vnb1wv2wd8LQVL22+km1shBJarNW3bURYFxihiiGRFIeeAd0AixCjnU++oNw3XyxVKq/E8U5AiWZ4zDA6tNZOqJEZ538I2VjBazpiU0NpQ18143wKlwDs5lxKK4D3GSixkrMFay6e//Cn/yX/yf+booOLkzgkvXz4nyxJuiGhVkULChwFUYDKb4r0jRcd8ekxmLW19RUoJ7xO5BZ0sKDmvcwPWGsrcYJTGWOg7ySWKHCZVhVIBozKKcs5idYmPieAh4Tiazhm8l5zETMbX0zG4iDIF7eAY3IAyGXkxJwbPEFpS8uTldDw7PQpHWVR4IIXAdHaPg+N3CX5gcfWM9eqKpBT3Hr7Lh9/+26yWV5STKd/6zh/wi7/6I7r2msnshAf3H/Hi6Zes1684On6DH/3hf8ikLLm+eM6nv/oZ5eyQk5M3OD6e8/FHf807737A55/9knsP3mS9XhFi5M7dN3n54inr5TmuG3jv27/D9OgeL549496dY/q2pZjOKbOCtl3yi7/6MY8efQPvA0U5oSwn/OAHP+K9b36TBKzrlqZuUTqxWi35k3/zL/nJn/wr7t1/i3//n/xH3H3wEJtnvP/eu8xmE6zRaKVISAzjYyLGSN/3KKV5/OQpP//Fz1mvlgyD4533vslkNme1WuG9ZzKZkFlLWVYkInlmePXqjB/84Ifjuk7E8d/tcrnNYWy/3N7aHrk3q4cxb1Zy+2v3TePPY2K3D6zOXvB//N/9x/wm+I0JvhQTvZOL9XA2I7M53nVs1rUQe5lF65HcCYE8zzBa03c9znuskQAxxEToA10/YK2lyA3GSKB+MJ9R1x2Dc6A1Zgwy26bDGE2RFUTvdpvQ0DviuMH2fS+kk5WXGlPCO4cCstxitCHESAiBTV0T4vYgNyilGHpHnme0bU/b91hjkRQikVmD0nKAJ2AYekn00KzrljzLKY3C9QMJ2ag2dUtVFhJ4GkPbeU7PLgE4OT4ipkjXtgydoiwLUtKUpRB1RZHT9wNayXPqMpPXFAND1zIpCoq8oGlalpuay+VaSIc852A2ZTqtKHNLZuUwn0wmzKYVfd8TYtolrkrJe2e0JnoJrjNryPOMPFMSLIXI4BxKa4ZhYBg81mjquiMB3ssmbYymrCryPOfo4ABr9K1Di/FgujlZUtqmduNtdXPIbLmlcQ3QO0/TDVwt13z25VdcXFzy1eef8/LZE9zQ4YaB4AZiDOR5QZ6VHB0fo7WibRq0Nhj164fer/GN2z9Gff3ntw7BWydv3/d0bUeIgRgjcXwvm27AeU+ZZ1gj72dMibpuaJoepQ3Re4JWpAht58isJFVVWaKAoR8IMZFiGq8pTfABsgw3eECR5xlKa7x34wZayrXWthJkKvkbU0rkWUaMibppKYsCOxKzA44QPEobyrIApQgB6rrBjgTI4CRINUbvSD+tM4xReOcwKpFSxBjDuu54dbmkblqqsiQEz9DD5bCkadpxHckmrVKi7R25laQtjsljyjWLVU2aJdpOyJs8K+j7gbrpJIjOM5xzaKPRQFWVNE1LiJFuGGjOG+bTCo1CacP1cj2SEPJekCCOZJ1BUVYlm/WGLM+E9CyE7FNKSTCeEsF7+n7AGINRQiqGca+T/WiQa65t+fTTzzm/vKJte1BQViWHJ3MODw4o8oyu6zg7e8VqtaKuG4a+p643uKGn7zq8dygFQ99TVRXD4Lhz7z5KaWJMXyOc2RECClAJlEqvE3vjelfpa2T19uvt48e1t12zKt3cdxtYvrYMEjR1I4WEFCFpKWxojXOOoZc9VxtNmZc7MjqEQJnnGGNQI4m1PajzLCPLM+q6RmuzI6uc8zsSLYRA3wlxoMe/r95s0FpT5HNA4ZzbXW9ZbvHOk9kCm+co5eldkCRZKZqmpcg9k6q6Ie6sIaUkn7MPeO/RY6CvlMIaizbgYyR0gSLPdqTM2fklIQam0ynr1WZM4hJFnjGpSiYHE1bLNcNYaOqHYUwkLRHNcrnCOc/hfEZVyZ4QQ6Bte7quA6Xlvcgy+q6X8zVE+n7YfVhFnmG04mA+R6EYBjn3vPfUTcNqvaZrB5SC2aRiWpXMioy+a8mrAmsyDmZTrq+uuKobQvCs15Y8LxgGhzGWg9mUtm2ophWLRT0mvtC1Ncvra2xmsZnl7NUrFIoszzg5+hAf4i7p0OO1tk3WlUpYm3F4cEjX1DR1S+8U7eA4vTzjkb4jJL9Ot2Kvr7NqWwpge33f2tLHg0foxC2pmHbJ0+3Hv/717oGkcf/akoTbkG77S24SMEleVpuG1aaW69OOSbmW68wYMxLFAZK+dV7CMDghzvOcELzs85OSMs/IrWHdtLTdQPRS+DBaA0IGGGXJsoy+G1BAURTE6GhGQnz7uo2xpDGJT0ji0g8D1hiUznDO41xHNalII3HXDw6jNWWeUeY5mbFEIgElMdamJoTA0eEBRZ6jlBRXgvdkecbgHNfLJTGCc46UYLXasFytaLuOOyfHzCZTtFYMbUskorXGDwE9xiK5NUIqJokHAaJPOO9Zr9ayXrpWCsJlxXQ25eWLF2S5lYJa22MyCwm6tmHtHd4NbDY1h2P8UOWGzXqDH3qazYqry0um0wpjFP3qHN9vMLOKo6MjmmbFH//r/5yuXXF99YrjgxldW3N5cY73gxRaXcdytaQqJww+kroFL778a2yWU02PGXxgkkWuFxvuPnybyliMifTDGqulIDsMHSlZ2sExqSqqPNtde9skIyUpKHcucbXqWC42zEqLMYo//jd/zD/5R/+YOyfHXK+XHB3OXl8943Wdbl3ycntcSGkkDMbfsS10yeUu62Ibz8nP1HiWyP23XMT2zNr+3bfX6K+T5GokVG4es/19cm5IjJJldkdYG6sBzZAc3kfWmw2z+Ywik/O7jwEfIpu6wfs4Fsg1zjtiCrSdFEitlrNHfkfGar3GGEuhNUPfExIMIVAWBZNKYvgQAymCNZakJPZz3hNRXFwvsdqSGc18NpU9oSgAxaZumE0lCXXOk2JEAWWR47SQHHqMPzyRGALT+QznPM9fvOBPfvznPHn2jMF5Hj56yDff+yarxYK6lmLTarlEj+dZXljKIiNEuPfGHfpu4I23vsmsynh19gnFFPx1ZBgi2kayzPKd3/l9Ll4+4dXLT+nbJWVZQZI9pu1boveo5JlVY2GZnk3TEzHczYAYqbuGanpCOcnZLF7Rrhe89d63qJuBEBJDW9O3K4bmgmEz4AbPwfEhly8/Z7O8oKiOGboNXdeSF3O6ZklSnrptOTixhODwfYMvCibVlGZ1zWfnz1ldvqSrr3j3w9/j/r1jtDZcXVxwdXbOerkms4amWfLppx/xez/62xRFifNuVwyOIVAW+c3aGNfHi5fP+L//p/8X6qYj+Eg+mWKzgnsP32axXHF1ccnF5SvefuttvvHOuzuSUB6/XTvb2OsWY7DLmX5NAnGLWNgy4Onrd9uy6ru1tsOvfSlnYD8MrNebsfAtBZO6aSjLHGsymraj6wdiiON1E1ltajabhrbryLOcwkrMIa/REGPEaIXSMIxnCilhtSYaiRGdcxhrAEVMcSwmybUtopKECwm0om0bIeKdwrkB7weK3NAPDZfXnsE7mi6iU4bVHjcMmMwymVY0dY0iYqxlsbimKCy51IQIOmGzgkmZE51nGDxZnkMIKBJaK5yDmGQvkJjfoU1Jiol2cYaPiZQsSiWGkOQMzQoIIpDIdCSOEYcUAnL6EIgRprMD6s2SLGVgcpL3eBVQOpFPjsAmjG9RRYmxBckH+q6hbXt8kGJs39ZcXTxneXWKCwPt5oKzF4+ZHtzh7v0pP/+rnzCblQxty6V/ytMvPuYbH3yTl88+IaWB7/zg7xAGx2e//DGHJ3dYrJY0bc315Smb9ZqsKHjxZE0/eObzGXXc0DQbosq4czBneXVJUeYYBh5//gnn50+ZHcz58Fu/S4iJq8tLvGs5PX2OVok3336bSVXihwEfB16dnUrumhd09TX//J/933j/O7/LP/iH/1gI/bphPpuCSiitubi6ZrFcMT844OL8nKZp+Ozzz2mbhr7r6IeB1WpF3w8slgus0bTNhsPDY/IsZz6fcnr6Qq6j4DDa7si9LXm/WyG7s+lm8Wx/futuO1JvLD+99lh2z32rOJW+tjb/J+I3JvhEuSDVKR8DVZYxeEfb97RdS5Hn5FmONYoskwTWaCHolFa0Y+LmvccHCfTu3jmmLAtJ1nrHet2Q5wVlWdH3HT4EDIzkRKAbOrQ2pBiBRFHmDBtHjEnUIllOjFEqZSFgbTYqv2TT8N5L5WvcTLU2xJTQSsjEGMH5QJEXFHmG1VqSj7Ea2nUdMSaMtTSt49WVsNqTqmQ+rci0KD9C9MQgyqEQE8uNsMnTaYkGjIGmHpiUlZBDCdpuQGk1KnU0PvhdlT1GUcgYm2GNJJi+78gMHM2nDD7QDwNKaU4vruBCYbRiWpVURcGk81gNmZVAIs8zIfe8l6q4VkK8xkj0iabrduQUiFolIVWNECWp7gcn5EZmcUPEZhl13eGD56w4Zz6dcnx8xKQssVa/fqiMzHVMETWSJ9tFMrjA4D2vzs44PDnm7OKK46MjPv70C/7Ff/Vfc728oluvAY1KkSzPcL28dySNsRlFVpBiQltLnhX4EDg6Ph4DwzEV+zq5N+Lr3/qb7pZI1JuGy8tLIau0xruBg/mUMs8o8hw3DPL5WYsLkcVyRVIKbe2ompBgW2uN1TcKqoiQXKJ+02R5Tr2p0UaPVS4tZFwua8s5h7VW3seYcN7RD0I0l0WJ0pqu71FaVBjESNNt1Z8ZUiVO2DwnOI9zw07lgdK0fS+HtNEk2FXnQoKh72RtpkSMiWXd8eL0HBcZA2PNcr1mGFWGEbVT6pR5JgS8korJarPBBY8xEtiiFTElJkXB4COL9UYqZ0XOfDahzDOatiUfq/HEiDEK13p00MTod6qYftgqsSxN00iynNJIXCsmk3IkNgOlLrHlqHIMcVSN3ShOmrbl/v37aGt26q22HQn/mLi4uuaLr75itVyDkgpgVU144437lHnGcrHkxfNLuq5ntVwxDAN91xGjEEhNUxODxxhDZi1DL+s0AWGsvseUdsTEjoBTI1nxa0TfDdmHxEi3vn/z9Tbp2t3+tfvIN3ek/ZhwtW2LUYqqyOmHm7Wt9Dbl1ORWVHuZNSigdwFjM9p+EGVwUaAIUqE1BpsJeRuCBGPbIHWrypbP0qBQ5MaAc7RtB0rOHjcMAGMQFvE+oI0lREddt0wnFYNzokooSyFB+p6ul/dpOp1g7Vax6fE+ioI1RHwSgiGmRNf1u0JGnluGwZGU5vnLl6A0eZ6zWK6E6HSOyaSkyEWF2nU9zss+6r0npsh0MsEaw2ZTs1itODo6IsTIcrnEGEsIgSIf94wsG6vnA+vNGmszJtWElCLWCAlaFAV9v95VxX2ING3PxeUVWmu5br0nzzLKiaj8onNMp1N88Gw2tRAuTbtbe7PplNVqjQtBzmJgcJ72akFd13gXgMhmvebo6GRUtvYMXUO9qbn/4B5930nxYlRBZMaQtHzKSjEmgT3ni4bDt97n7OyMrKh49fIMYy2H8yllkb9eMOKmYHRzjd4kQ6+R4bd+djuH2hJ+2wLTds1sk7Cbx44qO27WzHb9sPsd2yRO1KmDE0LMGkmu7bZAMSo+d2vWMJKxbrw+5FqeFDkhemaVKAG6riOmSBwr2Da3dENPjLJ/TiaVdC7EtDujnPcs1xu0GZXT45lyvVyL6sla2WfqhklZghIFYELhYiQ2HbPphBQiIBV0YEzoDL0LtG0rhTmlSEqxaZqdSrDM87EYO3B+eYULEvtcXlwzjOtdoTg+PKTIc7RWrDcbsixjUlVy/hFJKZJZWQ/eR9quIyYwVrNcLeS8yjKWyxWbuqEsSuq65vr6msEPnNy5S9+01I3EiREpZl5dXtD3rZxBvRRS19fX1F1H07bUmxUxeDm3QmAYBlLQHB3f5eLyjMN7D/nGW+9jrcV1LXjHZ5/9gpMTi3Md6zDQ+YHQXHFwcEBuFGGoCSbn7hvf4N6b3yEli02BxAWx36BCw8c//zGzg4rzpx/zR//y/8nv/ujvom3B/QcPMWOMq24lFNvAJcTIq8sFT06vuHPvPpcvPueTX/2M+4/ewxQFdVvzr//ov+Mf/Lt/n8ODg5uVs10UW9Lg1jpQ6YZK3FaAtmtlRyR8jeST57mpEqntWrtF6u9+73YNjd9O4/odeomHUhLVq1ZjV8R4PpOkoKESqBSFTI6RpBJN29MPA1prural2QSmk4o8s8QEs9mUpulpu47M2jGZ9xKDp8S0KlFJ1lnb9Whtx7/J7RK2LM8oi5wUpWiolcLH7ToRdWUIEbRmUlW0bYsbPEeHc2IMuL7HqIKmFkJ6NhVFeVKK1A+kEDFj/BhC2Kls83Ef+dXHn/LHf/InvHh5SmYz3nr7bU5O7tDUGxbXl6xWy7FLpGNip+RFTpYKyCfEfsPLV1+C1gzPWpKP3DkqGLo1RTnlYD4lpZ6uH/j0V3/B4uI5TfMKFSOb5YqYEs4lJmVBIpBZRZkbovNoBVbDvCqIESbVITYr8dFz/fIJKnW07ZJ2veHg8D6z+Zx+4zAk6ounRGBy/BbT2SHPvvxrlstr3rv7Fuv1NUZDigOL5TlWR/Iyp16fMZneoSwqlNJMqkOOT95gsz6FMKCi4uzZZ7z1zgdkRclnX37Jx59+TFUYrq+umB4c8dVXn/Pw0SMePHjIpDwgxEjbdkwm5U55s10Bw+D49PPPOT19zvsffIc7d+6zXi/oh8D3f/cHnL58zrOnT0Alvvn++6DU7VV6q2j6OkG3PWe4dc7w2jl1+563cesx24NN3f7ZzfNsEVPi/OKC9WbNtkwVx2ssjfnx2nUslsvdci7zDGMtm3pDPzisEVW63ql00y5XTBHyPAcVCUhMHOKYV46KvkjCDYMUUFMSMYBStF1P2w90Q0/XSDeTCFZmVGXBmVLYwvHg4QwVI5NphTU5r55tcMNAUkIspiSkUF5kKBXROqAZyUfgYFJgtWJoV2itqUoLyVOWGaUdcx+laVNgUpYYJZ99lkWqMmddL7E2G3M5g1IBHz25yVHR4aMf1ZsSg5eZpekGIeqj5+riOTEFJmWOC1riGxXJqwplFENXU+QZfeeJRYa2hr6v0ToyqXKGvgNfs1m8oG9bDg4eSGFxcQrBc641h9OcqjR0KmEMuH7Jsy8/ZnF9SgiRT37256g4sF5fcu+NN3n81eecHB6yWl5y9eoVJjPk5YxyMuWLT3+FiolXZ18yP3rAg7v3CSnRtoEnX1yxWp4ydGt8O+Ff/4v/K9ODOxwePeDOnbs8f/YFXb9mVV/z7rsfslhccr0458XTr7g4O2WzXmKtZXqoKAt5L09PX3By5w4pVUQUwXmatuP5ixccNy3r9Zqzs1fUmw0pxV1XptaKLM+5f+8eq+UVEekSijGwuLri888/5733vsmzJ0/R2nDvjTfQxozrLN38u11tt0k/tusRtmq8rxOC8vXtn7xO8sntyG+K35jg06PkfRgPSmMcvRuIgNFWWnetqEuaVpQ0SutdMgRCEm7JoaLIsZkk53qsOocI55fXTKeT8fCNqBjwnpFsE8m8QpJ/F6SlMI7Bc9t19IOTShuKSmmq6kAY+hBEJTQSWXok74qyAqSFFaQVLB9btfoxSEnjQb1VIF6uWuqmIyGtlV3bE0NgPpvgmn7XvpvQ1G3DdDrh3vEBzjt8kOB0e/F5Jy2DMUnwMJ1I60lZFnR9j9VWKhlFQd206LHd0maWpncMQ4fRinklbcmTMifERNeK2m69btBGWswmE2nxUikwq0q00WTWYoyh7htChL4dyDJL7wJ1N4wblrQAhhhFRTaqmrIiww29XKBjVcpqjUpwfb3i+npJUeQ8fOM+s9l0lGcLCeq85/zyCpNlfPX4GXmZE33g8ZPnXC0WrFZrfveHP+Thw4d89cVT/uhf/THnpy9xQ4+2GSkEjDUUWQ6ThEoFIbJrG962q1110vZqTSaLarsqdxVi+UKNJ+1uXd4KaLeB5hifMvQ9BM90UrFpGuaTCSqVwFbREZlUImeX1ruObnCj4qtnOplSZIbo5WDUeY5zogzrOqmSkRKZtSjnKKuSbeuw854sE3WpNppM2R3xGqMnz3LyPL95eeO123X97vtycHaEEJhORgKWBNHgvcYYqVjFJG2Myojao8xztBYS3FpLNW6UbS/X2dnVkhDkAO+7Hmc9KGlBLoqMum0halIMkFmm0wm66+l6hykKjAtkWlNkFosQOoMfWG1qjNYUVjOfVOR5xnpTk+eWqhBlYgjSHixqW4012fiZB5H0Gz2SYkKYLUeSorQGO5uyaVuszciMFbWVkuTB9b0o+Eg4J62h1mpUSjRdS5blNG3Par3h7OycV2evcN7jQ2BSlVRlyXw+p95sOFuvadqG5WKB94Gu7ej6bmwbiNIypRUKM1a/pcoTY2BSTUY2QT6XX1Pi/Vv/G8PBbSCZRsJvJClut0ZuycHdbdLN7+FrxAWJxWJFjJF5VaIUWKVQxtAPQtxt1XeTsiR6BylibIYOYUwKpOAyjYlJVeyeN3ghvabTCWpUrnof5AwKYadmtdbifWC1Wu/OGqXY7fE+JGIKQg4aCZratmNdN2RZhlKapm2ZTarRyiGw3mxIKTGfS4uEVpaY/G5fsNaitKZuWxRQ5RlVWeBTou96Ts/OSQjht15vRKGoDQlHCImzq2smRY4Lkabrd3v/bDYd1buJO8eHzOZzuTaGYVSlK1CapuuoigKN4npxjTKWg4M5RluGvpdrEzkrV+sNPiZc25Fiout7uq4nxkBTr5lWBZPDE2IILBYLaSFC0642gKhnJ7MJKM20Kkkx0HcddVMTE9R1zWYjrTw+BkIIHM4PqTcrqqpCa8311RWr1YKhbzE20bYNMURJdhn3raQorZTS67bHGNmjjmY57dGcxzZw8epL3v3w+xAD3RBYrjd0fcu9u3dhJAtuE207TmFLWHNrDx//1UhBZXv76+TfljZUtx5362gYE7OtCvDmsdtbCcW6bojeMykrKG7aYkX5K4UG56U9dGsf0jkpJDgvKgKNBIVbdZHRerRIEJI9zzNRQWtFStuGS0nMYnQYIzHYai3rJIZA0gqFxsdARFR8ZV6IxcXgcMaMLWWiUBWCOYr6T90UAcoiwyiLIlFkOWqm6fqB3oliLyGt5t143bbdwPW65uXZJaBZrtb4IEqLaVVxdHhAVRY4F2jbFdpoiryAGIkpMilLisLStD2D92yaFlvkqJho226nHLz2XpR3iOVF56ToleUFvh9ou5aQ5J06nM+4urhAEXFDz/y4wqSI63uenp8TlcSF/dBRTXKJFYwmmpwPvvMhz1684Nvf+13e/+B7FNWMs7Mz7j14wGef/Ix8dod/9x/9Q/67f/Gfslk8ZVoeMnQ166vHJBKT+R1OHn7IH/zhf8Bbb77Pum04Pjzg6ZPP+erLT5nMXjE9OEYpx/XlOavrS549f8abb78/FtJbpkVGQvH1NGHT9/zpn/0pB+WEz68vOTi5y+TgmO/+zvcoi4rHjz/ls08+4s2HD/jRD39E/Np1vNvpt0Wj2zzda+vpFmNwWwI+suJCCt6iLJScS+kW6Qe3n2J8LWMiVNctXddLzmAtJEWMnkJlYwv0qKYe43xtJJ/oB0/dDWzqMX4ocvq6x1qDdWEsEiWsUuR2bM2LUobUWhNcwnUdRkOVlcQU8WMu44OcK2EkKGOIdENPbuyuOKm0JvpA9EFU/1bOxqEfOJofkGXSfbEtkGrvRysE2UuNUZSZpbBWumecPA9KMctzlFYsVht++ld/zV/85CdcXpxTFAXf+va3UQlevnjGerMRi6EkOc5kMqGaTJhNp/RrT183NP2GsjQolbi6fIVK0DWWSWnJC8Pi+pqjgzvScbF6SdteMQwBUgCtUSEB0rbpQ8BqKTJYKxuFHS1gJtMpTR95561vcvryKU8//yl913B4cAR4rNX0fcPByTFnp4mmWfPgne8zO3wgRaAo7b4Xr56SGc3GB9quEeuWfiAFT19fYbWBbVysAkWWM+QVJMPlxRlRfcT73/093njrA954+AibZ/zlf/dPKYqM6+trfFJs6hX30gMG7+mGYVcoSUDTdrx6dYqLnidPHvP48VcYo3j+9EtiUFgjKuK//ss/lXzXed555x2ur6958vgpv/fD37uJxV87N/6Gc+a1r29uvXbf3VJ7nbm7XfTaLs3tk22/51zg+csXXF5ek1KiLIrR4ikAiczmXC2WY4eGPEprRVKazaam73smk4mIGkaBQGkKsdOKgdxmI0kovzimiI+jWAGJ8ROSX1ZVuRN8uBTR6PEMzNjUG7q+QyE2L0qDG8S6ou/hyZOFkMuFpSoG7DSSTQxDF1HJkFKQvz9KrGCNwWjZS7LckuUZzXpNkVvKPGMYIolAUpq8mBCRbroq0xzMpnRhoF4OhFBTWOkKCmN+mZclzbIjKo9PLSokqjInBilGpJHlM9rSuTEWTYqowJiM+298g8TAenVBnlvqzYLBi8JsfnBCUZS09Tmr5SlaKWJ0KG2JWJq2I+IxWeL5k4/wvse5lq5dk+wUm2UMwZN5je+XfPXsE4oyQwHLsy8gBWw5Z7Ncsr46o9awXi84OTkhmZw7995icDUPHrzB6vqSmDR3j0+opgdcXpyR5QZ0YugbfN/RxkSMGUlfc319wXJxgDEF69UFz55+yenLl5R5xZdffsrpi5csLl6RUuLo5B7aKD791S9xIfLtD7/LozcfiYWO1tRNy2Yj8SfjddQPPWVZkmWWxbW0XjebDd947302yyUv1hve+sY7FEXGpMj46KPPOTk5QStGO4MTtorwnTrv30bo3VqHu+PrNSLv60Tfjcr9Nrl3Qwz+ZviNCb6yyJhPJgxuwGiR806rCb3qiKNX1TB48XnTGqNufItijOIpZ8WrZz6bYqwZ25kS1hghLbQRZc1Yvc6yG7+8aM3o8yYfgEbaAxNC6nR9R912xAiMvzuESN00VGOy3Dvxo1FjdSIz4ifg/NZvLo1+d042dCQx1OPBn9Bcrxra3pNbTWFFft9rOcD6tpeg0UlQnNmMk4M5WWZwTvy5FIoUIkM/kKJUv2MSVWCMYTzsA5nNxraAnklZorWhbTtciJzMKpLS9ENDN3imZY7RWjw6tEEDRW6ZZSXelyPJNLBab7heLDDGMK1K8swyLUsmZUaZFwzOsfGOpuuZVvnY4ibBDiOJ1LSdBBlRPs84VmK8C+KtQxqVh4yKpisWqxXGGJq2Yxgcs/mczabh0y+/YrFas9k0eO/Jc0twjhgik3KKSpovP/+cTz/+hMXlJUWWUWQ5iYhKEFLEB0+RjUm2D0wnU7quIy8KnBtIBGL0tH3LljD59VIxEmzKV+P3uckQR/IjAav1hqHvKW2GRXE4m40tztI2G0IiWQl0kg8MLtA7R1GWoyejoWsbjmYnJKtRWrNaN+S5vN99L751ektYjF5lSilp5UqQjy2LIGSbMltfPCHP1KjW8T5QFLkoIxQjiSTklBnvs6lbJmVBVVWQi+9jjHIYimejkNLGaCHUEd+wFAMojfOJ1abm8moJxlC3tYQVKY0+deKN5oex3SQTwifPxoBtTBaDlzZnOyoaizxjsdqwWNXozGDHRKywlsV6Qz+qVBbLtRDOxsoaliidddsSY2JWCnHkR/+0sqq4Xizpnait5rMZ3rkxoLZs6hqb2VEl01NVJSEE3CDE6sF8TgqBOCrUluuaZ89esF5vWK9ErZUZS1llFEXO0Pec1hvc4Kg3G7pd+62i7Rqp/ltJ1PK8IIaAspossztPODP6TmxWq/FA3xLJNwSeAnRiJKnTrdbam1bC15RMW+JjLA2rXTLGqCa99Rzbf29Fi8OoyO77gU3TokHak6xlGHoUMCmL0TMDbF5IO8bYSqeUtDh77+j6nqosOZjPSDGwabYEnChrYgyE8VquJhOpzI5nSt00KCPq7MJoBudISeGGQdreSiGltRr38mnJcl2jtCYzhj6KDUEaFWVZZlnXG9CKw/kEpYTY9qVnGBxKGa6WQtBOpxVJKbpB9sxnL04xxnJydCQkbhDPsn5UGNdtizUGFxK+7aXtJwYp+Bg7JmJSVdYpoFJAW80QIjrKdRCjBAqL5WpMnkQRNgQhosu8wlhD20krez/6Sg3DQAiB1WbN0PcY5Hxcrpaslmtpv1eKqiwp84LlaiWfh4Ku79hsNpAS1ujR01L2kL5tSSGQGU1XtyyDY3G9kH1tscB7z9A2UiTCjG3vCGGDkLBucOSTkhgSF5fXfPn4C/p6Td93fPXFJ2xWK9795oe8fPoF08mU+XzGX/3kxzTthn/v3/tHWJvvSLZt7eY1FSo317WsjdsthIzXvrrhJXidJP864TEumddVfbcIPymWJJabmqbr5fkTWAU2kzPThQgx0Y+FHW3E28t5P3rr6VFJJm3/6zSqnoMkTTaTPcEYjXeO6GU9NW1P04kHY6Y1WkvBY1PXDF7OymlV7dq58yxjNrHUTUvTNOSZFGtTGl+TVrJ+UiJpRTdah1RVTtO2+OC4d3IkBVityKyhbYOop8frU/7uSN0NLJdrnr8659X5FdZY+r4lzzIODw4o85y+74jBobS0bBVWWpGdF7XUarMh6y3Z+H01vgdKw8vTM9abzS7WqLuW2XSKSolh6GS3TIk801itKYqpXP/X1wx9R/COqhSPy7qpWVxdE2JiOp+hSZRZxtBLu3MYGnQMPHvyGZiMLC959eqCTF9jrGKxPGdIiQ9/9w8pyhNMXuCSIU+ahKFu11LE0YoseS7OxZ/v8PiYSVHy5qP3WNYDj7/6nO98+Dt89PO/ROcH9C5SNx1lWbFerbl7fChnhtJSjEauwcEHPvr0K/pmw4vPf4EOHZPJQ0I0LNcNz58946NffYrvWz7/9BPeefsdjk7u3KyhUb2383bd/XdD1akdAb5l1rdx0mu0gtxr/FbaEX7wNS3TawsrKYVzQYoUXlTUYp2jmU8n5Nagtfh0xzTabShRQzgPm7bn8mpBRFrPt9dKnm+7iGStpRgx2oj9zagS3BHoIZIXOaBYrtfkRY73ozJw/IP9SN7lmSXTRhTdCnwMu9ey9fCdloUohlJkGHoyXeKCQxs7tqmLrZAxBq0V89kUpeVtKYtMPGe9J7pESImPfvErPvvqKx5/9ZhNXTOZznjjwQOMVpy9OheCJc9IKaMqS9arNfP5nMxmGCXF53uP7vP0cYtziTwvKMophdL40BCSp8hLyrLizQffk46oMOBcQ9vWaJWIo8d4kUkOkoK0VnZDpEh6zM/k9XWbhsnskMuLU9rNEmVrpvM7DIOofoNviH3L84vntPWGdz/82+hsioqOF0+fE7zm/v33uL58iR86rC2pygPq2mFzjcagteXi/DllOSXPLQZo1wuuL06Zzg5IRHR0/MWf/Au+/6OBTZvomhVnZ6+YTCb88Pd/yBdPvuTzTz+inEzI82/QdT3HRyfEmBjiwI//7MecvnrO48dfYIxitVxhFSTvcb2DTHx2P/3kF9hizrvvfsCkmvLi+QtOX73iO9/9LsZazPbDTTeEXbq1GG6rxG+fN1ukMb674ce3V+XX7nOLWEDdFKHatuXJs2f0/UBRlJITW7n2TClx72q9Zhh9kEli02O0pmkbYozMJlOJCYYBNypVlTEM3uNdwGRSGDB6zF+2J3W66VrKrB6L6ND1PcPgZc2MKl3nHFVZktsMYwzVpMI5R900oo51hs5HtDIMTaS1A9YoZjNFWSoG78mtRSfx0CPAwWTG4DxN09P1Hq1aMq0IUaGVY1oanFNApHMdxubkOlJWFZt6Qxh9ZLUR30+bGeLgUDrghxqlEgmNc57KZOLDH2U9pWTAWg6P73B+8QrnWqppjk8508mMLIeLsyUu9NCKOOGgOEEpaNoVfdvhgqPMSxJSuC3ygizLuT5/Tl4oPrt6PuZVER8kD757/w2arsaaSG4VF6+eYLTF+Zw3H73N1fkLVvWKR3ce8ukvf8LR8RFNU3N85wGz+QH3Hr1PnhV8+dnPQVm8j2RlSdM0qHxGXs1p6zXrRQ0pJ6Saqiz53g/+kDyb0g0NQ9cQghDzlc2pN2vuvvsAa6dMJiV+aLHWcnznPt0ojqqX13gtnSISMzn6rkOsXIz47Y1dPCcnJygUp89f0Pcds+M7TCcl9WpBUpoir1hcXPCXn39CVhR88O3vUm9qQow8evvNXVfCrqtwt3BkmaWvrbVbP775/mu3bz8+7QjCLRkYYxLLnd8Qv3mLboSkNM5HJkqPnm8SZG3qGucizounxaws0beIHqMVmbFUVUXwnrIspBXLWBTC2CvU6P1mRSWGsLIhOFCK3nmR2ForQwGsFc+wJFLZuK2kRXlskReS64dIP/TizZZLQqpHlV7f9/SDeEfpnVGzHpVWwuJmScKVCCw3NYMLI8Orpc0IOZSTsWhriEG+Z7WmzCWYz23GajMwn5TE4FnXLW3vGXykzHNJloLfSaKlx19aKGMQk1HvelBaPNUmJTqTdjVrDJMyRyODL5p+wLuxfSqKKWw1+j7VTUOKEmhfL1fEJI8/mFbjsIyMSVnQD7JY7t452g108EE8SbrBE6KoSmZKkYjUnSMGUeGkMWFebWp6F3BOEpSu6xl8YLVc0zQNbdvQ9eK/oLUl15rQO6oyIynD0LT80b/8bxmGXlrYvAxGaOoOdCIzlhQTPngmhwd0vXzG/egR0TUtk1kl12iW44fhhoLn9UW55fLkBzcp3TbZ29653tTy+rwnWLvz9er6AUWiLHKqUgyWvZNWdGMts2xG3TQEpG22yDMU0grYtL20EnqpkFVlQVGIMk6UfGo3PGA7zCEl6IdeVGp5Rozyd8YgKocUISkh4WOUILUfq5CzyQQfPEZLq7ALiQbGNSntIyEEmrYVslgHrJJgN6lt5VrUcBHFy/MrNk1H2zT4IARiluWUo6eaVlp8Y5SiyHMmk5LcWpq6kQNeCykaopO2q9Ebc7lpWKxqQgxYIuV0Qj8M8hkoSdZX63o3GMQ7J+3mJGazCX68BstcFI1t11PYgrbv2YxDTorCopRIuH3dEFMQL0QrLThai4F233Wj95tUGBerNV3vWK5WLBYrFtdSNbZGo3VGComh71kuFmNlSfwhu7al71qyLBvJnTiabUsxQCWYz2ZEhJCJUdRWbdcwmUx5440HsqelLbHHqO6RhCypG9WdvsXGfZ2guE30CTmxVWhINLglLPSvkR3yDOtNjR8GSWoyQ27ksyYlUohURQUa8rGdKCVEvZkSk+mUmEY/FiuVU+89m82GzIodg1aawd+ovLb7oULRte2YpOesN5tRLSlFIVEz5aPhrkKPe1EYVdMQ0UpxdDAXYlApUJp103A4qVAqYbTB2oyr6wV5ZpgUFUqLLxlRBiWoBEcHB2RW3pXr5ZqXp6+EYJsWLBaL0Rjd0LQtMUaqqqLIClSMTCeVeNn0PVlmR7PmhDEKq0WNE2IYW/0GmrZjOpngnYfE6F+bkYcwVtBLMptTlRKkN61YSfSjf5vSmnqzYbVc0vYd89lMiBAr6/3evTu0TctsNqOpRfExuIGLy0tC9OK/UzdjeTqTQSjWslouaDcb6qZmq3AFRVEUuOClaNDKnueCFNf6rpN2tShtOYNznF1eMXnzkQyd8Il33vkGP/+rP+Plsy+ZzKbcfeMd7r3xTe4oR68UP//5X/Lnf/KvyKcl73/wAXfuPGA6nd5cp2PSpG+RdnK9p5vEIiXiKEnaejjeJutGrnxHcN9WLt349t163EhcSBEp0jQdMQQmY4HBaI0Z9+iQEm0/YLVmMql2668ZRD0XRvK6G+ORyo7rSytynUl7IqDG88AZz9APxCAJUZblo1pdVPfReVSSNvqiKMZ4SdaWtRo3FoNQCh8SIXqMNkzKbbArr7sfBhSKgAwlELNrxabpOJxNJZEbiybWSltkUeT0XYcLnsvrDZ9+/hVnl5eghYCcTiqqcRBa4x0P7t3h5ORYWsPbTtqf1isp2I2t8rQdh/OZFDYzK96sdcvz05dsByS4cUha17bcOTpgWpWs12smkwl933F4NKdthNRbLhcYrcitJoSEj9L+E7XiYDYnIkS4NRrXd9JalmB+eIeLy+cczOY8uveAi+sFWud0zYbrxQWPvvEd3nzwkGF9TQo9WXnA+9/8Ll998RHuuiP4gb655PTlwKY/5/HHP+Y73/+7FGXFpDphmpVYBj755U+4d/eEs7Ma16+4e3xMlWfjQJNRdTZ2wSQST09fkhK8fPKUCk9GJM80r559wXd/9/fw3TVffbUGX2NUpOs2/OpXH/H7f/D3RLF/q6izjatF9c24Z94q+txEUDeL5jYxcSvKuqH+XqMFb0Vh7B7bNJ341rmBsiiYTkvxcpRquwgCRp87H6IU1jIZcrdar7hcrDDWUrcysG4yOSAGj2xRirppZZhRTHgiSluyPB9bBuPYVpjtfPBslsmeleQ/iQujqAqNEBQqSeeDUpCpbEzkJIbYeoYbo6nKUvzMhp58HAhoqzEnyizXyxVN13E/JI4OZmxnTmklfuDXyzU/++VH/PN//v8WFXBIlHku5wiKxfWC46PDcWhfx8uXLzi4d0/8ZZVivV7TNhvqzZrnj78izwxVUeDTwGwy5923f4cvvvwpmXUQJWY7Pn7A4AcWi5c7/1SxJZG2eu+CdO+QQGta7wlJUY4ehJ6eRMC3a5r2iq4byMoDMlswdEuU0qwuX7G6fkZbLzg6fog2GZvVK4o7b9LWC/kcp4ecnT7GuY4QIsf332F5fUFSgWIyJ2EwpiaEjmYTKctLbJYDjrbdMJtOWS6XKHvG8vqCfHKXl48/4o37J/Re8/LVJXle8uLJE95+9CZfOMfB4R3unNyl6xr+/K/+kmenzzg5ucc7SfOzv/4zjNYoXXI4P6QsK56fPqUoSh49eptvf/f7nJ6+oqhKfvGzn/EHf+/vsWlqTk9P+fD9D0aCbiTm1O2VcKMeT6hRZ3Cb8BsVtV8nyeHWfcYbt9YWiOp0sVhS10LATCcTUhyVebshSZHrxVqK7lZiVGPkPOmck0FcppBiocnE2kdpZrO5FEuidP+kkRXpe2mXLfJi7GoYB/UlJWtlHNgRQpTYPMtRKuJdIDOGspBBMOK7J9ZSgHQ5kbh3fJfF1TVDcOhoSEazWiemM/kdgwtkVjN4T6YtTSOWLrmVTkEjoaDEeF0it0FUvUmG85UTETE1Xc/gPLmxZCZI95NOxGHkBQhkRuIBrQ2xd1gr/IWxYr11cv+hFJMmB5TlEk1HVeR0QyBEz/L6nDt351wve/wg3UQql/Opa5aoDGbzA5aLFQnxre67jrpeUZUFKRomZUHbicghBmkVrps1q8VzUnD0rWMYCh48+pDJ0T10XnK9XKCS5/LlEwgt9cagjaEsJzRtS0qBx1/8gvMXX2AyQzWdc/+NR0zvvM3B/JjF+pqizLlz/z4XLx7z/KmnrWs+++yXvPnoPRKat9/5Jl3XYrKc+w/e4MXzpzx99oyDwwNePB/ETilCUoaYNFdXCx7kBZvrKz795GMePHgo1xZQlhUxpHFvFY9raa+umM5n+CgFTd87mnqD1lJgffL0K5q25Y3jExF+xMC3vvNttuq9bczzup/ezarckXSvMXmv0/O3SbzduZZu/k0p4UPk1atXXD17+mtr+H8s/n8wZCPSd7IohmHg6GAuFfxhGHvxW7SWSa7ee9wg7aallYmz2ojfXT5OMtwakos6SFRtCphOKjKbiY+ek4pqiIE4tvcOg6PILUPmmE8nYwVpnF45klTBB4xVcgGMaqTthMZhcLuJpb0LO/8SUhw9LazIgq14nBkFPioulxuZ5hMD0zKHJDJsbSwghCfKjpu0KE+MhjyT+2ZZRghizqlcgNjho6cDDouJ+OPlGcPoERiDF4XcSFqJGisj08WuDc6Npu8K6AbHEPrRj1Cq0DJROBuVOobF0nFyOCfEyNHBjMV6g3Oes8sl3o8tn5mWirlzhJSYFBmzSQnArKroBkfd97jBcXA4gSCefYvVhlUdaZoWYwxuEPPP9abBe/Hm2aw3tF3LMIgpPFFaBEWRlojRk3xgvVmOBqaWvu1QOtH3/W7KmbEakxcUZSF+WzGRZaPiUMmk5hA89UZUVWVZUdcbIb/GNbetUP9aHVntjscd8ZxA2s6953A6ocqz0ZhZqlKZ1kympRw2KeIGPx6Mhqqq6PpeSDVEaTQpxZQ8yywTZFpnP/quWStKHkUSFSzIIBhjiCnS90Jmay0GtiopmrbFaGkdTD7emqYn1WOFkOXeh50JfhgPyO104uvlmpPjA4wSQnE+n7NcrqTqbTTJmrHCPU7ndIkX5+e8ulzQtZ3cL7Oj2lSj1BjsMsrvy0KCg7anVwMpjSb7SRNSIoaEIsj/gpdJu85RVTnHhwd478cBDLm0t1lpBVMJUcRpWbtWMR6WYtgcUxj9Qcb3NcFsOsGNVb129LIanB8DDz3+roHtgZFSIi9lquKzl6esVhuUNlyeXzD0HcPQ4wCbGepNTdu0oyJzkGnGfU9SCefkNc0P5jD6/fSDqGhiCMynM2IKLJaLkfiGrmtlkEI/MDg/KrhurtiYbgJDkEt6bLi+acdVN8nU11VJW9Xf7aRs+3TxVhq2Jbr7Trx4NGpUiXpMmTEZh7qE8X0FIeZc8KQkbdt5lpGCrGG7U6wJqeejFBAym7MVYqaRCNwNQhoVFwCDa2l7sVXQSu08x7z3TKpSvCLZGsBvvZvkvbPWMK2EMEvR0fUD07IkM+JLlxViHbG4XpPfK7EKjFLMZhMxtS8LUpKhOmfXS168PKfIM/T4/ixWa9CGGHqKzHAwm4rXoDHMD+ZcXF3hgij1ykJUm2lsw40xEZJMyY0hSItmJ69RZ4aukyEbRSEtPvPZDL31WESG47TDMJq6i3fQ1dU1w9ATo2c6m9H3Mvjl+PCIO3dOZGrzcknfd3RdT4gNeVnSd6Ief/DwIacvXnF9Ld59db0ZfUZ7rhfXEtyPfqoKxfHRMXXbjB68islsDgrm8xlPH38p6jHnSQqur694/MWnHB8cklTi2asntOtrYgr4pFlcr4gxUFUFh8dvkZTiq88/oioyDg4O+NUvf4ZSH/EP/9H/HDMOr1DxFjmxI72FnNhZMajbSdPWyzKhk3qNzLst69t+f0sCvqZKGgmMrUWJGfc8InRDL0W/vGTTNjKIIkaZ3lyVMrRrbCsPYZw4G8LoadOKsTua6MVrT8h3vZtE3ndS/EtJ1IlC9DK2A0kXhTWKoiypx8Qm0xprLF03EJIQ2y4E+ijE++AcbS9FSZnQ6ykyC0rR9AOxCxS5eJ/2StHnMuFdAZnR2GlFWWT44PFZxpOX5/ziV5+zWK7I84wyy0gkBu/ohpaTo2MmeYFKifV6xWK5FK/UUfFpjKXrW4oi26n9tTZcLSTxv7i+4uLykrt375BGj+fpdEZmpbsiBUnACAnXOzrbcX5xQT90qBTZrGuMlbNYG0tmLFbJmReitDgarem8JwZHZmEYGpTXPLr3kGePv8ShefStD/nzv/gF33jzLZ599lO+/NVfcHn5ijCsqUrLR7/4K/ywIAZHkZf0raPeXLBeXjE7OOf66hXf/+G/Q11/ynQ6o1u9JITAaX3KZnVOWVV89asfQ+r54FvfR6VIiHD66gXW5ty/e5fj+TF/9pM/x/U1y3pNM3i6ruXDDz7g+dMnKCUtnwfzkulsxvXVkodv9UJuqVHuzI3vJK+puYUgv2l/l9bF3de7gRq373OzjG6TgLeCrt35E5NitdowdB2TsmBeFaPPaYLk0ElIMCkQGZpO4nhrDb4bpDC4bkjeM60KnBMFdPSBfBwSJgOCDH3nqKoC5zzrzRJQVEWxU4WG0evRaGmt2/rByuMlprBayA9hCMZpvkGsgHyQLocEhJBQRvyApePA0I7CBFFNj1Y5XYc1lsF5FsslisTBvCIl2DQdT5694M/+/C94cfqC1WrBo4ePIBOrnflsJtPiMxFTNHXDerVCJei7Vor1rXTLNPUGfE83DBxPTji584CXZ1+hTOTF6WMO5gc09ZLppMRow8uXn1BOD7BZzu/+4B/y3//lf8VmdU3fR6rKQgBFJCR57XmWk+mENWN3QEpcX76QgQJViVGJLCtIyuCaNc3ijIvNBVcX0pI+O35ECgP1uqbIlnTtiuAavvjkp/TdavSjzbg8e4axoHTO4ckbNHVH123YbNZYmzPzGxbXr6jXS+KwZNU6QrIYWh5/8t9jixmnTz+T3Kq8w/GdezTdhov1c378J/+ad9//Nv/oP/iP6bqOf/VH/4LHTx8zm0y5vrzg6PCI+fwEpeHO0UPu37vLi+fPmR/c4dGbb/Hi5VN+/Cf/DYv1ip//zPLwjUd0bc1//p/9P/j2t77NB9/85i1lwesx3G2f15vvvf7111fQa7ilWtjSExERj6xWa7HqCKMXuFZElcYOH7FU2NSiqtRjl1uRZVhr6dyAxVCVBd0wiNLWe8oipyjL3QRrpbQQWl7sKNzoI53ZTNqtx8KBVlpi4yHsAtkYAmhG32Yhyr0XKyu37bbRhsmkGlvWE1dXVxCDnPsxElMgRIXVgIooa3BBYU2OTmCM7G9Wm7GoI2ep94EUpH22HyLTPAMD0cmAnL6VFv/jw2OaZin5VfQUBqzN6L3CefHmVsiZkWc5IYKLDqMc1xcvmVUl68GRGbB5RuoceZYxmR6QdCG+xu1A34sVkbWWmDRJK7x3XJw9J4REXpSkFBlcoFAapXOG3kvRNY2+1WPhYXH5hL7bIJ0aM976xvd45/0fcHH+lBR6SInoerokrdlGK/JqjlYBFQe++vTnVGXJ8fEhzx5/TtO39PUVD6PB1WvWTQNuzeXVAoPE4VpZVlfPcd2aqCyr1Sux1zKW06eHorSvGybVjOiGcXhiHK1JEk3sefHsMReXl/zw7wZQZjdzoShKyqqirEpO7tzh9OWp7AtFgc1yJtWULM85PX3Ji2dPCaHnVz//KTEEfudv/QClDC9PXzCZTMchZmHMSdUuf2K3gm6IvRuy7vZa/BuI9r+B4EtjgahuGq4urzg/O6NSv74H/I/Fb0zwWSsLSmmNH6fIVmU+kiaJyaQiJiFipN1NkuUst6L+CYEI5EUuKr0gC1rYf4fNzOgHNwYQVGw2DXXTMq0qJpOctnNE5Rh8YNj2SY8jtvMipygk+dBayfj5tpEq92hQnhkjLXneE5xMX8wLUXwA43CLKGPsk7R0Ka25OLuiG0aVVi4VdKVkc6i9JOJlUdI2LdOpkGFdH2jbTnx+nHgQGJOxWm3onPiFGaPH6gg7jwkXRM0TvByY1miCNWTRkpcZTd1xuViS59luYvDWmyNLCp3d+BMqBQVSrZxUJVEZMXUPAa0TkyInn1bEpGh7x/W6xnlP23YorXh6KlN/p6VMB6uKnKrIOZrNcW6ga3uatqOqCoo8Z1W39C7Q1x31Zj1WFWr6thunuaqxdXn0dCtEUTUMA0onyjJnfbWk61pcGCjygrrZ7EzwsywfvRxgUk1kEx83vMPDQ1aLJTa35FlOvXE0m/VOlRlHokuwpUFubqmvfbVN3FJMrFZr1uu1DCzJHVWRkx0esNl0aAOzWUlh7KiKkPKNj9sBJMM4jCRn0zYYJbJtZw0xaDJrKIuMmCQZizHhvcPacVS8HkkKZHIhSLtuikJ0Ds6TkKEXhFGxNCaL08mUEBxd1wv5l0TePLEFCWk1GZzHZqLMs5nhcD7dkT7l2J6qtbRZWCNqvLb3fPn0lFcXV2NbMJhMUxXieaeQwTDiARUpRoLYBT9Oyo27n5FGQlKBsRatIm3r8MGTWc3x4SHE7cGe8L4TwmQQZWhupW1NTKyDvE99LxML+wHvctI41UtphVGKEDRlOWHoPV0nw2lilEmuJDHPFnJP7SYWk6QFbLWpGYaBpq5lsnjfEtyAG8RI1zknodlIRMlk8VHZaC0pz2AsNoQQGEaLAKM1y/WS6aTCjS28WwNiBRwcHu7aeNL24uQme/q6F1hE/mz9WjvUTYl4y2+nXf+GGknv8bjaZmVIwiZK6AGNGGZLi6cnRknoUYlN01Jkogxt+wE3ti+VRU5uM2KKQlxEIZXN2IIeo5AZq02DNZlMUXOefhB/F8XWKHkkbVIcpysbVBKrAB/HAs1YdY1BWtWN1uItNRZeQggMQ5LWdyu+TW5w1G3PtMxGb8AgRGNMrDc1B3OZrihEgxA3bdfz/OKKp89ejCR7h0pQlKI0nFUFznsOp1PKqmBT10zLkvV6gw/y5scoAxjcMNANjoPZFKulFT4E8bs9PjmRqc5aiPztNYCSibRaSdBQVhXr9VqUKVnOMDhWqzXPXwhBcO/eXVEJx8hsMsEYTdd1PHv2DOcDzjkOj44wtiO5SJFloswMgSePH7Neb2iblq4TBSUp0rYt3nlRoJhs9IWD+fyA1Xoj7xlCjjZtw+L6knq9IoyqS03i849/TrNZsTg/5/69e6Rh4PTFM7RSNPWat968z9MvP+bjX/4pH37re9y98yb4yMXVOW+//y1OXzwhKsN6s+Lg4HDc524TcNuJ01/zmNwp+cblvR0gcMuf8rb/JOMaSmmr7N7+fFx5idFTsmMYlcS7CbOjpULnBvyoUNBKM5lWYwu+pfMdq02NUhrGazlGiUlW6w2TqkRpKVgYpXcEsSJRVSXOiW9XlllQYjPSO4f3klz7CE0nZuMHs8noqet3xU+lZEBNjH5c/2L/4HzYBabZOCAqM5pN3ROSrD9tM64WG+7fORAyTSTGaK3YrDs++fwpv/zkU9brDfNpRVVkVFWOGi0RTo6POJxNyY2h63viIAPWSmPonPjRurGdvSgrtBKrDGsyNusNk+mUvm1HD1NNpsxI9g90XaBparF/8Z6+c7ihF5LdS4zkvGNwAxkZKSkyIy2NV1fXlGXBrJyz2ayZTErc0HF1ccHJ8YShXzM/PmaIntX1Of/gn/yHvHj+mAcP35Ip2n5gaDYUOmFmd0nK0K5fkttDoh+w+YQ8n3G9eEluNX3bMAwNf/HH/4wPvvVDfv7xj0ko7tx9RIiRi4uXWL3h1dOPqY7f4Dvf/4PdWfDy9JR79+5xtbjm4vyCt994RL1seOfdb+GCDB9pXODg6IiHDx9xcXmNLQzXyyXvf/BdiqJis1mTgPnB4c2kT3WLHN+SfOPvvPlefG0tKW7fZ/vvreJRuilIbEl2UAQfOb+8Yr2uZa2mKUZVBJd28bLW0DQNESGavZdz1ofAaiT3WjdwPJuilXik4kYluPeiPk7S8iB2JXLNhChJflXkxBDJxkm1IQbSWOCJMVJ3rSSQI2kMaVfMVUoGYe0KrEqNynLGc1qhtKZpO8QjU+wdUDLoa3ADbTeMu40UADabNTF4Hj99wU9+9jM++/gT2qbGWLlOjS1o65rc5uMePLC4vmZbcojRoVRkORYNYwh478iyDJtXWJOxXC5pu5YHbxyz2SyZlB2T6g4HB0dcLi54+823qTevmM4KTD6nLKeURcYmjT5qKGllThEZdqqwiB937weMMpQmp+83lMWESVlxdX2KthWbxQXtZsHzL39K8ANVOeXw+C4nj97l4tmnTKYTmuaaer3C2MRmfQ5JCH+tFevFOXluKUoZXBL8QFEesFkv8anl/PQJKMN8fjQOc2zRNme5WpNV97l4+RVmnEB6fHCP5eVTltdnZEozm77B4cFdzk6fcX55yWbT8M5b7/LixTOurxbU6zUHB0f0bStTtQcHGqyOvHzxlKat+ca7b3N8fMLJyX20yXj54pQPvvk+f+f3/2Cn6NnGZLeszL+ejewKnjuSb3u+3Y7T2C2w19i/hLS+eu/ZrOudejvFJHlEZsF7khYCer3ZgJLCiDUabQtsJt7UWmlsYemGgdW6JssziqJgPqkYxr1aujCkiKUMMCr5uqHfxcEhBQbncC6grfh8y9C6hLUyjMoYQ/SBYfAjQbglVsaJ2iFKrKwVxgSS0RglAh2lZQKt847ZpODhG3c5O73ExSgEjhHHUaU0RjN6eGowcvr3Q6DM0jgJ29APgahERZcI+KEnRoc2ipgkf8+0YRgcOiUMatybZM1bBclYMq0Y/MBmPWDyjIimygxt16O8p1k5iuqIvqkJfTvmJokQOtZ1i9YZVhtMlo+5lsTmKkmspcbPbVuAT0SIgYvz5xAGJrMT3nrnu2gjLcQvnn7M5cUL7tx9A5Ln6O4bDM7j+5qirDB4zs/OuXNygo6i7l/VjuN7j/Avv6LvN7x68hHV/ISTu4+4vriiX5/LsNSq4r0PfsjgILea05dPyG3J1fVzmnpDZguUySmrKVfnp6w3axlUlBwG6LoGUsQYw70Hj5jPDvnqy88wNuPu/QccKPERHoaBoZeC3mZT03Wd7MdasVlvWC6XXF+ekXwvSsos53wyIS8q1otr5tPpDZuXhAhnjOm21N2NZuZ1Ii/x2lL7tZ/t/n+Mobz3vHh5yvMXL2g3m3GAUfi3PMP/cPzGBB9JWq7yPCc/mGHHKp+1hoPZjMVyyWZT7zwshKQKtG1PWZV4J6bS1opZc0zbN0tMcY0RxRxjElWWuXi+1a20RemSyXSCD9Kj3/eOUHl8kpYXa2SUuY8JYsLmUiXzPmB0kuQmy5iUJf3QjWSJEmVDSuPgEEs7DCgdycfg+XrV0LsorH9mpUUYGHwEHTmcTGnahrbt5LV5z1YNaI0MQ3BBpnrVzhPGxM7HARM1mRWFXpFpqqpg03SEAGUhjL0dg1ZQqO2k27Hq1w8baVtJA7OqRGmpdMSUMOO+70ZWOoQovgjeoJSY1He9ZzYpiTEyePEGqTLD9HCyS9CbdmDddKyaTpI1q7BahlsUmUEZxfrimhgl6O4Hz3K9YrVc0rWNtC+PHnDGZGRGyfRYhMhqW1F+FoXl4uyM6OI4ydWDFfWjMaIqK8sSxta1k5NjLi7OpV0iikl8CAEdDLPjGVVVcup62rYmy3LsSDhvL7Lbps/j5X3rllyHIQQ2q7UoBmyG0gqfpJ0ps5qDuaiWpMqrSF422JiEsIHtxCiRck9KGfledx1KSbvgfGqYTiuavhfvJcTI3xo55BIJH6QaHKMMe8jGqU5i4yQbubSZSUtwGv3KQIzWfRIPMx8CVaHpB7/VZAkBPxLLV4sVZVFQZtlIZhfYQ0PXd6LeU4rrVcunXz7jerEmLyy5VZR5gVJwUJUSTAziF2aNwnmpcPcjCVfkht55XAykEGWIy/gJFJmibkSFlVkJsNfLFVkmh71cQ9JKX+Q5zXpNPbbuywCeIMqpGMgzQ9OKgf/RfE7RDyzrmqF3FEWB0Ya27ggpsakbIZpCpHeyjo0xYwt5JLjAYrFk0zRoK6bTbuhJMUiFfLx2+qFHa8VsNttNBvdIu61SojRMKdL34rngg7T4LBdLlGJHCFdlNZJcPd6X3Ll7j6OjY9bLhXilcVtvd3NF7yq2W2KDrRppS/Gl8b6vU92vrYFbceL2v5RguVpjjcWkSFUVlEUGyYxEnWHTtnSDkxH3vfg2WmMoy2JsuRWieUfSAcoaqkqmqLu6IQLD6EnXD6LWlMnQHje24MbEbiANaSzGKPGejKOn2TZYC86jdSYq8x2ZmFBalDnkUJUFhwcHbOp63JsMTdOR6JlUFevNRoa5VKUQ34gVxSdfPuXpyzOsNZASVVEIue5lgJFFJisqwPU9B7MZznvqph0LMGJVIS3tmQQy1pBGVWQcvaGGthNFfNcTU8SacSJ1jGORXpHnOZeXV/jRIqMfaq4WC05PX6GV4mA+o2+78TOOzCcT+m2reozirRQTi+slx8cHTMsK5wZOX50zOEdd1xRlSZZnrFar0Ss2jkqqDGszlNbiK5VZzs7OiN6zWiwkCVsuaDppkXB9i3eRvhv46tOfsr4+Ja/m1PWCflYxmc4oy4o7d46EnA0bhs01pdWcPf2Yq1eneB95+913iSnj6Vefc+eNN1ksr3h5esq3P/z22Dp6i1DgJiFS8FrL7e6/27IIxW7dbD0sty1Rogi9sW/Y5lN107Jab9BKUZYFVZ7t/H21UjuFcF4UoxJ5PDMidL3j+nolFiSZoppMKLOC1vU0ncRGKUpCBBkms7shNilFpmXBol+PRLnEAIk42o+IMiPPMtrBMSlzuqFHKU2eGWxmcP2wK7zko/VJ1/doo3ZvXoiRrhOT88JaVqnDh0RhLRfXS1GjlhkHM2k5jknx4uyCv/jpz3n87CUomWqf5eUu4bPA3aMDjg4OaNqaZCzWZKO6bMakLLm+XqCzjIgoz6siowmBl1eXqJS4c3RIu6mJg2M+mxO9ZyBQZBn94OmdnBW+l2m+Qz/QtR0heaqqoKkbacdNcDA/oMgrVusl6434dColgxKI2yRZfFz7ruX6/IwHb06om5Zvvv8d+nrN9WLJO9/4gLsn91ktrnjy+FMWZ6+o6yccHN3l0aNvUFVzXjz/kve+8yNRfXRLnn7xc5r2miLPmB8ccn35hHr5gqAsB7MpTd1QFRaTWQKK+bTi+vKUzXXi7HxBXlbkecnF5SVfPf6cZ0+/RCnNm/lbZDrw4O49Mp14/PRXHB9NOT56xPViQVNf4VzDwzfu8eL5U9qu43t/6wcyzGK8trc8grqlyJMi0dYLVu88XG9a3tUtso+RROZrxN7NwdP3A+cXlwx9x3wyIYxxfdP14slbKIYxDtJasdy0rGtRt945nLJYtZwv1rSd+G9pJUWXEBNVKerubnAEpWXgmM3Y6JbCajRCzjgfYS7dRH7wOC8tqMYYQpKCyzZPSSGMyiQhpbMsuznXtm/WaBekkO4iHxJN58hzUa8HL+t107SUZUm9WaOUpqoqYoxs6g2ff/4lp2cXfPrJJzTNRtrnrUzQnZYTDqZTrJJupel0wma9IssyNusVSquxpdHt9p/pfEZmjHRdxCBrw3vKwrBargjBk7wn+ktmkyOq6pDVaolzLacvvyTP52jfUeUiokiFImGweUVw3TjgRJS5eozZJccKI3ED6+WlKB9dQxoW5JnGxYFpWRAIdPWSob6W4lWUx3jfsVjVzOdz1ms5g0KMlEVJCAN975jHRL25xnuP1pa+3xCCxJJNHfC+x9hc4ogQmB/d4+DkPo8/+Smr5RXZ9BDddiSg6R1HWcG6qVlcXGJU4rvf/R4ff/IZH37rdwjOjZZKsFhc88mvPmI2q3B9y+nLF3zwne/xjW9+m81mwx/8/g+5Wiyo65b333+fb7zzjhR9UiK+FsVxwxbszqLxi9ssgnr9vmNJ9rX1msbCn/NB7Ji8IzejRySaEAPVdAJJ4ghrLMv1hrppKfIMY4VcE29vQ902hBDHon/EeU9VlWRZRmYNLgaGsahelqUozJ3Dx8gwjAPXjIUocQ4RbEooJXFcNIb6lk+62HOJ4nC7VrZ5utZbMYV8jv3g0EZUo13bY+z4vBrKXNqNT08vGVxAJUVmQGmFHdeosaLYjsHTB/EBN0YR0QxJkZwnxYC1uQxwMZr1ZonJNCnIm937gDVS7I4hYTJD0zkplA09IckgQKU1MtijRKVICh6HDN7KjSVFT+iWYvfkMjovPoZt3+ET6OBRuuf44AExWa4vTwGQdM/jndh8RC9T5UlR7IDCGmM1dw8Omczv0tavWF885eDoLsd33+Ho7j3Oz5/z9vu/y1ef/pw+bejaDZlW5FqxXi2EWM8M7fqcrqtxg6j++m5gMj0guJ6ub8jLGXcffJPr8yeI12NNHR0PHr2FMgU2K3j61acSTxjF4fEUHxIPHr3D6fPHBN/SrBcyQGp+wDwryI3ilz/7C4qioKxm4jk4DnCZTia0bS2DmPIMP/TCLwwdk5O7XF1f0zX12OkzRxE5e/6Mg6MT1osl7o03RGRmLVHddCuJVyS3iOXXl+iv4/ZK3oothIiJMbJcrfji8y9Yr1ZYa8ltRr2uKWfFv+0J/wfjN1fwZdJSKC0PSEsOjG22Xia+WvG0ynOpgFqt0EbR9270wLO7XvsEu6mHMDKcKo1m51J1nlQl3nnafqAfh3WUZcZ8WjC4gcELOWizDNc7ht6DMmSFSNzDaFgrUYnBeU8xEk2zqUzdDVGRJVmYvfMooBjHffdDoB0cWiXKSjayhKLzgSKzGM04jVR8+KwGpax4C45E59bbpu5EWiwj7jVdF/EqUuU56Eg3BIyW4SIuJLQG5QLTaTEG2ommlba+zGiGwdEN25Y1y3LdCCnqA4cHE6yxrJsORRpJ1UBuDb33zKYlm7olywxtN9C2Hat2wAcxUTdKDIEH55hNKlH1dQO9C6zX7ahwaIjJi4dgkDbozXrNYrGka0XVFIKoAfIx0TXG4kcViY8JkNYhUVu2NOO0M6UVwYt/HyNxcXhwSJ7ndF0nyoC6ph0Dq6EXX7yiLDg4PKSpW2IUbzZrLY8evcX19cVr7LtC7QKxrdkrW6UHiugDfdtSFTnlfMKmllZOIbmN+I2MhIEbHKbM0cbS9cNuYMpW+WW0IfheWg0RY+a2d2Q2Um3l66OMelt5zTJLIsmQjsGzbf+QqdSj1+R40Bpjx/aoLYFzU2kPUarrRmtW6462DUyn+dhmDmkcoJGN6rXlck125wgJA0RBOp1MscbyxZMX/OLTx/jBUeZWlIxW2mestjKx03tR4gG5MZAkII9eiNiqnGKN53KxGlv6Z5i+H5Vuis2mwVqZcDUMsqdM8ooYxOMthEg3iN8eY5KaoihXfONFgaM187JguWm4XKzlM8uE8Nl6a04nBavaMLTDOLxnbA0YiTDnPW0vE36Htme9XAKJfuip6/Wo7uvHxFtaZ40RknG9Xo9t6pJMtm2D1rJPTqoJfddjM1kTZVFS2w3WGk6Ojmk2NVUl1XhrZxJ8jAN38rK8IaLV1wLD7Qd/++vdfcb/V2o3AXO7d+88lcakbKtOlvUhVeXVeo3VmkyBsZkMPRrfc2OVBIZtJ8q2fhAC1mZkpZiSr+sVWSbDXrRS4+cr09CEwDdSsHAONwziGZLJ4IQYpTiitUxU64eBPM/xzpEZeY71ekPvPdZYaQvQWvwoEfLEGL07tGMcSTIjJIkMGSgZXE/d9RwdzKQlUhtSkKRkU9cyWMZYrlcbfv7J57w8v8KiIEam0xIVA9OiFGJEQ15kY2uylklobcv1UhK4rf/s0PVkWnP/7h0ZrkOiH1vPhuAp8mLnKSv+kBlZJs8rlgFSNFusLmnqhqKU83KxWvDy5SlKwf37D3j54sU4addgrdgaiKG72EC4vhePwDynWTd0dct0PiMh53xRlLvEocgyYjSjqlBTTSYURSWtvaFFq4jHS/Gm2YwEaKRvm90Aq+VqxasXT/jJv/kvmR8ecjK5R9M4nr885e7dh9z7O3/In//Fn9IOPa4fmBze4/D4DTKdQ56TYs20mvHy8SccTEsO53M++uVHfPs73yUlGYYlH/fN9M+bOOP2RNDXf75VwAqp93qL4ddJwe1JEmOibTrW6w1lIWR1Ch7iSKBZK8XElKQVamwjSjGOw1ECV8slRVGSW4PRSYYqEfHO0XcD1shAAZ2JybhWgBlJQy3T/fI8o2+kiBNDIssN2WgAnpVyXaYkg6+8D0yrEuc8xmTi+5e27VKils2zjLrtsIiiVBstCZJWhCR/Yzc4gpehOCl4Uoi8+42HtF3PJ5895ucffypelzFx/94JcSzo2LFzIcsMh/MZeWZYbyJZZsSrKUWiC6yHtQTXo+oxLzJybRi0Qo2etMvrJcvF9UiOSoEkxkRmM/yYoBqjeXD/IfWq5tXFBd3QcTCfcjw/IPaOVJQUZS5F6bFQ0PXdzuKlc6LoHtp+pw6IQ6Br1sRh4K0P32RWFfzZj/8bvvu9v82smPDi4pwXT5+SBo9VEULD+vo5y6sLKUihWC3PuHv3LWxW8f0f/gMuzp+jY8fVYoGS7mesGjg/fSwtqVrT9A20HZ/89F/x+S//ksO7bzI5fMijt9/HB6ibjvV6xZ3jA66vzvnq859ycf4S73pWi5x+c8VXn/yU+I2AzXIyHK+efc6fegcm4we/+7fH4mHarRk1nopbJR/p1tmxU/CxU7TGkQCHUeXKLZuIcT1txUshRuq25+ryCoUUrn3wTKuKsizEbkfDwXxOXdcsNy29D7SdE8V9DCxXLedXC1JM4wCO0fc3s1ir0US0Eo/oEAI6jfY6AwxeFLF5bkhIl8Q0lwFZm2UvIoEgLerz2UTUIj6QkhRgZBKzvEchCiFZFlJQDlHiJ6UldstshlIVy1XNpChZDWvxWY2Ri8srUbaWYn3w2Rdf8tHHn/Dy5Ysx5jUYBfP5fMyzxP7n4uJ8V6Cpy5KiLEBD33YyfLBrMSbj4b0H1E0tRRhjWK+X6CSDZ0KUgTvKWN566z2atRQci6oU4sMPGFWgdCb+uqll6Bpc70hKYS2inGZLwGgKK/GOFKqko4UYsVqG9GTaotKA6xcyDE9L8VbFiIkdL7/4GXff/CZDN3BxfkZKgUklKtO+75jNDgkhktuchCMvK+ZHd1mvznCuxftWCEUrhGNXrwnRi791gpyeT3/2xxwd3+Xq6lzimXzOdH7C9OBEiJFBpsZ//MufklSinB1z78HbWJPx4N4DiImr6wUHhyd88OG3WG9WnNw54fnzEpTm4cO38c5xdnbBcrHgwcOHLJYLrv/qkt/9/t8izyWx366FLTH3OuF3c3htC3pq9wC1IyK+rvzbdh8s1hvpQomBMs+kyyGzWGPwboBxf+x6sZGYz6akJGdPWZTElDi/ukZrRVVWYweEoxzXCIgn8NVyCUozqUr6YaDxwg8Mwe/yF2u0DIAaC/ZGadABbTIWyxVnZ2ccHR2JJ3mIBOIovIF8S3QiOVfyMLjRxiRDuiJiYjLJUaNytsg1CTmLk5VpuYWWQY65thgVSVpUg4OPFNZiYmQyKdBpO9wtkeUWZTQ6RRRGCFIjKj2dxALA+0iZS2daZjNigMNJRdKaykA7eJQxBOfE+xMRgyglauKyGO0otEKHQOc7nAtCjntNXmh8dBgUs1yxXl2QEhgjBfFJJf7lk+mEqtR439HUNajE4IPkWTYRfU+7OaOcTrl69QQ7OebDb73H2csvOJofs1kvOTy6h+s3xGEg5BVKWw5O7tCsLlktT1levaQZ96QqF894m1kuz5/QucC3v/d3eecb3+XP/vUZF2dfofWUalKwXl6CMqgEVVlxMJ8zDIngnPADVlqRy8KyuDojK0To4Pueq349drTcZ+g61kd3uf/GGzTrmqoQ0r6pxRpJa0Xb1LRtSzsMHBwe8uXQExIc3LlP39Q0tey91aQah572kv9YUXWOur0bSYRKtxuavpZwbfOr127t4s3OOb744ktevHhB8p6qLMRv/egQm2Wkds1vit+Y4PNeiIgiz0a5oRzOl1cLxNdILjCR0YtXUJ5ZdBD/ve00HHnbRumvErJDFGrStw43wYP4zhXS+94PqLE/O0TxBAghkRAvJK3l95iUUES0ThTTChCzy23Q0o7VsoODCWVZ0LStGFQnMdLdGshu2oHFqoaUmFXSdtUOjmHwTKc5Gs3lYoU1GRB35rrSMjVO4CwLIVAyK/56vXjaaaPpnHjTJYUQfn1PmRtmsynL1YYQYVLKsA/Z5DQ+gNWK6WTCq4vlSE5J62WRW4yCqBRGixeW0aLcK4pcEsBM1JNE8UuyWo1T98RzzGghApWRKXMoCc7m0xn6WCbtKY65ul6xbhra1nPdSJtW19TU9Ro3OKweJzGNbVvb9tA0miM7P4BWeCdKr2Ho2WzWEiQFPxJSorgripJ7d++SF/lIHufU9Yb1eoXRmoPZjM5aUvC88eabbNYb+l5IFaPFj+/i7JTNZjWqmm6wvc7kc5Npn1oLedpsNkzLHO8dbkjMJyVt18PYki6Jh7T6FYV4LPTDME7/izuJuh8NsLNMWklFfRNIaOq2ZVKO0ndtMSiMRtonrKXtBq5XmzEQGL0iFQR3E3yj9KgwNGOLnCg2txVzY8aUVWuKImNdd4RNwKAkqI1RXguKssgZBs9q3TCfVjBe0y4kPntyxl//8kvc0DOrxoN9cHQD4gdmFL0LzKcTMmtZrJZMqpLQD+NgDkVVlGzWa6zNKLJsVM0FGbCS4HJxPZKc0m4rm30BaTvRV+28PI0Vvz0xzo6k5NCjh1rf9sznE9pWPEIuFisenBzKZFYtbThuEGK7H7yoFWIkzy2TskJpxXK5Zrna0HUtF+dnBOdG2bu0eAlp7kbDX1EDx4hUj5USX7/RlN4Ys5sEOwzDaGQuH+DhwcHooxS5e/cez/uetuuxxgkZludjcp4Y+g7S2PYLNwqJW8T0DTm3DfrEzFhzm+CTduXbhJ7eroXxfjFGgot0WwVFnqNSkNakcW9ouwHnndgoTKeEKLL6zIphuRu8tGH4SEiirJPBIqIEJ4nfmOxxooTNi5wURB1NHP0Vx0p2Skm8UbpOikhVKdNhk5g3F3kmw53CDckcQySORoVDJ+TgMIyKpRR3793J4QGXyzVN08q0wn4Y3zNDCJ7VJuP08ppPPv+SEBKFsdjcMLWWylrQChekXURbS14U1JuaLDN0g5Ozwwfxy9Maow1VkZPnlvVaDvgYpQhVZhld21EcHuK9DNLQRlMUOTEkmfqV4qg68aPFgaauG+paDLz1uIdenJ9jreXw4AA/DCSEUG02rfgx2YxHbzwkBpl8GlRkuVqzqjeioEyift+qV9wwyPnVdOKdGNwYqCrs2B6aZZbFVY13DoUotYeuRVsJ7IOr+auf/EtePvsc7x/x4L0fMqlyppOCruuYHxQ8eviQvtlwfnlGdXCH2b13eXTnmJ//9M+IqWO1OKV3iXI6R9mc733/h7zxxgNRiI5EnWREEqLdtNQy3r4dqAl7l7ZE9y213+37bgM3KUTKfh98GI3GNd678T0bJyGPLU+985RjkUtrmSwbR5KhbTuMFYIhOC8+lTHSeS97nRLvSRm4leh7B1baz9t+HByVi2eNUno3bbZQ8vuKPKNpewbvmVYlCplorYSbFgW9MaQoLYwFUhzdJv6tG8YhTxK5iSWEHgd9iP9Spi15VbJuW/70z/+a56evuLqWuHA6nTCfVswnlSgWlRo9R8fXFAOrdSfKW5uJc0aE1WYztv0lJmXO4AaC17RtO6qcC7q25+ryEjd0ZHkm/kpFjncjiUoc3xPPar0m+khIUdZSlpMby+H8AG1q2r7BOy/JW4xkWUaeGYa+o+u60XdNzpusLBgGmE2nPHpwn65Z8kc//zHffPddnn/2M5YHp1xenmNCz2pzxvnFE/KxSDMM4k05mx7w+a/+jPatBR9+6/eISXH3jW8Shw2rcaBHnhX4oaapV3Ke23xskw5cv3pCNb/H8f33+NHf/vu8vLikC4mkLHfuPuTy1VOKfIbWGfN5TQqRtx59kydPP+W99z6k7wM+NuTWYjXUmyUnb7zNG2++LWdZircmT9+sCW6vjVElflMcTegk/rtqfMxY45Rrf1xLUjiQIsV6tSGFiE6B46Mj8b8dBgbvaZfDGMMpphNRhTfdgItCQle5IbMF51dL6q4ffVdFIBCVwruIUQEXI+Wkoul6cmOYT6cs6lqUSCGgjGI+nTAM6/F8GltzEQLQe8e0lETQKMYuIGm378bClvNR4tvRW3ybIEp3gUJbPRbZxdNv8I6yrPB+wCXZc/u84Pnzl3zxxRd8+fixKEadoywLTo5PiN6RkDxlGHrqesMwDMxmc6wVU32SDPiazmbYTDqKsizjvffe5cWz55xfnI8dA5pJNeOtd9/nq89+RZFbIpHTl4+lRc5AjEuKLONwfiS+fuWMo8P7PHv613T9msnUsF73pKDpmzVaS2nFOY9KEKKnynNUBLTC2kyKAyNBmVLE9x2t65mVJW2zoZwcirKxW2CMJaWeoV/TtS2T+THBX6JSYOg7qlLIKGs0RM/q8oKu6zAmx7vu/8Pcf/XYeqVZutgzzWeXCbcNPTPLdvcxktBHx14JOAcCjqALQbf6eQL0E2QAGUDCOepStanKyqp0dJvkjh1u2c9Pp4t3RpDZfdWqvlAATJK5ucmItdY3zXjHeAYxuswpk6HWvDhJdNmKwq54/fYXOOf46NM/5+nhR7yb2d3/wI/vfsfHn37J9atPCNOJ+w9fgzb853/2T/nzv/yPsFrR92e++/ZbMJrFOf7in/xTvn/3HX/3N/+Gvj/x0es33Fzf8PB4z+///recTkc+3H2gWa348ssvcwroOSb6fJbnZXL0YihX2UH+PNR9GTT9HLryx38VY+LD/T19P2CLgt1+J+fvukalxLqtaevy5Qx6PHX4mLFaScoey6ZlWhwPT08YW1CWFc/8MKVyqiyKyzbESJPZ27YoZeC6SIpJeMWCWJD7Oznqa1BAWZeCKXGe66trrFZEL4N4WxRSopbZ6lU+C0/jTNO2jNMsdwtlqJsaHRNKiaFk3ZS4XCaoks5nMxHUVJTorimE/51SxC2BwlQoo8TdXZXEaLDK4IPH+UhhZOIdFikeS0kMGwrk3x8i67JhcvKzK5Nk4KTl7peUDN/KukQpgzEiROpsFBEhSeOjx/tADA5UxCTNOMxUjZV4s3NoKyKoFGrK0DiGQN+dIEk78+LcS/Owj1DrCj9MDN2Rp4cfWaYeOxw53X/H/vEdn33xz5hcwBQQkuHtR59QVCtMUeHDzOP7rxn6nvX6iutXa4IT3qXWkePje0mIrS95fPiBaVzYXr7h/fe/R+sDH3/0Kfv9E3134PLyhqoo0bYk+IXzaU9ZlNz+8DVDd8ItDucTr9cX1FXJoX/EOcd6c8HUd5iihOiYzwMXFxuquuFpv8MUBdevX2GV4u799yzzzOZiKzglZL8+7gW7sdlscMtEqTXzOHI8HLm40tgUUBg5I8FPCKOfi3k/2wd/UvzkbqVfHlLRx47nnn/5r/81T0+PNEXJ9XZLUViq/Dyt6goXZ/6xX/9ogU8bEZakDCELDTG3SFlLVdecu+4FSvt8sC2MEeEsC3khb6BJQ4wKIfH85DTSL+KEeskt11VFzGKJjRGUphsmVk2FSkp4Vt6/HDKIEWsFij9OUjwh2X9DVctU4rlx0VrDYAZCjDgfMTZw6GdOp06suoWBBKdpZnSetiw5Hkd8SqQQ8D5kV5e4UXxudSkLK6xBHZlmRwiRthFwZDeMWK1YonCtrK6whUz8CvMsbsriJCaRSFFaxkma6Zq6yM3EmmmZCHmSEwvZOPthpirtizgoLhABcC/LglXy+6W6XOcYkYhrMSl2xw6DNLquWnltT724MdpVg1Ge5KWZZsyNuMnLxKPMbiijpRQiRJmYKqVYnLgRgg8EZNFPMTH2A4tbRFhAoPuFEXHHFgVVXWXXk0Tlgne8ffuWu7tbmW4qhakqjocjXXfGACl4VpsLhtMTh91DZgvBs2NP3KMifshrIaLmvATe/fAeqw3zNMshn0B1WYiImie6CnJcQxyqYrnUzMssTLKUkFomeW+kOdWTMoA4RDlcuhApi5JxGkRoStJOeB5mdofTizBotBZnh5b/fl0KZ6vMHLFxmoR1VhR4L7HziLAPJCIZKAtxlUyL49D1XF9sqMuS2S3048ipG6SF1IWXSco4e/7uN1/z22++xypxt3rnQGnKSqz8hRFH47gsbNctwTk5wGf23zjN4roKAeciWkeM1QQvvLOUIsdTJw5FJU2MIM1wbpkJXmdhOLzEYGKMpOjRyITcWkN/HnJ8vZKiBq0hyUX89v6Buq4F5htFBJinRQ74JC62GyCyuJmum3jaHzifTyzTiF8mdJ4cBufwixOmaIrCFcwHCx/kkK+MiK5VbjV1zmFMLZ8b/ezgypPuouDLL3/B8XTkdDpn18nPiiBC4Hg8UmiNUXnK/eyyywc0/SJQ/+yyxc//GZVfV/VHv/dZ8NP5OQBxHMcoLdQ+yGexrkqCW2jbGqNUdpUuJGWYFk+RW4rJh5111dANcjFer4T3FmNEG3FRiMNOhPwQRDR4af8MSYTgoRdOWW7w6ocBnmPYKvPzEGxBnVs4n1sMn4cHIX9OtJKovDay18SYm9oq4aNFL+vUum04nM+gMg8GGMaJ3dOR4/kbunmkspa6+MmJm8qK0XmausYtM8Zazp1c4p0LFKViGAaGWfg0q6YiEvFuZlVvWa9WpChlGDHIFPM8jDgfMgjb4xbPZrthmRf6YRS2q9EylDHmhdf34cMHnp52bDabLAZGYgysN2uOB4lR6tz4OE0TbnE0dcPT7ik/c/Dm7WvmSUphtFIMXYdbnDS0951EzCdh8bhlpigtyzyhsuUoEFnmKJHp4LJLM2aHrKcoSvx85vHH32MUzPOEWgYePrzDv7nh/v0f0Cbw9LijbRpaE1DBURn4V3/1f2eZjrSraz7/xX9KsdpyfXXFxfUVZVXwfPJ6dmo/X4LkzCXCnACU84DkmTfJT8LeH/vzfjqsvSiGKRF8ZJwWTueOuiwyS8hRmIIQoall4GOMwgURLJqqEIEj7+enYSR6eV1CkMZ0rWRIIgVKiWPX45bssnSeZOW7rcoGuV9FzuNEWa0pEIe0cC9lTw8xMU4jyshlosjx/hAcLihcbnH2XvahlMQtW1iTC8GkPG3dtPmz23Dqe5bgcVGg5/PiOR6PLG7h4XHPeehIJNZNzfV2zebiiv58pC7ty545TBIXd172Q60VAXFPFVb4eSG7pupChkVVXXM4ntjlc8bsHKdzxzQNfPT6hsuLC6wp5LLoHV3X8+rVTeY49+z3e+qqoalrqqIgxcThdOJ8PnPsO8qqorRG1iBSHlKPeUjqSSkwjQsKGPqOylpWqw13t99x//SB66s1D7d/ICUlBWrTgsYwzWeqssrKlrT6ifs7YMqKaTrx67//l/zP/4v/BRcXN3zz1d8wTmesBr84UIaqknZYbQqU0RS6IGnF5auP2Wxf8/23v2N3OvFnX3zOm+2X3NU1KrvFx2Hmx7Li/sN7ut6hzIp+0ITo0NrRDxP9kvgnH3/Jl1/8krKo5bl5jg/mQeGzc1w4lPxsb3keD8o/lHR6ea6eHUbP+9SzTrEsnv2p4+npSGEU66Zk3dQQ5TIvr31m42pF1IrH3ZFhmvEBAp7VusHHxO37O+ZFLutVYagKKYgxxhCVfO/aWBYX6IZRhsLtKp/jIsMwk8pI1RbUlQgI26YCpFF6XBx1JZ9diXGJC7nrpZ085jXjmaObYmAJAphXyBnY+UhyLq+VC4W17A8HVu2KcRiZvefdu+94vH/k1J3puw7vHUZLFPvm6oqL7QVPuydCTEzjyOKciBra8PrVqzyICZRVhQ+e9WYtmCBtuLy8YMioifV6hdKK7WZDZRx//df/R4pSSqWqpiWlhWWxhOiwFrT2PO1+YNM2nE/37J6+JSwTCY1L5ObhQNSR5DSFKVg3K1KcXxBBcs8wVIXOg39xz5P38qoqX+6H3o14v2DqQL/fcz7t6cczMQoqQtrEDWVp5DOWsR2KxG73A0VZ4ZaREB1Gi9kjeC9MYRRtu0bpknZ7zeXrX/J4+zWbzRVummjaDfe373DTnvHUcLIW159Zpp7Lm7f44NjtPmRDRUXdVPzud7/nfD7SHZ+Yhp7tZsXF1TXdeObb737HNC588YtfcH11hTGWN28/Yr1e59cg5SOqyrdgxfO29CLk/czBJ18/E/vyfeb5/wWIIfHj7QcOpxN1YQnzzLppWEJkGEdKazh10kJalZbFhxesSQgxFy0W9MPE0+FERFEXFpMEjTIujqIssntW4uv94cRmtWIcB7phZHFynqnrkjJIWiPldMvgFsqqYt02pCiJuWmeiEHu6D5IBJ0gbNRxnLMGIGaLy+2GzloeH3d0o5hkvNdMk6S/xDDi+fSjK3z03Fy+oSo3vPvxD8yuJyQtRga/4GKgUAUBhTZi3Ni2K0KS5EBUkIwMn6tSSclFSlRFCcrgU0JHhJdvCnyEbp5BSRGQUomoIi6BMhGiCP4xgC5gCiG/0QmlCopS5QGdCJsRKY9EKeY54nzCWtFcpsWjTIHWcg+J4WeN6iriJi88Z++olMIQMWWLKUq684mmMYTFMJ8f+OZ3HVW7hqi43G65/eF3fPzRx5hmS3SBOJ3Z7x9YXE/fd9RVAySWZSRFT/Qwhg6Fpa1aChJPt18xnE90/ROrds3T4wO2rGnKGjdMtOtNRihE6lpMHMk7QlgoypKqWbFdX9KfT0xTz3p1wfbyhtsfv8UUJe9//F6+35sb6ralO5/587/4C9rViof7O3a7J+Zp5OrykrHrccuCt4ZXN2+EMZnLVZ4LIudppD9bZr9QVy0ff/LxHxUYPmONXhATL7/wbJLIRon8HjjveXzc8Td/+yvubm+5vrjg1eUF28vLfB6sWK/X9F3Hi7PtH/H1jxb4xF4ufy0fKIGia8C7iX6a2KwlbhG9gLe7vpcpdMykgew4E7ebFFqkzHSSdsgMq33+pq2VCKT31FWFD3KwqzAkNOdxpi4lOltVVWataarchBWiRFZCTLlZqkZrJYcwGUGitaZdrUCJw/Dh6cDhPGShTWIJHw69OLW0Zuh6Zh+pq0IujUoWyue4cVVavPNYk9lji8eFQFPYl/hJVZagA9OsOHUjdSEWYHF4CaPOaF7YYsLwkstZ109cX1m265bd4YwLuYgjBIKGzVqqo5+jQMM4UhbCpFu6UV5YrdApEWLieDwTQ5K2o5jkcO8jFxcrhmGkH2emeRJgaIq4eebc9ZxOZ5ZZ2BoqSbwmBJnKSZRxkYhJYVi8sOViLlpRCkxMnLozKcE4DQA07YoSuLq6+tklTR4YH7z84cVpYrJVclkW2lVLjJCWWeCcQ8cyjuz8gncB54Qfp7Ow9/xnYUUqSiPMu9l5PtzfCf9NG2wpbgxbWmLKsdksRIeYQEmUx9oCgkQ1QxSrtxyPRQTXWi6az46OqhA4fkzClGnbhtUq5Sr6gmM3cuqlPVUOMRGNpiwK5izAeOeJUYpiCm3AphxHtFSVFUZlTLgg72mKDqPgalPTTYZ+nDn108t0LSaVY98SadS2YBhHfvPVO46HIxqxsy8UlEYcJ4XVrJo6O1cMQRWM00STm7KN0RJfNgKxXvxCVZTiHouaeRnpcqGE89KmLcKXuLCsqYhBImHaGFSQcg5rTYbfFngXWGYZJjwf7J1zzPMiMR2tINeuPzweMNYK6/Lc4XLZQ4gp80NBK8Pj0yP7/V7gtTGgYmJxcmBdMtMmBIWxRoRhY0CB9h4w+bAkIuycn92iLKjrmtVqlX/dY4viJTo3DuNLs2/00jwbs3OxbRtW7YrufESgs/rfceoZpbKAJw+YzqDdnwQ9mS4p/ZNL7yfnH8wusD8caMoKa62wj3KhRFtahuBl+lgZWttQFiX3jweeY1oSH4e2WXE4d/TjQF2KA6ypKtSzm0GrXJSjcEGYcUpLWYzSgSqvqYURHMI4zwzjSEywLFKeUhSGYZxf4uXOexYfCBkx4DPj1VqTW5QlMmHymlxaLXyVxUkzKNJ+W5YFm/WKw/6IMZb3Hx7pxoFumKhLQSNcrdfEIMOCtHimcZLnEMWry0sSiVPXsbgFYw1d3wu0OAQKYzMjU1wZSokoI8+KcFYSisP5TFkUsqb7gI+B4/HEOEmzXWGlVXmelxeG3oe7e3b7PdvtNj8fchA8ZREjhsjl5QVKkdvoBeY+zzM319fMWXRZ5lkEaas5nPb0XUdKiXHo896ZBF3QNLhFXK3n8xlbSFEQKLyCkNf8ZVlEfFUZuq0V/emA8gPzMLBatcTpwBQifb+jMBdcvH5DWa5Y5oVytWUaJs7333E+3ArUOkaGJbBtFv7+V3/N5uKCX/75X3Bzef1yXkk/+98/Eu2exb6XX+Nnjuef7EaSgnr+PSJthJgYhhHvJdI2DAMaaeQGLbByEoXW4nLMscqmqklZBNC2YH+SSPvFSi7bckYBZXIyIgS62dFPMix6dreGGOidOHtXpfBnFh/ohwnbSnmZsQuFlnVpWsbc0m1ZNU2Oc8l/w4cgztroX9aKlJ27ZVVmJ/uCSjKQTNk9jhKHzrw4uuOJh+OR/X4vgmZKGKt4e/OK19sLgl/oO8EVyCAGxnmhG0bKosAFcUKsqhUqBhF7U8V6teJ0PlMWlqvLS+4fH1mWha4f0GjGsWeYJSr7ydu3fPT6FSkGdCGlHW5xrFcrSRMoxcVqDZsVIURZZ1Oin0Z0UoQIZVlxc3Mjd60QidFzPJ1knYrCMSusZewX0Mg5Mgzsdw90heLNqy06Reb+gI/w4b3msy/+GcdjzzCISChDZXHXtKsW7w3/yf/0v5bnej7x27/9f1LXDefjjqoo8G6kbStm54gBVq1EC60x1E2DWxbOhyeuzgf+/vvfUZQlf/U/zlzdvGWeHet1y9D16KQpDFxfvRbu01Dy+u1nOD/yD7/+a+qy5PqjzxjGiTcfveWwv+fq+pW06fLTs/BzieGnv0kvz8bLXgQv+81P+4v8WkySoDkczoSE4HoQxhd5QGULw/E05IGPNEUHpfFhxmUUznZdg1L8+LBn9J6mKVmVBYURga0qhW85jDMxs1qrsuBqu2WaZk5dR1VXmcWn2axXFEpDfG7yhclHummSgeyqygPJiA+JbpiYfcD5mcqK0BSD4FuMVYL1yDgQeZVSdiFB09aoyVFXFXd3d9zdPXLqO9599x1911EUhrYuKYsVVV1l53zKDecTzju2lxdcFCV1ZqXWTSNDgMW9nDemceLVzTVaKY7HI+fTiaqqaNsV47iwWm3ZP3xN20TgkvV6wzAdKWuN1Z5zL3ttNztKI4IDXrGuC0afiNFjlYFCDBvSrxDEZVpY3DTSlMLotRqqoqUuG0xdcXFxzcOHb3C5PMqkSNTS6u1yhLEg8HT3FafuhBtHwbVEAceQwLuATwtlJeaRaGecD1R1y7DIMEvWOkm+KKVomkrWaS0/jylqFjfy/je/QdsanxSVRUokhgOH407uQ1GxvpDileNuxxICy7xwsd1weXXJMvV889VvGIeeP/uzvyR873i4/0DfT/zyF39OUdYYU3E+n9gffsPFhcRQd097Pv/iCz7//PN8nvvjJ+0ZxcLPz3H85Ph7ERkQkbDrBx4enzgcjsK/73tIUoDSDyMhRlJVYZVnMAqlG8Zpxjlppa0ze+9w7tgfzpKYsFZeQ4k30TY1TVNjrWaZhFPpfeRxd6QopZU9IW5+k0uTnpm4ghaCx92eGBPX2xYjqDymeZQhFlBVlZwBM9fS5MRDVcpgxnuPC57CFjlimQhB9uq61axKg1IzEc++25HSQaKsvkQXFTF/Tz4Lw1prLApbKnwQYS9Gj84FmEsQxr/RFqxmdg5NLjkMsoY9p9+8Ep4e00JKgbpe0TRr6CMheSilXVjKbryIe1pT1lJSuowTVVOhZinoDD6gS02ZY/7Lkpitp20sp2FB20RlDOvW0PUOUkHdbPCF43Q8I7ipyDyNNOuF6CWR4V1BXEaUkkbk4CfOxzs+/LinGzo+/+V/ytvPvuCb3/wdbjwxHPeM51FMKCoR3MQ89fgcOY2pYHNxgYoVyzCxv/8OazTrusEtI77s2FzeUNUV+7tbGr3FaJM/G4nz+YhzM029omk2KGs5HB9IYWaZR5Zyxfl4YJoHPr7+iM36gh/ef4dPnrppWOaFr7/6PZ9+9rn0IeShpvcLVWlp65rKFjw93NGPI5ev3vLZL/5EWHi1tJQfjlLS+fnnrzJWTO5LGrlPvWC9fvbsPe9xz6GqZXHs+55/87e/4re//S06RK43K64vt9xcXUl7+jBwmhe5Ey8Lyf//QcmGTIRF+X8eec/zwna9kgho5sAs85TbYBNlWRESLxZjHwR4rPNmPzsnUEQvF6YX1x4yNRe4Ycz8FyeNV0rjfKKw0hR57AaapsKHyMV6JQ6R7KAahpGqqrO9c0MMPtfdFy/TR5I4FUJIfH/7yN3+hI6J1bZlWQLH8YxBwNLjNIsdubQCiU3xBfQoEN3AMM0vMboQ5L/xHMkRtpycfDRQWHE9+RgxMZKycJlCZAkwz4GqTC+CaFkUxDjS96O0bQaZ+kiZV6BaNyyzy7ZjTcLI4mNlqjHNjnHyaA1XFxs+POxxITLPAgMtraFtK+rScjr39MOYeVuRse+FRzOOdEMvDWIRisKglcnx65QnCHJZCMkTXcjxFnmYnXNSpW7Nywbc1DXtZsNms+Gw379EGlWOzaaYaOtaYrqI9XgaBjkMFGJbFidgT3c6k4KTBrtlyg4l+dCqF1FPJr11YSmzq2FcHA+PT2xXq9x0JK5HGTIKhDnaZ0u2bAqLX4ghEuIirLDs8poWJ61r6XkqFZnmmdlLe3KYpRTFmiQta00Nz9DYKPFu+wxzTiJMlKUcSqbZUWanZllKgUBppbWqrESUW7eNuKZSwHmXN0uLTeImrQvDOGv6cZIIhzGUpWWzatide3bnga/ffeB87sAHjE1UhSEpLc9vChg0KYnjMWa3hTgzoSqlpCWEQCRikPh4Uop+nomDXGhjlNfDZZu6MTLxLo3FkxhnaaATVpT8+5IW3oYHFiX8j9Wqlcuflue+KgtmFyDNXGw2uf0poo1hcp55ngXOOy8vztvzuYcE+92OrjvhnDAZYpDSHOEZhuxCMrKZLyKEhPRcmlAzjeOLgCbutyqDweXSf3GxpShK5mlEa5vXMxGAlnmW6DKJJUd/i6LAani4v31hWj47cX4eqX0RsBUi4mmFQZx96pk19nLZ4uWwGGKS5sFBIpTDOLJ4aReuKktbVRBTbveV1mXvPVVRihh27pidoy4KClPwsNszzQulMS8RPKvty0AnpJRbNhXOB2YnEWlhlS25nMhTlSXdMOTihgI3LRIhLAqZfjsvjVjRcB5GEtmhpEopGgiBqiowZFaYMTRGhHofE9ZI+/g0OazRFGXF0/HI7cOe/f4gDCqk+GRdVzRliS0N3TAQvGe9bvOlWy4QZWFe4pFGy3sRQ6QfBmYnca9gAjEFSlvS1BVVKXHj58a4ZXZM3jMMA9s3bzmfTkzLIodknif1CWsK+n6QAVkI7A93HI9H3r55Q4qR/X73cukjO8TmeREnqLXZeSIH4qZpePP6Nff39/R9zzgMuHnmdJAoZMzlJrObZe16hssHn8Upz+IXbGWJs0SiQpBiJVJ8QQas1xfMywxEMBWr67dcLoHLq9ccdrc8HfZsb97yp3/6Sx4+fGC93vDq9Rseny5xbofXBR998kv2j+/YripaO3J6PPHR21fcvvsDw8cf432QMqW83j87hl5MD8/CnnqeyP6k5r3cldTP/pCH7OV88PAoHNd5EedTXZek7HaSeHj+LTq/5ktAGwOZ02eNoT8f6ceR9WoNKTKMM0oLIiApjS5EeO7OZ5QR4WPMBQBtUzIv0mJ+0TQ0NbDIMMOXFVVRUJeOtpKim8kt+ZBdvYizPkSJ9nhP29ZyOU5RXGp5cOVjwE+zuIhXKz487rHGUNiFbpw57I8cujOn3REfPCk4tquVtEBbwWYsy4LLQPXXr15x3O0JMTDMmWsWJTpfNQXOieN8cRK97bpOOJgpMfS9cLTyZcAtjnmUc+ebt68orWWeZ6ZpRBkrbcIxMXZyRimLkjdvXnM47nl4eGCaFnwM2LIkzJ6mqiiTwU1TdqUuuGVGhUAk/VRS5r24W8pSuIhpoW0MbVUzjxPOL1itKIqa6Dp+/OF3XF59SsyO1xATtmxYN1vG6UCMjt//w1+xvfycuig4H54wlxdoW7FdX3H7/dcss8S061XFPE7MywQkuk7iaijNMhxwY8df/OU/p9m+5nF/4HKz5enpjvVqjZ9GTrtbFBXzuCdM9zze/RofIkbNpDhyevyRz//kL/kf/h//F6Iy/Pf/q/8ttpRypBcJIWsNz/sG6hnrAIrnof3PEBAv+418hZi4u3tiGCcR36aFyhpurrYYlXLhTBQET4p4Bz4oumFk1TRYK/vYZt2gQIbby8K6KimzQ3whQUyYKGiLzaqVe0llCc6zTDPOy5DBas2qbZgWJ98TBWVpcXOQ6LqfWXygLqQQw+dERjfOnM7DS3Jh1TToRI6xB2KUMo1uFEdR9AGlf7oIjnPP7e0dd3cP3N3ds3va4/xC33ciQl5fYDN2RZE4Ho6S/lhmTG4bDT5AWl54ZX3fU5cVznmatiGmSNs2PD098fQka5YylvX2gu32AqMND3cfGPozk5ehL2im+YmIpdSGV5ctwTvKpqAqDPMysviI6qEqDX7xDJNnmuTnK41lVZVoIvPQoVWiqsSJiTIoFVmtVyRlGfLASWsrpWelIcXE5BeqXDzllpHh3DH7gFKJYZooLTRtg3dBhLekqesLuu6RZZYzQN89EcOEtjDPjraWIryqqkgRQb4QIYzs7r9jGk/EkPnaZcH51OF95PWnnzOOIi5ctDVtvWIaZraXLWWC2Xt+/PEd2+0Fr16/ZhyPfPTpF3z91W+otOJie8nHn/0p3ThQp8T721u2F1va9Sqv6wqs5q//1V+z3W64ubzMz1UWC34mjP+xUP78a89fKXPyjvzdr/9B0AOF3AOMkXuC62UwGBIcu57KGJQxuCiuT5WTddYY+mHicXdAIa9VmYfUTstaIEmFhRSlMTYqTVnXPO0OqEXO0zoPip7v25tVS/QBl+KLAWSaBuK6AS+/bqzhaXcQt2v+4YZ+IIYEJsfuY+R0OtP1A6t2RdM0LP0ux7QNJEXfL3hvqeqCFA0fnnbZISnrV2EDpSYnNwIUSnBA2lAYlXUGDRZ88Ghjs7sdiiaSgrD2ljlJFNx7jFU5/aYxtkQnn+PMwsldraToQ6Gx2mILwzAs2V1sXhIFbpogeeaxw1hkXTGael3wdOhYIsLETAWXN28pWyis43w4MU0jIYD3C+P4KAOlfH8sjTRa4+Sej59x80hEcXlzzeHwhLGa/riX+Oj6it3d98Tk0Spw9+Er5nmkbtakUbQXv/SSjNGGGBK2Mtx89CWXN5/z/t1v0crQtCvO5wNGK5ZRiqSuX38GGk6HPat2yzBKKQvkaL+aiWHJg0YpG5qWKe9FkcJaLq+u0Uaxf7oTtupqy+df/oLD/sA4Sdpnc7Hh/u5Hfvjua/puYJwGElKydXPzihATVV1zffMaVKJerSnKko8//jgzj0VzMVqLeeIlOfWTyPf8/IFoFF0/8D/+1V/xh6++4vH+nvV6Rdu2WFugjWG3P1A3NZcXWxbnMyeywPs/Gp/9//T1j2fwhUQ3zMKQ03IoXrWtgKQ1XF5uRbQqLH0vjaBJiVLdVBU++izERIKC2cfM3kMmXUpljo1chlMM2fQnDAKdL6M6c+WGaYY8GeiHmdkEYlK8vtq8NJhuNmuq2glE04lQFZWS9pr0bIgWkend7QPf/nArzaFW83AYmOaJm4s1yzRz7gZp5Mp2cgFVS7uLtdLgG/Ml8zm6+dwUHHP9t7FiQS4RQUxruQQeu5HXl+Lws8/CV27Nq8uaqqwYp+kl1tcNs8Dk1TNoW+N95Gl3whaWqrT5nxV2Yj9MzJNjmhem2dM2ok73/fCyoBqVuNq2LLPjeBiYMq9pHgfGQdpwhUe3EJxAuJWWZqCAzqUHMsV75ltpJVE5lcAvz78u7/s8CPunaaWMZXOxxTw35Spko1easDiaumazWeOj57A/iJAyDCJoJJj6gbptWOaZ4KT4QN5fgJTjwiKMbJoqu3EMRstn79yPErkgFzGQuNqu5LOZxH2aMssr5LisCgEXA+M0sW5XBJ/opinHDDR1WSDA95RFFi2O1JDwMdKNE+umkX9GibsPpTidB2kKzbw+mVnK7+/mGR8ihUk/ezJ/iocYEskYhnFivWqwJjLNYqsHKZKpq4JDJ4B+EV3kUjzOjuPTgfunPeMwyWTJKIxJbFaNgKszc7CpGowWi7q0ulnm/P0mLYUGZVkgJSESNTJGDhjjLO4PoxPb9Yp+GIhe+HfEyGbT4oOTg58xAqzPxeV1VUtUUxuWxaO0yRNEERi11uKS0poYhQ029BMGKEtDWRUvwqOsYZG2qTgfT+x2e+Z5Zh5HoluISZySL/wQpTJvbwEKWRO9JyWNtlLaIMUw8lobrbOjUOdGYSPP8ThliPtMWxvWmzVPT7v875Xm1WEcZJNRinEYkHasKUeYJU7+LOzBT5culVl7zwOE5wIN/i1x79lB52Pi7mEvglXbMC0zD087dCHM0TBMhO1G3Mla48OCys4IH4XdMs0zVVVirOXxcGRyHqsSF+sNq6ZmyW3cRSGT4BjE2xqiOIh8iPggJQTaKPbHE/XrG0x2PWgtkb5hmlicpzKWKTfdKSXPyeJDbj6WNdRkjtnzHyKyB0IUd3IkUthIVVmGZeZ8Hvj+9oGH3R5TWNqyEJFcKyprGBdhH82TR1thOIHm2PVsVi2btmWcJjonBULGWsZZGsJ9jh/bohDURAg5XiTNkTINNzw+7RnnmW4cZcr99MQ4DDRN8+L4nDMIeMz/zDBOHA7S6Hx9dYVWMmW3xlBXFefzOfMGU95bJRIZQmDVtqxacQSlEPLAKrDb7VjmWbi0wQuLKhdqSVQRtJU4j8S1pW3VLVOOr7qXlmhiypdSQ9PIa+Sco/UL9z+8Ez5o8jzc/YA2hnXd0h2eqNTE4+0d3/5hZhqOoDzV6pdcvPqI+w/f8vi0Y37/jmb7VmLXSqGLhnlJLHFitapfPh/yFym79oXDR94XfrJCPD9E6o8OcfKsaBYfuX/cMY3S0BlDZLNeE6O4qItcGqNUojAS55tyfFqidpaI4twPjPOCVoZxnqmNALudF5dMnbks52GgLIvsCjI4H0VELy11WTA7l4ejlqADUSlpJXeJQoF3jsPpjEZaoksrccSAOHWfh6Y+iBMxKRE9lyUIrDxFFIolBkKAcRopTMnuacfT8UzXd0Qvz2zTVFxubiiMzty4Isc7E1VdYtEc93uejsL9CilSGEmBPO990zDSti1TTJz6AZUiF3aLMZpTJ83E3XhmfzwT/MIvPv0stxUGdmdxmGqlWYbxRXxe8vkK73j3/feEGKQobF5ACZzcB4c1JaUpOZyOgg7w4sqdp4nwUiQkP9Pcd4QYRTRI4ppQKYKGcVowZUUCmtqSmHm8/ZZKa5yWC54xEgHuR09hYJqPfLr+yyyQRcZ5ggD78UxRWIK3L45acTYZUpDYlneeaTqxu/8Ol2B2C3/++S95+3Ek+sAnbz/l9sMt6+sLnLKUusRNI8F59rs7+n6AJFH6ZZn44d07/vQv/yPefPI549zz4d13/OKLX7BuVz+J3z/fa16EvDxE0uIQ13nPedmbkGHpDz/ecjj14qSqa4yxrNpKmueVpjAi8PWTY14iS0hMU09VFjLYjdLaGUJkd+6YJycol5+lKlIix0EtS/CUKAqtqK3lMEzMTp4VPwsnurKGVVPzuN+xWX9CWxSMy4xSiq4fZXBv5DxubcE4zcLxywxfYZLOVK0URHn//FnwODezWbWQBzLdMPDd97fc3d1ze3vLw+ODPCc+0DYVF9s1q9UKleRsUBbCnWzaltVqxeGwp6orKfBTmpubG9CKupJiJRCxRs7YNV3XCTheiYDx0UdvWK3WpBR5uP/AMIkxIoaebkiEIE7AeZ7BetpmRV0VRK0oEWNCrEqaiwuCl6hs00qJkJ8DjS2pbYmLjtVqi1aRlGYKA9bCtk3E8QGsZVkim9UFV5ef8d33v0JlgdclMQO4kNA5qg9JMAXG4N3MNKZclCYJmxgDKXrBI5CI0QERjZE0RLZkWq1QRtMPA9vNFucc+/vfc9o/0tQrlgCn3T3L1JF05Li7RdsGY2R4WzUVu4cPPDw88NFHb+jPR77//muC87x6/Zppmvnzt7/kh29+z/505L/44k+ZvaTF2rrh+peXrLcbbj98wGp4/+P3su4Xhm+++ZrX//w/kyEwCvTz8/OTa+9nZr4XcS8lwYR888OP/Pb3X7MsgaoQUdNnM4FzOQaaB17P58Znh2lhjQytbcW0OPbHk7QtNzWltYzT9FKoaawhJVkTY4wYK6zgruvEndrUVFZnvqy0HK+bRooioqSVng0ZPqcuLtbtiynErdrMuXfMPjBPC5FErUqcWwgxch5GYkps6ooYHKfjCW2kOd5oizYFFjidRjE9GCsGGBQpx7VN3lshl+1oTVQBH+TcHgMQ5awdfEArIxHd4Ci0lc+X0bh5lhbd7HIsyxpjC8ZRSkiCm/DO0Z2OL8KsDPVlH/AxyAAggc5JRp1kMBZjkPIaCz4mqsZS64p1c83nf/pPcEtHMiMx7JijZ1nk/bVFQVE+x0/FgV+WhhA9JE/wCVsWmJhYoskOakF5BH+iaS5YX7yh1DAen7j94St2jx/k+17LwH4cc5u41hTGoJXFKEtaHGOOq/vgWKYJa1Q+40sCbvfwjqZqwSiCd9iiYLVacz6fWK3WnE57vJ+wtiT4lBMrJaBxXpjm+/0Tw9hxPjxlPFotxVqF5Xw4MfQdblkoreb2x/d8+ad/jvu1lCnW7Yb1xTWnw4HT7onTuePTzz7jum4z13pClxVaF5J4iIlkROx77iV4Pj+mLKIO48Tvv/qKf/E//gs+3L7HGsPldktbNyLqtw3GlpnrW7LdbDkcDzjEWVllM88/5us/QMmGuDpCEIC0zVOIkKDRhnWjSSHgPCxB6ukTgdIWzN5lros4t8ZFoJUX61ZeQAWkhHnGKkSJ4om4Ig+dLgt5uKMsINqYfIgWltq0yEKkjeHN5VpEPiWsBJ85OCj14h75eUTnh7s9f3j3nsvVivMwsh9nSmNpCkvfj4zZkSXsLINHnIwxRVxUWJXh4UvAltnlEHlpi4yZt2aMkg3ReZmgGou1BpddLNpopnHGuUhMgdSPaBSrtcY7R1mVlKXhcBzZrJuf2UK9wG19oNUikg5Rpp0piYBYWoMy6oVfc3f3SPDSsmcLxapumOaF07kXAWIcBOKbWzGlrVeiCFUh3MWfFu5ZDiOVFBTMs7CZlFK42THnhmWrLTFDK63W1KUIA6XNrU5+4ebqEue8RBqrCr84pmnm4eERn/wLp2F2TqbpQ08MgXHomIYuiy7PDEdh6ZDkM9RUBeumQCuZ+B7PI84FEX28iDna2jx5kia359c4BHEvRa3xOXptDRRFSTfMTMuSOY82R3HiC2ssKhE1nBOAbchFLv04cLFuBaTvHG1do615qbh/doIWhfkJ9G3tSytoChFrLf0wsKobBESrmJbAqRtZtyJWL1EzL8KKayvL1XbN6TzmVkT48HBgnBdSlGk2uS24LgvaSjZMqzUaYQmWRiLSGiUwXSUuOIUYERfn6QdZA+Ycg6xswfnYo4xFa+FUzXOOVZQlMUnZQgpSgpEihCTCnTKGcXSoRlPXFT4kopVn2UcRMRMyXDCIq2ielyysKmYnLqQlM+WehSPvPcu00J86xl64N9E7lE4sw4wx0oYsz4hlyVGtqiqlhMFolBGx7dl9WFVVFvIGaSUdBq5ubri8vGS331HXUgxxdXnJOEzcfbijH4cXN/AwTag8oJjmiXEcUbmIoqokmiRmgudD3/Mh8Gemo5/99R8FrNRzcFFBVNw/PDGOC+umYX84UZYFb17dsDucRMhtJCoRATcvEqNVGlOU3O8OOB/YNBUpJO6e9oyzAPnXm5ZVU0GUSP7kpEyo1BLbmBfH4n3+zlQedghfcvKeY9/zarOlahr6YaAfJqbc9CpFHcJ0tMbSj8OLICOxbrmQmcKKE8nLxVobTT+MbFYrZufoR8fj7okPjzv2+x0XmzWfvr6hsAaX3VfTvHAO4vioreFys+Y8DBS1RI9iTEzTzLqqKKua4+nMdrum7wemWRhSCbn4Jh+wtcJWcnBYr1qWZWaaFhbn2B/OuBBISjHNE/M8U+aD8PF0FoC7NWw2W3a7Hd4HzudDbmwUDuU4DtkBqui7Hh/Edb/ZrMVNmx1V8zLz0Ucf4b3jcDiw3z1J41jXvRRqaC2ORKM1z92yRkvMVniaXhx+SYQ+aagOMsCTE7W87lrckT5HUuZpoio3rBpFWbYYItENhEXhxonYwvvv3/HlF18y9u+5ublkvb6gvXrL6WnHNM68ffOa1x//51y8+ZhvfvevoKi5fvMZh9ORv//Vv+G//q/+S1ar9qcn4OcOvZev/JRk4VtndIhEyOX1VEpzPPX8eHvPMIqjrbKG680KtGJ22eWZEQ/GaqosfoYoGI+E5nTqMrdSEAgpya9tLi9FjNWIwDXOnM89MYC1SlxuQeLfCRjnmW3b4mKgX2bauqBtSmKS9yWlyKZtuT+ciAnWTc2qrnNzn2XsB7wLoPSL27muS6q6YnEL03SiyFG5FCPdMHE4nunOA+N8oOvOTOOM0onSFmw3K9brhug94zSyzs9Wa2oMiu7cE6Owy6bZZR5wpGxLCmPpxw7vPFVRsd1sOHYdKXhebS9oypJhlljZ3cMj/TihjeH6aktVSmP8MErCIARP0zTy2Z7zWaRphKFXCFbFR4nVPaNb5sUxzeImwxi6rhMRwXvc4mTwVcjkffFBIpZJ1sFYlVjAO09ZS+FaVcglpGlL+mmhaq74xT/5S379q39B6PdUhcHNA4stqK24OlOKfP2Hv8balqIwsn+p50KylDEOlrLaUBQl+6cHlJKkwGp9Qdft+PD+t2wvX3H8cEuapGn72PXM80DTVny4vcUvjsurN3zy8af8/g9/z82bz/myXfPuu9+y3/8WUyheX9wwO8/t+x/57t07dFHxi8+/wBiVweE/Fxj+XY7rHzFf1bNxVjEME998/56hn7i+2qCU4nieWTUVbS3RQV2I2IwS5/UwO1wIbNqKTdtQaLn8Ho49ow8cTx1lIRzpaXbCTtTyuoUYsSlJmiID652XZuTSWsbsEu+nEdO2NLkc8Hju2a5bqqJgvV7z/mkvP29KKKV5PBxlkLh4OdebguA99XrLvASW6ElBztzjOLNer4ghcDyd2e0OvP9wx36/53Q4Mi8TyzxxeXHJxXZDWVjGYRC35yIpJ2slruq9PLskaZN+/fY1ZVmKuDJP8jlHIu/zPEtUc+ip6hpjDK9evRbHfVWjSDw93rPbPfDm40/QSc7O5+5AU1tW7Q2VqRmnI/3Q8/r6ClNcU5oKWx9I2jAHEWCrTYsNMHUzKhmaoqDQMbNxRTAoLYAwmIcCVmXF0i8Cr7EVfb+XD1QyL8PQGBJGQz+OoKToJsaZojCURcGYz4yJ7MZ3H4CALTaYJFzmRMR5hVYGrSuKoqAqBduUmLLLNzIMJ65vPmFxM9YFtLX5XB047X8kqZLt9oqyfMXQjSzWsdlecXi653TqqIuCH3/8lrk/8k//s//mhRncVOJCfv3RFyxTzzCc+fbbP5CiZ+jPfPTRR5RVxanr+G//2/8lbbuiMEYGtLnJ/KddKg+m/q3dSyKFZ/713/2GH96/Z7ta0RSWxXuGIfHq5pKu70Epqqpm6OUzkaI4FW1mi2INq7Zl6McXkbquS0jkoYLNSRBo6wqUZpgmmrrkeBKhtywsV9sNiiRR6qIgoZiHkV2/w1gLSbEsC0VRcHPd4LyYbpTWWC2pLIDtZkXfDUxpJpY2O8oj1TOqSmtKWxBD4N27d+z3O5QytI3C6IS1CastRVERvJQsDeOI80CO8LukaKsSoyJuFhHZWkVZKrwLRBx+UVSFoSg0MRisIWPEFoKHREFdlyw+yjnACPvc+xmFfIZVUQouJoaMlrGsViv8PFFWFXGe8EmMCGVVyB0NSV49s5KxlhAVZV2zWW0wRcFuf8sw3HPqOjZ1QZg9KWoicl6oSsM8jMSYsrNRegKSW5hdQLHGxUS1qhnOe4nahkBdVYzDmQ+372iaFXXTMnQ7qkK40UN3knRkfDZ2FNT1irZaMc0T9/ffYfcPwn+tVzl9V6C0k/feGNqyzmaWJMPZKIzqqqwxRcE8jXI/NprVZss4DqDg8uq1nGlWK6ahpzvt5D5qRKAe+o7dfk8zjBilON4/cNw9cfX2c3ZPjxAcbta8fr3h6eme0miOT/dU6wtuf/yBoe9QxuL9Z6zXa25ubjj3naDp8hn+zc0NSwi8v7/jzeU1537gx9v3/OEPv+fr3/2Oqe/QWvHq+jWbiwvapmazaoUpuzgUMRtvdEbszFxcXlAk/28fTv+9v/4DOPgiS45zPF/06rokJmgrKARgxTAuL8Boay3dOKNzfZZs+olpCRmaL21tMcaf3HpIQQM6vXCoUpAHtSwq+mHIbTgJoyRueR4W2qbkPE74ELFacXO5/qkNT+kMd56JMVI39cvP9eP9nq/e3bLMnnuXWUXrtQDvHaASpdF58iB19JWVA7KxRsSikOHupAzWFhGqsIbFhRzBi+BAqYRPAg3tp+VlmqIyGH52Pm9cgbK1ArHPYN4YI5fbNYfTwKmfMMaKI2vsMdpiLMJh01CVZXZsZHCqNWgQ15pzTIvwvpSK1LVElk/nnnlxjH3POPQvDaEpygQnpShNiUgL0TzPLw25McqkKwSpvHZemDohlw6AVIH340iIntevbzgdj6BEKJVopVSFkydGpMh6u37ZqAptBN5aCA+yKkvO+yemYUDliMeLyJFLNOqmZuyHfCDUqAT90LP4kFkpAe88dV1RKiWOpLp8mdiu6hKjpGQmRcPoFxHzlGaaPadxxoVAZS1kXqQiUVrzovA/t08V9jnGlZiWRYDQXtyGpTEoEvO8ME0ilIgWLVODyfn8GRRQk7Dtnp1BJZNbqHUJIVJZxYKiHyfaskJFEfcC0I9zjposPOyOWCNur2kY5CGNibatqLRAq5/5QSFHzF0IrFb1yyWoyGKv954yN2iPo0y6rRWY8nPLXEyQ3EJbV4zjmEVM9eIQqquSmBLHY48tKymHUTqzhxLbiw37w4lzN70UW1grbhiFYpnF5bI/DSxeAL7rZkX0AswWx8qMqy0qShvpYbcjuJnoHcEJRD3mAo3oRHyRaLnERp+jAs5JJPfcd7RN8xKjKawVaHCexJv82ozjiFGaZZYDUFlVHA5HnHPUTcV2c8HDhztSHh5IxEImkLqwrGzLcX+g60d8TJT6j2W8569ndliEFzcf6dlILgfG0QWe9nuWWaa4Y35OU5JJ96vLrXDgrM2OmFwCoBXT7NkdjxKtbxpGJ01Rs5Mm57YuWVW1CErPaAbvqawSPtGyZIaZwJpDLh4RF7dmWQIP+yPbdiXFKcPEsviXz1fI3C4RdZeX71sjYn5RFPSTtGq6mHIpTURH2V92x44fPjzw4XGHc562rvn49WteXV+yOxw5TwtjLu7RWuefxbNdr0ALp/PQ9awa4XYkhcTJOykhWhbPuRtF7C0s67ZlnGeKSqafuiiZF8fheKQsC47njsPhJJeOII2N2ho2mw3zPHM4nmTNy6UZ93d3VHXD6XTGGnEi99mtoZXCrNcZlF3CIgy8rpMSAb84mqqmsFZA7m5hGnr8NNJ3PdM4UNdVLugI4qLPrNOmrQk+kJblBcPxHNcNmbEXn2HmeR+31lJVFSHKc6cUVHVJdz5LdCvm9SVEmu2WzXYLaYAwcXd3R7N+xe2P3/Lln37E1atXPL7/PZ989JrgJm6//3seH75l//Qdm82a//f/6X+PqTa8evsLpmkQyL15Cc3+9OefdD1+iraLy1aab5+5MIrbhz0/3N6JC10pCmWp6hJUwi+OGBJB+dwmHDNmQBPz4CU4R/CJfpR4ufdOIqFVgUFin3UtItI8TnTTTDfPtMVPDbgxyV4m2BPF6DylsZyHmYv1Cq2SxA6JYEsWLyzYuqqI3jHNswxOFrlIVLXE4VZtTVPXTNMo5VnNVkoIjMHHRNeN/PBemvGCE6FiCYKkuNxuubm8JLpZGq2zuGCtZZ4nytLic6HWkos/lNYvex5KiqXK4kKGb9awO+wIXpxDVVXSNjWPuyee9ge898JJKwoutxvatpZzSnbyfvLxxxwO+/wze+qm4nQ6s1qvZEA4z4zTKKU4ScrV6rLMbg2PRwadPsrQdcFTVuLGm7P7XSvYbjYSOw8etEaZlsI2jN0JkKbUrpso2y2FLTkdj1TVirq+IsWFUokrZPYOhaIsSlQMLNOZFCwqVthmC6ZgVbfMjyMxzIzDkVFpQlioasviRvogcbGEYzg/Mp5vSWHg+uYT6qbkdD7y/sfvMHHCDXvOBPYPgU+/+HNevfkTCJ7PYmC3f6RuG5rNhpiEn10aw5e//AXrVfuTyVU9J17+mN2qn3cV9dP+o5KwbQ/nntvbe4L3vLm5kFbm0TGMg8TNncf5BMje2k8zh/NAQnGxXoF3DMPIrDU+tMzOM85Stua8h9JiUdIAG8VRYY38mjWaU9fj8hk2powp8Z6qsrhFXE3HHIU/dj03V5dstOHUdTgva6UCTqeOkNLL56fIA6MYRbQIXpJBbdtIack4SZP0bsfpeGYcRjlzznNu3Fa8ffuaq4srTqcDbhGsx/MzNM0zepEL4Gq9BhLX19fc3LxivdnQ9724S20hInNRME0T8zSzPx1pVy19L2D5drWiKErGYcRomIZeBurK0J17FIq6smijmKfAF7/4M4bTkZgc3XnH5qrgPPZ0w45URNpa48KEdpboC5Q2LGFmTArdFsjb6SiNDFIjmkIbpiUQg2BJVLD0/ZlT16GURumUByoGY0VkUcjAxC0Oq+WZcT6htcVo+XzNs6wnYirosaZGU2C13KdidpBrXTEMPWVdY2xNWVZ476hVjdEN83jAec9Fs2bW4sqcIhRVYPGe2g8Mx/c47+iPa0IqMGVD266pVw11UxNDwg1H+tOOZdwT3cCH73/L7e2PrC+uefXqDV/+4pdM08xHH31C1axk0NeIKzPlgeHsFykd4KVy449PeTnd8+27H/nbv/sHdrsTm82aQgvntK4MbVMxL55pntm0bW67Ff6pFOVZtusN3ThyOHU4twhSKCa0ksHCoiB4Gb5UlX0pIjz1o6BRlETFjdaUVtJQVhtSKl7SUpfbFcEVaCts7nmZOJxOoGC9qnMzu+gEzneSPitKaCOrtuVpf6AfRkwuVEtZsFqt13z/7ltO56PsFbWiqVe0VcswHVm1FYXWxGjl/OcW4eIrJXeb0jJPDltqfEw01qCUyQktGaTWlcFqKdTSSkkTNEpEvdETXu7t4u42SrH4hLWalMQpXxRi+onI2iNidiRpGYhaY0nWo40kIay11OsK6yxz8Niyod5cUrUbdvsHdFtwPj+yNa/RqqGy4shrmpo5BrSuBPMB1NYzh4VSK2ECA904UlQlrU4UKExUsi8GaNpLpnmk72eSGrm6eoUK4jAOKeazXIP3nsHNtFWJ0pa63mCKhjhMGCsoM1PVLPOELQxjf0Z7MIXCaIPSBcrYjEk6UtYt3juWjPgal4XVas31zUe0zQZ9eMLagqvrVwzjRNU08ue6Jvr8GobAcbejrgrCMjPNI/MkmICp7+hPh4y0UEx9ByEIXmqamFxgtdnwze9/x/riElLisy++5KA1LkQmtQjaxHmennac+w5VFEQf+Zd/9Vd89/VXLNMohh4ir29eC6pE67w+FVgbub7YsN1usLbgcDyxWrcS4W0axuPu37nH/ft+/Qdg8AkvaVoyA0rJBJMUOQ6K15uWhCw+MSbQsDtJTnvT1tLmUhSMsxdxqZAmmMIIPLospfaZlFCFtIzZzFZ7ttGSkjQ2zvNLW2sMkbq0xBBxi5fmQW1om5K2KoFce5/jKM/xAIAfHw787W+/pe/kkFsXmot1w+5wxEexjZdWFsyUJ+QhCquusJphXqjLQlxiXlxZ0xyyAJoYxoklNzQarRmmQFsXwHPzoQhw3kse2xYGHYXBVxSWYXJcbAuGcWa9kkU7Aeu24XF35O2rG2yeiqcUXiY9PkgevCisfK9lQV2WnBFV3+X8twLqtsItntP5yDzPhBA4n47C2BM7JUC2+Aqz0AcnLa0pYslip9HZ7ZQbYWKOTZosACrZvELIUd34HMWODJlDpZ24edbrzcumZnIeviikrdEvM2MP8zRx2k+4XHpgcslJjNLqFjPAdBxHUDIBmRbH4+EECOduXqSm3hqJ2mgNRWlx3uG9zbwIYeC5EDlPE10/MTuH0YbztDCME6XVWCURgMqUpPgsgv8kMIco0eXCGIkfjAEI9OOMBj5+c0NKEZ8dptYYntGb4zwTUqLI/7+SfYKEbMplUTAtjvMwsm1k4SsLwzCLc7QwhpQWJhd4Opy53x/BBy63LXVZ8P79Q76gSqtXaTTrpkYpCCllZ05uHTaGczfJZb0qGaeFYRBRtKpKYT3mifniRGRb3MwwykWpLgv6oRfA6nPUv2mI7nl9mOUw0g9UVclmu8lux4mHJxG4+mlBJzHdt03NNM0YWxBNIi2JYVzyNBRZ1KdFLhPBAYrZBw7Hg4h7fqatRZCaxomisJlXBd47vPdst9vMvUkM0yDlGzmyK1FvxTJPFIVEd7WWyvoXYL0S4dPYQhiGWqIiIQnv6mp9RUqRSKCyInoVxqBJYDVNW4sLxS/5EKZ/rtj9TMBL/46gpyOgc+VLgtO08PW7H2lMATmSdrHO5UNKokhEz9XFOjceG2a3sGkbInD/dIdWmrKyzM7xdOjls6k1TVlwuW6xVmf3XBKIrRVkgY9JWs2T4BbcNIPWLPMi7YTzjEJE6G4cudqs0NpQViW20BAR6LxSOBewRuOC7A1lKZ/FxYfcyiXRpGEeccsM2nD3uONhd2Txjk3b8ObmFd4n+nnm9OMHnA/UVUlVFGzaRiDHIYKyHM89LkZp+ixkz2qbimme2R9PXG2F4fHu+1sWH1i1NVppun7AR1mbq9VK3hct+6mxlt3uwLy4l+bQpq7x3ov4611+3hM+eKpyhVs8d3d3+JABzZWsN2Vdi2CRhBdz7s6gJArdtA1XV5ccDyfquqKwhu58wvmFcRzwy0L0gRg9zimWecnie3qJObt5YZomiTdqzTzNEt3RShhu+VlXSlNXFdoYyrKUlnOdHWOIszpGzeX1W9w0cP/wgcuLLTqKW/n2+9/LcKzd8qd/8c84Pb7j6vothZWDoIuGysD+6QeuX73h04+/xBQldXvJh8dHTodHfv3rv+W/+q/+G2pbPz8VL3HCZ1HvuexLa4le6Iy/UErjfOT72w/c3T1RWMOqlX+PVtLIXVtpGgwpfxaDcHlVPmc4J62r0Vjun/bMPpGip6lK2XtmR/COq+0GlGaas+i9SDGSLUpS8FLglIuWTGa5duPE1apFGblsXa0avF9YtdJcbY0hxOyAIVEm4cNopbAaSisXDUVmD9mCeZlRPjJPjvPS0/cjwzTxeP9E3YgwHLyjNIa3n73JpRyRzcWGD/eP+Nz4rLLz8XA4SQPzsuB8ZByHl8+DViqvsYamqjh0J07nM21T8erqiqIsOBwP7HY7fri9RaHYrldsVq3sQyHxtDsIpy1EjlkoX7etJA2Q4dduv+d4OFAVBXNem+tasCYg4qm1huQNp9MJkvBBQx42Pxd5WYSniNGAPAvL4ihrzfbyDfO0oIsG5w1E+SyFxXOY7lCnI4f9kzxXmdfaNC1Gl/iw0NYbvHOEMGC0pi4bSMJiJT23N7bEqJnnmbqsCN5T2ooYhH9MVPh54ftvfsv/9f/8f+C/+1//72jbC9CKh92O/e33qBjpjg+cziecd+SGC/ZPt7x9dcHD0yP7h/d8+eWfcPfwwC//7C/55O1HWG1eXHvPIvmzW/xFgHh2hedM/PO+f/+44/37O64uL9isVjJsVoJbuLracrVdMQyTnFuTlbbyY5eHLhVD37NdtYQUeDp13O2PqBjZbjfEeaKuKqSwzlKVBf0wirM/RlYZ1/Ic/XuOyj88PmGMYbO+pi1LaWI+nWnalZwH54W2bXj/4y1tjsv77PasG+FVFnm4bJSSYjHnuHl1zTfvbtnvTzw+PnLqOg6HAz54xr5HpcQyTxijaZuKzarN3+OA9479/kkKA5o2c7o99WrFarWibhqqquLy8pLtxQW73Z6YZDjZti3GGFIMjOPI6XRmGAeKsmC72Qj/FBmcJh8IYcYvM2W+FxitSCmwbq5pmxW2qjju79i0W5wr8P6eDx++Em5roSQyGSwqWYKDskzUTUG7rjFBhIRxkAKnqtB5/xeEjEqKshLhyoVAiqCVlcSKj1ilwQhXkrRQ6OdSJmlnV0oK+0TkE1yM1rIXKS2lUj4F1qs1/Tg+fywhBC5uXvHwIELR0I94PzCMMxdXX2CLMrsbJ077B1IKmKKgLFvm+cRw3rMMR5xPNG3LUveU7Q3b61cs00SMHpLj/PRAbxTRj/ip45tf/xUuLHzxJ/8T/uyf/M/YbFratuH19Q3ktcXYgnl2HJcOvywcTyfOXcef/+mfcX19+eKQlecrMYwz4zjxq1//Az++v6U7DzR1TV0Jn3wcJ15tLykKy493D2ijubrccu4GrJX02bquaKqS/enMuR/EjGAarDHCR82ID+9DPg+Jq857z7kfQGmaqhSEU77HLYt/wbAUVosjXiv6QVAzlVEU65rVquXu/klcWSnQVg0+t77bwlJUNYXReXBfUNUVu90+o7Eq2rbGhcS3331Hd+7k/RiOL/vmenMFS82xH6lLESCromGzWaPoMUaxvVhzOhwJCeZ+pi7MS4x9iojhQStUCPioctoKEpqIYlw8hVZMXtisVgurUJKNnjkkVAzUpcEog1IuDw0Nxsrd1CdNVUqZXHCziNXBo4I4dpcQcUkcdY9PtzS+49gfOY4Ba0vunx5Zby4FkzQ5xslR6ZKyqJmck0FxQgZISRBHUcGqrairmsV5irLBZ00GNNEnKQ1TmqoqscUKTaSsKmyU4cY8O7QRjuA4jtgiMg9HYpOwdUEKltJUeCK2alimCaUtZanRyglPtm2ZxlGwMFXBZnuZ3fEDwzhkI5HkXuZlplmvqOsV6GejxMx2e0nXa4a+xwVHHHqGYeDV61ekpOnOZ8q6olrWpOAkmZIUddVgy4plGAjk9GlZ4uYJkwJpGfnhm6+JztGs1jTrDeeuZ1oWyrJivdpQWM3T+1t+/S//Je+++0aMFkmEcbcsHHY7irJiY6VM0vnAer1lc7Elhihce6XYrNfCnlcy4PzHfv2jBb6QXRwRiJnp0tQVZYy4EAV2axXnYZapb4BumnhzsXlpkBoXz7g4tm2Dd16syEq9CHBRRZkMxIiPEb9IBNdH4YpoxE20zDOUJQYFGkKQQ8Wmrbk/9RxPZ94XBX/y2WvZHFKiaSXCWJQVAN9/2POv/v4PLPPCuilps0jy8HTCRYnyFdZiTb7sRxEKhW8H21UtDLIkZSFNUWJKw7kfuNisOHc9PohISHaDhBiZZk9hc9lDYRgWiXIpJVD8y82aH27vsZn7Mo6zuDdiZJxmUlI0dYF/CuwOR642a3ZFxzS77P3RjJOjriwmJImTxcjp3IkgFAJLSLm4wDBOnmkaGIaesR8I3uGW55IHueDFJG0vz66MmJuM7HPDkhJo6TwvKCMCJcDlxZa+l2lo2dQ0VUWKIZdlKLYXG/p+oN5usqMr0rQt24sLxr7HOcfpdGRZZinMADmsno7EGFimiRQCKsn0VunndlH90hZaFpYQYbVaMc4CKNdaCefFSQtnUAkfoK6K7DSQdsK2KaXxKMHxPMgfw8CqXnF/OLKESGk0TVm9RCeDd8JJQdwcIUibsTWWcZYClqKwxDQzzg6DONjW/UBdFDl2LmBXHwKXVy274wltLTwLG4VYfq0xlKVCRxHb+nFmdI7aSOS5LhWHriMkzbu7Jx73J1SIfPx6y7Zt2J9Hvv32B3yM1IXExeuypNKKurQczx0BRV2VhCzaKaVZgqNpKqZ5oZ/ESRqnGZcLGE7dKOJgcHzy9hXzNHM89TR1La7OlGjqIrcvF3jnmKaJkJmFhTVcXWxyDNXwuDsxTC7Hr2Qzr0rhECW0tHMFzzQHmrISB0tdkkjs9ifGybF498LD2u2OPDw+EIOTGGlmS8YYc0NxeHFJxhRlEp0Fae8XuVjxk2u36zra1UrYI85R1w3ry4uXS/Sr168pypIPHz6IsOc9RSUX9816Q4zCYjBZCE4pZp6pwJLHcUBFaS4fxlFKO3LroHzl02x69kj/8ZeOijlGHvdHDseOpmxk0jXOtG2FRrOuWyY3sSwzq7KgrAoOfsAFz7qs0UgpRUSa1eYl8Hg8MyyOyhas2pKrTUupsiNTS5RWK8Ep+JCYlzGzEmVNCikx9EPmNln5b3hHQvGwP3PZNlxfbel+uJW41zzl1mNx2qT8M9uyYphmVk1NoTRRRabF0Q8j0+I4nHoenqRQqK1Lri+3pBA5nAe6fqIqC663ayqjqOqaaZoEczDN2Yktz1NVyDocU2KYFrQWB8umbfjo9Y1EOac5Rxyhzyw6azV1Wb1w8Apb0A8DDw9PnPs+D10cz1zYaZow1sh0bxrzvlNxdy/srGVZqKuSzWot4oxSrFYt+90eazcsTjhjWmuur674+OOPOR1PlKUVxmSO0h6PexlaeY+OYrGfphHiT4KYiNwhO3QSRAQfEeWyG0kvLbkkqOsKYywhypCq68RB89webaymrhX3H3acjjJ19T7g546HH3/L1PWsr19RWcv+8Q43nQSkPVzg+h2ffvYlx+NAs/kIpRoe7x8o2w1/9uk/5RcXb2lXF/zT/+g/xhgpQ0rPEcL8vLy49vRzo3NmWirBcO+OPd98+z1LEJHWkKgqae+zZcH+fEaPIuTIUCsxLzNVYbBW3JmRgDWWx8NZXPo59uqTNLIarVmvV2xWDfO04IFTPzCMU2bjeeGDmRqfxTmXkQgxRXFiFJZj13O5amnrStxyzhNSop9mlkVcUdKQqFBGUdcVdV2KG9eovCbC7tDz8CRC3Zhbn6dlFiZNLiTabFZ8+fnnLNMozCVrub19YJgnwUZYm7EogNZMs6PvJzCgjWbbthhrc7e8XP6UIqcLLKumxbmF4/lE3/css1wIrjYbtIKyMFAUOOc5nc8vZ4qk4O7unnB9zTzJWerpIDzVuiox1lCWFUZLQZSUYgXcIoJ19BKZlrNMRCtDiZLBZAgikuTPu5TEyB7vAxz2T8xzXt+jJoUFrSXaO0wRIrRVS9sq9odHYvKoMFJoR1MV+OVMQsTGi8s3VGXLbvcDtihQ0UGSttAQwws3M9JSlGuadsPj3Vdo48HPhDBRxp4ff/iO61efcj73XLUtZ+Xpz0euLtZcbdacDneoL/6SZRr48P4bNpsNq/U1n3/xC8Zh5OOPf4m2LU/7Ix+9/QySsF2TIg/V+GMWxLPPKAmaY3888/7uUZ75dsWqbfHOsfjENMuA4GazptEKb5XA6q3msOtwMdDU4q7sx5Hj6UxZVWgUdVGwWTW44GUPer50h8z7ys3p4yApnjIXqYmzQnGxXuN85NB33N4/8snrG6qylLPWsmROkuB1qqrCKs3h3BER5uLi5P1ISfYeoxVlqSnqlvP5zLsfbtnvjkzTwDTLGq0BrSSKXedivqIoaJuG0+nIOEsJYFM3ghBxjna14uq6znzBkvV6TZH5vcfjka47i/iRB4VucTgvnNXnAcbl5SWvrq84HY+cTmdSIefcvptesDGPDx+IcaRpW4qqYJzOpPnAZrPmaX+iP52JSlPVpTSoOyPs1UlaOFNlMCaBdmgc2iaibVgXNd1jT0xaIu5JBp6FNcwhUCRB0BT5jBuWJadX5LM0jCNVVcmeg7A8lTJoXRJ9kMZJRR4OCzKIpAgpEJNjjcIoQ4iGwlYsvuf+wzdEPKf9QEwBpQ1te81qtSWmAls0HE8HQoxcXNywLKPw0fMwVWNRScwJMQSiG+mefmAcetLiOE8n3DSy2VzS7R9QybO//5bN5ZbT/j0ffvyG+eY1yhQUZUXK60vX9Xi3AFLuUBSCvnh8emK1XjE7z7LMbDYbzqeOv/27X3M8HtnvDlmoXrHebPAxEBK0TUNCc3v3QAyRtq7z6xNocjw0xcT+paiipq0rnFtQqiB6R11XtFXFue8prEQpJTruxJmf5DmTNFwS9FVKNEUtDaspkIIXk4aCcz8yn0ZS9NnZZ9B1lYVZ9RJLXq1WnE+d8BAXR9d1XF1dUX30Woqlxgk3O7797lv2+z3EyDRM9H2PVgWL93zz3VcYUwjbF5uNSArnF5rWsG5KTl3ParUWZqoBYxRFVVPlmHxIieAi27bKz3rCGEthE3hFaQthC5Y1yzJL/LW2aFugzwFmT1UXWIvsUVXJ1fUbqqKi7x5ZX7zmqmg4PL3Hh5mqXZFS5PqTX/B0/z1+GfEo6vWrbNY5MwxnOY85cG5C6RKWWQqegiWlgkIrVPKoEGg31yzugegnKewJgaYohJWtEkvWUbQKGFNSa0SMRQwcRmn2jx8E65VkGEjyrFcXUqo29RS6JKXIMByxi6dZbairhrIUNqI1ljAtYpYhvTCyvQebmXomD/eXRc4Y0XtsdoQSF+ZlkvfHCvLIFvL567sOEF65d57gJCGlFWwuLimbRs7QRS0caCW6hS0rxsVRlQ1lYUgJ3nz0CXc/vmPoTvR9hylKPvyouHz9ln6YUKbg8uqa16/ecOrO/PDDd3z/u99x2j1JmlUpyrpkmWZxc6eAfnxiu9mw2WxpV2vh0SdpX168YJzm54GoEjH9H/v1jxb4QODNpjCMo7C7hjFBU1IoxaEbuN6umZ2X6eH+xMWqgRhxUWzkh2ESTlwuqiCLAMZIUxMqYQr54Ehzn7ScKSVcLek7UNR1w9PxxKapUEFjtcFYQ4ywqhtOXcdjN3LTj1zUJVErLIq2qXE+8Id3H/ib336L1YptU1EVhkMvTDJSoK0r1rXUvccgzA2QpjzvZDLvY2KeXbaSG5QRsHZhDV03MLmQeTYC4Z/dQlGIYy0piTyXRj7MfvZ4H9ishIWVsjupsJpxdi9tdwkYp1naODdr7vcntuu1NM/10rDmVaIwVZ7YKBYXGGf30gT2c06S8M0WqZ/OqnoMPkf7JC7qg4BAQS4JWmkWN4uD03th8tUlKclhPYaYp9LhhYdV11X+e5lgaisx32mcKMuSzWYj7/c08fFHH1MWJce9NPr4JcM6rWGaR/y8sLjlRcZ4Zu7JJTXzohLYQpo526ZinObMuZMYoIoRj6b3gThOXK4rvAKSwiixgfvMggw+ch4Xbg+dMPBUyf3hRD/ONEUBRuIDq7LCZjZlCJFApFDC/3u5AMuVk2EYsdrgQqRfHEVRc+wmNh+tWTU1w7iwxEhblnTDyDgvrLRBl4rgAsHLZ7GwMgUyxlAqhV8C524gtTUYzf3TkW9vH9ifOlRKfPrmmrowdMPMH777kb4fUUrRVgWFsVRFgY+eoA2TC6CFp+LztMoYceFUVUE/TiwuoE1uzfLupaHWKs3iPWVpiT5yOJ1p6hK3TLkVVtwoKcpn89lt17bSmlRYI4UVEfbHI4dz/9JqKgKzy7xNSMFTVYW00IZIP04SJ0rC+zydOpRSzGMvjc4xMs0jYZ6xJEKOIqQYxMXhFnwGBNscUfXBo1HSjhkDi5OLZFHKBVIpOfi7zHtbr1fUdU3TthyPR87dGec8zjumaSRFabnbXK+5uLzk/vY9Yy6NAXH0Op8t6zlCl2Kkqkp8kNiyj7Db7bi5upCpJ/BzcU/n58ArOPYDD7sDlVJsK4njn2PkYrtCIQ1123Uj8TkgkPCjHNyk5AVcSjwej9II6hYejx3T4iitZds2bKrypUXU+YjL7cMhiON3nBdSiFxcrIk+EpQ0jG7WK7zztI1c7Lpp4v3DE8EHptfXlIVcimRjNPT9KIMCbfIh1KKS4mK9oakKTuczx37k0A0cDmfOwyRN04Xh9dUFAKd+ZJxnmrLIz4RwLbtuYN8fJE5txMm5biq2q0bE7iCDDFlzFJu25GK9YrVqeNodeH/3KLH1LBY8N9VqlYSzNI5ySY+R0/Es7Y3GMI4Cn1+vVgyDcMcslnmaZcASIrfv3wts30v8aLVaUZRWxKTCMg49ZSkFWEYbtFG8evWK4JwchseBFDz9ODBPEq0UpIQwVRIQfMDHIBN4eOGAhhBAy9+HzLGUFl0DSsDOKCVNdEWFApyXMh1tFAWW6EX8L4qKZRpYJnETvn31mnEYmOeRhw/fUdVrNpXl+PA989gxnfd8/9Wv+PHbv2M4vefp7lvq9hX/5D/5L+Vitrvn8fGdiDA+sr3aZjceYmjV2T37HCtU6idhTz1HCxXdsPDd+zt+vL2lrhuMMXT9yMevb+Q1tga3eEjiAE5WyfoTZdBZ2Dycyf/dh/2ZQzfIIS4mCiuQ7qqwrNqGddvIHpyLBcZ5piwKmqaCJK3uKQUS0pjqY8RnTuyUEtvCEGJicp7r7Yr9uUcrzTjMLJl5mVQiRBmYNGVBWRYSEVQaH+Bpd+b+8Yl+6IUVGyPjuORirhFlNFolPv7oNW/fvGacJm7v77FFKazeJOeCmOHp2mjatqEoSwY9ovN5QWLJJY9POyIwZyen956by0uGoWeaJvphoOt7QnBcX17mCFcGn8dEUolz1wm/MwIhtxdr4VZ1fceYB8y2KDBGWGk+SgNp3/cyuHEi6s3zlDlBKbdL5zIwIm6ZhYPnPdM05uGOnGnKosAYGQY1NRz29yRlWa9a+jGwKS/59Befsrv/gRTOnM57kvIQFcM4UFdW3qMYBQ1ijKQT3EJhFdPkuLzc4txIDItgG7Rc7mSQGOjOe1QW5KX4JfDDDz9g17+mLGqenu75V//i/8ZwvMcaS1WucWHm408/4+LmM/a7W8qypKpW3Hz0JwyjY1kib1Yt8zSQQmB3OGBswXa7Ebbaz2O4SkS/U3dmdhGV4O7+HudkSH99dSmDe+eYZymFmRbHuq1FLIua0lqaSsD5o3PYnFA4jwMpRrablnGYMRou1g3zJANMtBTPFErjiTwdTnifaGtxY3m3UFpDWdjs3pem9FdXa4pS87A7cDj3XG/XvL685ul4ICGpjo9ev+LY9ZJw0QoVVOYDGpxfWK3aF1awUoqH05m/+4ffcnv/gFtm/CIDQJXAlnL+K2ppQa6qis1mzTAOxJTETTPL81aWJev1iqvLS7koBhn0DX2fW8+l7Gaz2uR2VIWPnq4/y1A+BNrVitVqzc3llRQ2DYOUtCwLfvG4RT5jpMgyDyjl8UtkpCOkiZAUMSpWjcXFhaa9AmQNraoSnZ1y1epKnnkFcRmZ44KzCetGTJhQmWNt83lGMDXCV1SFFudSfC55i6QsxMbsLnxem9GynmlbYrRhCVI0RpKkjc/cNu88dduCKjBaHMlFtWa1WnM89qQ4obS0cpIKTHHB1fUnnPsz4zQSg5PW37phHCemcUdSER+gqjxNc8Pl5hVt0+L8JAUHYaYsV7K+uJFpPGOVFFXJeR+644EY3tG2F2y3K+ZOEY1ldhJBjUm49oW1PDfori8uaduVnA+cY7fbc3k58au/+RWP93fM04wtK2ldt4bgF5pmhU7itDt1UgRU5lKvrhf33qoSYfH+SRpWLzdSojJnhAM5Ym6t3MOrwmLKgqZtOXcDzmW8QWGZnBNByJYi7tUlViNuqUXKb47H08+QXnJenl1gGScut1vKyuDcTAgeY2tUTFLckDTbiwt0ZrSnaGjrhqGb+O3vv+Jp90RVFkzLzDwNed9SckdNhqgE3RNDYnO5YZkDm8stx4c9p7CgdUmz2vJnf/FnnE9P9KcdxibQikaLG9a7majElWetYZ2HFMo4aWOmpmlqlslhdIkpCtbbG+LrIAJWZZj6M9qY7Igz1Kst8cPIONxzcDkZVpSSGHMnjofvMIXH1hUqKZqmph9GqqJlXDxN3UgLdVIUVYlfJnQMXFxesF0SbhkxBgrlCcuedRnogwwXiqKgLiwpOIYQ0LrGZk69MkYMAzpRFQUpKcK80GzXaCVD+PXmNeNwZBqOjMtEUWhKbVhCYrVa06yu5DOEZ5o6XEoko5mGAzEttM2aZCzWlpS2yqWFWgTk5IXDrEEZOetXVUthK6IfcUsuNnQT8zRSFiXOQ922pEXWg6qumeaJEBzr7SXHpz1NXaGMouuOjP2ZEBMXVzeU7Zplmnh8uEUbzR/+4W9wy4jWhtXFBW8++pzT+cj11RXXbz5BGYsLnm++/orD4wPfffMHwiJ7ksXg8vAtpSQu1LIg+pl57Hn16oZCKzE6DSMuxJcBrjBWvWgZ6d+2ZPz7f/2jBb55cbRowpJYgqcfZgqr8bGlttLE12a23f2+I4bIuipkMbaW8+g4dgNvLjec+vElrriAWDi1QC29lwuEwDeLF+hstGJRFt6Hoq4qdqeeTduiLKA1PkWCd4Sk6fuR26cT7SevsDmy1g0zf/Pbr/nu/SOV1WyaEucT908notJYrWjq6kV8WcJC9I4mIZwKpVitauZl4Yf7wwuYUoI3hhAFGjo6j3MBXYDzCpDGoNpY6kp4C6N3GAVtVXI+TwQfpBWxnyit8ACGxRGBh8czN5fNC7x7WjyrVU1Mkf2pFzbY8xttJTrHkFBNRVg8x/OAtZqykNjf4Gacm9EJ+t1JBI6QJ8WZi7hMUy6ekJhDWUiTY/Duxf3gg7S3jsOYnRxyUBlGcXCZSaONeWEskuMdIhI6ykoiJ5rEqq6pyuIFUFvmzWfuO6JfpCl5nvJUWwo2xCwgccXgHEk/N7rp3PIrjplpGKVlVmuJdmO4/XFPNy00haUuDZUVhmRblJAW5uwmm0Lk9vHAME7MPnEee4nSlfI6W6szb1Ks6cO04KLUrockDk4B2spiKe2v0n6lk2KYZ4ySsg7nPG+uL3h/f+CwP3L9Zs2Hpx1FhuLm+3aO5kZKJdbexXm0grouGRbPtx/2PO5PHPsRYqAuLV++vca5wNff3zGOC8+cwKossFoOX4uXf//sAiiZ0OnsoNVa45y0u/kgJSMhRgolbIwEPD6dhCllNfhIW694eNqJo8fLou5cxHsRiAsrLXhlWUhRQEpy4A0GpQqe9kf6eWHKRR3iyDQQg7g6yhJrDPO0gFbZLSlN1t4FlmXGLQ5SdqaMUz5siDMVFSEm/IsYk3K8DiD9URznpyZsOVwbK1BkEE5oiAFblJRlRdu2ImQaS9/31HUtDdmF5ebmFfM0cXFxwTgN3H/4wDD0ZGuUTIm9x/sFt8ziACblZ0ixzDPjLO/N3/z6N/zz//Q/5tXFOruhycMBxTjNYDSHbqI/T7SFgeDRiKBzsV5hDbJOGXG3zPPM4j0uHzaNFfC7QtGNM/3s6IaJXTdJW67RbOqSupBDTGHl8DdMC4UV7mdKiek5emg1wUfhxRkja0bmm6UYmcdJBMPVhv3pyGkYeHtzKZEJJY2v682aYZg4jx0aeHV9SV2WqBR52B25fdhx/3RgyrERlMIozbppGJeZ0QkW4vXVBVebFUM/sjtOTIsApl2SwUtbVYQUqPPr9uyOKAsBgisUhTGsV3KoftqfGWfZu8qyYJpniWynxPX1lWADYqLvBx6fdkzP8eRlwTuHtZbj8YgPMjQxWl6/cRw5d524OJWsUSoLv8s8yQAmRZqmQRsR466uL5kX4Ur6eeFpesC5mf7cMc8TMV9AYsjtuPG5Jc8SJydNs0rhvBNuqBLnWHwWvb0U35jC5lS4oigLcfT5KMJMSrh5JgThYlVV9RJ9DCEwjj2FbWnaS/puZJkWLi8vSMAP777j6uZz1k1NWRa8/eQzlmlgd/tbmmYFvue3f/s/kJQRx0Fdcnp4jy4sj+8VbaE49yMff/IFZbOSJrXPPqEqZG94ZhvNPuJT4v7hka++eYd34iAqtDC21m1NYTXaFnx43EuTnDaEhDz7+XJTFJbFL6QQSEbzeOg5dENuZZ3ZrltIkdUqNzNXsrZJ4Unk3A8U1ojjIorLvCoLYZc6zzTJJD4oEfy0NrmNV3Poe7armnGaMaagG2fGaWLbNlRG5+iQztzQGaMt527gfndkn/lg3i3iVFMicidZjVjXFV98+hGvrq543O+5f3gUl7YLpBQon52NxrDdbFi3Kylf8Y6qLF/KAdwibYjyGRCRuCwKiYV1HeM8cj4L6DuGQFvXtHXNMI4MQ8/VxSXTNDMuchh+TjScT+Lke/PmNV3X0/U91hT4xbPZyODzOUrplkUA3lmwKwspSQiQf3Yp5RLxPr40swYfcvRcUeRiB60VKEfZbGmqinke8CEwj9J4PhxGhsO3tE2N0SM+LrgAJINWHh8NhS6omhYf5HNRVQ3nc8+qWVEUgb4/o7RFI02UbnHE6KiamkQBKjAP4vpO+eJw9eoTcb/1AwnLn/+zf85Xv/oryqrg8vojdt/+nrateHj/e4Zux6qp0UT64xPGGrrdPR9Sx+zheHjk/mnHp59+zuXFBaCYo2AsZD+bOR8O/MNvf41fHLuHD7x5+xlf/vIvhAFVyHs/B3EXDZMwV6tCCrXOk2Pd1DRtxXkSV6s1lmEcaetaBilOnNghnzNjEuFiXhZMYSitJGCmSThW52HEGsOryzWLk/uGMYZlcUCiKUuasmTV1LgQGBfHxcpyfbmRso6qpGkqcewnGWj4EASUn8Q15uYZjKGfHV/9+nfc3T+IU3waMVqx3W4oM1bmmUetUCx5CNj3HdMkJVGC1pHyntWqZbvdils8F6fJvWuWwqPS5/K5kvVmwzROPH545P3tez779FO22y1ukbP00/09+/OREDz+mfM9T2gtn/W6acXhYvL5zkfapmFewCrL8XBG24JpmtEYvEvMesJqyzSLiNHUlmFcuLms6UYRI6NP1LaUy3pEimWCJKxCFFOIDIqBGKnLAlL8KcFUaLSyLMsCSqOVAS0iSQpQVTVWO3kdChkoaq1JuUTx8vqakGQv0krRdadsErGURUldt0xTD3Hm6fE7+dmXIFFhrSAtMuglMc0+DzAST7s72nbA+4t85zGs1x+z2Vyw292xvfqMaZxZhrPcgaqaojC4aWa/3BEoMOUKW7S0F9dst1fExbNeN1hTcDocsUazvb7m+tUrUoRTN/C4P3J/d8fvfvt7dk+PWCVMXVMUBBc5Lz1GhSymG4Zh4JjTPutVK059EtvtmpQSd/cPOO9Zr1rqyjJOIyhDu5L9aXHiti+M4frmihDhfO5J+TxZWEsIC+e+z7FTGSkbI+k0q+VsPDsZ7j1jpwBWbU3oes7LxDSXrNey1/eDlM0UheLq4hJbCKv46uKCojAkSu7vH/nNb3/D6Xxi1dScjwdWmzXT2FPXFU2rWEYLSnP9eoubB6o8APN4jucTxapEp0gkMUwHfvvVv0Arw7LMlHJdoSpFYCQ4pkViom5eUGlCKUvE0fUjpmggjcQIs48EEsPwkH+PomkKFi/Yje3KctovpFRTFJpx6uQzC5RW5fLSgbLReCx4wzAe8WlhWRxv3n5K3dzQne6omsDu2OF7abmvtMadA2+2r3joHumnkaqUiHPdGApbEmZpkzUpUhUV5Gg7ShJiZVliEwxR1tmqatDGghaGZtMI23Dq9kQ/01SltNomT6UVOsHYHzFFjSoruuEkLHpbUNQl8xzQppBGbB3pz3uUMgQsRWGkDX4cIWNc2rqlLMSd3LYN47yIE/R4IPiILyKmkLPmPIibfhoTVSXGMGKgPx9ZpjOLl3tH07b0XcfYn/E+Mg4di5tYFWvKuuXy6prz+Yw2Ncu48OGHb3jz+jWmWrGkyHg8snu4Z/94T5xHbC4DEhekIBW00RBUPt96TqcTr+eFTz/9jK4f6EdxSyfvaWopnSsLeQ1MbP6x8tx/CAdfgijRNYnilJz6kdO05+3FlqQERD+4wGmceXOxoR/lotdPjvtDzxdvr+RygGJVSd27tSZPAoJcAnMcIAYPSkCFIQjDTpFybCRircbagtMowMdtU3OepEUqJpjmwDDPLD6BhXfv7/nVP3zNsRtZtTXbdcXpPEssRilqI806RaGZl4ApLKu2IgWJaQbvsZXl6TQwTwtLhLqQmG3bVvTDhI8RNztISS6C2c0hrYMj0+y4vLggOWmBXRafF0qx0brFo/LBIgDjskAC3eR2VR9yRNNyPA80VcW4LNRVKzXzTsQ5kChaWRY87U8SFzAlIWaw5NATo2eZJ6ZhwFg5AHsf5AITfOYGKqQEIUl9dOaZGFRW4VWG4ypSdnbEEF5g40VhsxNG2F7WSvuduCFLmRYlcQpuNxtikgl9CIE5X2C784llnvFeoMM2N5t670hRxBUXAilfYnRhhLWj5Xt1bsngc5ebLxE+GAprxIJ+nhbqwlKHQL0SlpXvBwpruT927PuJvhcIurUWfGDJ4myhNaWR5k3vxCVpjXlpkHTLgq5EFJOpa0QlxexFeF23DbNLdNPMMC6sV+Laa6pKXHKLY7Oq83uRMpDWS+wqC6UhBvrJ88PDgduHvViLSayqgu12hdGadx92nM89WiuskmbewurMlZK68piEoWmfY20ajJK2bO+8bNZKScFBinkCI4wy7wKLGwH53JRFxdNuhy0Kxi5PoaPwNoyRMob1ei0Q9GXGOyiLAhfk9dkfHkS4NJb1qskFGHLAbhuBX6cowte0CBMyySBOnoAQ6PuOcRS475y5LME7+bm0ZskiVUIOTi6XbJRldqTmSM2SG7hV0lRlTV1XudQliciBVLm3bcPFxQVKCXcmhMh2uxWRa5Z4l7WWRSkOh4PAjJeJGGWd6IdOBPWY0EkElnYtFv7FyfrYn4787d/8DYdzz3macVF4NklLjMKYirvb7/lw+45pdnz22Z/R1mtinGjrKsOKxXHxDGWWEoSFtmqYfSfsxxjYrleUWjGHwOPhxNPhhAuIgylF2rKirqRtHOA8DDgvHLkYo8SmgvDljDECBc8irM9iyDAtwl+dsmsBBVETo+H2fs/lqpWBTiG/99QP9ONMDIlffvEJdalxIXA6j/zmq+/ZnweZvGbxValE07QsXrh3F+uGq7VEWx+epD06RMWyZOYogVXTcr1uOHR9hjMXuT1WY1SGFmtNXRZ0/cCHx520PCey61NYssu8UFWVuPK8Z5ndSxOjNCQGcROBiN6IC9pkp8RudxIuiZaBlzGapqpzE7tEZspSGp0VisUteBfYbrYEtbDbPVGaknmZMoRdim2MFke6MhLVeHYYPz9Dz07QoigIXiaUppD3LybQhaas5PuMIWByA+A0z7hZSml8kCKuL774kpQSfWYCDucTZakztsJx9+Fr1qsNZdkyDD1Ns6KpLmmbC7777nfM3rFZX7JbRtlHveKLX/wldbXlw93XFDYx9gMx/sC8DKweN3z9q/8Xqrrkv/nv/jekbuar796zXl9QWLl0d2PAKM9f/8v/D28++pTgEj4Ka9OagkJpYWR5xxwCV82Ksqrph5lEpC4KEeNTJAZF3Tac+5FE5DjMnAZxRQhzS2JQwXsMYNAcTx1FUdGNs6A8vPAVl2Vms5amaKsF2aH+v8z9V7NlWXadCX5LbXHEFa5CZQKZABKCRWEki7QyK+tqa6NZP3T/4H6sMrKbCgVCEEgVkSHdw92vOvecs+WS/TDXvajnznpofwEsMsL9+hF7zTXmGN+wFh+knCMrxTBOaBS+SHnR6TSSX72idY7DaWCs0dTL3YZ5WSQWrZQsGDcd94eBDx9uGKaF0+lM01TuaWUHBi/i4nbT87M/+CkvX17xww9vub17qI18kBGX9a7vhWHlLBfbLVprlqCltTRJ7GRequusJgeury9ZF1/PZcs8j5zGsSI6Ehe7CxGw54WcM6/fvCGFyDRN1b0tl5sUI4fDQZzcShZewnMSV3AKge5iR/AeP0+EIIuTJ1ZkDL46GZ+a7eVz7teVpm0IMdLYRpZQ1tR4fSCGQEyZrpdzNEaRQ6fhkX1vySVCFmfhpt0KzzkYfIoYldhtL9HKcbHb4f2MtQ3GXTDNK12/FeE+rli74er6NfM80riGczqJ0LNGZj+CVnSblvG8YDQYA/cfviPmSHd5xR/98b/m3bsf+Ir/zPB4z3fzAnnheHjg9efX7LgSoH5IPNx8R9N04tg2LS9evKTdXvFP/8k/59Wb12gj5/4wzdzc3bLfXXD74QO//e9/xbdf/xKVkgiCn/yUVy9ecv3yFUpJdHacVh5OI8paTMoSnc/gl5VZwX63FZdR03AeBl5eXZJDZPGBeZEEyXa3JQXh0ra1aEwhhV/DNBOzfK8aI6JijJF1DRhjsFqxvbhgWQTX0DSOV9fXHE4Dwzhzsevr5zrIErbOvhR53g2TLJVt/b2MVpynhb/7+19yfziQoiwb28by+SdvuNjvCX7lfDqRQmaaJ/q+F6xHKRJ5z4mctbApteZqd8mLFy9o207uBEaW1pvNRs5Oa7m43DOvMyknTqcj4zBK07pztF3HfnfBPE0s9ftUniJvVrA1Yc0s8/IcadVaOHz/8l/83/jmd79GMdH3lnke6tIGnJP53zhHqiwvVCLlhRiFxVViwiDFVy+uLzkeTvgQ2dgGZwVhFFOi60V086u4haxWeD9jdPfsYPHB0zr1zNpLqWCsEwyH0cR1RSM4Be895ECIsnzabzbyv1tQyhJ8pGkaGiv2i5QUGQOqIWUp11OqYbN9jXE908evKCkSC7SbDW2XmaZV2O45ME9nQghcXOwgZ86nHxmO7zGupWneoHVP7luG8YYQoggK68xme8HV5UviGnAuYTQ0BrLTjKeBohWusbx68ZK+77m5vcVpy7pG3n14zzicmc4nGU20pNByEiHDr2du55FPPvsJu/2Wm1tx53VOYqrL4tn0HTEl7h8OLN6z7Toudz1GyQI7xCSO5+qSdlbz4uUrhnFgmASnIzF3MVGIGKtraV+qrjtJhFE00QeKEsyIcDkLx9OZ4Xxis93x5s1rrNYMw4x2lsPhB2ETvryWuVoplHas9b9/PJ35u3/4JfcP9xjrCMGz+pXxoyRzovds960IQTow+7W6sz2xYm+cVmQ0RuXauq0paMIKm86hMQS/YHRBZUVJkc3mgugXmgauLo1gwrJh31zhU0DnhLKWJSQaVROJMYFRlFDfH58JRslSKx5ZgqapqSMfE9HDdnfJtu05jAdc3+Fag0uOsGaKKtzcfcDYA1p7DrOXFOEcuNjtcaqw+IHHx5VdqwiLIid5D1XJNCUTnULriMqKaQk0XSNXNq0oMWJURhlobIN2Pa7f0jgpq1rmAdsmJi1lJoUNfb9lGgdQmaZixNqmwdhW0k9hprGWuKxo51Aa5lUK4XKQ0L1Whm3XSIGhExZuBhrTst/thQGdA+vq6TZbChlSYL+/Eh0jJabhLEvIfiNFX40T/NL9HehC0zimcaDdbJmnM+s8MBpNn+Xsb5oO6zo2+z33t1Jc1zSWH9/+hvl4wzdf/oZ/85Ofs4wLh48fOD7cEpZZFhIolCps+17mFkTfaJylpMx+v6d1jseHBx4ur8BowaM4i9ts5HxJmU3f8vLFNfcf//+hRTcW1iBRAVUg+8Cmbbg7j3w8HNH6ioyShpO6XQt+xQfF7Wmgb6VhzZoGq54u4+KuUJXMknMhqUL2wvwxRi7ZPiY6p9ltN5zGCZS4xZ4gutMa6J0445a65TXaMA0LX7/7yA/v3nN/d6Qxhqtdw65vGObA+TxiG2mXbTtLVmJH7zfSJjYvHoOSoUQbHk4Lh9MkMHpj2bSON1cX3D0cAfkzh3Vmt+243PbcHE6kHLHKCui2wsophd2m424diOkfWzp3fU/XWHabjsfzQCmltg0HlmnmNM7PsahcxY11CaRNS2MNp3Ull8LGSTnJw/HMtMysi2zvpvPANI+s00jKEqeMMUgcsDqUlBJXTc4J2zaULM4+4FkIgbqJs1bss2SaCittmhZnNW/evGEcz7WiXloGoxdgcb/tcdpQlPC69hcXuMZxd3cnl0UKw/GRZZ7ESfgUk6xg9FIEoArVfaKF4+Os/Axt10rsrAhDo+0FXC8Do7ggOyeNuEVZJh85jgv7TYs1ilS0bLaXhe/fH3h3exD7MkCO2NbRGCMXMG3EseQMWsvP3jkp7cjpyXZenttopWFOWnObtuVhmGidQxlYU6BNlikEXl3sOU8Tu92GXSfcSKcNa4gStQ4ZYyOnyfP25oGv393K51Vr+tbitKZrHX4NHIdRxNuUcK1m03ZoLQNV0laAo94/A3aF7SdbkmWewQg3xYf43PBrreXqQhiKc2U+lZIoucG1DcMwYp3Fr6u4l2o8bdNLhOt8PteY/hO7MGGt5zxMxFqUopWgbR1FYoBVPH36vlhrGedJuHW1DCCWgmksy7JwOp+YxqEyPuVi1zZOxJUQZF61AnOd1xWh+lBFaU2ul75chLenNGy3wmhTSnN1dSUXxY2jdQ7XOPy61EiLcHW0VozDhDNGuBRVTAl+lUjpYaLbdLRtx8N6L1yqKrAapWldw/n0KKJ2CCzDiX/427/G9jt+9se/QBcJ0R5PR/7+l/+dv/jTf81/+g//ntP9d/jg2VhL85M/4eOP3/Lnv/hTGmNAGZYQK2fmqTxkZb/d8fLqktMwSmTFCqfihw83PBzPJBSHs8RJ933LJ5d7utbgqui7xkSjRVT3IQknSGUaZytnLjHPwtUIuRBjxmeJwDfGEEsiZmkQL2iWKK7FzgkD6f48ipgLvHp1jTGakgunYeF///uvWOvl3VReXNu6WlYigsTV5oK+dwzDyLh61lW4SrkUKJlCZr/d0LqG0zDIoolCqTF4gbo36Bq/CilyfDySi2xirYZN1z23zBsDzomLeJok9ns8i2M6eF8BzuoZd+CsZdt1zNNEWBbZRpDZbffM00TbOHYVWN+7hpgT/WbD4uYaH0rCR1OwzAtxDaxhku95Ss9/jqrOqlhFmKcLloh18po+8QCtkUsRRrHMs2yOW+Hs6bqwiDFWbp8wT43W6ABN27Hf7/jw4QPrIm6s4Bfh+mTk/9bFy1h/3pgim6KZ1zPj4SOdU/z2b/89SxgZhpHLS8vHmw988mmHMR2N08zTI22rmEfP/cf3TOMj22v4+rsbjtNCKvA3//039L1lnUdWXxjvv+XdD79mevgjvvijf4FWifH0wGeffsETE2mYF7ZdT86RTd/y/uFI2zl0TBhV6LqOxjWMs5fZZ40cTsNzyVjbOLoa83eNpe86hnEmJVjWkckLv1jg1w0piuth9VEckRp5bhvL4j0WTeMssQifKtQGzVgyn3/ymsfTgFKF/aYXh6gSp3jfirPy3dtbHk5npmnGe3kGrqsskZ64lm3XcLHf8vM/+AnrOvPD23c8ns44Zykxoup36eXlFa/fvOb9hw90u+3zkD4MI+vqnwuGQL5frdY02xaFYvUr0zSxes8wnIkpstv2wtjKmRCl1CAsAe89vnJpVY1wxui5v7+vzceGVAspusp20tWRLTH4UThNNSeo1D/G7J/i5jJfpLoI1XUhqWWhJWbUuvyRspTVe+FdpZXT4y1FiRNi21vGuYh9qRQODwdxvSiwNAQfUNnQbizjfJJnhuuIacWHIylrUmn5+c//JcM88HDzDZvOUvIW1zrCKuKTJTMvC7k2OIaUKGWlQ9HpyMfv/p60ZIpS5BDYbzZsdzvuHxZ+8ge/wHUXfP/xR4bzHdvNJV3Xse239PtrlgTWdfz8T/6M15+8ERd2ytKoXAo/vn2LVYb5+MCP3/6Kh4/f89lnn+FU4vHuHX/1X/8//Lv/+/+DGBwZOI+L8JeqW+NwHvji1TUvXzpiyLx7f0suhXmSZWdOmWFZCVEQMvuK+VmDZ9vv0UUc98fz+Px313UmaJxGaXEFaSvJAO+DROu1koK7+qzPOdHURvNxXsi5cDiceP3igsvLS7yPHB5Pz63YlIzVjnla+Ptf/4a7w0HOTpXZbbbstj2bTc/x8MA0TRJNXFdxOy6CYmg2DWlOdcECfb9ht92y3W3RStXLoiy4ttsd+4s91hhJCKTEdrsBwNeipxcvrtntd1IwNU+cT2fWVZyE4qaWAqrDw22dR6sYHiPKKNZ14bvvfsV5vEUrj3WOkiNGKXTWzOOKaWvZXCkoZ+jaluv9K3KZ6NsNL66vuX/8HeSFu8ePhNXgTFOjaxpnxHnpXKpuXyuLIUr9nhlCEZefnCng69ycspxzPgpH3RpF0YbWKpZ1kXLDXDC2o233zOOA6x0xGGxjcM2WptnjdGEOI8s64+cZTEPbbOXsChOl2Jr8sTTqH9MfViuyUmjT0roOZRtS1DS9I61SHLTZdJwePnJx+QnH8ci6zqzLiM8RYxzbrmc437P6mf60o20Md/NC120ZFw9GcXVxzeo9x2lgv78gFfjxwwfOj3IHIidp6s2FxjSCE5lOPD58oN/uyQXef7xlWhY653hxsUc3srzwIXL/+IGCuM0/ffMCVRLTGhinRbhsWhNTqZ+pC+4fHzkNM87K8kcpaI3BOml49kFaxI2RM00KIU/Yin/JOaFLYbPdsEa576paque0pt/0LKvn8XhEGc3Hu3tevXwhM7asoHHOcXg88ld//Td89933tfkZ7o+PbDY96yLGEz9nPt6cUUqQRtM0oXVmu23Ym5bjMOEDKB/pOk3MgtlotDTVD/PC5sUFXTYYDE1jpKxiHWkazX5fmNaJOUJrIWqHKYpQkwpd36KypsSCahqariEsA6GyU5Vy+KBo245GFUJYSMmw277EOXGUuo1mo1umuDL6TIqa8xRwjQYibS/35kRh1oFd2zKfFubkSUUxl8xl19JvHGQYFmFyWgydVWRVMMahiiKTAUXwAWcVnVrJypKcJSrDGqTlvG+NuMt0YRruq6bioKQaLd4wTWf6fst2/5JxOsvSPsO0eqwq5Jgl5psTwRf2my0aQ0pB7k1GSj8M4FMiZ8TVnCPrWLmiqeHx+IAuWRZ/08hm01VcU8fl1Qvub2+E72gdu+0FVmmGo5RvpuFISgENRL8y5hObbU/bdmTkWWhKZD7ecfvhG6bTI31rmceDIBeWmfPpAaML1mhM1+L9St91pJzY7bZM84xzRuYHLQzUksStPU0j1y9esr/Y01lDzIUlSAu4dQ2Px5NwLH/PX79/yUYp0u6ySLxn8Z593/PqYsfN/ZEP94/87LNXbHs5kI0quE3Hu7sTPkZ+/vlrDqeRrtFYIw4Oo+UCmXO9QCtF8PGZJHWeFp5g375uzzZt3TrExK5rGVZPLIXDtLDrWml2VZrT+cS7DzONylz0HW3T0Di4vLri8eHA43kCCk5ZLrYbQCJIw7wKo6dA1yravuE0LkxLYFoDuSiss1zvOz5784Lb+0cpGagQf5Bt+e3DCWsM8xrZtCI0ZYNs/oGwRnlIFBEqY5Y3fVlWlnWtFyB5WMYEIRWatmUcJlYv1utlESdLSon9dsN5nORwt5rj8Qha4f1KioHTYcF7aZ31c31dqyiZS64MQxERlH5q4w11Yy5uKWUFRJ7rptPk8sxlc9bKa9w4usbSNoYQGhrnxGW1rs+bg6vLK6gXgMfHI1orbj7eUEqCnDg+PjA+Hik5igBUS09i3azmLAKxqmpz17Rs+w3dtmccJUILsmEXkUWGtDUXhjWyaQy7znHzcKDbiONmDpFhWcllh0LaQ//md+/57sM9uijm1XPRt2z7ntGvdNpQUDyezlzstlAjiD6k6oQUh1cuYKw0QAss3+FDYpgmXNF0VhxUj8PEMK3s+ra2FCPNgxVeHmIilMhpXYVZ1rW8uzvxy69/5OE4ElKkc5ZdJzzLdfU8PM4y1GmFpdB1jcC9U0KWCAWyODFb19A0shl/Ekul1VciXillQoyVQSFxvhSlETnESKogaedE9N30Ei8Tjhtsd1tpuxsGlnVlGGe6vgeEZZlSkpbOJ/gusKlsq9VHEWaTfB6il1ZcZ6RsJIaIqRyi6D3BK9Z5Yh4HcggYK1XqEhcX1p5W1cmZqA2TmhACupHWaaMMS5LiF2cMSkPrLH3X46zw0VrXyDBi5fImFRSFi+1OIvbjRNeLGPI0oAW/ssyztEEPJ8jCrAxK3JQ5Z4oxlY+hOD4exHlVBX38TKTwx7/4C/7Jz/+IVmlW73n/3fd8/Q9/ReMteT6yHO/xfuDv//o/8+LFa778h7/i5X7PT3/6U9CK6bRyWUtyxmlBG8scVl5dXgicvERizHzz4Z6bw6l+ZiVW2jeGi87VyJ8joYhFHHKurSU8OWOqO0YrxbR6cqkRE2NYQmBZE2iFLoV+7zBZU9JKsZrjeaZvJGbRNI7vb+5qsYzi9dUVF31H1zY8ngb+9pdfMcyrOASjp7HivtY1PtJYVy9KmcNxYF49i/c1gifCXmMNF9udRFZTksIXJdvXdZhxjRXxpGvwRjP5xOHxjLVyidG1ccP7WKOsmq6xbFtHQTGxcHd3X50HuYr+Iv61XStFBltx8Cx+FYZijQX76rCy9bKTU6HrHH5caUKkbaTl3S8LJUZuPryXOGKQOKKIIwI7LyUTwlPruACUTWOq81pKEnz0FZOhWBeJAdvWPS8AcpYSCZ65mLo2/joKiWkahZ8aVn58905ikfOE1QXdOKwV10tJisY5hvOBlEJtlsuMx4/EMGFQxKCxZiTMI0ZDCCsbVg4//pacV47ziVdvvuBwd89nf/jnnB9/JPsBv5x5983XqM0FbddhMDgNh4c7Dg8fefub/4Q2iqVtUekXjMcb5nHis1efk00hJ0Xf9djGsIaV692GtmsJqbCGBW162pTYKhi9x0ckPpMijdFcX1zIMkcVnBO32+E4iAitNePs8SHStIZ916BS5Knd17VWnDzWkoo0sRWEcWQqSgRVGOeFT15cM4wjL/ZbLi52TCGwenF0yiwgAsG4LNw+PEob/DCyLou4Cp2l3/TPjff73ZYXVxcs68Tt/QNCMvhHpMGm79luOva7LeM4COg6Fe4eHsVJO4woxJklLZ0FraUkgJx5fHxkWmaZS0KQxtB6VuQYKXi6thc3iWsqBy9RiLx+/Yp1XZmX+VncM42lazs2fc/hcMBawzrNrPNKsNISXVKqjZWChsi1WEaVGj2vDhRjjQgJ2mBb+W7GEP+RjVrdXaUUaaBez7QGUhZOIgViKqDq5aiAThpbGoZlheKwjeH+cAdK8+blZ1xf/YT7w/egxPWYU+R3X/0tzhmsCaicKbmnbSxhkSRLyqCVPNOWKUBdPJRSONzd0e09fXfJ9Sd/yG7bMZ5PaLvBGMtwPBIeHtj3DX37hpwd5+PEMAz4WGj7njYv/PjVrzgfHvnTf/LPuH+4Z1098zRz/8O3TOdHjscDdx+/Q6UIWGJUaBN4vP2K//T//l/51//T/8KaZEZ7ebXnNEzMIVaMyUrbWm7vj8xeXt/9dvss+KZcnvmlueJBFEpSJdZyOpyEEVw5UiUrfApYYLfvOS8TvbUM44y0elusa6S4LASc1by6vuR0GlnXwDgHIItYM8xcXVxw93AHJdNYy3E8sd9t8SnWdu0PtH1P9ImXF9d8+uoVPniGYWCaJ8bxjLWWvu/k85siTW22pVDjsbL0f/HyJfM0UbRinEaapuOLn/xEXPYgLhet8cEzTROgajrEQgz1MntiXsWdp3Ii5szF5Z7T4wPRe/wyV9ZkJiFR4WEc2F/2XLzcoW1inu4gJ6xW6EaWNTElkpfkgDIF11jevHnJZrMj+QXKzOKlfROtKKqgDJA8yhiazhC9NB0XvDieiyEVD2g2XSczYgZnNNaKgzHUBBRB5rPVp5rYsoSiUCo/I1NQ4j5aQ2QJC1kFjGrZbi5Z54k1TDJXlYSxmk3XY5stOWmcEx6nX46Vm1jIyqG1IyVN20jsc7u/ZrO7JiePn4+oFNn1DZGWGDPGZs6nB0peaduezWbD6XysXE/DMh4ZjjfM25fsLj+l32TSMtDtr3H9nqaxFAUXuz1WG3775dfS7J0TpEDftegiS7d+0+KXlfF4z/2HH9jtr/n44zsigi+53G+Bgq/lTnd3B2Gjdi2fvn4lrbcxSHN7LjQZqNzry8s98xx4PJ3RViKP0XvQgizxQVjxzlqsMzRtwzTNhBifhcCnJnnnHNM4MvuF66tLWid84M7ZiuYqNRbuefv2Ha9fveSz16/Qkh/B+8BXX3/DD9+/JXrPpm2ZpxGrhfQcY6w4KUkZzWsgBFkmFBQpBzRZ2IGpYCygUm3dFtNFdgWiwa+ZbDRxiZQSAIs2GR8j0wwxQts50Il5XNi0PSFB3yhi9KDMM+9WpYjVmcYpZg+pRs/nccI09b4cIyVNRGaJ5qoINuOsAu0ITebFpsNRcLrlGIIkNbwnLIk1RaLJIp6nTNsZAhkfFjpl6OqdW2LnkTUUYvTCIY6AsjRW0TvDrtUczoPM8TERFuFhNwpCioQIJSX6vmOaV2JU9N0l+/01Rjsurz8VIZPMZrOjpEyIsyze6p0lFUVr5fdXWtP1PdvtpchSytBeXHI6n4XpH6Ocx6WgCpwebklxJeaC0meUsaQoLlKrYDge2Gw6Ss4417DZbXi4/cA4nPHrLKlBJWdHWmZevbpGK5imif5Cnr3Hhxvm6USq5SAlZx5uP/Du269Zl5nh8Y6LS0EFpXoupSRLIt04yJF58ljruL66IvhQI8laegbaps7MDbuLDXePR5qc6PuGYZy4ub3/feW5/zNadLNUSCvhKoVsuTme2XYt27bl/nTm2493/MGbV9yRUDkz+chpmPiDz18Kdy+LS0BVO2PbWRR1UNPCuFClune0kchgjSINw0zqErtewPZFKS77lrFGeFcv7IDbw5HzMHOxafmTn7zidBoJIZJSwBfF27c3+LjUg9+x30hdtDGKvm/YKtlUrLMMg4fzzMNJAImlgGsaLrctn795wd3DUcSHuDzHskIuz3Dx64sdJQTO88yLix3DtBC1OFZiyhgFS5TBcVk8RzOSKq9OPsAihEr8KjEvnsUnjC68eHHBaVjkgAqydetcw7zOTCXhp1kOwhSEJ7gsrDVaKYKZuOEwiuijRBOSfLmUUlVkFbEnRCk1INf4cBJhxxjoOoezYlW1Vgno9TwQvK+lDaLgOyPOg91+J7FlY1CmFpQU2Gw6Hu5uWeeZZZ7IWR7MEg2QP7cgjr1CQVuLa1q01uy3W0qN15SSa4xXBKmcEl27IcXIaY58e3viTz+5wBqg8uRiFq6dMhKFW9fE337zI1++u0EXcX9d7TZokBKZKi4uPmCsQ6GIueAnab9ca5thiJHGtfLPjRSuWGMIUeLnEtuVVrOY4ePjic/evOBqu32OMiqKNDEWcI0hhcRuu+Grd7f85pv3jEuQOG4jLVExBI7rUrcn8hlqdGHTNhIFz0kugFrcsyBigdTTS3R1WVdyEXB+BqL3EiWvQmnXSixQp8zifWV4yXZ2GEaaxhII5BSlbKKR1/l4GlhXGRhSLkQfSDmSihKRvMZTSxZRzVmJQM5rZbJoLdyJIJHcda0uXkp9/xf8tFS+WCSniNJQyDhrJTZW3XzOuueYrSqw6XpS4+RZFxOxBHGllCQOhOo2Nlrj+g1GG3FaRc/MQtN0Ep3zIs6uy1r5ZoXtbsv9/T3LNNG6hhg8y7pQYpDLaxaeUqyxd5RCW8O6hmfHb67lB5TCq9ev+Yv/4Z9SsmKKkZt3N7z99rccPnzLt8oRlhOd27JORx5uvuObX/8N0U989/2XvHxxhdvsMM6SikSLCyuL95zOE68v9xKlWQJ3w8K3H+7IITKtkVSg1YpN20qsPyd61bL4iK8RvFVpUohoq2t7buY4TtUh22OrQKG1oShhtRitOU0TF11P3zQkDY9H4XAa61jPA2uMGKO5vtzx8vqCtC7kFPm7X3/DaVygKFItc9pvWigisksMH4ZpkrbWlPBBmnpLfV3bxrJpG5r67xqtKUFcOb42wDdOs2sbrLWcp4XTOMtiZb/l4+0dKRZs24qjRMF20/Pi6pLz6cTj8czd4cAwiVtX58zViytpfIwicjhjntukcyn1eSrPCuss+4s987xwcXVJjIFlmWrrozTMrYtnmkeir7HzyoWMMcrQUuR7paUZ4vniTL34PbXLxpzk2WCsCBxZChsa11CMuGJSqqVBuYgokzPRB3IUzlIpWTa01oEvpCS8pRCEN5qzuHP6tiEVWf5opQiqoIo4ev26oJDLFkrKkaQ0Ss6v4fQIZLa7jmU6krKBohjOR86nR3aXDptXPvvsE/q2Yd9v+fGHX+OHe5bDW9J8wnQb1vHIfPzA/bvvWUNgHh/oLl+gSuHiqeXWGlqXeHWx57vbB4w2nGfhtzZtyw93B4ZlgRjZbXqut1vW4DHWoJEY9ek8MswLyljm80QsGaUyl9sdbU0fpALWGabzyhIzs4/Pbb3rKqUP1jlx9xZxs52GiRQSn70Wl4vThkwmxETbdGgKw7Tw3dv3WGM5Hh6k8KbkGgeX5VPrLJf7fS35KKxLIvnM4he61tG0loLF1nOg8MTWExfEOEgawTWNiF1ZBIG+urKeopPWaHSJOC0xaI1cAnx1xfl1pakXf1c5bo1zNVYbGc4Dy7xKHCx4YZ7VaNcyz4Qo0dsUgxSKWA1ZHAsxBGnHLeK+UDWWllJGoXHWPTdlxnp5FFFEBL1SI+xt3xLCyrpKc3drHF3fMI8L1vagCsMwVr7sjuF0JsaAVprzeUIraROOMfB4fI9SkZIdXbshppmCoW+3DMOMIpHCgVRaLq6+YJ7OaAbyNDw72mOsyy8K6zqy2fbcffiOhOHx4R7nWvaXL1jvF4Hyb65w2qKdnOfnx49sN73MHCUzzJFPX72g32yJCYbTSNNKKsKkhceP37O9uKRRgNNMjx/oO/mcX2y2HB9+5Obt17T7z7HbDX5Z0aVgnKkMLM84LAyjR1vo+x7vPadhwFpHiOEZ6m80dLmT+TEl4RmNi6Q0yPRtVxeMhjUGjLf4VGiSFD3FVLDOkFZxg7Z9y3laKUXx2aevWFfPx8OJnDM7Hziczmz6nsY1XF1dcB5n5lnKyE7jxNv379DKkLxn27S8fv1CyvjIHB8f8X5B6Vo8Yy0hBPq+Z7fbVg6mNOW2tQRGA+u61lIt+OKLz2lrwsEag1/F3ZFK5GK/r6KzlO04oznc3zHPM13XEryn1CXiNJ5Zl1FmCmAahdUNVA5mIEXHaYz86Z/9W77/6m8Y5/cQF0mxhERjNCEXbKNoNh1KK25ub+i6e6zTpFCgnElRU0rENdC30BuLKa5iGiwlyewQUsHYhJSgFQriMLzoe0HFhIixmiYXeX7onqwUKgrTu0RJBXgvPD6lNCkFuq5hXMYq9smfG7zgXfIcsE1XY9QNVlmsaUlKodFM/oB1UjoUUwTTcHnxkrbxlBwpJVY+8ECOM6SFttFY1bDdvuDqzRck5Ug+8P7db/B+JudACgsUh7EN/WaH0j1dt8FPJ8bTHX2/wyfDZ/uXHO7v+OTzz9nu9vzmy69E5PYzyXsxPSAObKWt3D+AcTjgl5Fzidy8/R2f/PzP2fUdn7x6yf3DA7MXDNRT4cZ+t2HTtoQUeDxLPN0ai0Lm+X7T433k5vZeSmXiQrvb0PctIcv8RC5s+o62lebdaRjwUdzEFNEI5mGWuVqL0cXZhl3f4RpbG4nFubnfbmiaSCgd4zDz61/+hqt/u2NThaRf/eZLfvWrXz8ncNZ1lZJPJbispnXMSXjmIRYoiq7d0HaO8XwmBdi/ECxV9InoJV6eKQyriF1926M7i9WrnGlGQ0k4ozCuVGawFGQZLfzqQiEpjeyrEjFblG4oaiXmlfz03yjY9RaDGAqUteQSiKUQdSbgMU2HUoVcIm1rWJZAyBEw9FuF0Za+uyIdHnh4HLBas+t6mkYTUqTkyKaTe10oiUxmQaMrO98luUeQA8YmXmw7YsrMSWKmRhnGeWJZPU2zocTCy8uLugT2pLyirABbVi8oCEnFBaZlwhjN/e33pCTJPz/NuK4BvaFpmlpYKCU5rWsJyypu+ZCIqdA4RfQLuTSgNCFKwae1FoMm+pUYhMGXCwS/0LYdy5zZbnfkkqRV2G4oOVHWmbsfvyfHQIriwLXa0LQbYYQWSZ+mEEQs7xoebm7x60zrHElLciMET7sxnG7fM84DJQRiddsKA1k/pyjnZcGHwMXlJZu+FzTUesK6BoXleHoEpABqs92wrh5dCm9evWKaJ37zy9/wcPPh95Xnfn+Bz1pxBZna2NhaQ+kahnmFLG/K33/1GQLqfgABAABJREFUlldXl7TWst123L295XLfs990fPP2lleXO2GmhUjjLH6NuMZChhSL5LNrC6nWuXJc1DPsfw1BygSs5cNpIofItmuZfOD+OPDdj/dc71v+6S9+ilFwd3vgNEw0rWzSjuOMotA0hl27QdvCss41cqQJPhGzx3hN8PJpeDjN+Lo9aZzjonf84eevhd+0yPY05f8DjDdnEYsi3B+O7LcdPmSmRaCZS0isPmKtYl4W5jUSc2RaV0KMvHx5xfF0loiXEkC0c46cSo2vZLJJz224MXhySpynmZQq2yms6JIpMcimPqfKfJIDlYxY9JeVVPlgMujXdh9ryFma6hLyHkAV2UrGOrHt6+q06tqWYRiZ5hVjRzbbLX7xbDcth+MjaEPXOvrLS2xjGYaBVWlpfxxH4bFMA9NwYhln4S+iRMwrIqya6pIx1qKLRRvDxf6CUgHZ87pQqsiU0tMWyD+z+LTWnMaFcpz5ky9ect1Zwtt75hQE2p1E0DxNM3/1m7f87Vfv0UZRUuCzF9f0CiIwrh6r5b0z1pBjYgmxNgk6hlHEXuMsiw84V4e6phGxgVgH0kIqCp+ScOdy4b068Yfnic8+ecXN/SMxFqwV0XvbtrWgRfHrHz7wy2/fy+sN7LsWpxTztNToXaS1hs4prJIhOMYoTMf6bmolF52ubTFaBIAYI0HJxT/ngo8BH0KNTuh6cRTRLIZI9P/Y6inPh0UuYhEaC9u+QWnDeRjEdfrsSBKB22kjDDItRSWKQi6JcZywRl6/NQiwffVeWpmjx2ow2jKtIznKdpecSctCqD9DQTbgKKoTyT+34orIKsJNqRFVaxwpIbGyUsRp1binT75wD61Ef7UxrE/lCJUhYZ0sPpx1Uuii5OIaQ+Dx8YH7uztpBasHVgorBlVbu0ptpH5yaGQRfb18t5+2cSkmHKCL4YcfH/nJTz9hXU+8+/Yr7u9uSH5iGG5wqgU8bevwYeDbr35Jv3/FV7/8b2y6DX/xz/9Hmvo8p0aH5xAY55lUEGdTVvz2uw+MozRQp1LoGsfFpscquZxSFMPsmWZpR26csN2a1pJSYZ6FK4cSzmou0vrZ60YOOiUbXas0l7utxBNjYKqt2UZrHs8jxooreL/dcHVxwXge2W07fvW77/l4f6xR14Izjk1niX5lu+1ZV8+wTnIhy3LuhCAxUOcszjm0koKd1srmzlhNYxTbThYRPliUkdi7RcobhtkzzCNvrl/y+HiSdlMg5yCtw1oi1vcPD3z4eIP3soRpnCy2GqWZp4XzcCbnXCMnK3Nl9YWUBN1gpLCj5IzTimQUpMimcYQUmeYJnwsheJZ5ZVkmeUbXYoyCMDtjlPInEPHyqUhGINi1wY9SObfyK1VHX9OIeLLbbMlZokvLIuUvurq3V78Sgnw/XdNUJ2pCZ40q5rld2QBrCCibSTXKoY24c8QlLi3USgmDKOfMfr9BVRZv17X03Z4QFNpJlG2eZ6yLdNtrluN71uGexhliWvjk8yv2m45No4l+5O6H33H/8WswSWLcJVHizA9f/h1//Of/hvfvvuWv/+P/iz/5Z/8Tn/3BL8R56gONUtyfTry4vOTHg0Jng48SG313/8jhNGCM5upiy75pOc/i/N0YxXaz4XAc8T4RUiGuC09N7hf7HcEHplzIpS6aCpVzlLDWkWIme8ERrHUznDM0VtM1LadxIJXEvHo2m45unJhDEVZcY1HK8vbHjwzjTA4iBhtnaFxfY+GOlIQN3BhL9JE1eIZxEN6u0rRNS07C5uu6lq6xlbcnDamnScToTdtwsdvRuobgV9oaJy5aMCzzPEj5S06UBOu8yCVK6ypeVPd7yaj62UfJs1wXxeH+XphrMdK6VlzmuTAcz1VwXIWV52UhllMgRXFN5Byf55UUM9oaYnWzbNoOozS5yEy1+FiLxLQIfFn4hMZojJXGea0LbbPB9deSVlGF0ve4fsf5dJCLTrHMa0Trlu3GYrQF6SRHFc+0nEjDI01jMbpj9YlEIvqAc738+SWRs2d/8Qm73QuG8yNzWCv7mHr2WjEFK+FqTsOEa+Hhw7c4AyoHbn78mkKmRE+cpNm9ubjkfH9DiSvRG2zTk3Lms89/ysWLFwzjyP39gWWZGMaB8+Gex9t3lDjh2GNUoelkthBlX+G9xzaBX/3df+SP/+m/47pv8F6cR6eHmaIUw7hwfbHHLBObpsOvkWEcMcaRkvCztNZ0XUPjpIxCkgGJafGYRsr7jDakKGUIXSsNqOO4kBFXvjOWGKWky1kjK+vKltZKsWsbhoqcyFmYgcvqGcaZ/XbL8TQyTZPM9yHxzTffMg4jXdezzhPb7YbT8cxdkDtQjrJsbZxDo3Fas6bIdrupzpCEc4bL/Z7dZsfNzQdu55l1XXnx8gVt2+KUZjwfWZeV3LRM84SmsNtvKBSil7MrpsS7jz9yPp0E8UJDTklYVKVhnE9iyKBhmWda12AqG1g1ln67pZQI4cTd7S3Xb35GeH/AdhGTElNYWXLBNQ3FyCyz6a9RLjFNR/xxZb91NNYBkUghek1wCZ0gLZlN10LMGGXwi7Sd4jIgi2cfIo21rOuE0RZnO4xtsLEQU5aCjhjoa/PuSmGJi8wjFFrbkmJhXSZSiKQk76EUnGScdYDF2o62UQS/EFgJETa7K/wqJXlrZRvGGNBlxa8DKSnaVjOPCyGtXGgpk8y1TKTf7VDWscZA21/gEP7W1eULTqdHipWUlV9nnHGgNMt85MN8QtmO/eWnvN5cc/Pua8ZFBNrhNPD4cEdYRlIQZAy1OLJrWlzTklWmlEi/2dL2e1L2/PDdl7z67A/lLjxNDNPEUuftrm3oO8fFTs7vw+OZtd73Nn3Li+tLurbh4fHIeVyFx20tTSdlM0kiLiyrNBwDnM9nUk5oo7BGRGxrNeM0oSj07YZYJKJ6tdvTWisGGQV91xCL4nQeUUbunJcXO+4fDtzcPfDy5RV/+Vd/y/fffcc0DJIQcPJnuKYh+IhfVhGU/IoqWbiGG0eMC9ODNJ4nn/nw7ox1CtsqWqtRqmHbOz799HO++OyPyXnm/cN3LOc71iXS1eVPCIKYiKtCGSmLsbEQs8zBIU2onLHaQHFc7q84Hn98Pk8aldFKUE3WaVSxcFFYBi/LVKMIOdGYnlxmUIrDcSJRUEoTVzisC10HJXdoY2l7I2JVUjRdIS3CRLcUtCmEmOl6xzrL7GgUz2is3bZFl0zKCyFC37SApCYFLy6FOjJnXuG6nvuHMwVFDCtNu5EFUlGs80JKK4Uzu+0FOXnaZk/jDMN4Yre/ouu2nI63ktjLFoMh+IhpGpy2OO1k8VAKqoLxrQJdxLhTCuQik2gsGWdblNV1IV9wjZSgNm6DNQaVkhisTOJ0eMSYhpykxLNrNrK0V5pusyGRiX4llcz4+MA6SNLyKcVGGVl9pMTAw4e3pFLYX1xLxH6zIyFmp7SuNI2k4faXL3jx4gU5ej7ef5B7halN6kqz22xwTc9pmvEhsNtd8O7Hj/z1f/srbn98x653/z/rck+/fv8W3VBoECaJNopxEjvsxjmMs3w8PDL7yN99+R3/13/5pxyOZ4Zx5iefvODtzSPiyxNe3m7TkaqbIKdCVgm5KpR6oRXAqtaamAMpFdrGsPrEmtIzV+b28cxp8tw/DlxdbPkf/8kfsusbPtw+cnf/SOPEBj+NI746ZbZ9R9NIVGlZozR85gwUaS0zUrIxrZFpDvgkPMC26bneNvzRT97w8fa+ZvCzbM2QzW4KAqx0zkobXXbEVizuj8PMtjVM08q4ilLtF8/qPdpqYrWqBy/by03fYK1EB63RLLNHW3GdlFS4fxAuV4pSjjGNE64R9mFcIyl5pnGQAbXaSY1+ar9N0k4WZJA1SqCRMlBCCHUzEgJKFYxRNFZssVQnVNdt66FYm4QbYQyuywJocVQ2jk23oUhxJxhdywwCy7xI+9W6slR45TItlFzdJbUAI8Wn+LbBNRL1McZgrKESsghVuEohsNls8CFhALtRaGMrk0QiWsfTmW/vjvyrn77ksrU8TJ519TSXGxrn+E+/+oG//uodORVUjLzZb9G5cJhFdEIpml6YSSFJwcNaXZhKibiUS2Fb+UdWG5aQmcPMruvl8qIgK0vIieO0EjIQM8lofv39B/71n/4hBTlUUfLl3bYtOSduH0/8/e/eEnKh0Yp91xJTZA4JTf1nfYsxhcZaGicNrvOykvJTcQY0xmKd2O4LVNebRAvF/SPvQ1O3vusqzrj9bl8jfoaYI33XiOsoyPBaCvRtbeaNGZ8maSTLAiNXytZmTWEWxJSxrRFOZH0KgMSo5nUVkTfLhSzXpq8UE6hEDLI5PJ9Xcoys6yxut/qdlWIEiWb5IE16CuFn5ih/h1KLUEoVF8UtIw5HvwqkOCQvr111L8fq4hThWQ6HrmuFewWcT2dSEGEsz+D9XGPrjrgIk7AkKWQpWSKXIhAlqG6qksRZKEKNbIuU0ViV+PD9L/n5//Av2XYb3v34FV/9t/8V1dhanOHoNxtuP36H1hIxW5cTm92G4/0PHI43ErcrckEc1rVypyQS6kMil8Svv3vP3TCLexLNpnFsWuGnGqWw2jHMCz5mitJS1lCbpVIMsghS0Lmmcgdh8cL6VEEEHq3h+mKH1VoiIynhQ2ZeA29evSSEwMf7Bz69vuZ6f8F+27GGyHmaGJfAl999qHxEaYTetRItKE7cj9OyiihaxeKYRSztW4l+K5WxNb7StQ0hBFprcdYyTSvKeIxRtNoR1sAYIiFnHk5nNpsOH6RRLpfCxWaDM1K4sCwLH2/umMa5AtszfY3QlRzxJTHMElO82O2lAGOVz7DS0orZWiu4CwXzPJFCkPhCjAQfmNeFNazS6liZKlpLEYDWShY2KVeWkbTfPrkRldK1aEbOkyfH3jSLQGi1o2ksyihoGmGkrDMhyLM7ek82GqK4XXPlt6WU6LQhKeEulTq8qZKhJHKJaCVN1KXAvIjLt29butZRqOgHbeRyDigKyywMWaVlwZSzZ5lmKSjyIth222sOhxvm6YjGEpeJ27c/0PVvaPYbjod7wnTDdHxP0+0kQt01+GWAkrj98DXn+x+J/siHb6548eYnKCPx0+wjpRSuL+HTy0vuzxPRw+E48TifaYzis+tr0JnDMKKtYd93XPQtt8cTsy+kGJ8XbIUKLU9Jzltf2YcFhkkcnNpoaUglUVRh2/X4kFmiOO2VdpQoz6Rp8rz7cMtPv/iEF9dXPA5jjYHDV999z3mcWNaFFCSGao1j9XJhs0Zxsbus38+FeVnEyVLk82GclAs88RSfGq9vbu85DQNUh+J+s+Hqci+x2xSlCU8pTF2+ncaRYRgA6syh6dqOkMWhmnxgTZ7rF9dYZzmdT6A0l1eXHA4HlmlimRYylWurBB0xj6Mso9YFsjgNUhRe71Id/W3bPJ9nKcmys1GdOHOtlA1oBT5IPFcZWehS5JlrtKavjeLhma9panmCw/uF87KQimW/2dJtHfPxI0prtJa54zSe0CUA0kC6hizxXWNIPuE6yGllGB/RRnM+rdKeGwSj4pcjxww5jOSwoBHXmNYGtGW/v0LU0IgPCdtmlvM96+Jp+w1Xuz2Hh49MD+/JRZHTyjI9sIwniYAqMM5gMvzdX/4HLl9/wubyJS9ff8bbb77iT//sL3j/9Qemx4/kdeLw0aNKpGv26H5HUQ1aZ+bpSJcaZn/kw7tf8tlPPyMEmGbBDqwpM5dIs8xsN1sOh0dAnFepFNYQJCljBU/iKw/aNVpmmCRtz7pxFV+T2G57/OqfWa9KK9YQ6Kyh72Qu3TQ9SwnMa6RpDK4RF+UTJ3KeF8bWcrHf8eHmlj/5+U/FrRMTfvU83B+4v38Qd3eKXOx3MqMsgtxQWTjLfbd5nqWmecIaLdy3RuLFbdOwLLMUGBU5L7e7XWXAadawcjqfGM4D1mjO5zO77RZnNbmIE897X7mnidY1tF0rxTxWGmin80DOoWqu4jZRyLwSU6FXlmUZMRtxrNy8/57PP/8ZOQfs/hptFNgjrZfCtYyi32xE0G07Vr/y6vKKMM80zYZNf8EwPgqvOCPMSWuJSUPROKfJyZJygCiLdOUEIQCKkArKWIxxZBSJzORXrHV0rZFZKYvLzkfha+aciMqjjarpMjnHUwJrW1wjbuO2bdFI+UOKEesUWiem85l+f8W6jlhTpOBQQcmBZTqibc88yTPG6kJcR7b9Dm0LGStt98uJnGYONzdArC7GLYojzrXE5CvrfBYOYerp+z1dc4GzDY+HD8zTzO7ikm+//CXd5kLOmrCiVZF5vJZLaiXpjel8kvSCl89H8kCzkuNEKpHDeRFOcQLjLPtdz5uXLyEn7g4HztMi3DFtsdaIG36eOQwTp8cBVyOuOkRZuGdpKM1NZLfZYIzh/uGBNSRi8Lx48QJrCvttz7QI92zTtyIk17tQLoV58XRNSyya43ngOI5yj9MKlzPDMOJXz69//SXffvst8zQKLqHOCiXnmm7I0nxrLRRxcsaUQEsDbs5yVucEWltCyLhO8clnG15cfU7wE8s88e7me5xdub+7I8wyoxQrHM8cEymKI7jHULKiGC0MzVzRRsqw+ozWM/cPH3BNJqyFYfbsGkUugaIN+CyYh2wgiTlGlYJrG9z2BetyIs73pCCplpgyVmeWMXNaFb55pLVa7sGtwu0sGilZ3G22bNsLpmUmJ3EtGiy+CC8uZEER5Six/ZKVRHFDBp2IUeGMcH6LUjStReeRtM6UEgm5Jgl1IWclCZ7GSgIESMHXZm95f9t2R+96/DoQ/EQMiRSReL81aO0IqdQEVRE0jLa4rmM6SDLCWkfwKylEQcPYhlSKFLEqKtZJgbHsrl8S54V1OtWfrZGyUCWzsqvItnUWdJmUNC6oIozIeThCyey3O0KU0tGUE03T4ZqWaTximl6+D/VeGMMTEsM9u00vtjvWZWGehjrjGTbbHfcPD1xS+Hj7QC53/NHPf8Zus+Wbb77hL//yL3m4v6HESMnm95Xnfn+BT2sBhuscKVnYOevq8THSGcWL3YaiZr77eMeHuzfstx0v9htCKtweTlxve2FICU2GaY3sjKVRwm7QWpqjjJV2y5wEMJ5SFufMKpG5efVMa+bd7SPHYeJqs+Hf/MVPuL7ccxxmfvO7d4QYuNxvCD5wPM8SmVWKbd+itWKePaU6hqx18gApBUVmXUR0mXx6bsJrnePlZc/PP3/B4XhmWcUqHL1sWUw9RG3vCClV7plEaxYvTheLYgma43liqJFNp0XpBWld09VJpZ5ihNo8N4XlBG2jWZYVRaJkTUiBZZUBw/uFdc6k5AmLxP3K/wGs+wSYDpV7I2D1WkShpfWw1PegcbYKVvL33243bDcbHh4OorqT5bMQC6Zx5JLQqvDyzSumaRQWnYexDj5oaWpVSqNKYV0XsVHHKPHEZakXnMrLKzLMSFuNEhZPKWhjaPu+iiIJslwWQr30pCzClFK1xVcbUpKGSr9OtEV4ALenhR+PI//yz37Gv//vX+JDZr/b8NX7B/7zr74nlgIp8mK3kUYsCjErGSZiqlvmyLAuhExl9EhkYtv3EjVFKrO7psFYy7jO7DtxohmjOU0rociAo7Ri1hmWyDfvH/jizUuu9nsOj2dyytJ8pAqzh7/73VvZ/mToWxHXUMJJck6xdRalxR2nUByPZ0JKNVYsF/9t3/6jCJaeRF4j6h/CUktPzLoo8PG2sVzud0zTIv9OjcRH72Vb1bhnt1DJUerjE4QkA5mmoK2pHAfhC8YsgkaszhSrrbALQVylVkD+WoPRYLUl1LZbKV8Rl5v3npSiCAr1QNNGVyafMCObxkq7sZJ/bo155inFFDHFVBZaoW9bvPfMYa6TsbhJdrtdLQcRN1/TiPUcrZimuX6WvTQvGgG4gqIRdYLkV0JYsVqL87S6vYzWArBXAOWZcZnqv/MUS3fOkMJEGm85vf8dfPEFN+++43R8R0kJ127kvXQtm90l2Z/pmoZ1PjGcDKoEPr77hse7D2wuXlCUYY0RFQt9LU5JJN4/jPzymx9Zo4jRu85htMDoQ4KcFY/Tgqlx00YL0DlTiGti07b18yOCU1FykWhcg48eHzzW1kZaaxjnVVoT18S0zuz6lr5tOZ6OxJTYdK1E5LXi/c0DRSl+9bvv8CFL9MtqWmNQJUmMxUemxT8/v2e/Phda7DcbbG0KN85U90MRAS0XilKcpoUC2Ky4vNgTVs/sE0sMjMtKColt03I8nSi54OrlahpHHk8SVfQ+kWPGGIkvBC9bYZSUUmiladuOUjLrMotzvWQ64ygp07iGZZrr57iwzKswYs8jfl1qTD0SVmF/SMyykRIVxKmXYr0Mw3N7I0oiBl3TkqJsOcdpknb2yuorRdXWXMOyrHKm1eiu1YaIsPk22y3aGaIKWC3it1FSeCSXJTkrQvBosrjKFcSw4gw4J4zWF1evMAaG4YR1whxUWpFVJuZAKRIzW5cFtQamknHOELOUG6EUVxcvMaYl+QOmZIp2vNhp/Pk957DBjwOHu/dYrVDFU8iEeSSXTGPgfPcd1hSmeeR8+MgyncC2bPoNa5YY0jBObJqG9+FIpHAcBy76hldXe6zSHIaJeY1cGM22a3k4TxzOMyk9uaod2mgpWzC68tpkuTaNszhzapN9CYk1ZJwRjMA0+yrICidr0zSMizRwJwqH08jnnxT8Kq6YYyp898NbDg8HedZW9l+GWjik6NqWXSdC13mcamGKROZd655de9u+ZdtJk/saIsM0cx4GGmfZ7ra4phXR3yhpk9ZWylOWxLQsjNPIusrz8ckRKsO8LCNziPW7IVv7EIIUa2grbaHzwjSMzy2+VsscMVWB0a8rJaXneG1OkaI0IfjnRlxKZe9laX50xoAqKGNIMZCVLFSMMTS2FUa00fgIIJ/7lKMIgetCiIHzOLHXjtPoef35T8nryjIf8fMZqwVwHyLEDKfjA13r0EDjtuK+MBprFWGtC8L6vY0pUaxh9YHW7WSxqDV+ndnsX/Pi1U8Zz494PxPWkRhngl9IuVQwe+F0emDf93RtiyqKac4SMAuemCLrKs214mJWNCUTppExnTBNx+n2HSkpHj/+wOHdr3i4vODjN/8AKaBLJvoT5MhwvEFpaWXt+g15XRgWA1pz8+571jkQlUEhDpRhWdnst4Di7v6AD56+afHrSlay6Nm0rczvFafQWmmVfuIYy/dkpW871uDJRdXCqCyx/5QZ5gWalnlduH5xyfF0rqkAT4iGTdtxc/fI7cPjMzYl5cKyeo7HIy9fXvHJm9ecjyOn05kf3r4VgegpZqgUVgmbuESZI7abTtiSTzOV0fTtRhaMy4KPUorkGsU0TbXMIzynTGII3J5PDMNQS7bAGllEzJMUpYVqVGitxbmOaZqIMbIUEbmNsRhjK89L+MZKKZquZR5nwRsVcbu6TkoTXl2/YJ7P4HqGaSWVRAC6iwsudi+YZ7At3H34DhUUfd+y+hVKIuSAa/bsLl7h5yN+mvAoMgVbpFjDFEHYNF1Lqc8e4V8WQnm6QyhxwmslIod1NLbBlkTWTb2veYkPo9g0nUTp+p042VLBWoM2LcPpxDKdq/jQEXOmtaC1JCWMLnRtQ/SDyIkx4xrDsspcKMUqKyFFtGtRKbGUSO8sndXYxqFKZBlODEpxPo1o52ibjYgvVhN8plRHq9aOvt+z339Cv9vTdJd025a7m/eUkpiHE027Yc4SXdRZnEy6MRhtpBQLUCUxzyN5OXPz9kt8WFGqxdExn86cDiemILOFM4bdtuez168IIXJ3fyfL/AKt6zBWc3WxE6PL7BmnhVQyjVJ18aOrYJufRXUfEv48MEwzKYPT0DrFJ2++4HyeeTic5O4YAuM0ElJhOA+YVy8FjQM8nsfKaZXz5+HxwHQ3YxRM88xvf/slyzjSNpZ5mmgaQSAlxJE2T5NEvlVlZxtbZyTFPKZ6hykS2SyVi74Wbm5mjo8/0LXiwmuGE3/wk0+5unjD53/+JzwePnC6/RZto/BgVWa7aXAoVCgsBToKkw8obbCmwadCCUEQC0pBhrE6R2Ms6KYQw0JMmSZqWqvweSUETdKZ6ePXoIoUfE0rSls2TrN6WViXbFmXQHspbnVbipgBtEYZSw6BJR0BSSDpGlk3rcY+3asoaHRlYcv5GXMhBCkOMkbeV6FoWHqb6rynMUbJHc4LkitGacBtTIt2Us7orCWuE027kfSGKazDitYbaeFWoaIKIpu+o5SVFFZ81oTo2V2/od1s0McDTb/BB0+OSQTcnMA2zMvM7nKLMua5jG5z+ZKu33F/OKAQPjVIO3eIXviEQVIwMXiarkelJE5BpYSbCBStayy3Ysigor+slKu10lodc6RvHRiDa3pMdc0rIEcvWIl1rQxIWQxZrfGL5+72jssX15yGkW++/povf/Nr7j++r4WO0hr++/76/Vt0S2FcI60Rp52PiaVGt+6GiaYUXux6liXwux/v+J//xZ/xk0/gL3/9HRmJ8D21lgHPkbNiJT6llUBdY47PMSFtDLEE/BqlIfA08/buyN1hYNdZ/uynr/mjz66JBX73ww2Pp4HOWV5f7zkezwzTKmKcUVgtTY9KaUKUL2/bdpLJjgmsYZwXDoO0txTFs/Nr3xt++ukl7z7cUqgPPpVBG7QqWK3F4VQjhzEKW83HJIO5dajZP1eON9bIxUsXQC7HANM0k3MkZgF2dq1jHEZyFpU9JU1chdv0JEys88j9XWZZJ3QdckuFSJt6WJUsouG6rjStPHxSFndZ8AE0lb8mYmPOEWe0HARGs91smCZRwXONzc7TxHa7JaXEPM3knOn6npIlWuR9YlomurajcQa/LmQv7LFpOLPMowgyldekaEQ8Q8DKqg50gLjmmpau70VECoG2FXX+KW7WuAbbyMBltUQ2h/OZrCTnr3RlfBjLuga+uT3zs1cXvL7a8TjOjMvKf/jlt4w+oUtiW4fxNUqzp0R1pMlr8VL2kIpsc7TV9e/fiatBG+F/FJgfTxKxziIcKI3EtYMcmknwEawJxmVlbR1/9bu3/C9/8cf87KdfcHNzS0mFYVr55u0N9w9HOivNoOsiJRrOGKyCVku02hrhAAY/k3JEFei65pmztSxeBkijn1svrdXiqMmFpTIKVMpYY2ibhk3fMo0zoJ5bOUuKtE6z2/T/2IykZdMRorgLlFLCu+ilfVb4g0YitEpeNyt12WitWPwKmhq3luhuay0+eua4MI2TNCKFIO7VuvEXibVQKdKVEamlGGG3E/hCAb/6Z2Evp0xWTyuH/My+S7Vh0TmH1oZuI+Jl01jmZaLvO5SSIX2/l+1PjImucSQjAufsI6GydayT4T2n9ByD14qKIJC4fIqBkmRASTkRYgAtlwhnXWVRFkr2aD9C8Lz77ivGw1tUyhgVicuJ+w+/Rauf0TQNj0Pk4mLDNJ5Y5oFhOKJv3vGrf/gb/um/+p/JGIZpZdO3XL2QZcywBP7z33/JcVppmoZd21SenZTRDIuIjSiwWdrLGyuibFEiyD9dSmKKbDc952klJRjCgjPw4uqadV1pXYdfPNO8UpRmjQlnDW9eXHN4PLGGRIqF7969Z/tHf8D+YseL6yv+9ldfcjxNGKMoCQwKjTgIZ78wLV6gtgKEk5+1LmqMQuK8zuKckdjhU7QY2d6q+gy8uLjCzwvj6gEpO1iXhYvtjnkWwcdYcQjf3z+IE7zkyqQEpRI5iRsrJYldhyQRf2dkC7nMI6CwyqBsKxHdHFhGES2sFRdQID1/LlMWJ59SsllUGgwajZJSH2cJSYDGoZ4V6mkRVYcyq7RsR6NwMtfV44wMVSkF1mXGK10dWxWDMM3P0cW+FS5WRr5nZHGlhuCfS3KkqCVRirjQhIuZMa2U8aSUaDYbvB8ZxzPGyPthNGir8V4a37TSNJ2wlZYpsN22WGugGGJcaZzi47t/oBSNUZFhGGk7x9e/+i988af/FjdeiODiz5AzOosjXb5/Ws5djpRiiD5wfrznu6+/5A//fI/Shoxi9ZFl9QQCp3Ggbxyfv7lmb8XxfzdN+CJn+3674XAa+fhwks/1urDZyKCYajN04xwhZkLJwvYpPJcJ5SRxZNtoVN0WpyTu474VMU0+T+IwWbxn8eJ2zhTOw8TbH99zd3+Q5vVFnG+UwnbTU1Km77saZY7i2osSudIKrFYSSbfiDGoaJ4vXVWajHBPXlxcoXdj2HT5U4VjJIqRtO6bzwN3DoXLHavynsvRkdsnM81o/IwHQ4oZbVppGHHXrPKFLIvqFkpJw4CpWIedEWOfKPpbzIMZYL3u5frcbcVjL0x2VQFtZ9DiriUkcdauf68/e1uIgBUoRKwdwXibQFVyuIEaP02DaLbvrz9hcJB7u36PSiNVRmHxNT+/Ap8zjMNazTAQVPS80zpC1IQZF27Rs2j3WGqYFcvEsy4IzDd1mR4wS/bq4fMk8LqzzwDyPKJVRWtp+S1xpXE/XX9C4DfN8YpgGwIkjt5WG4ZylCVlXDyApSBNnDCgBA7L6RTjCIfHfTzdM99/z3//zAT8e6LsWaxU5w3azYRwGckxknTiHyOX1C+ZpYVkXLk0GEsO40riOTee42HQ01vL4eMQHWdov68Juu2VaJVrd93KhnRdBVLTbnnGUeJOpmI2c8vMiWnh3EvUvpTyzuw/Liraa4TQQYuTViytO93dsdxciqCXhXA7jSEFxOg/y/VCaw2mgbzvef/jAx48fGc5nWidCo2sdpUhLYsm5lv8EYrQ19aIk2poS07xI0ZE2KK2fFy9+HWq0OmJtQ8m12Alou16cuHe3KKV4//5HrG3Y7y+ESdnIcztnafL2yyLc3JzotxsUGaMyNzcfaJpOFum1jbfESCwRv44435HSzN3hA94HdpcNbS/vqc+RZXnkcP9ISgqDzP66KIqf8SrjdOY4jDh75GKzxTotLp05gipY+9SUayElEXmtxseC94JpUjHQNorWCkaHeld0SOS74NAWpvNJCg6NnOexJBKZeRnIlSV8HCdZiCRwraSetttX5JKY1wNGJyyaFAJBD4S6qDdu+ywI+ZgwVlxnTitx/8YFlTQ+Jfp+I/feOEj5Qn/Bbu9QCtY1QJlqG72tyBYrbqgwMk23uF5hsyNMCmeFVaq0FJGV5ClRcD05B4I2bLd7SShZiD5VpMuMX0dimMl64dXmNcP5gR++/5r9q0/Z7/a8uLzgkzevGIaBh8dHjG0oRZBW19fXMleguLk/Mc4L6zhW0SKSwkpjjWAJrGWaFnlm+5WSpOH2atPjl4WL/Y5lWvjw8RZqWuA8jkzzwho84zBK6+h2x253wfk8gkpsN1tevrji8XhgmUY+/eQTvv72G8K6sm0b1uBpu1Zc7ElatEMUh6CxRvKAqppCELZ4KQmFfIaMsWgtM4gpmmkM+DWwBk3rDMs8cn9/BBV4uPuetrnANB3zPKIbhesgLQWfhQscQ6H3CmUroztL8qnfOCl8KZBVJqTEYYGrviWmlaCK3PW0FIjuOksk83CS19k1LRunUbmhAD4qVFYoq8AW8ppYJ89ue0XTWc5naXR1SmFUwRZPbhyrL+QYIIC2RcRAhKFJFdxdfQbFEgBDzFKQqLXCOXndlCk4NJvWsdS25Fy/+0bVRMW6oqKUtGilKxdTjEfnY0Ypg9ai3yTEPBRirCiZqWKIpAk8p8wyzJW110BFG0ESM0TToigc72/Zv3jFbrfDzyukwP37HxiO9zRO020dfpnrc10RY6DbbDFK3HRo+d5rpfE+YBoRBEX/EUekNQZFI9F+JXdPZx3Jzxgn3/EY1pogtCit6bsGv8zMyyxzf00nHI+Pci5XHembL3/LX//v/5UcA36ZydHjmpZSZ7nf99fvLfB11rBtDa01LKvHI9BcFRU9cJgWxvNM2zTcHs742u43zKs484wllcLFbsu6rPLm5ozP0gYzL75GZ+Wi+NQ0O6+Rm+PI29sDj8OMoXC96/nFT19zue95d/vIzeOEs4bX1ztySHy8PbCsQay0pVCyZg5RXIjWsOtaNIqUirQ4Ks3xvDCuQchdGYoG5wwvNi0/+8lLHu4PLDHRO83sk9ibS2aaF9rWEb1cjEDYRttNSyqZT9685PLygh9/vGWYFhGGMhhTKEXcOaZelBKFcV4rXFgTNp005ZZCjIl1KbK1reyzUgpx9ZyWFXLEGnED5SJih1aKEMOzY2SaJmJun2OwZHH1WWuf4fK5OreeNiMhBo7HY2X+lQqplphirvFJkFjvw/0DzmqmeWGen2zUmWmYocA4nBnGgRQDKQRiTNU6K4BbiYsJyLRxAnW2TtF2HdvNtl4uRQwR5pko384ZGudqQUkhhcg8TmijqmuF5629tRpnDdO4ohXsdcHsev7rr7/jdlghRbZO0xkoKeJFXaVvpDBEay2CnA9k5AEp4XPF4Shg7Vwk6ihxKFsrwBMdFqc0a5BIbd84Wue4mz1ZacYUJHJ2c+bb14/88z/8hHPfkYrmw+0tP97c0WpFiUFaD5UMXqq2DecsIvm8LFB/JmeftjeKZVmxThyr210vHE2jGMeFZV2JUS6IuToprVZoJfb7eZ5ZF4m5SuFJpmsdXSdNQDFJVHtZBDRrjMNXXkzOwmN7iuUrZSS+mkXkXCszyYeEj8KWkEE4kqq7SkTFSPb1/y+ZFKXQQGlxa4gzRKLkWimoraHGaLwXvkhJhVKSiOpP7jxnZdgqpQJaU3WZGY7HRy6vrtBKc3g8ADwLkzlLfDBT2WZ+JawSnzGK2n4ahcFRa95jCGglTcPA88NdhHNxmaj6HVZFQuivX71iXWaJIDOzaTw3v/3f+N1/O5PSRInyMyhtsHjODx9p20saa1jGM6pk4nwkhsDwcMPt7TtO5yPtZi8g+LZBG82rywv+y6++5eNR+CiNNTRGo4o0DpfKHfEx0DeNbMlyFpaadQyD8ESsdRLhiIm741QLA6QxXBvD8uEgMXEX2XSWxrUM3pNz5IvP3rCswk1SWjMvC5f7Dadx5vLqiu/e/sjN3YM4A7Qh5IhrWgDm1eNDICURWtrKjEmVgxRrRDVliYEGLxFSpzd1MaFZFs92t6FtNuSUmKvzbpk94zLjapvZGFZyQeDt2T9zaPITGyoskAX+nopwxWJYRVRyink6oZwArBvrnpmL1gobMMcFo6UBWBUq2sDX73Wp3+m6mLFWHLzWUIosoFJ16KKgFBHKnppHRWRJPOFVxc0rzmqnC2mdSMqSERfKk+Nba2m41jXe3bedNPL5SFyFhwOgi/yezpj691pkE6+qi6JyRzvrcLqISGfl89Y5aYQrZFpnxF3uI7ZpKLpQlMe1DY1rUcUwThG/ZAqjRDO1RMMpmhRmyjoR58CHh+9ojWIJmTWv5CJiADmhS2Q6P2BqDKRvFf50g19mNpsdMQt2Q2nHjx8/srGOn798SdsajsPE4zBjtaJ1hstNx7QEPt494isPqrEWlaklS4qYYNNYjtNCKYrZe1n6aVWXhJG8rrSNlXKmumXWWrAPs5dFikXa+6iLw3leOA4DX33zPYeHgywujSwru0baz0vObDcdjXP44EW0S4lcSj0jNdu+w2ik4busZKeZZmnVRinmaaLbdBhtubq65nA4sN3tmIaR8zjyEI+oKuzFEAS6njKudcyrLHlU5W9GvzAOZ66uXpJyZh4nyB0lZSiRH3/4kW6zE65OTgS/yvM7eHIIleigyCXhw4rDYYxc81prqaYFsg/i/KvIE6MFe+CsI6xynsWwiEiUszgkMqR1IawrqpGc47rMpBS42Fzyi9f/isPHdxxP32JVACUXemulTOJ0nljrZ71penIWMWO72dI2W6yzjOMJZapblULbtsRQUI1gECQxMOHnIw/+yDIn+k1Hoy2m2eLXwjRFeea1mpIDMS84p8jeMi8L7daR1+lZvNXaYXKdH6xlnQa6fiPOKqs5jSPEyHL6QJkbbApMh7dYa1BZmJo5FaZlgiLxc2M72r6VaFVYCevMMNzz9t035O6aT3dbbCPLxPvDQYrh6uynqsM7eE/XNmy6jnGamGaJsi7T02emzg218M9Z4aNKS2jHsnpWH6S0IkRizjTacRoXUgxcX+4kHtttiClxHiZiLozTitaw6XYs88L+cs/d3QPTeeD7d29lhlCw7Tu2fY/3K/MqqZNcMrNfq+NO3IWpzgYpZ3abrbj6SmLbdlzsL3g4yDJoGgdx8CKlYPvLC4rSXOx74rpyfDxKG6gxvH79us5TPIE6Wf1K1zQs88Ru2xPWmdBYUorc39/w4f07Pv/ip4T4VEYmCZ9xGElpJWcrXDxdwCzE3DE8HEhhweBYcyRkjzUNSYvT2CBJD+cyF9uGsBa6jWM5DzAbbJHZL4dM1gqDIBkwihRXErAGKbbKRdFZJ/FiZ2rEuAj7O8sMtVaEQYhJFhsxE1N5dpU7myGOJFZ8EN5la3riutQklGdZzzSmYlW0LCgXL83iSml2vUNlI7vXp0VUPR8aawhK5khsS7FbwSa1GhsS0XuWdSZGj3Ud280epTLzPKG1Ybtp0Ngqnq1M53vmYeDy+o2U1mhHKZFxWLD1TmxVIUfQ7RZdisxvfsH7lexX5uERrTJGy/nw4e23eO/pdxuM/pSXL65kSXo4cDidBWmlpdH39evXzMtC1295//6GYVqf74cli2kkJjEoOJuYxgFlHCV6bm7f0bYbXLvn8XCPcx13DyemSdqo0ZH9dsswTPgYGMcRv648Vjadcw0hePqNo7VSfGONuBRPj0eG84mwBrrWylKmwMPxgAFUEQae8OFFQM05sSyedX2adzSlski11mz2lpRVfS7LXTAGpJxp3zJPE/vLPeN8x49vvyGWgkZY+k1n6HuD1UACkxSrDWAMJcn9t3WdcE+VOOCMBRflDn1eM11nyYun65paRKFJCXJ2kGKNfHrsxgAKXZfRMUdyVLRasd02pJw4nx5oQitmnKJk1tWKl31PmiRO3dTm49UH6BQ61vm2a5+XXsF7nDFoK2koo8EoObOUMjRtz3mYsKbBJIWzUmY0r/LdzVFQYrpIiZ5RkipIObJ6WNYj2rTsd9f4JOWfawyCKpgmcs60bYeJmZLkc51qqlCpp5RJoSQxqpRqMkEV/DSidnt8mAiPK23T00mNPX4cMFbTdW3VByzONfg1VO1JWPidE45wyKVG9i296Ym1pTxnSei1mx1Ns4WSGIcT7WaHMYacA0YXWif8zVyf48+c8k0v/14pojHFyA/ff8vjw61gU5DPX2MbnkoT12X+feW531/gm9eEDRUsqRQXm57zNBOtxOcutxvuT6NEVPZb7o4Try43NI2lVaBIAjsPcmCVArq6h0KIYGT4yrXR7OE88M3NI2/vTtKsZjQvr3aYUiT+chi4ezixbS2v9htyKRweR8ZphiwOtZJqU5yR6KGtG+rWCsjbWAUlM8y+ursM5EIsiY1zvLxoeHGx4ebmnnEWtX1eFhmmJ4+xYsGWQ8fTt47OKH7y6oq27bg5zHz65g2Px/Nzs24phbZrIMsGsiDtnK1zzPPCdrvhfDwDcDyeRPAJQSrrg5c2oTVWXlEmRQ9k+sbKBypEYbMYaRsNUf5bo0S9z9U6GmNCW/PMOwopSjmAVjViII2gkpeXxtp1XcUqbLpnsHrjHOfzUdogs8dPmZRky+9aJ8KQX0k54hdfWYOpQvoBJCqptThKjFXkrMUx5VqMc2w2G9lQei9xnPwUnzY0jUCYN9st6yqHbc6Fbrun5EA4P2KNwxrD5abl0zcXEitvpVnrn/3pT/nf/v57vvz4WF2PIojFIn9/qzVa1RKEXEhZuEIUUEYcLjEWjC70rWW/bQTibSzKGOZ5pW8cFCtC9iocsq0zjFEcl4uP+AJWWeYYIay8fxj45z/7lBALX33/lg8fPjKPIzKlINt7lDyslcSZ11lEI5REvsmlQnA9ISJqQI1ghxCrm63gYwStqmhiRRS04nzYbjecz2d5LYyt0flC30qb9XmYWXzdjCBDNUqccyFIW6YyiuCFK4LtKpdL/h4hVbeVFvt1SgljFWst4ImVp5iSOONSCCxLjS5mYdeZUsVMbWlcjd4iYqfRmvPxREaiwk6Z6sgstK2rcW4Ripfa8JufIuD189U2TY3cGPqul7h7EShrqu7bZYnCnlM8N0NqLS7znCR+G6N8n1QEVct5nkTZGFONl4sAvek3QBXgnUXrnhDWaiOPnB++e2aP9J28L2tYSTFjnMeYTMmedR1EfNIZUsKniffff8W3n/8xv/jzfyk8Krtl03X89t0dv/r+g7RCdT2dFrdm6+R9aOrlReLnSmJQykiJg3P4IOKTD8JKE7eFiGkxJYoW2PZIoLGWLsK0Bi66lhACry63OJW5OQ3CUsrCKiVn5tXzX/7qb/nu3QdSKsJbipHeOYwSF5MAog1902BUef5zhelaWXFVWDBGHCI+ZIkIL4sc/EG2jRf7XlrhfCD4wOpFDBHBVhYuGSgpSwu8KpTk0boh+sh4uifGhX73WkQ/IjkulJgZxhP3H9/y4s0XuP6CYR7pnHCR2naDsk3lK7U4Y1jmGUqqwoSI1cJmNRQCWkNK8prH4CWyX8RF6LSuSyzZJmqtxEnrRdxKBdBGGKwUzucHTvdv6XfX9NsXoMQRQhGnASi2m55lnikpQoqoFAVeb3RdnEV0qW3ryM9FbWen8mFUKfi4ssYKv0fJcLouIry0LQ2GtnN4Ja91yoV+25PrWYLSwohTlnUONNZgnTjdKDID3Lz7ks3ukul4S44JVGaz2XE6DxLhrzHUUsApuShMwxkfv+Zn/+TfsuZATpnr3QXfvP9Izok//vwzYog83p3JaBKFi6ahd7KN/Xj3wOwltqzqBf6JRxSify6k6bqWYfYoA1CkfqEuHqZ5QWUpSEpNIZLZGIdK+TmO2PYNx/OZkhIlNfx4e+CH77/n/u6BUkTA0cbiGlcdnIJ1eCpEijHVwVpSCM5qKZBQipwjV1cXEuPRhmleiDEzTYOch2HGNZfM80wpcHwcuL35KNGdGIl+pe0cCinkGNZFIPdefp+2bVjnmXU58nD7nq5xFOfIwZONqlzXkY/vvubl65/Sb/YQVqZ5EH5xmLFKRNdSFOSEa0SgFDeMPJdJ1DRAfkaxhJIplafaWsWYozjdlUMbGKcTtukxphd8g3NY62rpUXyOus9hpts7hlGTorxmvroyrVJcv3xFTJ4Pt9JE7qxcsp0xrMuJ49lXdxH0nadt5MBwWvzo4maI6EItgZIlWooFVVbmZZTYlHbsry5oncO1mXU5My8Di39aiEba1sli3bQ4qyvaxAv7LUcMiWWVlufGGJkZlhGT5bnnnFzmjFZMy4xShaurlzw+3qKNMNpKiczjo7gPrWU5P/Dl3/wX/vTf/js6Y1BFcXd4lMIqUxlsWS7j0zRTECF9WVbOg8RJFYV5WZ9jm6uvC/WUOZ9HiilMy0xaPbKzFtq3rc5WeSZGLnYb3v34I3cffqDvNlKUta4cD4fnWWVdPE5p9vsdx9OZX/3wlhwCnXWUTUvJMlufzycp6nCWlKUBXWspxDNGSrLE/b8Rx51rcE1D13Ui0gePbeqldVnJy8waFuFnx8ISI8P5SM6Jly8/5WK35/7+hmVdKjtWHILGKJZl5PHxhhx2zOOJHFcShWU5E/zE+fSIbTYUBct0ZhzueTw90DjH9nLD6zev6ZuXnE433J4epTgtFZzLNMqgkny/lMnEktntHF1XSECKC1YZdBLXyrLIvaPVioIs4JWpfN0Y0UoYzFrLIt/WpIt1DQVhdWrd1wi2CHxlEcbmpuvpnGIOC2kSJ/G262ksaDSmtRzP4jr3KeBaSUYN5xuszXT9lpJCdekV2s7SNJ2cAeuMsYKWAHkvSdD2W1ANTduy3T051g27/Z5pnhj9TGcNTbYELy7p3cVLhuGEjI+Ott0Cht1uJyUgeRY+LjCNB6DQdTuST1BsTSXNFDQbI0KQqkaSuK4oUwjriLOKEoWT3jYNnSsMj/f84S/+OdeXFyzryrxKO2zbGvq+Y54mUHBzf8fxNDBOM95HYgg4I6ijXDTJSav5usx8/PAWhXAQ3/3wG6zt+MVf/CvmacBdtYyzLKkEzyEogyVGcggMx4Ms5rCEdZHm9L5HORhnz+PhzO3dDcs8M8ZA37bMfmXOUZixKUqqxcpnpK0JkXEcMc6gG8s8iXs11VZ4ZaBkeX7Oy4prlbi06gLErwmKYl0zpJHj8cRu41i8xHkTBa0MebWMwbPbN5hWijkLmbQU2ouGNjh0cczjgOsMxXsaZZnIRF3IMZOFnoQuBR8z1iqWkPBR2HS6WKyylNzgdKLtWhY/Yoxm0xbIlmmOJBStA6crty6killxRKMEj7RmxjnI72ltdfTJc9AohbaOWDTaNHKXRZBX5Bq7dR1NuwMSzjp8kteh6TqOx4M48rRFIY7xdfUowEdP53ZorXFGUnKN6XCtZT0vErE3SMleFqOYUobFz8LEHkeskSW2eipGRIwzGSk3UspinAWliUHOrMY1dP2GYZ1YlondZkdjW1IoGGWEMek6YobGaObZozTScpyzpNO0tOJa15BCQilDyoHGNrSuw9mO8/mRnALHR0/jpPTJ2QZSYh7H6s6VWbTreva7C0nhxEjynvPhQZYx80jf9Vgjc0TbtkzjwLKMXF9f/Z7q3P8JAl9RMC6elDPLuuKsZY2FtjbpbFShvd7z/cOZ0zTz3ccDr6936JLZ76SC2/Qi7CnzBOHOkMVhI4DdzGFc+OXbe364PZFy5tIpvni5Z9M4nJUm1Gla8EZxsel4cbHF+8Tbjw8iDiCCY2M0bd+y2/ZM84z34mDYbbs6KBnJrOfCMMvFMCSBt+43lovWsetb7g5HYmXq+dVTlDC+MpBDorOKy62ldwIjz8AcFG/vHshF8833PzKO0z/yDLJ8gZ6aelBPlx0B4p8ej+Scid4zznJhXuaZnBM5JdZ1JVUVHVVQJdG2TgDrQVyLusZy52V5hmQrJc4lW1X3Td8+K/AapPCkQuhjEht4RkoWNtstw+kkgl7TsKwTvjbWtY0o0VpLRGKz2bAuAZVXpnFknie89zy1tMYgaj6VCScL+Mp9sD2qSMX8bn+Ftm11nBTZiClFSuLv6J1wheT3SngfiNET5hnjGrrtFj9LRPgp6ZujJ8WAjwWjA0uIPBw9//7vv2YW859cULO0fbYacZTULbxwIhUxiaDXmH+M4jZW8/Jqz7h4liiFIak6JLdKY5DIglKw61t2m47TzYGTTxy95P9NMWw3hjddT1kjv/7yW7785gc+3NyTglyipXBEIueNMyLW1m1mLlkuEfUyV7SISiFKFLRpHM6JdX1ZVlL5R8i+0wZtimzIUqZxIl4eDof691DCMEo1WlFgGCZikmFNhJ2VWBSQCYu4grQuhHnBzyfWeeDFpz/D2JZ19RWIK5fVJQjfyGktDBIlfYPUzYu0RUekVTA9X0pLkdhU00g5QorSVEW1iVPFhSf3iy8Z66SAwGpNVoV1HWkaca2kFCQaYDZYZzFa3KHaWKbgq9grgqQqRaCtWhYXwa/YTobGgggMKUuEXJqJBbQNQG2RJomoZ12LzvJz6vp90DWOFpYZH3x1XNS4Z40iiOswinCigRJZp3vG0x0gz1aVI4najl1A4znevWOc/pjt5oLXL675/n7kP/7D7xhDprWuih4elMRnSCJITiGyazuWxbMk2bZlLGkOpCICmjcSZRIGVcJYzbgGmkZJBJn0pO3zOAy0nWPbd3zx6pofPtyANtKIWRLX+y2lFL789gfGYcIZR1GCIRD2k2aYBRGw7Vo0pRbJ6MqPKTXCJ5+vtnGUnCrHToT+eZ5lyVQBzrnrYShYLWVJPsmGUSPP/tZZtK3OU5Q0lIWB4+GG3cUbjO0Yj7cMx498/rOOtr8WIPE6Y4DDxx843f+AXydeffozCpp5ydzfv+fy6jXXLz8jlYhfMxRHTuLc00qT05NTW9iUjZLnk0R7Iyl7ERwRgU07gzNOGoFjJJeAqvESpRWNku9FzJGcAssyss4HxvM9bz7/OZdXP0UZTUiJtmklihBXUvTMU5CLbBH+qAh4WZw5RRFzlDPGiCM3xsoAalo++/QL1nllt9+Twsr5eE8ho52hbRvmVZitaZUikSJfFXa7LX4diHkRR2wSbq/RsrzQSLnOvKy0TcN8viP5uTrchSNzejyweC+RT2opT+W7GSV8waZt+eaXf8k/+b/8P3l5dcWX7z7gjOIXn33K4j0Ppxqxi5Ft47jcS2vzu/c3TDHRNg6rNa11uMZCrksKCp114jr2Ekk3WpyjUhwgbni57EdmEwSaTqbsd/RtS5xHcQkMIwo518/jkfv7W4ZzZfJYJ26wujV2xnC53xKDF2HNS9pAXDDyLBIWlYj4bSutjm3jGONELprj4UiII4TAvIxcv8pcXVxxOo+s6yox75xFKFIFE9SzKB5CwCmJ0pMCtliJmi1nTocf0UR2Lz9n1+2IccFSOE5nUlwoJTJNJ0rTsoxnUpSmy66/oG13cunQMofapyIkJS4Law0lSlSwcRbqHKJ0RmcEqK8yOa5oJwLbeLrj8vpTrNtSisIaR+vkbGnaBnRBlcDDh9+SteL69QvG4ZF5FkeKD5rN7opEyzTPEt8qCh9Xur4Rd2CcSXHG2h7XNLx58xPOx3tiHEk6yXLCL3i/cH1xTbENa5Hvj8Vi20IhsFTma/ITvhjQvbRMK4kG5qywrcTcVJ3nGtewDAt911aGqK6MzsohRGGVoCMaIwBcU9+76D0lCcdwPD+KG6FtsLZhmlZ5rijNNK2gPaq943q3xWjFzd0tJUkxnWukjXiaZ5lBlKbrWy72e27vHlh8FIGjgA/i6qdEuZAC6+o5LAOH2w9cvvyEpd1WxlSRZV7OwntTFr+uxMZyuP2R+7e/4ZNXb3g8HsWxo5C4aNPQt/J6vH33gZubj2Qv7pscAuTEME/EIC7DFMQJI4vsFlQRB3DJhHmpC6Oexjn6vhfHsZbyOWsMZEXTdLTWcbj9wOl8JPhIv9mBhnkaaTuJ4g7nM6fjgZgzu80Oa0UwsdYwDzJX3U4DRivCKmfheD6iCIznA69eb1FKM68Dd/cfWP1C2XTkHDgPD6htT9ttUccbGmswyVJiQVn45NUnhLByGo44I2f6uESaRtO5wtXW4NfIskoEN4aC7QTw72raS4VIY2CzFxe9sJolAbSsK3NY6ZyDougaw3b3kmmaUaXUpmSJjM7TQiDSdg4XHSkWilUUlZj+v8z9R5dtWZZmh82tjrjX1BMuQkdmVFaWYKEAkCwSYB+/mGOwgcFBkBhkAVWFEpmoiEiPcA9XT5m84qit2VjbLJNdRgfe8Rwe6c+f2bN7zt5rfd+cS6B3HfMasLowdAPW0FLtwrDtnKQ9h8ERYkbL0UBM06oJ+3IE3XF18ZrdxSUhbOz3V1ht8Zuk4VY047Aj+hmFyBVzzjgq8+kRTZIKrDUMw4jSHbbf8/byFYfTHSkUOneFtWdOpzsOT48M/aUsPaJnnQ/0/R5tB4ZhL0niLPebbZpZpiMlZsbdiE0iWny4f+Av3/6a64sdwW8czwtbSOSYRDS3rnRG8YevfsvT8cz11ZsXOzQUUlWN3aepOXN8emSdz9y++66xLzXT4RHXDWzLmdPhgWHYUZGEv3NyfxTT+ZnT8cD5dODt55/h50RyjnG/w4TED+++h6yoMeGXWRLhw9AGjAVVZHHqjKG3jmG3Y13EwG1Nkz2imacFamJ/YfE+Me4sxkm6OObC5eUgPNeYKRl8kJ+nziqoinmRO1GICh8LW4TLUcQ+1gj/+nxIuA6GnST0etVhcfgU2HWVm8uONQWMq4ydZdiNLMvMGjNKS+Jdni8iCTWd2JlL0iQtoYP91Vvm0wNVOxn6x0Q/DJJi7eQud3W1wznDtgUKSt7TqeK1phYL0Qt+as30rl3+SmW/61HOtDN1EtlF0XTt2TI4YfO5rsOvM1rJ83XoHKZUtm3GmnZ/SZWYE1VLg7Ebd9LsyRJO6Hc3lJwwNTAf79BVFshGibwkZeF455qwVkHWKJB3Zpbzp1LCSTdamijaWq5vPqMUOUOs0/nlrFaLfD1qHOnGEYrCWIW1HSlt+GVq8wx5/+/HHSixaVOLtLmMBWvpxx5Uoa6Vq8tXdOMlOWe2dWLznovdpTTIEOxGjCsltHuZHbi8vEShSO0eWEsW6aKxDP0gnHXEQF2rzBJylrBKqdd/7njuzx/wfTivzItliZVcEqkKSHDnLK92HT+97Hm9H/jV29f88f0tHw9nli1xMQykXMlVXsoXux0ly8O01kJs6a2QCr99d8/vfrzH+8TVYPnsasebm4GcMnNI3B5mcoFX+46Lvqe3ig/3Z56OZ4nIN+D689Q6poz3iaEb0CRSloGQQgYWKWeU0YRcyIi0Yt87rgZLP3bcP52Jz4OAIqYdVStWFfa9lvSI6Vv8M3EMhTVpVu8pFK6vL1nWrfE5ZDBRKzIAUxCTMHSMMaLgjs+Jh9oOxQEaPFf+mQz+lFJy0bOaceyEe9a2ldZorHPEFDDWkFPBGTm07YaBvu9ITYX+zCJTWrNsGyULjSyX0ibVspE8Ho4oJYnBWuVCoZTUCrWRGsj1q9c4Kxy9dRGL37ZtbKsAqQWQLdUClBhyQUln3QjQ/dXNFevpPXd3f0TlwOVnv5K6UhYwfRsH4qxFg0C6o1hwaYBRBa1St2KekyNVBiMrhr/94Q7Xd/ziqufTYeb/+r98xafZt9G+MBVzSVzvRC3uY4TGIHBacT329NZIjY7KFiLzJhH0u+OCL6rFrKWmgVK4JUCu7AfL1dhRU6KzjsknnhZPVnDlLD97dYPJG+v0yA8PH/j+KzEk61ZbV1rLQL39ueQkzKaYxHqsX+oehdBYNC0miTHyv+WcCUEspqUKRw/tMNqSSsSWwsXFpVzYgqTrnJaUTalFuAqpcNpOgJYUY6lMpzupzuxfYe0oD2etsKow3f/I7fuvWNaJYRjpL19Tc8WvJ1AW68Q8pxTtv5VfeA9hW6gpE7yXxFKLPvfG4Jxs83Qnn4FaAtP5HtcPoHtQ+iW9parUxKyV1DAlEOcZ21nW04H+9Rco9MvPT9c7aqltmCl26OB9syhJu/E5kZujp5b6Is+oRQZ8IqTh5ecnpSgw2KrwIdANRkQm7felW1pUqihJKNsNiC21w4IPgVQiGgGXS2UoUipsq1gjtbGSkhm6xv1LBJ9k86QUy/TI08dv+fj+l/yX/9X/mY9PJ/6Hv/mGORSxfTlLKomLwWGVMDQysnUtpQpcPGWMEzNrac9FrauIaQrMx0eqdRTlMAibqzOKwVqKsuxsx3k9EdeZp7Phi5sLtnXFp4QPMjjUDWL+6e6OraUjrdVsq3RLU0wklej7DlUytk14lEaqG6EZOnOh2gJolnkWoYszjR86S2q8Vjbf4NAXVyh1SSiBZZrJumJQjENHToGhc0zTIsB5ZTG6cn/3PXcfvqV8Gbi6+ZLz4yeW8wdufxz4ya/+OTFupLgR1pltPpCixy8H/PyENj25RObjHc4YhnHXDmMWq3tSXNHWQRXGq7EyBK9UUoqUKmzQmgN+ObIbhbOW/IQ/b+z21xS3pyqDSH3lmaZcLzZppUg1oUiQouAXsudw/yeIC8Puks1X9GXBIDxVakZVg66l8eyqcCOhMYgMxliU0nS7PYosEpRaKDlynh9QSnE4L3TGok2hH3u2NbIG3571EZQk+zpnWFdJdSmV0abDaU2tgbFVOES0I59ia6UmYbRgRZYYX1i0pcjnLQV536KLWHtTbJV9WA6P0P3Ivu85nif2fc8vv/yMbV45nBdikOHl0Bl++uaGx9OJD3dPrJssvrSWyrG1mr5z3D88oIrn5tVbOud4PDySs2MOHuc6+r5j1ze5VYWh6zidz5wXT62wzEfUz38OO/nZ8CnSaYXVEJaVmCLrKgbcznUM/UApSZadznFzfUUOgRC8pGmL1Dqds1ilUG35GFpSvUhPjpwLofFirFa8e/cd2/mBru+JIdL3O6ZlIQV59wqnSYRdwQeRMVmNgVaRl/NT2s6czk+E5UxcTrw7PfEzbbn5xRXzGgnLzPR0z7qcOR0e6cc9rh3O/XpkXU4yxEHhjCT9a6wUK9XF52dFZ4WFFUuiliIyIi0pK5Uzh+MntLKNAyznH6sL0/kJrXu0lVTNsiyUWkgxY01P1/eUGijeUfKIcZmd1gxux+XNZ6Q8cnXzJSVufP/tN/zwwzfy7GzLXUmyGrE25sD97Q+SBS2NUdsWZUZXcvKAxtqB3XgFOeLjglEyDO+7ofHoNpbZgzZ03Y4urvIzURJOSfIil9QYzIFeDXKOL9Km0TVKhbfrKDUIE6wkOmekUpkReQnC4ypFeKXOOLZlJkdpa/T9CM6Qa6KGA4+3PzJtYh9OmwwSq7N4H1o7QxIbr25eczqdmZaFvhf7bSqSulRt+QwFv070xvKn3/8Hfvj6P/PZz/8xf/FP/w/oboQiZ68UY0vQRzSJdTry8P5bHt//ke92l+yvrznNQZ4BSmr9a/D4dWE5ndBGluslBIJfKSkx9CLP6o1mjZKWjkGq9CUlorX4KEtsqJTSsW0B65ropS0hagXXdVxcXDIfH1mmE52G6Ge6zmDdIMukENBdJnqxuWst9bLD06PgEErhfHok+lXOLXJIEIRPWFjmM8FvvH7zOfthh6qFGBuPepNK67TNhPgdTmn2Fz1xrVwMI1rDvEys05GaoVOWUiN5hYohVIVNoKwjbxlVpVqr0MQoSRzT2N7SFJJBRymxVSmVoE2UtKqe32G5rDw8fqLvRmoJpORRObKsqyRqq2VbA5RK33WUKkywUjO9G4hFse9Gdp0h5ExIovxAJ3Q25AhaO6xxbFui6zuM7WXQsusxznI+P7FsZ+b1zDhYpiLJyYt9j08ZYyopTvjlgdg4fD5Jyj6sMzFs7XwmZ5RxNxL8xn26pXcWZRU+Lijds9+9Im+P1BQopjCfHljXGasdtbFwc1WoWumdIUdFLfIcDdGTUsW5jptXr8lh4fuv/46/+Kf/sjHpgCoM59PpwOnhI8eH98zrRvril4yXNxjTCR/OR25ursklcHi8l3vVNrGcH9mWBaUNKXo+e/sln979wHk58otf/kaaDdHz5s1rfvzxe/x5IcRNcD3WcjocRDjQ93z88BFjrCTk14BGSVjEh8b51U2CIilzSqGQmaYzOURqKUQjywpnNTl5tMpoI8EMY8EOhRgzOlSWzYt9VsmdpSJLi5D+PrVfckWZwmgUMSu2LdNbTUqFsXcSrMCgjCX5RKcVWReoCuN6bLXYUmUI6BzKDFgTGZIwdX0M9DuDcYpSNV2nCLGibWHXdZRQODx8wNrCfN7oRo0tjpIr/TBwNYwo4GK/I5eIomNZN3QNaGsYx1f01rKmB1Krow47x3JY0EpkIypDZw2hZHKVumqvNaYzUkHPVeQcurSWkbCrlbFtsJzQ2soAvu+oGOE35yjJTNeha2Wbjhgt8wG/zk3qaElZAZp+vERRiCFhu5F+dGL4TRFVhe/pukGaPyXRaZEfGWuIq2AQtNXtDqckzKMU3f5Smmrek/2zDTuTS2Qc98Qg3OsUAyFJ+lcW04pUFcMwMJ2PVCr7y1cY10vj0Hs61wk/vUqopLdWBDvrArUw9iO7ixtS8sJiz0U4ls2mq1qFmZwpUe4wykj4JCepIWv9nFv8//+vP3vA9/3TwqPS9LZjcCIaSDWzFcMSEu/Pns/GjZ9eddxc7/EhMK8rv/n55/zw6UEu5taKvr5ZwWIqDH3H/XnjX//xPZ8OE0ZpbnYdv3h7gaqKh+PGaV7RxqJV5e3FwK53xJj4eBTujkGhdKUg8etl3bCdRSsZYnWup3eWwXVyiNeGEBL7i1GSb+VMCAmNRHFLgcNpaVZORd9peiRe2ht5caVcmUKWFIcRfs4cIBap4VzuBpLfXmyOuWnDlZb6YqlgaQPDVnsuVSbkOSdSjvjgqSk1GLhqwyqpzGgjHzYRDiS5EHYOY40MQ6xpNchCLeBaHfHZ5piSHGaVlnRGDFLRFS69sG6sFRumVCU9lUIIG12rauaYxHTkhCUXfWCepRIY/4HMoK11ebYol1rapa1BsDvHuBtJxfNw92P78zszhAVoqU+JLGKNAI5zLi/1O23sS0LSdiKTiNFLJaD9HnKE82EiXl6xGyo//eya//vffMO3D+cWDK7oWrEKrnuHUzD5IP/tCs5odp2ld5ZlXciLgKgLCh+FnWBQZKXptKQolbOEXFDaMq8rW0z4mNElMPvItHoGbbgZekzxTLcfSWFFZWEn5NIefEZYJX3nABF+eC+2J2EiFigy4MstrQdSDYG2vdiNBC8V6dyqraoWzodbhotrtLrEOC2muXWRX1srKlXsjUVi+7XIwyRuR6wbsO6GGD0f331NTQuf/+KfYfdfAgKlWM6PnB7/xPn+e6bNc3p4T336iNYdMW4Y63j12W9k8+MsnYUlepKP5GjEDuhjq/tJAsNQhENYCiWeqWpg8wspBcI2UdLGsH8rEfBaZPBbJPVUicSoiWHm/v1vX6oJ+AOvvvg1Ufc4DbpkumEkpYT3MsAniS36ORJac4Wc0Kg2t1bk4NvygpdaGC39WKumZDCqoo2T6LnW8n1XCo1wq0RSIIiBUoS1kpvVMfnKsiWGTmDBsZn1XDcwdCNrkIuoc5ppmnhmceZSCauwwqztOD1+4OnHrwj/u3/Fv/3dt8wh4ZSTQ3dJRL9x8InLi2u2lJlTQufCzbDHosSMu25kpFZllGyoYgiEXLj78Y904yXu5qd0o2anjAy4h044fFvkT3/37xndnhxX8nTPZ3/9zzDG0ulK8p6k4NPjgg+BwUoKat08Mcl21WjN4BwWkUAVMiSDj55UhSumiwylY4xiDFYiLBqyQ+vaGFeSYpoOnzgfb0nhJzgjcpFcNlQ1WOukmldgmVb8umFdYjodcNpw//EHluNH7tqgd12emKcTPn7D9avPwA7kGNiWe2peACQtNz0CmlICwU9s05F89RoKhHiG1LFtYikzdk+KC5oB5Xr5rFexY1JhWZ64v/uRz9/+hJoj5/MduXjCNnN98zna9Gg9oEoAZTBqAF3JcUElT0kbOR4xDY7ut4lD9nTTSKk9ndGMu9ekLAnW5wNkLcJSTVVg0rk2pk+tsojIkVokrZZzwqfE4Xygd5qhs8TSvfyMZhQxi814PzgG17XPT6LveyCTG94hq0rXjGe5CRBCbsiKvntJHsQobBUQQ6NUZeUdYhsupKRISPllANMNO0ZbWJ7uKLsb/vLLL9mCCFeM0Yyd5dV+4HIUM/S7j3dM63N9xDBoTdeGnH6ZUfHEj999TfnFP6LcfMZ//A//b95+9iuytuwvL3h984acMqNzeOTn6+H912K7U4a7j99ws+sY7M9wTrF5SW/VnNmWtZnEFd0gSSRN5fJi97KIWqYzfvMvn1GNPA+f62KlRDHHtdpyyaCrJAGWdWWslfPpwNP9e+J6ROmO6TyxG64otpOtezvMyiE+UI0kTotS6JrYNknRJL9ynB/ZloltndnWBW00fjnIQL1E5unAw+0PrdscoMrAUrdUekqBZT5iTI/qn78GuahQC7XVSaUpIlytWCqD64ghkGrGUgjbjNaGftgRw8IWPD5saAs1r/TDDaVqfONnPqfgti2wehgGh+0M8+KJacXaobHjMuv2PQ+fnojRM46amgdubl4zLxM5W7TuyHljaHw+1xlqMaRY2I2uDdCgVkXwK8qMZNUxjCPen8TKazVa9/jkAcX+omc6zYL8sND3VkRaSpGycJ62dUIb21oUUiXcjRfM81GW2bXitCYmcE6jqiReqtIvoghrLTTZltKaEDasc1yOO1IoaONlwOEnnt5/y08uvyBFjyZTEK6u0YZtEgHGq9ev8JsIKVTNUvGP8m7trMLpwle//bdc37zhdLwnxcz9+6/w8wOHD7/l/dDx+V/8SzTCG1a10hmN3xbKeuDxeMd8/ETJiafbP/H+my/oL78glYqzHfvugnmd2eYzO2dY5pOc15ugz3Xmpb0TgmBmQpN8qapF+JUjqUpd9eJiDwg71RiD7TtSyuyGgaFzIpcJK8eHe0rahO0aN87HxNXVK2qWgXMMK2HdUDVRi8EvE9t8JG5e2hlRkszPvCdtIKfQhsJy/pmnh5aEW1ubQZ7DSmtqdpy3GaOFEzZ0gm/JKTOMhkJkN8qwBWebYE4Wvq6xNUtKkpzRlrKJqKK3jhLaAE/LMiqWjMGQk3xWpUVVMKaASsSkqEaDks/Y4gPZunY/SixbkIGWFQ6kiAA8mEpKYLNHl9RaH4ZnoZnVDm3lWWC0JpXahgpVlhhW5Gb9sBPszOkg338F3ovR01lL2CIpB1SYKGnB2ci8BKy5oHc74XNZSYCNo2McBqnkW0PeNrTtMN0e28HhcMT7hWVbUMqSKoR1JhVBJ9HOJuQk7POq0MbgXCcLzJDQyFk/hsz59EDYFuxwwc//0T9HI0M75wz73cAaBj68+4bT/feUkhl7g+169GAwylByfDFAP91+YJ5OWGPJUcIZ2mhSclTdsc0njo93LKcTW5K7qn37lvPTIyWEJojs2Q07Ni/DvhQjj58+0fU9fWc53j/gmm29liQCkUqTKEqwQYZNka4fcNZwPs2YYRDJUgrkGNCdwjpFHg0xFmGZ5oL3cgtyVhFSFqsthlRlCL3URO8UykBpS0GtpX3QGU3NCWMqzigu+k6EbVqSg+5iR5nPTIuIeC7Gnowl1AhBfs/OyWDOuML+Qri7W0ige4yJmF6eDRi42A+o/gIVFjCVYdhx8+oVnd1xef0Z63piPn3NYVro3SW//Iv/inff/keMcty8+QkEz/HhlovBkXPf3qeKHiPvXid1dWetLApUh8oZZy3LmnGdpoREVQbtekIJDEos7illqdfGgnUO2w0SnAozxsjOQq56mlLl/FOz4F5oSBe5BGVKXlmWhXHYtcWQoWip3Tqj252poq2Tzw0FVS01eqzR0qRsiXJtJAhCaS0BHTFKrMUhrjgnAQ9rDJH6IqdTrQkDmlylPSUKYWkV3Vy/wa8zOW7UIufYoe9RGsI6UVNm2Mm8wFkRrKQo6JHmbCNG8U7YNqgsBcHqZJF8drYX+R1NkmX+7PHcnz/gWzIcK9gc6GJlZzSf7Xs0AhaPSfG4ZJ7CxitnuOgVj/PKv/rrX7JsKw/HmXnz8iDdGQZrUZ3iT3dn/sfffc8SZUv/5dUlr3aGh9OGTwLS72zHzaC52UvU//7xRPRBDpO1tm2qbFmdNVhr2A89znaMY8e6BU7LSmcN+3EghkjXCW+vNCafyQJ+1RWWGLDWYZxmZytvL8T2NK+BU9SkqohVLiIKzeh6go8ymHIdQ9+LKWpbqQ2noht/SEFjbUk1FmimRM06Nb6YQpJ6pbzUhlIWSxAUscMpQ6mZGBtAtyV8nO1Yl0WSjC2t2HUWbRR+C4QYMMbSd062rQ3sKjXXgHWufUglrbcsM9Y6doPUKmOM5PY1uc691N5S2JjnlXVdqA36nZMcMCrPYgb+gSlL7Hxd16EU9FYzzwcODz8wzyeombdf/hIfC0q7Vv+SmJcWaJEkcYxIOZzWpFxfaqSKSggbJUmqSRlDLZ6bK8cvX1/weJr59nGR7n+FqiuDQmpESnGaN4JAewQIWyrLGljmjViFSVWrQimLbE0nxuENu8Hx6mpPSJXHaWbZEj5CaJBjdTqwvPsKdfE5jK95czHgn85oCjoLX43noaKCru/kwUyDxKYspjYUuR1QZHBVQEsCTTUmn/CftCS/fCSnIsPlUsgVol/48U+/48uf/yWvvxxR1ZKTKMNN2z7kGMkU4hapSmqn5ERe7tiy4vonIzUtrMc7zqd7alH84q8vsO6SzloepzuOD5/wmwzMHz7+SWDKKbaFtuHm+nNJIJaBZV5Y1yM1K+ywl2pjS7VInV8sbms4Yo2hxIWUV5ZFYtelFpI/o3UPtkPbTrZ9RSL/4tXRDEZxrpHpNNP1PY+f/kTKlVef/xo/HYQHqd8QG1i+5tqEMpJeTSG2z3BBmvaGWhMpbf8/L7a+czLojsK80MagKuyGDm1EgkItmJrb5jejiob2MpLdjgxRSksy7TrhOKUQ8GWTFKAXgUqcErnWxgSS+nitBQeNIWHZlg1VA9Pxjv/w+695TAO6WVgl6Vl4+vQDy/mR3/yL/4anh09S47Z7al/YYmVJAZUDy/nA5fVbPt3/yK4bmPueuJy5++5v2F+95curt6jqcNqiUBzXDVPh6fZHbn///2F/+Ybx6i2fcuKvfvkX5JTolKbrO57OJ2IQID8KfBKmqAz2BLpfc2aNkZhFpmORJIsygiZIIcpjQ2dqCqS0ovSILxmjS+OnFsiwnT4xP75HAZcXl8JwdI7OiJ16XTfhRyqpdca08und79h1A8vxHr/NlPKJwziyzUdSCsDE0+0P7K4/J29n5tMD83QSILhRTKc7+k42hjl5tu3EOj9izMC2PrAqSThvy5FXr37Cer5DX7yVQ0oV9qsxFqcNeTuyzgf8bmTbZpblKAPjy0xNe+H19BD9GWM6TL8nppnz8QPBL4Qws24zx9OMNpJgjSmyK2DMxjI5LvbX5JKIKTAOQxvqNGFTzeQojFdV5WCjsCItoMqBtqXnQ5DlmTaSKFTVYIwsNGoqoIXllpVpVWthwJQiFcDaWH6U/GJqs0pEFjlV/CY80v1+wG9BjLNNpAPCJn0xWmvh66RUsFb+bJd5xdg7fvzmt/yz//a/4+HwINfoAr2zuM6yt4Z1nphCkNpbqozXHRf9yNh3pBwpJD5+/JG7b/+W0+33nD9+jdu94eHjn6jrwhYzbujZ/cv/C9evbjjNCz7MxMMHHr/5d6Qiw5OaVs53P8EZzeX1nuw96zQhkoNNKuj9QNd17MeOq4s91nXc397LorCWv6+sFzH1amvZfMJZJwKWUqRekiM+Jzo3AAZTK9PhwOHxIw+37xidRZlMyRsPt99z/eYnZK0hi0RFGzk0lxxRNRPWIBVSP5O0JgXPdHogpygswOxJvnA6Hnn72ULXWUoMLyyqdZ6wdiDbjhgFbL0Fj02B/e4K1Q2kmMWyqWxLgxQKzXyX5B1pWo0s50SuiVICtSY270FJuj2lgN8CmSimaNuDcrJ0TZKenU6P3Lx5xc9//iv++NXfcnj8vl2+C52tGJUxdc/D6cTtxw8iOahi9d58IGa4vPqcw9MdPiRJtyogJixI1dh0bHGhlITTRpLk1mCNGCBD3rDt7IHyMqRXlem0Sq2/mTi750uIEoNoKREo7IadPD+TPIe2RSqYWlVi8og5XUnFMUNRhs7JxUQr8/wxkgF6COx2e1IqRB8lVdwSOcYopsMdy/EJ3Q/ytRhBHOQUiX6mFNiNe+7u7lBkOqXaYkaTY6LvOvzTLT9+9W+4dcJcLqUwz0dS8KwE3v3pb3j9k79E6x5jwGCpceP0+APb6cTjx284Hx9FHBNmjrff88XuCmcsl+Oe19cD59MtKsyorqMUsbwrauM5FgqFFKQmXaoMIDSV5XzkeHzi7Wc/YXf5GUrL0v3y8oJ1PlKy4/LignmZqSVxPh6pShKv23wk+YXkPZUE2hJaA0crGcaXFFjmM8u6Muz2JC/SEEC4cjlLAlOJjEfpgu00XTbEFJmnRzSV4/FemhVVtcV1QalE7xw5ytBtXSOdlct2iJJurA1jYLImIQO53gkyyddIdykDqBozqrcQxVKfaqVzjkoEI2d8rRRbUDIMM4JAAYXTgq9xTpb9Jc6ouhE3WWBWVcm5MvYGbSAEsU+vfmsM3IIygmrJVe5NIWVs57C9QaXSJFgio1s2Tz92WEPjkBZOy5lCAgz9eMn19RuCn1Elsi5nuk4u42k7Uaun5Mg4WvrBUlXHPB+oNTMMnZxNizDpcpaBVzcMrMsqw4YYCdtG8gGrIIYNZQqqgtWWZZ7Y715BiVilX9ANfp1kMFkUsSRBhGhJR795/Vbef8Gzbs9M9crt/R1GF84P7zk9fmLYXzMfH7Fuh3vzE+z+mpQ21k1S1+fDvbwjOyfs8xw5nma6rmeZZ0oO5LDy1W//o6TYup7OOJbTgRIT/TgwHZ6khhg8ZGm2PN5+oGpFLpG4eYrrySVLjVuJsbQ3I94nkU9qIx6wWjmfz5I+zoJnebj7KAsDaxguI2bL5FzZQsE4TV9FqEExaJUZx2crc6HvFM4ohtESfRR2p6rsnCUFWVZeDhplxMq75cCu6xj6EdOPbPPG6iND7whboChDNWInt0PP2O/IvlKM4vJyh1GeGuHisudi94qbyxuezh8JGyIbc9d0l6/xy4LVmehFInKebrl/fMd+N7JOQWq3BJbThNGVkiPr8sjx9o6qFHMoEBeu9hVlLdv0PGOQW0TnBGUSFaAVc5Mm7pUh6SI1aR/orabrHUVXRiWsakE7GVQpgtaIAWesNNRsbkk1WTzuxw7T5hExFWmzRaSJZCUxmnPA+yYeSQHtHEqL7Vc1MWLJcp9TxtBrg40y5FZuELuuXwnLijOKUhWgBNMVBFPg+pGQAn0nQ3ftRkl2GyfhoFpxVhOjJ4TA5fVrtBbZT82xIcGkTWSUcIxLjqSwAVqaLMgcJOfE0O9ByR2qZlmkuM68cHuLFtxR13WUFgzp+h6tzZ87nvvzB3yl0iLmlX3foVPir99ccNk5aDDz94eV2zXxGDNFC9gwp8Kvfvo5qdyyxixR9mz58uqG//zDPf/P337LFDKv9wO/fHNJrwvvDgshZjqtuew1P3090hnN6TxzOE1StWm/nd5aFHI5Bolt73rH6+s9MRZeXV+g9UIqBZ8yeV5araGj7yyH2aNKZuztC+heoxgtXHQVUxLLFFlCJmEEql0rNBZa33fMy4KPRaqtSioFm/cvCYJcBJAeU4SqpU5s5O8+iKii1kJMgdLqlrkZWqhST5Xaj+iZNTLcKrW2KqRYRFP7d1HCWDNaYVtlWeyhkHJBqSKDohDZDQMpRRFqFNl8D32HaTDfbduwLlOzwOaV0YzDiNJiSaxZ6hClZPwmdWStnqsIMkxSWngUndFtMAbD0HOx35NCQJTYkbyeOD09oFSmhJn7d1/x5if/lKwUMf59asR1Uj20xtB1Tqoc7WLCc0WyZmraUFXsbMY5dE1cDRJN/ts/vcfHQK5S0+6UQUdPqJr7TeLPORd6LZuhLDcAeako+W+DIYQNrWG5/5ZwvOXzX/1jvr+XQZxPhTWJpbFuK3F5IN3/kfD0A2V4xfWv/mui2skZvQ1zlBFe4tj3wu1zVsQqVZJHz+xK0y7+tcggVmqntK2AklhzjCJNKRIdro2VlVstN/mZGmemwyeuXn9OZy+JYQVk+7ksq3wvYyO+KY1KnunwkfuPX9ENl/T7G06PtyQ/E7eF7fCB+fCJmy8uKWnlcP+ObToJPB/DfHpit9uxrSdiFOtQmu6YtoXd7pLgJ8J6wrqR7awo9gJtBlRp26KaKWklbQcxfiXPOXjGcWSaFlzXs/mVfrikc68wChIVXWfC4unG11Az09P3+G0h+JXgN4GHH2+53F9wPt1Chc9+9k8xw1W7FNc2tJAEUElbi61L6sdoTUgJVcXyl2sbSDSwszEGpc0Lq1KG75LmzCmSqagSySWhlcEqMWAbaylNVqAVLXFTxRRmFBcXF6Rmlqs1Mgw9PqYX42rKwocp7cK2rZpx6OX7GDzzOqHHkR7FaC3LulFL5PTpe86P75h/8pd8+uZvuNxfc/XZr3lIEW17gTOfPvH44Q90v/wn3P3x3/D2zU8ISRGnO8LhA9vpjsu3v2L39ksCGYPn9u49b28+57u/+3dsx1uW4y2uG9lfvuHDj9/iLl9JLaJKojrFiCIzbRug2A2SFkq5CpYgl2b0Bm0VtWzMxw9cXL6hup3U4jTEbSUvJ6bpnldvf0lG2JVKVVRRpOhZTvf45cw4PDHdfYMZLnGXnxHSmQpSz9NSA865EKcnTg8/sipN8BOlJFJcOT1+JGyLsGms4fH+R7puZDndU9KCNVLTiDFg9iM5eWKOlBxIYWE5P3Cxf934YBqtBUx+/3Fj82cxotoBpSspehSZUjXT+ZGSNsI2STpqW1BKs20bx8Mt+/1rYq0cn95xcfma/eUroj8zne/bZ6my+oo23Uu1XatKwbX014kbP1Gr1Aok/FUpRWpQWhVSCeQKJUHXD1ClDl0KECVJVXWTE4XCVgvDVcdoxdDWGYPuO0w3ymdLK7aUibVwuReGnFKIbdv0xJQYRodVujFKxfrlQyDljIuRikgKtJKlhVaGVIXVGFPEZqA9H1OK6KpBQ22M4bjIQW7Xd6w1MM8bX7y54t3HH9FojuczZTliMVwNr3Gdk7QZEM5P3H77Wx7f/RGVVvx8pPCe6COT+ROPhwP7i5HHz77kzZv/PUYV6vLI+9//z6xP7yhVzgLOKb7/2/8XcXrE/Oa/kM9fkoR/mB4x/Y7BXfH25prrqz3rNPPx4SPrsqGQ90WtRUQjNXK6/46QMp///DeUqkmbSEGoidPjO/rdJWqEZY5QI2nzPN3+SPYrWe2E6xkLD5++l4XhxTWmJkJO9OOFDHhyIIWJFBbiemBbTygltsoYNlIUW7mgICTtdTp8pHM7cpEaayUzzwd2+yv8Ju8jrZupOnvOpyf6bkSbDqNluEdJhLRhXY8yVoZnpQhOIJe2xYd5nZmXhVqlmrTb7UEZUBZdC9vqMebMbn8DPEtjNE+Pd9heMW8fcL3GuYFljfTOCk6lVE7nJ0qp7EbHttWX57OPiUqPXydJxAO5JpxxpAS5RqyqjAPNWF0xWs6JJRS0WVBlw2oNlMY0UhjT0VlJwaJGjJUllFUt0dYSe94HEVGFhLb1ZVBeUqHkSkE1lnNiHDoZjJuert+htSFEsX2GkF6WiVpD9B7vt9aYsVAaWsYonu5/5PPpkaH7XJ4DAvxAq8p6fCDEyOHyiuRn/DpTa2E3XmEvdqQsDM73P/yBbT4REC5TzsJyTClSUiavJ5aHd1QsRSkuxytOj3/i07uv2I1XnA5P+HXCdR3z6cyH9Edu3v6cq6vXPLz/isOtI5fCt1/9LZ99/iXXb76Uc2kS0H/OiViioCmURemC31YMhcf7D8zzka7r+fmv/hHLslKKyJjWeaJzHdFvlByZpyPLNOG0YpqPhGUmhFnMlFowLIeHSIyeGDy7y2s0sEwH5vlEDHt24x5KfkH7yNVWSeMipxcjZGycu5w3tvVI8GKNLaXSdR1aw8WFwRhhZIVg2JaEchbTKYLPhDUzLUGYtlXqkH2vMUNLx7aluCJjjJPGjrXYzrLMi7y7nAQUeqtJPqGqxTnhsGulcbZQcmE3WGrZWJeVUgPOdVxddcxLbggeizWAkmp4rYXOOKRA0xZKWsKGNcuJevEepQpOy/LPSP9AhsdZKv0G+Vpjjrhe2kkWy+HplpwWVM0Y21Frj+RCVja/YI3DKcs2n1hDxFiFqgVneqwVqUopsKwn+k4SRbUU1nnDuI5aNc52KAJ+nsk1MvQ79vtrQpgbEkqejUZ3rOuCKiJpKrUjpzbQVcIEf3p8wI2v+PYPf8vFzRe4YU/YMqfDPSWc0NVzcXWF0gNhO/LhW0kq6s9/zTIdyTniV09KGwpJ3nsvPztx84K98is5B0qKnJ5u6Yc9XT/y8cdCXGY55xZpotQq7/vcBiV+WYVdn+SzEV3XkE+yaCvGSCCjYZwkYSpNHRnOytebw8bp+CBBBrPjdIRKJXhpq9kiyWXrNOucqFUqt/LLVnTWpFoJs1TfKXIeX7eIUYY1toF1KRhd6HrLuiW8P6PMglM0MZ/ChywIl5rRuhJ8wGTLum4MFyMlBLaUKaXnN3/9fyTFLGOU5Z5hZzAZ3n/6iDvcCiJLK0oMcO+4unT4LXM43aGr/NzmIeP0IzlJU+J0fkTVxK5XpByIKGLZ03cV3WVqlueCLpWaZRAn9nIZ/hpnmLcNYw06eFJBMEIIz1gjd46h79ntb9jWmV3fizF6PxJ84vryirnx7rSSurXVms1HjHGkQkMoaZx2pCjD55oztpPPdKWglDTOcgqC41CI3KmhFnKOmG5gf3kjLcEs5855lgp51zly3shJfvaG/QXGCmJJW1lKBb9hnCx7u3EvPNcUubi6YRx3zPOJHCMojbaO68ue8/yItZqYPLVIOlNbiDlijCE3trTrO1IIxNWLBEZ3GNcTgf1+/9JiDN5Lw6HNRpT630BFN5bE0EHNmliBnHl3DjjjUUVx1Ru+uDIkMu+nxGErfJw8W9jQKD67ueQ8LeQirIUlJP7d77/DLxt/9eUr/snPP+P+OPPhcSWnxE7D51c7bnaOZdu4PUqU32lDoYpkwEqywmrLm+srtpTEhhUzT6eN0Vk6KymW0uQTpW2Vdn1HN3T4+xOKwuZliNZrw95pdr1mXlZSQQCVWXZ4OWf2uw5rLZ+/veZPP9xxnjepxbU/rGlaUFoeGiXLwCmW3C4XwkMLfqMYqcyeiyTztkV06wrVpr7toURtLB2DQqK9obH4cimSYGxVidogxFJTGuTwGiO1SLXFaDGrKUSokPOzgEGqc/vLC46HJ6wq+CCDN5RiP4wYZalKorWyFTdi0SuVZfX4bZXhW+OldJ0lZiRh4joRc1hD7xxffPEl83xmXUQ7DYVSNmxv8FtiXjw+/ond1We44RVaS7w454jOktJ83ix21uDjhkKAs0aJilrVKNsBREpiS+LGah6OZ05B+HOlVCyFGjdi2ih6QAePGXugsaUodGiiKagcyOcPqN0bihuobag6v/899fI1/stf4uNGUYZYKsVv5OmWspxJp+9R0z1+mVjuPzDub7j82V8145alVN8sSAJxRmlCCKRWLytZhjoV2mFBKtg5B5R1KAxyEalQm0WwVKS8LnWpmBLn85Hd/obT4yfieuYpBb782W+IWsxoXX9J9J6wTTijCWEhhpnd/g1hO/Hw4StOjx+4uPbc//hbPr37TgyvObLNB+L0gHrzM1KYmU4PKF0k4ZYKKS8cDivW1mbM3Lj78AdCWrn1kf3oxDqre9blkcs3v2G8+TUZuYAoXSk54NeJHGZJY6QAxeO3jVpHUvSUNJNXhR0zpoJf3rOd7yH8DG065uM7jIZx7JnOM0VrTsd7AdmukiKZzw9cuIEchXdTq8foTraIcUa5gZQ8lB7TyTCDIiZgZRyqVGpN1GoAi9ZizJZaZYEcqVUsaVJdj1JVtk1+ouRlV6ukXiuVEJIcRHSl7/pWIekYBsVpPguyQGt8FfmGpJIsNVexO6tW/06JbZv4mcroErm8uKLkzFwzcTsz3/7AcnjH0w+/Y/34NfbqGlMi9uJz+uvPUSVzvvuO+f5PPOrK9vQji1HkXAnbPdtyJJfE7R//Da/nX1NvvmTWle/+8B9Yv/gVP3z1P1G2WYxfcYVS+MNv/y1/9S/+TzzcfuT4dMvPfvXPWKcTzilUdby6fo2xlfNpwYcomvpa/t4WVhTnpw88/PCfyG9/yauf/JUwZmqRQcP8wOH2O3bjjn73RrgaVZJ92c+UtOJcR80bTx//iOovGLodh6f37C9vyEWTiwgPcqo8fvyWbTpQrJGtY5NgrPMR1YarsjQ6czrcsU1PbNuRJNNftJHPtzxPJXEWU2SaDhilCWEVJqUGlCGmiRA2Do+f+HK4Fg6MaoflmFjXE1DZtklSE8jBuZbKuk6tPhqIYWI+FXbDldT1tNSPYs50wwV71wmTpEQ08v7YfKYfKjUJb1I7hyo9rtfkECQ5mwIlru15o8h5ARzj5Q05RQE1t+QPyKU0hMy0ZJItOKXawUix3+1ZlhNKyf/zfrfDbx6jsoD22xJDNWDxsnk6o+Tiq8WyZi1S5UgJayWZrp4NpbWIZbal47XW1Cq1xM5JkslvKx/+9Fuu3v6an/7qL5iWjc0HEU8cnvj2D/8rbz77GdP5ge18j982Li+vefWzX/Dx7iN9P3D/8QPn2+8pYWuJH43rKtUKB7TGI+vhwP/6P//fGHYD49Ubzg/vCes9NYtN0BhFLT1xfeTx+79B14jbv6HvL8hx5fjhdwxXX/Dqs58x9ob7uwPzdGyHSKlEVqWllkYlh5nT4RMxLNQSefXFX4rQymi2aeLp4x+5efMz0iaoj+AX5vOZp4d3aCMba3lfC4vqfLqj70eOp4+s8xNf/PSvQFmCP7OePlKKx69igM9pJaX275baOKmSMD8eHtAK3n7+c6bpodU/W6q4FqiJUhMxREmLpUjXe3IOkjZUkqwqNVLSigShBwqCNrHKEEliskuezlZ244UMb9JG2DZsv5NNUhLRFDW0M4WgVZwV23WukfGqkouo+UrNhCJMxBIirrOs2wS1EIo0F7Q2jUkE5/kowzNnCDGw211ysXvN8fhBbK2lkpP8bLKu5FIxTmE0bCFTUJJubvxlZzuUcUCm70Y5Y4aJqgtGifVdGU30XphVWuOK1BWLj5iqME4kCsYYYgrEKNw8VEbnzLYuWK3I1YAuLXkgzYBcCtYadIEQJdk2DnL21nVjeviBfrdHDXtJwGHIYeP89BGjNQ+ffqCWjJ9PzNMDX/78H4NKhGXiaXrg3Q+/b8lLSR0aI7UzENxFzZ4//fZ/Yty9Yn/9ijI8cf/+a7bDLYeHW1CuSSgC+/0ooqmHd7js+fTu74ipYu3Iw8c/UOIZrSzdeCm4aDQxeFL2iA9dOI3ESMye+XzPunmeHm9l0ZMzyzwLriN75vNRBhxhZZ0PghRyA+vpQAwLYprXpJhb+t6wbgs5yfnAGidpWAQ5kxvPmzbkqm2Z7kOQ5XgtvHr1hsPxkeg31m2Ti7qx5C025qAmxUryimxrq3PLz9h0LkRfMAp2Fz2pcwS/YbXBqkJnKjXJ5bbmAhiMlsSaVppKwYeVrpeUX6kwmMbdU5qxH0EFUhGLfSkVa2DdEtZW+XNVRdoZxeN9lko5hlyd/JwpwRL1/Y7OGi5U4enxTuRKTtoRSlV2fYfVMgBCyRlK3i8i39NKQ06Mo8UVxRaC4DHC6aVpBRVnOsbhgvP5E7nGhq9JrV0UcaZim1RDa0eIKyGsKCWiiJojOWpqlWZFLAmjFX0/MJ3OdP1Azg6Npu96jFY4DQ+373DDnnG8ocYgTR/dMQyaZTpDTXjv6YzD6kSYz3z68Y9sy8Lbn/0av66cbr9hne7xfsOvJ1J6AlW5urjg8dO3dG6HXxe25YxRYgTWyuE3qX9HL0torSrBL4B83hvQV94pfpUzTwzQdxK0yIKZyaUQoqfresErxcaRL6klv+rLOzhH3xjSSc5nFKk19iN9NxB8JMaFsC30TRK0HitJJWzDCpRSKUmeyTk0kVQHXS8SC0rG2BZCKUp+jZxl9NuSYwZNLTA6jc4KYy3OaFIVbq1B+H3d4IhR0BpVSbgiJC8Mz1SI2hAbTupwOGIwaBWZ5xVnFcsZbnZXnA4HlhAZ+47OOOatcjx6rLGUrBEvpcHqK7TVnNeFkiuXRXMxKrqa0SZjho4SIvO5YmiyvBRERGZFWpTa81keHAbtHJ02+G2jNNkiukpYIK10nZM7RFWMu0t2KqNsL1iLVHl1dcObnMkl83D/LafTA1VpaWHhUNqilMG6ThYMTbQhdxyoRZ7nrqWzYwqSTq/IMtZ7qbRqx83+iuQXwjYL+qRKuvoZR1VKlmpsrdQsDU2lKsY41nVpvH8H2tIPAyUmOmWo2rAuEzXJ91wpg4+B1U/4bYYuYpygNIQxuFJqwSpBfmC0IKL8IpgQY7C1sp6PpJKwtuPi6prz8Yltmf4+9GG0tLj+zL/+7AHfMVe+mzzkwm6Ft53j08HT6cRxE27AP367Z28NP722fPe08ruPJ3754wP/7T/6KUuIfPb6NTEHNh/5H/7ma86b5+Zy4LOrC75+f8/94YSzjp3V7Hp5qXx7eCLFhDNaEmPthlBRxJS46CzOGGLMhNiMlc5SSuanP/0Ju/0O/+GOy/2A7XviutF1lpAKD+/uOU3yIrXGsHNyCfchsnpPRpKLKUdofyBDe2mFlPnh3T1P55kcM7smu1jWBVAtLdesXwqpSyol9dFKYw8g/e2tMSpa7RjaRq5VjlzvmlUmtZQfkveqEoWvVTYctf07aIVC6hzLGhq4VCq7VQmQVCCjIuVICbHhKiX1HB+ISuOsYegGur4To5WRDYovG1SpXG1ekjWlgjZOBnHaUo2ALB2FcRgxRnM6ZpyTOhBI5bG3RjZC2TOdDsJKU6BKQhV4+PB3/Owv/xW2pRy1kpjx2HcsOZFLJnoPWaystAufpojxp6TWpVes85HHzXN/PKNKY42pjiVmlu+/Zl8m1P5zNLBPhmJ3rMMlqmY6ZSg5oA4/MP/4t7z99X9BKq+oKZPjRF1uySoyv/sDioJXHYyvUPMj/t3fkJcD2Z/FhBkCHYnH7/8TF5evsMMFKRZifERli7l+g8+Fzo3yIlUSyTfGvqQPBB4MRhWe7t6x211w9eqt8HpSJFeFM4b59ICxlnH3ipIDJc34+cjY70jbkZJWYpyYnt5T/Mi2bbz94i9ZljMpTJLG2Y6czx+oMRK3M+fHD6QYWOcZHz5Q4gYxoIskac9PHzDOcny4hSgbdrnVS9VVElryYs0pczp+YvMLfg2omytQGuci0/GRkhXD7g22v8Q2CYVXGUUkRd84HVleVqWwLWdJk57uUeOZ7fQJ60bC+kRoG/O+v8Spwlpqg5C3WLhKrNMTSjupJscZsghSVInEMKG6PZTEev7Ebv+KEDb68YocBeKa4kYpkqiM2wEouOEVpeZ2oJAFg26X1VqEGZVLluGeEv6HpOpzG4jI904rYf3FWOn3wlWyVrgsz3r7C9cTk9TiU87k7MWIeRZzaqoC0h+NxbJh0pnLYc/FcIUP8rmLyz3h+AG2iXS8J08PLHFChYnu1YZ1V1AC08N3mDgRp090eJbD95RqyeFMzRslKc6f/g7CgXD8OfurS9aHP/Hh+BH8BI3V1rmObT3x3R/+PVcXNzzdvePh/ntMqUzrzMV+RLtLdAro3UAMibCcmuhkh0bJ57wWnm6/Yzp8QqWNYX9Fd/EZlMB6euD+u9+xrCeexgs+/2mP0oaSVsJ8IK0z1Mw4DmzrQkkTaZtYTl9w+8N/Zn/5lourzyllZTofMarj9PieUoRTorVFt9p0quHFvJ5yodOF6CcUUofLMcvgXalWH5aDTmncxpI92zbJz4wS050b9pQSKSXgtwM1exmMbAc627Fs51aNK4TkoRY6Zxn6js721Jzx60mG/CG0VMg9NYvdV6oHwjact0A/XBJjoHcwn48YLWzXZT4wdj2FSDYGiiVsR4xxlLhR0swWRAqAUgzjJSUOaCUX8pozSUnCuh8cfiusSyE7zeudbSnkxHQ+UMiozr6YLnWTM1Ul4ogURRCSY256HA05o6xcGJWSCi/I/10qONfJgFWVlqxvQo4i3Ep5ljT5hFX4+Z7t9I7l/IaMQZMZbMfx8YH7H79G50JYjyzHj5IKe/yR+PYtDz/8gX7Y8eHbv2M9P9L1ls4NItii0jXjNyWSc6WWO775T/8P/uKf/CtOt9+xTiep7iuxl9YSyTGyTk98/Prf8+qzn8ObXzEfn5iPHyTpvzzy7pt7MB3KWlTJ7QCthIGoJfm/nO9ZpzPRz0QfGMYLdlefU03l/PSB6XBLyYFh95pxd8XjwzuSj+2CKWcYaxVGV7w/Uw+ay90l23xP8hPT8Q7X7wlh4vj0XszXIByntmSqVc5ZWjd7r5WayrqcmI53IlcqkRgrSrnWTtCsTXZhjGbdEvM0sRvODN1O6nc1kdNGzpESFMa4vxeqKTlDaSXnrm1+xG++JZwlPRHzQtg8tWaWdabLggiptZOqdG0m9xw4Hz4RNsWXX/6cfqc4T/cMtkOpSteP7C7e4rqRVAq3tz8wdNAPA/O0ELeN2mzhXWektlyPIvFxGmUqu/3A2sy0nXMYq0lxbc90kQeFmBn6nlIqyzoBhW2dmiSqUJRiCQuDFfZS5ySVFxG8B9qgtBgXUxOsiPm6WQwVGFNailzOtdoYutpRcsSaDuMGtO1aatURgoca2LaN3W6Emnj88AeuXn8OWs6pJUNaj2R/JhWFch01ZkpcON1+z268YJ/eEpczn777HdPTJ1nglgyqVR8VL+xbTcXPD5QUZfkbVmpc23AuorVI7GwnjC+H4vzwI+H0iW154jwtjLsbjFIcHj5ycfmaMW0o6+jcnpQ8x8Md43CNdh2rn4jrSs4z6zK1+uSRr7/6z3zxxc8pceO0HInNTlxLxm8zh8eP7IY95hJS2GS5lCIY3fAyYnb02yJG+nUiGal11ZopJRH92s64Sp4P1kh9zlpiFNne49MD0a9AIZXKpkJLSzUIfgz0neFVrgxjz7YkksqEkKkBUlEkIIZZxF9WhBFKa6o2aGUhVazpBe1jNEO3p2QxvhrXoWsrNueMKgblZMFiOsW6RLpes/lEyZpAYtcGNhWIPjezt8HZHu0sW9gwtKGAVkRV6Ieerr9mCytGHzC6YI0T6ZYGcpT0XYaahSlJzSgNqw/UKtVmXSsGQT7FWnBVQTHMYWXsZShxPB0ankOkC7WWlxbV0PVkCs5a1nXCakmvXVxcUFOWhFJJUEQ4cp5OgCIFj/cLfb+TJHLNmFLpdhf4ZaXrpQaZSyAVGbg7N+L9LCzEIiywWisxJebzgaEGHnPCDTuSX7h993sZQuienAtdJ0v0lCLRL2zziRg8j/efuLx8LXeMmomrGFS7bmhJ6w1terkLWznvSBJUv5zjgt/w2/qC+RExo7BubVvwNVSZDEmrSO1KThjtoJbWxEqoIgNF6xw1JeImIgPvJ1msbwXbDRQqJRqy0XRWBm8pQ1WtsYaiZMO2ZpQp7Me28K6VEgu7QfixFo1FEZIiR2E3XuyuMFmwWaNzPJ3PVGeFmWo0RYm51Zi2NI8yC7G24+Q3dleXpG1jd9lz++krbi5/zpYrT6fA6ytHzYqh27O5wJxOYBXuwrGzsM4b67pirWV34UipEiLcPUysW0GVirm0+OApJmOAZfYMo6ZGg7JKUBxasaUKJdAZi9OOTGmpOvl8bqpIdTUGxsb2V1XS8rpxlE3xaOtYpzOVE3EdsMMFm+9YpwM5r8znJ6Z5RRlBcFEyrh+xtsdYQboZ7V+CKzkHwWegJHmnBJkSG1s/xIRzmq6T/1bVCj8vrOeT+AAaigwk0KCgDYstXd/R9QPJL9SWulTaYG1PSCKw6WyPVhlIbH4m58xu37NMZzY/E8ImmISacY1NNp0fsG5kHPc8F1tRinVZyCmgjGa/37fwU26tA2liqDbUtM6hs2kD7/Tnjuf+/AFfUImj95gqKbLPh8p/+bORV/sd39zP/Ifbmb87ZK77wJdjR2fhYY38j3+45eevr+gpaA1hy/zx44FvPz7ijOFqHPnm3Ud8CPRdhy0FleC4TqQsFcNOGzlapyQcHKXkYNNZ+qHHGi3R4lwbkBteX12iFXz97ffyIXSWTil2lzt8yny8e6Tk8rLxH54NdglmL6YnrWXDE5LUDpSSWu3qE4dzEFgz+SVNOC9ru1wLc6+2B75R0j8HZDAWxbICleC9zG9anFm4J67VUORCLyB4sdmkLJdDY0yzvOxarRfGzsoPUJXBwDLPpFzkBxsEtmzFfKmtpVciTkhZTJQlRknCNGuwcX0DkCfZbFT1YkctpaCb/EMe8AqFYuh7dIuidk4Sf501bZvm2odMMZ8OkJNcbnPl6fYbNJ5xPxIPM4sPDLVr0XuPToqqDNBRUiQGuLi84Hx8xK+THLxLkiFwY+cp5HtYUkFZmA8P/O77D3SXe9YQmTfPsRR8rnT+RJ3f020z9JeEj99jLt6gf/ZfyYXJAKcHwt1XhMcfOJSV7s2vwVyS1kfSeuS8zrIZ6Ab8NtN/9hvS8sRy++0LU61q5IAdEzk+sN59ze7yFcfjHTmecXak+i9QtsNc/wx0q7dVhTZVmBYtygzCeVxPH4nrTixSZkRONpYYpIrlrKP/SU+OET/fE9Yz29Th509ELwbGhx+/wl+MpFq53F0S5iMUkXJMT+9Ypgdo1rgQNkmF1ETc5hcwey4VrSrT4RPZTxwOj/S9DClrybi+J5WKtko4TUrYeOu64r0nRBk+gRI+EoZtO1P8I10/QpWBTJwf8esiA6znGkr7rEQfJD2UPOt5kW1e5+RAlAuFjSUFQpQHb99rUmpMLgUhRPpeywZnmZmP91jbQwnE9SD1+LAQlwc8FR82lDJkEwXQX4pYKWtm254wGiIG212ilAxoYwyyBS/CqHpmYuV2GFEo1PPhqFXSSlGCB1CZvjONk5PpOovrHdsqxtiwbkzLwrqt0ldBPrO1PX+dEzvh0FtqnPnut/+aq8//ivnhDZ/98q/Z68D9hz+QNuFCrk/fYWogbwk9aB7f/579q1/KRvh8S6cy2/JAjAGVAj7E9nNesVaMb9Phlm2e8csXklzeNmKUS4H3AmUuKWPKyuOHP3B4umM73vH04ffElFjvFRc3X/Dw4Wt+9pf/Au8z88M3dP0FN1/8lVwSaiGsJ07335OCZz49sh4/0vU7qQPOR6bzEyEnjk+feHXzGUp3hPWJ48MPaC2cN1U1fj0TwgJKcbj7jrTNnKLH6kLyC6fTAaMdMWztWSNsRtpzXFrUtQHGFU4byB5jCirKQSOXirUdMRbZ8BeeR1RorfFhoapKLYpUMjEt+LgKHiJ6tuWppUomknIs60SlyNa66IaHqGzbRu4qg7OkEAiLbDxrzYTtRMxZUjGScWALkb7fy7a91b36vm/LFYXfFnSV9EHJnmG4IKcF6AlhoRRPyoFtkyoRFawZqNW8DFeUknf4GmSLO3aVy9HIRddqcirELMKjEC0Y81JjSFnqtqUK10Rpg3v+39IzrFlJugQaXFtYtErLYEEpGd6VZp5PSUQsqlmwQ3umGBUYBsfhwx+x3SvssCPkQrAdT3c/UuKZEmem0y3b+QGlDNPTR463H/n0ze+oSuHnJ2qJmGoZL25Q2jP2hhwLISySkG6LqIcP39Lbge30iRxXChajaXbg2i5EkuqN8z1P24pfJ7Z5wqC5++O/Z/Yb169/ypuf/BXeH+mHC1zfC0uqFhSR5XBHLUEqRdvEfPjI4EaWNXK8/RMpbDLkixtxOTE9vWtWP4f3hZw9imcmTSb6A4fH74lhIqWV+XzHEDdKDlLTdJmu6+TnPVlKyCJ7yqmJxSJd59j8SmcVYZvw24azmlTk8FueubdZBAfbthJCbMuBlXwRUNqg2oDPaEPNiXm6RSkBW6u2pIslE8PKts4iT1IifLND39IejhDlHFdq5Hx6ZL9/TfKe+fhIjJHNJw5HSVJ/+nTLz3/+V8S8YK1mfzHgt8zNqy+5u/vEuj6ybkdigpA2ShK2mqrCCCylEOJCJWBNYdcN1LCRqDgnoH+csMW2dWIcLanKcK7rB7TtudiNTMcnvF9J2ZOXTWpDprLrR7QxoBypBDrrxPiIAM3z8/u7yju83+2EH5mFOVirCOBQWuRbqrzUc40VFnTNXlK/VeHaMlbpyrrMKKMw5cR8eGSojqIqnXFMh1v8csS6Ed8SpyXOL5iCrut5fHrHw8M7Sa+ptiZUilwVqaW/Yk5YY/EhYYwnzCfoe6k0WotSUVostUqiSBVGqzg9fpSqaC6EbWsYgtoWRd8z9Xtevf0JdueI28zT/Qfs55bBOfy2ksJMWA8YVci64tczj3c/crnbE30g5ghFlvVbWwTHdSKoShxEMkaRZF7JufGeZPGplHDBahUr77PRuORI73r5WlqCKqVCrUF4iUpxffOK/FSIYZVkSyotYCC/FxoPPOfKMmnKmiipkIygSHSFnXKEnFFWMQydXESTcIydBlME5ZNDxBRNUZok+yhBDhUAA6pDmyjMbx9eUpSpVjoUxhZ5vxSRa1Cg60yr0VpyBUXG+yJLpKJYfQXjcHbkeDzSdUeWdZF7iNGgZCgxWtvuUZpCYdc5Gcq0RF8ptCFDYt+NVCxZadLimRZP70aGYUctgZyDiGVUT9clfFhBW56ZzKUN32IzLscUQEvjyBhNDUHSg6qnVDDIHTOVhNUVrTJKyUBCa1qdUtI9BanGWm1BGTor/FOvKp0TkP+ybXTOQFUs2wk3TOx2F/j1xHw+0prTGG0RCaEMfPtB3ifCvhWkkUG3pXLi8PTY8E9BcBbaiYVYO/phR98PVGTJPE+yQNRK6qC5CJ/a2YZJqBVV/v7ZUUtuqbIKTQSkqpyDVG21bw0UMZAK9zgRto2SBQex51p+/VpJsRJSwXbCWtXmWQSmRFalCw7NPFeUym0HWdhWhe0q3aBFZmjlmTt2DlcrIUsAKJaN/WVHZzK2KrGHt4F6DFXOcQr580qJzSeW2wMhF45rpsTCtv6AD4FtjRxTZRgcZhxQ546d1VhbUCrSu8r1T68Ia+b+buJ43IRLVx8k3V2qsAmPG7ZmXC9ccaPFip5SoYYERmM7eOYNx+dlmjLEloJvVC92Ttp1VTeRxfMiNUn6t+bMfPKEHAihcFEdV4Pj8HhPTTPeL6zbJpzOIndcN4BVmq4fiW24HdYZUBiVRfhY5eettGF8SJIQpIpFXniWhbieiWER4Yxq8xFKu5N54QgrRdEi4dhfXFIKhMZYRFtZrJVMzgWj+/bZzUS/yGes6ySEZBU6VPrxAqUCqz+hlcK5geAXLi5vhNFtzEubTmkly37r2t00CiO1FEqKLOfU2mmCX3JOWhPPFfU/568/e8AnmmnhMPxiHPlvfvaGU1x5uvc8bgWvLWusPCTF98vCVadJ2nI7rfzrrz/w3/3zX7MdZh7Pnm+//8Su61C58PR4eDFe6ZgItRAVjZ2ksBWsVsTnVEsVAGVFicl281zuB7YQyYX2ws6sIfL9+wfpfzv7sjF4mlam8yz95yoxdGeF6XZePBZNQthMJQovTimgE57c8RSIVVIVpWR0m4TPywJFkWPCdNJer034kEt+qc36bSMl+Wc5SeXAKNmAuE6sms44cokELykNrS0pRypZevpVUcnCsolbg873ksZoIgWBUYPrOkB4bUPnUFZ4SsFLFTqXwrr59vKsrNPU+IC6pRYldSUXOqnCpSb/oCKx/QbgLFb05VpJvFlV2eKUKJeJzj4roWs7XBpqFJbQw+235LQynTcKhZqlUnw+Hbh4/B5tei7e/FoGHtaQgydpTQmrbCna99payxY8FeFH5QbqrLXSqcyH48zxFAhFqgSlKEJYMPMdowqYulJ9ZH18jz7fMoxvsG9+SUZRn75j/vQ1YT5SsyjY3cXnJC+a+1w3jp++4eryNcv5UfgrnZFaG6UNOpXE2hWonDjdfkecntjme0kaWItKiyRAfeTVFz+TKg6SIDjef8/rz36Ddor5cA8psz69g6rw53dcXr1FGcfN57+m1kqYH0FXTp1Equend4R1YyMxPd3JIRNY5wd06Ygp8QlDLZHOGVJITMdPwj/KsdWyAlVpqcw5LawjbQh+pdTEOp8oWRJpMXqMs6igW41cobRibQp7Y2Wr4jpHTFmsW11HTpKCSCny4d1X/Fx39Ptr5tMHQjjJRTx4rJbLh0ISUM9JDKXUi+SlbMKgq83EnBtvSwbrcuiNMSHSSI0rYKzDbxMpBa6v36KohPWIJhP9Rmgb4xiSWHH7K6q6lEO3UpTghcdAxGTVYt8jptWoDQKUzcjGskSpaFYlEo6c5YCS0saWFrQesf2FJAC7HmN6/LYyTzPbJmZPamEcOrKqUGENXr6uWgUEmxLBS3VzWRbU2FGnT9ydH3nzk1/xpIrYvcMTzlZKVkR/RCtRzi/ngg8wffoDMSyoHKhahrE5t8g9vAzYc80yNIteqrjrQWQeRpK2teomAiloXYnBc3r8yDKdCMFzevxA3w/EVOi04nw+EN5+Tkya5fEHfH/F/voLFBar4HC8JfkzOScCCT/dsZqeTOZw+CCckVrorcbPB7Tp8euZZT6BKhjb07tBnouNt3U63hGih+g5H25RFeZ5bslpWbZYZ4WHlIW5KqzMSu86hqEnJY8PAliXQ68c0JyWylCpUu0YBjErD/1ASEEAxq4jlcwWhG+VElQi0+lOEn1VLgoh+oa/sGhlhLtZqlx6cmWrLUmraqvPiqAjxPgy3NsNPcsW6Jxlng6EML9wH72Xz9qiDEbJs1UnT2cdPqzUID9X2+bJtZJKQaWE0YF5OtL3l0Am+ABmJ7/nkBg6y66zkjBQChUCQyd8IkMl5sy0BYxJvLl+xRQ2qsoyPFUKbQS8bIsTuLo2rZ4BXSeLqtwuzLnVSJzrXgxxKcufR61JaiyNa5proesNfvMcHj6wu/qB/fVnxJhJyjA9vmc+PjDtXjMf79imE9fXrzAk1tMtNUycjk9opTBkvJ+Y1oWr/SUxPC/4ZONcqTJU3CrnwzvWZYJq2oJT0zmx2ddaXy5NIWW20wdKFth+LoHz4SPn8xPJL4zDno8f/sTbL37B1asv8ctR0qVx43x4YFlEZJVL4fHTdwzGkfKKXx6IMVJjoVLo+9SstS0xYB2dMxhl8WETrjBwOn2SgVwKzOc72f4jQrGaMyplcgmN8SnPbNcYTK4JAvq+l27GM/ynKsZxR9cNkiIoGWMF4dH3PatvSRGjWbeFvh9IMUh6L9GWoDNKaewopLJ1O6PVc6VQpurKGHQ1oC3TdEQbjbGW83RmN4il2YelYVOE++Z95Hz2jEOHM4FvvvkdMS2UXOh7he16Qtk4HJ5wrkoLwhRC9lAM3SBNhVx6gYmXimqfX2s7SiosmyfXxG7sRdamFKjE2YuZ1RjdrH0Lx8NZUrglkQuQlbwLktgbg/K8efUKHzdSVhQLpUQ61UvNUlUKWmyISRArFWFdGiXMQ+dGSRMlWaikIn+Gq4/U3JJF68SWNqpSWCWmd+tEOkBeiNM9MUei0ixHSXw+DzPCulHyQowb63xgt7/m8HDLNB2kIobw4mpLTeWc5f2TIZckw4Asw7CwyTDMrwIzN03KZKzF2gEfIlbLcCM3Tm2Ikna3RkyqXb9xsbvAmYF1OuCXI+fTnqurVw3tsLWau/DlUIocZubTo/DujMaaEWsMKSXhhNfEus70/SjVxpzlnlDEDC5MpyJpZ4QlZ420VpyxVGTpl5J8LfMy46wsJ8WEmwlLlDq4EYO2c4bS3mnKKGRWLhZxkmINWe5bnYgIDAqfNmKRkKdVLTWX2+JcGxEnREWJFmcqJVWKkhST6UUsZhSAQSmY1gWqYnA963ai2zswmVoTOUVSS7rsekdMCmf2ZDS5SFWc0s53BXItJB9kYZ0CY7UUBSVlQS7ETDGwcwpDZfUbzjqsM8L01UnOOVoWzMYKqzylZttOmVwL/TBKGyQHVJbvd2d71tU3BnbD5CBtrXG8wrrns6ww0EkBXys1rdTqpUZpOgxJRHa5MDiRzvT9QAie0VkZJoyDSC6SvC+GYcCn0HBFPbvxAm83gvfUKtXBXAMlK+p65unTt6QkNtCqLMY6XNezLmf6Trh0tWS29SzPQgopyTlCZH4b6zqjdDunK4tMrKsYVY1mXRdcNzJPgpeRobPUo8vLWUcWbqVIjFKp2qq5yFJPicXWWiPLhFJbBVigilUJm7I8S6BKbou59DJ4zknueSDPqq4TTqhQIIQzWmv78zJV2Ge6QtVtpQ4pFrYU2XUdu8FggZJF5JEVLCFgraHTCmUNWlte3VwRwkIKm/CC10KtilgUi5efsb4z+FTYQuZ0fmK/27OFyhY819cZVT+yvxjJk8UOIioKJbM8ZtatEhOkCKlE+k4+b0YpbAeXVw6yCDSjNgzW4LdIRfBbVg9cXL7idLjnuZW765xw3aMsMEt6Du0I+iGXKrxX2vlRA6qwrAtFtc+ntaSYeHz4xLKcpQbrDFuUOVFWQJE2mTIrO/2WYXfFujwKj9MJtkghi5eUAspIRV2pjDZO6uAlsWyzzExypO9HejeitWIYenLyEigoiS1XTLvrU0FXxbpOCNJKGlbGqDaof25UyTNo9SKpqqUwnY5M85kQV1CRzo3suJBndS703UhJmaqEvytoBEFQocQDIfxGTUyCHMjrytAPsuBIsrRx1uGf725/5l9/voeXVjnVisfi+e+/+0SxlhwzAUushk1pRgWbNvg5crU3BB/5/v7Ex6cznx4OfHw8C+dqW0k5YZTCaRmM5Zd6JcKpoKCdbSBRgaYqBYbGk6i5mWAUWxDGXWfMSzd/y2Kd3PcW6xzvPtwRn2sHStJnwqGLzH7Fh8jlbk9aN7R2xAJGadk+bRFdE7koMgjc3BhKLpwfPnD56g1GdxgDtlUI5PebCTmTsgwkgg/U50qhFtV8Z5wcNHUlx0jMhZAWqjIi/WjbOmntValqtAONzTN589SLt82uikCXtZh5jTFYo7HW/H3iqUGlny/jxggHphbZBo7DyNgPbNsitTEnVQAoEs0uWaqyxtBZ+5IQFESzPBiKkirpcz22JPm7pA+FsYACVQNxOzDurri7PTKMFh8qKQo/bJpP3H38mpubL9jf/AKtNVaLmdE1i6KzhhwiWoMP6wufRDUpjG7WxRIm1uMdcf8FtnhMOpO61ww5MKaJmmcKhr6zzGkleY+7+z39xSuUMaTjj6TtRC4RnSx5e2SZHqgIY8JpR44L52MiLGf6ErDDJUacFVIna2k2jRxUlukJXSPrdGa3G4CEPwVJXKnKsa7Y8ZKaFOv5luX4kV23wxo4vP+Kmirb6Q4UpM2S53uEipIZ96+I2xGlK+f7PxGGS9bTPX6dWKdbtmV6qS49J3Og8Hj7LbtxIGknY6jkxdTWBrPAPxjkyEUgRhkIep8koRg8zzIJAX+rBqYV0YTRGWU1XasaVZm0oZSlKjmIpRJkkLxNbOd3hO2J5XwnKV4jfE2UQrVUac2VcRzlYFzleZBSpnOO7BuUutWxqqx5UUXsshVNUUhdr9a2bY5QPHE1Uh9ISUQpqUlHaiSuZ/xy4OamUJWRyysFvz4RvLz4etejilg2c5Z0q+kcKW4ydBQqdEsk9cTc2C8l4P0TKSw4F1G6Q1k5jngfW1pMDj5938vhVdXGWZJkrXNyqPFbpDZOnLVaLjWxENOBlBQXoyP6VTZo50co8n2LIWIMgDAtVI5sT99gtEPVSC2WkhpHJYkG3hiBuEuirUi9X4Pfzux3O6I/YZTArLOSpF+MRTbffiLFFXgW2sivu8yZHFbO998Ti+b89In9dSHP9zweH7m8/oxteiD4FaMqOVVOh3t0dYTkOT1+ohTZGK7LmSfec3l5Q2xMmVILJUqauRRJPYsVUuzMKCVQdS32R9ke0kx1+gWhYLUiIYclYwSSLxe5NjTUzwZYS9f1BC/vwZQTthv4h4noVIoYK9tBmVrl77mybsKnex5YiRy1/XeKbD2N7bi8uGE3jpyOj1JrSpFahQeWi1xktDJtICtLmG2ZCLENjlKmaKl8G+eEP1iypEtyZFnPkjA2VSD9VZFr+/6VgoqBVGes69ogU6zFMRZQhpQqW4g4+zywM3Io1LRDuKaUxMXFSFWV3spgVYaUclFVRMZBE2Or/xUI0aOVfUmTo1S7cMuvL8lYza7bUWolREmDKSqhybZSKazbynp+5Pbd37KffiFpo23j7v0fyGkhhTM5LGiyVPRD4nx+InhP2GZ2ux3W9GJt9Z6wnlEkjDUv4G+j5LLhlGabzo2d1/hQzfooF+VMyRFnLMuyELatVSYtzjiRBm2Rqh/58P3vOJ/ucAbGbmB6fIffVkKQz1VnDd4LiydsE/PxfcNdbChV8F7qqAbdKuiuyYQcMQQywgoTUVjGmATVsPmA1gmlDJ1tQxUsWtkXg29OVZaYtRBjEHFBb2V4icYHufTJua+QCvTjFUoZtuBxnWM5iUAmpMS2rYzDSMlGeMfBCzxdiThBK7Hjaq2p2ZNypFGIyMGjXSUlhXPCQe6HjlQztUjCwVqY5zO1GHz05FzaUNKglcN1I6YkUuronKakRNHCBFuWJJxoB1fXe9AVtGH/qlUDzYiqlW1eGpx7RzVILdgHNJaYhMM2XIxsPiIhxrY8MpHNy2fVNr5x2DzzKomPsduTcqXre7Ztk0vd/oqKLESrtTxbaTtnW5ptlUpmknSDdUae5UUYhDF4rOtxLdWnlJhOQWFtz7olcZUYGcDX6DG2Yzl9pBtn0iYL2Bw9WkV0VcynVZKKiMWyJk9cJ9JylstLrW3ptiFiK8s4DjIYQgYGzwKqdV0Zx1GGuDnQDzvWdUUbSXa43jJPK6aTn9+MLLBl+Syfu6IKziqSn5lL5Xi4w2+zvO/XE7pmnBYBjW7DjFwypcDh4RO1ZqzruLiwlGKwCuZtJUVPVZGcvFTvW2RJ6uoacsVnGZIYa9syWLUlhAykY/QoJYvCSkEbROqH2KLP87lFwSXBrVsyWdZvz4I/+XoDhaurnnVasbZgVCZVh0/yntJKsa5yMR47x972lCKDNXKmJOiHDmsVKcs9bd4Czhl0zeS6se86rGn1YOXpB43RiRQzq1dsrDI4scIH9zGhusJ+d8VpuqdUjXaO0oZBzsrnvKqIJrPMvqVCDb3bt4CBxzlZppssw4BSsmB7kvzMpFyx2r4Mn4yWGmnvLEp3rMssSKSaobOMvbSBrOpRRrOsQcykymCs3PdWHxtbOmOqJiVPbGI+oy01bdSacaZQirQdZIBv2I89fefYDyPee5zrBJNhbUueyzmstOFBQqExdF3fgiBi2gX5unNYiUlqh+P+EmsdRVm0DazLQt91BD+hz+ZFSpWiJ5e2kG6Yp1gCzo4oZeUsryV8s8xn0M9sNfXC5Mutaaa0xjoxfYscMLenLjzLNUqVhJ+Q/CQ1ImdwJQ2fKAstrSwhhhc2vW525xifZT9aRFu6EhpnslAE04EMhwV3IZIZrTXWiFFXA31vWH2m1NRaB5pUMyq34bZB7kQlg9nR7XZQMtM8o2poXMjM9SAtteOa8b1hibB3In96ttduS2TfW7JqQ0WzsYWFYXSQE/3QY0rl/Ljgt4xRDmMrOWac1txcjcTocdZy0RmWLdOPBlVEAmo1aGcIqoKr1Cx3sUxF6cLqhZPseotRMofQpmDcnouLC+bpBLoSi8K1AV9KCoxjHC6o05lxt4NSxf6sKgq5j+vWoOxcR4oiPaEktvWRui3U0pLGCK/TqEzISYy8Vc43WkPOQWQvJeLXgE8JYx0xVfReFnBWIVINEtpYOq3JcRPGZRTMi+0cpUqlmlrQxjKMe7Z1QWlNLomSg4TJ3K4xcguD618QUEVLQtVaefbmLA2CrhukXltqE8lJhCQ3Aap4CLpmXG/L9fbPay0sy8y4GzD/W2Dw1ZrkA2gsPwb4tCUudGSvK52GQOR17/hpZ3gXKlmJucXUynZc+Zs//sDHj7fMq8cHqepYremN8FEkGi9DRFVBOdvMs5JuUFWhrWI/DpQo37BY5DBQliDmnTRRiyNkTVcy+67j+nLH4/HM4/kWlcH1hk7Bm9evub17ZNukOns+T2gy2fV8+/v/hVev3nD52V+SSNgs/en7H3/Lq89/TVWG8/Ejxoy4ruPrv/s3/ON/8l9z+foXuE5jq2ytfNiEOROSJM4ay6+znQzs2gNJmC6LHKRNR0oby3pgf/EGpQ2b32RQkhonpb3UtUksh+85H28Z95/j9q/pxlcvKQ5jBlLNLQYqCZmKfAhrzvLD2BgJqmo653DW0jknP/BaofuOnKNAqhs/pXdO4s3PDJDGM9JaUVKkKNX4L2LHqm07QGOAFJPbILLg/cz33/1nxt0NP/nZX3B/+0kuu05hjUJh8cvMSd0zXj0w7l+RrbyQ12WRQU6TlBgl/ftS5ANmlUhVREYBNXn6+CNGW0w80G+fGD//DdYEHsOJVBNuOxKDag+bSjq+Qx2+p9bIcvctqVV6qJn5fKJQ6YcdJYtBEiWCj1IVYfPyPWtDvZgKuYhOXIO8DKPHr5Vn+GspGeNksObPt3jvuXnzE45PD2zTPSkl5sdvZSh4+IRPSQazpdnwgkeZytOHvyNcviaFma7ryNuJNS6UJJsm3x7MtUqNvNb6MuRVSrbb1qTGHKooIw/unEs7achGRNP+eUqUYtq2RAxTUFmWTRhxTWNurCRFM7LdQVW6zrTDcSHmDAnZHikFWlhAp/MDqAOawrh/xbZOVKXkktxMxyiN6+UzmYJvFlaxLz/XgUtpG6oqFyKSHFiM68gpczzNOKt4fXMtsF0N2zIxjiNay+BZuCeadZlxFkJWLPORwfRoM6JVZl0n/LqgNPT9nuhXlE50XY+uFb/K5qmUiDW2pSVkcFSqHGL9dmY5P6EMBO+5dhco+xwrl0udMlZe3qnIgcxajJ45zWdhCyotkfNWK5JLgRL5T20iiFyZzk+4bcU6h6qB3W7HMO4JIUBNghhQMpDI6yQx/gr9KAmUZ8ELVbcNIn+f2FQiHtLWoZGo/zB0wkfRVj6vTSSTYpALDBVqloGd0YRtlovw+Z4tynNDz5anT99wOt9T/YRfDk3YI4dIHzfW5UBIXqrBVWo+MjxcWGcZkD3XAGuVinZqtVVaNS0XSX4qonwNRra+hvqS+KItE+TgKj9bzhq0MOqlXlFUG1rJpS3njHNWJDnyQBduTRVTeFgXci6NXyeHYan5iFwqJhmkKF3RymKNfB2CWKjCeFSVkCLaOURSIBD8lGUILsMUIwaxZaN3Iypnxt0egGWZySnQdU54KFbhc4GccEaRkqcYi8ERktSEQ4gyqItRni0lUbKnKiMHdCsMtZLkUZIqOOQSG4L8OyXnVlmudK5HVwjbim1w7BCLXB6qLJJKG4prpTCqUpSmdxrXDeQSUWjhWGlHnWapHTWumDaazso70zpHyoEC1CrrjJQi09M9ZEXFsawHpsMdwW8cH94JgNwYoFC3ldlvnM8HoMqFOcrXO/ajLOXMM3tIFoauF1CzHDglZVhRWGXaz6Uk0bUB0O08JPwnpeSTBx3GBGqNpLBxbsnTx7t3dK7jcLjleDyx312jgJiyoDqaDMxvZ9lyt8+CUoaKyF+EpZSJJWJ3HX3fY7SBkvBRjpaqyq9ZEf5NTp7tuV6bMqqXr1vSaoUti8mzH3pCDFinyD5LuozanrFWFjTWUFJ4SYKlsMmltlZyXqklUpJHdT1Q2mJHRGQoSUOVTuQMOQZC9KQiqaWqZMkaSyT4CeMU+fn73ZpqMURhTSkr3M5mpUcptIGnwxMXl3tu3tyQfCDGmRAj1o7UGuSSWWGdA9rCuDdYLYwlayvjsJefXS0LKBnWGIZxxGmFT5FxuMGngE+Ky8vPmU7v26Bb6uWCcZHnc+cMVfUi2kiRi/0VKSlClPNJzlK/e+Z2oeT59MzdQ8kiob4kOOR5l/M/+Gdtib15LzzDdcNZEaJ0vWHoO3aD2JDjton8JEz47PHBk5NIfYzWoDzLJinR3e6iPb8Lyc8EP1Er1FxQWthpGivDMBS7XiqKWsufuettu5D6xusTXjEaLi52eL8yTwd5RuYMWs49MtSQVKTgLKQqm5Kwx5blKMnwbeL89JFaMstywPtFUIbWvSA3UpJ3VgyJEHYUrCA+wiLn35pYJuGapthsxiU11qMsdmvNaN2hlZYKpZaBRs5Rlj41o42WdF6znacYsE5qcOs2kVKiHwaosiRZl7UtmSulnauGy4GsLbX3dDe91PZDpfSGfVvExKRluafAa0/vNOPukr2TM67Rfz+otE7jnpl2TurnwiKHzlpi3uhGR6nCKh46R23ipM4onlnlpRT8unC5G3g4rS0tV+i1phssT95Lmrqk1o6oxCTYA2sUF4MhlSgM9Pa11udFXhU+uNbyrpZhoWnpRhlC5VJwvVT1dWuD+M1je4H0p5JRVWGU5WJ/wbqu5Jy4urlkmc/YxsUTQ3gUXFEtlCJ111Ki/NkVGDpJlG/LkYvrt8QcUUY1gZzwDLvOyUK3grEWH4JUynVBGTGiVhTWycJcad2Gk4qiIOaKc5r59EmeEeM1qgpuJ0ZJixrbEcNKLooAnM5PLRkIu/0erTuRaNTKts2goO9Ghm5gXWaMdS9DOt369PJnKUusmOUzqY3grkq7tylk0F5SoiqNNrYt3Tzerzg3CIIlenL21GaCfjZHl1bXVyiGTmE7QaCYhmuKSe4AQy8cc+EUJ8ZeWKdGQ0kFXSqd6VrySoIwzmgu9wOFhG38X+GGr4JDqQVrCntdBStlLTYnaqx0RjHs5a5slCX4SlKSUt1ZCw4SSarvVhF9wrlKyYVL19FdXmLxbGskKcXN9QX7ceCnn7/mdD4KDstWXu0GluVIzZoaNWqwkpqsCWsKKU5oI7VdZ6VDFGvCaCvNSGuwTnh9T4d7rLVo1fHFT/8R8/RA2g5UDd5vdN3I/uqScbhgmSZ8yqSWDMxrlEGqdoz9yIan74WBG+IMdQPVC0qrH6QNlnMTbFi8DyL4qLwk5bd1RlsrldjgyTkS0wZ6EFNzq8brhjIpWbjKFVkyz9OM6y4a8sPQDaO0LLUYekGCFp3rG8NX7lKlaKzuifEswYNSRRcP/6CF2BBvRu5d2xokcRs8yrT7UTeS1+Xl+ZVaozBFYcd3nSzV/ty//vwEX7tckBPZODFJpcRFXrB9YUmKs9Y8lsxY/7/M/cmTZVua3Yf9dn/Oufe6e0S8LpvKRBUIFAECkkiZiWYyGaea6D/VWHMZByLNREAEAVShUIWq7N7LeNG5+23OObvX4Nvuj5rQZJYcMMyqsXwvIzxus8/+1rfWbylq1ywVZipxXfm3f/2jWEaVwhnNsgQ0avAjGBcc0AijzVozWoyEQxO8Y5kDBcV62+VCWQX+6rw0ff7ur/8H3n77F/z8z/85GsXdaeH79x85r5EwWyarmSZH2TOfvzyxbjtzCGzrme///t/Qa+Vnv/pLnt7/R84fDf/s+IBd3tB7IW2P/O4//ivSvnK8/5qn939HLoWHt79iffwDn3644/TwDVQZLGPeR4S20EZ7ntHCJxkBW1otzFaxPf/Ily+/R5uF5f479usj5+ePLOFEU04ulEqGGTWy561Vajpzff7E7fnC45cvHE73fPPzf0FVctl+8/Wvh+NB4L1tOAFf2jitMfJQNpa745GSMzFFVNcSpUIUddU7WluU0QKwVIaXuu3eGNbsQm9iuX5Jk6CgZonxvRRkyJ/fRO+hQ9rxwXN+/J51kz9T9cayBNbbTlMFYxzGOtLtR5ZpobXxoBmOwZyjRDO7XIzo7dUdxHB+am0pcaU+f+BrB/v1I31/Il8+EI73UGUbW1XHKCuDd4rUeKN8+Gv2/UrNO6+tZfAqTFfJzckmGD14E3W8HnL5RCmMdhJJaA01RDU1eCh0hrpfhZugoJdKyY+cm8Re47CnX7/8gSl4YTIWWe3Jyy0X4xgbRu9cH/8ojqEBm+9jkyB8Ks2eZBiTFjQt7orWRSTpwsrIOY8YqxaXEOL+6ehhoR9DtbEYN9FaJu8buewsywEXRi26McJoGRZpec2kbVMs/RatZBvSqjy8c2niDCqKlAqKgjKaCYM2HmPEqq/GZiSEANpwPL3l04fvsQMyb5xEOFLaOByPSDHhitFSGlMb49A3TGH6qakYSHk0KHb5vbR17Ovt9bvRadQCtB2fV5wR1qHq8nfoXXLAJUs8o6j2ujFWNBGDW6FkcT5qlVFISVBO4tLqVVp3e91ozXJbV+xopq5VRFplGpOXMpx5mqkdvjyf5aLcJP4YnCeVTK7SkFU7WGvJNZFKIrfGouYR2dJczs9jESFOXOMcU/AST6oFuhJBLI+oY2W4QMQBJewbSFlYm6cw46wlFhksWxNc5ItjDpREk5qItvolRtcZQ2dlvz1TkIhrShvb7TPxdsZqK+dQB5Sllsxt3dH9ivdWHrCFcbEU50NM22vcy1gnQ6s1WGOppbIcjlIIo8bv25EhcDR/em9f3QR6CHfWSLt3HbFbxnej9jIGjQEdN0o2d022iqV1gp+lca11vLFo41DGyPNRmxGdk3NOG4tqcq47JQ2G3gVyXml0pjCP5jdPjnHEnF6v35jBp3kR1XPtwykG1iou10daq/SmCd6i0ExzwHs32h0lUphKwppAa4wYhfysOQ1OXxOn0KavGDNLDE2J29ZaK0JVbSgvm2fFyxLBkFqlIy3UuSS8g5q7NNSpJu95k/O45EodnK7Ja+Ed6kLMCWNEECglcb1KpE0Pd6C2hpzycJEmSh8IiJpBifB+23amDu38Ba0cuaxAkUHJW3SYqTWTUuZ6fSbFhFHibH6BxjfkWSlcJukZbu0FAD7OUeuGc1Lk4zqGYsmbDEijQtwNXVwN4ggTp8S2Z5Qx8nlrwitq9czT5z+y7zsxRrS+DR5Zff2stlYpNWOtFpZZbXLel8rWGiEsWGvEL6IMtWVxK/exgFUMR1FFKYmqx7TibcBoi7VO3p/W0NbhjTxHjocjl+uTtOyh5X1SGq0MsUj5SHBynjaX0F6Gr9iEJSpLVOHIqVHikl/YTyP6+MK46a2RUpSBzFl6HgxUbYlFmJS9vSwmxrK5dLaWRZgkYhTsexquNVCmgS7c3S2cbzvKGtK2Y0xnnha2XUSMeZrk7Nrk9y9ZRByjLFYp1vNKy2Ow6Z1cshRiaWnjK+1leVgF2TDapX2w5FEwE4KXlmbdWRbHomZoVXiW6Qb6SOsV7x1hnqhJ+JW1N5w2sjxuO62BM1bYTFqPe4408VpjaD1L+UGVIb7UTAgTtVSmOZBKQbdI3HZSFARA8B7ttIglPUIvpBzJVRzlr9F9JQ7/w/EerR3r9Qy9oO3gHNHx3o1BSQqFahcWbRtC5B4TSjemsEis2FiaHp/rmDHKoJ04+50XMR9eIr7y7Cql4KxBqYmcM7lEidfSiXknZ+E/7nsUN3Jp9Cz3vEoV+Lv3r825zk2ktI04sESLk9nxdkTPaxpupgpIccIcgiz9UsSOfanRgl6w45nQexvinoitWkHt4MNCKpXZVlKWJVsbCQlZCmiOhxNKaQ5v7nn+cqEoQzee6XDgbrZ8+vGJnmE+HFBukvvpHgkTHI+OuzdfcfKGy+Mzt+3Ctl15PouhoVoNDrxOLH4irRlVYZ4mKgKhd4LVB6XYswzNIroZ8rahVQM7Cuao9Lrys68mehexeJsrMUlku3YR2zCKUhNOW/EqKhHrBUsx7rqtD/FNrt1Gi6hrjaVUwQXQO2uKtCKMOymmGXNTSyx2wWqP0ZlWBbuktdyRnh8/SVGO9/L7K0S0UmYwUMXoYLS4s3vrlFSgFbTRxG0fP6se77MwApWW58DLzKa1YlkmrtuVmqWp1rsXV3QFKSGlZrlLWDrr7UzJCufAaHh+XvHe4o2WuGCKKOVw/oB1nlrTaD9PbOsZusUaM85azTwfMEoPQ0MVpE7NEs3u+iWkJuJ0H7Nay6+c9PE4G2Vkgv/RZiwUhlGidymnMbPMMDHtWCvFHmaUR1kDapJ51HgnwmarNKVxBiaPOMGrGBv0WKLebhVlYA6aKXQmbQnGsK6SznPOYU2nIksRZS3WNyn/wnI8vuXp6Qs06EE2uak31r1zWCbq5UoqsnysqWOdZxrzoZ2E8x3CHTWvnC83EaRa480bzXnLfP3ua77+7hs+vf89rSt+/qu/5Be/+BV/9W/+W4yR1MtX3/457//wdyhELCtJsF9KGU5Oc5gspeygLMsyMU8jqaN4/UzHUinNkMtK7YY7ZbBWgzIoHfBhIubIV2/uOSxHUtPUIny+MAl7WSlFqj91FWz7hkKSgUobgjJYK+USKUv6w437raBnynAWI8JlruTRbTAvs7ThGoXVTs54NLoWYkkEH2ijp8Aqwc/MhwNhCuz7iqaNeUzav5W2r6YW4zTOB3H9M1IDGpbjAbN2Ypbzu7bOskyst5u0/XZZlJje0chSogy+3vF0YN93KcXUBs1I/UwTL4WQzr58B8aM+Cf++tMFPqWQ+lZNrxpdEiatzPsjISUmtYDz1KZ44wyTA5cjafyPqg2rGvPpgHPiuMlVOBBmWGKdMRg9WlAQwaTWyi+/fcuWK5dbZEuZXgS+qLpGdRFYHj/8nqcf/4FSCsvpgfLmnh8/XdBWNiTv7g48fnkUflZulFbRqnF5/MR//Lf/T778+Busnaglc378gLWG3//9/8if/dP/GoPn6eN7zl/eS7w0rly/fM/1+kRPiXh94sP3f8u7b38tzovrhT2dsf4eG2aBrCs58Fqt0izVGoYuHK3H3/D4x9/Qteddb2yXR7brF/bbz2nay0A+H8WV5qSwYjJwOz/Te8U4jW6Kmna+/PE/yIfJzxyOD5jpAE3sz73J8KSMcNCM0eLSM3JpUjTpZ2gCiNS60VpBAtOIi88IOwaFbEhbo9cyLsuM/1/aeQcZTQbLIWq1JqBJbTTGKK7rWfhoXTaQpRYacL1F7g6zDLka9m0lxX/ATfecXECNWFsvcWxwpZFGj1a4XKWlx2lNatLIpZQi3b5Qzn+kblf29UzwkWuOLFNgu94oXTiDMUmUs5VK3p7oaR8Cq3rlIZWS/2fbKIkE1y6QfT3iIgwxQmp8XoDVDNFRDgaQDS54QB5a+cWGrholbdQiA6TVnZYjWYuwFbzluonFuLdOG5uMlF7e25cNrwgptDpcPBKB1kqjaFSDHIQMEUNLO5FUVmjC5NDas1e5iMvfV4a50hrTcsK7mW2/gS7QKzFXphGBSHlE7LWVVrO+iXPuFYbf0MoyLRMoRd7yq/3f+IDzlhhXnHFo43CusF2exfmk5HNdh9ACMM0zba/CVkJjraWkzu16o6PH8qDTtcYYh3XSnCsoAM2WG6fFU7MwoXIWp2/HME8T5/MXaFkuzaViDKgauV6+YJyjFvksGivV8LVKRNYaGQJKkTgNShxCHYYAK9zLUpIUg4xFACj2/Ub3B1KuOBugSUmPNbL1FAVBMYfAugubs4+IXWuFbDW1yaIm14ZXCjW+zKVknO1sa8fYgDPSylcFpiHQedPH31n4PkrLZttah3OGdd2gqRH/LK8FRZK3BBcmtpippf//bN36EJAlul/lUt4FCHw8HIaYX14xAbVkQKJwcb8K06IkscsrS+saF4yApOm0JoukVIWvMk1HSt1BjVia99SXh23rwwmjMW4CJcsLYY3Jmem9H9E9iYAOC5WwjYBlmYdQboZoLoLp0Obk766k97W2l2bXyr5nrHeEsBDjSs6FS76KC7i/LCr0cJOOGIvWXLaI6gZrJGrWgZgbp+WAthMlVabZEdeG85rSI2hNKfIdEyxEejmucM4yTwdaK5yfL6S8ynfIeUqyLF7cCaUpdAWrhJ1jtMTbBcACzjkRrTWktHM6iSuwWy0OCKs5TI5W8xD1xLXVmpxrOQ+wugY/WfZ1Y3JBHJBN3A0dOSOVVTjtySmzblGwDUoTk8TFrBGHtOqV3owMeXti29bhCCwSDdpBaYHJC+JCxAApDVnoqhD3FWcMe43stxutK16O++vli+Ax6GC0vCZUUiyvTfW1vDhbpdE+jnOn1kqrjDNbztfalDSoChebPa7UKiDt1jUGEddKFlC60pZSeeXgVlXZ1guldvZ9k1iMfqkd4bU0q/dG2iMpdXobMSYrZ4XR+ie3oBx0WOuIcRsOLDVcgUWejQppzu2QS8dacMZQO+Qq4dicC7d+pdfG6XjEWM325QvGOPY9orXDmCACTJfLcy2VeVpAGZ6fPovQO66nMe4jjiVlJCmKO1FrQ60Qc5Ln3LgTBGNQvbOlTO2NXodwLLYTUhoDp/cYZ+VcUMJpbFvjeLznX/7iv+Hd6Z5Sbtx//XPA8f1v/5rf/O5/oiEOHWFFpXGHFsHW6DbEy4nj4Z7373+kJaQR0Bm0MkzOo4fbq9XCvl9GvCvS2xNWN2w3GOVEKFZwmAKxV2qWmHTJFaM9uSSMSSitSLFAP79y1VJOdCPIk66E70rtr+zNXCSBoYfLPEYpz6kNcaYM/qHSio7FGUVNhWmeqFUaZOflgSksskAdzLvSFL2bgQhoEv92AWsaMVZCUKS0DWFAXjxBeUg5nUK/xp0UwuNuWZZm3o+mZ6WZ54mtNN48vON8foIuMb9SiiRBiiywrBEokAz1RhaQrcsZ02Rwa72A6qz79roEU8qMOLgMhzLUIW55LYu93gox3l6ZYdbp8bydJAae0nA61Z/iuApQhpwzdI0bKJPWG6VWJuepjAcKitoKyoo5Yt82cWmXNO6gZpja5W4Jij0K63q/fsQEjZ072sjS/NP7SIodzYzWmu22UcrK2zcTyhXeP/7IrZ3543ifTodv+e5X/5h//2/+FaVlMggLsSnCSBzUDrXLgraUxjIHcmojRikGDzTD1SKoo5h2jAscF8Nh0Sh2UtnQWvHuzcKXx0pXFm0tt+uKtR5nHIfJ460sVqyxMqO0Ohbs4g6W78x4Jrex5CgdZQw+aCqdmCPeTSzLgX1L7Hml1F1isSEI1896OW+ycIjvD2+w6oAbxQC9ZrQ1whXvwhm02qKUuKIldRTleV4rtV1QA7nQlWCqepP7Xsnirq3jLlB7xxgnjbd0lOoYzCsHOKWEM9I+vMUz93dfM80Hzs+faV1ex14aTdURg1V4K+mrw3wkxZ21Xem9ktJG8DPOhfHvOrk35ozWwvmzQ5wTtIqS9Ii1sqhX8p0sJWOtF2RH669Fl8LuE6H9FdtgDCmOIqa0yTNwiNRajbQQneWoSFnx7ddvuHyJPOcoAm6RZZgSFfF11sr5xWCiJOaZOrsSbJfWEJylauSs71ViuaWx9YRuBm8VrazS5Itgd/a9MYWAcZbL5crlKZKbIV2bFCt20E3KbIQVXjnOC8F4buczpcjPucdCKZrZG9Le+fqrNzzbH1gWxfXL7/l9OQs+IUKrmR9+++9QQiqSe47u7LGjSmWeDdTCnuU5OTvPtm2CWnBm3OHkDEux09QwX9SG1ZXLp/80zqOM6i/RfmHlXpKkSxSWu4evyCWzWEXaJG0Ylgfm6UTvN27rDaMktQlSmKIYabux7H5BaOiWUdVSoqAYlB7ztpbEpw8zMcoZTq+v+C0QhERqwlv384F9l/v/tt5QY6HKYETWLiUrpdwGb3sgEKqkQuN+47ZeeUlMBO9l4fQyBb7cdZXMcB3hnAsjfeJyucmiJReMtYQQ8G5i3xMlZ+GOWytFqdP0vyC8/f/3638FgQ9x7BgjsOVc8Lcz4fIHjFL4d/+MqUzcdc1kFaTElhOtSNOYtYbDvJB7Y18lkiVFGRXb5c2hSSTOGINGUQeH6HzdWWOWN7ZVelNop6AUShNx4uP3f8flSSKNynje/vwfcTy85Ze/+JZlCpyfr3z44++YvEe7k9hvVeHLp99x/fgb0rpRzcrTH/9G2tdi4vHDb3j33a8xhzfcnv/IHlceP3+Ps4q03qAkPr//G6Cx3z7z4x/+hvu7N2xPn7htn/HTA8v9N1gXOJy+lkFvXB4kCmtJlxvXyxPbWqnqgv30G1RX3K6PPH76PYfjG7SbUe2AjMGdyULLZ/L2me12G3yHyhajXLRTRJfC05f3PHz1Z1jjqFVgkVVr+XA5cax4b8WF16Q1rVVx0GkqADVdQVmKmnE20MdmRBstDqbWRj11FeA1MrgKG0U2WC1LvDvnIYoNASCuG4fjA5fHH9g1fPX1HR8/PEFtY1u+o0wmpZ3gZw7HowjAOY5hVC44rVRwwtqjNXFdGU2OkdpGtOEV3FppZaW1hBmx3t4abgrSyjd5Wm3c3Z24Pgs0VuJifTRuyUNVHAuaF1tF60jNujWjUVZEzlaHrbv113iZuEfsEH07tTMaw9pgqslgopSit8HtQw7lUiWarouhK4kPGeShnzuoNkQ9FLkrnDLk8feW31P+e7UKY621TnAGMxg2Sr0wBOTSzGitrqWjvYhhEnUVOL8wh9KrcOdtprnBH7NWHKCqo7TFa4OzlsMys+9nVFGklDgsk4DOrVxOQOIEuQro180zKUeJnxgRaluVRmLrnfABdadViUZu202GyFZpSpFKxQ0hyxiNcUEOXg2oOjgSwtxSVnM8PUiD7m3HWs0aM2aCMC5dtcpr1IduW3pH9cZtW7FehqhgLakMJ2n9nzVrd2mQbK2h8SK+VxkwOxWlrHzO0gUFo5ULKXAYbtqOYt8Tx+OCNfJ908aQa2MKE729DL5tNG+DdYYQJtq2U6uwr4oJ1CTf+W4NOVescxjt6Qjn50WMcD5QlWYJAWecxPnWjA8HtAnkGDE2iHhbQClhuqguF9HgF6ydCMGx32DfrjgnQPltEw5ergzRryM7EU1usBzu2Ncz2ojb9cUV1dHsUTh9Ka7D/dMJwVIbGD2cUr0LOxQRcWoXFqkNFlpl8p7rJiUWMW04b2RhMtxfIwwtDiM0x3nmsgoTyulRcDEEHW8cIcz0Kq8/Vi4MZkRw95eYKYw2M4V2Atu2TsRD5WZMbVgdKa3gvBUeSEPE71LJtbHnRuua+fgAtaJ6Al1kM2onfAjEFGWjuK0Y57mtVylu8BOxVfGKGYPuwt3RxvLuzVc8PT+z79KgW7shl/G5LZnJy1LDDOehdl4YurVRXgZm56A3OQeGUCDRpAbuII7E2tj2neNhIiiF7kXOCgPBKiidnMSds64b+xYBxTSaxQVdqzFOXDAWxTSYK7UW+RnGWSGveB/lBIoeh9NAS2uvHRxZo+VC9+rsNA5tDGGasG7ienlif2ksZCQPurie1m1Dq4z1drgl5dJolEYHEQ60AowZYr+lqDzO/I7VjopgD0R410zzJFiOOlAD/SXmLcvQzouoVynDqS9LQIX3jpwKMUXyKICpvaNbHxEucSH23kTgfIHpgwySteOtRMidn5mnA4wYywubzQ52mdYKpwbPrcvQYI0Imq3LosFYBVE2+u/e3aGAFFfKYPkYK69pLpnjceF0945Pn96jFaMds/P4+JHbKngGauMwT9SUcT4QnESO1Ig2M6ixxjqmaSGlTVg93rJvK7VXnNXkXZxu2qqxABOnrRuNetaKQFJK4XI9U1Lh7duf8S//L/8NbFf+/h/+isqBf/qX/wJF4rr/gecvHykF5jnQSqHUzunuAUpEGVnyvjncoYzsB2pVuEUE8dwqXVWmSRzpzomAStdM3st5ZizKOu7v77lcLsJzTZnaO3uSz7ruiq1sBB/GMhesnQEt8f0skSHj9BDOlDj3B8qgid32NbpklLg+tXbs6YY0/oymS/0Sxd/pRPYon63aRsHZdGTfzhjlSa2g3YHZe7bzZ5TpgpgYEH1pmUKWxspivRbma1oBKd6Z5iO1FjnXRvHGFKR8yhiNtYHWIrlmrNI8fvlxuElAK/l3tYKuxdltjKErQ5gPpLhTB5tYXHGN4BylitifUxxsVPmU9dYlksWLY1miwfLPMtt2JuUNbV7uVHL/2rcda4Rz2BBB32mFcyKG+ykQ9/FbKeSZ2LSgHIymJGmENN7S0aTa6KUS9yv0Ri7i2Pzmq19yvV2JXz5gjdwtc44orVhvERs0KsNj2smpUUpgOjh028m58XD/jg8/PnI9Z7TrpKR5erxKe6cP7OlHHj8nwgJlBYWRqJ0q5Lwy+4W9y6IdFGXdqdVgEJHBag1kgtekvWFH2RFUgiscJkvKO6mIiGK1xOhOiyYWQ3Az7jgxzfdyT6k7Jd+wfkFpzdOn96PQBqz2UgZS66sJwbuJWhohWIwL3G7PIiAocX2XHPDODve2fMdoCqUD1gbivhJTYj69w4eF6y6OT2cU3ih0N5QuBQatNbQVNIh0QilZihpH6xB8kPbR4Ie7VMoLctrRSpNbR4q4ZqyzXK9nSo2YuNKbCDTBDoRAB+M8usr99Pn5E3V8z4M5cbo78fz0UUwZuqO7JcYNaFJolm50sjCVi3AvY0pYG155a8thIecor9MQSuSZIkYHNe68VpthaABFgy4c4i2uGKRIs4yYxAtLet2ukm4pw6n6UkpW5TNfa8VazXI07F8ST883lG0oDQaLMg2rZZEe0ygzU7IcoItTG63JpTJ5ifa32nnzMLNtceBb5B5nvZUZI1f2IssUrWX2lKb7RkyFHiPH05EPHy/E2kmxjTlYUXqV73fXUCsp3ch5pWOF6dw6xznQsmK5u8cqw48//i3aVs63nVqe6Kx8eboSt8TxNNFIKDrHIHiZYB1zkNRWr41bhobDOE9KHWtn9nUjJZk16TIvBm+xwQrqosuzo6SEnT29VBYbaNqw98z+dCYXudd0LS55Xbs8A7TCWEWrV3HqUVkODzg3cfnyHqsq2ggiqOaEtU7OyT7uorrTys7kNR0R0abDvehAT5/JKcq9xAkqw4wFtdJSPGKspXaF06OJW2mJIxvh6KUUmSZ5nu+rLKZKrYNRG2m9YZWl5WFCQrAItabBFxQNw3szOOwvxXZyrlqr5W5RshgSlKJbUUVyTmg1nIS9MYUDOe5iEvgTf/3pAl+Vvwylo0viEC8cP/wNNn2k7RvL/FY2L/OBFi8SCy3DwmiNAD2LXF6kiKeJtVUJ3NvUTq2J3BvGTmSTRuwSvjwLs4aaKSUK6DruTNby5ePvcG7i+dMP0DLr9QvnT3+g5Sv6Z/+E252npMCXzx+5/PA3fLxdefPzf4I9HDmfv/Dp/d/Lho5CTp3SHkf8RbPfnvnh7/4/fP3tr/nw/d/JJvV24fz4Xg4wo0hxxahGq5nLx9/Stidq3ql5JdZCiRe01hyWRWCsVR5cRjsB4j5/IqYdFzrxltiHalxz5fHjH7C6ocyEdwem5QC9UtYnnj79Pfs23EhdMy8zatte3T4lR9L2RIlfgS/E7YK9kw8/HULwUuFcC3m4F16Gmt461ihyvLGe32PcjDXfgg0S5dESpVADqtrL2JY3GcwlxiuuHeEKjUIAJXXpL3DZbTvz5dMPEmEpO1vq3N0d6DVzvV2ICZqqwmRUXYbpbQU1Y50bLIyRiR/w11KSDDIj/iElVy9QYWGD5D1J85jROOe53jZpxPEB5x3Bz1zPX+TioUbMqnescSKEDlGuKxlcfZUtKkjbNIP9V2tHeXGU2THM9/GjGmuw1Q2hSDZLrfYR3bPU0aKptGzKvAsiSmo1hnJLL0mcW2N7phgP1CYRcIkbSnzJ2hHT0BqlRBjNRfgHdYh/LzHyF0vSCwRXGYtsMiTeg9JDbIeshAEkvKQy7NYJrZ3YopWAtoHBUjhJ1HAM1W3EdH2YsM7IJtAaEeCcJ26bOE2KMCP9ZGQ40XA8PZCzODAOhztaU0zTNBgkwiNRjdc4ojWOVDIp3uS2PFiVqhc0EglNpRK3DWu1sGeUkQiq73iriPsKvchQVAu1Gaw2rxGYmjO1Swvvi6vupSlSihYkBtR6ow4Rt3RxDKU0OFt9APvLi4790vzL60PFeSn0iK2Mz4OwlGbVCc7y5nRA685tT6QsrLVtFRZE8BOaOi5b6vUC513AGkuYJhHOrOV458kpcrtdRdRZFnFbai1ioLFMhyPQKKsIUkornJHiho584HuHMB2xxrHfLjgvcRznxp+ltMRsENg1XS59vUorWW1qvJa8siCNEVFSuGUSrc21UffIS31963KxE++lopZEycJIbVWcX0ZLi1tXiPjXXpqKZQtvrMEHj+kd5+1g0QlPrmIwTmKwHQZXBpQWLEDK0uIo//AnkeWlIKUXWT7kWmhJvpNv5iOHw8y+PYtDbbg0nHMi9gznSuviGp6mA3Hf0L1imsQupykMcbkgBc1GAMNhIqUdazx6UaTyJJzcWHjBLlyvz3TV+fYX3/H4+SO3Nf8kNg8boh0OLWUs8+Ge/XZhmk/0tKOopD3yUpg1z0dslgWSxIwUwSpSbITF0VKhB2FHBW+JWVoDwzyxJQ1dzoqHuyNG9+F40fQqzpV5CBjeSZucn7wsL2qjlY7Wjo4I+LV3Wk4YO5yYtdK7uDOtk0jfPniNGGFkudFs2bsZSICxLLDCJZyneTTydkwp5NEoJ8OOhi5b77jHUbIiYqpsdw26STmNhD1eWFtyEc45oVSn9UrO4jKV5YAS96cPzMuCBUzLZFuHkVdRizw/xNkmTtIwFjwgS4HeyoigFQQ4IJ9PcZXm4T7u2I40m1uLdvLcLU22+s5qUhzFFl3uajFliobT6YTWIhynFDkdF1Kq9K4x1mF9Zb9dMEaNpW9HWc263bisG/enO9K+UkulmEJthcNh5nxdJWLfGg93d2gnkRsZMqUMTOIvipQr8+Lwk3p1gJRugDLEbsU6xGljLL0qlsORmMRtBo7axcuulEJbze36xG//+n/g6+9+Kc7L/Y/84Xea0izv3v0596dv+PLpkV4T0xRYjg988+0vuD1/otbMfDqxPj/z6ctvOd7NXFth33eO8ywFBQ16bbhJHGFKadCeN1+/EScPg1eNuGNLrUzesUwL80Hz/CjpjmmaoclS0ntZLtdSUErYhmbU2RltBc6upADKaCmboUnyRKKlRVIMpdBrQRIfmjyGnJQSvXacCcJj7JVSC+vtzDQdJYKYVkJwtPRSVKdk2W4tx+OCQpGTCAZKd4yzGDv9FPFWsiDd15tEWru0sb8whE3tTMtCl10Q2xaxRhpUVdZoDLRKaY0wO+FF1ibJDWMI8/waD3xp7my9oY2UL1R5zPOCnBGnkpzt3sj9Vis1mrp3WR4iaBof/KtjvY/lh3WamMc6rsnSMpeMnw6UlNFKopovTltrJV2RSmRPuwzyY8kcvOG2JnoH7wM5i5h4vZ1JWeD2OQvDu9RCzpXrDWwqBC+fsT1ZtG5sWyJ4+TmfHy8477nezmA1v/rlW7xfKHGnqZW1Fky7EGtGO8W63QjZE5wm607QjfvTQWLZqbCXDllTeqcjw3JwXlAspWO84XB8QLWVOhAmIUjkmdZIvaLwvHn7DvSRGFcOLdONYF6y6iyHt9yuK9ctopS4i1VPkkBDliveWHoXkUOwMQ1KZgqCSpDFrBgXTsc7ctnkjNcS8y8lEoLnfH2kAz5MKK0FKTVJ7E8pRQgBVRI5Z4nYgohvRuLlRr2UFMo/MGawf6s009bhjrdjUWa9IsYbt9szt9uFhhhjwjyTU8VqR+vS+ttebPkK7h/ecrtuQEYrKbnxL0YP4wQ/oJUs6kMgphc8CCMSmvF+Hs3lBjeewYIPl7PBDCxJ66N0pr/w+Jo4VHuVhZc2wg3sTdynXct9zDg0sO+blP0YzTTNxLi+ohOMVuMckOXdp/eFNVZulx1jRzKGRk1QuiYE+Y7WPBZF9CHKC2vUaBHgjNI4W4m5cIsF7y1KNcGbWMftVnDOMAVN74W4C/rBBkvNSFrAQ9tvADjj2dpOKZXg7EjJyT03JhFAUyt4p5gnjTcWb4/cvXnL+vyFyYu7/5pWemvUbFm3Lyhlua1ZxDSj8QHOqRCc47JnjrPDA2vpXLbKYV7QTbMmSTZse0FpjTeIGNcbue6ootG6E5wkjpzTwg6lE1shlJXrZWctsJzeEWygrmd62jGqE/cbJe0kIN0y8ITzmlYVzi3yOlcpnutdgs61Vqbgh3FCTEG0AibIwpXM5fEDXXXW65lSG8fTibrL52q2cjdutTIHJ4acImaxnHdJydQ68AciDuf8UnQ6EhNdUWJCIWInyhCmGZLCtk6MG71XQlgE14SkRn1wpJKEb11l5qND3G7yGexyD09JcEWXy5W4b5QqZ3RcbyJYv7Bx/oRf/ysw+Bq6K+Z8Zbq95+36gfnpd9hgSHlDXd5j5jeUGunn36LDjL7/JSiFtxOpDEAvw5Y7LJe6i+JPTayf/xZlHOHuZ1SthEVkHbEL36mef0/Kkftv/pKnH/+Br969Y/vyBx5vV2o8j62URZULH377Pecf/4F0+Zd89d0/4vr8gevH30HLfPn9jfnuLfH8xH59ku24Va/RYFD0Xsixs18e+cN6I8frODgUOUq++uVS2UbBRNouaDX6gOouJQAp0trOh9/9T7x992tOh8CtaPx8wKrEfnti3xIgCnOM+4jyQIwrabthbaLmGy1blMqcv/ye2/UsMeUR9y1RmGCylReGz3b9Qjo80Wsg71c4vMEYNwbRxPPn33J3epDmvXBAGzfYEIVeEy0+k/cLOd3Qyoo9O+9U4+jaSAPlGBZSrsPVJe42rYSN16uTJpreMKrhQyDnYaMNJ0qHP/zwWxQF1RS1rLIByxozIjPz7FgmLyDh+Iyf7jBaxLHa5KBoueK9VKrrMYha71nXXQbwkvE+vDY7nQ4Ll17oaMIUUGMbEPfI5GfCPBPXGzVXEamVpjHYV1rcKz3JgPbCDhqK5mvOXmkzYhVjmOqIPbjJpVT4k/2VG2CdOO9qFlFT69Ho1gf7B+E3WSP/WWsMsUCEH7mMSvTKjD9bmioL1v3U3hlTBCXxMwFKa6TwRR5+L9DTl+2OGi2ICthu13FJlT/XGNmyhOAFKt0E+KxUHxsW2XpL2cRMCDO3NIDuteH8qHN3wurzrzZ8EVbnaRE+SKniTGxy0Wi1IpXqw1VYOibMpNqFMYEIQy/fpVILXRtCsJKEBlKRyIibZrTzLH7Cpow1Ys8v60pOSS72w83ofeB6XWXDLyMkKGEgpZSYggwNXVuJm9eGR41tYMUMPpS1YtMXN+jLP29YBarVwaqog3emCfOM89PLhwLjHC44chZRKZWMNZrbepHBw0l06rZGOpYGKCOuSKWkiVshQlQrfQhiEovZ40caCmcFpp8RgQJk2Dd6xCMalJJYr8+U9FJXPwQQ9VP8XGuN6o2PH3/AagctysUpSYSs1kbtBR8mYUoi8GqUQVmP9QtTq8RNWhkaEhlDmbGR7WhjWA7HIc5IDG/2YWx5Pc4mchHBoneFnzy9FKy1QxDzbFGWI0obYiqcTgtl26i1y/mDcJK0ZrjYxPmaSxtbYSkIqGN4mvwoBWiCLciljPhlw2hDypVpOWGtYY8FH2ZSgfPlxmlyOGdJZaN1y7zMnC/yvTHW0XMeDoROXM/se8KoglJNXIcx0nLDWE9thq++/Zbr8xdijGOhAPsmXDaUHoOj4XQ8Qu+kfeVyOaO14839A7fbjT3FwdORc8k6w54L6x6ppZBLFah4SeScmL2Ixa1JO584Kg0GYe1YB8YZrJIIeTeaPUURqKxAxUsVt7tW0ppmtDSu2lHW09KLYPFy3kjpUi4iVjXUcIgwXHNGFi9NmqtjlBihLG0K1RSUlrOjNXETWiOOND3A560iLcJNShZu6y5uVCNs0aoH27KIq1E2xzLcOStLBhFpxYmljTQsWuNeY+XmBbwF4zsh56L1nm0XNxBKBjs53z2tCV7AhUBFM3vH7fokru0uolepFW8FYm60GagMQ9yTuNlSRdsgl0bjsNa+MgudGygPBRLIHG3NRsnlXb80mRpBoAzHeAiLRBUR9mnHMh8OpD0PppIsopyNlCpuLjfJc6OWUYwzzpPW4f7wIODstJHixnXdMGNIN9ay7Su5NJx1GG1BFW63K1CZpwntZroN3J4+UGuRzyzQq5yltUu8TRvh+tVqqV0c/KUK1+zzl0/88ce/4s/+4v9AcIbf/f5fo0aqgV4ED2ICMd5QZqKvimn5F+xbxLTG//6//L/yr/5f/w+ulw3nA6e3ntvjaE/VIsRNkyeuO6Vm7u8OKKugV0KQz/Dk33K5fOGrr77jy+Mz1+2JXCrOeg6HQNyTCHhGvrNpT/SeMDaQUxZ0TBdMAkrcpaUkEp3gGBG68ZzWXgZ9K1Fd5wxqRAVRkwhlOdOUwU8TthZiXNGM/qExxOec2GOl4kHLErYO0UlhxPXeKpguZxPyZ7amMcbTamIK8vncthV5WuhRApTH0FbpWsp5rBVRp3XHfFxwRhz+Je9DfBA3rB7L6sdPH3Be8BNKjwIlJQurkvOIdqrXpa8U+wgCRH4/JFUyBLnWxf3xsvx8Qcl0ZLDuXUvkcTAEX9pFc5b3SSmZmxTDKagVd8eF8/kjpUSMCxLjpZNioqTMPC3k0pjnhcv1wrZ9ZPaePviuk3doVTBKRIUQNCUX9hKhO5xT5FzYdhH/DResmWndEJzit7//TCk/4rzisCimyXH+sqG6iMWqGyqw7gK8nxwyI3aJgt7dH+i1sm8JF8xw6xtq1TjreXj7Lff3X/PDH/4tqnaMhdoUt71xmAK1Row94PyJy/WJfbthFOS643wixUrcJ87XVQqfqICIMrP3kvQwXjiiCmqWc9RqQZUoDdM0oUoj18I8nwjTiefro9z7rDDE5ilIQ64W9EkIE2nfKCXRtSyva+8SB2wNkEVuGYVQUpYkyIQ6xIcYd+GodsH2iLu7Cp+1VGrL2CYXWO8nTqrz5ekjTSmIO3RDmALbZZNnR87kLE7Ay/kJa504oLzcu46HhZwyvYGfZpyb+OrrP2PdItu2ieA+EBJtpLrCNGGtlwZQ4+k9v7IlS0n0VgeqQQTw3Bp1xJM1bfDai5gkWpNnaR/lg8Nd2VseTEbF7XalDMSNMQbj3eusUmojRahJoVSnZrBOSUv9aNjdGq/Jl1obkzfCd9QaY2SGuW2Fh5Pj4Xjg81OS9l4jYmEfMVFnZQYKWpbuk1f0JnOU1ZZbrNQkc+K2VVKR+cvwciZAU4IVU12R9o52mrhlotGcQsO6zPPzH6VEkMDkPQsT15z48nnHB01HzjTnLNfrjT0bdG+YUyA4KbJbloUfPz9x3TO17cy+4DRQHSi5MzjtZKGZ08BOCWLAOo1ygnZY10ysHW0KYXoLuqN6oqady7pStZSUnc8XrJOllIhmE/PxgLOd8+VCKVdas8xHTx5GIhkTtKQtjKF1cN4R9zSWWh0peWygLfNylOXPvmGtxTpx1Bon9xNjLSU3KfbQmpIzzs1MDnKLMst2qEmeqar3UfQny29rPUrrUQIrmBTjHMRtxPwzyljsYPT3zmhPluXkw9u3bOvKbb0IAzltXC5PLMuEwgGCCdJjWZ9SotOGq/ZP+/UnC3wehcuFdz/+Ffef/z1BaXLcsdNJvry3R0zZ0HWlPv2W0jtLONL8TImapi12xENVr6imBt9NXBNlv3D+4d8TpoWaVub7r6kpcos3wt23GH/i9uFvSPuV4/Ebtg//nnP5Ofn2xOXTbylxHQ/XwvX5o4CMW2Z7/AOfa6amMyWtKNXJl0+k9Qy9QUnD4SFq+Av0UBwBlnW9kfKnwWUSR0cZUHZlHCDV7r01tG6keMM7SykJr8XxVXJlPf/I0Tt6dfj5HZY3PH76nlQknibsCffKy2qtcn93xFktsPDbJybv2dOZdf1CTDvzItDzbb2KM5KGd4o9Frl0q0ren2nF0Gqi7Ge6ndDW0Vplu37CqMp6u3A8fY2f38pQ3hol3bhdPrFuq7QM9R9ZDm+I2wVnA36auV0/YTT46U42GdpQqwyZtUg1fCnxNeaK6uTR3Cpf4ML98Y7r+TPX2w7A4RAodRdXpzJ4C15r1HAFKPWEW74BmhQtOCdD1zj8921AoEfpB+MQMUbLA8l5aLBtSWz5R8d+vtFqwfmJZTnSu5K21K7wU0A1xCo+Wkkl4iI8uTYy/1oqDrHW07s0TWltxHpfZZvmnLzu1g47r3PislDDOaestGDlARHVwjoT9qIArK0LYiUfLD8pIwBnJRLXmziH1BAbX+rmnQ+YsQHrSEzKijlQooZWLvgKuYj0xk+vaSy40bI3eUtH2rJKFdt+BRGOrUDnc2LAcq1E3rpENmQAbnjvUGoMC11cnvIa6fHvy0NXacs8z6QUMT5w9/A1c1iI8So/ZZfvbIq7XMSrPBRKaXTV6KUR0w3v3RAxjXA1mpSHWGcpqqFVxTnFFq/EVHn79i10DV3iCvIg6tQu1e1+msmXnZQrwVtxkpYseAekNZMm5SPqBRyiFKVlTJPNU8plNC0pKWJRw6WsFWld2fYIWpyNOWW0CWjtiFk+h3vcaaVgvZNYa6k4K21OKVWcthzne/b9USC6tYr4zQuHU4vFYcQpaq1gnbiqe0FrT/CzgMNrIaaV+7v7wd0QLpfY3oNwMbRm3xXWBWqJ47xU6BH1M96Iw2S+Y70+ikPjhdPiPTU1WvmJqdGVInfDcb6jm0Cuz8IO8RbdwAePs47b9SpuSe2oGA6nN9yuT68uCes8b958TUyyDZ7nhePxjlIFAN/GgumFL6aUk5KVDsYMcUMFiTOMQgetBpNKMRyG0gbpxvBbcsZZxxwmSsvj74S0d9Yx5CGb6dPdW27rTVg+yvMXf/GP2faN7fqZrhTLssgWMucxBBrhBGnhlChlCPOENh7dMyldhksj890vfklThpgy6/VGztLk3ZXEHb0zBOfoapR8hJlvvvtHsg1dv/D0+ERWG+tW6INXWIoUV3jnaUoiQNMc+HD+DKXgDOxZ3M2ljzOkVY5zIJdEzpV9r6xbI7hGKZmswFsZtCYnzFyDROtLleUBnTFcN2pvpE3i02HyaD0+w11i0zlLJDvGTC7CZDMKGVYdwmtyGhIclxPaWva4klOmNRH0DDK8S7y/UYlDWBP+Z2sV7zwuzGg1Yazm/PSIHpFkcRupsVCaBGOghFurBgM0hFmaTenjHFTjnFLosZjpXf77tcYx7IPSoyVPW7SW5wpIc6Jx4kDsSiJR+oX3qDTWqMHLDFKwUgeao8kzwFqDHUB3Zz257PLvDrFfGt+kXR5Go+nLAseIUN4R8WNyE84HeteC9qiJ1Aq1irheijTc0jox7mQtDtzWG7lAaZYwzXz9s19zvTyR443WRdROaWfdb8QYefvwwO26YY3Bu0AsSZrKtabXijGe+3uJoln7UrYUybGgnaXpju+eNhZoTStZHL2cySNWuO2ZXAvOOmruUihhOn/43b9hXu746uufcb18Yq83pvnId9/9Gc9Pn/jj+0d6M5T8zKf3v+Fy+cDjlx/5u//01yxO8ebugestsseNlhtpNH/OozG4WnlOW2cpKPy0iLslZ+5Oil/86s95fHziH//TX/Cbf/hrWoqUUlDOYJ3FKDfWUBJLzaWPIiMR2R1WinxaH89UKO2n97G3jrEeYw2X65Xj8TgcxbJcKEWcj1p3rILcpUUbBdY6rBZR7Hx+5s39g0RYEXHj629+xedP7zFWFpR7WqkVxPw60ArKkPYbWgdOxxO321kYwikNvqJc8rSxOCVNuLV1HNDRHA4nOXvTTs0bisDp/h3np0+gKmEKslTdd4wxLPNMTBuS3lej3CBTS2EO8vxVShwXnVFcp6BrNVIJFmFHdXQT0wCA957WRZSJ+zocK4VbErf5SxGedYORqRUhOIyaX1t0XwZipTXoTm2ZuCZOh3coZGifpkDpja0kUqmcTvfcblcqDT/PqMFx02pgF1rmzeEb6IH2/IFaEjGCtorZL3hjuFx2WursuaJ0I2WFNo3gFhyduGda0tQs6ereoemGaqCc5rYmtFN4p+gqUYuV5cQoXDNK3DVVKxqNXCNxveD9Qo47ygXuTt8yp0qYPLVUtJuZp4U9dymooZGLOKf0YHqV3CkVFh/oo/RL3ldZkJvh0HRa7mooKWyU0g5xi1ptyClyzp9po4hoCmGsXiRZE/yMPwZJSGgzOIMZWsEpT95uoDqqg7MeJUE4Sil4J4zAF3a0lAGMRUMT1umLiWOaFnRixORlTtr3FWuEVe19YN/lTuNe8DthotdCSpEXxnPKmT2Ks9FqWU4rZVnmA7U0bpcLsVYOy4FcRHBZDjP7thHjxt3dgTBKZJTKlCrJou12kYW5sSIKDsY0SolDbqRUiBvGBU6HB67XJ1ptglxASyy6xVdu8Z6yCJzDkasH//uFO6ol0jIMFRK9LaVTah6OwpckCSgticDaJMCjdRuoLkM3EGvly20TJIsylKrAVAwNGyTh1mtjb+BaI3hHbBXbRJA/zYFaO8/XSq3Sihsmj7KahvA795KZjQiEvXVaVsjjtBA1lMuZ0+I5zJ64Z25RStCu10pqlbiCNwrjOudrxBNkUew17776OU7fUdKFXDPbXsfSoKGB4MJ4Hwrz5AVt1KS/a3ZSXOjDwnxYyNuNVDpNGba4YV3jfD7TrQPdWW9XccE6S6uK0+HAFq9iXEDhZ4u1E6VFupKCMWMNlYo1Ftv1MB0M9qQSJ55qHesNpUTSfsOozjJPxCRNttrowbOUfoDaXopwNCXvskSfJvkcWkkmGWdQfZY5kwpNyl7FtSvlSa1VWpJngGoN4ycx/ijNbgwuSGEYiEs1pwQGDvMRbdxgpcp3WhvD5A4DvZRoxeAmjxvMWtUHA36YAfr/Fhx8JzPzVT9z//HfQbxKo4zW9JagJfr2jIkXjK7k7UJan+jK8/Cr/5y2faH7E21+hyERn35gmh5odaPkHesP5McfiE+fKLaTbs+o/Bc04On7f8d0/wsevv0LyuU9aT3z+e/+W9rlB855R4M01o0Gk94bvVaUanjrOX/+gRYvQ/yQTUTJWay0o/yh1hFNHdGn4CViIHDaRi1S6BDsRGwRpQ3LchpxLCVijNGknF5BpWiJ/FBlS6c0XJ/fE4ph6ZG9Ns6fvme93ECLsk+XBzs9je2fbDOtMsTbR25Gjde7czrdyebVGI539+zrjXVfZeMw/h4CjbyRogCW1/N7puMbaJ4trqyXM95YWtm4PP6Rd+EIWmIGOV1Zb8+UvFERi/t6+cS2ncluotUDz5+/R6nO11//ehQuSKuaCDkCtW41SkyoS8V7y1JIYPXEYV64PRUm7+jNcbntPD2vaG3wqnGaLForpuDEeaIMpldKvKDUA6onlJFQk4BlJSpci3B06ALz3WMmJUi68c03PyfFjWVZWK9PSPa/EUfTZGsVtOdwPHK7XCg5MvkwNrLi0uvIRWs5HFlvV/myahFXRCJTwxgvW+BW/meRmhcxr0uLXu3yGepKDciKwlkr9vwR7TPWYZqUyjijMarinMXkKgOnVeNC0YbQKM4VYyR2yku0ThsByW9yERKXggInQnUpjWXyMvQBshsfEZEujpjSX4DmZhSu6DFMxyGwi3CnlVyE6BCLMBIk0mkoI8bsnCGXQgiLuKs0+OBGdFgcT9frRS67PrzybZQ2HE9voBuu5y+kUlmWGe+F55Zzxc0BNwY98bU09v06LhOW5XTP9XZlcp61FNx0x3xyfPjxPR/e/8jxeJJLg9J4K4dzz5W8r4OPJUMOWtwlxhg8Evu01oNWbLs0PMktZzhgukSVexGhbxhgZahH00uktDbifxFn/eDZyJDunOX+dCTtSf67rdFpzGFCDyakn+X7NnnFYXa4aukYtijCMyNmKEwUef9owgqcwiTuyS6Ab6MN3k/YuLHerizzMsQwzXGZB5AftAmUutHJEqHQ6pWjQ+/kVPCucrkI5NcqizISX+lALOIK7SDCsHEsyx13d+9opYzXWi7PpikU4p72QZhUp/sHjJX4SIw7tSaMNYTgWfcbxmqctxKdyYX1dsNaOSsViPuuCvhWDaE9Dxs+WLw19CalDUbpIWbIpUW2fgKJNloNjqcsrkKYhHdYCsuykFIklkrvcL1dMeEkYrO1GKf44Y+/YZoO42fq9K45PTxwef7CNAFKmKmpVqybsNpyfT4TDm9wSpEio5Sj8PHjH7F+lmeehskHjscj6/UszY77KmUJuYqrUEl06/7uDaXtqH6mNyMlEEg22g8IvRmXJ7/coTBM2nDZbyhbaGhxpnT1GkVWXVOruEitldi7RhGcnNdbblil8c6RW8cFQx/RtVwq02HG6SZuq9FgprSwfGQgyhQMShtSzTgF3gruwCgpu9hTYYtxONlGe18rbFcZwIwxtMLrea3tKBwy8nyXc9tR243epEVZY1jXs7gNzE8DZC4i+mojzj9dGiVHrJ1Q1tPjOpyeeRRe9NdlTG1S5iBLEnFjt6qlCGFE/kPwGGVZZhFcWt1enT7WGjoyCFk3GgeNnBPWSvu2NZq4JqwVAVhrxjMMtHFYbfHzMgQLkMbcKgOx8RikhCA4zx63ga8ow01r6V2xx8Tb5UjwgZJvTNNMayuqCdKkZHGmHL2H1rltV7TqaC0RmJ///GuulyvLNPG0XSitsMdImA60kvEG4n4ZMTY/cCASwWmtscyTDFIKuuqgAjEaluOBkjPny47qPzH7rDXEvYhzUylaA28EtTBPM32TxUvrnX1befz8ieADl+sj237i/nQCHTifrwR34XZ7RinF+XpmmWaev/xGliXrTqs7qShOB4Hnr6s46raUKEXaitl3lC7Mk6KUDTtByjd+9ef/BbdrIucr37//W/Y1cd3ObGsUXExrBAwpZ/RwGqe44XTHGE9MN3EzjBhAbZ2YM3gzECACew/eYXSjNYnCtSqOopIkJWKdl/sN8bWJcJpnrqvcy/Z9R6EEuh4s2ohDw7RGyju//c3f8nD/lg7s+4XWdrwN4ki1g9voJkyvKMxovl3kTmz6a/FVa5Vtu8ndy4pY0VuhqUYuWcovrDCZ47ZyuTxLbFJpUhRnkFKdnDJ0GeT1YIzVEYN+KeEYt7/RGyWGgFoaqsi/V2sZLaKyvKhdIuG9ihsl7W2IL1IapYZzT7AQfhTliDCybztayVJJWoB3pknuECmK01iKpSq9CmN6S1eUUuQc5f1Xhmma2bYre15HCqLjp4CxltvaqB++cDg4vvrmjufHG7V1WilUbbnlSsqK033g3t1xf3/Hu3e/4P2Pf00tz1inqclx2RqHw8L5caU3Q+8SPSwZIh1vKhbL4ThRc0FrWa5aKyy7tz//C371j/453//+b/Cu4P3Cm+WO2+ULdw8/R9uZ+Pn3aOuZj0eOp+9YL898+82viKcT19sTU9Hs+0Yh4oOBq7h0JH3WmUbaBoQLnGumd0UtO/M0SSmZkmWpXOArOWZyXZmXCeekvEJZTTdqBHYa1sDt+kRY7nm4+wXvf3gkOIs49hj8b0l8tFYkhFElimuNONea1jgrQnUsgipASbmb0ZBbZY87YZrpmtFMXHFOU6tEFLd1paNRymGNlHHVJmYVZTTaeOb5QD2fUV0YtcE7FEiqqilCmPDB8e7+55wfP/Ph0/do3VkHOopeWW9foD3g/UIr65ihIAQ30kvyPXlZBonDSYqVYs4iWipNSpneqqSlsuARlBE2bBtLZ+ccxmjWdcVoS2lNEmYvuJI27rNd3HRKy8+iMPQh4JluwHS07WNWl2WGbNXkLtGBvQj2xFnF4eQpqVESNFtpRhF0H7OwCKi5KVKW2aJLThmvO6eD4XyVhazgqgTn5ZwlxjYi17JIQYFuksopVdyOx5EE2QeXznvDcuoENRbxWWOsIadCOFreHt9A3Xl+ek8pH2WBvZ1JI2XEYKYrHag1o3j5fa2I7sZjQ2CZT9xuF67nZ6YwM3nP09OZKSzkmsUFrw2lK1LVhOAo+z5EuJmM4VqEX1pLIsXLa2lm8Aug2baNdw9fkTbh8msj9/K8y0xZy8a6r7SusKaRi7gprTE4XSkxSXrJ+rHAE4Z8LVmKQZUibSuzm6lKvTKVY24iqPYiJgcAYzBWTnE9RPm0bzjn0VRx9Laf0nRKIXzMaRLTE5IamcOB3jL7epFnoFzUydttmBjGXGNGDH0I0rXJYkNi43/arz9Z4Av7hTeXP+DKJkNsUORc6Um4bzpf4PaBagL77YlWIvr5d3C+J16+UDC8+fV/RS8b19/9a8y7X5G3J0reWO7/jHJ9T++ZVhQ9XUnPvxe33HYl9t+z9pUSr/QcyZfvheGXzqTax4MXGByN1mRgKSWzeEMvAqJsbQA4tUJ1AeBLvHYcCApiFGHFh5nelUSetIZuhI/WLYyGt31/kpautf8UzX2JsRlPmI7U241pkZbB3DKXHeALKha260UszKUCljDP3M7PGP3SgicHFF2jukRmW8uUGqlZoNS1ye+LUhznWR4C3snm3DhKitCLXNDiI6muKKV53m70GllvT8Jb2M6s10fC8gCtcnn+zLptw70HLWeenz7Ipao9Uk73rLcLPgS22yPKeLz30A0571LAUROt7RhtMUa2685N9Hoj7RfyLu67+9MBq9rgWcjn67icWGbL7XrmctuwBjSOaVmYvEBPS6lQy2tTTS6y7fCmYV2gdPniq+HS6aWy3lY6GWuPTPPM5Zbw/oAdW0A/CYR6u13HZ0Mq7ruStsucC9pYtDHsUVyH2hiB3BuDtZ5Sf2LFlGFF1sOdUUbraIcR2RO+HS/Q9ZzpXS6LBoFba20pLWHscKvUKg82hnOldXyYqGkXB+aA0FttZCAKDqUtwQfhnTG4UD7IA2bEn6wVgLax5rWAwzpLj4Vt27AusG5XgvfsUUSJKQS0D/IzDkHIOk+YZpz3xH2nZXG9sqgBubejdETYUJfrMyB//uS9gIuz8AuU4rXt0ziP9Z542alNtmPHh7dscRfArW6EaWa9XYgpslepXl+mgA9O4rW3FW0NzgfUHlm3/bWqXVUj7la1U1sTx+ye2PYdf5yEX7FCrnJB9W7EcxRkjAwvOrCmhlWd0kDVxmytOH6rAu3wIbCW58GpFA5fyqMtLFeqmZgOC/XyRB4irrjAhGtyuVyGyOZRTcQLkIuRtXJxyjnTeyaVxBYbxurXOHYt0mIYlKFX2SynEYGurbGnwjTNWAtz8Owpcn93x3q7Io5G2ZTq1vHeyJYvRxEHNMijTxyeSmvasP7XVvn66zecLx3TRZSurXM83bPdLmPQemkm1LRaeH5+5rhMsnWvo/VZVYlOT5O4xlzgetu4f3fHYTqwbRfyXim14XsnpZXeO8ty4ni8Z99W5jkIUH/wGlsTDlRVnel4ZPYB1SIpXoW/1uQcsD6gu+J4uqO2yr7eqFEa6QSeK6/n6IzGGk9OSeDmxrBtBT8+/9oYluWAdxO9Hait8Pj8heAPpJS5bSuH6YAaz7gyhgJtLKfjA7fbhZgTxhnu7u7Zz58GDFxx2xPaer777peEeeH9H3/P+XKmFnG+GWvl7N62UXYCt3Xl8fGRdd348cffoHrluiVKe3FsKmKMuGWW+Gxr3M13rKvwZpUzxLiDsizHI7oVehdRCC1xR2PNGN47tRnWWJknTfCevEdiLKjwU1Nr24TlpXUnl0hMma4dKUpLs1zmX3hGRoRWrdB6cAproyozXHOVXCTmHfck0cVaCSHw5uEdLkycnx65rWdKzdRWWaYgPLmWqM3wcP81z09X9lKYlhPbluQMRQTUjho8OfnB9HAnp1xGxLShuxaekfO4lwWAkjirs5Wc22DGyH/+4oSWE1/iHYouMfchckATTl0tXG871gWW5YgZF9UGpLyjumKaAodp4alEUroKT9NoRkGpRIedQ5vGspzQiHhQWsYYz/H0wPPzJ1obQHSGk69KDLhmcYnpwViVlvnxs3uJhW575Ot3XxHjzm3d6KrQ2mgzdsIq+8Pv/gFtDN9985WIdwUOywnvPLk0at1pTc5GesMZLSzT3khxw2qkxbwZ0BKd+uabb/nw8T1fffU16/VMKxudF8RCJOdMaWrE+i3ayN2ylircHsQh5L0jTBPn5xvaKKyBb959Rc4NAvzy1/8Zf/zekqo0oRtjWLcLpWau10jZkWWddmirxdJjFM46MaTULnEe3+l7xTmD65G0feTv/vb/zZu3v2ZdL3x5ujA7S03Str3HxGFyOGPophFcoNROb5nePcbIIlKuCYZUokTpNNjhnNMK3EB6GCORL1naSGy8VXEexZQlRpw2iSOi8EqwO/TOPHnOozSjlCwMyoF6mWaDGY6nsBxpPYOyzPOR6+UzMRa893Qs1s6kuKLoI+6+v7qaQHFYDqzbKkmHEcEvuUAXFnWpisPxgcOi2fcrt9uZkiMZzTJNsgC1BuPtEAD8a6FfSkmWqdZglKEpRUecgxpZhDXbWMLEnqIsgvpPqAo9ngVay1ygqOQk8Xw7yZ1JG3HJLM6PKLq4WZ3xpFSoXXACwrVt9F5w3vB8i9QO1/XMEg7iwm2CSZBzYiR3ymBRtU5tI3pe+svakbgWaFKS4JzFBSnSQDnePrzh8AvP2zffcVwe0KazrSLGoju3W6aVjvWWy1lmi1zruP8Kh7SWRoqJQxCsjjaar7/5Nce7r5knR9wVdjrx+PwDT+sP0BJ0w/H4wPH0HTo4fvt3/5Z335xo+5XP52f2PXN//xW1NtJN0APzfMe2RUkL0Vhmz7XuNDLTJM78PO4LZc9SFGCsRKJLhC73epBFk5STycI2+ECMnfl4ZJoXSoyUInNO7Y1pcsN1JjgNVTO9d2KLQH0tJyy5ioCgusQMNTSjhqtS8DxaKXSXFE0di1dpVdeU4lAvRU7KU1sgJlkgCuuOYUqpbNvGcrgnx4rVkjS4XB7HIkjm1bgnjscjUFhC4OOXLxwODetPshhpeSTtFKe7O4m9Kk3OkRAmcaUn4WZ76zhvG8fjTE6CqVBaY7DUElmWmX2/yXO5CTNTlvbiKO66o1qR17QkUlplxhn/W2FQveGDLLBB3PbOCebn1emnuqS3upxr/cXhx08OTd1koW7G98IqaZ2PXWLsrcsSQesOzdNrIbZGcJaWoaRCR/h8Gom1pirFQilKQY9oxBVtG6pL+q+2QlaGabDT1cB+meGOsEazjrJKnJQzKKuZvKIU0ANdE/dK3TvXLXLNCTsWY6ZbTFV8enyiownGYp3cO6wcRlIi1YQF6sLCcnek5MK2XdA9YkaaSEhTmZJfzlphlr+khXJK7CWiEM3EmQlVd3JKxJgxTgsiQlVu+cry7kjNisvlGasaLnjSvqKsGcmSRmlSfmiNcNi9lZVK641q4WF+YD4+iBjcG+vlEVqmFUHP/LR8r2NpXzFuPO+spZfB5+5SQmONRQ0+dUob1mi81gMjI+LcPHvRmDrUsZRp4/P2kkJ1xpD2jRR3gj6glSAmJMpbmadAS5I0KLVgtaaOJND/Jhh8/uNfcfjwG3m4tk4pBmqm9kk+yGVlf/wNy/EdvUZ6y6zXZ66fv2e/ipB3mGeM1sTH77nWKKye/YqukbyvIhQ6i2qZsj3Ll7Y2WtpIt0/kHKVtigLa0UqRrfHIQuc6eHSlvcJotZI3s9QiAx3CQNMDiFuLNE0651/B7Ub/lK8WS68o/603pmnmcHoznBvgpwMdQ9zOtC5buPl4J9EOZbHeoTTUJpXbVRlS69S4Yb3HdEVLG7VkWptGhFmcQ713KYNAth8gl0VQhOXEspzoKHLa2bYr1IQxA9g9+Gmjy4+UErJRkmjcvu+kUtBZhJXr9YbxH3F+gV4oRVo0U4m00lDGEKNsSUvaKE8ZYersTGEl+MqWd7RbXl0DJUNOidRWnFtACbx5u33C2s62Gc6XL7Lp7QIXXmZL2hM173xaM8oKs8laM4bXzuX8yNHcU4pEJFopgyHWSfHKGi8cT29x/jSiy6O9yWqW04mYIm464kLk7quvRNxcV3pvXC4r9/d3IngZaSIy1tD7CxTdjdbCwVIzEqN1XmG0e3XOlVbkYBqxPjMuO8F7GmowOETw00ahrEUbz+FwYF2vMqAYPQQ3z3JUrLeN3OFgHaNakNY607xIsUZXqK6Yw4zSlm3fOcwe7x3GBbQNeDShNjry2RBHHEDndDzSsfQuh6xuihQT59tNQMDWgxKY7PF4x7Zeqa3ijUVrKR0w3qOdxzqBblvrMIth3Tfc5FBG4bz9iZkzhL3Wmjj8bBDQtzV456WiXglTCwwohw8LXSmOdw8Cbn94Q447d/dvuJ6fMEYi2sKibASnpUkyQ2uKN/cPrNvK/ekNF30FAynuQGRbr2wxiZOtdYlF9IrznkbBzzN1FxdvsLIpTdtF4vt9cMCMDJNhXsaDoNGLlGDEbcfaAfduUqphjCWlIpvFZnj46mf87Nd/ye///q/YPr8HDXOYsFZRjaG0hrdygUgjDppSfhU1hMOhmMId6DO1XdiziN+9SXPH5B0djXWBroTdaLWldbAuADLQmMFR2fcoIPW4EYJHOyessrKiVIJapKXRO3FqISzMzmhnHXyb9XZhZJoouVBdIoR3TPORuF+l5bYVXFgI85F/8p//Cx4//cj1/KM4aMfwNE8OlMZYz7wszMsdXSmezs8Y5yhZHnk5Fx7uTtxunWm6h25ISc42Hzyt7JQuUZaYKylHVFec7r/i6eP3GDdR246bZgyVnpPE4JXDTQs5VpQu1LKjrcVPB6xWGCVtd2E5ApVadi63K8s8YZzjfLnSeud4+ooYrzw/P+L8Qgg7Smumwz2tCsOq1B3rDBOBXBUuzPRaBkcKWtHcbjfm4OlNLsHOarb1iY8fLMvxrcRuZ0+KwjTbtpU4INa5VqZpwhjN6XTgel3JOXJ/mMkd6rqzrjeC9yzBA5ptT+IAmCYu188YY7mmK7V3UpII4XEyo2FOYUxgChPrvkLJOCuOyRib8Im6QJIluNFBN4KFaXJ4F1AoUkmvpUBT8NTWuW0bx8NEKRLzdd6xx0iiDhcF6I4IdrUJH2ywrq7bLmeQqnz8/F6+l8PtrNAYJS3wXWlyS8S4st6uIoBpicLPyxG1KWrJInrESDd+uL2lOKnqzrLM4vbuBec9dvC9XJjR1nO9XjBKCiLUwD0YqzFOWplbT5TBhVO9EcKBWgtad/mMFBEUvLM83C3ctsTxeCLuV4xu3C935NI4LAcm5zFKis9asxKP7xIJ3GIfUV+HGZwuQxX2jhYXsPMTy7SwFWk2J8tyqo0CAWclTsgAZyujON3fc7tcyb1wf/cOaydxhfQdr7NEVLu02aXcmKaDRN5bYVtvLMd7Tqd7Lpcz63aRy7m1I+ImBQgSlRcHfPMiZrVaKfuNljM2WD5/+A1pu/K782cm76g6kVsnpV2+H0Wz7lnic0FagIW7OApAtBqIj53L+QZVRMzbdec//cN/5Je//CV1r3z48Ufu7x+4XCf2WDifV6wTMf5wmmAypLoyP0ws7oAby7yn842HuwO9ZJyXiGerikvM7FWzbju1rczzG2BCdWm2zKYxH7/lz371NR/++PfiRJlk46JaxYcFawPGO9gH+61L+6vWEsHWSqJtRiuscdTSqCOWqLrCWU/aM8bK5905JwibFAkKLIp928UNqxW3LQ3OmIikrUusvWnL49MXbuvKPE2EkoUJaDXbaHlXSgTseT5g3UxKV7wXRIBqEadFlEupDOSLwgxnb1NaUCwIv03XjbSf2WNinhdJv6RImGTROi8H+q0TU5RBrHW88yijmacAvZBKhuAoHVSrI6ljcRY0FacMVRthXPpAyWWUAYiYQoNeNXY4yIPzg68rYvg0za/OemO9oFiU/il+D2Oe0VyvZ9b1RmtyVuUSUSNeWZsMnsZqvD2gupHZYMSK1Yj0Bx+Ga7dCVdAt+56YfMcHxbdfv5WlfLryeDkT65nLeaf2LPeQ2gheUVIjlYYzna7kDg7Qm8QynTYo019TL0Z3lFVMpxO//ov/I8/nP/D+8V+xPV3xIRD8xHZtGDOT0o67OzL5B96++yXeiRvTL3Lnvq1npvnAP/rH/wX/6W/OXLeP3L+ZsVfYt0juO3KR7XTdqKpQlUYPB73RwlW0A9vSdSflHXAoP+P9PACSGm9npnAC3dHWQQGrOrXJ++JMZ4uVklZK3lGt4Fzjum0YZXDaDP6uNCYbI58Nby2JSkdLG/sciDnRAecmKBUzlgxGW5QJOGfZ9/WnIpAm84RzXhzgZXwfjBnYoRPn509crs+v4lrwlnmaBlta0jzrdpESq7Ky3z6zHO6Zl86uMc0AAQAASURBVCPn509M0zRE6sLp7p0I01oQLS/s9z3lsTRIgrFSsjC21uKxPH7+JCkfYDkcqLnhvR/NvJ5OFwyGlplVih8zMWVa00yHg6SzapFykIHCEMa3lGVIU3WVc7qOpI3qgwM65i2lsEoY/6pDl3AILcM8S3O27p1SxbiDhpQ6zml0F5dnLBAM0DUxS5Fb0R3vFcpopkk+58JxlXt+Sh0bZE6otouvw6ixAJV7srMeHya2fCEXWZBqpThOHprBhzu6aWz1Ms7UDlWWBb026IqUM2vqaN2YjJhAUu3sKeEUg+XpmA9vOBwfOF8+yr27NpnD0zpSBY55DuxZ4ZTFGI+2Hp0S83wgpxvb1qi5sW0rapnx8ywlMPtO6VKippriuq58+PR77g5vub9/R9x3rLWs+ULtnnm+J5UdWsJoR+qZbd9AK5ZlIjDhZkcthradKUruYFoJv1vSOEZkYOsRJbNKsqg0OZsQs5IUbrqRFqmCkoGRsJLvUesiNjvVwTsaVhIsk6TSSivk9uJU3KB1urTHirkhCybN2ZfZMw2RVZNiIQ8kQB+lZH/qrz9Z4FPX79HrxwFRbpQ9UnpD64Qbm/C2PhFroqRdtPFe2M8fySlRcuT5h7/BTzOtVLbnj2JDbp3r43vMiIz1Jg1rvVSUqnTkMK4lCxgb0OihnFp5Z2hSSaxFtBCMnKjMZrDDelNg5ECQSKS4BIzV2G4Gc0lAj2GaiTEDL8UF8sUxvUOvnE53EntZz4TlDSl94HA40LOwBHptYD3T6S3lKVNyGls4KUmoRrGWQmxuRGItzhRSXJnmSSy1OjPNs1hRu8QS5YKpWaY7aql8+fKR4zyhtcI7z1qSbBeLIItjFDFBOCJ1bO3GJbUrSm7c8oZ1E6UUtu2Reb0HmnBCOjKg9IZXYol2fqI25PCynmCFRSUNawofhJOktJXLHTI8tJpRBj5//p5WdqwRUH9NkW2LKC2bPl3koM5ZtpTj7CNX0Drx5WklTAvLXcaPn8UaEZe0gu12gXYjbh5jJ3m/G1ALLhganePdG7QNNDRGV9J+RSuDMZ7l7g3eKrbrGWcMxgmkvbww0pTAnqex4W5F2IyoivWOlKSZFqTGPXgBrKsRx9Sa19ZVow3ai03YGIsxhvP5efA/xO1lBz8uRRleUtzRh+k1Wqi0IscoD9ExvKoX7oKWplPvhGWXM4PZp8klS2uwli2vUuLACEvA25m4XdBW4bpj9p5t3+X7iYDwp4NimieUMtLk9lJCgkRxU9zkgmsCuSZ8CLIBL4V9j6+NXLfrhXkwmU7HO3GHPH2Ups3gKKt8R4/HE8fjwrYJEN1bidqf7t/x/PRRvndaYacZnyaenr4weUtwAYxDdYWm4vHctpV1izQcDc3kAikKG2JeZipwvd1Qs2PygTl4AdNniRyoLtGYPEQ1Z0UAc85QWpLzSzsw5jVaFCYz4MFFhpQRJXfjQtSVbKo0wm7cr2faeI9qq8KGoI/Np5x9Wsu6o5aCskoGrJwxTS551jZaKUMMEdB06RVrNaV2aaxzVga2fQcnn/F5PhKmWcqEnMeOWElJYoOvRtG0NI+bnql1R2s7WB8C2LfaUruULRgT6Mry1du3pFipVYRu6xJaSwGDNnbwn6q4kQ8PaOt5fL4Qs1yqX4Xh2tj2xPF+oZTCvm3UFvjlr3/J6a7y+OVH4h5xTpola6u4EHDBse03if1PR1Tr5JqgV1KKaOXQdJzX5Jqwk2G/ruQijkjttbQrqp94Yz4EEVZfn9JNxKiUsLZJSZJWlKLwNtBVHZF1xenhQaJsaZdLpYL1duXt17/g/v4b/ubxA5MTV2AcbuG7+zfsCXLcocmyap4l2rWtF4ySGIIZjL3L+ZO0ofUurgEjLl1nKgmEU9I6wU/86mffkotw1k7LgmodZxTL5JiccDPpworNDe4fvsZrS1pXWkkYBdoJ481pw+IUtCTt2F2WIarLtjoEy76KIyqVioriwz/OGmfAdGmvNcDsZpZgSUlaBI2FmgvBB5zRrOuOc+KgmF0HK7D+OC7q3llxqqpOK5G9QvBBFgtdievb2vE6J5Qx5CTb9FwKzkxMBsDgnSZGYDiLw3DNG9XZththCvTemCZxS1tnCfOCd4F1XbFWWHjGGmKukDM1F2ljY5zPSpAetTSUykS107vcb6S51jJNCzlFrO2UwVdy1pK2TFeaaZ7Z9hvBWfJ+wdgAvdHqjjZ3o212MGWVRht5/dRAAajhKmgt0WrFT55UGvenmW19Zppm1vMXceYWESC0EpaVG/G0PFwk2ihSKhzv7uBSyFmWAjldgIRGiyumG1KRz2SuhT0mnPGowQwuObMsEz4s1Kq43T4PDqhlWSZg9BAPtmdpndPpnvPtjA8LPtxxPB3oX96zXp/lu2rEKV+Q71+rZcSXJLoWY2Q6HCTWneRuqVVnXmbu74/EVcDyCmkKvF0jy8GzrT/y1cNf8u13/zueP/+BMp3ZSsT7ibt3AJl9PeCM5vL4ict1I7gFrWXZNDmLouOdfMedteJa1cJO+/jxI8e7n/HP/vl/xR9+//d8efyAtjfOF4MPFt1hiyvBKXorzIc3qAq3yxO1FrwPgCwptTLElFBhPCtp8owbBTetZxSaaQ6UUuXc85K+6DUTnMe5QO9G3CKtSER60exxlQHUyDO+90pXCd0zwSkMMBlFrgWMHkVzErujCcOotC7lCB3maRJjQY4YNYTdWqg5Y4wT7lMFbSYRt53F+omuNfPkMBRylHIlbU88PHxNyjtTdcAz0+y53TZxg2gly2MF3mictlxHnF0rwUiAwuQdrctgB0rcyhg1DAOCJJDnuNynj8cjJWd5X42UKJSUsV6QKtpL2kD1Lq8pXhalWvAmtVVx9g2HvLNWBA4L+RqJqWGcPNO99xyPJ1LaMKbjvbgdn8/PvPn2K777eqYkMStopwlB82e/+HNqt1yvj8zhyO3yiR8vn5inmdYr601ahfe90LJmMo6axHiQkkTee5eCCroiGEOphssl413HTp2/+pt/zfn2yN39TFONuG8sy1c83B/5Yf89/6f/+v/G9Xzh/fu/ZUtP3L9d+PT+zN3dPZ3Oz37xT4g58/0f/nsu5z/y8O5b9JNFEVlOdzR1I/TPpLJReiXnyhyGS1VlKdkojtYUViusy9SWCX6i1U4pEReOXNYbtVyoVQRVpZE4O5r74x1OecFr6Iy/W6BtHGdH2iKqJ4I35NyIrdFSZg4TBoUzGk3HUKRYTcvCiyroA6MFb9FHWaBC0DfGGHoDNZqx7x4OGP3M0+WzuJ+tlxiyroMp3zlfz5RSOC4HXDiwbZGaN1CKeZK7oXPi6rJG8BmfvnzkOxsIfsF7zzR5ab1Wlf32WcwaxqGVlAxY48RZrtpIIUk6znlPzVUKFJwIRsBAXARa7VgrYktpP7V1G6NRZbhZXaekIvOsFve6956lhZFs0bQqkfmu22AkM9JPCmWa2Py7qHm9QaHh/HApay33+jE7a9/RttGrIhcpFzFK3o9UqsSBuyFuI/0x7n2HYKDB3jtuloRLo9PScMBZcYHRO2tN5NqwXYtRP4MqlVw7VWmJBwMVxaTFmJBrh7KzPUe6btjQWMIdqIEJsVJctsYr1ihaFQNAcFKKmWqhK4Xzs5SAxZ1P6T2KTG+WFBO1jeVr20l5RzslC3FtiQk5A3KDKRD3G7l0caH3yOXyhdrEJNV0Z7ttbHFnmgzTZPHGQ924XN7j/RGazB7aWablRDpLYQ1KUVIW/qvWONXxulPzTsnCQYQqxTJjZiodnFXUIuVK3gf2FHFOk7ckfPmuccGju4icuQo72NRKzjt66CsFBX1wHFvFz3eEwx2X85WSdw7zRK1yzxHUA+xZ7noAtRR6k/Zt7YT3+dW7d3xqiefnZ3GTauEh55KHpvan/frTW3RrIe1iqUeBskC32BFNalpBr5Q4QKda4Or7dnvNye/rhRy3YVeWL2KpsoEz3qEaAsdvHW3lQy2NWX3kpmUznIdzqg6lvmaJKaKlkbKlFWdfIgbilBG2kx7ZeyTvXSUSJ01FjJiiQ+DsFj1Gbjeah7S2TGHi/PwkAEajRjxSYluxSlNcaY3j4V7iNW6iFXEQhnnCmob2TrbxLqC0Iz89Y7Qeh7MixywMtmZQNlCTcOmU6vRSifUqFwGl2faMVp3cGto4YU/QyanScJhwEp7c00cUlTYaMW9PF1KT9pepKpx35LiyXn5E6QBak2IUVxWjSj0EWpcBoMRE6R1tgwxFVuKNtWQ5DNvY3iOXHVSnDe7SliJJyWX5thVqkwdefWnv7RpltQhzvdC1xr5ebkQEkNi6sEeU1uSYsc6gVKPVwvX2xPF4J2KZsVirucTI6XjHhw8fmX72HV999Yanp2dsONBvkbAcuFyvfP3NO8JyZLucmdwQGdEDrO9oyo74kQCWawNGo6u10KqUjbQm/8z5Ca0cnTqieRpthZWmtWW9PuOdYZ48+9px1tC7eW0Haq2B0RyWe8zupEDFKLacx3A+mJG9SYQtCHdDK0VKEkFbDvfc37/lP/6Hf0/NcmEvpbHMM2W0gzLAo62Pn50XFpF89o11oMUCva4rp+NC8BNuWtj3yLwsPH7+xDx1sYOjCE4g30qBt36wLoWpELfb4JrkwaZzrJswttpor1uWWSDRVQIl2iien8588+1btu2JXItsD683nBdX0rptGCUtSnoOw5GjqCUNl0okeBGMbk9n7t+8493Xv6S3xrI88eXpE+fnZ5bFoWrGa9B9I9Ykr1HwuK7IVZrF22iza2NxME0TMVVsmGglixg0Ckl6F0eIeSn9cAFiYponUhIg+btvf0aYTpTfSQRxmubX95w8omhK2pyQRRCmCW+iFll2eOcoWWI3KY6WbusFKtth3yOqd5ZZDkQzHDfiZK7EfUf3EWFV8tA6no7crpcR7xIuU0yjQVSrcTZnpmliawlaRTn96hTMuUlpTW4YB76lUZCTWQ4LKd1oVYpLjHMcT0fieuHtu6/Ybh9Y10fGAlha94q4Y9GKw/07Ym788fvfs+1nLAKVX2Zp5lVKMy2zwLfjT2xTYLgk5IVs2tJbpuYbOUaJ01hDVw0YbYkoGCwjxkW21TKg2OLE9d5hbUBpxKJ/DJjUeXy6kgYjVCtH2q+kbcXawN39A58+/IHHj+9RJnA63dHzisJgrBPeUje8efOO3uHjj99j9mf29UzLmcl1tKrSblvK+J5DvF0xbkYHS9p23r37hl6ueOe5XC7SDpsT6+WCm96Sc0EZKw2YRYDjbUw3wRmCd1AV0/EBO3m01XjvSWVjTyJCBOex3tFyGaJoRRvN4XBAO4MzjXA/My1SIuCMNKGXstMVWC+N8YfFYm3GmEBDnv2LDdgg3ymMPM+sMeSUiUgb7OIC+5ZpGjKQmgzDqjUpm9BGmLC14YxlWY7SZF072npU2rE6QE8cDm/Y041aEq1JHBtE5N3XncO8jChLHsOJw/vpNTKyb4nj8R2H44m4XulaxHzrrLjcsrhqG0oAz8aKe7ylIRCIs7COe48a0VNjBFDfSpbPGnJ+bzELTyYmzOGIHxfRh7s3OCtR6zbcbtZaTGkEP4mYggiFyzzR24bRwqV01mJMFwefc/Tu0N6x79JaXXtHW43ujUaXaAowLwspJeK+czrc8WXbaG2juIkwn7jdYI8re5Qlh3cT2li8NvhguDw/8/yU+frr73h4eEPvldst8d3Pf8F/+A+f2JM487SSuGNwQdziYym150JMmZgSb+c7rF/YYmdPdez9GqVK47P1gRA6676imkQcx7EoKIxUcN6CUcQ9yxk/g62Gw+mO737+n/HLX/yS9z/8juObB779s3/M//mf/pfU3PmPf/Xfcbh/wFjFf//f/d+J+0Vap2PjfKk8nyvLsuNdZ5llCLFahozShJdllGBXUmkCf1cbt+tnpmXmzx/+KbUqPn34HV51iebmMloNK11teOuFE41Gj/u3t5ZcpPgn5YYPY6HcGt64UXqS0c0MVpC4R73RrLdncQG1waOzgml5fvoyliYbcY9MYRKnTpSyCj9ZrPNsMZNrxqaED5JUcc4KHqQXUq68+epAikWY3V1jjaW3RDVgnZPlsOoYJUJo741pXqQ8oyWs1axpA6W5bpnDYaHrivWSVOhdSsVOb97Sn6DViLd6pDSEO2xGkiIsM369QJMljjWa2vRwYcidKydxbijj6a1K43xXEi8E4T8maXQsL/cqrcUxo0Q4m7wnpUTwXmYhpYRLOMmdxanOIS10Vcf7CbTOtu2yfPYyvLZeZfmmXowTlVojzimMEnGmYck1o3ob4mnhj+9/z7btaJNlmdWBZrlddkGAFLkTmA5vHhwlKR4/ZSnac3LvNEbcNIx7qNadmCP39wdyabSc+OMffsO+PuBDwHvPenskxysxrvynv/0fefvm12zrF263D7z/oZBy5rI6jLV8fn7k7cOf8eHDD9wd3tC64vl8Zs9XzpczXVXWNaKttGNaI7Hzg/do3Ul7pXS5b9Ette2CzzEy69XWMDowB0fCQVdYZ4lxG2U7nrifOTzck9MmqKUtowaexHktCKvRlJ6yiDehIwLFKE3pYzHYBy9NIQtYY/SIzksSzWhJPPSmUNpRlbB293WVciRrSVXSF5OfuVwS8zRzmD21bNRUWLcNlRLWTIRpElOGbeOMUxjjSEVc5JpGKatwrI0nZYk5pyTu+sM8o7QsnelIuoouM6O1WKVEODSCRor7Rk07cSsshyM5bkx3ixSR1UQIAdc6Ne1sRWGchZpZY0K1zmGamKYDp8OB6yiiaHt/daT11gEp73xBDmAatYPDyBK2NmFh0lDGkrNE541WuCAsvUaTVE6RezZZ2Ii9N1pWpFqZvGX2iqYE0ZNLoTUlSJ6X2aZWtlRGYrCTYid3wcwYq1FK/mxJVMuy2GnRQ54vF7zT1PEsTiUTz4KSULss9XoThI03iWU+Ui2gCvsuTdVdiSbStDiRbYfrFrlfFkqqlK5RNVFG/L9bg/eaUhQ5b9AcpWnqlsV51ju1as7nG8t84vx8FrTQJqlCZRUhHJmtpdbIvt1Ggq3Tm4jXpRd8WJjmI8oYLtdnghdzTE43jO5YM1NrprcsjGNl2ddEn6B1iXx7F+ReWQV9Y1BDc5D4P1qjjKPmG1VLYZ9S0GqWEraU5H2X0YEtRlqpVCS1qZTGOkNOV8GbtMoWJWnnqjhpJT2JlISUhHOBsMzkLEudpsWBmlOh1sZ6fWZdb6AU2lrBDdU6GKF/uoXvTxb4ahV4sRrMGKvNUL2lari2jlHSJEvv0sTVBUCLgt4qJTPYFOP/GhmwUEgsxLvXA1IefLLZSDnxApfW5gUSbUarkTg/nHG46SRH5ADPKq2HU0qGN2OMfPBrlThV9wIQVyIc0CVaxmBMoRUjjS3WcyXg/F9+82fEuEp8dlzIaaBHXhzjefvNL/jy8QPXm4CGS1U4F7Cm07SmGYWfTqx75u7NVzx++ZHSMpN3oA3hcOT08I5pPnHNO7nUAWHVGOuYfeD5urIc3zBPlst1xTjL89Nncsp4N3G8e6Brjwknav8iG+puoGoqL3ECT8mVPcmDZd/WYSOWDYjzMylJS63Afg1Jq8EXER6LNobcO66PAaBJtl3iB4Nbo0dUAcW8SDV7q0UiEHsUXpaVj+meC5SO19IE6IywlVrvLHPgzemO58c/UJn46ptfDi6E/Cy9dWLMhNAlNk1AO0fJjZj+v6z9V7NlXZqdhz3TLrfNMek+U1Vd3dUGQIMUqBBDEhmhCP0P/TT9DNzwTmJIIYEQCQJgA23LfS7NsXvvZabVxTvPKV6rlH1RHVWZJ3ees9Y04x3jGRt5q/z8l3/B8+MX7j//wLg7YNzAdLji6fELcVs5Hv4Mox3z+ULBvC7E3ne4fk9VAlR/fLzDaMv+6prT04Oo8iiq8qQg8ZRcCr7rhWVX5WHXxkopSSk4P3K8Fm6WsZ6u66DIodq2GK+q0kC7hUQqCjf21JKEURXF3Wm9wajCVjeMkQixtVIqYJ1nvzvKAdAadNLs9gdSrhyOR05PhZo2+ekoxfm80XUD3nWEsEgcudb2nkpUOsWA729wtqfzPTGKk8F3XYsUWPnvcsJ1A9ZqLpczxgi7AeTd1koOB6qJ7F3voXpKEWu7NSIsOj+KSJQjykhb6/Np5s3OcnV14CGsbIvEeM5ZIsYyAQKtMlvc2mGktO+1iK5Db/n86Qeenh6xzvHTDz+xv7pm3F0T1kcOo2HwEZVWaq6sa+Cl0ivGzG6cMAhHsSpNiorzvIkzNyOH9NzawlN+5XL5riMFcXRcyhM5i7CZKpznlU8fP0mMyJv2fdKkEDBWIhpifn55f4OsWUq4hl3vWjyhcDjsUKcFVz3Gdc11mug6KSCx1pGTtAnSyhGGYWIceubzY2NGiKw2L0G4GK5Z4Y2lGvvKDzPU9jU9zo+sS2umzBXjq7RDK9vA0hJhtbqyXM6M00HYWnWl1kJYFy4UQshM08h+mthOpom1MjTwXj67dY7L6Z6HhzsOh4mwPbOtK3lylCqDia4buTyfWOYL3ns671G1YvTAusgAxVipKQnbwjiMAqb3IykrrJUW1vPpmWHcsW6Bw+GGuJ4FIt93UqigmkM2xNbybAnrgtK0CLpFV01nB8b9DWGd6YwU8KzzQu89l8sjcb5i6Dy76z05wPrlB7zv2O/fYNxALtJUPO4O2CDCooqzHKxzFg6SpsV0LMPQS3TOtvIFI4U3nbdUCt5phs6C0wz7kadnAQz3XUcp4jYxStrQco5o5bi5vmVZVkKsxBrZNhHIct2E0cmIKuJWHDvDZV4IqXLYvRHVRBViUpzmjcH3WGM4HK5J28J5q+xGT+cV1VjMuMPNKzFEUsoY1dyHuaC1e0UdCOQbtIrsxo4lxNaILny3kDLeOarK+M4jvlaFreJCWLTmfFnY76/kvBCruN9CQJvCPMvUulJxXUEZacOT5j7w3rwWx1QUKGnm7AfPIV/x0/kkE1wlzl7v5PLQe480lzZX7itjtcG429DRGIsCclzZTZM08S7C8zSuw+csCI5to+s63r69ISwncgpMo5RflSwRMIkQtwhVN7Atmb4f8X6S98F0hLAyeYn15ZjYTyMVzbzOVAQg3o3StKjagKhimLfU9jrDbr9nizPVGGzXMw4HaIU1MQa0ceymrrF7NpTJONsx+IHgF5zr2E1Hdrtr7h9/orLw/e8/0jlhw3X9wDBMnE8P5KoZhp7zMmOt5er6lt3uyOn0gKKyLSe8hWANKRaMNuSkiKqQThshtuejSowtxiROC6PprAUlrsfrmzf015pt+cjz80f2B0Cd+O6Hv6FmzeC+hWqJ6xO/++43fLn/wu76LX/3d/+W58sDYQ7EtaBrICW4fTPhvCasK7kmtLVcXd9wuZzQaZb3qhQqWRAcpfBw/5l3f/mnnOZP2Fr5/NMPrOsMzmK1xxgR69YtYlxuuJk2FGnpjFoqRumWypAzhkN4e94qyAFrpWW7ptgcepkmj5KzlMPEEEl1xhkvzFwlkUyrNRXVHN6SiIlbaE62I5iBYew5PX5CVXmHFI0PjGY5SxnNVip+2GOMF64pG+M0IX04BZczDk0Oq7BSx4nBe1KOcv4Oic56vPVsMbDOM85mctxIIbBczrx//w2ffvwNKco+PYwj5+dFYl06ktdFZDrrpSG2VnTJjM4JP7dUet9LGshaetvRdT0pbi2KKGVRxhqWy8w0Scz+cpYSB3HlaxHmjcNaiVGmJGeDFwFt3QIhCJbGFimBMUYEo91+klZp74U/pUU2Mp1jDXLJLbWyv7plmg78eB+4XAIUQ80bw2gIaW6uQ493I2GF6/2RLZ6JKWDjyjwnbOdQWnF6lvW1IuwzrSHXgkqKrCrKaa6vO+Yt83wOTFPHds5UBTFvmAIpgtaWcTiStju+fPlP/PTjP/LuzVdQr/n0+QemqWddZc1w/ntqrGxL4DF85v7+I9uycVkTqWq0Fad1ryzDeEutibideV6LFGG5DtsVBhR1i+Ts8P0og8MYcdagKK0gQhjSndYMfY/LhmWLZFVYNokihueVzvX0zrEuK53zGC2ONlnRFdPYiyuT0lIXpjnrrZSAdE4GHRVoBWDSoqupFbrBs0WacBsYOkcuRpIw60yuC4rSSposJVdO54XD4S19vyeFWdjSfc/l/EzBiTCmjDybpnC8fiOpmmEgp0TnRr759lc8fvkNJCmGybEQQuD29gatDGGT9tBp7LBkcUJ5xRYzk87sB0e0E7kXTNXLPWcaNTf2llRCK2bSLL3GqCuMFXzKvMyktOK9xdlOBtAHQ+csuTswuxFFbQV/Uv5Wk6AxtAFVFKrmV76scRKL1C+OPioxV1JAmNpaE+NLPqOQsgzetFavRYc1QW5RTKuhsxrjha0WcgWd2RqX0NSKQfBQNRWqkRTCi6D3Ugqptfpfpb8glkTX9ArvDKOzLGsiK4kgW6chK2rd8NqTG7LnMHnmS2BpjM+qiuAFWnFUKhVtJIqbS5bve5HhtEqaLUTZCxSsjUnntMYYy/5wQwyCgtoWGfQbPxCjDHJylNRliBtVJTG+KEsIEaMsTleogXkRVIIxmhwL2mRimkWXQbe2c9USPQVnlAyLk4GYyUrYuDSjhDWOdV1Y1oDrPK6VRzkFJW0ohHVOSYJKEklbouFGaNkpCdJF1ww5U22HNY6wzaA8u0lx2Qphk/uDsh0lBXmztcZ1veyvSYpjSpVvorcO1UkZn+8HyvNFtCstAm3JUjbyx/764x18L22yWtM5YXFZ/QJjFPcPyIFBFnuEQVWquFhUqwZubBq5CMrFvlJxVg7pOcsEoEllr7EPEfcMwygvtDh+5KLZeQEJT9MoMcOukxZF4wCZrFU0Wlt0Lc1JAyEKcDxncRcIBFuTc27xEFHaX2wjfT8IjLqIpdw51WIKWWrY/UDXD1xdv0Upj23Q8RAjx+OBUgraD2wp4ccD4+Et3ZRZz088Pt0Lc6ZF9HLObWKThJnRd9QsZQMFRawa53vCtki743omL4ZhOOBMIGwCIuYldmK98JXmjN/v4O4JXRMpKrrbK3KtLGdpF/POUbLHpoKxPa6Kwi48GtmstixiUN4Wuv2+TQkLuUR812OMRICpL49vlelIi1RUk9myAiXtSzoGYpB2KxFVM93YUUtgXRNKG26v9sLgO0vk6HC8xXUDxkGMD9QcqM1lpYzicn6iG6+FLdP4Pn/3T3/P/dMz/+W//OeQI/vDDefLmTkKf80oxT/+49/zp3/6Kz68/4rnx7s2uRYs7dB3nObAtLtmt7t6haX7FsW12ooIoTUWi/c9nR/kWZglhgG6XeAKWmWmww1aWSoC/vVGv7LQrLGkJob2uyPvrq5Ynx9QpVm3tLSgemu5PD9Ra23xsICzls57tIK7zx+pSnh3T+tGLu0Sbg3OOUJODOOBYX+NcT21ZLEaV3FL5lRxWlxil5B4/+4D3vUSEQ5SxlKVox8nwnySWB4Sc7NWkUvCe3HN7nYTuQTi00lA0LWgimYcd5QK87ziO9scB4lxOjKOe2LK3N89tMuz5927nxG2lfPpwrKtTJMVGHoVMdfqFyC9xjvLsiRpm8sZZSUaeHW85vTjD6ScuMziHrr78iPHcaKzGt+coll1dEOP8YV1WUhxAyucLK0NNVUSMpH1w45UtbB2fEelvrYl51KlrEcbkqqkKI3Z6xrZYkZpSz8OfP+bf2TXW3TWlJTRgwYknrXFhLeGnGHbKrVmUqmktTbHWKA2Fl+uSp6B6jkvc2uBlWFGUTKcoQGJlXEcr2+gCjMxNWbZllac6/DDyLJeRPwv8m+QaaGIJC+8Pq0s03QgbjNbWAHhlOwOR77++mf89OPvqCXgu5G4PgIJby3TuOcxLDjrqDkQloQ2Hl7a1LRmGge6vufT/Ym+G5jGPc+nC8oaOuDjx4+E5YKiMAyD6EhKEBLeWYbbtyyXM1SBs1/OwhZUSqD3pUpseZoGLieLMXIRdlYYY9YYem8l4p2TTH1rofdOClJqwPYd09SxLPLeUgsxFLp9T991EgvsD/TjyHe//QlvYJyuxGngBtb1jsvjHYfDSM2Zvvcc9kd2hwPbktjmZ9bwzDR4lstJWEwpsxssthaMcuyPDmfg8eFJCleQlmtVMqfnO7768IH5/CiXDyWTy9M8cxzfcvrymRAC3ji89UyjwYSZkmQYZmzHzc17tNFsYWW3P5LCTEyZuszsxh05l1Z4tVFLZVkTqsq0PGfNEgxbWNFGWI/rstB3mi2teOP48PZrYp6Z12e+/votf/XP/xv+9m//3/z2H/5ehJnOETMMvbB4nRXebigyjKhpk6iykTW4FGHH0s4Zz6u0sjtjxGWsxD00Dj1rCJzPTxz2R4kwGkvXDeSATJvrSkyFZV5AJayRg5wUasjUWuJ5TiK6zqDI9MOE0i8inTDHSklQG0s2J4mYtjNSboL7cX/k7stHlmWhH0b208iuc5SwYbxm6rvG7FVkrTitS3PdQM4FiggRpsokO6UgZyEtF8dalER+15VhHBjGo4iQWQScWoEslxBtFdsW6TuH1QOPqzhM+96LyNMERmctXdfT9z1xXUnrSlxn9ruJbVkwVhxmg+s43L7j9Hwip2fG0RNjELfIlqTB3BmcB1QghYjWStxtVZIdQ2fpvCV4Le4DZchBBPCPv/8nDtfv+PDVL3h6/ML9/RdyifS+Z10X9nsZHtSa6Lzm4+dn1lXSEDEWiYpSiDHSDx21JlIuvH/3Df/1//n/wn/3r/+vjP3E8XDFEhdOTz9itOanH2eqDnz++CPeer777X/kf/r3/x1VZWJcGLuOSsE6w+6thlQIS4CSyEWznheoBWeFO1tKQqOlBK5W2ASc/unuE7/45Z/z6eNvOF7dwCNQAjHB+6++4ccfvmcYunbJkdjofreT4gCrWeYL2lRCLHS9oQa57KGMnK+rnGc658TZW2mFHcJa3GKEqogNQzM4Q7XqlVGccsZ3Bmukfdt3jpSgHzSX84IbB5RyaO0gy+VoHHrWdZXI6TZz8+Yt6+XCfj9hu5FzmlnnMzVLuUUumWVeSCVJisUAJTKNHdscMV7ec6UMV8eJMxt9N0g0Uy+8/cV7nh8eqOnEz2+PbEGYxTllbHQySKgV4yrRiaCvjWbXe1KEbr/j6fkZnYTRG9OLAFo4nR7pO2kYNsrQd62I6/mJ5TI3NzByIW3cyK4fMVYikGvNUkxkrJSIOClo6ocdzsPpdMFqR46ZnCLrqiX6WCu1tesqa7FGSuhCXOl9zzTtUMoxz7HtdRshJtJTbKV90HeOLT3RWy9rnFP0QyGqyjDJ8H2ZRWg0fSQlJcPIKmcAaiXHQrKK8yyYgW3TghPQHd5qtlXx1Vd/xm53TVoL/e6Kt9df4bqep/sfKLrw+OmRnCPnWXGYRuK6MHQj3nnG7sC8PAt/1VpKLWxboAaIsaAdzOszCoMu4mQqqVJtQpkifNcqBSg5K7ZlEWFNm8YDg3HqX3nwORdyCRgDWMvWkkPOasFi9Aec37PMZ2IQd1xV4tivVb06zbWpUt5XhDVZS6GWjFIFq6X5PZZCjIH97ihlSjVRqhT3rcsZVT1rCKS0YbU4A1MMr67PzhuR4XPkcLzm+Ukz9Zanxwem/YH1fEYZzdff/pJ//Me/I8VAWM54qyEHdn1PSYGxu8LtDwz9IKWYfc/V/shx3AniJ+5QRqHQlOjovLhwUyu0ooJzEzlsMui0HjDUqnF2IiPtukUZNDvZy3XHus5YVahZYsw5JhG24oBJG+sl8k/xRSlo96HmFrNGYRTs94IoqkXzPF9EuDMabYrctZwSVyQiDAYKyimsQxhpr6K1onPi+u+ckZ+V1o0pWClJBvdSaKUYvIEi5UghieM3xXZHaInhUiUZths6dIFL2ETwqy9NwJqUJLVAyewmRy4wLxpVNWO347BT5HhCmcqu1zhbmM8FY4QNWdp5yDtLzpUlRPQAU2dZ8sayroy9xRmD73cNJ1axVtE3pl1KCaU2lu1E3BLzGrksmb6XiKlgpwSzcL0biemMdabxHsUoNK8RCgzOYbVhv3/Dw/13rNvMMDjSnKB6sk6UvKH0HzQf4zQ1NLSRsjhTmS9PVAo1O3LTnbq+E1Gt88S4oowUd5QgiB/BbET6Yf+HJKmWfVRZA9a2XvRCKYmUBaXUOU1cZ1TNpBxZt3tYvZQfFiW811pY5q2hRDYxkhgnySatubp+w08/fWzJUxmylcZfVS97wB/x648X+LRuG/4LH+MFDqheHU6qiTxaG6o2bFEaaFN5aZitzRLffm+t7eu1NjalX7/mC59PNYFPGnDFPmmUgF2t843vJty3x/s7lJb6ZlHhFanKZO9leqi1sDRQRnLtSWDhoFvjjzSuTUPfChIyWkmksuSCGwZZPLREMvf7ifNJIo85S05/DgUTNynGaNGabQuMvaPbTZBhCZW4nXh4OnN9dY3vBiiJfuhJoTB0A+M04fuBZblQUhUxqYNtiZTB4L2TMg9ErOy6kUok1UiqiS0W9pO4vXw/gPWE9MT68EVguUOH7XdMhyPTNPIxBylqQOCxuqoWYTZY8xJBdVJWUKuwJHzP6XRmNw5owHXyfQtN3DNGXGwpS5NT3jYRPIrCup4aJWJsXIdSLy2LYpOvJfC8VrIy2FqYZ4leK63RRvP0+BnX96SYuZwe2qGmkktkXQpDpyRC1yagQTlurg787NtvebyTg/6/+5/+DQrF1c2Rn//8l9zff2aeBXo/9V7Eu66TrLwbyMrTD46QMt2wZ1m/MM9nKobr2xtOj090HnISnkE/DOwPB5b5xHldccVxdTXy9HyWg0ip3Hz4lt04kbYL4XIgLDPeGqwxoIUBYZ1lHAbCsgic3UgBjIjlCoowCNGG6+trLpcLD3d37KZRRA6dGIcdKYf2LmR2g5NoJqodKO0r31IO0LJY1VLJRazGOYG2Xn5+7bBCEVi0dh27/YFT3gDZzEpO5CA/c21F7No2KVXRShxuqRSscYzjiDaW8/Md07iXyHcOTPtb9vsDz6dnObj0PSltrNtCipHD8YrL6ZEUA1c3b6Ek7j5/Yr8/0A/SArmFyjBKBF8HjxsOPJ9nns+J4+GGh+dnSlvTjocjb6+OWJXwbOgyY6y042rX4TMM3nJZZrTx5ArGVowZZMPQlnBuJQq7rrWw1lY+I4eDEKLw9tqlSxvLzvcUDN51XOYzSlluhoO4NbUc0BXCjQ4hoLsB7yZSWkVlkzdLWnC9Z9sKWYnYmQriOJwmOj9yd/8F7y39IKU6l9MibdpbZhoN27rimkjbOctzq5C3LVI0Tj1eQ4rP9J0T1mJZ0c4Ix9EPxDCTH1NrW/PYsnF6+BGHtKd98/49j19W+s4z7gYOX73j849yYDscDlwfDlAKfW+Z58ruzcQ4eEoufLO75e27G9K68eAu+NFKLPF24nIG5z03x46np2eqcaAi2Vuubt/zZG1zscHYD6iuk0Kb5lLuhj03nWM1hqwLNV8wuedqf8DXnpxXbnYjh13PvCnWWpl2I/NlJlUNGs7PT1jXMThNyIq+88KpTdLsmi5nnu4+MXhZ767fvCOnwtX1NZrAYB2DrUyuUuqK1YWP33/PvESmYc+6nen6rsHgHdPQEy8P7LqOohQ/3T+xKnC647C/ph8P7KaJ3//27+n6jm4YGPZHlvUsBxo0Nze3dNOANprj4Yovnz6jjGZ/PDJ/mjHW03eeUgyuO7CuG+fTMzGcWecTIUjz5LYueCflGKUaYhEBqx962GSfj1smxIoxlawShUDFkiuovnCen5BtWpFV5tP5tzyevhdOVZGGtVwkOeC0CGw1S/NgVVVEaBROVdI2k6tu701Ca003jNCKrHSLbyyLXKads1zvrtEKtizu/hdX0jBMxBzJWyLEwp/+2Z9wf/9RiqCcZ9dLw/C+RWMvlwuHacBQ+Pbbbxi94cunHxi7jsuysGwZ23mGvkfVQgyBYezauiARL1/OvJ0cddzjfMd+6uk07IYB33ku1XP3/AzWoGwleHGa7fc9171lLgJ3d71lXTKqpnZOU1ztdyxLIK8r0ygH1ZrkImaccMtUzRgrbg9FhRIIW4IaMKoS1pXOWa4PB56fz6AMQ+dwzjL0jqurA6Qz5AVdVyqJwfXsb498/vRAXRcOY8ehv+Xu/gHrLKrCze2BlDqMlUn65fmBoe+ppWdR0njotWP0nhw2Skx0xrJsgdrOXMfriQ/ffsPj4xMhzlzmZ6b9FcO+w56VuLBMQulKKVF4lRQpejIOinArfS/uOuUMpSQe7z/yH/7df081GjtMZOtwKtP3e+b5jm298J/+4/+D3eE9x+N75suFvEVwmcM4sK0bnddoXShakXNgS5pOdegkJS8xZbTVPJ5WNBJPpRjWUAgxYl3lhx/+ics8SyOz6SkFKIoYT/z0UxE8y+mRcZoIIWO1A1UwTnAqMrzWGA+U0hikrg3uYrvIKtZtRRnbcCMyYitR3GEgghdVo5UVB4aSZmajxXFtKYxWWpa3qlm1Q5nC+Xziy5eP7IaOYZBhpJRpiIA0DRMqJnpdObpCLjPTvmesE8YaUgjkWPl6d41v78TOO477gc5pNB3eVFyLqSkqRn8QPndthTrqjL7xr02RhSMxiRUt5wGqtGIXJHWRciEWBW0Q33cd53lkCYmkPVuq3J8uLFVRlCVnJaUCWVrA+67j6mdfUVPG9Z6yBpSGZDS97+j6gTdvv6IfD3z5/BOX5Yy1irvPd6yp4GqBEricVhzgSuHt9YGfXY/MS+ASM8/ni7R6FmE6Ku+YnEVnQSd0tkJNrCukfMFZKXLuvMEVJ+KzqmStCWsiKcuFwK4qeuc4HD3KFba5EDrDVb/DDCPz88Ln75+gKpwVR7tvbNBikHh7VPReGi7jlpnPgU9ffk+JXxiHjg9f/xX74S1n+yPn5we+fveGz3cwn8/UvHHYHcQNVWdkopJJCTrvqKw4OxJzQOskyZ16whvH2F/RO0vcLuKWKs38UHUrjhGETm8qVkVUzXhjUMYyr9KYW4uwGavKeK1RSi7yznaYlCnbTExQSmxMLk2IWYYtKVG1fT3XbzHhjCXk1ER8hUETc0J7iYIWZdAqU3NoRYseQ6HzEjU0CqjyDM6rFNQcDhMpFfruyGV+oqYTdz99QalK3sBph1GVd2/2nC+Bqe/5k6++Im4z729vMO0tuNofRPDQ8PW/+N/RjyPb3XdS8FY28nqmakPtKmsUk0y1lXF0WOspiCjtjG2u+k6cTa8tpILiygmyVmy54n1HjMK8c9YKx9rIWlLDSlrOr0kj5xyuWl7a6ZUS7JDWWs5ZWhOyiF0hhddGdGWqCPZahrrdaEmpCIdbtT+rRESTcg4oSRFLxVTFWoQD7KwkL4bekHJL6GBey+WMtXTOctw77h8uJC0in1NGIvSqkoq08/beMnSeNa54a6X8hkrMIg5GpbmshV2vGHzF2cK7g2YNiWyQfoKsiSGzRSkiizHIGlkKaYuNdSvOzvmygHZMU9dE68i6njBWoYr83JSq5FRJBRIJv16wytMPPcVoun5HevhMipFhGDBaWKN9NxBSxFvTcCGVwXmkoxzW5Y7PP4nDXlXknoIkSHIKaOulQDVl1rAQomK0wlU1yqFywRphyGotP4PSbB/rGug3YXvH1u7uXNd0InnfY5iRxuWCVZasFQ5pTtauQ1OJYW18dYvRlTmtlBJJaePp8cR+PMp9uaGoNMi6UIpwylPCugLeipHgdKJmYZkrZSgxN61Ltz/9x/36owU+0fUqqSaSlnYkQLhwtb6C/WupVKUxRtrfakptYWzV3Ep+n2T+NcbQGBXywsa0UqoiV2H6Ga3xzkvzqeugVBLy55USVoazhmW5SCmF69iWs7CQmogYo1gmXYvBlCITE7H0upaBb/+nCrpanFGsIeCdAVSL3Sj6cYd2uqV4LesSiJtEE4s2jONE1RLNct43rpXFOoN1Hcsa2BIU5cWOm2c+/nTi7bufcff5e1JWTNORVALG9Vg/ME4jaT1RshxI+77D6cx8mkkF3rz7QD8mvB84NRFkt5OW3Vw0x+NOoqbdwNsPOx6+fGI/HikKtm3h+fETp9NC14Q10w/oMLPlzNE7nPWseWk/b7HO5pzpp55lWdvkCZx1ckGoBVrTbAgJ50yr3q50U0fcAroUrO/E8l07qJpUV5x3hC0yLwu1JGo1TJ2w3GrKsljFwLxlpmnHMO4oGbb1Qg4XYtwkGqolfjMWKS/x4x6jHIerWxSWEBfCtvHVhxs+ffpC2FZ+8Sd/ie8GchBW38PdZ4oWQamWgvY93bBjXS7EkLi+vpGv7R05b2gll8OStuZwNdAcrFJQkMkxsfU73r55z/PjA74f6bRsqNY7xq7jahoIKRFrm+N4OYxfTid6LyyezhuJqaHojLDaNoF64I0lGcM0jYxDj3eyUd3ffUFrzeAtqSiMsoydRxvDsgFULudH1vkMTbyVuB/ipFKKN7e3zOcTQ2dbY6ziPC9UoLeGuAnLRFGE9ZQjIQSM8+yGkXi5QE2omltzkxxyCpV5ObMuG7nIBnm8umbaK0KILNvcSiwKH65vSSlze3Pk/u6OuG0YBct84ermLb7rGMeRlDPT/sD59NTgz2ARi/w4DNy0FrGHp0emaU+K0kgMidN54WoSsHcomg65ZJzPG/20JxXLYDx1XSBtxKqJ2wXfmG2M4j5M29IWdVkrrTHkAr7zGMAYzTAMzPcL85bopiP9/oree1zNUKXsJ6WIdo64bSybrItryKR8odbMeHVg7Hou8z3OGXrnwcIWE3SavASJQMWIM4ndOMqzGSQCsBsmrLM4KwU73hhUrXTGEEum8x2+6wnrKlHCLBHH3bij5srU2B4hRwYCvsLuzREOlkPvuekMx16xG3tigFwrnV3ov30vz6xVaHVG3RykgZaK0U/CPkl30FXqlTQ9StS5UMrvYCqoUWHtqYk1GmUGUlXE+MypyyzphNKOywbnS2LZVjCWN7sr3GGPXi98czPQseF1pZYVpT/yz3/liQVyuaKisDpTbnvBUQw3fH66cPvOy9+pgDc7tlyJFUL0hERz/x6ZY6ZYz6l3rDGhnWdeVlSn8F6zM4vELx6e+fntFTdXV8ynJ/rOEsJGKAHTGY6doZTIdl65LBeGoad3nhJWvNZYben3E8sSmMNG33fUEnl6+EKOUnhwuVw4n89c3bzjdP+ZFFdyzGzzRjdp3r55y+cfvuP9mxtig+hfHY88Pj5wucy8eX+NdYYvn38kbGfCtnI47nh6fBaeS8l44zGIK66zhsu8SXN7SHgS3iWsU8KDspoY5EIvhVaJ+XIve2oOlHVjeXhAqZmUIs54YYYie+sLS6/WitOanFvESjgTUtJUC4lK1QiTrFZ8J8UMIUmMr/OGNWWsNhI3sYbcirH6zvN82sS1p4040amcn5/Zlo3b2xvGbsAqwzCMqBwYdOT9jeVqF9B14xh/4u01zH4PCs4XDarHAzfHPSYnrK1YpdAlYaxqES6J24uUQosXFZQK5LygDo7KG3LKpFpQ6oZaIJYKRKrqhCFsHCkZMjKcqVkuQ1voKEqzRhGjlTWEmMmqkgffnMWR/Sgsq9xbOuOgWgz9a8u9c54cd+L0qwivTimUfmKxBt91qNSJY6WJsenNlZwbKWjrSN++JcTMKUR0p0hqx+enWZIRX73h6fGew/7AelA8nZ5Bad68v2U+nVtrIdgCqjfsfM9xN/DxN//AZdn4eH8nTc7PDzx8lijnm9tbtM6s55NwcL1BcHAJVw27znLsJOqUnH2NfG7rE7/9px94vjxR6kyt1/ziZ3/B99uFeTHMa+Tn3/w5D09P/Pof/gNPTw+gQefKKQY6I8Uv1RS5hDrN/tqxPUZy0dzsD+JiOp2Jm0RGq6+cl0Q3XlFVhCqc5ndvP0AtPD9/4Vd/9dc8Pdzz63/4D2gFVhX6bhIXSN24ur7ldHrAmhV5vAohCS6hynFF3EZR9vDOGXKRdzqlhOpHALawYbREabeUcVVRMRK5puI6R4oJOgH091ae43mdqUWauIdpTzrJgJu80VvHbe/YecOqe9ZYOOx2XA+at73ndgCVV5xRmK8OUDPeTRIhqxWVg6zDpVBYZTivFapIu3xV7Z6SMwR5m6RUpjl4qojeWhsyBWU0xstgu0hYAqMMFIOyThw+VdzT6s1eGrSVImYoagTtyEWxFajWMa+BdQ2Mo8NUhVVgvIXGtNPtfU+lou0D1BNfXxfSTspenj5YQlSsauL+2XLTOyYbmZzCUslUts0Khkffsq3ihMlVTPpbLJxj4W4toDMXLQzCFDTeOtCRSqLvDNpYrvY94/SOX3zzX1JVYV0+clovHN7uuPv0Hff332OtZXQaRWZ+fmBZmjMNQQs4bViCFB7GkIk10VtNipbd4JiXC7/9x/9Z4pyDYzGWzz994e27r9lPmtPdHRfdmKwlsy0b+/0V23bh6ekzqjnVzpcLCmFHrps4w6lKwPra07uR/fGWHBbYzpi2ruoXx0/JOCo5BXpjsTqzhAVtxL3pvaazmlIdWUsxSliiuORCwnSeao2UkllLXZPcY7OUIikjEcHcEhNKyV6ltUJpMZsYW5mXjYppSTNHbEVXUVU5VypPzgVnB65v3nI5n9g2uYNR5K778PDA/nhL1ZZlW1CqZ7c7UstK2FZqKZSQ2N9c8+2Hr7maBo7vvsXEKGzzKm7ClxZ6RcLPH9FbZqciFitRfV0be9Wi7CBmHGMxSkwiYdsaH29BKXG0lpLJUUwpOWdKVI2lbHF6IK4JZTqsiTgtMd/mkmllPxuKFUhopyEpnKgr6FdHnaQ2tFaETVzHsRQ6b9EUtpwxOlO0IVcIL6zEhoTKuUKS/9TIO9lZiynQO02qIvJrnbFWvvYaYQuVXCNTZ+mdYhoFz2PIHHY9uynz5WFlDQUqeKdxSrcBY8b0GoemIPxNwUVAbyzTaDjNkfNccVb229N5Zs1SjmOtRZlKQVh0zsAwupZCtpwvgbFzGCODDG0q67LgW9FISAu7qccahyZBzigM436gT5HzZSHkJJ0IJeNNYj7d8/b9O1JMpG1mWc9c7fdczkrKJysM1pCR8/04CIdbGWlU2ELb14qm845xnJgvmZqjlHVZjUa4s/v9sYmoBeN6TDegayJsgsjJTRtwzlJq5nJ6RhsRKFGa3dSRU6RERe/le7DVDCpTY0AZYS2GsMq+1nvCCpaIoaNsgct6Yl7PlFK4Ph7RTYfyXS+s4eeE7zxWK87NxaiMoJO25YJRkENEWSfJOCNpPue7P1ae+/+DwNeSwlJUIXExqSbOr+64F1C7bnby+XwRld13xFAEfJ8zKGleiqngvaUWiSPGUnDd0ADVSGPitokQaLvm4EPECWMppeCGEWUs2/MjKcmiEuPG0MkPUWqwxbnjnBcAZ4Fl3YitUVfg6E6cY7VI/fKLettgp6rFka0VAG6tCut8YwxKlt4bx7ptXO9GPn3+yDiOWNcLYPVlsqA9u0NPiJV1K/zs539FLpHHh88tTijfP2cqIaQmhooQkLMIaSkm7NDReYc3nnVbWbcFbTuub97wcPcTW6zsjWw42yZMhr7zfP70iVwjp8uJ27cf+OrrPxPxs/vC6fGe23dvuLu/Z57PpFLZwsY0TIQGlddGU5WRTaJInLgqEXVTaZy2WlFVoYxrC60WMLER7hBKyXQgrNSyEaPBGOidYwti0S2l0HeOvvcs68wSK6pIIcrQdXS+lwNUDCxbIoaNnKRZzGgRj50zLOsz43AlC2hnOJ8ueLtxdX3Nh/dv+fjjT+ymlcPxiNaaFCvjOHF1vOb9+68wRnO6+0QMgbAFlvWO3TigjGLoe66PVwy95TCOKKXxg4Hc8cu//mf8+N3v+LNf/gmX5xNPLvCXb245jp7jOAmn7mc3EtvwGzHOGF1I32i8kQ0zpkTKUBFxuTu+IS2rsBFq4L+6fYOuLw1PmZT3pFKx/pm8h8yE8hCSTJyve8/D/TMf3k0M3mBypu/Exj9vmqQ2ai24Y8UbhXOVGC35zRUVmKbM4DtSEnE/K828RU5GHICuU5SyEZRE2mqWz6a7gZwi3WBZvWfdChffkXaOsfekGEnaUMMzvhb+D//Vv+D7777j/Ol7Pnz7M9RuZA4b3/32O+aHe+L1kZubN3z6+BM5Z/b7kbPRZA15vdA7i7k6sNvtUGjGYWK5nIW7pjVdN5JT5unpxLfffIV2jh9+/IHLOvPLX/0lxmg+/vBPrNuFcbTY4thiEhaihRJlAmS0paqMbhPVNct0N2RhDhlTqUUaNWVNlMl7yRrnnMC2qY0JIryuq9t3GGX48O3PWD5/oqpKXDdUsRgrDrMYpQXMmIju7SufNASJ++bGcNRK46zGa0/aFFutxLRBrfT9wNgf6MeBiZWp94QSsQZCLnjnGQ5XGODr9wfUrZOymQ8dSytbOo6G3c++kqZSa5lPFWPAq4zlwtBZjLLoGjBVWBqwoAZpG9coaUc3BrZIboMi2ya84goH1Zx1ComuK/Uy1TVQ1CteQWkphKlJMAxKVW58BV+oBMpgSHUhXzmJq6tnnHPoMTHYZ5nAVZmsGmeFk5azuCMV1CyogFJhS/ckq/jgNozO5IadaF52lDEoZaXUSSlQHpQml0kO/iWTlUcr13hYqySlr3fkFKA+ULtMKRtMoG96uWiiiSVT2CHJyUIu0ppeGaFAqpU/mw7k+gcOnFKWtW6cnaZUj3IBbyOfdSUaw9V+YHCWwTt+/O4Ob6Rsx9kBcmLwHvZ7QDONe2n5aw2c0+7IfHmSJnItbojeWnprKFHcv85oUsiMnW+cupfvbSKthqLl0tM7BzXjjMZUcfzkdObyHNFkCjIAMNY0HmBtpVudPHtO4o6lyjMWUsR7zzJvhCQA7lrlQE1jsFitW/EAdFoRtBRVvcQpSilczk/sdz1Pj8/EpKi54jrDup45HnbsVeWfv9szOMdoCuVywbEyeVD1SVy4558AOOYkz3gn7mujNapcMEZRU3q9nNYsl5SXSKBgMColJkpNkqqocplRqFaApDBauMQoaVFUjZ2KqsIrzFHiezGJU7AvwiHUglFBCa80ZSk/C1naz4dO1sB2QxVRJAtPUCkFtTm5VQWjyS9Rm7KCLiiTyL5iUa+fT3Au4vbXRiFlVYaKlTZUrdhuvDjZyxNlZ9AmQHLw/h1Vy3OUR094cwVATJGURkoBYxxFD5y3nvnbkZQ1lyxnkc9f7jGdFQbfbqD3sh593QsjMqrE6bJxfeWpZM7ngLId6yIO/XmOGDXy82//hC+fPnN+DLx5+zN8V7m/f+TL0/dQDW/fvGM+r6xhY1kiUFlcYew1fRUGY1IB7xU3H/ZcHjbmy8weha+VQz+yJUA7trCxhGcpltEGVQu//+53fPX1n7KsmbuHR477G8ZpD2khx5UtFq76gU+fPvLu9luccQITL7mxUKUZ2GpFNQqQdviaM1q75hoXxMFumgTXEzdKzZQM7UXEOSngq1HK4HKI4gAxiU1d2HeFoTPEoDktG0Ur+n5gCxuH6cj7nedXtz3vB0VMG2updBZ6HdnZRK9nahXh0VaJwNVVoOaq1sZHbPxAYyWNohUUMXrVWuXf1d6j2sQ93QqiUKZ9PyrWyR6EkrRKRQmPsbn5bBH4v1ZI8+JWpVRKK7xWpLhAke+DKxnXeW58R7EFbZJcgJUiRcQthEEXSy6ZwRoqG3FdiPMZRaaj8MFZlLPUceDOrBxMpCYZuOmqyEDfKXTOaFuppr4aMJqEDsqwBkXVir8JIuhbjbQop4qeNGusOCJ3j5lYPvOPv/03jPsjnVMs22cef/1rShDkw+W8se8T56RQ2aKrIWa5Qw29g1SoGbJSLaJn6DqHioW0iON2DQFqJYRM0YVUEp9/+i0nJ4gMSiJmxdXxwMPjM58+/yDDoCJ3RKekDdY7LeKvAT901CJsrpA3yhrJ9wmnFDsv59aKsLCyPMSUktj1jlIz5y0Tc8GhGHpB7FgL2gws20XieFRyFkccFNaQqNkwTldssb1XaBEW0HgrjeO73cSynjGqtr2oCpt6W1BktLZQC94ajLKksJJTYMuVfj9JGRGO091nqpSgC1vbWMq6YTppm74sT4QwMw2em7fvWNeVfUm8ubri/Zs3KKsYu4Fd56iPP5AvpxavVXgNxqz0fY+tjmLaHmJlgKPiQt4ilULKF1RWrcBCBmYa2c9LEnZ6qRFt5N5Yc2qxWkkhqawppTX/Kg9VEAPqBSWTMiEI4sFqWae0kmdbUXgJFcbmSqfIuaTGgjKVWhPa6la29pIss9RYxRVZrTA1tQw4jBLGH7XSt0F3rolUYImC24ml0Dkp18y1yGfRlV3v2HdOyrK04rImtphb7Buuj5aYFfdPsjeqWnCd5zTPiFqnKEpc2t4jQ9JO9ptxMBg0zkokdonC0ZsM6FpRxaCqFCdZW3Feik5jEGd6TBIzH4cJaw1dV5vBAnJpLcooDoe9DH1TJmybYMZSbjqNwZuemKUc6+5z4OrNN4ytlCLGjePVB+rTF+kbSIIdUrqwhlUc5loxasPQDVhtpAjS98SYJOmnjAxFQAxWpTLPZ3I1eNtR0RjX03vT9iiJ4uoSGwO7oAjkWCQS7h3TNPH8+IVUCrlmas44LWcF11m2EFEx44xrKYWCRmOMwfeGIXuJR6+VmBIxXNBeuiBs6w5QSjofQgy8lqgUKaRUvQzIpKQP0U8qkjDTf3zA9o8X+OSmgvPSSpibo49aXxsvcytf6Dr5PeMk36xSaytdkJYo7z1KG5zrXy3AyjiG3rHMF7YQ8I0fZa0RFVopumFCk9Hy9mONo2rhJnlrqWimsePxcZXNXkvjnHNNtdbCr6hV4Yc9O9tzeriT2J6Rivr5stANDl0RcHVj1eQi9ctS5iBTBaUNwzQStxMAThuMtZyezkzjkWHscd5RTgJr3dYV1MTN27fEx09s6zP3T5r9bk/cpAABFMqKu2oYe4wRGPUSQms00/h+JCHgy2GcOF8uXB2u2WJi2u15enzA9x5jLcfjoUWFM49fPvF8/yNPpwe0Vnz+9Ft++vyRm+trbLucffn4E9e3b/nwzS/Y1gsff/yRNWxobUi5ULVAgrW2nC4Xro7HJnxF9vsdzo6YzmGNJRsNqyLFjDFKBIia28NPu4AMLOszpRZKFiFFYtyVkApl3uRn7yAmgZEb7alJ4cYO7UdcvmAMaGOZzzKVsM2p0g+DCKM58vDwTKmBq+NE3488PD6xpozvBobdgR9+/J63N9ecHz/xnz/+lnF3wLmecfA8Pt7zz/7Zf4EzPT/89m95fzNRwifeHSvXk8NX0AScNqhcGfiev/i60OV/QA0JPRasBkpAq5lKa35LBdVKDHR7ZmsqGOTSVFvdvdGGPH+UDWywEBe8ae2w7SBqTIvNV2FrVBRVPVK9IRUlNuURrIG+8Rk0i4gRxspm2aYSOUdqXhrm76V9+kkujL2I3tRK3SvUO41SiZzC679LqVneNaUpdWub8QW1kwuN9YcGtI1UOmmhjUHYdPk3/Bc/l03fdQ9sqcBk2KaRag5UbSnqxNwpUjEs8cIvvx2gjljf4bsB69+A8WTtuH965OjeklNhiYmyMyxb4O3VnlE71CDQa+cdv/n1P2EVdEOl6x22H+i8x14ulFwoBBG/c2UymrVW6CZ+/vVb1ucTl2J43jQlQQgVP/rGcUvkIpO3buhRykhrWYPRW2sxxpMyPN99JswniWgkafUzprKGBed2ONMmvy3eazWkGDDWElKQCLu1DAbiuuFdQSFlFesqYHpqZdpdYZ1nSme+7iMhbRTTGsFjIK4dIVeu3g28OWqU7XApkNbKmjKmPGEud2gl6/+kwb5cngC1CVKhIm1miYrVjWtKRYkWhqrSAK2qDC+yLA0iMFiLtlY2QWXAeLTrBFAb18YZyYhd36CMw/peGoXtJqJGKfJ1S6GrBVVDE1uLHOxUpVQR7igRpaUdUSGxs2pk3RfOYiHGwqVWUjFsZcUq+fxY28DZhZo1Shf5zKoJUjmhakJVQTmgJQZScmmlVLUdMvMrygKDTFObiFMLzeUmAyMMFN3Gb0oaG0vJqN6gQZho2sj7WSvq2kNVRAJVP/BX/+yG05ZJWiafTJ54kCKQkhS7/ZFt3ZgvEXO4wvqO8eo9X7584c1oqGpi2B/4+394RKvKu5uJEgLDZPCdIm+OPIuQfdxP3FzteapyIR97Jxf+CKdZBKVQNwYvDFaZYPfM55llfSKUhNGGGMX9W0p55clZ3xHWE05DrYmQJGIphUAJGmdJaTl4XR2v2dYFrYtgApK0zyml6XvHFhVd5+k6j9KVlDe2JeAbfL3WjFOamiNhKfRuwJ5/YOoM3gI1UMtKCnKIl/iGlihRrWQl7c1KyQW7NEeb1hIjlISAxMeUkq+B0hinUc7glBUGZot51Ba1RCnBLFQNqoMaSVla4kCeS3lWpAm71ow3mhwTOVVKaQPbVixBiPiKDHI32rovTXDaaIqqwrIp8q5CaYBzEeDlGVVU15weRoDyKGkdBEXa5ua2Mi/yOBUp9KLC2FquqzKNVVgIJUrnYS3EbcN3Xnh1KLJSVNvKSEoRSLuKXHUCmI8h4V0lHnZCSiuOmr2wfoq4m3N7J1OBGCKnNXDea56XyOYN907zn/7+11xfv2M3gh/e8Dwb3gwHzue/RdnE0+NnqlIYRqb9jvnzKry0Usgxs5Jwxgso3BoSihAjVWvQleVywWrDYdhxCZnzVnDGy0WWwm63R2vN4fiWP//r/z3z/xggXaTEqd+RLitDN2KHA0p5nPWcT19QxlCr/L1a8mTyjKpCqplSRMzLtaIQ7hA54ZxHlUzOiXEYiClC3sDI91w4YJXqDMYCRcRa31lQhRgS2ntxZ1tHVZXL5cTX33xDpyqTS7h0hgiTN9y6rhXYiZCYlRNRGxHcXqAUsRXspJha2Ema60sRl4SIdqrts7InobSU6FlDTlLEk1tZoGrOvJQFC7RskaJkeFSKlC1NvWPsLNT8ej+oNTeerWosYEAL/3cYpSzD2ILwSeRrWyUYDKrA1iUSKO+61koKyEyH8aM0QwKn8yKlJVah1YixSs4ExlJilL1Iqba/yc/rpShtXTdMw1OYtKKLAOattjgHcY0UI3cc7yvLKg7th5OkXKahwzkYvGINmsFDiNBZwRyta8BqhTHiUKxkfG+ASG/auWiNaAU6a2xVjK6jann2da3orNnmCF3GW8dhclyWlVWtxFyZV2GAdt6znyacMczrEyGsjKMnK8XzPIvztBaoEn9MYREBuvYYrUhNtM1VmG0aiKGIyxuNNoZxHAVDEDa2kPFW+Fy5Jox3MqwogW1eyRnGyVNTwFp5VmtbU413VCUusm1dARmkKoUM6ElNtBKnoFGJtD2T8RIDrhml2mA9rs0tqvHWMwwdl9MDmoL3MjyppXA+PRJjopDZ5geujtdcXV1xONxwGEe6Erny0JtK7BG0Qm+FPU9zvRKwSklTbFWU+bk5EaXIopQsZ1BnyKXIkCglOdPkVcS8+oeB28tzTZXBZMxK7iZoUhZeWVUiCqvmxpMzjHDzlZWCQlCSTNKyEtTWDFEqDeklEqLWUqoRt0QxYkpSWhHWZkbRzUFYpDhUmebwp7VQuyKYj1opStE7Kc8DzbIWVKfIrcNhtB5jtcS3nYWYsVqxpko3GJZlw2EFiKI0a5ChhO0sxnkyGWrFWYNV4ip0oyOHQkVTVSvu0JZli1hvmbzDVBHuYhH8SD+AdA5UUq5UJS5S6y3OgyYRQkbpSo6b4BkqpFTpbIGSKLWTZul4lrOENm19T+LytZ5pHFE54nWh5ix3xprYtsRluWCUEsFYF2IKhFwYvUaZnuub94Rt4bLMgh/KgZpk71mSuFdzSaSs0LVSSJRScU6SR0M3oLUU83jvqDqynRdKnfnyeMYYy26wFDJX1zeMuyvOlyecD02/ydQS2vpYJKpvWuGgM6iaGaYelRfW+USJmaenB7aYsGhSXNBmwJdA7wVF0Q+OUjxpu2C0aoVLkmbZ1kAqwn8sSbjI4uCrOOf+f9Lk/te//miBzxiDQlxcxohtX2nJ1lsn0U5rFLFtkinnPzTvARqx/jvfSTFFA2BLG92AdY6aE65FAAyRy+XC2ItYVFEo5YU3paT5ZEuZYfB4rdE3tzw/nVjWSGlNqsPVBEVcFzUL+0hbAWr3w4FwPmN8jya1piwjtcelYPqemFeM77BbwHeWnCrWWs6XjQz4fsduv2M+37PFAFbj/ShRYAXrciKGBXhhDxacLXz/+38ibBe2NXB98wFjhHm12x/FNZAU4yTttiFmYgFlOlwvLgOtZUWxfU+IG/vDgRgj83Lm+x9/5N37D3z58rG5lB7phx21ZC7zhu/3jClyvpxYtg3fK2oKPJ5XQty4Oh64f3xg2eQyY6xp0QVp0/FdTz4pQhaOz7auTLsDy3wmpMKHn/2Mh7vPgMS6neuAJDHVGETVj4F1W0mp4CwSnUCa2ow1dH5HnyM5J6ZROEPz+Y79bsJYh1ISBzK2Z36+Y10vxBBRdcE4aeMLIZJyxZdMyYGwKbwZCCkzjh2laqzfodUD+91EmBesUpzPF5Z1gRxwT9/x5+92+Fj45rjx5vKf6C388npmdHdUojRHb2C1iBZGy0VcR40yGpUqNN5caVzIWgUIW5VUbqt2pTHaYHVGO01FmBbSYpDRKuMN0vqoKhg5fKs2GaJWcVO097Umce9UkMUEg6kiOOgK0tFh2v+uqKG5cZVMHnlxhlQoSi5X8oWl/UzasFX7/boxG16uZqrBg8VVorNQZbWSDZwCNSxSM4+SKZ+WA3csrfJei0MktrYmpTSTEdEh50xF0dP+TqdRHmTHvgCLHIaqTMg/+EruHClXktLMayCNPfbqDTplTmtAfTOQq6PzA9u6opTEuPsExAuT0YSUWWPGFoNGLlFhC5QCn376wjAOUKFzHq0LORpSzAK4N6rRFhQlbigiNQXGYU+0cLkUnFO8vTlwerrj9HjH1+/fsp5Tu7g0Zk0R9pfRhmnqGccBVSOuFR8ZI2UURIglY5SgEo6u58eP94B9FTS6zuGNZd85DBkVIqZvh43+QHZ7dmUhpoz1E8SVEAu1O/DuF18xf/4OtT2i04ZRIkhpI1MveRvk4qpVK2KqVS4gVBE6jGnCnRJHnnf0yKZXirgfS47Sik6CBuAlXKgly1podVNFDEoVSlnJy9rcgFCLIrV3ACo1l7Z3mdeIjvBcjHyOKoKkFCZUYlG4cUeKW+NtWJQB11nUKZCLEKZQ0oyGdsJ60YZiZK2qaSXHTTiZNTbhsMGUtZQ/Wfeyv4p4RREnJiCHWyUTbaVMc0W9gJhV+36Kk0rgvbbxbWWgJoxaKSQoaUFr00RizXFQvBuk9VBbS7ypfBs1NUQ6a4nhCYaCfuuIpVDrxpJ+zS9uHduW2HKiqMTXf7LnEgJbSjyvhpAzzw9n0EpalWulU5m8PNEfRt7dWlKSWJpxinmRf6szjsEael3JutB5xdWh53wOWGSCnhLkLKUDGuG8xhCoVc4enTeUKj/XlBIpSbu0kXMVMWceH+/ZjT2K2i4BIijNa6BUGFzPzjk2XdlPA0/3GwaLNRmr4bjrydmwv35LvDzy9s3E4fbA1I0c9iM6Z/L8iRIe5OKGxMfbDVOGKy9CN2CUnJLEDS/vt9Lqdd1EI4foFNFKLkupmFcXEkrYnlp7agM7p5dLWEzS5K1EHJObkm4FMFkKt2l7Uq0iajeRQCmZ8mstKQYF5JrIOZGTALRru2CZLOiAkCJxkeTF0Dtpgtegsmrvi3CNY5I1QH7y4qApJcseoiTGU7JEK2XKrV9xICKyVsIaWGMALUOFGMVJVmttnFeNso7BOqqW86guHSlJKYQzIkD1w0TXj+3s51EowrwStwWzU7yrUs4UU6SkxP/ruQMUcdv45a/+Fb/59d9S6plvfv6vcH3i3/6P/5q8FgqZobfc3N6QU2S+XNhCAS1OCxnQGBSW02njkjM6Kwbj8NritCZss/Dfsgisu/3AvEhzegiZdXnm3/8P/z3Pjz9wOd2RUuVP/+yv+fG3f0PnFet6Yre/xVmDb6VaVmlU22ulVV5LI7LV7RmRAci6rZIeqYmUIymuGCPOEe+sHDSUwvQyhIw1ozEUDEY5ilJ0pkfnRVzrBdYtsabCugUohd//+h+5vdpz837P85ZxpXAoEVUKbuilgCNFaq6UtJJKJindWr2TXAATZAqhJRrkGZHPWVHNkaFYcxL9S6vmbq6ktq+nLKLcy76g9YsgYei9pFGU1lilsJK3IuZMqDCvMrg2zRFc27nNaE0ulnJOQHOWm/L6PkFpiSVNaSkpeQ81zjqm/Qi6I1tPqZVtmdnCxjpfCDniNJhOMTpxrqSwCffQiLtWq4qm8U+VwndSOlZixBcnkUZlcLZjWS6goHNaboxWE0MlkZoQojnFjd5rDm8GQohEKiEU1rxgqkU7zc5aSlAYKmrQxJTwveGyyoAhpogxFaU8xhrmTQZxvW+fxyjZY62hN5ptTag2DM4hYZQRcT/PhC2TjZf3soiLDuWpNTXAvdxRBRVkxVVaAiBs+LHvMRmUKsKhdkbccpsMBFMIFKVQuoqZpCioMmzMOWO8xfcdad4IYUPV3AQ+y5YLMW7iWktZzg++ozOadX7GaFnnUq30CEZCKYjhLJFfZdjtr1iXM0ZDr2Vo56iEEpl2E70qnB9/wJCYOlnjd4cj3okgk40mbStpXXim4/3Xv2JQjnr/kak+05tZ3ntVsAYIWyvmSG1Vhq2qht0RE8FLUSXaSIItF6wy5LwRtsQWIilmcklAxuiWlKsShqj1Zd+Tc5LTRu4FVonzTgkvTQouCrEmal2leHJLVIsYHiqU9B5jhHGcc5ZzjBIzA1qhW/mI1kbOSxVBd1QlZgaUnNeM7CkUmogmyAGA7DS6FLwysiZZJS5CLefWvbXiTjQvjkbhoUv6PrXCD423oHVFx8Iw0Lj+RsoEwyr8YSOcPpzBAHEVhmBWssYFJQKz14aaEkm1KLzX7DpNLdB5KFnO01OFL3eScssmY/Y7Cp43795yOZ24pGfBLRjDODiMafdVbTHWolTHtgR5EF7SBJ2SAVNvqapj7Dvi/MztzSjoDSPsQWMM1lS2bWlOaSk2VGnly6fv6LqOlFtDtbI4a5t+VOiMFCaWLAkd+fkpUgwoU9mWE947utETaiVtKyjBGeUM8zrj7YhWhfnxJ1ISdz5FOJvUSIwbzoigXSjELA31pUYpSavC+04pELYLo8/UmumcsJ17HbjuAr84VLKK3JXAvUno0RGDonOK+bLhppFIlNSLzPVf8SXW6MbB/+N+/dECX2nTqFIkDmiMorOOuL3ENgDEVScNehZoVd/GSMNiUfTDjrAt0rJapOFx2l0To8ReKWCsZ718ofMyuc2lYruew9Ub5ssT5+d7nLMY6/HdQDfsCPeaWoWjEoxM1HIp7MeRGBL9NAkHIgn/JYVACIFpf+T8+AWtDcZYjLZ0jc0lBx2JA1vTmsy0zAiHYaTvOi6XmS1mjDb0Q49CUXLiy90d3377LfvDLfMlNsaCowDv3t7y4w8LV9dvGIcJFIzTHusc3jqKM/ih43L5LBtuv2ObL8zzGUqi63ve3L7jdHqSyGyRi+ju6paP3/+O0WvGrqPvPcZ3DNNITpabN1fcff7Ied5Qpufrr38uF0Dg9v0NP3z/G1znuZ5upMlLGzQycapFmnVyiHTOMQ49MUhl/bpu7I/XdH5g3QIpSgTBqEKt0gRonRN1fpllamU9ShdpnEG1ggzhD6pSSTVyHD3bdqEys9tPXC4LDnG6LOtGrheub7/B9yMlnDk9z+SUWGKh94apteLk3MDiVvHj5zs+PF74b/7b/xO//u13nB5/5Pz4CEA/TAzjnrRYHJFv95W39Ym+JLSv2Ligk7gxTDKNLSjPvrOuwVWRuJGStlRxPGQ0UI0cfK3t0dqiyBjftZjajNZReDEZULWBhFthu5LwXy1S1V6aaMSr2CYcPokwytW/ts+jChRy2+jETSXTqyyMCSQm1k63cpls0R1evobWaOcoKaAor8LNy7T45d9Nm6FXLSwWtKKY9oWaMf+l8bEqjVFa4PDa8FK6U1rDcK0vUa4/OL6MkoGCNnIQqFWhjEByldZkkKhMrcIMKhUVE4YFVxRbzqgUCbVjfPOWujxi1p+4OsrFsdSF2FVKTVxCQdWFaehQJbEOitOquWyOXDW4gr0+4HUnE+++503XixumwrYX7IAxSi6W1pFzZl4zo9esW0HVyG4/Ei49qYhkMZ/PlFzYzucWKxLGhHeeFCqpiutN68plfm7O0My0G0lRijacVWwp0SnLZd1k8FGhGo0fJtJlZpln9re32KBIeWsui8gcKpstHL95w+fv/p7sZbI3mYIpmUGf2X76e3wNKJubI1D/4XKCOB1qyWxxk6hSkSIko61wsrTI2hpZYykVFcXZJD/ySimythkn7rdaElqJK1tpEZ9re+xqLX+4tLXhg8Sea0vYioBhOoNpf59pHNlKEddcc9JKy7o8r9aIw+hlf0Bpksqs2UhDttIYoyk5UJv7qVZNjqByRTu54FUM1itKmFFV9pGaRcyIYaUdZynZSMtya+421sn7EAOoirKIOBMTJSW0FSFLGTlkou0r71Q3NudLmYTSWg5vSOSj1tp+byZugZog54VJB6oOWCp91wR4KoOTC+4QMsmPJFek4bssTGllLolzA/ZfkqIkTVZK2gWtYvKKHBPPS+L7L7GJj+JG0crI8CCJ40OYTYXLsrHOM8MoTbE5ynNhrcVZjcUw+I4QAinLpY5NDu7OyM8ipizRiEXibEaJBJGjOP31WvCm43jzBnfZRBA1hq/eXaHWJ7bzc3NHSHSjhILNisFBmE88X2bOZ8dDvlD6jvVec9jvGHtx2ctF31CyRGaUqGRULRfX2sQ8/co1luewlkSOUQ7+IE5rLQw9VRVVlbaOa/l6VepSaOKuuKebQFwrhtwSARnnHVppUgggHwdtZK16uXiV5syTtbiI2xwt73b7jDkLo2oYpsabBGd6cfIqccPkDEZXysvlTim5+GbZ48TNijg42gFY1SKuFqo4uJCfu4iA6g8x9yrxvy0lYpQ1LlXbPnelsx5tLEuQ5suYS0sgVEwMguVYF87rmZOSttGqReyvWaKL1gsqxOrWuOwcbpYkw5Zm/uO//zfUIvzKn378DX/2F/81Wyp890//A6fnR3IpaDXy1Ve3/PDdP9L3G0tYGEbXWEgzvVVYZxico0cKCkiCaSlVU5Thsq7CSIyew+Etz09n5uWR0/meaf/E9c0t87kSLh+5+xQxunI6fSGnQMkLzrY2bz80nIC4SWV4jgg8FDpnqUX2+JcRgvdO8A8pUGKWd81JcYMCrEYYsWGT4ds48fSw4ruO4XCgzsLiVkWx63vSvNF7y9N8ERdHXvgYnrj55sju4Jl6SzdMsr9XEZpV3jBIIQqqgK5/AOdrhVOGqiQeV8XqLGtGreSSxfVdxWEqF/yXs5PBvzShaoN1rjnqCwYZqojjG0kcVHF3ZqqI01nTO/0iz72utaVCQu40LxfXWjcpdFKCcYgp03VJ3JRG9hjdxO28LGQtEcBUhWs+z4HHp4XTGqhpZfAWV5qTnz9gcioSDzaq0nWWWBXWidO5FnE551aCIM6nKhfQkuWcoDTLVvBZ1n9jtZTqOYtDk0NiGiuD6ZhPAaUcKchQ2lSYc+T5Aq5zdMYS1sKytoZtpXEKcqpsqkJzLoeY8Va+17017Twpg0jjZCDRWcsWMsopUI0RmTOH0bOmnh/vHgg5kksmVGFy6fbzscZgHIKSUIachRFrdGGLkVgjadsoOVJyFQF2TfjGvY5bIpaC956aqrRqpkBKCYNi7DxGQ6kBawTD5L2npI05rDgDqRuI6yaOwTYMTTFRMXir2MImz2iRdtK4LtScKCngfMfQe7La8AVGvTEOBr0WUq1kI+fpcRg4Hq9IyzPBGMb9Ncert5T1jL77e6YucagXNIVoDBpxMEaxn7bzXCu61BptnPDZUyJum6QQiiQliq6seePyfJbCm5rJRVNSxeiXN0SitGKwse3M1hqXmwgn20kFlWVvq+33IC6znJMkDGqG2Nx3AEWcUfnFDWmMFJeE+Bqt10r23qqqoLIUDN41dyfkCBgZEAxOBsy603TWsq4bOYO3L/FvYZ9bYzFO9sBUoOZITRHjIGYp3cNA1xtGb6QExhmezoGh86hSKEVxTpm7pzs6LyYpXWUwl3OWYstOBHLTREWjNd5qrKo4YyhUlJHW8y3L4FaVzNVhx+k8U1paQitF7/qWSJs4PX1hnleOV3suF2SQXhAHru1xriOmRQpQSm1n3EIqGZ8F8WB7RY6RMP9EzpFcpJU4rReMgxQjMcpQr6Lorawz1imct/iu5+n8xNB17V0Xg4Lzjq3QGMwRbZycb1Uh5yR7dNqkHd164vzEMp84LWeM0uyGia7zDL0mBHh6fuDr659R60QKgXWeubq9ZnvchO1ufNMJIjlueC/pKmdgS4bej6zLM/MWWUOUOG9X2fvE21Hzzl3ovOIbzlw8pFoIWfG0nlh7w6oVz0Wx6x3G9TxfFrJKpFIZp17Evj/y1x/9FXLKLTIoPAuNTLoqSlpos4gMpjmrfD/grOV8OpGTLFraerp+kulyCOL0UAa0wXtPzoaxn6BW1uWBkIJshhp6P6L7CbUurdU0SxV3DLi+cvPmPVpFHu8+tsmzouvlIDPuBmhKPUkaq9CFFC7EpbYMtVxQS0Vq5nNgqZVhHFnXlS1EOu8F8l7hOO1I64LvHVZrUpKN31nFZT5zffOGD1//gvP58hoxnteE6xxrkLhbUY5UM/effmSYBqm6z5H9YUeIgePVAcWLcyo1iURjbE+IcjnY7a5AWSwJbMfV9ZH7uy9cXV0R1pXe9SKIbSsff/qBh6d7rDN0XUcpcL6chN82RkKI/PjDR/a7Z7p+xzDtpGW467C6o7MiOCmkTMW30gnvO7lEW4O2mn6/Q5dMCQvWK2qWmC4UiYrlQmkOz5w1RsvB3mrNti4taqqZl42xe7lAV2leUry64MZx4njznmH/ll8/ficsqlrpnCYXCWpYpZudWZqA9+PAh/df8R//3f/Mb3//W+bTFy7Pj1JioGUz8Drxq6Pl1osoUV64QrWgjajuzkkRS21Q+Sw3JHgRHTSUlES80LKpGAqqZkpJ4tSombSKWKMU7cCom1uhkpqDp74ccLU4fwARGtrGVov6g36mZEpkjUyZ5U7fnG7KyzSxvdPaGLTSrZVK/uzLNKG+RIRfY4zC2SylChON2sTu+npI1KpxomqhIpsqRQSWUl4+tzhWBJUhkUfTHEmpRRHR0madSiVV2QyM6I6kUv4QZTeGUjTYXqzPBfy4k4tEXlFxE1eLaxdroGxrc250IijUxNjJxBcghYxS8pwVp1+F/hADsTgwjqI1pSrCEkArkgpQKjtT6FVk3xd2Y4c2TlywJVOKNFqJHV1+1ul2YMWRS+SXwxvmpGFycILhas8wOpbzStc4heM48PAc6bzCKINpB6MUEkUb1mUhhkjS4J3lauxxFLawEJobqOTMp893fPP1V605LrA77ujCwtPjypZgGDr00JGWR0xdSTETl0g3KGkVDkJ8k6iBiAq1SnGGbszNjALt8d0EZcHKj/5VsKQiccAsz1KNULU4r9rj3S5iMunMgDEdVuvmIBdHRKoWN1xRtZdPlGZSPksMWLfBQS7t0FhJUZ5urbQ4l7QiZWkJtRppDg8JZRtc/UWETOJUSVURS2ZdN2JWuK7iEXG/tMY3XQuqSsuoigs6i9smhSpNWjQhRmuJ8HnLC4/M5CJCJs1FkxNGK7TJwgoqFVUlAme0pqTmiMyRmjZ5z7QIS3JRyO1ll73aGCNMqipOcBEGtXyGqqEGjLcop3FKhi4pBnIMcqg2oAZPcR11GCjhIq6iY2XZNu5OC2rLpNPGZDuWIIJT32kckWEwPCMcrpgjnRcB09qC9wZnKtaJC6J3LVZiPVZJzGwcLaezIsRErZZ+1zdhueD7rsXMobNGpulRoqZrEOekbhxfb0V0otY2tEgszz8ydlfY3pPjSnr4PUcb+aFmLmHD+cJb7+iuOkKEse8oubKUwHx6wnYjLgacUuhtJkZkgKKgGrmcaCNinvIWVW2LXGdxKiRx1NXywrhr/kz18swXYdqol3h+FiG6kcVrFRHQaEOthlIkkmZNc/814bdozRozzmlc56k54LSiFpnQpxQkQoiss7VIXko+lkSJiwLjnFz8tXm9eBVk0PJSDFILjZFpQHXS6pe2JqJV6mtToUR4S3M+xRTR2hAr5KTIpbmISoIq/OaqMgVFLoayJYmUGYlHxphINRNdxdpMShFfEqYatFV4k+iNakI7OCPrQq6BmKtcSpK4hNO28rzIJUeVChiWZeQyL1wd9/z2d/8L1g/88ud/SYiB//v/7V/z9VdfU9GMuz0f3vwMrfb857/9/6BURhvIW+T5suGcxTsn58s2MKwxY6yiqII1hmWW9MswDpgMnRuFDV0KQ98RUoAizLblskJJnE/PfLjdkZQMW2QAofDeQYsc6prkXKEqMUZSVYQg8bveW16a38mRmjKq/dncznLkjBsEl2CzMLh3fU/AMm8z2zITlsywv0JXiVaiLJnIsTPsu47Zb/Tvjhy84dhb3u9hIDQHrJzJFPK1lRXXjyQBXs485fV9qaVQUmxuWVn2RBAuzRkmuqA15g/HKGVbIkYGKu6FlVvFdRVeBMEmgr2cs4SJnZCVWkFzY5e2zxitUMoBpn2++opNyakxUzMUDOuWcVaYoMba11hxyqCqCF2RAM1l5npFmTOuM2gnfMwV8K7Kz8KI+0+eH4XvOzorDculKra4oTCtFVne1S2uaCstyNYqqIW4VWHnodlZx+gMisQ2V77kzH6EaaewTThfg5yhrM4Sfa+VkAuD85Qg2JmUK93oOQ6WsK2C7smlmSQk6uata581o1VlviQ6B0Onpf196jg/nwlIlLaUwLYWHs5J3l2KNPhWQy0J1QlKIIRN+OtKymeMtuRtlf3OyKk4l4K13StWRZsqjuBS8CiqFYGiKx0xSuFS1/WkEHEOOpvISgRgbyCrnlIt1q6ULEziNT6gVYcytt2jBlC6NYjaNmjXFDKus3iv0VqcqFZXfG+Y3IhLCyosvDsMxBh4WiJ22KGHiRQ3hr5D5Q0dL1y+bHxzPXKMJ0zdwDVxvA0HMRpVAjWL4/3lncqvDaWKdZP/zihFCRGWRaLppUpDcK1yTtcVM3qMVazLQi6yJ0ihUKWixU3sbTOoFHJ8+ftaHLf/Crt/z+XpM727YFWWghSakNhccioqYcqNlufzF3Fd8lL6qNGqNNxFkfMNqqGuhP+fNlkDrVU4LeYlpRVpkzJH6ww1ZmItwgBWjr6TsoctV1ItwqD20spNVoS1UHOUIipd2FKAbEk5s58MndJ0uqB05XkRt1zX+PPKKXTRWKvkfpRk33lxa1wuG9FZ+s6S2348dZaCoGFiTFjtmJcNa2RtqUrMEiEkYUcGOEwD3nhSWEXwL+1sUAoxyd0xBnHQGxQptYGZl/IylQvUmZozlyRuXa0KMQmGoyZJLcQs3LnLUgkBOZeHgtIbRYGzUrBo213UaFlXqZl5WeXZz4WYkzgCtcbZSiqBkD3edoSwYGzFO8fT+Yk3Nz2OnpguhAQfPtygNYzjgcv5C9POcXf/E97KPRsld2GrZC82GtCGdbkQ4sJ0uKIoh9NQbBvU1kgksK5nSt1TsaQY6JTBUbg6dvj4QMHxMLzHO8vaCW6hGwZIkWVZGUfHzv/xFr4/WuBTzRWnkGaSnBJDnyhVDkO0mF4tFd3aP/144O10xZePP7AtTzgrBQ2+G5img9ggzR/s7Cklxm5kPj0x7K7Yzg9Yq6lojocrDsdbUlhZ5hP9JAunsZa8LWxlxbUijlJqm9IrrJZIWoxJYI+miHXdDixzYD8NwjhQGmsFfl/yywIhtlARtRRWaXLYsMrSTwfuvtyxPT/KRdsZeWFPT+x2O65v3/Hppx+YL2ecNXReeDvXb24Y+oHHhx+Yz08cDyOPD1+4OuzbdBC8Gzlc7Tk9n7BWc7mc2FLCD1KY4bqBp+cnUJXDzST8LcQ++v7Dz/mHp//AvCwMU6JkiRQZpbCu45tv/4znp0cUiZQW3r+9apfVzJ/8/Bf88MP3XBZhr719e2DVllIswzBQwomhn3g6n1FGsS6zoEx0YXe44e37r0lZ8fD4ILD0Iiq+nIsyKaxoJRZmOeQUJPJmoSqcG3HdgW1ZGHuF05H58oQi4Twi2CLPoVYGbUYOx2u+/91/JmwbaGH+DN3I+VnadWLMwv5BRMXr4xVaGe7vv3BzHOntLb/4+S+4v7/j6eEepRWH3vPNt7eop+8AqQ7vHXReJidQUUXAuXJJb61hSQ7TubxMIzTdNGJ0oW4XSoko1S5izV0E8v8rLQculLBUUlgxzkLjvmhtRfRozbUlp+YqkpY4oysvDXDw4pVrkOjSGgsbX0xkYtVA7aa5m+RzCJMoy8VL61cHoVIi1qUQpUSlcVbkcg2l6CZAltcIstbSqgwa5RyFDC1al5vlWwbctTmOTLsQK+Qo/KJZKgyJWjKmgoqVoispisNPxVX+rlIJ4YL1Mm0qOTRDoiJXibZK21hCu4y3lv76Fu+u8dYzrytgUDWwrAvPzyeJe5eE1YNceAuUGpnXjYJijYrSDzhXWdYobBQLhoBNgWylIdmYKpZ8JetI5yxVVfbNlp+VIWrDljNXt5l4GMi1sniHdZb7i0Q4em8ZehGrUUXA1Lmg2+TSdIp5WwkhEKkM3tEPjr1SDLbD79/w6fMdad1IW+TbNzeMo0e7t7jTyt4b3hx7anjE12e6dxVPxXHC5UpBokilic9tjooySPOukui2BWFoLKBVIZTyehgEWVuF9CKcFJALQUwF42RK+uJA07oIg6wYlFXEHMTV5iZKyWynT+2Z16Qswp9qDLtcpPDHeofrpL2x5NLYrFbYJfllYiWil0xPeVW9JfZhiDk35iuMY88cYRydCA0x0NdKjCtZSVN7ae9BCfLMOyuXwdKE9NeYVlVN0SwYKy559eqgrZCyiKhIPAYgR2mHk3dEFpWasrzLWjW+ShR3J7W5NhAOoGourFJQ1lK0PJcoTQ0ztIN+MfJ5q9L4YZR3vQgbJiOiuY4ztMNjSJGSC0tS4Dxl2ai5sKwBS0fXadaYKLaybYkYFCWCsgXfKbYQ6Z1m0ArjBQNBqqiiyAqUNvSuEnvFssiaEULAdQI3Tpu4mmNOOCMlHAa5cJROo1xPrZb7h0fs6EgpMHnD4C2jV9hywYUNVTpMTXQp0DtPn+UitqyJ/rjn4AxWF7667ul15H/z7shoCqOteN0aSatAlFOWoiRrBHxtKlS5ucs+UBRFCX9OtQGRViL8qraWl9dIk7i7X1zNEmMqOGfkmdIyLApbImeFcZ5SMmmTyK5upT85VyCRikK75vxO6fWsp43wAuXgq8jNlW2dRGStE46ZuBMrhdiitPI01lSpyrW9rYl+xhPS1tLB7TO0KJVuKItiHNX0bNsMxWKsPO/CGuskEmcUpUqxRkqyd2xhRTmL1eIy3GgDlJSpWOYtkCiMTtMpqNtKNQVDZW1RdNeLYA4V6+TZSgZshZplqAvy9UsT4VNMnE6L4AQ48Q/hwnffD7z/9h2/++4edKXrDbaLbMs9XW94fJR3ImdFiJVgCouSfX3wheIKh26kaCdcYRxeGUiWtJxwtqeSuP/yEec9netxbiBsG1/W32OdY394w/Fwy+nhBybXQS7klDDaSYGbEwxOzXICU6XgjG0OYSf7epFyGWOslASU3IDmwoCkvsi/4IeenC+YWrBaEVOgrmeOgwed0WmjboEQE523qO3C7nDF2HvMBgOZr/aO0Va6vOKUhRyE4acNaCnmUy/LpNg2ZZihoNTSYoCN/dryuVqmkmIPQ1zecuRQLUXQ3ONItI2q2F7i6bVSEAEC5zC+xyojBXB5g1pQ2qNSc4Qqi7OduO+qfCalZN8vJUupzstgRfpB5OzY3m1J0rxEhC1Ka1zRaOflDFsKuWqM63i3T/RocpVY6lYzuYg41fcOQ8EZ0HqQEinrydowzxdyUeRYSXHlsrQhgUYiqLmIoOS0rBmuoErleLBMVlhVVIMfqgxmauRyDlhl0NUhaDlLLoma5JnS2hJayQtbIsSVeV7ROJzOlKRZNshF0XcQc6X3ss6UWgkFSswYpdlUZQtnClLuN3hHjVLMlEvieu8Yhok5BO6e5sbrbKiOKnujNw6tPNaKtXg3dm1UCSVJ229pRYDtaRLmqxFn/Qs2wHuPlLhWwhapMaKtYisVZeX9MUqK1uZzaud6Ty0yCLempxQZlPrWxNr7iS2dyUlYdp1zxPWM1xpHoR8dVotQSlUc93uwA9PVkeePv6N3K2crAt9ymUk5Yp2mc4pRV/I8MyvHuPcUQFfZz2O6EGqhRUPEBFDAWCv3mSaYayUt5QbhKVdV8EbcvzVLKZTcJwy1WsAwDG1wpBsmo0XfhZMn5yNqofiI0h4KhDpyMgfC5YKKK6iE7jr8biQHS0n3VOSMZjD8q//2/8jlfOZv/u3/k5iTOHhRDVsiBhLhvoqQJAU7hW3bJFpcK6UYSkmvqAcqTRjMdFqTVWWrlVElYrX4TlE2xbpJimK9BKZBMRiJqZdaiRGyKkx9Ty2Vdc2EBGUQQfCtM9w/raxRtIfOyfDR9ZqtyJntldGcKrYzYqYphZhgSYGpNxg78ItvfsmXL99xulw4nwNXh4HTOWG9Z+wtcRUH6DRNkDXKeXJeMW7k9nDNfHlkWx9AO/pxT6mCWSEXhsmjX/BPOZAVdJ0hbJGY5B0JOaFsZfKlPdcFpWVAazVoG9iPjrDBFjOXUOj7QtVivMqN25uRAUTNCWsMsWhSSnS+YhqPOMUAylJzYDnPZJU4z6ukTPqRp6cz3snQpfMdT49PpHrPYe8oaEIUF2pYHsSJXoQ7jrZEJecmgwwLneqJ64qtiWWrzEEMN6kq8v3CoTvzJ+82ehXRGPAD+34gb2f6zmFcx9lo9jkzkkHPHLXG+Ezdd/gcqS7yx/764wU+pVrDiWpTaIOxHTYXKDKZtsbi+5EtV5bLifl8ousGpmkip4Xdbsd+v2OZZ8K6oo2mG3a8MDKGfqDGQDeM9LVnPT2hMBjrGXc34iQoBd91hG3B9eKSebi/Y3c4Mu5vsI/3aDWz309M09iiWuIO09oIw61mhn7kq29/xjqfWJ7vORyuMUpzGAfhgFVFyoVuHDikI+fTCWN7DrfvcMNM3Fa0gj/501/x+ePvWOcZUzXW94yHI2/fv+Ef/v7vePv2DePYcf/lE86Ko+f8/MT5dOJ4uGU3THz14VvGceT09Ih2hnHXk3NhmnYYA8v5AWc7aoXb2x05Raw2ElNNgRxnSJnpOFGt5Vd/+S/5/W9/Q840GHklp8Jf/8v/LZ+/3BHWlZxXzqcH1jXy7c9+Qa7CxMEMaFZCrDw8Rm5vrvhy95nj4cC8KXbHI+rLFxSGcdrJhSpGjPGsl1UOXDFgOo/qHJoRFS/EKDb4LcbGxjF400mEF4P1Xr7n2wWnIyoHmViZSkoKbTqcHxinK5Z5pR96tJm4+/Qjp6efWLcEVVp0H5eIsR1u2BO2FZQ450KI3D9f+N3vv6eWzId3H/hf/uZvOR47fvGLP6d8E/j973/N1HeU6294+xf/gumnf4c//7aJqCKAiUBnZNIFcthDNjqthWEiAqSixgu5SNOqUn+INmHEIUQ1ZKOJOSHLWybH0IRAEdKUqghUT1yEJYkbp5T6h1hiE09keiVx29pEgVdVEQVV3oOiisS6ikzxZK5Gi7804aBN5IQZlShavR6Wxd1k0IbWjC3Nhy9MPqUUWRuBl+YEZZMof62y2SPAeYCCcNGMkYOt/NvkWtlpjc5NNKlFLny6UpLieY7YrsebQiWKQ0pFapF2QaVlUt5Uy1cXrNOaeVkJj18oZSY7RVTCZCnagHWUpLBmR+kSOgVsqZTSuBzaMAwepTdiAj9e0e8O7HRi3L4w+syud3g9oWsQz36OLbKeG6dFDkwlS3MWaYVisLuRaT0TkjBjNr2hqobOs5RKPRfO54RA6SU6RfvnlVzbGhNIGaJWRCvfc1/gdvTY3URZFgoV13XkWNGp0g1Hrm7OXB4+olcRK3RVmFwwVVFqZGs/fq1rOzCJu6iK/VRAyiIHC5A8t2dXI2uvbhEH89I++DK5kmeh1ELvmhuIl3YyyAXhT5VFHFNho+g9h8NXaKOZv/wTNq1AEgFVK2o14Hpc5ykxEpaVGITV9dpc2mLdznpxz1lPSoVcNGSNVho3CMQ7zCeBhRuDKyL0QhEAfU2kLUIrH1JK4Y0ipoyywutJtaCMxRsjTKMqlwCJP2YRhbRwwoQ3UlG1FWMgxSCk0gRxuZi+JOKVkijzy3ueY3MBai3iZHNLtYVHmuRtBRypuZNf16WcJMby/2XuX5ps29I0Pej5xm3OuZZf9u3c4h6RGVGZlVWWlVWJrGSUgcCE0YEWLRoYGA3+hnr8FtGghRlqFBRCgISkIktZRanyGqGMiBPnvvd297XWnHPcPhrfWH4Sg44UHXlYWISds7f78rXmHHOM93vf58UchW2UM/Q2ODrjcNJ6xfkZicaKDdGjtfHUhEvtlB6Yl4nWz6Sj45BgWTy9ZKQxJsGdEMyt0HaLYrdx3dTcrYlVHC4pt4eI9s66dqYAsgyhFjE7mVOkmUDoBSuW6SDROKd7blyeHsitMyfBe2MIVh3O8OI4zJ5XcyC4yjI58gYVz806c5gPXC5nVJXvv3nFsTfmKHi1cqok1dyN1xiAmKg2x9neVzVRS/6WgODExH2LvfYhul6HPjqWe2vt62NwYsMWGa6D0SRNNfFDIs2/4KKCxMF2bRdi6AjGZ0KEmK4Nj3Y/exdQva7r9t8rzwgx95TpECaidFUrlrHLkWvhjw2f7Pt03VBRg05LQMKNmRDy04jQq00FxLHuG8FsbaOgYUL7irR8fevsUC/CvkMd3LfShdqgNod3kFVwam7n4tQ4uz6MQrhsUU0B3yt7g3M1nuytb0y14ynU1kxgQVDnxmDBOIZ7LfZ59AbuQIiBeZ5ZzxutwuV8Yq+PvP+zLzgcbjjMAZVMkEzJmVdv7vBh5vPPvxiIGXtjpylSsw19luPEviv7o7HG9n2355lTvIsIAe8Dl/VCzBWWhdu7G07nC9qVvZ95+7Zze/eGNC2UfWVKkfOaUdwYMtrwwYeA5GxDkC74Z0qHHY6ujEacDclMpOqUfWNJkSjgW2ViHIy6taKqOvpwjsWgdN+pXlmOEw5PlsQhztze37D0I1EbrYsxcr2jqonVV1C+93YIV7VmX9RRex1JAaE2IXohJUMrVLuR7NmDuVL9GN7bmuufHXmq4IL9LFVrgW9uQgik+JLjyw8peae3TC8brVVSiGN9FSTa+uuwgRuj2KGP1yfNDAUagvFgc6eKrd1lCBHBCSHYgNTQKMXuI7GEQlwmpBTIBY9wnDx5gz03doUgiZQEcY3kPVNMY7BeOJ0yezvRtbOVQsOxrbYWFALRCUhnngMxCkjBTQ4XO/PsiS4gXowvJ8ZqFSes2cpVXt8k1tXaSZcEe+48rTvHNNOaULSMgj2POIsfz4sVrDQJlK2y5jaSH0N8DOZaF3QMQ2yQu+bGchhc6N7IuRJcoLZATBGaIF5YN3NdXtMerXW2sjPNMz4F5ngwF1iv5FytfTea2yvFhbJlzjnjgg0fwigFLLWPJkxwYvHcPvjhrncCnq00kpgTHec450ycAqVayVmKHlogeKXsOy6YaNxqoyADLwNLjBxTpPbRPF09SxDi5HAEJEWW+UCUgOYTh9kTmDikA6Vt3EyV1y9mtDqWyZHEGqkX33BtYz8X8hgICeaOQpUQzTRgGIOBzrFZjyV3hkPVjTZpP8q/KpUutt8WIARzxTm/cGWn9d5Gymoo9SOma+UyycRnNWZo298i0gmi1JKpmyekiZr3wffrFIwP+Z//J/9n9lwGm3wMpYpCtZK/VkaLtAPNY00JJp61rvjonhE/SBvnINM7r7+vD1CqogFqbxzEs/dGHfzB6ANaO1lAy3Dsjr1or3WULgS2HXJvzItnq4XXLxIPT433jxd8dMTZhnp3LnDZKrkZe0+8UHdroNfuyVzJ7Y7aM7/+zX/FZd84zgtU8DjO5w2/2wbaOaG2wpozc5oQVyj5RJqPrPuK+GCNu004hhnt3e6JMNlgR63oy3lzobZaaa0wzZEYJ9bLGDxnSxYejwdKqVzWTFOYg4MOKcE8WVlWUyufacMh6YOx7JuzvZ+oDdv9YBI7lN4LpXamCD3vdMmslydy3U1sdfbaDsuMF2HbKkc/c7x9iQTlZpk4PVkJzloC5y0zT5k5RqbgGFWAlLqjXa2gtW588/BEQ/HO3svk4eUxcnc7DZ1iYnl1RwwToStrvnC4PdBwPKpyvFESEJNn9h5XO9DQWnkbvh2u/jf9+u0jus0s42mKVrvsv4Xd11ZJ3pwNXYSUJrZ9paxP7NuZ82Xi/vaOaTmOCGxifXpP7Z0XL17ScZRcePv2S5yDdcvcv3xjkyc6H3zwhst24f1nv+Lh/Xs+eHVv07KQyLlwenrPum385Gcf8J3v/YCf/8UDh+XANE22MKE4bzw/ofH+/QN3r75L2VacKsGZTZRx2J7mSK+NOU3s224bC4E4T9bEuW5c1o0PP/zI4rJ7ZdsLt/eOu+MdH374Mb/+9S/ZzifWdedwmLi9vTV7fUqs28qrNx/yO7/794bl/objzZEf/Ph3+PKLzy1iKJ6b2xtOj+/oNXP/6iXeJdbLxl7PuOBQ5whpYpo8l9OFdw8PxLlyPN7yo9/9PZaUCDFx/+Il83Tk668+Y1vP9F4JIfHd7/2Yh8dHvvnmK16+/hDvAr/705/x/t1nlFxovXBez8xzGrDYRimFV69fsu8X9lzw1bHcLNze3rDvG7e3d0wpWvnGMtHFkQ43yJ6Y1wb9TNPOYbnF+QUEcr5Qy8Y8CSUXjscD3iXqtuHmQNLEfHxFSgvOC8shUFvnsj9ye/cCHyY6Z85bgesBvzf6tlpjZm3IcsNxnnj38B5054PXL/jTf/UvmeeJEGDbdn7wve/x+tVL8MoPvvtdjnGhn3/D/vgpipKbtUPZocjcBHE4cZxArQYPp1vTkPGWZBh07MDwzLbQPtxqFgPCmcXZDbCYcHXxWG26xltrPuo7Yfw5UUw0M2iRHY6HZfwaSVQAb9wygOvT2sX47MQbwy1E5BkI34bLyTx0brj8gh16ggG/JXjUCxqEUjpdgj3AmxIlM7lqG14nz1E1d3XsibnOtJsz0MvV/WcPVelDoFQdDj+GgNkRbxDem2VGHIQpgjpEyyhsMZdoGEJhqY1WG3u3w1vHwP7Ot2dXYneB3j1bqxCV2s3S5QdYvjTbfPSc6dtOj4HcKt4v3Bxm1re/xi9CWCLaLdJEFGKI+HnGNx3CltLriqgVqtCxaE8TSoceCmU2h1rwkL3ifKc82RobXSRnm5B5D5VmhwM6XhRH4zgbwuCy7pTSeXl7AHHcLY58+ZI3t47b25dMhyN784QpsTbBHz8kbhe8r3jfmcLgH3WAhAZHz5sJjm6Uu8CA6A935OAPpeisOdPZdeW9DHcSz9cppT07LnpnTF3rsxjd1TZT1oRpf/lSnT1jwoWnb35u96NmW79dIky2YaFWouvUix3ORPRbV954PTbhr4MPKtRqjEwJ5nAS18nrabgVhxukX0Acubqx4TP3iA+OMM947+liB8kQx+8XPa5Xc8xoR3tB3GSvoQNpRtKdOa7WFa3WtqujUKNLQwjIgAhbicC1aENBhe7Hmzuc6zpcKjgdYGzs83FusA07a7FoxhSs3Kh2cH6m+Btcs8IdjcYoa60xRyilEieLRzbpaPfU8ZmH2GleEW9rXy2ONN+i9cJeVrqDfW1sobONGKJ4K2JZpsC6bWjv5Na5mYyxWXqjZ2tY9Bhjs5XKlCb8NA1GWad1mGLEoSSvaM+ohCFSrgQc98dAl0YAUhC+KbZ2d4GtNS4NJq0cqcx+5niYeFcn/v7v/w/of/4vePz6cz56/SHLi49N/J0C/e0vKesjIThSTMTlQG+DuarmrK71PPiRVz+yPru8Ra/xV1vvuG7cRWhq8eurGG6uHxmueQfX9XEwxapvqBbartR2woswu0ZKgbJneu/EaQyWsFIFHe4fGSU512fWVVyREJ95kaoWiVUVclOcM4aRiUMWr3kugFFzINZuUSfvd3wy3hWq9tlz1UIDrQmqFa/mCkhBjUHYm913eNRFrFS149WcJedi0OyeTW2MrpOifeO1N07ryqvXH7JfTlTN9NzpTrnsjV3NcZm0cO62zmnv5lIZbsQ2+LalFmqtVqqQC1mtje/h4YEUZ1I60NXaQfey8/BwIm8R1UbZKtMkxKlyXO44HAbjr1vRz+WycZhnemvsW+OQ7nAaOD0+cb5UUpq5vX/B49efc39/x15M0J1mz0cfv+Hrt++p1bADUwjM0RMoNG98x3mKhmkohVo7tX3BlBamkCi5WNldN8f7PBmbrIsQUrL1WjydQlMdRWuOxXdupmTiR8/cjusql0apO3eTZ44BR8Yvjvn2BS5vVl5Xsx1U8zvijZV+TTEwiUH8t9apm6EMYhKiCh5rpAQrBAkxcOXrBcwRV4dj2tpT7T6zcFDDa6d0G/b1Xm1f5IZYUesQdY2xqKWztwz7O1rfkboRyESnTN4KtqxwwbAJ7uq89Z6OYXbQZmJaMSdvKzqcQgNX4gN7bZTWuD3M1Ka4DiDEaE2pxmNWegrj2dPJCltVqDBNkW/enVjSzGG2e9TTyXtjL9mYZdhfzds1NgutFppAc405mUiTRKilQ/QIjtYL+y7oZC6tOC12eM47qoU0gP7ntaLOUbf2zB5Lk+MwQd4b3QVevzgiCqeHCzdzordi+55goujtIRpipRUaylY7L44zoZvJwtC4Di9Ka/bPHA3vYO+VvVbcZqundx4nypwSWjK5mnsyxEDpSqJyujyOIhblUnZcCNwET3OOnDdj4TXFp0gtldwardr51w135hTNneidQ4a7KTnHVqGN9aO1Ri+NVg2fMsUjTTv3xwNlq7gU8N6GEMfjLduWbT8fHbMXDmJC65Qc1RvzO3g/StUi8+EIpaDbBS+dw+1MmCJ9s1ZySdl27mNtV+0EgVZ3VKyMJiW7j0y4scGSk5HqAWOg6dj/D0HcB49TSxUED4y9qHMRcdHWf7HzS2/WfnrlIvfW7LPGHJM69oOtNUDxfiKJElMdzEob2qOgZSU6IU12HYhzhOLJFzWcV/REgg2mEHOcY88z193zUKyPgg2fPOJMsI7OHHPBe2ozllx0nlwaBEso1W77Fhcde7EW21BMJKy145LSq6VmvLfzYOmdHcchOWIE8R5q591a8FiS47Ao5yrk2sinDq6zRCVNCS1CXJReDP91c5uM+4jSqtAR9hp4uGzUUhAVbtPE/fHI+1BYcyekhRkrIrk53NLWwtP7C84HG170hg+e6D2tWZuxYcsCuW2owhQcoo3WLCUWYmKvFY8jr4XezfGXgjCnyOxsgCXS2fLF1kp1xGjImyCe0hyRiguBEMCnTt1hLx0VOM7RIr7pOngv9t7KGNzVSiWP4YM1VJdq7NjL2Ya0TTul2f7h6emJsq2UxigrKqR0YM+ZWhr+2JmSmjHKCxUzrjQgTR4fK3mHhqEEHs4rv/78Kz46Jj68/R4hHA19lk/Mx4Uw36HqiY+G+1pweGk4CpJASwbfOUv7r6nG/f9+/dYCX62NPRcOy8wypzE9HzePyPCeQ3SB+XjkcnoylkS3h86yzLx68QJV5enhPdE7onfc390yLzN//RdfUbYz8xSINL7+4jNevX7DyxcviOFgrajFDr7qEzjhRz/+KV989inzcuDVi1ecHr5hPT3wg+/9gA8/+hB65f033zBNE9u2cjgc0OB4c3fLITnukgmLh5tEGhdDbQ3XDcgZl8jsGk0z0gpOC0tyPLSNV3dHY9wdNnorRCccUuQ7H31M3XdO79/zyXd+wKvXb/jT/9f/kxf3L2hNuT3e8Pabr/nZT38PVJmj8vk3v+GL3xRevf6Am9sbaq2owrburJczztv0byuZXPPgZARavRB85P37d0zLkbqu6H7h9njksNyQpoU3H37EZ7/5Da8//Jj9i19xe3dH68oyz5zWxne/8xLaxi8//TU/+PHvEaPj3TfKXjK+V/xWOcwHUgr0Gmg1czjccP/iJZ999inWsW2bexcCabLO7Rg8vey4utFbo+YLIjspdbatsm8nphnymIoaU8mmBKfTinjPcT4yJytQSINT1TqsxWIuDE6ccQo8x3mmNLPlBh9JoXC5FHIpLEu0iUOMaBV++JOf4dLEN998zd3dHdI6f/RHf8SL12/45V//Bdp2PErzCxIiQsarRYVFrY2vDzFLmwnbgj0gEbMdO+Q5jqs4i1SNqKvrQqaaJ9DgSaN8YMzAxFF9oLeIu/spN3/nf0h4fGD75X9Cv/zKXGA06NYA5RitTt2OiH5E26+g9Ws5DN3Abb3Y52UTEitCqdWcHiKjlbMZp6Pj0CbGefCRom5Ab4Hq0G5gWNUCTmgdnChVvG0A1MoBgku0NsDHWoyf5539Dq2MPK7gw0Sr2VwujJbeUQdijhXBTwvOzzaKC1ZH7vbVJsze4XrF9YaUjEqFMPPi9gVlPdvkcBwEXPBYa6SSJo/rgrrA20vhqXSmEPBuQpy5rmI0nlSXTnAz572xv/uCpV+gyNgcNRqeUoQQBZc8lm5xw41pU+i6n/FavnUouEi5POKoJva2PFinCd8LtykSXOV4sJKfsm/EmAg+mpAWlJxXUhRmb866vSi5NGrdWaaEb4WDd/jzhcu6sBw+wu/vOeTC3eJwLxYInVA3HBbxv3Inr65M7Q03xGVlXM9jKAuDFymjqXYIuwbsh17VNmDdottdB7PLjXjv1bnnwjPzETA2jQihGx9vCgHJFwh2HTsNNOeeY1hxjt8KW35EdQmEeRkQcbsuXVeqWsSqdcEH4zJ2Oq2Ys8M7palw2a6ifCclR1ysjbjXTgijuKI4mmagPfNoWssGOx7rgAq0Zqw4ZAI5kKaXXMpwcYogEoDRfiuV2oMJ9VptY9wGgcib8C2IORiuCIPgh4BuZRcdey3arbShdcelR0QmwjSjvYJX1M/440wtFrkoFRoXgha2fKE2K1oyXlxmjuY07HTW3d4Li7dM3L38Dvv6yOXdCYdjXSu9OdvVKiYAFRuubNuKeGWKJhieczN3hBMOhwPruuGlcVwmXJrYVhu4iPOEFClrZc87kqx511hbwp6F0iwut+fNHBYpItL56H6BYgcorRXnEu9PhcdeqSVwP0WqBO6Wl7xcXjEdTvguzMHz4u4F1JU+ecQnLPzR0P0RPyLstTUqxggT5+0+8Sa/ghVbGKIE3Cg2EGfClqrtm1qv9n1UoJu7OcRgQp90ureYLpKQ3kg8kY4zrlTwgdYdWs92MHViBxoYHBlzEJkOYAcLJ/LsBnUu4HRExmWIsc6ewSrY4bvZGhC9I03GvPJ4NDqiE0LrLB5wu8V7aATttNZwksylM9Z4i1ALjoyVANhr6c5c4nXvdByXteBCZNsr563TnWMO0XoXpHIzwSQ2XLnsjcd3X+G9J+87hwj0jqOaoyUEkvhnkDhirb2MkpsYDfvhdWbqnVrNgRIeJrbdGq9zzdzf3fD0tJPPhWkyTo93Vn6WVygb5H5mjhvTbIB3HyLbOTPHG+Y5cH46oz1yPH7IejnjwxnnYN8zr5K19rba2NbV1kQvrFvjZz/9B3z1xS/5+ptPB38tmZPGTxxu71gfv7GDsporLIZoUHhvqQlQE//RUXY3DMresa8XjJkVOByOaM3cT55DgJvFW4GVh+LMkTD1jkuNw5zQ2oheONwtw7VQiLPg+2yRcG+xRVrD+4grRiEu2O9wdY3IYF11sfWO1kz46oMxKo06eK19OP3ccBuq2vPadYHBA9WRvzP+VxsO1I6SLeKnYtskXamX1d4fjxXH+ZGWUBOUW68WCVa4gv2UYYjo0PE0dTQx4cB4gGOA2RjCUcVHR2vGZi3dUhy9NIIXcjWXsb1s9+wENk5Yp8dCHIOAWgv0ivQxXMUQIeIEaUaUXZKyFSsiy9megzkoEqFuFdmb8elcHxwszzIp93czLm74kIheOR4ie7bB4poKPVlxlT94Jq8sPZIvcD95LtlYiPNs69xeskXiZbh2NNOpBG8s3XdPJw4hog4qnaaNaYJ9s88geEGroFHYLpmUnKGIXAJnrb1bxcp+xqBwilb+ECQQQ8S2AIUuymXfwEFVT/TmSlIG6ikYJ7COvUqMiXk5sJ2fqKVymGac77TR1uqA2pSQFkJVMpVlXsy0UM7sXZgS0MD7zt4qdd3x0jDPuLAEx/1kqJEYbZje5gP7XvDsxMnD5RsrV2krhwA9dGKoEE4jSm/nDadYkgYd73nCGp8tVWGv19ArYwtuAxo6aqrzMxfSeOF9uLps0Ny7PmsAvXe7BsWG69ZSb+5U0YHiKuWZpzp2d2bo6w3tG2B7y+AUGfvy1kdBTrffwVCFFr11QJCAywLxylwONGeDR4mCr8ZZLmM/651HolBroVRncV8VdjXOYe+O3JphQBoD96AQAknsHHC5VHqzM0kulRQnajZ27XGCy6aE6Hh6zLTaSZNjDjZ8dTjwSi2dmBy3i/L+5G0tq8rmHG23tSlfn9UiPFx2fCwcj8kSRap8+XhCmwlnKTSWSXm3PjHfJOY9Mh9e8eF3PuGzX/0lc7JB4WE+sggcQ7T7eU7k9Y6iDpXEhnAM36G0OoZ4O65nauv4mLhslzGISyyHRL+c8SL4IGhrzN6NItWJ43yg5p0ohdO6ot5x//LlEIPfUbpxT7UVawSeI7RmjbnDgNK7cpwnvCpF+0iQeFpWxAeCWHdCKYVty/aza+MwT6CFr7/8JaVk5ikS3MSlW/T+cHOHEIhBzPzRHelgKc/LuiFuNuOaet6fB4KiNO5vIlGE5mCvDVzgMCVrclhmiI5wuKFsK0E6Ua3x/HrPXNMbiBCuQabf4uu3FviUzhyEY7IozuGYWCYDxrpZuFkihxR4ce8JMfOJt/hhEKshfvUabm9t8phvA3VfCCHw4sWOyM4nP4nQP8KLNbmU7nDzkcPNDRonHk+N/pQJU2cqT4h3lK9/xVE3fvbBkZ/95A3bwzviRws3y0wKF+iNeozWZloTKXQ7aHEkpifC/Wz7WrGFWdWq0G2i7QZ8F1o7kNuCOs+U3lNurWFLqbT+Jf/g7yyIHIiTEqYvUYH7+zOL/4x0/oZ/8oOJNIG4xKKf8fpDzzyfOK+ZelY+nDNljry4j9zcHvjs179iWmYked5dHplTYD7ecrpsLMvM6cGahP3gFwjKzfHI49uviX7h6eEt8zSz3L3kq0//hi9/86mp4ZcnNiq0wmXduX/xhvVkEY6PvvMdvvj8V+yXizn+0i3v3n1ND8IUJ1qr7Dlzc6OUfeX1m4+prfP+/TvuXrxgL53725es68a7hwfubu9IScldMStqYd8vXLbCund6z3zv+AJyYB8xkdY6yxTwMfLy1RvAYhuHxQSf8/mJF69fkx8faDVzd3fP6emdHURs7E4MlVY2St1wqmy5ctk6Me7Eu4iEyD/6t/6Yy9MTP/3xD/njP/wjPnj9Ib/+q3/Nu1/8K9792TuePv8L4v4NsV6YdKWXC27ESEu1a8O2wyOiJCaaydgoO3G07g0o20cjlFj8w8s4RIliCR2lByGkyaZUtdvGUATrbuiE8JbH//L/gFu/wbfdwLFmOh/8i/YMQzYu17ebWIbocm2PVOkobVjju8UcfATNOLP50FrFJ08u1myqPT/Hekspo0beo00pvaIjuut7JaUJ0UYIaSy8Br4O0dpLW+8IbTRK1uFZ0RH/UZwPuDhZvEUtR3Zt1zYx1GzxrTZcXGkaicsNfTBAg3PQOloKSDUtIQScelxtLCkgYhHE1swNKM+xY6F3T22Ol8cFn5XTZedwPOB8Ic4HzqcVFUfujfPljMtnfICWG2sOJOnEWai9UpvS8RxltLr2w3C7eXyKOG1o20ZzrIm8MTlatTZUFHwrOO+ZDkpMBqJtFTsYzhEwFtXWhX3fiK6h3Zq2Zm/RtdQLKTgW19jaTs7BokX9wj2VtH1hwtlqwrQMyHK/CnQ6GgBp4L/lsci31s+xFtl7CDwL3/t1YtvqOJwYi885iEFIznheXdXi4ZgwwziU+JBMFPO2EUn7xWbLvVOlItggATzBeaSOOJb3lGzXKt6Ka0KckVGI1EpDxA++nt1nCKzrzpWPeY2ne0n0wd+rHaIfjqtahiPPykGEQsUhIdKbCTji7F7rFbqYU05kxou5V5sPaFP2918gupHGpLwzDn4DhP3c+KYerXbQd05oZgCz983UdMSrxWC6uUxqL+bsk4g2b2J9iMT5DgmRJtA1G+tlW8lNQCusO20UdWgxPAcustXKJVfWnHnzYsGrMb5imLg9RML9B9zJzFaVssLkHZOY/646ZXMwJ9sAgjPI/CiwCq5bVNCZI6l3x/lSEHFUoMtEycONI54pHVk3Y7qW1pmCOZA81zUDWunczBMaBB+VXislN2grtzFw9IEgjtsZgotM8UByQvSOIBvx0/+Qf+vlBq8WKE9M61/iNgfamILDTRCQcY/08XnYWmSb+WTCQje8gOCsAKlb26fzgmoxRxz2+9uXIxCB8Ox0tUIlc0CbUeFbJpqqUS2lWWmIU4usqHgTEgUTeZya41YdwpWzavegCSUmSGqH2DPexxGHtFnU1VlxBTt0MZF8WxWvypQ60Qt7VZxWooNSdvDWxNjUWTnAaJ1GrGSr10xp2/N7kWtl200kqzj23NmawfEtMqtDqO/stRq3SgJP55VOoRA4741LFm4OM1IrEgPzvDAlc/oFZxgIj4C33yWECR9mEwt6H3HQaq7KqrQOaRNQ2yuC8u79N8Tgnl0uIdpzxfdGl87tkvBbY9sq62bxJ9HCYV6Yp8TlspKiQfE//+yv6U2YYyIOZ2Teirl3sAZb5zxdIdfKl998xvnyFieZbS8ojS+++LXt22Inb5utmWLS8tMlc3s42AEWSGmm1UwttpanFK3gQG1QULqwLIuVRGnjZva4sqK5Q7/uH5rFOZPjOCeScyQxViXRcTgEfLaoMVrozhpXnRP6cKPKbKL/VE1Ak+Fos5S0G/pZp9dOHRgH7dWuIwYvrFsrLsMt7Zwd2GU0idtab1duG0mZ1ux+6ih7q3gX8B2Sd2irtGYMR4svG+JBGY7zIYZ7p89uf3GO7k0w9pjTXekm8DXB2MhC0U5ujX2v9l6qp/Trdzbkig0iTVwsuY29iifTecoXSm0sMRKkMc2GatAOudhztneLqnYvTN0Yt5cCl9YhitFDWrdYYQbvQTFut/MgIYyhlPJwekJ8Z5LOaTO3nUij7taQ3QVcakyh01rBeWW5T+aIzyYgzckcXl48TRTxJoYRlMkqaE3QcsZ7K2pFM3stMIY1KShTCKTkuewZ2z0Jc3KUmgHH5XIxBnZK1L0yJcchRUKLvHz5mt4j83Kk5Avn01eId8RJueQVXxTXjTEaQrQ2ZVWcYSqZJw/NhHypoFTmOVJK53ae7EyZDjQN3L5YCOtOF+H2xQes7zbyekLFcxMmfLAGcEMxdHIpxBAs0RMsouqDIPFIOi503qPVEYncHaNNDiokr+aedwWXxFjX4VquZ4Uvel23ZZQDakHVwEBG9bF/X6rxD+0xZm2vwXvaQCCJc8Pt5p6defZcsGRGbX2w+W2YNMXAlAwt4L2JdqWOkkXtAwNiP//5zhrFgs5dY7KWNoAR7bx6A7RRe0M7Y7+tTDESvZBzNiRGNf5l2avFdGtlngLU6+DNzlxmu7dETFNDT7TS2bMSgu27Su206vFReH032/C1dRN69sq+2nMsuUDtiqtC647SHK7CVitW7OPNselN5HcSOCzGFHk6FVo1jvKUQBvWzqvD8dg6kqu10UbHNMF2MddyL8JLZn5y+4K7F/d88MH38dMr4uFA++FPCdMMOJZlwmPx9ODUzBAYqqXj8Pcfoi8+ofgZIeClWdKyK9u+se0X9mat9blkTqdHLttG21fKdibnC9u2UUpjL1aIsl4euW87edvwPrDvdu3ueyPFgISE9Mzt7LmczmMYanv5bVwvd8cD/bLSm53Hc22cLjvi/RAEYZlmWm/E4KhFiHHi9uaeX/ziz8mHwPH4ihADcYe+PwJC74EmNhBfL5kQYI6B22Pi6THjxdqmbTCkII2XhwOvbxY+eXlHdBVtDwRnrczRQysnEEfwjnmKTM7WPRPK8xCiPUH9fwNF7v/767cW+P7tHx/xr15wTGZjj06ZYiOKGwd+bFPp3gId/8J4S07MwRHkHciDPQxvPBzNhtnbewTlOwcrunAicKvj6fJA7w/mQjgIf/z7nq4HO+j0RghfmGiCIvuf4Zarxdihxf6/im0QXLBFjWHVbXU2uLNuVn8dw9jUjtiTjClgq5brFzecKCebEoz2UejIwSYCyobuX+K953sfC07fmeCzBJNcRswQD3rW8fcFeWUsGuVLOMHfeWEHg1obf/Qjiz7mvrHfwVqFL0NhuzlQ9sqHH97xq+1zbn1hDcrxOPOjH/6Ax4cTB8n0euHNwVHef8qNK5S9Uk9nsiqXhwvTNHHpnb0arPqjD14ZuLcrv/vT3yF6MTdeq6znE6rKuq68PNxa7bzznJ/O3N68oLVCio7bwxFaw4nn7sU9l9N7qH5MjAwgm1vnm7fvSCEQfWBO1gTkvR0WH94+oM5zvL3jsnXSfMvrj47My0RXLPq9rtzeveL+5Wt+88vMejmxF5sshRTYc2HbTdS9FGFeV/L5kT/9f/yf+OjlwukXF/rTW17PhdCeOPdMdBXRTu5KEWH3nSiY5f16GBmOI/v0xjX3vDGzgghjlQkq3WDhzhh9dqKxr37laFUh1xWcM8cRnjgdCNG4gpI/o2/YJlSMO+RFQNpoy4Rc2uD09DFNswPUFK0pSLtj74yDHDTNKDs0pfhKCo6abUpcWsPVSmvAaA/Ce3qHlOxg0pvF3AKAtzYkr8EitL3TW6HXTO7jwNt2kyRVxuRpuILL4ERKx4ujtg12m+LZvTJgufZO2yZEGJPDilDpZcSMnNLciLfhLMYlI9KmakLQfLR4j0IKNhWUYNeKtbftIJXJO+5j5fZeUAzgqvUMzurNaZ3iGpOD2Qm39y+Y3IZrnRQjreQxLLAprANK2axdFUe5OFK0zRDVeHqtV3QwukJwSHD46C0WVxrNBbwTluQILlkhkAjrukLvLMnah103gLRznbvJczOZy1rzyuQbycEkJhiGUJ4P4doKbXBVmla0Fa6kj6FZoOV6aLLDmaixNfrYeHCNfWPtjM7bJNh5BadE75nGvwNzlRj/CGpxiLO1so02M1RxXml5I28Xc+U5c7teJ9Bg7CXv7b3rraGl452xI23Nd9R+RkaLqjGeCvQ+WpEV6SMGpEPAczbBr2NqLGoRCzeEeXGVySt7gdzMBRudJzpng6/o2HdwYtdDSIFOQCXRxY2C7Q56xmkBFdZW6bXgdEDuQ8BjQkQIwf5ONCZMrcb5G7l2crHWbmNzgp8qIc2kOD8PIFxM7KXgU6A8PVBqY14OBGfNwLuDS1W07jgqyVkbXSvd6NrqjLmJ4lEuT084rahEilzwxTHnRm7mtqBUouy8OgSkKo/ZYO2XDcRVHEqIgVyqMe1QkhdmbzH6UjrqHa079q3w0DY7BPoZkcDlXLg9Hpli4HK5RlZHXFeVOQqHtDCHSOjCWi26WAdjrslwd6RopRMYGzG4xpIOLMdbnOyE/Ij4gNSV3hxhMhdEr/r8bO+90bHDhqoQhyvPHHYWh5U+YtnODqWMoSJXrdyZuK3an1vKnXO4UW9ugtho4sVKKlTcc7RKuzkYqnZK7zjpeGdNxaYRd9tYigkFiKPz7UHQuet9aa6Mb9l/VjQizhHnGR8itVxIg9OnreLHAUxdGIJ0tWk741k4OKYiQL3+fiZcejeYiqrkYm9G7+aSV66MtE5UGxA1dey5kXugIrRSWCaH9xG60LADlqqwRGHxaqUUKVgT57TY5yzKMiccjOZvj3ORvK2s+2rMn7ybi7eZS6ep0OrRnkcVmlNz0ioclmWIp4U9V0sV5II2O7jc3Sw8PpVRwuAoeyVIQ6sd9JNz1JI5TAtl3RC1gcLt7ZFv3tp11Hrl/ngAX1kvX3M8BBMdiiP3EWf3F17c3hg+ptghLriIhIWbmxe41oi+cjmd2DdPio7krSBB1AZW4rwNGrTx/t17XtwrKSqqHmW0LfduUTM6KoVlORC8sKRRLOcaNQToO0GKDUy8YQeQNhJAGFA+hGeGHSguOpQyoO0j0j2EEHfl5znBq+NaWnNtXlVsrWK8VuOc2vkiiKMOXMH1ZyP6LGrbM8uGi6V3VO2Zgevkas5u7/3Yf9j/t9SF3X+9mMAh3hk/SgKt2TDKibOhqDRKN3GCMQB2UpnCBOO1VjH+3fW99QPuvlele+Gy79SmPJ3OLGJOyBTUElOho+LprXHZO7lDLQb634v9zn1E6oiBio57TTHooiD+2vp9ZXIqk3hzsSKsOXN/N+OdcHP7ii1XRE4kp+x1YEZ6pasV+gBEn8fBPXAqBefNARO7cpgCuSq1V+LAvyTvWHfjwjYMIdPaaCHWZq270YZkrVRiiLRs0Wlxdg3c3cxoK+RcmFLi/PiONe8s00KaFqa0UOvZhALnKEVxvRDDzOH4ktPTl9ReCdMBamXfC0Gw8op5tiZ7bUxhQmsmd2WaOlHsHILY8D70Rts3KJXcO3WOvHhxj/YVn8xJd3qqqAPXKjfuxoZiuVH2DZGVg3McPNy398jZUi+1Dd5pOtr+sl5Gos7WT5GreGYOVxuc9cE9NuyGFZrZIPeacLmiUxDo1ZJSOgwEZXDdvAi1jKZdMcwCIypvzMzOmitp9wPTUjHmrA10e7P1vfVqP2twnFvTZ7arpaDGwBWlF7NWOJTWX47BF4NN7CilQxUMazKacQWmJOSKMX+rgrfI8hz9eD4q3ieLaFcTP5236z16x1rt994b7Jgj9m5x4CLvnHJZG80JFThvxd4jbymVPQMELrUQQmFO48yvcNqUh9OOQzjczMxz57IWcPDmxYEpJXLbOG2VwwzOBba9kZJhHYhwuE3845s3/Pdf/5Tf/em/ze3v/F3im5eE4xFipC9WelJEUOefB4ZuJM+QMUBEDPWCGrKsmWGl1523X37Nvu3MXsnJU6qy10aOkRcv3tAaVBFatLSJlcwEnBi7GjFMlYKlOESpmxVq5Lyyb4+8ffsVZXtkOz+xX57Y1gv5/MTldGZdd7IEmhjuZmzIzSVdrUwzBW/7gm3neGNcxzlNfPHFp0Af7sX5OT6+zDeIeE6P34x7zLEcbpnnGx4eN94/rGhrdOzcJsD9MWFFjY7Lfubh6QveHCptn9ijjHMLVFVafAH6gpAmmqjFc+l48dCNayr5vwUC3wepEKf1uZFmcsGmGiL47lD1Y5rlSFOwA2VtlD4aooalEoSqACNKNw5lonaDKn20xg3bu7ghogzBcEwgZDxUZTCsZLxHwz8yIixXR8nfWnDUWDe+F8TPZtPu3SID8u00wYkxNRBnDhS9urPs8OrFFmT8aFBtAhLGQ77jtTxPI1op9ut041SZxqO2CMOYHJiT5OoAEASv1/iKcBgTEmLgey8VSDb1OTzyez+b6fUEb47Qd9Cfk2+A/kh7oWyxgGR2B5s2+qsje4+c150mHol3xj8i4duOemWTzKErjsjxeMtlW9lj46Mbz0E9d0flUXba5Pi7v/c73L14jaD8+tNfcjN7Xt69YF8fbIFQZd8z+25Nycs8E7zF3G5u75lT5OnxHbXBnA4ojdYjy+09y80duTbuX35C2S/Mhzt8WEajU+ByfuDTv/k37PuZfd+YojU47Vul1o73ntIqrZgzYr88wtu/IlwK0i/4XsgnEx+awOY6k7ONWB+g5uDFCgKc8duoxiUxFt81mjscRzYiRhiRinE5mmvJYnpuXM8duzfMd+Mo1SIq4gqSs4GZ1QpSRpLGrv2xSLZqLrHn65tmziF0LEUW2TAwOIiYe60PN1AMdqBRlKDNRB1gCp2YEk08rXccM6R7Wryl9p22nlnczuztdbeu1O0MLppgMpxjjANTq5nexCJi2IFaCfi04LQQk0US7AYeBRneGdMwTsR0NyZ9O9rMjdTaVTgEFYf3ntqqzb5bxaPgHFrMRt+dp7dC0E4+WxwtDDs5QGuVEjxdbXQt4ggj1uTEGY/BdaZjYC+NqTlrqB0sxhfJGxcU4wKVbgycKEpXayQLXQl4crONBcM14NTcvQZ19RajRCmt2aYeiwncBrPwh+hAK7VlcDOqsBwmluAp28peDU7PHOkoIcCSAl7t2l5iso2jWpNk3jNNO8ENN9jY3Bkf0g7fjI0hw63aOgYzF3NKXaHCgLU6j4bl2oyBY88Dc5fV67rGABg7jyI4MVe0cxaXLcXKBYJapME7h1M7UF6j705A1NN6o1FQ+rPDAq6bFmv2bbWa2OLM7WRQM2PvQB3OWx2WfGv2U+/xVKYl4mMwbsm6j2eVCTnOGRC4dof4ZI4+xjNNB5RfPCFEu19dtkNehSQFsEl2L3VE5K4br47UDUSIMuGaRRvVW+OnF8XFcZ91GT9H8CqECC50tJ9tSl9sgFYYLsA2s192hE4l2568K84vOHVoVfZaKc5xe0gEiok+BOLhaGtgqohYK7W0iu+V7itJN3qPNNfoobIVpZXGdrmgYsUQV0ZP9H5M620gATa8cNfPawiv2oUQIrRuDcwKab4lzHfcHCYevv41y7zgdIj+vRNCIDrPHBxVhTevb1nXC5e9sbVi3Lxgi8ghOpZovDmHkpYbOzRutpGrpRHUHJU+msgrQwzsWulDLEBtYHEtOrJnuh0wVEyQazRc9zAaqUdFK/p8vJbnQ39XE5Wk2n6m6xgWuSGsdeH6cBg6IaIGYvchDA6X8Q7p5mRqzQPXAaUznm+3WJJzgh83WPDuueAjuEjJldYLfT8jeQxvYwKXEFdIvaOyUnNlayDYvqc1c+iZNultgNDM+SqGL7NX4jxCJQQ7zAcXLFpbK4s4dArjMAqXKuzFpv+lmTjW1FAC93NCa+ZwY5xZ5xwxCDGAJxGDcahSmpFW2bedFDzBT/Y+1LMNL8OBfbugVHo1/q5qpVeltxkvVgwjouTayYONJ84KCowva8Md1BwvKQp1djw8ZebpyAevvjvWncz54QGvJgwsU0RCQlujdMj5jHNKbZkY7CA9DW5SXXcu69niej5QamW9vOezfWVOB6YQCSHgcMzTxDIfabmSt7cWqUSeRQo3yg28U0IUUpjxtVKkckgz95OyhLF3qBkfApOHhCcFmKZA9BCC4EPFBUeYJugR1v2afKbmNjj75nBog/lsAuAQJJxFo1y0chEZg5iA2j5mxGNlRPfEOduH4SxK5sPY7+vAGtizhq4EzCU1sg0EH5FRkKTacWmi1kzZN/s7ak6bOE/2s7BnSIo25O7jzrWfJ+OWdoiEMQyzWGpTpVSl9kIunVKUJmpDtwTiCiFMNL3j5ff/kHJ5jz7+DU0udMwl2YuSnOP+ENhrodTMl+9PvDwau41erekaRZu5MGc8U1SmULiTRK6dh2L4G8bapK3RB0fz/uXMJ29+wM9+74/45d/8BZ9/9ddc1outw95xmBc+ePUx97d3aPe8+vC7hPCKzz//z/j6m7/mePOCWnbWh51Tqaibid4xp8aeG9Nig9gQHSEo69bYdsNI0GFJjjVvBA+HabJYaHD47hCn5GyFcm3sZdFRqICaozE0LvuOAjcxUdUK8s77yk080EqnyhO9ZD76+CeUsvDu6Usulwu5mEPwNh548fITHh/f01TJlx3tju+8fsUn97fk7cz56cwlVwrKbBMaKydohdwFYuSHP/59vvjyS27nwPb1zIsPX7DtG6jgQuDF/ZGn9yeLIUfHJRvqptbCvCRCU2KMlp5wkTvn0NN7hGqppcGa64gxXa9n5Kv7XvX5LKxqcefejbMWRvEZWNKi1Tqu7bHHcsOI0vqIxdsesPTRUj74c/ZAtLOR9x4diSdLQCh5lCU4B9G4IkSBGAO1N2PzjQOTjkFPb8Zh3vaKOGFO5qovWanVhmEldOJiDl+pzs5WmGtVRJBmA/4ujGtlsInHwECBXNvzmazWzCUL0yTsuyEs3IgEx24Yo7041rXRkwcKSdoYGgul2H5UtVObG/xCcxfq1gA3hihCSNDUftabFCjZcC5elGUKTNFMALiVT17es2+G8Ki988HLG+7vPsDLA9M3O7/31cL/6B/9Tzj+8T9kuruHmtG2cS4N1QlfImmeba0Xc9w+myZM1qPL+Ayvoh9DhBXTKD74+M0Q1seh1giPgxc8XNHqqK1SciHvhZwNv7KvZ7bzymXduGwreb2wbhs1b+RWaWLJJgkRF++4v3tDeu1ZpomUku1lsOu5lkrJmX1feTw/8PbpPaVs9LxT9o3z0wPb5QT1grbCvl4Q7+ma0ep5fHjLPCXu72/NBNLg7u6e3i44gcvlkZZ3WttxMeEmG6Ael8i2FU5rJjjHV+/O3C1K7o1eNogKPdoZUiAK7HnHa2N7eLCkhq/MybBa0qtpSvy3oGRDbNBj1m3G4aPb1NoFqxAPwazxbd+HQ8Ead7k+ZFWGet8sn989Us3t0BVSdCPG6J4dUPTrYfO6Af7WOmwATrEpovMmlgTPtT0reIustK7gPa0NdVo7zQVIBxtlOUzE6204Zobo5wKEZD+7ZLzYodYxmGODbyYu0lxEXTSWTrlQ84YfzYXGORmsQrWpmjJcgVelvBsbQEbJgU0n7aK/fg/b2AdrF+w2OXApwhoQKlpsU+a8xRHVWWOXBGjawFV87+A8szRibEiamW+P1K3jWyO2zu2NMDnHFBQXGtq/wb1Q3HcXkJX+IcA7/ruvXtiBKJ7oeqEj/P73GvvHt3TXWbeJtc989s7zN/VMLSs5b1zjSjlX+prptXIzH9iLuc/SMvN4LsYacTOwU0rldHrH6eEzynrCpcj9/Su8CHc3CakeaYFLzizzZDDVltl3KC0Q4sTkHcfgef945lgbB58J0ti7QnS4bpvKKjpYRXbIGZYdBHMfxmvsYxyS+oDWuN5R/7xGMpjQ5gTVvwVRl4hqHUwKa9XEyZh28Hx955ztUITgxFm5BFcOhl0PoGYRV4OfeyejTKA9tx92NZeGlX8IdTj5soI6Z1EcbzwQ+76eaZlopdKdJ+ORuuKHq6jmyirVIr9sJpa0CkGH/TiCSzQJ+GnBlw3XrY1TMJcsYrHJo48gnTJEGOPZ2MEIEXre2fPXiLcHpQNwDvEdrQMQz4iudYxxE01krxoAsSk6xphxnM2+5YVWs4kLgxdhU00lxAmJE34wQ3CC5D6YPpXJmyPQK2iM48Cecd3RWh7tU7b+hZGSriVb9NCHIf6OzYZLuOUW6RnPNQodiT7QY6KFI6VP3H7nB7Tzyv6LfzNcj6NxruZxSLFDn/PXYhCL9OAiZav42nl1M3PwYpNllB49SB+RVnNPMCbftl8LFkka17Aqgy2JRc9hHLr6ELFt2qcq1DoGIU4gMDZvHi2Qm7GJBBsQpWCfrXdjgyaKeG+ONTrShWjwy2dnU8cZq4zhPFDbaOrzdWTAbSsvGJtbsYMf4mmlDSHGzOK1QEwOdbYRFbX4a20K3ko1bOCyj4bCPgqljTPpg8OnAzFGtsuFEOy55Lyn4QgxUTrUXJDW2FTxrTIfI5Mzu766SA0WgWitM6XEHCa8wxiLzjgxfawvPgznCyBiDqhrMzXa0eIprZj7FIui1YrFO8U4iqVBbuak8K7hUmeab+m6Mk+OqBvkMzFEShfUNVyHtmfO68o0J8IUWQ53xDZA/97j3763llovTHMguYYcZvZmU/3olSV6bg8z+7bTxA7fk1f2bJEZcWqRerW2PIuU2hAtV3hxWCgNRCLH4w29ZILzxBDoPSMhEaPg/cSHH/6Y9fTAvn3Oh29uaaVwPr21KIaz13SYGzfRGgSXxdH6TmMfbc4dqq2TXbMJsGJ7id6qPd+xZ3WjjiidG1w9+7e2uTf3Y6Pa93DB7i3022d/xw5OI4JrDqQhoKtFvZ0fhzbnRzKgUEpDRYh+suIYrjFGWyODbarMkTkOZn24W33weALBC70VSi2UcRAUScZD9EJwCVHwEqha6eoNVH35Gmm77Z10lOhcL9AxhLICpNHGriak2i85HINhAicEb8MQxlqi3VAK617pCLVYxH4OFpG9mQO9OeYUOETH5AWfIimO9lkgzAvp+BrxE2V9S356S2cjBRO4Wu2IrIZ1Uc/Nqx/j0g3zeqEeT+S8ok7o+4n99MSUHDe3juA8aT7w9u2Fbc90LwTx1NyYJotWpxiN76dCWXeiWBNh8p51Pdn+txlrTjGm2X45m/Nh7F3ffvU5AkwxjXu5czqdTKRkxzkTf+NkbrYpWrFBK5uJG9WNtUp5emjc3X3A49uL7WW8e+aG0ZXSbJAvvRnbqTcO08zNcWGOGfpGk0rtlbmZW3iaE3MQYhyMoTGI6UVsyNA69DyeHQ1tnVYMt+FGfe9Vq+nOPQvtWos9+4Otpb3Z0InWkLGPEPFDRFUbwjYbRGgzwaDlMqLVVljFOPyHYDFn76z4qLX8PJisWx5nCCs20C4E5y3aKPr8ugXbx2izsg3xdj+Ji8PJ0RBncbQleUoTOhNlyxYFdsWE+V6tKAWhFMWnldMXf4lopu0r03KDj540zYTaKFvh1nnCvtI1cj6feNg6F6cwmJod45glfxXt+4gxWlkeKNq9CSpOQQIhdl59PDHPjcw7fvHL/4Kb5ZY/+nv/mNP5TG4Xej+Tksf7ibfn93hX+Oqv/4qb4/dxsuL9kT/4O/89vv7yS75pf8H7Lx8o24UUrOFcpVJrG4iPSHSWhlBvra21ClutTJMSUiTv1U6w2lmmZOtlV0qxNbKWas2pPdCrrb3ReYILpJh4eLzYe62diU6mcH9zMM4hztBB65nbZbGyuNbGe/XE129/we0Lz7rb/oSqLG4nboW7OfEmHejuYK3Ae+VclZBmXG04H4ipoV//Gz7xAVkbt4fIfYik4w0tRqbjDPPE/tKG/Y95J/fO/eJIYmc1SsHFieYcbprY8gmNdwRtIBXHaJT2yT53tfvJBj8m3pn5ZkR0nbMUmbP1RjHXrEcIyQZubTx7nJoTNDVhTibqxRg5XaxUZc8dvKGUnOv4oERvazbuiqtoeO+MO6mdVo3xnbvinA1OrMiMgUWx+9OLUFpjntwYXCm1jmft82DIWnDTTadtoMXOAPMSYTjW+3i2Ko44m3vfR8c0CoVCCLgm9F6o3Y04McQ0ChBF8N4KmcZEma3ZcC2IULI+mzt66xRpDFQoe7X0Si7WRv/qReQwLex7sb3JiCEH12hHYdvEoqpUDkuyZ594ApB75tXdx7x88z2QycpkMvzpp7/mP35b+Gf/6k/58fv3fP/1a3784Qf87nc+Jrw/c9yPxElRt9Jdo3t7Lx3e8AjOPZutbEjizeQwjC4yShKdWmQW59Bg/x0uF9R7NEZ6GCYnJpgWdAF9Ye9/kHGCG6YHQ8MYVqHkxr5ubJcLp/3MZTtzPp9ZzxfWh294dz5zWlcu28ZWOnvrVIEWPC4uSLgn3iSObyY+CJalF5SWd8r2xHZ6x+XxK7bzI3lfuawnou8WUY4TUZTTU6H163nGCmpay1xy46t3mTgJy2zFrvPsOSbHFCrny8rDOpPiROweoeNTIoSJXhcSjpslEdhG0rUNI4W52BnX/m/z9duXbHSbUHZnwoLrbpyTjYtAKwYJFRngTh0iXBvKcKDXZmYjJzgfh8vDkdI0pnbGRZpubmg507aLiQHDUdEH98WswePCu558VGi5Uqsf3K4rUNREM822MDAy0L01nO70nBGno6HL/p7QbfJdBVci1wjOOH3awIgRsQqB7bKCrgZ+3YMtpM5bphuHuoDznpJ3tBdM5MHaXvX6YVslux8inw7xxcCjjd7G7oeCqtDVI26nPHxOL0+IBqujH44PwdF9hHBAtUBX22j2bm1erTH54ZwpO65k0GYRz9LwzibVLl4dZt0agIasJarj0KL0y+OwbkMSh1RzxhzxED1hqfz1vkGHKc6Ii8TjgfPlQghwXCZqV4LvXEon9wPf+dH3+PyLz3h6esfj6T2324a4yunxiU8+fEPeVr787FfQKrUWere2wBgn1v2CCJTq2XJDXeDFxz9gTpHJdyR43u+ZHB1HP67T0fzkRYhRmcSag5LHDvDOHHuCWRFq1RGTsjUuDQC56VMjGo4d1K6ihEgfh7g8TuWYUD7eR7CYnlnWrzGqIe6ZBYRr824f4HZVi9DFMaVz0oeYITYprvb9htPefo4o0Y3oKgY7lu7ZW7B6CC/IrnQf8c4TVci923XmA5PbERolG3tDvHG0esnmvnFKaIyWRXvA9dahF7snh8Df1Fyylgprg5U2ANbVIi5t2PalmVjvfASNYxrphsjYB9BXCMGmbbV02/w4wXu7nnWIi+oywUV2Z25C5y2eJDLu5XK2OG03F51zbpS8CGa3E7wWdIp2LbSOnz0h2SbOB48Xe0gLgtZqzWPjNbseEO9pPhqTIRzQfaf7G/Sj36f7I5ru4O4VdW+EZTGWzrrj5l/RmsHeYXBHurKumZ1C8I4peqZRjBG08Z0XL7gJMPkBE+/GvCjOI8EjBXIuz9HTAAaAHQ2bXWwt1TGgqfAMC3cYrNnShPLsUr2Czp+LM7oMqDnEaShUyLPId50uy1WgGvcZGKw553VsPiJdHPPxhrLv5HW1AwojBqhjIy46hDGLM14jWBDMgbFErk7QtShZIk0t1t1bQFRIHtIEnUbXStlkMKRGLFbUXKA920CgQO0e6QaZduJIwY9It8WMxFmT26QeH4zD6eWAJM98nHHSqftqkfbextpka63dx6OZ2TvKfrEpvZp72GLdHsEKP1qz16U4Tmsmq7fIZFG6GNTdtBdBGlQf8LERdCXIjqeaKIlFDj3Q60rPJ7QlpuVAmhYqypqhDah+PBx58917bl8r7uX3WL/6K/L5c05PD8ZjuRiDJ3jPad2JwdbgMADliDWhdzV3mwsQMLE2TZ1AR33g/buvubt9hbREyRu3hyOewr492WfbHU+Xyv3B08VRuhV1bJf3OFEOc6CJuRAKNsnP2kmqbCc7XOk4+Gq1NV2G66Bro+QMZhQ2hqjy7Xo0DhVjWmPillz5etYCd41pMq7dXvvzui8hEEesBUazrZ26BiTc3EI2mOxoNXdax5oZxYvtCZynZlsvQjBRvTsTHUMKqNrwy/n0HGXqxRursFU7hLNTqq2vlA4h0DrmuGpjgCo2eq3ZhgxOHPs22p9pY3BiG++SKy54WqvGImzd4pLekdKR1jLadkoplNqowy1y2avx76JjmRwTnde30RxqCD66sc5Cb/XZCVuxNSGyky/vkXxi0pXYwOPspEFHmwMxRmbLKz4dEJ9w0y0pHIgpcHpX8f6EYvD7FCOvXr6m7EovbVyvts61pkgWmvTntMb9zUQucEieXjsuGpQ+XzLBW8RUgjBFQ5eUfWfbNtJ0x75lEGFZbnn15iM+/eWfM6WAc4mSM9oqp6eKtYMHpmgC/zQlw6xUpeQd8Y7DEnmK0dxeztbgKURyrlY4YqO48axwHA4Lddsoomxlw7diA2yxpMkkSgrOYrWDHUpvlNLsINcaWjY0TThv+AWLH6tFEl3Eq9JbBjJdhXwx91GaPTRjaTrnbX3HxNU62p1bM/GiDYdJG8Kjc2EI0jKEdtsbiTOUQWsNgnse5tqAxMQ/KwnsoIUu5tHzTkDD+KzcM6pHxnNPxFACSiXNEyrCdjmz18aeO60bPqQ1zxQXDslbMYpzVrKWItM8Y43bHvwNb987ji9fWRGRCFIzIWZmZ0PC1gSSG69VicERvB2o03Ape2f7Q4tB2v78s1U5vFRrKd+V413g9pUjzYFalNNl5f7GsxwCaTry44++T5jg6y9/wdPje5xPfP3u5zgpPD6tnN5vCI0U4S///F/y9P5r8vrAcoi01cbbvRbaLvh54ngfkdzYUjH3mevUUkhO2HfHNC9mpBjYAD9EgStfK/iA2xsuOYvn4qkCWTuv7l8ij2e27UIploqZvcNPiZAcNe94NfeolpXJW4rlRXC8vF2IMXB7PBDjzLLMxDgxLzek6chxuuEQJ2Kc8C7ivDk/CSaQeO8JPpgj1A3BF0fwkRBmfJyRkCBGE1JiYC+Vb96feNGqtddrxZzfY8AhtvcXEaoWm0hiopH2AoMRSl1xbRuu+oY244caBHiUrwx8gtLRslthVyt0NfFey05tO9eEXO/j+2EuVpwZcCJCG2f94G3NsHPhbs9s6eakc9dzydjZDWzDXht1xMXbdaBvF+hwIJqeYCYeJasNjMMYQF/3iOvF2mpjMAd624UysC8h2DPbGO3K648W0mRJJ3HK3d2Beb5l8kf+5hef8fT0QGmNhpmOXDTXuIrgAlbU4sBPYly8bFFRp55tMACbWlVKV3Nfi1qCqgq8fazURYleKdWxFztvpeRxQViScpjhfp7JqmzZsW6N08U6BXK+UPYnSnvL1+/e8We/fo/cveHmBy954MJ/+e4v+b/+xX9GTpH/6f0b/lfH3+frL7/i0y9+zvq00rMVXXUB9WL7BC+4cNVKHASPC57kLXWSwswSZpY4sUwTc0pMPhAkEMSiuC4kXDDDkYRgxZTByv80QfeCBlt3W4ijKMdDTEiMMEUrXIoBnRZ4dQcfz2iwIkUNji7NUqGtUapScmYtK+t64Xw+cTqfeDpdeDif+PrtO3755Rc8tZ0+TUzTQrj9Ea9eB5xWtstb3v3mL3n//jOWw8Yc5Vlw9aXz5v4F532l1UbeHpknRy6V3A0/sXgrx3A+8LRVNEQOy8JxXqBc8LETQuHtk0C8t72CeHuWaLt6Jq3sZeALfpuv31rga8DelK2Zwya6RgqQgjVUibu+ZANORo9N2oInjgYwLxYxiz5aC4obXKrant2AVR15s6lmyWMS6M3Zl6KJWN4PJkZXpNuED7UYVO91HDRl2JPtovLBJhOqOizEivYVCeZ8amoMKTcWVBfsEFr71aYro8kO6MVYPVLo1ZOCwdpVPd0lEylQkGQ27RZAA6U0xABoBAdFrG5Zuvmhe7e4XPDu2VZtPJBx1nXXCIDJbKoWa9i3RnId5wL0q8exDUeStwUeobdGV7AUsvGrWs8GhXRtRJULe9khqG1i2nAOYlB759xwGI6pvO3tsap1m3D2nG0qgFgTUK4cpoVLEeq68fr1hzy8f0eIA/DeOhOOPA4GIU18/vmnXC4nLppJ0XO+PPDhJ58g4sgayDJx/8EPOcyJr7/4JevTe1rdabWwZcitkksHIj/46T/gJz/7+3z6Z39C21e22hHX8E6YgyMEYXGOKZqoF43LTxgChjWfjgfYuBYcQ4zlW+HPYM3Cla7ox6FFVL9lYujVx6djw2kPvKsw2J9N5nBlsVzfX2AswqYvoH3EJ0fzruoAtfMsBtqB0jw8bgiGV2FFRKgj2hcY9xVWILLWhqsWH6ldOa2FZUqEto2Doj2MmyqtAC6Bl+eptveeXjNSM9IdlII1RNp76cQaJZ2YI7j3IQYORlOnmeCsV7F+OFVappV9/AaMySAGSXcmRNI8wQm52qYhpYC2TGkWfXDNUci0IY46Gi0XxAVzMWF8M+ccQXQAmP0Q1q0QICSb6lMr5x4JdHzeAEWKFaGEGMFFNCVzF7ZqYuo8HAguEeYjbX2i1EqPt5zaHcjCcb7lmz/7Uy7f/IYX3/sBhZnw8pU5ibRZa/e8cLoU9tasRMIFW0/GQGLNlUMIbFWZnOMwRZIzV871Gum9P8OQBSGFiJPrkGOI+IODZWtUpw9+V1cMOyAWR/Ve6KP8QZwbMHhzHeGs1VnscmWcRez67802SdKfGXnQccE2zinYz7MIiaI09qd3xtBSaBjn0otFI93gA+qYBNvvCVqrTUOdN7MiDcXTfaK6SMOzaMFLJiAswR7iRQXxBvQ3NqqxoBw2wVX6EHAKDohzMIfdcH5Y9A1731XMdeKFoOlZGFJttPVELmWs18ZhMwCSohScMwEDxKbQHpqaQ8k5w1b4YDETF8BFj3RPK3CcHFEa2wpdAs2FIcyYSzx646I6Z4K8F0eIM2HbUCAXc5h0tYjI5AqHo2c+HMB75uVoOIC247Ww5bM1qus7NDgOH/+Ew8vM6asvmHLCueEOHRPcGI0BVFC8CtEFayIUP0a9Y3ehHe8rKXgeTycOyy3eN45LoJYzd7cL0hw+RhSo2PR9yV9w9E+cbz0PT8VcTSJMcaZsOxIG+zJ6Qug26PKJ5jzBL8TZdkE9X4w51LPFikb+p6qVXlSpIGqfi3PmbG22hgQP0YdhaivPpRZXJ/YVJ6Jqz0DVIYyoNQXaNWtTZxfMtWxOpECcZ7qmgSsYpThjHxSDfW4447dpH1P61qDv9Fyo4xkj4xkDllQQbwPWFB2tWRN2Kw3YAbvHrbHTuJnGeprt2qVT7ceCQK52f2gDarHWSyOM2fNk/K6indpNBArRI86R1Fkz6/MhsQ63u7P1SpWai8Wi5LrmjGRJLXhWtH6Nb9Ui4tGGawzXe2dwqVpFNXPKfwVf/Vc4uTai2gGvbBtaM3QTQUp5orVKmhLzPHAO3eJu21aZUyDGwJwSUiv7VnFu4va44GQixIToBenKtprL6bquOO0k55jv7ql+4Wk9k7cnYup88/VviNFzvmy8fHmHSEZcpu4W3TbRGeI82UBIO3Oa0A5LnJDW+fiT77GfTpTLO6pmlE4QISZHcIFSG3EKiLMCp7Qc6b1agVJvhiEQi1XqpdBbZB9OrRYCs7dP13shExCXQKyNMvqIbVcrSES7x8lww4o3J0+w54D0PnjAw8HabG8gWGxQhmsdnBnuoxvriSE2uIrynbFPtz1I64PL5+wMoGJ8YMShTWhdzenm7JDuhwBoMXk/nD02QLJr1/iWIdk+qJYCEoghEEJiSoYn2oqhVZY5cndYCMAyLya+xUSc7X1steMT3C8eXZ/ol0d6WW2YPTuSwBQVN0fatIwbw96f1pvdp2pN6OtAEMlw5Pduz6zbV1CzcOsC851FEC+nxu3hFZ988j3mdMNf//xf8r3vCj4mPv/lZwRtBHdAVFjPhpUAOO2n0SivXM5/zs0SsLKniqoVE3YtwzkpxslaFqZmKIxtVW6WGVrn0jpbbcwpsdwc4XJG28ZpK3iBpnYWmr1nSp4e7Dk5pwiqPF4eEYTb44x0R64bUwgcUsS1SnSJ6ALeOQ5OOCxHPnn1Ad95831ev/4Od/dvOCwvCOlITDNummE6IGEGiWZ2CCBDtEDMgNLVhnD8rf2N/RN9jorqEJHlb7HualNuX2aqwsi72fOu6/g8DW1SeqdVG9K1UimtGEqjFFot1H5h387kvFP3TM677S1bHQiM8ZwRE6WdOJw3FIL3lkyaRAli7fIpCK6tSH6in7/Gbd/QL19YM7Q2UjL3e1eDPmiz00bOlQ1Lajnvnt+H4K1AAyA6GyRrU6oa4680Zbfbk9zHcNMJ0jvRwxTsHura8M5RpFObaQdlDHpBKK2OpAccjzMxRn704x/z1de/Yts7N8cD5/OFh8czzgt7Xnnzvdf8nbu/x28+/Ywvv/wr6q6UVpnnId6j1NaI3srW9ot9RpMPROdYEvTdxEONZkBKYjw/i09DacpWLKbvuw4zjnLeC7EpN1PkODnul2CJNhrUTqmmTZxObzlv73m7zbxdK4cPPyYe7zg9rLw9nch75c2rD/iD9cS/0yd+/n/597nozvfTa27mBZZAjYnmhMY4v43ndEEpWil7IW+dvTdOTVnpXHqjqLHmpdnzVsbeM2CCj08JN09MceJVXHgT7/h4uuPDeWJuwzHsHd3ZYESvJheLCJl+4525VsWjwQrrJEaYJ/wy41JinmY0zoYHiRPEhM6v4YOPkO8GWnS0Xnj76a/49Df/Fb/6+ms+XS988/TAqVRODS7q+e4P/jukj/+GLz/7a7pmPLaevLx5hZMI5cy6nhDXeXU7j4TUaL5eG3XPVCxBUMtOrBvlaUV0p21Klc5T+Q4aNrq/UJw1nDe1yLnHkButH/htv35rge+0d9yuTN4YXXN0TMHigI5qB2nv7FAW/Kg7b8axyBdEYe/mQrMo4ZW9ZJwmY3vKgOR2g8lP1m7mh0lPNMPI5TvvxzRvMJackGs0kWQAPL1rOKc4EtIKXSs6ojJdHaUKDYsgdrzZhht2s6JENzhL4jCCiYLz+JiemTJ9NH2CHba0Fdt0SKe1DBLAJbyRtGiYCFi14+KMtg3aZhv4q1NDZHA9OrU0tBug1yzWw/GldqjoDsLy0hwqwbhVTow3UXKhO0dpwYCf4sfGppJboalFWFwpVGlILTht1orXryKeM9EFbINw9S+OhwRcG49sUqPOWWNqmugj+rEclOO7na8e3rGkznp+bwwh5zhvZ358Ub7jA//6LlBKZj8/URVSCrTaiXEyxxyefV/J28N4SN6Ri+OHv/P3+NXP/4LT+8+pasDZWj0dx93tDXm78Cf/6T/jo+PMx/cRrxs3yXOXOvdJmbwyOSUOkcGPUZN3xrixjJP9vibujY98CHAjoWibxBHxcKLPArMTZ9d9G38O+3bh+tjT/vz59yFmAcYKwwQMp4MNI1f3k4kwDmthvMJSO8NVp0LwYjElMQfdMzdKx0YDE2J6j/bdnCB4ptEIl8ahW0SY/OA59Y42RXS8B9JJyX6Gd4posYljWxlmPWoVE++4HqZsk6PVmkl1POQssjpEnTlwbVlU00YtZoA8vz/2Nog9KEarYEDRCiEkkuYxEYy4mAih2mc43kvvEy6YE/ka3fTdIXiCRvx8sD8XI8Z2c2zrZsDpXNj3yprrEEWVePuCu5cfsb3/GnomTNFEq16p64XSiwlDzYYfroPThdpXgodSTsTP/4SHxzPTD3/Isr6FsBPOn7FuHdm+pu8msEbvmKZE6dZq5rz9Dq11mne4yRyDe1M+fzjz6IX28sjrQyC6a5Md+CDEyYpUpFecM2Giq4AkpF9FZ8VLJMZkXFWxCLwbzFE33Kz0Z58oDePYidr1L90EcXGDPWm2v2f+iZM+oujjfrmK2Veeijfpu3e16Z8zJl7XYo4H7c+RSMZ1w9hA270BjFKBNmL1QSFpM6nPCYdoDrtIJnro4ojiiDFZTMEn9l5oebM4fwfxcTg7PLhkItQ4cKizZ0YYZSJ+xCBoHdc9zldjw3TjRNmvMabWRpIEH/HBClvcaOj10aGjyEMAH82J1XXHiw23vPcgEX9wRB+RGABzDWgLdCdoLuSyo71RUciRh8eVY8zUPuFSpI/YgUhDuyeiqBb08iXr5Uu8d7SB4nB+PJeaWkOj/IKcPZmJ3JxFap0jOViiZ0metWS7Hgc3isEOmgLcLt7Wx9woe6MT2fvO65uJo0+kyaPn91wu71jmiDS4nc0RYYgQpZWV9+8ueCqX6tiKGmuKK/ctUUtlR9gma1SbJIzobQBXKZcnWllBy9+K55rgfY0O6mC2Is4SAs4GJr134rXp1joLh5BkUTNREzBdcLgYCC6ZoMFw7qOoNDsMDcewUq0opkHrjrzuBGcHCeethMK5+O0aqaOtd8SWcH0844Fm7ozgzbna0W/d6n0MpVqzfUPvrJduzZJpAnGEw5FyztANPZKbcggBqCANiTNpfkFvG57VXBnaCD4RpyPSu/G/ujH+WlEcxotEK148Ic7GOqyF1jtXn2+vnebciP+CG3Gv4L2lQpoVSTnnCAzHsniu/Dfx0Ya3OVNrN3eMKpTdXr8POGm4Wui52MDMmVM1CMQpknOmlsqymAD/8JhBA1Oa8c7wEOTMcUp0VS55Y39aTVwSNRh5mGhdCT7avnqIRvMSEAen05kQI/f3r8213VbO5ydubu8oZeXp6cyad24nxyTKpRYOh3tuppmHt18RDiBaCWHhw49/hBPhyy9+xc2UrrYunHeUvZirIzpzLrcCVSm6cTh4tj3jeyW4a3GYDYJKtzha1sZSPX6Swd/2qARefPAJtRUclZYvMAqOtDjoDu8CceqkeIRaUa+DzVVNUBtsVG02UO1j7+2dCXe1277HB0/v1jLunQ1YGp3S8nBo2jOIbsxhEUfrEbygpQ1RxtheTuw802qF4GmDdSn+6vT0NAU/WK10E8l7tSGYekPmaHc48bimTCJM0Q0zQabvu+FJ1IQO7Y7LuM5N8KjjeahWgiIK0YaarVp5Sy4yho+GT+ldRpGFFQSoCDgrW6tlFHj0TsZzemwsN4F1y+zvksHqqSzThdIa3//OD/ny/W+4rE88Pn3Dn/6r/5DkI3upRD+ctFGIkizOH01A9QoqnSUl+94N7pZpuJSEbbd1b1oSl5N/ZoCW7GhZbDgVOrmdeXq40HMjuGh/bggsXo1NXbuxBj3KtlVzEfWCd8p0iNRLwQVLj2174fXNgZswc2yOu3Tk7v5H/Pj7v8/NvODnmUCiXBLn3EgpU2cIVfEFvLdYqSU5sP2kuRTwrY9Y6BCb5foHxNxSDsugenu+qzOMSdeGV+VGrgkdxeDy49zrowkeLqDXFIJEKwfz1/0vlvwae5s2zCzarNG4lELO+fl/931j21a2bWUdXLTLaePdeeVyOnO5rDydnng6XTjtG8F75hi5P3zCD2/u+FH8Fb6+xamlhEQLvddRRqSUWhmJf1qutn8YQweU55SHOIejk4brdAJkFG8ktd1hLp2iJozlZrgYJw7XYXfYeWT859ntGR33L+6Zppl5vuO7n/yIv/f3/wGPT+/48z//F/zgBx/ynQ9/xp/+y39KY+N7n/wBXz58ynws/P3f/yFP3/2Ah4cLj+dfcjo/cl4rNzcBmuPxVOji7BzRHWtpaFBup4AjcDqbq3gvFRcC0+Qp2dbI0hpPa+MwC1I6h8mDZmgOiZ69dr457Wx75m6x58eLm8CleLa9Eg8TD5eZr06N2zcvCRL49V/+ksv7TK9nbm7u+Om08r9eA+Ff/Gvubj/gbXrBf7A98JeXE09r5yJCA4Kq4ZmGYUdVCQqTOmOqOmESxyKeRQJH8dwKHEWYxXEQT3SeJB6nQspKaoB2clv5Sh/5z9uZdPeS/9mbj7lV40d3EVSC3R9iZ9CrKeCZ3W4XNKi5YNX9LWKg6+hIbXbkGbGm0UEMuBRxKfGhC3wcJ/7R7ce0V5HVe05U3vbMV3uh3N7zB//kf8k//xf/jJ//+f+dr775FfSdXFZ2tWTJsgTeP2W2vOFCp222vwvOhtPahNO58O5SOOc4TAEWXQ7aOJfE7DOn8yNOmn3WvSLmNae3wh5v//8obv/1vn5rge/NAeZqTU/xuqHqxvKRETuprdqhXYUuZ65OJDEUjN2UYiJWE493FueIYUTbB5vFardHE6fYPwsqON+HO8N4edorGSv4KBL4ujnuXCZKwyPUYoKJk2wHx3G4REAJVBzFCfPVZaWNo4Pg7DBjG3TMmSEyplEZRxhThYo0UGyTqOJQPCRTey0+4MwJoA60DI6SCTA2q8XeA39l7VkLlg52lAsTykIIbtj4bLLofSCpUl0YMRqbBgRnThrtSjhE4zWpORHXZiOkzpik+gQh0Vqm1c7klDk6DmkmBfdtfLh3nATQEXvww02Fs4bVXm3zNcQj5wJl242x0uGpKNs506qQlltiTLx990DZKzc3iU+ccNGN7u4Q75mWI5RKSg70gGCV05fHd5QGf/CH/4SyV778/Jfc3cx88aufo/kdPgbu0w2lnSkJbu9e84d/9I95/+4959MDx/JASJ0EvDzCIULE3GTRX5+9QywTUKwkxg+B4/rPr4wvsGnb89f4d4yHl/2vTbQcjPfMFqSuUOrYI4iJGU4GowRr/7PUqgMsq2+J82vbtP10c0hVO6i5b1+nPv/M8b10xBuaTbXjcOFNzvgsMYxiANe+PWQXq+voeKLIaPG1Q+lzRAzFeXOLareplUXvzdGKU4KolWF8a2S8KvbD2WRTRWOaFdugNxninppgHM0NIFfRQxlxKEGbOXRV7d4IUyL4YOI6EKbJWijVOEdBlKobuXuqLHR2QrX4l/M2fc2lElOi7yvad2qrdh90yHuhdSWmSOzKlg2OHKi009eEfrZ4wfUD1oq6wHR7S5gOlMsJWkbSDXE5IHWmEgnhwOICvXTKuuIPt0zxgKYDr968Jrz8PtMvHy3G2hp5Oxuce3IEbBOkqtRSuPTG7exJIry8PXLwyu1hJvpKiibQNh9RL/gm1vTrx4OWwV8SY0O60YoWnE1tjX1nq7uoOXA6trm9RodtMGKDHlwwR5QzRpJqw6dIraMNa0x+lWu0TvEhPPNPri5ZyihkYoiJNCrWFEof7cy4MZgYjW9jUNGvqrq04ay7ck4rQSp3osPBFJmDI4Zo7mnvkT7EdCfUvhPSEZfeAOaYkzChEul4JMwIDWqGfUfb4G50kN4QH56dtdqEqjviTWjyXpDZrsEuzsqonAz+2XDfhohToaldjwz+YBFrIK6tQYCGOSbVp4FziDix1xuiY9IndP+cvZzRbBEf6ZGST7gQeL9PzLEibcd5+7vJd5oUnHhq88bSaZ1KIfg61kxzNl7vxQ6sW6U7Bbcwf/g9wn7mo1e3vLp7w+XySC0nSt/JuQ9urqM0ZYp+iFm2lt2OSXquEFrmO6+O7D3T8gOHuwV65SYKWps5BcbBU5qQe6VVzxIjzCazOe9pW+HFzUzUwuSaHSb2Tg1qztSY0Vho645zbcQE7broXcjZ3JaMIYoMh7tzEN2VB2kHUmmQB38X/hZHVUe6QR09d5orJsQ5c2+bcNaR8QzurtlwTuQZeWDrXx94kpkWzFkZaN/GmTDWGJXnxlpjUV5bb22yzhCIW2ugYvc8QqsJXMNHRuohktKC9ATRDlVUJc7BBAzvoTcONwuH4wv2yzu0tuHoMEyL+Ii5ShxopHdwwYpSwojm9qBI82jpo+2wD0TFOEpLe271jjIKaPy1JCug6VtsjEXdbCgnIVFVybmwb4VeqrGKhcH56tR+Ngelyhio2b2qIxrfaxguxE5phkiIwRrnW62EZFB5L8bYnePEtj+ZiDXu7Sl5EwhTsrZsL7RahrOz43rhEIU0TYQgnC4XWt6pzYYFIcx8+PEdf/OLvyK5yM0SyOcHet05t4JIJyDMzp679y9fWuz5V39JjJX5kCgZtBckBHKvXNbV2G3CKM1T5PxApYzYuuLitQG7gI88rCuHkAjdcaqVFy9viCmgrbC++9wGZ15wDcQthGlB4kxrntvXr/ApmGjRoflw9T3ZnlptANnHmiguIOoRCfQroF084m3Ibw3vOhxKQv7qU8Jxtu9RmrmM33/Otq3c/vD3IB7Z3n9DK2dqLrZgK3bOaeU5aQDdcAwITsENh1IQtYICCTbkGvgdbQVqJpcz3mUEw8B4l6llY9sr2oXzNWlR7Dwl46ArWEmfFX1YYV3Lu501VEe8sVnJXxA0Bvx1PyUOJ8FMENKhYQ4ZsfNbWD15D+ZqrIFty/ioHI+RXCq/+Jt/w8P7L/HBsWbHp+tXRJnZ14oPjn1vtNrYgyOK8vIuktL4562yXoS7o3Dw5rDKZaeLcXXjwdaKh6e31pybO16tqOVx79wuUNpOIZC3UfDgO8twg7XWmJMj4Uhe2GuH6Fm8YQn22LlcdnOst2bIFm9nyX3vJCm8fUr8xadf8Vg+Z4p/Yomi1gkuWJLIOaaYSFMi+YnjzcLrl6/4ycff5e9/9B1++voVXDLhYumnNW/UXkYyQK8HAkM5+eGyFyxp4KJdsy4Y/4wR5fVuiJvmXMbJwIwEjDVpzj+vNihW59HJo9FYQsZGC/Q4jRiwM0HROTQutLjQD0M5tA33EMsZ17u5crsqDeX905l/79/73/LFwzvaKEP9Ny7wsw9/xD/5wUfc5l9A3ak905sx8q7NuzK+eatWIiYOdtWB1TIXsAl8lp4DnhnCIkLytpc4RM9eYC3WDN96Zy/mUM+T3SXN+itAlfsXR0QaT5cnct74+utv+OCDD/mTf/4fs25nfvzTv8sf/YN/zH46kdI96fCKjz/8GX/4h/8Ov/ir/5Qf/+Sn7Hnlgw+/y+Vx5U/+1T/ln//JfzSKG4XazQXrnRulaVYkdSmdoJZKKtpQN0w/XcF1og/PMf01G/qptsar+2BikQpbMSdiJxBi42bx9CLcH2YOd55ffNX54qFw//oFrQu//OwbtnNmiXBz913+eLnjf7MVpr/8FeFnP+DfvzzyH93ecP8P/zEvPv6IY4zcBTfWs3GCbWY37aq02ujViiy2YgOIVjK1NTNi1W5M01yp20pdL/R1p28rbs2E0phK56Z0/m53/C+ml/z1u0f+963xP3/9mlAbzTm67PbTjRPF7hNfaeOJZgMdPBFhFs8snkkMFRYxx7gTIQzXqBN39VjxjFEbDD7UgXfGGZ9mbueZD5fE7x0TMFP/7M/5H//kH/H1D36ff/p/+9/x81/9CU0LOVccgfViPOFLqWixNf+876QUOATH3pU0OS7hhvzBP8RHQTST2pnaN7ZL5T4EQlig7/h+ZXwCalzDqynit/n6rQU+vZZaqJLblccGZGEFm9TSLLp4ZZN525B7b3Gl4AIugM4f8N1/+O/y9Dd/yvbZn9G0WGtObSOqNx5Oaq4gHxxg4G0dLLo+5iTX5GJ3QzXfCrsOKzCW845ptIJhC23to20Rj1fhJhixcy+jNRX7r7ZiD3NncG+PWZwdlVYEujEQes9UTXQNJpztHScGgc5NSBRKd4QIWqHFQHKgLiJyC70QJ2vtiiHZ+82IgoZoQFq6Hdm8J41/jzqcn+jNgPHa7OLRq2pUVmoXlptAbErMnb0oF/WoS1SNLKFCfkIEXt0kjslYTjFFas0WbfaBWkY7Um/0UvHH16if8PVMfXpL1H3wYyZyLvRsrDvXweeNFISP3rzk4XGjbJV5XpgmuD3M/PPLRgsTE454vCOXwnE5cri94eHhiTdv3vDw9jfMc4Tg2M4nHk8rH33vJ6Q04bzny795y2Ey/otzxgT78U/+LqXP/ORnf8iUAp/9yf+RuSdcLSRnYNpmMwCzxo9DqTnIbSOWntkEtrkzqzzfCnzXuMZoEVK5to3Kc9xbvEVuZIgVrTU7iImM+O4QvjxDNBNCGBHhcZFf7f90Y/qMl4iW+sw/swissZauYpq9JrFIVh8sIidmvRd5Ligw1mM3J5xJFFwTgjZUVETMMSvOHLLXaAvjtUAdDsfhkHMmdNbucENA9GIux95tE3GNzIs3/hlirKkQ/lZbiTAi9HagvUaWbaDuUAnWouUDXYRCZG8eCQEXAi4mYz2ocfact7VFgeX+JeeHL3G90q3LnuAjc6vMyx37bGxKJ45eCrqt9LZSy440i5EtS7TiEyq92IG/I0jrbMWck603E+1m8CEa3ykcuRBpdz8mpFvCfEM4vuSjP3jJ9OI1y+0r4uGOuBwJ8wFC4j/4k/83d0lYvE3kJRo/1ONYs+JDooyW3ugENy0UPKe8k7955Lv3kTs1952fEj4MPqRdhtRuTeIdIagfjiGDinff6cVYbILFk1Lo37LBnKf3wYq7ChTNxJB9L+BsYuXEhibJeZZkTjTVNgTGgA/e1qBg98zfHhz0Zi7D54ivGanMKWgdYcMBNh4OYtG66OL486PRF3MqG+9GrKlVOxLMNVGbjhIOG3IE56EGnupLvvhm4bR7yo4NtfoFuonH8+EGJw6tFnt0MhnfMZmYkZaFeVlIhwNEj3MWi+utGutlMMe2Xtlb5bTvw+E+uKfNhj9UP5yoNrGv6ihuOK1aYW+FvVTW8sBeOnmrnErmdDnjXeD13cwf/yDwO/cbs2ToipdG6YUvHoX/4nPhH34ceRUKYTJ3lxOP89Ye6uRC1eH6U4t6ODH0BVfwvUArsG2NTQtpSizZI26m98hyvOPp9I4QoDd7tuTSOC6J6G0B68OxY5+pI6bOkiIheWreOERHPHjujxOXrHiXCWnEjYMQtROTUBQ0RWhKCoF1Ny6c8+B7Yxrw/dIrTjpJbJAlLtlEwgm9G1O2X13MIoQUnx0FdEwIGQPIGNwQne0625sJZb0KSBiHnoDgbDDnBltPbII9xwgYzBzsgNjV4smIxXRDCOaWcYz4tqfEj3n5/T+E3un5gbad6XXDOSUKtBysJbRsyHbBjcSAaB+DJm/lBiNPn1xEfEKcx4UZicaXqjLQLZeNqVbQSqj52f3XufJLJ3KrME1I0rFmizXn+YiKp/sJJaJqLeTW9mhOl7VkukysDw/cvui85Eum+jnajffqtOM84/kmw11vz9reoYsJUmAIgabWrK6lWDt7ayaq2dJh7hqxw6Y5o2xdTWFCKbZH3MyVlXeLHsXJEzEMQs72Wdtwx5zpLvjhWAnmrvSeXButWjEMElHtY9+1oa3w/2Htv2I2TdM8T+h3u8e87vNhMiIzI9JVZlWWd22ne2Z6qmeAEWgYBpZFQhoBmhMOAAkJiZMFrUArzAEnCLHACNagYdnZ8Ts9pmvaVFd1l+upSm8iM8NHfPY1j7kdB9f9fpkt7Uq7Kt5SKDIqIr743ve5zXX9r7+ZVhWN1ZiYWMwdGINPHZOZ5uxCak/GNdlHnJnQWkW37jmc1VRa4zdrXOU4WNS0WupD12r6iyWvfPGbPL7zDk6vmFYNQzH+7odwCVA5A7Mq4dxYQkgkQMMa8a8bI5hefCVVyIx9RjvxcXZ1jRoyVTNhCJGqnmLtAe3+DZrdZ3H7z2B3DzBuJsndW0aTUiRtUFm8LLc9WjZqW/F/qpbIujCe0+XAj0tGeJE5llpYvzxAkSmKDDxC9qQk4KTvO5Q7pR864jCwXm44X61YbdaEcSyAeOQyiAoBgZUxl/60GY2yLaaeYupavA9rQ11bKpfRYYXe3KV7+Cbar8VaxFA8CQ1ojWvr4iEZQW8TKUdSCgxJ7Iq0FblfSmIXkoJI35SS9V9pJbI5teUEZPGpLsNbu60TNeQgg7GqVridmlySenMIeB958PghWmv2dvY5PTuh92uCzyifUarGyYSWpDIXy8RikWkqsX9wJeUt58hir6LbRJYhE6PHYDA6MfpM5QzTiRNPtzGidSxDS0Xfa7ogz72xijxGTG3wQXzNlFXEwQtrBsU4eowKVFpS2IMXn89aW8Lgme0sUDg+fBR44/GKmA31fJcrt56lD4FZ2zDfWVBPFmQqhm7Ax0iuKvJil9XOLm+g+N03f85vBsUvJ8XTJ/d4eO8eVZZz1BWwLiO1blall0BhkxKChzR5GCUhPzrlMkgU9RdFPYYGJag/yWlUXVPXU6q9Q64tDpnFsj+sJsuMiK3nMNqQtCUZI4FHZmsobslGznRMBUYCKrPJxZvIyF3pNAvv+Z99/XVOVkvONh1PVz2nm47zzuJm3+TFm3+B89M3WT16m83qPsO4QilPjkGsprRCUbzoVCEB5XxZu5lCEgixWPNk2cYSBqOKN34QckmCRguj3zq5E7dhhyrLmaSVYr3eUDUGZxy+F2ugew/eYb1aM5kt+Pbeb3D/7l0u1o+4ev11Pvrox/zOnX+fm89c5+riNj/98R/x8Mk7NPMpV/Zucv3gOkdHLePgGdaabhipnKXvPJOpxgeY1RUqyVrL0bAeM7GcqTlv69hAVck9npNi9IFpa4jJ0nlP3SqcNRKgl2HVj0zclLZ1JNfw1oc9J6vI/tGCdfCcPumwSTMxBq0nfFkd8bfyyOTdO6jXn+F/d37O+1/9Es//8jepXC1AsUhi5HPdEjQKIaVU8UiQhtjMOJVpjZCztmoqVQaSmURIgS4O9P0gwJ+PxMHjB88fvfsBD//5H/G/mh/w752fcn9/xg20MKFTJOtMQPNWCPzts4e8UTlGrYsMOGKCBH/aEKlzYkJmkjM1mlpJmNbM6PKjYm4scy2/nmvDxBqmVEy1ozIW0/VoZ6Cu4bwinyzh/jHp/ffZ393nt174Tf7vdz9gtbrLEAOt82RGjI5Ma8tFn9j0suFmtWEYIrYyXPSZh2vD8fw1nnnxdYxKVLUmrs64duUBbVoTnvwI/AnJn2OtsPN9EDA90v4XROH+81+/MMDnA6ixeNSBGMdrKQaNFpNpZyR9BrWdVCgq58q0s/hbmJr5jc/j+5HTR/eJ3QAqU1eusBQ8KWQx3Sy+AyqIr400eebSsDNTmNIFVGhQzCrxtSvDjwL0AXkQMCJpMUdUoUyRpSgekxbZgUpF7kUJ2kikMaB1ob4rQeaJEhVuzJYOjyQQGYNrpsQo0rUKhdKGOkaykWS7xknClkLep1YZwkD2HTluLifNShnikEXKqYywAIqnR0pj+R7FwygXLxHxgTOYpi1pi5KyBJGFg1Fnpli8ypx4y7IfC4psMKsNow60BprWYC3EKGbDKkZUUCRfWAmrJ1CKYLQlmn05zI1F6YGmzYx9TxxHVKWJaqCqHTu7E7ohYycVT58+4ulyyThmJjMxBx+6QaY0MXF0/Vl29q4QwsDu4RHHTx9z9dpN/DhQmcjy7ARX1eweXOX85BEnj+7JNN855q7h9MkD7t67y8nxFZbrnlvOyzQWMZhNecu+U2RfDjuyyB+dQZMgB5FVR4q/RpFJaysSq5xRxGKuLmtRXRrKSmGiorAvnQNTJg5SaAmbQBgMW1NoXRB9kSLGIkMoFL3SNGxBNVmnORUwMUuRI2nVYI3INMU3UV8yl1QB7KSBERmiB0IuRuFoYt7+nYy1ZT0aDTEKky9EMmKanor/JUl9ms6VTEm41FBYVcJwFbZG1pa6rcljEF8o06BdKx6WtiWXJFvtGpSuybYRyZmthPVRfpYfNdqIF0Oyjfy9usGausgbFMZoXGVZr9acnZywPDuXRGxr4Sjj6lpADKsxVlgZGyvFu7WW1ohhLEl8QeO4wW/OWD6+w9M3vkcOK7KqsVUtDUu7oFocMJ3sUc3muMmiFP4N2lUoU2HqtpjTVvL/KfPpZLUAbluvQSkURPatFdSVNKhKafouYiuR3UYPU5uZ107YZWEkdJnZxNFUrjCEZV323UAaN5I8hxZ5ulHEIGuoLtQzhcMo8WfJtfgbWlUmvymTtuxepUU6mmV9ZS3m3bUzOFuJt6c2wv4wImO3laaezVAIKG8LE8luA1q0Yhs2I/6Wlq3kXKktq1mQaKcbyCJfpLBYBRgqvqtZgjaMM+Ts5WI01Zb4SkwKsgctdgbCZrIkNYF6B9QOrTrgheoqZr4vcp6mxTYN2lYCfDgn/nJWWCWmSM6303m1Df0w0oRSUkJjTNw/PuM/+Z3f4eOPPqHrBqIPfOnFF/irf/E3qGuHM7pID42AOYUxHJHQDF06OinWJCjKh0zwms3oOV+t+PCj+/z+937C8vyEP7l3wjPPvsys7VHrJ6TuCTYnkq44V46qsUyqKGlpKcjwKBZWatn71oHG4rPBtrsEn6FqGKMR83FdYSeJRTWjWhyw/9wr7Pz4p9SqZ3n8ETkEqrrGRSMgeBCJZIqJthFbDJMVu5MWpS2n3YZIJvhEVZI7K+swWUz/Ky33bm3k3HNGEX3AKk0MohhAJVwroTk5gcuZSmsUURpl9OVwhpjIRhI1lbKYYuTtSlNEBmUlBCDHhNOKWIYS4vUrr63rAsqQVUOmIruKbr2hbqbknJhO2zJB7zFG7FBUpqTz9bL/YhSrDWOhnIemajB2iq5mmGoPVe+hmj1M1QoAaYyEEykjPr1Kap5LVmgZuhilCjgr948CjNhjklTi0d2PePP9D3jvvfs8evqU0/Oeplb8tb/859nfneOsxSiR3pcRr2BFiYKcZWH/KgEEUi5ClcIQTFmJzUCS4I7RJ3yIfHz3AX/89gcs1yOTyvL6/oLfet5S58eSpJocxCD7PhcJ81ZOSfEfRNjlKQngEGNmDAK8xiB3nirsGAGVRGphrBXQPQv7MsaRcejoxjkpZqyTYKi60jhTYZ1FlSA0o8S2xlWGmEqQEeKT571IrKvKYcgMXkCk5A2LpkZFxcQ5Kq1YTCrmNjNrlDSW/YC7Nie7iqenS05XHQMDZiHreaYDg3FM5hV7dU1jEyr2ZAMhHtMdv8mPf+8efv0QNTMEP5S9IQqdxsqAxuossukoqhCzPW9SlKRfLz6zddUCGW2sVFCuptl9ntmN19m99RrV7JB6doCrd+WOz6bwSVOxLNEyGCq+i0TpJHOUZ5WQOkclAe+slkZUJoVydkvdVZgbGSnWVAHFTSbJeJ9UGB7qsvQTBk4zNcyvvyCAc/GF1KnU1rkwV0IgBmGnpRQI0RO8/Bi7nnHsSQRCivgxMPYDw7LjbH3Buh/p+h7UlOv117lWfcBUPSQlj1x1AZU9KEkVzWEEDTobKqPIBi59b5UBZcUjbMisPJz3AxbYm7bYVtOPgcSn0shtsKAxujBIhIU0mZhSZ2ba2mGNpdsMYteiLCEM1JXi8ePHpAh121C7SD+MMsww4GMohIvM+UVm1lraxgKKSdtQuzmz+TXGwaNYs+nOxWrEjPhCZqmUWD7lmAnWARo/Wi7ONyQk8dT3EWVKMBUSihR0ZlE7Bi8s/jjKgVVZx7PzKd4nQlZMJxXD6FE68nBpeO84ElzNbDHn8PpNzs7P6EYP+oBvfOF1TDPhX/2rH+KHyO71Iz7/7a/y4q2XaeoJNmT+X0/OqO/e4Ydv/ZzbruaL+0c83KxZp0QfI4FI1CIhLBlE4nNNsbXaShNtxjhFraEyRYGlLEYZamWpMLis0VFqhRQz+WLD8aM3+FE/8usvv871SpOtrGutxWomlUAlqZ9kJCsi5k/1D/LKBYjc/k7xmzMWjKZSmV/WGdVOYLFDqlripCZOW2inMJ0QrrzM5vYZTx/9iI8//AHr0w/FTz/KEKKyUBeAyGsZuMRUasfCHDSmRA3GiPjLK4Yx4o2oHSRcQ8AppxQ6W4aQ0dbgKjmX0Ao3gfmOpnJyVl6cREYP5yfHjEMi+cz3v/+7XL/2DG9/8DN++zt/g+dvfpEPP/5TlqtT1s/2PHj4EcfnS2xl2Jt/wq3nbhCyJamRL33+Km++/YhuGKidJHCHEOlLSm5Umsmsoj+TXAFrpKcbhyAM9ywBJZWj3MFI0IYVFY3448r5thk0frelGzXvfrTmvIscXDmkj4Hz04HsM6vNBYd7V3mlmvI/NJnmzY/Qrz7Lv3N+xse/8mu8+u2voJRgM5UtplAlOMkpIZFY51gNIx4lRIlsZZhHZlop9mojAWtZBv3byYG0uA2bVLHsHaGkwQsZI7N3eMgPfvIGZ1HzOQvvDxuuT2ZSUylIAR7ZyL9z/Jh7L7zAwdERh81E6r9U1CFZSFUxJc5i5NgHchALA8ZAGHy5v0Zi8MTeo7xHx4CJkSZnZllxoAy3q5pXJ3O+vLPP9fkU50fyOJI2a7hYsbuY8c3rr/Lx4w+JMbFMGZ8ymy7QjdLfzKcapzOtyzQWNj7T9Ym+D3z09s9Q9ogXX7yJmU/YRMv0aMFif4/Zl/8iio7UX+D7FdmPUh/GxMWj4/9MzO2/zOsXBviMlqQcXRIVtZb0S1N8kaRZCcSQhTmTMkOEcQyIp6ilnszoNyPrn/1uCeFIRaIiU/++98S0jQ3OOO0EzS2bZGtIarTBKCmsJBlRmrEqQaOi9JDiRiPfm5ajFbVF1JGmX8mF6b1cT6lo5LfpdCiNxqAdqMpisOIhoBxYi9MTYtTYqiq+eZYweqkZ0rlc/qP48Cky58uBEC07ew3TtvDwxgGFJ5JRMWBqR/TbST9krQgqYLUhB0N0jjR6SaIz21CRjIyztDDSlMH0EidP8UpJWWjfhEDlGkiZujlEzfYZlmd0/gyrJ8xdBzoQ/IjVVqQcPqBzIhUGGtkSQi/yaa2pbnyR6YvfRleNHOKbC9KwYYZiHHqaYeCF2c9FKhvBDj33737EWAxVjVM0tWXT9SyXQT5bIhfLc7SBSdOilJjbNvMDDncOefTJh7St5vGjJ5wdP6DvRjIV850p3ZNzxpBhteLWCy9ycbEmrE5wB8ISiSh8lANLlyuPrKgrRWVENjOWxOeMNAw+SkOUCytOFwmFpIkiIBgOrSZoJemq1opZtDA3R2IacVYK523rp9RWniqyoRALiypt1y/lghP5rvwdaaK2QLApFH+g+I9t92ghYZemhYz4buUslP1yYIeYyFp8cJQGZ4U1o8v+SUWCLQzbTwFEpYucwQiongu9PmeFtamw+WRCFLMhu5pMhasb7P4NTLuL73r0dEF19XM0+zcxzQ66alG2Fjlj8VlTxrLVriily5RyexnyKaAqerTLxnoLjg3jwIfvf8Dy9ERM9w8PsLYS5grbqPaRNIgMj9KCyL/jSXHNGAMhBGJKjKOXwki9yHBjxgu3bnL71ZexzpG1BeOKLsMUU2FVSqny+VM8LrPclMIa+UzxpeRvyEVawi6Qo/Fi7Qk+0FiR0saUCYPI6SqbOJhYdhsHxjGZzqhVZmeSaZxEu5scsMyBiugOyGFG33vapkYBTVXjpjPS0GFSJ5elEcleCrGc+eLjg/RHeO+pqjJWRVPVFcOwYVJFaqtg1kDS6JRQLpPDWApKj0lbX7JEivJswzY1XMfCTC1Sbl2m47IRMcZdghfRDMWuIFz+We87+buFZaWUJg0lGCdJYRuUxziH0RVRL2B2Dbd7Czu/QTU/oJruYuo5uAlZW5I2JWhk+7zU9pGx9fv7tISWtaTK5pZEuwLUbCv/4En9yPKdDxl/9i7PZI/TAnJ+a9bwzMWFSL1iklS8MYDP8vVCQPsgwHtJk4wZchG4aatxtmJmK1ptuJIy3/7251G1wTiN25lTTRuiCmyGMy7u/ADefo8QNsyu3GQ+EWApdCsx8fYe0kiMHp0cyc2wswPqep/Fi18juwXN3gG2nqFdg7aObCRpcOube+fhfdpXdnl0OvBIW+bzlqwcQ0isL07ohw2tFc8f5b1YWACNM1RmxnLo2W0n7NQVzkiqbApRWOO1sHNDlIRM5Yr8vHhoWqNxThjpKWdhmeMxJpG9l4RiXWOrGc10iq6m5BgJmwlsQ6Yqg/EDjbOEkBn9QEiZhGEYs7DwtcI2U5p2tzDGPJURxuYYMtk0NItrjN1HNHVNDmvozqi1+J7lMZCNnLEykLEkt0918ArNwW3cbJ+qXWCqCaZuUFVThh5yTmYFKqdLM2w5IBXbsBI0IgHbAmF5C8TJ1FCFAMMIPtJ1A//wX/wBP757n15BoiLEK8RJ5ou3D/jiy6/hsoQhFM0gOhZv2sLSLvhe8QOTPa6MSIJjCfGRgVPxniqXb/AjV3LFq/M9fEqMIdHazJUrE0J3n7B+lzA8hiiA7NaLNieRpSlAheLxfNlUyh1vrCssTimPc4okY0hGMXrPZhgYY2TwnjGIVHz0nhhhYyQwzWS5JVOC9egJF71IZ5UihsxApK7E0kUbQzuZcaPZ5+L8DN8vpfmtHMtuxNSWxiamVjFtJ1iVBLRWgba26DyQx55GZRg7zGi4YgP7i8joNX0F0Rj8CCpqsvLMjMaS6fHU1lFHiMMJm/CIw8rC4EFXpBGSUYQIPmVi8jSVEaZszDigMsKkS4WVaJTG+8wm9ViTUHpOtfMy+spLnM+ucX+tufj+XbruXfp+ZPRjMfqXht5aS+UsVVXR1g1t0zKbTpm2E2aTKfuLXfYWC9ohYh4co1dr7CjnT06+WAQVdq36zGVvLdlostZEJdY5ShWpVqmJt/5PudiHkATc1YX5bZTY9jhF8VCT5LVsLFgZ5GerwBlUVcFsCs4SjSI7I0CiBpsLuKJkrHyx7Hj84SMW48vUw8esh4fE7hNIZ+I9p5LYOcjkBBnHSRo9ha29DpmzPrAcMmfLjk3QjAkmNfjlBTlbdNbUtaMxBqus7EOXxbevDL1ShnauWSz2OHm8JHsB3CZTiw+J5XpDU1XYqiGlxEV/Qcg19cSw2JuSfKKqFZWecbizz2yyS9MuqJ3h4OAqu4s9nh7fJ/gOYxqevXWLV175Ijlr7rz9A1bL+5hqgZksGLqnPHj/e+Qw0Naek2VPN4B2msqAUxLk4LUMrupWLFlUmUBUTuN9ZNE4Kies6pmqiSESMHiVie2ED0897z5ZMeiK2WJBc7DLqCLtYsYvf/XLfOXrXyUCf/+ffhe1M+GFo2t86bWXeO7Z56irClTmrTvvcOPxh/DBO3zRznnPGv43x/dY7+1I6ratykRHlYHtdiYv9720ykGC52LAePHvUzGifEBHj0oeHYKEAsWEjYkqZqoMO7riL04OeW2xw79868f89ZdeRidPMhkwBCPSwY+Gkce+x5NAi5+9VRqHpgEqpS7ZUE4bjDYSsqNVSUdVxbJIbIqUNeSqxjQ1qq2Jk5YwmZAmE+qm4ubky8w+d4W3fvL/ZL2RJOkUi2onyflphd4tFAtdpLVZFZIKxYdftnFbWbSR+0O2k4Sp1VaUVpNKca4zk51iD0GinlqijygD4zhQtRnbWEwShnrvOz746E9578Ofsdib87u/+x9xsH9dhgMh8P4Hb1NVExpbkX1iebrh56v3mUwUVQVvvv+Ao33FxZkljEm8zOtUPFM1w+CLAkZCHH2Q4ENnDHUlczmVwYdIVSl2pzNSAmUjs2mLs5rZtGa5XLJOkYcXA49OLV2IHB4d0Q0j63VAjTD2a/Z2D3kp7vK3horpg4+Z37rJ//78mEe/+mv8ym//CipEJtZiVaKtDTaXZ3vZewI6s3SKULQ5upA7lFJUKtFaWbshKbxWVEZsdqwyEibmhVnqjVhFxSwWIKMyqKM9Vk9WXDMV7/QDYTpDUQYCWfGz9Tl3rx1x8wuvcuXZZ5hqh0NUb6r0d9tiOuSML3L7raxYSA+S1pyKjNgHTz96xr6jW61YX6x4cnbBT47PGU8fs7h3h78w3+XffOEFbuYpOogUmWHgtcWcRTNj7M9Y9pl174vPtsL7gHYVkcz5RhQvu/MinTcdN567wue++DzzZsbQDwybkbhesVGRwxeep5kcifw6RPHdNJp+vcaNH/CLvn5hgA+2ShWZfsUorLyYy8TMiNFejhHGKM23Fomh1RryyLA+uWz6c1IEXSQsKdP7TqSxZpuCmC4ZxSKrKpNlVUBGJZM/pRB/nywFWi4oiFammKrLJR6TkjjnS2kfDIUuGgLykKzB2AbjLHUt/ibKVBLVbqRoH4ee5DNhE1FpLYyuZWK+aPAZhq6j33T4EBiCsLSc0aJhTwqrA8PFhvFCE5L4BKmUqLXCmUgaPD6LH1jGkKNQ2q1RpCitvjFiYNw4zda7LMWMtvZS4mOcLemUhmwrQOi5Gi8NDZGd9IhlP6eVXLmSAAEAAElEQVTau8ZUDdiUqCvE7zBbfCzaIMFfhQJtDEolYvZya2VD9+BNlk8foKqWWA4GMaTX5BhZjYkaj20aNo8fcvfePS4268IiN7i6wlYVWmWuv3SDye4uH3z4CavVOU1ds7uY46qKEBc8fXSP46ePiT7Qj5aq3aGeGq7evMXFyQlxHLjSHPH+hx/grGYzDNh2xkGjmdVr9EYjUiCDycLwkTUt4SQxiVxXaVVo5PKzpyRCKVOkIcXUtczlts+rqhqwIiVURpgvKmW0kmhyHxLJFL5AObikXt56Usi/KZ+zximDNVmaQ7Vt3EUOaRB/B222TcY28VnYCOJTVFh/qjD2CvQdgwDCKYv/HogM3GiLzokcRCKllC0D9a3kpQR3ZNBapitgGL0ECGiViw9kYbgoRJqYa1jcZvKNv8bjT+6yd+0Z9p59iWq6h53MUaYSzoj6dL6Y1WXV/mcPovwZ58NcGLqf+SzZgmeUyZ4P2H7g1myXhCN0F8TVkrg5JwwbfOjxIaBjkql4CYYwhRmJFonxrHFkK4CjsO5aVO3g6Ih+jLz31iNufu45pos5KW0DE/Kl1wVKXYKgQPFYUp9+/0Xm/Wde22ZXUQIkpNQZfRa/GCv+kZWSz792mtZqWpUZkif5DusshztHNC5TWS1pp7lisv88pr2Kdo66qZlMJuQEpirs1NDTnz7A0tEvzwndmhw7yJF+04NK4leEwFj90CO8HVn3lR4ldGVYyfvWYgSuvJP3msUpLmkjvko5FhYGl5KLREa8x+QjlICAXMDoiqzF2DgFwIt0fZtsqJXFhxGSJxJLOIsukvqMyQG0R7UL2HuF2XNfw135HHZ2RKImBvH62aRI6hNp1RGjL5Iw2Xt564MXYgE4BOhWl89OCmutxXbCktEhMEmJ1G/YPLpPeHTCsDzncMz8TTclDhvyakPqe/I//Gc8/Xv/WArtsp9y2loBGPEqqSSEIytJPsUogjNEZfBArhtMK2wuZwWQz04MjRUGrxRhMqXeO+Lai/8V3l39PvXDH3JyEXl2MaduHBw8T1Atrt1hHD1Ra8ziOu7oNvXOEbZqRfKj1WdWcDHSRtjw27PU6szYdxgCe00mdhsGH0FbFlXGYnAEqhIM4WqxtNApMnMGQ8XRbMbhtJGpefIEm2XuZkDnjPXgrMWnQN769gZhLPfeo1OitjXaWZE092VYgXi6aTWQfIY0Yq1DVwrjWpxr0VVFf/ZIhkBklFbU1smgQI9FQh7wm2O6i6cYIwBXp6Cyhlj2b1gdE4dehoS1IvqBkMXPT4dM0uV5TveZ3Hid/Vd+jWr+LGO0JfQi4WMkrQPx/FQm2z6INxzFF1NJLWTM9l4WdqJWMjIwZUBisxbA5MkxwzsfMT58hF6fEzdrLjI872puOIfJ4pWVVaaqHXsXidXf+bsiuVP2EuTGbk82OZhN1rgs9hfKKbKRpFWx05AEdmvknNzWbZTa8YaCGwUcjE2FbiwqWpi8gF7cxofHdKf/muHiY3L24kdYBmRZGVJJDM6l0bXI/k9BwIGohSUW0YQxcrbqebRcs9yMIi3OGasd1hmGsVCOJor92VyCI7QksqYcqSuDK/LRGCIxgFaSTJ6ysJ1Ozs7Yne+ga0W/uaA2YFtHWzkJ5cgjOUAza6jrCnxP8hGfI2OR6tdWFBYpBVRKNBYqnYkGvNI0TcUqBKyFyloqL96sISsJyKsU0Y84K6PGSWNIMTFkRecDxjpJgpUOnFpnOQeyohsSIYnMbNLWWKM5D1PefJh59M7HeHfC4sp15js7VJMp2tW4dgLTKVurE6mHE370jN2Kvn+K33QM3YZhvWHcbKhy5rde+zz/zWi49mTF+aPH9GmDFbtI8bPWAkLI9SmgngDcnw7/rBL/V41BRelRMoA2xRJCC3O/ntJMd2mdRZWBeTKyv7PSZKPBGJKxAu4ZVX7WlHhF8ZgtvsZKidRNawEXrbM0tuKwtiTrSJPPM9v5PDkdc3HyewzrexJcZQzWaGLU+BQw1hKCxw8DI4rzPvPwLHEyJFZDoht6lIIxWEKtYO05mNYC7hqDNQ1ZKXwQT3MfR6lpnKVtgQiTiWPdd1RVReUEXN8/aEkh0nVr+k0JNImB7C1xGKknVuxBTGGyNq0Y3LueO/f+NTfVF3nxlV/mvXd/yJOnb/Lk7CPuP/yQb//Kb+OmB8wnhn6ITBa7dN0xttVslomgE9Zp9hpL00AMkb4PDCQqo4kEauMkQCKJ411tLdOmYlHLGX147Sb9g/vgPT4lOjIfnWfeerQm1y2L+Q6uWuBcxUsvvciXv/BFbj93m3V3yv1Hn3D96oQXZwfceukLXNs/ZKJbQHF6fs47v/ddvvX4CZ/LirDT8v8Naz7/3/43MNMWpyxbmaPU+IaoYZMifUpb2pPU8GWgawu3zmyVDymWQDZhKxFlkJeGkdANPD495//4L77LvxUtzeqcB/0FV7a+wsB5hH/37l1+r9KEtkXlJJ59KWEQ30iS/FqHgA4RmxI2a2oUExRTFDNjmGnLTBsOjOXAVRw1Lbt1y2Q+QU1b8qQhNy25mqAqh9HnTG2kmlkEdhDmaIqBWBjbg484I6FmAs6Aj+Uuy8W3DhlQ6bxVacg+jDGxjtuBtyJZGDZgG0l690Ux4gcByn3I2AqyHZjtWaZRUuyNtqS8JoSR9+98SNM66onh4mLgyuEu1j3Hk4dvc7HOqJg5P4kok5g3wsKctYb5whD6SNIVF+vEmKFP6VL9pFXEGmHr1ZXB2sQwlFRxn3DWUrcNratBB/b299mslizaBVpHRqX54EEHNnH1+nVW647NZmRY9fi+Z3/3Jq/YQ/77ZsXBnU84unLI/+nsjDe/+jq/+Ze+ya6DpqlkEAyYlLBWX9anRm/tdCILtw0d05Ajmogu92TMQT7rJH2GzcUeQhWn5xjQIaNj6buUIigFzmLbiqQzC63owii2JEqsnbQK3PE9zeIms70dIBFzvFT3iBWUvuyVGqPZcROMknVwvt7QB5HW2cL6MwpqYF4YhiGVu7mwrM8en/Lwk3v8h3/6Bm/8+I/5X7/+FW7OJ2AdKUXmpuXW7FnunZ3hR1FXOoMoLFoYvGdAsRmlrh3zyNRF7PExd3/++xzNdlnNj7jx0kssnr9KzEei5smBsD7HVg1ocHXFsLwgPPqQfHqfX/T1CwN8SgnbR6kitaVcrpTjqvjP2G2ip9KgRUaltsbFSl02KCknVE5U1hQQTzydNKawm4SGrkqa0JaxkXMmKS5tTJPPJKXoo2aVZHqnVRQJjSoADRRT3pJ4RZlqawGsTCVJd4nIGBQ6ebxXJKXQehQ5bMolxTOSI3gfJSErymHRrUaeng8lUc3joyQ67k5r6sYyqyFnkcHlLFHnba3RtoQ76DLZjgGVFUOqmBy9iJvMCMvH+OUpwyiJYmkcRDKCu7wkEglTclm9j6hxI/4ExqK9sDqsFuPn2kDa9KS0YqaP8Rcfi+9V21DVU5TfSJqNsiLF1FYahhgLG6wk8haJXA4DangExjD0PUobcsjo2jIMno+ejjxZZ3Zvvsxs7xovT/c4Pj2jqURqprXBx0xVTbnx7A2yNdx84fPYqqVpp1hb4aoaYzRYR9W0OFsXMFN8toiR1fKC+3fv8v67b/DFxR6nJ2fsX32GnDQP773DRRqx3uCsZWIVhoDTCqMS1lKgLwEeyqIv/lfF3StT3rfIG8QrT2G1wW2NS1WPVZpsJGXM+5EYxRiewj5NJVhAGgehbFutcc5hjcYaJ/T9LP9GKumgScs6jjGKnG2Lf6X4KWWNLduvpB/mIExLuJyM6e0BWwJnUpGhgCLGUNIWE6gkcvct+QOIORYpo0y7M5kSmUaMuTT4AnJkn1BYQrXH3pe/w/zV36C++hKzlxMpBUYf6LtEWp+LN06MIoMpiY3x8tdB6Ncxiv+YEpZJLkCsKhN6bYTZWxtDax3ztsWuN5z/8Eekj+6Qnj4lLJeozQD9QPJeJtsUVRDiiVgljRkyZpRkTK8Vm8ZwPK04qzVjZUhWoazD1jXT2QQ7nbKYHfH2T1qe/5VfY//Vlwo0WUISUPI9I88shEBVV3K2FaaeMPy4nErlnMQAv/ydTJEnKfGO1MV7xChFU0kYBCnRecWsNpJoljyutgz9GSoq8ZpUCs1A98nPQb+J0TVV03BmNH4cxX+UCFlCMBQZnSMhiJ1CisIksNZQl+9PGi0BD2MK5BwKgD2ikPNfeiYNjHIfaC2AWDGfzuW9q9JMGSt7ALP1Dil8W60h6eKIKsmAPgrgZowSYFYr8CPa1oBBqyxMvyx+Iqr4gHTNNe6Oz/Hgw5pHP3uDM/9TvJe154MUpmwnyMUuIpfmNOZIIhEUJRlMFVCPAhQJe0wlWVdiMWFxuuJLyvBXnKP96APW52cMlSXm4juphRapnRht58uUUQkXEONmjcbR6ppJ8Fw5nKMaQzKG95Tin5xveBCCmK/nAp7mWIZjigqDdQoHLOqGa9MdXprts/Pjn6L3WrS1jAzodgKTOao+wu08S5oeMtu7hmrmGOvYGnWrcsbI3ucz50ouz1SRQsAYTaVgrj0HB5rohR3dB9nbfUTY19mglDCaVYzC8qlqeu+JXkIAlhp25i3ELEFZqqLve2HqWWmyNTJ9DVkzBNlfMQmI5mMg+wGjIo0TwHzwki4HEZU6xsL0hoTRFdYaKudQSO2SM1SVkrApJQxCQxLfygzJiedfjHJe5BwAaB0ovUFXEuqljcUpK0BwSYhGVTzpd3nnScXJJ+esfv/vMQwjY5Lzf5vcK5KWwoAr9c52wJHLM9k+I60kNEeV80Uh4Tm7dc2Xjq7ylY/P2Ds+Ydgx0nSpSMyRKiZU0J9KJhMMOfA4elSMJKXFJXib/viZ9WCyosqKnd099q4ckq0hW0OsKkbr6JUhFp/DyxC0IhcWQH7bMhuMtVgtNZuqNFVTYxa7zA//PH3/u4z9u2gfSxCRgL+SeMqnNWiRgGstUl5tBLgYfOSk67h/uuR4PYASOxerlTRoOlO1FmsM58owbEaUUbhaABmUJ6RI7Yx4hdaWGDWbboDG4rRhjJG6ttS6hDVU0gRPnaIiSiPjDJWSRne57rE54mph1EgaMDinqGoNuiqSUSWehygaa+WscgJMOTTGWFTxj2wqQ/Aj3klglgwEDT5obMp4LP0o0twY5XkGB1FrQh8Yg9yVRhlsVbExDd+/0/Got8z2n+HVb/05nnv5c0zalsVsSj+M7OzuiRJHCWt6e07ELI29DyJr7ceR5abn+PSEi8dP+P6//Of8VQ5498E7uGeusAyWdYxs8siQJRQlKTFXCVH6AUkVLZJinTBJaqLKOhrnsJXFJjB4TFI0QeHGTHv6BL9aszNd8NLeFXQJmZO0Uk10jrG1dMYQjCJbjbL6cpiktSrSbhl8aywYRGK59SXVkJ0h1y25qrG1Q7WOqX6eWHWcn98jDBuc1RAVMYvvXizslD5rzjo46UbOuoEhJTnHooA2wwAbJx5mOcHeYkf8wHIWf0WliMEQI/Q60Q+e3Gy4dfsaT546xiEy+A6tFN5LqMx82vLM1efw0bNZXzCOKxazKT5EZvMZbdMw3RH59enZCScn72NdJoWek+NP+PjuJwz9MZWtsc823P/wfT748KecdHfY9IHnbr6EU/Dx/WMqY6it5ujQsdkMLDfCiE3J0KeIQTOrHSFGnJXeK2qISH3SG/EbfHLvY+Y5U9UGi+Xe6cD3PzpmnQyLvR2q2Yxsar7+rW/yq9/8FrPpjPsP7/PunXcY6VjsLXj5xVc43DmgcQ02azof+KN/9V1ur59w89FTnjm8xf9h/ZDn/ht/mfZgH+esrLmi2NClk1VG4fuezifxtebTHnkb3Ge1EhF5hqgyMWhUriQoJgv9OCeRKk6fuU53dsYHP3mLW5Xj6cUZhzsLtif+z9YD393fYfcb32B3Nqfa9tSFjJOyWG34EAhJausQB+IQOR89x6MnFfWZH0a8TzAKm7tenrN/dsznH2Z+fWfBK9cOcdM51B1UFbSeej7n4mSJIWAKyG2Q0JKMoqmRHirHYpsg/WkoTGtfVAjb95yKL3qMGR8zYxSSjy4DpaZypBwIXWJcBTqnaGtDM1FgoN94qb/NgHWWTCTEEdD0A9KnjRmFZ7pwXCyP0ekM4xRVTbER0SymNZWRu33pIxdrj85JpO21QjuwriJ6WI2JdS+Dh76PdIMM4EkZV4vCahgTT09OOdhtiSmidMT7kTGu2PiWDx8vwdYcHB6w6Ue6bqRb96QQ2T24wfPukL+hM1c/ecK15gb/1+UZf3jrOr/0G19ntbzAd6JIU1v7HLMNMixWB8aVs1/6KK21hH2RsdpiVMBpyWnJOeFssbFQajs+xMfE+XrkrAsMl0z5SJ+EaTd2G2qlaFIsA/tSHyQkrCkrtA9MreFo0mKME0BYRbaXtngcUzy/jVisVY66djw5W9KNUpOz7Ycvm2EhmCUNTVuxtzPj6MohkxtH2GtH/PSf/Q7/7rs/53/++c9Tu1pq1U3gtekB7+zt0vQ9nzw9pa4sFxtRbyw3UgtqbZhPRFVnXMYYT6WOOfv573BhajbvHaCUSO6r2uJcja1apot9qZ3bGVVdM8s9DZv/DMTtv9zrFwb41qMScEQJKFFJ3kFhoYAq6YS6LJ7LJKHMZXJmShllFFXlpPFBGEQ5GjnUolDUQZpBoxPGlOL60oPCXCbTKAVGG7RWTCrFOMg0wBiDM2JYLYaymZA8OokHmNbyc4wy1czKkrNiDInRdygUk1rhXJLpXCmGN+tA56X5NkbRRM3OrMJVEMeBOkWcTSgnkRxV0xQgSAIqDFnMJStNVWcyA+LMoMh5FOA0yZS5cYG8/oQYp9iscNOGdgopeFIUH51qOgEKYFpMsZUxrLsesPSbCwkpUV6Sw3QS/5OUsKowYZRsDo3BKgMxoMJa/AZ1BCxZVeQ44O2cVB+StMLkEdWv0ONafLtyREW5QBRJ2JDa0CcvZtL1gnq2g990MN3n5ec+ByHQrVaMUfP6q69z6+VXObx6naZpcNZJgqUWAG8ry9xeiAJsCqssF8xHF2bp8dMnvP3GT/jhH/8BxlXcfOHz1K4iPv45YzaXaWJma8JvhIlKLvJs7YrvSsaYisoihsHkz/gTCSCmtPj0kSTJy2iZGFqjSaF4WpCpTBZJqxGgR5evZ5RIfHOKkmoYdbnIC2OHz3jx8ZnzK4O2qoCAW2Np+bcwpakTml0ZGgpzVjarNLohCAtXGj8p5ihgi7Hig6HYsv4k8Qll8UlCOkpXKeEYWoC/0cuhnVNm8JreTll89W/wo27Cm//eP+DJ46esl0uGoSNGCTpJWdKotoxfZQpImLZehvK6lHvlItnX+vL3U0olxUt8M+su8vnJjL+mWvSjjznuz9ikiE+KLmYu0oAnsv3yXpeGPGVsUlzpFC/6hEuaaB3/dEfxs9uH5GohylulwXuZqp6cEboeM0Suu4pvvvku3/mf/I+Z3LgqwFbwrC4uODs75/ozN7CuujRd/+wrI+s3p0jK4tVYWnPxaUtict5UUBlLjEJbVwlcEGNprQ1n65FaawkTCAONcegwoHVmWknKY44ZU/w8Q9yQuvL1laJPQYz3jSYlAXxVlomrthpjIjYhnkFJGBFRKZLWlxJRnYwEjGg5pyUlVqaHOYsPUERkGZqMyKIENASNtQ5Tgh1SzmhtyxkggKIMiUSG6SNo40jVXIJWxjNC6NEKaW61eM+grLA3ShxXpw/4D/54SXW7YXrlCHO95kpVoZ3BuUok3Hbriyh74PR8yaaX5j/mjHYSCKKMeLjKgsrEGPBjL2vcB+LgxZNpPfD0wVP++Oc/4Tux4eOTB7xxfYd3+p5+lMFXSgkfBmIMDCnTK4VXlL2Sy1mVUGPmZTXhL5uaHROo51PWteX/MWTuvvQMk5m7lBDyWblkiMIIGgfGMXByfMr5Bz/nljP8T198haY/ZFHvsVmtUe0zVC9+G7P3LLpdkEpAwBaQ/Swwu13DIsOT4Yg15tIqQJX/rizstmCdxjSaMAS0s1hdc7EZWQ3SMD+6CExbR60TrjI4q/BdZtI0pJzow4jroTYKazRjEvmWtpLW6SMYLc3gZkzC5Com5yFnfPI4C1NnJCTKyRln0EQvn/GQE30vzKxFpaidRZmIwwpgn0RuEtJIzhmjHFvSgTWIQXoSiXBOHutKgizioVdXGm2S3KkRGQh5UQ2+tbnGO/4K17/2Fa7MdjhE49Ol7djWseByAJrL+xL2Xi7hNcIISdsQpQIWxxjx40jfD4Qx8PGdj/nkJz/mlQ2MaeC7J6csvWLjLBuX6HSGJM90TIqQxL7AbX38UOiYJOm8MNQdmVbBNWX5ZnaYB4+Ix7u0164QreZHQ+Bf9D1nVpfRhlxZZC2G86V2giSJeUmYLhZFrQzPtC1fefYat4+OmB5eZe/GL+OHGav7bxGGMwFbkjSD23WaQiBvA7FywJiKHMUnWeWACrDTOGoj3pZtXWGzoqkrkYuliMqaB70lRJG5dUMsHosCesUYUToxaRwqa8Yx46xhPp2wXK04OLjBS8++yOM7PyGaiE+JWmVms1bYgL4XLVcOOKPIURG1+OtRPpeoFOtukLR5ynDLVGgrLF07eCqBV8k+Uje2sFizBKgki7EUyxDHmBRt7dgMCXSkN1qsMXIm5pHKGcKQiRmmlUMpK2e7qXjruCLtzJnOHVduv8ZXv/UNrhzsc/Vgj9pZhuBRyrDuOsZ+oJm2AjJkCKQywJTBA9rw4ckpF+MFMa75nFLo+5+wnDr+4cVjHi4mNHs7VGbxmTNI1k7M0nSGLHdZvpRle2L0MljNgRiGMjyM4jE4Bsb1mvmY+XOTPX57ecLd9Yrr8zk6Z7yp6Ezmj6Ln7/klD414g+ckLGqjit9ZYRmJBN0UdpY0XxWyVhpj2dGOq9MdXrlyhZcO9pg2DXpSYZvrbPxDhj5RmRGN+Cb34yg2OwmGCOsxsRxGhiD+cptNoG0d2mn6YcTnSFx6eu9ZBS3WE1mx6Qe5y4MEOmxcZOgVTeP45N5TDq8cMJyvubp/Ddfu0HWexXTO+x+9gWLNC7e+ws7iCqvlBW2lufvgQ07XTzl59IiP7t/FqppnrhxgqwkmLzk+f8zJ8gxtFXsHC1SEqom898FPyayY1DVWZy5OH7A7mVO7htOLJbOmorJiD2RcQ7aR5BMTUzGGwBgC2sB0WmMCAtgjacZGGfYXc2zKpPVAUo47G/jue6csadg92kHZmqqd8s1v/BJ//ld+DasU7915nz99+03uP3rIYnfKL3/7i1zbvUZtGmrt6IPnBz/9MdXTOzz/s0/4SnvE3189ZPjW17j+3E2UM9SVpUJk+yIZ/1QF1IWBEQtZhpZWy7lpjWLiMruNoeRKMWZ4cu5J6GKxIESSkKKchjlRLWZsxpEd13DRrcnzmZx3wP3omdy+zcH1q8xrRyVGU/xZ9z2prTWgdGZSa+aNMDKFVCC1VfAB7xPjEOj7kbPlhpPH5/zhg6d87+N7/Nff/pDvvPQ89SRiQouOGlMtqHhA7xNjErauKQoGoOwR0CVYbTuk0khdYZ2oBJWx8JmaRwZa0v8rFCkkjpXYuQx9CU5SSuSrG2G+Gmc4OJiwXnZkNNGLlY22mtU6slr2aAs6a5xL2Cayt+dYLtf0gyeNZVhsorD5ckTb8j4QJtskQN3A2HkqBe3EshxE7aSiYj6t6XqPUuBzJgdD24g1RcoaHzxjCKiNrJV1aLh/0oGzHB0e0W16LpZLwihJ3Xv7h7xweJu/Opzx4hsPeK464O/4p/zdvQlf/Qvf4qJfYrwAn7XTl96FVeVKPaYEWM0BogzMU9j6/kvHGnRAo/AqY8tQWIC2wn5HwhtHXwbhqWA9UYC+kCCMkbTsaFG40l+nbQ8ts32uakNYrVApcTifoZwjeSElUEg0uiB3IUrNIXcS1NbS1o4MjEHRj/4Sc5JaNBcyV+JwsctO06AyHO22eJPx59/gH//OP+O/evyUL+8fiX2P0dxa7PLs1UN++Ob7pJSFMIXIyGeTol5TGe8TrhF+TQiB07OHvH7lCpPKUpkTNssV5EA/eoYsn8mJdUyaCls3JaPCsPZzftHXLwzw1QYmVUnGLAV8BAQ4zZcA3qXk0UAZV4jvhdo2eJmQk7DpVCaCeFVUFcOml0O6JHUZkzBayyYo3l9GS7qXtmKwCRkfPENBzRc2YVGScquySHZzRqmISlqKACUfR8wAipSjsOO0wqjAtDI4I0l5y43CJxjGxGbMrEdoK5gUmeJGjdiNpJw6W2QvxoqPRpZCN5VJZVSKHBIqBYKMqYvnjAQskBLGRFQMkD1q6AmrE7LKxbxajNWxBq0MYb1Cm6o0WPLvZp+ZVI6gGqweUTh8AtdKI61DwLga50yhyRrqqXgDqfYARYfSEaMUfujIWOq9A/xmg/Me358wqgoVBlLosTkVc2Xx+dPNhGxaaGaoyZzJ9Qkv3m54aX6FZucAU9XUdU2KgZQjbTvjxrMv4Oq2mCMnWVRDRxpH4jCQ+wHlA8kPhK5j7HvSOMqPTUferIl9B+s1OXn0bM6No2c4+LW/wN/5R/9v3n73TVJOPKs9Tge5xEpDmpKAfTkVfwidhc2oLXEs3k0kkhfmzJiSxKQbIEWRuWlTfJISxkacAWfEdyHnYkqfZVJFLPB3kIWfKClGZEKhsWclTYhSMnEXPynxmUk5Yq2i1ooWdcnW0xox2CVhVIIyaUlJPDCFXfEpi0/pAjBqiaIXg/TiDKgELMwIuyqTSEFMerWdsnv1Wfrz+6RxA0omJ1ZZogpYp5jUwiw921juTb/B3/7bf49NM+HwxVu0N6+xqJ8vIQSSsrWFKKMQQ/ApMyY5nPX2d40qpvX50lMwqi3kKcU2hek4hsC9N+/wz3/8U35jWfGRW/KzfcuDi54uZXwtwLDRjiBmVHRjwJM5mLWErODxKf+DleL2GOhdzbtXZtz+zV+nbmoqI+eOFisrQob7T0558vScP3n3XdJbb/HiP/onfP5v/ve4WF/w8N4njF1HVU+IKQq7glQY0SIfFJZTAcOsK8zoLXCSL8EZpQTMqNtWUsL8yDgMMplXIn+otOFiDFQJeh9pVh0pKIzOgMV6YXrkKBItVdaRApTapiOLF5ic2VEu56SIY2EbZ/GWEZm9SDFJ8ZLxkrNIGnKGlLVcgsOI0mKLEIUyWdhWhqZpiXEkxwzZM/qBrZfCltVHhrpuMdbKZ6SNoPrGSqIsnhhGMcUPSdhEaLE2MIqURmHXBkh2wt/9aebgN/8qt77+JeqqojK2MGrVZTpjjFKgRuDx8SmMFW3rMCiZJlrNdD4BBU5pXPF4U0ZxvrwQD6BxkHsgZnLI/N6Tf8bnpjXq/jEPnj/iHzKwbhuGKEWhMPUmMrmO8TId7pVb17myNyOFkfXo+YM/eYfHF55nmsxXl2u0NjyONZ/s7nL7xm5JV7MFPBEjoMw2MU0Ya2OI1DsLonXcefiAP11e8I12wo3nnmW1cdSv/iX0wTOgLRF9OXTIBd3bSjL+jK9kOXsqVzwZZcJw6ZuitaFxFcOYyFZjmgqdA5WxLNrMzrTBR4iI/97hfMbQB4bg2V004n+VEyYZ8LAZI4OVwYzHMTE1Pnhpwo2l93KuWDJKR4KHIWR2GiNsgiwswhSjpMUqsK6mndRUvmPmInVTYYAYNiQvXqYC8CH3txJAQeu11CxlOLFdS2ghOyavUEo8CY1JhBBQZEIcUMrhx0xiw8PqK7yrX+A3/o3foppOUMYVBYGchyrJQCZngfM2PnK2GghRErudy8waiyZdniOpgIBC9FWcbUaeLNd0y45P3niTr0bFIvX8Kzfwzq3nqfcOcNbRqszUFE9ZLW6vTkX27Bm1CkTgAVd5mGb4OJavn+m8Z+09j9ZrHrz5Jn9LG+LJGXkx55E1/CdDJL3ygrCqzPZrC0CSoYQyKdQ29CxJTTbEyHIYuXNyxj//0Y/57z53k2/c7NlZdlyke0TOSyJ8Rmct+4it35CWz1wZUjJEYgG/FcZa9hZTdpiTsgIiOkdySCSt6cMowGapd52GViu64iGljbDtU47MWodRgdoq5k1DCDKEPdjb47nrzzC1itdeeh1l4OT0FJcz1gSyX7HuFZv1gHaW0XtSFIBZZUulNXWj0AZSHjHalIRbI57MObMZhJ0SkJTv2on9jEYTTaadTPHDhhA8zuqybmU43FbibT1tJ+IVmQNOO6aNgDG11aiQaaqaoWr4/fuRx8rSW5g9c5tv/aXf5OUXn+VgNqFgwkRkP7RNRV27ImcukG4ZWjkrjO3Tvuf4/JTV2Qn9B+/ym+uM3zzi4xdeYPHcHtYZMDUGJyzU4u0lBvAShhKT+EVr49Cuoq0tbS1Md9GICxNUG2l8U0z0/cjjB8f8gz/6E17JDfPVCV1VSXhaDPzERv4vlcJ+4+tUrmaS8yUrW9YoUEahOUmITM6JmMCnxKbYOaQxMvQj6+Wa+K9/yJ+fzfk3X32VnbaldwG1e4P1+VKa5JwwWcKNxCIH+mQ5X0VWPay6yJgywyCqpnEYSiucGEaRhyu9YaeF4GXQGMYicw0BXStUhPXphnay4ORhz6SKjMGyO7nFs888w6OH73Fxes4YH3LvwUMqoxm9JxuFqRSbcWCrRFF5xelyRdtoxjygksGqzOmZp6rE43AIHSkGdhb7XDm8hTUrJtN95s2czabH1j0meYLP1NMFOgb2p7uMMbNenuCXJ0XCLInrjlxSjDOVcxgMySdC9GAy9zrFP3vvjHU1Y2++wOtMu7PDr/7yr/OrX/82msxP3nuTDz56nzt3PqadTvnyV77JtWs3qE1FbSTt/M0P3+fhz37Kl9/6iF/TNW/nNb935YDXv/YFaqWonaF2CpMzEi+iyvkjdi9rW5RGCayCWmtGwBrNXpO4uVNJLZlg7TMXF5mYBVyaOcgRHpyOhCQDtATkmGhM4ngIcs4h6qJ94zCbnlolZpXh2mJH/H6RujkD63FkDEWdoGFvUrHTbJOgKPdEKhYbmpCKeiZDfi2z7Ea+/+N3+P/8qx8z//gjfv3mC6gxQJpA3iETaBqDzmKJpArQKb2HfD2yKYNsdUkEEtqG1AkyM5HhtgUB1nKGLH18lK/MOCRsZSGJDVYKEo6wPI9MF5amThjjmM/2ODl9CEbGRk7D4BO+k3ooRBmy9ZsLtIEYirIkSv01DMJQkxpZBpSNE6Xf6flIU1mUy6z7wM7OHvlszcYPEi6T5cy2WpNDYuwV86lh9InlOsgwfoi4ZsGjc4+ua65eeYbz1TmrzRo/RFLsubJ/k+dvvMaff/IxX3/vCddtxe+EY/7PVvH6X/51BkZM0OCTDB+9prJGanYSQQmTUlVGrLyM1MdxqxoqNYbWklCuClnFGRk2CG4jhBufE8tupNsIwXOMmT4GfPF1D2uP2vTUqkWXevqS1FDqkVuuIp2v6JcXDGEkxbGEgQh5ZMsYVKjLoA+ltoFgCp1z6bOhz76sj20TK7Wd1gqjZDioNSywfOXGNZ7ef8ry5g3+0aPHfGG2i9MyqJ9tKuKZnCHGKAnYKPXepkuEKKnj01rTjxGjM6s+MuaA15HFYoF1DbOdQ2xdobUidGvi2DNs1gzdkvX5Mb7v0ARW9fX/XNztv+jrFwb4tBLpTEypsLuExSaJViL3M1p8dlCIWToSMpCyQlvZxOW35azbym5jJHQJZ4XR5IyWCw3xoSHm8uFLARVCIkTIg8eHLBdoSIzZUiPTKacy1koMt4+qHIziqZRiJ745TlM5AySqWhaONGGeMRm6QdhLk8ow1XA4UZdMFGm6KKl0cghufW3UliGYMzFkCaoo5s7khE0KpaX40sbIIlWR2ohERSmZ1n560Il0UuRskHspUG3tSuogZFpiMxHT6hCZ7e4wdpIA2liHHwdUGtCjwtUOP0Q0SexDskg8Ve7IaSANI6kwVrTODE/vkW1Dzg6lDC5bMSev5+jJLtXeVWa7V6kWV6gWhzSzXaga0MLCA/VpISRdSZGAatq+5+LtN3n60Sec33/A+uSEzcWKfr1kuV7S+44xB/oEQ0hsvKf3YqjZ+0AfPGPw4n0QhaUwtY7Pt3Ne/dJr3Hz5Kk8eP2C96Wn2ApPKI5Yo+dOo8CQFgi0+j2lM5DKBTSmKSarL1ApclACUrQm4tqURUEoOEHmDwg4N4oekCkAroRjymcvMV4A8kFj0kMBnQ0yJtjI0OuJTpLYarKy3ymicMXJgFWaVLiBczlswWRoatpIsLamn20Z7O8UTINNAVjIt0/L3QWRiRmtJOdSgUhBwJgWGkzsQ4yWb0WjwJAafmTjZ4FpZ2HmWf/D7b9O+/AqvfvNrVLMJlXVoraSgVxmrpPDOZI7P15yuNqz6kb73VEph0ZgkaUrWaIYU6TUlQmDL5BSpGSVJ1MYKs5hQ1xV2sLw/sfy89pyanlU3cPXqATZmxph4cHIuU/BhZN5U/NeeP+CNR8f8XAfua8NNFTHImqmtxmnZE6QkLMcoZrN7iyl9P/LMc8/z07fe4Dfe/lNeWW2omgnPPv8C1toi4/mU0SQMPXknqjybTxnR26ckn7E1VgJdtubNKTGMPdZpnHVURtNUhtF7tEqSzFVSOIPSXHQeqxOjH9E5lT2w9YkRbzCncvHnQnwtDOXPyf9ntPA5+cws2BY2FwWA1FLDXkrhtmxLrbdNUKJyAtChwFgJBUhxIAWPz5/1vZCwo5wSxpriHyemxZlBzurkUUmaV6U1OoGtDaop+8MAKpXk4IhTEKn4w4cVw4tf5Ytf/TI4w86ixRYbilC8zWIW0+BExhf/tmnVCHMKKYBt7RhzRJHJhcnRuJqkZJAVc2KMwoiEzDgObB7e45shMPieN6YHPDk5E2ZsBmedFF7W4pRi9IGzk3NiGNH6iLpNPHm6ZLkZUDpzGnrec5Z8EfA5s5kfkA+AGDgPnmk7le8tJUjFOkOpS9BDG4WxisX+LucnJ/xoecxfmO7x6A/+Nd3nnie0e9hcgIsY5czYhhLkXO76ra9kLsyVP/vKJSpPajJFXTdU8x1qEmHcoEn4AYY8CkNUSVF6+0pL70diGJi1lqmSMBWFwY9jKRYTyWiWm0Agse4y1kUJiArC6EHX5HEgaxjR9F4S6MegIEZSDrSVpXbbc0/WmO83UhOkTLfq5JlH8beTSA1dBiu6eL7BNhHWaJnyGlOc6ArbOPoISqRyxgqjMKHRYSQrAZu6/S/xlnqN3/jOLzGfTwqgPpYBTxloqC1jcstuCGzZTFYrnM44I4nfqvzJEIM8B6MZkqKnJ9rEcnWBPnnC1/2GjR558uJzjFXFxXpDUg5rxW5FG4PVGgNM1MAXbnQc6hXKGlQ+oGNOjGK9cDnRD4EwnfHee3c4bwYWyw1q1XExdYy7O7x04wpHR3tUzmLMdqyht7P3z/hdpsL+VYwxstoMnJwe8ni+w3/84+/xbDvHJrioBoZqxObSYMtCFa+uoo7IGWIcpRnYDqa1tOXkEWMFACImGYyVv2NwZGdFkRI0O61if2fK+XpDFyOhUAeU0jTFjNygmdct070Zq02Ha3bYmx+hu8dMKs10NmMxu8HRlZvouiXGyOr8KccP7rPpBlIcWV6cMJnPaesGHXvoHoMayAXABxnICsBlWA6JykGlQGVJqB1CEom8tpA003qCnYZSPxRPYSXDy81gOR8Cy65jMq3YaS0Tp0mDZ2ErqtYxYvnBceKtQZHmLQdXXuK1r3+TZ28csDOv5Fkp8UAakqhLoipsnBRKom9AAhLEg/W82/DkYsnxySkX9x/z0iePefH0nMeLKY/nNd//2Z/ShVH8ppXGGsukrWibmpwUPiVClmY/hlzuWkOlM195fgeVPTErEpbkKjbJcb7asNxs8AHm8z0OX3qen775Hl/H0fsNrWnIGP5wc0b6/NdodnbYnc+4frBP65woTbQEhgzjpiSNx9LAFulh8csMXmTIm35k1XlOlx2/84MfMfn5z/gbn/8CVWuZxB0+7A3jEFGlvlBZ7n+VQVvLvNJcaTUza1gNA5sScCPexyJlbLSmNZpWJSYmoq1l8BnvJQSQCkgBq2pUSNw8eJEXn3+NN9/9MR9/fBdlprzxxve4cu0GN2++Rr/pMW7KlWsHPHzwCWerh3i94mA+xylbbAk8dWNwTthTtXLMZpa60gxjYL2KPHi0onLQDU95+PiYl26/Qqbh6OZX+c3v/E2GMIrfXEyMfsP56THn5w+59+AjHj95j+hGLIpxsyFETa0ii0mLU7Azm2ACqBzwOfJo5fjuRxf09YR6MmXMmZ29fb717V/n21/9JmT44Vs/5aOH97l//y7GWr765a9w6+A6e3aCU5asEnce3ufHP/gxr9x7xLcfnBJnu/xHRvHCn/uG1INEWuuoVSrgh5xgqShlkkrUlRY7pyyhOiZlhOSlRHmBKGxcqdX1tr7KgevTwIPTjtVmxGdRcQ2jlxCYBHEMUsOnCAZutg3+4SO0D6gwst/W1LrYKSnpxS4Gy0XXkwtAWtlSn+XPXtxZai6lSWOUIMgCXC9ay69//WX+8ckF/+hHP+ELZycczReQIlM95eMBbO0F0MqgEQ9KUJfBdjkL+UBbK3WoNuJdva0lyv1ubamDU5Z+TW9tizJmKMpAL/J070OpOTMXo6JbDaynkbquSGHD0EV8EOKRddK/TaeW9SZgrcI5Q1U5+s14Wb9iRWa7mFu6jfR2qESrDEOG0XusEcVTLuy0VbdiiAHT1EwqSz90zBYNRqvLZ2d1RsI4KpxTBD3l/mmPchMOr1xlPXQM3SCqHgUH117m9Rdf44WPPuFr73/MEQu+Hy3/9mbFK3/9rxDqxMWqo7KWsR+xRiSkGlhMJxgt7MLGaUKUcKN+LezBguuV51AIB4VwY4rHu0IAytpanHWs/cjDkzMwlvPTJXc+eIBPBu0MKEOVDM0QqB0iydRbVZYwRHWGm8ZycHbMxfExY7hNVFLTaC17SFGCkSge88XWRxWwXClV2NlC8FBbtlMBAsmZrFJZS7mQXTJza7h2MOf0uWf5g+/9gL/Z91zTGq0t1TCyky19lMlsUyU2g/RGAj5muk4sLGoRPWLamruPlnw8+xDbr3DaUdU1VVVTVzVV09LOF8wOrlE5Sxh7khfG4cebml/09QsDfN2Q0GOJ3SYXaRUCQFmhbqbiMeW0+IUoDa78eY0mbvX05M/8+YwxSQA8KFNQAcZiaSwURX+fPFlLMEcsOnwFOG3ZqSNGR+pKJGsoxeDLJRuT+CIoaVqNLdp0oWkg7IYoLBYnAI0xmVm1bbg/lfKJga94VCmlgVAWU1l4W4ZELvys4qVmSvPsjCy0GBSViSg8VltUToy+pLMqWYjF0gxhP2SySWirSqGu0WFDRhGzRc+PUH0nCzkEJi7jL9akygnYk+XzykqTo4OYpNBK+hJQ1DGjdIVqDT5ZocdXc0w7x0525cfikGq6SzXdoWoXqGqCco18j2S23a/eIugF9MxbwCLnwiSB/sEj/uH/9t/mzs/+NY994DRGlgrWCjYoRm0JxlI1LU1TU7UzcmVoZnPCGDg/XzJdtIzjwPHZuVBsfSSkyE/GNb/+szf49o09vvD6l/jk3j10/xEKT46ZMUJQ0nxuhwpNNrhyuAmYogtzSZ5xLNTgLXCWgbGnsO3AmoxV0v4Jq06I8UYL+Lv1pBKafmFNaUVUMqFyRtFcgoTS2DjzqQxVq60peokRL4dYjuHTRMScyr8HILIR2bPl8DZGWIdqKyORKVrWRTqZZZ/qHITdRiKmsfhWic9bVgXiMSLJ7GMka4UPMhVL6544jnxvuWQz2eNzX/sSV5+5wnRSkXJi3XcYC5XSuMRloImpxDcojYlEEM+llPA5MOgCwFaGznvG8tBUYXkZMldmU2ElDZ7kB66SaIaebp7BRHLuSSlyenpCrcEPAxfrgTGBjzDVmd3uIc/XkT/VmWMtk3ETE00XpUFqajF5JRdTYwGBK2twBiaTBqZTfvzRHX7p3n0mn3sF5Wr0ZfH0KXC3ZTylMmWinB2CjW2BtM+8chZZbpJQE/EZ1TinxPxeKaaTCc4qhr4Tn5pKkfxI1OLNue5jWZsZTSiAlKG2gWllSyBEvJyKiafG1uBYZEK5gLpb39TReynMVLFsyGKdoLK6XH+Vtp+uyyxfI4RUgIlU9okAhplUpNqGSMJZRYojQ+yLj4dCmy2DIqN0jTUTAR908VYqBYC4AUcBU7MwWR/5BX94esAv/9VfxROZGoexiNejEtlYyFva1RZMUbjGgBGgQL60DDpkDFTAq0rkRZ0fEKZbKvJ6YbE8ePSQ3WHk+XXH+WLBu36QaSiRvh9p9+rLz3Wbrj2ZtnRrRVWCd05DplPi7diHkZMUWXvD1HfUZkAPkRAlQVeZ8hy0kiZAfQrsJgLGWLyf0XUdk1nLndMTTtOK2eC58+iUcTPgqopuMzJ6z2JncTnE2DLCpOjWl34uQLm35cwbxxFjRA6echZ/WjujrVu6vAJGrBqoakW36pE4hIDWEQtM2gplFLZ4KKaURaqaE8oaPIHgMrmaMF20aO1IKdH5C5abAXQg9AN1ZYhDgqTJOpL6kaZS1AWgiz4RgydZhbUGrRQhhCJpkUK3HIkEL0mAGgHUlJYS2BRQISWR6OZi8qwzpJCJGLLaTsFtGfoErHVkNOPsCn908SJf+K1Xme62jDlTlVCViDD25CjIlz8LGyozrQylzsU5ecK5tIoxF+Z5keCsBs/p6NmMIx+/9z6f7wdejJG7VeZHD+7yw/c/JsWMayY0k9llHWaNxfvApIKX2yOOjkpoQRjR2iPpepGgIiEmumHD5nzJul/Tacde0tiLDTtulypoFrtT5lNbLCaEhZNRDMFfno3bC1reeqbKikk7oWokmOndu1f54d2P2Lc1ua45McKiFD9bCD4Iw3QrtU9RgNZSa4WQJBW7DCiMUZAD1hqcdmht5fkkQBn2Dq4yOa5xVrHcrCFHZo0AoUPf0VQWjSZ5uH79WV564VXu3/uYzWrFTmvR/py0OWN9eop/GLF1zdnFPbRriUpzfnzOpt/gs2X/8Aq7O3uM3Qbfn4Nf4sjYpsHmhnZxSM7iL1e3DZvNkvbslGldEUbP4AcyowwpFDT1lKNr19BjT0ojOXra1uGHnnHoyIxMakeKicnBlJQjTmmyD8yMo1aKbGp+cOz5/mlk9+Yt7N4NXnrtdW5ev8IzBwdlmJIZyQQkUVJGkPKZa4ekHpKxVrwDl/3AebfhfHnB8ZNj4vvv8ZfOPGl9wvmtl/n9D9/lSX9BTgNWiSWMJjNv96jypgxqM/gRFSEMAaUVRjk2vSdOG2pGnFIoo3jQV3z3zQtOV6OcY0kA+b3dI26MI1ZV+G5D3VhJwB0hjB6tFdev7nN1MUcpsRmi1HikbSDvFqLYyteLU3lhoaPkHrp/uiZ7zz/+3X/Jl4+u8rmjq3SfXBDDgDPi1WysLeoSS2UcZM1BnVg4g3GOGKekIAykMY0kJUnrVikqpVEqFrWMl040iadaBlIVCAPMJwuen+/zwvyAq7/0l3jjgzd4dPIAkmd5fkbwkhh9dHjE0cGLfOe3/jts1md88vB97j/6kHfe/VNQFyIz7DN9n9idObLS9F2AMnxvW4uEEWuUTszaPeLgWJ1dcPeTn7K7u8ezz78m4Vh+ZOL3WK973vvkRzw9/ZDjJ+dYbcmpo7KaxWTOjZ0Jab1mGHq6fqROjoTnyaD43oORbrqPSYlhDOweHPD1r/0S3/qqMPd++PMf8vGTuxw/OmYYPF/+yte49fxtdhd7yFQ7c7I84Qd/9CdcufcJX37/XW7aHf5vmzXuO79EO5ugVGReV8xMpLKf9oCq4FEoAfh2Ks00yV1prUhurVDWqHTpEXK+LFm2vXXjFFOTufdoybpTIv9XiaHrC/kjk0OQQQhSoz/TWKb3lsSLDX1tWPc9Vqjq0iMg3sDlQBXPs1QSbUttujVA8n6UfcXWeqMA8+IXwNe/8iL/6Xt3+MGTx/wVZ1Ep0rgpezvXOB8/YjN6ctaAJnWj7A2lJIRQc1kDq+K3uq1/bcENhIghQYAxbIFz2IZ1+pjxY2YTRpHopoxSYkGTgRTlDg9Tw+riBMjCwlayP9uJYQjifxejIvaRFPVl0EdOGkJAofB+68OvZeiWSu+mFK4BbRLny4jTmpQj06krYJUnjp7NoBiDZ1rXoKRAmNEyczV9M+Hp6YBr5uwdHjEMIxcXF1jjMCpz/eZtfvX1P4d99CbffPNtXrs44nuN5385PqT66pfgcMF6WJNjwiMSXO8DyhXmdghMphWtkxRio6DvBparkYwStrAWAE+XoWRlHTFJcq3WBZjNWdLEo8YHCe5xOdJv1jx99ID12QbvPTllpvWUz0WxnxhDRNliD6O1kGrITIEvpcj37tyl+8JrtHtz6Y0pygeVLwkcibJXCqMvFt9tCqt1i1Je1qRbdUVhhlL2Xy698PXFnDenDQ8rx3vLDVeMlcRxF7hmZkQvTNnNEJi0DqMVAUtYjRJalhOVM2Qi3eBpG8t6s+KjO6tPB7uIrcukbZnPZhjT0E4arHMY12Crhj7u8Yu+/v8QslEm0noLZsjPMSmCB108iKyOhckkoFIIWtBVVSbMZURgTEaTLlki2xCPwYuvREy60EYlCIMoEzljM7UDVysM8RLko1BniVyGa0iiffEwKGwQtWXJlOacwpxWWR4Uqkziw7ZBUZ++fy00d7QctCkJmBVSvDT8zIDSkubirABB1qoCkAjMElOWBK4ECk2MYkgfYiKOCl8WtinTFaXL95VgHDT9GIBEU1spXHWmchOSVbjYs/ErxlQAmK1BexZ2ZMDgJpaQM5EKW83QkznV9IBq9zr17hFufkQ1P6BqZ+i6RdsapYVps5V4ycHMJSvjU8ZRudWArR4+81k5Q2brV/KjP/hD/sP3PubJS6/is7pMffSiGUE8GhOvXNnh1sECR2J5fkE9mdH1He1ZRTSOrC31wRFaO0xSkvIYPB/ef4fbd58w/8oX2d/x+NWHqDGJHxFcmvxvscjY52IkKlO5yoqH47bRG6PITUKZ4IjZv8JZOXjQ4r2htiy6LLIiI6Z4iJRDLgaQCbtc6gXMKdO1hBiMhuKbZRSSIqmQoA2hd14Cd0YV5tI2rEaVFDfk19v3msnFq06kvinJ5ZuQtSip2MIUE4/NSFZbmSXEHGT/U95LKsE1WkD+xbzBKGHbLpsFv/ezNS/+1m/Qzhvms4YURpSWoA6FKQxd+cBSVow5ixcnEiLRAa6pGIp8tnWSVJeCL+trCypDrRWHsxkXXUffj+RuzQs47NCx0SLpzyoyhpHNRc9OpdGFAq6VJiWPj5n1ELmGoibxULpObEzsbjzDZqCdTATcy8WHCkkkVkDtLGs9MD845J0HH/P4nbe4/crLn9kVW3RL3nMuzJsYozD8igRfXzYG+VM8MG+LLCmgqWC6N2ezvqC2CPsiJPAD2RkBJqAkI0J0kjSbYzF+JtBU4lWalUjFfYaMmJIrnUqhIuwzW843V4zS68oWvzxFbZzIDhGWnyoguMjiynmREqP35ezjMnBJFdsFCKQkzzarSFDyPeYcScVDLyY53ENMpDEVaY5I1doasq2IGcYgPmopxxJWY0RSnwOhWvAP3ve89tt/BV05lFIsZi0pRgKqrDxhp6vCpnTlkphNFkTg+HxFP0hRvZWxoDKTdsKsaYQdVgJcpFCUuwwUT+494AvKUZ90rG5d5SxsMFXDOGzE1zJHqqpGa00IMlhyTtPZgDKRqTVcmc84Xl3gjCYBqxDYREUbFO1qw3TTMW0adndaAcXKOQxF2lD2Mlnk0Xkx4cGjTDVtuTiFD9dLnjMTfrjZsF6t2DncZVbNxd8yZ4ZhwLntev1s8rOceSEGMZXXSoo9pAALAZyzZKVIboLbfY5BnVO3csY000MmQePXD/HrUyrVEX3EGrGy2LK4rM7g5AxGZZRPzKpEUmeEcFbktgabZHIbx0jjJOBKKaitImkYQsSYCqsSwWeM24YglfsZBcrJzCpHdC7SIiWpm/L+C0Cv5GwS7FPhqkoYr2XgRgpoh4QyVI6mctgMWXmxR8iWQMXvnj3H7KXbPPPsNcYExorfl1JapFm5nCZlIr2dVreVpi2QXkJ/ak7O1uog47QMc0JKnA0Dw+DpVgPhkwf8mo9MBs8nC8eqSNOVMTStY7Foy2Aq4aqqNJ+J+ycjXzqsyrAgQjFs74eebugl6b7v8f1AIjGUs4TNwNF0pLnoGYYBcouPAa0tzmaGIMwupYBiLL+trVIBNHWOzCeOs5nj6KUX+cEf/h6/fO06c2upq4bsRvHtAwEFciq+P0W2b+SezcWzYstulJo1kjX4EPBGmBzbgCAFLFcn9NxifzJluRlZBwFf0zDSGMfCVBwsLOs+4I/vc7c7wVQN2Q8cP/4EfXqfa60hR09UCZV7+tMVVqgq7KI5WDR4MrXpOTl9zPVrL1DvvIjfXNCvz9Da00z22L35CtPdIybtFD8OxPGCcXnCuDonxchmvSaFDaRAVU2pp7tslktsE2DoyKFHKY+rpL6P2aIwzNtafPJUGciOiUZbzHTKP/1kxY86w5VXXoZ6xvPPvcjewR63bt6kda3Um4DPHjTFDkbqqG3qaSrMkERk7QfOh47V2PPo8SlnH37MNx894db5mqc282Zac/f8BFNJeImpxOdQa8049FSTOTGNWJVxjWUMHl1YjSlFVFLoOFLZKHe1Nvzk3Q1PTnphiGdpFK3VhHHglIyKmRhGkhWW+Eum4rv3HpFvPVd6oE/31tZn1Dlb2LaF41tYrOpy2E2p22QYcuvaPpvgOfvkRf7JB+/y/HTGfttwdVKhTEIFU+rMCh8T6HQZRCD3kwRa6UpjrCFlAWZDyqXGTYRkGbLBlDtYBD+SQtlUjpdvPkPwiqlrWezOefP9t3h08oTpdI+r115EG8M4bCBtCDrz4MlHtG85vvzFL5HTK3zu5a/xuRd+iZSX/OCPv8fx+T2S7/CDZmcxo5k4rAkM/gxFx86OIvhE9C2VnTKdT3l8foztPN/97r9PM93hYnlGU1vms32uXnmW9eoxldPcfv4KXRdx7hrr9RO6cc27d09oraLKljAGWh3o9JTvPYh09QIVE2PU7F/f4ytf/ybf+sYvoVLkh2/8Cfcef8Rm3RNGz0u3XuPl25/j+v51SBK8swnn/PCPf8b41kd88e33+CI1f5KXfHD7eY6O5mBh2lgqLT5lugy1tsnkW2VXKj5USUMkoYx4BmYr0kij1KXftKIMb0qv1OjIsO44vRjwUcAxpRLRj5ASOiZUiOKdXuqQRdC86io+fPCQ5mDG6WZD4yR4h22PkYviCVmXMRqS3hIHuOwVKAOWmD9j8VBsZmKMTCeO9mjBD54+4Tc2PbOoUAkWs5s88R8SUgGTY8CLPbbANUrukJhC6SWLFVeGmGQ/mqIy2fbBMSdSEnVHZSQgbOM+rT1QW2VVYiub10rRVBVxKENobcXrOwtpaL0aSVGhbKljciaEjKukNvJjYAxyNvhQUn6T9OpkWMwdY/CEYFEqY61lfzHncO8qD58+ZN13hBRxlS3PTghKKcOhnvNFe4V3beaji3MwNc9cv0XnN2hnaCZTLi6WPHPtFr/yje8wPf6Amz/4Gd9YN3x/csb/wvc8rCp+6eXbOFexM7WEoSchklRtjCg0yDSVBI/UlTDTg6TtMZ008nkXbMcZQ2UKMcWY4tMu9bAzBnKisY6cNU0SMledNbUugR05orwXMlOGg5RxQXz6DJkUAtrYrT8aKiu+XTX8px/f5cknd7lS3wYNIxWq1NamqMmSduQonnq6kJJiSXnPxWM4fQaByGUvbYfMg1I4pYsFUaZG0yjLyXzOzy4u+KWmhTyCq3i2XdCammW/IUbo+ohSBqUCWgkGZY2h95Gq0ox+JFaw2ayotL1MAs45471m3V2wvHhS1EgOW2xJrFYs56/wi75+YYDPGkk8zVnkt2MSGqwpYJ/VwiDR5QDxQdgvUiYL/iqyFZGnoRQxG7yXh6AN5CwNbuUUk8aKoXGZZggTJIr+XRWZHIIoaxUlqCB/KhHKWSbn4bOTMy+srFC8jrax4kpHkXsVEGbrzmvMZyfmBcwqZNWYxZNNNqxGFSAk5ogzAvrEEhudVClStXjnaS0sFbQlpOIXlTUxfSp30kqhnTTYQx8kACAbYtqgsqKuhQFJErPiTbDsPvMiOp5jPnmbcVgxjInpbAcqi6pmNPN91GSP5vAme/vXcZM9qtkebrJAuy2IZ7a3zGXbBkJrZdtcqG3EO+XC2HovcXlIbsE8AawEmIhFqmDIjJsL7tx5C3/rOs0rn0c9fUK36SFlWufIMWKSJIXqRjPOMktdkRc3GJVifVHxoBtZLXt8lqCU4D2kknipFRe2ZoyZ68/c4EHMbO4Li0bWaSqNyRZgllmsNdvnnC5lgkNQeK8YS7OhjSk+RJqqMtSVloIvbdNcRdJojcgKcwoIlhj/rJxRa7aBAygZGqaUcEpS+basri0bT/wwPgWw5b91+bUAyznKoSj+K4hXT4r4qBmDEo8KZKZstLxPXRhdAnbJNM/aXOhbGasNMQmbULwmhTatlCRDOSeSHIMvALDiT55Yuukue9evcrC/JxO7bbOQuATdhVEhe8fHREqfTvd9jhwPHWVoxKyu6UqqnypAhcoCeFbaobJIUEiZuF7zucEQnWFpR07OV4wedNLEMaFqhTZBvHJKsrYnczJkvjipmdmRRySSdugQeKYPvHF8ymxnJpR1VcDzlEvSKlSVyFXb6YTjmHj/7bd4/i//FZL+dK+QZW/HGFitluQkCaEAxmiGYcBaU1hclspVBSwon73JTCoBHIbVhUhBfCQ7YSFZJ+Du4BXT2VxiSInidaRksGKtJlOjrZNUsTzQjx0+RJGc5ERVWSoLBospYIe1co660tB4Hy8n1bqcucYKuwsEkFBGScMMl02OylrOdgqjKMrQxViRPsYohtlltIKPgS0DIm3P1KyKX5+sl21QgfLFesDI4rAF3MgklNX8/GQPf+3LXHn+Oj4nZpMJRmvG6NlSZU35t0Xami/vkywHoeyxVM7/AoqCgDndMJLJjCFIMxuCDIAy+HHk9JNPeK0fid2GJzPHYrLDwjkeP3lKXdW0bUPdNEAurEM5QJNK3KpGXnFw43DGEwcPm2PuA11WrIkcjFCx5tam53zVcbg/IUVPXdWXQFAu91ZChlTWJNrGyjDDGrxxvLdc8tv7E9isOL9YcaPYTyhr6fuuNNfmEoTZTvu3aLTZepIqRdM0f4ZtlgFlDD4r0v4tnnn5JusnH7N69AFDgCu3Xqea/Srrk8cQLujOj8GvScMZav2EHD059hReuNQHOVNXpoDIAVU1jH5gcMKu69bit2mtRtUaq4EobEudvNhiWE3S289cBh1GG+Y7c8Z+g9OgcqaqkrAJy5AvZ5E7bxn8sTC/ratIsS8SF4tpHM6ILEdpVe4EjwGy1ySbeXd4lo/Ndb7zjVfoYqIy4lemlRHAodw/24JW7t5UrmR1uU4Tn97HFJA9RglvyWQ2PnK+6elGz+OP7vL8xZLbw5o+9dxRjhsv3ObJumM6m3Hj+jX2dnfKfsyXQwifM5U+Y7m8B7EjttdAC5PPdyuGzQobA+NmYNgMxARdYWcoH5gt1zxvah4/PuFwp8U6RxdGrBUvxKwKMzIn9LZ5UwiDPMvd5ojsL2rOZzPu1TUfnj/lG9UhVxczuvpYgoS0hH2NXpK7syrMxizDQ6hEWZItIYzF//LyqCZGMXfXShPDKGzbkFEVHB1eZ9cHzo6f0LaaRaU4mFXsLBqiH9DRYma7TOb7nJ6fczBZglK0YaDKPdZlBh/ZrDcMvZbURqtprCUHCXvTacOVGtT52+ThAfP5HvtH+9SzPXTVSA2+OcX7jnYxh8kBoZ7g65rge6azGSp7kh/RrgVlMHkkdAPK9KB6NqtzFBFjFQ6H1g7dFLZGsqIiwNOrmn/8/hk/7Cr2n32eUM84uvYi+4d7vPb88+y4KSoksetIXqBmVTwQs9TSMRa7GuTe3vjARd+zGgcuVh0PP37Ezr37fO3hKX69ors+5ffu30XbinFY00yKn1IW/6hhjPRDEpBNRYbRE3LEOTmftkCBJmCixxnN0jseng4YAz7J0ELuNFmf6yx2Bil4Caoh8frM4h4/oV939F1Pnk9AfarCEGsLuXMKf0BSKwUOvxx2ocVNSmeRO17dm3P2uVf48fvv8MnJKbf399nRE1K9wlSZlBQh9hjE69cYLfY5ScCO7fCDpFChSNKLFyHKUlVTpotdLs5OiEkk2kp58SvzkYNrL/DuO3fI9YRo55wtV7zx4U9oplXxxdXs7x7xzOERVTXn+Wdvc3R4xPHJE6x1nF08ZLpoSXHCf+uv/49o2go/dvQ+szw/Z+oMh0fX2YSe1cVTTk4+4MP3f0KMHTEOvPHhHxNS4v7DGus0bWVZrtaYCvYPZvTdExkyGsfOdI+pa1HVlNX5U8YopI3VEFhUDmUTG7vHDz4JdHrO2A2YynJwZY/XX/sy3/rSt0ne870//QEPn94naeg2I+18we3bL3Dr8CZEsM7Qp46f/OnbfPzDn/GNkzu8sBw4nc/4jw3MXnuBpq3RJJwSeTRbRjmglPhdSx+XGKMo0lLOlwP6pAqQJdN3SbsvZq2Krf8Z1AT69RrvRRIo6yjjNz0mZ3RImJDA9+TCLlcp8quLCT/+8A6Hr97mYr3m+u4uSqWCfpQhX4qinSgkFQGvUjn30iXxZFvbqSz9SQgSGBGC56LvaGYVb+fI3eWK16hIaWSynuPMlJBPPmVOx0Ta8poUxad263ksd2iN1L7bHnOMgRDE+3yMpX8o/xPP6S2kI/dT3uIAlyzaTNcNKC3BgdaUGtwKoahqtBAOlHhbayR80A/yTFUuKbtlaKmVLtWewjpD8NJNdZvIaDK1dpxGT60iu+2Us5MlY840VYsuroFtqHlxnPJCusrbV1re6e7jQ+TajedY+zXaKlpV020ir77ydV576UvsrFY03/tj/tzTyAfAvzV07H3py3z15duEpiYd98wPpswWM6KKGBUZSaQsvujocnZIE8DWmscoAenkOSussdiCchgtBACUgQRaV2VAKGvTKkdd1WQf6YaRYRQP+ZjFI5icOUwZHQMqJmwUtilhq/yQXvDVqmb/5CmffPgx1c6CaeNIo5OhqjYoI+w5ZSzaWMYUxWojRi42HePoxdbLB6p2gnJO+uZc+omUOD8/xzvL7nSBc5aTi1MenzylcmDqhreWJwQfcIyoruNqNWe/ajkeO/EpN5pu2BpDSb86+kTtNOuNx2nFWIvV1u5OzUQbvB8JSVQNEpwnvYQw6yXszWpHr9f8oq9fGOALWVIqQS6u2mkMxYNPCYUzBJEGFUcslJKUNZFrysaQZi8DkoRkdJEdFv8CYQYqiIIGA6Dzpbnz1uwwRQXINAsQ5ksqkt4CMqKEWYgCZy1kmb4L0KbByCEnTWcBXVQmFCpuhDIVkYmbSGHkiJJj5VNUP6XiAaVkiu6L90jasgeVlmC0FFGIj6FSkuizTcy0WZFNvkwnzinTx8iYC+NMbenL0uhTLj7X7jBa0Y9Ppoe4ZzKmmbI/28dNFtTzQ2I1Z7L/DNXOIbaZkbW5nBRti+ct7p3Z6tcLYLf9iMufEWS8THli/Ay4Rynm8iV6nqE0yXLg+iGw7tf8y3/69wl+xDQte+2MtBvYTAf6UZgvxlhWXQ/Ak0Hx+ONzIGO0eF4tj8+JWWR1ptxsOQtDJRnxVlhbw3q5wobIjeducv9DS9VsZa4lMjwJeJFKYxQK5VcpueQ0tkyvNM4IZb5yjsYoKlPozFrAHqPVp8m8SgpaTbwMtKCAftu9kZVMpbItfgem0I+jyLiUzgIKgkzSU7o0bd+yAVNhZ1LWmFbiDafKtLwPYiSbszQy2mi0iVBYSts0YlBkZYklCTmEKHtMgzaZygkQKpTXIjHLUrDGFIlBZHNZwdrs8s/fXfLCr/warm2pqwLYOsVQPDK2eHGGsn8kTCRnodBHyiIrK8sqgzOGdQwi9y4F8ja/bmoMTht8SsQQMWcX3LjoiXS8XD/ltWHJg1bzO+cyPY0xU2mFRZGUPPCkFOc41sMa5z1n2RCMBj9wy0d+9PCE4foRVV1drnWSPCNhFqlivmsZbMP7H9/h1zcb1KQt08XybsqZMl/ssmWNbPdWVbeFrRQZx4EuBrwf0EaTYqK1mWsLsUCYT2oulhuUEQPaEEaIIgNIUbNar2lcxf7uQtYq0LRzrLVE72knU/r1Oauz+6VJKcCA1mXKX85QpcVTzkexSAiJTYz4kIGIMZrgg6ytsJVybOG5wtlWEs5ktRGAJRUvSivDmuQToRdP0kzGpMJCygLKl5ksBgFmjClfwwoQIP/WlvspCdRWbdOq4f/H3H8Ee5bl953Y57h77988n95Vluuurmrfhe4mPEEBIGhmRmSQohQxQ5kIaSZC0k5aaTMLhRaK0HYWQ8VETCg4nBgOAYgjEARI+AbQtqq7vMnKSm+e/7trjtPid/4vC5yV2Bu9jurKfvk6873//9xzfudrDYkTzvGdRyP+2n/yi4ScMVYxGVWy9yMxDjGHs+fpbP9bL9SsiKkM5mV9Cv4mX9D1g1hhsipKi4wPsZBNiaODQ9zRKTeWHV4rFmbg8uUbaFexnC/Z3t0u56sA/AIaO7F/ZZikA7b8imaI7DiYOikj6HNmqRAb1hB5ddXzPzw+4vLFLdq+R1tHY+XCHovdOsV8xszW2tLUVgbcquHWaobNntEw8PTJE17hVVROor5UCuvEAqtKpt+aIKHsa+v4grWoW63b85Qqz7mn70+4//53ONx9iRsvfAk7P2Lx9EN837J95SW0ramqKTgvofq6JrQLYr8SK0nliF5yuHLqpAwmBRSamAesAZJGOzBjyEaUttlHcm0ZEtRO0VSNnKdW4ypptDfWoYChXdGvlrLW1mrBHEWpkYXkkRlD9qL1hQVEyRa8zCKjRhUwSVG5kaxlF8mDgjKLHOUL/Os7Db/2j3+RTmXGVq4DqgAjSoGPgVjU56qQPetz9hlnrcpZuF6jAujGkh0IcNp52iEQ+8DprTv8StfRdD3H1nLUNFy5cY394xOu37jBxnSMhpIBDK6yhBhQPtIOlkXnMSja/oRYj3lw7z53Hz5lNl9igFU3kMLAtpvS2omoGr3HLXq+VK/47x4esLiyw6hpWPSDED8pk7Uq56k6my/WCpcYIzFLMdi4MjQjw/TyNb7/4FO+sbUDM8Ww5YkBKucYsicFUTRlLeeYKNYDGcn7irHsAVoUAxIhE9EOkkmFdBLyIZOoK4eOhtYvuLK3zXgy4bmbzzNpatrDhxg3QAi4esLpfM7O2HFutIE2FcPiiNXJgpQjTV0zBJgvViQkh7qpNOPaUjvNMHisMUxGDS522MUxaeHoZ9s029fRGxeorCHMH9PNnlLtXURhqKbnmGxdgAzt7IBu/1NWh/fI/YJ2cUi3XIiqHYOyNTkr6gT1qMFaR+UcMSacq9E5sxgCv/vJEW/kigs3X2BlDVWzyd7uOV564XnO1VuoBJ5Am7wQ3drIuitrfx1t4JO0EvbRs+haln1H76Xk4uTD2/z6k6e8vMzMQ8tbtuZ+22NHjhylYC8EUW0oRGWdlMFYjW/n1E5KFoYguVVy5wikoFE242xktUz0RUUTo8QHmcpgjZCYbUoMSsATVYoILrSan9GJv7h7j8Vzl0tBVjkbcz5r8KWAe4pnRPgaHFmDGjFnAeByZKtybO5toq9c5YeP73O1mtCMNvHuAQq5KzhrCEnhYyxkpC45ZAJgr+8QoOXrfKaPcmdTakU379GpR9ETk7h/fBQ752J2TM5BSGmXGW9adnentL7Hh45LFy+wWh3zyaOn9H3LD94KNPWYunZcvXSJo+M543rMcjHHmQkbGxe5euky09EW5649T1IGHyPdrKXWDdFPOL/3FR7t3+b2ve+QsmXV9vT9kqwyldVcvXyDmAfmsxM+Wb3F3s4elaqYNHtkt8XWhcsM7RFP9z9gGFoqV9NMG1o15Y37mdBsMcxXJKXY2N7ilS9/ka9/+WewwFvvvcHJ4ikpJGbLJW2X+Wtf/TKff+nzOFWjtCKkwEef3Obt777JVw7ucO29x9w4f4l/cvqY+K0vs7s3oq4108oy0krA47SeSVXJVSoUodL0XspNEpCMxG5kq8T6qrTs6UVBJ+R8KkU0UGfP0HUMPq5FT0Ai9B02A1EAxugl0iLFhI6ZzzcVk/1D/LIjNrWA0WhRDhaFZwyp5OohqrJQSEBK9nhRdeVCKikFlZH9txs8PgTZ543jRCvenc/5XLWByhFz0lHtbnMajgg5lHlS42PEGkOMawAukXIpUChKsuClXVdrVRpa18+UIiuI2ZB8YCATR7rglUURrBCrbhawjyS5lEopycMPJYM9y6yegpRIKAXZyyFjs5XvZRDCxSoYWUNtDSZLTl9tFSOjiN7L/S5nVMhSgpQz9tFTphs1z9c7nA6R0WSXWjfMQ0U+mbNRb/K9qeNOd0g/X3L+4kv0fkCZDFHx4PE+159/la984SsMqyX6/Tf59u1Dhi7zfzUzDi/d5O/90i+we2VPiPQcefLkKbPHB9RNph7tsH1+B1WKPWIOZJ3wPpT5TNZYLpEVypSyv5jxKhViQtN7yQuOMUH2MtXHTOUqKHeSnGFoe0IrziqswRbX5V5WaO8hijMo+1imZckzyAnGOvG6dfzep3e5cO0SzbkdYpZM7qQMlbYsQsCMJ+QYaX3gdCkkYh8i9+89QhtH9IGqdpAVzlVgLa5pqCdjmI5IoxqdF2yMxzx+8ICnB0eyT2u4HwZWXaSJUgQ4qjQXzAbv+gOMVXR9pB8io8oybkREMXjBr5yCsYOLE8veyOJKjFWIQfZ9reS5y1nIJyM5fsYYjMn46PlpP35qgK9qpoy2LkpQbT/HaFGFrC/lwohypnCqtAybPkSsNB6LqqlIahWUAGWIJTssouiDWA7lopmkldEaCg4nC0OlM1RZDG0OXeTOZGkCEgm7KaH05TKeNSFkBLrzYrcBcvFVagUhCfJrrVwYJPZFldZTeZOccwxBhoiUM5VVOKtAVbimIQ4LQlgRYgRly7BIARBF5WWVPgvBVChUlsutKF+E4exSJKl8NkSQI1ZrmkozcqIycdbQ2xHOOgFg5oeo1YyRG+OqPdzOdabPvYKdbKNdLZfl9QWWAiRSEHX+Kji3VgWs7w5rGG+tElBrkK8ANM9UA8hwo3U58DLD/JT58QnV5jnmJ3Pe+Mvv8spzN1nkyNfObbB5aYc3bn3CEBLRS3YM0ZNyYghglcF7ATt8jKRYcv6SQWVdpNeCsLuYqZRC1xNO+4GjxcDzL73AnajIXhWgVJhPtQ6fLd+2Jp+p4qxRoujTpUEWdZaPobU6uzjlKOHogVxA28LeFsmzRoC1lKTpjSxWIwFW18qLRA4i4Rf7YiovoxaFyZq3SsVOexZcr8/YY8mNEvAuROgHRRcMEZGPGy3tvqYMpnLAJxkyYgIlII2oB41YUE1RXypF9MKoZAUhy8afhoTWlhAjOWsMju8dJ+b1eb548zrTzREaKRwgG4ai5lpjy7IUn6lTYpIGpsSzNbp+Z7QxdHHNkspzqcpak4tcog8Rv1pyfuGZrCKYjismsJwnXBDQVDIZxJZqJGrljPm+E2DHZ9CWBRGvQJG40ndMHx+zmC/ZKINGSLFkAIqiS5XcJ200bmODh0/26Q6PGE9uCInw2Q1VPfvF2kYN6xgJuYXWo6qoBWXvWS0XGAIT46kqC7FlVMEQpVFzOrJUKkkNu5bmLJUGxnaJMYZKG+q6Jvo5PizgNDJKAVcHYhCgzRYBr6hb81mOldZgsRin8UrT9gGfgmRV5vIDxVzIl1yYUrEF6fJrW15oq6WBLBd2ZvBi0whJ5Pco+Zxe550WOtwU274sWXkPJLNVWEalcmlaozC9phQDKFAT/ujDKVe//cvYrQ1ijmxONrAFLE4UG3EumaqsWWUhp9a2Y1X2v7UKVyGLOJf3cN106gvwvrZy5Ax3PrrNy9GydTKjr8c8ygrjbAmfFrUfShF8wJe9Q+yVAqQthoEhDsKvGsXYCXA25MxMlf0gR27OFvgHh/SvPIfVhuADQcmgvs7uTCmhcqLtOoxzVM6I6sU5HkTo+p7drHj8+BEgwdKLpTT11rU0zeYkZ7RS9gzU++zH+tleF8esz4cwJJaLgePZXc6tltwfDqmrEabaYDRu8LN9+mHA0uNXhzID5ETbztFZEYLYy0IuxQtGFLHDMJyBySonnFPkpBgpK+y/SWRl8UEa3CmqctZlRVly91InA7DREAaFzxIlknPGmkzlhFhRSqOUKfEcQuCBIiWDNprxSK+faqwboZRHm4zTVnKBUOSk8WbKb7/X8Mov/RJuw6GdRSlzFkidyfgYyh67JjDz2TmbP3NAl5VciB/5WoqVPOWMR3Hadgzeszg8YWs254uDJ7ZzPhlrhq1NpJHSMqor7LpxsyiKUyzW9EGyvFTjqE3mzge3eXvxmPsPj+mDKBtjlPxJlSPRwiqXQocQyTnw2qLlXz064vH+ITtbW8QkFwerRRVpnKNER8rMESXrUQjhAmCqxHTs2Di3xzvvvc1p2zHVNaFJ2ErOTnLGWNlbQwr4kIhBMqRUmROtEdvV2q7pk0QnpJKhmXIu5W6qWKADI9PjXCAQGeuW4egOqW6otGZz8xKj6Q4xKTbOD7Sn+wwnD0ndEarvGDshUIZuxUZl2Tg/xcdMP/TkGDAouUxmyaFUaRCyOgViXBLCnDQcYU7GDPVESAXvaY63qUabxNDTVpuMLr9MvXGR0YuvM929xOrJx9CM0OMTYtfJ2YsUp0BPxJO7ARMbspVCoUVI/PYnh7y5hJ1rN+gU9N7w0nMv8MJzz7E72S5lTpEuDvgsOVSU+4DE5JbCiSztsDpn5n3PfOhZ+YFlN3D/44dce3rIF+89oRoqViPFd+YzVGWIMchFNCqJpDFgVGKILQezwLRp2ByPyCGSYw/IpUllja0sOQtAZoMQt3LurDP0inpFy/zXJinscTnJn5cyFYHfmFb8xe27PH3lBa6fP0dVaZKWYPesEsPgUYXsW5/ra6JXQSFEivoOhU6gs2I0rtl54QV+8Id/yN/Yu8po2tBuWhIrcfcAKq2LBwFtzkqf0lmJnQAzSju0AYfBKqRNPPZo5NlBgx8yIUn5x/07j1l0AZUyJkYW81Mq3XD52svMZ0tSPzBpJjx4+Ij5Yi4xC7ZjPHb03QrnNIv5E05Pl8xXEcU7TMc1o2bKiy++woOH95iMG1KnuXLtPMv+mLbreOWlX2JSX+bx/i0m0wabI8uuxSfPw4f3GI3GTKYVOmWyh7pSvPPOX1CPt0n3amrXoy1sTrexCTq9w3sPtRCPfokeV2zvbPP5z3+Br7z2DYwyfHz7A24//Jh2ucTlhn7wvPzaV3n55ufYcCNMAq88H9+/w/e/90Ou3n3IjVsP+ermLn86P+Tty+d5/rlLzLqWqVOMrGbVKZzLqNxjtCtztjhm0DIPz09buhCJWdHnQDOqaEY1Y+vQGGIKkikpLUrSPOsDKQfG+oR+dYr3hsQ6Uijhu14Ak5zLaxRIVsr+iJ6toPmqUrx1+x7be9t47zFaFftrKrbFIOtQK2KwKCd7pA8CApMjGXHvxFzux9ETQsBpRR8jq/kS6xTRGd5cLfn1oWeERc0XbF3Y4jjK9xzi+v4rBHBKnLWk55xpo8xQIQoOILqcjPehiGmK40Drs4JEiU4SJ5ZzhcBLSu6DpYRKUwo5oggwNJJ/nocERtFYx5ZzbDcV21XNljNsWcdEW8ZKUQMmaGqvsDmho8dlsVXbrHCVzGkOLbmXOuIMRCtnSWp2+cGFc/xwPufO40ecdqdsbU/4/e6Yi1de4PTTO+ydu0LKUhY33byCUzXPff11ds6dI/WZC4dH3PiLt3gxTvjP3T5vTff44hdeYRmWPP7wKb1vRWiQMnHxhOsXHH/+g3eZbO7yxW9/jfN71xk7Q+UUbp1hVyIGEgI6aaXPCq1krJCZr/M9nR9Yxp7TkxMOD4/p+4HpZAIpcXJ6Qtf3HB2dUjU1deVIuSH2AdVFdpWWPTQnWd9RBBGJRA5FoNEN/PJoxO8+ecrxk0Mubm0xHVmykyzedjnw6OCIejxh1DhyCHQnM9556x3u370vMTDFudmMRqSQ6FcryWC1lq29XV569RWuPncdz5yZdXzw45/Q+4De3sJqxZGCk35gJ4kL1KwyX2o2eaOxRBJdF7EaxrVm2iTmC3HljSuJz9poFCp7VkPiJHsqvYb4wSSJgUJLXNw6m7rPUhLq67Pwy3/vj58a4Mv9Et8+RREgC8BCVsXOIv5krTXWJFwJQEcpinNFmKtYVHwF9ZU/eB36XVqgtCqXBrm8h5zxQyiXhGchyLqEhcrQFssFTC7jan3hS5mQPTGJikrrwthpefWluEMRkyq2GbnUAtgITllRFBrDOict+EjflZZKq3BaU7ka78VmHIceYhCwQ0ttu7W2NAetWem1uiHh1q2YZROUHDTFEBNtECua04aNcY0iYKymriwj54g5ofWEeX2VRYZJrRiePsZlxXj7MtXrv8ZovIWta8hyoGs4sxCQc8mG+qtgSy4AlXy+vJ7lIyYBm9YqyTXIBcKSrKvQ1xe+GAJv/PZv8ug7f4DFcvH1nyNdusS4GtH2npg046yIy57c9tiuJfcdqW3J3YrYB5KPJVBzQMWICQIqKK2KOlSRtcjH1uUvPmfyasVqd4vdSUN7PEPSCIo0eX1zUPkM5ByVnApVgAOF/FmxIPI5ZcL65zwLtV23FCrsukFyna+WZP2mnFC+/Llan5UWrJUtep3xpBWoIKwsuRxSok5MUQJlY5LMPLGFyUFnlDTSQix/r8HH0kFUgvmN0cXOnSTbScm6N6YEw9tcWAVEPRYKOJtzYbrL81UGBLRYNo0yNHW5kGbLLG7x5/ciL/7sV7B1xXgsgbKZJAOOD5JXlOXY9kkG4CEmfAzlH7Fyq7VyqsCbfYwMpb3XZHWW4xZz4mnb83TZMfiB/uApX1wlmiHxzjjx/jHc9xVpB8y8lOOodYA7UkKQRc37KGbG0XCYIyugLUN10/d8/ckRf7F/irLSZBzO5MOcgbhOJM3U4wmHB0+YPXnM5Lmbov45+2r1mV/LU7b+jIBR63M2l71S1ALNaIPGWabOYEg4B9lJu/kakJo2ho1KobPk19lKMTJQF7Wpb2eYnBhVsrpj8GSXixIxy4W3lCjkLKCvrB3FkCOh0yy7SECKSRKQwoCrDKTIqHZF6Z1EFWU1JGFJpYFKrBadD8WKq84UNZLKKgOTUmtwSGyB68IJyZLUUrKiBZjOSaOJWOWgKFhTUVj0y4ivLZ+2W3wcL/CrX36FnBOV00xGkhsyJE8gEpInkkUZqAxG6aLuKySMUkV9UobH/Ew3BZypKkKKhOjlUhpkLQ9Dz5NPbvN3+ohqO+aTEe/O53D/HsPguf/wIerhE0JhxVPKVJUUL6iUiBp2Lby/O8aNapaLJbcWUQLgteLYFGKGzN5izrXDOQ+eHnDt/DZ91wlwVdaS0fpZjkkBNpvK0XdiBVsow3HruTQas//4sQR7G0vOnClSUOtm0WdrWSmJmMhQ9p2/uspl5RdFsAlcvrjNYr7k6d0PqNyY6cYYO2rYvXwd6z3Lk6e0yyWpW9I0jpQCYfAMKeKzYeigrjQxKoxxJEJRzWhsLSH1KiRICWcsxjhy0kysEiu6SmdplyoFyJIRaZSQMhR7tlwQeHZ2Zy0Dq5ZIAxmGZR8RPktDlNlIzkNN7jKZgcGtgWqL0zVkxx/c22B54WVeeu0GEcXIGkIasMqUPCQ5u9dlLpytuzUz9Qxa1SXmIRXV/1qtkZLYXudDZN51BB95evser3cDF3JHIPE942Bjk7/4i+/x5NETnjzep6mcZN6JTJOu7fB+EIDTt1z40gbXduCDJwMfPp6RkTw7bexZcZqPmaxhoUApS04DicjGsuNn9+f82eNTDo8WoBSXLgW2tyZyJhLRzgGUDNgMUUBZrVJxPsBkXFFNGxbNmA+PDvh2dY7aVuhKcmb90FNoGIYg1SisZ7B1DlReN8jnouYTPXBG5jJJAxDAfRgiKkWmqgOTwHQYluTZIZ4AleZoPqGqNpls7aBdTUUokSuK3GiSqVDRYqjQblyIxkCOA9H3xNiiEGDZlEutIopdmGL9DAtSaAl+IdbLnPCnK/z8AMVAoiIsDzDjXdxog0zGjjeZuJpqtIHyK7rlnBgHUhpQVGgra3uxWqL1kqN2yr+9N+fd3nDu2vNk7Xh6us9Xvvqz3Lh4lUu7O6iU8CrS+QFPuaxkTchRAF6EoM5o+iCf6/3AavD0PuBD5ODRMfOPPuXvHJ9wZd5zypL7WyM+iguccyzbHh8y2SgqI3NyLmR5iIp+SMxSj4oSxWBMRTtEVIR6TTQrRc6a2ipqk8mNE3tazkwaw1bNWRuyzwmTRa2kkzxrL7aRn489f/7hbW5cvcrV3Qm6EvWChgKIpHJ+lzVURASp7LvrbMy13C+jmDaW6d4uH49H3D55ylfGe+jtmpXLYm9MpcynzIudjxJtBOBDIWyQPZkA2PXiLmtI4YNkTxtjME2FC4qqqtAGxkYzdqBUYLR3iYtUrJYrHjx6C/B4n4gBcjZYa4jR07WB+eyI2inJKzOO6ahhtRxYrnppCv7xD2iait4bUJE7b7xPXddcuLTNn/zlP+OFK58ndFcYj0foLcPdh5+yaucEnZmdLonJMKrFCrpYOfrlij4EjmcLNqYbGBdpNsZ0ww4/+WSFD4qqrrFGsbG5yaUrl/jcCy9TO8enj27z6OkDSBpna2YnJ1y6dIOvv/ga55pNTFZ02XPn8T1++IMf49/6kFePjnixs+yrnt9JnkuvvUQbemLn0UaxUVtWBkYoJm5MVVn6bsUQFD57DIbVEPnu7dvsH54I6UJmd2uTnc0Nzp/fY6NqaBqLcw2pgE8oxdCvGPczxt1TZm2P9hXHx3O6doWtrBS+QNkPJNtMFfNoRu5Hv9DUfPf9O3Sff4lhN2DcWnElOXND30uRo9H4KhNdaTclyTkShYjFR8lNzIEQBmIIKKDvPSmDqw123HD7ZMbBcsE1pkCkbitxUWjkfow6y6jVVmY3cT6V1nStSiRCwioBFoMobKScxWicNRglYGDvE0O5M4sASJX8onVERSKXe79WGo3BqcylyYTPb23xXD3iWpXZVTBSitoYnIYmKxplqZSm1hpTJ5m3E2Q1QgNGhh+Z+5PsdzlmdFTiPIwCLN4bTrG7l7gw2aDd61k+fMrF3XM8+egWDz/+lOnGLpVrGJYrrJsyzHvm7ZzJaBOnNfbpE/Qf/xnfDIY/MCv+lXG8+qUvc+/pY1rtGZLHZ4mAUSlz/OBTfhI8oc8sFx+xubtBezWJ6rYyTMcNzmjqqhJRjLVYUwtxVvZJrTU6RbyOtH7BbNXzwx/8hI/ffZ9uuRKAuKwjESWBq2rymjQNEe8HqmTYRZ9lzdqkpGQjJXyMGG2kNHDwvEjmNQXv3L7D1u4uO6NNVArYnPnL73yfN378ntyvnNh1V+2K4It7rQCVRhuWq04mo7JnBtUzNDXvvfkmxkBTOQ6fPuXRJ7fF1Tk7pXKOldbsDy3PpyyKD9Pw1fMNd18ecXCy4nRTE4JCWzkTzu8p2kGKo2qbqUWlw6wHqyCoEl+nDcZZKfDLCe/lIh1jAiNRdkPz7B757/vxUwN8KUfC0IPKxKTwCZRKNFZhrWRcqCLrFAW9DGPCoIrqKKt0pkbSFJUduSDrAjbkLIBKyAKC2PLMCl6oykMvRQfOCpCodSLHwuqtg68ltkkuoDmj0joLRP72lDVDVPRRUVeOwQdS0jgLjZWHNCop/CBbfIAYZGErFFlbtLagMv0gg5glSLhlo1HJ4FSDsWuVlj6zfhprSEF85KL4kB9QShMEeNFKs+nWGW+mXHpVsSVqjNJYXeHtJrEaY5IiHt4lzw+pNi4zvvkNqskW1lbC7oZQ2uGKLZm1ak+V97dItcsgAs9UfOt/x7QGAwUhTFnyCvRfaXr9zIUP6Bcr/vDf/htOjx5z9eZzvPP7v8nHTw+59sJL+NWc+skDvv9bv0m7XMlD24kfXWIbDJVycuFS8hhDxqnSHlqshEpXoC2uqUFnqpKj0Y4t/bDi3/63/zUrZ3l1e85Gvb4UFcAYQMnrkVISEHAdxH22echPvVZ7oQTwXbP9utjH16ojSpj7GUChpA1KbFW5qC7i2dU4BHkuJPMh4bMAewIO+gI+S4tpxtAF+TsNSULhEzRO4SJng3RMovwaVxUhANHQD5FsMlolCRs1qih5xN6dldTWr2vsjVaYElCuSl6kEuycjGTgVHWDtQ069KRseeNpxWpccenF52gmNcYUAF5LKcWQIlhDotjOkoQDtzEwxEAfBkIqAB8KaTODPiWO2xX+M6BayqkA/Zo+iiJTx0S7f8jz3mL6Je9VLR90iXMjmPWekDOBRMRQYdFG2L31+oo5c2u5YmkdXY6ckriGqHq/PF/y0Uf3ONndJiCZJ0p95rKfygCjMm404qT3HN+7x6XXv1WaWAuYoD4DCsFfAUKe2e14BsyW9RdiZKNRXNvSVFZTOXXW1iSKImR4ytJSjjIoIjYnnCuZeDZhlAB7IMRDBpIStnTwkl/3GZEvQxDCxfcetOQFWq2ZVFbUAlaVPTOjlCEkfxbILCHJ0hCdk6L3ER9F5a2KKiohOQ05Jgn5tVasl1lACa3E6hVSlgiIkj/mtKJxFYIhKrQ1DD5KmUgyJDci68iD44bf+jDytX/wi0TnSDmyvbG13rAkIBdRJqn1zb+gy/kzz2zK8pyOG4cbEquuK0VJAqSsYx5yitJm1nvarmfZdjx+cB83m/HiTJGHyK1p5mgIqIMT9g9PODw6kXgBMstlCwV6yjwDhmdKcfdwjq0sfdfTjKei+Mtwuh6SydTDwFdP5/zzT/e5cm6bHCJ9P0gZj+JMmaSQuIKUpE05+ICxlt46nviBS6MRHz58gPcBV9ZiigmMnOvOObGnlPUrmKsp4Mm/A2HnZ3++QqFjIC+O0cFiphNi7Gi7hNq/jdWaLsDm1g79eJd2cULoPNF7QOHMiFUbSFRC/oR1q7Itl5yEyYphiICmGVmMsWhnCZ1YdEb1BB8EKIqhJ3lRyMl7HKkqg9WionNKsiIp+/n6PBTQrPzcWGnc04lYVJaxcLjWGpQtuW9tIuSAEQ8xn7Y7/PGThn/wv/s2Pkv+bAoBIwHAoERRsS6aKHKev4LraUSxoDRkleljcR6kfKbcI0POilnXs/Ke5aojHhzy5dWSeHLCsc58qBOHH97i/p17DN4TOk9VVRhjWK5WAiDESAhSmKaV4p/+xYrd3TG3Hq3kolVs0pInGwmhWMFyYp4SUVv5xqMiq4HXZ3O+f+sp/eeucHB4QO0007EoB5XRuDL8iTWrhNHrZ8B0SAlnNE1tGJ07xxtPH/MzuztUnWVhWrp+IAW5+Ep+UCx0StlXczqLX5EcTslYDqU5UClLfAbxk1IoBGkgDwdibUodLiuUkb3CATZGVDdnCI/LHJHKvqaxlcZYh1YVGYuqhCBLw4DvOpzzRCPZjcWbhlH5WfNkynJuJVHyZmKZ6RQxRJT1QiipRLs4oGp28UOgtgliQhvLZO8K1lZMgpLSG9+S+wXLw/vUW4bYLhnQ/PG7d3mvH3PhpVdZrJY8vnubL33j57l08RJXz18Q4kdnhtATinqtsq4QjeuAF5ltYvbPlGfJoEocwqrz3PrJ+7x8tM/n7t5lRzne0h1/kgMrq3AxSmxHkEw6ayxGF4BXSyOnz5q+DYxHDctlS8iakMAhGaMpQRvzma37/Kbj4SxBikwnFRbFtFHEQbHMomWssmRqk5UA/P3A39SW739yh49v3uDc5GWylX01A63vy3NhCwhfVk7ZC0NKpbOgkORZk4k0zlA1hub6NX546xO+Nhphzm9CfYpRUcC1JLNfVmtVZJkjJSqsxMgkvE8lI1kIPlQspP36rmUx2hK1hqxZrgI2JZpGiNhHtz/l0eE+i9WKxULmLacN5Cj55iGX1zxRVQK45BTBws5OQ86eZZuplKUbPKu+J58k6krKDdpVz8MHjxiPDAezO0yme1w8f4nZfM7m5ojBt7Stx1rNahnIQeNcZOgHJuOapqqoVcR3Gu0r7p02PDkZMPU2mpa0Am1rNqs9bl77HKlTfPDW+5wMp/iQmIy2+Pjh+1y4eIOf+cq3uLR1TlxQ0XN7/xE//sm7HP7wJ/xajkwfHHJhtMX/fXFM/Yuv89LzlzkmMfgBRWboh5KD2DCEnn7oCHldjge1ttx6fMCP3rvD6cGJRAsMnqoyTCc1OWdqq/jcqy/w1VdfYLcZcff2Az786D7HhzO+sKsYripcdiyfPOXerYesFkvQcGU0FjFCTEJ2hIBSYndV2qDpedHVvHhyyq233sMS2RqPqV2NrUQNuOy7khVp6BtFTLI35xglqzsrUh9IoYdcpAZRyjlCysznS7EI58hkOmZfw+3VgsvWobKlmo2pdye0ecaksXgv9yqrHTFnvFEMUVwv2UjOvFYaHSLOZro+Mm4sTkuhRozS9jqEhE+JLmiiXe/kgjOsczQp9zRKjI9Omkt1za9dvMbrG1tcyQMTDdZmbM7YGNFDFFt+iqi0RMdcVLalB1tptHNy3zUWrEYZA9ZKWY/RgLRuZ2dQruZ5p7laa95G8btZ0e9ssakqru7scevpYy42F+iPWzY2L6JVzaiZMN9/wDs/eQfz8AFfXS344qNTBir+SZpz/Qtf5WS+YDabiSiktkQV0YjrcbWSAkNTKbr+mB/9xffYuniLOx8/KHFLFuvcszLJqsI5S1XVNKMxTTNiPKrZ3tziuZdf5uGjA37w3e9w+PgJpHiWl65U+dmNJvYD3bwVtw5rciPj6hFblNZ6MvYzuaY+BuxoTPBe5kvv+Q/GNd97esLHH97G+F0mVrOczfjJm+8RfSAp8K3ssVKYss7pLuVxJT9y7bBJSs7s0Pb0px2zhw8Jo4ondx8Qu4HEwHBywmT3PH1OPAg9ROmLSNqytah49eomp/VAjjJXtX7AVY6cFX0MDEnOUyk+FQpQ5UzMqpzNiqAU7SAzmS93qRwzOYljNOb1He/f/+OnBvg6H8mDqGc6L0qkaS2KuZLxiiKhVEIp88waoeWhI0seklJrVpzyRin6IMCNycKQG62oVEYVVRZKMUS5CMYoAIXMfcKQKfRZYYaOZfj+DI5jjIIk4zbKkII04QwJUYGEgLXSEOm0gpilUTFJWL10z0pBQe0clRUlXu0kE8qV0gVp9FVoU76vXJQpRa2kdclfSPHsgrtWg4SYSjsPJK2pFGyMG1EMFIWLKcpDY0YCMJoK3A4xiuImnR4wcRuMLr3I+OrzYv1SmiGE0lQpNsgz9SRwBvTlZ7lS8q/PWNDgma3rTN1TmHlk0IdyCeIzygIFzWTE1S9/jcPvfY/7bcJPd3ny8BEvVoaj+TGbLhOjZ2vS4DanWOWojKL3HX6xkMYdlFhmfI9RGQs0rqGxlnGt2ZxsslE1jCoHVvLJVG2hgqf7Jzz88D3mbiBMHYuu2F1ToHaaxuYCsog6VFhYsQv6IBcLrU0pRpCfKw6SKbEGSI1ZX8eRDB+ti1U3Y0v5itgMRbFGXjdm5QIESjtvKgyzZHwphgBaOwHEi8I0ld+zqrAtWXIrpVUoY50VNsZWaORCpHUmExg1UgZjEFm+tQajrYCFxkBet9PJOk3FIpaSwjiolAC51lZyoVWJYzb43uw5vl4/JQ8Df3h7xaWvvIabjmjGDWjNMPRUdSN5TEYyu1JhGYWd1gxDJCbohiB5R1EYGHIm64yPcNr1UkBcVK9GaXSGOovaYogZ03t4uM/NVSCpJZ/GFUed4bBTzKNFjyZc2BnR1NJsbA4OGBFxTqFsTbIT2s0RdlQzrO4x07JvaAzjfuDbnz7k987v0V3fA3Jp5uYshywpUZG6puEowfHdu+icSEWV+VefK1XQoXz2689q+/6qTV6htcEZzcbIklLEKuki1mSUAbIq/15n+uXyvRclNUWNkCLGWqyuUMaKajgGmiqWwHl5zjOQgsQEiIjPULlGcsNqeY0MAyanMwBbfiwpXSGnszIVRSYEaOqxZCIVZWguYDZZoZyQLTqvw/yrZ2CKlf0xZnUGuCtEieWMIWExJjFSDdrWNBe/QHXhFY6Oj/jd3/wO+sYX2HvuOkprnBPpflaa1vek5IWRLfEOa1IjpITTlpSlFRclr1Mgkq1Y8tdbqVFCRuUcmK9aTk6XLNuWNnr6GHh8+w5fyobdo2NyiryjPFnV5JBYzJf43pOdKRcGJ895edZLFoIo5bVh6GXgVoVxTRlmBdwhKzSZ1+ZzfufOU97drgh+ICeYntvj5qUdxrYo7JBWyhw85IF21TJESzCW+0HYzNnBAX0/FKDHgi7lQIiqzKDP/vfaTkr+HwN8oEqhC/L+xoSrHJubjuXQc9RKo/eoHnP8+BNZryeGNmYCVlpMlajytKuwoz3GWxfRusKnhJ8/IKwOyKHDWVGRZa1K63MkDAMmWUwUG9B8GCRnCCnoclZTGYMx6zgDjUHjUxDrC5T9lzOiTSuJaiBnkpZzjFCwYUBKwSxoKyylNsz3O8n/rKCrdvinby95/T/6DfR4hDZaQO28VliW/MkYP7PS5PXVZ9ENnJUuxRTpel+ABFHgxvV+o2BIkXnv8TFxcPcRz807Xuhb/GrBxxPLsmk43j+SNW8y3eDlHPShgJtyiYjFNmiUYmUrTvZbIf8K2SLFQ4mlH4QMLWTgKiXyWq5bZojNdsXPPT3i93bH5JT5+NZddra2mU4qqGSfUyWyxaBBK0zZE7zSoiKOicm4ZnvvHO98+inLZctoMeaxPmE1DJLDVNRTMVNUZZKTqY0A4zJ7rdUea0VUksiLBHXVSEmLdoRg8BiWywXOaaxKJJuwSLyMD5C1FD8MXgBlcmJIPdaURnDWZLboMmNKWC3koFFlblS+cD2JqBRr4ifnRLQBY2ucsoWcWgPtiUxPGHoylj6smC9+yJAttrJsjAxK1VA7jK6x04vUG+epmhFRZ4J29Muedgj84N4p7w0jtm8+z7xd8PD+Q648/xK75y/y/JWbaAxH8xkbG9MzRb5W6zytdFY+k0upQO8TISmmlePK5pSFbxkOEh98eov0/i1+ef+A84uehan4aG/E9/tT1MYIYyty9mSV8FHseMMgauS6FrBgtuyoqxGL1rNYZrogoGBjFT4E/nCe6H3G4JlOIOkKpXq0htOVR6nMKmkGr2mUlAiqvLYzltc2Kq63kZ+j5d98cIujG1fYc+AV1LZh5MZyLpX5qcT+k5HYF/J6DylkHPJ8Vwk2JzXbFy/w5rvv0S2WTFYjVps1Pnd4HyWM3YsCdQiCOsQU5Gyn1EglySEzJoHyJU/ci5o8Z+QJKlZ3VaGtzJW1azDFpXR4fMC9ex9jbUPfyTyZEbfGeDxhtVwRQ8946gRIsNIoHofAoycHooSNmWXoqKyVnPYS6eBjL1+PomsHHi8f0bhDuvaY3d0dcu7QOTF2FRDRWRGHhE5QN4bUJmazGalTxKDR7gL7By1D12K3LD4GXIgE03N7NScRubp3kf2jfa59/nliyhwePeHypef4mZ/5JW5cvIoCgu+4fXLId3/yYx59/8f8mg8Mt27z9bzBb7XHvH/pAs9Vjn/z3R+jtcU4mZ0n0wnnL2yzuXWN1SAEbMy5KD4TaeR459P7rA4WhHmLzqBjQGdFr4JYEFee9966hR88E1Pxh7/zx6yWPZubE25/6Hlny3H9yh7LucxiYRiEYLCuqLZSKdcT2lpZLTMXmioN/FoF/7e3PuSfvflD6rHFVSOajSmVq0g504zG7J3bgyvn2RldEKGKkSLKFNNZa6mURZoSo5N5fDTndLZkbCxGa8bjhidW8VHb8822p86KZuYZ74wZVEvMGastSimcs3JXSZlJXc44J2quBgDJwE21ZOE5o8khEW3Gp9IWrwSAVM6Ss7gJJG85nZ3Ja6BBZ83r4wn/8aWrPKcczWKGXy3wfU9UmaAVtpZCRK0MVhmsqWFcoaqarC1JG7R15LqSXxtHNhIbhDGSv1+cblol0KVoRWmabPhSE9g5N+FTXVM3Fe9VE/7VasVr4x1MM0E3G0zqiUS9XHsOA7x69Ig7777Nq8Hxm/qUTzYmTFYdeWrQKrGYzWimY5SSQtOcM77vWPlIM2moneHpw322pmPU0OGLu6JNIspJRdUL61lc7iBagXYVX/rmN7nzyW2G1UK+LiEAp5N4tMo6FvMFylVMz10ipIBJkeXxMTZnlPdsaznXoxaL7kApHY3ixkhJiPUhZb4UMl/vAm8fn/Knd2+RupbrVy8zqmuGYRDVdqao9SxKy7ncdW25R2Se+W3Wo1Kmbmq6ruPRvUdcuXoOQzr7eVLIzA4OyRkeJ0/Eyb7jOqqFpk5XmU5nMETGCTajI7GegQ0+Baxx+LhueS6CHaCqLHGI+E724pxKTBFK3i9hZItz4Kf7+KkBvliUZk5npo2EAYthQbLINAUkyVra5ZQ0zTqj0QVty4EzG1NaM3xKMlUEgZWHUrzhCcFIDAmFjyLTldpx+fWyLxkzBQDxUaxgkiknFhmtQcf1UL5eAnLgjioBq1SG2slQTUbUiVoWcc6aSa2ZNjK82pIhBSVvLclhbrQpg5z8k0vQqjFysV8H4gpYZIsiRCwXSotF2LkyvGJw1pWg8CxMhM0oW0kYqhtjXcXQtXTWsFrOaawmLWYwuUR95VXsdBOlFKEsfFUAqrRWqVAYwPxMvXeW63MmDyi5HuV/5n/n8zGVvLjPwBLrL1k/Ztpa/uE//sf84q/9Kn5Y8kd/+iccP/qILRLXnn+V160hDx211aijGY+Xc0Y6crTq2ZlM2Z3UbNkRxmh89iQvqPzITXBak6ymsYaRcZB02fgDejxCmcQP7Cn388DrNy6i04wQwZXSCGvWoOUzMAWKqk1rJAA342OiGTX0nbCpqIy1AvCug2gNnCkNMomcpZVJgTQXQSmEyWfWuCJ5YYjSTJS1Ltb3ooIRbUYpXTFo9ywXzOqyFpWonqxeZ5PJRhO9J2RNVqIuNDpRFTuugMYabaysv5yJg0eV4hUfBMhXJbPCWCPB9mVwjSlKrXxOdCHz5skm86Zh1D3lKK148bmbuPGEUdUIQGrX+TFSyLCWkytVbCcZht7j+4G+bUn9QKEL5PvUmso4ap2khWkQgJ8kQGwmYZXCLzv6g0P29k85f9pzoj1PTGKUa6ovvMaVrU2G4GVTTYkYe9o+Ek6ORYU33UZtX6Qxhq5bEmJmbtYgmcwLLy1ajt98nz9rvkS+cpG6riX70EixgzGGXK04Om2J1nL48CGh62A8Zl1m8lns46xZtIB7Z09cwfzOfr987fjKl6kmO4TYwrCgPX5EOLqNjnNIQewCFNVZUUmCKBgyMpBUppZLi5HGUAHRJatu3RBLyd3LVZSMyaxxGxWmqRhVm/jNF7n4tb/N/M4POf3kT4jdCWnoMZqzRtYzdZsSssTZwlxZWwqJ1ioaLfleRQ27LtlZ459K5TMQem1v1+pZbp7MUTWovoCcCZcOSMMhj/uaeyvHr/7s6xIeHD1XdnbIuVg9+45Ky6ueUPiUSD7hMFLok4Aol7yg5IIVYmAYAsEPYvECplWDVZl529G2Hb4fhPDJib7vmN27x9e9oz49pt9ouJVElVXrmi996UvUVUXd1GfP3xtv/JinT/cx1qC1FeC9ADspZwkkrysJ3wZW4qIuaiHFXr/il44P+Ke3DHp7Suh7ToNi6Fuu720xakYcnxwJ8WMiq1Y8XyF4MnAYM01SsGyZnc4YTyessyJTRoKCdWnAO9vfBHo1xbaxPg+eLfd1PEJmYyRlUToHULCsZK+8+eW/Tg5CygUMbvs883uf0C4eM905x+zwGMtAGhZok5lefJm9z/0MKieW86d0D99Hj8cMyyV+/pA4f8Jw8gBtW0gDpireI8xZeYk4COSblcGtzAHBQ86lVdmKYleXcyKJ8sAHD0hJh8ZiVIXKHmUso1ENKHQzRqlA9Inez9CqYchjfu+WZfr8F7jx8nV8zkysvM/VmXov44MEW1tUsUPLe6/Xqf05E1NkiInO+5IXl56RCCXXMgCzPtCWwPfj25/yt2YL6tkxaM33Esy6gW7VElKQ8HVEsZmyFKBJfqxcBlCAUwSdCUMELe235ETdVHQrT45Cdqz3sy6LZWrt5shRiNdvLJa88dGnhC99jnfuHvLhJ/d44fpFMuBDPHtfrNGlQErIn8i6wTwzHTnGkxEPqwl3Zws+PxrhXSZoye9FWYY4CIFaAPycNSpoUQanTO0cYrop6zZnUJKpWlU1jRth6y3q6XWeZMPs5EMhZnNGr9dJijgLTmdslLlY62f2bkj0UdT7usykZAEDjU4lDiGXJjADZ3E2Ze5ax6WkBClA8qLOUprgPSRpC/aDp/ORqEfMh0bIr5RY1YhlaOjJWTHZ3cPoGuPGKG3p2gXB1bx7kPjBfsfWi1+g6xMP79/hwtXr3Hzpc7x443lG1YjZYkHQMJTMwJwztjaE0hq4nj1EESkk3WZVsTMekfqBEAYO9g+482ff45dOZly684BNNeZ76pR3prssYsPV6y9w6foN+rYnhUQYTrl/+31OThakZDFWFeeEwlnPOqZElbm2zZaTRUvXp6JUjExGmgsXN8haAttzlKb2eZdoqgankiT4FTX2eq5UGExK/LpRfP/eU97/6A5fqW6iTYYJhNALDljWTS6FMShx0OgSKUES1WgMkRQEMKmNxo1HHE8m3JrNeXUxolEjsk6oOhO9ZJAlZchKGk5DlD1iXcpljSHnIE4NXWC/LKVG6xzL6EWAofWAyp7KWSotMUIxRRbzJUMfBdjOkuUp/qxM1y4lc9dWUmRmi5LVg3MVVeU4mXU4UzEyWZ7VFNhsai7vTNgqmXpb4xE2J6qcGeWMM5ZR5UiXrhLOBSl3U9I07LKh0Y5KaSwWEoQ20q4cb95+zHVbcToyxEpzsN+SJ2PMuR2oLByc8vBkxcHJMTnB9t4OtR7zpVe+SaUbnhwdM3iPdZk33v+Qe2++yzcOTtDtiq/MKm6bln8xsuxcucqtO/dZBrGkrosUNXD+4iaf+9xNmrqmj55GZUamYUgD7z044NHJjI0re3Comd15SI6ZyUaDqzSqMsznKw5P5jy6dQ98IPYeXdd4H1ksO75/OOOth0s2d/YEyEgJZYQkMWQo95cYAsRIDpBNKgphxau24qurjofWcHJ4TFbH8FAcc1nyrjBVxd2rF9j4Gz/PxqRh1FQla1xcOiFSSlmkSKzrI+9/cJvNzW0BejNoa8nGcSv1LNsVNRoz79nI2wzVUooXrJCE2kgUUoqQldja1+KRFEs7fKQAQbIOvR+k9FLJulbFjdBFiY7QpbxQlNpC0OVCMH/DOv6z8ZRzT54Q4wI1bpg2pSzBapSyqOQAgxrVmNEEV22hRiPMZIoZT1FNDc6RqwpchbIGZUS5hzJkZcXdYh3KFXWbMmKDVRk9MrR/9Mf8xjd+HeU9vzR4/pNfCVRBrNyQyb4n+gAHR/D+h/z27Q/40hBZZMXv5MDOxedYxIhfefIQyX6gql3Zd4oowweyjwydR+dMDIGHD58wno44ODhmfXgrbHFvyb6g0bJHFQGPsYrb73/A4AdyCBgnCihtHXEY8KuODqg3N7j28iss+0jfzlg8eUpKUFtD3fdsFBIjqoxKEI3FbtTE/SDFrVmamgmBarHif7HZ8H85WeFGE05mcx4dnrKzt8vR6amQ2eu5UskZGIKnaUa03eozA2c+u0nlLOV2oDg8PGKyORVyrRyjWimGENDKMCvROiYkkpO7+aOHm/SvvsB1dU/uyUHU0xkhPq2tRNSjrOT1pozP4sA0WYlTQwlRSZY9PMQEVuYOrRTG/rtk+P/vHz81wOeckpwuJcxr70V5oUhFCm4k4FKLSgxlUFlR2ZJlZkR9FxXPQCGFSGC1ILsmA2sUWesz5kwuFaISsApRDbBWAsqbrrNYFgJr3ESVHJdnKhGji60zU8LkxeOvtSIHsMairaapMpUxZIQ9NuuQ8BQQsa4Wq1FBvrQqOVLIwY5S2BLwTi4S9rUqJicikj/lw1CUGBVNNaZyJaxbCy+XNSUEVQpMKJsWeIbVimHoGdjG94FqiPghki9vM77ykoA1lIyG8v2v80A+A9txhtwVsC/n9e+X3y2A0jP9QAFri21JGAC5dD5T8K1fLwFsbV1z9eZzqJx5/933+bWf/Q2uzRbc3NuhIRNp8C5S723TDoHFkyPU+CIp9hi/xCWxS7tsqBqLbgwmakZRbEmqH3AEcnKAI5tMUh43qXl+ssmPpjvUpy1pGjE6Sl5dhsGvmfrPshdFPRQpg79c/MNyYFQbJo3BKgHdjFGixiyq1LOfG8XaBrQuYrElr1FUHxRGVdGFSC7NojqDcqrIpzMmayojB5CtmyLt7eV5K/lDViPBzilJnkEspTVaQQrUzuCUonLSNyvt0HIQ2FSYZQTMS+WiiCoZf0Vt6myS9joFSmlpLjaBrDKKOaxOuRdG9ActWxevMDl3iZhFGn86mxNyT/YDy9OWoU8Y7fBdx+a4oQKODvZ5/6M7LNqOXIpVRqOa0XSEaRyuccSjyOligY/rDLRMzBqlHEFndFaoPnH4yW3+fp+YdHPebQLLyrCrDbOuZRV9ee3KOk4JbRy4qigZDcvZsVwEhk6yCA1F2ZlFpp/hGyentD/4Cd/52Z9n9dw1bErkocWknhx7uq6l6ways8z3DwjzBW48YY2rP7uw8UyhB2dWOqWefX4N+q0fwN2XvsHVa3+v7DmJHDpWD97hzl/+FrNbf07qZ8K4plRsgBltReWSUiKEhB/KQVVUX1bLenNGS9iUErRI2swDk8mYumpIBHyoGW58k+vf/g+x0wtUuzfYvP4qj974H/CP3oToxUoVowCKOqNVGZ60KAmNpqi6KXskQEI5KxYzMuRegn8LWJGVIoZSKBCl/EMsSmvJeyKrBCFhjMMff8LRPPAv/nzg0otfYLyziw+a5WLG2DoGpVCNQUUJy10MA+2QqJoRta3IKZALYOqHnt4PDEkamtMgF9hAwhDQMbJqe3JKLFYdqyHQDwNDiPRDx8HdR+ysBl5oIyl17NsxT1VExczG9i6jyQY+eJbLjiFIiPVkMiXmpyUHTgZdKX5aFwTAatmhUMQMK3JR+UjepcqaXzhd8pNmxp+spFTBHs14fAfe1wZjnZRLADlL+97gk9ilywVm0g5MXeb05JRLVy6DUpJnVtUCvqqzowPgM0P2s4/y6Jx95EIGOldy0HRiUimuNzVD1nQP36HZucp4+ybVhRfQG5e4/Oov4P2KsFxwwXcM7ZJ2/w6rh+/hWOKMx052cduXUNe/CNZSNw05BFK/oD+8xZM3/z8cfvRdfL/CaiHntNbUo4baygCmtSX4gZgCKYYyeEkUh7MOjS0AYFF7K6hzI5dRUxTVClIQm5TkEWZyu0CphPcyb1gFH8xr3lg6/me//ou0KrLdjOiGga3J5Iw0CkGAE9bzUs6l9VDmnNYHKcBAwEgZO5+BezlmUZhljUuJ4xjwQ+L48QEXDxd8Zb5kPjuld3DL1Xgf+Gs/+y1GkxGLZcB7ya87Pj7gwcOHtG2P1pLDpVTC1Y5V23K2U6nMeFxhjWO1HNbbnUwNOdFlT9RrMlGRsyGrTLNq+buV4Z/cvsPlc3t8/OEnBJPZOmq4fHmPnKUNVxEZNw0pQ1XJvhF8oLaW2hq5NG9u8sFyyauLGrNjiUoUc4MPpFxs0wXYJQkYrTJYRAVjCtKrq2LPNjLnOasxrqFpxoy2NsknS6pGSIycHDnLbKi1nE2SDS12H63UWdlO8rn81WIPdQYqoxjZEnafY1GDS/O3tpqMw2iIUTIiQ4yi3gqy54U8oIzG+540+DKzSN7fSe+5dRAYj6ds15kqyZqYLyLzZWA6PGVra4dmoyGmgYUP/OTxinfnmr2XvsAiZJ4+uMvO7h6f+8JXefHqy5yb7PD06IjHR/u8cO0mbdtj65qDoxO2NzeorS5zoaj9c5TIHa01k3pMDJGsIvfmC/78T77H5bsP+Ob+EVtt5sR1fGer4ic6cv21L3Ph2nVWSwHoNArjtsHtsVjNcVaxanu0VjhraX0qAIyoJ4bB46PHD+W1RxxBKStsNcK5wHw+I0QJzc9KQa2JyN6+VtuntbslScHHpd7zi6dz/sUHt7iwO2Vru8Fn2bcltxhSKRBIxZ0Ug5QA9aVdXStdGi016ygSZRTVxfP88MMHfPHQ415oCHXEOfBKLsOD98RIaXNXoCkZ2bp8XgBnY20hwCT3LSVVVOElI1UlUpVIIaItpYDBk3LAVRXLVUflTLFPerTS9MOAcZLBpw3U1hWAJpBSYK8ZcfniDlO9xRd2d7k5HTEaVtQ+CFnU9qgQUHPJ45I28lQy39qiihYaQ+x3QgIatMwMIaCyJSlLCJnXz18k5ciMSFaG5dURiwjfiZHlaJtRNaI3MMwXHN69x2rV8fyXvsaTg47HB/doNir84FnGnvfe/jFfeHTIF7LB33nKJbXDf950DBcuoJQXJfD6flNyGWJOHB7O+c1/+QeyP2lw1lK7hs3NMT/4dJ+D4xXNMHByckLqPXt7O+zu7bKYzxkOZ6gY8auO1HuacUM1ntIPEVM7IXqWK5rpBienpxIlU+KTSFJUk0uWV/TFoosUB4UhSxt2GPi7leOHOTDPUkSWrGLoeimbSxo1yhzvH/Hp3Yec292iqh11bWmqinFTo1SWBac0PmY+ubfPyalnMs7EPkgetrFgLfdsz2k/sLVqMa5mOmyx2p6BNVRVIwRliEAk60AMUWYblSULtDxDaW09P5v3vYBRMePL/Z6USNqjSg6ukOSplHckTNacz4pfXCoWyyc0JtKME/1qIHWGvH2e8YtfZHT1BUa7l9DTDXTVYEwlBJoRaJuYUPLAifh8PY/n9X0vr79ZCaZeChiacvm895wsZjy+dR/3wjFUDpsVDZpsKvkzY0Irh7Ia3WeeHD7mvZND/mbc5E9cx3sh093/mG4Y0MbglBbVt1tnHcu9brKxzWZVgTHoEo2UYiSnyN5OhR8CwUdCGmS9lFz2nDIGVyKoMjkk+vmKLMotVBZyJCTJe0wxkbXh3OXL0lNAYHFySmgFpByPtthqe6ZFsRwkvYS0f0ywDpqKbqNBmwnMe0x/SPKBV08Dv2EN/3K0Q12NWS2WHB+fnt0B1pRxBpQxDEHmlLNZk8+8J+X+lFIqjh04OjrmpZdv0ljD/sP9IigryrsUiMEzoKCNKFq2jif8l+9X/J2XLnM1HeJUJyRDls4JY9cEi5RIaZBIA22prS1FY1JilFKmripcythacjRThkX1/wcA3xAVYSh10jEjOWOhZNOUTUdpYngWiq6AHBCptnZUpaIxhUFAD5OLYi1Ldl1pTRSL1LpJRwBBow222BdEgotk2JEkoynJT+nWgezGkYmlMbQEgxe7b06xXEwkc8+qouqqJOsk50RKHrImlTZgrTQZWxQLyAiQxForm1EpHEmcMXdVVZUmP8kF0usLqRYA03upQk+5w4fMqKqo3YiogrgQswIMWVWQpQo9hoHQi60jJIWqx+jFKbFdUTU1erSJ2dwlY0r+oNio1i23Z0upXM5yQfDXAeFnFsLyGhfMQTYR9ZnLWlE+xLgONH2m1fgMfnG2F1JslC9MdlDxAF3XcNIxWAUmMvKZOrVMhsz58QZ5ErFug6QukoOAaHpIspmnDt0FqIqdtJ7i+wwnM5azU+pqipoaVvsnTA6P2ciBV3/u67z/7vcJ5KLCU7JZ5XXTmWTXCeggW4iwIgqnRJJvrZUAfy95ET5Izo0xom5TSuTtIGB0jplRbeR7VyLdTYIryWYVc8lSFJuhKao2U3KtjCr2N5XloEkU1iU/ey6UZGhpLXkIwm4JRmONxaqiVguilMlJgCGtwVgBW9abXBwyxqwZMLHWayfDlUrrjMhMVjLkKaOo0oKpP2Rmb3LvaMZLL75GdzLj4O4dDlXg6eExfbcCH1mdLOiXEtLe+Q6lpQHMVY4UEsv5HOsqRuMpLZllzrTBYyrRr4QUxNYkPwh1XaGVpQ0eayx+taI6PeLbfY2m5V01cG85cBwyG6slpq5Yq3sho0r2zOJUQmJTiMRcikp8h1EQlZVhGBAjtQCw314OqB/9iB/f/pjoHFlnAX2zYgdRf7xiNDeswi5PIZ8/20uLyOoZIP4ZBGRtczx7JtckRfk/ZmBIqawbg7YTNl74Nl+5+TWOPvouH/3h/4v24Y9AdQIMhchqiAUkoly8JKvF9x5yYto0OA1Jy1p2zor6JnkwiRBaFAMBi5qep1ut+OCP/zlp6IlDS2UC+fQe2vcFRJZA46gq9GSX8fkX2L76MrYe0e7fZ/HoXVT7CJV7ch+gqDRVCmVjAb3OuUSCmNMgm4kwuIoYTenIWdvdQYKOe7wJBOP40dPMR4cdr3/5Ah+99TY727uoqubW0YL9k5Zm4hg1msPZMY8fPyD7ROgCta2pNyaMzu2RlCZUwrw5CqiQRTGqipLOUALLkddXYhBKc2nU7N95wC/pmr3DAxSRD2PH0ZBJp3PyaIY6XZ6pruQiWfJFkpAySSWs1bLGvX9mfUvC1EPCr0unCj2jUWxEz/98dordOM/7ly8wJEVAlMmVdQLIWYVOAaMku9GZmlH2vHz7E6btij074uToWMianHDOnZFB8o7kcpb+1SHlmaX0GcyzXutKFwt0EEBW9piBrUlF5Y+xnUXrG0y2L2A2dqRdVW8yGu8wdDPiw0+omhFD3RDmjzn96LtUW5cYXXiRyeUXSFnUZkZb7GiL0fOv0+zdZHT1i5y+/wd0B59AHlA5E/qB1A9YA0n5Mk8gF+QUn80OqZADyhUbpyiCTAGAYhpYz/lKrb8+CamZZeDXpmGmtvjg2PHu3PHVb/88QWnUkFi2Las20yWZEmsj6q012G+U2HejRizJXcBVjkYbchhorBGispA7IQYGJaHXCU1UGnDEYcmjdz/gfzrr2WmXdD38YCyN4ePxJtQTbt1/SogJ74M8X9phnCMtOwEQVWQ0HtN1HcSMtgZjDTnD5nTEshUFdlYZ6xyxWPL7EJF4skImqkjKCqLiymzJr+qB//eoYWdrg/feu83mdJMQ4ODwmGs3bxBDR2VEeVCNNCNniENm7Gp2dydMJhVuY8wnpzPsKjJRI1Z1Zug9YFDWoqOAeiEJyGyQTFBywtWanDxKJ6y1pJDEtqVtAVwXDMuBYThmSDv0/RJUolK6uDcCuRDbopKqhBBL4awpUwpbimI4SzZptDI7DD6WSA1VZl5pjRw3FbnYhVOUPN81wRNyi0qiioxJIiOkr0MaMFsPyxA5fPiU5caY5toOJmu0M9hqAK3xaHSMeFPz9pHmzfsdZmuP/buHHB/P2Ro3XNt8CXus+Xh2m0f6E2Ztx7VXXubg8QGtUbQJZp1no5XvzQ89xlm0NQLoBVEa2/qIRKIZO958+wOGH/2YX/EZ9/QJe9T8tml5d7rJSbZcH4+5/cmtYjeXpkejNdpUokSTp00A3BDLLCvqyBiDvPYhnM250mQIk41NJpMNkk8cHJyytb3Ncr7A+4G2HZhWNTHITLsebXPO5YYqWbt/fTnw548e8f0f13z9y59nM6dSzCZ/WUqWvg/c/fQOx/tP6dpe7OTaYrUTMk2DmzQ4YxhPJlTNiPG5Hd748Db/6CTQtDXDuGVIUozmfSoRRQZ0wlpX9lSJNJECPFEMOT1GG0UYlnBW9kOJWLBU1nGgFO3g2ShN7pFAyh4fBoqBBcy6eE0VoYAqgIRiaAcao/jGtef5yuYNrlebjBYL7HxB/aDF5gUmBwEJnUJXNdZNMCOHbSpM7UqWmawTlUvDp5a7GUiJii5CEsqcq6Mmd5HkvZCZfQ8x05PJQ0LPO948XfE/+dqXODg85v2rik+7GUk1+MNTZiukGf1Eczqfc7Q45LXDBb+WGt68f4u/r/b452nGj5qac1XD3Sf7pCQ251TUwzplsgYfFI/e/JBQmmdV+e+ty5dQ401019GtFqR2iXYGtzNi1i1xlUX3htx3NM7hY6LrWrzzjKoJKmecMTTbOxyfzAjLlSgwiyuOJFE7eS2njqkojhEgKkSZl8l8rmn425Xmv9nc5vHpMcMgatIcItoK3bBcrvjkwT367JmMakZNzWTc0A49G5MRlbKEHDg4nfPuh5/K2VryCEMoMTFojjPMU8lVcxXNYY3asQQCfezOWlRRUQCmLFb+WGIlYk7iEFLrorVIiNK8TX6WQyuZlHI26+LouHBum1W7Ytn2YiEl8S1vGXWeVZVRThMKzlBffI7z3/o1ps0OqvWouyfE4SnKJ3LqCWadtSHrMqtUhC0UYlLuaJK5Xu58Su51Z3FNWUraVIzk42O+9OQIfudfomqLso60zuXOCDgYPAyefDrnR6d3+DoNzXiD77an3Njdxo4a9menDGhOFi0hJc4tVnx+NCVpg62c/LmuIdmKYA3ZGoakSMUOGoGoIVpDthaMEQV4TuQkz3/KAymGkoVeVMYhlKKIjI+BNJHSw9nhjPnRkqHvUMNArSzNeEpdV7xUjxgv5D4VyeikMX0g94FYaaoY6JZyjzTOkYYeTeA/ns24oyI/2tyhPzmkb3vOXE3r6TJHUtZn06XSonxvRhOa6ZTTw8dn9yWQHPjKVZwczXj68IBLl3aYHZ7QrkRIoDKMEuQhEVUg64gicnVo6dsxv3f6CtbPqKY1L+kVP79zjElRHFAkQszkkoefM2Rtsc2UYdlJEVZ3ivcLOcPlIEAbKfYMpUjsp/n4qQG+PiiGQS79YqcVoC2pCoUMwmu1idEKq5Uo0nIWe13VYKyTZjIN5Ag5YtaKDpALWgHYBCDMpYlN1EfrRt4QkadCUaS8SfLElAJKU5SRP08h4cqUzc8ohTLFnqMiTitqW5FipO+EqUpI+6kiY3Wmcg4JWhOQqut7fEwMobTwxlLIkAVZNkYUYLYfsK6ANkZAEsnrk2MgIIybUYakAyGIjdEZEMjboHMZ7mMvijA/YK1hCJHgA8MAm+duwOwRoT0irI4Jq1PM9qWy+RcVUF4nV/2PrlysnesgL5PIpdd5VEiYcRmuQnyWn4OSZqMQgoACRc4hP13ZuMhr3A+rLZcuX+L04SH1o0PUp/exJKa729hFpOoHTM4MTtRhNsrloG57VD+QFhGz6NG9WJFsk0iVI08aTuaPuH/hHEd/7ec410xwf/6nXN87x8aG5evXNOOLVwlv/4Del1c/ZRLqDNDSRtrUnNXUTkseo5EGY60NWRkZqHJGO0cOfbnMCyMczs5WOYRyWst0RRUdciKy3gQSlQJXGZrShCsLp1S5r8NhdS4si1iysspiBynvKchloWSdrnc6kboXdlQGVAEYldGwbuWTmyND8CgtasWcDcYkGm0ga2K5jCuVzg67TMSYCpNl5YyIPLcZeNvDS698hfNuk/h4ho2QlWXX7WGaXUgd7vwVVsvAYjZjcXRInwexHSaPqzJ5OmbZrlguZ4w3d9m9cJ6gDDEFXDWCkEnBs/KBIXqiT1jVMB1ZTFWTpnO+NSRuHj2g0wP3VKL3iZ6eatlSrVd6VtIGnBONtjRa7KlVClQKtoBtazk/vsbLeUJ3oSqKHMlz0kYTK83r1vB1o4klTj8VSbJGobVF6xqlHPHhE6rnX2LdxP0MPC/vZUGoJDslP3s4VS52trWSD2GEooA+oawxnTIGy8ZLP8c3rn2Rj//wv+LB9/4bhn5eWnjX2X9aMteU2LGNMwUg7QlGk9DURqFyVyxPkNH4ECTHB4PvbjE8vo3KCmcUPkZ6BSMX5OfTBqVGTJ57nZs/87fYefF16p1LKFvLIJE8w+wRT3/8r9l/47dhfp+UEn1f1mEUdZ9GlA5oeVYpOVzOGKxRoIQ102WgylCaJh3OZB6nK7x/sMdvvPw8pz95m8erBe/PO176xV9m7+INLjY1B3cfcnz6hFGduJIj0cNy1rJaPuUkdNztOgZg4/o17HiDjckGg9aML+6gjJQwOCNEhxxHShjxchakEHl69x7m6Ak/P1jG8zleGd5WgSFplqcLqs0WbQzrAqGcgRTJXgAq2Zt0Ic00zmmUkf1Ya7GJOGdIq4G1MaGYK1HZ8MKy5397/5A3jpa8s2GZV47aNGxYiyNTFfbcKcMoZSoNu1nx+WaHafC8aBz98cnZOk1RsnRzlvZ0sSAUoLpEG6wzDNfny9lJsz4KFKTkkSwyyEFTu0i3CNiqouqOyKsDtHMYI7mgg+9xSWG0Y+PiTXoN+eQefrEgLZ6Qwimzw/ex7jeYXHxZ9kclwFMaBuxom+vf/Ptcfe2vc/j+H9M/+BF+8YTl0/uksKTvtcQ2WFlr6+bolATc1+V5VKpHxVyiB0QhG0NCW3mWpF1OkYL8OVoJ0KKMRafMvaMVv/1Wyxe+8nMcfPiAB7ceMLm4ycalc7TRMR4ZqsmY6cZELu46SMthCBw/OkABzXRMjAZqQ1WJ3WmjqdFWAEettYAsSomKKSuW/UDbBw4fPKH+5B6/0FX4kwP6keP9rZo0BFqf+eCjT4mFiMwpSVFaCphY3lMF9ahiCP2ZO0ChGIZAU8uZNISIthatFFVdsVotZIZMGWJRRCWx2EdFWa2Zr84T+08P+aPLF3C753h6POPJ4wO6VcfpyZLeD+L6UIpqqdEqYbUjDwvaYSBmzebmNgf5AWrVMfZiRVJa4aoxktWscLYGbQTUGDpsCtSVgbhCE1FKXAmqBqUMPq5V+IEQO/l+c01OAWszRkumWowJa5z8f5Vkm6aS2ytlagld4j3kP3KJFQWmNB9rFASwVqFjJJqM6iRXkiylLtK4K9ZsreVcCDIUo02NiglLkqbM1cBUV2xs1agcWM0WjPUEYzXbW2OMakihJ3YrjvrAex8/waQpcX5CNxxQG8ckV+y/8TafpDcIG9tcv3AVnR0fvPku3fKUrQsXufblr9Fcv8YqILNBcnLe+HKGxCDFCauemQ88/OQeD//1v+U/Ouq4sDjkfJ95ahK/v13zIINWFfNjiX1I4iOT/EStS8mK7DeU13291azzGpPKZ8SytYaUM87VTKZjUIr9/QNySkw2NqmbEfPZHKUN1XiMUpqhe0a45Cx2cJUCWjS1nMPzHx4v+C/uP+E78wU3rl1kc3OL8WaNsop+3vHOj97CKIUfWoJ2JDPGh4BrlKiLU+B81aBRHBye4Mwcqw0PK8P+oufKE0OcRkL2aGR/0taSIhhliZkyU4Si6jbEpMnKQBb1iNMNVjuGEHBWFK9j14iiJcGy96itDZQWm7KtMuOJJoSMqzLGKbouUVUCyg9DgJSx0fKz0/P8ctrj+j3DObukbiIuBZJSkpOqxDpOpcEKwIephaRLDhMF4FPZlGtCluiWIt5AG6GqVLEwukbOl0pBI1+bVBSAWxlq5Qgx8q0h8VVdcW5zG7+1wxf8eX7w1tu8/vo38UYxD4GTRcvJcsn9rmV1uuSXV4YfrO7z+TbTp8zv1D3jZouYYP/ghMnUMQyeHMPZHhSURrmK6CND38mcjcJbzbVzOzTTLeYHx9x78IAUAhcvXhYQqx8IgyeHSDtb0S1atNFMNqYSh2MMKUd8H6nrCt8PAgZXDY3W+HaFUSXhsYzmKWR0SlBmQ51NAZgUOfT83Y2GD3r44cVLnC7muPGYfugxpRQw5cyD+4c8eTLDOUMzqplMRzRNzeZ0zOWdLbJWvP3ubdohYfH0XaQZO3HsZTkTvYaWRPSJuFqhT6Y0bNDZOSSI5KKQl3lPyK8SxaMyZFPyl7Ws6Vz2TKXPiESDqKVikrm2qjU5aWaLhTTwFuXnl43jb9aWe0NLv+E4VZ5trRkmY15ml/Hvfg+bDMFpsJpskKxsZchasoLJqYB6qty6itBFC5GW1rO7KrlqWYjZ9V6vyKAy55JGOctw+kSs1VlkuJnIuthJyIFECJH3uxV/r9lgtD3m/zj6PMfdwEnfcljVvN0P/FmZqf5+M+LvX38eO9kgj8aoyQZq9xxsbxI3aoLT+HI++BDowkAXI70PdF1P2/W0fU/Xdaz8QBs9gx8YgmcoBRjeRJKVLO5YyMakDJ1RDEqJ2lnpYq+UM9Y/fsw/2ruGe+tj6TPIqcRKyLMaz+8yOzgizFcYrbG9KCV9ijQ58r+vHP8Pd8z75/YYT6acnhzjS25yzgkirMPrlFKMmoZhGNjY3qZqxpwcPEWgdlXmapk5NIq7n95jdnpC4xwhS1GeTpmrSVTQikgsrsfpyZLzY8t333wXnwxuvMXH169y4cbX+dnJPtqv6KPkR7tqjB5P8HZEdhuoyTZhEGws9R1+9ZTQHjEc3gO8kFAxM1RX+Wk/fmqAD22wVYPJHqMTTon9wOhUrHrSrKiyobEis9ZmHfbuyVnAKJR46LXOWOTCxplqrNjUihTTmWJXNcI2oDU5iE1YhiglNd5ZwEZTHjatTWk0LLkblAewvN1ag7MyDASfWFDkzgAlKBEl1lhnxW+Phr5r6X1i0WW6mOljuVgqqK2iKlL3yhbWSRsShm7wVFbJMKgUzhpRIFmgAKJySTRoI21bpAgxYExdHv2SBZJLm5CPYCYoO4Z6gnYN6XhFbJ8wLJ5S8bmzS1b+7PtYpK5ngfgUsKgM7+vLWUqfkYPDma3AGl2GSRlcjZbMRQmsNpQU8jMboip/pwL8vccc/dZv4d95m8ejLZabNVu3n3K5W7IdR6iTSIw90Q+QEoPuCc0G+8+/TFyc0Dzapz48Kt9rxOqIQ+NN4ifPX+fj5z/HC+fGPLJj6pdfw//3/zWXLpzjYGI5OtknMmDEB45zz7KXnNVYLVbsrHIpZVk3ApXBmUwOg6jOlCbii71AMwQkgFsZUlaYZpt6+zrTvetkP2f++DZx9QgfveQWArXSovrLomLLCAAnNu81DZDP/m6yWF6U0ugkxS9S1LJmNlRRCCgJeS2g6pndUyHNe1mkyF3MpKIuUKxztOQymmMimwQBdI7EbEnZoHRN1jWq2kKPNql3LlGP9/hrYZPX0hQDjLLiYP+YiGJjowanikUkoWJk1s04WDzi5o1zmNpglRUVFyVHs4TKr+ZzSJ40tOQc6OcH1HqEtZlsFb0z9HVDVA2x5GZN5gM/d3fG1LccVZmjFNnRAtjrxYw6e/kelWETzaaBLa1pzl+mToGdpWE8KDaSx9WOrR6mPqPqjpgV0RmCy6hKQ9WQXC0XKlfjlBbbf/aY7EErqtL+bA4eoVMkFRR2zbpq/exZU0pyClWxiq9VfOsnlGIZiinTlUNDG11Ug0JIBJUxdoPP/fp/SvAL7v7lf0vvPUNIhCD285gSaLHGqSwqZbI01VUm0RhF40SDWmdX9nhhLG1OOKtwOUGSPDznIKdIiBK2XddbXPqV/4ybv/APULUMyEMWoIBiGWBymd1v/EOGrmP2w/+KHDv57ZCISUuBjEkYK3+vwuKsFVBynQupQCtHSA6lnTwlyjKabFIz4vNuj72NPSoajL/O7ME+9+4/5kcfv8vh/U/x1jBRmVEeSrC0QSuHTxk/qsi2waZMt1xw8ukdVsuOFZlDA357B9eM0KOGZA2mFgunqWpR0BiD0hXzecvsww95YdXxpWWDzR2tq/g0R7ohMgRPP/RihSeXUqZMypGxdVy/cpkuRmlbVIiKpywHly1BK7StqFVib35AJatErOSAKaDu3tDzN5TiF+oxcWNCNdqiqkboSklxAZmgLcpIiLSyAlZ3tePr0yluZxdVmotzUSlQBt1CaJ9tNrns92fHDWIPV+uYi5xZtoHDo8jQJzCaSQ0Tp6kqi5kdYlMHj3/C6uk3mNzYwjpDZUf4tqfrV9SjEWn7Es3eBeLiESoPaAzt4X2O3/hN0it/A7XzAlZlWp+oJptsbG3JQF41XPrm36N9/HWWD97FnXuP4dGbsHwKWlSMRaciNhdjChmZC+moiX6QVk8vJAxKkUMmpAHJ3RELtDVGWPMgUQBBK+qq5bUL21wLkTzMWS3mHH36ASfnNtl57mVOU8dq6FFGFEAhK5SpCKX0qFsscDph6pqLN5+HkSVrI8RY9AyrlsuXLzI5t3N2Qeoz9D6yXHQ8+PE7/K1ecXm15HB1yr85t83jShPF90TIqTD6sh6jklOhmcDU1ORc4buO5AWgVcZKc3UW4iekTE4K48xZu2guayOo4nQoC0ewLyXFG0DVR35lv2MVD/jL63tcPb/D0XxFzJk7t++JCktrtIEYhcgSIizxyYPH6Kzp254vWosJis1QU+uMaSKKJGCTqbFuxGRjk9TNUNMJxrgCxFgk+TEClpwiXWhROTKqK3LuaEOPyZasA9aIBTIbKccxRuNMxqqIMT2ZgbwmsEsep0bacbUqro616hKDj6LYtdqgVTxrcCVZfAgym+Ys6yoiALKWnGBNA1GjmykqirKxouba1HB17Fj5ltG4Jq5WqGWm0SPG9RRtp2LnCyM2afjHL13idOlpQ+bpbEE/3uD83gUWq44nixmdUhx/+inTK5d5cWuHPBpxfDrj+//iX3D1m99gtHeBZjplsjWlqhza2NLqCfQBHRV+1vHoh+/w9Qf7/KwyzPefcC6P+X9WiTvjCfuzUzarkZTWkCQDtsyo1hpiyfEeYsAaK8o1xVnG3TrHVWmFqSpR1MVANW6IGdply2zumUy3mEynHB8eC3A9HnP5xnMsHj2kVelMISQzsahh83rrC/DtZeTDgwN+Kw785MkTxmMBTscbY4ZVy/LklGs3b3B81BG93GcG3xWFsKhqlidz7NYmvg+sFsfEvqcnMx8C6bHH3tQEq0Sd0jiJUihOlpjSWfO3Vgpf4mJCFJNxiBlnHJWusDrikxTsaFS5T4FRBkNE5Z7kNf3gqWpLzAFjZbY3BrRdl7lFdNT8cjflf/1gysWxpbp0Db3XYDYqTGUk8zyXXNMQIEeJ6bCQjCIZ2Wd1UqSgISQIGmWLpSRnyYMxGmXX8R5a7n/rwy1nlC752Upm76wsDs35qUNjIHdkMhu25ubXvkG2lmQdauxQGzvYAL7tmLcf8M7dt5kfLvn5uMnvxWNOmikMPdHNUb6nm/dl/opYJZmEKWcmm4ZsrJQxpEJyqczJ/YfY5oiTx4ekthWVUkq0R0f0qw6d5X7Zz1dCWFhDHAbCkPFlr+/bgWBXVEZJ1IAXgKa2CpUSLiMZfMUeGqIUB4Bk2MtZJgKZrVnH/0ZbTnXgk+kOh8f7dF1XIqoQUQ3FLo6QCErLe1A1NZeuXub4QLIMjbX0wPsffSr3WueksT7DCKjR5JhIvUcfLai7Md3YkBTS+toGQvZYpcVpl7M4iowmeokYSTlKK7lSGJw8e1lsqUmVe3ACZSQWwWhFPwR0FKXaGMX/avcKW4cz3thVfO0//TrhyWPu/tHHPH8aOLr1Hu/qyFRX7OqaOsp8tS4u1FkiJ8oFinU+u6hgBdxT5fcQAR9JK9YRXUqV9XqWGlfeFaUKgJhISEHoej3L4JFYZg39wFYzojs5ZnNmUKFDsaQZIucHeH0QErm+/5D3Hz/BNhOayZStzQtM9i4xPn8BtzNBjSt07VCuQo0qVGWhHot9S5vyTBkRf5SfKRlFcppsJacxaWRtx0woRS++6+j9IDEePuJ9IviIbnuqGNh95TXOzZa0nz4hHB1BDlCiBZKqUHWDqSb4OCN1kZAzFlG1d16xe7Dg/9RP+e/inD8bacYXLiKVaKq8rrIRSJZ6IBEYxSBA5ukJW1u7Z7iF5JUGcWRYg1KG2UnHLCPZ6cD5rPhiUOgsxWg6yntxmBPv33vKol+ha0dql3RbG3zaGn75ldfId77P1DmUUai6JipLc/4a1eVXiFjJUA6RbByhb8WB6FfEfk5oFxhjiSfP1si/78dPDfCNmwlqukHqTqhNpjKCVmdl8UGAjspYUbvlSM4Bvx6MyQXVViQSlZHg4qw+EzB/pg6jgH2akKU9VyWxmFmEjXOmMBeqBLXnRAH9IcufoxEmSymLNSX7LMswqNA4bQlxQFtdZOTrkETxa4OSS59WtL0nZ1h1km+RUsRqaJxiVDsB9pQEwxsUzlWyCJOAzL1V1JXBKNn8FaVFq2yq6LXiIeC9nHdaZQENqhqrNSE62fS0RbsGaxpCQKqyuzl6dYBxAnouT/eZngGl6w/17N957Wcvn/mMSk8rys+4vtDI70v/SBmaiqpibc01RgarGAR0SuV9VGXjMsV2+PR7f8bq+9/h8BvfZutbrzPZGDM8eMTb/8V/yWsf36KKlkxPwNMTOLKRg2GH7nBEde825ytLyA9wZJZGsySxF8AkzeOdz3N0eJfLD1YsUkNTTYhBsXHnIW+PNcPJmFc+59AWKPZvrWHNnYQYyAU0ls2gHDpawyA2A2slRDtmgd00olo01qKqTdzuDXZf+CrXvvLX2br2GqaaEH1P+/Q2j37yuzx841+S2n0BtpUMZ64MLEbrUjqjngX5lgxDI/cYsSdIIJyUEAAkGfBTytIwZ0WVKGU2seRhljKVQQI+ldLErMg2YSihy2ZthdBkMya7CWrrHG7rMvXmZSa7V6k2L2BH29STbXAVfj6QH5xww3TksEDyIy3DxfP86E//komquOo9rm9xLpN6z6PHR3Sq4kZW1KtA1gGVQKWIDgJqk6KcmSbBpIGqhkphtQT0ng19SQtluEyohweEt+6gDo94qANeJ5xK/IONC4xXK0yn2e0z06QYq8wkK6YmU7lIrSyj7LBZlDuxqdHJUSvodjUharwXgDcPHWm2RIcFOXhS6FExoqME1urCOCar6cYN871Nxu9f48rfTqyDu7RaKxCK4lXJgJWSDAbyzJXDthAVFODdh0jX9cL0RkUoakxnDNrKRdMrx7Vv/UM+feOPCIu7xFQannKUWTpk+qSJQRGiFPFoFONKUZvMtDZUWjOuM9ORKrmUmhxEddJUqUQVaJTNJCSrRxvHxgvfpLn+Fe5/cufMEq1UAi+MFdnjVyto55x+8BdUqsVVCWskO8YogQBylqBi42oUFUqPodrA1FtUkwtUk/O4ZgczFuum6R05W7LRkCwuR66jSSmQGDDtwM/tH/L5d3/MornIiy+9hq0NkswktiWTNSZHyXONkscRcsArATAePHrEf//7v88XbzzH56d7pOWCPgeGHBi6SOhWeAVDiMQozbtqMuX6EiazO/RIQ2TaGLHXRw5y5LJPzFXAA5U2kAIqRja0YWwdtXGMjGNsNJVRuNoxqixjp5kYy7YxbDcjntu+RPXDdxm0IU92UM6QjUNZi2kadGUZGysKiVVAtUtQoj5O5XxNKYIfSDESMtikMFtbfHfW86tf/6IoMBC2XYgpUXkXLucMxPvs56BckMt54oOUiwQyh4uegKbWsD1x7E5B0bJatuijFb7+I67v3sRON2i7gUpLaZP3Ae0qcn0O1ZwnLJ+Qliek7Fk8fAffzWkuv870+mvY6R4pRpbLFq3B6kS3nDFoh9m+TDp8Sr39olhVugPiMEieSmlvtUraVY2VhtToQeOotJJipOQISqxntplg603MaANjxyhbU9sRMRuMGmPqCZ8LH/D8bsu16Xaxm3u6bskHqyWfzE5wxtAnOHfuHCor+iD5xqFPLFPPydAzLI5Y3L/Dycd3uPzlV9nPkZP5in7VYpxh8eghdtxQ2xFaOwZriBja2Smj27f5W3ZKOr3HMYbf71cc73tOes94p5ESElXUxWdgp2RLjZqGk5OWMIj9UQAVOd+NtoWslQuWZq3qlL1FpXXsgC4zHjL3pDXwJeBf7Qd+4ziykSI/2NzAboxJJWMVEi5LG5/SAYu00lUpM4qKUU5smcTX6xF6dopdbWJTloxWo4lG9tmcW4ZlT4o9Kov7I6JIKmFUovcBrcs5pBJNpUmxx4dB8IcYhAQsObgq5jO3QlaiZAm+hIcrTT9kjDJnVrKUPWvha4oSR0AKOJVpnOQEZ0SdaJTkRWavyb6BXGNThcaQo0Z5Sz04tNfoACYqVMjENpAjbCfR9A56jG5qXLWDqxsMhroZoeoRthqhVYV2FW5aEXczytryXgmo0W0HMFdJyTGPgUMNp6ue7YsXeDSfo2cn3PqTP+Bbn/sai8WKfSKtCgSlia5BuRF2NEVtTrnz6S2ee3qX/2ChWXDMpSExN4o/b8reGSLL1YqdvT1RbKwVekqst7GUgBljzjIxVXEQAcQosR9107Barkgx4moJ+Pc+AIrxeIO6bjjY38cWG/ZoNKLrWlbLJT4X29Ta/ZOD2AJVyZ1WUA2Bv3cSOdFL/vzcFosQCd3AsFwJSW8cd+8+LmRaoFv1oGDVJpQ1JGPIszmzowMyFSEJEH0NxWb2pP2I6xWxTlSmKlE/kcpGKTCJAmzGpIlRAIlUXBslGRutjaiRgzRc1pUhIRZ0leRimLQBa4nek5MnE5hMHX0vOV3TqS65fhkHfPGg5n957LiRIrapiW2HeurhVFQ8QSmyc6iqxo5qtGukId5QwISKqDXBFIuuzqLhVQIAUsg8eTdNAUuMBKcbVYoNVAFarJAwEor9mX8ELFRagIyzAkSf0R7UEFCLFfZkxcl8zh8tD/jbeRs9HMAIblw6x/nLF/AJ+p09tn3g2p1Tus2KZBMuJvrK0W1O0bub9OmZQyqSRJkWE3G6R05CbmQrBSlrt1dMkXz1RmmcFitkikFI37IfDsHjUyQlaQFXRlFZx8Ynt7g5OGoSJnGWEScFQuviQMGeVBRnwM2TGf9nvcc/sz0f3HieRUi0IeBTIJAlzqHkiT27GwqItTxtMaYil+Z2p+XePfjE4D2pzLVfyHDZF3IxJvJyiW3HKK1xVpMjBGto3KSUpklRQkyBEIdyZ46gJF5mnWu/zn3NPkhLvJLXWKnMV77yAg8ezOnbltliTruKbGrD4uET3gs9oy9cotkAN9ng9PEG+Y963o9LdII+regz7GGwa4Ue5gzq1Gc3xAL0fWY2R6kzJR8qP/t1CVrPWq+PQ7H4EgvhVZw6qhD6ax2NUWQDj7Rj18qdXKCrjKoMW2nEWEVm9DAEBh8YSAx9Ri9busMDOu6yoRy72xeotzfQtUMXB6KyVspBhNH+KyBuyZk6s+1i5NfZWvlaY9HWYq2FyqCck+cRVex6Fp00yjgpwUsebIW+uIc6OcEOc8YmMZ6MUMoQ7z8kJ8X2ZCJgcAySB5oyJJkb9uYL/g8+8o+eu8LB9XMsWs9xyJyGQJsSQ0gMMdCrQJcSg4aQJSdySJqAxWPolSgNvdZ4kwkkuf9qeU3S8oR/dLTg+qITKUUhH55sTvj/kvZfT7Zl+X0n9llmm2PSX1/mluuyXeiuBtHwTYAkQIAGnBmSmpjQSJyYCQUfOMHQm/4BvQ8VelFQ0mgUMhNiDIdDgA4gCA8C7YDuRndXV3X5W9ff9MfsvZf56eG39slszIRCMZ0VN+6tk5kn8+yz9lq/3/f3Nb+52/Dk4UIJGiEjRO6/+02+7AJ//fZb7KUeV9XF7gZS6MnrU+LqFD/dBhJYwe9sgbuOq1usdco+LQS3xYcf8sN+/PAhG2mNCWeIV5+QIWkRmCXqRMqpV1cIHUn0oFIfM5W0KVXeKpWxbLYihr54Xo2UXE1IBJsNOA05MEYviI3aCNpQvsaqZNGgmxhJGKVs2UDOGoYwqTxGVFPNyDqUiKuExqpBe5JBJ9dkrE3kaNV0MWVCAf7UB0XYmhlq5zQUwegkW3ImSwAskgYFYsrE2lltDDAqAVXZ2Ugx5hLjDQxewz4wGN/o9D5FkhQPmWwwvsXYChsc1WSLcHgX253rAZoDeXVWzDLZMMHM/+S7Wn7meBqUX2JMatyw+ApWqEU/m+JqBPlE9D2WLBdGw+hN6qzl448/5OjBffYfPOT69oTT6/t8+O7Xmd5+jv5swXR7yjIveaTxIxgyn9SOj1zFblqy9f7XGHJk6KHzCW8MH/tEG5VpNBVhEgIvXXuOPg7cunWFxeMT6HpWInyhnXF8cwvner0OVv33nNH23oiyoaTQvlMq/krGEmNGUsZncEnBFmecMvpMxBtDu7XPZ37hH7B3+02GZPCTGd16hVt3GCK4mmd+9G/SNp7HX/snpO6cIQSkHB8wHmZ6HQ3KjtK30CBZ26wUBJxRGVhhwyJJAT1jqGuv4Lk1ZEoQQPGB0sFeMVhGZULOWVzl9fXbGc3e80yf+hzTay8z2buJabfBVkVNnyEKJkA67EAW9PcfEj68g3v6gFwBWaiSpV8Hbr/+Or/9ta/QXL3JZ195BRsG6AZ2n4oK86dAhS1JvWZcYBgcyXoyFpdLElY20GVYLpHFKeb8DHu6xJydYU5PkMNz8mJJTB1HfuCOnDMbLH/Dw63DJxyIUK8CtalUnlxYIGq4nZEQGCTRo+BOEqHGcDY74OO8xf7DezRpTQaqzXHvsWwid3RijAK/0dcMdsJxO2P9oz/GGRU3kjI9MOM9pLK0YhcLSGGBqMRSH2EDjoxeZ4ePHvD48SMm0xpvKw6u36CtPH1c8fjuxwzdmr15w3tf/0PO1pnVWockIoZJrQzcPkS6IYLRwre1yjRMOROtI2SVwQpFOpZR0NuArANNdckPtbblPgdMYPn9rxHvfELXF6PvFFTKaQ3eKyumqoDuDLu4y2wG3qjUzGdf1nKFqXaw05s0B59hdu1F2r1nqWbXsdU2xjWIuKJyEN57+/u8vH2AjYnkBazTqaNR5ockSxbPYpp59vlXWR8u2Vp3CF5ZW2QcobAEKMWXkCtPhcOjw6rb127wn/7VX+ZPvv8ecdvzU7/0y4iNUIqT3AdyF4hnK8LjY/Kjx7juiFmMnHYnBDKdz4TFin0M+zHyF49PePH5lzBVQ1tbfOOYu5p5M2HbN0ytFlYOMEWS5lLAxjXVOiLLDu4s6I9PkWaGzObk3T1k6HRP6QdMd05OAVLCZE1cNGUvkNGX1mjpKWUYl5zHeccq9dw5mxFDoGoaYkj4ShvEzQCpMI1/kHFKscZgI+1UUpxjNm3YunGF61uGZeoZ+p44DJiq4uQ8MAyB2dSQ3/sW5sZXuf6ZzyM5sVwuaWatNgWn94hP3qU//4Rh8Yju7DGSBkyGbnVOWq+QnKj3n6VqWxbdkjisGJZnpH5JGoION7qHpCfvYeMTJAw6SBc1x7cOhi5SVVNMNGAr6mYb1+xjpjv49oB6eoXKTTQ919SIGGWsiqY+ppzxoobfLnh++rUvAIbs1LLCOEuOwqtJCN2aHHocGkRiRM+EWJKg7n3yMcvo8PMrmINdnqx6vnv4kFdvHHAmmVu7V/GSWFdCjoZVHziTxLltOB6WPPzkPf5m1fDc+YqHi0M+bhruhh7Taf11fnpCM5+r9LZUUmpDIWxPLXkt1NkyqVv1AHVeQdDKU3lHXRmMFbZrpx4zRmseyYk5jtvHSx1KgDJdAXxJxrPqZWlMzTwLv3gS+WJt6H7hRwkmUYeMi+CiUVuHlLFRmZY2ZkxQ03YbIzYOLEyAecWBu8+hPCakSO0qvHXUlSfHjpgTziiL2Vqvie4kTUs2ETEJSwZJJdnblhAOnfprn2RH48XCiBpBF2W6WsklxVebeF+pV5A4qyoMBGdisaKJ+ML6tsZSWUOVJ5i8zbS5RtMe4GJNFTxyskKOz8iLDkJhP1UeU1e4do7fVsN407RUbYurG8QrE9iJys9HAop4qxJsdF8wxaNVyjBNSn2BrXHVHGlb4rAmhYGqbel2rvGz15/i3334HSbB87lXPgtJ98wuBJZD5rwfeLxe8+Hdu7xw/IgvnUXejMK/WdznTRx3XORo2iAx0TQTuvVaJVvdsFFRpJRIdUVlHZO6pqrri9rVaL2ZimzL+4qh72m8B1/p0D4l9aqsKxBYL5a0bav+qiW8pV+umQEHTYtddWz8uIlkW4Bqoz58BsPVLvBfHJ6xZwzfeO45FgFSDBqUkzXd1BvBpIwrgMsoVTNiSDkiZKwJ1DnTDj0/k2p212q50MabJE6Jaal+1yX4TFIsjP+olkTGFSMjiE6THPVcVk+xkDUgp6kq6saRuoHaCc/sVVybVPikde7ufJu1rFmtV7SVw1UeX2XabOhzz6z3/PQTz3B+ziFLthdnVHWL3Zridub4K7uYp29gr9/ANg153SExk2cNbDUwnUEzwTWNBpx5lUMap/6RBnvRi2xKo3J4FAkqOSmgFfVskQgmqEefyYVVUfpLBd0pXmgZYsKEBH2AbmA4OsdtT3hzd5vnHy+ZV1v8qIH/+r33eXx2okNkbwli+Ltvfo7P/eLPQ+swWZmTOWqISZCs6hMS2aiVU86lBg+6fySEFANhCMqEKt6k6tWrQVcxBELUAVuKGYm91l5p9HCPuGHgrYObPHe2or//BPfoU8R6JWigUlFlCILJFl/sAUJIPPvkIf9w2OP9eM6nB1ucbs11SJnUmzxLxiRVekSj6hsNrsyILSF9RXGXsyE6vR96DNFW/K2tPfb6VRmWWhgSfq1DoJSS9q22VrWUaHhYHhVIpc4E7bNSykXVlwj5oj81ZVhSF5uSYR0xTmhai++hqeFKhFk2fIDlduygM9RGQybOcuLbLdwahB2EBKyJBdDTnsthcIDDbBLsXWGlVmILL7KwyK0qCJUNZ1BrMB32ZIyub0sJ/xhrJFvUEKYMKHSdZSscScKlzEf9iXpi+xosRJPI1hFbi7U19txS9ZELOFj7xEGEk8U5O3WFG3rUtskroDcqTJwtoXejP6f+ewx4UsOYcbxX+nlX0oG9QZzFm6xAXkoQDTkpY04KK1Cs1Xrvzdc56M/pPVx/5WX1zBw66Ady30OIxYdQ15ckUT/AmKHrudIPyDsPdL/znlx5jHOIs0jbgG1JVhm8YhzJObKrEFuRrCM4S2+FlcmsEiyxdCL0Wc+o7StXeav/mPT4EwRHMiCTmn/llrz0+Ji/1vf89xg9T43DmsxidczhcsG8W3F2fgTGU03mON8Qlgvi3Y8xVYVgqPefZufFL+CmQgjr4ttscVVNFM//b3Tm/7+PHxrgiykgoQe0+FBLuqQpuaKeSTFFBUCKSbCxTk2ms0pyNRhibCx0g5DiFyaSyFmljs7ApNYyt/ZWC9xiYk/ODEkjhpX9kmmqIqHMxYDYGqwzNBYqp3JXZQUWL7NiGK7fo4w5PXPVqyMMEbEOK2pm73LCO7C+0GnR749RytTXFqCI4lGYi+GtKUE7Gk7ifGHupJKApXzfzfRRCpPGW0PlK/AtxtcQuzL51T0up0TuE53M8WFQFlgewFlyVHNvyUn9Lcy4gWx6LP34cww/Uxhj1ipdrPR7RV5VXrcZ01UvQL6YNNF144/gLDnljWwixcg/+q/+D5ze/Yi/d+U6n1sb5t//iPt7Fen9j5if9ew8OcVJ5IxIZ6G3lofGsDNEnk6Zlkwov2eTdWt8NcCWGCYFJInf/BN607D9hc8Rj9+l+sMv03YnDO2UN5Pw3VPH3SpQRUNMJc2wUml1U9eFdah+VKbEYLuyTp0tgEsq5tbowdN4PRBqWXH3y/8dd7/6a6yW5/hK5a/G1TgjDOueup1jUmI4XpJEDcydEdrKg5SkYyPYlBlE8M5frKuyBeRxKiZ6IFTeYylsNwvWKDgVo7IMQ8pqtGsowLlQ+Url9VbZB9kI0+0X2Xv579BeeZGcPdInuvsBmx7go2BF8IXRY7PegyI9jc3kZw7K723IxpPbislsiy3j+Rs/+TNqsD6dYpYd1qeyE+nhkh0YkwkoncECJINddLjHZ9gHjzAPHmMOT5HzJWboMUOGPKgRbh/o44pFXHAeB85zz8LqNRhy4pVgyBLogB41ajVJWZseQ43VtOtyiBkgYgkYAoZ3r1/nu1tTfnK14pmTgYyjwhVZo0c5j+P7o/tVBuJ8Smxa/LJj/ZWv07z2CjIkqMdbbyNc20jZx8dzCTO5fH8aazY+Q9/9k9/nq3/0WzTeMp/v8NnPvgEpkLsnHN2/w7Vr11ifn5IXp0j/mBiUaZdThgBNUtB9PrF4Y5g0EySrPL0qsrrae9oKHB0xrBlKESvG4qwjxIRYwwB4oxO32qvsl9URLI9xWYcW3kJTGIDOA5KposEx4OaFyZwS6kBgqaYvMn/2p9l+9kdpd58FN0NQA3+SIXcG9XwVMA5i4IXbN2mbCeLUM9VIJpuSlmwMNmmCbx0zjbzOttHiZdyrRWsyHdjEUeWisuIcEs0wKBMWx/YLmVc//5M0qcefHmKX3cZXjJyhG5DzgD3t4TxhjgeGRw/pwpIIXFkG/kFhd09dxd6QufHwHFuvdQIMuGxwItgkm4ZGrSMypFh8GNX7LRsh2Yq1dQy1xxw9xj58qOd0WUNSmEQYSzZjSamgjg7DhGwKbGENtrGYusbUDe3WhLsfvM/i7Jz9+Ra+qjQQ5TI7vDTZm2Vt9W4avyalxMZnEuj6gfPHhyBaTPXrgPWazupqg5s0+MkBe8//CG1Tc3rnbdZHd+iOD6nryOnDTzl+9CGkM2U/JA2DQAypj9R1zfHZKf7Td5hM96iaKTmsEQZM6C/CXGJP5QWbOq0ZxCBJqO0ER4tvrjDZfYrp3g2q+gA32aGudzTYZBDWjx7Qf/SYQU6ZHFyjubqNbWtm1kNVI67CYdRnLukeYaxKlbAqD9HbpzAEciqT/rKWRM8DkiA5s3f7Njl2mNCTYyCtOz57/xEnZ+fkoeKFZ56ibSuCySqtTYkQAuvzwOOTnnRwwKsnNe7j77GSzJEVBjHs7u6zNZty8ughN0to1NjcGKeNzHVbs7O3i9s1tOKoctYzoQw3rLMbL1g/ragKQNV4HYVMxPLcnmP74RPuLY5JN26QndsklG5qlCg6ZDWw5wzmq+8yths+K6jHCOhFkNJoqyhNnyeiRf4waXjn5i43nnVM2yUOQ9tMAcPQBdrGYWmKJ63SKIxrlSmDKUPOQEoDMcWivoB+UOltTCOTubDty35jyHindZymiOvQ09qSaChqRzASJ5yBemy0RJCgwSaTxS4H/WdoZBtZ9HC+Ii+PccZTz7ao5s9iX9jH7LbY6RTvW9Jop1B5MGXQ4Zwyd0OPiQEbNEwGq8wOqSrwDXi/UVtI2e/HZi+P+4VziE04W1HVlpwSLcpo+mvPvojZnTO7dhXxVhulbHQ/C4b8aMnwnQ/J/irzesnx0fv4wwGDJdHxrJuxfesWqyGy7tekrsOenPLZK3tMMHjrCNYwqSfw6mfJhcFmS02uKqHCPjGFwYbua8aYIsHbVMDkUtdm43BJk3/z0PGZ3Su8eRRYny00YReV5rsx9GpsjHFYY7lpM//ZMvDRwyMWB/vItEW8aGVROWrn8SWoRevHsheaYhafIiYkfBfwyzWzsxW1D1oV5NtMXnyaR9//bciPoaS7m3KGlVEK1hVQ3mrQWgoaFqNfa3BOiCFSe08eBsQIW63np56fERJYidCveevll8C09ENAyHRdh68sQ+zoQ+DGsuH47W/zVZO5loX9FNjpO/ZlzW6O+C7jqoaJr+kePSHv7NH89E/D3hQ7iO5fKUEXkNghIWlyqpRAHxGVZG8AHVN8+TImZ/33BsTTPdKUg8fkS6xjMWRR7aTBFB9HLvaasgzayrGfWg4OB67uP0/Kjpe6M/7ecsW//vQBCdhzFX/xudf4bFOze/ch0jolllReeyynbC31n3VjNqIysnxBdwp8tGGDleJvM2ArNaDJgolZPVwzqmkUHYLYpLUv3Qo57zDLBfX+Y/xqhfGGulXANIuuWWsK2ywKNiV8GMhDpB0Gvnhyzhf3D2g/+yYybcm20rGSVYKAmLF2uBj8gdY5mRKKoa4BCnKGjrwONKdr/LJDTs5J5z1H/ZKT7TmhMph+CRiatqXYamKdJ6ZQQHSPMaEEbygZJ2a1jHCuUmAEEEkK/GUhiec73/8ekaDORknYblue7h1VFtZ1xfzKjNoKxw8f051DMJ4PXMA7w5EzhCzsh8LALHuJF7UQ84xD/BHqUuDPj3/E4pJ6rbtsqKKGKqrliyNXAl7tAwxFWYVow2YgW8gmYUUZ2ZISD7Lles5gVfUTpCcKDEYI6KA9tploMiwydq24wehpPACEDnv8BG9tUeY5tb4p2QWbPeyS1HhUD7FRVpb+o5wDtpAxvNM+P0wmBK8qtnJqk6RY6jQWa6LKxLsVQ+hJNioxo/bktsG0Lb60OsraSwoYCtiQVN5fGK0kZZJLUKaqjKF0kskxIylA7DA54XLGl1BRsoZnmMK2FGPIZiRnlblcTAzLNbFpkGioqoZ15fmoO+EvnK14qzL8WjvFuFZ/9yzsbR+wd/sLTOxr1N0JsVtQTbap5wfkegtTtcTunPXhfbCGYXGC6dcsF6fkLEy296jaGVUzI/ZLftiPHxrgcw5cRVlGQb1QMLr55EQEQJvTlIWYhSAa3TwmlVqrR1JdGTUDHdPljNJvvUONWTF0MZMSOCdUTlN2+yETszaYOIcRBWi8q+lDoPaCJ9BWFl+YfRghJ03rMdlAFpzxiMkbBlHOytiKMZFxxGTAG/UARJF5a1B0NySFlBSPKUBmLpRlsyk4LthXyspxTtM3DRTAswj3jSNLCT6wDmdqvG9wVQX1FDGObDTkIWbBWI/JhvNVT+8NB3WFPD7BeQsxKUVUdCO2oP5OxUfkwvzcXBxyRoEFvVYUenfZfMrERAqTb4wilyL7xKhkOkZl+40DtzEFLqVIHALr1Zqz9YLD85qTkyNufuME++bnyHFF/taf0nzyMSsSUwzTbHAZXoiRWVl7uRRYg1bQOJQFkBEConHdsWfnq7+N+ca/Z4njrG14ezolO8cLQ0e4f5+409L3Gg4gjEBviY4QLbhrK8UlGk2bLTuQHS9WqQzGBNSUhcXZCfH464jRRCJrFQQdZeR1ZVkkLThxWaXXVfFgK0lFOnFzBfxWmj9FPmTKzxfyxbSFTEphUwPkoCBhLkA2hYWk1iUKBpJVhm0MWLGYHNiqtti5+h8i4Tb9x0sFjGPER50UVuuA6yNmiApShYT0ARs7TFpjY4Cs0m2pK6hraFqkamirCqldOdwsxonGuk9bmGlUeq4qnYwtIzw8wX5wF/vhp5jDJ5j1WlmhaSDEnr7vWMmaLnYMeWBIgVjA36h3EwlDn+EcZfE6MfiyLj0GtUB3hZCvUpYyMyw7mP5ZYzlOS6bJEdZrKuzm65LGpWjDzlhEqiQyGSGHjPEDUw9PDwNdP3pWTUuBIow332aiJ2MZJZvfxowVKWWqloXdOvBsu6SuKzxLjr97H+8tlcts2Uh3/wHORA4mNVRRp/oJkih7zxX/0jERua6KzymQc6aqDEoP1fRciNSVKXJMW+4F3Q/HUtV6tLQwF6wd7/UGqJya4TsHkIpHDTi13sWU/djWu9x86q9x9YVfgOaKDhIOB4VblVLDKJ/AVLoPOa/eF9ZhevXXNJYCRuq1zcWSgaQT/Don/ZwTyCV8aNzLs8XEBEHNtCVlTMrk0GPWHWbZY07PMacnmJMTzGqN7QPS9bih169b9XC6QE5PCecnDMsFZ2HBisgSx5rIfgwkYJIrZniGTz8q4nhTVqUpBdOIl11MUcs2jeh4io+mNb++J9ydOJad8HOrzM8NGVPWOIUnmingnikyQXSirM0Fl36eymhSFzDZ4JeO12/s4a2CrFY3eF2fIwhdJvrjNHtcy+MpqKbhF/YbZBAyURIxaO5vba2mWu/NaM2E/Rd/mumtH6Ga7zGc3qc7fUQMK/rFkuViyTo0GLtD6AckByqv5/tkVzApkkKEeM758hTvHHVjlcVY1rjBkLuAwvaZaeupqgbfXmPn5lts33iTevcZxLUbgNQ4s5mEpz7SuBmz269C5UtwmCcVdrcZARHvirVCCTYSZXBp8xLIIUKORf5R6gnJkAOShsLiUNsGMZlsLaadYZ3D7xpuXXuGp0JURpselky6DN0K03V6atYLPlMFsj0jHh1xeHZMRGhyZssIRw8fkLNl7jN//7XPcaNqqH1FXTlc0+B9RVU5Jt7iXVVAPbTJLSEzapCe8PrmqvF9FFyX8Isezgfi0TldVOC9unIVaRtyjoQUyClCzEifcDFqcR8S5s59bApITrgoxZ5WG/tRPUmRtDm5GGY6Y1m0DR9cucFVN6eRFbUH4hrJmcoJ+krK+e7qTQBbKiEhKSmbv3JCErUYEEl4t0bwrIOmcW5SShlD1LT2wqDs6/I/IZZQIJ1qlHoPJCUihiRCmy3e1VSftsy+UZP7x0SeUDmoXaWechOPrSsaP8X4LWh3sJMWag+VrlVSUkuJdY9NQTtX46CpyZM5eEtKgSHGkqCo96GrHKZpkLpGvMf5Gt9ocz2m4cnImsuZKomynDA0lcf6km6bI9IHCIJ0GY7OyXfvMw2nmHrAbhkePFqwlRTYvj5k/uP7Z/z2yYonbUvyhn3n+fHPvsVP3H6KmdfkV6k81jjsuFOO7OBSTmc7isO1tzCbwtYUFpeuF5NEE50KmGSSvg+2T9SnPdXqYx5XT+hfeop2fw9f1VjvoS7rxGp4i3UOU1v2Ws8zlVfQxwo2p0tn+YWfrobdJfU4RiCBSYWlPyRYJ1gFWHSkdeKdt+/zJ1XNj9x+meroDJGBnKtN3T76ZLuNNY6QTMbZUYEDtjCFvdVUYWOiMo2HnuOjY7a2r1AZy+nJCd9+7+vqqSvCxNdY76ibGdNmwt5kn+s33+STj884u/eAq8ueW3HgeorsrwduDInZrON62OXRV76C9In9L/0cw7ffxg0KlJs4kGPAqQpTz2YjGyVQqXpK3WM2NZmlKIWksMwZy6axfpKLgUgGsoZOjERAe/k7xtqrAIK5WxOPj8HW+FUg5HN+Ia54XSJr0S7j+if3mQQID+5h5xWp0r0Cq17rxlpF6otEeAPilfOyoG1670vhWsn4CpWVDApWCoLPF2AfYUCGiAxxk7Sa+ojpAzbBZDqn+cwzbO/PijpsXFtlbQfBhkhe99AHZBgK87Gn+9Nvw/YMaSdFnlkk0OOfMpjAltdrSnIsIOLKEFL0d+wScR0IpyvyWtOrvxZX/NPfeZe//1OvMn9p9OV3ypAvAXo1oxLMEnMi50jXaWqwmJqmmeGrFmcrhmHNenVMTJG68XiZqK/aMEA2TL2nMZmdnPX2Fsf2bk13/wEzM5DzQBLDTsj8JFPuVIF3hsxrWAyJQbSfUJ/YUertVX1jbQGj9NrGHDdnETmV6jRpeFl0eAM+gvWGFDX8U3Bkk0jO4CqL1AbxCYsrQxU4yjUvGHBJiTqpssqm9ELyyq5O1pBdxlQFbOi0T47F888grIeO1ugZpwGklwYUhgvvZ2svahwoNeK4fEdZ8lgjKvaxqBv+b/2Kb+ZMh9YzSYROErW3vHnlBl/Yv8bTi47n3r/DSVqxqmH1aIGd1OTWY6qGXOuZJFVdZPZms8acjCQpZTca0b+5xDjEKeN9BO9Gv3kp/YIVZUqPe0U2WYfZUu6PlCFG2hBhHZCTc0IXeLxe8uh04CzDJBjcZFSn1jSTKTdv3ebGKz/JpPbUVpBhraFrxpfBoPbeW8/HspqUCjLPyiZzVU1KEWcd5vEpP+zHDw3wpSzEqABLEq98FSNYGzS9UCwihhD1fi+2uJuJmbUastJWFtBEUVcQZMg0zlI5TZ/soxb/ldPnCKF4kyVlV6nnFNTe0HpP443KGayChY4iZ7TFT640Jt6oZBerskYRCFFIuQjljKVyjqZWwNFilTJshChKd68KCwejhS1oY2OkJJdaTfShML+qSsEc7ytSiIWyW+aKZWrijcE7jzdeb09XkWxD024T+qXu1dnQBU14c77B1Q11Ggjnj3C5JwEuJ6zVgzxnKcCQsiYvfAMuQIMycr70Lo8AYJkmbQDBQt0e/xsfFzZMPtBEzbHgMlLSJb2lriv2xFDffchxCNwQw/Zv/jr3jo5oMJwDYi1zhKbMSjrjOXae2HqydaxF6ETAWVxVsfIV3WBYRuhM4tX1GU91a4bQUTVzPrlxkzf+4d+nuX7A7/+j/ys3zo806bMWmqrIg4yu4Rx0DdvC3ht9foGSomg26YgXbCqdyEQpHLtkcC6XBkPK+WgRiYRBjbTHwjjmrLPlIg/f1MsSFcB0QmXAOY/PUujs+h7GlIpfX/EKsOjmbQ3eg5NM5XQzU3uFwhCVsrEjODFM64amNTh3QPPIk9+/w+xsSf3kEA4PcWcrZdJ1HSYEiAMmDxdTR7Fo8IdKmqy3xduhgWZCntSYtsLUFabymjJZe3Lbgq8K8JxwIcPQw2IJZ2fYdYesO/p+zbo/YxHPWOU1vUR6pAB5ythVGr2uj8FVLLb2GcKS9vyUGVkTTcu6TmXtKs9ODzt14xm/YvyXHipzEq99/AnnpsIaCDtXWSwPVSZmHJWtsMar5IBa14zXA8d7jzRCMJl60hYv0otEJ2N179n4wjAmfV+GcRjxkc3XiGR2msRzux3I+hLoHHEGBdQqYbuF1gxEm0hRfVvi6KlZwH7KIefJeArj2mvTnChAg0tlzYDLCjAn1OfFWYu3rvg9FsNgazZeVDkP5KwWC5Jz8ejTNZj7gSi5SPwMk+YKL0z/MtuPnsJ8+B1EFISWEJEhY3IAU1haRuVt2RXZVWUxvsZUDbaqMa3DTEoj21S4doZMGgWeq2rjMWI0MwKySvSNiLKHQtysd+kHzGIBp6fIk1M4PofTFXKyIp8tkPUKt16S1gvisCIOS4ZuxRA7hqRDr0BgILEGVgidsVzDA0IDVPhSOI0+ZGW/BXT0cLEU5FKrYklELL+9N+X39jwnx+c4Y7nNwJfwFG5e+WYD1m9gQ5FcwD49iVMprrMtcslsyu0t+CHzXL2LFT0Dc8pUTdmwzIXA3JSi/+JsubR+udhPQQOutmrBeo+IAq6VM1g3YFPEmDX9w2/j8hJzvENYLdnbv8LurZ/AVFtUE03CjHEgxYE4dAzrBUO3Zlifsnj8CeuTR0hYInGgcgJxRR56fOMwaYmJPb6q8S6p16DLbE9e5ubTf5Nq/gIZh10aqD2pUskHXkMDnDHYmWC2DrQGMBrCJU6N6y1qCDy+ZzaKegcNAUKPjRGJPRID0gf9OwcQfS+onAIZ3mMbj28cNiZMtMoQHdbYvldGc4j6py/g8rrHrAfo9PMydJjlCnO+IBwesrp/n3XoiDbz2Wj5L+2Mj3PmHpHWVLw1ePajAw+uz0jXg4lY0ftQvZ4KMJIikhI5qW8aKRBSRApYZ0LEDgmGSA4RCSqn8zkQ3n0XY5RxgCkNfAHEMlIaXl044zAuCYDdMEVFzKaBzz+w5ixiE10MfPrgMa8+dcDTNxwxDmV3T6Vm030ppYyRAUxg6JIGJ5kZOUf1ncJhmGIcCJ1aeETlzutgTYfQfpT7W0PKmSE5HfJZPdM19VuTc41YYro0hB0yki2DyTRdS/xa5PTJY+bZsWUcU7FUJuOso6Ki8jVD22Amc6qtXezeDnZrgpu1SOVJe7vkm3u4q3uk+QxTe9IQ6Q/PlS3lHfXODD+fYdsaV9UY47V4jxmJqQw7InS9ylxSkbroG4Up7/9oj1NllTNffH9R/YSA7QN2tcaeL5CzE/LDJ/jzc/ame3gCOynwk6Hii9mzSoleEqH1vDS5gl8brbtTGSi4kg46MlJEf2ckk4nK5MqFXiS5yL4ydlCJpoQIQaAMLBkC9IOu9cUKOVsQT5bUAfLBFXZefB5MJuWgQHwcyCGTY4QhYc7Vt1OygtISEy6mi8THrOt3TKaWlMrfhY0Sc/FfS0i8AB5FMp/WmX+WzojVdT47c3pWoUnZIupnPnqZJadhd95laooXuVFmmc1acPQ5YqwGWXlnaIvKKeceQ6BtolrYCJCUqboMa1brwOnRXeiukz//OtPPvszRJ/d48sFH3Dha8HRKrHPHC3v7fHD/PVYnK8RYqm/8GVPniLHDSISoQH2UiMVvhj0Zr006VutkU+pWU8CxSwCdER2gjCw8c2mvMEIJCBJdI4xD0/J5LSGKt6O+Jysifb/gfr+kjz3n9KyMMJRhqBdLd/iAJ8sV82eu4dMMaoN4vXetrzZMPlVAXYAQFAC2wCula9AK1opKPG1RsIzj3vE8NRhMTLqHdoOu0SEoEBwDMvTq75o0cCbHQIpBVTNjom7QcDsTIjkETFSPX2UpW1ifI0eHiHUKYrnyO1uVWDK+J+US53HDTYVNmXTtkvR+kqFHFktCPzDExP284KR/wtZ3HfLcDcQmkHGMCd6asq0kch6KZyu0Va31nVGfZMkdmIi3qnxSNq7+25CojSMDjYk83U7YjRVDZagI7D8z5anXrnPy4fs0VUXOiR+bNEwngj0caINaGnkMztXMrt5k78UXmD/3LPW1fZqdLfykVT9HQfeNZYesVqTlgnB6xnBySnhyyOrRE4azY7rVGeSES/pKdfgmum9aHXxLJeqb7QErJKODntWgQTip9IxDynRVUWsI5ErIDjCGZDNpF/zC41cOm1VyPK65yjms1ZyEbEWl/SpG2dRnptxrUob3F/fUpuPHF6DMooF+7xrDf++E0+1trVyL9UvKgdCv+fjkkEfO82JI/C8WT1iajKMhnh8pS96i/t3ekr1HKk+ui+efqzD+ErAoMIZq2AKmG2PUv9MV0M/rerXOjTeQ3mdmJF4pcIiRkj8gmyGVpKxAeh/IXUfqenIKLI3jOy7zFKbso9qvOO/pzo84/v63WNcV2zs7uJ099esn4nyFKYpLV7VaB4rZKDw1JdpgbabvVhf70w/x8UMDfJLRZrEw3rBF0omyhrxRoKGqLMaMXIBCSTeZypbG2DtCyuTi8WSs0cGH0WI4lBjytlBLQ1IJlbeC9RqO4Iyi48LY2CbqStRkVFRyJEY9BRStLrTj0pymWCZ5pjT1phhBo8i3JC3U86Zs1DfHGasTGFOSBAsXOydtXr33OFuht2fGOfWpSSkVOZU2WhYPWKzzG4DN2BrjGypf4b0niGPdrZUqn5VVaH0LBmLqIUMzaTGrU1K3omoMkUTlKro+EFPEVRUXcB2FcvvnF9MPdmSmTAbHZv3S2VmaOp2fjRuCFJTdWksFhBgopBjFJoyhnU35yd1tXnj0IfM3v8CjHPFf+QrXjOOTtuG3Ko+fz+ksDE5lWwOZdYgsUtbptjX0MbPKgVx8NEwpCpCB/22ucAQciYWf8NLf+TustmdsXbvK5HOvsfr612mqTj0jcmmkjNZ5tRPIQlvplha0kyBFIWF0Uy2DwVEua23ZICzaKFSmFOsKbBYFubLxxKhNwWaKa9SEl7L27djYgDUKQGpiGerTUXrnjURblCnrSkPR1l79hzFYV5FyIhUvOcbf2aiotHYVW3WtbLps6T+pWXz0W7QngfOjI6qzM6Zx4MQOZIlU2TLLo1Ogwg/JgBLYLU68SrQGlWqJ6xHfYatinuwzpqpUam58maZkUqWgbl1PqXbnmNVAfnzG2eIhq3DMWlb0ZAaEjguGni2btqNC2gmrrTnLdspisk3/3IvM3vlTqvMTzMWqV0bXZo2bzWMj0Dc+78XXapFxBcuuGA6tvleNNEzw6i2XEyFnlW81BvPsDbh+BTefK/CxOCeeHhcGASqzpEzyxylTKZY2E34zvlsXuJ72LyMDwBBTYL1eKEiYwTmDJ6mnRsEaUjCc56ygnuh9GpPgRjsFo99XWTXP1iFkKqy+XFJ9R1/QsYlW+U/OUc30nV6nKJSwEC24MLpOc4g6eRM9F5TFJ1SVL+C/I2do/YTp3S0efeN3WZ9FWnUHR+oKV0+oXKPyP2MUUHUq5aTxaplQe01i842ar0xaTK0gs20baFpoK6itIktVhZRUMbyy0iQ7bcJSJg89LBbYJyfY41PM8TH56Ix8ck5anpAWC8J6SQ4dKUWGHEjlvsjj/UEqU2BHD0QcDsdWAfL8uI6BRMDS6hmDnisXM9iyX5QVMUJ/IzMkEvj09AlbV5/m6emE6skxr4l+pWVcV+hZKFFBE5OVkY4lWQhZSFbvbWPKNcWAUWDLGMN6teKTTz7l1Vs3dUpZhlpgyvrlosv6Hx0vcmn96hcMYWCxPmUjW8yj71fSwlcM7ugu1adfo6oqnLNY47nnJ4iZ4Jptmu1ruPYK1fYeOfRIXJJDT0od0i+ZuQgiJOuIcU3qV0gO2OwhDZjYgU0wCCTLzF3l5vcr/G/9LtR/jJtNkNkU2Z5jZhNsoyCxqWpy7XFVhalrpK0wbUOeVNhJDb4m+wqc+tlYEWQIcN6Rzxek1JO9YCYtbq6hA9bXaoRPwq56zPkCc3qOPT/GrBdFqmKwA9iQMVGT2Bj64mcz6L+7QdnVy0hed8RuRV6cExYL1qtzVn3PeRoIaOjDJCY+F4XPGMNSIlumIv7xVzkxyiyzpbC1m4l+AaTMWPpfiAR1n7ObAZ8Tp4cmGiaVUqYn0RlDMoah67AmY2Qc1+hZamVklJbFVAC+UaZ2wYS62CsvllxZjEYB/LnNLO48YvXaNiIOV7eEoS9ybAqzLoOJ5DxoTSvn5Lgm555+MBjXYMyUqpkWL9SKnBtyvgjDMkao3EWDHrPKA41oCEgFGxaBMVKCNVQSatylGqqcBWd3LcvjyF0fuBoHrmDYt46d7NhJmUhHSAY7WNzpEfHRAypf4+qKeO2AyS98CfPZ10hto42cEWxM+MZRP3ddr1E3YEKE8wUcDhCCglWhgLMpFTkkhTU54mVSQMCISep5SAyQRi8mUa/PGCH20AUY1tCvYdXD6RJzdk7qOvqqxz99A/PUNkd37nK6OsXHJbPzhMPRdpmTf/ObuLamamtsVWGLd5uURHpDGZBu3n5b0kNLWIBkJCkTysak4FksHm4i2CLzJivoMQ649dPC8df+hMnH72Pqkt6LkIxgIspGz/r8rlgmmEHtJnSrLvu2jFB/uX75Yl/UsAXd03MZ4l3IzbX2PTk+4vDYEupAMcvVhttYxJQArRTLANrrevSU4bsv4V0a7mBLulxOWYFBb+msDr5yXpFNYDapQSqW6x5jM42pcK1AB2G1oNrbZu0z66f2katbvPOtdzDDkspZwuSMe6uB+3uOx+crfvnRh/xl31AZi00JiZHTvmPdGmbBMc8OI5FsRjGkI4tyoDEUljmb8BrZHDhsAL2xNRl7dgV49TzJomE5pvg4bph1CrEhwNIJwyRxZkRtFcQxF8OMxAAYHFXVkGvPcjgjr87JURSgqaxuId4qG7MoZEz5nWypo7RtNJCVW2+zwSVLFSrq1OCyLUFC5esM4Bz3STxIHcthIHSBPkRitrw+3ca5msnJAhkGlnc/pV1O9TXnUeIMxex9c5EslPvCqKpBRvac2VTEemnN5n7PKZXXk39g/arqoWzAqaxxyRDQ582ZbAKnCIfHp8z7idbB2VONzLix0i19ujNJbaaykIaBlEI5G4oSDavs9hg0qZ6BicC0EaYI16cV111mJsJwmqiMZ+fqK5wHz8dP3iHlzEkNn7Etz5nIR8YzR0Oj5ref49mf+xn2X30FM5khol2BEj9UKYJVmw1zzW/AJowCZ7Jckk/OCY+OWd25w5O3v8PJx++TYgcC2QpRAq1YUlXz+LnnkFmFrM6YH99DkiUaS5ctOUT6ISFGCFUmVRmZamOdXZmxJJAaogWRiBeL9EqEskXZtDQ9Jnc467AUHMZass8kn8AJ1l3Umgo6l+49g8NTWY8MGuCUAZszwUM732PnpRfx9aQcpkLOkXe/+Q0Glzg/O6Q/PMPnxLIxzMpaQnq9XweHmICxUYOIDFxI3B1j2Ixxxe6heGSbcQBgXVk3FCbtRWiIsZqWa13xRt/ch7rnjvfB6H8pMSPdAH2H5ExbOcRYvjytuWZroohKyQvbOMee4wffwS3OOG22ePpn/irWzehDxKVE5b2Sw+JFLoFx6uCOAFZrquXimNVywQ/78cOHbFihqQBTdPGomadkvdhJsiaLjWyxcuPawkaqrVWpqk2MHmcYNWjPIvQlSIACXlgEJxZrM1VlqawtJrJqfKxGpkq1klz2jVTwsoLWilV2mREpgRaWqNok9RDElg1Ywwg2QIgtFNEi1LZFkuTcuAG6TTrpmCZZVZUenCJIAmcrECHk0iwJGOfxVY3BlYTfckiXqU4ymhy86i1JeYiEPhGDShRzzlS+pd1/BhvKdRpWRCuFeq/+I36+TQiBqmkLJfxSgyUXrLwRWDDGXj4z9TOZsWq/9LkL6GGU/QJFfqWgX+UrQojFZFq/s51OuCo907/+t9n+X//nnJ6eIv/4H7P9G/+CV7b3+X/knndWCyCXA1UZQqN3hU4gLc5bnGnAwASP4MjDmjplWpN54gWbLPWgmn+zFlyy3Ny/ijvpuHM90g/lZkdBY2fLJGn0Qyos1FzWYir6fVtYBt7bgsSb8n4UKrAtYIrR701JLq6dXPgneqeFf23Y3OTmEpDsrKV2Op1NomCqXJL/ICr3NugUqHFVkc0pu0YwhCgbb0tTnk+91RQo6XLCZstxrPkn33pEe/opr9Y7PJU6Xs5rvl3D/90MnGbLgRFedZ51HIhlKloBSSLRZmbJ0CJUZR/wgEuWHstcQEgkI1RJJyc1MBWoKw0OaAPcnF7huadf5uzsPRbxhA4pEmwYMCRTIc6RROWxZGW8pfWC2J3TIZwhrL//p8xkLOFGwC6XaB3B4jYgrb43GTaxLgWwYJy1TrBYGgxNXmNOT5hhiQwQBkCocPRPPcPOf/532PrpL5Jnu4SUsVZIy454dMz6zh3W9x8Uvx/hYmcs6K9hE6JhSzE7Pn65gR1BdynyE8kK1JmoKcghoaEvlWMo9+YY5JOl2ALEwjIpoGG2EFJUyVEZcNnivULxlxobbP2cw5UhCyYTRVQKiRYNZMH4IjcqoLgZ/WOsSqalDzgDyQq193TnE/4/v/cRfv8GV57ZZvbRHa6dLBms4cwKbTJARS3ou2cVeKgweGNpjaM1ji3r2XI1TTXBT6eYtlUj78kEZhN8M8E3DaapsJMZtFOkQocs2SBDTzw7Jd9/gDw8oj8+pludELslIWiaLmQi4RKooBCHNSXtt5ogdYtpJ/hZRWwnuLM14c571KI7+iJTJJyuNHWiZ5ppyAhREhZlxl5ej+OHXPq3J/MTK+HL3/mAN6l4Php2jaBQfy7rOpPFaYGZsxo/50y20FtDrCoo8gjjHSTBJ6ERq6xb6yBEfNMUVqe7GAKZi99l7LukeJ9osNb4KRm3NxBDPySOzzWISiThnOC9+jk6cSWAIevAIkdiSjoo609JGOzSsTr+Hs41enamiPXFazAWE3arnkzGOa2EY8Q7iH3C157KT/DW4bNhFRpO3hfkK9+gXUe8yYU53SB1g21bzGSCm8xx8ynVbApNg7QtuZ4XP5maNGmRaQOTCtvWxMpBDnSPj5Bpw/SlV2lvPY1tPJlBGU5nT4iPjkiPT3BnC2zfUUX101IEOGP6BKsE6w5Zr9W4fr0mr1c6ce47Yr8m9j2578lhIOWA5EggsjCZgCVkXQ8Ohy8M7CwDlsxVarbImCi4YrhiRvchM7KltI4f9wOz2aPKSMSqWbYVS84BI8KicjzYrVj2A0fbe7xzds7P5ZqD1Up3N5NJZd8z0SozY7MHl0WzqVe06BeEXFhkPzD9NgVgzD1gmGe4NqtpGw+pV48f49TcP0c0LC5gGIg5Ysp9EmJfnq8hxB7vK4hB2fsxgK20kc8JXxlqY8hR7SGUla01sDOaaN9U2o25EQQ0aCCIFVWpFLDSGIHkOFoajo3wRyYSvWdmDddz5hmEa0YVENfEs5uFKT05B/LQk5Nl7g5Yffcdmk8eYCYzrM36s65ex+1t674y9JgwKDAXFaDayG5iVrAvRiRGZZfGqA1QUvaZAnrK4DRZARQRlS+T1JbfBsEOYIag8sI+IaEn546cE72URnW9Zh0Nrmm5YiqanAinRwogxEhcnpNXhmgKO2pkcJRgKFMkXRhTmB3FO7mAGpIFmxT0yVDY2gUEMpZHE09nM6ESutrTVTXvDj27T93ixU+OcGenLM/PaSqHOGU2q8TLQsjF/seQs4GE+iemvBmIiykDNMZ6mw0QVR5BNuf8uJovKsLWeN78/FvcuC2Y/hgk6d6KAg7q4WZxtSfHTIwJ6zw5Cc43jP6Y2ST6GLGVIVuHbyqqepvZ/k28q6iNp3I112ZX1Ju3ntJVCypvSFSYesnZ3cRp7Fk8eMh0YghWLTK6ecO99ZLpLhx2Sz6ee6a3p9yob/D1P3vMWyeBK0EIfaAT4WEtIBP60PNpCnR62+HFUpWezIvBSekF9FWAGQdjxVdPyr1UGF3ZoAN/J2oRgC2Ar7LXrRhlIqeMLQw0QVhjMHWDmU0wqcJm1Kw/qF+lxSCNp59BnkakCUidkSqzwSULyKBElTw2ohfAWgHUyGCzhrS4aKjXFdNVS9U5bDIK7knGSuY9HP/7NvK4bQhiiNkQsFQ58PdefwnXznn9d77OtfNDslnQ960OWq2OCkfppSnXwWx8fFEfxBH4K8E0kspAJZWatPTKxWvoEjRabK3EkMv9NFKpRfIGW0QEccIAnKTEpDshJkHEk6wrfZhh9KOLMen1Keta6+JAzgmHJ0UFsbFG5bmuYUrFF6475haGZWDfeA4mNW2AhQTMrGHr9mfY34UnD/+E1fcSsfb87lGAKmMbx1bMPPXWj/Hiz/+ssuaPz7BHJyX5vXi5MTLBlA4gzmnYQ91AW2OmLaZpqJ7dor79NLNXXmTvhedZ/Nm7fPyNP2R9/LiAYFoXH7uKP95/mmFnlz0LL//pb9IMK8SovZnERIi6C0iltUDKlPBQEF+shUbArxWaKuG6ct1cUZc5fZ8dltpaZK0WXGkixCYhPisRwxpMMtis6dz6t9psEDI+6cZnRAkvT68TX3p0ypePvsZaLInMQGIgYePAtq94vp7y8pDwJDrj2MpCFlcIARfrLue4WVm6cgzZJkbYUYwp93j5XLnX9AAYfQPHY6DYdBT1y/jYZuUKZS8Y92Md7OSN56cUhaWlScIzz27T+oi5p7WDWrVYhqHn7ocfc/rJA3b3tth7+fPIjaeZzrZVxQbYoaNbL/Fesyi8t+QUGdYdrq6xVcN8/zqz84Ef9uOHBvgAUtSLm8VpdLNl44PijVWADWH0+akdVIYii83ElHWPKyONoOjJBpmvShNcOXUPwgSdhOsuRJSRX6MbqG4ABuMrht6CcziBpm10A3NJQTq50JR7ZzYGi9baTSx5ZUU9qqyyW6wtkw7jNhvaKDfOAs6rF4/zniyZgCd0YKylardxviopS8W5K2el+BpPTDpZygKmahEsKatTmORIHM7p1x3OWy3SU9mkc0RMzfb8gLh4wnD8GBNXGJOJqw4/aRjWayTFC2ZE0dlfZlBcQHZsrr/++6Jxk00VMjb55Z7MF5u9UJh+42Fb3ldfeZUkxcLGbGbgpkj2fProE3I759rt16j9v2OWDV/Y3WaRNN46YIjWkV3DfHeXummo67qkcNbUBeQKg75vLvXsDcL314Hfu/sR/+nxinlc8P5v/AbzB6cc/u7vcOW73+f51HMnFYZNylQVRVaDysMQQiwMLqMAXeUN3hemghlb65Edo8WlFBBQpQayOTNjaagL2UjhSKsQkzdawKWc2KRGl6kEGPXkM6YcoFpPWwwB9TcYGX7e6FSrV4MmjHG4bKjrGu/VC8ZbVzwRRy9KnRAqVL7ksz92g/n1n+D63m1WD0+48//+H3g0nGCnW9ysZ4iFu04nwTEmVpTip+tJqxWtVFSxo+4HKsm8hmc9afgg9fy0TGhyz1EYGLzjIzr2M3zpx7/ElR//MXoDx3c+4JPf+F3O3/86k7TCwAbcixg6YxhMJOSAiKESmGBoMVoMiiOSuUpmKZkZdWGf6/R75JhcMHT148Lu+EI4cSHnUJDFFAhwdDKLm9G8JRtPu7WH/w9+ifVLt/n0m9+hOzzVFDRKEQk00yk7L76AmbSbn673kmyAu5ExZy8VUePUV0Q2oIkrXqDOFBN3tOCtvIYYeWs09MgJmYrUJyRHHZY4ZTX4IunWezxv9rPxsB3DWsZ73ZQBh0GZrypRTwqcZKONjst4a/R+KCCc8bYAhKhEirGRhYwa8ieE9x/0DLdf5Of+3n/C4SqyfnifP/g//TfU7Yx/VkEdM22CG+J4uvF0sWMimWkSqgRtdlRGcLkjmRVVf8ZssEwwbDlL4yzOO6amwjlHi6XJlqZpmcxmTNs5s9k2wWSGO3c5Pz7mvdzRho68PCYheBzeePXA8hMaX+PrwgIUX/riSEx6RoX1KXGV6SST+0QlsZQbWnCLjLIdFeZ6SkiHc5vrpeLFCzhvLH3Y/G0Az4/mzMvZMe7Q3jiVWG+eQa94zsoLEWNJTY1/42WufuFNmqduYWc7UKu3a153rO/f5+zLX8U/OATn2N/e5fatp0YboYt7RcbzUK0gpJwndkOpuVjLcDEgihmWvXqe+mIn4LCIE3qJeNEmNDNokSmaMmmKIbkOAC15WGszYDTgShLK7iRv2BmuFIfGKTPGGPDOKyCRHfcXU/7oO2tqP+fAB7ZlhYjBi7AVe+a5wg2W5gxm4qmsoxbwxuOtxTU1bjbDb23hd7YxWzOYTmA6w9YVT548ZOczn2H74BYcLQiHxwQ6yD1y7yHce0KdBG8z4izO1BAsctYhp+fI+RlpuSSuFsRuRex7YihSrBzVeLpwSDWncayRBIfjo4NbnD31FL0IO0dH3Lz7CdWlxtNjmWCp8Piy48nmHb7wwzJSJPg6ISnG9pfXoyBR12tCzbUTlj9oHE9eeoYndx9jKuHtcM5rMmUPil+a7s5jNW4KY9CU9aKzDnfBbJLCYR1/sc2/FSweqWam+NB15x2LdY+t3UXwWSlale3SE9PAmMYqxasuJjCuYt1Hqtxjo8F6T+67kkZrqDzF09TQR2VR51Ssq7hQOEi+YGwX2yDEluZCNHAnpYTxDhuFVdIzcGe+x2p7C7Hw0fmC78fEvFeGwJU0cMUZbiAcGMdeDty0nr27H+CP7lFTU7Utk3aGvbpLnT320WMk9oWtllQ6PsQi/euREJQ9kzT4YSMr3ezdY9Wn9bj6aSq4Igi5qBpMUrZcWnXEYUXqI8EkolHp51BSMQ+j0D2ImGixZUgcGPcXXYFJpBi3o0E1VgqQly41dWw8wY0p/UUqJ79OXDeb0GghgQjvzVr+yUt7HDc10UCoDPODXd79/oesH93hl5PwK9YwDAEfoyZkFmmsqpGlPL9BspIVJMGI6G08rMufy3D0n6/GN/dQ2a8p1yGkzHe/+W2erZ/hhVtznA3lpegwf0gJg3rSmsqTvQXjqNwEX02VhVQ1WOOZ58wQ1GYlpciZPWB27TZelLTx9O4+e83nsFXD+dmC/adv0hoHkz2avav84e/+e773qGdaWWoCzk8RV9HNJ/RdxjU1K5+obObGM3MOJrssKsv937vH/Lznue4hFgABAABJREFUXDqSGPaSp6Xh3GYNVESvW5ZENBnJht6IJhU70T3XOWwBArXh1/1ic10NSFI7EJsElw0WjynSfiMwlPVqJBWfOl1jXTYEb+lmvZ4LCVIyJJcwTanNq4HcgEyE1ESkEozNGCub881kUywbiuSmnIMGNsqJDe80A9mQsiUPmdQJkhQkNqUmfFRFlk9f58bVA4Z1zxCExWrB+uyQP3j/m9w66vnioVo90AucS0liLddmM4UpwEZKJVGygHflftgoSeRSLVjsD8YDIHNxvS/OBPMDz4NQBoqFjYqQyj0frNqKiIGUBoY+qEekdxs1gEF7GEmqRDLWqi9+ToSke7vd2FuppzdRuBInDHHBldmE68OcyWSK7zPJdMxaT2OXfPr9OyxOT5g4YWfL4CVyKIGdteWFH/kxXvyZn0KWPaQVLndIiuRQ/AsTG0uAXIYLVLZY8hi17mgqXDOD6QyZTGE2o3rzDfav32S+s8/7X/4d7t//oKgehe3zMz7/7/4dYhyVc8xdJDWGvtFhgaottL9jAHvucNEgbcY1UljiAhpqS9MarEmkRodvQ9mGnMkKWI9BmA4QR26E1Cak0i3MOt1xnWQ963qhCl7B5mEcOCjLVATqFPnPzjO/ZOBcMgsSSxTTEGvYkp4bnNI7A2RStngxRIQyJURKcvHm/N7sguMWOCos9R6nkA+U6JpLKJ3ZsCj1my9qgrEM3Uj4GZ/C6vlrMk4yBr/pxTCQC+mqBnaHzF7bYOwaQai8p7KWR8cL/tGvvkfzxZ/H5DnDRw/5Wy+9jqumYDXoxreeWTsrdUWpkyXj27m+qPLiTJHx/zAfPzTAV2/dwnVHDN2xbpAStGnwSnd0Rr3CnDE4m3Q67gzkRM5CKPYdGEtSlVCRJxZgTTnMZSosZR9SuvtmolvolZqGq+CLM3roV54iWwRrIxq3lkuQQd5cZAXKlJqZzCixuJhCSDaEqGVGFIFLG7jzqGFtyb2WbBh6YRh0C3R1RTvdZ77/DP0wYBHWZ0+Iw3CBVsuAuAbnZ2AMsU/EbsUQjyFHbE445xlCoMoa/RyHFe3OLciZ2fYMciacPcQSyRIxFqIxpCFj6kw4e1IK4hFA0NcBpf69BNhJeXDDKMJsvvfi7jClIB6f44KxZ5KUtaqtaC6JiZVTvmWMAV+1HNqGL7z9FfzeNUJTs/zNf86+dHw1DUyuPMP/8jO3OcOziJZVyHx/kXn9rS9QVRVhCMxnE87Pl5wePcFn+NV/8+sgwnTSMpk0xBhYDef87abmRueovv82r919wlVvCWTuDktE9lXq7cq6K2sQIBS2kzKf9PV1QSU245k9BmsYNEhmLMgEiFICLri8Vdmy5grAVnS7SS5CZ7y3xaMMrFNgcZTnihQJpej9UnlfWHiQkyb1JgowgPoteKcUa+9tiaDXYsLikOTIRk28k3GYRnj64Dmu/+TPIb1gd1Z8ePUKsw+e8F9u3+IbsubD7NmxFTWwMpYgHjdpubkFZ22DWQ3IOrATOraWA20fSCJsoRfNieGqm7N0nklyRNaYrTl30hnTrQnTmzeY/p3/iG/+t/8Nz/eBXYpfRT1j//bLxOMnyOEhSMJYT6wqBl+A2CxIyLRJqBFWVogvvw53PqZZnm0OkLF40HdEJ8IVFZnMQCiPFfkZVZHsFtQWVw5b9W7zVUPbzPGTbWRrxtc+/ZQHp3cJONZiSN6xjCorcJJp+8T80X1+5vOvsn/jFjTND7ZJqbA93J9LJi33bsoqixiTSzU5TOUuTWv1ALfKrhNJZGPJTKlufQlz/CHTxTslBXCEN2UzvBDK/icXDYexCneOUzYRwxCVoQrKjrBWGw9XDtu6MJu1gNCf5J1eRUQUMDROG++cEaMgN8Zw1mdefvNVzvMKEK5d2eabdcVcLD/13G2arGfNVl2z/8xTxO1tcnaEIRFDZEHk5N59vDGcpMwyZXI38HzT8lY1IayXPH7ykLPQ4Y3hxcowqSKDnJP6BaeHd/gLTPnc9gHdg4f8jhzzb9vEf7h1g8+2V6GtaIZeJT8p08XMIvV05ysknSqLp1yXsTwxhWXuMRy6mqGe8MwQ8IXNajdfdwH0WRI5mc308HLbxw/837hzj+8GtAhxfC6BaHTtjbFHylvV5wzziiu/8ots/8yPI02rTVAMMKi/DzYxfeEprty+xSf/4t+SD4/ZffFp6q158S6B0U9yHObxA7/pxW84njMXa0n3Rm+FSaWTY+9GZlgqkLolRwWsk6TN/Ss5aCiB1TpgTIajDN6s0piRqNPgIUScNYQ4XGJJZ7xzrBYrrSXcFl/7IPKlz7/Bsj/lk/sVZnKNP1wvaCvPjek2JymzP5uQo1B3ma1oaPtIK4GpCPNuxXx5zMFjpwzzqqGZbmFncx6ZFdt7+5jYs/rgA9q6xc9bXFsRV2vCOx8hB1dY7cxpJxUcLgnvvIt5+IiwWjCEjpCUjTeK+MppcnG+YKBoGygAnStXsvcV324rqldeZOJr9h8+pr93FyeJUVKjopFxhzBlTUp5bm2fNz91DLGQy9DzZQ7dePrpvxOJ0/Wa73/1T2lT4EAMvySOp0evWikek6PpvRYnmkBvtM6IOenOPDahP7C+0D1aaSrlGnk11jZ69lbeMZu25DhgnScZT44ByKSUwNZIQiWMWW1TjHE44xAzow8n+EmrXrZWvVydayDo+abNLKoyUPQbAVV4WK0p+qTFvTGF/Uwuta8jiSEEBTVMgjoKfYqYpIyIT5dnzOZbPBg6Xtrapt1tuWJBYuBRiBz2gWUObC3X/FI2fCctOE4r5s5wK1fsnSYW54anPnyP1w5uYGJCYkdOmSFbyJGcO5LJCjaWU1BG0GRzblxik4OyKczIsCj+ToUFIWLpBLpJg5tOSd6xNg5ax2KxZBIT8vAha9SLO0lg9CW7WEnjzxur1Kw1N9okjfXqaDsjWckD1hpspoSnUFQZY/N3aX8SQXLgo5NjPnCGOASGMJC+Fzlfr/gvbtziby17DYVAlR0YS7Z500eMbMCyyW2Y9TAu14uTPpe7d9yTx3vm4mt+cMf3qiHBpszu4X1+9PQpJm+9jnUq1+9WHcYbquJ7mZNAAcFTSEgY6Lq1DtklIZL06hqHtxUiMBjD6eNTdveusLM1x0hPk1dUKTBrzhnuHyG2Ijd73Pn0EaeH53SdBheYyrNaDTTTmmwbMCpnnNcOJp7rz9/ixs6rPOr/PY/Smqsxs64cnQgfWsuTnHh9GLgRI5VSxTDFT1mcOixLpaExxlqGEas1+lpUOq5JHSkZ+hCwnaaZWrmcfKpXVQdepeYpj2i8kqHD0deBx5NzfT+SYLLT3rP44xibRx8pSOBqjzHF/xou1EwIEsNmL9XBk2wYcZKAaPHB4ntHvRBkFZDebJi0UlhzN6Llix/f5+DolO0+IzHwfmP4kyrx8x/d5y8sNf11bQ0Eox6HbpQ0a31lkHGjLLeRbMA83cfHQTObx0fQblzH4y5/sT7La9ab/we+Vj36inLAqCemxXAwqxkrEpwlDIlMsQIwvvRGFK8zteBKJTnVmAtA0ubSfw09MUasjzy/O6eRfWZXb6hagYCpVnz88R3OVwMf/enbPLx3n+bM89LeC8x3Wl5YRfLpMdO4x+03fozug/v0J09YnxzRnZ6xWHWsYyCMNgWlTq+No3Wq2PN1i522NPMp8+1t2tmcdraFm28ju9vkvV3M/jbNz3yOFyws/6DnwcNPNaFX4KmYSCRMKFL7KATUusGlAhiXIy73BTeuCyGqEJGMRdWNUnoDl3SHiWOtpsw/5wyisfday4ICliWIZwztLeHFkNTKzKa86TOl7G+mrBEnkWsIBwgDGniZ0LCzDETjiB6C3jK4LGXHv6hhy8vb7IGb/bn8e6wjNwXk+GGMnpkYxJRR9qY/H/05tXeXYpWgbvlWLWtsYlnXnFw7YG+d2F73aiuRNTwllYHCrbrhenOAl4/pRdml1jhSiByuA3WqsdMb3LFbuHqq+8rIUDS6B2TGYEG1YxgxEtDnu3S7/c/++KEBvjf+5j/kxt6U5aP3ePLeH3H49m+Rzx+QU9zQdW1he4yTv5QuioNQwgQsyvZQD6iL0mH0OFOWSAbRN8KINqHOZUaZWuWUbuw2VO2IlYjFakNcikOMK2CNAiKYskDNRSkhKDNGUAkuhSVgjEOywVYlfdJ6nHc4qz5QOSdNCk6ObD3OV9imxrqWw8MnDMOAyZH1EPGuoaqmJFFD5251Ru5PSFl9nLw69JNTT+UUhIkhkFPA+5aq8vh2l8neFS04hhWpW1JZXwY0Bl8rA9A2LaaaUQK1dNPNZRZv9PXmEZy6xLSQzTKTH7iPpIBSm2n0+Pg4ES1F7QZIMQpaYLTYqrxje77Fd0Lkl/oVB//8v6ZenWJ7xwcH1/g/nj3m/gdPuHUecdOW5XLJz7/xNBIDYehxFoahh9mMrg+E0LO3f0BTN5wte27dfJa3v/knxNDTes+/NMJfme1wh8Cb3YJ73ZqEodmaUFcOegU4fCENDEXyCKruwlww9EQEnE7YSQoqK/s0Y0VDXgzK2rOuFBYFNM5lYzXo5hmzPr9gys/PTBpHjJowKkYnI26TIiSbQzeXny2iyVBiVeKtPDO9cYwpxWxZ32EQjGmwttbmg5rkWup2gq91Y/HNnGH7s9z94Anre0842N5m99o+299b8eDRu/y3Vc1HpuYXd7b58PCcbVuxoOLOKfy9act30pppEGhnXFt1PBMSxkBwjsrVPCZwezYh1HPmds4rPvNn997j8ffe5vxph70X2D5Z8Pwv/TLN7ac5/t5HPLV3gyiRh+eH2I/fw+XEcOMqvPgS9oWnMFd2MJOW1tTYHMmnJ8i33id+/ZvsrJac3vsE+jXNWGCVQtnhUDtjZf+MYvsJFQ6/YfhRvk4PUDVPtt4y2dnBNy3MJjRtTd6Z01/f41e/+3XuWaG9/hRp54Cv/vpvEFYLBW2tYW9nl7defhX7P/waP/Liq9z+a7+oUpINc8+WkBo2UyfK+tukfxs1j9XBhDIxTQUhKXszG2H0XXMhgh8Qu0/glO1BD149osditBS+Yoq/CGq1ABt/R1OKsRGccWp3ofdJzFhn6XEkY7BRU/scomxCyUitA56Nn1/hk1WVxZtK95Jqj2deeBHvauJ6wEzmrD68zyQnFjPP7937lIMwJeaeLSvc2L5KXVfsXLmC94b1aoHEgScP7vGUNcy6jrZf06QKf/6EcNjxr23AVJl1pQbjR5OKWwcz8t4WjsSTj485+eiIa8setzziVRu50Vtu5ifKJDWW8xwZULBpMJ7o1YfF+QrEkUPEpoBDCttTZfoZy0fzCbPXf4TtL3+ZaZGmyabNGE8gKaCyglRWBchc5Ojq3po2xdH4HOPXpxLVYZRlkpS9dcHEUtArOMP0s68yefYm9uyceHSH7t595PiYNKxJzpKto68rcjun+cxthrYlL3tSF3A7c93rzWgtwUVnsDkBxj5CNoWZoAX6aAwvpfM2qLUExpBLGqtDk0alsD6RMczKFjmQjPiTPo/o3htjLlNqHeaN61ubMGX2eVeBdcScscazDhXN/IDQeNzW07Sz+1xdrXmVzNMePuwW/FGK7FvLyoKzmZvXd+j6wJ6fM61qUjfwyrRh+2zN/qNjrp4vmZwsOaod7zQr1ocfk2zFvG6YZeGaa7g6mXMzN4R797Gf+xG8cZz+8Vfwn3xCDGuyxJLuPcIrrrzTF2DH2Fsp0KGHjxjlHmfncM4jzvDS6RHDb/xrvKgPm5G+rGTZrB674TODNZ4kabMHjQxoM+4Nm33yMlqyqRY26zKJ7rt/Zaj5WQQjHosmmTssg1OZrZQD8jJXVQt2yDJ6WxbmtFK1wHuVk1s99CRm8hCwIYGEspd6TPbUYor5fMIaj60bJGm6NjZizAzn61IHXpwWxupwtaknKucxnqryxCLRdV4DvnR4l4ti4qL99aX5yhiCgAaCWJUOpoT340vSn5iSysIlWUhQiWWShRev75KNpZtWZBH+8PAhX7p+nW+fnrFTqZrh2nybSczcWQ38oTWYHc/Tu8J7ueNaJ1wNljvnT9i6O7A3RJKJZDEM1iKuwrhc2JslKRLAKgMoWy5VhqVGH4E9INs8hkKXvjATXU1sG7J4bMxIChA65LzH9Suth0bAy4yQtR9XNWxWnNn8vxiVxxqjHsCjb/a4DDMXNZCyJ/VbN6EAF0t0A1Xsdj1f/OSMfZ/Zs5a9qqJqKn7fCtfvPWLv3HLuDDlpDZitIacLeE5ECiNEf8+Ui1z30r2grFoYDWvG3fviprn86AXwl9Dm3ufE9dDz4qfvcO/TT8l1JCdHSEn9ylIiJcEaTz9EsLaoSLR/ctZB1GvnnCNng0yu4KQiEzg++ZRZ3ZOHLeLqIbL8hAFDtpZaDFIb1uvE8ffv8fF3HmKffh6wTLcOOA8dq9jj2gqIpGzIecHe7pRnb75CXPWYvidiOXaZP7OG02ZK2p1QLXtAWKG1Q9W2NNev0t5+mvrGFerdfczWFF9PMVWFdcqalZRIfU/sBvLijP74hNX9h5iP7zM8PsKuQ3GHLr0OUsyOUrmunqFqcTFepHSKwdRCPw9FlooGBWULSQcFiu8Wm5UMvtideBnrea/S1pg1YwPRsyhnrCh7yQZU2hPADga/EOwSbFRgL8dyE5Ub6kYQ/je9IR2uSMDgDbdaT2MGfmKZ2YkBKeM7yRkZLBR/NgUXyv0zDkcKQWY8l7NcqibEXPwtXHp8/JqyV180gJv7c6M02Qyc9Psyeh6fAl9dZ342zrBNZojDhT+4dWUYo3VuRjSEhoiILa+tgJ+Miqm0UZXEOVx5YReOZ9Tss7SJSY5M9ubUX5zz9HHH8bfPOV+sqO9a6pdu0XuLSRknU067nj/417/Gyfkpi9xRGUcznxDaiuW04hTLYAxDCeypgamBbSL78ZTJ2SHmMJNCJkjGTxqubR1w+9qz7D//PFy/Trp6wOTNN3ijW7P8nX/JenFMs9nhCognFH9dw8QpzUBDy0WBuRb8tsVOItlZohTWndFVncrQT8p82Dg2rFENmhCtJ8rj455k8qhmEh26j/JsX8yLHKpei5XiACYrs1b0HPebnU0D40YQ15UByLy8lxGLg1LBXmzIF7tfWWOXHjOXPnNxCuX/iW/cdDaX/n0xJLq83+qekBgEfvfaAX/21A3eWCZ+8eScWUzQdyCJzjlYG25kYb8V6srSFTlw2zR4WwJyhjXkyLpfa8aCjGz9AshKsS8afyfryNZsvDkFHfT9sB8/vETXWaqdG+ztPcX1N/4i3Y//Ct/+tf+K5Ud/DOghF0NSg/9sKJrFDZIpInjvdAswootM9DDKZTM0pYO0onir7qcqvchZmUjj92YxmJh1vlzkjBj1kDJYVEuSNxyenNWfI+YR1LsApkx5M0yiMKsMdeWompqmqam9VUNNUzYc6wlDZsggvtXXng3rFRydnyAp46oKWznEGlbrNeFsybo71023ND8WjVRPMePtoP4tWTdSb7S5rCqrBsreY6pWJVjdsTb8JExVFwNZNDJ6+ybVs28BrqS9lmnyuN1nBRZk0/6NH38O2Bv/Hhu1SyCfPn4xlTYXCF95uy+mDBZhPp/wfan5v0TLGxKZuZozn/hn54d8VLVcu3aL860p6yicnT7h08NTDDOOj05xXr0wFqfnGGNZrQJ3h3vMZxNWXc/j+/ex1uJcRTKOf07ij7zndruDt4bYOx6I4f50yusYZkbP2CGUAjWP+J4hJGWHeKu/vzVGJzjlP+f0MSea4lwWPs4rKCJxTLwd0/H0EB3NuJ2qKlQiaZ2CsFhCgDxowIz3evM7KyrJLkWstY6S1I6m1VuMqfB1TVU3ShvH4upKU/xC0JRDtHhYdCekIdD4TJrUODqOwpz1wW2ubde0q2N2hwXnj+7Ses/XjRCN4frQcf1Y8C6zN5nyZ6dLsk2I99wNPQd+xqdB0+U+Zw3P2Zrftx1bAj/fNDxpa75NIrNkK8OJyZi79+CrDfVbn2NpPfHoiLPjU9J0zuTqMyweHzKfAW1F9ZNfgDdewF3dYbo1Z1Y11DHgznpklcjTHYZrz7B+7nme/Mt/xfzoIRYhYy9Ni3xZ74LFFjGaxaOFI95DXeGnE8x8itueU82n1Dv6t69qonVUdYvxNUkSw9Dz9skh75ye8MQ3vPL553j7j/+I89Nzik6HXoTzh494cPiYXWt53k7JKREKZ3yUT18Gccb76zJzz43dIIbKG6YtJf1R2wczSkGMNpbJaGGbxLPoRAmeomtHRsBElP+lzEEpAxD9GaMfhXUFXrAKHFtniFHlFylanvSGo85QG8u0hlkl7EwMs0ZBlVQad2dqqnqKNRNM7Wjn20iusO0ed7+1Yufwu9xfPOAowYse7hnDLed5ZjJhf3vCYrCEOLDql4Su49beNe4/vE9dz5lu1XTtJxyGjvdWa05PT7jWwWthQPKEJ/sVf2m6xdcOjzjOHf7KLvUbr/DWz36J4ewBZ1/5ff7g5JQ/ebTi82Su5Mz10njcoWdpDe1kytXrt5m/9Brtc7eoD67it7ZxdYXEgXB8wuqjOyy+9R3y++9j47L4BhlePF+w+sq/p8mRNTBYnTxeAHQjd8VokyCjdHoE90aWHxd7OCq3HleNxWxWeHKXwDFrCDZT4UjWMkwq1k8esX+2oHt0SvrgDmssT2YTvm8z752d8mBxSkdmy1W8cesZvvjWW+x/5kXqxuFSInnd+HLxGcMoYD6eGRvW3uYwGQv5CwBZRAceY7L7RkkkFuO1aB2LnrF58NYqAFhM4skqFbdWgW4ZhxzGlqm/KYmGINZgqwZft4QUGGTAJvW42d/e5ZlXXuDhuuWEb/Cb/RFHYvlksUSSY/9gizdevMmjfs398wVs13zw0UPmrmbmGz48fEz8zKt8azjhWnrCz9nIj0jNHxv4Dgm3O+PFF27gdqYsc88qBd5+/wlvvL3kqRg5/+of0EYLeUBMUHmIATMOOBW2L43lCECV4rV4T6lEUAoQlkgJNJooMccQULuA2WYFVVw61X6gDsiS/lzRPZbMF+f+Zf7R5b8uDAby5mEvgi/DhdHE3Sq+q9Nro43nCNaIjDXLuGODmU2YPP8M05eeo3nqBvX+Dm7SqLwLQ+wj8dEpZ9/4Lss/+SZyelZkbomJ88wmKv+OKUGvacpJUkm/nJKK1NtYp95s1iOmwUpia2uLEAaoG1LsyiC3gmSo2j0gKsMkJiQHRhVKKtSunJVhkXJWf1ajd26VVe1S5tDUvkZyIleCayzGG04QPnl8xI2dOUGEc2f4zJUbuH7N3sEeu3XN2WrFeV3R5sSJcyy3hL/4uZqnr095/OAJ548zYRU4EssHj895fhAe7E55gHDetmy9+jpzLPM//RZVDOrXZA02lkbFFJjEKFN27Ov1yBEkK0NBE9M1vMFmoI8kiSAWIVEDFYY5EY9lhTJCB8oAgHHfG3c7XS/iyoIZFShGh/yY0g9k2dSczloNSpKyUPPFjolc7KHjz9jK8HdzxRCTgjwYYOAv1zNmOVARqcSTxDAU39/Nri0XjaYxl9Qyl1rKC5Bv7Ef/x2zXCznuOOIZIXWt0R1AgiQ9KXZEkzFJgzOwynIytATRXkgyYB2SAsZYHcYVmWYIgYzDpYUCkb5BjMWGwPr0MWF9AmkFokE4VTWlSlepv/6Enzj0uOD49cND+jDFVTWzZsbQdeTCbHPGMdtq2bmxw4uf+wWO7nyFx99K2MYx0GMxbA8D108GbnRrqgTsbLP11o9w7cc/R/PsTUw7KT56I0PSUCJDy14+Xr4ypE0CKZDPzli+/QEnv/d11u+9jwnrzSmaL13vbvcqe//J/wq+8Q36P/p9xk3NOsh+3N8MKVll3vlcAD5fmDjFXxatwbLV+ivGhBnAJlPogyMoVUCFIeOSw0Vl7vnOYzun9KaYSFFrLjMCbMXDr0ppPAGoB8PrIfCKBZcSyg4qZ4KwWfdKqrsEwMFm5f35c3mz12+A8LJSR0BwvH4ygoMX37v5GYUUk8ebrKDrCbVc6qzhO8c9P362jZ8aXefW45x6/IaYMc4RY1AWLoVtZSzONzrYLr+T2r04Qla/yZAgxiXNxNA8esxs6WjahtY6brb7NM9NoJ0w3NvjrPqU9fc+hSGQh4GUEiGsOLbwkR14VNUsJtt8FDs+PluwiJEuFWLRuOxM6eUwtM6xbeG5uuGZac0rznMrGfz5MZ8+vMvWh9/mR9/8cfZeeIW8v8v8lVd58/yMb/7hbxBih8eUkxhM8VwWoBXt/3GqhEt1Js8i4pP2q9ZgvCiQZ8oZaWVztuqA3halozDmIuRo1KvY6h3hkmCKJNy6Ej7qxrdaB6U5ANbiBjDxAhBWrW8BtFCQMpd1NgKGCcHFWKpVcELBYza78lgdbnbF8f8v9spRuXDxcbn+EC6ss8xmvV/UyZc/Oz57xjJgebfvORrW3EMYakPlGiUBpcSxyQwrYWosdbY4W/zundpJjAooSQGbI30YyEgB/szl2dSl11YwlxHQKy/jMgD4P/fjhwb4UsqslitqD4cPP+TTb/0uR48ek3s9aNXLDjAXLBAkK9IuFL87BZp0PygefOj+EHORf41vkuGicDUUDxjdgZ0Zj1FLEqXtjxJhfT7ZME+Mg2H7DdziY0xeb+iSYjStbwN+idJcrYHGOGJS76aQHaGzeO/IJEJIxJxI4hiixdiBEXdWE+WAkUxcDYTQ0QfDstdFmUKkqh21r8GAqwyuqrEIVnpqr1Ni6y34GusqLA7nGnJYkVdHSDPFOFeabtTkOEXEeqp2gt++jt/aQ6BMFIUYkw75i/w05Xxpo9cP4QcBPig3upQiZWRjlAZt/PpN+qewoZ2OjZagYFnVNtja8Nu159fODdVkTqrhXB4j0tHLmuHwjPW6J/cDv//2Q319b7+PGEtMmZwTu7u7VL7i8aOHxNCTM5ydn2IQJrMZ1noqk7n63PMc94H/8/ETzqPOGBoDzwpIr5P1GFRWq7XUxWGXxeDLOvLO4MoURC+oHk5ZVPwZxVI7YasWGps1GS+V6yAZ7zITr0BeSKl0sQbr7Ebiq+EvxazWqvePtYaYRKUUxuCrCudqjHH4SteOtQZJQUGe5ZIUByRHqqrI2CyaFie6aader+Fsq6bxFf2Q+ODTljvvvc2vvAKr734fe3bI9IMP+K5EHmD5+RC5ZSx2fcqerRhyxdWqovZTzlJmp55wMJlgTGbaTrDLBZ01mPkMlj03xfJuNny3EpyP2Og5qx0HlecL3/2URw+PqHdn/O7v/SEnJ0e88vTrrFdr0hDZMhPWLzzH8otvsvuZ59kKUN17RH3/I7qP7vDo6ISzrIEhedACeeeNz9L/SYdfnpJJRTZZYYzHuQbXTKmmc5qdOdXuNm5/G787w+3M8G2DqavCMkpISOSuJ6471qfHPLz/mBvXbqhRcYLQZ/7p+9/kUe64/eqb3H3vfaZbW9x+402e3L/L6uQYyQlXip0zm5n+6Css44CvKo2vH4HwUeY4MlZGz71SAG0+jLJChyQl/VY0vVkUQLEWEpk+JDXfN+qrlgoN3zIC11qMjywrnQ9IsVcoTFV1rC6MQd0LdLs2YFTe0riKrUlNwiHeE2tH5xyTpoLGYo0wmbbkKGpUTyaHgdOTY2JcU+V7PHrouH+Y+Yk2smy3+NW37/HVnPmFynN1cYqrVtweesy0YT3f4tTOaGcVV565gl8n9ra3eb9uWK9WdKs1eUi4Zsr1+RbVYYcJkU+Oj3mUE1vOMzWZyTPXMdUEs3WLq3t73Hj2Ch8c3ucNY2jF0uK5a4WvVzXP3LrNZ3/m57j241/A3LyGtxVEsClCjJpY9/RNdt58nfyXfo7TP/4mJ//8XxBO7gOZZ7LKFsAxAGtRsOVi7jk2hRnJY7jBuBvBmOu8KXGM0QbXOjWwq5Q57uoK2hq/MyVGcNMpddtgpw2+8aRpy3D3Pt2njzFnK84/+pQPDPyrxRF/8L27PFgt6SUhxT8oi3Dj04/537Uz9r78p7h/+i/Z+om/wO3/+D9Aalcm6Bf+rhdHh2wKl/Fxu3lOHfrFbFgHy5gp4z04UQ+vnCyVVV8SZ0zx3y6+sGX9q0WIenFtfK3sRRO9SVO7dI6lnDlfLgroXORvxrE4e8CjRy/zzr1PmPeBZ9oZ7zQ1p8slrZ3QTPf43t1TOqIyk6Xm+e0DXGXYaWfsHWzja8OPXr3CC1LzmcNT2tBz1/Rc3Ztx89UrzK4dsHvjOsvTJzSrx9inJnz67hnXkuP9vOa+TWRTmLgWDrLjhjiqrG0S6IBTeZlFfaDTOmzOVPRM0PCjEbbLJBI1hkyrFYYGe0kJiSkg4uUyu1Rn5ZHLRedFQZ03a/KimL7Ynn4QGhzfjwtoZXzWvIFwxrUmZSAcGAMK9Bz1Nw54+u/+VeavvwztRGs2iRiJul+mhImOZucaN29foX/1BR7/2r8j33/MUFuub81pnSHkANljnVU+q1fgBgHvpyQxiHMaupN0GNeFjGuneCtUpiehfq+OSNXuUd18BWMqrHfkFEACEofNcM6aDGnYqBAkRLIkTIrgMilHcio+RDbjPVS5pZrN+HQ7UXmYWJi3DffCwPGwIgbY25nQD4HH63OGlEgnS66nRM6Wp65Mee0zL7J143muXb/Hu1/+JsthTZo4Tm3iXgUPX3udrw4Dg4PJfMpeMtyqaraWCyYIbbnvihMN1ltNsi7Ni1XDM4zEEmBXvB97XaEuaW16ub+ZNC2rFFFPa0sdAi0wlN3NbPxtx+8o9bs30Fi9blp+YTyIRMgGE8EUMDKXlE9bgI4NznGpvbv07IChwVCLCtVt+U12hoAZWTFFtZE2tfAIzI3PYDZg3wWUN7aXZdc2FrGWXPYwZf4JJmeMJNSZWTbXQEdDDkPUAYZA7yzOR6LVr/DWEZPK10OKGKfsqSzq2xWz2mBoroM23MMQyDIoYI0hbm2z5QWcIYYlOS7xZpTEe37925m/sg4882miJvFWcrxzcsqHVcX6+JT5Qc2sbjFBFFQUvW7TpmHZrbn3yXdwaYVz8CwVL5pAsB25y6zFwmsvceuv/2Umzz+vQU85QRchR0yIJYk5anBLLFLJEWB2FutqqCqkafDthL0f+xF2X/sMZ//+z3j0679FOH18ac/S6yOLE578219lthg2vGjBaEKyKazVPK59XRXjnqV96GjrpKCKej+i+1C22Fx2tQweWxjlCkRKJ5jeYDuD6YAeJGQdrl4gkZdAjnGXHEcdCSsZlyJjgIghE42mKueUwZbTzRQYZYPIX4Ad+kN+cJ++fM+BMnelgEebZZ0vwEIFIu3Y7BU2tlFwVjR0J5Loc8Jl4cXJnK2DV8kHYGPABT2HjLVqDSKChAE/yoqNUXKH+I303xplnOl577Bdx1DvgCyxLrDuFtj7PWenS7ZXGjhHU7N2YH1NEyxp3RFRb/LtJHyUhf8u9NzZmuJ39/jk4SNO191muM6ociusq5G0kYwhICyTcH+94o8RnLG0wPPW8zcmM94K8OU/+m0+v+649vrnsE3NwWuv8+J6zQdf+11VK6JDvFEVEYEGi7T6WCRhaovxNd5WWJs1VNNknNM3JheMVUQD/jY2G0b3ihHQEwwhGnxjyTFjkqqCfKU9QC54iYXi2awlZjSJYHTw55S6AqSxbS7Ani3r1G3gNVtemyBlRnN5kPODMN0PgnyyuRnM5hFdE1LX2OkMt72N3Zrh2hbjNfRKYiT3A2m9Ji3PkeUC1h2EoezRsgHEnQivpsykmvJ8LbA4LkMqyM6xIJKNZULF+mzAGPXpSwKT2YwwDCAZiRFDLkNmtapQvMBc3FKXDh0lRZWTw/ADr/uH+fihAb5Pv/373FudsD69z8knf0Y1PMDJQE4aCKBBEKNEUMERETWCRwR3CRTavEihyNUUcCPq2x+T2fiUwuhzYDWswxj1IFNtR0lWLfH1afwZ8gOhBafTz9IsHzFhIGVDSvp9RjLeOCqvgFlVWY2TLrroLiaW67Xuj8YRxSOmQkyFdx7nBSOBHFfEYVFkyRS/ACHmRJSKIViaSqgrg3eWtq0wOWJdwJviuWYtTaO3j69aRDRqOSX1r6rrltAHjB0Iq1P1J3RWD/GYtemutqmvv4zB6yZUfKNi0nhhcfraU1SG0WU8b9Okjc0ZF0De2LNtjGkLuCCggO7Gd6TAroV+aqxhINO0jYKiWQvmiG5Q0/mMxekRq26FdZawWmBM5sUtz9ZWy5/dPaOLUNcNYUhI7AkpqEQyR6wzTOuGrltT1xXz7R2GbsX1Z5/lc5//PO+88y7/6l//G7wFkzPdANLr5jeG5owhIZCL7x2EnPHOMiRNgHYb5qIyTiSjIQIZqoLWh1w8Jb0m+XnnqOsy1zCi8jC8Nl/lwHBVhUm6FVrvyUlTeXNSOrg3RZZAAlkTQ2ZYa3CCGZk6IuX+KCEMVGq0G5ImcgFpUFGWs5YuJOxiycnpAT/5s3+LO7/7Fe68+wE/Ma/48Dt3Oa0mPPyJn2J+sMX6+JgnGaqzIxb3PmGZAlXbcjtbQui42syZLBZcMYZeYN9AmwKfWzmqLKzo+biPbM+2eOnaHneqho8OH/IviVzZ2uHlFFkeHrLna9587Ue5Hir6+5/Qp4HeGx4SeeWFZ6j3D/DHp6zf/h733rnD3f0Dvrd9i/cPn/BkvWDqPK9vH/DS6Zpnnn4O/8ldqvkcu7eD3b9CvbNFszXHzmtMY8AbckrkLpGHwHByRtf3pBCJIUJISEybv4chcOfwMXv1HOuU5fl43fHdfgHTFpzl8PEDnnnlZZp2wnMvv8yje3f5/re/RVotyWQeHp9y9O7H3PrCj+NsYc1cBkJG5lMJsfHeKwXcjqC5LQwBQx814dsZQxy02DKAMZnKGbXaj2usb0nZYAtYGIZUfEudApWizL1NgYHKwVW6r1muWQqjyFaIcThXUTVTXD1jXk241U4xYvAGTOpYLR+Tw4I+BFLs6U8LIJPKEKTSocWkvcqnJy27L77E0W7PH370AUfphG+fdyzaCf9mtaKTxH5V0Uwn5PMzdh8+hm3H8sEug4O9+R4HsxYJHWa1wncdLBc0jeX9OHDgG7ZDx27Tsu9qbA7MkvD4ySH7V0/IKfFMgIPtLR5wl7jp2wwfNML8yg2+9Dd/hYOf+DHy1jZ+uUYO75IXK1LIsF4j5+ekbq0b4WTOzssvUf/dv839/+f/C7M+xxKp0aAOwTDkDhXX68coJLfGgBWMdypJqmq1fJhWuFmDm09xsyluNsPNppjZFDtrsZOSDFy5jaxu8eiJJm4nNVXXM9rx6Fvf5umrVzi5e58/On7EPz57zAfn54TiUbKR5wkY6zhMmV9//zv8gxvPI+sTTu5/SkoBiy9nQi7+VuMavZjwj2vblWT50SoDIOHoZYKJCnaGpMMQZ3UN1t5QJ/XhqbzyFHyl5/UGUDJW1+74M0epuVCafFNSegujISViSGAsVV1TmRrrMtd3zviDP/hNFmcDb00dLtS4xYKnQqBqDV04o6kqYg0n7ZSpJKJLuGw4Sh3n5wuagwOWp+fE4yOO4pofy8KZy3x2XlPfeIbn3vg8s6vPIGfHLN79I84fnPGotixjZks816RlTCH1WZiKpRE9F4KrkNkct3dAe3WbZm+PejrDNbV64aw7ukdPWN25Q3zyAAkD45zclnPN4VntXmP7i3+B8G//LVkG2DAGis0Do2nBRTV6USFcnohfFmyOIN/4NWMn+OcmhZvP+5IdPcLWCpykXMCdkf0uDgzIrOGZX/krbL3xCjkEwoMHpNNzwnpJ6NfEMBC6gTREbDb4qmayt8fBX/pJDn/7K9RtxS9/5lm6dmDNQDbqz4ZxeOfpw/+XtD8LkixL7zux31nuvb7GnpmRa2VmLV1rV3d1VS/VQANobE0QJEiCHELkyMaGY1qMI9ODZDLpRWYyvctkMpONTCMjRyPDDEcgwRkSAxCNtdF7V1fX2rXlvmdk7OHrXc6ih+9cjyxo5mGm3SwyMiM9wj3czz3n+/7ff0ks1KjJOwURWVOhk2F9SbdrqKtSmp3M4n2D1xbMEmUZ2Lr6DkZLzRpDEI/mKPWc0RqbZ1iryUwGaIyxdIo+Rlt0ZsUPtyhkMF1U9GLO9b96yPvbgdlSwdR7TFML7lF5locrHE7neKPYm804MejhIpzYWCab36fXwJn1AWeefAXWLjHrFgxWrnFwVNNYjcPTayrWfvxjfkFlhFhTKhjryEoFK9EQi4LeqTXs+RN0z6yTr66gBrLejM1F4tI4CdA4muAPxtT7BzQ7u5iH28T5PAEBDS3IpYkcxUD21S+Rraxitcb9yZ+j59NjP73HgIwFozSdT7GMIj00oIwiKC8G+6IXTvWSQpTdMtBSqb9t16RerOvHK99jtkd7X6nYlAytSIBPbKVlj18N7RUQ0J9a74poNGplSH5uk+zcJvbkBnpliOoUYI0ww2Zzmke7TK/epL5+Bw7H6NhG5IBJzq5Kw0xr9jJLnhdYLdYrrmzwTUNUhhgt0QuYZ3VO1ZTifBbB+YjJDCE6eV4K6qZKVmwRbSxGG4q8oAlO7AuMYtooPtpu+HrHkxmwTWAtOv6eyvi9vT1ulQV7sxq3dIILK0NqFzFTTT+32Ic7fPwnv4s72iZOwVqNNQ1d68hQNIUmbF5g49/7O3RXV2FW46sjKCtCOSNUNTQ10dXSE/q0nyOyOJSS9GQsWEMoCkzeJXS7qH6XtS+9THd1hQe//wdMdx/gAAlN0/RdTbx2PYEgj60QIz9OC1JMBLLkR+xTWKEiYmKS5rVAlJchvYkG1SjaZCsVpVfQShiu4r0X0Y3BVFoSw518PSRfs7++gx5bdHwaCokJmmyvF2cgCwI+JHv0BCy06isEGEusLB5b81FpYifHrC5h15cxa8vowUCConLxVsQFfDnHjSa4nUPcoz3C4SGmElssbSxNcJJumlm8d4Skn2mUwmvNgQ24+T3cbiNJ1E1DRMgm7dAtIv6rIUrdKSETnuC8hBApqVG0NtIL1Q6/ltFfzfFlxaMh3I2OZ03GsJxT7h8xpWaCxxGZqkiZQO9TyuKzjH+mHOXGCYrlAR/fuitMTJUCPFr7HC3nUZv2i/doJaGXbZ+tFFTBUaJ4x3l+Wpe8bgv+F70Vrrz3A0yRcfKJ51AmcvaVVyhOLlPGCmOMEAvyHG80NCMmB1M2zp2VfUUp0AJLReXAN1IrhCDp6aGWc8k7fJOCknwtr5tvkHh3L6EhxhG8ZCQo7ZJqErHIUBF0wCT8IoZEWHJRcIOO7LU0ArISQTkIrn3njll3Jo2v26urUum6isdjnIXNyGM7Z3zsTzgme+mioHPxCfovPEfn0gX0iVXisA9FRzIRlFhWia1alLT3qiZMxridXco7d5l99BHVjRuo6ViIHxG+fFjy+etbdK0mVnOwORQ5MQbm0WGiIwtzZq7Gt0nSVkIwYwyo4PFViWoayrpekCcWLNfUl/914pQwYQNNU5Pn+TEA+DPcfmaA79aP/5hm5yNyLZ4JXkvjRgIZ2uCAmDwJap9QIRUlyRbZCFlIE0WumAYD8nZHlWQpQGp6tJKN1ugke4wQlIRqQEQroddXHkQupGhcMuuUL+FVTjQDsnBEr5NCCgIYlYn0xypCkE0peEPtHD4WaN3BZtKeOaUgOkkh81PqqiKGBhUcIYhcTkAwUtiHWZhfqsxQFIHCagiGTNd0ulIwKWWTpyCYTGONQZlcGinbkcmLyiXpBk/dNIuS3ISaEAy1U9hOn+65l8hOPo3tSIBHCJG6aUClRUmbStSSaTkG9GJ7eR0DeiB+fY8z9toU3RgeD92Ax4M5PuXVFyQp0qFx0ZD3Vyjrkvl8ygtPPcfDW9eYOo/VimG3w6z2XBt54uGEJjGLqqoCFKPRRPzkbE6nP2BpaYn19Q0GwwHnzpzmtVdfZevRI2KMPPPUU0ynM5EgZAVZtyP0YyVAnqVtSIXdZE2aeyjZ2Nqircgkj1FQednGjLYLWW8nM3gameQrmaxmRU4MGmWsTBcQ482QfCjVwjslUX1DA0Eo474OwvwyCm0T61VLKRqDWlxv0UtDm2UJOkgyCSkmksuSUhRZRh7SnEiL/9nW3hJLZ1/D2A7//q9+jnDjgPHBlNjvUW6cZHp5E51ZOudOsrSyyvbtm/zh9iO26xmd6YwivR5mNmK9USgDcwIPvKUpDHmIuEzzlonMegMqKg7rMXsPH1ECzuTsnt7kF/I+yk3xSuP3Jmzd3+GuarirG0bRw62bXNidsrzkmVy5za0Pb/Jv3YR/8/232DmaUvrjpNFebvhHlz7Df2iXWPnlX6OzuYHWGl/OqKdjZpMRbm+eJq1pek6S+yRWKkoatFA7eZ2TL4p3gcY14suCJmrD/XLKdgTbHbKzvYfWllznnFxZ58SpE5w4eZqlpXXe+/5f4coJo9GInGZRVi6utXQBtWw6rYUpYVJR0crfVbrmnId5LZM1o9vp0LGHm0Y8PGNw6M5KGgIYskzRscnnSElbEtpQokS3N5k4ZGV5F60zsHky4Y0pQCbiGof3Djc7JPgtoMHgybSSRNRk4OuUBCWQQPReN8c3sq5rv0Q8+zd46oXLFP0Viq197lz7Xbb6BSe7jlux5sjXzKqArxpGVcWEyM6NjxgMHvBH196k7PY42Vti2OuzNznkyQgvd/p4pznpPM/PG7Y6hrGGuQso5xibgHc1dn+H7//ln3N+pWCj3mM0nbAcIiYIgOSVZtsEXvvCV1j/3MuEIiPcuEl5sE9eK9x4l9GdWxxtP6CcTQjOER2oSuFNjv3KFxl88QuEb/8VMUrCfI4iKs1QZRT5AFv0ML0OatDDrgzQK0Ps0hC7NEAP+uh+gelmxMKILBXxgVIhQiNGvb6q8c0cNzkizit8VRHKOXtbu/SLHlEFaqVQTcOsatjb3ePppVNcuXOb/6oac6OqWds8zcknzhN9ZHR4wMN796jmc1RKLHtvd5v7ly6zvrLE8hdeJHa7ksT9WLvb3hayhfh4KExYhAuBrIV8sMnGk1+n2++TFTkqOAH4rMFqQ5F3yHLxIGzqOX4+wTczwKF8QwiSoO7rOaGeEZsprp6Jv5zzKGUwUSEHiJSZNiJDFqXxztHJRbrct46vPbeE8h1278z41sNb7HpNRcZzvQ2uz6c8vzzkwdGcnemIS0sZ+7OatSJnNDpibgz7rkENuxy5FVZ2HLVy1EZjdcawE+mtDimW+syx5P0T9MorHBWawzIQvKMXoJuYnRpDrjLqoiD7zEXWXn2Z7sXz5MNVlM2JyqDlwE0Ml4boKuKsprz7gP033uTw6odEV6UGMVk3zEuaG7ek7kJLM6gULrYZ4scgy3HrePz+PlYdLG6PwxypkntsXbRfP2bBtAJjr6OkZcbUYCqFVkbOM6VRRuM0DD9zmaUnL1Lv7DG9+5DJnQfs7R/wqCwZRUWZgzNyXSlAeU8RHOu9FS5dPMNk7xHjW1fx+Rrd154nZJrm4Ufi8WcK8QKtq2TfIq9V0DnWGJH9NkHO8ioQVQd98hwbF7/AypOfZ+sv/4DZWxVaebIULOQ9WC2hWZiIjiWhkQTJFlCprSSIqyiSz0JruqZDzwxxox5P33F0Jp7vqTERWOt0aA4PuWAss8mILGjm85qVQY+VlSVsOWM8mRKU7O9Z33Dm2ae4tW0Itks+KHBGM/fCmDFes+GnadQof9ZE6rxH9sqLnPylL9M7v4nudgT0SE2Tav0Fo0lNpwUt54VSQD2nvnGXox/+mMmb7zI/3KVanEkSXFeNDxgmY/csgI3CpGi5Hmqx9lq2UUS3rKbU3AubPCI+yMnuQC6H1B+ExWo8vh1zRj7dVMbFY6rHvlKlljXDPpYO+vhedwzDRFhkWAcF+eZp1n7hdfqvPo9ZWyfkhpCM7+OCRdXa2ijWKoe7t83+n36X0Q9+girr9HwDHo2JnufOPUV2comoD0HVaJMBYLNIiBqTdQgpDEzFgA4ai6ZxFVpn+OBwvsHajLop8TH5m0XAR2ynw8yVRJUkvojX2Eov8EOdcfriOda2dvGHEzYbeJVI6RUn4hzXPGKpnOKcZnkaIXjyCEff/CvqrMfJ1T4qM6i8IM8NmQ+UnQH9X/1ltNfUdx8QJnPidE4s53g/F3Ci9Ph5wM8dvnYE7+W6ImIT8KJyiy0K8l6fbDAgHwxQgy6+36E4e5LTf+s3uPcv/xvCZAf5rRYiuceAZAHAjFZp6C5+eYRjz+EYZWivgMIaVEgQbxDgOHqNqRU6SA1uA2jfMv/Aa40OQcCSNui7lTu2IFxsV+en1227Oo//Ny7Wc3vlhBgxUVx4YzxWhcTUo6gEHLfhWMQEli8P6b38Ip0vvEB2ZgPd6xEzK6w6Lf7KyKUmr1eIYkUwmVDf22L2kw+o3rtKGM/aJpBQ1bhwDNo7bbARQg6WMb6uaBIb1zvfZn4Q0pCpccIGRlnxkowNShmC88LYjxFtcpq6ETKNb8gMZEtd9rtz/vOyYdNV/HYv57lyJlYgBDpYVAwUqTctjOUPbKQ5dYqsKPj4xq1jD1WdJMSZpej1GK6ssLq2RtHpJUWVQUfFweEeRzs7jI4OaeZzlPeEKEquBsW3fcX+ZJf/Y7HCjTe/S6fTp7+2ge0WrD/1GZrCy3rNkppHKXZ29zllHnLquedRWTqTlRMGXBB7MzgeXCxaCHniLNR2CUSKwUOQYBrvhDEeGod3jtjUBCdAum88uJrQlIS6wtUVsWoIZU0sK5g7mHti2eAbT2gC1B5qT2wTVBOZoN1Xddrp5opFkN8xrPfXeXvH/9d239rC8LkXWP76L9F95iKh0031pUP7AFWDakpikrfLNymwlmByzPKQfG2V3gvPsvErv0R99wFHf/ktxm/+BF3OyOsSdh/ijaQFz7SmWFvFGMNRbBjEiA2aJlh0FokxkGmpV+azUs6GxhOqmunoANdUZMomCW5iuba/qXrMwCSm0I0sSyrLT0uQ/8fcfmaALxKT+SW4VrOlgKipnchiRJYITYOAQGmjMalBTWIEAb5SY0qEzBzPj0GTZVKWts1ra/AeQiAqyUoPAWLQlEHkv863aZLildbJNZnWBDRTq4m2y9DKYWd1QR0jxlq8j9TOorOBgJS2S3SQA3UzZz6fEn1JDG7hgeYSeFnVyREnyoarExCZZ5rMWGL0KCQ6vd8zFNrK8zYeYzSGDELAWEVWiO2msrnQcU1GjBZdZCiTU3vAdoSlUE+JrknW6ZB3OnTOv8zq53+Tzto5uTIQlpL4B6hF4xWCXzCGFu/tAqh77AhJG3ZM4GsL6AnI15pgHzP52hjuBRvpsfvqEOjllrGKVKXETWtleOHlL/Cbv/l3Gc9L7t29xbtvvsnR4ZHIWWIgR5LuWvbHItiDKPJlI0lGq+sn6Q5WuP9whzNnzpJnlrKqGQyG9PoDUIpO0cGokiITQMdokV1HWs+9gFGRGEWOotDJa0PuWxQdggdtDHmei+zQGGye45pGQOzgcTFSe4erShQlKjqMAuclDcpaJT4xaX3HKNJyHRTGHhvK0zbRRov0JHpQhrxQ6XkobGblikqM0SzLSHtJYq/IAW20ofZiKkw+YO77PNPvMPRzdm/eY/lAkVUw8IHycI/7b/yEURbZR6OLPl/5yhd5+Zd/mYmHcjwVTwcNZVWR1YHJbERTNTz0XujRrub06U3yCPOy4UQDo/0RmxS8cvoSy8BSHfjWdB/b1FjfEKnwZ3IiA1ZVl4tYcgvVG+8yvf2Am3/5bX7/0Tb/dn+PWVPjYpSwGy+z9WkT+Ne3rvDKU5/nhffep/goo2lKcpunCHsrXnRagFcJ4eG4GHqMnRpSQ+NrR3Ct745M8nUCam5XM0a+YbXIefTwHiunzmKtZX1lCd3UbG6s0ssso0f3ufHxe4QIZVEQtT72SGmB8fQcxGdRAD5Z5wnYaw9tIlnRZzDclOmaUrKGY6Db7STAT9jIVbeL76zQP3WRPIHYedbHe0dW5Dgv612pgAqI6XH0NHWJ9xVNM8HPalzTEIO8xtpIYxKDBMNYAnluMMqSWUWMDkxibSVJutIQvMc5hzEyCDo6GnC5e5FieJbYzVGTh3yp7jNbOUWj4bqbsmccu2HCmBmjZsq8P6QqOqjgieMZ82nD/mybSYBSe8bLa1wlcL0Z8VLQPKH7HJ5eoiyn7DaKbtblk71tbo0aXtnZZX2jx0oVuVspru7M+E07oNZTdDDMrMEOe1y69Ax6PKW5eZOsnNLs7XLrg6tcnY64rh23nOPhbMZ4XkKMdLTiadvnyT/6Jk+dOsXFl18kyzoSvmMVpp/hFSyfO0tvYwnT7xCNQWkv3mcx4p0XQLluqGcTQlUR5xWhauTvjbBOYxB2aQht0R6kufMBP5oS1kUIjNY0Vc3O0QQdFP5wzFvTKTeN58y50zz13HNEFGXZcObceV783Cu8/eM3eHD3DiEExi5wh4YVY3DRI0rKtmBJbUdbCqRqU9avWkjN2zWslYB+8+kBd2+9hckKur0hnc4Sed6n1+lhiw55J9AJFm0MZRnRRoYzQuPxEGoyKwbPvpkTZmNMPUe5ORZJ5o2+EZa7CsToULh0rUS0dyytnWZt/QyOVbS2VOMR0cy5cGWHF/IBD8djMu0Y5BkhRCrvmZQef2KJT27c5YlhF7XUZzIZoxtPz2bkVUnW1EnKJZ42fjRnMqlY2/A4VTOrp+jGEVTAB0XuNSfyJQY+CDOAyGS5y9Lf/hpLr30OnXclHMJFmE4wRxOYzsRE1vs0eRcWQPfMCc7+1t+k/5OLPPrOt/DlIRqLwpNVE9S1TxLkZ5J3pwTitNBbG0HUDgw+DYYAx+/4p2C/46ZDHTNsWgWFVmgjXsPRaoI1qMKSFUYa8izD5BadW0xHJui6n9NMa/onT+EmUw5v3uL6lVt8MCvZGvbZWi44cBXT+ZyyqqmdeM0abelqy1km/OpSQffnXuf6fILJLS/1z1HoEaW25NaAHmCKAm8rOplCR4+rGoKrsfkyrsrQWQe1cpr+2nnWLr1EtnIW0+mDtmjboW4gz8Ruw3sZsmWJhZlpJQwqF5K0VJg/3oFvJIAphkBjwe4tsXplQG0jTWV5WltWupYHxnHfe7acoggwBC70ClQI1NM5MXhms5ruoA+FpeNge2vM7u17rJ1+hjknuOMUlTKMXMAYQ18NibEkIJ5BDqiWV1j/rb/B8ueeRClNGE2JewcinWtEJqm8T1YmCqIwJtqzFGvRRU6+vMSJ3/oNBhefZOv3fp842keqXGHwHr7zHmU0dBCZb64M2QKQa2XbLdx8LA+MiLdU9CEFnnDMaBdJEGn+ukhPbOvy+Ng6/f8HUNpVe9xyOiINAZuuHPDCzlrc6/F7y+MEFEFB98Vn2Pw7v446sU4sa+oHD4FSXuWWPKXluog6pcR2eujNVU78498kO3WCvX/zp4T5jICTK1Vn7MXIdp6x4SIqE3UGKGwxAGUJXuGVIbiapq5laBlk73O+XDSRkUjT1Is+RmpDRVVFhoMlZohUMgSRP184vcy//WCbK4Nl/t7lc7w238DfuMqT0zkHOuPX/sE/IQ4K7v3hH9I9cZ7COxoaqsmc9dhQ4mnmI4w3vKlzVND0rUUXXc5+cg3zYJswLzGVR9cNs8MjDo8mTI5mlLXHRy3sKZ0ktEahMxkCZQEyD5kP2MahVUNWZPROn2Ll+ScpzpxGry1z4rWfY+vb38T5+WINtKOMxR4WI3iNrw0qGvEk0wo0WGMoQlJSqFaICNEBwRCdQtXiWWkahY0aGw3aSy3p8YTgyYJdDC+MTfZMCkzyqVCJecQCIGGxL4ekMtJtjcoxX0ohNZYNx4zEhTtFPN6nJbAyhVJmmvwzl1n5jV/EPHOZaK2w0ZqGWM7BeZEehtQvLvZyTcxy6GfYFy+y/Nx5/PWXOfhvv0386AbBS45qe27oGMhC4O+ub/L1roQ3BSXqOgnKQFKejYEQRYaf+pZWHVs3AqErfXz9+tCAFlVgFTyjWcXqSp9ed8ByN7DvI39QTtns5PRmbsEbFzMsR5ecKxrurK/RWVrjw08+ScpD+R3zboeVzdOsnjiJq0rwnp3tbempQuDs2TN0lpY4efoMTz39LNPZhO2Hd7l3/Tqz8XjByIwK3sfxf2mO+D/pAbd+/F2e/+qv0TQNqAHTH70lNgDDDNO1kOWM5nOq3R1mO/vo3AjIZw06s2CkJ41aPqv0oY0GY6SvMcJqlWA+vXjflDbkugOZRnWPhwwRLVYdqvU+VAm7SRB4iJAYgdGlj6YhNKUMWKsSP6vw8wpf1viyJMxK4qxGzStUVUM1xY4mhGgk0Tscr/P2Q7redhgYsL0Bq9/4NQY//yVMp4B5g9p7ANMRlAJCqiYFvIZWMp6uDGtQNociI3YLdHdIGCyRnT3BiX/89+l95lm2/80fEA72sVESyIOK+OBoyjl5r88owhKKQhneq4Xh2LViEXdiecjLz7/I9370fRo/gzufUFzf5f5XX+GJF15G66RsSezOLBPwXebcSVmSlFNaG7z/7zqX/ofdfvaQjShU9MaJMXtKhRf6epQRpVVaAKwYUhAAIkFd+OgkdDwGrBb5Dap9c+UWtABDWqkk6xIPCml2EzKKeJMqBZlRWKPodYyw8ZTCKL2Q6zg0RgXGaoNxdYdc5zQ6xxQdnM7RmSL6hrpyNK6COCa2zWmiq4vvgyTgNi7SOJ8CLNRCQmdUJDOanrUUmcFaQ90ETJ6TuYx+J6OTWZogqVdKK/JOB0Iksx1sPsBmhqYWAMVLvJjIj6sJkQKVdXHVCFXOEngozbxef5qTP/+P6J64QIhaJjBR4bw/9k1JgGsLwgELKunjn48ZfPFT9w+xZfOJvDUEn4DWxwyGQ1iw/OLi/p7cWpQWY9TQTFDaMuj2xcvMK2ZlzaxynDh5ijzPmUwmNE2dgAWFD04eKwYB+9KZPBmPKcuKvf19er0+vW6PPM8YDvoURY7NC6y1HI3GZFmOMhnaFNjM0skzQhAppEzRFMYWhKiFNWqShW30+GYOKbLc1zXTcioSYSWMhbg4lFPzk9iTVgkDUEXIrVDxNQqTiRBEfCo1mUkAEmEBjoYY8SSpM5HMHId0NMg0ITQyKYsxYnMjh6Yywg4ILK6DLLMUtkOmNa57jo1Lv8pffvPPubi8wgvLKzTVnJsffERWNUQc55eGzLo9QjmlNmIuOt7a5tbDLc6eP0e/32dpZZW6s4Q/mHImqzl15hxYxbWffkhdNzyXD/jNA8eSHhNDxXx9neX1c6jSY2yg4zS+gK5TaBNwRSDzFdksMtMFeh5QvqZ+OObggx+y93CP70wOCXnGiZOniDrjcH+b+WQkaD9w2Hj+aL7HsyxjysBhPYZsQGHNAlBVisRmJQGVAoSIz0d6B1Ox5WJEWQk/8CFlkfqAo+TebESdzPyr+YzNM6dYWx3y0Xtv8/LnPsvD+/c4e/Ycn3nxRe7fugrKkJ3aFC+eNuIaeY908gwzbVWT1hDpukrdigB6QE4kBpE4RBRETzkao1REKZF/NiyTnbvArCppmhEhNNKIRy8mvNFj4uLhaFPPgpdrQaOpnSPLJF9RpyQurRXGKqwRYNokg8rQJsbpKDHwqYT2wWO0TvIhQ6TLvfsVG//sP+eZy8/Rf+Iitop0+idZmjp0U3JaW0ptCaZL6Dhmbs5egIdlxaiaks8NQQWmvR4naofLM0ZloIma8eZlzoznNPWMv3p0jyMt2q68qVnbWOHt8SH1rX0+P55Q9Sw/3qp44eGMC5Vj30ZO5l2u4tlYW6O39YBy+x7KV+xs73BttMO3Q803d7e5fjiiTg3kAgJWke+oA748XOV/urfH6ZdfYfX1VzHTmugqgqsoDo9QUeFGc+rdA5p5haunxKqWiWpdSypokp3FZOgrDWwQk/F4LIBgMa0XmYucHWJ9QQLWfAhsTScs24Ktw0N+mjUUvT6XnnmGyWhMOZ+js5y6aegvLfMLv/IN3vzet7lx9QqN9zyYjHmpnycrgLYeaAUZLQDdFi9t492acMmQoQX3Qgw0TclksoOKkdnYLlxb7KJwLeh3evS7XeqUpK5NhtU5RM98souiJgSPhHEFrNUizVXCnlcqOSzpTGwxMoPKc2yu6PZXsO4yK+ZZshPrxEwzOdxlNr5O1ytWHmxTREXggKVOB1NO2LAFk+Ueam+L1c2TdPtd7o8OOGVy5vPIWi/wSm+ZzQoKd0i3cYxQdHYnbH38EcqV4rtZTai1Sw1dQyc29GwG0aFj5KivGP7Ob9B/9bNYDKos8TuPqO9vE8cztBL/w6jFUzU2Diov53RmodOle/ksJ/QvsfcXf4ZqStrGT1hJGoOmUYu8WCKakM4KpQBlks+jTpJxm5JrLTozwkrPM/Tiw6LzDJVZVCby01Z2ZPIMMou2Fp1lRGsg15SxIe93pDD3AV9XqCBpt9V4xsMrN3n+9DkOr97m3fc/5O1hnzc6ik+uf8T+6BAX2riRNFRMa1Ip6HU6nLn0DM+bgj+/8QmnupEzy19keUlqr9CmhNclhApHxJU1MWpiNkCvnmft2a8zOPMknZVNGpUzqxuORmPODAuszTFWQq8WjEWt0l4gL6KPomLRyV6mruW8z00qXqLCe/Be88mDGrs3YdM7TtouriiIOrJsa54uHPNeZFppDgnU3jFzimdNhimnqLxHEyKn8x4nqxl7Ww2f/MW3ufylQ+7fucfscMSRi0yCwiYIFwIVjqmy7C8PeOq3/xb9cycot3eJ0zlqWqFmNWreoKoGqgpVO5HmpqExRtaGziy6KLD9AX51mXhyg+yFJzn1t3+T3X/5L/FVCcAARTeIpbxGBviWYxn54ix7nOPeegkTF+fUAmgLyAAT+Rad0L3WVjm23xOOYerH2SItWHfMGmzBH00uYzwaArUOFDEFPvDpCA2dmCaRQPHURU594xdBKcLdBzCb4Y8m+MNDqsmUqiqpXU0TfGLRa6zJKPp9OidP0H3mIiuvv0QznjD642+hvOxtXQ+nDubow4ByOdFWNI0DFE0d0UZYwE2QYXjE4bx4PfoQ8DHJG3V7Ij8OdwaKzBBCTT3ZpWmceLwp4f4ejUeMx4H3KngUI98b9vl7n/syG3fvcGH7Ed3ZBLsyZLW/zJlnnkLj8JMpTVPSDY7al1S+pBl4HphdpgdHmKAYTjz1R3eZd7vksWb76Ijbo5kMlPs9DlcyHqqMe43jUV1x6BzzKCE13knta1D0tGZNGZ7s5HxO93hZ52T3tti5cYv8yYusffGLdNaXWb5wmcO7t2RIjheecVKLxSjee0tqiTN+RTitqqXZifQ2eiUeqdGLSs2FlOGo0aEdxoMyYIJO7FzpB7IY5PtMYpVHLeBqoSSxNGqUT2iQD2IN46W5FpBIo7u5kALKSuSUoVVsiC14oypZd5rFWn6cDatgIVknz+i++lmW/8bXMafXiU1DPDjCl1NUVUEl1zmtOkbJtS4LXuOtweUG8gw6BfbMChv/k2+w+6/+jPrdj6XORGJ1PKL0WZ1NefrkKruqEsZhGnh474iLYVBrtaEWgZqCfNrFWhaUT1KNfZT9NCqN10Mmhwcc1Rnzek5QcCc6rhB4UeD1xWvSxTAturzZB7W2zpWrV5JKxYC19FfXOXH+AvV8ysPbN5PPcsDmGcOlZZQyuMYwnTRY67h2bwtbWNZOrDFYWebhnXs8unVbMIT0mr8dGv6FbvgPxjU7V95n9fIz+OmE/as3ybIMX84olMb5htvGozeWmY7GGJPJ+Zs+SOGKGHUMQqvHiAAq+bopJYM1K/uTMiZ9SB+u0sBNt4mNSN2mEmijjJWhobGyqLUMW7U1KGtRvQJlu2DWSYmo6UMTlbCeVQqJiT6wOpthr9/jdG8ojMDZnDCrCPOSMJ/j53OYl0TXoJzkFCx//esUzz8FdUV8sIXb2YGjI+K8pKlK6qaido7KBWY+0Pi0zwGZNXQ6lkGvS6/bo9Pp45eXCUsr6PVVes9fZrP793j4r/8NfnuLkJKFQyKaxaZhEuacVxkczngr16gip7A5c9dwanWd//V//B/zd//+P2Bnd5fxwT7mrT9h/dQ6MQbqyqX3Rk6ruiyxVjz8tLFImR4lZ8Ad2/X8LLefGeALSR4WgwQAZFYOPG0k8cUoSWyRkArEADJGoW3Kvkb0wjawAirLhCPEJOmVC1i1Hgb6eFasorDijGrZSRqdfE4IMmVRaYQXQyAajdYWVEaRdyis4bB7nk5+SGwmODciuhl1tYdKEuIWdQeZ1oQQxB/GC2AVkkeO1gajzeK5ZJn4MVgV6eYZuTFkVjZ9a3IAVA5ZnhGDI89zorJok2O1BaUw2oLJcE2NUgrv0/QkKryviWi0ks3Q4glommDIbYHur3Dys18nXz6FD7KAtIoS6pAmP23j5Zz4ogALMG8B9j0WNPE4ANiCTZ/++7FcNybgLUaRoIb0HrSAoPOOynl842hmJb6uMcbjase1Tz7m1rXr7B7sUc0nWGPkZ4TWdl4aV6XEkN2o1pfsuAj0PlDO5pSzkiNzgLEZxhqyLCPPc06dOsXm5mm6vT7D4RhdrhK8o0rv67yuaepKaMwqFYqJidrNIt1czrc6eU22r0NudZo6pXWnhDUXIhgVyFs/j+hTvLwcuXJ+i3kyPiXqJun08UEnh7PW4tlojQDlIQgAo8XpF+8TYK4UKuqF4a8xSorHokAFuRaNNVKQ9k+z8eJXmP3wbT4/P0DtPGS7v8qNwwMuHB1QZDmn9o74JM/4ODZ0h2v8q/v3sbZgVpccZBlb84oTp89gegO0MqxvrDGeTTBasfnkk8xHU8Z/9md0H844VTa46PBFl2gNtuhQdhSTCCHr0xRdNIEsRFRV04Sa2FTMvWMeKnarMXvO81dZzq6Bbm9Ad3mFXn/I2fPnuHv9KjuPHgrgrBTvbG+xfXqD/rjGx4iLDVkQDwuPgFTteRRT8Z+sEmQ66x4DJqwhtxaXwOumbtDW4oNjt5REuvFoBCrSNBUmBl5++bM8/9zzjCdz3nrnXTpLy/SX1xlunOTMiy9JUrKWVCadpjlmsZ7jArBpQfaW2K2UxntPVc0YTx4hFaZMOnXyLtM6UliFj4pmvAd1RZgeYfVEJmcq+WN6mUPLvqbTtClNi2NERTl8orJElaMtqBgw2mJthvLiHapoElgJC1PL9jeJkpoeWnPbGIlBE82A/tOvsHf7EVe+/U3ONTAzik+W+yyjWFeWIuvStT16tqCba1ZyzXqn4JnBENW9QFQZvnZMKWl2x7ho2HYj7h7eZdJreOb1nyeeXOK3w4RPrlyjGk2ESZYPiKunGB8c8ea+p3eoeaFWPNOHG0zZKTb4cQxMs4JN7/iTd36AiYqoPEXX8C9p+ONPblJGkUG3op82RAIUTinemBxxeZBz8aOPcVevChBqNblWNCoyRdPpduR110pkFG3zFY/ZKGKtkFhwWoq3FjeT/TkQY5CiJCLFf/T4di/OdNqDFYdVw3m7zIN6yt6gQ3c45GhvD6U1mc2I2tDrdllZGjKbz3nt9Z9jb3eHycEho9kMH9dRyiweu/1LRCQpbbLggh3egscqFaGJJdvKdqumlkFdcAlAViK7cpEYJzT1iGpm5RRItB1rO2hlaJopmRJrg5gepwhaAD+lUuCWXGN147Fa0+ApCos2gdnBiPe+c5OvF0vEfg9U5Gh9wNuPtnmlV3D+5BJH2YCqOmR8eMC00viyYuton54uKIuCyUHgMyGw2jRUJqM/homKvFtXbMRIUIoHfsYLFwIPHv2UaTXnRC+yMd5BN57MK3q2YBAymiyjZzOm5Rj1+hfpvfQs0UXmB3vU9+4SH+4SJ4HxbMJ0Pqb0JToGdKHRVgaP0UXi3KFKT2d5lRNPPcvyF17l6I0foaN4FgfVgDKYrIM2kaghs12ZkPe62EGB6XdQQ/F51P0eutdBF50FgEdmxdDf2ORzLGtSReQMJaKCWFAE7wmNx3tHU9fEWS0SrabCzefozCQvoUBoHKppUD5yb2ef8cEB5c37XL//iHeXO/zXO/d4uLdLsBmx00E7LwNA356v0mhEoGwafrDziFfzDf7p2gX6a2NGo3uQZxgcptNf1FqKQNN4Qtand+Z5Nl74BfqnnyLaDrULjBpHlsFgMGB5aXmReCdWHXHR+4IMPGJIBuwBARKjgCXey99jjFgEWLVW5D4fRsePuvD5qHipLjkzmqOONFm3S3/Yw/Q9y6t9Nld6VE3BFM/RZJ8wmaBdjRpN6NWRIx0YVop7P7rGbP8BZJF51XB77vC1paM0ytZMg+KOyrk37PDFb/w6nX6P5vYjmnJGMxoRDsf4sSNUELMEUuYWnxlikRGCF1lqXeInNaGu0JWjwDJYXWb55RcZvPgZVu68zug7f0GI4gPpUHhCipBIgyqChBvE/DipVwnjBJ2aWUmFkmGc0gkDVIv11zJGhcl87JCnjk9P2gFMYhkcA9iLhjgxlLQRiZVWRKPIQk3uNdZYbGaIySfSALHxYlkxmbD+xc9Jevf+PvWdOxx8fIe98ZTDfof5yhJVP6caFpQaXGJrq8aRzQ5Yeu8h62+9xxMvv8D6ay8x/uQqxnZRWcZKbvjtlVOoIYyzKWV9k3l9RPSy5zauxPsS511S7giE5bwTpVGSi0WkFtda2D3OixzXe0+oZijfAFbqWi3KplIZQmaZVTPu7DQ82D/ivaMjfqW/xNe6Bbv/6l/DYImtyYitjz7m9MlNVi6eZvnSU3SLHG8Ak6GLDhemNWZ3jNt6RLM/ItufMnl0h++PH7KNoXfqNHeGlm/vP+KT/SMmjcORBp2pNFKP1cagpJim5kfVnN/ngNNofr4Y8A/7y5y/9YC98bfYePnLDC5eovvSZ/CZFN3+cd/H4Bl6z+2DbS5dvowuCrG7MUKUkGEKaf208LJKJU/8VO2jQlywk45VTGGxJpXSQlJp12vqN48hVwSEjBEdY2KrSk8RVQK1gxcPxxDBO1xdMtx5RFd30CExrFP92PZwRGHkhUd7dE6dYOU3fgm9OiTuHxL29onTCfpoQnN4xHw8oZzOaZpKPBBjPE4FVoZQ5GT9HtnSkGJ9BVZW8UtLrHzjq5SjEe7GTcSUKaCU5zSGiRJbBlMbfFYTJHVTrvGAuFim19o5YZtm1gjOUBRUdSV+0214TxRWuHOBYrjBhV/8HSa3vsvq3W1efsFztD+inq1xdDhmb2uPok4sShzLKucN69k7dZp7Dx9SOwdKo23G2tlzDNdW2dt6gK/maKMxmWVtaYl5VTGbTsjzgr2DbWKEpeUluoOOMAnHJZXzPHHxSdaWVrjywU9pKgmzaZTij5opX7UrdG5fZ7BymvnRPnE2Y9Q0FIMOfl7ig6IcQC96aluI8iZoYVSGliCV9qvY/lslMLbd845Zy1ofjzFk2Msi4HRxi+keiVksAjIje6RKxj/tD9IJjG0T503aS63cn7Rvq/Team0w1uIiLAexKNOrS6iNVYKxqDxPZCQtxBSjIDYY5dGra8T9A8LWFuwf4HYOuP/gAVcme9xTkcM8o+p3CJ0Mp8S/+amnLmD9nLqp0HXEH+xhH92jP6k51xlw+sxZli5fhrWTFMMha196jXvf+S6xKkE58cs0Bq8DZ7TmFJm8B7XjcFaytL5KR2te+fwX6BQ9Tp84w5kz5/GzEVdv/QCjEz5hoJrPsZnFNTUhOOr0Gltr8a6BCFneoa5rmmbOz3r7mQE+qyM6k7TaqCI2sQZQrRwQFjh5RCgE6Txt5WQSbyWAnw/gEBCrbVBiVLgUYZRpKHJFJzcp3fE4ftiHJPdpiyek8TSmIGphbXVyQzmfi7H26D6H5Tqz2SNsmICWQ9AahWsCIRrxDYitGbhcImI3Z7FGi8+KVmRGkVtJRzJaPNdykwGRIs9pmmYh98uyDlnWwwZDnhVk1hJatpjSZMVAfAlDAJ1DnIs2PtTppdQolWEyQ1WK954Oc5zKUEaTL5/ixBd+i6XnvobO+3jktW79zNti1BjhSAgNWS02ADlgWh8KddygLw5SFig0SJOpW/wjgQo+bUKBIF/z0rSqgER3B+h2u6wtL+E3TxH8Os7XFLlEUvf6PQb9LhhFfzhkOBzS7fTIi5wss4vEUWutfGS5FFsmGaC2JVxaH8YYAfisJcszsixPRpaKP/9//B84ONildbDQGnQUTxhtRAqeWQHJMi1r3ftICGqxh7Y+qyLTFqBbpJGPFZMxLszlpaFFQBcnwKgxst6NVhS5ofYB5yUttWiBbBzdwiY2lLzeGoROjICCKgHoLZ0aJdJdg8IqRVNVGKXxQSLRvYuY1R79jdPUvkO8s4fB47Jl9k2XdX3EpJmjgct14Bczgx6NeTgKPIww1o6DqsRHw/72Fn2tmCsjYKW2eGPpD/sMMPzvT5xjdf8WYTLHKoXBc60Z47yjqSJ1VGQh0PdQxsBci9n+gY4Lk+wZitjp8lHX8kc02KzHcHk9JdAGtLW89IVX+enbb7L14D6oyEFVcdXNeJJMPD6ygIuSJkyUpKsQvHh5ei+skoBIWiLHch/AmGxRdHhtEl1ZfDb2vEMbzXwypr88ZGVtmX6vINOam1evcfHSk6ytrnJ/b48zly5hnGM0nrC0tpZYRimZsL0eW2APFiFEbdMigxCfcMdjNkOLC+p27QUoKznkGzUhTHfpmYhVCXBP+2zLOi6dSGZJRWTjpQjtZQYSwyeoKIESMdDtWEkzV45IwHthEuh0UcRo8S5grUxXg/MiIdDQuEAdHQdzz+rTz3D5S9/g4w//zwyaGY+U4Z81c7zVdKJiGBzd6ohhFbEHNV0X6WjDMoYNcjayHsvDJZa6BYPBgHx1g+ez82xU5/nR0T75yioPP/yEXjPl66fPc/7FcxTR0ss72BCIgw4Me3irqZzD46CpeFJFShehkWCi4B2lg//yj/8d0Qb++Mp98uEay8MVlIa6Kjk6PMA3TbItEMDfdDt8r57wS/1VnppV6H6ODuC0nHsxeJpaZCMke4DYvuft+alSuZbMfRdfTPv4sc2CALKtvBcNXiPhSpnCu5ppVdKUFUVPcV1B6PYZDJcIKKqqZri0QrfbZ3l1g/t373P69El0r+Cllz/Hj77zHeZe0hujJjUscl6o5DXbrtHHbR9ab8t2WBdCSGwm+f1c8hC16VoTuY7HaNm7QvC4EBOLW4BD4xrZ+VRiMEfxU1UqgpOmRwG5NRKkpWXdWi1s9i4ik5pWge+HyLgc8Up1xGqe83t723St4VQdeS8qnjvb4czmZcxlw/rKBtXhjCI4Zk3AVAH1aAt/NKJzNMHZnOFkSh/PDoaZCWxkHe6PHTs7JS9fWGZUP6A/iTS3jqinDecyS+/kMp2iS90pyA8O2OoUnP3Sq7gyUB/cZ3rrJtOPb3HwaJe9WOOXBsyWBxxqy1FVczCvmSfLDasUa8Zyop9xfnbE/ve/xanPPEv+9DMUSuE7BbHIyPIM2+/StVBGz4mzp8gHPUy3A3maZhmTPGaT16OT4CHfOGIjPocxBGLjpHFMUk7f1EQv/j7eNxAivva4OtUzKJF7ZpYQHTbLE5sd2VeDp6oC725v83zeZevaDa50M/5iOuf+3g6DtTXOXb6M0gXag4+OcjblcH+X/Z1H1LPZgs1wdTbhJiVfzTQ7631MJ6BmU1RmUqMMzjuy/oDOqc+w/sIv0Nt8Em271HVNcJ7DozEnNk6Qp3T1tnEPiaEaotQ8oWXqBRE6h6DwiuTpFNoSRYBnpciVgE0BRaYMeddwy2TcbEr+PIucsYpLqsclrzh3NGe45zCmplibEzY3+eqvfQ1bl5RN4KCaMR2NGR/sMzo8ZGkyw3gPDxyhF+mqLq8OFHeamrei44M8chgL5mgura6z9eFH7M5LCh3QMVJUFrO8xl53yD1dcrU84t54xJYrGfsaTAqls5auyRhkBSudPusrfS50ezxpC86++R6jK9dZe+UV8o8+xB8doUxHmNyZRmc5Ju8QOxkDFVk9cRIzHGA6ObpToIpcgJY8Q1uRnGkjwHLy4RHQX6fGVCtpLBNzpa3DBPM99llb3Bb7VGyn2I9ZzUBCjIkxMJiO6fY7wojxyWOsEiZVmM6Y7Y+Y39/G9HuEec30nffZubvNg8sXuPXikJ8eHHBj7xF7u0dMqzlV41L6rZyb/aLLiV6XC1nB629/yM87Q/9v/jrd8+fRzqJFBw5EVvKAv/99ZuFjbNei3ZT5dEzjZIhqVMsmS8EQYjqNUhahiylQEhbT1MIqc43HeMfSSp/p/oiwfJbx4DLzrXs4jtB+TETh6poqVlyvS5Z6h3RyA77i5KMpPR8YRI3zW+ztPuLgrfcoiozuoEe+tESR98h0DnUgbm3j799hdzriB27MYbfD0qVL/OvDA964uc08HQam26Gb5WRFhyzPUx8SqauK6WSMbxoB1NLZUCrDLeB+M+HH1YR/mq/ytZ0D9n/6FqvnL9E9uUm8dFbWiW8k7TKBd4O64eEPfsjg7BPii44i6sRkaoHlx4il7dJpz942MbMdx4ozzjEQqZAvxgWwolqIcjGcaHuyBfNUxUVirFIC9MXErGwn1DKYDuj5nMFwRcgxbW2QqtiYar1oDPMrN+mvr2D6HfzBIf7RNvW9h+xdv8Ph7j61iYR+l1jkeKtpTIdaa2o8RmmMj9gS8qMx5vo2qimxRc7KkxdYe/FZ1n/rV2jqQNAGVeTELOO3M0OjDaY6ohN32B2/hy+v4ZUWco0xYHN8EH65QlLGBehc8KMRf7lACFA1niLXCegrOP3kz1M891Ue/fkf85y9S1OWoA3vfvf7vDmfUdTCklrSms1uQbmxhi/njI+OBITKC04/9zxN3bB97w7OO3q9ngwIq5r93X2xqomBUo3FciJq6umEqEQh9fSzz1EEz3wyYvXkST7b/QLv/eQtmqoiRtjXit8Pcy7HDgd3b9BbPUGIHhM8blaRGUNUgWkE64P4iyuF9V5wCCNDCZVICbr12wsx+d7JsFclQF/2tnDszd4OkxNQh2rnJGlgpXUq6zQofwzqRdXOaKWGQy/Axtb+q70wok8J5qo1WQATYRSc4BdFD2XF+9trsSMzxkIupKlgDb3zZ1h6+ml4+Iiwu4s/OuLm1ev85d3b3NhYRX/2RVyvw/2jA9795ArjmQT6BaVZ3dminMxR2nBiecjAZlw8c5a1S8usBdi8eZunPrrGM699nvXnPkf3My9x4fnnabxHxSCe60pez1/3mioGvK/5p0Hzz3/yHT7Yus/G2jqvvfolCSslCJaTWXTyiy7SwDLLs9RrGbIsR1uDT1Z2sQmypxmLzfQxE/1nuP3MAF9mRBoIiL9MSxGNpDQ7ARJEa6womzSVT4MWpRQuKLQKdHLxjcpzi3OBOkkNFZHCGnpdS2EAFWUBRPmZaDnorTZkeQFYjDLSBISGpinRzCmnFbWSyHjXBExxAGqdSivxLarrNL1TwpwywjzUqq1v9WIibI2YhOeZIdNWJAVaobWkn7VyZJmGOayRQ1VbS6e7RtYZ0omerNPFOU9uI94dSysJtUw4ncPHBuUqkY4mULR2kV6W41SFCjXBabQ1dJY2Of0L/4TlJ18lREtQiO8fwqgzNpkjJ9DLOZeAWAGGWlDh05/TwdRuCHD8/+3H4/cnfS200lR9nHb02KRg8+QGzz/7TPsdn2oE5fvSRKvdbBQsNo30fOSWgOLFDI3F97WT2Jax2D5+W/B75xITxGN1SgiSuSadwia5FxLCoNMad4FoVPr9SWB2MuRODYtqj/XH7mNUokonhl9AiZeEUsn/RN77zErRD6CtTPY0EWvFT4goE21tdGI6SAEgUkeFzaXrFvJryxBQEvVdNdgMnJckr6jEkFnNthnv3WXz9HnK999jWB6SW8vtWPFE1mOtnrFPYO5qNoKmDiVPAme1Zmw188mUA6UY4yl8zr3c82zHsu8tDxooqzENFg4ixeEhmopHGr5nKnSIfHY+I8QGtKJE8V6ny/N18me0ihNeM1ENJxpDjeWdfJk/DEc426U3WEZ3OxSdnMxaZtMxNrN8/rWv8L1v/QXT8T51jNyMFU1nQFOJB2dUwmQipUkTPKplibpjOUY7JXZREskaIlWMHFUVB6Fk7qYQc/aD554rCTbHVQ3Dk31WVtc4dfIEb3zne3Q6PZZW1tjYOMHRbMbSM0/ypc++xOlTGxIYZEwCO/jUtRBadmECQogk2TaL+7bMLqVUCinSAjanq0UpYXtqJeBa1Bl1k8D3NLk3UTx8lNbJuFfA45Zub7VEaYnnYFuwQvQ1Ci17pDapcHVYK2tP5zpJaIwYP2dRDP1dJCKSgKwoiIMl9KUnODh7lun1T/BZRqk1utdhOi/pRs9N78m0YXk4IFMaYiDXlsPZnCFHrMxn9CeRPCj6tzRnXMT0utTDPuHffZvzNLz08nPEo5pm52ORdw4lVKnpden2linyHqHoEXVEEYhGoPMYNApDiIZxYemcPsM3P/mApbVNltY26PZ6WAuDbg+l4ODggNu3bjMa7YMPlFXNPQXfa444n/cwmciAopbGqwlBgEZaWwR1vBm2DIV2fYBM63Vb/pM8N4VtqZPXV4xqIf8KRvYE30h68V5Vob2naUpuWEelDH2tqeoGkxVcuPQUzz//IkWnx8HBAT/50feZTMace/Jp3n33fbwtGBVdlooi9cQpDEY9Buw9VqMsJsRpnfoE7rXG323rQ5RhHSqtH9W2PoGIXrAX26FgxBOT525UiuAVGMkUbIukdo9sX702qMtkMohQRqM6XX71P/wdzKN9dr/3Z9wp59z0nn94+iTDsuRuUxKamv37R5jNMzR7u3QPj3AdS+f0Sco60Nu4zGp/ifzbP+HihYt0BwVZOeLZoymV8zRNxSg45rfm7D0YUcSAnkR8E3G1xSjFvWZCMd+nMBq8Z1dr9r/1TU5ubFAfjLh74wb3YmR7tccNH7mx+5DtOyWVlybKt4xFY9K6CZgQuFDk/MP107x65WPOP/85ll5+EVUUMuDzNaaTC4u8nJIPezCbU00m+Ln83r5y+Loh1BWxEW+m4I69c3zrx5YGIj7KfhGVFolqJqyU2LKE0sBTJz9ZKWqT8XsQSZoPjhgMj2YV9ydjvrLS50Y55qPTT3L12vt0l5a5+MzzhMYTGid7UggsrazRX17mmRde5PrHH/Ho7h1UDNTO8UZ1wBf6a/hOgdUVnf4yYXUZaihOrJKtnWfpiefJN54AneNQjA4OMcawtrZGr9cXxlPae0MIiWkvm6LYoJDY88k9Lg1sQogyFNdSy+kkI7UaomqZ5BGH5vS5C6xMJxzu18TlIVdmc64FRxErlvA8ieE5p3nq8JATPrD/Z9/hVKdgbbDC2tIKqr8Op85gTSfZ5XgcihCT3qNxNCom6ZQTw3/vcdv7hHuPOJwdMGpqwqDH9Z7iT4+2+fHtbXaqOWWEJnkuxzS4jLTMJKn5FJApRUcbNrsFf/v0ef7RLDJ+513yL36J7qVzqEEvpchatM0g00Rrye9vc3JzE9sRaVfUiqiE1YdSieETpLGNUUBUOYyIiO9oOjyTbLel+YjMUZQ5wmxuPc5EBuklHKlpBKRu2aaNk7XuxWuqnM2ojEV5CEEkyvhAbBpcVfPRvVs89dznQOfMfvoJ+3sHXP380/xXD+/z4/d+yLicfUr18qmbgsPplPsH8J41/HSwxOEHgV85HMHVW6gq4po51gWijnhjGNkK98wqeTfi6wMJjbMGkgIkYFJNLYFCrk5nujW4BrKiS6i9yP2MRVshJVTzI7L+EuWFX+OP/+IT9nc0W7uAjyiTAQ6cxyrLRpZxFCretpFfvnSe+vptKucZ783JtKbX67OWGaYPtnlIRa406zpjtVZ0Ssc81nxXl0wHXfpPXuCf37nPlfEEled0uz2KTkfqhAjGCriZ5Tm9fp/h0hBFZDw64u7NW8wnKeQqSE3ToLlm4f/ujygY8vmH97BFj958TH3tirD3lMKLxlYGyU1D+fAhhztjdJ6Dhaj1gsWnjE79RAsut5PV4zNbqRTL16IhqTtI5nHpfG/9Jlt4L31qW5yFl6n8oVAJO0zDsk8RLxILVUHjHVV3Ce/TQCYI46uVp8cQqIH+mbOYXh8/meG277Pz9sd8dP0acanL1rkhH5dTPjnYZ2t3xqRpKJ2wHV0KgLIx0lGajtIs24xzRZcXwoDnPrnN8u0tLn3hcyx/+TVYXSai8ERMEPa48p4uATM7y7X3/zNgTGxtPWMkeo/Hpl5OAPvoPc75VPPqhUxXaYX3UYZ43hPx1A5iVnD2/AWUzXjnnXe5cvsOTfI7D84RXE3Hd7hwap1b9+/La2wtm5efwtcNo0cPiQSWV5aZT2aUtaPb7XHm0mXOnDtLf7BMqBv29/Z4cO82+/s7BNfgCNy4egVCpDvoc3B4yIUnnuDzr77K2z96g6ZpCBHeiBU3dJfh3hb5cEUY8d7jmxpjh4TYUMeaqiqZavFnC2hJv27JN4vaxqdBZwqAbH3tlLCilRGFieyJQprQpl2jAuhJTRZkeJX8VZXWxOBlkJ/Wr8LQMgZD9Iv1G1smEQrfOMxjAao6Si/uleKgrhiajMo1KK8SI1ajtHjWxyjvc1lkPPfCS8R7jwiTEdXeDn/2k3f4VlcRX3+N27MxH3/4AVt72zjnF+nFLZt7a7+G9PgHszkxBt66c1cGKXnOUydP8PX1Pns/fpvP7E24+OWvoH3Adjv4LMcWuWhyjGIpBbAGqzhdFDzzzGX+07/4Y8L6OidPnqLybnE+RS8YWDOdEkNDcFEGU0p81ZUR8NRkQiYyNsMFSRfXWZJC/4y3nz1kI8jiimnf0EkiKGeuwiPAAqQhW/qltIkoDbnRdLSwOUQSq2gHaJ3CYowizzOIGqMtulNgTEYMGmtzacwqMYF1rmJWTRLa30CSBwujS5g5HjEyJECspqheT6YEPiSvKwHyCquTeXySW0SJ5tapIVakpCplyDODiikJPYJqo0GioshylM7IiwRI6hzb3yAfrOCrCcpkWB0Q98AKjUvor0JVYmaPisRmjtE52vTABzpFhlUNmQbvG5TNKVbOcOor/4DuuZepHdhcpIQRYUFkCdyLRgDSkC5+eX0ek+U+DrQ9BiL8d37+1P0f/764AAYlXfaYfcTj9+51E/OkBSzi4nP7+C1sePzjHwMDFzjf8WMfP4Za/F1p9di/06aFFI5GRbp520yLTw4oXC2MvsyqRaKuNWKevVjPbYMa2rCBtlFtD121ADu1lcfQRppwg6JbJJ8po8TDMk38NXLBR3KUMUTfoFTAhYYmFQQ6sWa0UuSZeIr56I8BmFR4p/Meq0XySwLbrbXiH+mhX9/BvP/7XFw5Te/V18mrktN+zKmTJT/d3WF4dMDFbImNcsodHTjqZ+TjEjWb0POO3ImU1SrFOMy5oAq6DUwyWOv1WO91+Hh7h3um4rOhIqK4qQN/YQNfUAWDcoYJ0PWwm2fsFR02Q8GOntPLMrJ5KdM2MoJW3Ag1pr9EVdaQ5Zw9c5pMa8qqpOh2mU4mLA+XeeozL/LBWz/ANRW3pocc2oKJdwwyg4+gXEBHjTcCyAYPLkDVNFTeMws1lQ/MQ4MLniax9vp5xkBrzp04y70mcni4zcP5DOUNnV6fw/mM/tIq8+mcGGD9xAaj8VQ8IRqPamq+/PqX+cXXv4xRie2W1noL5MXUpCyAvbTOwwI4PwYDfYDKKZQyYjrdTnG1yMqNEr8zp9OBr5P/IKTk5cXoVwKBjCZr980onqOLxgiFNgIeee9EdoFF6zaxzZNnOa0/KyEk/zOx69VKHjMA+ECeawYmkHU8YXpE74VneHTzA3pBQKD5vGE177CpNVsxctR48hyOfE0TApv9gpmJBK0Z5xlNHdAhMMg0444h+pKBizSHFU095upfbVGbLo9WBtwpMqbNWGQsyjBsHL/9aMaZEBCL/pCKI8+RgnuFZVjD3Y11ftSPbJ49i84K6sozOtinqsRSoNvrgbI8/8LLTMYjrl39kGo+o4mR708O+PXlAYXSRKtRQdMoqFRDEVu56jGgJ4bBLcMyHMtxk2NzuxZkH9XpPQCUwqXGtIwOawucjwQViE1gUjtWdcE0KnaM5nByhO138cZy4YmLPPfs8/zoh9/nxMZJPvPc8/z8L3yN//r3f4/VM2f58i99Hb91l2+Nav69lbVkfm0W61WKQAFxFis3tvumTgWorLkIx6BdwjDbIKMYI8ZokYi1/joxpoRVkr+e3N+mgtfkSaZHTKxnhbLCss+Mlr1WSeK0Rs6/ojDMyshwecgTz73Cxwc7/Ol3vs3DAH+4tcdTAZ5fGWB2HmJpMJMD8IEsLzjZGZArRWc2Q+eGbC9jUETufveveOFvfYPNZ17CmA4NGm80MRi8q/DaSQqjjnidBg2hRlcGfEDVc6bNjHjvPnfuPOS9rUcEF9ju5bxRlty+c5/aB0k11BaMSOvQMk333hFDwGYWbMbNxvOfPrpHsXQKPvwpajRBZ1aCskwg94CvOWpKqqIg04rgmzTsEI+n0AIqaejQJgwGRMGh0JJYnJjq2hq8d4L7CcFBhopKhlEms+kqS4mjRKyKOB8S+1KsX66NRvSUpp5WXB8q3p3sUuE5f/4ck9GITiFBY0bLnkSUdT+ZTHn62Rfpd3vcuvoJMQaujQ65/dyT1B3L0SSwMjjDiy98FZ0tsXHhKaqYYa2haRwKOSdX11bp5DktMyGkNdjKy21maZPOI0beB8SzNxAxC1BZhohGIxYUiVnWsVliDESsXmJ/8DTdE19msPcOBweHjGdTYvBoFJXSTPIBbzQVP85qTgTH/3JesbL9iEehxPlITkajLbWGQadDp9Mj7xR0ej2UGZKbDFUU6FyT1w4VGhovdhhqOuXR7hYfxDG9Qc71QZf/97Xr3B6PF42ayQuGS0uE2lFX88TobNrSKmG8kSYGZjEwnjr+PzeusHb6Ir9U16wWOXYyxRcK18zQQUBd7cG4QDGpCdOSKnjwjRj1e2nqgw8p2C8IqBaOP9qadhEGl0C9+PjX4LHGWC0G1DG0G6vcL7SBWwubmjR0CIFpVdIv+mTIgMBFCSuJNmNWlhw0NWvrp6kfHTB5cJ8PLmzyf33/J9zY2ZVBoWpB0LYu1QTv0pQmJnsboIHb4zG/rzVnDtZ5+upDTFTM/ZROb4DpFdh+H0UNzhLdHKMjWlvZW5T400nwWINSXVSxgjUZKoyJsRJSgymIzFEYXBNQwaNtDsrj6RBUztLaGvtHE85fXKfX22Z3f59QBrxyRD8nVzDXMA2K+cklzuZnKe/t0ByVmAbmVUUdC7a048NhznKn4Ie7R/xqY7isDDeiYy+zLJ+/wH9y6x735w1Ff0h3uETUWljcVhgwzjvquqKcz/FNg9GKk6dOsbSyyqWnnmbv0TYfvPMO09FIiB4x0ATFXaP53TDltFrCP7yDCWeI+6V4e2cZMTqR0CvNNDQ0synV0SEmK9BGfDqjRvavKHYGbVjUgohg9LHXWlujJRDuuPtRi5ZFJTZ+TGBduy75VNWX1ms87mUWP0ImB4ufTISoI5OqRg9WxJojRoJzYtvgAyE4nGuo+z3WP/MsVDXxaI/b3/0h7z94yOjiaf50f5cfX3nIpGloUpii1klhkPpc2jAm79E6Qul4p5zzzbjLxbzDPzh9HvXxJ/Q+ucnayprYdlhD05T4uiSESO0bpks19WZNsEpea4I81+BAGUIQdVJUGSqdIQSpZSTBLSMrNJR16jV1OncUpdfcunubiOLP//TPmTWNnGUkwNDmLG9ucvfeQ5qqRpucjYtP0RkucefKxyhX0xsOGR2M6XV7fOHLX+OrX/s6ZzZPEaLDO4V1niZ65rMpN29e4a/+7E948OAe5bwkM5bJZIrt5BwdHXL29Gk+89yzfPjBBwQfOFLwF7HihdBhvLuN7S3jym0JW6orgo6UWjEgMinl59moUFYwEaHNpTCiKL20VikAJtWT6HbAKX1qe26JXVS7nOLx3qlaTEz8DGP0SVHZWhc5VHQLMDnGFGgRHsMAUp8iwLLU+kYLNhJtxtw7lrQVJZU2yapNanci1NGz4+Y8/exn4eCAUJcc7O3yL976Mdeefoobeca7P/oBh6Ox1I9EtLEURYHNC7JuB+8ddVUSmyBknhgF8yTiY2RcVbx99z4fanh9aZ3fuX0FbzUXvvAVyvffJRwdEZXCAU4nP0ulIMvxeYHvdPj3N88yPXsW5SuiMViEPKOVRdmMajaR7AQtwF474CadkW1dbIsuC2yifW9+xtvPDPA1AZyXjc35iI8pAQgvYJlWZAY6uUmUYpEjWHNc5Av7SRB4bUQ+WSihX2eZpNWF0BBCSTOraWJJjLJBtXRkojSw3kesBUjhA0bhaifgWvTYzNApLEoZim6gkwnQ0ik0ndwSkWY0BkGwffALvyhN22gnmn/yGFJps1dKvCml0ZCGw2iDyTJBu7MeeWeF7nCDpmrSJh4E6NNOJkCJ9Ri8ADEaBcEJyyrvUBRd6rIiy3Jc4/FNJBjF8jNfZeOz34DhSWynh8lyMiOR984HrDFSMBhhWYRk0i6+dYvjY3HoLLh4C+zumKXXDo4eB/k+9V2P4X0hFT4qbSh//SaHnnh+yWOoT32Wp9Q2rKm5oLWKXZyHHAsoj6da7a8kS6RllrZgxvEhKvTuSGGlyLNGYy3JKlnAkRiP5WIqMTRVeu0SyknrI6W1kcZWi+Smlcmi1KJAJrHHFMmvESlcQ9qGVYxUXlIxfZCf0zJDW/N8o6GwBpRIKoOX/GRtjIDEyTC1BZDa5+ODNGHgKfJMpMFNTe/gDX5aPcNHa6d58sIzVKMjnso0ygYOJkds1yWz0YgH84rXv/G3OTg4ZNNmlAd7TPf2aHb3qR5uMajGvDo6ZDYak4XAjcYz299j2eS856f8Ul5A1WAinCkDlopuzMRoF4X2hl+cRRo35rIB4xXWRy7Roac6OJOxG2fUTSTvFSytDHn28mVefOmzzMuSt97+CYdHh2ztbHPu6We4ffMTDrYf8mg+5+6wZq6hpxUu1LjS0QTPzDt5vauA9lo26jwjK0S6pvQyMQac8kzrmpvNnLGfEMtIN8uww4zRmQucGa5RVHNGH7wPWYHygfloxMuf+xxHRyN2tre4duUqa6ur3LtxC/X6V1J9FhLwcfwet6yPBRMqsmDfttdO6+ciwRVpIEEky0SuVGQGHxyZMTKl9rUALyqXMI0gV09mU2IZIuHXLRMjCvFG4l+kUWiHHCFGlLWpWVVSeDVegKYQUWm/dd5jrSXLOjhXQ2zwQfbpLM8peh2KWPL+t79JdvB9eqMD8qJHV0XWQoOrPUMX2TAZp5I5+NNlxVFdcy/PyOcVnahZsRmahryjqLBsBWnQJ1XN0zEyzwyximzhOQwz9joneW/tBLGeMYsVzCsuLRm2tqaccjMKDJL+pnA4btnAH0TPL3RW+HbuMadOkRcddnZ2CM4zHAzIbE8ubwXjyRHj8Yjl5VWef/GzfPzhT6nLGXebivfrGeudHJtAUB8jc+/oGb9oJKOPsk9EOXuCa3e9x/6MbdHVgjoeH0FbGeCEIMbfDjDK0PiAc45ZXXNQN5zNOuwBk8GQqBqawrC8vMazzz/P0dEBW/fvsr+7w4UnLrC0vMT5Cxe4d/c2n/3cK2xNjzCDIeSd5L97zN6T10CKFO+9+BGqY3BvQThQpGAq2atdlPqAFDjVFjkSDKUWqaRtUy4MewH7QhTJjV5g1XLWiZcfWK0WLGqjNQYkFMEqgq/JlWetY2l0zezECR7agulswpXGcpRnHNQQxzNOKkVwU3LkzB/25xSHexR5xlJh2MgLwkqHfePYfectuHGT1cEypr9E6PZQnR5x2KHo9TA2w6PIlEZbiLHGEaBqCD1DVy+zHGHYzdC+4rZreOveHrd3D4hFl9OnNrG5SFpslmGNwbmG+XTK3s42k9ERztWoLAOl2IuBfzXZ5ezSadbu3aPT66JSI9GYAhMbZr4hZjn9TiFXvYptH7c421s/3DTJJKiIMmLJ4YIALyEElG/9eKPUQFqhrUkDRoQ4nbx5nfPiB5bqFu8D+Mi0jlyfjHjedNj2DQ82TnN/7xF5UdDJc7pZBx8C9+7eo8gyYSVYS7fTIe90mNsZz332ZcZHh+w9esjRbMr1/hJLpzY52Jvw8s99g/WnnkLbArSmiFJhdIoOkcQgVWrRpMfUuCulxGeIx4Yw7T6dGiyTJLyi5gjJF1USnVXaw7VSWGOYVx4VNXHzs+yYJzl0PfHBDODLmtWVPlZJg++dI9Q1eV7wyDn+XazJTZfTozGV9gxWl/iR9Xzp159nfz6i2p1S3Dog+8khygVCYQmZAdcQlaI28DC3PGgiW6HhZOV4cX2Djyn4z27dYbecE9HoLGPtzGmyvCAGyPOcXr9Hv9fDO8/46IDth/cZHx6mdE9ZMC4Edoj8Fw9uc/mJZzBHBzQ7DwnZMSvPK4XxiiLC4bikybsieSXQOo7Hx4YCx/Ynsk9KCysDjvb9aZtPWmBE8ZgkUuowqc2S1U+UPTYqWZvxMcAyKpUYMDAPgZ4RJo0PnrpxmMbhfMON7Yes9lYxRZfd99/l5vI6/8n1T7h2sIfNC4wy9Ps9ltc2sFpC36RBDlTzKXvbD5mODiEkXzjv2Mfzh9Mt/qP1kwwfzeW3tOk5aYsyjn6/R2h2SNAyHk2WWZrGk+UdXKXIe+cx/bNUlcPYAPUMVZcYXWFqR6cwjLOCZlaTdzS9fpeyFt/w5178PE9dfJpvf/+H2Mxy7vwFpqMRD7ceYn1DP0axCYiaB3s7ZM2Mk2fXUGcCB5/sMYiKsW84aTvcPjpiNqo47SJrWUbtAofRkZ07xz9/tMX9SlKgi8FQAu5iYh0F8RFXWpHlGYTIbDplOpmwff8B3eGQtY0NTp89w6/+5t/kze9/n3u3biWLJaiAn1r4ZlPyW02kPxmTdzpSQwWflA7CrG+CpNG7SoJ2lIliIxASy1hQrseY6YlVloZQatFLqcf6lNhumos2KUG8CThTbQdAy45qb/Gx+8qPUCmZPQqwktavQtLdQwgCXAJBGYKTwJXgPI2r2akmPPnZF4XFORtz7+03efPRXW49c4l/ffMe949GuBDJu31Wen1W1tbIOh36w2XyogAio709du7f4/Bgl+CdPBZQYfnEN/zuo3t0g+IpH7G37rJkckKWEWPANxVBK4IB/2RD3tVEM6Rx4m2vnMdHK8MiL2FwMfXF7XXZ+ABYYgyU85pCgQuRLARc05DnlpXhEh/desDdm3dxLtAZLEmCtAv4Rrz/th88wNUCdq+cOcfJy09x/a030MERU6Lp2XMX+Du/8zu89NLncVXFh2+9wbf/8k/pLi3xyiuvMVjZoNcfcvkzz3Hx0iW++Uf/Le++/Ra+aYQYUlbcu3WX4AIvfe7zPNp6xM7ONhHND0LFP9YDzOER/RMbEkKHYt5M0J0BM6WJnR517ZhjKLzDRIjapS1LWKc6JouhtP8F78g7RQLxZW2F1IvH4Be9tjIpZim4BYuP6FKNn6EsKQf5eHiqUfjaHZMTwvHQBMTvWSudwMQEBgcN0XNIGhimQZmKUgPHENDIGj2KDr2yxGrWp9neZ15O+H99+BOuvfAsP3mwxY1bt1K2gqHo91nZOMFgdZ2lXpdTJ08SlCFmObXz+KZienjAaG+PR/fuMZ8cJaahPOcywLcOd9krevyvrnxCHAwZZF24/TZBRZyx+ChP3yWLs4YAeYYrMrLnngP3DbTNsAlnMEaTd3qo4CnyIvmekshvPgH1CThXj9W0Wgm4fQys/I++/ewAn1eUlTSTMQoTSRsWSYpGK0TWBLkVWqfJM/KiwHtFp9sHhCpLkMlCXVUo5jRNCUSslsmninJ0iQ5cjOhd4wEt3nuZJtOtkaeSYihGcgOYSGGzVOArGueIzRxyher16DMVSmyiooYUtoBqpaYxee/J9xd5h16nWBhHm9yKrESDtbaFAdGmTQA0BC3U93KyA6EkuEYuwtgggKSwXIIrMblclAL0GXRhMRFCVaJ1LuiwUtizT7L68jfoPfF5dNFHaU2evClikN/B6BaQlNfO+4B34VMg16J2b9H4VNUsDiaVjqC2MeO4UPrUodWCEfIPYhslT5tgfHxf2p+njplviyeaPv91duDj/3qs36AF2h6DKhe/R2ybkBZESQdp+/hWK/q5YjDImc/niQGg8F5egzo9XZuYqcYIM672IoPLWo++xMwLCDDSeGlWY2ps20Y2LCYm8ntXTiSASokXl9SwLYU/4kJEaTGXNcomTymdmMA2BUkg0xwiJI8VmxUoOA6eUWAzmRqbXNPJc2wmvjlNWVG7glvB8yfXP6S4d52i2+Pi2VPkKtLrdok6Y3tak59YpckM+doSmydPsbXdgxOn6GRdpuMJ58+e449/73eZ7W7T04FVP+W8zdA2I7jI9957wGeD5bRR/P2iw1hXbDiDJRKUxgaPqjQNUSSzytFEh0dR6shd27AVQRnD8nDI66+9yrPPfoZbt29z9uwmP/f667z1zlscjCbsHx6yee4JDva2cUZxxc/JjWbezMmipW9zCpPT7xYs2Q4NMKNmHhr26pp9X3NQHjJWEDoWYw30DHmxBNkGsRjC+hmKtXUya8gebfHwxz/CJAP6Is+o64r33n2H/f0DTp85xxOXLjE6GjGdzXChBR908g47NnVpi1Japkj79cemPpBAPzydTIqfwkBm4qJhiVElLxMZKCjv0yRUwBartUznVOs1mqTLiiR7kmJVGCoJTAltGrMAigopLGonB37jA908w3mPMcLci87LoCF4bKbIchmkVGVFCCWxfMAHuyv8WuVYO/Mk8+k+/yQ3VHXNzCpib4V8uUuoG/LZlFO14zN1jY01uw3sT+c0BPpFgRkUFHVDpjSHzlEVBSbL2M81dwcdbA2dek5ZlkymFYduzIaKDPqrAlYQcTRpdzN4FBNl2YgZtrvC7qmThGnJw51dMQxuGpqmYT6vOH3mDN415FnOdDrlYG+bqhry/Asv8eH771FWgTerI75Y9RnYQlgDStEgQFzbHAQfFptcy+iTIuDTAwzZtAMu+dO5GNFRJL/OiURirDyrdWAyHlMFx8w77s3nXO6t8ZabcqQ7ZLZPfzBkbeME3W6XWZiweeY0zz//AirLyTt91jc2uXrnxwyHff7h//Z/R5Hn5J1uMrqXV0spTSv/gGRfgOxp7Zpu9+UQ2omwsIpDkHPdRxl2WSOMWuFFqUVD1Z5rSqe1rUIaILIomDTy82VwEHEonBMGldeOjrW4GMSLUiuCyfnzN9/m0ue7NHnBUTXBoyBElrs9GqMJocDnBTO63AmRg7Km46EXCmIdKUczyvED/oNTm6wVGfdH+3y3GbG8V3A+WC5klpXegF5hsWQ4r4hegWuoQ6Csa0I9o27mTGJD1Sj+y7UetzLNUe1YO3+ZrfFDBhsnxI5EafGsMxrfOBQwXFph88w5Lj/zDHvb21z98APm09Fi/7jS1LwX5pxykDkrNYo1C19XFwN1VVOkECsf/HHRvth7WttuRVABnVnQwjwS3+J0OCegtmXwt+vWhWPWStsY4JJsCvnDOw8BdqqKw3LCahxyr+PYXx4SD3dYXV2h3+sRfGT70TabZ87w4osvc+rEafaODvjwg/cYHx0wnUw46HR57cs/x1/8uz+g8YFJWbKhc5ZWVjh94SLaFrSWBBLkphcM55CYX23TtFAFqMca98dAbWNlIWaZxWgBbkwClpQy0qjGlgEp142k/1pqHxkdjfnJtR9xMCtB5SwvD5nNSrTJqKqSECWoqNcrUCh0t8vNBpqoOGlgPp0yJXBnkHOpe4Phakl2SrG+W7IxnRO9577TlL7iCS/vYW007sQa/7aTsVXW/M28x19mir8sJ2yPJzTOY7t9VjfPkOcdlpZXICo63YLgPb3BgJWVVULwvPC5z3H7+g1ufPwRk6NDAU+STPsagf9m+x7/M6Ww3SGqmUCuiWl44by8prfmhxjvMSQlTUw+RSSrHEjga8uMahsiaZwCn57zLvbJdsirlTBdOR6i6WTPE9N7FRf7mQRNYYVZ6xWUwUsThsizg1I0Zckcx+3DfX7+2dcod3eZNDW/V+9xdXyEMQW91XVOnb9EtzukaWq63Zw8y8mLgmG/RwiRg8NDdh894Or77+CqOQrY3T/kI2O5trbJS8FJUJI2CKspoHoGJ4Q7lANjeuhimWpyiNU1zmlscQadr6OVochlXzO9DkXf4Sa7UAwp8oxxFGleqBugIwCbyjBZxhOXL/Fod5/bNyIffnSVc6eXeebpl5luH2DLA8qZJ7Oam7Mpc18xbjy91Q7b2vF0p8f2eMKa0zxnh+Te04+KqXPcDhXXN9b443LO3dmcotNFFR1ciBRG5NO94RK94RJHRyN8CgvRSpEVHWIQsGZ8cMBkNGJvb49zT5znla98me6gx7UPPiJ6T/CBibL8iap4JeuRj/Y5YU6KuiFEsJroI14Fai/7nqtrqXdyjYohjfyEsKIXay20Aghh8LVM0lTP/feRcdrBwfFiVY819nJNaP2YzDcmuxBSH0wahDzWVykilXOYXCwXQiITBMJCTj6qS/RgmZWTm/i6ZHLnNm/euMLVyxf4/167y8F0iikK1k+cYGl1g95whbzIxffeyD7WGww5c+EJXn7tNXYePuC9N3/M7qMtVEh1C5p7zvHN8QFnV05wZEo6ocZEAaVjCMRoxFaja5mXAZ1VNHWJj4q8Y1ChTyRArAkYnBc/uRgVKI3Ho2NIMmRHtDkxelw14+jaGyydvMzqoMv6xjrTuUMpmM8mzKsKX5eo0OAmJdFJnZp1upx76jM8un2LWM6JMZJ1CjZOnOAf/0f/c85ffpLZXHr3K598wofvv8+gm3P76kc02vKrv/Ib/PzXfgmvFb/8N34Tk3f4wXe/jY6R4Boq7zg8POTu/Xt87tUv8Off/CYxRLZ05Ec28BtNJNQBTE70DU2siTFy1zWcmpSMY6TOIusukiWWuFHCGNVKQwj4xtGSY/CBeiYgpbYa2zGYQiTl0Tl0eh0j7rikVIGQ1H7EiGp9yJV4x7X7YmvXFVK4y3GrLuQh7+T7jEkKR+/EikJHHjrPSW1pgig5iQKZuyBqAR9gV3m+fPI8zeGUMJvwL27+lCtPX+aH167ycGdPzuGiYPXUSS48cZmNzdPEGJmNDrl79w7zeUnV1Fhj6Q8GLK2uc/GF57n84gts3b/H9fffoxyPadmPAXivmvH/RPG/+eAdnvncF6h6ffJqRlAap3wa+gQwx4MklEKtreNsIeoFJTWsVQab5cwms0Xt1eITLRNWCWtIFH1JMRVT78V/z57xP+T2s0t0lUqJe1IMaqPIbEaWFxidgTZ0Oh3ZQF0j5v11RShlMjWvpoRQJb8w0DisksI9a5khSlE1kX7Hogg0LmCshNEXXZPYC5LOI76n0lCIRUI8lgYntLepHT4oQj3H9j3zxlAGJ0VYMiMNISazcC3UY2TKarXB6CRfS8mXKs+lybaA1cnU9rHpTogEPCpMaaZBPG2jmMEGY3B1mTTuCo1FmYzoGqIP2NxitcbXAZXJ1FQXK/QuvUyx+Rz9J16C3ioxamxmMSZbAAL+sfCM9uL13i+AJumr4uMo2eL2ODAG0ui3U9Pjb27/Xz02jkr/EWVtpDMoPb7836eAufbujwMWLZgX/9pn/vrn9PfHnn8LEi4AwE/B4NKAqMcSqkBCMwqjmE3KxExMH7LABUi1YphpjcJq8XkQAF5L+jPgmtQSRJn0Gq3QEXyMEBR12zEgbMrW3zH6uAic8UkCaW36fqXIbPKrSkD5XMwrKXKLMZq6lpIjJuk4JEZYCFgrjCtrpSCRBleT6QxIRp/GEPNI3h2wuXGRZ5qK6zdvcfBom7v37rO6ssTZ06ewVjOvSgaZodvr4CYNdVOxvNRj2O1wsD8ixIpIza2jI/JeFzY2ePed9yhnRwKc1hXfs5EzwxyixwfHBpFPljN8VWLQdNBkQTYnpTSVCkzQHBnLddXwgXJsZzlF0WFldYNzZ85w/dZ1rly9hkk+hV99/Ss4H/noxi1OX7jA/VtX6FnNS8NTMCs5iIGJDuyGht16zu7sgGkINNagewVm0CNbXUZZmS6XTS2yMWNZPrXO8tkLnH3iEo2rufLxJ3z43b/kcH+XvZ1tQoTOxiYKRTkd4/sFWmtOb25y/sIZbNZlZ2eHunHCmFPtdaFoE3zbVKtWVoS0MIu13S72diKngcw85nWJ+JiFdPHXKQzGK4f1FSbvEGbtNXQMGqq0frUSU3gJ/hAgu91nm+QX0en2qOs5oU3HRAruIs+FeRrFk6/xDVaBtUkClZqp4AJ1U2OynMZHNjcc3y8z/m/34cz6OqGfsTcrudCLfL5bMP25X+HFn/9FJof7HOw9oqcVYTahOtjj7M42Zx8+JLz7LrHRHDaRYTBk2nClqdjBo/yAU70eOnrqao6ed5n0PbMIJipsbnE67RPpBVZIEVkDMw1P5H1+stZnL8BoNoOomI7GKGVYWs45eeoEg6V10HC494g8RurgmU0nNEtLXHzySa5d+ZgboWbfNwzoQYyUUfxwXCNDJQULaU0ToImRKrHJHdCoSO29FLxp+22iI4kcyJAQobzoUcaGCZrdPGOLmkpp5o3hts7Zzxtud3rMnSbLLUVe0O12+eSTT3jyycusrK1zcvMstY+UdcPGiU3K8YT79+5T9AcUrR9RYnUuEtUTgNMOLoDEhE9Ld1G8LDZaATLRNK5NIpWQF8EgpOmU9MBwzKZPALUPjtSzQxRpbqZ1YokJQNBKgoMXcNCHmJitkcJYGud46+P3ePfKXXrdASc2zmKNZTKbsjWdUg67LEfNI+dYG3TojMboXoaaVYzDGKyll2eYpRXuzyue7Q65azO+Wc44aKb8SneZXxkUvGc8qq5ZGlU8tz9hfTQHDzuxplSBrpdU5coornUK3uxFYujQW1nj8HCf6WzE2vpJiu4Qgqeqa+aTsQxGlaLIC/rDIafPnmN14xRf+rkN3nrj+4wO9wVQR/Gd6RFf6fcYBkeeF4gMqhEz7qhx84YmKMTAPDWvOgVyLYIl5AqJRkFTEYwipsK39fg5HjII0Bq9X7AqY9qftBamuVjyKXwdUtquFPp3p1M6LmIV3LMwjjCejzl/5gxNXTOdl3z2sy/zi7/0dWzWY1AM8cCzz7/IGz/8LnduXudwf48nzp3nwhMXuXPrOkdVjQuKlZU1CUMLrQdXsmBREZMm7qDSkLLVXLAAJttifsH+amtHRRrOxsQmzGiqkm53ifl0JHWXsigFeWYw2lJkkayI7I622N2tufzUZVzMaFRBEWt6HPHgKGd7Z8K0bBgWlgYJU2mMYquc0hQ9scQpK4xumG7tUaojuk6xvp1hYg8fHc7X9GIG0dMQKUPk5uEBD5Z6rLtAvX6CK+dO8eCtd1JAUJ+lE5ssrZyg0+9hjaGu5kxnE2LwzGcTHt2/y2w2wxY5a+snePXnvsbVDz/g/u2bKC9NZ6UU355NeX0+5rV8iQKLAbxOPobGEKKSxi8kg3MXpQlLQMdC9N+ypBKQImBK8p5CpbWVTOKNlvOz9SshAXxKBoXy3nm01ccAn1YLYCVqhfLyXpeJIerTQIvETnFVyd35hBgia90lxvce8L6Fbz96RKVg/ewFzl1+hk7eFWKCUqjo2Xv0kCzLaFZWufjkJU6d2uDo5EkGnT7vv/UG5XyCUrA9HvH9/AEXiwEDZWUAZMX83XU1sRljABczoh5gVZcyjNDFClrnZPkJgsnJwhzqCbPxiCZWZBaCq8VPrchlH46i/KjLGqMzwmyHQEHthwyGfV57/XUabdhc9Txzfkh1dp2mVJh7O0w/vsK59TOcf/IivnHcu/+A8fmCUVkzs5qd6QjClMKA1hGVaczyCtOlZW7euiXEBqXo5XnCiRQrp06iouLw4IAsz8nynE4aEIUUbGd6fbyrKWczZkcjrn9ylflkyhOXnkSFyCcffijXSnA8MIbvx4pzIWNeTun1u8SmEW9KY9Ax0nhhRTnnwEeMF/axWBGkID8lRbxSLGrvx+2DlNKLs+5x5t3ir0QWLFI4/pm0/UtIe6qcgaodoCnAC9u/7Vlb30u0og6RgclxqWaIyasuBo9zjkfzKS89+zzaWBgd8t4H73Hz7AX+1a2H7E0ndHp9Tpw5z/rmGYqiYDKZcLC7y2w6xjW1MPNDpOh0GS4NOffEE/zab/1d3n7jh3zy0/dxrkHHiAfenh3xVnfA6yan9g2FF9WJT2zboANeBwKeptLkWUHTBEITUFbjfY2LlqzTRZUlCo1RgcrXC7AzptdaZO7gqim3v/tfUKxuUHrDGkPs2U1ma6uMpmN2d/c42t+jUhkaRTkZE4ELT3+GajLm4NHDZI+lWe4P+M3f/gec2TxFORpRhkh0DV/82s/x1k9+xFPnN7l27TrzqFhZXaEs56ysbXD21Ca/8vVfZT6e8u47b6KUKKcaF7i/u8eXXvsCayfW2d/exaH4dpzzy/kS2XSGzboQIrpRVMHRqIyqmuOjwQZNM6toWllqVCnUJS2n2NauqbivZWgPoDPI+jl5J6cpa1QijywUXlqJhLf2sueRhgaLpZlICCq2C3SRAi/gdMTXDUK6ToSXAARZq85V1Jll5hwYTa3dAqxuFUneeeYahp0+/TpSTw55++AePzqxwXt3t7i/s0dEYXs9nn7xRU6cvYDygRtXr3G4v0uTLCOMMYLhGMtsfMTuo0cEpTh78TzrZ85y6emnefsH3+P+tWvivxqlLn27mvBvpwX/6OoV1odDYjXH+YaYGWExpvMBbZM3LKj1DXReYFMSepMUcnmvhy8nMmJu4YEWMklDT2uFgRqiMB2PGbz8zLefGeDr9wf019bJ8hyjxGsN75nWM3I9x1Ul5ShglPhBKCUHtzFtiS6hADFC0wQ6uU4TeUnMW9BBTVrAWmSwpnV5RzYLk4lUx7uErgbxpcoy+XkhiAREewVBCbsq8+SZYeYtlfMCKOo2ydKgTUtHtWjTQZlCGIoEoqvFOyEGjMlxUaQl3ge8kimDJhNgL+nftdG4eorKLNFXKK2xpkfQCnwj8k0T0NGLcb3NiF7MFm2hUbqgOPcc66/+FtnJp/DI9MPaTFKeEsvOJa+SBbqMAD4+fb0FBh7ngMa/9pdjGCEV6AvIDFoukNS06hgo5BgIbIG7x/3w2h++gNYWz+Wxf3/qyRzfHgf5WslFe2tDCOKnv+EY2PzraCKhRSuF4aFlOherkCZDoLQhRGE6yjpozcTlR1gDeV5Iyo930rB4SVHO84IQxU8lRAHnApKYq3WSJzmHNkomGhGyzIi3DGkNpnNeKZl8dP5/rP3nk2RZet4J/o6697oOnRGROrOyMrNEllbdXdW6IRtogACJATk75HBtuWO04Zqtrc2a7Ycd2/9g12ZpuzNDMQQJ1SQBEIRooBuNRqF1qS4tUquIzNARrq44Yj+c6xFRDfLDWtPLojIjMtzDw/3cc973eR+RpsggKJ3DOGi3Gvv+i1JJEqNjM01seIOExJjae632ohIReNT1lFJpQyT/BZTI8EJwbyhBJyyfOM7O1ha7u7uMRiXvvvM+WkuaiebChQskUmPQaBU9lLZ3tlnb3oxehqIkaTZ48823WT4+pDs7y4kL59nb3ebu1WtsjXPUkTmKsmI0zLla5AyOHaUC8lHOWn+DREUJQFABh2BY5jgfsA6chWbWQBrN6bMPcG9tHakEjz76CH/1rW8xMz/P4vIilx5+iKu3bjG3cCROwYYD/qSzx8x0Aq02RbuFaTYokcw328zphOG44P7mGqvra2zdvEVVVaStFkfPnuOLn/8CTz3xJDPTs4Qg+I1//Rus3L3O+fMPcuv6h1z+4B7BeUyjhVKafDBEzfWYnu4y2BuwcvcuM3OznD23TFGMyRoJE4ZdXMNh/3oN++D5oevx8LI/xOKbsO0mMsYJKBK9hyWljVo4JSPN3ricIMz+QeJDZH2JAAiFVjpO92v/RqOjP0ZkgsZgHgJUZVV7OkJlDxorW8XwhGhzHGr/yQkLOjb6zrvaEDfEMAspaZgBTy5X/Me8yeu7O1AOcd7Sy1LmGzA722Eq88i2YmHhAcpBTn80YumhR+n3d3Fbm3zjygdcUCmfWDrOjXLIstZMzR/nWtnn6lgQyoCoLIUesms0Ou/TTiVKS1xVcPteHxsE43ry7qWgkpq+kIyShMtzc7wzN8vG7av44CnLipm5Bc5feJhPvfg5Gs0eswtLjMZDPvrgLd575w1u3LhOVWxz/949Hn7kUTbXN1hfX+FOMWSpyEikJEkUN4Y5t0NZA1WSwlYUtYw/FQoVZJwKyujL6VJJpSRWBioi4yBohROePLhYOIeCkhjEM9VwdHo9sjSjLwVHEYTpWY5ZyZUfvcHIxsm5FoqNtXUunnuQ40dPsLW5wYcfvM/pcxcwSkNZsX7/HmVlSXUWt0QfCBz4Dn3stJh88jGmwuQ+9T4Xd1BczcyLu1LNZqgLSD8ZFjEJLKiB8TBJj/P7LPtJg0+YeKVGxnMM54qMKi0FTWNIEoE2ggSFqTyDwRZVmfPo2TNk3qI3d2gOBzSahirfY3tQUJaWqijQSYeFmR7r4xF5XqC8o7IVa0LzQsOwMc5R2TSNhmRGlphzjzG++AjKlmy6ird/7z/wwvA22ntSoQhucnZFu4KXTYVrz9PtzJEmmuuXP+T4sVMgBJWt2NvbYTQc0Gw0SLMYdtJoZhituLeyQrvTRknFQ5ce5+03XmWwFz1lPqxy3vdjpn2TUBVoZbAhgiylrVBFSV7WMlyih1kckhJDMohpnD4EgpR4ESBRYGrLEuLeI/CxATbiY8Mzefj8dx7nImBtUg0i1FYVir1yzPXRHrMhpZSCjWaLvbHDOtDKsL2xxfzCEp//3BcYDob8h9/7HX7+y79Mb3aedmeKT3zqMwTnuHn9Kit37nDhsSe5d+cWflhEY2+hUUahTe0ROjFzP1SKiEN9+f6Aoh5CH65NJm15IPo8GinQOoLIoZ7sl4XD6BQlPc1Ghi1ztI5nfGIybMgxypEZzYnlY6SnnmbkOmzcfRc9vsljJww3PrrLRn+EHw3YLAp8EV+PvVQx32qwZQLFhsWLFF9GhtdoKFBCI30cEAjnaQK6fp0b3vMJ3eTP8oK02+HaIw9zZ+UOpa3QSYPp+UUWFo+i05RBf4+BLZEhDnbycY5zllYjQ0tw45yVWzfZaXc4e/4hWs02H777Vr1mBOvS8+e7u5zrHmE2SIJ1WBVwAmRwDKygtJYqlNEbtaqYBBlEBnO0vvHWIetrRWhNqGVm+wmhQUwiISNQIuuzUor9BRi3o/pUFaIemESfNR8Ogy8BKWI9N6hy0jSNrGAXgzqqsqCqLO9urXOq3cNvbjJ0JX882mAsYLo3y8nzF5EiNpt5XiK9Zbu/Q5oayqrgdr/P2s4Oi/Nz9KanOHX+PAHJm698G1uNKcqKH+1s8vNzs3TG4zgIkuCEoGilFIMNEuEIIkGYDrYaodIOjfYsxaiPKAdkjQah2MHZIZKKtF57kbwmoMqj9DfE9OEk0eSFo5WCGwz39+Xz5y9w9epHTKXb3FlZ5aObQ8rCsLa2SWdqFptNseFSpo8scfL0edrNNiEE9rZ32d3ZZpSPqWwMNbMhUErF+9/+6zh8l9HDVsmofupNTTEajZFSMTs7x8lTZzjzwAPMzM1hjKEc59xbXeGdd97izt07tKdS8uGIalywcvMOo8GQs+cuMuqPWLl9E18P1L5vx/yM6dEcD0iztB5SRram8PE8laEOfKolhcK7+syJNgJiopqp/bcngwIpJMHaumGvmb+Imh08Gd7GgIPaJ6VGZg7kp0z2nn220ORA83UgwaG6MIT94VblIljg6vMVEWKCuY3ssJ1yDFnGzPQsFAVrN27wdmL4o81NNkYDmo0m0wuLLB8/gbOW6x99QFUVOOdodzokaYp3njRVpGnCqN/n8vvvs72wwMOPP8ns3Dzf++u/whU5hMDQW/50b4MLM0eZrWzty+zwIuB8ZLUVrRlkW2IKT1ntkCQJMvgoQSZgpKTMK0BGAJh4pkc/3nj9GqVQwRN0HEyNtrYY7mwz20m5WBjez6dxrWVaMjB78gSLzz5DpVsMd9f549/9TTySxZOnufzm68iqiEPpNOP8w49x7MRZrrz1Jl/72h/zS3/vv6XVbLC8dJzP/9zP86NXXib3lmee+STzi8voLCXf2eK1N17j0qVH+cVf+EVW7t5lY+MeAsdga4tiPGZ9dY1TJ86ydX8DhOD9UHIvSzg1dGStJpvjbRKRkDsLTnBXwFJZsjsekdsDjM0ExYRPP+E2SwKaWgW1v5wkKkhya0nzmE4PEy9iF5WGUqISg0wi61PWtRl24sEoEDikrkHBuieJpM0aoHMevMBOEK0oh4xYgVSsekiDoHK177IUyH21rMQ6x7awXEhaDLY2GeRjvl4VrKRtbl1ZBSlotnqcf/IpZpePc/vKh9y5cS1K6+seqD0zg63qs6lyZGlCmsZ+a+f+BlXlYWmR5z/9aa4tHuHN73w3ArqAQ/Dnwx2eGDV5MmnSlDV+EiILPcriPVJofFB4ZTCLR+LPjg13JFqE6B8c8kFkeVPbAEhZ17lyXy4dt444FNdKR9jlvwDC9xMDfGWeM+rvoIgMumA9RtdyGznxMRNY7+vUMAE1KBSnthF4yytB6UVtsgyqLtrjrhV90eK0ogZl1ES2FKuvYGGfallX9kYLitLFCb6HECTO1i9kkNhxjirH5C6JzLngkbKJydLY4Io47TBao0xGCILgLS64KAOWRDBRQAgVla2ZgjJDyCz+fuR1ARiNgcU+m4DaB8DVBuMOgoohG1KAiM9Va40nIekts/DcV8hOPoWVKaW1mDTBGFMbj0dmg3XxopqAe/GCc/XvfAhi2wfMJp8fHBbA/gETJlX4IXBv/36H19/HMLdJgRX96PZlZeGgv5s86sdSeOtH/5i33yEg4+OP83Em06QV2WcN1M/jIF3qYEg2YcBCZPRlicJZFyXlOiE1isFohApx4qFVlIQJNZHoRMYqdVKptfHwDzUqT2lrJktMfdz/eSGyFHzwNJKUzCi8KzHaoJSiCCWVtTENWsVnqJSIDYKPUzgtBdPdNp1GE1vmWCmjh5M2aBPXsJKRwRk9sWoA7xAlWEmFkIa01aEq8tj4pg1E2qK/ucfO5pjReMxoNKSRZaRZRpFI9vp99ja26b/+FrvDgpnZOc5feJC0mWGSBp3WFIP+HruDnEaSYfOcm5evYJKUe3fukqQGrTXjENjY3IxpTwjGvuL7N69GxoT3eBnQOkoRxrtDkiSJnk8BtFIxJEBIGlmHo0eWefftHzF3ZJrpmRl2trfodLvsbG+wOD2LL3K8kBw5eowXL17k/LET+MywsnKXcT7mw5UVVu/fx6QNjEloZU1KW9GZneeTX/gSc3NznDpxnFOnTjE7OxdB01oa83/+J//d/qpdv3+Pt954E4tH6YQgosirN92jN9Xj+9/9AcPBmM31Tc6ePcfW+gbzn/xUzWKp2U51aML+st6/yA4Wb/B/c+P33tXrXOLqgtTU3yVclD36UEsXVcAWY4xKATBGx9RUIRFBoJVBSRMHMcJDsHEa5cM+SCjrSXFZFhGICGC9xNQhGlpEGn9pq7j2lCEEgQsCpTXexn3aBYFJU8rK0kybJI0ml6YDfvkc33h3h+sfbRLKguxIh+0AwVWkdsR4NMRoSdI0pD6mJve3+7SVpkgzdo4t8vu+ZEtmzOgG3hhMI+PljmXkHDqRVGKeygmWKlsDmI5xVaGs4wcdx5tFySDk7FZjNlzFDoH14GlPT9NAMLIFRmlmerN8+sXPcOHSE2xu7tDsTTMc71JVFY89/iQPnDnNn/3Zn/DBe++wt73N3ZUVTpw+w/ub97mvPP0iZ6bZpOU8z8weoy/AeR2L9MozFpZNn7PrSvZcyajKsW4UJ6RekamETpYx1Wyw3Ggw3WwwnWQkWpKZBtI0cTLBKsltUXJ5e42NyvLhYIwIjr0rH7LbH+CITKpuq0Wn2eK9lTfptNs0Go6//tZfMuzvoJTkoUceR2mDTAylix5R1MwriFP0uN1+HCQhsA9gTywvDo8zwwQInBwfQqBNhvCOQDWZ5e1LbyfDjOg/Gun/MsSBnIBa7i7qIC8Vhxz1IM3UCahSRcVBahKCcCS+4qnFed7fKdge5aSdFn48xp88y6MPPYzJc/zWFn60g97bwo0GrK5tUuzsMisFm0pFdlHWYqXIuS8DlSvZ2l3FzCxiEwlixNCOUHhCMCTKUIpYOykfg5N8ffGva837UjB75BSu8ly7/A6zszOcO/cAb7/5JqNxTISbmZ2j1WozNzODt45xXjCqCtJERB+itqHfH3Dx0Sf40Svfw5UFYw/fKwc8JhLwDtEwSKlxVUUZKlRpkRIqW6GIjEwhJz6dfp9N6YgNbQBUbhCJjmBLbUQvRBw2KUwt6QekryfhsWC2wcWiOHhkgDwfY4UgeMV6YVnLC06IlF1KqtYCuS1QSUpVe31+5qVPcu/OLaamZwkioDNNVY24du0DZubnePDRS9y4dYOt7U2WzpzipU9/muHaOlu7ezz5yCW0qZsV5P46nqzJ/QUsxT7a958zv54ojbWsJaUItDSxQdUGaQ0my+rE2hKcjYEbSmCdxVlHu9ViSmeY1DPV6bFw5hH6/cDjlx5iY/0e77z8B1x64mlm5mYJZU5ZOdbXt9i9ex89HHPT7+FsRrCG4WiHfpEw00rINLjcUslAFWIYlg71YABwCvoup4HCLp/gRu5Yu3YdkzZIm206vR7WlnGQYkuCs5RlGesMkyCloirK6LksJYmQlMM+V698xONPPYUPlsvvvxulWkLyejHk2t4O09MLeNuP/q5E+fLIlgQXKKsC4RTaeiCukVAzTlyIQyZcrMODEQhV+yxTDzOFwk/SIxMVvemkqJmAogYAa/uafRl5vbMEUXvZ1XWqjUnUKMmwLMhMRl4VUQLnLD541qqK1XLMpzqL5Lvb3OgYfjTawwpYOrpIlqbcv3ULa8vI2peaU2dOMzs7jwywNxiwtrXF6p3b3FtdoT09RWthlkvPPscb330ZfGArH3NPVyxpjdQSg2OgS3xHRdc900DJFJFoxnlJ2uhQjkYoN4z1Vlliq1FsZkNk4jvnonWLNrX0rFYFCIVUBleNaIw3Oa1ha+0qYbTFeDhkOtOkMnB9bUTlU9Z3+/RHBQ89+RS9Xo88z3n5Oz+ICi+T0NIanSQHCbAisl+m2l3u3rnN3l4/KrdSg1aabreDSRL6/QFp1uDpp5/lxRdfYnp2HuehLEscHm8tZ86c48UXP82777/Fn/zxH6OVIR+PyAd9xoMBV69d45lPfZI//6Mtxv0+ILiJ5x1yjjhJXhTIpJZglxVIRRk8iQ1UwYH0CBfQXtUe25PBaklgAnxMyjUJKuBtlI0KoaC23plMC+Qk2FAe9Guxpznw4IvDkRoAFOIA0dEqAnyHDthAHN4KERh6TyON7D3qAWpwgeCgqix38gEPLp+M6p+9Xd68c4sfaM2N7T0Uktb0NIsnTzDY22bl1i2CEHR6PaTWpGnCYK9PPh5ThMBY9pFK02i16e/ucuXKZS5euEgja/Ltv/gG+bCPkIpbZc4rbsSyEghnSbTBBkEhAptS8te7LXb2FC891KYxyGPgptCREOFV7SVsqbygkSRYIVFK1hZdoh5s+4O/CwE+J0UxLhWNYsAL6ZibZcUbmyM+2i4I9hEaUwvcvHoV7x29paPk1pHnI5wtQSka7SaPP/0MwQW++Y0/5/7dW3z1f/uf+Tu//uvsAo898QleeeUVzp57mBc/90W67Sny/oDf++1/w62V26ys3OYXv/yLPPPc8/z517+GL+MAV4nA9evXePShR/nRa6+CgJ0Q+IHPOYKm6aBMNCKvUHiOSMkPbYERiikCqfQYPwH4PBpRf8ShjUJgapMJjTuosXys14ra1lSKmJEQQyKjnzvjPBK2lETIAEahjIba5zngUZ6I99TnHLVSMfbvcn9oO2Er+OARUpOLwF3vOevje++InpciRHsmFzylEpQhoIYFI5vzxniPlXNHeee9dxHKYJTi6MWHMN0p3v3hd+nv7sTwDq1odTpMdbv0B0MKb2m0OuSjIUWeY/MchMCkCSi4vrdLPlzm9NkHyXSD73/rL2JQFPG9+OPdbS6mPVTagFE//v41gOFCQDiHlxKvDXr+yL41ROxVI9FKZyn5eC+S0JTB1vWu3k/I9Xjno0JQy1r2HL9H8p+uM/7/uf3EAJ/zjmAdpfNoHScX1kW017l6KkRkqeQeEuVJVQwbqFzYTxepAoyrKDPUBLJEMC4CiRE0E00IFkdkJyWpQSBrWiOAikwSITFaUFZRhqj2DxFxyMhbkGQpiUkILpAay0i0ULX8Nmum+CDAFwQhyLJGTCJ0FqjqRsKjjIrNhoom8kEqhExARJ89Qh0HnrSgGoBMCdSyThEN8b0LSGVJjMRV0bcv6q9lpOI2Z9DTSyw++wuomdPo1jRjFxk1jVZK9HOJi83XIN5kCh2IVNfJYjsA9CZF638G4NtHEg4Atv2T61C9G6/bA6BhHxys0bvJZrufXvbj3z8B9gL7Y/0QDoF7+4Djgdb/4DlN/p2PP+6E0bS/6RyGHCN4HIdkk+aSOhmQWKSGQGUrclvFQqP2egFRG38HsjSCv1IGqiqgjKJyYf/5TM7gyNRTOBuBNgIHF7KKLNQg4qaqpEIKiVaaJIE00aRJVksvI0v0ALT0NFrtKP+pjeKNyciyJCbL+eh/KZWoCTMxMTlaz8TrU+kUKROUNpTDIbqRUVYFRqc0Wi2UGJEYzdhbXvneD5FC0mg2eeD8eURvCh8CP3rrLQb9PunXEpqNlKlWkzRr0u72WFlZpLQVJstoNBokaUaRjynGOd47Wq02zoO1OXlVYZIEKot3rpYeRA+USLGOTVeSRiPqMs/RxsTUvsqRpRlJYlhfW+Piw49x9vRZTp05zcb9+5xcXmSq00YHx8VHnmRrPOJP33iL6eUlTKJZPnmWh5/7JNO9Lp1uh263S7PR3AdxtY5eoVVZgRAUZUVRlGip99kbhLgHzs/NR28kFcEiKouzljvbfRqrWywdPY5RhiOLi6zcXWEw6HP82PH4Poo6PTluAAfT20MV3McA7YOLbn+9hyAobZRNRAayiyAdHi2jv4OsmcUulEitQCry0kGQtTQvFgDWlrHgFIHgbe2dGpur6OUYG2J89C3BepppEoEyO0k3jMWmdx6lUlCKwjoyEadaUkqUTpAyIUlMTJfygazs88ACvL98hJ2dTbZW77EyqsibbRpBkMoGrVZACI21kOiMVjOhKi3GFmxJwfrKCmXwZK0u/SRn+94uLa2xVYHQKY+cOcZgZ5fCR9P/PC9x3mPLEuc83/Q5TlRR/qM1QYm4xytNs5WycX+VbneW0SjnqU+8xIWHH+Ubf/YnrO3s8b/7+/+AP/2Dr7K2tcUv/cqvsbSwwOe/8FNsbm0yHo0ZFzlHjx6jPTXFsFJ84AuUMIzHY/qDXTaqkh1bUeAQStJLEo40W8y3O5xqLdFrRXC/mTZoJwmpVEgklZSUSuGaBtdKKbVkz3o2ipLrm5vc3tzk62+/xp2tDY4eO8lwXDLo9/HCkzVbtDo9iiJntNend6HLr/7tv0NZVoyKEo8gLwqSRAP15L2o6v16MvTg0B41KfQOHRaT5eoPreJ6s9wf5BClYZO1Y22FESECQ4RYbMK+F5oUE0CvZjxzELAhqD2AqX2SnMcoiTKaTEdvNIWOQ78QlQWNLOHZiyd5OC+4MyxZK0qayiBOnSR75OG4dyLRAgZ7G6i8ZPs3/zWfzFpkecFmMaDvPatlyUelJ0x3aDczFqo9bu9tcF8JZt5+j2PNIwxn5jCJIK3GsUiUgC9BOLwAh+S9NLDmSwYfvMm4KtHGoEzC5SvX2e0PSIxiqjvN0889z/PPf4J2q4UABoMx129e5603X2d1dYW9vT6J1lhbcfbceT56/x18CLxTFWxoS1MmiOARRmFdhfXx/SyCr9PpBMGBcxHA8fXY3kfUFhEiY887D64EqbFSgIrXDonCFQ5XCZwI+Dr52QaPi7AaDaPoNVtUFvIgKUVgYHM+KsbsukDDBdZEYJQo9na30CahPxxy+uhRzj9wjt/8jd+gMzPLs5/8BALPYGeDb/zJH3Dq3Dme/fyX6E1PsXP/Pnt7fT7z+Z/lh9/6C6aWlnjw4oU4HPUTefeBlHzC5Jt4XR1sx+HjtYcQ++x7iKFcqTEkKkVLCaIi0YZxXtLf3WVuuos2CWU+QmhF8JLgFLplEEExbRRdZVHKgd9jut3k6PIUG4MBy2cfpr+1wa13PuTY0QWmel2OHl/iwVPHaekGq+WItdX7/OX3XmUNzVR5HN8VNDKHOV2xvhgl/HnhWCcgXUlZlmwGxb1U0e21uZ12uPHeO/HcyzJmjiwilWY4HBCspcrHdLtTPPXUC5w8fZZmq4Wzlo21Vd5//21WV+5SVhadJFTjgjdfe50z586xfn+N3c11ADYJvLq3ySNLxxB7Hm0jYFx6z25po390FfBVQXB1/RZcDX3Y2ntvUod6QhX3y6iYlHUKdzzH4+agCSYyI3CRVRoA4aN0V6L3B20IsQ8GIuq6UYrozUbtxU1kqNgQmejBBd4fbpNKw7TXDJXg5XGffvCYZovuzDxbt+9QjkekacLy8lG+9HNfZro3S5qkiOCoSsfecMAPv/vXvPr6KxTDAcPtLRYXl+nNLLC7eZ8qBC6XQ55szYAXDJOUd5opx9MKXQqUyTBSUgx30MEhyjHtVoN8N/qZ+pDjapKC1pKyrJBaE3z0OhUyid7NtRe5LSpCadF7tziVbDAzGDHTmqe4/A3EcA/aDlvkCGnqIblid3uX0TBnPBoyGo5AShpZwJJH65osxSiF0Zqktlq5ffM2ykSGTaPVptvrkSQpg+GQdqvDl7/yFZ5+9jmCdVSlJbcWW1X097a4d2+FhYUoJX380iMcP77Mb//WV1lb36CsKvI8p6wqdvZ2eeKZp/nuX36LQCBH8B035jONWfLhmE7Sxtoq+uCKgA2CDrXkXmuEix63ztZnn5/sEWH/HAouEEJkQ+FDfcSFgz5Mxt5AawjW4fYBPWrwOta7E89TIam9O2vShoRgPMFEmWQslx3UqeSIQBmg3TD7+2xwdaBEUTIscvI8Z67ZwgfPxp1bvO3hlfv3KauCRqfHwuIy+V6f2zdukGQJabOJMQnTc/OcPHGMudk5BIrd3V3W769w8/oN+uMhRVGAd7z91lu88KlPYW3Bt77x5/iqwgn4YX+bF5sLyN0xRWUpKksuPFvNJneC4fraJk9enKehErwrIGkgqir2LUohquhp7qytQfk4uHM+AlhGaSpbpz8jKQoL2tHQ0EoTSu85KTY5f6bD24Mm37n+LmV3m527t0mU5Oix4+yub6CVwQuFNAnzi8ssHzvJjQ/f4/q1yxgpWF+5w+//zm/xd//ef8vc0dP8/E9/mZnpKbpHlhn2+3zt975KWRX8X/+H/xv/7H/9n3nt9Vd5+ukn+cF3X2avGFNWFcI4dnd2abYyWu0mw8EAj+D7csxndZeudbQ6Pfr5PTIPT1tY6cxwQ1p0VSEri/KBxIMBEiRJiOBew4H2Hl1bRQgfLXZUiEouJRRKBpIg0D4GkigBCXGIIXxA27xefwKUJE3TfSm6VBFMjMPVyOwn1L1BXd/F4ZbY5yZoFQNxdhJJKCMj0ZukJubE4Z7zFnDsuYAoKsp8yBjJh9MN3ri7QllVWAHTC8tMzcxw9fVXyUcDkkYDkaZ0ej0SqVg6ssjnzp+nNz1LkFGVtbezyd1bN7h2+QO2dzbZ29pCS82N4ZD+7i4XH7nEQ7tP8s6rr0CINmqv5WPezfd4qjETrzUXvbK9j3YQSkDAIpsZot2sMRdfhw1GW6JGs8Vw7z4T2a6UE+LVgdrEh2hvNPExDKFmZk882H+C20/uwedjUe5CwJUeY2K4g1SyNhCuzbYFJHpiShp9E2L9L1Ai0kmnWopMyxhcEeLG5oXAelez1GLrEFz0bxIyUoTBE1RkD1gXU7eMUhSVxSiD89GAUhtNI2vgXJTRKKGRdoRXKSZpolyBK3J8cLX/itj3pjAyUFqHFAFpVPRpkDF1VyiBFCp6etjYFMetVSJkkyB0LDRClN0oBPiYbKtUZFmFqg7TyJqY3jEWn/w5WqceR5gOpdAIpQkqoZEl8YWvGyNXp9VB3PAC0TNi/0DhEPg2gffCxyWtPx6MweG/Tr5xQr2rL8jw40XuoTtN/Lz2k2HCATNv4kk4YeOFcJCyx6Hv3Qcc6ybxPwUUHuB6Hwcr4+ZPzRo5/DuKfRAuUBfmtewzr1xMH9UKayN4J6UiOBuDBbQkrUEQV4MyHo+rDoBjRZTjZFka2ZneRQPk+rVIEoVOGgTh8b5CKY2rytgkqwatTJO5EkE0F3eVxYlI4zci5pgmJkWFevyiTATwpARbMknajcBinCxqk04QRxKtcE5gGjGpKtRNsFQKUeZIX7LX76OUIBEJVWUxxpAPR5RFQVEU9AcDhv0+hEBiNEoJhsMhg909KmdjcVInYle2YLC+R9ZsEULAyEnqXpvROCcEQ0MqpEqwytUgfagP7QBKoXSCd5a8quqJkqyTtlM63TYmM6TNBuu310izBp/7/Bd49/13eO2VHzK/sIBJMwb9AU8+8Qz9rS1kcHQ7PQpborWiGDnW8m32dsesJbsIKaLcWQgajYwkSUizBmmdqKhUvJalVtFjgrg3HTl6nEBkAeAdiQDp4jpqNjo0lgTFcEyWZrz51lv0elMsHlmkLG30uPsxkOTw9OsAIznEKtkvAUMtmasPSg9a176RMkpqvXckCrq9HqNhwTA4rE/A1uEZQhJ8TP2Oo+ZY1DpZry0Zm6Xo6xl/pqrtDGrUBkHAWkuaJtiqQuh4PeAhyxoEb0FEhrEPYHSCVHEY0kwT8tEwNjoCjBLoIHjskUuszszj+9sECsTd2+RnHkQ3mjRbXfZGQ0hi2nGFRUlPaGbs3LuH856dvT5CSLI0Y5w16A/HGFWwNc7pTE2xd28j+iDWQEZZRkNj7yKr2nlL8C4CAFJx9NhJ0rTBcFwxPTXF8bklnnjqSV777rfxox0uPvwwqyt3ufHRe5w6f5H5hXmyVouFZoNLTzzD9sYmO9sb9Ac7zB1Z4oG+5eg457Uix2YprTThYrPFXLvDTNamnbVJtMEpSUlg7D0jHPfxjLxlMBizNR4zKAt2ipzdsmC3ypk5cZy799bY2FgnzVK6U13OPniev//f/59odbrk45z/9//0TwlKkSQNZmYX6fd3qYoCiUBKzV5/wPziEYyQPPOpT/Ph++9y/NRJdgdDINA2JkoiQpTIQthn703Wxf68x09254OJ5OQoidt+7XgYItNU1M27c1W0T9ByciAwMSWfeEMSYjCEJ0RJpBL77L1Juu4kfTcQpVWRTRrQ1EMXpYFoWn/qyedImoucH+/yZ9/4FmVDkyUGiWNn0GdhfoHN7R3GuWN68SirS8tcGw04srNDx0yzVJY8ONzlsaaj9CVbzYQvzJzljWHF+6ubfH99j2Pf+BNod9hFMLe1zkgJSgKFCAycYiAEa8rwqhaApHAWV1WoRLG2ehcpJcYYur0pvvwLv8Czz32Src0tXv3h91k6dpJed4qHzl/kgQfO8edf/xo//MH36HTaVHnJ8vISnd4M/e0t1q3lXZszHeIekjabOALjqqLyJcZGJcYwlPVrLPDE19YLQSkCFQEvwCqwSuCUwhuFNwZvNFKryOjTmhApkxAkLsT3xHtXN8GWm2VF5XJKZylDhXMO6xyPN1tkpWOnYTBHFuivr6KzODR68MIFxnnJ0889z+vvvksVAhs727z/o9fBl+xubxK8Z2npKJsrd9nc3OCRZ57hpU9/OpJjaiAIUXu2iagcmQxwPlYWiUN1UAgHQURQy5HjWtNS0mq0abencVVJme/hXDybjQecRYiA1oYsa+IKi1KaTCU4K5ifnuXnnzTITpNWo8cgtPjrtz6i1Ztm5ugJdnSbtz+8xpW77xPCiE4WWRpdB359G7MwwxXpyVPN1z68h7msotWCiAEVaWIwykSwQGqcEIzKgiK32CAgdfR3N0FKulPTpM0W+WhMWRTIAJ968TN88Qs/Tas3FQf3RY7ShuSJJ3nxxc/y7ntv8Wdf/1PW792n020z6Pe5e/MG5y8+xKvf/y7eVVRC8IN8wM9tbDLXySj7exTeIqRiLR8jAediKnsQ0Xw9ECKrrK4H/QQIqW1/hBe1t6FAOYUQ0Q5FhPg+S1WrLIg+zEESh1CBqByYBL/IOHALLu5rEXAHJ+K1IaXGlZaqsoxtgbeefp7zwXiXh3UbX1h2Z7q8ureFSjPml5ZxRUXe36OqSs4/eJ5f/Mov05qapSj9vn/h3PwijbTFZz/7BXIXeOet13FlyY1bqxx/4BF2t7fwwnN9PEDPL1MKw1+miqJTcNrnkMRQNUSgLEYYJQi2YNz3uFDvqYXHNGcQInqFyyQlbU0TOkeYPvMwWieUH7zNaOsKEoVwCrxluLbGUEmkC8y2hlTjPZ5rT7HhA297T2Ut+IoQKm7durXvqTUJTvRlHsOATEIrzQhSUVjP/GyPG7dvU9gKQsCkCc5airKgshVp2uQrv/TLPPf881y+/BFf/7Ov8czTz/Hgw5fw1rJy+xZ/9Ae/zbHjp7j09HO0sotMdTv82q/9bf63f/07eKnYunsLoyQ3r17l+Wef4f2pKXZ3tglC8G4oWcFzIoAtHd5LrCuwwuNV9BfzAUJe4oKtgwUjW9zWft6KWgI++S8IpK0tqEJAhNpnrB6UGFn3sC7gg/vYAF9GvnR9xk36mDrYTIioInKKqGcXxGCjEP1RAwykR5uomPA16cU7j7OBqrSsFUPaJokJ4aOcW/dXeS2U9MuCRqNFq9fD2Yr7K3dJmxnaJHR6szz3wic5e+5BOg3DbG8K5wVVWbFXDNnb3eHNH73OW6+/xnA4RJUl3//BD3j4oYscP3mK21cvI6RkpSq4qQRtQDtPoQVWeG7ONBm32nRHKbOdBrIEKTVCJ1hbglR4J5CyBlACKJXGf6tZvx6BUBrhBWDAdOldfIjB9fdoTrfYWt+hlXiGuwO6ZxZ4QI44dqHNdzYK/nJnj3FZMXdkie3dywwHAwKCRqvDwuISjWaLN197laqqmD95mna7xXxvirV7cZARnCXttMmrgtW7N3n7zdc4cfwUWZpx6vQZXnnlVc4/fIl2s0kIjq2NTUwS+xpb5jRbTfb6MQTrCo63dMmsUiwtnIRuh7Tb5aVjJ7k4HrLb36WfFxTDMXkZlR390jKsKvJgGXvLCAg67pNIEKhafhsZfpPBZxoiUCcISF/jNF4grEd4hxNRou5DQOdFZAVKQUNpEiExQkcygXWIur8jBDQBHYhJ8cFjjEbjKETgXSRHnadCgnNoUS9lKRDCEEjZHG1yxGmMhBtuzLXZ46y+dwukRJuM+eMnuXn5CvmgT9ZuURKYnppmptfjF37qp3ng9GlSnWBMyri05DYw2Nvh0sMPMf7853j9tVf5/rdfZjzoI3xgb3OHd995h0cef5x7d2+zsboKwDh4vjna47FkKuI7IoJulujZv49LdLrI3vS+PNhaG4kPIaDSJvneDq4qUKYRwzatZTwakmaNiOPUoSRRdi72la3/JW4/McDnnYt6Y0BrSBNVN0iS0kqMsvHrWqJlBPasj3p576KZqhYOLUGLQHAxUVZLSSOJQIYDpNDRKwKxv1kmKoJdwTmE0qQmIR+No8+YJF7wIdIhlZIEJNYJkqRJqmIUR0ta1lSKs1Eeg5IkSUbwDilisAFa4oXEGEkIVTyoJPigoklpCJF1ECYNeIhNsXMIZ+OMWhA9z7xAGY0tx0CMLrdBkEyfonv6KbqnniZZPIcVKS5tILQhlTWTiQk6XhvoT4C9jzH23I8x4fZhuMPYHROR1MEbOQHwDjPifuzN/hhT7uNy2gkSODFZl4dMMyeAHeIAqJt87KfyhQOj/4PncIgB+LF/OwxafpwB8rGnOgFHahxCTB6zZngQDqRiSiVkiUFJRy5iVHhVVaRJzUwiYEwSN60UimJUAzOSRpYSXJQzJiYCzs5VGClRmUJ4iZQJ7XYbGyLducqHtaQWTNqOhuk2SioEFeVoF22yGqiNxqaNLI2+M0LHQBoZ2Zo6SXGuQoSAEp6qKDD113S9dqIvkoweR86RZWkEbxoNvA8xIYuC2dket3Z3kFrQbLdpNJqMh2OCd/T7A0Z5Tr8/oCpynPckRtfBEBGgypKEqZlppFRkc3PcvHELYzRVURA8LC4ukqYN9vp9qrJkMIrmtmVpEXiMThAyYIQEIUm0icENtflzo9GIDWBZIQmUxRBblZx78EF2tzfZ2tomTQxaS4qiYDQckJc7/ODb32TUH+BdhUYfTPCFQOsI3EH0X4rhBIZGs0mWZTSaTbRO0ElKo9mi2WqTplk0ezaGJEtpdWfo9qYZDnaJVjZjbFWytb7Ba6++whc+/QJlkrC7s8O777zLF7/001TWMxyND4B+KQ4lNbIPaHzsJibA3sH/go8HhBSR8axrGa2ufWG0FhglKMZ5HepSQdJGqciEDB5MFtetdy568rnY+CilwNcASRAok2CtR5oIHoYAXkhCcGgRpY9CCLSKwxaTaLQSVB7SNMr0vDeRYS0jM9A7T5JkpEmGcyWFtQyHlu3tHdbv38WO+vwJFUujMbsffYDKumQzM0xN95ibnmHp2FGmej3K4QAlDa2pqTheEZKqKhkNR1jrmJ+bY2NjnbfeeZ+kkaGkREtd2yBQN+1usoPHUBuiR9HUdGyKVm7epiwLKm95/JlnaPZm6A9G9IdjPnn+IYqi5MiJM3z+iz/F/Tu3+fff+w6/8Ct/mxOnTpOmGUoq1u7f59Txk6z1b/PC0dMc606RNxQjJciFYBgsV4qCje1NdoNglBlcoimCZ68Yc3v1Lts7m5TW4mo2ZJalNNtdzpw9y4OPXuKnH3iATm+KxcVlOq0WqgakpZTcvn0bkzXRRYlKDGmjwfZOTCUrreX6rVusrd3n57/883z43rtcfPQxzp5/iF63y9tvvgECWs1mHcTia9aM2B8UOXdw5uxD04eGQxBZMBPmwsGeXQP7IoYTqcl3hwk4B0HVFh01E0xMGHv1j4zs0LjhixBlPM7GhFIRNI0sq4dzAWUtzlvGZVUXZ31ufvc30M15Fh54jMfOzvLKzTGdXicm0CnJnbsraK0pqpx7d+6wXXr+eFAwpTPONDJOdATLR2aZH+yynufc6C2zk+fMtWBw5gy/v7vDgh2inMVJyczUFKGKANvQVwyVZCgCe0owkAqdDyhGI3rTszhbUFQlSZrSarX4qZ/5GZ59/pMMRzlvvvkj/u1v/yYzs7N0211e+uxnefr5T/CFL/00G+v3uXrlMnOzs6xvbfHAww/z9g++jy0db4SSx7yO55q1JEmDwlasqAFNpXCJIQRNIvV+6IQUkjxJsMZQKU1pFF4JrIAST+Udth5ueOdweQE+gjaZ0XRMSqfRYLqR0c1Sus0mPZPQMgojJUbF8AlZBfyoxFWO9dVbrG7cY3d3TGk9WS0XOnf+Alm7w9KZszw1M01/d4BOE9a2tujNzjM9N09ZVszNzTMuLVlZMejvMdft1GqKOEgW+ytzAj4fDA339+CDyWN8HSYhDPv3ia+NUSmJaiBtIAiP0ilJmmLDkGazRZZIhPDYKseXDpBk7W7tx2vRqeZcUiFauxSDj0jMAt3lOXatYGuwyXB3jUJLykpTDqG/M8C7gplegwcXmxwxFcXcLHuyydTcAsE7iiLHljllWTAYjtja3GA82Nu3FxEiILRhamGJjes3CFrTbLWZ7kxhi5KiLMjSlL/1S7/KU089w97eDt97+S94443X2d7d5Us/8/N84pMvkfWmeeKp51g+dpKv/tZvcPPWTVq9LjtbO/Smpzh6/AS3b1wlILjlLVd21lleepi9zR0K73HCsZHnNFxgFAKJiKx0N5HM1oB+AGTQTKT90TYi+mfHi18jhIq+x0LVjECH93UojIrhRU44yrrudyEy9KrgcELgJFTBI4MgERJlFJvFmNlGmyofUtoqngXOc70cU3o43+zifcVHquC2zzHJFNMzc2xvbDEsCk4cO8nP/syXuXPnLgsVNHuzfPTBh7z6vb/gxU9/kbzwnDp7gk984pPcvXOL3b0dIHD6wTMMd+9z88qHXM5HfLdjuA+MeykvHEtQUtLodCnGFcOixDUMUkA6PUc2d5Lm/DGa3Sm8VGTdOUx3Lu6DOole30JhvUBpRXN7gC9zMCYSJ6RiPM6RIUQygyswiaZj+4ii4FymeHeQMtVq09ApDoMQniJYkFGmHgJU1qESQZmPKYbDCDgcP8HdldVYZ5gozbXWko/HtLpdPvnSizz19DO8985b/It/8c9IGwkXyouIaFaKUookwI2PPsB6z97WFk8//QyLy8t86XOf4Y/+/Ov0my2qfIgbDOgP+5y78CCvfP8HCCHYDJ5XyiHzQlOOBvQ6M4hKUBFwwXJVeI4Kgfa11U6opXM+IIJGCkFVE0hiP1OH8Pgoto3WJwe2QIGodttnoEaMjoksF+oUzsnB6A6YxUHGvkVGRkRk96maICEDpYYNLMeTJpVz0UeyjGzNUAXGznGvHPJQbwGBZLCxwZWy4J3+TiTdaMnczCyrd+/EtFyp6S0s8os//wucPvMAwVZsrN7izrWP+OCDyzz+xNOcunAh1hlHFjm6uMjXv/5n7Pb7tGzJtatXufDo49y7fRu8p5TwRjngwawZE9NTxbjdYHh0AWcrFnopoegTHCiTUJYWUKishxANXDGIoRC+iqqrdAo32CB6nmo8imAMUihaU0d44b/+v0PeRxhJOS4QrmD3/n2U3aVz7yrV7n3Kdp93r3VwWFTWjLWAiEb/SinmF+YY9Le5dv0qUhs6C0t86tnnuPDAGVbvrzG9dIQ7m+usra2SpA0aHo4vHeXOym2++m9/i1u379Cq/QR7s/Pcun0bWfuHVkGwW0Jnap61tfXoZ9rM+JrzuPGAL/R3OHbiAdTyEWS3zVyk46GkjuGjzkJZgi2oSktVVZRVSWlLhkXBsKj/LHPGZc64LClsxdhW5M4yxlHVibVBCJwWEQw0CiFqHzgp6vMxDr4MkjESE+p1GCZojIiWVoAQHiNjP6MwKK3QClYSzcZwxANB46XHB0cZQE28mJEUSPaqkgumxbAsubLQ5nu3ru4HrXWn5whBsLuzE3tbbWikGRdPn+Fv//Kv0GxkDPb2eOvDNzl+8hSz80ukRtKY7WK9Y32rzxNPP8/i0lH+6Pe+Sn9nG0Jge32D23fu8OynXuJrv/97MeRUCH40HnK/Z1lyEqssoQ4Y8yFgfYUQKeHYSULWiJNsF7EtjCF4h240Ea7AFmMimmSwZVnDQ1UE/FwkEihtsC5mJejaK/onvf3EAF9EKmOqbWokwUbSpQ+gVaSFSwHeOqyqacdCYD1xWkiMeXbeE6RkVEQpTjMjFnpSk6SGMh+hja790GI6Y5Io8FVMyPKe4EoSETCJIU0N1lqCDyRJpIcGldDoTGHHfVxpKaoSkw4IcgrrDakMSFFibblfZHoCxqT4KkdpQQgJiUmxIkF6j0pTKAd4GSn+thijtQAfsXFf1rR0oWokPU4GhcpIukfQnQV6DzxN99wL+MYCQSqc0KRJDM2oR3L7qYQxlcYfsBmIUqZJktJhIO+wZ90Bv+3QVPrwGxlgElX9se/7zwDJB4y6g0ebfE0IcUA3PfQAEwB08lz/Ux8fe94QwQv+JmD5N1h8hz85/Hdx+HsmtJHIhZow+LJGhkqjV05VVSSJQVSeqanpOD2TkZ2UJBnOWiRR3mACmCQDqQhVQQgxSToyWTSJNnjv0SpFmkY88IOFyqKIct1EtdCmidYafASFUu1RUqHSFOEsVb0hKClJWt2YNGfLCEoJga0cWhuczRFKoI1CJxnSRqmutXGqJ2t5cKhKQiUISYZpNPG2wjuNKys6jHBVhTApM3MLtDq32dnaxnnH9sYmi0eP7bO1kDJ60gErd+7iveXCgw/yP/6P/w+u3bzJ8rFl1u+vobRhb3eHWzeu8/kvfpFjR4+Rj8dsbW5yd2WFb/3Vy1y9cpms1eL+vfsMB3vkoxFBah557AkWl5bJxwPu3r7J7u4enkBVlYhgwVbMTE9z4cIFfPC889ZbPPHEJf7B3/9v0Drlz3e+Sdps8sG7b+LLIlKha0blPmgs9zM560mSROs6qS1NyZothFTx80YE+5qtDq1Wh2arS6vTpt1qceL4Sd5/7814HdkSX5XsbW6B7fEXf/0D5tsZN27dRScpswtH6A9HVNZGRoXWmIlxLQeX1cQTaP/zCYvv0LV1cI34OoBIoYiWAyE4tIreeWVlY/q4EEgVhw0ixLRmX3trUJvnBxwhSKQ0EDxJqrFlhdZJ9KsRpk5Qj+eQEoIsa2JdAUKQphkyFyijMDKmzykZi0aZKKhZc0YbhIzXUVl6UtMk5DnjgUUZTT7qM9zaZMuWvL2xiZaaLGuSdXr02s0IzBjDTG+aIwtHcLZibX0DH3xMPK+j50ejMXk+ZmZmhvFoxGg0JjhHVRQA8fqQNUNUTkyLJ5R5KMdjhmwwNdXEC0sjzTh1/BTWSz7zy3+XrdvXkUHTSgxf/uW/w72V23ztD/4dItHsbm0yNT3N4uISu9vr4GBx8Tgv37rLm8UGYnuX8eoInxoqAoW1YDSdqVl+9md+jgfOPYiQ0XxYKsFgOOT9999na2uT+YVF5ufmWJhfYG7+CM1mA2Oi3YMPEJCUzuOrcn+i2mg2abdabO3s4qqKfr/PxEdlb28PkxpOnD7NaDTko3ffZnpqmtPnHyJ4z53bt2g0GiwuLkY2fg3w7ZP04qI9xGr6sf263prFwVb8sfPEA7KWTE6abkNcx6G+AgKHUu5FvHJFPcURSkbJgw8oQs3iVxgVr12Hoyxj+l4riyyh4TDuxcEHpNxk994q+eAmzeYys7PPQxAMB2O607NUfpN2miDKITMLC0xPt7m5t8H3L1/n7W6Xajjg1NJRnmqnPLDU5tbGHnutLqLMCXia83OM1DymGlF4z0horIfhqKQsxwgR2felrQhlQT7sR9boYICtclrtDkFqHn78SV547gX2+gP28gKTpsgAWxsbHD96kosXH6LIx2RZyksvfZZbN25SWUtRVmStDu2pHjvrBVddwZpPybTGWIcykoW5BTbaKauuwvpAWZYo52kpxdiWOOGphMP7HIkikZouimll6JiEdtqgZQytJKFhDE2ZkkiNNhqpDcaoCO6LKAOsnKXIc8ajAaN8zLgoyPOC8bggHw8JeYHDU7R7jILHeiiLkpn5LgL44z/6Q/Ky5Nyjl3BlRSkkL33ucxijWF4+jg0SVcYUdFtWVFVRM27koRVFzcabDP4OlRL7zffBV/Y36XAgR5+s8STJ0DoB60hThZYaVdswhBCBau8Ap0gzQxkSkqxFOdiLvtF7u7GWXv8Qf+99Wu05mksPkiSnkFNT5OMSgEaWoYKnDI6qgO2B45XhmKeXZ1mY7uFdE++gKEtsZRmNC0ajIWWeR2mg1EhDZKhnDbrdLrs7OzEALE1IW50oqa5KFPDLf+tXeOrpZ/n2t77FN/78TyjGA4RSnH/oEo9cehxBQISCqsyZnV3gV/723+Wf/a//H8ZVSZa1WbmzyskTx7hz6wbBO3IpecfmfHI4hjRluD1ghGMQPBtGMofACc84BKp6H5ZEixxZy/ajyb4gCB+bURl9nbyoEKIORFDRm9Y7olytijJJUVtNeB33/CCo7UwSUm1QRiGUpMLTryoGtmSoNaVWSGsZ5QX38hEreZ9d6XnRdDjuU1ymeH08opKKo0eOUuWWwWiMTJt8/qd+hvX79/nNf/XP+YWv/CoXH3uGcjREBcdf/cXXePixJ0EcJ0sVzzz1JH/8R/+RZpawuXqHZ59/jpWbV9l1jn99d5WnXniaS6dOcPzcCdrtJu1OD+slrd4MeRkDCpNOD2EyHLFOTLPYVzjnsd7V12E9nJGhZjrXg34f7RK8lyATxnlOIhRtHRPabVXRUAlfOJExv+X4oJEwdfRBrGpw7d4mm2sbEZQtC8rKRVumygKgtKbb7jAYDrBlGe1opKQsS9qdDlJJThw/yac+/Tm2dvr87u/+Drvb61xYukB/axNbjigqW0sGNcakXP3oMuur65w9f5ElIbj06EXeef9ddrY3GYz6yCD56PIVnnj0UV579dWoSEDwtnJ8NqSkRYGrCtJmg4YQnPGOPy36XBMqMkQdKGIggPTRWgBhkT4gQxwy1WYS8Tonkkb25wUi7jiTUIhosx29j+tTLA6xpK9BlcnXa89iCUEQ6xoBaQCFxCkoEk9pFF2REIDClXGw5Ym+7IVlp8wZektXZWAD91fv8iM8O66i2+kxu7jE3Tu3IqEgyWj3pvj0pz/N6bOnseMR/8s//X+xcvs60mia3WmeffElhoM+3W6XRqvNM8+9gLWOr3/96+SjnHZ3CpM1WTp5mtXrVxFCcrksqHrzGDR2SnOrFdhtatLC8+jxBdpqSIGIayLE37VyMvoIqiYqMag6sKGsHFKPcKXFpG2qkJA12xS72zgfKL0naU3FQbWJ+/NU7yghBDoXP42SoK9+yK9M/5BrK/fYriw2j3WhNoZWq0273QVX8bM/8/O0O116y0vMdTr09/q89uprfOkrv8ATTz7Oh2/+iM1yg5mszT/5v/wPvPHGG9y4cRPvHIvHjqIQsa9UkU3tXLQwsMWQYyeOIaRkXJV4Emw74zff/hEfDO7yqY92OHWzRaMR+xFHZCoardFSkJgYsJjoBJOkNJKUdtZjoafrPqD2Kg5R0eeEjxiCc/Uw32NFwAUovafy0Q+2rDyV8xTOkruKYTVmXBWMXMkgWMbeUzmHryoqW1G5mA4cw00t2hHBWCFAKLa1YHvgeUE0yV1FIQKZByEd3kXP0yzRrOtIyJrOGtwq+rzb0ayt7II26Cxj/vgJVq/fIJGSueVlytxy7uxZfvkrX0GJwLf/+lv82Z/9OVvb2/zjf/xPaPVmcEXBb/zL/y+XHn+cJ57+BDrVWHGMn/nFX+U//vvfZTzOSZtN7ly/wdzTT3Pq3INc//D9CPx5z6tFn58SLYLwVMGjgMIHnIbEKNITJ7BKImwFgYgrJdEyq/Ie70oGe9u0ZjNsHm2NdJICtRJFgy2jkk8nyX49OyFw/SS3n1yii6wn6TJOaFQ0t3U2+oy5ECWQxhwyvhYCgcRo0HGXJNEqTu5FTBTNjCH46H0WbIXWGpOk4KI5bJZlBFdG9ous042EoNVqxOPJVigRwESvPqkEwVeMdrbRKlKrdWJo6GjaG4KGkCN0bOoRGuHGeFcivEUZRQgWITVBpShX4X0ZtSmmDVWF8pagIjggpQKhoo+blDVdViN1imzNM3fhJXrnXiCkHYJp4oRCSY3SkwN3wlKLTaYPE8ntgbeadTZSOX8c9JqAfIeAso+/Z3/zC/v34dDP+M+95+EwG/DjTL6PP/fJv9bG54dAwMOsvI99HOr6osdi+LGfGf6Tz2Miwf0Yggn7KT+T57XfWNanbgiBYlwSqoqskSDQKKUwSmOUwfoIOBsdGZpKGYR3tJtZZE1JjfeerNehLMYolaCkwLoKrVNcWSJVEpkttog+ZqkmCIUE0iQeyLYsyBpNwnBAcCF6RHpJ2uxhGhEYNjIQeS0BqhxXlpgsRQiLQGASE2UpKKiZWZUHqTVaxIlKWcfMB+GRJuCcwUpDqzeFQ3AknWFmJ2NrZ4hJNHNz89xfuYtzFbs7W7Q6HdqdXpTN2Dh52N3cwjmL0prT5x/m1JkHeeDBhwl4xMPx+pY1y6cocpy1qLai2WyycGSREydPc+XKZc4+8CDrGxtURcFoNGJnMMYD/f6A9Xt3eW97G6EUiTZUZcFwNGI8GnP9+g3anS5TM9PcvnOLY8eWWF5eYm9vj+FoTKfXY9jfxZUlkytCK0lae75MTOInaE6UYYyiAa02NZ2+TpwyBqF0vLaNodFs0+n2aDQ7LC4d4dq1lLKsED5QDYfMLnUZbm0w2Fnn6mhEo9nk8Wee4+TJk1Fqp6KXJz5gK1ubNYsoERMfbysPFrXYZzZNrhPCxDA3XgOu9kKVIsQ16lxkTbmAxGK9JEvSGMZhbWTniIBzEokmMSruLT6QJAmEeoDjooRT6hQjYpFfOEeaJEgdG04RXASslUVJgySueSwEDCprUY0HkQGZNiKlXSd4r0m6HaaNYXY64drNVaZmFxjt7SCcJDhP5UpOnD1Fq9lm9fYdiqLAlgUbaYP333+XgK/9AeOUrSqKfaZrUZTcv3cPbQxOChYXFtjd2mSUR/Bvsl9OUliFlDSbbVrtNs45xqMR1lZkRjPdm6Y3PU9vqsudtftIbfDesX7vHnv9Ju+8/RaBwGgc2TILRxaZmptBAuPxkOm5aczCDPf2dhjlOflogBwGSlvinSNNUp548kmarQbra/dBRB8UH6I35dOPPxW9k1R8n4KH7Z1dtnZ26iEL4CHK/2PycVEWJEaRZRlTMzOs3FvFu+ihlJqYqL2xtsZgOODixUe4dfM225sbXL96heOnHmB97T53bl7n+LFFzp07V7OL44YqaypdbbkbAT/nfnzhHlrCB+DIxwdOdRARgSAVPrjo88LEXytKcgLRd8iHiTw9snicj8xLKWMaWggB6eL13h8VKOkwGiQGpRKKypFoiRfUMieFEik2H5OzQV+nfO/br1GOvsXRY8ucP3OSk8eXkFKxvbeHTVJW17cZlznDtQG9bo/L91fZsjOsdI6TTWnev3yd3vQU+AgoewQ6WJwQ+9KPytkorzcJ/b1d8vGYNGvQm5pFSMnu9hZJ1sCkGZ3uNJ/97Of53ne/w+3VVV780s/S6fZ4+vnnub2+xrOf/xxOCKayDK80J86c5tz581y9epUsy1hbWWFp+Ri7m5vsCsFay9BsJMhmix0pyNua9twCU0ZFLzmpaClDpuJAx2hNgiaTikRIEh9I6gGhk4HKB8qaTTC2gTXrGIaK4XjMIEBhK3KiGfy4rMitpyRQeQda4aVgUFXs+JJKCOZ6XdYGW3y4e5dWrwkyMlGbjSb37q/x+g+/R5KkPPzoJdJmCyWg9JZWZ5rKeRIhYnJ33dgIKWuf3olo4RCoV+//4mCh1oEiBww/6opmIi33vgacRfS4bTfbCBwuVGgf5XyNRop0hjTL0CICHbKR4EJsgKqqpCpzCJE13GhOkQ/6pEkK/TXcaINUvcWuOM9qv8WR6RmG4xF4hy3ikO3k2Qts7+zw2tpNjoshc8uLjIoyen4lKaoqUUqRNhoQYvBWs9GikTVptFsEAjeuXYnsam0wSjMajgjW8cXPf55HH32MoihQWmFtjtCKMw88yFd+6W/R681gy5w//A9fRWrDc5/8DAuLR/j8F7/I7//hHzI/O83d27cZjgt603PsbK7hhOCKs9zf3GRuaRG7vUVRWQKeH7oxo+kFjigdvawB5aJ5PCGGbU0yUfatfITAiYOhwqQ2DkRJvvXR0Bwf/14ERylsrDHLCPQKB74O0JNCoIQkkQpjEjppk5Ozy3RMAtZSZF06xZDFfBrpPC8mbVR/zGYr4Uc792m02rRmptm6fx/nPafPnOXIkXn+xf/0/ySUY3aHO1Q2Z2dzjfffeZv55eOcO3cO52IfdfLk6QjimpS1rT3OP/I4MwtH6e9uceLUCWanpjl27iGWH3sCIVRMpXUVuZQ4GSi9RakEQfQPDgTcaESj0cB5F1O/lYxWMd5hK0uz3QIhSIxC+EAoY22sshiQZp1lXEish0YjoSEDUkuenrdcmg+U8g6b6TJDN0+r0SJpd+nX/rN5UVEUBc5blDKcPHGSK9ev0Wg1qWxJOR6iZAy8mF2Y5xOf+iTTvSn+3e9+lTu3boH3XP7wMq2shRBxjymspZ9XHD91iiePHuOxRy9x8oEHcD6gtebJxy7xwUeX2QUSYDQckRcljUaT0XBIAG7iuC88Z5WhP9rlyOnjtM+exezt8vmNDd7bHdEvx+SuZJLvjZS4Ou5pn/MfYl/rQ0TiRAh1kAHRw1EIZN2QiKAokXgVvcqRMY4SKQg1KUaJGiQJvpb6xvTyPJ5+WGp/eRnwtsKVFc5a1vI+QoAloKVgPCrRPnArFHEgU3jWb9zkTrHLWwaUMui0wd7ubgT3laTd6XD+wfM89cijeKkY2AqdZYyKMfNTCzzz7LMEqeh1e0jhePf9dzlx/BTPPvcCVy9f4daNGywvLjEaj3n8yadYv3uL4BybwbImLWcbDbbmW7genGh7nplpMJOWFJtr8cwOsUZw1uPtAKkNic5qIoVAa0MZXAygbDRQ0hBsQBQDjIis01FZMi4rpBBRLVWDXT4EJALrBbMnz/PF4+ewtuIPv/anvPrD7+0HdYGgyAumez2eeO45Wu12HP4HB50Gzz37FGura6zfuoZ3OTNHjzPTneL++iafePGzPP1sweq9VXSqqaylv7fHRMitahCn2Wpz9/otBv1dTNpgutcg680w89CjfPPKR3zHDTkpJUk5xkTruji8D4JWktLSipRARmTCZQEyDxqPDp5ECVpS0NWGhtI0taFpDKk2ZMaQGR29xpWioRVSaJRI6j5TUgMysS9RApeqiKmoOCAR3sdzNXic9VTWUxYFZVHFJPTCYqsS63JCaclshZOxF5Fe43EEpTBJg6AkC77kvWsf8o2tO8iZLj9c2yCoOIJLu1OURSR2VPmIUV6SqgZf/rmfJwC/8c//F959+02EUnSaXbq9KZzz7O7s8sE7b/Pm6z/ku9/5a/6bf/iPWJjqQRC88Okv8PU/+UMSqSnHA27duMn5hx7l1pXLeBfPhh/mQz7bbIIPlMGjlMCLCo1imCYw1aZpK7LMELyncjIS2qoChMbmYxS2Bu2i63DwYF1VZz/I6PtJVGP5qqTyYT/l+Ce5/eQS3RpkcTZ6YjgJrhJ4JyIogkSoaI6JEAhZs/KMwVYlzhVEIlKc0mepopFFaW0I0Z/FOUeSJggfY6tDWWLLIkokVSzmY+qTiJM4HzfiSNsF6gYhmnF4pIzswLKyyKpE6wZgUCiazZQiL1C6DkzXKYgQmSeqgfcOZVJCNUDqFHxVBxhUqBqkJKjIjNGNSOmUGjV7nMbiBXqnHkP2jiKaUzhpMGkaAUBkPDxqMK+uNvdf30lxOVl0++m2h5k8of78ULG6f9uXmdRfO8RsOwACD7PxJnc7oFocZluw/53UwSATEO3jzyHWz2H/+z4WrkFtPnvoMQ+AycNfOwz6Tf70+79EOHjasUHfl0rDhLUX6gNj3zfHHzyelB6dapSKk/bE6P3Qg0YjxbscSBGmjVKKMFpDyZggaIygyC1SttGJIksSXFlGb58QKfoBkCohyQyuHEdwT8uYWKo12mTYqsCjyFpNgo9hDbYs6sS+gwmhEDHYw5UqBr1oRZAGQvTAUlJQVdED02hDaT3eKcZIpEkJOsE6Q9JeJD1xlmzhDKp9hObsIi7p8pDQvDv8j8jkPsYoRIAb165SlhXBWe7ducX03DzNdgvrLNsbW+TjIUIInn/hRX7t7/xX3Lu/jnOeohpTlgXeO6oyAhdV5RjnY/r9PnlRoI0hzZo0Gh3eu3yV0XBEWeSURcGoqBiNh2TtNs1Oh6PHjrF6byVKdrM0NoJFQdJssL65wdyRBR588DwbG1v0ByM2trZBCMaDQSy2pKylsFHePAGEBXUwiVD7/ksTQXxko9qYSCzr+2pod9tYa9nduc/mxgpBRmB4anqaoqzqaW7AFyVHlxaZXVzk5NFjnD17hsUji7Rb7egpKAAfgwviz6qvOSf2Gbz77eZh4PrgSo3s3hCny1oYdBa9HpQbI7ER7PJRdhs3a4cwBmMSUimxIUpYk0zjXWRASxE9TpSEJGuhhcTbkiRLSStLZgzjwRDTbNJNMjKl0WmGNZGNbRJDonQcvCiNNgqUxXmBFIZEp+gsQakUqTPSZjt6ctmcZjLCZHOYNHr2KJNiq5KAiNHzpeXhZy9BkDhbUlUlGxubjEcjjIygLDKJbAwp98HNqipjEyfiXtTfG2DrRoAgolw5uGgvgMCkGb3ZORqNBru726SNDIEkH4+YnZml2W7xB//uN7l89SO+8ku/htaCdjuj2Wnxqc9+jjdeb7O+vs7MzBwmyWi220ghcAE2d/a4dvUqRTGMiVxEhm5MoVQkacrdO3dYX9+kNzVdT/yIAIvRSClIsgZKGRACk8TgKKFUZCPW+72v5Q9amwhseEdiEhaOLPDee2+jjcbZiunpae7fX8UQ2Fxfp/f8FAvzCyRGc+rUWYIrefO17+OrgrnZeaZn5uL5WcvK/ceWaA1Q/xg8PTEKPzyoimBgXJcT39gIuE/8UmsZOAeDLOdiOrsNdeO/D8gm9RURzdCNmvgZQQgSDzRNigtQhQiyOA8VPrJ68JBIkjRQVRYhHEZF/sT61hb3Vu/wvb/8GlmWcv7BCzzyyKOkzrI4P00+3GM46mOtZZwXpM0m33vnHZ64dIFWM+HWjWskRke/r+BRwlOUtl7TRGm4j+bhlXU8/YmXQKVcvfIhg91tlDE0Ol1KF3jooYcY9wf87ld/m/MPXUTLQHdqioefeBI++pDBuECplPFgxDe//R2efuF5Lj32JB+99x6y1aS/vcvjn3ieK5c/oLQV2wtdnn/sEtO9DlkZAw+kDChn8TZ+hMpRjUuqYU5pKwbek3vPyHr6zjOwjlEI9L1jJDyFVuRBkVdQJAmV0lRICmIDULmCsixwLrJolBQ0kowHzj3AseNHaeUlem/A7t4eX/+rb1JUOUhBV6mabSoRUseAq8ry7Kc+SaPVRMkU6Szbd2/ynZf/iocfucQjjzzCKM8RRENwpTVVZWPSr4Qg5b7U+3CtIIUg4PfBu1CfIYfX86TGmezV3gcyk0SGfZrUNhyCLElpJFN4F+o2s8Q0NTZ3JEpQVTlpM4vysm6XfJSTJBqlPM468JK02iJtVVTBs715j0G/T5KYeDbpBmmzyYPHT7O9+wArV98nbG7Q7vYiMGOraIWQprXKQKBdyszsLK1Gg0aaceWjD3GuwrnA7PQs3sb6+8jcPJ944ZMAGGN45rnnefetHzEuCz792S9y5/YdGu0Z7ty6wbe//VccObLIxYcewWjNpcce569efpnKWnSaMcpzpmam2dlax4fALVuyUxXMd9tMv/A4cuUucxsbHKsMV/I91tKUVKUYKclSVddAExuLgK7Xzj77GkWCIBOSVEWrCCU1RidkOja28UPTVIaGUrSSpLb1iDWgFgotom+VVLXtRJBIDyG4etgXsC6qfUJhqfZGhI0dcr/BrURw31ZI71m5dZ3h7h4qbXDuwQe4ee0Ka2urHD1+nJkjS0iTkDVbTM0v8cnPfBFMRqI0Js2ovGBxeZkrl6/QmZ5GpQn/4B/9HxBUPPnoExw7fgpwNRvP4nwgMXHwaAAfEpQxEUioWd2TPdQIhW639tsC5zVZmqF0ZNfiLB6PDxologdis5uhpaQclbiyYhQCaRrVUVlmSITC+wrBiGnVYG3QZzDISdKM6dk2Poj9lEjhHaPRiN2tHZwLaKmpgiBrNHBBcGRhkYcuPoR3BUePLvHS577A2uoKu7s7qKzN2EawdmZ2nn/43/0TsiRla3OdU+fOgVL7yozlY8tMdzusSUlVVggp6ff7dLs9RqMRIgT2cNxOJbMozHDI+rUrJCpj+vyDzD36KI8rSeUEVfAxhKgq8c7iXIV3VQTXbBWvMWvxNhB8DDh0kw8Xn28ILqrcHFTeU4RQBxkFQvC44Ame2Oh7RyV8HebisXXYjMSh6/oSoRBOoIJBpylpiCen0RrjAwmK4PfYzgfkZcWSSCiHfTZ397izMMVqUWGMYXp2hjt3bmOrkkarQ6PV5vnnnqXbbOLSjO1xzks/+zNsbK1z9swpzpw+A1KRJAm/+2/+BVevX+HLv/yrPHj2PC995tP8q391i52dPcZVxdzZ0ywdPcXG3ds4EbgeKi7OBI4+mLDUs7i9baQYwtBSlNEDXwqBlhofHNr7aInloi+r0JpquIfGo6QgSZtIY+LwNU2QU4odLSmrCq0NCElRRo/HcV4gVZT0CiFqJlvsQWdnZtGJIUhBVRZU3rO+vk4+zmm1ehRFxbC/za2b1yn6e7SbbfTCIv3ScvToSZqNDvdWVjl+8iSjIscW5b5a6d7GButb2wgho4qKgPSerpG8tXKDe3dWQChuSkViDHPzc1x48knu3b3Lm6v38HgKa9FC1/Jhzcx8ysxMl2KY421F2myQNVo00oxGowm+rhdDQAeHdCWirJBlSSgLwmAA+RhVlGTekghIiUC4EZIEQSoUDWloKEmqJUZLEinIUDSUommi2jD2sQnGZGiT0dApqtFGTem4jxpJqD+EiOoOpCaUHldZQhWwpcXt7THVH/NakvEfUsnq7VsIE1ltU0eOcv/WDVwxpDE1hfPw0mc/yfz8LL/727/DG6+/Ef3HXbTW0kmCrRz3V+5RVSWusly9/CF3bl1hMCi4+NjTPPbU03zw7rus3l/Bo1jf3OT8Qw+zfPIEd2/cQCC4Wo25HypmvWcsBGPn6WtJP81YbXeY+ehDnuz2uHjpYZyAxES1U2o0VatDlkl21u5hesuxPy8LkqwZmZzW4kNUNnlvqcYFw90dpFQUoyE/6e0nZ/DVYJQDpEqRJsWVA5JMYlQEZuKCVgdFUiCimyHEIgYbNzgZMEoiauQ4TSJTR2uFRmAShfc2JuBFzi1ZGmWTJomTOm1SrI0pRsFZtDb7E1aEIM1MDAeQsfmrZEmaCCQp2mu8jWbtAo9Jk5gCmUQpmEkSnHP4YhTBJAs60ZFNZz1oEyXBaQaqQTZ/ht6pSySLF9GzxyFtQ+35JGrpWAjEiSJun1F2+OZ93PgnstwD8O0AwpoAW8FPvjIpUmHSZIUfp3vug3CTgpP9yedhUOEwq+6wzGoCOO4HZ/BxgHHyOKGeuO4De7HDqclS/oCVd5iNd/ixJr/vBLTc/45Df9vv/ernt0/bO/xsDz2v/ceq16PSNLtTVEXBRKomdfTXsFWBwhGModmbR7iC0bCKSTre4awmyRrgLVql2LKKLNYadfQiQSZNVJLgRtsxPVcqEpPFaHA8Nh9FMFnE5y7qZEqTNdBGR82+AFvZ+LghFlVCKQTpBKXES4NTGao3i8ka2NEQ2Ziid/IR1NQi3cVj7G7t0Fk4isw6hLTDcJgjjaZvLWmWgbV86Utf5Hf/7b9la3OLxcUFHn3sCb737W/XdGPHxr17+w18qA2C0yzj2Wc/wXvvf0Ce51TWMhoNKPIxw8GA8XgUJ8NJk+npaZrNRpQVj8bk9+4zGo3IRyPG4xGjwYB8PCIvc1xV8cgTz7C900cITT7OSdI4oStt4PrKKtNTM2xsrLO7s8v1azf44k99iU53ir/+zvfJsozhYA+tJSii9EaLOhI+JhgrUZuja40SEXjQWtcDidjQNRpNkvogkzoy96bmFlAqUueVSWk0Y2JwmqYYbcjS6NmXNqJfX/Q1kQcNymTNisOy2wmQ+3EgHXEAnkwYWpN/j8MNyJRCqyjPzkdD2u0GUiQU4zFKCLSKB75TUAlJK0sp+/XUVqY0k5RSJLRbbVzl6bZatQ9pAG9QjYSAJ+s2KIcD2t0uQqtosJtk9YAlYJIG+WCA0pE9bVSC0ZoqxIZMuDjFD6FJ2urhypxgcxSS4DRZOs3xpSOsrO2ytX6P3vQcG/lon817+8YtXi7/kt70DKOijNKhVpus3UZLwebGRpSZyxIZArOzC/za3/v73Lpzh82NdR44e4Z2q0kjTXj1lVd44/XXSJodNje3KMZ7KBEorWV6dg6RtghKE4Sk0+0xygtCMabZ67C1scHtK1e4dP4caZLQ3+sz6u8xt3QE3ejw0ud/mnw0YnlhIVpCjAqQGiEVVz56n7LM9yXZQkTQOVUpQgjy8Zj33n0bIUTdlEeAOWtkGB39pbKsEdeV1jSbTYwxSB2Z79poksREE2StEWh0kiBVbHRmprsYFX2FKmsxWRZ9O61j5fYdfvTGj3jqqad56OHHyPOcb37z69y8dhW8Z3n5GEol9EdjjI5BO9HPcBKyIaNBfb3GI3gi9wdXB3588eaDPwBtvKg9dHWd7Fwi0AQBMkRATsRFj1SagEMKhQ8BJRTeWVqNLuPxEAKkWYrw0GxPUY0HECJTRQpJacFZh0l0DTDGwJC8CoDCE2iYgNIysj5zh61KNvs7vLqzzdXLH5G128zMz3P02DKDUYHwnsZ4TFEUBCG5tbLO0tFjBARbW5t46yiLnIXZKcpqj6qq6mFmXaMEz9TMHEdPnGT13jqj4QC8QzdamKyFcHDxiSf5zrdfRlRjEuEpd3e4feM2KtX0pmc4c/oUg8EO/+Z3fothUfLYE0+wtLxEt92i2W6ztrLCYDCm051ib2uT1/b6LN9do9cvoKrwRUx3dFJCu03pBbnX5MZQmhBNvYNg7B2hZvoWRYEPjqoqcLak027x1NPPIOpUzTt3VuhvD+h0WywsL3LrxnWEEnS7PWbm50iD4PTZMzx66VGuXrvJt771l/QHA4q8iEEAicEYU0so49lTucD8/ALHz13g4ceepJQNejMLVKMB+u4Ntu/cYOfoEYryPNvbO2gpyBJDM0ljHefi2aVUfQ3WZley3qN9fRYwYXjXf+7XQTUgLaVEChlrXSFxLg68s2YDfEAbhXMVwZYkWYaqLRCqqvbeAaQPNLpTuKqiGI4px0OS6W40yi8tKstoNZpMUWKEw1rL5toqo/4utVkqa3ducuKBixw9/zinHn6K4ea96NEpovG3C4FxUTEz1UXrjLKsOHr0OEoIBv09dna28S6mmAqlKa3DKMmlxx9nfm4uBlBlDQaDIS9+9guMx2NefeVVBoMBR0+c5DsvfxNbFuxsb/HOWz/iU5/9As1WiwsPnOX1N99iZnaOvZ1NlhbnuH1D461jRwZuhsCRqzdY+PWf48wnnuHR7V1+Kq+YJDEqper0R1HLGUX0vPYC4wMhWIKIvtSiCmgfULKuM+PsBo9GBFnvNzF51HmPdQFnbaxXxmMKZxlbT+E9hQ9UQlDho7+kFDghqJwntzYmP+IpvKUKHjEjkAtHeHVllTwEOtpQ7O3iKkt34Qinjh1jeXqGi48+Qdpu0epO0d/Z5sTJ4/zSr/4aMwvLKAQvf/MvENrw7IufYX5+gQ/ffScmgNucX/jZX4lpwcT1pmQSvfaE3D8fCTGN1UgV/UjrukFwwE79G96+E3P4EEP/tDJRfpYYhLNIJRBCI41BJ4HgJXlpyUuLMYo0iaSNwkqM3uZMd5ZXrpRc/+hdlJAsLy8zNTeHTBPW76+xt34PX5ace/gSq6v3Gexs188/1pLLS0u0Gy2c9Tz15FM89PAjDPu7EASFd1jnKfKcLGvQ7XT46MMPSdIEJyXF7h4fvfceR5aOMHdkgaUjC1y/8hFlUYBTcaA1M8v91bsEIRgiWGs3+Giww2OqyWp/G3v9Q5YHO6TT06hWA5EkmESTaYXU8YxCKoJSkBhCIyGog5czynAP+iVcJCNENl594AeJsJHBXZMBo12MULFOULImGtTDaKFrxrcEZD24iiw+T2RA+wlY6D1VKHDeESqHHZSMt/sk1++y9+E7pGmT90zCcLBDtzPL3vY2MgTSNGN6dpalpWXmF+b5jX/9L3nosSc5dekSevk4X/qZL7O4MMd4kLO4dIy333yDV7/zMl4Grl+9zMLsPGfOnGVmepq9vV1Mo0V/WPDwY8/wg7U7JAbuNkvk+S6p3KYYFARfUu4MUEYSsIg6FAtsVCSpaDdjnSdLDdZVGOmpKhA6IU0FrioxRmOyBuPBiNAIFKWlqHx9tsb+Ny+KmMZqbSREKIUSUeKPSWMAnEkii6rKuXdvhcqVhODY3t7g3/wv/5TVOzfwvsKYlF/69X/A2Ycfodtu8dd//If85df/lIcef5qXPvN5zpw+E72shebW7dv093bjWaEkzjuSbof5k6ex/BWzR47Q63SxWtLImiRSUtqSZz/1IolWaCP5wQ9/yJXLVyEIrM3ZuH+XjfsrUAOV7W6XtNHEW49WsR5TJiGIWDvGLAJFmmakzS7J1DyNNA6IhlJgtIz1nBAIqRDRECHW9c4hXYHEI20EJ2Vl0UUBRQV5hd7rk9ptMluReEcSPA08WfBkUpJISI2K4RwhDuqMUEgfCM5FWbaNFlbp3AxjI3B3on9jb36RJEkhH1M5S0undLMWzz/zJFVlOXP+Iq+/+gOcHbN07AgPXHiE1Tt3OHn6BPfu3ai9tQXBC/7qm9+iPxhw+uw5pntTfOJTn+Krv/UbpK025XDIvdt3OH7qLCs3buCDZ895XqfiBe+5kRiuZy3udqdh8Rgnjy3xxc9/AoOj2L5FwFAIjbIxRby/eY+iGFHlO/hyiHWWtbs3mV04glAp3laMx0MSHGU+igFDo5yk1aLM+Ylv/wUAPlFPRQ3t6WnGwz7GQKrirCEaWkeGgTaacjwkiCgZKEZDEhHTdrVJanZNlM5WZY5HkSQpSgpSkxCokMrvH1qxSfYobcB5tE5JsiZiXESkX0avpxBEXawLpI+E/3w0RJmMRFiyJKMag0kkSlaYtIktq3qBe4QrSY3BlTnKZIhgcTXnLqCQ0pC0Z0mmjqB7R+gev0Bz7gyyd5ygE4KK/meR4UedzBRqYDSAm4RFM+nsa2DvgKn340m1kQhQe+YdAt4Ow28hTGQkhyhuTEC7/Qf7+P0EsH+/Q98xuYOI/nqeAwDxMKvuAE4ThwDJmqHxMdBuAgb+TY+9gwK6Bj/q+0+ewr7P3yGmYtj/mQfPYHKHOmNp8gsceqXiz0oSg60sWbNDmfcJUuJtFWl+HhzqICii3I0/QygarZSyKOuAilg0BmIHapIEVxRIGQh2CAwRokKoBJO1ESgkHl/mKBHZVYmS0RAagdQGJcB5gdBZPNSyBl5myFYPWVqymQWSzhz53iamO01j/gTtpfMkU8vItBlfW50Q6gYYBFOzsvaci0Bmt9ti3+mjblamZqb5pa/8Et/4xte5f2+F2dl5Tp09x83rVyjzMUzAZhG9bKSUtFsdvvvtl+PU0Vqk0jHBs92i3ekwN7eASRKss+TjIZvr9xkOB9iqoKoKqrygzEeUlcVaR1XGa9gHx+qt68wuHmdm7jw3b11jNBzQ7U1TuMDG5hYPPXSJRx95hKlul+mpaRYXF/ngw4+48tFVZmamuHdvh0aWkRhNliYkxkSPNh19KlJj4hBBqWgFYEw0b05T0qyBRzC7cIR2u0vWbJGkDZK0gUkytElJkijJV7WHnlYqmlFzwMJDiH0zZSYA38EFhjjERJ2wUP9zt3CwsKOCzMf1bVJFkmiCz5QbdS4AAQAASURBVGkaaLaalEWBYkyjkUBuIYDG4ZUCoUmzBqEaYb2n0WiQNhOktaQm0MgUozEoLfDB0sgM1goSKamEoig9LaPRtYwtTSV7gwJN9EdVWiKcjibpIo1TbVeRZgahUrLWNMIrQjBYmSCSKfTUCaYWTnHc57yZKASexeWj9Lc3yEcDJl4iqyt3GY3HLC0vszA/jwS2tra4e/cW49F4f69Ik5QvffmXef7FL/ApkyJkiMMbCcJbHn30caampghK45AMd7eR1tLvj1FZSt96tjc3yLIme9t7SGMiaBU8o+EeLgRWV+7x+LOG9XFJq9elco6X/+xrPPnUM5w8cwajo5R5Z3sLV7/O1XgUPfFkZLt575GIGJYj5D6LyFpLno9rX0DY3apDJGq2ujFxvTobZdE6MSgdAVUI+Bq4FyqJZ6yO91FKs7Q4z+07qxBge2uLRrPNaNBnZ3Odd99/mzurd5hqt9na2mB3a4vBoM/y0aOcPHWG3eEIWcvlkySGNOia/SFr1qCUMcgq3tzk+DjYh+tB0oQJRQjR0xdFo9FDuMg60qYZ93CbEyZAnodOdwpb5hBKtJCYOgiinaaIqsTX9h9KClxZ0kolRQjoVOLLQJASrWU0PVBxz43WA55mI6Uqcsq8j0kM2iSUUuJqTyVrK06dPc/xkyd55713sNZzb3WVTjOte7VopbC6EhOdFxaWUCZlY+0+iY5Nm6wLaQKEWs4chKQxPQsmxfkSUZUxiXNxie2dXaa7HXq9Lh9dvcaRpeO89+EVzl+4Rp6XTDVnOXX2HIPdXX73X/5zbDFgYfE4IjhaWUa728FF7SEh0Zw+d553X3uFa3nJv7j8UWQ2ViVKKpzz9HrTzBxZpgCqWgJW5nn0A7Q2yl0JWFfhnK3fX0HaaPHrf++/5md/6ZcxJsGWJUVZIpUmSyOjgsB+gu3EoD7gkcDU1DTHji6xubXNcDTmnQ8+hOAoq5IkSUmSFK1NZEqXlp/7yt8iSRLGO9skwjEGiioQlGZqboF2q83tmzcBweL8AlmSfmysOWGOippJOykh4rYtD8QP9e+3X0HU+7l3HkKsS7XRNJsJ47HHC0EoS7wtKIInlYEkkVReMNzbQ6WGYKvIOBJQDocxzdgIGqmmKhxKgBcxtTAf95lq7jI3dYqbiSHLMgie8XCAd5Zy1OfDH/2Qm9cuc/L8JebmZlm9fYvpXhepZfTmlBlSBAajIVqnDAZD0izlvQ8+YDAcYZoNTKtFUVmyRoZAcOaBs7z52iu88sr3+fQXvsTJ0w/w4LkH2drZYXt7p/bu22VzY50nn36Wa9eucfnyR7z0+S9ivWVp8QjlayWznQW21u6RZS1MklGFEYWAv3IDHvYZb/7+nyBPHGEubZLVAzYliCodRN2IK5RJYrKmCrVEzOGIjCjrJZUNVD4yHZ2EYKNnsHMeKyUFglxCoTQ+MWA0tAzeNPBSgdExPE8abA10W+EpQhl9R11gOBzTbnXptpoR7HOOPM/ZG+zx9vvvI5OM3tw8qzdvkWQZiUyY6nQ4cfwY/8d//N8z9o6PrlzH+RH3V1fpzkyTaMUf/f6/483XX+EzX/hpRnn0crLFmMEox3lHatQhkIeP751yghLV63fCMJ3U3B+rfj9eUQghMMbUn0vSrEOzmRJUgFSj0xQvDM4YtBwx6u9SYtFSY20MQtkbjtEmxYSCObXNfDtjs9Nme32dGx99QPFeyfEHHiRr1iEQCOYXjtLfG7Cro7xNqng+zR9ZqH0SJWlmovRexYHs5u423/v2d+h1O5y/+DAfvvcBppHw4PlzvP3aq/zJH/4hUite/OznmJqapt3rReUNMcl6OM5ptDuRTe8DhbPcVRafSearhNmgebcYcdPnLIkKLRKcL2LNHTSqJA7Ya3VOrPk9XkKQEIJC4RETCX+IgVDBR+ZiHOzX6jdUXQPEYAchVA08xaFZZKfG31tKjVQGaXQMkFTRGitattSgjIr2P5UUeBt9Zb2wuFYOBPp3wR5dpmobPiq2QCnmF46wvr5G8B6hIwP09OnTvPrqK3z75b/knXff4deT/z1LR49SjAu2tnaYmZ3DFiP+47//KuPRgLSRceWDD7jw0KNMz81zfHmZN95+h94MrN29wa987hM8nTxKZirmpGWgd8hHOTFA0FEVFV4oPNG6KGhJIIns48JG9qKKhBvnBd6L2ms44MfRLoAqMNxaBwv0YDjO99OcK2uxNvYWRVlinYvsqVrRVVQlBJiZnqEY9KlGA8a7u+wmKZvra2Qq4d7qfTbur1AMB/X5oWgmCVop2lnGratXCdby4Vs/4vaNG3zmc1/gp37uFxjZildffQXvbSyAXMBLydTcPFNTs/zqP/xHzPW6HFmYo6g8/z/m/jvWsuTO88Q+Ecde//x7mS99ZmWWZxWrimSRxaK3Tdc93dPTPdMY7VhAo9HOYgFBEiBhIUDQLiBBWGEBARppFi1hZnqmZ9qR3Ww2m00WPVksX6wqlkvvnn/vumMj9EdEnHPuy+RoB/xHF8h81xwTJ+IXP/P9uV5vjtCTxL5J31Q2sOLjn/4Mz3zn23ztT/6MuBXx4EMPEcUxSivSacJ4PGE4HHH79gbT6ZS0LBEyqQIKPCmrwAzpGbqT1qllGnSaklilsl2dNbXj1fIaLzCONuGZBohxGBJFbVpzfYIgIg5C2qFvoqJ9n8j3icPARD5PJ6hkSpnmZNMJeZ5CkaKHYybjEUU2Ruzu009Tjp94iKs3biEEBEHEYGGFycGuqSvaauGHARfOX6Dd7pHkOfc9+CD/9f/6f8tbr7/G1WuXabd6vPT8C6wcWWJrZ4f14yd5+L2PMy1KWlHII4+8l95gHl8Kzp0+QTuOyDVkkwlbW5ucPHUPnh9BkYHWfLtMCB5/ivHiEa7vp+wle8xPbvD00QHy7W8xHm4jV5YZH2SUvocqUqb7O/z8lV8w3/bYffMFxpOUI2cfYrS3SzneYbB6kjyZoAgIOx3Te2KuQ9Qt2L19iWSS/1Ib8H/q61cH+IRAaUG31SMZjWnHklzGBun1IYpatvNNSpbktGOfJDOh/54URFFEXgTE7S55OkaXJarAdlkE33ZjQSp0qWwnN6Nkm9TYEs83dXuQPqbmUGhaheemjlYoFUVeIv3QhEdrQdyOSdOSlpcTlBOw4KIXtEyefSAIQr9KEZJSInyBpyVp4SHiAdH8MbpHLxCvnSdeOoVsz6NECH6E9Hxr8HszEQtaWSBIGXALF2WnTQdBB6zVkWkNT5BlRs0adtU6uL82ugcXeWd/vbOrrnuZVIf6nppay20c74A21fxc3/lw2u7M99pF7LnvalBvBrzTNj25SV8OxKyuV5/XuL0dU/N5a8C0jkYEWx2qBlewBUfTBE8ar4IqTScr4UfIIjPGqtCo6Q6+l4MtFK5KE0lapCmFDEytMswaZtMx1gIwXbBKYwTjhQRhiyLNUcJHiZjCD9DtLnJxne7aGbprx0kPdpFljmwPCDp9gk6fqN1DRj28uEuhNEoE+GFsAAJtjEOtIbcAqKiaBhjleKZBg5tD690yaQQlaZqTpSlCaB577DF+9qyiKG9y7vw9IDSh7zMZj9nZ2aEoC7TWPPjgQ9x7732UVkAgMM0TgDxLydKUrY1bjMdjijwlTRLSNEEVBUVZUOa5TXkwaSZVlKdt/HDp4jscPXuevYMhR9ePcfXyRaaTEe3BAqPxhB8/9zxPPvYYa0ur9NY6vP7mm/zNMz9A+BGizFgctPE8U7y13W4TRYY/ODAvDEJacYsoipB+QKfbo9Pt0e50ieMWYdzCD2MCP7AOC886W70qOskpaXVTDKdQ17QnBNaYbe4+ZmjZytUZ4H5mT+n6xCqSVxvF1RMm1a8dRySlQBcFoS4Jux2Qgk4oTJ2v0GfiaTw/RiUJUdyh7QWQC7qdEITGC2MCCb2WIC0K09hFC9tAqED6klD4lHmBH0UEvmCSFPitFtLz8MIe0xLCVtvUGuwfxUv2yTYuEfgdCuFR5oLC9yBeoD1YR/ZW8NoDRrnigYcf5fWthCLPuXn9Gktr61y/9C5a5wgUCs3OzjZ7uztm7mfmyPFJyfs/8kk+8snPMslKvCKrugxrT6CKknZvjr//D/4xWVEigxChFLoo8D2fG7du8Md//pd0u10uv5OSjMdQKkql2bx1m4ceDSjCiCc/+jGOH1unzDN+9IPv8r4PfYg49Hjmm9/giQ9+kPc8+jjb21vcvnWT4XDEyTPnyMf7Jj1WlRQ2msgseWmoxhFCg18KS09KC1C2oHHhmvBIiiKnGI1MdCqmw6CUEnmwbyPsveq60vMIopgw9EimGVky5fip02yUOUkyZX/rNrpMOdj16HRaBJHPYHGR9z/1NEGrxSRJaMUtCEytKokxYAqtqu7IZVka14qzOauIPlsuQ5l6V+7hjHgxXVSjIGQ0HRLGEZmNdOqEPmVZgm04RG6KiKc5dCOPThCwsLhANt4lmGuTK810miKkoBNq+oFmnEumhY8XCXrdLmVWUJYJQRjgaZ+420V6BvTwZMnawCPyTXq0H0UEQYCy833p4lt88tOf4+ixk7z17mX2d3YZHeyYSCLrdNRKceXSFW7cvMVgMKDV7ZPlU1qdNt0oYn8y5eDAAOxRO2Z9fR3Z7jIdjdjf2sbzBFmpGI/GxGHI/PyA1fkBT330k3TbMYtLi+iioBX4tNptEgSokjD0WRis0p0bEIQR2TQFT6KEh/QC2p0BX/7Hf4tvrHyNX7z9CsODITGw2h8wmJtjfmGepz78NFIIvvXtb/PTn/yIycEBpY1cMg1JjM6kRa02eH7Ae594gqc//nGyXKF0Dkj8IEL6fpWOrrVGFKZucqFyjHddVft3cWmJpZVV9veHLC4uceXaZQLfI4pbeH5gvf+aK5ff4jOf/wI3bt3iG3/+p3z5K79B3J+nv7DMqXvupb+4yng44tLlS2jP4+SJE2gNRZ7baGrrABUGZK0NIQvAClUB0UZ7aDgL7V7SaEOXQFGUjPZHeIFPluT4Rkkl9G1avSfZG43JCuh1Y4QSKOERRz66yJCBqRcXhAYo1ipHIkizAul7xHpKlI8IfBPR4tkuqAJT30dKyIa7vPnc93jHD9BaccULTIH4+TmWVldot1p04zae9Il8yc7mLcajfRaWlhknielQGZrOp2EYsDA3zx/9+Z/xxluv8/q7b/PZz3yB40dO0Jnr88CDD5AkGVEU82tf+grnzp7mheee4+WXX0GXJZHn0Z/rU2pFGIV0ux2KIjcpd9Kj2xvwVq74w3TCudYiWa+PKDXkJdPpGOmZJgFpkZOXilwLdBghgoCyNPMtbEQMCLwoJi8KU39bmlIlRVGSFYokTSkxkZlpbmtEFTmFjQgzdehysrJAF4UFAMz6GjvYpVkqgiC0667o9waUSjGdTgyQWOSE3Z5tbmHqBcZxi16ni9IlYbvFdDwllIIwELR7HXr9Pq+//hovPP8zep0Op8+cIQyjKivHb7fRYYtMCUJbaqimy9qNUgkNJapmDrqh8Dbc3zMfnM4Fgmj+KPf/7f/GlGFJhgx3d+kvrNCaWyCUis03X8DfuM5yp43nC/ZvbxC2YkovZml1lbQULAmfz6zvsrU35GC4b0CRsmDj6hWWjxzB9z2QHr4fMhpPkZ4EAXGnSxAGdFpt/EBy+d13uXjpEq3egNXVNd545eecO3+Oj3zkaba3t9ne3KQ3N+DoiXV++My3+cs//WNyBJ/+ja9AGFp5SQWoBVEMUnLsyBqtx9/L/MI8b126xps7W3QX+/zF3oiPxwNyKfiXWnGws4G3ZxryCG3KCERBAMro9b6U+J4B4YSUJsVZGEex7wc2FdSmJXrgBTbopYrKw0SnS2EDV0RVt89EoZoo87LIEKWV3RpjU7usr9JEBpZlSWabHmRlyXg4YpokZEWBogQh8fOcfVHQj3q8u3tgMt20ZpoklNb2klKwvn6Mv/yLryE1SF/w6ksvsnb0KKtHj/LW62+wuHqUg4Mh7W6PhdWj6FKxtblDkuYMx2PmFhfIswmqGDDJEqJsh5VehgwU5TQnVQJkjFaS1lwXrxSEC6uEg0VUMkJ7LZbPP4Fsdcn2dsiTfTyhGA8PKNIR6f6+aVQhBEkypdOOSDKYX1ylUB54PSaTiXFalQ6AT42jqizJspzJdEpRGtBtOByiipKTJ06zt7vDaGcLledMpxN+/OMf8Vu/+XdYXVrmQ5/4FKODPV556WUCAStHjxK1YnSRs7u3SxQZ51GeZeR5js5LfvHa67zz7juUynRHLfKCpRNHOX7yFJfe+gVvv/0W3X6PqNWm3+/Rjtv0+gOCICAKYhNAYGni3gv3s/wPlllYmGdpeZk4NkEGSZIShqZz68bGBjc3Ntjc3GRrc5Pd7R2SaUKWJSTTCXv7e4zHBxRphtZGdmkXgGMByKanyzSNNF10kcaRi8aU3dHN9HPDT6RJRwEb4IXn4Qeh2QtgZGvgE4QhrTjE73SJ5pZoxxHbt66xff0a58qCvckErUDKiMHcIlevXaRQilIbwPvC/fdRlIJWu4XSmnhxiac/9nG+9/3vo6XgsfedYHgw4j2Pvpe/89u/Q+qH6FabcjJGZTnCC5CipNMxTef2M2Uj6EesLQ24d32O8XBIpgqm6QHP3nybk8GYzsEG97dSHjkdMr/9M0pWyPaHbB3cplAQBjAej9jZS0gODthMA1R4idBrcfze97O4vM7Ga98hlJL+ynH2R1OiThuVp4gyI5/uoJIh+bTgV339ygCfEEZABYGybZNNJ8Z2t4UUHkU2wbPhn55S5EVBu90CXaILQGviKMTTGRrbzEKZqANTo0rYbqQZ0jNIsCdNaK3ppCUIfJ9S5QjfB9upsdAevh/ghTG6zPFFZoqOSw9PGG9X5PsEUjCQualdZQvqe54AL6QsSqsAxkT9eYLBEeLFM4SLx/DnjuL3VilEAJ4pvC9937RudnVaLDhnPMQ0uqKI2qCxCkNtu9fA2CwoJw6Bdu7Qxjd2gza7r8zUtjvknhaHjqkRBl0Ba84grCP6nPE5WyfP0YLrHlUDlKqROuDAjEYEH7M1+dxYZ8bU+M4Ut6YBYrr7zgy/AWYdBjTNSzXmRQhtO9PmCEz9BxG0Eb75zo8jiiyxjSo8Sm2iTrUwaZ1h4JNrHyk1WZ4gpGkIUxQ5nt9C+C2U1yLqd5HtBTqrZxDxgLA3T2t+haCzgN9ZRLT6mKpSgoEQKKGrNRVSUpamtpQfhGbOlEJbr6uwyp6kQRNunSyI2mxy4iJEHbhXlIoiz0mSjOl0YpoXKM2DDz/CfQ8+TJqZmkl5npNME4ajEePxiDRJ0MZdbItDS2uYmKYEB/t7HOztWaBvSpqaem9lUdbpIwKENN4qaRXNslRW6SzJs4S333iV8/c/zFz7AreuX2M8meCnCXgBWZryzPee4eevv0bLD7mxeZskyzm+foSwHBL2Yzzp0Ypj2u02rVabKI6IohZR3CaMWvTn5ml3uqaWWRSbyETPpF65qA3nxXICD6e42edvgvVobeqSaVd8vQZXZYXO1RCgA/TM/nDf6DvIt0qpb/ygrGEc+Cb83vcEqVCUWUbomQLvk1QRtX0EHiqMiXQKhPgyAN+j1eoQSpuuJkNQCj8KCdpt9GiK9mOyXNGOA6J2H0WIFAFe3DZKeRDRa/UNj55OkZ15Tp9/FC/uMx2PyKcTVD5FJnvkkxFeu40f98GPCeKQ4dYenfk5tB/T6S4h2nN89IMF1959g07LRFGurR/n5rXLVc1BIaxSUugqYkG4/SIkj7z/ST73+a9w/eo1U8QXjSgzPEzNIrRR9ISAJM04GI1MKjPGyE/znMALEKWg2xlwsLtjuvCOD7hx4watuMW5+x7k+OnzJGnGjetXuXHtMu++vcpnP/cFsiRnb7hP4Pu8+vJLDPf3UEXOkeMnefWnz1CqwnTGFdbJogXS842hbr2uLqXDRWz4vk2dkLVH1vc8A7jY2jKWUDH1Xnxc05CsMAqDqUXpM01S4qhFp9tnb2+f69euEoYRQRAyORgShwZcSydT7r33PtbW1zl+4hRR1KLdahPayFfpSF+b4tVUTplazlX0Tw1izlC1BrQpfN1thbR9RRIIpBZIXaC1ouXHKM+jE5q6LoECHXhEfoe1hQ7lZIzMJhRZhogjkyLSjdFoAk9TaEGv1yZC4IuSMOrhD0JUNqTV6ZCOE8gLet0OWaYIOx26eszqwjyXLhkQM+50SJIppYadzQ3+r/+X/5bjJ+/h3L33cPTIMW74Eb1BH6U1RZEw3N5hfDBkMkqYjg7wPR8ZBhRZzrGVRSY7exSliSDzPA/thRxdP04YBrTaLbTWnDx3D8IPuH3juq0RJvnkxz/O3sEBvU6b6XCfbDoiy1NavQGdbo/f+4f/hL/4sz9hmhVkWtPt9kinKeGgBcB8r8d8u89v/9Zvg/x1JllBK/TxpZVr0qSVDocHfOUrX+Lo0SN89Y/+hL29bUTD0ZgXma1bKhHSY3ltjYcfeZRLl64Q29Ry3/MJw4g4jgxYIiSBVfjLskSpsooeMnqGSSt1EakP3H8fN6+bVJ3xaEi322P/YB9fwutv/pz73vMQm5sbrK4usH+wR29+kaWFBc6evY+11XWe/f53SbKMXr/Lffc/QKkcmK4BiZS6ctQgTCS7UMpmKYgqndHpFEqZRjdVQzGtUA2do9SadhQxGU1MZEkhTI3HUJMmpWkUFQpUVtq580wN1CAgjkOS6dRGiinCMEKpEl/6pIVCTkec7E25fuwEV2/cYri7gy4t2qBN4zXf1opVpekWXaiSvZ2Ene1NtrY3QXpMh0N8KQiiEJRm6egxos48ybWLpuum1R3arTZKl9y4dYOV1TV6iysUZcnNjZusRx7D/T0G8wt4Xofz5y8QRD4f/cSneP8HnzLNsIrUFGRHkEwmIDRlntPp9hiVJf2jx1ldPcqNjetcnky4/fxzeEFgGtJ5BgDy/NBkBIQBYRTR6fVot9t4rv6TZxx1vu8ReB6+5xNHEQfDfX74ox+TpzlagipK8iI3OpwyTqIgjPGjCJHlqDQhLRRJkoAqOHnyFKdOn2V7e5f93S2i2ETN9Hs93vrFmwzmBxxdX8eXAUfW1/mDf/sHvPH6a+R5QSuKTLSVZ0p6KGHk/isvvEDh+agw4uat26wtDkizjKxU3P+eR/jQrRu8+NMfVc2DxsMhWnrosmB+bt50w9Uuo9PqvRKo6mDXYPSMg/CwU7FmvbM6PAIvatM/eh4BBELTPmmiiEoNqYD5x9aZV6UNthAsYfasUsZvE2uN8Hw+dn9G3lni9//V/4trF9+lyAqmoyFX3hqhMI0GVJ6QFzlg9KS43aYoS2cc8fW/+Brf+c63OHH6FIuLS+xu7XDi9D9BJj6729u0Wh32Dg64Jz6DLySTaYKSkmQ85cyjp4haMZPREF0W9Hs9krxEaxgPRyjhsb0/Ym5hgWujfaZLfbbUlN+f7vDeIydY6Qy4cf0aaTalKEsrT01TNG0j+HDBG9bukQ1e0Zx83Zhz68aweqEJMNCqrESiUq5MgHUeWx3UOVQQxqlSeYOFbzR/gQF1pcRDkuWpua8FehfmBoRCMBynbI6HjLMSP/TpD+aQN24SRxFhp4vvBfT7A/bGQ2QccN9Dj3L/Q49w+eIVVo6s4t17wXSmDyN+/bd+l/F0jECQ5zlzc4uGnnxJnhcoXXAwPICFU7RXj7C/dYO5uQWWjx5HyoCg0yds98ALkVEL6RtQtihL0ty0L4nWjQyRUrKkFFqZdM68KGi1W1ZXgtLa90rDG2+8zs3x2HTTzTNGoxFKKzIL8k2TKZNpQpaZ2s5aK0oBK8eO0Xn7DYa9HsnogOlkzOuvv8ZLLz7PUx98iife/zRaQ7u9wBuvvYRsdwh8j+neLuMkZe3UOS7cc4EH7n+IM2fPsbe9zTf+8s/JpmOTwVOUzC8s0o47PPLQw/zpv/59drc28IOIOA5pd9rE7Y7BIgIf3zfR6mEUEscxvW6XVrvF9ds3KF819ZQRgna7jfA8g7WEAbdv3yaZmNJPa2srBF7A6uoyZ86etniEx80bt9ja3iJqt1hZWeba1avs7R+gi5KiNBGPeZaTZRlpMiUvcoTno0rFeDQyARlFxsHBgalZjHGcoAprp2hTh1wV5EmO9vxqnxRlTm6z3QplMYmyRHim0ejzV26ST1OCVof2XJ/peGhqLUsf4Ye0whZrK6sM97b4wz/4/3D0+HE+8OQHWT9xiqOn7mE0GnPiyALD0S7Xrlxlf39ItLjG7d19egLKkbFdjxxZxfMj4igmEUYej0djyukB/+zTx2mlu8ZeRaF1Spt3CY63Sba2EapNkcWMtm4y3N9llGS0+j3KJCHTEfMri1y6vIGaFKhkn52LP+Ntz6PVjth85dtsvvY9jj/yCbzOAtdvvc741jUCkbB9623ai6fQi/fwq75+ZYAv8D280EOXxvPXbreZjzskyQFFMqHTjZFC4kvIshSNwNMmHa3TMqCaH/r4ukCXGj+QaCVpx22EUOTKbHKlPWQQmaLX6YgwjAyhZJntPhnY7l8eZamJdI4Wpj6UEAI/bqGK3CDCIkAGMV4rJgpClvIh9Af4OqVQHtFgAaJl2v1VgqV1Omv34ncXUUEH7YVIP0BID+l5xL5XMXNXL87Uy2uk2FoB6gCwqph4BeI1BbGeEboznWWbyFnjrJmoPKWrcVTXtJCBMYqdQLI6wR2RRg5sNECCC9etghAFFfinG8/VHHsTSKpASAviVUaemn2+GuBrgBfV/NTC0hXprUFAZzjWkVJo0EJZbEwwc4lDiIkblyoLsrwgDH1A0mt3yKf75LmiLEwouYgCRGEUdISP9CKibotSKQbza2RKEPghraVjKHy8zhzzJ+4l7M7jxwOCqEMpjRGHDCpDAyFRtouWS1krrXA3tU+MgW4K6tOYK7+xZmaBSkcZujmX9hm16XZUNzuxNKtMnTUpJa04Jg79quNcWZZVlFFRlNYgU+RFRp4VFEVm0gulJApDk/4nJEVZMp1OuH7tGjdvXOdgd5csSynKnMlkbOpOFjlaY69dVIpOHQ1RmFoiRcFoZ4tLb73O2pF1Tp29wFtvvsF4f4/l5RWy/R2S6Yj9gz1CEZDmE46uHmHQa3Hm5D1IZVJJ4ihmMDdHr98ncpF5gTEQhLB1lKACV2rE2CnONSG5NXGgeU2PLvnLpORWy1HvVqvcUa1PRZKise9neEK9N8wxqr6a3SOBLwl9SeCFRKEwUXZeQJkrylzTCiMzfq2I44BepBFljBfOQ2E8oV7UIRosELbbKC3prR5Dthfo+l0Wj98DQQx5huz08OIeaIkftgzwXBZ4YWQUMc8ztX4cKLVk5kTZ/egASdcAAmDhmEtZERR5wXg65ujaKr/5m7/J1/7y67z84svMLy1T6pJb1y8jCiMXhNvwqsELhOCDT32Uxz7wFO++9Sbj8dh0LvUloshQWUZeZOCVZLmJWi1UQZZmJp0zt4BSFJLqkLW1YxRFyub1i0SBiZaZTBOe+9nP+MJnPku/M2C4v8+bb7zJ7vY277z5Fp/41Bdo9xeYX13l2uWLPPuTH7K3s8XcYMBkOCSbTgBhU9wFnu+bzxYMdiCcQOL5Eul7Fejh2ZQdP/ANUFJFipt6e74fMDe/wNLyKnlpSlh0+32WV1bpdbt0Oh3QmmQ6JclMR8GDgwO29/ZwUHYYhcwvLBCGJk2m0+uBHZsQsmqaZZQu51ig4jtue4DbQrpmS25TVA6nBi0r48iYJCN67TZeURCEIbpUrMx1EKogtI48X5cEQYwnJK1AkIiIVreFxkTom/AbARRIqYk833QUDUzN1CDwEWVG4EvKJEEUEEcxvieJF9vEPsRzPme6x3nlzV+QFFNyv0XY7jI92EejKUZ7XHznNa5dfxtPmLkfH+wynU6ZjIfkSWp3s8b3Ax58+CHe+8ST/NVf/zW7k4J2d57F5ZhOFBHFMa1On7WjJxhnGeMkIwgjvKDFJJka4E1IWrFJJVxdXmBnZ5fnX3mZ7Y1bHDu2zpzSzC0sMr96lN/9+/+Ure1NJuOEpNjnYDxi0O4AJVIXTKcmakFIjVYwShKmyZgkSSnzkmmSsbe/w3Qy5GBvh/vvP8fe3iLjScI0SaoyCoHnm9qkEjqxz0+/9zfE7R7dfp8gjBjMzdOKW7ahUkSn3TbdtaVPGEd4nkepTAMmgTDR1r6pFyQ9yX0PPMj3v/sMWhWM9vdZP3GS/YMDDoZjcgQ/fO4l3vPQQ2SlJPAjyEtWV5eZW5jj9Tff5oc//CFSSs4cO8lcf4HJZGoiWH3fOPdKXTVfMrZwDeo5QNKxevdbqVRNvg5U0RotQ8KFk5RBQBAmptlGN0ILCb4mzRMyNSXsRUit0b5P1O5SZBmojEJK6Mwj4og4DKEoabcD0jSn055DldAL5jkaL7Fw8TLjvV08KW1NKYEnPQNGKNOIRniyAh0kgtXlFba3d8izHBM3KY0jPOjgxR1Ubpx0Hphu6CiS8ZjRNGX99DmWVo/y+OPvJ09TgsDn4lu/YG9vn6W1jH4nRIgWuReB9G3nWsHBOKUsIMtLcgXthSWORR3eeu7HjLc3SJbW+Ef//L+i2+1w69Y1lpaW8Gyqoe+FRHFMHAVEoYkA8W3zC6SkzAv7/JaOS40uFd1uhzxPeefNN/nBD75PoW2nbw2eb+pGKq3p9npIKRmPRuRpahiRJzh56jT/m//d/57V5SNobWhS2QZMtV5q9rRxiGt+/KOfcOP6dTYmI4osIxlPLOqgwRNcvPgOf/j7/5JSw8c/9yXe++ST3L5xi7ffuch7l1YgiPjY57/CfQ88xPbGFkeQ3Lx5Cx238MKApcEAXeQUopkpAJSq8i9WZREsqGP0d1k5vh0/Pvyq2bKRy3meU5fyMaB1URQmAlvWaeulez5h7lXkxmlVKkWWpRw/eoy/+7t/l29+85u8/OLzjPd2UDbyyqRBC1ptEymYopmMx3R6fW5vbqDKklOnT9P5cYsLZ07zyosv8bFPfppTp05y8dJlNja3+PDHHiS6eYuy0HzkM5/hjTd/wc9f+TnL88usLq1R5gXXr14xNmLgIz3B8tISR1dW2ep0CTxJGEScv/AAZ4+vc/2V5/n2D37It7Y36ZcFgVdwMBnxnvd9gHa7bVLFpYfnByYqUBXWxoQ0zcjSnHa3bYBnV+PNyWzfJwhNZksYhkRRSKtlosJH4zF7e/usHTlK4EnyLGM8HvPiSy9x49YtgigmmSaMhgfoMq/1TwByHLpr+JEk1yYqy9WjB7jv/Dl+7XOfo9vr8n/67/47Nrc38YOIvDT1K1WpkYUyncBbbe697z2kx07yyU9/nms3Nuh1e7z9+hvkeUJ69TJnz57lyNE1ClGyurJu6on6HlorRsMhSpsyBcLziOeXWT13nhWlEdKj1YrN3vUkuS27IpH4wgB5SA9PKnxbAqjisxJGk7FJ0Y1bJNoEAGllujmXSpPkGUmhGI7HTNOUvb1dk55bmmZ/RZaRTMbkpUnRTcoCUeRMpwlb+jLnzlwgnybcTFOEVuRZxje++Q16/R6PPvpeNrd3OH3veTqDHr3ePFoXaC348m/8Ng8//hjtKMZHs7ezxb/+d/+erY2bUBRoIO718HsdnnzqQ2xeu2p40GBAmRcopRjuHzA8GNX6n6Aq/WNAXs82DjERdFFonB8IjygKbSSohx9EtFsxWmoKlSM9uHHrBtduXCPwfAZzc3R7fY4cWSGIQqQnuP/B+ymFR6dl6De06cdBYAKXpA18KnJTDiZLE8oiZXtrk3ffvcjFdy6Sq4LV1UUG/XlWVlZZXl4mDAKmicmQi8KINE2Zpgn/5t/9W777nb8xUZTS8DO/yNGF2StCCk6cvYAfdRiN9giCkMCDQgqiTotBv80Pv/VNXnvxeV596Wd899t/xf3veYLPf+Xv0PYLVJ7z+suvMpxOQJa89NPv8NKrL3GwcZu9/QOeevoTrC59ktCPKLQi7rZNNHiRMUoVe3nCWl+zfbBNp9vFlx5ZkpGMcyZ5Zh17KaOtKUpIkkQTxQX7ByOiXsDmzRvIsmQ4VQwme+ztjEn3bhNHIWKSgUy59txXibrLTHc3KbMppTBN/8Zbm4Qn//8ggq8de+T7CX4giUKPdhyj8oROFEHo02q1mE5SvCDAy0vKQiE8CKIITxWmC5Mu0VoR26YCQliDRtvOdkGMLwQqMU0Q/KhDqRRSK/wwwpNG4AqpKcuMQmFrFXSQFHg+Fh328GMbHu23EMonoU939TS9o/fi5WN662eJlo5DYAoNC+GhpaREEEWxiZMFEyFhhaFT4I39bCKlHOt1XjYD6qkGcAeVWHUAQAPQahrx1XUaDSrcS89cowYZ3FmNCwDY8TZfBshQ7gKNa9aRRw44a0T21RpvA5BzIKduPFMDpLQPrqvvqL1bDgh1IIdujqSRcuu+qTGsGdCzwmCqJrsOlWwAnY0xG3koEYHxRvpBQJkXTPf3KXVBqT1k3EZ6AbQ66KhDPFiiPbeK312ks7iKjHq0ltYJektGGWx30AiyJDVNX8oSJT1UYDwYxnAxkS/N5Ao76dU8yAZgga47VtcE0ESQGoCpWytqeqrmzd2jcZ5rfiLBRA3aNCWJsDWxgnq+lAIJWjej2rTtkJszmUyZTMYkqekwNxjM0W53TJFxYWqKTccTityEsJdFQZpOzecsJcsyijw3c6ZUdUxRFkzTjOvXLjPNCrr9Pp7usL+3R9zpkE6nlKMxmeczGPQ5vrbKfecvcOLkCVpRbAC9MDJRIY1aFDWAJ8zWbtLSXXaK+VVYmqz3TL1e7mONiDc95s0rq+b5Mz/qmT+GJGa98m7POHIIfI+wE5uIDy0g0IAk6nj4URsVzdFfOUayu0nQnaM1dwQRdGgtrpHu76LLnMXjF5g7fg9ht49GgmfqZSmtkb7xFLqaHYYWNMozhmsoRO3dboxRWYPZ8buyVBVdamtkGcPARPJkpYkmTZIpBwf7hFGbT3/ys5w/dx8/efZZbt26ReCZ+mQuAtRFvClXwyeKeOfiRS5fuYIEvCAgjGOCwEeVBjT2hG1DL6UdpBnTdDwGqxh7QhN2lzh15gIXHniQq+++ycHBAWGrzTRNeenFFzh5/AT3nL+X0XjM/nCIH3U4cvw007RAy4xbt67z1T/69+zv7TBNM84/9B4uvfWaAeW8wNSnDUykhxeYzsO+refo+6apgB8EhJHpghu47zwT+eNSgPr9gQF2llYZDOaYW5i3DgF5KBrAwRTQG8xbOoS5hSWO05AP7jhRg3XO+SCtMiad10g7Z5GTdzV91Ne5y4bSzHC/fsvjkZM9ImFq3x5fX8bXBXgeQdSCyYTcOgk6rRgptSmK7fugFa1WgNCC/qCPUAIZOUNMI/2AKGoZpTnsEvXmDfgSavJJQqkky+v3EA2W8fyI9vyiqQfUWeTprMXlGxt8/2/+Gi1MjbkiK8gmB0gNyeiAdCzQFiCqDWmz/xUmJfrR93+Af/Ff/69YWljlQx/9BMlkxPoRU2tKAqo02Qkbuzs886NnWVxYYOvGFSOTbIpbmuWUwuPmxm2+/Vd/ye2NTd7/4Y9xvNPjxPoR3r58iTzNOH3uPGEQcvLESXSpeOY73yRXiq3bN01tKAGXLr9LnplulsYwT5lOxmhVkkynKGUK2U+nI6aTMWWZ4wmIfI+g3SLzPZQyXUWFrXeYTsdsJBOiMGbbD/CDiG7PREZLT+KHIe1WjCdM9+e8LNHCo9Vu0+vNAR6eh4na8uso6jNnz/KLN14nyXLavT7dbpc0S5mMpvz4Bz/C80KeevrjtKOYdJqikbz+5ut845vfMEbH0iof/ujHGKcpWV7gB6bmaiuOTadtrZGytHvFgDiusU2lz1inj9BNEq51FTQMjt/L+fc+hfB90uE+k4N9lo4cM0aYKlFZgi5TY9BpjYxahK0OnoT8YMeAT15A3O7YO0hbtkIhwxYaOOH7HLm1idaK/3jrOkWZIUoTnSbARFZphSpqZxmYiKNL77xFlqYm0cZ2G/3t3/173DiYcOXadaQvzfNpbWtGmfpVJ0+e5TOf/yLtdo9eb0B7OWQ8PODsmXMIz6fV6fCTHz5Dp93m1vaIIIz4wJMfoNPtsr+xiScFRZaTpjknTp2mv3iEYnfEoBcxVCUXL99i/cgyQdwjiNpGX1aaNE3Y3dmhyDPiKGB4cEDg+8wN+vQGc+zt7ZvSGsLUAnclRKLI1NH927/9t8lVzs9++ixZmhjenhlHp9CwOxmZWbYGNFLS6c7zkU98Bs+L2d0b2ihCSRBIiiI1Tg7LQ9M0RxUlvidZWFw0mTyWh4dxbOrxasV0tG/kH4osTZjvteiGPv7RNU6ePMnPX3qRuN1jsLjEiXP3cO7CfWzevs31G7fww5g0mbK6smQ7wXtGXljebNIsrZ6uNKUuKl5dOQS100101dTHBYBRky9o43AdTqeAaR6ota7KSGgsqGVBVSPHDY2NE6O/pWlKWZhazMl0zHCccv97HmVpdZUXnv0RN65cNfwOwWg8ZWlljfHeJoHt6I6Aazeuk6YpTzzxPl742c+4dv0W/blFzt1zL1L6vPrKq5w9e5Y//7M/5aMfNdHMp5ZO8Xf/i3/I7/+r/5F773+AKG7x9qU32Lq9QZlnKE/SbrU5evwEv/c7f88AvgKzF4SPQnPjwn1EK8dIC83pc6cZzM+zsb3FkbUjaGA0HFZ1t3d2d01ttzxjeXERLQRH1tY4eeoUWmvKIrd7ERASP/Bt6SmbZ1PZg0ancplfDojWaJ56+mmeeeZ7vP3227x76RKbt2+Z+uCH7bUK8HP2qa6yTxCSXr/PztY2r7z8Mp1OjygwkXKeHyI8o1sYB70pQ5MXBb/zW3+nis579D1riCwllJL5o6s8/9zPmIxHbG3dpt9fIEsTBoMepVZMRik3b94ykbLWsesJgR/6GCFposRlYKKgA2myDpyDHUBIj8Dzbd1qahNGQK/bxWnhlmTtG43vC6LQp9dpk29skeU50jeNCsfJlNHIZJOQZ0bfTFJKAdl0QpbllHlBq9XiyPpxsjxjf/MWZVawf3DAf/zjP2Zne4cnP/Qhzt93HyfvucfWa1d0lpd4tDdHEJiyCC+//irf+Na3uH7lKul4hNQQxi06gznuf/gRjqwe5ff/h/+e0f5u5WCTNoMGIQh8E9HueZ7J2rClHjzftwEVpuGoL03Nds/WQBaeKSlW6Yq+b/wLnjTN/8IAT0iuXL0Enm9qjwcGBmpFMVme02kbgK/dbiEQRFFIniV0u138IEZIjzBuM01S+r0O84MB586c5f77HzQgIKbcmO8FppttEBCELcMzspx+P6av+3zpc7/GGy+/ws0b19DK8JKssaZSSJKDfQbrKxzsvEu320aVBSozkalFmVhHoIlWD7w2nizZ275NkWTM9dd48JHH+P73nmFvb5/nfvA9XnnxZ3genDp/H2fufwA/iMnSKVmREfUXbBCMJvAU/V6brBzR7g8AmExNDeg8z0iygnyiyCPTvMpk4vhsb+4Qhh75cJek1ISBZr7TNhlwiSYrp8QLRi63A498f5dseoDKTPPZJC8pPA9Vgjfa5Vd9/eoRfIFARgZtjqM2QmeUElq9Pio39ZKCwCcMQ9ONKVIohSlen6f4YYQuEtA+nh9WxprxBHh4WlJqbQqKR4KyVHh+G0GBL0o8CUVW4kcxQRiTpRm+H6FFQLfbNmGqQtvwUIkKW+iwQ7R4mvnj99M+9hDR3FFE2CLPMpQw+eEIUUX2OOPE1aAzDEVVAnE2TdXyImUi9ep02SZDdl+5lLxZZq1tIW93rEtNrU5zwJnleM0owWY0mxC6AsF0nXVRPw/OCGPm/u6ZlZ4FxLQ9WTTG0BjUDJDX7OhbzZ1ujt0+v/vNTp67j4n0mQVamh9nxzLzCPZazc/1xGtR39ddx/MEWW78YGiNIqI9WKe/fIzu2inmTt1P1BkQ9ZaQURvpRaaDre9TKMiTBK/VQvgBeZLg+y1TEy2w4ePIOpreAbD2c5XMpq3X1RnF2nhN/5PzNTs91Rzax7d/DUhYR+1pmmnTdY1ENw5de4f95roDWtkQeBvBqQyUbWowmPpF3W7H1NkpS5TSVW2/oihtoWtT7Lqs3pcUeWpCwrOczIJ8WWYAwiIvbNSholCavCyZTKYMRyMEME0zut0+S0tL9Hpdur0+qysrzM/N2wY9xotqTTOTTmifsYEaV3PsIuvueGm3N838VUTm1u8QqZmlsOC+vY8DP5ogv7tnYwtweHkrZ4DjNWJ2L5iDfDrdVVLtM3f0OGkuiReO0F06Tn/tFHFvGS/qGu951MLzI5M6JaWpRyGtAesFjPIcpTQBgjCyqXM2qlEJYbs8m9os7rncOAs9W1Pt8PMqrQxd2Hoxbn6yPAelSPOcSZYzGY3ZOxiiVEmapqysHeWjH/8kF+67n93NDdJ0SqvbQaGZTiaMDg7Y39lBCizt5JRZYmrTFFMmBxPQima8bxWdo7Q13o3SXeaFnX9NNtxhOh1z9OR93PPQe3nhJz9geXWF5Pp19ra3+eY3/oLJdMK5e87zxV//LaZJxtLaEZTSvPPG63z9q3/E9SsXyZKEhYVFRvt7hL5msLxUp5WFIVL6tjyE6RIa+IFp2OIHeEFA3Gqbpi+RqcnS6/Vptdo2Wm+efn+A5weYpAgHvDd4gTXqDKbtUg2t/GhQ8GzXRSoMHCywZyP3ZiL2HMtq8Pw7ujTq6rL2ePNGNX5f6LcYnFhAKZ+s0PSDkLwMWD52lPEwYax7BL2QXqtN3OuTTEZ4nulCPjc3MEW7/RaDo2eI+qu05hYJoxZIj6DVNek/nomm0DIAUSvOWmuEH1JiogVKO4m51vQDxSc/9AF2N2/yyqsvo1RJvz/HfplRpkkN66t649ZS2JR/eOixJ/gH//R/ge/H7O2P6Hb6tOKYaWoM4uHBsGpaoYHVlSO8mP4MrRSqMPXiAhTb21u8e/Eif/bVP2WpG9HvxDx83wXiKGa0v88rLz3HZLjP6dPn+cznv4QUgjRJeOHFl/D9gNHeDqGQXL1ylds3b1FavlzkRpdSZUGem9qXxumSUeamNIOLuHY1e0qn32ht9TbTdkxKSZ4mmILxgsm4ZVLHbXMYgbZdyk3EKcKj1WojRUAct2h1Wnh+Gy0FYRwghMd999/PcDhkY2eX2xubnL7nPl5/6TlKlaEp+cEPv8fFd96i3+0hZMD+3j63bl0nGx8Q9vucOHuODM3m7i7tMCSOI8Nv0pQ4jqsuvVorUz4IAaWyOlBTy3B8vVGKpEna0kd2F0BDpzWguyZsQX5zjN8GLSS+VrUuojSFAG+ljxASH02hrXwVxkDO8wJdQOh7iBLWlpf51Mc/zs1bG3z3W9/gIN9B5VmlX7j7Ca0rvosuKXNrQgmBJ3wef/8HefLpj/HsS6/y9jsX0aVJ9UcbB9t0krCyssY/+xf/FZ3eAN8LyNMp49GeaXSUpiytzFMkCX/6R/+Bubk5tvfGfP6LXyGKY4qi4Ob1q3gC8jxB65Ljx47x6Huf4ONPPEYoNRMFcRjSiuMKREXb5lHCpkxrbfQPG/2ttcYTgl6vj+d5KAtkqrKk3+tTKpN5sBa3+N3f+T2isMNzz/6Evd1t00ygWToG49gQQhAGPp/59Kc5dewYr73yig02COh2WwShAXtbrdZMinYyTYnjiO5gjrmlFba3tihyA46WZYEsCkpVsjsZcfTsOa6+9TZRt2fqahUZr7/yAt1ul+9+48/59Be/QtjpkZY5P3n2WcbjIUdPnmR5eY7VlWVTS1xKSl2gpel4a2wMMcNzXYSX+SNq8q3JuGbNh3SJoixJ0rRyFpdWXk8mE4qyMLULc/NP270/mSZktrbywf4e0+mYsiiZjIdkacre7i6lyukP5gjPBqbmrBBoFKdOnOSNF3+KUgXJNCFKU7Z2dnnz3Ys8eN8DPP2Jz/Kv/92/4cn3f4DlI8dRSnDi5CnefetN/ubrf87e9haf/sKX2Nne5cjR4/zTf/6/JIzaqFLxwx98j3Q6NmWfWi3idpf19WO8+vNXCG1NZY2pmVeWijCK+OBnvgDK1Iws85yl9WOUWYZWirnBvHWAe5w8qfF9SVEW5nlsQ4SNjc3aMZ2bbq1+ENDpdis+IaVZE9+CXI6eDE2ZufE9j7n5eb7y61/mrTff5o/+7E/Y3LjJzuZGrY9i+VPD9qobuCmE8Fg9ssY//Mf/lCc/8AE6cYuDvSHf+973caaIJyS6KG3UrmaaZVy5cZ3+3Dy7B0POHD/OdDTi3//Bv6ZE8OHP/RrrJ85w8Y1X+Le//y+Zm1sgiuf4/Je+yIX77idLU25evwHCI/JD6HVZXV2xjb+8qpOzaRZDbcc5G8SRqdZVOnNTUa71TX0XWjYELtD40iOOIpTW5EVJUBSmRl6Zk+SptTVSCqWsaNJ4Eq698xbrx88wN1hguLdHniV4RcnO1hZf+4uv8/zLr/D4+97P2XPnGPR8BII8yUinE1597V1eeeVlrl69ws72Nvl4jEDjtVqsnTvNiVPneOzxJ/ij//f/yHB/G1WYHgIuzdjpInmegjY2aTObp9LpbOCNpHZOeNZh0zwOsMEMWMAXW5vZRHd71omlypIg8EFKwijG830bcBUShSFKK9N80PfwvIAwiBBSoHVpaMjzCaMIz+pXcauFlD5Km3JoBmT0KApNEMdIT9LtdPi9f/hP+NZf/SWvvvQ8yWRMBVg4W6ssWF5Z5dalN0y2qOeR5xnTZMrt7W0ef/8T/PQH32J79zatKOT+8xdYWVlm4/YO42lGuxXy9Ec+QZYlfPE3/haXLr7DdLzP+tpRVhYWaLXb3Lx+GRnGpiZ0qSm1QIYhCp9SBvidJQ7GObKdG3C/F+KH4Idd/E6PuDdH0J4j7g6Ms3fvFmQpfn8O4XvsbVwhHe7Snc9JD4ZEkUcZheSqoCin4EvCOKaYJoSRCQRTaUmS3sUO/c98/coAnxSKMPLw/BaBH+P7BWiJVJAkCTIKaHW6ZGlCEHr4+AgvQHsRQdgiDjRKSdIkIWj1yNPUyiNBIEvKEoLQg9yEz0vp4wlTVDRPc7QvEZ5PWYDwNJmK8OMOuQqYiBZi7gja82ivniXortBZO0XcW0VFXaJOzzQmsF7bsB0cMkycB8xFRZm6HQ4sqwQo5hhlvVnm2AaAUr1qi14r12GpUQ/GcTIXBeM8OVqbOgrOcG52l0U1AAE9w++atxZUZTpo3qoelgX2qs1Vg0wzrwZCOAPaNa5jhE1D6DQAKvPM9dwI6md0c+2AkCq9tjlQhxzY62kh6vtVlqYd0YyLcnYJmjOTB0usve838BdWWVheQ3kdoqV1vLiLLyNK630uohg/CFDChkFLn9AXRFGruprf6dqh1YqqFroGKw/RwyxYWoMh5jxnfotaaFslwBkZzYcx3lSX/q3qKauEvxuTrsYhGuOp03lddFp9fJOOPVsDRFeGv0R7jcgdrQikbCyTNTKq1G6bJowzYkwnQhfRpbUr/Kqc/Efa+ifCk/i2Po+QYiYqCRd5MWN51fNZk4eu59IdJWxkRvXIzXmZXbfZ9Aj322Fzr8E3wCq0Zr4qrKPiNfYbB4pRn1etm5tb3HM4YMLcJz76IKc/8GnCxSPEvXmkrVUhhIey4AxagzT1TUxKg2/mteUbZdNGy/iREd6mADxkqSng63hOqVwjhcaAGkpXxQM01XqCi2I23xelqcPmaEGVxthO84w0ycjy3HTGTBKk51FkOSjNsfVjHDu2TpIm7B8ckEyn9PvzpuPn4jKqKMjzjKI07eexUSzJxNQM0aqsGgSYrr4mvamoaqGaAvfK1nrRWvCzH/wN/W6Pc/c+yMsvvch0MqHX77G/u8PWxgbf+PM/4+Ujxzhz7h6WV9e4/NZrvPvm67z+8ouMRwegFL3BgBOnTqDKnPnecaJKWfJsypOJ6vW9gG6/R6/bo9/rE0QxS0tLzC8s4gemO6609c7gEI+0wKsBVho0rGcBt4omhaunanlNxUKNIWuiLBoypdoHrr6kEwWN9T/McJt0SxMM1o3zzK+99QcJl46jtaY3NyAIIpAehYL1hSXwQtOsQXpo23XRQ6PKHM/zzPU9z3Tb06KKiHD73fHQ0t3fzZ2wsqfUaAtsuPNKZQzY0yeP8Vtf/hJFWfDisz9GasVgboG9rQ10adPFkXWjCLehpeD4ydM89tj7eeXll42jo9QUeY4qDBAtBeSZqQckVInSmvve+yH684v49rnCICAMI5I84wc//QknjhzlFz9/gcW1Vdoto0u99eYb7F67yvl7znLxzTfYe/JpVlsdfv7az9nY2iKbJiSTKUeOn2K8v8dultkO3JClFsxTGWVuzAqlTV1WKYXtsldWvKfi3wL7zKY5hLSAlCoUNjOM6XRS0ZwzbHEGim1utm/rRUbWSBDSOHyD0DedyqOY8+fPUr75FrduXGf91GlOnjnHW2/8HJEJxGTKlekYEYbE7Q7jvQNT28/zWVpYYWVlje2tHbqdDrLdpt/tIgX4dj+ZiJsSJQWykdYotKyW0mUtuA7nh7i94cWWbwCUSqDLes84HdFQvHW9ORDF6YEz9QGdXJBkRYEvJMMip1Slid71Pf7Ob/46a8sLfO3Pv8bNy++i89z4CSs6NHdzmRhOpksv5JHH38dHP/05rt/eYGlpmU6ngxcElIWpSe0FIWmecbA/ZO34SZSCLJnw7b/+Os9856+ZH8zz2S/+OtL3CSLTnGpzc4vjJ8/y6CMPE4YhV67e4OKVq2ghScYTeq02g06PvdvbCBSBj4nsi2O2yoJpYiKzAz+w0YeNTAHMGoVBQJom5GWOxpxfFsYRNJlMkL5J5d3b22E8GjIej/ADyclTJxCUJJOJcUo29AvP6hNRGPHiT37MG6+8TBRFxO0O7XabTqdNqRS9fo9Op0ur3cGTPmEcI3wDUPf6PbIsY25hib3dbaLQOILLUlFqwUtv/IJPffaL/MXoT+gvrpEq48TevHkDNT9HoQXvvP4qj3zgw1y6cZPnXnyeIDaROedOnyPwfFs7UBmnlG3yBbM1To3BbflhQ1dxNkulY1PLBd3gk0oZJ1dWFEjPs00JMiM/7T6ZTqcMhyOGB/smMMKmZaIUB/u7qNIAXFoaMKzT7ZBMx/iyQ6fdIs1MlN/2zibv+9DHWDu2zvb2JtOJiRwulOY7P/gBp06e5tFHHiUpc5aWlok7XZTQLC8t8G/+1f8DUeY8/5Mf0usP+MinPkOvN6A7t0CuSl5+9se88cbr5LaEk0Jy/vw9XH7rF1x9B5T2abUitDZ1qCMLBkkhKIvClGESHp5fR9ZppU3zE9dMSppglMAPTdRUFFIqbZpk2BRdZ69JT9qUaVd73cgrVSoTEGAzIEydSAFamdI1tnbue+6/n+RgyC+8gM2NWxR5atZT1Ppi/TKyfW5hkd/67d/h7Lnz7Ozsscc+vvTodHumEaVSdNothIA0SYj9gPFkwss/f5WzZ8+xsrbGeDrmX/0//+/85AfPcOGeC/TDr7C4dJxfvPI8LU+wPOiwM0pYWFykKApee/VlRqMhQdQiSVOWFhfwwzZFoZHSGc+mxrgDJ2nqJ4YBzlizpa176vispWR7cK1TO14rpWRlaZmyVKR5xjRJmUzGHAyH7O3vMPR9RtZG0UlClqVGd8xMg8HLV95maeUIFx55Dxdfe43xwT6lKlFZweV33ub6zeumdEAcE/geuihQGqaTKelkwnh4gChM+nbQarF+/BSnTp3l8cef4Gt/+G+59u6bplmF71udbdaNJHDAXNNBXusVzp5UGKdcBfRiHTTVvLrzRMXran4hKmDQyWXXWdetQRCE5hgrJ5vAQRAaHRYhCbzA1oU0TWGCMEIIkxXneabRidCmy3ye54xGIxMdrEzN0yiObEmmspaBwP7ogOMn19m4cZy9nQ20lOiyYDIe8eJrv+Dhv/UlPvupL/H9n36XvCw5eeoMa4sL+Krkf/i//Z9ZWlrmc5//Il4YoWTAp3/tS3z1j/8jjzz2PsLA1Gd+9bVXyYWgGB/g+RBHPkeOn+L041+mHUi6SytoHSB1SVFmZNMxrf4inh8g/cBOqomiFmi0MinHGlBFTjLaZzLep5gOSXc2yErJsXseRAYtRjtbeKHJbMjGU7SUjPdus3HxTaYiOryp/7NfvzLAh8Z0cgk7gE+R5XiBRJUZBDHa81HplMDzCMMuXtSz3QoL0oPbIAO0DAjiEF0WBFKhdUkgffIChPChLG0ql4nAUUVua6BIytIjbnfI6NG+8CRLRx+ktXAUP26zv73D/Moa+1ubLK2fRNtwZN9GRzSxvMrU1i6qjgaA5Y6pa3MZZa60nlEH0mi3p2hATtV1Dcima8BFN02jxjkOuGmm6dpuXqYGtd3chww3M8h6fM01sjq1y1y1Y2qeJmbnQKnGc2PBEBsNppvX1xUgohsXrYG++hg1MyjztaqQl+bXumJKjQnFKScO/HOAQz1yMcME6zmtq6fNzLs9be6Bj7B+7jw5nqkPEYYmesYzaXKR1wSRsEBoPYdNxWomfwdT/9/N6eyk69pgsIqXA+7c59kZMV5mZzzM3tLN1yzQUhkW1fGqnjutZwzZWUCrFihuHetRONK0hr4DCitg1aAFhw1/4eZNCMBrAFg1sOCOd9FURiDJ6lq2D0FjvWfnaWYvVSDnDGHhQC53PzMtDiiZ3e/1PDbvdkiZqC41K4Rd1KSLlmqOVTSAvObLRUDVw20AODP4oXM41N/PHb9A69RZpB9QGkTUpFBaACfJMsLAhOcHga3LZK9t6r65MdVjEfaxwiispg+oFICZ6Dx77AydO1xS142GzHRb/qUUhQUOhIAgMHUpux2fVhzbyD6Tno3WVdp2lmeUSrG4ME+WpuRZzjRJAF11L5tMx4xHY5PSmeUmesQqD0mSVCnl4BrOOEDPpPwqpZBAWRakac5PfvgdPvSJz/L4Y4/xk+/8Df2FPnPzc4wOhmTZlMloyMWLbyHQqKJEFcYYim1K28nT50iKjDD0WVle4cSJE4xHI9I04cSJE8zNzaOUIoriqoNaHSjqGrW4uDnXaKhuLlSpd0qjKAylNpU5F0XUQL+rLWr3VgUY206hyh5Us+Ja3jjArGZnqpIR7tiZ45tOoeZLuD2niftLHD32WOVxNj8LSlxUse2Bbt8Lz372I/vE5j4urccpiqU2tXy0jR6tQEsrU8pqog2PdbSaFWbtk9TQVhB3+PIXv8xcp8uPv/cMB/s7zC8u0x/0GY+npFmGUIogkIRxmzTNEL4g7Hb40Y+/T7vdMcZzoYjCAJVnIEx2QqsVU6QZptxBwfLRU5w+c4Zrb7+CUgXtOGYnyyGOee2N1/j8pz7F7c1b3PfgIyACsizj1Z+/yvzaCifvvcDa2XtZPXqE3a0t/ubb30IJzf7+LnPziyA0mzevmb2UZfi+QBWqKiNSFsZgCHwfjUZpidaqsZbStHLU2hgGtomCAUpM/SQpTH1GaVOOhIv+1BqErCLKm/xT69KCgbpRaF5jC7UQBCGR8FhZHPDKT3/EPefOceb8Bd76xWuINCOZTPHCEDEoWVtZYW55kYX+POfPn2dleZV+r0e31SLwfdtB1ziIXPdKrXVdY6yiB1WBeocjKWparhmnqU9b4kS4UqbYuFKuw7yoHVnKpTwqSm15YVnWYKiAQimSNGM8nTKdJiTTqYmE15CnU7rtFv35JR5//EkuLSzy1muvkU5HCJsJI4OAPE0tjzXP4AchDzzyXk5duMCPX3gWoQUXzt/HyvISNy+3SScTvDAEJHmR89Jrr3HuvvvRUrK5dZu/+NqfkE4PUPmU3a0NVo+uE/U6PPHkh7l16xYf/fgnWVw9QqE0z7/wHAejMYO5RSajfe699342bt/myiUT1Rf4BiQplTIR3cKArkWem2wdaboP51lKFAYUWWYAEc9DCeMUytOsAqZUWTDcPyBJJqTphOHwgCSZmu64SUI7kLT7XTPvWkGzQyQmTXI63ieZHqDRRFFEFEZoMNEsUWS6P7ZaxHGbIAhpD/p0+3N0+3MMeh0mY5OiLFD05+aYTBOmkym3Nza4vbPLb/z27xB6IcPRBJVnBFGbvIRHP/BBOvOLZJMh3/7Lv2BvZ4sj60cRnuTRx54gyQqzb4SJXpSytM6h2jkpbUkGVRS2gUuDlyIqnu3KBzT1RudMdEC0Ab5VFUkppCRPEpN6alAqsjSpwL8w9JmORhR5ZgAuT6KFZDIeI4Qpf5OrEqUFYRBRioJkMuTG9ausrJ/m9q1bRGHIZHhA3G5x7foN/uIb3+BLX/gC73vs8aqkSZGk/P6/+n22t3cJwxZBFPPG62/w4KOPsbSyyqDd4tKVy/zZn/wRBwd7pHlGu9dj7cgReq02r7/+KjRqPUexAezQ2Bq3JmU/CALKojD8QXq2ZI2JtFNKE0UhRWnSlbU23ZKFEFW2Q1mUNkLKq3SNShYKU7bBC0ynXec8UTaazKQ6J0aXGU8YjoYk0ylZkjKZTIniCN+3QJmlWymEqYFsacDzfE6cOMlbb73D7c1t5gYD2nGLwWDA6XNn+OGPv0+epXjSM86jZEykFXmWsr29ycVLF3n0PY/yh3/8xzz7kx8jgdu3bjLZ2yEMPPw4ptWbo9Xt87mPfoi5uXlGoxE/+tGP0FrTGQzY39vjqac+CJ7PZGrqdkrPw5e1rWMcKU2Mz9laNcTnal86fqsb3HhWpzD6jUDQa8UmQ8XqpYY/lKRFzjRNGU9G7O/vs7+zzdb2Jjtbmwz390mTBJTi1s3rxK0Wy0fWafcH7G5ukE/HZOMRyWTMSEq8wAelEMqMqyzyqnRXGEYI3+P42XOsnTzF0WPH+dM/+NfcunaZqBUDGOBMgLR1lSszU7hyKM75ZDKeVFnYadCg6lIDRvZYJxwYfXbGkFG1fi7MbneO3Cyrs7ac7S0wMtuT08p2b0aaOp1NWlnpUlt92y3eOMipdLXSpuCWtqGYkKKq36ms+Gy3ImuvKNvoSyKlQmTGob65eYug1SKbTBnt7XLt1g3eeuciH/7kx/EHbba2tjh65AieLnjl+Z+wcf0ye1u3+aYv+Qf/5J9xc2OD93/oadZW1zh77l7idoe9nR1efe11Ou0e1y6+axxnUczRlTU6R04TCEFuyxF4XgheCy8cUEjPOMhLjRTa6nHCGKheaPY3IKOQTtSht7xu9XNsVL4JbBj0TFMa35d0Md/HKycYnHmU3a0NftXXrwzwhVGESgOEH+OTmlpKtPB9TSgLPE+RJjmh7yOjPgjIDjZM4f6sIAjjypAyDNcueGEUcqFNlJYnfKQXosMeYm4Zv9AEocBvL9A79gC94+8hWlw3YGEY4Xse7aUTSOnRXT5mjZTZiLAZwMkZq02ASNRGkgP0qggpqME4c0SFRTlorAYLG8Z/09avNlwNRjnD2RnXM+c6JVRABZc3rufGbx61AY5ZNtn0HruN3qx70FQ6q7MaQNoMkGXHS2OMzVcThXcKsKgU3iZm4q5BAxSoPYz1PDLD/NypzePMmGc9mVWtwApsrD+7w/qLa/itPnEQ2O6pojoEG5Hg6MLcumwAqybNwA50BvhsklfVidWmVQjpzcBU2LlX1XWaQEn14NjVqxCVO4DV6jSnuDEzJqgj6e4GSplUPixp1QqJ1kYJrmjfMjMp6rFWQkLU9zOkWguPWjBYo8rRhguUEM1HboIDs7TuQI1DG6B6Hgco3rHnGs9bndMAb++Y+2re6+vqJg3b6zej1JxQQzSUZrQbdNMenF0zS5pKaTu/NQ9o0rED7dzeFgiCMCSMoopnzewIKUxKWmMOFBjeapapjqq1V3TvZ9/YtxWvYQbgraNudT3vuo5cQesq3adKvZLCpGpYI6IlYgMylIrCdmUulanNEygPpbUBR1SJimOj9CjNNE1MAxjb/StJU1Mfp8htd2iTdmjSziYURY6yzUFckxBdNZYxTqYiz+31cqbTlOd++F0efvRxHnr8fbz4/E/pdzvMz82xs2tqRFHkVVdcKT1OnD6HDCLm5xdYWV8nDEMW5+c5c+YMvU4X6Ulb49IsiyuGb9WrqsFODfrPLkSTtiteTQPYtX9meKByoHdTbtVAdFVDrwJeql1YjcOJyUoWNWnZ8hBwjgSMN1PXA53xVVfET0UnumyASfZI1cDqTSH52evU5SRsKrGmSvdTSlNQOzOqLo2WVk0H8cI0e7DlBMY2QiUvS/I8Iy9K0iSlyDPOXLiXI8ePk6dJVUPyYHhAWShQBUkyQaOZjqfkWcI0NalryXhsojG0YrKXItBErRgvjEiSCWWak2cJeZHRfut1PvGlv81rr7zMtasXWT91lkILZJ6Tjcf89Gcv8Pkv/CZrKwvmWfOCyThhbn4NEfZ54on3Mj7Y50//5D8wOthnf3uTdrfL4nyfbLhLqQobyWr3ozSp91J6NtXHLpdtcuZ5ntUrpFHihYfnmbmWnqktJYS03/m4+r0m6tozhq7vOqMGeNI36TwuItVz3n6vuhaWvpQqTC3AyRSER6vbZTKeIqTk9NJpzp+7h/m5AYuLS0zGE9aOHGFldY0wsk3cpFfTjlF6KrDDGVEOoBRYwwPqfVdts0PEfkiTwRp2znGmrFEl3Hsb9Wh4m4GkjZOjILdF2NMsMym7RUGapiRJwsFwyMHBPmVZIqVHmk5BSA6GI7AlDMoiZ3ltnf5gnmkyqWojhnHMdDhka2ODVis210exu7/Pj7//PTxPEkcR2XCPI8fP0Or2CIKA8XhMtz+HzDOee+F5nnjsMVaPrPHWm28hPY/5+QUm0ynbu1sIVRL4Mfc/+B68sMWJM2fxgxbvvvsOP3v+ebI0oUinBMJjcXGJrc3blHlBMp0ihLbN97R12pt5cs/qDM08zyiL3OirFV0oyjw3jcDKgjTNTJOuoqDMM6bTMVlqGqSVSqFKJzutPmnBMQ22S6K2YJaR2KDRheki7mpcJdbgdrXChZSErS79+QXmF1dYW13i1s2b9Hptbly+yOl77uG1l19F5DkHG5s884Mf8d6HHuaxBx8ikgGdpSX+6X/5L1B5QRB32dnf54//9E959+038X2ffn+Bhx94kEF/jv2DMdIze0VqTOob2nTOtIY12EYgln6lrJuHzTTmqKS80/METmdVDRugMiHsEb7nU4icKAqJ4xZzC4uMJ2OS6ZTpZEyWF7Q7XYqyIJlOkEIThZGpwVikCBWgMY44hTGOf/7ij3n601/m6pV32NvZQqUZBzs7tLo9nnvpRUDzmU9+miiOLT1EzK8c5akzZzlzzzlWllcYdNsszS/QabW4+Itf8Ad/+G/Y2tykyAv8KCaK2zz04MO8+sJzDPd3KPMMT0oTyalKfM+rmt6JSo450M5EkGlNFUFvfneNdjSVc4uaxkqlqrRIKb3KhnK07YAO5/jWjZJOnu9VpWqUHWOhTKp65EuiIAIdUnXyrVRYA8S6sjTbm7fY390iCFu02136c/O02y3a7RaLi4vc3thgd2+Hubl5bt0aU2QpIYLJZMLPnn+O+89f4NyZMzz55FOgS15943V2JmNO+Ue4cM95rrzzJh/5zOdYWT1GkRU8853vcHNjA6EhDAN8DY8+/DDpNKGQHuPE1NIMA982hHDpqaLuQNxQKiot4LBN0fittpvBKc1K21rnUloHLqYbtScJAp9Oq8Xi3Bz6yDoabUtTZIyGQzY3brOzs8PO9g5bmxvcuHELT0ouPPAgt2/cYPv2LeJuh1JpDna3UYVp4ifQprSY0MwtzBF1e8wtLXLhgQfJ85zvfvPrFNMJcwvzCN83PQFsZ1lpAeRSlxao9ZypYHWy0gCHZYFSZYVFFIUL+DAR20VRUBZFZWe5DBlziJVLSllAWVtHmztWV/qeUgoUFLrA6XLNoBsNje+oGqFUAGFl8zWlpa70frtSSFvj26270trWpbcgYZ7xzi9+zumz93Ll0rv4/TnSgwOKyZjbly/zze98j1O/fYIn3vskt7c3kCJACY8XX3oJrTWTyZRnf/osx898k4994tOMx2OOnDhLkpV0+z5/88x32RunRCWkw12CMKDX77M4Z+q7uhrAJuNHV7VeTQkdo/+YmpplrfO4eq6iYRNrp3KK2gwUAj8wzgLj/DMr3m63AMHezha/6utXBviiIMALI8oswZMFYdi2HkYDjGghEIFJfZ3sbyGlMsWtgxjpRRRIRFYynRTEoSTNFIPFJUbDCUFvkTDs4HUGdBaP0lk9T2/9PGFvEa2sgPNDZBDhh0aRE0KjqNMqTKejpse+BkTqNEZLpM6d4IwNuwlct8c6OMsR6CGDixrQ0864bVy/uSGagrMZSVWDEHX6riOICiZwjMwyvlkQQ1TXdKk0osEc1cxh9XiqWoEzFpuYea7a8K8/VwCTHWStLNRMuNr4Nmukzl49bKDWRqUWzSd2hmVjHptToBvjqq9Wj0VXI6kmvqmaB6Hp1ObWTpX1umrcNDcAKXsP7a5nn8XY1SYiQNjNLx04VU2RpafSME63locjY9z7qk6P1hZoNJN4aJUaIGgzynHWEK/2QTU39UvrxjO5L6q1rxeytsdrw9wpNi5d2q2le27pDPC7CXAtQM5+JxvvG6qnPaHSZKp9Ve+HmkZmvHrV0tepek0QahZIbgizhqfK0b4Lja+B1YZwxBgN7l6NUVEJxgZoWKXaN+lUiBk+YYYv7nimmYioChiiBu3cg4vmee4ebtxuLzUcC9W81jvkkBl76OUUBCqFwd0zz/NK2NVDN+Cu1th0vgZNGaZpPYU2EsEqvaXXiMCaaVZkjLJWHpsIP20aOSntaj8aAC9NM2P4KVOMvsgy0Lbzn23iUhQFWZbb1MQCpQoL8pnIoslwzEsvvsDC6hE+9LFP8vbPX2V/d5tOt2/3tVHcB4N51o8d5+TJMwwW5llbW2NpeYkojIy3VtQRlKArHiHd3DcQWjcns3ycCqBo7pD6pOa5hls0+WelL+v6Wjj+7uTCXda96WeoSMTRkDuw8f2MAGgcp2nw4KYItUaRYUV1Gn31vPZ4ZR0hleHp5tLuG8O/a35jlOBaAVM2JRxRG7NCSgsImxqhnifpdDum8HYUUpaKkZBkvqTd7dDv98mShNFoBJ6k1elRFqaGKBom4xFROCGdjIlbGVmRI5QmTzOUgDyZ2CiSgjI1NUiFfW7P87l66W32tm7x9Mc+zte/+sd4UtDpdknHQ4RSXL92hW98/av82he/QMdfIRA+X/jy30ZLSbvdZm97gz/7D/+Wq1cvU+QF6STh6D0XCL2S9sKC8f6jAVV50qs6rRU/MrSqha5Sd4zCKq1ssylqttOhtOBcEIQWuKu/94MA3w8J45i41TFNYQZz9Hp9sNEmYRTZOj++3R9W1ZdUjQ3MgrvoOyuTpTQIsK73iIv2rrhndbxTuu13DR3I8bC7pbNXpDizxRpEb98qbSLRoHGcdvWYzcya5lFZ9Rx5UZIkKVluMlNcpHKaJIzHE4rCgIFlqcjLkkIpKHM8YJqmBjyNIsI4IohCwrRlHBbaNKnozs3T6fcpy4I8s93/isKAY4Wpt3b10iUeeeL9xJ0eO+Oxib4qc6IgZDyZ8Kdf+yp/73d+h8efeB/r60e5dvki77z9Nrdv79hoDcWZM6c5eeoEYRSxub3J1776NUZ7u7TDgCJPeeLxx7h88RcUWUKRmSYjBpgzEbLO6efm2QGvpkOwCQJwa1OWJkqyKPIqiqQs6wgWpZTpiisMXfueXzVSM3NpIiVLZWN/hdHXglDaCC5b788CL6VSqLzmYw4M8n2fPN9jPBqxu73N4soqK4sDrly6bNL7s5KVlTW2bt8iG4/Zun2T59C8deldTq2sc+7sGdr9NtPJiMsvPseLL7zMxu0tiiyn3Z/nyNo6jz3xOKPpFK0UUWy6uHtC4lsHkamhpap9I4QyII+tlywbvNRVTz3smDFkWstUp745fUlIAxxJTxJFRta2O+2q6aAwzBShoSwKQhRBGKLKkvFoTJZnhg8LQZHnZj3tHI/2t3n1xWd5+hOf42/+6mts3bqJmE4Nr+92+fHzz3Htxg0++dGPc/78BaSU/N7/7O9TApHv0+v2aLV8dra3+PO/+jrffeYZ9rY3KYqMIG4hZMijj7+Pm9evcfXdd1FljhAuQtHsXenJqoSI4TmH9DWEjUzSVYSSEAJP1jaQa57hjHutainazDhyx1TONnusa/ZT13i2cs+WkGrFfg3SYiKkS1vLs2mPNW0dVRakeUaWpkxGB+zubNBqt4mimOWlefZ2t7l9+wanTp7h9u0bBnRXmr2dHfy4zbe//11+7dOf4aGHHqAoCv76e99DSQ8hPO45d54jf/8fmTTuvOSlF5/jhRefM6nsgz7DvR0evu9B5vsLpvyDF4AUTJKSPPcIAq+yWTzpVbTsWVDaBZxUfFvWJaQcgQqrCVSc2NbWVEoZh1IzU6/Se2udtaL1IERHMf1Oj6NHjla2jtaKJE0YDUeEUcRkNOXG9avIIGB/OOTmtevs7+0ynU6ZjscIAevHj3Pz+k2WjqzhhwG/+PnrTPZ36Q/69NdP4Hs+WmimSWJArdI4Ywwoq6tGda5sgNP/TJ1RVduDhQuKsjpy6UA7C+TZMkdGb3YRoqXl/6r6bMojmfJjpc08cf+Uwz8qp5Wupl9TZxiVqraR3HfKZoI4m0ppF3hhHX/2OX0nx9FIbfR7KUVV7uKNl5/j3IUHmD96lCuXLhP1+xRb24y3trgxt8W/+/rX+e1f+zVOHjuGxufaxm02d/dZPHqStbWjHD12DM/z2bi9wdlz59nd2WZuMM/3f/xDXv7FG3hBwO1rV9FliU/AuTPnCHp90izHD3wCX4DNYCjKElGWpnSQlBXg7/u+fU5ZgYACqohHKQ0Qb4vGWBV/FgCt5l3ZeVOKX/Ul9Gx863/267/9Rx8hSLbwREmepgRxmyLPieOI6XhMGIaUSuELMAUZNXlWEra6ZNOM7uIipewg4wFzy2v4/WXmj5wibM8R9fqE7Tm0HzEaTugMBnheYIpDutp51DjxjBFTGSsYRud2tCMwURsxblNou5FqsMBdqQZzZhgoDQOstlJnGDnUwzA1P5rKo5593wAiKvCrYcjPGlx2i2mswfxL0nUr5VU3jML6pQ6N2xias8dUER2VJX9IwdXcQaji0LUrMOFw4wwHRDaBmSZ4US9a/SxNGTbzuPWcHH7V0N8seFOWOWk6ZW39WAPOcPJDVGNvXgNqj5MQdVfJCrWvhIj1oOCMaCr6q2ZY68ajNeirevbq5vWbai2a1FBHw7mJccZF00M7Q1aN94c7uh5mC03PjAMTqa5ag4uHVqRaDwcoN1930GtjlgV3+212bNVYZk+v3+jGmun6XN1IF3V3dICHcvN+6NxqLjWH1qvmO/UWrufbKRH25vWfGp1oPFdzcrgrHTtBWPMgE9adZxOOnz5bnesiUqovqj+iUtrdq7TKhTvPRPTM9nfW9ek0V0cdosPmozUVBTdfbo5n0sPdnnVKhU1n05pGRHF9LbdiVWqtdp9LW/C6rEAL1+zFAHAOyKCiG2UVCm3noSyL6t6FjYJBa0ptIrvy3HSCTJIp7SgCVTI/GNAbDIijiFYc0+l08YPApFxgIro94RR9abofgkEuXF1X9/x3dE+xK13tocbepkllzBJWA/y76y5r8NkZQLkJvldvRL22Fe+qVrk6ZubMahgN+p4dwaws0bC1cYOVYycO3bu6cU23TXJuHtN8tor+GwCyqov2A1WNrypyUBtQ2jWPyHMTCVqWxjDNsozJZFLtaU965Flququhqy7gSpnoz6wsoCxMGnmRk2cZaZKYiK0kMU2Eitx2sM3RFtjRliZX1tb57Bd/i3cvXebZn/yIOJC8/fprKKENfQUx8wvLPP7wo9x3//1Egw7j0ZC3Xn+Nn/zwB0zGI7QqmU5GHD15lsWlFfLhJr7VF0q7d6SUtvtvbYiCNlEECptmS2VoSluYO4xMCpTv+wR+SLvbIQpjgsBE97RabVqtNlEUEkYxQeiyKwIDGFQy884IDl3RlKhkR7X0DVkiGsRw2AHbpF2nkzn6bUjyiu/NbhTROLWhKzYJ7pD+gdZs3r7BwtFjla7UBA+NoaRN9CS2g3hh+EppeVahSrLM1JbLspw0TZkmU5TWFIXpUj+djEmTCULDZDwhjEKKsrRRaiU6z8lLAzK6ZinaRiKnSWLubw1EZWtMFnnO6XMXOHPP/fz1X30DpQv29/bo9fumWZXvc/r4Sb785S8zNzdAWFDv5o2btNst5ucGyCgEKbh0+Qp//Md/xsW33yIZjQhDn5PnL9Dvxrz75s9RydQ6gmRV180A76VtqGFmTFYGvQGYjPFpZ1O4dDHrnG7oXCYDw6ZCl9oAxLbMiu+HpkOlkAQ2Ejy3hpzjiS6TQpXK0L5yzVZMhAza1LmSNkLIEIYDuH1anR6jccLVq9eRQciTH3qaZ3/yY9NEx5fEgx5Bp0PU6RFHMel4QilMs7Y8TZiORwRhSH9uji995TdZmltEKE2WZ3Q7LQJ7H88TtGLTyM234J7vm86YBjRx+9XROIhmp9ImtTdo/Nb1y/QWFmua1aqKvHdOkCzLbTOrkjRLmSYJeZYxnU5IEhOFnCWJbaKWk6WJ4UdlQZGZlHFTh68wvDEvuf/RDyCE5Dvf/ivy0RAJeHFM2O3geQFRGHF0bY2HHniAk6dOsrgwjwfc2triZy+/xBtvvcV4Z5fR3h4UBX4cobXgPY88Rm/Q5ft//Q3K6QQTSVSXK6pllEtbVNXedY4EQ1v2jAqwUJYURS2kGzzHZZDU0cENm8baWs3MHjQ1X5QuLZXauWIjNYWtV+phIgkVqlrXSn443QhmIgOd2Be2PmAct5gkBfc+/F5effVFtm7eIG6ZOvaDtXX6cwvce889fPzDT7GwMMe0yCmUQpeaIDTp/8l4yve+/11++uyzBuxKc06cOsVw4zb/83/+X3FkfZ2yLGi12qbsgyptIx9V7fEoCk3HYYRJ47Xgq7ZRkMoyWzd2cAE52Oc2yreTIdeuXKLwQiuzGiVNnDbZkBVOnDj5Mav36wZvweqCVPLJ1dxVpW3+o5Th09Mpk8nUOO6sfeB7pnN7qSGZTknzrOLJTsaVRUG/PzA1r7VmPB6xs7VFmqaAIrN6BFqbbui2Tq4Zg5EjWqkKjFaqMKCU1bOdzmJSfVUF7jXfO2dURU92wlzpkgqEktI4VZztqEHjUoStnm6ZigO73R5wOrkLKnD1kt3aqLKo10lIjt//Ho4dP8ebb/wchWa4tcF4OKR/7CS9pRXOrx/n1z/7KfrdHlevX+fFV1+l0+sTRRHJdMzu9iZnTp3i4UceQynF937wQ779ox9SlAUHt28x3N4ArTh26hS/9bt/j7Wjx4ijiMDz8TzPOB6FAZ99zzWHsaC+BfCKoiQMQ/udOURKl5HQzBqgeu/YRWW/W84sBFy7/C5f+NTH+VVevzLA93/4vado59sUWcJokjFoBwTtNhpBrkOi/hI67JjNmw6hzPE7S8yfuB+/t0RnbpnB2gnCVhfhhWgB0yQjjuMqhNfz/QYTnlXPzGvWiK+Vejtllik4QAZrOFZeOl2fLA5fsgI+LMFr99eFZzfOnVmkxmibqMAMUFUrf+5zDfTNqpTVgQ5MgCryQ0AV6XU4Vc4p65Vg17PP4cZt5kjM3svNoBvKDAOsJ6oecv081bzZGks12Dd7repWjbm5o1Zf8/Dmb03G3USc7DPdDaSq4GA7v2VZMJmOWDmyjm48as31zVsTpWCVfhtZoNGzQqE5NJodKRvfNkCKJr3OTk7j++oZmvVSmr/zS+ZzZtZmjOGaZgXOW3jHUNxHp/TqeozOgJ4Fle/GRu6EFmZBvbvQuDvNhXk29os7fwYYb/w389x3E9bV/B0ClA//bczP3X47vCeaAHhToNXAX31+M4pkZt9DRZs1pjGjgjeUEz3zvdKKLJtw/NQswOdot6bphlHcmF6gikiwN8AZ3XcYAVrPvNfUtTzg0GrqQwAn9XxU/Lnxt/qtOlZVv9dKVn1+pXw1znOgulLuNxun5O7p1qPipTWp1c9uZ6mqE+NC8Y1H1RXDdh57k01dR4XKmUtpmxJoWGGVGt181hkaFBXJO0eJe/Zqp1UMl1/60m65mzzNrZCYpbHaaXXHAtY02ZCdVH+aILKdM9FI9aWm94quK1o/vDcNwLe8fgJHmIdprzm8GaXIjatxnLvwYXp189dMpXSgctkwhEz3b+MVrzuBF5T2WNfdO7cpglqbiKHSesSzPCOxhbtL2/glz3NbMzKlyMyxBtxRlSc9TSemaUBZkGcFi0eO89gTT3L71g1uXL/Bu2+/ydbmLVqRjx8ECGmSMLwgQAoo8wJVmAiZzF5zZW2dM2fPsXvrBh45UprC2A6g8H2/2iuebzpKCrBgQUCr3WFxaQkXMReGIZ1uz3RxDgKCKCYMAhO5Zzv0SSHvJKkK2BYV73FwW6X4Nmo1NM+bkZcN8NqBtr9c+ohqLzhdoUH8Dfqtle3qjdsXjlfeefFKNDna2tq4yfzaMZqbUzs+VPGq0jZvcZF9dWfxwtJaZoEUpUzUXpZmZFlqgcCSLEtJ07Sqf1ZkGVJKsiwDrcjSxHTxLAqyNDENXfLcdEPODbBiShQYg7AsC9Ik49O/9mX8KObrX/9L9vZ28bRpEKSFpNvrMdcf8IH3vY8HLtxLt9NBoMmSKUIKrm1v8dKrr/Lqyy+zc+s20/EBnvQ4cvIkR44e4+2fv0g6OUCqqktdLUeco0bXxqVWuuKxjh6aao3TXaQU+H5Q8RVZpT0aEMP3fIRnFs2z4FgYBNV1pTQRpnmW21pRxuAtlGlm4dZIa03pGs3YjtCySme3PKRUhv7DiKJQFIUibLUZzC3w+qsvmwYuvo0Q1MI04VCqShENQp97H3kEpMeRoyc4evwEIR4tPwTPNLzqtE0dySAImJ+fr2RRGIT4vqz3oAWLpJM/dv86kq7mtGbOaGDjxlXmlpeBRpMsrW10qUkvz3Mb7VyUZEVuauUWOcl0Yjrq5qlJM08SxuOxAfSShHQ6YTIeITSmfl+eWpA1o9SSex98lLIs+cH3/oYyTVB5Ab6pi+VFMUEU29p1pgu31iWqzJB5wfhgyGQ8QgpBr9dDa8l9Dz3M4mCOZ3/0PYp0gioLhIYoDNBSoEoDkDiZ5dmyGL7n1zLaBn0YJ6ixGe7CCu6UdXdwIcdWNLhERBuxVkf62OZxGFC6jo62qeG2KZeUfgVwOb3H8ZOyLAwgWxQ2cjK3DQwMD1WN2tRBENAdLHL6vvcgfZ/vfusbTMdDfM8j6g/ozi8xWFhkbtDn3NmznD51ksX5BQLfZzgccvnyJZ574QU2NjY42N1luL/HyrETSDSf+MjTPPzeJ9ClZjKd0G61mZ+boyyyKnW23TKZU1EY4vmmi3kUhnU9Qzv/0m+A/bUihNPolXLN3wzof+PaFXQYN8pN1PaB2QaiwaJ1LVKaC1rZlA07oCGDan2CBv/SlQ4pGgyr1k/dWMtqPMql26oSV5rC8Tejq1vasaBnkZtmFKY0Q1GVaCjynMlkjLJOxSRNSZOpaTpX5LZ8QU6eZwZAc86doqj0D4FoOBktAGfHbqKjG44yIWwNbWUjA6nKMRnQTlhnupF9rlRAlYljyymYqEvDYz3bSMg1PXEdwrXn84GPfQ6tBe++8y6bG7chn5IqRbywxNz8IitzAz7x4ac5d+Y0u3t7ZHkJ0iOOAqLAdFTe3t3jr7/zDG9euowSBijcv34NIQVLq2u8/0NP8cQHnqRQJj0/8APyPKPb6eH7HoHv4zv932YsVPiUto1HRA3Gu3UDm4Ugpdn5wtgBtUO1yTnMVzcuX+JLn/0Ev8rrVwb4/pu/+xTh8Bp5AZls0+3O055fZPnCY8ydeZjuwhGkH9kHKlB5gYhaeH5EXpZMxxPm5uZsyGZDkRfC1meqtcSmsVob2w2D2z2UcNFVgBCz0SBKN5jtLBu+M9JG15ucur7W7EvP/Km/tZvDgQQN47w24Mx91V1AFpfGVv8+Y6rPoL8z9z48vLuNdoZvzSq5d3gvmufqWUPJMdj6d924gTj0zKKajzsMfhrnaF2N6zAAWikjuLEdMjBFc870nfvGGcr2OLRJ+xiND1g+sk6FsDu6cwpRNVZVK/rCGb1U59VjtBe/29ZqLgDNAR6aaPt9c3lngGKaxqyunuewwe2EiwNrlK6Bp5kh2ftWwIk7vwHGNC7ZGP7smjVx7KYw0HcZ8+wc3O01AwPMHOmGpA/NkYC65oR7piZ/sIObBetqcMhda2bvHgZirMJXT2ENv1SgQXNND61Lcz51NSd1BKYzWO8KvDS+qh5JaZJ0zPrJ0/XMNW542Ihtfu9ot4raa9IxDQD3DtpqXFjX3SEP/+zAuEr5dfNe7e07QT53w5l5uutecopTPTmqcX2NrgvaN4EE3HPbJ23QrpsP7WSRo9sGDZnUPwfuN/bgof1S05+djya/rAi4ptzZkgyzMq3xQ2OCmeGnjeEy88UdvInKuLtzUeu5cMNsAnuHgTv3pK4+Z/Ne7vyK/VrmfMdS2nnZun2DxaPH7PDELM1ZxdHwRFHRVjUPwhr11SW1VRjlzGiqNCwhK/qo/9JQPo1S6kA/ZzSZqCujlDoAEEy0RZ6bzpFlUZAVuTWEs8qzXhYFWZqhbK3GJEttU5iMLLXe/HRKkWUkqYn0S0ZjRBBz6p4LSOEzGk95541XGO1u4nkmNU9GBqwQpUIJiFotjh8/we2NDQbzSxw7cYosGdMOfTw/oNcdmHRYP+Cec2eJ45giL9g/2GdubkAUx+R5jkstCUML3Alb+bBaCze1kppEar2k8lrLxvd3I7nDMofGZ7fHBDN7qbqJpZ8GodQ/Vbzy0A1F823zOWZlWVOwiMa97uRE9Z7f2rjF4tHj1bCauqSTNZU+qqlKCbgafaWNOM5tNKf7rJUykU6FIi9z8iwntaCfq0+nlelgmuU2DddGV6TTiaFZa/Cr0pQeyPKMPMtBu9qjOUp7fPTTnwfp87Wv/hn5ZIQQml6/axqdxG3a7S7tdpuVxUU67RZFnrG3t8ft3V3G+wekoyFllqGAk+fOc/L4Oq8+9xOKdGI6F9u6jBWg4eYebcainEzWCO0cLbIB3Jm1cJkrLtrHpU8KhI2yMEANaGtfyAoUMTWuNIFvGki5+psVvWiq1Ee33kppsqLEDwKWV1aRvs/21jZRHNMfDChVSTI1aftxqw0IwihiOk2QnmlAsbW5SakU/fl55ucXOJiMTE3FNGOamAYza8dOcOTEWVbX1mm1I+IgJA4jk0IceHRaLQNCBYFpGGMzmgQSIev6V00A+276bJNX1voGbN26zuLaas2rKzmrq4YFLuLUOCdMWYPc1pKseZ/pSjoajpC+T1mWjIZDRqMhaZIY4Lks2d/bJU1ShAfTacLS4ipBGPD8C89SjKc24qg0MgYQkU8rbqOFsBHRGSLLjWwSEHe7dAZzPPTwI6gi5/UXn8NTJWFkSkV5nkcYhSilq7q8DmSzATkG7LB1t5weYHicrnhE5YCr5rHe745n6BneVCtvxgEiTbMJm07tAGPHd5sOVvfZRWVqUWcOSVeHD6r6sqosUWjSLGM6mRjApAKpbbMJ25Cs0NAfLPPwo09wa2OT115+HmUb3oTdLnHHzGc86BMEPkKbiNt0Mq1AptHOFuk0oT1YoDXoc+LEcZ58/P3M9QYEoU9ZFLTimCgMTWd2XxiHkPCq6MQwjEwkn+fhV02QmoASlQxyjLlUqpHaXK/JrRvXIGpXmSmzBkJN/E0txv1p6j4ze6XBE5o6klv7OzQpp4M27IemGTKDM3Cnzlelaleip+Gc1lWrsGr8Wjd1L6N5CacD2zRgU0/YlGbQaJLU1BV24HwynTKdTqtmdXmekU4nZLbhi2kSZjoGK1XWY7M03Zwz0zCmaQPW66Nth2gTya0rfU3ZMiGFBSKTNEHZKPeg1ePBRz7IwWjE5ZvX2N+6jdQFfhThtzu0Wx3arTbH1o5y34V7WV5eRngeyXTC/v4e7166yJUbt0it0/Zga4ODWzcRZUF/aZknP/ox7r3/foQ0na+FlIS+b/QfIfF8r4p6lUJYsM9HSBtBbVPLfc8zdfoCH89F1mrjIHCdtyVU9N3Uwys7Grhx5RJf/twnD1PVf9brVwb4/o//5X9BPLnN2j2PsPTgh4i6CyaM3fMJWl0QXlWvxW3kZmOHpl42EzFi9asma6w2iP2viipoTFQTRW9Gz6CdUSIaG6D+O2PwU3tt7KlWMa2N8HrSKvMFYY00ZyTWTS3qMTQBlIZt1zCg6u+bhps7sLbZaoP5bjZag4cd+q7mbLPGfH2Sqw12h0GJE3AcOk8fOt/WLmme2wRJRD2nNcNzzzrrGQGqhgOq0cnv8Hw0gdPq1+a1aESjNO5bFi6C71h1j+aYa4O1NlSkbEQBandtqquK5oLSUBAOz3ODjt0cOHoRM6N0s20Np2q+RDUnTbVt1uB3zHUWJK6FSQWVNujybtRz6GUXUBxe5+ZLNOjt7hdpCN4708x/2ShmxzfLEyqFtDHGWVRBz9TRc9FsTV7h9mB1jcZ9ZyKQtOMRYiZV1SnLTtF2Qt79eFiB0I0Pzkt3aJZm9wpUAIjbj5PpkKMW4Guw1PqdaOz+hhCpGc4hATNzTD3Xd4v+a9zFjNHeTlPToBv4zJPN8EI9+121R2bn376ZmZv6nJqhHgYnXX3I5v1n1ZF6xnSDpoyR6e7k9k5j/e1DChqNShr8q+L/DboUwtVyrCPd0DU9ObZT03lzn9QzfVelklm+Z7+487hD4F9zMSv6EWLmtnrmr7jj5ocjqWbA/ep+s4/TVGo3b99g8YgD+Mxdq+HN8FIs76lH6+TznRHCh8ZIDZ5Xf52+YD83PdhQr5WpCaSrRlvK8lrjgddVRoCL+lPaeMWLskCXJs2vzI1XuigL8rJA2ei+LE1Js5TJaESem7TMNE2YTEbs7e+zfzAiCiK6gwUG3S6vvvAc0/EIjaAz1zclS0rFI4+9lzCKSJOMEydP0u31CaOIOI7odjq04zbdbtdG28mqJmHNJuuaRoZ/NfZlk95EPfNNWqhTUWb3boMo7qAFd66eJTBmnIEz+k7DaDh8+fpytWyaoaHGcc2Hcf83aGp22LNOShxPn9ExYGfzFgtHjjNDe9UUWjrTNVBS0aBSlNrRFjaiQVfRo9gI01Jp23HXRlDZen657RJraGZsDPqyNIZSZow4ZdMlXdRHmiZ1cyFr9GdpSlHCY098kPmFBf78a19lfLCHZ9PC/ThCSI8SY9R4SGOolYqyyCnzxDiKpODo+nFOnTrNz5//CSqdEAQBQnp0Bn263R4CiCIDJifTiTX4VEU7plmEoUGBAeWU1nh+ABo83zQICYKg0rwQ0O326HS6xHFMq9Wm2+vSitvmOG3S8EejEdOJAdSkjXiLWzFRFBGGkUnlDYIqytXVUAJB3G4TRjEIYTtgSoTnajBRGdqq8SwuMqZQCpOdbIEKafi/pxTYMkGeJ0GY8g7a3tN1+W0KgspQtO9nXoeUjFnduOnIn5WJWsPu5g2Wjh6Z1UCtDNQadCW/LL/QVIa5q6GqlKqdJ+jK6WqaEpUmKjVLmUxMp+P9/T32dnc42N/j5rUblGnGcDQC3yNJExMdnaYUWUZWFkiF7cRZoj3J4sI8YRiC0nR6A06cPcvtmze5fuUSKwsD00G23TE063lMk4Qiz/B9k/p78uRJhsMht25cI89Tk66oXUSmKavRBPdMTa56TrV2jQbq+sDu+9p4t7W4tLBp082yBHWqn9OttHZZWnV9Stecw4GBUghQumps5/RfUFXafmajzPM8AwwIWOSFrX+ZkyYTptMU6YccPXmOrZ0dtjc3KNIJQkiCKCZqdyh9nyAMbDq4RBclRZaRpiaC98ixE3h+yPz8PO99/FHaMkRpRavTphXHtCITUec6egdRhCc8PClAmojUMAzsfjMZE75v9oHrvur7fsN5U+8zR+RO/ty6cRWv1WnU7Tu0JRqEfTf7+Ze9KhulKWjM1X+ppeN2mHA6oDvd6bjVPnE6pa6cHJU2qus1lvrOOzlwG3U4WKiGAZsmfUUmNHRZefg5XB8CU66kbDqdStNMLM8yssxEhhtnk/k7tU13RsOhcUDZSFm0pihM/WtV1UvU1d5w+pMpt2Oj1V3WQ6kQQczZ+95Hmky5+O4bTIa7UBQoKWn354j7A0RgSkr4ngdWdkiryZRKoYqcnZs3mO7vInRJPDfP05/6DMeOnSDNMsIwMk3EbP3DKIrwPXO9MArxPB/f94mCwJSgK0tacYsg8AEDwvu+ZyKNhcMLGllAoi7vVesUVEFubhVuXbvMb/zap/+T9Pj/6/UrA3z/5o/+gsVeh0JD2J0j8C0D8BypNJDuytDQlonNbjx3bDOKY2awjUlxKplRllRDetXXrhgBjWvaDTrT2KJpZDamo2lANI1/959uXE8fur95V19XN8bR5A/achuXmlIJEZqAhzWp7sqJDt+fmeNmFVwqJtj8sTnO2e09a2BWqoUTbA1QZEZpqKZh9rzqnqJ+7vp3YQ3fJohngSkH3jam986pqOepHnVNC7MRAfWYyqLgYLjP0uqRhq0rD9UhrFR6qrBp+7mKBNJUhXndHWaM4BnrZXbMNRjUnL76fEcnTWZQXcF+UFrf4S1p3uuO56+stRoYb76ao22CSbjPFc3UdDXzcnPyS2gWsB53+Ut+PXSpO7hUY88yS/+zAFBjPzYEab0sToCKGZppXu9wynizkYS7l+MFuvHMzYilQ7qAUZQba2AMGlGNrBK+cvbZDk+DtqDDZDpk9fipBs+qI1GkFf4C6tqjTf7Y5A+WnptRhYdVF0f9d4vmEoffVNPfSI+HO+itCbDc7fuZp9czw77rq+IV1frOGjI1Q+YuBDa7E+tTHBBivZF3oRXd/O8wD3S0omdB4hqcrOlm1iCzozr0XdN4rBwYTmbYgw+DdM1xiuaFDt9E3LnmTT5950VmDjo0c83vmnxoVvZs3r7Bgk1vdB5PR85Wk6jem6FaDaPxvDV93/nMzU930Noh+nP8U+v6WAfENIH++jh96L1unG8mynm0m/Pg5KhSpvajsnUgTeOXjDw10X1JmjA8OGB7Z4ei1PieRJUl7U6X+YV5BoM5+t0e8/PzVeFnz/eriZBO6UBXdS1rb3otf2Z3wZ27rOkImqET3ZBZ/4nX7BXvvucOX6faUw3l99ButuRUP6OTgU2jrnrCSj7a6zV4pvnsUokOAdRNWdKwjpp1M7c3b7Pk0szveEy319016v2vFbbOlAP4dA0aaxogcg00l6q0/0w3RZPynVd1nfI0rdKzkqmJhBJgIkiLgiRJyGyUhusynqcpaZYxmSScOnOOoydO8b3vfJu97U3KPCcMAvwwQAa+iQJxz6AUge+zuLJimjBkGcvLy1y++DZ5OqXXbtHpD3j4kUd5+NH3EkUxQsP83BwazXQ8ZnhwYCJlbcq753mkaYYQglarhe95JuJQmIg71yzA87xKJiMEnmcavNR05cCZqsXcXfStxroKYfSBhnyssjWaPMf9LEBr0eCZlSbhhmR1AMO86nvZazv5D7a5HJWDrEGljS1Sb4ZKd2sMttJB7uDHszL4sEx0vGh36yarx9YbdoW7V8OOaYziDod8k7fdhR0IewGNRgth/qFNrcOyNCD1aGSA6jxjmmWkWY5EmDIX2kX7GNBqmmX4vkQoTZnnBoywNVSlL+m2WyzMzduUclHzeqWIopil5WX6/R5KaQ72d5lOxkjpURYmAjYMQ6SAZDpha2uT8WhEUeSAIIojS5t+VbbJt86TLM1I0wws7bRasQXaCjzp0Wq3iKII0OR5Uc2f55m0XVPaITfRkXnKdDpBlQo/CEw6f6NmK9rUgXPN7HzfRgRKv0rxrQBGIar9Udqo31u3bnHt+nU2NrbR0qQBj4cHbN68aWpHBiHLa2sk06SKRhe+Ab8XF+Y5cfYs7166wtLiIk+9/4NIAd12B6UVQSsmDCNC3ycIfMIgNHqtEAR+QBSESD8wzTW8OmW56ljsonobQKmjI2c/ODp2Zas2bl5Dtrsmgo9Z3W3mpUFU3ujmXpjVa+/6Okzfd6pNs1RveX29Uy2faMiHmYeZsSVnbzfjNK3u4ORiHYnedJxXeq7b126/OnukuvUhTMHNd2Xr1GO+w6mLcXq4BhFlWVQOpSxNSCYjdnZ3OdjfM92kPQOElTadfzKdGCdT1UV+SppMSZIpk8mENM0otMf5Cw9TeoLXX3uFfDyiKHPyJEP6Aa3+gFZ/YBrs+B6+BF2WpNMp0+GQ8d4uKkuRAtqDOR79yEdZWVymyHKCKDbNirQg9D20MCVJTAkSU4ZEeh6B7xEGxgkUWKeBH5iIPtNkw7MRfKKuXewZsNmznXdFc/60sfWU0hZAh43rV/itL33ulxHU/6TXr9xF1/M8wrkVYlk3rlC22JCRMY4YBFVnPPsSlgidbG4q3C6kfMbodcqp0vWGRWCcYZV5Wh3nCnNWdcasAHMRVdp+eZio3XNUBnxDUJoaSswYhSZ1tz7GKYLNjdBkGM095xSBmY4ph5iEM7brsw4BGpVievj65o1rOz1jmFVjq5nOrPJez+mspmGU0Up9aYIZUHcGdZEAdg5dZJKwxzSVDEMlamauqhtXa+WsPGHoZsY4NEy6YoBa24gdMyfqjrkSs3/ErNDQ2njJ71DmcUNoGNQ0QNiCiqneIUca6z8b4VDPtwu6rpVHXQ3wMBBQG/RUpOEiTZzS3Vw4N84mIGBaKlslq2nM2PVyyoIzCMWhtaYikVnxUytwtnOvM8wsXVRFcm3xZ7fFmopkU0mu1605n/Xf5lzX4Lia+a6aT+o1ru9k9zsNwFrMPucd13E/NebO8bh6XLP0UX1nH3im4PXM3Na0rh2BNp6zBhLMNbQoa16i7dM0lqQa6sws11NaT5+44x6OVyJmz23Scn124z+3qKJxTHNYh5QTLYzyLgSza26/bwy3acfXR97li6ZTpmbZ9Ww0j28abPUF7+R/bn+4nw9762cUKmpaqcDcQ9eqnBCI6npVeQbR2AVurZoLpMXMesxEZ9s5bTzFoTms11W761ne2uSjHJ6XhkybiaTS5ninsMwoyDNr3ZC9zf12aI+6zpiOftxcNKP0HO+ZLePhjm2C04e87mbqqFzidt8016vms9TPA4BnedshztQ0lvXsb7oxj2atfxlXm72WEFRKtXsZeWbknTlBzKzpzGpVrKRea6ExBtzs9mvoaTVtV3ReC0IqB4njdxW91JF8onHvQ8Ov1qP6dBc+ezeQsDpOiJm5b57TpEua9Mcsj6v+P8TTcGnmTbo/TJ+HBE5TZ3Fr1tRZZ8cIzf0z836Gfmo6qGS/Bm3TsmoeZM4o7apUhfWraFKTomXqUBlKllLi2cUxdSdN/bM8y5gmU8ajA/Z299ja3ubK1atcvvgOT334w7z4/HOkacruzo6JCppMabc7zC0uIoUkmU7pdbucv/deppMJ8wsLrK2s8olPfZJOt0MnjPCjiFarTegHpkmFELY4PQRzEf3BfP18FW+YXQdxiJcc1s2o+E9D1tqFcSn8bqbV7FJW8smlnCNEnV4umjKPeizVew7x9xkozbyv2fiM/HJ7qtnozDnkquPE4QE3Im0b8+MGWOl3FZ+3ZzXouUF6uMFVzolDOrNwc9qQKI6eqzWpHNz2Zi7ocEbhqGa4Zr9ux0sP/JBW3GJuMG/2sLZyrCpf4bp/N2miwZ8P8QBN1ei3OZB6Dqp9bQIL5uYWGcwt1tev9qL5/diJ0/We5865bBJBJZPdWCqdvJZXzl5yMss9gpGfjrM6Eja2V32rmkiqq4pZeTejp1U07PS8+jutNUVZMJmM2d3bY3t7l9FoyMHuHvv7+4wnY44eXTd2HPDyyy8jwoAwiuh3urRbLe6/cD8Li4vMDeaIQgN+eFIifd+A7sIAj57pIFLJJhOxZ0t02WjJWs6b8h/Cq9dVHKabhkrk1rJaO0v6hxtHNperqac7vlHJ15lDG7zJjuWQOMNRRvPVlKG1bNO/pEuqrnUnt7ZOjjd4X2VzitngF0dzbm/d1ZGhORTx2+Cnd4zFPYMLTKrtxCZvneFrdk211ni+xPMjwriD4yMnz8xGr1V3b6yRcWKZCL40Tdnb2+Hmzetcevddrl65ypVLb9KZW+DcufNcuXiRg/0dBks9sjRhtLPJcGsD3/dRaNshW9v5MWNo9bucPnsPZ86cIy0Vw709pOeRF4WtveeDDvCDEHRJUZink0Lg+Y06mNK3dTNdQyNzrtLW6QY2ClwjbPCSEgLte1ZXFdVaC0sOZVlSoinKX72L7q8M8JmX8SgWFUMzCy2dxJyRUuZ9zYAAUdfMa4JUJkS6yYTNBLvW127DlWVdMNtdvxaeqlJwmxFQGmy3GVkzWiuQlD4E2GlD2FLIOnpH1S3OBdR1v7SuN0NT5oqmMjJr7FcRZk5D1I05qq4zK3BrGVEPtI4iMNeuUqHtIS4U1iI71D+6W2qaA7/T+JpVJhzgVAkkRP1dpTTMAkdOwfhlUYczihxUIJP7zdFLY1h3zGPz2rVhhp3LWri6l/Gq5RV9zQjLai2McqjsJlfaFIDWUIVFzwh2PauAVAsp+CXPrYxXC+5g/LPRCA1lQtx5rHmpeinrQ9EV3VHNV6UN2wk1ipa051RSAuHG2qQRUQu85jXdmgkOCZJDa1k/BFahrenMCAM76oYCMwuoOHC8Ycxp0569eYyTkM1nr55BuymoCw9DIwWlwUuqjXRoj1TKZMP4q6dIVPeWXr0gzf3mznMMvyYVF3lQn1QPpak01vuhBrpFw0jQCC1MdIB29F2PtX6rq/s6HlOzLCfgD5vojeV112rwp+Zai8Y5s4rEoeltXu8u31c/VvPxn/KCzv5tgpy6aahXmlT9HBWf1PWua/IVW5Bldkj60P3ttWuwqUFTwkZXujWuZAI1bbhnm5Gjjj9Rywx7j6r7HDVfrOnLnX8Xw9imBkFjL1X00aCV5pQekg8IcQd/dw6CJi91tD/zt3HditcAFWB3SEFvfq4U4Op8J5ebq908QBunlzNAEVXkTJMLSW2jqg5ZENXe1dRr55Rce3h1lrZ01mSdjR0gGvc7HHXmnuPwELyK3hs/uGvM7J7ZOatyBOxzVEUbGnrJnbvbcYsGb9PVJJhR1qJtZk9WUVBuXrWur+1o1s3/zNibr3oMTpbo2Q0x85yVASjqRWiC0NV4nFyqtqsBE+pt1tjnhxhW3fyHBt+3JFHJOD0zPFFdUlAFrTsG7eZBg3Jrr2EGvJWAdlFpzBhGXjX5s/TEzIzqxnNVE2PO6YrGlGiD0whRNUmYjCe8/4nH8TyfLM9M5AUa3zcpStIzTSrCIKzqNQq7vRxv8bRGS0nlgLLzY7pp1vz1TsHQ5O2NPaSbB5v5ntkvUK899XpU8mL2FuZwUZ+sLV9t0kNFdYeV++qYmeFQ8VL3aKK+Tj3A+hT3ztFidVx1DUfT9d5uiH/cHpuJ5HFNaJRuDmtmBmq7wc5R41nrZ7Kgx4xDoR75HTKj8YiNHVzJNKjrUM0oq9WcG53bDaHS27XAE02eZSdBNnhQ8/aHnrVxktlU1XXkrM3W4DGG1cv6tBnhWz/2jE59WDGqT6+uoQHhzT6LOVTMnF9H+WiwOmRTL9WSRhmRBuhl5aagntd6fRqSwl7H8wJ6vQHdbp/jx06YOmsuOGYmeEDxsY9/YiZqtqJj3bDBhKbSaXV975pca7tCNMd6mB9UrNrSX3U/p1c4G7SaYZTW+KJeF8drm/tsdv3MhIlauDW+d2ukZ2j+rpcyDGKGB8zy/+ZeqD/XusWsrlBPWI1dzN64vnUNmN/Jm2ac+3dskppmXTBQ5Xh2g5B3uW4lI919HE2K6kZNPMfd2+mkd2RG/X/b+5sdW5pcSwxcdN/x5VWpIAmNnqiFGvRUegBN+v3fpAVIqMIVoNatvie2GzUg1+Iy3/FVVebJgRJwy/xOROztP2Y0/izSaDTpRuqSF47XiX/z9Rf81//2v8G/+3f/b/zP//P/B9e6Khuwdzb88z//7/hf/5f/L/63//Af8K/vb/zzv//3+Of/8B/w//+P/4LMha+vP/Af/+Vf8P/7P/4PrLXwX/2bf8J/9//4f+L/9T/8O/yb//rf4p96ZL86a3BddQjSeR74+qNqQ359/dHbw48JSB/UVDU+bi8GBodzXjgH5xG4IpBvig59vpkhkvz60bf/69pvB/gya1sJgOZI1p7L3gNd7WhiBItkhtuCcdQ3pskJ6ERUWiPf544LQRYVRCJ1iuW6rk5HrhXO8zxwtdGr+jNLBJ6tFjmKhUzeyq6YMMSxqb3yO03G5zEn689oiPpeRWRbSZh+wGR22LNlyC0Kjk7DxgDP+2JEbr+MVZSicYPb88pAkpgZs6pX0+k1B/d3uYPv9NjMWv/BraYq2m8IJhATYMWA9jttf/zbx2OvDfSpRlel11/cIoHKKhwAUn08IrA6iPJ+v0VCnbCb6PsO3cOtqKuPFpfeNv7jHK+VqrtBoddJQuY8cIXWsQSf4YGbzKzUXwO6THdnJiUN//CFEeqD16CUW84n2yE7HnLsJ5Nm2I0PHeMxczPOWCLHBZ2xbSzRI+oirR8ydufl2Fewh+1S9FUQ+QaWhs82rtVpYHvA4efgvH4PHxWqHo+cxHFUCK7cSN7nxfWf38uutkoGMIGie8C8dC+v5UyRZhaYSn9xy45maPjwdpnJxa3rfh/1wYfjxHn6QYnp8+3NW/92sBSig+tR6Ur+5QPQj89+eIDLe6Hr/Rp/bs4HExC7XRNGE+vHFuiifsdwqyBSAAxac+GgKHDbEi9eyf258/U23vuKMMEg55B9URDJ5e2DHvtnAWjxjqNxukTAeHHvC3XYgEvve4gmH6Pi+LcJGN0wq/bz3l3hxhT7j/3az/YTn5omuDvH3R8GBpoAxpMz8woy3pSE613ijA/2zuEOBqPv4kYMJL7GHrz47Pms0KsvsjGjRz2Q64Fv19ueOZW65/7Gsb+mVNSPD/LeZNnfP+/I7dpdNY0eQdPQ9cmHQri/fyPa9PHceHF/H+fH++zPiduV98/my9SuGfwgj3zC648T//THX/Df/Tf/rfHQPv69d7RfxqYRiLWwIhAMEmBott87U+8yWI8h/nF9Mfg3+KSc60aN7uPS+/SasnHcYjnUtEk0vDPqe7f7RkjdNwvPGsjU3hrwPHzPcUnfW3e2vs33Y69GB7T2BXXDjrc/dS/toXBUphYmkE7zOx+3Td17ZfM0AR/7dvMDao4aSXQ9uVqgnOQMbr1UwoabQQtCbL5O6+d7XtLcCNh2rA/+9h9FI+ebxK0b//m2BYvmo53v9++nmzk4uTOE77gL9nea+tqJxffWS/WkYDbRjBUJXIFJYEgPpO1t4y+zJ8Mbd2XIHySiXeFYWs/rWbxnMZoO8Tkk9HdMLFmPjTgimnAMbbLZr8mem++os5p80x0yYa2U1PVuuJF7jg3fGT1KLfxA76J+cPhho7Y+2neyn5/f3xfUFJN0vp4be+7JrPY8+7m15MzvfZWdjrjpOdOz2/NaV9DZReI4TvxX/+bfos4xCvz3//3/gP/pf/yfZG/Kn68ak0fr9ff3N379+oXMrC2y54nX1x/IOHSq8bu3z1/XhQjgPF+9Xbxq603MifPS297tfAn+7bSZ4DE0hlyrTxzG7NJomqD13z0A+re038/gS4LTMWavVkBuiNeVtWCyrnEqW/hKuedGlDoZCG1c+iQ7GoW1BKqDQTFA9XHIoAysuJC6Ub60urXEtMoGMsO2sVsHZWDPVGDLlYH9vau7+Z1Zh527s91LpWBwSAZz8N8opCD9qJRC8m0nXM4hIJo+/pObJsC8AWV0e67Vj+A6LDUqPtpeT+92CrEmrQ0A50Ydy89+kD4BZO4gaAPbN/3tH3lQjbQlfzGIyu8G/LEPCcTRCqCFuYMzPOkujt56khfC5kq0MEdsA1k5fHf5tU2rysxKTyrSNR+YhnIVQ9fqwxgYr8WWmfsJnwZCNR09J5INGxONwabO9bym492++7PFJwYMRacth2awg/V3smeh++lww2nkNt3qJu3X+3j5bgs4k39ayfC0zW0OHKh7ZpD4zi+m3hzC/PQs9qrGOLqCiw79bZcQIN/ZuAVIdkPrgGEHUwTX0Ers1n6Y0x/NUcRGaxs2Fo3djO7jIT8tjLieqDFZxqbdIwAGOqPLQPpnMIq2YSnbgchv9PhdtdwDViOyY/vsiu0hfi9l8zbbut+Dd+40Hnp+jH6g/NocC5vdsZjp0AGRbsdSNHPerfkrxX//3B89zudNPu3dlB/nvw8F1FQQ9jV5+RhSv2d2tNE+fxoG9mOz8U2Hoc1860D0/r6InHd8srLpMccHox9ZsN5e1liSQTcLqji22D1Po2tu75yV5OnPJl/CTrSxJGBqHj/APPWK+KB1BcdmNBvsZfjD8NiW1UAHIEbv3si+Pwd3ffvJrz/MvAjiOhSYGs260q5z/cIx3PWU+1ruio8juGedj/6fsXEDRk0L5+Q/rYPmEfvI57FlE88ojRE4Zmx/9kwJyR5Q38c373Scncgt+SP8bjmsvA/z9wYQivedD4on745zfS7ayyGfsXOB+Cfn6UcbZ8qBQd5xUP/E5okWlB1yVcq+3/WpP+weEPNFT1BGpEw5xMY5VKYtZxOAnmdt/K5yORbgI+nMf/NRuc24Y5fRVX3npqyNOh88G5pbLjJ49h2TRkSHDeuPzjVzvXfW3yv2Y2Zj7rb2B/v84bZoSLdFONNTE8i2OdNYh+Zh/RG1HP+7TwcbH18qQRx7wUy6jxb3W3v2b7Rytho5ItZvbtbnt4W/zUZ8zv1oRM82vVsmvby0V7JuLLZrxO63MXi9zeKl2EjqXc1El4e59dv07sZvNib314HKzk69izpzt10JVDAa4/NOdm/Aa9KEsib40civ+5dONtpY111IbD6MtK75A3D/x9QLiEtiFqL22MbsfnK/VVbP7jMimoY0dm+Mo77J16n7yufejSUfXT5t4DgS5/EH8PXHyPA/Df3CptJVxbCW+009D/M64bbd7wv5xh4wr79mntxf/lE3ZooX/nRh4q9of4cMvg6OdOcYgVA9sR7AcQRiQQztAZ2I6AKDE724cLVc7eCJTse6avLX6my+tbSFQwTN3q5ndHJCA1B9MWROULH74CBFfbATeyoYmMo62wz6ZpRvmWl3I2/Xcsz31e9RbgyKtjOa2Vs+xqAHAl7nTkpM9cF2wTfUacoyNcYB72ilc2zzQseWAjNrNlQG3W9PW23DFOpfiuH1blMigTFyY1g4JdmnkqWU9da67/cALMfN0+rqjz7+G1AtrIPOBtaALxN2HrxB4WXgi1u97yZuVn9Syo/jz2vhiANXnzQVmG3KeeMhtjv/jGOeqJjqKN/M3GRtA1oN/mH0F1+bMro7amnjcaV7d4Y/V3po0NzY3J3YAQMCXc1on8GfuTeMhpIJk+MJwOx922SMRtfojpxFg0CUntu2Ic+cIDgv/Y7thFwDTRtZjLc3Y9pzg9QcSS5Dr9XtCuSHyQ7C+rMGiNz6Hncn2fSCy5/HYHaJ9OHsdNZHsc/fp86bi/39DsQVIOlnuoFmnwT67J36iHwknQ17Xort3RncAfHtfR9jaP6I2LfSm20B5hSxcNr2vx8czmebrSCIQv+kuzKjmV9ImbDvw0gE6uGbfO3z0uNqAm10u9HGQ0xAn7aImUuOV44pBpCjA2aDoVO2weeTfOlOzfBqzN9CaqNVflLQrrek0j50zaf+2XWpy50+4jDgqnGrRRUzD3CedHu4ExgzefygxiaV3dek5lQf2m82Xj13dKJW/6WDR8/re5Te1QADltX4k/7HD+DfNKM5R38a6I8dL3hwZEgz3ysIeOO1lWtKmriNGQKAgQXK87J+8OdqPLwFRbQr4KYlRceftKcFi20sTjfhtQ8vb2wz/97DUbSFHpAd3XYPdP0UlJ2rRgfLUpuO2rstodVzNv7bh7/xJT74oIu5/8QXoFyZcer+3PnV9aKJoT5U0Lrt5uCJdBGBGMbphBnfFpiSDd75Uvosxl7zmXz3ynFQh46A44yxrbmNj9+RP3d9cnOs9XMPFLn/JFVsMjHKOvwRP2ODIbNsme40TOxj+NCnCXCnzI/4AbsNuvtbsKeJrD8sSH6oXL17RuYstUnEbfD3hUzHu8IFuV9AWVl6L7ZnAGMTRXCznZTYT00z9jE/Pk2oco2wlr6Z0RgfUMDCefxDNra7rY85xNtke9dbuNOP/4lvRxdHHh34GR91yFov4vfbrH2oVNeKJqvCFKE+bTJi/Sfei95PnpgTcUU7wzSjI8YkjZ1NjVOYJgBuO5de/wHmDPacPprF1MPm2fMcxnWGDLttMMBUNKPOM1Ju72A/sQe85jAy77O9QnM1r+Tnk0hDkhoGwejzedvoHB/Hj7IiQUkSfLvClfCUeM6RxbwtCGy8MX2xEMNvtd8O8K2VeF/XJsebUuk/1js7ag2xSMTUhQvbbvgTcNZpOc3815rMlThCRbmzgyriq4tZRh2w4HYlyy6jMiJkUzABAE81a+hSSna5U89n17s9UOAOKOWfxyN/Bi0BBjruK6D1/AKgBLFss6UJ2AKRejYBADth1jIMNIARfjqIGCFJM96BKoxskiWAogmD9dsDgUMjVzYbGJA159xW3cNkgRzru36N2PqvOXTNiNj6eHdeOSYezHIezNQ7Ooh6NADKOuTjqADSqWDnmuy/LAWcOXX6dLhEJhC2+bT7sTIRq3q50Fvee4vwzF/iar4okIYdYGC2maQ7LBwjgz6GEjacm+mzOMo/Zp4icOvTTktdS+eEsreZOjfQ9vnOunq281J/eMM/Ppf1oAkc4MaD/r7c6unsq/qTvecStwft7URl0xFOO+f9McQ0/GPExAvqjytTm6Scd2xjzT0QpveTTxACBdLCEVumV/UN8AMHgnNlRf3rjhsPb0DBWvqPfZ7cTmqOzACOXkkoaNV8zL4OHbA9mzz2ZwFhBpS8fqPzufrIvcsGvt3JLFvRfO5OFsaO7JnMae/6rPvoK6TUbcisg6sIhT7sR7+t54m03gK7vE/f2jjvU7abiI0nxRO8jxMZP80DneDcbILfBoRKcyRGR5We3TGXK6uZKzSQ7OcbMNTK+Y0pt+AeSle5Td1UU1CXufkxGd8n/EbL0Tnu8BCbRFiNWftu41faWdn9uD1+dMGP+jj3Sz1Qx0GNHfoBhMLxyTxjdFhxhQvjj4tPuGEEe7bPI4H84Cf8eK+CLuoY+2JylsMvzvcsbM+6BCu5ICcFC+Amj1aiBGvtQX/ao7Z7W19Fuvl0G0niP0kfp5PeBUjYdnxXT3e9OrosN/5loDNgC6NkBtKxSbE5enqOcYjpxzv5d5wnjdkd/NQZuF1lWkhj8G+qy/O9+o5bcM06tFndGHqYX1ifWcIAkQCQmz4ZhxEAjl32bESzEDGyRHtGmROXkCc20LDP4Ty3v/OgVPNibtfd9FSk+J1f8cTmmXMqoqHzPKZ1eqKzjChT2Giq60gT4+NNT3hfNbD5wud96PhJn3vbbTJ13AQvxCt33W248E9by8Q+imjsP89x/ep2x4Mr2yKID9b6I1yD4VPSfDAyu1JP/sAj9nPTn8YvP9k13ZUjt07bj6D+Rrv72PszD+KIb/ydu+73wOiOgU033PoBsCTRyCq/YWCPh9uQ9vSjpbM3TDFD2JIz7HPr/nBHv1+HDlJn9nRvAR63pfDg1PSi5A7QFmD6ZN1fD2TdbcuHfbax7Toqtvl2Xcv+bDjSePweVPtRPonBNZcWP+F70uhvOnToeuerz/c4LuT4B5d8ilvZxi7RvNnWbtshWjd6KLbhRuKGlexz7yN28/mfVT//Je23A3zXqn3LwHSOW92OI3Bd5hStCkjlumR4y8ncTPYQfU1g73pfmonMVcdfk+GynW3yRNf6iC4c7sBjE2YMMxCkbYrCmEcKFPgs9tzgOxososdG5pSwoY783hSMKXadVophwpUToFx9KIgzKFUgtx64s7Ap4Oqw5i2bTrInZHgGL9cEkiCF1MqPijYB1uia4MJutFauKfye+RGZ/1Ce5CTO9dqd4Dvop8Dz3fzuro2psD9W7TIVpH6dp7bfIrtu3nWBCtVXERg6Y+YfOWVdy0B3KIusOjGnOyGLzntwlFl/9YBtBciMu7+P121BhH4mT9VVAOOYgN+syhffe9qzK7Sfgu2b4VP/DXjoASxc/NOK6W1IP7xzC85gD15z7J/Ocw7W1Gf9N3maMneMPM72WecdfDhUfDl1F0iHgUr74CirlmpPSZEM03hyHJt8jy5IzHfzkplDzjfvUSA9/NrpsvRX1zWprgSAW+Ay0NlRALfucm6SJ7nSWcDe7kH1HTfX+73fAqYY46+nbsVXIKdG1DA+uzsi+p7PNpLMHOvB25yLNwwE4zYHrKmhe+x5da+d5I6dZ+9zk5l2DXX0QAOWOhAYMBkS8BbdRjpdfznf8M+hjR6k8Ssg4hDFHZmN5tayA7P9Esqey2v/dpsniJ6jU+ba7WT4BsrT77E/1N3jqw4P8OdBcHwHvqNkSyp8bvmbdI1vU/lQF9JVDidpUz6B7+jAvUg8sYY9OPyrzwnYOMuRLPVIqtcaT6mg+Xu+CtG21UY1K8ky2GhwTL3Os+OGQFM+ZPg+efonRvfVWEjvWbCdMZpcaypG98PfcUPswdNzJQ8e9Bhn7+5U8nlTeziRuarExvb8UNagxgruGJkxzWIChs60ITrJ3saaJu/pY63eUK0KFlif1qTmzFjug2Pfbayx0c51NibQAyi2uihH7LdswNimj/eG2Y1RC2PP9h6OrGxYchxeD2gCQyOZP7hD3O/xU7X7t3ugG/pz+MexH/tF/UKBGbs/DngrrNG5d5VAnMVBDfV/tGv+3S4n5NMeXesXBR4A7dpxhgnL9gzvhusdzoOwQzo767PWDDdbGqJxkar5fiPCvG/mcJ/7eVHbQNMvjis8aPDRXPfYuO6C5Hq+1OUE1z+fHze+2YMM82zXB/eFFloiqrfcnn+TXOvqzIvbvU8cWU2LbMaP28KJsMPNAPnb7jST7nasNXyTUgR81Dx7CWt+CAVSr2p9159Tb7OP5HsAKke02M+IkcOmvZNEPk/Mu2bhxwSB/EueM9rVXHaiSL+XCTuuG4efh6cP64/8aCY0GRl5eBjnrZdu2g4fn/TD6FTN6k1XyLfeFO/oGdqXhMkgeXSrJfhx9yYL7MumE6ifc75LH7Awqffvpgf6cpek+wLlyKzRxfrptNjb/re9Yezz7TYfn8eUYNePOv1BN/2V7fe36HbtMQbiqFbWlVhruk8Bu65LWWzA1KHbDUqqeP3utNWRxxGBdV2I41BgT2CVk5eJ6O8CFWg5+iRUgtergzFrGWN3phUDAkAfMEjhC8jZDVhgMTFCHIecon19J2W8qGAmIAfRycGBKxuvJ+gKz8fEfrjxSUABO/1t7ymmmpXZ2nKf43inKTJxrAFbY8gBwVSssYGHlc4PoxSkTNh3FVCygJNJy1209mSYUSwUou13p51J39XBPAaBWNORB2Tw2RF1wMZhATNkItZ9Fbief+XV2XRj0HOt4qN+PsFed26UJg0V5UgA5ydgSw0BBYJpvIYye/AI4Fbknq/I3oWe4IE4o1RN48Lrf5Eum6kwPtj09QCDGJA0IBXzoTExjdYEG1L3ESwB3Ao/AWUFwb2OJJ+VA3RBAy/mMp6J2GnuClsy4HxrcmtCOHN4aN5HVm8WRnQHmCsn/ROzUEGgJsAWMTwCOpZhU0LeitZfDQDYVRl40xfFsAaihTY4tGF6jpUgPOf74dmeMxq4m74Kjelmp+91VWwOfD62rhiAcnppjDh2ntKIaEd83LcxGwQY3oI9e4CdD2YPWrRMovqZoN7zp4foB0ALAw6MOFYHWR4UG4fZ3tP6dNelDfiMHpo/jIxkQlkPPhJ+uQeldrqz0b6k3TN8C70/RPfpa4flp3ZOGbnN3g7W85V44xXS3HQH5WC70mSXX+R8wa7Jrm92138fIZs+cj62jyYAMDyA/b7tefjhc3ue3jMyV+SwhbmwcdjYSLMteJOQHZ0Pcv9TfZGC3/oyXDr9rUvHPn8uCo1uIw97MKGvuNXhG87MvI+ZpSrcXkFy7xOzbN4GC4bGcq0lXhjs0npOOsikJGy7peZxY66W0dbpbXeJzTz7gIuwDGqBcuT6ewjslDc59f6NIveg9OgW5wM9auNXze9Nl40OxEZfOdh3YfjQT9lDuS2CqQsTAhm13Z8w6ih+y+1Vh9GU3dgDmo3XWj+NnbUO6L2G9Wy85LsJ7th4pD6pa4fedSAgFVP6C0c/BXkTP7ecLL3+U3zO+5bpsNGZQzPASsbwIRtvzLs0lYEbX9z456awdl2tiegvfOHbbKlhuqG0rNk8C/Ocuzr9gVyyhbH9vU13T4kv1hoPhyZ13mcKcoJoOS8gjSl3NgL1rd/3Zybg3nxR9nPgu/4zwRne8rscb210nDkgLe7B5yHLXbfP92lj1zdWcuqOIzzAnBj9TH4WLud77f1Msrn7RHuvSAPDrArsQeMjH2yySQr7s11vbe+H9N1mQ5G2IeqAl9DxCw+7I6xvmhNLTJoFDdOf6pcvJ8OyWylTh/QNcfVmGfjPsc8xkxx0rbE96epjxrFRQLbdfWxplI0Hqevbmm3+266L7nYJNnLHOM7nsl23NtiieSB+oEuQi/pd6dJVAxNd/ksE+z/T/i6n6AIVHOHvR4QEZzLrqjjiWqmtsIyKX9eF8zwxwbnKhNq25ZJ42pobOPqYbGWdTafs99p6S2dHBw00l2gbRmZnOPlx6E3wxLaViyscCk1uIOGQ0XThpfHVu51+N6PsDqhvs9yADfZnSC8byLprfg+2sD8/Khq4MuWL+4MoUKA5mUrm6uPulkTTKMQHCkSY2UyktgsCowy8DxUs5KnHtOmhudlBLVdddiXjQTAPRq5rmRPTfNeHZjAoLSXZPOR17CKgIKqUeQ5tEpWB6is8unazkcwom2xH0qPAJYNCNFjHNhesI0ln+cChgxjO4yxZMJrOaHeWGb7gN3s23n7tGGYZAed38UJT3OXK5qq2Rw/vb1kaPoc512kLNyw4QJnDbI8UJ5LWdo1obLJ75yUOweeL18xWl7D6lEbH9Ofn9ClzgJy/q+XAHVFYH7SiSdnpsaxCNLZlpu5dWHZQcWBSbyb07XqAhp7Ob/Fpg6REl/m4HwM2wIYsw8Mq+EkdSMKM3i59EPs8DD17rA40NBfDIz81N+JUdt5fr7elzBjSut+U9h0d7RFnroBz3E7J/jcxgQYqZ+pm03OjjHYwM4fg8PbmEdqW8RAGkJgzFjnfcS6Pg4hjVrSpgVlHdPT+ACL2Ye2rKKKBxmz3Sc/z2aY78gbWKUspe9x8RppG7tnuBE+SmbWNHaAthOxclfQzXrDv94yT2Gg6QSQjBBWAwHjPt9H7ricjgLzSyfehVyY4cdezxuc2JoeYW7Act/cafnLHCdZX2tJpgToNHsj0BSDn3Jv8kbdo53gY2YfTMrJmIrT1/Ue7DTt80Pij34rE7HhwrEVnzMwGBojv45h3hmXNEXHPfZt96TuYNcJDsmasgwvcGeQ9IbqNHhi45XZBCmg/sEk8a/MhHrT5ccUYQ3jHYRsHCFv58wK+1ZUUlEz6fMPf0c+8jQ9HWE05iIe8bRxrYnhYnzjWKoMyN7mOk24AlPFrMLN5ysc/FkGfcdtusi83mRMdLVjo/TfaAqPLxoF0zDrj0m6Mm46erifARAWTadfLUl2mc3V3Up/Pf8uggsSp/3Heomx/CnR9oEOLjBYh2pgMu46X7ZES08R7YMJpudPVWLztEYxeUmT3iVEnZ0DTV6NBPyPy3pfb87sPs3WPH1mAt6/xv+nLbbaEc7rZvo20NufuxZEvbkPj/fDJ7d7d6DJqY3+ui2tBs59t6PaggBZVM21+/X3iV9cisOsmYLkdiCTM0aVcetfg7eH6lSWPnM6Ozzf9eaOH868Ce65XTd3qUtMZ28cGLWp+95dxgWd/1I33AOneOz1/lBfyjkg6VmcbX9QnCuwBSk7hJR6gS2OKCUL3nceNTwLymweDJEC/ViS5BSRd93jXb5LKd3/e8JPob8Qgiba/x50bm+f45c7LH/NvsjX4L1s9zRkUmw/zG+3vUINv4df3d02u1WJYqAEcOtI78f39xnGc0n10OqjYWIuHaawEiBHjONPR0epYb6nMq8hxHKHT81Tfr9+1Kxp3RFqgr2sY+4jebhnt/BXF99VZaELDUmZltBVMhAS7HNhxpkQjU0yI6CzHQwp0V+ijVGZFAjLe+h43ZUJG6i9puGZlEFLOVNBcFa6+sg5gdWpTulQsRxTQQEIBEzdOaixsPYo6rT/31RQBJnba6MA+81AMUBEk1Nd5+swJTe7KVXOyoldK14z1urrWXm8JX/XclUv197gFowLVByIOrHX1dvRxPouvK0h92Gm8d9AiI0peiehM5DJaiQrchRm3iM7E63Ee/Qzy/Nnvdt5wRZcrcZxuqffTp0sx7aCVtJwMzUE0w/rm0HCuN/7iK8kDlAM+Z3d6JwjdYzVN6AHB4Ru/r8drRn14M7Fvswt/gpwdECjG0GXGBvH7BBt/VvwcjxtbBSkN+MhA+fUBjSdopVNEq9PDXc8kFD+KNqiUbc7bwe1DDBznmNXJXun3WGb13sy5FljaVwnJ/xPIJI99kGejizGF0Wfm/A6atkfYqdRbUNZ0HAOJm07rjjXJuo+8wk2/B/ymtkv/v+eQgTk+fnTUhuZinldv6X6XsAPRtUF4uTsSf4ZcRB/elHrvR+Acs8NxarMOSZT1EhOsIKqTc2n02+ubQVn5bCunz5IVN2iBPgRh5Ew1/cQPza9tc7mwQ3IUz7eObZ7XgRzJGbR5wT4tHqi0aULATjy3KZi5H52DPTaqZ4ib7o4Mn5VpF6bpFlj/59l/5vjB7nGZka30l/ZPbaullGwyai/W1kNO2x50ZlbQTzLarNNTPbjmTikFWnMPOI08L3ui9bPlbhZS9pqY/qrdOTQeXZb1ZFvtuUix7D4Pkoxuz3ZsuLB36DlbEL31bDTGimj58ZShre9JQR1bQQqoD1PQXdgJw0NuD0c+LKB79FNtflzfxDx0Ajl8JmLjZ8mv9Pk2ZYMVNnmiDoCw7gbjHAPyoTTR9h0XcEg36Qfa73mJ3jvfNL1lLWBqlnLSugiTlOAtrE+7PeU7h24Qzhq54qWjH7G9RzrHePGjH/39HuCzA9cwPpjmZ5treueNHWj3eNlm07A3sw3+lesUn7P6jhOdfMEH5rg/LwM40uY47CrTdwrKbqw2MiFMJT65vYfc4fzH6dSzBseTPrqef5K3Nhmwd+T9YL2c++f1op/3VH4oO7V/PX29zYOblY02wjVjh35qm7+JH+aIt1lGqtuVnWVbEuyZ4njKSvKaSbjgfwCD47Q1s8iVaKy2Vm/Tm3nd8VvA2dprvTttPn7HJ9lH7uyzHB5hIsdmP8g/mjiIL++Lieqx6fC+EHe9q7JMxgS7bnSbzEtGF3JXWgJjo26y4hzCQ5Hkd/Gas5nvGLrRr/ZnNYXsJf7J6GZ/p5sY0TnmDj7nJ2HYl1CnIzM2ExTOhZezMTp6c38wjbh7QB74TKL469vfJ4Ovgc36XjjOA++LtfMS12VKKaKCGoC+V0bdbZsstaWEsIMh97pifYOu41YJvm8xSGjb4cq55/73VgRryVAngGPFjIuGJzipY5QD82w2KwFj26mGXrNKMAWOZVxIm/To9dBmc/7NmRpF1EJiWW2kEX+IQY2pVJ9MNeU4/gG3EYzgNzCwLEsk5DQHnb/t3VQUBBOTSeZOxwhgt40I/QHvkfRGK6e5iWBhQNJd9F1B97z1yXhULAuTbbUycb0raHd08Jd6sxIz9voKTvsxNHNoBp9NJSvlAFQwMYE3MwdrglRDL5rPGRw/4mgnhNkTQy8HOqKx+Hlo4KtcNF9bPaV+xgGns81dz61UskDEaPzhrZkJGd+YvvHE6c3pTZMTM1YT3HG+Ji9fW1+koMkvOrXbAiCxP9PpOELNvg2IGCcgtLqfHQzRHDo9fvg7E8pI/OnaotfU6QSwbSV/X5d0wCWgNPQ9ohw2d8rQ8/ZeDObcMkdbHieQHAqYrTULOHdLJmr4vGLmxUGE60Aghi036zw8QgclEnLsB8zsPBICkNTZGPDH52Hswlqu37GdfptSfR5kLhngO0lDm+Hul61kZirYv8mdZHNkbtOhAgXOAYDjDLK7aBTFkwJQWT2Zw3jmaZut6fnJ+LRfZCte56eGekYTp2RdUz9MNqf7LDlq+1+1DAsw0o5ugSgLlH0sAvG66gnK2d7rFSLoV+RmV/llUE+Kd5zUAwTv9ngD2ctvq3tWYtNp/6k2jnNyQkxUSLv6zh0LBkcGpA8PiAJJc8mgxK7PP9s8i1xSf8bHlR8BfzqERifXFZp/O807bs9S0AszZtoDEmWX57XVC7Nh6FR7jTcZkPPLLACKCvy7s7i9z/4GypZ5AFs1k4HBV8jaeXJrvpAVMd8ffY+2otu1o1uLfto66bwo3qnrih9GV7lTsQW97P5WX+JLcJ6Euxgsme9mUYf4hc+AcEo/BG47Pt/RfErROyYgqonlfAWfPfpi4r5tl/k5fEzku8lQ0fXSxWbj+f4cmzFOow2UY6HdQNsm8Lud5z+xwefv+rnW7dpPPyLTAtU5z+d81MJ+aszXtdSnlamdHYMJ5llAKvvUF9y4eC0Dvc3SPG90yrQw7HVTvCCf2NLB/Gt902/Et2bLIuw+8be/357Zvww/7L0pbnA9M3Z0C1L2jc67ultd2HUVF+fDdm+NtsZtPMaP2OkpvIKdz0cn2zfp5Jq54b/bfAU/u/Poz4ZEc7JPXfWkBXHk1/R7Nx1mN+pJY7gH9XhrJsbHDqdbqkPF59WfuJ187nNbge/SmxCWT2QG44LbDr+xu1RyYx980UFYqjE2zw7QHPhE2t93PtvNrtkI18FuE9TNvN3rO0dsAdef1TJ6dCyAqSSaG+n49FfZux1L1Dyy5MF0I6xslD+lR+9goXlh6BXKquUlKgsmnbBT6yNOYb7BjTzYR3Vv8xzxcPqYjW9vJ3UT58w7sPXzb22/f8jGdeHXr184z3JMuf2JW3YrCMEtWYnzPBV048R8AEMaYkbV17IDJopWrIsHQCCKGVF8LwWqBHACVzXhbSDXCCIDLpmJKy8z4ntNL+/zWgtHMGjVDjQdtWNWvBiRZvT/0IrBAMEJ5hgziEdCz+lfRjkJrI2iIW+4oMmxHIS71a1fzKzpgXuqMux5At1hq39GG4IJGim/ngrXULbo7zZXBsUxBUYxMrtxH6cmTN/IJgn8+T1FmVwL3+9v9X2JptEKqLfpNu2ua4J5CgCuhdd59qmlHMsoKgW3e278NOVo3jvPqjt5rav5x8AnDUKWXJynBVZRgXUPqt6Dh5XVRSIOzdSHW/ZjArNqThCYm262R7UB9G3VXrNRhnxo7zVGaOCXBfaXKVm/kQZm+jOQb2EU/dRWYi93HnbEnAQMcpZi29bl88TOuCOloFPaPapJagEp03PkmzHsQ0c3xndnEhGzdVTvr0yi9/uSnkFU4DcixAcJIC9mGK6NX7wO5Pu6RGvSzg1oT3DzbcK3YJIAc2gL+5x96NIcYkMwMGQJMCtGuNyBya2OiiT+pp8iMIXC1YVaJBrdEJ0RFzLI20qvfed8WDQzOSgEIackCab4zkTXDQmVkphtagbyhrIzltZlvJfzWrzDa6y1Xt115ZrvWFrAbNJwND74VDKxgV0RWgs6oo9oSTBOx7/uXJKpeX/m/re224Tbamw2d7c1DVKjc2eaZ6vvLOdgfIDRiVD/nHxje81E9T1jj6i7puQHJs3T9QPHEvviJL8TVxldSCN+f5g+mkDKBKfV/5iFrRkjp8vso+TelbkztDhi5BAeOPDr5xrdF/N59WOn6wc8Dqt/yP+sxlGm9Uo61sczHZtAQ2o41Jez0JLSMz4SZfX28xfpC9qUpsnqa2whhn0ufDC6nfqueLWxcctvNB7UwWPEcUPCsmndRw/sVaBwaE45kk2hbRCAtPlh9ir5hnbblQnpyFupxygv1BXG49T9dY9xN5lj+7Hz4+f31g/JrI0B5Cu3T3RYUzwnPWm2MmLCHbsO3LSpumdiJN4f3plg5ajD4QsfjHhJZtIWEv2ZXkIAo5sjZlGSemPkGKL1ar1KK+O6mqL7ZxnVmSk+HgS162nJUWB4qZ9LK2idFAHFn9PZDUN5H7YHcE5vfOB4g7zu+pwdChDDftrYkRXvL2ze7XkkXkzwV33ahAW3klGjQ+eQwZstuaky8So/5juPrXMbj38+ZPq39z1MhzqNp5/+RG2XNP1Z78Y2d8JA4mM+z0lRixWjv+d95LE9UBitB1dn8nNHU5pc8L66g36sdCZ1Ehc4484nxiPa9bcbB/qosn298HBZGRrNhWP3sfA/4n++g/o4RcehcyiYxjm6cXFwXHOfL+BRPiD7Uu86mJEbgWQZM+oNYZTo7w3LtGHlUKWDMePesAdJRuN22+24+1a7vr0JH1RQKoa3toU8lB11WVfZKgfuLU+0yxHHhjU1D8Itzi77XxzL8P0muK1394UX8X7u8ZPCnS5lv9f+Dhl8E+DgigMFrDocuN7feL1OZe0hyiFlkILA/jxP/R1x1IpSlmNY31FYzEEGpkYa70WtRqmIPe/M1FYsZp8E5gCOUhI2jWZwGQRB3sHCPJt0cEcMqGh3HDyRtjOLYgKF/B/nfYQ/BJTSO9QSoCh3pnwLL4Y9mRXDXtc14GEL8NhPABNgwb7iNk6LaW7KDfag4HGcoiUVTObaOdeMhJRQ5n5NzM90Wth9HoAoZT6riGP22gHvR0qg+nE8uIUrvVrNOFI8Srvw/b5wxgFE4LrqwI33ZQGWZDB15lvGPRPrRu8IIN/1nvM8N5VFmh4RtVUPvhrEQ12yxkreMJoo6LfRKraVQlfmYxfGYQr73H9OodQ0PiBTYHuWAqhtDBzI3UFdsfUYcyeIAwAHyEFl6gqSShuto7aMMw/c1CRwyyCVsO4TkNkd2nHKDVw57extvH6TMfL6zWgnrD6oPWVdexbKXVSk85r3K6ukHq9gRD8tmIkak13kxpAyUv+N3hweMhAEy0aLKQge9WLdy0CQG7tlc8S6l67fh2Yh+uu08p26xXJL3RBvpBOsf7rRXWYvaNylhzcwigFM/YEyGXbEKH7bAsZrsvcA7Cu/jaC2sAJBYsyOFvEi58BFJ/Sgrd+BqXFJJ3AA+y5Te3B8Pt/Bh4Gcphnn2be6b9sbqSOsBp8XfV+Z+H6/zX4wSF29WItZ08MXCWYVT7XGzZ40P0F6bALZgQmgELjWgk5IaDcHpeW0tgHn3COMwcC5gTidUG10vOljd/bkQNRAxua6uaWtdyBKbGTzvzlKxscDMGec5DvhBXsHQIeh++YiBy6a/RAoafos2nzaI+eZ/l3ZAthxCa93rDX2YPCIhkpZI3+YmFyW/XwPKCyjPRcuEFN+gjgrUTyj9WFbbBl1mJtNVD8jcOU4Utm2e7LY+Y/VPhU9Y+ZD9MLoooRwR5IOjUXSAsKjoowHTIV4Xbua99Zr8qvGGYzbk4YXhzc4v3f7pq9/YlG9CdvJ5LRL5Cv2D6QFDWPT489e6V0SriHv8x0/NLKwdoNwLoRB/J0l+5znLQBk7yi2SlDmRLI143Bb4T274xEFyRn8gL8nxaNV5mUWJvU9oKA2M/iGnIP73V5DQZFjCGTzCdzpmTNPrl/NFm0cFKMXyCyZdpXMcNPaskjnjfMu8pzrgd3+Gq9Zl2ehyIKb21zAeNHoA0j+iE9LtFqmqJOpV+9j3/ApuxM/Xle01EWGJLAvvhehtkFMoKyfJ95F+2O5yWLafX8mL6QLrxPtN5nN/TqOM8m/e+1kALONvLu/uJibxvfggmL9dcShBbjx0fiu4TD5THKoYWP2INbag7j2q8ccFBjkwPuRu887BBUfWN94D+xjvdNIv8UlDkBpcabLxct6xs2+W91RTzga/1/oYps3ByjOayJNeN9D8yVfwEwF52ELvJOOzkfsR3y+76YxgK2f/HsWwKlLB9dvlEZsk7LPw/rg/9gwCt+9NtkZfuUny/k6f3ruX9/+DjX4KuOoCFTBrdd5Suiv68J5HHg3cBcYOY7btoQiCrPZgEsngSq4YhNQ234Sr/NV9x3Vl8qCqkm71tU2djLXctkWzLWtUeldFGQCgGtVvTX2k4RngG2M5MJ+gievX0AOINJ2YUz02lcmJrgHCUIJ2yjvMsJDO60aLqo4tumb+q9C/P18ggu7zh/hWwyp6H0lkQLqiqPec6FWH/q+5Glgs8KN4ybgtod9X+GAlAyBhhTPNto2mDcAD97jlG0hXmtV4BOJF4wXs+j0viqbk2CfWxDeOh0Xys45+2RnAHhf5PlDunrlUhA4AZznoRp+cYScfwUWIrbAA/o68oaAI0jE2IDVBBBn7AxegHPQ39AICdCNdv04yKT0IWk9fO/zxX8jfwqU3VKnQb3rlr7+lnxZMCRzn+ekAbN5Rqa2vC4sMzzDG5L5/nzAXlhfN8hpjuatHlJfmvYO90/ujquMXWdI0sjcjXZleYydk/Hie7IDedfa7dI1F0reOKeZwJr154QFzqIDFdHB9h4NFy6Qk2lVgZiSgev9xoFQWYIaa3Vi24rasmaD3ID8RwFmMMDOzOzOTk0GiLJlYs8mkLwEpGfpXMVxyEn3MWjmcvQwMCCLBvgeZKaxFomB7dSympZ6yDLQ6lneda1ldhroBmYcDAzwuQyG1RgP9ZEghvQbvsnbz5ED518FAkUXB0CxyQDne7aEjcNK3hJ/u35O2izWPk3N51rLauZAfTuPA2+XvTB9aLsFlBVv2fteE1YOggG+iGYL13M+fgd4GX1oERf7dh1Q9QongEd2dr3stsl1zRaQdvuL3J9Bnbk9u8ZCftRE2NyJ/1ABG0cMde3OIz2LG2bZAo+muxkMIPtRLtN4qb/C9nTjS/GO7olx5DgB5FvX54DqP/P5w3vbrbd/7TsGixtwU7fzO6BPze0bGBQhTqUdmyCUBT/4vBibiPDAmukL6m0j1gRSE8o2x85X0l9wG4txprBjtdRn+3zzOp9vdka254a/OJdH7Nf4XA9PYPqLXe84P6kf2O3nht2BeV7aO29zLwy4jV/a+dai9c+QZMYQwnzrxlt13ecW2t1u+IKhYZfs0QiX7NdvC418LnmTAQzTsa7jGUgmnWlT9Zx+Bmk2lcKdMlI04nHaRcm5+RcftHaWIaYxwt0XPDYaGi9Bumh+HzOxL1ZQnw07dvbR1hnnKQugw1l84+L9PRxEQBn6FjbadeX2qNCzjML6Vxhc5iD3rb43+fOuaiv8KDzd47aIYxw53ImfusAk8s4W2/W2ULT1x3Q3gNtrBqMYz+o+6QPj/62sV9FeuJRZqF0y5MKOQzOm/ntmIntnhS/EmaXf6CR/mA74Eb01PYZWfWv1i9ioFyix+2jEHY4L9H7Hghh+6MfuLcwGN82IBYBOanJ+GaU5ttSfSfxv2FjQyfhy1+vOU6aD5kbNrzCQdWjrXtvIgSu54QnSp75JOBM7bt4Gu31oTNxyO7YOiBsG2u3jLi87npvnUpe6Xf683/gY0GGGP+nAv7b9doDPnScGIib9ewkwF590AGRNFhkLzh4dGFFtogi8uW3SlDrQAtJpnt/v7zq4I0e4uRXskFdcgUYkEEfUFoojdOAHQAPY728gWa8O7Eq0jQOg7BcxIlJZG25Yi07DgHTSvLCCmOvDGJbUcEsjacP7SpAHEBtOaIqNc08jTyNMXiyhXHDBFC14rZ5rxS9bihgQc5CuPfouaa3A9Vxk19GiJhoDvvx6zv8QE6PuyX8AQTMwdUPIMZvTQWByM1CBwPf76q4unMc5R4+3Iny/3+KR4ziQx4CSvFZt78VsuZ0DN84KRqyFr68vmg2sK3G8ThyHGZTsuhNx4NiUJSzAUc/2QCDnLY45xXruNYfdAmWzhQikpgB2GcxUnYmZgrt1jy0TZzNCURmysNuK7czptmDRaOaQkdK9GBBQcz78wECnHMlN4UI86iBwvmdfsQeXdB1lxcGEaSRTzmOEu6+u4B0gdWM9Or6tfqRoyT6w1h6Mv/WMBjK/xLsjozx4RsAlm7ctIxpAARzsQZvoZzNQpa1nx8g9wOy3pn90Jqz4snXOumbFk3zAGn7kNdsGD9E99c7Sr6RbfccDijL3TLrSLbFdGwd0vsTwnE1Gjr7azHC2rAKzhYN8nCw2PDpRRj4HcDlPbHrTD9/Imu3s901wHt6b0Tf92Rwu5EF03uALMQaG2CfaI/G7SD/ZrMPZNydxBzesf8vgXHR2kgcuEEb7ftBqtJpZJ5BWzd3R3NRtDDIUHw5NfLuLymVo3CEC1u6msQPXNWURuEiWC4NDMrf3RMyioA6xYWa+zTG3yHndqjS6Ur/cF18KUJO4pL3pMISynzUHNxsmBRs5+ACobUq0E5g+ELvRok7AsZ6voJ6Nw9/r+s3xmeytsuasz8B8z4fewDPlR+/orDHWgC16jtOOptMyHf+Tvi3ZTwKHDdeQ1t4N2jvSisHgCXb1c8wG7AdDUWcnYpGP+z2q0Tfy6rbF+6WNGa1jS3aVfypyHUZUP7lz5tV1TdFQgZAfdq/c9dhGcGM+ynIa7XkNeUtB4T5FnbKwT9LYyeDdstn9rwZFKMiXrhvtOGQLGtm9vMYXGEcv33g/7YWJW59FJiPJ4N5RxdOBhNWKbNy2BUaSUkNskPa58TbtHu1arsHi6tfwNGWcB9/oGrMDlKOIJTyjxcF5qOZzaD51zChHfsuOt6UMbaK2SdN46QMNf/K9MwnkPw8A04ebic8NJ04f5iFy6jH9pQ7gu6UrOTOtC6IvvrOGv8Nx9k9XuM3ZD30zuo152GXTnuE3KRgyF/TPoSdcH+ujeol20vgjIpU8M1iNN/oiJqk1A90XCvy77HtHOAdKTV8GT8x4S59O7CHRu/i6DxFQtnSg9FTVW69dWEwCoD7eiUxy1kvfHTRUMsbigYfZ1/V9tO82ZpeP0TuqNrzZQJLppwDRPp+Q/Zwle5vIHo7vIPMEHx04Jl6b66r/qe8D0yd7w/AvbFxG+37wptuJLe+8tQ9ttzXErDue/qDI1vZFob3HwiHG+PPZWCHAds21YhMfx2BQ3qFdC02ICXTOcx0zyCytWWy9B9r/lvbbAb73+8L7fQFInAQrvRL/xx9/QPulurME59thGzIeqa1SKxPn+epAB256uB3GDnDwcASgibtWO+qv2n57Oyb7fJ1yPCiUiuyv7PpZYywsk7q2WwLanhlITagMEYYBXRFNUXrsp9Fmql7WNqmBKTCKtCL1yYECDNrQWcMn098VJrfmsb8pxWSEbqbdwFX3b7UydQ6uOeVz0DUMGcwdF2IYHFvfxeQCtPXZfo4flRjgTHEck7UZmK1PvgWqxmaq2+i8MpVhmpnaKq5x9rVHj8N5FGsMznEc+P71C1+vCuC9r4WA9kfi9Xph0TGMwHmcuHCBJ+7SMTjOE8o2wQlggnoA1D/0OHx7+nFONI6yNSrfwQPUZ7Fb88O2lZNg1xXU4oxg5NuAALfS8SlyhuOYTFUavUaXCorr1eMYetCO03bY75rL5m2OFrDTFU3ZxhG3rZG2Kmy1MYF9C9afFcnfQGWDQT8oxN8z/W16WU1M0UMgYOg+RnCCWTPOqcEH1Nb47+stOTkVrKhFmNoCa8GzAL5/vYuvev7O48C1mp/eXcOKeiNj1ETrmetNZwBgFlUEKoDNMSYU1KOxFCi6UvpAAM4DQdfkE1A3835uL9jq/jFrs2muxScD5b7wAYKY/n0WaRqgdo1JBtOyQYYvhvC50r/mzGt+aep68uQkYUAWwSLvnQDezL8Ha9YyHjSecz17wLaEWhKb24rMBar1ezkKr0+7ARJMgFmBx1XPWwZWqFJctyBNV2vlfeFN3u4MPCSDuWMji89mjGfvGni3LqV+0EntAKb8xtRJfb8ve+Y4slx4LIfQnH7KKDNIr7FHHtiF2f0twOAOk8m2B19pqzbdQd7xz3Pepff5vT0/d1D6cSiY9UflGob1rYXxS0IBiWggTqPSGXC+COE0dl3pgR/KyNDa99rTaYyNd0HbIPmB8bfL3b7gtQfCU6QUa5qOVl8ltON4MpNvgiO7bKp+Uo/V504YpV/A/ggOw3WMYTq3QXrOssWRobeegZlb2iFfjBgbxTmwExJNrYo/xevEdWF21Btn2GxgE/sTI3OeoDuk76n7+d6+V6UgNB4NA6kRQO+7O1UjXkNT0RDkQeJ6k1EQK+3F+TUOjX6bKnhWiOvWevo8n9jlg0eNb8YGEzt9BgC9lrBqbDct672HnFHa3uV9QxfBN51QJ7se8k22cYHBpNj5AwC3KGoOUYsq7r/clU7EBDDHx9kDInFnuuZh7YwBAOuf9DPn0flAn3mgPzbe2oLdEXq265h7h0JOJG80EvFX6Xti7RCrbyLPez/JJXlP4wXaJ+Sufxj4DR406RK35okMirKz+yjuMpUbRhgeMZzRfDEleCbbVc+m/TJbATie2PVtwLZAJnQeQGQftIUDC7MAiZWbD4eu7+9+cZSATz1t160wPJWphA/yHscotu7BCWOY/XI9rOfnnm3ner0eZTLS8+N6yP0Fist+j/Ur0Jh++iLdfLt49Jt9j+Ext6OBXfzZL/+I+GraLExsjC+F7nzqwUOMLMXezw+baLsZh+9Hd23cvOn/0duilcVOPLi8dbOV0JiGEO+SXzwOMljiJ13y17XfDvAB6Fo5lRFSQPzEAWYHAVh1CAAz3rA6SNHK+wDw/v7egg08pKPql0GZf+d54n1dfdIotxnWPUWopQDDDlzR2/VWZRRJyRWTqb7P2ZNtNaQ0V/0ZTy0FAMTu4CF2xkdyaxsxUKivYlM5RgMc+iKxnh5HcNRGOijYfQkPOSnFakaKwA0jwMmtw/1+ZuIo0NLKd4+W9/iOfUVhdTCA9luOUq92ENwiY7bpQjbMACB2oBIjuUnka32hMSGxCQ7nYXx7sGMd3NmNif4DsL6/+3CYMbhIKFWZQOk4Tvx6fxcvLzq5ZTQ4D+frFIhjENEVR2AOQVAApnt8nqfef+jdCVjggkbT8KeMiJwuUkC8abwvB+Jza/amYAyY2wXDW6y1RbAQkwE2im+ApD9j36Y49wvY9kvcmGfLVHqfAqqjuG3/5/0tWj5W8TCVrbLkJltsHPC93wlsWxSdVo45dx61cZuB4PwsBU/d+QLyBsLDebGzcWubOeDbYjMTb8r1WiqZAKDpvlosqoYkgyg6jbyfX5lKxQZ853Eeqi/G2mbk7UTVRouYbGqWYFh5KMjnW/b9/uJLpjgDUyeS2QV7sGAC+Yf0x/b9zVgex9nXDYgJTNFhp1/0YgwDspw7XivnGC4zJuM3h3rb0iUZcv7fv1tCDM5iBAPDwwok2Biyx87kkd2JWOKzAel74HXGk1g8hdN4ky/ZT2Udftc8WH2R4fmb7l2p2rkEwSyPwMUiD8TxYJhDJUCOnjP0QQZFg7WNowPVFhBRzx1EJ239BGF8HpnNKhrPhFoArccrHrPFChAThH4XqCcSNDtJW3xY3/bg2ASTq1v7HDjdPsEjde04WxmhqCxPAx9dNPct5wO0PqTGtbIN2jnQDDsuYG6OB3Uqn1/PtCu4fVbzMkEx2gcfk2ygTRJ5m0Ez8UpyUXP4W04kMUjuWSL8XAtBpp/K3gxe4i6Nbb1501+jx+522AM9Hgik50AdJUxl9o+2ig+dnSo7D2Oj3dDEoJP6Mxywj4NzAxvDsHQObc2ZEQ7ms/myxoKeRVfPMibkqxxw33SQ09H7nX7Ldvddh1aQi0G1za40Be71kvyvuZZ9g8akOrwiVG4ypYNdpGpz058A6vAo7AGH4dEET/XmmHiqeT2a5ZVCh7vVQk+2LAMrZvFmzyhE472FA4e+r3EsIyaMUThU4oR9EWx3Ayi3sc3LTn/SeJm+oY9wm09797agAmP9BJKL8nBbp7tvv5ruIp64jRXIe3LpxiDUgnpe7oTw1+f9BbnNhsn67VU/ZAY1aUWzDQNQ5txX8GfyWu+c2cp74ITjSHCnT2EPXwQcu7DrWQ7TdfC9D/x++30lsrfmBlb7dAG80UkuFwLcVZjSNzwAE23vjlsWOs+JLLIu1a3mWGaHG/Vb6IZMBj0HT8BoxXsy/ZAb1zn7tbTBNAXUT9tCKnbWIqbRLewj5t1sFZ8JcNFe+m9eN5jAMk7TeGa7xppkmZPfPZI8uKw7z/Z1xDq+u7Ge+7mYeO8T/4be1ToS60daC0OZFBArUD7kC/aUjg2mn5cbDQYLQXo39S78XdrfoQZfge73quDFGUdnzw2QiGDGXlQQKHp1qhUZs3uAIsx1VSYKt695pFUHamTqcIzK9quDCQTWytNRKnqg4jMTce9taonJejrQzizTb7tlZaSdx1nGry3mBGagOn019nYMLeNjmLUf2O/j7GaaEC9X+JDDUcJ57OBewGcY3LP+OIC0wbB2AfXLpW2C3OLCE1rTwO4EF7j9lpcAqeBpPdQCRgYSSdPLBAFpSg11Yu3WWllvDiSMVkKPEA1bNxggncdxFdIo047lhff7jT/+8hfdqLp8r3PL1qtg222VpRUNv3udX8hcveXstp3WDFU55edHPUc+B5hVoDo4g2NqR90U5Nn1DpcDrr4mqK/IV+bsRAwwkRKMW/aRrbJ5Cz2j+E12pR+o7NMOJoN9ckDRdKYRnWDOMAEz7mic0hxsMUrfS2TXahc4JjjAuRggNAGGQwn9wzMCzGvkRQH9nL83o0eQY6RQD+ksiURz6t3ILcHK0lxcbSBUDLevp5yttfqQl9Jrnj1YhqR4h44goub0er9rKzmsxELTlpmx0ltZ7zhfr+K7Dsi8Xieu693P54nSL7zXhVwLr6+vyQZuPrneFSy7RJyWBSEVBmItuyS5sbt0VI7yaNYOzeccrBDSSzsupi4bAy6e5mcMBCR57xjnigbfZOkOPP1ggkyuD8TtGlvNA/XtJwiZO8lzBEfkYsoUxdyAmnTtBHpG/qzPETYuBhH2AOyHE9A8eM9ETesn57BsFYNc/b2mf+SQpTkqYCdKjB5v/r2ua+x4f3G9eVIyjIc74M2spLYPyhps6ioLH/OeK20xqG360ND46Gi9BcgxnkgOM3qPsfN8Hp2ihG1tjk3/8Vr+Tnkucg5/kIW4VX1umwwZh7g7KB5bob9tDme8P/H5oPcQH07JD3vlvIeyqs7P+OZ3flvPvy8MJa/peZq5hHaRaCESObiKNknZXzFBxOZ78q07oeMIo+3s1fM9vLs5SHb65AZC7nTPYZXRKY13bveV6WosiMK5m77ofxSYPjZG0Hy5U7/Nn+uhRf36w/z1ZcSpYd9tZQdEt373jXdmZDN3tBGcAjld2Me63ZXWyY2vRleJPqCSJE87Vh38s5XBYNke2K4A7HLKcaX97nJX6ja3a4WvI5AsbaHv7z8/dTWHwt/JqxMkpE3kNSJq6/Pm5a6jLiyyZqFlrcTpcpTA8lplbQOpa+4LW+Tx8XdA09xiOQsoPkbXk+CYzOHXvKorg1EDmIMiNpzYV1pmWXIMaK51n2JGPe/clGuI/2HP4fg2ecHYi402+t4XLEff6F5szG/ylprj+3dz7w/fOV+ONpVdmflkIOX+zv1vBji0oBYzXvoxxNHSr92PrS4x9ud/8j/1fqr/89m8c60LJ30kMjrlleUSopICjoAWDL1uKd2WDRb0TrXjZB3kJZ0LlC06jmMObew+HmELJ61fJyBkB2vuEEQ+Fro/iA5mr13OYDTwdl8I33YnhL2Ev+p03R2roO0NJ2EWVeL2cxqxyJ+4j7sdYP9v/ZYWu8kknC6yuTvvOQ2lN5ETi9xFbGw4yIe9Eymn7rX6YPp8SpGYTLAmKne2jWGQnJWdG7sy/uAN7/yN7bcDfMdxFKju31dM+iNr4b1etc0QEbjeF47zRLJuU9/369e/1tYaBtYy8TrPWW3MpSwxCo62LB7nDowbtJFwzKAroV842gGuflodMjs+XMRec9runmnSSqWDkz6xCDvUQzO5C5kcBQwjK4hgDKcQSYSyMxQY2gxR9eXoB7D+oQyNbeelXl0NeHcgFvDVFd8KyWArGhBXYfuy3HQIzRzK6VvrUsYRn0NaMBuSNPQgR11MI55SFpmkryCa9M+MYYRYSs2Evqa/xnJdFw4Ar9dLgvq+LpzngfM88f1ddfe+r0vBi9frHON1cVtYjfF9vfGKl8aWB1dYQu89Tm4DPwe4tkM6IKHAkvM6Yk7j1anUNyW/rbbKwMJ4d2Mwvfu6OfJJBcfth6TsWNzyTHJTy4AM7Si9Wenm/ROISXOsFZw05UZg42APAlrD68W5M9art/GzJhx5hojA1b+Paxng97qefrr1BnDMOtLocWVeOuk4ug4WDFR2phyplB1EtzHk1QcNBJA59UOpywoosH4PVNZgNbGZqURf7TypC2rUR69enmf0wkoBl2stG+8EcBGBX79+WXYpKnvKi2ojtGgQx6FyDLP9oYPjZhQHjDLYGhtf1uKKLZJkfq5EUo4wWuwAxGOcNy4W6P7M7fRxAULjaPIYO3wwmNPzecT04j4Wvu/aspt2ewD0ace6D6AxYCBG/O88Jtsyh3MoE9F1Ig0Bxob4uxGeSWYBROoCgiPp0aE3rND8yEPPhWVuwucoit8G88x7SK8Kyhcvvc6XeJyB1ug+X5JvZpJDW2aUNZ3ZzFByoY+iDlE6eotvJPXp0CYw9YHRgSDWtIve8g7xSIiH/G8Hq7laba4JwGSm+6fmAM5hXqIv8UY4hmjxI49isFCaHdAJ1SBQNgBqmWwI7HMak/l2b16DcBb5zNaCejR+fI54yu7V58l+3gC7Yx/j5Tmkq+6SzumLt1Nx+/olniT2G1Clbf5692xhvJb1GzNf7OP8wQOCLDsaHdRjPzaCNJY75vNyFhK4IL53Z47qorltbGbrTAVvcz4j72xYcsCgfne6+yClDhOTUd/znZkKrBjaEM/dhqsW/fhbebAdDwiIWI4LHaqPd0E4fn/rvFk4gkEfjH7cAk19x3QlP2jjPfAD9+rlfGYNTHqEHwad/cEJ6nvTdqtXnENPbcW90xG7/mb2XtUco0wsBfaGpTrQ3eN7W63mcXTHXuCqnVaqWa3Tdcl7mPmhge7+UcvOmzEyTLMVlkmtMd4XW/pzq2HswSKKsdfFFKHGam22Rd3qaw7qDqgTg+ewtxH/3P52HbfrDedx6mbyzmDM4Wzry001O77A/VrsOnjU29Bk+G8fy73d3zPywSyyGQef6c9yLFL3XDNW5EZDt0fC6pKH/Zm1cwjlcPRBOetK8e9aC2cc8JqLnAMebsR2HIwNMEGgrmUWf7beuGIWjGV3ErIvOIiNEwHGKTjykHy7vXLOHD9jgOhgpsF+lPlZvDa76nRCKrN06gce5m/sWFa6IXae3HBbDm9qFLp8x0RbTyjn1PVN5Al+jQ68y73oFMYHLhZuTzDYNhBaXJgMTvZjAph8pmrJU0DCfkY0Nkzj8WwdusDD76i3pQ+lP1L6WslRd6H+G9rvZ/BlO4ubgZ+DLmp1PXBdb5znS0RhuuzqbWOv13SFWyivtbStTA76GkPFzJzjsFME6QAGT9AJEfFlWx6BKQROwpfT2sLZjgkP/yDDnzGBKgdKzCIYIO9Asm2aKUPPwCjF44gGoEDPCsX8Xe85JGMMmDBKfIOLG2AFIGc8GnTUCvSS0ypnFlR8ZH5ZO3MI2rnpDM3qUtPgKmWtYKckMKFtbwSXPbLJDhylxjHrFE8qwz8RgHFsAHQAVnWYzKATqCOA7+/vzaifZ21Z/PX93fxcvPH19QeQuZ+szMrWUQe3vM6XeOE4ZtttRGUBzWgnw5MZRzTsEegtzyH+cceFyrJ+Had5CzjF8HltaQe22jo9waOQYoyBAEds2XtX3lasrwGcGlfmx9yQXxSoJEsuvz/UX8rGWIs/WTXku5IAvWw6s3WL7oeCISNLfCaaz4Z3JFMpKonW13VtDn31rRjLDR0Ntusf8qWyEM04Y9gSB3qbN6NyBnQmqDkHl2QCuYDv91uLEXPy8tBwZSLf3+I7BBQwZC2yw37fAUd1kEDiDh7RDsPBVH7gVjNtwAAwq50zJg+QDOzna3zBgrwwvOh6sZ3fVll3nputCKM/puAwNr5Sn5FaJOLfzEisjFMGI0euGMDaFnIkl9jeMRkPokj/Hp2hZQG57vvYk+anHl9NxWRku4NDBpNsxgSiy3bv4HuAxsxF8QRlBKKrj2chFfSgYz1ZZaHA9MdBMZ3xPNutVpX7OA7TK4EMo8EBZJeZeL/frRs7kL+WgoPOX5lzwi4dWx28MEw24zG9I1ra6fAbqDX+GYQ7Omued5OjMK6nTmpZGPAdolXw+ejtxjhH1k1/JcbWVwBs50Xxuc8lEloR4Mc5137IfrdrNQbwhSKMnGXOWPj3jsoB5/Vp+zWx0XTGa+p65gYADx7geJSNRV1CYL6mFs6cLgoglxZ9SIddV/AdSzxcc20BDux0k2/QHWbwX/OULBExeugQ9oyhnWjiPFiLt9H6SdvRmVnqjMlniW/Yp/kMhilGn+8vcvsvHQjDjzOTOnl6Phte3Go2GRvI6cL+nd57502Tg5yhbhnYc331ynnVyKPgtIztzZYte8HwOgDuja3Hm74FmHmp+nMwfdt86b6ExN1oOrp9MIs7xHwmdXZtjxz8mFdqvkT/TPlctJvEztIbyZWoelcgcKG3MTeNKnNp5IO+RmhxBrcMoKUgePIdGBsHmy9Rm/LdBOeC99il4cgJlI4+BAbf3BdjwDtXCsOxnIka+V+c7+PBfJZ8puk+k8Flc8v56wFqwifLtP7ZbTruKnLec/vQg2kaI3U7PLhtmNTvCw/c7d9xHvweyVjLXpFsnuWY3t8LzHXD7/ui00/tWpfs+fu6cNp3Zy/wZychLSwFpB2vRY+D/CT/PALa8mvyqUW6lSoDhMg+lbdoXc9f+lu6No17NO3NoNpZx3fNAgR3P7q9ACxBJm400hztWEJ40v2ptev31IX2rgjJg2hjvIi0ueL7TdcJWxnmn01/9O+HG9zukFbClK0flHD+E//98Bktle/AGlKFgrSOq2itFnVDRPnAlMtJ05NurnddSngKOObgtdO/ku/1sWD1t7Tfr8GXUCAtc9XJdMeBr68vpbCuZQcuAHZYxBL4/v5+T4F8AtGoffIsoH1ds/0GKEFQbT9E1++Z78/XC8is4MYHg84AGADytPRhukvG9ogD1/WW4RPwOj6Dfpy0suUTqJPBmlHgiDH0YmKBgAbkpAmDc9gFeF2TdUSG9CyM/koZifeU0u2gCgl/C2PQsJcTlgllrFHYXalI+fUzCCg4XqD7dgxwoMYjzJLcUiEBFiCc5zgQc0A4mHVAQYcQb04bxFvHURl77+83vr8T51mHVHy9Xjh6O/eyQ1t+/frGH3/5A9SFBCLZxqx4MeTsAKmTG4846nh1m/fzmEMxHCIcmOKt3KJdYHcMyFqXBUBHJme7uYEFglASAHQ8l+Z5Dw5M4ArgNty88TLdU/JT9+k4wROqKPNwh5LvQfE7Egquu5FycMufcftEvBgzr3Hc5K1lkGBB9O9+I7NrhXIsHWwgHxpw5eezwj7b18nBizxhfLlUOzQkfzSi9f0lUJwzbRrT/WTKiMk6ZOD5+/0GMvHF7bHUSwe21P7M4i8auWCGSGgtvozp2hdRgHonjdARoewgXnMpwB/ST9zufiVXGGfLE51QALiYwULHuvmEJ2rzdGoch+ZyW7FsmlGv8xkIWJZWZYcdrROkQgxEyhHYkb34brZzWP2ZKP3KQ24UEOBcr6mp6YHfmWlsgMmq1KiRV2EyNeB8gIKD8buDlIsOaCig4+MsPT8ZR86Pcg+2QjEAnSJQpjFyVge7jC1DNiDvR6ws/i06VgZ16WY6VoHzPHC93+V0RuD7u3YIXKvmhBmppOR5nHKa5sCE1sU9vlpV74OOOuDNk+OmJirkUHLRz2nKCbw8iNI4I0yQpCscjYr+w1tlq7mA5guXfJQ599h5zHW8npvGw8InaeC4aRQWIBjELf0wQd+NGzezrPpdBubZx6LHLNRynmhz7tkJH/InwM6MXBjP92dbHZ3BJCNrs/iRvYuBj/cMP9Lbg3vcCVCZUCmbv3KyoEoXOR4IBeeoL0a7zs4EsgO3G583rLjMeWCtRurFVjzSATpwI4w/NqNCjNYyecw8+emkoE7jTMmexZQ+4PwZNpc9hUPtvibHaovW/Jt9sLG5ThlZmL91S/Oz8M0N/+66a/q4wZEely+QkLeEA37gKx4gttvtpr32Go9OxJr5oG6cwFLZa9l+e99+z5Ka2a7B8GEDHo2FNZETVv8vOpkiJyDoOxB4D3Ul+cv1gZfzAIDoMQeatxSsnqwnZNvc5jeWWyKV7osJpmaNJ0PvWWanOMOzUOhzObiPjKC3kBf5roS2+opp7vZYW4Xmvbuynnkx7TY8X+xgLg2VEbb7EcZLpA8vWHnv1d5f8QlJtvMwEhOcNb2g3mj8pusx/Ci68dH9t/hSgXUfy6e8iOfV9XmOskzt+mXPT+yf0w4x6+7ybO4I4ZU4D9Wmzsb+x+kH0ZUudoykQ1OyFuRhu5ASo3tO36HUOvpu36Lnkra6xjh26IhZZAjp5vJzfNeVFpJ4QnfsNYTJM5x3yvE+p76F2BdvRtdOgBGiYfFf+6Ne8eAezL3bcdl3iBEGr/H74eyBMyl+DrviJ525s2/KtgtuYbetlGXSn40+qWOhbdGW+vKGkVhpdHUpKvkJmHe7zBWO+RN5/ivbbwf4rrXw/n4jjkNbGl/nWYDnXVs8C2xcvRXslIKPOKxmHkrujgHK53FUkBB1oMH1flfQDpMBwpMjFx1TbZWkcekMPBU4HgYnaC6RqKZMkTXfHxZw4CmUZIQJZO3MwCYjAlf3O/PMv/uKF5nwXuS7mGlSgOm4gmJIIeT2qBzAJ8ZEX9iO5rWmZs5uLEtprJythMy+zP5+MgRHMEVfWa+ai1IG6JWS3Sl1mnE1jy1NgMaxoRiM8p37Z2upND+VOoFSa9P3+0K+lhRZHIGv15fGGagMRW2xuepE3NfXMXOylgKC89IJzAEF6rMmsui5QvPKepCjdHosuIEcKdcOZJHPrfLrJ3gZhSawEj53rYBu6dNpveA4ii+7fpqtSI3hYKYbeW4CyVqtNqS2ruwacD26LP7QSmbT/2LApA1+pBWh5WfN/PWe2o+3Hxbg23DmM5e5iMDRpQF8Wy2fMbRtMyPlDHvWGC7jUOO7BmcdzODfVzuNER0Ua4DhxqkC46wVYiv+mVqBvNbC6zjxfr/x/X7jdZYOPKODrYvr7dWoaz3bjYG2o0FlvZtBseETBtAWAPRW3QmA9kpUHgrmXxa0SFCu2kh2cKUHK0DOHwoAMkuQnlmEfoUAhc+Z6Zus+3kIkRzvNf2lLEmSXb81QGTa/b6A0oG9qOBTIlUr0jWcy5juM5l1QMbP2fe0MXvf3CeHZFndnuArSUN5luGd4JMvgvGwFQbKSxZrwW7A95D8MrvBzPui76A+FXNvXZirsjfIwyqJcc2qJ+0OHdtsYHWcZ2156X6/37MAl827XGgBPLC6g10HbgBJzMNVsvVl8R23snvQ6Gian69TtJhZrE9GjzPjcmnudmey9VL3pJ7ffUrj0X3KWyfUPfcFwTGBtP87D5LhfdeD4wbOof9N3ZStK2fr72AIt9c9i7VtmpYl2LexDfVe2nyiM/KkyUbrX3cw+d1esmUypgdIcwzYeIB94XO5SIEcXUxeHZuS4hP+V75R6aX6fjUe3XEPbSQ6a5sySz3L7Kmts2gdwYwlZGeLDA1c9iJav/V7SZfNQWHWBvZgk+i1RvcN7qTMp2yv23lfUNj0Gem9zTtHAvEQFc4eSJvayOTbwus2zoD4y0+L9/cFxsYxoxYbXwzPD82X8LXsDWXLF0HsftfBJIJnjEy2zCyYbUFJzAvT/magefDd8LnTqtb26rmXLXCI77sPyOrX/JfYPfXCsxHAgdQcRAdPVOOYCyLZJTCQwLvrnGN4pIIksdnsdVjGuOxT9fEQH7beNnzlvNi9xDShp+FDx8fEhBETjDDahyban4WNxuwyaCswcjNYaHiFeoayQuwYP9zvr92DnTuv3jGF2xoACoCRf0cXwkojpPT+3RZC9wyJhHOtL8LA0xF4EJD6MjA8OAt/fG7Pl71jw/HUtZhgDW2MMHPbwsjZWnkitOgK4vtAYbTuK3lncVfbEcjF3YhVouPs4B99H9oLL6XBsXDBjwvQ5KxwQoYFi8bjKjpkIo+530/5vc/L5kdHzWu2rqP+wDY35udjeLq6tOvB0TG395D/2ra4IG7ZqBuPjGzDdR1tNEJZ3uJVe5+vKaOl7I7B/bn+zg03xyzm6NnST5ixEl8kNXCYzcAN5978PUDJDG778vZTOqdvHp7+vfZ3yOBLnK+zFXtN8u7IQ1t1zxczZyaqzq22ESWIJ+tvUUgtrdejowujpDxoCEywZRwYDJhqsFIGJ2YSk6v/F7ZqsK7AW6DRxokfCpD8Jxw3B77ps6j7puadG+m051AZk5mui9fvQLpqDNTvFFxm8bBRSFY7K4k5NTLX2rIeLwP2fM/U5BggyCCRMhyPyfCr/lZGVxwUJDoTu5Vcq2s7rqVALsewB1hqSFb+a1ciMlwkdymgmabUuNFZogjg63ztzl+/n8GAr85COqLqkf3x9SX+pfP19TqBmAAh+0BgWc+rLb0HPw+MZTDjgYjhtOSKwCiDy+oWbsA6KTPM2ixAxlRvHXyAMAA/dCRIk/OT2Q4mkNcccBPB1bKiVcnRG8Cx9cFPVeQY/URlAqJl87adZk29cJMt9pe8NJlcM89yeHv8ulfC27oGN8e2v4vWFVWvRqUHAT3DFX/zVgfjfC7cuXJac+5qzmtlc6AfM0eEIsEt9de6wFN0VwL5rlo4FyoIE9fCd2cnfffhBQBwyHCPTvK+VrbyhTy4yHFUbUmWMWg5n+1os9JHIFFjMjDUvMaT0YOAC+OInX26LYKBRGhH0KLD4Rl/BgoKnLZ+bEdg6mik6ElnG9bXFKgsflbGSEAyzSx0yq2DbH5OsCa4Kz5eyjbk9diu2emGNDvK6wOAZcC6PnZwxf76Is3qU+lrkQWtB3mK7KEACNzRYV8zERZLHroU/zMIzuA5Axq8V/ZOvN44YU1mnoP161p98FUiVtfNbaD9xhINj6j6v1xwyCT4bt68rrZjA5w5Bta+PI/a2jrbaUz3cYtaA/crLzmwpjj6mbcseHClPxTAcwxS9L/pVpgMaS7rWoPZ4geB6h4UoaUv1ox8NJ1ZxuAWABun3+uCQsFMNtZNdDwDYAuWlJjvi1uyZWmLCNmLEsx6tr4wQLY5GD1Ply1ujr2MlplGNs2Pm3MZU2eUMuDhJwWD+n2NvuUcbbq96ZVYCoLzcjSGY5JH8VDPfxr+iQmCR3Dhls7WzD8d8ZM8bjgtWo+KNyNEDtJ407+dsRgxuGu30XOfvgOE5yswvS9AmBBs+pb0vS8KDcUb9zou63kbW9GBJOoJva5nKatOJzRVzT9p2+Fucz11u3ILoKZwtA3JbXOmshQVMKYuhAXN1k962Rb/4BkjaN2ZG/6/O8O0B9LxTk8GyGzOGAyjPPBp2rqbg6Xe70v9T1SZn7JhjRWOOlCsTr1PXBgsQ0WlOp7mF2ifQVCnQnweQNWuNj6kAIk/+6PCuPs8KOEZjYuR4OGAE/zcA9Ucr4iuv6VgxVrRmFgYzEF804qwT3MMD3Q0P7BMDnnF5ssxgvw7vsEwCWVh678/gDyC8YG3z2OuT/vMTydXGR52wPrEUfPrbZs7bgE9eOAR6vtg6SVdg+3pU75hxjI+L6m7BUckS0tzUPGHKpXwvi5E60stIuT08col/X7Gie/vCyf9+p63oxe1WYs+M7F6BwG38L57C6943+Y0Ymql8/CNzASz48/ztG3i2fQZ3AhAh3roNGuji/vgpXeGdvQbYhh1FtAxGEX2YvXuhYDGCvRCkng2ped5ejb1y/h2w388kJQCJF8jYpvb6ZO/Y4xq6QHil9jiP8Q00wfD7+RHzgfl1ei7Zdxt9OV4hr+npq++gmyY+HyST9gLj13sC59ma3tRcRmW+t322wG+iDo4442rtyVVsI1A++zMvu/3u65HDfo4FvAGgAI9rNm3bWtqo/d6vTZDKwB+9omYgO4lEb/fb5zHUVu9zKmmQJCRcs1puMrawbzDARMBelS3wYwKCr9AdOyMDEwU1yPmW8tZraq+DPP6+wugtIHM/ABUYhDSy5zwNPr1EAzctNJrJfW+3rPdsIVdW6AjpOC8OGUpTAIMaEWKIGgyd2IKEI9JwwRhJtjp/UPYaoQx/2ohcwcBBF7pPDNYf6f9klPIoAXBQQTw6vqK13V1Rmn1+DgO/NPrL+rfcYwbmagwMbeYc+W+3jGgY60Lcb5knO6dpEKLmBV+gz6ltE0pRRvRTN9el7iuWbUehy+RVv9RW8L4rJjU42HT+f3d29Vlu7vRabs3v5cGd1NiVH6WJVLz66vSFVDQtj+Sa16i7rr8Cfg0P2qVkoFP6oBksCK3Z/BgCpdF8hZT/2mYNY/93rzNkRs4N7e1NZe8m5Il2RkD9dwSVEVxrwLy19WGOnEFEGEB/nZ2Xyfn9+ism2u2MV5LBioPgqfsEglLjiX5hLrsPOqggtJJswrvAINZ1IUHugZgzvye5vQLuGuslJXZOnUog3SAFMPgorfNd3Wt+eewlbukPRp3QXN7WD9oc/RcbpkYHXPPtBZL9iD4sRxpjX/xoo3nt228qODG0Mh0IBlJz7QVTds69dOiRWZ2EWguRIUCqZVRWdmX/F1zsBg4cHmD7AUnjlteKBOqCZVzSAwzV1bbnwSA3jJD/y+zwCLnACj9w3HUibupQOr7/a4b18JBuqHmp7KlDfTFBKjvjmE5DDMzHL8OaLGtHeWY+pacGDr0HFZgZmr7UqmUjDQGELAdzOFZnf4+zv3Q3XW1A8l2onKgJ/mI238kR2FBjuYpBWre7zl0KVMHfdxtL/dEkE9Z6mQCgD1u1aUZgC571PRNd3Ad7yDMMc2xgTZ2vme2DR8bj5JmDrbrtUWTypheqsNUjiMD+HXtxTq0nfXhmYwsqVHBEdLC5BbQ1nCIXaJ5lQumtdj6bozLzPnCGMRWY8fuzj7n8y73tQ09Nt5zPnAXhbw72Hn03NCd+G1sDunCgAJvrgzEsQFycCmXK8ttNB09dtcCjMBNB808TvYnsVX/hM01QnMd8Znxx8bPYTsghi5+HRc5lmR4yxDsTrvtT6eBrvVt8WMvymchb6S9f3A675HdiFkcz2yc3vdLB3fAhfdddaFsfumi8nfO1sfZNSbLyZ8Mx1rQmOzU6M7PdsHG5jACxCyEzPz5PMyMi5rGf/SViIfFOs4PfEq/zxNRqFcoR0Bub6TtnV7vmJTZjqI/eWzxCQz+uZXfn82R0ddhfzP1z4az8zZG6fSYZ4jviRmsXwZBtnc6rtD1N/niM6WzMfp7xiCySH9QZ0u/WY2POXW05p7vpr5kII9yorqSoO6lT2DbedEJKqETtoo3AHx3ObEA8M7LkmuIJaFnF7+yPnDN4/UuvM0AeOm4xsnoRCb0IXPUibZLB+htw9Se0ptl9/xv4c5eTPKFQtZpBqIPp2u9kYRAzC4EcI1f6/6m42FfPIyIqqU/QLf4snXY0ryOTFJfSJbJQDk4YjmosqYdCLS9xqOcUPcZfWeIkprEx+OL0Pb7bkOWSqJSFn2t48SMLh/Sw6Zv0/i16NgLJJQTXmeLS7yf9Cle8+9d2v+29tsBvvf7jRePgzZATkentiJCoAeISdcOgqPA1VHqOrG0jZsHVnrLGgMWX6+vjqZOPQgaOQJwpKWGYwCJK+aMWc06dWovwXkI/Pv2IK069XcKQKBNPg22bXs7wo2BIEYpkuSK4yEmLsFcooXAZoxTKcGRU1qgiJlDyD1TKLAHQuv2YaJ7Ng4d6bWyg7eeHebOewlWBQQta8QyyxgUoN5PrBu4D231GZBSJx5PrZcYECFnYuigYCyVE6bg/1qJYHAjdReoiVwAVyb++PqqXnaWyRFRO26jDozhNvRIzxxJndCcK7HCV2wSK6IPaZlMRzqEjCbUu0yhRAf3OqvFweB9tQ6JKWB9A6thfE5e4PyNsup5cWjDVUzakK2140DwQhCS9r14FOI3D+ASuCptH7veX7nMoRx+PWLnxR1sjTK+O8baetL8JBBzWwWngSEdPACQ2FdyPHjCVfbZehXtgIyBczpkpjLVSK9xZCTet1XfeR5/Z9/erCWyEq+jt1MexUNnB68zE6/giiPw6/uXTilldppk+7o0p3GMPpSeRGdcMfjXJDti1yfM8OYYtHq8Fs7znC3Y1A5W5JtWfjN6Vp+UwcLl87/xaM8Dtyt2MElZjDmBYpS3rLonmtsY/TI8/EMgO/yUzNtp0NI7CW53oj3jc8TH7SxD7Dx/Uw9Ovce6nhnPBL9Rg9h1Zfo4VtuU3TmpaRmgM07gBII2J7jteGbatsEBxnIuOfqc4LqCI6DTzzqM3LJ+4ev1BWbdHsdRq6Nm287XC7neiKwsp6LX0WBysjoPC0pLzwQz1AOeYUxQR9DLi8lf2uovOnAxrm220Zn86M9PMGOYjGeOnWHfcfp3ncEtayUK5qza2PhuFXSWKLkjSJCbM9f2bt6rADuzx3gRbbNlhjOISZ0kh95kYS2u7Devm/8wOr0ciOABSlEOkp9oTt3vuvpSdnPa88bOK6tpjKnoRqCtuTKZVxkT6SObkzX1iQEujC3VnuVBOFFDBm1KoE9xNqcSNnfoOdJ3bUMKMky2OzGRDjrZPaMd84ond8ysWeVcNCOuzO1AEtpA6hbxJvW7dKnpYf66+jn8rH/ZMkr9Fud9x6z2Xmx0SxFQweA149KzmvZeX3QOtZpA1LZAR5zTz5Rddz2QzCCbzzkaPZN9Oka+1M+AFhOJEykPpH+CZRJCemr6YZmrQAcURue5rVhJ3J2jh/tZXMx/XxeOLJ18niciF1b3ravfIoIBYWYrVWBjdfBC9foaHxafMhCG1uu0t9C4qJdqKKt9keZnTJDCQs7DOTm2htd6oHNOQyUOmb5tAbKbXvVfBn/fMOgwo3D4diK28ykGE9aQG5v053yaB+jI8tTxu00f/U7ZcZnfgogYmd9OF2efyHN8lssc9WTzLevqi+/a7xe5kosPFpATrp0SWaDdMDoJC7OvF+tEGs+2zNTCfenHa9VJuTXqCysmA/p1zs4Rba0V75F2hd1Jr4O46zhUkuMQ3hwZWO+3zg3Y8T7seb0IRHyBThAxvhjsWtet3jXF8XK+Jisv8VagruaPh4ZcTTOW4uH1urbnEi2XxNc0d/QfQ1f292F8Cam9mlPG3raa6m1XcnAsx+q237XVJoM3uZE+zcHByg6Vf8hFaYbdzdYZvpmSJqztSJ3f7yN2pJyQJxMbzzp9U68xO7IK70sGzA7uPIPfbn+XDL4EcL3f+Hq9KpPjCLyvkFF4d/be6+tVTuZ1IfPQCbuIyejgRB5dnw8g49V3rz44owT1tEh9CsQHgDgqOLgFh7o/y1JzPUVcihJooxDGrLmNV8WAu00dGouW9zv2rQ/1vPqdACkGHMm4sxaWBa5iFHPRaIAkgyB16zhh6NcV0PTTP6NpdgwTN2NHMkPmEiNDjAnw8AQ9S/0ShFU/GbicIAhBDLRqIKPVijUlYGaAc8xA2jU6WS4o6L0xgM5cgwg6Tsa5Am/6ei3gPIuPW0m/XhXoE30j8PX1pZknmDpQ/Own5vK+Ajlnv4O8NM5z0YaArceBoY8OUGDdE1p3jQTqmxQIeYS1t25Kkke3K2tPfExFnBoHHajK4prtycyiq2tz6wOQWsVmlqv3p8BdCgRMvUUG0admWC46OMWvXHnxQ2Sm+PDInoOU2ZbTjtA1gXrJVY7BY7AS4Hs4ZzMO3bvWJuMIq0WWNWOzXXJm7fLTl5JOx8h8UWPkuOhOHVJyw3o5mcD7u/Tsr+sb53ngX78XXucxY2rdch4Hvr+/cXR2dfRW34OFwpvmRwfkv1u3M7tXW8Rysh4UizNnc4JFDeDb2DLLm6uSXPzhdizyKFdDkROkUVAVgePkXEP3yDHg39Tvic3BYOap5AkGctfo5QEO+JChCoQSUA0omkBOaM4Z1Cqgy9qUpMHoAp0iTtbF8CbAFcCi+/t6m21IG0MMX/VcKnAVzovHrW6MzUfMIgSL93Pc7Bn5lyZCNg+YYKMBO+qhRrqj4wHpkl/fv5BZh8PwgJ73+8J5ujNSzy5bfnOyTScdxxy8tdZqMEqbRbqwWHziOIaZ0sC1As9aiOEYBHUFDisA9QKwwNjZOPYDxmcb9ADUoO4S0IP4mXxM2Z8tgkB2BpNAZo5eBDAnWxvNvc2KPaQDva4M7cHIWExwCRBP0onhnE7dx9zqYjHziBdynCqCHsOD40zMVkzaTwYlyLecFgXxyH+kswH8vrH6Z0FNHf6lRdXJQAJmAeeye7jFca3iv3cvingGLlCLBoWxmDHs9ticuwNGS+pbbHThOCl8iTk5PgGdbj+0GSemoLaItT83IYcHaPvFS7XgTNxlTldM9gsdnhDvUF/agq6wqQebYfZgaK65cRtp+DZvPO0LI3wH8Sv74Qt0dCoZtKccyz/ABEZ4wjwfuwd892wk2m4fG/Epr/EDvRREb9mVniLNDGu7w7qX9BlasB4UYhx82sFrtVXLFC9PMDH78KMTZ9Piot1BNp6r5/rWRfJNBfBmB866JnDHYJ7jrADmpFJYdo9h0LE7pnN73LLBbUkZziycHK26x46zTvFk47PfsKzsPSjONkG8WWSbul2msykDGlPN/TzLeWPnX9JvEGCNetv4JzxTV1Vgv6mTW8gQVXaqdadoBiAvyQVIXZOpJD4nljCdR/5yGd36ELHzeibyvW8xHZztGML/TvVn2d8M4gWwY4g3TzsPZfGh+3TEgSsvvI4Ta114d9/KNnbZhpglFvLx2X5b8X/vGKSuMLwEYPz+MhD9zDU6EX4mQQf8pOmy65a3D2jJG1P6YzLg9d7MzgAN8y1m7t0OALODgosRPVviW9m7TZ4ScVGNGo+jnhH2IPFMX5XFGJhkCthPBt8OeLDc+88J+ahParar/owP+sCwp56tg6hGlsRrrSdkf2Jkmg8dH8z0rGUCKmAZsfXX4xiVGNT3XilZKZLs8Y/fbb8d4Pt+v4FfvxCBMf44VBctUVlNDBRdaylwRAeCv6+V+MvXl7YgnMepCDQnlIGXdV3IPiH0pBML4Lr4/bsdOYukJzOy5rRcTgS3Xm5IEdi2HMj5gjEojZoyB9ryxShwGWkao6YdM/bGCUgJVj/ejFffAwb1YNclgs5TWt+dsVtBs3YgV8u4pcTBGg0gGY3KgFk4r9dXz9f0bSVXBy4Jczngrj5YRyR3w4ihmzCu+ILKw6LswayLc9RBgzSn1TgdHjTbFQjn7/V64YgDb9YY6jklIFSf1gKOyjQ9z6MCzhR4KQQGm2e7NLMXCSoiJqAgA9qfX71SQz6cIAKMnzTNagLpsAwcA4wCUwI0s8IxcxSSlTgOvDuoyBN+GSS5LOAtDgt3UHmKaPfN3w0a673vvDe6/ttxnpKVbOVMBUp94SBdh6podmdrqj6jePYz70WtqWuct+ujvZYeMIB7ejjOx/RpFD3sOw3ebNWeNUUHgcbnMwPJgyXvtfD+9av1GlRDr5RuARuuPC3NCx2W7s0xBWNfr5fKGxwNbI4DvfIdc4pYTDmGBHrbl/2UHDCwdtr4hl8RpB2UKUy5jaZ/bXmA1QqcSfVgXjk+LJ2QGt8E0xgQmVptXChg4E4OBHmCOvOAtpI0rBrnISkDEyDb+JF6yIC9Z16RAYkRxmaNA+J8OMxs+j0siOM0Ip0wsrJvb9j5HU1nZW31qiOQdhodNhk8mg8Y0OIWsIQD8aHLBN3H/qMXyL6/3wgAr/NVMn8Vz1VZgBPffZgGwa8WMjDZvUAtInB7BjSXo6vIZ3cby4DYXZ6PGD2hIC6JvO7bLTsYFgPo9yz8NAcrx76Q46LrzZkjF9h57J51X29F94k217beU8+Fz8Ouy6PnHsA4da2fqjB+AhcU1PSTHcVf8NV5qGbv3WGu7izIXOWqYKBke4JqzJ7QabmJCsa0fb36JHnVBs0BzCMXlP/RrWMnuv/X8LACLdh1NG3Vda3Okj7IAloAGxxrWKa7EDl8q6AT9U14ncyan5XjHLqsSn9qHm92q3HJXBt4MyMwluk343PzxHJutnck3qt21TAAwLIZkz04uJHPpo2Plg2Vmgloux0xTuJemoYXjs4cXhaL7k6V6ItWqo1vVmeab86YZWescWKpU5ji7ZhBC522GEbn0bMZBxtC49NzY3TNutYun5QFEFdCNbM5FxNAqsUHl2m3E+VLGN8nA9Ewh7J3E2TRp3azjA1XqZ+8kHFUVlH3jzb7zWAeAO5KIb7hPG0LpjkHH4bxxjDw2DXZnaZnBaSJ+286LCarmTSTDqBKcxtQCobMjPE1JoC5BWAxQWHaVTYPPquau4ZLm1z03g6shgWthCXYB1Y03AOD1F+Z2eOZzC7KjGwP1Q/5oBlUOnlxJ5n5C41HZjeK+1GkyQSWmQTri4rA9H/DKBp7bLSUnYpZoNkwDfk/KV/17GuxFt8EcwfvAGcOjklMWZbETmuWU6p3LGQH3rQ7JsvuHd3X0bcHuIBNmef5A+U5hxJolK3K0bTMsJQSYg4SdT+YGHaw8wSp5zTWJf+RtoX2f+USXo+oAKB87Wjsg0RyVyZmtwWJVWUnqHMgXkUO3x1cJAt5e6I153F8/n2xZvC97ZKwudpkrG36bDHO2Q2A0Ts7Fh+dMRAuDeMSN27CKd5jPVC9G+zHjhUzK/ia0NegH8sDjwrDTWCculhY4zfb72fwYYJsFbirwV1oQHz8odWyf/31ja+vLyCOAunfv/qAjCIqt3UBENi6COR5smEr/FefpltC1JlNFMyynCLS2ZkWNNA0eFrRoaIHlKJJEF5KjczcoD9s8D1OgjGBfgEiWym0LJ8NkG+AhZ/5CvY0GmJmI3oR7BIl9p+1ZkZhK6MCNOYMSTR7NWAboHQo1ZhOTz2TUXQyLo10bsptiqYOUPWAJzTaATCk472m4mwNKQGZ0y/3zB6+T/Ra2fW+6Yj0+53PshQaTuD1OjVuZirmWlhHnajKLM2v3sLLPjPYyOxHjtMDEgC4Q6WzO8b5y9ZGBBzNJE17q4uHoes+3lHk9+0uDKrenRxlV0RgoEiWQW8lTwMx4M6yTsOeTboiNS7f7ppIAWIBhHZOeFh6+n1bAAAp40lEQVSE+N2M+GdQbcYhmYndwfXDWYqMEzguOc4B9aKTgRptRW9gwz5zDreA3fSTjC7ncOUUhMc4C7uTm+IF0lIBGNbLgIP4NqRrgbFzzvNXB5t5oMLr9YXsE8S4Mu0LGQL2K/F6nVgrdUq5tncfk63DrNjokgMct2eIcrEgwrI1W2ZOZtyBtUxDYxVEOiZAdZrzhOZTpbab7p4AT2cSxjiCnCMGQ8gP1DzKRjGg4qcTtymB1/PgopNnpwVtk3hkVgH3uTPAnvyu5SR2HsnsYJW2vc7qInXeBB+cT6HnTfMg/9gBzzb0uigDoIDVB7esnBo0pNdaVUaBcsd78jaWQPQhRD0Sn5+1O7bE+cdx4v2uuqfKuFiJ633NO6+F4+zV9vNUtprb01ooaODasnD03DLjfrX+qROQOfF1PZ1bBoypc+YAqJ0Pi9qdpRncCj/OJAE7HcW22sp0UdCpAXQ2gFXdPmXOTuadg2TXJTb9kzFvc0vdyebBUn0qfqIeqowQ2mWvo8QDo3Ti6P4IgHKYEF67li30NR9qO5DLU3CLnT0x0VtdLo0739W/XiKR7NMhLvsS9D1w5SX5mJXzsFNH94yN0i2z7RxhwRkD5RHRW7lSjpzKBLBmadtAHSyD/STqI1MnRifsBNl2xganDm8xE3Dwk28NL54hHg5MsNmfRRk9jLcFe4P4YYJ4Y7H7/psNp3Prdag1i+Sv/ky8GzAbCCBu9WgP8l82BptacHwmnSUF3RzDNBRa1zXfmTPL074lp40fSRsktBPikn1Iey/tz/AU53fH/1KnRpOh2U/0LflL2ZEKgF02z9QsrYcXdZ8FLaPw6sLo4MzKKiT+juYz9O/K9ooKCPBU68jR0VUfrPqg0785r80/9BuBxLWg7FAPtJQurtEILXGBpPEL5zNbFoQdqV9VOiJEYNJL/klNZOujmmcdMRL0qiZrmoke4WPbsMUE1S5hBMrhrh/ISzEfyieJYHDFSkcYlmQbfhx+Gh3JIEbzLgPV3T/a/nSZMVzMnvEZ3C0yHxIbxejaazIDiXVUYiHTdoeQq6lLgLxUVQ/IwU3KiLU5S0CLaR7Qri26vRDZc/1+l749j1M6umr4QziyANcBXLRE9NFaWADVZz9w4MKtTjKxGK8xn+WSnaddKdrKXnIBPJgEEVO337O7CmwIL0ztaPJP/SMbG8YrbXOvi7aZ/uyUP1HJDgxekK7EPJsY2C6fOczKRmyhNx7dcbKfGg1+jlnEIGaDjSG9Vi0xLYbvyb83qhhxDK/INowvGWELSyu7jMLnQpD7h2SdwX+DX6SDb7YguSuGC+LNw2NTxn78TvvtAN+1Er9+fQuQn2cNkCvm//qv/4qv15xKih44HUaeXHscBw5tn4VOa6xTRruG030vN5VIA8Uy0lPTipOmwwBWlQ8/zwkWwow+M4ayGYe1pdxjcsdLMwtIyUjB37J2Snf0+5ByXJwRPT12tt/uE51o4MfMEwplJrR9qIWwmG3f+ijljgGIUpw5K4t1us8cusEUWTHw6ppw/swgwzfYtwAdlVKNk4HOoc/RWSJlLA6tiBIMuCKqkyCLNu7o8nrSqYBRFaIm4AAGpPD7aN47z5fACb/3rTR8Nunx6uCnMvyiVzyytme9zs6aWpYxCugZFOJt26oZewaEM8TwqlURcNYrnt+K91MpkiYGzrjs7kEZ8tW6rgoMmbH8ODK9icvVKc4/WllWQf4Za8ICOkhwO7uvkk39tTEsnpb9cyB3QFO2LkCDRN82AUwhdAbMtppVmWO0IiT34tEYGa4+DNgizfnOWeGFLJ9W1Y1f78H967psbpvPbNWMgbMCEuMRMOy7VmfwnQdeneG0rn/FH398ATlzlbYKnufqMgmdYYMJUpznYVsTeVJzv/f9Rp7MPGlZj/hxfvaTSNEZcJDDgaQb3rLQwZiiG+FzjfO6KoNKgWZtmycAbh3WwQX2hzpsauKlAjs8lIG8CwvScJUVfZKa194QCMoZ6w7Cw55BbVu2ZQ/+MYDdRt9sTcSnfG5lFgi8gnrOwKEH+fmzA7ME2UD09s7c5m7qArKPo99hc1O8cg4vE2QDWgypLJA1TodMZoOt3v6V1JvvzgzK0gtrJV5BPfvSluK9aLYFVrFkJ+owjQaFx2REs0TIEUeVrrDDS755uMcRneBToJ9B4KsXDOVoNV6JnjPWP2Qm1cqpm0M+9ZpM9y00fBadJQhE2jPWZJsROwmUZuMjzLyLZylvw2Jjb8w+eGYl+Y+O5nzOuZwsqbVW11Ke4CrHWrZltRNzCHMkZQc2bkNFBNGu69yOT9Ctrhu8AW23gckBAO22cLC+0gNSgA48Ip1bZqiT6CjTRl1NoxNla1ZMAIM7RNTnJn5GB8/ROOOaoC+zQ5IZoXBdytO8x76dh59E3KUWOmAMBgUTE8SI4HlHm630+m/lUJpDJj6ddsc0nrWJ5MLfBC0ulYrJ/Rk5wbvxFTB8lLMIR90bC+pXAjpYR8H24MLoyA1yeA6toxCBlMPX22YTxkvUBdj67ZhH+GlzAMdXIWCjo0u5pH2ireXT3++3st1Lzvf31ryh9SSVa7UJCi3xf7R/slr3zg4ciJff73fpt37ntQYfMNiZAF4RQNecxhF4xRy2Rzkhr6wc+Sf/oWnwttNI3fbQUl7Ny9FYdrLsR84ZgEnh1MYGwlDNA3aYHABhUCpS4QRgdmpFKKCgW7MWBLgDafhhxz3b58pCs4WR284SLjhcDDaDXfNA2eCJ7d62OUxOIR7Y2JUlRHoSC/eM3ZuAoWliYgTjOfWLWEf8ySBIiqbCGUE+7cWFlUgwMLfGpgX7OXzA+p+DIZb4N3seId6eepWT8WeLMzm2RbKaaVg/O/gXss/UFzC5Jl+DnxMmad4siIvedRBnWa6uWXe0Pbxy8CYCyCi/6OodiKvn1DEpeah4KvXuRGJ9MzB/qE5v6bTG/6sxA8sy2Y7C0QmD5ad+HeWn7Z7V7NwO00nj+9vv5Jid13hF6Z9St7NQUwla5pP3bcV/QwuWkCJGZcKMSplEqDs1juajLfA8vtybQdD2VXTQHGWPuIoQlLp8Lfs9wRrDlxZFiS98wTJFS/kyJmO/0347wFcZBgXarvcbrGkDXHIUaYBer5cM4dUTB1QtpXUt1XqaIEu0ImgCXYmzTxxVVBvAK045Jed54n3VCbrc0kbjGceBs5neC3DyWqXmN5OM4IUAECdIgQo5erPttBwtHiFNpUBDSlAcWjWrDBlszHNtwgKNFQC8fghX7Wpl9C2nryL1l0AzARtXFa4O0L2v2lxfQly0VqZCv9RrEV2rFMV51jY2bvmlkvMuZ9NuS21uWhKwk250wmX8EPfhAwRbmEAKrYc7o/P+NqwG8nd6JnLNtlnVjEt0wPnowMiryTr0Qxufcga7/0cBCh5yUNfvAdZoPkw6SIDm4OjgOLKzSFrZKUU6Szlvp8w2SNXwe1zrPVtkMwf4VCCVoDQLfNAAo7Ndrwurx8qDZxzX05GcgxVyaublpL5TqRJcNoyRgzKBlXqvFwgnj8w7J2jNjBiNthAI5DSaQmdKPMfoyjRtPKypV9/NqcrZwVrEOB6zUoUGGRZYbQXiAR/+5GlbPP3TV/+iHS4AAjUEUiwIPaCnghoaR+Z236/vb7xerzp8oJ95WCCWiyXXdWFdC6/XqfFzbr+/3wp0oOuaJrJlof4ifc7eXubZyswudqeUOvSnupwRB7hfZQ7nGR5jkFiyDq7AT8YgHUwWEuYc7uAIxqMhkFkS3XqzTxau14SAZElRTB9JT6thiZjMAI5bwfLcnVQPMADj6HGBoJz9awc386K5HxO0JuiYot4htsSa7bLacoWmpQG9g/1h7Z6YgKG0X1/DudFBK4DsyOrVyQrALdFmrdkaxv5OkG0ByVIYoUz9QPH1afOpwGnssnC0Do6eD9LUt0NSXtoKKPOPckD16llBXBCjPpYGalt2NMjmgqPAtUDk1QuDED9KVymjkk7xIXsBAOt6aws0x6rgg9lq6nu+W/5af6+Tt9sRSnuWB8FUo6affS9XUU5D67drjQwdTYV+z3Eygw3CAhNoH16i88UMCQZlSF/2HzqfcvSgz7tn+kXzYwCiK50BPlRZkjKntCeUnSV5nh0JSzLqOygYIFOmGrN0E8ByfTHZRtF4i/buyi4RclSYhTXfqJdd38P4nvKJzDoBPSugcJ4v0Eb6ljQudlOmmYM5JSXu9m4Cq5NFPLzjWe18X/WHmaezcAnyJvldctABF/FDzd6+LXKewxO3aSs0kW1HyGsVHJrnCpQAWDoVmrqIsjiBDbzfgxVAOsyipg1M80I+VjAgx1lGhu1YwJRLiHGk42C27sioY9hlpWSGb8cGX9elwN11XeVsZiVkMGmBmIIHJAGUxdUHv8yC35Q9gHii8GPgu21uxhTxjx4XMnFo0S0U4Fa/re8K7ps8RlzC41dORuW0PWCqbHzivWuw64fD3JnpUQB1+hO3ba6rtU7S3+FCkmVp9ZZy1iQkb/MwBfF0zMKhB3lpQwIWVGn+0snYQTu/hodFKKOjZZreWxr9GKRx2qiPtthAnSjMS5lWUGUwUSWnmRzF4OVt51FMkIjYg8+rz0o/bJnb1k8GupSZbTzE2pbvY/Uu8T48LiYr/ohD26Ppy/es4TiODsp1oCuBt9k+6sapP0kVMLpaNoi6G1OSbK2FFeaPUYesxAXak8CBCUzr5PQcGSFuuO9Wop+43MZQxzSeezPIR7lv2h7n0QsHha2ZNMXnxHFIpshLSmDY8Ozok2td1jezX5uuD/EK6ViBtaPrhbYs3HStl1KZ+3N4v/WnFmJJh373MtylwF33zceW78mk1c4J6Sza1KEla5lX8I9B7tThQkge2mUylwmuJBXG+JTfv7b9XU7RBbjVtmryHcHtNe+qbXbOdqzatnZB0U4kso3fixlUWZkBHhgCYpRr1qmlmawN1qfl9qT85Y+/SOBfr1f/3kasn3H2qtGBW5ZDxCacaoHOYAsxzb25QZbQyYHc3+HKnYZiL9I7kWVDFy1k7txhnFBMHxX4owKhs+ER45VyzmHM5NlCVGQr19Twsn37rS8s6GhblfLTqZXQRIxQm5GgbqGSdACo7Z1J4Ferdjz9jENQ7Tf5UrZtEjN2qQKBickyC6B5upQHtzdzRbL+64AuVzozRbvt0IVWnDTikCAHMt+i1fWuOTtPBr6A1SdcHmvmY1KYR2EVzXcnrRzsNirvC+frrHf0+KIDOLVKcmoFTIYoE9Hp5EyBP2ycvtIzbQAXZFTzdk1sNSsjqli+A2Wlwp8M/h5W84JbKoenCXB2vkMHG8ZJ5wmxCrqZ/K3WRwxUXGagoTGhQc0540UBeP5FhnJAmewLOOZDgQ5j1AYUCdd55Lvin31VtcbF9wG/fv3CH19fymY4svj3Wn0o0XrrXTrFGNxeWXx8Hgfi1Y4RDsxhBVMbo55lq2vJQHNoTl69CCDl1DUvvDA3FxOOo7cF2QnrxWc9T9omXOCaBzhlllGfvgHIqbPq29OH1BMcZKDRgTaBuXQghl4EJMzK2oIVrau1gksQS922EsU2O/iWLej6ZuPQY5tngQ72tfmleKNkZAv2fvAJs2dc51JDWvYNFTBhKwO1lDfRM2VzJIdN48vtTPfzuqYIdubS4QRAg/tVeCJftdWW+iyzsjf++PoyOzGZ+fct+ZkpB3Vk0LMU6m8GFNa1gMMAKbentdywEZgx25xgWsHO5nUBad6D1Ly+e9FtxWSuBNCJC7RhviIdo3u0GDP6RXXbUEEa6rE4dowBnwvT6dQvpNUsiBof95xmVsmUge8Q6GaAJltmiy/emCDdHV+U/bnerJV8GM+M/WLQfjJebbHI5nf6EHq2zycdTgYdXLfzAIIEtOVLh3R13ylHDCpl0r7aAstaWtzFChBuUt8QI1yZOnXyIN1qRpDobLw1BepJ71l0YjAjjEbZWHnJwd8cFCRyuT7bA3Sqp/jdtZdysPDw0cxjOS2jEwBTG/zZnSd+S+nZGZfjpNXzxGBoJdAucdvgZZMvzIvuYwGg+Xkb7eqxhjmJn7q2t+TFeYoYk12yzGey7NXBQm3J7wyOzF7LNGeO+MgXqq/3JTzGWacNoNOODgLNYtCepTq7fqCxXcuC+UDXma77lLnfwejrWjg6GMjDNDItwAXgbZhPhzS1vdEhJAFE00F1+aJ0LeWA/LtagKUr3V6D2Yf9DNhW71yAzGtAZYkMb3qtb2YTb81gZ9kpSA+6fpfNSwa7Ws/1u3XIIqDAFjPPjuNQAJELArMYYbqTz8sRoJULR/LaDnKiMUrbvdnSvutD3zLpfpnr1bFfhndl53e9ns2IK1OZx4nUKefkWekMYb8OXZo+WmuC83Mg0uhb/uTYPEi4BfP6dyaIMJPa686ebQuui7uuCmfwc+6jYyLQsmfrIL4maslddNLAAe6yIK8CEJ0ohL4Lal1vq483NkQLyhr/zBljHR5TICagbLJ/EwkYLHkgcL3Hp0YWj14MpOUEL7VgJcwwPkKuhaMVCZ9NvDOlSYANcxtPyo6ITqNjwR0P5ldmJnARB018h7izaMuD6Sg3IvuGocXv7UtSZ/KGKbczOFDlzCj/a4n/Bm46xk7ZgqLX9NMTTxis9ZI4V38vfcO/f7P9doBvYU6z1Sr466scxSZEBeGODv7VIQ2s2TZBgrMPywA46mHsqYcWx4FYSwhzNdGPYzLPuNIPwIgPY5x6RymQObETfcdaYwQ+IvEOIoE+srtokJj6DLXd9ZpV06TS5fYhbtkYZTuF6LkN1gS3J/1al7Z8UjBX06OCSAvv9wQU6Ux51kLdNwayVsdGIVX/TjkyCOBsGr3OV7sr9fnqwxAcPMkx4/iOKcq5YFkt5hDN9h8avxJ6AlU6tJoLA/yTUk/nfIJMG6gLr32EmRdlu5R0Vh2+cW7Ppk9EnapEEIKcgC9B3ayUQIaxnIhLGauc29OdsGYoFhhf6vsSGBTQML6EsqSyt6EGDmZfYwAwAV0F6Yb3Usb90jNp3IDsWlqTdZBZWQWv12vAAwF08GTsevN1XThep+aLDjkWg/SnVlNmpf3YAr5j9Pegs+ZRcttA0Go0cNsVHWWXZa2kNW8Q3AgwGfW08khPi8aCuiWhQuvFW/0ZAwV02Ex3rHVJRpCJ8zWnUhMfVL92JZ9EocomgehCp2Nl1dS73hfWSrzOl7jgPF+S77UuHKigw+v1wnHUnNappawHVavcY4iuDhxdBSE6FXUzuEdvM1jM/G399r6qxl9Ebxlg5mvXz2veCRBYT8kBbrdj4CU2OSNtaEDfe+AtduevspD7RDRAJyrTiWFAEygbNOUOcra5C2SOXRiANbRgAKeoP0429bOAhoDSOQiF9OyAvwMnyt1sEZ+SBnO6LQOHDb46qE79U32w4HfXwiSoJy8q+L12OSKQHV2apqPrb9KOQRTa63p2O7ZWm68CzCMLEVUXlTLGgHIFnsdZIT/wQC/OP7Ora5sYty5eVsM37F0TUEz0IoTpFwJSgcKexwOHHB3ppqN4JDBOeJUGGT3KhRkHtFwMmzlN8RDnPNF295gTsmVfu49xWbYPi24HxP+Hna59BLfHhNnm4XHhAH5m8kebRIf7APXq6gNSRpe6jPo2ZtKfdlvFr03fTAhusNkE1uhMGD6jA0TLngxmVhBJ+oOr7pQps/t0HNF25koGCnoRT3gJ4HYibvW5YrJoE9k2742/dK1e4pPMxIqe76OyRda6gAxlifK9tMsKCJmcA9h2Y8x/pgfCHdnCqMSi0bzhc8wAMJ1LI089j/oX46jrADuYbY4OtDATknrsoF5JbQV1DLo6gEHHXXqUurefwXdr63cmru/LMmn3bHliygnklFxeDFoEQDtEHDqmpPl4G0vNTSDkD0hVJDpbchagySfBwCIBm/gCyLw2PlEQITvY1nJH3icddRTDsgyn6nhl/S1I3y5wq3+2zwDR+X1dOAEFopGQ/iLtEVG1JANYb1vwRftuPaaqQ1w8IpuXiTh5AGIHw7DsEAMGucu3IuYhRpuah/1c8iR9gM76qUya2QWhhWoLSHy37mPwf3gcwuZEg5SHEE0Hd0kezJ4jKvArzdU69/v7e0u+EOCjT9SyzDkpfcZMIMh25DG7dDywWd93rVoDlKvnfrAH0KcrSI+oBqiCF76deHSubKdlHQWmHqWXYlrphyzNzp/h+1mAy5avxARm6bfKBjceoix5FtlaVfZDOiNHRsZvHr1GGb6uN17nuS18kxESHfzKylw/O8O2sKhfDPkz9GWAqidNnrpycMwmv40vmSzF/l/XBWaNvV5n0XPZYlBPBXfssW6+7D2GbtzyDuwZjZWo1TGSo4OC1/hKlK3391sJNL44U7ZyslXRcye/iuUGkttuT+lM4chkEH7o8nFgHee1BH3jP+pb5yPHR2wrL8Ovc3BJYOIjeh7G1wuTEQX6+gtPCJsgIIuDmc43Phi+nZhFjbVk9O77/S3t90/R/b7wxq8O3J2tuE7W9MTX68T7+xuJKPANyHmkMTy+JgjgGVDnWZ9d17snYzLkFiBlfr7a6YsBXQWoz3a6YCAaAmmVtjuZaIysk0FKCVgWQNLAM3CAW7+hqHit3IxRJgOXQoH6oSnMPonKgJFAyHU1TWriSb+IAhTMzJADTE73fl3l7J+vXkXmnnyw6GT17zwOGV4C/Ot9yUFQkAaYLZwElZt7iznxi6ilDfxcNApftGVh2ZiowjiaR28tKw7wLMLW0Qb/ez4T2/zR+RKJ2jCef5y9/dvAY4QCxQw2uDP2vt4489wAtW9LJOiKo55DBcgtDwIprbS4nf04qhbk9a5sK98KW0qIzgO3N7+LfscAKBn7CGBBWYHkhUO1Hn4IfskZRM19H3zA4MrX69WOu2VNdqCgascUL5zH0D8DGhcO4FCSU8k6T8eOqGByzaelMGOyIgnSebLgr+/vuhfQyXDM0OUBDvs4e+thYgqbd2ZGyda+eqNaYtc4FTTeCoC/7rXILJBNfUJ5Hm9hai0RiIPAiquIs41SomQGjNvNSKOv1xdyLXx/T0A6Ucb31bqYwVm21+tUjY6IA19fL80NjRjrpRZfkI/PNvTUH55hQf1spQ8s+4Ty4dstt9qLWYHo0c8NNNbC1YqTJ5kRAFP46bApk4lOPPXUwQzC0as4eM6Zr/QzCyfEc9IjSV7kynXYYs84bBM4QgPLWdio4IGdlrYS13qPYypaGdC5LkRnQKABkApnrxRNEO180l4lamuF6E0gckm3bsEkmxPx5XF0zbx325mSAQZD5QLcVkO3VfecZxGMHXHi+/2r6NPjfr1estNXZ4UoCzq5lWWyLz0AwC1nJx02rk7zIA2WHUAD+badZwe9Ksg6izZcgOJKsUoJ8H3r6q3sXX9tLZzJA6qIJYa+zDgkv5TTvpQtwDFE2Eqx7CMkDwpQgIt40aUVaE+nNg4XIhLZAde2ARHwTD0Fncw5Y3YEnI+DgfiUE4G2adkyqHES/1AOz3GUVY/wphP47pBUJmZr4zFb4YzP1P/mv8nGa4ebi0SLGSQT4Hlf35LTOy2IOQE6AO0kXF17jw7uotbuHRTvycw4jwNYiXfP89XvpeO3MoG36Y5MXO81C9fTLfGEDoE4Di009q0QRu16uPdDkXyr+Pv7Lb21LZAicaxDGTbEZNyCH6QRPHh4yh54MOzKd/PNof6zVm90MMhPO+W9l9vOnlMFvJotKNdcnJC8rdkez2I1w28b+tY4OIfjuUJ9ch2msi6Ng9AYh1moCijW3eb0QTIke9l6wHc6DG3NcU2r78Rsx7TgOMbeeH046WdeQx5ueSSNp84ks/m4jTiNDug6YW1DGoOdje1oM3TKOUJjjkiVLUoA1/dsg8w0XyEC0Vkusv9JW4vKfiadWufCPiMYmBl2e1TXVKbhzGMTRnaRz4bPF4DowwP27XO7nze10VG7G/uz12a3U/TWQj72hRu9og8yIUYVTdA8sTA8cWs8jV4B4qYMt01ygMSRklmk+EJBNbZmh2weDM3x+Ch8tC9Kzlbw4dH3NTsPxhaNj61FjDV0X32YJ/u21hK+TxAje+A4K+MuoSSj60oFrLUo1jaL1vAoBjEfJxCH7c5Dj+9K6VPiguu6ECckk0iW8OIuCQapemyzli1+V9Zq1OJk6bhEHWE/OqSeOztMVO4qQzXgqSuQS6fASt93IpHbuyt7brN8s5eV+HmLz/YkIh6sqF2O1PNrMvPLrHNrNWM9VqM+q9a2cN0mD7tvDuI+xW3aV2k/mLqs4guzsKydEyaHk+AlkSiSrcmOtq+bX4gxQuNkVl7x49jZJj1W03WeF/IDikSG1XwHxd/YfjvAB1RGz9dX1Wb6p7/8BWst/LquyiK5ytierxdYkLtWylIOIyPPqwMhBdhZCLuId3bxdU7Q1Rkgvm+fWWd03OkgtJ4GV/eYheW1tM6TqfXjiOqQjR5nTZIiE1JcmdicMiONZbyM4kug0q5zN/p+gl8CwGKGUWVlne1Qa7Wjhdy3xl3vS0CWSheAQPO6LtVzu95Ts48rbu/rwrEG0LHANQNKqgkXoRouclb7nVzdcaAGzsFaOnlMYIYKIbnibhF7MACYyFioj6lUbFUH0FykvVBBF34kvDIXsnbZ0cZJwZv0DMA2qGuMKIMnNJAMVlEpk65ACauUv3iiR3JyOxrntle76PxxpTcCOGprp/Dd0e/NVYc8gzWAajV7dXbS1eBV9TKvd/UnBviSyyMn48nr6bEPBPQ0rMdxaJw11g4gM+iVts0PIzPHPRBEeWh5YWbIQTqvCf5yVTEj5MiDQFPAgk5Dis+XnPPZpsWVpOOwlWAMf06dy0mNlKGOoQ3nmbwwTnGKhzwwwKwX6rUkMXLqTJGe1HGlGyer5jhKb61M/Pp+4zwPvE6CgeKbP75eMlYvO/CIOiEi8GXbH69rHEsP/roOC0wApLZRpwzdODgtG9l8dzB4Ws8/42ynijVJmMnSgeGVWMW5k7nFTLp+dmLq/jSaUbkGAAoOcZ55epU7m3LG1tLprwIcxtOmVkzWJxisQAKDwwRsizVFE8zc5Pb4ChxPEEi+gvEQ7SUAy2yAZZfp6w2oOIg54lDdF4E68uZKXHGJnrOy63PP59cCRAXUrs3RUUAwFxb1VtsvOkgEiJn7aikHwQwo9IoyTxH+9f2Nc534+noNwMMs5PGwlFwLr69X25py8M+IyUTpxm2QVR5gsm6Azz4Vs1dQUYsqOdlFSOrZ4dFyTi5KMGxi63o6A1HfT7bQZNK5MaP+8MwhXdNMKbu8uKgwuvqj5EdMJg/o6CazvDHv+ADWkwnozhgdMc9GWqsKCkzguPpztb4KXecgf3SoKGegV/xo+Iv0ESairHC8FnBm1tOuWy+7jw7SBKYR2c7pZOVM/aq0rK3EGQvf7wsIqxmKWej5zjRMm4M9jgOI3rrbZRVqZ8G+PZCOPDMxWFhfi08RqAzIxmK5EGvsEG3lJX0+NQB1uA7G9vEat2EqibB9Tx1GJzG1kDJBq5Bu4Nxf79kKKR1H/FfGGInE++pdJ5ZxWRh06V5KLfVM8XGIL/jS2f5Em5PiBTrTy+izDLvB+I964roaQ2LsJXmt3rfk/Eu12PeSK4z+dux515MKwFpgj/zKoFG/QhRhvSc656TRta5KOFizmJq5b2E/j+jdVK2HjlWnk1pgPvq9oeBuB1hrn+oEXGMZfzEAkeJjnVaOoikzO0lTOfbksSgdGrkHV6NPXKY+etsiuDBmJpK7BFqm3WfyuZyfY5s5XxzLMFlOKRzx9gRapWn68Js3M/zsmYiQDm+hGLyRXEYA1nt2+Cgb3PW+eAwbhoR6u187B/G5LGG2G1swjn3UqJxPw324GoAC2r1zzPmf42agE8lSD7nx5fDtZDUm9pIgzHh7XxeOs6pvRFDPld9K/JTBBKAp7SP+zYXaUxV0H0rXx1F+us3Z1TqCWBXgtstl/DNls7j4vFqvHWsy5y8r23TAFnc7gHRuO10SOhCqeY9bwhX4yhz5pSytvYyJ8Doaw2Yq5pjobf2ZjRVm1wdloWIXvVDxdl1KDEnbsZR0UVgKmxwJ55DvIlRGQIKECRYXf5gvBiAvKDBXtmqNHYrYAteSuQ3zTfIIwAUt6Pc7Rk5u+80JpDLYPMFQjmd0vJdfS+JhC4b+36IG34HaUx7vX7hWAL3HPaIMX3Y0lWnWm9PRIOFlKaD1WWqrkitYGglO7Hnup5jSIJHAZBRm5gEYJb+GWWeiTSn233X4xgKsqDaVLo0NhUbBARtjd6b6GWFCBhkadE8dxFHYYYy5gXQZ0RHk7T5MfTEgZwsTn5UpkeHv8H7TyCmQMJkMeZuXe3NQZ+RqEM2PouemXxVzLy/2a+fT7qe9jMJEQAbrW9rDizbUAg3w1oX3r/8TmRfeN8MeEfhl72DQjLSgEnZnn493Hlc/PaOzx62ACfm1WS/Ct5aZQy4Q7I1G2mj7J3MT9l7yEgGVAHQDJtzGQH717TDkIQ9W3XmDKzvkdG7Bdudh3wqUGiflc+4feanVT9vOp2cc6gv1iuhEAvdPX6E5T25Jd7CG5tucnwibL5t/yxZjV/dgwUy/jICDLcoC+5Zj6HSv6Rtt4c9Efv9HnHEh32vK9B6dYfuua1YfmAHUYgrn4mKdrDU8Sn12l2MHBOKN7q8uNfl3B9x17PDjyBC3ePj2v7luDOfY+pFXp+NWj0337gssbF6nzYHr55VhE2ELO7HPT/Vn5kr9kNEfO8RxEPRKj29g2GXi7kZg4xWwP951659sjuzQvIs8n2t/7wToDDDxc8Ncd7BeYG40hAI22bV9+JnuW1i//kWgklmaV4z+vwBkL9wFAqvl/e2OZpSDrnkVr3qx/9i26Aj0kq55D3IQ35GnAWTc6Fnzl/Y+BvAmOMDh7nX8ZLfIW7A+dca5DvLBzV4qEOwyNvepFin5jFtUb/znuILzxMXS1GckwQR8jo13p7nD4baA7MFAqR/uQtvi+hl2PekiRzvnM9GWtsPsl3CRid5daIkfkMbLClD7Z/X8xS3nTQcFVY7E9S//XM8JKGt4+GbXrRz7HIrDazATBNtWC9ruHfNtetowURgtt0f+oKs9gMKLB1Pc9GxOKRbXgXSGPYD7GSTx+mOjF4dPhwbUTT9hTrcpMqA9pj0YMc8hPxsEvDXqw6Gj7OydV0iZG6/OVTseH30zz4Uw382hu+GC69ptj+o35V33Dn4avDaBlwk61ru5eMNdB/XAX3j/n/876FS/G/sC1Iszr/wpPhaWHB1Y+na3PcICzS8fmJFAmlMk3HGn8232Pvj9ZqDNZpUOih/ux1yEGaMwYKaSElynO/blfEguo/RJSO/PfZBPMrzJ39O/Ts8E3+db7zP/jHLM90jWTDZpD9lH35a/6QlAPjOERcZ2eTBvOHWe7X4G71+ZH/Tqr2Vf+DwPrHDbOe07dbvzPd6/cEoGm2eF7aiszHYAM3+YvooLYjD/CiKQoecctpK46BvF8Mh3zt/CsM534jNsNOLii3QSr9ONbQGbN6RDNl648zVtzQ2Lt7IRb0pJbmKjvo5mg3CkB/1JN773z8RWGLSb60fpAfEiZwqaH8VZ+nNhnv6O/iZtaoRn6RZ285GMrOx2bfq1btcOZh7MNmCNosSHci5V+ilhn1lQ//s//gnF/stb5E8e6NOe9rSnPe1pT3va0572tKc97WlPe9rTnva0f4h2/OcvedrTnva0pz3taU972tOe9rSnPe1pT3va0572f9f2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2BPie9rSnPe1pT3va0572tKc97WlPe9rTnva0f+D2fwH/7HNtMIwKRAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "processing batch [3/3] with 3 frames\n", + "input of current batch:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAAEYCAYAAADBO0i/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOz9WZNtWXadiX2r2f1pvLtNdNkACYAsFsmyKlOZUGp+i/6PHvQz6rVMJulBZmpMRhVlosACCYAgkkBmRmZE3M7dT7v71ehhrn38JkipqpgPUpqdaXYzIj2uu5+zz95zzTnmGGOqGGPkGte4xjWucY1rXOMa17jGNa5xjWtc4xrXuMbvZej/X7+Aa1zjGte4xjWucY1rXOMa17jGNa5xjWtc4xr/8XEF+K5xjWtc4xrXuMY1rnGNa1zjGte4xjWucY3f47gCfNe4xjWucY1rXOMa17jGNa5xjWtc4xrXuMbvcVwBvmtc4xrXuMY1rnGNa1zjGte4xjWucY1rXOP3OK4A3zWucY1rXOMa17jGNa5xjWtc4xrXuMY1rvF7HFeA7xrXuMY1rnGNa1zjGte4xjWucY1rXOMa1/g9jivAd41rXOMa17jGNa5xjWtc4xrXuMY1rnGNa/wexxXgu8Y1rnGNa1zjGte4xjWucY1rXOMa17jGNX6P4wrwXeMa17jGNa5xjWtc4xrXuMY1rnGNa1zjGr/HcQX4rnGNa1zjGte4xjWucY1rXOMa17jGNa5xjd/juAJ817jGNa5xjWtc4xrXuMY1rnGNa1zjGte4xu9xXAG+a1zjGte4xjWucY1rXOMa17jGNa5xjWtc4/c4rgDfNa5xjWtc4xrXuMY1rnGNa1zjGte4xjWu8XscV4DvGte4xjWucY1rXOMa17jGNa5xjWtc4xrX+D2OK8B3jWtc4xrXuMY1rnGNa1zjGte4xjWucY1r/B6H/V1/wH/9X/83fPXVz8gyS4wRpTOiqRlDjjaaQk+o7kBmHZkOTNNMXubkRc7z8zPzPFOVDWVZYq2l6zpijGit8d7jnMNHOLctRVGw3W4BMMYwTRPjOBK9w2hNCIEQAjFGjDFYa9FaM44jfdtR1xWbbcM0TSilAIWbIj54lAWtNcMwsFqt6LqOcRwpigJjDMF7FOryu/M8Z7vdkuc5h8OB33z3PUVRAjBNE0VRUJYlIQTmeaZparq+JYSAtRZjLAp5zeM4Ms8zOr2HoihQSl1+93JNrLWXf57PZ4DL352miUBkGEeenp5Yr9ZEIlVVMU0Tm82GzWZDjJGPHz/y8PCA1pq+73HOobUGBXmZAfDx40d+9atfEWLEec88zwDkJqcqK+4f7gnAp0+faPuOmO4HpTWRiFKKEMLlPrm9vWW73fL09Mj5dEQpRV1V5NaiULhphhgpq5JAACU/0XtPnuc0dc25bTmfW4bJ4bznD370Y968es3tZsvQ95f7JUYo8pIsyzh3LT+8e0c79Dw+PeGco8pz/sGf/DGv7u+JMdJ1HdM0sd/vub29pSgKiqqmbTsenx75+PETbdey3W55+8UX1HXNX/yrvyDPc3784x9z/+o1Lmbc3L0mRLmvIgqU+q1nRSmV7juIIRJj+vcY5c6KERSX+8xahVaRTEWMCsQwoYLDh4kQZqIPzG4khIBShmmcCBGyquTvfvkLHp92fPnV1/z5v/pzbm/v+O7dO/phQNsMrRXOeZwbIX1ey2vx3uO9J7OGb//un/PLb/8KpaCuS0KYubldY43Fe83x2LNd3+M9DENP01Q45zBG4YNnmgbKKiPPLc45+mHAGk2e59R1xTgNjMOIMTlFUXA+t9RVwzTN9P1IlmWsVg3v3r0jyyxt22Otoaxy8txgs4yhH/EuMo0Qgkr3s0JrhfczqEDTlGy3W5RS8uyoyGazQmtFXZeMc8s8j5RljnOOosjIsgzvA3leMAwj+/2Bw+FEllnO54Gqkmd8GPr0jFcoFZndjFKKoZ9RCrLMUpQZP/rxF6hQ8ptff6TvPZnNsNYyzTPTNIACrRR9P/DwcI+1mqapeX7+iMkiVZVxc7vBe0dRVHgXQCmKIscay3q9Yn/Yc9ifGEeHczOvX7/GewfKA5EYI9Pk2G5uyLIc52eOxyNGGx4fH8nznBAiZVkDmnEcqKqM9aYmy0HhGbqOuqqoqhpjDArNMEzkeYm1NftDx8cPO169+pqIYhpHvvr6C7SBcegZhomh9/zhH/xD3r76in/5L/87ilLx5ds7dvsnpmnkzesvmANYDW17phvP3D/c8P0PP1CVazarV3z59g+pyjse7r7g1cOXVFVD06yJpHvbgwuaYfY4p5hdxIdAJKKNIYaZc7vjz/6f/4wQes6nR3797S9Y1SVff/0Vf/Znf4b3kf/yf/I/54//+D/hJz/5I4Zh4od379gf9kzzxJ/+6Z/y/LwDFD/65sfMLsizjybw8vzHCFyy5G9HjPHy57f/PsDLcwkBqzQoOeOC+iyvoCXvRAghvnwfGhfBxwDolGcUSsHp8IH/zf/6f8Vvvvs7jNGEAG070fUzMcjfI4JWGmM0zs2X16SUxlorz6CJROQ1KaUwxrycLTP4GAleXfKfc+7y99K7RSl5j5+f4VoblNIYY2iakoAjBof3Hm0UD6/W5IXm3B1YbxqGTvJIntV8/90j0zjj5kieW6q6pGt7lNZoJedonlumecIYzTzPWGMx1hKjx3vHPDu0BmM1WsM0BVarXHK0kixd5AXRB1ZNTVbkdF3POEQ26zvatgMNm+0K5yZQAe880zzSNBUAzjmm2VFkOWVR8vDwwDD07HY7YgStDN4HvA9oq2iamr4fOZ9bvJ/QJoIKZFlGVRV4P5NlOUoZqnLF4+OO3fOJaXJkmSXLMrSOFGXGw90twzTQNA0xRMZp4nxuCV7qirqpyHLN5AZi8NRVhdaa0+lI17d471BK7ptVswIC3dAxzzPBO8oqp6oLmroiBM84zrRdR2Y1xhq2m026X+Hx05GundEqAzQxwu3tDVVVURQ5T8+PdN2AVoabmxuqqmC/f2aaB6o656c//REhzkzjyOnUUjcrPn14IkbFze0K8NRNTlmVdK38naEfmUZPnlcoZYgxUpYlMSqcm3l+fma1qgnBczic8D5QlRUhRogwzQOb7ZqyyChKS1XnDMOJ9aamqQvGcaAocozR5HlJjGBMxtPjjnGcWK+2OOfIC5s+Y0+elcRo0BS0bc9vvvuWzXrFj37yJdpE7u7uCD6ilKHvR9q2JUaPsZAXmjwzGKMI3qG45c/+7G85nR/ZbCrysuDj+2cePxzxHoiaqmy4v7/nfJb6eLVaU5Ylh8OeGCPn84lhGNBaX+rjaZzQxqKtudSOm80GiIzjiNaaGOUZXTUNmSmY58Bhf8Q5jzGaosjIiwxjFCho25au7yFGrM0oiopxnJmniRAj8yxnaZ5J3RCCo6pKZjcRY0AbOe+NldzmvCcEqVvLsiTEyDRO1HVDnhWcTi1dN2BNhjH28ixaa6nrmq7r8N4TQ6Cpm3QPPhFR5DZj9gHnPV034pxHAUa/5DitJW9J7lBYbYgqME1Tyn9GarZpxmbZpf6S+lX6H6M1On19+blLbabU57le8qfU8E7OZKUJPhIjbG4Kqjqn6w646DHacNq7dMYoMlNQ1SVlWTDPE8Mw4n3KwUZqKGPkTI0RtIa6rlFKeqHD4Sh1p5VjJ0aoqgLn5UwrqxxCoChyVqsVRlmOh5b2PLJeb2lWK8Zpwlo52yDi3Mw8z1Kvp89ZqXi5NmVecX93T9+3nNuWPMuYZ4dzAeci3jvqeoXJNO154Hw+E/E0jTzPSkWqusRaxTAOFHkBUTPPkXmOHI9HpmlAa6mvVk3F/cMtNtM4NzGlfij4QFGUaG3oumE5HUHJPasNRB2xKrJer6mqkmHseXx8YugnZucI3lOWK2KI+Djx45/ckeUWYww//PDukmPPpwHnYLOpeP16w6v7n/H/+Gd/w/PuCaM1KIXWluDBWksIHvBstiuKIud0PqUaJBKCJ0a5h4hSrygFIXimaUIb+RlZlpFnBXkZ+eKLLxl7+P6795xOZ4ZhvOQ24HJeai33bAiBorJA4O6uYZpHpnlgtWoYhpHgI+ttzt19gYs9N9st3nu6rhM8IRiIlt3TjsIWvHp1zzw7QiDVrPLc9H3P6BzDOHJ7V6O1pihymnpDcAbvI+PosDajqWtslnM6ntM5IzVH23VondH3I/PsMMbS9z0xRqq6IrOGEJ18RnNEKakZhm6kKEt51k2WaiAoy5Lz+YxJdXlZljzv97TnDu8DXddhjCHiL+fxT3/6iqpxzPNA17dMk6MocrbbDVrluFnz9Dgw9VAUNXVdM44jz8/PjOOU6i5LZnNihMxatNF4H3h8fJQaJ7f44DBGX3JGXmTkeZZqIE0MgWGc07McCT7gveAOq9UmYQ6Q5TkKybd5XqTcJTnOe09RlMQYyPOct2+/IMbIf/vf/nPavk8961JLvtSxoAg+EkJMNaZJfZwjsxprNeM4EUIkyyzaWOqmZr1eS13S9ekeCeRZkWpIRfAel55ZrTXz7D87i4rfwlamWc4URSAvDNvbNUVeMs+ep6cdzk3EKPchRHzQ+CmiVMRmFqKWM0GBzeDmZsswTIyD5AOQz1tp8MGne0anawAxBryf+S/+8/8F/4f/7f/1P9gz/A+N3xngMzpSZqC0F0AneLyfKPOaiMIET7XKyLMMSwQ1ME8jqCUJCeDlvQfkgFutVrRti3OOcRzBGDabDcaYVMhWcvgmIK/vWhRcfo73Xh6e1DRlNsOsVmS5vF1r7eVmDJGU2ORAq+uaGCNFUQBI8hhHtpsNRLkJs0wac2vl52mteHh4wIeI0ZosHdhFUXA4HMjznNWqoVnVF2CurhsUmmmamOf5UlwuwOWSeIZhIIRAVVWEEC6Fx/I6l0ZqmiaO5zPTPHF/f4/WmuPxmMCKghgjzsmNvzRWzjnyPCfGSNue2R8OHM/H9EB5tNYCsKbPBhAQwmq6rqNqGrmOIYDWv9XAab3csIoYI58+feJ4PDLPE0orYvCcupamrLjZ3lDXNX3fE4CAIniYp4ksz3j95iuenp6YHTgP2hhs+hyGYWBOQMM0TRwOB262txfg1M2O1XqFT+DGZr2myDOmaRRwOEaGYaCqKqy1fPvtt7x5+5ZXZU2WZbx+9ZppnsmKnMfnJ05dx9u3bwnAuev4tz//ObdPT2y2r1A6Z725JYaIMtKkfNbj/3YD//eeoxADWkWsNZKolcJqJTBBcNIFpfs5eI8PnuP+ACpcEpS1FpRGG8Ovvv2W2QfaceD5eOA8DsyzgwQGL69HPttwKUqXZ2q5V+bZS2LSGoUUWc+PJ2yWYXRB8Irn5z2n05nVekVRZFIgaJjnmX7oQVW4WQqHYRwoywoIbNYl3gT6IK+nbQeG3jFPZ7IsY7vZ0g89z8/POOcAKMsCYzRZZpmmEVAXIJ8YGccZ7z0hKGkeiDRNzXa7vuQHay1KaWLUtK00pEVhUBjGwTOOPX3fS8NgDN4fUt7QfP31W5QyvH/3xDgOnF0vxVKItG1PWRlub9Y8Pu0JwROCFOFNU1GVFafjhDGWiMP5dIBXa+r6NdoIuDdNk9zX88Qw9KzXK7JcgZJrEEK8FA9aaUKYKcqCaTb0fYfzM8MwoJQmy3KmyUkjYS3TJNdnrjxtu0epyGq1YuhHNpsbuq6j70e8V6xWK+Z5JssM1liKIkPhyW0mDWRqOJyb0dqkfDEDkbquMCbiQqBqMiIzRZEzz455PlPVFf/dn//fGTqPc4GmKZjG1zw8PHB7+8CXb7/mcfeMVpHNtuYXvzrw/uMPGAvOjXz48D2b9T3r1R0uzKAkv7Vth7E5MWoB9KInBi/NTuo+lAKNR1uYxzP7/QfGYYfRnqKA43nPbr+iWW0IXuPmQPDgZ0ffdWhg9/iEMtKA/eqXf8f+sCfPNEXZ0DTbC7j/2SNPjOGSEJaG7v9TLMXPbwN8yPAk/UytZIggP0ujUBeQLUb53ZKC5HsiHmk/QirMIsZKkb1eNZxPHW03XJKTMeYC8Dk3E0JEa3Upzqw15HmBwlPWkoOmUc6uaZ6Y03WL6Mt5sJxZy1khrzWk97d8TbMMHWKU3DhOI6t1wTiNrFcFZZVjMtjt9kzOYaxDRY1WGcd9KzkYgzEC+g+9Z5ogzw1Rg/eBvh+pmzK9j4yuG4izw/n5t35/nmWE6MkyGPoZ7+U9WKsJswBqfQvT5JkmBcry9LRDa0XZlPTDgCKQZSbVGbDfnRhGAdekSW5ho4lB4WaP0Vlqpg3eSy6OLuKcgBbD0GMzgzGWEB15nmGtSZ+T1D/LP4uiSEWxR5uMssh588VrVnXN/rDDB4ebHdYaVquaeQ449zIQIMpnPU0DWZZRVgWowG6/ZxoGYlTMk2O9blBK8aNvviLLNd7LM++943xu2WzWrNcN4ziwvV2zWW/57jc/pGFEkCMOKbqBSy601pDZnLpSOBeYp4nZjQzjQNudsNlaAFk3EqLHZpph6LCZIUZptlbrmhBHTqcDx0PLMExoZSnLgizLyfOSDx8+0nU9t7e3ZFnOF1+8TY3Dib4fmUaHc5Gu77Cp2dhu1my3a5QJtO2e2U14n9P3Mpz0ricSKMsZazOMkfrLaMMwDPjgCQjoMk0z5/MIUaPImEYneXm9ZkFO+q5nmhzeR2KQujXLMmJ0nI5nfJjIc4Mxmrps6IcJYxR1k6NM4M0Xa6wBNyumMXJ/+4bj8Uzfd5fadsmjzs0JxFWXenRJTgvgp1O9e3d3yzw7lD7TtR3jOMj3YslMxLuQwHouZIBxHMnzjLzKeXh9z+FwpO1aiDCMAyFEAgHnHUpL3aetwQWP1QpjNc7La0MplAFl5F4tdC7nUXAveWZVYU1GjIrNdk0IAgYt7zuEQNu2Kb9J/e6dJ0T5et8PlFUJSjGOowCQTsY58TNgT6chd5ZloGRg4VHpOY4JgDM4F9BGnmE5myec82nQHyEGQjorQgiX+gxUysVaGlEltY6xlqVhdt4BiqLMePX6jmnqCLHEBU/08PDQME2B83kgRGjbLvVLgXkW8E8APAFovJ9T7udSMzsXUg0AxshwP4RADDAOE5MTgFFpRWY0fTcSo0EFmKeAMULoaPueLMsoigxj5T2N40gI0svt9we891R1iVaRfh6w2jLPk9R/xhKjXP+yKjmfOubJ4TJHQL/cx3o5j+X6SQ+oBLTx4QXAnqQmjtFjbUZZ5dRNAUqA1dlJfSZ1aEbE0/UDwzBRVeUFXFuadaMUq1XDet3gvfSdm82aGI4p38607cA8e6o6YxxnDscz8+zxXoaczge8h6Yp+Oabtzg/XUgXWZalujD8e41FhASUZDRNAyrinSPPLTHC+dzjZo/34bfA6RjDhZySF4Yst4zTmcencwLnwqVXebk/X8AaFJSV5e5hg9HQdm0iDeQopcizHKcDQz9j7Ro/DRiTYW2eBusTZbFF0xC9ITea9XqD93J/1nVDDIphGLi9vWV0DucmtAnSR/rI0DvcJGfL7ARAjnGS53eYiFFDBB8iIUJuCzabDV3X0yUQapomAZJUpChytFacpvZyD0XFpU4QYNpdhpRdJ/d1lgl4dj6d03V+ARaLMkdpuZbeB4LXDMMMGDabFd6HdCY4imyNUpGiLIkhcDwe03MSyfM89cCSY6qqoqlrIpHdbpcwEUtVVcxuwiUSQpZlBB8umAPWYG1GFiJzGjYstcQ8zxwOB6qqYr1eY/TL5z9NU8JncsZx5HQ6kWU5AL/85a/Y7w8YY/jH//g/Zbff8/j0xOFwSLnm85v286F4TGQRjVYCSMprti84Rrr35tml96hxbqkr46VvXHpnAWJNAhCX/s5fzrYFP0pMG8LgYHcmy+Q6e+fgUqtKbeEcDH5KtZkjhlSTp+vrvWcYpLfNco0xinmKoKWel5AauGlqGaZ4g70MwP/j43cG+Nw0EH0PQWGtgRAwMeB9z2Z7i1WGvutQygpYMI6E4DCZvQB2fd9RltXlIktzEsnzxKK5NPFy4dq2vRzIy6TMz/OlaVpAq4UFGNOho1AXsGoB57ybBRRRL4lyAbastazXG+p6Jjh5bQsItwBIwjzMqCqF1ksBHy/v7e7u7vLas9yS5znee6ZRpkBKqQt7sWkaSU4hXG7M5SYchoHZzZcbdEnu8zwzTVMqDmbW6xV9L6DINk1Elp/Vdd3l+5YkpJTiw4cPPD4+CtC1Kvnyy284n898+vSJzFqZyKdrba2l7we6rufc9cxuvjxkJqHlC7i6XEv5LOV9O+8hKozR+BA59z3GZtRVRVSaYRoxNqftetq2pW5qfvHtb2i7jiIvmHwUNkFdst/veZw+8XB3xzCMDOP4W5+9cw6bWbKQczqdyNPn8XB3R241Smv8POO843w+s1qt+OGHHzjsDzgf2Ww2hBi4ub3l5v6eY9/SdR2/+PaXFFlJUDC7mXcfPvDxaUc7dPzJH/8jyrJGI0WfXDfDbzXqqXmXIiqmzzliNGSZFGsqRAEhYiCEmXkaUAnZb9sT5/aIUZrtzQZjLVobvv/hHW3XU61WHE9nRjfjjwd8DPTDkCa/BqUVwcuk1BhFjPoCDJRlCen+JUrTJcWPIQTYboUFOk2egML7mFgjGUSZfCotTAIQxkJ7GhiGkaLMKYqKvpPmyvvINHqIFqJBRchzTQzC+AkBuq7neDykpgBCjNRFgc00IM1NnhfkWcX7d48cj8dL7qjrGhC2bZ7n0hRbK2zabmD3fMDalD88xMSdtFnBalXTtmeenp4pihznPEUh7LZ5njE2EobANIxkmeXLrx4EdDCSq3b7o0yJq4KHh1tubrecTx37XccwjmitpFGdM2wmz9jUjRwOx8vkdBhmzu2JLNcUZU0/TrjDLI1GUVIUihg9Ec84DvT9Ge8CeZYzZY6+H/n06ZHD/oQ2mlevXhGjFMzPz0dub7dUVckP371nvdlibYHRjqLQaaItgOPbN6+FaTQGyiLD5jkxLCBw5Hg84WZPWdYYU6JNTlVnZHlE+0BeZMSYpugxkBeglUOpAZsL60IbmXD/9Mc/44svvuJ4PLFerwmh5/Hxe4bxCAqyLOd4eOZ4GLm9ecU3X/2U1aqgqizeCTv55vYBm5VEJQDc2LU4H6XgUDBNA9Ea/ubnf8Xz4/d419OedoxjS1FkROB0PmFMvlTIdH3LOA08Pz2y3wu75Y9/9odoFYnB8enDO/73/7v/hv/qf/a/5A9+1ghLDkOUKj81T/A5W/bzWAqSv/fV3/rvKr2fC5PBWJTWKC1MuwUMizE1/1GI0BrQRkCzGAPBe7TS6MSWyKxMq5UOVGVBcC41OemcSDDhS2ElbMFxnC6N6bkdLjl3KUBjNDjv0DqmhudliLD8UZ8RnRfmodIQfUz5A5QO1E3B3f2Kw2EiREfbOqoqZxw8s4scfIfRihBG5ikwzwGtpKAty5LT6Yw1mhAc1uYyALDCTIwxJNA/4vwsjNtCmLzLEMH75TV/xtBJINxmvWYeYwLPSZNxwzgN9ONAlpsL69i5BUzLCH4gBsjLgnlyF0B/HOV3igLAcz63MmS82eJDYJ7H1NhbaVR9YBgkp1ibJXbGTAjqMhDUOpJlirLUNKsCayIhTEQcCo02kSyXs0FKI2GqgKYfB7QKiWmQc3/7wPl8outaFApjLG52hOgZ+omyFMaQ1vD+wzsBdLXm8XHHNE+sVjlFccv5fKCuK7R2HPYDPjhyW2KMxtqcvhe2gzE2gVhyv+a5ZtU0lKVBG09Z5szzSF5khCDgiEIzjTPH4xmlbjkedzgvg7xXrypOpzNNs+F8amnPMtDx3jEM46Xe2W43vHr1mvO5xWjLalVyOJyxNmOzblBaWHc/vPuB1brEWoShM4zEHIoiQxvNMPTEqOm6nhA7xmGibQfqeiVA1zRQFDXOeU6nHucCX7z5mqaWM2yzXaGVYp5mvO8oilIARpPj3JwGLFbuBz8xDDNFISqRzBpsVtAPZ9r+yHa75usf3aNCwenoeH46MYzj5Z5ewJ0l51RVlcC4KeUgYXb4EAguXnLE4XAkyzOGfvgMrJefF3yEADEuNXJE6xcmUV1VZLklBvl54zAypaZrAdqW3JhlNtUtFmN0YqKkZix4VNBSS6iFgCyM+nmaMdagmJE+tmC1XnE8tITo6Yd5mYYQ0wAkRo/zE8HDkIbBZZEzzT4BBEoYS2giXHqSGCMRGWgaKzVg9AGSqkBrYT0FD9PsmFNjKP2P+nt/krBD6d86D+T3hEs/Y0wu9bdWhDCjtQyL15uKtj0xTjIoRGvwmqpc8eHDE0QBaxZmv/fuogywVtMlxURVN+S55XxuE1MuyvBGGit5jRh51Xp5zWmI7DwahHnpSQOqZeijcN6Jima25NaijVyzMYH71lrGccDoiqZpaLuWaR4YpwHvHP3Qs91sKIqM0/nMNA1stivWmxXntsWFEW0C1magpH+Qe1nqS6XS8C8I+LYMp5VW1KuSzbamrksZXs5BarxMUeRZIot4YTlaBQSsVYSg8UFy42pVs1o17A/PCMNppqoq7u7u0Fqn3qOhHwby3DKOnmkIhKBQyuJTDV5WGTc3K1AqARpSp2sjNfPynl5ChjP7/SHVxSEBqPECTsrwRljdcqZI/2wzw93dLbe3d/R9x/PuHe9++ER3FtDRZBoVlsHj8ruXe1Z65fuHLXf3Df3YEdDMTtE0JVpZ+s5Jfg8uMfEM+92BsqyYxpHZTZyUZ72CqqxQMVwIPwuIJGeP1AvNqiLLhCmfZTn73RHvRtrzzDiO1HUh7CrlyfKcRYyQZQVt23I+dQzDBDGToYW15OsM5zyrVUPXtwlsMpf7tshzirxinufEMH6pbbyX1yv4hih8zl17YdVehuMz1KuS7U1DiJHd7kw/tOS5pcwt1liC93TdRHs6UuQ1zsuzOo7Thc07z3NS4wWsdYm8Iv1R1/UXDCDGQgYlwZPnWVIgdYmUodFKVIPTOOGjgGg2s4RA+hkhkZIE+DydTqm+OjKOE2/fvqUsK77//geyLOf29pYYI4+Pj2ht+Oqrr9DGiJIs4QkyFAhyLqgX3EApndig8QIeL9gKJIKYl2s9DKMoJlLdrJROjON4yaTGGMqyTGpJg7X6ovBcVCUvfzREea6myacBpADedVOk936WIW+qY4mJvZpy9cKSHIYh3Ws6vXaP83IuLphWkJQr+AipBw7/YcXP/5j4nQG+eZo4HvZsNxtykxOUYJLWQK4Duc0ZCMLa84oYZDpca0NZlHgfOJ3ahKLKG+r7Pk21jACCkCi29rcag9MpNcPGYPI8TXvlhun7nrIsL0w/mySo3gdB5LVmmqSQCzFSJknFMAwJlEsTVu8x1iT03qTieZn29OS5oPpNXeFSoRMTK3GaJ+qqSui8u1B+p2nCB8/hcEApxXa7pWlk+r2w6pbEsLCtfGrK8qKgrqskGdxzPB55enoUKWGRUzU14zRirDRXIUSOj48Mo9xkbnZ88cUXF2T/46dP7Hc7obQmqd+vfvlL8qKQgkMJk+d4PMrDMM0XqW8IAZ8okDaBns7NrFbLdNSxTDWmJEE2xsjEJB1aIcLj8zMxxNRkKbTNmJ3DA+eupxtEhtr2PVpprFaM0wwu8PbNG27vH/j5z3/Or3/9a+5v79DGynVaCYW5HYTyba0heEHgjbYMgzzYc2q4ZufJi5Kb21uhKCNN8g/v37M/HWWioWRK2U59Oj+jJOEw8u33v+Bw2vHw8Ia7u1fU9ZphGHn16g1GZ4ASoFm/THz6oacoCvLMkhnkPo0yvY1RWApunvAJwO37Fm0kWTV1gzYW5z191/Pdhw+M08R6dhzPLaObhVmZGj8VRQ+llU7U4ICPDmMN69WKqizJrADuk3fCurUao83l+kmjBcTIMAirZ3km21YOJmMMbp4uQKvWFpgBRVWWFHnOOMl7i1Ga56osBahOybaqa5GKJGaHUlLIB++lCc8LIDJNY7oXI0pH6rrgfO5QKjKOPc2q4uHhjrzI8IkpODsBG2XiNQIiSZtmKZqtlqlOlllubrY8Pj4TI7TtSFnMbG/WDMOZ9bqAdUFZWYx1OB943p1xszCB8yzj5maDsYZh6Om7kf2+ZxwkiXsX8EWgLCvKsuD8qcU5f5nOC2uZy0G83tb0vfwda3PmObDb7Xjz5hXT1NF2J+7vX1FkdQJt5XdYm9N1A8+PMgk/nXrc7JhGz/39De/fP3M6jfjgscagjWGeErsXcGEmzAGTWZyHYZwospyY8uw0TVRlLfnLT2RGU9cVNvP0w4m6vqFrO6Z5YpoGuq7l669+wh/98R9gdE7b9nz48MRf/OW/Zp4Dm5sbQhyBkX7YcTx94nx6xmYZ42CwWc5qXfL+w695//Ebtjc3TO7Eu++fUapGG0OICHsvRn7962/513/xr/kn/+Q/49tf/Yqvvv6SZlXz87/5Cz68/w0/+dFrCvvA3/3iWewSXOTgj/zomz+kqTf86Z/+KfM089d//Zc0zZqyLPjpT3/MH/7sD3jePfL49JGbmzVKQVXnfPjwjlevvsaYjIS9AVxA9L8fC7j39//b53ifStJ9KXoSKKZM6qKWvxTQiY2OAqMMJk2aw6Vrh6h0EhEveVien6EfiUFTFgUwM01S0Mb0/Qv74ZID0mvMsgLnpHH2niSllCJH6xcmPXAZFC1An9YqMa18YtcKWyCzFh9mQgwoFWhWhrLSoFbC+JoDq9WKaQx0zy3aaL5485Z+GHn/7pEYlAw4fGAcJ5yfidGj0WgDKsle+14AIqVMGnaodB5Y6qbE+4m8sDgvDZVWApYqFclyRWYtzo/kRUFeVbStgFIKJbl07AlBMU1B2OtqyWXC1CnLnFev72m6gvZ8Yrf/hDYiI85zw4cPj4ToublpaNYVbXcmJPapzI1CKuRLnHN03UBeZCLtdbM020lqsrlp2N6syaxhnHq8n5inAZtnMiXX4BNA1NQNTVPj/ExJjs00VZmx3W4IQc71+/t7xnHE2ozHxyeOxzPaQNef6QfFNA0cjkeKPA3szo4vv7rj5qZmv98nOeSathuxmWa7XbFeb9HoxI6SYaaAKSJRX69rUJ7n54+Udc43P/qCEDyH4567uxvGcUjym8A0j5RVRojCTqybbVI8DGw2a/p+EIZVnHneCeOgKCwhCMjVdR2Pjx+ZRk9RVEzTnJ7pZElQyKD1eDyx3lTJ2uXMOE0M/QltFLe3t/T9SNcNGGvQWoZUgUCIjr4fyGyBtYGu7ZkmaT7maSKrM7LMMAxndvuWEBx5XnJ/lwHSDGltyHNhLLpZ6j1tFFlW4kPkzes7fDxxOH2CGJjGER3PxDDSj3KWrlY1o3WXOnNpGBdGxEUyajK0dmgd8CGgP2tUu67DjOZiNaOUSlY0huBkwC65IhOgJA0rxKpG6iLvPVVZCuCs5kt+0VozO5eaMGnsyrIU+atTkOTVLrFcF0DeBYcPApwpEkgWPd5F2mkk+phsQNIAPrM8rLcXGW2IEZvJM65MZLUStu/p3KG02CJoQClD/IyL4b2w/qJ2KG2kto9KmGy5xXtHnpWM48yYGCyfEwOWc0CpF8b5582e/wz8XMAaqUQddV3SdSM324Y8z1Da0J5P9IM8FyhNbgsO+5aum6R2TVJb52e8i3gvNYdIPKV2FOajgEEufZ4y8BF7hnn25LlO/RGXM2phf1mtmOcJo3OMzhjmAaWypBbxFyaPT59xRAZJ3gepQa0iLy2bmwabK/qu43TevyCJKtD2Lbv9M5v1mtU6J8YJH0ZgRmlhMGkt7DwQmwC510VVIcMZacxvblZSTzYlRb4oskqp2ftRbAeiZ5wGFCZZ0IRkAeIT6BnQ2jKOE+PY49xMUZaUpaFtW6zJqaoqsbwMVV1e6uihnzHGplwOeZVRlBlZZnl+emacRrarBKKPQhTRRogEQhpYgCSp9ZdnyQ2TKOs0TOMs18HYBFzJe//yqy9oGlEwbbc3jP2WDx/eMfQie3Z+FgDIyz2fWYU29qKIUmhCDOx3B9rugHMjt3cNX375hv1uz8fHZ2IaxMQY+PB+j7XQ9R3QQZT7OssDw/ARjcJozfF0ZL1ZCSvXuDTEy5ncRHQ9dVOl/tLjQ8C5keMpyX0RSfI0Se3frCtiULStDNQktxdJYqwvRBtRvphEDhIG9TzNFEVJZgvpL9vuYse11DYgZKBFzWetpa4qplnIPRflYgiMw8g8iTKJqLA2Z73eEIOla0dCUBBtkgSfidHgHRd138IQFFKSgLbCRAucz/uknHNk1sr3RLEvkOdL8uqi1AvOURSlSNBTrtXqZVXDwvqbZ8fheKTveoZhuNR45/P5AmjFGHl+fr4Qp8Zx5G/+5m9ENZWYjjGkohSNNMcLSJ0sDlJu01ru2RBcum9IPZ/BzQE395deVNh+RshHxMvPWZReMgSV3tX7+ZJ75LN7sdFSvDxHC8B3UTm4maLQzG4iRMGWjJVBk1Yilc9zS1Vl6dzyzDixB9IaYzVDkhpDvAyGlVquXWAaHb9r/M4AX5ZlaMTvYRqFxh2jwkaDDgqjFFopXGIE5LkcFGGOuCgPojGLZHYpJBaprSDVJpeJnHMiTRHGjUxbYvCYImcep8sN3zTN5dBcmvg5uMuhIY2HfHDGavCe43EvIEhKzItsx3thAfrgUiFgfgsJjnFB+HseH0WGaozh7u4O7xzTLBr33X53AcoWGcSCHi8SXSBNq0Q++jnl33uPtpasyMmKgn4cedo98/T0dJEkYzRPz8/CVhpHzm17eS2Lx1yMkazImb3jV7/+VpgbShGI1E1DkWcUuVBr3TxzOp/FtyjR70HRDwNffvUl7969Ay0PmmjZc7q2Y54mmbQ58TIw2hD8Quf3iW0iuvNIAgqd3Avy8E3CekH0/845eXC0Zk4TRh8cTltQhm+/+44Pj088Pj5TZAU3NzecuhN2StJNgsiZMsPT7ombmy339w9M00TbddTNeiHqcHv/ANpgM5hmzw8f3rE/njj3HTF9HsqYyyEaQiSkf1coDqdnjucd3/7mV9xs7smzkvu7OxRKvMe6idvbW0IMzH7kF7/4d3zzzdcYrbi93fL08SPr1QqrNcfjJ7rzkeg8dVVAFN+QohB2g7aWbhj49fffsTueeNw90w8Tz+cWF4Owh5RKU4gZhQDdmZFJqfOO0UXu7u+oqpI4ewEQtWbTrDm3Z7QyiYEIdSPgMtEQStD6TN8LywNgnpcDcWGHLhN3R4iOsqq4uW2Sd01kGFrc7NLEI/C8e6IsKm5vBfD+9PgJHxzaCNMwywzjNKO1TCWzzKTiV37vMAhAr02kqi1FmbNeVxgLIUyMU5/AC3+RA1iriHj6viPixIciU8xu5P7+js1myzg5DvsTRGnsslYO/6+++prVuqQfTnIYmowsy8UDA+jalvuHG7Q2/OY3PzCPPk3CpMg0Jsf5if1+l54fmRIv+cX7mXGaOfywx5jIl1+/Ic9totWLpNnaLDGIb5I/n+f5eU/fT2gt/jhVtWKz3qC1pqosdd3w+PQEKnI8nZnnwH5/kjw2jomBKVNVBczziDbgzz3ZzYYQAnXTELxIWLY39wz9iFKa87mTybp3FGWO1lFYEFFYoFpp3r59S91UzNNE3uQUpeL16w23t2vqteG7939LdCPjfGaeBwITWa6o64IYNCjL7a0UQO8//IKytHz48D2no+Mf/Sf/ZZJICSv7dDrw6eN7Hj994M///F/wk5/8iE+ffuBf/L9+QZYp8lwxzx0fPrynPbe07cDt7QM/+tGP0cowjB1ZYfj08R3ndocPE9bmPO4+8Ed/8lPevfs1x+MjP/vZH/K82/HP//k/4yc//Yd8880fpSYzXHL7f78s90XfImwliQuzT8Vkh6AAw8ICXqRVIXjx9UjTwSxTGC2Fe4hRmDRxMUEAqwTca9uRcRywtiAEKcR8Yucsfqov8n25L7TmwmJXiT0jOT19X3r9L1P9l/chjeJSegSU8hSVnB/SWMoQ0KpAUWnqasVqteZwONIPwm5TWjFNPV9//ZaqPvD8vGd/2F2AOqIUa1KYTcLKUQofYmIBZAIqOAFvsswwjgbnPcbE5InpUCYSmdjeFnStMI6tTZ+n8aw3a96+/oJxmDh3PdO0nJNafqcWCR4xMk49ApCKX4/SAZNF5rkjxJFmVUAUL6NhOKN1wGaRMiuoqxxtAlmmKApDjIaytCgtbKEQfBpCvlhDhCg1182tSHvKMiezliwzlOWa03GPMnB7u+V4PDCMHUoJa3KaB9abFb6bZfiUG8qy4vl5R4ye2TmMNtzfiy/Sw4N4D4fgGIeZcRqTD5zIEZu6piw8X3zxBu9H2u6UWEkCKG/WixwQxrHHB2FoDr0wNnWMNE1D3ZR89dVblI7s9p/ouiOrVcObN69STSj3nlhFDKnJsuz2T9RVLWxhbdjt95yOJyKwXm0Yxp7NZsMXb77i0+MTnz49kheWYejpOpHthcBFtrmwsE/n7nI+Pj2JbYPWhnl2bLcbTseeeQ4icRsmtjcbyjLn9euSjx8eWXx/Vqt1AmhHYlTs9k9Yq2lWVWKS9knCK96Bq9Wa1XrNNI1Mo/g7zvMACNtVKyMelG5mcgNWG2639xityPOKeQ6UpYGQMQyecepRGLSu8F5q7a7rCKFK9bJmnkJirYlPpVIvzJ3PLXOWZ90Ymxo2nXyfJG+8AP6K6CNjPwqojREp4uzRShgyJrOMw0hdb0CJPUmeCzNS/Pek8kIp8AKeRiWeozFGCBqVvI5VFBmcm4XxQQCtRR673a6pa2myx0mUIFopqYGM4r7YkOU5T487YmIoaaWkJkT+2XcjWaZf5i1aYRMgTFRkmcjVvYcxiMew+0yi9rkvqXNOhrOpTjZmkZ2lrBkk31urJAeoibpZ8/CwZn9w+OBpu4EiL4Vh5mCMM2Wy+jmdWuZZBhFai0dwiCSwTyxQ/MIqcY5hgLLMiYiPLYm9JT2TnFfS2wUBEJJnqEiyDTfbDUUu50vfTlRR4eYI6FQvSQ0oAyeR1Oa5sPmsVckTGea5J8vAbiqiFzVFBLpe+q7NtqDINSiPVoa6zjF2xTguZAvL807sU4YhUBSWLNNJWTLivdTyZSX+fPIc9MLqyiwhymDcGIubRD21WW+JEaRtUheCSdf1xFjSNA0hwGq1RWvFNI8QVXoNQzorhcEaky1ClucXJhkqkmUmkUlgmubE+JZBsTFyZhLV5fsXIkpMzH7v0jN3kTrqdB9FYlzYS3J27J73TOPEOE386pe/JrMlQlrzzK6XoZv2NHWZzo49EIQAERJAHRTDODHNMlD79OHM08cBow1F2TDPE24Sz/D945jYw1zqF2Nhe5MxDUJW8cpwPJ6Z/cjDq1uKKjLsR4Zx4nzuuHvYMs4dU+uYp4ALDmMzXr+9wXmHUYtn24uPqFKGvpsoy4o8rxlGwReckx7VGENVleR5LnYR40BZVNRVIz6Wx45hGLHGQlT4EMgSCelFXWglNSXZp9FaGHE+JJWfBh04nk7pGdPc3K7R2uJnmGeYx0A/jHRth7U5RV4yje7izb+weGMUlYp38QKyjeOYem+wmQxG2u6cMAXHOAmYXtcV0zSilb54T2ojgL0MRyNKK/LcXtiCAryZf08lOAwDeb4oIGQfgTAJO/q+F+9xIyDhML2w55b3sDAhl4HvEgu2FCOXAbL3cm2sNSzWLij5uuRUfcm/8yxWRQvDTwC+ZFuT7v/ludAqgI58xreBqKiqUvLgMFFWUgs7D4XN0UaJYiAKXjNNMpye3YyU7cLeCyFCen1FIflT1B+RefaXZza8tAD/0fE7A3yLrG8BmUIUlLUoiqRfz6jLiuN0TAhoRlnK4oiFer8U/Ivv2zzPF4lrWZa46C4g2OLVJqb2sjDjfDqTZxl5nl8kq4tn3UKTHYceAGOKC6K+AGx5nqPt4h83X17HIhmWxRflhWG2HMJN01z8AN+9E3nkarW6yJaKokhFW0ee5xfgbvndVSVT3zwl88WPb/nZC2tO/LQURVmgtOZv//ZveffuHcMwYK3l5uaGPM/Z7XeUqxW3t7esViv2+z1v3769XLuiKC7X73Q6vdBytWa73bJqGmL0gGGaZ1brNcM4Mi8AIlJMDdPID+/eCZqf3tcyQYjJt8Bay/39PcMwXADNYRS2lNYmmb6TmkdFMFKceV4SlvwFEl0lFW/JSSp1Z+xOR7pp4Ny1vHrzijdv37JaregH8ZQZx5EPnz7x6elRKP/GsjudQH8Uf8Qs43g6cXt7w3azxRZSVP7w/gOn84l2HJi9F68FuIDQYSnjUv+6TFtTqYZzI999/0vKomG7XXN398A0zWKGamdO5xOTn/jw6Tc438rE3lq+/faXfPnllxgF+/0TdZHzcHPL8Sjyn6++/EIObmCYJ/7d3/0d3314jwuB01nYXbHvMVmOJuKj+G9lmcioFMLyaVYNRZlz7s5E5xm7gbooGfuB2TmyaaSuKy4eL9pekqvRlsNhl0xKTUpGIcnXNf3Q03cDZZmhLTR1gWeiKEDpGRUcTZOlyUlIYGdLsxKj+CwD5zuq2jJOkSJaskKjtAAIJjHEnp931E1JmB2gyfOMzY0cSvevbqjKXKbLrmcYOpQST5a8MCgVGPoBm1lhoyGsD5nk51RVkZ7tyHZzwzwFmmrFfn9kmjxdP3FuT9gsYk3Gr779NU1dM02e3a6jLDVffvUGH2bGaeDmZsv5NLLbPSHgnkxtP6fWN42wLsoiJ88tm82arjvjnBbPlWlATHlJ8khFWebypxLmZde39F1P30/keX1hHxM1796/59XDK+q65s3r19TJcNrodxwOZ+Yp0HWzWAnYnIeHe5S6BTWzO3zk7m6D0ZbJjxwOB7RRVFWNd57t7ZZf//o3lGWDzfIEzM8XzxTvI0TNbnfk/fuP/OyPhPHbrCrK2pLlCjcHzv0j7bePbDcN2gSIAWU8ITpmNwGWu9st3ju64cyoOn7xq4HV6oE/+Mk/SQykDq3LBIQFvvr6Cz5++p6yLPjZH/6IX/7yl/xn/+QfMs0d//LP3vGzP/wpwU88Pz/Rd3s2m8iPvvkJWZZzOOz5xS/+hv/z/+n/SFPXbDY3/Kf/6B+zvXnF3/3i3/AXf/Ev+Cf/9B/RtS1uHui6kbKomKeZmCbZn5+V/9/OUXiRvLzIdf8eqy9NFImRmNjyLwyQIF57IaZvk6KfENAEgpclFTGBcdPYoXTGMATxjsMyz6MAhGFhBr7IFl68bcOFmSfFmVgwLK9/YZgsLJNlALC8T2sNVVWR5xn90BLVTFVb7u5WtG3H0Pb0/UyeG+5f3bJerWjbnrYVMHqzbhjGWaS20eH8hNLikVnXNTFEjocRhWFOnilK6TQgjngH1pLYepGnpx1FYanqDGOh6weshaKC9UYWNGQ2QxGEieEj1qqL7UTbtZwPHU/7HUbnKLLLeVDkOaumEXsNaxjHQewDmoIvv34gLxQKxWqzJbOWsZ9w3jFPs/hzWRleRAS80kaWdmy2K4o8px/aVCdEQj+T5TllWaQGMlWKxGQvEDidTmitqeuZfhguHnmyTKdOjWqRgBx9sVTJ8xXHw1EsL/KMPI/JX3gEllpGWLyHw4F5kgHm4i2njfhQDf3A7PoLKPb+3XuMyeiHQZqtqqCpV5RlTpE3nE49MZKWlgmLZbWuBWg/a3a7AyDLnBYbBmMsdV1R12KnIgsjXMrtGcfDidPpQFHl3N3cM00jt7crbm9vGMYWpT1v3z5Iw6NB6UCIEyGoJN99YeOWRU5R1uk6zVTVKsm1Al0/4+YpNcdKWBlRQOfD/lHOUiNsnvV6K8tDSvGfDj6SFyKxnGeDsYbz+YzWls1G8t/5fLioTECWGKzXW2EztR1FViHm5BllsaGsSg6HI9PoOZ1arC25u7/l6fGAc1OSQteI7540xKvVCmMMu90eN3vyIscocwHMl2d+adIWBc3CUCmyHIdPS8XipfGaxkkYjUIxveS7zFr6lCvGaSInDQui+ItppVitag7HoyzgCC/cOa2XAb0A9zEx4XUCAMMcliQqMlGlWK0q1uuazXaN92nZVTK+F0m6SYqbCRulgayqEu9GlDL4IKytEITxL0zriLYW8ZKbMDoZ9pPUGyFgbEZMdh8LSxEl4NDnDTsqyYATI25haBZlSV5YQDzPjVVUtSXLNVWTM08zdVXRNCuy/Mz4YU+Mgbqq2W62tOffCDM2RJSWRVuS7SVXT9OI0kLO8KkRFoljSEPUNIRSM2ioao0xnrq2TBMMPlxY40KqCKw3G87HlnlyTKMM/2WJUEQrRZYX6SwTUkaIgaYSiexqVZIXBu9n8jyjKHKmcWKe5gu7cZ4nUALYOS9esiYzrPKcZpVfLITsOTJPci/YrECR4byojIwWECTPMyAQmVk8vtq2IyJWBsJ2E1BgGEdRPmjx3luACVm6phL7r8L7wDT51N9mSQEmzFHvl2GQoWlW5FnBlBjfIXiGsaftz2RWPCS9jwkcDpc+dclJy9B7AdGJnw0OgywCKAo5r8fUky19eIwwDFMaakypri/Y3ubcP2zZPZ+J0bPeNOm58/zhH33BODh++XcfGPqADzMK0iDKo4xmHhzj7MhzqGvLlz96zeQGnh6fkr/gTMCjIpgMttuSu7sVwyie0H0vnpzPz2fK2lBUa9r+RHcWT+1+OHM4evresW5WVFXJ4jnnnKM9n7m9v8HNYsMgfqgWMOSZWPmM8w6f/KvLsmC9XjNNM/v9Xnzfs4yyqBj6AaeFIdc0K/K8oG3PCbiNlzy42EV5H5jmib4fkgRTznxrbQJy4XjaYzcVWSa+5tFrhn5m/9zRtqJgy2yGDHaF3VYUxWfMPRlURKKQbqLcM957XGLrZbmVZ9po6qZknl4Gn0tOIYrt0PL1LMtkyZEbKcqC1bpm6EdmNxKDDHEWS4tlseliNbbcW0VSAy4KRUdI+ZkLoCVEHAEMbbIFW4ZEzsl9aPQy1A4orRLb+MUCK7PJ/myak7WHScP+tPQyvtjkLGfWyzMjuM7yLBmbybBaCcsPDVVRsFqX6ZwYeXi4T5+tY7O6YbfbXwhikscjxmqmSdSXKI/JdPJJhLwQkolSy3UQYHkp+f97+AD/g+J3BvhikOUQy4eotUqa9zpNJ6DI88uhL8bDIfmJ+Iuc6sUDZL5c5AUV9k5kska/SAAWA8xlY07f9RcAbmGlAQnsK8myPE1MZENU1wkAVNf15QH5vDFZQMYFaGyqmqqqLv5/i9/GNE10fUeeF9TNSi6qtRdmnSzYWKWfLzpzkThFznN3mcqu12IUDbB42C10/UWrnmUZP//5z3n//j0gXgkLmLd87euvv6ZpGn7xi1/QNM3ldxljeP369cUo03vParUStob3vH37Vq6niuz3e9q2ZXaOqqog/Z0Yo0gPEI+KZVnJ8s+lyFuWgSzGnQ8PDxfGo9IaH0mm95G/H4sPC3zO+Pht+VqqCQla8en5icwIhTrYTBLtNJBlkmj2hwOPz0+JmaSYguPj0yc+pY26y/vq54nzMEhhESK700HkkkQC8WIourwWo4SWuxykSqm0XU+mZ0Zpskzjw8Rf/pt/TZESufNOCkytBDgMgePxKTEnLO1w5pe//gVlWTCNA37VYK2hPR75h//gH4jE8niin0bO/cBv3r3j2J9xQaTtMQhFeXm2SLr+7XZD8J4P79+xXW/kswmBKiuYxpHS5tRlxddff823v/728hmKbCAwjo55juyff0iTFMlEInswLD4sVVVhM4vRmnlOBum54k9+9I34h2lFUWVkNmN2M12bNr4FAI9zA8ZElDFkmeL+fpMmU/J8vu/OdH1HZjNWq4p8McIO4GafiqqANYoQfVr2YOiHlu12TVGW7HfS8GWFYRx6yiLHeQEO87xmvVkTo+fp6QnnAnW14ic//glKSVP6vHumLIU59/S0l82ZoyczgXMrMvwf//gbYvQcjydWqzVFYdg9H2hWBWVRUVUN8yTm87MTGZr4HIHPoOuO7I/P3N6s+PLre8AxTrIUIMaZuq44Hs8J5CxA1zg38vr1a/rVwDjOaJWz2x04n86EAMF73n94J4y/skz5QExhm7pJm3DFf0VrjUtsxhBFOuWdT5K7Qvx6wpwOY5HYFEVO17fkwYtsxWZ453je7YleYXTG+dxzbsW/q2kW02mRT/SD+PsAfHo6U5RSyGtjuL2/43A4YoxinAcQuAWtHVEbul7RtnvMG0VR5syTfH4fPr3ncHjmfHzifIJ/9n/7v/CTn/yYv/7rv2Seew67R/7qL/4C7z1NuaKpWzabDXlm+fbXv+Tjp3d8/Nhwe9uAD9xuKw6Hj/iw4rvvvqPvd/zib/+aYZwZh8jd/Te8/eJrKXycFHPLJF0tg4Dfznh/7/+LmUe8HPRx+ZL8gAWzUS+y25BMoklSAaXESzIGhWcmepnmu3lEE9PzPDCNHdEb3KyIQTwMnROWTqLGpFf4UgTJy38xVV5YG/Dy3pYz6++/rxefnkDbnpjnXEB7bRkHT9uOIgULI9bI0Gv/3HPY9eLsExQ3NxvyLCOieHo68P79Hu+CNIdBsdvtZQtsKSzYaRbZkDTVBq0j1miUER/S41GWUigDNlds6pKvm1tCnNje1MIiG0eKbMWnj4ckX8vZPZ/YPZ3R9Hz44YCKJi2aClRVMnZ3DgyXOoX0EfowU5Y563XDNPcCqkawuqHrT+R5kTY8Gm5u1ux2e5lAuzE1/DLM0FqW9zSrnGmcRSacWxmyzSIHqevqIpGZ3ZQGiY5h2IMSf5pWdZccK+wF+eC77sQ8j+kZdxiT0dQrUJFhEEmMmM3blJ+51EyLpUJR5GR5LZ5CZUnXnTkcDzLIsdLMSv3x5lJznc8dz88HqmrkeOjThN7SrG54/fqWceqZ54GqKnn7xRthJyT5Ude3IjuME4tPm4C/hn7oeN73NHXFN998mSTYkfGpZbWpmOaOoZ9ZNZvkWeWp6oqyKBmnma4d+OGHR6wuWK9W3D1seXjYkuWKDx9/YLcTAG6/P9K2I1WVFhNpWQ41DENiJwbc7Nlut6xXazabm7S0APLC8rwbUJEko17JcNmUQEZZVpcG3jlPXhRstxvGsZdtnFUlNiQoOQOSJGmaR2I/AbL1fL26SZuYR7Jcc3u3Zr3aMM+OrutBBZSWLbqLt7Sx0iROXUcI/iLF/RzQ+1xuKjJX+bqb3Wc+UBGlhbmV5TkuBMbk3bfZrGmamsXDCrjU6yKbFzuAaXzxFF4Atpe8E1E6JC+4AOncjqnBtNbIQooY0yBYZJVd13I+S+/w8LAlyyzjNCG+SiIhnJ0stKkaxTA4dNTExK7T6VpkWYZCnnOdmORVXeFC8toDCF7Yc0oLSLjIoYPkWFEKLR6DAa08WW4pyuJCqBAJvibLc1arkrIqOB5OTOOA0jotolG8enVLVVY8Pj6xPx6SJFU89oQRHxNTz7/cW36msHliL/XMs9QyeaGpm5xxmChyYQ9WVc5qJRsrq2rF4+Ne7AO0vjAmT8eBoX/H0DnaU7JgMlAUAkp479Fe8oVS4ocq97+jaRqKwjK7ntkN+DChdKAfegEGC/FhVqoi+BXn8/kiUYyQ7kEZqMboublZcTp1FHkpTCkXMdFQ5Dl1vUrqBXkWba+TR+N4OZu9d4SYs6oa8rwQJpVeLIpcGqDIluG+74jRMwzTRfq8PE8qbUgHRwgehpg2S5vEmloW08jCsHGYiLli6GXLp0+Kqs+XVC4L8l7O6xdGrQzolQzUZ/HN/vx7gUuvuZBSvHc435PlObe3d+RZzvPzLvXY4tF4OB4gKqbJY6zGalHQPLxaU5YZ5/PAp/cneu8Zesdz3FNWiq+/eUtVZeJNloVkE6E5HJ4S2ChLUJTSeOdEReLh8fFMlinevL7F3YldzTgFHp/2iAeixdqMzWbLp0+f2O+PFLnm/fsf6LqJzGTc3t7SdQNPj0fyvE0WTY4QZmymKascZSJKe/JCFETjMPP9D98TQqSuS149vJWzz+aSc3pSz5Ml1t4iJw0Ev+QoLvlwdhOZM0m5UGB0zvk00/czq0ajVMZqtWUcDwkXEbatMYa8yLm9u+FwPNK27aWODNGjtEEZ8baMRPFLVDC5CT94iqqgauoLq3rZEaC1uqjErLUcTkepH6ylWVeCBUSIKkouG9wFBDTGcDqdLuf/cp8vZKzT6cw4im+fSfiNWJlwUYnpJBmWvP5SS0zT4jf64lMtoKBYUYyzJ4S0eCoqFmXL5xX18oXPa9QXQC9ezo2FUY8iDTEcRSn1TVkWODfRti0+OJ4enwWUz3I+fPjE+dQKg3IGUwgb0PsZk1iOyup0VsaL/9/SE8gCtmWpjuE/XEP/j4/ffYuuXXTSpCUQstpYaWGcaa0Y54lpnvDOYzOh4C9bRkMIaGOp6vqiEV8onp9vk9UofBTZqLGWIqHmC/0zy3PZDlQUaK05p5s+z/LUNKrkPSCyEO9n8ZyyGZGYzPIzVqtVQv19eqjEb6ZIIOYCXPWpIFlMgOu6JsR4Qa1XqxWLn8myHWuenAwig9yAx9OZZaX0nA5XOeCUmO/Owlx06ZD78OED+/2em9sbWc9eyubC01m2mn7x5Zdopfjbv/1bzqcTX3z5JcfDMbEG5aZ53j0zz/OF4TiOgzxE48g0z/j0Oa2alQCB7mXD28LaCF6meGlceQEiJQS2c078k2IIfPz08UJZXphwKknul++BZFSZOlgfRD7w8hO5HFqfb2Sc5ongZRKsgF/++tdYo3nz5jUfHh/5+OkTU2JlKnQq6gZAi7lw+g1Pu2c+Pn7iouFfZMkAStZZX5gswbOoQpavxcR2We5Xeek6gcaOECesMRcKvRtdatDVBTBz3ifpych0kmmQVmCNpesH/vYXv+Tjp4+0bYuylnPfczieGdzENDsBkH24XNhMi0SvTP52CthsNtRVzd3tLWVZcLNe8e7dO9ly+MVbqqbheDrydNjLNQpBisXJ07UD2iAMryxDJ9bMPE8XpmzXCb1bilT5BAXgVkyTI7ogn2dZcDgcybMsbZK0cLtmvz8QPTLNUAFjFXUtlH6bKbJcCl4fpEAxWjPMYwJQZPtwRHE+i+HqPAklenYT2+02TZYmtlvZyFVsNjJ5d3A+H6nrmq5tCVEScVEUHI57irxkvd6wWlfc3v0IVGC/36UpJxR5xTBMNE3FaiVDj9P5yOJLmWWG9brGGHmOfBiYZmmuYoQ25Zumqbi/v+PNmztmP3JK7JyiLC+yyNPpzLJF8eZ2xWpVozU0Tc0wdESEVX08nnFOpm3j4MhyYTSF6Oj6ng8fPiY5To5SnhgnqqphKZKed88YG3l4dUOWrWi7M8ZAiPI9bvAMwyx+ftNE1/e4AGiDm3rUas3sPIfDCefg9f0XbLf3vH7zhpubW5yb0rZikzzcBDC2NuN0OjCMfZIkv3jEFEWGD3OakotnmGwqlOLMx4Gue+Ljxye6vqfMYcgD3/zoDT/5yU/5y7/4K/7qL/8cbaA9HZknzy//7lfcP9zTdR0//fFPMHnO/vDE4+M7NuuSh4ctxwN8ePc9WfaWDx9+zfsPEedmds8fmcYWKPijP/qn/MEf/mO2mzumyV3Yx0uxsWBm4qWX7vHPIl7+N00cUb/1X2T3r2x9WxZtKATciwsKuCy6jFG82mIgBieLGRKYOvY9w9CL+fo4Xpi4RbK68NEj1gkxge/+Uoz4BBYWRUGeZwnoyxjHkcVKYmFULJKJ8EJ/vky0tdZM84y1GgK4OdKeDqBloGetQU9wPobLFbDGcD7uWa2EDdG3jnFcTNF7opcBo5ypAR8nttuCr776kt3uQJYbttuKiMNmhq7teD1XIuON8owarcmKwKpZs9/v6AfDNHp2z++BjKqu8E6kaW6eGUaPigajFMro1BSRlmJNVHUtDZQS776qKtAWhrHn46ePlKWwcM5tR9+dZOiYVeR5Kj6VZ72padsOjfhhySIOJwzfvmO9rvFVTIwB2UAPYEvZDivyQIvqBWWOAaYQMVo+48zmNPeyVChGhU5DobIouL27kSUOSpHlMkBb6oCmFrZZVS+TdamHmmaVjNClRpL6Z7oMXufJk2div7JqVsmjauB0PlFXNatVgVKRutqw352ZZzFKP5/PTHOL0oGvvnqL99IwzPPE6XRIagTJ9b6bKMuczfZe2DL9wH6/BwLDOKBUpO1OFEVOs6qQjeMVxJZzu0fpSJGJh07fCZu07yNFbhlHYXkcDhGlHWUl4GXdCANy1axxyc8VEHlyWfD0/Jga5qQM8YE8Ly/D28N+z7ntqOs1GkNdrchsnX6WIjMVCkP0HqUsZdUIo86IL6mLI13bprpoxpoS7wLj2Mk5ZAJZniEeV0EG1uczzWqLioqmqZJvs0sL2Sac8uSZ+N1am7Z1eo+b5bzPEzN0iQWUW7ynpmlKQJ4skzLGMM3ihWs+G0B+PrQHRZ58IefZXZQBzjmGfqDvu+T3JfWHgAD2wniIeDK7eMmKDyVIHaWMoj236X0iG5eTqb/Rms1mRVkWNE2TSAAW7zz73VlsDpyi7ydCVLKsAfESjEnLZZROW10DMVq8n+l6kXEvmcwkuwPxFxXw4GWKI9k/z42wkWNkmjsya9jerCgrqcW7rr2ANA+vHqiqguPpQNueQUFT1oQgtVrXdRyPZ2IU9mGWW27zEqM7QoRpHEHJ0qYYINMC+qFmlIlo64guMjuPzTVVlfHw6pYsgyzXF1/PaZwwphZQ2DSAZf985LDvCU4kfkZnGCXMKaW1LLXxDm3S4iIjFgvOacqyoChEIeTDeFkKJZ9/h7GW9WolfUX0cnIaGfCJVYycO9M0J6/lxaMLmqZEIf5iuTV07YR3E9E7VAJoM5sxG8swysKUkJh5RZ5TV7UAXN0pLUiRzzaEmBYhzWSZRqf7Vli9hmlaGF7m0mcuvoWLN/syzJYIaCPSyHMb+fixI3io62VYtmxTfmGOfS7blHN4ATVSzx094zil17Swp5Is0i3nt7DM6rqm7Qaen/fyzAV9Iaq4xD71cyBGnc6FwM3NmmZleP1mw+xaVpsNb9888KtfvGf3fKZZZ6w2JeM48u7dB9CBqglst7Xc80rsfPb7EyFGXr2+5c0bSwiCIxxPJ4SxVTCOR1l8UG95uLuhHybaU8cwzIzDTFXXvHp9i9E+AWgd3in6fuZ07Jgmh3OtnINFLsCeEh/DEBxVbbi5aXh+PvPp0x43xZSLDPM8sdvtKIqSzWbN/cMtx+OBEIRBPSTV4GITpZI0WiXwyBhDWYn/tmxalU3APogkPs8KFBqbBpogMuBxnsiUwUbNw+s79LO6EHVCeJHLLr9b7DnKlH0k/1gj+Sqm4YhzHqPFl7IuGvIio596lPJii2TE59Vo6f2ybc4xntBa1IqLEg8i8yyy6uWZOJ9Paa+CsPjnWYhWIcZLLby81hB0AsmlnlhUisYY4RYrLkCw0RaUxoVeGK0JXJc88oLwfT5SX5iqSi2fR0y5OhLCsvBCrmOzqgSUzDVGi7pzdiLzjRH6OIvC4iRe8W6OCV+SPiXPc7ougbwI01AlRvYyoMtyIz7dcbF9kBo7s4u92O8WvzPAF2JAGYWP4vtgk1eAsZbz4YAPgbquWa9XlzXuz8/PCXgThptSimkcL/r1xeR3kcDImnbHPIxyAAh1ijIvBBk3gahg8o7JObSRG3UYR/JS047iVaWVJqjIPIxi3Go0KE3wnu32JgENgj7LZiTxSOj7XjYB8yJHkBXm8qdtRW5cFAUkMCEviguNVinNPAnCPE0zyzbhqDQqmQyPs8NYhR8npmlMCP9MnuWUZcn+dOY3330r25ceHtBKVoSfTifxcFmv2Gw2fP/ddxyed2R5TnDCvBmHgaqs+O777+imHm1UkmpqVk2dXmNkHgdUUNysb2QVdr3GxYAPnu/fv2eYJ2yWyXQ3BgIw+xnnAiZN7PM8IwbxhggxIf2jMH2UsQuUJ1NDnTylSOSUBWVHYS8biV8YJItM+PPJsdaKgNhhtk5ovTrC9PhJJiVaEZRGmwySgaZPjFGMgRgvsuiYUkGI8SIqkw2V6TDVCudfPveFAvwyLVvAR5m0OOfwMcgh7wPj9DI1i3hk049DazHN9skncnYuTTYU/TAyuSdQitPTJ/zHH9L7thegVWtZpiASEJ18BiIZYuJbFAWH3e4CxLfdidWqoj0fOe2fAdhs10xu4tf/7jcM08h63eDmmTwv0SYT/6dC4eaZaRJ/zCyTFe8xTS4X09RmVVMUJWWVk+Wa0/nEMLaU1bLcZqLvO5HaNo2wxILDGkvTlByPp8tkaRxHprmnrivc7FitanwIFHkJUXwStVZJ1iBslWFsUapkHAeed7LNNuI47Pfpc/Yp4YpP1zxLsSONn0oSDfFFWrZFOT8xTq1seIseo1ViKY+Xgq0obAIkK06nA9M8YK1MZj58+AGj8iQ5i6zXK5pVQZE34rPhRIJU1zl932KzezY3W06nHZ8e33N3dyc+OYkWf7O9oe87mlWNsZrTaY+10hR0Xc/z85G+n6nKgpubNY+Pe370zY+xNueHd+84Hk7C+kgyIe8jq2ZNP4zM80ier5jmkbrJxc9pGhj6kfOpY7VaU9fJy+N0Rilp6FabLW3XMU0jfhZ/tq4b6LuePK9BwXq9RmnH8SiyMGsz7u4eMCajLDL6fpQiIi/p+km2Lycpgmxs9sIwSYWtUlqWu1jD4fjEv/35v6IqN8hG0hGjM7788mvG6cD+8MhXX7+lb2/IMsO/fD4wDiPOzTx+emKeHHVizJ5PO27v1tzebNkfnui6A3WT8d33vySiUFpYWnmhGaeBVw+v+NP/6X/F5uZrZpfjlg1zMW3oWxh5Sz77jJ0sLD11yT+XkUZILV8CBl9ku8tfEzD/kjWTJFmlIYlK56afJ8a+QysYho6xF5P4ZcAQgoCVwsRdtqA7lEZkSLxsyItpcYksIpCz8nMWjxRXOk3g4wXcSm8DgNkHTJLJueAhCpP5xeTYYnTGNE44F0Vih6Ja14zTwOOHNn3+CqutWEgQcc5fzMHbtiN4aQLaU4sx0A9HJrcj4tlsSiKeZl2ilOHDpx4Vcp52PVlu6PsVMSim48x+3zNNjqbJKZqSWXmMmSnLAhVnhn7CxxkVAyYzzP2U3o9NjZTj/v4Gs/jLKi/AgxKfxKrK8WHGuYH1ekVeGvb7R2EsaWnytYVMSSMbgmyxPB5lyFfXqRA1huAj4+xw00zUUOaVDFtzWSLmo2OYhgSQlxRFRdOs6Yc2FeSBOQiAszzXIlXTtOcTsk28vNyCWluGfmKeZIuuSKN08nQ0aVjpEzM+sVYCnM4dtQ8YramqmsfHJ/quTyxqy1dffUlZrPnw/omuG6nqnPV6xWpdopRPjDJD1/XM88TNzQ390LM2KzKbS97OZePqOHYCbClPVRUYY5mSBcXd3S3OSQ13Oh7oukkWfST2UZ4X5HkjcqLJc3ureX4+0vUtgYmqtpzbgc2mZp5kO3wIsEkbPOfZUdc149jTdWM6J0qMlkUi+91OZKFRnrNX9w+8evWG0+kMUeFcxJocUGw3W/q+ZRgHwjwTg/i+jtMoqgGrGcee0+nINM08PKzZbracjjOjHwmzDDKrusAYWZhACJwPR+q6IYYZFSOruqRvB1lO49KwMMvlcx1GVFRYZVFB01QNNrP0XX8Zfmqjf6s5GSYZBudZhrKKTMkChxAdISpU0Mnv2l82c4sSSAb8eZFJTe4dbpY6KXjSdlzxQ9NWo60mRpd80sS/LHhPSIPgXOWs1jVZJgbnJvk4BR/o2pYZRddN+JU0Y+M0o1Jt6b18FjGI+iQkH7oQPctm3GWwq41hHMWcfxnoohQ202i0qJdSvgwxpq2yL5IsrbVsIcenzbsaa6VOqesVJskDrcnRyvL0eEwgZkSbnCwzWFswTTPv3z0mBkykyAuU85zHSRhXc6CqSlarDff3dwLo+pGyshSFwVhZSnBuuySH81RVjrEqMVpElXI6HgghMg4zh8MP5HnBdnMnA2GlsEYLm92LRNTrgDLiMeWCZ5xHSlMAAtgqLcCkDPw05/MJaxR1LdYGeS5y9aKQBU0LS6iqRK2hrSLOcmiqqPAuMIw9XduxWtVpM2mURXPIsrFhkMGVLBaJdP1ACCJJj8OQ5Omy/EmGkGIHcDicgUhe5CjA2pwYYZxcYkVnGJOlXvblzJ+StDgkwBHEGiZLfvMCOgScF9JKUcjysNy2rNYrVquKpq4uJIilD3nxt5RwbmbxFhOZt/RWZVlcag3ZZK7p+wnvAipG8R8eRJ1WNZqqrNhubrE24/7+nnfvPnB2w2V4KRvcNcZatLKomPHxQ0uee2b/ifu7O372J/c8P8lAfxwDu90zfTfiXMSNGbnO6E4DIUaGTlhSznv6/kxdV6w2BX0/M3uxrfr40V3AEu9amnVNs2rwswzef/jhkc22omruQM1kxrBaN/SdQ1Hw+nVBXbcyhMgzVGJens9ndrsDxii++PIVeakpqox5nmS7sY/c372lPQ+JoUlidznatv9MXpqluigxzpRcn5AedqW1YA7WkM+Orj2LMsZ7rBFljU7+9SYx9xabIpF7zzTNSmqGIud4OMrSy8/65aWHEoa13AerpkbFSJ7ZS8UpYFdIn7sM22Y/MY1L/k/ScDenM0ExdOKpKAsbZ9bbBq0UXTdfyDdZbjFK6rCiqpgm8XkPS12s0qKlBKAJ41Fq0sWvtSgajFZk1qTFPmlhmZaN6/M8XdSX/yESUFAqLUNaQO5Fvi6/YxlOSh6HiGN7s+Xh1S1tm6XdDjJUWzU1XTsk5q3m9avXgOI3v/5BgPHgUFp6kvO5ZQF2I+CdDJaNTSxzFvusDGLATaL4kHrfJXLZ7xa/M8CntbpM8JQSk8XP/fOyLKMoCppVI+aW00xZVpfNaMu2mizLLmDaIvddNnkteubPvQYWBpr8XplcVGWVbhS5MEprDocD0zwTovjalWUJPhCVxl4kvyp5A5aXCYgxi3n/dDmIlyUVwtIT6vDnr9Vae/HdG4aBSExfs0yjS02ngAjDMIIxF6ai1ppzd7pc177vaZqGZi1T8nfv3lHXDW/fvkFrzel04sOHDxc59N3dHcfjUfwDKknYXdddfArfv38vD5wVMClLzKllIclyXW1acLLf79NhKSutrbVkl7XbnRiXZpmAVMHhnePV/QNNXXE4yIa8Lr2HYRxRRi/kEplaKjHCjCpC8vtZ5LLSdL6Y0y+08YVSK83JZwh3TLbHl0JJ7oHFG1Ck2/ryswBc8hVRSmEym5pxWJZ+RKIYNYeX+2753S9TgiRlTJT45WeL/+JCx/1ts/wXGr+Alcv9slCFF8p9CAE3z6gsE7AxMfzm2Sc23niZRuADIZn2Lj4wMXK5BtZatJFDPYbAelVT1w3vdnv2Q3+RFMzB8fz8zJA24K5XK3a7vbB0dE5dF/S9FP4KhdeRaUjMRnJiiJxOHTEq7h82VHWG0hHn+tRQWJqmoutkst80Ym6/3z9TFCVKyRarshTzUjF4HZm7gZCWG2xv1kyTQ6dppEqyfpmIe7QpWK3WnE4HrLFkJhNvj8S2vL27E7AqbS9eGKyrVUNR5BfJudEW5+aLR+fxuE+MRZu8+UT+tF5vcG5K01rZkmes5J1hGFiv11iTc3fzCu8Dm60w12IIPD8fONMBOeMwpGvc8PaLO6q6pOuPbG8ETFu8H7uu5Xw6ozBUdY21inHqWWT4y/1WFjn3d/es12s+fHjPF1/eUVaW8/nMzXZNXVcE75n6gXGSgj8oiF4RUgEV4sx6U7Lf72Voows8DoXILhb5BDFQ1w2r9Rab5Xx4/4HM5KzXa4y2HA9nfHDsd4+8/eI1eWE4HHbJwkGkZFVVUZU1IaQJ/SRM7qKQAvl4PKWJqErMMmSbeD9wPp1o6owPH78jz47c379it3smBMjzmufdB2yWEZxnvz+z2dwRg+LVw2tub+9pz2fevHrgr//633B/d8fkerY3K169/gl/82//DR8+vkOpSFWUTPOUJNc5+/0TzjusrYhR8fh0oF59g0hcgcUjT7JS+peFqfH5nzRZvDCW9W8V6su/R5UM3JW+SA50OngXGEwMWPyloGFh3SFsPGstFMLo9U6GPItH6jL1X7xxl4ZA7ntpUkSKM19ymSy88pRlyThOTFNPCC5JyzSfv2Pisnk9XL5XBfH3VMS0rVdAvhgMWueoOOG8mBXHCFVZ4734ADVNTV4UdH13YRB7H2TL2ew4nTtOpxPj0LG9a/A+Mgyeqjb0nWN2jq6fubu94csvv+DDux2zED3YTz3TKP5lwSu805yOA+3pA9MkA4Y8zynLjOBU8n7T6bwxWCveNc47uqHDWMVmU3N3txZkkygSsEzkGnmeYa1KdhczNjMMQ0dR5mRZTo66bH0fp7RpjWWgaplGJU10IA2sZBjlnGxqneeZqi44nMR0u67EH0o8+DwfP37EOccqsdkA2fzdd6xWDUoJgysGnRgr4vkm1idBchpSzy3G2GITIfLYYQjsdh3DEMlzWK1yskxACB9OKB3Z3qy52d5QFCXeSwN4Prc0TYG1hqenT5zOhizXrNc1WWbJbEGeiRVBWcowQinF3f1tsjzQlwZguVe7dkggl5VNuomp3jRrvOtkUdA4JYa4bKk9HTusLUBNSdkRL/Xiar2l685p2ON5uH8gBM80z9SNDHiPxzPGKLbbNWVZUuYVx+OJaZ7JxgytNbe3t1R1LY3kNDEME8fjme32jqZumCaRMjXNCucDWSbXJUQn1hY2qWcUF2bf7vHAu3fvyHORWy5qi8Uzs64bQljqLXnGtFG8en1H2VR0bU+eVwy9WNuolFsEuLCsqpr75pbD4cButyOqhZ0cWJammMTGsFqjiLh5SsxmL8BZFK+iLMtACeA2TaIAIcrAN/iI0ZZg4oVFPI4z1iRmYYTgAj6K4ma7uSHPrTBMq5KiyNhs1vIcbNcYa9nv9/S9PPBuTizmtATweBB1TV3X+ABdO6GNJTMW78c0wBCZWYxiHyAsDBmyyKK+Am10YskIOBjVC6NKq2SlsAAzqdsOqdY7nc5p4JgTg+Z8Ghl6l0gCM1kmzb40xj4tz8k5TD1lKXYfQ++Y56XBHC9LdmIkPcdn8mIFaiQy4HyPDxnnbqIopZZcrTWrZsXxKNekHxzPzwKKrJoqAeQDfSfAa4yWtu3oO/FIzPMCTWQaBbBRUWFCxMUZYiQzBu8cp2lkHAWEa5qSssgBAa6ruiDGCWOkrq3rmjzPLiAwqOSdJj5mZaHoW2FmTpPUynkm7NXFumVynmmUAeJ6Vadh5MjhcEyAjceYQPCw2WzJc5vYsP7CTs6T/VSe5bjkB5aphe0uALlS4cKG/9wGyiUmnLCRZCGJSDx18vkzjKOAjrPz5Jnh9ZsbYfvNogBZQL3l/H7ZTq8vQ7mF6SeKFFkGEIK/LCCK0cvvNeYC8Cw9UIyecYgMw4l5FsVbVRXp/lcs25OVcuRFAyg+vNuLqiIGvviq4u1XK8apYyKy2uR07Ym6usHP0DSOYXDcP9xyf78WZn1/ZLNZkReGvm+Tt51PA2FZymSs5OZ3756ZJ0VVQYg5w3Am+Ejd1Dy8Krm924jEdfKM/TPEjPYcUbEieLFFUsrhZodN+UIYacuCwMDHj+/YbBt+9idvcIOiPTuen850nUMWjiku23YTsCakGdKilZjAJ3epfbSWeu10PIoc9nhMrC17qfsEf0gyWGsT81kWSFljhY1rLX0fCN5TlYkR6knLS01i6xlZEmptIllJVaa1DMBQ4GdPcGKtE9TSGxtiFM/QGIQpLQw9JwsDfUBlmvWmYb2usZnc31lec3d7x6k9Mg69EIlWK7Sx/PD9J8mJk09nUVL/xcWz+QWIXnqZaZxQWtF3HpQQEoJ3Cat5AbVjkM3pf3/AJLU1nwF48rOFsagvAPc0j2gtxKPVOr/0rVVVsHj6laXYe3z88AnnHfv9Tl5zslIIQUwwFmKHl8Xlcj6l15lnOcMwMo0e5zq0HihLy2pd0PcTxkbyXFGU/3/A4LM2Y7vdXkAV4EJJ3mw2l0QjSzdmtA5o9XKTL7EkqmUS9jl4JwdnvAA9C8Cy/B4XQkLg1UW3HUJgvV4TQmB83hFBjGcT68YHRUySA4Dz+UTT1Jf/773neDxyOBzktY8TS5IMYTnIX16v0J3VJeHP80yWZ3Rdy/F4IrMFQt2U5ul0PpNbSSjicTPRtR11U7MsqBAJ7cjT0xNN07Ber1LhN/D+/fsLMFQUBfM08e7dO+7v7i8sqWWxx+dmkqKBl4eqKstL0bv8nEwLwwykKDieT5eNZgJorNGRi1/OcRKAVqdrNjthXs6THN6y2IHLJHVJgJd/ovALcy891J9vbgRAv7D3FrP3zxl9C7tlKZyCD4k+HvncN2/5syD9L75IKUnw0lQvX/v7fpCfx3Ld4DO2CqR7YWHy6X+PebOAmTIRrQA4nU9igKqXLT4KlT6Hvh+ISuOdp5+mC6inkxF2CAGFTmwIMa/vuvYCkratLPHYbtZJYiWvabPZ4KqCqqzo+p73797Tdi0hvX+TGFJC7zY4F6nrAq0l2YUk/8vzIhWxAWMU8zzS9R11syXPcqo6A2ayXCcJDhd/yHmeLhJikWDWlCVMkzzbywr2aZ65v7vHWmHnCADnL+yRzHo2G2HOrdcNq1XD4+Mj4yTLPvIksVXAfr9Pm4h7YlAX2f0yNGiTzCnLbQKS6tR0SgE1jrKdMcY5+dXJlslh6DmeBVg02jKNnjM9wSm2N7dkRujqp9ORu/s77h9uKPKGx09n8ZkyjmlqeHp+5HnneHi1hSjbI+d5ph86mVhGz/PukdW8Ii8sd3e3YjngPe/ev6fIC77++puLd1ZZ5ZRlxeGwk2LSWvwwCBv4/i3nc8f5NPDuh2di0Gw2a968vePufsUwnvnhh+9Zrw1tK/JmYdUJk/f+7gYfHNPk+fTpU9pCatM0s2W93vDjn3zDYX9CRShLQ7XKUXrN7hn6fiT4eJF5d21PiD7JcsXfse9HzueW/eFAUdQ8PDzgvKc9txz2R2JU9J1ju41Yc+b9p7/DO09Vrdlu31IXGWWx5d37d9xsHyiKjE/vH9kfTuIv0qwpqpq27+mHjmE8M849VV2SFyXT4Di3pzT9N2g1JK86w+nU8XB/y/E0stu3fPNjjQ8vzZrit/1AXgQDaoH2ZAovpLsE4H3mNQKpgYSgXkBAmdLK/182ihHTf42ybXJyA10rAJdCtl7iA/MkjKfbh1uGcbhIvQBmJwsllkVR3i/WCfKa5tmheFlAtfjeLsOwxTfopQF+sTaI8UV4vHy/VuryR6Q/wj4WWXtGjAIgx6g4HdvLVkW0eD+CLD3IsoKiKDmfW47HTyxHR0iveb8/UhQFr1/d8v79I22UDbXogNUjN7dr5kkxDuDnSIzC3iEo8qzEmHT2e0eRx5S3DcE76iajbjLyMmecZqZxRJtchhBakSHb00AYGff3dyilOJ8PkAlgJubSsqV7Gk9stmtGNTKNc1oKIsCDbK97GTSA5Pe7uwfZYD86bm9uidGw3x/SkqvkjebFqFqWcmUJlBqIUbaWLtIXYQmbyzkxz1JMaxXTZj0BKLtuwDmXloRlKCWSYhmYWqY5eTAXOa9fPzCM7ykKzRdfPDBOHQoxrJ/niYeHO25u7vEu0J57jscjSonH8DDOrJpV2grsqOuCzWbDPI/pjNNkthBrDSOso8M+2a/4SJGVomgIwvKcRnd5n/0woqKm70cOux7vhVFQlTXb7Q1t23I6HTDa8vi047g/U9clzeqOPNfM85jsBkaqqmS7uSHLCrq+5euv30pOdI4sz9hsZXmIc7KetOs7cpsxjgNZntN2ZyKeIq9kyUhR0A097bBH20hWauq6Ic8KdvuDyO6jxUcnbAwVyPOcu7s7tLHktubd8EieZ8n+ocY5sbmZjTS33kMM+iKTLcuSU9qsLqqULedTjzYx+TAayrKmaWq0snRDy+64EzZF2qitkIauKAr6tmOcZbmZ0tJkGatT7eoJQWq4cZxkaQARkPdRlFXyt51SI27IMgEXvI/I1l+xdJCeQRbq+OD54YcPqSH1EBVlVdB3PW13xmYGa4QqcXe7pTv39LYTNtt6hTaSd50v6buRrh1xLlAY2Yqp0bgoKgCigCCylEbAzcWmR+poATrGUYzfXXqNy1IN0pA2xEggXJaRxKgwSiTM0zgzDSGdI+LhrE2G0QXz7PBTGp5Hxe3NFqUGDvsDWgvbf9XYNJRZ+iPxrIP24km+2+1p6iJZcxxYrXJC76RpjSIjrpsSbSzH845pFmn1NPaoGInRpLzuOZ9HzsdksJ9XkhuiGM0P44AxAmapGNHGoBLoFoLI+cfBUJUi0W4a8fwcpx6tFX6Sgb3VWmT/aSO6LLgI8mxFB1EkgotXbFXV0qgHAYqcc1RlBSGS2ZJx8InRJ4PDEGOq8aL4hKbt89qIpYKcmZa8KGQQrzRZAqkX5pRzwwV4W4bzy7BL8pa69CzGGIyNjNNIBIzNiXHx6BJ2kfcT4yR9g3Oe1/e5MME++wMyoFs8SZf+Z+lXx7RxG9ICSivqFCHJlLh5YUKR2FkCMGqt00bwFms14xiwRqyyYroebXumrlZobRgGYYD3fWTVbPj48R1WKx4ebiiLNeMgm4aruqIoZBlT30+8Wt3x6uGefmwJXpaoOD/T1BXGSr7NMqkPm7XFZrfsnyNWV/zqFx9RSnyPiyJn99TT9QM//YNbikJxPPQ8fjxzOHjmsQc08yRgJhrKIEOfGCM32xU/+cmP6MZdUqLI+elnTds6xmmmWW3IxpB6P3m/y9KLS0QuIJbYnaS6JxUoC6Fpke1Lryr1nEqMfWEAL/9tYSzKAp/g9oKHKI3zAnyVRXWp/TNrWa9qeQ6sToSS+YIJQEz3a4Zz6WcHqVUUFhUNCpP+KffnPE5Yk7G+XScGcI1SsogDAnmR4eNAUVick/c1uYFVIRvkfdB436OVQSTt/u9dl5chuFYKs5S3Rs6piBI7ASV+kgRh6mr126Dey/KM9Bwh9UmeSz4oSlmCIvsgHMZG1uuKphH/zN1+fxkajMMoz3ueUTcNdVMl2bERtabNCWFP8Ao3CwtY6YhRL4N2uR0CyjhsLgvTQhAVbEB6yR+9uUEb2Wy9Wr/gU/+x8TsDfE3TsFqtLqCJ9/4C/ixT9cWAV9hf/SUBzrO//PcLWJOAkrIsLwDWPDucE5bHwrATI9wH9vu9bMqDC6tq+XnjONI0Dc/POzGxtBnGZmgrCeN4PHA4zeS5RenI8Xjk9vYWpURG3HXdBYxxioSij+x2O8S0NX9hIih1YRIJe1EkuxGIITIMMvWtqip5270s1Oi6Tvx5loUAvWy/WdhyS7FUVQWPj498+vTpApSIF1LOu/fv2W5FWtK2LcaYS+O2LLiIBB5ePXA8HKnKktVqLfLjvqfIc5pVQ6YzzuezmOum6cMwjqzXa9quozufmZPfkkYWqMzOoRMjzs0OjaIpS0gAU0QmUD4EbGZfGJby1F3iMnFK/3+RNiT1wSJcuzSj/yEwbvl3kOZxuVc+p++iRA7z+abkz4HOz6nuC+i8/L4F/JTJbfhsUvaymUdks5I0P78fl89k+XkhyCG3/I6FHZpnOWI6asT0ehjRKt33CMVYii6NNib5FYoxs7A3wuX3Hg4HYoyURcHzbkfwjlNmeXp6Zh5H8X/RAh5WRckcPD6GJI/ziaFKOmhkgrLa5FRVyexm+nbAWp8W4QjtnChLSUKI3Nzekuea9x9+gzFiRrtsl5qmmdPpyGZzg3MBayPTNKbDZqDrenwAo7Vsokwg0P39HafTmRjh/uGeaXQcj2eenp5E1twPNI0sB9lsmstBBrL58XA4sl43aTK2+F8Ml/tgYeU6L2DDkuTneabrzgAvTJW01Xf5HWM/MeuAUp55kk2lWln06ZD8TFr6XvLZ7c0tD/dfsnv+2yRBKcjynLpaYYwnz0qUUrTdmXmaWK1X9H3P7e0N3snQo64rhqGnqkp2u2fu72TC+/T0Ce89d3f31Mmw/9Xre8kdw0xRWLY3DUZb5lkTfEZRGNqzXGOR1NUsG7aPp6N4SvQD0bl02OWExMAbhpHjWRaKbNZr7u/uAPEGybKMrj1jrWFyHTdFRZnfk2cNQ+/YbDa03Ynj6SDFeCkbvm5vb0CRJsrS1P3w7j1tNyZmQ0VZrVFoyqoE7Xnav2dOk22lDfUU+Ef/+X/BPDkeP51QWorSoij4z/7pP+Uv/+KveHp64uc//zn90Im5Po5A5Ntf/Ybd7pnjseXcnvBupiobgldstzccDyeKfM04Bn70zZdsN3fMs5fiI4ZLvlrAMaWW3JbkrgKlX3h84eVvC4iiuAw/ojgFvMTnLMEFBUwmyd45xqHFTwPBzVitOLc9h/0OFSNv377l/uGBX/7yb6VoTcugFpZh3w1sNhuMzuiHnsXXRZjK4sm35EPJ5So1IC/sBGESv/irLO9/Gc59PsDTKX8uDcoCKslbegFEZdOgpij+38z9x5clW5beif2OMH2VixBPpKgqFNAgVhe4OCHZJAf8t7tJrMVZNzEggSaqgKpCpXgipPuVpo/gYB8z95fgCIkBPVesl+9FhPu9ds322fvbn6jTmTKTqWXTPdN3U/LbjdS7EghYY8gslFXJbrej6wau55C8jqAsNV+Gnsv5o8i0gsKjpR4ZDSEwhjH5Hio0amU8Oie+TFoJM8JkgU2RMeWR6MVku9k2tC0rqy3L8pd6pISZpFJy9+12Jc8tNisIQWNUQfCa9taS52Uylbcc9nu2uw3eT+k59cnKYBZf2Thxu0rab1Nt1n5KGCcirxVWGwm8MxRlmZgupKVOlVhB2bpkmb1Ldeflc5rmxQ/TUBRZ8hCCLK/JclmGaBexmeK3v32fQBnN8HyVJnbzwPPzyNPTkfY2UlVb+m7mw89PxGjIsxJrxdqg73t2hxz6wPPxxHZbJgltSVHUTNNIWWY0TZ4WoeOauJnnJXWErr0J+yeTpa2czRmZrTAajs8XbJUzjjN//OFHiqzkfL5iTc7tNjDPgbu7DT7MnM83ykqCGKZp4nDYp75QszE1l8s5nRlX9vtt6oknpmlmHEZicGiT4fxMFoV5Nww9XdeR2Zzd4Q6bi0QLHMfTE9frlRikrvZDhwu5nB1VRgSmqcckRsjd7kDf90zTxP39HYe7A12SvhFFHpjlOc7B2EnQSj90aeES6ZJXsdHJBN5kWCQYwLmJus4Jgwx0v/nNb/jd734nPodpDliWyyEEvPJrvViUBXIPyXOdZ2Kho41CxYg3AZTUm67rxfKjtMk+52VhvSxKtdar754xirYbxO7BLEy1QN91+ODJ8xprBeD1buZ4vBJRlLVY1cQINoHiwsYWz6p5mjFKCAYqJYmrbEmPzKWXgrUmhujJc5lviJrZe+m5bMbCkvXep+C6tOhRiz/TMoBLjTdavEoXoECrjOA1KkpwhPeyRG/bYfU1DZDCbap1KZPnJT6ExDYVGfpif+GmEWUUdb3BzY7xNpDlYi9k1MzDwx7FyDhE3Kxwc6QqhalijcXqAmUF+BT2Skq4jDH1yrDdNZSVpHQPbQ/KE51LywWLMWI4vwSMZCnNdhhDmrckUVhmLUWZV4kdDhrD0DtJ0A2KaRTF0mYrSqUQZrq+XefE6+1G33YYMxGcsLCMls9rGAYhJQSIagGkHYvpviII49rYpPKJKZSwJs8LbrcLzk9pcWLIlCGGaSUByDloqMoqnYdOkpqNpG16L6EK1qokV450bYfzQWqJtqJQyew6E8vnm7Pb7dbZZRznNH/LPCJAlDC6FhsqYdsavB/lntYL20mBskRUsjYwaakzkWUqXZ/l3JdnqWtPL/OXVnS3mc8fO8pyizEhScszdtsNxIzbZeTTpyNVeWC/2TO0IwaND47b7QZKY7C015ZqU9P3s9TPcSDGUsL/JkU3RobWJxAHhnZAW8Vm57ndWoZOQywZhxY3RwG2XQrACLJwaTYWFWG/bVA60rUnprlnt9mhtKLKa5yOEDMy29DeHNOcCC66YmFCiz+oKNNiiPi1DTTCTtMvYOyL7yjrfGptnnyxFVm29E4C9EovlgI4k7zTOSekndRbDcNIVQuoNaegDednyqphCUGVWX2WNNqkiJN7wCXbrJgsX9T6PGhtqKtK7KACXC9XvJ+wVsmC7HzF+1l8TKscYTILRuSC4+npmO5Hed3zJL2a1YqgDIuP9C97xJcwVZWwAKMSSzqI1Y1PC4gQkmf8qzb5JQDWMY4t1kBVZzzcbxnnkb4f01lkqGpRf1lrOB6PYtlTCRFFLOVm2rbn06cnxsEl6yDPMFzSvG+o9zXW6LQIE4WY0mAzRVEYikJmxraTZWwIosQoSvE91UaWqXler33Wn/P153vwJRBnAS2WVJ7FHHFhWvV9z/l8IkaVwjhMoi+/NMyvb/phGFbJ5nLYLWDbMAwYKyBhWZb4rpMiS0hbRLUCZ3XdoLWVm76xfH165uHujqKsaHxgnk9cLy25yciylrIsaZpmZSTalLY1O0mnyfKC+8dHhn5c02Bes8cW5pzRhu1muw4fBEU3CBtvSSACVkDQOYfzbt26LHLQZUAex5Hr9cKXL59XAFVo6jm3243dTkIDTCnvO4TA4XDgy5cvlGUpEri6pCwK9N2Bu/0hNSpCkV8AUa8CZV0zjiPb/Y4qeIpeGFYhNWtN07CYpJvRsclL+nHAREWViyFz8J5ts2GaZ7QzON8S04AU0SuQswy7SkmKl3MOkxmRY4QgA55SK7vu9aZquX7L4bY2RFH+nk1A4J+yReMrKS68SHp9kjQt9/Dys5YGcjmcFwbnC1NlOdCkuSxLSYFT6qX5XGWk4UV6/vp7LqO/1WL8SwTnA8Mw4eaAtsL+cM6TZQL/j5M0ZgIOBpQX4+aqKtYirrVmt5PU3HEc8c4JazIEMeueAjEc2W93lFXD5+uFh7s7/uLXv2G32fD3f/u/pOsyrQeN9yDpe4Zmk0OAcrehrmo+fvyc7t0ZooBtw+Ax2hKjMIRyJfdaWRZkWSWFWon08nK5kuW50LKV4v7ubk2CvF4vLAb+eZaTWYU1GUO/DGqQpfQm55YI+wwfPMPQcbsJe7GqildN0QvguLBwhY6tSdCysATnFpstDAI5AGPyV5jdTGbFsy/Lcn7/+y903cT9XYWx0GykuTwev3J3t+P773by96Pi6enIMEzEKK+rba9MTlLCZt9Q1QLgW2u4Xm9smgbnHVmTSWpfFH8rYbtJwy7NgTCY7+4OXK9nsULwkhD9+PiQaogmzw139o7gLzw83BH8mcvlhM0C43Rlu6vT/SngZ1OLDMD5wONuj3MjX78eyXPZ4HvvGadp9Z56evpK1/W8e/ce7xxVuWUetQQBxIKqqhONvaAoJEExyxWn49Na50DYAk2zRWG4XVtJOg5JBqqE5brdNUmSMbDf3xHmin/1v/nX7DZ3tO3ImzfvyPKScZ6Z/EDbXymbgnffvaOocuCRW3ti6Hv2d3dcryc+fvworA9rMTrnt7/9C/7mb/6GP/7hj3TdSD9M1NU9VbXhzZs3aZhZbAZ8ou4j8gdlWZOFFjnWItdIu44XyUFApeFoqXMqhf/EsJI/0m8HVAQdJWxoco7oPSGx0Meho+1ukoqcmo/r9SqSuqhQGPpOmtJFNtZ10rjGJC1bku5tZvHRr8+KfOn0OpK8NsnkXtsOvK7ZK5tPqXW4WZYky4C9+AZZa3BKrd8rEJm9pygzZj9jbYaeHcHP6QwQME3rF39UazMul5a+mzmfeuZZ/PH8DKooKAvDZlNxuXxNiwbpH8ZhWgHG2QmLIrNmXb7NswAlLkScn7BeYxJrJstLNkVNxHA+T4AlBEPfDYh8T7zYximlvucZ4+CwJmccZub0TM9TYJ4g+JlxcLJYmRf7iSmxJkoBVpOHmdYhLUkmhlEkubfbJ2FBGb1u6YWlUeB9ZLc98Hz8up5RCztwGIQ5I8KTkH6uT4b5LzYTSgkogjbM88g4DhSlJFfmhQYVEtg003U9u92O777/XqRT42cUcHM9l/NI286czwPzFNGqY7dreHzzQFXlHO42uDBQpHCHcRBgFxXoh46sELm3814GSWOIg0jl5OxNn32EySWG6eSJYaS9DbKwmITlF6OiY2IcPePQp9ofuVwvKTjE8fj4Dd47DoeDMMjwzLO81zzP+O67bzifjwhTQlEUDVr3XC438qJIC+WXIJKlTxjtyBxmDocHCDH5MnturiUGnRgfnvP5GWsU85STFRrnHT5J1iVEzpCXlmHseXqaxDdylSmBC0HsShDvaJG9G/Ig7OrrtcMaYUOWRUOZlS8S4rElKEemC/quo65kCTYvoF5a6r6eFRbwaunDBMiPRGNRVgZiAbyzxOYa0/ItPYfzvNqu1HW99nARkXw1jQTevf8mTynAN9q2W/ssG4VhvrBm0Yp37+5pb60k87o0Eg3yzPfdhFJ27Y+nWeRiFotXfmXn6ORXmmU506STx5rHuxdrGKsUbhKAd+1jl8V1lN5NZp6ltr+kSVqTSfhRej5DELakTn2VLF4il/MNbcQHMESXGGyS6K6QgBtJbHYpsVXoMVYbbGZptjXbzY4ff/zA8egpyojNNE9fOy7nH8VfcAiS9oum7+RM8bOEXAmuETBKJYaol2fPyZkQtQRzaW0QW2xN1dTsdntutxt91yHec4F5FpZ+RF67ADsSvLUEMUYlyyCxeBHQyU1Jxh1kHh0T0N93Pc/HZw6HPTETECHPS4Z+Eo87bbhdB7puSKSSC0rJzEcCFaxVLMnNXdun6y6/t5yb0zRxu92IqRe3NkcpuLu7Z/EQnqaJpq6pqko8i70ErlR1kVQaM9M0YbVYKGhlaeotwzhyPrXCYCtfnovXy7FpeqkjAvOGBBh6FsYWUaTjMn5JLTDJwxciRVHy+PjA7Xbj+fmJeXYcDnvevHnghx9+FMDHSF2Xz2vpX2K6L2UW8i7yh396YrNVfPvdA30H203G16dnjM54fHwU8E8bLucbxip+/vln3ry9lz4zTDw+7kEFXPDEMGBtQZFbnPd8/HDleoRx9BAlNOdwqNlsSw4PGdrK/dZdBy6nG0MnYSdv376hrhrO56PYJ2TJcmkhKU0DdWNpmpr9Yc/5dGSaHOfzlSwr2B/umeczPnYQDXmxZQlnyLJM1IM+8vx8JEaxTLDKitd2+lrITAsBasE7RD2UpcUOv1DhCRirV2Zm1/cMfc/9/T0Kzehl6RiQ17IsuWQhb9O9N8riQmlhj/lloSDfu6xKghdWsjzDgTyXBdo4DQnoXpYZgePxSAiKTbMlBMfd3T39cCVGCCFyPJ4TmByJ3kgoi1/IPwvDTaX5IayKg2Xpu1yn1yE8C5j3gr3I39epkV5Ic1Eo6ivBRhuNmz3DOKdzQOpTUeTMU+CnHz+nZbXMdloFFAEfHMfjlb53aCXPW9+LCspHmMeRcQzM84U8Nxz2DfVmgws94KkbYTVOzlMUlqoObLc5ShmOxyuoSDeMuEmeq7oueff4cq/813792QDfgoC/ZuAtNOUFwDgej6sXWJYV4u+msxWlzfN8BbmWf4qPWZHQ7ZchfAEEFWr1+8uLHJ8ahwWsyfOczWZDnue8e/+O8+XG9dbSNA3H1V9Os9ltKcoCHwLTJABcURTc39+voM88zwKMKEVVVWw2G25GWDV1LQNwlzagS4E9HA4AuNkl8M6vksNl8DDJg08kETN5Kb4oYkIqqXFKqVX6tEgDBeEV+YrWmtvtRgiBrmvJEui5SOReS0Stlet2tz8wjiPn04nMWPb7PV0nqaPLULUk10XFmhK8fJ55lnG+SEJoXdd0w0BVlHINguf9+7e4RHttypIakTd2U/KtSL4/y3BrbbayprLMSupteAmxgBdJl7zGl8Ps9T9fIt+leZqnSUxN089ZgehUWF7//dfR8iBAxVIUFpBv8a2RezxfG9al0LxmAy73wuvXvEjMF6beci/H+OJlGaP4GJVlyThNODeDsYQoxfRFzmVRK/2eFayVweyFrViWJXd3d1wuF25Xx5s3b7i7u+Onn34iGM37t2/o2laCCvKcWhneHu759Tff0Xct8zwlQCsgvhpA0HiXhlrtscaQF56265JJtrD35tlxuVzY7Rrqess8j0xjh3ci/StyzTg45imS2YzBeeZZCvP1OrDdbGRbre0K+FubpU1Ki/diZNu1AvhnWYZ3InESI1iRXk3pvovRs9/vkzwFIdFoaJrNL0DYeRZw9zUjd6HeZ1mGsZJMhQ9UeYHzEz5MzHNgt9/y7XczRV7z9s1b/vjDHxnGjk1Tg/I0jQChfT/y+fNXiLKtvrvbkuU5eW7JC402PiVxJ7l3FOmTUoY5vZ/FE1C236xGzqfTmbqu6LpOtvnp6/7+gWn8wvPzCe9nNr5mu93Sd1M6ND0BSdvdbreUldyvt5skg03zzMPDAz///IHMCKg8jANZpnn37k1qFiRd7Xa9cr1cMErz3Tffcjjc8/nTF6ZRUiUzY6hKw+xmpgQWLefB7TagjWGaB7pzxzgJkHO7dnTdlbKs8A50KaFNMXqGQcIR7g4HMptjdU1WH5inSFlVKcl75Pe/+x1//PEPaG149/adMBGeRpwfqauMD//4E/McOTy84y//6teEqPn7f/g78kJqVFmW/Pjjj/z4408Yk/H48I5/9lf/iqLc8z/+T/8jTXPP//F/+D/TbHYYK8bxIiHQInFEhrcQWS0lXvuNKLUEcKTa8aqWxCi/pwCdVDeBiArLf4vrMzYOPdfLiePTV1DJlBhhkFljcJOAV6+tNZZwDDE69iuI6FM67VLHXi9aZLj8ZV1+YbSy1u4XXxq1MsJeeoj/slaSGNYonUA/v27ahRGDDD3Nlsc3b/nw80dOp1N6jh3n8w1rNbtdTWYLVHRAISC3FzBMG7hee8ZRMTvxNBsGed/WapzRBBfSZhyWlDhpeO0K1AXvyDLZzDofyQuDUrKc85H1HCsKSQ7MkkQkxiA+LB6RuY8BrSZAQplsWvQpZbi1PXVVkecVzo1kVky1z+crxlgaW5BnJQSz+gFZa7lebhAR03gPZV0B4j2T57KwGMchgRHLssxzuZxRSnG5XJJf74Y8L9huD4zjwOVywXvP3eGQhtQeVKAuSmYn0kjnRrIiS9v6mfPlTNM0PL65F9+h04WvXy5czoMwcIOnayeyvMZoh0OkaNdrz+w+02wKtruGLCspcmG7jU6Y5uJ3acizihhlWz+l0CSjFk9eCXC4u7vDzZFpFG/npqqYg6NtJ0LQ7LYlmTXMc6AsaowOqNijdAR08iSsabsr2pIYwz4xRMUndLnH+14C2KzJCOEFoCqKjCKXYX5KSa/7/Y6h72lbYYc3TUOeZUxRE8K0EHbFqNtoclVReGEMah2oqpwQxefp69evDEPPZtuQZbl4ovWtJAImm4uyrFevprLMkRbeEZXYleSF4c7uMCZLPo4jVmtspsnyMqVZQpZpvnwSD0c3if+jzTKiimhtkxTphYmx9EyLZC3Pc2yWMQ7DujyTBasAgN771AOLn9vy9198kEksVJlB+qGlG2/UCaRWKv3SBvFkDEmKOJPngc1mQ7PZcL1IOqcEMEA/TPTdRJZBliWboVGYbzazxDmutVPeT04IE9PkCM7jZs+ok6TUZvSj+BcTXwfFxbWuqJjOB6S2SzlV5CksZJm1fKp/KIU1i5efMOQiHqUzttsmAZKDnBMxMo8z4NZrJ9YrIS0lDPPk6G4jz08/cz61AmTNIqGtdiV1LQx+Nw8oBCDzQQKDls91Ud1YS/JnEzDVKLFacm5CaYPzo/QzKJSOqy9yCOKNFYOwvbwP5IU8J+MoYR9jlJDDGOfkXyhSN7GHMIAmEqmrZj1HY1BISJew2lCZMKF0RpYJucDoLFksLeQDLQuIQVJErTXEKAs2bQyzm9AqiiVHlDPSOUnHlJ7crMog8dxOi+yk/HHOc7neGMdezhcTKZRG6Uhd1LKcMhltOzCNU5oLI+fzIKnKm1kAzTSnLuD5GhoYXwCSpbdY5qBFqUTqR4gRFz0qRrEh0fD16xe8dxSl2DN9/PhJ/N+s4XDYJzZZoCw1bpb+RXrmgFg2KLSJuDlwPQV+mC/EGLi7m5NKLKMsJMhv0zRsmgOX6xkQe5vn45n9voEozE4f5M8ao9jtdvz880eqqiLOmnmSlGtjNe+/vSPSE5X0kYXZ8vWD4+lLhzUGa6FrO0xiKWaZ5e27N3S9WBlFrciznKbeEaJjHALOydKwqmJaSg3YDB4eNzT1DoXl+HxJVjlwPp+pq4bF/z0vcvHff9XjLHVs8Vxfnp8YI+Mgy5YlbHQBuWKMya/xtdzXSKCc0WQmwyPqSa0s9RJsOA8cj5eEQYziVWuUBNpkFu8XNpkjYpN3qMhIJRRxIissYZyxWZL6zosnvASODWNPWeYMQ8c0yn0QI0wuMs9gtXhgOjenOf1F+aST4kutdS+FXij16prBEpDxGgBcFDJx+UNIXxxDIM4zs59RWpNbuU/FZujFTs5oyxjDWpvlmkpoXdfOYilgNd5BEnWsdWWaJvKyQFuL1i6FdOUorTifTpJG3A98/XqjrCRN2QeTiCVyLjw+Hmi7iaenQd6/U5zHga6d+HO//psx+JYishSZhYW2MNYWsK4sa6qyYuinxEbKVr+AhT0VY+RwOKxNUpZlYnb7CsVdftbCdloAs+UhWAIWlgaiqiuuN/Hz6PuWaRr55v17APa7PToGhrHjeDxR1zVv377l4eGB4/H4Sp6kfvGaJFF0WpmKwhaQS9q27Yt/2CSJZ13XrR588+wIMabD37DZHCiqYv1+Hz58kMajWcJJxPR5GYQ3mw1lKVur5+dnlFJrut2ybRTfFQnZ2Gw2eOdXgPHTp0/UtfhZLdf8fLngozTDx+ORuq653K4QwSTmwuvhLC8EKFmSEpVWDOPAOAwc9nuIUvAvt+t6oCzJscBa2BY2yHIdo2Jl0L0G9mKM62cPvwT6XuRirA1CiJGwhmzIn82yjGmJd09b3eVniZeH/gWY96c/YwEJX5g3amVbLsDeQjH+U+BwuW+01uvn8toHUCkBrZe4b+9cihIXBpMUd52asYnM6FUOswAF07SkCgmY1/c9z8/Pq6FuVUloAkBZFGRZxt3dHdmdpElvNwJ2nW5X/v2/+3+jlMirbPKj00p+pljIRDabRsytvSd6VkCuLEXCa71IPLSShFSilSI7OWIQH4wQNUGLiasCrpceo7PEYJkxW8PX85Xn52fev39HluUid217xnHg7u6O5+OZy+XCPDs+f35epenD0GFzQ1VJk+JmlwyRJW1PxShyy8sZkIEiy3Kcm9ehYrlPlsWFSNEGST9UjrLM0/MMITgeHraMg+N3v/9HnHe8f/+Wosj54x/PfP1yQmuRYH36cGToA2DY7bZ4B8/XC3kBdw81f/zhJzZNSV1vKIqaps5ws2e3u8f7kWHs0Toms/UMa4vEHMkpClkEdJ1Q6/tu4Hz6I0Qxit3t9sQY+fjhK2Wx4XQ68fR8IbOGu4MwDEOI7Pc7brcTZZmz2x2Y55G//Mvf0HYd2ii6vuXNmweydFgRFV++fMHPs9gK1MIcHsdemABPX+i7xLY73BODeAyeLxN1LWb+zqfaoCQFLsawXl/xgoTPn44QLfvDnjFt467nM26ayPMCuy15/+ZA1x75n//n/4nT+QshRn7/wz8RQ8Sokmlo2e8eiBHObuR86aibDWW+437/jrv9e3a7Z7777tdMQ8s4zXx9ekI9fREw00l9+/DxA+P4M//yX/0Nb968p24sbXvid7/7A7/9i7+iKmsxmI+LCCH987VXX4yYpQ7EQNBxVeGiFDbVNELApk27QBoQVUQFj5smrpczQ99zOj0lxipstxuen59lmFSKoe+Zp1GsKdSLbHatQ+uyQV7rAu69Hgz+f3mLvl42/OnyBeIvaujys34BXir1qlayyu/k96WR1Uoxz25d/P3440/keYkYzcMiCwkB3BzRKoeYMY3iPThNTszuE+OQGOm9RxnH49sDdZ1xPl8JwVPXOUM/rt8PJIBAaY2xik0ubF6jc7RWNNuKJoVU9LeReYpcrpK4VpWVLPmmmc12y+3aUlY5IsMSWVhEaufCDLe2IMtKuq4lhoG63sjPMxnzFKiqLT5A8JrrtcM5j05+dEpZ8kxT15HFLzLGRfKt0r5bmBsxaLyPhAhxScjrpfZppVNfJX6rVWVSvclRyiUlRvIdUp68yNjvdsx+4Ho9U5mSaZzIs5K3j+85nS9MY4c1GdPoOB5bYdUR0UZRlDXnU4sPCqUzsYuKsii9XGa+fDH86lff4dxMexsTS1YRA9wd7jB2ARqEzdz3EtTjnfw3rTOMyXk+PUHy3psHR9PU/OpX39J3M9drnxh1kaETKY7SKUW0Lrm72xHjTFkpskyR59sVjHHOJ0kojOMgXpd3D1irabsbXSdL28PhgKQNT0QdGboOncCJw+EemwIxpJ/T6e/sAM04TAn0GpIXHiglS468WBKE8wSo9wzDyGYjbHBZoLRrfzNNI+Mws9kIcGps8pEbRJa+2VR4r1CqFK+3kICkBFxnwO12w08JKCyEIT0OM8bq5Js1rX3WorqR8LoowHiMDH2b3tO4PmviifvityzMmimBOApt0oCeC6sjz+Xc7tsRYxV+fgkoiDGi48vi05hMQGkk+XJZurjJCRveGIIfcUnyDiL3WhYM0cFms6FrO6Z5+TzmlfUfeWEsLjORJKaqlb2tkuxuWZIsdfV1PV2sD6QWLxnpslzTqYbq9HxKryg+VZOTEDwdHGVVY2zGebxInUWuZXvr07Bu0YVNSoLAPEWE3KXwiKdURCSNy+tcBnCjDYGYwjWSzEybNAj7tNROyy2t0FbSeTNbkttMwNCoxCc6MfaF5OGZhoncWJxyoNNrUiaBvolRnRfre6qqMvXPUcCNesP1ek7fD8qy5u4gM8jl0qZ+2pBnGZnNybOKPPOEcGGePUbnFDl0/RKUINdknh1xlgF98Ufuuo6qLNdFsc5KYVIm9Zi1JIBHFqk+eMIYcN4TvCTWWwvjGNjuKg6HA5tmS9uOnI49x+eW01H8CwmGGIyEKbwC+F4TTIB1Fv0vz3jSDCP3leJlzlHIgq/vO3xikC0WWErJHSikgR1Kab5+fRaCRr6ELwmDWYB6jZsjMSiCV5yOM0rB7XZEKTDa4f1NrIw0PDzc8c2377B5weXyxDh4bmZEmzOoyHa/pb1N7Pdbht4RvMIoSwgz2kR2uw0+9nz9+oU37zYYXXE+tpzPn2DOUak38E48PzNrqZsaCcvM0Qaevg6EIFYB8yRBSX03J1/DdLYEIfxsNrX4npcZSln60nJM4HOIhq4XVm5mcmKUeh0Tg3Lxx389Gy51blFkLQQdY/TaI8hnLfOrMN3kbB+nEaMNOrGTQwjkNkv+qw7iC6vYOY93EyZhL6KgCGgjP//+bsfsRtr2tmYb3B0eQGn0u3uCF4Xl09MFpTTDEFeVl/M9fa+ZZ1aZqnMCrGfJts3NKVmYgPdiZyC3qkrswCydDRmZtfg0A/jEKlyYjC+ztgBmISLKhFc96TKnB++ZAaIs9fy8qE4ztMmIQYxXX3pcy7bZ4v3M7XZBzeL7WFcNIchnIwCjJvhA1dRo4+j7mdutZ5p6bGZT4JtHaysez6NHKc31OpJljsOdZbdtaLuAm1NPHCB4WPxp/5yv/wYAXwJWYsSsOm4JVHj6+oRz8yrp7PuB4/EoIIfR5PoFNLper7IZRUztF/BDDogX4GRhtMnPFvDOWENI/kDOibQlxpA2VElepg3393ecTkdmJ9rz0+VMXUrIgU7mwUoZPn8Wj7tvvvmGOslVX7aFKWHS/dJTJMYoZplJGmyMWWXKWSbpbputJ4YlhTcZoSdAT0A5GQZ+/PFHyrJkt98RfOB8OUOEshRWok0JYMfn5zWZZbvZro1UVVUrKAjSiGgtB+fsJz59+kyMkevlyrfv3v8C4Ho+ikQtsqDbYvS7eitZSXWNWjFOE/0woBNjy2iDQvP0fEwJgyXd0HO+XNZrvtBnlzASkINoGQpFUvBLz7vXw+JrL73XA+biM7g0Q8v3ft1kLQCt8+KTtdyra9LsK8mseETOrwbSl+FTtmXyoAK/BCf/ZIh9Dfa9BgWF0VEkuZdNwCnr93thswprTuQEOW4ccQtzNAozx2iNUYph7IGcPMvo3LwCjy++gXJt7u7uCCFwPp8wWlHXNZm2EALX9sapv/Hz8xfm6FMq9USeG7QBMV327O+2bLc1ZVHy+eMR78WwfJHrZZlsrKpSp1RCg7EpAxwlEk1Sch56ZSX2fc84ztzd7SWsZRaAvCobdhsP0dC3IgMyOkcr6FJc+zwJdTwGGPqZeYqgAsbmEDVGF4yjk1QuZEvjQuDp6Vn8PoirV8lms5UGvutkcEqMWTfP+Ci+VcrkhLAk2GVrYMrHjx9lkKks+/0j+/2Wjx+e6G4zWgXG8QZR0q/a6ySDZut5fHPHfndH1UgYhQw/cLv29J1HGcP1fKKuc3wKI6iqiqLIULw8p5KuK6zDYZSmsql3zFOXBivF05OAoLdbD0FSsd3seXj3QAgzfd9R1TuuV0n5ur+/w9qMYVDMbuTr0xd22w2PD/eribvU8VbsC5KhNjpgM0WeFxSl4eHtnsvlxjBDPxZsd3dSz86RYehSSIyk50WjeHyUxuJ6HbhevhKDFqnKMJBlBX03cL1dyDNhWTnnuL8/UG80w3hkHs+cThc2G2ni371r+Pr5IknCZUlwI8bmbLc1Hz78xGF3YLd7T9s5js8ddXlPWZzItEUx8fnTR7ZbYXwYk/Mv/rt/zr//d/8Bj+F8/YZr+8zf/t2/k/S7aLi726MPb9E2w1phLEgY2RLqkzbtvGwqY1w0Wh6DYvlXpVUS0EhgxjJKSsPn6bsrY9/StVfmSQyPnQtcr1c5CxNQMiVm8Nu3b9datLJilE7+mSFJVrSEe8S41rulRv2XoNyyjU2J6IufSkqSFN8cGTAk/XNhAIqP1Mv3+yVwCC++b9IEirxdakhgGltspl8BkS9Dzel043pppeYrLcNGeGmkYvrnOMwSoNBU3N89irQmCHt9v9/TD0tqYsbtemOaJ4rCkBcW7ycCgayoJNF2EPb6MCxSFoPCMk+eum5ws2N2MygBt8epS/cAWJuL9D7A7dqy3+0Rk2stMr0g8jbnAuPgyEy1DgNERZFrplGkvLtdjbU9t2uLbXIiivPlkoYvSUzsug6lYbPdUxQZwzhS5HJeyHkqnkDTOKG1pe+7X5ytix1IiA6tAzYL+DCw22+w9oA1JZ+OX+m6lv3uwNcvt3WQGYfA2DusgTHMGBsYp4Fx8hAtRVGhy4wsU5RVxmZTijdS1+GcDF2XywUbDT6KHGkcJXgjy7J0dkl6oVGiviAqfvr5A9Mk96c1IvUKQeRUX79cqeqSqqy5XTuqukKSLSVx8O6wF4AiL2m2OVkmHmTDMND3KYHdyCJ2AdAXWdTp9Awq8P3337LdbWjbm0jcAlT1lmn2VIWcVfPkKLc1zvnEbHLJo7FgfziIasM73DSJcD3OoD3aKVkMujlJRi3jGGjbXtgE3UAMJNAm4F1iwXc91iqarBLfNae4HC/JKiNDIX7S0zAzqcXzSLzzoguc2xbtHMZkoBYZlcNimL08DyFGPJ6qKdEmXxmJ3juCkHXRJhfz+OjS+4os/t0kUH7xMa6LSgK0CivLNl6YxtPoUEoG9KUOiUfeqx4SI2Fe04svmkjJwLuZcZxRUUE0Ev6Swreij2hj6doB7yOkOuZ8pMhSXxkW1cArZjKKxcRf2Hj+VY0ToH+x2Vgkc5LwnBbMK7MFYlpOyPf5JcFiYQYKYytDkfHtN+/w8w+cT1dIf2eKDudEMVTXO9p2ApXUErMw68RuQfopsf3Z8vDwwOVyxTuPzSzG5HI/pWWoIqKUeFJpA6U1a0psVIHdbsdutyc4z/PzhXEMDINjHGe22wqbl7S3G0Ve4n1kcqPYo+Q5ziWfNcRzDCVLiL4f0dqS5yXhKnYqCglIynKLQnM736S+lSV+kuVVVEGABx/IMp2umTDGoo7rgmdhcedFhtLg3IQA+i8pp7nNBRzGiI1KJmeiUVZSSlWGMhqNZfZybo/jmGZATV5YDnf3bDc7iHIvEi3eWYLXTJPDWMX9/Y7FD1cnr8LX89DrxPD1BA1ia7EsmrquXVVpKpEzloADIV0ImCtnsoCbwjZ2wMjHj59pmjrdb5DlhhDFzz5En0IOlUi5EyAvZ7IhJFO6+RV473zg558/s9/fi3KMjH4MnK8Xuj6wP9R03ZGyypgmn1RfNUPfcrirKKucZpOhTclmUxKj5/nrRRjaZU079VSlQUXL4XAQMko/cE1qvzIX+6owOSCw3W2EOORFyXN+PnN3t2d2EwrF0I9MvaNuGvwK/lQ83Acu145pmsWeIs+JEQneSgQXhaKuKu7u7lYi0Is90EstEiLQTJaJSlCk3BKcMU8D3skMKTkGAuqJmshDXLzhpd8yxhC9sNqCjziXGGRaAFIXPN6LbP98lvAd5xyxztg2W+bRcbleaDYS0uGd5+6woe9m5mkgzwxNXRKIKxHJu8jl3DHNogrAqjXlXiHhEks/+MJGTCAfMT3jEtK1sFJD4BVpRidmrCbGxZf1VdcYFi96+XfnApJdnCWgcLnnJS1YRYN3Mz5GvJ/SmWjSwtWtBKLlehpr2G133G43nr6cUFoWpWVpCT6gc0PXy3Lt4f6BT5++cD4OjP0kNhle8fGnG89fRqJSzJOwZ8WXNq7PyZ/z9WcDfEabZDxriB4mNyUttacqKkIuTJ4lYttaqOuS9tYjhAS3Hs4xBkxm8X5mmoYEOplfeKLBC71VJGmekDbR8qWSjFHI7taKsb+Kso2c3Eg39czBc207hmHC2gyfClyz3TPPA//0+z9yulz4y7/6S6qmlgKoXphbUUvcuyTGmfRzpWCLZ5ZNA0G+Fs7tpklAYJZCCTLmIudyuYi8yjk+f/mcvFoyjsdnno/HFTyc0qao73u54WOkrmrKsqRtW8ZxXANP2rZdi+flcknBIFYSzaxNctrA7SYhHlUlPmfd9Ubb3vj++1+JVPpVIlhdVpyPJyAyh0Agoq2RRzGBnyJl9Hz6nDy0rGWYHEobmroBRTJyTmlgST5Rlrm8Zi0R38vQ+dp/cfns/7SZeT2gGmMgRBZvujyXgAHvX2jsMQQwMYFyBucE+Oq6Yf2eS2Mj6LsUE5EcyP0Uo/z3F2nuS+O4FGmR+EpjEIIc6H0fViZY3w/SaE3ipbGwVmDxMpuZ54hDkVnNpiqZjSTRGmnPsVbT1Dl1WeBcvXou3N/tqZLHR9t2dN3ANHsulytFUawM2XH2FCnNy4XA8dbiloNXq3VTMs8zpc3IC83sHG17QylP13apKEsSo00G0lLYNgzjhDERHxwPzX1KhhR/vcxYbKKC3y5ndrsdRWbJrKGpaoLzsv2SUCfqakt0cDyd16Y/szllWaMbg0EGlTw1Vl3XS/MdAm4OTGYmRE9V1ozpsDQGrtfryg7WWoB2ay2bzYa+H1LDl8JNkIOwLDM2VYX3E+fzWXz2EBZiXlQYm6OUgJ7X9iOfPpzS9mZgmBxuihhdoI3CezG9Px5P9MOF3/z2GzKbpc/uhpjoDwKgKghohnGm6zua2bPbNHTdiHMij66amtk5nBcpkneB4/PPXM4jTVMTw8jsHFkmW6PL6YpOBuG39kbXdiht+O5Xb/B+ZrttkFADGeTHceC7b98zTqMw9zKNsTlPT89AYLMp2Wxruq5FKei6lnGaKMqCqt4kpkXgfD3RpiAfASNHaSb9yN3dnn4QT9TrrZXhSFuCjvTdCCjaW5eGEJIxeE/wM/iIGz1j6HCzYho71O4NRd7w5r7icnZ0Q8/9/fsEIs8cqi0/f3L8x7//T/zrv3nD3/z3/5Iib/iHf/yPfPj5MzBgzIy1kYeUUgfij1JWJW038OMP/5kYHd5Fms0dl6vjP/yt5f/0P/xf0aZAvAaF5RqUTzSylzRdUBA9UTruFQhUSderlMIqlfCutMX0ATcPDH2HIrDdVEQ/Mc9jakY11uSJ6aGYh46yLAjR4twsHpUrU048uTL7AtyJp5QwgqXerTDkeh6H4FZmcoyR7bbBeS8yLBVfFi9B/r4PwjRBqdWDRanlcsj71Ypk5vwSjLSwAImJeZa2uVrLIGG0JaaokoWhJ4OJSinYr+R6abAR+b1IVoKD/ibm/PPsyDZlYjvIOX+99SJVdDOZTWnu2tBUBcM4cLncBFwrapF9jC0hZhRZzjQ6QnTCOPBB2ADJl0opjTXJd2wYWTxgvBcA6lff/Yqf1Y/cbleqssB7SZo9Hk8URcl+v2PsBLAS8/VMvO7aZ0AzTR60SjYiMqiJ7UbJOHZAZOh7jDUimouyTBLAsIQQCUquuySdBmKUc2oYRqZpFF+yLJJPivvtNslYLddLx+XSczoOXC9OGHR26dNmsRCIomiomxJlApudhO+AIvolTMFxPp+p6kLSyi83isKmnlL6r+u1Y5zGxDAL5Hkh/ZnJIMoSZhxGQlqaBR+pyhyFZ0jeXnUjDAiA/WFPnpcoGhaT/bLKcbMM93f3e5EmDf0aBDRNkureNJs0LJ05n88M44A1lv1hQ4yR8+nCOPWymEFzu7V4F9DKMjlHVTUCY6Rzzto8DUOarmu5Xs6Mw5DuT+i6K0VpefP2UQaSIGDcfn9gHK/ChA5KAJAgPnBZXlIWUouHoWf0nryQRPRlmPEhYrWEcUwhMM0TMYhX2Dx53ByYfWBMrJEi12gTRaIbArOf0QomL/UuKkPXtmy3ksCYZxnXy4XtdrMqeZ6ejux2W6ZpYhoX24AFLA/pdU2Mo0JpR4giMVZKcbvdkq/SRFU1bDclwzgyjMPaI0ZEWm+MSfVHasfyzPk0r4j0+0WWL3avacHAy0Jisf+IMcr845UwtJZahDDvloWMfi3zUqRgHIU2BUUK85qce1lrRNYZZpHuRgVBgY8B75clUPp5OqXTp0F/GL5yPJ7wCewMcT1tiBFu7UAMimnyIm2fhCGnQsQrYVkKa8dzOt+4vz9wf38QK4TTmdxK2MN2u6FtuwTcKoYxsenSmaeiDO/D1KNbkceipQ74KMuN4COXa0tVVihj6Z0sr0xuMJmFWWNTIJSbPEs6/DROEOCv/uqvyHTO9Xam6wayTMDZWz9wOl6FVVTJMzbPE3mWU1YKH+DTp094L9CCdxIQ0vY9xlisUkIkCZGqEMY2UeYTu9pTsQIRRV4Qo2eeJzlbEnnBheSjmNhIwrbWZJl4aoYQ+fTpi/TOw8w0hsQojngvUuvj8YYxaWGPMK9QkRiSF7fSCbwwKBXJMgnuePdtzW7X8OnDiX5wWCte3LLgqUXeO5E8d0M6I2TBMY4T3stSSkg9Iofe7UTtUdUl0zSkNGQBkGVe0yxhYyEKG1QrYcELQdCTJ8b+MDm+Pj/R9wPt7UZIfck8tZyOLb/+7SNd34MOKRU6JgZlpCg1dW1pNiXTNHO7TQz9tC7A99/vaW8D3stcptDk5Y4lSNCHiHNiW1JWNU9fn+m6dvV2JIq8sywrlI5YXQjQhEiuhVnnuH+4o6xK+l48jcdRQkGIjizTWFukeqOZpxHxq+1XjKAocrIskUuCpLAaBdYoQpYRjZEaqEh2OB6lpKYt3qVFoZKlwrQqkoRxLzNsELkdpM9BRSP9R25p+45rOxA9FIVFxRk3XjBW0XYdRSnLWGGnwvXarkxsYVKLZVqMKp3hRmS/XiVGqLAu0ZJ0rbVOVjU29ZDCepwmudcgkOU5EWHqBy9g4XJ/yXP30kH/0homwqs6rfWS9xDSZ+YRn3z30oAqkXcI0/2amOEWEDsCq0Kq5wE/w5evz8LoBZqmIAeUMagoXug2t2RZxecvJ758veKDYp61AJd5QV4Kcet4uhECeBUgCpa2eDD+OV9/NsD3OsXqer1yPp+5v7+nKIpVjhqWpBoU+/2OLBN2mxtmtJEURq31aibpnMgiYKGpi8/cdrtdkd6qqtYN2TRNkPzNjLEoFVLCybwCO0rrZDQvjd61vVFUJUIz/srbt49AZHIz2kjhOp5O/PDDD/z617+myCTMoigKtNZkZpOYCNKUSCqVWkHHRW68yFCVgtlNKz0bLTdOVZUQ5fe/Hr8CsN1ueX5+5nK7EUPAWEvbttRliU8eC0oJ4FjX9coUvL+X7cenT5+w1vL4+Mg8z1yvV5qm4XYTs/j3799zPgtIUhapUBmdABoJC9jtdpIoGQKb7RaQwphn4kV1ul0TuOUwadg9HA58/foVpTWTm3He0U0DxljqskihIGL+Pb4CsjQv3nQhTcGvQbuFTbckLr+WwS4N1iJrVUpB8iZTSlHXVXrv19WYt1uMfJ3DuZRCyYtMQgDiBUwU6cHCKnkNOC6A4sI6WVKUlv+2vL/XQO9rSv0wDOuf09ok82XW1yM+ODlhXhK8Ak1TkWdGqMgBisxSFjlGa+ptxWL0usiqrtfr6gu03UiS38KObdsWk1l0l5L6FGkwl2uZ2Xw9zLe7HGOXbZulqTcEH5jcTF1WODeAEsp3DNBeO4IHaxVFaQjOy/YvaqzNKVkYIiKts9ZSFCX39/eAyH6yTPx7xsFzOl3wPnA43BO8ZkymxDF4iCNZVgpT1sxodPoMhX6utV5Nu6uqxJgMazwmL6iSMXg/tOshu6SL3W631dNkniUGXg4L2SBPLrLb1Tw83GFMxvEs2+h3b7/hH//hD4AYqs6z53T0EoSgIkVeEb1IzKTZgKjzdH8Fvn55Is/fUemM67WXeyGAzQr2hz2ZEeA6z1vGceB0apF0rJ4ssxRFw+UsCeDTFNg0GzIbiGGgyAuImvP5jIoWo2G3FwPqoszZbRuqyjK7AecG+r7jzdtHvJ9Xlt6tvWCzhXUVGMeZqqrZ7bbcbi0P93cYbWQrnYtE5XQ6k5cFh4Nn02ySL6JimDuRwyQg/Hj8QlUWHE/PaK2Y3SRyYFXIljiB6Xkug3VV10l2PzCPHU0ljSYx0oaOothh7ZJemWFNzfff/YayqJPX0ojNNP14lYRkHfn22+94eHhHVTYMY8+/+TcDDw9bbOaY5zYNQxOfv3zF+UjfT2yaDV8/f8JkGe/efcPnz1/Z7B549+4t/TCQ5U1aFEhgkFLCwlgWU3EdABfzdWnaiUu6okp/Kq5NofxFz9B1xDBzOOxp25bz+cjpckZpI3LOVDu9k+ZknCZJxbOG+4cHNpsN5/NZgDLiWndDCKvn61LHFnnWC6MubeNnl5gA4MNM3WSgBES6XC+0tz4BLD7J0iNGLanbnqi1DCtaLAGapiTEyOlJZPzLllekpvLzdfLUWob+BZCcZ0cMkcXjZZ5E2GZtzqz9et8ak6WBSBr4rhXgI6TzuIkam0m4TT+MKTFWPMemOdJsCqm3UXN3d+Bu/8Dnz8+Mg6PvxUsvz3KmYQlnUmnj7aUmeo3NhJ0SESaK9A1GGPy7QwIePI+Pj3z+8kkGZaUEKDMlRud07UTXSQq4TtLcrr/RtQNZJsNwQJIDpX8xZJkAvGVZM00d0+QotRVGV5klRowkFnvnCTF5k7lAVNLLxQR2TJPDWpGbbrcVMRr6biYGx9hDDDnRO7rbzP6wIc+MgGWFpK/HqNjtK3aHhma35XQ8ow3MY2TwMz4Y3j9+Q1HkWKswVvHmzZQYEgXX64WvT084L6mlm6bCWOn3nJMQADFPD9zd32Ptja/HY+oNZ7abOrFgI9tdTVHUFHmDm0n3rbD0jBUW2LVtqXSRJFbCVi+KkmGYmGfP5drKgCefuvjlZZmw04d5tcu4XG5JxeFW1Yf3lwSSB2bv2G22FKWAe13bI4ECBU1TkSVGvDABFU2zTf5QjmGYqUoBLi/nq7B8sNT1lmm4MY2SRKn1jNaWoqgJYaZrZ0KUpU5VbXj6emF2iNy7KsAF5jTYLqqHy61PwPKLZck0iEwWgvQBRsCGGMVrsteGzBisNsQow1Rd1xRFSiHeNHSd5ny+Ih5TYjVRVTWmMExTSAu6cg15ud1u3G4tIUBZyvxgraXW4Py89lmzE5ZnUeTs9huMFnnqPMm9OCknbA9tXjKRElsM0pCYlsUvC2cBfEKyJ1IglgxKiahWSR0XgN0ConKS9k8ka/MkvZB3iTygUnKulvoUY0qIXOS8QpiWax4DqwFEUMmDSicZnMfNDqt10mOSGOPyv3FwBD9glElAMCzeVgQBcpSSZNPggvhrEXCzI7iIyhZPT8s0WdpuQPNiVK+0IS9zitzSD4vNT+Cwv0thMRGVFjQhJNmp8VzmlrousZkwlqdxFhAweKyVQX9OgSVv7u7I85Kpm9g1W4KfGYaOeZolJCOdtUpJSvw0ymesiHQpff18vuBdGsxtlj6bhRUu73eeJ1AvfrV+9MzKJ3abSLRljhAp8Tx7ikISRcc5MI0O1IuiqKoKSpMl4CwwDDPEwJcvJ26XnrZ1zGN8IbAEmFVMSawvjPplXmC5B+JiWRQSiz4mxruwC+ta0snls5j59vt7Tscrp2OXlgkLcUGtMlGBC5ZgTGGqvnnzKAuXq9Rsme/8qyWc9Chyhr+85hcgRq39bQzw5csT2gSyXPPNN99xOp24XK7MLvL5yxOHfUUbe7xzxAjjOK99SbN5nxb0V2IM/PrX379Y7syezXaDVlla6Dt0ShOeZiUWPTHSty2fPn8WVYySM22326bPZiBiJQAjKEAzjg4U5Bqu1xvGjuRFwWZTcrt1aC3PuNGGoqqo6wajDU/Pz9jM8s033/Djjz+m4M3Fkz3inRBgFpsG7z3TOOLcnJ5fnRZf0ktluUUFQ2ROQJmlvd1QyqT7Oc2kaiGTRPGdtAKy2cyw2Vbs9k1iFusUyujFGscHNpsGrQUwV0ll0DQlwyCLrSl53ostkISGLfXO5MJKi0lRpqMQRRZVn/RvkhMwjGnh6gOjn4QxvZAvho7F2w+We0yYzkYFWaQoJX6MWhbIy7O2ePEu53KInuhfVCdGL7O8zJaLajPPcyKyBFPKSBjSLKGuMUjopEkLoywzOD9RpLT3tu8ZBsftNuBdFHavk6e1Y6YsLdYkdUwkLb6Xx+K12Pi/7uu/iQdfnucMKRTCvkrE9d7T9z27w36V5jonxQVS6hoqXaQlmW5OKPQSsCG/1zTN+jOFASJSo7quZVvmXyjiS3FaPNuce/n918EewzCQV83qVfTw+JiKmhTFTdPwxz/+EaUU/+Kv/5qyLOm7DmMtMWm9i6Kg67rEMNQriLMw/ZbEr4ho5qfpJULeu5CkvL0AY9Zwf39P14mUbgGFFiDIWklYbQ6NhAwkMLRM3g9FUfD169c1YORwOPD8/Lx+Tvv9njfv3lJVFXVdE6OkjPlUvGzdcHd/z5wAoMfHR9oU+LCAlza9R5VZLrcrbvSrp8rlclmv8TwLUKoRgLfrusRuzNLyQBgUuc7xkVfXUB7KRYbBq/+/SKWXIri8r9eSVrlfFvBuSWuL6z0UQpCUTzenYenFn2/5kmEyCtMlnayvo8QXkO9P5cLLe1/ARmA1l389IAvwMqV7OVu9K15LlkOM+EmSZttxIHpFiBNKa7JckWHpOidejIXIa/cHkZKJUbd4hs2rPwfrweacsA+n2WEieH9bnxeR9QrDBDRlWWCsZhxnZidNzMPDge+/+56n5ye+Pj3x9HSCIGDxMDi8lw3ePM0Enxo4Fen7Ubwu9ItPjWwvDbvdfr223377Hb///e/IMvGpGEcZCoyxKAzDMNH3A/f3BzabitPpxuX8kabZ4Lxssvp+IM8zmqahaSp0YsiIIbq8N0gydGMo8mr1WVrqkFYGhcHoDOdnrpdOKPKZBnJshMeHB5S2tG3P7fKFDz9fOT0NjKPDWJHLjeOMSizMvusZxolpdMxOUeSWohAPkrIy4uthxCfkeunIbMXpdMbmFj/OqAghysEsIJGwaqqypCxkQPry5ZmuH1BJKnULLXXd0DQ5X76cKTJhAR2Pl8SALIkEitJy/3BHjCNtf5EwgPqwMp66rl0ZKvPseP/umwSACEslzzPevXuTGHlureWHwwNF2aCNYrfbkOWlGJi3PcYUFIU8z1VeEsqMui5QKlIUlnEaGZKf6H6/RR0K2pswX8Zp4Ha7stlWeB/JC4u2mk+fP7Ld3KFVxvPxxrv335EX0pzu7/ZYO6ON5dPHjxxPXwXMN4rdYcO1HUB53r69p21fmpb7hwN39xv+8Id/4POXj6DEAy/PNbvdI+/ffYsPmv/7/+3/wfnYU9VbNlvN4XBH/ordttaYKGCaECdTo67CglWlYZK1vixA2jAMdO2VzIiv0efPnzmfj7xP130cR7FomCbGSdKlf/39rwnO8eNPP+D9xPVy4fH+13K/O8fbd2/TxvK2npnLOTaO4/rvS21caury+qS+ppoXItfrjUiBzYRF//h4hzGRqq7wLnI+doxDxIkpStq8AkqYBNtdgTGesqpQRNqbmJwPQ0CSSlXyhkus+kXrp5Jf5rLRTQN0SLYYkQDaE9wsrOPocVPyLgqJjegVSzLm5SzKApspZufJCoPWkboucbOjvU1oE4h4Hh63TG7gcr3hJ9lcS29iGKcOn7zt8jxKg6dy8rxmHN3qcSTSKk2eF2w2Wznv1Mzlcub7778HBV+/PrHb7tGq4POnZ4ZeklEzK/YgmZVU3K4dmKYZ50KqbcLqWpaBLl2Dw2GfzsAgoFTw9N2YmmQILibD7OSf6x1TSkpdpGVVJVLJeR5RZFzOLe2t53rpuF1nLpchyU0010vLBU+eK/LCcvfQkFkjS5LMEnXkN7/9lp9/+sz51HO59ASv+OGHH3l8vGdJU/dhoq5L7u72eC9BCeM0cne/A+W53a5YK2l0WimqUpZHwzBwvZ0JYabeiG2A1hKO5L0nszlFvuGaFlRVVfB8fAJgu5UBZ7vZc3cv6eRV1UDUaGXxbhBG2ySs6Ty3cs8oAdX7fqZpHF034NzMOE7JpFzM6n0CS/NcUjerogIU8+S4XM7Mk6g2jBLf1SVMTSlFUVQ4D3XTYIbIOFzxM1wvV56fLwKYtRdisGRZiXctbdennsYRfcTmBqUM0XuKvCbLcpomcDq2fP36RFGUbOtGlo4hYJxbmWjTLOCLMpCZxWA/yTJHjwuR7bYWg/N+ZBg6lFoSIoXp1PeyJBc1ys+Qet4YIlbJ4NaUOXlhqes9IUa2mwYXAx8/fuR269KQZVelxTgO5EVOU5csASe7zZb9XhY/eZ6nRNSvBCcy/mUJ5n0yXkcnX9LU1/+JD7RSL6zkpT4arRNDLqWKqnVqSwNpslkwYKxK1gECeAt4EJNiKKLiqxTyNTAEQNj/IAC2LDUS0y+kYTFKAMfCuDYqE7j/1VkkzDNPudmI7/F8Y/EB1anGRgIa6YeulzYBKyKJ3mxlwfz8dGGcRibn5PjSkkS82RbCdvOyhMpyy+l44evXJ/ysUl9naW9jui4SvrYskqoqx2jDMM5kmYCAwYslUGYziiJfLX8ulwtVVfH48JZPn37GE6nrLW4mPWtyTlkrrKYsyzHWSpDP7OWaBZFvLyxw6RFFOi7n45QYoCnoIAY2TZPmOVk8EWGevNTJeUYru3rbCoPLCLiBsPIWto6bYmJzZjSNJcaBUc94H6ibiu2mptkIK2233fLzT0/r2RG8JLiHdB/EGIg4dLCYaPjhD184HVuszWiakrzIeHjcMruOEEfQM1mhcCk0xVjF7IYEfMtnrY2lqivyTIgr0ySS0DzL6buBuqnY7x75+vRM3y3ehfJ8xBASUWJ5ThYGrDwviy+oNpHtvqBuIrv9A9a+ZxxH+r7Fh5m7w13CB0aOxxPXa8cwzDw9HfF+RgF1UxKC9J+Pj2/44x/+mBYwjnEUeXMIkFnx+j6dzgmUF7uOaRJp5fv3byiKklt7RetMZN1BFHV9P3G7XdFa03Ejy6QXuV5lnrJGeuuysKiomP1MP/RkNiPL7Wpjtd/vWAKHFgIICT/RRgDZ4EPCFZagFjkzmk1NZrOVyKCUTsznFOhpxPZIGy3KOGXYbnfM85TIJOLdKTYiUQgkhWXTNHx9euJ8uoo9SJb8jyeXZNqRPFfc3R+STc4No4V4EkLAu56um4WlZzNZcmjS7ClEIW000+KnufZpc5L7p84wBnxI9VTrJG2PqZIK83mxPFDi5Ct9S3p2JcRH6mdIyFkMi7+0SixpWVYuiw9h6Mm1sdoSlcJmOXqWZUFd17RZx/XW4rx4jrrZc7v1GCM98rapUEoxTGIHJsvRtBgIEtw2T8IejDGwP+xQdGvGgbWaLP//Aw++cZq5tUkyqjR39/fcrleUUpzPZ4wxnE6nFbxYaKOC7MrQUJbl6p0CrFvAlwQinSQSYWXsLUmyeZ7jQmAYX6LBlVJcr9cVfV2kqlErQt9DkLCCuqrBR/nA+g5zPkuzmudsd5JoVpUNf/j9H8nzgt/+5tfUTZVuE5WKckyvf3lfLyDiwt6DhHDP86o7F1NIAaF+/Okn8ixj1+wwmQRkvHnzhq7v+fL1K5qUlqk0VV0LAIcipOYiy3NUjHz6+JGqrCirUlgiOlJWBY/ZA+fTZd3qTNPEMAx8/vwZ72XD9HD/SFkU+GlOprOW2TnqpmbTbJhd8j2pa/I85/bpI4RAkWX0XUeemIDeCXtCW8M0T3J4RXmA87zkcrtyd9ivASYRUJ410CDGiE+v8/WgCb/cZkhTK3Rn8e0zK9AXQ0iyHdbBdTlMxnFMh7Rd76fla2milntGQhqG/+IehEW2ZVba8Wv/l9eJ0mIUHdYi5JxfveaE/fSSqLa8r4VxKkleEaPBaCtee1qjrZXGOEnCrYHovYQbeE8E+q5jmCbZvKbXKFLVmfP5ggTc5KBlCyK/pFhZK/4m8yyfx/39lr4X4/HNNqesNNf2K8fTE85N4jtixRh1nmdu155lixhjJJ8zDne7dQOa2QznxXtJJXAPIsPQc71e+O677/n++1/xww9/pK42bJoDp6N4u8FNZA2VRSubwiOuDMOMYpSUvShME6cd4xgT8C6HvlIZwUeKUszI81yYk1prqrISQ3uE+k50Sb4tJsHeqzScR2YX2O53DKOTWPqQEaNFa8vxuWO/39JsapwXD5dpnJhdoKosu7sG7yLzHOhaSbabphkzV1wuN0TW6Oj6W7qXdGLizFzblhAcdV1hrTS40zCle1cA63G4Jvq5AKjOifzgdrsSwoyxFZtNw35fMI0OHxxVVXA4bNFaUuu2ewkGud2u9L2wAff7A13XJU9RyziJV9/PHz5Qljnfffc9WovP5TiOKa2xZ5oc290uJep5rA1oI7VstztwvdxSbRrZNDXBe5SO6Z4b0/uUxr7vJCBpnoRZapNkvSwL9vc73DyjR0nizjLLw5t7mqYUNuA88uXLTzzcf8uPP/7M0/NnQvRM/YC2sg39/vv3oByfPv/I3/3df+I//O3/ivMtSnvO52c+f/6ICwOPj/c0m5IvX38isw19NwBiL7HZbvk//O//L/zqN3/Nfv9GWGd+XlkRxsiGUcfEDEm1IiL/voBmWimUEZl88DKsfvn8CaMjI5EPH36mbTuyzPB8OnO5tVxOZ2G1ApnW/PYv/oK//Mu/4u/+9m+TN4ssU56fj+wPG67XK8EHDoeUpP7K9uN1mNVSmxY/3OVrGVhegoykAb6cB5QGY5YhVHE5tWijyIvE7Ow9bTuIpiylKbg5crtObHbSeD88brh/kCHweLxyfG4hGPaHLT5MeOdxbvFzEellTGBfTD40JotYm5FZMAE2m4IQYZ7keZ7GWSwjeBnYs0yYyBFJtDOZgghZLglzu6bG6MgwtNw/NCg10/UtxgasFsDHGgOzULIFvJO6nWXihZRnBS7OnM83FBHnPU2VU1cV8zxwfD4lpm6BD579bs/lfMHNYpDvPaleS6DCYi0AinkOzHPAGoXTjqzIqeuGfuxW1UGeZ+JfunjeEtjWYiMSUBgU0+RSYFfy6c0z5lmWQDptvJdEYQlF8iKn0YZxFHar+ISJ5Kco5XzZ7Wupe3NPZkWhkZeWgPhF3T8e6PoxWRh4hmngy9cnpsnxcL9ju9lhrGIYRmIU39GI+DxebmcyK6y7ppFQtzJJn7y3HA4bNq5imieMDrx9e09WWK7XS7IM8Tg3cHq+4oNcG2s1m01Nnlu+fH3mdDpRVaXYjlhL9Iq+nZiTiXZVFTw+PlCUGTEm5s87hTG52GTkG7SayLOAViN9GCjynP1hS1mW1LUkKErCeBTgJy3MlwXdfn+HMZbHx7corZjdzOl4oW9HMlsyjp7D4cDlsqfvJoqiZDFp32wabJZxu7WiwEjsGh88fT/z/HTBZhY3CQNvmmaaZsvhcMf1eiGEQF3V+ADb7UTXz4zTQIwZKmP1YQohUDcFJjN8880bbJbx5dOR45NIkq6Xfq0vs13YtBY3y5BTFgXzOBIysMamUIg00BqEqZnC84yRAI+iyLBZRohemJFaUyUVirA/FOfTmUikaWput5a+G3FOQDofIpvtjhihKCbatmP2MowFH0XCmNJvlRYwKAQZKhdmizB3FEvYoAAkwmJsNjWbTcE49dhM0fcShKJ8SoN1ENwCDv6S8aQQaZw2sNlUdO1I3zsZgGNMQV+Ldc1LaMfCSEFptJElePDCztNaanp7u2GMSooZYX+JosGtP38hKCxAQ1SK0/MtgY4iwVVGGOdFYQkucLn0acFj2O4yumGkbdMga3KKImOeBFBcvOXElzUSujH1+QY/iz2IWB1EDJEyt1RVxeV8FmBMy78XeU7TNFy7jqGfOJ0u6xJHKUNVSSDZ4s9orcFosZrSovFHKZ1AdGG5Lh6OwrUXEFJYRybZP4isTkDSJPEG/BywpUnn4RIEKeeJKJiW0IvA7AJGwzhMbDd7wGJtL4B/VXI4bPHB8eHjRwgbFkbdOjul+3RVH7GchQGlDX3rsZmwjr0LTExoo6jrhiKvsbrlfOqxNsNYg5sdknwq5zNp6RM0zG7m06evoBdfcoXzcD2f6FuxgYkv4gMWCqU2GmtMkkNHYYkaxXa3odlkvH3fEBkZ+zORjDfvvuV2cxT1nmkauHU3dAbaKvLSkk0ZcwLAIBLVRF5U5HnJ9dJzvZ4xVqMQpuphuyHLSr5+OWLIUDFQZIau6xn6RLzILEWZcb2dmZ3ItEGEFT7RtlyMBAXjNLDbbRK7LeJDoL1NRCtS6e22JDcF3SCqi+fjUdi5wPPTE35eiCisiguIFKXM1OMk0mEXxIZDRfm+PvgEenmR+RqDmS3WWJaAFCAtaQVQm+eZqKDILYtdSVlJgEiMga4dGHq4nVuGYSZ6nUIvFV4tMnHLPE/pWRfChNIa58M6q0iYhyhp8JHMmpXoNE0zuTZimxJGfJjxIaK9qOmyTJYxwQtOtHqZes+i3Fh9TJPV17JZWcA8HSMeOTeNWoJLBBxMYt5f9HvCtNbp+7wQfsQmbLGHk+ue2ZzHhyrVsHnZJ4sdUoC7/Zbd9o7T6UwMlqH1uJmVCYl8J4IikZ9G8rLk/mHPMFT0rVh+6D8hHv3XfP3ZAJ+1FhcD/TSy3e0hmRd+/vLEp0+f+P7778gSxdf7maKoyXLDu3dvOZ0utK1EKi/gzJJE2nXdGpLx2qx2kQ6BHAbn85m62RBRvzBYfp1s6/1ENwxkmcg3nJ+5dT277ZaxHwgxgFbJUFUMU8uqFt8OImjNh4+fePfNO7ZNTfRJJmrkQ6+aGucD3klDAdLgLIm1L5uOSNQKbXM0wnD58YcfKGsxlldGcUnFKMst/bGnSI2S0Zpvv/12BU3rumbbbERuGYSJV5Wy1W02jTDi5pn9diu+OS7Sti3t9YZ3ji+fPuNS0mVTNVQJzDKk+O4Esm2qmuAcdSEgrIB+DdZYHh4e6IdBQjQmAfMisN/vRZbdBqZl++Ac1+sVa3TySRHJRFmWjJNbQa8psU6WpuK1n+FykC2f65K6tfzZBYjLkkw6K5JZvBbQ9Hbr0naENXlM/P9KFk3/Msi+Bg5fJ1QtTD4B81R6rXPaTKWNc4oCF1BwXoFnEKBFwlAiRfEigX3tIei9JzpHnlu8myhsRtNsMGo5xOT+2m435NYwjbPEuzMgkp2OECI+iPddiAI2kw6ncRopygISldl5h05MOrkmipgo1D7MDEPPZmvQ1pLlsNlZnBt4fJfhncZPoCg4HwVUks/hxYC4aTZkNocIbXvFWscwdGRW8fhmzzRNKV1Qks6Goefu7p7NZotWWWKDJRq2tuRVnj4bMUv1LhK8SoOPw6QNfj90eG+53VqqqhSjZKUYghio5oVsSAUcFip5jCqBv7JtGoaJGAI+eMqiJGQ5RWHQJuJnzacPR+Y5cLsNPD1dJa1zhtPpJh4wuTRZ+0ONNYbHN1vKRliMXz+ficwMvXx/m1u+/+5XNJua4CbGqVuNei/XG8+nJ5HR53mSIEUulwsgi5MYhUa/3W3wl6sMZfmGIhMD5GZbMEyR2c083D9wOt5oUmjPNHUURUbbXQlkHKodZVUwTh3DGJLcu6UoCu7vH7leznz+9JG+7ynLfE2TE0B8Js8L8W2JgSrLhI5vNPvtTpp0LxvI8/nEbrdHUv1kgBWQel6HjbHvabY7ukvH+dLS1Dsul2ckFVMMqA9376jrnOPxBNoQFEyu59Iexdh7K0yf568f+P0//SO/+cu/5tvv3vGHP/xOEhejMF21GvDuxo8//j3/8e//XxyfPzJPN/72b/+9DOquoyg1m21BVWd0bSvNn/J8/92vyWzJ/vDIv/jv/jl5sSO4AMrg45wABs8//dPvcN7x13/9zyEFE2khXRCQoAtrdCL2ydA2DANfPn+ka1tpcm8XxDskMk+OL1+eEoNDQDVrNN9+856/+O1vaKqSMfnj2MT0dm5O0tuQBgLN/f09pxQuEWJYh8PXi7c0Yr7qAGKqZcIgWxh/8jxptBFWRIji8ZRlklDn/MSYDK3jskdNNdeHiPMdfX+laXJ2uw3NpkbpwPnckZeGx7dbbrcjWV5wu4zp2Zd0+YV5GOPy2uUsyHM5i7f7Shjd9QM///DM87NIrMTzLyawA2bvkv+KIURh3atZkWfyeTSN5XAnbAoxHPe8e7dFRYt3Gbd25PZ8k8+JF4a3JPLldN2IshC94nK7olQktzqF+li2uw2Xy426bjg+P1NWFcMwCbN1nFEYrBGvUDHglmtw2N9hbYE1Ocfjka5rESZizsZuEyhXClCgYRhnYvCUZSUSudkl83wBzyVlNJJlOcrJptx7VoamBE5JAxujYpoDWTKgzrMymYg7Hh8fePPmQRZl0XE+P2NMAzrSTzPHy4WqLpMvUuTtm0eKvOb0fEGh+PT5hjUCMvdjh5lZWfa3L1+YppG6ztg0tSR3DwNvHh+xxtD1Lbf2LIucWu7/3It3W17aBJhtZICZRXqUZQVdO+FcoO87vnz5wvlksJlIU7VSfPrwibquk/RT7mejFc47+r7D2AqQ5NqiKHBz5Pgscvi6keAbayxv37xht9uR5xlfn7/Kc5QZqrLEKCVS98skMmUjMqG+77i/fxQfUTfTD0NKtAWlLM5FQhbJbEEsLDaFeSmlqJoNf/XX/4zf/e73dG3PNM0CeFoBp4feYybx2xI1igwbPgEiMcbkrR3SfZe8rbROIWaK6GTxmZeab795ROkJ70b+xb/4Lf/49z/w4ecTYFYp1OIht/h5VnWJm6fEaLDrL1HNtBSmwM2ButpQ11cul2vyGM4oKjHad85TVVUKRhCWi7DqRWpZlp6iKJkmYV/lWSl1I8qy8nAQL+MvX79KndTLDCL9XgwSLrgkjC51bPEulp5SAD6lpE+9Xq8o7aiqjLK21LXIBmX5VdK1M9frmAZ+k8KBUmq6hd1+S5ZF6qagaQo+fzpJ8rxWTNMS3CTPpLEC9MUYQS0JyMmKIS2RtBIPwRCDhIpoQDsyo+QeSiwZBQnoSWCEludmSYYNziUWqEp9S0a5sWS5xrmJ7V7Yl9e2p6wzNnWNcwpNjptnlJZrqlP4ojESeJZnxRqK0w8TbXtFRcemKcmsJh9GfPDEAMZYpnngdD4xTTN9N9A0hawrlDCcqrIGE1MwkRA8qrLh+++EMPDxw6fkvSyybAFpl7C6ZGExxZUoEANpURUpyoyybGiaBmOklhe5yCSd98Q4rvePNgLCZSqFWaV5BG3Ii4Isz8TnOBNAUhs4nZ8JPnA63ni8k8VsP1wJPmMK4o26zNALIEda9C7n8Dx7Lucr2sg9sd1WlEXNMEwpYGHC6EWlJH3xan9ESv6dxMu870ZcWMBMxenUElbbo0heZKANc3BEkqelNAcYnadZU2GV5nw+0feGqrLcWglGq+uK4/HI+fKMtTWRmIKD+rRIduzvcv7yrx+Zx56qFhuQqipwztO2V27XDq0Nw9iz3VXcH/b8/NNXyrKgaTZUVU2el5zPF66XTvpB3/PmzQOfPn8i9DN1VaGNoesGdrs98yQ1sWlqvM/ROqJ1wCtP3VjqRgKmLudWAkSrSJ6J1DOzYskxTCM+4QULuUTIBksgyWJ54LF5TlGKoonopGc0kevtzJLE7XrxxK7rSu6vFBjovCcAOlh8iKBl/s1zI4xHFTFG0w8T3a1NbMqCvh9FwmvsCmIpbURyHWX5F2Mv8nIvFiRibzTTtRPBvwS3eB/pukH876OktIsvfQrF9OCQeT+zNpFpxPtUWHHCxvsvZasLgJ2sb4Ja1Z5d1xHUokyL6XxZQtxi+v+s1z+ka4PS659ZpMzzLESI8Xni+HQWPGv1AXzJCNDA7dYxDfNKbopxlu8dF89pvf69GMT3tb11gid4j0Lh3ZIw/Od9/dkA3+Qc//S73xOBU3XhdrlyPp1WoMbmGd9/9w2bzS5t/wN5nhG80BWXBKAF2FgkcgvbbNkCvkiVpAEQ6d5LqIRNrKbX24wYF/BGfqaAiOJZpAKr2f/ldEEZgzYa5R3jvOi0tZi3O6GJXm89m6ZZmQrLVwiyOW7qzS+GotvtRtM0wk4LQYbRdNMsDDqbZex2OyKRtrsJYFnXfP6UDhkUKsrQdrtcyW2GQVE3dUqtFQlrWZa8efMgYCVQ5CJX1enh3TQNbXvjcrlwvYofncSd39E0DVVVcb1cwNgkh9uvA4k1RhD1IN6G3jmaxCR8ONwxTzOXrhXQCGkCj+cTs/coo+j6LlHpC0QOMK9AWggBH1+CM4wxkBJ/l4bsT8Hd5QB7Mat9aToX9t3yZ+XgDyuFf2Gl/KmHygLeLffYIi9cfBFes1gW+XUIAmRl2bINUeRFwZiA3dcMQGCVGIu/5PKaBSBcZN3TNLHdbpMUwRODJrcakxopkfZK4ctsRtf3TKOEdUhi04t3htGGQECFJRErUJQ5L3bPER/kmVNWiTF2FB8qHyQhbSmy5/PE/q5Aq5yxl23gPEXGwbGpDlzOklorvhOLN4RLybJR5ECpYes6SWmqq4y2Haiqms2mkbAZbbhcrmlDrvHO0w9Dei8k01tZAFRVxW63T9Iyk/zyRqxSqxw7LzKcE7DfzXKN+75lt9+QZ8Ku1Fbe5/l8ERmP61BRPB+WhL0I5IWlMOJ7FPzMOEhjM02Oz19OeB+ZJkAJMyjiqZqcvFDYDOrKYLPIMNzQRvP4doNSkU/jjSmBNEM/UzcVY98T48xuX7PZ1EQU+51sMB8e7xnHjra70mxKgvdYo6mqmmZTMvtxleJFJpTJ2W2FrfUv/+X3aEram2NT7/n5w0es1RgrqVphlHrcdX3y3CzJrJgs324izTmfb+sAIc+peHYsP/Pp6Yn9fs/T1yPjODEOkqB993CHNmLIvdvtCMl3aJpGzucTQz8kqn5gmnseHu6ZZ0lm7LuBoix5+7ZKkryMqq7QRid5Xs+tPYlXz+QZh1bYHSnQ53o7ErywUba7A9fzJ+YpJkBatnR5Jkyo6/Urnz9/gthTlor9oeLjpw9oE9huS/EpiRN13XA4vKEqd3z7zfe8ffOOu7sdwxD5h3/8Txz277i/e8tmu2caZ66XC7fbhX//7/4tb9684a//6rdonSGeBcLA0HiRsd4uksxXZJzPFz5+/JzM2EVqL6y5FJARF88b8TwKAaptzePDPZkVqY21kipYFAWHuz1lnrHZ1IgkrqNPYEhZlHz6+InoX1K/X5r7FybJMpSH4HnxM31heoD468Xok2n7LINqVNTVRqwlCk17Ew/GZeNsjEg/bC7DRN9NWD2K9OV25eGxxppcnqNJfL7GeWC3bahrAe5MplDGiJRbK2ymePd+jw9DkrZHnp96LuefCWj2+4LZzbgZnBPQq6oN2njmSUCP6EmqAWmYrYqcjy1uI8Nn1zkyq5mmEcKEpkxgpVvr8SJ/zrJMjMTbG3kp/jhFLpKposhpml0CHXp8mIXpYze0txZjTAo2WhLII13fs2lquu4m7PxxkKYfOftAMc1TYpkkdqgRKaJzDjcHmkaSt6fJM88zRVRsmi3NXSPMLufJky+ycy0xBKYpYK0sicoiJ7jAjHzOPixpehqbacpSwmy6/sbHj184n6/UdU5dF4QYuF4HSfILMAyO56cn3r275+6w57v3b9HG8KvzlfbWcbnciMExTC75W5HOU8jzYk00zDNLnuXc2gun01H6rBjZ7XYoFcUQ3num6YUVN02OoZtTCIeirjfU1Ybr7ULXik/rbrfFaE2R51yuF2IQiXp0M0YLuDFMA9OcYUyNUpam2XC9trS3czqrX5jk4zjRtmJ/0PYtbp7Y7zfUpmLsO1QppuVlWaSll1nlWuIFJmwjYVUZAf0Te/NwOND3N758fuJ4PNI0dQLiB3766YcE+Mm9pI14W0/jzPXWMc6e4CUpt2m2KAXn00m8MxObd1GEGGuxWUpvjRHJOlvsQcQ8/dadE3iQM00D3k/EaKmrJi1sJbykrmuRVhvF2GuqooQoiorD3QFrNV0nrL2npyNV3dC1Q0ph3ZIX+ep3vdlsMCbjcjkTgqesJHRjmmZRqcwhybLL5COqqepKfFMRwGi7LWQYf/ZrT6q1nBuLamepiVIjhe30wqgK6yC5DHFt2+Oc43icuH/Yst1taW8dTdNQ5CmNNGiGXiRrMkR7wpz6VE2yICkAkfJpbfny+UTXTmht2O8bAZ2jLJFTfARuTmChAWNkwZIVYsFjDLgwsrMS7FKVG+Y58vmTmMkvb0MpkVIqln5YQAvi0qdrgheQ1GZiGaSV+O+iIn52lGVDDBm368j1+ozskfSqeJFFRIb3gb7vsbnYLc2TS0znOikbYLfbcr3c0nIkp22vjMOM85GhFyXL0vuP48hm36wy7tv1Rp6VIs0cJ1mWJ6WYeKYvsvmFFRUTg1mLBD2x8QBiEEWISeQP8QyU9+MXpmryUDdpWbYsxBf2UVEUyStcrKOytEiJMZJnFjKoG7E6muYBYyDLFeMs/n11syEG6PsBYbHrFTSSsDKNeHpLMvPtOhHDTQgWo0erLEmYbfoeYqOFYl2ej4Pcvz5I6rCoThIRwgsDTmaITGSYQRaXKjFC5V7SGGOpipwYRarZdxN//MMXnJ9pr1YsZKqYltxX6qokGvFN7LqJw13D+2+3ZHmARphleSGLxr4Ti5V5DjR1TdNk3N2VDOOZcbpxvQRut57379/z/HyU+rHZY60mIL3N27ePzLOAsm3bUlSLzYAocpq6JMszjE3zXCc2IkUuzM+mKVcllPOOGD15keFjZGxbkdArI/JWxKNUa1lw3G639by2NmOza7BW4/1ECBEb5XN1s5NlqSJJxDVj8hmV+1D84cZhqdM6yXArnBMcxScijFKLD6ZCYfGzhH8aLbGOMSUeLjWvHwZ5TU7A4OAVfdczjRKKtNx3S32McfHcUwk0E0b0om6TYBqRIMuMkRBqFiuXF5ur13VVbA0kUMu7hP+ExMpDJV/R5APLi7WM1jqxslOadNQi2FV6rXXeL3jSSzo5MYGO6hW7Oi2GQ4DZxzVHYhxHFqbtAlBKjoMW6xebEYPidmlpuyktKsDYjD/3688G+M7nM3eHN2RWzNTHeabe7XHXK24c6ceJp+cj7969o67LlRI9T3OSKcYE/Mmw6L1f/ckWk+9lcHjtrTfPM58/fyaEwP7ujin5NC1Az2IAPKb//hoc3G42PJ8uBC8NwNPT08rwESDAMYwTeWIlOOfwMfLHP/5IYS13+10qlvIlUmGhfIun3rCCYa8945TJcEFYfkvgRdOIJObL1y+YTP7s8/NzYiiJhLLIc+72e4iRqiy5XC7crrdV1hpC4O3bt3R9T55n6eARz6llQJsn8crL03WVRnXH/f29gJyXi1CqfeDu7m79fEMIxMQYDCGsnoJlUfBwf888z9zt9hRlQT+OqEKSOCfvmOaJOmuoipK6qskzkWZeLt3qG+icxyeq+uLBQELcX/ydfhlasryuRZZr1iCThSoe1g1g8LJxMqX5BdsPWIFloRP/0mtPKZFOLJ9djC/ejwvbdLnXli1LlmUiEdQv/m6v2afL63vt1ydN4ryCgC8SYEn+FUaqgSiyUO+T+0AqXm6eEgvHr0Dki1xTk2mNX4qX1ikZdwkPARBvheAiQzekbbQMbaTNyjxFlDZcjp7racD7lsNBmse+m5m2PUS9mqCPPqz+NkVRpKTFSbxxknmtbDgjVVVSVXLQzPPM7XZhs9nRtq2kRU8i71JaYbUEhDSNxMYvjN13796w393x008fuFwvOC+HhHxewibTRhLD3OwoihJrMrr2Ra6d55Z+EOm6SZuv1WTYgLA1HUELG1Ubk9JcNVXZ8M17AVvHaWC/33J3v09+g8Ku7fsWN3tOxws601RVji4V33z7nqenP1BWE/MkstTT6cY379/w8PCOae6E4Yl4mDmvOV9OtO0Z2VlF9vsdm7pOAHtkdgObbU6ey/t6+3iPzSxlZVOITeDr02e0KgnRMYyeQ7lLmyXFdnOg7a6vmlMZfJ3zxCD+nDYT365hHBgHR1lVSUY6Mo2Ojx8+M6YFyul0kuWJ0clfdQ8orpczXdenRcM9fiObsq9Pn9nu7siykhA8XddLmqOd2e52GA1v393x8HAvTXOIXM4XLudb8k+ZyIuc3f6ezaZJILVjngeMyVDGcWuPDIOmvXm8RwKYwpW67sh0yf7+nkgDaiKvFIGBee7ZbRu+/e4tsxu4XS+8fXePMY4vX37gH/7+bwkho64OnM7/Kw8P3/HP//pf8c/+2V/zH//jf+L3v/sdNjMc9luCn/jphz/Q9hNFLglnKNjvG5T2/Od/+ntut5uwerKKaZawGQHDPHluJcGz73GTW1kBJnlNvnv3RuTHU892V5MZqMuc7aYmM5ZvvnmPMUvatDCbP378SF3V1HW9ns0vyxNYAin+1Od2+fXCmPcri6VuKkKYcU4AH2ty3Ky4XHs5z6qC+4c98zzh3CQyLy/bfu+R+26+oq83ptkTvKXIZ56eT4mpOCNJa5pu6FK9d6tHnwwZOefLmaoy3N3v8D5wOg5M40SeVRRVgff5mmquFTSbjLLWPD/dxKvUkK6nLEWsRdjo1xl/9CjTU1UZwTuRPJWRh/t73BghGtws5vkgy6NxHPE+cj5JArfWAlo4N/D23QNFkdP3N6wR4/uu77hdW6qqRnxU4xo6I4uTRYYizK5xnHl+PlGWFXVToke1evJlWSYg3HLm+ICECognpMj84HK5pWsSln13YoOAD5JUSrSgZfA0VrynFu9T2XyPhOBQymKt5nI9pY18xPuJfgxoNFWdc7l2TFOgqnJ+/ZsDRhvarqVtLywhGFVZ8+3399RVg05G9ufTCedGmr0sxo6nM+fzibquyIs8gTsB7+eVoV7X4v1HJnYWt1uLUpq6ashzOSONyWjqrZj7G8U337xHKWEGTPMsZ/TsKZoCrRR3hwMRKKpSElQTs8K7yNDPPD9fCD5QlcIYkeW2tDzGKEKYCX7i3fs79vut1L62k140z6nKWoZPH1b/amHiqnR2incaCfATb6kTeZ4J22tTUhZirj97x+zlPOyS52JR5gQv541PS20fnPQHicE0zSOFtWlxLvdPXVfYPEsDeo81KSk5iLfwMDjaLsNokW2iAmWVsds3jL1HaWHRaS2hYrIUZFVQGGVSiNMO5xyfP31NIVwZ10tH102Y3LDdbmmaRuaJzmOLAq00p/OF2UmvnAVJVy7remXoOyvm5zFqjscznC4rg7nreuq6YVNvuF1vv+gf19Ck+DIAvoB8Lx7Ni1R2UaLMLnnwTg6bKc6nKzE29P2YJO2k3kuYoIs4VxthlozDgHPw8dNAVWVURcbhfktVVsxuTkBnxbtv7nh+fqaq6iQXi8l/TUD79tYmkMZjreLufsM8j6Bht2voOwkpvN5uaBNpClHGeCeLJmOl5+u6noiACcIaNGmWkxCLRY6LctzalizPktfnGWsK+l6AD+8FNLU2T+w9kQp7L+C3maXvqKsKhSzwF7B+nHqcdxhjVwDJmIwiz1d1w5JOGqIXuxsj86G1GdM8it+YknC5LM/X3mYJfVxYjNZaCLJo10rk2MFJ0ZzHEasFvDNWYZTG5uLdPXvHErCHChgrUvKFQVXl2boAyhLxQyno+46ua0WSmbzrSNdbm4jzA7bQ3JU5fTeJVzc5SskMuHwt847ct5a8sPRDT99NuDmmmSpLtiFifzAv/oHJLkkrs55jWZbhh5GFdWktaQm5yMFlDh/GNM9HkSksIVay1wzMbiSzNvXcEz5MbJoMYxV39zuM9Xz5ciHLNbMfmZwA1l03yt/NHQ8PB07HC2WVYVTO6XyW2SEKQDW6gXePB+Z5xBjN45sD3t8SE23i17/+DZ8/f+b9u2+4XE4SqjWJzyRqsewRH1uf5gIJTpooK0mQFWa9KNrGbEaRQSzws6a93rB5hs00wzBSViV5lvP0dFrvOVlOif+qkJ/MOuO3bUvEs93K2RGiMMR3+y3WKk7HC+MU2G13HJ+vKeDIrESXhcE7zSM+KLFHwpPlls2mYZpmhkFIWUYLa7YsCvEUdp6gQgpLFfC6ros0A6hVpXg+dYmpJvOr2D6FVWoq/1/uIxdkeSSgndTSiNwbLIxhtUjqpfeU77kskJNkPDH4FmayzMwSZBqTdFdUGaxzrUoA48K6jumsJnnxLdDeC8YjNisxsC635O+/AHwvr1f+m6jyxMcxxoElHE0AUnk/IYXQCMEgMk4+AYcQAxLI82d+/dkA3yZJvJaNvrESuGF0hjFy0U6nK//5H/+J//5v/hWZNWviirUZ89yv28jl4FzCDJaLVpblKnNcDtgsy3j//n1ilPlV8rlsyZdNyeLTR6KpLwX98eGePC9ws9BvUQKYzLMn04skSTMME2VZcbne+Hj8zOn5mf/d//Zf8+bhbsGUybKMt2/ecL3eVu+/JSjkxbstgtKcnk58/PSJpmnY7/dijos0/9qqddjKsoym3sjWxmYM/bCCTV3XsdlsePPmDU9PT1hrqesa52cWzzppHhPzIunYy1IasaVoNE2T2ATiobjZbLDpYRVZzbwChDEImLDIZ+dZEnC01nzz/j3KGr48P+Gc4+n4zOPDI5++fEZpzf3bO/pW2AcSof0C5t1uLT4Kor0kCUWlV1B28ZJY2X7r8BhXFkuMi0xEhuQQxGtuASSF4WRX4G6aJnRKFVqG1SU5Spr/moeHhzXdaAESXxdLpfTqsSigYJZYpBPOzev9+zqQY7k/Fw9J730KH+m5v3/AOb9+FnIYS5OeZTneiy/bkoAbYyRkpAAPt6bBOufJc5G2z8kPcWGcqsSgIXkGCjBIKsoBTyBP11xS32IqNGIYfusWnyow2lFWOXUtB9uS3mosDF3G7domObRm6HvEQLWl8hV5niWq+cj9/XYNvxCp6IxzkiqY2VKaoQjWLFLdCWt3FEWO95K+N44zP/zxJ6wtmGe3xtY7J6/ROYdJh4YA75JKOM3i3zCNLjGMBYBY/owA9X2SVji0h0oXYg47TWRGpFFFuSUvLT7O7PZ3oERGcL1e+fT5SF0Z8ZlxM+25Aw2bTU7fOcbhyF/8xTf07YAi43Ts+enHI26e+fjhEzYXc3KlFJ8+fWb2I0VheXy8I0aHSSwNeb/yXB8OcuiDMDIOhz2oyMePF/GMQnN/v+dy6qnrgmmck8H7zPl85fn5mf1+i9GG3X4LUTH0E0aLsbQkrwrQsMg7FZrr9UaeV1ib0ba3VD+kUd9sNhz2B6qy5Ha9ChjY9zI8a8PQDxIGQGB/uEuSMIM1BcEZ+mHk8c2G4BWZybhcjgzDQFVVVPWGrhtxTmw6Hh7eUjc1VVkQoviTFEXOZrshsxatA2/fPbDbfce//V/+P1wvHdPsaNsLp9OJtuupPjWUZcnnz5+o64rvvnvH7XpiHHs+ffgZmynKKufDzx94uH9D349cTje0zjnZJ96+/Y5m43H+yP/z3/4bTscT33zzHu/gb//uP/H27XvGb95zOZ+py5qiFAn909dnTpePHE+fGMaOYcx5+/ZXzHNGCFaASuewWcXsksRBnu7UbBk2TU1uDU1VIkrfQJZpDoeNyDBJjUNiUzsnYT1Dkvgd9oc1aGZhMjsn6dxLYJDUTQGGFpbzslxZljDzPNG2AjrKZzMnjxsBzed5Ji9k+1+WOcOQaquxaJ3Tzh0hiseRC9DdPME7Jiu1fhoiWknTW5Ylu6Lgj3/4WQYu5XEustmUPDzcMwwdT1/P5FmJsZrddk/0A09fb1wuA3eHLVXZgIpcbxf6oefu7sB203C79fTjQD9MoDyZlSHHx5isAyDLIc8Ktg8HtIbu1kmozH6Hik4YB65DK9mkD6PIX0zyLh3GgeBntpvDWq+LokhbYM00DUzzxPl85XC4Z5HXylkkv3Y7CYqIYUlAFnYPSOJvvHl8P6O0pE7nWS6s1dyQWUWRa+ZhIrqAymC3kTrrnAyzSzvc9z3ezTg/s11Ap+ipigJjLEUhA3pVl9R1wTB260JMQi80l6t8R6WFXS/XoqRtHadTS1HMDINnvy+pCsPhsMNa6Qu67so4thRFRVNtQHmqqsRaCSxr6prdbkNZ5lyvIsvN85xxlOXk6XRa7WCcJL0QggwCsYTtZks39JR5TpEpMm2piy0RBUEzIYzL27UVC4kpMXCUKFS0yRgHWWLebte0COsZB0f1ajAKIZCpjIeHe7LM8unDBzKrqKuMzUakSod9Q5YVqYeU3tgrUYwIYyGnbQWElr4xJze5LALTmde2N2TZa2jbFqVGxtnz6fNX5slTlTWbw5YQxAs2LKwcA3M34hU4ZxNwYxEjd1Ej+HSvZXmG6wZQkd2h4vtfPVJWmg8fPqG045tv3nO+fMGajKqqk3zLME+BfhjJbKSsKqqyEYbMIP1AkVfJt0hxu7Xr4q9pNitQlWUWZZNPrVrmBwmSWTwLo5Klo7U55aYCJQm90zwzjj4FCZCAIZt6BTn3bVaQFawpxX52r3qq18xmnVgePtVi+4opoliSVyGXYA2EDWNsDmRolWGU2FIYKzJ8kqRyeX5ktgxkuRX28jgS3MxmW/O161DKczhUHO62TNNIjJ5p7nF+4u5uh9EZkvztQDl8HNPyTYH2bHYFeVGTZYbzueVyvlAUFfvdblU5SG0SgFok8gs4IMwTYdw5FBFv5Tr16d5QCvLSgILMQFFEynLD/mCYhkAMRkDOdA+62QNelrZuptLiJT3MI5tQEmNSaXixhZAgDJE6juNEvoDpVmO89BRFWaC1SgF1BQuYZdKsE+IMQbPb1txUJAaxtnBeZHd5bjBG+uOq0ExuZvYzdVWz3x24u79j02zohxbnJtziGV6W64JgnHryImO3a9L84n6hIFpmm7qW6+z8RN9POD8zjCP7Q8WbN3va9kZVv2WcrozjSJFveX7qmIYBeDHpfz2DhCDSbWPEx1o8QpdwOZdAC9Y5VAKSFoLC4oXvV7WUd25VRMUQsen5iUH688lFjDILEQvDQowQKXle5NwdNlyuEkjy69888P13jwzTBWvE236zbTCZSWnjoriZZ1k6f/165XhsKfOMw2HPNM08PhzouonPn5/Jc8PD/S4pGaTHj8Hzq1+/46cfPqdr2+HczPlypGkqitJwPD6R5TKnWVPQ+5m+l7BGrSTVeRpHlAqMo/gkLuSXcXRs6g1lsafvHLeLLB9JJJ5xnGWxom1SX8SVBCH38ShAtDEsYFbfd2IjkG/I81xCE52ktO/2W56ezrx584h38OXLUaSwKVCkqup1FnJuosjNem9dr7dkX+XTcsYy+4ncZtRNyTiMAIyjJy9KHh8fyHNRooXo+fTpE95FDvsD4xC4Xm8oJWo0Uj1b2KvamFX7KEFnArSJolslcCumv/dy/3ofVvKJBLql/gdRI4iNkktMPI1JoSVA+hkCWhNjChWJ2Ex+dlllMgf2EtAiJMOERwUF+BWElAXOold+8c9fvEMX4E+eM7HmMMlH2weX5hrxip5nEmiaQPiwqNcXJuCLSvS/9uvPBviMNuRZLtKU5Bkxp2jlLC+YXGC3qTmeL/z+jz/yF3/xa4Z+YJ4nxlH+Kd4AsiEUTXJYWWYLG2/xW1u2YEvggfeekDYKy9fSvK2R04kBNs3ig7RENTcp/dVqTTvJTaO04un5xGazocrFiFTMcQ3OR/px5sefP7DdyhCttfhYBBVxfibLLW3XEeb0aaUb9tbe+PGnj5yuZzbNRhLjkGHmpx9/IMszVIB5dBBELunmmcPhwHazpb21bJoKa0Qe0HY3jNVsdxuyzMrNPgeUsuk9i0dA34vHmPMTh8OOvh+Yx4lpGJiGkSKFXUBKbw3SvIzjiLaaZtOwaSShbuomQvTc7Q9oI35RHs/1chW/oqJgnj1tdwOtsVZLsEiYk5Gnleud5SttOwBZnqGTDNj7gFZRPKiiHKJGy2ZoYQQVRYGR6QaWrVYMTOMkA5F3ZAlYFcN5+T5+GinKEqJsz2QLL0VfzMPnBAxPXE4nMqPxmU3eGPIzovfSRBpDZjTRaMjEgPd6vSb2lzBUi6JEo5idIy9z8dQYJ/puTNtUQ2Y1VVFQV6WAhkYA2rLI0dbg2pZukNhwY3NMWDYGQXyYNAKQGkOcRV8WkGaSEIl+JnWFUrC0SpKi9Cux+YSfIYwXo5VsJlXkzfuSc1/w/DShjfgu2UxT1prddkPTlPTdhbbt8S5j6EPadEeMltTbeZb8ImMkvn2eJakxyxRlUSUQIU9yeGFxjcPMl4swUDbNZk1azXOLsUtKltDKh2HEZoYQHLtdw+wdbdulrcxSqGUBoYB5nFFRUvliDPjZ8fTlCaWlEc+svM60b0jSU4OxEhGflQVFLszRN+8emOdRGq1SEnFRis+fPkjK1mXEeUUxLcxIzTw6rPHE4JlnOB6f2e8PZMay3da8//aOeRSvxK5vhV2RF5JCbTKaUlhYdS2ARFkWfPzwRJYJ0NrUDXVVkeU58zxyvpyw1rDdNpIkNorvaFYo/r/M/VePJEm6pgk+IqJcjTqLiCSVVYcM0DOD6f//D3axwGKBnu0+c7rPqapkQZwYUa4qZC8+UYuonr3Zqb1oBxKJrMzwcjdTE/nI+z5vnhcURcb12jLPHYfDkTQVpcD5dGaZZYtvZ4tGNt5tcyFJxJredR1lWTONIy8vJ4oyo65zktRwLPZsd3v2uyPn8xtD3xO8I8tyFPJzD33P+fyGaRrqesvDwxN1smGeR87nM307oShYpoWXz400x8j77sPC9Xxiu7NoZSiLCmd7hkF4ZH3XYxJDXZe3YmGxizAclwmTCHeuLPb88svPhAD39w9iwYthR84tNO1EnmucX9juarIIeh/6hlRnOLuggufx6Z40zTmdzsz2xLVxXK8fWeYApCSvHmNK+r7h++//N5a5ZxwvGDORFxu8c0zzldfXv3JtvrDYgSTLsLanrh4oigM+TIzTQJLsUBQ4H4d72kRws2ceBy6nM493e1S0VRit8NYxDoMoLXSQEKTYoK+DPKOTqLod4+AuiXa6mG44jbfmdr0zVsbTurlfFyeg4rY/wWgpyn2Q8zhNM6yyeK/i4KNAqUQUJEgA1WZTURQZaaoJwRD8hbZZGUbutnjKUvmzP//lEyBKxqoqCGFhmkZ+/fUTa8rg0Ltb8I11XpoOpTmfOykaY6hDtzim8ZXDsebp3QEfHJ8+faSqK7ZbSbG/XgYyjwzJCoVzEybJwcMyWz5/PBFcypcvF7TJQCmyXBLp5UbyFOXfOhSkMZ1kGVJK8uv5fMEugePxwGGvMDq78WSTRKDy4zhh7UKZZ6ISNgllljItI8vU8/j0HYfDlk8fP4paJqa4KiUp6XWdEJzF+ZnDccfDw6MonYqc6+WM8KdlEPDhu/ecz2fGUTAJ221F27ZSw8Vtel5k7HbbWIOUNO2FcRhjgqzlwwdJxL17uCfLU5rmwjSN/FRt2Wz2tM3I//6f/o2uHbm/e0IbyIuEzbbmTinyrOB8OvPx4y8siwy22rZns6t5eHggy1LA8/w6kGf57W5fXQDztAjDMU0FqzEsLM4xT5b9PvDu6ZFhEHYhBJrmilKKp8cPzKOk31Z1zRwXekmeUW+2MswbBl5eT7K0NRIUcdjfUZVbklSecWvn2yJ7WRba65lxHHj/3T33DwcJJMlzrpcL47QwjTNVtcG5JaqaJMikHySxOE3lueuGHvzMNDk2dQZkGJ1wd9zgQ+Bybnh9OTNMVpKdI3M2iQ4cpSRIBRT9MMiSUPxNJFlKti7K5/kG+qhqWZCnicEkEmKT5eDcxP/8v/xjvMcagteYLEV4b5Y0E55cP6SMg6hSZ7tQbWqqusY5x9jP4EHbgNdiExdruidJDfcPR7wLjIss4pdlYRojuD3aY8Ue6W7LfUlPzbH2JMs7R6w/7W2hOs9yzmgjFq62bVFa8dNPP/L85YWuaeUzHGsnrb/aqSS4QsX+A6ydbwOJ9XxUCOe4KHMIjrbpANBpQpJmcTA4kRcJ1aa4fW+x/3qC8oRo/x8Xz2+/fQGlogpOYyMeQ+qm9ecKWDfHYBpRUKWZODgEZbIwDC0Pj3tCMOx2O7pWUp+n0ZFlKbv9lnEYbnZmbTLevb+nbVrGcWaaJ8EtKFGwoUSpYhdkqJeK8vnufo8KMPQTiU7YbnJaP7NM/mbIS4yhHYYbQ7osS/CONUivjCF7zskg6u7unr7r6boBUORlEXsaGaQ6bzGpEfuotQx9x7bacLlc8dazKUumaYhPtWW/vyPPRZmmtSJxstjthwtZmlCVBWVhCKMl3RZ8+PABpQzjJC4QH3xE4Fissyx2YbffSB09STpwlgnrNM8L+r6Lqc2K0+kch9M7uQ9v6j1RFZkYWmCXQJYVEuLlE5p2IIQ1DEv9d0MC+ec0FSVa2/Q3VX0IgcTkEERI44IMe1bWm/cyBAzRFZYX6W3gESAGIMThRLxDAwHvAioQOY/yM6RpGl1aghHwfuHxXc2P/1CyLC37Q05ieiyLIKa8xjq4nC/sthuU0vz2+zN2FieD8ookTXh82gGKz59fSVPDbrvnw4d3GKPI85RNVXK9npnGObo+msg5t/z881/Z7XYkiaLvG7x3DIMoGKtqQ5rmDKOl7UemUe6CLEvZbLYsyxQt74r9/o5lmfn08YVhnLG2R6uM7aYW1IfyzPjoxhL1/RoGpjQsbqFMhdFr2xGdBPIiuXHIx3HkelUicLBwOrUkRjPNM3238J/7/0aWpsJlnRecdRSFEaZsklCUJUp5qiony1I+fvpE3/Xg4f7unq4TfFHf9xEFoNhuha9dljlFUUrfHWAcRk7nNxG1LF7q3JCw3e5ugp1uEGXt7Sz2a3hbQFT9cu5672NJKQM0E8/ItcZz3qG8QytQRnN3fyDLNePUUlalBDRee+ZZcEXWBgm80glBSQpvHAeigiAO8jwlzZSo5a3j9fl0c+gFF2517be2WknOdsIvRf5albwgQ20fbAx9C1KbG40xniyTJfw4+Zia7qM6PsTZE6yKbzmvFX/v19894JN4Ym5DzWEYZHBnhd1xfziS5ylZmvD8/Mzj0x15Jg3g+XxFUhdlQrzKHVeI9yr/7KL6y1pRHqyDv1WRl+Y5SUxFXVl864BwVRWIKkmRGLHFjqMEEmSZbNCtcyhPLHAyvnz+wrvHR7pOCulxmkAp8qLky+sb299/58cfPqB0ICiN0orD8SBDiGtG07Y3WeilufB//Ou/4hE14v6wv9mHP335TJoJdP/0JoO2sigpy5Kqqm6KPZMY8jyL6ZQmBpCECPf2DOPAmjq7vm6rIm2/33O9XjmfTvT9yHa7xVnLPE03G+q6aVy/T11LUMc4jbjYTBVVQZGJ6jDPc4ZppOt7fv/4O+M4sdvvSKIiMGio6pppmXk7vZElcug47wnoG7ukKCuJAV8HurHZDEHgt4DYXpWKVjYZPin1VbrrrROaRZTUPtw/iC1yHEhJROG0WDSw2+0Yx4lxWbher2JbTtOoRpRtlMoDbXuJr2NcPIXAPI0ApEki9qggqhaj5ZD23qFjUpezFqu/Wm8TI9Bha2Uro+L/193dkb4f8E6SuoqoHDN6vSRFrusIsVD0t+d5XqSw0UlCEyPpBZC/wMIt9GSVSDsvEFJJUAtYQXdJsRc3D9qomEIsQ555Gak2UJRiz3h4PJLnkmjpXY8LHpMYxmFh7FuG3jMOMyFo0rKCwO1SEBvS10ARguJ8vmAS+Zxst1umSd4Xef63GJ1EJZGoZ7SBaZJtW1HkXC4NUmBLwdD1Le8/vONw2PDLr7+Q50bsV0kSB1eKPEtJ0kTYfSFwd3fH4XiUYjkqNoMKEhLhZCu5cizX8JR1mKY1VHVJUQr4e9163h3vGMuRZXoBJdYGVCDPE5YlcD47jkfPdruhLHNeXl9QIQhHzDpCkNTa9x9+xC6WoRvp+o56uwU8X758JuB4eroXq9vQkaY7sfP1lrreoBUUec44Cj9EQVQDQFULk6SqNoz9LFZKK/blcewpqxLnrKSdxd8pSQyuXbfYWQT87zi9nWk7YbV45+NZsKFtGrg2XM4Nl8uVw2EbN8JeFI3LzG6/l02gk41XmgoIuMhLCFfGYSbPaobBReZqwtBFvmsiFpVxvFBvS7TSzLNjHJebiqIscupqwzDMaO0IfiE1hoXA8/NnEqPjsHHD6XRmHGbKyrE77CI/deJ0euH5yxc22xrnFmZpzzge72maK13bMU8LdD1JmsXhwsyytBiTUW22BGdIU0ES/Mf/7X/l6fGeaRoIvmOcesrSM0095/MXrs1nLtfPBCxmSuL549DGMc09l+uZPP+eNDtIwaJSNAK4X9l6WZrGJqQkMQllWbDYibAE3r9/x3a74S9/+fPtHh+GIZ5TyY39Ihv9+bZIk8+Yu90x36IQvr17ViX+7d71gdk7GfapdXMvTWZ7HejbEbjI9rvM8cEyzwPv3t2x3VacL2+A5sc/3HG5iCJKxYCV15crXz5fSNKecVjIc0O9FZvL3f0G62YSk/L8fGVxgbfTmeDFQrLYQJoJyPtykrAaH4g2QeHI+WC5dq9kqeb+scLZwDA2lJWhrHPhnB2loG2ajuAVRbqluUwMfWAaJoqiIiD3w2Kj1bSq0AbmZUZpqDc1fpkxWhZFVZXH8AZRva2W13GYKcqcru8oipSiKAnBx6RJT5FLKuXd3T3GwPPrF5Zl5nT+TJ7nbHfiKsjSPc31ijGG/X5HVZWcT1fq7YEffvgJgizj8iKjWArGaWCxM83lKpbPKicoSfPWWnM47EnTlPP5RJpmXC5XpnFiv99GTMrMNA84J5/N490Dh+MBa9fn/o3tbsMwNpzPF16fe54ej2gD4zBzONQRZyHPpjRVjnfvH9FKrEht13F3fyd3nVvkvM0kXVgCRPxtoDaMI6K40syTnLdZYsS6m+aEoKmrDSaC+UMInE8XLpcraZozjh04z/39E0Ve8OXlCy8vb4zTgDLCbByGSZwBzqLURJZnjMOI8/IaOOeZZ8swdqQm8PTunvfvn25ctWUZKcqc8/mC8xJMJRZ9sYMusyUxYrmcpshIznLsAmWRsNtuIFi6fhBguklpG7Fvz9Mcz/ECYwzDMEY19tpYSC2W6BVrMrP1YplXwGIdLrojFh+kPs0yNnXNMAxcr4osV5FB7JlHT13Je9N3I303RtaYpqwPnE89p9cOk0kSs1KCS1msLG/mRdQVx7sj4LlcThKk48Uu6kOgadrYlCmmUV4P70JczMnCoe8Hsqxgu91yd3fkehWsg1KRxRS41c1GaQKB2U4so8P6BWcteZYx3oLfYv2kvio7xPUiS1YXualpKknTq5LKe7HcEhRJIoFgsoT1ODfhvWOeR9LUsCkS6lqaWBd5yhLOFrCjiBKSLKXvZqYxAI6QSjPdtRNVnbLfb9lut8IybST11nuwNlDXglJZrKXvLGPtmMeRYVzY7Ta8LY2ojseZqnI3Bbe1Cy4sKOU43m0oq5JPnz7Rtr0EI9UlwzDQ3kJ6EvJclIvBL3inWGbHeWhYZs3Qr2FqYJIErYQ7udglDks9zs6EYFE6cG0bUKICv79/IM8TrBfRhAxMNN7L52SIi62yyHBuIU2L2x2ZZyk+CTw+PjFNHePY0U8D3XCSHmu72mZl6GyXmU1dsotJy5dry939I0VRk5gCa9cAPceXL59Zlom2b2MqaIGzM0WRst3WWDv9zedOKcU82Tgv00zTQpqKk6eutzRNQ55VaJURMIzDzPU60rXdTYTinboN0GJqwO25TNN1qDLf1Lqr600WRqsSX1KRk8TgvCjl1hAQ54FpDR2Rp3792deZAGFlpq0Vhrz24uRZebAB5xU+zPz+8Rf++I/3pHlgGC8Ev9ysqGW9Ick0IVpKh24kTaSvcd6hgrgW+k5qmLu7PcMwMk4TeSbK3mHoMUpjF8/12kfl9YI2OeMw0zRDXOKLqut0urDMC/vdgZeXK48Pj2iVMQ4d0zjE9xeC1xJC4YMszxfJn6/qDc11pG8tRbHh4e6Ovm9J85wi5GSjLI7bTvj0aZpSJCkm1Wgl711V5/gw8d33B1AJnz+9MQ2eoV8YehsXpsut/8yyMtpjM7JMcBk6KujyLIm1dwyvUwY82MmSmoxhHgUfUVW3ECNtNPvt9jbbSdOUtu15fX0lz7OoxjeACJLyLGcapSbsuo7tbktZ17y+vt5caT54whLTk1UgJQZTLuFm3daRleeswwb79XOxLPFhg5eXV/aHijTTOGep65KylKCUsqiZZ8f10gOiElfrMibaYhNjBC2RQpZrqn1JYjzXa0eaFSyzoMRu/MNa8AdaK+bFgRX8gPc2uj+DIN5MHMCnqSQHpxqlPSEskgOhDVW5pe9mTqcL07gQHLd7BCWvS5Q08vd+/d0DPgK3IZqP1tlv+WnjNKJwFPmOLMv48uUL//DTHxmG+WY3lI0cN6mjd3LQ3JJJohprGAZpAiK/bbfbxbSxFBs3dauyT2vZtqxqgptCwXxN7fLe8/z8LPDaCK4NATZVDc4xjuPNZjtbi/YiFd/kJT//8gtPT3ekWX772VfJ5v5wIM1SzmdJlz2dTiJbjkO3vu9ZYfTOOUZEIZEaaeaKoohJe8nte5dleQue2O/37HY73t7eYlrgaj3MBewdFYvGmNuH649//CNfPn/BGHkN7u/v+eXXX8mr8ub1z/OcspRLebXLTtNEkib0fc92u/1GnQFfvjzHRqNg+eZ1T9KUtu9uB39VVaRairQkTen7ERf5GXEtJZDzG59CVBFAVG1lt6Ji9fuvXysfCIgWccPDw8PtdWv7LipTNElM52q7lnFebupOFYdp8zwzjKNIz1eFijE41gS2rxHdIhPWN4svjpuVd33WkiS9DaXX12IFU2fx36//2ziOJOar5QPUbRu6LD7aH9ZIbykmnfcsw0CWm9tznyTp7WxQmBvf0toFZ6X4k58pcgQQuO+abrTameZ5piwLTi+rRX5gV6Uk2cAwWao6IU1yimzH0Cqay0LfCqdClA2y5ZimiSLP5bOlhOdWFjWPTwfsMmKMsKHKMifPC8BwOOhouxf5uQ8LyjiqIiHNFHmRMs2jbAt14Hg8opThfD6JGqI7s9tveXjc4axlfyhpri3TvLDdbanrTIZQu4J37z7gI6NQChgpyosqj3zKwPn8SpIa9vu9WCRjU77iAzbbDXmeyRD9fBLpvHNM08h2X2Ayw93dXoqQYeB6uZDnNXle8OXzmX/7txd+/MOW7797T5JKgSSsD0c/nAhecW2EQQLSEB+PezZbGRK0zZWqqm58TAn+OLPZ1IzjFFU0os7Y7fbxeXAcDxtAo8nZmlRgvdNEngowH69YJkuR5fhKOEmPjw/4uF2X9OORt7cLShvqqhKAb6aZxollceQ5NO2V492Oh4c7pmngcmkpikKWHft9HAxJyp3WoJOEtpEgljTJWBZpZEGSWLVOIQg/KtNJ3IJn8kyHEa0M292W6/WKUinXS8vb6QuH44bjYSupml3H6+d/Q4cdHz9dGIeoGh2fyfOE77/7wDj1KBXYbjYc7/ZkWUrfXVncIkNbnbDbHrg0V6z37DZbgRgnYhcaxwFjHH0/UxUH0kPGf/gP/ytG51g7cb48c758JMs1eTajtGdazvTdG8vSU9WFKHRdTz84vB+YFss8t/RDRp4lKCI7FoNWCdvtVhh/dqJpGu6OOzTw4/ffcz6fKMuan376A9frNW76RSnUdaIgcdYxT/OND7ueK39z5Uel3ppWv56j69Lt22Xcel+smIo1QEwUgWKzWAN1pDGXpYkLirfzhcUNmCSw2ZT0Y0O9hd3+wDIrvny+RFaoZ2xH0sTEFLkMnXjKEvJiwzhOPD5llFVB8Irff7swzxaTpGy2YjXf7FIUnsNdzf39njQD52d2uw1JYvjzX35mHGaGQeEd3N/f0Q8X6m2F8wNNO7LdHAkupW9nkiQnS+XzY3TCEm3+Uiu5qGg3PL3/gXkZ+e7DOwxQlilBiV08BBXVlHL/yQDDME4d9w97vA90TQ8Id6Ysc1Dwxz/9kTzPabszZZlwuCvFcpNneCdKrbxQbOo78jyjrEqSJOHh4UBWVDin6LqRLEsxBu4fj/z884Vx6hmGFmsTEmPYVAWbTcUwyHDCmCJiJ0SplyaZqGm9FQ6qVgxDL3YXk/Lb7x9pm5ZhnEgSzTguGJ3Q95a31wG7GKoqx1Q5nz+dGKee413N8binbVuyVJT/xihSnbHdbSXBVWtJA48hC0liKIqSPJPQK2s982Qj8wnyXGxRyS1s6cK7x3dYOzHNMwTY1JLorkKCnQNlvqFpO/5f/8//RJ7nVJtSmnQMwYNdPCokaFKWOfClO1FVwoSV10PqsFsiolYxbKPFJBbvl1vtezjsmSfhBC9LLwsoD6OzFHlJCNB1Hcti2e825LtaFPVuxi1iP+379jYIlc9zZBjrQNc3t89ikhjqWkI9sjRjnuT3F8V0IDdJ1CzMWL+mC0b8SCpulWmy/PLzF+4ftoxDDOrIcpZEFjjT6BlHGRo4J4FdXScKvq7rY7CVwiQC5c+zXJTFaco49Pjg6LqewgkuAG3w3/Qh+/2ePMs5Xy5xeeTAQ1WWOCv4liniHZbFynJGCWPTLo6bxSp4fHAoLzbyXEuie0gyjof9DVvgnBf7dqxB/5ZLKsM96TfsDXsTD1K6bqAsC4IXd4DXnsHNCBxfxYGeqCrTTMKmpklC3PI8RWsXg1MCiZl5mVvwwnPyjpjUKmExXSu9iLDGPdttzvk84r2jbRv6fiH4QNeJijogZ/c0O4oy/QVRPgABAABJREFUo2slUVsJ9Ye80CQpNF2H9TOenu0upaxFZeWZqDea3WFDlhs2mxqlNX3bo0LKMiv6rmGcHVNvCUHqdzkfNP3QkWZZTMUUhmaxKdnvHtEayjInTRUmVaRRzWeMJmQGuyxcLmfSRJ7lw3EjVtf4zDk3k2YGk2geHu7ZbLaIvX7BM1Dudix2ii4P4bgFHHlh2G6KWK8K1P/+4Uc8hrbpebm+UBQVXWeoqxJjglhDDUxOlIR1VTBbCZlZ7IyzYmUdhkmUUHaMgoA8ojN6tJKBZ13veHm7cDpf2VRn0rSk6wdQ4jjJ05K0EkWeDJyk1v+WBbku5laW/bd99vr3r3e6RxvFGlASgiBzJJzJRhu6viGH1u+rFCTaQHzN14Tsr//fsWcOEIJinjz/9l+/cHdfUNcytHFlT1VtxRVDTGp2DpMo6qgaHuPgeZpmSp1iZ4XSGV3TsCwj2x2RFyqutnnyaJWRpQVlqTEmo7kKg//h4ZEsF4VnmuR8+vSFrpvIYgDPNM6URU2eSZgXYWUTK6ZJAveaSy+iEy+DWkLCdrNhs9lwOb+xuFncelpRVSXTON8SuxWexOubjXOzy3l4OlJWiiyr+P679/zv/+nfaS6SUOu9wZg0Ll1NdB7JMznPsvyoS8H7OGt5uJOFdKIN07RQVzWbzZ5PX55RWpY8SWo4Xy44Z7m7eyRLM95eXtjstgzjRBOVyyvuKc/zeA6C0SkPj1vGcSFJDIf9Hp0Ii9PaF7F6R6ur8z6GjggDfa0VJd3bo8Mq9vq6cJFHKKCVFpfdtY2nVGCzzahrQdLYZcS5QFkJ9sBm0Ha99MSa27Cv63p8WOiHlCJX1FXGw9OOoizRKuHP//6bOM0yzeO7HZfLBZMYhiGqFVEUec7xeGQYR+wiKl1JWw/UdUqSKualJ00VWa7p2oXXl1eckz4vzTQp0nu6KCQxhjir+h9AwWe+scyiFEscqiUx3n39QL+9vbLZ1jfg/uXSfPPGrsEA3IYmq0JgbSaWZZEtU2QGZVl2U57Z1arrvw75/vswhrUhWW0aK9Mizwt8mNCLjTBtw7zMZInBhSD7D6W4Ox65di39MDCMI4ddzfXaUJe5RNErjeOrtTjLcuZl4eeff6btWnRimGaLc19DP1a7SN/3bOoN4zBwPB7Jsixu74Upsw7c5kqm1MfjIQKIv6r01jThlQFYluXNprxOwMuqIk1z5mhV/f6778hLmUwPw8C8zGj9NeykLEu5BOblq2UrDiHfTieu1wtVVVPWJV2U9E7TRFkUXK4XkqoSO2s8PKZpJM1ygd+W0hzaGMYhB2YEtzvPppbfZx0Cf2U7fbWDfdt43uxhyOGhtIrx7dHK7T1VVdE0rWA1Y9FWFIXYbOJ/K2lyGvw3IR4x1XdNUgJwXlGWxU0RIM/x1yLT+q+FYlVV6KheU8hAT1Kdv4KY0ySDaIEEAUxP4xwDSGSzWRTr0HNNIl4T3YxYxeOAWgryBDlPZbA6zw5WtW3c6uV5RpYXNE0j35dwawDWZ+ZwrPm3v/YIsyDKk508u3038dfXv6JDxTz5uCkxcZoZ3ztjmK38zk9P9+RFhtZKiqo6x4eZvu9YlvlvhouLXXg7vbHd1Gij+P77d5zOb6SpitawnCzPePf0js1myzAOTFPCZpvicMDAfl8gsfQZDw+iHtvvdyitaJsrx+MT280R7zVpIulLl8uZYex5fvnMCm8V22kVP2+a490dwyCq4re3M5fLlYeHe7FmrKE8kRnz0x/fc/dwIM9TSa8+XXh42JNmOd7JFunxIZClGV3fUBQmpj16jBEm4affPzPbmTwveH195fsfnnh4FA7XOHYyRI2JzWma3ix7nz59IQTYbjdMkwSDnM9XDocDd3d7lmWizGuWaaFtztzdPcnP0fQC4J4cOlckJkfCkGVg4VXgem3j56HHOciMhKpoLXL4oqy4v3+QS9EEdrucx6c9hB3LvJAkokZOUxPPuTluHDUeG1XYISouczYbuFw6+ZyjMSYlSWUAMNuRvht4fHqUIn5xPDzcs1oez+fLjU0p4TWB4DTBO87XM7vdniyVhsA5AerbZWa32dA2Jc0yU+Y50yTPXfvSMkfFjKjOakyaE0UijGMvEn6lWVxPllQYXctyRYuK93J+43T6SD+8MYwzIVzZH7dY12ASx2azsnccXXchTQuUEgsZYeRy+cw8zux231EUYlnLC2FQXi4Nj/d7SQQdJ4oi53DY8x//438EFM/Pzyg0291ONpIx1GotuNehXNd1OCcWvW8V4evZa+J7vt7V69n1bWH2bRDHenat6usshkQoLVtPQXMElHLs9xmHO1EdLovjl59fUWjef9jy2y9vTJNjt614fFeRmETA4CGgDWR5IM1gsynEVhQsx7sN2916Timev3S07SSKJA0//LCnKKUpS1NN014oCxnaJ6ni/n5L2zR8+LDBOcXzl7eIFRG14NArlmmiuV7omolE1Rgjiy9FYLECd/dBFMTzPDKOjqxIGaeRRCu+//Cet9OJokzp2o7P3SeEqbnj/v6Bqtrc7vcQPGmiQVvev3sviirryXTKDz/8QNs2mGSPMZ6iMkyLKPFNoliWHEKgKkvyLKMqS0lsCxoX4HI9cz23MhToRclhjCJJNHmWxIFZzryIlXixopJ8eZGF5el8pu8m9rsDdb1lXoQzm6UVywIvr2/0wzP7XR0RBhaX6mgnD1yvI0anFPmWxKT8+c+/49zE49OWMt8wTTOfv7zw9HAviJhMmH/jOODjgFlCW6xYjrZ7nPW8tWcgROu9E8WGEVVLWRa3ZzVJSl7fXtFKYeeZrm159+4Dm2rL+dQwDQt1vef+/onXlxOn84mmvbLdyUC86weUljRCraJK3imGYWFlItrFxeZ7tQpJyvDnz884tyPLTVwUaKapJU0KjBE3QhJrhd04o1XCMMzCIi2kgT+dX2XRtj/QXjrGYb4p5g6HPVobpkUazaLMZXAch0gEuefzXIZhK2uvKAry6DSZ7RJB/HxlK2lBkxd5gdaKvg+MvSfPUrHMWkeWabp24HI5MU4DWZ7gnYkDxhTvEggLyyJMw7Lc3JRLblkYpjEibzwuBJquk+XAjZkn7N1pmijL/OYASbMUvcgSUynFMi+0oY28q0CaCUrERTzIqnpRChY7s3h/q2O9suRFQZnnXK8NClGte+8JClF0QGyA/Tdnp7vVqGufI1YwUeVKLxQZfSGqrlRgGhdeni9czi3ei8I6L3LmZSTPNR++fwIcp7czRZnwpz890DQ9yxLIsxTnPae3hl9/+QRBs1jLbiehY2mW8OG7TVyigvMNyywhIOMo+IRVVX3Yb8nyjuY6UG80213J+w/3KB35rsc9nz595OXlwrIE+tax2+WUlSiL8yJlsaJALYoN+JShG+PgSqO1J4TIdAximw7eYyKOYX/YYYwM47/77gN5luHcxLyMNO0pfl5FgaW1pigLlFZkaQzH0DIwvVwubHe7aHRV+MXx448/Iu6lHp1UpLlHGY9nVc9He6mCIs/IEnEzyEJa45wo25MUjHHMc4u1jtNliVzUmYBFm0AIDhc8eZ6QZYZ5CQQ8v/72CaNNZEAHQipDn+v1ysrna5qOEBRGZZRZQneNvueYcpuY1RK+8k5LmkY+I2tgnPSe3Hpsuc/F1bP2Vl//9xDt1jJwNWhRWSGulTwvmWexcAcCOiK25AxJuaWOIn9+joGA4nwxN4cAIeCWlGlcuLxdKCrN8Vih05H7+4W+f0YpRb2p2G63zPPCvLwyL45lCSwLtO2CWxI+dyfBOeSSoL7MgU8fX8jzlCLdkmU1zfWEdw6tcr58fsUucDhsqGoZ+o3TjHWWqtwQvJgw53ki4Pnhx+8py4qf//oz0yQqQaVC5HoH2m5GAhY8Pkhi8eJm+rHHZCkmDpiGro9ceoWJ54WKBdI0DsKkVTmbuqLpPnE5n3h8+B7CwjD0JDqXwC1vCc5iNORZQlFkaGNIEkVIM3mvqoq7u6PMQ1xgWmYu11fyLCcoxdhPHI8HYfZqYezWZY23jm4WRFSa52R5Lr1z8IJhi7VlVW9omp7XtzOXpruF8FjrSPOc7XbLMIw010Y+S7dZj5jx1z7+K/olOs/0Vyfn1yRoEQN9TY2XNHC7OObRskwL8zKSJqmgwKZR3Dsq4PnqZtMqEJy4gLxd8IlmmgJFnlKVKS8vZ9JMoVTO/f1RznK1DsVn8kKcH855xqkVZ5STu8cYEboFZvndp5n9fsPl0kZ3oqYoKrbbNDo/WqZxoszS+Nm0YqnOvjII/69+/f0KPrgpluZZDo8iT5lmx+IsaZKAksHFIcpCQ1hTQqWgyrMiQjqdbDNViNyr5DagMkaYSOsQZlUF6NtmIfD29nZT+K021VVttqrm1jSkdchWlgXVZoNuGl5exSI7TTOKHBtZaElqCErfII+SlOP4l/9ypcwSnp4eb1vYVZI/TBO/ffydcZ4kqh5FlmcMg7sNnJa+Z2XKrVDvw14SBUOQ9FeQIcM0z5zPI0odEP/6aqH6Oswsy5I8z3l7ewO4qfmKoojNWBpZhFIQHu+OtG0rB7IxpElCXokKcFVgbLdb1mTgw+FAnklzQAhstzue3j3x+vZG3/eiqtwfGCf5gJnIWzBpynfvP9A0DUmS8PunT4zDQpqauAGNzXKakpkUN7vbBZTEDQDoKCf/GrIBXw+BdXM0zzP//ud/l/CQcWSa5bDe7/dczpf4uzlMkghnJUhiXGAN7Uhuyljrltg0Soqtcw7rlttQcDGyvXZ2HRqL1jYxKRZLwMsWWgszwzmLi/wQUZ8phnEkeAnESJKMQLRfuIWAgH2VMShJIsGz4KzGBUkfBsVsV/vbynbxTIslSQSCOsctnUkS7DKjgjwrEhG+CKcwBLRZ/3xgDVexi6NtRFnRXV3c1AXGqcEtQbh6zNT1Hq3g7e0sRW4QmGmWGOZpoOtFlSBWMsSGVmaUZUKaabqu5a9//Su73Z6np3fs93tpuoKF4KXpKBK29RalpCCfJst/+A//M9YujNNAnivSXDNMTZROi4oKJjbbPF5G0tS9//BH7Axvb68M3cx+f0RrQ14mvLxdWObhVtDleUJVFaBgGDoJnkCA3NdrI8O9cYrPh2V32DGOI1lhMKnh+fmVruuivVeGbNY6LpeZL58Xfvj+Trbs5ZbF9jE4Rwo0pTQ//fQDYr/wDMPEbrdhGHtCtIiv29PtdhsHLTPzbFkTnYZeNsNYhykriqKkrmuGQS7MvMi4Xq4Mw4AOmnmy7HZ3VGXFOA30Q0sIooge54lr2zAvYgM+HO45HO7joGhknkdREgV4e31lHAfu7vY8POwxWj53zjqUclGBIBZ8a+U8btuGYVqwixOGUFpCMPTdxOXckiSG3XYr9idvhTtW5hRlRvDCbdtsdlwvFwlqSVN8CNzfP7DZ1HTtFRUUd/cf0Gri99/+QtddMVosQItbpHlYJhQZVVHw+vIZrUQBYv3Cn/74Jy7XhsvlIvfa4YDWhuulQetENrRKFLZZVrK/v0OrnLvjO7xX9H3HtT1xuXxhWa74MFK6wNupw3sXlZpi6cpNBliUCsyzJJqOU08WhMXWda/U1ZY0rYRp2A64xTBuStK0jLwlGbDt9wculwvn85mH+3coI/aKbwOAtNL/p/M1BG5LsnVhB7I8W+/Rb8OP1j+7fq13sY92OqXk+z29e4wg+EDbSPGjtARwFJXB+oHFOpRKqOuMrrWc3lrGUWyKd3eG/aGi668URU7TDKAUOi64nJfUxmmcMSZleW15fRnoGo+1URGNWNxELTvy9npiHIUVVVUl8zKhdeBwLMjylHFc6DvL+WRJUhi6DoWokoZ+iOmMBpNr0tQQlGVZJtI0IxCTNH1gmmTL/Ouvv5EkCc3lwp///S8cDiX/+I8/YRJDWRbR1iZDmBX83zQXGfSkhqfHewKyvBnHkbun4y398NOn3yirjCTJqLZHwYmEyMBUGr8sotwZW7RK2dQ7sUEedyzLTNO84kNgni13xzuWZYxMLc9iIcsNVZ2jdKBtB/7yl8+8e7pjmR1VVWKt5Xq9RKyCpe0G5sVRV3e8vVz4+Nvv5DlUdYJRmmG0gGeeAvO4MPSfYh2zUFWiKvzy/Eo/dOR5SlVto5LYkhcJXd/dVPFaC6vTO7HYzPNyC7xwNlqBtKRMXi4XnBO13/F4T1lWglvwjsPuyDhMjMNMljiSNGceHKe3V7quZ7/f4rylrAux788z3334QFZUtG3Ply+vmCQRTIWCohSGrPfCw+y6DpMoTucRFTz1RvHyYvnhxw/sdofbQlyCTTwow2azE7aVls+uOCsM1+uV5+dn7OJJTMpuF+jHmfOlEU6SB5MOZGkKRlFWBcYotttSFo/pGo4jdmCjElQI4D1VkZNoxdgPTHaJ/60M/a2LQwtbcChKlBZrbggKgihqV3tqXdXc39/T9x2//PIzzTLgAbtMLMuEQoaJu92W3W7POI68vLwwT9NtcS3WKsNi7a2mWwPP1tp+WaZbPZxnwjqDwPXaIEmqkkJ6vTYQWXgP9V207M6sAXV+BeAvC3aa8c5TOBcZdCrWSdHCSGANNliXt3IefmWEr7XV1wW1DJqEq7gKHUJURcp5SbSCGWPwSkLBFusIYeHL50+kmaascyQkcOTDdzvyombsJ3755RnniSobT5aJeu94tyFJ19T1hHEceXyq2G52oAw//+UTwyguirKQIJfNNmN3SNjva+o6lwXjPKF0xjy31JsMpSR1evvTgabp6Mcu9jA6LnAMQ9fTtzPddcGYMr7OYkuVBG8RVsid4ej7iRAEG4PyDMNIahRZbsiLhGnub4Os4/HAbrtFKY3VjnkRd1SeF6RpxuPDPRLA4uPyq8Ba4Vq+vHzBh4mqSsiLNLqzhP9VFGVU3AaGrqPre9q2Ic9LykpYo/VGcAnny5mgHCYJaO3RJpAkKjLkhXuYFzkBR1FkWCvJ4dfLRJ7FkACteX19i41+yvnc8PLciIopKJY5UP3ThxvOSCl1C3/zs3Drt1tRTVu73JRmKqaYsloW40AlPp23u1tFJlgIoqw1aIyWBdh2u+Hh4Z7n5xPjMAn7N7rXgpeUdgkY6qXfALFaL3NEAanYh8scQClwVpiB8yiJvmtKslGK9x/2zPPI6dQzz7Dd7nBO01wHht4xj4pBeRrVxyAlKCtZzG82GXlumKaR66XHzgttM6KUJTEZd8dHnp7eyYB3uJIXJVVVkJqKs+l5eX5jnMYo5lA0zYXL5XRzQSXGkKSGPM+ZpplpsnHgK6rlsiyZ5onz9SyqzDTFO0eWpuRFTuJkKeGsBGMmSYg1kmeeB3GMRJHLNHakqaKqEoILJEmgzHLmWVEUaXxNZT7hrKUuhZ+/3x+Yl4m31zcu1yt1VdL3A23bU293lGUtXNIsx7mZPMsjbuMabaWafhzRJmG3O9A0LfM8YZ0Xpu7iCF4xzcKmXQUkzrVki0MpQ1VVjMPIHDn6EB1vsS60VpZEWml8CCQ33Is87+vztTpG0jwjMYp5mRAmdxLVpAlZKsiYIs9ItKfIZYm6LNLPryiqxOjYn3tQnq6T163tJZk9OEWa5rFfm1Fak+cRtVRIfb4sE1YpWRQrhUlCfB/FZffyeop8ZnEsejvwOnaipEyy2wLFJIahH6RvcA5lPFn+P8CAb1WryCGaU28eeDufWWwLyjBMEoGdZblY8aLKwDthcGktkMVVkWaShFSJJXdNSXTO3QIzyrIEVl5TGrczX+1C68BnnmeWZaGu61sT0jTNzXZUFKKGKcqSMsKk0zRhnBZMksnAMQSSVF7k55c3VLyYtU4wJgXl+eWX3zjsj0jSqTRK//bvf+Y//8t/kaCKqAKzdolWlPgzqq+NFRAhsgUhbvu7vkcpGcQIWB6qUoYjRZHz+vpG0zTsdvvbpnq1Hq8N/8qxK8vy1nwJbH+DdYvEymtD8OEm5QVujMJpmui6jizLOB6PoirrBz58+MB2u6Xebghwe31Xu6kC6qrkpx9/5OOnT5xf39hWNZu65hphxYnWUZm23FLl5EuRRejrqr5LU5Hfj+NwAwevycFr0uOqIrHWEhD+nxlHSXeLqoJhGGTjipf3MEmkOHXuZgMWMCYy0IsBHQG5MOdR0gR98DEFWMWUWsOaoLMejtM88jVNV7ZeYoEcUUoAnuM8yqDbS8MKnnmRRFxB1Pnb9tikMij3wRNIMKmwMZz3sMSNsYuDwXiIOS/AXuFkKSFbxnTcYehuz59WKqrVvm7uRBLtaZqJaQhoFej7hTzTJEnG+XWIjboMK5cFaWLVgtKesqji85hwvbTRjiIA5DwX+4x3ln/4h+95/+EBrTWPjw/R3iDpY1or2u5Cmhk2Sc3xsCdJsih/9xyOR6ZpYhxHfvv9Z+pNRlEkbPf3ZHkiSWVZil0kRXmeZ8qiiJeEJUllcDCNI00rF7nY/33kpS0kKWivmeYOVCDJFKfzG3O8zJtrz2635/6+pusbkiBQV2sdb6czYLi7P3I+vWCtJ8uiMgNNexW1WGpK8Ir/8p9/Bmbef3fg6emOy+XKOA483N+RGFF5HI5b5mmiLIWV5z0cDjvmeWGzkeS8YZC/gv+qEnZOgP5FkfP8/MxutyPPqwiz9Tw8vGMY5gghz/n08QWtDdvNBueR98s7kixjmSPIe4GXLyequpQmRsnz1PcT49jh3cx2V/Fwf5QUzFQQDFmecj5dSNMc75GCTulo68vFjutFOTsOYmXRJiZkO8c8D2w2e3bVThh8c0fT9mx3Gz48vKNte/qhByQgZbvbYJKU/e7Itt4wTwu//vY7dkpI0oTtLqNpGxyLDA7qgqLK6PuWaRr405/+iDEmWkUCDrnEy7Iiz4XXIYFClq5t+P7778mLnOv1IqqLJOPp4QcChrbtmaZRNvqpRy2WRAXa7oIknws0fJ5lK77bimJnsT4G0MwoA9qA0pZ5vuJcxzBY+mFC+xRdVsLxVAH97iFuhwNGa67XqyxKCPTDcLMKrs2oHH1/a40w5mvq5/rfrUO+b//+rbpv/bPA3wwM5Z/1N8WaFVtMLoljzvnYuBnSLGWeBsbR8fBw4Okp43K9sNunoBzHu4prc8EHi9Ip9w9b+n5ksROoIqZxzgyDY783bDZbyvzAr7+80jUL5f5AXefkBdR1RpZpPts33l6v5JnhcmqpaoM2mrbp2GwlhKS5jiwLuEXhXCAxMI6ecQgkKRAsw3BF3ys225y+GyhLUdZmmaRWv76eABvtTo60EHZimooyxDjwfokLzrhsidxR54SZ2bUt1+sVa0U53bUjZVaIujUxHA4Hxqnlcj2TLaJWktAILZ89a3F2lsCBRRAOZb1hsZZ37+/Y7UUVLAEeI0p72Za7hQTY7ff0Q4fSgbJM2WxyXl5OSEKlpm0brB2xznK5tJxOA8GrqAT2JGmgPOTs9zVlWfLl5YxbNBqxSmoVG6IksCyONEkpi4rDQdJ9h2G8YQnaTuqlNI3DZlRURSmGYbgNizLvmeclsqIFXyCL35KiKOM5JMmrbrG40uMdnM5X+n6myCuCUhiTEnzg8emRw92eNE24NheOxz2Hwz0vbxeaayPp4IU4ISTtM4CGaZziMFsY1HWd8fRwjw8TKI9WKeMwC2LFuviZVdRVLciXJI13eyAxI4mRZPp5nkhNKctCH+j6gW4Q3mWhDXW9JeDpLgNJarDWx3ta4fxCYmQQFpzID3fbmuu1Jc9S4aM6D9FWLwmGBqwlBEFKzHbCGEm/VTrcHDNpmjKOPcM4oI0sr56enkiSlGvTcjo3ooTJcu7v7zDGyGAvNo2bqqKqqtuCYYWy13VF2w63ZfZaS6+4H0HbZLTdFUnFFfFAmkmDbYwR5pm16KJkv98zlzPNtZO6MM2iCmeRRSmKy/mM0SbWabHmDPJ6fKuAWhfvsDouvg761j+zihCEq/h10KKiI0P+WgeCAa9CvA8Dm21BUcq58PZ6xblAXef0w8ivvz2TGMN2l5Okkmya53m8ox31JsOHhcNhF9EmojYpq5zLuafebJimjrafmCfh99YbTV1XLMvE6+sgi2qj6FoZzpaVDHaSNMF5R9P2NFdBqXRXF63/LtbMGqNSSiNWbOctnvU1M6Rp9jeq8L6PYRtGRVGC5YcfPrA/bnF+ZrutKQo5X4mM7zTNCIuP/Z70n203SqIvir4beP/4dMPyVHXFNDmctzTXgSSTwSPANA0Yk9xwTqI6NJFdm6CMhJSUVU5VP7Islr4fuFyuLHbGB1HCj9OMTkqmxdN1LYfDMX4+EkAUYWmS4FzKdlczLxNt2zP0wuqyS7Q5KkgSCXqQz6UsR0JM5ZTUehd5e+o2YJ9n6XVW1t6qMl17agkZkKGfcKaFYaoNFEXG4SCYpsvlzNvradV63J7p1SUzTTPzNGGtE3WbD7c+fp5trCXWJaK5Dbe1TnF25vW5I0k03nVcLyPTOGESxdO7lOZyxi4px/13FKmlUfLvg5dQDxs8Y2RR1lWCdwprFb/+8sq7d0eqaoNWqTDrkECT4+HIw8M7nJ84vb2hyCmriiQN3G8PbGoJO5mWhX6YuF4bQoAsS3HBRvSDBM+sAWMSoqRF3LFYEpPE80bcKatqvG07SBSbXcG7d3umuefj788c7wUNc7oIJ7+uSo53lqqqaNsZ7yBLFUVRUxQZ4yhnYFUVgmpaJFSibaWOHceJqiw5HA+xv9SkWRYxZCbyFjOGoaNtO6wV2zERTZXnBVoljMPE0A/xDJP337uAMVkMXF1uNuz1mZrnmT/96U98/P2jfH7j1zqvSdNo146wgxD7UqWUWHt9uA2zQwC3LNhFlrQSPmVpWxFMZWmG1kaEAX0nro5Mcf+4Z1kW5mlBGPNawm8Wi3eRSeo8w2VgnuLPEcU4NiJWlkVTFJKUXFU1X7680vcDeZHclNx5kcaEdwl8gYRpdJJN4DVlUTD0DcFLIFQ/DLFGFwwHCi6Xlr6b+Hu//u4B37qNz7LsJul1zgvfwsI0DsIiKoWFIcwNCbIwRoZdq+1xnhc2WU4So6kF/ivgzHVItXL4VvvkOI64EBinOTI1vrJL1kbDGEPTNFhr+fLlC9vtlt1uFxVKMiCaR9lEaCWSXOcd16YBHI8PD5KmFS1jPgTyoiJ4y+nS8W9//is//vgjr68v/Jd/+S9cLheRhCuZPDsv6qo1WUuiqi3bWuTxWSaXmXWW7tTyhz/8gdfXV65XYWtt6038wIjSqmu720EeQrjZc9fmah1qXi4X7u7uqOv6Zh1eWQrLstyGU33f8+H9B+ZlZgnLzeLcNM1tS9m2LafTiQ/v3vPy8sLPP/8c5bry1263A+B0OrFYy6aq8c7FbZri9eWFNMtu/C4fnxtjDNbLkG3dxGqlpGmJqZBfiybZUIXg2O/3HI9Hmqa5KUjXosmHQD/0tyJOKXWz+n7biApbbvkbXtS6hUoSg/IhwnnlWVtt4d57Ep2yxPdxt9tJg/Lly624W6HA36Y+rxbUZelkOOecHMRBDlKlTFRkrirPaA/wq6UDcBLuYWd7uyDTOMQZp1HsHXFIKaJkUQr6+DMkRpMmssXr+0GeCW1YrEDJ5VCVwzRLE4bO0beQZnIBd+3AYgfCLdJbM8+eooDtrkBpx9RPwnYqS2FEOGjbljwvY0LkzG5XUxYJm00t6U5F8Y1CN2OeB+p6g3UjVVVQVSWfv3ximma0TmmbiT/88A/U1RbhFB0YxgvDEJitZ16UqB9VGa2uI13XMgwtoISvFwJ5oUhzzzD0ODfHswnmJUSG4ECSKPlZ7IJ18PL8yjQGCTZQhmUWK8U8DyRpyvPLCa0M++0D51PDn//93zHGkxcGRWAcJpyDoffMs+J0ammuPeM4cTikaDJenk+0XcPDw/F2YSVpyuVyFjVVZJt0nVh07+7ueHl5/Rt1sor27SRJKcvidpkppbher4DmejqTZRWPj98RrGyR9tsDd/t3/N//b/8PPv3+zO5Qk+diYW6uPfPo0cbgreJ8lvQ8pQMoT1HkeD+JMiAm/55OJ9mKlzIgS5OC3W4fi+BR1KsmZ+VxrIouCNKQes1iL8BMVuRs9wV5pUBP9GNPVqQ83D9xd3+MTZKoA4XJmUQLqjRRTdORmgyQ1zNJDWmSY1LNdleBX2i7C7t9RZYn1JuKw/7AYhfmWaxm8yKWxLqSxVVqUs7nixSx1snZqBx5WvD+fc08WYqyvp1fXd/QtGfQDutm+v5MUebkeUZiMojAXg2MkwxqlTY35YnMzRzWjWRpwuX6glJbNqkUdiYmkMugcGa1Fdio8uz7nizP+fz85Xb3rF+3ECDWkIzVbvaVr7cO+L4d5N2Ge07U6Svv52ud8JUnsibvDoNsqMs65f5hQ156slyz329YFs/L85lxWJjGwNvrmbxMoppuh0kCWR4obUJgiYmDFuc0yyTWCq0gTx3LPEpROkx0raXrLIuF4bLQNi1prvjxhwe61jINAWcV12EdFmiOhxqTKHyA63lgHEQJYYMjTQ1NMwug34OzMvzN8pTtdntbvE2TpHzK8H3A2gXQ0szFocXjwyNPj0fu7+/49Pk3jEljbSRDq1Upap00BSub13vFNC3keRaXNAJqtlZShJ0fMalYkJSSYKN5mmPNJsMaY1JOpzP9OKJ0VOdVJUondH1D28ahl3MkiaauC/q+iaq5jMP+yLv3nr/++VNsJMUmCcKHs4vHzcKmI0hzWuSG+7s9Qclg/R/+9BOX84hWVxQj02ixsWF5/35PnsN+v5Xl5OLj9l+Cg6Zp5bkKS7iqK0Fh5BnX5npj73kfqOuaLMs4HMSWdDq94b0MEcZhiYNBUf5d2462HdludkyjZR5bnh7eUR0qrk1LXdXkxZFpmUBBWRZcrx1lUZEkGUVRilIwBKZxwnpN7mMglw5sd7KkrKoiDq88333/HmMkqCQExbI4hnGkLCqyvMDohHGQNNRpWtBqFJu60hidopQMrWS5IPBzY1LujpLyfbmcuV47YcTuajabDGNE1SD1QMKsLX4JN+RD3/c39f08z9/cLZAHJWEb08L57czxcMdut2UY+3j2BiCT5fUyM88JWS7hLm0jTMHHx0e8ledYliDT7b2sq+p2L1hrY8M6xdpreztb1gHaGnIhKvkry2LJixRjEuE/Ww9Y3l5OUhctlknNzJMs8d+9eyLLMn7/7SPGJFIfLfPNXZEY6S0kQMSJ9d18RQJ9ixtah41ZtGB/ayX+WxVf9IDGL60UZcT/gPz3y2yxRG55pqk3OdPcobVht6t5fe1pm5lpWug6R1UFnp6ObHZpDBkJtG1PUWR4P5HlKW174XxpcNZHsYXnfFq4nHuclQTNuipYbLS9JSl9t/Dp03Vtb0QFoxSfP07s9iNZbhiHK+PowGtsUFgr6nA3S9KvqBInrIXNZkO9EbtnUZQURUWWfk0Kl9pY3ZBPm03FdiPD2M1mi3cLXS8K567rKIoKH4dJ2ppYE0d7KoLDcU4SLMWtJVa/JFF03czU9ySZApNQVWXkKzfCBE7TiLEgKlQVLy9vAtVPNfMyoAhSnzmpO2QGLgEVh+OOJE1o2obFLozjQFGU/PTTD2y3V/76l98jCkbC3eqqZr87Mg6WX6dP2ElwGlkuwQnTFGIPrm/DJRfDYlYUwX9//654IkFfiYtJx3teGwB5rd9/eI9dZi7XE+A5HvcYo7lcLnGxYtA6uSnGkySJmIEvt+c6zwWfkKQJ2sgCZZ5k2LnWFfKZ+YoFkoWi1BJ9ZxmHWV6ffUnfdzx/eaO59pjIJ93UOzabLUVW0Pct1o4UZcY0DXTdhNI5dbnj6e49EOhCz7L422xB1IYNTXMFFZiXCaMD3o2UldRTb2+vKGV4O185n1uSJGG/35NlBufjc5VmeCTBVdwjCUor6qRis9kyjaNwoSNfLs+yW8pylhl+/MM7qgrSvObde0lSX5wMo6uylmV9KkrN3f6e66WVYamzLIv0ND72rNY6NJp5mglpQlFUaJ0wTQNaGx4eHgkohmkizyWc43w5RaWwIngVMWOTMOuj0+zh/pGqquj7Pr5/xP56gSBosq8IF6kJz+dzVM/JZ33FKLjwlQF5W2JEV6eJz6xC4xDn07cznQC3enRZ5HxwVpbQq+IRZMCsonPIGPmdTEx5dtbFhZaia0VsI2zElHmamGePCk7wWvEzT1DstgeyNOO33z5FgZkMt6sqp+s81i5SS/VOzj3t0KpnnoVZ2XYLPiiqIo9LSoegO2Shk+c6LvD5u7/+/5CiG26W2WmaJEjBSER4UiRoPAoBovtMIMPBB4qiJEn6W+EwzdNtELNK8ed5pm3bGxPjWz6YtVZA0m3LvFjyKMeHr4qBuq5vW7IsywR0GW1V0zTd2C1rw7sm3WllCFGifDlf0ErxcP9A1/csi/DoBOCb4peZ//x//Cv/6f/9n6OFRV6XLMmoq+o2kBT5ifjvjdbU2x3vnp64Xq7CQikKhqlns9mwLEvcLmsIcYBjTByoSPCFUpr7+wfqur7xkuq6vn1YVmXTOti6hT3E5mye5pjWt5Hwk+cvbHdbSc2N/L21OPmXf/mXmDoMXdPEwaCi3m5oLpfIF5KBmXWOcRipipLr9crT0xNplvH6+kpd1+RlQTv0fPz8KVqMF4L6uuEsy4oiLei6jnmeo1JOxwMjidZSKeaen5//5v1ef3et1q2CJa/rm302Sb5uV1auYwjhb54b5xxLCASvSDPzf1IJrooou/hbY7w2u4fD4aZ0yVKBn67P69eNRohW4/gBTBImJFVvHEW1M80TRhmsl6Lv2yZb0vLi/46+XYjexwTd+L1FJcqNqQWRk+nhsJPnxNmFJSZbZnkGN2aMuSlNlxmBiyNy/VjZrH9DghSk8PNOs8yyJVRqQl6ekbZtsdaTJO42ILDW8fj4nnfvnnB+ikMISz9cbs+6BO0kvJ0uETqasd0UzNOC0Uv8HKwqWxlodN0AxnJ3t0cpKUYSkwgk2fmbRb9tWrIIy333/oDzG9qm4+XlDWdBlu8Ces6KmjTVDINYOo7HHX/582fG3rPbb+j6XoY1y8w8e3759SzbvTQRO6H3PDylPD5tSdOE15dTTI11TEPg86cTSaIxSpqSlf+QFxlaJVgHbhqZZss8zRRlIRdqVKkUhaYsa85nsdmur2WapDi3MI4di3UcDwfu7u7IsiwOXAvKcsM0OqZhJk0SBqBtGrbbhMeHB55fnuV17UfGYRR2xGZL14tlrCwFgO29xSTSILRdT11lwqbTCefzlTw3bHYV203N5GaclTsgz6s41M/ouo4QDEM/kWUppclJE/n8bTYFD09bHh+PFGWGNp6uu/B42HI4HNlspNFr2xbrZOAvjc+epjnjnFh7xnHmOnYkRrZoWgeU9uS5DNeba8c2FPF+kOvx48dPaC2bN60NWhmxJYRAOzR0nWw8fZAiOM1SsjylKGq8kyWURqy5zsG0DIzzQNc1LHbGJNJcr5Dwlb2ltcJ7JamcypCmilTFMyTAOMlQ2C6BsgBrtxRlSV0XaKMl/dzImXc6nUjSlMPdA/PieH078+XlBZSEIAmkX4owZ+3fFl3+a+O8nmFrw7CqTiQoK0BibkoWGwsvlAzL1681Hfz5+Q1jgvCZFhlyLXbh9XWGkNF1M8Er8tzc1Bz1JqfrrhSlQWmBGCczLB7e3gaCSxj6hXF4BjxJmjANirHvMInB28D+sGMcZi7XiX5YKJXhfOp4fWnl7AKIaeh9a3G2JUlFnT30jmkSgDJohlGUxgqx8jkrA4Bltnz6+Czqq4iYeHl5Q6t1UOGBIKFpwOIsf/3rXwneMk4Dw9DGwdqVut7EO8zT91f6buT15cThsIuLEVHhlXnJNA28nV8oy4wk1fR9y25fCx800TFIa8M0jhFBUmBUIpgU6xjnKSZoez59+nQbABsjzdSNaWwUl+tFtt8efv/4O99/9yNGG37//TN1tcF7qQ2/+/A9XTfRN7/jo6o9KzRZIU314uDl9YXj8YmX11fmJZBmAi43RrHZylLscDxwvpy5Xhu2m008ywrcircIljQ1sfGEoqgYxoG+l7+mecG7lek8s9sJfmS32/H5yzOXcwMh5XA4st/tGIaBT69fBFswWvKsZLGWL59fqKsNu/0+DtRTMiXJrW0zxGXNLKEeqTSzNi4IMhLs4shzw+64ZbfdMs29vL77LVoHur7j948f42KplpCyLGez2ZImmbgYCkmZb9uOcRALeJYmvHuqWZbA9dJitPAhUfI5vVwuJImRRXq9xTuLWzzntwu73Za8EFWkQuOtpACniQTgzbNwrwOBbugluCKyvxTyd09g6EeCfyPPE4aI2bFOUArCdusZx5FlmajrmrKu6McJ7ySZV2x9i7ArlaYoDNoY+R6jY54mxkFq0aIoWRYJ0FsdOysD9+uQTdJ1ob4p55MkvT3XXdeBUqRJQoh14cuL1Krv3r/j9UXwMz6I40hYbjLc8asSzRCdOiuvLfKgYz8j6sUxLk/Wmu0rWkitb9LKQGN10mwoyoQkgXEaOZ8vUk/ihdFl5L7ou5n9ruAf//F7zucLSkFdO6o6JS8MbydBF1Xlhs3mIfJzg4T/LBLy4mxgtzuQpQWJsfTtTPDCQgzBs91U7PY1RZ4xdA636Gj7lVXy3f2WbS0/+Tx4+tYxT0owBUHhFs/sXEysVpIuiaIsSna7LddrE9Ei0pd13RLxEvGc/AYdEQJsNlv2+4MooGP9fT6fJU352sXlchIHORMhXMnyVIa1MWBms6nJ8pSua5htSpKICGNeZop6g12W2Ecosqxg6PtbKnOWSSBcUWZigfYrtkKWwt57pnmmawbuH+7Z7nZ4byPewAqza/GM40zTdtTVlrqqKcuMPCsJKKZZ3EjOej5/ehO7qwpkuTwTSntZ6rMOO1TsZ2NY1jxHhdW36vlVVb/e54YkYlqyVJR9bSt97untRJat9tNBekAFShuyTGOjgn39XrfAwW/mAvJz6RvCSvrI2Iuw2jMtdZ2J4jKEOBRZFa2BZXb85a+/kke0hPMWOyucDlyvPW0j/PiqLEUFn0kQUJaVaB0Y+olpsiyzE6TDEmHJipujxznL29uZ7XbLdntgGCTBPE23OBe4nAZOpzPjIudSlhWYRBAnInaIarPFySLYuVtQZVWWjOMo7pNpIjHCKV9icOPj4wPOzizLxDB6dJLx/Q/vef7yTNuM7DaPBA+vL2eGcWS327LdFOx2FR9/f5Ok7GqLJGuLdXgaZ/DgPeRpSlXdEwIi4lnEur5if95e3kjSlM1my/n8KortPBdBkVfU5UZEIz5gl+XG9LtcrrEPkQG5OAlb1mTmZbFY5zFJegtys4tluxUeugtfWfpfB8LSWCZa4/wqjJHP5Xq2R48dX4PZFrRREAwqmKjiFMtvmmYsbsI7zThIfeAsomr1hiVIiOfjozgDFjsJAiDNOJ96vA/Mk6coViem5dOnE1WZMYwWrURJPYwTeZGS5SrOLMCHhr4LcfEwYW0QnIoy7PY1m7oiSbkFF5WV5vFpz3Zbok3g6d2Gv/fr7x7weS/MgVu6rVlZadKAV4WADhe7MM0Tx2yPePCFbaeNTKTlgoWqrGJ6leiPfIC8zOWgC54sz1icgHAXu0iKGgLxVFpi7ddtnyRATbepctMI5LGqqptKLcsyhnEm0Qk6SUVmGYDgZeu539F2LfVmS1nkcdhopKnrRPqK9+BcTP0iXt4iAS9jwqxdFvI0u6Xj5lmOiUO/h+Md9/f3vJ7fGIaBv/75r3jvuH+457Db3mwJq3JxGAb2+z1pKgPOZVluKbvrAPLt7Y3z+czhcMB7z+fPn3l5eUGbhK5rb1yKxTq++/47kiRhGAaKovibC+HX3367caacc6RJwvVy5aeffsJ5GVoN48j+sI+pmgO7zYbjfh/l6ZJ+3HUtRVkQhsA0jqKUDGJ9nZYZrZQk7ljLwiygXQLWSQGy8puKIr+pF9cE4XWSvxZVEDCJpu9GxnFgt93i3HJrIoG41ZNtQJYKKF4sy3HbOk/YBdbk3FXkopTI/79u8TzTPMUAERl01XUdgyMsfd9HJqSoDbwLCKNALL3LYuNAd0Zpc3t2XDwkpagMcVMccN8M97TRlKWoMrpOBgwqKhBRYh8O3slFFERyXOQZRZbF4ipHz6ulF/n+qwUhfh9JWHYsizzfYvsUNsIK5nUucHpruF6EYaAUeC8A+69JU6LqWAeVbdPw3/7rXxj6gSxTBBzPry8EL1D5ut6I0mSeeXu9ooKoYoZpRivDbnfAGMXb6ZmikK3MtbmQpFBtUnyQYfFaxJdFQZJJInZw8PnzM1VVk2WJQFKjVc0kUpRPs2yWjndiW7leT8wx6Ge/3/P4aPn1lxfA31SnwzhKUWs0fe+YB+GBFAXstjnWDRwOD9zd/YmX5wuJGUj0RNfOeK8psoTdLme/r7i722AS4Wm8vp6k5FeBNMvJg5LPS1RRnE6SFlcWJXaR99vaRgC8Sp6pTSEWp3Uoa20gS0EpCfkJ/oRRmjzLaXppULf7mjTXbPc1v/76F9798UcO+zs+fn7m5eWNUc2SwJlmwvHIEgHvz3JJSpFm2WxFHbTbbanKDW3XMU6TwJJny/F4J+emNiiVUt1vUBjO54bTm2zJglK8e3/Hu/f3GBNAOZ7ebblcLpzOz0zzgHdwuVwpi5rzSUJAJJQgYbsTOLPWKbttHVmRoHRgv69ZvONyHkEFinxl14hF69PlM0pppmKmrisu12tETsx0XROLDmEmZUXKTz/9xGG/p+16hn7CqJQvXz5xPL4nK0qcH3F+wnpJP1VaS6Hk5TXIc0l9a9uO7XaH0ZlwNt0Sh0guYknWACkLYcQuPcnuHutmnJ3ZbmpWGPHb24nD8Shpltbx5z//lZfXE9kaPBOCDKpDTPRynkAExN/uenndv6X2gMIkJm45g0CklYlnlxyS0lPEQi4Wip64bPICyM5ziw2e1EFRCCz8eNizWCu8l8hNy9KEqi5AOa7XJmItxBZRzobPHwf6Vob9RSGpZd7DMgXyIpBlmnGY2Gw25EXF58+vqKAYh5jQvgZ8OVFRCkoClNZMo2eefUyCn1BKlIogdYcwiyTYxavAtDhRZEarvInvs7xnMdHUWVFLOs/Qjfzy8y84K+D8NEko8pIsydgf9sKiQXF//8ivv/7K6XTl/ftK+C8YvHayvU4ViYWsSDkcj6S55tycUEbz8eMXqmrDYb/HBctsLUN74Y8//QN7rZlenmVAoQzb7ZHT6Y0QFKfzJSr1t9Ik9BKU1jQDu10d1cUn9vsd1+uFNElpu4HTqaEsZz59fMUuC1muyVKNTjwhOD5//kKSZWx3G9q2Y5llAVzVYt/33qL1RFHmtN2V33473/iIl6sMM/K8YFkk+bOqCuHriFeau+Mdh/0dv/zyC9MkGJiua2Uw0reMY4+1soA2xjB0C821g2DIkoTj4YF5mGNz6Mmzgqra0ncDb6czIeyi3S3w6dMXUXfPCwotFi8j7LHgHUoLW6quS3b7iqouSLOELN+QpokEOiwjWov6Zr9/oChK3s6n2+JbVPgZ8zQRgkDr+35gUgveK7K0wi5iN2qbnjQ1LMuEVqIUcc5HxqijHSa6pmWzrVgmj1EeHRJR0BjQyhGQ4UaarBY6YeQ1TYddhBUX/Mr3+spDXqyKCe4zWlfyfA89bddSlhkr3zdJs6jCXOi7iSVabRVitVoX4iYxjMNwU3x8ixL5Vk0szaacN/LPMtBYnRhr2N6KsjHG4JyjrioCkqwI4K2lqiWx2XsnNqr1HAz+NtDXWsckZ3OrS9fa9L/nQwO3wf76s64KmG8XJtpojJHgr3HosW7g/uFAWd0xzQNlmbGpK6Z5ZJkD0+g5+waPBFRUZSYOJRNQylPVOcviuDYXiryK6Z4Z3stCVqsERaBrR16GC32/KmZEidRc1wY38Fs3MI6WeRLr+sphbK8zRZGI7dsFhsHF82o9+5FllU4ITv5skmi6YWT58iJBd86jsIzjgrAM1Y0daFBoLfX29SqM5La9sKkLrJ+xdr7dB8fjliRJGfoeu4hT5tOnT5RlyW63u4k70izjer2QJBodO+GiLMEETKrpupFhmHh+PpEkCbvdLta2nrYfyNKcw/GBcZoZLhdAFNUhQ6zoOkEnCa+nUwxvkgHWtWm4Xhq8B61Tqqoiz3Kct2y3MqC3s6PvxhvLSyH3n0lAG0eaa5JU3XrwdVCWZZkwRlldRNyGKLfBs4YkDVR1hnMSUlNWhYgnSOn7EaVgWWZMkpMkKto4NdO83Ib+XbRxap1gtAw/It8oLinlzNhua6z1cfnsSTMTB8wrtx6sXW7uqPUzvN3W+DBjrSRcL1aslKt60sQk13pTszUVbg04GmT4Y5TCh4XtrpK5gnfC+/RiEycEUptQFDnn8/lmdbaRG/f6+kqW5midcrk0zPOCdT4qsomLBhlGilo3lSUBMWA0nvt2WUUZ0QI6jvLZUVoCgOLi9JefP3E4Flhb0rU/i8ORHLck0nuFlHnsuNKxzB6xfkqirjB6gSA4MK0TTGYoi5LECCqNEBimmcWFKMSSe8taSzcMoAK7/UGS46MDyFsfucwQPHR9f3NnlGURVb9LXHi7KEZR8TxULM5iSKiqiEqLybvOWnxEcK2LEa2/DqNXVx8KkjS9qfd8CDHgSf67xTo0YGJAUfCybEUpAmCdCE5k+DgBCm0S8jRBG8M0DSzzQppuuFwv9H1LVZXcHTdsthJ26p30u7//9sz5NMvMaxZ7sjEyqN3vc0ziJcylKKV23xkeH0seHh/4/ddXLpeBJeKIQvCczyeq2vDwVFDXeQyGKpnnIc42vjpr/q9+/f0DvhCY5plr0/DhwwdMkuCnmcNuKxtT79A4gneM88jvnz7x/v0TIIdgCBJ/bhJ9u4AX61DaYN2E+sZmtawBG96j05TFOdI8I1UKk4gKbl5mmfAqaLpWLnatydLsZvOd55ndbndTiZkId7TLQpFl0fI7sTLl8jTlfHrl6emJZfZ8ev7ENM+4yFZT0QaptTBjQC51HRRGJYzLRF3W5Flyk0bv9zvyVBIVm6Zhu91Q5iW///o73npJtcly1uCOcZSh3jzPbDYy2W2aa0xy+srpWFmDK2/w/v6e8/nM6+sraZbxdpKhiVKKwMzn5888vz1zOBw4Ho8USg768+XCx0+fqGqxUG42Gxkg2oUkTUnzjF1ZkmYF1/OFIi0xMRGrrirWQBOB2/ZyuW5rrPPMdiGsjENjxBJrJNnYO8cc5OE2Rj7IyzyJxdhoUpPHQZ2/bY2+3YiusNkiz5jGgTwTNobRijRJmSa5kKwV3kxRFMigbQYv8FOtRT22vk6reg9km5aYhIC7JZFtNtWteQB5nkMAbYSbN4zTTWUnF6yJl6io7oqilMY9yO/hnVjlQhwKquBxDubFEkIsblHCeluB97GZDmHVEou1QwQ0HoKjKlIO+y1D38cPrzSYKxtDK+HImHiAOrtgDHE7A5GMwMrzgLWhtV8PBKVlCG7S27ZVbMhETogMCFSArh14ezlxf78jzTVlmpLlOVmSUuY5/TRQ1xK7/uXLK09PD4BmWBYO+5rXtxf2+x1FcY9JFO+e3uHCyOIGLpeGy/kqm6laNjMgYTU/fvcHsizn7e1EkpT4IIoB64Q156zi/v5B1CCpDNkW65hnx7W5YnTPH//0vSRVas1iR7bJlvv7I6kp+G/T78zjgA/CfsiywGG/gUQGLZvacTpdUConzQxJJny3u2PB7pCy3RXCK+xbnp6eKMuKprnKRdoLqHa73VAUeYQ/J7y9CQ+laTuOB7Gu3N0dKIqCt7dXQNN1feR0yOdu0inLNLFMjjSRZcim3vFP//w957cTm+0OpQLd0PCP//xPgBeV4iLD27LIxCKAw+NIrYnpfimjF2XF+w8P5BmYRBS4TdPy5fkLWsWUSW14fXlF61Q4ppa4HVe0TUvX9ZRlhTGG5y8vODdy/yj2BecsxqTMc8c8X8nTUnhZpwt9NwNrI5dSlTVKObSS1LiqqkmTgrreiMqahDHP+PHHn9iUBfM80zQtjw/v2W2O/P7xd5wLlGVNkZecL6IK7Noe5y1pmnC8P1JvN4xjz5e5j4rkLbvNFq09Wlu0nvF+YLG9XOBqTZqTDXySaBa7yMBIIYWYVozTRN8PpHlBnuUsEfoLgeBnFjtAWCgyI+waG2IKbpAt5zxLm+ADl8uVpu1EJagUZZ6TPz5i3t5Y5gWtpOldLcGrHWJNy5RPvjBTPLIQWAhkmaHeiE24a3tCkEFfnudstjllmYhtzzrmaYmDADlnXl/P5KVGkdAsA3WdsdllWBu4XqGqM6q6IAS5B5ZFgjPSNCXLEjlf7ERZafI84cN3Ow7HDdfzyH/7r5+i2shQllu8t7y9NrSdDA7TRDEOC95Jw5AmCUtsiKz1uACLFeu3j4mJBAlm0hqMVnGpAjoRO5jCx2LbRTSlxzsflShr8rnAmLWG+7sD3jrquuD9+wecXxiGjof7+5tSPElSxmFkDGNcGknRvcyOeWrFWpinnC4nlD4wLlKbpUXF8XiP1vDyfOHLsyg3i0LuepVOfHl95uHuiSKvOJ3Euij83j1N25BmGf0wUlWbqACw9MMog6lFFjmU0A8txhgul4ZhmFFKAs7KImWeFtIU0iyw2wnncrOp2B+PnE8Nf/3rJ5wLFGXK48OWw53h++8+0LZX4VsVOc4tOCfKpXHsmZeFuvqq3GralkMMOVqVq/vdkT/96R+4XM63GiFNE/qh43y6AvFzlqTcPxwI3jCOC90yUBUFQzdFdeSCUglLbBimaWSeRjzStCyLx9qAUcL3DT5g4ibweNijU8gLw/c/vGe/r/n85TPX5gp4ttsN4zhyuV4wGu7u7glB8fMvvzGMA2WVS2PoA6Of8F5sVCCDMg9YG7CLZre9o20Eip7nWeQLB9agtSRJOHUnjEkpC8O22nDYH7lczoTgMNpTlDVVKTVPmqVM00DbtBJgU1QMwyQ8MgCvUITImJUlp9EGoyUt+nptKYocFevwLBOW02I9XS/BRHZxzNMgrNk1KEVp5kmWp8e7A5vNVqyw/mudq1S05ipZ6vrgI4c4LtpjKbQmnq+LfecdJi6/nBOGljFGwOvGxBAcS73ZRtWeDOSc87JcXS2PQaE9OIRntjZv4tRwf6OYWpV66/5cBqLrEDLc/rs1XfLt9IbWDpNK8nNeJGRZgg+WfuyYxoXrZboNOa+XRpwAxnG9LmyiEiRJEvp+wHnF62vLMsMyj7y9NnJmacM8eT5+PEkvg2GzKSW0LJs5vTVkac48B9pmoetmslTq1JvSPIB1inEYWZzDeXn/BMkUZNGrTAxyk3CwZbEsPtrrVRJrZo3WaVSGSa2sUVFMEOTc9dITzOPIkhnmeWK7rVFBlvOJ1hilUQYInsoUDKPc0yBs7a7vqKuSoszphhaU4BamZZTvl22oannv++HENLV4r9hsJNnZOUu3SEhOWRZM40zTdIIASVOyPCPJc+wirNtxnEkSqZfmSfAMELicO05vPQ8PgliwznK9DLTNEgUNOiZqa9CQZ1BWiqd3R77/4YGPH1/pYz0/z+JqS7MMrde+SEcen7/9c5an/PTHD+SFR5mAMYF5GSnylL6Tc02Gz4o8zSiqjGHouV5bnPMkibhHbHRDrYPc9dlf+1/nA2li8EwsbiIoi0m4qX5XtxOIxVh63RVdpMnyhPfv36ET6ZHHSVRw0t+JaCfLE+7v76QfvnY0zYC1sgT1XtRjZVExTQvGKHwc7jnn5N4O8t/leRGXDp7PX17Z1OJsWaYRmOJyQ5FGdxO4GCwpYqU0TcWGrIFyHbLpuKSTgK1hGiVpO8R+Lfgbl09caTNdYzEqoLRjGFo2m4yyhK5vOZ+vTNPEdlsx9rBE+oH3WnqUeYmulW0M+KgkdAUJTnJOFKHDJMgSk0TlvrNYZ3k7n8jH7BYukyQJKjLiV5xX1w0UZYGzs3y/IP2rVinWdrczrCgKuq69vcd9L3b7uqpvNaTgq76iDr5FunzTUMahqvw7DygfYhcZX0cUwQmj+quaUvrWgLshqvCKEAxgmDwQZqx3JKm8foVOokDN8/vHL+SFwbkJZ4UvbxJLmqubqyTPE9JMkE4S9tay229omwljNLudhBGZRAKshL3X48PCOM0EB2nm2O5zlFm4NjOXSwcxnHMc7P+X1+P/t6+/e8B3vV45HOTDdjqdOB6OcWgCWWrouhHvHXVd0jRiZ/rll1/5p3/6x6+XJERLlbyJy7JQFGLJlXRGSRH7FvK9DrOWZSHNcqy1t4TAzWZzY59tNhvqquYSfeDSEGQimfVSdAcU+8OephVlSWJS8vjftEaRZxlT3/Hvf/43KewWsaR6L49ZYmRCnUSpf9/3soHMM7TRPD4+kqYJdp5uNlrvHb9//I0//OFPGJ2RJJrPX54jEHpHlme3D8dqrzVGktLKKPkdojVjtemCNGJ935NlGff392Jhnme+//57Ce7QSVTUddSbWi6+b+C/WktU/S+//8q1bTjeHbk7HG7DUYF4VjerM0G2AUrHpoOvTMbvvz9wPl8Yp4n9fh8DMqQB1EZLcm+akvtcbJTLcrMAWWtv9mkfHEkqB2FeZLFAsjeu3Zq0vD4b8ySD5f1ewNrX6/Umm82iiusWKBEZf/MyyXArEZWFYi30phsPcmVMrPDk3W7HmlIM3IDA5/MZlL4NOUUd6LF2vllfZYCZxAtRhsNxqcsaWqOMbLCXeYYgG81vwfXeOSb/9fBb+VlaK6ZxJATHpipIFNwdjjw83IEKOGvF+28d1rnb80X4mpYp6soU6zzL4mMh/TURTiTTxMHlV5uycx6nVuaIun2vEISjWRQpZZ1z3O8wylOWKQ8Pdzw/f6EsH0jTgjU9yWixE0mgRM5aHLdNx6beRN7RhSRRbLZVVImKZaosC37++VdJNfzuOzabCmsd13PLpb7eFADn04XNdkOeVfT9RFVueDtduFzO7PZbaUK6kdOpwS6Bu7s9aZ4wjg0PjzumUcJqXl5fybKc5vLC5SzW4awwUbId+PzlDRsU+11B388MndiK5H21LIvHe0hTw5fnF67nke0uJ3ixSuW5bIC11tFS7knSjE29wVnPly+fuTYNiUnoh4E8T2maK1mWsN1ueH1943RqIBju7h4pix1d19OcO4q8wlu5uD7+/ompXyhj6E6WpSTpnn7suV4v0oDnksJrdIbzlqEfyX2C8xpjQuTJKcBR1QVtc+Knn75HaxnwGZ3SNMIWq+vNbaDXNA3jsJBlJQpJxcrzknly+GnG2kDbTFyvv7Dd1eRFhl0cw2Cxy0xdGYpyg3cTxsA0ipphU2/w3mEnASF7K9ybt9cX2uuVD999z8vrG27xDHZkV23Iy5K+f+HL52e0MlwvbbQD/E5VCV+LsLDd7WmaC3lRRCtLT5qKMjdJE9JE8Xb6wjxLsM2Pf/gD89IiidIphJRhmNFKlF95YtGJBCus/Br57MUURWcJcXjufcA5SZ7Msi11lePdQpYYglb0/SBA5RBYrCMvymjJrYWH2rdcrw0vL6/c3d1x2O/59OkznnAb/ix2YRjHG85AGu9oRVNBhldKeFH1pogFs9gqiHbeeR4ZR0tWFuQlZEozzwnBJ0DC20sDQQDZRZmR5ZrNNsO5BaUdd/cVWZbQtgOXyxgHLV/PuzSVxuVwFOuIUop5WejHE9aLSnBxHmZRZ4lydE0d1xAMQ29FKaREiZQYjYzw/I1fpeMiyTkX+W8OPAQvDU9QAt0GjbNizbeLI9iAtrKwMtEybbQkKb5//0heGH76w49kiSFLE7y3/Pb7L1E9LRa/NM3ou56u7cnLgk29QWmx3OR5hneew+HI5XqiruqI5lBsNltRYqfC1M3zkr4feX5+oygKnp4eCd7QXnvqcqKudlyvI36eeXm5ikq8KNCkLHambXuSRNO2PamRBMiunXBuIEmMAPOdYxgWmutMlslrVu9KUBaTBsoq45//6Q8cjjuu15a3kzyDwuF17PY5u0NBYnKmuWGeO8qyAuV5//6eLCvJ85K3tzdW3MO6pDrs79huNizLzMvLC9NoudLGO6Hil19+vt1x4jgY2W633B13eAdFvuHzpzf6YSTRCTOOsqhJTEJiEtpmYFMfCEEC37bbnQQBWQ9Bs9nsCCHEZkuawizPKcpoJ881bXtBaStWvugyGfqJrh/p2pGiFJVcQKD8x+ORDx/eSVjY25lpXAgesWW5gHOBeZnJspJ//If/CbsEPn1+Ic1Snp+HOIQJkRNU07c9aZJSpMIGrKsd3gbs5Bingf1hH50sQQZzSssST6XgLFmZyGB5WVDxtdRaRyukjwwtGWKnaU6aSnJ9UeQRGyFJk0qLI8M6RxIUaRrrDhMH9pHZ7ZyLKfU9XdeRmjU4Koai+RCHh0lkcEttZCMKQO4wUeoMwygD56qUAVAcwH4b0iH1ekrbylmxokIERSPK6TUtdz23iAgWpUJUTamb0kgpompQnBnEekhqplW5J3gUWdr4Wz0X8CReSY3lY12lI8PPw3Zb4LxYPXFBEnXLgjTTYhX0liyTJYjROUPX0zZLTCOV92VcJJQg+CCJ9IVgcfIsjQMdHc9cI6F8DryWn0kpRVAKFo91E3iwHrRK0CZlmUeC8xj9VeEZVjsj8VdVGh/icjoARpwrIQQZ1CVxEaKk/ipz6Zd2uy3H447L9cw49rceZX0e+76n73p0Zqiq4tYDKAI+8mh98DTNhdlauqGLv7+E1IzTiJ0sRud4Z3l+PnO9DjEEJmWZJ95ezjw8PrLbHRkGi58X+n7hdOpIM3lG5knEDM4FpmmOyyjBqyQmEHRgmsSpZLQkkzsnr4U2AZPAn/7hO4K3fP7ymXlZKKtAXuh4x64sXOmbXAzkUkrFflMGFas7aJ4XPn9+JssD9w977u7Fpda1J7pWQjZWp431EuzV931Edaibwts7GahgdPz9omVbrT9PwAWHdT31TjNPiraxKDJ8WJ1+8hn8OthbGb+B0+kioVq7nMNxw+EgoRcyL9CSdptprBuYJ09Vy9nSXEWpJYx/Yf7XRQX42zBUaU1VlmgFl8uFcZzI0oJl8fTdiLNwOTWYRIaM8ux2YBR3d0ckzb694Z1CQFJyi4LEzDTtJQ7+pN+eYujL6sZbZssa0vLw8BCt4UvsaUuqqsLoApiZZisBYeWGz58/cW0GEu0wOsdaJ8ErUbFZFAXb7VacT29vcbDn2GxqwV+VBdYHXt0LwzBB+BqepgI014Y0FVWp9PE5eZ7z+vbKNEt/a7QmGMP5ckGhuTseqQ41aZrS98OtXlyXB9a6aOWV3q1ve7IsJ8nS22u39nbrImQNaNRqdYsJc94oee+8c3HRym0B7Z0IVFRQoDxaE59lIOjbz+K9iiIYCVO8v98TlGUaB0Dx5UsrbpEspWlGunYmzw2PT3s2OwmMyfNMQuG8w6Qa1CTqSycuxhAkxXkcZ3777UpzsUyTA6XJMnkuQVHWgaoW7NT13DNN4bYY+e7xf4CQjSRJ2O92bDaSZLLMCz4ON7TWVFWN1jUAWZbRNFd+//13/vCHH9lsNjw/P98GdjomumZpGhVRJiqE5q9DCLgV2QJYXEApsrzAua9DHYCVmeaDJO7KtkU+PM7JBL7e1ISg0Cal3mykUMhyhqlnGHuapqVTEgfvghQMRmuCc2gtMPI8lYHgNAzYZeF4PLKpa9qmvQ0Sk8SQaHVL8b1ez/zDP/5IYgJt29K2mpeXF47HYxwipbeh5+rnf35+4WvcvEj5V4j3CvTtuo4kSbi7u2MN1Vgvvv1+jzYyDBMWT0maSMBCURR8ef7Ch/cf+P3zJ55fX28WtzIvWJYIr65KTqc3/u3f/j0OrwzXaxMn1nuSNL29n8Mw8Pr2hkk1VisyLUEQp9MbNlp3F2tBcdusrsm5a7ItcBvgrSqStemd5/lmr10VZTJQEpXbGkBQluXfDIXXEIx1c7AOg4XvJ3JkraRJ10ZHm3cqH/o8E2my0bc/vw7dVi7ksohicByn2/PqZxlejuOI7Lu/TVDOSNIUO8nWTuwfxDALTWCJah/NtwO+9bK1Tg46GYYlopo1gfv7O+62GwpjuNvv2Gw3/OWXv3KN4Sn+NtCL7BHr8MFTVfJ5zfPsdgmLNUEgoKvtRRSJX816ctDCsgSSxN2KcO/dzQ7/8HjkeLfl4X5LmZWkqeF8fiNJDc7KkGO73TLNE+Mkds/Dfs/hcIgWdBnqbrc7lmWW8AC7cD6f5cJPE9DSDO+2e748v/Dp4zO73Sba2kteX9/48OE9h8ORTx+feXk+kWYZdb0h+ASj+2gvFvvxPDtCkOL0chkYhpmVH9I0UjD7EEhTScrabDL6XtREVW3Y7guKMuXu/pHrpeXP//4by+I5HLfsdxv6ruHu/o5xuLDbFiSJorkIE+319Y1lmWIx6nDWst1t2W43GGNo25aiKPn+hx8wHz/FZzLcVAkvLy9IitVCkeU0zcTl3OIXw3azJzmUDN2Am8X+W+R5ZN9AVVVU1YFrc+Hzp1deX9+4XhuyrOCwOzCME0MrTCWtUgJQ7EvevTuSpZppHinLjN3uO/q+5+PHM0liOB7vqGs5g4q8vhWnx+M9XdrTdzNVVRA2CZtNwuV8jZZ1TWIynE/Ikh1jN2CSHBU049CSJoosFbvRMotFt20bwFPXGUoFyqIAD9PUE/yM1hnN9SIDi7RkmS3TZEnTnLra8vNff0Wj2e0OpFnGPI+8vr7dtrbaKOp6SxUtLmmxRStPWexYrOV6vYjVJi0wyczl+pFxvJImRMaObHKVUiQqwfmAXyzjLAX5an+zsxRMChN/J4WO92BiHHVdUW8KprGjUzn39+8IAaZJPiNtO2AXx/l85dOXLzgCLoTIBpt5fn5mv99TlRVd18clW0FRFIzTdFu2reeW2A1lea+iNUSYnZY8JroRz1qlg6QIMqG1MIzm2TMMjt2uYLtLKIoU8BSlwntL8DltI+iC7757oN7UOKvI0pLLpWWZpflFDWjtKQrN8XggzTSn05mm6ZhnCE5xOOScTxOJWQd0S/zBZSCVRH+WtS7eX3LEJSYBFVhGGST4EG7LnVWGkyQmFqGBebGM43SziKR5zm5bMg2DpPwphzKeNE2Yp5lxsnz+8om7uz3/+l//laEd+eGH9wTvmOaRqip5fn7hhx9+oGsbnPNx2CcDC2ujbTPa8odhuN1HK0N3GDuGoePx3ROXs2zUCRKM5N0S8QAOOy08qzeqassyexJT4P3M8/MbaZagFJSx8R+HhSKvaG2HXhl580LX9Wy3G6qqQt2nlMWACxaTOP7xn79ns8n51//6fzDNM4trsS5lGBo+ff4EKiHLE0ySkqSaIaZwa6X48nzm6VFTVvJapmnG9XqiiqzAtpXfS5qSlNfXE23bkCRGrEGz5ePHz1RVSZaJsuAr2xf6buR66bm/f6Bp5N+9vZ2leSg8dVXLonCa6dsh/v9oNputIEa6Ga294FjmBQ/s9jvsMjGPYu387rvvyXLDxy+/07YD4yRBK6IayzidG5prT56b+DuJLfPOyPearZWQDuuxiycv5Hc12pCmAgPf744EL3dommYopeOfkeYoy3J+++03NJrUpCRa7uR//uf/iS/Pn9nvDwx9L2rhoY/pojIcEqusPPtdO0Re2kKaaRL91S4rC2lZsEqzCiub0rtAnpVcrmecG8jjEjvPU0IGzor9CeXwTsUFqAUlS+s1EC1Ps1stKHWfpISjNMaksT7St5/HLQ5nDEFBkqUoO6MTBZq41DW3z7+1cueqiKvQOuF4OECAS9OgVXTtqK/J4yqqsKV2C7cF5Rp1ZrQ0k1JvqVhvwjzLICNNUpT2sZaSYss5i7UhLnyFNWZ6SZvMck3Asd9vKfKceVnEGbApMCu2RQfGcWXRKvb7HdYG0mygqAz7Y8l3H44URcXpreW//utvkja6AHlC24z0/Zssd7XGBug7Uf2saBCM/E43pmisEUMAowLBW4RVKBVjom46RcFQrNZRL7wut3i08qS5hETpiDJIEs3xbk9d5zw93FMWhfxVZozjcKtXpmm8LfDl3pMhSl1umJcpKjHFeliWBXle0PfdLTxEeoANTXNFJ47gBX9ikgSCMLXnydN3C1mKoGumniIfROntFEbnzOPEtelZbYdKK+7KPfPkIBg29Z5lvqCjytUHyzLPgs0pC6Zpod7I4Giax3jPTRSV4sefjhIw4wcWK+ir9U5a02lXBf7Krb8JJbwsQ0IQ5eB2l/P7r6+8PF+4XK9Sa3hZ2oMMf4Wvb29Ck3WoOy3Cei5Keb27tkNp4gBG+gql4XhX8PR+T71JaduR338907fCNXM2BkMGH4f5Nj6v4rpaFktiDC/Pkmqa5Z68dJJIX2XAzDapmeeJeRTxgTESEJWmit12Q8Cx221wdqbthpt9PstyUNzCuaR30zEsTtF3E+NkSZy4YkCRl8LdE8WqZ7OtEAeF1BXjODMOIuLIYurttq4jpmpi9hNER5O1Xrjz3mOdo8zKeHaJ1XScBpTy4iRberw3HA7iqLleOrKs4O3tEoVPik295enpCWsl8O9ykVTt4/H4/2Htv7YkSbIsS3ATEWMWpMiAe7hHZGREdmVNTf3/N/TTgJ6qrAQBHJipKRLAmJnAPFxiMYvqeZmO0rV8OTJTExVhJr7gnH3Iog1Ya00/jIQAu90eZ0/X+YTMD1ZElHwVhYQrreFyq8p56MdYC2Uss/xswgEWNIAymmkYyIuSLM04nS4ssS4JBHzsrefFSnp2CNfh/1Vyzep00Cg8aSJn/opoWJaZEBWkysgzU37311lACDKkqzel1Hx42nbBBxHwaB0oigSTcB2EVlXJ7a04/YTrGnAONpucojDMbRfrOEW10bEWVoIICgltOzEMslQ2Bjb1Dd9/t6Hfe/7y50dx9WFEoJAr0tRSFRuMcmgtqboEcfbZhb/76+8e8OVZRlWV0UttMEYUQuvmeWWmzfNM07YEL4O+x8cvfP/9d2w2myt4E+I21n9NhJUbcrwOu1YF1TxLam5ZlpgkiVBe+UBXa+VdtLe8vLxQZPnV478Ow8qqRBvDvFia5iKbKKPox55xGljszOxEnpokmixJ2Ox2nE4nFJBqOQQP+z12WdjUtYAkrSXPC07HE9M0kSQJ4ziSJZrHx0eMMfzudz9y2Im8fMk1Xx4fr2Ejh8NBGHTxgp7GCa0NXSc8N+dFgXdzc4O1jmmaabtWikvvuL29vQJOp2m6svmc9zgb2O921wCO80WSdqdlZhgnjpcLT88vJDphCRatdEzMqXDO8vj4mZfXV0xiKCtpBvc3e+q6FkVeLgmJVVUyjhPjNKC9qIqyxLA/HCRIJPJgvHYxWTe5Tu59fOBnWRyMxkHROuwkyDCtKHLmZUY7zZqeLA2QiWmTIqlfi8H1a22CViizMYaiKK4DZYCAxyQKg2YYPCqGroTg8Yjvf2UHfMuWW6XIeSGf18ePH5imGef6yOCQaztNc1AKu1jZ3CxetnaoCBd1eMSSKyR2AbWvBaX55lAL3jNPYocCT10VlMWOw65mk2dkWqO8w9mFoirphgHnhB2IJvIyZNshqiAbG6Cw1ptrPxsL/gxrLX0/fTPgDFRVSVkUTMMkPC9l2R8qtIbjW8/5YlnsyOvrK3/5s6fMttzf3TAtnTT4fk0C81zOZ5I0YYX1ygEdroe2tZZlkTMmz0vZdCcpl0vL+4/v+fz5UcJ+RGRD24zkeS3F5CQwdO8lxEDrnNPpwpenN4q8FC6NFlB5mplY0APxfpqmNeIeUbG5hWlyKKXZbBLSzJMWCVVt+Kd/+oGH9wemaeDpuRWmVRSY57nh7r7iw0fZLl60JihHWaX8w+/fy0PYwadPn79R6AqwuKrqqFq+cD6feP/+gT/+0z9yOp2i2ktSo3799VdZRChDmmc8FHvGQVRv83AWxpi16CDWpzzJSZKM0/HE6SiKPZOkvL1eeHk+y6ZSi6pWrrWSus7Y7Uvu3x3YHUra7sgwrilrhqenF7abCtAcDjdXLEHTdNzfCYsyBEWayqav73ucU9hFkWhQKmEYOrpOUiOLouB8GpmmiaIQ5WHfLdjlwjz5eN3IoL7vB4J33N58j0kUNzdb8JbzxbLZFmINNjltN/Hl8YXj24Xx/Tt++7sfef/+A//jX/4du3i+//5HXt9eSNOEqpKE1GEY0EpxuLnl7u4GkypcWEgTUT90fUeWGPLDBpNkTHODmRxpGpgmYawRUihKUSjE5iMgRbS1Yp3I8kIaAK1FFaAUdVUzLROzdUzzzDgO9H3D2GmMLpntxG9/91tZAp16nA/8+S8/8fTySjeOjIu9WmzWRvVyuVCVNUM/XpcXRVx6SGDC1wANFV+jjoVZ349YN0f7W4hnmWxPk8SwP2zYbjRd3+Gd4bDf8/byyDieeP+uZrcvyDJDPzQsNvD4+UxzmaNS+UianclySUR8e52xi+fhXU2WGpalZ54D53OP9z2vLyNFbri9qQlKNqI//PaWt5cWQs40zdjFQXBstxsBUjt5BnnPFdJvnRVO8Ko2CTI8UdcDQf6eZdmVGSxWKGKzL4PQepOgU0mWvrvfcH93x7/+y680zQR4Hh+FCajQ/PzzZ5TyVFWOQvPDb36U5aTq2e12bPcwjBPLMtF1PUabq/q773tRtdqFvh+4vb3h5fmNS9ugk4wkyZmniTRd7aSet9cLdV3Ttgvz1HDJRBE64wleo1SCIsEuC5P2kX+3ZZ4HtBJLtvAoJ15eXnCuEbsuYl0xAcYp8PLyyLSk/Pjb97IIXiZeX78QQsof//APKHL+/JfPaJ2gjWMaZ5xfMFqUrM8vJz68T1j5jtYuMUCnibVAwfl8ig2uiudfwjguOBdYZst5btgfdnK22BATMTVtN2B0wsvLK0Ve0XcLKxj+cHPg9u6Wx8fP9ENHQLiA1nlMr9nvb7h/eGAcRj79+on7hwduDre8vDwLS7CqCMHz+PglJg+PGBNIyyI6SjLSrKTvZ1wVk5tTxTRZzueWh4cbQkDUGLMlSQqqTU5ZbmmbjvbSkyXCTZ7mieP5jTQpZdEFaKPIs4SirCKnOROUSjBMw8Td/T3zMvPp0yfWcAfrXOTaGgmHiMnreS4InCRJRC0RPCsPT5hMFfMyXhmezlnWYLMQEoZhJkk9wSusl4YmSeWcrjcFRaGj4kW4u5pEkiiduqpC1uA3uR0DK2g9xNTN9bWsbgutNdY5tBU1YJ5novJPjAyGvGfxS7Tbq6tqlvjzZlkuA5q7W1EpWStBJ/MsNsDwFRDvgVTHEDYvC4hwdR3J4GWzlaCKaZJhpkIGe/WuZL8rQXsJI5kkmdtFRdE4zmgNyS4TBEqWkmWGc/MWEToZt7d7np5ehIO9qxmGkc22lvPLi6Lqhx/vSYwMGMZh4dK8MQwzzq5q64Wm7Zkj61hrCQhMtPRYX3sxhXfiwvGIWtIrmeAl6uugIPg48VHCxPJBLLJWRWsdoIymMAUhcczLAlh0IgEd1i5Mc+D5eWaZdzSXBoKIKm5v99FKPVOUOfPsubnZMY4DwYutTpsE64Tf7ZbIlPUBh4/uj5QkyRHFYskyO47HC6bpubu/R+sUFYwMX+KSt7kMVBXYRZKQn19OUXEowWneaxKT46P9MziYJk+uDEmSM4wSLLnZ7OKy3/H29nZNxZ7nhSwz7A87jKkgBmuAJc9EYTnNo1y/uLi4yHl9FUyL1OzqKo5ZQybXGn5ZLHbRtO2E1tC2EgCwKpuLQoLNxC4tzzhjQGlPkYv6SM6Vku9/84E0DTTNiWW2HI8NSknK+uFmw2J7sizQtCfGcabayM/rgifJDMsUMEJYlLMvSUnTwGI9WQ7fff8OY6DvWxQeZWbePRxECe8tWVKQpzsGPTGOE9u6Yr9TJElGmqTMy8TQNcJKdp7Ndi+LvETUjss8x4RUJUKTYJmWObJ7FalJqbd7tNa8vb0wjBNaK6ybInZAIRHEkhCeJRkGRZFl2GnG7DZgNEUuoRLTaAlIjacTeb/byKe/ub3FO0fXNYIfyROSxOC83K/TtLDZ7EhMweXSsKm3FHlJCIp5crRtS0BclWmaUpRZXJiIm6PreqZpYYwMSnGOfQ3gdE5FOyuM48SXL1/IsoztZkvfS5pv8IG26YTTF/vttm0jBsJzf39HkmiO1mG9sNbtinYJ4YpnEoea5CYoH74ZQn8NUvXeR0v+N70/X3EL67kbwldb7tq/K2QwWBQldV0SSOM1HER4EyTwqNpkolhWTrAc3cj79w8Yo2maM5ttHXnuKUpZnBN3KTiKGErVtxN39+Io805jZ8vSieK560aObw3zJDWHcjPTHOj6gSyF+/uavjvSXCacDQQnvZBCnmt/79ffPeDTRpNlKcMwXpVTY0zPEuWUfJh5nnNzuGGaZoa24XQ88+7dQ2TJfPXjr4y8rhuutov/GaS7Dv/WcAnrBEC+gm5VnMyvijZnHVbbqzXXOotyooAYxpF+HLm03XVwIsEHogxKtMakYqm01nG+nJjmkTxK7sUqtERvv1xgAiFuaNv2atvM0oT9/laCLPICbx1jv8RNrGxitE5J0gwr4DXGsWcYesDQdz0qSUiyjOPpRN93DON8HVp2XYdW8Nsff7h+Nt57qqri9fWVT58+8fHjd8zTwus48vHjR4ZOrLyfHj9LYxkCx9OFJEkp8hKcoywKHh4e0Drw/PxMtam4U/LwTJKUpm3Ii5o0NVR1TZLKdmwNIqm3NU3fs4wTaV0BYJeZvuvQSU5elBgdWKb5+rlmWcGm3gLgbJAglriBWBsvpUO0Ppg4HFtTowLG5FR1dT0sgOt1862Kr6qqayO9qvi+pjQvcSvr47Yvw0arFnHwqhTkeXpNNU7TNCoTe7SR4lSGo4rdbkfTtNdrLO56ZQPqYV4c/ThiosISrQk+MmSut2mUliCbCo2wBVSQQbsLHqNlm200pCFQpMICWpxj6hraoWOxi7AEE0mnk7osSDGdSlOw2Dk+3KVZ1Rr5//H+BJHJa23i65KQgWUZKWvY3WyoasP3P9wzzQP/j/99Ypkl3UvrhLLYYefAr59eqDYp4zxxu7/l9uaW8+Uon40xbDZb5mmMit4kBiVIbP3hsL+ChIui4OX5OYLXNYSEefakSRkB357zcQDlmceJaQzkeUHwCc5p7KK5nAfGVIYeZZWRJAXWzoAMMrJcUaicaZZk4LvbBxQRLG0tXd9x91Dxx3/6kV9+/UksZLphcYZ+7Pjp58/Cc8jkWi5Kg/UTUzcxjRM+wPaQMY0TWZ6KkiE4Hh5uGMeFaZSQj8PhhmURVe88LSRJxvF4QkU4+6dPjxSFpMiKoiqlKgsUCWm6oW9PonjMN2zKit3uBm9lkSGNhCZJclETz46mkcTcTb1jGsUuPE0jeZKJcq3KMFng/u6W7a7gcnmluTSSLIjhfO5ompYPHx7oukHssM5y2N1EmGy0IwWN0TnCufJ07chuJ7wmgsJZmKYFu0CaWry3zLPD6ATvFM5pptlKQ4HG2pksTcizlGkeSFG0raWuMm5vK/I8pap2zGPC0MPlbeTCgDEpeVnFwbxcD217kW1/mrLZSPNUVVG1vjiMSUmMIiyO0/FMmhmKIidJvy4QnPM4O8WzvRNls3Xx/c7QGmHYuq+N46be4FFMy0wel1T1JicxGYtbyNJMEmHPJxQZ2/odLsxcmgv/kGcM48TL8UjTdry8nRknCbNYA5I2m/pa5BVFibWWw82BthV+rdjcwvXeD96JYk8pXDxbJUlSM08CqJ7iWS4p9ZplGWkuPV0Mv1jcSFm6eKYYyipDKbH3bOodwY10vr82TfMYuL3bkWWa86lDBVGKjINnGhdma6kqQ2ICy+yZp8DYzyTGkJeB7b5gu0mxNuH56UJeJAz9HDmryzXVkBhgtNpWMPIMFZW7w6twLSCDD6RZEnml4KNiIkm4PkdQch7u7zZ8/+OeLA+kGYQgLJd0lOHVbrflD3/4A58/fUKjePf+HmsX3l5fOB7/wg8/fE+RF+j43GjbN4zREAQEfzjs46J0YFlUTBWdGMdZUiS7hbfXC9vthnm2GJMR/IzCiP0k21BkAsFu2xbiEHez25KlMeBsmWmngbFfqDcFJpEhbpblKKAqa+pahjtt21OUOX/4p3+kqjK0CQQ/0bRH2nYizxKUkmFjnmWkScXj51eObxeSNANtqauc29tbXl5e2O+2ggIYena7PZvt7tqEZGnOw30el8KezUae6XoYr4Emyyzp70M/EkKDNoqhn3CZ8GO1ksTpZXCCCEgLSZVMMm5uD0zziA+Of/qnP/Du3QfapuPnn3/m0+cvvL6dqaqS+4cHfvzd70iShJvbG/q+o20tzguP0B5PZLnBa4tSjsCe+/sHtNaczpKMrHXCOE4Mo+P9+y03hx3TNDJOw5VZlKUp1gZRhDpZfndtT55l7PY7EqMoiox9ZO3e3e6oC8XDhw8si4uIhITzqaG79PzzP/8zzy9PjONInsmSsyxyYWJHRZ3FouLwa1fssMFHF0ojgz79VdnqveAFkuiukbAldR3CSt2QxXNRYbQMn/q+Z7upJCk4Henagb5dAfvye9JU+IFiYXLXvxKTxTrl6/25Lh7XYZRzEniGKijLAqMViQGL1DaLjSF5GqZxuSpBlmXm9e3I/f09P/zmN/z8088EHyiyHDKBwU/ThPdzbFyFSSvBZoAOEIdNu/0GpT3OS6JwYA0JsXTtGegoqlQaTq1ZZjn/jSEOamCzLdjvZWgsg1YoNgWbTR3P3Dwq+0V9Mgxn6k0aB0E5t7c5SgVeX5+ZJ8swelKTcfeQcTrOwozSCXa2MkwHCViQDXBc9CQxiEDec5MmwreLDakPAeWvqXRoJRxcrTRhseiIV9DC84mcshz8gh4WskJxe3dgt9vz80+fOZ96gje8HU8SVhHVdo+PTzL0TAzb7Y6bQ0WRl2KZDhqTGqZ5YZp7vFdRDDGIMKQocNaRZZJOfjpe2O12BO/ou4VpbtluD2iViN0VYYV7B5ObSUyBVhl2XjjN3TWcSbhwJVrLwtp5UUhfzh1cIE00ygSS1Mh97cAk4hrLMhEsWGd59/6ed+8ekFZA8+XxM8c3WWDkheY3v/lImlTCjvcS0Be8ut4DK1JoFUes/cPaf4hDUcd2wmEickKCr/wVXbQsA6iF2/uKLN+x2USHUiJ2bdSEsz2bHWiVs7iB49sIvZfB3NjTdaO4DbxgKjbbgs0mYRoCQy9nbggyTHbO4sPMdp/y8G7Pbp/iw4i5LHjn5FlXx/M5yyURdQafQ1lVDP1AmmXs97t4BqV07ZukM+d5VAkmkXEOh5ubuBRIOF9aLhdxB2glYpXb2zvKouLt7UjT9FL35ilVLT2uNsIb11qTpzljN0WkTsrlfBGXWS5iCa00eSGBN6ti1HtH13WEEK7uPjtLHVUsqQg7lGeZZ4Z+oqpLirwizwrOp9eoLl9oGnGrEUMib253Ek7mpS/uo7vQB0nnlmDH6apeXDFPwcXaTsuizDsweoSgKPIS5xx1mWH6gWEaY9quXFfTNPH58yOH/Z67uzu+PD1fv/ff9OEqsIYUof52uLee3+uvd4TIoHdfZz8hROXwV0eZ9PRf+/vVvZjlGfO8MAwXNruaDx9v6YceDdzc7EhTQ9t1UbFsSRJheCvtSRIJaamqXP49TYS1145cLiNFEQOvRsvL04RJBulTFrkX314GtB4YBx/DGVOm2eG8pe8dWWJw1tB3A027kJqM4EWxLZ/H/y8m4f9/X3/3gA9WlkTc6MWByZoeaoymjsq2b62k/dBHqago4tatuQzWBAgJKl4g5jpQWdV763ZiVbmleXZV+K0f8DxLgVJWJYfdXr5XLDxmK0XfsblgnWNx9jrJXhsZE9kCSZKCl4S6RAtA2XqPczNZtP4aLQq/qqquEeNJbOyUUuRFwTAMNE3Dfr/ndDrxsrTc3T3wemwoqorT8cw4z9zdSRLifrOJP0PAOs/NfiMbbiVKBlETTRSR/7Tfbq+H+jRN1+12Xdf87ne/Y+jlz58mmc4750gyec3H85kAjFNHvdmwKWXAtw5zAjJom5eJm9s9ry8nQODtt1nGy9sbe+fY1JUkEw8i/a3qmrfmQrWpqauKeZpo2zZaJ5a/UYOsYHetZSglw76MNan025t8lfIao3F2/XVyfVgnRdeqyPs2zWx9CK8273mer4fUKkOX60oswkolf6Mi9V7SpVarMBAVo/paXGltyLPsysFYN85ro9+2nVhYnGdeLEabuGGNm6wATiLKrq9Xvr5urn3w0mDHn6/IcwndsAshOLq2ISwj0zyQpSk+BIZpZFrknlisXN8BH5WJ8vP4CKcVZowmMYos01dlyspHXO/XtRnU+qsist4l7Pay6TufjzSXWRQFAcqq5OPH92RZxq8//8q793fc3Ox5eXnm+emFcRi4ublhcJYir2jaRj4Pr2h6GcL/8MMPvL29sixiHRiGgXcPDzgH59PIsjzx4eM7LpeLcGd6CRS4XHoOhz3eWYbe0ccHa2Iygk+kaNOJJBoPniLzMqBuzxiTcDjsBVB+PInsfH5kWSTBU2tRfDZty/PLL+wPOYebD4xTz+n0irOB3//+A0bV/PzTFxki5Rl9P0QOqObt9Yxzju22iLZmjXNBgkaGE0VRME0zb29H2Q47H1W/C9Y6/vqXX9hsazabTVTuippnaXraZuL25gG7CKB9GidwhjwVNWZzbmJy457b27u4oKnEfp9kHA53TNPMVEhgjFsWrJ3Z7w8cbjYcL898+vSJ4igPrDTJ5b14+olxtBSFQqtXbu92APzmh+/ZVDv6ro/pmY48rwjINtIujsPhgT/+4T/xL//yb4TQEoiK59mSxe1mWCwhzCyzJbAqMBqxv2nY7/ds6px57kiSlCxNyYuvS4jFTgzjJMPMKeF0HHh7PZL99AtaOfb7A59/fSQQ+MMf/pHdbn/lj9b1Jiayz5gkYZqF7zTOM3m1xa1hNCtbRCtRbgRH3w+yOPIWa2cWZxEeZyBNhPeFiWNzH6g3tfAunRO+Vy4pn8u8snVkaJgmHWnSk6a1WLW95fXtRNuPjLNspcP1LNHU9YbvvvvI6+sbELicz3z33ffsdjt++uknxmmMG3w5L9czLVmtKtfCTcJRVquNqKblzFgWT9sM17PYecXQ9+wOGVWtmRcZTLWN8OSkGUxYFlG9ATSXlsNNRZrK0sMucHob0QaqKkFhGAYJtiAYptFzfLPUWwm9+OufHnl7ESZcmhjSTIZ2SzOwwpkTI+yoq2I5EJOBNUlqWBaPUfpa2FtrwXy16rlvClTnnDRvUa1zOi5M88A8OxKd4p2hrjdsNjXfffeRgMP7hd//4x+oN7Kcent7JU0Tfv31E+/fv+N0uTAvLgaYeIoyY+hHlDLc3d0DsNgpbrsDr69H+m6STXIzErzGedlup0kew5EUp2PHbrPlcu4xcZk29CObzY6yEJW+tSvz2HK5dCSJWK+fvrxQVSV5npOYlKzMJHF4Hnh5eWSzKRiGmZcvF9p2ROnA/f2Gh3d3zBN8aV6Y5hf6bmaxUgPkheF07DkdW5JUUZclZVmJQiEIGykExTgOpJkM8Debiv1+h/OOaRzJshU9IUzdJIj993hqyLNEoNdVEsPRQAeNDZ4qBvo4FyiKlLfjM0Pfc3O4lbpmnOj7ibYdmWdLmsFiPcfjmbKs6PuB//78L3hrRdHoA/f3d6ACl/YMISEvCnbbA5v6QNs18f31zLMoOiUsOTCMYsNTypNnldSBq9pfOQQtA8o78iqh3hQMXU+S5sJOrDJ84kiMZZoHFLJ0eHs9MU4zdw93OOX4+dMvQpVLU2HTIUmxoHDWMbn5qqCYpoVyU/Hu3XtR8LMGS0DTNFEBtA77PMsiC8T9fk9RyPcep5HtbsN2WzMMHU17keCIbuDp6UhiMrw3LHbGWeHrreoivlnwr/edMV8xIWt99O2yNsuE2SbQ+zQuXYlcNuH1mdib2CWmDVsnz4Zjz7wIz+rm5kCe5zQXCZJZmVcucozXWk0SwmUZvIa+zfMSkS+BuhaXgAriXhEskOFwswM1k2UJaMPb65HRLJRFyna/oa5F/dV1LWA4fzoxDDN2UTTNRJrKkORyGnh5Hcgzzf3DJiY4K6bB8vbWMI2O82lms8l5/25DCJ6Hdzk//Kg4n0eGztG1UteaRK4JUXSLCnGexH0jVkWLW1bWMldlpwtroJz6ioFRBm381UYtXUVc+iyw2xS8e/+BcmMEC4AiSSUQR2tDnmf84Y//SN91tE3HYb9juxGFzdvrC9M0RedPhtIJLgofvtr6HMvsqKuENC2wdsAu/joQbC5dVPt67ALHt8v1mWeSBGMylsWKDX6yFLmw8sZxvKJ5hFlYRDGJWOqBK3poMfIzrc6sPCtIgzT2WostnCDhQAqxAb++nOnaKSpUYbNJ+W/nX/nH3x/Y77csduF0bOIwUHqStddehTCrw2kd8K3CmcTIfSZ8Pfn1Q99LgGAqNc0PPz7Ia7YDPjhMAtM00DSCZ9nUcg7V1YZ3724Zhifm0XJpurggS6g3G8Zh4u31gjGG/e5AkgRAghqCl8ValqeMc4/Shu2uwPsJHyYOtxlGezYbhbUNyhQo4zkfG5KkoIgL2aY9Ifx0xX63Z+xbCMIRDEiqqjYJ8zxRFnnsVQcI7ooBUDpBGxEv9X1PWebixDMpOjeMg6XveupNyW63oR97IC5pVQpI2EWSZmSZ1Pl5kQsGJiujRdfFBXLAGH1N3e77AXyIDGxJDx6GgXke2WyFIz4XstQuy5Jpnmma/m9mF97Ls6QoimsA6rIsmOi2mOeZqipjqnGIARQxATxeO+s5uqK0QpCwtFWdXZQFJk2unPlVQd53fQzVkvTY8PxCN4xf+1bvCXGot5ah3y5m1ufMKuhSIAqY6+uKGIirKvBrf30NlVSCnEIJUxDsddEyTbIoMUbR9S1GG47HhradMFpwOH0/oBQUlabrLWkWUEoC4VYWdVmknI4LYz+zzIokCeSlX481pkl4qUm8jgQ5lrLbV6TpjLUXQDEODqVy8BYXwlW1tw4w/96v/yUDPjnYHPNk2e23ZFkmQ67jUSTxRR7DI/YUeY7yjr7veHp64vb2P12DDEA4YtMkPnEBUouEfVUQrEOelfEHUJSFALGvltTsetFJ6pEcaC4O+1a75+Qs3dDjooR7HRomSYIK/noYPjw80JxPkpT3zdc6eV4v0DxuKN/e3iiLkpvDgbe3t+uvb9uW+/v7uO0MfPf9P9K0Db9++SKJw1am+Gma8vnxVz6+eyDPU87nlqqq2O/3fH585HK54L3nxx9/jGBLgQ/rRF+Hd6uleVUUvnv3jk+/fiJN8+vQrt7UjMvI+CqTfAfkZSFF8jIzdT3TJDf3P/z+R3kvUwkUefryKn+mMZwv5+vPOI4j0ziIyup4ZH93K5uJcZLEu03N/nAgKIULmvP5TFkXqCC/N8sEGL4OkuZ5Rhv+xj67DnCB62eZxsNGay1JXZHrtw7z1kHbqgJcuY4rdHVl8K03ovdfH5BKSeLg+pA2a1PnQ2wQ1mGjuQ4W179W9aoEUfhrMei9wjph09ggA0LvRHlnbRz6Ea6vTUZpXO965xzE16aVKPmu4SRaS0Kz9xzbixRKOiHLs6sScexH8qzGukVk2d5fB61rSMqaKCdKHCMDnkng7XmeRaWr/WaTgjTqF8/l1Ii6yqQYVZGammIb+M0P77i52fL0/IkffvuO77/7HrtYhnFgHmfGceJ4OmKMpn1+4nzprn+eXTw+ePp+5HCI6i+ER3k8Xmja4Qqc7ruFsXdkeUKaVPF8mmkvI3lWCf8xLgOmScJk0rTELpZl9kxjz9APVGfZ3pjUMPQTSRoDKBBgq3M9t7c7fvu776I1fOF0fqM5j6S5JsuqqAZV7HYHPv36yukkTI8s09zdHyjLnLZt+fD+QZhoU+Dd+wcAvJtZZkeWZxgtVlVUxmG/p4+NoXcCaV5soG8ndvsdzWViUxfM8yUOjC2vr0cIWqyvqb4mOhICx9MrXd+x2WxomoaqqsjznI/ffcfj4xOPnz8LTHq7o2u72NCYuMk32AVcEBl6npUooxgni3czVSmLHqVTAor7hzt2uz2n45ngFeM4Y0xGksigtSgKBi9MqfPlEtUrGUYPpEmCSQxFIVbxaRoj+iGQBo13ko4dlCVLNbc3W7wf0d7x/t0DN7cH0lSWPE3T0rYT2/oDl1aKpNSkjPPCPFvqMmO3y0QNYDRJInaE7z584OHhgXGapQlfRK2htBG+T1EyzRNagbOSvDnPFpMmdH1PVdUYkxKCKNCC8uRlwhgDj4QtmrPdbAnxXCwKscrO04xdoh1fEZVzM+M0AAlVaaM1CC5tz+PnR9qmj4WDbOxVnDjqAG+vr2L1jDzHtXCaIndvPWv+Z8wB/G0h+G2xZbQh4K8LGwAXT7DgFT4YyjrDmECWpRR5greKvh1ozj0yr9SRoVbKmTp41E1Gmmi5Xy4DzhNVIyllUUtq7qXDu1NMxnUsi2caRs6nGTsHEp0w2Yk8T8hLQ5oa8jLHLTPOesZ+oe9j2h8RWRCHLsYoEqOvyaTrciHEJaRW63sUWJMll9nStTPNJTaKJmNG1OJ1VaC1wXnL8/ORvMjwQdIlT0cJU9BG4Zzn85cnyqqibbs4kPRobRBQe0rfjxFEb/BeURY1bdORJjnGiB2n60bqukKFhK6VxDvnA4v3nOw5ft6i5kxSGWbleS7WzFkYNtrI5yj1uQMlQ9BxnCKLZ5El4M2eNM3o2oW//uWNrlkwSppbOyX8v/+fP2OMoqpyLpdJAmCCiunKFvB4b0mTguYy8vLcyALl9MLN4UZsxPMijeWmENyKgsUt0aZs8X4iSQ1ZnhBUYLevsX7BO09WpCgNWS7Jh3mWURSijGjOLc3YY9OE+7t79vt9VE17ptnS9jNNN5ImKXbxJCZwfDvT5yMhLgOddQJGj+q+pm1o+g6TiL1+Ux9oGuEqD8MSGz5hUNablDyXoeU4KeZ5QGlFlsiCsW16QAmXNrtBAWVVY91MXoiSeLup2dQPfP7lz4yjDLm7YaBtOuwSreZG8//6P/4PjuczRhnev/uAtct1EWqtBG0ss6Mo4nLTWpZLw+FwE22QEkCxhqKtCgpZbEjTrqJFsIzp5M45+m4gz3Oc8xiVMvYTU79I4JKaGLpRUphRpLkMjZ1zEngTwv907jjWUIbVkbE2imtvUtdlrE9nEIMEWSYBddIw2mi9s5hE6uaqyunaEUKgH3qsXeJgIvl6PuqvNeU6XHFhXc6u55PUfqfjiaISbpUwn2SIipLlSPCaefFczhd2+xvyXK7FqpZzsChTkqTi0nQ0l4FhWPBxqbnb12RpKs+PxcelkmGZZdjuvGW/L0ltwjQ42osn+AXvezbbjKI0GJ1xPArrM8tzrJ1IkvhcWMT1sXIYlYohCbIFQRklxkMFHhXPJh1V6aImC07cJsAV9SD/5NB5gtKaZbG0z7JA0ypjmcX6nSQJP/72N9SbgnFo2O0qPnz8QFHm9F3H89MT2iQ8P7+KewcZNI7jyDzZyFkUVuDl0rLbHYQ3usxonZLnIi6ZxkGcDkbTNiJSqOta7NLeI49AGQZO2SQ/b0QKeS/KpHmeycr8irKx1pKmBuFCiiJLqWg79BY3xEAYLyKK7bZmU9eM08TbS0PbyBCBIE6yORMWbtcu7A8H2rahrgW/NI7TdcjzreNt/foW8SODzziUDu4qFlh7YenBM8bBcfz8ivMTaabY7ytubnb0/US9qfnwYct2W7EsjjLfEoKiuXTkRRbPsZJ5tjxPC3ma0TYz3eVFXEg6Q4VVqWTZ1BU//vYH+uHMz3/9hWmZKQrF4dZwe1szTZ0skxItmKxUsywDdpnx3rDf16SJqEHPpyeGoScvUg43W+ZZ1JVFUfLlyxdOpwtFnmKMoWsHwPHxw3usVXz69UmGgj4wjhVaK8qiZOxGTq8N9aYgUTnz4KPNW4Q33TKhkEF7XW1JTM4yL7E3NbE+8H8j3FgXtM4JtkUWPg3LIgNC6VPEWu6dzFu6aYhLrvGKTRD+uPRsEiY0sN8LPmtZhME9L5a27eg6cXV5uDoDPIoQnSMhDoiBK2JMnGpSDyYqYcVcAVFZmrPdbOi6gXme2RbltU9eufoajQ4ar+TZEtTa03M9R+XaDaLwVeqKjkhTCaWUM+XbkJaY5qzWAR+gRYVqbcSlKGGemhQWu5AaCXWyypLnCUmyiWf6ghaNDUWRsttVBO8lARlFVQk3VvkcdVPxuW+wiyVJYbutZNF1sdg5du9GU+QVJgksi+NyOTGMUp/bxdPMPUVRAYLmEiyCLNj+F8z3/v4B35qYtcwzeVHgrEUB+92Oru/o2o55nuPgShgqfdugtKG5tLy8vJKkkqqaphnn8xcpVtMMF+1460NQtigiGxcWW2CcJowTNtA64PA+IAk6mmEYMMbQD4Ns/xBo5jxPTM6yWBs5GV83fsqHmNw5kiSG0+lEeznL1oPV6/2NFUdeIdM4MowjZVFye3Mjwykl0vDmcuGwE/WKc56mkQnun/70J87tBYJwA969e6CuN+wvYuEYx0ESj7KMt7c3np+fub+/x+ivQ6vVutBcGrTiOozKi/w69BzW9CClMGnCOM98eX6Wojk29Je2FWtCbFy895g0JStLZut5ennj7v6exz//RNMP5FmODZ5+HMHLIDHbbHh9eaYoC7q+Z7SWZuhItKYbejzC4NDGEIK6chAS83VgK1vgdQs2ErzDEfk00Xu/vv/CEVCSIpd+BXGuseuiOPk6uFrfj28DMlYl6Ap9TlPhqq1F4rc2cYjy4RBLk0USftM0Z026NEZ4JcaIdd25IJaycRK11SI21RAUy7JaSRKSRF03wd77OHgL8UEofJM1BEQ2Np7EGKoyJ88rbLAElxKcqD6TJJFCygvleJ4nYTt62RolqWFeJuqqvm5p0lS2q9baeNis0FX1TWFL3Dwl14JB3pcAaKZBscwJSmU4ZbFLC2Fmf6gjGLbDM1B5acgJiraVpCnw9JPcd3lRSsT7tDZAszQJ08Jhf2CZHUZBXW5FMWoVVS5BOcfXhixNSXTOPPSSprkEzlNLVTnGYSTL88itVGiVUJWG1sk9kKYCP57mGWMCi1uwy8xmU+P9EgGznjzLeXo6R4UWnI4tz08dKMXNTcr3v7lD65TzpeHnv/6Vy3lgmiRFs8hLvjxe0Eq4S/e3v+F8OZGYlFRXOO/wzjJby2F/Q5IaNtsSbWCZZ0wqaizhFvXYJXA+t7Sd8Aov55ZptJSlRLXPs3x2eVayqUuKPMOzMPY9+33Ff/2v/xWjM3756ROPn584HS+8vLyx2+/5/rvvubu7Q2vDF76w2dQcj0d++uknnl6+kGQajEfrgqouyfKUphEgvl0kiTRJF7wLJEXK5XKJw/WErCwo8w3eKb48PVEWNd5rjsc37h/ek6ZJvC4lWKgosghD9qSZZrPNaS4XlJGhCogaq6oMPgy8e7en3jxECb9nmjzNpeP5+ZUsrdB+4njsSEzFOPfXQkJpw+l0JEtSdvsb7u5uOR6PdF1HVVWczmd88HRdy83tXixXsUnJ0kQSyq1YgsdlxnjH8XxCGVEnKISNCIgyYpYEuyTNMJFlt55PzhNtHQpnLdaPGKPidn5iGGaWUrGtF5ZZBvF//ctPXC6iqjFJinIegxIrjhJLY9PKMzjLBDUQPDw/P1+bk29Vw+vXt0ut9dknm9YQk4QnVvXKN1QB+T0EvF/oWsuyaPIso2966qqmyKvImpnjZ52wzA6FZugtn349iqXPrsEWUggN/cjj48L5LAEt1rqYBCk1wjI5vBOsASFBaUeapTgvVtkfftxR1wXn04XzcWSaJF3bhwDKkGcF1gWapo3DTsc0yVbaWRtfiwItg70sPkemaSH4QMDEIbFBIT+T9x7vWvpRlE/g2e+2fPr1kbKq6buW2VpynbJ4T5ElZFlOQHiK64CrLCvmeebx8Qt3dzdorXl5eUOh2e8PlMWW8+VM8KJSmXrLGCxKJWLzVWKVtktUAGiNBlyQ0JAQoCwLqqqSIXKIycIukCSKuirJ8pzmIiqBrpPhU1078lzTd5Z5coJDCAG7TLy8tigl4UXT5JDgUxmAZpmo2K2TRVWa5JzPHcHDblvL8niCeRG28DTOmGRhGET9SVCMUTGQpIab2wNlVXA6nUR9VsqSQWtQWlJ5bw43cejvaNuOsspxQZRci12oii3TNHM5N5TFjrbtaZuR+7uKcZxpm16eo3XNw8M9ZVlGtd/INA1cLmdOl4ayFB7tOFj+9V//TFHkoDR9N0Xem8P5mcN+Iym6IXB7s6ftNM4H9rs9fTew2VQyUI7W2DwXvmmWFBRZRVGIFXueBs6nns+fn7DekeV5HABDXddM03h12ux3O9b0a+cEcbOGF1hrKUtDWdTkecXT6zN2sTFBUl8HbbvdLi6Pw5WdbJ2wWMUmNV0HiF3XRSvxjpubO8ax56effooqMIfzDklAlIXBWqM550i0OCEk7ESuYxd8bECVJPV6ecZ+Pa+kZxhH4dIJ0wzatiHLUrZFHc9Sue688xRFRpbnTMtE300kJmGaZ7bbHVk20jQNru0gJsReETAIkyt4+VmIPwPIsHQe7XUgmGUF8yyW5GEYAHF1vB2/oDVUGwH7e+84vjXRcVBwd7PjcvpyXWJ7JwP/1CQYLQy6vluYxwZtPHmhGAeLsyPOSt8w9E6GfA68Hfn8+TN96yjyAoKKz5dZnGKxhhSVsgSuhCALgvVsV0ruuRA0qUlIjUEbIwilJXy1sUY+1ldHjWceFzoGWcTEpbPWazBLPIMXy9vrmwSGFUW0unle394YIncdDU3fk8bAAGt9fGa62CMKs3kYpph4Hlm3i8M7TZVX5KZgXiyLW5iWCTt/VYRK1y21sF3cFR90VW57T1hmlFGYGCz3rfXwWzfPbrcVcYsNmADDNMAiKrwsLTns77icRwgzVSW9XNf3DONMWRvyMhHbbrB8+PCBLD3xl7/8Rc5wtdoi4zJPy4AohBATpQtsdK0lqRZX2mJlgKsQayjgneL5qaXrZ8BR1ylh70gzw3/659/JkMVZ3l6PPD1duL1t0AZ2h5ynLxfyPI+Ilob2Ir1Ymin2dc7t7Z5ffhGusVYe70dG27KELffvM0y6x/uFoshIU41bZqZpxI6eMZGgpzEuuYuiYlPXbOo987TQNi3zPFAUEXvlLPM8RmGHXHsSQCTXewjClctLWcKlacI8yzm03+9Z5pnz8YL3sNvuKYuC28MD4zTS9w15LsPsuq5F2Z1KUMjr60mwVXVNWdaczpeo6hROrLPT9XpeUSda6a9KNKPjIsSRZbkMyqy/uie8dxgTqMoclDhcgvf4oOKi13G5XBhHQYMlydeh8xpiIUNeqdEWK9eM8p40Scmy9Mrzb5qGsihIs0wGcnxViK4DvMQYykLuVes8u90eH87iigpyJq7DfRGsfGXnycDua1LzWstrBUmy3mNS8ydKscwuCnzEdQEKbeTM0EaBWt1m4KznfOpYFsGo6MIwTQNZprh/2MfeNefp+chun5OnGc7b6/f1HspSxEeHw5a+m+mGju1e8f0Pd1SV8IgTk/LrLxf+fHmOg0XBHikly6UQlXlGaySoKcjCToUocEBqX/01UPPv+fq7B3zeeexsJakVSTE0ZcE0TWyrirbrRLacZbgAQ9+SFiU6zZiWhZ9/+YX//F/+mdfXZ9puYLaOJMviwMTR9R14T5ZnnM7CSRCLjFxcaSbDl2Wa6YcJpQ39JM27dZI66bwMQpRS9ENP03XSaISADR7l5ZGjQB5KKHCOxMiWYBx7lNFY72BxrKPV67Y+yKHsrPCJgvecTyfqsiLRRuShOmOz2ZFlmSTCePj8+MhiLXW9iaEkIokep4EqL6Iy6UyaZXTDwOvLGyhFlqYYJVHRT8fjdYqepQkEUZiZRIIt1DpYc45lmvGI1fHXp0d5ABE3Q15x2B1YnGOYluvhstnsmJ3nv/3rvzGOI2+XVprBeQFlCIjtx1uPUglJktH2A+Ni6aeJOs+4vbvDLgvLNNMOY5RBy/aqKCR22gZhtBR5ETlB5np45IUMna727m6QZjcyk7SRhN4QHIuV4Yb3XxtSUa98ZTxaKynFaxqPc46bm30cAoL3y1V59y3rZR2oisJT4Z2Pr9GRJCFuJIg2Qcc4zwSl6MdJhnlOHuQBjQuKabFYL4VRiOBX7x1pKs2gdXKgKTyJUddgD5MYVBCl0u3tXeRcLbipo0gtaVWg0AQlVlxPIKgYbxYTpTd1jXOeqqgk+QqxX4jNQ37OceqZF1EbCr8o2p0VuCDWXq212F69QF4J4BxR/Qje6fjw8FdrctdJIM8yHOnaEZ0YmrYlTVKmWUJp5CES+UleBo95Zthutry9nbDWcXPYM3YD7aWnrEoebt5hnaMfBpq2ZZ4tIQyMw4TSomJITMq8OILSzIuAt9M0px8m0lRLITk7fLCkWYmKyZcEF98TsYMqJSltRZ7x/p0ws16eW16fW5yNNoyy4N/+5cg0Wfb7mradCCQEFIuD03GUzzvxbLY5T1+eGKeFNMm4nP/KbreLii5RlO0PG3b7inkZyPJE0kkzw2xn0iKhqGtM2tN2g9gQ84y8zFi8pcpy5nlhv98SnLwXu0PN45dfKLKc25s7pmkgTeD17RXrPImT4UmRV2RZwcvLG8PQc7lceHs7st/v2OwO9EODDQIe3m0rDoc7np6fuFx65tnRtRMhOPJCUsfO5xPzMlNXW2HFmJxplKEpSvH6+sqm2lPVBdYu3N0Ji2uaJtJMrtGiyNjuNqAsaabo+y1GA0HH+1HUkbe3NWVhUCrw9PSE9zCNljwvqYoD1iqen98kcTVJCFjhlJQFdVXx9vqMyXI+vH8AFSiKHBeH685ZPj8+0rYXUVZq6MaGwERZSQO62WxIkwwT09lCUNEKfcDOM6soblmscCeRZcWyOKztyJKEPM9wQXgtotYUJldZltS1bA2X2aNUEPV7LQ3f5dRgvSdgUYkhxt3KWaA8ISxX9k7fL7Fg5Go5ck4Cr5T+utyQ81SaHUk4EwWxAlH8Kk1ZloLaWGxs5UDCheKSIgbp2Cnw5dczKM9Q2ZiAKAXYPE/YaKsxRliFw7BQlhmH/Q1pNgkrRxO359A2AwrNbruNW29pUoxO2W4l2XocJ4pS49xCVuT0fc9PP//M7a2kSU5j4Oam5r/8+D0uBF5fLjRni6AxpBldIlzdLQ6lZX9sjBTkCthua5Is48vjsyyGrMdowzI77CKwahOZRLjIn3SB15cTl7Rju99cHQE+KvWsDZwvF7SWtOC+ExB+03S44NnUFV03yLKmlzN0aCXYqSoqmkvDze7AZC3NpYtpmIoyTRmnCadlseW9RxtDnWfM84RGBiaLmSEIGiIEwYTraBNyzl0Dzd7eTjJoSFJR5Rqo6oppkJCvoAM6DXz//R0hBJ6ezpF51WMdBAxVmkVOWuQbOx8XK4q+m1HKCqvNJKRJjlsW3KI5HTs8ThLYxz4iNkR5Lq4ASRPN0pw8psNaN9P0Z1QITJOkK2tt2G5rnp7eeHp+Is8b7g73nM8NXWM5n5sr208hC9ubm1uMkSWK0Ya+7+jHgSTRWCdp0IsVrEEI6/10QicyZE3SjLxIcV7qytPphEkC41TT9R11VXI+v5GlBZut2KbbVhYodb2VVFIn903XT8zTwjRqum4S2xeI4FIl1HXNdr/j6fmZJEnY7Xb0bUdVCN/MWkEIrGF1q11Ka40KQVR0KIqi5Hy+RFeApYzXqwwKpYYxOokhWY7zWZweMlgJ9P1IVddoI4ifNdhrHIVbnBcG0Exzj/Dg4rIhNoRJIrV/FoP+lFLXIfwwSIKzZlWASENtrYR8yIA81pxlzrKM9INYELe7DXlaxCbd49/d8/T0FtmzM8W24Le//R3/9m//xjjNokzTmoCoYri6RjTK6KhyJS7lwQUrfUIQK521TkI5grgonBcO8vZQU5RG6trFczmPTOMcaxmNs2ItNkaWCQo5a6qq4nScYlKpoyglOOHmsMMkCa8vxzjoDRJOZQPN2dI2FoJhURofopMFcT3d3u7RGuZJeKrDMIp92oqq14WAVilBCTRf2OWpiC2UhGVcHS/xrEzT4upq0Ua4VdLKZPigsFbFoe6E9Z5ubEmi5bderCwZTBo5616Ul16Gy8aIwsc5CRkIsf7P85RxHBmGge12Q57nHI8n7OLYbbZUVUUX1fyEQF1v5FkV+WVJmkRBgSzLVZAhJnHRrbSO+BR3FaSs6ChjVjyQFsYycs3v7nc45zmfGpQW22wIgePxDWcteZEwz6NwYlUgLzXv3u25u93x+OmZssxYlon/8n//z/z66Vepma9hqPLMV0r6AUFmTJwvK6/cYEyBc8LSL4o8LhSXuAwd8U6U6yZNQDtQokJ7fXvj5elI8I6uExVZ0154//7ALz81vD1PjOPA4bZkt69Y5o5p9BRlwm9+W1JUE/cfbynLCjuL/d8kmjRVLMtEmgtjUqkFrXN0mtC2TgZcS+ByeWEaLPvDljxPMTowDA2JSTFJoHm7oFUQ1M/lwjTJPZrnmjwvwIeoSJVwP7m/bRQlLZGLLPXM5Sy4q/1mh3WO7WZDYjLs3IHXCILS07UXijWhuWtFbZim1xp+HOY4gDVoFa95u1yRSN4HdCLuBesdafCy8Ot72q4nMQaQIMk0TVnsREAT1IxSqbDYXRAOMoFxkKGmD8LnJKpmQa4z68PVqSa1UrxwgmIYJwl5y1LyQoK0iipDG4N3nsXHEEyT0EYr/Jcv4t7b7/You1BVJYHA+XQiTcTlIZZ4FZnGXy26IQS0SePgT5juWgrOqCwMVHVOVZf4OHCcJeKAJNHs9hX1ppRBrp3lfF0SgoepnyX8dZKl9S7bkeeGqhJcx+n0xm63YbMpePdwz9PTK5fLyM2NAjzjII6lskzo+xFtAh+/25MkKeMwM4w9T89nptHTd54kU8yjzCGWWYK+QnSlyjkRP/9oUU9MiqAxHM6JEnq1Jv89X3/3gG+VwKc6jRDgjEvb0jTNVVGXVxXjOHI+S6xzXVXstjtCkOS+YRii7fMnuq6VDbWWyPO+69luBQrZ971wClZo5eoLjOPnLJOACmstxMGWbMWkCdhutwzzTIgP3OkaMR6iL1sktFmacXt3K1tDhSg11qle4CozN8aQpfLBFFENtCofdtutQDXznLIsr4DhLBN1xrKIejAr8mgxTdls5IEzjqPYsZaFpm2Z5pnz+UySZbFhcEzLyLQstN1X26+dJwIi253mmX4cONzckKUpbd8xjhOvpzPDNAmPYFkoqhoNzMsSi1V3TUD2BI7n05XnsDhHEgImyRiXC4vz6EQzzjPLMPLy9oo2iq7vOdzekBYS9d52XSxcZGg2W5GGq/BVFSZcgOrKMVottHncFnSdSLPVN3bUq1UW/41335NlMX0oWjTW7dn6z8JBPOBcoKrqa9LwWtCu2+LVjrv+vpUJeLWKxM9Tma8qtxAC4zAxRSaYFJQi77c+4OJBFUIQDqSWmz1Ea8n6OpVSBKUxkRGURtuxCy4+dAR8PAwyVAvRFiKb/XXzqq52edn8LNct6jQj4QQhMA6Wsqi+GWQmLMtImsjBP04j3suDUTYksiESy4EiBCcKjzEWIUF4gssyXd97eX2aYRAVVvAz8ygg+LKuAYVDNi/WBWw/ofTCbr9DAX2MuH97O8o11fTU1YbzuaHvR9IsI01le9M1ki6ZxcNXI/ZkURLMXNr1wZtEtaaLBVhKXdcQPG3X4Kwl4FHWUZQp9/c3TNPIpA19N8X0uUBdex4ePnJ6/StGJ2wPNU3Tcj73VLUECByPF6YhkGSxsa5KFiuMliJL0Drh8+cLRhtubivKYkPfSXS7MQnD6Ei6ns02KmGssCOtC3z87gPNpY0pWQOlF/h/CJ7DYcdiJ25v9jFxC16eTgz9yDwP3N/dUOSFQPrbmWmQtK5pshRZhXOKx8cnttutJLV2HUorPn74wOH2Bp0m/OWvYk27v3vgw4fvGbqB86kjeEXXzdHmkpMVaVTgzqRJFjeHkmbnrEICZgLKeMrKgFpYbIdJRB2ysjC7rsO5hWFsyQvNu/c3/PjbD1RVxuV05vHLM3VdsdiGy2Uk+A1aa6pyS9sKCNcuGpUkBC+Lknnu8U6GJ0VR8d3H74Q/R8AFy1/+8ic+fvxAniaYPJfn1tgzjh3LMnM6nXHBUtY5WV6x2dSYRMJZylIYtOO0xIJS4HplKVy90/kNpVJR9OlArlccgdw7eVEwLwveizUhz8vIwjHxrJwwprg2NkVRsP5u50IEFccUZny8Px0hzKzYAh/VglpBVVXc3NxwPp9RkU/r4yLi2wRL55yk6Cp5oK6JfUlURqxsLkLAW8RuodYhn0EhTDetFfPsCcHG8zMmTCqxgpk0w6sFVFSlTK+izA4KRYK1kJsUHZX1knSr2W4OnM8X2mFCGeFvzbOoCLQG5yaWxdO1UOYBFRL2O+HMfHp8pSgKDjd7uvaFtmnJcwMqwdkggTuHhCJPuTQ9w7hy/ERJr5RmU4kicYmLBBttXPLeSKPrrMebhEQnpKl8fmJj9mSZNMb9IIM6YxLZak+iUhzHUWy/WUJQkjS63+2kqPaBruspisA//MPvse8E+3A+X7Cji5vjVtTpOnA47Jmmmb6XwdgakELwDEMXQwFi0x88BAkia9sG5x3pJKmLhxuxaD1+fuOXX16RBMcUkwaSTHF3/8DdQ0mWK+ZppqofCC7nX//9FwpETWCM3AdJIoXu//bP/8jz0yt9O1MWwhhNdMI4zkzziPOWPB9xbmK336JVDmGhKDb03cCyWA57uRbmZcYrB5mEk3358oUQHO/evUNrSd22c6Asa96/v2eZPW9vZ35pf2FTHXh+fiVNCopCLJ/zMpFlCVkmavZpnvDeYpQojcX6LrXX6XRmDdVJ0xSdKIyKdesS0NqTFwV5ntK0YwzCCdzf3iBBN5EBFiSYYZwGxmmiLGtRpSxOAonQjGNPmuxZ5gVFrN8WT5bBd99/x8+//MLKs/Xes0Sec5KkYmNlVRAIgP7u7p6bmzv+/d//nabp2G5Hdrs9bdt9rb28pFK3bXM9J6qqoixzrLWMkyj4pM6Rpd08SU0yTmO8xhWHw06OFOcxScLbSZ7xzn5lMI/zjI6hfnaRAWRVldzf39N1LX3fC4zdexEhWAnB2e/3kSsseIfWthKi4izTNDPPM0u6sEwuDp88aVpQ15K2PY4jNzEJXs43sZrJ8DtcwyjWMzLE/yeBU6DQGGWuIUqruksrWbTL9xK4fd9NpFkhVn6lCX4iOINfhD2dr0osaxm7idNbH7mcC96J6gRgngKX84S1cv1No9TfaZKx2AUVkrgMFYyD96LkNYlG4wlMFBUcDlvO5wWP4ubuhnl2kVelUDolz2reXi/ijsERrCjCx3GUoFE0SidXUfeqYOu6Hh/Aeq6cOzkm4zMEsYZrbbDeM89igZvGhTTex8nVeTIRlJfhgYeq3rBy5ZbFYZdBhjyZpKmLCjXgnaXrWuZpYrPZ8lDVEsyQFcyTPN+ts7FGltef5zkmFXu6WxVPqblaO/3i8OJZIs3UdUHknGUaHUaHOIyWQXZRpig0b2+n2Ld+MzTEsjvkPLzbk2aBLDO4INON8/lMCKK832xqzqfL9Z4MhFgLrmr7ry6htX9an9veh4jLEsyHaK08KEtVZ+xvCsoqAWVp2gtdNzOOsjxJjOHmNqOshF93c1vx9jKw3eV8/HhPlgf6bqJrZ5Kk4LA/EHRHCI7NNuPl5YXZjtS5uHqS1DAtPYnRrGzAefB0rWWeAvM8kBeaLCIChnEgy3LpObwshPLiO8ZxoDk3pIkRxSrh2g+VZc08O2DmeOzp+zmmay/Ms8M7QQP9+uuvUqfnBVlScihL/vjHP3I6vbGpN7EOFCWf89IbjuOI0qKWzrKSqW2YxiU6uwwmFQUsSmqhdWkoPaeca4kRl5e4wKSOyOosKmc9RZmy0QVFaeJAcWaexD7rvcGFcOXvFUWBiveRc8LwM8aIoysKN9aE8nmeo4raE7xmHKcYJHVPWRZcmkuc+1icF87zWq9+XexotNGMsSYp8pzX1zcRQi1yJvto8FivwRC4utVi2RiXiTInqOqCPJeFh4sp5XFTwmIXmnYmqJGs0NR5gnMKpRxFXjFlEvopDGdPVSegwhXRME+Kvre8f//umjh9dys2dGst0xRwTuquEDxZrlFkaJVzOjURqyPq17LSbDYlL89DFB0kciZ7cfKhFVVZQnB0V850iN+b6zDTf+Oa+b/69fcr+LyP/m/xik+IlTZJJIxifZEr6DTPc9pGmEmbzUYGH4uVLf4gaZk+FjPOOcpSAK/G6Gvh6b08XKXRc9TVBqMTtDE0FxlgzV3LOH/lCOlFMy0zxAHR4uz1gl4tv8IdSwjeX21YL29vV+XX/2xTkqm7kYSbYbyqBE2UqXonf3bTNHRdx3a7lcCRto0XaGC/39M0Ir2/u7uj73uqqqIqSv7lX/8Hnz59Qhkp0DYxZWecRqqixBPYbrdXW2VZVQQvm9L7+3uSLKUbehbveD1fhI/jLDpLyHwgMQnf/fAbPn/+THc5k6uCcZbBoZ4nsZwFxD5SFnTjwDBNksi6LIQwS+MZPGWag45BCKmhjXbcxdtrU7c2k6v8dH3ArBZjAIJYeJWV/5/kOcPYXUM0AKqy4ltr6LdQ5RWsvfLyvv1/a1IufPX7yzXAVWK8/nopdhNWpstq710tEVku25A0TbHeoXXKNPVMcVq/LA7rAgG5vnwAF8At9pvraLW2yrZCXWX8xG2fwvsZrYU74LyO72MsCL0060kin7+PkP7rexHT5jabjQyx5kks9EpsemVZ0HUrUFc2wdZK41YUOSE4bu8qvv/NDmUsu50MqR8fz/StcKCMTmjbLqblGcoyw06WeV7+RvWz/plaS3y9UpAmwn5Y3/+iyDl1XVQxprLBmMWOuswL4zBiTBKZhoFpnCmLkmW2tG3POM58+PAd+/3h+tA4ny6czmc53DOx2B/2B5RWDMNAmqVsqy3OLfhow13sjEfStrxfPwfH+XIkyxI+fnzHPFtO5wtpIvHwv/76CessVZUzTT1Ke7SBu/uKelvz+PnERS2M04IOimmCohRuRlWn1+b/7m6Ls54vj89UdS1nmzHYaUDvCqyVxN+uW2jCiNKK+4cSpQPaBA43G9pGAiXKMme3r8mzlCKXgvZ8bKnKHGcX2vYijbxKaC89w+BIk4rT6SKcwn6ibV9ZloXxZuLd+3fkeUFR5DTNBWstXXMSzmpZ4tzCzz89SrPrDdMklg+l4OZuw/t3N+SFDAGOxzeSJKWuNkDD+dxR5pUk2QXY1BsUmqrY4kn4h3/4HZ8/f+Hl5UVCDxLNMDZYO/Hoey6XhH/4hx+oNwX/UP2A1mLxneeFt9dXNpstkqQXsIITYxpG9rt78kxjc8jSkqKoUUoGsGWVX1mETdPy009/5f3795SRmSEqkoxlaUlTae7T3PDw/gEd01RfXt94e2sEwm09XTvIn5PXFEUuqpvFYsaFLNe0TUOappHTJ1D5fhiYJ+F0GiVoAxmw+ciSnLFLwCeKLmnohkbYa8rg1iLSiIpRaxOv/SPz0pJm6VVV4D3XJYZwbuT5nQSD42+Ze9fBfWzXQtyyDsMI4yRJikpJ4i0QopJm5dCsvDeF2FF0HJxJwFbcJscz97qkCTIwlQ2dkv2u9SxWFjF5Xl1DWCTQxJImJUN3wc2OqjRXePi79weCguOxYRwXltkw9gq8xrqZss44nS4M/ShWxbhEKquczTYnSTx5qtgftgxDzdtx4OWpixBqR5IoYcRpRZJE1XNiEHSqj/WRNBBiCXRXC5wo3BFlSVSkGyMDPxVgnia8c9T1RtKznSw2lNGM48x+vycE8LOjKEsZEt3fs1oVt1s5Hx+fn5imgXkZaS5NtM4ZSYqc5jgIVRGhEthu88giiwEqrOEvip9++oxSYmP57W9/i0Lx6ZdXZjtyc7OlqDbUm4LttmCee5r2hPeK3faOtvGCLTCSvMgiAWjlruL77z+S5yXPTy8E7yMLzKETUUilSY6fAsGbyFANqGiFHoclDp4kGGS7ueHt7U0YQcvC5dIwzyO7fcmKtFjmhbaR9OgPHz6S5YokTXh9fiPPE/aHDedTJ+mJiSZJcxSe7a7ihx9+YJ4n/vSn/2AcRn7z8TcUecFff/or+5sbnHO0bR/veYcJiqDFgrSEhYA0hOM0kBfxvTcSOFBVBXaJbOJFmsA0TRmGmebS0Cq59qqqIsszytpwd3PLp78erwnewhTa8fryijGGu/t7mqbh7fVVAuFyef+CF2D+OCWyKASqqr4u+x4eHq5hbmvIRAgyUM7z/MqFXhZZoEvKeILRjiUscZgkauGVRbq6AUKAtu1IkogusBa8lcYuE8tj342M4yzqYqVIgrkOLQ6HfTyXvzpbQvC42WGVpchyirxkVU8FHFVZMgy94IZw9P3ENMxXi7LCYJJczjY0x9ORaZy/CS74eiauLo+1Z4glLakxGC1nj4v16VofKenvWAc60vTKosNo6FtR5G/qLTg5Q7quj/XoGP98xfMXwVTc399xOGS8PEtwkolqkbaZpO4ryus5rDHglQTE6ULeV2cxsd/Ji5xh6nl9fcHanre3E+PoKfKJd+8OfP/Db+iHmafHE6fTCeIw2TnBqvggg/1EK3HcaHlOKAVd32B0hPR7RXDS2C7W47yoorW+zktZ5iBLEJ1AXJ4r7QlE5qmXZVSiEohsZoXFexcHJCJi0IkRR1ZcqFdVhUZe3zRP7M2B+/vbuPRfeHs7sdvtZIgz9lgvCCDBUymclUTxNPk6EDdaQ0wirescrYNgZJyo5+u6oqwkePHz5y/CTzWGH37zA0lyx+OXpxiUYLi/vwEdyAvB8Ti30A8dosCXc3AcR/7yl7+S55LG6yNLd13crc/cLMuQHV/4xiK9WgKJQ+E42Ftrd+PxQRBcWabwQXrx25t3TNNE3zbUm5I0E0TH6XihqjX/2//tlqrcMU0L42iZZ7de5vz5Tye6vuX2LuV0/Mx2V5FlnubSRmV4jdHQdg0KqVvKIqNrR3b7HLvIvbPb78jSlDmeUxKgYzidz8LpU4IR+/jhhmV+pelm3r2/Q2tN13Q8P73w8PCOPCu4XAax9ieGTZZR14JKyLMcMOigac9DxHs4/vSnP7EGC4YQ2O03lKWgmJJUQiF3O3Htbbd7xmkW67QLqExquyIvZB5h5+t5IUITcXWkaRI/U5l9lEWOdTNJRFBttxt2uy1KKZ6fjjw9vTKNEkpoYhZBmqZRDCDiHbc4nPKrtvN6g63iniRJqKoSu3xVcWqjItte0BxJAj4oUactkOcZ8+RjArH0kbMV3p8PgcN+LwrqRZbcZVFiovBoHe5drblelMwharbXBUiR5zi/kBgtIV8CE0HrFJSiKFKqqkAbYV4Oo2MYxsjJ1RxuKjabgoBjXgZ8CEyjoF3G0UWHhdiE00z44i/PPdbCZpsIOsgtKOWws6j6zqdX3t4kICU9ZNzelCglytCPHx94e71wOS0ssywmXEQOKBUYxhkfPCqsA3jhyX59jvB3f/3dA75vJ78mRp4bDffZfdwuFqiogpqsNO7ZIcMtltPpRJYlOBfoh+5qixRAKrGIKTmdBtmixcAMa0Wlt0Qvea1AJYbT5cLxdMLGQceq8rLOEuLwSbgXGSoyzbz3ZGnKMo0opeSwj0Oo40W2NiCtiEgKQIdoS1Jfgb4mDozqugbvrxPzl5dXbm5u4lDC8/z8LOrGRODeK3T4/fv3nE4Sg77dbnl+feHnn3/m/fv3zHYR+yMxhCOqk1zw1JvNdUCmNIzjwPaw59K1hC7QjyOLd6KiUzraC+XK+e1vf0tVVUzzLKq6JWG2FmWUJAOvyWVKkWaSGDbPc3wt8uWchQBpJQPecR7RqUj706g4XOYlSouF7bJul9bh6zq8k0ZOkrgwX9Nq12HqdVgXE0TXLxujzyFEa5mN11KGc+a6Kb0qPpHDbLvdACpO7N11yLiGsqyHzbrhWgepWmtMKpZsF+3A8zLGYZnBB5hny+ICaSafsTHZ32xVgVUpzarUiXZ/ggeDIbBQ5gm7fUaaKbpmYZwXUqPRagWcaqyVh5tSYqFKUxnEeS9WKjm0TQyHgGEQlUaSarTxpKkhINsrpVIBvVtLloiF2bqRPAukeSYDjyLhy6eW1+cB72MjElWp8ywDLBmOyQbcGOHxZLkofCW5OJNNZxAw8GLnqOQco+pDbBrOeqz1wpqabORtCJvQWktZVd8wEoNYM+9u0VrTNA1FkXN7d8OnL48xFU62pUu0eJQ6jRtOOWtAUo+qqkAS3qRwnKaJerPB2oV//4+/UJY5VVnhg+fTpzeICsU8T9He8uMPt+y2JYebknE58v0PO374Ycu//dsXhmHCGBniohTaSMP6j3/4DU9fXjA65+b2RgZJQYJb+mEkSRPGcSFJAmmWMQ4tm03F8fVN4PK5JIIdDjvKqma/2/N2fOb15YntZhPVUoYkSbm5OfDyeuR0OtElI9tyT3MZIHSoyK5wTs6K777/gHdeuIVZyvl8Zp5HrFvop4F5sZzObRxuLKA9SarQieHdw55xktTBvu9ou5mb2x3TNFKWJcPQUZY5CmFgQYhnMKRJIkWF97y8PEaQ84bDYUtiNOO0YV4uoBeKXJrjp6dnjNHc3Nxxd3vHNI545whohmEky7ZkSUpz6XFW0TQd3inevXtPYnI+ffrMZlOTaMPpdGFbb7m7v+Mf/7HmX/77/0fUuePCNC/M88wwTmidxOs8wXlH2wnYOUlMBKJ3cbB8h1aGLM3ls1WgdcKm3GFShdFQV/toQS5ABWy0b3grvJW1qdSJ2CBFxd9jnUWpha5v6PuW/e4GpUGtqblBzoYkyUiMol0mlrnj48ePHI/PMihSEsbTdR2Pj49yPgfh5v1tI/A1Pfd6lEW2iA/2aj9dzXErMHitE76FgMsQI0MeI9L0J0kah2TJdamyFn8gjYl3sQRUcr+OgyVJCpyV5EGtNd6JwmG15C2L2PPGQf4cbVL2uwOElq6ZuZxHxlx4mGWVkJiMy3mQ4UQiP2DTdCzLRJ5r6johzYTLRfz5Yst+fX/GUWyfqZGggDQ+U5NEXzmx0zyS6EQ2uASqTR3ZSOl1uaSUnFn9MBGCp0hztJKk68UJc2i3qVjGkf1+T5om3PzmlqIQ6+76+kSxPjNNjg8f3rMsM5fmxPnSMAzj9bOZZydneACw6CSQZoZ/+uEPPD4+8unzr9zd7yPkfOK3v3vHNFkOhz1Ke96OL6hk5maf8/E3e6o6ESbR26dYU3iaZuKXny94F0hTru9ZQGGSlO2uIi9SurbBuYWAj+e31BHCr1RsNluC94zjhEkqusuFEK3EPkgI0PnY05yn+KwVLMA4vFJUGTc3d6RpyuVypqxKEm2Y7cI4Nrx//xHvPR8/3HF8u9D2F6zrSdOCrMy4v71nv92SZwl5KoNFreT5t6kqkiTlxx9/pGmEaefi8AIFygmbLVt5T9Zj7UJZayRpVBjTaW6olYC6x1lqpMN+R6ITNMJFtHaF64sqabfbUhYpSbTHohTff/8dSktCclCB5+fn6zlc5IL12G639P0gtdAkzVWeZWy30kSuYRnCmBRlR9/3wkOcJtq2Zb/fXm2y67J1bVqyLL+GCa1hPhDY77dSswQvdrS2jY1kSpbnHA57sjQnoEhMz7KcBJnDanWdOZ8v1wXg6vaQIC45+9YGNs8zglrTW2eUMhEnIYIASVL2jGMbgw8MalnVdp5pUuTp18HmKhBw8Wf8ts40sS/ScdmhgqIsKqZ5Yk1dJQgnWZptaWq1knOra2eUCmS5wXupyadliYEPgnDJspTE5FFhYjm+NcLrDGtVKazXNNFRvSSvNy9y8IG+7WJ6piivl2WOrLpMVMbO0w+WLAskOufuRvAN51PP21vPuw/31HXF+fQCJPJ6UkOWafIMqlrUQs8vDUMfVSxEm3pUYaJFyRSCRut1Mc/XetvIMiS9LuRFYWS8DPisk3R55+319xC4hqEkaUYRuA5t53kmTfT1eijznDwTd0SaCMtbBisFoOFGxQH3xKU90/Ut/dCJSs8FiN/TxXA+6yxaSYhPVWXs9lv6vueXX36VvjZTLMtIlil++PE9Pki9kySBL19eZKBWam7varaHFGNEnXhuG3mWe1n6J2nCcOoZRy3LO6WvQXpqsQQl7Md14Lz2U+u/r2mmsnxHflZieMpVh6DJslKSbpH331rPly8v9N3EzU3KNHfMi5Ie1ikOhxvyLOPl+cwwLIzjgvWBvND0w8g4Q1ZEVXEhPX1eZDhnsUvg+elMXWd4L/V3xH0SNFg/k5UlWVaQFbmopE9nkqzEBcXQ97RtR5aLZfX2cEPbtHjl+fjdA1kmNc48D+R5ineO77//wP39LZfmgneOJEl5ePeegKLrBrxXnI8twzTxn//LP/Pl6ZFhGsmzQvBkWsewiinOBUSEpLXYWdM05f7+AYLmcrmggjz7FR43z+hgMCqFKDwQcVNOUZTRFbiQ5Rn1dss8DYRg6fuR46kXB1OSYW1AkRL8Igil6EBbzx/r1nRaeW3fFm5i+w8YpVBBbKVyz5UoA2VRRJvxQFUXHA5b2rbBpirWZmJNX5xclwFZZlkfOJ5O+CDLwJfnFyyexTlKVV2fDxAXut+EbiilUQFhjlvLy+srVZWzWIPzMpAjiMI3S3O22z1ZCm1/Ypo8282eNlk4nToO+5S7+wNpJlkH06S4nDtR+M8yABwHT5I4bm93eO84NS1XI403dI3U/AHLdlcQvCMEDd7QDw7NwjQG6jqnKBTj2HK5CNM5z3JC0Chl8c7Le2MdeOnbYzTResPJ+fcNZuz/6tffPeD7VvGktb5un7I0vW4MRFmkOF1eqaqKJBE2StsLMPr5+YX9YRtv5Ix+nK5TZID72zskGWaQqGedxJumoCg0XmkufcepubA4KwO96MMRGazEtQelxGYa1WtyYUsRkcTQirXwOB6PLM6uGgOM1mTRguy9x8UCUhlpxrx3VFXBdrNh6geMkRt1u6tJTILzlqwqGE8jOtNM8wSzPGittdei5JdffuHu7i4mDN+SFTnNa8t2u8UoQ5lLYWGylDqVBuj5+Vk2Mj765eO0fphGumFgdlYsAW6JQxBptNqu43Q5M09TtImIdDnPcmbmmAT5Nb0W5CE2TROb7YZpnK5Jccs0CxQ8l8Q+6xzBwTD1GK2w8aG0FnrrdbNugddrSN6LBJNopmmR7xNC5Ol8jcQOwcUDNWDivF/SVlO6fiLLE3xwpFlyTanT1yFsJQe7X7dcHuvmaAcIkZX1DWdKqagi/Tr46zoZchqTREuDkoGQlwZzcQGUYbEO58G6+W+Ve+F6A7H+iwdU0BgCdpbEqrIa2RQzIVhmowkqERVeKgMEa5frg1qKRa6NsArycJnHHlUk6LQghFUVMxOQrYeEkXi0TrBuisrKBecM8+g5vS5UdUpwIy+M4DXHt+E6oBAgraglpmkRSbUhFhsmKiU1iVFMs1g6FitMpzzPY9OWRUuvbECVMizTKHYBJ0WXXLf2aiPrE0OWGhni3d5FhpS8rXVdR8Bvg/eeerelaRoulwuncxMt6Toe2HEhoFJmv5BmiQwOE03TXrg0A/Um5/b2wGItff/KMPTsdjW3t3c0zYWuFYXEH/7pI+iBvFAYndI0b3RdT1nsyNKEKd5jxIY9SQObbcWHj/ekZsPz0ysBFzewhnmShk7rHO8SElOhEIl9akSN5r3YhDZljU8Mry+vLFNgaAeeX55R2rHf7dhutzw+fmFoLVW55ccffqDvR3766y9M/UxqKtrmIkNKlUSFY7SfYXF2oOsHVnhzP/T048Dr2yluG3OyPMcFTxo0mVI0bU9ZpGRpzuVyRGlHlstn5r0MMaZpQhtDf5bGr6435FnOMEzM85ngNW/HZ8qi5vvvf2SeZs7nI33fYd3I3cMOkwSenp45nY7c3T2gVMIwTrGAlzMTk6CMQZsMFzr6aSa0I3d37yiLmjTN+fD+Pff3d3x5fGSe5is24fn5if3+wHaz5dI0DH3PbBeqqhYrxOVCWeUsi+N8vrD1NQEZRDRtS1nU8nPlGbe3tyglhddmsyHPEtq+oWlP5GWG1qJ68V4WFcEjW/kQsGqJ9r4kNkfuammtb7fCgtNeFAFqHbqJ3S3gGCOPVQVPcLI4StOMspRn7TKJWm5Nav92uLeev397NgpXhXiKBUSFdmW6KC1bShWVx1rqA2NUZGjJ/eqcxwcXbdvuatUcx+lqiQrRthWubJI1rTM+u62jqmoEBTAwjSNZJmoPIp/KeUmp/dO/PZEWmrzICE4YhssM1o4YA7OdsU6a6LqWBnOzkTTHl5ez/LleM/SNJPhhcNYDEky0hiCBJFiHGIyxhjYty4K1wndJ0oSAhALc3t9G9bnw3VYLyZomXNeiul4tKkpJAqz3lrIqUArmZaSubuMzUxYw8jmn1PWG7XZP27Y8vb6wpubd3t7StBfGYQ1IiYWnEnXnMHaMU0uaGh4ebtnsctJUFF7j1LMMMtyzdmZZZr7/4Q6w3N5t0MYzDA1tK1bfsqgwOuHduxq7nOm7ie1OVKtt24ryK5Um9PnphWkSPuVuU3J7kNAirY2o7bqOvm8YpgWwKB0bResYx4ndbi+qJGtYQqBtLxwOEsr08eN7dvuS7a7mcjljTMJmU1N9FNeIXNML1i04BjbbjP98+0fGQexmwcl9eXM4kGcpx9Mb0zRzuDlwfHvj06df8d5zOl+4NB12mqJtFAkEihZ1o33ka0FeJORZQlkUtF3D6dSR5wlNc5H08Dxns9kTvCbNKvJipLlcuLndC4s4Tdnta5QKwmgFkjzj/v6OvMp5fX3h7eWV2/s7fJixdkbrmmkcSaqU7W7L+XzGOc8aHqDi3+d5hgA///wLWZZSlgXbrQTHSQ0g4T5aa/Z7sdmO43R9XqRpSkocXI7DtR5KkiSe+7UE25mMshTkh1LEZOuXb4Y+YmG9OiDkAGEaJ56env6maVwPJiWRjDHsY8CkRhSzTjjX8yyD874f0Crh7uaWZXY0TYvRJp4FKxxfs9tt6boOLCxOFKfr0v9/hqP7EAhW6iIZZinWMMD1bJJlovDjQvBxcbOqODyKhGXxLIun70ZRFqrV/QBLcKzBTdY6nJM0T5BhzDRa6k2Jc6Ikkc9EUcSaUIbjX8/33X7Hx493WB/PQevpGkvfzhQF5EUaQwctnz89M42r8kSG8GkqFt80g7w0bDYZRf3A02PH6dhg7eqoETbrslg0BqPTuNCQn88kUjuuaa+i1JR0+hWzsiyR76ckLE3FUCNrlzhA1uSpistojbee2U2km5LgHEmekqWSqLzfHfA+XBmUeV5SVRV9N0gwYmSyOW9JUkPXdwTsVYFNiGEjWkd27cylHSjKlMNhR5JITayNkh5zmdE6oa43WGc5Xy5stiUP73ckqedwU9M0Z5wX1NE4LVSlnPdplrKG+slCVt6D/f6As07SWJ2/upm+daGJqCFc1WfayOuWHsIACd4FApY891QbS5oZxpHIQZUhllhKt2SpWCCtVZR5zTwFmssRrXJeny9sDyU3NxnNeUCpRNJpe0/fLtzZlESnTMNEUdR8eXmjLLOYfiwceKXFIrk/FBiTMo2eXz99kXBCoxnHhbLeMkwjp0auL50YqiShG3owmrzULK6nTFIe3t9xTg1HL3bT19c37u5uuEsPTLPYlMexI4tujePxjF0s9X7DpWv5H//+b8zzLAO4KCoBromx4zCijcYuC33XYbKUu/t3PD+9obUk6opIwTMMUxQEre+pXKdVtaGqCoxJaNslhoLIwq8fBppovx1H6WW80/TdGIemKw9V/pq8lzmEc7GfUNelwrq4dXERI4gorsiXRBm6rpeljxIxx+FwwLklohUShn5dnlmyrBD7/Twz92IvPp1O7LaiZpwn6RXnaboiudZzM66EpY/1cvZde3IHQ1xwyis3IlCaZFHy9vqG8CFFLPT63COCgYSqkqUEM7TtRJGXbLcH8izw+dMLdnEkqbmen3ku/aYEJQkaBhaSRJEXKcFr7ALOKVkgB2gbsUjbxdOnltOpYxw8WSpuvxAkOEoWlZJx4K2/zgFCfC+uAU38/V9/94Bv3QZc1V6At5Y5fGXkiWRRprLDMHD/sOP49oaKFsLPj4/c3t5cL/wiL8gL2cAtyxITV78m9I3jKNYQH2j7jvZyZpwnGcglWqSjkam1pgX5IBuroRNIPhngVsuDRQDJYiO2PgYTBDEWZYnh9uaWTS0sJZDLbhwFYDmOojyq6lKUXklClqR0Xmy+S7SxBsK18PhWvSag16M8WHc7/v3f/527uzuKoqBtWw67PUmycjLkAGnbVprKsrwmoeVFzv6wl5tYKY7NmSmCyp1314IiSRPGaeKvn36hzHJUoiXJKU0o81Ref5FTLCXH4xs6kfdEKSV21ESSjIlJPtZaXJAD1UWrljYapTVZljONA1p/m7DIVcW3LMtXrt26XQoxxScO0yRiXF8PK9F6BIosjRyir99jHRKuwRPeeQER58n1zyvL8rq5AkmJ8zF+e1kWiJbXVdGXxmH1OuxbFtlGBe+ZrfAnVbTXLMtMPy0sTqC/KIWVqXc0635z7/C1EFyXrUYrdNBizUk8iZ6YpgYfJvL8Hq0S+jGQmIzgLURw7xKvDWOMKN2WQJp6TCIA0jQV+e8Keh6nkToRJatSJjZr0pTKey3qMpOIGisEw9vrQghiOxNNa3K9lsVmoyjiRsxZGxVNsySELpbFclXQhhDYbmrKsqDpWjlDEsM223xVS2pY5olxmISHkmcssyh78zyjqkuWRVTCJtHUdYlzgWEYGAaxdR8OO5q2pT331yH6x48bjqcj4zAKJN874ScAWZoyLh3LpeV3v/sNm12G/Xni9rZmGFvGceIPf/wOY8Si9Pz8hcDEdp/ym988UNaKcXQx+VEe4M4F/vznZ+zySqIDOhN2T8BTlJIkmKaGt5cXQnBXq+Q8j3ErJ/apoiiZpwltAssyMU4dabYWw5pff3liu92hVEFwCcempbmMfPzuBjC8vZ0IQa4H5ycWO7LbVfzxn/6BZfT03cLp3DDNC0VeUlYZRZ5RbzJ+//s/0jQ9//2//QtpmvOHP/6Rz4+faboWlOHteGZZPG6YUDqgdApBUoDTJOd0urDZ5lg3kGUpu11NkqSR2Qjea4yR58OXL49sN1vsslBVYi8vK41iwvmBS3Pm5fUL58sbt7cbssxgEoVzC5JM5eO9LlyhebaiJlEZKirGs6zk5eUcm8mSpm14/PyvcTmyXBPDhmkkHTO2uy1ZKoq5y+USBxuzsCjjQmNeHEmekWd5PNdydrsdZVFT5CVpaqKdXthCYolLaI4XVDBU5ZayzCXR0wofzsalzGwXuaeSBJwn2AmFhE/UdU3TNHhnUUlA64APiyQkBs1qj5U2Up7D/dgx2Ym3tzeenp6uKnCTJMzTfF3GfPu1/vu3Z6f34bpUUNKr/p+WODqyQIuiuJ6pa5Lb1yGiVHQheni0luTN4BGYuxJlgdJxeaFF/STqIHBeMY0Wu3jyvBCYcggyHAxfbW8BAbHPkwDxrV2oCgldGPQExEY9JLhFrCN9t3B3X1NWOUrJMENjGAfLOCwUZQJaobWkHK9NaFEUkrarkEAO5LmIshBT7lZ8gkZdObA28l1X+HYIgbbrSBNDXZXc3d4xDgPjMMpnZgSiv91scMsiCprMxAGJKBCmaWGz2VAWdQx52fN2PkVQ9cKlbckyQ1XnaA15lojqyTtMApgcrQLny4lhbNlua0Y303cDdbXj558/MfQLWkNVl5SloSiFlTzPCwRNkW9R5JzPZ6z1bDdb/vk//ZH/+I+fGCdHkmrqTU7XSUhO8IHRLuAN2+2BRGdXm5BzC8PQMs89sx0o8hTnFfvDhizP6bo21gKeZfZMkyV4KIqaYZxhtCSJKLKXRfi/db2JqmqPNnLdLraTmsSJ1TFJYJ46zm9HvDfsNjsuSuqZv/z1T6IqL0qmqef1Re4r6wL39wdub3dM88xkA7/++gzKsVgZ4KM8boK8TCmr8qp+L6sMrWUAU1Yl2oii+3LucVYaHq0lkXO7qwUPoaQxtm7k97//R56fS/qh5en5M/M8YjJFWWVk+Q3H40lUmD7Q9x1ddIpM08g4DrEmg5eXF5qmYRiFDba6JPb7nQzM4rKiaRp8DDqQZX7CHJEfdV3z+voKU7hae9ezRJIkBTDedSPjKEMscWqEa1rramFVrPzfrxZORBiKhE2E6+JLqa+cJ2apIXf7LT64+NoTsrRkHGW4Nw4zTdLx/v07qqrieLzE5YMkH5ZFyXa74+XlVerCIMnT/psz8uv56L8O/ZTUl9b56xJE8DVfIfPm2oRLPacRBhtoljkq5IMiSczVaTRHBbGOaj3nQrSSxXPaB+bZovvlOhgXhciCnRTSkhhRoiEohGEYOZ9bwLOpd4zDTN+PjIPFLmAXRZbLwnt19Ei/J0O+ZZmZJi8ha0hS5GKJCj4ZTIoLRc465yzTMpIlOUoZUUTp6ErxDoLChhiWGOu0uq5YYt+w9glrDbw+p2RZzfW9ldRRCeraVpWo4ayn2JZXvuiKuhG1vGK72ZOYlLIs+fz4mdnJkFiCSDKSVDBNSgUSowkagpczxDlP8E44w14QLkmS8HY8Sg1pch4fn8gL4ctv6pLNtiJJAttdwTgKe3yJielKLRyPLd7BZddHpM4SryVR/s7zQlmUzPPCsnzFVEmPLu6XdXi/BkVKzxbEPrwxFEUiIT6ZYn+z5+Fhg7OKX396ZJocZZlRlAVZonl7FSZyWRTc3X1kmmY+//rK5Txyf/9AlmXXJeQ0i/17HBcEmeJwywLWo42jrAJZWkSMj6JtWqYpsBKcpmmmrmvaZmSzKWibkXInTpe+H1FKliBkMRxqcry1J7bbCpPA7e0WrRTz3JKkmvOlIzEZu23K6+sbQFRuVniv6NqR06mTgY4NlEXFf/zHfzCOI0UuwoJh6ON5jdiwvcwGttsNWidkmabpOvZ7GWqXZYnRBhc/B5lVaNIsZVpkULaeA86JOnvlwjeXhof7e7wPbDc7Xl5eImOvpOu6a/Ls6oYchoE1MCat5Rq2qQz7kkzwQmtOwcprl1rPx6NDztFlWUgj8zPPM15fX1FacXt7I3gXd0I4kjmpzqiqyC/uR1Y0E0Hs8Lc3JZ8+fabrOhFired6+Ko0vXL4fNS1rWrTAMELG10cLqJ8dyrWGTFYTe53qDcZWR7Vt6MsqNpmQJtZ5KBBzr081ud9P1PXlXzWZU2aDszjgg0qLqgVxuRsNzuSJOXl5Yi1SOCKc0yjw1kJiZFgDYVTCqUkjCjNUlxYuH+3k+AiBdM40zYDl8tE344xg0KRZX+/R/d/CYNv3VgtyyI3a/DMEey4bu8JgaIoZeps7dWykyYJzeVM3/cR9BwTLyEOz0ayVKTZ66G03W7xwTPNE5fLhW6UCb3S+iqNNSa9NhHLMktaGZLgByLdzkyCUlp4at6TrsEMozwAU2Uos4y6qri7vaXrJO773bt39ONw/T7GGLJchhZd25IowxKHTl8vWi3R0d/IUdemZ1kWXl5eAFi5g8YYDocD5/OZ7XbL6+sr4zjTtSLTX5l+SSKpaEmSoI1sl7z3klK7hgekSSy0FqZlYe7kNWR5TlpIwb04S9BgggYDRZYzOE+WZhilJQ3Re/I0o6xKGY4EJFHSZ4QIRDbaxCTbeIElCUssRFau3WrrTqMFaQ23WBu+PJfgEYFipnG4OV+HyNZa0iS5Pth8BLyL4kM2J+sgLq1SjEkYh+nKTDSxSF6tnaKo+mohc1aYMauNYC2kvkKRlQyJEWVfngZ0IltD2cJI2ImPFnBhgaz75m8KwKiCTxNJ4lqcRRHE3qgWAiM6GRmmV3yYOBy2OBeHhouoPIRnoljhpmmaXgNJsjwlTTU+zPHXOXwYKco0fg6g8IzDhDYpdvEsdombG4F1b3cb8jxl6D3z5CVJLIkgdCVqG2sXkmgrHIaBZZLwFWNiwagkFjxNZXhsnSVJUrxf6Hsrku7g44BGFJFzP6CN4f7+Fq0N5+NRUrbiNV5WpRRsVhpXkKCYtuloWwlRWVl97969Y1qWyLRy9G1DWeYI31DHwYthnma0ClGGntE0F6o65/vf3AMBa+W6+vOff2G3q3DO8u79A7d3NSbxmCRgl1bUu/0cuTYJu5sarWaevzRoHbi5OdB1PV3fxaHWyLJMdK3j5nBLUdTs9zck0dZtradpzkxTyzC2pKkiy9P4mpdou1sYOsfQH+najvcf7uPPfs/93W1Usvbs91sSLUmJeWHY7gqSEfJDya8/P7PdltSVJLN+fP+R/X5HvSnRRhKm8yLFaEO9qbh/uOXu4Y5Pn/93KWxi8IpJFaVJZFvlLS+vZ9LME0jJchnEqL1hU2+YppHzMqENFEVKCAseS9+1zPG/73c7bu8E3l+VCZ8+nVhsT2Ch2uTc3R3Y7mpANu/GpJJ2WBT0fUfTXJjnhU0tCwajM1HDFAXTOFJWYmO7NG9kkwzl7h/ueX5+Ylwswzyx32457Hecz2e8gqzIcAqS1KB95Fc6y373ju2u5NK80TQndrs9Hz8+kChRpVorfA5nHXNUt9zd3TNOMSClLrF2IjEC6J9myzD1aKXRWlLlQkwLDkpFbEApaoMiJ88TxqmhrgfKvCbLKgGgR/v2ssz4MOLIsCGLag9psqy10Qr89YySrerfPu9h3TBLmqdbvlrlvv27nP+GclNcB1ld18tWOE2EvzvHIBsl515VFXKuDpIkrDSkmaIo8yuMXzAG/tp0x6ki1spZdF10zGKXMUqvh+91zOm9WCSnUWDwazEtA56YULypeX4+scyeYVj47rsdx+OJ/W7Pp19fCV4U1/MEJlXR4hTQRpwLWW6iHVORaqk11mCixCQUZSY2sxgAYq2laU5opSjrgnGa2Gzyb872nCzNubu9ozmfeYnDTalxbGSACnPv8fGRxKTyLEvSq8pSIWmkTddSliVPT49YJ3YcGdLUpJmmKFLevbtjnieqWtiGl8uJv/z1r5FdJxbDaZqxVmxZdvYM48Q0NmQ53NyWfPz+lqrKCEHz8iwJu8dXS1mlKHI+f37meOqZRkvWj5RVzm9/+yP7/Zaf/vpX7m4eIBhZHjAzzwu3Nzfs73bc3G5EPd3llFWBMZJauiIpZAufkmWaJJnk+YEWpl0pCaVdL42eUnGhq2UBEoKPqYPE4WRJke349acnfvnpCaNzlnnk7uYe78Hamd///g9UVUHXXnBRybjd7ZjtwryI4ujSNJybHuuF0bosC9M44Jxls83Y1JF96W1sEOHL44mP392x390iaZsdbTOyWC/DiVyeM3aZybI1tdaiTcbpdOLnn3/BJI7NtmB/kPtwnGRRnabijOnbmd1mF+socURcQ8yCLDWSNRF0Xih2G4Zh4Hg88uHDR758eWRZBOmwJpQKV7dAG0HXOGclpGqaeHi4j+FdFm0UKHG1nM8tzaW/DiEkRdNfG8H1bNFxAAQrc1gs/ZnOroNyGbbJzyK4Aam7l9nKcyJZ7YlRzVZITdF3PefzBaU0d/cPeA+nc4PWYgkXu9jLtZa/Ms74P3NKV4aU/DewQTh03y5AVuWG0l+t/dJTyeAlS3IZcC0uLmh0HPIJGkK+z8q4E7vl/5e5/1qSJEmzNMGPmQWLQjNzM3ePiASV1ZXdM3MzPe//CEtLNLvb3VWVlRk43KAiwcJgL34WNc++7NyLNaJIj/RwoKaA+QfnfMd7QYDI+1rCiJwN5HWBjhiGeXJYFZWFyDkqD1VzOY107SM6keclTVKCk4Z4Gj3eTXQtoAOztSSJEjZpqqjqiq4dGTrHNBjGXgJjkjTFexMTc5HlS1QEaa0jn+z9LvFeqmalwGQJRZJJOq0WFNQ0zcxuCW0RV4QsCyWFOC9SbvZ77Gw5n5uYpG0iAiMnLTJUCGR5Spal0Vbe0jQtdpZFd5bJ8+U9cbhR8PZ4wHtPP/TkZUZR5BRFSmrknsqKTN6nSobLbddwPL7x+OWRqi6uQ9HgNUol2Fm+33EYefxN6rt6rfn8+ZayzsgyGTycT8KQv5ygLA1ZVuLc6Sshjbyf50nYfGVZyoIwqjuXG9A5y8LMvQ7IlSfVhvuHPQ+fizjAMLSdMGqfvrRolaJ0glIOa2WBmpgCbw3jYMnTjOY8cz63dK2naRyX8yME+Pzdnk+f7/ny5ZWXp5OcmbPosNpm4ufxFWM8D5/WQODt9QQKdltBdN3sV7FOybicZ+q6YrMtScybqPDDTN8OFKUMZ9xs8YkMiMVJVERUVgYKDm9HlFLstmuOhwZnfRz2pZSlYp47xmmSYEsE67Pd7Dkej3RdJ/VBVWHthFheDV0nQXfLmTLPlqIo0UbTdF3kfMprlKQpWHft2YyRz5/0pO+95uVywTkRrCRJwvlyYb1aCaorTTmdjgzDQNs2zLMlyww+kaXuMPRiA46p2ItIJU0l+TbPcqq6BqWkro2DvOVcslYcgQuaStwgnsPxRF0V5FmBs0543M5RFBlVWUcVrRZFv4O3NxlmX5oLq9WK+4d7zueLhMN4D+o9kO39rIy8ZS36ZiVXBMbEhXXkUIsSfFFOS0DZch8s6matE1arkjxPaU4t3o54q0Ql5x2JTklMgqRuB15fTxRFjix7Dah3xIS1nsu5lVlGKmGLCoVOE9LEYLGxxkMW1j5EFq1snxZ27qVpqFcJ61XB6Xyh7Tv2txUf7rc4r/BeUa8K/tGvf3jAN44jfd9fbZYuBFSQAreu68iamK6R4d4HUatFa2pZlqRpyuFwYLNaE1JJHD1dLldunZYIJpTW5EVOYmRIcHh7o+s7dCLDEaNFlu38u39Z1AE6XsKyQdfI9khCCGacS8E7SeMKHh2IcOOU+9sP18Km6zru7+8py5K3w+Eql10my946SMUffh3neI+Ov//L06MUPHFqP1tL+/rKNIkV7PX1lTzP2e12bDYb3l4PvB0ONF0rHLtEWHVlXTHNE6fLmXNzvoYsoGD28gG1zjE7R14UmDi4FH7hQFEWaGNwcaC2pJolSRKTnt7B5qvI+Dufz1e1wDROoGTiL2ouruq7hYuyFIc+vi4mSa7P1yIJXn6cJtnuLODm5etr3tMwDFfw+5J2LA2GpNhZa+PQMEOpEJvZmXma0IX5u2Hr8ucunCezyEvj96GNJo2suOXX53nJPEvTOU1TVHuKjN1qR2ZSXHD04yxqmSg3/rrZXewYi5lNa0hNQl5kMhiZNSp4lJrYbkrW6wTnB5z1zOOEm9soRy4JISd4hw8WrTRJkpJmhvDV86ii5WFJ/JUds79uSK2dSBJJazZO1HXL+0RrURNezgNta+laR5pK8pqKsEDZSivhbqaGgKeqciZDZGQpAiYmNmmKsmCeJqq4vbezMGOKsqSqRXWRJFoUecawWm3wznF7c4eKqZDTJGl3VSUbl7TMOR1PoEQOr7VscUURK6Dauu9Zrdb88suvcYgoG+PdboNJxHq3220Y+h6lPcO4pWkvPD6+4rzl/uEG71xUyta0F8hTw6UZGMcTVeW5/ZBTZaATzTQ7Pnx44PnpQNN29P3Ed9/9ARUMT8/nyA5McSEhzWTgMA4aYzKqek2eV3JBJZamb8SK1l3IcgN6pl6vuLnZczi80fUjSq1xM4yDbGBNknI6XahXKXe3e6q6IATPfr8jTROyTFJgnZsYp555GvB64g9//IY//7nm8cuRth3Ybnasqooiz/jtl5+xs2ezXvPy+sq//et/43g6cWk6mstFUvKUxzqP9jKET2KDsVrlVLXh4eOOt8MLT09HijLDKAN4stRws79nv3EcDhcuZ3kfmDTj9m5NXct2/Xy+YJ3hw8OGooSbu3+6Dmqb9kSeiWLqfH7hcDhemX5JYthsdqzqmiQp+fL4Iv9NO/IyISsVP3z/E0UltoW3wzNllbHd7ai958uXR+bC0vcjKNnOdX2DSbJ4f3jSTJqU3778xvGUoo0nzyWVuSwK0iQDDFolFHkliZGoOOh2nC9n+mHAJAqvQrRejPSdqKTEbilWpXkWHt9iWWvbi8DHE0WaStANQQDdRZGTmJLNdsPb8ZWmmaNiYwnTEAWjc07QFrEZXlT5yz0mymqBHy8YBmkUloZUGs+g3pvbd4XJzNPT8/XXaP2+zNFayRAMSXJ9eLjneDzj7FnUazisndjtUx4+fuZybnh9PdNeRqwl2pKk+JI7RxSbdS3JokAM+nhvqoUR6KQwDDDPMQZEL8EejnmeKNOKJNFio2lnfvzhC30/CSRbqatCe1EQLWgEbWT4MIwN9aqirisOrwemURLGUeD8zDAK5y7LM7yzzPMg6pSY7FhVBVq9D5z+0z//ieADT49PDMPA0EtC7Gwteb7GzpYBuffyLI88riM3t3coJdiRsqxJsoyu7eWsrUrmsywpJUF1oKw2rDc1wTtmKwmDSZqw3qz5l3/5Z87nI0ormubMly+vKALDMDN0AyEOHrwNjAP8+P1rZKlJQy6Nu8HNhubieTucGccg90VmyLOSvhvpLh1dOzINT2RpJYrXoqCqSk7nA8bI8FiZQL0qWK3FEt/1/dXymaQJwTvGsY9qoKhIDIHNdk9RpjStjfXYyOVy4fZuzzTNgocJmqEfsDMkWvHUtTz9dmTsAzCRpSl5VnFzs+NyOcWhYMqUJ2y2paggvWOYDc6lFFVFVqRsb/Z8ePjI377/kZeXDkUMD4js0NW64svjr/T9QNdNrDcJfT/x9PRGnuW8vp6wEyiVkKU53ilOpzP1qiAvUqydGPqezXrP29uRru1RRpSY2gQObwfyvODm5oaXlzcgYbWuWNVVZOkZ4RrG5n+pkVbrNUmacjidSBJBK1wuF373u99zPOZ0XR95UZZhGJinmXm27PYbiiLj7e0t8ozB2pnttqbrWlEDesswSGKz/L0m1muLMlgawUXhK5/35KocDrFeTNPs6g65ig8im4wQCErjga4fWa/XrOJQc8HkZLk8fjvNtG0TF0E5xThf2aBd13N4O0Rb5Hx9nEug4KLY01qjvBJHQ0yNjIiz94pwefBqYRnrePYmV+GEUkiqqQrXmtI6T+KNqNsQa2AICqK6ZRmASv0sDbP3MPRTDBPMGONjX77k+FqaZVFPeg+9nwmFLJiE5xcIQQbls1sCU2TQuN6sMUbjrGOeYRqkvwjKRz6dghBrYBVIU0G3+CALHhdl4CriHxSQZoKBCcFH9XQM1Jhk4KW0LDlSLeqihfmcJAnb9So6TQJt26OdlsU4kf+qNdM88fT0KEKAYUAGLQV2tlRVIE1zhmGk7VrSPBXlkLPxzlcYoyjLjFVdUa1y9je7yKWUxzwMa3bbNafzMT7fnnnOOBw6nB2ZJ5inPg5lxZqoteOnH1/QiaIsRJU3ju9Bgs4qxt5Hnup4FYt4LyKScepjwEKCtWns/URZnmVik5dEeRkqFUVGVWd8+HCD9xe6oaPIcw6HMy9PLdMYWG8qbm9zpjlFK0XXDfig2dR7qjLQNC1vL89cLr28l7wESsQPMH3fMk3RNePiZyUOlbMs5ZvvbrlcTlEcJMOzfpwpyoLd7oG62KATiw8DxgTs3FMXK5RKmNqRfprQJiPLCmyYyLKULMu5nDtOhwmjR+zccjo1jMPEp4/fsl4pjm8t0+RIjOBRLueeru9IjMFbUbE93H/EmIzX/pXVasWHuztO5zPWzlEwMtG13d8N6PM8Z71eiwip7Vivt2y3e87nhiwLV+fdbrd5t8UaQ55l1/fvwukUB4Mod2WJ0gEVzgVWKwlke+fVZzRtS9v10boufZ/1VgZWXuOcxVoJ6inKko/3D7y+vtKFjuCiI8uISCZzKdvNButEnT4MPX0/MgzSP86z2P4VJoqQ3ujaEZ0kskyPCvQlaPV4PMbv92vkizDM/+eQIsX78ubKjFQi5pAN69K6y7B6CeZQSjONFm97UpPwNrZ4b2P+gohXnPMyywDGSbAwUl+Loq5erdhu98zTQdSB8f0qwgrLNIpKuiwrlmA42bAI+sAlga4bCP5dKeszhwqKy2Umy44Mfcbp2KGU4nzuKIuMqq5Yb7aUZco/+vWPh2wYQ73eiHqqF89zludkMY44zzOOxzeqOHGWdLuRPE1Zr9Yk2vD5m2/p24Z8L0kxfdeRaEV7OZOkKVe2T/AxMjxgvWe0M0EpnPdkeUk/DgzRZrsMb5TSpJlmnkYJwtCQpyng0Siqqsa6mT4C+LVT6Cjpd1aSQg/nM29vb7HArGgaufjHSRRpWZqyXa3J85yyKHh5eaVarfDtBecczfkCSFOzWq8Y+oGu666cF7GH1FeprlKKtu/58edfGO2ESgyTdWRFZOd1HeeYIAyQZ571bsulaehPZ3Ri6DthECVZgiGq61TCw8cPbDYbfvnll2jVmyMfDnQED0+R/0XcKgZkEKp0tDiFgFaavFx8/o40NdcGcNlAm6jUkyhyeU6Xy6jv+6uKbpEGLx/gaRoimwK8t1celbXLRlIaW+dmiiK7pgRdrQpaNi5DP6FVIqBQtdi2zXvxpd6hs2I7cXGLCFMQdQJEJWAim5xpFOu3d7J9lgJD0fSSkGq946vxLqk2kTPgroWoCqL2qApJ1wphwjpHVaQEJAEozyZQbwTXMU8igbe2pSwS5jmQmQyrHJOd0MnEelswjg7nA0mq8cFipxGTlFFV6UgSCTpI0/dDdJpkuGti6mOaSDGUJLL+GAaLd8LqAy9cH++jvT2Vwi1uWZ237HcbijLlfBJAafAK62dmF5jdTFVVuODk+4n/P8tSgndsN6t4YAfyPOU//fOfePzyyOVyZJ4mLsezWMBBPrO9x2eyra+rFa+vb1RVLcDn05EkTVlvdrwe3qhr2QzKINnEQVdKvc7Zbdds9xVd66nqnK7P+Zx8ZLPZ8PL6zDSKIvNynnn+ciL4jB/+44IPM56RooCmqSnKlO1uw/PTgXFomWNBdbPf8fOPTzw+nRl6yzRaVpuUf/7T76nqnO//9lc+3H7GO1GGjuOJosjYbO/4p/tvGIae41FUGWm6Fpm3s1SVpN7JsMFgkqjyCjN5LiD/YWwJZ2F8pGmCNoFxanF+oiwKxqklSTO0SrBYfv3+R45vLXYW2/dQ1+RZxvPLC8Zk8b0PL88H0jTlZn/Dx4dPdMPI5dLx65cvgAzY8yzBJI60yEgzabqnyfHhbo8h4XQ6UVUl+/2N8PIG+YykacKnz5/IMjmfskwxTg1llaI1fFrf8rs/fBZukreczg193/Hbr184HhtWqxqtpdBJEs1iKZMUsQbv57iQcqxXK4rSsN5VfPr2E2E2DJ3896eXV8ZuwihN23VopViv1xAUb29HIKagmoSyKmnahiRN8GHCuRnvzTUtbx6luKirtTQP0/siQAYyGXl+g0kU1k30XS+M1OMh4hWkKQZFlqVYK3arohDg/dJY90NHmlywM2TZGm0qNusdzk4EL5vEoMSGmBpNXuaUdUk/9EzdJEO+gKjqFm5AXErEeT5lxEE8P78AgaDkXkaJvdXHgZ1SisnOhDkO+4yOi7d3O5X8mXKG5nnB8/Mrh8Mp2rIkRTHNYBgvHI6eqhIbZZIk2NmKko9lmGiu59piO0mSNDYbf88hUlH1p2JRKA22iVxTH+HLFm9dHF4rzqeexX4IRKeB2MG9DZgkxWgFXiw2JlXMfmYYOrLMXPl/y7PqLFSrAm000zSQZoayKNhsNngfSLNUbMbeoo3m6fFXUTePk6i+lbqmoqdpQpIZjqcjq6rGeUdV18yzjQMDWZwkJhGrZd/JwCIOWv3so3sCijKlHjO69kLAcTi+xeXAHucs2+0OpaUpW683jL2l7wL/9m8/M40Txmg225q2u4CC7XbFNAWcl6Z9t6t5e7vw+vwS6wlJ5HMXi1Idfa4I3lLkJV3j8JkwxcZRgjbwDp2omJgH6/UKpeFyaVh4Xsuw9Xg6xAEHoERlUFYpPliCV6xWUndN04z3okwxxnA+X6TA9dB3lixR/PTjM1hJG10YVK+vb+RZRj9MZHmCs5BnJdvtmuZ8IhAoyxKdGKmDgthR//rX73k7nEV5h8XNjvOp50f/Gw8fb2ibnstlRBvFOHgu55HgFc25x86Otp3p2pkPdzd4b6MtesU09fF9nonFPw6AdQyvMAmsNjW3N6IG/Pa7j3ir8FYTbLSfx89RluXXhV9ViWK9rms2a7lLq6rCB8fpdGJVrzgeJCSuLGuAuNSdr8Ofm5sbwDPNE7vdNtp2c1COYRppm4GyLpltf7U3hWiXXOhMUruZa6MrC0uFMilKG5JEhhpJ0n3VREZVXTzDgOuCeLXasDCJlZLnK0sTTOwBnp+e0FrQBSGqhCW0ybPgCHxc1qogYXtE1fOSYroM9PxXp+nXSugk0VR1FVUjSyhaQj+IBVOQVMJvEjWvKPdcPKsl5E8UfNaLWktEXbHpDe/La+cl5EVr4ep+PSCVOWNUx8T/F0LAz47gRxmQRiWL0pDnCVVa0jQN1s3RAmdwXjFZj04SrOsJSgas1oNRwswOwUfVsCYg/OLgPdM4X1VH8qItPGdB3OSZ8DXHecL5QFXHZagKFEUu/GCtubu7Y7vecTye6LqWfhAF1aJ4zMuUIQZtjMMo92+ScLw0VOWKLJM+R5xle3xwwlXTmjRNGKcFHSR93TgKXN8YGWBMU88cnUZZlpEXGRvWqPi6iGorZZ49by894yADBDmnc3wYmSZPodNoiQ5oFciKNC47e45HCRpKkwKj40BYBepViY24nbLK6fsuWnUlKEnFXscHF1OMs8gyHHk7vFFVomh6fb7Qt4Fg5ffgYRqkrprtxKpeczm1/Hr6QllWse+TN7td5i9aSfialYXLFD9nSQrTGOLBLCzz5jIyjI71esM8L1ZXz2q9QWnohwuPT4+M08Dt3Zq7m5J+6DBazt+gDDqkGJ0wOzi8ynvJzrLA6dszTdPhrKOuKi6HgWEcWK225HnJ5dJE9MoQl2ryWdzv99ze3vLXv/6Vuq75+PGjLDDmkVHpOIz0FGUlyIV49+z3N2y3O3744Se8DzRtx2q1vi67FuFKUWyuTsOu62VmkaZxQByiSt5KzacUh+ORNEno2oFxEN68JOqKoCqEnrI2jLM4FVZlRd8OsSb1kRmnCMbgvSTz3tzsGIaO8/nEvAz9A8JyvHQor1itKwnp1IZEaeq6ouuaqzin70eGbuR4OBOCwfqWPKsIylwV1cfDMS7/xusMSXp5QcssNn/vHVoZtAooo0jiWWF0xCFohwtE1a6cVst7Seorwbx47zkcBTuRpJoyBq6FIEPCObr3CBoTD0Ln5Mzs2wnNOyt2Kdy0NhhDRAOoa41VVRV2mhlGizLLgNLE5YynLAvyQtF0gp+wNuCsiW4dHecjlvPljafnE/e3/8w/+vUPD/iW8IPm0nA4vrGuK4o8vV5SaSq+7/P5jFfi4QZNWRRX2b6OCq/T8cgf/vgHnt10bVjSRLYqeVGgEnOVuJ7OZ+k2oqzdB3+dECslSoxl2rswGq4/ekWeJdzffWCeLS8vZ2k+QkAjdsKgFPf393GbqIRfU5ZXjsgQE8KSNGHsR4ZkpK5q2rZjtVoJxygEpnlmvdngnOPt8MbheARgnCeSLL0eGHaeycuC0+lEWdccnp9RxoCHc3MRDlMstoqiIGhJg0nTlP/tv/wXvjw+8np4w3pPmmcoo9GpwQUHXuGm6cogs1ZSUvP4HBO4JqMtBd0V0Gn9NYlsGSgu/v73CbxDaSXDrCiDV7GoE4WLu9qM3m2uX4E1o0wf3tUfyxt+eR+VZXlNxFok6cv7a2nqrlBoJfyFoigim++dEbk8hkXxt4ScJKm8B5PI2RqGib4fvhpA2tgITNc/x3kft181k+slCQyDiypKFxWLWiGqUgBkGFPlGWkCCnl+dfDU1ZosK0GJWs/NI33XigU20Tg3YrKZstLgJ+ws280QrWpZppnG7molEQmzJJ8qNOMwRGbVRFkWUV3jrq9BliWMY09mMpQhqoREBSfS4iRufiRxa5pmdAI6SWMz6mOymCUr5AICYU2J6E9T1YU8Bj9TJjnb7erKT1xvVrRtGwf0M//x7/+Kd5JStqpqjuaEm4XVlGcpbXtBUVAUFSaCX6Whl+ZDCrGetm2uCtBh6CVwIDimuSWoiu2u5Hw50DYnfv7txG67Z7vdc3u3p4xw1mFo0UrRd463lykO7wQCrbXmdJxo25njoY9Fd0aeyfP1y08nCTuZwDsJFFFknC9nDkfLOM789tsjiclRZGy3a7RRXJojzvWybTae9WZFkee0XSNy8tjYGQ1KB9brWjaPSiy8Dw+3zK7DGBmaPj3/Rh05obL1M7hZ0pu0ypkG+Mu//YRCisbPn7esa2GI/vk//29UVc7r6zPf/u4mNlhwPB3IsoJxnnl6DAS9B63pushNzDLKQp4LUNze3EIIvLwc+fTpA6vVmr6fObydGEcvQ3ktG/qyqoAkDiZFmZXnKQqHtT3OTlg3U5Y5WiuKvOL+/iNlWVGW0rg3TUPXdQQvNpim65jmkWEcKIqcskxITOD3330iTQp++P4L/SBhL82pka2/Fubj6XQAAllW8OnjZx6fHgkByqqQ95W3bLd7+v5CXkiQT8DTNhfGwbJeGbQaaNueOgYKLAuHNM3o+oYsLwnBoJC0RX0jKfBd16GUjj8uyj9p0Ha7G7Is5fX1BWuPuBl224TT6Rmlcrabtah6xiPOTjjXQ5hAydncR9bWwqnTS1Mcm2HvQ7Qbicqt61thySGLluXsXpYl75D5d3NvCOGafJ4kyZXXtajHQ4DX1ze8D8yzpMlmiSFNFWWZsL/dYO3M8+Mr0yhsS+sknXdRZs/zsuB5V4drrej7UZYxLAq9ZUkkm/Esz2RLnEoCZ2JN5LcqsiRjshMLx0m+F3WtK/Jctqx2mvDThFWKokzjPWdBQzdPooxHVFRyXwVCXHroRBqzIs+p6gKlBcFQ6AKlA3PESzw/P1JkGcbkrFYrSV81mjRPqeoMpSybdU1RFFzODVqbuEg7891338XaZ6Ztz1f2VVXVNO2Fosq5XC4kOiEEOB6OFGV+DawQxe+7xSRLU8axY7fb0CQdaRbYbHKOBydLAA95BH03bYdS4coQnqaZaRQ2qXUO78T6k2aG5tKxTRI+fVrz4cNH/vJvv9E3M0soUVGUfHy4Z1k2KR0Yp0kGN0ExjhPTFQWiKEpRK03TTOEEG+DczOk0EEKN8/N1EBOC5nJu2G63ZGnB29sRb2GzvmHoQKucrneksXgvi4KX5ze6pqOsKrFH2YB1A+fThWkceX5+oVyVDONIP4x8fHjgr9//zMvbG1lRYH1gvVrjvGMcegiGL79G+L5JyBKN0QnnU09ZFJTliqY54GNTdL60JEaYcz//9AWl5O4ry5KhtzKE8hIGlyUFq3qFZ2SaY1hSkIAZFTISXTHNI1VVMU02KnstSVR3TtPE3Yd7Hp+feH555MP9Lat6RWrg4+fvOB0OKDSJ0nHBr5gnTde2HA6vrFY1m+1GmMbOin2/KkBb1tuKqhrRuqVrJfxjkWdc+ZtKbNdL4EIICxtKFEUm1v7WumsdGBZKSLRLLqpEhaJrWxTRpZJkjKMVjpVzrFdrlIJhELVJ4gMQ7aBBi7IkqnF1VNf4JeghPo6yLGnPopKRVFIZmmm9cHPlPCrygiLPcG6iH4RZVeoSY4T7tWCOTKq5ubmhKgveXo/0vdQ0sx2pq5K72xsOJ1EL9Z0kNsvzZOJzpggoxmkmzzPyXPBAYiOW/7ke3SHahaMN2jqHuj5+Sfm1biaPd69yiuATnr6crq4c0PivlNwhOIJ16DQTWXVU0QlSKLDZ1MyjpG8u3L2A1J+FKTCpEcupdWJpjwxn7x1lfUNi9HWgPI0Dj92vgo8IiuAceLlXhIWVkKaG5nyhriv5ea2pqhK9BKAl2RUz1UcmpTi2NHYWVabSAWUCJikYp57jaYbgSLKEl5fnmCoutXRVFiRZirgaVrJcmAI3+5l/+x8/07czqZGAnWkOdMOIUjLEnW1gmjy2mSgKR9fK8HZ/U1DWDqO1MOhsDKkyIJPhcMU2TNNIQAbD3okjR0QeFj/OzFaCFY8xsVjq3okgxwg2D4yDZZobQgikqTBru3ambU5kmaGuV2iVcjx2wtszkaWGosgLfv/7b/mPf/+R7baCkHA+txB0TKe3FFXKNAbGwXNz94HnpzcuJ0eeTHjrefy1YbXJKGL/uV7XJKbk8DYyz2Jl1gqas6VtLXYeKasKrXOydE2earq5x86at7cG6yzzaMWWOwpaTPAO0ieXZcVms+HXX3+VGUAtTrvj8UhVlhHDk+KtigsWyzDI8my73TEMI+M4stvtuLn9gFKKm5sbmuaCc+IS6/te7NR2vqJWxlEGYtb56KyaoyvG0HcjrZc027KsQUlA5ZcvzwQCea4wScZqvWK1qijLiq7r+fLbC103AOl1gD4OQ8xDUNczKwQVlcmykEqiUhqU8DujEMj7QHNpsIttPk1JjIgMpsnGAbaoswVFEHCR5W8SQ7AhnilcF69fL33F5v6u8psnS5qkZEVJUDEgMWbbeIgc/ThgRkLNJB1YPgsqGOZZZguiiJXfbLS53hXOExfUOtpxO6z1i8haBoNjzAeIPFPnZnGPzoE0LenbC3NcdC61aFVVfHy4QxlHml84nRq8TRh7ea9meUqayOJxtZZZR9e+D0H/V7/+4QFfEq2XKNhtJU0MFEUhNrtAIElS8rxAJRm+bWmaDoUo194OR7I8F5n2ZGm7jm4QTkdZlsx2xodAP42kIcVqh/aBt8OByc4QZaRDZPctrLQsz6MabMLOM4nR0VKqCdaRGMP5fBZmn47pqdED7pxjs9sJo+a3Lxitr1DgppFhwTiKXUuGV4qiLHh9fSWEQB197QFka2oMp/OZYRzJi1ySbeeZTVWB1jgfKFcrXo9H+nHk5e2NpmsxOiUYBzpI+EIiaUeTHVAmoBP4/O0Dkxt4eXuSQA2lIIIylTYEH66quaXoOR4PFHl+HbzlRX5tkpRScQgrwPthGKiqijzPpVEO4erJv0LS4wcTpIle/l0A4dLoiNpO+ErOvQ9j36Xj6jq4k2JbGHfWWqZ5YqVX17CLr5V4C0h8GRxWVXUd5n1t1ZA/V37NMtSTxxveC0bvsWG+8q/SNL2+nxZb8PLzLowkacrNzY0M6DpPZgIq1bhpIjEpKB8LIUedZ1hncdaSIDaxPHI/CKKAtHagzDNhSyHDzb7rrry8NFMkmSeYDhU8lhKtMsZJvsc8rwQ0H5VjSWKuke9KqfeiHpELy1Awuz4P8v0pAjPOBtIoi17+cc5fLws5uEXpl+XCIpDXOCFRijmyfOQ9kMQBqRXu3FIAVyVoxWzfrSJL4Wut5dAdKIuCLM0JkZ9jAuz2W9IsIXcpq1UtDXxMuXt+fuLjw0ecl8f69PJ8LW7yvJTXXcPUj2SFsBJeX59JM02eGYahp43nVQiau7sPjFPHMChuP1RcLi3ffqf5b/+fn2jPs1gwy4zj+Yi1AnUdhpkQRrabFc4G2svANFh0mjCNHjvL+TFbjUkgS1Iu5440laRr7wNFmZBlBkJNva6pM1Emtm0Tt10Gow2jmzicD8LTsUEsyXVOlklyd1GUTFNH0zZRFVujtabverROOR9PGF0wTw2//nwgMSV5JsytcXR88+mGtm0Epl9n7LY1RSkAd+csH/Kaqq45XVpW62/49O0n/vu//pWu7yMDSIqG+/tbmqbh9fBK1w7c7Gr63lHXYqsTaLyJFnuFnUO0piZS3Myeafb03VmUI97FxYMoiL3zbDYS1PT6+kbXjfztr3/DWssf/vAHNrstx+OZEDzb7RalAmVRYAwcj6+AbOz+9X/8wDR6tus9/eA4nS7s94JMuDQnnp6exL6mNC4Eyrgk0EYxzgOXyzGy5EoZphJQeF5fX2ibkW+//Z2wP2Z7tfAsjV5VlpyOJxkEaU1dlBR5gcPLADCeBYtqA77CHSB/xhAh+PM8MQwXxvHA05NYtw+HZ0knZaS5vMZCbKLruliI+KgG0V8Nwd6tNEokfVGJtpzfMvBairLrgu36e9X1rFnYq1VVXDe6LtrXtIZxmCNg3KB1wnZdE4JnGFt++/WNJDEEr5gmH7f/ioW/soQDLWfZckdobVhCg5bm9bqRVYAOlKVhmByrdU6WZnSNx/s02t4E8eFduA6CXExwN0bOxDwrCFb4LbO1oBwoS1ATHk+eJqDCdVm4cHCcE5uZd6ISTNJYr1hJXpNAqnBVLG03mzhYm5ntyHq9YrvdYr2ox4o8o8wLeX+ohK7tCcEJs9hLoIBzwo4q8gLnPe3psDwprNcrQAIWxskKK0xDXUuK4dubvAYvL8/SXFc5Ly/PktY4wzB2hCA2y3HsMZlisy3ROuPh4Y5xGjifWqqq5vDW0NqRdZkzTrMo/3TAB8U4SktoEnh4uOPH/lXUuKkiMYbT6UhVVYBnGDuct2SpNKQazTjOUpQHx/39B7Q2HA+neO9PeKTumec5BqeYq43GWktzabn78IG724yX5zemMXBzc89vvxzFCuUdu82OLM84n4+Ch5kmHh8PuO8t67Uo2A5vB8ZpIssF3+E9nE5TDCVIaJtRagTEqeC92MUl/CmQ58LtbJuR/W2FMSmXS0vb9qzqFVVZ03cDzjken55EjTSN/POf/gXnxN7oo+1++fy1bc/thxVpImrK2VrG6ULfjmyqPFq/J6pqLcqjLGO72zJNMy8vr9zefWCaJ+4f7khSTdNcGPuO/e6WqlpxuXSx3lYkWXodKMjC6owPMQXVOca4ZNEJHI4HvFPk+UacAWFGLJrL2aIjm1lFtd3fp9WqOIhalh76GnrjIzaAvzuTlrPncm7FUlXm9EMf2Z+CFCqyuBD/KolUlBdzHBqKgylOweIAMVwXltM04omKngBBSVCL1ioqFOV5aLuWS3MGFUiiKGEYYoCONnEu6FmvVmy3G07HA8M4EBAVllKBcWqYXc63393x+nLk7a2ha2R5uEgItdYxCERF58YSmKRQbgkjsej4vIryOd41QTiIgZiM7gNDNxOcDEQ1BhWb4hBE2UKIiekLaseKE2eKih+dyN+d5zk+iPWZEFiyQViYrig8nsykzOMQF5QVVVWQZSnjKP2RMcLgwsP58AZosjSnKGrqqpaaJ0iPIPb5mSTT5EUqaqhJVLKn5sL93YfYh4iKb46ccPkcpRRlzpKIKQp2Rd8NzLOhqou4KDN07cA0WvJC7u+6LlnswV3fkpic4+l4XaaP44w9nEhSRV3lorRPE3b7Ladzwzw76rpCMeC94uOnPadT4PXtjdnOMhB287UH4vqYtdwR0SUk7DIAQ9/NsmSxCZOXYXV3mWUw50V1n2UG71Lh7fXRlm0lj7AoiphCLe+tu7s7jLnw5bfnWKvCMMykacHT0ytplvDp0z15WvGXf/+JvreSih0MhIx5hDzbcHidaC+Ktmko0i3BW+yU8fI0kRcd9Z/22FkcV9YprFckWtF3I+dLF5PGM7JM0t6naRTXXSqqKqOM9A3e8/b2Jkq0NKEuyqtl/5tvPrGEgU7TxC+//oz3nv3NHoImSdOoFL2glZaAj1iLlGUp/xQFFuHiLsq8LEuudUrTtKzXK9brNeM4XDFXSol9fVXXMS2+wUXRS1EUmOjgWHp3CReb8dagVMLp0HM+Djj/RPCSpk2QzylKrMfzPOO8ZxiHqF5Pot2XuLyNi5p5ZhgG0iwnBKnZTscLISiytOR0OmHMxP2HOz59/sSXXx+ZnUeG/PZabyUm4fbujr4fZIA5ySJnWbxe+/QgDhKFbBNCXDIP08gUuf3iJExidRqudbRSCjeLyjpEVp/cFyneha9EKvJ3Cm8+CsDi0otYubuo/l+E2CoEPA5lEnxUKhNnIk3bo4ISTJ1SuMD1DOm7kePpTFYkEBRlsaBIWsbBMU2exMg9qTV0nWcc/vEc3X94wHe+NNR1S5omEALH8xlCYLdZk6eSHjsMPdNssTEeeTl0gvfM00TT9jJJVY56vWW2TvzfMX4+zUROPcYgBTvPKKNlaxRERTgMI/iAC2LBWxInRSZtyNOUIheb2jRObDYb5knSkBbpvyAsHNpIcMU4jjw8PKCI6VfW8vLyIukvXw3EPn7+Bu9ENp7nObNzdEMnm3jveH17k01WktE0PZOdKYuKLCvohp7Xw5FwgLYfCWi6QeKjlZZGLxDIsjw2TyHyKuSl+9v3P7AEWMimT7b2ItcWfs8y3FuSaq8coljQLoXSotBbrMMA+/3+2rQtw9yyLGN67Xsi8BJ+sVjOgHhIpld1hKjy4j5HvdtEv1YNLvJm62axP+epqFWcvwaSfF3YLZyCZfC4PCZr7XVAt3zfyzBx+W/L91yWhXA8ZiuMHv2+SbDWslqtGIfp+veN44gKge16RfCO4B2JEtl/nuUwD6w3WzkgjYSOlEUpMfdDLxtxFajrgmkCrQrheSjEmlQmDL1iHkbKqiBJPU0jYPPVWqGdJzGBeZLh9DQlcoEm/mrlWA7IvBQViMDnZRgi0mVhHoiiTzYSWZ7IACBuWQJBEoqsRysjVh89R4WgFWWiCzSNBHcIgNthwzsTa0mEXBK8nJ1RaSrNsZ2ZlTBOFOaaQGWMoq5X+FwKIWGSKO4fPjBOE0WVoJPAt3efwIlt8nA4050vpGlGVde8vDzz5ctvtH1HkmSRnyPDlLwoCBhQ8v73/URZ7qT4VtJEdd1IWa64XCRdchhb6lUhm5UuhuUoT9t1tF1PtUqp6hTrJooi43Lp6fsOaxGbsw3YSSz40iQ4rNV8+rzj08cP/Pf/9gOXo0NrUbh8/HjPx08fUDrgnCgazueLJEv243WAscChy7KgbXryPCFJNE1zJkkDyajwfrzaeaSY2DDPjtPphTwtUCqLA1qxoAcvQ8bffv0iXNHgWa/X9L0lMSnBG4aYWFbWKy6XHjtpDm8X/vIfP3K6dChl8EESon7+6Sl+th3Pj8Ly7PqZ87FlHEZCkI3t8a1jv78hScUOud3usHaOao6EofW8vL6SZic26xVNe44Q4JzLpaFpJh7uP+Kc53B4imzTNeu1cJaWcyJJDGlkkG7Xa1FUIJaRqlzRnt/I70pmO0aLzo7ZeTa7PefDkcnO9MNwBSJLirijLHKSVFNVBWUhCcQoec/tNhvmCZrzmbpccTqdrup3pcE6aJoL1s4SLJHKWXs6HUEpCdDY72mahmkaBd6sxR4wDBPj2OPcLEmgiSbNNaiZS/NE17/R9w3WDmR5AnrC2p6qupGGdnIkSeTiBNlgLqDgpWmNft3rPdK27fX+W7aUy39/Z0cpuOZLcr0rplgsLvwoHa2uJtExYEozDD3DOLBZr/BhlvAGa6+oBB1VEVKYvStPlr97eUzTNCJsF756XPo6WF2vc27vNjy/vNIPHeMw0pwHCAJYd86D/vrvU9c7zCsl91TkZS0DUjd7BjVR1glZbvDzHBeJ5lpMSoEL2+2auq4Y+oG2bamrmqqqCF4Yh7OVIV9VVez3N3RtJ82BDxyPRwKBb759ICsTaR6dpyo35FmFtU/84Y9/4OX5NQ73nKj0ImgcPF3EqvSDp65jeqt1VHXB+XyJQPECHcSasixzl8CUt8MbbduTpRlVnbLdllzOLT4EdjcrwQiMPdM0Y0xOnnleno9Mk9w5wpzJpQGbJ+pVyXpd0HcTP//4ig4VVSWJkInJ4/tOOKzb7RZFQt92UCYs6sDgJHFTLEaepEgpq4KubSnKjGG0sckyOOvxXniXzvmYpCuNuVKG25sPuFnT9wMPD/c8f3njD7/7E6D5+aefabuONF1zaZqoChhp+5EiL/AkKA3D6MjSnDRLIBjyoiIAtr2glMEFUft/bQUS6DdoZdjvt+SZ1GB1XQKBDx8eGIeZNw4SgmZgmga+/fZbsiyluTSs6pUsg7XDeWhax/1qz4e4tJpnaeg23+45vbX4WSzbMogXN0aaZex2e15eXpmmmbaVVOGmaQjB4lxgXVb88ssv1+bQxKCTJTTCB0+SGkA4XUuIR9O0nM9n8qLEI/a+PM1J0yHaVWP8g1GxNn1XyX29TJD6Qv7OdE6v9a6coSEysd+/5AzzUdmorouiPta01z/baKpVjVaGc9MwxM/Q8jq9K/eWoEH5eWGcJTRNg9JKBlYBlsGi/Ph+PooNOSadKy1KFJVECLzMuZz3WOf49bcvdE1DbKMIrifPNXWd44Pl+eWFvp2YJxvrHXX9fp1zhK8UMVrJkmJZjsr3sSy843PlHSqqdgNBBp9FSYgDj3l2CPdYQgWW0CMVLw+x28ZBYsT5TOMc1VEyCOv7AQluE2Wk4GyEw/fuuJmZlHABi1yYccvSQmstYX9BvseiLLBGnt9xmJnGgbIsub27FSuzjjzprCLP9jJISYRLOtspYn9kQdK2LShJXBcmvJO7y3mUkfedEouO8B3juZimabS1B87nC/mY4vzM8fjG7Z30VK+vL6JitpAkgbISLliaKLJCk2YKpQxplrDbbSnLmte3A81FuNxaw48//IbzE4nOo9vHYXQGSGiJnaXGXcJF5nmiqgs+fnzAGOHN/fzTF9q+j4uOZTkX7/24RJsnCffxPuCsIH2csWQ6oaoLVqpgGh1t0zNPMbH0qlJVDO1EsAl1uWGexBrso2fdeSvoLQ9u9lgU4zjTNi3WWna7LVWx53y+UNWKx8cn/vKvZ3766wmTyGuw2payFM8LpniWZ2nGalXS9R03N1v6oWMXFyVFJjVjkidUXvN2OAp+KUmYrdS79x/vGeaBp8dHnPc83D9gmQlB6rO27Qi+pFoVrDc1zk3MVmqbzWbDOI40TYPzjsenZ/IipygKbm4+8/zcRxGGDNNA0ntvb2+u51BRiNCk6zpSY6jL6iqyEQfVFJn+MrAfe880B4oiI0xKHEM+sCj2AiI4CTrIQIxwDS/yCL5siIMzOaakhp9mWRJY79lsDQFoLh1pmpGmWXRIyPvm7XDi7uaGf/7nP/O3H39g6Mf3z7+CIvLVlzpSaX1dpC5ncwjLQnk5I+U8Ch7myN2TBUlAKxdvCQTtyd8vfpbzdlmML+e3tT46T+QcFIeJzFuc99FxtgQ4xR9ZlIVimU+zlKKQeckwCD4nTRJ5ZhXvjzvAOFoeHw/XoBDJglDxnHfYKeC1uBien844LwiXf/TrHx7wDdPEl5cnaZxMIq+CtwRnubu5ASBLC6apJc1y5q4nTTLSrEAnOcMoYRABsYr9/OsX7u9vybLymobW9UNUckmDNs3CLNNGmisNVGXBOE3gLM7OOCvKjzxNqauSoshF8TIM3O53sVHvrkOrLJUP02W6UESr7GazoZtabm9vATgej1wul2sTkyUpZVWSGEM3jmS5pNIsqoS31wNozanvZaDkRjyBui75+PEjyhhe/voiGwXv6brmmuxVRHvEPOk9s4IAAQAASURBVHuMTtDK4IIXYK+XuHj5YECa5MyTjYEeOqaZIeDpCMCFdwXbUsR8DVNfNpTL5sd7/96AKnW1popN811BRwjM40gSm00VGXqL3RfKKLMVCa13HjuOUSXiSXSCjkypRaWVJgZlPXmaUq5L+mFgsDPezQRnMRqyNInNiEUHmK3DE62z1jFOI9cAlPhljAw/vffUdf3VZF8CJ5RWAkWOikNR/8nATGq5uCFGNnbLJiPLErJMRfaXJklv4sEtnLmyzkkSjTIpILLbPNdkGRCgLipQ0UqGsDNMMsXhjqe7XORC6Vv06UhZbbHEWHufC0wci8NHW3uKUTAMI4Uiyq0txhC5N2usFTbUMsCUQmWxR0uz6qyPS1QdLfMRFu3ddbDkkQNwnizbnUDpL6cLWntCMLFAs7St2IzX65KqKmkvF8ZpFC5UkojM3Tm6dqSsYL9f42ZL3/VkacHpdOF4OLPdr9nu9mgdSBODSRPqes3r6xsfPtxhY6qT1prL5QJaNiIheA6HV5zzMiApRbnYdR1FmfH4+EhepFFyb2jalsNBFCtZllDXFS9PR15eXwlBo5Awi763pMmSyOSp64pPnz7z8iJKNe81fTeyWlWkJqVpeoJ2cYsP4+gYhpn1qqJrBOxb1yUhOA6HN9brmmke6brLVfEql35LRE6y221JkvSqDJjnKdrKJ9IYduSco+ubWHxmbDc3jKPl9NZw/+GGNNFMwwXtU8ZhZrNdUxQZT49P3Nzc8Pj4SNs28UL2vLw8czodWW1qhrHn7v6Bn3/+jXPTyvJBeTbrDdMwoE2gbWb6oSPLKklSnh3DMHJ7d8v5dGGeZsZx5nAQ/uB2u+Hxyws+zDEl3PD6euR86uiHng93NiotJrJs5nKRc9u7LxxPB4q8YLfbcXt7e7VBrNdr5tlzOZ8jUD7h+emJ1XrFbrtnv6v5i/sF5yDLS9Y6l1RON5NmooK9e/jA8XTCOsvpdMLaOVp0W7FYFmKZHseeohTZvR0tZV6w26xJkozddh/T0RxZlsRzxbHZrKVIenulGRscId4DjnkS+8Zmt2WaJuHFTJJy1nYtwyCDmnEc48C3QmeK2U44r+nHE5PtmL3B+QGlPFqn+Nj8LXeEUaK6f1crLAMzSQn2caXp470iTfZ7PfA1ZFrFcz+EyFnzXNX2Wi38JbF7BSl3OB1P+CBFWF2W0eolQP1hsDgrdYJwtlK8l7Q3dwWtvds93oNCxN73PvxTcQnC9XHUq5JhkGGnNtJIznZEK7Psh2EpPqMN0hhN27VMcem0sGTRAqnWKqMqSs59tGsYI4OqqFzJMhkcgidJFfMo6IN5niQtOUAXLeJqr2U4X6/FwhwkmbReVaS5XCQ//PADdVmx/9MH7j98AiWwe601m82eYeg5nS7XIZ5bhi9JQhLxJ3meRWj9SPAyhBFWriFEr9Y4jdR1xe3tTTzfH9lttiidMPQTKAmh8mHCeQFaf/nyJMpmJ0ufeQ6samle5I0H9WrFPA+8vYnCuSoTvvm8pihyxknuTQlOEaVy07Rx8QreK6wNKCXK+ba5kOey1LlcGqZpwHnBoJybkbZt2MXPUh+bW9nudyQmibWT5XI68PnTH/j150fSpOD/+r/+T+bJ8cP3PzHOA9ZKU1cUOStdk+bJdWBwPJ6ZrITz3NwKi2icZzEPGUVZ1Xhn3wcucWAlqncJq/PBUVY5n795IM8N5/OB27tvyLOasij59PFeFNl9Q9e11PWGt7c37Owxpuf2Zov3Df0wcHO75pvP91RFgQZen4SZ+OH+gbqqmQaF1TAFzzjK4Hq9FrxMURQURcEwDBhjaI8dRSHsaaNlIL/f31PXNd5bsf0iisskM+SlfDZeXl4AeZ9VVUVVVgzTRNO0HE8Nl5MM5I1JosJCmullOaPUe1KtfJYX14fUUotjY1nuZlmGj2gX/uffa5Lr57jru6sqZMHDiP03Y3Y2Dt64DhhDCNcgiBAVKlpz/fwur6XWIlBYFtnLGbkM+NTVNrws2WVRXdeCcFhqUK3lLDDJUp/LgriICnetEqbZM3Qz4+iZ53f+3teKanHixvPdyOOz9h2Zs5z3y6I9RH53vSoYxoGb2y1Gp1xOlyuLdGH8EVNZxVIoC0WTGGFUBU+Z51JTAt6FWO9CksA4ibVSL4NBI/2Jjcy8RfmoUwkI6GNPtVqtCIGIz/Hx/aFY1ysUYPQEGC6XhqHvKIqMuw93oDxFVeBnT1FUVKVnnp55eNjQNsJHl9RnEankpQSVuRi25r0DF1BxoRqWYS3Qth2JkUGhiyomuRfE3WWM4eX1FWul9ttsaurPFdPoaC7yZxeFYXezRinD5Xzhb3/9Qc44FyQoa5b3yuk4k2WaNIVpEtukSnxUmH69aJPPxjCJQlXcWRN2EuuvJBu/D/fkGpehtQxdlaTeBkEZyF2hKUoTn4/AZr3BO0XTtNelm04U2hj6fuY//vIDaSbhB4nJOJ0ukYO5wk6ethtIkozFer+ciaD45ZffZMEdlgWdLE4YA1mh2JqMsiiikw9ub2+Yxpnz+cw33z7g3Mxuv5blR9syTo71qoKoshR7acLHj5/Z7/c07ZnL5YhJAtUqxXtFUSZos6aL6jMfF2aHw5ukSncNl8uJJXDhcDgwDsP1zjeJ9J/GyBL4cmmoqkoWDEEG694HNps13tuISphpGkmc3e931/48SZJYJ3n63vH6fIx9v2EcJoJ6J34u9litDQEZqGn5T9fFSZYth1cU/OhFaPOOXbHWyb1wrb081rprwMvpdGIcJh4fnzEm5fOnz/z22xcYeRcUzTOPX778nYNOFgv6qjQVlr9wApfFyTJwdnaxn8ca76sQS50s/Of3xY/Ueu/nmrhF5H75GuslQU9i5xc0gI/l5LKwXuq/RWUYsLONQ86As9P1598XOcvQUnIMvBMPsHdS75kkvQYzxQ8qicnwqSLEBdk/+vUPD/hQihBhhl4pkbvnNWUlh5MopRyZzfE6kSEdcSM2z0zWCoQVDUrTjzPntqMucvKioO97mq67hlqMUSo921nUS1Zsj3VdEyInws2WWQ1kaUaWylbyfJBCua7ra1HX95L6tQy9rLWYxGC9Y1NVvL68orynyHMuTSMb8yDQ5MW2uthGp3kmL3JeXl/Z7XdM80zb9UzOSmE/T1KweU9Kyk+//nL94AxDlKtG2XBA1ALy+2xUH8l7z8ch2DTP+MjPm5QS5VkSE52qnLIoUVoxjcNVfScx8AuEWRqSLMuEjxjVczLEWwoSUeIlqSEwYRKxBylUtFH46KGXw07BV02VqN3ErqAZpwgo1zI0HPuBJE2wagID2kDfD+x3O+bRYjJDkaexWJwo8vxq2+77nkWNVpYV4yB8mzwrCF4+9NM4kWf5lQ+1bAKXf18OShfTKL+29NrIhVwaV2nEJWQiTTPW6xXBWZTy8b8VEhARAuDwdgKTUFd53FbOzG4i2Jk8FWtdmihm22OSgDFS8Hg3MYcJpWYm26B0gJhC5b0oQOZ5JpkGshRWdU7bWtKsJC9ytIayymNykjSQzk0svKKizOPweSmWJXUzzd6Zfcv7YhyH2KTFoWuaU9cyCCVuIUTNEQM54mVgzPL3hq8YMJ6yFNaVSUSRlmYaNxHfH5ZxkJS6thXl6zxbDIrbmzuMyQhes15tMZkiSROenn5h7Cf+87/8Z+7ubsmzgufnN758eYrcjITnlxdstD54H9+fQSDTSaJQOqVKc6ydGKfAOLZi+0i5cnwWW7I2mmHsGHrLdlvzuz9UOKd4eRaA6/3DDWVd8PZ24L//979R1zmnU0tzmUlTLbbLJGG7z7HekqSG7bam70Z++/WFIl9R1U4aIxVo2guXxqHUPWVVErxmnGW7K0wLzfsAWpJNN5sVTdORJPm1oHFemm3Z/HnW6y2JyZlnx6reUOd7xgE2mx15ccJP8Lvv/kDfdzx++U0SIs8Nh8OBYfyJ3W6PdYGXlxeqqmB86/DBM84v9INFqYS+G0nzLBaQEhrTThPT5CjrnCwtGEdJSZ2mkculwTnF7e1tHCJbfvv1N7JChjN/+tOaafDMEwy9Yxgcl2Zit9vw/PzIbpewWu1lUBQUm7WkscrCQD7HbdtweHu7qgfO5zO73Y6qqimKUp6PKqdpe2bnqKqa18ORNEvj89ey2WzIsoz1Zk3Xd9TrCmddHB5Y6tVKbLc4irJiGmec9Rxfj0yD4/b2M7//3T+xQOynaSJEu6CcuYGua2PD4tBRfb0oZpxzDN1ImomlaJokQdnOwi70QRKJd7s8NjrCTJvmHm0sqQpMc8s0d2JLGi4sQR9LkymDrHdrQQiyZdZak+kMp11U/X5l31XveAVp7ML1/3+ttFn+fQFxLz+SaLJUzvppskTEHUkqqa7CXfJ4J+iG5T7LshStJKFtGdYti6VlU7sMBb5+LPK4Ze/btCPpoRO+1e2OPNM8Px04HUYpyAgYk8p9Gx9vAMZxpF6tRLk+i0tAQlBkuKCMNCnTaCiKyOSD+P52VFXGal3R9z3TeeT+7ob9dsM0eoqsYBxluCCLNWHLbVYrrHWs6jXOCQvycmlJ8hznJ9pmoDl1rOtHxsHy+PjI3e0d/+f/+V95fn7FGEPTNIzjyBhG+lh3pEkijCVrGUdBcoiaI26fYwBFUWRYO3M6ytDv8fGZ3/3uE58+fqTrOl6en8iykt/97oGX12esc8yuIckyNts1fXeSICgXcA66TiD3ikDQ0gg7Lxa8ssghwNvb4VpHjuNEGLgu1PpO2JTWWfpu5sOHewCaeaJtZoLXkTXo49C7ZLWqWa9XjOMQ0zEn0rSlbXoCjrYZWa1S+m7m5vaGofccDgfuH+6xs6OsM06nR6pVRttpnE8xRlKRsyLj/tMHTqczv/zyhWGcsN4TtGIYJ6nnrLCNtFkWro40E+tkYsz1dciyBI8XNW9iBDKuAjc3O7I04/nlGc0N3kPbtmR5ym6/g6C4vbnBOo93hpubLfUq0DZnNts1zg0cDzIIIMjAq2066jLymMmi8lH4S+tsxevrga5rRUmSST2V5Rk3N3tpWOL7ZBmIDYM4b5I0xeOwQVioWosdUwIWDFWVyI9JidKG87mLtbCEQIjTIFxRH3JGimp3sVbJ8iAGpH115iz1rhGGwFdqP2l2FVLnyHth+rvf672nbTt2u21cpAlYXpa3KSq8p4QrdFSwvaNghJm8JJf6q2Ll7xWH5noGSj1OVORn1HV17UeAOOASdVdZlZSbNc45VqsaO42EkPLyesAkGmMKgtexUQUQJfBy/i4DvuUxzdbGCeMChZeBioTdyuJyva64uV3z/CKLRucCl1MLQZFlpQgNQBpW7+PdEYdL0ebmRovyskwX67WcrfM0k+UFWZIwT/LaJyYRMYN3176k3laURY4i0JwbnHUSauOsDJ+cldCl4KmrinEcqOsVSeLj6yN9W55nZGlGP3W8vDxRFTUfPtyzqrfIIM6KCthCXVW0bUsXe6YlYVdcGJIyqo0mMUZs+E6EBbKQG6OQQlTb89wzDB3TOJLnBd98/szh8BoV0hXBKULo2O5liD7ZmZfXNxQ6qhxn4l8vC6co7tAq5e31DZ0EghckD4kmiynqaZpc70Rr/dUBNc+jJIMG+YwFLz3Goji6foWv/0WGmFpDluWsViYq6GTQ9fz8CmEZbEuNnSQJaZJzaVrmOVDXFTf7O7xTXJqBJMnpmpFFwSrKNUF4LEzfYejpOrk3ro8miCioLFP++E/fUtU5j08/c3d3xzg4umYgTTVJmhOwsceB17c3QV8ExXa9ZbPe4b1nu1lzc3PH52++4X/89//Bb4+/sttWFGXKbr9mHCzPL9JbNJcL0wiahP2diDp0FLys15vYY4vQYLVaY53DnY4kJmHoBx4fH/nzn/+F77//gaZpKYqCpmmiI0TQWGVVxPv6lbYV1bNWUEZFonPieBinntfnC9aCinZV5xyIOzv+E2u1IEiBoGRoKz3v0qfnomoOfVysSB3z3mPIkKtrOzbbNbvdXsJr+om6rq7LzbZtmcaJ19c3yloQIqaTs2YcZ8ZhYJ4u8YyIRgLeh9AgZhGlFVppFgXd9Y0Yz+er4g8EzaYCSZqSpvI6JEHH78dfz6LlnNValjPeyfkrS+RwvVeu6uUgM0+CQmkD7v1cW0RczoW4jHI462TgqGRIGK2h8j3GoSGIUtXO4K3wRJdoda3AJIqbzZbzpfm7xfn/6tc/POALEGGzCh/g9uaG3XqDHQQGLkO0BKM1/TgyTCMy0VFS/Kh3SWWIdpvj8YjZ7yhiKITznqGXQ2DZhKVZhgueNBPgc6I1Wim0SanKKj46dT0svPcxRlz89nkuctlxHP9Owfb582e6ruP19ZVxHPlwc8OlkQZXJu913FK+Kxiaprl+MIdxiIVQxjhNDLMo+3xIOJ+OkvbqLHk8gJUWDoqLUdAoCQhB6WtQiHcTwjLUGBzeOgxLow/TLG/OJFX041mSBhPN0A9Y52Jqz3Qd7C1ptktQxpJoGEK4hhxsNmvOZ2EGgthGjVGMo+ArpbDy8THGRK1qxewc50tDlokichwnnHfX4mZpDtMsZb1ek2YJxkjTmGpPkWqCk2HcNE1XjoFzjv1+f23e9vs9AG0jKsyyKCIY1dL23TV842s78rJBFVbVcP3+p2nCB3tNpFw2CqvV6hrskecp0yzJWSZR6MQwDn1swD1Zqq9cKu9nCKKeWBpoSTByVGWO0qm8lolimoWhM/aDJAQZCH5C47CzNFxKK5LMyKmgZJurTUAnliyHcR4BCU8oipzzSRRsZSkXR57Lx3xRxkyjKA60XtQaS5qaAvyVayiqMK5qCQgRSg7GvG+h5X0r8eTa6Pj7AtMor6vWis1mTVGmHE9Hsizh0/1H5tFGBUtKVmd4L/wahRzuokzo2WxytBbO3+Xtwmb7R7rWcni78FP5K2DwHt4Ob/zX//pfeXl+ZZ5njqcTQyvcjXGc6buePM9Ik2gH907swUougzGqpNKoOvDBczieGaeeDx/uuL+/A+2oqzIqVeDuvuDw1nA6H3l6CcxzoG1GmnOH9yKTl7vDYceeoDxFlTH0owyGnKOuUr75vCVNEpwVlZIMTg1dNzL0M207CJ8OjXMKSOm6njxLmefA+dwwzyPWTeR5yuvbgXHq2GzqaGuTW8vOIw0T261mHGa8hdubb/j+bz/x+fM9Hz98Q9tMnI5H5snR9yPr1SoOfgtZvqxWbPc3HI9H0iyhrMtoI63IVUD1Op6n4fr6T5MwlcZhZrtdURQCW08Sw3a3psjXlOWKn3/6hXGSkJZp6vn973+PSVLOp5YkLVAqYZpEqVOVW0J4pWkG9rs98zzRNGcePn64Nl1lWTKMPWmWcjqdGYY58scs/dCw2zyQZzmr1ZZ5NvzLn/8T//f/87/R9R2//Por3gfSqOhYFA3j2LNaVRS5oAratqGs8hhcIhiF4BQqbsWdDWw2ex4ePpKmAomvqvp65jpnmYJFqRCXOZKQrpMEZ+UcnMYZguLwdmQcR96OJ2ks0pJVLRbktr2Q1pIYbueJLNMYk+PGiTRThDkQ5pk0M+RFgVaLQvvdwqqVIXgf7V2ifPv7JaP6u39fksTeVXPvCpevf93XA76vRDQoJUBvYSmNUV0mjfLl0go7N0+jtUFdawCxh4llN4SA84E0LuvmxRK72Iuvj1sWYLL0SZmtYhpGHr+cMIkiyS7stgV5VrLflUzx/e+DsKOc91c+1TR5/Fm4WVqra8MegibLUjxWsAta03VyfxMbn0U9M8/y8/UqZ5pHNLDb3tG1I8bI8HKz3jJbaWL7fsDNliTJxZrajzw9v7He7vntywtDP1FkKT/9+IVxCGRJzuXccDn/hapakaYGnRjmvsO5EAfEWuooneJcoG0Fk7DZriEy0CRgZXmtoa6KCMuW16iuK4xJGEeLMRPO92z3BWlqxHK7ueV8nBmH/+B8nBh6h8LGwhcm60gz4QF997s9nz/fMQwT//GXn2jbhiwtKPKKeXSRGZsw9g7vZlF1OkeyykmSnGEYaRsJq5gnz/FwJs00t3c31HXOMLZUVcnLS8vl/CQNZivLrCzLSJMcO8tQyU6BPKsY+5nz8URZVcxu4Hd/+MzQD1wur5ybDuvgm4dvuLnd8+nTJ06XhpfXZ9pOalatDPM8YoIk/nkvUPLgHc5OkT1nqKoSHyyunTCJJk8z8szQNGe6Nqf8sCMExzB05FlK3zeYJBFVVWIgaJpLyzSP9P3AZrPm59cv9P0r33zzke1uw+l0II1q/LpeMU0zVbVCo6mqnKEXNIxWkgD+3Xe/4+Xl/xEHZpa+75Z+hKEfSbTBaMGovNtb1fVzjfL42aFNCgTyImee5HPe9z1plmNMSlmU3N7e8PT0KuiRqMSSfySUwnv3P50rXK3EOlq9lsHY11iWhZ/toyfQ4cizTFSL03xF0iwK+aUZbtueeZKAF2XUtSEVmz1Xd4PRcjMsy0xr3fvyAvV3Z9DXCAEgDvHe7b3jOH7F3oy/NqqQhY0ldtW+7xiGjv1miw9Q5BmTddg5QBDFs1JgPFHh+pVKL55VzjlMWL4vsXQuacXEOwGlomVV3h/9MEqYkXIQDNZOaCUJxjI8JCala1GpljXj2OGi38xoQ0gkOM0Yg07kXMmzDJ0V8fXzuCDhS0otTHBPP3TkacJut75ySo1JsNaRJmlM5hSF4MJgX63XpElO03SUZc0ppmp33cjz04E0uZAlFfZWcz7LEPrPf/4zl9OFvpOhf9M3MrRG/Z3KU2rqwDQL5zJLjDC4ZlEejmNHmmSUdR4V73A6dfT9j2w2NfubDbtdwfF05O2locgT7u+3DINCGWFUKxTr9Q2//Xrgr//xyDTKNF2xKN9HfJgIVrMotpb0UBm6Szig944FyRSCqKTsLK4eE1lkKgpFFF9d0CwK0+v/E4HG0NO1EgqgtNgc88IwTxKatCiRJTTLotA0l46iKGjbN5qmoe0HGWA6FQf5y+dqsVVm8a6dv1KWOowRhECSJjx83JMXmktzIMsSrJt5eX3lZnuL1nlkm090fUfb9tdaQQdByigy7u8/stnseH565v/1f/+/OZ8vDN3IxYA2EhAqars6WmN7ympLXa6jE0g+W2ma4T1xtlBeZwxJkvDb45colEjoujYyNkWwMc9Wwhn6jiVoY7fbUNcVzt0wjANKwX63Qxtxf6EdXd8y2wlURBktqtsAeOFWLj+/DNblOXwfmL27ghKM4YoD+Hph8vWX94IlqisJuOn7UXroGHC2JMlaa3l+fsJ7RZpLUN4S6kRUxsmp+XVNGetEo8mzTAI9rsrjIA67r9RxS+1qjGK9WpPFBeQwCKKsLIuYlzB/9d6VkJ2iyJmmmXmyyGLRSpp5WVDkOYdjI7b/OJPCW3x4P799nOPJnaej8GhgsbUv39+CcVh+Xn9VJ19jNxcrshLMRpIgwYnv0/X/5a//n4RsLFvx4KRoSxPDqWkIdiJNE9brGucDx+Mz4zhjjLAcbLDXS/Hry2/oJ07qzOa7b2nbhhBkOPf69nY9iMZplK1R/Lv7YUASZGQouCi3pknsaiq8Dy5Wq9XVGmK+uuzSNOXp6YkygisXa4B3nqouaZsubrdVlNrK4Kiua5x3vB0OcSPakubzdZslA7WBoiwIcciWpIkc+kFsTwJcl+dUBg7RRhtkqJOmCd6JtWqJEJ+dbMcW0KbzljLXqGAFSOrEF76o6sSKkwhnYBbG3VLQLAV8nudxoCbWHS8iQUzcBuSpXKRJKjYmbRR5LhyA2Y6gxBqxpN9qrZnmCa2FIzhPltk6Pj58wjvh33g74qaJskhxbiTLJcm273u6rhPLXAyDMMbw4e5OUun6nqEfr03lEshBCNH+KRav/3mDulgIXBx+OmeZ5vHv0iDLMgfksHZOLAbWzuR5gvOTDKG0xnsXAxzyuNkL13jzpaAkEB9HwCRxMBrAOwEWz3bEWuE3mkQGa5fmHAvXBGsHxmAlETAGbszTiNITWZHgCUxjLwXuPMdB47s12cXUWBPEIpbGi1OGmRJ+IWzFAqW4FsdFXsQ/4X3LYeJWLkkyrPXSxBoZDCqlhGMyTHFzIXyxojTMdmQ4tigjF0zXdRRZSZpkNM0IiQw3irxCkhd7Uq0jbH4mS0v+9ae/sbvZ88P3X3j87USaag6HBsVvrNcbFIb/+MvfqKqCgKcoUt6OI7Od6Luo/J0tWSGFh0Tdz2w2q+t2UD5zHue42mHGceaH73/h2+8+cH/3QNN0/PLzmaou+MMfbglM7PcbUAnr9S0/fv/MX/7tN4Yh4CyM8TMflLwW0zyQV5oyT1hvCqZ+5LffHkmTFG1SmlaUEnVVM08wjyNtO2Bdy+3dDdvtjuPxQHOeCLVhu03wYY4KV1EGbbf/hNgSNVrnnE7yfmqaQaxWvWO3u+XLL48M/cTDw0dW9Yb1uuL15Q3nJ8qqIM1SgvJsdmuMSZjszOnScTieGMeRxKWiIHKyINGJJklytBKr2sLR0dpiEoXScn7tdhv+/J//iWFoKKuCzXoPaO7u/kvkN8Hx8EZVlzy/PGJnRd/PopTOC4JXvL4emSaHVgmXS0+WatKk4PB2ggBVXaLNeOV2ffhww/F4JksyynJDUeTc3mxJs4Km6Whbe7U0Dv3AdrXisWuZxgE7jXhn8bOmzHPeupYiLyiLgnkcr4Mba2MTTKCqK+7vPpDcZ8yzbA+nuOHfbLZkWYqN6WjOOS6N2J5Wq1oSn2ex4sqGtcAYyzw7EpNiZ1EsXJqLWIhyYTChFV3fkecJZV3QTx3T3JMXCUlqKI3Y6IUjJIWQ0jouG9U1Qf5rJooUe3x1pv19gSVMk6+BIbI1vdYFXzXlWuvrYmW5l0wisGutJDHUKcE1DL0jTQMoaeIJy9/3ruJZhk5LSIIog6oYVrHcf8tjl2S3qiplWNB7nJZmXOsMZwPPTyN5Jvwb+ewopgiiDiG2j0G24taK8jwx5npnh+BxXja5bhjo+kBwnrwwFJXYucZpJi8MfT/Sdw68J0tnbOo5n37FzmB0ymaz4XQ6M44T+/2W9cMd3jiGfqSuhbM0z5bv//azpLCODkIS/+yJopBgrMPhjdvbG9m871egPefTmYCLqAkZ9jkv9rpxnElj0vHpPEeb3KLUcuIWMIYszWiajre3I84G8jzl4eOGLIftbkOaGpI05ctvP/HzTwc2mxI/G1argvOpQamU/b5gsy2Z3YV6lbFaZexvav7H//hClsv5T1A4P5FmojTEQTcIJ9FaOJ/FEvbhThSuwUOaZLKI0inOSg339PSEUkEUW0oGU0olpGnONDsUCUmqma3jdG5EfRWT8hRKVK/9BaWlMf79Hx+4u19RFRWb9ZpAwNqGPAv88Y+fcHZkmGbmKZCogIpsMZMqFJ5cgudJs4SqSsiKgMKQmJrLpcEHzWa9RWuxGffDhXpVs91sxZpIEFXQNKBmQ54XWDtzPh+ZZkuey5Dvw13FNPc8PX2JtdkRhcaYlDzPMEbTdy3zJImY8+RZr7b88Y9/oK7FMXF//4FpusU6S7Uq+Vg80LUNXdNidEzf1lr4kcEJd3uSGlNZYVUuS3EVmx7nAsYGpnHgfBYFy/39LedzR/DCLRxGUfI4L3dHYsy17XH+ffCg4lllrWUYhqsqer1aMVtL37fRtiqKXhk+im2tKHKmWTHEAIflTBn6uJ2T8uZ9CRpZm8SaWOyji0jgaxuuLEgkcT6m+8Z+YEFqqJh0KktzGaa8K2beh4IhSCrkNI6Mg6RS13Ud33OegMHN4s4Q1ZgEAyptGAcZqGql8VFYckX1BCU2PK2v5+vXggutE04nUZWbJGO3r1DA8e1Me5Ggh4CEXMxOwq6W5ynEOlxFdI5WUSUWEUNGJ4KZQRwsJlEYhGPnRsGYpGnCalUx21mQI0YCrJwVdrPY8aRX2u12DEOP1gnjMNCcGz58+Civzez44fEnqqpknuG3X15kkKgdX355IbgkDp1Hvnx5JE8l7VYrsHYSnIEXTndAUkpNItx5a8UxFMqcosgZxhGsnJGCe5DnxRhNhrw2KEVz6WWxNViKXFPXCUpbdjclJn6faVZwPvWMY0dZaBKjmScRVoQARR3oBhF/TKME9Wht0CphdrKcWpZd8rkzjIO434xOUcTE+bj4UjPYWZRG8aKLkr6oQIpoi+A8fS81jfPClq7rEqPFvtlcFk69i+rJgiSVhWXbtZIAncgdNtiJ4AOTnWMQphHWs5sJQRGiUgrl0CaQ53D/ccfDwx3awPl8IrgJReDw+obRsFpXHN5ODIM427QWVqKKdUmeFWgSfv/7P5KmOX/76w9cLs0VnSILq5nmAkWVsd1WrNdbvA/8/o8PGJ3SnKWuX5YIUtdcrrOEu7sPHA4HPnz4wM3NntlO7HZrlNY4O/Px/oHT8SIDoqKQ/iqX528YRobhkaIo+PzpM6ggjgUN3pdi8TQfOBzOJHrgy29vEVHBMueVBUSQYWgamf1XlVlcIMgiRpYv0zhKf+phCad4F368L0vHYeLl9ZXtZnOdnxwPx6sgZ7fdxpRgmX+43mKtiT1WiEITQGmxCl9rSRX7W0VVV5zm09VhFxTv4T/I+04tbGWtmOxMdxRmY55nTPOAx11FWEvdmqSGj58fyLOMp8eX63nnnQLlSBLPx887vv3ujsPhzNPTATcr2m6MA7kQ68JFge2j0lQEKZI+Hn/d1xZbRRz8fX1niURQKUUSEVnTPOPbPn70/v/AouucQ0drbKo1Go+dZUjjCRRlQVlmPL684EIAbfDOst2s5VBMDEO82ZZDyCQJ/TByPEvyWTf02PZyHQQ65zDRr14WOfNs6dwcgbbyj8dfh3ibakNRZEzjSNf3OO9ZrVYihY4gq6U501pzvlzQAQl4yExMItPCOlOinEPHuPU8YZwHSaRxM2joh4FL14GRmPgl1dTZGa0MdrK0/sIClVVKDmzne6wNFMWaECxaJ0izJLa1RHvO5zea5kSSwHb7EWNyrO3RRnNpXwTOmu5wsyLYgEkDaaaYRmkMx36SOPOypCwrPD7aWIRrsCToLpsFkYNb8BbUTJrmlOViAwgERpybCCFFq5xx7GUzlBrGsSfLcuoyj8BjB34m0ZCmnm6+MI89s+3p2p67+49XNYhKDE2EAicmFeWBE+XZOFvOl5bZCgswzSQ5aRriFh5hCvVtG/l0AlrOsgi+DwETWYJBAyGQZxkqQGo0dnK4WT7QickwWYJClDwqBHAeHRkvi/ptUe+9w92nqyJTxYSvLEuwdsZ7Jdsb6wh+lsM7N6T5jEkc0zCQpgmb9Y7T6cjxeGa/38ThgJWkMDRpOqB0QpYmTIMH59AqSDqvdTg7s16vsE7ske/DRx+VeJoFYOycZZrUVfkoiUJiZRHniYBdnZNwj2nqAUmg0onCGJjdHAHBCZttQZporPMCYS9y2sYytZY895xpOdmerptJtKGuZOAhjB74mDxQrlcYk9A2Lat6j/dwOBxBa7w3DL1jVSf0gyPNHUpn/PX776lXOfcP91Trkpt5S9cNtF2HCkbUKNowjZbZBmY7sdloHh4+8vz8G9bPcsnhJCFJBayX5+18bnl9PZGlGet1yf3DCkfHP//LR3yYqeqc15dXfOipV4b1qqBrJrp+FktFoqjXhmpl+Oa7Ld9+98Cvv7zy7//6hTzVJDpHmxSFJTU5RmWMnYQodM1EWZfkaYWdFc1pwM2GcXC8vryR5ohNuMwZx5YsK/j++5/QStQabTuSJBlZUqFUwmzBWUVRrqMtSmNMR1WV/P6fvsXjGH/+wjC0pGnF7d0Nv//DH/iPv/6Nv/30I9Mom6/JWoZxZOHTaKvjsGGiKFK0iimvQZieYpEeSVMlnLorZH+kubRsNnv64cJqvebDwy3z5Li9ucU6+O3XZ0mras4x5VhSJ8siZRgmmmZiu1mhdODx8YXNpubjp3u22x3ezzw/P7PeVNzf3l+DCrwXLsjlfKZprFj785TPnz9yPl84HQ+s1yuUEs6GKjLyvIgMT+HB7Xc7mu7CNM0cj4eoOshxNtA0PT4qYNMkp65Wwis5H5jnOarXMtBQrWpWpbABj6cTX56emMYJO4vSe71eo7UoEZMkvSbDia08xbqUoWuZRwlbuVE7pmkUlXBYFHTQDxNt21CXlbw+LHevIubJk0R8gfcOFNgIbPfBf1XoLNXk+9f/bMkF4r0dG4Zow5Gff4cYy+815HmC/2ooaJ2DUeyxYod756wYZcT6EDzeWYa4oEqSJNpbowrkulFdHiOR8SNqnMC7pZfgGUc544QHE5isixaLcN3cSqMv39sUAm5eCmdBbugE8jJjXabAHAMoNlSrmqfHZ8Zx4OP9HYfDBe88Q+8Yu47LaWZVlySJ4806sYsFUTH827/+hZvdjvv7j5KYN004G/AOqmol/CY34fyJEODG7Pny9IT3jn7ssceJshK8yGwdPsjrej5fMNpcOZNlKQsBlLBw8jSPiIcM6y06NRR5RlFUFHnBMHQ0zYVh7Lj7cEeWK5JE0XUdX74846znT3/6jtSU/FIe+OnHR/Ii8Of//ImPn3eApe3EXfHzT1/44cdnFIHvfvcRrQzNpeV86gkhZRgD8wyKlDwraC8dfnZkRkLUpnGmLAq8l2T6xGjSPIsuhplxGrnNCrK0om2PaC08KO+gtyOZS/AxyOzSSuI7QQZ949QyzYbcO6pNzX/5/AcIgcvpBEExW4fWFuVhv9+w36+5ND3VhzXtWax+SgWc92S54eb2hsPxjYeHbVRWadbrDa9vJ/qhZxzFsp4kih9/eKNawT/9U40xKYfDIS5CPeQy6HWuwwdhU6tZ7PIPDx9omhcmGyI/2cbAtoTEZDRNIw4UDGlWcF/vUCrB2QB4fv31J+w8Ya3l/v4DwzjIe/j5C9ZOJJkRi7eSIQMQeY2O55cn6nUZz3ypM8Z4vi62W6U1uUkhgJstAbj/sCMEOJ8uaBXwSlAZKmjCV4vLeIhAeEcKvP/0uyKpqkq0gvPlLDy4aI1WKmEce/I8Z1Ouado2frZlyLbwkYL3YmtTCo2KLL7IhjNi4Rfen74ua0Iciogd1cRBnotLfWEr4pcGlaiakv8v96W7njWJNmRpjvUz1lmIlljvREErj1fsY0qL7mN2M7YXvpwyMqQJKqCMYR6nq9pSfSXPWhQl73WsKAa7thenTGowmWa331Gv1kDCPAnvzyPp4i4ysTRLOIMMSdM0kYZXKXRIJHQvMXisLMYJkqKLfNPCvZZzu2kbnJOlg7Uzh+NJ7n+l6LoR74mBFh7r5PO1KmqKXNAG3osIoW1/ETdK3zP2omZL6oyA5vB2lAEKih/+9jfyLGW325HmCbd3e06niyACYtiUj8slsRFLD2DTlKKsGSYZrGktSm31lcJT3k8yRJunQZRs3cR6lbK/2VCvcooijYzZhNPpwuHtjbJM+cM/feTH72VJgYKq1uzvC3RisFPClKYcXlsRE2jhxo2zY57EKZNojVEJTomSSmsJGksSxWa9YrPdMo2Wp8dXuWODl+/TC+rEaBnmLa4orQWd0PeecbTYuaFeFaRpHi2xBmOkh5pnK9Zr5yhyUcd33UCeF3FfGIMSvNhHjVbkK1G/PT29oLRHG6irjO9+/8CH+x1FKe8HZ1OqKqOJXOKHhw/kuWGzFcVmVQnHerstIqdQUVclu80tX778hnMSJvny8hIHdmJ1NcpQlAVayRLG+4lpsoI8USnznKJJrgrmEAJVtcY5SWq+XC6AuDXGccT6mZIcowJd0/DpT59Z1yteXt5wkxd+q5FAhskO+OBouobtbkPwga5vAKjqgtk5DsdX5ikwzYYQQzQUGhUUQYmlN02lvpztJHVSiHzgGH7jvRM+pJKwEyC+Z5PrOSTjmXD9B6BvOozSV3X0Uk9N08g4D5jUUKqCaRZF4jiKC0GFyAM05qpu05GR7pwnz8WRcblcmO18Ve8ttaWcLVqGhBJ7wWQt4yzfnyBpRLHnrXwGZcnnsW5gs17jrefx+MzpeCaJqbWJUaA8Ac/r6xO73Z5hFB6m86Ikv94HX810ZFHl8X7BPIiDT1TR/oqNCSGwhHZoJW6Ua6BSIuppHftu70Tpp//nu+5/4esfHvAJj81Q5hmJCpRFyqou2axqLpczs3OkRcbpco4qO0OeaLbrFdltzsvLG2EU9oIKgdQkTDPMwXI4HQEYxv7v7JXLlm2xUI5zvESyFOcdXd99dQFLmpWLKbhJDFroQ4jbgr9nbywT2SRJMVoxTi3OzeR5xXa/wc4jJgly2U4Oi5Nta7yNffB4PCQwW7FaTPPA7e0dQ9czTVaSnIiR5v598HK5vHA6NXz33T+RJhmztXinsU4aj2k+0bcnnL0A0LWG3eYhvqlb3HymD5IeFEKCMTL8WayZi0XU2iEqHCxFXVyHVHW9ihtEf1UjiEJBy/fsRoahIzE1ioQsleZqnnvqekfX9MyzpOgmmUEbCZpITY5WGmdHFIHJDpxOz1yaV4rMoFTgl1/+Sl7l5HlNWQg03BjNGCWwwsEQVaIi5fbujstFUv5UUPgg7CZ0wM+ORBsm7xAmhMSXC8sk8iuQYZhsiqN02dtod8gRbgF4N5MneVS3KLwTZonYKIj2bHXlMcK70mVJ65Wtqo7MGHBuoutGjFGYBMoijc/1gPcWpSU6bZqsqI8iBy6oPsLHpdFHyWFt55HgFeMgirosMcwhoBNNQJrc5WBeWIQ+BIn8jkyb5TMA77Ltru8j1JyrrS54cLxvrpJUEyK/JU0VRZmSaMft3QptPHla8vT0hveB29sVzWVAKU0/zMyDZxw9++2avu9pW7GO7fc3zLPn3//yN+5ubvjd736HtTMmAedgs15zOgWaoeHl9RQfo1yw50uLSeHl9YmqyqlXJc570kwK1tnOvL0eosTfkOclQy+WPueVbJU1qJj6FAhXO09iNKdTwziKWnizrVhv0mtgx/lyYug77h9y9ruKv/7ljSTz3K0K/sv/9gdu7wtO5+fIwxt5fnrm5eXEp083pElKc24Z+k6WAbPnMnV4J0rI5jxwPDYUWcn+Zo93iiIvcS6qDq4qlUcgUNfSBBMMiU4JYUIj9lDvAqdTi4oAfD9PJGlCnqdkmaKqNDd3OW8Hz2a15k9/+hMhOMoK/vSfvuOnX3/m8csrAY1zApuVLdjCvHB4K9Dr3X5FtaqwfsYHYTRutyvatqHvO0xSoqL6Y72pGaeWuw83ZFkqTZ5tmN1I8Ib1uub15QB4+r4TK+bsqKs11s1cLmeGfmaae+pagllMYkgS2O3F8iCst1GaEidqqGGwqJBR5CVlvuPwdomFySxJn1V5DZVpmob93R03Nzc0TUtzubCqZBDdDz1d10eLqWa12nC5tPjZ8uHuA9oYZjuROIPymq5rmeeJ1XqNSQxlZM4eDkNU2DmaiyhbNluB53ftQNO2wmMpi7idzajqiqLMOZ6kEHTW0g89sx2lODdfp+MBEbaMAq18VPH5K9snSQ2ZSrDe4vx8tcHFU0A+G2EBcL+fHUv4kjBXJlG4GHXdWoqFbVHyqLhhlfMpy1KKooyFRWAJF/FBtqbOutgwS1GFiuFRsWgFfb3XiDYjrQ1qUd7FO0V4Yv21gnHxLAwh2p68k1JZIw2pkrPgql6MzZHW6tqEKqWFJ7cEMmlR1I+TI0uVYAGC4/HxEe8UXTuBa9BKs7/dkphM3svFyM1+z/nSMoyiyr2/f+Djx0/89MMPPD+/iZLEyp2QZzmrqqYbJwgarVOMSfFB0baiZvnd73/P4fiMn2Qx6b28d6bJol242lSHfkRH+HQIntWqRKei3NAGyrLG4wBHlmf0bcccbZTD2LPfbzgeTnRdQ1CKMq95eZk4vJ25f7Cs1xX1OuH3f9xTVTUoz/c//JVxGDCmkIAPlZClEmJye7fH2om7uw0//fgz8wypWfPTD69Mk8eolP32hpv9lvVO0od/+ulHILBer+i6hnG0JGlB1/WEoHBzwDvNNM7Ms7x/Bt9LomySIEx8GVyLK8JR5CnbzYos1ZjEkSQWrSeG6UiwoioJDs6nI9YqymrLt58/8+H2jqbpuFw6/v3f/4ObmzXb7YZ+HFhvS7777jNtdyTgYmMjqb/NpWUcBXFwOl5IUuHabjfraAML5Pn7maREFn9NSvZe1PBZlktYgJ/JM0lBLctC0k7VMsQR1X2eV1SlAeXphxY7SVjT6+srLmJt/tM//4nj8UTb94zjQN93ZGlKlsiCRjAkC0tOanGlDQb5nDgrTdw8W8qyoqpWMpAt5TN/PJ0YB6mBkiTh8+d7hCuleXx85Xg8oYGyrFi4ikppvIoQwKgmSdP0unAdR+kNyqqg67vrckGYfgnaaLzzNLH2eFfyywBDlg3RWmY0Gk1wi5KZq1VzGbIt9Z+csbIEsFYUXD4srL3F/irn6NXe75fz06B0Gn9tdN0YhbIqDlzkPL5cerJM7o2AF0ujCljnsXFAO02D1N7Oy58R1a0hRJaVkrCRK2IheIpUgrm6rsfaieBFiQ+GebK8Pp9Ik0T+SRO8m0TlHHuGJZTI+3c0w5VHFy+COfKb0TEgY5gJOMpKeJ3aJPR9R/ABkxiaZhJlH4qJma4bxI2RV6RpTtv1HA+nq3pq6npWqxWgIotPAnemyZIb4cL1/Ujfz3h3ZLNecbPf05w7mktLsltzuZxIMhlEiqMn4KIFexh71LQkfYqTbbaO4/HENMcQQi09Q5Fn5Jn0YUki7ysJ29C07YXAC5vtmvv7B5SW12noB77//ieas2V/s2K92eK9Yhg2vDyfKCvDap3Tzx6Uo6oT9rsVbTOKks/1KKUZR1kOGrUoKANGJ0zzggQxlGXKel3h3MQf//h76qrkl19+YxxcVLyZ2LcsLgwJTnG9j5+lpY+Wgcs4iW1UUFnyXHdtTwjiiHp6ehFurvdMozjxBDtkAItJHLtVQl5orBu4T2TotlqvyLOc29uKJPXMcyfJtE74rJvtms1WmMTOzYxjS1mlmCSg3Mx+v4lpvZq7m4/88Ldf6duJNC14ev4CiKNuHAapi3SCc3JfrlYrnLOsVjtQW86nFjsJ/79tGmbrubm5QylLlqZst1u+fPnC6XRhv99LIExRoRM4Hg50l4663kQsRHK1MmcmQScago4YLk/XCmc2EDifTrHvMtF1kbDZbjmfRbmulkxZJUPoxUW3DKOUuprwr2IUwVVl18H+okYOUam8zF4W4QdB3kNDPzDHhOZl3pJlBUs4WxFDQg7H07t6m3i/Kq4L0RCXxsLWNZgkoYnOFeFUS821MBmjiDqGccS1sVoWzhrnxS6fZ7kEsl4xCEqUvU0nWKvgcRaSPAp4EuEwO+d4eXmTvAGlrgg6wruKcVGCm3h2Ls/P8hyHWJMGtVj5F+eLfGaSVKzdCkk9NkrCx3JVsCS8L4q/f+TrH7foxk3Dw8MDfXPifD5jY+jF6XIWfpAdqaqacrXmcm5RBMpcvM5tnhNQ2KgAGfqB2clQYpomkXh/NQV9fxOK77lrW5x1mGiLXJRTyxvO+4nJBzRcf967GY26cjmqqpIPUteiEOZDZhL2NxusbXh7O4t8uKi5XI4onTJZj/UzTKL0WjZXSikccpk7bLy8xZYmCVkGHzqmuUXFoUSIG8WmbXk7fGG3X7Fd3zPPorJRWtF1Pc35hXE8o7Rllef0/ZGyqEmTgmlu8GFABcVsO7RKSdOK1BTMFpSfcX7GZx7re7lcQwIh+ua/YmVZa2Pqj8YYh8HhXMswnKIcOWcaJ9LUMI4NPswMo2a2in4M+KDJsg3Oij0hMwnTPMXNpkR1T/NAP0hDLgrJkcPxC9vNDVUldikfRmZrmaYxNiUVwiCTgnNJH3LOkix2au8wcSK+vB4Cd44Q3HHEOhsLMwl8kF/3bp0VO7BsWUNknnw9AE7T9BrCIOoesV8s29s0Ta9FG8RYbG2ulu4kNXE4JwenNjIo98oz9j1Df0brEK3EM1VdgvIxragkS3O6bsC7liTVGLXBzbM0QGnNNDlMYqT5jgPJIksjUFmRR/Wh85axn0m0ItFphBiLVcXNE1VZyzZHLUM/HQvQhSET8LirOmLhSiWFYuh7ec3tha6bmUYBhydJwn6/JU1SCLKBrYs1zaVnHCzOBTbRgtS3HW3b8vb2Sl2vKYsichAzhmFEqwStU7RK6fsRbWC323F/f8Ovv/5AkmyYZ6jqijt1w/HYolVCc+lpW9ncOwvzNLFaC1PN+xmtPevNKg4QStI0w1nLZr0hTRN+++03ttua1WpNczkwT9B1M//2r09stjmfPmdobdnfQprD7c2GtBg5HkV1sVmv+fnnJw6HMwrNH//4mWkcKauKt5eGxGSczxeasyfPauqiIjhY1Ws26x1pkrPZbBiGniQtKUpDkkGS5vSR97WqUyDheGgoilrS0sZeFKzxIjqfmzh498LYKRVFbkFl/Pk/f+Z//99/xzw52rbDO8gyz2QtHz/usXZkGgN2lv2as1L8oTxZnpFnge1uRZImpBncP+w5Ht4IYUYbQ2IMv315pDwlfPr0kfW6ZLEFDEOPJHUnDEMnyeU+oSrXfP78wOFwlMa0E7vxdrvlcDhwu7/jfH7DO1EmrSv5M+t6FYN5hLPRtAPeQdd2rKoteVqSFxvybMUweD5//pYiL1h/sxGmZ3dmvV6TZUncRkqq++vrK/ioENMy7DQ6wasZhaQnA1RFKaq4xEQbx3txJUzMkTKtIQ7NlYKua7mcjtzs96JKSxMulwvDKCqHLE3k/ldSeA9DT5oZ6nrFOEqAVHO5kBWJpA379yJkUe3YMpNW7LrNjVxNFFpJ84YLhNm++wr4yjpwVd+9h2zITy8Q+nfm3rL0WO7x5S6XM3VmwTpMk6j/i0IWJmmS0Xb9V8Xd+yBRGuiIAlCLxe09WGNhy4rER4qsvu+++jVLefjODlx4hMuAx3sfm9u/Vycuw8IkTcjSJQ034L0wDj2efhoxSuOVou8nmlYSQpvLIIvHyxSV3RN1lZAYw8OnD9jZU5QFWV4QgorPy0RRFnz6+MDDwz1dN2Cjpcl7SZdbrdfxrpEBaJqmbHcbPn685+3wBZQW7h4Gk34NsH4v7MUGOJNlIVpylQRRZIa2HUgyRQgz49Szqmva5oLWis+fP3Jzc8PlcsZoT9f3vD2/oki4vbmJFqKZh4c7bu+2fPnyyvkkgPG+N5xPF5QKlFVKkkCRlxwPF6a5Zb9bs9rIwnJd71mvdzz+2rBZ3fHh5oHZjhzPz6S51Heiysqi/VtTlTWH8yvWWozJ+PWXR5z1jIONw5OUNI2va9AkSklgHJ6yzNhsK3bbNcFP7G9WZCkYLbVlYhKmfsJ7Yf617cA8QbCSkrddryjSlPL/+DPrzYaqKrFuQhn5/Vm2iiytQFXWnC8df/rTH5md53A40beyZEtTUYY+fnkk/S5Fa8PhcJJh1iR17Ol0jJiVAq9FeXY6HskLzzB0KA0f95+ws+f56YU09dT1SgJGggz02rYneM3/l7n/6LJkS9P0sGfvbfpIVxFxdWVVVxUK3RBNcoFYGBD845yRQyyiudCNrspKcUVIF0eZ3oqDb9vxSGCG5IBeq9bNG+HX/fhxs22feN/nLcsV8BqaZozmt/cfRD1cZkzTdK21szzDWYsPThieMZDlGTf1Ddv9jsenL9hpvl6r4zQwTTP39w90XZeQKBWbzQo7jzg7s92uyUzOx49faJo1m/UaZwUnEr3HOptsskFUlryeL1qT7Gwq/Qw+BXxpwTZoRYhe+FUIUsfHIK8d0vJAVGjJK4U2whc2y0DRyUJflCcyvFrqw+s5mWy3IXict3yNIvra+nZtWhH1jLC3FnvZq3pEKU2W1I4k+9k4OVCijtGkGtYHSaBEroGQfgxZWInqapUX9P0SuKev56TR+joUWMJCFiC+BKhroge8w80erS3ee+bE3E2m4+vPKQOwdN7GiI/x+nN6EYeTF5qibtDKs1pX7G62SYHd8PnTZ6qywaQBMSjsZOm7SUIUs4JpsvTtiPeB25tbjMl5/PyZl5cju92O9WpH3w8y9M5LNqsth9MZRYZWBsHgRNquZ5hk4dasVxwOLzSU5BQpXVzjo4RKzNOcegBxeSzPC3EJyT2+qKTyPEdnOTFKbxCJWDthbUwK04rtds37Dx9p2xZRfTWMY6TtLC+HR/Y3F7a7FfcPO25uJdl6ta54+sWiKPBhlkCjXF/dOktICVGhspyiKK7c99nKoNt7T4hGlFfzzP5mzfPLJ7RJA1gVidFTVgXNaoUPM1ppymrz6mAK4JwhBIuICQKrdU2R5YyD43Q6St3d9hyPZxanXkyK1u12TV5our6nKAzNWtGsA7/7u7doben6C0VZEL0izxvqapsGP3kaVZW0bUsMmr4fMFpCIyIOow0+zLx9+0DEE4nkec0vv/6JvCh5emy52Yvi+/Zuz+PjE5OSQC+UDLfevHngzdv0d7Oc+be3b8izETtA9BqTFdfzZ7PdstvtGIaB87nFe+GNHs8HEXSk8Mfj8cB6vaMoSzJjmJ2cqaTB3HotCbvPz89UyQVnTMZmu6G9dDJoHnqGTpyHZVWiowig8rK4BmrKsI6vzhoDV86yutY/S/jbYpVdliHXYDIFJsrnrBtJgx7GQZbR6dzz3nE+n9ntt0zTJGFxsilFJXv3V2tiopdrQBsRR6mk5gvxNeNgqSXl9cpSSinQaVhGfE1X9z5QFBllWVEUuXCLk1VYa0Q1WlXkWY6PsNuuKcuciKPrOz5/OpDlslSyVhKmlyP96tz4qga+8lVRKZTtNQCE6/jxqzNQpTN+XRGCpesTw9IohssoWBDzmib813789Qq+NNUdRrHBOWvphoGXwyGlJM78+v4T2+2Wv/nxR7ZNx/FwpCkLnHfcbDeYtsOFSDcOzFqxrpqUmCsW21cLj7qmAC0R0iGK3FOUUtKoLhPnoigEoBvlZo3p4WKMbPUB3r17R1EU/Pr+N2Iq2vMiQ6M5ng6gesbpgu16Ih1arQmzISsL5rHHmAybIo2vyi0vB4lSCOsl15JYRCGsLNtyPH1ivbqlKApeTi+s1ytOpxPKeM7tI3leUha3TFFS4C6XE31/xs4ds23Ji3syI8yG2bWEKCEaUz+hdCHNbZBtmgE0Pc5bxkFhMrFnGG0kVCAX6bSo4WCeZqyGqiqpS4WbZ6a5YxpPFGUOlARvmdIAta4LYKYsC0JQoHKmcUSpXCDSRooppYQBoLRiHDtOpyc0smHVxvFy+EzdFAxTydg7nIsUeUHfjQKbNxkgaYVlUVLVJdM4ExIo0JhMtpMpMTXPM2FTBbFr66S20BpMssTMsyOGQFHWmNRwKiQRVobMAjwWxZpC61xYFdcCZhn8eUL4SwDo1QLrPZl5TXvzacDonE0gWofRAaUCeWG4nGckLdJQNxKEMdsR6wKbzVYGmlkGIVIVJRKmnA4QDVUtUfPD0FMU5ZW/mGfCIsxzgbsWWUZZSPKZBJRIwa5iYLWqKbIMoxcJtTwEhCNorj+bRqDy8vD0OAfzpPjy5YxCQgYkFCGjaz1ZHjDmwmZbU+YF+92aeRTVqXeiLPny5QvTNHJ//8BPP35/HcxK0QvjOCS+jCbPzVVNVJU1d3d7sgJhxyUVJBgpDoNKVhvhDxmdM40Wk5UoROXZtue0uYO8MIxjj840ITpO5xcU8PDmlnfv3vL4+EjfdZwvT+SmYLPa8Pj5Qt9/5Lvv7/m7v/+BcZjw3nA8Hjmfes4ny3YriVWrJuf2bs96U9Lpkbu7LdZdqErDu+/e8S//6ZFpCJRFzb/9t/+O9U6GjuPYcTwdeXi4ox/OXNqB7b6hvXQolRF8xDvFPIl1IsQxqaYi1qQHrhK7BTFSlwWbbUlkBF1S1wUmm4lxJsSZzbrk8fGZy+XMZnPDf/1v/4ntZkOeVXz5/Mz7396zupXEwc12xY8/fsulPVI3ZeLQSDryly+fsXbi+HJB64B1E998e4dShr4fuFxa1usNxiisldQ3hdgwJVXtTFRyfRdFzf39Pfv9HTFomroRkL3JaJqG7XaFdRPTONO2PUUpzwXvAkVeEzSMOuCd4uH+DVW9S8uGgX/4h39EK2liL5dLKppnQQIoldQQGVXZ0Hc9eS5BUN55jMlRSu6vYRjY72/IioLZWpYRmWy8uT6nLpeOnQ/UTcXU92SZZr/fEoLFOktVixrn9u42DZtUUrIr7u7v6PqOjx8/ENtAWeVUVcXN7Z6qrvDBXp/RWWbIspzVas2q2dLUt/zpn//8F8sLkupiGSrlRcZmt4WIPB/U62JM+H1cU7uXD++X7Wb+lXJwUdnJ0Gixr8m/kwZscnZOo/BV02qWRVWef3Xuyn+41CBLw/C1jeR100oCGmstVsbXAd7/tpqRnyMzxVXNYvRilUiqnWsiXSQiNv/FoheCJ8sUTVNhg6Ooc+ZRFlvzJEmI8rmlqAysAxwxdkSvWK02DMOMs55xnCWF2nmmyfLxwydub/airO57np8PTKNY4/MiI3cmLbwUDw93GKNou5aqymm7i1i+chnwhQiFMazXa9p2YBot8+yoyjpdW1EsZDYwzSOXSyuDyM5QrTLqOkObZDMkcDpdxMriA0QNsWCeLunZG3FuZr+vsc7y4b0MbLw1dG2AAJkp2e+KVNt5hmHmX/75I1WlWW9zgnfc3jbs9iu8tQzjBZRi6Ds+zR/RGmY/8fT0RIye1XolDV8UW/E0W4ZhZhg6FIZ+GFGIRbRpZCHmnaMs5VkYgwREZLlw94rCkOeKm5t7IjPj2OGcEWZq9Fgbk9KlJPoZOzl8FXB25Hw8AZG6bsgzaNsXxnmkqjLmaUSbxA6eHUZfZNChM/6Lf/x7fv3tN/71X/4k3MYpsEmq4NPpjFKKl+cDTdNQVZUs3xK03RhDlgbVfT8wzxObbU2zqhj6nmkUm25VCe+2KAuaao0xBWUhNU6MmsPhiPeR/X7PNAnLNM9z8iInxJl+6MiM2PystYxjT1OvKMqCtVrjnefStoldLGrCpmlYrWu00azXK7Is47fffmWaBlarhvVmJYuMcWSaLrTthdPpwma1FfXjIKFGiztiuW+XGnZxoyzqWaM1Suc8Pz+mADNhtR0OB+E1FaXUo+0kqhmdQ3QJRZDUWUbJwlQJM1nci5oFS7GcW9fzJr0mUZ6kugyu6IGFCf21IkUOMhnK9H13/bPr0iG5Kpq6YBwHHJagAj56nJWgo2sIUVQprzEFaFybUFHLLazSZTmzHMIheHQhA9vj6cA4yoIqLEO55YsgSkdRPF+NvVJfp7ciBiTdUiskpGepiRFlW+KiSZjGa1OvlMJZx9PzgeAj0+iYhoOkB1c1ddVQlgV921MUNc4HUIbT8ZJq/JzNegfWM9uZN2/eimI1iULyPGMeR+ZppqokCMiYLA0ZMuqm4e27e6wdeT48EWLA2olgkmVaL6gLcXqEINbIeXJoI4ijoswJswRcZHkaOhVKAh+GQQLzQsBa4ULf3u4lGNEUxJCJiv+lYxhnNpsVfTfy8tKDiimk7IbnpwPRbjGZ4u3be56fjgzDouIiDd/k9xyR1/3KIJeaHSKZyfnu22/JS8XT4xe0tuxuCr48RuHDImGAu13Dze2Kw+kZo4UXqLVhnhXtpUNrCSLUGm5udmx3W2LQfPr4xPnUpkA56R12u50gc2b5ve/3a958s+HT51+Z54mHd1tubleUlTx/QhyE0UuOdyOXswQEgThyustFgmf6mfNJUmD32w2rprkO9rLcsFo3PD49XhchfXdmv98So3DltpsNf/s3P3Jpj0xTT4iSpL5eVXjnKfOSl8cjznvevqlZ1SvG4PFOM44p9CsvKMucL18ekZRVzzAOZHnOOA/stjc0Vc00TFckWF1VOC+imqIS9MrkJhn2pmGbD8JQ3+93lGVFmVdcLi1dO6TnQY7R5nr/Mfavv/MIXw+elmtiEaYtIYNZnsl1rYRXGLy/Zhwssw2NSgnKGy5tiw/i1FgCUiS0qUKhOR1fUl3E9WsusheV1M0Lu05UeRE3i2NPo4lKOOjXhaxZgmQgKlEIhyDqv+WaF4b1muAsp5O4u5b6U05E+ZxmVRG9T324o6xyIgofIm7y5JkBMpT2qBDSGf+XbGrSQkVrQQzEEPh6JvdVSXwdpC48ypubDZfLmdlpQckFqZsjIKhCQcL8tR9/fYpuFD/y6XQmukiRl5zHM8FL0pLRinkaCbHn4yfFw+07ylISZp2VAV1Z5ti2w7uZ2YrCygcHUZIulwnzoiAqy4qmacR664MwCJICzRjDbKerzUQ4JZHciGXAz7OkE3qPwdCsGtquw9mZGFOU+KQZXeDhYcs4XximI9N8wjNws/8blI60/QUUuNmhjSjhFEuYgrletIrEuUARw4QyI9P0Qt8/i20iZnz+/DPwBmtbrGuxU421EzF0RAxKOZS2WD8zzSNiy/TUVYMPU9quOWbrmK0lXs6sqh1ZFlDqJL+HbE5N9wpjSrwfqesc5w2zHTC6QOtcbjAt03a5nQJZ5ihyKHONcyPjcMT6QK4zsSUhg76b21se9Jp+CHz89EKWVZhMM3grtqfghDSiI9M0YmeL9wMPD3eslebSjVzOL2gVmWeH94aqXpFngZv9DaeLZZosIVgpvGJ25QYsgHgffJroR7kugth1JdnsFQBMOhQUSAR28u97F0icZNnqZhqdhnM6M1deSLimHsuJuihSxGa0qEw00zRdCyvZQrymuUnqm2y9TAHRW6axJaSAlWnqsHakqoW1E4l0bUdZJM5FlaGUI8uq9D1loJsXGm0y5nkURV1WM8+T8AunCZQ8eKybyDLDOFoiCWAdPUUpDEPSxjVEMEZszT4EciWMuhAcRVVIsb5pqGvhg/lkPRdWplhOgg/YORKj5nIeRZFZKTKtmCdLcMJRtPYVxF3eFXz+/AXnZCskm3VJ1RwGhJcX4eZmT9uexRJvGsZRGlsgBU80ZHlOWcWkEvRJ/SfhD/PkGCfLMI207QWt4eV4ZHdTkxcQuo7tZs35dEoJV3tJJ85rRu1oqozTcUiHt2EcLC9PLZdzz2a95o9/fC9bpaJGK8/hZaKqDEoHPn86M/YOHyZ++AHefbulKAzORv7+H3+iPWp2q3vyPOd4eqGosqvaom1byqqgzks2iYs0DhPOBp6f/oh3UoQbLzYcY9LCQb/aj1dNzcPDrRRsama3q8kLhbMDIUSCj7TtTHfpadsJTUGzMvzjv/k7hmFiGjpu/90/8OOPP8qgOlfUdc489zg/sVqvGfqJw+nC5y+feXq2yToY2e1SEu0w0awkDTZGrilswyQJWDFAkedSt4wzIfqkuGzIMsPl3MtiJm+EDxo91o3CrzKGaZxxTmxam80ePCgy7Cyqm9Np5OlpIHjY7+8EMWBerUVFXuJ0SmYMkkKdFwVlWTOPjqEfqRuBMM/2mfV6w2rVXENc8jxncnL/+rQ5zXOxdXsfsLPlfDoxjT3b7ZqiyMgLQ5bfYWfLMA4cjy+8HE5Ms0XrjM1mw26/w2RZsv5HxmkiL0QpHJPlY7YTRku4j1g7nagZdI5R87VJvhb/CX6+FC7ayGYyL+R7GmNE/ZfSKhc72pLSJoD3V5WdqJZf1Svyvf6y2bgGZVzrGYVCzl3gyrF1X1lFrue4UmQqw2tPtP7659dNK6CMSiwU2TCHmCwQSwGlxVQGKdXyqyWNFKHy/qnEkrTzfLWh+CCLjbLMmWaPD462a8mLgt3dFrWJPD0+Mk8RyFBkV9ueihqlwbvI4dByPPSAYb/bUTcrrA3JiuaJAX764Ue69swvP//M7d0d3//wHf/yz79PfCuY7UzTVKxWDdoojqcDzmmOx2R9VjKQc5ar0mr5PYLY5rRKrOEY6buBcZ5AGcRyJwMSpXRS1Djquk6quQkwHF86AG5vt5RVye3tLRGPNoFPnz7zpz9+5vnRcX93z7rZ03YtWsNqVTOn8JHNes08tYxDoKo0bk7cRbUM7AZO5xkTHdt1Kt61I0MG2FoZiqIQ5S8ROKegDPnzYZjToNekgWSg60cisF41eG9ZrzdEZpTy2HmiHwI+jOSZ/N6nQULB+u6CjgWbVUNTbWBbUOQldVPT9wOn0yP39zfc3d+kBQQQxTZkNGQmo8xq5mng//0//0fquubNt29laP/pE9po3r7ds7/d8v333zLPA4fj89XBsoRK5HlGXmTs9huUMuSZqI5ub7c4JyrLYRgxWpTAm41YkYZhhCi/+7YdRf2vc/72d39P349pARn4+eefubu9RRnhUkVEQVc3DXZyaWhQ0qwatNZUVYlzjuP5xPF4uqZJLszTPM94fn4hBLEn931HVZWS0ArJwid3cPCirnBeuidhkQpfzVoJ0llsYsu9vyxzReEsrLSqKhmmkePxwNu3D5ICn2fUdS22rXmiLPSVDei8IGG05gqDJ9nCilyWDZMd06DvL5cc1w8V0xmiroO9r9UfyxkoC5DFVmv/YoGsUw2lldSMeZazXq1wzjFNcwqlEpWfMQZJQQjE/90iJOFp4sKQerWUaS2sQGstbXdhnubra1z+uTTS8lvRabGq0p/LeR6/Wm7L95QmPc8NuRF9X0gqr6osmJzUMqLE9pyOLedLjyiXJQTE6Iy+mwlOY7QsX4qqJDM5sx0ZxyEtroX1Nk4TKM3d7b1gnEbLNI3X5ZQpDFVdpmeOcL+0gWke5dmbZ3TdRJHL/5ZBp8KYXNA/fklpTqqnqMFI8vY8OZSaBNXhnQTQKUfV5DSrAqUjSmcJx9Eyp77AuYh3Yl8fBglK2e+EzXl7V7JKlviunXl5Hthtd0COd3A+jrw8T5R5jbNTuhYTeif1Jc55yl1JiDL4lN5kRilJGG/bIw9vd+xuak4XjdZS7ytlMFlkvTNEc+HtNyuqsqLrJPF1tS7ItCyG6rri/v6eGCMvLy+Mg6U9X1IfH8jyHJS6prQqrcmMoVpJeEte3ZHlkbI0DENL2x1xfiKGwKQd0yCKxm+/eUNmVEoInqmrEhfEoq51LsztriVGx5cvgbdv37Bq1gxjJ8KhyTIOE0aLlf9y7vAuijNnU1NUmvVaWM5NU/H45RPr9RqT5aLYniwuKe2sjRBztDEEF9CFPINOpzPzPDGOA0/PT9LjaUMM0HUdRVYkjrJFaQiJDVpVwizNECeaAuq6xroZrRampCwVd7s9p1OHnXuUEv7kwnJbFG1KgdJgvkpGFl6fug7FQpAzx6eAnGVQFmOOIqZkZXV1N9Z1zTTP2ITPKsvqOm8JQTFNlml6IaRgNB8iKkoY0fU1BK71pnCVJQhmmqar+04EN5ElOdekM0WqM32tHcU2LGWb95Hj8YQivJ5VXzkzjBFRk7UT3tk0U5I6LMtyrAvC4HdzKg0NWSlsYmtlEffKlP56qb3UnktY0evZ+rVTRGo/ObfzXM7x4q7CTZbj8cw0vbKcv/76/0c//uoB3zRN5FUlMGjvmaaR4C3jdCbEjtkO2Hlkvdpg5553D99IJLrR4OF0EGDqbCfy3NA0NX3XE6OosCREIZdffNqSD8OQoMLCyhOLrMPZQBbFFir8hzShTikr3gtnpagq3CTJSH/++WfmeSKmAgAgOEdZVUzjQNsdsLZlHC8onXG+nFmt5KAU3oiAi72T1yugx/wah+ysk2IgBpSxDNORcXhhVWsu50d2uy1GzZyOX3C2pb2cUVGzXt9T725wDkld04F5nsjznKIQsOU4SpLvMAhPyFmxSBR5gXMjZS6R3oviy84XmpVhHFqUKkDlOJcTvCbPcuwsFqK8yFNj55nGmdUqEoPBOkOcPV1/SQ/wnLKUKOrZTmw2e9wcsLNi1VSEIMonpSLWTxgNRSGXXBEy7u/uxU6cKZy1VLnG+4ngJ7SKmEJBHFg1NXke0rXlqOv8ynXKMoH5OudoGpE0L6DhvCwkbTIdHguXhfiq6ChKYeSZLIjFMDWJLgQmO1GUJcpogncy6Ev/54LDTY48y0U5mJOizwXQuiTpLknMogacr8M9UXYWaB1wdqDMDc6NZDrQNAWnYwtEMm2oipKuk1SiWMCqXlFVOdM8kxczWnmILm1BAiCbu7ISrpMEaMwCwU4DSW0U82ivvJz41cZ6mkbybM04jayakqoyLGBWKWoizarmcm6xdsb6mbLKUzNh6c4deV4l6525Hn6SGgfWek6HmYsShs793Q2b7RrFhdOxY54sxIH6u4a2vfD8/MRPP/2Oqlrx5cszVVXyEuTnbVY163XDpT1yuZwBx3ZXS3K2QixRThQLfSeW70VuLg9XCTyZZsc09dcmoqoM3oHUJOr6oHVOmJughMORGIXffvtA06xw4QIq8tuvX+haGPuBVbPny5cDTeOpm5w6amkoo+dycZxeHHf3DZfzxJtvCopK0TQlv/zhC90p5/zcs9nucHFmtgrrZjbrLSF4Hh+faVYlEbGcTZMn+CiFJoaqkjCdc9tSZHnqUbSo4LKKpqmo64ztpmJ3c8s0tYxjj50nsqzEz4roc7SqsePI89ORGAxjPzHPlp++/5aqlgTpcRK+aNe2SNr3RBscm+0NOsv4b//9v+PTpy/85//1X3HW03UDh5fjdYs+jrK1vL9/SKrNkZeXA7c394nfqiiK/GrbXq8swZ/wTlFXNc5ZnBMLbYwhqUlyxvEsnMSYcTicOR0uVEWDd4rzuedZ99TVmhgjnz8/8+bNG7abHW3bslqteHl5ob203NzccjgcsS5wdy/hAkVRMgwdjdai3PGvi4SlmJACTSxsY4wU+SSpuDojz3OqKtL3HXlmmMeJ4EU5VxR5Stp19H3P6XRmGCZCjDw+PbHdbllvNpIiF6UI8y6CcvLa1UrsY7mw4aJPtgeS9U6bq7ViacoynV85fEuBOM/ye8kyYQctqmj5HHnIipV1UTlLYapT8eR8kMYmShKaSgXd0pgbU6QFjFjNpKdULCm2iwLFJ5bVkggn6bsywkktszy/wwKR1vInSdaQZcJ5XODMy/b4eGpx3gujyEtBHHxaEiXejTHIIK/KmUwky3PyLBNrdJ5xdy/21NPpnNSOAy46Ns0KO0eKTN4La8OVC2aUgLzt7K/NcvAzeV5eLT9FUcgQSc38+c8/8827NxRlyd3dPVVVp2G/WHXLsmS/3/P27TtO5xemaWS12lEUlaQs2kHCG0ZLxHC+DCmJ3gIarQIuMTTLKr9CpYmJQwjY2RFDlgIh1hBlWZdlGSQV0WxnyloWXZ8/f0FppLklYx4042AZui+UVcHt7Y5pmunaiapqMFnghx++5+5u4o9/+JV59rwcWpp1xnodGX1HluXkOYQZxmEgqsDf/O5Hdjc7fv75z0lpCnle4qyl9T2b3YZh6FFKEhqDV9jZczq1YnUapW7YrBs22zXb7YZxOksidVVS1TXTMNC3Dh+gu3Q09UBuCpydmUYNXnGzvxcmKRmrZs1PP/6Oss5YNQ1tZ/Fe8c27t3hvUwic4cOHL/zhjx85vPQc9MinxwNZqclzxdu3e0ym6bruutxeAlGyXZ4UWbKczIwgBMpKuKHRw+624fnlwM+/fcJoQ1XWPDx8Q1Ov+eWXXzEm53TucO5MZkqyTOxiwziL8sgYqQfSIkBYRRm+LCmKkmmaOR1PbNeb69B+cc4sKtjb21uqqhJmarKLXS4d3gU2mw1VVbNgTharvNaaIs8ZikmGDFp6AJfUgqvVitVq9cqEyqQelPugSKoxORWsFWab85rVqkJrQYVUVcUV8ZJJaqa1M1oLqiSkZbHw6qTxUjGi0cmabIgq/6q5S7fLV0vktNtnYV99vZxYhn6Lm2P5+N/avxaV4DwLs3jBo1w/RynGaU7hQvl1uGa0ScqSeG2AF6XJ10uQRZ1DlL8bhgGNcM+uSp9UM4krSZGlZt15n5Yo2VcL9nSlpEVJCGLfjUYW6aI6ztFGU5qCgox5HNBGaq55mDGZJFw7Z68hK3bucS7QNKJY9f5CCAo7h4TOmFGJLXu/l+d3CIHL5SK9kVZJzaUZjj2gaZqapqlBRc7nI95rTscD4zikhY5w6nwQd1hVi2pwHCX8anne5WnZ732kvbwy01SMqUeBEKAszLUvLYo8KV8nOYvOPQrFdivX9nq9TuGEE9oYfvnlA4eXo9T0tuPupmQaNMfDCTtrpi71wFl2vf70NSV95tK2afkm17xcV4kvqTzf//CGLA/sdpvEcR8BT91k/NO//Z6oW4ILGFNwOHjG0VMVDWHVEHxkvd4QQkg13Buevhz49tstv/76IaUbG2ZrOR3PoKCpG5pVRdf2/PEPZzY7TVZEhkEWoOMoZ+Tt3Q2rqqSuPDe3Obe3d2itxRoaZwKW7W6F1jnv33/ieJwheFxKXt7tdiij+OX9n9FaJy6yQpdypszTjNI50zTyuT+x3lasNxXff/ct682GLNNkmfRSVVWx2Wwoi4oYM7JM8/TlhLWe9WrLP/zj33O5nPny+XNiP0oqbFlW6d7WadD3ymkvihLnbBq8Gpq6IQxpGZeES5IXIEsakGdoCB37/ZY8z+k7seOWuQTZSaL314uEVxfk4jZEvZ5HizApM3lStteoPia2qr+eTWVZspRay3W2oKfEQcAVXyXfO9VzUaX+8nVotaiX5RpN562SlF2fhoOy3NDXM08r8EF61Vdcipw3YqsmORfD9TwWx5YM8UIMaRGc+JGZJCB3fY9YskGCMpaDz6f/3qRnoNS6Iu4R9fry/mitk4JPDn11/RlfX2NUMgD98P4RpRRllVEHxd3NLUoZLpeOcZoJPlyXzn/Nx1894MszSZDJck1WG86HlhAmFBPPL7+R5Z62e6Eov6VvL7T9E85n6cJZVHeJ3VUWmPTv4rcvZMNXS2KcDAkMMcom5soxSpNRrVTiownoUqklCVBkpEVZkOc549CLsmMarxuOPDM8PNxfrYtFXjCNZz4/DXTdSEwT3H7s2ewgOiuT5ghFXuIV+ODFzqNErSFDEc809RS5wtuey/kFZx3ez4QAl/MBrYUL2NRNauIGZtcR40RZ1TjvZAOFJoZwlZ2WpQxYl4PCOQ9KYWfHNA5kOqKVwtmZ4B15YbC2I4TIelUwjxe8q1ExI9iMwhT4GMnyguAlhU4bi7Mj0zgkBopsDFerlTRrLKoHz/n0RJHvmCcDsUg3oWy2pmEQoK+umOeeaTqDElm7KDw8dV3LAeEt0zihtTCY6rJinkditORFJcDmxGkMUaxxoNKGXJHl8iAJQbYj1s5kqegJyT7trRTCKiois+wmVYHCJ21toMhzjNby/kVPZiSoI4ZAnhXp+y42s/gKBY0RqNIAWngmsjWQIq4oCmbvyXOxKthxxrksjQ49q1V5VfuNw8QwzEyjZ5wmtttMFKTtCZ1lhGiJoUdnET97lF4RvNisY5DXtFhXXLJHx6CYrb3aNotCAN92njGZKHjatk8FjE5Mg5LFZrfbbVhvVsQYOZ9l2DWNls+fH2XLNAYogti8JlHnSMJe+v+4WEmkOezKgeAVQwLvglzXHz9+4ccfvmUcJ3a7HX03XLdiRSFb9h9/+JHtdsPHTx+u2+L1ekPXRUK0PD+/sFqt6IaJtu1pLxNERdCLVN1TFNnVYqZV4nRGTd9PNKsGlKeqK8qquFqu27bny5cLeZHzu795izGQ5TJEqeuSIq94/8sRxcz9w47bmx0SXjMRgme/27G/qTmdBj5/PNK2PeezZbOTsJLRtnR9S9cWFEa2x9ZbdrcCWvdekRe1WJedFJUxyINSKS2/Wx/R2pHlgaG3hBx2uw0+ODbrLWUBIc5cuhPKjAQm8kwsMpnJ8E7RXUY2Tc262TOvI3WzpiprXp4fBc5bZBR5LcqSl8+S+JVYluNg6Z4u/Kf/9Cd++PEntMmYRoudA3f3W8rS8P3337HZNhwOB+bZ0nU9xpwEHB5VAqojW+O+hyCb0PZyYRoEAG6MJKhd2tNVNVeWOd988w3aGA6HM/fZLV03ApFpcnz6+At1ueH25g3T5Oi6nqZpWK/W2NmldDgZCPzTP/2X/If/8D9zOp3p+h4fhHcWoySjd0OPzgz1qklg+yHdNwWrVZMKoGTJT0WR1ubazBpjuLm5JQTHNE60vQwo1+vVVd2x3W7J8prT+cI4zkzzzDRZisKy3dzgnOXp6QvDcCTLVRq2y/1bVTXrtah8QwwM/UDXtUzTQJasmiCNcPBJBQLXQkYnW8PS5C8LNli2sJoyK9KzOX6lppH/vtY5zqnrve2cQxwdERdmjBJWmgo6pXeSGiLpSgNfqa4V16/jfZAt8VeF3NJUL+oMeLUsmczQrISzuV6vGMeR7XbLDz99w8vLgXGYadtBNrhKnlurdcNuv+XSntOCJrJaS+oqyrOEhrRtj6QKFnTdiLjfAl2YcBbmccAv0ERkMYU2hABLMEGe53Sz8MmGceTStuRZzmpd42zgfD7z7t0bYoQ//OGPknTvkgorFcC/+93f8O1337Le1Hz58lmU5ibHe5dSdiHEBC1fC7T8EM/03UgwwuDzISR72VJcp1JTKVABrTPW65WoosqS1aqhrlfkWUFVHZmmkc1mxZfPL3z8+ERmMvY30oi8e/cNv/7ykWmSJPauHZNyIcfaQIwzWn+kLKq0qHUMg+fTx+OiOWC/u8dPM4fHgWGcyEtNXuY8Pn65Djcul47NRiyd2hhi0OR5iTaaLLNIoEJI57lDK1FPTbanippL+8LsBtbrmvv7G+qmZugmTseRGA3zpLkcT3zz9ju6tqU9v/Dm/i3nS8/QD7x7V/PLr79QFDm7/Zr1aoVShs12i50HolKUdc00Orp+4suXEyBDcVG5eeY5ormQF5qqEkViWaahwDSglSxwiiK/qh/G0VKWNafjCa0C+5uG27udcH5ULumAo+Pl+MJsLYXKMHlG201s1ivyokRpw6W94K3UL9Moi2VtdHr/DPNlIoTIPFuKshT+kxFV4YJ7iTGwXsmQQmtD23ZXJIyzHuqkikpsqb7vWK02jKOktvZ2JIRIZjKyTJqr5Ww6nc6iSipLcRsQyXOpUcZxvL6Xy/sCMA49eb7GZBm//fZLCjrIGafp2kj74AgxJ/p4XV4AKZgthfEgXGbvHXlZsFqv8M5f6zthQX/dnL021zFN/IzJyEwmi9Z5/oovlVQgvDawX593KoUP9b1jaSR9kNTnEF85hIuKMaaGdAkiivEvm+zlYxFCoPRrurwTFIW4YxJqgVdFtdLpZ5KnReJtF9elw6IIFu649Gtaadw84wPM1pMXGbe3d8zjwOl0FKWilkCPuCiGTYbWwoKcJ8c0nRGcUs67t98QSo91gePhyDw72kvHt2/fYbTheDzx9u0bbm5u+Z/+p/8J4MrI1tpQVUVisDsRB6icaZ5YrzeoXs7pEAIqQtt1nM+9uAh8UjHyitrIlrC+qFAqIxKuQ8VptORFRq2zZE8XXuqiBJKvF7HOUdeysH1+fpJlSSFCCu8idtIMfWDoOh7uWuyssVYUzsvCemGeLc+mZWDeth11XaXrSdT2znp+//s/sdpodm3J+/czzsI0eWLQhKDIskKUjLOkJHeXI1VdojUYnXM4n1mttmS59HwbnaNUTlmtef/+C+NoxUFTisLSJmuqJMRHBuMJh4GuN6y3NauVwWi4XIQb6pzlchGu6npdcbm8MM+WLMvSeehAzbTdiaqCv/03b3GTx7nId99+jzaK//if/xPKRNYrCWOKTuOdWK3rxiS3S6Co1/zt3/5IVWV8/vKR4+mQ1GUy5CsKWUbMdqa9nLEzDMOMVhkmU+z3Wz5//igK1ark3bu3qIQjmOaJ0/GIs5YyL67PfK0N1s6cLic+fPjAdrtmGsd0znh88GSZ2KrFWUU6e2cRYdQrdtst0zwxdBPjOIuzwKd5xHJ/q9czRaWJ/9dMUNJIaXkGrdcr+l4GdotSznsvS8dBaifvPV++fPnqa5DOrMW1GIhJfbzUdddTcbHeprmN98KFl0VvuA7mFtaj9xJ+ttR73r8up6/nmMjC0rG9vB5RZWfJ6enS71oYppYI4vTLTFIik9TS4lizXtymWpsUliTvvzbyHnon6kvFwhpUX/18wt42RtBido7CJVTyfAnR0fdn2uMgQocso65UEjT8/8GAT6HIjGaeB/puQGnL2B94efnA4fiZZp1T1ZrZnXE+57f3v2ddf89msyaGgA/CmAlelHk+rYlckn/e3d1yaS/XQ+oVYvu6CfPWXTlZMr0lFf7Lg0qsWoQovvJMM08jzy+fudnfkGclRZFxf3fHhw/veXo6st9vOJ6ekg3AM80TtjDclJGuOyf4rGXsOtbrXdoyLu+KbEaisjg3cL5IWmxRGFDCZpqmUYqbLNK2A1VV47ymqbfUdUHbvrBpbtjVFSFA34qyqbucKUqTEuYCRSHN4jR1tF1PRMkkPTjyjLSdkiI2z8WC6ZxjGHvaywt5vqNptlTNmkwb+jFQ5jntPGKCoqoVL09HGZ7ojDIvqErZfBKjpH2ezuRFpCpLyETVFl1MF/WEwuPcRbbkNGgd8GHgfDmyahoZeM09vRMQs7Md02xROFStpGHOkJh2O5PpjNkjEeYo0KSHTZCiLloyZeVwiRERJKfD8bqZNUlZONL3F2J03N48yEMqagot6g/n5NpU6Vxx14m9pIZqren78cpTWQqsLKl3pmmiaZq0IZ6uG9YQPBFp7Pb7HcGNWKexLpAZ2QhezhdCkEHJMAibqChmuq4lyzTjLAmqTZ2x3TUytPMzzqukPhO2AwgbxDk5nIOPGJVTlRnTNEBSQMaokCRGSd3MjBzSS3KfbBtn+n5mdWlTYIChH+YUxrH83FHYi1EEgz6d6lpLGE1I29CF/TBOE1UtTE0ZjIiU/3w+Mc13OOf453/+z7SXXt5npLhar1f8+OMPrFcrpmngX//1X2RTFBXjaBmnjqKQ+6dpVmJDVx3HQ0tMBeky/M+K/DqgUEqllEF5OOz3myusfRx7buo9MSoyk9O2szRU5zN//OMv3NyuUgpyidEFwzDx268vVHVGnhuUkgfn81OLzhxv3z7QtQPawDA6jseBqirxPvLD9z/yaCzd2dK2Fx7ePvBP//RP/Prrz5yOR07HM3W15tye6IeRm9sdSwpgkZdYAvPsGYeTPDBK4aTc3G5Zr2t8GJmHmc06J88LLqeRrm9FFRUM62bHMFj8rkSrnLv7d2KXLQoe3nxLCJbdbo2IVi1/+3c/Ye1EP4wYXdL3nl9/+Y0///KRX359JisyfPTc3u2E6XKz4x/+8R84HJ5YrRo2m4wiF6VH23asVg27nXDHyqJMSptRioUYObwcyPOK/a6Q5YrSaGMojUFpzTQnK2294nRu01BCivU3795RZRVv335DVTa8f/+Z7WbHmwdhsp5OJ9brDafThV9//Y3Vesvjly+opCwxJmOeW46HF0IMXLoL/TigFcneIEqz3W6bHvRimcmLgjwTe+7ClVytVnJ/2glrxQ6kTSbpholZVDc1QWl0pmnbAdOPSUGXkWWFFO/VirLOaZqCYbzQXlpu73bSYKOJUVgz8zyJ3VaV3NzecGmPYpU0BhXDNRVZKcXQD9eU7EWBo5RKqZ/xWhhKMJEA5Y15ZS4pHairkqJYQ1SSlB1EVTxNspApiowYIrOVBjWmzbP3PgVWvRaOywBH1PFizxO1zmt6r1weMZ3ZX9ncMBwPF7x3jIPYtk7nM7v9nnEYE69T3m+Vhq/OO8ZplOCMkCWl2qISzLBWkn6nYWC9aSirhvYyJ9SAQ0ctTMxkScmy/Lq8ke20DA1ECRwWmQ3rZoUKcD6fZfsfLXkmbNuqlCTU0+kiSvAsS8FRktLeXi6cTxdWzRofPKvVhj//+Y84L81vjIrt1rBZlehtzjjMDMOYVIuBhbl6ZRxrjVEqPbPkPZlny6k/09QyOD4eD2RZwf5mR9cqHh+/cD6PBK9xQTOPQNRYO1IURsJ3MhlMXS4t0+QZR0eWRT5/PGIysc/64EDJNj8zPatmTetOHJ5nvMtEZQNcLhe6rr0yZ6dppsjl97Br1pRFxZfHExF/beizvMLOlqYpCF5hCqgbw/2bPUWZMbuKui7QxjBNFmNqnGsJTlHmW6Kf+MMffiXPcuq6IWBoVltCVPz8y2/4oNABYjR8+fIiScSNhBYUdU6YLSFq6qbm/s1WEsCdDMVdDGzWDX/7u2/5wx/+lWGY+PD+A0VpOJ5eKMuCpllzubRY68mzEusceZ6xXu349PkDdSm2tBhHbm/3gGKaWvph5uOnzzgb0VocB8aYpOhYnv9iPQwhorS+1jDOW7qu43IWyLtWDh88/ThSjGNSyFwQ5a+jH0d88GJbrhpx3ERhaOV5QdOsOJ9PeG9ZIO9FUeErUEoCr8ZB4PP73R7rHJdLew1/kKRXe22ixIaZQtQsabC0LCIM0zRQ1wW3d1uGYcLbSFnKsnYZjCxWWq0NLsjXu9YE6GuXWhRFsqeqVLesrwPGry1vy9klyxxZcqo0gAkhqaB55RovS5IlqftrvIw0kPE6CFtSyAMSdDX2A1n+muxIjGTGEJTGRUvUKUVTLeqXdGaC8EaNTgofsdtK+jeSjJqCIBUGZQwqQe61Eg+z0lLjaa0oypJhELZyRETUq1VDXZUcTofrELQfLByOFFmGd4iLBo2zPi14JIAxWQ9k4YXGJaX8bB3nkyiojJKlmp1m/vzzz3zz9g1aK3GEsQx6lSjocwkb+/7773n37h2H4wtPT19AyVCzrlfE6BknQQ7EEIU9ttEYPdL3E3YWl0Qk8WXTQEJe7StjlriICyJ5VlJWhhBE0CDLyApjMnEZENlsNnz6+MjxdGGepG9brTasVztubmCeTrJgioroDfPo0Maw3e5SbzmnBVlSZS7PzlRvX1voKOm4p+OAD5qX5wt1n8nCs7UQM1TMODz3/OkPn9nuNYfDSZiF3qK1BGWGkDNb8EE4sFlW8MuvH/nw4TNDP6OUnC1t112Z+UbrK3IDK/casWG3uSMy0bUjRhuadclmU6Nx6T4RpIR1jufnR0lc1oYv7y8UBRgjIh5TaNa7NaOd+O1Pv8pQMZLY9gVPX45Mo8fOYHRBXig26y2/++kHTBY5nh/Z73csAYkLyV4pw+l0Yp4dRVGzWa/56cdb2ouktD8/P/PlyxfOlzNVXfPTT3/D58fPjNPIy8sL3juKTLAHwm33SaxTUBYlk51w3pMXwlG3tsfOljyr0Nqw2+1x1nN7K2rJ0/kksw4tgVDrusaHHUplHA4n2rZDX+s1CQbSKiMqEccIl3LBtBhxgCkJqtK6pmlWDMP4laVfarwsMwx9n4IbUyr2MiRckpfDVyOq5FDg+ici5FrOOZYlblrOqlTjz/N8Xe4ui4pFWYxSSY2cvkH6GXQmfawo6DRZbpI7M14XxyGdzdYGfJjJclm2xoAgDpTcX2pJsk0OW5OGfN5HFDHVcxJMFha5dqpPI+Gq9i7LkmGIkMWrejNEIGiid4xuxs0aZeY0t3qte/+aj796wOe9JbiJ2Z4Z+hc265xx+sS5/chsO3bZLZmRQYKKnn56ZtW8wRSKj7/8wqU9c3/7LUpHYvBM88A4zpRFnaTYhnEU6bUAmxP405gkMw6YPJODWQNhxCjP7CRlEzSZFvtIVVXYecb5mb5rmecLIdbU1Q6j4bdf/0DXnVmt9ljbUxSKuhI1VdsOwExV3ZDpgtXtgyTcPH5mVddoI1vJZVKOcQzjM+PYMc4XsqymoErb2JLL5cJ6VVHXDUXeJ9B15HLpZLPTO758/sBmsyb4wDQOzPPMerPFOmGVae2AEaUVVVUzW8/xcKTId4zDxFQLDyJPgOCiXHE8nRAVFSgV6YcTVSVDNVVAlpVX+GsIFh+EiRiCIyISWq1g6MfUMMvvZLYTTbNljKLqMUaa2nk6UZUQ/UBd5hAFfjkMLatVQ56VdN2A0XkqiGDoBxRGeINBkZsCrQzb9QpFzTBOyQqQy+BWZ4RgWa0EXj8NPZnxuOgYZ4/RlQwFlKg6tIpkhSFi8fPEPA0oZBKvtVhrk4mLvu9TmmMuBYYCnZnEg5PiT76m8JggNcPOpqHeeJX7V7Wo+px3whfwgXEYMZmDIKqccZoI1lJWDXleMs8OZyPzJMyPzBRJ+aNRytP3LWUphXPTKIrcMI4xPQQlpXAp4lx6TcvPBKS/f91yWytcpSwTvoG1Djv7pE5d7kFJs9vtBLja9TPjFIneUtVRNq9KXbc2+itGTVkUiYEnUnUVhRmx3WyI3nM6nSkrGR4QIs8vT6zWK6ZpZrInyqKCKKzLsryj7/rEcvTkecmbN29T8monar9pYL3esNk2NHVGZkrGUViOV0VjCnFYEgOzXGz3JoBzgXma6dpTYqKIhXm93vLtt+94eTkyz5bzqWOeIt0lUNcVZbGiroeUWqmoyozLZcI7aE8tWaF4eeo4HUYuF2FKVpVsy4KXjWyZNfLg1BCUR+nAn3/+o1jVkWAj4Y9KQaBVlsDpjqL0hDATvCLLNWHw+CB2Bh8njucnlPLc3e3ZbGW7+vHwzOXoyfOa56cD3393wzxp3n94SkD+ibIoubu748OnT9zc7JmtoyhkwDZbRySQFwVtO/If/9d/4edfvgCatnNssjINIiRI4fn5keenO7LcpHNdGj/n/NU+dbmcWa2FQeLcRF1XrNcbnh5fWK+2TKNLykiPMRllKWehBGpEuq4HBX03YoxhtWpQMfJwf0dTN2gCsx2RRMtcmClPT1c22a+//iLKA5MlhXhBlQrzeR6TUliGeUE5+mmkTJvWxdoqMG9RlgfvGd1IVTVsNmv6fpAivyjI8pxh7DB5jvMzz4cXlJLAn3maGWfLNM+cji3HlxbnZMgk22XhoUaEaZvnJdb216FX1/fXtPbgPW62BG2Zppnj8cg8y3LFGENdiWpSkoeRwR8Ay6BsCZQS5gsKefbpSJbJcqBM4H9rHV3XofUGozO555QElRRFxps3D0mdE3h8fKaPE/PkWJTREmyRGmRet76k17PYIECeu+a6ZdNXheSyeJkmUd7IUF84kJMNzPPx2tDnWYGbR5yTIeU8imK9aSrWm51s2o/SYEUEWUAE72HoZ4Z+Tr8XIEb6Ts7VxR4XdBT725JYB5RVLdwvFCqKytw7qSXKsqCqJIhpGDt83HN7f8fj4xNLMtwwioXyd7/7G47HE0VR0rayeIx4rPX0KU3OOmnAL5eOzVqzWa9omhWXc0+MS3CA2K2VXorVkJY/wuS0s5z/Shu0MoQYE7pB7sP9zS0xGk7HCZVYOSQ2jdbw5u0ddSVq1MullYXr6ChKQW846yQ4gIAPkbLMyEzDPGfUVc3L4UTXzWS6RusMP8t1vCS9r9cbDocT1glGxbkIaO7u7nn/8ZdkYZKhUF6I8rquK96+u2e1blhshdZOKOVxruBy6Zh6zzwG9rs7+n4kyyq0mRhGC2rmt98+cD61aZBruL+7o1nV3N3sGYaW55cnAnKPzJcJrRQvhyNKK/7dv/sveXx8oRtGmlWDyeRrtF3HODqqSvHl8ZnttmK9XmGMZp6EJ+W9gioT+2Ity6FxtChm6pVJAWcpLEZ58lzLGZFJ8mJZmHQ9SnBAVVfs9zteng6AomkWha8o7IdhEBvWV2DwaRRF3zhO5KmB9T5yaVtm67CFJNlKkqdlvS5RSnE+n78KQFt6inAdMmotwWnex8Qr04klbL9Sq4nCY1Fmybkh6lofBKRushS6VmX88NN3FHnBP//nfyUGUbUv7KRhGMWimvAEGkBLkML11FGLdTPDBbGmTfNMnuUUZYXSGRFZmMrxmIZluUkIF3nOa016TrirdXKpH5drUAZ5Kp1ny98tw8GvmmWtUVl2FTcs9rnlnI6JZaUXbEE6PV8HkKC0Zr1uaNYFITqKQurevMg5XS5XVlkMojgTHEykSCpGSYYdZeFuDHVdpIRlh3PyTUJi3lkrzzIfIkqNWGNw7lX5579CR6j0Wo0JKKNlOOeEQ953A5L83ZNlOVVREYwMrqq6YRgHng8Hxo8fsW5BOglfsa4bdrvd1XYpiqWOqqoZhkFU3ZOgVPK8YF3WlIUiz0q07nl5OeBDGnwoueZC9JIUqpdB6WJtTsyuCMMw0ncXVk2D1op5njDGsb/ZMI2T3BPDwNhLirF3YkPuotje61pQK3khPZKPDoKkbHsfsKkPheV5uGAxRJm9hDEoDJnWokDymm+/fcDaLnGoYxqSGILT/PH3nylrRdeNcr9JPhtZJtdnXmQo9ZuooJRO4U1zUk+/BrUoY5JrKt3rATQaHwzn40CRn2UJ0Y+stwVlSm/frnKcC5xOzyhMYsWKYGW73WJywziMqNQLGlNg3cwff/0Za11igBqCh37subQd0Rm0LvBOWHtlUfPzL7+y29cUpaHrzhhjeHh4Izge61BpIdK1A2ZbME0j7eU9l/PIw8Mbuq5nHMYkmvA8PT3x5csX1ps1fd/j/Eyx28ssLMYkFvEoIkWRU9Ulzbrh5fCSRBYZYxg5Hk883N9ze3vH09MzRivWKxEc9F2Ps567uzu0MpxOF+qqwtxLzalIgaPDmFS6Kg3KjPx7TIvTGBNvjhTmFqmqMoWzLcNoGYwbIxZpebYKr/1al8VkDU/XvzJLwveral70Qa/qwgUTcFX+LcMypdJZIGdjOgyudZ9faj+WMLdIWSYkyTRfv9c0WyTFN4LRaCRUI3pxbgUcPkSil3tVpUHgkti7nJiLKjEg1vYsU6nWDkSfkqdTrafSOQDSXw/DCOn1eElqks9BoYk4Lw6wVL6yhAT/NR9/9YDPaMizQD8c6Yf3ZFnJNB0gCkeNGAhOmqGiiJy7T9TNDYfjiskf+OMv/x/68cL33/+O9nxgni907cT9D3/Pal3x5elRrJBap8muub7h3nvmeabKSrSSB4CbDoTQEpnpR8t2+xaj7/BBAZ5x7DFGMfQXTqcPZGZmVW4pcoWbB7r+GaOlSTqfnpjmnhA9RSEsq+At7eXAZt1wOZ8kGMNeyPMN3g0SjoGnahRKdUzTETuPjCbQ1AXzPHI8HoGIDzPzrFnSdLq2pchzxr7DqAaqGe9b5slidBTFQ2YwJk9WVSiqmgVgvt/nqCg3UnvpmeeZu7tbqjqnLMWGaKdFJWdxdmIaLaeToi4rwuwpsp00Lm6iKBXT3DHbmWFsE0emY7aW3XYPKsM6T5/su83Ksll5IpYYRnwIBH8WbpjtaFvHbrdFaWmUjc6YppnLpUu8CcMwjpR5w/FwJMtL+rZnvWowxlPkAQnYyEDJtivPNdMwUVYKowbO52fcLFvaEBU+GPK8AcLV1o0KKGba9ihWseASCNSjlU0HQJbArbJtMzonM4oYXodhIMWGVom1WOVYO5JlGutHkXSnZL4QAy54AoHC5HIIKoje4eMs11xeEnyOd5ZpmFBKUn6ljkvx5oitZdkqex94fn7kZi9Ni6Ki7w3WOopyGYSHJHsW5cwSBCKJeyVLMjVACCo14TrJwB3jOKWmTzg/NiWf9b2ksxLSeeRg6uV1OSesPqVIA2axedjZJu5YJUP3UorYtr0wTxN1JRs4ax3D3FOUN9y/uefnP/+K84E4z+h+4O3bt3z7zbf89ttv3N3fMgw9Dw8PFEXJ08sTwyhNn3UeM86cTif2+1uRgjuRvAcvB7pXAZUlo0mI6BjFOp4S7cpKmltrxVIwzgPeB968ecu3373j118+pHh7iEFDTPzFUvHjj+8IASbb0w8T3knRH0Lg+BLITMCnkzwGeXD2naFpNnz69MzYQQwZRZ7TDS15lRGip1nVPD4/Mc8zzkd29Yr1esvHT++xdiTPixQwBDE6vvlmzzR3rNaaH358Q1bkjEPLdr9Ca0miy4sGZy1+1tzsvucP//oRpWCzXbPbVrx5+w3PT0/88c/CLVUpGatrWza7kqik6Y9eCuLdzZ7yyxFrRaF0PLREFbi9fUt7EVXj6XRmGDtOp2NKd5V4emt7sf4TKfKaT58+oHRKpNOO9XrNbB1VXTIOAsQtygLtReVnZ2E0ZrlG1NRwuZxRyZI9zR23d3sMkvTW9xfGqWccJ3795TfW6w3r9ZqbmxteXl44XVqKvGC73RF84HK+ALIZ7bpewlyMKILc7MhMjjEOpcar6leSd0uC9Qy9QL/rqqasSrI8k5CYLCPqmAr2AWOkGJtFAoWzEzG6hCHwdOc2DTYrslVNnpXMk2WYzjg/sd40bDYN4zxKalgm23NrPfPc4ewr7kIpJbYLJ9yiGCNNU1+bLcETJCxC4k6J8EcRtRWvqZLUSucmsqxitRJo9NPT81XJAJDlwikN0XM6XcjyjLour8NaUR/oa4qbSYuXeC2KuQ4FvuYNLSo2UQfLMkLuSVHzy0kV8Q6CBrQsdpRWFJlJDWRCMaQmOvrI5dTjrbDOgluKYkOW5/ggKm9p2k2ygojKWyv1ikCwwin2IZCX8gxwMRCsE7VQAlfnWSYBYkFscJvNmqap6dqOd9++4/HxSZ7DzgGeSmv2+z273Z7f//733N/f0zTrq0X3w4ePybYTqes1dVPLkG4KHP2Jul5hzCEV64t6UtQfKjEQs5RWLirMAR8mVqsSm8kAJfjI6CdiPKHUheAjZVEyZBajFc7NOGepqpLj4cDT8zPNKufdN1seH4/0JvK3f/fA7e0tH94/8eH9M31vU2J7gZ3lPf/5+QttO7Dd7sjynBg8D2/esF6vOB5fknorpyhzDsezLMSIfP7yhTyXlHYfHGWTYVSkaQpubrfcP+zZbtd8+PCBy7mj6ydMlrHdblDKczp2PH05M3WR+7vv2e8Fp9I0a+b5hAswzhb7fBR1TlNyPB0py4LDzS3Ozwlv0mDdkFRsDX0nqjdrLfWqwcdI13dApOs6zuczLoXQ7G/qlMC3o6orPn96ZDx3bNf7K7jb2prD4cCrEm2xhSuGQeyFxpSsmoYsq4hBM0+B3e6GMaVX101DUcoCcJ7mpJzuUSomld8SWiYD9Jv9HUUh3LquG1DANFmaZoVtHE/HJzlbp17sh1EG0wuXahwHsixPFt6Jsiyp65rVqkFwHvL9FoX/Euaz1M1KwVeYqOuSPctzlAXrJgJQ1w23dzc0dc3PP/+MyRR1tWK/uyeET1wuHatVLcPTeU6DqDRojp7ZWWnGtBJLbmL3+RAxWYHJDTYthkJqbIWxl0lIR5QFizYKraVmN1lOqWW4Ly4JkgJGXa1xy+Baa3VtghfLcJoZLaJCIho0uBAJVs5RHXW6rV/PXxBEigJUeq1ZZhjnCXueUETyPGeeJ7a7LevdRpxE3UQMijFB6ElKNcERGUkbTopJ5z3aGObZMo0jbp7JMsN6sxKUwTBibQBmqkIW19Lfp/TdJJuR58zrwMx74cdqkVLT1BXB2dSMp/dEBax3NOs1pii4dAMo4Wa5II33/f090yRLuJfDy3UZfrO/5dfffqHrRryXBU9ZR6raU1U1VdUwjfPVEfT6rJDaTp6VitcsYwjeCUNxntBGhgELWslaWbw3q5rVas08LxxD0jUuqafjKCE9D292wmpbFSyyyhijWIdDuC65VFqyLyp2tLxesRIaiBnBO7ydKbKK25uau/u3/PD9T0T7v/Cv//wk95pR4DKmVuFGQ2DpxRWzi0Tlmd3ifHEsuBul8+uCTaVhzevQWQYdQY4U8kyGsi/PrQzH0ZzPEoj1Tjc89heMUdSrjP1uRwzw8nKiaUq0Dmw3FVVhxE2lwWSaTx+/JO56JjiDUgQ143hBREIZdbVimkQB/f7Xj4Q4sd78gFYlZVlKuIaRkKrPpy/s97eUZcXQSybA8rPc3NyyXm/xTn727XbHOAz0XYcPi6Xf09Q1dV0yT7OEHObJfp0yAPLMMI2jCEmUIs8y7m5vmOYB5xw3N7cYbfjy+BkIbNYrnBWFcwyBT09PnC8tMTyx391ye3cniuvEoyyKUmzy3svzM9VFC1s+WCuDJ6WuVtkQPdvNltWq4fOXL6DEEWWdY+hTQrUyMvRazpOk1tOZSjWE9M5BLcy9mBZ4QFoWhOQKjEQJCIpSq4W4BGmJWljuLUkLX0K/lFrQLIF+6NLgMjnHogzssrT8qaqaeZpISR+o4AkJq4ZalLfqijWQ+ychY5YbM0pSOz5ik1vtGhEcQYfXwKEQAuM4yOJaviXJryHuwoRAeT3D5S//ev3e/w8GfESLs2e86/BhpO0GikLAkrvdmrY9s9tvkUjtmba9cH87YYzw6R4fP9D3A0UVmeyA8wPWR7LSo40jRCvqviTTXqyA3s0SS17nKC2/CG0izg/EMDDbDu8tw1CwXYm0f5gHrB3I8xqdzRRVxmwH8twKTDszPB8uAqoMJZ+//MpsR5q6ShBbgw8W62b64UheBHzs6IZn6kaDHrG+Q4DceZLqy/Z0niZeXl5EIZRlDENPUWyuDD1rZ25v7ghIfLc0VYGuPaNVhvczd7c39MPIpe+IMXBzu6PrOspS2GDRx+sgYolrn+aZuhF5rguR7XZ7hRWP48jhIHLj3XbPblegzYx1lhgGtC44ns+M44hScDwdqOo1zoUrcLLv+yvgtu8HiqxMLD2PcxPWzkyTyMKDj0yTJSsMqijSf+uuD8gYNc5aotY0qw3jYNlsNqJA6VqyXUFRluKXz7P038wURSAz0CeulHcjRQEogw8z2mxTMbrA5SWZrapyIhZt5LCZ3UidaVGapPSmslSJbeGYrOVyvrBeb5JdLWCMqN6M0ZRVsrloCFaSO5cie9mYkArRaR7ZrRvZkKViwPtI3TSM/QWfoPVayyG/2WzYbjdsdw3H82eyLFJUFcZwbWQ3m21iBNXCzlIC03VOBpVZniXGnIR/ZNkSACIBErIBdEzTKytLrGOvtt3NZs35ck4KBzncy9Jct4ay7cmuvIYF6qrT1miBcHvvGbrxmhjXZSYxI6BphBNSVQU//PgDHz58FPu+k0bHe8/d/R3D0PPy8sy3334DwOl04nB84Xg6pq9ruL97mzh1gWkYqeomBRf4vwDdLvYPpSLORgqjr6qftu0pCyPXd5HhXcDZkcPhJVm3DGVRMA4CVh6GgX7siNFzusggKC88N7cVnz8N3NyXvH37lve/fqJtLbOVh57Yt3PGQRM9PD91lFlNUWjGaeDtuztCdGmzL0nHYlGSIezQD+z3ez58/FWA0zoI10EHijrnH//pb1lvVlhr6foLBMfl4jEm5/npTHu0FHpLXa8Yx5n1esfxeKTvRp6eDvT9JID3vODdT9+x225pmorD82cOLx2rbYEPM3XVcLk8U1cV/+d//9/y628fUCZntVozTB13d3va85FxmPnjH/+M0sJ1BMXT0zMxaqpilZiTW4xeMfYSLrLdrpOyRhqprhvI84qqqggRur5lnCYpJD10w0RZGsoqY7fb8N1372jqEqUieQEqeKpas9uv+fTpPZmpeXx8xJiC9XrH3/3d31NVH/gP/+E/YNYaO09oJSqaiNjXxnHimqYXFeM4MY2P7G+2UrQltawxGX03kClDU68w+tXyKbzNAZTAi41RzHOZrKGiyGj7ltmOKBVlcOYjY/qdaDTTKOqy+4c9Tb2iH1wqcA1NXVPkMvhwznM8nHBekWWam5v9VQHVdd11ozvPs5xXXxXmyz0NXG1j2ujkbXCEqFiA8fNsubm5YbNeYyfPOM4s9rOyzHh4uBXOZN/SNDX7mz11U5JlJ4bBCi8uqYSapsb7cD1XhC+48Jpk+KiUqPQl6bdPnxvQERYLyNc/hw/huiVVKhLcBBGapsFkhmHok01M7Pp29vTpc4wxSKiEPAeJSyKb/L4WlqGwX7LrQFQplQx60iBl2iBwZ49NHC8FzM5S5DLYjzFyf3/Hu3dveXp6FPv+Dz9cAyJALD6//PIL0zSm8AbF4XCkriu0Eut7PwxkWSG2Ka24tD3WTdze3iEJp1Yat/SeknjI7jpk4JrSPI4deW4oMn9dRIk6MqQFTcBasfBXVZ1wIoWkaRYBk0XevbvFe8fbb1eAIjJSFCMmk0GIBFUJB0qwD5HuYlEqJ89q4fPWOWWZc7mcr7zOcZSBeyRgMs04DKKoVJHdfsV2v2K1rtB4nB+pqoyiVLTdidn2KWBEST3ipFnJTE3wrbhGHKz3G46HCzc3dzTNhufnZ5wNkOzXnz99IRIkEXi0jGNPVVW8PB+xVkLJslyTZbJ8rVeOw+mCc57T+cJsk+IgBLyHIjeUZUnX93TDhf1+Q9PUBL+lLNPXnS1FUbLZrPnmm3cQG46njxzPZ25v7zAmw9oOMNRNyTzLMLG9TLx90/B1KIJSiiIvGZ2VYdZsMUahM81qtUY9KC6Xlru7O9brDc/PT4zjSGGW6z1wOp2p64qH+3s+ffqY3A4+2VkNglWRYIg+IQeKoqIoSkC+/mazEx721CI80YqmEZ5f1/XJ7r6EmE0YkwHCz9RaSYqpi+x3e/7Nv/kdITo+ffqMqFMK8kI4vN5P1HWGMZLoW9clRVmy2xfM80w3DOjMYJTBpVCbGOHSdqhkMXPOyjBPL8gCGZLFCMYI02kZbqp8Odc1VbXGGKmhBGMjjoKIpywKirLAO0GZSKpkOrZiUirK/7wqYUhniwwDk8oxNdyLXTNRuJLaJi1Sgly702hREZSeUTryOB84Hi8p0EijtHm15CmFmiUgoKyEOSuK+YFpdMxjSteMMFsZfLYXCcvwVsZN82hleaJ1WmJzHUopLUnTcq46dGYo85LohRlNlKY/y4pUf2YoBeM00XWCkQle1H7WiqI3N5a723tub2748OED7969Y54kVKxpMg6HI6eT9GA+QF5UxKBo2x5FhlYzTdPw8nK8qnVeVc6k4cTCO1xYWzBPE5cLgmvJBPGzDMqtdTw/vcgwL4riKsvFuWZMJn1RlGCOtjvTtpbN+i1/92++5/f/2jN06doyabBxVTlpjBIOuChjRaH/7u13mMQ3324qhumZyymimBLbTBZwmclp1hWn0+l1MPcqaUq1gISjZCZLP7vC6JCGFvE63Fue04uqFEi2fIikxFUvrNzNVvPDTw8UpSOEjpv9lmHo8d5yPp9lKJpnaBMYpgtl3jBOST1vhKFZFAWbjWFK4Wf9MCYmYc6PP/yAijkvzyeauuZ0OtH3HTqLvDy/MM8Vb97eJWb/QN+LQi9GScENIbLf33A69qzXDcGLKMHZntVqQ5ZlPD59FgWcz65LC+dnirLkcrpgVsLrVzpQmIw8XxOCZ5iGhIhpENeEnJF13UCM6TmacTwe2Gw2FEWe3pdTGvRFnPUcjyeaRlLNt9ttWjS/Bv8stZP3YiUV9bwEvmR5RlQys9lsVry8PJNlGbe3NxzPkj5eLsGFVpZqeZaluiiIUCBtXRSkoSGUhSiLffAi2EjIJrlg4/UaYTmvvrKpLlfdEt4U0qBeVNEyKYyR137OvIZwqBhxafEbnMcoRV7Vsoz1XpZqSoERRanCEJRNbt1loPiXr2epgdVXC4kFdxAiiTE/Xd1hwrCV8FKuQbmJw/11wjDLvOuv//irB3yBDhct43zAOWEbiLVvZBzFrrYMErwPlFVF3RiOp0f64USIlnP7yOPzL9RNyTi15MWKP//8v1KVK5wvqco1Ub1Gu8s2J1Joc2UxoDzT2DHPF2K8MNsebRTjfMboJ4pqDSHQvjxSlHtQI237QnX/wIdPf+D+/gEGzzi2FJlB6y2z7a5JSpL8GxmHns1mw+n0kthBDqMj3o9Y2zPNLXVdME8yHDmf5CEjyohZiqCi4M2bt9eNqgBDc0KUQV9ZCkfG+oHj8QWR5zuGcaSuN4zjyDCM3OkbsaSOk6g8JktT16w3W0JwXNoLobfc3mzp+g6FYr/dobXm48dPVGVNngsQXpvA6fzIbrsnehjaA3W1I6Ypfp5lVNsKpY3EZKfDtK5XrNcTWndkWUaMwh+0bsZ7S56LSqdtO+ZJHvDb/QogpS5J4uA4jikpTpIcJTLeA4au7akaAe0qLEYFDAq0NJMRUTHFaNHKcxnOlCVkWUGIEwGRlWdZxjgu2zFJdvQ+0KwqtFYo7eiHE81qjUaRG7FSNJVBmcg8jEQsXX9gta6JeCKysapqg3UD1g3C4EJsxHaO5Hktk3sjjDqlFNvNmhAmihyyxD6Q4kka0HEYaNZrmqbhfHpkt9uRZRld14niRKnrQzLPBXBvjKTk1nWF1jmkIUgIkOdLUt3CCyG9HwtfQVMUZXrPuSqOxO7jyHNR9A3DQAxSKAjcW6VhmgypZLCoiEkRpLWmyLLr91ia3mEYr9voZVCQZTmbjbB+vvvue7z3/Pbbb2hteHh44Hi6IEVzxvl85nA40DRip5hnSz/01HXF/mbP89MTpG07yBD208dPbPeS2Hs4nFgaAZCi7JrqZFRSjkBZifJBkaOUpyjWMmxMrDvnHEZLat/Dmz3G5DLY2N8wjMMVjP7djzdM48D9m56qhm+/uWGzKflP//EX3HmWrVHMGPtIcIEPx094D9uHhqapqKo9TVMzu5GyFtl8VZVczp001M7x8eMnsjxyf38DOLIcnJ+4v99xe7fj9u6GD+8/0HWDpPj6wHZzg1bQtTOfP50otOO/+q++oyxmgj+watY4N3M6X2gvHVpL8tzL4cjd3Z2ERhCIWKbZM4xnmmakawcZYmUF333/LZe2lwGqVfz+X3/PMPRoDbt9w3a34rvvvmGaZs6n9zirIIglgyj3f4hwOBwoS8Nm27DdrrDO8vPPv3A8PbFebSmrCm08d3drJBkxp2keqBtRkm23K3QWaaqSqipkOz+MhDhxvpzoe8f59Axonp8PdG3P3/zud1RVxcPDA/0oNiAZqA7cPTyQFTmHlxdIhUCR59h5xlon6tsgasYsk+tHRvmBspRhzjRNFEXO2mwoypK+b5n9TNud6boLu/2W1UoWJov6vFjVaCpihLpqMLpk6AcgJKtJTr1asdk2ZDJbROsMm9QC82zp+p6yuOHdNw/4MPPLLz+LIjepD+W/kcAF718DNZZ/vvLuUnGSrGNKy7ninXDunvyBLBNIflG8DgW9D8Lj8z6lvnsevzxSVRXb3Zr9jSSdXi4dh5dzSp7laiNetudXaLQStYxz7lpQyRmmiF62wCq+JmsuH0uaHFHUIwJa16xWDUVeCgicxVri03kV8V5S5+JXAxGt9XUwKj/zYsdzV/Vvnou9ap5lyKZNhjGyZdZarEc+CvaiLArh5Q49ZflNUuat6LqB9tLx8HDPly+PCHNu4nQ6c3d3w/39A09PX5jnKdkfDeq1fiQEj4rqqohar9ccj6KklTCVVIgmSHyOIcsVWgtYOs814ySb/3me6fqOxbLY973YeJDk3KZZp8ZS4fyINmJfFIXdZ1nSVhVl0TDNGb//l/c8fh4lnT4zYn0JMFmHigGFNAh2npmnia4LXFo5q+/u7tPvQLFaSdrlZrPmdDxhvePt3RtMJkFWwTus78lyGCcJrTAmY7PaE2PG2L9IWNUgCpr2MqCUoa5y2raVEJIso+t6fvjhBxnKzjO7raSbf/r0EZvwDH3f87u//R3b7Zanx89M05hSLc8EB/mm5uH+LZdu5v3735hmKyzPXGxoWgfyQlR+gZm7uw37/SbViZquHWlWOXf3N2zWFUTP6fRCXYB1wm8VLEfGZrPFWRm0eyfPdFGpyHV7uVyoqobddsun94/SlOiM2VlWuVh3fRoEfvfdt8So+POf/0Se54nJq651Rd93WDuR5ZFVXfHyckARMWWBmy3ZypDnGU1d0/dTqlUkXGiaZrpOBkGbtSQgL0O5+/s3ySI2XM8TGbDEq3opz+X6gUhRbDDG8PnzJ5pVzW63xRjDy8uTDKunFudFTbZZZ9w/7FFKwokul5bj6Yh1HqUNWZVfQ4natiWiWNzFMdWVV8YZKt33EKOkVJuULJ5lGUrLdXw89VRldRVBGKOJylPXObd3+6TWU4QXh3eWkGy8aW9xHegQk1IrKWEWBZfYfkWBmyUFpgz4xP62hNe8pl+KYiymJMngvCy2tEnnb06WizJSIWpGGaRPknJeGKbRQcxSHWXIY5mG7sJmJCKYmsWKi7riZ7yTQbA2Ss7FTAuyINkJp3nGTYK7WCzZEvKRy7AlBla+Yb/fJofQ5fo80Frjgufu9pax7xm6nhgjVdXw/v17slzT9z3jaPFRgjyaVSP2zKgZe0FI5EVBkRfX2jcivEcVFFEtYZAkOSnpXMrFDRMtdZmn5YigPKyzYqs0sugfBmExF7mklkagriR8o240+9uZb7/fsN0V7G7/DX/419/I9IqnpwPjOMuAJOpreIdSck+s11v+x//b/8h/99/9DzgXWDUrbnc7TB55OXzk//n/+n/w9OUDtzf3fGkuMmRa7Ioh8qoCXdLuI2iD0fL8F1ujLP1i8F+p97gO+VRclv7Lcs6hVApVSAGK89xTlVvW25xIQUSYvaTFbVE0lFWGzsAouFwsT597vIeyNoRgqeqauhY+mlKKYRiSg0ecREPX0bWDKPyJfP/TO+7uNqw3NeM4cDqfmacJ7xV1vWJXVvz888/UjagsP395pD1PaJ1xs3vgd7/7W3777QPb7ZZff/2NruuuVvkqYTh8cLRtxzAKmx0UdV2nRaEsp4CULl4mNnpgHCdiVHz8+JGyLKnKKlnfJbtAWKmw3W3x/ghRFm3TNIm7pK7ZbjcYnUu4jZ3J8hzJKJAQxLIqiKWojYs8Z55GqRWUIS8E3/DmzT0+eoyWezvLDUM/peF6kZR0Hh+dnFMxqavToFdpSerVRhOjhO0sSt3lOllWEUsirQz6Rakt12Jifya3hAz/l8Fb/Gp5ke7LsKhc5ZywdsYoEoYqBcKh5IyPYAqDQhx2y/f9+pgF6Rdfh31puI+Emi6LMsXra1XpHL5afhXCLJU76Vo7yvPME5X+39Wq/0c+/uoBXz+eyBnJC4U/S3x4nquULCUbqsUOOI6DMI6eP1GVI5f2hYgkmrWXE+OU4eNIXXraywu7zQOomryQRFw7d9RNelCEKGD+aUosFS1Jq8y4MIC2RHKmscWoF8raME49bfeIyQasn8gyhXeWtjuQZTNV2RBSI+WCpR8u5EVJlmk2m4au7zkcHnFuZr/f0/ezbOZDpL1csHbGziPGROq6hhDSBl3TXi4UhcDZh2GgaWSzN44zTbMSm5m2fPnyifv7u6QEcuRZhSKy2+95fj5yPktS5H6/E6m6EVWWc5bM5JzOF4q8wNqZ8/nEza0UK2VZ0XUXTucj6/WW9XrNMFiqqqGqarRW9H2LcyOZrnh++URWOKZZLlCxKkjq6zw7np6e2e1ucK7ldDpBhK7tWDcr7OwZ+kEOnuiThU0UGcYsiaWe8/nCbrenLEsOhwNKKe5u3zKNlhhmjBH7Xz9cuGFDP1xYNZqu61mvN9cNQVnLtWi0FvVZsqKGNGwsCpXSXA1aZQhXx9J2J5bQkaYpMVlOVRXEaBPoNGddF8yTxYaZee6J0UmxpjPyPBLCiHUT3jdYOzLZkbyoCX4GArmpsOMsnKkgwS9VUUkqmVIoFdLQzDLPPeiJYegYx0lS9qZZXqOdidESCfSDqA6cD9TNijzLOB7PlEVgvXpD30kzWhS5sObsYleUTbkxyCYpL7DO4qxP3D3Dzc0N82xTMqMcglpDDDGlK321UVGSLO2TaiPLJC59CdVYAkX+4nN94HzuJCo+6mQhFdl1JHK+XNjtdkzzzJuHNyglyoUPHz6x321pLy1lSkwEePv2J6pKUra7tqPrWrRRaWuuk4JJ2DreCV9wu9lwOp1RuUYrkfMHFvu2bNi1DsJXyAyzlZWXtZ7n52MqdqDtWjJj0EVGsyopyyqlukLXn6iqitu7hvUmw7oDq3XB/cM9oHj/60c+/DYwT3ManiZVlDf03Uyel2RGzs3z2ZJlAk4vq4LNdsPLy+PVNlVVFfNkiXhWVYExkc2u4f5+Tz+c09efOZ2Ost1SGhUVxlQoCrzTaAqKssIEkziHitVqxbt33/Dzzz/Lmas14zBzeDmAlqHpPE2sViusk2dA153JjKYoZeOY5yVPLy/4qHl8fKFsUpKa9TSrIrHpLB8/fWS320qBHjKC15zPF+7u7kAF/vbvfqSqI6t1zjff3BOixWQlm+0/8PjlwOUykBcFu31Dnmfc3t2QmYyyLGi7C6uVWPiOpxd22w23NzcpKUvON2HHiAUiBs04OPph4Pn5mdWq4Ycff+Rffv8vjJOEfGSZpEkaZ1itVuRGAPQLtFgpCcoR9YU0NKvVBu8cdpqvzawMpjLay4Vh6mnbM6bIOZ1fqOsiFX8ZeS7soqIsqPKG82lgv92wXu95/9tnaYCVoqwyur5HmcBmu0JYUIg1KNkd5nlGLHsjyo98/PiRvh+uQ6olCXwprOB187585Hme1ClJP5KsDd57bAqrAI2dnTCbTFITGFkCEWPiaImFZkkcs3Mg+BnvpZGKUTh33s3Xxtinxm55D+E1yRBIwz+I0af7SpoJRQriIFyLRSnEXn8u7wXcPwyjNNrxVQ2zyP1S/4wxAl32zqKM+osmclEJLu/ZwhQDGbARVUpkk1ARRwqFQlRCRmXoLMPOE5uq4vn5mZfDgVWzIkZ4fnnmdDqhFNzc7MgLuY+22y0fP36QBMaUtKyULJeqqkqKJ3nftNZUdck8jVRlxmA0RZ6x3la4IAo4VKAqa7HYegtR4TxoEyT4KouUVZXYap6uc6zXcs06FxjGC94H8qwkzxXDKCq49jLjw0RZyu/08csnvnzuaM8OUKy3NV03M8/yO4whKemVJtMLzD3ZX06toD/SkmlxBWitqKqCscoZEktRuUBUOdPUE/zI/cMN59M5JbDKoiXPG6bZYefAOFrm6UTfTwzdTJ6VPD5+YZ4dNzc37Pc3vDw/UxQFT8/PTPPEfr/n5u6WdV1TlQVlWXB7f8d+v6epxULrvePhzRsZNuUmqQ40wyiMSMEWRkwmw8rdviGEmU2z4ptvH3i4v8UHz+3tnsPLmeenI0UO83Rhmqwsp/ItSkfqJk/L2JqyKFFKM3QepXOyTFHkwjud0n1/OV9ou07Uuoh1s8hz3n3zDUWZ83J4IYTAPE/8+OPfUNcVnz595Pb2luj8lec5jSPWzuRFyWq1JoaIyTR5IQP/PM9ZuLf393fJyjSxXq9omtfUxvPldF0M9sPAp08fiRHKsvxqoC/2+BCiWCeVSvWxQRuxu14uLV3X0rYX6hQO0zQrtM64u7uFZD0MIdK2PZ8/nxNfMrGnjSy3VIxXhdeizl6UeYuCZDkH5FkgIWZaiY3Te/BBUCWrdUNskcAcLfWQ1kqSoYuMaerFpVNUbLcNxkDfTylt/HXJuzSDMQ35FjGE+moBgpKgkSLPCT4yTzMqLhY4rqoRwbOksymdlUprQsLTVFqGsm0ry3LhO4ul3/uZYYgsIUKiGArXs9ToHKPSksjaq8NJkBaGGF1SXuZi/Q+LwmcZmi2Qeo/znsnO6Ew4zsu5e39/R71qODy/MA4D33//PfP0p6ReleDB8/nE+XSUa9B7QowM4wBDEBZaVdEPHVoZvBUFIDEweFk03T/cUVbCeVNojFpaemSgZ2RolBkRB8QYqJuSYbDMk6PKc8ZpTiIAqd36QZTXxhiqukgp2aXgfaxjnHrywqCNZ7uuiNHT1IFhnPjpb3ZMI0yTYt2sCMEwDo4sq/AOrA0YnfHf/Nf/Df/+3/+f2GzWPD+fOB3PDG1PUWaM48RPP/wT/8v/8p8Z+pEYNHb2jMOMVjlBBdT/RsG0TD7kd/Sq7pdnX+K8qdfwFnl+O+F3Bo/JPDf7nIeHjTDilMEYxe1tye4mo+/FWtr2A8Mw8+7dA3leMAw9wyhDvGmyPD/1DFO6dodZVNGVcN3LjfTgmdFEL4FU6EhhclSc+P6779nfrnDqhMksReU5dz3n9oLWGd+8+467u7c8Pj4yWYexnm6YaXtLVdaUdY0Nlj/84V8JQZauzlnKMqW2qywthuV3fTpdksIrhRqpDIXwSLMsY7PZcXN3m8I8ZAmsMJxPLZkpKYqKshT+7DgObNZbul7Yfy6MaTlRYEyRnpMZIQSenl6oKgkGaerNq8W4qUGJ80/qpMjQ98x2AgIRCQbshpY//fmSAhEnEZt4QRhIFSWhN9G/qnuFZ78sV8Fby5ws6UUpPdM4DtdFyHKvKwXoJWX39XzzSTEngp2vek6ZIqZaSxFj9rqIJnH2Qrwq7XwEP7nr92MZrgUwyqZhoHo9O5NYRLBYyVqy3AJx+RJyjfvoMQZRpMYo7sUg/9QqYjRkktkirL/0zHhVYKeQJf7/YMA3DD2eKW0TFSYD5+brVjsvMrpOVCwg8OlxvBCZ6IYXmqZimhxlleFjZGzFFhR8oOsvzPOF7W5NVTVYe8ZYiRZuu56i/IZhEF7J3f2awEBeaJTPRAJqI217ShtFAUI72zL0ExAp85zLSVKBVqsKF05i5chEjbKqV9gQOJ7PNPWaqlrx5u07gXbWNV17IRI5no/J9ucSZDXQdi3HwwHrZNO7Xq0pcklnPBxkSCBsPVEzxSDvW5ZlvLw8o7VmtWlYryQdq+t6np+f00CuTHavnq4LrNcbVs0aa+ckzT3SNA15UbHZ7mj7gaYpMJlhdnMCH3varudyHiVxrpBC9HTqCaGl7Xt2kzRNYkOUgikqKUxubu6oqpqPHz6yWUtS44cPH9luN1RVgdIw2wnvHVVVymE0zDR1JTwfLEURaduWYRjElhE1z08XgrdkmWzSxP4zMs+iWBmnlsl1FF6iyjUKZfJUcHY4b9luN8x2pChymqaEKPyqafYY3YAKzPMs2+Uso+tGnI3khQUkaXR2MzrLcd4ScMRgyXPHPE/EkDENhvVqzTx59tsVzln6rkWbgJsVRkWCd2R5gExRlkYCEfwEOPp+ZLM2zFYGbgFJJyTY64NQ5NFrurbj0l7Y3+woi5IYa/qho6xLaYqtw82OzTqnyDUXLwBvZxXOykZ5nCylNugsIzMRN/dkjVi/Y5SNrk+snxgFACAwZRlmuRgpM321OagQcDrI4E9J02rta2rcoqwBObSn0RLS5sfFwBxsGuoJSyFEnaxqAaUNHz995niQIVnX9bx//56u68jL4mrbnqaRsir405//wJcvn+n7Qb6/lgPy4eGeaZLGTmtDsxXGXJFlwpUymu12xex7QoyYLFy3bHkuCdDeOwgSAJQVxVWlMPQDs51Z73dYK5JwO4/EqLi5ueN4OjCOLbOdiDTMc8t2X3E4nrmcHY+fZ44vgaoQxeM8epSKyT4fZBuGEuacUXz+PFDVBqXXTJOhrHI2saHvR5qmQtgTPXWzp6oy8izj/fv3bLYrnHM8P3fCrcpKyqpExZzuPHI5d2R6xeH5gp08eQl//vOfaZo109Rze3vLu3fveH5+ZrveUFQFv/72C8HJEL9uKv7p3/4XvByeObw8Ysye0+lAiFBVipvbe359/4njuaPrBgIxKT8lLbnvB9Roub3bkWWRN+/uOR1bpgHu7wV6X9fybHn79o7JPoMeUDGiVWC9Kdluf+Sf//kPWOdomg03N3usm3h+fsFkYtmyzlKWYus7Hi50l4FIxGhFrivmWQb9ZaG4ub3De3h5PnA8HIBAO0hQzuPzM2/u7yRg6fmZzWbDt+++xTnHy/GZMI9UlYTpZFku7DhNsvuIgt3NlnEcWa/XwjJJSr7tdi8Js9Hzww8/cnd3g/eW2Y64BIrebDYSLGM7nl9a3v/2kbaVRPYqpfHleQqSmZ8p60yaxTxDxcDldGKaLHW9olzt+M//8YMoUaIo5ElJYotCL4bXwdkykFyUc1lS5kqRJ4WJ92ERxF3PAmd9agDlPNCZlyIMSRC21iGMVIV3Dufn6xDduZCGsBKGs4SfiEVOGsnXja6kKC4LxbyQwjn6ZCuKiAok6KRqWMxuX1uOltctg0U5wtR1qCefI58vtlSpaUL4y+ZmgeUvasMFzSG8JSn2XQqmiCriXbJw6FT0p620yQxFWVI1DefziRAiRS7P6vV6LfiBYDFB8e1373h4eODTp0/XdFWVzmatTRo2yP0HitVKIPR1XVOVJXVdiH2yhNEqUI6qKui6jnEaaJoak8lG+/ZmRVFk5HmGdZbNZk2RV1wuDS8vL9zd3bHbrRjHSUJr/ESYSVB9YWmG4Nnu9ngX8SFg58B+t6WqS1CS3GlmsHYmepMsOfIeF4WEyqC8KASUKIcWtk/VlKw3wk/a7zfknVjn+7FjthO3dxu2m4L20mNMwThOzPOEVjlaO6bZcTl12DmQZ4UgPeqc2/0N4zAS8ZRVzv39Ledjy08//fQXlpzNumG9WdNdLvz22688vzyjtGYeLfv9Pi3CPJeu43Lp+OOf/8zTyxHvhP+qEmvIWofJYrJBBW7v7lg1K+ZpZJ5GyqJmv10RnBXrrDKczx02KYsUwv8qSwn66boeawN9Jwm10+Ap9zUvhxemaZSFRJDnv/eOkNS79/cPlGVB3VT4uOfp+YkY4fPnT2htEkM5p+0HprT00UbjbRAsQa7Z7rZUdSVDiyAW7r7rr0unsixZrcSu3fddsoKPr0phY6grwdG0bStKNLUoHxbgv1wDziZbeSahLXmuRYnlLFqJuqppVnKehXh979r2Qtd1TONMXVcsOZBRCXPzfL4IxTO+KkVelx+vad6kP1+QBsvANoQgnM0oqJRV09A0Nc76xFsOKYiiluHt4YVh6HDOUjclN7db8kJC+YJXqR6LV7VwjK/KkkVVuyxZQZpJ79KAxaekWpSoRuLrsDAmJVZI6hJxUMoQz80zdVmy2+xo2zYNp9P5GGQo+LU7Y8HUyPsgLpZlIfN1ANXyXon6WZrleU6D+UVFA1+lUKZ/+gBGp3AUSSqvq5rs4Q3nsmUaZOg+TXMaDsDz8xMKuL+/Y7vd8eHTe5ybhV87jsLX0sL19d4llI1icZpUVUXXCydVluBJTa7lISLqbk9earIMSYxVryGMIQacn1O9Kz+Yd9JXmsTcU8DsBrz3VGUNBJwT4YAkbUbqasWbu7dc8jPBK9ZVA5S8PF3ou5m2s1zGiTyvuNnf89//9/8DSikeHx+pqhVZJQuqYejo+57d9p7/6//l/86bN+94fnrin//ln/n85ROPj48i2EjP+teEVLlGInL9vAbBpKCmNHjN84KsMEkFD6vNCq0jLrT83T+84/vvtjw9fsA6y3q9Sk4nyHODNgXDNLDZyHJrmiyn48jz8wW4kGeGm/0tdhok7RnNNFnGaZY31kFV1hitQWVkmWLdbMlUycP9d/z623s+fvkTD982PLzZok3k3Tf33D/cYnROnlV8+PArz8+HpLIXt9Q0OfKsSEtLGZCt19urgt+6QGYytNHXc0VSzlfkKWwoL0vqVcP5eLouK5RR+FGGUlkKLFqGS3me0zQNw9CzJFFrranKRga540jwERDb7G63E8dfP2J0jjB0e07nM0WRpWs6pHtP6mHiUvdILWetcCOlfnHyPA7mGoTnvb+6uYqigGDEUWjd9Zw0X/WDUqflaJ2lWkSSo7uuT0xxlwIruZ79y7mUZQaj5UyTIbonRUqnhaScczop4PK8IEQPzH95ton2WtygiS3rEBzJnPjdi+PMaC0DWURE5J27roSvZyYiUFn+QiFsPWMylF7OY0Vu5HX3w4gHdFzqbWEuLoPAr4eaf83HX2/RDUuqlksbViP2nHGkqTdX/7t3nqZp8N5xvpwoZ1Hi5bkEQ3TtGaU1ZZlRFBnzPJDnJE/5iCYnhB5nI+M40Lc9+82WaTwLU80ZzsdnlJFG2HvhnK3WDc8vj2RZicIwjheMadLDTdhjl1aA5MrLTTrbyG59w+3tDc+nI3WzQ2Hou1aKmPbC6XTg5uZGXn9KQgrBkRcZMcjX8emwCz4kDpgA4Ou6TsmfUBQlp2MLCAD67u42Mcocp/ORGKS5OB3P2Nlxc9PQNKsE7ZTGpu8GLucWZy277Za72we895RlzTx7zucTt/cbJLUrJ8ty+r7leLiw294wTok1hDz8xDYmiWfzPF+TVvM8T/JzjSKDqHl4eJse4FEGa8keJQwSJVD64BmGIzc3N2iTcTl3WDdT5DlZVpJlAe8iZdGIZTQ1SEUhCpG8qNnvb+Q9c8L68cHi3CyDLAfeWcoih8mLrcUUSXkmcm9hswS0LkRJMEij4WzA2UCWebb1hrIsMJnCBJsOL0eeZ0kqLQmIywHufYLdT8LLUSoCQSxVeUFUHq1MaoQsSnuKHFHoDWKFKQrZVnoH1mWEuESyLwoUjw+Oosyk2Z892vx/mfuTJsuSNE0Pe1T1zOeONvgYETnU0EAVuptNUASCBbkAwQV/N0QAilAa3V3d1VWVWVmREeHh7jbd6cyDqnLx6bkWyW1iAROJjIzJ/Pq1c1W/4X2fN6hY9FLUObbbjUi+vVgF8BY3vTas0ziTXNNFB/JU0bRnktRQVwPTnKIdRJFYfrtWlHnSO0uBKsofOcMkjGkO221YakgpsvXrdsg5IgEgYWfwWg5jYSFGRFEiKr6wEFlg0mW5omt79Dgxz32w1ciB2/UN5Srnw8d3JElCVdX0vbAsPWIpWeTOcRwF5pfAvQWcvuXb775hHFtW64xh9FgMSaJx3vHy0gm7IhLQ7G5fUhRJiJoX6D3c8vz8jLWWt2/f4qzl6emFYeh5OTwAiqbrSJOYw0tNXii8i4ijjK+fH8Bpbm5S4iSh66dQ4A+4WeFmGOdRgLiRKAKtm+j6gf3dhtU6p6ouoBzrdclqXQg/w/WM/cQ09RyPwt4ce7lonI2pLgNdd8JEKUM30NUzdvZM45mqamnqke16pm0H4jjh/bu3vLwcKIqCaRx5Obywv9lxe3PHdrshTWJW64Kbmz273YbDekVVX3j//h2b7RYTxYyjZbKKp6eKKNKYfgIfUa4K4enNLfv9mr/+V79mtcqJopSXMubx64lxtHgGjqcLymmKIub+5i12HtAKsiIDhdhaxxZtMj5//swwjNh5lqZaydVvrWWz2sp5f+mDjV2HrXyHnRW73S3r1S2//c1fUxQr6qrh+x++p+8aPj88gJcEvdPxwmazomtasiTh3bv3tG3DpToFRqEUZUuar/eSNruoDJRWtE1LXTeivE1jsjxjv99zd3/LuT4SxcJt0Tqj78Xustmu6fqWYeixfgIm2q6XwCUljM27uzf8xV/8lv/t//O/YCLPan1PmuREMTR1jbU+MGQ0eXbL/CcBO2EI5xdFyi+h7FxVX6K06a93n9Ji8pLhnrpy6JYm7som8kto0dL8aaC9Fqlpkol6uBXbeWRiLBNLa7cU0YuV7Jd/vG5aF35RJImOgCbCoZYOlGma8cqhwtnm/as15JcllfqFTWLZ4i7/X5hGobAMRd3ys5bX86dKB1lATaJeUK9sLB/g0xAg1B6INCAp60oLwmIZRiwVpCTFRYxjKmzjquFv/uZvWa/X/Jf/8vehzsgCumPAeinQ4ySSARrw8nLg7du3JGlM1wpLKC9SmuZAkkKaZZRlgfM92qTEsZaE8FQGH0WRCVIkE1t6dWnQWp5BCWw4BfutsOO0SoiDxd052bA3tSj10yQjSbrQBFsu9YU4jbjJVzx8OYtFjyWhOSIvMiKjyfMwmAyL5UVJtTRju+2eNE2Y55SuH8BHopYfPNEuZ7NZcTwdSNMsLKikid+s1xgVcTqeSVPNbn8nYRJRyufPX0hSw2aT8fXLT7x7+w2rVUlZlvzLH/5AliQof0PfNtzsbvjw8RuMVpKCjaUfJhkijSP91PH4+EgXAPnyIxaWpwuK/2kSnt12k/L89IybW/b7kmkaqfyF/f6Om9sN82Tph471umAaZ+YJnIvwLgZv5Fy0immUkBmvZFhh7RQW8sGaNYqaaJpGxmGpIwd+/rni/fu3zHZms9nQ9yOn05nbWwnZMMaw2Ww4HA70vaSWj6MservQsAqypQ+BK5n0AGnGOElzu5whcRwzjRPOepyX2qttWxky64gsy5gmGVwXxSo0u6/DpKWeLlcF49gTxTKEsXYJ5lDB6TJJkFgnNrbn5xdJoo4Fy7Bebzmdzvz08+eAnRF+06LweA0MENzHcjYsat1lIfKqBgk2xNlj54nj8YIxEUmS4p2WkALvsLPjfK4YR1ECOQeHwzE0+Pn132+bnqpqwhJTY0x8HZItZ8yyWFjOpumqPlmGkov9TMI4FoSLiHAkmAHlAyJLMQwT43i8qhdfFyAhIfOqdJZzUF7Lgn5xmKCI/uX7tLyP4qIIysTw/aZ5DkMvqTW9A28VWhnwBq1jjJYa1MQxz0/PvByOFHku7qqmpqoveDxpIqp+H3rS9W7Hp58/8fT0RN8tYXLicMnyLKgXVeC8K8qilMFb3xEZQ5bGRLGmXKWgvIRhaUeex8wzQRDgsXbCD1JfR1FEHCs26xLrZvJsJU6nuqYfRtbrTXB6CU91UVZJ+vtIHEfUVcfl0jF2AybS3N/ds93saZqe86khjVO+fjnQ9zN5kfL/+L//T/zNf/tviGNRTe33K5yDeRKOoTGK/X7HOM58/Pgdz89H7t98oFztuLnZ0nXChfvd737Hp08/crlc6LuefmxxyuEwOGuvz5kEyWiMFgslius/d96GQaWnXKXkWcY//eM/Uq4Ud3cbrOuom4k0KUPQzSyoLCdLyLJcMwwVbeOJI8c8ery7MPRzcGJI2M/QD7x5e49znsvYMI0zZZGglJGaSCc8Pjxyc1uw3u3IV2BdJ9x/pVhvZKk2tDXW91wuR9arW6ydQ29sSXO5f29v7jEqwqgYO4+kaU4Uy0DTes84CdLDGMPlcmGcJPV7vd78QukvC8z20qIiHYbfYrOXwaec8XXVcA6iIsEzaeIYmqalyHOidULfS530S3SIKH6FdT+NswyUM1EC6shg3cw4TbhZBDYmUuRFirUj63XBX/7VX/Hzpy/8/OULWVoSx4Zh0Oz3W6ZpCk40qam1FsWk8wqNE1tuqJkWLvEwTHTdEbwniuMwm5CBqKRXu2sNKniT6Bd/vWCdDMsg0tpl2RLONuXxiCI4jiVsUnAzizru9VxGK5RzcoaH8R8IR29xpC3BY8vwfVEoivJZ3EBLjbYopt+8vWOcOtIkQWlPpDVFUdAPM6fqgp0s8ygzCHetn8X5GsV/fkTGn/0d+r6nap54/+GDcDyGgTgWnpf3nrzIcS5mGPorZ60s14DIEi/ViTRKmUZpvpMkD1vQnngP8ezo+iOz7ej6E+e6IstSrO+pmmc8oqyZ55q+u4CeyLItzmrmyZNnhsho+r5mGkeUnsPUVn44XQBS17UkfOE1ddWRJTNGy1bFTjNJnLMqV3gvFkscuFm82/M4X6PpvfVMVg6IIiuoqhqFp9gVLLD0RWGw8EI2mw3H40GisO/vieOY4+l4tUFppbm9u8OrE+M4cjqdWK1XYRM2UxQFiyxfwhbWfP36lXGaQSu0tsSpYVVkrLZrplH4SOvVhrbrSFMJBEnTVBJmxon1ao2dLafjiSRNr7DOtm+DnTPicDgFoPxAnMSM40way9BAQgyCAgyFnRz/8ofvefP2Lcpoum5gimQgI03dQFV9oShybnYb0lTse4ulVz4Anu1uzdqIkmocR0kDNsvWQSwUwzQIX2ua0DoGHWGnM16leJSkaBkJZUmygroeGEKB7ZyH2QUllboOOS+XGoVhCs3l8/MzAOvVDo+j6xqUcqRpeh38eT/j/EAce6IkEsZRrHBqYr2NiBMPapKCwvVkeU5View5jmKSLA8Fm77aXbuuJ4o9RVmKQrKWy0SHwmwcBtneo8MgUA7CrutI0hTnLXEMUQJuHK9MpHmegtrDXRteHwpX5yQt0zsw0WuikFitpbBaDj1nw2DSvkJ2Z7hymOAXB2D451cbTLDINI18Jhdg+2q14nwmKIaEIaa15v3795xOZ5qmJi8yWdbZma4Xu2EcxSRpQhwnHI9HjInY7bbCI4oMu/0t/XAmij1ZatjsCpq6YZpj0lSRJPkVll0UeWBaCDNzmnpubm7pu4HD85FyteHu7g1fv37FzqJY2q4lmRA/o4jpW0cUQ1mmRDrFRD6whyZu7nLOp5F2lAGYMQYTQbnKSNNYOGwMpGmMczNRrPC9pSjln4/jwH63o+saJjsxDh1xnAKycMjSkvP5jHUiuU/TjKFtaceWNFlRFAkf3r5hs9vzww+fmKaO27sbmrrlw4cPRJHh6fEBa2dW6zXrVcnT0wM/f/6J4lOOc2LzzrKMth+Y3YXD8cIPP/7M169PLDBmrQ3TPGFmhXOWNDN8+PhWeKZ2pBs6bm8KprElMhmamOOxx86S5JlmGVm24XB4oa5akixjs9lwe3vHjz9+5XCsiEwmxeuoyHKxN06zpW2E9yYqBChXJaBZ5xvs7Pntb/+S3/z6L8GLtX29WXF3e8vPP/cURcn5dGa325LGCVmasNmuubnZCb8kjVitCrpBwlWcd1dFwdJQCmQ+pg3sqNnOeK2xOPpx5OvDV9IsYXYT43kgjiP227Wce+sd4ygb9DSN2WxW7La3+O9ifv7pkZeXCl3GFOUapSOadmC9zoGI4/FMkqqrqjBNJbCiruWsWYryZbu5DLKWonPZ1f+yaV0sskDYUC5MvsDr+cVmcwnZsVaaP++EcwkE9R5BkTsEW50MEWfmoDyTrm6BHC/n1HKGRHEsS77QAMzzxGpdkqalhNLM9rqYEsuzDhzKiaGfJUhBLXfIkqK2FG6viIHlfVmKTFliuOvmdvl9y/sov29rffi5y7sh9pGFaaivi43l68oTcxa8ITIRbdvx6dMnsjTl3XfvWK+3/P73vxNVZkAKkEFVn/jjj9/TdhLCFceG2YL1y2BWkkjzPGIYB969e09R5BwPL/KetGeGMaUfK5SxZNka5xx3d7cYYzidD8zzyFCNjONMnn2krrrwnEfgDW1bkee5AMUny3N1wtqZth3RygfumFh0FBHHl5YsSyUxWidiKdZwf7/m4zff4lzC0P4jdTXiHSSJIc0MOvIM40DTVESxIUsj3r67I8tSHp+exRKpPdvtjqqqwvAOjEmIjEPriK7tGYaGpq1Zr8swCBQelFaO9Tolz2+IdEQUx2jjGOaab3/9XlRf+ZrHhwNxrPnjH/+Fw+GF3W5LFyyVdp55en4mSZNgf4Xq0jAMD8zeCetr7K/KeWvlDwmgk9BLbWRA7pyn7yecn0hixzA0stSZZ5qmIcvy8Ln22NhhjNSOl1PHOApuoe972qZDqwTv5NzZbNbB8i730jiMYTEhy7t5ljTcsZ+JjKEfBk6XM+fzRexe6zXzPPP8/ESapPz2178JNZDlcHhhtVpjoi2HwxOXy4XNZo1W8jlcuFEgSq55thyPUvfm4XtL2E3HMPShBjLXumAZxmZZyvn8yjuS5YKXu1chNuQoZZp7lkCD5XzK85y2OdP3wkEDaRrff3jLbr+nqTuenw/yvUKhM4dGbOEl/3LIJ0tkUTe/WvJ/Ye93PqhTpLEchok4VhhNqLNilJsBzTzZwOaSUKJluVFVHc6BnXwYwvnrUHMZFiwDvqvC2nsUsgSK47CkjkPTP3us0OTD6xLVO+oX8IJwLYR4IOk3JgkVe1UMLmcg197GzrKgkARgGa5KcJsoh6ZfLJj0L0KTRFEE3kvi62zlA6IXdltQVC6hJqBIs+RqvZ5mS1VVaGXCmZcxzyLAmOaRNI25//iRLM346fITfS/PhtxPHh2spXhFnMThZxrjQ8jJZrNh5Qt22xUe4YArZbFooliGgtVFBtnrTYnSGXFYfseJPBdlmVPXNc7LQnq3u6VpWuq6ZbvZst/dUBQlh8NRBsLWEZkEaz3T9JosLGIOCeQqSK8M63fvLvz9f/kXximiLFesNxvyrCBJJB26qirGvkcFLtkwDPzud//Mv/t3/1f+9b/+1/zd3/0dbduyXhe8ffuW7777jn/zb/4N8zzRdS1PT0/8/d//PX/3X/+O81kUaEbFouD08zUJVsRgouiaponIGLpmJMtS2mrkh395YJonxlGz28VEcUSeJ2SZsIclTMdQlCumaeZwONG2DUVhWK3WDMNEVbVyP6SrsEw1zJMgw5yVPsXODlzHu7ffEGnDH7//nijS3O/u6ccztpnp+ouIUuyAc4IVE1WuZ7MtWBUZcSRnV57nTNNAHKdsd1vmfqZtBTERxxlMUmsrJXMSySGYieOE280uJIWvuZxr4ViamMg4hnHEju6KOkizlNnKAqYoiuA+k/P48SBKVBPCDaMkxs5ecDB2DkuVGFUapnHEWrG6C95gus4kCGdIkiR4owXJMc9Mk6IoUv76r/+Crm+wdmC7LVitdqRxwQ8//BSWDhkmEmdTlmZM84RyonjzSl/PiOUsEhdCyBoYRQkJiDpe+dAvLoKPxdnAdWHvnZchpAn1qYKFiTxPYg9XSmOvfGTAvlp4lX/FG1jrr7xIbULqdUj0NkrCNZYkexUCM39ZI6vQ0/4pjkXhUFSXhnkecJl8JsZxpCw7bm5vKPOcem5BSVKx9Q4VXh+a8Ov8eV9/9oDPWnuVUa/Xa86nI85CkZfSqHsV0vB82AJcKIpV8NF35HnB2I+kWUY/9GS5yD7HqefLwyd22xua7kip1jTNER1Nsu30jqp5YbO6IYocw1QzTh0gw4V5nPHWMfQdqyJnGgfmuWO9SsWbP8Pp8IizmjRLKfI08OKaAPS+JYoT8qLgeDgy9JY0tZSrMkyfxwDbt8GeQ7iARzyw2+7CB3EivoaMyEMkIFlpVNqmQSlJw1yYInme8+H9Bx6fvnI8HtFKYNPGCFNgtdpgtAqqDdnQJUnCHBJRL5cLWhtubjYhAc8xjRO9ntjvDNYKE65rxco5DANZHon8uR9pm4FVuWHhHw29FNer1Yo4SsKAsOJyrhkGKYqU0qzXa9nWN91V+t8PE3VV0Q8j7969Z73ZgFKSCtb3KKXouyFsiUVWnBclXS+hIArDubqglGKzKdkSMc0dhJjyfp7IVIz3Fus04zRxqU54NaOVJ8linJvI04zYKKaxpRsGvJ9JU0lEXa9X9EPH5VLRtBdu9tugDDvTDz2rckUUS7quUlKgOJeG4s4Sx4bTaUAbRZ6nVNVA246kSRwGV5McNCaI2e1AkhRMcx9AnzPzONA0PSaSosYjG6tu7Li9vaOpG9pWGnJtxF7lsHSdbG+3603YlhryVDF0Dq9ka7pcqt4KwFPFoiCY7YDRGau8ZBxnumEgilPiOEEpGUAYQ2giZburQqMOUtBpJZDbUA/KYM/KZbFAnr0Oh6/neqgqXq0tRutQ9MZi+Zommrq+snnyPOd4esFEkiglNrKEf/mX3/P8/Mw096RGhnnTNU1MM0yjPGvWEkcRHz58w/H0IufC0FM1E3EisPV1CCEpyoy7u1vqpqJpWtq2Y5pmNpstj4+i2FuKrOenC7e3dxTFluPhJEOKfqaqevIs5XC4YGeHiQxtM9PUE1pPaBXTNB15aShWhu9+/Z48L/kP//6fGYwGZYKlKCHL5fN2PlesN+lVXWWtp+8GmuZMWZbkeU7TeJxVaBIk/jTCztIkns8VeV4IB3XoiPKcuzdbSZL1Ee/ff2C/vaEfR379m3f4GcaxoWsbyjKnXGX8wz8+Mk+Oj+8/0F4qbu9uWW+2ga/ac7k0tN3E4XTEec9Pn75gZy9cQi1FklycjnH0PL+cuL3N+frlgXnq2Kwzmrpnt99wf3eLc2InuH+zYxwcT08PmHiNUjd07USSxoxVSxTn7Pa3/PjTE0pFXM5teIZjIpNR5MIoUd7grApNUYR3mrLYkCY56brg44dvJaylaTifK9JUlE7GGHabHdMoSdW//u67UEB42rYRnmUSi2UnFHDrcsOy1StWOWkmjcfQBehxmjHOE2ma0PUtaRTRJYYki69BEihHP0xBpexIkqC8bPuQ1JbRtjNJlpLlE+/fv2e/v2G12pKlBcoYur4HPVKs9mS5QN2rRs6MaFyg54tKDhYb7ev/virRZFApKu9lGyvK5lcrRRRfjWuh6BLVmJ1FEey9NPWLGneeAy/VaXRscH6xmwWVjJIiSyn5d5et9DJUk0WdpB0qXtlRddMIh+bKABUlrNJOBgdGY32NVoJo0OpVuSi8qMAV8pKUvPzeF2WyvB8S+LVYa0CsIcbooKQWdpMMMSSMxDvQUUwWANdSG8n21rkZrbTcEc6SmpjddkvbNTR1zXzdwluGoWOa5bVkaRaCv04oHO/f3zHPM1Vdo3AkaYT30tR3fSd1VpqRpzmn04nD8wt3dzdBQWPErlvKM/j09CwK04DZAEdkNO008OOPnyTBb1bU/UCZr2nbka6dmKaDqHi1Qasc62a6cSBPxdL0/FyRpgl3d/d0bcfQjWgto2TnZpw3DH1D3zahZrLEkSGKHeNUo3SGsxqHZ5wmUJ6u71lv1uRZRpYkaBPRtS2XS0Xfi8JgUVHgF2bkRJanJIlYkdM0YbvbYALn73g8kWcFH27fY6KY4+nM4fiVN/dvabuzLO0SQ3s8cTi+8Fd/8Ve0VUOWZjxXz5zPZ4ZhoOlaylLq3qqq6KeRJE1k0RKwDHGkSCJFnEhd53Ey3DYObWayPOXtmy2bXYpWM00TOHCpqC28czR1x3luRKWz22KtZp4UddVzqSrGwZKlwnwd+oH1eheGZDlxLEtba0fO56M0YPpVeQHi7uh7QZ4URc7T85MseOOY/f6Grus4HA7BhpXi3Mw0yzljIhOargksQekLwzCSZobD4SDqllHq2CzLuLu7CUFaosa9nCvatmO73VIUJV+/PlwVw69qOX4xYPPkSUEcxTgr9lw7O/pWliWLtbXrOpTSbDYrPn78gFIR33//PdWlvQ7P/GJp9WG479y1hoGltpFewFyZcosqNCCYkbPMe2T57a0MWPzyvQQTIwsQc03InMaAMAjnhFJR6AvmoGRc7jVYlqPymsLg0b82y0mSXgdu3nu8kbNKKVEWynI22M0WtaIPKj5+cVUs/7MoFNGoUHMunCwB2Hvwola2swXjhXvnwsAu4AsUslR2yzmsDUpd4ybl13IaHxTjy7LHe3B+xjoJkiqLkmlsiINbabHU7XbbsHydidOUN2/vORxPNI1w3pI0xntJCHbeXQchq5Wop/uho21bPn74wDyP9H2HtRNpZgKHuyPONHm+wkSaLJX7d0FQZFl5DTwA4a8bndL3ElhoXUuRl2zWBeM483J4kNDKGRE4eBmqSv1tcLMwba2VO+jLly9h8Oqx9oRRBf/23/5byvKeu7tvMNoQmSQgCRo+//yFp6cHsuDW2u22/NVf/RXffPORolihteb29ob9fs/pJAmtm82OzWZFkuSU5YZ/9a/+hu9+82t+//vf07YtEgjR8ennH7BuYhqHMIyWQVK2zojjiHHoGcaGJDHMU0Q/aLIiwflU+hQ38fhwoKp6qQWUBd8F8c/MzU0Zfu/CSS2KiPWmJIkzjNashvi6KOi7ma4bUXHEzf6W2GgeH75ijEcbyzBW9OOJNBLExzBYijzDmJiuO+CcuMvWmxUaTd1WbHc3aGX46afP6EJsnNN1iCX4oGnq5HO8DPy1xiNhUHd393z+/JlPnz5zf3snKrYoZrvbk2QpTy+P9ENHd2nJp+yqwtNGkeUpVaVp24FxmIJbJCNLY7SKKFa5cN0mQxTHYXg7kiQRdd1hlHB0lRKRlfMOo2W4FRmNV16cYsry7v6e1arg4csDdVORZxlaZ2SJASzaONbbktPhhPeWsizQCtab8pqc3Qdshf+FsKOqmyD+kTNwduLGE8akiAB0sLguQ0hRX78uVkBqybLIZFmKCKdcIky+YRgwWpNmgsqZJllw2vkXS1kvyxfPws0M1asSAYsKqmIflHvLnwnn5ZX37JDQDK2JjQgZlIKm6bHzxNjPSFCu5zI31HUnbg0fpMdhJrKEzzjLtc/+c77+fA2g90zjwMvTI7/97V/I9HaawqEmyUxFIalTaZIz9MKd8y6ofRyYKLoW/y8vL0yTZZ5mklQR3xgcDf3QkySOcXzdInk/0/ZH8ixF4YOFceJyrtnf7Og6GSIqHeGcsNMWFk4cC4iyqoRJMowFUWSEDRBFDNPApapQOmPoNdPY0TYT8yQXelO37HY7SUCaRvb7HcPYcbk0smVciw1iVUoDfDxUJImhHzrSRFRyiwpKLK3ZNQmvquTgy/OcJE7oupHn5wPb7Q3n05nWNhRlwZt3ksQrUGnFdrtD4UNynmxJrbMcTweM8aQpPD8fxAoxW5IkoRsamSAHS9XyIfj06TP39/fsdjeB0STDPpRnGke8V2xWa6ZcLE/D0Iu1VBmGUQqn2SoSY9BRgnU9660EgzRNIwqAvMRaeT7k9yAHzuF4YrUqOZzOJEnKai0A1r6feTmc8W5gtSqIYk0cGbyfKFY54zAy2xETGZpG0mwVIySKSbVEkQVm+q5jnDxJkoWhqKauapSCt+9vZJMbDogsS4hizSoqwiAyJk11UJINWDeH5EV/TT0qy5Jh6JjtzJJuO04jzB5tPbMdyY0oHHSUBsXQmWE6E5PQ9YPY06cRpRKen854qzlfWopSE6cmJMcqmspSlIYmFVub9qCQhLYkjWi6EecgjmK0mknSibyYOB6fMSZivRIlaN850nRN38/M80iex5KIFhuKIglp0qKuGcdX+bfAp4WNMAwzzoraz1lRljg8SZz+YvM0yVbZSRiKB2JtUMG+9+bNnVh8ui4AyQ+0XSIBJEhTUJQ5WZbz9eEr613JzZutDJH7ARND7GNQiqquaFVDuVqxLkou5xMvTy/keSpJj9qKxUtpirLk6eGIZ2azWYCnjihwi3766fP18n++nNis19R1zzg8Ms9ws3CVXCKLBiUN6dBbhmFkvSkpi4zHx2dMrEiSmOoy8u79htvbAjcbyiJh7DzeKkxssb6nG2ST79zMMDfc6g239zdEsTwXMsjS9J2oM6ZZ7KB5VuAsnE5HtLEopZkmSNKIvFiHIYZlvcnDNk1jVU3dn1nvtkQmw89QrnOenh/5+7//e969e8/T4zOrck3TNHz5+iA1d+AGPT484VEM08QQAP9Lmtw8ywU3DI44lq2eNorTucM7RRxlNFWPMY62rVmva+I4RZGQJAbnZ/JVwTjDl4dnGeI64WqNjy9ME9zfvuVyHuiHCecCK04N1M0gamKlAvtDsyq3mMiEtM6Iu7s7LpcLDw9PDP3M5SLJe/v9nr/927/h558/czkf8Xbi4eGLqHQjSYFMkg1xkpIXBbMVdEI/dmRZzjSPdD1L58UwDGijSfOc29sbPI7zecKGIJ3T6ST2w5BImqcZcSyBNFqlZPmKYZ5p2w4YORwqqqolL3L+1b/6a4yJSZKIf/1v/jV1c+Lh6RMmsgxjibWIJTe8HBnWi3pjsZkaFcwLi5Jtsa6GQbnWhIHWorwLRVHYatqZsBRYZL2h+fWWOFlsD8LWMcbI5lIQXFg34Z0EOhlDKLo8yaKO7EaaWkK5pMmW1yVq8aU0AxA21TS3GCWq4zSVUKthGGnqlrqR4b8mCU3rspF1V8WU96FpXUwbQblojAnKbmF0LjUFyGdehaZViuewQVbRdUiYB+4UyjO0Pf0gxS2Bz7IMKuxsgwpHcCJZGNB/+vSjDLxic71fzucTdVNjtObmbk8/dIzW4PsZ5zUmSoNFRZTwfTfw5fPnwJCSz2gUxcHqB4qEebLEUcHT0wtv395gjOJ0vJDnonzt2oG+m9hu99R1Rd+PVJdBFiVFRtf2zLOk3Y2TI45TJMl1DUR8/vmFoTuw2axRSCPy/uOeNNOczi+ihp5kEeks+NhiYsV3v/oWnObz5yd5FvBh6DnSdz1pmlEUBVUtKc23N3d8+ukzOI+O5Kx0bqIshAlnA/Px5uZWmG3zRDs2FEVBUWbEUURVyaDOORlODFNDUWxJ85hiVZCcLuRJilGKu9s7CYRoGp6fn1FhsDJbR1kmoCWduh97CTRCGGgmlgWXNhK+JcOIsEQzUg9mRR4USj1xYnj77j37/R7vFU01Mk6W8dLy9PRMpG+ZJ8swzAyDqCZv9juqS0tT93ggzwteXp7Jc7G1bzYrrFW0XU2sC/Iio2kakgR0pOiHiro5syo3tG1DXVV4768uEmHGtfT9QJalZFlKlEbc3N0wTSMWJ1q2gDRJspSuG66fKRnKidV6HEeOxxPv3r0TFeE48fJ8BBR9P5IkGTc3e87ny5/gBMSSFQdrqxNL6TwJA8+Ka8crz2wnhupCURRsd9tgV3ay6G06Di8ntJbUWDy42f7JObGgCcL8HgmLXJwNE87ZMFSDeVYsvE/hK4L8F69KkmtLRWi8rbsOO+XcEVfSNMrg14XzWy1ZjFe7vxcrmQ+zNw9KGRmYITihNAz9lwRJ8FjvyHNB78zTzOzkXBVUxi9eo5JfcwHro9T1jNRe4/SMLP3lD+dBKzlXZ+uwblnS/OI1z2K/lZ2KD4rvOQwe9fV98XC11/0p+1BeQ9u0jMOAcnDzdk9ZFPzctqIK1wqrFaN35FnCDz98z+PLM7MVNWMUxXR9F8L5JNV8GCa8r+W/x/Pm3TuGaaI6n0iTmHGa8EyYSF67VjHWqqB8zcnynL7vGceBSyVhPdpo8iynrhsu5wZCqNI0zbSVJMWmSUYSCzN6HFx4HbJ8sosizTpOxxOrdUKSZAgKqcF5TxyLIrlrOm5vciId0zc9ykaku5ybzS3ffRx5c3vP3f1tGEDLIHK73QYlrebjxw/UdXcNNhz6ib/7438hS3KU1rx9+4G8iPnm/Tc8Pj4xjj1lWfAf/uP/zqdPf6RpLszMYREPqU/IsxIfW6Z5IElyztUzysxoHdP1Deeh5XRuaRuL8jFxbMhLSRTOMlE9Xu3h3hDFBU3bsNnlpGkq/eg04rXn6dhQFlt2+y1v7j/w7u17/tN/+jtJs20uzPNAkjnysqBtGtLUMAw1ddWEe0qUY0uwV1t3oc85kaUrFqadCA+cqNSVZ5qEB2+0Ybte430e5g5ynvzww4/yzHrIgrCn7VrO9Yk8l9Cqqj5fw75Wq0J4fn5RiEV0XX1dUKzXqyt3d73eUJYrmroiiiJub2/ZbbYcDkca36IM+FnCMQi1nfMW5Q0mivBErOM1aRKRlSU6jijyDGUMfd9Snc/kSS7Lm7Gjrc+sVhnzNIizZHfD5XLm8fmZrpd7J01TGbivomvg0exmWQRoUcl5ECdGCGeB1yHXK8s0YDoSUe4Ow8g0jhRFgbOOyYmdH+9JYsM2cF+1VtR1Q13N9Nb/Yrjol5Ix/GnBsCxnevj3wiHvVaiV3XLmiLjJ+ddvMjvH1E9BFRn+fe9RLrjfvPC4Iw1xwKZoo/GJDpZu0CH748/9+rMHfOv1GhO/Z7GICufDipUwEvjuOE70/Ujf92gdXW2mC8snz3O01sG2atBaUa5LorD998T0Q4uJIiKv6IeBV2h0SFfDB87axOF4IMtT+r6XaG3UlaOWZcJVOJ1OYXiRkxc567WotJqw+Z/mGZSh72QDM08WHylOp1MY6LxalSDCI1PmzWZLVV3kohnHKzgyy1JhTMVGtqJK0nw+fRKV4q9//WuxnAaA+MPDF0w04nEYk1AUBUkcc3d3R1VVIcjEXa2DwkJs8c7Sti3zbKmbRhKIg2JCGCUCM+6aMM2eRE489I42GqR4HXq++eZbbm9vuVwuVzZGXdfs9mKvVmhIYqyDqm7p+/76IUzTlMPhEJSd0ZXXtMi4h0Gg8jKELIiimC9ffsBay7fffkuepwxDx263Fxv3+RI2tLLJjYwkHd7cblE6JYplC4ByIaDCkKYJWZaJNVUrSVKzo2wTpp6i2Mu20llOR/n+aZYERoBm4QhGcRR+BppLdSJL16RJfoU/73ZbUbgZGIaecRLpsFYKZy3laoW1IrfWRrHKM6Sws+S52D+jSFKzPGuEuyeD78mKlaDvaiAKxZdjHiOGEMTgneZ8rlHKkWUFm7UiSTzea5LUYJKSfjhirZdhe2loqhfmeSTLU6a5JTLCl4MIpWKUsWHQtQ7MoyTYg7sQ1+6v8mkTK7QJB7NTuEUxgwpcHgnaWWwjr+BQ2UQaLYWvDlaDuq7DszSTJDHj1PP5y48URY73EoCilOf5+ZFp6jEx7NcbhqHBY5jtRJbHKAxd2+G1Zhx6TqMMm2QI9wpw7fuR7W6LnSBN1jw8fMVaz+3tlvO5o8w13hmqqkOrkdVqxTS29J2lvliybAaveH6+MI4WVIQipSxKksgQ6Ynj4Ujfdei3GUW+5XI5o5Xnw4cdl/rM734nSVjjMGLdRJJEZIXi22/fMA6el6eaaTZhOzpwOVdiuVivOZ9rhn5iGGaapg8p5kn4LFj2tyla26vNwNqRzXaD9/J8//DDJzarDfvVBq0MTavougvvP+x5+nrg7u7DtVDfbjdsNlvW5ZaXw5HD4YWuH+jHgc1uh1cRzy/Pko6VFTgnF5YwPD1xEmMiSxSBNw6FY7sp+Phhz81dyTQ0XM4ntJYETs9EU1cyNNIJu5tbxmmmuhxJ0wytLEMvwPXD4YL3EUZHdFOHVibwalLsJPL69Vqa0CIvuLm5o6lrVODDKaX49OkTz88HmqrlfKkYhoG/+Zu/FSC3cqxWOW3bUVVTaJIyVqsVT0+P/Phzx2pdstvtOZ9PWO+wbkIbmOYOGxI4UfJ5iiKxZUVJgnMrxmFkv9sRZylNU185n0Pfk8RrtI45Ho9MVtQIs5VB/OHlhboeudmn/Mu//IH37z8QJ4Y8T3h4vLDelEGl6cOQH1brEqMj0njH97pigUSDWBAgWFKXoke9cvWcWxQVr9XHLxVti21Vhi5O2EVMJEnMdiu2kXkexW6dxgyDoe1aGfIpQ5IYstyTJGLDtG5gtUpJM0NUa5I0o22lcJbEX0fsZZAu6ppgmwvtJ1rUj/M8hEZbBoN2CWzwo6j/vGX5Db+yA5fuWLOkry3KvsVus6RAinoxIU8TPGK3SHRKFMmgTFJDU7Fl9j1LUjHOE0fy/uso/pP3HBRPzy9EkWa72+K94+Xl5WqHv+IgoojT6UgSS9BX29UcDocr56wocpROeHx8DhbDGZygReLYsNmuAyZEarT9zRZnDXXTChtHZxxeat68EXVo1w54Z4hNAQrGQeojOw+i49FattGYcA7Lezx0A/WlAjz39zv6buTh64VpkGckKw2n84VskDJ7GCxDb5nmiSRT7G5SomgGWprWSWOlonAXyfDi8+cvFEUpQyMVMQ4zyke8uX/L58+f8dbLwmcj9/B+d0/TnkNAh2UcJuZ5Clawz6xXa7bbLY8PD1R1xWZTiv3G9YyTRquJ+nzAO8t33/6Kjx++JU1SHh6+UtU1aZqyv7vh93/4I/0wsTMReV5QNa0Mphkx4fMl9ZKgMqIYsixlvV7hmIkiTxRl/PH7B4pCkWSW9Vqsv01zYRotWgkzcRwcXSs87HcfttzNKXVTk8QJCiP4iO0t1no26x1PT4/MdiayE9M8go/kbIqMuCBS8MwUq4Q4zknLW/Jsyw9//AkJyhF0zTzL8tRZWd6BZ5waJq9ERREp4YLmKxnABzRAHOxa7969C+4TjVaaclUyjZbq0gjv2hA43mKdd9azv7mV+vwXIQ2/ZLsBdMOAtZYkleTzOAQWxCQ4J4D327s7zqcTLy8vFMValgw6voaKuQBm/5Om6zU3KPxtCVkw2oSF+Mw0+euASqPEUuYJZ6QJNjNzPVfk3w08zsB0XkRyUq8uoSIepWSRrpUBFRYCV4W/vdbpy9LAeUc3jFIHOEeaxRJ4F4aSBsiLmFVZYmdL3fS0rSyIp+n1fNTqFypEJy9OKXlWXLC/oTU6MijvMYThkXc4BQYZWqN0UOy6q0pyuVucBx0ZDK8KGe+8jIfD5FJFCgHk+8AjM5JSO44kUUQehuGznXFOYZ0MG8q1hAUdTgeS1LC/eSNuja5FG4dyPgDvAzvdzmFgHDP1I1VV0bUNyc0+2PkcaZSitLBRh36gqi+yeMtTrJ2Y7Uia5HhneHx8IYkFlaGIJe3WeKpqlKWN0vSdDD+SNMUToyN5X5IoJoodp2PNMIg75HQ6yeK7yILadcAoRRwZ3v/mN+y2HyjyWw4vJ4qy5JtvvuPnnz8JlxrP4SCcZfBkWcLpdOLz50+8fXuP1pr9fk/XddfwmVW54c2bd6RpSl3XvDyfAcft7T1d11FVFVla8tvf/gWzrRldzbsqp+trlPKsNwXeZ8TxPUVR8PXrF/I85v7tniieabCkxmJyaOqZw1PHr7YZffgcA6HHDSEySjMMYsH98nKia0cZxqshvB8df/Gbv2Kz2vMf/+N/uCIJxC008Pj1wO5mi9fQNucgWNAcjy/kubBV26YTK6eXu2az3uGcDn3VHMQAEbNthTPsRfjy/uN7xmmkbTuSOObN23cyzAtsxd1my5J4bZ0N/6whzzOKoqSum7BQnUiSmXUpvNEsS/HehbAqF0IyU8ZRnF7TNAbx0MzlciKKEuI4Ii8zppAyL+9DFCzeyVXhC4Slpebx8RnnLauyDMxdYbIqLQuP/X6DMSIyePP2nrqq+fHHP6KQ7AGQvnO/vyWJIg6H4zXZVwVFo9RVi8BoSbZdlhomDFgXbIUXJevsyYuMMs55enrhfK6v6LWlHjBG4fxEXUuoqjFxCGqp6d3C6xXeMRAUw6LWU2K1CCo+T6QNLpTEkdaoSMIRTQjDkqH7L7nTy6Ugiwfr/uRvhktDnh81OeI0DUzDHu8sflmQ/5lf/wco+EQOvzA+tDYhvU04a5eLvPFRHDNeLqxWq/DwiAWi69qrPWIJd7i9uwkNaIpHwLtRJKBgvGy0mzak/my33Oy3jMMQilkJ8ug6GXKN48hmLXappUGZQ9hFmgqvYLuRFNjZyrZMBmcFx8OF06lG65jb29ugTJSiWWuxOzVNIza6SbgE1lpubm5x1lOWBcfjKRThJUWRg7IcjxfOx5aub1mvN9zc3DBNM8fjQaDUaSoJNQuTA1HjLWmg4zhye7cX+9d6QxxgjOMw0nUjfT//gsFhiRNDWZZsNiVpElPXNcMo0edgaZqe+/sbymLN5XJhtVqT5/k1IUtrsRDHcXQF5g79iNGauumoqhoJxZBkw2maroy8xRazvK8y7EuvTIJxPAculDQ/8muONE11lR6XZXltpNqmZ+hbbu9kUFKUhjjOJAErBHw0TfNa9CslPMd4+SBbnBuxbmScHJHJieMk2EkmqqoCSoaxlWYzywJXMmaz2WJnGKeecpUGlceMUvKz7vsBrT3TNFIWOWmyEhWfkoGjMrKpWPhVsXm1vaZpQts2NM0gfBwL0+gwZuS7X30I77Hh8HKmuQh4uigiogR26y1JoknSGGUGtjcrLhdL2x3J8h1JEtG3MuAaxoZhbHF+4uX5K/vNLQaDNiXj5LFTxO1+j6THirJ2GIbwc7W/GO7Jxj2OIxRi/V2VKcakIW1LcXNzw/F4YOiHwJCQRmZhS8qm+5VPM88zx+NRrFs3ogqZ54E0TYJaSsJepBEaSDMpUKrLmdPpTBQb1pucOMk5HeViVJEU6f3UkSQZeZ5zs9+J6qXqmGbHXkUcjhVpFmF0QlNNrFeW/XYvw1OMNGGREYvE7BnHmXlyDMzhHJEkxmGQQe7nn1/YrFO++eYtWZryT//0hZ9/fgEPSQZKK4ZxoiwlUfPp6UTTTqBgtdEkGUTJTNfZsFDQwbYj52rXSVrW0M34rSABjE74+vVBtkpaoLRGp+SFoe8H7u/3oMQydT6fyfOSm5s9Rkf88OOPYqd2PjTIFSgpILXRbDY7ynIl6YhEpFmKA/KyoJ8teS6MzsenZ4ZxIk5yQCwlWZ4EGLDCMzHPDu09UZZws78lLTQwMbmOuzcb3n/4Bu80XTMQm4yXlxNd15F1woyMopTj4USeSwjJ8XTh6ekQzhXLNFrcLMXY6XTCe0QNGAY17969Y7/f8/L0RKQNVXWhqip2uxu++eY9v/vdP1PXF+bZcj6Lhcdascj1Q8fQ99cUs65rpXkxokpTGm7vb2XwMQ7hzhhYkuW0ihi6nnmQoJC8LNBK8f6thBXNVt7LJJGh+hwSztGeKIkZuj6od4Wnsr/dM81Hprnn5fjIr379LVmm+enTP7PepLwcHnh8fOHN/S1xvJehe6SJTESWFujFskiwH7hX6+v1ig8DvCRJQkDCa1r2ohJZ1AUCuQ6WK+3xCGOpLLPQ3GpMJOxYT8TN7YakkbAjvGaaR6JYsd8XrDcZdX2R5VsUcX+naJqBw0Fs6Umc0XUTX78ecc4xDsLpW6xkJhL+Fl7O3SQ2xHHYDmuFc2HgZ8CGBlahr8oQFWy7v/ySQm6xFct/o7UAkbM0CSEFPXEUk+U5Td0yjYttTZagxqiQyghJFL+6CtLoyl0Rha3YRsqyQCGs2iwNhXqeX5VTEgwmzMgkWfP08oRDFh1pGpFmCXXdkeeJnLdOESUJYz8Qx0U4Sw6BE+c5vFRM00S5EktZZDKq+sLT45nVOqOuO4GIm5goMozjgDFyLyapIooU1k7inLiyXT1RJGqlcexoO0NRpCSJQemJLNekWcRqlRHHlmmW+8+5mc0O1uuMD9/s0cYxDTFffj4yjY40McSRLPMu5xoTaYwWBMs8zxTFcmbW5EUurowZqsvMepNTVS0vLwfiOKaqL0RRJOEkzuJdRF0NKCqiOCYvMrSRIUiceJQa2G4zUJbz6YyzDY8PB7IsFgXlPLK72bHZrkmzmPOpomoqikLO0XNdCcfyyrZc2Laicp3ngXFyKOMx2nI+VRijGMeIooCbm4IoiRjnUezr40R1GYCYDx8/sNvc402LtQb11DFPE03T0vUXtDKU5R5rHXlWSKLnLIPraRj4+OEuqD5esK5hsyuIIlGm3tzsOJ964UsrHZwKUmeNYx+seh7rZ5IEIhXxdneD0orz+Uz1dKYsNux2dzx0X8OwC7777juGYeDr16/yXljP6GdZ0iZJCCXLAy/NMU4TfT9we3vL6XS6nlmyuOv/pFnt+55xgrIowx2iUdpze3tDWZZ4PONsyfKS1XrDy/OJ2Tpma5nHMdhNRSW8qDyudi1elyALekA4vbJYMvpVnfLLA8UY/YvGvJcFYfi+S6K28KH8n1jArpaxcOZK/e8Y/mRIGGyz6vUstwtXyghmxvcjcaSDQvT1fVpU9/0w4JXGxDHTvCgFA8Mq2OZf2boqNNgRNtS4cp+J5dirBCXSF1FVGwNhULm4Qa4hMyi0iUji+DocnedZGOqeoKb2V6XzIipYQj7meebtmzvGqef55YXRSv3uFOhYXl9TX3BOBqR5kUnoknHojpB+mTDNYQiNhP3ZaaZve5wXNZfgckwYtPRsdyVaaZI4IjYiTJClnqbvZ6ZJ2InOQhuSSJ0Ta54EMMqwKE0jIhUzjaLI08GmqPCYlaFcFRgtYZR5nhPHnqenpyA2CH2zXe7jjFVxS2w27Lcpu+2W0+lE27a0bUuSxvzTP/2Bb775lru7W6LI8PDwRXAPSpOmLb/61W8Az+Vy4WZ/S1muSNOUJcDF2kicU6GvWbiYb9+95c37NQ8vv+fTl4HTeQznf0uRFWw3e1arLeuyRCtH1Rzw1pFEMUUpdumyNMTpRe6ZaSCJU5Ik5eHxBbwhS3K6vmfsNS/PA89PLV07E5yxlN9u+dWvfsX5dOL3//R7mQkMkwyQjQpDyhb7cmJ3l7O/WTPPHR4lVmuVXBfoEnwk4TzaKH7+JGeXUobT6UKZlUzjiNaKosh5c3/H27dvqOqKYei4XGrySrA+eS5875ubG+rqIrWp0mGQZbBBVPOXf/mXQR0t5848zQEnoFiv19zc3F6HdUUhzEERWEnffXOzl765baV+yPPASRdOcBQcLYuSeBwnGfpbi7MTcRIRmyTgtILiLM2I44QsLdjd3jHPlsPhJP3aorhzwvorihRjIuq6BieDOlkMLExSUfTKAvX1rPploFuoQmUZMFq08syBUXdzs2e72aJVc12aLqiCd+/fMY6tLEW9ZbfbU+Y5yoAx4nx0V7SLD1gHSTefrUUFxvzCW71qxJUKgz5zPesl9DQosu3yGtT1rL7+Hn5RTzrv8FZhnWDd1puNiK+6BhvY1H/u15894DudT7wcf2K/37Pb7SVhzanAd4to6pbVakUaZyRpRhTFrFZlGMR03N6+oe+ba8EryYaKLC3wOPquk2ACD1++fGYaLLd3dyRpyhygndMkoGF5yAuSNOFyPrNar64PzMKDMCam7zqaZkmmm6nrCuszAUBPE3XVMAwTl4tYSZNEB+VbESy/hr5rqapavoeGabQkccbgO3wYQkqjo4mihM1mxdPzI3NohrM8JUmFNbS8xjTNaFuRQ/d9K7bGYWK7XQED49DRtiLLXa/WDNMYVHETcZQwDlJU4DXTOLLdb/F44sQwThN13eCLjOPxRNNcyPM1xniOx0dQA3mRMNuRtm358uULu92Ovu8pi5WwS9xM23QkaUIUCQcsCs3GPE+0bcvNzS11Le/Nfr+TzaN1kkY0jDRNx81Nwdu3bwBhijR1T5GvsLPn6elRfPxaUnv7ob9e/tY6ylKg813Xc/9mRZou6syJhcOyWq2oqvN1s5XoBDtLxHycJNzc7nA+Bi9b2t1uG1QVFh9+FkmcstutQzNSs16vcdZS1y3r9ZrNRmK9q/pCHEnjNAwC8134iuPUgdc4ZchyAaX2Xct6U1JXF6wdybNUmHNNR9v2V1XCPEtyblFk7HZ7NtsVnz8dmUaFcyPjXKPNzHaXsrtJ2W33IiHvzhg9UpR7rNcMQ41WijxLwY/g5PCv6iPrdUnTVhiTcrPfMrWSPL0uC/phoK1nBOgrhZA0aC58TqNgD4VpkAK42JTY2dF1opq9XC5iybUSbPPLL5HYx4GvYDBR4OXkOWkqA3/rZiIdy8WSSFpSWa6oqgqPsBOneeTl8IzWTuy2RSrFdGzZ7HPGTmwydhIDn1Lw/PwiHJBpQEeeP37/GesUq3UOJAz9wJfPJ+7ut1zOA0WZBlWBYhiFVzmFZjaOFcPYoc3ChJAzJEkjpnngcHyhLNfkRSK2qGD9k2WDFPTOSlNcriS16uM3W+I4Zh4TXp4fmSYvRV8kUP7Hx5cAKxfGzDRZrBVbflGUkohZlnjniCPZ2BmT8unTI+PYslrlaJ3x/HgR5uDtDmNaLucjNzcb0kwRJTNJOmNdz/kkjVxZCqfp509feTkdefPuntVqw+f/7f/L4Xji7u4uBMXUVL4myxa2VYdSDUqJRfj+zZ40ixjnjrYZ+frwwn4fs97EmEhzOR/lkh0VWgtsuesuwsNZb0OojKZuLmxWGz68LwKQesPPP3+VYV/glU7zjHdKou6tqF6nWbhFZbHm7u6On3/+CaUUu92KONaYyBOnYN3MpTqw3e7I8oyiSLE2E+7lNFDVVQChG1bbkslOFKmkjrnQfElqt9gz27anrmuapmFVFFSXiiiO0EjjW5alDPNC4TzPs/xzo3AKtrsd/STogaoSm3yRrwCLMZ43d3ve3O8FKh/DZp3gfcmqlHTL3X5LnCQ8fP3K0HfEZn0tDq/FlBeO3HIX/7LI+uXg65V35UPDp8MZIf9tnBjiJGaawqAtVpI4PgmDUFiVYmfOCk0SC5cyjmG2A13vsb6j70biKAvKNR8U2hEPD2cUR9JMhi5pGhFHMR4VlISIqjmNyLIkBIEswScaHcXCPZo9fTdTVxblXWhiDUsiGyzKkdBUhoJN1IbxtW4ZB+HnuVkS84JERVLhZxven9ewC0m+i8WaiyzFHJY4ia/vtcCvRaFqlPBdiyKjaWrq5ixNpkvI85yiyEQdaZVY4CdFnouqRSnLbr+maR4Ioefh5xYxjjNVfaHIc4oywznhiDoP4+gCb3YG/5qELoEaUNc1aRZj3UxRJvz1t7+hriqU1lSXhurSMQwj8yy/VhQb0qREGzieTry9e8evfvPfoI0lyRB76AzPT0fyvOR0OjPbmcPhwP4mRpmWtpv4w+9a6rOksHsv6p0szdAKnLNcLg1N0zHPliTuWJUbTBTBMHBzs8djmSZJH23blmke8V5YUdNoiSMt7EutMAaen0+kmWG3W2Nti7Uds3WkqUDSH3/+St8PKAqyNIRHKCjKjMn2PD63DGNLlCpZBs8Db9++wSmxg4rNMmiXQgPgHczW4/wUgrkWxhx0/cAwwGpTBdV6T5GXrIpdCJgzGJ3SdS0mbUOQ1NI0WbbbIqTE3lFXjbw3yrJarciyQhSa3pMksjDSCqIoxRgoVynnquHzz0/BKmqws2VC0TYN4zDQD31Y5oja2OkIZWRYcjy9yKBSH3j3VpA6XdczDKJY3m6XFF5h4t3f3/1JAmyRF0QmZhjFQTGOA1GUXREgv2yoxBqWiDgAApdJVIoyiBNr22wddVNzudRoZfj06Qt9N4bFAHiUIEXwaLRM2q7DRBmoLQyoeXai+rOiYJVf14uiHoUkTC41v8PaCWvl+xVFFtRmwQWiFdMkWAeColqSRKW+8lhwljjNubm54Xyq6doJ5wz4iAXwr4il9vGiap5naajn2TFgiYwmSaLg8pkZh4sok6wDFQVu7etw0l1twCGUaeHg/YJXRai1CAt/HRTXkTFERu4Ca324J6PrvRLHccA7LdblV1VmnMQ4KwB9o1+HAbJ8niXBVkFRpmRpyvF0oqoq4liTpgl935Ek8bUuXdRBw9jxcniUXz9NQl9muFSNqLGtLIkmN2G09BurdRmSpFvadgTl0SScThVxJE4Y7yPOp4bbuy2rwlA3FdZqlIpJEgOI3VbeL0uSENSS8vuX9/I1xNHhsbbCWlkqJ7HUOGmakiQSZHk+n9hutxhdhIVnR7kq6FtRjb28vIByYfET8/PPP1NVF96/f0OSJpyOL/z9f/07osjQNC3/w//wP2LdzNu377i52ZOlBedzxU8//cjz8wvV5UKcGvb7Taj35JwoypTZNvzDP/6Ol+MP9MMZE2nSJMZNE26emYeR03BAa0WSyOJ2GGu5H1UsffY4ozUBsSHBOnXd0fXCyTudey6Xmmn21M3MbDVxGmGniTRP+fjtNzRtw/HwIqrPWFShXdUxz44sS9mma/q+o65aiiJFNKbSww9zF3qaEWclLE9nMV1X0w8NeV7StVID2MDGlbDHFcPYc7lcSNKMOM5wrpL04V5C28qypA+MWOcsWS4Ok77v6fuGJI2vC8VhaMnz4jrANlESAmr0VbG8oHDGoNBTauR0gru7W9brFS8vZ5wFrRPynKA4k/rNO48ymjhKKYoU5wfGfskFsMRxIg4QHQQqk2XG4UYZbB0OB06nE1mas9ls2Wy2eDQ/f3mk6wbsNJEkSVD1hSAktwSnuYAaMX+6XP1Fzbn0X8Jx9bh5pO8Gnp8W3quoCOd5CgEhVuY6Vrj+OEVd1bRNT1EW3N5vRUgze+bJcTpVVwGXpPzqEMohr0mhiIzcAyoM6gSjMOPtHM4lORcXBA68LsAXVfIyrlQQ/iIkm089wzhdVYjCKv/zJXx/9oBPpKPCEbHh8AWZjAu7I6GqZCgVR3IAtE0nH/Y0paouQXElPKNxFCBkVVUoDfv9Bjc5sYY0luPxgDExb9+9wSZzsPaO10bl5eUgW40kpSxWFEVB23ZSvCvNOIyczxfOp5o0XrPelBgjRfl2uyZJZFuSZyu6dqQoVmRpzvl8uaa+eDy3t7copei6juPxQJrF5EVKWRZi57zUYQCi+Pjxo1gglefx4SEoNU1QGg703RjStBLyvEQpTxxLMqZz8OOPP3C51GzWe7EtjiNtO4ASoKl1Fpc4mkbUhgLjjMizhDiJaNqKobMYPLUbqSpRRexv1lSXgf3+Du+FJQjya6/XayIT09RH4igV5Y7WDGPP+SShF1OIdh66gf1+j3XzVfEndksB1Z9OddiqdoA0NlmAzp9OYslcrVbc3t7S9R3Hy4Vvv/0mcJoUdrKs8y1FIerP6nzGWSmitVGBQygDPpEsz1fL5zzLYPD29gZrHfM8AYZxslyqju06YRxl8JYXOVGShgG0MBKnydK2ojbcbnckSXyF5CZJhNYRaZLSdT0vzwesndntdpLuF8FqtUYhMOmua2m7Bm00q9UaraV5qpuG+hIajqa7boPTrMQYw/n8wmp1w83thm444myEdTnffHfH7d2Wqjpj3YA2YZDpOyITU+Q5bTOhVcK7b/ZAxelUkaUJkdnJ1sE52rrBcEKrHfvdinGSLXxVv8L3oygo7gJ4foHKG2MYe3mv+n563aqirsyi5YDOsuz6OR2GIaj5RBGqnSS8jeNMW9esVjlZllCucvquu6oCJISmIM8zxnGQpEGtSPOUJJXhDMqx3WU8P1QAokbUGqUNTTfQtS3rVUmSyrDfOhvAvxbrPNZqaX4HSfa11tONfWBeKeJE8e137wFZHJxOFZdzh+0mxlFsDpLCm2CdpWlq/uZvvsX6CW1mdvuM3faG8+UksOZOlBVKW+7uMuJ0Zugnfvdfv1JXE0kk71uW5sSJWCXt7OmnjvNZBrQfP3zk5eWAQlGuctqmETCxrLzp+gaUDxdSyjAMlGVO33o+D4/EsWK/35MkkGaO2R4pViV5Cs+PPXXV8x///R/wqicvUrJcCsTz5YjSjnESW/X93T3DIEPdadLgPZExzFYSqsdh4uHrgTjROD/y8niUBMVpQGn4+O0d3dDLragSqtOJyKR89+13zE7RdX2wZo6UqxVNU/PmzVuKUs75rjuTJODdjDYe7SS11XlL30+s11siHQv4vqlZrQo2mxVd33K+vDBNE3f3a25u1/zDP/yOujkhjdiaLI/J8pS8yELqp0GXMoDrho6ubSmKJFg/wXvhnCZJSlU1IQ39VjZ+40iCMImmvg9Jn7IFX683LIB4HRksjizNaBq5K9u2o++70Lh6yjJju1mzWReksSaKFPe3O7rhRBTNvLl/I5Yq5+jahlWxwjlJcFx0essgT2y16jpgioJ9dLHALV+/LMCWTb4MRGQR5JzwaKJIAnSstzRdI9zDNGV2Kixscua5pe066mYQNm4hqcRxHNG1A1+/PoE39L0wMwlFlgzIffhcymBKbBbSPJtILBr+qrix3L9dcTicUWYijTWKiPU2Z7ONMCqhukxcTj1Lmq51UribIObzIYnNBuD+q91OitYxJGjPfqbrwvdBhyHFq/V2CQFIwvAhiiLQPjQJojhJkkQs95FCJ1LERlFMksYBdTHw+PhEWcp5OAwd2kCcRIyTp+0aboudvEeJLA/OpwY/WzGOaEPV1HgUk3UoFYkdZhZVgptFybIME4q8pCgljXKappAKZ7m52eL8TNOcmWZRMRuT8uH9B+qm5+vXF+q6RemIN2/uKfKMz58/8/0ff+K/KT7ym794g3U9Dw8/8umnM+eDY7PZ0rQXPn675u37lM0mZxh6tps1Hz/G/LGvwItidhhGZjuxLgtubm+5XCq0NsGSOPB8fLk2BwBFkWNtzPl8ohsHURsqKd69cyTxhDEJQz/KvRqAOE3dUK6icPZF7HYlXz/9TNcrmnbCTiNmH9P3I9PcsN2tuNnsyMuC27s9//5//6/0fU0cZ2y2a9qhuyounLMobUgT+Zw27bLBF7umVSoMMB3Ki/L0cmnZ7TfEsaiN0DqA9FOapmeaDO35SJpZtDZsNiWbtaGue6qLDDjatmW72dD1tSwTtOJwONFUHZGWz5+wIxuUhuOx4dI01JfhejeCPA9t2+KtRcK+Yr799j3FKubSnPHeBZVaJ0vBaeLTp0+kaUbfDxRFyU8//cTHjx+J44jLZZKlSNeCgziR+7QsNygUl+rMEKzu0zTz5s2bq4pvnicZAhlDWYaasT4HNZtYe6dpIM9TXOB5Lry7eRqYpvD8+9cBng52WY0KA71lwaGvTpHZ2aDAXM6DV6WKYFtkaCffM9hu3cwwypCmKItQM1miWJPlKc5azmcZpimlUYnCmJS8iFFaFjtxEhEZjzIpWWHoWqlV4mjBI83YWUs9ENQ7sowMdltNsPSJ1VeUeQF2P4UBpH9d0P6yAee6UNF4L3eEYxk0jHhvr2ejqGtliKe1AuVJI6n5FmX4crdI7W7D0FAF1m2CMRnOit1X6k99HYqAoywKjIHHp8cwpI4oipwoMlcbqtwbjv1+R9O0vLw8h4UQJLH0pW0/kqYGpZLrwt4FdVAURXRdH5aHonpFKT5/fmYOIhOPwyjBbVh3ZrcrqKqRJPB0ozDM0FqGYUrFRHHoOUbpwzyidlKhzkxjCfMYx4E4ikiSONTDUmOIsrsIz2WE947Hp68o/++52X9L21rO5zNKw3pdcjof+P3v/4m2rflf/9f/hdnOZLnhx0//xM3+liQueX564j/+h//M7373B+7v79nvbkNtkMj3Up4vP37i++9HPn78yN3dHW3bcjg+U46WdjiQ5TEYYcitVivevfsGO3seH1+w8+s5NI4dOnJh4RGTpgl1/RB6x4FhHHDW0zZSH7f1UdhlHoxRZFkOShJ6VZbw7t0NX75+whhFnmccDy8kScY4ymBpWVQmUYKJFE3T8PJ8oSgTWajrWFLOnZKBuYMsK8izkq5rBeU19eR5wTQNaAh3dwKThIrGTUIyzVd3otaEYZTi4eGBm92ev/iLv+B8PnM4Hq/BP1336nrabjfMcyRWTyuflXWxCs+Poq4riqKkKErW6yEIhGSxuKjStNZsNiUe4fIWxZZh6K+qM5lJvLo2IhMTFYosy4TtPQqrd+5nNusC7x3ny4VhnCUgtW+Zppm72zUfPnxAKcOXr0/UdRucIdB3Y+htNQ4XGMX+qt5bcgCWM+D/f1ngnMONcna6MBh3jiu7NY4S4e8h2KtFHbwsF+ZZBudN3dAbCbZxVhJ75zC7ksHdK0N5WbRbO6OUkcCe8OxoFD6c40Yvbo/FdKyv6uNrncgvvoJS+cpfCPf87GaUDq6TPz9j488f8N3c3NAN8zVmfLNe8/XrY0hVPNM0LW/evMVa4cZMowDMy1URPmAR6/U2yEMFktwmA9476lpUDVEkUPEszSmK1TUxVjaFms3mDXFoRpqmlY3vfiuNiZ15enpkv7sljmO6bmSaHOv1hqZpKcuCLDfYkGIVRRH73Y5xXCC/Z8pyxX5/EwZ3F8ZhwjvZIK/X6yDhBKU9VVWzXpdBhWb45tsPgAQraC2Xa5GX1HWNtZbNekdVCQzzcDjw/v0H2rZBknElPUcObfmgC+PQkecZTVNhreX29vZqR2hqGVgUqxyPpapkA5EkCUobxmHgw/vvmKaRPM+RdEJFksjDVhQlm82WPM+4XJqQriYg5CzLiExMskqQqHRhDUZRHJIJDU/PL1RVSxxnQVVgmSfH8XgkiiJWqzV9NzAMPd9992u8Szif6mCXcteJ+jgt8dYJWnmOxyNN07Hb7gMUfJLDQ0V4b4Pdd6Qo8mtiMd6FxlO2FTI87rEWTCRN0WwnZjsx2YkcYUEKX88RWRVstzKwjOOINA1KiVm4IXZ2dFbCMN6+/UjTNlRVC34KluXABYwNSRrRdl6GxXGC94MkynmxEakw/BS2l7CzUJbT6czT44VyteL2dk8URYxTxX6/DfL+mao6c3d3L2meTcdsB5I4x9sZoxKSOCQa12f6vmOaBtqmJs8KvNMUxczt3RrvIuzYSVNxZd1A3w0sthkUIY0uQFi8DHLmadlOL1sIdx1WLgOE5TBeLldpfG04qAv6YSRNJCQkyxMUDm3kwL9cGp6fX7i93QMwdoMklKaRqKYcZGlBP4kyMk46+rbY9ynOAAEAAElEQVQHIyraKViU8lyey9hk9H5AeYVSkroqSq+OLJNhvbUzwzhKA+At79/fMM091vWYkFIaRZ5vv33L42PN4+NFCrAk4u3btzgHf/zjZ6Z55t/9979hu485HJ75+vgjP/5wZLve03WSkPv+w45yleCsJ0syvvkm4V/++Qkfzsbz+cJqVbLb7iVk5OsT3iv6buRwOAbbdIzH8fHjt7RdzeVyvhbKzsmgdRphVe5o2ybYcC0+j1mvEvrhhI4NN3d7sjji55/+mZeD5XLQfPz4a/JiS9OeuL3dM4w1Sk/c3e+Y5pluqFmVGz5+854//vFH2rZ9bYS8cG3mkK7t8Whl8MrTtY5xGjDxzOPDEyaSC3S/e8uHD+9xLmLs4fnhgSgWawhqYbZGjFPP4fCC0RodzexXK25v9igd8Yff/5Gum68y+GUhEkURv/71rzBG0Q+QFQaY2O4z0kSCjW7vSqrzwGZbhKF2T9vW5HlK8vYNs/VM44Q2BncWaPE8T2R5SdfL9jaOY/K8kGGalgXTOE0or0hyUbRbPWBMLFvSOL6eN1opdKRxXpTNh8MT/diiFGR5LumDScT7929Jo1RYnX5CeU2WGaxXGB+h9UyaJSid0LYjcZpwuVTUdR3URupPbbe8NnDL5/SXzZf8WeDxcu+462JsvsLlZTDogWmeSRaAsxPAcRIbdK4pioTTSZTym3WJiRSrdUTfNxLAYR1tK9zGcmVQeiZNDZt9FpRGjrYb6TpLloqFOE0SlDLEsSEyDs+Mmw1xYqjrliw3eOWCKkBR5ClN7Mjiktubgh9/eOTwUoUGXV15TPAa7GEDX0bOsmAjm2xI0RUu1pXhhwoLzASAaRoAGRLO/OK9NTBMw3VrvVjWlgGq2KtNKIKlMN5sVuS5pMi1bSvn8CwcTxNpdvs9w9BR1R2r1Qo7G/pmYBxmskwGOgvYfhxDXWNisYx1EzqkunbdyPlcMc2CCem6ijiOKQpZiLVdxen8AijGQfiakRH7sDKOYhVjDBwPL5y1pu8nnIPLueH77z+jtITtXM4jQx/z2FXkmaepurAsbtFGc3g5oHXOh292RLrk5ekkA1gtPLqXlyMgjVg/VCFcYggLppQ0i3FOmFp39zf89NNPeI+c9c6GBXDD/f0ddh4YJ2l697sdSo0hiTUNWIVHkizm7fs1jw+fcU7x8PgFrRV5YXh4+sLPXxz3b3YkWQJ6pu1r3m83NK0oi4oyRStZUi+WTtBkmSRELinLkQYVaaJIrMzbbczHjxuKQjFOLZv1lpubW5pq4PPXrxiTonwqjpl1SZ7lrMo1VdVhTMH97YrTsQU8aZYxu5Hn52fquuF8qnCTYhpsUDSkOKcYuwkPJFGBMS4sQZc0QWFI6QAWF+Wh3Ec04uCYpoEkjrCzl+GpncIZLgiOrpOUzDTNrmeOtZY4EpXqgvcQe3EpSpbArVpCPqT50mGgKMtswfaIEiyJE9brN2iteHx64KefPstC14N3wlVSTFdFGigiY66SCx/UmTIoWiylDhMleCvBf0uyorhQNUp5TGSIjL4qwOQDL0nsxhiyLMEjuJelmTVas14VKO2JTCyBKWOHNo7djSjKh74nzSRAJ808cdySFYrNags+ou9nDi81XW9RzuA0GONAOcCiEfTH1fpLABUYGXBKii+M/RyW6nLeA3gXEieDCuc1aVKUv4JriMPd4vBOQSTKvSk01BIS4FkS2UWFI6olQu24zBIXhabRoqZZkBuv95KiH3oiQ1CDroPCrg6qHBkaFUXO5SL9QhSLik4U55o4kST4TSLJ3+M4oZfk+IDUGWdJ5E7TOKiaosBEl/dnGCapK7oRraPrgC5JkhCcM2KtOHTGYebd+1vev//Ay8szdhYn0PkkuB4QaL/S8gxuNmsioySdd55Yr+/QOqijruyymDhKGaeReTrj1UCSylLgXXlP29T88OM/8/D4JSRxT/zh+/9KuSrougu3dyuiyLHd5Hx9/HRF8/zdf/p7siznzf09v/ntb4njmNPphbo6YyLF7/7pH/n97zXWztzd37K/uaHcfMC6ButGkiRGOPmKKI95fqyomgZrR/quI0kMbV/JcDoWhiCIQliwPCMKE9TvGmdFiRrFhjRgYOZZ+KOrMuN8PlKu5G40RvPhw3vO54qmaVivVxgd0TQN02TJ8pw0luEP3pElOVU1cjic8c6QpSu6biAyEiAzDAP7/Yq6aUVgMjXERpYzUSznubhrZqIo4XQ6h4CpjTjpfC3nUZJcF3pv3rzheD5SFBmXyvDy8hyCPl6Hgt7LcqTve1CKl5dD4CO2TJMMl+/u7kSpiSwOzuczfd+z292C9vRDK4iU6/BMzk1ZztowjNTstjIEdE44qfPkaMISp8gzuq6nHydxNWUZ799/ZLfd0zQtjw8vXKruWsssX1IjykJLlsn6ukBeXoP07K/W/OV7iL03nL9hYjZ7SVxWavlnonwTZ2Ab7olFJete8xTcFGALWtAFYWDow2JeLbzpEGIiasdX22wSJ2RpFqy50ocoo5iGGa+VhAgqc1XjWTsheLDrt7iiHpZ6elH64V7//p/79WcP+NI0pemcWMrmSR4A70O8+Fp4AOGvm6alrs/CcwsNQZqmDJ2iupy4ubkljjLquubu/pZp6q8XNbzKkft+CArAhN1uFwrOS4A3xiEG3sjgLDak4TWUZUmLDLbqqma73YldsWnY3+6pqortdovSmmGQ5nS1WrFsqY7HI+KvL/j5559x1nF3d48LSXSzlRSZpQnS2uCsFTvxLIfwu/e3eK+Ioi121nz69DNKaTab1TV8AqDvB+LYMM/C2VmtNoyjbMX6vuP7P37Pmzf3V6ZhVVVIep3wm/qh4ng8MgwTq2LPNHm8GuTh7SactTRth9Gecei5nIWFWK5yPn78RtQI48hut6XrBs7nE7vdDW1bgfKsVqUUIOt1sFl0wqubJpJUFCVRjASOdBVpmuC9IYpSUbbEKevyhqZ6oSgKgUt6Lz/P2nA5NSSpFHJd04i8WikOx2esk+2a95I4Os0z/fUgcqSJPEPjOGGchDX0vbw+5x39paEoQ3ptP7NebwCo64qVzsiyjJubGy6XE13XiioiNsFOKil8olxNqeoeZzXv7n9NlCe8PP8eayc2m5zLqWYcHWWRoyMTLOKLZ39mHFvyIsMF5WOaZqHgUazXK7JCMU49ShnhQPQ1eWHQkePNm638vbEjSXK6vqFpaiS5eqBpPNG2QGnL2LeMY0uaGbIsoust49iz3pTc7PYkScH93R279UZkwdqQVI7jsbt6hqZpvhZT+rqZEMWDVgKlVctWgiXpyYRLYwqqDhOgxTYwUxb7htjp5rARtbMPl3iCMYSfraMsRW0lNo4pJHDOLOm+6/WaoizoTwPjNJLECWUpkHe5KGRzPc8zaRzRdl24/Ak/E0eSyqZOQhskqRIPaSacmyzLSLzhfL6IYtkZrFWkCUE56sJ23fHw8IQmxlvF2FsOLzXHU0+SKP74/RMvz5bD0wNZYhiHjg/5Gu8lWOjx4QXrNfdvN9KUt9O14blcavp+lKCEpBD+0jSjI02apaRpjLUiNV+tSh4enoiMJDRO48jxWCP2aCUg6FKz3pRS+GxSVusCcNTtmWwldt1hsnx5+IKOHHHsuNSO+/sd3/3qPbOf+f77TygFaXZLFEfc3d+IFTPwA5M4vp5vSmkp9rWk8E2TNEBdJ5bw9XqFiYyECCjPMA5UVc+lqchSS5JmIZ2uJY51YH7GKBx/9ZffXJmdwzDz3/13f8nD1yNPL2eUj2UDPg1s1iVazeRFwstzC0o4JXVT43xBsVrxm99+5Mc/PjDbEe88XSetjdaKtMiZ6hav4Hw5YSLZEntEHZAkBhMRlCOKLCuYZ0kvNUaz2WzZbYUdK8+gDG6yvCDOlmLOSiCL0VwuR5ybKYqcprW0IaTKFjM3uxvyNKZv5Xx3XhSV58sRYzyrMkV5zzQIfuLl+Weapqcsb9FXZpQ0T1EchSRsfd16isLIXQstGfotDdxrMeK8KJIlzW8OllvNaGe6ToKm8jxH0gpr5nHm8elAnsXcv9ny/v075nlkGHua9oJ2hrIsaJua9VpUU+UqRQemVVGueXmuQtIiYQsrBZ630HUNSQxJooN12HNzW6KNxXlPmpa8PDd8/vlIGmcc6gNDf6Cply2tDtys4JBTBOuhrG2XIYAKNttAicEoE5Q6r8Xt8j4VRUHfQ93UpEkabDbC5lMe5sBeWe4Jsc0t8O0O552A3Af5WUdRzDRbnJvErdB1oB1xHJHlKU3V0rQN/WCpq5FphEineC+NR5Is9jorwwtMAF0LBywyCZHRaBUxjo4o8iSpYb3eMk29KPaN4uPHbxiGnuPxzDy2NM3E0+MP8kxFivUq5/37t7y8PFNVE21n+dV399zclLwcH/Cq5/7uhv/+//bf8k//9ZHPPx1xsyfLE7SyJJnH08twaGgo8hWHlyf5mSjN0He07cBmvQ3FsiLPcvAeowzzNNG5maLYk8YJJjHXYf2i9Oq7EZwmTQ19P74Our2n61pWq4hyVZBkEV5N0hzMnravefd+y+dPNTgNDlEOmIg3bwrWmxzLTF5oirwkLxMJHplDWE+Sys88pOtOi0oACRrQRhFpCWiIYsNuX/Lm7ZrIeMahA+B0OHI51XhvWK12ci9NEY9PtajAE1FixlGO1ilv7vZcLhWHw1EWyomhbRrBvSQRl7bldD6SpSuiyBAZg0o03TCQZQXGJDw8PDBNk3C0NiVd13E5nq7284eHLzw8WGZm8kJCCoqywJiZrp0YhgmrLCo881mWUVUVeS4p023bSj3hVXD5SN2RJPlVASvOIXEaZFkcHBw2qFZUCEs5CirF+QCtF+vq5VyhtKftZMHiftF9LSq7X9YzeF7TFL2/nn/6qt7gajNblCg6qNaMMcRmqYlEJeb8jHMzKEecLN9fM86WYRyZx4G+TYmTOCTHgokitLHM88ThWMuCo2+pLg2CTZG+6sefPpEmOXixguZZBN7gVUiuXULpkEWHWHRfh6rDOImSBIN30GjH2E/EsWEaBTPilWZJonTBwux55U8ti16pG+X8dQE279zMZC3jOGNniVF3TtA7cl4aIr0kSge3TqgpJeRD3uNpsmQ6vf6sY6PBCDt7UaAvA4zD4YWqqiTdNpMgvyRNiGIjNbjVrGK5X6JY0A7VpWOeJyJDeEYsdd0AIkgwkSc2hmEI96LW1wXQPNsQlpMRRzGbdSm8NyuIkDjR7PY51o58/foT8yyOEa0Nb9/eMc+e07ni+fksLhctKdfeWy5VzeXSXYcj2+02vB9SY03zhFYSKrDZpoxThXWKH3/6nv/4H/4D58sLaWZIc0OSKJTvaLsKlOXlUAdXUsfxcKbvR96++0iavSGNV/zP//P/m3fv3gHwL//yz/zn//KfeHr6yvv3e54eX3h4/Mp26/j69YXf/OUbsjTlcHogiWOSWNABwhOVMDytFFpbjEmII4ezlm4aicwAXgeFo4QgGCM4pgX7kecpXTvQ9V34qBpMrKiqC9Msi+ObG1E5R5EsF5I4oW3bK4ogjhOqS433iiQpcNZzufQMQ4vWMeiIuu4Y+on1Sl+HNEmaUCKzjXHqUS4iy3Mik0jQS5JQN5IoPk3yMzocDpzPF7IsY7fb4cPy9ny+ECcJ6+2avh9wzrFer8myLODHJtarzfV5VldbrvRNTdPgvbimbm5uePPmPqiJJ47HNjD0G3b7PXEUX3n1C395GaxFkQFlwYsyfvk6nYRZ6b2jaxqOWpMV4izabOR1lWXJzz9/DsNFsVjboNIjLEoXBV8UmWDRlYHasiBYvsQJ+Mob/WXwhlKE4LylBltYo1IrcR2qObxv8Z5Qh4hYaOgb7OwDl1vh3RwGe4uS0AbXj8cH/jwLP8+La9CDnAuRLAYkMMuRF1K726DMs86ivUfNHu/k3Fp+m38SaIf6k9///1Fff/aAr+8GulZSUbTyNFNz3YgKUDq+qnYEDC7F57L5atuO6tJyOBxJkoxh6INVlOtAYLsrWECuIBYLUZ/5sCGDvu85n89EJr4W09M0BptnFMIx8mvT4rwon96+e4OOJsp1yfl8ZppmkiQlijT39/dEUczz8zMPD4+sVxv2N3u+fn4QVd9uH4Zrl/CgbynLHKV0GE5CXTf87d/8LT/88EcpcvKI06HmeGioqzYwQWaxEkRGVIlKBbvyEDiBoZBQmnGcuLt7w/l8oq7rwIJrrgXRNM7sb25Yb3KOp2eMdjhnyKIEfCdWqEtPmiY45MM8DD1t2wV7b8T5fGa32/HNx284n8+kacqHDx+Q2PhW2GhRhI0cRVESx2ko7o9SDLctRmuKUrZKm80GOymUjinLkro58Bcf/5K7u7dst+94d7nhD3/4Z75+fWC73aCjmKZpIMh4CbJ4kDjvrmsoyq1M560Mc6y1oqbzA+u1+PH7XgbJ8zxeG+gkSVitpJhaNmtKwX53yzh8xc42JBQtNlSJrHduCs2YoWnrkOKYY7QmS3I261viOGe/O/P58w98/fpMUWqyADYfplEarZC+63DEcULXdcyTuxYjfd+LRF95TqcDXd/hrAxwx94QZ7Bep+z3nkt1YBx79vsNRVkwjh1FkZOkJhxSM0kc0TcDbVszVxVt13I8vXB7s2d/s+Xl6Yk0Hbi5vcMrkcs760jjmCzY814tJ8sB5K7F9rJeXYoo511gCb1ycJZkTQG1viZyymd0Cqo/c+WizPMUkhpl4JbnBV0vMvHBzWgtlog0y6maE5KIJXaFw8uRphvp2pm6GjEk161hmqYsnLEpyNeXrY5HhVCKiEWKPY3SZKVJhpoHwGLdzP39nbCCXk4cD2JfffjyR4yRYcJun/P+wz0PXw+cjgNg+O1vf0NTnzicH7i9S/lX/80HXp4n/uE/f4VZOFLV2eHtiNI1kfFY21MWBW0zYbQ0fX3f0vcz+/0OvLkqEydrcdOAnQciUwgqIDK8HAbiRLFeCRi5bTppgixYq9A6wk4zyktKrokHpnGkbXvSNMZECflasdrKtlNft/gTp7MlSiFJQRvHdltSFKLINcGSbYLNZ+EyZlkhyo15RMeGOBVY7919wpt3CR8+rDkdnthsVqzKguOx4enpSJHvMEFdq40hz3ecz0eSpKBtRIm4WRfc3GwkLS+WgdDnnx+pmgr5tDvmaeJ0eOawzfntbz+Q5xHTFHE+X3j3fk/d1hyPzzg/oVTCdl+iSTkez8GCGjOM45WdNU2SCHtzuxf7aaIpy5Kma0QxlCYkcc7NzZ0Uos2DfC5ig4k0iYtkWGYCe815uqYjyxK6vqZra2Y78vT8SNs3fPPdNxgDaWpou4FL9cKqTMnzFGU8aZaicAz9QNu0KD2z3axJ42AJs/I5fH4+sC7fhsaf67JNodDKX1Uv4zgEawN/chYs/1/YmmJHcX6+3r1ijdAMwyzhQs4xDpY4sqRZzipe4dwUCi+xUZ2OF15eDjgmtBGVzzjOrDeZKJdjTdc1nC8165VwWlflhiiaOR1b6svIMHiGvgvJ3wI8rqqRolC8eXtDFDmiWN67H394ZOwjLqcJb2eUj7FWIWhMKXwXRTKoa5PpvaRQyhZ6GfzJHe2VDK3xr82ynI+vKnPvpYB2zmGUDgwrzzzNIZRJX4eqSSyqj2GYcb7HmAiTJWJ56YegXsolgc86XOBFrdcrtNKcT2IxahvHPBmGroNYnkmlzPXuMVqGeFopRj/hcSGtLtj8UQz9xDQ1lGUOYcBrtKJpOrQ29MOAifKASQDrRpx3REnEZrciSuDmds2btxF9P/HlyxdeTgdu7wzffPOW1WrN+dRwOld45RgGy8PXmsPBcHdvWG+hXMW8/7DhZv+Gf/yHH3h+rMmTFZqYtmvpugZj0qCCdRRFxt3dLeM4cL4cKYNd71KdqKuKzXaF1oq27RgnGU67WYZscawoykyemQh05Om6hijKyMtUbHgaLuczh2oiziJWSUJTSxDTZrXGGEc3NlT1iW++2VJkG6qLsMAeHyvsOFH1I5GRuyc2hiQsA2Xwk2EiUYRYK83S+VLRj2fS3LHdGm52WRgUet69/8A8x1zOPdMwkucbnp4+0bZH6npiu93wf/m3/w58zOPD85X7m4WU22W5iNW4WRoxrSOcBaUjIiNK8KVBPR6PGKOvqpI4ltCYNI1JU0NR5DhliRJQiDPDeUvYEYaawl3B8efzmSSJrwM8a2fmwJkawqJvGCZ5nas1WmuapuZyuVDXzXW4KEgRebavZxaey/nCOI6BAfzLRtBeB3OLanlRzCxDXmtfVfAyGFgQI6/LhaUWWuohrRTGRERaBwXTax9kTCwMuijBuRiYUZEiVjEOR5LEbHZr+mGkaaVu1MZSFqWkXs4RbdtQ1y1aifJ/Vg6jFWWZ422C1jJUEdt9hI4iGXi7GQLDT2mNRhbXUSRYnDiyaKMwOiJLS3abLeM4URYrjsczT09HcGIxFQuau9aFWoV7wjm0MSgtljxhD4v11NqwGHEBoODBKMJQURh2S8iR8FMX/JN4aRfFnzxDMpB1zuM1V8VWFBt8F349J+eY83OwRYv624QhrTKGPEspyxXDMAbnTkSRl/R+Zh5nCJbZZWDgvTiFlz5BYZgneYaiSP6dJWyl7UbmSUIQhBkmog65xxuqegqLT800OlYlTJOnbVvSVH7P3s+8vLwExeDixhhR2obBqLs+995b0DJs/vzlC5vVzNfPB/7hH/4JpT2bbcZsR5JEkRcRm3hLVV3k5xUGJEmqJMQwH3g5/YE8vud/+B//R/72b/8mYEIGttst/8//6f/F169fOB6P9J2l63usdTw9CMe6XBvydEN1OQYhh7y+NDOsN4KhUFrRNOfr8PT+/pZ3H97yu9+/kJmYyc5sdxuMjikKwd6czh3jIMOw2EdgIc0SxmgkyhKsFbxSnpU0lYQCtW1HHKUoxLKtjSB8tIZ+EL6+1jHeQxJn7Pd74dReeuZReK5S44hSP44dfd+gmUi1OACHQbAOUWLZpgmHw4nNNiNJ5BwviiKwxlMOh+OV3zvNI21bkSQyXNY6QylRo3vv5L2zXPFE+xtx8jRNi1GKNM9RWvreLM9YrVY0tbj88lDPTaPl/fsPPDw8vC4hwtBMfj8RqJhx7BjGJljgNVFcXm3Ik5M7vyg3fHj/jqqqQlBVzThMiNBtQb1wta5e51dekAMLw1MWDmKtxZugWl+WyYTafVHsinJTBuHymqWflEEhyJLSO4cPvNGlvnXhrNEqwmJfzyCkflvqWu8lJGRRIkNYMCglbjI0eEc/zqhZsVoVJFGEw+KtYMuM8Zgooig2QaE/c65rhl6EJHiZ57z6dl8HfP76Xv2fgMEn4QTiT16tNlwuwro4nc40TYNSmvW6JIpijJFkTec8XX9BopE94yhQTeeCRDPOyPOUttMURYbW8jLjFC5VwzgmJKlYLU6nI0mcEsc5STwTRakoKbxFoanqM0kiyoGnp2eSpBRb16AY+gM3dxvugp1XeUVbN0zJgNKG1TphHB03Nzs0LRrN5VRRVw2r9Yrbu3uiOMZ5xzwN9G1HmeeM/cQ0iA2rzFckUQ7OUFUNWR4xjhNpkmFzyDLF6XSiLFecAvzVWst9+N7TNDNOElqBTYgTUUDEcSIHspbBxf3dG6wF63ouVcVmW3Jze8/Dwxea+oKO1pSrlFJb8Ev0tDRYm21JuSpYfOB9N9IlPbVtARnCnE4t+/2eoszlg67B43h8fKAs12RZLg+lEvsdytO2TeAApEzDyNh3zNPIPE1cTheqzRmlIprqwnqVMOxTktjg/EAczcIVyDNaDW/e3NO2MiCaho4sK1BaUaQpzvckccJy6C6bhtvbW8ZpCE2VFFois3VoI3aNpmnQaoTIsFpv8H4E52mbRhKRkIGXMjo8zzJoHvoBhWK73qKUwWjP5XTk+fGZabBYP+GcqCv2ZUnbduA7JMFsRNKuYryfGZXDzpPwbLwmSjRtWzNMHUmcBWWOZ3Y9xoYU5H5HVwkHcSpmXCqv83Q4s91upGhTliwDvcvIs5hLLRtUEyVcmoYoiZmsJzeaYeywriZNN3jlSBLPf/e37/kv//k/g/xYCapo4VfgQiELIA3v8nkmFMULh0W2uCZsZILy0olqztpXFoZCCR9tnun7EectUVwyz55pEh5i13fkRYGkN07LSp2iWDP0MlSfB5gGwGr6cQwbfwNeJNmLKkIZAeo7xFosz6oKYRqe46GhKFKUliFWFCnGYeR0OjONE8akRNGMd1LoeQXrTcr+JiFJHG/frtltV9R1zfc//pEodrx7v+btux15VvDHf/mCtYqhn6m7mUs1sL/VvHmXECeaD9+sudm945/+4TNd61mtCvpupupHusailVxaqzLj/m7PNE48Pj3w7t09UaQ5nQ90XcP79+/AG4ZhRGmI04x+GFGBVRFHwiSy1mNiWJUrdFQQR5rTuUdHGq9rkizBzQnTpNnf7EgLT92KyvWv/+ojzhqa6sw0znRtiwtS8yRKiPKIabbYeSKOFGVR4rFESYQ2EkrR9ZYf/lizWce8vBz48vWJ/f4NHz58pKoGVuWa1WrLMMoQsm87tPJc6hNxbCjzhKZtcG4gigX0X5YpbTkyTyPaa3SS4Jzly5cf+PBhRT/0lKuYcn1L07RYO7C/vQmFiWa0PafjC0mUMzNzu9syjMKf6QfhBuV5xmRn+rEjmSV0ANx1YIxXdE3D+VxLoWFnmuYiqqs0Ddaf14F429b0fc3NzZayiLF+whjPywGa+oxXHs9InCjsrFDGsd4UjFESGtqZl6BWkAHmTJQkVKcGYxR39zfUbUs3dozDLIr4kIptw/Iry2TLvUDAl8+oLNSkwdUa2cR6h7NLSJYMtnT4PINGebFjKxR9P4JyZLkwN/NMzuAsSzmfL6FwjLm93YXfn+HpseL5+SUs22rA09aivilXGUmckyUxtR+ZJ8hzzWaVYZ2jazuMll/3D//8lZvbFUYnXC6jqJyjGO0VwzRC4EXJHSbnmvylf5XwXdFTso113ovVQwnAHsB7DUuBGopTZK/AaIUXLIsMi9dIOrfzUtRahTfLUMHRtXIHJ0kc7F0z4xgsI7Nnnh39MLPbbUH9/5j705/NtvS8D/uttfa8n/md6q2qU2fqJpuU2AxlUoMVRZIdOJFl54MTGEiUADEC2EL+QCdfghgx4sSgFFni3N08Y03v+Ex73mvIh3s/T7UQIAjQ+pACD9isw37Hvde6h+v6XScLeI8dFIfjAQIkSUZTNaRpTvCD8GEQVpcxMcMwkueiMh/Gnta2KBSJSXHBEazDTY2tHS2mtyjtcSGQRxF101I1YhEyKmF0klqdpo62bQQ1omKG3rN9lrCty6s1n395RQgWEwX2+x1NU1MW1/ydf/9nfPfdO95+vxNldXA4pXn95jNMFPBupB8r3nxxweZCIOcvbj9j+V3JL//iPX4cyTJR9A7DyBdffMHhsMVoT5FmKAN+HJiVOdY7qmND04g6UKsIr04bess8SYljj9Z+4hYGmk4WCheXlygNXSfv59XFK9pK89e//MiulcTcxWbNxdWc4mDY7fY8b+8xOhP1ysTxPjUTI7KQ/qRaCoy2xQYzccekffHe0Q+eJJehQtNa8ixlNisYhv7cHERxxNPTkcfHiuDh6uqSl7evybM5d3eP8ux0MtTxIZbfsx+4utoQ6Yin++N0Dsr9nqQJxsu92/cDm80l19c39H1DFMuZ0ByP5FnGajXHOrEtLldzokTR9zV919G3LcEK13IK7SYEWRKM40iSxOdhuvd+UgbLP8M4EDp5hiWwTwLVFIL/kME4ZzuVmgLLBiuDgKxIZTiPQ0cSGiOf4xNf9NfPOwj44M4q11OXemI8nxIomRSXwZ9GPYagA5GKSKJo4iZaGbRpI42sl1TOMICfQtWiWEM8ghKVn7MKOypMnE3unJgkjSTDB7GGlflKFMVOQzDEcSq848kOl2cFUZQQxxkmPuFSHCdmagjCWA4B6vowKWyiaRBpZXEVRZOaWbFaXVAUDzT1wDA4CVlxA+MwBeLxa3Y6PamNvJIAkfDJGqi1PjOsIJDEKVGUTk1+wFk3pVcKZgEvPyevNGGy+BljRBE4MfkklEAGzn3XIYMF+Xd5nqFVxDiIRd/jGeyAMqJUdAGquhU8QW/pWktbS8hTbyU0Rerq+Dx4cC6IJQ+F8ydrtagmFWI3bppeBrqRhKDZccBMZ/xqtWa93tB1LU9PO+qqJ3jFhw+PUz8MWRaxWi8oy4Lt84GmtgRnWMxnEhySiqOq72XIdxpaDMPAy5tL0mSOUppXr6748stXtF3Fjz9+j7UDQQk2IMsSVusFgSDqPy3iGtMPzEs5V2bZjNuX1zw+3tP3A2VZkmUZP/zwI1dXl5PjRoIh6maPD3B/98TLeIPSgSQ5uUuGc5+mVGBzsSQE+PjxA5dXFxhtcH6g62pev7rlWG3Zbmu0Dnz++WcYE9E2c6Lo4cyXPBwbxlEYit4Lq867IJxNH9jvjjRVKymxkYgrxPGlyIqIV6+vaLsDkdHc3n7G0+Oeth0AzXZ3JIpSrm8uubm55cOH98RRQt8PDEMv57KC2bxk6D3ayCKmLBPi3LC5XOBGwzd//QN1XVOWM7zzEwZJBs4+CNs80opxEFxFXpQEJQuBNImZlXOGvpehbxyRpykvb6+pqz1RpJnNZrSd4AX6YUCbliTPWG02gsvB4CZxyXK9Yn88nnnyzo6MdpzeFwnQ9N4TIi329SghjjKpRdKc1fqa5WKGNorD8YEkLojiiHHU6CiIDdZ6Ih1hnRVny0k97NSnGgpR62pz+s9TcI+flHQhwBRKFHxgsON09jHNluZYexpwnzihskAyWoQusrT5dK4HwhmTcMIsaCMhHie28gQqOC+H9PT/o4zC29Oyx+NHqGgoyuw80PRBFrdeBWywpEmK7a0EyWhDfWyxE+rq1x0wsu+Q7z1MA8nf9M9vPODzPvD09EiaZqIeSpKzSkl4cY4sEwXfYrGQDb33oCyzeSlA2CQw0zlRHCiKBWkaczjsOU19RbVSEwisNwvq+oiJFNfXV2JhmmTRWR4TvIQ5HI9Hkb8TSBOJlHbOs9seOR6O2NGSpJqTF1ySa+Sf69klWVESCDTNjjgRZlfbCDuurmriJOXd+w8URc7T0xPzWc7V1dU0CTd0Wi6Kz774nDwreP3ZG6yvubt7Jy9i4zkcJMXtxBa5uXnBx48fz/yi0QpXTKFRyrDbb4njhOAtF5cX+DAV5lpj3UiWpfgA1o18+PCRxaJE6wSt/aSoyEiSfFLrGXkIJ7hzYuJpuxGjdczhcDx/bRIwsaRpxFKa5wvClAb26YVgso+1CEg0ErVLP3B/90wSl/R9RUBz++KCwVaMtmK/r/n+h2/ZbGasVkvqqqMsc0mq7FvWqwUmksZyuVzy8PAgaalZTN81DIObBj3SWCWJmmxinmO1BzhbOkUB6knSFBPJNiBLM8pyQfCRHJyZcLCOx4bIGFrneXrc8fL1S/I8Iy/kkKsOB5LEoCPZ4G9WPS601M0zxSylHyLSNJ2AqS3NlLwZgme5muN9jw8S2NK2NVXVEqcF3ktzYq3wBNerKxZzCC6eFEMjV1crhkFSn4axYbFKybIlwygDZGUcWRpDgDxPuLm6IgRD3exp6p4oytntnri6vGa5WPDx7gPj2FPmBbPZjMgkVPURO4oF5hN3S0xo0utKAwJqajpOjC44dcGi8gnT72AaNESilAvhlELkCaeE3RDObMqizBh6R9uOk4LA0zYdOo6wVhiaSZoQDvJ1VFXP9nk/DZoVfWuxVp4J74WPRdACTx0tWVqeL7G+70Wlp8A62TQrFWNHy9AHoljTeUteGOpq4HAQlbJ3EeOgmJULnG2nAsugVUnXwv39AwG4ul5y9WIGWAZ75OnpjvlixpdfX1DkKd/86pm+k4AO7xSXlxeUM41nxJiGN18sWCyleF7OX/Lf/3e/ojmOZFlCnCjqqmL1Wz9hsZjj3cCsEHXzzjuKImMYOo6H0yJGM1r5vXk3cHExJ8tEiRNw9P3Adjuw2SwxaUpsPIfDPa+/eMGyvOGvf3nH0+OOYYx4sb4kKwIfP75jHGq8NyzX1zw9Sapk8BMLaVLzFXkGKsGHkTgWddc4tqA0+33N6BTLRUISlUSRYbGYSRqX97R1OylEMoFLj6P8u2CJdERkNG3X0XZHlsuSq4tLymxOHGV88abgj//Fn7J/Htksl+RpTFEqAj0hdNNZO1I3e9Rkx0/SnOoozE4fpBEok1Q4azpis7lkHD37wx5rLR8/fmSxmKE12LqX4Y8TdEORi8p6HCTUwkxcJutGmsES6wjvA0UxmzhEAAGt4OJyjfM9F+uC227Nh48f2O6eSWKEJ+Y0JnIo41FGoSLDcX8gKLGDDmPDbrdjub7CeUeSRlzfXHNzc8PQG95+/wuxpicSztS7keAcXd9MwwJ/3uKetpsnW5z3niQ1LMoZduLKiSq/B3Xi+MmmVmuN4pQe7el7j3UKhWw6j5XYSCQ5vCT4hKYa+fjxCQjkWczD45E4MmRpLAMFLHmeYXTM/d2BU0KswK/Hs8VD7HpSlLW1Zxha6nrAWgWhl1ZsKjLDucCaClzCxN2azkEtTb/09QYlHb1skzHCa5rqEa1Om+rpeJOK5lyvnCy8YZofns7K8+cK8nefilNN10sNIlxZGTC0bUscJ1xcXFPkcx7un+h7hR0j+q5niEaMyhg6hyJh7AWpkqTppMABM6UKR3FKFA1yh8oqmwDEUYK1oJWoHIMNU4Okcd6SZxkqVgyj5/HxEaMSUTWalGE0fPPtA/t9y6I0LJYzPrzf8ebLOeVcUZYZ4xiR5zOUKmjbkS+/vOGrr1/x7sd7olizWgnDr24ahq6nyC2LxZybFwuiOGY+m9M1Hd/+taKtewpd4LXiZz/77WmpPJKnb+S9s3Le6wgcfmoINZ3rQWnO6fCjcHPm84KiNBSziN3uAWf9xDz6gNKieFutZ9THih9+fMQjiaRV3fD4ZMlnnpcvr7i6XvHxwz1tg7B8rZ8WY9OVqYQZrYMizQSpYK0EFsWRqNxDcATAOaiOgSga0CZhHmWCP0GerSiKWKwu+PZXH/FW8eLFNev1hiIXPnRdf0fXtVhriWM51wIWlATZ2GFkGFvGwVHkc4xJ8VbhrRL7qJMU79vbF8xnM6JEkArjcsViIZzs7e5pYpPBOFjm8xVxLEEvMrzQ00RMo/TJSunPuBZxcYAxVlwmbUWRF5MK3PP09EjTZMRxNDl/LH0/TO+9vHPDMBAnEYlJJneB2JxBkaQJ1ggHinB658O01DjxRYNgQPBoBWpKezwN/4TN5M41jzjETuw4OX/w+uw0GkeH0Yqm78nSghAy7MTUjslIjSJKFS49BQYZsjSimM34+e/9nJevPpPAvnBK1xxo2x5vHX3rcV4aZmstw3RWDONA04gDIqgwcd7k5xWCm84escaiDUqLLVebFO8NiY9RPpblBB4fEubzG2azyTY5BSy5KfyiGzqc9UwIw0mhd+JuOUY3njEA1g40TY33kKbivHFjwClFcAMysPJ4J6nGATMN309KOeGxnX7mzgnj9lg1jNaSpTHBK7pWQgfiWJTdrreYROPDxKyLRTHYtXYKDnSMvWdoLVZ14uyYHqqTovPEr00SceIELxB/PAQnieyRielbSSFPU4MPDu/VZBdVHA8tARGj5FlBdRzwXp2HsCDoj/k8F/biRcJsHuF9gXU1IaSAoq4PDIOk6zrnyLOcy9srlsslkREOWdvU1M0R5wdMdFLSKmHVRqIo9CHQDu00pOuFC9tZ4jjniy9+QlkscKObQjEGNpsNFxcNZTljHC1XV9f8wR/8Ab/61V/y8X7Ejo6qauj7HbNFQtNW1HUtQQddx/XNNRcXlxijSVJJWU2TDJRnHDuUhlt1zWeDBO1pFXNila/XK7rOcjy0cIT9vuP+riLLNcvlDKVlwfehfwCvOBw6CIosAztYApq27Wg6R146luuE+bykG7aM7ii8um7ExAPzcoYd9FmVH6ZLPUlSEShpePnqBX/9q285HLesViXW9vjOkOXirtvu9iglDEphw3bgHXVVExAe5/HYk2aa9WbDzYuXbHcV7z98kFr9cs5ydkXTxASvaeueL774iuOho6rbCa/SMjpL247YMbBaL5nPF5yCJJqugsqJC7JUDP2RLBe3Zdc7TDTDRDFZLqGaJySIVpJ+DUbOa6VIkxilAq9f5czmM5q6YWf2JJGkfjvrGGxL19Yyi1FAmIbiQe4zUYt+qnmZ1L3OfXKKnParSRQRtMIFyyfXhCQeC/pAUrZl6SoKZaVBTYKSCbAz1WLubPf1wZNmEloz9CNN06HNSanLZIuW2s35T3f2qW5z1skzqANmYlMrpXDjyNiOHKkkWR0RkQU/hRup0wztE97g9Hf/ruy6v/GA72Txmc/n0+UsCrSu6yaLlliWJG7ZcnGxQWvD4fgwFVBi5zU6Yrd/oq7rCbjbkGbCHIhETS9Dkt6x2x5wzrNcLri+vmYYhimxN2YYRCa5WIia0Dl73sYOw8jxWFE3FRcXN9y+vKYoYsZRUgzv7u6YzYTflKTTpm/6ZQ5jy2g9SZwSfEPfWfp+e4YsOpdMdtaENE2nWOlIthFOWGWHgyTxDoOjbSvyPCPLcgHoH/byYmUZu92OIcuwo2zBlsuSOImxg8i4k8TQdTXb3TPX1zdcXV3JUJVAXohFZLc7sNvup4GgYjZfYIw02s7Zie/zKZb68fFxSlRbs9lcsNvtWCwWXF5eyoFc1wJcTiKi6ARel4dwv9+x2+1YrVZsLi4E2mxlA/bx4z3eKV69vCLNYh4e35Jmivk8x7qa2TxFay2AWW+ZlaKm/Pzzz/n48aM0EVEqCkYAHCZ2aOPP3A1Rkxi6ZlIhGU0cp8xnK/q+k8s3yEVZFAUmirBWn9WS4zBOm2yxbHrvmc1mPD8/kiQJF9kFz0/PRHHMy5e3ZFnGzc31xH6xLJclMKK15fp6TZJFaD1DaUfdHIXDkQrLKMkMzvVo44kjKaSyPKUsSuIko6qOgCQiKy18CTtqjJHEzDBt5qt9Lxy6Ka24bQuOhwNKw5K5yImVZjFbUxQZPkjxvN1t2e53fPHFa5q6RinLbFZSNxUPj+9ZLucU6Yzj8QnvkomPcbLjygEMcGKrSJqQbHxPZ1L4dZDoufA6bcilcT5ZHE6F8mmI+OvQZa3lkqiOFR7hNRgMXduz10cuLtakScF+fxQVgo3Y79qpMRY2g9GysS2KQgDdTtLsolg4dUmaEnWCBPDOMfRWpOpoRq+wI2I9M2Haclux+keGMQQ+Pu6Iop48S0jimK5R/PIv7tgfemaziPki4u5DzctXM9YX6RRvL8DbplK8uE348ssv+eab74iiiM0mI00FXVBVB1YrxWozY7ZUk5J4ztu3c37x5zuYUj5vXlzx5Zefczgc+Pzzz9HKTUP2mKxYcKylgPb7Fms/AXvt4DERzOYZRRGRFVqYkl7RNLIRM8bws9/5irK84Jtfvsf5jiSNqOsj9/cjP/3ZS25fXlDXHW9/fGSphZvV9z1aRYgFXqysUlgK/2ccRUVroniy12jaxpKljqbqmS9yoiidWINq2hbPCV6Ki6qrBZIdKVbLJWWRst098Or1C2azjN1Whvt19UjTOoZeUseXqxlfvnlNXiqSpCegiSNNNCq2wdJULXd39wQiymLJZ29eM5+tOR4aHh93tG07pW6PzBdrRjtyrPZ4f0qZDWfLaWQUdhzJ84Km7hiGjnGUyzxJE8qy5Onxjkgb0jSTBY23RLEhSxIklXBAR/J7WmUFaXrL7csLokTUyEoprHMkccni1RVX15c8Pj0wDCPDOBJFEWmR4bHEiaJtOppqx2azwawWZyaUWN1qnLMUeXoejp3QCPzaEN+5kSiSu2Q2z0mzmHEUNZ9YJxoJQPK/thyYbPrWOarjSBRPjbaTIaHJBMg/jpIQ//BwoO88i0UMyhPwzEpNkhqSRKwkTSOhCCZy5AXEUUTwhigWO1x1lDurLJdoramODc7KEM7ZUSDxQdTmRk+WCQ3KgPZgR0nQ/fVi66Q2UZNKfapZOSE0hBE1KZXVBJ8/HX2TYub0jySAjpxSxk/JyScFTRSJqlISJgNGG/JMmK2iArRYJ+9S03QkiYQmeScDhBC0wNYHN1lVFJFJcC6cOWRRrJnPZ1JUe0m1TOKYfhAlShwn9ENHlsWMdsSOlqJMaOqOyCuslXNWwhsSmm5AERPQJFmBHRxN7RgHsEOgCZ44CtRNQ5z2/OS3ruTrjEuSeMFf/uX3bLf19LljiiLB+pH9oeJ4hOo40DYD3h1YrQ9sNgsWywUPd9/z/Njx27/9NXcf9nStJUkUm4s1x2pPlud8eHxAG8VoB7ENOkeUCLPZmFGYQQ6YhpfD4On6nmEE3WvK+fxsu8tzGWAOQ491jg/f/cjdh56XN7e4PKap78lyzeXVktV6RtPtSeIEEztG2/L99890vXBt3cTqUVqJTfH0/IRTAms0WR+VQP9PCzQDRidEJmUcPW3viIym7yu8M8wLj9Yx4yDL5NlsiXeBb7/9ju12S57nrNcX04CiAjUyXyyIYmj7A0pZ7KgYxpE801OK7Qx1PND1Dd5LndL3HVEMl5dXELspHTfFe8cwdiRJxGg7dtsdL1+94ub6BXb4QFW3EOvJtRNP74LHhxFn5c44BWYIi5uJbSZoGO/DWXFWlhLoIuewLBRPdYtzVobuqAl+L8PIoshpW2E3e+8JLhDEHybtu5HBxziKvVMbWZqe3l9rx/MSYDoOZLijT0N6qXGcdWhjIGiKfEaRF5TFktVqw2K5YjaTv1utV6Sp9ABRbIiTmLZpSNKEn/3u3+DNF19KHROZSbEmhc7xcKA61AwDkz0sIstlIC5NKQQvDgXvpMEeRkvTCdurH3qGruVYVQzjyDD6CSfTMg5iy3PW0tSVLO7gHIThvWAvRjsSaflZJ6ZkcMIjVtPZHUUKwsQKNk6U386hcFxsIrFFKhmMhclKJ/sRizEe58epjwpY5+jH7hyAkSQJo+0hjJLEKlIg0Hpa8Co8Bh8C1kJRJMSJoRtaced4UJGibwdGa0njjL7rp9+7EQh/cKgpmfnXQwnEFeQmRJAjMqfARj2NgAwShCb3jYmmtNAInIXn5/2kEA3iVFMJ2sgdN/S14KxMgjYpXddOLoCR6+s164uS9WZBkvgzgmq73XJxcY0iou9H/vzP/4SnpyNlOSN4y+G4w4eR6+tLFosFeVHwZ3/+Fmstj4+PrDYrmq6hbYXt2XcDKji++Oz3WS8+58cfP3Jz/RlKCRczTVM2k1VUaqMjs3nJ3/v3/x6PT1/yi1/+GX/2p39CP+xYXxTM5hnVsaJpeop8jvJzNouvhdu88USx5/7+LY/Pd1L76BPHMibLZOi0WMx4enqcQlMMO1fz+eefCfbh/QN9L3y5PMvwzskysffnZ19rRxR5kkzzxVe3pLnD+ZrD/kB1bLi8vCZJEpJEloORSejbgdX6+ox5Mj4wn82Zzefstnvu7x/Zbndsn3fs99X5/k7zlOenR3784QN974mMhCcp/BSK5bFOFhhZHpPFKePY0nYVx+rAh3db9ocOhaU63rNaeTQxSsUslht0tOC3f+sP2R8qhlHcUnYapIMsKbRR5Hk1cXsD/TiiQsyszKhDi1EJcWynUKREVLdGT9gPy1h5jII4Etb6MPYoHegjyQmQ0NOJETlfkWdOePfeS4+sxf2k9JRWPjoiI/MR793Ef+a8AOj7nmPViMPB20lMJMPVYeinmY6sS/eHAz4EssnZ6JUM7bOsEJ56EJt734+TshYio0E5UA7rHIZAmnvKQtNEIAF+cm4RDNrIeWcmlZ9X6pyoLbN+WVQHF3A4LHwKzDoN7LycSdN+WBTX/Bq/NEBQ/3ZI5b+LP7/xgC+EwHK1IooittsdRZHR9wNpmp6LiBNI+qT2Om09nHeMQ8v26QgKqqri9vYFSisOhwO3L2V41bRysRTZHDfUrFYXzMoZbdsxn8+mQAqZMj/c30GQybMxMZvNJU1z5O7uI+v1mjQVRsF+vyNOAi9fXZNlhvlsAS80Td3w/LwjShJRja1W7HfVxFLSDF1guVzjgVevbwXYvSpp6+rMD1kul/jgGQeR015evaCqakZrMYapUM95eHhCKUnJ7bqOqn5mGAaqWrYcRVFQliWjHRhHy8uXL6awAM9u98RisTgr7KqqwjpHmmXMFwv63vH0+ETwRoYFxyNJUgKK6+sbnp6eaNuW9XpF2/aUpagBF/P1OTBDtnWOoswpy4LjUQ6uOE7Y77fMF3MUmh9/fMtyuabvRz5++MgwDqzXG9q2RuuEi82G5+dnZvOUr7/+kuUyx9qRxXLBOKhJSivcDH3a5ExQ97puWK02jGMtybCJ4bPPXmAiUafVzZGh79EmYlYuqCp5VqLITDyKgDECeC7LUraMznOsaozKWS4v2O8btErPz6YkNnXTNkyaq64f0IOlbftJYXogijRFMWMcxumSD2y3B4axY7XJSFM9Nb2S3tn3A4GEwTYkiSFPE+IkZrNeMfQjSRajTTEFPjiiqOB46KmOA3cfn4TZlWjqxkyhHBEXF28IelIqJnLBQ4RRGWVZkiQRaS4BByaCr776nI/3CU1zoFWe29tLZrOC7fMWpQNVvcXbnrrdk0SL8yE0ve2//ubLhkMJ/PvX0zbddPIZYyZWoYSlNI1EqcumMTmrVk7NbTQx/2T7PJBmyaRQDQI99yPj4GnbAedl81oWJQRNUw9oHVPkGX0/yvbMSeMuh3xL09TMZuU0kOjPTVMUCZczy7PJKu0mq6SVkJeqxxmPsxDFCfu9vB911WGMFPBKiRWzqT19F+hbYEoMHceaooi5vF7QtQdW60sOO8sv/vIDXeMpy5JyHhNHmrrZ0bSyIGlrxd37J66uWxbLjK55ojo+MJ8t+Ft/eMv7t3d03cDr168kIGZW8Pz8QBJpqrqemhA7AYYdSvXC/EHWU8djQ1AdZbkiTiyLRBLBxVbScTzWLJdrrNV88+2fYnvN7e0tv/rlD7gwcHF5KSqqIgHlWC4z9ocdb99+nKT10rSK6lOek7IQnohzlrxIabqWcRywQVTG4+BxQRFFKUqJxXUcnQzcylK6WhTj2DMM0mQ+b3c0Tczt7TXjMPDdt3dUVTUNMg3Pu5phMFxdXpEkcDg+cWwGXr1a8/Bwj0Yaxov1hjRt8WHL7iDWyLIsqJuKelIQBqc5HCriKGez2XD/cE/TtFxeXnB5eTEVFW5SRgSUli1gmibM5nMe7p/Fiukh4Ll5cY1RiiSWbSjKIcnN8nOra0cxS9BGUsHTxJBnBb3tEUC6pD83Vc/26Z7xs6+pjgcJqxg7xqkBrZuaumqoDxV9nlNkEXkRU5aFJCL3A9b16Kl5+ZSOeWKTfAIcK+VJ0piyzDGRPi/BjsdKGioHhFPoDvIzUGAndMI5XRM/FeMRzgn8WqsIbwOr5YI2GfBhwGjN5eUKlDSUWolacxgtyzwlBM1XX37Fu7ePpElBkiYoNGMf6LsKO8qWtmsdkoQKWkfn4A2lpibVydJLG1Fg+RDw1p8LOTVZdE9FnZnOr3AauEx2MFE0W7wS242kpIvlwxhRkVsbJrXmJ6ufFLFyH56GxG3TTbZFeZZXy0uyLOXd2/dip/YReE/fBtpELLFZNud6OafvrSTixanUB6MVtZqV368MQRRlMSfg6YZKgou8Rekgg85EkZoEbTR5IXVKHCVoLYzgvh2FM+stx2ODD5rIZDL86qzY3keLNnpSoUnwVpzCYrngcAj8m3/9PXmWkaUHHh+OtL2VwAlXMVtoXn0258XtFe/fPnL3sSUxYif80LTYIeXh7pHdrqJvIUscCrn3Ly42bJ8lSVEC4OopjEzeyTg2rGYLdvuGvhvO6tSmqdEm8ObNBV9+dcOxuse5Fu8teS41weHQcHW14vr6hq7vqSpZAo224f6hAuVJ84jVuiQEx263RSnIspSbFznzhdwV7989sd126CkYRJoiz/HQiIJyen+iWJPEkkLtnMdMTM2+twyDKNi2O1kgz8o5RhuSNGW5KqiaGcXEfMqLgh//6hcT60ozDBVZmrBc5+RFKbgEGhbLlLHP6RqFCprBdsQuoSgLslzOe7FGtcSxLH3ruiKNEnE65AXjOIgTwEGUZJg4Jk5TLq7XZGXCX/3Vr3De8+JGlsJt2zH04/Q9yTLoxLKU2kMGdJ/4nxKmkKaJqBonIOaJiyp9lMfbgNJeLFZKIOkCQ5cGuO8H+k7UYs67Sc3ncG5AKTnPoygWK/0wTnwsc8a9qOnzBD6pMhRaVK+jZ71e8/WXP+H25Wtev37D5fUNZTGfUDuxBGBNfL7TWfr+/Tvevv2BF7e3XFxd8P7DE+8/Pp+ViSHIYK9vO5qmFiSAN+c6NEliumFArK/xlGAuSmxjErIsxcQR2uhpGJJQ5DMur0qSNCUwLXBBQoNkaokdHUoHvPMyABxFYTragW7CZrRtT9d0jLaXQfk4MaAHK5gBwfNJEFbX4IKffncw9ANuHFH4yRouoVVay/8OymPdQGwS5qsJvaJk8Ku0k5A21xEYUXqUJUaUENmYSAtXVAKW5uR5ybGqBEnUjFRHUf2liXCZRUWkTvut88LrFA5ntCyjT+m51g0EOHOsZclu8EESpodhIAxehhlB7vmiyEiTbErFVTw/HQheFGraJDin2T43fHi/J3hFkSckacL9XcXVxtM0NbvdYULgRGRZPi2EHA8PWyKd41zP/f2RJDHsD89Y2xHFjtF21G8b9ocd2+2Or7/6CXcf70nzhLqWXm+0ltSk5Okl737c0jQtjw8H1qsLnp+faZqGL7/6Ah8saRbTtIGxG4CIq6srZrM/RGv487/411SHVgQY2qBVTJ6u+fz175LGG/b7PQGHdR1P247D8cBsnlPXlQSuZYks1ZynPh4xJmK93pxFO3keowhcXs6pjh1NJxiprnM09Yh3AR+UBBkmEdZ25FGM84itVBfEsZHz1UJZztDacHGRMw6Bh7sDs1nJ08OBi4sLTBQ4Hiu22y3v333keKj5pf0lXSPYoaYWey/HHus8UZQxDhN/3XnqtsZo6XlP7/zLl695/eaWunlmvsqI9JzEfIYdxaW02awoSnEerdeXrFeXE0tXoYJCnQZmdgTliEw8DYxOzgFDQNG2Pf0gfe04yHC+a1tGO+Kcpe1q2q6j7zoZbHvw1uG9Fev7MBCCFYeCCvS9Y+gGrLfY0aJQBN9Pw8Yw2bE9AbnjnNW4EXrsxPws8JONNooUWnvK8mrCHojDQ85GCRPTRpK8A/Ix9YRP8T5MNZlYp00kNdf+cJDa1AeskzPRRIbZLCdJNf1QUZRGxAJhQVP3DH1g7CGOE7Jcgk72+4P0AFqCvdzE5FTh14AuSs42rQXjYDQSyhUUdgwT33ka8jsZU54dHcjSUfqlCf3wG/75jQd8VXWcDvvuU6pIHE+T9iVKCaevKHOi2PDtN9/R9925GVJKk6YlWk9Dv2mjsl5vPnmnPTw+HBgHmM8XlGXO/f0dh8OOODEsF0uOhxo7ajQ5AcXYH4lLSd5NkpSrKbFmuVxCiNltK96+/QG0JN8mZkZkZOsXxzEa6PuW2Hgu1kuKbMb2+cD26YHq2DLYkcVqRhwr8jyZtjyeNJeEx6qqyLKCYbQTLFxeIh9kw103NdvtE3lecHV1xXa7ZRyFa/Dy5a0cpI+P08+vPau1Tum6vR24LC6IIn1WYERK+CxGa9brC3bbo3C3VMBE8mIfjrVMrY2m7RqiSrb6UWwo8hnjOPL5F28AaW6bpuF4OHJ3/8BivqBpLE17oO874kQk53leUBTFeWJ9OB4YhpGLyw3LpZcLv68xkQcV4xUMkzUEh1jBJrvDOA5oIwrFoR9QytC2NXmR8fS84/Xrz8nymL6vJiYfzBezyXaszpDn+/uPaK3J8xwfHHUzkOWpNCXDQN87lsuCcVJHRLERMDED49DS9y1uSre1dmS1WjH0lqZu0LqcUmXjKfVYEycRL+ev+P67d1T1gf2uZ7HImS1KImM4tBUoLSw+5WjqI8EJZzAyiWwJXEuapVP4RocbYb+rGEfO8t1haAkhox9qhtHSjYHVWjgKwSvGwU12KodWkMSeoX/m8fGJx8fvqZuWIi9491hzdX2JGyM+vL9ns5mhI8fz8yNuscL6ATfUJJmmXEgSrFKSOHc6pEII2ElOrc6rCeSymaoisX5Zjseevh+mVG17VgOBOqfypnnO8Xik64dpmJlyeXnF1dUlf/Znf04IHd4GvNMMvTsnyZ5A2cL7EyvhOLjJDigKCOssIYx0vSLNlxP7QhMGyzj2hKAI3gk0eypWvC/JMnlmhrGj70biOCfPcna7I9aelhWGvuvpOz9ZUxRJLEmjfT8wW8SsViV/8WfvOOwbyqJmHDQP9xVuVJi4ZrnRXN3kfPXFKx7u97x/u5+s+YFxaBm6hLo6Uh8DQ18zn0kqcJqmoDy7/RPOzXl8vEcFN8GkPcVsxqxcsNtWOOeJI7HfBxzrzYLf/p3XeH/A+RbnHXleUtdHiDTX11cED4dDy2634/b6M+7u36FMz7xMWK5n2LGjqhqU8pSziLZtePFqSV0N7Lcd6sQqMnIW7/fHCYDrGa1wkMTuHEjzCDAoFbM/1DT9SJGPDMNIka+42NxQHRvSNGWxWDCMEuww2gzrJR13vVqQJDFpmtG0HU3XcXV9wcXmGu8UXXPEFYHL1Zrt7oljdSSdksnyPKfIcxYLGTJaO3L38YG6HtnvavrOslhsiKKM5XIFSOKv8yNlOSNJY/qhQWtpsBQKo1NMFPH4+MhhV3NKRM2ylFlZ4HyPCp6mOzArV2R5yjg6xr4T1bYdqeuBLBM+2tB1hODAeHQERSGMp3xTgs9IYk2aJMSRwYWI0fUcDnuKosC7EWcHlEpxY4cfe9pOArLGUWyWSWzOX6MUntNwahreKzWFp0SigG47O1mzPlkapMCRwlXpU/KsJJBHCkwkwx5jEtpmZPCyOCHoqVEJLFTg9nbDsT6gVDgrzp0VleAs3/D8+IHIzHl+OtAcn6iOHbv9lsgIu9eOlr53dK2EYCkiQGxUwl0S/p1RmjyTIRXBk+YpeSmN0gn+f1Kr5FnGbDYnTRNiE/Hjjx/YH6aEz4m/ovQnK69Ie4Dgp+Zbagy5Vz4N+E7DhthkJFFGrDMUGZGJydJ8UlIaZrNr8rxgGO4gpEyTYpwzKJbcvrzl9uY1i8WcqjqKknOyhp+GIm4UsL47F5MStuXsiA2WoXeM1gojzkmTjAq0bcWsdMQmJouuOFb1+TmfFQlxJEtMRUQSJ+wOj5RlIEsUr17fAoGhHajaHde3CxbLGGMyqn3Mt3/9Hu+fIEQEldCNA8Us4s2bS168yoljQTvEsaHICwiOY9VwPA4YFRFcSt91tPWeNC6I4oQTI/bu7o48z3BBoU1EZAxpGqEN06BGtu3Bh8n2AyFYDscK69ZsNkucS3G+P6cGowJ107LbVQSk8Z6VMcE5FitRo724WZPlEXd37zgcD6xW8txEcYaJLM71JJkmKzX4GG9FOS2KMs5BFMFLYqcPI0kkX59WU1jUYOk6QR5UVY9zUOQLFvOZhKHFltefrSjLFQrNbveE8xZj9LQIs3jfoaOeKCkwjETBEJCF4HyRYwexelf1ARNJ4xEZsT72Q8swdLxc3ZyVqD/5+qf8+PYHlJKFUDmfcaz2dL28n8tViYnhzRcvsHYkSSK0EWeCs5LW3DQSsnZSS52nLIhKTLidmQS4OUfTtVhnieIIE5mzek+WKRaCItHx+WOM1p6XyVqL6rZXPSA1jZ/SKa2VQLnIGAhe7pvxxBD7tedFB/DCm5PFnufzr7/gf/z3/yFff/XT84JzGBy3L15Szuaf+FNaeKSRMVjn+MUvfsXdwyPlfMF2v+Pd3QdcCMSTu8Fay273jAb+9h/9ET/9ydcoII5STJxJWEtkGEZp2AVpJQqTfhwnS7rDW+Gvdm1HW/dsdzvchw+gFXVT07c93jns6PEukESxqJQjI+GF0Sc7eBwnmEiRJClxknBxuZGAFjMNwZxDBQmRIGiUMRKQEDz9MNC0tSztJkb32AtnVwKNBBnQD/05bE3eCzct37tJ0ddjvcWNGu811gWc66XP8Blai4JGhcDQC5ObIEr5oRvlKHXQtv35TJYU4U/ohNMZmkxWX7nzREyg1YjGoMLpDAkoHaG1xU+saDu6aUkU4Y2irjrQGh0JM9g5CN4TTUmjwzDCCE0lyZ5ugDgxON/z8qbmizeX9P1J9Su/i65tSZKCi80FUZSTJgVPT1vhhBmLUuKoa5qKp8dH2l6CH7777juyLCWuY1artSinvOb2xeekyQzXGyIzkKYR33z7S4xO2Wwu+fjxI8fjjsvLS0AWm2ka0zQ1x2PFT77+LVYrQQjd3f/AaDvefHbB7Ysv2GwuiOKYKBZEUkD6raIoCcFOd77DjiPlrKSujoQQ44Io4KIo5tWr28mBFTOMBogoF4am6bm6nvP8VAueo7XMZjEK6IeIOI7Z7yqetzvh9i4EWVEUDqXMGV2w31VsNlcMnRc8mDGMY8f+ID1738tz+/T0TGxyTqF+oLBWgpKKPBIkgxNr6HwzlxBSHXF1dcP19Qs+//wLXr1+RV7k5LmwhaO4IInk7Pjuu19xqA6yUDEZXTv1kSFQHSuiOMYYTdAQgjv3WCeXntExagq9kZrOkKY5RVGyXm+Ik3gKVULO0UmpHKz0NWpi8/X9QN+3gk7r28kWLxbq4/Ew4QBGmrYl9NL7j3YkKPBOEbxGK4PRGjs2Z0dXkiVypgCxgb7r8d5N50skqmXlp3dLwpCiCafhnLgLj1VFUaQkaSlcPa1Z6oTV+oqyKKZaLNAPPXEcTW6jZmIABsbRYocnvOvwfmSwlv5wFMFYHMPQT8xsUSTK+6+mxbAob01kMBrGQe4TpeQu97nY9r1V9J0E70ionYSbhhAYJrafOl3+v+Gf33jAJ6BJOSCyTPhk3ssG5Hg8YoyEbGy3z1xfXZMkGY+PT7y8/QyCY7/bsts23Nzc0NU13ss31vU1Skt65uPjE8FrqmPN/f0TV5dr8iIjzXKMNux2Wx4fn/E2YujFzliWM/a7LU9PT1xdb7hM5lg78u7dW+pqpCzn/PSzn5KXCU3dcuy2HA4HXr16xfXNBV3Xsn16ZrHY0NS9bAG8XJrP22fWGzkAjUkYR2Fb+SDJq23XEsexXJ7dEy9uXqGUpq4aifeODOMwMl/MuLp8QRxHLJYL2vt7GUCdYamBuq746qsvsdbJz9NqfBB+4cXlmsNB4qvjWBgjm4sNzgY+vP9IXTWghf/yW7/9Bcdqx1/94gMBYeqt1ksiLRJySW2s0cqIosZa3r79nhAEjppMjIr1asHhuEOShzTLZS7ptU0j4QdxzGxWkmUxbVtRVw1t19N2NXkeTXaePZGJGPoeN8rWMk5ilssFoKmqFhNFzOarKeBjx82LS25urjBTIECSxFgnL1BVH8mzEu8Q5UovB8N6sxJFCpKofDgcOAU95HmGHR1DW7NcXKB1wjC0oCzPz0/EsSFLM3xi2e17+r6nbTpQnsurS8Z8hrUjx2ODAtLXMQ8Pj7x9+471RSbpU4nw3vrJ5nqsaharAqXCuZnQWjEMLU3dMLqR2WxBkkjKUl3VxKkoKG9evEFrzfPzHXmWofUVYeHRpmIcG45Hy36/55RoB7BeTglfwXI4HOk7YQ89PtbUR4cKR378Yc/LVxuaZgQa8kw24daNxFHGepPxWz+7oSwWtLXlF7/4nuOxPYv5tAalRQWnlAxq9LkQH2kagd0K+FrOBZCGRYoSSbqTxKsWYyKKssTakfl8zuXlJWVZ0rUDdgyM1kKIBOzcW2zipiJbI0yXnsiI8k8YNT3WClTVurNzY7JXawYnRcSJt3NiS0KgKKVYvri85OPHD8K/GgYWy3IaXA6UZUZRlFTHlhAc2SLlxYtrylnC8/ae0Vf89LffEMdQlpf8m3/1DT98c8QHLZYto4Cey8uCzz5fkOVSHBiVnodH1bHl0bcYneJsoKkbquP9lGQoz+Hzs4RdRJGmbSRVO88lxdaHwDAOaB3RtoMwi4YRazuUctMmK8f5qaB2EjDiXUApSRzdrJcMY0dgwMSe65sl2jju7h8Zx4GrmxWv3lxx9ULx/GD55lf3k4VGuFBd02JHi4SqAEqA6ToyRBFk6cmCZmmagdksE6B02rFYrFAo+e97TxTHHA47siyn6yrKsiDLl5KobUe22y1KaeIkIbQtSsHbtz9g0NzevuTyaoVznSRUT+qBPC8wsaZuGg6HLVXVcjwOpFFPli0hGIJ39N2AHSxJFNPUFVcXl+x2z7x7+yN1s2C1mmNSTd/L7yDSYnOHMKV9C2frcNyz2pQkkcYoTZYV2LEjzQuyPGP73FA3e4LKKFSK81KUBRXEptCPpHlE19aEeCSNDWmcYxRcrFd8+eUXNN2O/eGJuhErzc31C/CB437H8/MDTSND8aqqJgaR/v9gf5wSEk98LKUQy5cVFaZzJ2i6NBjeB7HAT+mVSoeJSRLIp8Cak/XQmMleNY4QFMMgKIs4geOxJs0Ms1lKmmv2+4rnZ8txawkBLi/XjF3Ed796ZBgd3jcEJ0uOwXr6TvhdTJZaFOgzFzBMKdIj2jnSxJAYLQB6pUgLw2weoVRE2ni6VpKbvddEESyWKUmScNwfCYygJn4K6myJMZEUgZJPqeT88zAMlizNJntRSllmbKZt/IsXr5kVS4p8TpZnYrVLM/ncweO8nVSsgZ//3t8+K6g+fLhnf6i5vL45B1oEL8tQZ+WdsYPAt50bSRcJRTmj7wZOqaFBifrJeT+pZCEg7LGTZXQce7yzZ6aNdRYdq+m+EZ5W17ei0oxirrqacaxJIgmnyLOcNm5QuiRLFhy2NW3XkiQX5Lml66xYd5KY4AdWG8PFxRVZojDKENzILNey9Bp6TKQJsWa2mokL4qLHWY130ZRUK06AJEnop/TKi80Fdd2y3W6ZzQqiZJhcEWKRc85NvztN1w28ffeOr7+6xgcZ9uz3FfN5zquXNxgd8/x8pKpb0izm5ub6vBDUSpYvdbMnBMjynLru6IaRssgZR/jhxy3jGIkyzxmCjvBBArySBBDUF0oFdAQm1sxmMqj3bkBreY/abqBrxSq9nC/J4oSuaVnNDS9erhitIXhNlpY83O0YrVisTORBe2F7bdaUs5jtfsvF5S3HwxGCJ04MChgGObettSSZ3McnfmQIgd1uz2azITIRUZxwc3PLr371K6yVBNj5siAJkmg/DqI2m8+WNO2R5+cnAlIXaySVtixTgpckURPMeeh5TqoFcZkET9t2jBOu4OQEOP1OlVKSEmnUWTXlOxlsFXl+/vqTRM7p2WxG1w0M4zBZfv1ZSWmtWKqV5pzOeKo9ADSGOMqZFyX/+H/6P+Mf/cP/gPlsyV/91S+4u3skBKl/ttsnbl/eiJpuUqcwMd1Cb1mtClbrn0xKReGdPW93WOfEUtsFiixFEXj/7geeH+9Fae0VNgQik0x9rLCu7KTGjqYaPgQoy5JZWZLnCUWekqTZ9LPSqEhYxZEx6CCKYlHSS1iVR6x3J6dF13bnIUfbdZL0PAxYO9L1PW0nfD8/epxVmChBaUOapGR5OjXHijRJKMpcPrfWGKVkKZlIoGLf91LfDg7rPX3b0rYNfd/TDx3D9DV0bUMIYinebh+FCTslX3pnCTow9gZn5FwxCsZQY3QC0yBBVHr25K1Da33GKaRpSpqmhOnMO7mNlJahiTZm8hfLsMujQRuyPJ16xBHrIEFsvEPX47xnHE7PlCyKsKJoFDyDfAtaQ/CWOJa7M4oisiybuPeg9Yh1jt39PfPZisuLkhAC6/WatqvI8xxjAuUsJ0nE7fX0vEVhqKqGcexRylOUEYvFgsjEWKvohi1N78iKDOsPvP7sitXyGq00dXvg+fkj3//wC7z3VFXNH/zB3yJJEmazGcHD5caA8sznS47VluvrK+I4pesrHp7eA562qwj0tP2WzcWcJNGCEZoWhMFLryBiEDupLGvW6815mZOmgmBI0pS8mFFXPTcvFjRNx2Kp8M7QtRaFoakdh0Mjtl0FfQyowIM78PRY0dQyyP/s1efMyw1/9fYbdrudpNZGoiIDWCzn1HU/LYmzTziMKMKKOoOyFPSXs4HFYsXPfva73NzcUuQF8/mSL776ivl8gf614VueSzjODz+85U//9M/o2goXpH8yukObhHEcqKsj1fHIP/kn/zEXF5fksxIJMJnESlOAoB0tgxOsiR0tbSeii3EYGcZhqgWPjE7Ov2Cd9G5WVNASZBkRJQlplqJ1znq9oihT0kSCUYpchD5Sh2hGL7Z5e1L/tU74tdbSdz273Y62k3e4aRv6XpSDQ9ejdSAESf5tm5qgZMGS5ZnUkT5AbydsRn9W2HadJU4kOEghCkPnZcBrJrXcMEpPH/DEUUSSpiSxIChuX6yJYsNu+8T9/T27/RbhicrPM0T+02KHKVBO63/r/omMoigM1g2ME7M2SxUoix9PQ1RBU/S9pGt7L0pEWY7/f5u6/f/+5zce8GVZxg9vn2mamhcvXnBK2mtbYZ8VhVgOnR/5ePeR6+tLPry/FxVZZHlxewHKEaeWcV9T1SOL+Yb1eo3SdrKviHVJa8/V1Zo0izkcn1moGYfjjvm8ZLVeUB0GDocjzkLTRDw9P3B5uSGKYrqupSgkCKOu3suWIUuZlTPsEKiOO77++iekacrhUFEdj3SdJfgDSklR4qzCaNmsdH3Hw8M9r17dEoKj63viOD6rF/NMlD7z+WpSuJW07UiamemBFOWbWBxiirzg+lq2oNvt8znYQviColrJ85xZWVK3R0mJ0yMm8uz2z6gQ4/w0YGx79vs91lnyzPCT3/ocbUYWy5QvvnhDUWSMtqcsSuqqYhwFuquUKFmapjm/LFmWSQhBKvy6qq55fn5GG3h+FgViXmTCxeh7dBTJNstAnGg2l3OOR0kXzfOcONZY22O0Fv7gBC8ZektdbTkcjnS9SHVRnuVyxmxeUtcN5SwmSTL6/kgUJWgtVsu6qmmbnnGSHSdJzu3tZ4y2JYrNpL6YJMmjDHd9MCiiKYVpxzg6Li/X5wFg1/W0bYPzI7PZjCwv2ardWblioohu2jLKgChwOG7ph5YoytAm0LYNZVlwOEjqahJL+lmSJRTlFfMyn3iIwvGBCEIkMmcV2FwsxPaS5qJkbFqW67l834MhShzXL5Y8bd+hVcxnn30marNBkoN3ux2zck6alChiqqpnczFjtUxRoeT9u4+YSHPYd/RDze3tBctFStPK8xZHGeO4ox9aDoeK+jhOXJyT5VKstcqIlDqKIlQsTa0MijzjMA11tMYYKZSF3eglMVALf+Sc4jnxO4VPZbm7u+Obb2our64YhjuGoZ2g2MKRGq0ljsRqIqEm8ZRwJcmgRVGcLT55nrFaLUmTGGcTrPMkac44iKLhZL2IU3kPTGTou4HVcsHt7Q3P28dpIKcoiow4nqLdVeDyag0ekjjjcNjiibm4zAlacayeeffjEU02qSw1AU8SB7RxLFYpNy/W5HkgTkShVBQlj48HnBNGYmRSlssV0WVK348oYh4fnifgtmI+XzCOPdaOrNdrnLM8PD6xvthIupuz522TdYE4jkE5Pt594Kc/fQHKMY6SELxcLri9nTMMI+/ffyBOYlbrOVmac3m5IASYzQuGoaEferKsYLs90g8dkUn51V8/MPQx680aN0LTCLdHaUViorOdKYo1eZkzX2RipbQ95SzFWdjvK/qhY1bMmeWzyQovRcfYDZLSi0VpxWK+JMsiHh4/8v7DB5Ik5d27D7y4ueSrr76myAvqquLp8Yk8F95UCJYkSbE254fvv6XrW25e3JBlCa8/e8mmGbGj4e7DgeViw/b5O0IQW6MUOoE8zdhut8QmYtCauqpwfuD6ekNdH5nP56RFzuGwl+TlUWDbCiZsxHsuL2csLpYUuYDjd/tn7DiSFTnGlDR1hXMdMEMbGVBnRUaSzEizmDxPCLL2F2aICswXJZ9//gbnr6ibF3z48I5vv/mO3/1ZyuvXr3hxfYEbR7zP+G/+b39M23bnJhetzoMqFQurxI6STCnvfZgUe/Kc/rrCL5yUu1MNcLKsgqIoC/IiwY4DqDAN3zuslWIphEAUCX9usZoBnuoonKVylrBabrh794G2cWgV8/7djigyE1tKTcoxdebYwSnJkfMGVU0Kb0l6ZOKeSOFrY0WaiiXJ1kd8GMiyhIBldB0RhqKU39Hj0x1tM4oippezI9LC2xUbc5Bhp/KTmlmUuMKlGVgsNnzxxdf85Cc/5WJ9yWKxFJC1FtaQQhrsNMsmdU8MgLUjcSSN9vX1a969e8fx0PPzn/8hVd2x3cv2XDg5Yjn0TpQOOkCWZmSFDA7dOYBIzlBJEdXTADZM9jSxssRJRN85IEWRQPBoAkkkdsckkjPdJ56ymMhTxmCUKPz1NBwWtTaMrsOFnnilGZxwcy9XEkNurXB4gu/x4YgfAvvHkaYeOG7nBFeQJXPyRMKPZmWGHVraAOvNDUan3N09EsUJISgOB1kyV1XFarWi60d0ZOiGkXgcybyd3AdaVOD9iO8ty/WK6+uSptuhtGG9vGB32JEkHSFEVFWHUh1pFuG8oR9bul5Cyaqqou0GijzFjpaynGEbUfzluaIzA3lWioI8KLzzOOtIk5SXmw19358ta3EsVnavHM5P9y+iLpKgMMFkJIkmy2LyPGe5WDL0lqfHR/K5xBJ459E6YOLA5qIky3IOxwP73TOzWcHl9QKtHU0ni2nvlVjgeo2zgk/IUy0LPG24uLjk6enpbJ1yTuzhq+sXVFV1Hirs9zuO1REXBvIiERvk4KUeSmMIKev1Dd5ZDscDerqHZ/MZcZxx2LeyoIvEoh4Qu1gcp5RlwdBPHEslJvjTsOWkClFK6nWPn1JcZbnaNo3YrJyTBT2KyEggGkpR5Bm6LASq7jxDP0xn1KfgsSjSaB1xArenccbLF1/wT//Jf8r//D/+J1xeXKEjzU9/9jW295j4pBqWBOBTQ6gnX+9pt/K7v/P1NJCLiIwMnD4xjCVcx9pPyxXvBDEgOBA72ZSFL+Wsp+067JQqXNc1fdcj6iLLMDTYKfV0GMZzmvBorQwqAsQmPrsktEZ4pUacEXlWkCQpRZHKImBSw5++9jTNJvvcxM8bBU/Q98KIFYV6PYWB9PS2Z2jEDu+mgYhSAedlIKCVIcsLinJGkc9Js1IGd97LWTapAfu+o+9bPv/8ay7W1/SDZbt94HjcczweOBwPjGOHdyMKiwqjJPQGP5nBpxTciQUtg2BH30twY5ImnHjdZ6WUDxBNVu2p3jkNApQPmCgmzXLazmKtp2klHTWOMvpGGONJrAheQqxGC5FWZMUU/tD3WDdiYsfFRclqk9K1EkQhKiZLXQ+iyipFwXQ4bulHScU1ESgdsVrNOVYHhn7gebuj7ToW8w0XF1c8PT2gtCdNcrSO2O13DP3A09Mdy/kl7RCzWV8SZxGDe2AcLE9PW/qxYX+Q8yDNEu7u3svQpmmZzZZkaSGMYRuRpwt++ctfTSFqCyQQwdMPR7a7e563d9RNzosXwsILQZBK49hzcXHJ8Xjk+XnPrJyhVMzzk3AMmWqYhVmSZjk//PCe3bZHqw6jFX3vGTpFUzuckwUjynGyH8SrOeUs4+PH+yn5WInD6vM5fed5uH+mbXt5T7xjsZgxjo4sM1xfXzC2soQ+LUuNjsgSMy0vYt68+ZIXN6/4D//D/wjvAg8PT7JYMDIc+uzN62mpI2gf70TQMAw1m4s5+JKmFTWitY5+sFgrjNM3b17y7t33vH37LVlRANOyzp+ZAURRgomi85xCaTOFwM2IopgkEQyBjg1xkpCnGc5axolfNwyyGBlHRz/IsP14PE44oZZhaHk/3E9930hAsDwBjzISLGV0QpJklLOUssxlkRnps8giiiKC83RNT3CevmunYNMjVXOg7SSYFCW5ASIIKaYgzQEFPG+f6fqGumonIZHjsHumn3p1wVeIexRlcE7T1iP7seH56TjdQR5FoMhXpIm8L3W9Q+uREKQ/98GfBS5q4i2jFM4NkmKsHFEMSnsiE4gT0BHkywRjEvaHljSV3vzjhz37bSe/KMy5XvpN//zGAz5hxcgPOE3TKdBANlvX19dkWUrATjJiRZxEXF1dMI4tVzdr4gQurr5Aa8N6U7A/HLl7vwc1cnEhwRCbyzlxEvHFF29k2LCviKKlpGNNyi+RPj5ze1syDo7tdst6vSbLZKLedT1JnLBYLPj884S67qQhcwNmYnNstzs+//wLVqslz09bmrpFEZGmcvHbUS7nn/70Jzw9P2NMxH6/F8ts105KBbEkX19doVB8+PCOWblgVs65ub4FZWnbga7ryIslBPj+++/ZbC4BmM9L9vvtFNaRQAg8Pj4gQ4WcJI2wrmc2X9B0R9IsQauE6jBgnWz0q2MDU1GdJKmoSVLFOPS8fPmC3f6ZpqmYz2fsdlvGwVMWM5yXgceJA9N1PYvFgrZtKcsEbRQvrq4JwVJVBykqUkeaifXh4f5ZLnjEoZSkivlszmJRUB1lMHh1fUFAcziIzbdrPEWREyZQd10PDH1EnGjyXBq4ofPkacnrl29wtuNh9w6YoZQUurPZAgioQppO7xRd18n34SVwJYQg9uYoIU1z2tbjHGgVTXy2hsvLFSYyXF5e8vz8IHDxJGO/39P1Mmw+VjvyPGNWZKxfvRKOSC/WgNV6wYsX1yg1oLSiKPNJsptRBy+pr95yOLTEsSE2mjiOuLi8oD42tK1nvzuQpDGL+Zy6qSnLFV0zsts/07UdWS5Msr4LeNewWL0gSVJ225rDsTrLgsuyJMsNqAHvE9brFcZodvsn4mhG19XoKOCDJYo0V1dr2rbmcNizWq2FOWMi+t5zf7enPopdWiwK07scT9aECZCqlBTJRpvzgM0ZT6JElu2NkiH5xOxzU9Hpgz8rfk4b+iiK2W53XF9fcXV1xfPzXuC20YCfIKUiGVR07UCW5nS+x9pugqr2E6S9ACYOWm5IUsMwdlMKZxCLUBpPAT0C+dZKMfSWyMvwoh8GtDa8evUZVbXnZM3se1GBgahT+s5yf/dEOcsJXiLPN5sNznd8/mbOL/7yjt2+ZXNZyFDXWtabGVfXGXlWEBnPt9+85xd/tSW4lLGXQoQiIgTD89OOoix4+fIVdoT9bk8UGarqSJpF1PVBOIJeLv6AZbQdeR4zX8xp65GLixnbvSSpffH5NS6Ijf/yao3RMV3nMKagqjuCt1xebthutwQ/kKQFz/Vx+r5jgvdcX19zf/eE0lAHUd6JUrBHK/DWsFgsuX1xy3a7o67qM/+ibg4MrqPtxJISx6k0vEER6ZjFPKWczcjSjHEY2NdH0lSWEqfCWZg4/tdsuzneh8mSB3/5i1+SJjFXmw23r14w2p7IKbI8wzphxV5d34ByLJZzjtUOpRLs2E1K7xw9qRyrqmUYW7H7BsdysaCpG+ENDSM+aKrHJ8Dx6tULirIgOLi4vKLrAlt1pO+GiQ/rMdpxdbWkHyq+//E9WZYRRwkXV0vyPD+HiITgsF7SbYehlYFvFE3PtZ44oZISrrURZaQRK1FxccGLmyu+/uqAmfyzSsu546whMqJsC97Tte30bnJe1Ck+2W0BTglyfgoz0loafIATf0rUNpPFF3duZod+nBrQiVkycfqEl6qJ4pMtTkI8utZzPIw83LWsVo7F/JLm+EzXDRM/78QqYbrDpbEKCCPlFASlQFR2YQrUiAwaJlCyInhBQ8DpHLK0zUDXSRpwlgk3sm1E9es99J3DDmJ/C0Hjg8Mgn0+GwDFOeSJtiHVM31miKOP3f+/n/N7v/S1e3r5hudwwK2bEaUwUaZwbqesK7z23ty9FeaQ1khQHyTTo01rzx3/8L9Am5g//6I/41//mT/jw4f7MPrV2L2qrccSPls+/eMMf/Xv/HkU5l2dAPgoBqVVG6wguMDjBgIyj1CgCzx8YvWMYR7q2F7tU30vhP7GeBjt8UhA5JwMJO6XYTcpq7yR9wChNMDnKRMII0yWRjgnT86pysTobE0CNeCTJOYng6iKfzv2As5OayIl9z05has55kjQiy8AoRds1lHlJlm/QWtOFFmt7Xn32E7LU4INlPsuwbkffdhRlhpuS15t2ZLO5IPiMp+ce72OiaAFBU1c1/VARRYb1ZsFFeUHb9BOvueDl7Q3Hw5F62NN1B7QxrFZL2raXBHfvefVZiQ4FP36/p6k7mnrP4VCd7aVKBToniclxKknnaRpBgLYZKYqEokzEroTYf8QCqMmLEsUCr2u2u4a+c7y8XYAaadpnUBlFGZHlCxaLOXESqI7HaSHvOO4HdsOeNJnR1APeaVHTGUXX9dzcrInjmLv798JyRYZ8th/4wz/62/LsBc/9/QPisqgYrXzteW45HmusG7m6lGVUnMZsVjdYZ7Gj1LHeB3kHppRaNeHQglaUpXCcRzvxvb2jnwI0JMArTKpMWdS5wU5s0154dUGsmFKv96RJSjv003MLbnRTOqymLGd4JxgXNQ0SP5E3ITYRWkf8zb/xc/6L//1/yR/+4R+x3x95//6DpO5qYX/pUQZjoQ+EIINECecRFaybVIdxFGOUppyVzOYzRisYkbaVZtc7Oy2EOVt7T19rFMtyYL4op/NDUts/DTvFIRC8ODWCd2fMinUSZmKto+9HAkEU66ObegJL33UyPBt67Ghl0eoCbVfT9z2jHSeln0UpgzKRcPsmBIFCT86rCBNFEmJ3MSeJL8QJEkfEp6GHB2dPtrzA0PdY62m7nm+++Y5vv/1W7iJOLg75WQrjvCCEwH675fPPSv7wZ79DkkTihKqO7A87Hh7ueXj4wP39B96/f8vT8z11c4Rgpf7VntHIc6PUKTc1oHQAPlkgT5gFE00LEmSZGhlR6mgTwSgDzuVigUJRVTXBKZyXXjk2CZhAEgv/NY5k2Z1nwuZNUsPnl5ccjs8MY83V9RyUZ7Qea2tCUMRxQlHMmM8WoihDBjDOe7I0xblRaoxpAHWs9lRVhYliRmvZrF9wdfmC4/GIHTzpYkWRRqhQAwMesXN3/Zb+B1EiGV3I0nr03N3dTWFhGYfDsywblmtuXlzw/HjgL/7iW4oypihlieX9QN1s8X6kqg88PT8QRZrlasFoO969+5HXrz+b6hEJ8emnZwAHj/fP8m76E54nsFjMcF5x2Lbstz22V8SxlqC1wTH0ogqOjPSswjI3aBXRNgPPzzuGwRJHKS9uLnj58jW3L17z8PDEOI40TUOSJOR5StN0DGPLZrNkuVjxzS9/wI6gVEmaxNNCIMY6x09/+lv8L/7T/4zf//3/EUUhw9qu7eDkeoqk3jLRxCcOoBFXwddfvRKhk5q8UeoUXqawo8dMQoMwuS3G0TGOToRV033up/e77RphZg4jdSt1q7MdXVtzPMrf22mhYK2gVyItPb0Lwj3PsvTs0ljOcy4uFtKbTeFgMpT9FOQFXjicbUvfDdRVS9v1PD0+MdpBOJsKOfOtQ9J2wCDc2dlMBsGnBbzSWmYGIZBmCX3Xsd/v+e6HH6iqin/wD/4h6816Wng4uolT2nQNfdtJcnIrPN5jJRbn4+E4YZykFm67dlque6IoYb1OOR4PEjqjxTasplA1CRGcQksnxXccR6SpE1uwnoJdYglmapsTMkWx31WEEE3LaX0irvw7+/MbD/jyPOf16884HA60bUue5xyPFcvliqaup3TXgVPCbnWsubm9pa72bLd75ouc1bpAKcVqU+LDwHPqZEOiRJa/3QpEtG5EhWGt4+Liir5vOMH9+77ns89f0HUDu21N0yRczi/Z7p4Yx4HF7CXeOw77ioeHZ06W2iRdcnm1ZLSaj+8faOpfUs5S+sEyWsduv+PNmy8w1cjz8xMvb19xcXHJ/vhMnqfTgGnGOLbYsccHw+XFJVmR0bUNPliaVtL7Hh6eyXJNFGk2m5WkoR4b+mHg/v4jxWxGFCsuLy8mKLgw2ebzFf0wkOcx/dAil4ulazrINGm6wKwyjlWLdwpJvwxkhSbPY0JwaJWRZ4bLizXeD8zKHK0Vr16+oq5FMWW7cVIAHkni7Bx9HoI0YYfjFh86Ao75osQ6y6ycUZY5aYpY8gxsLpY0TSX2HyxpYghFRN9HIlsPCu+ECZhmhXDtlOLmesV+u+c4BlbzAuc6ds97ri5yjocdTbUiSYUxZYzh8fFBwk+SSTIfBGrfHGuet1viRFEWKVEUMV8UOGc5HltCiMizJT++fyBJFmINyDOc68mjmGGoJZhiGNltO9q2Z2MK9rsdaZYw9D2qLNFaIM/b7ZZxEEtrkecU85IoHkgzI1DyOOL6xeWkqnumqmtp2oeRi82GtpFAiGGcVJBaT9HyI5GRC9lZi7UDSVIyDBVNs4fgePfuPZdXCxSGp/sth0PN1fWSLB85Ho9kaUbwDXUzkuaax4cDkdbEcUZZWPIyY3NR4pwjTeb0/fhpK2lgHAJ9K+ljbjqwZZvp0XriEWHQ0VRUK7EqoMAj9goVlLBFgifEYm8R/kx0Tm6K4/hsqxGlZwxBGHZJKszKbuhkm+ocQTGx+9TZ+mtMRJEXtLREUTQ9y+2UIpWSJBFJqqd0bAfKT4pLBcREUYRWeuLvOIyBoRe7c56lJJEoiY7HA8djw2q1pChK4ijh6XnP2x8eGHpL+LhlPk9J7qB4GxHUyIuba37nd7/ir3/1LX3vhIvj5R1o25jjwfLd9/fs9y1X10vskPL8eMS1jroOok4NI13v8P4jWVagjKLrOzIVkyq4fXmB9yP90KEHuM7nrNZLjocD640CBvphT5LKxrRpdlxeLSTIp/dUdUs/jGgz0jRHxnHgYr3hxe1rtI55eqhwHq6vX1JXNYd9xdPTB7K0EOWkidAq4eWrSzZrxY/fP3OsB7rukV18kItbaZwP1G2D0opZkZGmMX3fojTESYIxoCc1VwjCZvReMwyBaFLPRXFM1/dTgINlt3viUO3Ji4LZbM56s+H9h49EkcL7kf1Rkc9i4iim7iruHj5wdX2FDjBfzEVNahSLxRznlCTcPe3o25b5zDCfpbz57DXD4Ln7+Mjnr7/i7uMDWZpzdXnNt99/Q9vLs7R92hMbw8tXt7Rtzy8/fke174l0TqwNcTAE67i8WLHZLHh8rOnaI27sWG8u8H4ghIgQRryyWDfSdzLYW69XxFFEmecEJVtrPfnOFYpIJ+ACzvYY43BWo4hYzApZVDtQv1ZCrFYl5m0AP1npLdJcTUmQJ7XKSdklll1RyHnvMZGZrHCnjygDGCl0PEZLYyfPrzuHRJ0acWPEypikwr4chn7690xDOXBO8fxUU+ST4uXX+Hbei2IlnpQj3ntwYRr8CVyfgLTjQfhGIViCOjG6PMLHk81rkhgCARMbVDgNMcXy2vQddhiw46TWYBpQaj0ltE1K5CnIy1vPqAIqMqR5ycvbN/zdv/v3+cnXv8P19e3Ebop49/4t33//LXYU9Ymzlrat+L2f//40MHN4J/WTUoIq0Vqe1T/903/Dw/1Huq4hTiQhdxgGSQ/sOvI0wSjLN9/8FWmSESdiRZEmwZxVJmb6+SVxTJ6lXKw3nBLNg1boSKxnRol1brSSGmmtWFx98PjJQVA3NcEHuq6j76V+sMPIOFj6YaAdeggC83bW42zAGBlYWOtEkTX9fsM0UPUBSQefQkpU0GiVE0iJk5g8SgS77R3zxStAvjatFUlqxFI4DsyXjoAljkrGoWcYjijVMJ8ZjK6p646ymGNDRVXXjOOR6pgRtD/zCJ21U8BJYFYWZOmcpuroB0uS5HTtyPb5HYdDx3KeMpvPmc8X9H3D/f2Bprkjz2U51vWeYRjlTnAKgpuU4QplPJGBKE1QGsqixBjhYvZGFEVt01OW8TQUazBGkx+PrJYXxCbiYduye65p24HD/i8py5SLq7kM1E008bHF4nc81uT5nP2243hwlGlJpHOa+kiWLSfOmAz7Hx8fKYqCm5sbksQImyoyjIPjf/h//Q/83s9/znK+4tWrz/jLX/4F/VCTJFIvNU3HMFiGfmToTwOUadAfx+SZ1J6zMmK1hOpYs9vtqap6GqAneKHKEcVGGM9dK0+LjhntcAavy/MttYmeFpD92MswenRkaUps/PR/T8O9KQxQ1KQBwvQxlIz2mHiNRstgL0kz/uE/+Mf8V//8/8hivuaH799yeXnB7/zuTzGRMCqVUdMCRuonSbY9sQUnbud0rkqBpaZnXYaJhFLUZd5PA/MpQXs6T4MPZ9tbPw50vTTv/ZRM3LYdkYlZLGbTAN1gopjZvGS5mAvOYvrUKHGmGq2mBUbATBiC4AVtT5B31VqH84Hg7FmVB6LgGQbL6Dxjb+m6VhKphwHvhL9rnSjuqmMzcb3Eau19OKvAVVAS+jOp5ow2lOWcxaKkqnb4yRrrfJhwAxLUV+aZ1I9Dz3fffUtR5szmM/p+kGtKaS4ur7m4vOBnP/tdur7D2oG2azgcdvybP/lX/OpXf8lo67P9M45i4ljLgEPLcunMmp14fVqD83bieiqYWGNOacZ+xKeyzA0+SOCZkqY+TaSXNEZYo3kqXO2uE75xPzjevnvH5mLOcnVF37XUamCei1tuHB031y+mfnnPOIRp2BLTts2UZh1T1XvqumGzWWOMDBizbMH11SuyZEXfBV7efEaezymKnCyP6Po9//Jf/XdSE+sUZz1DG3j16hUvbj7D+8A333xP1/V8+PhWlHFIoJDzI+v1iq6vuLicUxQZTXvAeUvbDVRthzEKbQJKORkSZhHrzRITx1T1gePxOAUkiugkBJjPFjTVA9VB8CJ2tFgnS6m2HdgdasYOFBH1wcr7FmKc9RityDLBhQyDZbWak8Qpx0OFc1KXr5Zz8mzGOFiqquLx4QE7SlhGmmT0fYc2gaJMWSxngg9yPT4oBhsxWywlLCVJ+Ud//x/wn//n/2uCV7x7+0GCgbLsPLiUJW2YwlhGhqGT52N0OOc5a7m8xzqHHYbpTJMaLUpinBf2uqi5xXKfxhE6S0jTVIbPRoZIBEVQ4iogqPNQX+5eN7mnRsZR3mFxS1n6fqDrhskSP9DUtTDZa+kX+0HsqKdQVaaBexRFMriPhdW5Xi25jtNpmB9LrTXJUM1J5d+PdF1LXTd4J4KtP/7jfyH9JHJ+RXHMfD5jsZjz4vYFX7z5kv/6//Rfczwc+O2f/YyynJFnJUmSsVyuYQpctNbT9+10rsq7be3I0A/nBYacByOH/Z6//uZX1PWR/XLHMPT4MELQeG9p+l7UoyoQwoAxiBAryUjyERUL2xgUx4NCq4TnpyN9N+IcWBvwrkfCpPTUX3vE/v2bj/p+4wFfmqb0Y0KSJHSdSAyDh7ZpeXh44M3nr8jygq5rpsCGjsViw2wmkPShR1RbQ8d8PscH+OzzlygV8/jwgDHX5Pkc50Z2u8P0Ekg8ct0c0JGi60cOhwPWWY7HPWm6IE4j7h/vubjYkGYRu31FksaMzjGbz8jyhCyThv9Y19RNg0dx9/jMfMiJY8PgHGma0I89dVujNaAdu/0j600pgQ5RRF6kVLWhaTsylRDHmn5s6W1LuZhRzkuOB8vj05ai1CSJYhwV1seM1lEU05AsTxnHnvV6RVVX5DqlOtYYE7FYzHh+vse5gdkik0NAScrUbv/I9fUtJtYcjw0mcpQzuLq5wPoBTysDniTl7u6DJG7ORXXZKYtzLUkacaxqrA2TbTinaXu6fsD7gWN9oOsaogTarpI0xzyjG46YXpHnMy6uFhjjSdKAMakkpo4NvnMsFzPSbEMImhAMWZaT5bGwJRjJy4xiFihKAy4lihTD4HCj53B85OsXVyjdobRhtVpM/Kwwqa4kGcsYaQBn80I2tcgWtm0bslwYhVmaU5ZzukZivWWS7oiMIgSRV5ezBOsd3dCz3R3OjULTNLRtQ1HkU8pqwzD0PD4+8JOvFFVd8cMPP3D9YkY+C1gf0zYNV1eXGAN9X/P0+IhzgZubG7QKNG0nxZSJpzRX2byMk9S761qSJCbLE7QRm1c0NWPHvSi6qqqhaQecM3gbQ0hI4oLgNWmS0/UNzksIyTgqnvdHvO2Jk8BqkzGb5zw+bqmrHXlqSOKU1SpBK4dCMQ5WNqMJYsObmnlzZk0hENUQGMNI5zuYjA6RidBK+BsnlleWiWJOq5i2ayab8sQpPB6n5Nd4uiQ8HtnwDIMAk7XRojwZLVkmqo1haJjP5whPMsVOwT/OebQRWDhKrBFRDF03TgdxPLE8JpWAVmgvhVqaZtJcusAwCMewKAtmswVPz08TxyvQtQ1j7+k7sTIGrzjsRziAUiNRrOjqBzaXHdfXG9I05/37B/bbFjsEHu4a2sbR9j3X1xeiNu2Fj6F1QfAxdtRiUxlGtO4ASZJs2gZUjDaWwMBsVnB1dYu1Xqz9UYbLJfFvLAytCgzWQXAYnfN419BUDq2hG0ZQOX2nGIaMPFsSR1doIpqqRSPsuo/vDuz2R2blktXqmnm55O7ugbsPW9YXgfkiI4SBrm2pq4GAwUROtvbGkKYxcWIwxhOnXpKzjDRm1g+isDKG0Y0c9keydM9mc01ezNEqpmmOE49DBkbL2Yyur6mqiqenLXlRYnTEcrVkGHrms5yuPdK0Fcvlgq5tuHu4Y7fbcX21Ic9T0rSkaVq8G6nqht1zgyJwcbHkyy++ou0G3r974Gl7BAJFXnJQFY/3D9x9/CjhC0lOFCuMVgz9wPfff0dRzFmvL1C+Zmw8JmiUjqmHiv3umYcHQxwHLi+XwsSZzUEHjAmYGLpjw+55i7eW+bwkz3OUlyIVY6ZiJzk3kkaJBSPNZJkSnCd4K9tXZTgx6E4hOFkaMSti6mqc/m7i8E21xb81uJMWT+74k0Im6LMl7gT6NsYwiV8nda+XBcFJ1edlyxzHBmM0aZqgI1BBkUURkqKWcvNiwTgG6mrk7Y9bjlWFRuDuIXw6T06b41OzdWrQCWraiAY0wkUSG7NY1c9FpZJtu/BTZOjlJ4VGlsW0Tct8viSJPG7oSSItA1gCpwQ0UQoqokiSq5u6JYQpkCRNWa+uSLOSp+c9P//9gvXFgovLDVma8eXXb/j57/8NQnDkeTotI2KiKP5kMQY5b6yokv7+v/+Hk5LtP8A6j/WiYAtBWGF2lG2885YkMpK02w+MVlTtYvEL0mjbQRpkO1n/rPCz+t7T9QP9FIIVCJPdLkx3lkErxMwWfUofXi4L0jgVm3KA2CST/Vjg+qO1aCXbbDcFDQ+dMHGsGydL4ShDq26gqiuG0QqfrpdFKl6ClOTstvSDKHuUkrCqk+3LTcsoSfYTNISofBxRnJLEKZtNhLMdVbXll89/Sdvt0PFAkltIDYGTGmIkzyJMooiLckpftbz94Y7BBozxLBZzosiw23YUeQzBoJWhPtbUTX0OqALBMUQmQauBcVBE08+mKGOKIsOHAW2YFlLChs3zFK0j8txMzRoY41FEYhvynrppiOOcdHFJ146AMBz3hwPlYsNyteRYHehHxzA6nh6P1FVP1yqO+5b9c4MfE+YXFywWKz5+3OKsR2daGixt6Pp2GkaUzOcSWmVMBFMYzV/+xV/wN//m7/Hq5Sv2xx33D3fkRYxSUFU1SmmKssCOnq4Ttt0wenTn6DtHVffYcSRNM+JYYP5PT0+0bXdWelksdSOYCJSEUPgguJk0TSX9VcvAxLmEYQhY5B6y1qLR5zPCBocx0Vl5wnQ+gthek1RaJXmWwOiIgGYxv+A/+1/+r/hn/5t/xm53pGlafu/3/4aEX8Gkhhvohp7RumngJsm22oiK1pwWFMjdcQrNUw5OCxZtJtuo0ugIiCNSJef1p/OZs6vrk4qZT99TQNTTE19OAnh63r3/wHq1ZrVeMrnMCEYWInr6FHoacnkfiERGRBSb6WOeqMv8219LkMG8CtO4frozZGnjJxuwxVlP18nX4rybFEgSZtJ1HX3X00yN98ku3Q81WRFTVRVYhHOnAqO3GDR15wjO4bzjaffMOA6sNxvatme339M0nSgJTYpGsyrWxElMliZEccTv/fxv89/+t/8X/pv/6/+Ztt1Pqh1FUaTEScQpWEojNm8/9Q5xHE3LyP78sxB2owxkhl6Yz6cASmvH811mnbA7u6YnWBkg7vcNddOTl5LI3TWK2BgIOfNywayMSGJDWZYcj0fCYImihNEKkzvLU2azAuccUSTKwCy54Hjo6foWaxXLxQVZWlIWa+rjAZUWzAphC7/98QPLdYYfY96+f8d6teEnP/kZL25ekSQJH97fc/fxifv7PUlasF5v+OUv/5KizFmtX6O053Dc0nY1SZrys9/5Xf7Fv/zvef/+e6xrKUoRX2it2O/3HKuG1eaa+WwmLpvpmTkej3jvhXdd1cSR9NmjtdR1Ow2FhXUXRzlt7xmnAETvnQQVei+iAA3ojnxmyIJBG0vTDpSznHFw7PdHqqpiPp9TFAXv3v3I23fvMFHK7YsL8jxntA1xCmkG5Szhxx/eY6JpCK1ifIiZz5f8s//t/46/9Qd/yG534M2bz/jt3/ltkjgRB0QkNlphF/NrzolT8Jw/vcgQPjkQOL1LTobEIoQKBKcYug4X7NRHyrnT9S0BUfBZ66aBosfEEXmWcnmxZrUS/n1AeISnc+P8RgdBaHgXcNPyw9pxGqxK/+S8Yxws7cTkHAdJ3G2aRtwbVlh/u92j1CKjDNvdNLgMAichjmRZmucZaSo8+pevX3H3cM8vfvlL8lT6O3EcxsRRxOq7HwCHCoHdds/D/T36RtN344SIk5CMgJqQTubsVDxhCQwK70CbjLLMQMFqfc3Ni9dYN7LdPfL+/VvevfuR777/FW27x/uKSCus6/CIQKVtO5x3LDTkWUY+W1Idax7uj8RRih2NoEC8IgQ97XTUpAwHGe79/8mAT2uIokAcK4EZuo7ZvCBJE76YvSKOArMymjYgjsUsoWt2OBsRGKmrnn7ISLOYttXs94/MF0s0lrp+4ljN6Pue56dHZrMVF6+uROLaNewPhixNGMeGvq+IYyiKDHDMForFYkOcROR5zDB2xJFmucyoqpb5XBRsAbEELBcL7KBwoxSbm80V49hMiSyaJPaQK8bhSD32eG9JszVFXqJUTZoGrq9XvHhxcwZCBj8SQiI/n0ixWGSs1hk+9HSdsGmKopwgjQprW/JM0TRPFHnC9fXtZLntiCPwPiUyBUWZ0TQVgxtQiWG+SAnUeN8zm8vw4/bVJXkuCZvj2HM4PNN3BuWFSTLLU5q2wo41Wg+sV3PcWLM/jCjlGYaWcezZbNagIvq+wtoBozPKQgajcQxaR8SRJ02ElWHtwGFfE8cJWks6o1jdNZESJkdTd2SZoSxSsqwQ2HxiyEvN5U3Jn3985FBZAiNJYnj1Zs1ikxBUz/3Dnvl8SVN36CllMI4i0iQiLxIIsNuLzUWGfhHOwdAHZsUCO8JisaLI4PHxGaUHinKOtT0hdCidMctLlJk4Oyhub29o6pq3P8qmualb9vsDcSyXe1EUOKdQRJgonsCZB7LcECcxbdeiB8XhcJCkIi/21KKcSXOrNU3TYa3wgKIomgaINQ8PO7I8oyxKlssVcRxPoSPXJIlsWYt8hbNHDqrj+mbD4bAlSizrZUndHFmtVvRDoGvuUcTEkaa3MrRyFva7I7cvbiFkPD/e8+H9PcNgefPZ6rxZV8hG+Qyp9/5893TDQF1b4hjSJDoPKk8bKqUDOnBmTJ3Ull3XToVHdLY5+AkIPY4jSRLjvKfve5wTG+Y4uskWLNavthX1qXycjsVijrWKpjlMnAmL1hNEt+9wXjGb5ZSFDHo/fHiSZtpEcgGOVp7pOCZJEtpWAl3USU1kpYk7xkeenrYc9pX8TMLE32JKrJuW8UpLatJx72jbHU/FniJP6bqRtrVYKyqhuh4pZwatEu4fHtnvBA+AdyjCdCmVxLGhOjQYLXDnYZRUriQ2+CRn7HO6OiNNFrSHB95990xdV5NdSSC5gYhuaGiOGq1z2kaz2VywmM2JTIqOMrq+J40NeIMbPBEdcaox1AR75NXNl4w2EJuUsUsIVhHGFNcn+B6SyBNHR5IoxTqDRlMWkjoujDIHaiTLcqJIiTJ17EmSSIoYP5KkMwwRfScqUkiQTkcUU3YcWV/MJX2xgWEMZNmMw67hcOyYL0suL1coLSqDu7snVus5y2VJUXzJYb/D2Q5nIY4W2EEClMTSoEiTnPl8Tt+3aB0xm8+5fzhCiHi4vyc4T1MdaeoDFzcbdAyXVxs2F2tJZsbz9Lzl490dQ+OxPcTElGUuarkgNi/rRhaLOSFIGFBvO0ysidOE+XyG7XuGvmO/21LkCWmcUDc1OlLkWSZJYtPzd0qyTOKIECyOXysIcSjMWfWOUiyXBS9vN3z/3QNtJ02Mh0m1/em9PH1crYUpd1bFaEkr9N5NjYo0nGKdDpNS79NA8JMtNuDcacvvcYMoapWWQZIomQNplvH4VAvHJFKAI9JaAjnONYghjiXJXCHWW+eErdd1Fuumwc6k/JOGWZ0tfFqJ5UOwDoE0idFRhLXqzObsOynavJciUtIv9fn7O6l8FBLOMAyyHJzP1tzevkJrgX7/3b/3d/jbf/tvUZQFu92Wu/sPVFUt+IU0oa7MpNmRYeSJteWdJ1gPGLGNGNmKhynQTKw9CVEcT8MCZFkRGZyKSEzEbFagI02SptNWPZGGJ4gqJ3hRL8lWX8740brz19H3I8PEPR36QYKORlHGnXiowzAQvKVr+0kBIPwnrRSjsxOzXp8/h9ZiQ44jYXZlaUpRJMJXRKymn+bNMgSzdsRZUciM1p3Dj/qup2kqxrHDuZ6u72i6kaenZ7GKnphrTtAFzo9EGpLIsF4uuVi9If7thD/50/8HJgloLcNAgdwbnOvPNjcQC570QJ7DvgcFzu1Zr9ckaULT9KRJQpZmbLd7np8r1puSm9sLAj1xrEnjFco3VMcfGPpAkhjiOALlz6EwsntS7LYV42i4vl5SlhneSer78bCnrjvm84wsz2S4paPJ2jlg7cBmvWD59Zw0k5p3Pi9QKib4mDRe8cu/+oHtUyV3DimRiZjPNlTHRniN3k6DIsvoxGXQti3DMHDz4or9ficYmwmN0fc9P/74I3/0R3+Ew9EPHWmWEEWaspzTNM2kRAPrPKMdcYPDGDW5XnpZGI6Bcaw4TbrjOCGZ7G/OW2lIjUTZnHAFzvkJGSKAeQkVYXpfRYWIPzXRdvreRNFovSU2MeEULmHUpFoME4rAS2KsSdlsrvk//Bf/Jf/0P/lP+NWvvuXVq1u++PJLCIrn5z1//Mf/kj/50z/n7dt37KuK0Y50k/pG7LSTu0Yr0jghS1JiE03Yo5y8yCdsg7AV5VlKiSLhnBWF9FnGGAl0MhEm0qS5JNkWRTn9vZz5Z6VxULI0zsQ5tXaSFp8k8WR9Y3rblIjuz+gF4bz6s/JwGgJMiZYTgXVSOqpp4QRh4royKb0DEAMZydlyKNa484dF8SlUxfswJeKOjNN5OI6Of/pP/yPatqGuO6qqYbvb8vD0TNd1dH0v78VebHZX19fM5wuWq4ismLHbHTHRpwRlUc9J2EnfjWhd8Hf+zv+E/e6Zf/kv/++i5NOCaDLRFLQyCqLhZCGWGlGYboJ6kHsomtJIvf+ErwBDWeaYSNE2NcYYVqsLiiLHO8/7d3c8Pz8z9A4XoHseqeo9cXSY+kXgdy948+on5FmODwOLxZKmEcXhzfUNu90O5yRUbT6fyTKYmH/8j/4pT48P/Os/+X9SFk5UghiOB0uRrViuSu7v31FVlQzhB81Pv/59Pnv9NYvlkq4d+O6bOxnqWKirgLMJfRgo8jlv3nxJUaTM50uGfuCv//oXFGXBZXbB/eM7sjzis89esj8+Us4ylDot01Jev77h+uqSYezp+nESOXQS0ND3ZFnO9fUVCsN6vZbzaBz5+PEOUMxmwjTrBosdPX3vSLMJHYFCG0+ex3z10xdcXJY8Pm6pjh15YSizVEL01muW85UsTg3sD1tC8Lhx4O7uniSJmc1jkjQXDl31zMXlijRZ8Px4wA4x89kN//yf/1e8evUZT097/sbf/JtT4vfA+w933N8/sNsdJMyCMLH95f7LspQszeWZjKJP73gUkWcZJopkMTktF531RLHBxEawXkyhD1MvIv8jL5cPIkpAe7TyNHXD/rD/f7P2p1+3bfldH/aZc65+7fZpT3v7e+ve6qUqNQYLSSCBPCACjAR4JMHDZgQHJ3He5M/IC8dJTGwcGxsLMAgj5IARjkdiY4LVlai+u3Xb0z7tbtZe/ZwzL35z73PFyKuUnzFO3Vt1Tj1nP3uvteav+X4/X6yzzGdzuef9fr0hm0W5rl+ooQ2Q5hFKpXsdhwwg5SgURa8LywHj8SOMg5egjXFg6AeatpcUbWcPSxBhCoqLo6lr2q6lbXu21Zbrmxs2240wO60VHAmawYo1FqVQWJz31FXNZr3h0+98mraT+k9F0I+SjuytWLxDcwooTAgSy7L9+yc/NyiKcgbKc3J2h9defxulYFet+OD97/Kbv/lPef/D7xAn0PXNoV/uu5HrC029bdjtVqLIDJxipSLwI1pF4e8Pzzm7d8f8T/f1Qw/4hqHG2h3G9OQ51PWGPM8Yxo001W3H2ekd2qbj9KTkaHmH+WyO9xbne6wdmEyLwI0aOJ6/FkC28NpLJ6RphrUDfX9H2CWBdZAkc548BsKW7mRxhzwvBEQfSbS20SkeyzA2Aj5uOuazJX035+OPH3F0coZziuvrDWfnxxzPljR1ywcfvsu9kwUP784pSlEbferVe8QmxhjFaHv6oSPP0jDNH9hupwKVzVLaNieOI4yJGAdFGvWcvnSGHV4hzT1pqplM5gceBojdwiO/4ig+fNBKGfBiBQBpZlarFd/9zncZ2hXGaT73zttMyiJM8iXQ5OnzJ9y5O8MDm/WGN1+7j/IaHMRxxDB2eJ+hOEVpYcq8fP+UuvZBhivDrLIsqOttuIkdeZGgDWyrFV3XUBYziiwhihSd8jTesWkrvMuYTmbgDM4pdlXDaAdWNxucdSRxTt90zKdLkiih63c8v7ii6x1R0oE35EVJXmqms4xh2FGUS6azkr4dGAfHRx88JU0zTs9OUEQ0zZZxGKSpG+XgylJhRNhgtxiGgaFvmE5nvPnWPWEC7FpeevkO/VATxzIgrXc77pwfc3Z6DGokMgVRpIV/18lmMUkkrajrevrOUhYLJuVMosN9w0m8oChyhmEI/JSOqqqoqobb2xUPHt6jKDOyIMePopg8k+Zms9kyDMMhnTrPiyCxrxjGjtvba5JUkSTCk+y7kfPzE8bRkeUnON/R9y3D0HBz63j86JL1qqGpZYgwnRcUZc7yaEK1u+Ub3/g+sZ7gqTk+KUgzTRTvtzhhU+Rl+7G3rcl7LMmgcUzY8DoG60IAh3AKlBIAuAtJYd77AEV9sSlXSgf2lgzXRFEnlq+2k1AWD8Kqse4wYBhDU2mMcP82G7h//w5xHLPZbBiGXrh7fY8yVuyAcSrb9G5gHC27XcPR8pgsyehoGXqLNtGLxF9rsWMfkrMgzVLyvOTi+U0I8OmwQcEoVqoEgKIo2GxqmqYDIrp2pK4dm3jg+KgMikLZrEexYrPt6X7whHKieOut+3QtXF90LBZnzKZHRHEW+hzD6clJgMESwgY8RVFwcnJM2w48eXSBG3umkynLuaGuGzwRSscoFQcb5UiepxyfCk9pV4ulbuwjYqUDzDcmigxG90RKMz/OUViatkZpEwZVmuNlKfaHaCSKOsCxmLzD0MV0nQ2MNY3zPd6PdGPDaFuU7jAG0jxmV+1k4aEVF88es+ssx4sjsmzBOIpyxcQRSWoZhprp/BRjFLtdw/OLNVmyIIoysjSjrtdcPm+5unjMfBFx53zOw4fnnJ+foAKH7eY6IzMyuOu7kbbtmc9OsdaTZzMZPhChTcI4RtRNTRxP2VQVw0T4coujkpPzN8HA5fVzVqsL4thJwIi3TKcldoBH1QXFZEZ120DtWS6PuXvnjiSQpYqmFVtGVVU8ff6Etuu5d/8BRhlOT8+YlHlQuwmfKYyRRTGnDBCFAa4WpZIXxUccmTB4k2JFfUJroYDjkyOqasY4Wm5XDV03UgcI+55N23VyX6Zpcrif98xMADoJaHAhGXw/aNxbfPeW/33oxf5XHIktbLvZMY494NFGbGxKO6K4Jsti2mZgsUxJ04RxcDin2G4a+i40m8ri/BDU2xO00kHB7en6jnrXBHWtD42cQ5v91lzhAi8ujkWV7bxwn/JSVNWz+YSuFVan0ZpqW6ODU8F70Fp4pTjoO9l0z2dH5PmEyWRBHGc8ePAKv/TLv8xP/PhPcHtzzfNnK4pyymuvvkIcxWH4qAIjzwsgW8lgEhTKhy2+26MSpPjeK2PYK3UGgWJ3XcswDjjEktIPPU3VBtWrpx+GoNgbDqpHvA+4C2kiohAGkKYJ88WCo6M5cZJiohj+BbahfC5yvlrnUN5jx5E2sEbtKMPCYRhpO0FSdJ2otEYrhX3b9Qxjg7OOtrUCOt9bEgOcRiFBKXJtapI0wytDkacs5yVKHRMnosAWLp8k0/7Wb/02v/k//pYMjawMJq23EMXERHQDPLtYcXJ0xJtvfY5de0k3ruj6W+I4oRt2ZJmmLDOiKGHsrajBIwlyOj45pm5qrq5vuV3dMJmUZMsjLi4uqJunDGNPFMszdbfbsViUjLbn+e0FT5/VgUcrDVtTd7StxzMSRYbBSrJ5HMkAoSiEiby6XdN1I5GR9EijI+wYOL5RTqS6cNaKsq3vWwgq111VMynnnJ/dZ1Kc8t67z4gjWbgak2IHWCyWDINjny5sR8uAMJriKMJ6T13vSLOYNEu5ubkhT6RezouMm5trLi6e89JLDxltz9e+9jU2mzUeUYua8OydTKZEsQnPBc9ut2MYarF9eVFyip3fBEtmSELs+1A3RYcFwt7muG/QlBZlrh2HoOYzjN6TprGoWLQijgx2FOu+0WEp5+Ds7JSm6djVlSTKa2EJa2V47bU3+bf/8v+OL//oj/Ptb3+Pt956i7t377KrR377t3+Pv/9rf5/vf/9dysmUo6MlRyfnZHnBrtnRheC8s9MzTKTY1RVN3VC1I94OdL2wLuGF+s45F/Q1HjsMgkJRwhDbN/tRFIlaLgwz06wgL3LKQpTfx4sF9+/d5Us/+kXeeP3loFgEo4VjXtf17xvwiYXNhwATDoM956SZF1Tk/jwJz6PwbFeEBl++0f4/cJbDa//kb/nA3VKEZ5mSAJkgEEQb4WVLTwReic15PzTcP//2taoLiuS2kWWLMRFt07ParPFIyud+SaSVDg24YxxF8dS2O4ah4e233+F73/06N7cC9ndeGLRRjNRAaIpyQt+Zw7m6792ET+sOC7U9QmL/z64bQvCFput6nN9yfXPN0FmEpymqeB/Ozb71jFqB82jj6Tt4cP9N3v3BV7G+xhhCKr1js90GzIxhGCxK9SzmS7YMYuXUcVh0OVmI+JRqfU1fiF1cEXHv3h2SNGd1u0UrTVnkFOmUze0l+BxCzz6dHHF8dId+qDg5mWNiGVo+e/4MfMtgpN7PspivfOW3qZuatq3QZuR2dUFRZMzncyaTCc5bttstq9UN5aSgLCecnJzw9OkzrHUvMARZSRQn5DpjGETJq0NgzXq9xbqBvIhAWZLUECeGxXLJ7eqWxSLl9GyC1g5rGxbLgkk5ITI6MPUF2STpwVvqeovWnlH5cM1b0lR4+NvtivPzM9brhqb2JPGEt954m3/z3/h3yPKCrhv5kS99mXF0/NP/8bf4x7/xj/nOt7/LZrNFhwCdNEsYxoE8zULgzn6RNUoQYCKqUqM0k+mEsiiI4ogiTZlMJsRpRJJlkoqdFZRlKQFvaRoGhhlpnpCmokwzURzOGsNisWQ2m3J5cUme5RgTUr0/4dxw+2erFZfFHp3CJ4QM++teIwpEtFhtPQoi0NqT6Ails8O3fqFmlzpiP+DaD8all7SCcuhHtlXFxfNLmqbh6vqG29Watm24Xd3StS1NvaOYFMRRwunpGWfnd4mimKbrefL0CYNXaC2LEKUjWdhaCXlLws+tlT48R7x34c/YsNiwOKeJjWJSHvHZz/wkD+6/wq//g7/F17/x21gLi+UkLJnCz+cT0lizrSoUmnonda5zCIpIf/I92Ks4XyxVftivHz5FN9UcHS9IkxRjZKKapUngR4AdZcP74N7bWOvAG6JYo5TDRCneO4a+Q2vhN6FK+T7DGCDjGm1S8mwuyVDjKGk8zlFmL5HEGfsI7f2WznuLTqWQd86BilnOjmSIMIjq7OQolw8TOF5kpFnJrh64vHhC311R70ru3T9nPk9EVeI8xkjxMI5iTQBQakBpxXwykYPWGLyXAZ0SLTCRMSznGVrdwatd2PhYlBqRmzmSdCQjXnytR/bpasIKG8KATyypaTTy8sNj5tNEEhdjSxINqMB/aNuWMtUo11Ptap49eUIaG5aLOYmRhn0YTQBpSlpMeSoKkpMjibBXn5gswyLwzGoePfqQ5dGSowenEIqPJMlJ04JhkASpO2dL+mEkywp2VcdqVYHWeDtKNHQmKTJlkYLz3L2zZHA5j5+suHN+xJ3Tc9Ik5869U+JEsdms+PjRLUmkODk6oW5G2mbg6ZMneDdwc32J1kfUrWyFs7QkMhGTMsVbQzcMmGDBHceOcezoux1xNJIvUpbLCevNNc5Z4hhW6zVxnAX+hWK9uWU2WVKUBR9//ITpZMpkkkrSYpDAi+VUtijr9Zo0H9Ea4thQ1zvGUaT5RV6QJRM224bLi1vKsqCc9IAMy8pCEo2stZycnAX1jAt2cEPT1IH/IZvr7a5idVNJsaBrJpOCalcTxZ7TswUmkq3jdD7nuIlxtsKmHSdnGacnRxIc0Hq0Txn6gXISs1jMyAv5+bUBlDRzdgxpYf4TRR0SmiHKHoHduzE0pUoHLoRsv3Ww8O35Dta6Q6EnvEYVts3h+7i9ZcyCgSSJqXcNwKFQStP0wC3suo62bUnTiHfeeYfvfOe7+BBuUtcVaaTJsoI4ThnHltXtlkk5oW9v2ay3LBbCiGjqCu0VfbcVCw0mqFHkOTOdTkiTlL4fQ/M8gPekhSJLY+7cXXDv/h0mkym/95Vv8OSxwOv9XrE1eDZVgzKaJNM4C+d3Fty5VzKZTCjzBafHDzg/fwVczvHxfeKoJIpzJJhAkrl2u0aUCyqSazeRItM7+PQ7KhTkHJ4rzoMKASjbzYZnT55zc3vN5c0lfXcbeF8yeEFpuqFHKQmxiI0hiSOSWDhUXdsyOrE7JUmKHa+loPUDcSxWxb5NwUfC8rGezjqMKfE48vQIZRTONZhYYPd5PjLJJ8LZefgKJpKkQuts2J4L0gBVMJlqsjyh6xpWq6eMPcyPT4hMQrO9ZJIds5iINbhur0miOUV+n741jK5Da5hN7zK0NW2ryPMlNzfPGQax03z40XucnJySJiVd0wIFjx+vubpcMZ/MGaynqTekac/RcUmSZRyf5HztG9/k8aMK53sWy2PwntvViq7vSZORJBFWWG89TQePn1yj9UDdNDgXmFBRjhsVfStqEhMpyqKQxFxvw8L0xdBOBkAGrWXKHhmDGvY7WBWul/9f20HFzfUNT58+ZRxhMsnoxy17oLgxijiRdLI9F0SGdbBX8YpaYa9Q2P8eQXkWwNCBVyR//T6RkNC4im3XBW+YtpKgrrSm7yxt0zGdZrz+xgOU8dxcr1jf1mS5Js8Sul42wEoj1prdDq00o3Mslzl37x6RpEcyXOqkIL2+vmGwNiwMPUkU0zSNcHkUrNYbTKzInMFECrxw25I0I09z+rZHEmhlATGGYYVGlnHGJGR5yaSccXxyzjvvvMNf+F/8Be7eu8eH73/IbD7l5ZdfEZg8wjl1bhQG4fAilXH/Jfa4oJ5UCh3pg4pSOuDQQEa8GOBasceh/WEQeLDdqPAZOBma7ZlRNiwb9uFUwyB22a5tubm+4eOPPsZEMa+++jKL+fLw7AaIAltMXAPS3GslaoH9H/NBPTBaj9GyMNrbc5y1DNaF4n5kGES5PQxDUAYOB7XG0PfCCeqHYHu0jEND22zpOrFrtm2N9TD0FqVj2rpGLLvSwEZRjHIa6zRt50hzT9f33NxafuInf5rprODy6mM+evRdrm8e4f0Fg93SdRbvRhSGl196ic1my9XVpajIjGaxEM7XOHo6b5ktpzjnWaYzokix2+148viKq8srdATTckmRp6RZTdvIIM8OXu4BpcUV42TIYUdxIqw3FR5hysrn5ul7GK3HtwO3tzusVdw9n4ua3inyLGU6m9M2DevVltubFnc8YVJ4nj15RKRzkjgXJ8FQc3Z6jyRJAc98Pg/heYKEkaGLZlaWVFXFbrfj+PiI5XLJ7dUV4zgGNdiE995/j3sP71KWJQ8e3Of3fu+ScRzDUM6yXm1ENTOfURQFwzBIcNPFBZvNljjSWPWiTnDuxXWhgvJrP+Cz1h7UcXJrhKbMKxaLBd7DZr0iNlFI07VyD6RGBkBdJ2pWJwOJOA0DFoTHHCcJUZTwmc9+nv/9v/N/4OWXXuO73/seX/ziF5jNl1zdrvjPfuXv8g//wT9iMV/w5jufZXm0PPAtR2sxg0WPinv3Tjg5OababdBxSpwJv8qOjngcpd8IKuE9T1QbGeT1g3Av9+rSMVhdBU4fOJUerPc0jaWqN/T9Jd6+hxtHfuO/+W/51/78L/FH/vAfIjKGyMhweBgsnzwi9sy/fTJ603Y8efyMi8uLYJXWQT2YUJTiPMkzuf+zNA3LVGHQ7Qfye4tkFEWofXfrQm0SaheCsOb39bhhqCcabPlz+38/POAAvCISbgA6iSVlW2agaA337RGbdcuHH11wfb2mqnfYUI+O40DbVazX12y3t6zX19ih587de2y2VyiGg/W2nCSUZUacJOAidlUjymgTHc6+/Zm3T0uW3u5FR2+t/BBpktO2PS5wCJWX4DipF01438J568N5gDxLb26f8vLL92naFberWxlSDoJf8E7htWIcHc71ZJkly0R8IgrpgSiB49O7KHLK3NDs5CwbekdRTlndrumHgSzNZXmw3qFVQmQcu6rl6OiYLBOGZ7Xb8OzpChNpFos5p8cPAct2d8XoKp48fcz3vv9tuX7tyOnpjDjWzGZzRisWTvDhLM7Ybiv6vmc+n3P37l0uLq7o+4GbmxsePpwEdJIWh0UkAoE0zWi6mrquiOKYk9Ml19cr5ouErlujTYd1I9dXz1kuZ+RZjDGetpOwzKPjgjhJcdYxTWasVzVZFuFThdtKkKYxjqOTKWWZ0nQrjInB96RJyud+9Ev8+T/3b7BaNeR5xoOXX+XRsyt+9Vf/Hn//13+dxWLBvbv3eOn1tzFRhAfyPKGuaxaLhTzLnAucykEcSp04lLq2ZbCWm81OQnacoywnVLst681a+iAv9Z4kvMq1phFRQpJmnJ0d8+Uf+xI/+7P/MnfOzkTd5kVc0jQtk0nJPrF7/3x13oVBmEYrhzJ67xo+WIvl3z1OiatMHW5Jf3imOCd/1/43QykSbmQpGKSHBB1FaAW5erEwgBPeeuvlsG144QjphgE7SMJv0/YMrSWKY5pmYLVeYe3I3bv36C0SGOXECpsHRr4Pi2lnLWNwaTjrDgsOEa6IBVlrcwg4MtqwXJ7wsz/981xePOfRkw/xTlGWJU1zA0oYmhBQNVbOk31fJu+QC/21kntcy9Y4GJV+6K8fesB3dDTh+MSgjRbYspNX1Q8dbd0QRzHKD4z9jjzPcX4gzxPh6CADLpfGh8NZGvcXGxCtCXDNXdiWA8oEOWuOIqLrG5quRRvZxh22d8qGwc4e0iyJOsPQk+cvNi6RKdEmZjbPOT39PMPwKUA88t77MKRsyAtR/uyhkc6JVcbKqBbh+MQM/SjDilgeOtoI4y2KtEy0lQk2Nc04SuMUGY33SrZUXtgOShsio4P8VIESe4Aqc+bzGQ8f+DBNl038MEg6y7ScMCkmKBOx3Y48e3pLkmQcLWdihXDj4ebMskyk9JFht9ux21UhEUesIvtpsjGeLNM8fHg3DDkK+q5nOptgdExkxHZonWO1qthstty994DFIuPoqMSNSgp743F+QJEymwvQ+/xuwe1tw93zIyaTCcvlkTAQhy1KaeZzOD56mziJRSWiHHkW8847D4J6TK4fFQ14rynynKYOvI6hBSVb3CxLSJKcIkso8pgklkFxPw4UhSZNSrx35GlMP46UxYTNZi1R9G6N9wPO9hijyAqNHT1gKbKEODIM/cg4hrCAOOL6+oLpbII2RiDDbUueTYCIatfx/OmKo6VYQ+JUkcQ5VVWH9z/i6uo68GQSjo+P6bqeNEloGrEXKC0b2DhJ2FYNZycLprOSk9MZzy8e0zYVfa5YXd7y0aMVtk+ZzWdk2YTFUc5mvebxx7e0reXkZMbJ6QzrWpx37KqGPNWkaYRSDo8ODyyxJSQJAjo3EW5/IOh9wS32EyeiEFBOrrkAJSbY5MSKK6wk74WtlZg0gPhlkLhXERkjIQvAQSEUx/EnCiYftpc9q9WKx4+f8NnPfpb3P3if1eoG56CqWuaLmQzmBss4+JCKK8qKuq4xkdi42rZnHB1plhJHMfu0Vu8FYiwnlaftepJEc35nyvndOfcfnJEXCd4NdMMtL79WsjwRht711ZbRDsSx496DOdNpzm7XkCVTzk7POTs74mj+Eln8gCQ6xZgc0Hgb0Y4K1dvAp5N7Mi/KIN0XHlOSJGhlZNhuHXv+CF4aMmstT5485r33v0dVbdlsBF5uAac0fs9wanYorZkvFnz2c5/j/v27MpwNfLZxGOkHAXpb6yRts5c0LOFoWeq6Ickc2kPfNSglTESlYkbnaDqLSVPGIabte5wf8c6yMTKgsQJNIcpTYWR4h/U2cG4SjAbr2tDMPWQ2eYizEcPoOVneD2okQ15EeHZEiQMbM7QGz8hge1zrwPcMePpGk8YP2FXXVNUGrZc0dcLNdUOsp4x25Oqipm01SeQ4T3Ly3LFcjty7N2e9XaNVzr/0k59ns91SNy1ajdw5P+XevYfsqpbf/e2vcrPekBcl86SgqmtQPSZydJ0jy3PW6wqtPMtFjB0H0jwhS2OSSOHscOCjvOhoPqnIE3WJ1hF4ffg9o2XxYIwRdYjdq0PkPFksjgQ+rmLqdqBthYOYFyl5kaM1tE0b2HeKse2wVtTDokawL16BVocGPBziaMfvg9175yX1UZkQegHeacCGbW8cwnfkbN1ue95771FYPkzwfiTNZBubpSWrVcXtzU4Ghb0wN4siYzYvKcoYE1siC0WR0tQ9Z+dLnl9I8vN8OmW72hDHEZvthjRJSbMkODcU1spAxWhD3+1oa9mqv0imDM376MRep2PyomA2XzJfHPMzP/Mz/Kk/+afJs5wffP8HvPHmG8xmC5xzbDc7PvrwY771re/w/vvvcXV7TV3XAcosn9s+lS42Rv67MZR5QZaLsjsyMWmekea58PuyjCLL0MYQxQlJGhOlYt1NIoOJY5JYUioPXDwlf5eKo2A3FkuO0Z+4toxYfuqm4aOPPsZow3Q6levIybP6ELKEx3qP0uYwMPzkwlAhDT1OunZtIqIoJtOiURL7274G3Kc4y//XB/bOGDb8zjnGwEgdBhl0DGNP3dR0w8DQjvTDwKuvPODsbMnj58/oh4HtdiOhJnWLHRz90GDdyK4ZuLre8vbbP8K9u2/yxms/yqa64lvf+S3e/+CraNMy2hatPBcXV1S7iqpqSdKIphu5c3ATjFxe3ZDlhpPTI3Aj3nmW82VQLfaU5YS67lmtgrUnDsNtpcIASriZKC/XXAxlGZOlAi/Hi4J3lBU31a4/DFhRAnj3O0fb1ng/omONHWHsIybFCadHr1LmR1w++xjvDZtNjYkMShteeviSND/h79inauM51PrWyiAvTqQWfvWVV7H9gNaikKrrmovnW77zne+S5RlxnPDWW2/x8ccfk6YpWpvQlInVN01T1us119fX5HnOZCKcQxMspjLH8QFNMUjoi3kx/Nur/JRSYbgnv/pekmDjKKIs89BkjRRlTlNV9F3HbDYjzfKATJFrrW0a2rYHJYvr+WLJv/Qv/cv8r/7SXyZLZnzw3kd86UtfYjKZ8vGjZ/wf/92/wu/83ld5+NIrHB0d046Wx88uQBFs15I2erQ8YrFYUlU1u7anH8XKLkw6J/ZzB2avRgz8YsYXyhlp4uWZq0yM8mNQUPuAMFEM/SBWPO8xaUlkkKHm2PFP/uk/48d+7EssZjPRCCsJGdkraDgMpwzOea6v1vyj3/hv+NrXvkG1E0Xj4AR9oY0hTqROwouN2RiDCcumKI7JUnE7pVmCjjSz2Yw8TSmKgsmkDE4VCcwTZ1QmyqVIhoNic9UHS61og/bPKh+eM0FOFJbEbr+I3iuMggIpS1POTo/xTssQxTZEsaHraz766AdcXDzC2ZF+bNFeGvYkTej6FuNlGBCFtFOtNV3rhN/rPGma/gtqPfns9wPoPe5iHyDmvajunIWm7lDK0NQ9exqXicApRRxL7zqdlmRJzrOnlyjtGewtH3x0E9SpGUVRsFzk3NxspffWPggCoO968qwgjjOaRuo14w0317sgnniJO6czJpMZ63XF82fX/M7v/A737t3hzp1zVquKq6sbymLCbDYnSeTzapqGm5sbLp5f4Zzl9PQE5oo0LUTskObYtiLPY37sJz7HZnvDdruhLCU0zBhN1/eY0D8Mg9Qod7M7PHv2jO9//xHLZclLL92nqiqGYeTp0yfMZvNgy5ewlm1VMQzXjOPIZJZzdnYOHu7fP6eum6CIawLuw4hQyDuKomC328lwNagph96TpTPwkGSa2XTK6fmUm9sb5rMZx6c5fT+QJBFdN9J3lp/+qT/ML/2Z/znPn97y4MFD7t57wPff/4C/8lf/73ztG9/ltTff4e69+xgjAYDdKMum9c0aZ0eaQZ7jCogObOIY5TUxiiSfBJWyBOqcHp+itWZbbVnWtQRijlZE/4TZhR3p+/bQm13ebPi1X/9/8PGjx/yv/61/gyLN0Mof3EqyONkHkIlaehws6/Wad999j48fPxYcSBqTJoKDyDL5JQnKKWVZkCbxwe1lAoZDKQkbMtq8UP6Fqf0+mVzqD17M7PdDQOTP+qDi37NB5RkZoQqYzabsV5xKy+vv+ntcXW147weP2FaVJJUTYSIT7PIOP1q6AwtT3v++F/Zw37Z0bUM/dIzjQF03sjx0UgNEcczdu6e88cZnefLkOdtNK8vIwQY0zX4RLwrwJI4PykGPk+enliwLhVx73o9h1vXDy/j+J2DwebxrGa002M5JsRspTVkUOGtJipQ41igl0O++G1A9KC1sl6urK7q2RRvNcimb4aLIybMMa0dp+KwNiX1gVCSbTj+QxGJDGowmil8k7PkAnhaboAlTZQ1Oo7xwrbRW9L2kjUZxTDmZ4uxA01Tsk72yLCOJY6ptQxKLHSNNM5TSYvtDIMpoJ4lwPWgkhvzi+RVawdGyBB+hiUGHAowRZwe6tg1w7+iw4RGWlwpbpz0zCfZJpEoLT4OwpZQC3ZOlSSgMZazu0GhjKMoCY2LiSOCeQy/8rvligVZKLKdNJ80hEdt1zT7hcDotZHi4tyCGIcB2vSVJYvq2J4qgHYdQGHjKPCE2C9zQCRMkSTBZLCqeoRGOxiiWkySG5XzCYpbhORM2k5OfwTsBmStjJMpcQ5TGKDcwjo5Pvf5Q4JlagPyYiMvrFdttjXOw3dZEAVyfFxlJLOrRIkvJ0xQ/CsOl71ryOCJNNFGUkCcxoxPWVBrNWc5L0jSlaZYcHxWUxYTlTOTMXTfQaDg7mXJ5UXN2NiNKSurmmm7YiIJOa7q+xVrLs+fP2KxbFCnL5amoVnTC+dkZcZyw3W4PMvEkiQMYPMKO0hxHccL5nVOyPCEyGms7bm9WZFkaDr7n3Lk7ZzabMJtnpFlCaQ1F3mEmBbfXN8TJlPVq4OZ6x243EMeGvEhYLAt2zUBRxFLEGENdjwyD2Oa0UqJixRNpQ9+L8qaYiK2y3u3CoMngAh+nnOYYZRjGMNDr5cEXRWGj2Yt1T+4jub736rw8z0nTmNl8hlKK66tbgEMRnyTJ7yvq97ZBFwZNwzBgtCaJUxnaNQ2bdc04CMA1zxS7XRs2rbIJV8qQ5Rl9X9G23WFrqtQL6GnbyjJhvijRRlGUEUURE8Ww3lyy3Q2c3zlhmkek2YxX4oyhd2TZq6IQWl2xWl+g9JrX3zzD2Yzt6pbb61O6rWVajsxnsFjmxHEq10gUYZ2jyMV2k6Qi69/tJF14c72mqraA4o3X3iJO0k9YIj1ZlnO7uuHr3/ga/dBSNw1PL57QdbJkgRcFsvMWg+etT73Ga68/JAvq7CQWe54KSYr7YltslUb43YTNNNIQOu8EXru3aFrHEJrybhhpml2A9I5sNrf4UQIYhranHwa8kWd00wgTtOs6+m6g7URNoo2i7yRwxWiN9uBGi/c2wNVHoCeKPCqS4kIUjyOxUWhGksSgdUjXzJZofURiUvrGMysmeK+4ub1lMX+JrW4Cj0ss7MaAtQ1j31BtV1RNI6meucLaDReX12w2O6qtFKBpYSgminKqSLOIm9uKNIvJ8oLZbIZGsZiJRb5u1kRxiXcd5UQS0kYn9x7+E2qtwyAvIo4zvFPEJhNVnJOB2tiPjGoELWeaWNvho4+eYO3Ig/sPaLqRpu1EQTXKfTT0vViDs0QsncM+ydQfmpeuE8ujMWKv7/s+XHNZSMN+Acv23mOS6Pcrd4MScT+y1FqTphlJaiTkohm4utpwfdXR37M8fOk0KKNbvDOcnL7M1eWad7//GLwoisuiYFc1XFxcMZunNHUnSt6dnHODtTTNmnrXUO9afFC8+dCwJmlC10pTYILtuO/k3PJOM4QArn0QRhxptJKB42w+5/T0nD/+J/5n/Kk/+ae5uV7x/vvv8/nPf4FyMqFtB7797e/wa3/v7/PNb34rBEctOTpecnZ+X4bkvTDuNtsN600jFrzAiPL7wda4bxjDaw+waO+EQyZKK4NVUizG2pBkKWlwQGRZTpalxHEiTWyUslzMmU+nHB8vOT0VG/lkOkWHNXocp7z66ss8+vhx4B2LTR+UKH4Qhak03mLdRp4qwX60r1mC/ka94EHaoAgV14X89mg92snzJfTxYqXR5mAdyvbNQ/h91N7AHizNToaBP/WHfhLrRZnYDS1N29LUHfVux2a9pt7tuL66JTEZRbHEe0WaTDk+fsirL7/DN7/1m/zTf/YPcW6Fp2WzvWXXNEQmptmNtJ3low+vmc0K+sHjvdxnu2oXEnt7jhZLJpMZFxcrnjzZERkXhuWS0BlFiTwTR4c2soQ2CmzbUxQRd+4eU05k6TYOA9ttxWyWIknVkiA5m01Js5S+60jTiCyL2VYbdm1FZHK8zXjt1bd4+63P8vTpM9q24/HjJ4frIE0yjo6O+L3f/T151oehxL5R0Xtlh5MFQd8LP/j8/A6np6dcXl4wjqOoaZqG7373e3z+859lt9sxnU55+PAh19dXh4GsXC57NewYru2R+XzGarVh6GWBLl2PDKNkaaUC5oaD6nWvljoo0cIjsusa+l7hfY5WirxIyLOY+fSULE04Pz+j7Vqp+7X8+aPjnChK+eiD50x2nj/yc3+cf/0v/EWqbcPF8yt+4id/HK1jvv6N7/Pv/p/+b7z/8Ud89vNfIMsnwnEdPWhJZ0dpHJ7ZfMZsNqdtJcCttwPd0Et97bwklA6CRHA6wvrx8GwUFpYoe/buiP1ttN/6eTzd4LDDKHW08ugowqm9pR4iE1Nta4a+BT/DOlGDicJ2X3+FITyarrf87le+xgfvP0ablPX2gq7vRdlDQB3oBKNMuIYlBGkv79nf93Kv7wf3CufGMDh+0YZKnRFLrR5FnxgcZBRFzmRSMJ9NydOM6aSkKHOKoqDMS/IskwCvNArDt4hxlGGJ8559GNIwWozRxKl8/81mgwcunj3n0ccf0rZr4Zt6R5zm5FnBbDrj2cWKVBuSJEUpUdZdXFyTZSVlKepXkBRNpYxY4lG0NKHu3TNtR5wTtm2aCgc1ilK6tpYaJiiwolhRTDRxGtPbnvM7M155+SG7Tcvt6pJhkEVZmgmOpqqEpff2258lTaaM40C127LbbSmKXNRHoyMyiXw0KIyJOD46p8iOuLmu6Tt5f6ptw8cfP6Wud6A8jx5/zMcfPiNLC8GyOMdLL73EdDrl8vKaspyQZWsZJPY9H338MS+//BJJkoByDL3HxGIJPj1dMJ2lgGM6Tbi4vCDPC2azOev1isurC4yJOM/PAcWdO0ckScRmszkodPfLhzzPw7LBoZUhzyLSVBA082lJtauwtuP0dIlSEsAk4h/Ns2fPcdYTmwRvNeNgqCvHrm7oGktiFgzDgHMdbefQkWc61xwdp7TDNePgWS5nYDN+7g//LL/wx/4MH37wnHfe/iyz+ZLf/p3f5d//D/4qHz55zqtvvs1keUzTO5JUMxJjvQx6TJJTZqmwe8dRuKBDjw5oFOVBIyKqKDJo7zk/u0sax6xWW6qqkaV5bwWTowyRicVqrVOyJA/3msfYkSzP+PjjR9xc31DcvReW9BISI/1C4PU5sZl+/90P+Af/4B/xwQcf0vayWPFK0twJwzYVXAFx4ADq0J+V5ST0cQlZljIpc+aLOdNSrMRFnpPlMtAvi4IkETX1/nMG/WKp/YmBvSxxpM4wmsPB7/ePfB/49FnE+cmSoXF4/4zNdotXirZtZUk4jnRNy3q7ZrfdsF7fUtcVTSMpus6OdF1zePbuF014UfwrpVivVrzx2tv88698lYurx+KyM0FkFuqQ/Qsb7V78FRHHLzjOUWQOoa0yxB6YTDJ+2K8fesAn0mPLMA6YKArNjxSnWZZB5BlHSfKqtrUcIs4FrlhMHKUs5se4qaRfZVkeBl46gJ2lyZYBmBSzTdNidIxTg1j/jDRLMhDbK3rE0vrCK+7ZQ8CVFiuI0cKZWSymKKOIIogiTZbPQHGwR4LAyJXykvI4qnAYis1ImxfA8X36p3Oeo6MFSinSJDsMEEziDo2Z9/tiVV6zDBXj3/f+yt8fEphCmICJwhY8AC0VDhN4OSpI4KVgatlubrn/4A5KjTTtVjhBfU+SJFjboqIIpUfiBNpmCJBW2U6JXLqlnIhawDonlrnAsBmGnrbZgdJkaUkcJ6RJSpHnh8GCClt5lEVpRVnk9L2h2jYMXUtUKGIdwJweKUiMAm3YVSPD0FEHe005KSiLkjTW4Cxds5X3Mooo8oy66+lbATLLA+WEtmvp+jp8tikKOQDSJGZUYvcw2pOEYqlvG6aTCYRDtsyNbLqM4e75jPv3puzqHdNywjg6fJHiJiVl4Zi+ekQx/RSXN4/YNYa6ySknBePomE2n2ALAEJmMOMpZr3b0/cB8EdMPDc715HnEcvlAtl6jsDhWtztur3c438kwaaIocmmAPUuGfqTe9Tx+dI1WlsUi4fh0hrUdq9WKOJlwfn6G1hGLeYpRCVeXa7FClilt0/P8+TXaWN546wGRgWfPLolUFwDbmtE6ZvMSY6BtGyReXNF3I4OtJIhDifri9OSIvEwYx47drmJaltT1GIpwS5pGiGrPk2SGsdf0ncDihZfowrNFwieEwzSSpAnWdSilw73ygu+ltQz38jzHI0nZT5485rXXX+fb3/pOGNA2tI1A342JqNvmYMmMImEKZnnCfDYjSws2my3WjoyjPMitGzFO4MhpliDMM8+9+8dU9YbLyxvO7kyYLzJhSTlRPZooou9bnj67wDvoh5abm4o4iomjntgUNLuEZx9d4N0a59+jyKdMp3Pu3LnHvQcPef2113n5/gPsKEoV6zpMpPjw0Xs8ffyEvu8w2jCZTEkyzf17p/JeBoXUYC1lGXPn/BdYrW+4ubmh7X9E1IxdT9s2wkTUGjsOzOZTjk+OSZIImSc5ur7Bd+2h2RtCitbe+mmtw+yf084dhq9aS6MaawkuMSFBMFEQRTIEkuvnDkZHKDSxidCRwaMYBovzEtqilcZ5UfhY5+j6lt2uYuh6bFAVdm1D17chNEEULF0nidd9P9A2wlpyozT61baXhOKuoRu7sKGPUcQY1RKnkvycpkfcOSswSvH8+TdZLCxau8D6TCknM0wijI3V+pbZfMrDB6dcXl3x4QdPie4d8e73P8S7nmHc8uzpFkfHYjHh5PQI6yzHJzPaes3N01uyQiyjd87vMFqFG21oAFQIR3gxdPYIesLoSIpGkzB2NeyLkrAwUqigwBzQOqHvBy4vL2iahnIyPzTd47i3eKigoJV7JooJ7LQQsBDO6L2itihyojii2laHIs07dTj/XrCy1GH7fhgeKIV3inH0VNsaKsdkWlLkBeenZ3R9z2a14iqr0EYWW8+fV5Tlhmk5RWuF0ZLUuasGhrEXi+MwMvSevPBYq3DaU5Yl601F3TUoVNica/rehlCWEWMU9W4gSw0DI9W2RXlRzCoFOhfo9Tg60qQgz6ek6YQHDx/y5//sv8ZP/dRP8+EHH7CrG770o1/GxDGrzY6//2v/Nb/+X/069+7c4Q/+wZ8iyTLyoghKD4K6KSwQtaZrW5y19K3Yw6JwT5n9ckOL2t9EOtjcbLgnNaO19HbEjVaGhl64NqO11Lsdq7VwbG5uNmy3FbuqZuh7xqEnTSLu37/LL/7iH+dnfvYPSb2iBQkggUej2O/93l4n96QMlgXKvd+Ej9aSpjHeigJMOMpRuL72ASUyqHReLOIusPy0VmB9GCQi/599DQUQbOv7WYc7KAml4JfCHOJIEWFIIkWWRcxnM1AGnAQ2KK8YRo8bBD3StT1927Fer/HO8sUv/DTPn13y3/33/4C8HKhby9WlY1JatltJIlfasttWpFkqTg3tWa13JBF0nePJk2vOz4+5d+eMy6stzg8URxnPn1dh6SWLk6LIiUyMdQNt35EkCqU9SsvwcxxGFJosE8aaMTKsiJOIm5trvHOitMhSul4RxxMZ9DhDbBbcvXtOFBnapuH99z+grTuKvGQYeu7ff0DT1jRNHWy6Ugt3fU9kYqIkpuk6SYg2jqZpGfqeJ4+f8Nqrr3J1dXWwBRZFwdXtNberNXme88EHH3B8fCyqt48f0ffD4fvbcGbs2XJN05IkCePQhuGuJzYxaSIKVMV+sOex1oVfljQNz0cdBpJaBd6cYz6fcX52Sl1XjLYnz0uc63n67OMQygV931GUBcPY8/ziOY6IX/rlP8ef+3P/Jo8fXYH3fPnLX8Y5xT/5H36T/+tf+Y+w3vPFL/4IRMFVERkUTpiH3tN3PcvFkpOTE/quY7vdCrvZDowuhOhYuWbjKMYjCywbnALhQhblivMoEwJxQnOtw2BIeegO5zJ4pfBYLBYdabR3jONAEk1Eccc+5XyvpIY9C1J54dx13cCubvBKEScpWTFl196Q5QXOq1A3TYN4oxE2b1iMeh9SQiEse7xY4cbhIE7wrj8oVnyQtRktjbQxe+yIQ2kduH5i9TNKwpKSJCWOhF2dJRGz2YzTsxMePHzAm2++xYP7d8UJFXqu/QJyH06yD3Vr+57ttgIlOB1tDJGJ0Fp44Epp2nZgMikAI72filndbA+2O2sHuk5seN7b0LeNePdiER0+TAmDciN1U4ceDvq+ZjpJWCynLJY5RydT8jKl7iq6fkeStVjX8NanF0zzjMuLS0a7QxtNWZYoNM+fP0epmJcevsTLr7zEkyePePr0Cc5ZZpOZ8K/DoGa3W9M0DZNyS5Eeo3TPdnvF1eWKarfh7GyJcyPHR8ecHN+jqTuurq6o64pnz55R1zWr1Zqbm1uUUrz11pvkuWCzttsNdV1TVWsJQJtE7LZb0gxQlrbdsV7fUhQF49hxc3NJHCe88sqrjOPIZr2l3jU0zcjJ6RRjpEdr24Y8L5hOxZEWxwnH2Yymll6vnOSAJY40RZ5hx5FqsxKRgpFzSKFRfmS3rdmudyidCHOvlmf/dlvz7Nk3OL9zxN3757RtTZrGdF1D21r6zrJeNeSZ5hd+/hf56Z/643z88RWfeedHSbIJ/+Sf/ib/3v/53+PZ5RWf+9EvMV2e4lWMNjGjFUeU8y5Y7C0mjonTDG1klmKtOFi8C2m6Rpa64+A4XszROpJwrlaCAwcrcwVlIsDg9v5OpcQpgbDXnfPgLGlsRHgRzvB+GJnFL9j/eAnCquuO737nXZ49vWJTtfTjyF4SaoKrab+ZNUrTdAN+Ux9cc95fCmccEeJEOoR1hPsaLynncRyRJjF5nlKWZRgMFsymE5aLGUWespgvmJQlk6KkyDPi1JCkkYgMlGh6RXVo2KcRE/YMRZkxKQt2VUXTdWGwt+O73/42z54+DuIIh7U9SSKJ5lmekWYyLM3zVFSLaUqW5YyjY7XeEscxH374Iefn57zxxqe4uLwE3IsEZCXuBam995xBR6yE4Wy9zJhMpFHagxrJMgOMcg38kF8/9IDPWYd3oTjueomqd+5g7xxHK0mTWuyqy+WSPM+keVD2IFuO4+SFbSccCtJAc7AJaK2pqpqbmxvG0TH0A1kmtsPFYv6JB6ghTXKGQRo3hcerYAG2sk2LgvUPbdBOYWIZA+8llS6o5bT4fWVbrWR7ProOo+NgDXVSaGgY+h7tpNCVCbOkMUpzKpPcvq9lG+08zstBsk8VjaI4ME5C2lSQ2Ppw8iqlRbnQil00iXOMEbXVfui22W5pmpo4ThisBUaUcmSZ4fr6KWen55wsFhI64YWFMLoB6yxRajg9PWYIktw0KAKbpg0QbvDKkSYJaZqGUBND3w94r9jtaqpqQ5anJElCluY4BFQZR1LoDL2TKOxYUoGSKJWL3olyyHkZammtWc4XtL2ksY124I454+h4IfZlZYgjF5KsxNaw3WzxDiKTgIrp+hFNTNfu2LkKO3Skx0vcMNDZMdywEZq9okWUJ23XkKY54zAQRylae9q+ZbW6JE4ClHlosIMMjJeLE5JoROuOJB44O50SRUdoo9lst3z/Bx+QpRk3NxuyrKTII549fY6JFIuyIE4U3nWYOAU/ShT5KEEky/mCiJznz65ZHi8COLbm5uoGZQaurm8o8gnnd46oq5a67mlbz9MnV5yfi7Juu1nz9GnN6BQPH5zSDS0OaDuH0QmLRcZ2t6LvBp4/vZJCW6V4lzGOtwe5sfKGNInEJu81Wg/AyOhElRvHimHwXF/fMHcl9+6fcHZ+xK7aEMUZXdeRJ1qSucYhcEbAZAmRybm8uGVXdWilaJsRpT1RJM1u03T0XU8S5yivUF5jR8doh2Dzs4GFpfjUp96kaWsuLp4ynZXcvXvGuz/4PpNJIVbfbgBfsw8MsNYDAjkfx5GnT59ijCTnjmMnA14tDWmSJNy/f5ckjen7hqracHV1STc0HC1n3LtzB+dbcBaPpq5rvNN0raXZKW6ut1hr6bsM72OUK7Cjp1oNGGUxRh7sbd1yeXnJ+x++T/mNCZ/7zGf5sS9/mVdefYXXXnlIPknRkeKN1x5wc7uha3uy1ATFr8aOXdi0yrMojw0qSXA24t75Es/rwrnQGr1X8KGIEmHmGSODNBu2ZaP17PkRLgDAhdPVyz8DB8gHYP84SBqWC3aBtmmJjKGpO7quxYUC11mLHcQi3fV9sHvLECtokEIxKhbkvYonTTKSNEFrxXyWY/REErUTSSEUDtEetj0wWsvQd9gwhNBK0dYNNgyohq7j5uaaZxfP+cY3vkXbdhKq4z3NMFLVI1q1pHHFcj4hTUuq+pYkj0jSOdlkwXa7YTY7p6oqLi8+5vJyy7Ona3nO65hxsKSpZjYtmE0m2FJR17CrtsymhVjDIrG3xXFBGhfgMi6erXH2Gm08d85PyBdHUizIyQOIXd47CZvwOIQVo4MyQ8YfUiwGO63X4PVha1tVDeuNhGyM1uG82FONkTO8D+mPeZYTmYSuqTFByTeOljzPKALM3TkX1PwytBf2rixwnAtpjAeJDewrxD3cvmvlXo4ijfIDdSUqnsmkYGgN731/hTaO2Vw2wl3X8nS7C/yhXrAZSmzP4yh8qXGUpVicCnNnsVxwfHLE8+cX4B1DP4KXwUo/9IETZZgrw2bd0rcjbnASVKUNOoKuqcmSiEk5R+ucPJvxxpvv8K//L/8Cn/vc5/nBuz8gjiN+9Ee/BBiePrvgr/1nf5Pf+8pX+exnP8edszNBiCA2Z2t1WCiMB3tGFEVMp9ODKm4YhoMl1oYzyzGKBVcnKC+FtAxAxDWBMgy2wxtZ2lkGDJo0zZnP96gSxd170qx3IaTD2ZGqWvGrf+/XOb97j7defx0dBRWmjmnbniwLgPogsBKrrqFtB37rt36Tr339G1xcXUlzrnVYaiqiKCEOFreiKCiKnCxNMEYf4OpZKna9NMvI8pw0TomNpNRHUSRpwWE5KsN/gqooTCqcl/c22G7wDh+eK0oJowzvgqVH6jzZRShiY/BegzfMZiYoy3J+8id/jn/+1a9wdfNtJtOUe3cznLNUlah+sjSjqhqaRtwLXSfD1rLUdJ1wsS6vbpnPC+azI07OZjz6+IKuGxgGcFbse055BjcePps0SbDjwNOn15wcT5hOC6pqSxJnVFVH321FtTKfim2sbWjqHfcflMTxESbSxEmB9zFdYxiHlq6tee+9d8XBYjRJavjCFz9HUZR879vflURtK/VoGpSe3oOODLt6R9d3JHEig2iluLy8JktT5vMlVbVlHFuU8iRxwrOnz7hz9w5t2/H8+QUvv/wKVVVzcXEhiejjSN91sgzrZJBdVRVHyyPapgv8JlFgx3FMEsd0XYv39tAky/NKhjVxHIGVZbEK0jWBzIu6rmkbGeA3jTAVleJ2VVHvapq2YzKds1wsmU7v8af+5C/z8z/3J/n+9x5RFFPefOtTjKPjN/6b/xd/9T/6T5jNF7z96c9IEmQItrG2RykfggZbZtM5JydHDH0jATh9h7MOG7h3Rkc4LcsYHeyce/nh/sxTcHAuHPir4WdTKLHnKsM4KEYlz/89DFN5g3b+ECIyKUuSMHDDwzj2xHEcVLGCTMHrA+fPo1lttuRFyauvvcHyeMOu3tG2HV55kliC4uwgC1aU3H9aCzJn//ptWC6MoxjLBe3hpOYPC1uAYRzBi9J/DE4b78eAHPEYpB4RMY0kx8ZxjFEQxVd87933idOvMl/89/yxn/sj/OSP/xhxbPB+rzSWnjJNRSHYdX0Y9omazlkvyj/nSNOM5fKEx08+ZLfb0DSWvhel53Qyp9peCMs8iEKGoZegIhOz29XUdXdYEGsVAmHCcBOEQ6s1lNOIUhkWswLvR7bVmsncoLsRrQem0whteorSkBdTyrTAmIhd3aG1IjElXd8xDI4sK7m6uuTi8hmbzS3GaO7de0BkJuI86vtQ/3oUA08e/4Ayv6WqWiKTEkclbpSAuJvbS9q24qWHr5MXEW+//Sbb7YrttuPZ0+dirzWGs7OzwMOWkJt9sGBkMoZx4ObqmuvVBWd3ZiyPpgG7I/f2MHT0vViU0zRjtdqwuq3wXnH37hlxog+DoNlsRp5PaFtBgM1nR/StJPoqjVzbSSTXtDEsZjOatuZ2dY3xHhiIopjlYkGWFjT1iLWa9bZmvxCYzlKOT2ecni8Aix4MbaNp64R4dsyzx5ek0Tm//Of/Il/+0k/w6NEFX/jCl/Ck/MN/9I/56//536BuG5ZHSy6eP2NXN2TlAo/0ECaK0MYIfgZHs9sxmUwo8oRh1DS1FfdWCLOywwAuYnl8TFmWdG1L23aHdOF+6KX21ybMDuwn6iwl/92OGCT8qsgXlJOJCKRQjMNwWOiKGlIs7uPgaPuR23WFdQplEjkn44g9csWOIt5RgcPsvSz5hv7F3691zNCNMmORCUdYyEnhoMPwXgdBhN+r9LwD7zBKeNB44XtOCrGjn54uOT1e8uDhAz715pscHR2jtMxb9snV/egYncMrj/WOuhFHxOPHj3j/g3exQ09kNFmekaQT5rMpaZqRJilaKW5WNyhFSIGXpaS4OXPSNOVoueTq8oKXX36Z3/3Kb9EPch5GsQnupr0QZTgss2WJKYsM55wk0I+9OPMiEbgdrMk/xNcPPeBTSpGlmVjFugafpiig71q8E7tOmgsDBhKabkuSSbLqMPSs12vG3pLnObPZlNVqxTA0QY2XYJ2j72uyA5chZT6fY62lLMsDh+uTfmWtYpJ4gneS8GudZ7XaiqUs2G3ywohaRGmJneZFYyoBAJJUJzH1CUqFTRKSBmfimH0qn7WiiKibhnEjN1yaCXBVqRjrIhYzhzGxDJ+8oht7mrYTSXksCaMSJCUPGOdH2fwNojrpuhbtJeml6TYMQ8v9+yXW9uDEGuUVzObTEJDQ0u5ayknK48cfU9eKIs1kkqw91bZlvd7S9S3VbkucGt568y38ICqIxdECF5RrSgkcuus7jo4X4U3W9ONAUwsnL0lSZvNpkJ/LZlFHGqMgURHWyuYlijRd+yJ0oq5bLp5fkaSavIjQRsv7PzqiKA0DgYHR9ay3G46aGWUmIP44SzG5wtHjvGIyTPBE7BrPs+e3gRVnKIsSO7Z4a4mNITYRaSw2F+ERyhR9r0qsKpnMn5ycMp/N8N6Tti2TIqfrJORiUhZoLa/fjhKSEceWSZHQdhbrGlxv0c6yXa94+vSaPJ8yjJbN5oY8z1gs5xRFynZ3QxwZHj64ix174thgIsN61XN9ecGu8qRJhO0tk+M5Js7Ybm/oLNw9v8cwtLTdLUo7+lbx6MOKNB85WuYcHU1JIodmyrbqWd3ueH5xwzgosmRGZDRNsyPPU6bTGbtdS5kvOTm6TxxPwT3FiQCX1c2GqoLJNBUWVBEzn09Z3VZUu0a2JYOnaTvUxrNcLIjnKVppJkVCHDkMjjiRIJQ8P+XmdkUSJygVkWVT0vQuFxeXVJuecYwxJmNWTsB5hnYNTodiUQmP6WDzcWRZTFlIqMfF86eMQwfe8uabr/Ls6SO6rpPDTwlXAiVbz+12J88y7YO9QrFabUkSRZQYjJPGdzpdhATqAevkc3r1tVd4//132a5rFJ7FfMpoa+7eO2GzEQDvdl2zWfdsN571rcXbiMnkiMnkDO1zhmHkwYMF4+Codzu0ikFF9ONIW3d423P3/Jgvf+kLvPzyQ6q64Qc/eJfbdcXeCmuUpqkINsnkwL0ax/Asw+GdxXqH7X0A5RqJrR96xnGQzaKS+9+xDzoRy9BorahSgooniSXZywNREpMVBVmSEhtNYgz5fI4xEUVRBOu0cKR8sHeIXSSEqFh5jd3Q40bL4D6p9lL0w0DfdYchvNgmpbEfx56+HUSlOEoq8d7mDbCfI8VxQmQUSkcC4A428SQuyMsJaRLzymuvc3l5xQ9+8BFdP0rjYTTO78MMPL2tWDc3zOcJbvTcrrZE8YTzNCEZNM7vaJsb7j84pR/k9cRxSpYlnJ/FTEM4yN17Z3gczh/jnCdJYpwb6YcOk2ScnGREWlEUwrGZTkrm8yllnqGQIKm9sEMOjhGvhmCB8ozDIMnXQfGINxwGaWpvV1J4JWrp3jqGwTFah1IGHVL8hpCCaowspbabnTR8DhrbhvNEhkVxHNM0NdvtJhwRUbBTBAV9OEGlgfwXqpdgwfBOXkOo64iMqIK9V8hsUpif4+BoYssrrx6jlOfp0+dkqaJtLOtVL+eiV4dfcZRgjCJNDCb23Nzc8NprL1NOHrBZ34QBQ09RxCiVhiGbZhgcTSXjf2OMcOMAox1JChqFUTllseRHfvTL/IW/8Bd59eWX+dY3vsl8seDV115lHD3f+967/F/+yn9A1/b85E/+JB5H07VkmWAGZPCpwiJTsQdcWzuy2205sLG8EnWrjgJXNhPlo5bG1Y2O3o0vrv/AIJMAoo5utLJ0s06G64eQC+H/WIcsaZFBznJ5zHp9w6NHj3n7rTcFbh8agb3qZ5+wLkwbGAbH7/7uV/l//3f/A88unosLQwmza5+EuW+IjZbEPhn+Ct84TcRiKUpFsWMKVywijlPhcEZGUh2LgiRNKYqMyaQgz3OyLGMyycmLXGzIaUoUxQeusDGRuH28KPysF6QLeEbn8VYf7q0oivGJxtOhrGKxuMdP/PjP8M9+8wbrbtjtKqx1TCYJxWTCYr7g2bMLdlUtYS9Wlk52VEwmKWkaCyKhbanqRzR9Rt/pAzpFeLCWYZD7UAWFY5RoTKyJtAsD+UoSQjtPpFMZ2GPZrNagR5LIUJxn2NGx3W4DP7PFWk2985wc3ecb3/wqm+0t73z6NYZu4P69B6zX13zlK7+Fd5osLkiSVFhqShYsXdcHZUMqfLxI1FhRJM33x48fUeY5db0jSWKyLKNqKq5vrjk5leb0+vqKZ88e8/Ch1C6bbRWS6keiOLQkwQLsvSNLEppOeoJ+aIliReojCTw4qM58aGrD0EJFQSEj95EiAiJWt2ux+21vKcsMDZTFhGpXs90OtK3Cuwmra5hPFvy5X/6L/NS//DN861vf5/z8nNfeeJ31quPv/dp/xd/9L3+Nt9/5NK+89irXtyv6UQQF4yi1ZGQEHXN6csLJ8YmcsYGVPYR/34PdxX2jDj3V3ma8P7/29to9303scJ9IDwZRoiJoIRPv1fPCTfVAtBcaWMd0VqK0vEcKUWXHcSxDtqDekXsa2kYGCU+fPWd0ngcPX+LV114XVE+1xY6i7txuK0hj4Y5r0KHJ1lqLGjAs70ykmU5KCQXzch/qyBxQCF0nrp39Ymkcejk7AtPKjYL6cAGIv1cry/1rsYMMTdK8QCvDV7/xTe7evcdLD+6yx4vgNbGWoVGe52y3W/I0oyxKnG0ObgHwRMZwvDxmPl3K4rJzSDprFHBAPihvdThX5XpcLOaUZcnFxSXj6MOgNAw/UQfFoscSJzFZkZNlCYuZsN6urivmuxZtPDoeSbNY7JtOgvNMFHBYRrBP26qibdrQ41as17dMJiXjOKBUTF3veP21V0iSjHv37mO5pKoyml3LkMFudyPhDm7HOAgv2kSeNNL0wzXff/eak5M7bNaGprUoXxCbFJ1rJpNpGDY12BCmOJ1OUQqapmMYIxbzU46OJ2x2z7h4fkWeJ0HkotntdnjvwoJQrtM4NpydnxyY8FrDkyfC3ttVwkQrioLttiJSCYvZEdXulu1mQ1GIay5NE5q6ZrGYkaUx/bALuDAtlmqnccPATbVh6Hta1xMnEfPFhOm8RAU152QypUjvkiYLIpORJ+f84p/4ZV5/7R2eP1/xhS/8BGjD3/kvf52/9tf+OsNoef311xndwK7ecXN9hbvZABJKt1gumEynqEghN4en3e3Ik4QiTfBDT9fKQGxfP82nJdOypG17SffeNWIhDs6VKJZANh9C0uw4hkRpqRUlqGUAazk7ORFGIy/YkCoM97yXWsB76IaRumkZrAS3RElCnOfoEGzknCNORJW3rzf203wXFqfeW5QWpI0gxHxAAYhwxI6WdugJuayMTX0IGBrGHu8s+5Ae6dMqjIKyyHj3gw/pu5ZJmfPWG6/zR/7IH+bHvvx5CIu90crPb70T7nDIaOiHToJYIk1sRCiQpQlxJliEcWgZ+444TsA5LA5rTXAlRYdnWqQNJ8dHfPDB+7z0yissFgsuLndSawccwR5tcXDRBBWvc2NYLMqfc85T7wbB0mkJ7fphv354Bl+Qh4ukXpg1cSzS733CVZLmwYLjyLIU7y1RJBa3+WyOVpo4kQIsz3Nhj/mQwDY6ikXCdFqGhznMZpNDAyuJQNJA7nYV3kNRKFbrp0SRATXStHXghEjKX1FkFMUxXScMqDhKyMuQ8qR1sMjIxS7/m/DC9omEkZEpLjhcSK3KogQT7wH9csi1bc3Qe+yg8XdE5eisNFpRFDGZTIJKaKRpW1CQ57IJc4EbswdYOleSRJnw89ZdYD7sAhQzkiGkfsExkkHbSFZkvPzKQ8ZxFGWDHbi93XBzs+H2ZkM3jDx79pw7d06o73m065lOk0ODHcfyuXzzm99gHEdOTo8FehvsHsKLECWOyJhT0jRnz0LTRt7HeteFh41M1e2o6PuRNNLMZkfEicinnR9I04SevXUy4tVXX6XudrRtRVO3xCrFu5EocqjIgIpk4FRGDKPhdrVi6D2X11ecHM+YlgtOT845Oz0+FB55msjBGivyPGO0I7P55KC+fMFz6wGIU0+iNFleyO9r+RzLUmDRu2ZF0ynAAj1GKbIsZ7O5RoNcvygSE5HlCdvNhqatuHv/hDQ1LJdzJpOC2MxwbmQYerSWzd84DAE6PWE6m3J7+1wi2KuWcZAh7Hx+xK6C9fqSo8WCO3eOuL68wI6a6XTC5eVTVqueyaTg9dfeYLVas91siSLH/ZMjur5lvbkhz/MA188wKpYHq34B/jY6oq0H0tRDokmziOlMkgLbrhWWgInI01IA4usbshTiGGazmEkhPAbnRqZTxeLoJMjHB15+7SGr2y1xVrC6caxWnqEb2VaroNi1KGzgq5iDCsgYw8nJksViTpLEXFw8Zz6bcH5+LEWEGzg9O+LJkyfEkbAgqrpls6lYLpdk2RgGJo7NZsPZ2RlZltL3NW996g3A873vv8doe/q+o9pVRJFiMsmJE83Z2TnT6YwkNmy3DcZAvRvpOk+aKhQxzg10LVRby2w6IUlLwLDrGqazJVme8/T2Kd1uhyPCIwD/6aTkD/6BP8C/+qf/JA8e3OPdd9+l6Tru3LnL5z9/ijYRkkcR4PbOhQAKUTXspeoKH1g4Cj/6A5Mm7NUxkQk2KU9IOpADehAYcz+EICHnA5NJGGBt3zGMg9gn17fYYRB1sHNYSwChG05PTzk5OSXPimDHMWSZKET2VgUfEhrHfaqe2sOqZaAkQwtHyD8IqqcXm0rrnCRqWRdg+xKmcng9bhSAsu1DKniHG9vDWTa0Ymk/Pj1n9J5qt8Eri3eaPtTlSZRibcx241ge3eHktOBomZFEGdHU0DW3JAmcHy/Jypyb65tQvI5sd1ui2FGWMaPtGK0864ahJ0kK6kaGacMwgIL5ZEIcx0ynU1EmhGZJCmAV1FLhM3QxWsVhIOIY7RjUGCAMPPZiP7wWxYdYZxWegFE4qCI0JorltfTCe9LKsOe+OesOKW3Ci+XwzNxu68CylO+tgkUkSgx939OPlk9++f0LCxY8SY8PvFwEAeB8WBjpFxti6wQM7b3HRJ6HL92hrlu2m5qizLi92dHUYwjEkmJL6sOILMlZV2u+8Y3vcno25cH9c9I0omlaHj16IoXuwWqqSTMDTmOUx1t575IoY1bOKIoFk+kJP/VTP8sv/dIvc3Z2zte++nXu373H3fv3Udrze7/7df79f/8/pJxO+QN/4A8QxzF1U7GHrQOHs+6T2AGpA14wSfeKntE5lA/sMueF5ROmAVI829DEitq2bdvAJLWMDhnyh3tmsPYFaxRAaWo6tELsNH4MxXuw2lkfhir+oLzfW2tFSa0ZBisbf6/QJmGwDf3Y0/UDJooxJmIYJWnZyCZXasi+B9UcnB9pmgKKsR9JYkn23iuBfEjWluVuwEMgCgBJdVYhSERwI2kiHC8B+OdM51MW8yOKSUlRlMwXU6bTKWU5kWVuYPy4gA7RPkJpRZqWvP7aZ/md3/3HdPUts8mCarfDjj1udFxdXYPyTKYlRkdstxVJKgvoprZcXjYcHaWcnM6Jo4i2rygnOZPJyM1NjQpsI6XkPNr//eOoSDJNPwwoPZLEKtRRPRrN8fKYyTRhvbnExJpXXr7P3Xt3ePf738NEOV3TUe8qxtGxXN5hdXPLt775DTwKa3tOjk9ou4pnz5/hfA/e0HY1TdPilTS4bVujdUSepyyWc7bVVqySZS4p8wGnstttSeOIrrfkE8GUdF1D0+549bVXWK2vWa1vSNKI2WzCrt4dlhZjPx6YSkZrmqamLEsso6hMgHEY2GxW8iwIKs1Psngl+CNhGDrCBIlxHGX4gaJpmpCGKinfzoJ1Gq0z8CPGpDx8+VX+0l/6y/z4j/8Y3/j6t3jppZd48NJL3KxqfuVX/g5/+1f/Ll/4/Bf51Dtvk2QJaZ4yDsdYZxmtxw4yrPQKjo6OcSEFc7PxgVeqGO0o16cSHps2JqhLQyp2cPG8SF3k9z0TZJgZ/lx4XmnlQ4p9fIDZ+wDLNyFMzGnNcnkUbMv+MDDc86VE8SoKEwcHRvc4jlR1x6PHT1hva46WS6bTCWVRspgvuHN+Tt931O2O2AiLq8j2/ZwwFkXVLQPhosjFbo0M2UVRpqjrHWPXc7tas7q9EVWaHWUBMY5YpTFZFOD98kwchlH4Vt7jrSWKDCfHJ6BkWfTs8oJXXnrAPpAjaIeC8lGGflFkJKBvJ9eNVhpvZTk4Dh3TyZLNehfuy46+d8SRuIkEjO/Zhw3VdcswXDCZlMKh86G2GQJqRIuSeTYvmU4zlHbc3KywdpCfwY1MpzHT6YTl8YSur+SUtioM7CJ5vluFZsJyccSuXmN0xB75ZEzEMHRyBgZ0yqNHj3lw55rtZkue55TlOdVmR1kWXF/fYK0wuY1JqHfC8FORIjLCs79df8ztzY6z05c4WR4BMW0vg9b5XHqYi4sL6loUeU2zQykZAL76+tuUZcTXv/n/4Xs/+ArOjZyeHoMSXq/UNZq2lSHhSy/fwxjD8+cXYVEa0zQ9eTYwDC1FUbJfcJdFKcpLXzAM9QFnJWefhCTMphPyLMe6gT3266pa0Xdwc7ul6y3Lo3not13oaUe2mw3b9cDxUnHvbsHLLz3gj/3cL7Kc3+HmZssXv/hlusHzN/7W3+Sv/82/zb37D5hOpsIMjDRJmnJyuiRJJ6ASGbbHcu165aW2CTbOoW8p53P0pER7T99J4Mjx0YLzs3PaTpKcm7qma3ucl6C/yMgCTFLDQzXnXwzbUOE54D0aePjgAZExeGcZ7R5xFB4weyW811RVQ1W1dL24qdKspLdWFsrh2bF3RUWRLM8k0E8WHV6Jc09j8EbQCc55tJHXogAde1I1OWwzIiM8dkkS7g+ZAh5PH5YiOjLUQ1A46pSbdcvXv/UuSTrhpVde4WQ5w6DZOzL3WJv9s9MHFa/zlthonB2om5GUGO9jdBKchSHl1o5WVMWh5gJzwKjsrf5aa1566SWeXzyBMDiVXueFy2A/5JPwJ4cekXR0I+e54JD8Qfn3w3790AM+j6frOjbbDXmWMZvNwge9V7ztbRvCBNFaBSudwXvDZJpAsORaazk6XoQLUwCL3oGO9kmb+8mvWFe0UkFSnVBVFQBxokENWDfgR/kQptMJZVkgKbViU0F5XJCM1vWOfnQHxZ48EGO0liZGeF9iHRZb4AhDkJUemH/q8HMnyQtrMT4iMiVKKbq2hagnS9ND883hQBfL22a9ZhhHsjQDRfB8Z3RdQ1218t7AQYZrjA4R5sLsuL4JaoShY3SWpO/lwTE48GNI3PI8ebphMV+G9NgJi8WMofecHs1JkuhgtdofzNYKa2W73bJYiIIyiiJUEmS9gUVoTBQs1zKkVcj2oSwLnNN459hVOxQJRT4lzwsm5ZLRtnjfhcjqkJxnQWHIsymj89hRU2099VasIODJs5gkLUmTCUZndN2OvoPjozvUTc9isWSxmDGf5VTVhiSNWMxn1E3NaHuyLBZ2jZOEH1EMi5rTIEoN5yxGKcbAi4pMKocRwgDxvkd+UtkOZFl0eJDM53MePnyZ3/7K13BesVgsmUyW3Lt3hh0dw9hx5/yEu3fvkaVJ2FwLC7Gua/K8oEkV5+dndF3Ddrvl5vZaGD1Ryu3tFevNLWlqmC8KPvv5B1Qby9X1NU3VgIc8z/jc59+i7+HdHzzmu9/5gHJSgAdrO5pWoTBMyhnL5TF3zh9SZEvieMI+sdZ7UTzlWcEwdjRNT9OMVFux7o3DgPIwdKI+6DrLxcWaLIdXXz3h5KQkijqOTmZMygnOjaBsKCYM63WHdRVF6fEqoiimlDPP9VXLrmpwaObLXAbknjC89zhvSIJ0/+TkhMvL52y3FSYSS0SSJHz3u9+h7zvu3r3DOnA9ICTbIYXQbtcwn0+IYsMP3v0YUCjt+MpXvim2yCxns94GLlCKHQ1ZCpt1FZYCiSTiZjFGRxT5lLqu6fuR6XSKNhllNkerC9K4wOsU68XC8+YbbzAvpnz80UcMoyhJlIGyyPn5P/Jz/PIv/xkWsznf/ua3WRwf8c6n30Epw2g9TSMbtr5vaZqO0Y4MYxcUyIbYJJJcFYnKD6/QSMOZJBHea6wfSWIT7C5aNu9RaDZCcIKJ7GH4jfOMVmT5yxB8pMLzW6EwKgIvHCVtoOlamrrho48+4v69+2SZ2Co1ckY4bFAMEAZ8TooCrQ8qsL3yS3lQoQOM44Q4fpFU5TzkShhfsv2S55Lfu1K9cAMdL4aCGhlsujAU7PueP/iHfoqr6yuePn/Mblezut2y29XSJFcV49CyrVZMpqf8wi/8Am19yzju2G6eMXTvos2W9fYWjGW+LDGRqGiS1KBnhiTVKOWYL2Z0bROezz1FsVfBNcRxzGy2oCzzoDSRxjUy4UzUOiTPytJJ6QSjU+I4DW+XlyAmwFkZ4sl8aF9saJwyBxXB3ror3/cTgyUtKd8vIPsEZ1jgpu3t3NYFJkx/OLPiOGHoLf3QMZ1O2e12rMYNzv7+VFUfnrl7xcqe97eX58hgz9I0rbxeJ1VrEqfYEardJiTaxbz08jlxHLFaNbz/gwu6tpfBl/d4LzzTm+tKlB7OEZkBP95QVVuyPGG96g4/pw7BXEVecno2p9l11NsOpWLKckZezDk9v8/P/PQf5s/+8p8lMhHf/Po3ef2N1zg/P6cfRv7bf/xP+A/+6n/C/fv3efPNN4N6VbNYLMjz/MAa3jsG9gEDexeBC5b3/WtyToZfewaitdI4Kh3S4/j9A0LsXpk+MHqx3VgvBfz+/Y9jI+rNsH3XUSwMLC/hRwp1sMISmod9wIVSGuvGMISQVzCMYi/UxnB+fs69h/cCB3PAAXXTEkUZxhjGYaCqKwkos0kIcpL33XsJNBKrn5y/NgwuQeyNKFF9Gq0PCidhk4XnB8JXfXHNhsWBDkNJIIkTykIsOffv3+NLX/oSb731KYz5BJNIy89mopTjk7tMZ3f4+je/RpZqhmFEKctq3ZCkEUfLKV3Xs93UUvtMMvI8oZwIEH632/Hee1dMyxRUz2TqyfI4qBgDNFzvaxGpecUWE1I1nVzLeIfREVjDarVlu+3xvuXO3SPSOGFXbXn/vRva9lLCNtKUl15+mXHw/PPf+zpt24EK1kc/Yl3P8ekCbaDadrhhn6huODpasl7XGGNJ0piXX36ZR48eoZWi7zqapg3PaFksk4lSelutZemXaOp6y8nJEYvljHHoqKpb0jSjKOMQNheFpY0L+JvgZmFgdB0OqSujWGy4IhqQy8E6h3cKExLlo0gDUUjzlufkMFi2w/ZQO3RdD1QMGUSmABKSJOG1Vz/Fv/WX/jLvvPMOX/29r/HWp97i7Pwe623Ff/yf/A3+wT/8DX7mZ/8wL7/8Mk1Ts9mtZVhNcPwow2Q2xcRir9da40ZLkSeUZc5sPme0jmrXopVmt6tou466aYQP5ULiT2ietZagvPl8Tp7loMCOUn/vr2tpaRzejRS5qJeUg66X4dxmvWEYO5TKaBot/MnwvPVBLey9QPWttezDClFKWIDOoU0kqmUdUVU1VbXDGEWeZUGYkRCnMqhIk5jYGPqhl97PRGE5Lr1bmiZERurksRcmlgs4osgYojzjflEwKQu21YZu6Ng1dVgw+TC4F1SQ0UYYel3LpCw5Wi7p2oZ6V9E0DU3TcHt7S9f1JGlyGO3tv/ZLFsElZTS7MN4MSwudxERxwny+5NnzZ6Asyhu6vgEXkSailLVBgAJ7tWvD8+dXYUEmiaJxHOG8JcsSJpOS+WJCnID3I6+//jKbzZbnTy8Yxw40bDZrdDRSFAlpnOLsgBt7WtuRmoFpuuAzn/sy3sH7H34tcIb377mEeFgroXPWWqblGbPZDGM0Tz5+wmZ9SWRijo+PmM9npGmCUorNZoe1gsU5WRyhjeL2ZsV0tiDNInbVFd//wTWTyRHOJcznp0xnd6m2Fdvtlvl8gXee8qQM55bwtZ8+vQxoh5Q8lzTZpq0ZBvnfTk/PQm2aYEzEdruj2nacn5/gnOP05Jy+74Xvt9uRJAl5XjLakaqqyfKY6XSBDzXebrcDNGMv6bK2t2x3GxyikE7ThK6tmc9zhlHOfOtGJvmMPJ+icFTOUGSaIlvw4P4r/NQf/GmSeEJVNXzmMz/Cru7463/jb/HXf+VXiJKE1197ncVywRCe9dZasc6SghYxkldewuW8ZbQjXstCwznHZrtlUpRMJhMq77Fac+fOHbRW1Ldb3CjcPOuEgZymgquw+7olcCWLoiBN0jAEV9i+w/ct1fqWs9PjcAcIk3mPzwhH/GG5Ve0qGZK2Hck0C/XpEAaHKuhm/aFOUUajCW4aO8qCX0uC+N6aCtJr7wd3+0R4H+pSk8QkUSyCg2a/xBALfmZlFqSVx9uBqtrSdz1awabacbtac3t7w9F8+vuG7jog2STMKgbvmE6nFHlBkae0TU1dV+yqnmGIcJmlyMtDiFPbdahhwCiNVcI7POQqhJnPZrPm1Vde4+vf+Of0fcN+o67D+y+WXHGv+nD9CYZK1KlSt41kmdyDcj79cF//kyj4kiTiwf17B2DpIdktFJmjk0n0HrwYx8Jv2T/s8e7AnslyTxIbPLKlMLEO30tjR0uSFEync7wjbPEsu10T1HbhUMITx2nYFlnG0WGMxpj40EQqxJJnIoFFCkBTUhq3222IAE/IsiwUCTLxb7uaLCvEQiRGFvkAlShewrUKsleUxgpQ2pHlEb2zWNcRxQnOD6Lqc548y4V3V9fs0wh9YFPUu5bdrsY7eWDHUXQIn5jP53ggzVLWIWXo9OyMTbWjqiQAA6/Y3K548uQZaVqwPDqhrS1j4Vmezjg7P2YYJKa86xrGURKskkSUjLvdLqQVDTx58pi2bVgshKWokESjKIplCDZK6pcN6Y1JmlAkqSgglQ5qGs/Rcsn5+TlpPEdHPev1NaMVBZ5ss27Is5LZbEbX9Ty/uKVpR4pgw2zbDu9HwBLFU4bRcbu65fmzS7pO07YbsWXpiJubW4a+oiwkTajLUtq2pa4rqq0UkXFsyMvsMKw52MqcZc81M26vhtqngckv6TkCAyIMa7UyeOdCcxxsIFXLs2cXHB1N6Xu4uqyYzQo26/e5uVrxI1/4DEfLGXGccHS0JM8WrLKRi2c/wHtI0og8i3jl1YfCzUkiJpMS9Sji8eOPWR4XRJGn2t1iR01RZqAtxlja7pYnT65pGknxsaOkcd49v0NV7SiyOQ/uv8LxySnnZ/e5ua6IlAC29/xL5zy7uj40nnJ7y70eRWGQjygktVYUk4zFomA+Lzk7O+LOvTm274OlQTGOYHTGMHRk2ZRxcCRZRBQn+KljunDcfxhRbWu6Fi6eNTz+eEPfyiApiveWK3kYXl1dEUURd+6cU9fVQQXrvSXNohAQM7Bar5lMxXq93W4PD2gXUqNAMZlM0MrT9juePbvk+HhJmmViuxwsRsfsdh27XY11I0dHC6YTGbSXZclmLeENeZ7S7ByeWJJ0U9k0jk4SmE0UkSUJVbWj64QFkmYZi8WMf+WP/gJ/9pf+DFme8L3vvMv9hw85Pj2l7zz9UPPue+/x3/8P/4yvfvXr3Nxc04Uo9/3PbUxEnKQMYaOtVIQdB7JEbGvSDBkcjjxLhCuqE6IoxWhNVqTESUJaZIJHCDa3NEqJ4kiYFElCkkoyZ57mpFFKnknStDEEu4xhMllQ5lMuLy84PhalhQ/Dcxdgwnh1uIZA4ZUUhoetG2DCtatCkJAKmz3rnZynIicLyuGQMvoilBNF2BAGnocMLeMDwN8HJdnp+Slvf+atcK8gm0IlzJhxGOgasTwWZcZ88pKw2c4bHj36Pd77MOJm/T2GoSJODMPQS1q1SSjmGVkuiYBKG8axpV1XtF0dUgJn5HkeQjQ0VbUlihSL2SIoyQd2W1FKG5ME7ESEUcLHsmFY5JxH6/BOClBl/+bI2RQ2x0maEMWiwk7jFBD7urXuYItRvLAKvFCTET4l+Ty2Wym2lfb0/UjbdCFhVoWFQBMWbBq1Byx/4nu++LVXJ774e4QlxydYb7IoGgfF40c3mNjRtS3lRLFarSkmokhcLBPGIWOzGmiajjzLGQexQo5W4bzi5qpluxLFhtEyFNfGoPA45dFG40ZDEuWsuwZtUmazE4pCAnB+/uf/KP/qv/qnsaPjW9/6Fp/+zGeYzZbUbcff//Xf4Ff+87/Jy6++wiuvvIqEh4ktru/HMOxTgSW2h1L7F8M5wiJT7632+zPJHwaBTdOEja/cy/oThadSChPsfiYyWK8YRkc/Diiv2fOKtU7lPQ9DNaUNRsunrpWjqYw0l06WDwc2ULDl2j2g34vlux9eWISHoaOcHfHmG6/i8NRNy9Onz2l7i7UjXesoyIA9h9CCcyHcQdT1Qz9IMFiaBrWDkabajYdBpdH6EKIzDD0+hPIoL0NReRaIZb4fJYDAEZRTwDqR+uXy8pKnj5/wR//YwBe++EVRACmkYfSWODPkk4zPfvZzPH78dYGiDz27Xc22qnHWcX29lmeO+HHYVa0wpoaGxWIerjVH2w5MZwknx6doGp7qDXaUeiJS++RUWawpLYPNKNJEWp7P3dAhXIyevhtJEk9exGw3FY8ePeb8PCWJI8r8iNFCnickccHV5XOG3jKbTdhWFUrBze0lXdezPJqzPJoTRQnXl2uKMiYvSrzq8AykWX5QgzrnmMymHB8fs16taJuacWzZVg1t2+C9C8M9QxQXou6qt8znE5oG6maHiRxFGZFmWRiKdIcAADeCwOgHklhhshRtDHYcmS+m4D3bbRUUjqJKVQeWswvigqCQCQsfH1jVzvchDTzCjh3GaJKo5DNvf4F/+9/+3/LyKy/z9a99g09/+h0WixNublf8h//xf8o//K9/g5/+2Z/l7bc/RRRFzBfTA2usbyQ1NUkSdGRYLBYhiGhg6HraXtJy26aXM+bkGGcdeRoxhOXSar1mu90Gm5ahLEvmsxlRvFdnj2i0DMF5oU6JYlHGYg22lyGhLJBHsjylKE9xVljC1zeXHB0dHdw14zjS9gNpmh0G9dKIi0r3oCoHkjTFqbBzC0/ndhxwnWLwlhwZ3o3WstpuSVpJhkwCY906ewi80EqJWjxgCVwYZGdZSmwkACBJE+bRgk21wStI9kgmXjT9aZoKT1C9WFYpHzMOwodsu5bV7YqqblgkibCF4UBwAEkkjkxEkReslTookz0yTE0jgfwXRSFiBFQIceoP9WO3H84iC+jJ9Jh61+C9Z7k8RmvFarWibRvSLKPrB26uVzhETbpcLlgul0Q65urqEm3kTBi6EVUU9P3I0HVsq4ooMUwLx2I5Ay9K9zTNODpasq3WXF48ZzKZok1MnAh7sGk6WaxEEav1Nd5D07Z0zQ1dV6OUYjKZYkzEbHLMKw8/Tds2rKobrq6usEPEel2xWEw4PTnl2996n8dP3mO5vE+0S3n//R+glCxM4yTCOuHBdV2NMZr1+pbLq8fEiWE2nxJFXhRa3oVFv2K9vjkIGx4/fkaWlrz+2huyBA1nYJ5L4MlqdcMwDOR5StcNoMXF0Y/2UEtok7BcTkii/dnomJQlVSt4qmKW49SIN9A0Y7ATW5pnG25XJcoX1JXipQdv8qk3P8cv/PyfwJiYatvy1qc+x2a741f+xt/mv/jVX+WNN94kyTK++93vkJclKEWWy9I2z0uGfggsYI0yisXRgulsGtTe0svkaYJiv+Q0NHVNGmYRXdeRZ5ksvrqW3W6O95DGCWVZUFUVSWRI0gQI574JgzulxF0z9Dx/Iv3lPsSqC/37YcCHnOX7ZeJ6s8V6h1NQt+0n7hsO7j2MZvTy/NVKagQT1HpyPqvD6xCsizk4FgjnnLPizNgvtrz3xElyuA/3oZ06sDdNHDPRhvXNLW4UvMXV1XVIs5a06kOVqmRJqZTUjnuW6W63Y+hbGZw7Uev1vXCc00TcYvvka1RQ44WhpDHmoEpO05T1es39+3eZzWZsNrIw01pmTygOykU5i0Q45qxDBYGKtY5+2HPT/0VO9f9/Xz/8gM8oolgLU0VDmiRhs+wOU93VesM+kXY6neKcpetk01+WEeO4ZxXFEsHszeFDkYYiItFHpJM5eZ4xmx1xefmE25unKDMwn5cYI1tNEw5y9tYu74MNasB7x2w6Y7Q9Q9+TJClZts9Y9qRpKhy+UQrULMuwVgInVqtbjk+OZNJai6RV0m07siyVDWIoSAUaGkDhRuFdi45G+XCxYXOQ0/U9dnQ0bXcYPG53VXjQTgJLS2FMTJKmxEa4hWN4TVW1CUoPsVLOpjOKIhcez3pH2w4Uk5KymIoiy+RkecFiMeeN1x+SJIa2azBAnuZhkMVBtVfXtaTMmoj79x/QdS2bzYauGbATx3azI8sK4iiVQnbX4JUcGnvOVpnnpEmMdzLVX683RHHCanPF17/9P1LkUyI9ITIGo1OIIkY3cnI8wagMY1I0FUWW09RrNpuaYSg4OXrAblcF7/wcpTXTiWI2mVJvt2xXFVWzBt/y0sMTTo9PmJaShNwPHUoJ96ptQ2w6nmYnB5G3Abw/jJTFDK0j7JCQZTne9/h4EKWdD5ZBFYEy7Pk5CmmWjJFmtignOA+rdcVm3dLsJNVtOllwdXlFlkVoX7GrdpydnIDqcT4iTWExk00OwPHxgqOjHE9HkcV8/70f4LwTtqEuubluOTlbsjhaksYF69UlIFYm72A2nbG6veTuvSnTaUGsRd1njGJSHPPG6++wXJzR1B276jnayAbBBHiqUnuLgQp2GB/kxi8UL2ma0HSSdGu04s7dJa+8ek6Ry8BzGAe0EuB1nmc07Y5Hj54yny2ZTY9pmwHrOkbbEKee0bUUM0NW5ChVsN10XLUtWV4Sx3tlj9jOm6ahKDIWiwUAs9mUxWJJ220FPN7JwG06KWnqBjfKcFJ5QIsVpaoGtI7p2h6tpXGIU8WuqYiMIUl0YGmGDZOVhqyuWyZlxqScoYloqhY/5uw2isprkkiK3jyb0A8eO3q0inDW03UjT59eAjHFRLaYf+oXf5E/8cf/Ffww8O1vfJu33nmbyWxJPzh+8N77/M2/9V/wO7/7u1jvKCcTkizj+OyUODEkkaHtOrTW1F3HOAg2oeuES3ZQJUeK3krzXLeNKGatKFKqaicKPi0b/iiKJanWWiKlcDj6oZNteOCTTiZTDJoiyXhw7yE/8ZM/xo/9xJcFO+AtcRQznc5omoYsz4IScAjPHOkanBceGUqedTKM0mHD5/FalIZYGVxpJUMFH+xFAG6UBk+UCKIys+OLtF9ZzsiAYj/1E9WuqKD3tgmlhI+hlQ5J6aIsieOYNMuZIawuSbdVaJ/zqbd+gjQt+Mf/zycU8y2zeSZhAMQksWG9uqEfWtr2lrJYEodGzej9PSYqEFBsVzXKtMzKAu8Uwziw225Zr7csFgvmc3lmaxWhiWRIqoKSS4nKac+6ezGUc3gsHgXeBNtqaBJNxBCUYYfawqsDeF2G5eG7hNe6/+dBOWXD9tc7hqZjb0nA+2BR0IfPe3/W7O1hezX8C7VgUG2iARN+pv3rhb4b2W48WRbTddA2onq+c3fG8cmSvvRMilPms5FHHz+l3jU470jSGAbLOMQwasZ9KJYOz2xMUM+AdyNdN7KreorihMjkZHnJvXv3+aU/80v8/M/9PFW15YP3PuALP/pFppMZu13H3/nVX+Nv/Z2/zf17D5nNFzx5+pQ0S1gsFpRlSZLGQcXvDj+792Lf2263B0TE3g0gKI79stMfBoEyrHBSH4QFaxxFlPFEPpcgcZLPTmEdjM6G+2sIXFIVVP+9cHZMzKBEEZTEYmmcz2aMwyAqAy/fIzMm1FrmMEHfM+M8sFqvGYaByXzOrq5Jkpgiz3nllVe4vlnx9Nlj8PIeCNjbC7dXBzWCF9C9jzSC4RD1IRoc4r7QWh2afkmNHYl0KWqdJGHPMlR+r+qCm9Vaai8rC59h6MUK5aHrtoDhO9/6Fp9++1Oh8ZHhnlgEA1D+9B4QMwxb8iLi6PgeT59eSLhGGOTuByNRpIkiRV7EVNWW7aanyAsmE1H3fvTRU1a3LZEWpfX+LJXbWepZbSwq8PfabiRKCpLcYMeB6TRHA1keMZnk6MhT5ClnpyfcXtckCaxWtzRNjbXCR0tSjVOW+TLn6GhBmiZcXV1R7TY4N+CdoZxIIvdskUmyfGZoGkfX74ijnLbdkecJ15dXnJ6eCmvQDVgnAUt71qa1sNvVaK14/OQxaaqIE5jFWcD5pDjnD6EZeZEEVX1LEkeMFrzSIdwtC0tkAEVepOANu13Nnom9vzdkmRzqFS3PdOsHFOBGjx1kCaK1JotSvvyln+Df+kv/G46PT/j2t77L57/weWazJReXN/xH//Ff4+/+2q/zqc98muPjI9abFWVZkmUZZVkyKUu6ppWBu1ZMpxOGsZcmzntR6EQyUOxUJ+eR7elaSSOeRAVaa46OFqxWK54/fw54xqHj+vqSKI4p8oxyMgkDX3WwqNpxBD/iR4UfR5p2R1s3dH1gcCHPldhEJFHEZr0iL3LpOYIYo29a1Gwmy6H9RgwJ2TJBaTcMMggxRhQ5hM5J2K1dODs0utqF5ZIo8KMgWEizLKhzRfXZ9R04GWJFxoAXVZNSisiEGgUvbiLvcXZE+5BQHMdMJrmgUQ5IJ2H29XYIqhnHZrtmGAfOz87Zbitms0kYFuwXAwK0T9OUemf4/zL3p9+Wb+ddH/qZza9f7W6qrzqNdKQj6Ug6trEwtmyMESYQgwnkgoGQZFxGbu4/dN9kJGEMckdCCGm4QDCNEV1MwMZGli2rOzpdnWp2v9pfO+e8L575W7vEy+i+uEujRulU1V577bVm8zzf59ukac4oudVoAjIYSLJc1EaTku2+Z7/fx/P4lsWjtaRwj57qm/X2wM5OkrWodPKMDz/8kO1mG+85j7YDSaK5uVnjXKAqKu7du4tNNN63oBy7bUOamdiT9ujEUBQlu/0N3/z2PyR4ubtn85KiSHjy2sMDK2sYhOlblhmTakFT79ntbyJrLsdGT+KiyFEqsNutWa9vuFldMJsuOTm9y6fefJu6aTg/f8bN6oLdfsfR8ZLN+hl932ATjwSGSN1xdfWSJHWkeYF2PUorrm7O2dZntN0VWSnBPaUpo+WOBEEII01CJ9984w0SW/LRRx+z329xzrFYLNAzWXt5PoJnhQSTWbHG2mzWVNWE2WzGzc0NWWrp24auEfsp7wXALSY5u/2GzrdUswLnUR+jegABAABJREFUA5PphNV6RV037PcNibEslw9498s/yR//2i/R1I7Elrz92bdYb2v++n/3P/C//u2/R1EWLI+O8AEmkxmeQJrnkWGqqSZTrMnoWmHDzubz2NOoCN6LX32e5uK737YYrZlOJlHB1xK8hDG4YaCu93gva2s+rdAElvMJeZ6RxefzXt7PNoYWpbnFaUWRZxwvl5FBB/u6FqJQZNGhNEEpXAi0/cD1zY0Ed6lbsHBk8EktKGfxQYGRpPi6lVo0enyO9gl97yItKoywCxCiRF8JcV0FPBKWNYxDP+ScDozWIUHAUmWwSUYba6nNfs9qtaHpO5KDx6U5jLa1ivYrTghbzjvaRqxyYPz5Qwxh0hS9KDq7viVhVAh4jE5EGRDPEmMMXVNTFjn37tzh+uoF6AGUR2kjjD3tD2xHoyUBuK4d+72oRiSQKMf7HmM1WZbwoz5+ZIBviJHOkvyhGFwXfxhIUkOCYepK+qEnyzKapo3TZZHIaa1fAdqIgIEAJ2PhaVROObnLg3ufwuiEurvh2bNngMboLKYsSQLqdtsQAhRFKZTOPI8IaoCQMAzxYDcJNrHxQJJfSt164bwqT726uubi/AprCrIs5/RkSd00h2JbpK8wuCG+D/YwSXIMMRV0S9fXnF+eyUE8XYLq5fUES5Zn+MChMc+dY7NZ07WONLVMZwUm0SidoHRgNpuRphbnOvq+Fd9AoyT+uXXs6ob1tqbuevL7GUfLKdPJfSaTSqbbWn62PE8xRpg5Td3FabzIQtbrbZySGZqmZjabEYKmaVvOz65I0oS6HpjP5my3Wy4uLsAoJlPxSEyShJtuHf04Mvq+5/LynLKqmE2nBFp8MDTdFi3xdVLAxUu+7RRukOnOw0cnLI8ltOXxg89zfPSY9XrNanUG2uF9T14kLJcV1WTBxb/5HY6Pj5nPhZXXti1ZIgzMzWYl5pqJPRQIRkNdSxG6Xm8Rn0grX5dpTk9PmEyW3Nyc07stSjkG1+Mi0KCUpI6Jh8oYAQ7apjRNz24rBejJ6ZzpZEaSarLMcPe+AKcP7j7g+PhOLOhFJpmnOd0+kKUFWVagNeRFKrIaHFlmWG1qulY81Narnnp/SVVNud5dcXIyoyotm9WO2XzObFZx564nSXKaeofSirIwVMUp7d6Q2IQsKbGTlMcPX2M+P+Wf/NPfPDClRC4ivwduG/vx70cfrsHL+tImsNttOD+He3cXDE6RJWPz4w4U6qIo+O53PsANTzlaLkF5kiRQTDVpkQkw2EvCnk30oXFtW2EBj+BF00gSUds2TKcVTdOw3W4oq5TJpIi+egNJmrKJqZuKW/ByNGsOPtD2Mm0X5p8hhJ6ykuHCzc2Gpu6jHN2LR8sQqGuHDj2DayiLjOnkLm3ruLmqoUhIkoy+dzR1g3MSOqGV4vvf/wH7uifNKh7ff8Sf+7N/lj/+i38E7wfe+95HfO6dL1CUU9rO85u/9Q3+6//2r3Fxecn9h49JsgQfoOt7gpaET5WkTHKR2DtlyHNi8WYYnIDTIUihoZSWyZbW5OmUetdFWWVP07a4MIi0LgQ0Ah6YCHY1bRu9vMTzM+CxeJzv+da3v8k3f/8bbHZb/uSf+A/xKAYkKbzrWmF+xYub6FvjvXjxfPN3f49vf/vbrFYiq5FUdVDKkxUFWSJ72hqLTRKUkQK9LEqhuxthPhRFQZqk0TpAvFOLPJcpoBHJcmqlGBopCUoZAsPhPSJoVPzeo/kzSvZnCB5xrNMQWSNJVvHkyed454t/iG/+/q+SJDXzZUGeT+jaJjbwntXmihAURVFyfLJgv+tQVpPnt6zZPJti0xTnu+gZBf0g7Dq5+xKE+cRh2ND33QGIG39ppaXIGZlxURqtVEJT13RdB0Gz2W4JXh+AI2mMLSMbf9zn8rWxwYvfY2T0an0L0I0SzrHhlq/Rh/f5llEYxaVqlMWOHrTSMJj4+Y2DhtGsXSkt8fVYAeVbGSxdpx1du5aCsl3z/JMrirIgzTL2uz1JUtC2nraRInOILILxZwyBKKdKImBqQWXkxZQ8nfPgwUP+0l/8C3z1qz/Dxdk5Zy9e8O6PvUuaZ1xeb/hb/8vf5m//7b/Na6+9xmx+RNM2OO/Z7fbUdc10OiXLU7JUpLDjJHtkpCyXywNLemT1jeltzkliuUghIzDpA9vtVjx/9O37nSTJgdEnjbtCa3tIwGsasdzwseAdnMjwQhCwXHnHfCbNQ5IYJIgsSLre4A6SGq2FWelDiNJX2SMow2a34ma1woee+aQiKyvyvOL0+IhJldE2jYQJNTV921DXDV3n6AZJve6dAHlpoknTBIjp3i7aO2h1GNppbbBa2AJ5JnJPYyxZlksgRd+JH6Q1hGDpUAcbAO9VTCr03KxW1HXLy7MzHj98hCKgLfjBo5Qwo5fLe9w5fcizl1es11vW647tdk/witl0wWQ64eL8nH1Xs98LiLJed8znBa+9fhfnB64u1wx1F+9AJawkEgJiLeDCCP4qtLFoI3s8RG9UbcDqQFFq7t05oiwzfHB0fUOWK5I08Mabr9HUN4TQY21gs7litsyxeZD33HW0Xc3gO45OFsyHgeubFV3XRPPxQD9s0Lbi+HTK06dnNO0goEcKdb2habZcXjoePX4EaiDQU9eautnhfA9O/PWM0TTNXgb4ylFVBWkmzb21ht3Oo414Qu7rfUxLlqagH+QzBgkYGFzPbrsjeAkwUUoaIgkoEWbjyHIdJf9j3dAPfQTxDcEn5NmUn/vZP8pf/b//l0yrOT/43g/4wuc+T1nOODu/4r/6b/4a/+Af/RqffuszPHn8hMvLK7r+JZOqEnAvDmBXV9dYazm+c0rdiDx7GNUOg8dFL9FyWgibO884Xs6pqsktWyMETpYzlrNSpPhO+ofR/F7kdg7fO/adsMjruo42QjqyZnz04RqN5h191+N0T400wrPpDCL7LyDs6CQGB/q4fQMSuqO0Aq2xaUJQIwt5THkUn0hpnmV4NoxJ7QaMkTqj6SUkbxiHbiH6t796lyB3rBRjntlMkrRRIgPWCqzRh9+tUQx9ixu6g71GmmbRz0rT9R37ei9MJOdo+4G6G7BKE2NJ4t6SmgEQxlC8s2RAiAz98DEVU7Na3TC4jjFAZFQKgCJJbAThPDc3a5JE/s3V1RWr1YaqEmuhtu0jG1kfVC9d17Pb1lxdrCjynLzI0Dpgk0CWa8pyym6z4+p6T16mzCcdi2lK13uaZh+/bxN9oU8oipLttuaTT57TdwOz2TF5LmutKDOUOSJNDDfX58I61ZrprMCFht12z2bXUrdrLlYvIIjc/M6dOzx58i7OBc5erlnO7/PsxXNenn3IpFry8OFjIGVfr1HG0bnN4Xy/unlBWVm6YUNlZ/E9gzTNaJod6/WKrus4OjpCKc17771HYkuur1f0fUuaJqzXK5LEiK/dyQkAL168EM/DrmMymSIBGvsImB/Rdy277ZowtDSNp5oW1H3H0Af8IGGYVTnBmp5+6DhJJ1TVPZQuGLqUu8ef5ad/6qusVw15OuHB/dfY1w3/w9/4W/ydv/er0pO+9oQXL17QRC+6vCxIo90XUaGiVUKaFoeE+MRakhhK6oeBNEnwToKSuk5sTUaWWdM07HY7Ls5eyveJAJSxQrA6OzsjNYbppIgyVEnpVUrFoBoZivRNT5pIYKlWY/0me98NIqmVob1gEU3TSK1pxuGrnMdj+u1tHRgiHiQsyIAM31UE8EZGoaikPH6Q2n8cCB4SnZXCxP2X5SluPxzszEZGXu9lKK6RuzzNctwg7FbnwmHPexWL0wPfWIhfWmvavovDJcGYptMJxmQQVUV931HXNefn5yRJQt8PUakXZbZGnm/0kPbR93q32/P666/zybMfMIQtqAFtPN4FTCSFjM8XgmYyKQ8McKmBM1F7ppkMon/Ex4/O4IvJQeNmlUI+3P6d1swW1aEwl/TJ7CBDTVNJ5+tiY5LoRNgSfmwkJM1vPltKsaAGfvf3/jU27chsQiDQDzVKuQONXEIy9OFyB3ADFEVG37doM16mY5IRdF17+PqRBTg2NKenJ2zWLWWx5OGD17CmwNo16/UlTd3RNJ7edQy+jQlS+iBVDaEmsRln557N+oaz82cEr0kyRVkUFGUaL6OWi6s1N6sNCmg6j/eGph6YLUpMW3N5taEsMhZz8cnb7lZcX59zeXXB60/eZDafUxQZ3aam6xzbTUM1ySPV3aJSRdtvca4nTS1JmtB3UkD3nQCzIcB2uyPLco6PF7Rdx6Sa4NxAmmWs19do5RgYGJwn1yk+dBgbmExz2bIRLNlutzT7Bo3m9PQ0JhV6hn4nEks7wWOxqRg9D4OjXq1o+4H1ek1ZTLDGkqsUa8SzYnAJ+/aCzceXEAyDGzDa4FxHoCfJPEEPLJYVm02HtZaiSJlMcpJMY2xOkmjaVjxjNpsNZVEwnco01ofh4HkoQQ6etm25uHrBxeUFVVXEIAJpaINXDMERgvhcWCvAsUgTFfW+4eLynCy3nJzMyLOK/b5hXi4oK6HEW5Pz4Q8+4YP3nvLa48d84Z3PMJtNQCnaek/XBbK0JM1Er++8ommamHqm43S2wg0Z6+uWq4sVWWrRNJwNNU+ePOLH3/0p3vvBDxi6DYkpOTk6AT+AzwlBZEJFMWEymXJx8Zyf+ek/zHz2kP/Xf/XfHg5vYeGqKI8cvSBvWTwyYQmMyYfCiNvx7JMGrTx37h6xbXcYo5lOp+z3XWRpDTx5cp/NyvHBBxfUW0lFni4N82VBllvq/R4VcrrG4R30vSSPKRUYU4cIcl4kSYqx0hhvNmvK6pSj5QlJmrJeNTT1y0MzTzQ1D6OZuoyQGKVRT167y5PX7qK1ixOXmrbbs1mv6HqP1SlZJma/XYsks9mS4Cyb9UDbOKriFGUTkXb2PUEZXOhp+l7AxJfn5GnFvXsP+At/4S/wR37uZ+m7jo8//IhPv/1ZbFKwWjf8i1//P/kbf/NvUZQFb7/9NsE7dnWNUorptCAvxE6gaWrZ033P4HqsSWUaGcGu5dECReD8/CKGuWhcCDR7T9t7kSo0zeE8RIkZsFJa5FMjsKstSsslbdJMCm/VkxjHw4d3OHtxyW//9m/zC7/wNYqsiCb8KkoN+SETcB88Qwi8/8GH/NN/9k95+vQTmrZhcFLAmwSZOKIwKqHve8pCWA/SkIhX2NAPcokbRWITtBH/LWslATVNZX9mWSom4EVBmojEx9qUPC8PaZxJKoVfWZakiSVNLNpqaba1ML1kkBNQeKwWWVGSFbz16S/x3g9+m767pO8cWeZj2mdJ08iZCupggN13AZMImHZzc0ORlxTJAwI3BIY4cEjI0gQ9n5NlIpnUSkfbACnMzs/ODuxDNwjzzdhc7lOleJUFB0n0fpNSy7koxToArjF17d9jAY4M3lcfI6h0YEke1AWvsvFuhx9jUuxtzaAOzzvaHIjcaZwMh8P3FqZfOJw9Qy8gdN9B38Gl71hdi+WH0mBNShk0p3dO+Lj5hHrfoI3YTwQXwyP8baF6eE/i8OH4+JSTo7sEb3j06HX+zC//Wb76M3+I87Nzzl685J13vozSKS9eXvM//I3/iV/7+j/hp37qD6KNZb0WlrkPQdSU3nNzc810NmHopBAX4EoeTdMcAq52u92BrVQUZZRuSzOapVkMYJnE/esPbJEsyw4y7xDrLmHr9Sgj7DhjDE3TUBUlXdtKE9H1dH0nYWROpHSb1Zqj5ZSiqETlTWD0/B/N+Z0LcW2puL/Ff6ftpB5q2hazC3T1nqKs8eESrS1VVVCkmUjJ9BE+Jnm3bU/Tduz2G7Y3N/KeRFZYYlMBRFGkiZHGP/rzJTZFG0Xd7KjrPUPXMSZ5G50cvAi1TmTgq0Tar23KZCppi/vdhtAPXF1fcX52wcP7DwSrHDwqsok1CVky443XPsvl5fv0Xc/N9TaGiAXOz89F0hbXVlVlMjCpHcHvWBzlaDNQVpbpdI5zA6ubLX6uIRgx9O4VTetwjmghorGpxVgBRpLUyqA2DNjEsdleEih48PAhRXlKGDpUcFRZgXUZyfExw3KKUopqdkTvJHX54uqcvq9xvqNta6bTirIoI6PSRClwR9/vIQlYKw0UBGbzKTc3K4JqWW9rdvspWW7IuxRjIUmh6+QOGlxHCIauC4Rg0Aa835O2lmpSkqYpVTXBGPG/TtOeoRelTAieLEmjREoCoxIr50RepvGz9fSdqH3GWkUk36LcKUoJ12pqGHo5h4zOmc2P+bmv/gL/xV/9LynzKR++9yHvfOEdkjTn7OyS/+6//+/5zd/8TU5PT3n08KH4FtLTdi277Z5ysiW5vhIQXhlee/21wz7uB9lLbdexvpGgMJskFEVOklgSrajKkul0fyAFJEkisrF4L0tg0q390NA7uq6PZ/Xw73muSeCc8+KXaxMLQeO6TiRiwdG1LZMypSoywEf2eojJ8lG+JrtbmNMj8K8V02pC1/WUZS42DjHBNoxn9eAJyOBGUiCjf/Mr57qLVgwqDgHCyOSJZy8qkBcZWZpIj5IYksQcCAluEMauMCMdSTLEQa2csWl6W6tmaXZIWa33DUJYkpFcOLDRo21EtOSxxqBi/ya+8fJ348CkKqdoUglcikOtsfeVIWLKftcc7icpSl/12RpD/Ayjh7s8h4fO44aGoXNYlVKVafSyhTRT9C3UO8+kPEbKmoTV+hznavKiYhj2tF1P2PW0nTAEu9aTZRV5UTD00g+fnZ3RtS1HyyWL+ZRpNeX8/CVt4zhv17EmyeiHhq7forz0Nevtnu3+AqMz0rTk9OgRn3/nU3z5xz/H9dWaq8s11zdr0tSibU3vGvrG8fSTj2XwR0fdBuaLiq7t2G62pHlKmsoQvesGIR80HUVeorXl5mbNxcWaLDOiMNMIK0p5YedlGVU1JcTBzL6u41lSHYaCOsuYTmZRhtly9vKKZy8vuVrtxS5ncEymNdXEcu/BCdvtBpNo0qTg/uPP8gs/9yt0e4sm5+6d+7x4fsbf/dVf5Td+4zdxzvHlL3+ZpmtZr7f0weNR7K9WZEXN8dGCIsuiD12KUuI7eHZ2hrm6krRaxuvIY41is13z5MkT7ty5c2Dg1XXN5eUF3/vud/jud78LUa7edT0fffiUpm5467OfQqkjVL2XtVpVJNay39e0nXgRu67nwZt3SRODdwMe6LqO0cE3jPsQCZYYlZdFUUbwD3rnIDJxx0JPVvpYo8l5ELzCxPOl70UC616x4GH8mhBQ/jZbwHmHsVLXjuEjI5FEXlqIKrkQ/XcNNs1kUK0k9EYZjcLHMEE5Ysa+1BjD4JwospKEXVszWnNpA0F5hj6h77rYTzX0vZy3Y4+fpUKOGPGuvhdi1m634/Hjx3z+819gMO+z29WcvdjQtYHpVAZBfT9QVZp1ZPimqfRnCmEDF0UiASNj//UjPH70kI1XEOBb7xiZAPuox1aRFWetiQyFmBgSJTnaaBKSw0FvtB4D/4S6mio+efE9IKDNQJLV2DQc2AIpORDIMs/oFTbGzstiVTKJjN4wzg/xz8aGhUPDMjb5MgkXL7iX5+f0g+PjTz4kK6CqKgjQtBv6oZEmwiqqfMbZ2RnWGh48eIgxFh2lm94NUpwZzWqzQZ/D60/eIEksSqUY67GmYVJWtG3L0Hus0dw9vUOg5eb6mqcff8Bbn/40emnoOknp3dc70sTxyYuP8cFRxuTFNBHKaVFUECxXFzuOFjO6phWZTkzF7LuevhMj2iRNSWwSL5UEmxryosL5DoKj7Tru3l8wpl1JEIaYFZdlQlEuEH9tQ5Kkcml58eFyzktxUM04Wp5QlAk3qzOSJMPmBa4PXF5ccXOzRhlDHwHKNM04YkpVCrOg7TpqLx4W1qQor+j6DqUDzrU43wApRWZpdj2TsiC1WpI/vUErxXQyochSdrstvda0XU1zvhc/RiNN42RSxRVoMDohhBalHT4YjBEmQz8M7LZbUIqrqzM2m5WwM7KcEAyKlNWm5vz5GXmSUyxKumbApxlnzy9JM8MwXDKpFuiQMnSO87Mtv/vN7/PkyQMSqzm7aMmzis1mx+K4upWN2oy+G5hM5zy2M+7fe43txvBbv/UNtNoz9B3G5BwtF0wnx5TFAt/nqH7GxXXDlWpYLkru3i84OTmRfan2cXK04PT0Pm5IMTHhZyy+BNxzsSkem+OR/RoE4DbQDwHVKzabmq5V2ETR9gMqtMwmFX3vyfOUJCnIsgFvNS9fXDAMLfu9p947VmvN04/3IilKNWky0OzHptKR6Szu3RSFFLaJupWP7HZb+n5gMpnyne98H60tV5c3BMS42nuZeisTE/xicuMor1JK8/LlGZeX59y5O+W11+/x4ccf07U903mCMSmz2YLr6w1DJ2E9eI1WPZPJnH5wpGmBTixtJwySLoj8sR88Xhl659Cp5e7d+/zV/+w/54/87M+wXW348KOPePtzn8XanN2u5e//g3/I//lvfoMf//F3MdaKufd6xXq7xYXA0fERNvqYGBO9u+Ln1nUdu92O/X4XTZd78Y3JErLcMjhJyW3ans2moesDXWT8AKjorRWCpx+TuHT0UtNj4h7gPToMVEWCTTPu3b/HZr3DDS1qNP5WctlrI1J8H4S1J5JRTV03nF9ecr26ETbQ0AqjLjINEiNAolKBXb0W9hwa71UcBg1C748eTArxzBBoUK47rQSkHhkEKIWO95iywjZWUeIQAuRpeph4Wms5OTrm7ukpDx8+5s03PyXM5sg+9N6jvYT8fP7tn+R77/26sLe7Pc61tPWOvCi5uDxjNo2MzqajbVv0MBDCOrJb9yjbc3HzMVnqeP3x62RpSp6K76m1KXiFCoo8K0izCfu65+b6Em1AmRx0RlFMSGwmTAxClM9JA5KkFVmeUFU5fScBUn2U4KdpFsEzdwBvRkBH3jJJEX8V0FNRejsaG6tRMu1jalkEiORulQRLKRV0ZJKMzD8fmfU6MjdHL8ZbT7rxOfveRSlc9AQNmrYODNYfzieTaTablsnE4Z14oikj7C6ZJHvGsBH5WUQ+X5UT5vM5WVahtOXNNz7Fn/uzf553v/xlnn/ygqvLa7707rv4YLi6vuGv//X/N//wH3+dz7/zedq2Z3BS9B3fOWU2W5BZqTGePn3KdrembSThMM+yQzMiTAobG+QO7aUAv76+4eZmcyuTQdb7yDTU0U/TWnMIIBjlQcYarE0oChVpNgqtDW4yQZ/eQStF27SsN1t2+230DRtwg6Oud6RJFlOVwwGs7J3HQ0x8vg3YCXGvjfVUWVZkUT7lBjFtdwGcq7m+OJefOzUUWXbwPDZJKs3ndMJwfETf9+ybhrpp6FpRPYwpiGU5YTKpcH6g3ovvW2pStoN4s6m4/tI0oSwlwdusd5ydX+PCgPMQtLCCtE0lAXAIvLw4Z71eR1BJ2IsqnoUaR5bkzGenOGdxg8aaW2uKYQh47w5qkKKQOy5NBLj86INLjk8mFEXGbleTZZaT4yOUMnSNADgjo3kYBgbvo99sVMUkAnop7anKlNm0IE80WWapKvH1FLaawcgkRYa5gwdj2NxsmMzu8Ct/8S/zd//e/8rvfuu3hQ1d5JLUqcSbWkAQR2IVPghbL9BjjCYvLGWV0g8p3nXkWS4gWpbRNFt88FRJxkTlrNcrmmZAqVuJkg8ykJO9XssAvizI0imJrSAmvu62O6zxJNYdeo2uazDGMJtVGGtQwUhfkAjz0Ts5kFo/yDmJYr+r6TuH0RZrMhQpd+8+4Rd/8Y/zK3/+L5PajA/f/5gnT15jtdnjw5Z/+1u/w7e/8z1W6y1vfuotynJKEwE18VaOapdBGMWP33iNIq8Yhp4Q1MH/u6lbrq9WhBAoyzKm0DuMEr/TJMnwQXyw9vuGly/P4l0tUsWRRMErDbWkGadkeUHlRtsUe0g7l7NXzuwR+AfPxcU5d++ekuc5wXELdI1p7PFO1MbggyLgCN6T2JRJWZAfL5nMJuRZLiyXfY0Htts1TSvnsPM+svlCZBOlBwCzjve/CtLcizRX7hVjpMmezSbM51PSVIKWxpAhrYhBYaPJPYfnNjoCu97RtZ3UVwhjeWR0da2ct8qHEcqIflzxdSDnfvCyToPyIh0MMDhPaizz+ZEERu1dlLyLN5eJvew4TBmlzoKrjAFW4MOYoByo8pzJRNRtbdMKSzMGCklAw54ktRAcXdOSpAKeds3A9nKLCjc8euwjEGrph5ab1RVZZmjbvfgr9or5THH/zSdYW4jXu1dsNjuePf8BaZpQZDlHx8dMJhW73Y7Neg8kdK34fg5hYHA7tNZUkwqvWnb1iub5mu4DSapfHp3w+PUnfCq9T993vHyZ8sknH/Px049o2hrvGwJSi+92DaubFdvdnnovASLzRcm+bjg5riiKEmvTw95Ik4yqzLGJ4fmzG3Z7sYxYLo7Ew9spsrLiWBtubmQdmiRl+/IF51eXnB6fYKx4FNskIfWG+/cXWLvh+YsLri53vHy+5+69JZMyQZsF9cZx8ugOP/+zf5IyXfLs/Y/5t7/9O3z3+98nK0pWqzUvzy9Q2nB+cUHTtqRpRprmUaY7EemxMqAkfNIHfZBNt12Hi8P5caBpjebmZkNZFsznc1arNU1Ts9tt2W43vHjxnO9899viF1+W7HY7ttsNdb0XOwrEdsNo2Sf1bk+N5+zsTALvlCJ4uHf/LsbqiIeMA005W4ITGcb4mozRnJwcU1VTZnPxh1/vtlytbtjv93IG8soAFgWuQ7shBn+N/nOvYEP8MCDIgeUXg22cqEyC8eLFGeQuSkarKCnspTYkyLkX63WCBObhHGFMoQ0cPHHHwXKE3iNuNUT1x4BNDTaxjCE+wrbrCaGm74eDhZt45Uq9qg0R+LPUTc2j6i59P/D87Ozgrdj3YnmW5wXb7U4UXMOYqK2jqmD03xPLu1Ft+qM8fmSAT2mFtga0XDAG0WRbY3CjTEQTJ9GRLqk8JjYIAAQxFIfoi8QoDZIiX2lFCCtZGlqRZEQj3QjIxeZAin8TPwgfL7uRoqkOv3t3KyUam5YxuQc4TNDbdmC3c1xd17QNTKaK86sX2PQuWZJxdDzBuwKbCP1/vVlxcf6cpm5YzGYsFsvIdBIvmbKYcn3h+OSTLUnSMpsfcZLIlJRgmFY5rm/pvCezhjt3TuLFPeHy/Dl+0Hz88TOOT44Z3MC+aUAZbGpxfmDf7AghYJLpAf3d7/acLJeSSuM9dddKBHU/xslbFvMJZZHiXGCzFR+jgGOxmHFyuiQMAKPMKmDMWMDK4t/v96RpSZrkaNVjLWSpwXvL0Pfsdlsurq4xJgEduLx5TtkX7HdbslzCDZq6ZnCe+WIutOK2O3w+OI0KGqMMmxtJLd1t9pSVMBWSzBA8MVSgpG1gOlWxCFQk1hPcgB9kKtB3jYTiBRfjsXf4AG3XorXi6Og4pl5FL0itxGB2fUXdbJlNj1htVpydvWS/37OYz4UVkWSsNjtKF0issIIuzy85e37JfH7KZ998i29961tsbnbc3KyYTKfce3CHt956g9PjE9q2YbW6xli4uj5js9lh1B0+9ekv8t57v4dWBd51WG1omp40m9P1ht2mp3rtLbp6g9UTylkGqmG1vsYzELTm7OKCLNPcuz+h61KOl0eUec5kWkmaZ9vi3R7nW8p8TlnM2KwHlFHoRPbZ6Dkg00lPlosvQ79tyXJhowSILIyBrnPo2uM8PH/W8/LlDVYbism1eAUpAfyXy5LTOwsev2HY1jVt35DkKbtdoGkUeE2rI4U7MgS1IV6gkUnl9xAUSZJTVSVK9bERgs16x+A9l5eXUdZr6AdhRI3yuGHw0cNlnIhDlgmDU2uYzguSPGM6yzGmEA+l6ZTpZMH19Y6+VWxWHZqUodcMwZBkFTZLaPqO3g84BJBwAbr4fmb5lLc+9Rb/+V/6K/zcz/xBbq5WfPL0E97+/Ntok7LZ9fydv/u/83/8q3/FT//MHzoYzTdNzWwxY3lyLAe5FR/Outmz3+8EsIhUe2tBa896vSGxBrynbmrKPIOYSrpeNxjjCKFBfOeUALrqUApLE6AUXovHpDS8EBMy5IIKmn3rubjeUaXymrQKGCWeGuOZH6Is0EdWjDR9AhwpNEmaMvQti6MZrz1+QFUVsg+9J7FGJP5+oKl3bOuVXO5eC5PD9XI/eOi6wHrVSEqzi35yEL3IAuBQIYivYGQT1m2HNuHATF+JuZ2AgcHzwQ/eI7UJR8cnPHr0iF/6pV/i+OhImpYQBGwMJY/uf4Fnn7xP0z+l71f0bk/dbLFa4/vo9RY0RmucqzHRbNc7h1GOdvg++/0FR8sHJKmNa13+p6PvCcHQNgNNfU1QIKpShQ/SOLlBxNHyZ1JAyMAi0HaO+bykbjLquidJU6xt5fXHBntkcohUVEyXOTROcfo71lEHUO8W3JOlYV9hTEiSq0yDR2BFHSQgYxiCAIa3LH5QB5ndq/c2KILT4CUkQcUBX98OaJ0TgLYN0Da89/33488UQV6lMTbE5mwsuKQIz4uC+eIIazOKcs6nP/02f/FX/iKf/fRn+cH7H+AHeOfL76DQ3Kw2/Nf/zV/n//j1X+fzX3gHYy0vXl4wRGlOklWcnOSgZCLeOSkQu6an9g0btTswXqqqEiA3z2NQGNhEobRM6/sYEDGyLGV/96RZRp7LcGL0gHPuFbZmGCIIL3/Wti0+CHhlrEEHxaQqmc4mspc9JNay3W5pm5oiF3DMR/3eMAyRUSsNsNWazrtDSp62lslsyjAMHB0fUxQZhAG8Z+h7GeB5kW6FLrC+uUEpJX6dcLBJ0VrHIJ9U7DSOhck1OBdDA2IBvRcW09C11Ls9YZBmxQ8DIQ5uxLNMU5UlnTuP3pJRfWIMSZKRZBW+H9jv9jRtGxl/5nathTHJx1BWM7Qu2GwcXedwfqxVb8NQ9kNL1/dMpzlllYJy7Hc9nzxdozQUBTx6fMRPfPknUEpz/vyC6+traUasZr1e4ZUwicbhTZJaOdONoipzZpOSPBWw1xpPXhQ0dStAV/xltcErUbdcXq0pK8ViccSubnGEKHtLMVaaxK7rIhMMqmh34/objPYs5nMSm9O3NRpPVUlARtfXaB0kvC4SfLUBkyjSIDYmkmBr0Ih/3ODEbUnVA4EBHcPqrDFk2YTlUUwk3mzoOklvTFLLMPQkOqPMC4xOaNqGrh3wVvoCaxPyXmSbRluUVnIvqoTJbMK0WvJL/+Gf4Vf+/F+ia3ueffKcT3/mM3z3u9/n0eNHBBX4jd/8tzx/9pJ613K8OGY+nTIJE+q2ietiZGDJcOGTT14wm00lIC94rm6ucU686/Kyoipy8qKgbRrqpqcdWpIspY2s2WGo2e9Fxt91A7vo53gA+ABrhPE7dP1BVmmNNKKjqb4EL+nD191aJjh08JwsF2SJRZyuoOu7yFTjFtyKg3qlxPvWuZ62rdntt+zrPWkid0iaJiwXc44XM+q+5eLsgqDl1pjOphwdnYhUUNvIWpMAI4IMB9q6OQQCib+tBAj2fYvGHqT41lqqIpdUW60OIRxdJ4C/hDKKsqXrevHZ9YrrqxVNXbOpNtS7LRoB7YIPEWSMDXYi/uM+OJI0Rbf6lZrGRemwkbpVqzhAFNCUCHLEjhhxPZT3NpKh0BryPKfIDcYGktRydHSCMYZnz57jvfTHSss9P7iO3d6R5WLls9uuqCY5VVkxm52gdHZgM2aZKAic31NVOScnx2w2a4Yh4GLi9NXVFUlS0nce73qub67Z1yv6oQHE1/D0zh3atubBg/ucvdxSlEdkecZ+v2Nf7ylKix8GlJE933U1SebRZmC9+4T24wthIw6OR4/e4Kuf+ik2m3c4O3vBJ598yHe/+10ZJLogainvSBMbQRRHcLBZj2zLgMJytDxhUi1o25q2a3jttXvkk4J635BkFZPZMQq5G4tshppP2W63XF2s6bpa7sV0yaRcEoaE/V6Cgur6BqNTJqVlv00lAPETy27VMimn/MGv/CR/5k/8CkZbHj96k5cvt/zzf/kv+eijp7z2+pvkVcnNakWW5hHk9/T0uCA4RN+2lHlBngqTfr9vMTYw+gyWZcluszmAa0opqiqPvmue9977nqTgZvL+t22NVp7Pfe6zfOpTb/C9732P999/nyxPaZqG3KQYLQnsidFYBbiB3W7LJx9/RJZlZGlKWZScnpwwhun0fUea5RJeFC1zVAjRdirg+p6urUms4ehoRpZlnN5d8mZ4xOXlpYTYNM3Br985STRXRXJIvFdE244gION4Pnk/euT5yJyV2jYQJHxCjYnbmTCa41lmrNgo6ahIkZFiDLPAMfS99BIj3IR4AeogwKcfZPgm6cGiOGiaPX1vsJ09nKNKj3WmeMZrLWw+5xxtV9N1bRyejn7hnpubK5x7glawv8noh02sV6F1nv1OlI9+CIARfz431hUeh2flGrLMRPuZH+3xIwN849QZXkFxVfRjUWMy2m1xf6BmhnFhm1e+Tke/ieG2gGWkjMfGZSBOOWS6M8ZaSzqKYuRtqPhVY6KvTMJuQcX9vhb9upUDZkRmR+RaGgrD4APr9Y7dztG7ijJPaZeOaZWh9S09e1/vePHiOcPQM5vPaJpG2IdG3mLvFb6VtD7Rxys+ef4CraEsp1ids683XF6eoXXCRE8pSqGd+jDw4OF98Wra72jqhq5vmc9OOD15QJrKFKvIC7SybHeS1JXnOQ8e3ifPU/q+5eUHn/Di/AWTScmbb36KMsvxThDvPM8JQXF8chqp/p5+kKAJa2XBu+iHM5rXi8eNZr6YYm2KdwHv5fPcbtYoZXFe0XaGxM6ilLbHphLhXVUF1hrxI8oSfBAabFEUHC0lsQpgs9lxdvaCvhcfx+VyEcHGQV5DZCnIulKUleZTb95ntdqSZlLYqSaNn6uwiNJE9O+TSUk7iB+EMhyYD37oub65ip4PCWkywSZiyr3dXnNzfc16vcYYw83qBpQwRK2xNHULhcUYz71791kuHjKb3OHTn/o8vkvIc2lSyklFUaQEhvg9SvKsxKaOpt3z4OETjLnLbHLK2cvpIUG57Rq6ruP58yvOL3fUO8vjRxu++93vst6ueXx0B5tO2Wx3XF3tmc9PwWcs5/e5s3zEbDKNxaHh8vqasxcbppMZThVst1sePfgMaVrSNGdxwi5rPCAHttaKrEgOE/PlUSE+K42wv2yisYkA9WmaYo1n8E4si72nXXnOzhr6NpCkmqpKePRoR1WVVJM5Sk25ua5puxrdBWFsBKnGJIzFkNgMjYAYAjzKFKQqKx4+uI/zDdYahsFx9vKay+srRpP6MURgLHyFyRsnp1FanefC+OiGPUqLRGa1umG5XGCtlej4tmO7eU4ICV0D1uZ0bcB5RV5M0DqlG0bZ20AbQcW267FpTpFWPHn0Ov/Ff/5X+cqPv8PV5SUvn53z+Xc+h1Ipl1dr/tGv/TN+7Z/+Uz77uc9wdX3JEAsCrTV12+AhykuleTK2pCwz2rZlt9tEP8vA6ekx0+mMl8/PDqmdw9BJEzs4XG/jXh/BO0+I4RIoxeAd/TCGNkRGHx490mQYxzeKIWj2bU9uNUki/qdB+Vjtjpf6eBsoAioCBwprErq+Z+gHjpZT3v2xz5FnlsG1dENH1zvSRGPTHqMkYMFmGUpDmhgSmzI48TuSwlxxcznwve9e0HZGfK20wSMpvcE7dAQpR+BIG89iWaGjp13Xxc+vrukaMW/vnfietG3DN77x2/z8z/+83Doqmg77hDI/IksX7Orn4vmRKY6Pj9muNxDZfrtdHb8msF5LaFKSWur9Fte3GBOomy3ODwQC2kuThBF/E4U0cl3byXsc2ehGW5wP9N0O3xB97OxhzYtcSs7cwYk5vPcRpA/6MJ20dhy+cfBAkX3k42BMv7KHxk/0Vn4r7eHA7YAtPqKRu1KGf1/yO8p9xzt4lDEbo6MFhooeJvH7aY1RtzJXa1V83lFeJaxA1G1AkEkSjJZCMUnFtFkrT5rkVNM5VTWjmiyoJnO++M6X+fP/8X/Mp998k9//ve+QZQVvvvUmKMPzszP+2l/76/yb3/gtvvTuj+GD4vLykgG5D1Cyzup2T7Pf8eLlc26uV7heDOPRo5JAMQRP00lTn1iLD1HapQxt19HUkkDOK/tHa42KDDez1aRWWLxpKt66UoMIu09qfiniy6pCaU3bNfS7Lt7phiIrBFRQmv1uR1PXlKWksYZI0xQ5UYjJeLevRUqv6CSXJLImkYTHJLE0+11Mh/UUZXFb38S7o42A2giejKye0NToWGdWlcjNUOL/fLNdsVmvGfqe4AYSYyMwJwEDgxFZTddJmI/obRNUfO+878WvJ+4jmyQMVlJN67qmaRrKspIjzo+NRyDJEu6cPoSQ0TQu2nbEVe7HMzKuZRdoGzHOPjpekmc9ddPhXCcecyHw7NlTHj96zGw6wfciadU6YJclg5ck1BACeW7JChtrz06AgdASfJRe64Lteh3TBpF0+EE8q0av0vlCwAWRGqVkaYa1MsiSoLWYXB68SKw7hdIB7wemk5y79++zWe+ELWITkiTn+vqKpulQqiNJA1meM/RD9HUUVqAPAyoYVGxcggObZAdWct/Kns3zKVlSYLUlTVNmk5STo5iUO3hQ8rq6phGGrjGUudTvdbMXL9Q0l2FNXWOMAjSzyR0UliKf8af/1C/z5/7Mf8xuu+Xli3Pe+dKXuFltuLi85sGDx1yvVnz/++9T1y1VNWEYBn7w3g+YLRfcvX+PoihomubgjSUs+Zr9vub09BSQNPExaCWEEPdm3IvxuJxMJqRZznZ3Td87um5AKXOQKidJemCCSpiEJ7EW1w9x8DGeA2Mi5S3bevwlZ7awYHa7Hfnjh3IHRvTJOUdirID/gejb1zNSZbSS8LrgRULWdp2EKPU9ag/bzQZrDeWk4P69U6bTKUmaEryn68bQpp5gTAyQEklqcANFkWGtqGUOab0+kBjD0PfiH+gGlGrFTzQyt71zWJvSdx3KGPx4rqcJuIHtekPTNKIGi0ErbdtH5s3I9pb9quJgyFr5XJII9o3y4TFp2Dkdjfk9TWTcSf867nkOKZ9By2sUOSmkieXhw7vMZhlZFv1wlYTPLBYTzs9q2k7Yklma4n0gTS37eo8yCVmZ4JUDqxh8H0GyitnkDrNpxtn5M4psgZ3ceqWN7M2Tk9OotvJMpzOGPomevoHJZILWUBQFm42ESfbdQAiWO6d3oo9xQVnW+FCz26+wKnqwhkA1yfF0KO0A6c9WNzu+/97v8vTpU6pyztHRKcdHd/nyF3+KFy+f894Pvs3Z2SccHx9hjKGum4PCzznHzc21hGZk8prqWhjCRluqaioWK4sJZxc3PH++42h5l6PlKUor7t99Avc0Wpk4UEiZz+dUVUXwAtakaXoYJI418H7Xyjney0Dja1/7GldX12zWG7xP+Uf/+J/I9tCKpu8Ytp6+65nPZiSRpW2MISjxoJfeVXFxccFqtSJNM8pqCkozny1ifS7e89Yazs/PQXnu3j1Ba3j58iVVVXF6ckLX93RdIx7xCr77vZaLi0sG37M8mqP1kiLPKcucPE8pUiHeSMiUeLdvNjfUxgoYf3x02BO7fY21SSRLyYYIQSSzstZ7Ls5fMgw9bbMjzVJsmjCdTplUFarKGYaSfpiRJgllOaGuxfKjrmshHOx27JuWECBNLUUMJcrzEtD0QydEnSQ93MtdJ3X3WF9eXFyIX/Aoi9VjPSm1bFmWFFnCcpKigiP0gZBqGTrrWEcZhXjY3gapWpvgvKN3HT6YW8A1KkdGj01jDMPQI9kQI/DvYXCRqT1grFgEOTdwfHLE997TMawqoSgyXpyt6YeWWNqitJNz8bYZimcj7HaOtvv/A4mu0rdG+/FPGN908d17taiPh0+MdzdaPoCxUPdeDGHbtj7451mbiMz3lYtq9OEYkdFxKj/+/S2t3R8WCIxm1ckrctz4vNEXiiALJ4kpNOC4e+8uN6sNP/jBczbrho+7ljt3TqMpoj8EBtT7ht2uZjE/4vj4mDTN2O32TKdi+umcY71Zc+fuKfcfPsANjmAcXdtTFI7BtYQwkOXiLzOflwyuBeVp2xrnJV3s+GSGUpqKkvl8yX63F1PbYNAqJbEpioG62RLwdN2eVjvyxHJ2/pK2bbBWc35+zvF8gU0SiM2csRLa4ZxQiLuulQZwaIRun4kPnshvIxuhEznC9fWKvhvoB/HoadtB2ClGgJL5vKLvO5yTy3O9XpHnCZCKd1mScHS8xA1OPGaSJBaVnixLuHfvDiANyhj2QATsXGQOjMxLlKdpOqpJTpoZqmpJWztJG1Pi3fOqb+QYd71ejWCeRJJL0VoTApyeVDy49wbPn78Ak1BVR1hbUbcrvB8o8pI8L4U9OkiBmaU50/tz2rbHsGA2PeL4eIE2PSYx4i8WegI9zdYxqU44Wt5jvVmxXe8YOEPpmjTN0KlhXyuy0rLZOvZ7TVenJEqzvHvC6cmCD95XvPb4IUdHc9mD9zSJNbzx5E2Cn1BNKimSTMK+9dS14+WZ4eIycHH+ff7cn/1zfPHznydLC16+OOP65jLShGMjF03fZf9JAaQi/TpEGdRo8h9JEbjBUZYZKBf3nabee7q6hWDpGo/vBz4aLknTlTSQUXLJeOkgxqwALkjBSZReKqUxjEb1sN/v2Ww2TGc53nvm8wWJLVht1hHE8JGJIgXqyNJMkuQgiQEO/lZZvqCuV6R2QhZNUr3XmFBiyWj6PSFo2saJlNUnFMUcpVOGwYm36JjYBjT7PUU5Iy8mPLj/mP/HX/mrfOUnvsRmveLpx5/wxS99AWsSVtuav/v3/z7/5Nf+GZ9661Norajj9Gg035cQDE+tFPv9XmjeeAE6q4IsXbLf7jBWkdiU6XJKkRUHj9IQBq5XK7bbPW0tQ4iyLKVPj/LcfhjohiEa1spZqUCYhIgfR+di0T+y8gZPYoVxRXjVm1WNPLhYmIvB9AggW2vJi5w0yXDOc3rnhKrKwXciO7AyrTOqx3UQtBaPHiNJl7jAQEOSpuSmkP1Fx2RmSDJN0ytQiTAQ4yBIG404i0RZqFZYO3D33gm5jWleXsAPjWK93vD8k3O2qy1N3R2kE5fXl9w5PZUBlFyM2DTn+OQuV+tv43wg1QKebfc1Xqko5eniEChweXlBnucy3d3tOFkuDkV+XW/JskIMwr3C+VqmlEaK2YE+JhJqdDB4TJRjih+T85KgOn4OxmiczyNTR/wB20aS8JJEk6ZiFN7UA24Qk3elJalXvPkiaPbKvXt7/6sf+nONhlfCN0aAeqwRAkTAUAIMXk2zz15Jh1UqoHUqE/PIjBFIWUUJ2CjtPXx3AcuSse4YIiNXx6wPCSvqe2mmlkdLqmJGUczIiil37z3mi1/4Er/8p3+JR48e8b1vf5dpVfH6m2/gPFzfbPjVX/1HrNcbvvjOOxRVxfnFFU0XE+Qii2bwnvOzS7bra/quRcXkyIDIzrRWEiahoekbQhfizwyq0wcGWdx+8WeJvyvi2ZVS5gVlkR3S11T0UDPWHmoeouxcKYUyhjQdGIbsUMTqVwAC5wN1s2d5NCMg7lX4aNMwTufVuH8FLFVaakJrhYl6fXWDVYquLum7DcYKS9H7RAaqjFKbUQ5qyLNMwnMiI6ftOtpWCv56X6OMMImdkzvdDY6h7wjDgIv12LgMxuGkMREsms+FQZoY6qaTcLDLG/wQCInI832bMp3kDIMYbYtHIDglvjsoQwiaspwzn50ICBNGD+cIugRNCDqCEeIN+fL5FoLm5HRKXWu2W7G0uFntSNRzjpZHZDZjOp3ig0Mph00UddvIdac9aSYD1cE1rNeteJENCcTAocRkTI5K0Jquy1HbBKU0XTvQDR1NP6BVSZlXIntKDbP5BOf39EONH4Y4kAmSVuwCzb4RFoZoX9lsbtjt9yhgX+/pVlcs5gsB80MvvsiYuLeGAxCilME7i+sDk8mU05O7nJyccufOXRbzo0OTp7X4oYpsfmQQ61fOlVG2GemJKvqvDh4f5DWaOAjseknw7LuW9XrD5cUVX/jcO/zyn/5ldusdZy/O+dK7X0KbjO32BV3fcX5xwe/9/nd49uw5bTcwnWdcXl7ig2ez3/HJ82c8evSI09PTCKQbylLWhgBzomTI84Kuaw8DwSZK8kfboCQRBUHbSkDAMNwG+43n6ejRNN6h1kZgTovHLCoGssTAN7j1RR9ZfGkqZ2bbNGy3W2azWWSaykB8BNR/OEFXzmYiyHp8fCxG9E3DdD5DKcN+v5MBO4ph6Nhuhih5lSR4ay37/Y71dnf4mW5JD+Fw54+2C2NKpiHE4exA0zaiVCIOMo0AaFppnO/p+4F6I0EOo//o0dHRIa18MZ9ycXHBfD6n945uZCm9wjL30XdQFB0SpOG8EzZqZHQ7L4zwLIYjCKEEPF5qg6h0cE4SwW1iMFrY6uLz7Pnkk2c8/dhxcjLn4aM71N2WDz58SWo11SRjOrNUVclmvWe/b6NPpccNirqX3tAoYdtvdzumM8+f+IX/J4GGb3zzX3J58xFNu2K/X5GnS/b1HmN0JH6YCAoWrNtOFBBK0/UiTez7ljwvMGZP14EKmsuLNUmyY7dfsa/XFKWmKFPEl1zsk4bB0Q8DZVVQ13tUDovFkroeaPcNe2Von9dst1uqaobRis9+9k0+/ZlHnJ8/J0lSLi4uqffyfJvtGmsNy+WCvgvU+471akuXD5RlTgjQtD1ZmvHj7/4M737ppzg5fojVc6yNLG2F+LhGENa5gbZvaNs9QxdZdkaIHj44plOFOrEHcO/tz3yGi4tzyrTCFYHNesMHH35E7xwhgqajD/DIOF8sFty9e5egFXW9Z7vb8vTpR1xcvCTLcyaTGUH13L17j7KSHsomC5GOdz1J6tnutrw8F/m/UoF6v+PiQtarj96VXgUuLxucG0itSKuyNGU2m3F0dATesdvtWCwWLJdL/s1v/GucEyYziWK5OJaBVQRp26ahKKv4/KNWRwZ5WgWKIufi4pzz83NevHjBbD5nvlwAsN1uD8PY8T3JspxJWVLlGYtpiTF3sElCXdesNxvxAtRa+lDXo7SmyBKyRNixwirsMTohTUwE3TXTScFmu2V1cyODrrJkv9+zXa8F6J7PGfqGJAwkScqt3HXsIaXGDyM2FURJkCZJZCgPAsgzkg7CQUEwhgrKvXLLinZuoPceH8MibZKjdKBtaxaLpdTiTpQwR8czju7MePr0eRyESU2QpiYOumUwrbVGq5z91kd7tx/t8aN78PlbHx6ZHolvjmiejRiQvzJpkn8FENFVpSGMRv0aow1laTgYdofxkL39YUfQbmRkGSN+c7cTK/lAR/r8mMIymj0OUeYyIq9dJ4VSmklzIaCGJ8sKAQMclGVO3XTcrK75/vd/nxBeF6lH19N1LVmW89qTN8jz/HCROSeTae+DhAIkCffu3iHJ0kPBbkyg7+pYGCxIUykmrq8v6YeGoijI8zRuICkI+17MSK21cpFYTWIT+qHFGs1kkvGFz73Fdr+nHzqyzDCdVLzx+msoBUWZk+e50E6VOUjLjDFsdxvWa0nv3e3XWKtYLGbMZzOZghCi35EcCNambNZ7Xjw7J01LUJbBQwiG4IUR1bYrlHI4P5DnGSF4hqFjcJamMbiyYjIpsUrk3IQQafqyWsaGEgQ1b7sQWZyyIdt+oOu7Q4pinudoZaMHhebe3XtC/Y4X3jCIJ1maCtjrPBTFlMl0ifOOoR/Y7wbms1PKQoqfk+NHzCZ3CXcLum5Hmg1kpwltu2a3vybPp5TF9ODdtt/X1LV4YrRtg6bnzumWur2mKAPegQs9fTsQ1EBiM9qh4OrFmr5LuLqy/ODDl3z5x54QwhFpoghhSlMTmYEJD+6lgEhZppOK0z/xBQbfy9pX4tMl/lYx3ddImIJTgTa0dGrPxy/O8C7n4ZMvcXU1sG9jsewaBt+T5zJ9GD0UxulG2/XQObJU2BDT6VT2VLdiCI40NTgnQFSaFLR9S7OXVDjvXjGAduD8wG7b0RiZXiepJUsLkjQQNl1slgWSMUZSnccCXv4sIUmSeFkOPH36jKKwAlB7MdDvYqH86NEDjEn4wQ8+OEg8Rmq6iRersHrFDDfgeP21t1guZ6zXK+rdlsXyCNfVbG468mKBc4Ew7AkkFPmcxJaSAtm7mChn6FoBfmfVETbJeePJ6/zlv/SX+cl3v8Tm5prvf/8DvvjlL6FUztX1nr/1v/xv/KN//I95/fXXUVpMu1/1CANppHWQM05YZio2OMI8SxNzYDiMDf50KumyIxunmk7pOke9Hwhemg7nPWEIhylzPwy0QydG9tqKDw6S3LtrWnZNQz+acwvBAq08NkjxrWMxHACl5FyXdEB78MkYp81Gm5geJ/Iz4WT32CSQWJHuaiUNFD7QtHuG4HCDyD18B93Qo7WcNfiEPMtIsy1h1x28XQ/VPcLeIYDDYSKj3Pc9WI2mR2uPMQFjDfN5QZE84MMPP2Gz3aKc4vzqktXNint37uHoCZFJYU3B6ekj3v+oIs+nFIVmsSgY3MDV5RVXV1dkWcGdO3eo64Y8L6O8aC+DGqWZTmdkXRabvAEfpKHrupa2F3ZoPwxUZYXRWsARYw+fuaRvEmUIzYF9nQQr/mNRdlmWBdY4nJfwE2Ok+E0zA1k0S3dSOPsofxJZv79l7B3YXJK0ejuUMxjzwwDfDwOCUiyNUu1xujre868Cd8boAyCcJKOE3pJYg/c6mjmL7AMC2qQUeRLlybdeoj4IiDafHUmh1vVMqiWz6RHOaSbVgh//0h/gP/rTv8zJ3SW/983fZTKZ8ujJE4YBLq6uObu45Ctf+Qo//4d/nvc/+Iiv/7N/zn6/ZzKdYkyCTWVY1HWS8KaNpahSCdmJXk1aObQyJEbWdBqluoezFg7hMmmif2hgKn4y+iCzdYgFRzt08rnEfzqeF9bYCOpICNFYH40gr4xNbgE+rTVt11Lk+WHYMoKyY1V6O4BxOBdQSpiWeZLw+OFD5pMJx0dLqqpg6Cd0TU/AMbSNDDkJpEnCpMiZTSq8C+x3e2mwjcFqRRscRCWIV8Ntge0diTHcv3ePxBqcH2hb8bN0MRX0zp07Ug9oc2hCQlAcL+bsdnvyxBC8Z1+LbUdVVPhKwMnNast2s+Xk5FQK/BCDgRRoLEanPHjwmN/7/X9D2w0xyCbIuxjLUBffqyEqQy4vV2y2a6bTTAbBmSXLPA/v3uX4+JhJPqFvO4w1+KEVVYEaCFpYVc51+ODo24Fm12FthtI5ZbUgy1K88zS1F9mVSmm6Dh8CdUzM7Z1nvd5yeucNQtA0+5ambvCqp95LmEmaReYYKa7d0bUb3NYJo8IYTC0JjooEo3u0djRtQ5blEBSpzbExLMI5CD4T5r1KydIJP/ETf5A/9rU/yYP7T/AB8kw+n74bIuvV4CPTvuuEzd0PAvD2vfg4dn2HUUrAYSWgV2J9ZOUM1PWeer+hbmq2uz273RY/DPzhn/vD/LE/+gu0+4YXz1/yzrtfImC5ur7m6bNPGIMgNpsNbS/3xTDIXi3KgizP2Wy3/M7vfIO+H3j77bd58uRJPJ/1AagCAZfr2kU/rpS+FaAqyzLyPEVpxXa7lf0Tz+LxjBx9814d6IknlHhs9p00pzbNCGODHQcdI1laZK+GoijEs3u/x7vAfLYghDHNXNG2nSR4+pj0yy1L2zuP1p7Fcsq9e3f55PlziqJgOplgzSkhBs6NR/mY/rzZ1fK64jk3Mr76XmR6YmukGYbd4eccB/TTqmS5mKGjd6gxAhoLkylgtSbPChn6GbFl8m5g6D19t6fet+RpRt91h/uui///MJRSCq/kDNMxuEFruWsksfyWQCLNvIu/epz3EkoYiCfmSFQJDL2n6wZAi2pFj+z5aPcDFEWFtSm5yrl7b4bVUFUleZ6TZxVtM+Ccij7rLVoJ4y4w8Oz5JVpZirIk+MDlmeP09Jg/8GNf4+X5d/nO936H3banyA1FMYv7Q0UWpWW323Fzs+Po+Jjd3tH1bWQq70lTCbg4Xk7Jsymz2RHr9TVtp+N9myHBYgNN02JsRreXmmTo9pRlgQ4ZfeM4f3FBVc5QqaQ257mia9dsdxsgkOcZiU3Yb3fC4A0yhJ7deyhegjc3dK2ja3oyO6XK5hgtioe79x/wsz/9S/zYj30VRUYIlr7OcR6Ru/e37NPBCdmk7WVQOXgT95So7/a7HXXTst/uuXN6yjtf+AKrzQaT5hwfLbheram7jovLS/GbPKxTAV+rqkIpI71Bs2N5fMTy6Ih9vWG1vqbtGppWPAeV0lxenPOZz3xGLA26jmHoKYsC7yrKImUYPDc3qwigyuA6Sewt43wYcN4Jy9Va2rYT24XLSz744EOMCgxtx9nZBVdXl2w26wOT1RYJd+7cRSktBBygblqSNJP+glsF5sjEn04qZtOK66tLdtsNTbunaYQ0cOfOXRJr0CYhhFTsuuoN29XqcAYWRclkUpFmKYvFXIaexpBoyxBBS5skmDiYU1qRZdWBzd914l03noNJkjBfzJlNpwC8ePYcpQ1JmnC1vaHr92L/EwZGy5ix3wjBv1LbKNquQRsdBxxOQMfIzBP2LXKfZWmkxHrob/2hGfd/hLfEJ1oAVjnzC/LC0rQbnn7ynIePT7lzd0IbvXp3u4GhH6gqIVx4WtwArhcLrFe0Ef+XH/8/CNnQBG9f+W/xuBuLQaP//Yl+bBaCQsWJaNCjyaMsLoUW7y+tI1BoI4oqzyEo6jj1lzf2VSahFP3SMEqzIJ5xI0gRgiS8jiCiNBMcJKDyuuUivbo8Z7vfELRivliS3zmiLBV13ZHYNE6jOqxNsTZhtdoAkNgcrS3GdrEQF3bKdDaLQIQwe9wQ6PsOaz142VDLxZI+JtrhA1mSUmR5pIr3dN4dtOSiM1dymQ2etm6pm4YAWKOYzRZUZYEGHj1+cGgslBJZ0jC0ECT8w0d23GIxF/Q8eYhzA7vdBmNHxlv0Q9IJITZli/mcxFguLi64uLim7QNt16G1hG3sdlsmk5Ll0ZztdkXX1EyqCh0sVVFQFLnILlwn0ddGvBPls5ODWCsTwTfHYnHE9dUVaZaSpgajHcrDtJzJe4asDUlXVXhnIExpmpqscAQF8+XyYGxpTAKIsX4IAZ8NzCbLAzMthECijwh49vUFkbtG14q/19nZmukscHxsUMqhNAyuo+9rrM3xTouZbZkxmRR0ww11syUrLF3folVKVU3ZruDf/c4HvPXZn+LTn/sDfOknfpGj5RFaWx4+yhgcKMbmT2OjLMNog44eiwEpUEU+F7lJ/nYq03svB5b3dM2O7bbjaCnhMJc3Oz7+5Jw3XnuI1Q4XwRhhvkpz6LzHaovrPV3rCM4zX0xpWvFi1IlC9eP+l73btgNN07Hbdfjo7ZRmKVrp6DkmE/a+EzkpwYCXw89YRaLsofk32mKtyI8Co4xPkWVZlJ5qdruGtpXkQUnSNGS5QuuBwTc03U78ibwlKE3AoPRwOB+ca8myVPyC4tn1nW9/j2Fw3L37iDI9wfd7vNvRNB3r9R6jS4p8RmKl4A4u+tI5UYW5AeaTJUVR8vprb/BX/tP/hM9/7m02q2s+/OADvvDO51GkXF02/J2/9/f55//iX/Dk8WvYJIl7O3poqdsJfUybuGXOIQwspSQVPASRe9hUZI5JNBxvmkY8qUxC7wa6bqBppJnKs0KGKVG+IgCtBe1JBoUfAt5JkbHfN9RxMp8ZizVWJpNGU+U5vmt5vt9H+fzI1JbGXKbdAvKNAL5WMs3P0pTBDVJIDw3Bd6RpRgD6oWfoGxmIRJ9W8WWURkxrK6m8PhDCQOd2oKYkqY7TO31g78H4W4j7RJqZvm9o2ppJOSVJE7xv0dpjrfiAaqV47Y1HNG3H5eWKi4tzXpy95I033hQAJD5xwFIWJzhn0Tal6xtW6zXT2YyLy8sDuCIBKHuWy2VsWKQA2Xc7bD6hmlV4PPvtlhBlBX3f07S3PiBDZHAEP0hYUpJggsX7FpC7rakb+kFo/0VekCR5fJ8UbdMdmkyvFCqaEo9TxZHtoa3BO8/Qe5TOaJsuBp2og/TJq1cZEuLjNN67o0x+BJz9oQlKI0AUfQZl6kTfueiZKw3noGXtSNK1xRiRp1mbHpq3fmhjEFEaBzjSvBkrCfFjM26UxpiMMl+SzhOMzUiTimxa8NWf/ln+b3/uP2K5WPDNb3yT5ckRr7/+OnXt2G7XfOMb32S9WfPuu1/m/oNT9m3DdL6kmksoRFACgCdRDgSQGrEfcUOg65vop6fp3BAlSVbYSK+yG6NZtLCDDIks1wMreBxoir2Fw7tRsXD78N7L50kHKpDGyfbgHWOwCSHQ1sIkelVi3fcdZSmDThWBK+fkM1DGRA9NouRk9MRB/ACVwvUdeEdmFdNqgdFG9raLTP3IThoL72EYgWiPNiK1Rin6WOCPhvvEe81oRVkUAm4h0rmu7w416DhxJ77Opq7Z7Xe03cDg5Cx7+OAuNknpW2GM3qxueP7JJ+Kz08u03Xl3qOkDCpOkFJMJZTURe5K9l+S+yDQVRFQaMWVAW7kDAmATqCZi8bK6uUEZsTNIM8sum8T0b0ViLYtqxq5ZYbQmMwlJUrLdbUhtydFRineKzJYU2V3apqdthBmd2gytc+r9FV1To6wRiSuisLBGvL76vsUY2UsexLtv8KSpeC2nqcFqSd/NsyAD5dQw9CrKEg0KQ5qkpDbHyXyRoQ0kaoopFZn1ZMWEo+Upf+infpZf/GN/EkVC28qa7VpJ6x56AYkH39EPjr7rYmp9J3fO6M8ptz59HESl1tC0e65vblitbri+vmG33UdAl5iumvIf/OLX+ON/7Gu0Tc2LF2d84ctfJARD03Z8/ev/nMEPTKYT2qFnu99JAJYyXF9f44MnTVKyXDxw8YFPPn7KzeUVSZKSJOIlLWemlcYfLQEzJiVPC4YsYyQe6EhIHHuUEBRaCYO0LMtXeplbAoWJqbRd1x7Og7GfupXiR3Z03MMidFEUhSe1Cbv1hqqaMSY8q2gtUxSFsIODYmRTo4TLkqcpJ0fHvPHGGzx7/hzX9SiU2BwYg1bRnB/o7IBvW8IwxOGmxvkQ2ULtAbjP4JAeLiSLjtF763q1Yr3dHNLAR7ncaK/QOUe9XskwOEmE3ND/cD9nUDTWsNlsIoiqog/8mJg73voces+RfZ6kNrJHRV7rg6gS+r4lTS1lHJDeWjrdmvcbY8gyJdZH0a8zzzPSzMYaTjxw9/s9Qfc8fHiferel6xr2+0FYUT4lOIP30SNVi9RU6ZSr6y1ts+XEQF6kXN08p6w0R8cVjx58gcTM6VvF1fpDkkTTdU0c5GgSo1kul1xe7Dh7+ZLerUB5ttvNAQgpioKmbdE6Y7/fYhMNWtG7jrrRbHY9bS0BMFVhY63ek2Q5u62kbadZQp6Xh94xz6doXWAtlIVhv21pdobj4wXlElbrDUViydIpaSJ2T7NyS5oUMry3YwBTRZpMSIsphhm/81vPCALLiERdg3cSXONwBC+fgfhIC9tflFk3nJ9fsNtu2e13dF3Pl7/0RX7yKz8ZAX7H3XsPJC1cG5q6Zl/XNH3LKNseJaTvv/9+/Fkdm92G9EPDg0cPYwpqdyvvdD1aCaP17OyMvBCp+tD3bDYb+ZyNjXfcEL8uo287dFAMgyRnawPWSg3log/t6vqK2WzKi2fPGLqOvmsPxIXROmVQntzB8ckdBh/oBwH1+96hlWXoPT72DqMVitEJTx494t13v8yzZ0+p6552Fz3KgcRY7t29S1mUGK3p+o4sSQg+HAC67W7F9c0Fgxd1hjECVpoYbqitxSapDO6N9B1jem5VTTDWMJvNDve+DJQDbV3TDz3eD6RWk1jFfrMWr+9RpcHobTeeoyAsPhfxIEnSFSXAK56Z8UzqB+mhBpeSpnmsJQKDa/AOjMkFw/Ly3MMgrNCu6zgtjplNZ6zWl3in2K47Nptn3L1bcnxaYozm8cMF77//MbttHa3pxM6D6EmYJre42f/Vx48u0VUGpdKDZkSkH4x0DUaWHRAvnegDpAKo0cttRFohODEoJYKAY9PlnHzw0oSM5oiOMTFKBWkCxnjzEeCTQ1dFqqd8zXa7FSlGRJCFUp6idIjpgYHNZkvfOUIwLJen1M0F5xdXvPboPpv1mpurM1577RFHR0dMp7M4Oe4OzAOQCXKaZRBBpLTI4gTlBq11NIQV8822bbFamEOz2YyyrCKrwsSCRubrbdvJZHiQYna/39MPTjaNtnRdL3JFrVDagxsQA1aPcgajQFmR/LRtLRs8FgcyNewpihylDVpLM16WOTomjY7yAmnSxLeCEJgvSqrJQ07uHONism7bdkJ7Tx5SlVVMxZJpf9f3FEVJkliGoaPtJCDEmoIQLFpbnOup99IAW5MxOM9uu2U2O6ZuGpqupixziqKgyMvD67KpiQmiir4THxjnokF826IUtBr6XmGsZbfbY2xKkiZ07UDfd6xurl9ZR477d1KKSlM3W9no2uBVT1FZTu8uCDhc2JGlIhVNUk/ulbzHQ0+Wzhh68VDKsooszzCpZsgGQkiw9ojJ5DE/+ZUv8uTNd0mTKUrLRu+6jt456v2eEDq2u61IVr1MG/quY7fbC1ASm7/gg4BXr/x3PwhoMp/NBARqdlxdveCzn/sFymrCRx98wHvvf8BsVnJ0UslRGINY8jyn6xqR1jrHdJbhvUwWle0p05RuUHgnQIhzUS5oNG030HWeMS1TGLKyh9M0k1S71MRLy1PXHbtdS/DExESZYhktxazSmiFK9BKbHGQo8QA6gIDOiUF6kqZkRcBaaNotWhkCkWU7SDGQFeYVxpGwhCaTirKsODu7kATovMBgqPctwRvqBrZbjzELJuUcYzMUKjIN4tS561BBsZgsybKCz3/m8/yV/+Qv85m332S9XvHx04/5whe/hFIZN6uWv/+rv8av/ZN/ysMHj0gzS9M2GCOTfploy8Ta2mhUboV1Z/JoUhvlIMJk6OM5K8VsN3RRringkDEpARnIyFk60NR7aUCQAznCKcIcHgb2u+Yglx6cxwFBKWGKZTlWGQwQ4s/ufQRzDumqRBmFQtnbBD1tZG0oArPJjOAcXVuDL6JkT86OHoeyCQFhB3f9QGJ1lGPJVD3PchQBFTxlYdhuG6AXqQwS2BMOoBMxGTqAjiBgCAzdgFWKPLHomMLt40We2AQzsTx57QFN01Hv97x88YLdfsdsPsf1kihKMGTZnNde+zzXG7hefUS73XP//jH37z+g3Xcopbm5uSFJEkCxWq0oy4qqKuhauau6GBygNVglZ26WJSSpZhjSKGtTrG5WbCKL2VhDno3n4q2/kXcO573ciYkjy/JDoEGZ52itxYdSSfK83M3Rc8SLJ59DJFRpqklSJTiGD+JhMvg4lPGHamn0lJKGRYD95XIp53ZRUBQZWV5gVCK+ccYwmgCMxW7XNZHFE1MsI8tCRTlZkmSxMBUQQPxhhfUigN9A3dTMJ2IbUpYFxydLdvsdaZJLiJOWxuSP/+If55f+wz/JfD7hW7/zLY6OT3nw8BFN6zm/vOHX/49/JUyOYaDetVxfb/ngg6c8/fgpD5884fj4mPV2E73fIgCeZfEG16QZ9H6gqqa4IbJMjI3DUglE0EqjDQy+Fcmpv5XtAbes3MjEHSE9bRLE99hJoIWLg4vocam1BTMcmErEWqtpGpq6lRTqAHhhymgNk+kcEJm2DrwyRAoQIrClDSrcAudVKR47Q7zrfWyuiiyjyFJhTQ4Dfuii/5U01cponNEEPxAGzxCi16KKd0Ve/NBQ1moZng1uwA8DaWJIkzKCLRxAQfHc8nKHNa2EfzWtgA2DJUkNWWnJ8oztRqEJkQlWR3Cbw1BUfDqFFXPn9D7TaoELNYPvokxZoYgDgeiJmOUKYyHPZXh5eblGsSFNNbOFJc0VxnqqSUrwgRcvnqE1rDcFTnVkuUjVjbYsl0uW81O803inUSFF+ZT1/grvLNNySpYE+kEA1L7VjLL2spyQJSWz6QI/pKRZgdaOYeiZlCV5mh0CGwQoknRHBVLXdS2YlqZuCUFAdWMyZtM7VOWSrnYEr5hUM2azI2aLJYvFEUlakKUVeVHxO7/zfYZBmjV9WIei+vEuyL0S00QPrF+N3BXEzzVILzA4z8X5cz7++GOuri4jeGYEMNOiBFosF/zRP/pH+Pk//FW6ruX9Dz7k7bffJgRDOwz8+r/6P/m1r3+dn/3ZrwLQNi27/V4YJO2Ofmjp+obpZMr+RUPTNSyO5nRdg3cDL589w9gEZZIDwDeZTA7n6ma9iRYit/652iiyLKXIRU2TJhlj4itw6E1G8GtMZg0h0A9OAItOo7SgzjIg4zAcIrL5Ei2g/KgoyvKcsiwEf/YBIrHh4Jk6AooRFJc0yYQ0LXjrM5/m/fff58XLM4bzM7KyJI3BGBAO4MS+bnBeLJgklC8h0BOiDHiIygltRI6vjAV161WoCIczrO96bGpvGfdBUoubtqNrRXmVx3vLRGJAkiQ47WKtndPsGwhjmvAQWeAxaOOVM3UEVa2R/qHrhnjGuggaSP21WCwOnlzjWTT6H452EiEEetejjbDq8zwhzzMZeICkrWIZerFGydKKNE25uLgRgaAXpu10OsXkOcPQ0PUNk6rk5OSI+aKgqjImk4onTx7Hng9Ojh/w5LVH/L1/9F/z/ke/ydBrElNhdE5SFT8EFlfTBbv9hvv3HwpwMTj2exloSG/YkecJPjgZunjPdDLhen/NarUFDFmaY6ySs8grlEpp6o7jYwn6AKn3ZjPxTX/x4gVFMUernNROmU7mLKaa+eyULJ2TZnOSNBf1QJocwHBFrDFVAjpFq0SAX8Tnvx+6CObIGusHF6cxArL6MLDd7fjud77LdrNlcI40SZmcTnn06CF/8Ke+grGWs7NzXnvyOiixcBi8Z73diR9kZMludmu5U5Xn6vqSyaRnNpviXMdq3RKeevqhZ7vdkaQpRVFKinteMPQDpydL5rOZ+Fm2LdvtlqF32EjAmJQlRSqJ7l3Xsa8lHT7PRE3lBmF2+ghAa6U5PT3ltcdP8P0gA7SogpCzYxAfemU4OTmNwWvhENglUmsBn4mycKWFPX96uuDnvvrTfOPf/RYffvARxqZopWj2O87PXohisK0pi4K8KKii92BZlrFui9YadY0nhtxFANAFT1AygHGjwkdriAOZ+XwudUSRQwhMqwlpksZAi8DElswnFd47Pnj/fTarKyZVKX2iV3gda3yZ9sn3ivWAKEbAJlJD9b0Mg0T6P+YPNISoiFIKhkERgqTBK2Xxvovs6tFDWs6gzWaD9/dI04rnz78H9ARA68DNpaet96IeyNbs9i0+pnqHwznkSZJXfa3/rz9+ZIAPb8AnB3bG+CIPhswjekqIdO42Fkii4xXj7lH2wSEpUJ7k1iwbojFrkObiVXBO/NiksDLGHMBASerxB4ZI0zSxYJNXeXR0JNp0IARZjE29RqtEWEUDIq/UUFY5s/mC5bxChYTjoyd0ncjmhA0jJvVpmpJlmXhI9I4sLTHGcnl1xe78DOcGzs7OXgEWC2wSmM3mLGbzaIwp06CmEYlu3/esVivqWqYx1iZMqglZnjGdTdBKiQSjG9B6ejCyFfWz50AxHwbyLJWmJ6bDNTF5V5JDA8vlXMCDeBmH4NFxMu1DNKWMf962DdudoNxJIrKw6TSLPiPlganRdQNaGbbbnRiiR8P02XRBkqRcXZ+RpgXDMGBtIs25IqahgvhCCX39JisgJGTpjLLMmc7KyDJRhwLD+T42ADI5GXrPYnFKoKUdzmOz7jAmif9/wOgQEzZlvU6qKd57pvNcil2fUu8Hzs9WVBNLWc0xRnFzvaHvG4oyZ78TX7myrNA4plXK8bLC2hzDkvt3P89i9pi2ayjLgjQvItAauN62/Kt//SFPzy/4xvf/uTDkmpq2a3GDI9GBJPUsZxVVVXF8fESVy9r43d/9Paqy5NOf/hRd2zB6UtkkQWnDvhbJHyo2mVpJUTZfMJ+lfP3rX+drf/Rr7PY7Xrz4hDffeMTyqIjTFKEwN00bZQzirZemNjYBAjBmWcJyORW/ocHTNtK4NvsmAk+aNLWMpvrAodgVD5viEHZzfX1D1w4McY9Yq4VRF6d5eVpI6lYgsl3MK9I9hzLiNyI+npokOGkuy5JFNaGqFtTbc26ut4e9JjJAeT3jFD3LxBPozukd6noLHjKbi4Fs09N2kCYzptM5eZYx0vbHom88e+7ducO0nPL44WP+0l/6i3zuc29xeX3B+++/zztfeAebZKzXA1//Z/+S/8/f+zs8ee0R5SRHqYA2BSF4jo6WBHU7JdZ6dIEdGwY9QiKRFSWfcZYmaK3o2lbYNomcnRIeIUBO8CbKkDo04p2XxM/defHkGaK3pB8GeheZrUphbIJOUlBK/IZURlCKPggwL2xDzeh9CLfsLSmSvaSfosELoD6pSqwaqfPyuQYnv/shMhi1IVhN34nRuUwRLXXd4IZBGC8Y8iQRxmiagG9vmd6v0N9fDYqQG0uYS4Pv6YYgxVaQ1L62dRA8aW65d/8OL19ecX1xw2q1omlb5koGISiP1wNBKZbLh1zevMfF5TVp6ri8vKTIUxKT0XYN1cRiTMZu3zD0Ax9//DHTacXpyZzJdCq3ofd4N2CyNPqXFhRljlKQZcIkz+6m9IOjbRth63U922F7MIAWkL47BBnsdpJ8JkwXRdeL/4tIuIkmx+rAHBFGMzijDk12mqcyPOld9OdT0qQP470jxb/ROfPJjM+8/QU+/alPc+eOGHhneS6emkHgL2H8yQQ3xEbHexc9kJC16HpsnHbHsjACpLceg1rJwGq1WrFer9jutmw2W4q8pK4l9W3wHVl2xG63heCZVFP+1J/6Jb72i3+UxXzK7/6732VxdMTj1x7T9o6bmy3/09/8W2IOrsXHsO0anj97yccfP+Xy8pK667hz9w4B2MegrRGYV9F+IngPLuCiP2KWZRgrAKh4Lg14kKThyEIz8X7zrzSUB6lz3FiBWzbv0A94P0TWinzfEdRTRh8+U6nBXJSwebxSdP1AcAGvRRZflZNDjSYWDUqGBhEMkJCaUb4rUvY0TZkv5ux2NW54SVkkIkVKxDJlrDHatsH1cVALcTAhe+zACA2Bth+gFomjtZokldTkLnjqWsnwKvjIlnC0TXcADCQZVFaKd06M9uM+9z6wr1v6QVjq2534lKElZU/kQcL+EKBRo3VkYSnDyfF97tx5SFr23Gxe0vfSAKSZoqwSqioRKTk9SjnSTFOVBXkZcINiu20YfEeaw2yekqQDbdNw/+ESYyQg7Hq9xvkssrYSVqsVIWiybMLQKZRPWc7ukKcF19dbjOlJ0gqtLYsjhxt2rNZrmrohyyuMsUwnC7yzkhbc7Oldj7HiCzm4QJKKOXvXtCjEK24EusIAdT2Q2oI7p/c5PX2Nu6ePmc6WlNlE7nRlAbmXAjJsJBi6fqDrPVrp6A+ZYiLLV7zMopRR6dj4eW5BGIUK7vbPg3ijvfjkKVZr7pyeMJpUymDPsDg64gtf+Bxf+tIX6bqe977/Hm+++Smcl9f10YdP+Z//1/8NF/0gFTC4gd1uF5kwwjrzfk+SSCiRDwObtSh1bGIPMr3eh4OfXBclnF3Xsl6vx9UHSPCHDNg0SZIwmUxYLo6oqilZJj5vY08x3vcgNh3b7VZYpVrjXQweifJRjViZjLXVbDolMYbtdoMxhv12x/27dw511ngHy5pVh5pFtrM/gIIhSEjEg3v3ePfdd/nff/Uf8PL8nGoyoaxKlAriB0hgXzciCd9LEJxCCSigTfSBVYyhFSFIaFaSJNgkQ3tF1zZAEN915+Tni9Y60sPI4OY2JETRNB3aGsoyIStSqmpCnophv4/93YEB5H/Y+iFE5t7hLFVy7hqjcK6DNCHghWE6dPS94t79B8x/MOPysj0MOkafL2GhxzptDFWJfoLeWx48uI9NpJbZ7/d4p0hswXazIU2hKmd4r1ivdxEUlvdEqcBkUlCUFVma4UKN8z0fPv0N6u4HzBcL+m5gMql49uIDPvro+yS2ILEJRTZltxOgRdJ1JcW1dyKlvHPnDn3fsdlssTYnzyZsNzXb7YY8F6XTfL44SK2Xy6NDjxsCMiw7PuH6+ophcNzcrFBqQ1VWaGXRKuXmaksgsFm1HB+d8BPvfpXXnrxJmmYcLe+SpQu0zkBZtJVhtbGRgSqpTigVzwcttl6MUnStGMMPRpKHc0JqGEGwMTDo5//wzxyGgKJCsOR5xjB0fP/773FycofBBYLrefbsGUTgU2stLFUl4UZjD+y9p6635DEosu1qmqY+3JWy5hxJWrFYLMgSuQe7ruPl2VncI9LH1LXYCYBI3cehct8J6Mp0QmKF8LHdbun7TgLxlOLZs2fMpzNUrCeEIFQe8ITnz5/TNA3T2ezwHjVNx21egT4EGfLKQCsE+Mxn3uKn/uBXOHt5Th0D+kLwbLdbPv74I05PT5lMJkwmE7Isj0w9E9msGSZJyMoi9tuibpKkWyEQtV1HG61mxjXWxDro5uZGnidNubAW5QNFnjObTqKXr4CZfQwgsVaGJxIuaGOdcrtHffB4f0sCS5IkkpfEK3YIQxwQ9weWnzHuUAMoFT2I8CgkGCYvMrFmQ7Pd7qMVmKUq5wSXQEwiHwbNzaVjfdOCgr0aUCqJfbDYygScDEW0ePj+qI8fGeDzHqHlx4dQu0NslCIT71W2xAGUFIaec+PFh0yilI9Ryj8sNRk13f6VA3U8sEExuHGx2h9C8kdPtLYVFBk4pLPutlv6SJHvuobRB6iqpmgjYQwvnz+lmEypSmkgEuMoylwS0SZHMZFHAEQxryQyBcVrZretGZynaUROtd3Kwf3w0UM5rJR4qlkj02PCLfAxyle01hRFSVGU0QjVRPlpwFp5nyuToiZ5nDaLB5sLsNu3Mb7akWVpnI75GDgQwzWMYblcyt/HDTE2BoPrD0wIkM8viX4dI7AXkOc4SKsIJImh63r6yGYZG1GR2gV8qtnt9oTQoFVBCB3L+RFpUvHixYeM5pbiO5JidUmezUntkiw3lEVO0+5wro/TmpFCGjBR3uIGjwbxHUoStrstTbcmBJFe2ESYaeWkwgeRCxJEBppXOaKpl41+vFiiVMLp6ROStIdQoJRhVhXMF1Py9IhJtWAymTOdLCjyaQQlJyiVYHQGQZoPYmpfPzg8mu2+4x98/e/zz3/939IETTFdsN/twMvh++677/KVn3iXo6OKSZ7g3IDVBtfL53r//gOKPBPQTSmyaPwclOHps2d89O8+omk7Hr/2hM+9/TZ+cCwWC7Q1dF3D9c01l5eXPHnyGv/2N55zc3ND2ywOU3sfjfVDCJjUoEnoWk3btmw2DVmm6RqRQQjwBG3TU1UFJrN0rSQoBUROXFblgVEwXjAhhFsPHuTSShJLlgmAN368aZpgEkkItdZibCKHuAr4SMPvWlmbQQnDqxt6yomhqmZMJiXbTU3X9YcGEgW5ybl37y6np6fcrK6p6x0vX1zgnMeap5RVwf27D6idI2Do+5bJdElRzVBaEuh0uL1MlBImn0ExdD2P33rIX/6Lv8LnP/9ZNps1H73/lC++80VCsKw3Df/yX/5r/uf/5X/k5GRBlsNuf0NRlGLC3Yk8iAhMiTykF+N1RGIs/zEGH0TPnij3zFKLDiLJ08aw29cxLXgsTHWkhzvQFuUd3eCoa2ExaCs+nV3v8CFS3xEGRVe3DLtaGBVuYGfFRzMxhnq/Z1qW8Zx/xcPR6ANQMTLDAkP8zBOW8wV3Tu6Q6gSFyEzrvXiEWJPK+RHPuTTLsE4kmsZY8rwksZa+a9FWYYxMTo1qIOwOZ8SrjAXxk1eHQZJS4l1YlBlZLiyAJEmoBpF/73c1+B6lNCfHC87PLrhZX7NaX3Pn7l1CnPgFBS4EsmzGbue4uV6xPMrI8gWLxQwCNPWePM+4ud6y2WwYBs90Wkl4iLWEwTGdzcjTDFRgdX3Nzc0NIVwLCJ1nLBdH6NyS2AyjA2VeopdGCqauPxRq2+2Wq6srOR+TBGMkCU68TcSvc3A+Mq9tBIE4pNsdAiwUOB9i8yap8PlsQlMP9H1MOfTipTmf3uXBgzd447W3+Nmv/jxPnrwRjfddZCLKEE7uYc8wBPpO0hNFvibn7+BahqGnbmqaWvavrHMV7/mANpbBi0T06vKSb33rW2RZFj2RHNVkGoH5gTTPMSHl8uqKboC7p6f8qV/6D/gT/8EvUhQpv/fNb3F67y53791n8HC92vI//s2/ye9963f55V/+06xvbg7Drr6TCXnft3zwgzO+891vU1UVXd+RFwU2SUhtQppYJlUJSh2YmAFo65626yirSlgmwxDTfRPQijzL6IcBG/eNBMEI01HAq8ici4yFNIbtdL3DpiKZGQE5qy02pqmmaUbfCwO1yEu0Eo82Y2RI2TUNmTVkRY7zDhOZwD4qBg414DjYEEoF1oh07rUnr/Ebv/mbnF2cYa3izumS1VpTFDlpKr6piTHRDkE8CAfnSPzAKDFUWiS6Xd/TxwbfxzN26Hvwwsrtojex89GChDEUQs4eF5mrwuzTKGNjvWYYfMAFaPYNLjYY+BB9fdvDuQXqcAbLWZVitOH46IS6fcrjB8sozXOgB5TuyHIl0idCVJI4jBl49PCIZ89WQGA60ex2N1xdWYq7D0hzAXSNNThvyBoBFYvoJWi0SKs2mxX1fqDeDdS7hpOjB+ybNZvtiq4/xuY5Vu2ZLmfcf/SIwfXU3cDleYexGX3vuL7a0HWOLC8JwdPUkkI7tMLuaJuWqpiR54bETnEqxyv48S9/hbc+9Q5HywcU+QlZXlGWE1JjSVJLmkiKc5JYlJWfRdgZwrBLrTm8pwd25KHuJzZpAlYbPZ7VRAkTByBrGBw/8zM/yeh/NNbiSkGaCdhjkwTvA8+fPWU6nVJVE+q6o93v+a1/9w22ux2TspT1EhliXdMw9C3eS00hbJhG/KKirMu7Ae96Xrx4TllOKMqKfVOzj8Fsy+WC6+trLs8vIuDDQRLW9V1sJMUbeVJNKIqKJEnI84I8fxXkk0NXGnu5w2SITgScVWQ9C/Ax+gC2bcs63uHL5ZL9fs90MpGzXo0DcWFvjuC88yGyTW4tkcY+KzGWz779Fs9ePONb3/p9QgiUeUGWC5OzaVv6YWC12ghoGBkt/dBixteLxtoxFCkc6kBjiMQEjx/6aLPhCMSQLkW84wVoV0AaE4ZVHHBKYEdC0zSsV2uMMTTbDfVuy7Sc4AeHj4OLg4+xun2/tBYlgDWGsqgYhvYw0B6tiUIMeZO+cqyEbocIrwKFsXPF2pSulaa/rhvaVUO9b5jNJ2RpJfVKKmffaMFT5DnTSsgb1iaYBLSRQdd6s+Hy+gqlKi433+ZyIxYubdsym83Z7SM4qBNOT4/Jspzzs0s0eUwuvRSJsBJZ9Gp1w2RasVjOubneEoLH+YEkMcJobrakaU6WVSSJxZpwCNOrqgprNU+fPuX6+ioO+HvaOmDuFQxDx2I+pyhKnn1yxt077/Dj7/40n3nri0ynU/HU7BVtuyfoLrLMhX2rjSjhiGiCWBGJd/eI7ilFBHyF+TSC4v8+M9PahDzPmVSTw3lzqzRr6fsu+iBmKAV127Gra/I0pWkaAfmUrDXvHSGMLFk5x/q+I7EJWZKKR3UEaYxSZElK6AOX51f4EFivdxwdL9luNjJEHxxKaY6PjsnTnJvVCqWhd56urQWMV4Hddsd2u0Y8tmOWQKxZtTb84Ac/oCqqQ48fCJSFgHzX1zd89rNvMZmUh/trrOfEMic2QlGl4qN0v+8dVVXxta/9Mb75O7/Hb33jGwJu1jV52x4yB0YAXeq69IAZFEVBiGrKrhV1oUk0Ot5lXgW6vqdp23gmOrr4mQyDw7UNnffsQsAoec66rqn3O2EiA5pAnucsF4uDf7eAuhJ86LyPyqXbgXA0MTgMk/vBMwwNw9DFune0A/ES5jMoiIN7Ua8IaUAyEvIY7CHnw37foJTl5OSUopjSNCu0FvusUQ0gCjsB89R452ki4SLQ9zEx/kd8/MgAnwZMZHepWAChRg6eirklEVmPbLKx2BzBsBAXmgKRaR2Q7xHMczg3ekPI12mtCPRSTHklNEyUsGzSNDa7AZ0Y0iyLiy2nrmuZ7CKJvUopAdbwlNWM9XqNc/0hxfVzn/sMwzCwrfdopSnzhOXiKC4OzdXFFb3r0Ap2ZkeaWmaz+WF6s9vWoBR93zKdzFgulmSZsGqUDtT1LgKPiZht2wwXRJYMnmEQpLksM5Qy0TuDaMjexSm8FN5a6cMUw0eJg1KiC3eux+j8QCsXCYEwLxOTSkLYdi3TuEQumb6X9zezOUPvomTLR9p6QmpzBlejtI8N+miULlMPYyw6FichEP0NBbxZLk9o6kDTBMrslCzL2e3XzKZz1qsufi+HsQ3OtbT1mv1uz27bcnxyHxjw9HTtlu3umuVigXOGJBEvNq1Sht7RNR2JFmkaXpHYEh8cbeMIykLrCUrYjNZkFPkxRT4jSwuyrEShcR5mkxOmkylvvv4VtDZU5VJo4kpjE6GOu8FxiBz3ckn2g4DNBH8oAg7/HRSth/eeXvDrv/Vt6pAwmc4xSYL3OynYMDRNx0cfP+P9D1qsGXjzyRPKPOeTjz+k7xtJHYqXilWKR48eMZ3O2ey3/JOv/wve//gZ2iR898NnfOs775NYS5IkfOUrf4AH9064f/8+H338EZ/9zGfIipyrqxtW1xsmM0/bDjgX4vvaApau9zjXMQxdlHfKfuw6+bfaIAliPmCCRvlb03iNZuiEMTL0A2maYHMByZ3vCE6a9kGLV5+s8yHK1Bz7Zk+O+B2gLMYHdJRajExhQmS3oVHakeUCOolURuQ7zgvNe1yPwWv2u47vXr3HeiMgsKTcGfI8YTLNcGEHoadrc8rihPn8CIxQun0QPyu5Iwf6rgHnSZOcL7z9ef6z//Q/5a3PfJrdfsv33/uQz7/zOYJK2G4b/tW//tf8jf/pb3By54jTkyVN36Ktpmn2AmCiaPqakcI+enq4bojNro+MEmE7WmvQaUbdywXc9aCMpm9a6norn5OPHBYlHmZDLxHvQfeHaZUOQmE/XEhB0zu5+Nu+j0EiA87LmeOck6ImvhYV5eD8f5n7r2fbkvy+E/tk5vLbHndd2Vu2q9EW3Q1PgAAIDi1oQDOSyAlGSBNShEL6VxSKUGhinmZEMYYPFG0DBDkEMKAFCAI0aIOq7q4ud/09bpvlV2bq4Zdr7VOY0Qt7HrSBqlt97znn7r3Wyszf7/v7GqWw3k02CqgxnfYmY8BPbMTlfMmsmFHkBUfrY6yvacM+WVd7rrciaV2tliRpjE5E3hRHUZiWxhSzgshISMjgc5Tag7pC4yepF+HfLtD3x3UZRzFxEjObz8gz8atTyjAMHqM0szyWpoiY1bKjKArqpqYqS2FfeYvSGquktU/SBavFGcprLp9dcPt0xpYxaVrTdT1pmnD33m0uLi5ZLVc4OxBpAYLcYNHJaDrfTeeilRhdrPcMg5yTaZbKcMdKKIFSEX0vSb2LxTLIqeQ+xPERRfGMZJ+CkyYcL0FUbZDBWmuJBh3MiC12EHaO0bGwdGzYo4YIpXNWyzmr1TGvv/4m9+69TJ7Pefnll3nnnc9RZDN22z1RHDM4y+A83b6UNOjBhYFQT9cNk4eL80PwfJTJqvcuTDqFoY4S6Y40hMIMuri44t333pNpatuTBH8XO0gTOgwD27ISMCoxHB3f4q/+pb/Iz/3sT5EmMe+++x7r4yNu3blL3VqqpuWX//Gv8i//9b/izq1bdMHmQSkJoOmtZbvd8OCTjxgGS900PPyoFK/X1YGVb+KYPM1CcyQm2VVVMgYDxEksQ84wdJNGwpNm4r8bJzFjYzOfz1ksloCwhOazOXmWi+WAG+gDQKUj8YxaLhbT4DGKDF3bMVhJfNttdyRpwmK1lJCGRqbpSgnIaEIz7ryAujZMtj2e3jqUPQTyyJZiSJOU23fv8Nabb7PdbHny5BlZqsnyGb2zpEMEXuTI40DKGBlqJon4T1k3INJ6hfWDNCFa/L5Exik15yjJavuOvu9QyjPLZ2RZEsA9TzcM7KuaWMfM50Ee1fcoIpRz4l/oBjyKfhBJWmwkGdgN4jUrZuI+sBUDkBnF3Ll1iyR9mTsvCNMtS2O220uenT9gu92y3ZUslzEnx0uRJvcdWQRvvHpCfbcgKxLyNKXe79ntr1gsligjg6s0i7l1dkIUx0FmKIneWR4zn2d0/QBekyUFcVyRLjTnz6+p+5LIH6EV2L7m4uqK2bzgpZdf47X793jllfv0ruHLX/phevs6Zbnj0aMHVNtWwPW2Q6EpiiXLxRGPHjynLjX3X3uLn/6ZP87nPv8Vbt+6w6xYCliuhVU1DkzGoYL3TmZPxkudHur/sT8Ya8Ox8Rp7B48PDb74eKvxz9FTA3f4OatpP5/UP7I1MDhP2/YMXY+zjuPjM6qype16mqbj6upKlApKAHLnRJGw2+3CMx9SV7WwBWPig2+TF6bshx9+QJykFEEeZoM9gPJ9OA96sJ7lYsXp2QlPnjxlsSgm9VBZVVQBiNJaYyIBv/FMoVezIqeqa+qwL0ogofgmxnGM9Z4sSXHWykDcyL7ftQ1HqxV1LQPj47MTdGRCsymMFvHKk+feOhnI+/F2hHRs73oJ65vN+NEf+SrPnz/j4aNHXFycs1wuJF3WRNy+dZvl6ojtpmS73U3KLAnmkyxuozVRFFRZbgjXXqwxijxHI31K27Y4J8b73vkpPCpLxY8XH9IvPcHX0wXvYXmOum5gsyvpqmoaUt30HB2fpYN/oSSwaoX0aKUG5SaAbxgcRSEgYxIlGB3hrZ1CCp33KGOkxrAer8VvM4likmghdULbcn29wTnH6ekpWsV4Z4iigkhb+laC3YzXZFFMlmagNE2/o+526Ag8Pdb1gcDgxOvbRMRFQlNvMNqT5hH7cs9260mSnDhRxGrGbDant3VgogpjqBs8Dx5doNDk+YI4MqyPF1RlxcXVc8qy4fz5OUWx4JVXXiHPDM/Pn+C9oyxLmqaWXsBZCeGy4MzAwwePSZIZaXLMCy+8RGxOmBUnvPDCG1in2WzrMKwN6j0THXAAo5kSyUPvoCY4VYsdhFKAeLmGcPMA7E2pB58Cbw9BnQdLMHk2LecXF8RJQtVUwe5FwnGePHrId7/7ndAHZER2YHCWtu2EKDKSE3oxH42iKDwPUrtppUmjlKOjE/kzlPggW4SB3AvYj1eU+5LPfe5z/PZv/zZxnFAUOX3fkRcFw9BS15KmPu6xQk4Q5WLXNjx9ds5s1pDEUVDfDMxuDC6OT+Q9jEyruq6IkyhgAgSASvAGGyTOVVWxWM554437/Pm/8It88NEHPH7yjGHomeU5eM/V1VVYO3IW5/kMbQx121LW1WFYh1ioeBf8d+OIOElweLHWSIT4oZaiAmnbNtiQlQclAqLS6waDryWVPIk0cZqSW7FyiiOxHhKXGBcGkLI+URqlIpQR/3VpXRTWh8HGqE5x8pzo4LunjZWhe5ySphlZmgbMwGC0RyED6yQ2lM6D7ykKw3xlSYqItrF0bY/yQlgZvUmdc/IsmwNQK6QGN1lX/CCvH1yii0xKBTUnsCAODAkNwfwdvNchhv1ApR2ZecDkHTEi84IyI6CVkmJupMtaNwhleqixdmBeLEiSRMyV8RDMNc045Q6SUq0V/dCJ0XAkcqQ4jkhijYmUSCcTkbjW9QathRpdzNIwQZX0tN22ou8Hdvs9db3n6PiIIkspihylCM2VQhtou5YsS+TnFAVtKxti39ZoLZNdO8j3zIqCyER0Q4kwoj49iRAvI0vfi9Hu6Gs19JYn548Zhp7lcslisSBOJLlmTBFumoYkiqcgEQHhFG0vsuU4jlDqEESSxDFpeswwdCjTT1MvGGWCEa6NMMYHUFIay1EuOUqlxr14nK50Xc9HH33Iblsxnx9j55Ysv0+k1xTpKXn+lKbds9tvSTMJq1Bek2YRSVII82ToQA/0Qw3e0PfIlKPcEmlIZrmwFVQysTpX6zOaekZd96zmR9x74UWytBDD2NmCPF9Q5Gtms5VISEyCdyYcBsJM9EDfiax8ZPz0fQ/eSwhGFzYiNTJT5dnFa8YVIbIhoY13Fr7x3ntsmgYfZyTFgrraC/hqhQb9W7/1b/nWt76F1h5Fz0t3z/jKl79EZAhTXkOkDbN5QZFlQUriqZuW623JYnVCH4rXTx6LRDlJYl5+9RXu3j3h9u3bfPDBBxwdr1ifLLnYPObBA5gtWoxWtE2PtTJB61pJwoXRmwu61uFsOFx9CJYwOiTHKkkmDRMlr0UmhR99YQbaJtDEtZ8KQkmQEqmk7BPBVF8b3OAkAVoLSzMyKqS0SuF2mPnBYp5x//V7JKmhbWtJWh6ETl+VwwTwNU1PWT4FCFNKMSF3VmF0xmJ+Qtd5mtqyWt1ivjhGxxFOORS9+KH1PbYXiWTXd2RZxtd++Ef4a/+7/y2vv/Y6VVXx/vsf8/Zn3sL6iLKq+d3f+11+7Tf+R167/zK3797GOQkAGsOBlBbWjvceF9ixSnlMJKCLC7XqCAY4q3Aqom2Db4oNEe5RxDCMlgY6rPFBhi2ux1mRFbnwrBsjh31fizwg0jHOK5q2F4DXe5pOACc/smKU7N3WitwuNpq8KEKxJgwfmWPp0ESMxrdhaKMMWkXMFkuSpODyckdVtcyXMhWN45w4NswXcy4uz9lsronTmCzJJXjCSDDSar2UxDcdDmif4VzEGE7i/AHe8zBJfbwLLaeOuHX7DidHK7xvQxhMgmKARJPEc/qhJ4pynI95fnFFU3eU1Q5tHDiHFQgTi0LpnOOju9x/9Q2SuGa5UDRtQ1m1zGYz8f+M5Wy0donWiiROWK/XHK3kXOvaFu9kUnnnzh02my1oTdO0tO1zvPdcX11z5+5djo+PyfM8rNHRL9UEdkjG6E/rfUIS5yTxLEyRjQxp9IByImmxw4CzKnggSqM1hHADdEQUFayWR9y5+zL37r3IenVMni+Igum8d4qryz3f/Ma3MUaMxq0bhH1FSHHt5Vn3bgzNcoFt5cRXyqgw2Duw+yEwx7wPcp1Pyxn6YWB1vKZtGiITURQZ1X5P05QopdnvtqRFxssvv8Iv/tk/xU//1I+SZynf+973iOOEF154iboeKMuaf/3b/5Zf/vqvsFwGqWpYj3LOD3Rtx26zYehbmlom7t6K71zf1hgt0EOaJizmMy4uapRStG2DUrBar8jzTEClOMIOlmGwXF1fhjqkoqwrOZOTBO/h4uJC9sehRQFZmgtTALFCGYBdVYe6SrNcLjEq7Lltz9mtO/TWcXFxTl7k3L19K9QVsqavrjfkacqPfe2rxJHGutG7UdIh+yHI55ysIh1YK5KMGZQQxYyf+Imf4MMPPuTBgw94+Pgpp7dukecJTTsQmZgsSSefQmV8GJZJPaONAm3DEEIFuT5BBhcTJzlD72j7nnZwdIM0+EWekmYxcRIRA33vxUfJeRbrFdpEVPs9VVVLTeoQpnfbEkWauiop9zuU7dnvNkGqrlFIKNxYk0XB5/L05BhHSmR68iymLq/p2g2rRcyd2y8I0DR0Mq4zhrquaLuG+TLjheUpVbUnSzP80LHfX9F1FUdHx2RFhoo9RnuGQYY9SktCYBTF6EhjYh9qrT1V29F2Aybt0FbjbELbapxtsR462/L0d3+H7cby5/9cyhtvvMX11YY4cZyd3OXVV15HaU/bVrRtTVVWDIPIDvPkFufPOl55+bO89cYXODm5R5Yv6AdHs90HVYI0VJN8PNSs2uiJETY21jcZVIf6lht0gAC6Tay+cYA9BplILTX6gzL93WY6h8YBTh/8N+Xv11Ntvq/2HJ+ekKYxfd9yeXUJCvb7SoC/8F6ddygfrAJsH2oUCYGxTpKNEwxdU3NyckzTNnRdw/X1pey7WtG7ju32ivVafDfLoWUxX4T6TfH02XNG5leCpevria2Khzt33iFONO0zGTJa6xkQEKTrOwbrqFQpNaqDLElp2xptNHmWcHV9wcnREUfHqwBIDHgfajkvdPO+tyFMRqEC414H1poP6bpJmnB2dsrP/9zP8iu/8iu8993vsdtsmM1m6CgmTjPiWNQq+Cik8EotYQf5O8XnyzKGefggrY9iaZCjNCbPCvIsRkGoXQTYRomvZNu1AVQhrMV4eoYE+BCmbRTHdEoFC4kbclp/qN+NGdl74/MlyqEkjZDQsghw2MFSlw2zWcLx+oTN1RWxikXhcuAE4Zwl0hJA5Jxi6B3zeQFekaYZZ2enAkwkGV070DR7YaehcG4Macn43DvvcHK04urqim/8we+jowgVOZEz6yOy1HB9fYXRIrldr5fBemMHyDO7212h9B5jYtbzYxlsNCVxHKGjgqreUFZbnBNfxH1ZsloeMSuWzBcZVQ1ZNkMR8Zm3P8/rr7/O+9/7Du9vPma9WgFwcrygqnfiJ29qnNU8efyMNMk4OZ0TxwX9oFmtb/G5z32Z47NTGTwOLpzf/uAbTgg1EZYEjIwnfBg0C9NsDNQSX3iHVxK0JvdUTaDxWPONv3+TKTwOSlGwL/csFnPwYv2zWs549ZWv8uTxPR49/ITjoyOqqkUNfjpvo3xGmsasj1bcunUrXFuxAeu6IEG1FucU+90eYwx5XrDfV5I14B1VXZJEEdoY2q7h3ffeJc9z2laYZPfu3WW1XlLXFU+ePKVuW+I4pmtanKunz9APYmHRDpblfEaeZcQ6RtR4HfP5nNOTY8TKKgRONS1xGtP1A5rguaoMhOG79566cmRZSp5n/JE/8pN8+OFH/K3/4W9T17UwmQfx+b24vKRtW2azObduB7DcGLxKSE2EVqLeSpMUo9Vks9a0YpsTJzFxkkxraOgHYhOxmM3h+Jh9WbKvano7iG2LQjyzFUHKHjF0ojYUkk0YE3kEcHbgrQKviUwU6jg3PRd4dfAR9iIHj2NDlhnyIhLAP1ibjOrCOJJna/QaBYsx8nx45ymKTCyMBgtKVCRjjSTPog0AdxiKBZawGgkSf6im/c95/eAhGzpEs3Pz0D4c3H7SxntJFMMFtsTYho+1+bj4CN8nAIkKMeMuNBwizZDFHEWGKJYEl3H6poKxrjFjNLhIrEaQyzlHEsd4pUjiOCDgThpmDUWR0bYdTdOyWM6JY/meKBq9Kjz7/ZbLq2uapiUvUl44vkecCEtoBLmGQfz4kiSZ6PJluUMpj/MdbVcRxWLImOezcNjnGKMYgSHx3vB8+jUWMz5MTQg0YZEeR5EmSdIJUa+qekK/5/M53robU7UO7zUmIhjOimx6/Pokk8b06vopHhNYgTqwqVqclQICpYj0aLgs8t04Ek8yQewFmb7a7sCLUXPXdzRtC8YTxVDkP4TvE8q95fn5OU17Jc1E2TArCpq6oW12xFFG24t/hfcdwyATuzia0XeeSBUcr0+5e/slqrrDW0NeHHF8co8sWWJ0RprlxOmMJMlxTmEHYdv5cWNzYL0KrJgeOPgt4Ec/SaYCcJR2+8Bi1UZ/6l7dWC3A6LMkkreLzZZvv/deSBkyXG+2eDuCWoYkzUgzhYqisCYiHjy9xnzzXf7Cn/0F8iCH0ShQHtv3E4soMpJvKbubyBVtpBhsg/aK682WthXj+mEY2Jd7zm6d8dH3v03XrWkuLhi9yuxg8frgMSKNmMYiEo820ImTzGC0XFNhLVpJ1Qwj97btQxEmz/g49ZGrZad9Q9KWBFCSCZBh6Ae08sSxFukuarqmN7BnmWbGEZ4ObTxx4nnhpWMWsxVXVzuuL3uePN7c+H5JKsObQ3Ku9+JR5z2z22u8l2by5PQeR8cvoJTBMWBdF0AkhWOg3Fc0dUeeFvzoj/wYf/Wv/FXe+ezbdF3Ht//gu7z11ls4UnbbHe995z2+8533+BN//BeIjPglWuvYbjY8e/48UNYdg+slhStSNHUV1mdg8qaGKBIPL63MNKUUsMCE5kqYJkNgk2olgHfdiAdhHCdcnO+wbvT+ihGj8gETCqVIaZxS5GlCHOQkIEb8Iqe0gb1oMdrIFG3o5WCM1HT/J1muFzacHHoCHNlBnPHzIkcpzeZ6x263x0QJUeQn6nxeZNzN7nB5eUlZluAUWQZJYAK1Tc92Iw3Scr1GRxn7/U4OaC3FR+fE/2MYvZfkjAcnAOWjBw85Xces1znaiEfpMAyTJ4wxkbCqYvEV6bqWy8tLur5FaUPbdQj5Q2F0wmJ+zJ07L2LMhvOLD6jrisEqqrqeHl4ZssjU/uTklEUhIRTejRNuGZ6Npui7/Y7ZbE7TNFRVTRxH7HYS7nDnzh3yvED50Z9u9JmUlSbnlJzfWuupEpAiL0JF4RRORJLmgaEHb4W9vVre4sWX7vPSi69ycnybPF+Aim+sKUVkBGYvd3t2240UclE8sc3Hybo8k5o4jYWtEb5/qgfGYYn3REZLZRAkl8L+14HRoUFplssVSRrz/OICBqkJmqamb2uUypjNZ6zXc+6/+Tpf/uEv86UvfJ6+s5w/f8D11ZYvfOHz1LWkS3/84BH/8B9+XawlApred11gfESMKZibzbXYKgBd3woAHAuLJk4Soki8ILtOGNdpmjJMgJ1jPp+xWM5Jgol113V0fUPX9UHCkUkfjpzVRAG0HUxgXkLXtsRJKvuRlQRta2X4tLm+JInl/iiv2Gy39IPl9OyU5WLB5vqKtm1Ikpi6rqn2O2IFy8WcJBTj4mkk7AWjY4be0Ts71Wxyty3WChvAWcfx0TG/8Md/ga9//R9QNRv2+z3r9V2RA3Yd1dARR5Jgn6iIoe+lRvTiyWaHQa65G703RV4bhb3g+eUl5a7BeouJFIH0hQoWJ4qIfblluy9JspwkianKWvwS6yYMnQ+DZfnrpDEb7CAeuG5A64SJIa49Hhuk0hlFMeNWvKR3T9mXz6nLksG2QM9uV+I9LBdL8iwPAQwzwJFkCV4LcN00DfP5jCgwba2z9MNA07a0VR3ALWFPxlEkoWVpAl5qXaUkVTOKNWlqUCqibTIunzX0fUtZd6zWa6nHzUCceuLUcXH1mIvzh1gvoPtgB6LIkOc59++/xksvvUSez3jzjSOy+DaLxQm3794LKbECwDk3NrLiGxUW7bTnj2xXpcx0naf6Xx0YfOPAkFDL6OnBCjLeG3uC/NFBiqeUNEXO9xOISIiIss5JUqE20wDBOUcUR3zhC5/npRfu8Ju/8T/x7W9/i6Zu2e5Knjx9SmwSknk2hRqlScztO7eYzxeBLHBgSkdJEtIwIc8kWG8YOhQRs3nG5qqmb3sefPwhSinquqEpS9IsJc0y7tw6EdCxrEKwnlgVlFWFtY6HDz4Rs/5IWGO9H+iGgRCvxwhqaKXAaLyzGKUo8gw39PSt+D4XWUo/dPRhwNp1HVGcBDaJAF/eqqmeckG6JzLEPjxnOa+8/Ao//TM/w+PHT3j8+CnbzYYsz8lmc0wUB+9VkTVqFfxGvQwPdrX4VNmQcjra/UhPJ5YE86JAK0WRZWR5xm6/D0mWhsVyweAsZVnKfsfIzJLHKjImgCs9kTZTEIgxRrxs3Q1VjT9YxQgYLX3OOBSdBvneyrBamwA2xvhBvGVffPEeOk6JAhtpGBqR6od6N4oUbWPZ7UryWcwwtBwdrYkiCUW8uroiiVOSKKJrGxbLjKOjOwxDQ1laslwzmxmUmTHQ0/Y9q8Uxi/kReWbxviFNU6qqDrYqLXmRk+UFg9f44B/sPaGO6VmtVqA6yko8zlDSA2MdVb0jTgzKquC1lzKf3SMvEs4vnlNXDS+9+Iow386f0fc1dbMNoRwFUZ7wyqsv4p3i5PSEoiiYFQvuvfAK9158kdlsCQhLewRcB3sIlZkUCtYG8oScec4Gn7LAXMPLcMMFBc1Yv4xqFsXBe3ECcsY24cbgAAgenPJ/WmmKPOPoaMXJ8Zr7r73Cb/7mv+Rv/s2/zbNn56R5FsIBNXFkODlZsV5JcGEfQKbR116biChORXIZ2LVVVeH8QNfVlOVdulasu7yX0CDvLDiLsz1tU7PbiBT61Zdf4fL6ksurK4yC0+Mjrq6ukKxqOX1neU4cGfCOeTGjqvZoDYtZwfHxifSrwe92vy85zk7pewmEct4KxDQNYuT6Xl1dofUJWVbwZ3/xz/Dxg4f8m3/zWwzDwPHxEevjI5bL5RQq5qz0ABKm09GE/cPomDTNSJLA2o+EtT8EWW4/hFAbB653RElMEmzLdBSxWB/hgvdfWZbs9oIn2DwnihRu6EkSUdWNarkxGG+Uz44t+RhCIkqWmK6TOnQcPuVpRp7PSFMdpPGibIpj8d0zWhPHkg9h9AFGG+0HUIGVq3IenT87AH9ewMmDf7JsWs6JL7NSB9LbTYu6/9zX/yoMvpuvQ+LeqHf2eO0Ob/YGiKeUny74yL6Rw92FxksmMKOJLKggsRvNDkPq4cgWDAxA7wSZreuauq5ZrdeYKCbNEpxzFEYi4du2nSYEknAlNw4EVGzbhrYVcGcE6qqqIjIpJ6frEAphgsyqZUzzHKcDTdNgjBYkN7Da+qFlsA3d0LKvGrbbDVob8myB1pbBSmSyMQcmnRvx0fBAjuy78ZpeX28wRpKKBBmXosMG/zgFpEFG4Tmw7CRlTJgTKkzqxuZPpmY9l1ePRXapNdZ2kyHvMIicKklinAtppFYknVEkbEW8p2tFsiTXVdKwkiSmH/ZAT9v07BhwNufZ00vuvXDC7rrhcvOMoiiIjaLcbUmihDRJiaOctrdk2YK2bVmvzzg+usfZyUss53dZr+4QpTlZMcfohCRKxVfACdBoh5DANijxU3OWwXYImCxyM/zo34Ow75QwzsScX+7F2Gh5j9DsAyvP4yefBpkgBE8YCCb04ivjvaZ38OTZOY8ePZYpgHcBZVChqPWi7Sd4jinAGwyep8+vKKuKeX4kzYhEH+IDc9J7T54XvPLyS7z/8UNipUEbupCs2g8dnzx4wId31ihlqRuZEN279xKffPAhTavIinwC9GRyYWRiFsAYFwxopTASrz7F4dlxgSKtPWGy7gMYeqP4116mvRPKEqawVtYxPiQ0YnDW4jWkOqSvKo/WAs6KSXvwYglx7B7PcpGSRDG7bUNbazZXDQ8+eUpZVZOPj9EaZXKRZuQF69WK+bygyHN2+z3L5QLv4f6rr3D7zks4r9nu91RlA178lcQ7xWCihOX6mC9/6Uv8jb/213nt9Vdpm45vfvs93njzNeI0Z1/WfP+DD/inv/qr/MzP/BTlvmQxX3Hr5JRX7r+Is4pvfuvb/Kvf+teSnmg0eZExn89p24K6Ee/JcRCgNEITVw7vA/OP4NFpDFmWEBlDP8hzJ9PriDSbh0lUTLVrOO9qHAZtwA49ycRkDJJ/pYiNwg0DfugxyoFRaEwADwhMCwHR6q4Kprpj4xamsR7x8RIdd/BLFi9RrRRFnnNyfMyjR+/z+PFjsuIWmdIYJaxOG5gHq9WKophRVw1ax7St+P6kaYG3Cuc0faf5/ne+y363RTkByYq8YBYKi+vNNToAlWOzitPESYY2cWA2DCL373tMGHCAYl92PHxwQd8PXG82XFxcUJYli8UKrCSde6dQXhMnBVpntO0lqIir6w0iiSnQWtN3HavVCuc9n3zyCa4f8CfH2K6VaXs4l+I4eJJGMaujI5qmYblcMp8vyPOMOI6oqlqat1YSj4+OjqnrevINGotga8ekuZBsrMe7IPuIDsO7JM6wVlG5gaPTM955+0u8cO8+eT4nK+ZoZUiSFKUNeZoFT5KIND0EThkjU88xBTqO43DOyFqOokjkERpuAgPjPijsVPHjUiFd09mxORz9ZFRo4D398EWargMUJoS89H0L3k0gy+p4RVakKA9D23F1teXFl16mqnv63tP3lm9881tstlvSJKJrO4yWRGU9Bn2FM6Qs99JQJgnKyAAkkAxQgLPim1NVlYB2SrzoyrKkt4pPPv5kSrc0xlA1Yrjdd31oeiRcII5i2q4NvkPC3onGVGo0/dATxwkWhVEqhHc4kjgK5upzPNC0Dbdv32G9XnFxccHTZ884Oz2hqWth1ziR288KCfnxYfDllaLvhSnlprCdcW0H8MabUONJHfbWW2/xR376j/Ibv/FPKPcVjx494+hoTmQM+90epRuyPKO3ESJ7EpsVHekwKAwBWIHJYYLP68XFJQ8fPJJm23thtsVjUqfl1q3bRJFms9szX644OT1lNp+JTUtIXXQO/E0pmBZwUGtNEwzF+6EjzwoBQXxgl9KDssKq0SlJUuB6mM1T0kRRVRFxmmK0SPDjWIY3dujFtyoWsE5pQ5Ev5AyMVACOY/zkHQRVVVPt90SxBLWkSUJV75jNZmE/EKPuNM2ItSZJPaMi48nDjn25oywbHDCfL5jPM5JUkrfT1LA6mmEixAKlrEiSlCzL2W42/MGupKwaujbmj/3cX+KLP/yjnJyckGYFhGZRgMFQS/UBtBkH7tOwP3it+pshVIcGZmSVjCtm7H2mr/Cgp77hwMQRUD98T/h6FQz5XUg/VUBVN6SJ+A5K4ycN8HxR8NUvv82P//iX+M577/MP/sEv89u//TukacZiuSJJ5frGUQTecu/uHY5WS7QxMuzRIYwqHHDiZxpP++tIMhDDfBniNlUVwuYMV9cbSWTuWoZQi/ddT9t24MVd13tPtavwg5vY8PMip6pbukFsC6I4RqMF3HJQVxVxIl6Hw9ARx4bbt04pwsBolOONQVb9JIG7YZmkZE1rJQQKkcD2oEQS9/Zbb/Mn/uSf4u//vb/H48dP2G635MWOxWpNmuY4O1BXNVfXl3R9R7nfUVZ7bPBvQ0ynJkBHBRaWURqNMOnScJ40TT0N+JbrJUprLi+uiGJJKZ3P5igtZ3WeZ6KoyguMNbSlJdI+KD0sY9t7k/k5BQiNPZdTKORMxDs6JyGFnW6p6o6+s8RxwRe/8CV+6HOfo+16Fqs1m92GPIuDhBN2uz37/YYPPvweT548JdlDlChOTk6EpX11hfeONE3pm5Z9WWF9y+XlDG17yiRm8D3GaNJZhk6UACmtsHidEzujvu9YrRYh0TYlzVKqqkJZ8TbNiwVFlrFYzkDJ19++c8T19hlXm2tkLuwnNvG+lIFaP1hmxQKlInpbMSuWeNVTzAxPnj4nLyLarhTVQZIQx4YkNaSpsNXabs++3NO2Paenp8wXC4p8Jr2Yk75mXPZybo/e2OKnacMZL56XTpjknaWzsn97oTag3AEgnNjD4sA+DQdQetwqGFmj45rFi4KjD71EUzfI8DkiTQt+9md/jqJY8O9/7/e5vLpCm4iiKLh1esyP/OiXef21lxj6nqatZeBa1uz2ezbXO6q64fpqK4OzqqKsgoKvb1HqVFh11oES6fzYSzsvznhNU0rqtNasVgvyJKaqatq2CyGcggV4O9C1NUVyCLBSShGbhNNTGUxY69BKGI+9HXtFua7aK8Y4KjXts2Cbgd1ux+npMXfu3OZv/I3/iv1+zze/+Y3guReRpmmo+2KSJAUUTd8FFZEL9kHCUB4Gix3EU9s5Rzf0k11almWT92g79LRlP1HBtI4wSYSJRNqLUiGQzPPk2TOGtuXO7TuY+LC+x4HRpMCbakmx3RCgLmE+X5BmmqGvGEM94ygVVqgeGKwQHoTxKbJo53QIgxs94xM0mvU6w6gUrXqWi1MWsw3WVQFkPwwTDgOuA07g3Kiu8Z86H/9zXz84wBdSSSBCEYUL4BDWk4AkymtGvyfxPzr8t0zmAW9DoahQXjTZJhK5hzQH8bQJi/+QmNwKec8z0huFDi4LuChyslx83ySUQn5eWe7xSNJnmmbYIcZEHuW6kGoTTayiwXbMZjPSJGG321PXFdDIRD6WUIquawPQ5RiNnaWQb5nP51g7SAqZHei7jvPrc6I4YnNd0zY9Q38OGBbLuSQkhSk7foxtj/GACZRQhchjjTE0TcPz58+pqpqTk5NQ9EWSlNsN1HVPkqTEkaKxIgkaQzrGgA04pCQ6pDi73lTUVUOWDgy2J00j8pmwC+wgE7coMkhCzICONOiMbrdnu63oe/EsqOueYfB0XcW4lV9dXZHlOXm+pK56FkcvE+kVZfMBuzJlt+vYXEkzvTg9Y+g6FoslSRwzX8zRaoHDsJifsFwec3b6AmcnLxCZGYqYwQ20XYcdoBlkc5H1LZ9tZJgIuDsahmuUDwh+mCjiAX1glTF6P3hho+LlqZONppfpepygQpKkD5ulsB8OgQKycSuq3vKd738Y/I4SdAgIGcZmFS8BNZ5D8asQNqVXPL/c4qzneDWXyS5eGky0BA7kM/70n/lT/J2//494fH4Vit0w+fKO7W7LxeU1cSTSqPff/4A333iL2WxF2XSkxXJaVyBrSlabD7JF8XpQWi7JgX06mkAHpiOHibAxsbDSBkdkDBotiYahIbGDnT6nJKtC6wZQA8468bUwCgJ41XbipRcnhtlsHsIDojARzlnOjzg9fhmP5fLqiovnNV0Dx6tbNG1PFCXE6Zyhj7HWcPvOHeqqYrk+Y7FYgL5AR4bXXrtPHEU8fvpMPMK6FrAT4KCVIw7R7vfvv8Zf/qVf4o03X6NtG9599z3u33+JfL6gLFuePXvKP/j7f5csTWkbSTz1VorbW3eOsV5TNz1N3RNHCXGqiKIBO8j6XcxnDEODDwDfKBkTbzCPiTXr5QLv9QQs9F2L1lFohhXWDqSBWRRFEYtZRp4lDFaHZiV400QiXRG5kCfShrYVqZI8+wIIxVGC7aXo7AcRD8VxYBBYG/Z/maQ678OadIQFKSWFEllWluXcu3eX//j7lsePnvDSK8cM1oEWTzlrB7JUfHpMmmKUYV82bK53tK3l7p0XyHMpZobeU5U1syKl7Rx1U7PtW6JEzJRjrYhHFrKJsF5ju57dViR8fbtjpOsaEzMoaBvxUHv8+BytMhZFwYO2Zb/d0lY1y/lKzkQfkg2ByMTYIeLZ80v2+wvKfcN8NqNrZTC0WCy5ffsOeVHwyksvo8YixNupIBiNlY0xzOfz8LwtBXw3ox2CD42ZNNdpmn567fpDoy1ngDCFTWA9CIv2YP0ARlhNLub46DZf/uKP8cbrn2W9PmM2W3B26xYnx8upsEuThFFGp7W68etYMNzcC+RXF4p9H35vAorGjWD874kJFHak8UtGhEmNYBqSR+YAA2ZsIW40E0qBMhIcM1hLVTdBFjajqlr6wVE3LZ988oCmqYmjgvl8RpbnEyNAQMOeumlomnpKlx0ntaMfrYRIpJSVJOTNZgVlWTFfzEmThOVyzq1bt/Dec3V9TVHkXHzve7RNM/l0yXuWwZFWKhSoQ/i8ozphoLfC0nChhvDIIDROYrxzpFkmgLX17Hcl+92O7XbLKDXp206QFC+hWOLVq+V6TWzd/lCoIs3JwSOJ6dqMIS0GzVe+8sNcXp/zt/7W36RpKxaFMCnjyJBnGVGip+Gqx5GGEI4syzGRrHmUYjabMV8u0drjlWG5XErzGVKDTYR4wSlD0/XE3mCiiPlywWo9p++t1IVZStt0wirzIyVMbCekrlF4pyYTdLQPXmTyeUf/Kh154kQGhpnJiYyBXLNaG+bzJX70+QKq3R7rdvJcupw4KhmGHm00aazxxgVrBGlGvZPG//j4mMgottutWKp0FjpRDqxW62AMrwCRIRLCTlACmDss/dBx/vw5bTuwXt1ilCVLwyWs47opyYvgf9aVpGmMUobjo1vcufMq77zzGc7OTpnN5zIsDiwPn0Zh2Cm1jvVOwgyCTyLqwMhxYdhzM9VUWMWHgbXsCX7yRh199UbrB8VoB8FUb3j0FMaBcih1ABm1VjR1R5YWgXku51aSJCwWM5SWxNkv//AXuXP3Lq+//gbvvvtd+n5gNl+wWC5Zr1YsFzN+6HNv8+qrt8O5Kn6K4hNV03Yd282Wvuup6lqSu7eikhiGnroWmTCrOTaAFqv1UpQ+seybHiZQXylF33W0TctgJYhIwOkeay3b7U4YWeG9CNgqZvZpEnN8tA6MmoHTk2NeuHeP+XwWromcFSMAKaoAxehfplDhbFYT0KodWO/ofBsAyoiv/PBX6Puev/0//G0++OBDLq+vmW23KKXZ73fstzvatp7WtRAOhFUtEmsz7SVjqq02EdYLyNA0TQAVPXQtgx3YV3uEIdVLwBkXYX9UEzmhyFNmxYx5lpEmhsjMBaQdDwIECJYU4tELeAT8xAZgGKz4i1sY+gE7WLbNhqqqmM2XfOVrL3Pr1m22+yoEtzQM3cCuG0jTjK5vOVofs1ouheHU1JT1NYt1YIBFopRQSogWUZyAV5w/v+b05Jj5yRnGDVRtx6bak5OSqZS0SIhTTZxq8iSjLKvAGoL5POf8/Jyur8Vf0fUorRj6nmiuw0C843pzSdNdUVY79uWe2SwLwzGL0uKNWFc79vuSpilZLlf4sqXprkmjGO0iZrOYum7QxkugW1BfzGYFJqQ3F7MMBjg9OSNJgkfs0KOC2iQawzRCzx7b8DyMfZITf8XR133oe1ziiId4UlXIs2Om51h8zW7WGiNYMhKNXAD5pK6q63oi5Yxe39eba957t2U2X5Blcm3u3btH11qePz/n4mojZCat2e1rPDFpnjGbLTBGo0bxnddhWHFIu3bO0jQdu7A2NtsNV5fXbHclu31J23aUZcn19RbnHfNZFuonjVGee3duCfhqndTb/UBT1+z2O+pGPPjaEHgzX8zR2nD/tddZLBf0Q48Pg7fB2qAOcJJkr7V4tjrpDcQeQMg9ZVmSJAmz2YzXX3uFv/KXfknYhbsdSUgGlhASRRTCb6IkJoljTKgnFTd9EJlAfgN0g1hkbPclcZKQF4VIfMPXjooJM4iXZhSnxIkM/4okpus7Nt2F9Chxcgjxc+PQ9yA7VrL9QxhQ6lBD2R7aVgbbQ9/RGWE2GuPRRhEnWVAMymfxIncCNHGUgzeslmuK3FNVDVpH/NiP/iSvv34faxt2Zcnl5SWffPKxYFBOSGVjXgQOus6ilJ1qrh/09QMDfHFcEJkEo4UaKd547VRIe4SxJItKCkcXEIubxfrk0RUKhTgxONsHGrcOMiN52KTR6fF+ENZdFE3U6ZFVB8EIWRs5+MKhOBYW4JnP5vLQ6Ai0w7qWyEQkSS7yyCTBOfF56LoeYyJOTk5DiiyTtLHv+2BeHVOW+5DYI4i2FIuOrm9p2oar62u+9/1P6K2nayGNIq7NNkS9W958400Wi4V4sAUPI4cwL4ZhCCwLA14Hc9aIF198kc1mF6ZdaUiCiti3NXXd0VSglWa5jsOk1GOdFBA2TFJFFtTjVURVtdheoVSKtcLaatoWE0s6pkwnJYk3ig1pntDUHU1VAWnwKoKqatlsdgxDP8nEdruSNF3graYuFUrNefOtLzEMCmUUaTZjPltzdFQwX8xZL19kNss4Wq+EPRnH3Lv7GY5P75CkCzQJ3iIm222P9z0EI3YYhd6M48hDERlwOqF8H5rOwyGA7ALh627+2djYjC/vDg2Os1ZM74MJOeGZHrtLuX8apWJ21zXf/+BjQltKlsVEUcy+66fmdcQjoygS74Hws9pu4Fd/7V9ijOLP/olf4PVXX6Iq91w+eUIZNsmj5ZqyamSj9JIyKQWeHLJd1/PxJw/5wuffIS8ueP7sHKMNR0enPD//hKVbCpjGgcU3sj9HECFJzSQREm+Cw3Tde0KkvUb5ELShNUo54mA4q5D0N2UUq8URx8fHHB2tUVrLVCWRdNSRiWKiCKU1WZpLwT64wGDwoYA7MAGM1qRhDXp6BjfgrKbvep48fsLHH3/C8ckJ8+Uxz8936Cih6wbKaicsRR9j0jneDTx4+ATvBso6GBonMUkSH0AzFG0/8Mabb/KX/+Jf4M3XX6eua771rW/zyquvMlscsS8brq6u+Ht//+9ih56v/sSPSbNoLX3fUe63XF6fU1Ytz8+fc3UVmkFV09tz4rhgNlvS9xV5HlPMcrSWlEh5NgYUPSZSdF0zMRWUhtgo8IbI5ERREgosGbzEseLevRMW6wVV5bjciHGydQIMJnnOarmm7+H84orHT54QRdJce6Ppuor9dh8SVIVl1uJJY1jMc2FzWof1AyBA0mAdkR4I9VfYl2SNxknMm2+9xe3/cI/HTz7g+bMLXntjjdFDGCY5YeJaizExJjKcn1/w8JNz8nyJG55ydLQOASMDs2LGbndO0/RUZYlSitwXrFdrfKLBH4y6vXXCUIxHzxBJmh4GSzc4bGdJopjrzYZqX3H37gnbzR7tPbvNlmpXEd0Z/bqEXekdJHFBnh4xK9Y0zTnL+ZosFb+x/b6k1iW279EO8mIW2KtWBl+hEJ3NZrRte2DjaQG7R1DAhq8zkRSrkYkwSrwnR68jEHb6KL8QZoycJ7J2hAlqolhYRV7T9Z5IJ3zx8z/Cq6+8xXp9i5dfuc+rr77EYp5LyNbE0PE3aDcqTCUPjZNCTbKsg9xu9LWDYRrQ3WSRHApyPYIXyN+jYZKWTfuOk8AHh9glWEZPXx8K/zB46cS7pus6tts9RTGTgdsgxfi+3FPMsik1vm0bnj97xtPjY5bLJQBlWXG12XB+fkFvLV5rtDKkscIhnlWgaIOHnvOeuqrp2pauaQFFXdZcnl+wWMxZFAUu7F1dJynp474/ArGjVHQsWLUg4+GzgyUEjvnASNFgdESUxcGzcaDcl2yvNhyvV9Rlxb17d/CDxdoB28kaWy7nzJdzSesNz4vWcv+8VpPUR8q5cA+5qdBQk4QxjmN+5o/+US4uL/i7f/f/w5NnV6TXFbMiZ7m0pGlEP3SBBRJR1w6lWpzbSjHtx/bbSahDlNB1lusrASeTJGE+n3FycoTRkhy83WzwbHB40nRFpD3t0KFwnJ2eYnRM17nA4Bt94xx916KUIork3o0gyAGQElays47YaJLEULWOfT2gnKXIV6ANm42lrEqU8qwXC7RKGeyeOIoYvKGpZFA0DANtW2MiUXskqezPYtsAkYqZz1a89eYcO1gePPqQut5jB0e5b1jMj+TsUz4w4qXe88oEwFWRpCld30JoTKIoZehihh7qumS3lzp2vV6x34v1yW53xXJxBmhef/0tbt2+LTYwIYxADN+VoPJB+j89m2N9FViPI0tKzqpDwyXPsKzhMal7BABtqKUOTKtwVvgx4fAwRPBKMYRhQCCGScNuLWLuLgy1UWZKCJ67vIS+l0AWYzRnZ6f83M/9HCcnZ3z88Sf0vcXEIiF3wG5fE8c5ySwex8SfrhdRE3MXZT/1Obu+n8C7tm1Fft02tJ1490pN3XB+fsHl5WXw85KhsqTWuymFWzFa8whb2Pay6kWRw8S632w3NE3FSy+9zGfe/gxpmkmPFdZoPwj5oOvH5God6tOpuj0MvZXAfc4p3N6Rz2dkacKP/diPYu3Af/ff/b/4/ocfsd1uiUxE09R4O+AJdgrBwkZ6Wj/1fONoYDw7Bt9PRAaPZrBSO7tRbgl4JXvemLKrkPPaaHC2ZbstKXfXXGvFrMg5OVoRx+M+5g+EEw7P5hTqiMZZKPcNnoEsTciylNLWOOeZzxbMb99DaSOkDWcpFGyursmLnKqsURi6zjL0Nc5a2s7y9luf5w/e/Q8sFnOMjri6vKJtOrTSdG0HfmRJDmIRlS+ItWfXD1xe7/HlhnSWMp9lJLFG0TJPFEkaM9iei4vnJElE3zeyV5sx2NLinSbLEra7K5qmoutqPn7wEdZ1FPN0Clo4Pj4JrCSxtrq+3mLtwLNnj1mvj4njmiGSgZUik0BGFU/kmcGKDFu87GVPn6cpoLm8uGazKZnPFxgTiRIhlhCn0c7KqANQK+EZXrzQCcyvOALn0a341To37skh8dRa+k6u5TCMgNpYPxDO4FFdKPVF27aBCSe9/sgc7NrRYkESWKuqpixL0ixjvQbrByIT8fjJU5aLGcvlglmeSjhfLKFvY3iU98L2MnECQJI4jtZHwTeQqX6bGOIhdbbterq2par2bHc7yv2ezWbLbrtjX5ZUZU3T9VT7ivV6TT90GAOdmNLTDQP37r7E22+9QxZnk+qBibohA3q8hBVa/MR8HgYJn+x7YVVeXl5OdeiP/MhXGYaOX/mVX+Vqs+XJ4ycURUGe55hBVBJe/GwERJxS7GXF+7G2QwD9vJiRpjnt0FOWNa5pQUfUTUff9WFwGhKWleAmxaxgNivwgb2+OlqzPjoiiuMbwyI/3ffpWQh7j7Vi/6GVoS5bmiokCo/ENBW8f40Ejy6WRbDrAKsc+21JlhWsVyc0jWW9WnF+fs1ysWZzvWM2n7HblqyXtxiGnqIYuHXyMndvv8x/+I//jrLa4/yAduDcyNojPIMHK7Uf5PWDp+iqmEgngZauaNoqsO0CiBeKTaVCfLWWlCiZTIuM1BhNmsYMwzDdhGEYwgFpGazo2aWRl2m0SDH6qWmxoylsQOKF4iuBHE3T0HQd3gnbJQ5R91ob6qqlqq6ZLwqKIiWKFHGUkSRZAAulSJ3PJXhjvOgSoS6SXImKlsbpYPwqhozODVjXS3xzZPjGN97l8rLBeYPH4mM4vbvm8moLquHs7Jp8loDr0T7FOYK/VqBuumDu6wfaRhpmpTTHR0dikrorp4J3vT7i/it3ODt5kQ8/fo9uuApAD8HQNIAhXgokSTGKibTHYpkVM2EyKpjN58SJIpoA1kEYU0mEUjHPNo9xVpEmsSwcFJvNhrIs0doEObDj+uqa5UJjTErXW/I8Q6mYru85Wp6xnK+4d/cV0rzj7bc/yyx/kXLfEicJL7+yZD5fYswM5yWYpOraqfKTZDABy6S9miotkekizeJhThxavZHgcYMJIqj66A3nAuuNG2hfCD8YgWkvfiV9302o3Fhcd50kLCklgFPf9QxYrjc7nj+/IIoimq6jKFLGAfN0IMHkcxlpTdeGpg/FvpGEsQ8fn/Pe+x/x+OEDmqoS7yI7cO/2bV56+SWK+ZLZosEjDaKJYoa+x7uB6+uS8/MtSTKjbZ6y27UsFyd89PGHxMksXBcC02eU3w5oE2Eig3LinTIW2kqZKVhF1qPBEKPVGJ2ekuczlos1x8enrNcnHK2OOTsVRlDbd0RxRBQnArBkRQCqlCRMjxs0hMZPMbKVFB47jMnS8o82GvT4fAR/RQtRdMLVlaPaScOndYq1jrLaC2MkpDJeXl2xXi1xzpPECfPAQJPUNjGGRsX0fc+br73GX/jFP8ebr7+GVp7333+fe/deYL0+ZV+2XF1u+JVf+cd88P77fOFzn6XIZdoqid0GtGYYOryzdH3LBx98gPWey8tHmHhHms1Ikowk8ShtJ8mjRwrwLEuI44HlOsIoSJIIYWQdgnyiqBAJaWgYZrMls3xFuR948uSa588bPvr4Cc/Pz1ksFhgNs6Lg7PSMqhl4+OgpT58+J45j5vMCEynwPWVVstuUWCtUdaM1d2+fYBR4N4SmLLB6AmgzsmTH26WCL5tRmltnZ/zUT/40/+jrT3nvvfdZHd1nfVQIWJZk4iNppBB99uySjz/+BFzK0I8mzPDkyVOePH3K0+cXNE1DHxpIBZhrw7NHkoAshtopbnDs6yp4OMKLd2fcvr3AGAlL8oPHotntSh4/eszduy+IVUEnU726qtlcbxh9sfyY1qtEarheH2HSu9y6HTN0LV2zZ7/bEBlFUczQeIxyDH0LQKQDeyIACzrSpKmEEtR1g4l7Yh0JM9cdBg5930tCWpSEABLxDRntLcZzbBxUTCwwPYYZRFjrwUV4IrQ3vPOZL3Pv7n2SZM766Jizs1MW81xkmgRwdJyaTpvr6HEjIIpMKf30PeO+Ocn41KfBvWnzUYQ0M413EtIxEvv0uKcHNrU8QwYH2AA8HfZsKS3H5lXYRvKe66ohjlKquiaUEjhn+aEf+ix37t7mX/zz3+T82TMuzkuePnlM2/aBwa9pupa2G7h96y5ZnrFaLIi0RscGrRVt09K1HdZJWmvf92RJLOB6pLFDz/mzp1w8e0KW50RJTJEnzGcZTd3gBiX4a2js5bMJsDddO/Q0IJUzPawDFK63VM4RtRHz5RqtNFmcsFjMqfZ7ZlnOLMup6h1aeZpWhhizPGOWS4L0eMFH9YQxkTTZATAVEEBAVGd7WevBG3gEafO84M/9uT9PWZb88i//Kk3b4By0vSUyYF0fzOdTkflrkb+It6jCeUld7waP0j3Pn11wfnExeVTGccRsVpAmEVrLEKvve5arJa+/cV+YPcUM8SMfMFEa2N7CRlosFsQhZOP8yWOUd/Rty+hbKAy+wEp3Gmfl/RmT4P0M2y9pqx5tZ1RNRzErQM3QRnPxvGS9yvF2Te9atBlI0kx8y7IsNN2NeAE76PpOPNacJY1jsjSn7xTea87O7qGU2KWAqFOUdmHwNukGAPEq3m53zGZHLJcFt2/dweiULC2wNqLrBbgZrV8ePXpE24qsqu8d81nNj//Y29y9+yqLxTFKCVsPrYIxuBC99MgYHOuecR0b8H5kBIuP1vgam5gDyOduNOx+AgT7QdhpXsv+MbJ9/TQ8kJC3KfxCIfYPEOTaYuPR9114vy4A5Jamrri6vArWATI8aNue9XqNMRFl1TA4N+2hVV3z+PE5x8cr4siQpWNfE+A+HxgLsoMTiUAGgDTlMPxQNyXJYRCHQhs5l21ItHXWUVctZVljnaXtGqqqoqpqmrrmerOhaWq6tqesapE9BuN7rQ137p5xfHzMl7/8FZqqldAMJ/FPHqjrhtliIb5yKjB+A3Q5ApjjXmvCQMY7JyoeSoq5qK1++qd/ijRN+e//+/83v/+N/0jXNRilsKG/EJKWDnu0eLE7Lzsy4yk0DtynQ8EFT8xDHT8O09FGhj1hX9dKEWuNNiIrVYjKoBks3nXYoceEJF20DZ5twsY9DFFGWyQATV11KOOItJjsx1GMTwyvvHKf/b7kMoSogAxZ9+U+2EdAWTb0/YDWsYTyKU2WLXn55TeYLTVPnz3m6dPngA/khx6jtACJldSYkYmDvU1EWXdsr3YM4TmJtOeN+zNOfuhEFA2ZgG1t25DnGd0gCcpeOdCWSMNuvwtWDdKPzGYzqlquRdMI67AoFhgVc3V9RVGsuX9/SV2X2BDMJ97DYsNkraWpm8lvPk0LklQ8ZbtuAG8Y+p7l2QqtDU3dECUuWD7JdfPeT5YISktittYiNR+v7ehhq7SwuCItAHQUSXL30A8oJQQAnMPGwmozxk51jrWeoRe/XMKwygbmu2AN48AqSNSnc8sehkuh/xNcQYEXy6mmafjkkwdkWUoSG+KwlwhDU5ROWZYJbmHkfEvTOCS+CgCotA6f3aCdAROTJhkLCIELTEPOaa0Gaa1zTsJa2oZ9uaepK5q2pe8HitmcKJlzdX4l15DR8zCMQ8QwN7TI8vwffNFV8AgOnrTDECTlnvl8xk/+5I9jreMf/5P/kQ8//JDLy0sB+YKSKkoTilmB6wPzuBd7JzdeXIJdjNHhHktooleaYQATa0x08C8kKNC0gr7r6IZO+u35jLYXpUOW54EMcyj75P3LvR9b+FGhItLhcY3KXjPWp3KeBcWatlirmc9jht5Tl3uytCDPZ+z3JUdHZ1xf75gVS66uNsxmc549PSdJErbX4X4MvbAgixWvv/YW3/z27wcW31i3+qBqUeE+/P9ByEY/VFgPthWmjmzQA84PgQ0wvnk1NQB5mtB1DSiR5UVa5CVRFJGkwc/MD+IFZS3Oqxs3xYem0E0A3qhnnhqMAPiMfzYrCtI8nxL4uq7j4uJCDP+R1JVyX3F5ec5sNuP05BZxIqey/CxJRjJGJIkCVCSTwfZut+P4WNB4YzLGGySgVoTzYtZqbc9uW2F7z3y5YDaL2G93dH2L1haU5sGDT5jNI7IsZpadEpmMode0vSdOisAolI2oruvwdxkW8yVRbFgmC4q8CJNQRV2XPL94LICAjyQ4IjRZMtUUZlfXNlxeXnFydoZznqOjI5SK6LueKAaUFMsubL5FUYRGUpiRm+uaJIkp95dEUcJqdcR2u6UMjJmiyEnTlPXRkiLPiUzOcnWb5fyE2WxJEmnmswXFLGa9PCPJBp4+vqIbSj7z5o9w78WXgq9AR9uNoNo4HQ7yAi/R03pibIyL/NDU2glBu/kaK61DwTDKBqaptD8UGmMxOj2L8q/Q3I6UVPlJ+33JN77xDdI0487du7z88itcXJxTLNd88MEHOOe4desWLy8WpElGP4AbRI7jQwCBUgpne3SUksYRPpLmyirxofvGN34f5YL5rDf0zUAxy6l6xwcfP6DuOqxXQXolMl4Tx2jnafd73nv3feLYU1cd5+fXnJ3c4uT4jLPTO1h7YOaMkxxjzGRie/DTCxMxZFqlVIRRmihKOTu+xcsvv86rr77GSy+9yunpGUU+I0pS8qxgNV9JGIeHfugpZnMcnrbtyLKZAHwhCUm8J5nW5sh+s4Fd0jbigdF3LUMo6IfJiNfhlXgtrtanfPnLP8L3v/99Hjx8SJKnOByXVxesViuMMZyeHPPk8UMuLy6YFzmr1YKimIFWwTNC0/cDbVvx9ptv8pd/6S/yztuvERvNu+9+h9VyzdHRGeW+Y1/W/PZv/Vt+93d+l9iIZEIkOz74jgFK0XWWumrZba7pu5rlak0c3+H7H1yyxFHXe7LcYCLPIbFQCqSqajBxQ9sb8jQiSTVJqoljhY4MKvJ0rmKzvwoHtuX8SpMnK4Yup6kUH37whAePLlBKY5Qijg1FlnN5dU1Z91xdXTMMA1meMpsVZFmE0Yo8y/HWc319ie070Ablj0hi8dUSM2QFyqKVgCceNyXaEhgHSktqpEfx1a9+hYvLx/yb3/4N3nv3Ce989mWW65RuqIWVYS1NPfDuu9/m44+f0NbSdK9WK7I8pSwrFssFr7x8j/ff/34AFEIRN6jAPDLUQxum3o6mbcB7kiTi/OI5qB1xJMWa0SneJjx89JDFasH6eIl3JgTamIn11bUd3gY5vFKgZKARRcXEus6ziPioYDhZTVJZKSSdpLLudiznc/EhDQwy5x1KK5HnxrEAX1qS1cf1MMpHtYoYekvjmuCDF09SbmMMaZrifYJCfO1MGAr4weG0SIpNVJAla+JoxtnJi8yKFavVmrOzM05PVhJ4EVKxI0afRhMAeTtNymWvFragDJZsYJGM5zqMgPNYdI/nuTSjftpdDoCgTNnxwYLBjR5d6gbA56W5nChlY1M9yn8CM84Y2m5gCB4/owSwKAruvnCXr371y/zpP/nzvP+99/mn/+Sf8du/9dtU1YYoGliu1ixXBYvVMWNaZJqmnBytSfMEEylsSAkeP9foJeWVvDcfCldnbWDBQdu39P2rIv1rOmwwrO76nq4fZGjZNmIOroJtiXXBMxUG208FrFPgladIc/Ikpmdgebxmt9uhvEN5ixs62qaSBjCOWS2X3Ll9R/ySBseg7HTt+34gilOGfhCmc7hmkkQXzM3DvYyjhNiYAAAr5rMZf+2v/XW8V3z96/+Ium1o+540FnDKDn6SwAuDIzR5cSRwpQm+gsBuv8c58TN0dqBtB/quQeMkbME50jTBKMV33n2PLEno+h6HpmrEjzSKMuIsxxjD0XrN2ckxQ9dgFBRZShpFELzK3Mj0Hz3mvPjaWp+w2cRsrnOuLyxXiSVOMsoSZvOcoe/pW0OsZ+y3lsU6YbZq0U6YgRJukrBaLdjtNjgvlgcpTlguevRAk2FNbOIwmIjRStPbGvEKFommdS6A+eKPtF6viaOMolhTzFKMysmzHJC0+vmsoGmacIY70nSB0ppy14Ra7ozttufp02u2W1FjmChiTDYWtqNY6hgzppGqCfg6MPr9VGkJO0J8CUcGlcjsxn1sBPkgcTfkbXb8fR+CykKKpB2wNoB3oS4YX2KnIdIzo9QNUDEM690gz/IIYFsZsmitydJ0kgp7PGW554MPPuTZs5wkjslCCq74mpopcFB6BGH5TwEP4fdlKCZe0CbI+s0oXfOSMa+NITZAAkU24+R4+mMB0SdwVd6vUQrnQyqju+H7rGQ4XNeWZ0/Psb0VGyLtpO7vLTOEueI+Vc+JsgLlsa6TAbkyE+jnsVjf49zAbD4jSmN+8sd/jLOTU77+y1/n13/917i+ug5kj5CSTpBO+nEIMQLRAv4d4GE/1c9jQOPosGjVWPxZZNQhssJIQxob8llBWZbUtXhkio2TDDOKogjgZI+dnjMV2KDh8VfyDqwXlYy1PcobkrSQ969ckADuQ+iWDjW6BIsNg3hBC+tX0zY9bdMSxWLbtFisiOKeum4mr1xjIrquxjs4OxE27hgiFQWpPl7JQCEEBYic17DflcSJp6pKkiRivpjRtY1YKVnxJ1PGM3QN5/0zPnn4AdZ1MgxOj1jaAusPXmmRicmzFft9RdPUzGYFRSG2T00jNVLf9UBHbGLm8yUnx2cMg6Vu6uAvaxgsaB0LC3w+l15JiyTbuYM0XIgPChOJL6/4xLsA5mm8k1CrqqqCHU8IDgyMLgF6xV5CT3uPXFNJUxW5r7WewRzUdtZpDoMEeaaG6SwNEHcYno0DRwmM0XjboUcmaahLBEAUZZIMLsAOLSObWalt+MoRDwmKJ22IIk2UJMRJGq5DIim4AfiLTCRfE/bcyIgcWxMRhw11VgCs8NyW5aNk7yzrlvOLK8okFqaek6H6EKyNZDikpvU1ej2LUstMhKuxtozjWOoGpViv5/zRP/qTHJ8e8w//4df57ne/x36/p24a+YwhrEkx9mojyebgwR7HMSaO6NoWE0UM1oqiRBHILB6sQ3uPHQaiSDzDvR8o9zsefvIJiyJjuZgxSxOyNCWKoqlnDZsFUx8fgMLppeS6Og/K+2BfMgQm3XhWyF5zfXXN6qjg+FgsVUwgskRGau26atGqIcsyrq6uwzMlORCDPeRClKUEiy0WS66unk9DUq0PSoLRaucHff3AAJ/3A94Jk0xSSBxojwrTtDG9RIUGrus69vs91nbM5jkYjfUa70Ue4jphAiRpFILzZHObCgMNYSfGmPjGiEkWow7o/k2E3hOSlcKDKnHOM2YzxTBIKotzkmQniSoNqDg84CpQgeV7xQByTOo1gcEnk+DDhiDvdWQ8WSsy4f3+mqOjJXkOu32D8nD//jFZ6jk/r+h7TRzN+OD9hySZ4pWXDCdHL3Hv9me4ffo6m/0jPvjw21TlBVp7kiSXNC+F+FGZKDCsugn9tVTsqwpjRAzprGe/r5gXS6JM8+DhQ7quJ4pTnEvZl1vaRqLglUpQKvgeIv4HVoENJukAcRSzXp4QqTnOdTStpDkuFnNunX2WumnFm6LvyLKMzXZHluUU+ZIkUszyRKbj1lIUM/b7S4qZQRnHbj/w5ptf5IUXXxI6fN/Tti0euc82+C9MFDzpIKXhCKvj074uB/mtGr98/D7gQNsff9woMTuwUiYQ2TIBfKgR9BvBJ2mylVbs93sePHpEURSoKGa1PkXpiKurHR99/JDFYs6f/wu/wK07Z3z//UvqTvN77htU1bfJE6Gm68DIjIzGjMxQkKhwBRqLtx6jI0yU0radgJsY2l78KcZp52gMjUd8u4oZduiwfiDJZjx8/JhXXnmBxWLJ40ePQiNNAIjlGowUaGuH4NGmGANuxNPIEEcZ9++/yY//2B/hlZfukySFUN+9omo82/0G75GEM/2E11+7z/3X7ktxbS1N3zFY8a9xXho/EIPh0XR+sJIYPPTd5Esjm3Og4E8OvuEmhfukwvudLWb80Bd+iFv3bvGd73yXi6tzZsUMo/QU0f7i3Xs8fPiA/X4fmihPXhTM5nPSNOPps+e8887b/OVf+iU+85n7pHHERx9+SJKk3L37AvtyYLur+Ma3vslv/Pqvo4C27aaJmFy3MJBAMXQ+MH4a7NAwK2KOs1s8efKQ/a5msVzQ1ELDF8DCT2tUYUH17Lc1SRwRJ5okiSiKFG164giOjtfs60YaJOtR3lFtNgxdw6OHVzx8sKF3EUPf0DUdJ6dHVHXNUNZcXm6pmpqjE2Fc5mnC1fUlWZqglQQmaASgE1BMT8FGch8OEgqtx9mYZ0pLdeCDtF3Wj+bn/9gv8Oz5E/75v/infPjRB/z4T36e2UwTaSmkrq5KPv7oYzZXkpDqrOLyssPj0DrC2Z4X793F2k7S/JwMA1TwB9OBBZnlCfuqJDJeDhllcb4njmcY7Rn6lrrr+OD7j9jut/zET/w4xogpMxMEJWtiLO4lVVKhnLDJIj0Hn6F0gvct1or0wERSuDsrLBPxdaqoyh1nZ2fM54twfjr8IGdMHCcoo/HB11Ca55BwrcXX7DDckICJcVpKYHl4FfHzP//H8L5huy25vr7m6bPHVPWesqrpGo/SCUmy4IPvP+CN1z/L3bt3efGFOyTJKIPw6CiYosPUKHkfheZzBPjC5DQEDAUy32F/DSCfn/Zce2D4hMaLCQyUzyVejuNG7qfG0ftBGmEtcsThsE1PAJ8PvqHegW07un4IZtUOFfzW4jhisZwxnxUUWcTx136YN994k8++8w6/9dv/lrYdOD65xWK1YrFYcrReUczEq++lF+8xW6b0XUtT1yEFXry6+q6l7Vp2ux273Y4uSPWqqhTLj8HSdQnWOeazGd6J36jcPzPVGdb60OQjAEfvMCZi6HrarmGwA10w7O/6gSTNsd5R7kt22x1FGnNy9zZFkbHZXOFCCMtyseC11+7z9tufYb08QitD13bTmuw6S5p5AU4CS1UFCxYVEji9k0AwN4zphgaTiOfUrCj4r/76XyNLE77+9V9mt9thBzH/lgR4kf6OIS/CfAye/AS7ChS2b1BeQEYVQAAdQE0TGCHKO5qypOtq2kRqN68j2qbFWTCmw/kBE0U8f1ZR769oyz27zRXH6zWod0LTNuCsCmfYgbWP0vSD4fLc0vd5kEYZOutJrEh7yrLGO8PFRU/bKJrOUjUD66MUp3ZEgLae/b5D0mM13igB6QeLimR/7G0vQTTBkF2F0keriDEIzJj44G2JpsgKfDYGHw0kxhFHhkjFgeVlybKMxXJB17XsdhuxZugtxbzgzu1XOT6+DcTs9jX9MO7XirE5BxXYNzqwnUU6OjJPxoAdqdH1JDU34etGuozRZqrdpUnXoW7zYS+xAdQPMt5B2LDWObTVoRk1DCHEwQfgf+gH4sQEYMdPddxofTDtKD4ARoT3woDRcuxPoj53UBN550Jq8FgLBlbIRDo41J4C5Bh0kOyNQUfGCONHVEWH35vOU63CddLTgCZAG4yBFMbowJg0U/3qRiJe2B/E29TS9q0w5+wgA96mwQ1WTrAbACyBORvMqhCv6jH8Iuynk7TMMmNOluX80Duf4c03X+HP/pn/gl//jf+Jb3zjG3z88Udst1e0TS3e4joSL2vnpkAPrw6AiZ/uT5D0hg/kQ41E+DMBjMLm7rUwHNtW5Ka4acCUpDEvvfwiRZHLsHFwuJC8Pg7rJRhG9jCvFL3z9ENgy0Updd1T120gVjSU+4pRJKSNFgYQGmf9pNyKTETnapwfaLuB6+sLFjbhydOPuLh6ztBbjAngk/USiqg8d++cMc9zkixipgwmsIpwyNo1ZmKcJklGnPQkiSjatrtLrLUU+YwkScXY33mcBR0P/Mf/9FsyxNQ91X43gfRaGU7PbqG84vTkmKP1gg8/+g5pInZUfd9ih544TmmdpW06qsFy794rvPjCKzx5+hxrNYqBJBZrg67rGDob+nRF1w8MNqTXBqa5JFSnHB2tOT05JsszCZYLQTVjknbTdZRlRV037DZbrq+3VHUd2MOHgeAYNjXuUbKedOh5pAeQc0FNQxMCeP8pSeQ0SPx0H2mMqNT6QQbkMigU9UZkojCAkPNwHG6gDsDNWLdIP+PwfgzLm+yow14YJMpKT/tkmqYysDIj6GcoZtlUG4z7i0KLfN1D3w0MXY8wEZ18biQsNElG/OTASpwSpeWK0rsDwKeAVoGNIrbIEDxNU770xc/x2Xfe4Jvfepd//W9+h/e/9z5X11fiA9jWRLEA1sMgoLWE9ghLta3lQk+DfhRxmqPjlGFwgcok70VIIBGDG8jzhBZH1+x5ePGU51HEqy+9yLwoMCDMvrCZCcA7euAHJmC4594jLH6U1KPhV+ukTxFrlpY4FiZmU/d4F4GPGQbpa27dusPTx8/J87n0r0MnZ1jwLhz7gW7o2G6vZW+IFevVCdvtJtRdYisWdvYbO+EP9vqBAb6Rpg+BRaVGMEQQSZn6ygNurQu+EcIaU+HwEE8eGw6z8cO5w8OmxgUbGoWwiMcCAP4X0HYtAGDX9ZRlSRQooMYEVFmJREBrw3I5p+/7sHhETqoUwdA8mt7D+LO7rpuQbaUEdBhZESYsNjgUEeNUEhy3bp0RGUlojOOILO+4un4qkcxxypOHV6yP5qzXp+w2FVlckZmS/eb7PHj0HarmgqwQ/xAQo2Cl4OrqkpOTE7SOUMpIUd/1wSgZYoS27K3DKOi6gavNHu9TLrY7ZnkCFrxquXVrhTa9gIhaPD7wEVr5P3SN5UDru54iz0ElLBYpygxo3eOcxlUNbbOVexkKpqrciQwx2uFdghscTb2nmHnOL95nsJfkRcJi9TIv3HtjAvdGHxW8SBjwXszoJ3aEbAIjS29qiv3NopTQD8pnGMGHydtpHBCO984dKLtKj55CVq5V+Dnjzx0PCK1D9+hgsCL19I3i4wcPqBs57Ncnt7jeXHPr1hnG9zz46D3ef++S61JxfbWVqHM3kCapJJRqPW363gs1vmob6roWSWnXY3u5PpE5eI0Us5xZMZuMxRVhQ3Oe/b4MM1MFKiJKNM/PzxncENLOauLEsFiKL5K1I5NBaMXjxCwy4pEpl1SDM3z2nc/zEz/2M8TRjO11Cyp0aMaACv57StF3ljxNuL7e8v77HzCEddUPvXjUBE+s8d7LFN8ibhF+2n9GaYkfJ7xagJrJuN2D8iokJSsJNIkk4OPu3dscnxxxfX3NditpqPv9nrZuOFofYYyiqvZcXV2y220pihlHJ8cUsxk/+rWv8if/+H/Bm6+/glFweXHJ+cUln33n85RlT1V1PDs/55/86j+laVuwwvgDNU0MR3sBBcGTz9G1DcPQUZZbsvSEk+NjHj56iMLQNo7dbiPpuZE8D/hxbY40dj3FDupA/08iT5JuwLgAdChiHaGcRxGz2bS4wIIdBiiWM8q6o+ktu90eZxWnZ6e89NKLZGnGxfPn4vcYGaqqxIepnxmnqsaQZrlc836YEJWhbTHx6CkZ1haS1jf6s46G3HGa8Of/wi/x6PHH/Mf/9Fv8q3/+H/jCF19nfZShgLquxYzYGbQSJlzXtaA1moG9G/iDb39TQMoAABttiCNJk/POYoyA54ShlPOWoeuwtiVODLEGqx0Xz6755JNP+Mxn38a5nrreg49CwEshsrq2ESlQb7HDeFgLI8KYAuVz+lZjtSVLhHXjQwepDcQ6Io4j8jwDRBqGPrAyxkJxHFyJZ1KYNFppaJyzdN0hjU6m+6kUPVrkwFmW4WzEf/jd36Hr9iRpzmwx5/TsNsvl62RZThKv2V57PvzgCXfvvsjdu3e4d/c2s1k+seVkzU0jtnCmi4eccwoTBc+bMIQRj10btlkJgRmsCwxPjx10+AxwkIZYrINhuJlApicm6DD0DIOkTo4+nT78XaggrwxSfh3KC2XU9He0bY9zIlsZhj4MfjxRpMnSiK6tiUyOMZrFYs7P/bGfZ75c8b3vfp+2s8RpRhKLvYJ1kuDZ9QMvrG6RJWHgGAhFzo088RH4DNNlF7x3ApupqcWbSzzzGqqypG5qmkbAwt1uR9P2DH3Pblex2e8YusBESlKSPg7XRoyctTFoE4kUPchAlfdERtP3LdebOc550ixjtVpx584dfu5nf04SUgdhDWotvkl98IidwqMCs00ZNe0r470OBBzZv4dO/JKjiHle8Ff+0l9mOV/w9//e3+Py4iI02cKkGsESYejJc+asBCb0TvyFcAPKDxPqq5WaQm1kG1HglVwDL8yaOPYSwDJ0eC9nl7ctXg04DFXZ0tUVbVtydT2ARoaZ3oXn0IcmwOFUYFx6xWZTohAJkPU9cZThARPFtJ3UllUjdWOzc3RWU8wK8nmPsyX94DiE0cj7btqGtusoiiKwTixpGgcZ54BR5jDl+5Q0lOn8TxJD2w44eiIUfb8njnJh2rqe2SzF6Rki92oxkSc2CVluaGs4PjkFJWwhaXa6CWg6eOP5CbAKlzzUKlKLxLHU725c16FeG/2QbKgbjNFhSCFfb4wkHI4BQCNTamTkqpDc6ZwnCh5G1lp6LenSQ1hPwzCQZsE6xt9kqQwj4j+dv4RB0+in7OyBvQICRInXd49REYO8kfGJn+pjHZhEEJrFANyPvREcwIORs2CDbcW4x0UjUBqubRTHIRRLWD5xkA2PDMqxHhvDbbwScLRte66uJBxC9gMt90F7hj7sm6O/nRoviWNwVj7TVEp4HAIkj6Wy64UR1/Udx8fHzGZz8jznKz/8Bb721c9xfb3lkwcPefr0KU8ePebJ06dcXF1xdXHJ1WbD5vqKuqzoezspohyeru+wQYooe8nI9lfBTkLjw6BaKWHc1W1L0wWFk9KYYAt19+49fuhznwsAn8M6qRN92FO6vsWLqa802l4GPPP5ksV8RlWVXJxfisxXG9q2Z+gHIi0klCzPaJsGY6Tvms3E59ApAgAtvvTOy7n8/Plz6roM54Fnt90LQ1RZnj5/wst3Tnnhzi1u3T7BX+/wfYcKA3WlDGg13S8JIJKB0WA7YMDoCO+HwCaNAE1SpPRdx27/hG7oqaoSpaAsa4piTp7lwnizmocPPgblWSxmDENPluc0muClLAdZlhXgY+zgubras1qccby+Q5pmbDZb+r5nu92R5ilJnIU1pwVcdp5Ia/I04fjkiOVqSZ7l5FlKnMbESRzsBg5hOnmeURSZrMMX71CVLc+ePufps+eUZTVhBRPBgk/3ZuPeONYn46vv+4kFOypiZE8b/3V4qTD7tc4K8DXK2cP55v/Qz/EIY3cEbialzqd+9P8cxFFehkhypR2+E9uvqm7CAPMAxhstbMDRI33EH3QA+/rA/Jd9Rno9YzR1XbE6WjEG2xyGrKPdAtjhEGoaLh5DUEb1XUtkNKv1ijSNyfOCH/naD/OlL32By8sNT5884eLyOc+fXXJ5fcnl5WXon/b0XY9WEXUjuQTjsyzrgQCImeCdHy5KIGtIb+FpK/FnTLSndT3KwfF6ye3TE5Q/KETkWz2DtfS2o7cd3dCitUfGGqBiCTEVsHcE/h1xLABmnt8iTUVF0zQVWbpAkzK4jiRNqauOLJvT94Okz283JEnKdr9nX5YYo3FecXF5QdsKUz7qFbN5zmy2YrMV1ZDCf6oGGM+pH+T1AwN8Dof1PZNZqhqnIhbQDIPIDOM4wXkbkq7kIDYRIYHtcNhBeFi1wYYDBsLEJvwZ6oDWj2DK6MMCTItckneGSZettL4B/gjDREBIjzEpo3/fzfex2+2o63qSSSmlWCwWId2pE4PagPR6L4DbmCB6kM5IHPqjRw9p6pauu+L2nReITIp3KfU+YnttWcxT1uszTk5WLGZHdE3FMDgut+/Tti3tUJNkOhzaDUkSM5sVwW9vzRBStqpKvG2MMcFHUFPXraRZBf8MYwaur695frVls9uzWPT0dceLL6wZOqh9TZzEKD1QN4o8m+MZQtPK1Hh1XU/bONJkjvgjanAa63u6rsW5gX6QxgOlyNMZSZIHA/tU/HZ0RJwqHj79Jvv2I/LM0w0ZL5ycEkcpzrnpGsv9PZhd36QPTz4vN5h6Y7H1h32dvDv8jAng4+aX+E//XfjQKHr+0L7/qa/9w5NhFZ7HphXT0F1ZEkUp1lueP3/Co8fP+N1/93vs91c4N8PFEoIR2QaHZTGfk+UZ8/mcLMvAGLxz5LEiz2Z0eZgku5gkEu+1m9PgLMuCp1HwWAx+Q1orzo5WePQkawHH8dGS7fUFQ7fnvT/4hgRVjCBxnKD1CHyHg0SPUzKZMsdRxosv3OfLX/waWbbEKDHY9SgB+LSZNtGxeGvbjo8+/kT87BgBUjcZ7xPMtCefP6QQNVF0mO6gg5dHmHjrIF0NTAJZu2EqDSHsA/qQ6mfimFtnZ4DIhPf7Pc+fPmMYevbllvlMAJehlybv9PSEtz7zFq+/9jq3zk4odyWb62sePHjAO++8Q9sMVGXDfl/zjd//Bg8fPiSKtVDjA0AzWgyMjelgLW3b0HWtFGDAbrsVL8u6Bi8yXEn6bOiHnsGJ6bU0JQcKPHYIANBY7oAODMRxUKKBSMes50uyJMF2Djc4TBzjnGZ5tKapa66ur9BacXxyzLyYs9tsKdWWy4tLuaV4mroSL5Y4wYXno5jNyPJMGClhvanx3biwZ7tDirVToy+PnAtGazQJJ6cn/O//6/8T//f/W80fvPef+Be/+Q1efe2E1TLn6dNLulbkf16J5YAgKiLNxlnOnz3DRBFjuuTkU6YE9I11hFbCCLZDh1eOoW9o6oq6LNkPDeW+5Q/+4GPSNOf4+BjnLGXZ0TQ9+/2OyESUZU1ZlbjAXvLBpkKmwwp8Bm7J0BXEyRCUAg3oCrRFuQStDCMLXPwTCb5DZjpXRkmJkiQJOivDDzsM0+Bn3NuMkTTz8fm3ztI0TVjvKbt9xeXlUxlgBfDQGIWJEr78pZ/i5OgVjDnn7OyUk5NjTk7W4QwPB706sOtvHJxhaCA1gRl/NtJUjs8lXuMjg7EO7yOpGwLYF45wxI9XpKc2gIGDdUGeZxl9cE2QvY9hD586G5w8X0oxEp3k1zCgqeuKOImp6jI0rwGAsHDRNlycX5BmqfgCRSIZvX3rNkPv2WxLBivJbVEsgTvWebb7PZcXO07Ws4kxPDFVvVy/m/WS0h5RWkt9VOSz8EYPg6qx2SY0uuEoC2zmQa5P56bgkL7r5JksK6q6koCWpqUsS7q+p6kb6qrEDj13756JimGx4o033+BrX/sKxmQ8e/KM/b6WKbsLA57BBi80G4YJck2c8wJWh08n/69wYWdSXgUw1+GThKKY8Yu/+IvcOj3l7/ydv8MHH3wf5xXO9xym7TcfqyDrDtdO9pND7TiacIevFhuLcZjnPVpZmbrrMbVRWA1pIoBJ17V0bqAbpFnWWgLD4jgSHzg/moSLFFTunRWbmViz31UybMFjbYRzYssiwUCS9BfHEW2raa4cJtpz+wWH0TK8SmIz3VNJHJSaRORzPWmW4BEfx6n25QYT+obUrK5r8OINnecZSRozMoycG5CwOgnTUEmP0rBYzCiKjH7osFaCmWbFksgkuACUiuVdsDmYavOxwZRBX1ZkzIqcxWIW2N1BWWPU9Jw4K8yIpmnY7oWZ09R9AP1E4j0y4cSmRxpQCcULzD8vzNCbjdCNkEYBD52j63pyl0nABqNPtz/sM0F6NzIOnQ3MMi+N3jQ8mTxRB7qoD8NDFerHAwFB9uwDeOiA0SvwxptjHNbIz5QDWZ4tORuliR+bVBcCtw77hkKYPlJHcAMMPATxKG2mWj0KiZbj/ev7Lgw9ZM85sFqCPJ4RNBYQW40hIt5P+/NY+w7OcnFxTtu2rFYLIp3gkVTJ9Q+t+eIXPhcGMH4CXdu2o6or6qpmt9mx25fsdju2ux2b7ZaqFKbx5dUlu+1OGFxNQ1lWMoyxLlj21Iy+32PtbbT0dy+9cI//zV/5L/nyl384AE8Wa8EH8omzHq08Q7Xj4pMP+OD997m83qDjiOPVGqfAolBGWIe7XTmBId4LU8jMFWUlTCVJYZXnO5oYqOKX/LnPfY7HTz4JYYBjvxCUZlrhtUepgfPzCz7/zlsUs4LyahOSTcdgGbk3BKAsjlL6oaGpd3g1hLMwwgbWUhylpGmBhFpYZsoQJcmkIinLiqZpiSJRZA29gBbjM9q2DX0vZ7nW4t8tZ6PIUff7PUfrMyCi3JfU1R7nFN5FxFHBLF/gvRhRei+1eJakrJdL5vOCNE0ogkWCNiGUQuspkXU6BG8Ablpr5oucWfESd+7e5oMPPuLx46e0bRve9jhCG0+CMAhVXoBdfzgzhmGQwJexqQu/Kpj6/fFMHntJefYGqRVCb+kYe2Km9yjXyU7nlbqhNHN/qE8cv34cXhxShCfuMCODXp5z6e+7vsfaIQxSIpQawteKvYXSMvIa3yPeobWjHwS7aNv2BuP4cMZOgeTcAPh8WAuhxrq+vqbvW1ZHK/J8Jqx5NLdOjzg9XmPMZ1AousEFFmsn1kRlzXazF4B/uwmhIRs21xt2ZU1ZtlRVy76saLqGvuvDIFHOLq8cymsipcliTZ8YXn7pBX7+Z3+G27dPGVPbx2CiwUlN1DZ7+rak2V9zffmcfVmRzmbk8zlpUZBFMWmaECcRTV1htJ5Ug9vtnqoqpZ+Oc9pGBm6r9YztZkdRzKmqSgB4pKe9aTWx2e1pmno6s0FhB8dysWK3e45UDX5SFDnn+F/Bgu8HB/isH2htMz0E4+EjU/BAMzcRBP8C0IfCLyTfKMWkm1Y+yBGCPl6ACg43LRxcgKCeSk3GmWMD5IPB9Oijo5QSc1I1SoVl0dyMbL4JMN5kYimlyfN8AupGjw0f/j5jDLPZbGo04IDm3/yZWmtu3bodro+EkKSpwXkFPuXN1z9HmkkaaFVvefToCbfPTuS6mZYo7jg5WxCbNLAE5BqINFiuQdf1YsCp5T0pJU1P27UcHx8Ho31hG3obkaURRWZYzE5Jkpy+GFgtV4Fa2qAri44GIrNg6DrSXNgJRss1sLanawfmM0OS5MyLY7qu52rzjCxPWM7XuGHHrbMlI9NktTymKJZsNpuAxq9FJuUazi8+An1JWStevP1F7t5+KzSl7kYc+iEN5yaY56fNkE/93s0JxP9Mnjtu7B6cukHPlq+eJhvWuokZJhuemyje01f/ofcmU3/P8ckJP/MzP0M3dBgTs900PHrynLZt+eIXfxjvY+bzOSZSGDOjx5IoRzwMWC3JsB6C+XgyPX9akBUhMoRmK4lidGSwXqQsYyDHaFwuHpIj0wdpiMO1AEizlJPjNZfnD8gTxxe/8Cb/9Ne+BwjLTKaOYyEfHcAppYN0Bu7ducfXvvZTrOZnRCbFGAH4nJdzV2sTJise7RVaC2tJG5FjmWhkfymSOJVJlJLDbPw74ygiTgWQR0myswpTK2NMSK6WCfiY+Nd3fRgkiOxFQMMwUlMiZ3JT+ORh7YoXsyc2XgpjrSWRMtJkufhH2AF0YfDWc/cupOmcsqwl2bnr+Pjjj4WhZP3UmHjvgxFw8LUxYRIdvFcur664vr5msVoBitVqzb5s2e+riS1snaMbWjkMpCuUW+kOstcJflHgvQ6NAwHd0ER5yunJHfqm46LdhaIxYVaIH0jV1Iw+ImVVcn1xSRQZFvM5bV1zcnosqaBdJ4VGFNMFqZ9MXWc4G/ySvDs0YyMIY11ohEKiLnpav9Y76DzWGY6PTvg//Nf/R/6b//b/wXff/RYff/+al15OKXceSFBo/GjgHgJyvA+MKoRBpUwUGmcpNpUX24IkAMXeW5T3QXrbU5UVzx4/5+LyGc+fbahrxUsvv8puWwbJK+z3NU+fPqFtHHXdUlalDLW0wSmZxip8CMqZs9tqzi96ipl4aS1WBTou0aZHOTHaneRtAaR2o0QnrENnw74VZM7i12PlXnuN88LaGqwMV0agr5jNGL1JZJ/q0UZPKalaEVKzFcZkvPnGOzx/VpLnOYvlkn6w1M2ANgkj02PE+lRoTgnX1cM0sfZ+lFkQGtRQvHumQVR4fPHG45w5eGk5MU4XSYusG+skNX305BK/GEIow+jb6yemPfrApL/p+Tg2sX3fkSTxIWF37N70WO97mqph9IsShqukFKZpinE+yDocVVVRNxWbDWyuLlgvl8SRFi+uYFIemUjsFozsRTJglP0tirSEU2AOQ41xqjuuaSXS45GBCBFRHBMnoDMZdnsPUTQCiDcGUDfONh+axMmTRokfISG8qO/dYZiKMLCGQSTokTGBjeEmwECPdL0R5XAEQG7COvAuxK4NGoz41/zkT/0R7r3wIr/2z/4Z/+7f/RbPL57RdY1cGydI7Hjb7KQ9HJu/sN4D5DQGpKgwWRv1JIoALoYBgNLC4OyHHjtYFNIoNU0T/NcUi8Wce/fuEUWGfVUG0NqMKEzwuepwTljtV1eXnJ6eyDtxUqcKGyFcc2cxOiWKUvCw319z3GlsJOyhrpVnPo5j0jQLz1ci/rImDib3ShhIfpSjH/yIx8tijISJ9G1MFEPbWPqhE3UHmkjJPtx3nUjcnEIZjdJRCO2R951lBfPZCmMinLe0Q080As3h+oLUwYv5nJPjY2aLGXmeEschaRclz4dSIVyJ8P2afJaBX3IakkOrsuTq4prNZit7WgA0btZ2wuo6ePXdfMka+bRaQ0DWIbD1PCNjfkxSdaEAsl7UPDoMR9DiC9YPAWz2wlQd15GE7Ii3tsehOTTp6ubzKaVGeH/qMLwZfQeR8AphG4+9jfxj7U2B2ngtR0WCorcDQ1/LsDNIEWXQGgIknEMZ6QeiEIg2lq3eK+wwsl9HH7wgix3fp1xBRIbvAkAwAnyfvvZYRV1VNLVYS6yP1mRZHobNChN8yEVhEBEbQ1xkLGYLbgJzY18zElKddfT9aMky0ARl0jAMVE3LdrtlX+2pyj39YNlstrRNy3I+49bZKW++8Tov3L3Hdlux3ZYBbFf4MDCybmB7/oTf+ZVf5tG3vsVQd7gsJTo95dYbr0Oe4YCqKrne7rCDZV+WwX9PErZNJEEPJoQuOWex3lJWO9q2wXlHXqTcf+11Lq+eB7a4PwzKxhoNjx0cu33D9fVO1GazQgLnTACh9fhcyz2bz1a0naPva/EEdQbrRSZ/enJGkgijruta4iih6TrqtgsAf89iIb7S0rsqkthNTMpyuyVJYopiRlluqeuapt4SRzFZtkRrzdX2mu9+79u88vJreHq6rsE5RZbPKGYzsRTQMcPgQYsN03q5ZD4rgj+l2DZoI4EV03E07RUjo2mU347rQ65DmiW8/Zk3ODs75dvf/gN2u/30PI/PldT6PuAOoUccwXUX1C7e3dhPRmKBgF3TXjI+o6PEOAyKTPBJHIYeaT0O33Ng2+mpvlBq+nDTZxx/Njf6A8b1F/ZL/Og7LJ/rvfe+w3e+8570Y6E/XCzmHB8dcXJywtHxKUpLXTdhMuHnTsnwMBENprBCfdirP23FMO5BhyFE3zXs93uKQrwas3yGR8DfODIB9APtNXmaQ5qyWhzxwl2N0kxAJ156WOs8g+1pm579vqOuazbbLftdSVnu2ZcV2+01bVPR9i0GuHv3Dp/97DvMixlN04ae3eO1ou+l7yg3G979vd/l43e/xfOHj+mtpfdw943XOLtzj8+89TZXl5d454hizWq5IAoMyKurKzabDU3dcnx8QpKkoabX0z4r52VO0zRyxjgXWLJSh+62G5I05dVX7/PCCy/w8ccf8uDhx0Sx9K6jEGFSKU7Pxg/2+sEZfM6GTZNQgIYDTiscVmRXXsAZEwrOwbmwuWlQWhIru/6GL8U4YQ1JW97j/RAagQObzwN2GBNKD2DaKOE5/Lc0EcBUTN+k3Y+vITRDI1Ao6UAysei6jtlsFpJ8hcU3vsam1TlHGTb/rpODqCiE+rxcLjlJ4sCqc+z3JdvtBUrFHB+vMdpIkIIRIPT111+hyLNwaEMcZWgVoYhIE4PSB0qyc54sK6YptHcQxzlpltA0JUlv6LqKKBLte5IY3GBYLWesVwVRFJOmOdY62q4hjjVHRy+Ai3B2xuc/9zUePf6Q55fvMwzVxIjL0ozl4pimtlxdbdhvW7TO6boYozVdZFA+IUsT5vM5TdOSpjldN9B3lsYOFJls6s+eP6VpSjw1x8e3WC9eIYmPA4A1yrVdYHQM0737/wXq3WRP3nwOpmfkfwGcu/lzxufPTYXYwW/GB7nPzSZjfB/jJj2EBDwTJ9w6OcUF49jVEorFKcokLFcvs9nu0MZhXYdWOU51aNcTDT74RAk4EMcJ778vTM4oMlxcXHB665TBDpyfn7M+OqFuagYPr756n1fvv0pdN6E5GhPppNhLs0waMsCE1ihOUyIT0zR7nj97Qp5H03po225iJRkj11aARj9NmpTyHK1O+cpXfpyj1S20yjBazLhVSFHWITpeR5o0TkjjmDSOmM0y5vOCJEsxOiIJqVNZFgMH9os2438fzIb1DRBhrJP6YbyfAiDeLJHD3Q/y6RCKgkziUIfyQRoA8fBReEnDmwoHKYbx0DXCYrXWs9vXKCLqqqVtZcLT9S1d3zLYHuWlabS259GjxxTFTGLlg0eIV5pucOx2Oy6vrukHy9Nn56A1+6qmbqogER+Yzwt0pKgaxNtmPHjHBjYc3s4N+IBUjF4l41LQSoCzOE7YXG5pmhYfabQdiJM5T54+o2kkPCdLUkleVo71+kjSPZEE2t1+dxiKGE2SpAJGxzF5YI+NbMM0SUJTGg5GN0z1mqxJM50h3nl612OcJUoS7r/6Kv+X//P/lf/2v/l/8q1v/ic++fhCEmytsL+mQk1gL1nDiJzHeSkyPMI4FA9PN4EohKm0swLcKKVo6pZ7916hbS0flufMiiOapuXDjz6iKGKOjlZIGnhHP1j2+x2bzUbW2+AwOg6gqrCcpElfUpUxdWlwfc/p7Yj5UUYUO3CDBIyEQnAs5rUReYtCMfQunItWJrRKQm0I7I0oFmPpNEnIC2HDDUNP2zbUdcdsVgQpkbC8o0jOAxUCeJyzeGc4Wh+FvfqKxWJJluVY57ne7ukdU7Ph3cgKBcJeNcrihbkjLaqsWzOZyo8F91TEc7OgN2FVerQSLxuTHIK2jCdIk4Jdgvd4FwevtiE8b8JmsFZM5e0gJs3j+h6cNKxG6amoGkFOwW88knGkbnj5jqFOBNA0QusB7Q9BRIRtyPaeel8TG0OaRLRNExr98LyNeMwIgky/jAyUKOwLamrcTfDvksFiPA33jNGoKHigSYUug7HBTEDmuG+7kQWkFCbgVSNAOwKDIz7XdY1I2weLMWNjaSd2pA0DWmMCQ370sQp7o1Ijk8hNe6p3ganrXJAbJpgo4u23P8M7n/kMDx/9It/5znf4/d//Tzx69IiLy3PKci+Kib4Nz63cxbExmA7rUJd4Jz4//sa+772bhrx4RbByw9qBi4sOYzT90IeBkCeNE1588WXefvvtafgs93a81yOzq8P7HhMpCXPynkh2XHl/zkuaaD/QtT1adXSdeC/1laOpDMsjMU3v+oEkFml109ZYK82BNkYk+2Eo1HeSND/lMvhRwi/NjBnTJqMEfEeaJKH2jm5cd00/dNRVT5JDXsS4wdP3HW0n/yRRjsLgXGgChxEsF6l7HEcUecHx0TFH6yPyPMEEkFppwqAJvBptdw7P9/iMyHrQZHlCkSecnKyp9jUPHjzm/OLyU+DeuP6npNXw2T/FPmGsB0b2m5qeWY8/1AocZHx+FM27IIvz8jvjc31TOSJ/jwDPIztEyUdFu1Hiqg+oHuCU/9T36mD3I6ENKsCDY7PrprJSq8PzO4bvjP+77zt+93f/HdebK+I4Jr6hqMjzjNlsxp07L3B8ciLS9tC4a3VILR76Aedt8KUlgNJyj6w6gJQT6Dbds8NrrLOU4LgoHNu+Z3O9wURxSMc0FMUsWBgFXzUVAkeMCmdJYBqFf0asQwCVGGNidAxJOm6UY90m4CP4MAjxGDV2f2FQ0fbCaO577DCqHMAPDu963vv3v8fjf/uvebF3JIPl+XZgnyry7DPYRMB47wjSQgnLIKz/3vYMzjI4i+6lF5Xer5VrbAc8wnxNkpTV0TEmSgQuDWtVhzNRQBOIMsVmv6GqSpbzmawpI7Xz2LiM1/2tN36EfXnJ8+cP2ZeX7KsrnBNZ8L5sME3P1fUVeZ5NtX9VyZ4Oh7OtLPfM5wv6Ibx350KohrA3nYP5bEmRay4uLhiGkuW9E9757NtsdxvOrz7EmIjBgiJlX1q22xZtYu7dXWNtw635iixNQj0gNe8ktQ5gpx/rcj+SGMIzqMcjUqSZ3su9N+H8PDs75gtf+CHeffe7XF5eMlpyyIqRdXV2dsat01P6fuDjTz6maSUB2Hl/sDfxh/3jgA8EZm/Yf+I4ou8HbACllNJEWuPdwKhEED/3cc0DYd0p/lAv6mU4NapLrJ+e7ICljWedKDBkDcr+8e9/7/f48KMPcU7CpOI4RivFYj4nSRP+9J/+cyyXy7DPMJFOnHN0fU8/DJ/COqY1J7Hq4xsM1+EmIOlDeJfssHawtE3L5no3eQSLX2BMksj7GslQOhC2pvM5/IyxMtcoYhMT57CYHbxMR/GXd4R93E+qumFwDH3Ps2fPcK7G98LUd94zOLEQ+J3f+DW+95u/Tnp1xcI6rILSKOwiJTo94c7tU+6/+gpKqcBgH7Bdz6NHjwTPaVsiYzg7OWWU6p6cHLPb7YjjmKZpyPMZTSNM3qqu6YaeONLUuwYPfOYz7/CjP/qjWGs5Pl4x2I7zi6ekaYqjnp6zGw8HP+jrBwb4CM3UCPq44OgqKjsfQD6FdcMk1VJ6nIULzOCDV5YLsrxYHRL1rB1I0uhTk+ibzfqhSBZfupug3YSkh6s2TgRv+mSMC/ngIaIYQzRgZBY6iqKYfubN7wF5X/v9nvPz86khEDAkJo7T8BBroZpGcqiniSHP5lg7YIqIODbEUUGWi7moUKYP4IYAKiPdFsSUUY23QD639qHYF5PevvNoMvI0naLOy/2e9DhDaTg5XREnQZpmRQZm4pg0y8W/cLDkyW0++eiKZxeXbMoNaTIACVrrME0bMFrSNJXqGAZFHM+wg6XaN3gGmnoQ8KkfePbsWUjBUcxmSxwWpxyPn35E215wfJLhB0UcpdLoaf6/zP3Zs21Zdt6H/eacq9nt6c/tsrl5MyuzOlQDUARAACJQQhEiQyGSCjWmTQYDjLAeZCms/8PhJ/tBDjtCD5YlhMJ0I1A2IQdoEgWgUFUsoAAUqkFlZVZm3v70u13dbPww5lxrn6ySHGb5Qbsi6557zzm7WWvOMcf4xje+D69kHXycvffx5Gs3KKd7vzueu8vg+x9Cx6Vw0H0iRFARPIjr3SksgwZjEulNY77yYxKau7ZDaxm1c8Gx3XhCyCmyPfK9ktneEc5X4gTrDG2zYjqdoDCUeaBuaozJWCwW7B8dYzIR0H/90ZuMR2UP4GV5FkePhJk60ob9oyMZmQyeuq6o6oos6raAMN+0nJS4kNFsGy7Pz7G2wwVPF7X2QAo8ET03aKMYjQts1E0hBKaTPX72iz/P4f4p3uke2DNZRh41GvYPDpnPphwdHnB0tMdklJFpCfoqju6JIPAA0KZ7meKBtUJdDj6t/uio5+JaUEAU8hbtr3gY+CCUl9gFlDpURYH6WLzpbIgsgTjOEoDk2CZJQCqAk618QONsoKpasrygaiSZDARccLzyygNePH/Gk48+FJ22tubli5d861t/yng05vDogLIcMZ3NpTHiPXXd8trrD+mikC8qsHcwx3nR7ZtMJuwf7uHxXF1eYlvRpWq6RoCMZDaiTNQ9i/pHDOv59PCEV197yNXFBZc315gsp/MtbVNxcyXXcjQq2d/bgxCoFdy9e8r15SXbzZbZbIbSirqu8F6YHJPJVEYey4J79+8zn8/7e+cDJNOFxBJJBY0UxAoXGRN9bEUSzKAkFj96+Ij/xX/0n/C//z/8Z3zrW9+KIt2mL+6GVqXkTJoEuqfi3xJMJmL+MZsLIdA2jQgSRzkBpTVPn77kK1/5Ol0rZhtvfeIdRqMS5ztm8wnWClBbVzVtKyOjXSesONsGnBOwiiDnnfWOLCtoG0Nbw2S0x4tn17yS7XHn7j221QtMJnogdbXBhxaUQxsdGWwDexoyTDCRheSp6or5fCoT8GiaVhpvnW1jVzZDIxqJr7/+kM1mzcVFi9FXGO12jA3AB8Xd0zs4K1qf48meFCVeHFSrqiZ1mr3zuKgBiROwT6fGhJKELWlEai2aZwNTJXbQd8T2tRb2ge7H8KRTqvuueAQA45mYZDVCUGgvGi0hBPLYCErMcZcFvM1ER8gPOUBKbrWRgkCWRAKzJF6kP1UEgoNPDKChWFURZNLxPQcU1lm22wqjxwJ6qgQ4DABD/7lUAuBCHDdL2nNhGM3qx3OSXk48kwT/jaP+kWVvoithFGSX0UYBAYuYcOtdUf+ezayo64aqrnn58hzb2Ai4JoBV8qi2S0LSCOM57LJ60lls+3vnfSA4YeAFpfDK90yqSW56EOGNNx7xmc98mr/9t/9tmqZhs5HRmJubG64XV9wsbri5uWGxuBazkMWK9WYt7tWtjPwJc73rGZxd1/XxWCsZU6XPo6Sw9mnqQ8t40r17D/j3/v3/gDfffJMPP3wiZ70W92PR5PU416JcA11N8B2r1Q1HhwdoneG7TmDNEBm2Ssd1q/G+JXiLC471pqGcOoy4JGDjiH2uJccqyynOWppqy3aTNFulMMuznCwfBPe7ThgPs9l8yI9CdJkG8iyjHJWMsn3y3BBwZFlO123x69QkUgRv0KpkMj4gzyaEoOlah9ZWwGMNk6mc47PZjLIoyPLkYjk02lLDjCHrGv4W95gAcRE4iuDXfG/KJ95+xNHxIR999ITVak0C/wdQ9+NFuAB8SRYAkMZOGvn3chYPgHp6P6H/t139u3SOyDUMfT4H4J3FKZGNGWktSlxB9GMFy9yZBtm9BrEB4HZMmeS1BwbdbgtR4kp8H/1ZKDnN+fk5f/Inf8Jytejvfxrx05HMcPfOPf7O3/13Yu0gjZIsSrwopbDRtMXHeCa12XCfhms1FPj9vex/LElvSAx0USeWAF0n5wfA9eUNyqScTtBLYwy5SWB0Fk1FMon9JuaaWhoayZwlnRUqiGauUgpMBPZMRiJ/GCX/5qxlu91wfn4u0hTeCEgQ3XNt13L2w78kO3vJnbygDI5RMeIjK3lQ63VkZ0uwyKLhokp3S4MPli45psbmkjKKtmlpuhpQHBQjQtDs7x2SFyWdlXHSntCC2FSmO+2sMFqn8z2ZZIiSJv0kkZJG91/9ub/DqBzx4sVTnj7/IR89+R4vz99jtTlnvd5gsprxdILJTCQMeMbjCSGoOFKoWK9XvHz5gvF4LO7dozFlWXBwcNjXOJtNg3OeBw9eZTqZ09SOsiip6y3etyxXlywWa6azI8p8n/v3XudTn3yT+/feYr2pefb0GW3TEOI4OSoQFFgfqBYrvOtwnZzN2iiKsqQsSyaTcZQYKDEmyvrIaESfu8kqVBwc7PPFn/0Z/vRb3+bi4orhcEzhRbHZbBnYz4HOdjsSPmk9/3gtGQJJSa+PLymnSU7Kokkr33JJUkxH9h0J0B9i34DlxD0RmwKexPIbmNoK4r2X86luZQRU3NKlSemiTMdiucAYw2JxI9JWwVGWBUdHR/15lGJEIsD0+zpAYDC/2XmTw7sNAYeSM4vBSd05S2g7gnesV8uY08S7oJO7saEoSspy1E9bZSaLI/Uio5ZkGASTQc4cpaDVw/tUw2SDc466qiKOESDIGH7CCZrNmhd/8afsP/+I+21LGQKtUTzLNb5ZE2xHFzRZ3kn9FQJtZ8UUra5p2gbnLXmZUY7LKJnhQMN6vWEynkRSV4MPns42sUEnNUFVV7z22uv8/M//vJjjqY6yLHnj4UNW62uS0ZLScs0HmbifcPH/f3z89ABfTEyH8deB+SJIcxRPj7R6rYbxG5AOapabCMTIjTOZRnkwpsA5DSqi1yH0iyk9dhlbw8w8t75PCKi4oHtAJhYACdjb1d5LX/cFwi64GF+r64RxKKK1IvYuemcypitJczYwB+NhnsYFxNxjL/7sMGydGIK9UG5In+N2ihRCzOrjw9o2Xgsj19jDbHLK8cGbHB4c8/TZR1i7YTu7oig91q9AOUKweBeotjXaFOTFHnhN50Sc/fn1n9E0ltXmiuPTMUVuaJqG8XgsxaD3tPUWrQoxLjBTvNW9LoDcUwlgk4kAh9Y6bDr8Q41SjmIE4+lEus16BEHE5okJ4K7m3n8fwLervberbbAbrPvv/wSALwGCYh4yrIVdRqA0zuIa/9hr7q7rIYH12C4CgcHQtB3ojLarwIiJi9KKclSiVMl0LsYwIeQ0rkZFg43ju3c4ODmWglgr8liwqQjCKUVvYBN8Ykx4oMVoxf7JPgeHr1GUuTgCZRrtDTrAZttyeb3ixdmlOEhrxMJCxaSZOJoandhQGW3bRGaRR6ucT33yZ3jlwRsYM0FrGV01WSY6kfMZs+mMvfmUBw/ucO/OYRxLkZ1BANuKe65zg7lOCEOHR8SRfT+iJXp67JyNWkSxg2gsKWXk/Yfb6yY9l0nsYRfo4kgOtH2ciZZK0VhGGEfJyKO/12kdKo21sKkq5ianrqvIdpN78ujRG/zCL/w8H/3oPf70z/6U73znO1yen1NV0YXy6gaUIcuuRYshwHQ84eTksDcMyDJBq6yTAzsz0s31IXD/3v1+TEBnMkLWNk1kXWaxweL7TlvXyXjJwd4+mc6wXcfbn/wUXSdi2SqXWJyXpQDwseM3m07F9ck77tw95fTkhLbuIsMzYK1nu62ZTqd88Ytf5O2332Z/f5/lYk3XWfJCHHWd9Zgsuh7Goiug8DbsuGkNsa1zIY7CZHhnuXv3Lv/Jf/y/5L/4P/0XfPUP/wDbiYD1UIgkIEjWpord4aTv55ylqjZkJkfFeLbcrPt4T2QUZHrMei1aoij4zvf+gtFozGuvvsrJyR18brHdMzEg8cJSy3PNaFRS1xuqpqPISjJtYuHnGJVTXKvAFzgXaJqM508C905ep2trXNOCtmy3jqbdoo0wpOq6xXvFaDSGoDBGWK5Ka6zX1LWjsyv2D+bSFAqAMriYMGdZjmsDi8WSH/zgB0wmM5wtyXKFzhy+s+hMACPvDSen97BWOtoiQSGjbW1rgRYYHNfErGQAuBKjIh1cWgkzTuKTvnV7gw+izeIszrrIfB60GDXDVMDQmIt6iglSig0Ok5JIrVEJtIoGG1pDlmcUeS4JYQR/2rYVXbY42pzGCZ2T/d0zYtEoH/oYL+9DxvhwbuCUhJgca4Uj0LWWuukosiyOP0eJktRg3DUsCKm4YPi3HbaSgBDpPyJ7GhlN14O2JUHcmfv4qZQ0PLyXeBbSyC9xRLg/AGUHhSAgmBK3akVi2qbRnYFNr4IUo+mMj+2T+P6jELyOOYnbaTIoj1OSC3W2YzwZMR2PIZgoXSCSJ2VxxMnJKY/eiCM9sUhK19BZYSBZZ2mbltV6Q9e10RF2xWazYbVeU223VFXFZrOhrhrqpqFuWjbrTWTcSP40Gpe8/tqr/Pqv/Rq//Eu/QF17hqSLHaZmYH19wTf/X7/D9eMPycYlpq3p2ppyNMP6OF7qHc56EotHXIgbnK8IocF6RdM5cC1loQlBioJCqEooDXmRkeUmsqnL2AwUkNU6yLLUFC4oy8g+V6EfJcMEttstK7smLzKO9mbRQVf2dmMbvO9QISfPxviguHPnAY/e+DT1pgAvBlveOspxwXw2ZX9/ThH3U5YJw0jpofgNO9csbqEBeFOJoaViz23I2VN/xhjD6Z1jZvMpH334lBcvzmiaNj5nv9v6vTGZTDg9OaIscxaLRTReCrStjayPn6yDl8b+Qrj9HROp/yYThshu9i0NQ5FAKfK8b3YEQCXwIdXHyUmzf8kQ91Dok/rBljD9l8byTH+cCcAQ+W1KUVcVVVX1dcxuPhyCMJm3VcVytcRZx/XNJQcHB9y/f18K/LgOtVJRhD+5mw56zLujhkk6QxpnOyAHMmU13LtYb6nb8kdKRdOSBJq6QNd0NOrj1yfFowAqNmj1DvCn0xiyXOYsMxL7IzMwOYmmNdh1LZvVIurOxvsUhtfpmprN5QvmBYR2i/OB6cEe3tbYuuZyWXOzWLGtKuqmjW6gHZnRoisOYmgVwXltcpq6Qc5HG5urcO/ufbTKsJ0jz0qC372Csfbom1eiW3+zWLA3GtFGcwtnnWjYhmEKbbtpmE8P+eQ7n+Xhw4f8zOoLvP/B93j89F2ev3iP1fY5dbOSGtwbGtviPXFCZhQBvzF3797Fe5ksW10sUUqxv78PDPraZVmQZyO6VogkTdOgFDR1i5mMCT7j/unb/MIv/gYP7r/NbHpInpWSO02+w2YtzZq2rXHe03QdVVXHc90RvOvvvTCBBegZjUYcHh1xeHjA3nwW92b4sXUYQqAsR3z6M5/mu9/5LhcXV1KvIIDu82fPcVaYayYa1djOMh6NboF+6X7sPnaO4F4j0AUv5IT4LnYJRMkUIu3zQBwOVv1X8lsxDur0e+xgGtEWgyAsYJVipYI803z5179E5xzWtqLTvZFG2Ga14vLqCqWhKHK+9713eePRG31sqKN0U6pd0+CzRtj+DMpFEXPcCY6KYX+yC0hpIIGFicUvhK042xPjgKWuWgKr3afsP3OWZeQ6j+aNapBu0gZtRF8yy7PI/pRcw9qO9fKG7baS3MgjDfF4D1YX56yefsBDX7PvLLm31BiODg+5Cq4n72yqLdoYttstbd3gOou14qZbjkoODw9J00je275Baa0jLwrW25Xo99XbXv5gs61RKuPzn/8CZTnCOcdyuSIEz3w+F7Dde7QxZNmgZ59lGWVZ8NM+fmqALwVVSMmix4dOknktNz0oGTuVjnHAhAgEKgiJfRGEJSP6SB2TyQStNTc3N9GeO78F5KUA9/FNsfvoWV3Qb6Bd9p4corr/XecceZ5TVRVN0zCbTTFGDrbklLsLAimlhNHhHHt7e/17g3To7YKfAKkwMP3vS3fqNtMMErA0CC33gScGtd2kH4idWDDKoNQIyMn1Abnep1oXfPGzf5OqWrFYPGG1ueDpy+/R2gusW2NMQVnO2N875ujoDc4vnrGtrmiaipvVS+bzfU6mJdPpmMloRNs2VJUlz0qargGv0JkUO8Erlsst4zIjm4ixiqcTW3FlZSY+sh98gDt37uPdMNJX5AXT6RHjUdLmkOARGLQN0/WQjkka4b4N+O2ulY+De7E5+mOP4V4lJ53bv7cL6A39XG79zDAKq0mdH7yMjTZty3KxYXKQMZlOyMsxk+mULBc3w0k5YjbTrFZbbKfJc0eRC9NiNDJ9otq7BWq1A4OEKKhKLEiJ1y8CWtpIAQ/RpbWRDmPTsVxVmHzE/t4B9+/d50cf3eB9LQyCUcZ0JiYdQuceNCg0Gq1yXr3/Fg/uv4lSJcYUmCIny0UXKisKiqIkyzVHR/vcOTmQjll/L5JzZHKCRYCrqKNFZOoFIvtDEFaU8rgo/C1AYQRcQ4iMooFi7tMhn/4/DCMcLtC7YYkmqOqTxxACKiBjk/hbDYReAzJ4vBfy0nq7iULWSQfM44Ln5OSY4+NDPvHml/jSv/FrvPvuD/lvf/u3ef9HH3F0dMRnf+bzTKdCqzcml6aClgTr6OiQPNN0XoCmqq2xnYjVNgZDW3UAAQAASURBVHXNdrsVAXhrWa3XkbXiWa2W/QijJLodwXm6tsN3HuuE0RJsYG8+pzguxKVUpUNdRdfZjmJUQmxqoF7FGEWmNZnJaJqOk5NTQkCMf8qc09MT7t495d/8jV9nNjtguVj345weGfPTQUebeemL+hBicXQ7YeuTpni2KOUZFWOOj0/4D//n/yEnx8f8zj/9HdabRc8cG7IRLRpgQYqmVMRJ/HGEyBpfrTdS7GgdC+NMHAhjcmbyjKIssF3HZrvle9/7Ps+fv2A6nbFarlAYCA6TmT4JXa9rnK2wQWEDUTurI8sVs/mE1aKVLvhoj9VywdPHN3z+C7/MZnPG+eWH4C0KGf+rti2dDcxnexRFSbWtZS0aG0EZg8eQKcVqtaaqtsxmU/YP5uJ62rVsGzGKsjbgXE1dN8A+WaYoCt0zKILXFMWM+eyQ5WJDkRWUZSmjq8HjOkuI2iQSj5FrHPdriGOCeZZRlBnz6YTZbMp0UkZGRoxMRqdGbBRPTu6Ujm1VsVpv2G5EgF2c+3TfQAQbAfsdqYadGLwruq8wPSCTUvFdVn9dC8Oksx14i9YqAlERuEQYpP14fgKygpiHpGKT1AgJSLyJ7qZJs84YIzqQvQlFAsrk3AmJE+J3nesCA1svARQMRT/IOI2KwBOiKbmrHbjbADXasKm2eOcoenZMlE/QSdJCADkTR3ZFw9JDcCjEpCXLdA/yOW93zsJBukL3DbGA9Q6FjwW2eAqCxBrvLF3X0DYVm/WSPMsG1kZRUETxdxdZBz64eHhHxqnSaJOLtENWMp3M4roatD6ljorM0bBz8VKM6yTGOC8jskVZMBmVtK2n2jbSiPEJTpbP4ELHt7/2R1x+7V/yCmAPpky9ZXF9RX6c9/ncpqqwwRM6MZBo2pYuNnlD6IACtEaT0TmL6g0e6ih3UPRab8bIVEdZjKibRkbre5A20MTCTfalR6mJOP+6jqIosUTA1eQQhgb2qByDGuHanIw93njjU7zxxjtMp4f84AcfsKmWFHVDmM3Z35sxmYzl3pR5n/vL3lcEzcfkT9JZGhduauxFYGsAoaWJJsyLASwejUa89dYjJpMpP/zhD2maLu4f3T8/geh4WFBVW8bjSTQ82uKcRRHH83fPBjUASWrn3whD04AIpEgjrffM7HMq73VPEpCYMICYcffKmD/cijkfbzqn3+/fSVqnyqHpD+QIDsorTMZjfuHnf57RVORWmqairmvquqZrGq6urrBewMgsz7i6uurdmIkxLcWlBG54n9wsdxiI8Wr3BhseCQzs1l5qiDXpnu5o+aUxUMm0Yp4eP0/PsI8tkt0cW2siCzM2EZDzRisVXXBTbBJnUwI9EyiQ6rp4z9O9D8JQl3zPs14tqRcLTk1OhjRAHIquacm6lrOX12yrhnpbU20r9GRM23aoIhNtvdGoNyrorGWcjwhBHGfrqu4nS2SSIRlDJemYeE2inlv/XiG6CFuatiEzWZzioK89QXLQ7373O5y9POP09JTpbMJsdocvfu6ET77zOW4WZ1xePefp8w948eIZV1cXOG5oumuUakgu1aPRiMykOmNMVVWsVkvOzs45PT3FOWkQHh8ds16vKIqS46NTLi8vOT29w1/+5Xd58eIFs8kd3nzjc+xPXgU/xjqNyYTJ2FqRWZnvixnkciVyJtvthmfPnvHeez/k5uaGupZRxf39PQ6PDnjrzbd45ZXXWC0WnD2fMN+fc//+fWaziZAIYq6a6ojgRTrq7bffZrv9c1ardd8gDN5Hdnzoa0MfmRzeWXoA+GO1XdwBfZNCKUWeZ/Sj/1rHNa5jDeP7OkJiY4TmVQDv++eXuKCJXmmSe/bxR6YpNAkohAF0F3b+r/7aX2cynbBer1mvNzRNzXq15vLigvfff5/9/X2m0ym/8Iu/AAxsvUROSlM9KeN2Mc7JvhyAd48SjW+IUwwRFIwgoDS9EpAa4rTxzlgziSSV4q1cJ69izFSRBOalgdz6Lr5+GAIuKp7hOupGR0mlFK/CUPeL87lKxw1XZy/p1ksygrCv4zV+9dXXsJM9GUfvatoQ2FY1V5eXOOsYj0asNxXbqkGrjL35flwvgdFojO0cWW7YVhXTyYSmqcnyKVVV0XXiyLvdVty9e4eHDx/KhMF2G6+/nC3z+VxqEufxSkXZhMBkPO618n+ax08P8GklB71Oh50saGMgjV2kwKWU70cth6AetZOEcS1MmRBYLK9F58l7VusVk/FE6I9tFx3BkKSuLHuBSUnSBFxx1kWGEUCga9veoUQp1YNFo7IYDCqcY2/viLZxjMcSSJ2zfcKxO7qbDsak39O75sTv53lBcg0ymYwu9MB3BDR9DDjGDMYJCc32TvSh0vhzMjIITjZ5KizSYZhlOSEYbBeYT49xNme9XvPs2R/y4P4jGbvZeF559YhxqXn1nubZy+9Tq4aiGOOdwtqOly9e4pxjsVhRliUPXrlLWZYCErROrK23DV3n2NvLWS/XHB/fJc9HONthnXQI5rPI8HOiGxMI8d4n/b6SPM9Zrzdk2TXeOTqvwGneePUuWud0XUNeSofUR2ZXOqRTMZRMA3pRdjcAerc7kOwkbh8D+Pr8SQKJ3IdB7H8X4Ntl6+0yw9L3Ewicup3EBE1rQ9NU5HnBZrvl8mqB0TnT+YTprOD+nWMODkZMCsXB6Z4YN+gujh2ksRHiASKfy2opsqL0WP9ZhKmmyFRG8FHbwTma2rJYLFlvtpy9eM7F+SWLZc2Li0uyvOT+6V0evHLM1fUey02F0YrpZMzd0yP5zD4FaUXbWrTKuPPKa/zar/5bdK3BZCMurq5Yrjfs7x/w5qM347ixZ1QWHB/uxX2QRmljRzgETGZkRMHL3vJ5dA1zqcgN6KAH1lBi++oMG1y/DhJYEKIWlIR/ua/WdvE5h6I5icBLQeoJYQiqyRxAJ48jHzXblBzooS9ik/B+i4uaLMK0lH0vbtRiDFDkOW+99Rb/wd/7e3zjG99ks66k46wNWV4yGk+itpe4Hk9nM06OD2TUyiQXrZ2ihB3nyMQkCGmv+cgeEaBMhRDBQScj2J2nrSphTnUtVdNhbce2qqnbhqaqo7B1Q10L7byxLXWzxXadFKWtRSGCzRCYTEY8evSQv/k3v8zde3epqrbXckyFkW0bjFE72kySUJAczqBnEvR1UWSmtrXDdZ5yNGY+2+Pv/0//AW8++gT/+P/8X/Pk2Uc0TXKqMr28Qf/a8RpJ3HY9qDSMZ8Tw4OL4tQIVAWIf2aZaa/K8xFlYLtYsl8uY4EvS9ejRm8znc9Tzc4K3eNXhPQJE0xDylsms4OK8wijRaykKxdn5c1arN7l3901W6wXXN1e44ATo9oqm7hiVItjfORnfDK1o0RljmEwm5LmhrraUxRRrNetlS2dr0VgKYFvbg1VFkZjwjnKUxYTMoCjR6pD57JAXz2/IipyyLGOS6bCupW2h7boYa1OxK8XhaCT6Tyenh8znEykchtBFP4TWX/BUtEQ5jBAYzyYcnRzTNS3bzYblYsXN9YLNusL6AGFgjKU4n54rJfnp39N+VgIxyde+Dx9UdYXSAdt1gEd74r2WvnYqSBNrSEDkdHqIULomCOP5Y2dFKt5c1xHKklRY9weOSmeZ7GiJV/1Cja8wvNZugypdUPl5RXI56XOMnUcI0DaWv/j2t3n24umO26AwLsuy7Fkcb771NlmmSJqrUfUhFu/CFpJcT8brlYlj9/E1dfr8KvT3XKkBgFU9yKIHMAXpwneNZ+s9N1dpdE1ci/Msi82/HJMZsjharKPwvIAwqh+VSphIYiYkNsSwJsKPnd0g52aHE8H6TvQFnz1/xnq9lmvrBWi2naVzW1Yfvc+DquK+D1yOFYqO7XaJOjwlyzLR5YqNiRDfm/M+Co8bOisM0yIvyFVGYoaJsyc411LX8p8iasmF0H/mEBR5IewlZ90tYBsU3o04bxdMJrkw7IoQG2IZ3mvaTqYLvHIoDPfvvMmd4zeZTA7wfgSq4NOf/Syr1ZLlIjWPrIigtw0m11FXNccHqGrRm23qSvRc47pJJllaC7s5LwpGo4I8L2K+JGtY5DR3zu7YbQohcHx8RAhv8f7771Nt62iElZax4vrqiptrYexYa1HakOU5nW2l+Nxl74XdHUe/BndH53b3spwh0bTJ2ShaL43gYf2Is+OwW/nY86fboujdofsmtOu/t1MJR929ZLQh7DrZZJrj42M++alPMpmJdnZdS+HonKNrGi4vr3j69FmvG/5X/+pfjQ1a18fJtusYTyZ9DpMO3x4c/1gsCbc+Ff31GTKR3Z+MsS3GX9//7PCEKv5ymuRI91Ou7QDIoWT3hp1LlF5NBQMqMi5DAm6Gc0biTxhuvfd44shlgPV6RbtcknuPjh/PdhYFNJsVF2cvUKYgOAvB900nxQjvHNPJFOucuHR2lqL04padZWhjsLZDa8V4MqazjbCqck1RZuBlvDfCO/RNHeJ1UzCfz5nP573J3k5HXyaNQmC5XLJcLlBKMR7PODk55uhkzunxm7xy/21+5tO/SNVUvHzxgmdn3+f9D/6My8sLFotr1qs14/GoN+87PDhkf3+fu3fvslyuaRphRaU6nCDrdTad44Pl3Xe/x3qzZDQuODm9Q1N7PvrgKaa8QkfjKLQ04rXSLJcrqqri/PyMr3/9a/zxH3+Tq6sLiRdE5nFcCFkm49vz2YwvfOGL/LVf+CXeevsdFjcL7t29y+mdU0aj0c7KG0geZTnmtdce8t57P6Rp2vi8IWoUp5xFNCi1ic1nd2unEmEquSNR+1upqD+aaWwr8laepHEZnZnDcPYFF0hTgOkwVHyskZDefWrgEcH+2BCH8GNGPV3XcXN9w3hScnCwz53TY5Q24ANd1/Dee494/PS5MNwZDO7S7+Z5Hs+/OPbcNzdC/HOHJNJ/LbVaYs7tjirvxoYQzQpVQtgY8hi5BANRI8TXiis6/k76zInwMTRNiDIqg6EeERQdnjOxc4N06bk6e05pO3LfvwIBaNYVqwb23pBpjNX1gu9873tcXV4xm0x57bXX4pSHECiUNlEDt2MyHrNcrSiLEhc66raR83FpqSuZhpSpfs0nP/kpyrIQqZA4OZLyq/29PfKsYLu1dG2cLHXSWKzrlp/28VMDfFW9ZbNZkuflMEMdOxMpEU5FeV3XO2LRJo64WoLvcF60l0xUDrZOfJuUURydHLFZr/EhMD+Y45yMhV1fLchzEXGdz2cCauTDWKyz7lYil+fRCtx2/WKoail4tVZkpmC18Gg1I7CgaQZ3YNBst2IwkcS7YWBspZ8TIVnDqJxBKLG2xrot1jrG432UyunamtYtAXF0MqaUG44cTCrqZjk3bEoCUSdvYKWlbn+WZeJwGkZoxgL0WUtQDUHf8KPHX2dv/hGvPfg0i5Unz0vyYsYbr/8cHzxbUzfCYPF+jW3O8c7w5hufoKo2XN6c01S1gAXOUxQCqo5GEujnezOc7/CNbPembXDBU7c1OmuwboNSeTzIDMaUOOeF0WcDnV1j/fusN2smYyhyxbYSDSnrNhQcYHQuQIUnFloCxIR+XDd2Y4OS4tzvFEMMSX0KSrcT4fRD9NWRaJT8uLhy+AnBeJdBGkLSFYtFV0gJiYxBLJdLHr+85Dvvvc96ueVwfsi9e3fo7IbZNOdXf+WXuH/vlDzPJFgET1GOcY44QiTjeopMBGJ9R1bIKLMxhs26pm03lOOcUTFjs6wim2fOwcEBV9dLvvEvv8mrrz5gvV7G+9Bi2zU5NVcXG3KzxVvH/uSELMuZT6Ysi4IqMlizyKiYlGO0GvNLv/glTk8f8OzpGZeXl/zwvR/hg8LzIe+9+0N+5Zf/Gu986pPcu3vKeDLqk/eUoykteipplCV4yCJg5jMj4HqQEUAXDT1cZO2FAEGDyQQ0dlZGeJWP458+jhnHsTYZM5FRqf6exXFmGzPNW8AvSg7GeOZIt8qBcrHgIup3iIB6sDLiNyS1FuUVTe1YLALbzYZxWfZslM987rM8/uApbefQJiOgsMHHIlliwOJmJUVRZNxok5IIH9nFUe9TawYheElSRQ8tQwVJbADKbEQYJffAZLISi180Qcv19vIB5HPEglwZCFE7yzkLXgtrI8hhro0izw2jUcF4LKPFdd1Qt7WMMwTRNUzGCIoEtMbDvj83gjx3GmVQcU9HQLDrpBmTzAd+7Utf4gtf/Dzf+tYf88d/8sc8ffxEdAm9o7NdjI1SIKkovhwQIwwXxXhFX1LYRx8HiFGKpukIwfXd4M160HJJ8eTBg9f4xV/8RfJMXCe98jhsLHccQVuUsugYv0yZYb2n6RTbbcfjJ+ecnJww37vL1fKCen1GAFpr6YLj4uaCshzF+ANZUQobR0ls8EmvMUiyWRQ20v4LKVBRjMoJRWmwrkbrHB/WgMU5ItvFYJSjrhrarkNcsIf94pyjZUhSCB68jKjeuXOHu/dOmU6L6JQtnd8+8UKKrYRfybGW1h4DCBvHmvJMOpx7sz1OT+5weXHNxeWVjETHvdqzasMOK0bR62OaNAKrhmJbRSaZUpILEGKjDCcOr2kthgEEUHE9WJdAizjOEhP+4Ab3s3i14rOIVlfRtpjIxErsYtGvc7euQV+IxsND9kfaB1FkO7HJEpCVkvMg7BOlGBjI8T5cXV3y9W98g8Xy+la+0q/hOC3wN//Wv8WnP/Xp/hwbjUb9+amVEpaYT8xgL+9FpQuc2g4D4JeKJDkmfX9d+zM8pM8pu0TY3R4Xc0I6qFIpkd4HqR6RF9HRxEnF3NFkBp2JM6NWWowztDAYU1MozrDLz++YrqUx0NViyWazYrNZ07N/Pf17a6s17uaMfbVl0jq2YUIxHWMrz2qz4qA4xOOxnRSunRUjJh8CrbUQHE3TUlUB32X4LMSxHzEFciGN2Ppe+9FkWW/ocnB8zGQyoqo2XN9cMplM0UFcC7uu650wF6sNVzcrxmNx7zVmxMFeTl6O6ayN49CK8XjOG6+/w4N773Dn3gP2Do4Yj8fCxM809bbhBz94l6YRZlLXdaw3G8rRmDzPWG82bNbrPndKbNs0LpzyfaWiRpxSTMYTTk9OmM5mTMajflw8kNjTUoD6mNPt7x/w8OEjfvSjHwnw0CsBpKaNpWnbGPukGW+7tL9FS3IAUnaguAgA+fDjEj9pusbHyRMxWBsaRwM7LebuEixScLsN7qFicyHmhyr0jEcVx99VYqEPaFfEJiXW7k4w7e3Nuf/KsYC38YxMbvXOOt5//zEvz87xMWb1uSmQaalneoAvaef1IAtx18V70lf4ieEzfLYeCI0MG6V83J9p2qX/wZhiCxCaAJM0sjigGKnRF//XP78arkv/9yHOpZ+Sc8f3ryvSsHFKKwLIAYVTiuVigd9WFEH0C70KNJsV+d4B3nnqakM+gizPmU5ERL9tm2jA4rHW0TqHdY626WiLjqaVQr6uWkKQcdiyzOk6qaO00XEstMM6qVOVUlE6QabetFIcHx31+slFnotz+c5oqsQtJ7lFiFqfm5b15oqPHmvJ+w+l0XZ4POPRo7d5+Prb/JXP/y1ubhY8f/Eez1++T11XLFYvuVk+Y7NZUdcblA7kuWjgdV1DG/WJ264hNIHtdML+/pTpLOe0O+L8/JLjo2PRcXYNXWXxUV8/1eSiK7jiq1/9Q37v936Pi4tznBNDkKRzqyPARDRM8d5xdd3wld//Cl/72jf4whe+wG/8xm/gvWexXHH//gMODw/6+D38BycnJ6zXW957792oW5om8Excm6lB7z+2UROzWM7ZEIZ9G3qykiKLDQ5N1L5EEVRk5cd6VPpYrq9bldL0VUYfhmI9FIbX1WoHXAwpE40AWmT1f/Cjx3z4+IkYpWVZBDuFzLFeb6UhkBzH4z5ViHxPUZb42JjzKr3hnXo2fsZdwkMyxiB+Zh+n6xIQmCbWQqJsq4hHhwTWxXgSP5Pqm527dAV6E5XdT42K5CelornGcM1Spi65gQQrH5Az1Hsuf/QBc+sZOU+uFE5B5uHy8TPWRydMg6ftPJeX55y9eIEKisbUcb2u2VYbRiPBaFQIPdi+WK4Ep/KOthWjU2s7UXeylrpumIzGPHr4BrbtsG2LAkxc10rDqByJtUgQQod3yWzWpE/+Uz1+aoBPkbFZe6rqgnv37mAymc/XUewaQv9nngtjIbH4QhABZIIw/5QS5kmel0zHY0pbsNls0Br29ue944tzogcgOYC4RjVNQ1VVAOzt7QnrAFmwedTdSTPo/ciOFhHevJCFrHXA+xrvLU23JY86AG3b9eNAolcx0OzThhC772Gctm07clNSVaIPZTLFZntD8MOCNmZEZnKck4K8a2qUCuRxrFHrjOCTw00CSyW5Tlp/Iq4s+jPWWmbTjPOLx4QA5WjEbLbHaDTh5csXPH35Lerakekx47F0UDebDdY18eCRjvBq0fDDH/4QbQJKy+iH9+IufH19LaObZVzw2lEWhrbZYrKMttEEl0dQToQmi9Iwm05Yr0WbIs/GHB2+wo8+eo/Dw8Dl1TUvzp7z4O6M4HPOXl5yuN9BGveJtPt07UWvQQJdEjYNsaDZBT/TIyWXzsm8xO73/r89Pg7uDQy+0AeVj7+mABT0750QWCxv+Ojxe1wtlkxHmsnkkC9+5jOstys26xbvO/78O9/m/oMv88//xR/wz//5v+CdT73F3//7f5/vf/9dfuu3fov5fMp//B//R2il+N/+b/4zJtM9AvCf/qf/EXXd8b/+X/1nrFZX/MN/+Pf5qz//S/yX/8f/Hd/85h/xa7/2a/zmb/4mVz/8kKPDU+qqo65b6VpsFnRdg203ok/lLUU5juum5P69e+Rmy3qzZrFaoJQjzzVaFzhb8OqrbzAqDzk9zVht3kdpzSgvOT4+jg6qjsP9Pfb353GP6x3yTmTwxcOBkNz3wGTC2EuHtfcCfAUP3mRy6EXAT8x5HD5TOK9BGZwNWGexkUnpPWRReJ4QC62mpbPdADL1Rio799vHMbUEqDkfhdABdD8+0bUygmVj8SbJrICAzrsdIwojP+8swSvysqBqN3hnsY1HNbWYeyBjsMvlgtXyhtGo6IXxe5kAY/DexvFJSVbKsiAZFOgoYiuNEx3BvrhG1QBaDqC3OFwm+NvEzp4UuBp8HONLo8yRep/w8lRktK3Q08FydvaStm1EFDv4CPzQa7alN5EEhIWB6ZHmRxg+W/wZH68r3rNYLBiPJhiVsTfb59e/9Df49S/9DbbbLZvNhvV6zc3NDRcXZzhn2VabfpSh6zpWq/Uw1tR1NG3Vu+1Z22E7KbhdLOR2gkJkUsoaNlrz6iuv8pv/6B/xyU++w8XFIurTDMVkCIFqfcMP/+SbVJsGZUR/0DkwEXw9uzgn8GlO795hXZ+z2DwhyxUmz1BGY23LttqITkle0tqW0Mm5tFxGDcEYM8tyxHw2ZVQW5LmJLKtYbOcKbUYQDFlWstnKWtam4HDvPq+/+jlG4wlab5hOp/25Cx7nOrqu6cE1reDw4IA7d06FaZAnhmk/0DbUZErJOopFm0KhzJDGpKRYmF6y9xKQk+cZd+7eYe9gn6uray4uL9ms13HcwcR18nEGnYADhEA5yiVWWIt1g7Zf11ryIo/d/NvnQopLktT6fr0mR8sgAU2Yojr0LGqp8WVUJck1tG1LqXV/TeTzxuadSi696nb8iQWpvAMZH/MRnByKa+Rap18dkDWJUBFUqaP+3GazibcixDPTx0Rc9t752RnvvP02T548YbFY8OjRIw4ODuRahiBjKFlOr4M21Aa3i3mG81hiETK2HHaMDIgggIuFk4IQdCx3dq5TvAJpBDJhnr14uU8xyfX3BqX6WAOiXxR/TX4vJdkJiN5p1AEo78WMSiVAQExyfDRr6KoNvq4xQQpzllv2S8OZd6yqinI+R8e8oG0aMOJKn+d537x13hJ8SdcqunaLUgJotbZFa810PJad5AQw0cagIwPj7OyMoshEk9U7YMtkPOmveV1XKDUjBFhvtmzrLaNyymwq+abz4jDYuQ5t4ODglPt33+CNh+8wmc/Jipwsj27MLmC9SBdMJgVFWZDlGZvNhqvLC9brNVmWcbO44emTpzx58hHn5+eidxhH4MfjMfP5nP39fV555QGvvfY6p6d32K5FC/Xw6JCj4yMm03EEsdKovItbT9iH49GYBw8e8PjxY7q22QGNhClTluUt4MlaR1nINfcRvh+YeXH/JHHz+FwpZ1MxzpssQ3cZBNnLwbsEOffkgRTrVYp5aU/s1GjCNEkcklSsp3gVx9Z2mnSCsulbz5sMgpx3vPvDH/Lk6WMmkYGV5zmjURH10WzUekomcIHd0VunFF2cYpKcJWUCQwxJeUa6WCG+JWLxnPZx+jrTxGkC+X3bM2QDJgrl9w0f1cMCkECMBET0+7+/cv37STHmdpTbzct9nAsMt74X0s2Of3fK49BcXZ6TWUsWTZrQEgsLo+mUsFOdE9mIzXaDUtBE7cWUf9a1NL+ts8LYS+BukNE7kb/QrNcVTVPR2Za8jI1XH5vGaMlvg8P6Oo7P5my3sodEniCCJvFapvojxLVvzPC1UorVasVytUQbqZdns1nf7L977x6vvPqAuv451utrLi6fc37+nOcvPuLs4jFVfc16c40xAlxkmUyEiLOux/uWqrZcX1+R5yVHR0fiXOo60W0miPSAMXir6NqWxeKa/8d/+9/yrW/9SWycOIapGdkzWoPJRJYgqDRVI/dsu93w1a/+Id//y+/yG3/j3+RLX/oybSsGSvv7e7dkrkKcmnrllQcURcaTJx+y3W7jiKTcJ4D1ek2R5T1Rppfc+FiTSkgbfjhbQjQNiw2pwMAMV7vrOMStFXRk/kZgMa57MdlKgHbo94K/pWkbOxkqjnGr5NKuCFa0r5v4WYbxbcTsRYfIbPf4KIHjnRPFvNiUTI21tM8/LgtG2rMm7teYj5NG82/twYGRp4k5kZI6SEZ7palh1CDtQMoRFD24H2IzcLfZurvrUz6Q8p4e2I3RwntF6zx0Lcvzcw68okSTJWkPB771UbbARqmOFoIjMzm50bTNFmtb9vbmFEXOdrPBdS1ZlrEdlcKCblsypVlXG5RWVNsk9yMkq9PTO+zv71PXNVVV9dNW3gsYmWfiEB6CkskqT9+Y/B8FwFdXHWcvn7BcXVGOck5ODmOnyEV3J9OPtSTb+XjrCUFEILUyONfhoyhz09TUTUcWQTNxNVT9qFdai6NyTFGUKCXPM51Occ5Haq/ZCX6qd8NNOnvWOrxTBB/d+nzA+RalG4Jq+udIneoQpFOcZTlK0Y9i3hoBDcmZF6azEVoFqsYLQht1NUymUKFAqYLZ9Ijp5JCrq3OUWVFMJngvrsHy/r0UcUEOzvSaiaEo3VcTi5OA9x3b7Q2dFeaf2KF3jJsDytJQtzdYX2G9IbQ5NHkcY5NEuW1b2rrl4vIa5xR37hzJeKFS/Qj0bDbri9eyLKnbtdDTG8vEZOzv74tGhVZoo8mNjNheXS4xZkymco7v3OX66galSvYODmm7S6azCflownh0TJaP4tJM/0kHLRXZIc7BC9jr+71/q4MDw0gD9ON6uyw8hv7ArX/pAxrc+vndf/M7HcKPF5ZDgJTn67qWq8UVVbsktFeszte89olP8/2//DMm0xlaZ4zGJWfXVzw9u+B77z3h29/9EY6Gi4tLnj17zocffshkMubs7BxnFSfHp/z1X/t1vve9H/D4owtCgLMXl1zdvOTFi3OuL1ecnUny/fTZU87PL3n58oxt1dC2NUUpYNrZ+UsyA9cXL/nc5z7P4maFyYRlNp6Mefjwdb7w+bfwIWNxs2a5fk7dXrBcVrT1jPF4jjE5k+mUtmmFIt40TMYj8IH5fI/pdCo6P9wOWr2CoJyapP8POo4f+NCLEevIXgla2FZyj1LyJgCUtQ7jUqxRFMFEfUaFR4PzpLF4ax1FJgwq5wKdbaWDH3ZYuYAOCo+N7nAe2w2C1s5ZbHRItlb2YtvKOEBae94nbUDpynY+RGBTBPKLWEhZK4mpUqkzpnBBUVeWYBvsdNK7xAXJ8mLXPY2S0oN+gTCMCfhwK071aXUIAzNEiWmDUgqiU5lWAjCKmC1oJfpPSkWwDUXSEpVx4pSMhf4Qu7m54fLyUoqSIF0qoxMo3w9MEqIcgbzFpF25O2Ijy8T3+0ySWxsd8oJ3zGYzvJf3N51Omc3m3LuXinfZ/0J/d/Hah+ikm+6175snXdfSNG10XPX91877qBnW0TlL0tPZm+/xxsM3ePXVV1ktazabCmsdmRadUe8d2nZ89Cd/xrN/8Yec3LvD9PiAKogrNM7RNS3X19dcXJxTjGu22w1lWbJYXrJaL2ODRfdJ7GKxYFPVFMWIpmnR2uCsjBMEYNS2NHWNjorJtmupqi1Zrjg4mHFyesDh4RSl9hiNAqcn9/j0p36Otx59iqOj+2TZhCz7M84vrnrtS4n7OoLFijzTnJwcc/fOqWioZlrWwRAZIehe03EAr+I+D0MMDoltqxRpkEJ0lFwEfYmyFZrDo0NGkwlXV1dcnIn4vocdp10BjjzCMDs9PeWNh68i5io1T5686McunfcYH/pR9iE2RZ2n0K/SuHdCDyqk80gkNBSWbjh3QiCEwVCsbdteR7hPQuPa/HjBGhVWd1iHMYYo+2MJdj+sH3ZHFtPXKsoKiHPuO++8g9KB8VhYGWmkb7vdYlsxnMhzMYSxrmVbraP5U9Tr0pqqrpnvlVI8qHhdevYM/dmpYOe8DVgrlc6PcecDvZ4WISb8kUEkv6p68C/FtPQaybU+gcL96yMxHzXoIIX4c3LZxAUzsQWVDwSd7pWwvcT92UeAS+5zcsULIWA3W+y2Ek00bURTtPN0KtCtN+xNKrLMRJa8xShN01RxPDd9Bk/SQYQMrT2j0Yimk7iUF7kA2EocmZuoExqQ2N22LbPZhM62AqT5IOxh72MzSZPluYxjBYlrXdcxnc1w3kVGvqXrKow23Nzc8N57H5CXI/JRQTkSbWRjZMTOB9BGU9UNq/Mz2ralaRree+89vvrVr/Luu+9ycXFG13Ux5uoebNjVvM7zjPF4wiuvvMLnP/c5fu5n/wpt9wqXV5fs7+9zcnLMaDTqGYDp8zgbcB6m031OT1uePX8q0juaCCCBCwIiJ7adFLFZHJU0wzrZKeCl8I1fkyRO4j95cSFOLsU+FeLB9WDV0DDWkSkWAaUU5GIeuHsGKxIQkIrS0K9d+n+T+DesX8ltErgDgfWmo662t2JRAq2dk6mHdA8EJEifeZCyESa21AGhf38RCIvP28fVAb/ra6t0RdN9Un3+titxMzAdfQShdDwfFQOTKsXC3Rx6CC23Yb3dgr7P+VO8/tjPEgaHYs8w/rw4v2RsNKqzWDxeQafBamisJSsKbBtYb7c0dU2WSeEuepcyAWA7MdnobEddV6w3a4zSUf8yxNqzE/1DJfvSB5HZyLRmt+kFGuUsd+/K+Ony8pLtdtuvsV1ZgcT8S803Fc/P9KfWoEwGCAhZ1zK6/fjxY6bTKfv7+xzs77G/f4ejg1d482Fgtb7ixcsPuFm+5OXZRyxXl1xdP2e1fMpmu6LI8+jG7MlyzeHhcWyiZZTlRKbMovCkUhC8xvqGqtryO//0/8nXv/5HdG0TQU3JXSUejJlPZ0wmE4qixBjROOyspa5rmqbGRe3wzWbD//X/9n/h8eMn/Lv/7r+HMCnviktsXAPeD0SOt956k09+8k2cc9R1Q9PI87Vtxw/efQ8VFLbrWK6WNI3rGeogdX5mcrIsj2aYcXcoQTG0Bm8Dznu0SfJBaZvFPDzGAZ9Q/90cIGn1hegTkOC8SHgKUTu2Bx3TWg+idytMu3jfd9e/klpg92xU6Yx1EvuFERy/kw7cOBacxnal2RpkqgKHVyn+pDwrvV4C9Yb97GNdp0nyITHnDwn/Gc5sHwJKmx1Ac8hrbrcN42vGOqBvhoRbWWesuzzb9Zp2s6EgoJwHF4RVqRVtrqhVIAsuxmGPMbJvjFG0bcNyuaSqthwcHDAbj6UuUkL0CEqA63w0Bi9TUlqJ2ZUw6D33799DqUDTbCMRIkTH4x3NQiW5baoLVdrn/2PQ4JtMx9y//wmcbylHaUY9gXhDgM9MRtO6vivqnCSIzjtBbfH9YZbleXQHy2JwDOR5QdPUbDbrqKXlaRpLnsn40dHRIWU56g9x0cqSThckQWEVA58wJi7Ob2gbz+nJHVITK7AVkM+rnpU3m816ACGN+QozZjBUSFpOqYOyXq8QwXbRvBAXOx0L7oy9+V0O5m8wHR8xyu/y/OW7+LCiaTbSFdMugoI6bmDdaxWmpMI5y3LZxOJKDp7WNkxGc9o2IC65LT5IB6jZtHE8wrHZbimKCRllLGwtm01FXTVM53Om0xl9gNI6irLLyI7WGhsL3YCitRbrQnSmu8aHnG3dkXVLrKsYj/YoiilNFchNxsuXz2m6ijK/w3R8yAWXFEXO9c0NmwzC/pzVckVTd4wn0lZLot0DkJfAmsQUUf3G/9jRLoe5i2lU+EmbZkjwUjYWArcDSw/gyetbP2zQW8BfXAM6unG6AMv1hm1VYV3Lp955RJY95/rinLprKUcz2kacuVq3ZbHe0rSi43Z1veTqSkbSqm2D94HFzRKlctabJT/64Ie8PHvCav2GMCVHkOeK5eqazfYS6xu2TcN6u+Xi6orzi3M2W9lDq9UNo1HJG288ZLm85qPFe0xGU57X54yne5Epovjgox9R1WcopZhMZuSZp7MVZVlw5/RVAnJYNE3DZrNlOp1EQK9gsVhQFEXck5Da2UNdn7re3CpQfQC104hNAK7vK950PEISfFVaXIgwKVmUA6KzscPuQzw0Raxcmg0Z3gszo/MZPo6u+ZC0kETvzVuNNy52XEx0+rQoLSCPR3TRMpPHNZDG90P/meXQU7G4TKsuoHWgyKWRYEzU9uu1OCSGdUHTGkVeFD1zDL+TzO9onCatm/6ahsRwiYBZBEtgSKL7cRulcFGwNlHrewAGLawK6O3phQqf5qTkgJJxYROLH3ZGHuN9UkJfhxANCRIov7sGVE+7j5W9PLtPoxSRwh6SnX3NcrlkNBoxHo+jMH1Oaib1TuZhYBQlMNEYQ56XfaIsxV3onXeJiYg2ZigkQojjyghQGY1gFosV3nuurq9JJknBBxlhbVvaD5/x2taxt9iSHx3xo64FZdAqAzq22zX/8pt/xGtv7LNcv2BTX9J0leg6Wts3boQ5ZzBGs9lumU1nFOWIxx99xGYrIEI7GpOZIppkjAUAdFA3NWVZUuRzDg/usFnk/JUv/ut85rNfYDo5ZDrdh6ApyxEHB8e8PLugrjZkmRbmXoDZbM7pyQn3795j/2AeG0RxfQc5q3rwLhW1ih7EIYWCPp4P/w0uykS5BVnrAuTHNCwEjMk4ODhAoTg/v6Cpm+hon/ZDNF/ynrra8tGTpywX10wnU7y3MjKuFK7r0EUhuceAOg4xKr0XGMbW1aBJA5IMZ8bI+FJcH846jBZjCq8DzqodyY2QtnDcp8RjJ+21OO4bdduSAlUaS5YdpW9NAyRhwcSSkUI7glRk7O3t8eUvf1n0gON4WS8S7hyjouTy+krG2ZTinXfe4Y1Hb4nbYdv0527bCaDivSWdpzIyq/rrsptoy5+eNELt088mAH/nOg6MgN1zHpJLcwIN028NzKk0JzxcnQEZUDv3VIqXYOXqJ7MnWS6RhZ9OfYWwskOa1vA94KexrJc3mGgMtwUqZei0pwkWF1q2bcNMjXBWtM7yCEaKFm5N02xxoYnM7rGwbxCjD6OkOZqa0T44dPC3QJy0WtpWcuE8K4WZ0rp45mZ45zk9vcN0plmtFlxd3uDsDWcvX1IUJav1irPzM4oMkUvpPIvFDSYvQRu0STqIKgJ96ZwX5+H33/8h/+yf/TO+/e1vs9ms+ntCELkG61wvoh7RYAGLraJuttwsrvjOd77N7/7u7/JXf/4X+Ot//Vd58OAB6/WKO3fuMpvN+7jsnKOzAevkDNjfP6BrW97/0Xus1yuybHD7zPOsZ7E3bc2oLEgSM/1m62EsFVkmoV8uCc7fXZtGqdj8c1EOQ/KDIo7oypq29CZdt3LKtLylzklNDEJ63eHVog1F/JkE2ugIOA8bJhAIMnuK2ymy+z0Tf8o5KVqFNTeMIu6a0cnXGt0X1jsxmNg4ScBFAhdj/pbybZW2L2miZjcXH3Jn+VM+m3M77O7dy08EAUO4ZdZzi0zB7bNikILo31b/Fgn0GqCirx3fmw9sr68ZaYXV0M1nNLlmMy6pplNcZjg8OebZs3O2240wjFBY2+J9IeHZiB5tHt9T23YRbEyMR814MsZ7R2sbaUjG9ayVQ6eGdbp2wZNrIU9cXV8R2o69PWGnOWvxaqgxEsCX4kFvXLm7HuJ5ZUwuQv4RvF6tViyXS54+UZR5wemdu5yc3GEy3uNTn/oiztWsVkuurq949vwDPvjw+/zgB99nW61RyrJsHMa0ZLnGmEwaQyGL8SvmPjEndK7jX/zeP+dP/+xbUfbK4awYWk2mY46ODxmPJ0xGwvKdzfYioUT2StN0rDcrtpsNq9WG65trrOv44z/5l1xdXfGbv/mPoo5+y/HxMSEEMTmAqC2oYvM3MJlMpLaNWuCiZBM4PT1iOhvTNA3bzcB2Xy6X1FXLer1ms9lIc7dzFEXe5/lDHHEEZ/vdo2LMCyGe0h4SM61fqPF3B7A/yO9YCGKb2zc+kza8bD/Z+5IXpX3Z7wbEwb7fKf3+C3FqMTH2EmOYuC4SyOd2NlLvdeGHM3Q3B1IgchLxPfTAv3zwGNPU8H6C5DLJtdclgC+FgR195Vv54BAm0hXfYUvS/74nXXPFZnFDqCrKmCu1StFlmibP2RYZNi8gQqV7sxn3791nNp0BcHV1xXq9wntH13Zstht815HvH9A0Nd456npLESXSmq6mbVohAnghFdy7d5e22/YTpG3bYm2LMUaM3YiydEo+j4m5hnO3G87/qo+fGuBD1aDXjMoR3ovgMsreOkBMZvCxg9NZh446Aj5m784L/df2lHGP0hlN09A2HaPREVoXNK3YGJsgo25tsxHGkTFYe869e3coizlGiWNf223xvkMpoUIm1sf19QWXV1eMiyNm00PaRmyOX7xc8e6736coMt78xH2WyzUhBI6PT5lOp2w2WzJjGI1l1l3YHQ1ZljGZTHrdkx68jAFVwL20BDXaeBaLF1SbQJG/YFst6ewKWAMe77N4+CmKMiOJxDdNQxcdhWWMTMDRqt5QlmPKckqRF6xWMvYgeh4Z6/WSo6MjlIama+KhJ6Mwzjls56nqWsxFJhOyrIAQoslFiQoGnWVoJSOFyojOy7apmExHGD0iKAH8RqMC78VC3RcNeeHp/JrtMmMynrPavMTTsncwoW1uCL7BOnmezaoB5PONxyO225q9I+kIjqYT9KWOHXTfH3KKqFGiYprUJxUKkmbAziOoXXHvnWXcJ04JhEpPeqsijX9V8Z66W+scdh3SJFlqWsumbdg0DU0L12vP2c2CzsHR8T221YbxaMzewT5//p33eHF2zmQ+5Y03HzIbw83NEqMNrz98xHhUsK0aRqVmu93wh3/4FSaTCVUte+CzP/NJ2u4N9g/2WK0XfP7zn+e1119jPpuzWCx5ef6S589fcnp6yutvPCLg2dQVP/rRB0zLCc8+eMLNzZLxbI+Z2mNTVTTukto/kUSwHqN8Gr933Ls/7T9zMhvwzjEalSyXwjoyxrDZbFkut0wmIwn4LhloDOL8aT+hBj2+vuhNFVdM4hKNXn4tdaH6uw4qsctMvweD3x3NGWjoWgeUi3omWaCLrC6vojC6geAzghcQ1lphJhs01opxR9t1NG2NnmhcMkDoQau0rkLUgEvJ7kC9z3NDZ6Pxjw+x+JUESbQkZMQPPZgEpeslBivD2JtS6jY4taNHucs81Wn0JyYIIcSxm6jnYneeL4SkqaOEyehCZFR3qCAC10rHjnwrzKkkfC+S1gmYdXiV0UWmnNIKlwr4BND3DEf690WIjIO4K3X8XP2aQZLe1WrFZrPpAT0QZmJR5PHrwXk9gaPytYqMAkmIVWSopXpi1/VQxplAGY3OTCwUZB1bZ6m2WxbLRTRfUnhEo1EFy7ZaMncNfr2gM/ewVZKkKIRNjqNpK26WFeW4Y6Q0rVWsN8vIIOkoy5y9vT0Bs4zB5KUIR2PZO5ihjeLk5IjZbM56uaXZthgjRi/7eo8XL19wc73k8uqacnTJ6ekvUJYnfPTBJcYsOTg8pChHzGZT0Ir7Dx7EdS9Cw8F7jo+OONjfu9XsUkr3+pcyfSFjfdZ2tHUjf7YdNmpZaR0VnrSME+d5Lg7UWYaI1xOTzWHdSn4xaGF5HxiNx9y9e4/F9YLr62u51po+BocA19fXnF+eEULg6vIKaz3laESWy4gjajyAQLeKyQHgTVt5N4YMjYnErjeEII3ElKh532GCAR3PLiXrV4ZPGACm4YQa5B9UkDiWClJ81GYzMduO4F8q3hUR9IvP5CMjILL4jo+PePTmq/GM9tKtj2fpqBzhfOC7332Xq6sbOm/TYBAJnIeh2O61D4nMhAAGgyfgIrtgwDhuFxnxU/ZFYIrbSbtHsIHhPviYHButZSx6FzlJT7gzE5maNIRwa++md5KcCpPukyNIAyjdW9K543c+704B7R03N1dMApTOYZWnMQ1L7QmdxzSKZlMxzUuJa35YW52VAlCMMVIhlHSqO7quFSkFlOh3xjWcRPDF3EqYdCbLUEZMR8TMpYUAtqnp2pYQKsblAePJMfv7c46P7nB1uRJjGQV1VUvO2sqUSA/2RIMm5UXE35OhjThNV1spdL/2tT/iv/vvfoezszMCLgK+DDmZT4zaHX3JuJr6aXcljbmzizN+53f+Kd/61p/w5S9/mV/+5V+hqmoODw85PT2lHxN2rpca8D5weHTMz58eY20dRxkbttstVbWlqmqs7Viv19jOkhmDMUOOlkxcBAjUO3t4aP4MgFRABU9uFK0LtxqBNjpSxrq8v58pf7n1iMDfrtSEOGcCKp1vKQONBV5kJvZPFRv+AuxJM46eKblb5soLpqmpEFkqJu1ZL+eWNBRjLR8r+ZRDQWzIRZBIttlQ1oe4H/TOrFzcWYSQJCwQzdn+Iug+nibbI9WvjtjKCBCc6z/J7vh8Ag0kVehbJPLb8UV8/J4PA/gaQog5oMcbaTxubMt6s6LMFNN33ubks5/nRst1ePn4GXXMNdu2xnkZOxU2qxV92syI87tzvfmP7boYK7r4nkVvz7oW52rabst4nOOCIzfQdjXOWYpRiXVR4sVK0yQzhlVdk+c7btWJQKB1bODEMekdc8H0c8aYqImp47KQOK2CNGyl9vZstlvWP3qfDx9/RFkWHBzsc3xyxMH+CYeH93j0xjv8az/3JZ48eczV1VM+evp9fvje97m+vsDicVZqxdm4lvUdonFPUHjr+cvvfZ9/+fWvs1otACGTaA0HB3scHO4zmU5kfHg6oyhEtqooctEAzXLyQkg8rrM8ffaUF2djVqs1m82WJ0+e8l/9V7/Fb/7mb/afeTKZ9ABfCIHlciXNMR0iaaiIRnaei4tLRmXJYrHkM5/5FPPZPvPZ3rBHQoAIqnatZbvZslhIrXN9fcNms+by8or1eoNzHW1bo40AXhodyQRZZP+FOCC6Gxg0vXNKSnYDKUDKfooAsGeHcRd/Nq1vn8Z8o8ZRSPp4cVMEL3vOeUcbG3YiWTU0BfsQk+rjEIbdFcG5dJLr+P7QaVycvq7erUV8BAV33yuxzvBxAiGB7wl8HhiLw3u5Beyla6N26/X0/ob6PQTP4uoK2zbsq5yTz75NW4zwezPq6ZjJpuZqWZG1GmMdB/N9sodZrzM7GOghOBKBoDzlpGS5WmPyHKUkL1c66YrGvNOLXMR8PsXalqreUtc1zjquby5RShoFRZnhgu2xBKUTEeNWlvOv/Pj/A8AXMFnA+RqtjBS6qUBPB0TXYpUi+LTIwbWuL7J0XISpAHPOCYq+bdmua7w/pyxHTKYleZGT6ZLpdM5suk/TbnGui0Wc0OMXqzOadsV8Ppdx3Di2qxCL6B/+8D1mk1PGuaDwSluquiIvNJkZsVpU/OAv32P/YM7JyQmr1Qqjc8ajCefn53Cz4M7d054pkj7HarXqR1hlDaZxTVmigiko6maD99C5DVVn5HtFwNZDMQmyAdsmJV4OFxkydV1HPTqFda3oEfpAlhs2mw3Owrics1pf4YI45iUgEu37cWXvfJwj7yiLEVlWEBBtjul0ijI60qPFIWY8HqPqBq1VfD4DQUtHIy8lNgVhV6AcJpsQfEeRH3F65xWWy2u8b/C6Y7FeMjL7NJWi3t6Qjy2gmUzHdLZiubpmMr9HCOLwlpKvnwDNkQr8VBj8pMducQbsjAh+vPsRfy5IoZ8CV/psIRVfqTCJkejHhcsVKEXddVwuViiVE0LOs5dXjCcHLF6cYbIld+7dxXvPd/7iuyyvV1yfX/OJNx/x+U9/EtuJG92DB6/yP/n3/54kgcHRNA1/52//nd7W3Fk5zH75l3+JEMTMZrVa8/rD13n9jYeR2dlx5+5dmkY6/ufnF9Rdh1eB2fEJe2VBOd/jV7/weUaTWVzPNyitsd6SaQNYTCb6d1pryqKM47Ke68tL2rbFO8vV1VXU3BlAgKZzqNjdbNtWRl29F9AgxBE9H+ii+Kg0qEJfvAbvbgFZfdCPxX8qxIfIqFHK4GMiaq2/dV9S9q4iGJgy2yw62KaEKe1ZrZIOhgctwJgx4vyngsd1HSa66ikSKDEcS2l8VXmh3AevEF2MyHrLdO82Lb8hnTIVgTEZe5KDWEdALSiFDqpfj8n1V/mdQ2/nkCYEQtKS00PBm/ZNYi7e2jc+jRMI5f7l2Uvee/ddFoubqDUhWjFFUTAZj3n11Vd5/eFDEpMxqMjyC6oHF0VYORUWETRUoBKLJnUk1VAwAgOLNyYwIkcih3piAiYdxF0gIj12R/TTqFMiRMr34/XwqhdkDoFeUzbFmZ5JnYCXHigR4FI+ZxwDDkEMGLoa6oqx7RhZg/HiLq51Rlt3OGtp7ZblckMxURRdw3SumExGvP32JyJbuaMoCsbjcVwhhoCw+F6+fMHh4YxXXjmlLAuqqubOnUNWiy1FUfaaqZNpwfX1FZcXZ2Rmyp1PTch0EeUnMqp6Szkq0AQ+/cm3me8LOzCLbpermxWPP3oamcUrtNaMxiNG4wl7B/vs7U1oNqJvuFptxBDDtkNDJgqEkxjpERBKyfl4PGF//4DpZEZZRGHxkDTLZMTae6LERiB4GYnYPziktZb1ekEIDhccJgzAUdLBcy5QFEVfHHnr0Bh5LtI9TYnaznkR2YOJcezTucAwGlwUhTgMty2ZjmPvsQa11mOtJ0f3+jrCPpZYNZwboU94FZIL9ROEIQ65OBdL4RgoCWK+EICYI6TNLTFIwJfzsxesN2K4MC7LqNsl+lBKrdhsahaLBW00JuiLR03PXunZIz1zKQWpdD5CUF5A+JToh2FzSQ8nXrcd04DdmO59iunD+ZoO6EDYARkCLkhsSmNB/UhSCASlbo3CyBP2t20454en7/+t/3qHka/S8ymw6w2zxjGx0OkMr3Oqbt2POrW2ZbPdMG8PhAUZdYxD6KiqLSGI7nEfn7SGIBp7JhNtyC46cGplYhyWWNNYYc2XpaZ2kt/leU5ZTmibpPWjybKc5y+e09klWsPJyV1ef/g6rtmLjSqD0RkmE0F+rWUfyDULGJMKr0BVVTIxsrjmt3/7t/nqV/+Q7WZDmrxJrDOlhBFUlqWA9lHXyhgTQZdwqxGemA2dbXj67DG/9Vv/JX/xnb/g7/6df4dXX32Vtm05Pb1LcqwVYXhplJvccHpywHSayy3rAeIBuH729Iy26RiPS5q6Yltt2Ww3rJP+atVg7WAalM5jqV3EBVTAvzRJM5yXWsUReFJeKk2IJHlDjBSynJQYB6S1nPZ+AsXCx3JQUjtLcprhFJOG2S7Lf2gyBxKbeljz/WKPDQUX96/vi+XETk33MEBfsPYAW9wTib0jAF98p2qnGUhkGseYoId3EN9jktQJO07XoX+N5HD7kx6Se/v+/SdTlCjiEsHBlA35Pgb0v+sVSePTE6g3W5rViqDh+F/7Atv7r7OqHU3X0V6sqddbnJdGpJhEyIht51qsKyhGIlVACBG00tgge1NpIqPcU45yMSL0FugYTxVKF+QZdF3AOUNWllS1p1s7TBxxziIpZbPZiB6wF4MOkb7S/ZTCUHskkEdioEyt6biXo9O4lnHMwWhqMO4wRkwvLy+vuLy8IjMZe/t77O3tsb+/z6NHb/Pmo7f5mc/9PJdXlzx98oQXL55xdv6Cy8uXGH2AMSOJyfEeLhY3fOX3v8LV1VVsegaKPGP/YI+D/X1h8Y0nTCYz2sZSbRdkWc5yqSiKnLIsOTw6Yj7fI3h4/fU3uHvvPh9+9BEffvgBK7vmBz/4Pv/4H/9j/sE/+AdkWcbp6Sl5XvaMqYuLC7bbrVyHLCMvyr5m/973vs+rr76C0YoPP/yIR289lJirk/alrCyjc/LxiMl4ytHRcYw3sha3m4r1eoM2whjebjdsNxuWyzXrtbguN00bG0q+3ysq1ijGCHlGp60V0qRZBPZSTPGQdERRIWr6fUzXVyWGn+y1XYA7Huryc1oc3ZWgV7dq4L55OQSj/k+lejhSkHQGtl8666UpkJ5TGp3EXF5rHUkFA6i/WzcTP40PfoeZTL+uU1NU1nr63JGA0D9XxFBcYH15DdZiTg44+tVf4qMWmM9pvMWeXeD1JRUyM2E7K9NCzsURfBdfWyag6qaRuiwIK7+MUz11vRV5KqWinI286dFojDGK9eaGZ8+eUtU1WmnqetuTtAIjOUfivU7pjjHcqk3+VR8/NcAnB64wejwOY1TUHtlZFRHlTxpJu3pyMu4mDrdaZbS2jroRilFZslnXON+xXDVcXnpOT+8xHmUY1RFoMLlnu93g3YRROaVpG1ara5q2wlnLweEhWhlx+IoL5tGjN8n0lPPza4oi43A6o21r8tzxhS9+hu224+XZ+1jbUW0bTk/u9syZo+MjFIrMZLeE1+taRp9CEI0bF7ugCXhKlPQQwFqiCUjA+wqCZjo5wCrfC74DvTkIwHQ65fLmkiw6hmotI6DTcsp6s6IzHl3LOHBeTBmPx6zWMB6N+2I36YqJtpQAcUZptBYAoSgK1tvqVrKTxkTSZwvBs902/X0UQEOSuKLI6VoLlBAKXBcYj485OX6Ty4slZ1crypGmyOdstzXH92Z0/oqgJCntOkdVbZgVwtJrmhbbQR5HK9NhHm6Fn6HwSgLE/Xd2C7QQfuzvP+nr3UcClGShh1vPEXaKmgRi7eqapGKs7TqyLOcTn/wMn3jnM6zWa66vrrj/2haCaH8ppbl39xVynXH37n3u3btHwAHi/JRnY+qqIy9M1AgQjSYfr0ti0KTXNslcgV2XQsW9e/f54he+CER9FMRxEOUwOlAWJV3bsd1WvHzxkvPzlxQmY1JORPfQB5RRKJ1R5nP25kfkphCtgtUCFQZnaaU0e3t7KKVorayjrnV0nY1CvS6CMZ3oMzlP0IrgbN+D8V7GVvPYHS1HRdTG1OjYGUvJVUpy2rahaVrqtsW6js4KAOp86IHJ3Xs1dJsS+zgeMD1DRR6q754NQtIJQJLuXtd3/FTsln6cXk6QzlV/YEYQ0yhFpk00FkjA224nCnQErhLzQEVAxCvZESnODhyA3SQ/rWcB1Tzh1rpOJ6j8e2RcKOLXCYyApq748z/9Fu+//x5VVcUOOf11CN4zGU/5t//tv83DNx6ijaLebmUENiZMonHXDYw8v7P3EtsjeDHl6Lt4EQhIB358S8P17aEZWfOx8CAIWwrAqzTyHfo8J3UY+9GlyG4IXmHtkFCoNAodQRQNBCXF0u3yJT6Hkvdme3aqx2MJyqKCQ2mJvXW1ohxNcFZGyOU87Ggah1c1QVnA92PHRGZkYiB6oOlaxhPNa6/fEW3NTBxCq6qhqhv29vd6593FYkU5Ujx689Xohj3BOZFr2N/f586dE1599VUODg6YTEbiRqoHJpZSIo7ctQJkzuZ7YiThPVXd8OzZC771rTOm02nP+mvbhuvLC66vr7m8OmexXFI3Dd7BZDJhf3+fvb09Tk5OOD05wbYd2/UGkATp6OiI8WQscQqiXqYTtkNiLQQB046ODqMRyRrVJ8kDcCZjP8O+EDBWCmgXBqH8XVA5btu+cKTfXQNTZ/dc6BlniIQHu+s7uEFmgKGxpFTAedXvs7SidRjW9a0kPRawyVAl/byM6A7g2xDf4m+FgFsvWa93knSGGCEgvyaN0CX2mYqOPIphZC6BCgL8CQWoBwVcZECns2fn/QevBOCLAEkaOR92MbcAPN+zfBCZDQ8BewtoSXwgKW6E0R8gslduFxA/xgbafYSd9mHYAS3i+kljzUEHVuslk+AIJqMeFWyKjKYFRyAzHnDoTEAoZ21sQCROpKyffvxXCQsapIkQvIy4lqaEoGiamrxQveth0nJ03kXQSTQSy0KM00ajsRQQzZSLcCNF6LbixfPn5NmSe6f7BO8ZjUTDej6dMCqmMSZLvqo8BCMacMmwarG45p/89m/zta8JuJd+UKmAyQyj0Yj9+V4fr2R0r+gbQD1AioDgm82GxXJBVW1x1omWc9vwx3/8L3n8+CP+wd//h/zsz/4Vmrrj9M4dAjqe43JPsiyPZzX9NU2xMdey9SaTKU1zg+08d+/dZ/9Apg58EGkFH1lTddvQRH2uatOwWm1Yb9a0Tds3uZsm6VZK8Z00lXzUM0wNfWNkLDCBjkkrciCcedEti06hMvo2yFMMkHP8t9QkS5GnB71TbgcJxN9JWeI1SV/sFvnExsYA2Kf1Lns2XtS4j1Dc2kdSrad4JZnq7lREysdT+0F9/E2FsENaul3cp+dOTdJ0LO+Ce/1zeB9dNeXvXqlh30aXYm7F5tQ0kZjUrLfY1RrlPc04px6XeKWxtsKpHBtUFN/vorHK8NoCVsnZF7RMppl4fiulh4nv2ERs2w2ZduztF3R+TtdtsbYiy4Osazy5h6LI0JHZK/qbMh1TNzXj8QiV6f56Jq3jj8ex23+P+U8EcxIcmkzNiIB2CPRTY1JjGDrruLi44vz8HK010+mU+XzO/Qd3eeXBq7z2yhs4J9p1V1fnPH78lOurJcqIaYhS8P777/H48UdxikHey3w+4+BgnzzL2d8/wJiMthZ90LYVICzPc4o8jxIGnvVmw3w6ZzKZkOc5b7/9Ngr40QcfUlcNf/7nf87v/M7v8Hf/7t/l8vKSo6OTnjCUNBObto0gp5w52+2Wi8tLTk6OUQQ++PADVusVk8mY0agkz3KKUnRIiyy/ZaQZDz4ARpMJ48kUFUEZmU6I7GcruVLTtFEaaSl/rtesV2vWq60wRKM2tInalH1dZ9SOoYXuz7rUHFdRDi2enPhgd+693jGakkfCJYiEihBZrmmf7v7X75uYs6hIdoj4orxmZCEMkwRqOJdDypUGJn1fUcT9HINkvJyhz519cFEvW14ymQCGlKOH0L+H3c8Y4r95J/nT8uoSrGWrAleTnGo6wZqSdVXTZTmV94yDxzpLP/IcBsfxISZ6XLC9Hq51Hcbm+CC67EVeEDT4thXTsOAoy5Isz+gcWNtSV1u5GlF7dzIdyz3WmvG4QClptqXcU0hrP93jpwf4vKGpHNtqRV4YDg8PaFsbDzkJztZZQbhVRpblUSxcOqHGGHSecXkhYtlHRwcYk+NMQPvA0dE+3musheViw831An1oKIuMm5sb5vsTinyKUiMe3Psso+KA11+pePzku3S2IjOimVXXMo6wXq85Pj5G6ZrpLMM5z+MnH7B/MGU8njIZ50ymGad3PjcwDLUmz6XAyPM06tv1SH/6udTBBlkgA/DicUn8XxvyLEOFjKAcWaawHazXFo04+WkjKLx1LiZ+cHl5SdDizptlhrIsaZqWAIxGY7KswNnUS+y4WTwnywUkE2AvJuVakkxjMpxrGRVlvI+CSi+X68iS8BAc8/keSms2qw1dJ/bwXWeZTGWsqesqIEOrqh91k/GMjO1my9HRARcXF6w3KyYT6XCFACpMyPMRVXND1SxpmprZdB9rOzrb0rRNDGKDW3G/2YJCpQKK24f4bgLQl//p+yGWS/33dpKK9JW6fWh+HOBLj55ppQbzl93nCKiYSFkuzs7pOsf+wSFZZjg5kcMnzzRZbuJhNiI3OUYLOKd1RlBGRP1tizaKrmuoa9t3g7za6bqGBDg5nO2wzsUcKIhL3cER09mMLNqmWyuJi91ULFbXbOp1fxBOxjNubm5i116APY1o8vhgUGFKXpzi/Zi8GMk4TGcZj0Vkd7Y3I4TAdDomMxnKh+hOKuBOW9dYP4BymcpiwuRxXphqZVlweCDuu+NRSRndQJNDmYpASsRPJNG0TjqdAbrWUtUNi9WazbZis66omqZnd6k+eA9jHoOGpozPSm6t44EVmTJaoaIzpxRpO2sixFHgdFiFCCr1DfDE5JP3q6POYcBjGEx90nMNjsOhZ44YbyITQPdjLJLX+v41pe2ob5nMSG6fCv6BETLUEkHAh/hvkuenwluBF72J58+fCaPZmP610tqrqgbbWi4uXvLKq/d58fQlV5dXfOpTn8Fkpk+QXQRFiZqBcman0YK0M30Pqsl7C7GllZIJhsEflVgMof+c/bTSzvZWO3/fgUVIY2TpOinT/61/L7v1x469Tv+aMbfZ+bvcfBWkCdbWDbapyYuMNgRW2w3K+whOB4ILtLahqq4pJoZQLZh7GU1pmk7YsJloc4Xgo94sBG8J3mJUYDYek8d4sjebUW0tKmSREeWY743jWdSgNHgnTNqu68Rowdp+pD0JAevoQK77hg4QxZCTw2NT17x49lKYQwTe/+G7vHj5nD/70z/lww8/lO696+SzfgwMM1pMO4qy5GBvn9dee41PffLTfPpTn+H0zl02mzV5UTKdzTg8OERpI2w4JyO6eClZHJCXE05O7nB25thuVpA06+Kyvt3UIbIxI1CCGkw14p7ti/S4XwegWZJWSUZ1v36MUgStY6OrQ1ruoW8O+hBQPdtmp2COoypKx/US32D/0klb89ZCU6SxPnkrEVwLDHEtARAxiQ7IeZCag+wATsN1iaM9yOhd3FVDUh7NBVTctyrFnPg9VETS016L13gYSg49IiPvZwBhfSzs+4i8cx8kjqo+3t2KU6nY0DFBj2Bp2uM+gaxhpwEYY8rumlBpqaR4s/PoWcFAaFva1ZrSKOrXTrj/i3+FemtRv/cHuM0WgqduW8quoWmbWLAauk6YUknn0xgRlxfNOAEGbGQJGW3iPhwkCJRS5HnRvydtVJSDkfjXNE3/e23bUuRzMmOYTg4w2RFXl9fU2y0qOIJvKIzizukrHOwfgS6p6q4X0Q8hEJyAvM45qrrin/3u7/K1r32VarMWAXAlLtp5kXFwdMhsMmU0GlHkJZPJlMPDIyaTKclIJNMmAkby/M45rq+vePL4McvViqpuqOqKEDxXl5f85//5f84//IeeL3z+i2idMd/bk8LZQcDRKs/1zQ35xvR63cbE18qERXV2cUlTNZRlzvpHaz7x9iOm0zFGZQQdMBry+H4h7IBwad0PjLG2admst1xf3bBYLKNDsDj1tq00FpqmoW62Ip8T95aJeZ2Ac7tGGMTRS5XCQL9qh/MrOWxHdhaqZwzfKkBTTGE3DxW2WuDjDQthj6u4V0PfLOih8iFnRgr8wf5CDedcij0fA/2TpMeuNuCQx0v+gY9SImmbadVP1aiQJDmGYv7jD8XOvo/7uT+iY0EeoI+bw4kdwGu88WwXV6huy73pjD0Cna0xFKKj5qTp5jsxZui6jsxE86Od/7pImhCtQ0Pwwnx1LtZyKpPpF58RVCArVuztZ5hsTleXbNaSd3c+oMjQjMjRFGND6xo29YZtvSLPAqVSKENkLoLR6T7/D7Ee6a9hiHXgsBaGM03+KmO/rnN0vhumprycXavFkpuba54+e0yRF5ycnDKbzzg8POTRozcpizHfuPyTmHda2tbxve9/F+u6Pj/NsozZZEqR5RwcHZFnJXVdRRBMiCPOpnFF4VreXF2Tjyq6Vpi/k8kEozRvvfkWeZbz/gcfsN1UfOUrv8frr7/Oz/7sz2KMjPimXFNp3ZuFJXOlpq5wto1ahuB9y8XlJfoqys4ohVYaHR2qp1MxACmKkrwoyPKcMs97/c9+7N9okSFTkQVc5OTFiNl8xt17d4a1GKc4nLVsNls2mzXLxZLVesl6tZIGQ9cKwOy86OdHSQGtDEGLqZkOUW4mxpAEyKWR+yEJIroHi9xBIMjz9HWB6tdTihP9fgsGfLou9DWMlGOBFKdUUCgjTY4sEwKR0iIp4ePElvOR6OTEkX4neWZoykYTovjehPQlPydlyqBHnOLSbjxSQeGsp1reMMJTZhl4Sz7NAAMbD9ZSaE2GJihN0BnE2DoAfEk712Oto4yafc4Fui4yv12goxMmMwGjpVbPC01na6xtUUrM/0IQHcjxZITRhtX6hrathI2pPamxOnyun+7xUwN8m82CrjtnOp1A0NSVMMFUL24uN/Ngf4TR4l6ro3ujVrCtKrKsE203ralqR1FoinLCeGT65LjrAof7BzSNZVQcc3R4yqjcRxsHypHnBevNgu22oW03OG9BEQ9aAeLOz8+ZTqf96EBRlGQm487dQ9FTQnJPo93QUQ1EZ0pknNdIoZPlMmIkY1ldZNeYHhXPsgyCoShkXGG1WlG3DZmRAixRQK3tyPMSY9o4tiddyvV6C3im04kc6iZD5URtwRobOkyu8S4jy0Z0XY1WxFGmFue6Xq+vdQ3ERG1UyihtUzd01tE2aURSRiCXq5qus+wf7JNnBk9OVbV0LlCMpihlKEaiK1WMChwbtpsWTU6RzTg8vEvblBwe3KVqoi5S6FB5hzYdyjqqxlGWBzx++gHlGHSumZUzVqsls/EUrQ37+3PQDudrMqY9wNd1Xa+bkgDVVIYPh73qiw7S99LfQ2T87fz8TnyhT7bC7SDXgyH9Q8dDYfd5dlCAIEFGo3Bdw+L6knff/cueuXZ0dMTDhw8B4tjdhCIvefLkCV/5yle4ubmmsyJIK9iFFDkGqCpJLMV5Oh5Y3hGQg0pG/6L+QVAUxYi/9ou/zN/6m38rgnADa+3x4w/5b/6b/zvrzRptNDZYfuVX/nXu3DmV7nKQYJbpMaP8HifHn2Fc3qMspyhmOCeGMoeHUnyvVytMJodpURSEqLHpO0sIHU0E2n0QVoB3ns7XcvjiOTw84O7dYw4O9yiKLApEqx6QS9c85XYhFdshJisg7q9lgQeOskzG95qWxXrD5eW1jAg39cDAigdkP+qi5YDRUZBWlk/Uq4hJtossRe+CuG5FcBVS0ioB2qvh8BlAZg9e45DRulQKZFrhomi2UipqUklnTEbzLNZloBVaC4cnyEqMBfHOfvBi1qGDHtK5IAVEEpfv90r8cwDM0vcio24HlDg6OmI+nzMeC1hknXRdXRxVUUoznk7pnGO13ZCNCkwpDq8GJbobSkCEzgV29diGgsIPxXgqquO+VakCSEm7GorylMze/ryxKEqJbl9M7SQvanjt3a74sJ91z3ocxpUUhFSw78SeVJQk9CEWNU3XQtuRuUATEGc2t4lj0RbvO9EvI7Btai5vntN+5NjbKzk6OsRj2J9PwInOpQ/CdFXRTMpaizKGumthFF00jYlaphuc94wzcaxPAF6eFahogKOUYbFYYcwzFoubPt7KuJGMwc5nM0RzxJHnGU3TcnZ2xuXlBQDn52f88R9/kz/4wz/g/OxMQBE5OSVxj87D8nri8uZROB1omorV8obHTx7z9W98nb35AZ/73Of5hV/4a7z11ptU2w2rxYL5fJ9yNO33mDAwFWgRO/cK5vsHdF3H+dlznO1Qmj4BV8r0BbZ0rmNn1vVId78ogg87WFUgpbLpKEjdZKUGh0hFEPdkrUgmaAMDbFe7LmrqBNWv0eCCQGtxAff7MST2lyR+IaRCW+0QCTzJkVJ+f3hucaaVqXxFZIJhESUqkFMlMhJ3P2u8HFqwRGFCd0knNL61HhRIZ2xfUcT3LWdID9jvjD7vFhUgr9OzceJFHth8cY/2sWt4D/GqELzDe9WTklWKF16et5dPiL/jd/AFtcu0JF3vVOyYuE9jodK2tDdLQpHz+r/xJS5eecjm6TnBZP0ob2fFobi1HZ1z0CUn1tTEcCSNP+ctWiepBsVkvMdqtWZgqg0j9FmWkRgG3gUUJhrNeZqmRkcG52w2w3WB6XjCenXBweEe+3sH1E3g1dfvYUyHVpbXXn2dz37mZ3n2ZEXXejITMDEepoaXtZavf/2rfO1rf0hTb3HeRhdexXQ65/D4gNl8RqYN+/v7ZEXOKB/H5kRDnmd4b+mUYlSMhZmgJB999OhNjo9PePLkCS9evuRmcdMz5ZbLG/7r//q3gMAXvvBzsTiaxlzI0bY16/VN3ygcmvGiWZYXBd/5zveYTSaMRiOUCmSF4fXXX5MxxzgNYfpGWgKv0nqUe48CoyA3OZPxlDund3oRdGN0v6a9EwfOtuvYrNZUVXLsbNlut2w2G6qqoqqq3qHdVtLg0SoBAyrGRh3X0tDkS+9PEXWr1KCfJdskMeDT+vZxI6S90nPq6LoGQogmh2lQNqXJO+ec2mW1Dvs6bbxbuyakuCFjy+n8yMtC3FEjC6oY5TF2SXxq246us1RVRd2ITpW1O6OnsdmZ4ko/TtgDhPF9hkSsGiqC9OcuiOG9uIHWqyWhawidpf72DwlvOTo15vJsQbVYCugYwNuO2PGQdIzY6MDjuxblHK5tcEVO8B0OH034pDGYphWyzJAFw7woMSrgRyWH+3Oapu311RUGvGd/v8SqmpvqmqA7Hr5+DxuE4bqtK6y1jIpbPGx+/LHbuBwaoCkX/TizUiXAJnDreylvlWfMCNZRu5onjz9CYRhPZ8znM9pWjK5MnB56+fIlTx4/xnup+UOAg719Dvb3Ob5zjHXSlKjrltVqxWQy4eHDN6TmVYHr6ytWNysx6+kszXZLYzJyYyBKTBwdHlLXNc9ePOfmesE/+2e/y1tvvYXWWd+gJCR2rB/yRu8hiCtv8LYH0fGGgIogVOjPHJRmtVr3eXkC87JIyCiKgqIsKYuCshxRjkryTAhNeV5gjMYYydfS+aOUaCOX5YjpbC9m80MTSPABS9OIHtxiseTmZsl6vWa1WtG0Dc22wSBaokOOo2JeOOQ5KjYFrRWwNURDII/q987u/b7NfAelHHgldVBcbloJHjEqSvb29zg82Ofw8EDkGYo8fmYd34ssIWFMy8THcimf4+ZmwbaqaKP7eqpj+nWZeH/B4dB9jqF3csvA0Mgk1oTOdqyuLphYB7aDpxd0ey3OTNCLNevHjzEqJ0RpHZtkYJLES7y3qa5w3oHRdFZiaGq4WNeSm7wnLSRG5XQywXUtrus4Pj5GNOFdlEeQutK2LU29ASzOdpHIIBrpPgwTov+qj58a4BuPxxweiq29aAPITHnoN5VCnAKFYlkUcoOSJse4LGjtktnkEAFNNHlh+kRY3INip206ZjbLMLrAs2E0RmbIFShladprkj2yMRqjBF333rO3t8fh4SEJ6JLaSzav0UKnTR0LEPF9owSt7ayAaYme6Zwws7z3vVaT95BnokXUdTVt17I3P2C5XOFsw2y2j13exPGZjjzPepZjGr1Lh48Kuh+NAjEp0QGy0kQEnghmGKzvcLZBaYe1MdHRmuAsWgfqpibLMmwck1yv1hRF2Y/xZHlOUIamdlxd3RCC4fBwH2MyJpMZ9+8/4PnzJ7TrazAK7zrqbYcUBQVto5mMD9BqzP78hLwQAPL5yw/Ii4DSDZ1tOJhPMVnG+cWCLM+Z701wNvD85Ye03aq3Id9sN0xe2afIZwSfQ8hjkIbRaMR6tULcCOPBmUT548N73xcFPYaxU1AkoCD9zi4od6tjocyP/e7tnx/0Wm4zQxKQs6uF4vHe8o1v/BFayyhz07T8vb/3P2MyGfdAb5YZ/vzbf8Y3vvl1vOtwwfZdCx2fT4chYHsv49NN21AUGVkGSovTqw+Kqm4xusBZy7e+9U0+97mf4Y03HvWGEwEpLraVjOg9evMRP/roR2y3G+A0AlwBzZi92SvcvfMpRuUDuq6k7QJ2uaEoSjZVxWg8oShLAoHJRNyoRqNRBDQtnRVAu207rEtFopP1jufw6JAHD+5weLBHlmdRgW6HSdHnljuirjF3JTLhlM4IqovrIMTxT4VRmrIcM1cZeV7SNA3r1YrV8oa2aWV8QA1MLLn/CqfsUORqZM8mRq5NmnxyDZObqg9Jw2ensO3BpZic+gRQ+SiUrfp9bqwhWCtC3D70yQA+jfi3jNC9GzkBvFJ9AhV2rlfnPNlOdzdpow7jYnG9pmsby1+V9HmUsGpklCwwnpT8yq/8snQw81w+u7N9cXP3zh2yPGdTbdlWFW+//XY/kpsAOx8LDTFZEQbiwOeJ7/PWaOXOqGHc5gmwSL/md4tzucgkAE7qm93vRz0Q0vl0C9aJ/6Aj1Cb72AfbJ8VyHWX+a3fM+yc/Bsambzp0U0MqqDoH1kVtLot1rcR27bDeMZ0X7OmSUVnibGC73ZJnkGUugvdGusRiDQ3B9tfaWhHqL4sxN4tLrLW9JIS1HdpolHZkueLpkycEp/jiF38WvIoNH2ks9GsiiEQEIbpqGs1qteHs5RkBz3K54vd///f5/d//PV68eEaIUh3O7WoghoG5FQIhim3vgqshhMiIz7iyF/zeV/4F3/jG1/mZn/ksX/7yb/CJT7wjXdSyZjKdC9M/CprLyJ2LZ3/GgwevcHi0T6Z9HBXueiH+LhqGbLcVFxcX2LaNeyMCYXpwrAuB6CRqhoRZAgQqilgPn1H1o+paCasw9HtNCyMqQOg1ihNAFs8LFYGt/unSd1MymdZ9+h2F700MlLyGcj0w1Cf3cnF3ind63dIIBew0zBLXbqcFFgOExLY4Vriz3YjXo98GwZH0cVJTYbdgSDFdK/UT904gQhGpeO8/9+5Y/o8/QkjNn5BWrjj7BXq23i6M69P12H3h/hH1oj0kR8IEOFTVFl1X5NajixFkBQoBq7OsEODaBzwy7iySJ448LwcG+U4TSZjrkgM4b+kaO+RnEdBL2lJlWdK24uoohhIVTVNjTIZ3kc1rMuq6RjHt5SRsJ+ZAD+7eo8wMl5cvqJsNr77yBm88/BTnL75L8Ka/zyo6lyulePL0CV/96ldZLG5wTho5WabZ39/n6OiAclRSFiXz2YzRaIwPgaZu4nppJNf3EkMn5YSiHMnYvZGx3sPDQ8ajEfsHBzx99pSXL1+y3chnu7y85Ld/+59wfHzK668/BAJ5XsiZEyQHT6N9zjmIbOO01p8+fsxrr70W9cgCH30kxhsJBMwiOyfPckxmKMqcssj77xudagLVs5hRYDLJz+XMFeAtKwwZUJZjZrM9OX/0TnzzxMLdYp2lrVs2my3b7ZbVckPTNFR1TVM3bLYbmqala9vYvBXDHaNNb2qV9vfACJS8IslSKCWMYhWTJTnTiMYRrZg7icDXMEqb9klvdLab26o+V0nN1tRsS6wwrWUs+nD/gJPTI2Z7M/KyoCyKqGUrzZjdPZfyD2cFHG1bS7Wtubi45OZmwWazpm07kvTLAEDtJAFEhk+/jQcwMBnkyO8nbEezWVyjfUPhPY+/+Sd88J1vsxztcWUz9PEJxcGBnLFI00br4fWapoKwH++Pp20bVEi6d44kI6C1lka394xGJVXjCKpB5zo6M2fY1jMeZcxMGY1LFKYApy3OWE7vHvPq66+xWN6wWC3E8MN7ZrMD2a9+kI/5WETsr9MA2Lmd63f7Z4XdH9Ix3Z/HA0PU9LrT7ACF2+1GzGys7dc4Cq6uLmjaKmpcCvNuPJ0w399HKUPXCrintOZn/8rPcf/efcqiwFoxxfnEm59gVI75wQ9+wA/ff4+2aamyKuaeCmc0RZmztzfD2lNs43j29Cl/9q0/5Vf++l+nqipGo1Ef4402uCCj1j54rG3pulZytLhevBsacAPQDUENeqk+gko6na3x2uyycrXRMq0X5QmyLKMsS0bliHI8itJLMfbkRQTnpKBRWqF1RmYyTFkwmU44OjlBm9h07GNex2q9odpWbJYblqsFi9VSzoVtxbZuo9yDNAu01r0WrLM2mnXF9thOHtuzg9Ne6mPcoM+aR3D1wYN7HBzsMZvP4udgJy7F506TZijIBAOaTMYcHe1DEF+E9XbD8+cvuLi4YrXc9PXJECAkP4oe2H0+M4SoRPAQQoN1gaaqWC+vONTQnF/wnd/9f3M2HtN4g+8CC2vZ/+QnCV0XDYdkUiI4T2EyTo4P8N6zWC0is1zk16QBJfn6qIhnkYpGU8Ej2AjkmcE5TV2JQctms5Q1MBrFGqrk8uoFRoPTQ26GAqUHHdOf5vHTA3yjMZPJZAclvj3qJkBMi3UBHcW8FZK02E5AKWc1nfdR7NnHcTTZREYny3tJppV2+LCl6wQtdU50usTcY3C+SjplIeRYK0mP9/QMKh3rot0kVH5O5p6dc3hafGjxHqyV59NGxcJ3CH5ZljEeTamqLiZmAgKs1jfyegHcpuvFfOu6JstyiqLsQbnNZkumNVVVURR5dElTNO1GWDsEOm/6kWD5PUF8Q2S1EYQ5qQGjlRw6ShO8wlkYlTNc1wERZDAKZy1ZWVDkGYcHx8znls46MlNyfHKPm8WK1WaL0Rm2c0LTNSWz2R5N3XHn5BVQhu224mZ5Lglqq8nMmGA9qJYQApdXK6xr+uCx2d5wsH9EkeeYTDRj1us186kIyKfsqWs7ilGBj1qAoPqDNjEweohOpUKCGJQ+3omIndbg2WUS7H4vsSMSGPLx39197FKad4Oj/Lz8XxH1+ZKGxdHREa+//jp/+YN3kQLC9+utaVpenr1kPBrjXE7Ttigt4u1lUdLUW4jUYFk7UpgeHhwIM89LgZA+ez6b9od5Xdc8/ugj7t+/j7Mh/nvSwTqIblCXWOf6okIbTZGXaD3jYP8uZXEIYSTgZ1SPv7y8Zjab0zSWm5sb1utlpLLn/fN47+i6lq6ztJHWLEmhJD3379/jwSt3yfOM1AXWEc3xCckjFrFqSOv8x+Of0qBMTPc86EyCpNcRgFNkpkCPNXlRMJ6MWS2WLBdLrG37+9x7u/UAogT2d95+m7LIsZ3j5cszXrx8KQYAaUQ7rhHnPBqNw+IJ6Hg/EpsvLVAxzI1xMoSYQJnoWCqOi0pp8uiG5vF4G8idMBsF3/MRhNIx4RoSLHH/Gi6P8wriCFeI7MW0PrRScuDL1ZcDOUTQ0MvBZ3TGq6+/zp3TO+hYfEq3UIrg46MDJtOCP//Ou6w/fIxrhw6UjkCOj87JLgzjuANAF3aghXjbg+6/lxLZnZKc6LQR4/6A2PWpVw8GJsZf+tmoY9mLi8c15QEG0WofXO9AlvAQb+NYgd8tJX78oeI9djF56Lxjox2+kIZLtzP275zDeXEKHY+nWFWCy9hut2y3NfoqcDU2HJ/MmM9lFK4sSpRKDSKRbUjvVbTotjI2bTuOjqQJVzcVSqnIXjfYruODHz3hnbc/ycHhsbB7rQBladQzFbupEbWMXVdvPd/93l/wT/7JP+EHP/heZBQnbU1hs4ZA1PkZnGYHHUxh8upMHMmT+L7WHmslqXPW8fWvf53vfe97fOlLv86Xv/wbzKZ7VNst0/k+o9EEa9udOO3xwVKWYx49esTJ8UxuW2wCp/Pfe896teXJkxfcOT7CWsu22tB2DdttxXaz6Uezuq6jbVq6+LuJLSr7JuUm9GdzAoK0EjDPexFbT+wZFVLzAQHGYvGtIjjVHzMqnic7SewO1iU/m5qoAXmNhIIrWeEDUyOChKlxsNMdVkFHZkqE+4KV2KKGLrVCdNOM0VjXxcZq0qdRcdTvdnE9PGzcsxq8MIV3tXiA2KAI/e9HLrSAtoR4A9Xw7P1LSBniI6uwZ/UPYSOCMDE2p39WQ9wJgNm5Vj/e1IuxK977zWZNaGsKZ6FraLcbmtWa0Fpxx3UR4PQCdKV8MGn4eecIxiF+VTLKZxQyYuwE7JPXFdH75KB7fX1NYtSl3DMJ7UvukxGi9IW1ljJ3kqtNZuQmp8g0rrWcvXxGlimW6y337r5KtWkh7OQ7UdsM5LX+5I+/ybNnTwTcw2Fyw8H+Pvv78x3tvQOUUmw3lTjRO9czSpLsRJZl+NahqwrrLLPZLAIiUrTdOT1lPB5RZDnPnj0DoGlbnjyRKYPf/M1/BATG44msQ+9R/ZqROEuIWmzIudW2bX99vHe0TcvN1SLG/N38TZaYjPdmUetXGJN5Js34sijEWC/mNibLMFn8Wqu+MUB0YB/AqLhcTdRHznNKAtOZ4ujkmNRs3R2NtdbStZ1M2nSWuqmpa2lMbjYbOReiW3BVbwk2AT2KLIL+OjOYLEMjbB7SyGUINE1DUSRAKcYShqLe91MeO/lsjDMhDACfjtJbWZZxcnLEvft3uHP3mMlkHMeSd4ASJfnOMCEgz2nS9TeibT4ZKQ7397h794RqW7PdiFbai5fnLJerWNzrfpoivq1bUUfypfh18L0aQYh6KT50VMtrMsSxNreO0dbTtCvG+ZSQ56io4ZY+Q2rg+qD7pmHTNGS57E/fa58mYYOoKqICeW5QWsxqdFaTmQJrA229wcf9YTuEzTWdMRqVuC5QNw3HR8e8fPkCkxnm8zlt1xAIjEajfv3uXNCf+NglMvSNzY/FuT5635IsCb0po4CjPppBGKy3mDwnGSJJbRUieBS4ur6MsVAmiw72Dzg+PmY6m7HZbGhbS1GUfPZnfoZ7d++yXq95+vQpN9fX2K5jVBbM5/t87nOf4+HDh3z9a1+nrRuqvJK4k4/QWrS+x+MpTd3x7Nkzvva1P+LzX/gCk+msB8ClphDGmgCXUgM7a+OaD/TyCWoXR9itA2NdIAvsx/QlB/wjQKeAFqj7BpvSwqzbNUlJE35lUVKWOZPphLyQJlGWGbShB+cyk8wmNVlWkuUjxpOZaFZLwMF7abq3bcN2U7Far9hsttxcXbNebbi4vGC1XrLZruL5p6O0geilKkWkwaZ9Jee2iiPvSgkL85VX7nNycsJoXESSE4AjKBNHBULcWcO1UTBMPQQl6ZAWrbnj8oCDvT2q1xvOzi744MOPWC7XOOsik/rjazyKBsQYkM5okgQAHXW1RtuOUivKDpp1ha6k+R0cArYmp+mYVyX/gcPDA+qqpiwL1ptNbxQVnKeuKrJMcnMd77dgRDaO2iqMVpRlKY01NE0tjYuD/SPKsmQ8KciynKapGE9KTGcJZDHXkU+YtP1/msdPDfAZYyhjkpG2QGKIOOvwoaPrqjhGWKG10EltJxeyLEuMEYaAUtC2VgKCFtHaZGEvD98nz96HXo/EOQ9BiqYiNz14I4k8UaBcxZ91/ftumkaSV60w8blSAdB1ljzLUSrnYPaQvekDgmq5Xn5I011h4rx0SmA2dkVdtaxWC4oiAyxVXYvzrFLoEB2Pot5PVW3puo66bvqCR+cZk8kIGAAoHyy+i9o/tpMiwigppnwQhpU2EEYczB9gVM7VzQsJEEYOpLbtOD29R9e1LBY30gE0Wt5LVrBcXZPaaM6LQHDbWp49fUnd3YjArALrPCdHJxhtGI0LnF2w3qyoqhrvPUWRSUBQOVluaNoNJnd9gZP01epmQ2drlstF7Lh3tG3DbDajLErqeol1G4ya0Nkt3ovBR3JylBFT+iD83/cQhqUs8f8+Jt5PZN8RkGaw/ok/F3+6T96Gv6cCgVi0yXh3/C737t3DOcd7773H/t4eWZYxGo2Yz2eU5Zi2bXj0xhscHx6hTdEXudmo5OrsJToP5EEcdiR5lrWelwXBC0NEoXnn7XeYzaeIWJyPjnsj7t9/wMOHD7GdFCAffPA+28rzK//6L/GHf/AHbLZrppMJDx8+FM1MrTFZQVHsMZsdkpkp3pfM5iP29qYcHx+R5xnbbcP+3gVPnjxmPC4lUdNZ7NwLg6brOppGxnOJY5l7+3PefPQwjmPrPkBz6zBVfQB3qdTsi7YYXIMcGGk/uCCAtnUhCrbGzmRftEr3tCjG7B/kFHnB1dUVbduIo2dkVqgEwPhA2zQ8e/aUru3I05ryrmeGGK37QB+Cx+FjTZqAPEmCjIrxUREluhKcBiRXuJgkpriQANGgJa5a15H5/w9zf/psW3Jd92K/zFzdbk93+6pbVbc6VBU6AgRAgqDYSKT4JDr09CRSYYcc8j/l98F+cihsRzieQ6aeSD62IEUAFIkCQPRAFaq9fXP6s9vVZqY/zMy19y1QDkvwB28EgHu63ayVmXPOMcccQ/eFgzjGuQ0IRUyqTZ/4xhHkTQkN+OjcFdgAoTiSYKfxSEFK1MZzcHFxQVPX5FkubIc8xxi5d8vlknVZcnh02jNQRPjeB8H78FmcRXkZyQb64Brfvozzxc+BvH74yUZZi6eBPDZrBu/7z7m5JFv7N4J5fgsY3BLYDbeC+Oy+fwYfXIs3NUr/6j91PggrwoWEpq5L6gSGt57l6qc+zd3DYxrtiWO+YkIl59XBwQFXbuyBSzg7Oyc1I9LMs1yeYLuaPB/0MTBJEol5mSJNBHxGKZq6JjGK0chQVRXL5QIQYfreGKZrmc3mLBZLMZhhs4dikqu1IUtz0eFxnvOLGfP5BUop/vZv/obf+71/z9HRkSxmFRtnItLtPeRZxmg4IsukU50YMQJw3vbmOABN2wh7pa6oqjIYTTk671FGsyqX/Omf/THvvPMO/+Jf/A4vvvgyVdMwme6Q5nkfvzzCPvI2ZI9e+CwRz/JotIEkUUx3MkZnC+rWkiUJt164RV7kQfuH/uyQBkUrzUhrey2uOFpVVTVlWQk7uW17l/vlchk+h5xrTWPFGKAvjoPTbi9+vllnEJPivhO5tQ7j76pNWa6k6Awlhvyv8vjgqhdXsszBCnu4fx3v8VEzLATWuHflLJI11YX8w0NvQLUZU1Y9m9pvidvL8wSNr+CO44McwEZDS+FcKMIC40zOeGFDKsJzhAKp/9w+/AxDF4oz53wfIyzxqeK5sSnGNgz+AIQSxwB9/3MbUB8XmMZRX73rWtqmJvOe5uSUthhwMTsXdoQxIrEQWMqd3TR/uqbBW4fR0jhAWbJckSRBs8u19Pp5gRmAB2tVLxgfC5Dtonw7R1EqGFnIn5LqESrzgMSqdVmzWp9xdjYjGwx55WXZ50ma0NSWKDMRr/PJyTE//vEP5b0H4HE8GrAzEambnd1dRsNR0KFre83nnk3Vm4QYxoMRTnVQi/RF17R0dcNgNOy1PifjCS+++CLGGB4+fMh8saBpW37yk7f4m7/5a3791/8h3nthJIe1uq01218HCBpXbX/GxGZdjE0RGIpnv/KEBnwTYusm1kSgwGgTmmGiNaUDCFiEEb00S4JOl5gEGK3DVJOw7ozRvb5XnM5QcW0GQF8pgpZqxng8Br9RZgJQ2odC3lI3YgLSNaLj1VQNq/WaclWyXK2CU3BJ3TZ0lTRUkiRhuZyTpwmSHyZh1DhkW/212bBeCYW+XC8VwH0Beg4u7fPSi7e4fHmfNEuCU3q4Fyoy5kPeFn7Q583K91P9KsRj1Z9xMBjIuOPu/h7XbzzLo0dPOD4+YXYxC0BduIc67gnZw7YH5Onzxc1rOpztqBZzhsaAbXAeXKJxtkNljmJQ4LIs5MAapT0ei+3kCNVBL9PaFqW96GSHUfkolaOQkX6tw1h0I2P0qquEhGE0tmuJxmZZlpMkWZAhSoTUTUKWDug6MX2xtHgl8jdZMFSIeWKf4z1V08RtEusVuSA/zeDbPH6KqOMimcWFvRbWrdYR/oFARLC2w6RJ0CcT/XDrLFmasb+7y/7OnmiWtRbnPC+++CKXLh1w/cY1jg6Peevtt7l75zZHh4co73nttTf4xMc/wTM3bvDZz36Gb3zzmyyXSwEdiQzJgrZdsbs3Zbmcc3p6yo9/9EM++9nP0da1uNSaOE3hQj0azs74GcO1inn403VfBKfYTjw3MSqcEhEY/Sjzqv/SA07TdZEAVfVRSWuZ4EnShCRNxMgwyxgOChn5zXMx/kiD0WBi0NFwTanA6pUXkum7lNFowuUrl7feKzx+/Ai8IzMpZVkxm80oy4qL8xnr1Zr1ekXZVKEJKJrPUc9wPJlw6WCfg0v7DIoCZRTWO4w3eOXFqMxrNGYrL+9XIj5oZ4Pvz4Vwwfp1PBoOuHXrJpevXubBg8fcvfuAcrUmlDgyJq/CdBehiRKusWAhHqdkim89n5N2LUZZgn0UTnk63+JNgs0MPkuwSsyxvPfkSUrtpQlujO7Zem3bBo30MNrsN0zKtm3wxOY0JEqH2CCfSwxbcsZNy3A4Yjgq0ErOjK6r2D+YghpgXUPTinSauNxrftbHzwzweeGVoI0WJgse50R/pmsrtIYsm9KEwO88pMhiE7evRMCjoEnRtqKZQyfPPRqmfUDe7mY6J46rGzZAAPSMiDoqJYeO0VFE0hJZgLFDtimmfe9cG5kKSZJiEo/tEgaFsMpOjs+Yry7o/Jw8Ew2h1WotTKUwYuG9zHGDdNBa2wGKui7pnBS7bdeQpSm+3XQNkiShtR1NV4MCY5TofwX03HaeRBthhHQObRJBixMNpAyKfRS7rNcdxoyp21NQirqqSdOcqpKRB2MCJOAty/UKB7SdRWkXdLQKrIWqXJOlFhgwnYzQWui3XbemaYTV1zQ1eKGhZnlC0y5RqsBZQ54PaO0SqGnadSjwAiil5do09Uq6pDphPC7Q2tN1a8p6hnMtynlsG4qFIDLqwthlj9jT53lbgc2FURjoOtcfvP3PAw6wHQy3g2JcE9tuhE+t+bC5e0cl+asedJInD5BDCIR4eP2117h7+w6DPOf1199Ae8iSlFExFOHYnR3+h//+vydJ0sD48XjVcftBye//xQ/5lU+/yAs3RiS6AhRN1+GVIkvFse7b757xzR9+wOu7z/LCM2Osq+nC+xQB747btz8UsKyzLJZLynLN3t4u//S3/ykg3ZTlcoFta5IsRZK6hKyY8PyzL7O3+wyXruwzGOTkuQSYhw9PePzokDRLUZXCWkcazACiUYcEfwF2xuMRzz93i+s3rjIeD/rg04M3PhzcQXxebpna3OdeHwO6TpINj4yJtsFkwzkCe0pAdWd9YBcFlpZHaPCJZjzdJckzzs9PuZid02t1BGTAO8963bBeL6UwR9F1cp5kRdEzKqK+mBQd/un3H5Irt7V2dGDIaWJRIo66aZLQNjbG5ZAMbIp+CONyMRnvAcJYsMRE2gXm3GbNb11lSdKUQmuP8l40w3owISSFYeyxb8Z1jsWiZe59SJg2hbxJEjobqf/xWQQwlYJLmIMqqM3FkUMx/IgPu42abZVYrn//vcYmEEduNYAWrbxIEng6xdi8gozmPV0UuiDb0HcDsUQakFeb88HHm9m/xafPhv75vJc4EACLdrVk7FIOnn8OXr3J/NFDOu+gE+3MCH6AIktz8sKxXlUMRwWf/PgXef3lX+Nv/vbPeHz0XTBzYV97J27K2uCsjDcRWGT5YEAa4lCe56zXJUmS9l3/OKpRN7WMnvVaI5vzDWQfNp1HG2hWJRezc5Ty/MWXv8wf/a9/yMVMWOqyAzuKYhhG7zJGwzGDYhiE7xO0TijyIaPRKIBsiXT/PeJiWddiyLRcUJUlbSdgmffQtg3OWn7yk7f4t//2/8S//Je/w2c/+3kWs3MGwxGDwZBw9+TaW8tqtaTITOiWbxqFymjQGmsdi9WaYTGgqioWqzUvvfgCWS45htFgMJCk5GlBHJn3znPlcqxUQyka2LI+sBe7tuPs/ILZxZyyXBMnEqIZwmq17IHAtm2wnaSgkkPI2SOd+42ujjHR9Mv0hbiEQxnpiQdpbzijkG56iJlKsZHdCzthc7Zss/0i8B1YmBDMylrSLBPAj8B+DQeOUjF5D8wGH88qHRow4Zt9ob11nnuH7Rq0MmAUeZYxGBVMJlMGeUFeDMjSNIAnAnxprYNzuaNuWtZlJc7RZcX5xVyaNZ1oonkPGIUJ+9LrDcvRE3RAlRbWeNgELmhrWmfxQTdahVi+XMzxrkN3HT/+i7/i4cGUx1bL2JfdPK+1Xa9/iXNgZI8553BYEoOwVZsaT4e1XT/SJ1IO9LIxZbnGWhtM6pJ+LUW5mSzL6FqHD5qrbdeiVMtrL3yScj2nLJecnR/jVI3SDqfkja6WFW1raZoa5xXWyt5QTtG1lh/96IecnZ2F2CZ56nQ8JssyDi5fIksL2ralLKUQWq/F9TKyjGU8bR+lPIuZ6GlpbXDrNU1d0zYNXdeJW2UYP06ShCtXrqCU4s7tOwKOth3/+Wt/zSsvv8LN557vAbenJi/UhgGntxZ7L+Wydb71mm4BxO8XRH+wP3222z52CxDlfOS8ye/2NYfaaM8lYTTOmFSa/lqRJcLaSdOUPM/CqFbSS9ToMMYaC3e/Na0SzKzx4R9JBAFH4/A78a37vnlogwusaHk1lKWwk3/847fZ3dmhqaXxWpUVTd2IVqyccngPJjAYtTLhQwrImRcFO9Mpzz33HFevCvMyyoTgXC9DsKnP6IEGeZPhd7cAp02KIvHeE+Oo/FcnCdeuX2d3f5+LixnHTw45P5/1wJPE9HDP/dbYoQfYsClB0bqOulwzlANdci8HSepJU2Ez1R7apkErRZqmIi3j4xnhZSTeW7wzouPlZY/IRw76mWH/uq6lbs5ouznaNbg8RduNJqzWwoQVMFpjO0fXOrJ8gEeMHjKV0jlHFycH1La+WgR3DHHsWinRW31qUW89YtNge+Iu7oHtZqfDYdvo2E0PeBPMuwSgVYGwkIfxRTGb8V5GlZM0ZfdgnyRP+zPi5s2bXLlyRVxsleLGs8/wxhtvcHx0SNM24OHKtWtMphParuO5559nuVrx1ltvYdloNMbPYIxh/2CfqnrCj370Qz796c/Qtp00fWyYDPHxLNgYiVlriW7mSoPq5TQio0+wBNWfCZ4eqfaheeQ9Xtv++vUA/mZgPtQFlu0YG+F95+j1O3vwNcSbRMv4bpIGDcvAHo7SCEkmYOCgyIO2qEFpE9yQZR0aJQzSpmm5dvUKaZKyh+KZZ270DQbrLU0bm5YNs/mc4+MzVqs1o+GQ/YN9BoMiNAMCyzGAXT5007rOhnwh6deb5NSq33ubQuVpyQy5RPJexpMBL750i0uXL3P3zn2OHh8G7XnX1x3WS75njMbG+sWDVh3Oei4uzsi8Z790GFejkwTjPakqsFqRFDnJMGe+XgOGuqlZrZd0bcdquWK5ErOTtq0DRtXgfIEO5A2j6XXyYtNcCB1WGPnIOkvTnEEheUvTNMznMzwtbVtjbcszz9ygGIpj/WIxp6pKyrIKZK+f7fGzu+jaDPwOtvN0bYvD4lSFVxU6tyQ6QzmDSVIGwVHL2448h6apaRpB1I0xtG1LURSCmAbQab6Y92wlAc+6XltL2HMyfqvUxlbYWR8o9jokVBvqdNQ8AXrXyjjSFvVdJIHy2M6zWs14f/53JInop1gnCZL3ivl8TlmWHBxcYjgo+gBb11U/TmqtPHeSpDRlh9IEXQBH28pohLUCbOa50J2NMRLQQodfGBUepRISndF2LW1tGY5G6CRjta6ZLU55eHFClozIctd3xvJ8IKBE0BksqwpjNE3T0XWeurFYa+haj1I5MiaYsrs3IksHOJvQ2YrT4yesV+ekiWc0TtDGsbMzZbmoyPMU60TbKc8yWpUFhmVCWVdhc0jy2rRrLuYXNE1DGbTfnr1xoz9slTcsFiXL1ZrpdENT9V4ozj60WrZ1t54a64vfUZEqvzlM+2TwI4FuO5htd7aeYvT8PYW8DWMoH32ugOzh8b1DZZpnTKdTXn/jDTFw8bBcLgGoypI7d+7w+PHj+CycnRyzXF3ggHN/nd3nfhGSjGIwAttRVQ1V3QiDQmnq1YqTM8+ynfL//I9/jpu9g/E1aZIE/cmDfgz1c5/7XDD4EKHqtpXvS7e7Y7Va4b2nyDOcS8jSITvja+A1s9kFbVdTFDmT8ZQ0zVnMRTx6uVjKffKeum44Pj5Ca91b2+M8zz37LK997BWuXb9GYkTjj2AmEcpQCRo2dMaUOD7Vtbyv1XJN08TALG6aKE2aGNIkxaEo8pwsyVFaS3LShTFJF7WhkOAZilDnIR8UHJjLWGuZL+ZEww62ApMKoHDdtWHUJqHrZPRedEddXxh4gj5a3/8W1FGCeih0UeJU6aS4D9wYEmOEaGN9YAuEDnIcF9AbjGsbptpm/vTVc19Ix3W8XcaEBM5t3hvbjKGQsMb36wL7eIMm9qlLD+DpwCTqD8OwBWPnVxg5gLf9ddX96PKW0YePn6iLz04EwHxMquIL+AgQWuJIQWR1KpmPDgDqRpspJhT9Xg5AgEb3Z0wPAqrt88Vv3kpMgHswbMN+sE5Gcj2QaIdta3znUDqh9I66EadwrenfY7z2omFVCQiWahQZB/vPkpgRWheYrAYstrXU1VrGN/oxGg1KQL88LzBG0XVZDxRFQCnLcrTSjEdj6t2OJFVyrZXo2gkQE8e+xWF9uZxjbctXv/pX/P5//D3WqzU+aHI5LFmeMh6PmU6nZJk0KQaDgt3d/d45PM8GobEXNazk3ixXS0z4DGdnpzx69JDT0zNmsxlVVfYaW855Do8e83/7v/9fqeuaz33uCyGuSxEWE62u6yirFWenp0E7S5akjKKkJInEldu377C/uxfMfBxpmnDjxvVeINootUngfUze9abQIWrCBCFprUnThCzPKYYjLl++Ig28NBqGyZnmw3kUx5kjGFVVNXVVsV6XVGVFVQvwWTc1dVWzXlfUTdM7DfYbUHYSRqmeDRWPAVmXMU5FwG/zp05Z4tjdJg6G9Rg+pbUdZbkOrBPLRo8qbPVoMKRCcysyXbeKHKl7NyeWpF1yvuxNply+con9gz32Lu0HwED3YKYUA8FNl8jcC197L5o7dUtZt1RlzcVsxnyxZD4XUfKqrumcRQM6CcdSOM9VSMw1esP6CVWX61yvFSix3dOVa1LA4BnajnS+olUa2zW4MK6nEfHttjV4RLNTKxWmDxzWiwZaURgU0Nk43utIkhTvCe6M8nx1XVGWJWnaURSDHuSLjNw4liXuzQEYRPHZz/4KWsNyOWM2P+X4+IkUEFXFalkBOet1JZ/POSxaGI3as1zO+fDDD8Pek7x7MhkzHIzY37/EaDhmFbTymqajKitG4xFvvPEGN569Th618pwTDTatKdcVb7/9Ex49etTn/DHfEIamJmpb7+3tYa3lww9v0zUVR0dP+OpXvsrv/O6/Qnl6Y7z+Ec58AmgsrMJKfhQASu9j89ZtxsKjoUoAo56CRPpYERprgZ0Vwad+XUTgPIC7SkV2vGJjbkHfbFVK92O9sXDfjO4lZKmM7qV5RpamItujtej0ahMYhKrf58CmqRXPKRSJ0SQmDaOi8nnqpqIYDrh581m0V/3EUteJlqGcOxWzmeyd9UrYysv1mrZpGe+MeeGF53nuuZsMBkOUBosAU3oLiAQ5avRWOrKJwfECK6JlsIxQBnZOyKHiNXbeiXaqR0bEd3cYj0bsnp1zdHTIYrHYqgk+Ug8oAalU2Ng+EByqcskEUF7GAAdKU3qFcp62aWisp6lbtDGMRkPW5Tq8L4Jml6WuaihUGLv3gQEr56ZRcv2NlgaibQtGgyt4X9E10gzwHtJUTKxkH1c4B3WzItEDrG05OT0hH+SYNMEkYnTklMV6YQ11pvvIWR9lH+j11/o6N4Kp/mnDp23jKR/y4j6niIsrMPmi5EDAMPp7hPYcHOxxfnHGqqzRKkpTePKiYDAQwKLrWozRHBzsMxoNg6mKyD68/MrLLJcLlssFjx8/Zmcy6RsZ7777Lq+88grHh0fUXdTadn0d1rZi8Lm7t8ODhw84Ojrkxo1n+72BklzXW0ecFGq7ms62aB8MFdymad2fAfheUqOf3NjKHeljw+bsUETtyxjvoi53nE7Z5Ip9Bh0ogs6FCYo4jRD4Z1TVZp8HNnBk8Sml5JzI097pNx8U5Lk0E1KThOahSDl0VmS8Nlq58s7TtCDPR0x34NKVK9y82XJ6eirmiakKTFY5X8U5WrS+tY8+BptrEj+7rEt5v/KjzZh4PCh8KExiM9238oPRaMgrr77K3t4eH7z3PovlItyT+BI+GKoKmct5K467HmbLGbapSQ3hzNRkicY5BZ3Eu8ViQdV6TCJs3TyVsdrZbM58cUHbVHhErgqPmLbh0CbFdp1MkfayJ3HSSYqepmnCeu9omy5gEMLcN8azLktuPvcsr79xi+X6jLatubi4CA3gFZPxPj/r42cG+G49/wt8/nOfwIWLde/+u5xefEDZHKLNSpxhvSfL5ADr2hYV0PckSfoRlvi1oOkZWWrCpq97IC/SJEEHhBhAbdDTrQIwIvrbxZfZ2gxAL3jsvTAUlPOsViuyrADVoilECFx3tLamqhuapuTgYI+27aRjsH8glspFTtTGi+BDZFMIWzAJzCEXWGXQ1jVFPpCFleeAIukPXEn6bCfjhV3rSAcDBoMRzUzcgtvOYpI8uGlZxjsZygldVCkZx6qqEqXg+PiYNMswSSYFkTEkSUbXGpxTDIoJw9GQqmko8oKqbjk+OaEqOx4+vsN4NOLypQlpAnmuGI0HNE1kQerQUW8o3YrUDFCIKHmWpTRN2xeXzknRVxQF0+mUPM+pqxbnOpraMh5Mee7WK4yH4jqT5wlRzDzeLzlIt07TrWCuQjG+zc4EngL4+oKoBzI2idqm6/jTQF8c9fjo9+Nr9Z2wIPTplei+zOdz9vb3mc/mGK17ULBtpXO0Wq347ne/y2w2k9fpOgZFhtYrvM2o1zMOhpAVoHSHUZ680CT5IDAwW0ajjIOpIrFr0C0207SVxbeOs7NzZrN50NAhdHOFwVNVVR8YI6NEKdUD7U3XkZqM45NzFLt4v2axEF3M0XjMaDRisVhy9coVppMRJoFLly8xnozI0pw0NZI8tg2L+YwsyTg+PpYRkbwQ5mKSkhciNJtl4uzZdXLdDo9OmM/EWCUaOsQatb+nhFE27yXwhZEYcbBKyIshg2JEFNPVWvcsQKWEhg7SrT64dBljEmZnZ2y0OoU1I18r0jQk++F+xwSjZ/CxDQpvOk6x0SpxX0peG0BBpPUkoV4psiylK0spY5WmbxwrL0L6JumbiB99yJjaFiClQpcQvzHU2/pdpAQN79n1BcJTg20RLPSb1DnqasTue58UqX4gUJKTAPoSEiWjjXR/+2QzFvA6vF54t37rM8R35EN5v90F3VAX5C+9DyO2Hm/D6+K3Phd4tUna4meFWAiwBSDy1JkR76XuP6F09jz0TDWC67MkfnKvq/UaZy3D4ZAGRb1e41qLTzroonaaAKhFkTMcKdq2Y14tqKs6gCpaCqZQ/CRJSjRUiHshgvgurMck2eggiZudCaNAiTDRrl5hPJkGZnxcq/L7AoJJIlTWS9qu5jvf+TZ/8Id/wGI1DwWZaOAOhxP29nbIAzBTFAN2dnYYDyekaSosn3XFWot+jjCV0iAfkPex2piE69evcfXqVY6Pj7l79y5HR0e9+2Tcc01d8Xu/93ukacZnPvPzrFcLGWeD0IiTDVOt13TO9eB01AUDYTGen52JwL4R04fbt+9wdnYWWDUJWZr2SXRk3kQ302g4kiRJAO18SF7NBgDrdXMQ5oUPELTWQXNKEaVWFAo/DTVvqHsjOO+cp+vkc3RddJ2saZq6Z+U0TUNdyddVVVHVa9F6bNtePNw6K5pcJhifqQ1LrH8XKrKIYmyT70v88EGaQMdfD7IHcahOST7ChiGFcvRNuAC+qGCGcvnyJW48c43r168xGg/ROoD84TNHk4L+/UXdvLAHrPdbI18OkxgG4zFJXjDd2ReNsnIdXAhnwaSr6XMEYxKUF7C1tW3P5jAm6c+T2Bi2TrTyutmcQWcxztN4TZfk1E27AVoUaCU6srZrybKCum3RWgWJFmlem0TRtA1J5klMSnR1F8aAQasE55o+4Y9TJ/2IKVEzaMNkiWPGkoN2XLt+k0sHl3GuZbmYsa5KFgsBbk5OTvFeMZstQ97qSEwYf3aKw8ND0dFyohNYDHKGgxHFcMTOzg51MLeoqgprPS+/8jIvvvgiw2HBpcuXybMcozUffPABDx48wJiEZ27c5Nd+/dd58vgx3/rWt4LJVRCtTwzFYACIFpm1lul0yo0bN7h39z6udvzoRz/ki1/8Is8//wJmS3tKKdWft1HnTZrobQCfNzmexDyLjEb6fn27GDM+wu4OyRxsxDToo4rfxJUYXOP4tyUCLps1K8W7gLxdH9TLgI2rAPxFpq7e6Hb1+YxoAKZZRt4zJA0eEb7PgnB/FO1/KpcNwXwxX/cEBE9gfBcJmSsYDj3sSnzUgaUTcyVrO9ZlhXWO1ESNZdG3U0oLYK/DOebVU9jFU7J7vQleRF0+0ngLoJ/zorBt3UZeRWlBAVRo2Ozu7ZPlQ44ODzk7PaFpG9Tm4OyjeNTMi6/p2gasJfVa9JK1olGSCQkgmjKv2wBO52R5Ql3Xvd6yfO6OrmtIbBoaNU1fe8bmhIxmi0HZ87c+QT58jqpcsVrNaKqa2eyc9WolNRtxasvTtQZlRLqgbR15noiuZV6QBhF/rVJQ9CPxmxgaURYVJktCzhKmTITwYfr9EBsXIrewkWZQW9dQoUAHwgobYJB+HwAOTJqgtWI+m2G7tjemmUxGKKUCo25jeqmUFm1RdhkGDepPfuKTjEdjfvjDH3L58mXaVkCmH//4x1href7WC7z99tson9O1LXWQjjDGhCk1qUXv3r3LtWvXAnk66MSF+ybgsTQCN2CUAKFqWzvOx3j8FKK3lU+qzXkRAWwJGiFUuXBNN8CY2gK4JLfUgXH80b0hZ4nrNy/xTgjA7ANrLezktmlYrSX/ELb5RgYkSxOOj4+58exN2s5jtBJ2fJ4HAzGZwDHa9wxQmYJYs14F9nhq8Ba8ChJEOFrVgRMjurZrcW2H7Wz/+XTILyIrNstyioGwlvucYKvpJ7JAm/pOvA4U+wcHZFnG7du3OTo6Eud5toC+0CDSYY1a5WlcTT7IcKsVHbA2sDSxJpB8bzgYogeGurF9HIpNPtkzm36odxaco6k70ixIuLjteLGJPy7UL97KtYqEHwlXDmtrZrMz5qvHlM0jtPG8+OILvPLKLbJsQJYVXJx9JA79Nzx+ZoBvNNpnf+95wLO/B9evvUpVXvDeh9/mnQ/+BuvO8b7qOwR1XZNoj9YJXRSnx/VMLWstzhqGxZQs8TR2hvd1n5hHJlgMsfKIY7bRuShhuzux/YjOOjaMClgnTLquaSjynDwvqKoa7zuyNJHEOtCTBwPRCxRHJ9FMEKFzCaJRP6Vn0ISkwZiE1apkND5gsTwXi3qgyESXbzQaBfAyoyhylotV2JwSYCX58sxnc5YLGWvN8hDYlegDKWWYjDKU16zXazyOpmxD0Sd24XXV0LnN+FWRDxhPLoUZckdVzVmtWh7dvx8YlwXDYcLVy3vk+ZDhcESRe4qBoW4qnCU4mklLMy9ytE5pKpkhr7sak200IrIsI0kTVuWKNBWq9sX5BaPhCKOz4MZbkGcTsmSITlJAQOHEJL1gcsAKNuCt3iRb/yUdio8+ngpu0CfOm8L26eeIf/NR4DA+tsd6xShM4ZSwcS4uLjBJQpKmopOkVM9Imc9nzGYzHj9+RNd2dNaxWi4EADYtaZfiWfKTb36ZR++MmOQNiVrJ+KnXOBRdcDZqyoSjtYfmFLs+Y12WMnqE6Tt8sBHrHgwEXK6qitFoSHS/jvuyrituPq+o25rlckmWXDAoJoDHGEdZrsUEJE8ZjgYMi2tMp1PGkyFpnlLkcpCDBEqtoakbmkbG8NtwqDZNx8XFkra1zOaL3nVrtVoDqteOPD4+5snjx5yengawXQC/NE2YTnbY29tj/2Cfg/0D9vZ2GQ3H1BUs5guKwYi8KMizAh90pFwoiMIwiDBlMUwmO9i2YxVGsQSIehpsioCJUgrbtqhUXAw3vxIgtt7MJYBR8WmillTExOSbxA6zsDdCZ9iGUTklwJML55vWkS0XOS1hjYa3IDBZyHWRv+0ZjE/p3EW2jQIfWXDhffktrQwiEBbAvj6Dl3cdX3dz9gZ3vr6wl7OMALgQusXWC8Co1aY7vAma28zr8Km8YuMCGq90AOyUGKpsG3dsxwn5lsKpDXD3tGZK7NBv/mRT0hHGcsIYMARwh/7ax2aTc1smB97j6oZUwTvf/YE45C0W2KZBeEAeoxwoMSOYX5yTFm0AGXzfNMqTjFQnKAxVVeK0OLP1rOEkCVIXvgeC1uuONBXdt8QkGG1CESSg9Xi6Q5YUJNpI8RJGLEAYm9ZK06ptah49us+f/ckfM5udh8RRo1TC3u4ue3t7wphXoqe7s7ODVhKLYpfdBo3QJN3orUWwsRgMgqbjgLqWYuTq1WvsTHe5f/8ej5884eLiIriG1lhnWa0W/N7v/b/Y3z/ghRdeYLlcyAiyf7qbKud8KM6dC+clVHUdWPuydmxYu2dnZ3Lr+waQ3P/IsNFK9d3zyLgxSUJi0l7PKk2zXoA/TZIw0qF6QWsdnPZQAhuosIjinrQ27KmIkaFI0wTnEpIkZzCAnZ24pOXz6iiO7j2dDeyOVsZ+uq6lLCtWq6WM4JSVgIBVKaN5tYxDCyNZmJIohw5Fl0lEy3E63aFrQw4Wk3i9hUaiEBe50LiIwMsWKG+UZm9/n5dfeYkbN66JuZISUCH+STw/4g6HkPQTQfpNEh66DLhoKhSKWaU1WZ6jTCKg1N4l5vMLzs9OWC5ncp3bDhPWctdarPeYMM7nvRil9KwPL8VNtVwyJCFxJU1qqIoBZdmFAjKcjSHnadsGbYRtJ3HVSjNZKfI8JUkTikJjreb8/BilrORUiCt0ZOfFtScacTVat30M8h7SNGc4GGKN7fe+1oYPPvyQum4YDcWldnf/IIAR4vx5enrG22+/TVVVwqbPxfDJK8/p2Ym4hSKOfhLbx1y6fInWWsqypGtFk+hTn/okzzzzDEmSUNelaA0aI2tTKe7evcfjx0+YTnZ44bkX+MLnf57f/I3f5M2vf52zszMxnktTVPiMRVEE0feSnZ0dJpNzGalfzPn+97/Hs8/e7MEMGa/zeGTMyUXjCC+jvXEMD2Let9kzmxLBs9Gh2K4bNuD1NivsqeZaWLQSs9xWtIjb0W79Wwo8eeaoVKUCMOhRKhocaZTbvGc5HqStRK8DSN98AB/WcdrrncYmhfxbmp1FkXH/wRNu3LjOalmTJmLo18sXhOYcTmF7wDqAqD4hTTLack3rW+g10sXYT/JdHYwIEQ1QKw6SddNJztu2dDZOBkhtJMYmQaM1kxgl1yPqGkcTnSSMhQqwYT14p0jTgsuXr1EUQw4PH7NYzDBmM74qjTzRHNUorIeurPB1I3tdZZQ41lpTonGkOOtYVWus78iLXBjeKgA0AfLqupDd+GhIFZq9WtY9WrQtTepYLI9YV0ck2ZosMwyKnCtXrvDii7dQ4b15l9FUknejFA/vP0C5CQYLvsC5imbdYFJxP/XO4KzDYtGa3tROAL+w99yGsRdzKu+3z9hNfRZ/Fh8bQoMPwLOho/tIbRXPfTmZ29YyGk7Y3T1AqwytUrLUMx6P5D2EvOzy5ctMpzsAzGYXvPfeu7z00iskScbZ2Qk3btzgN37jN7h75y5Pnjzh+PiY+XzO1772Nf7Nv/k3ZFlGXVVEdqfrkPirU6AlzRI+/PB9PvvZz6BUAD7DHrVdF0zjTM8UjXmic1YmSmLDSmtwqm9kqZjbK7GQ2D4HemDw76k3Y9H61LHRsyBFGy7GPNXH9O1ce6Pv5wisXa96/dGoxiv3M2b/4TVVw7xtefz4iGIw4vT0HK0UWRpdfCVvEcOPYPxRDEiMYbkQB2uFoqktPgugtfJUrqGaL6jqisV6RVWV6HB9rHMoZ4nGY7Le5N+TyZTpdMpkMmYyGTMeiywYagPqRYkM58VjwXlPPhjw0suvkucD7t69S1PXoZkm56f2ssu7zuKVp65KTJLRqZSkdehGkXqDbhJaJfdV6wRnpb6o6pouSN04J1rhzrkwDRT0bV3X3zvnLJ2VJlecDDVKBy1CIfd0IT7HLeO9A9UADRezYzp/xvnsjMViwfHJfUbjEWkyIDUDdqYv/D0L6b/u8TMDfE3d8fjhE4pBynpdk2UZ0+kOz17/BLdvv8+Ts0O0XtB2LcNREQ4ZQ1uXJKELJCp+wVlTS7DIBxpjBqiqo6ps0IYWqn8sjDcFqqVt65DoZH3nxFpJcuImcNaSBCcUZy3las1oNMV20v0Qt1mPUQloYdylacZgMCAvMlbLJUVuqOoSKVAMQTNekuZ6SZ7nOKvozUQ6T5EPKNeOxXKJIiUP40taFyjtWZUVWTagKkV3azSa0rYV63IFIJ1c5dCJOO/I30oBphMlFHMUZbkCNE5pqrJmtVqTZhl4TVEM2dubsA6z3fPFGW3bcnxyyHw+I89zEpOgfCoJeeeEJqscWZLhugpnDc4lrFcNdVNhdBpA15YsgJVlWdM1CVnagLI4K06pXScjJM5CnmakaY4eJphQINZ1i+80t158jcnkJnVrOdgZkKUFSgvbZLlcSpEYC6+wBjfjf77X1/JsHb7hEI//wUewIzJfZD0Zk/agXz/+tPXYToI+yujbsEgl6FkvTnTeeRaLOe+89w7j8ZjxcESWZZRlyWKx6GnLi+U5trM0jQ3vx+KdpfUt3lccPzzh6LGWDetjh9gzCG5lTdugMZBkpEbGwFGa0XCM956jw0OKQS7GLouKO/fu8LGPfQwTxILfeuvHAsrWNVVVYYzh2Wef4YUXbzAcjkizjLKq6TpIak2SpgztAK0VOzu73Hz2Opcv7UqxFuEqExKJcK985wPjxeC9YjgaCIiFZ7lY8/DhY2azC46Oj1B4jo4Oefe9d/nJ2+9weHjIYj6nqetwD3QflgmFsNaa1KRMJhP29/Z45eVXeeXVV3nu5gtMdnYwS3EjHgyHZFkhxUSYrfHKB1MgeY/T3R2cazk5OgzMUbeVNIakSIm4bVWXDAYZLhgR4D/a8UMSZLWRyvbuKdQsFAgSmH0AFNPU0AYdkBghlBItKSJ4gd/gVsQz8enqQxh94W1ssRBkfEbJevKq1+3b/m169gEbdNJvgAf5csNQjMApsaDf2oOStAQNvgAC+h63k+JMwEbXXwsVAIP+2nj6PbpBS6PrbUiapI0ma1BL8ZClqbh9aY02qbxOaAZ0nYzLxgK817CJPcJwD7z3woQK72GbTRNfPwr9uwDY6JC1LFdLMJ7qyTGP3/w72vM5zuYCdnpQpgPfSaNmOkTrGU1dotG0VYnrGlKTghUx5szkdLbF4RmNRz3DTT5fgussTXCt7pzEN9u5wBTyrKqSzAxRKawWizASbgNLSBIyZ514QXeWpmn42tf+mvsP7uOsiAmbJGFnd8rOzpTpdBJAFUOWZuCgrCsxslIblr1cpo2rbprKWVM1VdDsqiiKAcZIA9BozfPPP89wMOTu3bscn5z0jTTrOhbLOX/0R3/Iv/k3/wdGozFi9pRJ0uw93lphJkRWiJV1rOLPrBVAWG8lzb2+zgY09wj7AITZgpd8ZBuQisVuXPuRhdO7TQeXyAgORhZgkQdgMEnR2+xArXtBd20MyVYhpgKbRQhbovvrndtyrjQkiSbNoPBDeS9Gyd57KncKYHAr974OLMCu66iqivV6zWq1ZrVcUjc1g0Eh5giNjDbFpljc+/KGExJjgACE6qQHmPd2p7z00i1uvvAsRZEH4CTGWtFoxm+uYwzyzsUoQp8wx2LAOo9FGA0OARw35Y3Ed+fk9Xd2dhkUObP5kPOzM5ZN08uhyNs3WK8gjkC7wD42YezfWepyTdFa6ByptqSdpQ1C+s77IDGug06rsNFjbyJGQ6014+kOaTJivVzSNh1do1HGo3WKVhmJzqnbRkaBhylKWcqqDBqPooenEKA4TYdk2QBrxLE+SXO8M5yensi4v4a8yJiMJ0wmU4bDEXmec/nyZSaTMd/97ne4ffsuTVeTKJGKWSxkPN4jTODJaMze3h5aJzSN7O3lasXrb3yc69evkySaqlrz8OFDvBdGn0cxGAxJ04zVasXjx4cslyvGkzHPP3eTf/Crv8JX/+orMknQCLPSBIfCWHxWVcX1G9eEieosb7/9Fl/60pfY2dnrwS1pmFmiFrdWMkput6Z0IosJ4jm0WU/yPHHMvL9NbEBm/1Th3oMcEWQO8SiyNORH238Tn3TrOfAbQC08nHS8NtIcagMa9PvEhjx36w1tmLZVOHciWKCC3IDsQa/g4YNHdJ0AHGmWkOdFaERIjExNgjbi2ilmfQalJR40bRM0xh2dE1kCtEc7eQ+dddjKsSpXLJdLlosl5XpN1wnAZMN5q0KDZ7tpniQpWV4wnkyYjkcyDj4sZF85icPiNh/NzBQuaIDpJGM83UFpaYQcHx8FJqycIUp7tBHTMYdnfn6BXTc4ldJoT6laWmdolMGqBBPAnrppQLkw+RRGwJXkJXXbYQOzegO228CyB41F+RajHE2zolnPMWmLNo62XZPotG8weufIspyd6T5JmlOkY9IsYW/vgMtXDsiHOZ3r8GGyqywrvBMDxyzLggN9mAxrW4xx/Xh/XB9xWmM7N43N2O3vRXC8z2niKd07mqvNme/pm83WWbSX5tbNZ15g9x/v88JzL3J+cc5sucB7kULZ3d1lZ2eKc47DwyOc63jnnXe5c+cuH/vY63z44ft8+OEHZJmQQCbjCTjPfLbgYnbO+fk5090dDg8PQ90uJndem17qKUkMjx8/ZrVaMRyO8FbY3jJaLUZ1rhOd9zja3utNK92fFfF4Ed1Lacaq0M7eTOXHFnP4uj9bPpKbxxNAhYb61hmEtz2DUsLeNsFE6nCttxoBcew/xPK+Wo3nnIpkAbmDp6fnjEYjOQ8R4Zu2bfF+3ddo8X5qnTAejUUmwxDyfQ3eQicAWFXPhVUeCFJt27FaLjk7P2M5XzKfzWiaGqM1g8GAyWQssXcwYHe34uTkNEx6FBxcOuDylStMxiNMkghw73VoxAojT0yFPCjDpctXAcWD+/c5PTuibWSfp73xiDBVm5MZRQutylBG09BRo6mzhHQ0YefaldDU9XTOBa3PIJ3iY6M7ar2GtW7DOde53iDR+Q3ZQ/kAAistOpIBtxJ8IpCSgk7fujxjvGtxlEx3CpRSrNcXOHdBYgqy9P8PRnTLsuLhw0cMhzn37j7k+ReepyrXzGYLXrz1cWbLBzTdHKU8ZbkgSQ1KZWgtm72tmjAiF0TJnUebjPq8QjPC+wZFLQHBGNHc8hIMus5K4NKiNZAkKdG9jFAY1nXHcDigrRuquhTGXRDRj4zCuqooBiMW8yVdK93Dg8uXaZqW+XzeAz5dZ0nShCwTbaMkSVivWoaDPZ577kV+/NaPsLbF02G06Kh4Zzk/X4ISI44kyciyEaPhlCzNOTx+gHMNk/GEajljMV+RFwlKbcw3RI8jkcSu6/pung/ipyJkntJ2ns4hYBlChR0OBxSDgtnFjNliwXK+4PTUYa2Aco0VF5hBUaBDp2M0GuKsEkfgPGFvb4I2ntVqQdfJvRLXY92LPzvXyXglUrh1XYt0OsQ1N46OVFWFSRKKwtDWHUU2oG07xuMJF2c1xWCMtQaPYTDIhRIenOiEqRiDjxx0kSETu1NWqA8b8C8W/tv/2eAUfYCK9/ijzLz42B7n7bqu/3f8m0iLj5160dOS7xlj6NqWhw/v40L3qOup/l7uQ1v2oxBJkqO1oSkrVLDbtnWJ9R2tUygSBoMRP/fpT/P6668xHo8DgNqGEbws3AMpdt955x3+5m/+M4PhgPL0JIxarEmzhJ/71KfQWvPv//2/5/DoCXhPluehOEykA5cNUSrpwRXnBCCvylL0M9qWPBO2UdSKUaHjBcJcARl1EMaTjNh7oO067t59wL17DwIlfMG7b7/Nf/qrv+TBg/tUdYm1YJToK/jI3IogLSG3x+OdxuI4P684Pzvi9ofv8dd//RWuXL7Gz3/+C/z85z7PdDpltZqR5QN2dvdk9DYGYReSLS+swL29fWH8dG0AcWSdd60Uwm3bUduaxXIhDIs+iVJPJ0lqE6jjiLYPxZ7WOozMBW0eLeClAuk4JoauQxySYwNEh0I9dLOF/RPAOMVWQNoa3eoThw1LwXkfRl48rh8NcOG6bhLBvjaVBS73tAe1NnqYPRs2/o+P90n+HeE6bTYgY9TSivs5/DLxtyPcKGLRji3P4fiX8hmtxSPud8PhgNF4zO7OLsPhmGIwYFAUPbDcWgF6Wivack0jnbuqWrNar1ivSparBVVV09QVGzbYFvQZrsNPs4VDEg0i9B30DV3dotuOrHOouqYtS7wB6zK8NiTI2hsMUpJECrQ0MXRNS12v+5jlrGNQDBglA87n5zRtTdKkeET3T+FRRpNk4mS+k+/RNI3ofnY2NL8S2raiQ/S88izHthafOGGjKtW7f8fE54MP3ud73/sOeBccozuGgwGjYoBWksQNhyPqWkb2orlOTLifYkwrF4Au0wOKddNiW0ubtdhOip3EGGzoAF+5cpmokffg4YNguuGo65L33n+Hv/7rr/GP/tFvYDsbElwjwy3eB00o3Rf1cVU/Ndr41ELfFJ7SwQ3pcxx3UkHE32sp6gXZCpiy6wt+r2KBUOMlZQ9PszH7AkgC24y+qJdmU5YmgZUTxlsCCycJIts6MaRGi86TSdAmwaoNwKC1QjmChIckmtvsobhehfhqyIuUfDCAKZJThY67c5bVuuS1N17n+rWreCt6y53r5Awsa5q2Yb1es1yvKcu6F4qW8U3HznTMC88/xwu3nmcymfSmBM5tQA633YZQKgB4RJROPkMAcGxobjgv+9jawM9RhO9vcrZ4zlovZ6tOMqY7++TZgNnsnPlsxrpcyd7xCugA11dNUoAHc4iupXVNLy5vU02nbGCFhCWkjGiFaSNsJWXFIM1K4aAdpJnm+Wdf4pOv3yJJBZwtqxV1I3q26/UaY1LqSswP2m5FZyucbSmKgRQLXs5Eo1M0KXXtxN0Qw2q9JEuTfmzJe0e5LinXFcfHpz3wUxQD8rzgypVrHB2dsFgs5L54R91U1EEoP0lyxsMR0/GUztmg5dlycHCJZ27cYDDIqZuKR48f8oMffp/z83Ou3bjBcDBkOpkyHI0Ayc8WiwUffPABP/jB9/jd3/1dXn/jdX78ox/TWZEOScKZ2jYN48mk1wLb2Z1SliUnJ8fcv/+AnZ0dvBczrtgoic0w0d7tAqM5ugMTYngspLcSxc0JvhXtFJvmlerHPOlzyBj3ZPVKE29rKkQWzxYY4sPfqrCu5NxAbYD7OKbq8eJeGvfrVv4pRbh66m82v6NC42nzGm2rUErO9dOzc5z3nJ6e9X8f87W+kWBMGNeTRu6gKJhOxwyKvHclFkZ0aNSkCdY61us1s9mM8/ML6q7rAcGqrChXK2EQrwXws22HDozm3d0dRqOxaA5mOadn5yRGiv/pZMJ0Z5fxeIoOzSlQwXVe0Vm/dSZ4sjTnytVrDEcj7tx+n/n8gsi2cc7jlDANj45PWDk40Qldomh0Qj3MoZiQTPdQeUFalXjvhHmdysh+ZLv5sJa9D5IQQb4g/tDHhg8O6yo6u6LrVrSuEcmndh1qJd1LJHRVSdUsqGtHV0NuRswuFhyf3qMYFTjlyIoBOknJ0pzRcIh1to+vm9F9OVd9cNmNDab42M5ZoiRBnLDTQZfto/3pTRUFfqvhGa9H27b963Rth0KzM93lF3/hi1hn+U9f+SvOZxeS+3mCjmhKXdU4b5nNZqxWK/b3D/j4xz/Bo0cPGQwEwDw+OeHWzRcYjycsFgveffddnrv1AqY33HR0bd0DnXVd0zQtbbtmNrtgPBz1ayROE6zXJU1bY5RoWnrnWFc1adD7l9gU6w2JRUmcdlcxN1Vo/5FjJOxfvbX3e5fueObIAtk6I7b2fshXNk2v7WZcPJ02ZBKtVZ8r96dTHzTlnjo8i8WCG0HrPqKCfetC0E2A3iXcOU9VN+h+zFeAs9n8VHT1gaZtODx8wg9+9CNuv/8Bh0dPmM1mNE0bXNc3kldR1mQ0GnP9+g1efOklXn75JZ595lmWq6XoLe7scf36DSY709CgEcynbeUscQGg9d4xHo+5fuM6w1GOwrIul6xWK+paJC2atsUmKecmwRc5udUsTUI1KCi1Ye/aZUZXrnEBeC2u7l57LB6dGGyQB5CiKQKrirYVQ1lcR+dsYCOHO6CUgMNKoU3Culz3OstxMskksr/m8wuKgWI8KWhtE667wZMHJ/oS1NOSYP8tj58Z4FssD7lxveDk7AmNnXH3/gznOvb2d8lyR5am1I1CqeDugqZrCeMmwg7IE3EOOz0VVNfjMCbDWY9RFqjJsgRfNyilZWOrSOHsmM1nZFnKYKBxVsSLnSXMlRuWyxXlek1RFNRNE1zyHCaVXutgOAQ0w8EINVDi3ldWOC9jjNF8oAmOXyg55IwB7zJcl/DM1U/z8H7DfH2bNBM2YV1V4obUedK8IDMGozMm413qqsM7AWSc05yenlGt1mR5QmI9SnvSRMwqlquSPBuE7nwM4ob1qhIWUtehlMOkGR7NZLJDWTYs5ktOz84DCNeyM52S5eJKnGXSPUq1GFloIx0YGyyaAcaTlMEwI8kcdVWTJIa6bhkMhGFR13Wg68JisQgHckpTN6RmSpINabpKTAxyAV+LQtgEVVlRNy15VqBUQrmuGQ5GNLVFjVVggk5CR0IYG3Vd90E1noqS0AWXzgjm9XHWb31vU2DG3Gz7ezFg/ZcAvu0kKjJ2ogtV/HnfDQsBIWrGpamAXuPxBIWnrmtmswtAgk1ZtSQJdL4GPE3TcenSNZomx2jDpz79KZ48fsiHt9/HYZlMJtx64UUuHRxwcnLC8fFxr7Uir2vDe5XvWWt58cUX8d5x89lnODk5Zn9/n6qs+MEPvg/IKJGwLSSxkgJAcWn/WYbDCdalaK04Oz3Buo79vX2mkwneWuqq6vUDpcsuI6Ye3Y8XFXnKtWvXBBgWOi7z+ZwPP7zLbH5BUzd8//vf4y/+8i+4d+8OVbUOCQtIL1S6hyLYvAGX6O+pwwKt29wno1NUteLe/Ts8fPSQb3zzG3zxi1/kC1/4gmhr4imGIwleSSIFO1GkvyFPUm69+BJ7uzsMR0OSBAnWTkYRuk50QR8/fsRkPCbRBpNIQdw2tj8v2rYRp7qqCaCHpemacJDLKJ2zDke3YYU6YYFGbanIdFFAVVUyFqiTMNYaNGm0Ikm0jI54IDCMJJ6HUY0eHvMhSfV9s6Mv+vE/vRfUJiHZjHw8/TubPUJ/X8If9/8WM6E8dDElePZgaPhb6bo7CI6Q4lQqhVQ/kheLLO9IE83O3h5Xr13l+o3rjEYjBqMCjZYCwLoAGSIMWQUuUfhWRNejVEOapQyGY9yeuF2t1ivWa+lGLhZznOs2ALPaStY+8vk31wlh8nYdrqyYkKBpyZOUzoALxgraJKGzWpKkA9LEkCdDVNrhg6C+MYbpzo506q241iZpisaEZoGnKAYbk6amo+26wGgKbqypgOtZVmCyFONHJGnKzRdeEPaTcz3jLTJDHeJM/c1vvcl8fgFYjIbRZIfpdILyMBgW7O+L3pkk100Ad8q+GDWBSVkMcpSRPVRXAgClWWjkeKjrhq6zFEUnrPIkCboqLbu7OwGkddy7dy8wijvWqxV//dWv8bFXP8aNG88KiKOc9FfCZ5FRdtPfF/DhfA6AIJu44WyIBYFZAZLjqajNgrDGgF5HUgUNH611SJaDnpLyKCfMGSdoG851sp5DEr9RcNmspjgKHPdb/AUB/0wABJGGgdZBGzAXN84kJtRGxrODDmCa6qBRqsizFB3yiRg7vd68lvZaGh8BAFyvK4rBEE+CMQpISICigPF4s3f76x0AuAjKpZnpx5fxUfGoVygK+0caH94pXBCgj+Rl76I7peR9bdQW9OADQOLsRpOos7bPFXrmPTqc8VqaZMWILMuZjKacnh0zuzgnOn5rpcFInocXcNRZD3XNejHnSp7QWMMsSVkpaRxY6PVcE52ACg6DXYdOFc4LwGe0wmg4fHKPtnlMkonTdZEXDIcjlErY2TkgDeP/Low0drZlNj8lSQ3DwRDvPVVdhfcn66KuKryTEUCtxoRtHAp+wv2QM6JtOup6BsxQSgVTC5m0KOs1bVP2azTNUsY7U7Isp1kvicYMN2/eFD2+uuLi4oIP3n+f+WzOK7/+Kk3dkJmcRCc8c+MGh88+y3IhAOa9u/d48eVbKK155WMf4/j4mIePHknhHNwHXBLZSGKGF5vV89mSd975Ca+++gpa23BGxPiwYbx7L41Ia8NodCjkNLZvOHvCOHXE9ZTaOse3m8HRmRc28g9bh/3fkzbGmNNv7rjTQwzbYIRbe1BFPTqCPIb66NMCYYR/C/TbjFuaTX7UO9XKWaQ0XMxmodC3kjvARocs4J4Qn1umlIbDoayL4aAv2E1o0mlnmS2WXFycs1wuaYMu48n5OXfu3Ob9997n/r17nJ2eUJYlbdNSV2XP+tJaURQDhsMhk8mEy5ev8Morr3Lr1i2uX7/OerXi6PiYPBtw6fIVxpMJWifgRO6hv/7Iub0u19L8cZ5PfPJTXLu6J1qXTcN6XbFclSxXJSc3b/LKzZtc3L7L4vAhrFYkgwKGY3w+4mJVkaY5iU6xXYNtNyYVEdyVfMD3MaS/1cr3eYzk1OC9AJpeE9hBYX22HdapoBst54g0VjxFkbBMHFU9Q2ctJjeyL1cObRK8T0OtEWLRR2Sposv0RiPasd30jSP/saaJIE4cpfzo+vLxANlabxE029a3jyQHa624D3eWNMiLWBOIMknGdLLDrVsv8fZP3gIvgM50ssPNm88xn8+5fuMaP/rhjzg4OOBjH3sN5zxlWfL48WM+9sbrPbtXQDvf607aYFq1Wq04Ojri+tXrW4SKsJdD42w4nnB2dsbu3i6z+bxn82lNrwkep/FE6kT37DiiXqbWH5kWC42pCAZuko6QZIR8NvyPiv2GrbOGrW2/lfKGNqHv171zMUeOG1dv/iYY+JVVSRI+S9RgjPmHMPP6F0ZH8oV32BCDOwuuqmnbls52tF3D+++/x99+/W/50Vs/4uL8XIBO7XsgzAdmJAGfELMKWCxmHB0+5vvf+y7FoODatWt8/vOf53Of+xxNXXNxcc7BwSWuXb3GcDiGMFpt8WI0tV6hwv278cx1Pv1zr1HkG7PUprY0Xce6WvGPfu2XuXj0mPO797n7k3c4vjimRtMqTYemTXN805EYcKolxdHYBp1oTKJDLhMuZtDQc7HrqDb1TwTJ4x5xQcu16zrKspTr7kUKxNqWNIPDo/uMJjnGdHiVhP0v8i0yfacoBvnfe/b/1zx+ZoDv9v3vc3z2LdJkgKfj4GCX5XLJvScVxjiaZo33ikE+wZicqiophpIEr9cXMktfiyZQmqakSUbVCMW2bCxNW9I2Isw9Ho9J0hTrtOi8tR2npyes1yVZknL1+hWKIkNbUNpRNQ1JktDUDV0nwEmSppRlCwS3MmfRRpLdbbZXHeaqq2rjwoX3rFcrBoOBjO2l0QEyJc/2GBS7HJ81rKulFDRaBR0eI91Fr1guFlRlE1hrQ5LMYn0to6r74+CYt2Y4HOCdou0cWVqIC0uiAkUUVGIYj3fQwS1xPp9TlTILr43pE+QIImRZQds5nJOEyXUtHkeWZ+zv76NQtF3Xj5/VVUle5EDHYr4mSXLSNGc0nqLwQadnc7AXRREsuhOslURrOJyQOUdZndN1QhkXqq2AGkki4GBdNQwHYxKTc3Y6Y2ew5taLLxIFYp2Hs7Mz0QoMHcweTAgMqOh+JN98GrwD+o5H+PFT+dh/SVcPnk6ePgpobFypdG8AEt2KI0Mo6sno4PCjAuBXFEUASOX126YmdlxQhulkh9FoImBQ3TKZ7vLssy+QZWlg+KXcu3ePDb88jpbJp5MDPjBDwvuuyjWDomAyGuM6y5PHjyWB956L2YwkTWUsI3T0RL9lincjvAOdau7cvcOdO7cp8oznbj7HZz7z8+zmhRRdbdubdzRNAI9QDAYw2NkJI+uSkB+dHvPuu+/TdR2Hh0/40z/9E7797b9jsZyLUUBIkvK8INEJeVZgEt0DBdHhswtBRwqgjqauqKum7zS2XYvWwsK5f/8uR0dPeOutH/Nrv/brfOxjr1M1NVmWMxiPieOrseuvIWgMBTaPRFS8l/FEpQ0mydg/uExdVtS2Y5yPObi0S2KSIEjs+wDuXQwAQddObcY74uiA85a6afFWLOtXq5KLiwvWq1XffUxSaZbYtusNTKwV4KeqG6wVdp8KxXBkxmklupAxQdsOSiLMG0YdQiK3SfLieord3Q0Q+vSeURvcK7xmv4/CczRtQzEoQk7hwKk+OYrsvI3coQ2dxo/uSdFJSYzhyuUr3Lr1PFevXpUzKJNgrzR0bWBt4AKApISGbwWYEdaPAI2Sd2nisEWa5kwnGaPRhL2dA5aLORcX5yyWc+q6fqp428rtnv7cyqG9MJBpWzKrcBjaFhqU3LfO0vmGtisZDhwmaZjPT6gbyAu5J6kSbbTpVMww1uWCtq1QxuAQV7osyciLXFzhmoYizbFBMLltGnRhBCxRCCuwrVA+5fquD2eT6Aa2oUhItOrPtLv37vCTn7wtshfOkmUZo5GMU2TBpXu1WrFcrmiallW5pqkbTJLw/HPP8cLzL3Dp8iWmk2kobD1pIsn5k8ePefeD93n86FFfkAjA3oVGVBb0KCVB3d3d7ZOqu3fvhXWtWa7m/M1//s/8y3/5OzhjwjG4GR1VUch66zzs2SguMFJc0OTs44jq40MPWKuYo/s+4YusCXFJDcWej4y5sAJ9YMl62Zd+a3NEprOP+4Q4ZqgCqBDeR1hfXdMG93TC78RRviVxDC+O7CmtUQhD2CQBBDCKLEmDZqAJOlg6ML+TUChtjIqyLOPifMHlqweUZU1m0qAx57eKStWfNc73qBxFkZPnQQ8K+rMlfl76vScMvmgmgrWBCVhT1w3leh3GsqVrHl2Ek8SQpClGJ6RZ0Y93o4g7G6IRgJxQKKf6Ii3VGjNOSIOBytHRYSiIpDBXIc6LVpPBztdkjSX1iibNqJMRXuXU1ooGmYujVKFB4aXR1wZJFaODi2SSMxg1qGRFR4u3ntWsY74uEP3/wDj1m+uapgneCoNA4mgaRik3zolFMWB//xK7Ozs0TRhVD2OR3ketVtWbKEhcEgZhkefcuHGDO3c+ZD67oGsaEqNplWI8HjMcDmm7JhR/nul0h6tXruE9LJdrnjw+5PHjQwaDER//+Cf55je+yc7OLsfHx1y9eoVf+MIvMhyMuXfvHi+99BK/+iu/wmQyJU1TXrh1iwcPH/ZgRBr0+Jx1DIfDwCzUjEZDVqsVt29/SFVVQYM0aLT6TbPWOtENVCYCKhKvlDYhh97IQPTOtjowcrcSxKjTq6A/F+LJL7FO90hdBOY2KFlY5WrzV/2uj9IXxFgdAufTienfm5NCzEs3r7UBYTasj76mCfnyerECH2J8WNPb71OHtyvrRM6QxCQUWYb2nqZugntngrUeaytm8zkXswvatqNpKt597z3efPNN3vvgPc5OTmibNshxOPrcNKLwXmMtNE3NfHbOk8fw/nvv8o03v85wNOLZZ5/htdde49Of/jmuXrvBYjEnTTMuXbrCdLqDR9O0HVVdh5qiochSxuMhxhj29qYc7E8lXzAmnMmb+2GtxTYt85MjTk5OOTo54/HpGRezFaen57j33uPw8AlVWeJcKc0e73vXWBVGjHW4nrEWkGsoF1bALjmr2q6m8yXOixGICQ2AtulwRjKKxHjausW1ipIavGhQJ8lE3GWrVTxaSdjt90rbtht2od+MPW+vl5g/hojIxkRJPkfUt4+addv5Ycwht4kMsR6KADzQkx62Y7nUAAPmMzF2coogz5VSFAPwivF4ysc//kl+67f+O370ox9ydHTC4dExs/MLTo7PeeXWK/zWb/0Wly5d4oMP3u8/6zZwJ4adMj7Zdh3OWk7PThAt4VZyWK1Js5SsyGjbhtffeAOjNfP5knJdETNCozXaaFZlFfIhQzTykIaCjLGnofmK0SQ6aCMGhn+vmYmSUWAVx3vjTSFMGaher9l5BzqM8Krt5l58Z35zpgTAT0saHTZ9jMca7aW5fXF+zng8xlnLZuIgnF39USPR0YQzo+3EDMokWtjcAUh99OghX/nqV/j2t7/FyempGP550SOMrP8kySgGGUZtmKMbbWrJxa3tWK7mvP/BnNt3PuCv//orfPGLX+IXfuGLNHXF6ckRV69eYzLdwXnV19F7OzuCX/iOLBfNwMQotJKcL01gqGCXHa5fuYb5xMexVcfF+RnHx8ccHp/y5PiU5bpkvlwxX6x48PBBwIpSlJemaZoIoWVbUVVyQ9szubfNruI13DRARLN4uVxycHBAbO4kScJ6fcbZ+RN29q9gXZDE2WLaW9uF/fXTMmH/tY+fGeBTugU9Iy0c8/k5x2cn4QDsggqqLMnWWRarGV3XUnfyYZxPqBsRcq4rh1IpXatoG4dSQqlO0oKyKqnWFpMYcq9pu5bDwyMpZL3CWYPtFI8fXbC3v8NoVJCkCV0X6PtkZHm0IVcYI3oKq2XTGzeIM1XKdDql7bped0sOU0eaiIi+dDmlAyhMBN+PqeZ5hleORCekSY6z4iIkryGGCMUgx3uLSTWtXUFn+qKiaRta25IkhqpuURja2oLTZFnOdGcH60QnTWsjZgOVuAynacpqvZQOcZLQtsL+UdrQWc/s5IzdnR0pMHSH9x1pGpyUnDBNYtLsvWMwHOKdZr2Saybi8oqyioegiF82Tc1wOMQBTddRr9YkehcSx+VLl1lVns4umc1moRuiqWvRXSqKHGuhyEfgRgwGV3n2xss89/wL7O0dEEU2V6s1FxezHjCKTjmReQEbwC988RTA99EkadOw+Gmtvf8S0Lf5W98HcJEF8SglBanSYqriXCwopAgrigKTGFwbjQUivVoC6DPPPBME5Cui0+3xyQmz2QKtNUdHh1sBNKG3XMcF0c/4fg0+FEnWdoH2G40LRITZuY40E5DMhCLNiziAHM46CBk7h7dC0x7pAQphfYBldnHGaduymC945plnmU53cRa6NgApbIJ/mqaMRmOKwTBoRzoePLzLwwePqOuW73//+/z+7/8vPH78SCjxYSx9MMwYDoXGn5qMxCS9EU+eF71GVyzypAYXV+D5bMG6XPdgo/cuMJnAupb33nuXBw8e8Ov/8B/yy1/6ZXGltC2DYojWCdZ2WGfBebKkEbOSxGCM6hOLWBiAdPTF0ERR12fUVcvBpYMAgOutex0ABJTUfyh86NYqI5qF3nvSPNxh79jdtVy9ep3VaknbimHCZDwmHxThfvpgKiHmAbHDZ63HdQ1d1wRGoYxwV5WwrATckPFjMXzxtG10ROzorIySx2xS1qzeSgijg6GOjco+uEkCEqWoAeXCGScAJqh+nLR3lwraSAox3XiKtbRVxOgAPO1d2uPVV17mheefJy+yrX3r+/E/2d+BwecjQC9Pa13Q7ApFXvyvaK2IK1g4bTA6ZXf3gOl4ynK95PjkmMVihrPtR86OyCaVuKCVRnlHXa2xVUViFcqktEhH0iRaRmB9K46QRjGZDjBJZDqK0ZGzlqZZU+QDhoMJLSU4RCtMZvXAG9rW01SdsJ28xJVBMQKvyNKctm4FAO4U+DQ0XMLeD06MGz0dOaO6ruUnb7/N7OIC6zrSLGE8HvVremd3F2MS5vNZGHsR3aKbz93ks5/5DAeheSSO2IeUZcnu7i7PPnOTPBfh/xdeepGjw0O+993vcX5+jmiRrPuioyhyskxRVRWDwYCiKHjuuedYrdbMZvN4MnP7zoccHx9x+fLVXnNKcJyQPGF7A5bY3QbfAxzOSXIdF0kvNRDWSMAMQ7Hj+/UWH9a1ATzZxKO+nlQIIwdk1D6sZwG349jX0/pIeNePfeLVTzH6PCqkWJ7oVKsUAYySR2Qd6QBe2PCZg2T31udUT41qGW1I0gSlBOR7/OQxq9WzkmskCUVeyESGFgZsEvRvtDZbzyOFgk4iqzHstXBuxELVI+y7pms5v5hzdnbOcj6nXJc0TbsVj6Ozpye6xxIKbZDmZ5KkJGlKmmdMJ1MGgxFpUtC1Ld7riKJusSqk6CqKAZcuXcUkCY8eP+D0+FDOPB8dXhNMkrFeXFA7z0lqSBJohwWLdcWqbrDJxrVUzOIcWiV0TlhxClCJIssgSTxJ2uGVxO+uazGpom4X8j61QetEGirWMihyvGvQWRK0k1oB2zovv7OSOzqdTpgvFO++d4HWe/zDL342sPd8yFlCSyM2cAigh98ULAeXLlNVJSAOo4mR5nqaJX3eVdcVzzzzLMORMAnXq5KjwzO8M1xczPmf/s//lq7reO2113jy5AllWfLxj3+cf/2v/zWnp6fkxcacbrWueObmc1y5eo2jo8MwTu3ITIqzvndpFRM90Vg7OnrC2dkp165d7yVTwibEWksdjONifhPjBs7hlXzOCM4bb4gGV9poKcX6bShN/L5noxTK6y1RfBdhq7BR4z7c0HL60d6w3voDIR4Q+OA8HSHouNy3wICPPkRAt6+vetDcb1hcbgvM0Voxu5ixu7Oz0SQPsTW+1d4tMuwPbWSfiySDR/X6szLNdHFxITqdZcn3v/89vvrVr/D++++zLtcSS6yY42UBrI0NgzzNngKP6rruGzoxj5nPL3jrrQvee/9dvvq1r/DJT3yKX/qlX+a5556nrksODzMOLl0hywpGwwHG6L4p0nWNgCxG7qk4xCs5S3tDjMAezjSDS5e5Mt0l27/M8GLBfLbi+nzOs8/eZHdvyje+/recnh71OUQ0CIsGTS7kMh4XzOTk9WIcqOuSuqko6zlNV9K2JWmWkAZTO6XEXbtuW4p8gHeGPB9g25blakGSiMRPU7fYTiQ4rJPpkbZtSZO0j9vb9UzMj01gcMvPo+gx/bkgaazqvxflobZBwvjv7dHcbTAjGnmBnCPRbFJrLXV7ngvTLQDmYuhQMB5P+M3f/Mf883/+zzk4OOA//IffYz6fywTFcs1isaDIxEgszwt+6Zd+iU//3Ke5/+h+/75kzW5AxXj2miTh6OiQKMURG9BZngW931zYhcYIQJoY1usVq9WS+ULiT2flOlstdYZ1TsAvXeMBE7R9UUpcw02CV9FMS/QsY24sUiFBIzcAe4RGXW/dEjvkPoD+W80DcP2963WClceqmL0GoDk04INZLFVVc+XKVYlHySa/ic1Ewr02QTTdOXFFAEXTtbKfnOO73/02f/D7f8DDRw/kE1iLGHF50ixjujOWSQKTCTkk1KoRgE0SafTJupUao6pK6qbh8ZPH/C//8T/w7W//Hb/yK7/G5z73ebSW+3X56jWKoqAsKyGRNCVai4GWszK1pdVmrFzJZUGatuBNwmhvH1WMyCb75NNLXCyXjC7mXGo7dvcPeO+9d3jw4J7UUEHT0aAgrA0xMQu1fbje3kcpOFA4nG1lYifk1V3XcXp6yv7+nhhteWFP/vBH32M0ysSJF7lfkUihlDQEq6piOtqKa/+Nj58Z4MuyBOcb1tU5SepxvunH/aTAz4Qx4SWw6kRSqi7opigFRZZTlaKzl+UJWToiMSmtqhkMJxSjDNsWXN6/Sd0uWa7P0OY8JKACVgwHQzyO2WImIuqVLB6lFINBQapNQPhbtNG0TcdytWQwGICHslkxKAbMZo8oBhneWfb392gbx3Ip2nxZlmNbj0lSVGpIMs1yUTLKs54WnpicJAVvpUtR1Wu0kVE6dCIOvCGzVRqqqgtOgyLyv7+/LwDHYID20OVC/1yXJWcXZ9R1DUrYKU0QJe6spbNNKKA92kddN8tqucY5KAYDdJKgFdRNLS46+VCMHGwXNOQUIjTsyNIxaTpif+8ax8cPKJsZ3otLV9M2AgBYS5plNK0UugIUODrWaL/k7r3brKtj8twzGBRh0bekaYK4wZUkyYDJ+DLPXHuD/d3n2d094MaNZ4gB2VrH0dExdd0A9An0dmeg1+GKHVw2oN5T9PKtR2RjbEAat/k+PPV8Hw1ykreFURI21u/KyfUTIxBNZx2ts0yn0z5pk86MsONi121vb58rV64zu5iF8TZJkMpy3ZtKED5T3ZSBJeJCB2fzubZ9G0CRBgHaNMkhgApKeVwFZihgg3SUNHmW0XWW1XLFYDAkSRJZO12H7WpQIvq+Xq9ZLESXsiiGmwTFCqDcm0cocSjKs4Isl0CKUjx+csjh4WPqquEv//I/8eUvf5mLi7PwjqEYFBRFxngy6o1bjBwaAAwGMsox3dkhSdMARtrAunM963a5XLJYLDg/P2e5XPWaTdIhaZnNz/mTP/4jLs7O+M1//FsM7Ai8GOIoRCi1a1uWqyWtbTg7P+vp7Tp0sSWxyZjNZjx5/JjBYEBiEhaLpbCq8pwsS8MYuybqZUiRtXEg0bFY8OLoq5X8v4wCabIsQWsTkiaNSXLwGplkUn3trEIbTSlE69QXfQIfR4y0Ub0g/9OjtrK+nQ36kH0gbrAh+a6qmqhLUpYr+dpKQlXXFXVd4ZwVN6pODIO6tunZInVTM58v0DoIVseVqmW0QowEUrwKY3JxDNGYvu9Z5DkvvfEqL7/8IpOdMTHaeuiZFz4A7+LuHYA+S+iiW5wNPL3ozhdXX2DAhrSn1/9TRtgh2iRMpzsUecHZ6YCL81P5zN71yb6SwyRCkigtcszeikZXozSls71+onfBtTi4Ub/00i12dzXW1ijlaZqaNEtJUs2w2GeQX0LbBqOEpeq8RRUyCtq2HeNBTlFkeO9orSVJCrJ0JIdD2uF9A0lgQCYjKRy8JvHSkTZBtD+OItd1xYcffkhdl7Rdw2Cw17O6dnd3MYkA7U3dsFqt8Erz8z//87z88ssYrTg/O+f4+IijoyPOzy9YLBb88i//Ms/dfEE6sVguLi6YTCb89m//Nt/6xjd5/4P3Qal+3B8E8IzMea01eZ7zzDPPUFUNdV2iFKzXC9566y1+9VevEDW3NLovLFyfRkuh1zaNJIBxDxBGanvAN8YRKeQj3r0pKjYxow8vPeNhG4hDEvatZlMPDXoC6E2vy9nHrJjMhzWJD87M8bmjNoxCQHgigKD69x070OIwTQ/cRj3A8IpITI0HSXwaATxmsxnOOQ6fHPaslVgMCIiqt9gNKSaVgnI0GHD1yuWQqMuOEgmWDXPAOcdqteL8/IInRyes1oGpHEavz8/OOTs74+TkhLPTk8BkjswRTZ5nHOzvc3DpMvv7B0ynO4zGI1SpWFycobVhd/cSxWBAng1B6cATDqzpkKR7L2PXHs3ly1d48aUXGA0K6qpktVqzXK2omo6VNrz2D36FdnZKtZwzGo05efCYcV2xbGqU9nhre5fu1MjnjkCk0lJAT6ZD0lwADwDrNLZraVvRuDSJANLC/GxpW8twMMBoFYwEMnE8djKGmqQ5Ck+SueD4WZMkcYRoU/RLAah6MGXD4I7SIp7JaMIbr3+CK1eu8bnPfo7T81PuPXhImiV0K5loKYqc3Z0dnnvuJt57EiOTOFlW8KlPfYI333yTF2+9yPXr15nP55ycnPDmm29ydHREnufcvHkz6DgrLi4uUEpx/ZkbnJwd45xnPBoDirqSnNLohKZuQ7HladqaJ4ePuX7tWmgEu/7ziR6xmPDI6LrE6uVyiW3aAHgEgELJlI0wr2Rsz+Phpxp5ARTtB8tjuNhqeMWdHQDnCCRvHQ1xk8MWMLD92M43Y3YXmwHybtQGH9zOaSO+uJX7ylkhDMG6aynXKy5fufx0U1ttGLR9nuslRxUzvAwPvZal8p7VYsF8Psday+3bt/mjP/ojvv/974VxcY/3FmM0o/GI0WhEUeRPMbt0uDYxBheF5CmE4rZtW9HuC8DfbHbB1/76K3zv+9/jF77wi/zCL/wiH//4J3CuQZucJFECNvQNO2ESSUwqEUZW0O8zct5FiQOvBJBLU8PefkaSjcjzJXlWkJiUz3/+i1y+dJkvf/lPuP3hu1Sh1ukZo1FkINwPMUcITeWwJhfLBUlm0alHWanFksSQp2kgOgwwqcZ5SJIM3SaMirE0r5TIG1T1CpRnUAzAgLUGkyY/NRq7DXj17xN6EDz+/nbds20WuM3oi4De9texCRDX0Pb3tuukLMvYJlAkQS8vrl/vkaZBmpLnYmR5fn5GnmdcuXKZslzz3e9+nzQRDcirV6+xWCwDrrCJwzEeRWAvsvIjwD6fz4MpZmg6IXs+jczUQpidxiQUg4LRcMjB/gFN2wiYg6eq1tSNaPXXtciPdMHATCv6Md2qroFGNNgi408rEqUDg970GndayVkT5Zz6fbh1RmybbmxOEdcbOXgFRAJxPIM8qGj2ozXL5UqIR+HMEMO9kFmEcW0VAVuTSF4QGkGdFQmZrmt48+tf5/d//z9ycXGOd134fHLdDg722JlOQrNPk5hsY9qpZOLHe5FqadtaJi5TaaBPJmPKqmSxWNI0Dbdvf8jdu3f58Vs/4l/8D/8SYwwX8zlXrlxlMBj2DEDvoVytaOsKZy1GBfNGpUlTOaWNNqit/ZHnBQcHOSYpSC5mmCRnsViCgp8bj3C+4/3356gEjJG1pZxkR9Y50LqvIeU8DNr73qG82TqXXb8GV6sVZ+dn7O7s0jY19+/dZr444xO3nkWbMpwZMoHoEKynKAq2MsSf6fGzu+g2Fcav8Y0L2kAqILUC4pRlSZJkwYpZ07YyGx87AM5ZXOv6OXfvDMVgxLpco9DiDGg8rrMsVytat8J5G2iPoqdSlhV5kYduRUpZCeJKYC+tVjV5mgltN3Q0tNKMJ7si7JokeMR9bDIQHSNvhUHXdZa29WidYJKcrqvxbctkPKSpq0BXd3Rth9E5XSuLWeFIsoThYIQHqqrF2Y71ugYvHRoJOh070yFAb1FdVSXWOhaLYD0dDuOqqQPThZBMSyJd19FBOKULYF2W5TStxTpFlhZhbMHilDAF67qmtZbMiEB6VVVCS9aGYhCdd3PKdUldN2iVyli068iLAlyJd5Y8L1guF2RZxng8xnuF61JsW7NaNyjTUtUdg8GA6OLUth1ta0nTHG8hP9hnb/c649E+N64/RxY6Nm3b8uTJE5bL5VbSs6H7xoQhPmJAiTnUU2O5W4BgDBA9IPgRcC/+/kdp6k//7OnX+Cgw2ANydS0jusbgG48NQJQJlvZRH6tcVwEkk+dr6iYAOvE1XA/wxWCtML25BwSNp17IAUhycUHSHd5GTSdPkRXicuiRgjYEEtGMsywWc8bjiRhxJCmJCcYYiaz1LJPCRylFHtiJkW0Tr4dJDGlwRQNhqJ6cnvLo0SNs1/KHf/gHfOUrX2W1WgWtqIQ0SRhPRmhNADWSIMafiLHAcMTOzi6gSFL53EkS9Qs2I6VVVQUwH5bLJR9+eJsnTw6pQ1dRWJKKpq148xt/y3K15J/9s3/egzNZVoRxVmi7lvJizUake9PZjGYWq9UyaIFYEiPaog8ePgDY0siTIlcb0fRQWuGVwqAwwR07dnKENSGC1yaMAmySJ6jqCt1K4Oy7fCoEBC1lgXWWyCSIHWvJ4n96T2yvd9AkqSRnaZKhhuOn1rew47ZBc9WPp8Qky1pxoIrJozQgOgFd5wuGgxFd29E2ssZbKwBi27TUdUvTVHgngDHesW5XTCYjXnr5Fq+//jFhhWlx8HPQJ0Y+mFp0NuhxWQH5OkvP5BPWonQ3O+t7oC2+7/jeJb5uzhfvI2/Zk2ciSj8dTzg5OeJiNsO20oCIswoqgOneO+qmpMWxzJSw87Sj8x3WGhwdXmtMqtjZmZAkmrZt4iRpr1s2m83IzWWmk0t4o9jdG9G5jtVaxnW7rqWuRVS+GGRBUxXSpKAopiRh3eVZRl2tWJczmlrhmo6qtahKdJqG4xEgoIBzluPjQ45PnqCNxzhFkWakxrC7M2UwGAoI3LV01pJnOa+98Qlef+3jOGt5+PAuTx4/4d69ezx+/Ji6aTg4uNQnMM7Junjv3Xc5Ojzk05/8FF/4/OcZj0fcvn2Hqq56ICKOPFgrsSRJEobDIVevXuXBg/tEfcT33n+HL3zh873Wa0xoZY3rfq0rZD30OyCcs8pbCGPoG2+cAHz5MPTZu65GKDiwUCMoF7LpHqDbYu5Jwv50Ud8f2LFhExZgzPfleQmgszxPD/1FXcotMDC+cdU3gFzAArfiWF8QEvS1N58lFmFR4/ji4oLr169LdztMZXRsdZdjcRELEq0p8oz08oHc47aVa6+EYeNCERwNE05OTqhrOQdm8xnvvvMOP/zhD3lw/z5HR0fCJvPCSOrfl9uMPyslpmtpKnIjzzxznddef51XX/kYu7t7nJ48QSnNcDhhMt6R5qk2eC37f7UuWa1WoBSj4Yjh+IDd3THDQUGWirlU21naTkaR6vUS27Us5jNmszlvHB3z2Xt3efMbb/L+e++yXq3wyNnlbYfGY4NDttYKZRy7eyOyLC4HhSERF8wsA3RgggDWkadpvw6apmZdlXgXR31NYPVbOttSlqoHPhNt+jN4u5kTmS4fBQR0zGsCyH3l0lV2d3apm5rzP/ljbLcZ6xwORwxHQ7Q27Ozs8uKtV/kH/+BXAKiqki9+8Ys8efKE+/fvk2UZN2/eZL1e8/bbb3Pp0iUmkwlt2/Lo0SO+973vcenSJb70y79EUQwoyzKA+AU70z0uLs4BejZNzDEOD5+At0Saq/MOpcVgqNDQtDVXrl7l7t17vPLKK9RVQ7la9utewDtFEkbOZR2J/EXUC9exOI+MJbUdi1V0+EKhcEqa6yJjofq91O8rs2m2RcCXzQn0U+Xc5vzY/q0AKPmnmcISfzcAf/xNQmF9fn7Ozs4UOXefHs3sXy/GOyVrKAsLtGk6kWcIWtiz2Yy2bfnOd77D7//+f+Thw4dEF0ljBBjc3ZlSDHKZrkA016O2W2KkYRlzKBu0aMVkbUmaJgzVEGlyR7Me0a3+0z/7Y9588+v8yj/4FX7rn/wT9vYvU4TcML7fKJNQrdecHB2jENMlr5Q4/grNTgAWo/t7qk2KdQKej0ZjnJV98NJLisOjJ9y7fxvVNZu6wktejtrIfCglDDajk36f1XXNaJLhG00+nSJu7p3ICyRpmPDR1J0YuA1Mxo3rN0hMirWOvf0JqzLDaY9VMkUl+ehP7+Ftph08rcO3rau3bXy1ff/7PC/shTjhFp97u96KfxMf2wy/frWGsfjEpP1Ug3NOgLeqxNqOui45OzsFBR//+Mc5uLTPLza/wGKx5P69+3ziE5/EmETYfEVBmppg5AE6NHGtbcXVtYvXZWP+sVgvKdJBnw93bUdbNzi7MR1TSuG6jjzL0cawmwu5QGmRK2nalrIqexKLtdLIrqtSmttVHTSIGzpn0TqAZpGijkcbyVmN0mhlgja76lnwMt6qUaF51t+/Xmsy/itMHSDndSSdSFGLyMwq8F7yxr3dvY1cSMwdIuK3nRspv7UuoO0kP3/zzTf5X//XP2Q+nxF1ixNj2NvfY2e6w2g0IMsSdqY7DIpCTJ+MYDMuGNMJwJkEbAiWywWziwuW6xVJAKpXqzVNKqZ33/3ut3n8+BG/+7v/is9/4Rc5OjpiMpkwGo3wXsgX6+VSTKjapj/2VJgcSEJdHc+cNE3FmMwkdFbuwXA43DRsPbz80qs8fvyAul5jEU2PpmuxQc5A9XW45HRainPJSbwAr85avIpu4bJv7ty+y87OGavlitnshJ2dASZ1kiOEe+F8NHOK5+T/50nC/28fPzPAty5X6HYRNr8U9UKlbKQwDyYVSej0x6DSdQJEGZ0Ku8JaVJqilCFNB2SdNNHarpGAm6S0dkHTrgFHXcvMtAuOXkdHR1y+dAVFAn6jIXN0dNTri0Sh0TzPMUYF7YclznXC2vMy510UBdobFos1dd1hdMb16y9yMZ9Tl+L6u1hVONuI24tvRN/P5HSNLGxB0zfOPdpkDAZD9vevYq1Hq4y2aZnNZ3SdiPA/OZxRFIJ+W2vRTgcwRzrpogsojk5d3ZLnRbBHF83CtpNiSzrSDUVR0LYl6/WKvMhZzJc9XVnsxR0uBKSrV66yWomDpHMerRqsW3NxcYg2kOdj0XkaZnS2IstSnGtEU7EYkOc5WivqWsYblVFkuabtxdPrvosj90GhfEZRTLGdZjLe4+WXXg2fvaFpWk5OTpjN5k8BEX7rmm46lU8Hmr5QYhO0tpl8UXB6+2dPAXShyNoELGHkPRUcnXQ1JakxT71WLMik054wnUxItA6mKxIwdbj+OklZLhZCNW4keejalqos6Q/f8L9KK1JTBOMZz3baB7GAVfELFDKG662i50uFzxdHW4VmHT/TBqyURMswmU4Zjyas1mVwPNvnypVrONuShlELGVkQjSEXBOa1F20klKFpZGzvyRMZNf7zP/sz/vIvvhz2sAiC54HtlmepHMaprJXhcEiW5YyGoiExn81pOxk/VsGFTTpJUUPKBLfJtAe6d3f3ePLkCbfv3OH8/GLrPokm3A9++D1GoxH/9J/+b4iOa3leiBaGDWvNRdCW0B2LRbALwt2hKx26yF3d0NlW1hFSCMQ15nzorCNutJEBY53rf98YcdCMa1lrYVZpJQCB0tINNHEcLrwfY1QPCColAdUkYiaktQ5JxqZAUcE5T6nAWHN6kwREECCsryiKLcnwhqXgImCOJMnapDJKF1ap9TL+PRhOuHTpGqPhSLQ+5IL1e9EFrSzvXViLIgrtXMulgx1Gk2EPqvZLPch94cE5sE7RORPYwmF0uRWQoaor6qYRsxPn8ZZgchGMm7x06kySSHHngR64CBBIyOKNEUcwpRVJnvP48WNW6xUgIy9Rh8t1LYvlilrDsoA89SztCmeEiWZtjVcGnRimuwVVvaTt1lKUaNHgK7tzFosZXZpwdv6Ys8X7FI+lOJE9JyYbovHomM2k26iMdFPhSMBOF8Y8vcPToNSQq9NXcR6quqFu6oAKDYNQuOfo+AnrcgFYhoOC4WDI7nSX6XiK0YbWt6KD2VluvfgiH3/94+Dg/ffe5/TsMU+eHHL//j2atuPy5SuMxiNpFDgBiMqy5OHDh7zz9ts8evCIL33pl/jUJz+FVpqfvPMT0fdxDoKDemT1OudI04zd3R3Ozk5YrRaA4uTkiMOjQ567+bwkv16hnMOpTbMmJvq26/okTABgca20ThhD22s/MjXimHos0gXY64PTBpQjrMutU1r1//v3AHz9fQm5fQSt4/NGxk98jhiv4uvHr8Oe6H8mJw59pOz7P/J5tshdcoap2DAQYGK9XBPHd8ShPsaXrUYSAmTLzJ+M8E7HY3YnU9Ex7SK4FZjJ3nF8csLDhw+D+P2KO3fu8M1vf5Mf//gtTo+OqAO4q3TQDEOc1AX0Dg0RfJAgcNR1S1WVLJYz7t77kL/7u28yne7w6sde49Of+jk+9rHXsbZjsZgxHI6YTKY4gu5UkrK/vyPNWh+A+XgNI37kFHhN3TZ0KkVlOYO9IcnogHx6wJVnnuOFF1/h9gcf8p+/9lXef/8dmlqa0SiHx9G5FuMTstwwGGqsq4PGZBrAFY/3SfBokRxCa4T96yTnTZOUPMv7qYEojC9/b+i6FjBhRCrtC/2YL8W9s51T9fc/FJY65D3bjZo0SVmX6/68VsowGk1kSqWsOGmPGY1G5HnO2dkpf/bnf4btOi5mFwyKAVeuXObdd9/l+vVrVHXN2dkpt+/c5vvf+x6PHj3i1q1b/Hr2az3TS8TJc8CHolo0tyMb0Rgjhl9WJiZcKJKMThmNpElYNw3D0RClNG3dkiSZTOH0TB8p4hLjNss6AFw924eNSZExEku1jkYIAhKhN5MdJpwtaMnHNEHXD1B+o3molEJZhdchnvt+a4bGne//07P2AnivIsC3FY9Uf2hE8FZ+X2otz3q95tr166FpbcL59NMFpLMumPbISGVssFhncbXtHdK/+tWv8qd/+idcXJzTdbIux+MR4/GYLBAVksQwGhbkeU4e9D09wcwBYdikWYrtbH9t12XJfH7Bar2iqmvSVJ4rTWVcv2lqFosL/uRP/4gPbn/A//Z/97/npZdeoa4rJpOJ3A8P3rqgC1gTzRzjuaeCbrVo8NKfY9ZJbmadSL3UVU25KpnPzsnSXMzmgv6n9zbkhKHW6C+/CrmWHB5NWwpLVznyqFOuAwgYFl3XdTRdcAZ30rw2WpGlKU1dc3rSUNsK6xx1K/HWB+Ckbdtgvrhh622DfvHrbSJArxO79fgo8y/GOL21BmLduA0Mb0gKTxt2bJMj6rpmMp6QJGk/7rhYzLC2Fcaz8xwfH/PWWz/m7bff5tr16/yr3/1XfOYzn+HatWt84vU3+PKX/5w0TfnSl77EpcuXhHnlvGg4e4L8T5QZCFMsJuH4+Jj33n2PG9euB7fccJ441xsbPPfccxSDgjQwVpXWZHkWWJYZ4/GI0XDE3t5+/9nbtmVdlnSBkeY9gQzUBjCwpq5r1itpBskZ1tKFRgq+payrzX5XiHu1loaCDmPVAvZIk1cZ6SdEvbnYnXNeepABEuzvQ1sLgFoMctEh9UhjAULjgXB2xJzDY12HDyB517T88Aff58t//qfMZxehiWpJE8PBpX0uXT5gNByzuzslTQ14T1s3NE4wiMZaMZKL8lJpEhibOXmWc+36M6Dg/OKco6ND0lQwkdVqhXMdh08e8W//L/8T57MZv/kbvyXSSdYyGo16Z92mFUfk2CQQHIqgfRvZqYroOu68GHQ1zlJbR1XWtG3HYr5gtZqjVUJV1pSrii4Yt6Rh2q4n87igOfiRMzSuefm3sO/bViQ4ZvNT5hclaea4fHUX51v01l4DFZoDUZ7O9fX4z/L4mQG+4XCI9VnQUBD3SWs70jQL1OwE58XRz9oO76T7FzsLApJIApcVOdPplOFoyGw+E7aT7zAmZTAwvT5PpIIqpYSxkOekaUrT1AKAJSlKeebzWRg9bJFksA2HQcd0OqWuK5SCohiDFiAnSRKyPGe9nGNchgvv9+jklNlsTmsr0kQSL61kJNn4lHVZsrd7hdRMxMEudYyHQzorI7id7ejalkVXs1yuqKuW1tZ0XYt1NcNQ9IKiLMUZDW9Jk5y284L6a4NXHXVTobWm6ZpgZZ+QZTmttYEZhxw6KOpGxgyfHC6wzmK0Zm/vgN2dPXZ2dlBeDAWatmK5WuKt6Ia13ZrFssR5z2rRoFTGwf4B2SDl8HAhGlbBtU45ca0r0pwkkeuskEMtzQxs6aVFAe80TUj1lCuXb/HyCz/PrVsvB9BQErmT42NOT0+DWLLuAQp62CACLi6MpvqnAu1m322YRtb6nhmDV0F4Wn5HoQKKvgEMZIQsFnbyhJHls7FN2iTPEXjsv28tx4eHPHr8iEGW01QVXStjlviGRBmM0swvZtLh8lJkaRRZkhBZISFXwzlPGv5fad8HbenmSYLpAotJBRAign4SDzwRNGmapncXbeo6AJKaRKm+6E3TlN3dXV577Q26znJycsorr77KdGfKdDzm0aOHon+mQeHCiFO4nlrYs+IQC+ezM9brNd/73nf4i7/4c9quQUbB5ZwYDgchoEkS5pyjyAuyNAMPy8VCxtP7expGZbUWcVet+kQyS1OSLOvHBACef/4Frly5yo9+9CPuP3ywNaIka+fb3/4WOzs7fOlLvwzIwW3C+JRouG3G+2IR7L2MY9kuMoa3QKCwLgiAb5yf9l405kKVhFOyDgUsjCvH0zYNhAJDimkBBaWjp/p1avQGfMJvwAaJ5SpcG43pu9SiqSQueEBggSojiYbRyUa/zJjg+Bi6YTq4dobRgggQyueW9acJwv/axENS3pCGqmxEELpzNFvOc3F8UByK5TNoRGBdKcdoPKEYjPr77v2GKWWdjBU7R5CC8LTWUdcVq8WS2fkFi+WS9WoVNBltP+IXwVkXAPc0SdBJQp7nDIYjxsMxRkkH1eFCcyR2TIOmSpIynEy57DzVg/systt2AmB5R9fUnM9XMN2hdUM6W3F+fIp2gO9INXQGdAb7l4agSjxNWG8Z3nlJDG3D1ZuXaLs1Jm1x1GgS7La+TGA1dp10t531ONXIe/UeVII2MtbufUeSwMXikCLPQGk6q5nPRFNFJwbrOo5PjymrNc47RuMRWZGxs7cb9GuaMJ7dsLu7x2uvvcH+wQFd24lrulbs7+/z8NEjvNJMppNePL9tRQ/y7EzEj8/PzvHO893vfpfhcMgnPvkJDo+PuLjYAPJGG6pKErII5kd38rJcA56qqrh37w7P3ngW71Wve5okCS4C1kqFcRG5zgLEipOkdKhBGFgBZAlAqjYGccBVoTgToE3G6kOhHs6OqHMWz5I+uQ5jeX7r92KsimCd7wG7wLKJca3/m3gMqg0I2AcdH0+Dzb4M8SwO7MZXE3GLvn3U/73H9+Pus9kF+3v72K7bMhTZZvBuitzYsCjynJ3pDnmWSzEc3mqaapbLJYfHxxwfHyNGKXf50z/9Y37wg+8LQB7E54s8xRhpGsaiQCOaypFNZV3XNyzbtgtaXpaqkXHy07NjvvHmOd/5zre59cItvvjFL/HKKx8jSa6yLhXD0YT9/T2st2K+49qAUSa0bUdVNbR0KIxosmLAKRKV9J/Vm5TJeEqeCni0v3+J5597ji//xZ/yV//pz2lcF+RTLNp4BmnCcJIxGCUoLcl/1N0FYUCho7Op3I+2EVmTaPiWBlAwSRLarpF8a6tIEMfYjmTo+0wposauz3lCnIogtFJA91SBH3Nt6zxZKtMccSF6L9+LBgJd19F2NU3d8ODBA2azc27cuMFqveT84ow3v/H1oC0koOarr77MD374feaLGUrDYjmnaeo+72iahtOTE4xJQ+FGaL7J+0sSw3K1lBEyZ0OTyYuwu4GiGLCzuwsEVoWDnek0ADQdi8Wcsq5FBqWRiRbb2fA52gC2WIllGLS3WGdQVuN9F1i8GpOkmz2k5FzQWqMTacglEXQJ50g8I6RBqcFuNQLCmLBXm/FHH3dqPCNUVOzcnBl9Iy4I/BOBekUPlkbTNO8jUzk8v9qAO3Hv6yQR3T27GeRvArN+vV7z53/+Z/z5n/8Zi8W8X7u7u1P29/bxeAbDnL3dPZE/QgrVrhEnTRvONb29xsI6SxKJDXt7B1y7fp066PydnByTJild5yjXa+bMaOqGt976Mf/j//h/5Hd/91/xC7/wRU5PTxkOhxR5AQEijWBu27ZhHcW6gV62JV5YqV8tdSexqVqLYdt6vcJZx2g4YbVYgPKitRWZ2SqeywFiUcL6wrV41qTZgCTJcWiqao3WMBqNGBaDHjjQQZeurVqGg4I8Sbl25QoGzb1H98CKFnCa+DAkkAUm8mY1xMmeWFtvxnflmkeJJN+f45u6ZrPvN+DeRrsOesPDp0CMbdMO+t+TqbYItgh4VQyKnuCRJJp1uWS1XjIcDrl//z5/9Vd/1U9rzWZz7ty5w+uvv85nP/tZvvN33+bBwwecnJxw5+4dfud3f4flcil5HPQGQnINgi5yAMDquuZv/+ZvuX79OpPxmCzPyNIs5ObChnz3vXfJ8ozxZMJgMKQoBJQejYZMJxOmkymj8Yg0E/JNHvCGNElkpPfgcl9rdZ1lVa6p64amqWnbhrZpwpivMPzqqqYJDayyrPoz1HpPmmhsGzUQdZ/jKA/KaEwqOunKCBAY6+KYj6gwwuu8jIbnWYoNDSKv2Oj4EkoQbfA66Ma6aAYmja8HD+/zn/7yy5yfnpAYsEoxGow5ONjjYP+Ag0sHFEVBU9esl2u8lUZA14oUjnUh9od60IRcsSqrHkw1iWY8mpA/m7NaLVktV4xHI+ZzYQmX6xX/8//8/6AqK377t/8ZF+cXsv58lEKRpoZzgn1YJ7JXmgDgx7otLPW2swLANjV121GWFU3dsF6vsV1HtazoKst4OGY6nlIHuScxu6nkCgdHdml+bcdL2T8mSNyslivUWH5W1SVat1y9MWY4FqamDQZa0YgGPFmWEWXntk1Q/lsf/z8Y0W2wtGRZjlJi851nGYvlDJSiqoW6GscirHMYLwEuumXqNA3FmuPJ0ROcexTstWVhjkd5cJ9dkySJuAc6z3K5FhctlLg1hYTZdR3WesbDPdp2Tb4jY3NVVeG9ZzqdMBjmpKmmCW65JhONvizL6KwwIOquo646mg5aa6majtFwIsCW7TCZIkssiozlesHVywfs719mtnxAVZecz05lM2k52L2z/WZzHryytK5jNBiCogcktDKYRAr5xCTixuo01nuyLMF7y8VswXi0i9WKyWRI3QgrRSnFbDbHWTBpRtPUzGZnJGnKwd4eo3FOkY9ItBFdO1+yWonGYJIMsU3DweV9RqNdjo8O8T5jOMhpbcvx2UPQMsqpdDAQUIayElqyDW46o1HoSBtD21SglNBjFWRpTp6P6TpNkVzhpRd+njde/5y4KeGl63t+0Rd8RsURORFOlS82HVeI4MfT0F9fEYWHbMCol+H7Of6nGllB06h3l/OSiijlRetqKyERJsdP74cYXONaHA0GXL10ifQTn2B/d1fGqZ2nCyOffac8dOATk+CRhDmaHPjIDHmqENwuHkXrUhs5cKx1YURWCvf4V1qHzqKSg2QynvQuUHHMqcjF8Xc0GpHlKddvXOPjn3idtm148+vf4YUXXmA4HPRaSIkxsqa97QEqbYQ55oOb4nwpdPw7d27zh3/w+8wXMxJjGI0G/bhdkmx0bvIiJy8GKA9VWdJ1G1fNNE0lSXfBZTIkrtpoyqomzzKKPCfLc7Qug8ZJ0e/9T3/q06RZxt27d+hCZ0mhaLuGb37zG1y7do2XXno1rB+5z1IH+X69SEIa7g0O27V9130bXXZBrVuJSjgRbJbRGRnniYtICnEXRk5DyeAJEnNS9buQdEmtFnSj4voNJhjbawMgmp7opxI6RdT/UR46WegBzNowOZRXoDfjDl55kgAC6pB8yLXYaF0YrUn01vdCgpeahPPzcw4OLoneqgrMxQiMKCUgo9+A2t5aTCIBczPOJOu9a+P19aF76mmalvlyycnJKScnJ6yXi6ALKHtsvV7RdR2rQO1XSvZrluXkRcFgIIndaiEd0sQISDyd7DAZi8aId6LV5ZQPY0WeqqywzvOx115nb3enB+Sbpsa7jrZc45qSrqkpV3Ouf+tNvvPNN7l79y4qrMHRzojRROPUAtdVaJ3iOiejxo2Rzmk6BBLapiYZGpp2TRtcnp2ThD7Pc+pmGVjqBmcbAf6trI+mVSiMMDC9RWtHZ1d4ZzAmB6VZLE9JkxyvYLmao7ViMh4LQ6fI2dnblTH4OgCZKD72sde4dPkKg+GALEn50i//Evfu3eVb3/oWeMkTnjx5wjPPPIvRMjpireX8/JzZ+Xnv2Ou85/s/+D7Xn7nBZz77Wb7+9a9T1WLs1FmLciqI7RN0yDryPAvSFmu0MRwfHeG6ljTNqTrfa9zpMPoAqr9/0WgjxpSulckCb20/yobToekQXXMDE06FIBG1WUJx5JwUYV6pp+LBU5HKC5jtI3VHxUHiELk+ElwEiotn/tNJK1t/6b3twT183yLoY0A4euSfOo4vq/6wkaNAzoO6Fl3kNE36ZD3ymnz/ej7gCXJd0yxjOp2S5XkYbbEkodi+uJjx+PFjFqsVq+WSL3/5L/jKV/+Ki4tzlPKkiQksblnH4uKehnunpGERAEtxR88E/FCQZ57d3d1gVlaL4+RyDcj41nvvv8Odu3d45ZVX+e9+65/wyiuv0FnLulwzKHKSLJORfQ9t01GVa9FG9bq/7nLNdbywYq/g4zJwaGMYDMccHFzhl770y7z9kx/x4NGdwOICbTyojulOwXiakaaOJIwqrtdrnO0oMvncOk0RR2EZh8JJzI5Fq8QXF66RCrInTc/OE/ButQlj8RP0Hc6gq9VrkD5d3G8yKZHyiOOPPoDOIX3BOU9VrinrMhhzQF5k/Oqv/moPCJydnWGt7bVpd3d3uXz5MnmWh+un+lw/TVPRfFUi51OWAgiifS8PEUHR5XLBar0S9jWREU5wQjSBfZGhlaEqK7QydEHzdDSZMhg5YJ+o9SrrX0CQthO2WFmWVGVJE7S9RKNW3Cg7Z+naOA1Dnyf0exOF1rFhJSO6xiRyzyGw4fXW/wetbgTsE91u1V9ntHw+t+XtGPMDhUI5cARH4LDnjDFcXFyws7MjOa0Tt/T4HmXsWPVrREWQ2DtcJzqvXWep6orOtnzta8LcE6M80eSeTqfs7k6ZjIdMd3YoBjkEYBGE2dt0ItWx3QSPAJAw1YMWXpJSVzV6pcmLnL3dfUbDIYv5gsViESY8hOxRNx2Hh4/5d//u37FarfjiF78Umu+ECRnZnL2emO2I9GbrI9i9LS8iuXNnWzpbY11D11a95tilgwO6Zs18fkFZ1iLnEJM0BKQ0SuRVwPH/Ju0/uyy9svtO8HfO468NH5mJdEAiM2ELgFgoS7IkzCKlUnM4klrU6qUXvXrmA+graeZNUy21SMpMixJJUTTFcqgqeCABpLcRGe76x54zL/Y5z72RKM5Mq26tWgAiblzzmHP2/u+/0WHDYL2LjgqiKKWxIbNZRRBo8nyBaep2LVPKgNVoq8mSmFAr5rOc8fERgdZ0u33yMieoFLW7XgPPHPWru10Ol71azYe8SW3t+yDdAnYeXFp9+B5n6d3pgMsVhuASJKQFOnHXSl03K4CyBQxhpOkPekymYwIdMJ/PmU6nPP/881y4cAFrLH/2X/+rpOtGEaPRiG9845tkWcaPfvhDeoOeDDK0sNuqqqJxYHXpWIH+/IFtfZE73Q5hFPLw0UPnde/Of+P7L0sSJSRpQq/XI8syIRl1BOgb9ActgSjJMvr9PmmaMhwO6Xa79Pt9B1ZJgrl27L90kMrqqeXeqqqSslqQLwqxpalKilw8gMtKpLCTyZj5fAZNja1qsIraiM2DbcRyTBeAZxCHugX3/H0UKo0P8jgenbC7uyuhnMr1BkHQonvW9RXW9zjWYJC6aL6Y8Zd/8Rc8fvTIyWrFguXMmTMMBwPOnjlLGMdMJhPKPHf4i3H7UEXT3t9u3zaWunJ1WKAIyxqtC5cVUJGmMRvrG/R7A8bjE6fIijg6OmKRl/yH//DvGfSHfPOb3+Ho6Jh+vyfeykrW3MaKRVxtalTjBrAOQEPJ+za1dQOcGlPX2KrE1gWmLlC2wpqaMzvbdDsxdS3+n4v5gsPwiMlk7A5bTVFWQmZRbl22MlRrjAyejJV+pSoLqtJ5T2rD5m5Eb1hhTEFRNq4uNa0ct3SkDqUaV2un/KqPXxngE3mXxKanSYwxtg1dqGtJA/FmukEQEgYySShLWUDBUBWWTqfbLvhhKAySNE1PLVhZlolPmAuqGA6HAOJf5mjeGxsbBDoiiXuEYcqTvXt0OkswRqa9JePxmCgM2yK/trJxN3Uh01qrwGqiKAMbEEWKfr/L5uauSyFcsMiPqZsFxcJSVnMW+Ql7+/co6gPCWCQZCiWx542fNssJjXRAlKRtUEYUxERB5G5+ubk73T6T8ZSythR5TpoF1JWhKGryRcDG2ja9fh+lC07GYwHB3AJWVc7kPwm5cOk8mxsbVFVOFMF0lrMoKjK6RKHG2oAkHtLv7qCs4szONhsbfTAZh0ePKYocqwOoZYGXSYylKKSgnE5npJkkrPa63ZaGXc1FpijT5ggdJlgb0ZQd1odneeX6t7n64utkaYZSisV8wf7+U44OD1uZyNIDb2UjUUsgbbVgWMp2PZjinr7SaPlHy6rg9Mb4LL3dv6EMX5c+Nt6c3TeBq/4Wq9fs2d1dtre2aC5d5u1f+zqevl43DaXz41t9/9XP55velunkCtj2U62837PU+SAQz5Hly4opuUgrfXvmJHtqpYFh+T1qx2bBCiOrLEviKOLjjz5iOpmSLxaycawmlQJBIAlqNdIwF4uc8XjMn/zJn/D48SOiKCDNkjZNLQgUtfMkiZOEKIxbj7a6ks9QFCV1XbeG2d4sXiF+fbEDNMqqoigKJ+2VNCd/HXkJ8JtvfI0w0Ny8fUtCb1yjdHxyxI9+9GO2tnbd2iINnfJo25KYLefe+VEZYwgUYMRnQ/lryvgJkxQ5fiJPe06lgPesP9sCge457m3ld/6adBIp9+UFX1iCAzLNXJ3MAgjLVbkm2XiMzzUHPrDFaMdEVTX+HvLSIx/6oawFsxJE4K4xL21SvsmSyYbIg913Gh+PmE4mAil47yIl6XpBIDLVOBRZgrLC2Op0M3q9jrActXayWpEdef+Rqqo4Ph7x8NFDDo+OsEA+n3F48JRHjx5x8+ZNHj9+xP7+HkXuWNN17UB7AYqSJGZtuMbOzg6XL7/A2bPn2NnZJUkSJuMjOp0e/d5A2OdBSIOXaYj/6dbmpgwxtCaKhSWXRLGcj06Pyq3/GwrOvfASv/73/j5/+d/+G3/x53/O3uwR5y+elQAqW4E2oBqRYlgwWpoAYwxpmnAys8znM5foVq3Ibxqaxp97AQTKsiJJkpZlU+YFSokpsDGGl17+NUIN+08fM5mOSZOIoigYjcfUpmE6OsI0Nbu7FwiDhF6v365N/v9ra0POnT1Hvy9+jWUpAO4Lz1/hzJlzXLhwiXd/9i5pmnDt+nUePHzAg/sP2NnZaQt27Tz2iqqkKCs+/fRTvv7225w7d447d+7IGu/WfWENVtIQOy88pRSz+Yxer8fR8SFVXYrcBg+2G7yPpgwLKubzOVmWifzUmpbF443gfTKb3zu0DloWm2fGKaXR1kqoAktwznuVNUa14RnyMND4+38FcHdgv2eCnFoL2nuN5TpirSP2+k3MLxu29elrZXstgLjcL/w934Jz1rl7+TE0MB6PnXduw6pQsGUUOyBIueYhCDTdrsj0AMqqQmtFY0qm0xl7+3tUZcXdu3f5t//mX/PZjRsY52XT6Xbo9TooZIgZRRIAFceyRyRpQhqnwnxyPk5BILYGtWPc1LUk80V1SJYl9AcVk/GYxUJ8a6uq5MaNT7hz+xavf+0Nvv/932H3zFlmMy1qBh04BrySIDFn8m8cO7tlPbXrujAHmqZxDaWhqQ2zyYzxZEJvMKS+X2FMTRBJWFKnE3Hu3DZoCSrTQJLERFGI1dr5lTaOtZgCRbunhw4Y8Ps9iDe0eDmJdNQPwtr9p2UILOujth5q/Ubl9Zep0bTn18s9vY+wNkakxA4cyLKMu3dv89c/+EsePHhA3dR859vf4ezZs7z88st873vf49at25ycHLNYzGmahl6vx3PPPcfX3vgat+/cpp7Ubf0UujVUrVyrTVOvDK6WEsD5fMF0NqXX68s+jKWkZBEsRM5tLKWW4Vvkkg27na6zABGLD88GjSJRUBgrvUldCyO0dLYp8jmkfrcORF7MF9S1qCHmee6GLQKMG2czUdUNYegacquoq5K89eUScFo7dY6sZ0Fr2q+dZ6P3xfMBEYFbY8T2g/ahfW3C0iYmz3PKspQ9wLFpl9WfAiNrV2u94ercxknMZD2Xa/WzTz/lz//8v7phU0AYxKLm6PdYGwy5fu06ZVWy93SfxtdurtYtHIC7BJMcaOQM+FGWMAgp3P0dRhJIGEcRnU7K1tYW3W6XyWTceo8fHx+zyEum0xH/+l//b2gV8PY3vsHEBQuI759y67ChbmqBPa2lsT6Je8latQ4wauoKU1dOmVGDbYijgMsXL3D2zAY3b37G/ft3HJGkRhO4JVYDdTtgGQz7rG90CIKKqskxpnYkDvF79wVzVZXoABmqGYupDbYxHB0c8OThI6J+RtNoyrIA26Csq8dWw3OsbUE7oPXc8wy7Vdbdan/jQTj/81WWXqsMOLV/LR9e+usVEf5n1hWu3u6mqEqspd0XAKIw5M6d2zz33HO89dab/NPf+z0uXrzMX/zFX7C394SNzXUOj48Y1H2SNGFrY4MoCHjr7/yaKLuapg2DAwnQqoullNj/PwxCer1e+/2rqnIhPJXYQNTiyzyZTphMxy3YHoZi79Pr9uhkGZ1ul26354I4BHyJo5hOp0On0yVNMtY310mTjLW1NdI0Ef/yUPoOFWiSNKbb6TnQVdHUhroxrey9qgrng14JjlKKCk6ss2YUhXiLW+MCwzyDFOMGAxqMDDfG4zFlVTr2rg+/CLFBQBgEbn11a4V4ymAdFtI0Dbdv3eTml5/7Tpo0TVnbGLK5ucH6YEiR58xmC6dMlONZ140LrrJUtazZQtQyrapM/PBisIYggKKwTu0ie5XYQK2Tpinj0YgwDHj69IhFnvMHf/C/s7a2wYsvXgUsaZY51p5cv8K6luuuBS+tEdmxA/CtkVAqY2qqWoDWpqnkvjUF/X5Gmuq2DmuM4cL5S3x580v29x9TNTkqgLyQfVk5Sb512I7sEQHWRlgC8nJKmsH2zoCdcykqWLi9JqSqfXq4Is8XQi5zLNzJpCEO8q/cc/9nH78ywGcaK14/YULTSFMxmYxaCc1q8p0Y9GeC2pZVG75Ra9Ui6nEct7Tl5UIjBUbTNLJAKq+7l0JmOHQ+YbOZK1AtStccHT8hjJCTWdWt1GOxKFBogiClqgpJv1ECMkp8dky/N6CuLaPRjKqsUWHAyeiIo6OnGFsRRyFKNShdYRpJOdrYWCeOQ1SYUJsZ4FNma8I4QBO6oAKHKJ+SrMaURelAM0vTKAbDjKKY0h8MmU0PqMuE9fUzdKKQNCw4s30VpSyP9j5FISk++WLOcLjO2loqt6+SIqLTSTk8GvP04JCqrBkMtqSIIKOTRvQ7uzx37kWiEJ7sPeDo6DGGkjgJCMKYg+MxOogIdMh8PqesFgyHazR10/pt1LVIGuIsYzwetRtEWVRUhSLsD0miDc6ffZ03v/Ztnjt7RcCDpmF0PObJkyfM53MiR/FeXahP+T5AC6y0gRNKrRQPpx+rDamwg05TX/2Gt2qo/5Xfq9MGssticxm6cHqTW75GpHU7UfMbcaQ1QRS2f7sKHq6+xrL4OP3P1c+9+vPVY+D5GctGDLk3FG0BvTRix00iTh05mV6XdVvoay2y2wcPHnDp0iVhXloB8nCTQaBNuyvyiqap+eijD/nkk49RgSJJxCPPN6Baa+IokTQ1x1CQNUAkd1na4cKFCzz33HP0+/0lsGsNk/GEu3fvcjIeUddyj3fSrH2NJE4Io9AVPyKJGgz6vPzySyyKBffuPWhl11pbbt36ktu3b/K1r71BVUridgugKWlmtWt+tJIj3DTiOWmsIQ7EAMLYBos/37gJGSvvAAEAAElEQVRz41igSH1ujXF+fMvr2lpvos1KMSrzhkC1bQ+tvEopjPETVSfxc3SCFvRzAKFcx0sfLf8SS9DaAbwrbYD1KbXuR0vA0oN87p4xjXxe5TY8FNbUMqXGMpvO0DpgNp3KZ2zNyVde03lneCZtEsecO3cGjaIqG5paQGQDGCPN7GQy4eHDh2LUX4mn6eeff857P/8ZX3z+uUg5rBje1y5pT6RU/nwqiiJnOoWDg6d8efNzfvLTH9Pr9tndPcsrr7zKtWvX2NzcYjwakaYZg7UN14gGdNIUHMgoxK7YecPItxL1cQAB6FBYeTpKGG5d5Pv/+H/izW/9On/63/4dOpqAmjjAMcE664MoCjC1pq5LOllGmnaoyhqrqrbmns3mpGlClnXcHkjLiFFKOfaN3JNY8TQTQGTOG6//HS6cv8xsOmE6GzGdjzk+OuTxk4d8+eUXJEnK7s4uu7u7jEYTsiwhzxft/W2t5ezZM3S6CdYNxqq6RrmpcBKnvPXmW7z22msYI5LMTz/9lCRJODw8ZGdnh/MXLlC7EK3jo2MCpXhw7z5/5823uPbii9y9e7ddP1fTP30T47+rtWJNcXh4yMnJCXGcukAH5Vi/DaY2bTKcW0QJ4pBiPmc8GTvz7qWMJQik2F824bpdrzWqld1ZAO2DjJZrs0I5abCAJ2YVt8Nd624YpQLZmTyY7e8PDxpalvLKVYDNA/6yksgdZawVD0kah8dpl8q3XNtZuf+Xd6PI3Ju6ZrFY0O/3HZi2TPxr1yvrrQukSRBzegkVq1zNJ2v4nCdPnlAUOe+9/z5/8Id/yOOHD1BaQpq6nQ5pmhCGGq2lhux1ewwHA2In6W8tCM0SVPTHHmBtze2ZGMaTCePxCVr7cLXKMYDGNHXFtCr50Y/+hkePH/O7v/uPuHr1JUDsZpQO3dol10ue5zS2kULeNSHL1EnvVVe74l7C1sbjKdPZjKaqiAJolCGOFWEAOzvr9Hoxk8kBSaSptQTJBUFAHMZYZLAlwKVcLDoQ6RdN46Q78p2jaGlB4ZOtl7I5iKO+MEeC4NT1IjV1IOCkSzvHg8ru2Iqvn2uUlNhfyCUuDG4CCcsDy7VrV9l/+oTj42OePHnCnTt3OHv2LI8ePeK3f/u32N7eYuz2536/z2uvvUaSJHzvN7/HfDbnP/2n/4OtrS2XpuqDqbSzrKmcF6BZ1m9KrqvFYs6TJ4/Z3m7QSgC83IH0Hii01nLp0mXCMCKJEgeGalQgYYBJKD1BmoqSIElTCelIM9bXN9z9Lveil3tKqJ3IjcuyduwN4xQ0mqYR77f5fM5sNmU+n4kkr26crNx7Hcvx1jQoVWMRQgCWltnerjeuf5fUTmHI62AZwNVaZhgHJqoAAs3BwYEzk5d72gOkPnTHqwiMdUCijlxvJfJVYwxVVXF48JQ/+9M/ZTadEihF6EL1er0uw+GAjbU1nj7doygryqLANDVFUVE7r0ij/ZDF9XVOzqidf5z3BA9Cp7Bx4Tx1VLm+TzyV19Y2yNKUkyQBDHo0Eb+zxZx/90d/QK/X49q1l7C2QatMJNsr66jft6SGWAK2sKyDmtoxpoz33zbEkWZtvc9sXtHtR6Qp5IuKre0B29tblGVO1dQEOiKMFHEScOXK86ho5ELoDGGoCcOM2snqfSCbfH+59lQjdWTTyNqTlwWqEQarMKmWMn7Pbvbgs5dzrvrlAW2f5JPOZUBWnHq+30tXCTZLOf8SbG93D7sa8LHa+2i09r25afcWi2XQ7xNHEbP5jDiOGI9GfPbZJ6yvb/Daa6/y67/xXc6fP897779Hv99v67s0SQnDmDffeIuLFy7y7s9/htaaohDwWux+/PXtLCZoUFrYcScnJ239UDeyhgRatyEnxliC0Cm1XPBX3VSUs5LR+ERYfkkCyJpx8eIl1tfXaGpDmmZ0Oh2iICCMI7K0I8zhKGbQ79PrdgQU7HXZ2JBrNwjl93GUEEQJSZLR63bd0NuCFZ+4PC8c8Fc5XEB6qcViwXQ6paok0Xc2nzqrmZq6NEymU4oi59zZc8L2dkPAwIX3Ka3aoBsdRGRh2FpwGFtTlQWfffop88VC6tEwoN/vc/H8JdI0aX31vLIqL0q5V520OO12uPzCWXZ3d9nc3EQrAe3n8zkHBwfcvXuPyXiCxaCtjCxMM6OuS7qdLgpJOB6cO0e/1yXPS+rGcHJyzB/90b/l//6//D/wigqUBDjKvoFjvYuPoHbDOGNPA7/GNkK4agSgx9m0hIEi7MZkab+tMytHqNLagdk2oNvtiX2TEh/nuqyoaqlJdQBhoGiaEq0MSWDZPttjc7sBPRF1XSB+pBJik2NtQ5IkdDpdh3mdZsj+Ko9fGeATBkbUToMFiUwII1kgAh2SxpFjcmhMI5tlFIh3VpmXLlBAueYmIozkuUkiiWLj0YROp+OkWnJSBalV6DCkLCpOqgnD4Rprw3VufnmbYzNjkc+JIk0UiadEnERgQ3rdDkma0Ml6BGHIdDJlPJ3KTV3WzOc5xycnjopfY22NyQ3T2QnG1nS6MUHYc9MYabAnkzFh0CVLN9FNTZMXKFVxcnIiev0okmLVeUFUlUzFRGYk1H/jqP9VKQbAjx8d0tTCuFNaYUxENz1DoHok8YQsWePOvZs8fLhHd1gTr6TqBkFI5HwFnj49YHQyZjyakqUZa4MecdzHNgGWmO3NHTY3d9l7cp+qGlM3C4zNiWKcv4vG2IYyr6iqhm6nR78/JI5S0lQKmv6gw2IxE6ZVVbWbR6QSIKSpQtJoizdf/w1efenb9LobcgM1OQf7JxweHrYFXN00Ev7gHs+y73wa75KFZ5/ZfORncn3+ss3JnPrdKsi2CuJ5uUW7SVkPoPkbcLlh+td5NtV39Z+ngD+FA6q/CuA9CxD+9z+kg1vyueRfnl04lrARLLlg8vPcTbE73ZS1tXVu3LjBr/3a19nd3WVjY4OqroiiyLE8DEqL+bl1jJi8KDk5OeSv/vIvKPIFURw402QJAAl0QJLELcu3LEtJU61Ksizj2299i+vXXqLb7bUg7XKabsleyHjrrbcYT8bc+Pxzbn55s/Uq8scxIXHAumqlQmmacv3aNabTKY8ePsJomWzl+YJf/PznXLlyhW637/zKhJGjHA1eEDvPlJFNrVHNCsvgtJHxs4XRssN3HhGOEaMQaYFuIQbnEWNp/XWs9ow7LwWyeKcLH55hHdNOKd36eXmBoLE+ART3Gr6wFSBEBx5s9gwfx1RqZ37+ulqCCZIa6+8Xy9LM34HOtiEvFmxtbjlg1oKVv2mRQ8QTxR8JrQP6/S4b60PCQMz15f6zVI1IYx89esTdu3eFcTYa8fP3fsHf/PBvePzoIXVZuKQxSxxHhFEsn9kDn66B9xM+Sb7TrkGrOBkfczI64ebNL+j3B3zta2/w1ltvcenSZfJ8JkDfYI0GmbQGQeCYa5ZKe3N17by7hIWnlHZejBprNVbFbO2c53d/5/d49xf/idF0RBjHKBdA4S+1KBLvt8ZYOp0e3d4AS4xFWBZp2sGnmHrGahiGLQPFrynT6YQkTqhxgEDU5eGDR2grfl7d7oCtzV2ev3SNMNTM5hP+6eFTRuMRn37yCf/7H/wB2knyLbJXJUnM+voaWms+++wTer0e6+ubJEniAhQW/OzdnzGdTel0MxaLOfv7+/R6PWazGc899xy/9Vu/xRdffMHNmzeZTqdsbm6xtbkFQK/bo9/tiU9WWbSrk28URd4nxvFRGDMej2lqw3gyZm19XWSU6NbnMk4FBNEldHpd7t+/j7GWfrfHYuaCHZRfh1ky4ZRtJb5ejeDlbNoN6axyzZFu+SnifRnoFihoWXX4fUfudmMtthE2W6CVMCxxjalFJuzutl1RVbZLibDwVu/RlfXGArYBx/JeptCq9sm+jxOGmmE8nZI6+wR/rFdu6ZXvYbGNeBBmmYDdpUvNDcOQyWTM6PiYRb7g/fff43/9/d/n8PCQMAxJs4T1tTWSWPaMTrfD+voa3W5HgLSqYpHnwgCw9tQ+C6frAqmxpJxNkoTt7V0XojahLAp6nS5xFHF8ckhRyvV7995tfv/3/1d+93f/EW+99Xeo65os7RJGkZw3B7YUee6Yhv68LkHZdu3ErSPG2VU0jZvq12htiGNYW+vx3LkNIm0EeLAGhdRP8/kc5Xy4fPpfY227pqNEahwEYRs84PdD35ifOueI1YIAj3X7ecFiTI0P5rBOrilDgSXbx/toNQ6RHgwG7XBK7oGQ8fiEoliwubXBW2+9xdHREUdHR9y9e5ff/u3fptvt8uGHH8lee/0677zzDsYYkcC5sJ5/+Pf/AWGgeXp4KGB95T6bEla/fD/nt2gtaIXBEgQhi8WC9957j0uXLhFFSctUNo1cG1VVsVgsuH37NlEUtWFwQRCSJAIYpYlI8/rdviQD90R2F8exXAdao4PQ1SxSt3S7XekpgpAW/EBq5cpJecvKyXtz8eFqqqpNixfWp2ExF1ZOURRuICmBeVgr6glYOa+ebWOWcnWt2oCuQGs0gUvojOR8Ng2j0YnzGy/wbsx+YK1gaSNgFDawhA409sFpZVVSVhXvvvsuD+7fR2MJwpB+v8dg0Gdre0tIGWVF3dSUlYBHVVk6T0NhmceZAIKbm5ucPXuWtbU1tAqoqobDo0MOnh5wdHTEeDKWIBMUVmth0jY1TROTpSkEkj66tbEp0slwn739fYqqZjw+4T/+hz/if/6f/xe2trYxTUO/OwArw9GGZaKsYTWJe2XI6eoD6woOZb1PakVVzTg5OWA+PcGYgjiFyy9sc+nycyhlqI0APtbWVNUCVE5jvWxet3Ypsl7Frc2JD9MyTUMcxKJGCwPiLCGMA/JyTlk2ri+26EYA3yRZkht8v+XXSGEJufPo6lIP9HnGqg+0sdaeWudXVUzKD3efWVtOg6LyHP8eoiB2nG+lJdXVgWRbW9tMbsuanHU63L1zj+HgY7rdHi88f5mXXrrOcK3PnTt3yZ265rnz5zl35ixVVfGTn/4EY4x4dlYFZVlQFgWBUixmAhop5SXKFWVVSNgdyz3P31M+LBG7ZPgrrUAv7TuM8/2sFxVKibT+yd5jklQsC/Iy5+DoKWVeUlYNnW6X3a0dojgWxZQSv7UkScjSjCxNyDod+v0+a2vr9Aci9Q0CTRSHjnkaE8cpnU6HwWDgMAaAmjwX1rJ4dNOuN3m+4ORkxPHRCcO1dZSS0EZLe3IwxlDWMpDQzhIgzRRBXaOdt7A1lr0nT/jyyy+dYkoGxLtndhn0u6JyaKwLhqkdCJljq4bNzU2uXrvOhcvnXeimTyGXdbLb63Lp+ct87Y03GI9G/OL993jy5IkMEqyhLCX9VpmENE2EEBYlXL1yhRtffsnh4RFffnmD//Jf/jO/98/+GdPphCzptCFcorqQ4U9jawIlwR+Nu89bgM94pp0Ae2BQtkHTEGmLKucU8xknJyccjibE2YC6LsX2KZB9uNfpg9bUdcVCzYQNHlgsFWAIAsX6RszzV7ZY21KgcqwNwSpClxfhGb2+L5nPZ8RxwnwuGNqzidX/PY9fGeCL4wQdxuRO+hO5yGOwreFrUxuqUiY5PprYN3QKWYTEPyhFKZiMj4FIqNg6IQoTtA4oyhlNUzkae0JdmtasUBtNWSimE8OZMy+4iV9JksZ0Ogn5fEZR5m7abzk8GvG0OWY2m1LVBdPFhCQN6XZTlE85CgIWC4nGzuKYKFRonUBjCVKL1oY8l6ncbDEijYe8cv1bPDl4j89v7zEej5lOJ/R6Yi6+cBu/QpJwfZhAVVpspMiShMZUVKUBG2NtRhCIgXQSd2manOPxPbAxi8WEKKlI0oo00xiTE0Ud4uF6C6AYDKPRmDjukS8aMF16aZ9uZ0BVCbNga30THcIXX75HXZdEsabX6zCd1ZSlB61U67eRJAkKxXA4JHQ3rgfCkiSjLmV6p3VIUzdARJauc/WVN3nztd9gd+cyWnUpy5KDg30ODo7I8zngihnfkOAlI0uwy4NvxlNXgGXhunw8y4RrG5R2U/J/d/oPf5lcdimf9Kwp3TIF2k+gvsq+W33vZ38ur3v68z77+Nt+9rexBP3vTwGa/v+sNIpKgVnKrfTq5s2Sn4V7flPVNHVNWdT0ul1mM0lV3N09CwhY09gGnKozCDVNIw2D3ww+/vgjHjx8SBCGdLqdVoIThJo0iUkzkWh7lk1V17zyymu89vorrA2HlHnJl19+wXg84eTkxEW+S5HS7Yjvy8bmFm+++SYvv/wy77//Pg8ePHCR5f64y6Lrvfjm8znr6+tcvXKV0dGI6WxKUZUEQcSd27e4d+8uL7/8Ck1jxHsNUO31IWycdmpkLYFvlB34tpRD4cCw1ePspCkuaQ2E2iNMM/dcdy+IofKyifD3h3JMIOPBbaXaSRZGwDmrXUHpzvvqfSTN60pwiF251rEtinCKNYt3+2lbe/nvVirgLxzTHh9jRMoahAEo2/oHKed55ovpJWtQEju7nQ5bm5sM+5LWKsC6FqPtRc69+/d59OgRdV3z6aef8Md//MfcuXuHxogMJ8tSMThXlizLVgypHUNF4zwNawGinA/pfD53502kJ8bWjMbH/PUP/pIPPnifb37z23zzW99m98xZ8jwnzTLiJHFDQMt8OqMqCkrHQrdORmy1aoMLrBGZsTUGUxbMyyPCMCcM5pLIrCQsQ2sFqkEHhrJaUFcNnazLxvoms8UxdVOJn4kD82T6Hp+69sTHQzlpnJOyOZ8ai+Xw6JC6bFyRH5CkEUGg3TFLiZOE5y+9wNO9A7pZz8kTPShtieKQ4doAY2sODw/5wQ9+QFnWfO1rX+PSxecZjUYcHB5w8eJFDg73SdOU73//++zt7XPz5pc8fPiI5557jt/8zd/knXfeaZtunOynqiqG/T7j2ZTKNfxLOVHTAk2SYCfgf57njKdj0MqxPv33C4kT39hkZGXJ7u5ZFovcmeErqQecl1kL5yhhqRllUMYZjrf7gQApSmsnfV+u8QphZgTO90aKXZHdKcfE0E6OJ2uxFSCvUWhtVu45UMZJbPVyr2lZPnimqMK4NQHEI05Z20rtln5Ty72i3au0XgH7LdPJhJ2d3fa5kmir3R1KC8x7sCCKxCbBsmTJ5AvFycmIRZ7z6Sef8L/9638t1ihRwHAwYDAcEEchcRyysbHB2poAEbPpzCUzu3Roa9t1ZMmi9IupHI8wcp5rkQyTg1CTJQnZjrC5J5MJW1ubdLopT/aeUDjg+/j4KX/4h39AmiZcuXIVUxv6/YFTKziLASyKlbXUH6fV2sOCaUQGXJY5xhbk5QR0RRw3bG8NefXVa3R7IYEuicMMlK9LIMuEUeHXYOPABT8gaAMdXC0jx0J/pUbyrB2vgjldIci9Is2iv3d8vbD0IvOBeeI5amjAMe5l1UBDHETkxYKj40O2d7Z4/vnn+e53v0ue57z33nt89NFH/It/8S9aW43hcMgnn3zCjRs3OHv2LPkiZ2RGbG/v8Dv/w+9wMh5x89Yt9/1l/arqmtoNEMuybMO/PAivteLzzz/n5q1bKHQL3smASI5NnufESUKapPR6XWIXvuX9HcMwot/vkyVJO2yM4pgklkY8iROyLCPtZgwHa/T7fWH8ZWnrV+yZUTjAPgpDulnK9va2gFiNMNmqqnRWI5W7TkqMk2SLVEx8xIp8QVkWwuBaLFjkuZMWSvhHbQSkwSj3/pYGA6YRBrAVUHH/4JDt7W2m0ylh6EK2EJZx4BI7FXKcdBgQ6RiQek5bYWDXdcX+3mM++fgjqXUUZGlCv9vl3NkzGKTOo3EWELVYz+Rlga0NnU6Xq5ev8uLVF9nc2sQ7D9RNQxwmoGB7d4vsrTepyoovb93k9u3b7D15IiCWC0ysy5ISHLtMPvNwMCTLpJ989Pgxxhru3r3Dn/3Zn/B7v/fPqAqYM2stZDwQJhZMdvV2bh+SRi8llLAYDdiaxWzEk70HNCanKKeooOHy5bPsnB2wKA+JooCm0cwWU8LIYqiBxhGODVoF+ITXFmAyDWEQEkYhjQuHaBoBRKtafGZVIHXybHQCgaBtUSRyzyA8rQDCHZ8lQ9S6AVjdDkNWiQx/m+LJ/+3quvFsD+P3CX9MT/8tKMRmxSpXv1qDDjRnz51lf3+PfJGTK/HX/OzTzwiCiKqsWd9YI00zx+gsCKKI3d0d7ty5y7vvvkvulDl5kbfSVmOMC9rxnxEwLp24LFa35OVndLWrrNvLzsc2Uly3Y2e3hlojklitNePxiEePHrK+vkkURRweHjEeT9o6NXRDmDa4TcvQTlhzniUZkaYJSSKe4anz9+v1ZdjQ6/bp9HokqfgiaxWQZiIL3ljbJEljJ2+XUMvZXFh9k8mY2XRGURauJpKwj7IshZlqrPhjKyVBqJ1MsAgXdGes5c7duy1DMIpSNre2OH/+PEW+aGtLH1bkh0RvvvkW11++RhDG1HXJZCK4x2B9KLWJUtz//D6TyYQsyzhzZpd33nmHe/fu8fOfv4tpRM5flCVhELLIc9dnW5Ik5YXnnxd//pMxP/7x3/Dmm29y9ep1Fo3kMNRVjWmEtakDhamFWODtNLwyStY0N2hpRHWEhcAYqtmM8eFTjh8/YjwesWgq7GBAd0cC58JAo5R4gIJiMpu39WIUBAixoUFpS5YFdAcVo+kTku6QbidDO9JbUQimlIShYCa1JAIHQQhK0e32l0z5X/HxK79CXVeMTw4oS6H89vsDmc6mKVEoZqveuBrkphFaohS/1hr6/b5DomvxcekMmU5LFouSQAXkCiChMRHWBnR7a2i6xL0Ow7UMQ0NR1sxmUxbFCVqF1I10UmU15/g4Zz4/Wk6trCWIQnQISQeCShOmPeIkRGvDYrGgKEpmswVKKdJUmrhup+OmbXKCFouFFEIqoCzn1M2Uu/c/5/NbP6NmRLfbIUnitiBR7kYVBlpIFAZuEaCd4kVRSBTGWJ3S622xNtxmPhej+EXxiLo5dhTnhMnsEaPxiDAuBWlQjp6vNWVR0On2qeuQpoq5eO5FLp6/wqCXopThkxvv8ejhPR4+vkPWiZlM99ne3mQ0mlKWOUmSUFVFK3WQCW5A04j5fKCXG61vNmpj0Cojz2eEYUwn6zHo7fDyS1/njdffppttUVWK/cM99vb2RP7SNCCWnO30SaPEWJrTqPtywraUnq5uWKvP/2UAn3/YVRTL/c2zm92z7+tfy/8/cD4Gxi36ntL7yybpv+zRbjrPAHW/jJb7t/3+//vrn5YNf4UZ6FGa1bdzC7H/kdZKUvCODhkM1wmdJECSSBuiSDYva1zzq5X7nTDAxKS64Kc//THz+UQkhrEUkSLpShgM1gBLkZdUVUUYhfy9d97h8uXnAWHNZFmX+XzBX/3VX7FYzDlzdpeqrpnP5gz7faIkYbC2zttf/zqXLl3iG9/4Btvb2/ziF79oN6O6VmgtRZRnSRgDa2vrXLh4kZs3b9I0IgueTMd88fkNrl69CojsxSqh9VtlpXhxCVbWCrBDKM2SyFFECuB9Jzy856Ux2rrDbsQ3yDpATlkLyoFm3ufJnRN/ybbA7Ur7r58BuUX1tzyPnt0jwKJ7ritujSt0PZtHcmhOg9wy4xLwMCA4BWL4S8h65EquHLx010uusywTCYUDI/1ruJazBSc9cLu2tsbGxgZhFLl701LXhtFoxO07dzg6PmYymfBf/viP+esf/DV5IcniSRzT7UiacuCKq9MMF9WuV4G2WB0QBRFpHLdA6ng8Fu9Tx6T2Ruh5Pue//tc/4+NPP+G3fuu3+Nrrb7h1tidhTwqaunHMjXwpR9LiUWawDlxHWJeNoSwK8mICVUhIAk1NECDUf1PT2BpThc4PCCBgOpnT2IayrtEBbVPu38tP5ouyRDcNnU5HmrOmcYDxiuzLNljrvekMzazEWMNodAKIPDDNMu7eve+S4lxB7AyC/WAuCEKyLMNay7lz53jyZI87t+9x9epVrly5Qu6YKkpp9vb2mUzGBEFAr9fjww8/ZDQa8fbbbxNoTZEXYJe+op1ul/F0emqtrGuZfopPr5zZIAhaObIv/D1bBjzLKyLLhMkja6mmKEo6WVe8aQS9apM1Je134Rj30ph7mZ5xHmZN00Aj3jOrDZxSCkND5RIFV/cr5e/dYAnSrTLEgiB0Dbhj6vgmTok8T8A1dytZ/5rO01OpFjxXHswDrJH9yt+0yvtfyaLeGmNPp1OXtB2sDHz8/a3aIYRnLPt6T/xYDThp7vHRMUWR8+jxI/7Df/wPzGYzwiCg0+0xHA4ItGY47LO9vY21lpOTMbapXQJh1TLKlkmNHrCVdVKroF3LjA1RVJRFSRCFxHEk9ZU7F5ubmxTFgsk0JkkiHj58TF7IfjA+OeLf/9Ef8nu/9z9x/vxFqrphbbAma4RSBOiVNdfXF947FQcAOvDJiNxSqSmvf+0S117uEIYVW5tDlDbU1UJAuprW0lWGWzW1u+aF8eBWUrWyfjnZor/+/TW2Wqd4eZ3Wqwxpuabk2nartfWDHs/kMyjtzqtPU7VLmXiSxE5etxDgLwywVvPgwQMuXrzA9vY2Fy9e5Hvf+x4Aw+GwHaxsb2/zn//zf+Zf/at/xcHBAU+fPuWf/dN/RpmWTKdTdnd3CMKQv/yrvwIrTEJjl0MIY8WnqvHyuVqaORliOya5tSzmBVU1lSGPWh4bvyb6HsQzZ6NIZFKDwYCdrW2x5/ESXi1sSrmGFEmSEkaRNMVJShwlZJ2UTiby8qyT0R8OydKOqI10SBgnIpXV7r2igDTJUFkmsn8XLqEQxl5V1uRF5YCLuVwTbl2vHdjZNEvvqHyRs3B2CYuFSEStseQLCWE5e/acYz82mNLJc931KteWA/fcGq6jUI6787ESNmTDZ599xtHxMVppojhmY32dnd1tsWOaTuXzlZUY7BsJhqqrhouXLvCd73yHfr/PYrFgPBY5bb7IW8/M8WTEuXNnuX79ZYIo5Pr161y7do0HD+7z4x/9kKIohJnp1gXTiOeycSBdHMdcvnQJi+XxkycYa/j5z3/GK6+8yssvv8p8NseHqNSmapVTAEb5Vbhd1mSo5yxbZJBkgZr57BilKnTQkGUhm9tnef7KLpY5Sll0CAQ1VhlJJTVO6mt9bdPIO0kpJnVjY9r7s6wKwiAiCSWkUilFURWgIetmBDNNUZeIz2ZDNSsoyqVHl99bPOC/7HlWQ/xWwzWW68ez/1xVoYAPSrDtazzbj0jtaNv+s25quYaMVI0+jVcpWFsbcunSJT795FMWM0kuVTrg008/5f79+1y/fp3BoE8Uh2gMR0cHfPLxR9y6dWdp++NqiflsxiLPBdR04Ql+LZSQnBIvgfbHaPW7Si29JDu0ww4Z56GAUGuMmFTKPeOYwUdHR4zHU6pqyYgTpZthni/I0ozIDROiUIC+OHIDCKXQKmcyHhMGEASKKE4Jo4QwjJwntLcOiOl0OyRJxnCwwc7OLlmaEUYunTjNxOM+iBgO1zhzZhelFPv7+0wmE/eZAxkqlBWFS/QVZV6wwvSU/WMxX3Dv7j2aum5Z+efPn6OqS6d4EXC+MbJmGWN5++2vc+3aNYw7N3v7e+ztPWH3zDk2NrdQzTJp/ec/+znT6ZTt3S1ef/01rl29ztbmb/PXf/1Xorxy3oNRFIGfP2lDkiQ8//zzfPrpZ+RFyV/99X/j/PnzhEGMcdeysdbd45XbP4TpLGd2uR8KgO8HWTVKyXqXHx1w8OlnNCcjMiVpz1M9Q+9CGMkamaUZKDg5Oebg6JCiKB35SawFlFZknYjLV3Yoq0fM5jMmE8iylIBABg1o+t0BdVW296Yfpsk9HBCGQTv4/VUevzLAZ411F4nIZPI8d5I9QxzHJElKOctF2mZhMp65g66A0l18NYEOCKOQMAgoioYsTQkjzdpgmywTCqtSltl8gtYB82nJrBoxmj5iOhtLoaSNFFG1xdQBSRIitZIlDF0RsJAF36qopW4aajGTtob5PBfUPQsJgrg19S/yBWVRkKYZWdYhzxeO7qwdwFODatjYGBI90MRBTFE5wC4SPxPZpA2BTmhqMaUu8gqsJo5SqrKgrnMUYmZ+/rlLRMEau1s96nrBvOxy595H6KAhzTRWjTF6RBwHaNUBG4gv2WRCv9enLGs218+yuXaJrY1L1HXBvfu3OT5+Sl6OWd/ocXw8ckDMnP19Q1FU9HqSFJRlMv2u65r5YoEEMIQk/axtpAAnAwtpKk0cZGxv7jIcbPPaK7/GxQtX6HXXsFZzcHDMkyf7TKezVmqpfDPiwIHA+Rj5qcmzjDo5mysFqvpqgEb7vBVwC1Y2Mb46uftlf/O3gXurn2MVPFxl8q0+b3VDaf+9/Qxf/YxL1pRd2Xye/aC/5Gfqq89ebSzb/z71x8+ifKf+moODJ3z88fu88MJ1LGLCXBSVALrKEGjxqTJKoQkIbUBVFW1T/WTvIQ8f3aMqc+JhH5GpCcPKy36qShblQAe88/feYWNzgySJCdwCV9cNz195gfc//IC9JyXnzp7jsxs3mM9m9Ps9zp47SxBEXLx4kSiK2NzcbD1Af/azn9GYhsAoqkqGCnVtiOMQSeBMOH/+PAcHT9uiumksN29+wcnJsQMgWQmRwFeCTmqKC53wpeLS6Bx8T7zSFGtXZCsv7ZImXFg4clX467OxrbAWVODbnfZ0tdfPauPmztspwK99nmOeOlP8tkm3rqixOPNe214Vz14pVlkBNFevnJXv5wco/rOYpqEscnrdHk1dtSxd2zRY16Qv30AApU63y9ra2jIcwjE6ptMZt27dZjyZsL+/zx/+4b/lww8+wCCFfrfbodftkKUJOMmLyIn6rfeS1oEAA6wkmpvGGfRLA5WmKRvrW4zHYw4PD90aWLXr/f37d/k3/+Zfs7e3x2/8xveoarFa6Pf7Av5rCQ7xhW1dVxjbULviIlTCLKytFKL+fZWyVEWBDeT71LaSwjEIqJtaPK+sRQeaQMeoABpTOyCqbCV7QeC+cxyzyBcuKV61aXBhKNe+QqwXjK1XzoFdwW/FmHg6nTogJ6K2heyzxktONWmS4ZlUnU6H3d1d/vk//+f8P//l/4s7d+7wjW+8TZzE3H9wn2a+4MbnX2CNpBrv7e1x9epVtNbcvXuXzc1Nup2Ok1oYQidHNK0sXR6BDlrwHpa+XW2huli4tXhlfQYH7GrCICCKY6IwRtkZHef/pfygKaKVmXivOe+1ZhFGSOPkgMYIe7BqmjZFTlg6dQsI1nXjzrFu749QB9AoN/XXS4m9tViTO/BuBZAVNMBJdhVKW3c9y9qrtIZAwAuUeO4EStijgWu+fC8mx2m1gFRO0mk5OTlha3tbBq4Szb4EV901rNywA4Q1EjkvI2tFWpgXBbPZjMVizh//pz/m8eMnKGvpdlOGwwGdTsL21jZr62uMx2MWc2Hx15WEFpRlJbYlxjhZTE0SJ6hgZUhlVcvatJbW39hY55cWBIShlnq0aQhVyPpgjbXhGk1jefxoT3yzAs3BwVP+83/+T/yTf/JPGQ43mM2mpHEqa7vWKHfe5fwYt14qB5LJ+TRGDPqtKQnCgsFAo4Muxs6xLBwwKVYW4rHXyETFCjvRIPIdL631AHccJ/IdnaqkaeQYrfrM+UdR5A68krR5OW/eX88b7Mt1JqFJnkltkMBTz3hAPDXVcg/Y3NxgNBpLg1c3BHHAyckxs+mU2WzGhfPnCZyJuzA+ZMhxdHTE3/zgBxwfHbOYL/j5z37GtSvX+NY3v0VVVTx69Jj9w33xZbJy7SwWM+bzGVUtzAlfMPkhkFXWMbAFCAwcWC2AlpNluc9tHDu+aWSv0YEmjmInia1bv9/NzQ1CHcp6bCzdTockikmzlPWNLZGg1jVFPqKuK78jYjEEgaiXsqwjEuB4QKc3oJ8NSbsder2eJHNmGUkSEkUhcZI6n0GxzdBBSOJAgbW1tfb8CxNc0l3FdqFw94hnA1aUDmCbTqZoFTCbzeS5VbFkclrH5jUOkFbCpw+UHwzQDtq8jG02m/Hll1/Kegt0Ohlnzp6h3+8xn8/BgnH7jqTK18Lgfu1rvPa111FK8fjxEw4ODjg8OmR//4DpdCop6nVNGEW88847WGOdnDGgqiu2d7b5nd/5HZEGP3ggtZWBRllUJfYQjdEYrVCB5vLly0ynM0bjCUWR8+Mf/5BrV69CEIENJNDALOsyVkF769dcWeMbd7yt8+5tqpymnIMtqU3O7pktugMwdobSlfPjMnIcg0iAO5BhnlJEgfS4xoGrxlTu3MrP60oGeWEQOVlzzeHREYeHh+3QcXNzi0W5EGa/spR1Rdgm5S5rqFVWnayHVdub+2AKv2b75y8Z/8s+wF978hy3Mz4z+IWlFY0yLuQD8WG3gWpl0F7q6ten1KWDFkVBY2UgpNy69u67P5VaI5L3n81mcs6MqInm+ZxFPqcqJcgmjkVFtnDWVyiFhC7NqeuyHVzL0Nodo5Ua233BlTrXtv/za6Vnyq/2htK/ymZqjCEItazrTUWez6jqgjiIXMCkYAhRnBAGoXjgaSH4BFqSV8OiIQgrN/i2LpjHEoQBYZi6dOGYbq9HlsR0OhlpltDp9uj31uh0umRZSlGVpGnCxsYG/X6f2WzKZDIjCCI6g66EvTWDtnYqXO8vezcOH1E8f/kyDx7cY3N9ne2tTQ6PjlqGYm1kmFkUFa+88grXXr6GRjEejRidjPjZuz/n4cOHvPHGG3zt1deQfkTujxPn03r/wV1u3brJ21//Br/+3e/y67/+G/z1X/01s+kMlKKiFrsgZ88TBBG7u7ucnJxw9+49Pv30E27fvsm1ay9JiAY4KX/TWvP4Yb7v2+T+Ng7Epw3KDEPxMi0mR9SH+/QaUWOoOGKt26dwddDa2hq9bp/xeERe5FhjiaMEpQyWgjhW7J7rc/7iJoNhTFloRqMRVSVSZqknhUFvjSWJU4xtqKq5G04nGGtkmBYnLBOw//sfv3qKrtZkWcrW5ha1o2lXZenuHm/+Ggg7oK5pjCKJUobDdUfFjajrijQVxthsNmVtmGKNJk41Zd5weLiPpWE6lQQlHUDdlFRVjrWGoswJo4BIRWBcMRxUWEKMlZFJWeB8CuT9yjp3E/QAjBaDSGsJg7Qt5P3UTyYXIX5yW9UGpUMCwSwJAkH1i7Li6OiE2XRB3KmJY5EcjycnWKPQKgICCAzra1tMZ0et78v169e5dfMLicm2Ab1uj/F4DMaQJjnz/JC8PEARURaGsTlmOFwjCUMaC3UdoN3mIWbDOUkM4+NjjvbmfGY+JO00BFFJqGOms7H7Xg0noynWBKRJjzgW49uiEI14Xshx6vb6DPpDyqpBhiJuMy5LlAqpK02/t87Zncu8/spbnDt7iSTu0zQh+bxhb/8xR0eHbUHurx3whJ4VZpxVbUOHa7hOSWyVcv4nz4RKrDAk/NVnVjYka5egxd8GCP4yUPCXsupcYfCsROb/F6tu+ful/5n7QEBL4ZDn2+X3aJ+n3H+7918+GWGA4Z+mToN5K4iNnyQqhQtWsO2L+ObTG0vPZod88skxB0/3OHPmIhrL6FhizCUwI6FTVcKmSVJ8gqtsHgvu3r1Fr9uh00lRhEAjbJ80lSakFuPqqq55+9vfYHtnh6PDQ/JFwc7OdlvAdzod3nzzDf74/3jEZ599xmw+RwcBo/GYKIr59re/015PWmvW19e5fv06VVXx8ccfAb5olel+WS6LjzSV5KvFYt5KHufzCfv7e/R7g7YArKFNd/bXhFZKUpkaZ1ZuaCeJAgY68MtajLKoxk1xrXWMPQH8XK7EklG3clnIhKdZnjO3trbntYWL1co1tMouWQLbBt+g0gImBisef06GtrwalpfjKSnvCoCHdbZyq8B32yQKiywIJV29nQyvgOBGmZU/tcRRxHA4IOtI4ErdyH0/m824eesmo9EJt+/c4Q//8A+5c+c2cSIAkGdSpEns/GkSBv0+UbgMdPEDFmlal35kYIljB7rKlUJZVHQ6GYN+n6PDI54ePBWwyEoROR6f8Kd/+idMp1N+67f+PmCYTmXTxjVRwsx04JBpXKMNtfEhS86PyZQ0RrymkqyDVsJgieIMHVrKhWI2nxBFIZ1On7JoCCKRAnjgKUkS8fXRkrQ5m4mHWpZ15MgaYaZXLmEaINBLcN/a5QKx/PdlCyuStpCqKAHPhHE2GwqiOGBza52tow1u3fqS+/fv0e11UNqyvbNFJ+uyvbXDzVs3ieOYfL5gPJFGeW1tTeRsWnN0dERRFG7yHbO2lqJDeV9bS2CEtkqKs9pSIGwV5YA4bxYuyamVv6nkXNcNeT4nCORma+qGQhU0jQyWsixrWYBRHLlztgQVwyhwDZFt7y8B8WSKX1SVa7qFAbIaAiIG/ZK47H25PGjcNA3z+aL11VnudX4/E2Nsrfy+s/QFXFkJEC9MJ/lVzpNGn2YUrso6PThk3T6mdcDCWRhgLVVZuoCQJcvBWOdqaEV9gHKSZVf7GdcojycTyirnvfd/wWeffkJTFcRxxNpwQJLG7O7u0ut2OT46dlJF05q/e+akQrO9s8MLz19mZ3eHTrdLGAY0dYMxYBrD8Uj8e5/s7TnGYEGaxEQ2onHs+qqsaaidSb0wOc+fOQ9Wi8zfWcQ8eHifv/zLv+D73/8fWCysC2uI2rrAIsCRPwdymGR/koCNhqaqXRphRVlN0M2MxhQrEleDMfIcNO0UX2uRci7y3Pnshc7XsySKZFBsarEfiONEUnftMi1zFehrXGJ3HDYt8O6Ln+UAUrtay1ujiJxJu+/YplNaz/yBnZ1dHj58TDWfy0AuCKiqmg/e+4D14Tq9rMOl8xeIdEink1LmBbYx3Pr8S8YnI9I4popisPCXf/EXXDh/gbNnzzKbTrn5xS2RJ1ZVmxheVRW2MVRlJfc/Sx8tSVQ3cg8YS20rASi9QaVr6H2j3hhay6Awjjhz9hzD4ZokaDvAUqvI7WOBSC4NVI0haCwn4xkKRZZldHo9sjRha2uTJHEBc03BaHTIeHLMdDpjvliwd/AA41LOo7BDGCaEUUSSZiRJRJqmzqS/S78/IEs7hFHcSs3DMHTgQNiCBEmSkaXdFuy3zkDeGENZVm79LMmdrHfJ/hMGYF01DpyQRlhrLZ8jy9CBbgEfD/A9ePCAR48eCQBvLRfOn2NtbZ3pdCzKJHzpKj5hdVXzyquv8tbX3iKIQh48eMD9+/e5ffs2j/cfMx5NJPFTCWu50+uyublF6IYLVVVxfHLEo0ePuXzxMr/+3d/khz/8IXdu325BqaIsBSRJQqzzv82yjEuXLvLJJ59QVjWf3fiEDz/6gNde+xphqKgbl/LpahmrrFs+5frBGpEJNo0MNBz7zTQVTTmnzmcEylBXBTubffpriiBOqMpFez12sh5KwXQypXTsbpTCumGYcdertXJ/BkEsoF4j4U+LfEFIyGw+x1TyPVuvPqXppB23J1gJjvP3sFpaAX21F1FuvYjaPcmv/b53kp87goUPbWmHQavg37IXWq41bpDN0k6gHYarJbnB7z/WWrpugDuZTanymsYayqYiTYRUEoYhjfF7kySeTiYTFou8TZZdzBeUVdnuB8JurQBJJC3degEykPbDKL9f+hJntWOiDbxz3w3Em03p9nfSo8qAvKllj9JKtYzjsqzRtdyzpV4QBqFj4weoQAZhgZNfin2HcuxeCV7QSkn6buSAf6VQlIQ6RAcwGh/I4E6HAv4lEUmctWqGTrdD1pG6L8syNje32NjYxKKYTqaYBlG2uH5SK7HxwIHa0/GY8ckJQRhw8eJFtrc2qMsabZXYNTUW6/bqra0tXrx2lSAIGI8nHB2f8OH773Pjxg2Uhb1Hj1nM5jJQdnYqvV5PGJcOz/nxT35E09R899vf5Zvf/BY//Ju/oSpkWB3pCIV4CeZG8ICLFy9ycHDAyXjCT3/6Uy5fvtLaJCzD1pYdjEKGWH7Q29SVBP/Zxg18hdmX1xULW2LigLJQNGFAkSTsPHeOB9OZ2H2kaWsDodEo24hvcgBhAOcvbvP8i5skmez/aZqQprsS9pgk7tqumM2mWCs+4lUtmQXexx6l3LCmIh787RL6/38fvzqDz005TK1IwgF1vsDWmiCATtIDNINeTFk1YmAcJGjVk8UplElTXRtOjp9iWWComc+n0uDMA6xtnK9BgNGWyoROryxTp0BH9OKIJImE7otCBxHWeu8/mbQFoSwuWZaS5wqUJgpFcpgXOY1L4vGTjiCO2sJYmgWRCfR74lEnkifxb2qamsqUMm2MExq3TOSLSsw2tSRzKRRFIQj/3v6iXZxHkz0+/HiKaWRRCwOYFxO2Ntd4un+P/cMZjVkAuVB4nUlw5YzksZY4FPr/Yi4eGkVeuMamoNsVuvBiPmE6n1AWhtHJgiTpcu7cDrA0WzVGueS6HJRhMOyTZT2wGttYFyvuJcVyCSXRGq9cfZNXX/kmO5vnCLUk6h4fTTg4OGQymbbgStMsE85gaW7qC1TZMHQ7VbHWUNWnQyxa0OEUYOavRwdGtFM5WE7rluDeKpj37Ka1+tqnWHd2yRg59Xk8cOE3u5W/efZ12s/swUYjPmu0ptfWozryuVtE0r2nd1r36E+7Wy1BGJm8a5FyWdV616yOrVaP//Izt9+s3dCns0N63Q5Hx3ssFjmdrIs1JfOiwgKLRURRFAwHQ+f/0dA0Poq+4Mnjxyzmc3q9rvsc0Otk9Hv9dtpSV5bnL7/AhQvnOTkecfPmbWazKd/4xjfY2NxymJXhygtXuHbtGu+99wuiOKaqGzrdmPPnL0h6o7VtqMDh4SEAr7/+OuPxCY8fPmoLIdkEqrYZ6Pd7rK2tsb+/R90YHLbJ3t5jnr/8vAutEGm9G3a3RZBBghTaBtgImNO4RGnTniyDx2jFY83J32zj/ikx9SvQ2fKaBnCsGX+e22LOATLLFtz9XPm/9JuccuCePeUHJ826ZxW6V1AKzIo/n9JobFvw4RkB/rNpL3NRLevQX8NFWdLpdKURVb5Rpr3mrJXiK7AWFYakWZes0wEC8sIBI3XJ/fv3ORmNuHfvHr//+7/P06d7RJHIq3rdrhQqWtHrd9nZ3iGOIwqXQuabRfHpsE6i44pijSvCAoJIt+c2iSOiUJPEEb1eh043FVuBwoVWaKjqkh/+8G8Ig4Dv/ebfxWQusRQvS2mW6IsVAN4YaPyt2BjXWFQYW0lSXhBhVYCyNY2V4KXGlFhKsk5CtzskDDLSTsBkeogxNVEkUi9jKpQO6fU6GCMeVk1t2sZUa4Wp6/YeQJ9OKrfWg63LD20cGOwlrSLlc0MZdwzrpqLb2WBtbY2trW0ePXzMbDZlZ2eb2WzGlStX+PM//3MaI8f95OSkLf53dna4cuUKk8mEP/mTPxH22NYWGxsbdDoZ3//+P2SRLwREdsO2xgpz0dSWSHtJomrVAJJOVjIej9A6AisytZOTY+pGgFSfpH7x4iU6nR7z+ZSmsc4fRxOHYsEQBIGY7Ttprx9CBYFYDAgYI6Ba1j0tV8Ld61VdU1cVebFwbOXa7YdLhnrTVG74JcVzXVaSCGqalkXfNA1VKeCXXytk7/T3b4BVksImnGDb5sWvMsexfqgm8jzVQv+w9/Qpu7tnGE1GLdNxlb3uoifk2EQxURI7bz7bMl+qWuqio6MjfvCDH7CYz4jCkK2NTdbX11nfWCdNU8aTMXmZg4XCSQ7LogCl2Nre4jvf/jZnzpxFa818MWcymTCbSzOqnbxoY2OD3d1dXn31NY6Ojvn88xs8efK4BS6b2mCUSK2aRhrYohDrkfMXnkMpxd179zCmpqrgs88+5tq1q1y9ep2imGNsglcXmMYDez49GLfm00qHhSHtmIy2ABpJEzcC0gZhIAF0jfx3FDl2j4GqaYijBGuhyCsGQ2G6zOdzylIGuFEYOl8pRePqYGutU1TIniQkaesX2XZN8mCfNQbxSZXGVORask8Yf+22g6RlXROEAf21YcuOrd11fXCwzy9+8QuyLOO5557jzJld9p/uE2gBKG/dusloNHKS/C7d/oCXX3lFQKsw5O6D++wf7Mu1XhX4IUPTNARKC1utEfNypXwKoj8PbkTlP6x2Mnljxf/r9GTTnS/D/lOxiEnTzHnyxTTWsVpdeIXSAQQBi6Lg8ZMnKK3FR8vtXVorulmHQb9P2kk4s3uW585u0+l0SFLx4bLKkM9zjg5HLPIF49GY2WTC4dMZi8UCPyjIOh3iKHWNe0i336PX7ZN1OtJYpimdTm+lUQzRofjoGdu4JUcLaOnWyclkwnw+xxjj2CPSE9Uu6ENYO9Loehl0693ogMFbN28yHo0wTU2aJWztbJJXOWVdYepGfFGtMAFr0/DClRd5482v0e1KI3/u3Dnu3r3Ho0eP5bq1sm4ChEHApYvPc/bsOYxxwRA13PzyNj/96U84ePmQN998k29/+9s0dc3o+IROr8PTw6ft3qOcfLSqanZ3z/DkyRMePXlCvsj58Y9/zPXrL+ND0nDqg3ZA2QJ8pmWDWmMcA8/L7huaPCcONWE3pRovCAJDXedYDIFeDkqKfObuixJTi1JCK2GYBUGC0jVKGQdINRhbUbuhhrE1UagE9G9qFianaipAk+iALEwoGwnwAYNydhkekF0NzPAe+N632AN7qyDg8t8FfIzjqB0WeF9QGfiL4gY4NUhYDTxSyqKCEBl0NK33mf9doDVazLAF4ApCXn71ZWrTcOfeXYqqJCoWTHXomIeBC9iU81r6vaEsnbRS3iMIwjZIRymRovpgm5ZtzXKYjV8G2wJUtbWyDNlXABXr63BF4zy/VXtM5V6TS0quQWU0Rrn+r7FO0acwgfjR60A79VCJwgH4gVjZSM0RtP1k0Hr1KQIP4jrGn9bCQFaA1iEoS1GU7pilxHHYrhcyMIhIs4ytzW0uXX6eMIh5undIJ0vFL93VFf76GI9HPHr8iOl0ytpwjWsvvshodOIGcMb103Lcrl+/TifrUBQl49GEm1/e4qOPP6VpDFEUcXB4xIMHDzh37hxWi2//YDCQXk1JHWktvPvTd7GN4h/89j/g1Zdf5eNPPkQ7OxFVO7JJY1jM5nR7Hba3d5jPc27d/pKTkyM2NjaFQNas1rPe+ktOpq+1fZ1rm8b12qIgs1is7mCG65zMZkyTgMHFcyS72xw/eMzO7lnCQC6UMEiJVBdjSrQ2KBVhDOw/2Wf3TI84imlM6fCegizrCqkkl30zS2J3PymiRhPHwt6rmob5IqdpihULmV/t8SsDfP2eGDGbRpElm3SSmDTNpOGwNZPpMWV1SFkuyPOZkxApQS+rmixNUc6ANAglkTeOI6qqBGVYLGaS4FrWpGkmnkgsQRShIdduqrukIkdRgmlsy94wVoxGp9MpWof0eutMJmNMY6Rpo0F8cl0EtBWZTxzHlEVJknTY2T7jFlLjKJo1i8WMKI4JI5guZqxvbhKnKXUzFzahjdja2Obk5BAVQJpq510WtlKLteEGcZxQ165oqhums2NGo2PCMJWpLwWdtMvB0wOsKiFXdHsdZ0Bco52fYacj0xpvUC0mwkO01pwcH6FsSBRohoOYNO0CtPK1pjHEDt1YW1trJ8EiTQupK0NdiVywaSAOUzY3zvPmG9/k+Uuv0kk3UVYxGY95/PgRJyejdqNYTW/yC8oSUFtFqr1XDCs+GM/6aLlnrgBvy5vBT9ZXFnL/Lq1hd3PqtX4Z6+5Z2vrfBvb5iZj/m2f/dhUAXJ2O/jLW3yrouPxwp47MyvOXgJyF1iTVa/iX77fSwK/EL34VGP1l/63oD2OwMxZFzXxxSFVv0O2GlCc11kJdNiyMIfQ+M6Fqk6KPj46YTqckacx8MSVJxPuqP+ijFG4CLBP1V157lThNuffgIfcfPODLL77AWvjud7/bSv4Drfnud7/DxsY6o/EEHQS89NJLXL16tQX3APb29vjTP/1Tzp8/z9/9u3+X69de4ujpEVVdYmqRcAVBQOOm32VZkWUp3W6XyWTkvj/MnL+Mwk07lRVFVdsY1Y41YAjCoG1yvYxGgDyhp7shYPsIEKq+Vd5/T2O1OXUeNFJ8Yb1kygO5z1weCgIVtDII5VkbHohEu4mdcswel6HhgEHrftdKAHG+ez6Ew7jQjEA7uYU7QK7ws65ZBYNRtv19VZZOEmLFb1C5og8HIq6AgRYrMoKOSJxkf8hboODg4JCDgwP+6I/+iP39J+LV2hVZAljSLOXsmbOEkUh8FvO5nIeidCBhtSxyjRdpgA4VobNi0LU38VaOyVI7T9SQixcuMBgMuH//vniFKE3TCGP6pz/9Eb1ul2996zvkxULOhVvfmkaaIAGTFabxjqO4BOYaTE0YKGwo5zoIAmxtiMIAVENTNZTVwnmiRjSNpSyExRB4Hyel0EHs1hpLGGmiKBXWgmPmJFGEThIxRQfnmbn041mC/Gq5vihhdiVxShwnMJ+1YKUEkcB0MmdnW7G+tsm5cxXvv/cBd+7e5dVXX+f73/+H3Lt3j6OjI1648jxRFHPr1i329h/TyTpcvHiRV155hX/5L/8lN2/eBKDX6zmT5h7GGBbzhZuUQ23Fj83Ypk2db5qGxlryIm89ZQ4ODnj48CFah+KHFQVOKivgWlEUFKUAx2EY4SXISRKTJAlJFBHoQLzckoTQJWjGcUyWZcRx4pgRiQQ6pKkDy7y8ybGJg6WpfZZ1GA4jaaoQUEw73x6/l3gZlZcOyj/LU4WreBHJ3+R5TuGSxz2bMHdm2OIh2Qjjw5nT+zmPQqG1NLd1LSmueZ6zvb2NT5grrWkbNR8M4tc0pTWxaQTgU4raWJRL7csL8T56771fcLD/hEBr+r0uG8Mh62trxGHEeHQiPqVNQ1mVLBYFGGGbvPXWm7zyyisre5h4GH/+xefs7e1jGkuaZHS64nc2HA4ZDtcYDgd85zvf5fDwgA8/+IDjo6MWmGwcS0drqT2takiipAWXD4+OQFWMJyN+8pOfcPnyZaIodYEr1g1iZHTbNo9mBUR0XlvGdYvGloShJQgURijObg+uyZ1ftbLiB+sTNrthz0lDhaGVF8IO8mtigKV0AK+vMbzcrWm8/+8vtxZZ3t/qVO3hnyPgrGM46eXzfZ3k5Z+NS7YEMKrBhgYb6DapNkkSJpNJ+7fj8ZhOt8s777xDmsqQ5PpLL3P+3HkAPvv8Brdu30I5ILyqSmrX1FemhiCkqpxsUol6pijFg6/1hFx5aJyVhRav2OXQQta11bTRk9EJ0XxKGMbOAD9w93Xs2HMCgBsr4IEEUzjg33nXlRXM5iUoy507T1yzHhLFAd1UrtF+r89wsM7aYIezuxddgq+lakqKfM5kOmF0MmY2nzOfzTkZzXj8WBKTkyQlihLCOCIIBBzx9jlJkpKmKWEUEsURcSQBIZ6Vl2WiTDDGMJ/Pnf1Q4kBkWXuUSwyty5K6rKhtCUYGr8Vizv17d1nM51gMz50/Q7/XYzQaiQ9cIVYsFjBVw3A45NVXX6Xf60v4YS3Jmu+88/fo9fr8+Z//OWUpiossy4iiiIsXL6FUQFk31Mayv7/Hp5/d4M7d+4zGU8qq5P/yzjt8/e23+Zu/+RsZpq6wtZXrLcqyJI4jzp07z8HREfP5glu3brG/v8+ZM+fa61nW16XCTPoF0wJ/tm7A1s5Wo0bZhkVV0NkYMJoeEQSWLAmpTYUOQupKnhs6sohI6iO0tszmJXWjKObS+/R6GVpXNIjyzDRgaSSdOc6kFqvF40wpYfUGjgzRWOPky36dMa06aZU0sdpLLGdNS9VJ7Pz9fD/mE7uf9Q/3/601rfrCH7/VPuh0H3V6vVlliFu7fE1rxaPz8uXLjCcTHu89pmlq0ixlMZu0n1WALvms+aIUVp6rO6I4QtLHZWgG4ksqYZ+aNh7XuvAoB4au1rnA0hZDFnTZG/2Cofx43LbHRGn/3W3rZxtYZ1dhjVv7jdvjZd8R5Ydysn7nkV+JsjEIIvmnljVFKWfxEkUEoagGA4SQpJT4wsVRLCy/UGoFHWgW84rFYgbgamLX1wchoY64GX7Jz372Lr3+ANtYer0+Z87skqYxcgpFKTceT9qhcLfbBVRLmgBQWoD8wWDA7u4uSZKyv/+Ax48f8/nnX1BXDYEOHfM0YH/vKUVecHhyzPrGBmfOnGE6HTNfzClrCQLpDQac3T1LEqe88MIVHjy4z2h8QuD9Yd3/y6pCLwrW1tY5PDzi6PiEL7/8kl/7tTWWQj7vrVe1IG3LYLfIIK+uqRrpUb0/5mQ2I+j02Lz8gqi4hn2CLOXB/cdyDSlN3TQETUV/kJH1DNeuXqSpS57s7ZMXc7K0S5IoynIB2jEEg6UCkdAxwxsZylor+NRgMJBjXNWsr2fk+YLxeNwqOn6Vx68M8M1nC5pm5tDz+wRhQFUWTGcnxElIVZVCY480QaDI4pggUGgtMfdNXYuMKo5bj6P5YsF8PiGKBOyJY1k8hcJfs1jkLdDWNHKxWWdEXddS0EahPeUH2Jhq+aWDANNAWcgENIl7zPMTiqJkOBzSNAWL2YL5Yk5dibQqiqCqhFZZliWBbmjqksFg2IJjRTVnZ2eXMEixKsM2ikcPTzh3ZossPs/R6C5VPaLTTWkaYfGEYUxVSaMIose3tqGuF+hQ0piUDiiLKWVeUlRTev3EbaKxm+BWVHVDQ0N/2Gc6m2CtYm24jtYhdd0QxwFbW2fcMQmdFl2mt3EcOk+XiCjOAOXkzyJJzvMFYZCQJj0BWFXMc2ev8MrLb/D85Wt0O2uYJmQ6XXCwv8/x0WHbRPqpsl/4V/3JlqbHpzcmP8FdBcn8757dxHyxedozgvb3/rmnqbuc2qhWQTj/WGUtPMv08xvms/R4/57+b1bBPP8eSimXzKe+8lmefax+D/++qwueUqeZgst/h6ZZTilXAcjVz+FfN3BeHqvfoWnE0DoMNdaWWHLyRcFkcYQiJUxSqjLAmAiLZTY3hBGEoXzvsioYjU4IAsWLL17h7t3bQMDGxgZRFFIUsnilWcrG5habm5tMJhOOj4/Z298jTmIODw+5c+cO58+fZzqdcfv2TeI44tVXX6PT7RHFEXfv3uXGjRtcvHiRsiw5PDzkww8/ZDKZ8uWXX3Lt2jXO7p5hZ3ubx0+eYE1DpURWql1x6Bkd2nkX1Q7Y9gxDlAdRBTyrHUNR1hpZwHUQgrUsijmHhwd4c19vcq8jSdfDX1ctt8a4hlko+L75tg5o0dq/ufuNa7ZXgXApJJYgzalrWGuZPLZNqX9vKWoFyANsswzYkCvH4XfLAk6SPN1014E8p65aBX6n1Uozm07p9no0TS0WtwaUso49uBr4YtGucUmShNqAriuR4B0f8/jxY2bzKf/+3/877t27RxhGDAZ9ur0OWinO7O6wubkpYEeei5TDgXuyZjf+A7cFpz/+ddUI07sKnN9J3fqAaq0o8ooo0CRJzJntHbI05fadOywWBWGgCMKQIIz4xfs/57nz57l48TKNauTY2MZN3JdrkDEeWpSmWjx/KnTozYtrAusAFeXk0koJO13hwqsi19DLdePXyzAM22LXF9JKKUnic3I/Y0wr/cLKcKwsy5X1YykLlSgQRRjJsYrj2A2NhLGm3Tq0v7/Piy9eJY5jds/s8uZbb1GUNa++9ho721scn4x56eVXQRm+9a1v8dlnN/j444+om4a14ZAwjnj06BFVXcn0sxYI9NKlSwRKQjDk8yzT0P1aJowB58PlGMRYy927dzk+PiFOU4wxRKH4+3pzaaU1VV2RJXLNeeZDv9+n25WJa6CEwaZdumYYSsOl8GEImjCOiaKEbrezlNTpsGUGpWkXrTVRJL4q3W5XmioH3mvtEHeskyVHJJ24XbO1kzvJvS33Vu1M9qvKB1KUzhdNmGVeVuXXNp8UXRQVZVlTVWJ0jxIwot8fMljbcGbVAqgZCxiFoXZ+g/IxtGtctDbECW5IIV6bMgtoKMucp0/3+fijDwHoZALC9fpdOknKvJi3RvZlUbhwAEjjhN/8zd9kfX2dfFG2Hq2SeC1rxgcffEBdecN6YaYOh0POnj3LhQsXRFa0vcOvff1tPvrgfQ4ODuQ+Mo5dUhiMMiQqdIxNw5UrLzKa/Lxt8h8/fsT9+/d44YWr7bpq3DE1ztcO12RbY1tDb2MaLBXG5lTVXNYHrSiVSA+VXkpewzBqmXbWCmAdxjHUNVWdt6yOMOzIvR0EaIRJ6wEN5VgrMliLyfMF3ucxCHTr3egfq0may59Jw8HqcNHQwpgebH769IA7d+4ym83aQZp2oUnGxPR6MV9++SXj8ZhvfvObDNfWmIzH7J45w+uvixdbURQ8ffqUsqiYLxZ88smnfPb5DbrdrqTI1pVbv+cs8kI8GDUuYEPWyrKVb7s9S7mkkpZh7odgjrvn9lG/pvla0wMc3j9Tu9fx3r0yjI5d+rvUBWEUOAafdoBKiNYlRRCgUQRB1MpPFTAOpiuboybQiiiOSJOIbicTH600ZjAYsL19jkudzJ0POebj8ZijoyNGoxGj40MWCxfcpBRJErWm/QIoxsRR4nzPI9Ks46wGUnq9HoNBn06nS13VzOYzkjCm1+0tr22WNaKX547HY05OnB2L0ly5/LwwYatKTPi1pGo3VgabV65cYW1tDVgGNHivyG984xsMh+v84Ac/4OjomCzLOHfuHJcuXaIoBPBu6oa7d+/w9OlTAKbTKe+//wGbGxt8/eti5P/pp58QaLHuaBzTrjEWjWI2nzMY9BkOh9R1w2I+5fPPP2NnZ6cFv2XtlD3y1PDeKWcaU0mQS1OgA0teL8iGGUejRxyN9jh3dpO6yalMRRAtE2SX92WB974Mw4CjozmffHCfwWDIzm6P7d0uQeDYcGFAoMVzszGVC8VS2NCgQqkrGwxBqamakiAKhOxhZGBZV7I2+ev12R7G2tMWQku2+FJptJpIvro2+L7F+/X662I1xGO11/EPPyA9vc64MDq7ZAJaa7l08RKbW5vcuXeXW7ducXR0wHg0paqExR0G2tUeirq2rqeRUIqiLJhOpi6cs2mv2WW/tRqoo9r6d/k9V/+bti4H24J+q9eIeMH6lcXzgt2xRbn9cTnIMU6SahUYLbWz1IEeibJOgSjBm+LbvAywi+MUHYQEuN7RJXDVjQCFsvYIBiIWNZlYuihhTVoLR8eHKDSdTpfxeMLhwRHdQY8sEbbxbDYiDEMuXLhAlmVyz00mDuTUbG5utkAUSpiM1h2ni5cusb65wblzzxFFMWVZc/78RbQKWMwFOxgOB8Rpypc3vyTtZMwezLh+/TpvvvUGt+/c4uDgKTs7O7z26ht00i6mtmRZxotXr/LBB++1ij8ZXmtRtDg2crebcXRywo0bn/Hmm2+1a3xViRWKX99XMQA5LzV101A2lcNAaqAmiGN662soaxhNJ4z2jxidTBiNZly8dIUs7aIDqMyck8kjsq7kLWRZzLWXn+NkeogOajqdCB0G1Aanfggoi4rF3HD/yWP6/R7rG13yYkwcRwLaV6IyNVYJ5lRLKO2qvdh/7+NXBvjKekLdHFIUCzqdLtiQpBMQZdKwWpO0LAJFLP5BoSYMLEmcQawcwFGjtExJoSTLYjf9lAhsrbWLDpcTKSe5g7WGMAgo85wojghDJd465YIoFrDMOI8V0WmLz8lkuifa7UB03mEom/N0KoaHi7wkDGNnhCjJsYqAYlGyyBfEsQVbMZmMZQFpKibjY+IwI1/k6Kiicc1lHPbo9wY0dsyT/SOOj0/odYYoHboNp2BjY50g0EwmY5I0IEkCZ8QscpQwiEArtraHrG90mc0WyNDIUtcFZdmIKTQRWqVUdcl4NJMCftClacTHIAoTiqIWqq+jYxujyIsCpSpSII46VKVcZGnadRr2kCjocunFF7hy5WWuXH6NOB5ijWU2XbD/5Ilj7DXYRqZs2GWj6SnkrdSn9QKSxkWAOjcZMb4IXvrs/bJJNCxBQv9zv1kbcxrgW51Arb7GL5tu+8cv+92zIN8qMOaPp0yfgvazL2ndy9deBSdXP/uzj2dBt2ePxaofnH8NT+8WCdiq1+HyuD/7Xv77rH4PsIzHxxiOyNIuaxsdAefyiiIv5H4L+hR5jiJmNssxzVwKvsYynY7pdDrk+cwtzCmdTqc9JlEUEQQBzz33HMrCzS9ucv/uPcqyZDgYEgQBH374IXmec3R0jFIwmUx5+vRH9Ad9gjBkOp3SNE0bv/7ee+9RVzUbG+s8fPiQvb09Lp2/wJUrV3i6/xSjwCqNN0j3xV4QyCYShiEoqEzNZDSmXOTEWSbyViNTILmeQz8U4tGDh5yMxrxw5XkBmYr8FEtTKQU15BRfueb88VZ+Y8Y6L44lYI21rql294zb8JXGSeaeYaPqJSguJv0iX22ZfS5TQTlWzupn/WXXxal/bz8TbiomRYu1kt7pm9/a1JimIksiR4FXDvRi5TXskoEYi5erN4YuTU2RC2Bb1zU/+clP+fjjj1HK0u8N6HRSojDg3Llz9Hti+F0UBUWeUzmfFpHCGFcQKcdGkyFKFInEO89zlLJoJQOkphaPFSm4FKHSGBRlUdPUlvXhBv3XB3zw4UfkCwlCME3DbDrhZz/7KVtbW6RphjQeDY3xlj5maf7rEo2tranrAmNzmnoOaumJoz32qW0rIR5PTqgqg1KhDIJ06GQOS8BLrmVhm1Rl3Q64RD5v2mJdKQW2cY3zasor7rm1AyygqmUdSZK0nT66oTKawEnBFqyvr7OxscXf/XvvsLOzQxhE7O8LwHLlyhX2nj7hZz/7GYPBgO9973u8++67vP6113n++UtcefFFbnx2g6oomUzGnDlzlosXLjOZzsnzol3rJKCgdmCXbuWrtSv066pGpLqG0WiMGk/av/WNUNPUzrXBOuTIe3eGbG9vsb2zTaAFQI/cwC1wDWIUhaRpJJN8LZLBQEcOsBEgT6nABaGERFHi6gxhQCZxShgmBEHkfHKkKQ/CkDSRn0eOLejTP9v7F9UmQ+PWiX7fecLoZZPn136R3JWUZeEaILvi/Wco8pI8L4iT0KXr5U6yU7m9w1BVfk/Tp6bOWZbR6/WIk8QxSmosltp57H766afsPXlCXdf0N/tsbm6we/Ys86kkDzaN06ojjVKnm/F/+51/RJIk3Ll3l/l0xpUXX3SpphIi8sLlK6z132U8Fv/gsiqZjCeMx2MeP35MURRcvnyZ9eGAfrdDoODzz2/w6PFDdCDsWDn3ylmrNFSVptvtcebMGfb39gU8NxUff/wx589fIHT+obWXMbl7ReFTMi3WamGImBpTV5imxCKgvdWWTpBRlZbahZAoJWl6lfOuBT90bsjzRbsOx3Ha1kGVFRYubj9JksRd1w2FY7bI+ZF6q2kabNDgzfaV8jJuWbtrzyoArNZYG7R1gYCZywGj8izeJGExm7dr1Kp6IQgWJGnCo0eP+OM//mNevHqVF154gbIoePjwoUujzuVc7T3h/r37zGZzAq2FPVoslmnVDjiMYrHdMY5BLrX7XBQYDkRb1nd+bzntW9QOjHFBKX465QZkMmh3Mjt3Dr3/WBVFzk9M/CbDSMzxQwfkBUEo/YMS244giAhc4621JdRxu28KSxhhly8Uo/FE1k8trN/INXtBIMmV/f6AXrfD2nCDM2eewxpDni+YzCb85N2fcu/uvtj/BN6bL5Hhj2MZR1GEVp69HBGnouwZ9IdsbW+zmOXOOH4oCdhatamYjfPTPD4+Zj6fk0QxvW6H9fV1Tk5OhDXkv7RW1GVJ1hU2dhhFPHz8iI21DdIkPQWovvTSS5w/f96x7WKstdy8fYtPP/uM4XDImTNnePToMePxuO0XZrMZH3zwAZcuXeLq1atMJmNu3S5QpWrBHYvCavE+TpKE9fU15tMZpm4cw+frJEnaAuNVXZ9mamFbBYxcfyV1U2Abkc7ef3CLojpka7dLo2Yoq8RX2IEtPo1TAHlJEBdARgJ65gvLbHaCsQVbO1k77EEH1JURtk5d0NSGLO6Il1ra42R8wng2kV5CW2bzmfjCIl7AWbK0C/L34pJMsPRT9OD2Ms12WX9WVYVyg56iKNpBl2fC1w7I9UCf/zsfaCRDhugUwLbaB3nQSwaWyx7QGBlsrw2HvPbKq7z00svM53MODg64e/cue3uPODh4ymwm5CGfJF+VNZPJ2K3fXyU+rIKd2kvt3TAIteyRTtW7ygGBqK/8XhQ8Iqe0nh1snX+6Pj0s8cm7q6TixlpolufA97gaI/ahjYS5GK2oauWARvH0l3puyRZuZbuOSax1tGQ45jlxJB63URy5GjZs1/CDgwMODg44PjnEWsODB/fZ3Nzi/PnzKG0ZDodYa5nOJ+hQETSKTieTcE3vy9gs1W+Dfh+MbVn/Z86c49vf/jaHh4c8fviE2XTK7s4uVZkzOjkmL3PmRc79B/fZPbvD229/g7qu6LhAtaY0REkEWHa2d+hkXaazKUr5NVsRRqEcWmNJkozYDYZHoxH9ft9dz0W7t/trcNl/S01eFiVlmVNWNU1dMZ6MKauC2WhEURTkRcHh0RHrw3Vee+NrFIuK2Uz82Y/Hj6mbMdvbffqDAHRBVVYM1mTdN7bG1MatyxqtNJXS3L79iId3Tzi7K6zLC5fW0Vq5gBPHbGV5DT+rVvzvffzKAF9enGDVIXm5IC+O6XXX2djYluCKUuijMnFTdDoRZlFQlTWFEc+7/mBAEIiPhDKGPJ+3C4S10tAmschf4kSkSSJLkEZsNptDnGAJaWqncddLlFxrRZCEbWGvtSIMNUEg0+qmrjAGqiIXaU6cUVUF/U5PPJ26XecpYzmZj8myxKGuc5q6dJObCqVCJtMTzp19nk63R16OCEPNYC1mWtzjZFYzmx+ilFBslRZj8jhOieOBNLV5QaAttlFYl4CnAjEU76RdIKKpS8YnOZaqPS7dXpewqEmTREyZg4Rup0teTAhCy8HBU5SSQna2WAAQENBUOVVTUDcxSivSLAAN03yE1glVo9Flxvb2WS6ev87LL73O+toOWocYI2Do/bv3mS8W1HXzzJWh3FpmPYGlXThPg0xKQEyXJmatIo7DU+CZv+hXAbpVL4hngTOfz+EX6GcnTauL+7MTqFXG37NgzGm/uq8CIqtg3Coo6Jvs1eetAn+rDEK/IQoDzH7l+auA3qq0+Vmg0zd0S5r8Vz/n6md9lsHnz6FQwKWR2Nt7QhTF9HodkkzLvaZKqC1Vk1EVmiKfUJaGpgla9tTx0RFBELC+vt6Cn2Fo2wJid3fHgRBi1lrmBcnmFp4d1Ol0OHfuHCcnJ0wmk5ZBkBcFWZoyGA4xDXz26ed88flNzl84T5pJQt3R0RFFWTJcW6Pb7TKaTtr9d3Wi6YscHWhn7qopq4oaSwxYx77CsXfCMCROYlCKq1dfZDye8OTJHnEcOT8Iz4ZZBV+8Sa+wN/y9YK0DfQQbo6kroFr+3p9qpRyj0LYNt2eDtQmZOF8VJ7PSqGWxaZ2ESwkF3yeP+lf5CrtT2bZY8cdMgMevXlPy2su/nc2mdNJkCSj55D63LqgVn000REFIHAZiXKwUpTGMJyPyYs7de7f5sz/7L1jTMBwO6HZT+r0uzz33HFEUMh6ftGylPC8o8oLGsSuFKXCZ3d1d+r0hURJimoY4jpkvpBiYz+c8fPiYR48eURTCONdKgLlag7bLa2U6nTFcG/LSS9f58MOPJAnOmVTfuPEpL710nWtXXxJTd3cfS2HtAjpQSO6mcoOICmsrUHUr5wujRIA/Y1A01C5MYjabghFwsKoKqmZGGIXt+uibbklFR4ZCqNbPI4pku29Z1E5isrpmKE1r7yAMRFjkU4IgYG1t0LLmwtANnUAMlo+O2N09y9rGkKZuKIuak5MTl6S64Cc/+Qn/8f/97ymKgkG/zz/6x/+Y//Gf/I9cvnxJ5M3f/CYfvvc+d27fpq4Mb7/9DXZ3d/nRj37UMvQ8O02SI8uWxW+txTTCTLNAr99na3sb5YOgHONkmZbs0kGd5L2uJeTHGhiNJ3R7PYaDvjRdTUUYavJyQa/XY21jALZEByLLjFrGfUFTWwxO7msDjqcT0jSlqgzWhGjVIUt7aC0eaI0LXUnTlDCIsTagkw1cQyXBMUEYEoYRaZKJv04nJUkE+AnCiCh2rEEVojzIp62wCxyA4P0XI2fk7SXCVVMxnUyZTicC7jUNUSTn1O9NTSMMvrppJDzCBVd0OuLvU67Inq21FEXBZDrl/Q8/YJ4v6Ha6rK8P6fQ6lFXJdCEBDTRuEGdFyfD2198m7WQ8efKEe/fu8cknn2CM4eWXX8ZLWDc2NpwH6/vSwARiS9AYw9mzZ3nnnXe4cOGCM/SGjc0NXn7lJcqqaJl8BklA1tasNHyGSxcvMR2Lh5bB8ujxA05GkqJurG/2nEeiG25okFRxGgeM1OKXqXJUUImFrlLOVLzk5GnF++8+IOkmXL26xvqWXDvWMdF0oOl0MoqicH/nLBoc80PW/GdldAFRpF0jHrSNt7WBY5ItmSl+ABPHkcRdNQ1VWbn7wNcdBqxI3GR9l8+wtbVFlmXcu3OHx3uPyXMnEXdJmL4miaKIxsIXX97i/oNH6GBZq3lFjXbJpwBVUVLUBXmRk+cLYV5oGWw0lazNlWNyTKeT5YDWs2GsZxSdBi5gCeAIy0aUON53d/k73bLVfTPobQ8aa9rAAK01ZSF+rbh9UisZpGgLOgjcfSlrkpw/kcsGTt6rAzl/gVe0aLcHa4Wa63afFqnePkpJ+E8YR6RxTBJHaCfRi5PUAfGNk4eKj6evNYIgxBhLnosXVLfbJY5jtBtuaR0RKM36cChgfVdYfkkWOyau4fjoSCTqtmZ9XQaueZ63rPLaLIOEdnd36Xa7FEXOjRs32Hv8hFdeeZUXr7yIhPaV3L79EfN5znA4dDZCFbdv3WJ7Z4fpdMrTp0/bayTQQQvgPXnyhPv377Oxscnu7i737t9z59ntVd4j09RUdcmgP+AgOWQ2m/PkySPG4xGbmwJQla5OsKc85OR1kiRkUSywpmA8OWQ0fkq+OCTOGrbObhNEDTpwQwKMC8mSSVfdGBlyKLkn4zDFVqq1Dzg8OObc2edI4pQkES/a2shATVLixaNYu3vcD0qiOKaqSlx7JPWqqVswYBXIaK9166X1LjTNetAPV4Oy8t01tUvubRnxKz2TUqoF9pZ/s1QwiYLMtDWIf45XJQngxnJtWbn3fPERaEUUxqRRzMZwjRcuXaKqCqazGaPRiOOjYx49esT+0z3GkxkaCJWmwR+vQF7fLhmGQAvw+ep1qTdx66EfODvQ3zOmWqKIm3IY55VreFYRJuQU/zdtNa7ExkYAJdv61vkavw1za4cNoriybvCAq8kDd84qWRCld3AAn7WK0A1yPRColGIyntDv9+j2OvT7Q7duTgmDiOfOPecSwmXYfHx8zPHxMTc+uyGEqV6X6XS6PEcKShcSBD7QSXxj01TChuqqpiprlBKm7u7uLttb29y5fZfJaMTo5IQoiekMe2wHAaPRiB/+8Mc0pubihfNcu35dkoWtIo7l3sr6GcP1NQfuahpjiKKAteGA45OREAKcxcV4dMzjxw/pdK5QVQ1FWbJwQ188foAAAsYY6qakKHJmsxmz6ZSyqlnMZy7YpiYvFszznH6vx5mzZxiNjrl77x55LvVmw5T+UFObmLyuSFIFQYNGiGaeDe3vpUW5II56DHo97tXHHJ/M2T3XxzQCRhq3BsigQvog5dbXUC97+v/ex68M8KVplyBcI0vWUUputLKs8Gk8WimyNGuBmM3NDU5ORi0NMYoCF2IhyU5e5uI3qtClxEoYR90i+nGcYEyNsC8CTK0wDjiq65IgkJutKMRDJYrEVyNJorb5hobGCDg3GPQwBsZjoU5mWYc4DpnPZ4xGE4zVBFHMfFETRZokSShsQ1WJfCiOI4ytWVtfY21tg8f7D8jzCdgIY3KCQGjcsfPIqKqCyfiEwaBPUQjo1lQiH0rSAWvDTYzRGFORdUKqZkGk+2idcnS0zyI/ZDQaY21DnKREUcZ0OqWTitfHfHHCIi/IMvmeOtCghN4tUriM+SwnTLpEYUScBByfPKUyOaHusj68wO7OJS6ev8LFCy+wvnYGRUxVWp4+PeHwUHwuGqdlxzUrosM7XVzB6UWzrpdJuqubgp+qroIH/lrwMtJnvfN+OVglp/dZRt4q8LaaIrX6mqvS3VVmi/+MfjNdfd6zIOHq+/l/rv7N3wa4KXWa8Yejtq9uustjJWCoB41WJ3P+NbU+fQ789/T0Zf93qxLhZ49ZFPRlE2sCkkjT7XWZTE+wtiYINZ0so9ONebq/j1Yh81nFdFIQ6B5R1CcMFWmWYubiZxnHsbBaYwH+0zSl0+m233k0OpHr0Un2kyThhRdeoNfr8fDhQ86eOcuVqy+KGezDRxwdHbG5tcXFixfZ39/HGMN8NnPBCB0ODg6YzWZsbm7S7XaF1WK+eh68XOr4+JgsTcVqoCklIbeVUkrxlsYRaZaKpD0Sc/Mzu2dpsPK37lqtqtKtNZwyyjcGJ8PxCXh1+zvxvfReokuG4VevldOJmF5yINdZuTzf7XXmiwfrrjNLoPTKa3oJkyuM/HWgxMdIq6XUvgUd/cv6qaSbHDdNzWw2ZWNjg3wxl9dEn060VlIOGRSRjloQSgFVUbAoCo6OjpjNZvzgB3/NbDoljSOyTkqWpWxvbxMEmvFoRFVXlM5TTfzKoNPp8Oqrr/LSSy+1Rc5isaAbdUm6idsLKoqyYDgcsru7y4svvsjDhw94+OC+87uT7bGylrqGKAwxGhZ5wc72GZ47d8ztu3cc4Cu+sR9//BGXLlxEhxEW3Z7PVeaIpOoKW6CoS6wSs165FhqaGrePyYTRGgFd0jQmDnsEKmayWFA1C3TlhmBJ2q4LCzfE6XY1eTGnbkp3TVpMs1z/6roSNoAzIzbWoI2mcTIgaw11I8DjeDxib+8JQajJF0XLHAGoqoobN25w/sIlmfwbkWx5X9j3fvEef/qnf0pTi53Gxvo6d+/c5Ztvf4PR0THKwCvXX+bN19/k4MkBf+97f5dXrr/E0/19Hj9+TBAGlFWBsY2TFBeURUGonT9XJRPsJEkYDtc4c+YsvV4PrUS62DQ1WKRx17ZlA/i0dtMYVKAdc8UBssYQBSmWBqUCLl96nt/93f8rcRwynhwzmx4zn0+YTsYobRmNTxidnFDVJVEUkiQx0+lEmh8qimKBVjVBUFPWc/xwpmkMRRFjGknXjaOMIIgxBpHghSFx3EFpYTvHUeIYgAK0x0lGlnaIQllbk05MHIfEYUwQRYRB6tjJHjASUMM3BtZaBoMB6+vrNE3DfD5nNhPmfxTJ+uZ6GCwiC9eOIVxVpQtJWqZ1Nk3D/v4ed2/fRllDv9fhzO42WllGo2PyfIF27Ok4ijFWs7a2xtmzz/HkyRNu3LjBuz99l6PjI3704x9x5swZ1tbWWhDx8uXnuXfvvmv+pYZc39zg+9//PpcuXRKPulrqzygJGQ6HXL9+ndlsSlHkBIGirmrcJUEYhkymE9bXNxgO1zk6PMICs+mMRw8fsra2LuEa2Jbt6nZmLNbJfCx1XVFWOVob+oMOG9FZtAlJs5Dp9JiT0THF4gkHTxdE44Z+H7Z3d9166wO25JWTJHNDkOU+7IEI3yz79d0fd5GMeoaMa3Rx8mbjk3blLJZVsdz3AoXSkQCCbn3y38cHQxkjAUj9Xo/nLjxHVVc82dunMpJeiYai0pRNRRInxFXTBtLoYDmMFMaCr+MXVKWsv8LuW5DnYq2gAxecUIqPUlkUzBcLYS8px1Q0tgX32uPDki307EMhoVar0jzlBmrGLO0plFIQCGAm64SEbVRWBh6hFsk+SsADrZSTYsla64F269bYUAfye73cW4OWiR8sWbrKp2ZqdCASQ60EHNR5wWxF7WJtw9rahhuGaQEF3YBnPB6jlHgzFkXFzZs3BShyoJkKPTAQ0k07XLxwkbW1IbNZSl4MWdvYaL/3aHIMStLa0yyV93cHzieM+8G77McBs/mc6XTKJ59+wo0bN3j99df5+te/jmngiy++4MKFCxwfH7a15/bWNvPpjKIo2NrY5OXrL2PqJfhQNzXzec7nn3/Jyy+/KqznNCMvaAMxmqbCumsfIIoSYXdZzXQy4/DwkMFgIL6BVUXtGD5YWdOs88IdTwqqsqSsRkzGe6igYHMroW7GoI0LSvADTk2WdRx7auEGdCFRrNv+RqmQpoGyXNDpRnS7KSiW9kVuINPt9uh2OxLGtBCma1Pl5HnOvMzJOm498IEeiFTXDw/8Pux7aqUUZdm019ayxuMr/77KbPfXySq5YhWUWx1I+17IK33USs8H3s7jqymgy79f6fm0Z4fL9a3DkDiK6HZ7bG1uwQuAFQ82CdHIWSwWnJycMB6PmS9ySS4uS/KyFOC1kYGqfw8Penrf4Ra0c/9e1RW1yL6cb7as9w6JE3WHq4m08yxs7Onj5APzwBK44B+NJDZbZ7FjHeAqo27l9hWfuEwLSMln8ECbKI4UCqMVtavFK5Z7ue+dKy0Dt9FI1FMWSXdP0wyUJdGiIpBEaevyAJbnNgwluK5pZJjuA5haqazW6CCk08mIwrg9NsZUrTfsp59+ygfvf8T1a1d5+PCBhLDRdetd6HqDdcIw4uH9h6wNhoDl+OSIx08e8eqrr7Oxsc6jBw+FCGBqqqJiPBpTFQVhkhC7bIW6lqTv559/Xs5DYzBVTVVXWEfoMkbqknyRk+dziiIXxU9ZUhaF3GfzOfO5yGP7/T67Z3Z58vQx+/v7TKdTqrKh2+2RdhqSJKPXT1GqcNdYQ+QUHBhDUZVYGxCEYvkQh7FTaN6n20/Z2FiTUJ0oJorcNa+Ra0QpplNRnQy6X93H/s8+fmWAzzQiFZFEL6H2FoVIQ8TLRp1aaBaLebsQVGVFEQhTQdgFMtGcz+ftJDnPc6pGTLE7nQ4gF3VZyoUnfnKWUCdUlSzUKoAwxE2qHEtFBXi/DWsbgkBQ714vwRi36FoYDHriV+SKVa0Ddnd3mC3E2ykMAqJY2HVZ1iEMXWGkIprGp9oGBCoiTTOCIAIkHS1J+/T7AxaLBU+enLQLq2zGBUl3QDdb56VrX2dz4xyLfOGMarfY39sjjGKyTsj9hx/x4FFFWUUcHx8RBDF1bTh37jymVkxnxzSmoCob6mrhklwAnEl7bSmMwdQRZ3ZfYDYbMx3NoNmmk3R46dobXHvxLXa2L9LJOhgL81nJ4eEjRieSBlZXPh90lV3hTfSXoF5jLRjbysZapohSLRDySy9MJytZpdmuss3av7OI8e6pQk8kNf7hF/dVPwpYbjan2IJu4V392Srt+1km37OP1U3uWfbfKqC4CjD9MpBSqdPgnv+7JZgnHlmrrKlngUSlfLrmMvxj9fEsY89/3iV7EX7tze+xu7PBeDxisZhhqTk42mc6HZEXU6qiYDqdUleKNAmJY0N/GJPGKdNxhUZYIWtrSQvugXIyO0u3223lAYvFojWW96l7v/Ebv8Gbb7zJF198yXyWk8Rzvvjic0mHc6yOsijZ3Nzkm9/8Jh9//DHzuSQuysS5aL1pOp0Ox8fHBG5i67+rMbQNLbZmPD0kCEM6vQ6VKWlsinHAdBTJ5D0MQ5I0ccl3UvRVVU2/N2jPRROLp5pMvUK32bikXWem74+7XGurSVA4pqLFS4m9l5z/e++pBkvWlRjtN+3rrYJKq4Wc1orKLoMUhB3iQjcay+ql7S/pVVbrsxIMu+JDNR6P2draYjydobW8v9Za2IRKtYw4o0TWlCQJYRhjrRitCyA3pigKbt36khuffUqkNcPBkPXhGpubG2RJQuE8XOuqonJp5koFnD2zy7e/9U2SNObJkyc8fPiQx48eM1xb5+tvv90GL4VBwL29p2DFL6TXyXj5+ss8d/Ys73/4AdPJqC3olYKyrDBaEUUVh4dHXL78PNPZjIPDg7bBunf3Hvv7++ycOdv6dp2+x4XVWdUNdVMBDUo79pktaZoKn4RprEHpGmxA5IIger2uSLOKoG1EfQHrgVoBJpeAbdtwoNr7Lwj88KwWM3ECN2S2wlZFZHF5UfDg4UP2nu4zn82Jo6hl/XmgIY4jRqMTPv3kI95689daJiwY3nvvF/zJn/4Jk4lI0haLBZMw4u6dO4xPRnTTTEKswpjvfue7XHnhClevXUMFmo8++tgV0uIH6lmawjQT6eR8Nqcxxh0rmM0nPHhQ0el0SeKOCyiQYxeFYQseiD2AsNl0GLmfBU5KJ35Zs+nMFV8aRcR/+29/Q6/bo9vL6Pe69HvPcenCq0ShSDPk802ZTMecnByzs3WRyWRMns+p+5CXBRqDJUYHAhgEWoAorELpGtMUNLbE2oa8AlNAdSzJ8tYodBCigogoEO8mpUQFEEYJYRA7VlFEnCTi4RNo4igkjGLCSHwIszQlzbI2XCRw7KMgEHN+n8K8WOQsFoXzFHRy0SASUAiLDaIlyFQJCxLg1s1b5AuRX25vbdBJE2azKVUhbCKjPGtBmtBXXnuVqiq4efNLPv/8c05GJwDs7+9z48YN3njjDcqqYjadkmUZv/m93+Tw4IA8L+h2O7zx1ptsbm62UuTAhQGdnJxgrW3Z359//jlBIMzauiodS63BqoB8kdPv9SWtsZJ198mTJ1x/6eUW5JLz64cnK8NKx8Q1tsLanMPDPcJkztbmLt1hl+FGRHqoaZRm7cOnFEXOhYvnCULjQLew/eyege3nMX79tRYa4+opnq1pnL1AsxyEWmsIIlnHvbRL69A910vtDD4MBoTd6H0IwzB0NZ0Mv7Q1aAUba+t0Xs4Yrq3z4MEDjk6OpbHO83bQEEULZvOoHdZ7NpG1XgJZu/1Mkr59kyWgosU22g2PG5eS6djMSmS2wj73aOez6ofTe9bqYEX++6vPU8Eqo0dS1hUKZTVKGXBebwaLbZo2ZMbb0JRYB/Y5GZ1yXrvods+VNVe5+82ft4DWL1Eth2q+Vg7D0IV/hM4XbCmRk9dQ7RBKGD+KOJKhRBjGPH68J4oeF7pXmhKfOGxtw5HWPHx0h/W1NTY21tnZOUNvMKTT6ZKmCePJiewNgSLrpxRNSV4W7f65ZA5JaEIQBODq5TAImM8X/PznP+fg4IC3f+0bzmd5jDG29fzSWvofay0nJyd897vf5dKli/z857/g0aNHzOczPEuqaRrW1tbY3Nzk4cMHcvK09wUFTENT1YRB2NocNNbw6NEjzp07J6wqK2xNU1dtTV7XFXVTMZ/PODx6ijVzNjZS1jZ7GDuFOkAHYg3hvdXqumn73aoq0VoTxSF1XdHUUDQV1iQ8eLDHdDqnP4hJsxitXXoxtH2ReJ7K6yXdhGF/yORkLt6wgZLwG8ckDYOQUAWgrDBxoyUhxvtl+mviWSDO38vPgnG/jPHq/07297h9nn/N1XXm2Yf088LUFZ/EZc/lAUHvI+3XntU6aalqcT2PvDuxjf4/zP3Jk23ZdeYH/vbep7md9/6ev76NPgIgeoBgg2RlkmmkkhNZpsrI0qikkUxlqqn+CtU4pYlGJZVqoCqZLKVMiUwSlAgCIIBAEz0i4r14nffutz3d3rsGa+9zjnuEZJaJGujCAu8993vPPc1u1vrWt76PbC1lfbIGwJ07dwSoQ1qNq6qLEcqwplRVQVnVwbQzsPyCRMJ4NGI4HNI0DQeHBzx78Tx0B9RtN4QPHTjWSdwWjV3i323fmTXETNK14dr7I8AleCeFccEMAzkDkYfpuHwe7yzo0O0irQa0EjiWEMN3uUPTKKKMgjMOWwgbs6jKNlc0Qc5FmMhCwmmamjQJraRJ1BuWtSkaick11HKNCtACWuWDAVppnj57ymAwwFpxN47Fv8nahLpuhKWqjTAUnZigOOd5/nyf9fUNjEr4ux/9kE8++TUv9p/hvePatetsrG2HglU3pqIckwv5kay3RjS6FwuUMqG9Xsy76rLE46Qlt65YLGYUxUra9Os6dJcsKYoVZdh/kyTh9OyY/cPnLJer4HSfCuaTNmjjmKzlaNPgKIJkjkJ70XSeL6Zh7AqDezQasyhLzs8XoBxppiS2tw6VmhCvCGZWVTWDwZC1tfXPdSb+275+Y4APPPPlOXk2xtqaNFhcx80sbgRFIbpUg4EwX1566TWeP3uGUor54jxcKDSNDTo2MilEE8tBCDAHg4EEw0oTBbONNty8eYvE5Dx5+pjV6rwdGFmWX2jrBGmzStOcNM2wjW+P2zShHaXp2gEmk4kAG9ZjlGdjbYLzUt00WdRBcZhEsypEX2aYT8hzcaCpa9kU0jRhOFyTxd3DtWs3qKqiBcZGwxFl4Vlb22ZtcpU82aJmQFktmZ9rlNtkOT/j2YsPOTj+hKJoBNg0OUanpEnC9Pyc7Z01rF/RNJ68SmkCayJ+LziKosZozWiwQVU6ipXj1o3XuH7tPrfvPuDqleukyRjvYbEoODk54fT0RBLcdtGS4MarbvPAK4yhbQ+MjJxoZR83h6jvEBfzPsU8bgQR2Or/rk8V/9woDAlsZAn1wbv476h5E0Xl+4DjBbBLfV6c9vL3/29tkB041wGZfZDuMiMwjp94nP53xeC7334rAXq4LtVtkTITZVOMAFHUpekzBMNReuciYyKysy6fW5pssLV+l5t7I7IsxaTS9mZdzWo1Z7WasVjOWS4XVGXJ0fERVSmL+DvvfMTp8YzRcEw+GIHX+JAoRb2L+L3WWkajEa+99hpXr17la1/7Gnfu3GEwGPCv/uX/xPHxSeuuOZvPA2vU8fz5c0ajMU+fPuVb3/oW/9F/9B/xr/7Vv+TZ86fM53OuXr2KSULVUEt63d7voI/mgxHCaJzyrW9/hcXynPlyztHRIdYWeMZ4IMJl4WaLo65zNFHbzoPykGdDBoM8VFzBE40ALgby/TkRW+ri2K9rcQp0PgahlVTdelXDfvAUjQlkA7RtwBfnUFWV9MFBqTwvw79dCw7GNmRJGMWwqAvmw5zWkmBZ59sWCPmOGu9scOCWe6qUJzrIRvC9bWUwmmGSYtIEnYjmqKuE6TibzVitFvzsJz+hCUzPza11NjbWGQ5ziqIMmk11aI+ReXHj+g2+973vsZwtee/d9/n7n/yYw8Mj5rMZ3/zmt0OLlQCJZVXy4x//kNWq4I03XufevXusjUZsZ1f41je/ya9++QvOzqaoUFGVdUSxCi6lSilu3rzJ6dmp7B9WWJsHh4fsXr3WBmjeKzFAwOK9xjaK2tZ416B1gzdObE8sIXGQBECCMk9dW+aLObPZjO3Na2TBhVAnKc67APRKm3B8VorolBcHrKGxDVonoS25YjQcyxywELVO+mvYbDbj1x9/zLMX++F6oWkEQLG2c5OL9+Wjjz9iZ2eXB/cf4p3nxcFzHj9+zM7ODgBFuWQ+m3Owv8/hwQE/f/sXrK9tMsxztNI8fPiQu/fvsSoL3v75z9k/2EcpRd1UAuT23GUH+YC6qlBIe25VVtSuJjEptpGxqJgyHE4kodGaLE1bwGEwGHQAXwuACLNFB3dikybtOng2nXF6tiAJYKB3njTRDPIBWZ6F/T1nc33C2voa65PbrE1ET2k4ykmSlOliymq1ZLE8xzUScJ6fnyIJj2E8mgV2h2jaaS2Fx8V8Ic/VGJaLkuV8QV1ZAp4rSV8imltJpiG0aioigBDYxomAgtoEkMFIUSNLh6GzwAQdKWFQj8cThsMRaTrg/OwUYzS7uzs9fSbR6rONlRboxlLVJU+fPBaNTGPY3d6SVqMAythQREN5iqpkZ+cqW1vbnJ2dcnh4yHQ6ReuENBXds48+/rVU0/f3g+C/4fbt27zx1ltcu7Yn+lV1RVmtwl4n694H73/AO++8x/Xr1/nWN7/JrZu3ef78BdPpOYlJhP0E4EVXr2kM49GA8ySVgmtVMZ8vgjmGCe7EwqoRMKhzcDZGUdVLUCuSpKBspqzsCfPiE54dinh403impwPKsmB9Y8BgmNA0K6ytQpLW4IKZg2sLlrq3R/uLe733bfeI1pqyFGHzwWDQMvCytGv5E2M73QPvfJBGkXVdTIa97EEqumomApx7kXowIa7L8wGDoYDn77zzK/YPDigqaSsuy0rYk2nSJosRcICuQ6Gu61DMk70OL22u3gsDeblchmusaYuVSHIO0toqpvBfbJAmf/l84VRenSwFbYxkw1oZ/o3s7e1eHWT6PaKrpbxHufgTL40rXtqslWqC9q2msUF7K7RJooILterYhtHJNK6jOoKFpmPaRs1BWSuS8DxNT/tTwKbRaCSSKha2t3bZ3e0MJrx3VGUwZkgU6+vrTCaTYKTmKIqS4+NTzs5nJCbh/GzOZLwBOFlXbUOaJRLnKGn/l/sdNdugriLwIG381lqOj4/55JNP+cY3v8Wnn37aauwJMaSLu8/Ozvj5z3/Ot771Lf78z/88aMK5lmE0HA5ZW5vw6aef8vz5CxQNRml8aOMra8mJBoMReZ6gDGAdh4f7LWvO2ybETuJIXVUVq9WK6eyc/f1nHB4eUjcLrl3b5NatHa5d3yQxDmcLRM9dWvUl+KuZTHISk9PYhrJwIS8DrYYcHS345NcHUphbG2ASAROdI+RJuh0HeNGBT7xhfX2dYl6TphmNFx1fQtxktAngj7geSdzV5TNxzrW7fgswd2B3jF1aVpvSbbElzp/L+dFlckMEoZ1TUiTxsRDhW8Cxi3O77qGYm/SB9ss4hjwf2+Zil0lC8ZgOkM4HG/b0UZtzemKnShcHd62mDu/EQbexlulsKnt4nlMURWBsVdRldSFe9kq0S7tOnER43NHAKbROu6CD6n033twFELN3L5zDK8mfrXcI0zksXRH5i+ual7hQjhcWKaVEykvF4oSlampwIc4OoLBWwjpu2XphP6itaQsWUsAT0Exrw5WiEpJQyDuAUPhQeAurZcGnn37Khx/+muPjY3Z2rpBlGdevX+fLX/4yaZJzcHhMVRUUlRRvIgGhaRquX7vBz99+m1/8/FesinnAcwh6pxkmEzKS0hplVQu6pqjW9dxow4sXL3j27Bnj8bh7Vs7L95ZFKFQKkLdYzFkul+0eU5TRmCqQLJyjDs7EOoxxpQITL0sYjWF7ZwOlLFqJ9AbKY300vFEYnaFUisJgG0NdKT795ClS5DEkaQI46jp2A7gg1SaFjkjs+CIC0b/p6zdn8HmwTlFWBU1jKWtp38nzlNpWzBclo+G4nexVVeAcPH36iQBUiejmEaZl3Ciqqg5/d8Eu2KMQt5mmgb2r16ibmun0jNFwja3NLR5/9ghrpaprXYXWCUWxCkGuaisL0vLhBH1FhLGHecJyucIlnrqqGOQp1kr1uywLBnnCZJzifSXhgXE425CYIc5bmrrg/PSIQZazPt7m8CiRM1ZyjbPZjLOzCqVFw6xxBU55lquSQZ7gfY1miK1TlB9wdn7KdH7K488eiT6CgqJ+QWOXUo3AkQ+yoEco6LlJElZFycnZlPl8Ke7EaSbovPbUTUWWjMnXNlktEhK9y629r/Lwuw+5enWPwWCIR1OVFQeHB5ydnTEPri4QFuRQzcTbUEXVQZA8hh+yCBAWZ2ddu5FdXOQ7ICluJPF30AWC/UHeMocQTQK87wXDok3lgulKFATvV7CUUkFUVl34jo6J1LGULgrPq4vf3wNo+qBYe496r8uAWfwOoGX9XJ7IXYUsBlK697kOIHJx/VfyfxKbyzOS3v6LSUF3fFpgTzY9076/W1ikMnt2esoj9agNHqLge5IkZGmG0QnrGzfZ2cwYDAekmaGpakxi+NJvPea/+//8d3zyySOUUhR1jXMdcCkVbBGIvnHjOq+++morFh2For///e9TNw0vv/xyy+5QIVGJtOqNzW2GwzE/+9nP+fP/y/+Z3/u93+PZs6f88le/YLFYMBhJtThq6qiW0egDUAFVVZLlilt3t9HJGDR8+P5nNE4qPniNtzWVbTitSs7PTkMCbZhM1nn48GVMAKuPT46wjQ1uYCEAMcJuMIm02ukA6KnwbI0SsTcVzDU6LRF5FnmeMxpJoC5tGUl48Aq8boE531bofbshihuVBL9Rp0eFCp78PrLACFpbrv1sbTuXstgW19QNVV0GgFEqhxtBy2c2nbJaLnGuaROLvvtp1DRKU0mkx+M1SUoS0UJyga3tvef4+JiPPvoIvGc4GsrYyAfSutzU1NaJcD2SbNy8ucdv//Zvc35+zru/epcf//jvOT8/CwGKjNmoXRPlHvb39zk4OODp06e8/vpr/PZ3fpvJ2hrjyYQ333yL9z94j+OjQ1RgBVknBkJVaJ1e3xDXvrIscaEl4NNHn/Dw5ZdJsxwHQUNKnNy9U/hGNK6gAl0JTcsKyJ6H/U+qrQLwpVmC8YblYsnZ2Wm7DolWoyIxGUkujrh1U3VrqRMwpW2n9IrGVe3z75cH2jVIyZrqLSRpRpCsaoNHa8vgOuvoSNKSxDrn+dnbP8U7x4MHL/HSw5d47fXXOT4+ZjqdcXp2xNOnTzk/P2d6di4VaaTiXbsahVSdf/3xx3z44YdSbW4qqqamqivqpqK2cs0eRe0sVV1TlFIok8NJW7EkEJpmMSXqu2apAGFGJ6GNWQLeLMtAa7xDXJF1FLMWt1OPCmCrCSL6GqMMVSlghDFJ6677OCRhYWtkkOfkg4zReBTYcUPG4xHD4QbXrl/l5i2F1p6iLMShMgD1JycnFMWS1WrJsT5mNpvjrUejSRPwLLG2ZjAcMBwNqUtFUVQUyyWnp0sUGWDCHinAwXg8aYEXcQVNwavQCpzJaqKQZCdLA9gpbc55PmQ5X7I+WWNna5vhaEw+yElzLWu69zhbcX5+ysHBPs42DMZD1jfXacqynTvtTqfFMOTmrRvkeYb3cHY2Zb5YiJu1SchzcRWdLxYAbG5uUhQrnjx5zPn5KR999CFVVdLYms3NTR4+fMhqteTHP/57/v7vfyrnMBgym8/Z2Nhgd/cK0/OpeAN4Le3vXrKpVbEkT3K0UmSptB4tF3PKogh6ZxGUKgIoJEUTKbgUaFPgWVDZFcpUpGaMMSMp7CiPc4aDgxPKpiDNcxwVzguDWWmHSVLQCeLMfpnhEoulqk1aY+IpwHzXOihjWnfGGsr34i7Xa+OTmDg+dOUhT7M2pmnqBqUVTS1FG3ljNKmxZGnC3du32drc4Ncff8KjJ59xcnLCalXQNCWozqHT6DQAcqKz6wFvpShlXXd9zjoWy4W0StlGzFtCEUn7CHHE9Sb+F2LBnjTMFzEfRHKgYzX1Y1H5PYBuwT3CzuW9b2Na5QntdnEFcrQtv9FhvnaAGLloL4mpChph+Njd4ttn2QJ96qJUTb/oEK8pCXGyiOxHIEeF+SxsvyRNMIlpNWgTo0PBWuKO0VCANXFWF5MQkyaMhkOuX5+Q50PWJmtkWcrv/k7H/j443OfJ08cYnYR9v9NWs6HAL/pyQ0bDCWk2bAkY3iuyPOPu3btt662468Z4VreA7+bmJh988IE4su/tUVdlKExpqqri8OiINBvI3qE1wXpGwFYrc80H5qePBU1nWz2vpgoGQ6W0eh4fn7C//4L9gxfM57MQq3k+++yA/YMD7t69zmSSYa10qngXx5fBuSkmPZF2QC9beqJTMe9aHnM2m1FWSzY317h95zoqCTIYxoTirzwL78X0p6rmrA3XGA7HTNZqjk+O0V7LGuJlPOE11gamq5M93il3AUSP8ZoxpgXIBbDXgVDRaZn3jfhioaEPForGY2d2GOO4KCEiY7YjInTu1Bd1/Pqsv5hD9TuZ5PzCnt00Yc8yQOdULgA5AdgH7aOqnpFcx3TMZ8EyhR2XJhqjhfHvvGhshhlNBuRZzs72Dnfv3g3u9DVVWYlO22LJdDrl9PQM27gQa1hWRUEdmNB46SJr4+0AFOE7yafGBQAw1APiNTsdtb2RxmsrYJrUdERAxdMD95Qc1weUXaHadUqH2L+xog8b9wPnbCiEhCKC6YA+FMEwyPTWRYl3zs7PWBuPW71c+ZwYBdlGzGhu3rjFs2cvePToM05PPghFc8c//If/iH/n3/lTjo+Peffdd3GuEYOLwPZeX1tjc3OLIgDvoo1ck+XSjYCWgmZj5Ryt60gyzllhXSuPMjBfzPjx3/+QBw8e4r2T1mRP0BZe0tQNjz97HEzHaspq1c6HJjhSC0FIHqbW3TqMVxglHZtNWVElCU8+PcMkMBpL15HXliQQ2lyTg9Y0tRBQitWCg/1jjo9mjEYp29trwoSMLH081oJBUVXSYemcyN7Y0Rd3N/6bvH5jgC/LMixCic6B8WiCMQlN3dDYhmSckGfivpdlGXVdkucJ0JAkKUWxbNl+UShXBO9l0C8WK4yR6nOWSiA4GEj7rlaaQT6mqWveffdXoDyDQYY2YJwK9Ok6LHKExMT33KrEGddamM9LqV5rz2S8wZpfoygKkiRhMh5iEh00tUJFSQcWA6K3U5QrvLdopcmzEc4pnBe6dJZlDIcJZ+c1JhFhaqMVOHGmXS7nVNoxzBVK15yeP+X588/YP37CcrnohIepMcaHYyZB6zCATc7hjOLkdA44NjZGgBa9Hj0An5CnQ7bWb3PzxkNuXn+F69fuipMx0jp1enrOyekZ0/NpB3DprvoTJ4GWk+levYBKiqDxvR14Fxe6GFjFjeNy2+gXsdniny3o0Qord8yzyxtGBMb633kZYLwM3sXAOP5OgpDkwmfj5/sbVv9nfcCvvxn22Yrx+/qvz4N8EoD3z/UyWKh7wGoL+gVUUBvVuu71P9M/x5joe09g5cRFVBGFotHgENBHew2OwAb1iBUlvNg/kOAaR2I0ysgcHo3G/KN/9I/5y7/8Kz768CNWq1XbZi/BQUNV1sElNGmp9cvlsnXtEup9SVmtuH//Lu+9/x4gjkrWWkbDEXfu3OXs7Iz19XVOjs8ZDHLu3LnDzZs3WRVLyqLg/GwqLW7tGBK2p7U2YMUGFZgvae5IcnjplXsYA9PzMzRJu0FJNVhYWUVRMhpNeOcdMVyI4KR8T2hFT2RjFGZDYPYp0eVJkyQA8TlplpIF101loptraNNJwCQB6LVOztWkKCW6FgLvBlohAhQaI9U5GdeDNlmAbn5ExkKkw7tAtbe2aTXPbFv1Dg5uThwknYeqFj0l+b3oV6yvrRHNJVwIfGKVNYrGZ1nK2to6w+EIk2SBMSHfF/UK333vPRaLBePRkJ3tbba3t1EKyqKkqmOLjVRBB8MhX//611kul/zkpz/hBz/4AbZyZFlGkkhSNBqL1mNRFDTO8fT5c1ZliU4SqqbmnXffxSvFN772Nba2ttja2ubBAwEN6roCDbaJOnlyf9b8mN3tHX71zq8CkNbwYv85i9WctTTBNp6qiO130m7rnAJXocwSVIW1JVVdYhIXNnjXJpmxaq+8JFLb2zuMxyOOptIS4mxkESUtA1TWMKQCjLgGozzFqgwsGdsCPZF1GgPGphb5imVZ8MEHH3J4dNhWwWP7tPei3bIKLr2S5CoSrSmrip/+9G2Wy4Kvfe1rbKSbvPzwJbI8p6pXzKaz1sWwKErwXjRLnGOxWvLue+/z3nvvdwFwYyXJq2oW8wWrlWjtNT1G1Xw+F+a2ogX3LGI6oLQO4LnGNTXaVO08MGEtWBUmgASRzacDiB4KEWhpkQ7jNx7TKECLoH1iUpLw9z5Av1iIO7Ik9AadyM+TJMEkitQY8oHo561NxkGyICVJBmxsbrOzm3DntqEuLUVRMp9PWZYLnC8pyxmOEkeDswrbQJI6DvZnnJxM22dpAjCZDXLKchXYvNLWfHRwxOnZGdZa8jwLgCZkqeiMxvmplSHPMtbH65yfHWKMGH5M1idsbG6Q5xm2aZjPzlkszkE7NjbXyPOU1UK0glumf9j60jRhe3uLui45PT0NLbXiKJskCZPJmIcPX2JnZ7cFBa5evUJdVywWc6azM8bjMTs728znMx4/fsQPfvADnjx5BkpYPbETI01Trl+/zsH+Pov5rG1BdTYWOyypcqxvrFHbhhTpEFks5iRpJmwuD842iMN0Q1muQjvwCm1WDIYNVV3jrQeVyHhCUddwfrLi/Xc/o64tk8mQwTDBKAVIa7nstUkAyoOrnu+Kk01T45qgJRmYKDGejUXLPgOnTdhM0ib1EjMYYjGnZfBoLefci4NEc01hE2E7CvBIGLspeS5Fkp3sClvbO3zla9/g/Pycg8MD9vef8+zZE05PT0V6o5rLGEwMJQI0ahNArdDaVJZFSMAaRIsosg8vxjidlmAsEKoQf8r745oHoBHhfBWCHO8FHIgQnvcqtCS7UAxpF92uSOY6IyL5ZOwSCYBikKZQKGH4Rx0u2yseW0sUye/HcBeZVaGYp4Thp1Vs4aUX4xIAUxO0/rRoEgaDFq1kXdKhwJ2mCUkaRPh918Yn8YWAS/N5NLcTY56YayVpgtGG0XDI+sY6idEYndM0rl3/FV1SHAuP4+C2u7u7w7NnL8iyAYN8wO/8zu+yubUlumXeUzU1ddCnBUJcVTEYDZjPF5yen7WSAkrRyrvUdRPGgMQ/tSplP3GxE6crqBpjqKqK58+fs3/wXFp2bYNCUxYFz54948mTJ0zP59RN2eUHTtN4hW08H76/z2iSUVUriuUS5yR2wYf4XomchdYaZzWJTnBeur1IHDs7m7z+5j12d8cMB4bFYi5AlNKBZVRfiP1l/IMNphdGJ9jakWSyH9WuCXudfMbaAHbE8RnndBhfn9f97udIF+cV0OY0fQmbvmZ3P5fpMwD7gF5k93UdT9161GcF9nXd5M+Y1+gQtyXt+9qulVig6OVj7dwgGBwo3QPig/yMMi3Jp10dYl6pNA5Hgha5jTzHjRybmxvtOtk0lmJVsVwsOD09ZjabMV8uWj3Aqqqw3rcdN11xXbQeE2dxNg0FZlkDL4CB4WUT15pDyP33gdkX4qEgdcCFCJE255Yri2OhM1mRD1nJD2w/ZY/rQvdfzI/Oz8+5srNDuVq1uIx0FjtWZcmVfMDO9g43b9zi6dMXHBw8J8syiqLg448/4uWX73N4uM/7H7zbdv81TcNyuZJ9e3eXjc0tBsMRy2JBZoaMxxNGo5FoKzsf8hIVchIbpFUMZVGIwZzy1E3Ne++9x4sXz9oxnec5k8kE5xru3L3DyelRm3/H+yQt3NWFdTkQ2CUedgKwEjohZrMZJycVz5+ehKKdGLqaNBgk2TC+lTDNNRrrpEiWZwNu3LrKlb1tcdq1jewdvsMDYodKdEn+PwSDLybyURS/rmvKssY5KzowqLY1UpgZFutLTDLGaBd0b7oFqUugCRvGmL29GwwHIw4PD+WBaM18vmjBl+FoiEJRVatw410r8hkDdefsBQpzZFQoHEZP2Nm8QVEdo3SBtTVeeUwCzodWDrKgZbHCORXaq5KwSIsuS11XnJ6dCvW8aRhNhiTGYIN7n1JBjLKs2NyeMBhuUleW5eFSOPUDR2NXPH7yK+arY6pmDqbB2Uo2bq3Z2t4WvRNjKFcl1tK2HVnrMSYHBjSVR5Gi/YCNjT2u7d3n1Zff4trVB4xG6zgrOoanp6ccHh6wWCxDEHfRITNWd+JLezogKby+CITqg2n9qk0fFLvcGnuxjaI7towzdeG98Wd95t3lz8RA+YtYdrEC1Z/0Mrl0xMR6Fa9OGy0ev67rdtO6fG79SlcfyLvM1otVtC9+yUbQv67+c4jXwecAu4tCuJqOlXj5+vvv+yK2oiTLnXagU/17HM4xCIOLKKy0pPvQ9i6txD60kEUn67ipi3ZXY2tWQWA7Pv/lchmEtwuMMbz88ktcu3aN7e1tjEn4V//T/8xytcQYw2/91m/xe7/3e4Ftovn444+ZTCbkuegaJKnBVtLiuCwWoAzaeEmWlFDinfV4Zzg+nvPJJ3+DSpbo1LE23uD2zYo02QBvaOqaYrUMQZgwiqtS2IpZngERMJXFW2tFkiqyPKFqCrIsIUnTwHzt2q4lARfWTGJyAXe1xiQBvAsgXpKkmCQhOu2lSU6apBiTkabBaTwTwMV7WfvSAJ4qI8fQOm7oKoyxCAimvSDOtIYEsRgSWRMi2J+0phvSGusoi4LFchnYe8KUzrI0tP/IWIlaMwpIUpEVUDqhsb7dO6Lg+mq14qMPP8AYMXLZ27vKeDhkMZ9LwSaIaCslKqCvv/4WWhvee++X/PSnPw2uXFk7ZzY3N9ne3sZ7TxGqiCfB3TnPRcahbhreffddtILvfPs7jIcjCWBu3ubXv/5I9EuVVGN9uJ7p9Jz1jXWcs1SBxb6cz1kt5kzGE7wlMIUavK/bKnJVnZNkMyZDAZ4GA3mO3jp0CN69snjVqxJbMZ3J8jwAE3GuB1CvHX+SrNV101sffZC+iEmeBL3Wib4dIfmN68jp6Rmnp6fyc2vBicu9GG/UaKOCnlYVtLZ8SHgVyojpxuHhIW+++Sa3b99mNBqyvbMlQVfQ0RqNapbLJaerE549e8bP3v4ZZ6fnAYSU9bGqqtYBt67qdg+XOEMcWyWR8GDoJfMxEHZYNKpRYiXShIp1YrCo1uzFh6SxbWkqNalJBDQAVoS1VhvhMmlFGtpZW+BPqZbh1/5nhK0pLUYpOjEB7Au6ld637D8d1kUpcIo2paytCetrm6E1csBwuMFgkDEYpigNw0EGymOdMDuqVxqOj084Pj7hyZPPwl4lIORsNmO5XJJlWygU09mUuinxvmaxLGnqStyePaiQXCepaDClxrC1scGNa9cZj0dsbm9S2iFKr4T56+HFi8dU9RLvrBjnaNHcq4NJkTAGhPmcpilra2t4D4vFUoqnStqn9/b2eOONN/id736X995/D2stw+FItFddYA4rw/R8xvr6BvfuPeBHP/oRBweHKBUNFQzn02kAZDSj0URMC5QCY/DeUJZN0E8TlkCeZ1B7TJJzdHTE2fkp4/GEqqplXDXCfF4u50xnp2KypGqSbIk/L4SFtliCN0HXB8qy5vDglKqq2dwccfPWDkpFLdYapRxJmqKIbBYpiIR0I8Qgwmjwtq8LHLXtfAtad3t4SMgiqEqM5SKLxnYJN118FWOCtsCLD6BeV6iNsb4xhkQZvFYktSPb2WF3e5vXXn5JWhbLktlsxvHxCScnxxwdHQXphaWwU8sFq6KQFreAvhmThD0nCXtQSGCVXL+wTQgsFtWCfcJtDYlZ5PmpLiYTgLlLi+VdCh8Mr7yXXMtJry2aYMATWNDx+1yMe7wFL3pubTwaHBS99/hQ9IjFD1mDbft3eW6BkemD3lY4OasUWomD+sVEPAIZ4X+6L90SgRLfrvFpkgrQ1bprd46+Ssd7nbR7pOjglu3+D3B84jHPFcNhjlYeV9eo4JyqAqAq7BPpwkrTnDu3RVrlb//273CN5d/9d/9d/vAP/xH//L/4L7h56xbT2YzjkxNph6vFBLGualAwGo/Z2BCJj5PTU4bDAcNgwFWWZS9uBZRGh7HiECF+pcH4FE3X0nl6esJHH30AwGQyoixKjIHtrTU+/WRKXZ1JV4rOArvGBOhSwG+FYTIeMx6mQcNV4vgkERArzZLWpMkoTZob1iYDkjxhe3uN8VrKqpySpiMxZywLTNhPYg4Si3IxsS8r0bBvnKVydWDjVahEMxwMqZu6HdvQ5RJxHrdMz568Tws4cYkwESChOKf7JIR+btH/PpEq6Ew6Yp4UAfn+9/qQM9Z13T6/+Nl4TKUEOI9xzeVriu7gUVc/akpXlUgCiBu26+YGpl27VDDl6QOZEfjy3gfyjG47CpIkoWXfOdH4S9OUPMvZWJ9w8+b1oBkqMi/L5YrFfM7B0SGLpZg4lEVJWdct88w2to17IttP1lMXWHvhObYgdciZkUKFxGY26DqLc3x7c+UGX8qdO3kmFbrdCODcxbxU8oA4Dvvg8PHxEffv3g1ki7AWhTXo7OyMhw8S0jTn1u3bHBweUpZLjo+PSZJUxq6t+NnPfsb9+/f44IMPW3D34cMH3Llzhxs3rvEnf/LHHBwccHB4QFXDzZtX2NjY5vmzF23e6sP1i6xQwcg16CQlzVLQhAJ8yf7+fkscMsZw9+5drl7dpaoqcaWmA1ZjTh/HX/tf2BmMlvHjW4xCDBSzVDOZjKhtTVWv5JkaJ11QSkg3dS1EC6c8aZKwvjnm1q0trl3fIUktHpH1qEvRD49z3wWcaDgcBk3k/wO46ColQtwR5Iq04zRL8a6hbByJNq25RlUVpBnM5+dtUml02lLBZZGI7nyiMfLkySOSRPTknHNCHPIeTw5eUZYFOojco6LQpWsBnuhwGI9dljVVZRmORHj49q2HXN28z+HJRzx9/g4eS5JG5yvZCPGGxWJBlqbooD1QVaJxpI1UaqXFwXL//j0+/HiLxh3hlJLqupX2OWMUu5s7WFuitaeslmxsTMhTyJKMxUJEurOBBa8xKiNLhXWhDaxWC9I0wXtLlslAjiK6zmmSZEKebbGzd5sb1+5y48ZNruzeYDjYFMbkquT58yPOTk9ZLFYhkOsCBN8PWFTXJtgPjOKg71eL4isGiHBRlD8OVtf7bF/TrgWMeuBd/89uvAmTJW4scaGMYG88Zn/j+yIkvD95+htN/PtlyvplgKxfefqi7+0vovFc+xto/5y+6PziphgZhV/0PqnPdOd9GcT07qK1e7yu/vdePnb/+QkoE/TdVP/7A305vEcpRVMHgwZcy8ISvQUBbrTpV9wIbp5QlgXn52dsbW2159Y0DfP5nM8++4xHjx7x4sULJpMJ/8F/8H/lT/6dP+GzJ09onGVrc4vvfe97vPfeB/z4xz/m3r17vPnmm4CnLMUEY7lcolXC2ekpq2URAhZhwaFAp1rOtXGcnM45PZuRZA2omgO/5PEnS3DCaonuWnVTBzQEBvmQmzdvijYNDq8aFBVGebxvyAaG1+88RBsd3Ex9C07IfZexvFrWuKUEJkmateNWEYB7NcDoAUqL9oTCBGfwNMxT3bIEVah6aQxR60Zr0bbIgvZoBA2d90GPVAdATGFMGhLIjukXg8XWLIfILpHkUpjLGcMgmL1YLETywDWMRtGMSNgfaWoCeIGY9XiLrWuqoggszorDwwMOD/YZ5jlXdneZjIZUdTQVCWwHPEYbxqMJ16/tkWYiv7C3t8fx0Qk4GI/HoQX8Bjs723zw4Yc8e/68Bf+yLEMpJc514Z4XZY33iu2dXTY217HeS1vp9Jw8y3GrFVXjsE0D3jMcjNi7usez589QiP7bcrGCwC4siwXOljgECCmqFU+evsfWtuZOvgeqQnlHXYs6lASeDrQkm7ELTFiVDUYnpOkAp4oQ0KShgLaS1rbwTJqmDvNZGFGhY7NLAuh0WlrResmmGY1GbGxsBAOdStrD8Nja4RpHYcs2WOyzBAjHH6YjVqsVf/d3f8evfvUrrl+/ztW93dZJPjo+Hh0d8fz5U6azGQqp4jdVTd1YqqpkuVpQVUFvsakZDkd4L0W16XQqiYbqdCxxUnn1SlpXcL39KwwbhwtFiLgHeJRTONVgG91CBI1OQmEwJRrRRMDFaChiQhFAPZGrkGNGjTtjRCRcguekjSkSE7TwtMatCPMsAOgBnIlFC60N09k5wjrQOCsyFCaJmnmG8XhImhvG4zGT8Zg8n3D/3jbXr9/k2dOnPH/+gqhzOhwKy3i5WIFX5NmAqhZ9yDTLaZpC1gstrEbxO/NU1Zz9wyknJ89QypNGFu5ggFeONMs5n85BVWQDzdr6ABM6MVwvhtCJQWNYG08YDAasb2zypS9/iZdffpXUJIwnY9bX1hmNR/zqV7/ks8ePW92jqM8sCYfBuQa85sruVSbjddIkQyknczjcR9F9NiRJRpJJOzLWosOzda5BK02WZoFZCWjFajVmMZsynZ1SLEsGgxGrYsnx8QHPnj/h2bOnshMqS5Z5tPFBdF0Gm43tVr7B47h6bcTrb9xlY2sIdHMz7r91MPfowLp+sp5gEt3u99DFV2JIp4h6zpGJGkGdfmdDjNm6fV617OrIsOgn7DY4eUfTh/58vwA4JdLi7j1gNHmeMx6N2d7a5t7de8SiaGTkr5YL5os5xycnlIU46c7nc4qypAnafFKEl3MQzUPVutOCau+HCnNde/BKkeokPEfpSqjqiqISY7iuAOvDuifzyUUR/eCUqVChGBOKYKpju/uglaWg/b3oN/WKt/4iIOKcQ3nVzQXfi3FjLBZXHi+xXWtfHa7xUiSMUgLy6MAqxgojVNYfEZyP5h8R9I3P3pjIqpJuHKMV2qRh/Tahw0AS3SQ1WFexu71FdGp2zqOMb9lPi4WYYQyHA/auXmOQD3n45y/x5S9/mYcPH7L/4gVVVTGbz0mD4dlsNmulmBbLBW+99Rbee3784x/z0UcfMR6P2drc4OqVK+zt7bG3t8fOzk6I6TSNa8L6HgxonKOyDZn3MhgQ7WLnLb/++H2uXbvGzu4aWsP9uzcZjRLGa2/x+PEjjk9OWC4L6tJS146m8TI3vSIxIx6+dIurexso5UQuoi7wgbk3ny/QiRBVMpOiEk0aZYeMA1YoXzGfC/El5isyb0UvU0BtyeVEpqRoc1hjTFjXFF5LASBNozlZZ7LRj+EvA3P94q3E7DqMW9/roOve23fmjcfsmHb6cx1ZcYxH+Y7IjOrnTvE74rH7OWGrj4dt39f/ebfeSEzqfUdsUVpRlYXMqUvMvsusrYsAXz8H8u3cafNW6PbrVGKAOpgsRYbhcDhke2sTpRQPqgctm29ZrDg7P2M+X7BcLJjOZqEbJuowurDudEy+xrmgCx5/HrpFgha3B5zX4G1gtnb3Kf4nl+ZDBSPICoRlRe6bulA08KEIChfHC8CqWFJVKwaDnNVqKYfU0olwenKKtZ61tSH3794hTTTOVVRlQd3U/Omf/hN2tnd58OABVVXxz/7ZV9Bac3JywsnJCXmes7m5zbVrNzg4OOTo6JBPHz3itVffZH19g/feeT+szbXsAS7YeSo5W1eXEqOE64qmjVoTimaejz/5iIPDF+Faom62DnMwgsfxamUMOOdJsxwdiD7CrmzQuubVN29zdW+L7Z0tlPHMZmc0tqTxofgcigFVFQggBrY21pmsD/G+Yr6YsVzNpaDkPKYnyyDFn25ORIOX3/T1GwN8/R79oihIUwlU8Yq6kV72ysvikKYp+WCAtSWiuyAObZXtQJQ8z1mtypaumKYpCtWKCKdphglOcRooqxKrDFEUPkllEajrunXaq2thZokjVyHHMFBVDXtXbqF8ztHxIdPZGSgbBO0VeT7AO0vdlEi7hacsVmRZTtXU0m6nBLBRRjGdnrFYTEkS0WyRyrGw4larJcbI4ifApYwsk4RWBQ1lVaOVYmd3C49lYUrwhlVR4qxnY22X+eKMJBHR5yQZBABmQJ6MGI32uH3rVR48fIXdnWuMx2s0tWU5WwWB6XlIZOsWsY+T/BKO1gJ7KgYeLRAUWFihKvJFi3BcNPsVoL47KD0QEalbS3Uc2t+LU19kGfVBqi5I7f/ZB4j7G0v/XOI5xnH7vwdw9X8XmWexqn0ZuOszEvubVx94678nHvPidXWv7mfi8BoB2MtvVXSAaf/62o3X+/a5dm0/fRAwpr6x2kxbRY730XmL9bUEnS5UsrvhwPn5Oaenp0ynM+qmFj3KMHdlTnqwkOUpk8kkuB1JICr30nFwcMitW7dRSnF4eMgPf/hDfvnLX6KUYnNzE4DDw0P+m//m/81//B//39ja2qJuGr7yla/w/vsf8F/9V/8V1loODw755JNPuHfvLm+99aYAb0nOcrHkyZNngd4eAvwWnGjCfbC8+eYbnJ5dDUyphFWxZD5b4b2IhxdFgW0akiQLrR6KZblkvpyzGRgxzlrygcG5FXmm2Lu2iTIr1taHRNZe0yhWqwZjkmCA0zCbLSjLChcElVEBJFCwXBU4W1I3Z9hGXLPqxuKXAmooZYK4tQhwKzS1dRgjQaEOOofCnkkCy8gEEdk0tPrqACAKQBhb16SCrUMwKcLfWhuyLAsMC9MJ+CuFVzL2o4291jq0XUtxZjQYMNhYwzU+MJttcLUSF9y6KmnqksePPqVcrRgNB+zsbAVmd9EmzXH8Kq24c/cW+UACrt/6rd/i4cOHPHv2jF/98h1sbXn11Vd5/fXXeffddzk+PmI0GrFYrXj55ZfJhwOePn2KUYYbN27w5ptv8ODBQ9bX16nrhsVsxmg05tq1ayyXi5a5q6O2SgCwJ5MJCkKA7imWFU3tsVZJK5H1NKXifPqcX3/6S6xf8NJL9xhkGlRG01Roo3CNVO8VQBC475LYJrgQig5pVzEnJE8LqrokSxPyPKdu6sAIqFmtZC0wJmG1KjAmJc+GF8Dbdt1zno31Nd5843Wquub09IQXL15wenqKYkUVRKtjoSXq/LTreThOlkoCslquePToMR9/8lHYl9M2cJUCnCFNRBevqcWptKrElbWqKuazOY2t20JWWZYcHx8Hhq/uJcvSpEOvtU8YfZ9bYumC2whyuNDgEwYWiiYkG9a6ABaZFgTVCpS3aJSAf1rhlbTJJdqgdHS37NqYlJHfoVVg5Mdz7FwxtQ66Ol6YfUliWpduAeWzkNwCdSzkwOmpAPxKR+BSErfJZA2tNcPhmDqYsSRJyvbONq/89stiKFGWLItzptM5Td0wC3GQJGqBxe3rAKZZjPYUMWAOoGSaihTJ7pU1XnntGsuFY5CPKQoJaNu9jQAIGVBGrns0GHH75pAo+UCYR0+efMbHv/41165d4/S905CslW1A7MP+tlgs2Nu7xu///u/z8ccfc3R8AniygUMlJcOgySOs4lwwAaVQxoCuyZIMi6VxFttYDg8PuHnzBpO1IQcHz0DJmBwMRnz88ad89tnHaG3xTsBl5xx1A8qCThUmVaSpDgWElCwfs7U94tqNbdA1zhcYLTppSSLP1gZHba1DWyJShNKJCXIA0axIAKa+KYNSor/ZxRYhuQ1jP8boMQ7rirm+XUu7mKDfMqdRqRg6SPobmCQExkhIrkyMK/rMnBh4hPjRIy3ZWZowGY9wGxt473n5ocR/jWtEky+0YTZNQ1XVrVxDbFMuAxvDupgoi6ZvNhgKpqM8a5M1hoORyNjUFcenR+wf7HN6dkZd1b3Yr3O1J+iZeXyrO2ttR/nrG8X5EAC53r9b1k34u/EmZtSBCQJeOSmBWgGjQg6O9gIMSztfa83UgxyCjEZv7VJKdAO9VzjlUC4WXTuCQ6Mkxo9FHFm6QqtkEln8KsQNsr5Jz0ds9e6AnfW1CTvb4pQbk+kuZjYsFmKKMhwOuXZN9DCHwyFpmnJwcMCqKPg//YM/YL5a8p3vfIfnz5/z/vvv84tf/ILJZMLa2jr/7J/9U/7yL/41v/rVO5ycHAuwYRvSJOH6zRv80R/9EXfv3xNnXSftbdEVPiCT4W/SiigmYkL6WC1mvHixQps5X//GmwwnJcqs2Nj2fGnnDt7facGYYlWzv3/C+dkKrTQ3bm6xvZuBXqENjAeGqjIsC8njBDSUeGcwGjKfz/C+QWlLkomsR5RmkIJtWGtKR5aKJEdZBpY1CcvVkqoSLV2HMLzqqsJrARycctRNxWjQ5SMxn5Ap1/15mZEr81q1+5/3F1l4SknnQ4yT+468ESz7olwmvuRY/e6tuF6plpDRX38iG/8y6w9o16w+QOh9t861v/NSvO4b7lw+t8/nWh1JoT0fVAuWSk5vWhDOhVZobQx4R56nYR2R+xk7ZkajkQDTbHLj2jVs6Dyom5qzs3PmsznT+axt7RUiRB006KJenxQ1GmuDJIyAwAHiEoZ9L6/r/9cVboUR5kKHVQTyJNeOxaO4REUte0KcIcdeLZfs7+/z0sMHLJfh3oVYa7FY8vz5c9bW1tjc3sT6hq9+9aucn59x7fp1/vEf/WPSNOcP/uAPcM6xv3/A//g//g+cnJzwla98hZdeeomDgwM2Njb4xje+QVVV/MVf/gVf/a3foq4qzs5PURpcI6zOqCUeA2JnOwZnZDUCAZhTKC3F9fl8emEeCHO6K1DFIdHmzSbm954s06Sp5srehOvXt9jdHaD1kvkyyKJ4C8aRJQa0GCtlOiMbKDHMs46ynqOXNYNBQmo8mTE03pENhuxs77JcLjk7O2MwyNsOnajpHd2rf5PXbwzwGZOgEgm8NzbWW+qu0uLS5KylWK3aG6ywDIdDvFfkOZRlJZU3H1ld0gJgjGE4HLYodVyYYlJjbYPWmQg0O6GXS7JRSE+00gLEVVVIbLr2G0kspLp5cPCUk6M5qU5ZrI4omzOyRBgudb0kz6MFeUma5QwGOVXVBJAw0KqNaJZonwbxVhFTz7Ihs/lUAvLaM87FGcZ7qXRUdUViNMvVkiQxjPKcqipAJwzyjNPpKVXlydJhCB7A6AFVqRlk2+T5kL29G9y6eZ+rV26ytX2d8XiLqpRq6OHBU87PpqyWwiaJgA1Eza1OtrizY7gY8LUB4KVNQz7jL723+3d/E+hXfAXA62uR0Pu7aseOonvuUZux+7e7UJnp60f0z6N/3D49+0K1g4tOU/HYl48fq27912Wa7+V70A8Iv6gd93LrbHz1fyYJbAQK+xudBJjOX6yiQVfB00pYZ31WYv+clIpxePy+uOjH1h1P46oWPI3V3Xi8w8NjPvr1R0xnU5qmBiXsSmEPNW2VSivN1sbGBeYnofppbcOzZ094443X2Nzc5OnTJ0LZPjhog4GdnR1GoxEnxycMBjl/9md/xv7BAbdu3eI//U//U7IsZWPjCkopjo6OOD095enTJ3z5y1/mzTffpK4rnj1/LuygpsE6aZcX0XFxbhqPB3z3u99hPJ7gvWLv2lXRmVFSxbbOUZWliOtWlbgG1zXnZ+ecnZ1zfHzC86efAQmr1YLJJOfm7euMhwl1WTCdrkiMEY2m4NhXlSWJKVDKI8SfhizXSDunMJiFJZMDnrKpBMLwjqZ2aJXjncE2GnzeJnbOQ1l56gCINY1lVYgmVWN9qBKGTR1DkooTt0EKFj60N0STgcQEQf7g1KVDgUVhQJm2/S9JTMuKUoHZkWZZSP5zAZcWC3Z2tsWVKs9IgrNpl8CJLtuL588l+R8P2dxYD+BaJW3f7Zoh57i7u3MB6E/TlPv373P79h0WMxHof/sXP+fo6IjaWqySto2iLPjGN7/JH/7RH7G9scnm5iZaa05PT1vGkwrzfntnm1//+qN2bqRJQlPLeZRlRZanGC2raGKgqlbU1QrnLEVxznx6ytNnz3n6/AMmm5ovv/Uy62sDnGtI0o4prQPoEZmKLfsrtCMbI0WwtbVNDo7PsU4qyuJuaxgnE8BRFPJzCX5EAyqObe/j8cU1LUvS9r2OABoAJs/JswGT8YTd3V1e7O/z9OkTzmczCUgrAduciiAfJIlrW3crI4YczjckTRLGlGnbhGQ/tyyXZWusUtc1Vd1Q1eJuGFthTCKtlefnMxbLRY8BS2A8yfolFfduLQw7ANFsILKWfFh/dbjvLha92/Ra7kd3LC0/DYwVhcd4Gxh88r3S2Ac2VHLbNTywDKBLYoQd0CUZsueo4HB7UVi/ZSV4YQEmicEkgbnSCCgUfx6ZN6KxqERjMib5Xhjdrq44Oj7h5PRHZGnGYDhiMEgZjcYMR2PW1rcYDnOGwxGKyO5sWBVLbFNwdnpAWS2kvX0w4PTkiKpesbGxwXgy5vD4kMk4wTYKvDzvqpTxYYLRDa1mFiLJ0NRI222nrzudTgPQU7G+vs75+TlKxWJZt7cXRckPfvAD/vRP/5T/5D/5v/Pf/rf/X955910WqxmaIcPBmCTJMBqcV2idghLx/aquKKzDIa0xWWYoyiUnJwcoPE8PX3By8hlaa549P2CxKDEJ3Lu3yRtvvsFgKC13aSZrZkzkoyB5bMNFVVi3RInGCXVtUN5j8Rgj8z5RGme96Is24qIuGpfhnniZZxdigJCcxzEj39e15ltrIe3ign58EFuVYgzRZ+m0Sa5SAYi6KOERGfkCWny+qNu+QgIencjb42gdFAoDKKCE2ZmmEMjd7QTWYb3u2tt6Ei/OyblojW8s1tm2gGytJWukBWpna4e6aWhcQ1mUrJYrlktpqZ7OpljrqCtJtF1wS62bJjD6utjOe0k4ne/E/73rYioXkuXPFY+NxNLeyyphjMTPMfHW3pLoAGj4sBYH+Qwf5m6bjbaf61Y4+beiK351RduWaakEnECmc4i9u7ZK2bt1twpq2rFnbcWVnS2kBc3KWmiiPETKarlisViwu3NFikt1zeHhIUpJa2Z0rvzoww95++c/5/XXX+dP/uRPGI/H7O/vc+vWLV555QH/+T//L1gVS2rbBHMXT5KlPHjwgPv373N0dMTx8THGaKoqJPZecoQYEwgAbWlsBcq25JLNzTVu375OPtBYt2JZzFkszskHA7RW5APIsgHNWs7tO3s0jcxFrZFkPzMYI/p9K1eRZB4CW0gpK51dQD7w1LXFedGTlBZSKbpYG4AyxFhNgHqRj4rgSXzWWZZSVKWYGjiLTrRoy6b6c/OxP6/7466f58QcqMttulg/5j3QterGglqfzdf/fJ8Zd7HzSbe5xWWiRMyh+mCfGEV259uSX0zs5KsvAHZ9hnEEFE37vbodc/052wcJY0tk03RgYyDOhpwYktDK7kxs6ZRrSIzMDwhsSwfeW6wVZ2SJa8QcJJ5blqZ451lfWw9xt6OsSolvVgXT6ZTlasn5dMpyuaKoChprcVYMRgXgEtzABgkBKXA0YS28KAvVPf++PIOsDc7bQMyJLGJaEkl3v2j3gIPDQ27evNGZ9vTG2KNHj7hz5w5rGxM2N9d56aUHbGxs8PLLL1NWFedT0b999OgT/vk//8958uQJTVPz5Mln/Hv/3r8n47soGI1GfOlLX+LevbuUZcEnn3waCogW65qwnsp+7bxliA/sWQJjLzC88TgnBdPozh3vg7WdI31/TvRz5zg2ZL1IWJts8PDBPe49vIJnTuPmVGUJWqMTSJKwLypPahRVUTKvVqhUi8Out/ha0zQFMMFZJ+YbITeK2tlCRHNBd3jCeDxmOByyXHxhZfrf6PUbA3yS8Mkkmc8XDAaDcEM9ZSEBSppKa24E6IXZIwMyTVMa3+kJOecYDAat/tZFBpQJwYuRBbwpSZKM2nrSJKNpRHsP5RgMhu35xQWhaWpMaLvRRmzSk3Sd2zfusTbc5IMPfwUFFOU5zkpSQajyjyeTIE4tleCyrtHB9ayuBaEfDfZYLOdc37tDmuacz/ZlQUpSNjcGrKqaYl5Ja4GGYlUwGg8Yj8csl0vKsqJpak5Pz0hMSlV68nxCnm2QJ4bUjLh282Vu3XrIld0bbG3uMJlsoDAURcXp8ZQnn4kOQNOIfoAEIKC8aoPn9rlp04Ftkc3QssU60Vro9AtkUdZEwcv+wqKUaltp+otqBIhiS0B/U2iB394CLGPEtgt8pxGStJtCH8zru/B+EWsvfld/8+hXkfqVonjd/Y2tf6z+AhpBuz5wFhfGy+/tA4X9hTgG5herS93r4vhXxMp9fPUrdP3jqxAU2941989XCQIjzzYyJXvfJ8+txuHC85O2WucqDg4OOT074/TsjMVy0TJ5mlD1jsL/oCRR8aJtNByNRHPH+/Y6jDGsVis++OADvva1r/Fbv/XloEGQ88tf/pKjoyPKomR9Y52rV69idMLutR2GoxHz+bx1inbOMZ/PMcawvb3NK6+8yv379xmPx7zzzjtUVSkMKWfxvglMgZq6rsjzAWVV8IO/+6G4ZSod2ieiMYa0rOZ5xtraGoPBIJzjkFu3NnjppSFaKd7+2c949OjX3H94hzfeeJnhMGFVzNDagxeH8dl0ytnZMUVVsVotmJ5VeOUwqbSCeFsxLyq8FcOeslgFIMDjlSPPUqqqYJAPMAnUVUGa6zCWNJPJhCwbUtWeamVZrlbkWd4ynYqibvWwmsZJi4tKePrkOWcnC3AJ2g9Et0wFk49EnPmyLA2MYx2s7gUsTNKMPMtFRyqMuygUnmadRplRIo67tbXNZCLO6oPhkNF4zObmBkCbDDx58hnaaHZ2d4iO2FLtrWRXD4DOcDhkY2OjB97bFujzDj578oRnz57hnOP69essViumiznOOZ49e8ZisSBNU25eu85Xv/rV1ujFNqIVWIf1Lor/zufzdv2xjQQeJtGk3jCaCMgqydmCujnFNiVNM2VV7TPZWPL1W/fY3lsLzK7okhjWA9cxRowRYwxltNxL5NrFXTpjOp2F96WBKaRD8Cbutlp1yboxUozKslx0HE0qYuVEhmdnmqTwKK/a9oGmEb3B4WDIvdt32LtyhRcH+7x4sc90OpXk3xqqUtpovReDnMFgQJrW1E1FUa5C0JT19vReYOqtCOxXXWteWYqbHV70Gp2znE+nLII+Z79g04IKSss9i9cSROeVVi2LKGpmyZ4Xf4ck9d5jtEjHd4UQWXe1EiZrdD+TtsvwsGKiH8Aw5xSKJrBmVKvPopRGW93bgwhruiKW2JSWoml8tYCKliRRwJzA1lOhWh3OTUdGremSrMjQhA4oMUZDUYVjFUxni7APhf1AyXuaxpJnOYPBCK0TBnnOxsYaG+v3MEaLi26asLdbAo2wGpxjMr5N0zQcHh4zm86wVmK+JElRaLx1OOPBOZpa2tZAGFQW264BaZry6quvyjknhpOTE5yTMSLFB7lPm5sbjEYjPvro1/yTf/KnfO1r3+R/+V/+V/7yX/8VSZqQZUMkjXZUZUViUpqmDIAMVLaKkC5aO+7f32E82qRpCmp7SJItuX7jBsdnn1E1pQBGVw2j9RVJUpPkYIwwktERdJaxZdCo0rbumRBbcS1GJ6Bj0RO8ErA6TTXeJCwWi7CPxuJgv7W2e0XQWoCfrpjYJA3KyHk04R4raFtF4zoZ29BiHCJu6VGz+qIxRJqmF/4t47+LkfqxUHyPtZYuEovrjGoBvwvXoVQ7TmMyjPctiBj7OmSfkQyvLTgnioTk4v1RijU/6eI7fFi3I1uZwCAXV/WyLCXhXi5YLJdUkV0TGDWR+R/vXaulFcBGF9ZxSSQjMCBswVi09rH1VwkjyzqL9qal6ClCq3dg46Hi57pY0LfrWL8V+GJSG4/WMXgQgA9huMhclzZjRQQBOkaYrB+ijbZczjk53WJv9wplsZJUIQJSKFargsePP+Pq1WuUVdXGTxGcOTo64i//8i/56ds/o24a/vIv/5I/+IM/4M/+7M/46U9/yje+8TVGozX2ru3xq3d+RUC7yLOM+/fv893vfpfBYMCLFy+o6i6HEjZTx5KObcaiP+tDC+uAB/fvcfv2NSbrhsW8RFFhjGO5KimrmiwV0D9LEzyK2eKU4XBMmkYAIQnrmBjppGlCohSpFpkojwft8L7Cq1o0FLUmCQm8MM8LibmQ/V2HOHMwGLBaLQKgG4AmQmwfc4mwLkcwGSVgN/A5s8J+Ef8yaBZzjn4OEoG7y2BdC/CHuTMYDNpOpvYawv4SAbXLgEn8fL8Dqn+O/WJDXF/iuKnCOIr5nexLqn3WMWiJIJfCYxIZt/Ez/f2vD/pF8PsC61kLMyxkbEIEQJOkoUugx6GNBowSVxu0tpjUhcKVgH5tHnYhn456yCnDwRC1rbh+/ToARVkwPZ9yPpu2etbT83OqspLihG1obEVtJVaxRmIMWX9EA1dwlaaXl4fR42NR34Dp8JdWYieYL8W9OIwkzqdnHB4dMhlMAlmgIdUGbwwHB/t88OEHjCZDdnd3GAyG3L59F+89R0dHLQv67/7uhzx58hnL5RLwPH36lB/84G/Z3b3CZKJYraQb4Nq163zy8a95/OhRu941dU1VV+H8pTgnHgjh+auobdqN9TiD+qDlxTHZAdD9caq1Ik0ShqMxW1vbpGbEYm757NER+cCRZB7vDJWxYBrSDLLMoBMZk2k2wNNgbYWlIR9kAlLaBm8ta5MJu7tbTKdnzGYzDg5e4Jzs+XUtY302mzGbzVBKsTae8Ju+fmOAD8R5zwN5Low721jSzOCcZnvrGvPzGYtZiU+7HunYRlJVFUaneI+0T4QbEh1wY3tBXMSKoqCxJRsb68xmS2azBUZnbFzbwpiE2ewMj2WxWLK1tRWce2WTkT9Loi6VtRIsPH78hNvXM1575RscHT9ltjhguTzDuhrna5qmluSjtozHY4qiEmF+31FFkyQBJe5HcQBJ5T6yB1N21tY5ODrk/HzKfCGDKUklyVubrFOtamHUJMKI2VzfY22yy8baDR7cf5W9KztsbeyRmDFFcAbdf/GU5XIZ2oh86AJUeBfcczAoJJhw3gV9n4vtSRcnQO/JqsgwiIsyvQWjA8KACwCTLMYRM7zIMFPxW1XXCtJf9OGiuUWfWRe/J25QlxfPPlPvckW5r/cQv6Njk3TVqf619MG6/vn1A9j+xijvl0WtvzH2N87+OXcvf+mZxAXZXQAvL5+HUgobgYHeM+s+87/t3Nve83bTkgdmtO7YLdpgm6iX14G1L/b3OTo+oaqlutI41163AAyhutQ0NLW0jp6aM9JAOe4HkJF98OmjT7lzRzQj33rrS1zZvcKN6zf56+9/n7OzM05OT9hY3yBNU6bTqThnOmkTPDs9w3nHcrHg5Zde4R9873u89vpraAVPnjzhl7/8Jd73K4Fyb6qyRIfE2DkXtF2Cy1xsgVIEHaNOu6LbJOTnxhgSk+CtYzLZ4Pxsyd/94GekacJoPGQ0HDAaxRbdTW7euCkBqlKMhznW+1Cs0CyWS05PT8RMomk4Oz1nsZhhbUlZTxlNMjQ5RaPDPDDkgwTPiqpeMl/VJNWSxGRkAxGhdS5UnTCYpMakInwfGdHe19w22wxHQ+anjqpSDEyOVuJcnpiE+WJBU8d5onj27Bnz+RJ8YAJqcQQWIoG0BRut0Ynol2RZDh5GgxF1UzKfj8Qty9U0tsb5hqa2ARg4YDY/J0sT1tfEVr6qa6x3NM6iEE0kBQyHUn1/8eJFcCsfEvUunzx52gIFSilms5kEzgTArKxJdMLtm7f56MMPWFtbb/UCteq0MLI0YTJZIx8MWSxXKA3aK5SuA3CdoEvF1772Bnt7uxwc7NM0x5yeOYaDlJ2rI3av7dE0FV6tsDQ0jRMgyCmSdj0I1eMkYXd3h5PTQzElUSIgX5Ylq9WSxWLFYl7S4EjS6NwqwFySpmFNci3DXFzIPGVZM59Ly3lixNFNgFgJMqyPSXZgnHmPN0Bwc2yCS/JoPOb2rducnp3x/gcf8mJ/n1pVLXuoqgqKYolJDHk+EBfoYFihExMARdlMmsDUqOsa2zjqWjQE4xpqkiSI9U9ZrVbt2meMmFWgukSj7yrZAmNhv4stjkkEz8K1ulDUCluhMIp8AAPDPQBpq4s9icZLsdG7JiTG4Tj47v2eYNARJShiRT2Ce/1CTbeea01ILKDdRBWdMY+PRhyRcRNY10iLnYe24BoLai1DRxlMIqzcmPzEol2W5R2LsGV6Gaqq5vx8gbT+hyDYpEGQP2oieRKjGY1H5HnK2vqE4XDIaLDDYl7hnZK2ZeQeKGXEfMxaZvM56xsib1CUBavVkv39A168eMH+/j7g+dKXv8y3v/1t5vO5mOBojdYpo9GIq1evsrGxzubmNltb2zx//hytE77xzW/w6muvs1wtsU1DWRQh6RDGkrPBQVdHbTWL1p7d3XXWNgA3wSQjrt5I8GqJ1o7f/4PXKYqKxCTkQ+TatUJ5SxX0zlwoQDc1pEnWdqfYxuO1D/chQyF1iiQRHS5hMAoI6BpJbOK4jvtzLKjGyn/ct+RZ9Vk54pqskIIoKvZpdMyBdnwEIDLGOlFLO8ZYzkGepy2Y1S/exmScsEfG1l16cY/SGoMwjNuYrBcDdIl7F4t578F1xAHXi3fi+OnPn8tyKBeAea3F3dLaDnhNIplAYqdMqBhshrbhyGqMoudlWbFYLCjKktlcTGqKYiUyAgEAjPfFeRlXfaH8JiTSXQJKW1gX06KmxxLy7Zy0XuRDZB3uSSi0wE38O0Q9NXB0oOJFZk4LAHqC6UA8r4tgYHQzbVcn7/HO8+zZU3a2tkLuZHHaBnBYxtHjTz/lxo2bXNvba+NwrTWffvop//1//9/zq1/+ito1YazAX//1X/MP/+E/5Dvf+Q57e1dI05wvf/nL/O3f/q0YCWrNtevX+eM//mM2wrN5/Pgx3nkaGw0MLE0T264hS/OwT5Z4D7du3eHll15ja3OL09NjXjw7w6Q1a+sZWW5Ikg2SxLC+sU5ZLimKheRxDtJGwNjVqkSpstV8BE/jalCOdDQSsK0R4y8NJCaH1KHTtPdcFanJ0Nj2HicmIU0S8sGApqnFyAdhBHnlQSth+CYp1gnAI3u2uJkmSUpZlqRJ2o79eM8jcaDtvmnHwMUupTiW+gBbv322P97i2tDPMVqyAB3jrv+d8XU574nrWL9QF18xT+oTLCKzyvvopBwdpjuZi+7zvm1xjkUgkQJJerkmQde/6V1DRzjxdJ1G3oXCgu7WqzzPA2moCdcncyoJBTjvDZGxGwHMCEzGwkXbuWKtmOalKePRmOvXrwvTvrFtK+9yueR8NuXs7ISyqlitClaFSJrE9cp6165ZdRhLUtRwNLbvRmzRWtb2/j3vE258z8zjydNnvPLSyzglLsZeKTKtUSrhww8/YHtnizwfMBqNWid0EDbc+++/z49//ENWqyWR0agU/Oxnb/Pw4Ut897u/05Itnr94zqNHj5ieC4bT2IpVsaSsSpq6oWkso+EI27iQK0hnQFNLF0NnThXHblzT4hopOU8cB5FoEmOkwWDI66+/zu/+7u+ys32FYlVzeHDIydkBz58/ws6lyGOMBVUyGKtgLmfJQ9ep0hpjcuqqZBlkCwbZgOn5ufgnJKngSk7Gd5bmOG8ZDAZiBtLIHmitZTy8OIf+bV6/McBXVRWrcg4expMJq6pAG0WaCmX1+YsnlMtloPxmoc1KRGpRkIfAcrVaYZ247XoXK9YEcXba4L4sS0yiOD46o24sCo1J4Gx6xmw6Yzo9p7ESIDv5Clnw0oTRcCjBgvdYpzF6yHg8xjaOR0/e5cX+FtZ6Glewub3BcjGjrDynZyekqWFnd4eyalgWBSZJmC0WEsR7MEnGajXjxeF7FOUR6AKTJqxWc/YPXjAeT0AZcVBSCcppcBasoalSsuEaW5Nd0ixnMh5z5co19vbucG3vNokZUFWO87MzPvn4GUUhmlWxEhhbqiQwiklJH5qLih79l7Qa9M0hlIpaBtHNJ/xM6eAoFqoS4airpTxr6ANGsZai2gSsP8EiW6EPnPVfceGPm0p/ke9XlIALlaP2qnrg2+Uqcn8jiZtav822v7HERScGvt250/4MvgjY7ADG+Irv77MVtY4BbaywxnOOT647T2kRte097D9D5Vzbfo3vAlO5jtBi2joD+1Cx6SpgzketyAD2QqhEC3vJh8/EzbSqa6lqh9ZP2QSCeGwdAtVQuYnBr8dRHpfkg4G0VpRl0B4ykgijsM7z07ffZjxeY219jTv37rKxtcODl17iFz9/m5/85O8ZDAcUZYELwYaA/4ZVsWRjfYN/8L3v8bu/8zvcuHEdk4ig69//+EftRHBNZA5JUlyVonlQrsTcIdK7Y/KkAqinlQrU/H61J1QGQ5Vbh+RbxPU1rf25Dve5Bat9u7ZpLYGCUoo00WTZgEE+ZDgaYswWg1Tz4N4Dsiwlz1O0iRR7R1UVYjphK0ziKas5y9U5tSupy0IYDxhsU2BrWfM8CmsVqFClTGq8qgDH+uaQ0XiDcmeT+axhPi/Ai65JFPvFW9Y2JkxnZ2HDrkBbvA5JjhNBbx/c5/C+HWfCYICm8XzyySfkeU4+yBlNxoxHI5TXxFaBo+NDyrJgtLVBlqct47AKDp/egklSjE7Isxzv4Uc/+hFPn37Gzs4uV69eDY7LKYvFgsPDYwaDQWgXDc8FCbCdFd2tb379mxRlwfOnTynKAm1SHj/+jCu7O7z+2qtsbm5Iy6I6QykX8HABN2xTkqaW3SsTdnYztrZvMJvPyXKDMZaqOSfNFN6IuG8S2ihtqBa3samPrZxwfHwS2CIiJp6YpTCvlGYy2WRn+yZlfUJZz6XS6aRNIe6zsRUItDg9G01VutaYRcCuXJwYAzDkCQBWrwXGKKQlVSkSlYYE3WFyw96Vq6ytrfPk2TOePHnK4cGBCAkv5zgna2dddVqvIv+gg/C7AhUDaRuccjugSqFpbMPZ2SnL5bINxOO6Qai4RqaiDuYyF+ZoAMjiv6OmlgRiik4qQgXXS1kjBV+IejVh7iQ+7Gmhnce5ADSHvSToQfnATuwXd+RPuX7vZb32wZE8MnkgAM+RjRR30AsFN2GuWRvXoH7hRuFdF9QD7X2Xf6oWEIogntGJEBK9D4ldp8NkWhagOBpH12ytBZwD0SNKEtOyrPRpaE9NNEmi0dqxvj4hzwfYqqF2ri162pCEnZ6ecO/+fQ4Pjvj+9/+Gd955h/l8RlEIU05pxenZGa+/8Qbf+97vB7M2SYZ++7e/y8bGJrPZlOFQzH0+/fQRWT4QlnFjSbOEJE3AZ8znM6ytcMEdvrGNuKmHRA7VMBgpVHKGdzMaROA7yxNMohgMcxor96OuGxxQVqIdqoxCtewaiyIFr2hcIzpaSCcFxpCmoejqXUjqRQtWzC6EJRYHhcRnkpRUVTTpkkK5dFuGdm5kLuR5hm2iQ2snPWICGIx3AjG0Y0R0K6PWVPf8OzkbGbuqTaJknKiw//swjlQHYkMLGtWN6ErrxIhoeCgoeA/KaFwo2HonJhR9/a44bn0YX2EWBL9cHeYIJFmKazpwUAfQNrYqK29wqptLLiQGSmksvmUwOiuxQXsOiBbZZE1kQmKM3QQ9qLIStreYAElCV5Yli8WSVSH6WtY2IhDvLNb7Ll71tAxw5xLR38K3bb+2AReusZV3CYWIqBUoMXHXddECEj7e/5jcdgweuUfhBNrCfaxweKT9r4uhW1DQwfn0jJPTY9Yn69SVxbZFfIXJhG320Ucfcu3atXa9fv/99/mrf/1XfPLJJ6CVFEpC7FwUBR9//DHXr19nf/+Q3d1dXn31VW7evMlsNuPq3h5/+Id/yMOHDwF49OgRh4eHRPA0ahZaawPrXuZNU4sZz5fe+grf+tZ3uHnjNmkqMifOlSxXc4piTtUUzOenFEWBazRNNcQ2Q5yrcK5m5TQnJ4cUxZwsT0hTMRJTQNWUmFTj7IrJZEKSDDBJHHcCsihbkebC6i+KJYlJJJ6ppRigjKHx4IoShwaEgV3ZmlpZlKvwRpHlOVUlzyRLUjDhIfaYuP1XHZw54z4eyTIx/4iF7j4IG/eqCIzF3CqChBGM6oB/165Pcf/o50v98+qTIb7oz/i63IZ7+dpi/hlb9OP6AP3WZInt++z+yFSL3WMxDldKXQD9LpyHj6uL7JveiWFLPDfnPXVVoRAJH5OmJGS4kNN1GncdI1YIMX1mX8gBTNqev3OqjSmcUmTZOmtra+31l3WJtZZVUbBaLFnMlyyWS86n56zKgmK1FJAtDwy4oFmdhv3G2YsFhY5V2JM98DLho8HkYrFgNp8xGg2x3uKdFDnTIDPwk5/8hMlkjWvX9rp9W2mWyyUffPABTdMwmYwDIz3km1rx+PFj3nrrTYaDITjHZ5894r333kEZMVoryoLGyv7XWN/Gp86Jvp1tHMtliXQ2ZChk/yT6qQsPoN1LIqDnvZAPrHekScb6+jpXrlxlc3OLnZ1dnj87YrmwrK9vcOP2bV59/VW0+X2apuD87JQXB0959vQTzmfHzM+nVPUKZRYMBzlbWxuBOAKNg6pusAML3jGbrzB6SZKKBjJ4VsuSfJCxtb2FtZbFcsl8NsN6Rd3TLv63ff3mLbqB4q6UbitZdW0DlVgYQdLuOgjOROII1jQNMX5ubE2aJSKoPS9RdItIlmWsr2/KIuxcW2GQtiQVqmkFHkVVl6wHgUJUNAWQarr1NePxhGq1YrVaiQZUlrEqBDh0xuKTIZtbW8wWS45Ojls0eDBaw9qa+XJFkhgWRRESc6lELZdLHJ7xaMT+0UfsH/wah+hqKWNZWx+FhdJSVQ2jwZg0GeC8Z2N8h7u3X+PVV94kz7YYDkbBltoxnc55+tkx89ksMBtkQiXBXc8FCn8HZNHaLreAX3hFoK8PNLkg1tyv1tTVxUVaKSXirt5fWCRjyyh0LZ9t6wAx2AvHBdBCcI7n1He/7bPw4u+gAwQvVJx7SVNf3L1/vpc3kH7Fqf/+/ibS34zid17Wzbv8/vacY3zU+3z83v459QVcpUoqAIPqAX/9zUkwEkneL4OIcfJopcCEarAiJF+0VfIu4ZPNT+su2FNKgNz+pq1k18GHiighcSCwfebzOXmeofAkiaGqLDiHClpfAvZZXBOdimLA2jCbz7h27Rrz2RTvU5IEUFrmiRfDjh/96Ed8/etf58bNm9y9s8321javvPwS/+gf/UOKomA+n6F055784MEDvvTWl3j5pZe4c+dO0C6Yc3p6wt/8zd8wPZ+iUdS1aDm5cH4RePDeS6uh8qLPZMShtj+GjDGk5mLF0wSzCaVkE9GBVaBVABsCWCr3v9M3MiZBtxprHjUTNyhp2ZgDcYwJGBDZy9EZS+tUgoJBRp6n5Lm4bCfJGmm6zWhoSNcVeS6aeI1kCnKOOrRfuRpnC5bLc7wS5siiWODqisnaGK0do9E6i9mK2XyBSQyTyQTwocXTcP36Hkp70syRZj7o72nwknw570iSjNWy4qMPPuH09DzcC4N3msViho9Aow+FiSiSrFVgPEKSJ8iq52hsFQo0ChykA2nPVl5a+A4Pjzg4OOSjjz5iNBrz0kuv8PDBS6xWwsDIsgG2udimn6U5b77xBj9/+23+9b/+C549e8b1Gze4fuMmp6dnXL2yy2AwCKZGHZO8Ca7oi+WKxllu31nn+q11mmYqQtxrDqVrUJ6qrFBNKt9vU6pC9jhUDFg/X7Vu6th+IZPDealmLhdLXAO20WiGKEq8kmJP3UhlO0074xW5VIPo7llWqxJrV+T5ALKeMLyTRE9r2jYzpURrRFpQZSzHSnps5cjzAevrG7z+yhuUZcHZ+SnT2TkH+wccHx9zfn7eiknLuPOBRdSI7pgxYCTxV0rY/0WxCs6aTQDQDcNhhklM0NpRQatQwCZhBMq4IYBkESzToToriaATExitQwGLFhzxYZ3CC1vPE6vYQYuPrviiVGzl8S1gnBD3SNv+1y9GxSQbwFvbjj/raZ3Olb+oZ0Y4tyjmD+K2F0HLjmnTZ+W3S33IgELRQQVw8hJoGM9jufQtgBfXNSnshRTKxGSwA1FNIomPMToY9YRz0UpALO0ZDqMzbSJu7MjeYzSgxVSpWBXkgwGbW5tYZ1kWS4kptA8A3yk/+cnf8x/+h/8hP/3pT2kay9e+9g3KsuC//C//S548eUKWZXzrW9/kW9/6Fmt0pil1I63tRmk+e/I4rP8CpsUkJ+73WZaS5gkOR+1mWFejGdM4T1PWKCXtgCCtgQIgCZgJqmVqRSak8xalIQ0SB00jzy8C/KJza9sHpgLopDHtHp0YYe/gNVmetUm794Rqv+rFReCCu7Cswx1gGxPfdtzFgmcYQ/HfEdiPGrode8bgQpFR9N065kN8xTFrEkNZNl1cB8IyUg4TYtMyJEGxmGqMaBKihH2sQ7wmSSZt0hvHoICsdQAHLxeMI1Mjb4/Rsnq9F1MKJfMqyrPghSVHjK/C7wngZzuviAXThOEgDyFwJ3Pjvei21bWYcpVlSbEqKMqC2WIp+UpZgPPUZUXd1C24p5SAh3Xv3sciaWRZ2jDG4nfJWt3TAiRKVLje2hPlXdp6BZHpFwvdkbVDcNR0/mIxXeIjz4uDAyZra9SBGIDSOBXkgIznxYvn/PBHf8c3v/ltsizlytWrvPXlLzGajHny9DOePX8uoLYXLcKPPvyI7/72dylWBfsv9lkbr/H1r3+d9fV1vvf7v8+9O3dAKU5PT3nvvXcDuNfQ2JqyLKjC/atqYUE11jEYjnhw7yXG4wmPHz3j0acvyHPRT88HGevrG2TZmM21K+xdeUAedII9jsV8zvHJIefnJxwdv6AuFqyWNVXlyHMTGMkWh2WyNkA8z2th8DQSL4rzs0Jp2NnZxFlh7OOFQJEQHGCDzEdRlbRxYpLgtMdpS2lLat+QqoQ0D4L7Yavz3reMsj5YBx2b9zKIF3OHPljXB9/6zrj9Qna/80jW74sOt/E9VVW18XKcd1mWXSA8RNZeXy6oz0LuinH2c98rcy9p96D+7+UzMd6Jc7KbA/H4nbyHRJVtQa3Xei+/79qehb3X+06tUYHookJxMba6xkJhxC7i84nPIDIKI0Adr7PLpXsxoIr5Z/QfMOhECEWTyQR2oalEc1SK4JbFYsbh4SHT2Zz5fBFcfUsqG40Pa6ztdAWbJjJhY+zSabnGe1o3DU+fP+P27VvCUnUerQXIc97S2Jof/N3f8qW3vsTDhy8FkE+Oce/ePV577RWcE6ONo6Nj7j94wLVr19lYX8cYTV1VPH70mF/8/G200VRNGQxRxZE4SkAlSdqLTWNXhnQfEAwUJU9Soa1eOgzCEwlrtAqAYMJolLGxscX29jaT8YQ0zahKy8HihKPDc5SReHM0HjEc5KyvrYn808Ov8qU3vol3lvPpMYeHLzg4fMrR8QuOXpwxmy9YWxtTVTXaKBazJYnRWNdgjEObmuVS9GIXywV5nnF6PufKlSukyYAkq3FliXeXArV/i9dvDPCJnohqBTllgqvQzy694mkqWj/D4TDoXUgVq2vvrPGIM5sIiK9hG8toNJZNL1QK8zxnsVjgnGM8lhsoIJ3o/wyH4sSW5eISpZwE84PBAGV0+91RR8R7z2olyY73UNULjk+XKG2ZzWcMBsPQa58GJFyRpgPyXKizihBkJCa4/NYUq5I0zRkOhiEIaxgMJuBT1sZr7G6OGGTb3Lr5gDt37nPt6i3SZMRisWK5XHF8uM9yVQiwUzeXFmgXErFONyG+4sL0v9fSefnv1knL7mXNvP57L4Nf/X9Hnaj+72KycbFdIkIdQRCdDizrn3sE++Kf/RZdwr2+vOHYXrLUrzz3P9cHDi+z8Prsva7NpRMt7R+nW4wvbnJ9O+s+AHn51f98rL6iOn2xPvjog8B7n40Rk8bu1UvW2gC4ExJVfPF5xGeB6oL9fvU+nqNU5aqeuYjn2tWr7Gzv4Kzj4Og4iLmHqmEce97jncWgwatQ1YLT01Npg0Hm3WAQAkkN3ksL38nJMT/4wQ/4+te+wY0b1xmPJ2xsrHH79i2pXK1WouHkJDD9/d/7PR4+eMhoKLqdL/Zf8PTpM77//e8zny+INPqmbqjKMuig1FSVADbLUP1ChXVK6+B4p4iVzAgYtNdH1E6LiW9sEVDB8TJU73QEClVgLgS9oPhM2+Ck00zTOmvBWRnPFqVKeY82GCPjYr5YBYMAeS6dYLFUqqP0gQjyG7LMMByl4RiaLDEMB7uB2Txia8PgfUOSJTirSEwuQrHOc3Jywv7+Ps567ty7gzGa6fScuqnQpiZJHFG/u6ktZVGitBZnX2+4ffMV/vZv/479/f1QIY6VqY4J563qgFUFjZXEq6kbnGlQGrIkpbHSWuC9w1vHaikahVd2rwp46B3eKZraMT2fsbm5zd27np/97GfM5zPSNGvnX5qm7O7ssL21zc9+9jP29w8xJmE8GgOetbUJV67sts9CADDTAkcxEarrgvXNq4wmmtlshcdjMiVmJtahjaexHu0MWglrKjEJzmusKyTpDMlWlsWWUmlF0zoJ7WWaxeqcZXlGPkxZLBcoXWJxeN9QN3VXBPIK24gzn1LRcTOIJCcpxgiQUBUVaSqFrrpq8LQYmawtiJi+STJJIq3vBfUdK055B1qRmCHra2O8v8Wbr72J8xL0r1Yr5vM58/mUo6Oj1jksBnCNlfOXhLgCD8N8wNam7KEohdFiPmJMEsZM1MfsVeADEqB7gHqiNUYbxqMR169fx6QJdVVzNj3n9OyM5XJJbO9pmo7lEFtnYqEsxjL9tb+fEESg2vq4f0Sx/+isSVsEisWZgAl0Zkl83sE9jtVYkPM+gI/OtQ6bWkUQsK/96tpWY6OjeUU3bi++un07gnxdch8TwChL0AFFcU/qJ3Vy7cLq0EbS352dLaQwWIeNKho3aGazOY8+fcTLr7zC17/+Deq65vvf/yuKsmi1R2OiePfuLf78z/+Mx4+fsra2zn/2n/0/+OCDD0Ur1jn+xb/4H/jFL37JH//xH/Pa669Jh0Q4/8VizuHBASZJaOoqJDvRPEphTIpShqJoyIa5gME+QycDokC50QnON+jQWut9CYigfpKmhIbwFnyRhAPKqg7aripIOcRCqQt7hAKvcfpiMouXxNH4NGimIQWuwDKXAqciTbu2bflK+VOGQxhPxBgHua9RN4+u+Ngfb/H59mPKDsyUVwuO0cUpMaaKhYAIwsVibD/O6IOK3binHX9RT7UfD8bx6lwnj9K0LMx47hGI7mJiCDGn83gtpiYexMk9dB3EMqhzAt778Jkkldik1T8j6j6BD4w5vDBMkkT21zxLGY9GF2I762U/qIPuZFWKWddisWC+mFM3oj25XK1allXT2MCOlxgtyqE4J+Zl3tO6b4adFGublikk49j3YscI9PWLlVEnrb+mxSqBbz+PlxhuOp0yGU2CfmaDc1LQs16MJj578oQsz/nud7/Lg4cPeO3113j+/BknJ8c8efKEt9/+OYeHRywWCw72D1gtV0RNOmMM3/rmt/jd3/kdJpMJxXLJbDrlZz/9CcvlIgAKQc/OCrgnUk5C/qibBleJ1IO1kGfSzl6uKqbMMYnhKDsN7fSOJJEiUZpmTCZjNjY2GOQ7bN66wWsvfxVtoCgWLJZTTk+POT454vTsiPPzIxbTgvm0JMsasqxBK4/SnkGWiQh/Zjg7Xci99BptJCYwOm2NJGtVIfGba9n3RVnh8CRaBWBXMxyK431RCiFFpDUMg8GALMtaQD7OwVa2IuRTfU3zy/ne5Tnc19jrz5+LTFHaednXRY/HNkbOzToxi7gMMsY1pd+t1QcV43oUAbl4Ph0g1+3F8XPxfOTv+pIuoMRU3bVYBM+P+uXdnhjPNR6/u5/Cno5FYqVkDPmW+S7nGHGNyx1n8Trj2hjZlZEYFfPPfp7a7dUSe6ZGBSY0AfSS4ydpglcwHo+4cuUqYmxVUVUN89mM6XzKqiiYzsTQQ0xvirbN3TkbOrBCbuUsWikqhJBVrAqOj47Z3toR9nJR9PKPAXVV8vbbb3NycspXvvJVhsMRe3t7fPnLXyIfpJRFyXy+5NGjx+zs7LJcrmiahtVywbvvvsOHH3zQtqEXPXdh+S+0545Gcl+to6wqlsulsPRU16Itj02TZVn4WRzboVIZBXrCmCjLktNTcVfP8wFpsiJNcnQgMhiTUBRnABympzx69JzRcMR4MmE8HEqOsPMyL93/Ks7XrFZL5vMps/kZT599xsHhM6bTU4qyxqNBNTRNxUw3NE7A1XwAWpcUxQvp1FKSH0Q5l9/k9RsDfIPBgNHaTltpy7KUqirFptg7sjRDY8Lvg1ilUoxGI5qmYT6fMxjkYRM1pFkCntCTLDoKVVUH9o0Li5llPp/TNDIIkyQhyzPmsyVZNiBJU6q6ItWmbUdyXtp2rQ0uvvh28ZDKXoJJNNPpKTqAgkanDAcpZVUyHk8oyxVnZ1NZ6Fxse9WiIeg8zmZMJmskOiNJBuBzNnbW2N66xt3bD7m2d5fxaJM8XWO1qlksFnz2+JimPhQ34eC05ZwPFOu+YHAMvjvm2OUqTB886gM7lxeZqKUQE4z+7+J7LwBzPVDsImDkA/usE451Hmm77AVt8dyEzReTm+7ncSOJ/+6fR78y2wcWI3DT3wziceIx+tfeD7T6P+tXgPpmIF0l5/NJV6yA2Tawunif+/e7//fPg54XHev63x3fHzfDfpUnjocLDHcfq3DhMyFIVpcWif41xZaN+LP+c+4fq4mufD5o5iUJ169d53w6ReOpcUDSauYkiaEOzwdlcYGx4L3n6PCI4TCnspL45wMJdEI0TVXVTM+n/M3f/A337t3jjTfeYGtrA63XAVqdAtGb8ly/cQPvLM+fP+N8es7f/+QnfPzxx0TF6qZpggmOgPuLxYKmqRkMZP05OTkR1qoOTGQtbBcfSqUtwK66NjUVADt8ZMbFeaGJDFcfNuS4mUPn9JmG9rcIykJsx4ttVVFzS5FlWUgmQnKo+i1MEYRRQfvD0FgJaura4m2FNoYsF9aEO7KIZlYUOCdoUomBhvMNJglJik4wSsDBNDjdAuzvH5PnOWmaM8iHrVtkdNBNTYbRCWmSieZnWB9u3njIf/1f/z/ZP3hB3VRt0Ot9YC8IXVXAZuWo67SdG0qB0YrhYCj6p8rhkeM2jVzv7du3WV/b4OzsDFChOmm5ceM6Whvu3LnL48ePgkC/CcFRQlGU7O1doyjKwAxxbG1tsyxWPHz4gHv376IxwsQIukBhkrRMCqWlvbgoSnmSAUhx3lEHls/6+jp7165zcHhM3aywrsJZYQvZkMgBrFalVMNLkYFI0xznFInJmM2P+F/+9n/GJFBUM9JMmBVl2VDXDk9ktsB4tIbWaTsuvZfEcjAYhftYUJVdQK4CiB3bjFRIaOumIkllH8V0AW+aJm2Sq5XGR7gpMKK0MSRKGI/D4ZCtrW206oybJCHxgU1bU1ZVO1dj0FnXDUVR9joDxKm7KsuW9QK+dfSUPUDGaqIN2mjyNGN9bY2NjQ3WJmsQ1rOnz55Je35RXlibBdhrJBFv6rZ10Vor/46UNr64SNSCA3FPdT2WTbhHyoef48PnAzseAWfizyP47yNQGPePwLoMS1C7/se5JOuDDfIIkswIW8ETGjTbdkmjO8F1eXX7AIHFeAHkCa2YrcOwVxDE7GP7TwQFEqN58eIZ6+sTaWMyWpjdSuGVa+f2J59+zPUbN5hM1vn2t79Dnqf89ff/mtlsRjR62NvboyhqdnZ2aaznYP+Iw4ODdh/TWosu8fk5P/zRD9k/3Of1119nfX0dBXwUHLAjA0gYeAKC1HXDYJBy585Drlxdp7EznLOUVRHG5AJUI8Zn9UpkVozoHKPEtKmuhSHpnGgHpSkCPgfGQF1LkWk0GiOamA6lPNqrYEole4YJBQ5pExMjt8iUkzkcCrteNIOi9ljcE7x3ZAOJpcVULmihKgEMW155D0y8AFT7i8688d99KZJ+AtwlyN2/+7FEX1uvf7x+rNYvYgo7rouRxJgnxm1R8gGSRHRF43cao0mDppaMV937e1dMVmFCWSvmFkSmKjbiWeH4SZAhadqW/sgcigZBMQBwzsm+7Lvv6oCLOI+ku0InYhzhvccOXTCXkjnkvGiMx/+qsmK1KlkuF6xWIslR1pXkQjY6/KqwNnYabdH51/suRo1rU9Tc689550xYY3z752Uwxzkr+pIonj57zoN794TBHPK6qipJFRgl0kyfPvqYoij45je/yfb2Drdv3+bBg/u88cYbfPvb32E2mwd9w7oFNIqiAGBne5vBYMh8PuPs9Iwf/OBvOZ+dobQUYYpi1Wp9SWzXtOOnKMqWCLBcrMjzJYN8RJqkst6ZhLI0bVu4V6KViV9ydjbj6dN9PJBnadCQTVlfW2M0HrG9dZ9bN98kSTX4BucqVsWck9NDzs5OmU5PWCynVJVFO0tdC0ljMBRTJOtLjFEkaYJdFK1zfNy3dKIpSxtY6aHV3imchdWqkvUEQ92UEs+5Tmaon/PFmLW/J6VBD9B7H2LKiwWqyNqN8/JyPhDnsDCds3Y+RzAr/tlp5UXZINrz6AOL/ZzsMsjX/7t0szUXzqf/6gOHF8//oiljdD/q9mbVm5vR+dZ/7jxjrtdf5y6vdfG9IkEmHXQi+eOBTouzf6/j+hqPF4/d715romyJ6tyHPU7i3xB36hQJEFTM5SVO8s5hEsNaPmB9fY1r/hoAddNQFAWLxZLZfMb5+ZnowxVLVkVJVVYts7Cua2orEji2aVgtS+bJnCRLyDNPuaItZoFnPNI8efKY/f197t69zxtvvB66JSWvW61WpGnaFgmePHnCrz/8kLIsUAqcFcCvLAsWi0XI9WSOa9VJRjRNwyq0IkuHR5fDi05m7FQQspmQBnwoWasgIxQKWFp0iRvbYJcL0qQiMSXaGHQwyEmSBOugKmu0kdbjk9NT8VBIhESRmoTBYMhoNGRjc4PNjfvs7b7KYJiDajg/P+b09JCj433pbJmeUNZLimqGqxumZxVKF6AcWsFkPGaYXZQf+7d5/cYAn4BrA2pd4ZynWMlJukYqJ1HIOMsyVqtV2PCjfgesra0H9FjExBeLFXmmOT9b0NiqXVAEgBExxeFQkNzFYsFkMmE2n5MmOZOJIK4ge3WiJUG11lKsSvI8D+LDCuuagMjXAXmXTSpJxNXIGB3agm3rAtw00cEtCdUuaZPCDciSCcN0jb2r17h16w67Oze5dvUBg8EI14i1/Hyx4OmTM8riBatV0S4sSpkWHJHgr8ZaiO54nVZQj54dqnF11W1usV0o0AkkbgjBg+gDBeTfxtZeuOyS9kV/flG1p/2575IR6xqUNkF37KLGQktJbmwQ3xfmWxS8vgC2chFEi4tg3Jj6P7tsntFvLYkL8OVgJX5H1JbwvWvoH6t/ne09dt2C/UWAXv/9lzer/u+dk8ppPG4fbJT3dO/tjnER3OmPB5Q0momzWfjPS003gkfxvGxI/ORNFy61fZ/WmsaGz8dzQs7bOc/W1hZXd3Z5/vy5WKeHISf3TkOShARUwBirNTjPbDalrnPW19eDc2ZoK/YBKNBdMPr48WM+/fRTrl3b4979e1y9eoXhcIhCAIWmsTz97AknJyc8efKIx599RtM0pKEdzNmG2jasVitWxZKqKqmrKrRLNRwcHLSbhLehEm9j9b4L6JUCoyJT7xJDVLWEPOKm4iFUloLQfpjfoVFGXC7lackG1R4oJDlJN9eMjm3m4shGmPdamxaAjM/NhOcglUHRMnXe4+e0TA2Ua+dlTBrjOmSMIc8yOjq7MLj6CZj3HdAv4ywyglS8A6gWuA7sABxZlvDlL3+VX737C54+/UxAPgTalLXKt0CTCoBGDKqiOYJX8m7RpAw6Kd5RlgV7V69w795dfvazs1a36uWXX+bNN9/i5ORveOutN/HecX4+ZWNjnaqq2NnZYTYT0fTf/u3v8tln/y9u3b5NPhigk4SXX36FyWSdRBuOjg5bNgrOtzpe2hiMyikLxWqRoNQa0pru8LahKgA03jYoP6WoPMuVI1GyN0qCCN5lWOdpGiXBvVWURU3TLFAqYTRMgCn4OVmuRdPPW5w3aD1GqTSIjzs0hgJPVRPMrkR7xTZwVs1ZphVpJoyj+HyNJrTFSetJdGyUNgyHIYACvqvyKyUV0/AoiO2keEmeL0oPCLwVx4yw+uXeqPHnA3frbKs7GiUpfAC1yrJqgaf2exAQTQW2WhJcOMEH1lpk5kCmE27fusmd27eIgHzcUyTpLKnrqm3rr8qSVVGwmEv3QGVrCeAD+Fc3TZtUOxed64OrakxwbNBh852LZ1gycTYCOlGXL7zfR43WAGWG/7PWtg6K/ZcnwfuYLF10XO3MPcL+E3R7nZfz6r5FEVf7uK7Ea4qJRLeXdCyfpukYWgIQg3eKo6Mjrl69yub6Jr4Q7dA8z3EqkTZtnbBcLvjg/Q/46te+zubmBt/9nd9h79oef/EXf8GjTx+RDFOu7u1xcHAg+marktWqYLFcUZQFeZ6R5zl71/a4d+8e169f56WXHnL92jW01jx98oTPHj9GEjh5VlVVtuL8eMiyIYN8DeXWGGYbjEejIOOSgrY4J1IGztcsVzOqakVjS1arOXVTyHhpKqqqQBlLojSu8dS2ljkRwMxyIftxPpAk2TWeJDU4apq6wmSp3H9n5VwtmMTgGo+zkJohKMVgMGIynnB6dkrTlG2MrLXEsfIIpVPFOifC/bLptwlRP3bp/9nF282ltb+LBfqA32XmTTzWZYZeTH778VcsasaxdrmI3G/l68erUSwdCMV/kSjwQb9QOUmAY+EkibIYPhZlOkZgn4EawdVOq7h/PhdBlLgXtp/1XcG6D6jINYbYwHfxZZKIdIIcUBi8w+GQwWBAZIk72wfnHGUthVFra6bTKauVFJ4WQarIOUfZVGIKaKVQIvMyMnU68C5qmcUxEhmtffAvxqHOWWwjLcxVVXEY5nWxXFE3DXnQLE3xgMiI7B8856/+6l/zpS99mXv37rO5ucHOzg5Xr+4BQgapa8vR0QnT6bTVVc4HOdPplF9/9BG/+uUvBJC3lrISvcPodF9VFWUpIEBisvY65flITFHVpRSqAvAU2a+tU7mCSlWhyBlZPyIbpbVmudJMZwu0it1BMsbzLCNJNOPxkPH4Glt37jAYZiKPoT2NrZjPZywWU5RqqG3BbHbCqpixmq0Q7cwNYQU7j2ug9gUKQ1N5lM+wriaC+r6qgDwQX4pQBJJ9IM7TPmMvMkDjntbPf/oMsQi69Bllsvx0+U2MF/vfcRkcjL+Pr/i9/bWgDyTGV/+z8fh9Nnj8+WUAr09wid/XX3uaJrKI47Fc+7P+WtcHQ+UYqmfG1706oLs/NyIRx4Q41XZAU9CnjXOqnwv317XLYKqsC0lvTe7ytpj/xhxYio3hvAJxhhDnqzQeT2JzQ4J3niyVoufG+jre7WGDwVlRFixXK6bnU06OjynKgvl80TqLW2up6opVUTBUA4wyreNwY8XUwzYNo9EaxqR8+unHfPLJrxmNRiLp1O4bnvl8wdnZGc7ZkG/IPBWTrQDeVxVNVYlGaxgT1kmbcVGugiNvR+pRIXeKMUrstIl6qu3eAq2BnjaCVUQDMIllLRaR4FBhD67rEH+i0Y3CpWLC52yCbVJqYyiUoqgLprNzXuzvA2K8OBoNGY5yBoOMjfU9rl+/xyAfiYFIOefw6DmnpwfM5lMODl+wXM4pqoJi4djd6gpT/7av3xjga+qGJLWMR2OyLGc6FffZuEFF9l2SDMMmXyH0erHdns/nFwZzno1JkyFG5zgvgUpE8ROTkqTCaEmShLW1dbzzTMZSmZ9MBi2109kGlRjqRpwSB7mIMA/yQWgJKtjY2KGqGopiyWCYUa4qmsah9VAYP80KpRKSJCPLRtg6ivAmJGbCxtoV1tZ2uXrlJjtb19ncuMJ4PEEpxaqoWMwLDvcPWC6XorXRlG1CHOnarU6A1vhGKnCi7xUXUQm8ZUHoFgprbXD8FKaVbVzLkuqDTTFQbwOdJCEG5tr0KQC9T/QWMIhU4ItDpd+KERkzLoiYJ73EIh4nbjYgoIMN4Jry9DSGuqpIBNDayoWPla5u0PcX93jd/YCwz/LrB6yXgb54/Hie/SrWZYe2+N54nD77sH+tlzeRfgUn0rljm048l/5GKP91m0IEfy+et4zH7vrpzCBa5El97nn2ngx9hO8y81HaAAKjLQKH2uC1Ik0yXn75FbY2Nzk8PmQ2m7NarWhCcCFsG4/3iUBZNiSHWUZVVqLBo3VbxcyyLID5DlLI87x9Ji9e7PPixQsRTE+kUoJXbZDnvQPdAcpFUdBUUtkt64qyKkJgWISqbM5+mJdyG8K9jlUw53qondwj5z2ucSjlBPwLKGpkEcn9lfe3c7wF2HXLzCGwNIQlGFusQ3UpbFKq8q0ZUAwstTJynAA0SgatWpAvFgkEEAwg4IV2dQHevLLt2FLtGJI5aEzSbnYx0cmy9AKwfXHB+PziEVs+uzHNhTH/8OFDtrY2+eSTj5nNZzhbB/AialnKQHO2S7CSNEV5JS1B3rct3947yqrg7PSE7e1tvva1r/Lxx59wenrGq68+5I/+6I/Y2dnm3r17vP3223z7298mTVPyPGc0GvHpp5+SZRkbGxv803/6T9nf3+eVV15hsVyQZinXr99ge3uHk6Mjjo6OaCqpjLrQdkJYu9N0yGuvfJW1SU6idTAeEuCxWBWhrVjaNzNtWRuuoXCBPSbHSbTCaUIgVQvoYBQGcWYrl5WIPGtLsRJwzTlx0U7zIYYRWkM+ED2SNE0YDEOrpRMdwNJV0prmHFUBaTrq2s5UtxfJHhQCaS97i9MeQz8g7tZjFUAflKz9sTUmrmlR7xMuBtRt4cDJnOu31CitSJNo6qFCm3KolPdacQggX3zFdV/ju0QirI1EYEOJO6+cA+0aGJmJo+Gw1fjzLrYRhcKIF52sxjat5EdZVRIgL0UjsSgLbCOMPzEdcgGwdJ/bRwR8lbXFBQaefJcEl14qH3inuhY658JaQltBd3FcXmjz7TR6u0Qh7gFS4bPtvA53wUdNpK7IoLUKAGan/9ftG659xt1eJr+J7qXPnj9jPBrRNKI5phODQeQHvJek+fFnj8mHI9588w2yLOPNN97ixvWbvPvOuzx98YLd3d0AaBRUlSQUHsV4MmYwyLl27RpvvfUmr776Gg8fPmRtMmF6fs7BwQE/+tEP8c5SlQXWSQGw735qTMra+iYHByccHc6wTaf9mOdSwY86enmeMhoNyPM1JnnK9roYIKWpkXnftgJFZqyiLFdUxQrvG4yCppG9qK6rkGBVVLVoJUmS4ahVLfGB8tKWWNa4pmaQS7xlK8vJqqCqFdoMsdZIe7331CGpTBJx2/Te45WYn7Su0rFQakyP1XIx9otztZ+gdiBuN9/6c/1i7MmFY8V9Ib6/D0D3XWb7xdb+OhEZ1v3YCmiPKwWxtP25tTawqwWEpxePxeNKe3yQZ7E9tmpvHHcxVHd9ct3CzIrAXWTGxbUzulXH2F00obp5FX/nkWcc51a7RvpYRFOhc8KQZCnr6+uAZ29vr9XT8o6gRe5ZFiuKVcFsNhOJhGLFcrmgjEBoXbdgWlxEXDSdsVbYpFF/1HVrS6N0u/8dHZ+QDwYMcnGMTJIUq+q4iAQzJEXdVPz0pz/ho48+4pVXXuXu3dusra21YFpkyERN9Pl8zqeffMyHH33EydERCo91DVVVslouQ8GlwjsnzrXOkiaGJBWZpKqqZG13ooEpwEAN1qOd7BcixWAC2GfQRoDforAtW1Mp3TrYRxBHYjqJSRYhLj4+jrGg5G1JIkXSLMuZTNaZrN1iNBowHOX44IpcFAvRo0eKY6vVitPTQ9J8wXCgsLZitZpjfUlVC7tpPMrJ8oS6LqkqafOL7q4xP4sgWJqmFwDmy7kH0GrgR0Av/r6qKgH8AiDen/eXwbY+uN0/fsxh+sBZH+CK7+/neUpd1N2L7+vHEn0wMR63/9l+gSB2CFwmhMixZb/qs+XkXLp1RqmL87lfAIx5b9+M0RgTGKiq1/FysXhxGeTr34vL96m/Dke2X3/d6hNTvPdiXITIusT1UHRmQ9EuyD20+3hwalZGxm+apqxP1tnbvYq9fx/nhE18fHzM8fERp6enUlQrltS1yKqUy5KBbTDakCQlZVEwny/Z3NpkNJwwHAxwzoauKRmLe3vXmM9niImXpywLAbWK2LIbTEKaitVqGVymh3ilqKqS5VL2SZS/8Ez796b/M9+uqTEulDwEb9HeYxTSCt/LqYV46YlGWNB0a4ASYyinNM6W1CiR2TCGshZzuKgTaTSUzTlns0B80JClCVmWkyYDxpMx48kWW5tXGQ5HaG0oi4LpfMrZ2SlKf76I+2/6+v+DBl9NHVgQ4iaUkGCYTqeMx+OwGNRoPaII+jppmrf01PF4QlOHzcXVZGmOdQ1ZnpKmG0KpLkqgCY6JobXFIlUYLS03VdBVgaB15i3r62ucnp6CSRgMBiyXS6q6CmitsPJ82NzKoqEqG4zOqCuPtSnjwQ3wGXk2Is/GbGxssbt7hc3NbXa2bjIebpLnE8qyoSwrptMZhwcvBOiwTVu5JbDoVEB148Ie9TskLlNtMuOVEgYfXSAuujX+QrXGNrHCT+u+CJ+vNvT1GPoLlvJdS8blhbx/jD74dHlBip8XEFe0SuI5xkkTn0sfnOtTy31zUVuu78zUX9T7AFw/0Iz6Ev3NIo7N/kbSB6/i9cSFu7959Su78VzighrvZ7w38Xj9e3W52h1fFzepCO6oC+fQP/blDaGfjPafUbw3/U348s8vjw35e3u4zx2zDaKJLXghQKXbqEbDIXfu3OXO3TtMp1Nm87loHR0ecnp2SlJVlMZgnaGpHbax2OBMu1gsGAwE9F8FzZnBILIvBUhKkrQFrWNV2znHKupmKWHeNlZaNZugxdI0TStgXZRlq/UFEtAcHByyWCy6++Q16O6+mB4A296TEODHKpDv3cv2MN61zp0gybMK5jKtzpbW1DGQwZNoDToy+gQIUZHX5sMYtDWRzeslC5ANS3VrhEfcBZOgFRKfldKh1ThW4pU4WXpPG5gSighKi1h+Ej7jXENZGiIQ3QF8X1AVaMdQBBhjwtYFIc5ZnBfXyDzPhVXp6guHU0rGW13XzOcLpucz8jQH56irKiQYoTId3MBevHjBnbv3uP/gPt/81jd49513+aM/+kPu37/H+fk56+vrvP766zx79ox/8S/+BXme8+qrr/JP/sk/YXd3N+ikDvj3//1/n3/5r/4laZLy0ksvsbe3hwlB75MnT6WNuyiDVkgIPIE0ybl54yFXd7cZDoZkWSYMNTRaSYXSJMLglIDLobULYGxoqQjjrihWFFWJs+H5IWBWXVeU5UqYi3h8aDHURhKZ6HyYJCkmuJjGtUgraUUmmGhYJ61W88WS1bQLijtgqANX4xj0TsTp+2te1K6JiWucT8aYdlkRIJuQLIaqM5cKJNrj0RfWnlbLkl4QGwtEvfXZ+agjFtdWKR41TjS1dEjWjVYoSzAejGtY0C6TEwUCKBCfbGBopq0wthQXm8bKcSR6JLKkIxjY2EYS0LguhTaT+WrJYr4QF/IAMAkY6ALAJ4LW3oWWXmdF0w+Pd7SMm8ZKO54KIIBvbBgD4uzaB+gEQAwAA56+G7v3HhMTCWg3BB8eWPxZdJztF8F6+GKY844OCInf79GJ5vTsjKOTYzbX1yjqkqZxWFsFsBW0SUmSjI8//jXeO77yla+gteLKlavc/sd3SLOMLE3bRKFpHPPFjDt3bnPt+h4vvfSQ+/fvceXKLteuXScxhmdPnnByesr3//qvhcndBJ3KoPXYNE1gXjpGkzXSLMc6ReNlbggyplgsS4wOhkwuSg7IOmVCEiySBUaKTApMkjDIc0ySkOcZg8GANJ2QpQmj0YCrt6+wtbXVFuO0MThfYRKNd42wKgOLrGpKrHPMpzPKckVdCbu0rFbMZmcslguWRUFdlZTFCtvUVNUS6xuGg80LcYgPe1A/GYqut5cBtX4scTmO6UuYXP5dX4+rv1Y4JwWcTqPWhzGkQlu/btneyncg1+W4VBJzF7poerFwj1HYjt3w3WmaioFH2JPEFFAAuAigyRLQxYkKYQ73r6kPlAjrSX7fgR1p6ApJW/AgSaTNKzKX+jFgvAdeeWF0B+ZvvFcqFCXamC0k8XJbu/szGOQorxmPxnjl2b4U/zdNQ1GVgeHnKcuS+XzOdDplPp9TlkULNMv86tr8+sUJ29h2PVM0nJ6csrGxTmISitUKBTRBfsF7B0NZ/7UxzGZTfvKTn/DLX/6CtbUJm5tbjEdjRuMx1jrmc4kbp9NpIIE48jxjPpuGAm3VGipaK/qZVVmB96R5RmMty9UiPHPAC3jnrMcpiwq6yjFuss6h0FgrbfDGSI6idHRFjTIqYtDmfUrnTK/I0uz/x9yf9ciSpNmB4BERVTNzvzfuEhEZkZVLbV1Es0CiyZ5m85Fgv/GZmJn/ypdhAzMDDGcaGBDsBsliLVks5hbrXXwxM1URmYfvOyJHxD0bw4p6aEtEul83M1VRkW8934YUg/dyjOZL7R7I2wM+fLzgq6+/x7ocEJMN1Qsx4sXtJzgcEl7c3uDVm09wOh3w5s1b/PznPwfqjtPNgoiMZQX2csG7d9/hw/t3uL//iG1/wN3Hb5G3G1hZtWVGMRiuvDsHkfge6UIz7Pgi/7AKirx3uVwa3fIzmnjxXAUSeZKfmf1G9bX0/RnEYxnwLI80aUM/q88yyrn65Bqzv6j7lVLv46u2B/v36/Pxe6zFobzQPurPBT/0PHR9fM/uNVZf6TmHEFprm+rAune3bYHCZfEARLbBViuS9+YtbrcAOY694XOJHtw/4JNPXuLnP/+pl/Xe4+P9HX75X36JX/36182PiyFiWaw8eT1csW1XHE8fcDwccTweEb1Ci4D/5WxA3fl8xr5d3bY9Y982bF4tsWWr6Dscj4Db4Pf3D9j3DWXy2dv5ue/QsvpknwOYsOJ2CaJlBgbr09xOJnDvDPQvsCnxDPAEl8HVJ9xawHxDQUCsB4SQULzHeIoRyYFB66kHnK8XXLcNNT/gu3fvPZiQcVgPuLk94XQ84c3bt/j57/8B8n7GD3398Cm6MCFeSsH79+89M88EzsePH3Fzc8LhuKIUa06Mar1YLperK/UV67pY75xkzlCtxRqsPl6wl4IUj8iI2DZzKCxKZ/bovmc8nh8RPPth22xySa0Zv/7NL8E+SZezKbh1PeB4PCCFI2qO2EvAEo+4Pf4YyFdczxvS8TV+78s/wI+//Bl+9KOf4O2bz3B7+wnWxerRr5cND48P+NV33+Ph/tc4XyzTUJkPniHTyirdMef4bEuc4WeYrSXgQXF2dWwhJet5FJMYYhw7L/fW3zXzZjDyhJlVuDHaAaBFKYZIoztkGhmiEOTfszf3pkC0VOXFhxf4pC/pAcIMJQpNBQ3niNAMNPIZWZdPga/POgNhCljOSpBOqzaAVZBSDTNmsVjZeBzes/vK2U/3pwPWJ+7FYc18rlq1tw2eXOs5paDni0Y/tWXFdLHn65mUju4Hnd2u2OnTqkI0QXhzc8LN7Q2AH+HnP/85Pnz4gK+//hrffPct7u4/4vJ4xXa9mPGYV1w8gszn2fOG+3vruXU6nXA9XlsfSsuMKNh2i5DoOgnSlpI9K8JoYd+9vM6BPYuoJHz/3ff48P5jn2JY/ZwimpNP53gAWKvDaFTKlUAbwSxzeqPzOAADGRxQsMQOmSodgFAtw4OljMymKrUYyFYjcvbofggOtAKmaKIrLACwv5cYYaVkAbVKr0BYQMMerSLCsmuYmdkfO9gkYfTnYpkyqk+FbNvzVO502snNmSx0DPKOWjIqrBTIMmmyBzx6PxQDFID1YKDUx493+NHnnyOkhPPl2vk2RG+QveD9+3f41a9+iT/64z/Bv/gX/wL/9J/+U/y3/+3fx8ePd7heN3z99Te4Xq/4V//qX+Fv/uZvEELEf/gP/wGXywX/8l/+S6zratkPteJ/+uf/E/Z9x5s3r/H207f4xV/9Fe7vrVQBgQOJLMPKSi0LYjzg//1v/r/mwN/c4MXtC5xubnF7usW6HhERcTgdUCtQanAAjkBubU7Fsi5AocG8+J4Ul683eHHzCWLiwAQr3UuLGXghGd2xJCUtnHDpk9NBx4bR54Bvv/sOf37/l01POJk3A8mmN7KEDE1+BFe+ZsCujWOYLVOz9X8xU8hell26gATUZGitnq3G/rr7k0AJaUwDIarXGgBZi8i+2vmqWoN7VHPqYuK0Al/PnQABAABJREFUWIKKztedRex7wbzsCgJals0WvR9XKVLOH4JnHS4odXXQHI2eYzQwq5Qi5eWeoVCrDafZzEbJPhTo7v6u9Sa0rLUrsrcdMLln+hTVgLtSrZQ2Z8sKVDnO95pT5Y6Age69tLaBdLX38gISUnlmgnzm5DoG5SgXits53cH77Ve/xavXNqnucraMny3v2M8Zy3JATAtQM/76r3+By+WCf/SP/pEPTbN+zQ8PD57tbf2qjscD/q//l/8z/uiP/xCffPISn332KdY14Te/+Qrf393jl7/8Ff6f/4//u2UMeu+uy/Xsvbu2VuZ8PB5xc/sC58sVezEAKsJ4aVlW24do+jwGG9xm25ObfkfIyMXKemrNWOKKx7R7eVCwATvJpHQKAWn5j3j9+g1+/OWXOB4PLTvQAGWj53W1rI3D8YgK4LR+gc9e35jjtyxYVhvWEzxglkvG1VvKXK8XvPvwPT58vEPdR+cw1O4cUuZXp0egZ323Ng0YG9nPgF50hJwTkjWjT0H82YkHWM5PfWKtPQLCMwCi20YNdPDWLmUMKjR5gZ7Z1IIBlAkCHPbsGqDr8bEMWfWagYJLszlL8YqQUmEtew1sUUBiLknktbhHy7pQQJo+LqN923gOtQUVmO1IkK/ZuGW08fl8S0rW2uQ1UGsvuTcZsvukyoyzl75ezhd8vPuIu493BgCezzhfr9i8XYFlMRVctyvuPt7h1ZvXJqM+XrGsB6zr6n5XwL7tiCnhdLrFuh6w54jvv/8ed3d3sOEre9sLBoxy2XF5tKqL8/kB58dHm0r8aPy7F2sxY1PtkwdKrt3ODQEpRLfHjLQ43RQVqNFlFAMz1WSp1Tgka6WwWZa3DQW06oFAXkHAvlWUFLGGFSGwDY4NaMtl82Ct9Tw1nWg9Se/u7lHrhm++zUi/it4/tqKWhBe3L3BzusHnn73BH//RH+HzNy/x+z854ng8oJQdqBl3j+/w/ftv8fHje3zz9XuTAwJ02d53flVgWQG1eZAhaZp0S/7g+3Om3/xTeX4edDhXOc0Bu9mvUh9mTuigLlVfa77GnOWnfc3VpuBzKgCqACVtXPU/+bl5L5k5OSSu1DzcYwbyuLa512kvI37aGkHXC9Ccou1SPWlHAhbVMv4rGJRKiLU2OcD1677F4kBlS7SwrMDb21u8fvMG1/MF7969w8P9g7USCQXXs7UtWVersloOK5a0ejZpb7GSfeDK1bOIdx84lPfNqq48q70i4PbmFrUU3N8/YNsz9s0yhNswFdKP0GXk0CpzGe1vjsewVYvJh1FnEARsyRKRgVtTjXY2wffU9DxY7VSrtXYKu0Grvn9btgFIy7IiR9K3VYAmArNuaz1ezjhfH1FLwVdf/wbruuLt21f4oa8fDPCVkoHQCdMaW1rE8/HxATlnrIcV215wOBwRsOJyuWK7Zqwrlc8t3r9/j323ARgpLshbwfWytYjdejDFcbmesW8Z8MParlebLITe6Pp4Ws1eqQExLHh42K3XQT5gvfkE63KDEA4AIl7crHj96jP89Mf/GG/ffIY3rz/Dmzef4ni4wZ4r9s0mbr777gF3d9/ierngfLnAUtjNyCMoBPSSO2YhtT5E9lfvy1M9CldhbfECQvFsghg9qlecUUMDM4MlFTRDHehCR0G8GSzi3+YowJwZ18+0DIJQz1YFqYJfvQmoZ315FKFke966dxDOnqO0CKkaQ/qTwlKZUNO6gT5Ztzkdk3CnYJ7TsRuwJCW8/Gmf1Uy7DkBwS61cqpcxEN3XrEk9o33vwt4m0VnJlRpi8xnWWmV9YzZfLRUhxeZkRRnakCnQHUQcsgFDz8gDLHvgd9FKiAFLXJCcp5d1tahn0cicneW6rJ6pU7GeFhyPR3z66af4480cq+++/R6//vWvsW02Ke7d+w+4Ogj38PCAZUkoxQA+BJvAuO+b9bEoO64Xn7TmTcebNw6Y07tdvTx/9/Ir9p9BA/J++9VXrQefOemW3YRkCkGzllC1r6WX1bZpud4brqJlzkaPuLeG+pXZMewBVpsLw6wkey8guCHFkn3w6SqdIHdqAgx0cAVeQYC2knGxVzrpvccHAMuKQEAM1UrnhJYSDYQKVETjYAKThZNE7Y7Fe7T5xRvQY06InYVNtRwzhWyNWorkJQkhIsTlGR4zJXt/f4dvvvkGb968lVsWz2AKrTzib/7mP+PLL38Pn376Gf7Hf/I/4sMHywgg//3VX/0VfvWrX3kQyMC8/9u//tf4/PPP8c/+2T9rfX2AgE8/fYuf/eyn+OUvf4mcM/79v//3AAr2zSbecYqhyeQFn779EfYduFwvuLu74Hh8xJoW3ByP+PTTz61nLA2SCuxbwRV1oLmArTkcxrzO8+rQDZ83gusZrwTfovcWaSqytU5oaZxOF+fLuYHNvvOgk1tr9cwTy7oLnOjnJQ61VByORwQEzyq0bIbg5ePJAwo21bg0OrWStO5cA2O0nf2ARjntNA24E9VLktRxoONO3iSESp3jXjis+bwDV4uBqsxkaoqWDMYf6pQvltU6DCrw/wsBSHUsWyKIUkqxiK68dzwcWxAltx66xgMDIOc9xtiDyvoKP+LiZcI2gdje27cdu/e7zZ6Fs+Xdr+dBpurv1+yZQ8X5tbTvxcpWA0Gm7dG2AarPRgrBp8q6HsyFQZeuj+8f7vE3f/NL/OT3foxL9Kx+14eXiwFTR2+f8pvf/Arv3n2HP/qj/wZ/8id/D6UULyvc3NHM+PnPf44/+IOfY10XXK9n/PY3v/UhGx/wv/1v/yv+/D/9GQKsrPrucm8997bN98yy4kIw8DAGYN+unhlgDj1i8h5mpfVTSi0YF61vYTV+PV8esOQFbagBzlgXK9OzMtvoE+UrYqhIAL7+7nucrxt+/OWX+OTFC4S9WJbpHoCacQmb65ZHb0/DVii9LQqdaSM8Ouo2jGk9vMEaI/bYbbNut3lGeckNFKLjFWIym82vRfHQQKxm4/b3qI8AZoXbv5eUGojH0kbLRrUAFTMnggN85CHaF0MgllhgsKxnIPign9JotBQH94JpqCZLa/XyfJO/63oAs3+N3aqdZUjgRNluc6JdtxapGFmWttaQTHlu+2YZJIsHiNk6IKDpTOKZ/NkAjeq+QOhAg9rs5tASnKOtmxugU2uxns5dxLcyTD6jyTazrUI1e+ZwWHB7e2uyutgEXtTuE1wulnFyf3+P3/72t/juu29xd/cRey54/+ED7h/usF2vvvCKLACggR4+pX0zGl5WG350OKzeOJ89iy3QcL1erK3TxQLCNmzE+p9vl6sFPGrBshrIffaMn+rgNCV2RTawjm0FfHI3Bz0hVJ96GwygC/10aH9YP9OAUoAYjWYJntjgxghme6W0IHgWekrefzpU5Nwb5V9L8Xuazbznglwq1sWyxB/PV6BE7K+Bb755j6+//h7rGlGKlUEejivWY8Lp5jV+/PkXOK7vkC8ZZenAEbPtdIgDATb1J0gT7HWuvqCC2dqaSUtTdSp24325riYuqH9H34j6E55dzqxdON8qKKe+FDxAUWqvJqN/MwOKfK/Lyc5bLYPW16tVZvQXFMSsDizy2Zm4wu+nNAbA7Pmnft1A8y1JZ5XPUywwR1+f7Tis0vDa9t0qJjQg0WWG0Wa34ZrAMdNxAF677cQzlN6HvG7r39lB+NPphH/wD/4Bfvazn+Gv//pv8Itf/ALffPsNrvmK6/mMy6V28K0ShPeSZZFlFuzM7Rw3b+UW0NvD7Lvpa+ut2jPwYowIMliNrGvn7IMO2frG/x3A5Ajapj04hdaeyaonY+A1GGQCehDAFFGpBUhOLz53oOk38aVRC0reWmVV9OFvPDfKbsM1zJ+w4TxX3N7+H2DIxvFwRA02hbF66vi2ZVjMbMGy3OB6yQjBALuXL044rLdIMePly1f4+OEOl4d3AICaLXVyXZP19gsJl3y1wwrWjPh8BYIzIAAshwNSNqN0WayvA1M4Y1yR9xWHdMSnbz/Hmzef4eb0Ei9uX+PLH/0BXr9+g9dvXmNdDgh4AcDSkd99/4DH8/e4v7trAjPn3SdFWiPOUgJyNgZZ18WjH6UxNaONPXoXfE+qMPMcEegGDZnOZKD1/uqv0CKU6uRolIIvvs9Mpx4pG1OYW8aWAGza4w7AEA3iv+lQsaG4Oe1mWFPIF6+/j1XKrKpANGLIaHo490UBOQUdNeqhQlSdR16TLz4DhdkcQekgWwAHKnRAFMOzU9CqkO3OaUJvYtz7OphgN7pRJaZnqfccXxTgZsLsmQIzonBdtaK4E0xnC0CL4tD4obOiSozr4D5v2wZL0KntjAqyGUoxmgD1oTV6JiFG5G1HXExpnE4nvH71Bj//+c+Rc8bj4yP+7M/+HL/9+it8+PgRAGzkec3Wn2C1/hXnyz3iZr1V+sszXZsBkrDv2Zxep7NQ0ZzlZVlwvZxxd2/XX1bLGg7JrxFXA+HdCO8TccWBqECMnlHF/QpoTiLgAB8qEFIf9IKMWK1EsBSb2JZgfdOsz18v1bbG+sw+oEPgQJxHjEoNPu3UjeLqjfhFBrTz8/+zEka0c1E+aDzFO1WgIiGF4AMBHBMKwfp1VFOCbFAdHSzpgJ5ODOu0z75JNKTNVHPA1AgY9AuNHlnqsuPh8QEfP9zh9vbWIn15R647ImyNpRYsIeLu7iP+7M/+I/5P/8P/gLu7O/yX//JfkJgWf77g3/27/7VNYr+5ucXpdMLbt2/xH/7Df8RPfvITfPbZZ61069e//jXu7j5gXVf823/7b/HtN1+jwqZj7tmA5AoDWz959RohJTycr6gVOK4HXK4F13rB/f0F3737iCUlvH37Fi9fvrQAFg2taKU+PVpsJ48AuLmIUOFTv+wwei81k7e18AyL2yrG3yGbQ1tq7+3Wsu8AN6B2yxxyejZQdcyirpX3pfwtABIqIkq1MsXE6CwjwKmXPFQHHZfoPFkqUmDk0/tqhacOQG8MXhrNUHrFxY31MspIGmwxRmQk5D23YEZwXoqhg9J7Nueslox2k1obqG+YqCP3XspesgdkfODLHMCzV2hGG42+kKKXy1s3gFy6riX4kdLSyrWjDzRR2XwTbwB88sSpYkZarRV523H2ISF0ss/nC+7uPuJ8OaPU6CV6H70k2EpeTP54pp9MZywObOS8O/+VFozoQENBDD1DMBSuOyHnrZ3ju3fv8OL2FqebEy7nDdUdl+vlDGY3o1Ysywm1An/+53+Ov/mb/4Kf/vSn+OlPf4rXr183EKvWgl/84q8BWBXH3d0d/uqv/gr/6T/9GSxTE94qZcP1bD0SL4+P2LxPVwVwc/PCKw82O+dkTgFC7CWdpaKUDXvuwR86d5zUHEPAnjc4DmW6M2/YHrLL9+iORwBqaa1HrtcNjw8PNtRtMT15Oh5xWBfL4HZH93Q8IvtwpFKLTyE3Prbpvd2xMwDMAhj353u8fPVisKdCIv+bDGbPoBzJb7l5TLR32OvLdEEFamigdC3MbgwODBkf1NxbKYS4IDiQ6L4UDFC37+Ra0EvsraScuoq00x1nZlYW75Vo1yh9VBW9ZpNLhdm3ARQXIQTspUhFA7NWe2YuRFbG6GB7rMj+vC0TujXxRwM6S7VsOz4DM2Y5uZU2RYHZEAi9soPgJBBs+Ji/cs4Ixe34UrAeVre73FZwm4V9YTnJ3eQhM88DQlRZa9e2TC0Hu6zTKmpFC0jcAnj58iV+9KMfWfmsgzL/5Ze/wn/6iz/Ht99+i8fHB6BWpHVF3jM+nN/bMIrj0UG+I9Z19czyhGW1ny7Um/TctivOlyuulw3bdkHJGfu2+4A0m2oeHUB9ePRm+yEgLWsrv0vRnXQ0KKXJZgbKmi4MaPLdBo15Jk+gTU+/qgcqg2sT+3cBsCDna5OFzFxiQM30hfFPQTDV7cBLBbDtGaVckZLZ5V9/+y0eHu+RYsDNzY31ITsecNkuWC8L7u8ejL8f7/DFZ18MvoL6daQpBsPo69AHUoCOfgeHHWr1Fn02HVAxJh+MfqwCa+qv8ZpGi9nOET1IGZ1fCcwrINV85MpJ0N3X5bPRF5zBwTjIkhGA0VJ69YF4v5QijscbWK9LG95mMsJkpWY6zsNMgCmLOCas61Gm7NqzKHAHaL/8NKzFMtizg7K77AuwLgmlsPWVZ1OHTsQKNHY/0+jQ7uMgZkqtEmKJzOzDsH/H4xFffvklfvSjL/EP/+E/xMePH/HNN9/g669/i1/+6lf47vvvPQiQ2zlSHh/XAyqA7IF+xNrshpi8SqlWA/dLsSAAPPMtWg+MFBLYT7lIW6TFATQAKMFAvNWDYfS5Y4ySpe5SQeg3OTDL6eghsPqJ7TQM/FvCYgkXFdj3ihAr1jWCVZmlln6Pmm34VrDzLw4Qmr1jssTkVWqGbi+g/mGvHz5Fd13x8hObRlgRsF0LXty+xen0EufLGUDFff6Iy/WCFy9u8PLlK3z33XcmTC4WLcq5NmJ7eDijZFPch8MBKR5gKdLAQy1AtX4TASaMbk63wCEjnY54+eItYjgipQVv3nyKL7/4MV6+fIPXrz/Fi9sXOB5usa4n1BJ8AtOG7799wOX8AXv+rTfN3lvkckiFFeE3MwodesCNAc86pOLvTUftWjaJ92kfEzbwtM8mb5zZXyqMR8ERh8w2Cpjr9TqmoIaxvwGFLb+rwOAIdo3Aj/60HiPWe6SiOwY5Z5xOp3ZfXpvPx3RmXTsjIgQNATTnhcAk1/L/78AMfW8GNPWln61ucKhysTW0OwzKi4xMB5mRfE5o1LXZPQDCm5o9qIpHn2su0+00U4Hp2jG6c+LfGbIYS2mGOc9iPuMRcEQTiDQg961HAIv3iUrhGRpzwNMa5dvXDwcrU7y9fYF/8k/eWCbfhw/49rtv8fXXX+E3v/k17u7ucPfxHjb5uThQDJ8oGVEr+9DVp1kBBhuZbGAZm2ejhBBwWA3Miz4afVlWi/CkaIoketmrg/QEC1Aq1uXQDOHWkNoN6X2/tjMtpbrxbRGqyrB8rQ3CqWU0Mmh8Zm8nwIwn+25BJdzDjF7SOEoLMsCjT80lqJ75VQCWGfbhHkCQsw7VMut04AJK8amsDhBLGUrnHTrBmgk8lheZfeHRWgeslGYrvWL4fVsgxDKYL+crPt7d4fDdgjdv3pg8KBkZVpZaakSpERELfvOb3+DP/9OfY7tkl8uWkfPLX/4SDw/3+IM/+EOUUvDqkzd4/foVTjcnvHzxAl9//Q2OR5tQx35pL158gX/7b/8t/uIv/hNCAC4OEny8+4jL+dpKtF+8eInLVlDOZ8SUsO2WERkCe6ZZac6HuwesB8tyWtfFe3MsOBxWrMtqpTYwffrqk1dYkw0XOa021diMIT/LCrirYPvlIFQFUMsOpmfGGD0vpkdlIUaD9q1q5TIsM6V+CQF190EvMaGW4I5QbMCfGtuzcxGCZfYZyl2xJOMNA4nH7zObQCPwRvORiAQsW5rP0INXqhMJnkbPurWsKjRgpbWT8P9SMN5h+RVdQqNfz1irQAqLlUQH+FAay3hiACm4zDNgrkf0Q7D+i9wvNnIH3PittTnpahfo3ui/qZ/ovLBsMIQArAfc3NwMzkyT1zAQI2dra1JyxuP1gut2Rd4zHh8ecP9wbwDh9Yrr1fsH7huu14uB65klwLmtpVYbYrDlvU0g7AGz1GyhEAK++/4dvli/8J56D+0MWt/B1YeHhYRlWbHvG/78z/8cf/EXf4nT6diG5NB+2LYNj48XcIJhzhn7dsX1Ys2492xT9+4+3ll54XUDSsXhdMLpdLTBKe5UhmzlhMtizjmb7BOYq27ksw9Qjj2DLqW16/LmjNYGvtFpA6xEO6WEWCJy3nF3f994NaWEFKwBeXKA7+bmBi9fvsCLFy+sF22yLL0YPKMWPUBC567JX4z98PhqtmPqpWjBy8/nwLHaqEZCfC4HM1m+6N+JCwcV+PeqQN81NECfuiaKPjBwYUVFHfgq+i/BHTgbzBMQ6MGIbaQ/WwaSl8BqJYeB9+7QO2wDea450BpCQowmE2iDKjBQ/escAjVn9RDYA20W9FLi2X4KgfzaQSbycYo2+TFXYkgGzAGuChxYWtd+/+hZ8iE9LRccWpUUlhT3YSMMRtRq5Xpw+v3D319xc3PCb39jjv3333+P+8cHd5QT9uuOkgsew6MByYsBaGlZsK7M8LJFh2i7b7Ko+ER56wO4XW0QW4jAGth33YJ9SzK7LfkAGbiNEoKV6cYQUGC/1+D2YbPrY9tb7lMpbFlSkfcCLD1pw8RA8QOJoo/MzuAZ5bKjXL1CIwbUugKRQRz7Lu2eEGsPrpSMu7Lj7uGj87bRfUo2jOTm5oQXtzdY1xW3L25RQxY91f0Jw3lrA5+YbTdXCmmJLEtMLdtya74BdTGBMyat0F/Ua2hSBpMo9H5dJxS3m3f07CX1tYF1WZ/4rNTdsw/K9THLTe9DX7IDhN1e5dr4XDPYyfVTZjCYxqzZFlQTfh/1dM8yJL3xxV5+tpfEA/p+cjL46AcGhLAI/TKxYgfBq/kVAto0YfX3up/X19cCpCHK2TFrH33Pq9k/q5eHv3jxAj/5yU9QSsH5/Ii7jx/w7v17/Oa3X+H7777HN99+i2+/+w7XyxmP7CsXqvtiVjFUa7GM18L2AVcA5qNZZxf32+LiAJzp1YzifV2BNS0WDK/WL9om5BrA52aw2IWphcUAuh6WARjjYgkceW8yqvPZ3NbBggEmhs2PRKW+4p71UvEQbDCtSY1eSl8Tq9LcD2oX/WGvHwzwnY63+O7b/4xXr14hpQUf3t/j48cLbo5v8erlLR4ePzqTbdj2C37961+hVni0+n0rx40xoWQg7xWPjztiTHgM1qdvWW+AGHF/d8HNzQ1ifYkUT3j76Wt8+cWP8fr1W3zy8g0+efEGL15+ipvTrW/ogpwtzfzh4QHffvU9LhefWnbdPHKPpngsgk1PqgsQgJGC3j8N0JLK2hwPOlGtR08zgjvD87sz+ENhY58t2N3hVyGqhpQKXxpDLaNOBDQwgjkqEPk716P34suMrp6OrBlw2jhYwSQKS0Z5uCY+J9dK41OzNlTYqoCkUNX9AnqURvdGn2cwPuPT5q+qsPrPESAcgUQHK+TvtY6AcPQI/Jx9OL9G46I8OeMZHFQnGqhDmcnvejUHPITx37H3s9Jn1wgPn/NwOOByuTal3u5XrXyL19Ls0OoAmK6XJU7JB9+8efMGP//5z1x5Xhuvfvz4Ee/ev8Pd+4949+F7fP/ue2+wXLBvOx7Pj0CqvTG195gy5WMG05JW3BxPiCkhermB0goAHA7WHzJ4aRYBPsAARGsSG/HTn/4UX/zoC9RacL1u+Orrr/D1N984722Nn+jIsX8VDQA6fiVb7yrq+pyzTMQ0IyDvVmJXs2f5RTaHjV567BlyoQJYAfQyglLdoaqWtVS9vMgavzL7BViSp5k7ELhgwZBeXte2tyGaU0bFXt1IYn/Tlp5eVWU+DQaYMqzNE+oAhj13ZVqv64daDOC/u7/Deki4fXGL4+mE/WFz5/7anickU/5/8Zd/gYeHM/70T/+0yeYXL17gn//zf+6DWhKu1w2ff/YZfvKTn+D1m1d488bA5l/81V8jhIA/+qM/xP/yv/x/8O/+3b9DKRX7dvHS4+xl1PYsL198gsPxBAQDiXOxDKpQXK5Hce4LgPMFS0w26XYz5+T+4aFF1ilLl+UrLCnieDzh1cuXOB4PeP3qtZfeOm8amgeUGfDv+8+s0bb3rlfa+7WIEUL5hjbZmkAZAaRSihhI0QHmLo/VaeiyMCDDdGsEh0NZRluFGN5TMI1TtY1/NgGFXb7n0oBu6pFBNwU03bIsq42nEad90FdyX7tDdQOrNqACpX/OwL4IxF7mRwuylNqcyCEo5gZhijYN0973Hquly4Hj8dgzoQWQ0KxK48MyOBfrav3iCrpjo3xYa23yPy0HHE8Hu45Po4Pru23bfIhZQd58eua+4/HyiLuHextYdLng8eERed+9hO+K67Zh26z5/bbvuFyvuFy9XHj3gWPVJmJ+/dXXePXJJ7BezJdmG+z7juPR+OyyXWzgz9IBPT7v4+MDHh9ND1sJHDOJs+uIDdfz2Yb4XK/WQ+zRBlSUWm365+kEBisItgDuzNWKmBZ0gIa0UZocR83I2ZwAA+rHthFo/6rt+0Z7BhLkatlgG2zydFqWBi8Fr7otKLhmG5Dw7uN7xJBwe3uDV68+wevXr3BzOiGFBM5DJ4uEYGCJ8fTTqgC1HZv+T91WMdDZF1OrVuA+sUeMNr3fZi40nYeAc/ekgseOTKeN4JmCiQA0OGqb5m1ODDRxLMeAuRiaYzXbQQQuYkxtYBfvMwSdAW+EPtrkTXd7lg3AyhWjB/JkbX5DBwb4YkAh+loROPnbsvToU1S5Hvev1orDekAOY49DtWHbvkEyQ0gHooNDCC3jm2fN9xfPis7eyiMtS8vk4WdNDxyAYv7a4XiD16/f4E/++O/hsl3x3bff4Te//Q3+81//Nb7++hs8PD7g0ftCMugcYrXm86uBb02X+XmarRJtUrmXGMcAHNZk+jXvCJUtA4oHa63VQmuc74DcElIDokOMKG5nRAGfLcPUD6oKCOMqoOSK6sC/DUzrWZ8dBAptf7jXBvwaOLLvOxBjk2FdJZdBtgDSnoh8GAOQEq77huvdFR/uDfxblgUvXt7gZ7/30wGM4tnGJTZdMWew7fuOw8ECQZymzMmrmvDRwebQ+sw9B+6prqI+7pNcS9PDI2/WFkZTwDHnDESzBffSkzj4voJ32ttPExXUd+rtszpmEqIFf08ynIR8+pyvNvuQ9tOrg67XZr8ZyNsBR5bccm0p1abnFHCdbQV+nqXAGvRje5i5bx73QH1eJzL3ZT1YMskMa6kmiR4ufzuA2Vs/RD+XWhjEDkDyYK5nbJ9ON7i9vcEXX36JP/mTv4daDdD6ePcRd3d3eP/uPb76+it8/PAB33zzLR4vj5Zdf9kaXaWUsB5fGK+GhDX6VHMEHyLXS6hLQFtbjAmxmjasCZ6Ntwx7Sr9cob0gYF3L6q4VMVnmvfk4ltzRKkKCUa8Bjmx5pfqFn1P7gf6x+Zxq5zUEstmpGGz5v+3rBwN8Dw+PCCHh/v7RiHhJOAD48PF7bPuGw2EBQsGrVy+tdLdaKuL1bBHwrVZcLrv1JggJr199iuNxwen4wpTIesCbtz/B61ef4nQ6WZnT6S1ubj7B7e1tEx4xRlzOl9ZU/fHxEfueW5P9WrM3dO1Cn9kQtRRkBGzXbUir50tRbxV6OhGwg37mRKlAI9PFaD3TWGphAsvKfswgs2bFGoVpxoEobT6vKnBgTFfm7z0jsAtHjUCogIyRPbHCcC/NlqPy2ratCQe9vworXpsCSrNF+B7HoFN50LGbMxkohHgfnjv/pvtN4JJ7PmfH8Uye2ztz0ix7aHQ+CXihPZsazlbCpKnPBezXZkLWDLroTj8BmTb8AGNpNaO4SYeqBECFeg0900SfaTSW++/6U/eLIKw6jPKkPctC6L8p/mSDL/g3jWb5QzUBZ8aNyYiA3iMm0GFOK44vj/j0zadCm9VpQ8rQcsb79++Rc269p7Z9w166AVJKQdnR5Hjj2xhbiQfT3C1L4kUroaHiuzmeWmaXTUK07KPrtuHmdMIXX3xhIEDoWZ+lVCszOZ9x//Dg5W0ZmwPwzBDj/lvmq71yMSegZAJz7OnEDB/LCiulR+0q6NBZxiM8Ck/gzMAFDTRIc+JqV6jFi07c2aUzDpeNiMHPsXopmisjYoEONtVahoa6GuXsNNplJHvHMfpNI8S2sivey8WGbdycTvjss888Kr2jejZp9ogwKnBzs+Krr36L8/mCv/+nf4ovfvQlPvv8c5N7izX7/vWvf4Uvv/wxfvazn7nzZ/0+fvrT38Pd/R3+5//5X+Mv//IvUWtpoPPdvU2Kv5zPCIi4uTXnBhXCG8ma8AYrdQyZvN77DSItuGwZQMEZ5uwsDNS4DKZsfbxu+HB3hxiA25sTPnn5CV68uMXt7Y31TSQ/xd5bLgSXw82ZfeqQq6wgHdA5CTxaOq4FWDwTxPSAlRWU0rN0n3vFxve2tpiilSiVAjhdx4hh+jv10iDXa8HmOjGm5BmAwXvUdlCG67Bnj17m3+Ucp57xRcPZb+LPXuxXl70xRCwpovjE2pYxTL2eLeocPVzLfrzkCwYzcs0mV6qBN/t1a327arWpoYDdr4O8ywBc8p7N3qmjnaJBMeo81V+Nr+1JPbPX1lRz16EBAbECKa443MTGg2/wxqdH+3Ri3wuWvdvU6zt8/PgR9/f3ePfhAy6XM+7u7psstMDFjuv1jI8fP+LFixc4rAfrs+XDRHLOOBwLci1IcXPH0jIIGzAV+wCh4no3e8a2AY5nbNcrHh8erHG3X7vWisPNCcfTEaVW5MtmmT2lZ1cjMDi4wTfH9iQy61LouoF3podS6n2KO9/RcPfWEgDYbqXkamAPgOxZNpnOca0IoeJwOFrG4FawLhV3d3d4fHzEd999hx/96HO8ffMGh7Q0vcV2E6g2bVmnmPMh1aYivVAmgKukndKe4Wnrlx4Msv1giRWK9ScabQ6X+UCTTWMwcapiiN1Bzzm3ITZtrYAHlnwJpTtHBF80cyeXjFDHrKUGfEdmQXbbnp9Z19XLkDto2p3vDvIQ4FObUB3pdVmRBLQLiX0UbVhU9dJw7m2z8VAH22sGO3h9BViYUTlnEGaR2WrvMcsLANa0+rCu3qYn1OqlyIWdChq4FhxoWJYFtz+9wc9/+jP84//uH+Ph4R7fv/se3377Hd69f4evv/4a79+/x/39Rzw+PuJ8ufgwMes/R9KqwUupawAKLGMaAdtesO9XlAKsh6M732Z7pmQ9vkJKSIEZsAFJzyMEbxG0+Lmh0Un7z/2u4ARW5T2AoEZsOs3YxMEHB3zynpEWHywYEohcVvSgTG/fEF3P9GqYpi8dzKnVfMUQQxvUZoFen6QeOqilthbPTn3Cy+XS9B4DiqQVzWQjLSm/83qXywWHw6GBcTnb8+pwLLUJdPgHZYjyMIDW3qnZpKVih0z4LZapRdqfg/Qh9EnCmiSjoGcIAXnf2t+W2qsMaqkG4HuQg2tRX4r/Vr7Ytmu7vtm6dXhWTuI1m5f+a7dTlJdDmCsBY6s46DKyZ1vzOQlyauYi/Tk7r03sAbRAng5XbLZQ9VCXV0MtafFABHEMI/QCi3LHbPwXQfltNJwHuQSshxWffvop3rx5g9//+R8iJauWeDyfcd2u+PjRZMKHDx/w+PiI9+/fmU3gtrfRRacpk6E2EKvGfkYxrg2cQ4KtLXI4pOFN5Ec1W/Ws+x5XVHhpfdCy7FHmNntMBniE0FC9dv9lXcEp7TH1lm4ET6vzOMA6gb+b1w8G+PiqDlRlrx7e6wXbNWPbEnIOSPGA7ZqQ94jD+hKfffojvHnzFtfrjhDM8Xpx+xpvXn+OTz55jZubF3jx4iVevnyFlA4WqUmGmJ/PNk3pu2/fm7I4n1u6L5moC4BemmSNoHmgbAxfsecC7AEhJI8cFJTaM88augt45BHNOaWzy+bfxUswgNoMx+RNFfPOTL+O0to9xuk/RiBonwPGEtLZQFMgTkEYAA11RxgjGyRMOhPNGagFsYwNxOl42TmP/RVYnquRRTVuFGTkuliKpcKr1tqiPjYkYR++o6DBvIYZvOJ+qRP7u0BRrrF/l3vX05TVUJy/x/umtAzPbGBPbmecUoCmQ7dhCh6ubwZT6MYvMwb63ivY18G9Gazs3+97MgqxTkMUoPoe93ZdVpRylf2hAOzl1CGE1m9SjQSbhAQv5xDwABVl705wil1BpGgZMVR0if1wasXC0in/4u3tLRafLN0Mb7ijEQNqi1yNWau1VgRm0LhTyGm9oIFBusnlyZkjBNycEo6Hg0WNvc9ZDxqgZb61xvWwteVasRfrKZPzjpIzrl4idt02PNzfW3+oUrBdN28sf0UpGVuurV8WUH0qbVfWxru1N+LONjE07ztKzQ2Q4eeogIxZTN6UUgw4YZaa78eed3g3Lht6kgsqm8z7NWn0Q3hC6a7zBkG+3vCdwMi+E6Tgvnf6vru7R0o2VfL29tYyGauVEKcKbHFzZWmT0t9/+B7/5v/1b/D200/xh3/4h/j8889x6xHrV68+wb7v+MUvftGU97t33+PP/uzP8Otf/7IZftergcfn88Uzl6yUcTlGHH1S/HXbUK8bQlwIwxpdJ2u+i5YlFxt4gHZWRhdn0iXMaU0x2pRj6jCXoe/ev8fxeMSPv/gR3r5+g8NqssNcWi/5ilbqR9q1ht8GFtjed/kSEFCZCceesKGXsIZgwBxl57IsLXvBHMPYsnfnV5NzwaANy4ZwmRcZJfZ1i85Sx6E6ja6rlQ3FQEDQM2Frj84PvWG9fHIwxqL15p2zvec2BRykY3qKBnRqPU2jG4nR5e9131uGrZ3hmM3O/Vk8K6oZ4LC9ZUQ8ILgjN04RfE7vaNae6rzmkIuTxT1FCC2LsTkaauXCS6QbLuU8603hU4hI6YA1lQZE11JwPBxaBu/Lly/x5Zdftn3dPcPvcrng4/0dvvnmW/zir3/hINU9Pnz44AGUG+S84+HhEdu24ZTNeV2XFSEGPD4m69+VejsLTkLe983thc1/37FtF+zbFdtlQ96yTbJLC043N0AMFuiNFmiOKbDtHqpnL+W94nharQzSZcFhNX5vWcZNRikd1Va2uawrah2z11nBEdCzeIYsGAencykt2/t63UzWIji4amd7uV7w/bvvcXM6IZyO1m8uVKAN3IHJcjy1gZ77d+vDhp5lTcBXeVpfzf4yzB+BwygARP++VonMwJf+jQ6u/q1lRJWKHcUdod5WxpxaVoX0rBiz7SdwvNQWpOKz8Hdz6kcbaHje0LMOeW/jvbYT7TsanG5y1uVqrf2aAXB/JTtgDQNKY2jXSylZGwoJYMygBddvvyaE8PSM9MV3W7YUum/BgA5qD8qXLHY2neffcW1wm8OCly9f4ZNPXuHnP/t9VClpfnx8wLfffoNvvv0a3373DT68/9BA690zf80+sSF018sG9ihb1iPCEpEOq+mVEJDCgnU9uCzzMj76A/Cp2G1iugfMDelw0CAYrjrJUZPxWs7rNOE8E92mXdelbUmMCetydJ7bxTd04NsB5lI9IyrAe2Obfo7BgMgQbaAPUJteYdPyFrwLFYjmK806p9beH09pmhUs6qM1eepySMExzeTj7+pXtHtiBMTJO+RRpTHlLa53iR2Ivu4eDBN/gv2x6zO0N8uSmX+r2LrqC1vA0dcdLWOUE8bpe6OOwTLet/u00QFjtjSxnr/8PFtkLcuKUsZJ4poc01sRdL+cz8PzMvoK0NYfKsvU39V9YZk+s9z23QeUljKAqqh9GGCTZ8EC39z1md0J9Pk3nD8IrgEo4lNCk1/sPE6nk03nvbkFQg9eXi8XqwDwgaZ7tlYcV8d5zucLtj0jbzu2/dLOI+92XeqggNgyVR8dM7r6QCCr1PLPNjyHPtFIWzwHUxMdr0gpNfyDyUlNJger6KEvGixeYe0rUHE4LlgPHeirLo+4LtTsuvyHvX74FN1ccb5klLzj5nTbhFlajjZCHAtevHiN4/EWb159inW9wXHtDcdfvHiJ480Jt7efYF1vLGq+WB+D8/mM+/sztu0ed/d3uF6uHXWfAAkaW61xK2bC7+npenB0wGvpKb80bFRgFPaEtLs4A5pzGhB8mikZz/9uWtxKj/Perq9r70K2C2gKURWqCrBRgKvAo0DmZzTVGkDrycD3U0pDjz4KMmYMMeVWjTIKbwWBNNtiBo/0bxppANCyVNQQouBTxTI3Lp1BPKUBLdPi/vF51eHhazY4+3rtlPlZdXjne/PaOo0qRkb3NQt0LP2YI7BM9ef52xmOStGeU4A8V4T6mgX8bNDqc+i6dV3c0z1vOHijZAKBts5eVp2ildzp2QEWlcstc4C8OWYAUGkH/18N0ZwfVwSoDnrAI6sU3s6f1UHAWmtrBm997yzOCW1uDiAEB5aBZsSm4DLD8aTgMdKKihqt7FQNBk6bW9LS1mBKjk3i4ZlaQPC1+UNgqcARQLgZo5ykowa8ofPwtnu2H8yI2be9lcYxcyZn2+v78wPu7++xXTdzivaMPfv3BRjfszm9Zqz64mr00rFsmSWkmT1jLxklEKiSTM1KeIn0WL00GU2Ra9ltdzYJdndgJWebCGiZBJoNap9PKeHx8Yzf/OYr/PjHX2A9HHB+vGC/WIlE2StqrkAJKIeC5XDA4XCDr776Ct9/9x2OxyNevHiBm5tb3N6+aDLDJm9aoMj4ruDh4R6lZFwuZ3z48AGlZFzPVm64rge8fv3ah7tcLcqH6I5VN6RDhQ970nK50M4hoLbPpJQar5gj6ZNivWekGfjmQOw546tvvkEMAZ9//ikW7yVS0GVo14cAQOOxYhz0Uxttzhk8pMmW/SzvBW8MG9w4muX97CTTl8Kg88RhCABiL3+bs5itD8sBKa6Dc2kZkT0wRH3XjD3f1+6cQrKrujxUwEPln+ofBgEQDHgNtVq5T7Ap17HtJ9dlWWa11AaSB58w3LMXuoEdfZhTkAnluqdq9McYW8+Zpnv9PEopQ1VH0yXN4BULvQIheK80l3chBGBhGWlubQYAe0aEgBKsQTYHZwHd+WrnXpn9uODm5gYA8EX5EX7/Zz/Hz376U/zVL/4K33zzNb797lvc3z/g3bvv2/AZAwEeUUvFY7lvGcuHwwHLYtNsqQtC5NABBnctw3i7mCOAwjYLh9b7MefiPSG91JP7JXIetXpgxQz4XAr2bXOQNMg+hsZLTYEA3jqAOis2p8O+wh5eRpNr7MB/hQ0nw7JYP9Vk9Lb4eddqa6/BBgksy+Ilny6H3Vfj/pQ6OuKq20kfnc+6czs746gY+EZtVADuvAFI0bLBQw8+z5lAsx3XZJ5cm/TeaDiN03a5F4UO1GRrEqBhgC+lZGXnch/lkSaXigbHTYnxrE0e9IoQ7b+ntpwdZ7fhBvlYRxuw7Z8Dupo9xKAnACQH8jW4TZ62vxWsMboDGobga7MtCNQsT23kIXjvwUr1L9ROpJ6ifp/9mOZT1cZKCO68LynhcFjw6tUn+OP/5g/bs2+bl/pfL7i/e8DlcsXHj3d4eHhs2T3sAbrl3Xhjkb6BznmlWJB4XXqwNi023ZbPF2OEYySwQI7p4phGEMf4ugNeXY/Y3wlemyyOImEZ/PE6e9expqcSDocjXr78BC9fvARQPNjrwdzLFXspDYzymKxnuJmtth5W3N7e4HRzxPG4NloLoetUHSrIFyex0mYMITRAYtvs/gTkqPfUJ+TrcDg0H4d7orTCvZr99JzzMA2W+lmru8hPvC5t25TS4KeQnmdbQWWb6vRSrVIiVCbbuF5drA/q9XqFVaCELm9qRXFgCUBbN59LA2lcuz4z/eXnfPeZXzSRRHmOZ0W/avd+5Ar6KX/PCSzt+YsOlnTaR6fxgA7eFa9KaNVMCMS72jl1meV2AwAbAmhtg0LtmYZ8cV05Z5tgG1wHhyBDL4wnj4ejBeSOJ3xSCmy6eUSpucndAAsA5LL784nfAvN9AiIOxwMO64q7xwd8+823+Oqrr3Dxqs7iQaN9Z4uz2mhwLJ+FB8rHjFYNjvEcmaTE17IsOJ2OePniJRbvccm+0OfHMyrQghscjFZLQS5jluHf9vWDAb59TyjXE0pJwPIWn7x6hePxBqfjJ/j0zZd48/ZTvH79FsfjDV6+eIPj4QYxWfR5SQseHh9w3Teczxd8+817bNeM63Z+IjT4aobMZCjwc8pA7M1lRssoBCjMaDgPRk3oBD8rZGWsgWgnRapMrSm4FFZPgSVjCmVQ298eiSHD995CizjCo1N2PB5bKa0yJq+tkUYaBHNjVDVg+Lx0noAeTVQlqFmPCpjGGJtiYQRUQbk5e0O/r6nmCsrNghMYe7/Me6l0MgMs/G52p1xr9/lTSx6UwVWRce9q7RHnef/n79q/mc7/lI45CbW977/RaJyfcX52zVDRe6tBPRvtdp+KGJlZGJHiOG3KopFjKTv/nmJCTMmd3AnMgpV88Du6fxSQmq7eed0v4g5Py3oJYRgsUquZv6XtDZ+tIqW+D8uijW7ts4k1iv6f7SXBGzcCk5ZlMhU/WIp+14e6keYs0DGtaMEG7keMluxOxwWAO7UrOLgiBItIQwwE3btSrbQNmWVEvbSZYOHj4yPOngXNyON+NRCj5IwPdx+wbd5LBUDZM677xTKVggFFKjPpaJhBZHTPPSfFks57VpZlapZs2Ye8lsnkCJYzqKIFrH3B+XzG9+/e4c2bt8i54P7+HikmB3l2KyPcNxz3GwPFHNRhecnj4yO+/vpr3Nzc2J5sWzsklvZZ5uQF9/f3uL+/R8lsUh1xc3tCQPWsiug98eBTN+3F7KXoZ26Zj4fm1PsWtCmwTb66c0L5WIE25KRUizrHZCXmuwO1DEZx4ppmU3eedDAD1Z1eGr5sy6Ag5FOdSoeDTrCVbRG5k8/iKe2HCtRUrfSL5fN77RNi29pGg7QUm+DYehiJHA0gIGLyYfH+ml1mFs/QkgbZGOWzZi0QhOD7LTjmsoEZ9u2cwHM13rdsg56FXUPy6HVsPKby3DJzLBPWgg2hNZnnBqrebFk7tWL1wROcvrcsFpWPnrlsZ+LOpR6MXLs9e7V7G0BYu91TDbw0kIQ00B192h/knRRiA3n4HsE6nmuJAcdDwk9/+lP8+Ce/h+v1ig8fPuC7b7/FN99+g6+//hrvvv8ej4+PloV3/eg2k9Hv9Xo2RySyMX4RYqtAZC8gCwqkGLEcDtYOonpbgH0HEH2Sa2xzVzklr9s5fn3Y3w8rg8bBe7VGIGibFu6r9XTd94zrdkGMSyvNGV8O91XLQF5XG1YQYsIXP/rMgL1crD+WD7GC6/TDumI9rDgeDrg5nbA4WAnycBDbAGWgcZ49f/KMepA3taAiP0Nd2lYuNnmTM2KP2zptf/hSIKDk3Pakhs7TaqNo36zS9BxtXLWnqJcDru4IFwY9HZSknRl8beS/eW2lSJCfdk3tLVT4d4I1XDPXqvuqcnS08QUMQwCYESLPDqD3pgthkDtqgyKgTxoupQdGDeVrOnVOKkCt2Le98TPX3IAi7UMnZ148kLnE2MY7UZ/MPhL/WStsiFnsz75nC2pZ0CM48Lfi9niLioL6uT1cyTblPEbLvL5cr9iuV1y2q5UAhoDL9YrrxQbsGBhUbEDH3jPUTCbUpptiSnjz9hXSsmBJCy6XM+7v7639xuXa7UmW7vu9eC4I0ddPAKf3XTNZUFrvr8PpiBc3p+aPnU7W8uWwHhEiK1Zskjt8yFB2uVZKRckVW6vKMl2zLAnrYcW6JDycH2zow8Kp3Nchu5tgCGlV/S8CaDrEUO0GpT1tnaH2GGlRQZ8ZaFLQ7fb21km30/b1em2BXZ3Kq4ktvP4Tu2SguZFnlAcpF+iDzskwCjTSVVmWBTVG5DBWn6ldOmdCNhpnBZIn0fA+anNwPfw++RQYMQblTRuANE7unf1K+vMa5CUgaNfVwY+VSazoPeNCO58QDEjHM3sa4K1hIOXlxb8Xw+Dz8cxjjJ71Z7Jj9sH1uZd1QSgFzCq3h+znHn0YxgLxXT1xoNQdtfS9rLXik9tbvPz5DX78xY+w7bu1fvFhrgEB58sZ18sVDw8POF/O2LcNmX5O7lU4vJf5jj256XA44O3bt/jss89wczq1bMjFAypDMk71bP3Xr9tz57yjup2y7xsulzNqnNtl/de/fjDA9+bVF/jxn/w9vPrkU7y4/RSff/Ylbl+8xO3tLY4HG48OVFwuGy6XjMfzBQ/3dz6xdsN126zcrFbE4OhneD7S1gIiokDmMtUyKUuA/nX/Gz+noN4T50YMGca4aUzMQxkAtKluc4q+gm5aTqRAoAqlDjJZZEGZXoXl8XgcpiPxProHKvBa6YikBmujTqLPKqS4JgpFXTv3pvWNAFokg+vVqYhAN/51z/Q5de+64dWFmEZPFfBTWnlOyOsZk+FnZcZr2P5bmaBeL6WlRStUCSlNjaAd2poVEGugDMZIOCPE/VmqO3EaYUZ7v9jihgi5Gt+jAiQtdqCWmVuquElHPWK0uaOxOe2jfTa6A73vGUuKja5U6dnzxkFBqALp/NczHHvZCEHzUXnz8w18q9O1Q3fiC0YjYN6nVtIOL5fwM0uR/eb2hvVZ9k0HJWOcAg+1utzqz1ejAxkADC6rrlDsGaqDNrVw6jazK7U0hKCke9+10wc9XJ5lCglLWJpUPx6Pg2yjsVodZYoxIhQbdlCqlfVer5s1xnfAz5rnX3H1BvWX7ezR5gu2fUf2oR9syN3kQzXjlEYkp89Vl+HMjMqVsvi2OSY5+5CRyuhwcTlkpc0f3n/Edt3x6pNXOB1OOF/O3lzfSvv2g6XM72XHsq7YlgXbdhlKGpfl1idw3oEp8jnvuLu798b8VzzcP+C6XxEqcDwecDoecVhW5D0b6BWAtASE1pPeM3+ZvQIgwMCRGjJKtOz2bd8cKLEzbcZYAErxbIANWI8HfPn5l/jkkxeIMeJ0WFvQgKCc9W1M2K5mIFiWJMu+QuMTwPs3VmYW9kl+VWiD9F1rHfrjkU/o/FpPrNR0w2zQcwIzMxX3snkJTERiCYcbmeQBwBx6DSithwVMhIuOnocQcAwHXPdrz4gUGW7GKhowaQ+ogbku+1UfcBhEantjQ0oC5ViXpm4eGK8y+8vA79zOJnnD5i53vK0HKmoOrV1ISt6fUQAyOqmoGLLpAYsmp0SdBhyPqxmIhX28ejmgfSU4uBy8t5qDcqWX6poMJWjadZjpih6QNF3YA2+U4QljthZ1dbOBwGPYscaE480LvHrxEr//05+3qeEP9/e4f7jH+48fcX/3AR8/fMB3373Dh7uPeP/hPc4PD8jX3emkYK8WdWepTIw2YXOJi629ZOQtIy0HB9lXpLR4w/zFe8FGd/jS4GTBAUsIuGZ7kfw9Oo3eny94Dy4Hg5eUBmCsX9eVuB/FYUk4HlbEFPDFF5/j00/fIsbQ1sUSeur7EAKSg8GWrcmMNluzp+01PcsesGoXkU/M8aiIC9vLEEgTOzSMzvUTGyOwDUwwkBhoA3BmXkspYU12RqQbDQrSHtIywuigmoErtnH7drUm6qkPEqDz1Ac+Gb2xfxkbE3Yboq8hZxto1c7f71tyt3UamO82ypJ6Q/7JzBjsbwXoGsjkkpl9sBTAmG0KtYMBC/hs1ysOx8MA7OZiLTMa/7WMtNCzloyh/XlGkJG2IMHh1mqlBeVsCInJEaO7Wqvft7cbYJO+ENDkEWmTyfx2/z6YJHQCtjW5nlgX73u6rDisR+TTboGExMEWdt0KGbBQgFIzfAwmWB9i9Gp2zpLWxk8Eme7v73B+PHuGord5cjradrd3th3bnrG730XwmbIue5/XGIDT8YhXr9/gR198huPxhAao7CrHYwPlY4ptnV1WWHZRbfsW2rOW3UpKh/ZK4lOSrggupJQEqEALbip98m8K0NFvVFBMM/qoB2bbmnxAv4C+5rquDYhUe0xpXHWM9n/XBJTZz+vy+XkwUH0/xQwU7Nd9gAy4pD2kdg5f6u8Mey7/2Vn3deecG7/ElIbhh3yG2Zexc+l+k+rXsbJOKzl6pm0HF7vf5zd1G3AEA2nXdbGhWch9UI19x2UrvNdyDC14j1rB//VzqcPzKgYSggGENhl7GWU0Im5vb3sAttB3Sy1gFBEQyoIcS+MnwjfBddVtCDZNnLxWe39iW4dlBNZS8PD4iPv7e99Ps+GIBwC9d3VMES9uX+B4PIBOYzXBPDxbYYUTg0XFZO96OLXsapSKgFd43B7wQ18/GOD707//T/Hf/3f/vRO/RVev1w3n8xnv3nmzxKv1MapA6+mgUbvi5UdNcIQyMWigL+CDMkaQrzYjp6PhAJpwotFFBtUyxT3vVm4njGuN7yuKT3YxxT6Wz7YNXMYt5LW16ee6rjifzzgej+2ZZzRfwb1ZYMyRAkbOKST5/VmQsQSXRpMCbSqsNdNOjQruEdegQEtfzxiF0GzIx8fHJ6nV+tK/z8KW+8Qoswp6fkcz+xRc4pr1HmpAUlnMipHfDTEi114WaeVZfd3Wb0YEZKNTjXJYP5BZ2aqRqUpNS8tDsPKa6tFSGvPVIy6W/TRPqx0BbKNzmTIBE05KfyxFVuXMvWzZF6X2cqwQ3Hiy/ldgz55qmRa1AimtzVk0oLQD1LMh0M/SnEo9ixC6Ab8ejjYAJ4ygoCpT8sSggAWg0L21TaoyUS4AaVTcMUQcVzv3snsUpxmSZaKz2hwKOPhYVeEFL0tkh2onm1LNOEUEYoU5k7XzA3un0RiN6E47FWUHGk1RBPaRqtnbvnHYgAPxtVoTau4d3JEKQFwi1vXWQdw+sCFKSWAI8GjT0yEaNHqry2L2vMhX6yXIsyru9N3fWwN+Rm+vl6tN3rucW/9B661hfTeAS8u6vF43fPfdd7i9ucHpdPJerBfYlOVsOudywbpaj7DT6SQl5BUfPn7fnmlzEJP9wrZtQ95MyQMVy3rAYT0ZKLLb5HXrI1cNOCoG5lbPbQiA9cgRZ9Ey/SpCApboQRDf99yQe2Dbr1Y6EoB9u2Lfr1iWT3BYFsTohi86DZTas1hLKYjBpg3Gao5dCnDZCMRkvVCyD5MotQIxYHegguVZpdq5Lk47lHHMuAkhoIRgCCaAfduwpMXKLfxs07ogETQrQHZeS4s56qXWVqZBQ6uSFz2Do6I6C1c3KNEMxwKL8uZcGmYClzvEApjdaE5UBGKyslpkM65htoX9PSIua8/ErMZ3Ka1IR8vII2BgmK0buLXL9QgblFJgsip7liPlrZWUZOsl6oZviIb0sG8isxMtGySCPnMLivA7gPOo9U5DCL2cu8k6yskOmIB6YyEQWB2EDohIqLm2oI+W+pG/9acGtNThsLX1LPxmVwDWb6l6qaPLu1wq1rTg9Sdv8MmLVzatvK0/YC8Z93d3uL+/x+VsfP1wecTdh/f48O699WS+XJrcMIoxEDoti2caWA/XdbX779kaY6d1QUprK21Wx6qi8/DheMTp5haP5zNQmaUztZwYnDMCwRXMqiSoHZy+DocD3r55gzevX+HFy5c4rKvZDcFACvbFjCE22W+ZZp75mrw9ANdaqUv9zGrPgNMX7Z+WCeKT30PrqxrasB3aK2qjDcFRBhFitx0CCS8ACN15qrUio6LuTwO4sxM/2tkVxbMtrM+ZB6IFEFlWz6hjRqUDevu+YfGBO3ofDYQzCK22NCoaUG/P6XYAA7k8c7BnUtf/GuBX2z5SFrVTC81veY7PnvwO0zuH0xEAugNdTffvpSDIAAf2vrPhPp2XYzLgBCG09et+m6wwvRSWiFjoKDvgEllZYgGB6vuD6PZQoY/AZ4c33tfAswesQ/WecvTzgvWhq2KrBVtjCQmpEvQ1uWk+o0wtDsDiO10X4/UQq7dSod41Oke14NK6nPDy9gTacTlbeV8v/62t3zEDmN3fkj7LIbSSQ+tfXRBSxRLRnr1Es6ktQz83fziH4lUt1rOaMntZopce2h4w8Kk8TR+FVQkDEGZKC0ABimVFVuEFpTugl6LqS/0ClXGtZYT4j82v9uC5loITsHsu6wzAMCkdQLtuCKElgWiWn/oQs+/63Pq11922bTgcDk8SSrifIYSWBannrdmAq5dc6me4dvK8ZtNpQtDu/uqhtcgZ1zrL7F45Vd2Po/4t2Hcb8FFK9koWH/hRO+AfYCXfzABUMPW5c6Z/zGnaSi9LHBOY2t71hG7kNs3b3xO/s7ptNwdGWP6dS2m9LrnGIcuyMoHEAkiUNfYMQA3FKzZMRi7J/ThPMrDPZVuTP9fiWfOlZKzrguPBbLTbmxPevn6F6jZYLtlsSX+m6gGH5svXYno0GFBpJfepg40ecKG9i2jnlLO1XqLuo2/+Q18/GOC7Xq/49tvvkHNuzppmaRnos7fU/7nMsZSCWgKKEDhQG9JphnFtG/QcA9RaUUMnNhqzvUTEDmffc3u/ladKCY0CG8uympMMQDOf1JhVo4SThY7HYwO67DpLS9OdwTvuEwWy9k7g83W02j63rmtD7CmIlmXB5XIZSmqBsZ+aRtPVMWfaNtczA5i6xxS4FLZ8NjrO3EM6BwrgPZf1Nl+f+6Kp3wpIqQDlHmk2JZlMo07a30CFM89oVhQ9im9rJSjb1ugEReS/GexC0woEExz1T6AJPHmG6gwegkSIKDj9c6XWQSjPSq4LvTgIcF0X1/O7/q1R9ZwzECpSGAHedj30BvLcUy0L8W2CObg9w0/BaZ4BnXd9WVN1TigKjbbtOgZcKl/MSosGuDpeVffQ9Uuc9vmJccCJUkufntjpg4rXHPd1tR5p0HWI8R5DbNPfLMMsT/cMfu6SYRp6Jkn0iQVqSA33qXDD1IC+gox939zJ79Ok9Ps0wBn562X7WhaPxu8EW3gdDXCQP5gJeev9tyJCO/++hup76L2+ioP0JePh8RGX69XLYy2L8P379/j222/x9dffwKZqXnG9Wv+84/GI29sXloWSCx73B1yuESk5WBYj7u8XN5y7MZAWH060Xby09+oZiQGoASmtOJ1e+PRkK8G2jC5gScENcucjggGMVVZv+L1Yb6QQeyarilg7hm5omywoqGXDm9tbfPrmNU7rATEa+BVTMDqoBkDRkTBHvAfZarUgQBFQvzvdY8Y4SWlJSyvZUbpUPqIBQt1VqwHG27ZZOYd8vsvAZJnIMOOL302WhtbpDF3vhQDPXhizrdVpNtozp78WtwGcppreSOZK69Q4NeQJNKmzQ3lBsLplnJTSHP+0WE+WWiyLMjReGvvmGkgfzY4LESV4iRwARMmC8zXRBijFaCaiZySZwd7LRRt4BsvoRIwto7HTFmBOY0CtEbV6RsKWLXuAzhaNVaefHtTsASqCrmp/zEb4HIxU4K8FbzhR1hdIx647UFbKs2fLdD0sK9Y3b/Hm9Rs/Z+OFkgvACbol43q1rN29lBZQyPuOvFm28PV69YoR6zNcM3yIRi9b57pbYM/X99nnn+Pt2zcmmy5nfPjwER8+fMS+e2AJ3u9LbCk9z0jwA9TfAafDAbFWnNYFt8eD0b9nL5QCA/jaQBoZ6hFmu8jsW6N/BpwqIaRGl6qLGmiHcXDD3JNXbQV1hFW36fV7n0+RA8EGB/XvhDaEal2swgfoAMJT/RZb4BAVrfSNGUC8N9tvGLDpZdkY26uojcP1x5TaQC/6L7y2DoSbAZF5DzhIaDxnCWjKd+1vY9XGU7vQHqbZapB+Yin2LHjnuSWtqOhlktx7mwAehnJMfTby8gxMNhA++X4Va62S1jTY+kojKSUL/oqdEFpv5S7H1aZWu43BjergJwNGMdqgomaHOnC1BEmSIGgQuG/RBxOzYsVpuFpPRvo0+swhjPLIv4S4ALEGLOvB3+vylXRAwMH+hkGmcI2WbZ1NL3hwvHqDd9Pni9Cht59YmShQB99S+VIz6YdAugeVgtt2KKHpNJ4Xz5/7PPvZzOoDetVVSj17X31U8g79JsqGuS+62uu85/V6xfF4bM/Es9bKOKBnLSpf8x5Kz3xf/0OwrGaesZav8jOsZFM+0HvrM9B353MrLysoxs+bX4XWouh6vWJxQJhYAvWgylkNmOk9+B0+qybYNP51e1BBM/V/9aXgpfq4XZaHdpbKO3xxOCefNcY+NE7vleJY9THbhNr6SfdBbTeeh+rCtFgVTCnFSnHFP1TfWHUcwdyUfFBpKa0tFvmOLW5OhwO2zfr9hcX4PWcLUEYPMjHhrBQbzkU+KLW21jQGKqaG6RzCoa217cPki/5tXj8Y4Pvw4QO+/vrrtmjdOI7hBjpjA6Myo7DMe26RaSqITsTPR5AbwQiNzuAijQKEOBy0GqK9AWVtgotrng1XZSQ1jHgwakDEGPH4+NjWQqNTQUY+B79LYIprmgWNNktlhIFCietQY4bX4rPxHkzP1pc6b3pfoAtMBYQ0a0rPlXs6Cw9+VhWeKhK9Vvtu7cpAldEMnuhLR7LzXLm/qnQ0fVzPIZcCxLGJqjpvKiyfN0hHI9/2I6NWKY2b9qMZDFWMUDGU+Tz6b/5NjazZWNHhLXqufKki0vdTSrhuFxxPS1PqvLaWZs30SdrmvpkymIEsDDzACZ/6GdKP0e7upf5KY2YEURGV6TzgyoiTCUNAH/oBNAHegNJi2VdZ6KPtbfHITHCwRvaZYFEM1pOilmLZTQMthHbPqgrYU8tLKSghA6G0lO2IYJEofj+48VifKtbuYKFFz5e0oCIiBoLLlr4/0ykVVyvPlmisOjaNxr1HjNIk+QH+pB4/B5uS67mZY+9lmiEgZ+e7UJoMe/HiZVsjquUIXLcNDw8PeP/+Pd69e4fvv/8e33z9NT58fI+PHz/i7uMdgvO0Xbci5yvqdcys2bYNuWzerqBP7Y0+PKXWalPslgWH9eigFcv2gRBp4EUbCsOpaYbiofr5LOsB0UHAWqVrURgdHe6vNRJOqMX0YAoBKBV3797jkBJOt0c32IzOrHxOM6T8TKpNzrUzyVAgpbqQURmU3UnkWVJHch/53/l8HozYprsQ2jpUzqrDAWZ5POlFhmbYUwar/fDcv5Ue6XRmdDoNMfTpeApGAIN8q87/LJXQz7e1eUYHSw7bPUNAvl7dCIsuZ2MDEenc8Fza+cDoIS7ulELsmWDQDKPy62pTmbtchxmOhdnZGWweH0MHNXmOdh7zRHt/Tns4lD3LGYU2iZXyBOiZA7VygnC3K5SvZqemO71Sptt0SGjZ0+35Zf/NPvP+URg/ayt14CIlyxpaElIpWBb2pawILxNOxyMCrNy51HHKoF1Ls3RC073Mkh9AsCUBoeLly1sEWH/T+/t7129G/8fj0aZ6Cx89Pj66+A5tiEOtFeuacHM4IDnISwCMWRARliWrPGi0LUNGlJb9bwi0JXoAjzqSjmILjG07lpQsMzlnxGWRjPNxWM9s2w82Tq0OrnhGWPWqgyj6ttlNFQixBUdKKZa4XjogqrJHwTJ9XrW9q2drgEkAEABjOTReVLBZaZz3bb3v0OXlc7YV/61y1XrfjZkufWoqA/f295wzQlqknJjBtaUFDExuj4BsKQWJNFmqTx/t9iPLxkrOSMHopKLCK6f7QDLxC5r8jgZy5lJQY7d/uEcEeRaX/6XsA22qTU7/SoEY6kkFMOhT6TmTlhFiC5rMtmneswc7pJWJg9wmVd0KEbeg0rYGg/KTbzLw0aifjXZ6+br1wlubzlUa7z5SB3jpk5EPadfyWmEZB0100LY8oUH1z/h8h8Oh8bauhbxRGSQAwInvwOgnKS/wmasD5ArWaE85+oSa4EIbjmdM2mhn5bYh+bAF2WLvK8c95HNw77g22gyzHOA+kbbVx1f/flkP/oxZzrdnGKr8U5CQz9orA/tz8QyAbhtdLheEEFr7Lp7xddso5pvu5V7SP1c59VTWP82kJs0MQxgB7F5xoK9Bp0w2T1+T0JAHhU2/eBD7GXozPgyDPTX70JTP6luk1OcS0G99LqHrufWq7apYhfonPD/NWle6Z2IXdeWg55wnNZiCyhYITPRBo3l71t4DOcaImGwgSEJqMoN7rM+l5x5jRNyeT7b6r3n9YICPBuyM/ANj+SoPghulZbQprt0Iqr2/UEPKwwhYMetsNlxtOlqPooWQvB+SZW1Q2HJdZFJrZr805ubnlKDUwFFAY1ZsquDmstIZHVflaEbf2vYEQEsj1vtpZtpzBjQnCvK+GtWg8OD39O+zUO3MFgZlTSGpglE/B/Ro/py6PCt2ZV5ehz/bPWM38PXeszAGxrRzPkvrsxZC2z8FL9Toaz9D8JICi7AoYNqNCqM59ozSlyq1LpwAoAO2tifs99EzM1T5UUg0oBp0hrpy6nzYS5b7hLfSrjEbpTS6LHMQIBCg545qZWA68IbPp1kcg1M8KQuCg/u+t55wDw8Pw3s5b8O1uc+aUs9yc64d6GVGs+Pezqm6v1SKd5aqYtjV4Zy4L0u03kkVAn566YQZJxZVzrkMaw0xYs+d15QmmkysjEzzTIJPcrJIW0UAs7/9RPhLdzzEqVAl6Y8EwLJRImKL1O57Bkt0SUs559aaIMIuW2ttDbAjghnztdOK7bV/1p+BEfZmiIJDYcLAg53Hp0heShOfjIYMPGNniQnH9YBP3741w0X6+z0+PuDDhw94986m4X78+AF3Hz/i4fyAy/WKy+WK8/kRtVZs2xUI1Zpxrz0amvwMAHgp36EBauuyIKyWdWR9vDq40eRBDAjRenktacGrN6/x2eefW//C8yMeHh7w8PAAZrOqkaYgNWAGe4o2hfRwOGCJCUtcAQTs+4a0WElhrhnbVltwzPZOndXoDouDC2ywjND764UOlmnJCiOL5C/trarGCX/OMqLRfzCDvpaKvXR+ppHOs9fvKw3oSw0j0rBlrVYgJpSSW+lk413R30pj67q2EsjqoIg6UoA5ylbCXNvEXq7P9tRLigNaxFkN1Xnt1ZisR7aXHnDLe0ZFt5m23Rw8w/RNF/QyjyGmaToyoxnPaPo8+AyNngFI3g4EfkUGUn83MMQhxFwMJAupO+maXdHWEUbAD8DgmDV5nXvAUM+76+4E6HTU0uVBrtYX1eYe2d63LLUUscaI6n1P4ZlAtdp/IWDQ5RAg2GSrgAYxtiFttXhJXwhtMvq6Lnjz5rWs2UCFWrUdB/D27VuwpYPZNQaILdHCIBwe0daFJvyHAK/9iXZEsEnOtToIzbLFyQ4SO2XW0yF4A3UYjSDZBOd8Hfv1qYNMGpmzSBqvBGsfgEDNZRm0ebcp78l1ZK0V8XBqQW+UiphGQG++Pv+tdnN/Aw185neiD/qIsQetAbR2I0pvQDAwsnRg63K5NN+AslqdatqoXEvJXQZ3uejn55HaKPxbHaTmtYwGu55tlU9eMkaO1z3ILZAijmkZgcd931tbBJtQebDeqOQ5395m83trGrUTqKO4Jm31QlpSgCbU7lhzHZR16tSrL0cHl8GNuCzYt80Hd3W52/hV7NhRzptzzUBr8FINZrID1QbTgAEwP49ilRe13SM+ASKUrzWoZjTR7WzNeKMfo/qugxKh6WfSncpEPcdGZ/I+XwSeFMSewXjryTsGbPgsNjG8Z63ymib7OvBIO+50Og2+HfdF78lM2DnzjWfVg/vOGyEiHXrgmsF7fn7ee9JO93W6r6Rl/uQLVhgUVOT92ul7y83gVn/iuWSgOaOQz6Vyi+/rteYMQcty7UlIBqb2YWGz7CUNcn/VB55xgZItmQSBOIq2geprpC8+2yncX8CrqLxEF4O/2v1NpfW+xvAkC3agEccA9fx1j4LbSdxXzf5Uu04DBLRhlV9bf7zYh3fyuyqbmjydEoe4r/o5C+bZPumQNz17uF6n78zJubUEWCXF0zNQXmrDOZ+czH/96wcDfMoMSiwUCDOYpIbCbHgDNFLHHjAs1wUwDGQAbKOYSbZtHfDph9mdR0WK+SIB0aFhqasClh1wsGEDWsKkSodEo2XKiuxTSSrhUwlzv54zpADLClCQlHugU+1moE7TuVUhs5+EErYKVhWkVNRkIhU0TxXe8ySp58XIi353XgOfRzMEZ8GtAN18Fkqben6qhGZjgTTQATwazgExGhijz8xR6jVnlADUnFuZhwoJfofryZlKjyn9Hfgg6ETDXQ0LPd/52XkmPL9+zzES1QDzZkRXcCoqP8/rGQ3aZ5rRHGObTNscjCfGMtp56B5Q0WqqeVeWLDHse8xn6qnknDDLqFsH6PTegxPO+1dm45Qhcqvy53fRrV0HfW8wfT4G6zcRDBBVB2RU1AUBHZjnwuZ7B0KRtbnhXdiH2ldf3DivtUfMAJvy2Bw7b8KbIkrIXpZSEBGRllXS2zvwXgrQJ+Gq0obQHp7w3eB4TQbkCLx3BffcXs//rvLMTSYHIB4OzYh48+YNfu/3fmJlhpmlLBHbvtvUvZzx/sMHnC9nXC4XPNzdtx5/BPwu1yv2bQMQcTodLRslRBzWgxn6jmOYbhiNVSsrAG5ubrGkhNPpBi9evsDLT142kPD8eMbj+ew92Ay4a9kTk05YV+urltBLEAwYtsyBGBdzSDKAAiQkB7p6MIT0GKP1H8k1G+17U7dgxZ9AsRLbtFhWTUDwcsdr00HqQCm9zpk21B2qC01xP3VQKNNmB55nr3Jl1vcDrRku05y1Wq00Sg0mAEP2mRpkakiRvtVGaIC3Oxtqu8B7ZFpPKts35XsbJsBMYSvRV5ui5s5fra+VZ9MmwDOHx2xDjURXfg9eymkd8w0OLAXsv9nkd4o2ubmIUVwlOwSwyXI8jwDU6JN0Q8W6pLa3PEM9RzW+uZc6ubHtfY3DebLxOnV/CHbzSvA2BJEB7sCL7KjuVARm7QQM60kpIZQA7e1s+6e6QMHdirI/zVaLweRxrtlayng2DDOxui4hHfO/7kwsi2VfoQK1WluOZ3Wo3yvGpQVZlG9IrwwINrmrNkSt7bxoi7PPER30dV2tWsEYZ7h/dHlQSh+4xvuqnd0ABGskC8schZVP78WnGJfm1MUYkctuwa0lOKEFoPZsGb5ox8P73DELfgC7QwdKuM69bIN9YjxkdBR8bxsIXgP2qwFXKtNooyjYpc899DEs1v80QOVY9SCpB7fdH1nXdcrUqu1ZazXg+3Q6YT2swMYz7I35SUspRhyPh0GOhkR9a6BJbBl3Bmgzw0eBeaVxBn2Vl/m78WjBsnTbjTQ5ZHDvpuPO53PT0cz8Uj0/A1LMQKrF+CvE2LIP2zMnK11LydojNNs1VB9MZL9b0KaANnD1caEhBOTSB/VwWDa7CTp+DrAfJf8pa6+w0n8GVHN2e8h1qROq0YlPwa7V/gbU9m+WaM8+FMGJZQlg/3j1YQg8XLYRAFS6ooxQP5NnRtmsSSKapaZ0qSAQ6YF0fzqdGhCuel9lmVa28azpczOxpoE7oQdOKScIIunzcB8oGzTRQ+87lwnzM6qv9n3HYV2RYsLlcmk8fzqd2j2JB/DZyT8d9O7JPPysAkPqe9nnTFvp/pdcrewzdhl9uVzaviuPD2WcGJNZci1IS/Jei9V7fY4vXkcr+eYEp+aPFwvMVBhPsc0Z762ZkXDeoY+o567nE5co9pF/JggwXTHo99kvmLM2VadTTpFGtNqMdh1xhMfHR5xOp8GX0T1SPad8l3cbQFhLRVoWM0BL99HsOWOrEGq4WPAED6+aan5WgPXoRmi2v2FNPxzi+8EAH/d+NtYpKJSRgJ6dxs8wajMY9+i18aaYGZUfa+upcBVFVoVL43LbtgEIo6A7HFbsez8AXkfTkWutuLm5cQPJetOowwr0bAJlHDIhoyNaU8+1kBCVUclsmgnA62pWHAUyhc4swAcmnYxvNSiei4zwmXiGGnXie/xJpmQasoK9Cv7OgIemZiuDzgCWMvAcVVRHbAYMVRHMYKY+R3OwxHADzLFRNB1iUNZahyxSQj9zNoMC3nr2Ckx1Y3IacpIrwvI0u0WVmCos0v+YIdkd1ucAlXm/zOCQ6Dzsubn36+GA63bFvu3NkH3icPtLgTygZ1LyXBScTGlMNScd9vPyUoZgmbi89pxOra/qWTf6vBEjIKrKf3Sw3MkjGMz/5H0DO3uENgTLHIYLbASghE7rwbMZlE4BBcrMyAne5I2ZGSGE1iOslIKCDlIeDode9h97Vo4aam0wQwioxQIURy937hO3cjOi2Oi60YD85zv75H2eMWX3TGvqwAZmoAwOcX/p35+jrVoZNzPHJ0sfw4DeVJ+fst+BFy9euBMMy3Cq0/5Tj+Vi03FTRECS+5kTWh1EqnUsCZn1gf2vWLZUCHj58gVevnw5yDN/isZLpVjEfI0JNaKDOzSMU0SMK5AtjTKJ7FVZp3Kt0VADXkjBRqQNKqkGZoUUkYKXG4rsfppF3B7Weig+kSXeRwYEYMZSIJXx/I5mD/LfPRgx0hOvVd0Y0uecf6dsG2UK2tkQENKyG64r1rFH6fl8Hm0Mn4is8qNWDwD5XQzMqa1PcHSDGRjlnToupRQkBwV3z+4rpSAUOUsUrIs58GpnlFIQWvaX0TKvGSp8eqyXBKcOGLEvWna+StKmYokLkK2ETe0oPafeP1B7JGI4j5nHa+3lVkAPXpZKsMpdlCY3yTvGhHZ+ERGlGaMqawxAK+1zIaD1a0SILTuhtunBaBkG/f+o/wktus73TMFQ4cMpnI9rGSZsDvSuNFo1I91eUfcJQKi93E/3LgTPMkTnO/vZdQWdB2DM+iA/d5lQJ/3WbVobIPF8dnULOKIiIdk01Rg7IOtOTkAYJnfHaBMSO1AeuMXtfE2XdJuP9ydtE0DhWjn8SPdC7Q3Q/oWAQjA5blUMNhlRbUegDx3QagK9LgP4lCPNpgjJZUC3Py+Xa6uwUcdXHVYUf2ZwyFM/vz3nFkQg0NX4Ws6W/eaUXkquTd8HMPjjstkBrufsEg2qcx1qU6vMUn3BazEhI0y2j/o16nMt3lO21IIFCyA2Lu+5LqtxZWSfPyurB3vgNZu8k5T24LMgsQTP5LlbWTFbcpCWPJu38bQ1RESb2A69B2VGREoBOXt589L1X84Fmwx/1KSRvk9df+l5dn9zDEIQKFN9TV+SQA73kmegSSlMNKFvQ3B2Bkt4Diq3mO2qdgjpRelb/VJ9Zq5n5jvVMUrPvLben2fDNQzVW8ECvlwP6bLCBralmNs+1Fq7bxEDsgPWyUEoAnBDNrj/5N5pv3yuQ/V8yd4aJQApLFgXq84opQ6gm4Kruq8K4jbfKsDp0XRUKdUHqEXQ4CUAmXMeknnUn2pBFbkP91aHinR5I20PQsBysJ7VbeDVRMNDQILfL6IvQ2iBR+VB0jhpUvdH6VTlzEyLOsiFZ6M2Jp+p2SGT7Vpp/JMXXX623sDe85QvDd7r2uf72FoLtu2Hg3r6+sEAH4AnB6GCG+gEOBvrTVlIJOh6vSItboRXtMh2LntLadfeAbV2xJt/1ywxBde4mewPRAVKQ1QRbAqCWmvL6psbOqrg0dJjLU0+n89PhFJDqv2ljM/3dK80KjM73DrqXLOZKGiUERVw4znNxpM6iVwvX1wbhRf3K6WE8/k8GPUEDGajUY0FvadGKWYHVWnqOYU306F+Xw05TEbMYADK9UIIlpU33MvSkxU0VWUXKqaeWDNwYcKXL93X+Rnnv9PAnIUDn28W/GqM2+dpaOQmwKk8Z1qodaILdANr37buVMne6/5xzRSkM53Pgk0NXFUs47508F15ZTaUn6MJ3hdp5K358xowMAMxNOMy0Cj2tYQGUvmelQI44Ad43zV0OkzJehxlUTSUR/y3TcutQCltGuZ8Ns2JlmyFWaaq4aTOJcLT+/Y9fqpMVc7pOoDO0yqLZgcQgGcslSf0okOLlJd0De2zQNcD3gstIiCXag6lGzTkQVQHJ5JlztXQsza4NzHGHlXvuCXgEU+HKRFDBxhq87UC0V7LbgKzn4ILGQeMEAyKlTJZu1YajJcs5YoxxtYDEbVnKdlzdFqu/h9ph86VvnQPZzrhmcZsfZfWZW1AQTOIYxyMbO4f5Yd+puxjwIWfvVwuAnRhkF2qA3jdZx1eeWnQkPKPe6dRdr6nBiBLH7vD1ieoAdXKUPNYojGDkJr5x+vQqUIdyz/N4ZfgQbUS/DaFV+4z61+eV/KBBSE4OCLf4X1oRKvTpesnyTYe5p6RTko3gg/LYn1iYJnSADOmrVl9KRXX3aZoolaUXNpglbnX8izj+5orUuy2kOoInleulpGYYvL7VOFKO02TzbwXAAnecCK0TQysKJ69Vxy9o2yudUdrzgXKtw7o9Wt3UDEln4jXnigMWVXKm2AqQjCZlYLKUXjSWoWPzW08brrFgEPbn9pK7PRcU3JnSJycWZ6yX6c6KwoA2Fpqyy7ldQzEMNCSWV8xxqH0ik4hQvDJhxXbvntAQipAwjQAq1oW3u46PaX0pPcj9XzmTrdglMnzNvzG5aQn+D2xAZusoOx3fVDRZcGSFoTESqGntiWv8Zyc1VK+QvDXZb2pl+5/pOOhBeHUH+G9QgiIiwHJLN3mOR6PRywhGJAaxiwbfk4d7Vn2hxixsNogJdQYAM+03EWekzaUXmjL2/sLUrJhgtZWoN+L/MtS5BhjH+yB+mRtKsN7sL7TGsF3o/U0fIZ2agAQ0+qBvtrBgkZLxoM1qG5LMBxh9FdboFbAvOa8C2jS9gelT4h2ekghYlm6XGMrF9oeCgbBbUvl111AqBgtY3nwM4JWOwF73nurldjLWefqrcEWxFOdw/d4FtwX9W/p+816rtG3AHI8w9l/VJrkaw4Izdn6WvmmlVbqR2uATH0OpWfjq9JtmEigu/sDXEtL1shjnz+1febqOAUhuTYFVnsyQPfLWxAtxoEftG+q2kd8MYkIQHsO26++Hm3XFULwAXLdhiJmwnUqMKb0obiA+nyq2wc/YdoT9fEbbxfJ7pN916xp1Wvqi2iG6ezrkhb0vHgfPp9mhKo/z31Vm5TvaaCJvEs+zaUCoSAkrwoIrEh7GnTXveWaFZBWGf538fo7APg6+gjY5MBac5u4xiyablAAFIfbxkESPcq9eMojle3i/a7YIJbEwbIOJUJG19XRmIUYgOGg9cXvAuOEWhLVjGDzRaYhqMbyJjIqP6PAIQ9YBfFzDrj2b1DCm4lwFtT8HoUKwQE+yxxt57Oqk6NrV4NdiZ3rVSNyBgueYxBdP++h5zAb/+r48N/P3YvvUREOmXbyGT0Tjrpv13GnT2mmOnCv/QD0fjaFUEq+ah2cg1qBXg4bAHThOCsk0kJGHejELzIYX7qXSkOknRAsQk2+UYWne8XvMqO1XVOABQBeisPyqfFFIUy6U+FFuleAgOdp9HhFrea0tCEBg5BzMHBZ2oATVThqBDUQudZWjlb9zGJKQ0bRILShwQp/TncKlQb81FHhU7hrQd32XrYtCqllnQYDoHSvVXbFGL2vmpVmzrSue6x8F32IAz/Pjyp9RD+zwIErNYJtD2j4kP9LMRlNeTGfo01EpWNVUXMdDZLcy1oMcBvLp7jvsyxrZwGmsPvzltCcv4ramrTToEnBipotK0F40A1r9mUFPDumOfgc7sI8VTE6nZ/3akoaCJaREXt263O8S94krbQBKcziSAExWaZLA+xDAEQnJDy9LuVJM3xr5zX97Gzw8L0ZOFdjyVnL+0raMIIQ46CDOsg3yta2RgcAGPhp6/BJpwquKZDH6+izdDru9+EaOg32xuV0AObed5Q1u/eyS2vP9g4htIywWg1Yn0F/Agz6Hc0I4E9+JqbYAJnF+9b01gPmqJk9tAznw2dWQ5g8kYuVgtk1HUgSA14Ncs3S5lAJnk3ZXR4lCzw0sChYxmq7VqEdkFAKM4KkqXsMWIJdIy7Ow8WEotpctDlUJiuN5iz8HY0nrSxlf3IOMRjQVCvpHkTdmgJSXdZ+FgNSDXCIqCEC8DNCRQkdMPI00wbbBdf/bSI1OuzXAP4G0vesZCA8y2dG4/2s2/N5GTL7XAV/v3imJPy9WmtvNxHkOYsBSKN+cB1QAYC2c3W587Qfk13I+iwanfas1lIKUkgDbSo/NEfKdUveTT+EODqJfJGn+DvPujlgVXiSfCDOq629DuCcb2rLmmh6s1YbhrPvVh5aDXwp1rwRuY49wJSGN9qzUBkVB6eaz6D7yecNIbSSrR6msaDndu1Tyskjc2bUbCs3h9Y24kkghU7qc5nkPehPQjZ9mPMOax8ahrXHEFtWvMqZfm0r04sxKlMMwY8UCH504C+t3a+ijFMbaMxEjM2m7oHV/rzWT9btlghEBk0qWrJICNGzX8kMdaBHlp1zMAmBOFPHlCNO48mAvc439Qk/cI3MqtNzUHmvTn6M6cl7I3Dy1F+ZZYy2fVB+mv1fBTIU3J+/V0ppfScV+OH6TqdTe1YO1FBbjjJcq6tU5sUYcXNz04DfGdTTz2oAXO0YDTrONlA/I/jQmJ4FG93WBYDT4eiBLg+YxnFYxtA3emdV12iPz/p39snoo9DHn4HRvj8FebM2PzX26oGKEVxUGz3nHQEJy5IQV9NrexlLszXpyKqDutwmfpLbvlUsiyU9db9q5BnNeJ1le8MtfN3GTyyD77gNn00TQAJsyB7adbtsjbIfweW6ykjdG6WF53wN3k/ty+Px+MTm1ASS2d8vObe+oHa97j8AFbUEVFC+j3aegnfkFbUltT3E4Ff8gNcPL9FFAKq1Y66lYndF5BAJLl4ey0mWcCAQQMuQiF4qQaK7Xq9YqTAQkfN1OKTBuUCP7lAIaEkjs59I6KooeIjzlFA1tAmWAWjRA1XK873m7INBGMcxPVmFK4BBQJIpKWQJaqrjxnsqU6dk5VU6YZRCWvdwNsZV4Gi2lBpgqhD4k2t+rlxS10rHh704NMtoVpTK2PP19NwGpT8pk9/1PkCFFMD+N6VV9xBkAG2C/kxxbOyZS26TWJuxW4ESVC13w8LOnAYhsxi7sWHrMoCcfeZixTDpsIY+AQuwXgc0bGfAi8InBCDnXsYG9ClTFIq/q19EZV+BGIDiWTClR9dKrWZYYVR6fJ/7wnVdr9chbZ1CLWdTvAZE6jSl0HYxxgirmuAodXPYDgfS+I5azZGyflgOnkTLckCwvxXvRRbZKyXClJIYpCxNip4vxucBrCREHX0edp3onUY+FZJNyx0zbJWmTT5ZfzdTgNqnSvvdqQPJ8i2L9rIv4exEmYMYnDiDg30Ra+JeB+x7Rs7mQFRm0CwcyGPfO6yrbbvTP6eVKpBZq6OgDjamFJtzWiQblEGHBhyH0Iz59nwArG9FdecktKEDxj4ORjIrggYADAxvileMats+V8y181MGQQT7mQtlOtpeGo1OzlSwJ7P1mlFOBxV8/hAQqvWy2vPu2Yg2BbXWaiXBMTUDhtfXoAnBxUgDXuhN+Y6/q0E/gyak8VIsq3RnNDsAnPzYZXtGLcDxuNqwKy/pTHF1XqvIdcO+ZaQl4bptLUNxWRYUlCfGL+mS+u14PLb91Ois8tLsIKlhxn6Dqtf4jACsD1hkn8zaGq6vXkoSAZmu2F+znlSDft7bWi2jTSPGbPAUQvQMEjReiMHKFs0wzgirg9EuYxpwuK7Gm3tFRYH1TwwuV4CQ+oTnWixjqweRR53qN+77U6QdQgwtA5lgdzXkF8GnrFKORsoQVOS6Gx0D2PatB6LQAQataDDuY+ZKRkUEQkVcLcMgsymW8xEzuKL3AmyyNQCFZ0q6D7GVGAcwGzc6SGQZuQ7J2Tk0IAwtsBCi/V7y05YmJltIa31POzg38iRfsyPUbRL/vINOFJ2gLDJ2ND1fAQQHPMQsooNP8Iv9j8zuMJoMq+kiBk6ak+YSqwTe2IaLcVBNrBZo70Prxl6Y7ZlKz1RS/UO7+7CsNkQj9syNweGtxR6U4LWDqLkULIHDwvpZqezogWw+k9H1kpIBxzDAKa0W7CQ4GHIPkiUHvmuWQRmU2zHgevUWP+hTTslLZbdeTHl7ukcxRMTFhiWpXFAAgOeh+1br2AKmyRx0YKxOPKYOKv+un0E1wMxA09QCdSXnNqm6omJH6cEBod/2bPuOvBeYinX/zfvh0V7cvATW6Mz2UEFivR7XN9uuLSsWT3t+1mD4PXnOWqOYrVYrM94LctlRgT6h2q+RQsQO56vQ/QG2qDEbnARHoG3Up2ZWCqBQilFbFFCtGgJZCZp68IxYK89tlg+8Jgf3WPCjeGA74XBY2r4oODfTi/pWs32u+pT35xlpv0S+SLcq32ZZRzCEPYYvl0s7b9XJHI7WgZuRF2hPatZg96F6b0D9qf5wZvDaz6gFHnOxQIbQUgqjv67+7fwijz43YKTZsnXMbOSzNz3iOhoxYS/WM7qi627Txd3/4p7N4L+VkFtPdHhlS/KKGcU6SPvms3b5U66eROU8xuSCkCJQivOYB2wYQhc6416pPvM/mn3u6w8Irf+x0kxPWCKBGeBNe2MJQEh9SEazDUvxIJ0GfbocVBmq4BnPiTSuZ7yu65OKR15DwWQnAvNHPBt6362VCQIsGaF2vtS2VMqrXFPLAJQgNz9vIONos/9tXj8Y4Lt4tprWZasCUjBBwSgCHAGhldS2jQhRBmbs7fAUwVeGDsGcbi1XBbriUOHHdfA7Wnark3so5DSL5XA4DFl6OiF0voeuYUbu7ZrWrPZyuTRhw1RkzRBsxgSej1LwdxXiFD5kIu7ZXDbLvdKegT2KFgZBpd/TZ1GASBmO+6zGB40TJX6+pxEcGl56PwVllYZmoFTpSOlEr0NhZfdr/n87OwIlFNh2/TFq3copyfwVQ+YRUFsEeI4aaESKNKznyedJwQsGaQDFYOUIHkUARlrWZ+gKPWFZgtD4ZQBXqdA7L4wgXRPcYTwDKk3LMui8yDUoHfJa5DF+hsqbTmBKFp0CxjNDCD7V0DMthTZNCY1RTUa6Q4xt8AmnMgauqbYP+7Op8B17PKhxxLPidOVarXvTuj7tUVZrxb7ZvqZoapLnrtdUA0ANITZhpvNmtMrIJQE+yrhuSGmQQRXgcKbV9kll87Is0mQ/OKAAB6sY+GDpW2z9ogZ5W5sLjbQkLx/x9gelZ2fkPWNdFiwObFVI4EFsK+MzZm30Y9OpiYUIvRhlXXY8VZJ9H7seivTa/ZqxjEae9cfu+qTTQ7TyNMogvyf7nrXrxYiyT31h4pgxXkXRa5CJ1805t8yzARgV40ANT5XlXAd/b8/hUdZQXJZIL1Cjo4KUem86AhF2GbvWuh7a+fmhDc83Z23Mji11Kdc2G1j8bM9G6f9GtewklkhXYLiP6dmlvaf3zvvYb4/ljF0PdLlNeacOPGmg8XLqfc34923bgYSWOcbeYXbudjYHnx6YJate+9KlZHJ2PGt3xGsBm+KvzOyRrJw5ODeD/wyusudUpEFeKYeZ2RcbAAMAZWcQbmn0Rodm37ch+0LpLsaIPXt2TrB7ND50a7RKn0F7NtvbAQgIsKEGIbieddkW3Pv3563FgL6UEvbaDW7Ke9KZgebV4N4AUAipU6+vGJLJsSLBngFktuzAGAPSEju4EsbKBX/i5mxRfgCh9fFr67RPdqBLsuv69SyLKMbo/RqNriljNIDXGNkDOk0u5GLARK1Nes5lcypvIDainZ9NTWVD8uz9L6stugFlvF8tBso1Z3nqC0lEJADN+dU1AD1zK04A85ISkJLJaHTZQmCAfWy57SF4r1xxSpfVQb1NyqzctpidNrVnSzHneyub7+EIwmipIXl1pjfKcdpc2kucMpDBdQ2yzfQafG8Y9DTg1oCCUjuoYs5+15k555ap1bKm0Z8hTYM/9N7MYCk1t37jtNl59vSrFPStApKoP9kAAZbVB//JLFwPTpCRolQaLGkRv6rnVTbAo+R2/VIN2KjFmc7vYXRagdTtkaavRaZ0XuzgZpMRvrVpSdjO22DvPfes23ZFSquBxLDP7Ln336Pe1cowzaL7Xa2SgN7egzSpYMZcrcXvkFca2Coy6rn/9H3qHsohXXNBaT788Xhsn1d+Uf6ifqTOaUEFz5Zm64hYNdMwYl16Gaf6YPw9RhsewiEbM19dLhcwsDA/p15L93l+dsqxw4FDjAQ4DT2JZEl9AjG/22ygANhEVrOl9XP9vAL2vNsgCDmzdVl6j1vn61wKquAF1XVDcT0dvNclouWqFR8sWFARJ9tEh4M0fRZG/zA4gMgy/5Ssusqec0dAGPyvZndwr6LaCE8HN8701e87Zsg1uVfHysknOk72T8+WiQrEnhSnUqxC7686uPtvY1WZvYcf/PrBAF8tZWB6pt4qCt+iZLUOBrQCPQBaie1c2qogwMxIcx8LCiquRZlQv8/76GaTAPVwKew4RIIKrCvxDmryeQEMNfRAP0gqtPP5PEx74b6p4wbgyV48B+wFEQoKWvIzfGnDTz6vZkwoMZJpCP51pfM0S4jMRCScLxWOqmCoyNWg4Z6TAZ7r5UcamJv5zuvi2T6n1GxvgWZKB0bOx1JgvV6tFUjdcTOFXlrvkpSSRWJEEcIdTnWWZ6CvGxdjRKGvc9wTRr8avcXQSlmA3pdB6ZtrsnuE4b5KR3Z/eHkWozF9Ld15G0vjSi7YxOGd929uhDo7CuQnni3XoWWnSfh7AMvxtPyg7Vc153rH7k5Oz36lIwZ0I7BdU2hIz5NGBUF49reoeD51PQAITsPcryjny3swyjkrDnVCbR2QvzPy1Xui8T1myWo0a1QaXcnUbQRiTSGbkzw0uQX5q9OL0g7lVzt7dNC3ZALtXf6tKbXn39nTyw3XJRDI9fMBUIVP4Nk/fL4mJwXgVv5RGax/171oMuCZ9wfZNAH2MVpvshB11D3ceBkNEpUdzSCP3ckFurFQyji0aHb+dF36O1+zUT3KJQznGsNYlqLR35wzUuwtKvTsu86Fgy0jTejz6+dVH9CxYyBl27vDw+elQws81UnmjFvm9Gyk9V5B1bJ5o6555HG9J89hphmeDeWL0lfTtRO92VplmnALAodn+V33Sp34fd+wLlY2VdGH59RSENOKQxua08Ef8rM+yy5ZTwMYUMfs9ACbCGyOcfRs4k7fMYZhWIDuEQDUVIazUvoz2egBBp+QXSvP2wIaSn9w8E6N9hiiD8kIjSeHl+pg9KwRZg7OZ6RnqrYR6UjpVz+3LAtiCZYVHsyZtzOwzEH2AkSunsHd6UttzFptyjXXHAK8vL0/ktFa7+cJALVM6wuwskRO8kOXYaUU7KUHEGK0rKsQ0Eqz+3WsusEyB03uP2f36R7yZ84ZueYG2M36tZTilQgi08M4jbHp/ZQaAEXcpsikbpXF/M7sXDd7TQIQOjhC5emcraF/Y7koM49iiq2vH++jctpoaBwsUdFtAZXfnWyFR2QdzT9ZEiDfJW3zM8qLM71G3itGZLbqqZYRXKr1QS+1Olbm6/dn0jK17D2Aa61uY22DHtb1N3sqpiHQo3qQv6vPZjo0PnmWGJkNaWC8xdip/wyYrJ7xPzvMY0ZkaFmwyj92nYLgmVFmYvVAIXmvuv0Y0pjZw092Whz5yiqwetkrgSx+R+nN7Lrdg7Cbtwhh6bLpEtMB1QaviS3AZI7ZN9b7KI3NgyXY8oL0xWuqfULfewaSeW0GwLVqS+85Z3VzfaxSUz9H6Z1/Z6ssDtBs52cn5dnx1OmkldEWUYCIfrnaXKR9HcwA9KSlGVBVHUqa5h6SFxRQrvtIL9GBdzOqKva8o5bem3Bd1wae9TX1rMnZ51+StSMqOSMG6++8e+WZ0kKMcQhedlsTHqjvvfW4z6UUhJRMd6QuqzXg0HCDNAZ61U+jjdZkSilNfw+VUhhtR4lBDLSl+vs5f1OBXP6bNK/Xoq2h8m+2qVXXqL7hZ2cQb85+n31G1Qm0h37o6+9kyIZGt7lIHnIXbKNDQucO6ESjwB0ZmQ6HorP8/MxEypQUIvMBz0qVBgIVFe+tgzVOp9OQeZRSwul0erLuOcNQMxlnoagRKl5T94LCXI1Bvvh9zQTi9dRZV8JTgiUBaekxr8s1qEMJjP1C9Ax0PfvkZI8CrTOSOmKtMa8YE7y3nv22bTYxMIxZT9ojcT4PKi0VsPZ3gJ4Q90Kfl4YEhQ6ANnnPnCwA6LQeQrDJbhR8IQDFHRm+WoBmdC7UOFKjToUPP6OgqNHbmDWqwlBpCiCYuwPgdKbsztrc+N6i/rXWljp/OBzaGfDfpL+c90ajCt7rNVUJ0pDT7zw+Pra/21n2nohU0tb4nQYjS/xHsIH0a9F6L9fJBbVGFIwTo0LwssjUoy+Q99XxVp5W/jLQB8O+K02zD9zsdPCzWibN6zNTh5/X//hSXlf5pgpl5mV+j/yohh4Bk8vlYpExz9bhd5ZlQcRYYjw7Ju2adlM/9555VoU3VBZY5lr1860owfrd6V4NIFdAy8J8bm9mI7g1vJfzGWXBKCOf23ujtdFparJm93JucbCe+xx/tsl0Xl7NAIu+9Puq44DRoTMnvRtHzzmLGoxS+VKKlatogOE5I0idBl5Hz7KiIpTRWVX9wXNW2lS5oGtMSI3euC59XhphBCL53vFwHKKvuvfLsqAWK9/nHszAV8kFNT7NQKFeaTwQx+w83ecwnTf3TG0AhD75eD4nYGzxEUJoNhBlQq1FzhoIMcEm7/n3Y2wycdaDXUb181V60GdnXz6WVG77ZmUoYFPwMSigDtmSOhA63ncEidrUuaTgmg8CyxJJj6H1Nmw8kTybcDKyG0DjLSV68q7YT/Ep4M91Gc0xI5yA2qgLZhmeUmrDM7odZcAjQm26yrISx/JY9i+sDTiofQiLFZcO96YI6+sfZXFAQFwiyjbahqTlZdozS9AcsxIoO9OSsEQr4VSa1/UQnIv16R7RXmY/L+5ZC4ai2wlx6QMUVIby+ktcZHDJqO+ZQMD7K7+RB3LOXnLWbV51hpvuBRpgwLWo3QJYv85933CIh/as1+t1eE5eV+3ZEMIIEArQrPcGDMiLsdOyfRetp5zaWJrRx3Oc/SoATdYrn4dqmekcDlcJ7UVva+ItXigHs4OAIYSm4+mVqG82nJM44uofqXxSeWh09lQHk/6sxUVs5fjW8sBB6IYCj3pIQeAefKRcYj9iAuEZRiJhsNnns9LnrLV6C4Ouy4rozK5zO1g+2JCTfKScBhJShbVw8L/bnlUgWFk695P/lVKeDFdourp2X67pT3lGvhSM4r9nupttR/KW8j75Uc+4+y6jzaN2ttqT+hx8/tPpNIBt8znrGSXZYybR1FoHHlFgn9diogxf2gJM/RjapnPGI9ejtlCTTdWDUxI4aWsKAcfTAXnbka8bEEID9XhPPovKuSY7pgACfbWmH2NoskDXqv7CIMsBJDwPjpZiwZd9HzEO0nUberpvbQ9ZVdhoonrWdagDTaFi0GF8ZmYhs6/zHNhQeuJ+zHYIMYzf9bk5MUxtOr6GZ5hoeLYNla4BBuY803Qd22XptSYz5W/1+uEAX+jIOp1/IuvMyuF71+u1EYAqVW4KH5KfIUhIAI6f5QHRQVRwR0EkMgGZjOWwwNOIoUY7KCQpSLTRKJ9H+4jpwVPYcWQ4M9DU4eFrMFrFWFFni+9rpGx2fvQaQM+Qe06RzGWH+jlVhHNkRkECrn0GKvm8es9ZEeh5qVDhulXgqWKptfao8OQs8lwofHWPbaLmc6Wjo3BQxozRHAju79IagvoUNk7VqlbisJdteJ4Yo0/XtFIqgCV+/T5cL89j98ioZqNEKZvRbKy2XjFMqPxmhap72e9XkTMbDHN/x4hejNHsiDieBdPd27lHKTP0zyye4abZlzM9KW2cTqepD2QFkMEm9UrjALDtuwv5sXdNE6Tb1vpwNIBDMmsBuHFrJbuAGbkIHSDmtQjyc+907U0BSWZkA9AK+7DVwfmH/K4Grho+zKjRF/leaVkNsPn+QI80qtJVemmZhUpTBMW8So98CxBAYJmMKys5n3VdUQHsuYM/bBLP6/M55sxh8lBKi3f0QnuGUU6GFoHsWVpjtnAls1EpB+/NNxnl/J7uy9zYmTItReMXNQLJsDGOBoPKH5XVquhrYNljAdtBkqZSstYNM0CkZ6cOErOY+HfSAKPRqjcG40P2db4+/849UZmrNBmA5sTpd9WBnfd5NiJ5LQ3k6f2eM/Jnx6hWj9y39QXU3UpM6auZDvHsDy/bXBcr30t0IAUsCCFgXXrWe8m98X4Ay1QiWiZJfAoAeYedRiu6dyqjnwNQ7BmBGFfEELHvGzhUoRR4WWV3FGqtAziWUjIADcHbgXrGjeu30fnUwUoBS7Jpz+wz2/e1Dsb3vPaaRjtOjd5SipUFSnZwo6PQM/e3a3cItt3KdQADggz0MZAvi5MDSE8rh8dQp6CXOAX6Uh41PWTBCdp+BHdnGofTAIM8nSb5HzPPumPRbJ5o9GD9w9Sxl1cIU7eKbrPlnNF7GTgdxa4HY4yo2ySHeJ6NbyzzOaZRNzmiilwKrtcLUgxPsljUmaWeVluQWcG8N+1X3ccGdpbuKM/BY8CyG0Mdyzb1LJ4LrIzvWwDpOvX+UvrUdVOXqM2r+lpB+BBC80MYOFBZ106u1paZro7/oM9TtKqQWlHyjoSEGBLWmHC+nMGKgXUqD+Qa933H6XR64qzPsr4FEkJAkewqGxhWsRcDq5ZlQRE9Tf2loCVCT+Zo9OAgde8Xa/bcshxQipUumxMdkTN1DrAs6xO5wb3R4Pa+XZGW1QZSBQvQaEm1ZpRXi4481Z0CmikQl/Pehz+KjoEDbdTPpfRpwbU6cBgCaogI3naEwKj6VyGMATBtVcT12N+A6Bn+sRafEl2xHmwoZSkZW7ZKjcV7KROUop9LwE3tRAVhZ36i7FC/cbYNKFtUv3Pv1I/lOrRcWPle+VSv32jRgeu5N9rNzc2YsSf6RzP7Z1lA/uRzp2S9+mZdxfVRDuh3lKfm5AnKgLavPniIFSwqj0jvMfU++01W5ozLGajVbRLAAi6pV6YV+p7/O2vSNfPMLYvdgmoa4JzXF7w8NpceIOGZNHqWAM0Mxum9l2WxgSalWMBAaczS+A1g5/Vipze1o5u8g+lcTLpSbUuly5nG1d/nT2JD+nrOFp4DEU/2bbaF5LxJczHaUBTDwsbg/qz3/i5efycZfMDonFAJAHiSnstN0bRgJR4q4DmKr4j57Iy16I47Myo0SchqPHBNFCBAL8tRRaLOkman6Tr4Nwo1EsL5fB6MBWBEezUTToUVv9N6nKEDjioMaFgoMKl7pgQ2g2JzZEGFnApE7i3XSyGhhK0MxP1X0HAmcqUFNfI04sH7z47pnOGg158zrNp9MDJoZ6juBOs+63M3hcVnbrhBcUNrHQQbFYKtoWDL1lR3SQl525pBoODB/Ny6b0bXYykK12ZGVh4MCf7U66hgSmlxQx1YlrEnIL9DwA8ArtsVL8LBnQl7/3K5NPC6rZ33T73cQmk55x0pWclCL8OtAz3rlGjNHirFe2xNDUdjCK3BOM8JYFp3B5jYg48KkzyXPLus02KRUtQwnOss/Mm7zXiaZHJKCTVWILuBISAXn4+GT+MB1NbT7rmX0r7uPf9NelUHhntKflT5oEDg4GgAqIH9isbonmfS2/6EEWTUEs0UvfdGReuZRN7iPpCGLbtLJ+91QEcN5Nlom9s1UI+UUqxMp5hRHJcFFSw9sMw5nnOdSlu4z8+9rERxHFa0rj4BPnSQVuUTn1ONfDU02SvLeqkAENCG96E+U+U/nz33Zs6ImGU+1zUY07EHhQA0AL8HgtDAR+WzJ3QaRp1G+iK/Xy6XQcYNgJKsme8pGMrX7Ex0uZiwb+zl4hk6uVhj82fkudkZlnWzZ9eftQ4OXb9Pe7xh2EBKqTVVrrWXQ7bt4L32zUvzYste6p8hnYSBl1Qv2rULSoCvlfRoZTc20drPpdbmUDCYxuFmLJGvnDRdxswY5a1mHFMPpQiaLvu+Yz30nrzcC/YswmSbsYeo0ZdnTwbaQ9UyFUJo2S8xRqTFzz0wG47Dpxx4qcWyfifaoA3Cc6ss/eH/qg/nccC1fz2iN7S3nkPUIaobB7uC+1X5f7IOB1QbEILUZJbRrINkMbQ1qgzujpM18v7fN/qrYMemL3kNuExo2a1hDATTEVXdxCDPnjd3xrrtl3NuOqWVzlPQYyxtn8HrEEIvE0V3itn/yZq5d1s+ilyKE23u+95sEPoQvCa/o88ZQkWpYzahtjJRecLnGPQeqUTkwyxrZ39Ee841OVam54rj0A7T8WYvlVKxlx1xz7iWs4E76wGIpmspU5V/1YanrlFdGdEd6JyzgVxeVn7drojF+iQaLRpQNdvgDHDEaKXyIVoQvelXsf8IIo6gkvebrAQbu92m4AxpgPee+2PVWrAVA9fDZBsm39OAgBQWmCHWaTwtCSmM/brIf8uyen+30uSF0WxAWgJiWmyyOSpq7futdgNtcr70TPjcfKlMUV/IPs89HXV6CPw5gm28xuzzXS4XHI/WxkEr0ZRn+DeVBeq7UW/asJC+1/r8tD/5faVJHdyoYDCfnT6RZtDyffqcpCNNZND9IhjF/WCyUbP5RT4AaMAoaUDBFsUZ+F0F7UspzeZU3KHZfR74m/eFg/dM922tb+4MnHKdtZShAtJ8Wlh5eDQdRrmpslNtzuGsYk8QUrnX7C6/vtl9vZpL96YB8G7TMGNW358xlFpZnRMN1KtAyWgDu8jCtIdCwADkDjyEOshPpWHu33OYkcoy3ovA7Awkz76o7q/6Mmqz8dnnhCLds7wX1GRA/4xlzAD8/yGGbAT0bAeWeZEZtVwD6E5BmYhWGV03cXCA6xiJoDDgdefovwpvNfzUwVLgTYmRAkabf2uppx4MieV4PI4MPoGRXJdGi9QQn59vNiy1x5USru6fMpMKNd2LdvDSH6wJPE3dxogo8/7zuvgdVcIarVHFpeAp7z2j4vzJaz4r9MQh0XNQwJT314zCThs9Qq9GhKLy/D6f56kDZJMkuX4+s+11zxDk55dlMcNfhIm+nnNqS+nTNMkHBKV5znUCB5Vv5n01WitP+IyfVRBblWgIofXp0fOstT7pW3E8HFCyAdx89tQyBLoQVBpVIUqjn+BASgnrYcXj5WyGbYpIJSFUNIBPDXqTCWY4Rl/3sq5YwngeAcC27djEEFeAb/isCH6VKe28JIPmer02nkgp4bAeUEvx6O/Yz4m/L2lta1KH64nyFWXSQVBYxksA1nV5VoZoeQ5/0mhS+dQyBNbFIm5OE20vSsG+W7ZGjD3LNSUbzlBrz6biJD5dD4AhM63LCbRm1ApQKz9zz5lJNCtW5aPmeAa7LvcXqDYJlp+tY1nnbJR3B9Gd5d34kMbyvmccDity6eeqTp7qAtV1lMs55+akHQ4HbDl7Y/wuB7YpS6nz1Dg9HcAT8FxpZwbUGn1h5HfK3u40sFfXKFf5qg5w6DRPvq96pAcZnu8JyP1+zrjSl+rKbox1Xd6CJymiICMmL/kGpxJ2w077ilZgmDiHapHzXDsNMihS6+jMp5iQQkCJBhR249qzzWTf+Kz2XThwNdKGyiCVP8fDEXDQvbhlbwCf02h1cMl5INImAixTOViQJ4SnAbKmT6o7ILU2WRRghn7Odg11tvmstHWs74+UHW0b9n3Dsi5O87s15uaewIz8XMaBNBqwc2odAj/KX0rPYwnmCIjTOQ4A5vY23ENO0WRQanY257PvPGaghf3dwDk25g8RT/R6RW1Dh5Rv1Dmv5SlQximJw3MjNACT67Pv12FP+PDMLAHLFMXRs/9MVjLbj/o4pdSc5kFHL2NZHfeGZ9W+75NbSTf8r/iQj+o2Lfd13/eGXQaMmWKzk6U2/kwXPOAkDiODj7OOVZnDPmIzGKF+h/K1OpDqYzRZF3o7I/5dbVyuf00rwjoCK7Z/VhmiNKHygmvTfzf5Vg3gQzCHet+chpeIFBcry4eVvhkA1vupk0eXZTGfrlgZfwqLBwMrQq1gEl3T1WL300ZUmRvEbqI81/0kfSl/cyObryP+A79vgYZgA3cqPy+cUiyIyWuq76W9+lqw0QMTBLNtKvdox82B9Zk29N/UV01Oi2/CZ1a/yCqB6L8W9LTe0d9TX4kAM+mcATbSmZaUqo+o/pXyMtfe2jeErmfI47wOP6sADSthOEFXEysUmFOZMetAwPinDcXxl/oOc1ZVAybFR+Cez7w76EChKcov8iqfW1uBqb/C/eczqkyPgPdNrEhid8+ZjupvDmtlAkYIWKQaafb5NGig54NgvXhVVpIOrDTWpG1xn8Xo3TnH28GEGAaAnNVRs67kOpSWASAmrYDhWiU4EAPKPvqpPMfgtsJ8Rio79By4hyoTuVal9blFxHPBZb0+71k8MWTWEWpb6TUY5HrO1p3tl8m1+Vu9fviQjdqNKAXtWhN6ORy+GEmjU8GNAjA0aFQFzL+p8Dkej09AIDWU9IC5RnOEbZ10rvj+nH32BORwAqCA4UGHEHA+n9t6lNhoDGqG1Wy8UgGqwcj7z+CbCi1VDBqpVSFLY0SZRYlRo4BzhpC+VPjlnCdDehTo3BMFUFVQcT+UIfQ59PuqvHh/pTme/Zzpo0w97wmfR+lCf9c91x4siq6HNmnQAcl9H8rDYrRIfYo2ZRPVwLh1WRsd6bPzP1VGIYxGC98HLCshTnSkgkOBZD6zKlQ+F6c5sw+JgplAGs6JSkBBadJYMzD3HTXP2ZimNMzQ6mA97zXznQpH9mNIIaHWguJjyQsKtt16CgYEXK8bYgo4rBbZh0eqtv2K1XvaXLdrM+5TiCixIC1HAz1rz4pVA13BEa5Z5RD3XZUEr1Orl5WDCn5tIGTjjxocyI2IHg1XvuJLFUUpFQGxKQCWWrMkjf0K26uOgIgql+PxiOv1auXU1bIx2QtE5RvXZJktfT12XTOGO909zaJ4Tn7x+waS0qiviEtohqTybHHjuNYeYVVZOhiYgJcXFZRKIyZAy/bWtDZjoRvYlJVu0HqWXS1dD23b5oDfjhCBIqUeKuOUltVIU+NqWRL2PeN8vrTeg9wb0pAGTObggBoes4Okn5t/p5FY/KfRopd4Vsk6KPWJoTHLbUtBMhpIkUBbbL/T+FVjTfmG9DE72Pwu9+twPHj5utU0K20a70lmY7JMMTYitx4vY4BIAydAwM6pup6NauWkfZo1y3jV8EvJesJspaLmvs90xthDq8JKfPc9t6BoBVCrZHRNOgtwwF+atXPNKZnDVGH0mEvFYV1bT5eK2uSwXdP7yqJPoW260LNQm+0R3LhnxlHt2Ucx9v6tdDbynj372I1+9ImmQa7dZaj186u1tBYJoQTPHgit/zHQe3KRBhSortWBWIz23nO035wHo5wnfEE6sOuOfEQ6nG2SXnZq8or7DM/MiyEhHYy/5zL36uUAlAezk19KcRk/gu8K/vO7tXb9GmPAsrA8dhueM9MhCXS6HZCqo8zgc+ZsU6qT6ItlWZpcIq/RVlf5MOiaGBD9WfZtH86vXWeyAdtnAKTQAV/N3FAeJi/qWfF3oLdZUTtYnTq1v54DsBkAgO90Flmr+zHTiD5jCnEo/VPZNgM0+t3mF6DT9VwhRV1IEIU2up5TLtbDdo1rL4UrtWUxhxqsmLYUlLo3UMYAM8tg3qsFl9dlwb5nFG/ar7TDdWvAbrb/W1sXASLmYI75aFcEz7qP0Qa/1GIBGZuk2Qc59O8771cDx1LqWUvaY5P8rnzZbQgGqUw3WJYiebhnXPE1g0NKl3ofo20M61RfgDLEZB3aWev+KR2r/Gp0JnbQDOzp99VuUr95Dvzys3zO+Yxme2AG3vncavfmnNtQTQUClebVFlLfS30UtXkUKNT1zwk5qqNVFoQw9oBXe0XXqT4Xn5fP3vgRdXifv1tWn7eMwbjHrSqlWHZ+79eZsDCr3YyGNuAGMPlYRYZyj0opbY+5h8thRRSan/edNLTvXYfnvGFJB1QfBBXD2Adw5m0FG+nHWtUAAWGnqcqgY/dNCBiG2ulJezrSPjud1uF81E8mDahcn9eowSilswHMfiaQwr/bPRJiDS3oyrWorp9pzQp0xusBY5m0/vyhrx8M8HG0sQob/TkzANCzQngIjJQBY1aXOsvbtg3NQ4mO62Zqn7rG5BLxUvS+lILT6TQoZt5To5P8GxF57fXGlxoLM3GzlEAjEaqUdX943Tm6o8zXnDN/UdgouNcNuC4IFWDVDDAaG3zu3wU2KrPwes8RIb+j2XyzEFF6UYbi3+fz0OeZU/UbHU7rVcGj0VLbM5s+xM+bAR3BEoMQLLNCz3VWYvu+I9eClBakGLHXatNegxlNEQ5IICAC3tzUHXTSvguxAisPyy7A47K03jw8YwV1a63meONpltNstKoCea4/xbJ4b6dK8MTKZcinyxKH/eXUVzbOn3tWxRhx3fdmDKW0WOluSq28x0olmb4esW3X1teSSpqRLxpBycEXCleWLlGBH/z8tn33rC1rBt96OsW9A117Rkhd+RbyRrCmvCHalGTj9xVrSth2m8JYasF6OABwoCZFRKG10+nUzox8XsBUd7/Hsrix7sogGXi5S3bluq5g+gKb3KsMCYjIZTfnenUHLHq0vphcvu6blfFFGxgTEJFhz2t8XrHl3c4HCTW7ojHf0+4F70WYFpzzA6obzdowGgBubm5cbo7yguCt0gfPl7yeK/vZwEoKvVQ1BGsEnqutd11X7HnHnq10YUnJz8z2LyC06Yy1VtQmCwt6w3wCPgU1JMBBoJRsP0Ot3u8mYss9OLKsI0BVimWHMQNOZQOjbyV7pg48oycAwe/Hfj4xRCzLakBvtewp1RMKKHdZ5QY4PLtlyoSI0frLGEjw1HDmWvO+G/iMAERrIm97RDkQuyOLDvTV6llKng3lC0BAxLL2xtalFFwuXbfPMpv8RyAQLv/4/IA794ejPWnpAKLRJnxvgX33qH7wjIds5SYpRGRma8DkQq39+yZbUod8qoPssobFQX9mt6AaEF1Kxp530xWuhxm8DCG0nlrNnik9K3vbvZ3JEhCig/Whg1XVHdFaK7EbbHkDJ6EbpmqAe/Rejnv2krvam4QTIEStnj0lgR9xQvbdemKZzZE8g6iD12HxgUIICLk7yEaPPpUX1us0WKIQYqhACgASUjIAdts27Fcr12XZsgbqarUoN/Xfsi4GHjZQsPr13dESG6TW2oZUWDPup9l+Bt4Fm8Jbx0AgsyHp3M/2yu/6GxCs/11li4HifUCBiB4czLm3sbDMKN53cZnrGX/gvZw+W4ZNQSjM4iEvMeO0+lAUBfd9T+EODUYbjN/lgAC17WgH5VIQF+sBCddhDegIo42u+6N2aAwBwYM2mg3Yztt1t4mhiFJzAwKNBwpKsYx73fsBCKg2NMgcRwMlSzVASwGLuRcgMGbVKVBJnRNixHa9IgA+nbNiSQtSslLc6+XiPNwzHjXLg+dfUJpsVMCCtMEEAbXx1UbefaoqYnRZGBq4pY6iOrtqo1vZbUBFaQG1Wqv3261NxgfXw7mYbDH7KDhPWyUKhWWKCRG16QnahOTPGWwxXbpacLY8zdCz4KLJcLOlC9Z1afqOQUieHhMCxqBsNh3gvRdZSoxSkRYZKsd9rl4i6vLU1tuz5Gxt0mbBhfVzwJuCKbR99BxsX6z0NpfswRvt6aUVMqMvTf3P+3Cy+el4aj2veX/KDAVi9DpcryacKK0QtCYdkWb54r7TjiMwznNuQ5cEyJ3BIJX5ujallflv5NcYY/Ot6RNauX9GLOOAm8Y/Qpe8v2IFSkd6P+6B2rT8G/exn0mvPFPwlPsTXO/RPieFpRQRvK+sMwBONzfGk2WaWOz2VguiLFKJ2ILNlgm3HtZGS8n78fLZGRAgHYyZilbGbsEwl7GlNDCuBSOApuu4FzxLUL4VAzMtzspsdys9j4n4RwTbiLgR6HZV9t7unvHnwdBUx97/s4+vYLJmVvNMdL1Kp/ZH9xm41/JcpBkLOkTfn/HsZ3pWoNCGGPZAniY00R5W+v+hr7+TDD421NR/60Oxb5cyrX5foyG1Vtze3g5IugpO7Vmh5ZeaMstNbcouPQWUVBEBvbSLhKERBP33jMx2pTJm3PC7wDjZRjMT+TkFLhkp4JhzFT76bEqoGiEgUc+EpkaORiL4UqKnsaZEyLXypxpXuh/8XUsgVOnp+vgaGGDar3mPNWNnYEqMCmMW5NxPS9/VKGMEy0bWNbqwTU156nN34DUi1YBSvHdALQioTdgFAKhoJep01JvRw3N0R8SatwPwUptQTSguMTx7/+bs1zLsu4KRs2Gg9KZKbNuuzYi2vSIgwp9dAfC7muXGezLtvxkYy4Lj8WhnHs3RpRpg/oIZ5GYkXvdr4z2WAdl6FnOYqihfAAffWwW3W+C2eiZSMeVEgVxrQckFBWND3YaSGFZgTjSsdI50F2NEYhPfaBmDtdZhitxswNBBoMPBcpKDg3c90pQdkOx9QGvt2Q6M5tEJMX7s/L8si4MARj9LWCTTsiBF6xsTvQH09Xr2SKKd0bZtANfidFxK6eWicXGDO/g0yDHjNKWEKxtTowC1YD2svud2Fl0WLmIkd74FvESyRJS6I7R+WEBIduZ7tubT67I2F6PvYXe+AtCcUaOHDugQIAAMgOtNfTmVGg0YBLoBYFljXU5ZE2JzRjRzs4EFMWKvnAQZEL1En43HS61Ykk+aR/SMn9B5xBc/T/Si7Ku1AonybowAXncbbpNibFknvJbSapOfTZY7YObgc95z46kBXA4dBDRXpzt8ec/Iqi9THNbN8gk+w7o6eFDdqFueGvz2OyOjzH6LbW1q5JJfixuEtEsMfD80Z1ij5U7aoHebHNxgLyfVzYFnFKzkD/BlxAWpjsFETu7sBr8BfOuaQLm05d3oqsY2IKOVqdTqLRgsayTEYBF1B2uy6ObgjgBBK5bvND0bag84pWSZ5Zv1VCrIDQyrpbQplQTLSi1gv8oOLpoBTjC5yvocIZ/0d68Q0DLDFuiNpcmsRXqWWuYOgGDArDXkLg1gNeChg5WwtB0ws0+d1FIKQqyIgdUH3ZE3dlc9+NRZI611MLC2+9vQp9D2MMYFVroemh4xh0iC4CHZMJPATLxOzwY0NJIeecKzaplRQcf6eJwzTGvr88dAN3W2Xtemto7ybs4qrEBrB8Lm8FrhorqfoBPtSDvFsYyJ+9lsweDgHIOYpU8gDsH07WBfiI1YivXbbAPAqk1+1uvTFrW1bQC6/KP/wmuqA19KQW16xWVA6rLgeDi2pu9qm6k+IBhhh9bPmPZssxPEruf1S+kZ4wao+q+xZ5KpvXTZrkgYWwqpL7LEiMuVfUEToWwPOieEGrBvV88iMiA8xZ4RRt2VlnFfOWhMZeVz1VDLsuC6W5A7pdgqWvZtb9nyCJZtymnLDRDwknk4j3Fv1TfiMzO4YU/HLM7ej7mWMcEhRqAWynYD2YMHvM02sMy7bbtiWXrf+BaQiqOPNWd1jnwZmo2AANc/o72utqQG0hWQUeCN66G/oXz+XDXPfDb6Is2R/kLolS0Ksqlc0kQO4GlG4/x8fA02Uxp7+DKhhmesYN0MyvFaSxr7ts28yGeg3zCfme7p76oy03WonFAAsNbags3khV59Za8lLQgAdnT/ehE5EFNsgH5KaHZarmXALliZlJIN1SrZ+k+XYnwdqmvHEIZKSfP/ekk65Y61ojF7u8B7TAT0LEL0oATPR8+x4wOu+4IHokq2IGTH/nxvI9bFp/0W7y2fTKZkD1q2ifLVg0ClDPdVuuDz8Wy4t7r2bsd2TKOds/No5DnG5zJlnc5TxyaUTmesq2EhADJGwHv222fe+SGvv4MefKE1xtRX6/sQe9ZcRz9DS9lVdJXMcblcGqLMTB41tLkpqrzIPLrBBB6osLV3hm58i6g2whyJRYWYflaBJzILgUYVQACGdWsJwmzoaomAKkwlAM2K2a5S7geNBKE9/3xfoJcja/qrCrDnBBrXqtfSrDIFm3T/+Hc1WhQwpXABOuFTSc9KQrMcVdnxb+pIqqAmcMR7cB16fT6fMe/I0MrgHHGtf1PAeBYIM+PHwFHlvTxHlWfrjwYXaBMdNgfdDTSlG+UxdVL4rAqsEuxQw1zXYsKrPrkmjeHxOp3feJ48m+6AHIcmvE345m58614ty4LdJ+Ku69KAcNJIDs83koWfnvWNSc2uDhO/qpCttSCi95Wg0xij9fAK0aLflDs8bz0/ZqbxHnSULCvOjZFcmjNLJ4bDP3gOKhcHg0HoSuVC9LVd/XvKBwZ6GUi4e7aUGahADGko50EFdhSE0ktVagX2fQMHVMRlNNTM+WOErrSG2zSauddNHtbSetI346xa9mEzNINlCzTHIsBLiTIJ7nfKlqaA4Rm1IADVHW068rUC0QcUVC/TzhXmwAUzEnQ4hAYtctkHYE91DtfVnKxaG2jCUnB1gPTF/epZO/2c5yhlWJ4612rMc6iP6iD9N2lWDV06mHwZbcVBlgxnh643lFZVtiotz8Y3AXbtTaL6Vu+j8kGfR1+ql+dMewZadP3G5x5sqECI1TLl3CiNqQeHNBqstkKtFhRQWbcsC0LSEqXiZZxcp2Ul5eLVDA4wAXXYn1CBuDjozHXn7P+O1lMyAKi59VWDgKpqNAIV+15Qtx1LCkjR9xP2Nc0UGCoppr3VYKqdn+vgyqh+8nvtCIGZfxUIMODfaYl2Hs+Ua9W+RXZO2UFGB+A8m2ZdLfCgNNkXHEXPS6AGAXBnKfgZmw70vqHBgBzScpO5AQNoWXkb6p9gDf1LKaiREf0dJVbU2mUm+chO28rwVCdzn9sNMQbl7LM9KMF/23sGWKptVglAhF6mp/xtfLIj5zH7iw57lIxZ3WO1OckLtNeb/eB7l7cd0L5vk40528ghWJk3+UztO65NHX7KLMoaBbcaOCm0m1Lv/zfbPip/VB5almN4sk7q9Lj0rED1dQY5ie4E29/snEvJWNdDsxe6/pTMMKfVUm04Ri1Arn3647quyHvBjoyQFhTJoOKz2/WsF2IFEFoGqy0lFJMxfQ88q95t3ZhIu97bu0o5dLTvbgKg8Gy0r5i1DzB5mWRIGsm90WatAMEX8odn3vNa6g/y1WWd8hLpXJM1ABRgWReXqxbsiJHBjd/V8oeyUXRVHXuNzRUL27YN9oH6YARCyD9GP5bJZ5/rYIK+yH8suaesUv4FgMfHx85TOTce0SxWBaEaXwWz69TW1/1gD1v1j2gPMxCtyTIKAM6gS3sWsRVnAK99FmMpvfrxynv8Gz9LG1erwChb+GJ1kgJ485k2oFzsiOd8Pu6vVl/o8yp4WHMGkgwAnBJcmq3i/MGMObXB+W/UDtCWYhUFSbAZPuMgH8kjwXyxdVkBBJRk1WWm02E2RikDHUVTnN3ubjZDRc09qFg9cxGBe9ZbRQERgLVbaroqhKZbBz6M3d5Xf9PW6PIkdnuHZ6Z0r/TEc4tD0kZsPsiIaUjQMZgM6e1f+jrnYM1sC/Os1JdTudDPfATe/zavHw7wTUa29m3iw+lhjBvWHRoSxvwZBe4UaJgz4cg0qlDIyGrM87PPOU9AZ2R+d446KmHo2nXNs3JWgcH31cBR4T4LaD6PMrMaNwQduMb5PlpmzCiCRl5VKcwOFrMddG/4bPpMNFr1Pe6vvsfXnG05MOmkjFQpqyBTwa6AXct+knJUBYFmY0CZ3+iNafpdCc8C3F7d0A7BoupqeKpBzXXo8/FVa30yOSpG79EQ4jD1TI0NAKjSR4SApwpg3RddgwkTMyRiHI31MVuzDzXg36ggFRji2ShPammhOhQKYLc+OtN0uVp7VmuMCfy2Nn2uGK/L63E/AKDsG0rxqFTJWOLYT7NFWT0TSe9Pum79uIoZ1Tyv2Qjh/quMUfm37zvKngfeeKIUa8+QJJDKM9PyZY2a3dzcNKObe8RrhWClpSXDlF41I/x4PPgauxJsitEj18w0Y2lxdJBtSV2e2L6Yw20R96dlKTSqSA/Xi02oU0fQWW2IpirNWVKOGu5jpHh2kGNKWNIo1/j3dv0a6SYL3zFr0wyJg2a6lC7P7Gy7QTyXqZvDYsbWsixe+gOUmm16c+jgxQzyaa86BdsU2GZj37LvNkAmjcNVmpEcQutlonvRnNPKsqyRBimzUkqW7SJBgCd7LXKZz68/2QcxhK4neJ0mD4EBeJjlo+6r7h3vP8t40hVpjNeZ9YA6HOY8CEBYrVSXDhSDWrNRrA58CqO+5V7bZ3vmRJex6A5jHm2MBh57cCIKTYVFJi7mjOhluc1hKV1fKt+M4JCVksbkcj0mb4MwDjCr1cByvU6T6bUa2B6svKjRXorYtt1LemzdMT7f2Jx7ovI0TMZ99ZL9JS0owUAOBp9IA/oy/tayG6M/BLQSbeuLa6VIOedW3skSpFx2lMx+XR5sw+hMEpgwkBMtczE0nVGtHUToDq7at/aso7PG53kOxO40PAblKIdML/U12tdG+1NtTTuD7oRSTlDHdbof+WYEUMb9mO1afo8DivSsuSdq6/LF789ZNCoPQ/DyQ9967m+jAf/csiyoYqOQ5tQm49qekxP23jIMdNDr6N7O+9Ps2X1HqRyKwyE2xtIxJctyb70s4xNeKcUyemwKfAFSQAj93M0uCk2ehmiltaS1DgCZw72I3tl9am8pGYfj6rbXboE3dCBkd1kTfJhQO/dow89QetaSBuzUgQ0xIoEZqPXJvilv6D48B8p0XZyGM6SuVFpU2mznikIh7JlNBMiNb2KzvXeKOvedxv6Bs27Sc5vPctRt1E1j8gkH9Cj4xOux7UsDu9PSnlmHT2gSCmW6Bshnva36gvS27X2w45wAo7ymL/WLVQ48B5wr76u/QvnD76nOZJangiPzvds+Ch2pPHhiX/oZUucSNOffeT2ClupzzuCM+p/ql/M9BYK5LgaK5mSe2R7ivrByizaO7iflKq+hPfj4HU1Cmv3hsBgdbNuOIFOGrT/u2I4B8LLorQcFmz0bPKs+59aHuNvavQ1U45ngFTVhTMyibtNgG4MgA78V2D0rUPaCEkd/eSw/7vvRbaJ+TqV6i62i8ok8CEt0QAKS908ODICbHUCbmtef5Zr1F4+9fUq7FysKWMkzYmV/m9ffQYluNyzVCAZ6aaQ6fASsSIgUSiQ8FSLqOP0uJJT3VmBDjW+9lxrdvJamqvIeKjzmCLMKRd6X19TsCd5b/6bChX0F6fSQYOdMSL0+X0q4szOta5sNl/nfalRT+MznpXuvQC1/b0JKBBmfh+fDa2t2AK/Ln+r8zca+GrCzkOJ+KAA2g5d6TjOQRhpIKeF8PsMaTy8AngIEvJfRMUv9XICUCcwKeCKw1QhYgjnfqoTVEQ8hINTSeGqmXdvnUYnqT6U3Feh9T3tTen0+FX6AOVdz5it7xez7PvTP1P26XC6NB1RhDgBcLai5ttIfyoIYI47Ho/H2bqUbCTJlN+/IUvakgObghBeZ7LxaGWvee0YjM0VqtnJnNQpytpKfXDKulyvSYqVxy7IMfUe0HEJL65VnSyntGatcn7JnNj7mnimbZOZt24bz+dx4hsY9dcG6ru18Hh8f7QzS6rRoQwP2vctrlXd2zYD92p27nh1ma+ezs59iy1qa+Jlr4Vnwv5QSEoe9lIy4jFOiAz1xOwmnWfu9ycBSW2NvNiRW2R2TNmimYQ+EwCi63SEubvw6qN+ajO87ym5AhfXxASI6yJNYBuIZtnxmVeJ81WqfqZ4dUIOX7MYABhH07BW0ptyc+boW7wV59GFVNQOlZxjye7X0UqYmU4JkZYfQIuIqh7gOOs9AD7wpTVMWPRfc6XpBm0r3512XpWXUYtIfCnDqmnQPFPhQmcjvqy2h8ml2vKqvK8AML353vh6/z38/cRgBLHExQN3lTtazqLXRoma/hWhlX0AHl5rMR0Wolol52byfZssUopNtGbohuG6DGZiULU+CZynagKHiGX+iK/hTacXot7QeY9rXiP1KIY7YAH5h1IFzSZTySHNEs/FzW28IrQyG8sAFAtyPaNcYnPfS+R7B3jusK2IKqNn5Mj0FpfqroiKjwnrlmgR4+qIcCDGiBpbiC1AcMJRqPQfePSc3TJ6YeAkFSLXToIJL9j3Kt35uRusFORekUFqJbAzee9N7NOV9b2Wxu/d/Mp6JrgNWVOyNN9S2BhhU6wMdNIuv/ZcN5AwYAWzSB/dAnXnuE6+ngUF1/pqcKQW7yGO1Xak/aZMcDoe2RvUf1IYiTbSMmQAgjMMwmq0U2TtuBCz4ijEiA60vMGC9p4LQ+Hbdun4UO0T3tVYgpIAU1ie+RAgB+1Za1va6LLiKz0I5TT2qwIjtfS+lp96Mkf33/PHZNiDvqJT73j6k1Irj4dBsoLQsT2QB7TmVN6o3FUSZfS4CC5oIoXJf9SZlPmWNXkeTDWZwRvUXUL2Um3tkMldBGv0ez0mz1tR/BYDj8QjAEicUaFDZGQxJ8KpI54G8t8EG3E/yxrZtYNYW73Vzc+PBuW5PqzxWf4uyWAGTEGyoyOl0avYn91z1A3+qX6lnojpI9cYAzNQO+hOI0SQbBWU0OKA2I/d+Buj1XjHGBqLP9+Oz8Z5A71PPZ+zZlbGds9IZr8EhZUqjXGfysvEUexVQa7exF+vPFmPjnZ3TYv160e3GUMKzNNv+FgK23fyLdVlwlWfhunT/9e9mfYdWcs6hdDnv1nHuGWA2LakBzaRDrl0xCZ4l+b8BoNWD4Y0HIpZk/KbAvgKro+1He8B7yQINaJvtGS1J7vTee5jXbPZ+Zg8+qPzy1iCoCNX6mAKQQZoA4BmjZaSzwQanzmJQl32Dow0Uq4BPnB8TWP42rx8M8BVhqOfGF6sBpQ8M4AnTUzn8LiFCAuJ/mrGkBgcwRof4eV0XD5gItwoGFRAqOGfkVyNHVEAKNPE6/KwqvBkIna9LUEaFHQFDzbDg86vQVqBFjRWNuDy3J/pv3X/dcz4Xp2/qXs+OuoKwMcbeI0Wuw+dXxdscUAED9e+qlGjcaCm3RlH0ufT7mo3Dz/A7tvY+da0Z68DwPfUHntBKiEBC60WjAKcJt3WgHdJyKwENEZAonNIk93CJsWXYDc5m6ICN0iMNJN0nBf2e0mf1SHFoTXz3fW/nqEpFBebsWHdgpCtC8k5GHmhLaYdrCJKVkJKVy6KUAXhUx6nRoNBeqRV5686MAr26r2rwlVKQebb+OSp+ntnxeGxA5/l8HuQZ15NzbkZ7lL+roadyqzm2sYPomsFFuuG/2RcwyN4PwQlkxOhRLowGsPLv9XpFSAl531EnkMQPvD2PKumYUuvtQbrgmc9Z1DFFbFKGpFkRTQ62CcHmmFpNb6czgonNOaujc4bsGXiHA2JMuF42hKgl2QSWSB/WEw2xtkwqhGhDT/x3lY02lKYgLUaLsdoUap5bCN6TS7aNzr6VAbk+i+wr1uWGZviMgHxq8qHxEUbdpmC7ASOhA6HC7+3Mg4ETmmk7t5dgfyldjxrP7V7yb36ODmBww0cd/FoDKmWTnP1gCKmABYZ/6z1nQFBpdhFHk/Q6X9euF8XJRVuL8vIcUQdE7tbaBvOoDdQcp+CZGaEDrIuDnEHKznR91O37zuyZiFTYr6vaII5k8CR7i/J7j4+PJqdDD2ZyImTygRDsORUX6wVHfamG+XN2lNEOsASbSptrQdnr8Lx8Hn6vn6lFq5VG2nNuu4NPvYF6rbUNlApcC/pwj9mWsHt7cKoBPtZHaFnMEGfZEYO/AFBq183Kx12Ozv2wbC9Lqe25rHyYDnJpaw/LyCf8nTpQS/gGfRoDkmcQMoGw1ojU+lTq9N4w/BdjRKhGlxxGZIOJOrC2xAUFQAkZx8NxAJ73zYe0AJ6h2UFa5VV12PSZ5vJ6ZofyrGbbjFkh/PvcBzrG2Fp86LkB1gcpFxtsMtvrdOi0TQj3XCsnmBUCPD+NV3lebTIDAC2LTXsG8nN6be0PBphaY89LOyMAIVgrCnd4XQH5MEOjZ/pZKudSSjgcEmrtvY7nYLad7+jLEPC0CgX2qbT3LteLD45j0MxsiBACcq0IISEtC1ZfcwUaLSeMgZp2VrFnnlLG9GxhoJTddT4GWlEbjcCRyppRxowZ67pH+763Kd1zQgdfJuttQByvaevIT/y+5/zK2abkOs7n85PPaTaUZh/2EvmIBV2HKYiiz6l6T5Nm1A9Nqbc1YqmmyiM+D/lrtt10rfN+qf7lfZ+rslN9or/T95/lowYV5r2hDUt+ptxReTgM+6hjljD3n3Kd+6121uxTcC2/y5dtE+/D01ZA2PtaSjFgz+y0hJhMhiCg21zV7BLzf2oLbPOlPg/XAi+NRa2ouQyyTIMayj+DjKsG5uVSkT24nWiTPHN2MVp7G9r69HUr6hOfRoOd6k8buwvGU3uiBul2prHxmSeZG3owWXll5pl+fn0/1BcrImfNyooAmElqwVUDE21onuEVHnzF2F5CA0NtgA+DPU3+VIRYW1LB38Xr76REtwnVPDIPnQo1sPkeD0tBO81iUINHHVoesJbfkNE104yEzQwbNV5mIItr0kwZy+ZaBqGla1ZhMEeKFKxoEZE8pkXPWT58Tt0vFcga5eFLhbv+TYWjPneMsTmBeu/nnkOFvDIGP/v4+DgIY57HXLrAZydza6nKDMxwPTPKroyutKFGoX7/d5XnKmCqDqkamXo/pVWeAe+Z89OsSd6Pz6QOJwU794EKgMyvjn2LPk6GszqPMVoTd4gyU0GmQLB+X9dpCnN06MdpeBaxIBA1P586wLqfuqdzZhL/rterMCHXFDF6eXjwzInD4dANlRAR1hXX64bJNhuMgjUdEELvoUWFp2fcDcL/X3tvtiRJjiQJMg41s8jaof7/n5wl6uoMN1PFMQ8iDDDg3rM7lfUwSaQoKkoPdzM9ADlZrj5Syb8DhcEy/wRIGqUosie617uR1zEzLH4yhhTgViN1f17KQGbXcc8sOjmdVC5m2o1srRR/VDr8TuttcXpUnh35+HaupZRhAOg573S3n7u+O99/BEjg37Hsd7BEtPfZG1HpWR3OlNJQjq02BzW6Z07ShzKQ73g8kFq16CmAkPANqOzu1dRa8dhkVa+WUcES4tXBtmyNEf3uza7vTloERk9B5WnuLTB1BP/Ovw1j3o0oZoOrMZlzHr0tVe/wPFuz8qTe1t5+/Dzf0XrxbFlsYR3qweurMU5ezD5sYGSLxQjPeRol0tUnpqrBTn2stKLX1n3bZbTqNpVXuzMz9jZ4w/No2WE/la8on3C/lkBS7wjos8+fZ27ZNYI70N8dndhN7vy0/zTYU0qjvJw0UHm2fcrNGCNS7yjNSmwMoO2e6edl3c0HEPlkacAyc84ygwd6BqarDCzWvbzOawBIzOxRe4J6mnSpWc8/vStgw4dOOWNt4zHPO3hbkgMp5eE0K33TwXo8M8pVkODBDF66W2Yp7RBe1/abZ4SVd/padmkZcLvTalkEzfcljTLiWe6nNojyIumTZXTXddmgrTxpTelW7TF11pTmUTEz2lqzQMywGedAiVrjYhvwOrVWXOeJHlbwXnldeWD/97DDW/+mK/nZvfQdWHtda9uNlNLMuhc6iSGihWm3qj8BYPQLo54hTeo78fpa5sjBgGw/Adcfxe23GAgstlFCr2egDnTayvXI33zOGKOD/xg6LuY0aDTlNArJ+D31HYbs7XFk1+33Mpk2g38mbyOKDyQ5cganu+eUDWAERskZfAJ970Dz6bSl0370gJMPfmHVhtqlPFvSPc9h2K1+7ZiCDzpa5WXZ7BuVh0q3+33VXtU+ulrBoPqGvBzj7JG3AwsqkzRxQmXGomP+N39XW5p0Qzt41wcKQLBqSPfp+3mH5ZqaPMJ90cFTq0wEXq/XAMPpc+3vtIOkeqZ7EFltX91PtX9Vv5Jn1bbU81cbkDTFiiy+j9Ke6iDds/M8Z8B6AXnWXsNqv+v76LuHEEbwWPes+aRv5U2VtREeKALBQteROZuMQ/uRrlb/LiCmCWxd1zVkk2Z07j7fqBpwu5AZ/unIY/p5kCFzix3aZxZma5apWM6P+x4Mnn4PCs39BWIQPxbfAUE+t9LZ/nelPQYI1B/kMyexpZQ2ef/ipekEHmOMww4OLgtqtyF2vYvfIbQdYgaVr+419466SnEWpQujHfzl9ZcBvl05qzLmpp7nOUruuPSFFZhThacKVxFoLR1TJuYmqdFEg0pBIHXi+TuNClIRkID4XLsQ03fne6ohq4pXjRKNbKiQ+mliIp+PTPndAVjR691p1n8D6/h0CkHdLwA/ZsNx/1VhKkgCYBioLIXgM+mz8nNKP/z3rvR2x1OBN15zPxdeR8GL6XTHxWnYnz1lH+pQK4BZLqJCQmlBn0mN133Pd1A2pYTLe7JA0ohVyZ/niWee/RV0hRBsoigwGpbvz8CzVuG4OxNdwIzdQeC1Hs8X/uM//mOAfLr/mlWk+6JgzuqczRJP8vkwAkRhacZfCJZRRsXdmg9yaDbdjZPR1MhKKVlGS+uIkQBEQjw8CCHkMvY3hgk5dCnxqBPQCF2Mn7gamGo8TidqGljneSJizXCwPbLIMCc5K99pZofSFe85ouXJesfREB+gXpylLTFapO2qMxq+y9veLYON8Msur6/rmqXGXdoOwEqgh4EQZnTVDOALIw0+rACoZlFYs/c2yoKAWVKdUkRMVjrSS8OFNVAEYDgkTHfpjISGjhQzerLMT8sEaqil2L47/RFMGeCy8C+zz5S+e5D7hxW0LaWCzQVbs55EDcz2ggMvk58h19dSJA1I8FzViAHWafJ8HtJbwM+R/BgjylnkeWdW+AKEwaLGCgDEMdF2BnD4DnuPK8vsYLN76TnY/PzQRwSTunDXGXtwTPUD/20DYL7rEfs7POvT2hLo38Z1abg1ljaubUBUtuzBEu5DjjLpLdq0O4LWQEQ+Zg+kkWkQozmQtY4pkSobe8foETrOJQbLvuLQDqGDEK2sPHjZSxzZP+Y4hOpl08Em4Fo2nJUuUY4zIDLsgDaDG9wzO0dryK1TsskffEdmflNWqXP9zSbD7PHaXb4TdOvOn4BlSdDp4Pkov/ZqWXqkoZSSRPQ7qE4pe9gqxva+j3uZcW/gjHPSoMUQAEj/PHsO1y0OHiJYMGrQUF/BaHUseLa780fdppkP4xx8srA60qTRce04s+/Vbpn8NfWWOijUwQizDQP1iMp//Xl/7qEHMXUa6aZJYEHtP7XbuS/74I7dzvLNWPaIz78Dv9SrpM8d2FRf5DxPlFpGj9NBSzHgLFYayb54OVopb/eJyAizIUEtZZTj8lkUKAVmMAc5f9PjSge7k8tFntt9DaUFyhRWHZBme58VPqUUpJhFdxd0dDwfT6M1cKiWa5c29UPO2bKDF55YgzA6yZ3+zgj+eqla71Hk39Tv6vf8BILxHjwr/k3bxFD/aVknYMHAnNlSBN9oOwR8+/1PNvfumylPqO3A91P/QZMidn6a567g2vSvZ+LBOhxEfRflIU0WURBd/boYI76+vsa7vt/v0f5lP1v1eXR/lP9U3vF39CvJlyqbeL78L/03tRN4P31/fna3l/ekE5UXvF/yrOUQrY2F7XK3gTLy/CbP+8h2Vd2o77n6gmEE6sY+u91u2YtTJilNs6IGYfof/D7xj967B/BMpkeYfxeTDdUrdeIg4yycjLgXgTKrGaidgrcn6MCRMjorBHrFVSzbMsc8AhEpJ/RiJbvP8ERrZYD2tdpwoJiSZKzRvjW+N54mvX5v9aEB3z3JimdAXaXBYuUD9XWUdhXHGWcnjmLHSr/spQpw6ObqO/M7mvBwHNlsL38uzUTmXui7sD/fX1n/lim6CmLtDu4Obijj6ctrZtYurPV3yuw/gUi7gcT/K9jTWhsZQbuw4VqMJHlezUbR91LHSBFa/n03rvj8vc9+OUaUGbVOw1cFr95bCYT78lNkSx06YApLvuPucPB5+V995p/6KaqRwn2mwbg7ZDphlOdJ4IbOhZ6xRmzUyOmwZv8qzPmeKhz5THQaFNxCCAjeiyj6VLFSio/xXsvJKDRDiIthZPeFG9k8U3cO3DkDOo7jIX0sOqIH9jnh1d7TI6PezybAFUoIOB6WodNgk0HtXOhk2L3tXQF6GEZDK18xgkeaYQ8/Xk8BP7+iZ0HVhe+U5rnvdOLY/4MGoxqkPNsB/nvmS68r8BhCGGW5vZsBGT2TcAjB3gEC6ULPFIwhRPQ2Syp6sIhYt+SOaUj0CZSoI09FkVPCkY5hfA5+6N0MQnF892iSGtrNga/Q4EoenpZuDj46RpbgyoNTeegz0mAZfN+tZxzlVPBMlxTjMMAD1kjn6/UaYNLo+xcDHvlY7sV3qcUAOJssPEHk1mf5CXxv1owOIEbS93ewmzzLKVaGt1J2m5Pa+Tx9gtrBeRgAQvTG+e5gt2tmCPfWcNXTCn4Ny/VrVdR6edaDA5s54sjZUvCrpOzXtc2COqMxTsNtyOi+ls8As4uXm+lDnnCf6NRqoIfyh7yj+jUE9s3y/XJ6HoGMaE5Yd3rJKZkRpoaKlxk/3HC3a7geDgZS8Sw04KMGFnlFjUflfXWGaqyLDOF+TGOqDxoKgcMjgHKdIyNuZNJeDhZDsp5789LVyQut0jQFlsEy4yfjP3sOy7wi0Hwcj4XHVe/pSinJQJ61nKo1y7g7sgHhuyEXAoCIkRFGo133Z2bITSC/BwPqbI9NvrTeRo81ICAGoFwFMbndERJiTl4aP52UfHhWcjcDPSkAF610yLKW/d5u2HLSdQjRyttDQEMdoJTaXNM+WcF5yrEI9tNpuM4KhJmBxf6ErVlWYqkzSKXykXKuKc2Vgh6NjkIMo7cm+YRyu5QqZ+Lgduu4rg8AL+X3zIAQZ8lf94CC8RtAJVPqOVtxtI7e10xNYC3Jpz308F5mOScrPy0FV1lb1/AM9DqkOf7OZOqJ37//HPuTXbarfWvlRTOzIIQwbLhSbD+z6N0BGPcZkNN2GdzPoT8Ce44ax7U2qwfMhl3pgXY/5Q2vSxtO33HIljhb/OhzqQwloLsHmGKMno3Rh+y3YFb3IVUVtdhAo+kIO33UhpC8rBYENLrJeC+1ss9V85VoP4z/wuUVg5wGTdMGJS1SD/GctfxW/Rzul+4R+0XPAJXpYi1Fq9Xum/PhdG77ae/MpvaWTj8AqRjRuvHj4/HwIN+10Pju+CqAw3dqjUGRqQMoZ3KyShYFNV6vF458WO/SzdZXnc/7kmb4TGqfkj7KVUfZJe0MzebnXvO71PXaZ3ja0pqdtPZu17JXAhWUW6pj5s9ih/kzsS1A78BVrgGq8nps50SaV0CjtbYEClXPKACkNDd1+uWfi6se7RhBoV0v8lwsw31gSii1jixN3o/8q/qV/qmClHxPHXbHz+rzMiuPe6O2CM+Fe5JyGq1mhr9ZZ3Ao5jhaAFhFiWXUqg+tfq3y4AgUwvzGYRu5zZMd9Go+qDHFNDCA3VYavAVv8eL9QWNY++fSdn3kw/vJOUh8SMY5A/mDZt05igEJbhPT7gjBwX2gezOQ3juSV8Oc5UJp6/53B0WDA4SWNDCDxhwCNLPj4IFy88kVP1FwVgODyjc/4R0TCDV7iLbpT4AccQitfKNt+5Mcm/ZMA2BJJJSzvVt/ZcWjWiMvk+/M/qJ8ptwffC7+17+6/vqQDfQJvPywud2F/zCa5DDI1Bqd0sVratYPF79P5gKmQge+l2yoc0SmVFAJmOVUWjZANJiOMCPye/RxF/7TeJqIO40mYDXk+Y7jUASEU6JWBcnf8dosRVahTKeH19Hmtewbxu9Q6Ou76/7pPfk53uPz+SwAKvdUwYOflN4wwLdondLI8Zhls8AcTqIAk9IL31edJBXkOXsj8uAKw5me/VEsC6OhF+uzc3hm0swooyAheGaGz1RKbfybqcnv9+x3YYaqTe2zDCB4+Yw2QjYft7kz12qFu2O4qjohBOpoCPse1+YDIQ7UOg0EpcsRHaqzJBPYymzFQVM60CjYyKqr36NP5DnSDvljGHdO89d1oVcMJ6ChWvZDzghIOA5r5N3BVzTVGGFlo6UUhG5AIWkgxojH8ZjCOQANZhDFEKdSi3PCo8oXpeeRcRvjnMQL9lqYxrYaIdzvGAOezxd699I0NEQ65c2jRAE+WWmNzNseTyPG6Ct+45kQZg9Ke07P6Gszk8XAnIwovKWZfs/nE8UnpgIYqfrdf47RMhXSI3ljYPaTi8MoaL0jxYDQ9+lRHedZoFl8fCalx8GroVtZGAC6SPbdCfDUZs5Y7x21lQGexWAT/aI3Pq+XDUhJMQHNShgoMWovdgcazRHIMFAxx4zLHY9eZlmh6h0F4QArTxpG82YI1FpwPCZ/WGnsGjRSx3Q3cJUmF550oyEG64uk1zB6AwBrelzRhjPQe/dntIyMGCNez9eii3vvSH0tq1ODmry1O967riePa0YcHSEa4krD6kCN94UHZWJEgvTL6Q2tVB+8M+0A9qzzVmk2dKFPB5x03lqzptV+/Rgs2GIlqbDgcjOaVNBIDb3hOHtGF3mu1waAWZnResuUatmkIpNDAPKxTvimjh10UCwTsrpsyTEDPSBEi4C30nHkhKteLj9NtjR0pIMOsD1TQBz9+lgONPRisw0LIQydhEibBgNAT9Y0SOjW+bZ7b5po8pGZwAu/NEan7eeKhtZO+FM6iD+BK9oSI6CIhBi6O0IVz8cDz9cD7/d76nq3OVg5Yv/3jIlegb42nt95WtekmSlLe+towUDW1jF0cegOqQfLGOXnEYFWJkjBe2imMz87nYLgPUEjjvxETtUd/BV44HW4lIZSMnk2P18dNJhtAIxv89IUnzLJbLcZQC3FaOv5eA7bn4E32ph8Jtq71+ct8oO2Mu0dCxodx2MJ+M/7TeCy9++9IYddWduQY2rvqS3C3zFrUx1iOV7LVvGelt0nIwZoP8bV5geA8zqRzOO3DBXn696799kLI4vGMlOrVVAPh519WsP8vgOCfXvuvSUN6ZY/mz0zDz0Gy9Tl+dp+BgtiuNx+PGb7jdYarmp2EsuQa6sIbrvYFHffZw+cWtZiHwAGfSVebwRuw8xGa615LzibkG0HMM+uOwhQa8PxOGZWIXt1SpbhsC+7OdzBZVgP0/GPLg9VHhF4Sjmi1Mv7FDPAvGbaDp0YIxowgkjo08lX2uQ7MIDRWhs+0R741vcYTn7Dolvts/Z8OR+46mWl1OLHThDXS6DRR2n+5zoXeRNjRCttgEPqZ03dTZ6FgyQE/+w5TE6spawKuPbecdUZ7Jk+QJ0l4H2CcTtoo0CxgqUqr3k/ltSzF7bKC32+1troIT/196xoGTZZb6iXycEjHH4f58euyR9Y6GP3ddX2aU6bh1bOVbPLAhqKD9vh4Di+O7OOQwgjKzyEMPX340CoTEAJCMlkSe1z0BG/wwSHECcdDDvDbeQQAnpksNVAveTXPPIvS5YAcHlQnnLp8/kge+b98D3QgVYmONg7+tWHzOtYM4+b62jNsNSlZ6q2MN9vXzyDWtl/vo8evzx/2r2km1ptyIwmB6mtp/waOUQuKA1EHI8JWBt9mJwwf/2YASDD+QRDMND1/44MPnH6R+aAbPIOeKnSVQeaSpiCYBVq38Gg/d76Owp7OmS99zHBiCAeMI0blmfw3jQqNWuJ/1eQYgekNBJCwtS+Bnv0YRcGIYQBuu0ZjTshH8cxBoRQwMcYl3dQQUkm0fdXh4x7t0dfd6W8O3t8RipzLalWEFUz//RMh0O8CW/As6iuGcng57RUe7+mRlGmwJiKdv8cz12BSzBSsSldPp8p6ZlRyb0nzWjEofeO1+s1PksaeTwe6MEjyFKatTr2c4jJbsDr779n9qzAQ+8WdRvvgjWTVPdES2PiBljz7/qOmqnB/kFDEf0QadfrRAcXNHPA6A/+HXdAe6NlY//xfTb6qwgBfiYzDf84Djduojub67SuI5tD0bCWHz6fTzAdfNJd/HY2pVTkAPSwT6nDeF/y4XFMmh0Kos3Mzpwzmiu5mKwZcAiMSFNp2Luz2btGWtUYs8zSw7NxzFxWUB+Y4LfyLzMZe+soAir23tFpFEQFSda0edJhcAeFDf1jBFqz3j+8p8oXrslXZWThPJ6PhTf1mZ+PB3I6cJULra2p+qQjGrMqI9gs3oxy9rnoSHkLpGDKJV5TM+tIs8NgRl94xRy7VcbxOszyJS/tPK10osbFT3JVz7WBJZ+zhHaRGf27/EDAQkcqg/efn8/nIkO5NCBFGfjTWatcIr0wY0n/zrMbpeV9Zk+Q7vRslO8IMihYE0JE7FI6Ew0w4kRHK532vRmZw8waqmitjsEGyhdKkzwb7u0MbqzBEXuutOxvazYpnMHDGUxi1nqd/OzR3pAC4IGKHCNCAkq10uLjeEqWILOj4UZoRPTAVXcQoTggV8l7IQxHufeO2Ek7bucITUfPJK/lGhkadk4ODtSGjrWVhzkWwbMKHLBpHRxQkfK0t2iPcF9Is1MWmHw4//n5ERBSvl0BqO+2m/LVniWggevuDm8pxffO3qWWguDgJDPsJ21MG4XPp88zHHtfBM5I0wZmrxlbnlQ+nlP/NpziOu0UDcARlCON/f79e2QOqh2pepyAekppgL/UiwTnqTcfj8eQQbT/4iabpr+w9vhTWUCe4veVDoZM7KbnWS6724Sq37nflFHDTmttyGvuFVs16L7ug/QmH8+qjz2ZIEbrl2yJDvh2zfHO+r84g+7UL3upr9qei0zHtJ1255hTb9UvUD8gJpviG9vsD0i7eNgataP1glYdoM60f/pifwH4FtxX2Zlpu7r4NhtjtUcZUaAtzv9amd/ajialhOsjNnNOnpHI7M8+gkAheEAmsCzRn2EEM2Zrlm/01AxMZlk40BCZGNANrGZlAWlAfVGlPQA4Pyca1iFO1it1Aspqy9AmQF+HPdCeeL1eAEw+RQeUC9YWHCPjvnU4WrfYGuQbO6tZQkw9TFlr9139EwALOBKa8S2Hm5APNONK7SOlY6UZngPvexzH8DnO81xwBNpGi80ttqv6wWYbzcm4vFeAvfNZTxkEI/3wq4XJVG4PvRhndiZbVhm4n1FbHTbKkO2CHfyUuILtPoNHukUmNLiVYxp8pK0xVFZwT1W/ku5aXwNdtG3ZR7mLzYhme7AnOQAYIGDOeQQmQwjIIaL2n6udplyyjEI+9y47lEZIJ8zOVlCNdJtSxHUZsHx4FcVqg63ZtsNH3eVjnD38uJcmwxo0Qx+woE8MTLhqw54KYco0ICwybMEcNtn9r6y/PkVXjGt19IHZKJ+IOLCWU3L9tMlqsOhSg0uJQjPKaBjwnhRmAAagp4KO12GmoYJcO0j3fr9HpEAJQhXm2Fx3fHgPjXCweakKf/5No5S7E0/mJPHpZBxen++r19Sx3lpKpYJbHSU+L8+OgpTPoufE8+b+huB9e2pbzlWFuO7voCW5pgJ6NOxUcOtzc6nwIjCgThn3JucD8ciLQ8NnrNX6iEVMhc59pUPK5yAt6nvt0VTuB0FkzUAMaS3HOo5jAUgpMHQflIf4/z0DYf+sGpvjnNvkOwpzM0yFBoDh+JK3FfRWh4HgjGYkLcZczvj6+rJ9PLz5eUrL/k6jl+DqhQBmu02FsJT51lkKn9J0rBU05MsUzTKMM+MrPSZP7NlSIQRUL/c88oF8ZHRGLHsdUSotLVCDbPYtOlzmWWl0rSyfCG5UNsTEaV/BgZeG3gko2GAX2+/17CbPMsNvlqAln5DJPSaPqbwifRzJjI8luylYJhP3u8OyxdTQG0bKiI57Rhw4bS+MdzcAcspo5WFVpo/jgRASUjyQYkVrZTgs5kya02OyP+F4HINmaACSTtS4Jp+N94PJqhAsGzQg4PO50FpZdIoajpTfKmNabUhZADVgRM4JKEz55HpTnFFelzyj96NxSZqe5z2dzMmvLltbA+IaQFPwCHYai4FH/lPnXuUJg0rcQ3XGFYjd+Zo6QvWk8qdGZKmHIe/CvRh75Vma3Hvj/QkA8H7TEWoI6TGe6ZG04b1ncfjQCZauck+uk3IK/628UmeddEyQusN4u7WGnDiwAYN2+RzMqGeWjZZW2XUNZLPfMfPJQIEWHJgUOc7noBEZHGxiZsAoNwKQclr0Vu/Gu4/HczjEQ68XDq6x1b3MJCJaBk7gO1t2gVVyra07Wl2ztEzvfWZJUA/Dadudyt47rnKhgw6pZfC2NnU9jXN1EtX2iTGOgAVpkY4nvz97J67Dt1Q/GNBoaF9rDfCpxMEHcqScPAOquj3UfXL2Wm6vzqAFd6bRr3ZLVyA6mN7ghGq1D/W/yd9LnUTKXaXdHQhSG1grIzi5eMhsBzLYo5f2DG2C3jsez6c5e85Tai/aPtjPGlRTuy6J/hrvpfa/TDBXAESDEfxZ+5uuvcssi44y9/F44NevX/h8PijV6KwJKEz5OORPTECfje35rCP40vsAwDSrVK/BxGI9l2En89wEAFNncwTGojV4J42bI11He4M9uKv2Y+/dM5+ZgbiCztxzq8qx7HfNFuT+UwcQcOLe76VvDVbmezwyLtK3Gx8j+NVnhiD1gA01cfuzT/Bh6jDnEeGLGA1UGDLO3zdH49867N4+ZDOfhUvpHiGMPqflKqhhVnVd1wlWhagsJ79zr6hLaquLHWT75y0T0mxXRD6lDcvPs8fmr1+/cJ4nPp/P1FWlAnnyDfmCIOB1XXjk6XdoX7Bh8/WZicZnmYO9MHj9J95UGfd6vcYUa80oU8BceZz6TuUB6Yt8vgQfRMbw87RTCKjx+juP8W/kpRij6YfeB88h4FsrligAjdpjvI7KVuNZBkrWXnCKiwz+EDtD92HaBECO1kZll//AtLHUV+T11Ffk+fFvwbN0rbIsW/9B9qYNHb0UCwJo0KvrQEG3+TOBNKD3tJzNLltIK/T/GPjZ7Uj9ntpj/J0mPqwrIKWMGNPwo2KMwy/fP68yawcWeV5qI8cUcZ0yJLZb1mRIE1sIYZ5vzg+cn2vYUj89s+rAf3X9GzL4JvpMxJ4TaKlMdyNCD1mZQJWdOq8ErDSKygMiY5KY1TkZGxutXp3PooQxhBGmUKOw4LVUOCyOhgBHZEpNxaZDxc+wQenn80EIAa/XaymTU4FFpaClBArcDMPhB4eda1cGJFoaWJq1xuupoFRnT0eY8/147groDOPBp/7we1TYZHL9rDppanztzp42W97Rdn6G76DCXIXP6/XC+/Mx56uvUxcXIeOOmTKZOmMhmJJ7Pp9LLwjSkApX0o06wb131LJOeVOA1Qzp1cgjfcyUb2v2qefFfTQ67DjPzzCQ+Z1FGItCM4PX+kCWci3l86oceK8///xz0C4NCxrFuh88h5FVgSmoSXt8RgPKPIIKeJYHALmvDhXgeShoQ1pf0vP7BBprtczQGCNCinjkx6Lg9pLz9HyiXBfenzdyOcCMg+rPmQ9zolgmtNOSXYtyY/aa4XS2q3yQD0Yx2R+SWZQRtVSJJpmzbyDGc8gpBUxCYOZmxPU5ccIcy5gmeKSAPXk4hYzj9URtBewBsvMIWpd3mhkeOecBoqJNRc7nYyNl5Qu9LmllGnJArec4Y4IQk5YcRImUUwWtVTQv/RuZE8J/ysPP59OB1Ijr/KD1iuIDVR7PhzUEjh5F69NJZH+6nX4DnQ9mBkYCrrZisvL98+ODmFIaZU7KUzyT4bD5+ag+2J1/yo8OeHR4ZtFr8EcNKzuvGa1W41HPh2er9/zJkAUwABKNfPJadPTUsNTn2aOlarSpTjPD0eSI8jzPVul56IVogHltNgnzKhf65e9ikIzLBXMyaYRf1+XDjDpCAnI6RjR+H6Zlk2lXPdUcLGy1ejmjn0eYEXTLiP0uj5dgFsIwSjsM4A8hjv530fmOAYIJzHf0bi0IyAOWOTzfg2Vm5D0+1+N4oGO22SiljMCmng8j7daHknvfcJ0FIdtzk2ZIJ136U/LM8pHGfVrhd6YzMuiDwR1IdofLOqWz7hmHMUSUOidG5pS9V96kdx0qxmfUxSykPUCnjqm+D5+rNqOJ2jwDswGll0GfSu+ayafO7JJJHskL5gTZO0z6V1vIuWW5l9rODHSTXwgCWslkH3ZNCMz2exnvxYjS6pjUeonuVhuBvAoAl2Si6d/H2efZx0p5eB/qwWsqQFhKGUAOQWueld5vBx/U9q+14vl8+GCuGSQf9zseQ7ZqoCzYISBFy1StZfKQ3o9gfwgzU1Ttdp4N+/TRxiPYovJy7886ghjAsle8h/k/HSGHQQ+afaU8YICZf6evWZS2/wbwo3fk/LAWIJVJGQ6Hhe8JCQr0DId40zd2TlNfDZ3TOpDTyF49T8sUDqg4z8uymAHLuI9eNgsDVBs6mvCz2WjWHqe5HdpqW3qskj/4nOqrKOiN7nK9d6R0uExmVZhNIw5hJkgs3/W1+5CDVuEXiwGpe2sETMB40HOYv+N+6pRpk5NTlnD/+X4559F3lVjm6YPUJq9ggBC7LzKrBNahCCoPQrBy1BA8+7wbvxCg5VBG8pzaE7wW7R5N0lHAS98LmH429119QPLFBGNn70AOn6HvvoNHiveyNyR/qXYT5Y7SO9/HzqG7H7DKNq2E0P1WO0htJg02qW1sfc3XZJ3hewm98J1UVvVuYLfxf3S/y4rPCYrD/Z5Sz+W+pKnGPd74hoHTEPCd5oNsLjp0UV6ojgXWacr8N89PZeTwcYPZ3DHYpGF+j/iOZuYBGPblHhxTPIafq5Xp9FL1Eyk/eU4zKaW1E62vOBffhff/uv4vyODjsykjAmvzYGUSNWLIDJpFQOYaYFCbWTfK/Bqh2zdeDaTWGh55OrPqRDKaoKDDfg0to1JnTAEtVdQkLIIwek0FSgDg6+trARv1+kr0/LvWg9P4IbiiRr0CRfu/eU2CKqY0J8iohqcCUrwWz4LPy14GyrBqxPC7Cu7tBhadKc0wY8RejQzNHgFmxFeBTwpt0qMKQxqrtdpI8i7vxOcZkfu6TmXdFYoCX3xXdfrUWeJecg8YIeR1eK31zAxE5Lvt0Rv72crH+HsFtCboGMD6A42C8mxYktr73iPS+u0cx5omrXyrilyBWQJIpFkO4FADZwUddyeFe8GG92U0p975Q3ma+8vzH0GA1kZzez7Hr9cve5YYUK5rZPflnJdJYa015DjLT2mEjufuVvb2fD7dOWoDOOFe8/01GKBBiDycTTPsRiZU9khl02inRbZsumNEO6cRoeVD1ljXpsfa34HjyB59v5Z9T9n6HIYeBmhAUILXHk49ecp77Sm99e593aJmoNg5aFnQULiyB3xuyoD35z0n8kXrjWZdi4x2CCZd1+mlHwm1Wm8hzRDcp0fSCDnP0/qh5QMxGHhTroLuznNPRn8xeiZeMXA2hdWZJW9QLuZ44O09p2KUSDECrM/VLP1khzylC+6P8hT5n/tFEI3vo2BgjNFKNrvxbw8zK0Wzg6/rWrKzyE96Jnruqi8UCFlKt+QdFPRQ/lZjZg8m8fwJsKtxvH9XDWnulcol8h/vW9Hx6x//AHoffW5qLejd+ILylaUklml04Pl44Tw/aM1ocjc29d8s7xo0N4IUESkGl9UGFFjJndsaKQwHiU4a94eOtb1XRG2Xg9nsndQR0HCVar0m06yMWIB5mINVS8FHHBGerQKyw5YK3udUhnmxR88wTHv3CZQJxLPtWhkhTSdFS6hiWHslpxit5BhT15ZSrMdeqzapz3skacmfOpPg5M82Aa3WOs5qZ2fAngVQarFJmYvxT5Blo3vSuNozuh8AxgRntbWM52cJKtvpqC7/+vpabEjSktK4AiyhR8B7SdqzrUNBlA/9CpbRHGf2mtLDH3/8sVSXKPhFmWI23gPWWJ/ZSZaBX6sNn1D5TR1MGzjGiF+/fiGGWSrNz5r9xhLgGUDgNXSRr9TOHnz4gx2w6xUA33hWHWvTqT/TxJA/MSKJnFIgKEar+iB4prpu0mscvMBnJ61y2Egp1wAdaDOSL9B8qMJmM5HmLADVUTtw5APMmO/eyy3FiA5robHv8QQfTMfHMCsphlyoljnXA1ummLNuWHoHhH5VDvFMZkbY5B17hzaypfhIQwcRaPDgXQyWMdh8qFCMvHV0eVFQaa/WZlOQJaM5hIByfoDqvBIC0AM4NEJpmPysIDtlgVbysPSU92EA+PM5v/Ew6Y3XURqaOtSAewTzFUpZ/QmeCYFtzTbi9ccei3+uZ1xrXZ6bctc6wc1At/Xdw/CdFAz69euXv+cHpUz/jfStfjGz8VTuqw81Pgcs7whYievv37+X76uvq98vpeDr62sB+NX/pp/GPSBtarUE30P9m5ii0z9p1spZ5/Cg6WsPnST0r+cR4BmyYvf9dwCw+jxr8EYCKRtIFIDRmkevqftVPSt5BuZd3jsk3NCNdHofQW3ucYRlN9LmIXYy7TArR221AtXkCPeMj2n//Q5gzs9JibD4e1w8K8UsKEd1z7i/Q2f7FvZmfgoDWZq5qjyrSQm81v6zyYzkwJ2czXgGOxGtfLB9CkuvRaXXXf/9q+uvD9noE/QhoWr2hCpkBT64FgUqm8cIsy5lcAII3IjdgeR/WXZLdF6zAHlPMo8i9/wb78cIl4InJABej89LBtfMtp8cEApbGiSaHahG5O7UATNDQSMR3BMCpdwDnpE+o95LIwH6nmpADwUgToAKaKUHMhzvq86hGlbca07z5DV15LlGNfgcatiQJtTg+vXr1/Jd7aVijksYGQD8ntIC4FOeQhh0o8wPL7MkeMH78O9kVC3z4RnxnD/XBz2sIJ86F5Y58/gm+LmnRj99AXWUpifAQmCA/UwmPXMfpxDCsu/naUaVGgf6GRWGpB01HjRLgPzPcgLN8N1Lc3qnXLDsi1Yrnr9+LUDS5/OZAF5dB0aok8J90J5D6vgWl1dZjLD9THqaZVQpZYtiw4CfX8c0cux9rgW44bnsxqDuYc5pKLxp7DXUOkHZ2mY2cHbg7zovnA5WqFNq/M+MQho4fWT4aDR0GH0WEMb59QVrpgsbliFN3VNKoyFz7D8DMDlZX8NevRQXAY/jiRBX2bMrcC1rsnNqXg5Y3Yia5Wm9d5yfCynN5ztPy2x6PJ6Ikdmgs1RX9dGIgkfLqqvNnjd0jN5SaiTklFBhPcp6nwY090R7ftRWB/jIZ1XemEGLiuQNsilb9J4qR9QBoLxSAJs6hVm0vH/s3YYAbHpGZRLPU3UlF2lP5Tyff2ZjrSV8+hkFHckPSgO7fuN7LiXU4WdQX41pnoPeg3QUozebrh2XB8KOxH6naTlHAJ55uRrrKWcze/t3QHc3xpTn60V7w6avtlLQGqzEvekZzz1Qp98iy+zZ6c+FtfcYusmh1+tYJq3yLFV3VyllXAKlOSNl6fE6eshZ6YmeozmWccorBIQDOM8PynmNQEoI3afqGsif8+G8UlCbtcnQM84CJCr9hRBGqdz7/R5gkMnMMGSqAoOqx4/jYfrfAdUQJtCivKX0yp8V9OOzUo7w5/E9rMAP9/35fI7nIsBOOqFzsetV1WH6txCC9f8SG1qzCfbPUlapfQmYba0TZZmNo59RR5qfYcYNsxRCCDgex5g6q/akOiwEl9ROmSCsB+EfGTFOe0flhj4PP889zTmPSfE/AQav12uAZdx3XncAnjCerJggCZ+NNI8QRmaT2g/cB2CdmhmCZX/3Zhli5eJApzVDke/Gqb3R/0a7U/uJ2s3DIvf5PGPPgwNlpQzAvdaKwvs1e19mQapPZvSQTR/6c8XQjZe7gWmWXZa8RYJlrZhschkOCwKQv3bZrzwTgwUUaymehTd7AduQLMsMRO+IMaOj2uA3n8hJ0Ki1NsDB3gLQI8q1Aiyke8AGFrW69p+2LH3AAi1WThfiCpir3lRbws4+DnDWaOCx6DGl4xDC6HlJWWX6xGz05K1SOPDImvivdoDurdrnKpsAz2TsMyuSf9NJukrLanfw2ZWf9RrcU/XRcrYBb7W2hf9Js8wE5++5J+pXqk5XEE79XZXPWt2w2x1q+/AcNAFE5Tn9HvXp1Z7oPoUnS4sP1RX8/A7Uce12uu6x2jrqI3+T6ZhByMFPIpdijGNY0PjO9jwhBCBGpGTgYBv038b/ze/Lwx7jOYyzJ2ArfefsDGk/zb2IkTpXg7zzXXU//ncyf/cZWImg+0Weop+odvXYy2Dvze8o/aq+5320uk4zpvld5ZEYEvqgmUn7GggfuhVrNqVm4lIm/dX1lwE+LjWUKCj05YHvPekUdOJBawr6T9fUw1Ij4aeJTdywPQuNP6uAp4ChstQDYW80fpef5XPRYVbDgvfn86tTqIJZDRb+joCBCg81tBTk4ru8Xq9FQOo+aQbiT4aSZsqRwHYDl/u/O1aambQbUWro6v34+Z1WVMCqE8t93IWB9h/kv/dsMTVUeTat95G9tzMz9yKLctrpjiBUa6tC0Ofkc3BPuIaxGaZzM53lhuN4+h7PXjK7sck94L4SKLPf90XhqICjEfETmKCChXxozzdpXWmIoIX22eTZqyOutM+902EKP5Xm2WcxgKwAjNKhwYNxTozelTTLQVXhn2VNwx7GGu1meQbyB+mqXFNeVZ9CycgdM0KNzxIQOg7vaaKBAD0T0iP3hQ2aAYvQA+Zk52R7fJWCes3hJtfFDMfZnkDfgVE0BKCWguPxANDHHvJzuzEYEdB6Qa9rtiTPv9YKxLDycoijlxW/c10X0BqOw6PvHsEaTgp5t7P80MthQ1xoLeaAWgzIbldFjJ4JEDPO80Kt05mgLLC9sbItZhsojWvwwd7NMjARDXRp1coqSeu1VvzXf/0Xegvf5Cr3UQ1GjfryPUnX1G18XjVglfZ5lvq3HXSotQ7HVnlIswLyYdNkFRBQA4XBjuyZH63ZlNaAteyBfMY9URlA3ldaURo3gG1+bw9G6FIZoZ/ZHf5vBhtmFiL3bjhDrQ1nFWE2sea/CR6NQJWAyAbcRA8IzXJ7yhYu1YdqxPHnWgoaOvKRcV1zSh1phk2tFTydOgGjvJNTKnvn5HY3Knv2fPTvQA/pYWQlhO+DCjpsMiUdWnvuhrOuQ2DsbwC60Yn1lMteihORkpWqdNTRa84m/UY8jgOtVaCH0WtLbcBa65gIzV5zwwartgcMYCYZSqX0NPjHz5Xv8lN7AKVR0s9ue6h+nAHR5k7MCujp4nstAALwLaCVUhogEz+rA0GU1zQrjbSpTuburNvPNjiCTvX7/V5sb7UhBy1ugBV5h+CZfWd1SBDD8i4KCMRogZEgWUurXplgpPK8ylI9YwW2+EzmfM/WMSqraINR5kYH3WqbjixixNlOBKy9xBbAMq4+yGLneEZOCxjZLojGV5byExBzcoc5wTKHpx09HMgOnxq7ZiLSv6BsJr2pPogxwjoQcBANM9OsF1bvptsCYLz7fo/3JK221qyBfrAMl9Ism69XD0ZEy3oOsExSvnvMkJ6eU0YqLahtPABzAAnAcTxRSgViRYrwASMfpJiQH8eguxACjgeHA1FLTwCCPRCN7oK3W3gsz7DoEC/hVx/hKtbqo7eG2L8Pd6EMIf2HEKTiw1qx9A7UulbkLKCb+EEakOjdphQH11M9WosD9lNW/u/depEycKA2sNrjIViJOfmIsubxeAxbkYv8VKF92a1dC99RbRF9N/Kqgajfh1Dx+Xb/bMixYMAZn5n2ksoj1ZEpJbzf72XIm+o9ZsGqraA+JO9L+408QN9H5ZDKHT6bfp/PxgE1/Lf2+lfsQOmJtKDJOSrLeS04vVsJ/2wFpfaGLj4n78mzGtd1GaF7w1Y0dtv5DLvfoLJf719bG1U9K82vmbnOFYuO23WXnvngV/HbdE957rv9qPpttw3VDlBati9Mu3CcreAz+3NPeYfRsiDnjBCBlOY9lMZas/6GGixTYH15nr+w/jrAJ8aADnLQTdTDqLWO6LKWBxC4WvvX2NLDYcnbTgR6iGpw6f0VZNsNIgXtuNHqLAHTCeD1B+P1CaTps++p4cAUoruwV4Dw+XwujZFVeCvh8m/zKL4bhq/XC79//x4MzFKSEGYvExV+jIrS2OXfNHWZylIBWu4b93s/AyoB3TcVkhRuNJiVfpRe9DM0jrRUl9/TM1T6OY4D53XhKjNiQmNB/92AEbHltZUBn8+nfc6vPUAVsDdYtL5IQiNkV+4RG1RzT0pZsx+BaSDR0Luu02y3PjPN1JCySZezNCjnSWf2mRnVZr8CBbVXkGsa6lSkqoh4f/I1FZUaZNwb0tQUWiwbPRZnw2goDiVjezEjKykl5CMPB04dfXXyJwDjdBk6cj4cVJzRmJC+p7GrccKz7L3hvC6g23VGyVXOCKEDoeFzvi3yzpLcEHGdJ8p1IeWMcl1ovY/GruTdUZIIjGbaVykoRYwj9G+8xaAGgwEIGH09KU+OIwMwICunYwAVpBley5y5dfo4nC8g8rV51N6OtqOhmrEPzy6STKBarGdYrQZKcFEZwnmMvGdRX51S6rKvSQZy7XiXj8uNiN6s/1e5LLvOynOAEGy4SEwPsKRRjWMiOZY10FAbEHpHxwwaqTFn/a7W3ndwJ8GihhbBVxCbMkuBMAUaCADvcnF9TpMxR84I4qjWWr0h+gp2KA+XVscwEE5ZUxkeu+2t5F+bzKPTGmZfE+VR6m2+ozovChwNOdZXvlL+VP79SZepU8FrcB9VZ5icstLnBVgJAdHfBcmj1IDwxzH23z5vjtaU9danKXpWK39XivVXy/kY56HAol3w8IyThNCtD2Z6HajF7RSfAJuPta+uGuuBj54IBBrYZ+9sZTCl2KRChCkT9oAhabHDIvOaJV+blYHlI43ARUwJz/QYkW41vj2pxuRxnHacyrTWGp7POViFuieljKuc0PJ12kQKmvJv13XhSLOnzrRTrFerOky9zyxVvpvqrAkofQ9C7TYeZWaMe0nu9+oTtYMoo3k9dRb5WQI6qmuV3/frqzxWXuPiPVW/9t7Rywo0Uz9T/uxB3MXehGe1OSCZxjtN59sm1WP0jmvRADatHmmNAbpzlPuxT6qBDBHnOR15BgR0gjBI/83aJISwghXVeSwn6/WF3nG60z4CgNUa4pdzDsNCN9AqdA4xmUFjDZpQ73W/tuoFwMDngEkae1CDstKCqzNTnXs0ZCbWAYIxxgFy5JyRjzyc8pExIsADsrQd8MFh12V96oxX06jhUJud9gPtjNZon4bRzoAOvNFM8lK3ZoN4akH1jB/ApnAqvdJfUL9wyLhog7hqqyit4IjZe9sBtVk/u5QzQD2KZgDcyHqe/RZLKYjdKhVKmUEs9fl49mx+zx6+dlYNSQa17b4aaY12M89vr0LZ5Yr6hKrv6M+oz9usc6AAEGv5+U9+r4ItlDHDD8RaOQHMahbVo7xeTnn017TfxeUzuxxif1crT1yBZwWr1Ab6MZCw+dW8J/WCynTKLPbvm/7SCsZoBZXyHPXVAs7FmXiy08uwl1vDkbMHgbU6ah1sqCCr2ke1rZlofAYFne2si/Vn2945hOC28s/zCoY9375np+uKMfowHkl6aZYFm0IasosDBHVfeE6k1z0Qtu/LDO5j2PytWYau+ms8l13nDV85rhnApJvdNlQ+1ECQLtX9y/uPD2Bkve7Ykv6slUizfF38RrGDZ+KFJRSEGJBAnjT7awQWGbr4OQ7+f7T+OsDXjQDZz07r3HlAdGSYzqujm0dUrU9wzjbNyjBUSKgRwqXZU8CM4tHgXBSoKE0SDQWsCl4VohTgyuj8uwo9LTnahbyWBuu7kJg104/voISve6DMSmdRDT7enz+T8FSY7Zke53kOEI3703v/ZrgqE5E5NVoKmEH7fD7H7xQU4z5QwWjmoypBfobXZ584BbMITiqDMlKtzEohRMYf/dCCDZy4LgNbEKbA+TAiFmRoBryUsnfUq1gWg+99uapFbmPEeX1wZCtbKVfF43lAs+pCtjJHhIDQ5pkbbWrqdXAhyEafFaWcOA5mfQG9R+R8+D5RSc6spGFgD2e7oZQLGNko8/4KHJF3/DG/AdcqGDkRLoQwouXqXKpTzjPqffI4n1EBQi23Tymh8X6ZfT4PlHp502sDELIbKwqUG2/b2cecwF6Ej+OJlA2c6a3j+lgJ15EPVFcyrdaRmdB7R6vwibR5KEbbEzM2n48H0IHr88F5evYtKq7zYwDUWRFzdlBgjpTXLM3eTBFakoyXENYGhIhfr19oDjLWPkuEv75+4/Im8pBEkg7rh9ebyAfJbNGzHOeerLzWMlxJQyxP4JUtIjeaVDdzhrnCkKFAC9YnLMaAVmeGdKtmuKq8TR79TMmayYchSwGEtTn7NGYKYgpga4sjZySfIozecZUCwHsHJYuMm+zKCLB7AQG1VNQ2aY50p7yZYlroOuaEz3milQmsBQcaU06ovSGFuAxb0nfgdTTSzL+PTJk0jc5SK3oMOGvBxwfg9DoNqs/nY1kjHWjBnM4OfCvFmcB3QqmXH5Q1DE8pIXmmFDBbG7BZsAIIlMU5Z2+67AZ6716W1tFjRDwOm2UidMZ317Pc9Y0aicwO6e7oBgf+L3faIwIy+y7C9p3gntEpEEB6B3ov3t/SgPnWLMsMPoyjNwerU7QsGAYT2K7A+85YBqqVq1jkvs8eL70j5QPH42kgnBvtKQbkw8utMXXn5AWWkQbokKUQmvXTRECPBkSqjUF+jTkhmhcwQEgLHESk42llqj6cgcGPqxakbDtZqgWqru7B2i0w0wFU6pEQ8T5PBJe/0fcgOg/31vG5PgvoHWN0J3JmO/HsB3DSKpg5DvgQpSyBGM+Uat7igg3FOzpKOU0a9elA6RRqBvlqXXtrfXPOckCKe0PyJiCVnRHfieV/dK7NSato3bIW1ZkmL2lFizpIu53L/Z9AUf2mi/mupKWUEhCdBwQIV/u1lILn64WOgO60Q3swxogeAxATIkzXAEB13VB7Q/IsjFgdWEgZvbaRbf44zAG3QTIJtdo5v17HCBiW0pAPCzyV4tU7iKh9Tmo1vWwA/rRXZqDCnNOI4nZ9yAFHyjjygesqSMl6YJbrNMA9BCT49HTYM129ee9YmLRoQAgdrU3ZnEKyUvbuwSs660nAWFhWYGsGHjYf3JRjwiX9ktXn6L0Pu7VUG/wFWCZbzAmhR9dfEyxSnpl6sSNHlym1joEGKWVc7RqTjGkP8lqaRWsX8lLLMW3SMnoNzOnOaZbB+35/nAcwdKj6MaRRBWlCimM4y1ksEBocWONUXKRo2Yje2qOiI+do5cCICJRHfQbRNFjc+5rRxefgdwYAtvlZP32eS/3VfQ93AEKzx9TvUzDIZL3RGDOmaBNOICuL/b76l0c7FrkFzBJFyhrjDXv+GEzP7eCZBiYej8PktsszAx81Y3ZOA53JL7ze7EX+er1Gmy31Sbn/XDyz9/u9JDfQJmDAoAntqpxUUJNylHJOKyuU12h7MNjBe6nfrZWEMVqyhqW/Aog0mxrKpUkp9jva5811ITrlZRwAPZ+fdFP9+j3A9XNFWUAn7/fXGoL8Wvdl0HeEtZvhWY8WATP4oEDSeJ4uPbYR0LfgtO6RAm277uIZGZ1pj0mzT9Xn4/6q38j3UZtAlwKiatfyO/y8gsx6H35XeZW/U0yH76QAo/rTO/gHscf42Vq7Vx8cOPKqs2yYYUXOB/LBvtywgU+tIXzhL69/Qw++meFl/57GgwpSYG4UgSf+vPde6U7MXCo81fHXg9Hor05F26MDw5lMaTF4dudHn4UMrO+jBKMCmM8DrFlfqpgpdLRki0sJn/dnPw6NJFEx7wM2FBVXZcKf9bk13ZUG7w4kqvDj9zUDTBlGBbCCilwareDav690Q6FNYJjPpCU3P72Hnq0K82EYJWuqDADpaePiW8CiVBh5oMF+cphB9Ck8PSBmTtA0gcjyyu6Zd/bf9o0eGPXmMw/nSZif52T3nqneqoQYPdO95N/sHSb4olkWa1nAWob09fU1BV2wqKwKdP6f+0pHRemW/1aa1T5JNBQtkjMz82h4sBxggtPmkPLZS2UzYevHVGtDk4nEvNfr9cR1Wq++kBgEMAVHw2fwcph8P/akTcXFwERKaZm2N+SMjWXCddm0pg4D6bh/V7mQg/VX2ZXKyKryc4wx4vl4zmBIrSODYnmecuF4PEazXmZ1LYB8ndHKsE2vJE0O+mltGs4wMIQlLKXYoJMYImqjcYKFbnd+jl6eG0MEok+u80EAAUCvs2fM6vCsCl3L95WPQrCz5BlcI5LNSVXMjEioxRTpkZ/fDJUYI2LK/p21FQH5EMAIhLRmcXblR41qllrwOB5AnPLs215LJPy/kwMxpjGwhJkD/Dt5o7Q5VIV9EUk3Gv1WZ1DvpUvl5QBCmhkd+my8rgU3yigrI9+rnGGWLNc0fOryHNxLghjcNwKn13kh+Fmf5znKebhXmtVPgDTnbICj8DT1O2nGaCmO0nP0FfzG920y0CxOWajyGdAeK9FKanIaA0149ppFoAO5CKDDM5xVX8ZogCOdwHzkAYqQhxADQjMHPCUDKqaco86wcLplMhuQaSBmQE4HOFDh47bF6G8awuCxFCJSzLial/YG2DCgBsRqJTkxJIQ0dZjaTZYp1JYzI5/znAHX22VtC0Ld2u3FvjnbvXUPlqzZCztoz/+qPAY8kzKkUcamtt/QgX7Can/w2Ux3CrCB1TnX+//E/z8F1HTx39wz6g8NFPOdSklIx2PYU9wHgpK9AzHNckEGXtWOY3lvSmlk6GuAdciSvrZ2YdYweZqfZYCftmvKcUx4NzCzeZbUtD3Qpx0z7Qg6XjZdlZ8lrRA0yDnjOBIqLFiRfAAFJ9tXeCP5tg4b2TO1+F9m4CvwzR7YLFGj+0LefL/fE7iTs+f9eE2d3Ki+yK6P1K+Ycs0HbzXrf9l7x5EMED6SZ7lxArLYkbtfUOosF7Zn7Eg+CMj8LsvKHI45fZWReTKvpbb80H/Ce2xPEmK0BEhDVhGdZ1p3EKSDHI98HCguT8j3Kk/tPutkeAVB+HwKLqneVJmrdED+UT3He34LEGyJDcrnlBMxaiaohaHoT+ccUav7yV51Qz2nVQExxlFOqOA/E1fUB9RnoSyjraxBhJjWbGD12+36ZZHHtKf42Vor/vnPfy6yTgEzTZhhKxtm7PKeTOqgX8p78ZxVzjCxQIMmvNYuO0kv5NmUEp6v5xh4pXyn+sOTd7/55t982jCTiPjugbI1z4oz6mvSK8+hYc1yHLgHvLKsAymEkQ1If1XBq94HdAd0843UZxs6K6xgK7P1+d77wIpF1gNCD2vl4zjb6wQ6FhlKelS7RytZFItReiCN7sCb2vJKq7uNy/Oc/Lb2+FfMRPUIrzWPV1qviK8TQvAeqiuIiN4HPzHTdzxL5/0aSunL+fA8/ur6N0zRXSPwmn2lzhGAYejxZ3WO9iw7CiAegGZC8PDUEOG/gekA0mh5PB4L6MBnJnFqbbQCTPw/jT8y416CoIyg11JiVsLUzA0tEQLWstXhQFzm0OgeqRH469evYSBwb+lc6XvxvnxuzXhSZcDf63QZPhs/R4ZUguX+/AQYqnOrzMx7qvJU51edbd1HfbfWrKePRVbm5Cu9Fp+fwIAa9JZxkBYlZZ+fERYO7jjPE62YwRT93a6zeIlBRXCgyqJD7Rt4Tbrhsy2GvAC4KpD4TkqPtn9r41GCZLUWd8owMg74DErfwCqk9tL3VttihCiIQ5rV8mhOVKbiVjDB6MBSs+1ZzAlUgEsVSIzsS1HHe/I9qveGIh2wObUC95Q1OWf8OjK678+ff34BKQKtjawlnjGdmAk0ZJwyqUnPUsFXo+9qWVP2Ut+E9SMfQJiRX8ogfu75fKLXtuynypjrlMw9pwHt8ac8tUei9XeL8vGle6C0siu4UitandFmvgOvoXuz05x9xkqZaq2IEslTYxkOTjQBSgj47YNSQoRlCvWO2CfPlGI9+I78HO9FXtP3VJAnprWkQWXwdV3e+0R6gibLquB7R+Hd1hreX19AM+VO50Azynkd5fWdthCtr4tem7Sxn5U27N5BM+qK67osE0e+z0VdSr2hZY0pr60ttAzYSqrX3ko0nIZe61byqXqHepJnQ/kyHTQMw/dIecgx8rQGdVR/8DnVUdbP8Rl0rwyg9+fp3wMv9vsGd0Gn0d1nk3XlJ73+dVWkPJ1H7g95y54pDNDQsn+sDI57PYxoQ42M96K1ULD9973t3Yx5l7MxZsRoQDr3qFwN13Vaz95uvaJ6bdJH08pHLEOpj+E+x3Eg5owULAPPMho6jofr5Ma+uHn0IIUlgJm+O9hHOKPVmV3B81egr7aCXMsEmB2woNw8r89w9pkNTxmkOpz/Ji8roKj2GelOBzUZ+DmnRiqthhDQKoMIa3sS3iPnNMCJFKetpvqc9EDe4zPvQWMFYpTudZAKgdHeaV+4rhJbluCayqtGsAczq5bPo3qEe6X0bteXAItcO0bLRCvXhSPmoSd/2ktzdtrIHKKsHGXkYsuq/Ul+b2323VXni2dngeiCUnwQnWd1q46emZczO5J60a65AiNLEAHrQAClMwWVYwgzQ82f/fV6ofc+sp12R530pc+kz8G95DWvOs8neMZjCm5rx4gI661HWlQ5zXs8Hg+jiQArjwXL6jwpAbO8L6U0ZVftPtjrGjL4ui58fX1NcLianZxCxPn1tn1fAGogOWBxnSdStAFHlkFoNH2epw0TwRrUXu33uNCBOu2q4/m+3G/VcwqearBa/U7uoQId+l3+WwG5+axTdlQfSsb7cOJ6qx2IM6NMdY/KNg1GUK78/v17AaBCCHg8DsQaR5Bc94G8EvC9h+jun1OH2fXXXnWqa3ccgM+rPfPJB2oHMDigdpguDXaSF1T+81mUtvVMANOLbOlRa0U68nJO43Mm5CxYSBqR4Lf6OXr/3Rbr6APIo8zkexzHgZjS6CnNa452LKWgAD4Je9qqvM+4xw++pgXCVv6oPuWWVQJ6bly7npyycC3V1T1VP2BPhOBZEl+YAdYphxWs03fT4NVP9A9gGfQU4wxo8bl4L91/vosGIHhPa3c1qyQVKOc7a5ao/UECiO5DxphGH8Pd1udnl4C48NhfXf+WIRu64VTMuinAPGCmxRKk0BemoOXn1SlThca/K8KtTngIYWnK/36/l+dUQgWwbKq+ixp3CjopE2iJ4jBQaRDHNYIEzAigPjPvAUykWj/fW0fIqyChQtQsPvYj4DPp5/QseA0V2lQgXBTCWuI1jIhr9uX45dNNlTH5fmQqFQ5KD6SX9/s9Pq8GJI3C1+u1pJLzv5odczyO5V7K0Dtj6TMAJqjZjF6HldBo/Hw++Pr6mgonWqPmN5tlHxmP/ED257DPiVLBSgN8N15/NJ2FNSnmHu6GiBp3Kmy4pjFIelx7ACnv2HmqsMK3z9VW3OGcUW3eVwWuAlXkPaWz+fzR6Ye9/9bejPpukxY1Bdsji96zgEI8xjjAMTXsY5wAdGkGzj6fz9EDizyQc8avX78WBQEA53Uuz/fr169h2Kv8MlqsSHFV9DSqWT5c+zTWyXNULu/3G5+v92L4UDZQHpgzVie/xoDUp2PJc9gnaFMW69mrYuT99O/Ko2pAxBiHsaAyk/dT+uF/GSF/vV6orZmBj7kPy306y3KdLhGgmXVqSO+retZHigcCvI9PnY3c1SDgtYaSBxbFz/5eBv4lPPLDBwvMTN7dEet9DmR6Pp9jcmTv3TLQ4tyv3YCmfF2clRCRXKdoWwnSGOlvB65oMMSUcF4n3p+PBzF8ErAYxPye0oc69yGYM8A4dkAYk4YZAMoxIaR1aJaCBLWtdM/P7LKNe6FA2HEcXvpcB1ihTt3u3PEdyDPcJ9UFen86qOW6zIgPE9xOycpYQgSOyGEKAWhr7xbqJh0yYM/Whlwlf1InMEu5NeuNNbKKLTcGDEItNomXBOec8UgHzusNQEBGyltv0VBrsUyyhmUv2PsvJovSs9eODbRpEzSPYWSy2bN2BwkvXO4QseyPvFtLGJMbW20IdRq8OSaU88RV7Z35/qSTz+eDlJMbxf4u1VpdpDj7wAZEtF4mRQYDJK30KCMGG4RB0ISTbHcndQ9KDF3SOxCmjUE61dYRNmjJbbhShV8YELPgQykVV59DR1S2EgDhv1W2Kd3yPhrgUMfqWzP6GBDCWrZEB2KXFaPPk2TMllKGw62gn9q5C8DttnvOeUy3twCry6faRl8vOkO11pGVVNssUVYbjU7+LvfIn+RfTmRmAJb7SV8jxoirngjJgPpyOm8zuz1b6ft1not8WkH8dagQaYk2N7AOSFGbt1Yr0Y9tTgflu2oGleq4Xb5x39RO3ytu1I4K3XzN4u1QWm9ALTbwhsEg0NpcAYPWbPjS4/U0WQKMPoUhRMSQxgTo67xG5h5CH0Mi1D5Xmk0pogeAeWe9W3sItXXLdZmNUSqu/ka3hmRTf8e1vYP6hfP307YkX6ltyPvtLSy4lB41EMEzoPzQpArSIG1K1TNqR03bxbJ37Lr0+ejce2m47KXa0+rDap9GBTjIX/xsCAGP5xOpFuCjlRBTn30+H2QGjGobmecqN5UXqBfYq2+RLXHtfa97qmdF2cEhQPoZlQcEvEj7+vwK2Ohz7O+ocpIZ/ry2BlxU97JUHQF4ePspTTRSe2n3L1Vm1tpGUgh/Rx5WOlI65O/Is6FjBL/Vdt7teqXn6NVFqjNCMOA/eL1vsIe3YJ/bdyzX1aV2GuXc/r78vfoX/JviKMAEahXc033V+ysNKnbCPd8TRTRYQ1tgp1HVObyXPjf3n5iG7jOfle9Xm/U/HHLYxosvZ6EYjL6XJt6o7/tX118G+FpnryszVt7v95Jdo6WVurE0prjh6vBQae4MpEDfLjD1O8r0wATwgFUQ7w6mChVglgEzykUC4TMrkMVD1EjgT0qDz8/r8ln4O312Ve69T/CJoJASK68PYDFyNIKl9+Hf96iHMpQCiPo7VRhkcHWe1YlVxcr9VEbnPbQEUiPpBJPUsNnPjKAuv8P78lo0PE0xBVgZ1WwEHkJEu0ygJXGMSMumtKWs7zgM/EIf2Tk9AI+UBkOXWtBDA2L3PmoA+oz0qpE4z9s+xOzD1mamB89VARUqW+UDpeNd2RB44z5pur7RrJWULgoQU6jq/iuYysWSmJ/4gEKfBhDLvNWQVodqRs8zAOsLxffhfylbzs/pvd6mAfx6zb6Nmg0QQsTxynh/vpByQrnKMCx4LnQMdA9pgPA5WUJAQP3r9xd6bcjHzNJCN5p4Pp4G8paO83OOPj6/nq/hXDdp7L8rjmEsAUCwoALfnXuqSk3ll/Kjvg/pjj/rPTUYAKzgSQxeQBgmj//0OZ5lSgm/fv0SBWoARO1rRJDvOmVmGGVbBDHUeOEz8meCcsbjfA4Du0u50HtbaF73Kuc8nql3e/+AjvNTRAZNJwRUyJgG/HVdeL1ec49DR6tlTKcNCIilo4oRxLPR/VcDSPlUDRA6EBrdVR1EOnq/v9ABPJ4Pp+04Sqsejwf+/P1faK2NQIpmAS4ZcL37u3rpm+ha9OloMuKpk/IA4CzXAFn0zH8C5TTjzujNMn8DDMBSOt71Gu+ngR817nUPB413yt6G87xwHBH5mBkZdq8GG/zjfe7i1D98dnUQvvPSlONqzO96XmU//873GWWRwZrY90EnYuzHgB4Seq/L72Py/qjFsqF76+iR8gIjMzgEcwQ+nw8CM+SiZBFcF85TWpW0NdipuoD7MHgszdKkcl3IrxeAjgDXOYg4r8sy9cIsx7IzzKPkdtA4DBQ10NwDgw0O0kZYX6vVIeGz8pzooFP2k+8AIMRpt5HHlIY6DHC2/YU3RbcS6nQYyFHbBAdrK2t0H9MG1R7IHbM1hGbEaQBt5aGKlCPg2fYBwbMx+0KnKkNUdpZiU9YZmODeUNdxv0i3wzlME6wKfQLzqjsHiIu1KsH0s9myvXkbk7juNd8vJet7G8OUGQocTJA4LfYqn4/BboTZS3TYqy5fIM+ndrnqfvv3PDPyBf92OSgV08rjo81ITMNdUxtGddiujwn+7c4hbdu9j59+VwGA8f3ecX7eBmjGCSjnZJOwc844nk9c9bRBdJfpvxxNb9j5x+F3xhR9qq3Zt9d5IR0JQHSdSzDcAb0ORERkD4gpcNIAAEHPSURBVLh1kaG6FyqjLWvZZD/or9TqQz3MVmOCA89M94a/oy+0+5Mqq6kDmRyiIADpYpdx6kOqnWU0AjBAHYJl9ZK27XsY9zW/ZNp80fvpss0Jf692XvWg9T/++Mfw60KYwxNV59C2+P37TwDBfBLSYmvGt5fp+iAyavcPh20W11Yz+1IQRJ9D/676uxRrvUMa+OOPP0a7ID3XXX///v17AITc/yMlXKWOQQlcwxdJ1leUvas7TDRr6yf1cS2pAN7zeyYhqB+t76bBHtWBERb8Ul+H70K6ZtY3fz/33OSpDSU6lwEY9AF4nvRzhwzAzOwGqSkE/mC0Ha1tQUdHIeC+AYdq86QYR0/HABgIv9Ho7mOs9v3PoN/ui+i+8u9MGKD/sdt2SjPcI+X7nT71syq7+Ww/XXu12zBkPOI6cCb+8D2emUMCS6aeXlN+/JfXXwb4uMksbyNj0NnR7DgVmDswxqgfr8kN0Tp1YDWK96wiJXYepipQYC0B1dTKHfAAVkNdgQpzeiaRKIq9Rwy4uAc0PHhdjWjq3/W7CmYC+Bax4TsNYdRnVIdLM9kUINRz5LNoGTWvp8aGAoWM7ut+88wVeFOnS4EfdWJVoKrCbq2N7Ck6s9wTdYgI5OlUMH0uTvHj8zyf1oQ5e3PpGCLOz8dKEWEOrabmjwxDGrtYy+kQLUOG79hqw/v9BYugmABQAaJ7oCXWScbF6xmxN5VGJUNYowvKKwpsK0irmQHKUyFMWjvPE1c58cev/xAAcO3vpny9g63qIO9nqnxKJ4vvoFl4NnBjAvEx+vShmEZGJWnUGtB2AZHFwIlx9EVstSL6tL/P13vwqSr3379/A7BonQpgzZCjUTIANh82oVkP3LfzPC1zgIa4956rvY8ymvNzIgUzYhnZJv1zP0Kc/K3/5V7QWd0V3m7869kpf/JnBYl5fjw7O6e1YfxuLO8Ki/t0PA4DE7y8gcZ5rcX3zAaNNNiAk+BDTqpMg4Q3pc5h7fdBoNtK6xhsyOijNKEv/Ur1fFSuTxCKvOI9jTYgI4Tog1DWKPXajw3Ivj/MguAi0K26aO9jy5I1OjKqqzTzgME1voc6J+r8EdhT4LvWisc/HkOW8hrUY/pz732UhwyQQe7DUizuFfeEWd5qMGmgTGlMZe1PBqHKKz6rvjOACZbIdwmk5JzHEKjpvFtPm+PIyIf1B90da/4/JXNu+C67Plc7YQBDqAuN6D4M2dpsiNNuR/A55jsZUGv7EBG9PZntn5WyUbePnkxd5GKziL59vuK6Ch6vx+CzmBNiyOj1GsDX5/OxKaU5j9LGUguurUzxcCeLPYco98/zRG3W1iKEgMO8jZEJf54GGOexl3PvzZF1EEIAudaal3W6Ed3cAZPvqQzU5yTfaXa78rdt7sxq/8kpWQz+yCxJsxke2c7KvCrgkXyyPGwSY9pohTKSgAbLtPhcfFa1c8ffmg2R6A0eNAFQKStXXuVSnUKa2+1r0vavX7/Gs5KHNcuc11PHlDbKoOONP/kOMUZ8rs/YZ8oaBRKZ/UZAYrcVeU/aD9xHtSnMZuuj1yB5q1abLv58PBEfM6ipfomCGDFOO5MyjO8PAPnJfovNM7ztew8fNKR9s3Qv9Pz3oL/KOdKLytLdRkTvqGXahiFw0IZN8XweD8PB4xoERHfn3u2HRz4QfPounXcLLFlP0dat5DkE6/vXPXh9vT+2D0JvKc5AYyll9I3lWfP9eN7qJ4z9KnUMa0LryGkOilC6DrDedb2vfeLUFlKQTttkUNaN88yrHa7PS729POM3QEQnfmakxASU2WdSS03Vjh7fj7a3/y3oswH/fA/qOfWTUkp4Pawa6s8//5x2ififKFgyO9WmUPuI91H/T59LZaT+m2fM++n7os9e119fXwvQwiQPvhvP9n/8j/+B3jt+//499eRxwIJqs2WIbRLG0KharUzcSsr7ch+lF5M/NtAtxO8Za1z8HYeC7OBQSsn63LrsaW0dRNp7H89BWft4PMbQQdMBJwqmLW7tVjqit+4wLDwArSGmPLLGGcBlVSEAXOUaVVC0d1sz/aQyUEE4+naTboPpMrFrSSt//PHH8GvZjkxtUsUblA6UhhRM1f3eATu1mfi5n2xG3suefVK57b9toep65TG16VXuzv3Tkn4PaYQwKpD4nadkgCKsffd2uyIKff2r6y8DfCmmRUgDk0l3hBXwiWjOADvoA8wNVvBBJ8FyI7kxJBw1/vbDVWNDgZRVGIflvorS82/sMcbnVOMRmIMcdqAQ4DSiCTYyaktQQ51lOmEU+txPZQxgNVRJhPwdr8Uo4575ov8lw/C9+B5kTBozqtiGww1822/th0KGohPKZ+Tf+LP28tufp/eOr6+v6VT27yWGei67UlIjiOc/HVEqj7oAhy1MUHTPSI3RepkgabmMCdZxFjmh9RkVZr+GxUERUIx7QSDMylin8f14PMe1+H9zNGdJwM5TKihVICr98h3n0JvJSylNUI+8XGtdIuTcXz1TpSkFjWJMeL0sGPD79+9xDgRkFShi1sDlUcV8eKT8vIBjA+RDQKtTLvD5TRmduDziFUJAbR3H44lSLpve5/urmV18Xpu2HAEns5Ex6E3+F3DT6ZDPb8bmBDfP0yb1EqwZZe5pgqdF+qzwWgv41sMod+TzABj9IVUm7XuvMpjPzYwLyLOTB3ZnkrSS0gSfVKHy7NRA53Pwb+d1mS3QgbMVhEoF+QC87APRBtqw7M16r0kPlu4AgDyTAfcY14gx47pOaH8RZp9RDut+qRPM6wUHuzVzT0vkrHTT0JVd1qiBMQyYWlGu1TFVPca9WoCGFEdfRzWKSd8aaFE5SuPxyAdQyzSuEFD7dNRTSoD362Sg5PV64TzPxfHgsyogqTJGgSj+m583I2d1rBTc33UBz0TlYUoRtfelFyD3SaPglAm7obRH2vke9rk0+isaYNRGps/upNBgUz3OM9NzVFuCvZTUzgCmTRJjRAwZOViQopQy7J3X6zWyIcmnPGvbS+73BERiSDgex2i8nqINtMlsB3FKmRos0zmm9K2NREqe2Vasx2m4yqArOiMxRp8SOAHG1ipav4Zeo15+PB64PmtlgdKL7h9lNfc2wmiedHoVa1hOvmp1AnttAwjIE/w3pPcr91PtNEbfY7KA136mO68O56wDQfp+gfIf6/eSOCxKxz9VKJCGdl7Ue6Nz4qsHv9KkC74fW9QY/WHQC/Use6DxM+TJ1tpwnPn3ETQLAeWaTmJtxWitzT2gndJaG0Dh8/lcdJK9b0RM084PISyZVDHE8YzcDwVaqvfSIr2pLKJcC1LiyTMn7eXjAMIaoKbzpjpCn5uDAWKMw97t5OtuWTDDJm+rHOH3dFidnhd1jL6H+gHjWbwvqE0Ddh3mJeu9doTYR9az8RvLKQOO/EDpnpEMG9LUig2vCQ6ksfcsxIFWO/j5eFopvv89HxkhJLR6oVUDKAhaWN89ADHg8Xji+pwLvStwwn1XfdFaG/pWv0OaJW2maCXzHbNCSK+vvgW/n2JaaB5g+SZGrzq1mX7iTQXaGIhXYD16prHp57USx76fEUITvWDDkDhEbvc15/fWckLel/z3k9zS/u/MnEthJudwn9QP1YCUym8FUXd9yUV9zp+5R8PG3nxuXmsHuvguO9Ctz8U9+AlXSK7nKCNqbd7W5Vh4HdhaG4WAQ6ptdjms7/hdtq2l5QGzxZX6G8NGS7O3qibhEGinT9F7H8+ufx/n3Dpqn1gA32noVVNYi78DBOTMIVvfZyuQ70Ow3tCt1IUeVZ9rsJg+M2XHTrNKxyrveJZctLN4zR0n0WfhWSjvK4houhrgMNfabIibnq2eIX+nNjBtcfW5NBBmvulK/2zNFaMlcwBrsGdZP/DS/+n66yW6nuWkmXGDmZxIFYDahTkBDWUwEpUipSQ47UVEY1MNIj0g/p73UQSW36czo4JHiYpOCDCZns+kwokHyr+pItEeAwT3+B0FNXbDTh0HPXzdLxpFBAYVFNAsmx0h57X38yAxcg/UuOTSnxWZV+dlZ3w1vPhOKuj4LBol0ijPdDzWdxoOtDiN+nwUTrweDSUqF723MmLOEed5DcGmNPSTg9fCGulDXSckMuOT0RQVZNMImEow5wT2D6OTq+9oxt4sKSVdKdhnz34txgaf+adIcc6W0cj7RHF0NbuIynkYSGntLcPPHseBchV03/MYAmopsAyw2beH77SAAmEOSwghAc0GhsSDjqT0b2oTUKPA/3w+3pfREymCAWHv9wfXZYBiihEV60RTvsNxHGaw57Rkftk++eRgp89SyshS4Pn5D+awXzYJNz8fiAI49N5Rr2sY4Y/jsfA870XnvvWGt4OhPHc+N5fSupaqE6DanUjS8gp6Y9AGrzfkaEpo3nx/NVLiwhN8v2HM9Q50A2NDCMjwJvSdBn1Aq80+kzPYjpJABRYeSejdS/cWJUwQm06SZd/1PvdF6VMNSpUdKm+Uxmn0ppTw5/tLSunbskcqC3mfFOO3DD7ldwDfDBbEGTDTiOouc/nz8/lcspfpHI+S01pH2SVgYMjTA0B8BuU/ykjNqFno25f2OuNe8L1DCEsDeXVclTbJg0pv0zDEcMBrraPsjjpOr0eDl/SnxtMff/wx3m/aDrYPtVu/oWF8+eALu1BwQCshSu84ylneizJ3NyhzyqihLjYSefT8nDgSkPI6tU1L8NXAVnsjBOtrZ064gWvW83MGYmKwUhoFNFlqZ9MQm09Ktv5+Fvh4oPVZEYDuQ1xgvFVq9ZYCeUxRTjmjdp/Celj/R92D1pqV3AvYoeAu6cB08gTsLFM+Lns2zrd1zzySSD0CepCMjFotq94D9jwjtQv5DJNWLFO4d7WLDDhT2l/P3pMoXF8GBxKvcgHdSvWjBHNUTuy2gD7PIfypMkNtpNaatX0A0LtkpIg9yvuR54qDkDlbOdtwBAXUYFCWz0J+ZLUO5f15mW13eEY2ZaI6OwS1AOD1eg1beAaEInI+HGBreDwCHo8XarXg6JHNluIQDoABmOJ7H8fPalfTlmpoqOdsqaGyzLKpxEEM09anvDG7aAaHdQiRgl7sZdgxdZfZPc6beYKrpIPj8fAsu2lrcG8UoNHs8NbaoOnWOroP+cqZAzXCkJmUFTFEH84z2zJEU8CoDtQeMaOj4TpPH1wW0cWu33WkyrQQAh7PA61mVA7jqhVIWLKme1grOvhdBW3V3g8hjAF0wQNvVgXRLABLnzGanV1hma05rZmEykPL+aOPzNnhl6bDwP4K5COhbkAfMCup1G8gL5t+0Ymr9gzae3X1qWbShelSax3Um2UA8Vnpq57nuQA6BLV4/T3QOvSNJDjw3HKa7T4IpPGzCoyqjUhaYBUX90PtB5Vx/JnAzwKkylI7jXRLf5lyTEEtbbfAvpBKj7wPZUWIcQTwQgzojgOoTajA6NDz6COQpcCz0tYAdeIccplzdl+io14Frc4MZfUrc84WuHKfUX3VwfMwED5Gz+xss8cgaYfnpICs6hfSJrw/nL7LDLp9708HrDZyCMMyHzompLjIaF6b/qomPu3X577ubU7U59LSee4xK1yoD/V5d/t64gXTtrPPEpyddLjbWSbTDRRVMJL7z/NSWrd9Xitq9MzNIViDmcqzS2rkv7j+LUM2+GCqiICZyq5N3ykgmMWixh6wNjpXY2wXpFRS+jceoApg7VOhKOy+2TuYxki6Ohy786OAlSLWBEtam1EO3odEykwJBVy4jwSFuH8/KRJ16lR4c58BV7geDVDwVQ1TBVd2B5jX4H7ye5oFw/3i82sGhX6GglwzO3mdHYxUwIvCQ0FWA6KYDWiZYTk/kFLEdRWhhck4ZEBGXilkp3BgPyNj+F47crTshBgs02pxzjza2XxSLmT6Ue/d/w4AwRsPB/Quzrs0qiXd6z73AXxwWt+50ffshaPfWwWyRWyPY2aW0gCcwt4MCRowtRIMpPB6DRqncU8634090qc6YY/nA7WYg4M6o/1UQjxzVczkB4I1VCUDVJRIy+PxWLLvNDLVARzPxzj/65r8HoIBSs17TiC6odfbBEECrGmqZ0ccxzRKr8/pAl96npSCr/eX7alHhnoIuD6nZdCIbErJekj1NoHRHjqOxwNwFy1FK6uJ3lS6VUt912xXyjE1anYFtzg8KVqkfjtDdTSV73kPBeBL9SBLonPRcRxrE/ZarRyQSixaOguOnNG8sTR8r83ZtDIiuzcGSOEteIBgJYUpZ1iPLYx+Vcy+AgzsbfAsoD6zsRCsqXhMCQee5tymmYXaUZHSjGSqvGMWzAT/rTyfJQsKtA5DcgMuIDL+8/mMUg7KJBoo5utGHEceg3/UQMvZp5Re53Asdx06QLbegdqc7joSwhgoZHzagMf3wIUaKXwH6nDtd8RFXbXTjQbkrCwxIHHStP8cvQwpBKBcPkH1+TTbpnd0sE/X98noqtuV7nl2ymsKdKjzYzKjjbJITqY9r3M66Ml6qiUHt0PsRtahDycuwAAc1x5gryrqkyMfi7OZopWktuR06/K3u7xJ0XryqI6cBiqHaUxZOOwDhBG0jDEi5oj31xuZga9eUKoBfyknlGrDRVI6zFY43+iV5W1WTlaL9fyrLl9jjIjwSYwBCMkyv+HZjR/pFctMrOu6ELo48gO396DqxcnSLKdyW8e/08PM7DNZw56bLqfFVqy1ol42KIJOQykFx+NAKdZfrLVJDyr31KkI0fi2lIrWVwNe6ScEK73SAUhTPttghy6RegWDlW7Z15U83HtfAHt+V4EAzUYLAcYvIodff/yBFKykOkQLevQQEBysLgQIow9HaB1HymCDoJjicJ5pEwPGq9RxV7WWJrisFBvRM6eiyZvuz0lblYM4TJ4d6Kg4HscADrlCMMCi+PlxX34CLad9M53nGMOsgsDao43/Z9CgFvofDhjB7K7eu5WURushpzagykH990+O9dSh8IqDJjZAH5mevAafi3s/gC8H8hHCAPbR7f8VvucpISKiOe3W2kYWNbMMowAbfF579jmUijLGnt2yA0upLg/XQNOUwc1LgA3Mj67vR/ZTAFBXf03lNQFYYCYXmFyb+xyCA6Z+Tq13mWgaEHtEjxmAO/PYeHUDPJSG+Pfz/DhibwEgnonylp632uYauLCPWHDo8kFRBHqv6wSnXXPgHeVLKRXWjiEhZSsljSkiwXRl7glXdV8Wa3KCAg+Uh/SxCK4PuyRY6XioZdJUwNBlOR1WASNnRb4hv33OE723AVAdDLwGK08HrAfjec0hdkpzmuSi9sdP1X+aacnvEGRUHdlqRUhmc1QCdgGjzc3n88H5+RggLEE/HdK56AMw6DP3li1mBgZwnvicF45swzvYkgK9e6b5msCg2XW999FnVAG7bxljjwng92CZt4F03u3fvZoP3rwneKveziJYZmjMCa2s7Xom8J0QJduZ56Oytrq8YRAhOODYABQ5F5XJ3Ef9r8pKfUflAwXtNHlngpEzI1tlutk6GH0YVWe0DgTnOXtP6wHLz5RSUK6C4nLTaMKe60hz4JgNFQoIiGhuC5E/5t5aleDz9Rh8OmXE7Avbvf93H3Eb68H5V9dfBvioBBWo0Mi6CkJgLQMbD5HX3lHA7JlCQ0Azk9TAAbAQjl6TzKEOEBmTwoKHT2WiPf8U+dVIA4nKAJJjeT4ySs62F5/PZ3EAqVhrtUEDv3//RghzqiqJmQJUna2fFFHvfUSqfkLrNR3bFNfs16bp67we78PraEmzGrUsV25tnR7Id+PS7M792WlckGZo4JI5GVHintIgua5ijkdllllECA3VywKsN8gUSAqkafRWQVOegT2b8Sp7FQHAKaUTpkhmXwc2hyXNj1Ro9i4p1j/h8WBPQma+rpPydjCF72fXjriuc9C//X0Ct9x7KjnyGlxQpMRsGD2vNgDRGOOIAKuxxj0jjRMw1ntQcJI/R9SqsxnwOlVTHXGe0XEc46y5D7a9k/4pyLWMRQ0NpdGQbHpfwRT+vObn8zE6iAE5ZvRnX2SFgYhW5jZK0QCgY/S1eLweOK8Ttc1+OK01L/eBZ6wZHSXfD8otAhXsB8L3sO+tTgKVYy3VM2hmeSFL+MiPpDsqTC3nsSikNRY+jmPhX/K9gt47cEI65bOvTmrD43GMPRhGWsRydiYPHOBPCW0YOTDjCd4oXpQ7waNaOmroBhx62YoBn30Chu4khQj00r2vWR6lnRzE1FuzsiRQqUfvMXbg83mjlrV3C7ModT9iTKNROWmQ+8ozUeMtiAzXoBHplWXcCMBxzAExI0MnzRYJpA0dtGTy1PpxjYy8bs7k5/0Zus30BQFjcxg1oKQDmvR9ea6aWa/yfHeYe+tjavAATPw71InUAXnjD3W6ep1OGfUj94X3o3FOfaMgGPV8a23cU78HWJZuHOXvP/XRZcZwRUrMTip4PI4hnwPCakzGiJAko7dPwCA64Dq+G1bAohrRDB2162VXO2CQh7zSWhvZV5QbOWcv2Z3lp+1yXZWTl9HBMmZbH2WmKRkoe74/I1O5g2DeDK7EZOBRET0y7DjXqcN4zwm9enaS9+Js6DivCylkILTRtDv4wIhSCo7nY8gfTqprzZukJ8tYNAfTHesQceRjoc/jMSet2tTi1aHkz+QxYM0mjQizB5jqmSFfLeNHf0f5m3JGkt9zj6KDamrz0Y6ko6PZ97THaA+pM2T6Y6ScivyO3tgdY/UulTNwpy+YU9xjH3JAg8m0UweYGCfd1WJZnJRxpZWR8ZIfGdUxFr5f9DO2LJeK40h4v7/w+ZwuZytam8HQ6zyRgpXXPT3rn9lulAe0CSzzyYJBIcwSzXwcQLJy9ohgdN2aZ88HIEVcxQe1ACMI8nx4HzOvGmC1BPveakZWCAGPlK3XXplZqATWSus+WTEucpoZzmhT9uScB7C32ELdhwTE2Y6gtw5mu2s2iekdk0sE5lNcS5xJx8q3pBXbR5dT3WzWVuvYm13ett7Ra7N8uBBGsDim6CC5yzqsAIICPupnaYBmOOcEmsRzjfys837rDUd8GtDhQRDKD23poPenzJw80hd7VAGFJcgiMkN9V7MHrNLA3pVBYw2khiHDd3my61wEs53IPylFJOfh5x9PsUviop/5PPtZq09sMvw7yBZCQMO0PUgz5KmRBR8D0C1DnnTJPTyvC2gOFMeZCMKzVl9x9+EZDIjyPeplDU7z3PS+rRuoZj6N20Nul9MG+PXr1wCKW5sJQ+p/8Jmu67Iyc7VxlDeDZeofeR18w5ZCVvHTZjl/79AApT1zQ4qWsf3n+8v7280zUx7gvufgiUEhjDYb1DutNbSzDd7kHnx9fQ2fS4Mi9h6rzTHkQK3mZ4OxH88Tp+/TvX+vB0JMx87kgh0MV79cM0rVH+d782z3v1PmalYoQVpgHaY17c/qPBnQmpY4V6+0oi+eRtDAEn+YgTf74VqgMiAEt8eL6WbKbT6TyZ4KDnSbNrHJberplKz6YPrXklL4L66/DPCRH5UxKAB5IDllXOUa4M8wSLA25B1lg85I6igtBpNkztHQ598VXCDhqCAhsZVSRg+M6aiuE1/o1KmzS4Lju/Df+zsr6ACs5b28p0ao+O8kypvvqs/Od+Kq1TLJYlj7D6mDwufW3gR8BwVrVNjoZ5SZeHYaueB7qDPKqIper7U2JoDyc3RUeX4K5PLcjuOwiIv3LQTm1Eg+DwWuPUMFo3Y0oBS05b35TOpQ8jtspD6M8R8UaIxhUVBTcJlQUKfNRtbPKCLFpApXXoPf4b8phAgmK33w3Eopw1GnAOE5zAheHM9Amg1hGjpFAA0qkDWiHhYwgE4l9/j9fi8TvNQ54XOrE6+G1QoYTeAO3RyFcd6YS0vklReHcuvm8Cr4pdlGdJg0k8OctWyKGetAEADLpNBSKvIxU+gV8OZeQRSlZtrxXUj/5A0Cc4wykndbsah9THEAe19fX4M/fjI0mfrPfTmvCznZVEJm+TDgoUbh3j+VgQrei/tNntL7UoaoUn88Hni9Xgs4tUcmF2CgrwOQSvFswD5Pv/eOq3ymQ9JXR+CnxbPvvSM2gqkdvVtGAM8nxjSADtKMyqneLeszJhvQYKBPB8uB2cOPMqg1qxNPPnlYDQDKOOuT5dcI4Uda5WepE7g/PA/7zATqWrEyJcsWsAn32miZvKnBMPIP/6tnRJrWzEPlQdWfrTegrr2JlC71XqoLyUPMGuS+q8HJ/SCoCmAEsrgGsOMG9aCjvg7UqdWzd7wlispU0rWdhckB7iH3OOfskw77AOB770C2bFXu4Z9//onHS3Sfg13qmJFfxt7EMMpPaeCTT9hLS4FKW2GAB8xW7936F8aUUK6AIPYEzxbdyz0rh3hYb7fEjFsv6UG1UsMUg2eSXmNCZrAkh5GdFDbHPcaIs5ocKQ6+A/adUotN4RQeHfKmz0BjipYpMXRFhGVPxgR0Zo0F9FbRu5QBEYBhaWUHgLV8Rm2Awbfcp7BmAahtZf+3PeOZqI3xLWg1fjYnf57pWilB3tT13wEMIRggasCoXzl4GW1YsydY2qTXUf1GOtJn0SCZAuwAJDt06k+1682xDJaRjI76of1mWXr/9fvjzwaUMpvQc9Va8amnA1QJ1Z83HxlPB5nT1krgjz/+GPJ8lt3P1jC0/43mLb+MtrUGyhgQKu7g7pm0ap+H4JmmnRPZp/w4fBJw8EDrdV345z//Od7x8TS7SeUVn5M2Mwdl1GYZcRZgapZJEmf1jcrKmCJCX0Ekghlqu/Ksp38x7VLK+uC9EO3DnuVYCroGMijPRBfr1G46s+RfpTHSFe+rQVnaV/rMtAkVAO/BwJ1QZ2Zbx+oTaWKBgrMKEFC30ZFX/cd35fPTnlGa5VlYZVFaeJXPrJ9Vu4jvpvYP94HBRtN9swpK9yvEgIh5fQU4FvCuWbqQ2nCq/2KMI0Co/tMIUNNXdTBeg4MqU1JMHlSd1V77ffiO6jNqCxTdd76T7p/qwIkjWHbWAIVF16aUUMVHp122JxrRHi2lIOZ1SCIXnzeGGRBRn4Z7zXfZfTw9/xCA9/nxQNQMjqqc5r7quWvmsoJopF2V37u/qT688hv/HqP16TTcpI4WEPx8CJYlWT0LzSqPph+i9EC+i/Ju+rwz+PW9pdTj8cD7/Z7n6dfey95pKyz2DWY7MdsTS5AZ1YrBzi8dnHRttrwmRJF2eY6zpU4Tuv7eUozPWeuGI3kbkLlH30uD/+r6t5To/oS8U1glj/DuTt/CQFinCNpFppHOA9dsuR3R3jMIlKj0oH+KGCgIRgONn9Xn5PPweYFphCnT8noUUPw+94X/1udUA57gIAUbDSYuFQgqSBW8olO+A498PzXC+L68lmbSaUSZz6JZHAQkNLKiQo2OGgG/WuvSk0kNYb6DnpWe2fzdWlKsdGWf7dCedQpy6D7RAVxSuxszR2eTT1OaEjXAbM65A4e232tzZKORFXBNKY7SWfj1ipROKv2xp0HzHiHn+cFxPNC77TenV7IEZgB2fj37rGUBnucsEde+EwQHSpEoZ9IJclOg7sp4OjlhlE2SL1S4KiCoNKwG8w4yUHGOxrhtloJpmbsCiqpINKtWlZaCClzsCdiaNbuFGKHKsxMUnv3HaPCooqJjuQLHa6/RWuckNWYFqKwchmQHYlgB4AGSB5sSTFCQ5698Q8CzV8C920VhkS/Z0JgN7ZU/KcsIKHLPCC4rX1G+7OA76UQDKzQw9vMZz91sWuZY0cH1Ysje8/EEs6MGzYhs34HmFBN6sGwlAvKARdBcQhCbGzJZ6ZRyoyM4wDUHHVwXS+YMPBx0XcqIsPL8drqstVpW2GGTkQkk0SEj3RDY4s88S77faP7+ellWltOQTtJWnUcZrrKS56R6tTXLvlMwjvRDfafPo/ygwT3qON0H6hbdZ9KO7rvKE9uv2QtLHSmV7/p9YDabHg6kx1t0T2h4sZWI6RQra+Q+kVZZcteD7QkBXM2w5HNQjl3Xhecxe6de12XX6R6ZT3mUpJIONdDQehslr+QXy9J18DnOgKgduPdW6zOQQjpovaFeHlhr5iRbv8GICmsbMICDaL2qjnDYM2DlE9UFXMOhdDnATJ4hKxHQ6loeyz0LIaC0GZQNIbggtDJ+BGZPWAZu4+REeOlNMFkRwiwhjyGg9tVpUnonfakMCpae5oBP32ile4Bggkmqv5RuKQvVsdGf1XbSz/HnEaCIs+qAf6u1opdVvnzOD16P17p/mEG16SRaCeYc8PIc0+fVvtPAM/UFe1uSH6gP+f50rC+fuhqiZcvlnPF4PnGVmf1pssvuv/gDdjELZqc4zv28bBBWa+sUcD6j6icu8m9tDYhWYpVTHNk9PCPLMPTKnnyMdhCUS+oY+6aPCcnDvmGgwjml9TbsOQ1mWo8+L+muFszjXp/niXIVZAG8eu8T/GcgyDME+R70mfh5PrfK2RVcoKxYgWMACPBsom7l3b13lOsa5zB0UXCwtE+7318cOSUvaftuJwybpzeEboENK192sKdav9DAIEy3wR0BwSYsd5Pj1e1z85aN1jrf+8h4Hs9FB1N2KfiiYJL6DfwsaWh5b18abOXQJN5PbUQFktTmIw/x2gwo856qVzngBlh92xgiWlgTU/gd+gnUq8fjYVnRWO1F7k1zvcJnp2/KSqivry+kIy98Rtk9bF2YzKbc1CAldThpRatOmHHPPSEdK+3+VLWktG4+g9sQ1Hl19ptLnl3KwOUqbtZenmpfUocueixFpGAZ+Hy+lNLgEdrbmnSh2Wvk6ZQzMmkDM5hOW0LtRoLR+jved6crbNcijev3y2WtDbrIGcDalFzFps+G+B2cNtqK1vJIEhkoa9T2455xqc/P/yrNq8+jZ8T7EPyjntrtXOWDYXt2C44MXRUoE9zGvgpCiIt82q9tPfonhhGT6dHd/5j7v9tG5r8MGwTWPkdt8L+6/noGnxAVhR0Jlg4iMDPBdJH4lMh674OxKZhovKqhQQbi5u7AnWZbAFiIHpgGkAqMxSiBlL0I0q+GsUb76BSrAKaRwLR+Gv27cODP+q7s06SfUZR6RL9pPIvCpFGwO1NqVGj/P+6TOrKq3DU9Vs+O/yawRFT7/X4vEQXN8FNDl8ypBi5BQBXoCrSasz6bnfM59ynF1UsR19/VbzShgkhBH6WT3hsi8igzabWNslN+jvQy7+N9r0Qon+cENSyyrGn0dBZsT5kxpUBs797zrAePdFvEh/3PgDn1kzzXWgEwS89Y1vh+vwe9kEZ6nwrUNwG9zz5A/Js6FOpck7Z6XKeB8j7Kq6pklBf43DwDVh0xU8ho35spX2VE4UIMKOc8cy41KNQ45lkpIKpRN/btUKdTDa+h0DF7kqgMua7LjH0xEvXsacw8Xt/7zfD59khnqTPLLmdmJbDU+gIQ8Hr+QkwR7/fXwrO92xSvq9VFhvDsyZuUs6psCZDov/WdVS4pf/Pc+X4sjVYZz71Q2az7oMqxtoIQLBrc6jSgapuRTDWsqFf4PIBPFQ0GpLDsqhMo6dxfA5VppJo+Kcv58hl3WatGOzN0DBhJsImXs5Ex9173qfduJWlCr2r4k/e0ufBO7/PMJw//ZOSNwFHDsme8Lht5q2zcjSXSKPXkzk8KCqoRrs28dV9VDpCulJ7UKaXBtQOlPwEmO0Cr14rex637ZLXztOwNZjPZ/nWkFPD19V7aFPTekR4PhGbgA98rxjh6do2erxGIYQKmZ7mMlvvMMGDvrJAiQpvR9V2G6ZkbkLyW8fU6M6pijLOBfFt7TsUYvSxRwSYMGfb5fFm2odNQjtNgvzjEI87AqPJGzhvolxJCtF5Pvc1ALfub5dFGYoLyj4cNJuKeDxkjGSRqO/VeADnn3dhWYGRxwlgx50tlCeWP6Uf72bKJrb9uQ7P7YnX8FUBQOaxnt9tafH/llZ9sL/KXBpf3z045NDMd+F5DbnSMChCILQx4lUqbNjLfjxkTytdq+/AZKNter9fg8eKBDtIXz4X2/+x3FJCzletaMHSdTDqdooD39Ubodr3X6zWCl9RT+70s6aCiu41oTrjxzS5Lh2PdOtgvTYea8XMhWP8r1D7ADjqdn/dHAEQD2skvtHVCsOy32tZM6iHXOnBe5wSZO7M/RdbVhpgTcggLTVHGVn4mBJ/oaaB7s2ZVFoCKETFn1OvCVX2ATsrIR1r6LtY2KwpCcJnuQ55qa2ix4ar016wHW68Nn1KsL1tgsMWm3Y93ZtuBYHRZVc45yM7fxeBgf52Z89H7PpbzROjW5zUEA5dabSh9ZpZy/5dACKZ9qLaq+lAK0mtSBnmE37N94eRMo2W1rXY/UwNH5HNt3cRn/v3796CPId/djiKfkc9zzoPG6FMsNmZKo7UEr6nfa7WhovqU5T6qatQno42lcmvwWSkDqK1eosoejtxbvpeCqRr4UJnK66psVpBLdYQGpimPaq2A2z7ndaHWCYB9vb+Qj2NMZT98oux1WfZe7TPwvviTbkeWXnB1C0A0t/+MRrKX5q8Z3M/Hc+jW4Lxvvf7cXqltJEyUPkFk1Xnqk/wEECvgp6CRgrkxzsFDrTJoF2xAlFwveRuDI1rPvboHl8mjwJKJyXspWMqfe5+lytThe3Wa+mWK9TB5iLYnsGa7qi26Yz8xZrR2zT2M1n9e78ee4MrbRldW+dZ6RcoBqAHX9UFqaQy7UlrMOXtP8XUWgv1XacLkZIiWBYn39If+1fWXAb4sGRjKdMq8VIYEyszhsSgMP6MTBPWA6KSpk8nPDSHU1mwwBbs0gqGCQiMA6mhQoKrTSuZQAtHMID4TgSZgzbTh51QoAivx/vQ3LbklWk9BzmurYaXvuGemaYRHBQDX7qDyGUIIo9Z/fy8aOgryEDhSRbKXTinhK1BAw4iLQK0qURpZ/I4an+N5RelppFoVtRqjGu2YCopGszu9BI270Twk0q97OAHDdRiK0soUNoySwgHLqSDVOJ1RQTNiQpgC4fN5j/e2vSnD2WutWrP+MvtNko74vip0jc/mfpRa0PtjMXZIIzSOSCsj0zGsQF2McYDVAwDczkzpX8FwRqX5887TAGzybO/DCdx5lc/Bs1UwRT+38y2VB59RjQXdB/0vf08+PT+fEfXn3nCfuOc8Gz1vjdYNuoY1LK5yZt411yLp3i8QCKhl8jzv13vHVYoZ82kaUnuT7ff7PQw23RMafQrkKC9zP5UmSCMKJvCsSVM0zFSG7/KhtYaUDzzT04YPoON9vkEAne+r19EsCe5hI5gSoiUBBctGCLGPEoTGyZkRA2zpzcZ2KCjd3BDbHYM90DJ4zLMsrTzJJpAywq8Oun2nWqNmrOVLvD7PVvdKZTrPL6eERz6WQIRmTo5zfcxyht770uyemTr6fLuxmHMeelN1zZ9//vkNyAfWDGrKaC1rV75SPuXvVU4rjTCwpHrgJ8BFjdwQAjrCyLA0+p2ZWBMw6fj6+gItWOoOnt/jOEZ/ziHX2hyMAv9mrTbV9TgOhBhRupWUcQp3CLBMk+cT7/d7Ab+ZZUDdiw705k30xSB+HAYy5pR96FAYQC+EnhbnKmifGmuYbv2rZmb64/l0MMh1bEoIfXXsJg37sA2hM8ACwq3NXkS/f/+2jO8+s04UaCuljKxG1bXqDOwZCXAAg7KKYLbap61Zb1iCVbthTvBaZXtv1tDcGrVL5QcSUgJiXEFlnskKFK7govIR/6b2qu6pXqPUsnxfaVtlPntQ7Tw0vhOsR3Cp1n+Isus4Dnx9/V4GKgAzy12zd9W2IoBB/mDZm+4LeYIl5LwuAUOT3+di03MfuPgOMVrPNWalD/kVrWcfg5MKcsQYkR/HkEF8BpWp0348cBwZ11UWsEHlDD8fo7W/OB4HUrFs2uSZbOd52qRaDxzxjAEMJ558rIAP9767fWzVC9XZuCGIC0egUvmR76V7STkwsm+jlP77/pHv4cBDLz7cAwE5Wq/mWl3PxSlTckrIx4HrvEZ/M4KCPJ/aWNKWUMZ1J/13eA+1PgNF6ksoHfQ+e4GV80TICS1MWy90yyAjkML/kw75f+odtfVUvnMf9W+8v9qj+h6lnEhpzW5LSQBdrD4LbV+97g7YawCk1mlzs6cy+U75Y588Pc6hVlylOEg7ASP1Pfms58f7kzfrbUcAO4QwhuBw74b894AugSvLLi+G0/rkXt6Tz6R7onKTez/3cd5Hz0Xl4GJ/iT1BvcBzm7a4T4P3v9vQrxn4bgFI0jOR/+1wXgpzXxnIbq3ZwC7qTIQhN/ld3iOmZDldrXk7F7dR4ir79f2UTlS+k0b5swaSaXNp8J10kmJEbzB94DKih4Di/TRzzg72VhvapjIZAUwg2elbfTgNMCut62f3aiyVaZoEpP696k71M3ZasnvMvvD2S58o77SVkvVgZ7UM6Yv7GmJH7xXX5b5Hs+zjq1zDjwUkcagW9BY2Pqvep3r6oyZXHBQ8/vt2Q/9/179hyMZaAqsHRSHAg9SpM2hTYasCV6bkYTN6u4+mH85mikumAR0QMj4dTzoqfD4AyzMyq+2ncsJarfaczaR5HV6fTKMNxFUga8+6vWZcAUslbkWNVXDT+ON7jPJFAQqU0fV6/D8n2wETmFIQVR137dOgCobOlQpcBfl2ptAsSE3dVYNKATpV5lP4N1xXHQpFAdqcs095taw2fa/FyRAho8JRQWk1AOxv0zhIKSGk1YBXgFbfWzPwmM67g34DfGizJJrKTB0UBXDN4La9YY8WGtf73vH7NFh4TaPtGeHlvg+l6v0EmC1EI5lGPQ0KLUsisEyZwF4mXOxxwrK0X79+LXSlDVNrrcgpI8U4ouH8DJcZkHE452qk8Jm0bFWzKdRx1vfoVGybsddacyef4KU5EcqL8yylsbI/p2ZNDcMjz9L2vf8On7lWa2CeHweq//7z+aC3tY9maw3v9jaAN6xtB2K0jKDrOtHCmvVFGqLDRVpgYIWGAXlO30ENDwXZKJvV4GIGidIh6VUNb15rGppAuT4W2XInxkrm7R1er9fgX5UL3HulB2brcMCBZb9a1DJlm2BsE3MN1DEg1QYU6FlGb16vhorqDTVMzJCz5urcuxDmc5GeaTAHfB+UQj1DWcjvqaxRGRZjHOALz5H7S9lyXh+kFNCPafjSyaB84r7t4LiePUtz+XcFqEmbapDrGoCpOEm7XUB+U8OcZ6nlZvyZ76t2iepHnqHJX8sm6z7RjLJOg5Yh0GaYjb+HzBvngZEB1btlABNcGboLDTECrXrQK84M95isfI17T9BhL6fjqtUmMlqfP8vsVl1CekjuOEzdvg4LGHxHoCnYe1rpUkNoYdDq4/kYU1dbs8EDT4nUq+4IIQANiwzhmVJmsSy7945yrmDAmH4N41U+n4JdymPDdoBPvQwz+0ptSu7neU2dr07jcObE9qPzvAea7R3WslcudTSUP3anUh21HYBQ8EivGWMc2RXqvFBf8b5qg+0yUgHS3g0IfL0eC78zuKkZ3nulDWlBA/UKUvGe3C9+RkETPqu2hlE7xvS39W6LLvcnH5ue7d1K2yzbJo9JzjyvEDil3ZzQ3oBa2sjMS5ktgoK3NLFgTGsdX18fvJ5PGzrjFVq055Veeuu4+jUGZcUYB2CAMKdCq63P76WUkGIejrTa/LRxDOibOrK1BnhGWg8NzbNMSeukfV4jepN8PRvtc0p7JIWAmK20UHX98fBJkN16JZo8vtDRXD5baf/psi/kmYBwuW7U8lCCuKR1pZHW+5hKTSd7t+uGvyPD8LhvI6jqQXQC1KR78smkj++9yWiTkc9URgATNKF+Gc/uuihnqwaYAbJk1ScI32woXucqF9Cx8K7ui4IZ+nvze9ahj3wv6gv9edhX14V//D//GNl93CPa/bTXh92cgBpgWWXim/C+X19fAzjh2Zlekez8DqQ4/Xe1L/U8hh8i56M6Rt9xDkjUvqhTrvLaZvMdywCbSXNrb9HWGrKALyEGdOnVvAxTqA1NMt4UvFdfE8EqjQjcwTNOGbhXYFLlu9Kt+qUqKxTkoi+mZ6+6gv6b6rlSCk73uXLOyMJjOWUH3htqYwWhldKb/vB97NM+5f5SL+44kVaE6LvsvKg+BGUvbZgdi9F31cAN6Zo8FpBG66cQAjoack74448//NnmM9FmID2bPd+Xd9KAHHVea22RGQFpoXlr3fy9XYee019d/5YSXWAe2vh9CMvGcONTsk3kxtLoosKkcKDQVMNIBaKCagAQsk4nWjNtdpCIz8v/EpACsAiYiahiKsOwvo/2DjrFqNB3UWHD+1DhKMqu3+OzKQOokFfjBcAATdQB476pg8bnfj6fYzKaOmNkdAXshhFIRokJ+WX3oWIopSwlyrsC4u/5PBzIoMpSo+wKDHOf1OHX/gzA7OFoez2VB2mRSlcFB89Mo0hqTOuZ8VakDaZP/2SE0xlchfRsxklBoe9sdCrlT14ipsby7lyoMFCDU0sOdqd5N9h7n3sLAM/nYwr+uPYt5D7p9Uk7pK+vr6/xvIyWK4CvUX7NXiU4ooAEFZSWR5DfNILzfL1QalkyBRWE/O+d+1V28T69d/zj1x/jWfjcfOZhMMc4plbuxgZgmTjBHX911NVIhPMiQR4FhxaHtjWcn+n0B1hzYzVQlCYYFeQepZRwXpdlOYaZZcg9eb/fI9tCszKoOJXPlH9257S1NkobuSd7lqsGU0jTuzHA643PpITH0xyg6yroMODhOgu+2tsN6mPcjzJIwebB+92gcQP7zDv0Fj6L3OY78NlqqWNvrlrGVDgacPrMIYQ1INUayqXDiCpC8KmOcU5XfjwfllUjPMH92HmY/EjARHmtNQMtNfNVe7K2ZllLSaLDjOoyc4w6b3GmRAaQHrQZ9tfX15DrOtyG39UeRaS93bChLtGJ55Qr/D73Z8+k4Psrv6o+10Ejdj8DN2JODmqVIUP5M+X3cTxgvRavIVOSRKXRRP67Mz8CmgBiDkhBmmGHmQnfWwPSmmHO9zrPcwCP6vgxG872aAZF1JktpSBRFgUrWaOO1WBWKd5yIJljbnIjIoQ58EptkBgjGqajqZm7I8jjzhz3m1UcfAcD0m3ibXokhMDm3AA8eh4Q0KOUQfr7qVPCMwasbC+KY7nbnsPx92xB1VHqWJCeyCukM/Kb2ro8A806UDuQvKkgHL9Pmcvrq5xSoFblUSnFQAAZ8qVylveKMbm8vJbv027lOo4DRTLURhZtsjJOOrIAZr9I4UXuq9oCI4v9B8ebz6FZu+QzgqmURzFGtzGtp+lx2AR1ylWCYAQZ4DzdvdrhOEzuvV7MLrZWJ702pOCgXg8jY6wUy56udZ24+n6/8XzMdho2FAn4448/TL4ex8je0MC5tiLozXSNBiJ59rVWm/QcJng9QBin8VqrTah0+0ED+cFbQdTNMdz182rTfi8FH70A+xqcGGBBKWiebWjPlfD0NiMKXrbi/T5hujvUyYca9FaZovSptoDa7PpvfianjOaZNL1ab9Ie7YFaayPjmGez2ze8FvWP8hz5SrOP1NbjHir/Tvt/Ov/2X6uyYdBbz4Z0VcuUHdTVCmrp8/Lc+C42yE+CRnFmi/4UnLX9m33FmEXL62oQgPxIEKdBW72sVXN8Fz4Pbagk+k31iMpG/k39HZUTtVabfrvt9243KoBE2c/77Pb1+J5U26gsA+Blt8DVZoUBcYPerQLkkiw3+uIKxl6XD6Qij3vGYH7mb3bS7uftdK+8oM/KhAmVK7XWkVFGeaz0rMBnfDytRHnTXYBl8j0eDxQHQhEwp/NibY2mvMS92NsskBbIP0x8UtBMz5TPy7Pes275nJrosvPOsClaR8WsrEzZPkeAOoYwgEyetWb0A1haJum5kb/4bsNW6LOlTe9MFvu57H/YlH9x/WWA7/fXnzYhJ0Z0wMcpW5SMQwEAjAgsx2XDFWpKCe0/6wIUsjTEc69Hqqj912uV3cA+8mHIemOTVj/sEJbSFD4PMMcS995GLfkAKINHupyH2NhVM3lCiPOe7kiFODN/AEsBhTBkpGEjAGVKydPY57sRNIohWETSGRK+d9G/A4+isAcHnNCi732M1qvCysvWia8hWiSPz5ITG2j6BBxpZpvd+AvB+m30btEKS9Gv49latfK2QZylotYyGgBbbH3tBRW/NuDV3xF+1noOLMM0ZzqP+x75wPV10TsHgDHUhTSQE+vsne683wjPhNfn/hsNWp8sgnsmtPyMIwGUCfxZ/b5lG7AROwB8fSxleRhQVcuGK84SAEzDt/l5AR2f67cLQ2ZozAhtaw1nMYesfBGs6j6xmoappZ3zb4yAW1TBJtLZ5Nw59fmqXxI96LiKpWenRGCgj3dVA4m9pFKaJXPTWDNjO4ysJYxoOkuh0eHlQB4drFZezDI3GphUUFzToQ6DzpnN0lodvGDfi4OX+Ry8f6esaQ0BAf/vfyb4yYweWeqcGkAyS1YnsAOhlyAZPquBFm38o52Nf2caNUGezWSBgiDk94BZsszPk7auQgODzqX1QEnZSkMDpBwyBC8DAEq5nL/mM7Hke8oRjTqTbh0oczrjc2rrhbb1c+p9GsO8tmVNzL57GPsHpN9e5lEa/+TXXacvxygDFDCNmHH27DPif48B3teH0djZ8Hw26je5G9/srxJGVkbxCfF8Tp6f6aw29sa4Ghgv7+dfmGEH4PgcVrI1AgphXFedM8qT3hvSSSM9OJhCJ7cj+j0DJHgVrZH7VQp+/fHE9ZYSG89KDU5f4ZxACvlOo5XH51iAv1YNOOQzqsGt4JQa2jHEUSa0B2YAuJwqC4CpTqv+m0aWBvco1wGMbJBAAgpAQET3Zp+1FOQjO4jAzPrDaKP1kWFme1IHbwUEL7cwedObvB9tmxTHpD3uNxbbggGIqW/IC9Q9lAlmcwTP6KFMW0HTCeSawUo6UF3Dc2jVDfUwnSX4nahPk2efDBJuTfhsG47jATDLwmEmCc8rLEZt781KhF3WIlgpk5Vz2XNHH3pUm5Tf+bv0D2YGAZRP5s+kRdtrkwkns2OdJ0gTJvu8lNDfrft1W604zsN6uPU+7Ev489RmZYoUoK13z8hxGakyKABf1+/Ry4g6qGOCe1P2zz3kvxkIsExRs+FyTcMWvMqJ/p8VL8k04fm1plPno/daW6eC1taG3u9TcKEU64tn+qG6zFhtZPKe2QA28IvnP3WVB/B8WMMI+jWWcZp87r3J75wPaO+3hhAJ3maYjTlBnQFC/DmBdc3Uv87LaMt3Xu0aZg0O20mux/+/iwF9yW3oME6QvoODzASJEAxs/zOMEsABfsa1PNvK3axPHXk5gHZF8Odl9l9CiGHYfoG2BfjMpofIM3twk+dWa7VhBPJ9SCC7007uZgeGEJD/nI3vYwxO82tAinKd4EJz8D+EKZtpbwAYg3ii0lSYsrd3+1YiaOt9sV1RDvnU0QcNExy3gKfZOCaD5p5M+TnlloI0IzgSzQeknlVZM3hq8TcnyGRymn3JSCMAPHO/F9tbuK+rZz31nfk5//M//+fI6tQz4j1pZ1IG0o4d1xnnNkEXswdNrynfW0avfMkJzcAQ2k/fKyZaq5a1l9MITqgeJ4389DOfTYGT9E9p9SPvt9BGY+ns5Cs9QwV+yG+WVUeatfPgwBvDN7oPfYFjGzPwpdsSLrgdGL/RDe1LvmfKGTkzkSmCviLpis+aUhwBbBuUiCGfem/DR//n7/90mu3jPHpvyOes9Ekx4r++/ik8x8GVzIKfe6V230hosacHJV0MEUn8An2HJO2A1Pch/5ZSRh/Ir/NrA7qm/Jl6Y/rBPCP+g9mxfGbqHtrkwLSfW50Af/HPpTT754/J85f1Rv6833Bj0YYFJbP77WznkBHyNK3ugc94wOlsjoGFMDKUWU2kciOE2QPxr6zQlZPuda973ete97rXve51r3vd6173ute97nWve/2tVvz//si97nWve93rXve6173uda973ete97rXve51r/9b1w3w3ete97rXve51r3vd6173ute97nWve93rXn/jdQN897rXve51r3vd6173ute97nWve93rXve619943QDfve51r3vd6173ute97nWve93rXve6173u9TdeN8B3r3vd6173ute97nWve93rXve6173uda97/Y3XDfDd6173ute97nWve93rXve6173uda973etef+N1A3z3ute97nWve93rXve6173uda973ete97rX33jdAN+97nWve93rXve6173uda973ete97rXve71N143wHeve93rXve6173uda973ete97rXve51r3v9jdcN8N3rXve6173uda973ete97rXve51r3vd615/43UDfPe6173uda973ete97rXve51r3vd6173utffeN0A373uda973ete97rXve51r3vd6173ute97vU3XjfAd6973ete97rXve51r3vd6173ute97nWve/2N1w3w3ete97rXve51r3vd6173ute97nWve93rXn/jdQN897rXve51r3vd6173ute97nWve93rXve61994/S9Y1t8PDhK84QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 15/15 [00:17<00:00, 1.18s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "results of current batch:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAAEYCAYAAADBO0i/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOz9565lWZaliX1LbXHU1deEm+uIcI/MSFXV1cXqbpLVZDfQ78M34BPwNfijSZAgwALR1SyVWSkjszKEazdzk1ceufVS/LH2veYemf2nowAigDMCbmF2xRH77LXWnGOOOaaIMUb22GOPPfbYY4899thjjz322GOPPfbYY4/fScj/f7+APfbYY4899thjjz322GOPPfbYY4899tjjfz32BN8ee+yxxx577LHHHnvssccee+yxxx57/A5jT/Dtsccee+yxxx577LHHHnvssccee+yxx+8w9gTfHnvssccee+yxxx577LHHHnvssccee/wOY0/w7bHHHnvssccee+yxxx577LHHHnvsscfvMPYE3x577LHHHnvssccee+yxxx577LHHHnv8DmNP8O2xxx577LHHHnvssccee+yxxx577LHH7zD2BN8ee+yxxx577LHHHnvssccee+yxxx57/A5jT/Dtsccee+yxxx577LHHHnvssccee+yxx+8w9gTfHnvssccee+yxxx577LHHHnvssccee/wOY0/w7bHHHnvssccee+yxxx577LHHHnvsscfvMPYE3x577LHHHnvssccee+yxxx577LHHHnv8DmNP8O2xxx577LHHHnvssccee+yxxx577LHH7zD2BN8ee+yxxx577LHHHnvssccee+yxxx57/A5jT/Dtsccee+yxxx577LHHHnvssccee+yxx+8w9G/7AP/X//H/wcc/+SlSCMoiR4gIAuzgEAh8hBg93nkG6xj6AR88UiqkFGitIQaccygBi4MDsszgnefmZonQmjzL0EpSZJq8LOi6nqpqUEpjjIYILji88yAk3kdMZojeo7VCAHluyLKMGAPDMKC1IstyhsESvWc6KZBK0g+WaleR5YYQIkJJYogQIlIKIOK8pyxKsswQQyQS8CEAAuLbayOVBCFwLuCdwzlPjAEhBUWekxlNcA4EICT94Bj6HqXN/XMJIRACYgQhBMEHQoRyUpBlBknEWocyhq631FWFMgYQCCFx1iFFZDqdkBtFJBCjwHsgeKz1IEEriQ+wa1pevbrEhsjBwQEPzw4QAryPeGeZTEqkFPSDpW46QoggBBIQImKMJoZ0/bt2wDlPXuTUTUNVtRhjyLOM46MFgkBRZMQQkFKQGYOQEEJAKom1ASJIbWiaZryqAu8cQghijMQYAYFSAgHEEFBKgRAE7xEChLjjsSMheFwI9L1DaUVwPl1HKQneo7RCG5OufQQpJNPpFK0VSiruHio9W/rI0x8xffTx/m93T8kPbor/BcT7R/k+xA+/Od5f8e4ZxvsihEAEfAiEEOn7Ae8DPsK//tf/ll/+8hfMF6e8evGcGHasbm9x3uPsgHcOqRXWeoq8oMhLytmEeleBiFxef8vT737N8WLBf/t//Jd89+0zXr5+Tp6DHxxtb8myOacPzrl+/ZrBWaq6IssMRVEiiUgZIMBsfgwRtpsbnOvTZxcBKVF4jNB4BEiFkmBkJIaAkJoik2ihkUSMgRAjzksCgLBkKiMzhhg7jNbkZsHh8THPX36HcwMuiHENRbSMHM8PqeuWwTuk0CymBwze03UtwXa4EEEYTJZTtR0hBJAS6z15VoIwtH2DY0B4h9YFOssxeUYmJVWzRUaPkhKdT5gdzHF9g+stOjvi5PxDjClZL1+x2VxiXYsUgt4F3nn3I4p8wfH5uwzDwGxywLsf/gHvf/hj/urP/xV/95f/mh9/8gnrTcXp2SMmecbrV8+JDEQX+ZN/8d/zB//kv2K9XLK5WYHq+fLXv+LgaMLtzQ3BK/7Zv/iv+NUvfs5mecu773/Mzc0b2q5nfniKVhqwVFVLVhwxW8wwOvDrX/wNu9UNs4MDDo7OOX7wHoONvH7xlH/6T/+YNy9eYsqMizdXzBcHfPjRx/ztX/x72vqW2XTOtmo5f/iY3dbyk09/yk8++jEnx2eYzDCZFXSDxfp0D7dNg8ky1qslt8tL/tX/6//G8vo1Dx68w9HZB/zL/+5/wA6C9z54Bzd0HB3Mmc1mQEQrcb+CQoyIcX/1zqe1Mu4ZSEHTtPzpn/1HLi4v6PoOISDLJzx4+A5ZXlCUE1arJd47gvfMFzPKcoJWOj0ugSLPuby84OOPPqbI8/EsSOs0xPiDbSAS7xf52++khfybu0T8/u+mL/xwW/kHj/X25+L3fj9dB374tQjtbsP/5f/8f+LNm+cIoVksFqzXt+NjCUKI92s0ywxCSJq2u9+bhAClNA8ePmIynVLVO7q2Yeg7uq4b91+BVIro73YtMf4XIEbKsgAEfd+nr49nHDKilUYJwcnxMT/+8Ud8+fmvsEOHc47F4ZQY4HZZ0VuPD5EYSedmjCgtyTOVXnNj8TFCjAgpMFqR5xlN0xLj/YaOIJ3xJhMIIj54BBIpFVrr+xjDaIkgspjPefz4Xdq2pal3aCURyvD4vQ9RQvDyxTOuLi/w3gMCKSXGGA4PD1kulwTniTGdWTGCkhJjMiaTkrqu8d4REWilCN6OcYDC+UAIDq0lZZGjpGRwlugDxhiyvMAONr2edCgiBAwukJmC+WzGZDqh2m0Yho4gFForjBR0bc9ssUAIaNuOGALODaAU2uQEH+i6hjzPUNqgdYGQEqMl1gXmiwOa3RpjDMpkbKuWPM8wRrFbLzk+PmG2OMRHw4PTxzx//hlts6auGwZrsYMl+IgxhhgCRTHBZDneWWIMZLlht6shSsChlIComR+cszg8QoiAty03t5cQPEIphMqZTBY0zRbreiblIQ8ef0C1vaWpt0xnU7xz9G1LPpmj8gMOFif4CLbdMZ0WbDZb8skU21sEIJVgt1ojZWBXLYnBEmIkCkWmzHiHe4xSRKHp2o5tvSa4gYDi/MFjqqrj/ME5lxcv6bqK4D0IGOyAzgtMMUfnx/zT//L/wMHZO7z3ox+xqze4oce2FV3fEaLAZDlGS8qspBkceS55/eIFsV3xyz//fzPYhqb1NLsa7zp8DCDS7w29pa46YhzXXozfi2YEMYa3m8vbQHRcL/dLB60lUoJzYVzGMq03UkwIAe/T+pNSIEL6XpkLtFS0NjA4jzEaKSR973H3a1qlpw4eKRnjNZFyBqXG/c1jtGYxXfDkvY85f/gutt1wc/sCHxWHR0ccHZ/wF3/5H7m5vEJFTfCRIAYePTxBCMn1dcVgexQSZRRSpj3Du0gUKX5QCubTks12C0KB0jjPuNfF8X0LQvT3ry3FOAqBIwqB0hmz+Rzb91S7CqU1Uqaf9S4QieR5BjFiXYrtgw94ZxERZosFg3N0XYu4+2yiuM8tlFIIEVNuEjyZ0UyKjDzLGPoOpSGiOTw8om0bttuKECNSqRRXh4hSikjEDg4lFYh0R2gpUVKSZ4ZhGHA+3UuRiPcerRQSCCG9/9l8gdYG2/fUzY44nsdRGdwQ8NHTdx1FrlOsJEGYjF3V450jxsB0UqTnzDMOFsfMD884OT9n6Ds2uy0HizM++ekfkmcLZqcHPPv2M776xV9iuwZtFG3TsF5t8N6jlMDoDBcEUijyTNK2DVmWowQgDZPZMVmuubl6SfCR+eIA7wdW61tMNuHRkw8IPnDx5jv6vsUNNoUTUqOyCVob6naLHxpmRU7TDSANQmq6riEGj3UWKRV5ls4hHwJiXFc2wNn5+/xX//v/jpvrC24vXzB0LSJKVJ5z8+Y5znW8/8FHGJVTtRX1pqZtKpq2Tp+TluRZyi+VyZFC4YOndwNDb/Eh5Q1vV/BdfBEQUiKVTq8nRoxWKJ1xdHRCXW2pqi1+zK2yLOfg8Ihqt6VrGyJgtIEQ0vmpIkpIrHWYTPL+u+/zx3/yX7Be3fDLX/4t0zzn9PiIjz78gNcvL4nCUdUVx6dnbNcrpISmbvDeIaVEKE1wESHhxz/5GSo75Pf+4A/4/LNfcHv5gu1mxTtP3mW1XHP+8CE6y3E28O577/BXf/4f+eSnn/DqxSuc61ltlhwePeSP/sl/zbNvv+GLL/6WMtdEIdltW6azCZvNimq7Qwo55qSWo6NjnLesbleEMS9Pe1y6hs56yklOWebMFyf83qc/Y7NZ85/+/m+o65quT2cFMcUimZZIJZDE9HhSEgNjjBlxzoFInwkIRPQorcnyPO1PPsURAsFkMuHw4AgPmKygnMyYTkvevH6OEYlv6QeHNhnzwwNev3xBDJ4QPH6wzBdztMlZHB5jMsNuvcQogbU2reV8yoef/ozjsw8oyyNOz46od7f8m//pX7G6fcnQt5R5gW17ppOSqu2ZLg4IXqCkxNqK26tXtPWa4AfmB8d4JykPTpkUEzabG9pqB9HRWYsLkn/53/8PfParX3L55jvKomS6OOLw8JzTk1N++eufY/KScn7Ms6dfcjifUWRTLt7ccvrOA6rNms3qGu8C73/4Ia9evKTvm/u92TpHURQURU5wAWstzjsYeZWiLBJHFAUuBCAQY6Dve4RM3JILEe8dSgq0Ngg8IQp8DHjrkVIQhYCQuCMYuaHxcAjOIaRKnz2CEDwCwT/7Z/+c/8+/+p/4bfBbE3zOp+A0EOkHS5lnSKAPAWcTuRODpLc9th9SUiAkSsnxIscxuFWU4yFUVRXWOmbz2XhIBbx1eC3pux7vPHawOBno2o7FwYzFbEa9q1MiJ7m/6UOIKCVo25YYI0ZrjNZIKVIwGQJSqhR8CPDWIVUiPIxWeOuJYwKiJMxmU/KiIIbIdrtjMklEHzYReAiBd54sy/DO472ntxbvA1LKtEmNJFVjUxCutMYOA7uRtPTWkmUGrTTeWUJMBFhKEBQgkDHStz0ICD7gOktdt5STAmLAZBqQ4+KN9H2PViVSCGxviQh89EglIAp2reX1myuatmM6nfDw6JAyN/ihpyjSY+ZFIiX1uPnbIb1nH1NAIoh458iLLBGHY8AYQ+BgPkdKRd10rDYVddsTvCMvDJkxZEZzMJ8BgUmZ3ycm2qRApyyK+3vFCuiHAeccUuoUVAiFD467xJQYxhxejsltQAmB0QZNCmCCDynxEwLvPYMdUEGnBCpGtBQIKWlXw/29o6RkOilRSmG0QUgJEsQYYP0Q/yBlH/9f8JtIIdJvfv2e2ftBsn7HTxAFIQTCmDQPzrHd1fSD5erqhos3r/mzP/13uGB58+olSgm864GR0LUpyM/yHKMdeZanxMqHdE8TyLUi+Mhuu+E//Lt/w6bucK5FawhB4G1E4bi6WBJDTAe6EThnsYOi7TuESERX2wUm0ylZYRC9TevAC3xwGGOQXmGMwnuHs5E+RsrJmCx5TzHP6XtP1JqhHeg7CxKKXCBFwGQSISbYfmCIA5dXV0gJMUgyo3EO+r5FlYa292Tzkm69IxDY7iqKMkOKiMwMYXCEKOmtR0pN09agBFrn+GDIsoJJFrBeIEzGYB1SQhgGrBQYo1BSsJjOQAi261uCD+hsysFiTmYK1psNgwtIaRi6GoFAKMFuXXP6o5+wmB/x9Otf4t2W3S9XbG5f8ea7L8hzzXRxggsZUhq8lwzdwDBs8X7g26+/oO3g4eMHLI4Kfvnzv2V59ZzlesJPfvZfUOoCheT2+przh485O3/Mm4uXaClYzCa8fvmSYlriveXB2RFfffkZbVujhKTIDvngvU+ZHz8iK0uqasPx4QldM1BXLR89/oDF7CFhGNBBMnQdbRf4gz/8YzbbDa4fOD9TXF18x9OvPud/+7/7b/nkk0+QAkSMuGFgt6spi5zddo33aV8zumC3rWnrp+T5gi9/8XPOHj7m53/9nMePn3B4MKcfejJjCGHMQYVACIEb13YipQS73Q5jNF3X8+VXX9ENPeWkxA4d1a5isThEa5AicH31OhUFnE17UAxsN2um0yl5liXyeOh5+fIFDx6cY4y5X7l35Nhvkm1vibv77Oztuv7e2v8eF/d274jf+/f/Qh3h+1RhvCsIxO895v0DB4rc4Hy6d01mKIqcru9TUAMQJVIIuq5HaTUSaOnXldaEANeX10i1RMoUnGS5IowJSySdxQLJZDJJxQfnEpEQBX2fClxiTOKd86TiSiD6gbwokTi+/vJL6qa5TzSVMrgY05qRApkODGQUSKkZ2VdEurGQcQyyosS6iLXdeMECQigIKYZBBIgapSVCRpRUaKlQUhItBCFxPgX03eC5Xa+QQrCtK7y3SKVYrtc8OH+H6WSBEkuQPT54YhDEKLi5uSWEsagpFUVZElyg7y3gsc5jsgwGxmtvKScZSiYCQEmFdem1maxIiatMZIBz0A9tOk+M4vBoQV2lBKXIMw4P56xXGzbbNUeHx2SmQEiB9+nzbdsONwa5dhiIpLhFqZyz08c4N3Bzc4kQASUUh4fnnJ895LNf/x3dUNG3FQLIDo8gSn766c+4vnxDlkmGZkdd1wShmE2PuLm6ZrPaoLRjPpux3m4J0mOUxEdBlBqtc4zJqKuKEAaaNiUuJ4cn1E2FcwMhwHw+QStB13XE6FFCEnCpQCgUR4dH1NWG6CPeDrT1GmctwYPRGbnOCM6RmZKD08eU2QznB7ZDj5QpRhFIyskEb3vyPKNrMrzrybRh6B2Z0kQpEcCknNC0DU3dcXB8QpYVbKv1GA85rq8uUCqn6+pEhkhJ37ep0BgkIWQ8fPQB88Nzbm4vmB4e8vLFN1hvmU8KNusb5geHAPRDQ9f2qPmc9fUVm82a25sbHh4d0jYVr9+8xgZxV0dmPp9gO8vQDbgQKcqcvnMjgRfuk0XG9R/w47/jfejy9vuRKCJyzFeUFOPjQBhXmPeBxF+lCEcKAVIiifgIk8IglEP2EaSg7dLncpdAiXFvE0KmeDdGpFRkeUbwHuccUaQC57qq6L/9nGfPv0bKSMRhnaXpzlDKcH56hvKOoQ2AReuc+XSKl5Ava6IfSTkEUhoEDje0KKORSjKbzanrhoBAIBFRoIipKDySet4HwGDy7L5wHENAkJFPSpyLSBRa5kjR4YeAFzG9B5/u3c63SCWJCEI/fO/MEOy2zRjbqsQxSoVzDu9BhYjS6RrnZY4fLFJEcqNYHExZLS3eW7JCc3FxiRBg3XhgEpnNpzRNS9f3qUDlI4FE3CmtyfMJ2ZivaGUockWIMYkmpCCGVKgQpPO3qSuk0hQmQwuFMIo8Lzh/9ITV7ZKLi9cIqeiHQKYjeZkxDG7Me9JjOAeL4znlpGS32+KjpOtbDg5OOT97wumDhwTrubx5ztOnG5Y3r5EEykLz5vUbjCk4OTtjt94Qg0siAKmZTKfU1TYRKCM5IkUOCHJjMNLQuwHb9Qy2QSJwtufF02+JSGazMt3/LuBDRMiCRw/fo65rbNfSI3DOI4Tm+OSUspjw/Pkzeufu15OPkUDKkaIQKGXIsymz2QOclbx++R3tds3DJ4+5evWK+uYCZ1sGawk+8Ob1s0SEODBGc3R0TFXt8N7Sdx1lOeGDDz6ibyzPnj9jcOn3ECKRCd8n9AVAyk9FTGvZhYD1DqUNbV/TtA0hxh+c39dX1+OdOYpS8CgFJ6cLlDacnpzQ1hXr5Ya+rvj3/99/w9HJgmmZYYeeb54/5+XlFe+cn5MbeHB+xOAS0VdXO7TJ0FIjZeS9dx5xdXXDdrvil7/4G6bTYz7//BcEHIezjOXtG/q+I/jI7e3VKCYyfPfs12y3K17/z085mB6RGU3b7jBqwn/6679ktb6hr7cEm2HyBUZPMCrD9Ra8p7M9CMlkMsVkhnpZEUPai7LMcHp6zu3tLd5ZIAlJdrstdgi8eP4CpTT1pqP3lhA8WmUIBFoIssygFNhhINMK5yM+gDCJSHe+SjxBls6g4NM9XG+rUUQkMXnBw0fvsFtv6awnzzPs4JnPC549e8F6fUMmUnFCZzkWuLm+ZT4/wGjJ4cGU9c0NEYnzkuOjB6zWN5wcH6OE5/b6Bu8jmoxpecTJwQHVbsOf/du/outblIh8+P5HLJcroh+ovefq5pKynFJv1wQkjx49ZL3epn1mMqPtGopigoyCq8vv2OYTPvzwU968fsnt9av72Ozzv/971tsNSmmapsHkcz768CfUTctu1/Noes4nH/4e169fMXQ923VF01Y8/WqJlpJh6JFS8vrVK5y3Y1w6ioeERAnFwcERwzAghGCzWWHtQAS6fkDpjPOzB2zWW/Lc0Hcdwa+JMRVjlAChFEbLMX+N6JFDiiFwRwvc7WeQCi9SKWIUKK1TnO49gbSHSvmb+cD/OvzWBJ8YVQp2sKTieWQxnZDpjBhStaCqdkil0EYjlcI7lwIJ74kEirwYiS/YVRV2sBhtxuqxS0GB1jTtW3JiOp0ipCQzihgDwQfm8zneB1brTXptUt2JAsjyHO8Dfd+QZZr5dIazDkTEj6oOZy3DYNOmrAQuxBQwIsgzQ56l12SH4b6q33X9PfmWZUmx56UkxkjTtOngjamyF0MkyojUGjeqSZTMsS6wq1tCBHlXII2MAYMgV3m6kZRKqgoSwTUMA9pk+AjbXY1UGus8WokUvDmHlAJlDN5HNpsdi8UM6919ZXQIcH2z4vZ2TVFkPHn8AB8iXddihx6IDENAG4Ud2Wc9URAiZZHTtD1xTAYyY+j7ATNWHImJmKl2OxYHCyRwcnjAMDi21Y4QI5tdjRwDlIvrFfPZhElZMpkWaCnIUlGbruvIMkNZlJhJiTH6Xq3Wdh1SSaSQ3JFiSkmij0DEOo93DpMZjBbpPnTpvSijsc4lgkale9A5h+0dViX1RG9TQqqkZBgGjFF0fc9iPkebpGw5OTpK1edRQXJf3b4rsYoxVP1+Uh7vtDI/VPP8ULeTAj9Buqfi/WNB07X0gweleXVxxdXtDU+/eUrwkW+/+oLbm0vc0I9kc0/f2VGZEsjzjBgFRV5yfHqCNprtao29J5clduiRCopMoYyg6Toms5zNsqXrUiKshUEpQ5CWSERrQ5YryolhdbNC6USqxigYbEesLUUmx7cacMEDEqUNeamYTAqq9W5MFBL5HQaH1JKhH1DKYIeAc4ASeBdwQTHViqZpUKogz2Z07Q4hAtYHPCk5FyLiFfTeUUiHbwVZMaHvHIP3yKElWJ8UhcZQbzryyZSizOj6gSgFwUcOj+ZkWcFm2SKCJAgoyhxvLdpImm5HXuQ4McWKCUNzg5YQdUZZzhCkQ0KJAHjatkNKyeAGlJQEBtp2zbdfv2Zot6yWNZPZASJ2rG+eU7U169slZw8e8au//zu8t5ycHNK1AcLA8volR8cPyfMnvHjxDZvla4QI/Mk//284OHkHW2/57Fc/Z+hqDo9PeP7yBavVLZOi4OL1c+pqgw8DUki++eLv6Nqeg8MjBBbfr7m5fkUfIzqfUCiJAZ4//Zb5YkZV3aKE4OLlc/76r1/SNysev/8Rp6ePeO+Dj7i5WrHdblgtr/jo43fYbJZ88dmvef/DD8mLCbNpqoBvt2sm05z19pZnT79hOp9wfHSEknB9+R2vXj3j0Xsf85NPf8bh0QIpUxEHInmW3XtPRCHY7ipevHzF4dEhZTnhzZjYrNZrvn36jMxoVqslQ99jrWO9WqF0hjEZ2+0GNwZtTVWR5RWnZ+cM/cDZ6QlD33Fx+QbnHCbLiCJVZtM6FiO5Fn9I8HFH/P0macc/+Jm3O0H84c/9hjLwbhP5/t5xT+q9/fF07t4/XEQgybOCEAXBJXV3CBEhJcFDSsPT7/tx/4/j9xMZ4XFuINqYSD0psHbci8eAJo4vpmka8iIfHyzcv8ZUGIA8zwlxQAswJp2nWgj6rqHtehiLY0JIbm+3SC0pZgW0PTEGpABnI9Ko8RyPaBRCxrHoo0YFUXrd93vweP1iYjZSshbFmKh6jg7nCBHprmpEVAihUEIhIlxfXmGUJMsNImpijOSZotouqREcHMxZbSyERJRFn86iSLxXUAzWJoIxBqwLbLeWLNNIIRiGISnmnacssnSeyIDOFETGYkhSoXufSBARPTEmNcBuV+O9xwlPmUs261XqfMgKDg+P2Ww29F2DEJ6maVK1eYxIfQipADgS5V1TgZQcH59B9DhraZuKqqk5Oj7BDxOaeofJJFW1xlq4ub1GazUm3AV5MUXJjIePntAPjtevvqRrB3phUULR+ZTYGCVSx4ftqZodibVP1y94R9NVCJnUDpmS9H2NHVqstXRdO64CQXCeEDueP/8mKZwQCBFo6y1ZVpLlJSYvaXcp0Q8Bjk7OyWSBkh5vB4auom1ayplhsThkdVNhR0UXUhFDih1DDEidE0NEytQV4Kxls1qRlyUCgVE6kTnBY33L1ZvXaJOIce/dqBovOXv4DlJqdtsVH37yU16++pY//mf/m3TvX7+h2q559Pgxq80WgIPFIc+ffsnly2+5Xd7y8aefcP7wBKkzhFRoEtEWQ6SpGxQCgSKOqkGjJTEIbIwp+ByLnkJKZNQpUb6vN74tPAopQfjxnrlTLAtEHNWjpE6LVLxKBXc5xkchCgYXudk0SBExSqOUpCwL2saOhctxn/oe03e3bnwIzGYTurYnxqQMHIak6nNDe68AdL7HTms+//XP8UGQG8F0loEQ7LY7ri5vETIVJ9MdEhGBpNY1gqzU+OA4XCzG+DBgTIlUiuA9vesRUaBles8+eLIiEefWpYQ+05qiSOSeNjnTyZy+7dC6xUU75gIqnR/pyt7/tzg4JIRAvduNe1dS9QgpmM/mtHV7r16OMSAl5JkheIvSUBYFRZFxe3WNdZ6ApLcNxFRQEWP8HSRsN9ukRrzb34VHa01mDJAU0S7EpJgOSekymU1GVVoq9ivGzqzx7Bn6Hi1UIiwFOO/49tuvcKO6JZF4Ho+kqjrK6SSp6UbCKcTAar2kblJ30GAHpm5GxBPxVNslDx8/4PV3r6maDSKmTjGpDQdHD3BdR6YNx8fHbJa3tF2PyiRNXY/3sCCKSG8dUjlmuUlkTfRIrehtR9c2BBKxrI0hzwu6tqOqdhS5ITgPIjKZlswXc+rtkj5KusFjTMbtzTVvHbEiRikG76ibOhXpQ0ApickzDk4fUB6dcL1esdvccnZ8TFNVLJc3CByL+QwfCoSQTOczYl0jZKBvWyDtI0VRJDGN1lxfXyKiIM81eTmjtw4hFFJKqrrGOz8qK5NaXUk15vIBNX4+Q9fRts19HCPv79KYCHwhUv4kImHcZ1NR0HF7e4OIgcPDOT44nO8Zhpr5dMZNc4NWhr7tuL66JNeSalvgx/jBGJ3OyuiJLozxWsbJ0THeO+p2hfVgsozLN9dopdAS6q4nK0qm0xnnDx5S5hnBvcPt7S2FkdxeX3KwWNDbgebmJVkuWMxKolBMp1MuL25pqjVusIQQMdqgtGE6nbFZ7+j7Lt27MRUXLy8uEEKgjRlz+iHtJMHz9defkWU5JldEl9MNPQGQMXX9Re/QWY6XGqk0YRggwND1OJtEPNY5XEhxjBQSnWlUZiDGpMabH1DtdsTo6OodftCYfEI3JLVakedI71AqdR8QHJOipG0brJRIBMqUSXSjDdVujZaCrm2xticKyWI2Ybtd0zVb/vZv/py2rfCuR2lJvbmh2USub29RSpLp1DFDcLRthXWO177GekvdtigCwUUu3rxhNi05OpxTtw6hNOV0jlpqJqWhbjqWN9fILGdSThlUz+nJCa9evSIvSyaTKWcPHnDx5iW77RrnkhpdKYEfPC74JPLxgaapsdam7k2pyExGnpcgBEPX03Ydzlnatksde1phrUMbiVKG2eKAzGiMzokRui49XogWJUFrleKu8Sy3NryN1+87yNJ6kjIVVtK60Vhrx3g5pQ/+Pwe7x38Wgk/Qd/14QTTOeyKgjaEbBqomVb/6LrXgmCyDEIgEJkU5Vn8sRZ6z2W0pygJjMvqhH4PlLN3ggyMQ6dqWxXzGZJLdS9GbJi3CXV9RlBNm01lSbQwDzlq0TGo6IUVitq2lrmtMliX1XNvTDx0Hi3lq/avHTdcn2b8e20q9c/gQ6K29DyTyPGO3rZjNZ1hrkVJinUvsLSkAkiHiQkjXx3mklGilKPKMSCKUnHNkWY5WirIokGN6iGCs5EHfD9jBgkzJR5blbOuO69UmBfYCFvMZZZ5BvJOGgrMOITXOBTbbCjm2sK5XO9abHdZ5zs6OMFohCHjvafuBPMshBrzvWWRzEJG67e5ZaClSEGA7O960CudCeo9KUdUVk+kUNwxIAVoKnO1w1jEtMnSWMThPVTejEg2Wmx0X10smkxItJZMiY1KWScqclaxWm1Q9bxtm8xmTaYnJs6RitDa99q5FaT2y6EmJ0rYdpYC6bijKHC1FqlWNSsHMpMqrkCmptc4RhtRKHoGmaclygxlJXec9bdszbCvarmOz2TItS+bzKdPZFKM0clTZfY/Bu8fbhH+UZf+Q+7sn8sbOMvq+S+tKG1brDSbP6AbH7XLNt98+5T/86X8EBZubG9xgk5rGOcqySMktoJXCOTtuMpKynKS11g90XY8x6X4cBks5mVCWBRc3nmziePzuKdNyyuWrC8LMoJSmqyJd53BxGNuDA9EGIhldOyCVoZgkBWb0AZRPypwQyTI53hM6EQxuYGgbuqbCaEGeGwQRowRkijI3KJlaqxMx7dFGMi0Lcq2xQ5sSwAAnJyc8e7bCuh6tDFpKytzQdQOLSUHftkThKKYFrh6Q0tP7gbYHRSLipYLcaHIladvU9ts7RwiOzeo6VV29ZTYr6XoHISCIaAmzyRSlDWZSEl2PEILFwRxnI23TkZc6JQDC0fawWMzwvme97sm05GQxY3v7gtnBgt1mw+HRGSdnT4CB5fINPkK1vEL4AeE7Pv7wfYiW5jbSOYdWnsJIVjeXPPvmC/pmg49w+fI529WWenvN1cUz3v/4I/I8p2tfU+SGJ+8+4eLVC7ara+rdKrVFKMMHH/+ELz//NX1fE6ynWCvs829R+ZRHZ6ecnz2kqjvaNtA1K16/eolSju36DUpErl99xf98eUUxnfHo8YfEqPj93/spm82Koe/44uIVysDJ2QNOTh9gbc+u2uA3luffPSPLNLc31zR1TdfWZEVJOZtzfLTg009+RGY0TVOz2W557713uVOq3alH2q5jV6d1enh4hA+e5e2S29sbILKrdiwODlivlgghyPKMg4MF6/UWZQzTaUHXNmy2FdP5AiEkeZbx/NlziiLjF7/4FZ9++ilt07JdbzEmtacXk/Kt8iLeN9b/gOy7W+w/XPvfJ+i4fz93X/xHj/74mz9/Vyz4oXXADx4nRpo2kSFZXvDOk/e5uHiNyXZsNlsC/ntE490+JlIAH6Dr+vQMY3IgRpLM2aTCk1KitEz30fhahr5L4uqxJe0uuQkhBUZKwGQ6wRiB85a275kUOVku8SG1+kgliT5gg0fFSJ5rJnnObDphW9VUdYMVqWgngqTMDF10qWVIhvv99k6NeHeNZBSJ3CMiREjKbC1p+575fIrJNKGLeFJBCDRFbjg6PKDrOhqbWl2c7JlNS7pmIMSAkRKdZYkENobFwZxhGGjbBu/S9wefio1KKUQMZDoV0aIQSC2T8sultlw/pMQ6MxkiOg4WE6yz9H3A+USyiphsPLq2xXtHnhmsdeR5ydHJGd5FQkzX2NkuJWbBo5Whrmu0NhiTj1VpTV031HiyIq3hvMj46vNf0PcbQhh498m7XLxp6K1ltjjEeUsfLdyRbID1kY/f+4Db5Ybvnj4lLzJm8yk+ZPRdj7UDs2kK2rfbDfPZhG78unMBpdOZYYeenbfkRUFwDlOW+KFlCOB8ROkMISOxj2RG0TuLG8YCnpCjbYvi5PQhfd+SZ4Zl24wFVE8MFpmVYws6qUU5BubTKVKks7gfBsrJBC0j7fY6tbBLRT5bIIVOcYSAyTTHB3BDnwpOzqbXqAzlZJISiqZBqqQI08pQzibkmeLi1TO2Vc1sPudqtebp8Qk/+dFPeP7NV9gQePHqYiRaIFOS1fU1169fUm1XLA9O0M7ghh6tJIMPEMTY9g5CpLNMKUmWJSuKoXW4qkovnDEZgdR5IsRbUjyl3Iys+KievdsjxNs2zJGYS4VXgZaaKANKSpxNRFSIEIIEJbHeIZUgBktZKpxNdQAfGdtfR4UgkTj+bNc2gGA6maSvB4vAjx0eEYREoGmaAa0FdVWTLUravkKZJADonSMOlsJoZtOCrumJclQSA0cHM0L0PHxwxs3VCkgEW7SJlFZCjpYhgbwo8CFihwFLapcNzmMjhNgCCuEjedFTzko22xWRiFQSbRRZbhJZHHwqUgtJVqT8RapRDRiBsR247/pUWGHc0wTMypzoLabI6AeLC4HNpkqfh0pdSdYl8iZGUABjEnxnGZD2QAVC4iKEwVIW6t5eKSs0fTvgg6OpqvFcERS5uU9kU8w5fvZKIZSg7lv6rkeoVDoSWoD16CypIYOL1G1LOUlxVYyBGALaaMqipG1blIzIaCl1oLp5Q9P3bDdvMNKAT/F+Xkw4ffwuvncsL1+yXi1x1qb9LFOEGChLg7UBiUYKhTEGIQXtbk3bbDFaUkwKNqtVUv7IpP7OC0k/JKWwHlv9lJI42/H5Z78AIci0pMgnNG2NtcMoIgEpIoLxOsfAXTuOlDIVUboW01Sc0LO8vKJrtrxqqvHMTy2Efd/TD45yMmG3q9judsSQPreqSrl403bkecbgWry35EYzmSTCRJByQpMbtNHp/gmpKKeV5vT0jPffe4+rqwturq/phw4XXCKXpBzXtRgVe+JtbDAS/1pnQEx2ATHihi1KSaq6AiJaGt45eYd/8c/+a776/Ct+9dmvcKQ2xcnskMeP3qHpeupmg7c56/WK2azEmIyr22TnAAu87Wi6HmlyZsWMdx6eYYeBm5sVQgiKYsJPfvL7vHjxhnc+/YBX332HkgWHxwvWmxVtb/nRj37CxeuXrNZXdE3F8ckZtzdXdF3LwfEc61qwgsPjQ5wNTGYTdJ7yDSli4g+sI0ZPjAI7pA4j7zwQEHRpz3cdILDDMBaAU+ddVpSURUbTdnjvkSLxKIvJjKapE1EV7gp2qYuMmH5XAmWRExE01S7ZpJUFQ98x9A166OiHnsPDA0KvMHnqdLNjniwJTIsSnZcMg0/2IaenRO8YugZnB9abLQ/eecLh4SHb5Q1KWP72z/8tTddzfHLAfD7j2bcv6dqWTCv6sSDptMIOPb0CrQQOz3a7TryJ1Gjpsd4Sg6Pve7phwDrB8vaG8/MHXL5+RlU3uADlfMrP/uif8vVXv2K+OKTtOiIV5STH2oaqWvP06VNcsHR9n25FIcnyHDt2VsZ00dBaU+QZZVEggPlsSgR2Y/EEAlqlzsdMm2RdYpK9W5aVlJMJq9tbFodHyEpjtOT25pK8MIkLG/pUWByL4NGH8Zh8a+E2mRZjYTyRkcH77xXc017w/T30t8Fv36IbAv3QI1WBGt+Edalfvu06mq6FGOn6AaPUvcpJyCR579uOtm2xLgVs3sfxjSdiy/uQ2v18Ip6kVqmFxegx+EgSdR/SAXtzvaScTCjyJIHNMkNvB7TSGKXT14xBKUXXJRY+L3IgMFiLUKOHhff3HnpSJL8P6xxVVeOcR2eGwXqyPLU49v2A1hopJd4NdF2HEOkgSTdVDjDK3HOCd/deTcNgmU5nFHme0qAQEi8kk3+f6zsCo9eeksnfAM31as226en7pAjIjWG7a2nbntwocqOJpFYJiafvOyaTKW3dsKsbOms5ms85mBfUTUfTthzMpsSQAvM8z8mNxtqeEFM7dJYZ3Oit5Nxw32rtQ8DHQDkp8T718zvvqOua+Ww2VolIbdExkpl8DG5bDhczrH17Hdu+p+stXW+pdjVZXo8ebhVCBGZlnlr4dg1ZntO1zeg9lMjg2WyS1Bcyqb6c9ywWM0KIWNLmFjzjYhp1LHeBv7yrPMkk0e8HhsHet6M1TYtSkiLLkCLde3mW07UdbdNwc3PLYjEnM4bjo0Pmi9m9Ju/7voF3ebYbVYZKjd5KY2sxo/z7xasLTFny13/915yenXH+8AFfffOUP/zZz/DdwIs3l/zZn/4Fy8vXKJUCTW97ojHIkeVIPgBJDmx08vhAaMpRVQCR09Njqm1FDBHvPIvFAbv1Ehc9PgQ2qy3b5ZJ8YsiV5NGjBbdXFVeve7xLCQBCJfm4SopamSuaxiFEwJhEDGTGkGc5dujQSmCKjBjTPZTptKYm5d0+kNS7E6Pxg6WYFQihcEgOC0Nbt0xyg8kMq2WNkOBczc31JZnW+BAweU7TdmiZMVvMWW9WSFRaNyGSawPeU+QaZ5OKyHlPEGBMIgG8DfTeJl+eIIkhqRURDmt7Mj0hK0u0Ajd0iKxgOp/RtWuaeoPWmt2mYRgCRXGMkMmrdL2+5urqNblRKA2FyQjR8/rNc5Q0nD44RSvJwfyQ3bpmvX0GwXIwPaCpb2maLecn5/RVxXp5i/OW6eyAvql48/obVqtX1JsbHj464+rikpfPfslscUimod6tsTayur1hef0aEQPPvv2S3foW4SzJH7MEWdBbS5FrQGMmBV1dgRA8On0HO3R4b3FDS9ftqKuKLBO8ePYNikhUki542ljR9zP6rsaYkqvLbzFZRt00PH7nPV68fMqvf/0rPv74E2bTOd98+TmTacbly+dUdc3y6pK2bZBScXp6Rjv0XF+84W9//lf85Ke/jwyCh0+epLUV4j2v3nUdw+AIIbBcJwKv7xNpIKTA2dTKIoXAe8d8NmW1XGKygp/83u/jhoHbyzes25azsxMOFnMW8ykxeCZlzu3yNhWn1msOjw5ZLdfkWcY7T54kUmZk6NMqvyPL/iGBd6/c/b4y7/67bxnA3yQHf/Bzv/m9+D2V3D/2nDGijcJFR6YkX3/zdVLjBY+SiiDC+B4Ed/5SQkicG5O/mPb8tF2N/lPAnT1CBHxwCAJ6VHV/TzA3KuaSR58koERkPs0pstSi68dik3WOw8NDbpZbQgQVxX3hJZ3NHXX0FJOSs/NTyrrm1atLBJo7t4YsyxP56O1ITUiUTC1Kd/4+CkmIkogffVAU3gu6ztE0S0KI5JkBLUZ1exgVRyXBRVwO1lm0ljR1w7vvvsf6do2zyfPXk+Kg4AO2d6llN8RUBR5VEITkrzOfz+hH1XocPys/+qYqpRBS4pwjzzVD342kkWSwQ2o3DaSCVwhIpZMvb0ieid6l9XBz84rgLYikchdC0g32nrA5OjxguVzT90kFbt3AUO9w3lPfbrDeUpYZEsubN1dMpwvarqfvLUdHJ/hlarGPIWLG2Oa7Z98iVEqKVquag8WMdtfTd6ll2pgM59PrHobRs9knZVAMYKQiNwVZllRVkYgUUNVbpM5QKufd997nzeuXtC75FmqpKKb52FIjcIMdbSQ8tzc35JlCj3FfDANXb57z+MkHVJst0Q+p0KQlTb1lWK9QWjE7OEcpwfWrb+j7Dm00mclR0oBQWNvQdR3eDwihU/vPXfDuA9rkPHr0mOfPn+F8oDDJ09C6gN9sqKoaKSXzScnl66fo4oBZkXHx+jnbmzc8/vgTTs4f0NQdQ1fz9ee/xnc1tm8otCbYHtd3o7cXyevLDoQgCNZRlhohkr2H1IphaJFKM5+XifwxGd5DU9fE6Ed1j7xvvYe0xyZ1XtoXgg/3a+tuzxFAEAERFYN1ZFpgbVLiCyGQIbWrCARRKITS4DsmZYk+SGe8VFmyDBjjLWMUXTd6tKkUe9R1ldq0NWSZogwFVZ1seaTUCKGRIjCb5EgiRWZYLA7Y7HZY35LlJdO8pHM9Js8wmeFoXtIPHSdHx2xXSySOs9MFm21NOwQiCj3GXCHG+wJpGH1ktUmeWWVZ4pzHDQ6tGQtM1/dKxEQGp+SwLAqKSYl1lrLMQUh2280Y+6cWf2+TrVCyxBnQKikxM6M5Ppwio8f1iQgnJh9uIZL3HDCqkBNZG0K49y+9r0SLJCjw7q7l2MOoRpTeU+SpNRWRcj1kymsiAaE1eH/vN1qWJZvNlrbvETEkQkyB8/6+CF9YR4gkgUEOdT9Qt8mv2+gCERySlDsQBYUxTLKCq4srZtMZIniaqibGyNH8IO1XRcny+jWb5QqBT62TAZTUiCwVe4N3eAdGl+lzRNC0VfJuzwxSGaL16fxS6v411lWVkndisl8KKacNPhWwrXOookx7fkz7upIpl9QqtZbXTSK77lrdpUw5iA8B12358u//DIkn+IHFwSGJHApkWeqaElKx21V0g8VkWVonUozrw+B86n6zPvnfd2035mqGYeixLtDb/j4eUCMRG0e/1kggy/PUcefTdYsx7bepvV6mGCGCUWPHUgxjN13K00NILbyKFCdolT5vIQRXF5d88dkvsJ3l/GTB9dJRFjkm1xweH/OwzHj98hnfPbshzwxnp2fUrePsrGCz3tA3DRCQQuNd4OLigvXNDXmej0XIyPLmiq9ExA6BP/sPbzg+PCLEwPNXF+xax+LwhLxc0HQDt+sV58cn9EPHar2inMy4vb2i7/vkjymganYEEWjbFmdHP31S0Umo1El41zWhtHrbrq6Tn7/SiizLEnEdUqEjhpjiU592zm5IwppkLTAQY7IpyLIsqRnHddoPA8C4diNFWWKMGWOJ5LnfDZbDgzmHiwV9vcVoxWw2TwVQmzpQ+t5xc3vN4vCISGSxmPPF559hVEBLQTmZcvbgEavbK5bLK2IIDN5R5CVuaGmqyOHigB0Qo6MUGiE1drAURc5gLb6zeJKlk9E5H/34Q968eIEmEgL0NnkNG5Nzc/USN9RkuaHtaiaTKfmk5OzhQ/7253+BEIE/+uN/wpdffUOMPSoGVjdv2G1uATAqxUuDHSAmNb1zFqUUUmnKPONgNsfkOV3bMth+3K/T2i3yLHVOjIq6PMs5Oz1lGAYWB8fUVc1kOr3PndebG/I8Y1JOUtejT8UTYhIP3Sn2dK6Sv+ooaEt7/92aS2R56naJEOLbzpffEr81wWe0ZDqdJJNnm8yRO+sojMbHQFEUxLHyN5tMECJVVVP7SIWPYfSqEPhwt5GOkm0fEAoYCbYYU6WrKPNxM0sVqLxIwbvSmq5fs9psmE2TAsk5P1YQU9UCnSr0SojkN0akazuKwhBCoO0HtDH0YwutMUk+OVjPYO14WCq6dqAoDErK9B5jah3o2kRO6tGfbRhSW7FzA9Nycs8ShxCS8tEYlEqbRPAu9X6Hu4RwZHFjHBVy442H5GZ9Sz+2Mhd5GjbiBkfXtFBmzKYpMe87i1ASLQU+Cla7mrquKIuSd85P09fdkDac0WPpYDFDVMkMtqkHrLNMp+nATgejZzafkmUZISRvvrZN7TF5ZpAIpNEszJzNZkdV18ymBcMwkOUZPkbW2ySPj6TEWksItsdIgSoK5tMJwSflXYjpM1qvNwilWK5rsswwmZQUWYcgMomCYbDpYCYpLwiRthsPw7pJRq/GJPNkItb7sZotkiQ9+PHzScRqDJ4oIDNmNMWMuLF+3XYpaRNpKgiTMhnZ9oOlaXs224rlasX5+RkHiznT6ZShT6RCCAGtDRF4+foiGYFLwctXF1wvl2RZxnxast7s+PyzrxBacnO95NHjR/yo97z/5H0Egs9+9Rl/+Vd/Q9dsiS550Yi8eOvvkOs0EED2hJghJWlAiRwDzzzDOofWqbVMK8mu7+j6nswkdauIkr4VXNthNNYdyMucpr5BCpCFZF5mtFXyzZEyHWZD7yAkg20tNUpE0AaFTGoMOVZF8hzbt9RVT1Hq1OqGxA4DQkl88Dgk89mEvJzS7xr6waJVZJpnLCYF7dCTFTlV3WG0wLqeMjfYcOd3od7eayG1CSHT4JjG9UifWnbakEhoZx3SaHo3IExJZgwOx2AtRZYjRTK115kh0yWT6SmP332f9fqC9eqCIhf09S3O9aNiMlXmj08XHB0+ZLOuua7e0LcbpHBIpfF+wAeQKmO+OCHTGS9fvsa5gU29RBBo6xs8kbqtyYop09mEm5sV86MTjh6+w8vnX9DtVrz3/ics5gVXF69Y3tyg5JBaw5ynWV+zc0mhSQhE29NslskPQiT17emDB0QkQRU8efIhLjh2sxsOj464uniJNgYjc3JVcHqe/Pd225oPPnyPZWZY3V4ym85o6k2yWbCKcnKINkk9vV6vWcwLTk/PyBW8evoVtnlEY9PAlw/e+5B6t+Hbr1+zXq3YbNa4PhHCxWRGlk+IQnB9eQFKsdvVvP/eB/z0939/bDuyIFOwXNUNbZuS7a5vadqGg4MDrq+vqesGqRQff/wjlqtbbN+BD7ghtd/fWSUkkt9xcHCYbBnahpPjQ755/ZJn333He+9/wMHBAcubJTc3N7z//vuYPH9L5t+p9+6Itn8g4HtLAr792vjn93/8B22+b//yDynBt2Tf95V8P3yYlH7PZ1MOF3P63iZLCevGPSoNSroLSoSUSKHG8zS1nqTzSfN9+aAQjAqgsXAxJgEAJtNJ+TuqwN2Y4N75wEqZbCP6waFECnyyLEcKaJs2DY1AcLSYc3p6Rh8igdSSslptuLy4ASnIi4LZfJ4U7zYlOSL6+wAqKbUjhERY3L98EdBCkKKVVIzxIeB8el1SRUwmMVmBnM0osww7BHZ1w8N3HvPgwUP+09/9nKbaYYzhzZtLIHJ0fMJ6s6a7M6UntbA1bUum057X9wOTYoIUyZOp2tXj3iGZzqZoEdnudmR5Rj8MiPF+qduBMs+THYWIY2sv4zCs0X9GCIa+ZzrJ6doKO+5LMXpm0zL5oPqIlMkEWpAsB7a7Ld3QAYHOWhCCg4OS7fISHzxlrlOy4z2nZ+csFmdj8XA5Gvan+8FFj++a5GMnIm3XUU5KpIisbm8ZrE1tNCEgpKVpG6TUFOWEaVlSNzv64S0JUOZZ6swwmq73iTwQEIJFK8ObV69oujap8VDkWTkWewv6YcDojMm0ZDafcXsVmU9LVuukpgzBIdzAdnnDMDimZcbQShpvkUOHUoq+HVgcHND1/b3hvJIi+dtNJ9zc3N77ZHnvmM/nTGcZl1evx3M/kbUvXjy/j2md9wSfhsUInbyPQwQfBbqzfPjknDLL+ezvf87q5iX/9F/8czIFKjd8891rvvv2c3Id0VmGQmK0oql2iVy0fmz9iYTokj91B3mmRy/dZEGSlVkqZrkeEe5aYUd7mZjM97XSY0dAHO0IUiHBh9SuFkmWG3dt3cmjKA1suCu6ChiVYGNLIEnZFBF0vSV66DpLrjSd80jXQQSTZzAWiSElt4iI1IooYFf1hOCxmx1FUZBnOf1ggUDbdOh5Rtv3HBye8d7jR3zzzbdY13MwK8kzQ9004xAmiXKSzc0tJw9Pud3cQoDtdovJMhaLKX7bpn1EpO4E5yMhDvfvOZLUmlmWE2LKU4xJRceUgCZfw6QqTZ1FWCimE87PHvDq1QuapuHo+IgYPVKMZKCQyUN87OzJypzoPX3TMJ+WBB9QMhJVKjxrbaiqBuscMd4plsN9J9PB4oDVepuISQIiyvu2WRHvijZxJAI9k0ki3O7uAalTNxAi2fjEkBSdqTEmUu0qpFTMjxfsdjusG9DaJPujwSJlyqei93TWMckNmZEMVjD0A9Z6cpmUSmWR/P9m04yq6hhcSMRj9ESb1IJ1WyEC7NY3NF2PG8UgeZaRdLvJi3UYB7iZTLNYHFFtVmk9yBzrLCYrMKZku75FIDB3BWOjCX7AOcvg0vAk7yPERK5po5BE2rZCyETwRQ/GqDREyKVus2SDl1paReD+mislaapxGMl4Zm+2W4JP+8TDd865uky2B1oJZvMp9S6pSmOMyS8dgVTi/jO3o/rZ+4gIlqzIiV0qdCW/yHh/34bouL6+ZLW8uY9V8tyMj5sImSLPKcqSx0/ep8gnmMzQ9zV/9ef/kbZLlksxhKRAB3Q+ehX7NHxlcA7rer74+td8+smP+Pjxuxyv5ly9ecWuuuUv/+rfYzLFfFagTPKa9N7y8OEjyumEqtpx8+Ylq92OXBlW2x3ldIIm+ZCns0wSw0Df7jAmB9/jfc0HH7zPn//VX5NlMxbzI07OHjCZzcnyPLVpDz3OD5QTg1SBGD3T2YzV+pbgI11bj7LjcQiYkmN8E1POeP+/JNTzLo5DDPs0gCnL8T61qSuZ8htcGtKplEpdVrZnN3Qp+ESOnYapdXiz2qK0ZDYt8JEkVGqHdG6JNLAyyzOyrCAEie0dr169Tip6D0WR9sL5fMpmvWVb7dLet10SAuw2t3RDR24UkyJHm4xvvvw1280SrUCb5L/ZdT3FMHB0rPnJjz/l6bffUu/WdH2P1pKj02MkgdvbFW3fYYzhweNHVLsdX372BUpFZpMS39QMLvEYQkT6rmZ5O7arkkREQ7vjL//s3yHwPHz4mO+ef8ejhw94/uwpzlvWq5skQhrPKjl2qHVj7FPkGZPJDKU0goAxGU1V4YKjH9Iak0Iwn8/I85zr6xsykyGloixKtpuKDz76kO2mSq3N+YS63lLVG7yzaKWYzKbJn3JU1N8VwUDgY0SPpHmIETc+p5ASEeVohSGQMbWlhzv32v8Mbbq/NcGnleRgNqVqmnuCJ3hHH+M4mcTTNo7FbHpfsWq7ZBobRRpIkfq/80SQ9T13ngxCCrzjvrXWmFT1U1KOh6tEkNRUUUSisBwczMj7PFX+bZp8WJZFCkJ8Iu2yTKfDLNx5fADjxfU+DcZISsPk1VM3LT6kpgQfQevUToFIKkUBZEaDSMlDMwawIEbZt6TMkiwzjBOD76ZPOefQWmGHgYHUey1CvG+TyIxJ0/QiSKVwLrLabnExHQqZhkxn+OBQkwzRp4ECQ2dpu1S18c7jRarAgeTk8JCyMFg7UDvPbFLgbD+aPsLQD9R1TVlM0gALmfxYyrIgxHFKbYRhGFBaYZTCm4y2aWm9ZzIeALtdndpZo0Bry7QsEEpRdW3yAglxJDYNeZ4muqlc0zcdKqaBFkanKkKYTWjbjt5a2m7A2oH1Jg1tyYxhvalYzCfIdhinqSU59Hya7jspBBfVjrppKMqCSa5p6hahVSIlxzYSfCJj2zb5JBiVKjEmS9OeISkCUmtJxA4td74nWqn7SmCMkrquefnqNS9eRmbzObe3S/JJQVu3nD94QNP0vHz9houbG9abVKXd7pKKbjop8cEzdC0SgR8CSmiOD4+xveUXv/gFv/rsM7quQZI8JvM8x8eIKQv6rk8BfUjEn1SSw8UBVZUCrulkkqrsTcN8NqVrW6KI45TgwHJsaVAo3CAJDoRIAy86F7AqpKBOSazumcxS8s/YHnZ8UmD7gLUxqU6C4PjwEBc8202F89D0Dlk1GBFRUqckQUQEHfOZoeuSbyJEejcQewEyTd6TQmCKgvV2B4wJhhBji08gBkle5GkqtVQgPbarUCISpUyKWOfRQqCkZuj9OKUuJBWfC+SmJMsNk8kRst7StjVSRLJcok1OlBKjc07OF2OF64bB98RoUcpjMo1scxaz49R2Wu8SueElzZA+hyJPXjJKCXo78Oj8IVlxwOXrZ3jfMJnkPPv2l0mxMu5NmHRYdLbn8aP3mR2ccXX1DKMiRuV0TcXL79ZM8pzpdIr3ipPjh0Tv2VZXbLY7Pvn4U64v3rC8fsXp2TlaG25uLlkcnnJwcs4wON790R8yKUpeffcVi8UxV5evqbbVOPV2xs3tFU4qegsHx2fc3Ky5Xd5QbbYQAyFA0IJyWvCHf/LfMFvM2awbXOipqhX1docUBqnjuC5nuL6nbio+/tFPuby8ZTqb4lzLdtUjhOLk9AHzxSH5UGBMzUfvvcvl9ZKgBLu2I8/SGvAxtbKE0TduPpuyWa9pm4bV8nY0JfccHB6SlyXu0lFXNf33FOIHsxk1FXVTIbVG64JMKepqy5/+6u+5vr7m09//GSfn59S7mtvbGw6PDnnywXupjTX+pmL3h+TeP1TVcf+z/0hX/z8gAb/35fuf/v7f7wjFf0jupeexzvLk3Q+YHZ7w/Okzgr+l8c2ogkxDsu7aFJNyzxF8SsTfPmby20GkvTzl9inZuWu7jTHiGc/VDLLcpGr32LqQGZP881xqyU2tTGmNK5XaW6119LbHZBnbZkt/2bM4OKbvU8wxm81YrXcIFE3TEYK9J2l9mwImLQXWx/FMDQg8mZGJSMyTdUjTp9a/QmuUkAgVOT6c03eW+WLCbLbgk5/+lywOD/hPP//3PH36DZPJlJvrS6bTEkjXquv7FOwqRZYXnJ0+4Pb2lt5aHj1+zIvnz5ORsog0XQfhroA34MZqshoTwKHvGfCpUKIyzk7PCcCuWjL0QzqfTNofsjyRRTH6MYZKsYkQyW9rsI5ckhSTSmKtR2tDnke8TxMPtVFIIWi6fiQhDKmNbBxM5Vua+s7oP3VJ7LYrprPpqMZKz9l1Y3udypLPYhTjNMhA29SjVUlGHByR5KNktE5Kc5Uznx4ynZbImzfopkHrjEjE2oHB9Rj06HuW7pUyLxKBEnpkTEPSUi0vYr2jG/pxAmhJDIKurjGZputahr5HKsl8fojwA/X6iigzyslxagkfiZG+6yFGCq3YrCps12FUMkPHe26v39B1HXlumM9nNFWFMYrNZp3IJ2txwSe1nu1RSo7DegLlJE970NAjhSQvZ/z409+nalK88/mv/56Ll09RwnD54oL48pr1ckm922CEZ3V7w2I+pW06Xj3/lvPTB6NPsUVLjwiSKAVypDqCjxwuCpwd8EKwW69wDpwXCDHwtgUv3dORiDKGspgwmy+oNkuaapcInnFIjYhp5xJ3pnkjSQ53flNiLFonAkiaQJ5rut7iXSok+AC99QybKilTRRp4Y5sGJQVlUaYW+ShGMUAYibJUYHTOst1tUdJwN4HXhp7BJQVV0wystptxOFfOwaLEes+knNG1kbZzYHtccLRNKhBvm20aMuWgqhr6ISlwtUrvIxFh6RoZbVB3pCejktY7gtIj6aYIob5XPIcQGIYBRi+ol8+fk0RDgWq7Tio5xgGBJtmN5DrFN7uqoR0GQvD0fY9RkiGOw/6CS96qIaYiYghMinxsXyvYbNY0TZOmzgdSuxgeGccBIiSSL3n7pf3JhYHFZErfDxQmH30dPYXJMSZHlwWZUWxWyzQQMYTkPykFXd9jh7E9V6R1651PCpoIUicvwEwbRIx0Y5FJI5lMZ+RF8mpbbTryvGA2LTk5OkLvWg4PDhEEVps1rk+qu0mRChwCmBYlOEccJ2tbpXDeooRgqLdo0pCcrJjQNh29DTRDxeA6vE9FL2PM+DnFscVRIlTy75vOZ7g+eYYyJvchBrTUeB/uCV3r7D3BL0bPxogj3OWiY16vRq9FqSTEQFFkRCGoqoZiMkmdMHnBxcV1KuyPz2nHYW9FUSZbKiFhHBIliEiVOtgO5wuqOhU8wzhUUEk5Tk9O61XKNADg9OSYx+884epyiTGas9NDQoSzR4/ITUFZZrx88Yw8lxhdcnh8xrvv/QiE5PWr57TdBrHd0Q0tPgiUTMM5N3XL118/Yzabc3484/13H3K7rrm9XZFLzdBWhGjpG8uN77m+eQPScHp6wqc//YSrqw3vvPsjrpa3zA4n/Pwv/pzVep08MnWKJ3a7isePDzk5PuHq8pKry1fMpwUuBES0fPPVr7m6egHBs16vkQoODmfstlv6IdkZdX2Ps+G+azAzBSL2CAnWd4l8LicopelHzz7vkjdu1w5Jsa0TJ9F1bVJ1ak2Inul0SvQewYANabhhbopxzQeMNiN/IXG9RctkHeR9oCgnSWGoIm2TCoIhAjJH64zFwRQQTDNN8BbnHP3ole+sRaoUyYWYWr+bpsXkhugjNki66NHO0/UDw9ATlETEyKycIFXyC8RHnj9/zma7pqm2LBYLqm3Fer1J8xFCQKkkPtosV2mSc9dCdIhgyY3B2sTLaKlwwtG2DUoqDuapq7H3fhy6AdvdjsEFXLjF+4C1qTNRjIPUuFNTK30vsMqynPlslvYjH3F+IAo/8kGRssiYzWZMJlNWqzVCShbzOc4FinzKZCJYL1esN0uc81xdvMSGAaUEzvVIY+hGEYEQqdCX2oQTARu9SwPUYrw/IwSp6BNi8u5MSvNE9t3NdLgbXPXb4Ldv0XVhbKdLE0/ufDbapmMyKYgyfXDNOMUWknImSSAji8MFMsTxYqcq+x0RqJVOkwsFxJAS76SqGycVhlT9jzEZxeZ5ak1Jh05qJdAmKfO8T5ug9x5bO6bT5OuWpqgkOb1REtomSYllUmP1XTe2J4xtMoDRqb1h6JIpfvJVST6CJs/IRXoNIaTAYzop04L3IVUUx1YD6xJTfSenNkaDkAy9xZhUHei6bkynJH3vaPsBpCIMljxLkl3vkvrOj48zCMCl15sqGYGqbZlPSmbTGW1dI0vFfDbl8maF8zFNhJJpUIH1AVBj2464v6ZN2yXCyDry3IBI7cVZlqUpPyoRJ711KOfGw1Am377oyGezdFOP1eGIZDot0oZlk5G9FGIkWDxN0yWz3phIoug980nBYjZlV9dY66jqOiUdIdDbYWyjyuiHKWVuCE2XFnmecX56gnOezW6HVgXn58cs11tiDFR1O07CSkRVFCK1OheG6AKq71O1NgbyLCUsxmRJ0ivB+sC2brF2IEQY+tT6VBQFbduy2uwYnGe4XbNarnj24jVNVTNYx65qxvtMId1o0mkt3nqKLEMpTetaqs2Ov/6LP2d5e8vgHEPf3weJs8WMtu4RBLxIo+qdT9Lnfhg4PDoCIQij7FgISV1XzEZlYQiBvMzGlrDROyWk4EIKiVFmVLvE5EkUksmQFBprI5NZhtADdd0hkRwcTmi6HV3v07Q7J9luaoRWSKlRwSFFQJICGaLHZAY3REwukHiKTOFsapftrMcIhdQa4SNKMvqRpBYqZGq31lrfkxpDZ8d28kiUYZzMlyqqQipcb9PkbqWou25sQ0yB7KPH77LablFac3L2mEmz4MW3v06eWnlBKTSDjxwezri5ekNucmaFogsFwfVoWeLswMHBAacnJ6yXVzTNjsZ2GFPw+Mn7vH51xfHJnKapaTuL8wPXl6/wvCZXyQenbVuKTGJDDUGN3Y/Jb3I+z6jqhnLW0VY3xGAp8pKmuk7vr8s4f/IhQZcU8xO63YpXL59zdHTG5vqG7fKSlJd6bq4uODg54eT8CdvNksOThywWc55/+yXPv/0Cx8BiMePs+E94/eYVj5+8RzY54PDknGrXYHLD62fPeO+DjwnO8vr5M26vLV1XEaj44qsv+OSTP2DoPdPpnJN3zzk9fcAwdDx/9YL33/+A7WbNbrelqhu0mfPe+x9yc/2Ci9cv0xAcEQlIus5zfXOLkvDds+fMDg44PTsDIl2fkortrmJSFinpGUkD7z1t01BVyRu0a1uOj44p84LFwQG73Za6rrDOMp/OEaSWbSEEs9mUru+QMuOv/vIvaNodh4fHyUO2H4gxoLOMj3708UjqMbYE8la5x/cIuN8Q8n1fpXen3o5vf4F/lPL73mPcE27fJ/vuH/Ltc9+Z4K83a948e8p6vUNnhq4dePzOkzTlr0vFHhgVWOOUwTtPkLu2opQIjO09Qo3Pkwieu/PvrkUhhNSy0HfJo0UpOXqNpLMZJe/bWkIAnxgAhEt7qxKpxcM6l8Z+SMHl1eVICgTuPLpMZtDR0PepzfyjDz+ibi3r20sWs4JhgOPTM6KAenfDrtrSDYHHj8/IpOLy6japz+cHiBhYLa/wvmMy0ThXs9t6Pv/V35KVOTeXrwiuxzmB9jlf/vqX1E2bCNDgCTH5z1TVliIv+fGnP+Xzzz/ju++eEUMagOW8Jca0h29343AhpXA+qbNCGD1lx/N1WhiOT09QquD85IwXL57SNDtsjPhgESoN50itUnEcSFYyDI62HXABQu9QUjApFUWRs6s6siz5z2mtEiE2DGMMlUg47z1aaWxvcSYjtUeNE/+sR4qGmzfPKSclJydHXF5dkmUFs9kBREld78Z7JbUIa53hXcRGz3QySUOwdGq9FALms5L5fMZms0nJsVRM5nNWqw1tN6QAWCkmRUHVJJW/ROHCkJT5Mk0DjDERgs4HprMZuUlFZ9d3vHn1HYuDGW2T/Mn06O24Wl2jteHw6BwRA1VVJSsWo2mrLcWkZHnzmugGlE4tQFl+SNt2eFcjwqhaG1t/dptVUlyNLa0heKQXY1yTOkMyUzCfHaVkqrWjaX7Dl5/9Em0K2mqTFFF1xac//SM2qxV1s2W9vOKj9z/g+mLD2clh8ghuUlGibUuUhMwoptMJfe3SBE+ZErVhcNS14+z0CI/i9Nzw5vUt/eAZbCKJdEgEUZSJwLsbvKJ0iivv96FxrUtx59GVviGUGNUYSely1+kiYordfYg0bY8NERFVUlgRx1xAjWp7TyY1IsRRSaspCkndtClRCmn/szFZkTC2PCmVBocQI0WWlIeTMqdtK7YrePDwmNevbxi8JSI5PDolqpqoe2gtj87fox1SceKTjx7w3bMX2MEx2NQVJFSKXe7eb0rOIIyfs0QmX26Shtp7T9dbxDAgRBpzIqUYO3bGCcMxTXyXQWG0xnk3qqhSzJblGc725Dqja5rkRYi4b+HDR+RoMyCiIPiAyXJc2vzHXCPZzkzKgnq3S2tSJEWSlBHvLUoK5ouDsZ3MI4jJnH4c5CeVZlJOUUYTvOfwYMFmuUTFiOt7Mq3wKr0ugWC32SQVE4LoIj66e4VvMqdP91TaT5OHeykyykmBFoKqqumHFiPTGWZ7y2RScvHmNTEq8J7JtADg+PSE6B11tcUw5nx2IDqXhsogkpdp8CnuVIam93RDZBj3JtdXuJBykjsCWUo/5hgpjnbejfGYYLurOTw8plrWY/FEj8MPDtltd7RdjQ9+VMyluCAGP7ZmJiJTSUXfJ4IojMrePEvt4m3XJRJEKXyAx48eA3Lct9PsWxc8wQ5MyuS9KmJMBU/v0+EvINOaB+fnHBweM1jHyxfPqZuGwSZPP4i0TTO278ZRiX6RvLZdGh6w3dxQNzWTb79FSkWeZdRVzXtP3uf9Dz+gqi2ffvp7vPveu9xcLZnMp/w//8f/O9+9/CwRUiQvXOcDuzoVM+LRHEFG3dwwKaaUmaLI59jgiNNAVW2ph54YPaubJRfFFCkLBtdxfHhMFJGffvr7dH3P02++I4SWwSkyXbJcbql3HScn51xcvCCf5jSbFZu1Yv28x7oukUw+ErBkJk03HvWHmLzgbDrHdgNNXREzy2xeMtghxY6LBcE68OCdZbCWSVEQXcoVw2gNETyptVdCjC5ZS1QVudEQkjBicJY4Cm3uipxd0+Jj5Oz0lBhSlx9S0DdNspaSmpgJnHdp3UynTA8O8NbR1nWKx8Y5B0JAPtH0XUtbJUW6tS4NfFCKrk8t/7lIlgpd7wjRk+epk8J5j/KOxXSOkIpMGfJMc3i0wLsW26dOi9xkNH2DsxaCx9oe73QaZCPBWUHbDUAku/Pib5pRFanG6eie2rWEmPaeophQFBP+6NM/4OjohD/9d/+a7WaJ8y4VbUPKVbO8QCnF0HfYUS1XVdXop6fp+g7nBjKT/OmTIlpQ7XZYO5DnWVIrT2d88MGPqeodF69fstttUaOVhxp9v51P+5ivw70aVo5DVu9IKj0WSNJxKUZy723wnuye4G5Indbp/Y+H6G+F35rguyvxa6PZVTVFnpNnmrLIKTJD39mkLAqeYbBpMtowoLROrSUhJlY5M2kK2ajQk3L06xuNZSGNHlZ52gi1TnLwu/YnMfY0xzFITSx6CvzzPEfKxFQHkvG3CwHXJd+KSJqClpuCw4MDwriRpcmxGqLFD2mDY6w6GW0oZ/nYXpQOdOeSr4RSkm7o8D4wy2e40ei26VNV1A2WPEuBUyLIzDgFL+CCvVMAI3wKmpTJqNqOXd3hQ/KVMpm5T7Qckb5PCsUkJY9EIyDKZPpJYFZOEAQG26OMIQbw1t6bUCrhqas0WQttaNsKRM9kUqJkGudtnRt71FPySkxT/pRKvg95HtNwihBo6pa66ZMCy1oynVoy0UnBl8hMgVFq9DDQmEzRDpZtVafHK4o0pazryIxJ01iJaGOIu8CD02MO51O2dUtdt/R9CuSdT0pQKSVKSPJcY5Qa22hTtfJmueTxg3NODhcMfU+RZUBSLdS1pe0TORS61PZ0MJtiZGonrruOwSaydTLJU+s3kbIoaJuOwQd8hL7taTvLMKQ2Zzs42r6nbXva1Sr5Czk/HvweY6DIDdqUNG1DbnRaF0KhlGS1vOb6yqJ18vSJMamTurpBG4N3Fh8cmcghpPu9bZp7dd92uxuVO+nATwMIUlX18HBB07UI4HCxSESvS+bAQkU+/PBDvvni61T5CCHJjo1m6ANDH2i7hslEIWWOGzzLZYOMCq0F3noyKcYWYYuWGp2ZNEk6+tEDSSZz1xDxXmB0JFOSSZkm8HZDZNMOTKca23uyTNF0HQJBoQzaZEjXI0MyQbb9gBm9MWwU9C4ynyQVaIweoxRBOLz1oO8UCinwaoeW5XbD2cOHVLfXDE2dDLSnJQRLNg7iIMBqtU3tSFFy+uicq5tLqu2SwSZ1KYNnleUIo3DRU04KjDLsNre4vuLyKhko26HDDQO9hygE+bSgyGYEH9A6ooKmqbuxNUYQPRRZiXOW5e3L5PWnJLZvsc5hygPOHn7E+ZNPub6+ABm5Xa+w1uGtZbu6QISOGCVD26CMpiwPuHzzhuAtWVnz/NmXXL56SnA1q9sLXHNE5+6UMYLVtufBkwWZmfLdy2cQA4vjI7arLUenJ0ynBa+ef4EUntX1U55qz2x6yM3ScvbwMVEGXj7/jvOH77Ba3fLOe+/TffM1b16/4vrqrbddKh6JsTopmSzmPM4V282KuqnIy4Jf//znvPz2GWfvPOHD9z7AOj8qtTzFdIq7vGQySRYJIcbUJrxYjEdYqpgVZYkAjM7o+47ddkfT1Lz47hmP3n2X6XTCannDdD5ltpjz8PFj2qanyCs26w0/+6M/xBiThjnE1GBz1yLL/d//EdXe+McPlXbf+4HRpiFxfP+IGu8fJf7unuft80VSErrebHn56iVh6Hn9+jnXN5dYH6nbXSIqjabvh7E4JECoRO6P7aVjxo6WqT03qRXT60zFuTuFn7hXtwju0prvv+vvtQaFpGiIIe2dciTag48gkieS8KmFDJFUSc4FMlOkNhglyDNNlidF3nx2hJCCojCcP3xE/+iYJ++csl6u8THn4PiAuj5mtV5ydblkMT/g9OEppsyotjWziWG1WqEzjc5ytBY0XUPb7Wh6SzktmM4Ksjzn9cUVMaZiXQiMUwhFUrhJhbOWy8sLJvMFRqu0J2c5xmTYtoMokSoF6CGm/QwBbdeRZ8kIXY794k3TcHX9mvPzBwgpmM1nDLZFCshUiTYqdRwMNg3hkJKm6UZlsx+nkyciNIZkfZEZhRsG7N2gLyGYlDnQY12yWTg5OcOYAucH1qubsbWUkbgtcL4nDD0+JI9dgSTLCjIzYb1eJnWVEmR5SYbm+PSMzWbJennDIGKaMtd7irIg+MhuV9EOAR+TMslZSzdcJ5uNTOOtw7kUc2kl6fqB3iX7kESGqORtJDyFMUQkWpccHJ6wXl6z2y0RWjP0JqnXgydGzXq9IivS8CkQbFer5LM4meBd8ie0Q8/19RtigDxLSvt+CDjv6Ppu9LlyxGDJtKIbkj9WWaTpe2HwY9tlShQgvf6b2xucD6NNSCJBhr6mbXY09YbZ/IAff/L7TKZz3lx8x7Sc4LqB7777lq6t2eLoh2bsLhHkZY7aJfuP3g6U8wLZJ1KdALku0CbgiAxdQ3SRo0NJiJrVZqDrk0VOTB7gTLMsETibLcsmEbaTaUlTNwgRQch7X75UrE2FQu8cRJ3W+ujTLeToUUSaNn7XQRFjIoEl3HtUuxCQ3o8+qSFZK8jUqpp8euU4xCACISVyo9f14eEp5fSQw5MD6l1FvX6J1JrZbEEkqeGm0ynHJw85PHnMbnPF9fUNm5uAzgqO5zOqrmNV7SjLnF1Vo5WBmNqpjU7FjeAEHotU6t5sPsRw7zWeBnGkidlZlgQKIaTWXmU0BwdHNE2H9z15XhCAYjJN4gDrmU4XmEKzqzZsVks2u46yKHA22RncdQbFmDzF9UgY9sOANjnvPXmP1WqNHqfjVrttKqYXU0LwHM9nyQ7FWSB1dyzmc6xz1FWV1IM6YzZb8OTdD6jbjjwXbJe37HZbmqbG5IpdXeHvJlVmaf8RUjLYDqMVg03+rFIptFRoLREyteNOpwVN5cbczZKbfPRCV6nA40PyYg9JgNCMis40ETYQQot1kbXzTCYl3ju6oWVSptZlQkQCRaGxIeCkwNmBKnqEzDH5hBA9290Wk0nckPYXSES0CkmtfheDGa3Ge1cznc45Pj6hrbc0zY7JdEKagr1LnQQhfT5SynGQE2PCn7xgrQ3YmLwb40iIRyFGL/IhdQhpxWB7Hjx8yHp9y/nZI9578j6TyQFvXn1H9KnYZrJU2My0JM8NMWjsSDxVTYt99YblegfE1MbsU04Q6rcTfWNMaldGIvP29nr01hc0dSLxm6ZFa818OidEwU9/9od8/fUXPPvua16/ecbHP/oRwQY+/eQT/skff8p77x3x+edfUjfL5H2fJXsjFz0vLi55/OARziX1d2sH6qFjsJb5ZEaezxiCout7NruazZefM58uUjwtM54+f4qQnjIvKAtJURzT2Zbz88cIoWmahtOTE1ara5ztcdZzfXtN1aQ8TwqdpljHdG4Uk9Sq/fjRE/7wT/6Eartm6Ds+/9UvEDIJhH70+Ed8/fVTttsKvEcJORZ2LLttRWYyvLdjDCdTR5oyuHg3wCfFhUql7wWXAoghOERMvv12cGRGo5Wmqhq8dzhv0SiKPPkgC5Gm4A5RMjEZ2luuXr/EZBne2bFLIicvC7abDTFahr5P3sM+YH3K5Ypyxrba4UPAeijLHKUk/TBgnafMcyaTguADN6slh0dHNHVN2FzT9h227zFa0duAi3dWKIo8Fwil0FnB4emc1e2S9XpL1Y7qYdKaN8aM1g6SPM+Yzg+QMVKWBevdjr7rePTuAik1r9+8pq5T7pX4II0Kyf9SQCpQxuRdCIyeh0kwVjWeIi/QpsSYnL7ZJmLPZDitRiWdo21rfvGrv2Oz2SBFoLcNucjIcoPSiu1uS/CB3g/Jq5qxezs5246fTTqz0hmQCFKpRrsbn+IJrfSYC6e2Xe/D9yr8vx1+e4IvRpqqoh8SkVfVNWVxyKScjkQQWJ8UAF0/YK0dDSFTC2ZdVxAjQsQ0ylmI0RAxtcB6n1p4ECBETC0ZMl0075MJbIqHIuDJsnSw972j67o08azrKYqcTCvquuHOHyIET9uHVDkekmF0nmVgDH3f07SpikGI6YabKvzodZZpSVEk4jKxrenzECJ5FCRfv2QsPViLC29VHXdTWrSSyCJLm7JOiUCZZ6MZpcBbizI5611D1XZ4BNZaMq2ZjC2jwQf8eKi7xo/XxRKNJs/MeDgouralLBP5KsdWRikFR4cHtG3DfJIxn+UQI1WTDK/TIRRwNjAtC4xJwYsQyZdKCcVbj8A7ZWOarniXjxqtKLSkKCZp1LdNwzP86PUjxoCwapN0GSFRQjCdltjeIoiJANUpcc6zfLyW6YCZTgo2u4rHj86xzrFcrwHJblcBqd0jmZFnaTLqqPBywwBCUWSGg3mJGTtKZmXOfFLSdj2d9TR9mvqrjWBWlvRtauVZrne4YGl7ST846qZiNpkmryit6HpL27YMQ/IXquqapq4ZhlQ99X5Aao1C3PucKKHIjE6DNmKEKPC9pWo29F2TfB1V+izt0KONSslPCLS73eill4IQYzTFpByrGKl6abRJvlcx0I0egkoJnCBV8Yae1XrFybFM0xejG1V/gc+/+Bw9Vh7kqB32Y+uIEIJMZLjBE0VAC4kMMlXl0ei7YF6m9nMlR8N0JeldGJWTkXA3NjwIlMqSElQ6tNDkmaZre6RP7U27KiVNUknmiwOEt2iVplenwzakVpAoyZShbuw4QeyupSdVe6RSFHmBdYF29FiSeNrdkhUeERzr7g35dIIe72cGj4+B6WzB/PCYza7j4PCE3XZD3wxpnL0dRlVrJISBYWhxPmIi7Koa79PkqLKcJsK29wip6d1YdIiS1OZd4UIzVn3SQAI7DJSnOf3Q423PbrsjeE/nHYUpKCcnvP+j3+fg+AMePXzAxYtvYJLhh55JWWD7GjdoJpMpkZTwTedHSCk4PprRty3N5pr1zRXHx8cQB8pM8uLlc6q24uT4mG8+/xve/fGfUN284vWbC6Q22HZJuy349S/+E4tpBqP8PS8yttstt1cv2JhrehdxtuPmzQuCs7h+S1M13F6+YLlckWWGN5ffcXJ6RqZVKjCMQ26kSoldu+spjGazvuVlU/HmzRsevvs+Z+++x3a7oRsc6/WK6XSK9emzzrMCIQXn5+cYndptnEvTVQ8OD1kul8QIJ6cn+Oi5urpMSqC+RQfL0y8/Y7m8oZzNefe9D5lO51TNjquLC9q+427SmQh3eoy3KrzfbMP9/vfu//72n29/loh4y+R97+vjH+J7qsAfHMvxB8RhCJFuGNhsttze3NJWDfM8Hf/JHDgiRiUOQqTEPI2vBOTI6b0dXpIGW/lE4I12ElKmYCXAvWn09wSLCSIZYMcg7gPct8pAiPF73k+RsX1BjMWviJbpyiptsL5Phuajf2/bWXqbCkyHB1NsO3B58Zqua1itVzz79tfJVqNP3nMPHp5xeHjMbHJCkWd89qtf0vU1trcMdYXKNEZlNNueTguc92lqn7RIJahWNSEotCzouoEokl9QjGn/ijYF0kWeo7Xm6y8+Q6mkUE9txCk5jTHFI3ef52w+ZbvZYYRkVmR4O9Bbh8kzlBB0TcWr5y1CSIpywo9/8lO++for8lHpkZT8gRiH5IvlA7lUFKUixmSObgeLFXekscfolGiqUQkpxs9FSI/UAusG5gdH3N7umM/m1PWG4NNUupPTU/q2Yr1ZElwiiLVKPqqnx2fU1QohNVpr2rYhonj1oiGKpAjTaHrbo6VGujRcKQSBj0mV3zU9xiikj4kQGMkgQfIkFkKgRvXf3eT6ssyZzycMQ89sOmVXpfaZzWZN37coIXDWsdtugICzjrbtkGOxKM8yhr4liKT2yTLDzWaN0OnavfP+R0il+faLvyPPC/IyQxvB0LdJ2dNF8iwV5rRMZNV0WlKWU26W13RdasmU/z/W/mRbtuvM0sS+Ve3CilPdAgBBEiDpdWR4ZoSHpIhIjaHMjtRQV0OPoDdTT2plQyGFUnLF8JAyM+SeXpF0FqiBW53KjpntapVq/MvswkPqKJlnDBIXwMW5dsz23mut+c/5TS1xbhkMK9puxWEvImmugz+lNDpHxuFIjoq3r1/x6ruv6foV//x/8q94+/q1uC2mI9c3HzJNIzkdyOG9uzglhLfkGlYrSU3I51uYB4GDa+tq8UBm1SouugbrCkefOewXbi63fPyDH/Lm9TtuH+5YfMHETOscPgbZt3zP6Xtq3rVWSvDk0KJqNLHUIbG09OZUaiRR1evzFHVUGOXqPlOeTRLNimdmtAz65ZwgETrD9mKNtob15RqrNevVio8//JBvvsisr665/fIzHh6ONbKl2Fy84KMffsoXn3/O/nGHcyt8ylxdvuSf/6v/lP/q//C/5+nx6byvTUWG+aUUtDJSlFHxJDnX4RJgnEUVRfDS7mq/53wsRViEJcLxeBBXn1J0XUMq9Wc3mnkcuL8dQHNGsmgU43HEGBmSW+1oVz0+J+IihgJjNMaJuPPVV19SUFxfXUlETmuafsX1yw/Y7w+8fPGCZ9c3fPbZbwnVeTMe91IeYxWblSMkaSzfPT0wDAeyn3FOk6On3XQcDxPez+RUMEZYXW3fkqIwwtqmwWhxMy0hMPsFl2UNyilxPIx0rRSp5VMJh4KmFhqeUhrLtFDqMbq1hq61lcvpKamwWjs0CR89GZiXRSJ7CvquwxhIIdMY4T+mAuvtFtf1PD2+I+WFvIhJROKvshYtiwzXYy0OkiKRhlxgHo9889XnkiJxBqMNQz1HeT9ziuWeuJMpJiinmB7nPf+psKYUCCFWZ3qRogtraKzl9p2UP1xsLvElstls5HwsE0WWeZLXnhMlJzabNWhNSJCzZ1o803J/dtifPPmnMhaNglN8vMZ3S07/6OxdCmQi19dXrFcrbm9v+T//m/+qisyetvHsH7/m899+xfHpDca2/Mmf/lOUbsll4Ve//DuW5UDwszgXfcCXhv/N//Z/x69+/Us+++wXPNy9Yd011eHcEHyEIvsYoxU3P9jwzee/Zb3ZkOLIcNyzrFYsS6Jxl/LaI0x+QKXMssz0XcMwRzbrS47TQM4eUFhnsErjrBMx1TkKjn/6p3/G55/9nO++/i2ubfijP/wDXt++YvfwxMVwyTJOzN6jkizeqsiQQ2thwisN6/WKnIvE/VtLCbk6NM256CvXwqiccvVMiXmmdRbTGFIojMcB1ypurrccnw5E73GuoW8dl22DXyQ2nkukpEDXrUhJcX//gHOO6Tgwj6PEylHkun4KokPMAo1xzHEWc0ht9rXOCnYAhZ9mjLNcXV4xjRPjcCSkgNXmPOAUp1xDv2rQKEKYcRX5cnwayAms1nilQFmayvFMSfSM7XZLCJGHhwcpW3KGeRjp1ium4cDf/NV/YPf0gJ+PTJOwdnPOuEa4eWP9Z1ppYR3WchdnpE/BWouxhh/86BP+8Pd/nz//r/8tp5H4drMhpsC0RB4f78V8c47AwzBOzIuUZKQiTMpY7+t+tRLzlWnOaICSpUDTNQ3zJM+DnCOlRuqVgq5rmWdpxj4J7CeEwe/69bsz+KxltV5hnJdmt8pvc8biukaKLoYBlBwELi4uztOmKYS6uU0o3WCtPKinaRY4KUoaYLWqDi5bbwKJjlorrZMpCdyybVsaY+sBylKKqwJcZpwm2qblYr2mFMmVo4ywMXzGbkQ4agooXSMIRSKjl1eXRO/xlenUOIOxiuNwPNuYrZXGPlWnkduLbW1OQwDS0UvtetNIu5GXCy0lUZzjiXEXozwkMjRdw3GY2Q9HYhZe36pzOKPrpimhMrTWCcCbRGMcm80l4zAQke9hzXsGz3AcaRtH0opsND6kOgmFxc9SaoESQa1kKgKi3rhabswgirUVv7xATZXk+TWKtmmYF8963dP0lrhEcRVET79enR0zjTUiFPattNSGgFEI7DlGYuVnmZxpG8fjk0DgnXOs1lum8Vj5JYEYavlH37NZr9h0HT5I4cW4yHUUQ+J4nGQBNpq3DztSiGw2K7Z9R+Ms6/WKkgOrrqVtoG9bWaBj5ml/YJ4XthdbWistjiEmYkrEmBlnz+E4EEMgxFr/Pc1M43R2eOYi7YBNa6VlyRha61i0vKfjONVFoScukeP+iI+eaV4wVha640EiRQ3y0LBOJgpKS2OuszKN8otntVrx7nDAWcsHH33I48MjOSfAsNluGY4DRcHT054YpZlOQLORnIUj56xMUFNtj9ZZriVFBpMrdzBgULTGcH15SWPh3d0BlCaEjHKy2c9QuSKyAXFGAMYAbdORYqxTI3FAxGhpHBgkdjzNnoTGWTkk5CKvQyJ8QRyD1V2oi7C0ppgwSlWWisFqTYniFMpF7OvUWJfVMk2bl8Q8HckxYhrHvBvouw6dFrIq5JCIy5G7N0dMu0HlDdPTA37YC/cyRZQTgH6Yj4zjQEEzTQvWthQsWi+UVChKGrlksHeaSMmzSxyu0oqWUkIraPuOGEb2T4ll3ItrF83Llz+qJRQ9q+0NMc/88u//AykcoWy52q447hSb7RWxKJYwowqsL5+x2Vxw/3BLiJ4XL18wTgPXV8/o1j37g+E4Ffr1FTlHHh8fuL664fH2G8Zhx3p7Rdc2BKX4+rN/IM8PuM0Llryw2d7wwQ9/n+P+SEyZy+2aN+9ekXwgzZ4Yjuwe3lJ8JgfP0/5IzIWLzZbdwztub29Z9S2+6xjnRQ7mMRD8jEYayifvuXz2kk8+/X1SyHz19Ves1iuOw8SPfvQjrHU45+j6vnLkoG2lgCnEyPEwcH1zRS6Z/fHIxdUV0zgLFNzPpLDwcPuG3f4g/FGluLt9x/7pwDgNHA47bp49q/ediE0nyep9uQbf++s/dvH9o/huNci9/3ovFv7HX9//Xv/x359+nQuEGLl/eODrb75jGgZurq+5urnCPz3WaWVGU9136n2jl6oMT5CoSKlrsakNrnKqkD87l3LmHZ74TafDsNK6vpZSh0EngYazqycDKske4cQBFSKA/DwxlRpjAGPlwOWcJUeJ5fsafVFZVfzAVCHqM3cPdzirGY4TaPAxsfnwih99/Cmf/PhP2O/u+O//5v8JOjGOA1YLo/fFzTWvvnsnxSIorOu42HaM48T+6UhjZFPpx1gPPgV0wlro+p4piRv/6Xjk6uIK6ySNMAweiuydwuxl0KAUrm3JObHf7yWmEjMqZ1pjMLohW8UyD1xu19KEmwrLDF98+QWp5HNcpBTOUcVS5Fm0IIgTBZVnGGsrn6wFJUp7eYkJXTeePsgBws+TuNGniUIizDNta+tatnB7+4oXz5/TTR0xBrq2YZ4myJFp2NXnOFxe3AADPiz4ZcFai1VyaBCe0UJcZE9htGGePV23IruCMiImbzdbtptL3r39lhAXSrH1ECyAclNFq2UasU2LwpCiom17FJlpPOKXifV6Te9agW2nWFlgBaUEjeC9cBzbVUdJluNB2KM5B1a9w6L49tsvSWFmnidU0VxdX3F8EjdFKQatDd7LUCmlxOPjY2UBBuGT5ox1VTAKkVXfM46DiOlF2LCn+7lxhsvrGy6uXvD213/PMh+5vL7Aj0eyFxdH3/b84R/8Md9++xVf7R4JwRNiLYkpla9oFNM4MuREQTAj1iq8jyQkymqMpu06Lq43HB73dCmR+4Bm4eH+GzpX2KxaKZEKkaQU1Hu88J6/F5MM7kqRQ2IIsqe3nAojagmH1qiEiPkUSYVocxYgdE3NWKuq6CGMuJIKyhopzIpRyhGsYbu54l/9y/8c127Y7Xf4OLF7fMN3X/2C+8cn3JvXTIcnlpDJJfI4BR53/x3v3r7i/mnHT3/0IbuHB169/ZbDfkZrx7jf09qGlAvLMovjJgmP+oTf0UrXvYgh5PpMy4XgA047tJHDvK9in1Zy0AVx8OdcMFpxrJFhrTXj4QmtChqJb6lTEYYxGGfkWRglzlamGR8DMWXKab9uDCHI91NKs3u8R+uCVo6xFKKfKGS+/fIzXn/3tYiUWUqIjFEyWNaKsMwYa5mOO3L2dM5wnEbmUPChkKtDs1JciDGgNfhFxMTvu5XEMVVqSWJtnER+HXzg+tkFw3DkOIhzEK1ZX14QQ6TRoLJmqZzcvhU+qDINJkNIgXmaCXHBB4/tVrRdB7E2ck+exspAvTEa22/ZHQ6kGBgf70lhqc7GDSlGpmWq0VhLSjIctsYQSiTFKGmWnM5rWkwy9J6XKIb3nM6DL/m98nxJufzjdb8Oz8XnntHaYpU8Y50V12D0mRzFGZqiRAIfHt+xeCmXyUW48kXJufXm6uqcbDoOM0pbuW+QgaNzlvVqS79asXsUPnEpcv9mSuWnGXHuK2r0kCpEy/PkcBhYloBfPPM0S6lBr3i6f8fT/RvGaeQ3v/0lXfeMP/mTf8b/9F/+a9Dw9HDkV7/+G4ySsp8YE8GPfPfdF/yTP/kjfvrTT/m7v/prXr645O/+9i/Z7e4qR9CwXUmL+n6/R2vHN69eM44HfvDRBxyGIzFm8nrFn/3Zv2C/n1j5Qt90zH7g2YsXlIc7bt89sCyBrrFA5vJyS99dEPzC3eM7Slr4+OPf46MPP+S7r/+eziSGYcf94wOffvJ7/PL4c7784gtSgBzBiCyKdVWsylFMN5VtJ2JxomQ5+1IHOBlFCDKgKEocoW3T1KGuPD+ncZSCFAVOt8zHSQwSrSOUBCEQkjTzFqh8f83haQdFse46coo8PN0TvMdqMVAVJedPa6008Eb5Hq3RqCL7vu32ks32guAnpmEQE0nWhEXWy9VqLezkaZYynYtLlDYYI8Vh/bqnlCQJQqW5v7snVqSZMTK0jzGx2axEEEWYvk9PMkzx1hCilKoqrfj6q6+wrmUcngSHdUp+FPm5Uy6kKGub0rLHkn15TTJYMTZtt1f8Z3/6L3i8fy3Fm0bJXqw1jMNESCK2+WWWz+ZsbpFWcW00OeRamiYIhefPnvP61Ss61wgOABmQt40MqIJStK6hKHHF5iQHgsNxPP9eU/fZuWT+UYrnf+DX7yzw5ZSkot1aiVS2LQqBRZ49DHVMcbndEkKoDq9SD/OGbrVBKZhmERa6tkHV2II2+twuU3KulfTiIEDJJE8rapNt7aZQEgdsO2k/3R+OwnsJ4gjbrFYo7fAh4Otmw/vAaApd4ygJlhBquUdbJ4eFpTaOnlwNYrWUzcyyBLpeMY4jm/WGVdtV0aFIVNU1lJyY54VpEb6NqxsE6yzTstC3Yk1VBYxzpAKHaS+boio6ai0PgWVaaFqHtg5lDWXyrJpGWHSLJ6VC27cCsfQCaQ4h0bVrWTRLYZxmlHGiIHvP4XikKLFBr7oenaVpNdosseK2J8Vay34coMjEIwYB1vedtPjEGtPSGpw2JJ0Z5wFrNcFL2cb+OMrB0tlqJ3c0q1WdWstEPaZ0ZruM80KIiWKg6RS7/RPWGjabNYdpkgdq3zE+HJgY6Jzl8uIabTTfvHrL7INcM51hGBc0pT5YDbvBsz/O8nqtxWmJKPVth64lI03fMByO+JjY7fY01uCUFvBmyixL5DjMDMPAPM8Ev8gkLQpjRyNxJtMIY+AkaknEoNSHXuVxGAMUhvEoh7M6hVdFY7XUpp8ckLJYFxrX4JxhyoX1eiOibVjO1uEQI7vdnrDItaAq6+BUYtE0jhQXaWMOMqFYrzre3AWGaaFtDO1GpjxkUEaa4hprzxFjozUoi3KGw1gnK0omKRp13qDmKrpbZ6U8ojZkhxixRuNDAZXpG4c2wrpTJEpl2ihrReCum8jheMSpgk/pHF2PEVROaG3JIaNyobUOlCYngXgXxAnUr1eEnKp7SFX3kTy6jLY0WkPMRD/TOs0yTxSlMEWctynNHHdvMGXB6kwsUvxSSuEwHnEappDoa6P4EjwXF9fk7Li4uGIcdjIRRmGsIidx/lgHxiqWIZ2KCQF5nw77J6zrSEkOyn/0J/+Cjz7+I46Hd7x69RnffvELnLb4OHFY4PJa8bTfoZsVP/zpP2H3+MTh4Vt8jiIO+CNpGbDWYYESI08PdzzuHhgHKaa5efEDXn+14P1C9At3r7+kW19xfDpy/ewlx8MTTSMNnkssKN2yvXzBDz/5Q3YPey6vLyhBHI7r7SWUzHdf/ZrJH1nmifj4wGp1yYfPnhN84PHxnlW/JqalNm0qdIHOGu5DIAThaGwubri+fklOiYd3bzkOj3T9in59wTxP5JSZp4XjccAYI6J2lhjPbvdEKZm7d7c4a1j3LeuuYxoG/DwzHneUFGVjZBwpB5bjnqntKKtAnBam/Z6HjLgIf/ADEbT4j516/EdiX+F9w+3p6/tWt7OhixOU9/y9OOtq3/u7+m/U+2IPGRjMfPfqFe9u70S0mWfevH6FVvD8Yo0Pse7fZdKYavlTSFnu55w4SZCqNv3JIbu+8tMLKZzdvSf2oEQFOT2lqmioa4QTOZjneD7En56Hq9UKZy3DMFS3s4gEqpZSEDNFZ9quIZEwdSOnjGaZpaRLlRqTzYlMYXeYuNyu0caxvboBlfjqy6/4/Ndf4mzg66+/YgwBpy0pFeYl8NlnX0ubuHMs3pNyoGmsQKpjrIdsTSmxijEKSqBvO168fM6D1gzjkbyIcG2tHGQo4pwPQUDcMSWarmPVrzgepJUVCtaJSKKN4mK74uFwIGdFTAZlDONwoAMWv1CApBtxfccCVfByWtdyMmFJ5SgxQmfl36Wc3iMyrMMH2ZPNs7SZxiKMXTk4y1Ta1UivHDoKOczc397StC0WR9/2+HlmvZbYn7Q7rnnx/GMOX34m10dJLLO01G8uLpmmmTBPhCQiDaTqiMq0rRxwl5iYhglVTL3WFI2zNE1TN/ZVaA0BXR2JaCeMyeOReTqitBxqUlEQ/JlveOKbnaLs87ywWm0hF3ycaVeOthFH/DQOfPP1r4lhwShxvabomY6SGrCuoek2+HFfcRi1wbkk8R2ZOtRGnxthjVHCkz2544scBl3df8QQeXx44PH+NZcXPY/3hc5pfvX3f4VxDj8fySnyF3/xX+OcoEx03VuWXIi5kJRG+To01cJbKyUTY6Gp4PYQlrp+itOAVEhhwRoQ5/8kh/HiaDpLOC5ynxcwZ8xFEdGmOlqhCA+y4hG0LmeXFkaeDyf3X6pYGoWIU7mUeq+J2xWSdJ1p+TNidZHKc0URU+Zht+PP//zf85Pf+312t7d8/MnH3L65J/oDBs2wf0KpwjzPAHRNYhoeePudxyfD27vEttGsXYvTgb/5yz8nl4GUFTHIft8aS8yRUwu3MfLzGq3Rp4OzMec9bCzC6Do9K63RNZV0cvJVLluBkhI5yzBSxI9IMWDRNEYenFIyouveUgqdckySgpB/QkrUtmxx8ykKfhExvW0NpmTWvaSMhhJJKWC1q1zQgjKmxmnF7e9jYJ4nmr7lMExQJAqnjWO329M6id3GFOuqJu7GEEXQilmExn69Io8TEs1L57VLKShkDnspbtFGnxm3ISYpWtSWbd+z1nIYtlqx1D22LYbGKlzrWNJC0zRcX1ziF3F6pxSxTSt811zTGCFireZ4eJTiAJUwRrPq1zLsMZaIrFFGy3XuYyTVtU4MJiLqGV3RRxRUyeQin33Ogo3QykgBWJZ9/ilto4qIQ8Y6ur4hZ0k6hZClQLIKcpeXWwpFUEpGHHvGwDILh9xZEcW1caz6FU23krSIT1SC5tnZn2sxnfcyYHrx/CW73Y5lmWWNknbL8x7FaDHOvN+PyGd2SkEUUf7QlfkZvSdVo80SEv2F4frlD7lYv+DZixv+i/8i8eKDl/z213/Fxabj9ZtvsTrwl3/557x78xOmKfD29Sv2T2u8F9SRODoNikzf9jwdDoCsqW3TMU0jyS/YpsX7wHfffMduN/HHf/ynxBDY37/m7btXoBLLMrHdbKrYXYuHlGacJmKMvHjxAf/sz/5nrNsLGtsxzDOuWXP3eM9/8p/+Kav1mouLCw67ET8HuQ+0bAF8EAF/mmdBlhnD8ThUN6gBbUipYJUIfZJEcviaelBFhtjrXmLmKYpbDK2E1a0tqMwYRCQbpwVjtegmSoaIORZSjnUoa+itJcRISEmGMVHORkoVlsVj7QJaEgE5LPLMcA4/Tzwucr6OKbJaX5BC4MXlc15eb8kx8O7NG+ZpOSPTxuOAsY6cMg9+FpRTbTpe/CQ8vizmLo2cQ5c54MOCtYb9/gmlxT1qjcbPHh8Cy9MTS4jE4KVMaAFrW06lN6Ge8bWpSJlzAZc5x8273hGCNNv/9V//FQ+3r4khcLm+RLVrHndPxMI5kbPebDkcjqRcaidBqYM7GQqq+uCKUUpa0GIw+fiHkiTyXjoAck48f/ZMhNQUuL9/kGefEgeVMe951NbqfzTc/l2+fmeBT9f8uHVip3arHq2LKNqqEFNitV7Rdi0PDzumecJ7X1VjizamWhlz3dwIkFvAoIqmkWhoruIegFR/J5wSZ18h18Xh/ZuildShN42l61qmcSYVKYBgnum7ntWqw8WCX6JMVAvVxaAZ51kiANUx4oMUFvglSOyi1ijP84xWphYv1IONotYzdxxrU1suAtA0RuOcPYMdtdGEmM8CSYoZipQ8vL1/YvERssScjauNryVhXMcSIlNYaGh4cf2McdwzL0HefyMTMampl5r5tq3A8yQTx6brmGc5+I5zoO1WhBRRXjF54UY0szmLMeM48+xqLYtUykzRUzp5oKsKWddGYYpBJ5kwpSjiz4nNst5sZJNYIxbjtLBdd/VwNqGNuBGdc9LQ13eVWyEHOkohhkjf9wzDyMP9E/JQLOwe96SicV1Ha8CHmfEQpfihxqKfP7uQkgmjyCXxcPdEycK7QBvGWSCg+8VD2VNSYd31OKtxjcRo9k/ioItJHHcozThOjNPAcDyI0yFL0Uup9nbjHMYKKD0ViclqJYUzoU4Xc5bWJKM0D/f3HPYHukamLzklYskkJ+B1gdTLtKNtO2F/xYDWiouLDUYbXr16Qhsl1mWjGMeBXCcLzkjsSCtN//wZ93e3HA87gZ1vtlxcXLLMU3VbUjWEiCoyfdBGoKwpQ1GaVSvfb/GBh7sdBfAZrDJV+JPNTNc0lCx8y1PqRtghpgJmRThonBGHSCq01ordPnuMznJwK4qubSm64OcFtMI4S4wyGY5JXFQ2y/vctpYYZPJilQGjCDmjUubx/p5YCsVovJ9pGnG85pzpO2FOlOpOiogoL5srXRmUMpndXKyJBMLoQYnTqJwOStrgYyanicvtNau+IS7SnjuNR2LlZzaNTInlUJRYJi+HpSLuC1XbCGNKUBa0VfgYOE4Dr19/h9ESU0nhyA9/+ge8u3vkR3/4p1zfXPD5Z3/Dz/7oT+k2zxi+e8XsZVHPYeEwjzIMKIlXr7+TBvSU6NqGJR355ovPxI+WBEkwHMeKRyj8+MefCDuRgEotyq752R/+S+7vvuKwv+Xdm2/YPx34h1/fs+4bfu/3f5+H3UDfbXj24Y+Zv/kc+oyPmfvHR9rNJWGZcd2ajz74kIfbO+Z54bDfMY8HvvlaWEU//OQn7Pcjq74jp4lX3/6Ww3Hi5uYZd3d3/N7P/oj72zt++OMfg4LLq4sqvGbu7m45Hg70vbhGu66Rds9pYL/b8dGPfsR+9wQls/iZnLcoZfngg+c83N1z9/YV3eaS1rUsS+CHP3lOv11JZCxlitH1iMNZ3KtD2feT++/9//d/9b3A6vnv6pD/vbB30taqMHZyy518ASEk3t7e8sUXX5CCDKYUcHV1RYoR7wPWueo6UdVl9L0ocYGY64m0iMCota6lNdVtcBJLogzAdF0DTsU/Jwe8HN7LWXyUw0I+HwpyKTK5rKJkqO11fd8RQkKf9gcKccHVNXpZPM5I9DNliee/dwkqrJYfZpoXXNsyzgvPn1/hfeTN629w9Xn1wYtLVtst0/2enNT52URlIoFs5Lz3+OhpjKOxmsY5/BxYrRrIqjpCC33fcPvurbS2xYRVIhwtPgKCoJjGWZzSUcSOeQ7M847GiZJvnaPRsAQvB+SSxI2VC/v9Udz++X27faiMYKU01jqqGZNExmotoiyyFpxECYVE6FVtNPbBEyq7OJZM0YaQQWdhFjfOyf4pFVoniYucAqGyfNumo2lacag3PbvdyLMXzzFmxmjL7d1blmWk61sa1wi7rQpY4v7UUBI5B3yGrmmwSuL5IRWyKfSto7EGbxylRkBPgw9VBSQB/4vLJePxi2ymTXX/GNdidEPwY3XNSlGaMOlkiJQLbJRhmWZsY5nmhQ9ePscaeDs9kbyvcdaI0eKK2e0fsbZlvbrg+Ycfc/v6K+ZJ8ApLmMglY5TCtB3ZCeYk5yhiXtEY49DaEZK0CGZkT2qUApXxy8hXn/29iHLzzNtvv61A/oyPgZfPnwGZGAPOGXE3nYrrkpRjhCBrTk6FppGSlVRZu9aKEBFSJMSJEIR1azrDpu0Z9xNTlON9DML0co2jxMrLq3vwU6Mn9ZmndL1n6xPOOEcK1XlBxlc3cD610RbOBW/GSNxR1sOMru3cWp3aPgsxBZw2iHIaKCmw39/y+eczYfY8HN6itWUYDngvBRXrdYezTq7dxfPyxTUhTEz7A5vO0l1dsfviG2wjw9m26VBYdtMBhTgipagBshEDg9XC9MulsIwLpa7jWsnhTVXUxIlzkFJl5rWtCNRZOF4acTGmEtDanpnhpYDO0DSWkBbmRQ7SBXmG6iIJhJDEH62UQvipoIowzLVpKaoQwoK1itv7R64ur3jxwcc87B45HPZYxF3Ur3qUXnN1dc08DHgv/OW26VF07Ke7WoCU0WVmWJKUQKSMcSJMLeMiexVFFblgGebKw5MyEO00GsHT+GWRCH0tHDw520qKTGOgv9jWFc5wcXEpru/5wOxnjNvQtC1LCKQsyZDG9OSyMNf71LaO42HgcnNB68x5j2utiGUpQtt1hOWIXw5okogJlZ8XvAzEzq766rSVPScSr03v3W9VAhDRR1XhXhbuumaL04jadjxXNppSGm0NqdRYr1E8Pe1PozYZmle+a04RrRSbdc+ySHpoHEeOxwNta7lYbxmnWVphC9imISY5cwxx4Hgc2D09iQvp+TOOx4HjcWSz2fCjH39CrBFvv0znmLHSVNd4xil33rGIw9+ALizzQs4GpQt+2vP/+L/9n/gnf/xPuX55w5tvv+OnP/kRpmT+5b/+l7z77jt+/su/5Yef/IgvP/+cF8+uGXZ3PNy/ret6wiBFOVYrmn7NKkmqqhSNtZpV33O13TLOM/My8g//8Lfc3PyQcd7xcP/AF1//lnEa0QrWqxVd33F3e8vLFx/Sr3pCiOQiKCNy4evPPyfOhW6zZrW+liG8Kvxf/y//BqUMP/n0JxyPe0xTKEqzzDPOGW6uLliWwH5/ZBknopUyTGOsDDaKPD+Ulv2OIIrEsUsWJ36mMFXxVFVXl8rSnako8qg7GRDaFq1lfyEOUmhcI8KaD1jXom3D9uJaTCNefk9MkbZxdcAgz+MQJU2UU2SuzvaTA82HRDoccM6xf7pjnvcsfmEaZxonbfTzPKG0kbQT8Pj0yDJPWOfwXj4XaxUbsyblgg+JmGMtBqt7D11pzUphrZP3RWlyipJWShlVuf+gWfwCgFVKeJZRnqUoyBiuLy/YrFbCC0wZreFpd0tMcHV5yWQMTbfmm6+/5nF3j7OaXDLz4uuf06JiJMa6x9KlYhYUp3xN4yzjeGSz2ZBz4ceffoKfA7/6h58TQqBtBUPyB3/yh3z15Te4ZiAXL0YdIzxjax3GdMJGnr2U1/2OX/+jRHSbtpGKbWvQSjbYubY4SaYfRu+r8FHo2k4WMyPCmHMOa9QZTB1CAKXp+g5nTw6numNFDgzn1tYkdd4p5zpRqSDUUmo7ldzMsU55coFUpJ2yaQyNczTrVkS2HCQ2aA3GWkjCvFvGhYSiKE3bNWgjTbchiituvbLkHDE4rBWra9tLhXzTtCgtUVQ5sAQaZ6rAB7MPeB9Yr3p57xRY07IfhP/irGGJgctNh9FgFGAbDtMsjJ6+obGOcTwyh3R+6DuryfnUYpVpG0tOIsjG6NFGGpvmkMkp4WNirO+JVoplifLwSTJhyKUQYsb7LE+aohjGsVq3W2IMqK7BOmEiaq2JIXIcJ9q2waDYrnpyCDwdhmqnzRI5HWeGYaHvGjKZHDOrbYNbG0IuDOMskPVq+8i5yPugFEXB5cVGChrigrNaorAhsx9GppApSkQT04gg1RhNJmO04dnNFdqKa9H7UMUVxXgUl5ZFCVsOEdUaa2VSUNmPUiYycTwcSTEQYyBVV2nOAvyO9ZAi3CpR6wWwLNduzgWUNGk1zuHDwjQMEjvRwvyjMmpCkIl/qkyD9XqDc9JUVnLGWClrGUcpW+hsg3Wy0U8xYJ2tjKprvI+yCBdpd25accH+4KOPabuOr774TKz4Rg7r8+jpuwacwjqZkhlVaJ0i5yDXFwqURhlwwLrpRATXGmeE5zLPAdtIZDpGeVAbDcovwpLZtpQoU2RKOR9KVqtOhP+UsaW6aLM0HxejsUjbkk+FEGSCo2Om1AWha0Uw2HQtqSjmGLm5WBHGkYCSSePaERYvkbnqaqBk2rYRWLK2tK0j+ESI8vtsFQOfdkfmIPyLeUlko+j7hqLkOZIzdI3FmsLD3RvAcHjasVo7Qoo4Y+g6WxtIEZjy/R4Iwg5VRSZ6Sa7ddb8hxBljFCnMxPmRF598gibw6utf86vf/oY/+id/xuXVFcuwI4wT0/5I9InLyysonjDtiZPwjpq2ISyR1faaVd9x2D/wePeWh9t3zMuR4AWa2zmZkimtuHr2kqf9HdM48rR/4qOP/4hP//Cn/P4f/Qv+7j8cOT6+Yh7v6NsNHz6/QanM48MtwzCz3XTCt1Mau+p5ttrwtB/IFRxOySzzzOXVJe9eCWw3+gmlA0VphuNA8pExBtCRTGbxCXV5QasL3371JT/7wz/GaIVfFjQKt5YCJJDnV18KF9sL7u/umKepFiIVHp6euLy+5vU3DxzHAeM6Pvz4xzRNT4iJcThQlKa/aelXPfvdk6ASxpnGNRI3U+p73jrByZfvm+3+kXvvP3LlKc6uvdNf/5HAd/51FfhUqaJcZve058uvvuLx4ZES5bnVOkv0gXXX1ZhxIVdWTynQ9o3wulKWsqsaqzrHdnV1g9Q/Uw6UqnI4q1uvqLPSqE7nn/L+YC/C4HsRUtUhoKqOn1LE6bOUwOKX+vtrh7wSLm1BXBEhK5wzLD4K30tRh4LCCTq1ls2zOBVSCrTO8vDwKGVNSTMcJWp3++5JptlFhgohZnKWVtfr6w3ztHA4LvIe1sNd31umKZJrG+6HP/iQ4CUKPUwD4xBw1tJ1DV7VKEeuLjqVKFljrMVHj1WqDhSSCAVGE6M0GWtjUFlaicUZpLAI3gGjCamQQqZvW+ZpObecFkQw0wgLrwC5JMia1jkokJO42OUqjJha6jROixzcjUNhamGQODwbdHXDZFYtNKs1x3GiaRu22xUhZIxVDEOg6Sx935PSBTl5dru3sg8pieP+KDiVnDjsHigIa0spic7JSg9KG3KWAWzbiku9bTSTkgN0DJFc48rKyDV7gpbLBZjpuwbvkyBTtAUsOU81oSENwcZaLi8uiSnhw8J6tWaz7nmKkRACxji6vmUcEsPxiAC0Za9qncMaR1MbK2OY+O6rz4GIc+LI8EmRonBns+jadI1hXiTSiTFkpNCkqRiX7cUFfl7I2dN3LVpFKUcw4krQMknm5vqG27s7HnYPrPoVOWWmZRHchxIRb5lCdb7JXiiTIYh7LacoA+gkYpxsteW+C7UUYRwnQhaHvFaOxiXyEIkZjDNkD6fCO63k+VKKwMVzLSeQJG8dYBVJtzhrxYGhM6b+MxEET8N62SMppcR9QuVc1j2QVgVrFG3rSKGgreHqYsU4BaajMI/KPEMCKdeyhJSYZ0/jWmLKTD5y97Tnw5c3PDwtHA8j38WFpmk5jiMUg0+RzokwOA6zcGG1REVFb1I01lCylG9oLUPjpm0pSbhhSmucbWj7FSF4xmN19YaIdQ2lKGL04kyzUmAkcV7ZK88JilHEPCJ4VEPJGmWUOGWJWNdCiZQk5msxPogU6uuBXg6mMqgTdMHANM7kEskhkI04ysStWYjB0zWWVWc5jIH97rEKuhFnRHxURlYzKT/RLMtM00gJoaMOCBong3LrhEmYpSjHtZKKmifhOMozwDDFWRIYdS2xWricjXPkIuLfxcUFmQQVayIFRyL6pxRlL+2F722NxRQZbs/jkeKks7m1rhYrJnJG+KglkqIXwdVKvNafYnfUtUbp84DMuYbVyoFW7HZPLClJcRDijiXIZ2iUDPhLHZoZY2SoA0xTIAZZX7RSZCViu9HCsdSm8qO1fN+ixNVlrGa1XuNcwzCMdd1Ndb8o3HIfIvMcKlJoqQM/XX8aQWb5sDAv03k9N43s8ZSRoVfTbBmHST5HJ6JnKWCNZVkmcoooAz56iW1nC8VgdSbMA7/+xX/g689/Dlrj55mPPnxOLIaLm0sOj4+8ePEB9/dP3N7e8+1XX7BdtRgKulFcXLzg8Wni2dUlxMS3371m1TdorVnCgkOwTV3b8nj4BqWQfdnhnr//u78SNIf3DNPEuq/lCounade4tuPm2TP+5m/+Cus0V5dbPnrxgm+/+hWPD6+EaRcKix9YrTes2pbr62vGcY8yoBs5h8QSaXUnz5TaBt/3PTlnMSRZV2O6gqCQQUvEGLknjaK2jpd6niu1KK46cBW0XU/XuFq02fHRD37M/mnP/mkn6aZT5J9MStJQbI1l1XbcP9zT2gbXr+XzPuEjcuB42J+TZcZobNOCUngVZIwSE+2p6LJk4jKTkyfmTPAzFFsLQBLWGSl1fHqS6z1HyFnu0zrgVQrSEmQvF2MtV5XB5mmQk0pgCVJMmnmfoOy6jmmesUYGsUY1VdeQ9MGqb5mXhcUvuKbl6uqaaRjYbNfs9o+klPBhT8mK8XAgl8Lbt28Y56lqRPosoI/DIKKyc2htpMkdRa7pFBlKyXN+rnHepmn4+7/7W1arNa61bN2GtrEch4GvvviKh8cdi59pOgsFxjmCapiXKMz2ilj4H+Prdxb4YpSpjveezWYtG4NcSLURN8bMfjiyzB5lNAYRSKyzGOvQ1TqZU8F17nyAbVonLrQKOqVuQxXC7DDGEmp7qTa1oavGOeN5ylABvDnTdTK1CFHEjNY52eikQts1tI0h+CRW4JUjx4yzrbyutiX7WFlj8hpiCtKEZyXeqCUbTAi1QKK689qmpet6ui4w1Ay7TArEiaa1PGTF5SQX/2GcOYwzPshD+vJyK6JUSuxHL3DqFPjo5YcM48Dj04FcJ8Cx3ixFSdbcWblYh2GioFivekJIOC038zCJ20gDq75jtWoY58S0HETIDIm+syIMxcz+ONB3tfUXCJU/dxJZTTkxHgSDKyKN4upSLvJh9BQ02sq0PhXh65WUoEg0V2Ky+mSpFOYijfAsrJPmPytuEddYVE6yQc6F7aZjqQvZNEUmH8Q6rqoDJQTWqxWlFBEoAZ0Tm7ZlfXPD02EQB6ESO3SqEP6YIwSYWDDKEI8j4zQwTpNEcmePcxZVJGJbyDRtWxk39RqvhwKtNDGnynq0xGWma2VSMQxHpnms9mRxT2YSppawnA7HXdPy7Nkz1uu11HdbJ5XsecdutxP2ZGUGrHvLNE5olegax/OXH2Kt4927twQf2R+epB1ZS+R0HI4c9k8VSKowGtbbDWkpXF6umOaZq8sLxuORYRgxVuOsqm6bAsWjs2Wz6SFFnIwuQWVKqhPZen9MkycExcWmr6JRAZXoegfZ4H3CYrCNPTd+dY1BkViWhDEFZ4RBVxZpjC7OoLSurKNE5yzOWGIURykpYVxDYy3LNGOUIceENUocFTHTdE3lZQqfLFHIReFqfEhODCJmynstLE2JwAls2yCsisgi8OisaZxY9xvXUEqSRkBlMcqwXnWsNh3HymR4fHyskFtNKnL4b0yDbTSHaaJziauLCyBR/EIyE9989RlP796Rs0fbyDQnLtLMr37x3/D7f/xP+eDjn/Ltm+9YrW94eronFdheXJCK4frZh1wrw+WzK+5evcYv31VepWPdXaJ7U4ctUQYBVooEbm/fVnGgo1v1TPPEr371t8zzQiqKV999S0wtbeP49NNP+fy3vwIC+4e3XF3csFptKDmyXm/p2i2v376mbzuUKjzcvmZaJoKfSLlwHARGfvnsJc5ZVm3L/f1t/Qxgu70Qp9+8cPXsA9b9ijAL4Pv6+gqFYrybagGTp2lbmrbho48+Yr8TPkjbt6A0lzeX3L5xdO2KzXbL/nDg6WnParWiax0xBnZPD1zdPCeGwO27W/p+w8XFFqOdDLgwZzGu1DzW2QH3PSHs/9u3V391/g0nZt17556q08NcSnXeJL7+9lv+4Ve/Ztgfubm64OJiQ/CBzhqwth6ItUysdanOCpm2GyMDCHmN34vUnthBpzxZfYadYfpanGSnaO7JuWdrfN+emJQAWp1dPoXqdFAS3zdIDOgUYbI1IpZzRmnhjMn90Jx5SLqK58aY80Q7Z+FaZqOY5kXYbFpc3inM1fUAhRMvR5xgpYp3rauuwBhZZuFAXWw6QgSiQut8LgPLJbDdbEgePvnxT7nYXvH4+IBRI/MihUpN27Dt1hyeBkoWuHvfdgzTgi6akjLGSYyktXWSr4o4x6aIRqK6oYgQ4H1ijhGt8rmsZAgTugrKCmmplIIHLSJBHY5aI24CiWMKYFspceEbrZgmKarou67G6iJWaxEccoEYWTXiUjrOEx2FrOv7fDzQdz273QFjZL3dPT3gQ4Dk8V6cfNrYWsYSq4t9AaVxjaMzjt5ZwjIx+4Vp8tJGGDxOrzjFREFYOyezmDESW+5XHcs4Mi8LuYBrGkopdTresCwCrtckgj/xajVp8Sx+qfvKIG6dEGlbR+c6stJM05GHe+EYKV3wURwx/WrFenPB/nAk58gyHRBmj4haKcselVBjx4hjUNU9aoiRxjqCj6w3ImKWIhyuZy+uefvma+ZF9sDrzYbj8UgqgTzJgadfrWibDr9MLEukX62Fi1UdZMssIHl5r+S+dlZcH8O0cLHpKBTmWbAVEiUP4kywmd6Ki39WCuMgzJLAWXU9x6MMNXOSQRtKnken/ZYwqU+NodQIqojVWqnz80YbTamx21O8N9fIVznZl6thQGlVQeRUAaLGXU3Cx8zj/sh6vSKRpWW5vo6Y5JmiagmNNpmLdS+lE0VJM+yqk4buMGOsw7mGGAo5gSdilJQo5Jho2hafUhXoBKZ44oPns4NRDrBt19F1LV27lsPqPMmzvIqeISyQQSOOTI0YGEoWob4aislaMC0my+BaiG4aYUciw3tlUIbayCipBSlGKCxeWnqp8Pe2sQSfUKomI5CBs62cOqUzMS21CdaBhsM00LctqSQaY2ltz2EasFruSVkThBGeauGIO5UypSgM4xxkz6sEKp+gioGGEBNGJUl7KINCcXV5ARUFVSi01qBKJCfPMM10q54cFUuI9E0DRIJfhGGooW0aUsos04Li5Hot9J0UC66bDqxhmiemJVSnurRd5lRwVYQpOaKtpH9cxUalksXsESWVJCUG1EFZIZfI5eUGv/gq/swordDGkkIiBS9O2sYyLwG5Cup5tu4L0im++b01d9WvuEtS+ti6VjjHMZ73DNZonLbsHh9ZYpSBtxaxNcy1SLGuC6dzycmNr4g83t9yf3/HarXi+fMXbDcbbu8eeHb9TEqUYuT+/oGPfvARyzzy7defoVTEL1FQUkWGRyGWeo0Hjv6R1jlK9hwHy/PnH/LX//1/y/3dLZvNBV235eb6CnXVME1PtM32XMShVEHbxDQc2fYd++PAqmu4+fAZw/6In0aGYc/T/ojSlqvrKx52dxzHAWcbWYu1g6IkeVUKP/vZH/Dq9Sve3b6RVmBnefn8h8wT+LBw9/VbWrOiRLC2YdtvuX14y9XlhvE48Gf/7F/zgx/+lL/4d/+O8PVvGccFpbw4qytndbvd4sMjMaRzwtBZOetoZc/FZcIclfbxpm1RtSTCGiPiYIqksDAnj7EGZzTjMNbBSqbvW2zjeNof2dYipXEYyNEzTdJoEMJMqm7SUsQ15qwM2qwz+JDo+h4FTMPIZtVLc/k4UhBHXQhRWr7bjlDbxVUdUs7LjPbSbK6VxjpHiIFxHIW5e2KXWiP6iWs4DDWxVNcC66QDPM4ysDwVVaAUMSTsymJrZDynRNs0hBBw1snQojUUKmogBfZPj+K2z+LOX4IXHIaSFEZM8gw6aTepFnSceJSnNTEEMZ2kaiI7pV1KkbPaSVNorCekxDQd0dqgFYzHwGq15t27d7K/Q3BwH330grvbR/bHuT4LZJ0//dy/69fvzuCrC9iq684g7gLnG/zpac/kxb0WY8Q2wsuwNZrhvT8v6DHnynLrzu6BlDKCOJT2LVunSymlc6TWWs4bBVG6a2un0uScZDOFZru5YJwmpmkiGY0q0o47TiKwOCtW1FzqopPTqUxIgI1FrOsGS7GGrhPOlvexOrpqvMZYchV6lJZIrrWygR+nSTY5JeG6jqI0h2EUdodWPDwdeTqOaKVpjGbVO1QpDMPIFGXCtGod19tLHvd79uNECuLQC2FBG9nxNlba84LK54uUkqvC7OSCTsJZ837GKMuqb4l+wWpF24oQmUqk61Y1fuRxtqdpHMZZxnkWkbQUVq1MGk6bu66TAzBIi9XldiWsi3EgxVQz+gJPDqWKrK20/qrqzPM+0K96afVVCq1NjQAEWtdLdKsUYpAJnrOGsMjNO4dTy039s7K8h43bEJI4g6xzqJS42K5qA23hcrOinTU/+uAFIURevXnHHDxPT75+j6ECYWeWWfL1csMmjHbkoipolZqpTzWWdjowtBI3r26YYZ6wWlegeMs0zXXDLALdqaGSUqqgbNHrtZS/XF4SY2C1XnN5ecn93b18/ySHwq5x9H1HiZH++lriUW3H1c01X3/5Vf1zIpRcm6occZnYPTwQoqeUxLIUSmmY5kD2ifTgiTFz2I88f77mYtuT0Rhd6DYdKWQGP+Hjwjwt0vLWOpZlYkIOqMbKpqlUtpY2Fh98LShIlGIFVI4WF4iT+8aoInH9lLCtI+UoyOAoEVjXNegC8xKl2KYUlLEUNCkWfBTmY9fJ9T8OI9o5AeXPAuAXZ4aBogXWqgyus8z7Y3Ujgf+eMK+1gSzx6eBlUuVTRBmJ7ExzRDUalRPWyZRKXounbVtp/J6lHWxYJmLyRJ/QxhGWgRQzrllXJ6NcFyYZXlw/hyiuSuc0y7CgVIMOE+RJWA5pYX/7W/zxFdNhh/v4p7x59Yrr6+dsNz2//uUTNzfPuLy45vr5c+5vdzSN4un2NcnvmI6PTPOMtpbL1ZbVxXNymNjdvyOmiRwWjvs7pvFA165YrzY83H7FNhzZBM9mew3qJ3z7xa/QeuLDH/6U425Ht1oz7u8Zhwc6a85T68MwMxyOpOhxmxXTODFPI+N4qNNBcWJqo1l1a6xxzJNA89uuJ2VD13c83t8JQsEU3rz6GpV/RNOLk9Q2DTEL9+yf/qmwVFIM3L19wzBIxN4ay4sXL3j75i0Pj48yJdQi67arjnE8Sjy8iFC1u7/n+csPa1P5WtxW1Ul3sbmk7dqz8PU9RY+TnPc+1gZne1/ddJ/oeydO3UnkO/+3JaNKYVoCf/fLX/Kr3/wGawybTY9BDgJt6+j7Hmcty7yw6XuCD+R4ikJQHTWVqZlSjaYKON4YjS7Vc2cM0cf3P0/hhMw/H1jlvpBBj6r/QFz6pq4H/nxoV1X9lJdwGtLByal9avUzxrJeNcSYmL3gMk4xDooWsPz33r6YBUxvqiJ6eXUpiIIsDfJdb5lmLwKZrq9Bc+aprbtGRDTTMIwTq9WaFy9fEHyoh4GZ7WbDbj+yPxzRFy1ZWf7z/8X/ise7W/7dv/sLFv+WHDNhCUzTUp25kW5zwcX2gnF8i9EQc6yOGBkgWmtY9Q2HwyCxsSTiptKOmOTfxyiHKIUUKykFQWWsFRc4RThQRsvn6FxFDRSFMoYSq4BbP4UQCyEGitaVb6wELYFsyFOBplV0XUfbd8yTr2296cw2HseC99IaPI6TYDZcgRRQyOHFaNDU52VBMCtNS8mFvAgWxGRbxQaq68eK6JICxYvDKxW58BonnNam64lZkCSmlsNYIzzdZfE0TV/5kJ4cM1krchG8gdGqcjoHcXIicar98YDVhnW7wc9B1ulpAJWF95dlwOj9wnx/S4qRvnMsJdeiDYUPkc3mguUQhE0WQGvZF/gqQqaYCCpgjePh/gGlUh1uwmZzyTsl92TT9/zgRz/hm6++YBofheEYI7/9zW8oaPpOYtOffPJj/uGXv8RZcXiGJAcWCnS9DEoLkRgzzlkWnwkpUYoIfI1yGCVHg6IU2hoptDCSZtAIaDz5QGsszinmOdUCAUm6nNbKlCVtI4clgExT229jOsX0qdHS03OF6hqWa8AYSWWc/cvldPaA1kjp3DwJjxeENyhia0FYlIqryyuOd3fCZ1QGtGb0C2stAHdjDYf9SIjC9XZWY3OUsrKScFocdTnLGq6dnE9yxRicUCxSTif3nNKwLLI/jNEzHAPzOEuM3CiM4LhE6KysTV1hu+l7SCIQ1JHRjpjEfWeMqoMMER9zluiZVs35cNg6c3Z+5ZyZZ4n8Bh9IBdmHlEROgVNbecmZpIB4GhwJ260UxeTlvs0x0bp63ikFZwqGXNdIGV4XxKWpVSGnSDmVQGjqz6XJRdOtN4RpIYeFU9OuVbBqDbOXc1jbNLRaMftCs9nQdS1+OkDOzNMIyGeGMjXVFSlR4sKbfkVKC8dxwtdrSNZE4SEfxolN28l7B5CzCLgVKWONlSEM4HKCMgtj3IlbsJDRKdcStIgPvjpLdW2LhpILx4MMbbUxKKMrvkdi17HAMM2kfBqoFSC9X5crwuJUThiT8MZNjStKAUiQoYpR4qjUhqJg9gtKadquZ148IcVz5PckoJ9ae8+R4bonyfUeViVz3B+Yx8APfvAJKUdy9rx794bgJ777Rs4sKQcaY8kUZh9BZRmGVbZ1ySLIa6dJ2XJ7v+dxN6CNI0WJQv8v/8v/Nb/6zd/xzZe/Icwzznb4sKBtQ8yFd+8eaTRcXlySkyRiTMloEsNwYAqemOUZNQxDFbFb1ustD4+PlHpfxrBQMkzTcGbWaaPYrLc0bi3nn5TZdBvmaRb9YHuFVhaVNY8PO37w0Uf86te/5DeffU6jFT/60Ud88fl3Yswpug4kpQRS1/SCUqArWsAY6QHQpXzPEXZikzsZzOWMaQSFUbI4kHOR84LOnqf71zR9x2rlOA4Sj3Xa4OeJnCS+qrQ8n0OUwVVSGeranVOS87xW54LNECUSH1Jk2e9ZbzZc31xzeNqfhxh91zMPE77iX8TgJG5B6vB3s1lzf38rg8b6e3Rdy8ISsNbQNFaMKdXcQ73+ZX8jg3BrTD1byRsYQjwzzlORgUBKmc455iAlO8polBYW5PGwk2s+aqZ5Pj9bcxJ9om0apimc+dPp5DZUSNmVMSzLIum5Ii7lVJ+N8sgoVb+RgYwPkk4FdWagrvo1H/3gY4bPPyP4wHa94sc/+iGffPopH74c+e1vPuPN7S3zMtdn1Pvl7nf5+p0FPqUl++6cEbdcep9Nzjmz2qyxi8R4u75nnmZiPEhsqG1I0YptOEpRgzHmHF0sdbKXK8xZ5yx2bQ0KEQrF6JWRwvPvvSN1t39yIYQgdclNZdCEEND1103jpEjAOdrW4kOk6/pqnxcXUO9aAXiXCndtmgqjFlDvKcpESRjT0HUdwNldoJTCNY6t1QzDSK6LcMrS6JgK3O+OHI4DFo1xYo1OUZphBp+JgCqFoizfvX6Q2gFlKCkxRHmYNarBWNm4x5TRpjBPM23T0DSmussKaQn4mIjRs1o1wkPJ8jn4XBc7NMuy4JcAFJqmwTVSad4UgbAnXV2cUSJ+p2iFQtxpvh5sfD0ENM5hjJWWqRhIudC4juNxqhErMBqG40wpibaVGzmEQNs42TBVOOn7w0VmtW7QSl5j07ZMt9X9ZCS2HZNs+KclcBjuJN68WQlot8B4HBgn4YVsVmuKysJsWcRJOQ4DuRSG4wG/LBWim9Gl1MivuPfaRlyUypycpNQFWDbjucjin+tIu2QpdAHYPwkjJqcoLpnaJGetFU5LiDRNR9u24uhLiWEccdZxPB5Zb9b44Hl2/ZL1ZsO333wtzVb6/XXoQ+Dbr7/msN9zdbnlcXygpMTF9SXT4cCQE1MVVKw1dZEqpHGuh0xzboxcpszLFxc8HQ88f/YSp9ZcXD/nN7/5BUXVTV02FKXYrHrGZWEO1RFSNEmBtjWGpjTrtkPbQkoL3osIo61w9ZwxwrypkPhQr7PGidsqFZhzRifZhEcF2rb4KBb/ZV4oKFZtS0in2I8hKcOSEs5JZXzbNExR4hclK3SnGRc5eDSVBeqaTj4XLRs1H8HYDp/2ZK1QWdGvROhxKTFlLy2BprB2Tgpeaoxqvdrg/VNtdzJVmFegNamC/HcP92hlaa0lZtn0TsNA5xpU27O+ukGXzDiNNK3i5sUz7t7dorLn7t23dF2P05o4RT744EfEPPPqq9/wwctrrm9eclgyT4dZ2Jze8/Rwxzg9YlvLtJsw1uKMYthbxuMjOc8YDRQjBSdWFsAPfvAJMSm2qy23r79kGkamwz0+z3TNii8//5Lt5UuprbcNW+PwY2BzfUWYPcMw1ijIJTFlur7Fx4VDCChd6JqOguXy4orN+oIYAvcPt8TgadueDz/8ASl5AT+nzO5xhzM9BsvlzQ3DNAg0d7+nb1s+ePmSQmG/3xNiZP+0IwZx7b54+YKn6qAsOTMNRz768GOZ8vkAbccwTpWflOs1rNjv95RccMFxd3+PVob1Zn2Or52WqHP8tpyWrfr37w17nCb2IurJCeTcR1iHUDHBfr/n1599zhe//Yw0eS6vLlg3Dc+urmj6DtM4hsORtlnx8uULlmkhhgVXI0pn72CNzyql6DtZ707PcnHbyMS0nHzs5xGmOv/3Wqv6v8rRMkbccUWm1uv1SgYHPtVprfw8zsmzOZPPP+/p+0vkVgtbJWZQRsDmRdYoVdeDUhIROcSqpKtSIG/wfn+oewBNjoGmESB8Sqr6Y4JwmIpEzFLKxGJ4Okw01jLOnuO333BxsSVlKelxbsZaxxIzSwz8/Od/yf3dHU2zwvu5NrtnrF3VCXLGtS3TsnBt5CCfa9RUuC4J1/Qs0eMPgRgSzjmJCNVWYaNtZVpJLGSZPVZbiXaQaZ3j4kIi50oVVquVxC+DxN+yB4qrjhYpP/LBg9FnVIRSGns68AJZqXpQ8dUeKA7Bpu1IIeKqQJJyxoeFrmtpnKPrNzJg9TPWKDarNa5pedoLE8+pk5uwsGobQkhI7VmhZClsCkFcB9qI2y1WREPf95SYpbwqJbyfmaa5ujwcKHEJksXxGaIAyWMSJwtZiWvIWpxqWK0aYvQoxA2zDCPUmGWKmZwyb1+/4Tg8UVJEF1WfgRnvxQ0jQ7wiom5O9KuVHLQ5OZt0ZbHKPqBxjaytMddrVVqTjTNoCuPxwJtX30p7pNFsNpes+g1XN9f45SB7JSuHn0JmXjLMM//wy19KC2N1PmilUfUelQGvIUTBrOSsBGugIJ0ch0nu+SUEUtGUXPdzTlcrnghbpnEY5YilYEskz5HvP85yFiErplgdOFJUkIvEnE4usRgSWaoPRNSrHAPBlyRiOokNqg7u3j8bY861vEKfm2Pb3lb+cxbGcUj46OmslUOshRKlKfa9IzARozgIjZUW3LQkNisZ1qYCRllSFq5lSUmEUCxRyWfrQxJ4vnXisrOarBQxC3Ki5ESsYPwUxckZvRyyjRUhXZnvNd8W+XmMMcSYiFlSHSXlug8TLEJKsj+PWVzKGhFLVaipo6retJX9vXiPdqoOcYUF7mtxUtM2zLOIbU1tcS45UbSREorkxQk4zThrmEtCGUE8KGT/IFQG+fxcfe0ohXUNl9sLnnaP5JIY54RePJ0TLmHJmjkELtYrtA40DYCjsQ5IpOzZ75+w6oawREwrUcUYRbDcrDdYDCorrm9uOBwOZ2aq0guZWEvRsogddSjlc4QUyaGifJylbztJkrmOxjnGYWT2gvkoSSKW1hiihMjkfU4BVYf5+VSCV+Sei9Xhnks4H1BjfC8illoqJB0ICmNUPR/IGZiz4SWhUEzjxPF4wFrLjOKwP8o6gqZ1EmFX34v5jcNQY92nPYUYZkTseP+sp77m0xCx5My8TISY+PDlBVpl3r57xe294BYUhWF4OjuhQ4yEGEG/dxuemK/WSOwxpSjCqZYBznEcSUVxGA/8m3/7f+Rqu8EZx1I8s/fMIRDmgDIWS6E4zXEY+fDlM1ad5bvX31GAo/f4WDCmJWUZMmotOIurixsOh5FpFlfapm84DiPffv0NP/zhp8zzt7SugVyY/ZE3b14R/UTTtVitSbnw+LSndZFnNx+xH3a8vXvkg5cvaPuWbz7/gn7lMKagEsJ61ZmUAofDE1ob+t7VREGhcZr1esXu8Yl8elYqjTLCj/N+qc/dQooi9LVtUwU0I6aWotiuGhJyFuoaRymJ1aolBDFiNI2V/VcVl8XFL7xSrUxFu+Tz4MKgyFH20CkLFmocJ2JlpnofcG2DUlJIqeyapm3ZbDZS3qYVfdfhGsf+cMD7eBb1G9ucMS+pJMLimZZKFVfqnBQ5DZuFHZvIwHrdE3Ksz3gZOLmmYZgGEdVrc26MEeccfdvKPWeMvJeAsZL0lOGR9B5rLYioefF10FfOnL/zvVdOBZCGcGJo1jVIa3XeZzpXh03LJLxiX4d6aPbpwOdffCH8aSddBNO88N/+N/8dWkt64mK7QlccXdu0OPM7y3O/u8DnjBFX3cldX7l3OWUOh6OUC2iNXzzHSZg324utNL6UImpsq3h83IExonwW+e+1FdFQ3Avneb8sakVgwn3f1gmZbPhL0ZXFVw8HSkkBQZILQJgsJw6RtIuiRHgal4WELITWGJkQW3H2LYsnu0K3kdYpbWQKoigcamuMZOplym3qQzmmWC+qUg9Ams1aiioKkEIg5cR3b+6ZfJA4oaptLSWznyJBIdDrENiuN+wPTyxJNoWNU1VAlAmuMSI0xRhpWofVms26k6m0nCkYx4UlpvOFZZTiMEzYmoGPPuGsTEKHMXOcPJveCfhRG5xRNI1BnAEGa1W1s2uKyixLqFl+VfPukWWxXG639F42M/O7U4xUXpO1lmXxXGx7+bxCdUt5mTrMizT79G1D126rAh/RWtyeJYu4Ni8L+/1ACDJZTSkLCDlnshI20Gbdc3Mpk5nj4hlqxXuo9thxmuG+cNhLBHUYJG6VUyIED3U62TUNUUlsVjiF8vMM48hq1dfrsR6MQBgBxZB1qfHbCElYLM41jMdRXJhW6uBNLcI4WeTfvnlD27UCC7a2NixJHP3paU/XdcQQmZaZq6srXOM4PBzpVp1MhBbPZr3CLwtd2zANR3JlMQxPe/n7lMTZl4V1opBJb1EispsMF9c9fvJs14YQBzYrTVGBo3/i8OaIbRNtMYRkUMZBFBeurYxMlJaNlHUYnck5oBqHUhltewqZFLxY15U0xIUgbRzOGhQGZVuMlobdkqQJMmURzrQR8LSz4vabF2lXSqnUNiT5zJqmwboeV/mfOUhTsWs01gn3MC1eAMsKKcJwjoKmW6+lOXE4oIyl7Xo47FG1/XcaFrStB45g0BlSKOyHhWcXa9I0sPjMbr+jbSymgC6avgXQDJO4HZumx5mOYx0KaAyqFPzksQXQI9rcMD7t0NoyJ0OYRoiR43jEtj1XFxsiilQmoh948/ZLHu9fU0rD9rrjpz/7hPt3r7l/85rLi47OGu52R4bxSUQgJffxtjNMR7lXtCls11tKNihtadcr4gT7/ZHsPQ9vPmdaRi42lzizEXhuXCgqcvPiI+7vCn7YU5I4Ouh62lwZFl3D7mFHzgKLVtWZsOov6NYbmq7j6emBkhdy9EiySJqtYlqIybPtNzy/+RBlNF998wU/EvMYOUbu370FpXj2/BlOThHMy0LbtnSto+0agl+42l5igOvLS7TSTMOBp92OUMD6lq5f8fKDD5kX4aWllGhqu1s5yGb86vry3Jh4Uu9kiisbDf09B9v31L/z2nXajJ/OvVqWEXyIDNPCZ199yS9+8QvSEtAh8oOX16zWa55dX7Fpemzr2B0OLNPMLkkz2jIvzD6gUuD65obb29sawYpI49+pNVefG6Vlc5jPPK2T6/DkzFG6YLWhbaWVu20cKRVizucWcL94UhQOrqvxXecs2+2K42HAqIK20nJdl3mgOmopTHVYoY0THlOSN6tkcTprdRIT8znSQ4m15U9cabkUaTdMMkHP+cSmk8idRibsOWlh8KZCyqFG9SJPux1N0wnQOhasa5iWiXGUkpovv/yMGOXAZI0hIU7BXLI4xrw4FW7v7mSOnyWOq5XBGGFuCfNOYY0UeTklzmYEhyblPsHjvSKliGuNFEsEiQTf3t4BBauoIq0E+YzS9f2EtmtYpglVnTd8j7lYUiaWQts7UpRBWlawhIi1inEStpsxjs1mS/ATMXoRbK2wxJq2J6YiTCcl10+OkZCgcx3FZOZlrkxacF2LW2l2+z0JERUowmSsNkNMjes11pBjIMdEqNP41nTVaVTqYacVR5qClAJ9tyGVQtuImBBDpu07aRQ2TXVXiAMRVxinkbZr6fuWw37HenvBcDzQOsscBY5u9WnQKGJMMZJ8OLGgvffkDN5HfAiECk8/FaqV6jRUKGnrXTzWNrRtL23KOfH0tHBxsSGXjHOOw37PPI7Ec6HWlmkW3p6u17f3i3z/Iuzgk8gNIlZO0WOMlf1adWxpVc7vH/V+amqM99SandNC0zhihsuLK3KG3d4zHufzvXgaXMiRR1xh1jQYIy60XGqba5B9S9fZWjInsdAQxKVibHXgK1vZr7q+VwVpOhVXEEqGDqlA6wyNy1ytDJOHQx0ihBB5fNjRdQ1FC4OtKNh0Fq0ibd8wjCNdI6kT4ywKwzJHOVimA34JkgiJBQnqnH/C6kxW0tKAuIC1Ov1VnkuNk4I4iY6LqJLL6WcQXjaFykhL56FHrimQ0+An1tSCTsIIDktCq5PDV1ya0sgrDFKJPWdSDDS2oeRE24oA5BeB8p9imWjQ1dWilYj/sgcTBmvbOKYhoJTBx4JSkZgC1mm6piUuwrFT2mBRdH0n12UVq/qmI/ki9xuJYZrRaFSSAhJn5Z4IfmZJC23fUVIALOM0opTi6nKNcYoWOYcVren6XhzAYcZ0W3GQJsgxg1HEEs5xOuMspQSJCRpL41pBDUVx0Bp7QrPIGUZMDqG2NRvMqR3a1v1kbaaliBD7/c8sk4knDr0x4tDLJ8iOfC7aWrQpgCUHWbu01tUsIUkjZxpkNvh+/6y1nGu1ri6xlFHIUN5q4XPmnGopRqFrG2YfyVnwMcKsF5FHvifi+q7fu5TCerXCGC37vZLYPbzm6emNnJlLkKJEbapzVjhxfl5qck3OldrIdRprhPKUxEg50HeN/Ly1SbQkuLt/5LDfsd30UiDpHG3XoUOqn8WMQdFuVvjxUNdx2K63DGNgmA7kbMBohnmGonj58kMurm5o3rxm1fbcXD9HlYVM5nE3sl5vWfcr9scR72e+/eYrljBjlZUCQC2DhBg8N1cv+eSnP+OXP/8b9k9P9I3lx5cf07eOtIxs15a+t6SYUSUxzcIp7dqGXBJdKw48Yb96rNXEJCPTnBNaZxpnsRqK0sQ6cHWtE6NKFFxUKYXJzxSdCV6uqZgLtmlrmqWgqfusahhBKbmWKWzXF1AKwzTJPlQrmooJ8cHXOK2VNI0zrFY93kvUNlVm46rr6PuOw2FgHE9YKUVYFmJNh6SSKEFe37R42kZSVgZI3tfLTsrMCgrvZVhhrZXhdxEEUwgB51wVpWVQUpRgzqjDc+fEdJVSZJ4linwS9E860nazZRxHhnGSPztnlmUBCuv1imlZZB1T4rw8JTNP4qN1FoXCl2p6co6maeS6rLgNXTExsm8XdJhfZGCrtSWVxOFwoOtFiNVaSymKdVxcXXHcD3zy6Sdc31zzu3797hIh1IWYOkUvnB5hSwg4pc+bE78Emtax7VqS95S6MMeqTp/5O6W6wLJAuKkuPKPV+SDlQ5QGr3KCa582Fep88JAbRt5gawyxNlWdHkYhhnrDJDrX0DonFegVamm1pmsaVqsOoxVNoyvLRQ4LyywXQ99LhNUYaXaCXB/y9eFFXV3qewSySadAUobX7x45DqO4snKiqMzKrZnmgcdhZppHPv7gJdkY7u4esI2FlOlWPV1jJC5SSj2MJVZ9J5s8FNYIf09pw8W2Z5kXmRDVCFXbnNxlCe1E4XbWVID5SEYeAhfrlu1GHsjWutqu03AcJkoSsOWJi2KMYQmBpnGsNyvmhz3j4msTn8UvnnGSQzEKpmkhxsjFdk3XtLVQQLNed8QQakGKbLa01lLWooQH4GPGWWl1s87WQ2U5LyShTjtLPShuNyu265bjMDDPCzEJkzGlVIsQ5MAzHgeWEJiXhXmcyJXrKCwnLQ/cJBvI08S65Mw0e0IMpNwC0pQnzlSx6zdOwJo+LhKBqA+f6INYr43wE69vblBKsUyjTCO8p2tlk5hL4Xg8cnV1JZyWIiBfazSb7Zq+bTnun4QfmGJl82WscxQgLDMxxvpXTwqBp909J66AUpBiANVXBw8oVeNgubB7OtA3BusKjbXcHQ68fRwxupE7MCeMVpRkcK1F60gMwkKUiJkClSBHTFGsNmuMLSzjSPYTikJjYYngnIIsDhRrLSEWGiPNgksIchjBoBuL6yzT6MmcGvlE6DZNQ8mc3axKAapQSFw9uyAuE9OUaNpOWqSQyWKYvDhGkNh5rI5iaw3aWo6VU5hVQFvhcPqYZJ+fI6u+Yw6ROItg3zYt3i88Hg788MPnPA2RZZ5RZGwpMtV0mWU/0bi2NmxLm5K24GexjfdWIPlKFVRJuFLQOWFUYZpEgM5+Ybu9pFtteHi4q+VCmjdf/RayZ8mZDz7+A65uXpBy5Gn/yPWzLa++/ozh+EjXdyy+J+aZftUwDwuPj/cyyaqMsGEciBHWF1f0/YbN9QuazQUpTRjT8PxmjbMt+8OOHAOr7Yrjw3cM+yM/+5N/xruvf83Dwz3pQdE0G4L34uxxrro/I8sycnG5JQaJZ4+HR3YPAds2NM4wjof67Nd0bcfh+CRMmn7Nhx9+wnG459Wrr7g+XIsrK0U+/emn3L675esvvuQHP/4hq82G4TjWIYji22+/ZnWxZXg6kLNEmLabLa/fvCaGQNP1NM7x7MVH/OwP/oCn3ZM0n9VIvQ+eq6sLfvLTn9E4OUjr0+Swinq6OkdO8PlzRPd7Ud335Rr1HkT8dt+9fsOrt2/55tvv+Idf/lJ4awVa5+SQEBPBR3bTHmU0q+2a9XqN94Hj4YAMnqSF/vmL56zWPT//+19yPDydHTzLPFPqJFUrQ8zxHwl6mjqIUxlrFa4RcSBEmZaG6NEUuq4hN4acDJQszpKKzjgJmFNFMLR9W5+p0pBrLTWKoSqHxdE6iXokZZjHSEwFY424kYpwk2S9lV8XZKhmTWW2OlnvtM64RjAdKasKxG+gRFrbcJwWQoxI611hXio2IWtmPwKKeYl02hBjZlkmthsYhknWx4LcQ8caCanPJIk9C4czpyLcPwW6iMgmLXYnx0apzX2KXBB+cYhoXapjQpE1AoRP72NcuVBLGESciylirIOixU1UMuMwIeVBllISyipSVGjrCCngo3B+tFa0jSFFGYa2TVtFUnl+xrTgWuEbUwqr1ZpliaxWmhxmyL7uxbJsyKOXgVsRBtW2FTe/ttK+27c9JdUomZF9ig9S1tC1q+pumKprSQbMOcley2iN1VbKJUyqjEQlTs0Y8SFS0OcYs3ZawNqzp1+t6j4oMAxyba5WLTkmSo4c9jtJHMRAzuJU69wabQ3TEslZnKM+eJq2wWVxWkrKw8vnqN9/rrJnELxNqq4rJRlLlhAI8eT0kX2m6xoOTzuC9wzDgc1mTUGuo2VeJNpoG+ZZiuz6Vc/24pKH3b0Mq7I+g7uVEudOUaq6/NTZzduve3KQn8/7hE9J/l1BAOtKXJCHYeb6coMuR0oJlFzdEUiSRfYRtUlciQgrYHm5LksB54y8n3Uo1/cdIc4URPRqGomTlqpsKy3PV9fIYHrVd/hZgP6qBIxOXF+u6Ttp9QxOHM6xJLq+IefE5mKNLpl137HuDI+PO9abDV2j655R0a16lso79sFzsV2zzFH216dHcnWt6uoq1sYCIuwY686oAaXlvQshYo24ZCRd/l6U67ueeZzE9YQM07QSfI3Rsm6IaFOfXcjhnZRxtkb7SoE6kCnVSS3OsUJrDK5xUDKNU5SSkDScrAOqCjrOCHvcaH2i/r3fXzYdttHoBZY5klA4rFy3WUoUKGB0oe0cORX8MqGUvMbVqqtDnoGu0zS5q84uJe3bnWW3exRHbJa4XixS6jb7hVw0q84yj0dSEyW6r1timLHOEr1nWWZ81nRNRzoubNYrDocDrpVnpbUGqzShiurCZjSYppEippJZrVfCwspJuHgYjIbZT8I+z8IPk8I7j7WOtl+jjeFwOFRXpLiPjPqe4F3k8/ZJLH9K65pWCaSkzkkZMVvWs6WiFvIlUhTRVob+rRRHBom4y2ev6uRQ1zb1GiFUYtrouo4XH1zz7t0t4zTXvXxt660CnWwqZRhgjOHjjz/m5uqK3/72N4zTwLJMFWchYuapLMH7mYA834yxuEZKS2T4Bsv5TFTqVSVrVOssqViYxYEsKAoZJF3rnueXl2y2F/z40z/it7/+pSBbSFxer7GNZp5n5kFSAikVDoehFopI0+l6vcEvAas0v/qHn7PdtFxcbyjAqzdvaJuWJXp+8au/xiAO3WGZa/Reo6wWDr333FxfsR+OpLTw+ee/Fva31ozDkc9/8xm//+nv45cdd4eR28dHnDM8v3nBvHgOx1l41DGyXa0qQ1YwD6jKIzWqFsQYuqZF6cI0L6JzOGmML1nJWqEMReXK0ZU17TRfsEZzfXWDRrHf76poK0KfGBQ0MSSmaaiflzx/og/CbdXCmdtcXFKUZvcwsUwBPy+CSKupLlcHqH6eyTmilWgAwS+UkmhMyzCN5JpCopx3s7KnylE4yCVVXql6fy2WjCpIaVUMUBJd2zMfj8QQ5Fw8L9iTwcXqM+LBGo1VlnkecW1DSDJY2663hCjn9YvNlmWaSVmGdFrJsyBVBBJKjGXO2nNkWp+c0FlEfUF6yXoQzwxouX/FcS2Ji9P/CoKkINXySBTTJCKhUpnGal68+IA3b96AKvz289+yXl/+/xbc/v/4+p0FPh8rG6kuCaemPF1BuDlFbq4uUUZznEV9N0oTizhilLXEUKcJWiKEEnVsanRRGAzUqFBMqTp1Ig1yEERXXo9WVVQ7CXx10qZKBaDKJiRVW7/TpqYmNKEullppsWsaOTAea55707X0uqciMoQf5ipjDWkS3Gw24jYbhe9mrcVaVw9tYpOnCHOjZJhD4teff8PDcZBGWQ8Xqx5tFW/e3uG1NO99+sFLDuOAD4WiZRPeObmZl8lLa81JxLGakkUMGeYFZo9tLCUmuRlq85xAUkUAMxpsY+v0zUGOhCVWS39iWTzTEnBJYMJLSGzWPbGCSjWGeQyo3mK0WNSxrk4vqyugFKZpkQhrBTKLGCxA4qZxtK1jmn2NaMMwTqxXPSYWSpBa71XXoK1lGBdSgnmYaKzixx9/wDR73t3dyaY5ZnwQK4VThqZvWK9WtE3DcDwyeU8IgXGcRQROkWkcpVGuRriPw7E6VqTBS6lSYz/iMJ0rmP4EVlZa40wjjWVhoVBIFaxqKuh4XhYpzijy4JB0iRzfG9fQdi2biwu22wv2+yeCl2hEKhIDNFYqyFMIULLUcqfEzbNrxmHkcBzQSmCifpG4lAKJ3C3y36T6s+oi0GOlMsGn84Eu5/eGo1QdMdYY4atUHlMBvrsdeX694rK75u2w4+hn0KpGgjJKRZqUUEVcWk0rD0w5AwjHwGqZKl1oTbKWHAtOO7KasVam88ZYchDhARXRrSGFCUOhW1vGIZJLQ6MF2hxLoW0N87yAspRyKuyJyD5c+JohBA6HA41RlfUJKGhthcYaRQoS5THagZVhQqMKYZ4xuqCsgJ1LWmhaTcjS9ohSbLcd8/0ObSNJGVJdbNfrS9r+kucrcZGuusjD3QPzMPE0LhSl8SGSZom7ZDibMHIu0rZojYj0uRCWSQ5sKaBTjUVZh+k3LMtIjJMU7Ty8lsVKG1b9hnl/z8//8s+5efkxl8+e88Uv/pKH++9IWTgWVzfP2D3ek0NmtXLCoMgSOy/F0DSOrjU0TcfHn/wBq82HHPe3fPmbr/HBs728YBoHispVzNKkuBCmt3z2i/83Xb+i71vivNDphu26Y38YSKWw2Wx42j+REzw9PhHjQtd1ZwHDFksYPbZiEmIYedrd07QNq76XgYNK3N+/ISwTu/u3xCyf37ObCon2sd4nAaXh+Ycv2D28ZTjsODze8/R4IOXI8XiQA5xSfPjRD7BNyzwHDvs9dw/3bFYbHInLq2u0dXz00cc8e3YtDJ4q+p3WRlOdUidmx0nYO4ld52EQvI/AIkvHPC+8ub3jL/5f/57vvvlWpp05s6lu4ecvn7MsQWKxCC90tepQuXB5sSHExOFw5OLigqYx+OHIq2++xfuR//x//q/4m7/+K969eVc3Yu+HaycWnmAFZLpasqp8p0IpEnFCSbt5QZGyOAC10qQgJQqylktkMBVp6Dy1tUOpAzwt7Dwjkfiryx5fW61PyAXnLG3fY64db2/fiZMiyb1llKbwHuJvtNz7IYRa6IDEVqIXZlrfCrc1yKHSLwuzSSwxnxMJSqsqVojzhurET0W+X8kKVQyCE9ZS0mQs4yCMWlUF3qIqCw15/p1cM4XaVn+6BrQmpFSbNMX5LYw+Yc3oKmTlFKvLpLqr60Ghbfv6jF8q0sQSUqFtLSaKYJtKRBVYgq8N4Z4QMs42GK2FpRSTNKrqKlSYU6ujYrtZMU8jwY/MkwzbulVL23XMy0Ga01Wqn61iWuRwcRoGWyuIla5f0a4MqWgu15cs08Dh6RFbP39UIWbP4j3leKAgLgGQ/WNMWVo5Q8ADq66j7arjRct6pZQ0Z8dUsLZFW0kIRB+Iy1LdCoqh8vhUPeQOxyO5yyQS8yLlWhIFkuFoypkcxKkZS41NIi5hrbSwKmsaQ6n3yZaClJOpkon5Pecyl0KKnqIt0uQnrcl910j5ifaMxx1KQQzirJd4aSTnwk8+/T32hycOhycomcP+UEXpiDPNGSaujaqOV82pzzoGES6myQtWxIoDkFLIMdJ1LYaA0ZpxCTiteff2VprE12sp6IiJUh213+eF5iJlOm0je+GiJcY8z5mms7hG40PheFyEj0gmRUPwmYy4T+SwlTB1YJ9z5jgMrPra3pw8z55dcXW55u7NO7QqXGwdMevqAC/U8x0xeFQq+MWdm10bY3g6jGyurvnhD3/GBx9/wr//8/87u4e72gZrZf1N8fw8DjVuuwQpexAnhjAjc/HVsFCrbJU0vDeukfcHjVIVT1Ii2mROKARXhwbiFKzlRkphNcQiKAKjDUaJMUKCJ1q4vXGp65wUdTRW/mcQ/qXS0pztrEElsMi1UKhxuJLFoKEMBlNh8xk/L0yzuHEzoIqGos+uS6NlMJ6L8KVP77W83wteFxEb+wZNluZt13B5cclwGHja7ZFCBhFnim6YfQHl6RtxcJ+QBNkLfH99LeiL4zQJVzBnXA5QXGXq1UK26naLKaJyYrvqoagagdP4HFmvOkGipMISpDAjzTOlqBo7FcFXFsf3DveYI9EXVuutNIYf4/u2Z63o2g4oBO9rcYfw+nQRhJGgF2Two2pQNmVh4Bqrsc4QgqcUdRYZVuuVvK9RcD5GqVqi9P61ne7tmDOESIhHhorZOZlMdHXrUQpt2+GcYZoXgpfyw88/+4zPga5rcbaRa0YpFh9Y9WustRyO++oiFOepsxa/RBm45XR2X6ekCKkmwKyDkpgXjzZIaYEx2MYRgqdzDd1qI4USy8z9/S2rdY9WAasbWqfwkyRaxFWb2B139G4rpp+0sNl0pJJZ/Mjd3RtyigzHEZRmCgVBfmRc0xDiBFrTNCtKkcGHc4ZVL2UgkmqS9NA47slDpiSJvHZNgyry70PJTOOBq/Wax4eJb797x2az5uJiTfALtnFiXmgMucRa5iQlDDkWmsZCSqQknQEafTY9qSTsS4ogm7TRXFxs0VrjZ09MAaMUhszb19+eh9nGmsowlZ4AUmGz7uUsF+VzTtELC69zTPNM17SMh2PdZ2hc21QeILSuQaF5/uwZ+6cdpRRWbctqs+Fpt5OeBSfPeR8Fi2aMqfdPru3wW9hncoxy1izlvA5ZZ1mWBedamqZhisKKNUb4wd6LwFco9b+v95KW92pZFsF6qcK0zDIwTQXvPdoojscj1lhs0+LnmVOsN2dpyU75xAnNla2n8MtMKaXeK1S0S6qRZmS/iarD2epUz6WuF6VG4HVFj8h6oNBn97ZWsHjPm7dvGcZRhgLVIf67fv3OAl9BiWvJarrGnbP8JWc2642onLUBcr3qzywK6wwhauZxIVV7JkpEqL5yjQqS26ZkClIv7qOIdV11jClqs4ozVaiRSmpdJxqx2tuds/JgVXL4QMkHYp0IXgXwUxCRMBe0geMwywSLCYXmYlVjqNSNV9/hWoefvbAFioCTVbV0Lqfa6hotkamtNN7EDJ999S2vbu/JKfPBixtImf3ouXt6wgI3N1sImafDnjkKI6RxlhwCXsE4zfR9h1EKZ6TpUwSTRFHysBVxSqNrCYY25lxeMc+BrBS6kYi1jyLmtV3L8TDQ9H1tt4Wn48j1tsc5+XObRtqsjLP154mAiAfWNAzTRAkyDWzblnEcmZfAetUx7fZYazgOoxSSaGRiFyRS0zW2KuScW5CLUhyOI33Tsj8M56Yr4bPJNHcYJpbFE7PcVBiNypF1KxyssHj248RxnEhk2raFkoiLP5dnyGK81PhrdQk4aRDURhOCxxhHCrEuoJWrYmWKKCJzlFj37EUAzJl58lU8E3dh0wjrxPva5tM0dM0Gq3Vt6WyZXUPTNMSUaIym7Vo5IFZHatd0vHj5nHe3b+m6jjev33J5dUnyUWzH1S0UF4+fFtYX0lYaQ5ADbhHxMp9cIlEaW7U24vYr0u6sdK5RKSMtZkrTGIWmcNiPLC6glaZvTBXh5JB0iiNt2gZNIXlxeYTTYoN4tUP0xNJCUVgtzEljNOSIMpqwSPy+aQxaZZmcaseqb/ApIOV9heOTtBcq20hzI4XWNfSbS5ZlZJoWlLK0jSMMwoLw80gxMhk9w1vr5LFpG2EVVc6krvqLKhLvoG2IROIJioyIa4Uk3D+fsY3D5simW2PpuXr2jN/7k3/Ow90bXKMxbmIev8KXwJgCugjLqnGWqGTSa6xjmbyAZhGxuW8d8zSx3V7ilxFKQjeGbScti6oYrOsJacRkzbwEYjhitKVpL/jgekXfb1HK4azh9de/4e7d1wzjvkYDxRFVThuxIIyJpm05Hgc2q55SKjMGRZomgj2yf3xH8CM5J8ZxhJiwGnwqMsVMFUw/75iGJ7brC3QRAQZlUcZI83TTsnt6Yr0SJ3OuwHqA1XrLPAcRyhqNsw5rGmLwNH1LmALH48ib19/w6tXXzOOIypnrZy9JKZ5bwK5uLikh8d3X31BKZjgeabuWOI988813/Cf/2Z/x2W9/Iddu8hL90S0vP/yYz3/7GX3Xcvv6Dd/FxB//yR+TYma7XbOEwO5px2a7wSkJfWpzOiyJcyIrAWafOEDUaX+plRWl3psoxbx43t0/8Ld/+3f8/O/+nnEcoBSMc1xdX6GKuFquLy6ZpgltHI1raZ93WGPp+xX9uuPu9g7nNNN4xHtP78TZ/OrNK4pWfPDRp3z66e/xD7/8ex7vd/Vgqs+zqdN6T5ENViriaq7EAlIuuFbc3VpJrCWX08BPoO+tFUcCGsaSCeG9ywE0OUKmSJQhafZPC00jzX/aGEYfyOOEPS6gZIPfdi3BSxS3cQJ5Lsj9LG4xapMuQEUmlERrhJOzuuw5HKkOnkIMQcDfFUJuVW01VUYGPIi4lGPCOWQ9QNZO4bBI7FuiybpOdzOuRvgUp5IwWQ9kryJRT2PEBVGvDKw1hBwxSmNqXD6X9H6DqXV14EhRAilVNqM4YVPO9ZozlCIigADRxVXubMO8JEqiCowFYx0xy1+TF/i0LrLXcsbSth2H44AzUkSktCKXSE6aaRzOG+QYkpQGGCVFMyXXA23GuRatLD5BLoHGtYzHgzSN9mvSedAma3XTimPAoGidY15EZpMUh1yjuSRxNJRM37aV/2MIMVJykQiedjjboUxmWQZKkuKAYThKEkJxFjz7dlUdNoEUZwqSbAihYCv+oW8bVJsZa6pExEdh8TXOkkG4S064f+IIr03yGaxp5HBc2XZdK/woI0q5iNM1Lhgq+Py0v1ZojBKMR9M0zH5iCZ5hHCFHrm6eS2xJSTGRsqU6XQsGU12PJyHOEGPB6ELIiaBFtFU5ygg2Z1Z9yxgkVqi04mJ7AVjhU/kjC5msNFmDVhljhcFmrEM7xbMPf8wf//Gf8hd//m9ZxiNaS3xZyhAaERcrI1pRWxV1nX+SRCBE+JfWafrW0XWW7dYwDRDmkdtpIOXEErwkSNadCFdhEZGvSBwyloJVicZqpnni+c2VDM6MYvf4lvvHe9Yrxzw6hjHWQ3dt104SFQbh2FkrexmlNU3bkev+LhcpBLLWyVmmb3CmkQM9kKJEKlNOULFACjEgGJ2w9iTeSqNyzMIQtcZglBTBZFFziCnSOce6a4W5GSMlZ4kGJn8W6UMsZGxFZiSsaVBFEYtwIY2p0Vw5Qp/F1BNmKHqJmZWkiDFRtJzvlLXCCDWWqUZ1TePk9Sl75r8ln8EIG+3m5sWZoyUt6YZWy9q3jCJw+pCxKuJsyzRHUi74uNArxTxPNYYIm9UlT/uBviJsZr+gjUUZhU8JH+S80DUtq64XJ7S1MtQvGatlX2e1IhklsfHs0caS00KJmSIKqYj8RdpzxWGXedo9UjhF9ESwjylVzpcmGyPO7pxJeRERL5aajKk2biQKLUGvAllcW851ld8NlMLDwwOlZG5unss9OezJaGJJ5MrwU5w4a/Ja5Hums2FBXPmnSLA6n5GneZJZnJJn+MXFBf/kj/+Er7/+mqenRy4vL3h82rEsE8tSxXIlw0qtdDUvlCpeSBw41pKfUymUGA7FrW5LxCjDJ5/8hHW34s3r72iaIvzjOPPs6pp3b74GDa0rXF/1lJAI1UQ0Dgvby0sutcPSMc4HUg7E2BBiojWOGDyrrmGz6Vl84jjtSQXCLGV9q36NLorZB/quY1gWnFWCc8iWkjy7/Y6L7RafPArNzbMXONOS4hFs4c2779B6oXcNd/uB1XrNOI3E6Lm/OwqawzaMfqLrHFZLOVFMEnNv2w6txfgSQ5AyIC3naVAEH6q2XAt3UByPgxRmxkTXCZ9+WWYRjktNCfKeHyf7EDFKuNbIfk2LjiEFfnLO2l5smeeJGJfzMHqzWUnioBRc13C/e6JxLc5qHu7vWXyQNUYJrzDlQslSYtUiRVonvvU4vEdM+Pi+aKmUQqlC+qmcBKVZQsQ0It6VXFAGjDasuo6Y5BxgjakCm5wni5IyjtNAsZSM1Q1FpTrAyBgr97PSpd4HRsxnUc72xtS4ei4VPUN10ooe5Yyl6xoZ/pZMEzO+sgBD3TcZrSkx1cRDqWub7AJl78d5QB3CoZ59bd37fA+i+T/w63eP6JbKtZqkZbR1ri7I0pwXYhDOQEFcFak6TZRAmqc5UUogo0kh0rUtSiuW70UST754HxM+lMqlqRuBCoYsArUQ91gVhqgXzsn6LLZiaYkbprlOYeUtN1oxL0HEnAIxSQQl1dbxh6cDxmo2nUMriZZqpXBK4zbC+BuGcHY6lCKchu9HruTpJmDjX33xLd98947ry7WwemLi7f2OUjSN1qzWPSoX7nd7klY0tQLatprGGWKBRssmLWsISdE4K5vKIowToxRdY4lZlP9h8mw2a7qukYhLjUrkakc9xaeENwLB+zNwMtTmUIVMlCmwzIHFS3TLOYuzBmulXOTUFmqMYrVqOAwDj09jfVCIc2KYhVGTQpCmNVWIKbBer9BKJqSH48hq3TP6wBIS97uDbNadI4TxzDLZH47c3T4QK88lkytHxrG5WDMNC4fjgKrTDG00u/sHhuFIyadImljTxD6caWo1eeNacVFE2Vz74FlmAX9bbVmvVoQQ8SmhiqJvWxGelcBtXdPUyb5MyU8uyhQCrXNY1+CcNMcKiyIyDrJQXV1d0nc9u8dHXn7wATEE5kHacCnl/8Pcf+1olq1retgz7DS/icjIzKpatfw27bvZVItUq0mBksAjQeZAugBejy5AgC5CJwIkQZAFJYqi0GzH3r332mvv8iZNuN9NM6wOvvFHNU+5dKAECquAXJUZEf+cY3zmfZ+Xjx8+cjge5NB3smVew0pVIvn2xpCC2KGf7u9RFOZ5amE4reBtxdvLAKINJVAa13USimDAWP0SykKTN6Ngmpb2DPTkxsqoRt7JUCJrBm80ziqcdSzzKpeF0mhV2Gz6Vt9I0uw8L8S14G1HjBHvDDpbaZBrQTdOZMyFZY2Snuoz49axriL5Dlk1CHzkcHjC2hbaowQUbq0c2CEETOcB9aIi7tp/561ls9syLxMpppY4ZWRDT2Wz2XAIAeeuAyqxkcYcsH3PZV4wXjNsR0bf0Xc3fPL2Z3z5xZ+j6yOH8yPGDDgVxVqbm8JRa6Y18PrujpQTh+cDsfHtxYahmOez8B9UZT4fcd5Ta8fhdCHnght6pvMzYT6hVJagHCVnRooz9x/eM/YXKgrtPCHO6CJKxZwKygQO9x/JCC8q58icF2kYrWMYt1BEweSs5cfvvqAb7wnzSZYNzjF0nnkNGOfQ9lrMiC3QVUVWmhQWbNeTcmY/9KRpkeFQSgzDQD+ODGnL/fsfAUXMkSUEtsOugYAlhbnvd7JtD4k3d28ppXL/wzfoktCNJyl3Q2GzHXn3xTsup3NjhhU2m4F3hzNhmjmcL/y9f++/x7wshHnCGUUIiV//+o9IufLDD9+R4kKOM5fzwuuff86f/dm/5te//g3LuvD8fOSP/uSPOB7OdN6x2+2oaB6enun7nqHvOT0/8+r2DutF7VmA4/lE5xzeWkJDB0xx4Xd//jv+8s//nIf7j0zHE0op9vs947jh5tUrxl5YHq9f3XL2DtAsYW6bSsc4dMzTwul0FpaJd+z2O7xW9J3DO00KMw/339D1G7FzqQJVGs6XAqzdZKkplqVBdT9x7apYQhVSfOckPFNr2vaywtK4K5hmKXGOZc6UoprioyWTZYUqIh+ztFCA1FhN3pOjlAUxS8MkziFJcfOD53g8v3ALRWWuGLw011NYqVru0BSlWffOMq9zK1Az2tQXdWVpwTa1FkosrZkxFDLzsryokaXhLzKUi7KdvjZKcvZIIIRWDS8RxZLkvCWlFaOUNCQltUVkJMZKygWrbVPaiFLMOkvfOVJMrCFgDG0ZKUpxucpEqXNVkpWcsUaJC8A0RmK4Ftii0vbeUnJLpm9N4hXd0HnfgNSSQBjac2Cv1sKUCEiB6pzD9p0MTUvGOlFLzddkQOvYjjvOy0wJgfk80XeWw+MDIRf2tzecjyepQ3KRABIrg7uYpNGXwlrRD4IeIZUWZiG8HIF0F6y3KGMxxuPcwM3tLU8fP4gawhh8J+o24YyJE6LrfFPXtY1+lob+Zn9DWCN971imiYWJWnJTiF8tlqLSSy00AS1Wa0kdTo07LFYQUchL3WGNJqXYBm2CV1GqEta1oWbAG7FDC1hdoODVZFIMPD3ci2ohBlSFUoQJnQuQsiBrjMDFfxIHC/cyptJspS1BudXURiuxdwPrKtZM6ywxZ4bO8ubtp9y//4A1Fd1bvLfMcSXEiLMe7xTWKTZ3v+A//I//Z+z2n7AGw3/xn/7vyXEShbquQMJ5WZ7HUJr96aefgzEw9rI88Max2w5opfBWkedVEDUpE7N8n8Y5clWUEKkpYYwMcPpx4HReWGPCOVEDhxD5cP9I3xm6bkOumjA9gcn83b//9/hn//x3hOnKCpMlh1L6vzasdVYWC8b1VFZyjlTETmmtleAXwLThJaWQa2LsO0IoL3zJvh/p+pFpumB0FbZn18mAzBjCGhiGHqsN1tqmkpck7xjFCilIIkuu9QUpI+cYrb4tTQ1tMQZSiq2ek89e7L2ilgaB00sqLG34p6ht+KiawrsUOUMBVKl4Z+T/31RA2sjQMMVCzrLkmueZdQmkmEUlVzJd67+M0c2GKCnQ3qsXxnLJFR9Ts3ZbjOtEDakljXaz2WC9J7XwFWomRflaY0mc50mG/u0d6L0lp4jzHTFnMhXjPDElUhAXTNQSMnDlaJYmPBDXRxuJFsEF5ZpfMBxLCC1AUhxksQW4yUBDhm7Xc+Na3l3V7M6BUddFiai7cxt8mzZEfPPmDmsM1vWcpzP39/fSk7fFi4Q0SFq2cw2p1Aa4stCRn8G8LIJ1Mla42FWGHtNl4l/96/+K0MQKj08H1pb0Ceon5bwxL4gSXSXl9nw6v/Akr5iMsRexR8hZXD3e4F3lj377N/h7f+cf8fDwwNff/SXff/t77t99w2Wa5Yx2msH2vNpu+e7r79jf7JjXiLeKkhROj/ydv/vv8Lu//Dcs739kniL73Sj8vCjqMVU18zy94CuqEldYzgrvPXWVpZvXllqK1O9KYZyhTAhzr+8JqXD76hW73Ru+//YLlmkhmYgqib7X8h5VGZZNl7Xx87IoA30nSrMQ8b6j855pvgCiUEuNqe6tJ4aGhbKWnBLjML4sqCXwotB5EdhUJU4aUakb5nVFKQkmrLmy6Qfh18VMLbKMFI69opSJrqX2aqWYLhcq4JyIqGJIL++L0hoVIsOwQWnN6XQUMdO6iAXeGKr4bJuKW3qjUrPcSbVyOp5otAp049ZZbQlZaibXagXBvdSXPIUKTXiSXwRTzvzkggHhTS5BcGC1ytLZKFmSWWu5udkzzyvrJaIrLavAU0psGAkNxrZQLs12u2OZZ0pO9L4jI8gT6zWd7zFKt3dF6ipzFci6n9LL4xXVdi18qyzacikv77w4DeTMABm66+sg7Q/49QcP+EoW+LX3jjUkpnmFWhkGGUDknFlDYdMZPKJcUEYRY+Z8mYhFXrxSCn3fUwucpolxGCRCWinZihbF1ECFr273L1tqVWRrYKxGF/mB1Fqbn121i0VS0FKMAgBt24olhLZhKMRU8J3jfJ7ZbvoX7kspmTUFcrHcP5+xr2/pXWMJVNmiXmslEVUqXlL+WgF89deJJVXzxXfv+fL7d+w2PdZZvn/3gPYyddc18/r2hvcfHjDeUY3BoMgx4J2kp8YscElJMZIXolbZCi6LKE3KVaWYszQdTqyea1hFHRQz3ntR2SiLtwrvHPM8i8VFqVaoV+Ygk3ulrhBZOBzPspHRcvGXkiXcImVe3WxfJtiDFSC60ZrLtEgAh/c8P5wkSAHdOHRQQqTvPOfzhKrCwJAEKUktE25ixuiWNGW1MKdK4eHxWX5PaZSStOWut2yGDefTLH93EEXeOs+EsLKGlXWVhjNEaTzsFcpZxfpzBc6mxmtU101D+8CNMS8BINc4cGst5/MkW9pa8EoRwioK1pZipoyi1x2oNgxtAPy+69mMA5fpzG4z4pyoU2obTJwPR3Y3Yre7nCYZ5q4RpWfZKqaE0orz6Yx3lloS8zLLz7cWlMrkKNHdGhl4aK2oDdY7+J4YItprhq4nNfZUN/YMnRy6xshGQ2EZNyNxldj0yzxzTAfmtdkklNijoaKMxjiLNiL5DyHRObFG1xqxWpPa1kWRqUqsCcMgm6fYbPylQAwrToPC4KxBFy3bNhTGSEFTitg9copSjMfaGlU5SL13zEtsYO0sCjgtw7txGDmnI2uMYncpV76IFESVSj8OPDw8tbNabC4SUFMY+g0Jw9A7lJdL7fXrVyxp5YeHL9hubnh4mDhNKwq4GRVeQayVWMrL1uj+4ZHOe3rnKXHlGnxiUAIebmfKugZyTWyaxc84i+8caV2FkVEDoPF9R0qREIVzk0tk6DZ4p3k+PjEvM33fo9v5nNuEIlEgC69Ta8fNfouxPUM3Mk0TawiEspLJ6Kyx2uPtiNEO7cRCqIsCYygxkWPB+5G+75ChXWXcDBxPB4zzYoltw+acM8u8CIPMGHbjQFGaV3dveXp8xA8SaHL76jUg4RPb3Z7pMnE4nghhwTpZTNQiqqvT4cAyXdi9/YSwBsK6ksPE+fDE8+M9ynqen55Y1wWtJByihMjlcOSyzuScuLvZ8/TxvagKDHT9hsPTA0+P96AMjx9lq/nLX/1Skr515TIvoC3WVR6ejmjt8Xd35JI4LRNffvMtv/r853TG8MP7j3z15Vccjo98+9XXTOeTDBKUYhgHbvd7uqEXTlAp7DYb1nkW20KteGN4dXdL57sXW2jXd4I5GEeGYUBnSa3d7QZ+/quf8+lnP+ev/uJ3aArb7cg0NViyktrENP6kJLhVMMItkrPPNDug3I0pS2BRbkOC3llRPze1izYWozLWStN4maTABUA35mCtOCsbatWWccK48qLuyFeYfGkhQJoQMvN6piJNRcoBrSrW9wL0D0GaVeMIYSXJJgmtLbe7PWsqxOezKCSNLApzaoxh1YYwuSWp8RNXj/Z1XAvXUqT5v1YGgq2sL/gQsWHJ7wnvxeEb97eGlkRsPDWLNUgjNqgr/3ZeJKXXaNnKO2clHKOpXK0zOKO5udnz+HQQTrGqL1D2vhsJQWzAIUqxTxWObwiyABMkxkDX9zw/P7FGsVR5J4EgzVndmL/CwH1BpbR3TSlRqnnXUVD0veHw/Mg6T4R5wY1bUoYYV1JeCClKgMxZ6j6FJmkvz4RRLDG0ClrYzjUVYeZh6HxPbZDrWmVhs99vSSVxOp0wRtAbc5DkTocjGVFI5aa8ud6Vznucy6zrKiEjiIJxXQO+H4SZ5C0lJaDVCsWIDVBLs3sNXaCK4arrDLGpLzJytr2kVHOtXeWZMLpZ5EUyToirDCBibAB1SdatqtAPPUoZ7l695t37H6VJKfWFFSioGhlMU0UhS8MFGHNVE8ogMzeOsmtJhVUpWQZazRwyOEmLVVSm+cyXX57pOsNmZ6nKoGrmZjcyDCOHaSUXzc2bn/Hv/of/E169/jmPH9+B1rx6fcf9u4ugCZDPjCz3/mbjX5SVzmhZCI8dtzcbyIFaoiiX5oR2is4PdBnunx5FLaQ1pIx3DkxmtxtY14Qf4TRPTZEpHDqnDXd3d9SSOB4fMWbl81//im+/eKD3jiWu/N1/8Kf8y//y36Cb7TAVCTUwWj5fqRelgby9fcU0nVmXCW8tl2VhDQsqSiK5c5b9diO2tBzboliRSkSjCXFl/+otr958yvPjAyChRbf7PalkJnNEVeHCVu2Zppk//pO/jXUdX/7+z6lpfXn+hnHkcj7T9x2Xy0WEATEQmrJF3u9OuhPTs9u+IqZICCeWeWIzbjDWoYxjvcysYaLaLHxIpcjF4rTCDcLXi62/2u0GsQcaK4yvrmNeZ9aYCSkBuoU8SBjT83N+USfFKO4ra63gAagvTEKt4Ga3a5ibhO+kwcYoDs/HpjTUaGvb+W8wqjL0lpBEVbiEQOcsBamlNApTqiyDgbBGqjayfNYaZyTF9Mo9DDkx9F7YpkncFUtIxLS+2Oo6a7i52fPx4Uhq7phcRbAgTXNbppfWF/ITL0+1ocfYd5QiOIRSEH6m1ugqQVKiuhUHxc3tK1COw/FAbWpAYf22cKNaWULGU+iGQayZOTfFsnpRVRvdvVirVZPxpZxJl4vcbzVDlh72GlqglAxYTONFy/dmmKap1QBSL5dSX545YzUxR9YIfV9JJL748q/4+ed/yp/8rb/H3/y7f58PH77jv/zP/q+cPn6D0gvbrbiApvMTt/uRu7vXfPXte8Zhx90nnzJ2N+Ti6fqeNze3PF1mzucJrSuv9neylIgLy7rinUcr4WV3zmKUiDpe7UdOp7P0nEosn4lKXtuyvx8oZKZ15asvf0+tX2CMYlknrPf4thjZ9j3Od9zdfsaHjwfGraf3gV/88ld8993XPD8/oIA1RKxWLy6tK++7tme+NJXii9otLljnUdnw5u5Ttjev0DXx8HBPWGdub3ccDie560Hcd0UcS9IXaobeEWNuNYyi6+VnUYGUZIh7OZ+b+AlZFCADf1r9EkPgs08/5fB8oKRI7z3eNWVze9avNdlVpHVVtpaUm5JUGKYKXrALpuU1lFxegh7XsOJ9h3OmWcRlAaTbHEe35+/KEi2xtuexcaPbJF23oeMaVta4YqwsPlJL1BY8mSS0a6MxVeOd5dWrGz6GlVQVa1gZ+55x+AlXVLUMPddVlIcppRc14nVWoJrYRSFcwZdZgpH3s9brfS+zolIrog172cL9N/71hw/4qOQqUntjRP6/LCtrzMJV85Y1RobONhm02AFCLJIsUsCoinXCQ3g6Hem8BDEYLbJjpSxzWMmNW5BaDLcUL+2FiOlFAiyTMhm2pdw21IgVJpfrttRidWaaF0lnQb72se9eJJmPTyfuXu05zwtRCRvux5z59c/fYlSTByi48pM633GeJHE158x2HNqeA+SD03z13Tu++eEdYz9weD5yngJLyLweerb7LR8/3vP+8QDNbizbS4V3G1EYIcO2sXfNXpwb6wnhCloHWhQnpSSGfqTqwuUyYZTIWtcgW75lnam0dDwjl3+usv3b9DSFnWzyY4zEFp4wXxaqUqwtkKSEws12aHwgYZ/1vVhQU0pshoFXt4VlfeT+6cjruz3OzNzstzw8naCIKslYsSeSoO8M+5s90/ncrJHCftManGnQ0SqW5FoyYU3ElBmGgfPlTN8LkF0B07IIu7EdHKfTsfFu4osqD6QhlGel4KxtSoxCypG1sXpKs47XWkiponQkxdACPoSTtBwXYpakI20MNMBv3wtPKgaxgm+3I69ubvnhxx+l+S6JWkUm773Yc8+nM6YNDdd5pZRMP2zQJvP08MS4GVlXzXYceHh4JDYFUOcdu/2ej+9+IOfEOq8YaxB+yzW1TZpiYzQ5Fcaxw3nfrMUyYOk6zc2+Z7/dYlVHsoGQJjabDZoCJdI5sddqVQUkLVMw+s5gNWzGgRwDyyVivW5S8KtQWdN1IyksUigXZDCmDc4Kz0iaL7EyqCwKXt9bnFKUkFDWsoZIraI2EBalleS+RQvfw8nQKjZbkm5y9ZRKG5iJpL+USoorqlkvhJXmWfOMdZI4lmrGxMB224GurMuKomOKKzd3d8QKn372Ob7f8vT0wOl0ZK6Z8+VASYWbzQ293xFDpPMDJS1sdgOHNNMZDwhstu87KLDOZ1HSBgkt0ih0lQvjeD5LKta4xThHDZI+bItmmoTNh+kYhh3GKh4eH4gh01fDzc7SD1tqFqitNoY1RXrdkXLlk7efcjwfORyP9F69RMZLcllHVZ6Sz5QoyprOevxmaKwkQRO8+fQznh4e5CzPEet7CUspBWsk2Vk2ZHJsu77Q9yOX84WcM13fE9aVlDPjZkM/bPn0s99IKmC30Hc9uvZsNpImOXY92lpCTPT9gHViqdlsNqSQGEbN6fBELY2BFVZ0rRyfHgFJCXVdR5gvPD8+0HedqJKuCYTGECkyzEqJnAPrZeL167dMpxMf7+/Z7m8Yh4Fhs2OZJ2qWRORaYbpIGuD5MjGOC+evv+Hdjz+iOlEZnS4Tj+vMf/Gf/+d8ePcjcZlfVF+5Zoa+483dHX3f470nLitLDNzsdzw9H9hsR242W7y33N7sscby4eMDRcFmM+I7z+3NLSVGUo48H48cL0d+9xd/zv39kZ///BM++9lnfPnVl3z91TcYJcsyAcyXZhmpzblbuXICZbAjw9z0XxtuySBjrdJECG+1YTFyodQsFr2xWbuK8L9EAd5A1Lqy3XrmSyQERYkZZzUbbwVHgZKBTmOzlXxdwMhdppRwey/z2mxYYk96ST2zit04cDhOKCtW0Kvto2ixLdZa6PuBGCKlwa5RwlbRRpNierHw11xfWLNWN/h+K3AlmVg2vqrxQkNKWK1kEuMU2trWMKU26ARtaM1vqzfa8FQ13mCtRew6RX6fImq24/GI0RrnTAv2qujOtCZfln/KaHJIOGcx1kLK1HTFN6ykqJqypqCrBGVcwxRQtNASWYIpbRsbTv4uozS+My9/lzWase9IcWVZJqZFuK0prqxFVOjGWMKy0DtHSiubfpSBsLVcTkdQpbHCRNXkrWVdIzlJsr21HozY1EpT9Toj94dznlgSKVaoYl2sVVRsa1hbMIaVc1/JZ+ybwjuElRgDrvesIbKs12EjqCJMx74bKBWGccRZxzRdyDm9qO0kZEtTYhQlF7wsanKmLaHEliRDdbkllRYua0ySYqqUbp9P4flw4s3rt/zsZz/n8fGBECQRWyHsP61keOucsAdra6SqAqMtKcr/Kg21yby00sQacWh0qdQkdf6Vd6Tbn6ut1Ked10yzBKjgLUUrTH+D0nv+0T/+H1K14//xf/7f8eHbv+JyfOb16zvefvI5z09PWB3Z74SvejiKYnouUjlLwIbw49K6kIpY1czaQvqU4vGyUNGMY7PFldxq/cIUM67XRBVRoYirpe9BL61hrZzOB7Zj35Tqgcvx0JTgO97/8C2//uM/YX/b83R/oDUWoh5F3mOakICaeffj9xgrrNmS5D01WmrKlCvOjS+LR+8l9TGkFWekQc458v79d7JsbF8PVB4fTvKcaUXfdVhtKDmS1jNf/P7PxAViHUVZqakav9J7Tz/2Yu+nEhfDMCpM4985IyzMJRRcv+H21Z6/+ov/ClUr07Tgu8qvf/sLDk9HvH/Djz/8wGZ7g3aOZZqJs6BthHuqXlRIscLSBjxrEDfUGhNog3euLe4uxBi4u7vB+1f8+P5De4/bGaN/4l7nlIQDlgpjP6Ctf+kbLoczKUW63glrPK4Y3YmKM0VCEAwUKKlV27DOKI23hk0nyqdllqDDguZmswOlmc9HGaYqMF5T1uuAU0IYxu1IfD7Kn2mMBFdYg7GWV3c7nh6fqU05LXZqzVrEKtumdJi2HFJK0C8KxRrEYi3ilLYEqFC5wg2Fmfh0mumHAWpkngQlpVqAI0oGC7mUNtST88YYjTYW7bvWC2RJ81RVBiy1SH+gmsywnSO5oTi0Mg2hJGrZzmtKiTirm4JaEsHzvzUELEX6pXOMOK/RzpIVTIu8z8eH9/zz/8//jR++/jd88skrHu4/UOZH7vaGGBV5mQkpMw4dl3jm2x/ec5lXxpuBab6QQ+D8/huW5cR5nuRL14qh3/Dp55+TY+T7779k8I7tzZ7TaWbwHdYaYXMbTYyLLCLbkCdHYe7mUlC2ZQrASx+nqqa2wL32cqK0xajK+Xzh5nbP3atX/OwXn/PdN9/z1ZdfMa8nrkGOskwxxKu7pgVQ6n8rwCTl6+fd0rGTKOIfnu65PzzRO8ftzZ5x6Lm7e80aCss8YbVhaCGVsQV1XNW33ltMMZI7YCxLWF5EH7Uouq5jDQnnPH0n9Xdu53HnxcF4OZ2IYWUce4ZuoOQkdXxbEi7L0moxcV1Ya4hBxCfeXBOBoyxJagtjovF5jTxfcY0Nt5a5XC7kxnDUWhK329OIcx6lM+t0EeZdAWXk7NWKlnYvabnLssiMw1qc9XS+F6u/EiZtQe5A0wKRLqeDMNXb0m2/2zXFvvSP5WUpIbMDUbI2LEobjHa2a3bhltiraG4MWqhseXHNXbFItd35f+ivP3jAF6NwT7JWkBXeGHmY2jcqTBTDeQm82nRYJUyc2CbWpbRGQRk+PD4yDl1jx1ViluFBqTAHkabe3e7lggSs86QgwxVrxTYryVPmp+2olh9UbV/ri5yz0jaYkvg6do6YksAunSGsUVJckyi7Hg4nbnYDWSnuDxOf3Ay8JPa9bDykyM3tYvOdwPprG6R8+cNH/uKvv0WhOF/OKFXYOMcvPr1D1cyHDx9lM2glFKPrHM5ouk4245REUjJlHqxFFVEZTsuK0ZrN0EnwQ+PjaWVY1ijcwpxQBkn1uUz4TkJM+s6zLiuXWsR6qY2A2hWsa5TUnKbEjGsglR7rHcvlQi6VrutIMTEtgc3Qo6iczhOvbgUAWqoALq2WLc/hJBvF7X7D07MkvVKlYK2lkFULIalweD6K/ag1PDXLAPZmv+V0vkApjfuhRJKMWGL73uOcIYTE49M9IcQGRDacT0fWZX5pVEu+StmF9ZKuTZVSXC4X+XyRZ1Rku4YrlyA1O8jV8gDSzM7LzDV048WyjdjOYwyUWto2WLYHKSe66im5MC9LU0QU5pZ21behdmxJtM47ea6UbIT7rmsHeSDHQJhnYox8/PCedZnJKTWlnKggUcIJlANVkUOzCQW5UCpVCkbvRJ0VA+fLxKubLf/g7/99/tk//6ecpkDnpABbllnYRsbibIfRqyRUKri5vZEhTkigDNMSMUoURo3WzDSvqFJwFmKzd6xLZE0CcQ5JYOob3xYKFJZUqapirebclHZ9N0iP7B05WxQZZRJzLrLpzRWvwDnfrPkCNO5c3xomAcFXBAhdleJmHMSytrZUTS020RqEmSTbH0AVQkk4LQnHz3/1O27fvuY0Hzg9PrNTO6zzTJeJ948f2e5f05fAfD7jlOFwWKCCs55huAFjCXFhvZyFP5cyg/fktkFWSvhm3eAYrSg/l2Vl6AcylnVZZTFQHbkV/YfDgRSCqCVUxbgB39+yGR2H0zM7b7mcZlKQYvjh8YlrmnjOifMUsMaz2VhynOmGge3tlvv7J3rtsVqUxDFXht0N0+XE6XQh58rQD9RVY7TI67thwPuOdZI0T7E5dfTdIEmdvSTZ5VzbpSiKzJuhR2lLSjNo2O731C34fmCaFy4XueSt9+xv9xwOTxyenqVQq5nz6cCyzC/A45ITtWQOhwO+83T9RqYpJbFeTs1uZ9DWMYwDIUTCJTLNP9lUjDWcjke80aiSGTvHj999y5tPP8VbTTcMrEtke3vD89OBbuh5eHjkMl1YpoWxHxg7sb1/+Vd/xY/vvuerL34vQ5+2yXVOOIxLzhyenyj7yna343yZsdo0ywVY63h194p1nlmXlXOayCVRlWEcR0kqTqndjy2oKWYuy4nT/Jc8Pb/nv/WP/j32t6/YbN5JYZIrvnPAlXcrqgKrxXpSysuuq913+qcBBI1XVuT7KEmaPau1MOiypiiFdTAay7rktogQyHipiaEz7AcrWIOqG1fIAZntxrOu4hKQBZMUoWuQ4YvRWvAPDRdgtHy8Vmm01ZQM3jqmeWEKCVOg63qWJTfgtfC+nIISF0FllNoSSeXc7/yAb2q/2JwFWjeWqdXMyyp3Ybmmz/6kiGzXC7XKXZZawZebCiNl+R5ykcTYWsUSX60ViLXVGCXMo9rUv7pttq/BTgUwSgDZoAlBkhydUcJhaosMZ33jclmsE3XTpj3zRkuSrqSf12blkyWQbvbUoetbE2j45NPPeD4cmC8nYi7M64o1DrKmlkxMmRADzo8Mmw2Pjws5yzuKkoWDtUaWuP+Wgv8a3FW1w6CxvsdrSRlVFEpNrLGgi8UqgbeXImquUhIxro3BbLBWcBsVJXiRpriTlN2eFOZmuRF1d81y/guXMJJSbO4J9dNSSStKErdIioEYZJAkbKVEiKGhIBRCFESWJqiXsK7aLG/Ay0JRZAHyzr18rlXuIKM15/ORL7/8K7rOcT6lNpRuA2Atd561DlWThMfUxrlFhgBVXRWzhtoGAtek0b7VcUsFsvwsjYI1Z1KJVF3FVqwUtuv52//oP+JP/84/5O7mE47HC7bv+P1ffw3rwt1+xDjF3/tH/4Tf/vHf5P/1n/4f+d2f/VOOk0Dic1aEnF7UIJuxg1rovTgfvHeULIEVWidRgmhREqcU6L1vahRZvqhiSKEQcmbolFh1EyRriaminGG5zHReGN3xcpRBdYW+27HdFA6PH/jskzdM5wmVNStyRjmjiGsVa66Vv1/rCAU0ojKR/sQ3habUPprKvK5kayCKEsWgcVoTckDXjFYd1no67wnLIo2jUixLJGroxo41nFtY0NrqzBZcZqQn8Z1n7Hvm8yJ8UOvYbTfCaa2WdQls32w5n0+sYcH3humcMQY6b9htdhyORx4+fk9MhafnmZQDvnpBBqiCc1qC6qyVpM6UyEWRSiUjVv9qxRSailwSNQizOcSVvMxYO2GVZlmX5pjgpXZ2zjW3VsAaS995tvstyyz3XckRWwub3VYcCnHhfJ4JJZFigCpDcaoEN1qtXlhzpVZBP/SCtMjtNRPc0pmUC95p+mHAasPpcsZYx9zsjVopHu4/4pzFWhk2fvbZLygliUI5RHabAWO1fG5JEl+fkgQCXc/qUkqzGtIUe9KXaKPbwA5R7ymFUi2csAj+aLpc+PD+Pbd3e8ZhEBVdlQWUDJBEDdl3IuyIMYodP6Z2RxisNXR9z2boOZ2O1HoVwqjWJxVys1heVUY5y9BIwvMcy7JQWsBcKYWwCKqH2lZ9re3ORQQh11DHOYsy2nDibvyep/CO/LzheLqgdcHfjqxr5fAs/WaomjVrTucL85pZOGEPB17fiFjiPlo+++xz5rDw4eMHrIV5uhCXlRQT+1evKBlyXBl2e3b7Oz6+/5Fx7AhhQSnB2FyWVay8xuIsqKKpSYMGaqZzHX3vpJ6p4tRaY7sTbkbCPDOZe3bbO6bjCa0LQ29QeKYiTrBUJTQnZ/BeyzwCjSqQqvRLFeh8J667nMX9JZ0rKSeepjPTfOH29o5+TWy3e9IaQBnOl1WYlNbKSNtowap4i3UGFbPw5le5z7yzkpReKt4K5zNFUdQrrdhuNoD05/MiyxaD4TJNOGvp+oF1XfDNVrymKHdhU7X1fSd2ZsRRaJ2ntKRw3dRzMcozKqE4kq5+dfJIkrhmuxuln0O9cApLCdL/JeE7a23R7Ux/td8yTxfWGF6UiynLGXR3+4rncg3XaktVa/B+oJbMZhzwvud4mtiMA9tx4MP7942Jml9cfxURnpR1IQbp08WeLrih66+rA+zKvb8ONcUtIngRbWAcPX3j/v0hv/5wBV+VpB7doNbFiQzbe0/vLCEFqI5DSoze0luZdMaUXxqprh/4+HSQrXj7ZwlBpLxJDsYQMmPfCxA2F2JtqXJU4rrSd755uQ0pRYbG+1sbs0K2CKJcc94J9807eegOJ+Za6L2nWJHreueavTWzHTpKqRymC31VOK3YdpbNIMPHKyRVK9Me0sTNfveSglfRfPH9e/71776iNBXHphv59O2O56cjcU3cPz9zlZXXnF+soX7oJMUn51aU1tYMZG42PfMqE/oryFsKtTawMo7ztDB0jtvdlmVemdeVirATYiqUsooMOCvmuSn5ssDKjZZE4ZAiaBkKKSRV5s3rO07nC+fzRVSDynA6z0jKnVz01hpOF1FmDUPHq1c7vvv+Ix8+PvGLn72V1NjG6VrWttnRwsxwzr4AvuclsBk9G2OJMXI5T1zTBFNOxCDS75xk+16rYl0T87KwBElmW+aZWgprS1+iyZ+vk/nU+C218ZbEWiQDVLHmys/UGvuiZLLOkpN48iWAI9L1nq7rxdJVqzAvSsF7D0p4J13npSDLmWHo2e92KK1FbRHlUtRGft5U2Gy3OCvpbCFIAm4M8WUTGuNKLQarkETIFvV+uZzl+6htS4B9GTjqth2oVYp72bwlTBu2Ou/FIq0tIVaKilzef8uHp3eyXVCV1YrazjmDQrPZbhg2FeMOOC2JzNoovDNMpYA2YsfWYLwCVdj0npQra0z0vgcKS8g4AyAXkjPyXFQKxoIzXhSbWtg1ovQo6DasFdWFpKJVK43xGoTDQ41oLWBz740wqaoGHNYmqtJgZEHhLC3tTTEMnjUI/B/rUb4nXA4C5a+VyyrMszhnCS/oLWE+YbVi7Dak80LVEtCyrBP1MTGOHRGaIkizLBN6NFymR+Y5Uatmt9uTCliTxWJDZVkTvdPCtbKWwcnW8JgThAgWdG0hMgWstuQ22LFGNo7bcWAzdByf71lOEOaJrpek6VwS01wZhq1cVDFAMeQS+EEkEAABAABJREFUml19ZZlnzueLFNadA6XRWpSX1opasvdbpvOBcbN5sfs637fLr+KyNJSlerz1WNdx9/otz4cD1hrCJMWMMxpjZDm0XC6c9D25ZvpOWKJK9zwfWsKmNVAq++2Ow+kgTMxxkGAWazFGcTkfMNbxQSm861hC4NXdHWGZcV0kpsR0Pkmx0vU8Hz/yi9dvucxrO2c1t3evZVmQCjev3tI5yzIdqWklrzMff5Th+vPHe169fYvzwhmc5oWvv/2WzXbLzas7Pvv05+Saeb7/yHdffsWP33zLZT0LA7LvKRW225GwrIIjUAhzs1S6fqDrOvqxp5TCbr9vSsbAzc0tT4/PUoj7nmEYGp9K1O37mxvm40GG10HwAJpCLZF/8c/+KZ3zbSMP2hlJSjSaza5nnhbimqn1ys2j7blqG/BdlTdiObqClJWSoUUtFeMNqfEzSwBXRQHnvWVdJBXUOsVmMOwGQ1gvWAm9RzX1Qi6REAPWeoylpYTSlHNyH8rOmqayy23Y2PAbKGjp1l3nqJdFGFa1ApaalASrYASmb8RO6L1m13XoKuiEFAtLSY1VpimzYA0UhdgSWV82vNfNvW4KpXZmGaOxqjJYAw30LASlClXOuVJrs8KkF2aLLClkkXll85gWAFGoKF2FXWiuKmctCreWRqtjpFRacywuDNtwB1YLv885hamWtWas7TCmY7Pd0XWeh4d7YlxQtZBjJNdCQfP9d1+LuqmWhkuRcCBqbaEDkkK/LBPTPMkStl5DqERFlsuC1oVlPYs6KUvgWilib6m1sswXEhrvdRt4ScWVa8VYxRrEymyVlyFliW1IKwuSVESValsgSdc1nhcS2nFl/VgjwwZrfVMfza05djjnhWtbBJguajx5MYzRmGpEXd6YOi88IzTG6va9VyjSjCujCSlSWkCM2MARe3vJOGck/TkEsalX4ecdj08sLUXQaCP/NIVWjIW4rigNvm8KiRDQyqI10qzQGp/mCKmIurQbnAS5Ueg6w7xkilUMg+NykXARozXZGrx23N58yra/ZTvueP3mM3JV/Ow3f8J/+9//9xlsYZpnHt6d+O67b/nv/w/+RyyXM3/+b/4VVouC3/eO3X5Ekek7iCET19QWvZawzhjbkBgtMGlofKqSsyyxrKZgXobW1MphyVirGb1CG8uyZGIIUAvTNGGdDPqX0wlvHb//4kus6/ibf+tPeH565re/+QWPHx84T6soYNG4Tpi+pVnYapHGXAYaYq8PKeD7jQQM5kitMHRiQZXhoLxnIAvzzjkBrCtJ2q1qJRYJ3rIWYpy5TMKV2242ja0lkN4QE+QqKIE1MmexyZciQ51LEYVIXBfOx2ce77+jHzpizDw/Pkgqq64ywLYWpSqPjw9UWkhRTszHA5fTkyxErcNaUY198tknHJ6eqSXibQfWMV8uqCpurVpkubO7kaWvNYWaAzkktPYoZSRcxohKO5dMCQlvNWAYBk8lENKM6ztSTeha8N4welEVGSthJZUiwQNzICV55ztjadOYxub01Fo5T/MLTsdaI+maSazMYdWSfOw0VDnHjKmkIAx37wy70TGMDut7fv2rX2Gt47uvvhS3RF6w1vHJ6z3zsnI8T3KPCDSWlIQ/fnV5GS3Ck6Jl8ActEbfkFjzZXGPtv7CNlzudLox9z81uz2WayCFSlSzDC40jm+sLroNWJ9daWFt4W4ornXcolakkhr6DopjXBVV/YoI5JyrD0pwJJSF3Za1ULeooOt2wOvrFfm6bOlEbJJG8CUeMUcwhME0X3nYbyvmASYlM4eNHcZm9evWKdx8eOZ4XtrtbchXV2zxPDF6Tcs+X339JTZ4b1XE6n+lcR82Rp8cPwuJLkdLwFsM48Px84Hw+s9ts0Fp4rZvNyGVaqUVRtGK32RCWgDOO7Wbg6fFRQsRa8rbrHHGNnOeJzltyriwh8frulmWZuZzeE9YDlzkxjILXqJKihCKjMcLsA2RZrF8W3oIGMjjf8+btG56fntHaiZsxCT+2Gy25ZOb5wuN9xhupo0OI9N2A7zpqVfzq17/mx++/k4FdiJSyYq3DqErXWULIba6QXhbKJQfmEFkWQaVRsgz5tKiBnZaBYK7C9yXL12SaRX5jNuSYeXp+JhW5S/u+Y16W1jc3PqOqWNOxLAFnNaYIt+8nlbQIWXLKDGNP5zvhpKfcRCIKrYRn2FlLroUlrNQQJRyyiMBAruTQvhZNioHT8YmuE4HYNcFXa8PYD5SShNduHP/kP/gPOJ1O/PDdN9ze3XE8nshRQNAi+DEvGQ/OOkKUYK8r20XGGvrl//MTm1JCxrSSNKlcCv3QCbe6/P9ByEZtVpBYIylXtLJ03nM8T9TtBlcrWRcyldO84rY9FTieZ6ZlxTvH0/nCcZq43WwYOwGGQ23y9UrIch71zbobc6YbOnLNL0M01ebaMklVzZIpqoFllQRTpWVgEKYZZ2yLlxaeyGmSBLwUE8ZJ8knMlRgTMWaGzvG8OMKycgR+eLjwx78QxZpwh0Rx8ObujrLP0DahpcBfffeef/2XX5CCMNDevtpiqlwkucLT4UzIMhgrjYXS+w6rKlZpTotw8XIq9N1A1OlFQrrfjyxZFI3neaV3jlorfe9JLTzidrfh8XDgCk4Wa6v8PLves66REOQF1G2anpPA8CW9MFFLkx9bzWbo8Q34G5MMXdIqttKUCrUkSi8P+bqurVAV1ZbzlmleOJzObPoeZw3zCigJy1BVCt5pDnQtIfPq/Q8hkFJmDVE24llSl4uiSdZlMDcvkmw2zwvLPBOWVdRvVbgTqJ9S6hQCPr8yRKRTlaQx2vRdQJwdsW3AVJJUVWsNyyoW765rMtwslqndzZ6H+4+Ukuj7DSlGNsMeZzRrXOm7jloKIaxstxuOpxNv374lp8SyzKxzxFjN7e0r7l6/4XQ8ssxLUw6I/XeaxOJQW5etSmU6n17ScWUjnttKVKzMtYj6UPgb8rM2SjZ1fefbdiYwjJsXhavRkuqYqvDQjHHybuaCNbmBf0XlcD4fsdYxjh2dtdw/HNHWcffmLYfDBWtpbauiG3Yop1BrwnWGyxoAQ0wwbEdpMpIMJimaYXTEGAixMGw2qJpIWaGUo3MIM62xVYzvcKNHXU5Mq9iT+94xdh1TOJOzFDiu6/n553+EUZanx++gFva3n3BnO6wpfPf1F4Sc8H5AF0krffPZb5hT4PF8aMqylc24Z9jeobXn4/1fs5QDXb+hGsgUdNIkXQg5SLHZWTrdoTeQs8aYxLbvcMZSEngLlykwjLvG20qsbdMPkvaoWghKyomaYrMnV/Z9x7qIwkw7j3GW4+Eo6b9K4tlrrty//4BxPbrz7b13nC8LpQiLY7e54fn83ODLzbKIKOo0ClQihYDzA303oLUkcj0ejgzDgKmV58dmjy+Voe/JOdN3PfMqYGClLb1vzFIy9/f3oi7Nkrh8DW4wWgC7fd+TY3ufWzCA9Q5tKloVqirUmnl8eADVLCJazg6FYp2PzMtCP4ysy4L33ctA5Xie0caz6TfUlNj0HTEF3r79hApM68p2s5Wh67Iync989vNfcbPb8e3Xf8XT/Xuc97x//67xeyScJMRILBIw0Q8b/viP/oTXb97gfcfD4yOH0zNf//Vf8/z+HetyIa0rxmjmaRbmWU6syyw82JBRRrPMM/M0cXuzpescXddLk1sSve4JIYnyNWY6ZblcZlEKe0n9mqeZaZ6hivqqJGkEQijUeuEYn+m6Dm29QNBjJiVR5IuYSF2PSq7JaaJG+CkpTDWrvgyjWkqrlgVDLi3oIYHWor4bxk4SOhWENbEbHW/fbChxppSOdCm8ftVznhZSllAvUcYVrFUv/16bzcgajbcCPi610neOZQlylqfyUh+YqAgpsd8MLyE9JUHJSE1RK71zGFMkbEiDN4kkmEHWErHeSCiV78jWSFGsFVQl9tgrm6Yp9iRJVu5quY81Qycb6pwSRsvwSCkZylsjQ1arr82gqCNTii+gaW1Ms3UYfNehlWqKJmG8juOAdT2f/exzYgo83n8kzBexlo4D282G+8d7QowYgwzFDagsat+fffaavt8yzXNrFmXg2jkrbJ220c6lNMC/wRphB6Ykyj/vuhe+kzUWfQW6oxs7Vaq5q1WNmilVmttlWemcBCFVENWMpE2IKl5feT5CtXPOvqQF55JfrGKlyHuwhp8U+SVnqQeqEoVkc2GoKj3EGjKlSkrq+XxiM2ypShL7QohNESBWVqrUF1pproEMuQhz6YqmkAXu1fnRVA5V1HtiiSpQpei/pmvXIktT8QYVtpsNOWemaaGWyuk0Yawocl/dbhpmQxQCWmsw9aVhylksu6Ep66/NhlISEhbWSEmVoiQBXVVR6a0lojBYcew3VphYVbveE+PE//3/8r/lX//ZP2Xs7viH//gfsxtvuPvsZ6RYmAJstzf0f7Lj7vMtn7z6jP/p/+I/4eF//b8kLwdSLBhbqXVFGWFzhljoeotWhqeDWNwIlVyuivaNwOuXQior1sKwHThdFnCGeVmE8ZsQvAaV3XZHKStVabbec74cxaKuNFXJgvl2f0POkefHj9y/PzBst3z2+Rvu7584XRaWFsxmlJJ71TusqxLOluLLM1CWxLwcRX1pPQVN1zm2XU/KMvD0TaHonMdoTagJZz3GOWyam6JS7pSkSlu+iCsErSXQcJlleP5vuUkUGWcMfTcwjHta4grn84XtdsT3HcfTidF3nKaJEAJataCgFviilWUYR6xSLPUsls5SsBbGweNzB6rDdxuUOVCV5Te//WOM7zk8feTH77/Bd6IyV+1MUmiGzYhzhvPhzPl8flnm1ShsK9uWDNbIYiDFTN9Zwrqy3Qzsd3umy4F1igQt90vR8i1qbXDGUazH2cxud0NOmRzl3rDG4X0nvWuMje16DeCTxcnYywCwt2KHFhS8hBk6N5JTZDN2OF0pKZHCwg/ffiWqOxKbwRLqQE2Ry0UCrobeUhlYltCSRhsrNmau4YxKXYd7qln+aOpvXnrda7jgNYQgpsTxdMT3Pbv9nvz0/GID1uiW2C0D41IFO1TbYohKswZeGdXQdx7nTfs9Qy6iKP/0k0+JKfD0+ECtpSXWSuftrAQ+XBOLrypAaqHvenbbHcNm5P2HHwRbohUgav8CfP90ZtM5Pr8ZcAV83/N0kgDBVBaM7zDG8fh8IkVAyXP/x3/0W0I6c5wvzDESD48oBZvNhrGznC8TIWb6fiSGlfPlzM3NLZvNQFxXLvOZaYLOOShVRAXWSvJ8LsS4QClcouH129c8PDxiHXTeEXNlSSvb3SB4H1XQFZZlZbMdeDqeKUWeB10reZ3ZdD03d7cMw8CXX38NJMAQYqRzooBMIeCs4AR2uxvhwlon4TVGEWMLLrGGzpqXpVAIwv5ECTN7Oh8pFb788q+hFAksrIU1F0qRfrbzXkQUSpTsIUjIV8piZd9uB0II8ncjYhWlbDvncgswE+v78/MRrWV4q9qdO25GpmUmpiBDOVV/Wka2IJjSFhFayzOvjUXFzBJO5PY+1JpZ5knChEJkM24EKxRWjLWoKmevdZbOd9ggf58z8lwPvheBSa04Y9r7ADQlfM7CrbVGsy6TcD4HUfL/+MP3HI9Hnp4ecNbJYgh5WZ1z9P3A5TKJRTjXJiBqdU7n+e0f/RF3t7d88VdfsNvvJdBEZw7PD6QcJeQmRjovbs01C6fvD/31Bw/4hHsjKWfeW+ZlfZH2L/OK7lsamdHMa2RxBuc98doQAA/HE847OicfVmjJmdTKFBMfng78+pM3sjVr8HwdgqiIqpYCs7FUuqt9sTF/lBb75mYcQQnTAGhFqAx4vBclzfv7J+72W47nhdv9BtZIP3RMswwibzdbDqcj0xI5hcBhXrnpREJatcRtaAXKit00pMyff/kdf/7Ft1CFD2OU4dV+y/sPz6S5vDQa1hm81mzHjs675llf6QbPskqy5LDxMvmOssVV1rLMgTVEnBZ1VqrglQwdz9PCfrdhXhbWIImHtfn/N32HWgJxlema72Rrm1LGeSuJr0rRWcUapThaF5G6j70oZvJ1s6wU3Sgci3mNvH19A7WIxN0L2+x0mthsBu72O76ZVp5PE9thYL/dcDjPLV2Kto2O9L5jsxmEP0RlnlcywjoqpWBcbReVbE69tfKZhhXrJUVxvlykWE7pxWYshWyzj4dISBmtILYNaqnyNRulKeTGy2tNSozCf+scvnOsS6DznUjNpxmKsCdqLW2rC33fC98hSJJx1zm0kZe/GwaWZZG4eGub0hRSSS8pZ7/85S8b13AhpUznLc5bDs8HUfk4KSbTMgtDMYslQTcpfUyyhShZzE651peDJ2d5L4UtWOVrbawf1xgr0ksoakzkLNLnUivkJJD9Utjf7lnniDKWt5+85fR05PA8C5MzK/px4ObVZ/w7/+7fZp0PfP3lX9M5JXZN64lhZl1nnNm3YIOMsQM5ZLSW9K/t2COry0AqK8MwUlNl53eNQ7iSQkYph9KVrr/l9du3rKtYJVKsGC/JnOfpwDhuUVWGfijFuL/hshyo8cR0fsfxPNP1HbGsWNdxc/eG58MHrE7cP3xFVQXbQwyK0Y8o5enHgfNlxvsBmo2oHzuM0XSdZ9iMTOeZ3e2e8/EgzK5SefP2Lc/3zziliXlhuOmZzhdKiuTlidEmqhfbRSoZYwq+G+isJa0LxmmWmKmIarq2511pjXKqNQ4ao3tZniglVbARpZvRhYeHGczA/vYNy3qhxJmnx3dMy4Qx0PcOVSHEgvMOjWV/90lLFqzUKo2u0q1YLJHn5wdymmU5YwacsW0Drbm73aK0RxVBL1irEMpBYjt0nI4y5CqIJV1S5Xqc6zFKGF0xRTYbTQgzWlfm6SIhN0aUrsNmS4rC2TSdwTiPda4xqiKlZDb7W7qQeff9t3zy9jXTspBT5PnxnmW5iEKsG7h9dcewdWy3Ox4/vmc+HlC18PHHb/ju69+T49oYZIpu2PDq7lNef/KGH374gb7r+OVv/7SpG4WROq8L33z5FfPlzPc/fMfjx/cSEIAoTrXR5BLQxhFDpAKuk7vNWEvvHcfnB372s7eyGMqZkhNv3rwh58LT8+Hlv7km+DnvfoIdt7vRWEdpg/SqFKfz1FTUApSH3OxArVSoNAWcETaQHDOSpKqvqXzXocYVrl0AsXOaNuRbV7FhiBJLgXIUDCUknC5sbjq8VoRlJoZVzp1SmJcJpYWjp600J7ptekstDM0ilHNsoV2CH8gpoo0Ra/C1+WiqbOGbRQyV7TBgeyn+ToeVw5QwteC04tM3e0wtzDEyhcIpFmqGmBSuMzgvQ6qUpFB1zrRlWaQqGUyltq28DkDN1TZjFDlKSmmpws7KuYrKy2hKSWglg1PnHMaWtuRKwkMqwvVyxtIPI+O4lXfGWCmmDaKms5UP779njYEYVqyCcTDUGl94twYp9K8LItcA2iEWuk7e0RAn1qjoB8eyFklALZWQF5bYLK21UnHyDlsvCjQNa2uynfPkuFCNJiRRu0k+gmK/23G5TMJFbfCnqhWmNMt1rdQkQ2cZWMlgLtYs7E3Tybs+Bfqug4bDoArn6pqMLJZfg22pwkoZNsPIdD5hr3zFUsFYfO+ZVlEA1DZkyyVKYn1zUFw5V5WEt56ShdFT6vUz13Ju1yyMySohDdfBuG7ntkZJ31FVU3iK/bciTDLXkhV1sy1dWYJXVMjz0xPb7W3jhYEyFVWaa6ECLW1Zvm6FMoLDKDmLHZraLIKVdc0oIwmeZPBt6HC+rI2pOGBsxxIWrPVonTk9/0gezvyLf3bi4buPvPn0F7x++zm3rz7l3//H/5gP337Bn//F7/jTP/mb/PZv/gP+x//z/4T/w//mf4ViZl0WEo1f3Czf05yF4WpkMTe6XlTFVpYoh+OzBNIYYUjJAN0wbDwlR1GvAmSo3vF8OgtuYtxx8+oO9e4jWhWSg0pgHAeOhydUhXkWa6Z3GqU7Xn/ya/707lOWy4V1WahVzslQNZ/97BPu33/gxx+/xagkTCssKq1oHMOwk/qQyrouxBhlkW8q2IouSfaxZOIykZKTYV5bZmtjqElse1BfmKApJzorHHOMwN611hQ0VVtiLHxye8Pjxwc08vtLiLx6+wmX05lpuog6OGluXt0RZkm+1ER++atf8O7dRxkAeE2qmt7f8OruFb/94z/leLywLhe+++av6TpN32/4+P4HKoplvuCtISv9k+Nknaloxs1WEDI1EaqEH1ml8YOE6izz2tw0LZ08Vzqt6LzBWIO3HYeQsM5StSHnyLqs+L6HYgircEa9E6FCNwxMMbLdb1jmmd12x/PhAEaW3CkmGWo1x4iznQTT1cy0zvL35PKiAK5W3CMli+1eKU0McxOoyM9/naRfWeMqZ15XQYnKybUFQIzCDSsFSmxDDu3IJbdU1Z9wCHJGvDheRQEuIiHhjcZECCtD71nWQG1IKmdlyLvb73n/4T2lLd7k7tWol3xnTSVTUuEcJri6ImrGaMu6zFyms4Qt5sIwDPRdz/F4bEt+4Xtfw4Nq43/mnDgeDxyOB5SubdEvSa0hyDN/KYq/fPcMFEwNrMcjVRmWFKEGxn7DsgRRmyklaqycWJaF+4/3THMR1aAr3I57tuOOw/GBZRFRgh8lwVZXTVgC3lnuPn3L+48fRMXedSLUcQZdQKkKOeCdRlOwFM6XMxVxFD63kC9xq0moCaUwbnYsy8Lz8UxKlZBmBi+uo5v9llotl8uZ4+FAZw2mk+ctpEKOIt7wzjIOA0qJYnm5XKhFeMGSEu4Zxw3b7ZZxu+Pjh4+CjKqBeZVl9lQSzkjfsFyOck8UJz0PorQ31pFKpVRJR0dprJWFuLOWrqUve60RYkxmnhdxqg0jeZobKsxwOp2oWtONGw6HZ7pOlH5938KhUkJbg66GjDgdc6k4p8UCbhTa/qSKz3XGVnmGcr3eVYmUMr33xBjRurygsjrvpTdtdvbOWbT3KCCGyG509M4wLTPGGkxzbqTmbFqChC8tVXoPbxUlB6ZLYvpqesGnoM2Lu8/1Pcu8cJkkvT4XwaYUBU4r9vsbPvv817z95Gesy8y46ZkuBy6XM85bnDPkHPCtBy9FBEfQnDF/4K8/eMCXc2GaVtkiKTk0nk4TKSXZtsTAZuwFIhsTnTHsnQQwjMPI77/7gVLhk1d7BmebTFti1c9L4seHZ7aDZ5onudyK8OzStDRWjGUJkqqlKC+Ww5KuvD1x+EtDYdhsRk7HC4fLhaETNaEx4LSlKMV5Wem953xZ6TsjUldvucyr2KRQxFg4XyZ+/Aj9p5/QOamZaoOQlgrneeFf/O5LvvnhAwbDpjPstx0pF3748YEpZpQ2wppxhk6rlipZ5WAOYkdbg6Tl6sY28l63YVbm6XhpFtaI3QibRJOwmw3rKkoLlOZ4Ogv8OmdJj+ssz6cL17h0pRRj74ghNz6LeOG992LpU4aQZkqWBvN4vvDh6YCkVGku5wvjOAoL0Bo+Phx4fbNFqcq0BJZlJWdRbb652+Os5TxNHC4bxk4Kf9WS2a6HSkqZ58MJVRVv7nagFKfjzLTI4VKDWKaSEm7ReRLQrlGGnALH52egNnhos461JBsFrMsKyMuU25vkm6pONUWawO2lyFdVFKXGGFEN1oK2hmWecVYOiWm6yEasFVCmWQJyayjXuLIZBo7TzLjZimVvmtlst6zryrou7DZbnLGYcRRLhha+l6Iyjh3LMjNdzs2+W0hhYTrLVrtmaVhySmjnUEq/qPASUdLv2s9CGbEboPgJJm8sMcykGDkejnTeNRYImCpMKWUqaFFLeau42ezYb1+h9pXT6Uz1DtM7NmZDTCtu36ONZT5/5F/883cYb1jmCaUymkSqTe5tDMezyPVTmFnWBas9sYCNibBexAJaMpjK8bCgteE4TXRn+TPA4KxjTYltOvP0+DUYg3GDKIJuNigKx/OJaT7jVMXaxDTNbG8+Y7fb8OHH95QaqDWhjWEYNEPnuH//I6YrXJYL46YnrpF+M5KK4zJdSPmeajLLHNjvt1hzy3ku7DYd83Tk7WdvOJxXhqFQU2Cz7cgpQIoc7h/49c9/wf3371nXmeN8xCnYdoY1HNn2lpg1GotKonwzWlNzxCst1uyU6QYlKaq+AXpDZLPfcwhPrEEGV749F95J451CZIkz1ntev/kEZwbW+dLsW2JH6Td78hIZBo8xFdd1bIcta848nZ64fXXHuq4Mw8Dh6UHSgJcJpxW+94AMhvuuo6yicjoejwydI6VKyorBeXwnTdvlfJZGtfHKvPOSgO4c1nmWaWa/33I8XUil0veGZZrIKRJDkM18FbvSze0N6rlgrJzlzlmGzfCi1t3ttrz79p0oX+OFVLIkqWktAR8hiKoyJ1IsHGLkdDownZ8Z+l6sf9YzbjZoKqfTzP72Fa7bsq6Z0+mJvH5CZwynNTPHyDxNHJ+eOB8OnA9PnO4/UtZZ+DU5o53YMTsvaeYly8Dkyl+xTp65ceg5PB+4e/WGcTOw39+Qc+X9+4/4oRfuzjwxDD3GyAKkXFlmBpTxLwOBq5pIWHmyeU+ltqGrqKx638lgLDfLl6rCLSvlJ4VUlTOolGZR1BqlbBuetMTA3FR+qbwomWIqLGti6DS6amrNMigzjqoMnTeMuw3nKTBfFtYorFplGvs2RPlaasFZhdWO2BTmYrf3jcmmJRVOVaxzL83H1Qay23umdWZeE7a37G2Ps4qh82At3mqmXEhaEWtinQRRwrq+gJprkSYN1RLwmiItpJb0hiyyUoooJen1Q9dRc2pFurBBRd2gmj1aBmLCfpIlVQjhRR0naai8/P50OZHiyjhIQETKcq8NvWNdAzFXUaTUzN3+FcscmZeJSm12piKKGeckpV0pnIKwzgCkVLl79YZlXjksRzTQdx2970llRjiMCpThzd0b7h8+vFhOSk6oKu81SgmHKCUJarOOUjJPh4N8LkW1wZ9BKcUSEyqK5UUcv8K38963xlqa3JylsV2DDBM766BeOXnyZ/WdZ01J+LG2w3eDpIKvsp13tn1W8kWTUmx3b8Aag3cWXQ2yaNcyrCvCqqq1Erky4qwsf7VwhGMLMxPljgyerktH0xR9SmvQV/uuFJZ918sSM4stVpbYQazERbhpyypKQG0M3jq0lYVcTYnb3UhOuSnyVOMlJjSizrZaUYqCUumdRVcZrKwlClC+SsBZqZUUkzTAFOYQuRn2/Oz1G778+ku0XalHxVktYtlMC1+d7vnu23+Dth2/+7P/JzXOPBye+Ff/7P/Eb37z9/jFb/4hP//0F7z78UtSUqRVPuCQokDLiww8cxbuW4hi5a4xshkksKYWxW4rCl9tNesiTVffORyO8zLRGUsBnO/QRhNSwnUbfvbLDaenR87zTKLy8eFB2EoJdLbUZaYUCzXw+a9/Q62Kp6cjyzJxe7eHanl1e4fvX/P67cjNzVvOzx+Zzgv7V7csS2BZJo5nSXD3RrdwGln++b6D89rq/MzYi8qYKgOiWiprDvTaU3MlrMsLzN0aI0nKGE6X60JuYA1BbGRVhlI/fv89WsPtfkMqMuyYj0dySaxpxZTlxd0xbnuWeSLnxPPje1JeWEJh3O94ffMJP/vsV+SieHg48/H9O6jNnVEKKUxczhIWQJYQpXVdKVVCbna7LfO8sp5PGKPoncHe7FsQhCh1pHmX/qWUDErYjJd5ouSI9xs5H7XiMs2MoyxzNJWwrGy3t1itOZ4vTf0XpNZvYQC1ZI6HZ0IIxFIZOk9nLCkFHIrOe7RynC5nEkmG21X4s2s7A0tWhAprmlmzLOnneW0Jn1fMQCEmyMqyxMB5WeQza8N6URGLW0gp/bJQLyW3g0eQF7ndldf+Rcmcm85LEIJ1nmWeX9BK87K0n5ucIakkQoqczidArLrOXZdwzbmcRUihGlpDeiZIMQkP3lpiWF/susZKYMo0XeROau9TbjzSnCqVIqFR+hpE6VG6oJCBbikGnCbVhNeavM5cQuDXP/uEZZn57uMj5zUyuo4QV/l60sonrz9lPj/Tj564LkyXJKEuSs7szXbgs0/fsM7PxCAhOAqYplks10BIiafnZz7/7HP5qeZKToFpDRhvsUb6XWcUyzwR5gndZg7zkliT1Ibj4FG1oKn03mGcY993PD0/EeKKtuJa88qx2Tim5cIaKylntsOA00qEJDULIgLk3Km2LWFkUaeMktR0a1lzZLo8M5+fUUYUZWPvsFowUqDYjBtUVZyXM6UU+r6jFMEO1VIZ/cDd3Wt++PEHqftWcT/YZjfNVe4h1cI9qeLYHHzP4Aes9RRWfOc5TZMkRlvHZrvl6emRGBa2/UYcd7WiEexUqbQFVX7h7YtyuNUd+Yz3rqEzpE/VFWKVHvVmO5DWTFERXH0ZPKaSJGsgyrDda7ljY6tXbcNWjMNIpeKNpneWKc9UpRgb5k21P69axxojMST6fqQiA7scZbjXbUZOlwvPx5OgzVKk945hMxKjzBq2m4Hnxw/88P23xLiildjAN3Q8PR+IaxLRmVYviDrV3s8rRusP+fUHD/jWNWK9l2l9hTUUtDcc55UpZcbOY11mnRa2+w2naaYbhL324enEHCtbb7AoplmsBs5pYjR8eL7QWcNnr25EWZGRIshoSixoVZnnhe1WAKJjL/D8GIMkn1QZ72mtm7e6J8fEMHTCHcsS17zOIlO11vJ4PHO722GVIaqKNR6lYV1aUuoinK4YEktIHNfEG9cmfFpShL59d8+//PO/5HAJWKXpveL16z2PTxOXWfznyhhKTPTe0HvXmC/CXxAmkmIcN+gmCTfGtIGTQTvNOgVOp9CUeZolJPrOcLvfyRanJbtcGl8ihiDS35QYVU9KhWF0nC4BtEGvlt2ml013rkQjP7PddmBNhdO5AVJTaZshS6mFrvNYJ81LCBmdCyuZ3gU2o6TYWmvQBtY18fR84M3dnq9/+MhlWrDtG085taalkNIKtbLdDnhtSCkzL+Hf4g2KOqKzHdNpIaVACIs8Fzkwnc+ksDZlQ2qbxKXx5yr6at8upXF5JPVTI8ENYoGVC7jrRKYvFhwZEi7LLAW60SJd9l2DC5cXJeEaYpM5S6qU99Jo9X3HMAwtmQdK4xro1sh75yTdyTvZ6jRb8k9w20xYF2rO1Jy4LBfmef7pOY8S8tJ3wp7JKVG1aY1KszFrGS5fJd7WCLcgV9lI1SJbVqMVvoPXr3vOh5W4ZvY3Pb/5o9/weP+OsC6EPPPj/Q/MSxDG0KMk6TJCKgvzHPDOk8sqCqrVsoZVYLYoQojYXmEodENPnCJj36ONpJYaKrVExo2jqkpBuJy1RJw2eK9wStM5zxoLYV4puXCpWfiac+B8vDAOhuV4oZTEuiZWYLfxWFNxNnN4/w3nJwkNUKpiiyItM8s8oWtl8J4lJ0qIzCpRtGKZNa44ai5YW1njhdPlyBSe+fVv/xY/f/OGh/v3FE5MqzzDa5iwWGqFXmv2G898PnH+8B23m451XlkLksbWW5yreJ3ZOEVnDJeLKIS9kjQz5zpKrVidUUW2j7Vm5mWl32woKaCqPFfX1Ot+EBi+7TzaGdIScdaK/Xo0bIaOMGuoic53jH7kshwk2a4qwlx4WmZc19FZGarWWjk8P1NSpOu6l4bbWc8aZkxvOJ0vVOSizWFlqZFaLegGaa4taU5BTBHnO6gwdAN2s8U6T06RV69umaczvjF0wrpyfH5s74ilehnIb8aB0+HAPE0CrdcaVYWFt91sqcDj/Uem6SBBCkY3KH7h9eu3hHXheHim5sDT/Uc2u1vmSyCtMlzu+wGw7HZi93j/7ke63ZbzFHAu8PjjD3z8/is23cCwfU1/c8NlXSBELo8PTJcz0/kE1/NHiVXUOdfAxOrFZmOtbU2HNHSu8ahOxyM/fP89/+Af/kNCSjw8PrZgC8u6Cv9HmJtVLKTGMA69bC5XSToT+46VgsLK4AikKPqJQSbBVTkXYk5oxBYiCi+FxlCSPJPGiILdWFkqlSiWU1RL3W3JvGLXza2QqYQYsdrJYKUorFNkxCLoqqaGldw4QaWKKqpcFQ5NjYeSgJyccwsP0MQsA0gcDGPPfBGswboueOdkyKgscyrkkyz+rLKsuTKFlUF71svCFArkTMyBogzbYeByPIslTCliAWMzRokqOqXQODKKmITnW9tPdLfbSkpcDOSauUwC+tfGUqPwn2Rj3eyRGaJKoBW64SE0Cm0dqRSxlhqDM4bYUuOtVcR1Ed5gFuvu5bzinEXrlrBaNetcCAliLgybLRpRxaIzpUg6edWV8/mZzVYaa10qz08HGTxZqf8oFWXAKgPmmtQbeHp6EutTzk16IkNVaZQT1nrhl+qWuNcCspRSFFWoVbeUeqnXaIW+tdKAliqYBu81MYp6wSgIQVi0yhhCA16TC9rqF+XndjeSQiSEBW2EL1xylAZcVXI7k0KIOCuLraKQQJUkasy+91wuM0rbZvuRn62iYp0hZ1o6rwKtKCFjldzXVusXnqJVpgXMFbR1XJEqpUr9dpkmGZYX4TuKpcnQdT2dl5TymCSoQmtNyBmrDBqxKK/Lyu3NjsfnI7mV/kPfNbVXY/NaUZmqWtugw5KD1Au5SuCVMaJYpIpKrpTM/cNHYlrpvMEZzSVGQppZDzPWGowq3OwHUImvvviXeNsRY2XYdPzw9b/i+y//HGcqxoh9v+ssIUaUMTg0MdQ2PFVkDYn6srhFCRQg5oxxhr7vOF8mGRDGglLCPCRXsdInqeE+/exTcsp89dXvGIYNm/GGn//s5zw8fuD5+UCMwkkUZ0BDv5jMt1//nlQ9NSyyiPSJ5+cjfPsF1gn7O+XUHvXC8/meGMUabig4U3FW2G4xBIiRWDW5Ri5TwPqOnYVaxSa+hNDcEJkQI5JYHWSwbDRVVS7ThFGa7W7D+XxmDVH4vNuRNQTWhinyveN0fMIYi+sc03QgN9aUs5ZS4XR84lgqzhlqyUznBG3w7FzP288+YwkrYb1wPjzy6Sdb3n33nuPzic9/9pbLZWGzueGyzJSaSaHg3YZu6LC+xxrPm80t9/cfX7Ah03xhCYGEMDrFptf6vSqWP03GKovTGpUL83Jq/GdZ2AsSwKK0Zp6OjJuNKKFDEFZaSHS9LAtLyVgj6mi0xjjP8XSk5IzVUINC68KaZNijdGNZhoDMLYsoDq2iKsWaEik19mERBihasS6ydFDaSj5Dm8zl673u3IsV74ouUG1xUSitr66AfB5KgW82SqPAGIdCcZkulFzEcaB16xl1S7KVu3xd54b0ufL85GypVe7PUnMLaGoDPK3Z7vdsNhvWeeb27obpMrEsK/M8UWrhdJK0buekX+l7z9JUaNjaBvQtDLDvGcaRjx/f03cFpSuXKWKM5+7VhpttD+UVv/7lb3nz6jX//F/8Z+B69m5kYw3OVYahYzjCri/shw3GOt4/3HP3yuOjMLJvd1v2veb48COvX9/gnGG/v+PpcIBxI04k36OV4WY7yjygVGrJPD9+RBXhNxrf8/x4YNM7uWeKJB3Pa0AphzYyACsps9sMsiwshfP51AbUBqOEp+mdAp1ZoyiorVLEWpiWCau1BKXlgqoJr2V5ZJ2lpITvHb13XI4HlJZB1GgNx/MFXSqUhB8cndOyiCoFrSWk5/npqfW3VoK6rMVqS0yJeZ65//ABVYVD4bwhJbHPpixus5wiqSILnlzoekdOgXlSjFrCqLreycL9WZjkMYjlnaJZVWi4FEPUmhJrYwQXvJEw0FyyuChCxFpZCtMcmM4ZOqNBFWLN5CyoNd9bain0ThPq1V4rfN5lmdBNVW+MEa6r94I3acPKlFLDT0BGY72npMTQdVKPqiLD6tSWbQpSFPZuSZlxHAQbMl1EVNF4yONmy83NDefThcvlzPPhiXUN1Cq8+hgiy0UG+yVJv22dISRBunjnGw7jp2COP+TXHzzgs1YArwraplwkv7f7LU/HM48h8Hy68PnrV8xrxGop/jGG989HrLPst1vmZm3cDB1rLnz74wOZyt/4xSdNUWEoKbHbDrLVdAJF1FoaipLSi5zZOddsDzIY0Q0oOi+SSuqqhVJY5gXXda2Y1vTOw27XYOqWqjy3XnGYJN1JV9Ao1grzHNlusgCi93eUUjicLvzZ777g6+/fs4aM63pe7zr8YLl/mpguMzFnsWFR6AZH7yzGyqY0xYDVlv2mxznZ2qCVJPFNK/ttx1rh/v0TpdYmv5ekPmcVt7stIawsa2Rpg1eRYSPee+0kqr4qNuMAWtJy1ijAy65zlBgp160hlcskSjfTHvKci9iMqthUShXmzrwEKi2VtJMGzPcbpiUyzZFx9GitOc2B27007iElMJrtODC1pkQ2kmI/WdeV2zd3qFpY1rUNbyO+NULH04V1XQhhEZsqUtQvl0kg0imS4lUVcVWT0AZE5aekOkSVFuJKbVJgYwy5saOmeRJblJEkROc9phRyEVZDLaX9ecKTcE4KdWEaaIZhkMFK11OK2NpSlMHgZtyIalApwho5nc8M44hxllIyh8MRoFk0AikE4RCsa1M4yHNeG1OHNniUFMmGAFVivVat8S5FGIzWWbHJKfBaEo1KEQumVMRywFpvSSoQdWKJK3/5+y+wVpNa6ELMYsEbnRG+tNXEGqgUlhCoNVIRO3oUsS83mw5dICrZ3tjesc4LKUhgyM2rG3JYqXml6w3bnWxHfe9JUdOb1xjdMa8XrBZOhlWGtUY649HaiXI0lReehKggHKc5UIsmBYQ9VjJKB0J75oem3AirFDHniwTR7F/t6Q08nB8oBobBYruCihXLwBoKfb/Befjum68w5nuGrWcNgdOHhXHssVoRpsCbN6/Z9I75dKSoyPEcCMZxu+l4/yDNSW2wbPl3kbNrA9YpwnqmMwPHJdFvR5x3VEAZQ04Fo2HwlhAWxnHk+XBkv78lxEI/7tiMG5ZlISwT63zBeENJZ47HQNc5+s5RjXBTlmkhl4RXoqArFeFxGoftOmqq1LCgdaaogrOVy/GZqiTp3BjDsl5eoO8lJVxLBrfGMIwdVRnmJeK8b1wa1dKpJF3r7vUrnh+fUbVyPD6TQsB3PcNuw3I+YbUk6W53ryQwJyXCMpNTxDjLuNlCgZTjT8mqynA8PLOGla7vIAVySqQoKILj4YkUV+aacV1m2GxlYKL1C4zfDQOuc7z/8QfWdebVm0959fo1h8ePvPvm91iV+Pj+O37zN/8+Xe8JMfD4+Mh8PnI+HWTxkuMLB8QY2TbfjmJRTLVgnOAXhu1W1K8INLjvOnzXscwTT48PUpSNA10naXzjZoNrycspi72r6zzD0PPqZsfDx4+UxiuSYWKz4zY70NUI1BaLGCNwYLFlK7HxVmFDiR1MGhFJFhdVkXMt3T7Xpr5vNiNV6b2hFiVhDwYoidc3o5yniHowxkQKhZVCUoWSISn5Pd0Ce2ghQjIMs6gqqaEKiAnWmNGqgtLE1L6vIoObtSlDQ4yUqqnVkKJwY1OOoDTns9Qmzort3jqD1RBLwHWGGjIiMpEhie9EdSVqPn4KkKi8DLguFwmn0q3hS6VQVwk4KM1GWtud5Y1Yw5QVpbkkxl6DMX5ScUkokbDwtJXBkjHiXkBprDNsN3s67zidjqzrgrOmDUYUhMLlcmGz2Yt6qP1ou64jJhmWnU+zhJlZTVgkHGMzjuQkZ/CyrpRiUFWBlhQ+o1oiX1OPSuMKvXesCeH1oMSW3gLaQkkoJSqCUhIhil00t6WcNoqYxAZrlDg/ai6M3SD2GZqK0tkWsrSIikQrYQEV6LuNWEBrlZ9flnrWWFkqSq0qIVV97wWJ4R1e94QQiTlRgqTTKy0cyJKlJiq5NF5ipbTzqIK4LMx1KdIWjjVijPCkahEl+roE+TraMpKmoDC6vizThaFr+PSTz1jDRIwrfhh5vH8ipvSSSEgbEBQkjb3ve2k6UA2HI/UyVRFTfblHShT+qVdiu0tF2JY1KwYvwxSqpP6hKjlODJ2wImMSFETOEl5grOLH9w90nSdGBTUxeMtyWTiWmZutx2nNdmOI2TGvBZU0297ined8XpiKBKIolLy3FnrfsCatVnt6PgEGpWTA7J2VIWmpdL6T4a+2+H7gfFr59NMbSkn87NPXrEvls5/9EaVYLs1+vE5yXxgLOa0sU25DVs3NfoMzjvsPD6K0DZF8WUlkKKUN+mXJ+8knP2d/s+ebL/6CGBPbvufN6zt+ePcOq8GQUVZRXVPfZ0m2BAmEMMrQ+x6tBOEg55UMPEspOG1w1qBK5O72huPxjLWGnFu6IxXvLTmKGlvwNrNIhUppqpXSQgPljE4xY6woS0qJaO243d7x/Hjg6fEDl+VMnmYOzx2aiNMSFHd39wnaDHB85HLOdP3AJ5/9imE3cjkdOR9PxJjQWoZLIPzGkBJOX1VlMjiqtTCOo9xJXIdPGq0K0/kAyNkuavvMuNkwXS7kFIiLkgGfFXbvMh8IQZYMrindVC4YNPM8v6hiU64oazEloo1Yd9FGMChFhvOuc6ik6DrNfGx3JpX0omAXUYgoaaWXqBZ6K5iSdUmsMbWlu5xVVz66hKuoFzXvT+xa+XDO0/KiVPOdY55nUr2mZkMiY0q7A3Mh5viTQKCEpqRufE6aSqjWtiST0AURZjj2uy3b7Z7Zdawh8Hw44r1gRoyyWKvZjD1vXr/mw/sPjOPIn3z2M7795htCmFChEIJ8bdN0YVkiCsd2I3zjlC8IE/JMiROvX73msmY2WfPf+Sf/MaXCw/t3dFrx9vWew3Rivpx4vH+HUh1Yz2b/mle7Pb/Z7+m6gbTMrOcDp+WMyoZ+GDhNF3a3d/zyl7/l4+OZX/3J38Ki+eT1Hd988dc8PLzDqMh8PuBbIvQ8X4T7nRJLjPjBE9bAZhAn3hokTXu3HSUUyzq0TuR5abZdje9kORhTRRsZwI6952Y3ModECBJCOa2JGAuZQHGGmFZijiJ+iQuxPa8xJu62d3SDDPKd81ilBfFREr3vuKyREALGzKCEu6eU1Hin84XNZpC6Q0sKdecNQnKqwvnzFpDAF0RPJotQI4ggrTSdd3jvWcOZh48POCt8R91q6pwjVWtxHunroE0QatoYUo2CMlMwLYJgEV+0YRhHllWcZIZCv90C0jcapVkuF8bNRpa8LTil72WOA9JTCNtY6jKppWiqRBi6jhhXSntfpF4TR8Bm8DhruEwXUbZrwYbEIDMVYw3OivhhmRacNvTOU7UwhYd+IMckGLRN/4IZGIZB7ORrECGbarkE3lHaGWaMKA+1NvS2+288k/u3f/3BA76U5EPJOaM02Mazqbmw24gd8XiecfbM29sNzohM8nS+EFLibtPTd46wBuZ5IaXCYVq5LDNvb7fCqSiw7YQftyzLS2y0Qr3wWJxzLxfe1Yp0td2g5MO9XCZubvaEZWXoe5kaJ2EH5iqg1HlahLWA4rJGRi9JlZfLIgl+Slg5fdcxTyvLuPJ8Wfjim2/5i7/+luW80veezWjYb3uxz4XK5XCWg9c6csxoLYOYhFzYg3WSKl4K0zKzUQMxyLa0sxqtNGuCh+cT0yrDtGsT46zmF2/fEFPi4bLgvaPzjpClsPTe8mozgtG8+yh2vf1mz2USS8B+O8i2J0bmJbDdDhSteHo8C7S2bb+v7CLnLDZFtqNAcp+eT6QX5UlpajzH6XDieDoDwnbpe0kmfjqc6DpHTJF5Wuh7D6WQSpbUp1pxGjZ9zxpkIh9SYl0jpcGvj89HYgjyz7q+NJXLPAtQ3yjC0mTguZDKT01TWIUvcL30xKMvw6qr+iQUUc7VKqENKCkWzpdze9YVrhWPfeeopcNZw6tXr6gtuVbhePPmjuPh2NRHmdPxJJYuJUOMruuY5onaBmt3r19jneNweOb56Zmbm33bHqxMl7OETKwLsdn1YpQLWw4HUfos69IGKS2JDLGtW2MliVLRmv1OBkMNPHpt9rWVVKGUC8dz5N37A9ZaNpsOpQTsHlNhs/UMg2c3bjk8PzeWSG4cERkyhByJBG42I3ktGCX4vtO88vlnr5nfP0n4ivZyIe5HYojMDXrd9XB7owlpZomJuWQ0GWNge7chPcjnt64J42C326KyYlmkaSoaxn4AErrIJjunijICqr5cxFY+DiMFDSVRahQLm+kw1nFz8wnHw5nNOHCIR4ZxROnMKSxMNZNiZY1wWiacN+hViu7NVnF6vpATVGcIy8S29/Rdx+nxRNC1Jf0Kq0m2voVxsICw4qaYhdFgBB4/9J6iKlo5rLFse1HmdYOT4r2UdjZoHAFjQXnTAm68KGK04ePTIzksvL7b4b1BG4cqgSXMUpQ7YTut6yqKxm6kGzrO0wmjDc50DJtbQgws6wKlEteI8R2ny4QqFe0dlUzJq3AucyEEzc1237bSipQW5qnK4LCIsqsqYVfqNmS3TjhiRgOlsK6L2EOMZrmcORweMEoamFJlg9oPPTEsbMZRUs3efEqKiQ8/fo/rDcfThd3NK4ZhQwwirQ8zLQjAcP/hHXANNShYrbj/+IG+7/FeFAbOdzLcqpUcV7Zjx/H+PaeDMJh0WBk3Pet0Yl0EIu6tYZ3PxCiBARSNUV5sRFkYfIPvCGFlt5PwHa2g67vGkksoDJtxwzj0xCihPO9/fMfnv/gFRst7vRk6nNaELCmv1liKqWz3ey6nE+PQk3Pij//0b/Dx/sOL7Yh2x12VdtcEz9o4YaIq+8k+qtCUIu+6MaIIEEaXQbdwC+8s/dYyTxPWOrpelIhOWyqZTWd5dTNyPh2wtjIvGW0sMZVW8CjmGPFOE1rzNw4d67JitWb0HopwUVAyEI5RGnPf+8bf0lTVbMpFLEcqVNCtcNSG1Hi4uWSKElS6VjIEtC05vRSY5iADLGorDOX7kKAtsSPLAq5ilXmx5DprxVbZmilNRRnV7iEoZKyBznpSLI1vXAVbQHlhrqmmWExReMfO8sJHtUaGptoaYog4MwCKWgSpcLmcmCdRZ1zvr3VdKUuic55lzaSWwq6UljuT0u4V4bkJxkKYbdfvw3pLDJXBd6yhUrTGaUPNlVICsW3RFfKO5VqwuqUfxwS60HvLvMr23zdli9eQq0IrKwl80yQDNcBYi3YOg22DTRkcWy1cZKWrqOFqfeFYOe8IKaE0jZe4UhGlu/aWoe8pSjEOIzFGKiuGQgorvuuZpoWYVkqVZkI3G5s2tgHrxYJurQyaawFtHRbBsVybpGlZ0WhQLXG6Wdhzym1MTrNgyjun2zspzbkgB4xW3L2+Q6nK8+FZ4OO5vOANtJbE6FIbX1cpLhcJhvCd/HxLMYS14IzYetco/N8lVzot38PVWq+1qAzlHUkMvRObNOIGiCGzhBXvNP0gyeopRmIGVRXeelEDtuWA0jB0ig7H+bwyGYs1wrBcQlNBNrZkJdF5I0P4pr6yVpFLpkaanVPsjd5rqtIUuXQkjKBxDZ33rOvKzc0eZz3aeG5u3tJ1t4zDwPb1L/nv/uLv8OVf/Uu++OJf8H7+SIgWnQub3uDHkRCgpsDxdKYqjS4KSmIOCW3EoodqULUq/dDx8PgyvM21MofA49O9DGD7QfjKg2OeW7hUKW3BpejHLZtxh/OWp8f7loZd+eM//hO+++47chb3BQVs0aTLBWpmnpIwybWSHma+0Hkv50kM9EPP3BrQa/+jm4rsetaXqnBdxzgObIYd2/2OS4icjifWeYJaUBSMFr75Mieenx8ZxzvCurCEhd24ZT4fuX/8IKzBHDmvizB7lVimu76Xn8uySvNbwDiL0dB1PfO8oLUiFVGHDeO+Afphv9+htAWVZSFYSgsWkRCNnAvTZRLbqRbWmGlLEjkoJGDPNBVaThEZEkvCp/Gq1Y0ifgi5oELAVE1Imlhq41Zrei+igRBFfReypKHWNpTPpRBiJiZZVtGU1NYYMs0ri/Suvjm7tFHkXImxymCvKkCCey6XSRibVbje8ozJnb2ERdjbqvHVquAkrqpyreT9kSRtuWt8Z8X5cD5TQuDj/Ufef/zYFEsR30nauFKa7XbHp599xuPjPd+/e0fnHfNy4auvv6IWxc3tHj/PXKbA2oQngr5xzPPSfka2iSpGFIbpspDyt4Tlwi//yX+EcYavv/wGu+v5/v173r1/z6ef/xxtR/7W3/67vL77lP3bn3H4+IgqkR/efU/2PbthxA49ayrs96/5+PGBn//yj1hT5vOf/4I3r+9IGarWhDxTCBweHplDwLqOVAxdN3A8PkvNoARLoZRuCe0aXzQxRC6zWP/DZWWzHcklkKsh5UpnlLgBQqR4g1Wap/PUFGcwbAZqgct0lP7LyZ1rlWCLjNeiciWjSsHoyuV4JMeEpdVC+y3rPHPFRKQYUWjWsL6oRFVb5nR9h3OeGFfWkNiMwvkz1hBjEGUbgidyvsdkuReMLm1pJKGa0zJxulxQOb1YiGuFcex5enqSWkfEis1N0Gqfxr1tfl9yruSS5JlWPz3T2iJZADlymS9oLYneQ2eIoWBVJqRAVFe7elPLl4RtYayq3a+U+uLSqyU3jIv0Fr7rIGdCFFWraegE5zpR9TXxDutKcaJuLFjWdUYhwXCbzYbQarMYAmuRoJm+kwF4h8dYy/F0Ep4wpSnnBRkgDhtRJt7evuFv/+2/39K0/+Dx3P8PBnylcFnE32+v9gJtxArqB3pjWb3jeDmLpFgrlBIGyqbz9Nawttjk3W7LaYpcQmSz6fn8kzd8eHig8yM5JYHnVkn0k2lxIVfZ9IRaW8FpmCaxpaCEQyVqhIrzjvN5Yhx7SWW0hnkRO+iyZrwzDEPPtAS2o+N4XjguC7uhRysBUaaWdCMhGvD7L7/n//1P/5ycItvNht1GLprN4Hl7t+Pb7z5wvAQByXuDUc166oXLU3JlWiQJL9dCDhnfWaYl4LTGe0tIsKTM42XmPEcAtBVlRG81n7y6bUy+E7mIEnC/2/Hu4yNLSHRDx+kysxk7lBLI9Rwit7uB8yIJcGnN+KZQK1nUF7kqlstMN3QCv07Cfuk6x6hEZtp6kxfA+tD3zEtkngPbsReVnFLkUpnPC85bTqdJBm0hU3fizR96L5spKqoWvHGsy8rpPIOWVKIYAho4HY7yNcdAWqMwNVpyYi1i85FtZGkDK43N0mSJRF0UIrUWOQiaHD0lCbaoTSIrh5Emlxb3flUYOvtir1Fto/jmzR3zNPP55z/j+fBMiKtYMNZVGvPGtpLkIM3bTz8hTDPWWkY7cDlfsM4xDANff/01tRZhisXIfDmzTBfOhwMCW/8pSl1rhVO2NTe6KTlEKSDLUQmcscZKyIuVDck8zxhrX2CqRrck08ZGSk1aT4Uc5Zkq3tJ1tqkRCvOUmM4LT3ViXhO5glNG3By+sBsNQyfS8ZQDrvNUDXHKLKHw9HiUhKa4siyintzTU6tsNJawMG5k+J9TJjZVTe8VpSYef/xAZw1zkI1k58RmOo4D5IrThpJbYe8c82Uhk1GmsoYEdsP+ZsM8B+Yloq0ghkMIlKLp+h3juGE6PRDimcenM37rKJeEtcJ7mSfoB825Bqwv3Gw72RJrQ0gJbztRn6YFKOQl0XtH7zoua0bpSjhfUBW6mx2xQNagdeZ26Pn4PKONxTvDsiRsEmZT0sI+K3GRy3uR4YYq0iA6b3BKbONxyeyGjqUslFg4zhfGvkepRElyViojoT66KlEUaC0JW06jnGVjRqwBaxa0srz95FeMmx3v331FLoJEUJeJEiUEaNP7dnnLGTGvK13XU2Jgmc8411GTpusHad7HHayR7UZUyDk3tlkFpzWX04VSE8uy4r2oPU1VLI1jWBUs5wt+ACj/X+b+o8m2LD3PBJ8l997nHFdXRURGIhOZCUWCAEhQFFFFFmtQZj3rUf+//gk96TJrqzarZrNABRQACgCZkTIy1JUuz9li6R58yz3JSVubJQd9zYAMC3Gv+/G91/rE+z4v3mlKFvaOanB3fc3h7MA4jrjBgDLsdmdcXj3HKMW7N98QlhPzfJL/fhh6cqEUTEudGcYzBu+QoYssjA7nz9iWBVUT63Hm7ds3NKSI0EpTU4YWuLt+z+Xzj7m7uebh/oZ1mZl6AI9WsK3Cizo/OxNVdM6dEzYQQiBushUex4HdNLHf7yXxLOV+Nsn/WmOYRrGJoRSH/Q5lDPcPR5Zl5exsh9KKtx+uicuM1YbzswMfYnhSvMv289Geq/qmU845sRM1asuoqlEI301rGQa2zl0bBxmWrOsJWmE/GEY7ieWtFglkWlZ2k+P5i5fEdeVwccH93bHfSVFSFL3FWEsKmRArKOH6KmQ5FVPGW82zw444LxQapy2BNpRWIAcwTewWDagJb/tiR3XrZxNNWSrSuORSxQqiFFD7kFN1IHKRQlyBQlIGJcFWiwWr9kFNETtWUaUrMDSSDyD3ie2hIRVRdrf+rBmlaKWwG4b+OcnSq/UlZQNSrbhuYxGlhXmqqeQu1p1BDFvoqIomgzxjLDGmjrlwFCprzLKFbhprGsYqdJZhUiyRlGWJKEEQBasfk1x7uEmpwmnyvicQamJpkvhttNj1C6RUmCZPS5VSG1tKuM6KS0k4W0bLInE3jvjhjHWV0BfVIIXIYK0oE5UEjOSW8KPnsJsIQc5C1USFV1vBDx7nfG+wG9pYHAg/KIsyK8VG09IAAYQQCZ1du4VNkAGp0DrH2OjWG5qGMZLMXEulKlksPqqqRHT3yL8qGOeopT39OalKQIoM4uRn3UAYv3SkRmsSKGMkYAyEk5RzQTvPw/09MTiMUcxzor/2MiDsFvtaFcscnxIalRI1ibWe+bQ9JZE779m2E1T9xCosJYMWdIlSCoMoMIX52KiqEbeI82KDbk24xleHiXlL1CppqMI1lqH1FiUsz8bK+X4gVUVTmi3IQlVYoJrHBGmlYRwttQr/OkRBqKSisE3OJdVdGGg4Pzswz8JFSyVBkWCaRqMUy2F/xjwHnj274pvX18JurDv+h3/232HHHVpb/uif/glbWJjnQE2JdQ2kVLl4tsMXy931jQzVOnQdNMbqp7qylIQ10h9Nk6OWmZv3J6yWvofaWJaVUgtpjXhjqWsPwlMabRpnZ3vWdWUaPTLUhbPzPcfjHdY4rBa1vFL1SdUIcl8OVoaosiOojFYGB6VVLp+9YFk2qAWFxQ9WBqKl0kpXzinFYX+g0NifXWCt5e7ujofjPcY5Xr264v2brddKUIqiUdhNOwnd8w6rBfeR40rNol46xo3RC7ct5YIxnv3uXOy4dZGzrDTsYBkGT0yB+4ejqOIQhaE1Oxm2n1ZS2DicOfI6U5rm5jQzDaJAKjk9qfpy533FlOT8GwWxoUY4LUcRgpSG9wPV2M7rliFhKpHBd2YpmiUG4Wf376WioIdstNqgSdiL0pa4pqek6mVLYolFUUufLSLNvXVG7K1b6KFU4HxPty9V3gd0j4jUT8PJ1jljT5xxVfvy0VFWCVBUvR94FABIPywqc2dEJeydLC1zjpzmWf4UY0BpDvsdpVacH1iXmbAFpunA4XDJOB2Yt2/Ytsy6Bc4mT0gLKVa2Te66XLIsi6whZkkDnzfh7j4GXR72B652Z4TtnucXO+7vPvAv/7f/lYvnH4E13N7fcDrdcvewcFy/xDvFT37+JVuonHLmZz/+Kd/+5BX399ekBt/7ze9ye5qJ64w+d/zge7/DGhZef/UF5+c33F9/w/XtzHy8Z3CCeclxYw0BZy376cDxdMfgR+ZZ2Oo5ZaxuEsiorCjwdcV3fIlqci89DlVLBbAy7FeZEAsYMNqTsiwAT9d3eD9ivEHXgkHjtWH0EkbhnIHa2GIAxOqqrcI4zTiNbCmyrDPeGAY38LCuoBWDHwghCiu1K/BaH+Qvy/ZUy6RSqFUT4oY1Sti4vtvc503OAg16HChZFroyQFRM40RVIp4ppQKG+7s7rFaisvfiCCxZ6hTnpN9s7XHIhwy4SqYpGaiT5QyUUBdNTo05BFoLWCUMv9Ebmio03dhS7GFWgh9y1iCncRO7unOS3EunDAAlR7QGP0i2w26asEr14RsYZdGPQV6I88RaiwmPakTbXYGZlAqlp9607l6JKXcVvGN5OMlgNFdoj0I4cR+ICE2s0OA5v7yk5sK//7M/BVX5e3/37///MoL7//rr10/R7RLGwbs+kRSb1vE005TifDfhvefNh1veXN+xGy3rKluds93Kznv5sHcDa4U31x8IOfD73/uULURQDlUr3k/knCildsaTffrzhfdjfsUO6ING1RuALUgSqvOPfLRISTJUOttP3DychMdA47xvKEKIeO+4XTacluCHh3llGBxzCLy7uePhJEOzy9FxcXbO25sTZztPSoXLF6/4+vU7jkugIIVNqxWnvSgvwkYpmVIaMRcYPSCbAYVc0MNgeTgtrFG4d6XBtiWmaaIWGCb4/m98hFaKr99+AKXZTRPbtnBz9yAv+jCIdzwmQkrshpF5C9w/rHgtmfKlq9DE3mlYtioqwW4pqqVIaITWNK1Zt8Td/QO5VI5GCgfVE26VoqdEJs7PD6ieABtCYpwkvWqYBk53J0mK683k+dmB07xK0qExWKOYTzO5Nayz5BRoVZJcQ147uyiTo6TzPA67rJHBp8BRLQ0ZWC15piZhqXgvxV5thUbBaNeT+uQybXRFR7chpyRSe23EfptSZHA7ai3sp0kKfcAaxbpK2pGz8nnGKLzFGJMkXfbG0qC5vLzkdJq5uroihoj3ng/v38kBqh/t74HT8Z7tNJO2VXhK+pGPBTQp5Eu3/jw2FnJtqif4+jiM7KcJbQ1u8E/2Hd2HodaLbb11FUrOCWNMD2UQ/mMMlRg2rPeAZZkju4NDaYetCqsqJcrnOChLSyLDBs3oR2oSpp5xilENOD0wR0n+NdlgPFQitRmsV7Qt9rSvRogKbSwXZ1YS4EJhUI6qFKUpvDWi7mxFwgiMNGqpgcOgqsJb0NYKo0sp1jVJcawgrxE3NopRTNMom1EWYg4Yp/j4xTPWdWZZZ4xtZNMYmsLuPYWCN4pndkK3wuQN47DjetmIOXM4eELQxCCsO9VUZ+SIfMg6x24U+1CksMUVVaA6AT+HWDCuMQ5iTWlVMa+FaVC0XNmPlpASTVtGb1Ctchg1h51iWxvLvJCqRVtJwlW1QUtMfsJgSFmg048pbGeHPTEWUg6sW2UYDlxePcO7gXG34/bmhmcvXvHVV79k2xbOzy5ozTBMkcEKV0W20vqJmai7pXcYJeQj5oofPI3G/uwgG7p+VlxdXaGNZdkWebeLcB1TEa6Gtg5dG8eHW1CiWAml4CdN3eS5X9dVmkO65T+tpGgYdyMtC8tMYPVBmJopUkoi54ixmpjE4u68I5xWsQ4MA6NzrGHldDpihwN+N3H77jV3t9fEbUaTn7hyMpCpLKcH3nz5ObvzF6ynO073NzhjGLwTuX6rkgZZjbDakrx7CllK1JKpVdRw03gmZ/y6MOciz9E0soXAvCy8OjtjCxtn+70MkqeJDOhl5sWr5xwOe0oeuD/NfP3NO169+ohPv/NbnB2u+HD9gZxWKom4RWoTpEEr0kCWKgUJXQmhEJWRWGFF5a1qI1NJeWWaRj56+QJq4vzgub29YV5XYlTEzrQZp4HTcmJbNx7encgZlHadPWt6EUS3PvZeGgkAsVqjjGUOCXLFoyhaUZSo/xqKvdaMTj0tRHI1pKahGdYcySGide0sp8czUxiIYm/TtKbJqRJ0kUFBFN5o64Oc1AMHtBEOS+nphM5ovDeyRKqVpsWibLTYaUprOGv6kMdR0oaqpQfCBJQV7lPN3Z7pes1jtNjqkKWaKARluJFLls/OW0KIYrtuosTxvUaS30dJ02stTSkyci6UUjClorWllISiB34UjbUeFHjnuoJc6pVlXXtisMJ7R9kKTtGbBsPgLJBJobAuGzFHScmrTVK5jSzKvHWylCUxDh6lGrvRo1ohdZWfGwa2rTE4x+AcIQZhZUW5l2oq+GHoC4ognCxlyCjcJF9/CJkURaUzGlnWQvvVHYIkUns3dVXKxjBIzeAHR60yDDdGuLooGfg9BsZklQgpMvhBFoRdJbhtMoAzWtPtIGKN7GBvpXVX41uoCol8lecp5STg7Q7frk3+nrViR7LWoZU0k1WBlf22uDyaEgsU/UxSFWM883EVVRGiKspFlt2KPiHsdUSpRdIwlXqy6htjBL9BEeW4HjDOdNuaY90iOSda00+2Q7FCN6ZBmK25tA6rFxtVzonQlatKyVDitEWm0XC2n9DG8HA80prC9rAPKNSW8NZjjbxz3//+7/P+7Vt+8Ytf4JSMF0fviDnxcNwklEZbPv7427x+XVjW9zQytzcP/PbvveT9m2u+8+nv8C/+p/8Lf/CH/4T/+//t/yquD+fZTjPGD2JdzZpaBDWjO0qj1oxRlcszSbQPqbBuG4erC/TOkENkWRexNyupBXU/57VSNAPey/Be1yqK721GG0s+wuAsr64u2MKGM4pnV+eELbBtYonWiKW1VknkHAYnTaR3wjacznj+8mPG+YHT/R2lFM6urjicXTCfFuI2sy4nbM3s9iP3Dw8s8wPODTjTyHEjpo0QlqeQpRQzxsowWJrZE80MtJZptaC8J8WNbZFQwNhkKWCNZppGWoNl3ohbQBvFbhJF43yayUXUSOPooaMOci0sy4mSK2f7M3JOImGrhbPDhHOK+TiLS8YZchX2OE1CKRri3kgxyrtUsrConVjs1rDJfVvlHd1iJOcVZ/STRdgoGEf64uExKEeTUxTFb5VeyjvBw+SSn3h5pat4TEdH1VZZ19DZloJkqK0KC7cJl6umQqM+IR/6lI64ReH58ai6l7tgW0NHDMlZUXvwkyqCXLi6es48z53Ta5nGHS+ev+Srr79kS2sfMmrOLi/5gz/4Q37y4x/x/v07eU61JoaNr7/5JV9+/bn0fFU+01Yz+8kz10QuYkFGO0l09xYTqzCwYyFmYcpbZ1jXlTCvXBwcW4xEMucHz6uPP+EH3/9tdN347Ed/y3eUw1rLixeX3N/ecvH8BadT5Dvf/132O8/1w4mz8Zz9xUe8+g1L+vln1Lrx/u09a1jIOfD6zdccLs457J9Romc53WO14tWLF7x9/4HziwN3d7fEsOG9FeZiLWjlOOx3GKOZjyeMs+Qq511OG7onm0+jJ+SGKo113p5YsTSFsuppKdiKhOfQly5GI+nlqgjz1XjSmkg1Mzix55eaUbmwrQs5ilggxUhuilQ3CcQymtSXwclorBZuaykZ47oFtw+WUoxksqS4FhFRlVbJMeO8laVgk4HUsBuhgKIvpbIM60otqCxnDT0gxjlL6niJwQ99Kds6/1bODQliE6WycYP8PtbgjGIcJvxu5Hg8Sm5BFRdazOWJ0V+y1GchZGFcKs047NFaEfpnGpMolI02XTiiKTXxcDpRer1ndV8A1cJxnjns96haSVWQVdZoCg3rHd4a1mXp9/bjwkETYyblRM2CUsqlcTpJ8B998F5yd7joxyWrpAeHnNlZhzOa93c3bFFUx/Je/3q//htYdAsakdsrq1FWbK/Tbse72wdCaZhauNzvef3hmi/eXfOtVy+5POxZwoIqog7SzvHu3QdSzry8Ome/n/j863c441Dd1mCM6fwkJQlAWYYJkg7TIcYCOsF0lZU2UiTHlLqFR3HsKj4VZMs2jhNbFmjp5X5iCYnrZRXbby6knpBzWgO3rz+wxsTBaf7+732HmGTocVyDhD0UTc6VX/78S0lVtbK9VwoO08TF2YF1XdFaeDKHswlnpemFxrZtwjYCbo4LD3MSlaHqdgukOJyM5lsvnzMMnl9++UbcADTu7o+dMQd2cISwCZPGGFSG8/NzUV0uC3O0XB52hAexZRRlSLnyMJ/6traBETZW7dLveV67tURjDFgvzdB+GjjNsyTQKY32A9samFeJNdfaEUPg8urA3cPyZNPJWVQC4zgw+oEtbYSQ0Xhiyj3FEmrNkt6WKzEEac5j7EV17QM6CY0w2vQBnlgd1ijFplaPxWa3xfTL01jLmlf5/R8VcogVqSAXqjHScIJmHERpd319jTY7Li8uWbeVUg0xbLK96EOyxyQio/ohOY3YzvPbTVPfGnSLea2cnV2gteb25gPz8cTcGmFbn9Q1tTQJDmnSRMoWudvoGpJyqSQl1zonLBhjOT87wwBr2EQZkhODH55sPzIklBRlby2+9kF3KuTORtfKcHl1hdKN0/2D/He58ezlQD4YYork0IihPEWFG6VZYiJtidEYBj9AyhQimYrXyKbWClRYK4em4WxlOBPQcquFYRTuDK3itUFrS9gS09mOSQv8vpQsNjykadO2UUMAI3Z1TaVkiS9vXjM4BUVUOsY5SZxTEGulKLHF1dywu4GtNpYcUbpwfhi4D5GtJtYgKX8X5+eYllEo3DRxODxjK68Jy8ZSwSh4tptouTIdHMsWoBWojd04dkWKsJxq7bZUNLo0Us4YPRGWyDhZ2Yi2gkVzfhgYR8fptAnEtoh9SbXKcV44nVZihrOzS47zxjTumCZRcjgFyzJTWnhKVZWBdiKEwDgJZ+7sbGI53RL9HuM1Oc387LP/IAqaHFnne2Jo+FFSv9ADbhpJW2AcLCo0Kob9JAnR8/FETZmqM2hYt8j52UStYsW6u7uldctkiqJaUd1SYq1jGCbSJmpfUexqTEN4e1rh3EBYN9RuFE5I2HDOs64b435HzImdMYT5nru80dBYrZiTsBZFnaPZn52xLLNs+pVw0FKIUIWvZbTisBt4FyRZ0xjF6CdijISYiDVRQ8Y6R82R7eGGu7sPlLgxDHvSJsl+bvCEbikVa7ycdSFEtm0lxsD+cOBwOHQVTiGsa7fu6acFzN3dHd/69BM0mvPDDtUgbBtxWZi858WzZzQkZfenP/kpN+/fcvnsBX/0J99iMo0/+9f/L37+k7/l5auXvP76A/OyyCayq4CBJ7WA1kYUCAIToSLN6OCM2FkKLKc7bPU4AzdJi6JHW0k6U3InHo8L83GW31d7csuY2pgGi1GNWhqm/7u1tq5dEJ6dhCsIkqNohfFeOFi1UbpNsjbD6CT4YF4iAGErzC33Zc5j0rhF6dZVFRJg0VQTvB8yXI0hoZUgO6b9xPF+7paovlDylpxrV0+1zjyVZHgJRhBmElWxbqJsLVVSo60yeKvwTqOtYS0FakFrK4V9Bugc3CqBKbbXFUrJUlNUo3Rln6hoRE0o9tUi+N0eBEEPI+mWTiWHvKKhGhymM475AWNEhaa6BUdbxRqCcDStglxpSn4eqkHTiv1+x7wsDNqKMyGLgyGWIPWYsRg7sBsnaoqkuKG1DBqddRjV+vtk5fwvYgP0gxWLWKtscePi7FwGzH3T5bzjtEXyujJYGSqOfsSqgmqZ0helaFHV1SLDQav759RERef61t+7AUh4Jz/TnCNKa7RxoBoxFUkO1VBVlQEbdGWo2P2880/JyKYJokLmXQqlXR/Mqu4EkOdOvidFzI+pyD3qpj8vWluajIUE9B0k+ZLuFNDyQwPoiI4q6aYtMYyeadxzPC29dgClBMdRUx/4diV/6ZgbSaqWOiLmwmOqpzJWrJTeCutZaUqRz9hZsdN6q6kG1lAoShR3DsWaMqOT4WQtMAexk01+5DFUIGs4O0w8u9qTUmDdFl4+v+D+fkFpJ4rSFok5MDhHzIVhMNzdXnOcH9BGMU0TWxBO4Ghc54UXYtz4q7/6U6yzXF54tnDLurzj7TcH/vgf/QnH48r97bVYuoDSCnFdpaHOhdqKNGxVzh+jIOfE5EUMMFgjP58sjNJlSxz2A240tCUQU/+5KiiqCHc09XCUGJi8E+5ulnpgGGS4Os8zq6LfSVqsqBdnWL2SunJsHHaUlHn2rUuu724ZBuE5nZ1dcnP9wGc//E84p58sa6f7O+KWhOWWNxkGFoMd9rz61iXrmvjWp99lWU/89LP/BC1zcX7FNDqOdw+CYigNi6WETGmFMgVBtVTN8bTJnVYrRsmzY6wTq/EWODsb8GhqEYeRUTBvAa1NxxCpp6W9H0a8ldCBQsUaWKMMX2uMKDwaEXM82srpmJ2ShTcWk7D85MwUlY7pg8p5XjHO4byhiLccFGwxE4xgG2LcxCVhDYpur62NbYuUKk6wVDK6NrSuDF2lH5vcC4+WPGHudTZrr+GlFqcPr4V1G6O4AYytqCLJtCDnjmrdNlrz0+BI0oU13shQu1b592ofAIYQuL4WbuS2hS6qKCzbJuzu/lk3pBb80Y9+yO3tB7o+XFjQugsMqP2Oknc55cwwTih6OBOgtCxOYgyk2pO6/4s7I6dMLEWcErczt+sCTTMvb/mH//j/hNETv/ziS37/D/4J2jmunj3j5fMXHO9uOZztePPmhpgTF+d7vvObv8eyCg81BAmqmk8nHu5nqjI8++g3WdbA5bMrvvud7/Pzn3xGSRs5btw/3FNS5Ob6g6gU9xMlJybnwGhK0QzDyBYXYeS3wuA8gx/RGIzSaDSHyyvevL+m5CSYDy0qW9NEjJSz4DqmYRIrvLVoDLvdM5bTQx8gN6wd5BxcMlvY2O8mShaFPa0yWMu2JTCCYqm50JrwF7WxtKbEDt1diqVVwrKSq6hR5dEW10cMQWysVguTVxtikvAL3wNL10XC5c7PL9jWQIgRWWGrpyHoGgKK+qRoBel7c85P79ljzar6wijFLANRQLfGs6tnEmpqBl59NPL+3TUP9ycZbAMxw3GTn4vtQg6nYfAjRjdxbqgiitsi1maUIsStL6UL87qQSubqbI9SkW2TEEjVEtTQOeNyptOUMAWBNSXJMehOldIKeUukIjb/lJPcubWHVil5l8PSw3b6QL9kcaNZZ4TXmSSAMawntB3lPi7/fzDge9wICjRVkVLpEceKtp+Ytw1nLDWuXF6dc3P/wA8//4J/+vu/w/k0cnf/wPNnF6ypMW+R/W7ge5++4ub+RC5wmCzeWWFVGNPtKKqnQvVhTmcTpVT7JsbJ5rpWUhFLr7WWUiLWDgTEVnQMKy+vztmpxtsPN+wOezjOXJzteNg2nFXE1Hh3d+Tt2zvmsPLi8sA/+P632HlHjJH3t7dssXYVjsCL1x5MoZzYOC2G8eCxKE6ne4yVLQRNLrzjwxGMZTd6YmwY0yhJc/+wsZVG7NHx3nmsMgxW81vfecVuHPn5L78m5Sa8s66gk+ankdZNVAhG+C8A7z5cs9/JhR9zE6sz0nAk2zonQTFNnvm0EktmWUO/LDUfru8wWnN2tifnxLyseO/ZQhCLmBNAdUmFYiuqQUyF1jLjqHl2ecm6CU9rW1NXzRTSMclFuVZiyQIZjpJCXLOkh5UmVqAYJSm1lIJy0ngoJcV0jAGUJpUkX1PrJxmtW3RkC556Ok7pqbK6222Rf5OcMtoIu0Lsqj31ymixkj/MWGfZQuQ4z4zDwNlBlHG+h1e8fXjAeIeicXbYsRtHLi4v2FJg6+lJyzzjBrGdDcPAw/0d83xiWU6s8yzS465QbFWGkrWJDZmn4kIOEq0VFkPpm/7BD7Lh73B7Ua8GdrtJkkzroxVQE3IgpijPprHEKhw/1SStWmtwTrFtCyF0sL7zHE+RZb1Bm9aDBwpQ2daKdaBMYT85Shs5253x4tkLxt2Bph9Ybr9i3cQuOw0aUiSmxtnBoHQhRcW2CdTeO81+tOQt0Jqkujk/ssyBRsXURC6WWixn04FtW6gtkEtmDYGd1VinKTGz2w24XIHCODmWOWLPB1yCUAIxN6puNNu5eAUJcjAK6wfuHgJrkQHTfnJsa+PhLmKGjLMVrSpje46xnt3esmyVnbeYLDYiaxveQdgS+92AromcklinQ2R/PrLMCVTtaZKdG2aVqCCV4rBzWMDZ3HkmjWYMgxcbn6j1KnbcUzb5d0JYqbXx4tUnFAxpe6DFhHeDsFR1Zjd5cpFE7rAltIZ3796I/Wh+YH84SKHRIiWJmtq2ysM2o+yBly8+AW1JceUh32KdZ9siu3Gk5Ma6zIyDZ5h2PdDBYrTlOC9Y1Wgpo5w0wMKl6YN6Lcoq4+V5ts6yLhJyg7HA4xnf0Lp066ti2yKH8wt0a2KLSPJZ+8OBsG2c7m8oVVNzemI7DW4QBoe1bAqc8bhpEotxToRNCvzRDly/fkNcjhilyLWnyBvHMCjCFvrvObAe77l5/TXz8gAolBYY8e5woNXy1EimlJ6YmiFIoXE4v+D5i1eMznKaj9xe3+K9E0v/bg9Nk2Pg8vyAUcIKNdaRUua0bmjruNjtubs/8fOf/4Ivv/iCm3dvoSZefnzGq09ecf+w8Af/9L/nm7df8vqbd1y9eE55l1m2jS43QrRiMliQwVoGZNAn4VaKs/OJUw85ujjzaKpYFLfMvMp22VqD0oaUGjmBQVEUuNE8hTdk0/Bey9BNNXY7z7pmGWA0JSmn9LRcGnMKuEG+JqUUaE1FUY3i/jRDk8REpx2nJUDtiYWIEi+ljnQwpocNiWqudb9jk4uBnBLNGE4Pc09/E7uq7vy1+sQqlOZRMBFdeao650obrBa7lSQAi7vQdFSEhCpIM1iKhIBI8pyozlXnyVnXwze0hFNUBa7XFqVbVh55faonGDsn9hNjLeiCsZ5UhO0Tw4pREniS8oYbDKO3LOtCTkFUW2vpzSegNNYPmKYkba9WcogYIzzZuklTjxJt5OA9qQ9Ep93IOIzM/f431gjUX/cGFdWT+MTyqrQhlUbuDWnOWZACNFqWlNS8rPjOl1Kq9aCuhWK1cPOSZkvCCga69VfSbp0VK1Qoou5S2oiScw2UVLDe9qCrRG5i35Olo7gNHodSpWRylWFpyZmCxmlLMch9M0h6Y0hB1PcNUs6SYF9l2FdTfRqoy0AgPTVGpUnAmVjmFSklSpbnxnpDCb3B6Czq0pWrj/XbMI48PMyIcsHKuzXu5KwpYo/SRhI/tZL05Ert/qZu2m+QU0NVYUjm0od/MQvrsySaNbSu1M5Z6txcJNE4FQl20Fog6+OgqUpLUECW9EVtHxctlev3N3hrKQ0eHlbG4YxPvvUb5LrxxS9/+sSXc24ghcgvfvlTYpIFqB0cF4PmeLzHD5Zh0Jyf78SGHQsGRauZEG75N//u/8GzZ99lODO8/+YrfvjZDykpSGDV0C3CuTF4w263Y9aBeYnyrNcqi1HnyTExl0fVoyGVSl42wPSUSxnSWG0xSlJw0cITV4gSNiZRlRmjSJ3PazEY63rTfeDhNBO3TfiKVoa6rtdsrSVu796zbqLsnnZ7lu29hM1ZixuGJ0X6vGxirzwcCElzfHhgtz8wjAMfrm8opfLlFz+nGcvgPDlJU78+zMQQnnAkkxuw2uAVLPMqCa6tkGqT4D2kmc2IPXOaZBHQHu6xVrGljNWKkCIN4WQO00TJFWdHXr76hI8+/hRnGl9+/nMwhZCLBC0pUZaGGNEIu47KE0oHFMVoSlNYL3V6bUmG8cahjCcRsdYzTCNKaZZ0Im6rDK8QJbZWwgMdvCfXTMpR0k5D6DwycS1Y6ym5soXSk7EbW9ioTd4LcdpI/9X9fLLAMpouNuwDO7H0ZoRxP40GbwWVMVjNyxevGMYd7969ph+t1NYHy0rJkKXbB5+Y471njo/4qgan+UhMWz+v5XOjNVJcOZb4lMobtkBrCj8MYjeuFTt4KJpaIiEF8v2RWBSXl6949eIFu8M54XTHze073l7f0EqkITgtqgRwHZe1s94rKSvhY2r4yWf/gdevvyZX+OLrX/B3f+/vcXVxyQ9/+DfcvP/Atz/9lFwKz55f8nB/z3g45/r9G0av+cVnf02r4lSat4WLZ6/47nd/kx/96Kcc9nt+9Ld/zTLfE7aFafCiVLWKXGA3WC72Ew/3C+NhYksr27pyfyeMusEZLDBYy+X5JfcPJy4vz7l5/5512fDWUZvug1kleJFeQzUa6xqIobDbjzTg9m5mt1c8u7qCVohhpanOyvWuhwjprlyWrINa5HlR1pCjfJ9+HCDLnbZtm9QndNW19pS6ETZR1ktaba85WqNQWeImV3tfHqRUaUVcMLUVduMZg9+zLpuE1FQJN1XaME4elATyxS3RlKEVUcHlnHtwZRGUR60SUkUV5E7qAq3aOB4fKLVwejvL8tIo/CDvdi2aUhW5n3FrrAzO4wcni0KK3HmqAIYXz6+4fv+BmBZqH7alWgk1442itcy83hOCIEaUhnkTx6csUjPT+RkxBXJr5Nww1qON5fmLj7i+vubm7oFUCrlIsBXIsq5R+nOuaar2GqEjW1TBWYPWhhAzIQfydaNpR4nlab7x6/76b2DRNWybSArH0UkcdB/AGcArmaTTGi0kcix8/vqaZ1cf+O1PJH3WOcdX796Ra+WTywuU0rx+dyugR9OVHLlgRkPMhVJk2juOAkSsrVJTRhnxvYcYhfFhJMVvGDSn04acJxnbB29z3rg9njjbjVwe9tweF9pg2ffB4fv7lQ+3R47zxscXe37/B9/l6uKCnBPXd0fubiSJbtrvocqBOS8rhYaT0S3j6Nn5HYUkF+04CvAUOUhOi/CC0EjwiMwxOS2RNUr8ckUGTcoodha+/eoS7wd++fVbGWp2hUgrhdYVFqkUSi4d1AvHeWbyntAh8s5Z1jXyniN5i4x7z7JFckOioGvmeFo6kDM/Sb+tF2Wd8Fo2aMKPGgcv0dej59nVBcf7FajUkrrKTqTqn3/xJak8JnZlwrZhrOd0mqWobUUUKR3cTmucFrHq5SIqCGm4uhy91qfhV0yhN8XSZMUYmcaRlMTKUrIUoinLxdYeE/R6yETpWwbnnDAsesFRaDgndpwYM63KdjulQmsJYwINUR/EPuiWQkB1dYF8v65HcAuXq0lgR6083N2xzicebm+ZxoltOZG3jRS2blWR37OhJISkZoyynRkoCsNHSKdGCn3nfAeoyhajlv8igKR/P8poSpZGIYSEc1YSgnsQDt3yrjXs96I2PJ5O0KwEoTgHVZSlrSjWnHFjYzcZDIarywt2g+Zwtud3fvuPefnRt/jw7uf85Jf/mTfv3kpzXRuuX3yXzydeX0fW1MSSUKXoqRRygmIU+86mKhVRwTTh8Yym0ppBa6mKnNPE2EQNsyX8QX6eqhV03uTo0xqM2Mrcued4P5OjDBZ0ERl1bYrnF1e0EmhqJeZV1HcoKoY1FHbeEpbEumX8WNkNmu3hHpoi1YZWYAbLNFq2ecUOjTQH9rsR7xw1FPzkZJjRm9pp8KynJLzHrl4avSbGwuhtTw4vwjOCbi8ZME6zdb7OfFop2vYAm4Z3Guca6/HE/vKSU1iotbBudKZaZTeJQgxVhQfURNVTUhTb6JNlrHI4POP8/ILj/VsuLg5M+2dcPHvOzfU74vaAUZkYZPCWogzjvBPGUFVyHoyDJxexYvudhPvEAk4bDGIRNFYa8loKKSaUtk8werQkd2lve4Ms8H0QDsnDaWVNwg1zRncrvWENkRwDKQb8uKf0IYWxFmVNV9Bt1Jxw3mG9ZwmrpBkgIU41B9a1dHuKqHF2ux2tFtZl7kE+osQbxsT8cE2lMe7P2R8mUhEbsMGgkS18LD04wXsyFet3nF9ciQOpFmKIT9Z66yTVrRRRL4U1MgwTdnC8ff+BXArTOGGVJsfIT37yEz770d8yP9yzHk8c9iN/+W/+d0KK/NE//hMuzj7i7/zeH/H//pf/K/nDe1FoG0NVlVpVD6sVNVOpohyQLb0MYWPO3D+caMDghPGzxMQWMhVRycm9Vzr/SfeGT4YbqVZZVhlRSq8xi70JhVZaAmxqxSqLN5qYClsSPIcwqArD6OTzzI1lC+QtAo3RW9nqp8Tu4AihEmITSRvdjoVFYShV+KNKdb1gV11JKJIXjivCByy5iqoa4bEZ0zpnGFHSqUcrrRTS3moBSmtRTxmjmbwTPEQW20aOtafbtl7INoZhJMdEzTwpRnKWYIzWB5O6L6CElyu/v1YG7yTURMKRMhYjNnAr/+1hN3E8PQivC2Gfmp7w+3hf2D6AEI6PNJ2tW3p9Z2vSoNBIKcjQoVt5aaA7vc0bzbSbKDlwfbyX5R+NHAuH3Y5xmgjrSkobqg/yrDLkLEP+EhPGiPUnZQlBo/Z5bavsxj2NRkgLpWZS0VQMaEeKnV/arebOSGKpQn5muUpqnrD1PCmL9XqaBp6g9E3GXCDw8sFbWi5sYSMiCvBhlDAJAzirqCGL3bwv6LQ15E02/o+BLMATr1Qp1dU2wsLLOf5XX+djE66UNMlGy0AULXiJZd0wSobKpi/75B1V3N8ee90uqde7aS81UxVecYyShvqoPk0CPERYnPJ1eSvL0FQyqkkqbe0pvAqFNxqnoDVRIYLFe4NKmZYbxsK4t1ilsAqsa5ztHUpZwlZZtkRMGWM1Tgnk/eWLlyQghsThcMHN3S031+8oPZipFBnYZKXIOeL9RIyJbY1o1cipYUwWBmIonJ/vOZ5OpJRYlsBuGHHWcZq/4s/+9H/h8vycw1TZWuSP/9k/58/+/P9gmWfWTZwC67KgEUZ2SLmrW6VXaU2GI00pWlUM49QVXpvw9Loq1VqD6arPi8srNJltPpFzEr5qLDjvUSSWObAbRw67SZLAlWGaPGF9wA+OYXfB/f0DNUWGyUFtKGO4evaM47zw/MUz4hpwgyjZ15NwjUNrgp3Jsoh58fIl63xCq8I3X35OiBt+cNzfvkEb31UxieM9kpKqxJ1iEfZla4pl20TXYyQ0RmtDSQqNZhx8X3qDbgqdk3yGMTEMnlIKToviTRl558bdyNn+gKqB48M7tnBCGbEnlqI4O79CK8d8e826LNQmtmxaxSrXh+iJXEpP8pZwunG3E5sfkmpdfEVpWOejcJNrZRwceRN2nTLiarJWXBSnZZX+NRcOkwdnWbb0xIhUWpOLWHIL/T5RSlLOaaBlgK16nd36wKzP4fr/k3fd9M+Ejgx6DNU7Hk8s2wJ94C8cMLEAq76Mk1usBwwo6VOdlb5BQRdAyPIfekp7d0blnIWj1heQxigO+z2XFy85XDxHW8fv/t3f4903r/mb//TvWdZEaQ0/7fkf/sX/zItnz7h/+MBf/4c/oyrNYX+GOhTuTzN1kz6uAjFmCW9zA7VJCM3Z2Z5luWM+XTMNO/J25C/+3b/iZ3/zH0FbXr58RlpveP31a569fIH3e1IB1zY+//lPUCWw5Y1WxI79cPuOv/zzf8398YH59Jpt2fDO8fzZBbc3N50d19cYVUMVpM7kPct2wljDMO44HPacHc7IIYhDYlvRNO5ubyXdPWV2046moqTBxkbKBVCC6ujDNJlNjDycTiijOM33qCpKvW2T+6+1xuA9U8c9oLUo51vFOINVYh0VRagMEXVHm0zTIGrjIn277vdFiEGWhVUC0Lx3OGvl77ciPO3+vGgt3N1hnKibLHSaQjBXuZJiEQ6lUn0GNBFCofXEWWU1pYB1A9sWhOmqfK+ppIdsSpHySoqJYRBkSe588lzExVGKhGAqhSA9EIyaVlosu8jCqdFINXUutGU+PaDVrwQuuWSUFYaeNZbUKvNpozZ4WAMVYe3XLINYRWONoTvjYByMOPNi42c/vyWXRipiiRaXkXlSvyp0H6Cr/tciJBKVvaSCx5hoVf75FvqiT2yDPA0Pfo1fv/aAL+aCTpXzw9STyCSaPYTI+cWZ2GBVYtxNvLmRF4Cs+duffs5vvrrk4nzH3d2J4xI47Ec+fnHJT796R0ExWok13kKQH2qXOrcK0zTIYAFhp4iiSYZ71hhKtxVt22ODpp4KmGkQK40yBmUst/dHDmdnnNaNh3Xjzd3Mu+ujcOTOdvyj3/suv/HJJa02ru9m3ry7JmwRby3Pnl1yepgJvVhrKFSrjH7AOymyQgxscWOYJmKu1BYZnGxPQWGtbEa0saQaOW4yLJCgPvH4Wxw7Az/4zkfsRs8XX71mi4X9biCGSAzCjkpJItFblualtcbUWU8pZ4yxHE8rH7284v3NkQpcTJ6aM9u2UZRhWSNGO0n/nY9S8PoO6l7ExpZiIsRIU5ZpGPHeUHuhWbOkHTdnGSbPnFbhaGnYtiisnJJpNZNTxvuRZVkYJs/Vs0s+vPkgg7UU2ZLY1IzRMnho0lQ45zq3oL9wVSbopchL5L1YwUDUPI8BMCGEniglBXbOmWEUcL53pl96EoCydgj4eHaOUoplXTBaM44DpR7EI9+huseHBy6vnklCnzF4r9nv9/hxYF1XlNHsDnvu7u8ZB8/8sBBDJMeM7mqDbV1YTpKaGcNjOq4U56UzPVTpVjXTeoMoQFRjrcB1OyfJWStqE1pXlhRpUL3Yj/YH3zeJDW+sgEmNQinZNjovW8LaGjFmtLFP9scY5TmS5EJQWgZ+qn+9rz7e45rl29/7bd5+/Uvujvf8+z//lwznF+wnkUrH0Ki5oUuBUVOS4SZnvFLk0DBq5LQFjG0MRVJgSQiTceewDWnacsYoTdoSTVUsG9c3byThz1RqVmwpYjeYjCLlilNVfk7KszwIKNqrgRqLRKAbTcqRq8tzlpCZLp6xnGZSaNQUoMpmXQM0RY6FYaeIR1hPEu6wzh/YDQZVNLVmctNEU7h4cSBsMvwxxnBxuMRdTpyWlXV9YPSWWjXrmiU97pQEfquArnCpuRCDFFICz9Yo41jXBKFiDISYODsfeDhu3WKlJM1RK7wJtHgncnQFKBlSjMbgTEUpw2lJsgiwHucU61JBNcJ6oikBxU8t8fbtW6xt0Dw7u2N9uKeVjZJjt3jJ9tJaj1O6qww8pUFpleNjEurohROCZtjtyLlIsmtrgjAAcqOzs6QwtEbs9SFk3DBJ4phSTPtDZ8gp/Dhx9fyVJEpvM6f5QYKCxp0kmi8nTsc7dJP3xDsJP7DWsm0btSZGM9JyFUWxVfLvAiVGtjSjFezPDoQtin1wCyitiJuklo1WUnK37YSyA7bIwkopxbpt+FIpKaGtgM4vLwRqfnt7y9nZHquFyRZC4Xg8ib0yy2DFDyNv377lo8uPSVS+efOWeTnx4uUrvvfd70Ap3D/c8x//w3/gJz/5Mcf7O9nGWxlTfLh5xxdf/oy70y1/9I//R1599CnWOlEOd5agdVasrx2AL0qiKsoqegiHAtDE1BsSVWnK4LxhDY2SKkV1pRuSCuhdt76mbmXIhaYMuTaq0uhmWNLWE8glMEYZzTBq2Z57TzvJUktsKlGSldcoShXd1QpaE2ui4VA9xttYJXan2gd0RVRxKeW+aZVfSskzoXvabgiB0qoMlbuNQ9VGa6UPqx6tKQ3nZKA3jZ6chMGaUkJbT22isqoVUqo9WEoLtL4Iq0YpGP3AMIxPvB6x+7bOEaM3iJBSFuW4FfaeUpph8E9Q9WGQ9EwZ0EnifEmiOtm2FVTDGxnKpiShEE5rfGdr6R4KYoyixIJ1FmcN+/3EsqwMg/2VrUT1OkwrrDaiYh0tJv1KQW+sJZvEGiLKGJw17PYjBggtS22ZEqM3mKZRRpJ6i+nKvv7fuB6OoYzG9bsypij8PS1q9xQllRktfGNrNSmKJalUnsInWq2MgwdlsH5kW0+yTLOSxCy2N9nsK6PZQuR0kpCu2K3ZqEZZwhNPsLaCG6wMJjW0ViSpuDYKEsIg96dYnR+t1lbpvsRocr4jYSo5lz5Yr33oB/v9nm0NwgBqSYYjiqdhYEOGZI+LTGNUD6O4eFoWtIao1fsA3imFaqKerVWUoPWxplTyGcYk7DkZSsvCpZbMfmdwxrKeAijhIKcklilRZiu8bgzWMHhN6ty6cah4XZhGxbxpQoFp58hb5u7+rrOH4fr2GqwnhAVA1iM9AKVRMUaGvqJySaAVfjDkEmQAumw0ZLAk/EzNadlQTuNU5sOHL7j7sOPlq0/Y715Q2oHnL7/N4N+i7+85zQGhZUEpqTtxOhZGQaWSUpVUVKVxVbiJMWUJ9EBs7MZYUUvVRtxmtnVFqR6v0qRWSa0KRqYq3Dhh/UDMYnmd50hOkeV0YllXthjZT56QNwkMaoacFnKKXH94S+khLdZ5mlLc3Z0kXdsNuJ4QfZrvaRTWeaZUAe5rJNFyXQOTH5i8R2tDDhJsiDLsd15C82rBGUNVBjrGotUs7getOxt5o7bGYTcxDJbdODBYI2o87/HTxOFwxjIvhG2llMT5+cA6byxzolnL1fMX7MY9Nx/u2E3noCDNvn+G/Zkscmc5PxJz7mFyCkUm0oTj6h26h7eJGimQQhD+dY6sHeuwnwbWsDLPc7c+Pi7ALSFmUtrEvVQb25ZpHZNTG6LatgrvJVm+VbDWsWyFECUwkj6EaFXCkZwTi7HVCu/sfyXpE257JeZCSIF1OfXbqvHoQeJxoeT9k1Kv9rta7tzU76m+rIOeAg50F0BKSS64VrBW7qHnz1/w6sVLXr56xedffsnb19+QSuQP/t4/5Ksvf0GIgcPOMRwOHPaeb776nL/4839DrbMkpGfD+bnnN779irdvrwlBQkisdeymgZyyMPVVYzda3n7zDU57jHGcHw4EtfL88sC2zrz55Y+ZJieoh/WeX/ziJ+JkKSdKElTSaQ3CkL44Z9kWlvmOVgqffvQJp9MRpeD2wxtyjuwGR+tWZ6tlcdJIhBQokliItU2CaJRGGUUIK2lNTNMZJSRA3DJnbs/Z4bwP0xKg0VZLv9RRSyknHh5OLFvAuIFnV2fYJlZl7yyFhncy2HsMbhhtV7+FiPOCuzjsDtzcSUq31fbJ/vxo799NI0prlmXt7gFHaVJH55KZV2Hgp5QkNVpp4R0rBUqTc+b+4Z5x3D1xI40b+nssKmytZAGIVqxrk8emq/e1Ftuv3GFWeult/dUMRmmM0qANRjtaFSdoafI5l1bxVhh5pQecTeMgz7RSxG0TljWN49aE9WgtqVTC/R373YhThnWOPS04442oiY9rJKUiwWoVcTQa01EUwt+bN0GIybspCu4tZKwBbz3zlkit9DvUdNXtowBJMgYa9MAsDaqRiyxcjdL9n8lzoXr4zRP+5tf89WsP+KzR7CaH1bIFSCGTG4zTwDyvpJwF7twa59MobJHjxv2y8cPPv+af/J3fxHlHA77z8pLTlnh/d2T0HlV/Fas8eEvs9qVxHETSjiY3eXCaEkuXdbKdDCmRovAQJJ4ZoMjBlbP43otiWVe887y/O/H6+sT7hxO1wM5q/vC3XvGtj17glMSdf/HFG+4eThhtOD/bo6iUXFiDeK+VUhgl6XSus+Aejif84MmlkueF3TjKRquDnd2AMIwK3MwLIcn3nCtoLcMX7z3nu4FPnh+4ODvw+Vdfs4XI1eUVDw93tM5xW9eNaRpF3XjmxG5LI0XZRIhdzKKMJJ/lJOpHfb5jW4W3dlxmSg9goJn+tcpgzViDtxZlhEk3eM9xCZztR2pKeC+A1NO8CMAyganSuK1LQO0dMVbaIqnLKeUezBJlmFdKt6SuhCXR6HDc/j082lbUI7ukh7rklPvE/PGSEjuS/y+s2iJ5zThnRVGUBMxrXd9iAc+eP6PkzHxa5DApwro7O9vxcC+bgN00orpKQanGxeU5lUKpC8aopyJ63gItCcNmnmcZrtievhwTpRTW0wmljbDfqIR1xVlHbpJUKd+rJPfUx+2MEvuqsx5Bfwq3w2rNtNtjlGbbJIQEpbq1q3a7V4/lbvJplW4XQyl2h6mDPx1KVebjCTsIO2qYPOO043S/yrBPC7i4df5fa63HoitCaHx4H7G6sKUfQ505LhvTMHB6v6Auz3nx0QtqPvDy+cfc3b7h+PCegUZThZQjpSlyyexGzW7vcEWjstinsJbd4Lg/BVJdabV1Vazn4bQ+KTCUiqASpVhqbaypMBovQQ41o52TLZlqRAotg6oCo57DSgqN0xwwrvL6q5+QSuOw15SWCSkwP2Qu9nt0K4Qs8faDM9SoaUURS5JLSEmQR91WqjNkZ1DGiydPQQqbvItZJOO5GlSFnbPULOfXOIjtJqUkm+Cu/HncdAuoV5riUhqpyNC5jj2tq2VyUehiaAZG28gx0BD2ku1LmVoEzmy9k81YqaS0cVA7rBvBOYZxx7ZsOFuJYUY1i3UT2g4M+4EYBf5bqkUpR6ViXWMaJrGAG0cqEhgw2NrtRHIOt9Zwu3NePn/B2zff4JxFOUNFGrWcogzh/EAtqYPZqzSrV8+6IqawrGIzGN3A/rDn4uoFx5sPPJxOXa1QGKaBcBLrSexb6sNuR0iR2jIWxbYsnVnmZSBXKzu/Y0mRaRgk7bAZShWrfojhCcIdojCllLYM40TaAs3A4Bz73YGHhwe0gWnYydDTWoZplIbLDx2wLWlglETNErxTekDBo+1hGBXTOLCtG9u68e7de9zgef7qJakUXn/9DX/zN3/L1199wen+jhwFAi7Ndt9PtMrD3Wu+/vIzvvXRD5iGHfPphlqg1NgDQzR2HFDI4L/kIptJ1boduvViRhYFaMu6igpDIYuIkCKq21dLgUTp6d/qiXtK/3piyD01UZ5NZ10PelIsW0TT2O8GdnuH1gNrkOd2TYnp4LFaQp9CV0t7I0ysWIWBsrOWwTrWKKiIx3MUOWVRSuy1u2nAW0NOkRSlyBbLVseEKIXzkmI6DpZlSZ3/Kama6Ma2brIpHz2twrZljBLFHYgycz86TFdpjqNHKUve4tPXFGIUBUaFVDLj4LCqM9ke7z2lngZR+524Ch4bvFobzk/C3CwNYx2tFSBDVxl6a6lNhj1RJPSyCbe2q7FSDz/RMqwqheW0kHIkKS2pkUmYb0ZpnBfLpPUy4KRqKXKNJ6aEM5bDNEkz3BppCyxpexpATeOAKlmE1lXOusPludj/coFSaT0xMnUV5RZOsgWHXvfJwqJW4SlabTEotBtlUWhsr7d+FVJltKJEYQm1KugXjUFhGMeB4+lILklUUkqsUsZYecZjoBTIWgD/pSkJbOlDWaVaTw+12MGxNqQ2LFl0NlpRc+ff0ZsstPC+ul1cK9X7fbEE397eSVPuRP0Jqg8L6tPPuNVfWbW0UkzTHmc98yypo0k1WiygHxdX0pjIGfaYKCi/YhIEi7DDKi11FZLSoAqDd4zaMLjCFossAozu9bcj54oeJDzKeot1nvvjSqyKURIn2A0Wmxt5W4XxVuW9CkEcFKZlandkNCV1l7Ne0hBRwqZSoFNkGrywYXvjZWyjtSC1vz1j3E2s68K2LlwcLqg5crfdYocdf/gPfpfbD2958+4raBllKofdKKifIAnUFanhc2m9SRNLOUUCS3JfumulxH6sLdtWWJGhL1RUKwzOst+PzOv6pPg1ynB5cSHDRBTj4Zx1WTAkSgiypK5Lr8kdKVWODyesG5mmAWc9W77n7mEhF0m4VquEz9Ra2e92lFIJKWJVY1uX7pqoVMAUCUGQAYyhZRlOq852ds6LgrdWtiiqQKOled5NO7SR+jbGDrsnyfNQOks7V9aQ2B8mhq58MUoWYjEscu8pePvmA89fvGK3u+Ti2SsO+3O2sBATHO/eMs8LqitjDufnxLB2QYPCOo0OmnEYoRXWNdAQ+7h1EjIWu1tmdIaSwVuDKYbQXVGn0wO5SE9SEbVS7mKCx4HKGh6TsHu6fE+cHycJhmtNngcJaGoYU5lGQY6gkFokCdPeeyuIIaWFA4bYeZW2YvfUgiMxBqbJs67C81VaU5vuCmD1lAb6yNuUr6CrBZHaXfoq1dEP4jxrIaKA3U4ECuM48Cf/wz/n02/9Bh8+vOcnP/5r3rz5ipQzN+8zP/uJ5R/80R/zV38R0W1Bafizf/e/83f+8B/yj/7F/0SNGzFmPv/pZ4T1lloSl+cTrU2k3HBW0ndj3NBNg6q8+/CWF1cf8fHLV7x8/op//N//j7x/84af/u2fs83XxHVF48hh5ni6J22Bmhu5iv1eI9bu82cvmMaJdz/7EbTG+cUVP//8l4z7c7797e9wd3sPqnBxecXdzTVNFYbBSsp1aeQkrOxpGlA1Ms9Rzoqzid3ec/+QmNcVasFbxTB6hnEQ1mAf9Ni+bCldKe2MOEa2vkQdtKKlyinMMu8YRrlX7MDxeKS20i3NDaMkqDCXwtXFFcu8yHJqlNC6GEVZrY0E7RSlaTU9sZLl/B+lf67yjC6nEzlnpt3IGlZa0xz2e5ZFknQH60gxsK6BYZJ3ZfIjflCsYRVEWq9/jVZYa0ipcH5+xbKs1D5QVrQnbrEMtiq29/NGS+hnqFEcLchzLNbe+sSKbyhOpySojo7YsEb34XUlbgmlZYHu+4DOOy+1VukO0O52OM2RqsW6/1gzlFQ7f1mSkXfT/ikIK2WZJa0x4LynpoC30JSh5iYhoKU+vVuPQaJAXxI/BvhJPdFUT6NvFd1Md5T86h39dX/92gO+lAsPc8A929FMwxopVHOWZM9WG6cQmVNm1JqPzs/AwJt3Gz/78jW/++2PORz2DNZydXbgz370haSiNHh1filAwloIUTGOTtQxQSafkxcLWW2tP1BihXgcBvluszSub70LKCVDIZNlU3LcEl9/ec2Hu5mcEvvJ8v2PX/Bb3/2Is8GyhMS7+4UvvvlA62qvs8njrObhGIWDUTqsmCo+biXJWvOyyVa7bwudlhSeFHN/0SHFwmlJxCSpQrGItUP1xsF1O9Inrw4cRscXX72WwsgaTscTYcuMk8Vpw9lhRylFEkCdZfCGdQlUVaFII5ZyJGyJmpKkUWrFw3Hhw+2DXFpJinOUklSkJkDcXDLWGUl+qXA6CaSy1cbptHKYvLD0UumfdSXWxOXZRMuFFAMLiVY12hi25fQ0Sd9yJqSEI7HMR2iirCtRbBpP8dVGrFglP1r1ZKjbSiVlsbHWfniUJ7Cn/GweVTkyGEzU3hhpLXbIlx+9JKfE9cMDEl3tpUGlcXtzyzSNeO86G2ujlsJuN/Ht73zK3e0tcQtMw8A2RULYejiIZW+EsVBSEjugE4VF3DZiCALULRnnjBSw29aT8R7fMDkAngrUBrVIc6+07vZcseSikMNDiaVbknZVH+zJsPFxuFyKFMjOS0phzY1lWdjvDSlupLjhxj3WGHKsnOKRGMSKguo2pfYoRVZd7QOtNObj2tVJM4edlyIzVPY7z+XFFbVmKJGiDf/sX/yf+Q9/+W+4fvtDlDUMTuN8I2wF0xzz2jA1oVIjK0XJYJcgz+9gaVWzpUJtDoxccLlv1AfrcWii0xxjAKMxJeNNZUkBPRi2NcrwQmuUVWxpYxpHSo7MOaByRbVELJCTwioF1dFKZQmFs53FlEQrfYu192xrFGk5iquL55SqmSbLfLpnWTOlRJxxlBhpapV3zFlKhqLcE4jbO0N1mZYisgQUixgFdKkY08BYvJ8wWmDTISZJ98pwc73gvGML8kxZa8ldAVdKphXZtgujsYERtVMprb8fBe8HCajYkhQLdSZtQVh9qTCOo4QatcTd3QeMdpSsGIY91g1YZ8X+4D339/dcPt8zTBOn4xFdKzEI0sB7J6ooaxiHSZJHW8UNEzEW6I2T95aSAjklhnEkpUBYAqe7O3YX52jrngDCVMXZ2RnX799yvH5PSRvOOHbTxDqfUFUGVVpByIlYCspopnEHpTLtdqLMbmLLFc6pQKhLrU82SashFUlvdkbYXNMwsLXG4XDGFuT30BgGN0ApGN0Qnh3EFLDaCF/RPVrDxV6ekxTuIQRiCozT1NELotZa5lkUuj1teBpG5nXhxz/+jNsPN9zc3DDPJ473d6ynE9M4kGLCjx4/eKw2jH4kh8Lp7pqvt8g0WI73lVL7O14lkKE14UJpq7HN9OGJ8DkflwaPKoBty+QkiWqttadzKhcJtlJ0rosSyHJV7YmJppXpf56ce0brboUQq0ZCAo/WTRQj02iwXS1la6Glih5HhtFx9exCOFs5MXjNvGVefvodHu7vef/2Pd5lrC6sofMFK+SKLEekzOrDNbo6D2nyaukNlwx0FYqSmiBFWrd85iRcPGMoaIxyrOsKSmOcsPZs/29TBT96yJmMklT1waOxlCjvgh+c4E6UFqVjK8Ko7aOXlCuuKzO3ECS4pworx1jH8WGWIXFtgjJAziznnKSBpq70qEqSpyvEWvDKoRE+Iq3SEAVfCL2OUGJv1b2wB1nYrt2mU5oS9pRWxJhY00kWhlp1W5bt1jOBVRs/onIiB1HlGysha2xw3DZ23uOMAq1JTZLscm2kEHoAFZLOmeSOrIhCoKqM91osnbnhnRel2bqAETUdWuMAq2UgWLXYyu3gSfNGirm/teC8LHFzKdQq6ILJixtAQlk2klYY459UP7rb8UTtKHZr0daYPtBXPY1RgnN057ppI7Zq54SvaIw4Kugp8I3WFwyiyqdK0zCNnml4DKSQ9NnBD+x2e+blRK1V1NjjhDWNdV26ZVDeBaUglkxT4iBotVsOmyR/WyPhV6YnIVMVD0sCm5isojZNlvITlPBWT2nmYAZJSjYeZxWDa5RqSRSGbhmNMTF4KxiK1tiPRjjVVdjJVovanUcETG7Y0bHOax+xSK3H4Ig5MwwGDHijGYcdz55dcbqP/OZv/x4/+uyvSSGwzCtnhwmdEjE88PmP/pbT/IAfDGlt0Cy5JHKNpCRYGIwHpWQB1VUYwrCSQTa9zmwigpfhWck460CLosU5CZjQ9sB3fvO7bFvgNN9StkUGXa2h7EhMjWfPX/H+/VccRkdIjorYpve7vVgqq+a4LMxbZBj3XF5c8nbbiKmSs8Ia0AhvNsXCq5cfsRbIaSGlxLpmjNfCnDMGquJ43J7CZwZjSVHYcjFGYgx9CSaJ2MbI8iSnSFwyxjpi/2ctK3bTjmVeWIOoR5VqvLu7l3uiN/SymCwcpgFrPKf5BLe3jP4cXS03Nzc8PNzy7t3X7L1F5yzOLa3Z1rUPGyCsy1OzXXMlJ1FgG+fYTefEKCihhpxHKQYMoojW1hPDTCyRSsM6QyxJ+lrkzhudqBJLhZASgxdLcC2yjPHO4K0ownIGMKwp9YGGEUV5bU/WXamlG1uI5CxnupyrVoQMTZJ1H+/J0Q/UUtm01HOPv7SSu3ddZHH6VLjTZb9NlnHyf4+bJhkAltbDBVWjznN3wq389X/+T3z55ZeclhPH2w+kuEk/GGd+/tP/iGoL/92f/DFnhys++s73+Prrt3z22d/w9//oH/DJt77H/nDBL37xt3zz9Y/567/6c5b8wP3pnjUmrBlIoUhfP41op9kNlhzucf4Zy8M1//n/+FdsS2DSilATL19ccro/8bCJA09rsAOUuTE4DzR2u5H5eGRZAoN1XF09B224vrnm+f7Aixff4qvPf4J2ltOyYJxnZwytxr6oMyjnUTlBH9DWkvCqobLlYV4BxTTJIFRwWg5vGnMXEORa2e0GcknMS2awos7MVfAuo9donXugHFQFyxbF2dAXR7YrhK3VotQuShaPORHiCjS0tqKI0xqj5H6QwbosVox1xBT7ULtgrSPHSooR33v7bdsEX/EYUtqfu9IgLAvnZ+eAuP3WWb6+2iRgbV2FmTeMEoSVcu1OnEB7nNH0wEtjDBW5w1V3JohzTvflsfT7a5SAkGkaOC1LR0ZJbsAWI6XJUDuVKknmKLYgQp7WICJLjWUT3FHpzgelFE7rLhyrUm92i7vWGq8NymmoleNpFjeE0Wwxi8U/Z1Euj4MM52JBe01pmnS/SCygErWhslp6bWcJKZGzNHESMtPQSu4LCQVtT8u7R5HPr/Pr12fwGY0brKhdQOD4OUv6Zs7kVNCDZY2Z+3Xmape4POyIZ5V523h9+8DfuTznd3/wbU7Hmbvjih08j5HfKSas0Tjn0AgDR/ikMvB4tBRYLTL4ed3w3kFrHewowyqltagwWmWLma1UXt8ceX93ZF0jk9N8dHXG73znJd/96Iw1FV7fnPjm3QPHNeCtZrcbuLoSK9bXrz+Qn2SwBe+EKVJrEwZK50DVCvvBM44DccucZnkZrRFo9hI2bk8bucpE2Shh2wxdyjr6xkfPdlyeH/jZL74ixMJht2fdFna7AQKAYd0CK4FhcHQnHOsa2GLqgF5N0QJqVlVJ+icySD0iUH5aluTRJkrE9hghiNhutbac5oXWFLXKAVp6kEluFV1VV0VpSq3Upri9e+hwzExMYu012kicdExsaiHNhbStNHqR3XrCDlX86X2QF1PE9KYqxdgHXKqn1FVqEhZWTqL600p1oCyMw0CMgVwK3jmsNWJjzYlxGjk+HMW2lIUvmPOjdUWUASEEpt1OLIKtEbaI1oXjg9gc9oe9tIPlV0yNcTex2+9Yw4aqUFPiYT4RY2RZTtK8d7BuipGcUmdrKHJIsjnqyXQgypHaJE0aJfbvYRil+D0ceggHWDonJGfoA1GlNVYZUWHSOT5985E7O3KZj6I+WmdprIwMXUyHsudcaIX/SklpjBPFQ0lyiGtNze0J/H5cIsYqRmd5f33PfFy4eHGGJ3G6rvzZn74jV0l9bkkzz+B3CnfQqFDJm6jjdG8ewpaJxuB2jjlliA1tPCUnrGqcn0/ELWKdE6ZkLWLHrZVljVwcJpSumLyBqpSmnthMrVScUzhTMMoQUuZhAWqmobk834sVLxSxqRjLaRbgbkoN5w2qJBm8bZVtDqQ1M/gzIDIvM601dqOA/MdhkEYXTdMaPWjWLZK2gK2aY4wMg+bgPWsMWC121CebmwZvBSgdQ0QhHEhtJN1NrHgG08OJWpMQDWUao/doC0tIpFoB13XiMphsgO5n2N39HSjhPCYarWpO88puNwmPLCloGeeK2KS9WMnW5URDkZtCKcMWNsK20kolh1WYIN3qLfweyCFxe31LzYmaIsaMlCZW+9yTSFPK0GRILfw1OD3cgWoM+3P2Zwfm+we8Mdy+eyOqme1EDAuaCT9Z4pKYRhnYK6sJ60pRkpw5OE8oAWcdbpxE4ZOipHyHVRS21jLsRlg3Wo59YAGH/SRA3hSxVtLJdtOOEBrKOGnMcySGFT9MWKtZ10TJid3+QIqRsxfnHI8PnJ8d0MD9/YNsZkNg2k1SnJfKw/0DpUmAT1OKYT+xbgu3N+/5xc9/zLbKZ2ytwJBd502uIaC0Zj4t0LKowjJ88Ytf8PGrZ1xeDtzfO7ZV7tjHpQkg/LwibDJjdWfy9SVEL1ZElSfJbvLcCQemdcsFaLQS+PIjT7d28HyrYpNPRbadWovCySpNa5qiSreQ9IKoVVHPa8XlxXPOpom4beSWOS0z62nh2bMrfvB3f48vv/iSok7cvPuSkCOlBapRTHvH/mBQtaK0YV6SKHP68iX3IItHSLmUJo9/LZve0iDUwuA1zoNWWTbz1ouNdd6YlwWUcIFVa6hKV1g1wDCvUszmIuoLh+46moZ+GkApBuf7AkmBFXD/2BPRSxWlvdYGYyzTuO821ch+P6GMYZlnOa+rnAM0sLZSCk8/S1mMyeLD2IFxGInrTM6CDIjdsl36dt+2rlZovfjVEh4Qt8fNvSKXxBYj1ojDYRg92ybqQkl7lSFSTBnvJT1zngvrFog9iMNoxbwsUlP5gdStNcbImUOTWkF1BpYCVNNPlrdaKyVLXWGUIpYo/GAKqiiUtWi0qFBLpiG4DgkNKKQqdYHpw96UMkrLMtQY6D2LqJ9jh6R3u5A2lhA2vBf2YSvielFKdUZw4TFdcxiGp+FxbTK8pImi3zlHiIJAEK5X60266sOMR0ameUKbSFOhsUZxeXnBm3ev4SmTWhJEnXfC+mqth3YJFocqiZHS/PezoKt9jPwltSvLrTbMQYYbpinO9js+HBe2UnFGYSuUqigFimq8/OQ7fPrtb/OLH/4V19fvwIgCwg0DqMKaFKXIv++NqBRrEveHcIGlzlVAzpnQYPT+aXHj/a4v2TP7swNbWHj54mNePvuU84szvko/5YvPf4rTrQ+ZC9u6UVNGj4rDznPzfuHltz7GvzhwcfGMzz77W+7u74g5iRK2aprS+GHo9nhRdAmORz6niiy9jRKED/1+HaeRnArKDtAqd3dH9ocLrm+uWeZbzvfCg17niNcDeZ1Zt5WUErdhpdY+kCkNo7du+zXUElE1U9aZL+9ucOPENIzkKO+W7bxf6xwhJOw4kGJHwdjHUCVR7YoSpVGSLMbTJudfCqJoa0iAlW6GknLnOYtiJidJG25UmlEY7VHKcDg7J9UitslVmHWPCiBtpe5tDY6nFaXELVNL4e27b5j2E8u2cLq7QbdCq5rDtO9Dk8Yyn3DWMA5ePqu4Yc3Afho51kAKSVTSNErNGKXYdXZl7UutUirDzuBGz+lBerYYE0obvO/ps9SuTBbl4DgYea57HfW4xClamGHWGLaYekhJdxyp1pdiMqgvRXWFe+sur1+F5TjrO6JERA+1Kf7wH/wJ3/3eb/O//T//F3760x+K1b//+VrrXjM9pq3rHl4hCIltC11lqJ7UwY9qQvma1BOnzRjDNAz80R/+fb786g0/Cxt+Eq5i2FZCFBv434SN7/3g72IPl3z06Ud8+hufsK0bP//Zf8Zr+Mu//E+8+PiK73z6He7efcN+N7LGyHwMbClxOFh+97u/ySff/S0Ou4Gvf/7XxJywNXP/9oHz/SVhPUotXjNp25icZZ2PsrgYHC0rQfk4R6uRGhVFJdYQGLeF+7sHvDd8ePMFN2/fopVwjeccyFncUDuvMIMjhkwJmf1+j2qKuBwZjdhg51w4u3qG042UMtWKqyxugTJM1LLinaTROmtIOfRFhIiWnB96HVue6h5RJBvWuMn9GWThUEpjWVapf/OjQGjHsi6gFTEWtPhyZUE3ORmWW0tFSZDhdEBpCeGaRjmXSs4ULT1mrhXvLWBoRXrenPOTpbvkzLytODdIv6RgXhdQjZQNg3VM4ySWcyQQxHtx0ZUi4RK5ZKiiLFXqMUSq8uRY01aY3IgarjURHWXbOfNNzrtUJGzMGy8qyyqc1doqDREhGSXYBpoEdaQtP/X9KUYSqTMINSyrLI28p2R596rqd1/OKBJWD9A0JVYMnf3buZYlJUIVYZBRTc6vzj1vaFItpFye5uy1/0WtYmdWaJlhPM71/gvF/K/z69dP0dWwHw26ItPQnLBGVEp+N9CWgK6wM5qkNdcxMD40vLcsQfHL1+/4nd/4mMvdjl9+855UKi0WDmcHsTfUymF/wCjNvC4Mg2fo6qRUSpdAwmnZGAbX7ZeicKgli1psjaRcyLXy/vbE1x/uuDmu5FxwGkZn+c2Pz/joxUt2O8fdEvj8i/ecsmyULvYTl2cDJVXevb/tyrwuca50O5tAwmuRS0BrJQ1wTBglG+NcpXAxCpYlsARRjZTWUH0jm2vriTeK0Wh+46Mrnj8/54tffk0ordt3mrzwqyS2lNrYokhI0ZV1S9BkEIXWpDXhBuGVtSbcrqvnz9hPOz5c37OsW5eWy6ZVFsMyhEw5o42A68V6IBvieVnlz0PsEePgGLxj6wWOJNSWnjwjDXpYUvfiS7AFtXA6zigjfCvtZBjnrVhDpZZs8vmVTC3SzDnn2LYgbJXmSH0jkGtFldztxDL8e2zMahPFpnfydZYiDUOt5Qky3VqVrUrflNfWngrpq8sLYgholFjkygMhJm5u7hgH+dnd3NxKZLezHbBcuLu5ocTUrVLCSwlZVDmP1uEUQ4foqp6glp64N3R5/TiI9doojTaSpDZ4zzhO8n0iTY5wCrsVRztKDz6xxmCNsDyqkgI+dXXQsm7CE/AS9KAUeC+hIikV4iahC2LJe4R8922Hgv25pxbNlhLGylZEbMHqSdky542zw4ShcTFdgQ3oofH2m18Su+3DG4kXD8eC9ZrDfkCrirWgm6auiUFbkotEwI4jNUuqsrc7rO02MgspBaAyTJ4lBEbvSKmwrCtutHjrSSGiq2LaT7SqWdPGoLUUWdoTt4hpmS1JcXY8LlzuRdmitEK1wjgKSL4pOG6Vw6AYrMaeD5JMVQNha2Q9UJVmGgw0SYVeQmTzhhfTgW1OVDaUspIyqzs/JxeyVYyTluGeQqys00BYAtMkDX5rEoqhraRIxhCewLvOOPxgyUmUN94PnOZAqjCNE2leZUtoLPREdBoC+S+pYxIe2WJyzrcqg43cClp5YlbkGti2mXHYsZsOZBUFwFsT67qIIknJMC1n2ewPw4C3YmPTRj7TdX3AKAltED4Y0KQIEMxAQ1JRJWl2Ggdqy1ASad0w52egKw8PNwzDDqsN0+SgGEnpO50wzrGthWEcJHCgK2m89/Jza5LwW0rrgToJbyzOWMZxR4yJuG2kGMQuObiusG2s60pOUewxYUMbGUid7c7lz48L8/Ghp52K9dg6i2qFaRykKOn2yxAjMYSeMppI0WKck2baaHq2AMZpjscjp/t75uMdOUrTW2ojb3JPam0wyvQlUn0KUGhUsQaVxvXNLS9fvuT88oxtuxe0hRz03WIkjUOjdHuP/GOtRYFcu3IoV1He1Zzlf2vtaAVDLnTFfcI7R85S/LVGHwi2bhPr203kmTTWUvvwq/ZhljWWJWzye5sTy3HmcJhYtkhp8uev28q//jf/FozicJjQNJ5fXVCLZiiK07KAivhRFP5nZ56UHCkWCoqwypBv2RK5yLBKGwkfoknzpZsSDlcTaL23YuO1WhGWhZKFWYgS27VViqJ1L/Z6YIzSnQmmsNp1lUWTM7nSAfFyhlsl4xxrlDAL62MCqkC+nXNYY5imketrSTnf5oVx2uG92OfXZSaWLMExrS++jCG1LJwuZJCnigTONKqcH8YgqfJdUq6MgMHXReyIndMjbEZZsgkOBIxxFMApAavnXJl2Ay3FHgLSGcK1UfpSkVzQRorhVgq73SgKwyLhblo7lDKMgyw7SilPqAxoPeVUBl5aOfYXghmwBrE9a2So1/oxYzTLtgnzkdrtTqCdcEJzB3DnmMUGV6ROeax9RD1Qcc6jMR0PImFq2jhJzYtJmr3aaEoaa43qw1ZLiPFpQfe4aFVGU1JCidADZ+X7Sjn2cUEV63QftLbW2EJiGCd8RzB89NHHXN+8fxq4CpNQ1LiP6g2tRElLXwQKp02W9DQZNsswv7s8CuTW4eRKUQFdFIMyLA8bW86UKur+R9TIfAqcvfqIFy9+gLbn7PaX3F5f8+rj56QYuXu458XlnvtZc0xrry3knXNW7MZKayYndc28bNQsZ8zjzz5m+dl6p7g4HFAoLs4OfPvTb/P88nt89sO/4TRHUlqxpkpNkAutKi4urliWjc+/+oJvffoxNzfXbOEdb969ZZom7u5uRfnehIlmbSOWiubRRSJnZu3YAlHEyN8rPf1y22SwUEslpo1hsNAKX3/1M3mWjGKLlYNyVNOIKTAfb8kp9tpQlKPaGnmHdWPcTUy7M968/YaH+YFx2GGcZ5p2aA0rCw+nExeHHd5Zco3cz7est5naJIht2k2kkKB1dbLWHA4HHo6zqAW9E4Waku9da7GQt6YJSe4kCU+0HTlhGUfPw/HEKS+SPtvV6hfnV5JuHVZarpI22ZXhio6nacIiHf3IvM784uc/lWFYTQzGStib0nImxCAWf6kW2O/3ktRbMtu20JQod8dpIm0bqhaqEgWwNk4UfbWrE8NG2jYJL1SiYi/9+5p2E+u6icrLaEKOaO2ISVxsTaTQ8o62wuAUtIjxjnifUcXJ59fPNHmg+5C+PAruOtO8I5xiLX2Q/yuL4+HqinfXN3zvt3+Lz7/4KWHbeq1OT/PWv7IIKtUXpAk/iHsLJaq0xzOgVMF3NOoTy/z73/8ef/In/4xPvvUDdocLrp5/w8uPnnH+bGI/jPzsRz/j7OyK3X7kzduv+Mu/+gv+7V/8O37v93+fVy8/4k//5b/m2fmO3/jWFd9+ueNwMZFN5Qcf/T2+efOOhii1W9F87zvfIs8PhHDHOIx85+OPaMYw396wm86wGI6uEZLUWOf7kbOLK7Y4s2wLmsarFy94/f4D+3HPGhuvLi75+pvP8RZJxaaw8yNLXAnxgd0g7/2aNlSBs/3IFhqHsx05BZaYcC4Tc8RaCZ/ww0guipQN+4NnW6+xVjM4xyknqJFSpL+Sfn8h19LTa6WONUpmFbVV9mcjJWW8dRxncf4dDjsMwnR2Vtx8dFyJqtJDlCIq9ZiypHBrScY9nR4YBsc0DZRc2U17nj//iPcfrlGqkmJPkdY81WbDMKAbGGdIKZKz7vZYERVgpfYYph3H+3usNShl0UZyBB7FKSVXRj+xlFWQZdbKIPHxzOi2YKOE0Zu1ZtsWUb/WjDDq8tP7AAiOQSmq4snhIssVOfoeA6CUlqT50fmnUE1ao9THYE9RrObyuJCuDM4xuIrfe9ZQCClLkrU2ffgGh8MO1TLblhn8KMFNJbElWTIr42klMDjNYe84rQ3rBWV2XMKTXVt11wJFwmUEI9IXxcjipCGD//8Wv37tAR9NCuDLywlSI4WIsY6Ls4mQCtobnHPELbEbPfdL5CFFVBMF0CnCcc0SU72s7EZPjoHRGpGxG8PkDFtY8V7CAHKWDZijJx9qjfOe0du+1RT7T0qZLSaOIfP5m1ve3p04Lhu1FkwHu6vWePniEkrl4bTy9v013ipS1qhWuDrbcfXsnK+/eseyruQiVp7S2W6t9cRHa1m3gO8ppK1WKeSNplZpCHaTJPDFpiiIrBRtMEoGhY+Xh7NwNik+/egl0+D4xS++kuCLYcQYxbIskkaDohYB54Z1k615gRAz2lmcUuSwMVnFq4uR/eU5798fefnqOd/7/vd48+Y9r99+EIuPenyV5GuVgZFYb5SRre6jvTTXwjSNACynGW3FEnsMj2B9GWa2PsQSS6vwGdEC9qyl0nqarSoi+7d9BV6y8Je0EVtLK7IhCSl26blcRKpBLT3xtUkjbo3pL4gSxVNX0ljrUKYSU8RbLfDvIipTWhNWpJPBj2z5Jchjv9t1W5WwBP04soWFEAPTYY+xqgOPF0pVrMvKcHGO07LNTFHg1zFFSsrkEKUIzomcEqVKMeqdkYReBAyvjUE1jbEGS4+4b00staUx7id2ux27YRSFZFdpyIBZNjKmS5anaRLG2yjbuxgFSt6aqIK8H4CKs4UUQv/sHlVfj3DQXsxZ4cJAb+AQu7ZximmyxJAJUWwgykrqa2tiqZME08brr7+gqcrF5ci2JJRVYnPMYic2WmMZSVuTwnu0kmg2jdKUKYihpygZhVGeqhzNaE7LLHB7mdegasFbTwaaVdKkGKBZUpIBpTOah9OKGzyKQiyVnFY0wpwMW8M51bdzjdG0rubKXSFY2O8MZ06zLn2ovgm7pdSGHxomB4bR4JRimWXwMloZGIWS8Faa3xA1WyzdEqIZBkfqz4zShpoi1lqBsFtLyo3BOYxu/WcraeKCHO22qgatacCwO1x1Xp+kboeQoGnOLq66kvPY1Q/y7llj8daRosCDzSDD8Zwz6KFbCDSqyhCsZJjOB/YXZ6T7BedgDJGqG7txwCpE8uE8bhxxzjE/zNScwWqaSbTjUZ5DBPyfe2GgtSaEgPOGivALhX1UsM70M6GRQqKkxGAFvG/siFIZ5wOnecZbh2paBiLKkMPCOIwsiyg1xWoq95YF5rRhvX3EY7DNC8oYSilMu528sw0BboetN+mSdFpr/yztQC2Kh+2BGBasMSzLScJxNOzGUYo/pXBG7FHO254KLrZThQzSxnESlmpTnNaVVgoVze2790DleH+LswZvRTl+PIoydxpHCTcqmePtCdfPu7PDRC0ztVrmUybGmydbP0rxmCaLamL3NLo/U13xWR+V3o8cPfV0l9AtnwrT1W6NVBK5dMUApQ9GpalQSsu5rkT9LliW2pdaoop73IIPThp7560MjmMmlMJxW0i1UZuo56dcCVFs0iElRjdwdnjGd779kq+//Jy5SBLcOJquek14r3Cu4vxE2jnGYaAUw92DoBXcoPn4k5fc3d5xfX1PjE3SB0EswT3RrZKF+aaFQ1iLLA1LyYzDJMMY5Qkh9sWB4dG+Kg2inCENKcS9lQ9LW1HpqiZLq5IzrfPkdtMgbMuaub+/QSHhPNMkBXSMSRJgB0fMiVoVzglKIqSCMhbnB+EXGgl4ScjS9HGwXIoAskfn0M7jBrHQKGuxyF1RoixYjWloJ0PumITRZYywfXe7PcMwMM+nJ6QLRvWFY2O/P9C0Yg0buWYm79mNo9jri/AqqT1xriqM67bZnPvCUgbXEjQhvLdaIdcs34PqgcZVUkdbaYz7UdhfiHKzVBmsauc53j8IOL3/TFwP7HKISkujiEkGi42EblXQMlGUBA3NvAUJqFDmaVht+iJSIfY+Kfj7QEjKs66Wk+AQsTb2V6w92u7k9zCq0npKcymFGIVp9OzqGQ8P14IScKJCUbWRUxTVX6mSxF7kXqxFhh9KIfZi03q9LSmTWhtSlWV82CrHbRFumxaLvbaKLYk6X3f23yO3T2nN7d0Dr1//gndvX3O+K+SmuLkP/PN/8c/5yWc/oeSF67tvqBmc0oQtP9knc23sjef+dMR7zycfvWSZV+ZtYd1CRwbIMA0n9sh43Pj02x/RquKLL3/Jb//O7/LZDzMPqXC2G7FKEr9T3lDa4R3M88qPfvxjLi8uKCXStsbl+YHdNBKCDIlpgrpIueFMV2sqQV2oJj+zkksP5xGlRk5ikVVPZ2aFVlnXSCuStG2tY9sSNx9mlLXEdaG0SGsVr50sT1shxspgLff3d4Q1Me0m4T0pQ4yNpjIh3AqzdZCl7zwv6MPU6/lGrPLuGa3IMaKV5fz8QEobaMfls4/4nd/9lNdff0WJDyzLiRDFraO1cOJqk7rRKCd8OsA7z7oF0PpJXaYAoxspBq5vrmlVcXZ+YGBCKdiCqGUV8n1ao1m3gDEyENkNCkpl7wfODgdO8yZHQEzkKKnpGE3DsG2JViTgKWSxChptZZhYs5zFFZSxwuwumZIaCgm+skZq1y3E/jN8XKbIz+3RraTMQEpVYP0tS0J0d2m1qqhaMw6KphqH3cDxVHv93N9z1R8DZLjxaNuTpv9X9+qjo+hxhPnjv/mPTIeJP/qHf8xvff4DPvvssyexAg20sqBkCPGokqYp1mX+lVoIEQeIo6KiVcVYkSIP08j1h3v+9F/9a37ju19RauXLr75kXRc+/ugVv/27f4ff+r0/ZF0C3//eb/BHf/wPuXjxCf/+3/5LvvzpD/nRf/4L1nkjnBQf3v6MP/7d3+IPfvv73OKkL/3Bb/H+3WvcAKlUcjwSwj26VT68WQhrE6FPWLAvDUtONAqmJ7bWAfy4o8TApKQma6nw7OwclOaTj1+htKfxKcvpxPXNB4oS50qppS87C7vBch8R0QcNpR276Yx1i9QmtW3KiWYc5/srak0Y1TjbHbh/uKM2OC3rU3BMTBKaqbMw89aUqFr6plylXtWdhey0QaWGU5Y1SC/nujVWOyvvYxMnxiNyZ3SCH7N9+To615/Nrk7vvYBpcpeqbeWb119TcsZ7Q1jFTaCt7ogRqZdqP4rQolA3aLmPFJ2TrMghy/BMK/aTh6rENkwXGmnDq2cXxG1jPh6xRuO7w8A6QwgShKqVxg+e07Jgjeoc5/KEhxDVn3x91pge6gneWAm2iplSFa09KvVbtzx3cUpOT2/KMHhKlncpV6hNBEjTIOc1TZSOKLElq9Z/Nk7C3IxuzLO4DYbRSVq5Gwi5sgSx6yotytqL/UiKIoByzqF1Fyv1he3j3SQrWlEkKnga8vEEmPj1f/3aA74QC+spoCzs/EBqjcM4sIVEVI3BD9w+HPHOcnHYo7Tl9jizxATactCWNzd3vLzasTs7w9wvXE0TZzvPvK0MzrPOAZyVh6onJe4Gj9OKrC2lNw5ziJIAWCuxJD6cVn76+pavPtyTc8VQGayAQ8/2E/vDxHJ/xAD3p8BpyxgN42HgfDB8++NnfPX2jp/+/GvWTaDn8rHnpwegKSVpfRR200jJcqHYzifx1mKsk4KpFob9jofTKsWBFotabKVv5TSDgotx4NnVnmWe+fBBYLEYA7UynyTxzhhFWFeMewTfyrYolQgtMSjFxX5k1AOHsx3Wet7dLyxbYdkiv/zya7788g0pSRKqMZqcEhcXe2nklWIcPabLhrUSmPv9vSQ2KQUpyAbSe8f9/VGsph10/xjMkfomumYJw9CKp8axtkKKkcP5rm/ec2fTFIzVshkLXYmCbPZSE47cIzxWNXlNhNXUFRTe9QGFxuMk6U0LLF/rX6kQY0qEFDnbn7E/SCrgzc2tNMPTSEqRdRU7xDwXpnGiFhk01irbzsF1hhnyew6DWJe1VsynEzGK0rAU4QaWKHHfWvVhlhHLWu2WImlwRKrsjQYjKg2lDX4YcHYAJcl5rbUn9eFjgnDpWyKlhSCllKhgnLWSZGotYYts69xTjgy78zOcMdzevKHGiumcsJJb53/IwaWNwnlhe9SiZFuthL+gkOAUsRXJQKxVjbad2VMUD3Nh9LWzRKDdSqpWiRpnFM5KQaKaZp0lFVe7SqkGNzSMi/1ylK3m+cUZVlvymrF6IC0ryimqUWgHLUa8mhgd3G0RbY2EqiixqHsnF1vcEn6QwBh/5ogxdfZEZJ2lWacZtBkY9xesyz3HrfLt737K229+2dOmxFq2342sWxRbH6BVY5wUxg9UVXmYF87PRsLqxOZlDFE37DRQgyhpSs7YYU/aypPKKaZKDpFp9B1T0LBeQkNE9SuDQKNFJYVtwnbRCmc8u3GiNc3g9xwfrqEVrq7Oub55wGoDubCcTpQaUQr2446YGjnlrkJueG9Ad66aUgzjHmU1aQlM+wGKAhKWTIoLab6lRbmsU0oMg1hUtXW/KmI6Z6noxhqTwK6rPAdVdZtxK1gjDU1rgkUoNZNSZhx2oD1udORShZWUAikLQBzEKn+6u+mNswyK6cmLW5CwDucN26pw3tMwco63SM31KQUN/19sKZNA8WtK5NYYx0FSXUuh+cppOaEVjMOE9xPO7VFadcvQSnWOuGycn13KYEMZWlci3V3fUHNkS6ukAqIxzrMfJs7Oz/HDwHKa5TPUjZw28raJzVsL7L41MF6eE6NkO6+tJqyLKLfixjRegRYGHu1RcQLb0hUidEXBk+VHdVtuewplUVoGDo9zW+ED6Sd1V22glCieVFf91iqhBaCoKfcUaE0rrfMgeVL0GWOeFA5ayVkrbNHWUx4lkCQZKHHD9JTUWgGtWdZMSndMu6ErXRshZT7/8hty/ZqXz8+5qAdyqaybBAQYrRi9oWlIURQWL54/5+LyORlFiSuqVXI+keeE/2jPzd1KiaJUlBAv3ZmNicM44ScvAQEty0DaWHItsu3eDZLY12RxNY0Tu8FTk3Bk/eDEhtiE3TUNA9tW0E5RqThjcd4/WX30UzEuS59GY9AjzlhiLPidwO+BpyHIY9Kb2LUQFWpXakttIEERzlq0c0/3r9aaGDbm01GGTUWCJ7QyOCuNsqpZ+DcFcJZnz19y/eFD36gXTh3wDaJskq+pPIW7UEX136tkWdDC00DMWYHTKyXnlViptSzE+nNl/z/M/emPZet9pYk977SHcyIiIzPvxEtSpKhSVUlQqdSuqu4uFxpoAw3Yhj/ZH/2HGjBgdzfc7Sp3TRpKJYkSxzvmzSmGM+y939Ef1nsiacB2u80vnRBFMpk3MuKcfd5h/dZ61hA0dKyZuJVeTFQxDqZ56txmPcQ5bjijAiDnLEvKGDyPDweWdaPJskqOiVa1rolrK5aqwPiFnKPErqTWzNJgWzfA4KwndJTMxRWfcyEmntIDaiJsHcp/EcfakyBean2KcyvOp1is6a6d2mD0lt049EH8WQ7J1thi0vDDysF3iUXXXMQf6tKCBPwmIagLsHIDW1JMxFbYNrk/gxePqQp2TTKKJRtKd2NJCCq1sGwqWPvlr/6WGFfW1eGMotB//u//A6el8pPf+zE3d5l1fUXq0azcGuM8sx3OLGvUECVGXr97w+31M37w0Y/58osvunCtNEPJlZZh2u0Idsd333xLM56fLY/8/d//A/7u7/6WlA/83t//h/zi578kHzbu7+65vrrBWEc8r6xrkmhuE+/evoUm+L6cVhLanFHawvXCG2EuTY9bXT5jEn4uhUFDcP3cKOd2yo2UF12Ic6GmwraetO/mjf3VKHZeLkzBKcafMqUkBj/QWuJ0ShKFrUqorJfjVqkmXYBryWwxEzs/smYlRnzw3VGYePFi5Or6Wue6KobeD3/0ezx7dsNXX3zJOE/kUnj/7hseXn/9lN5yLpBr7nH8gZvbFxjnyaWI3bVuBD/0JM5KyhvmWAjDxCef/ID3b99yWu7JKXEuG/P1NdaL0XlJL+2nHbtx5HQ8YZ0hphWDZz8PveRKPHBvPTiJ/d45lmVlv7+R4zBFmvMM1mOniXVLpNrP5lXvpzUQ5oltGHg8L6Qit/uWLi3zOgd776lNDN5m1HKvIg0wzrBsaiYfR48h402jYim/cZVXdJZ+5ql99zU0U/udT9UDzunZ8rby1Ve/Zr/fM8/X/NEf/id8/euvOJwegYYxvj9zl7VTMXYlhdzT3UkpIkWxnbfM+7kXe8C6RtY18e7+LV988wt8H2hY6xl//H2cK/zpv//vOJxWvvz6c/6z//xf8Md//E/4/vc+58tf/RX/7t/8K8KVZYsqOvjlF19yd/9/5rt3B/747/8+P/z4iu14h28TIXh2++fcxcqPvv85X3/5K/7u1S8wZuOH3/uccTBM0xVhGnj71Vc8nk+M057duOOHP3rJN7/+a85pVXlgL46aXOXN/Wt+8P3f5dtXX7IsJ/KyUWrG0HDBs59lkgjj1Ic6+jyfzidKzszDyDDsuH72QmvU+ZFlOfL8+Uc8HB94fHxkHBqpGI7nlcF54paozeKGkdAKPieWJMf66FVc46yYoHp2xO2Ppel8XIUdO6+L7hclK2Lf787U1p1nngvGKebMmnvcvaoMxtTazSaR1JLSJBV2u0l7VFE6qVQNWn0YOB2P7MaBVgup48/0sDSClxM1BDnGaSoTS1nPjl57sfxS6ckvnfTE8ERT26079Ze4YU1jdGCR2aO0gjUVG4Ca8UbFbaWuhFHufWscDkMqir6CwXi1WpeO1LkM4XzwbDGhBHNvQDZAbaRe6qSzAaRY5eY1hWdXI+Og0pLTuYAZMTaybotKDoFgG0MwnDeJiYdzZVdhHj3rpbW8FSyWCtSO2So104zrn/DfEPfaJf3w9JH9rX799gw+a3CDIxfD4byybInGmZgya25cT4GbvfgIJWd2g2f34pqvH84c1413d/d8vR/5g9/9Ht4aWorYeaaUyrJltcI6sM7TWiJ3FkvOGdssITjKlnrcqRFT49v3J3767Xu+fXcg1YbDcOUdL24m9tPI4BzPrye+fX+g1MrhqEmcqZXdOPHi5ppSMr9+9cir1w+avPW3yBjFkt0QCN7w7PoZxmQeHo6KoASP95arvvn5oImq9x6qJff4kRh9umzIsm+43g3sveNq9lTg4XjSJjUIGElvY5ObTDyelFVuMHkYbeTl8xsmf0WNEeMsMTfuzpW7x3ecVk3mDseV9/cCj2ojQMDs1jifVrU3QYe9bkyjhK113UhVzTzHJCHAAOfTqbc2Aa2xLgsgfpEOQopRXhoTay8YMR0CPfpASalvKh9iDIN3nOMJkIvQeccuyEHUSpaz0Bq5Coag6bFzvfUwqUQjXC4n+nu3GPuzUjvQU8y94B3L6SSHUPDAjmWR3T+ljVod+/3Vkwg3jmOPoXnCNDBNO+7u7mhZTWSl5M7Vk/Bm+utRm2K5Lsiif2EemT6xt1YR5WHcU1LBmIQxkWEITNdX5N5YJ5Gtsm6rRB2gtdKdeiPeGbZtU2FKa3JSLgs5eFLaKCkK7G8QO2bdsNYzjX1KY7RQT6Njni0pNfb7gB8UFTIVUmpUU3n2bIKWOZ11SMi5sUVxgSQKOHaTJ+XKuhiwnnkIWAtbyzrUVseVabjgWNeNcRDYvSXLUgvLUtWoOzjxuYrBRs+WEyVXtnLgavLsp4njslJrFQ/Lw8v9NeN5pZTIEiuFyuglWJ1OETyM84Bfxc0Zghbj/W6ixUqshS2u7K9uma9vJULZxPFxkcBB5/td74gxUlpmt1cb8hACV9czW2q0XBjsxBblhIxnle+U4jkfYTBO7cHzpMlzrexmgdnPi6rid8OkSJkxuDAQ10SqmWkc8VUlGeNO7+c0uH4ZC51psfH2u2/xvnbRB3a7WZHUtAKJcVTTs6m9uKH2SPDoyRhcmBShb5XtfJAD2Xrm3TXx7j2ja6S4sNVEMOJtblkMEtP0msdY5e4xhpSjXJI1Mw49auM9BsTi6GsIrR+2vZfAWPXcYh0vP/qIHDe2bYNaOR8PfV0znU+lJuNpEDskjBOpIw2shXk3s64r3lviciKlirESkJz3eB/Y769Yoy7sMa89QoQGMz3OWI1hd7UjbmqRyDlzc31LmHYY6zmfDppqns8477m5uiHFFQx92ugwXg6BmqKwBM0wzjM319dK3lQ1XKcUVZiQkuJ+GJwPTLsdK5UhTLogHc9Pr4XrFz2DBi8pFw6HjeNxwzj7JJyZ7pIz3SJUqX2NMsRN7ZQXa4+hNzm32t+m2mNBtf/zEpFa1UXniWPXweJc/tU0iMi1MPQYjAqB1GTu+veXiy7JphnWVWUlDUPNTeuRN71puuGAWhq5Gh7TBq5Bk3NmHAYcjXhemeeBx8OZcRwZxx0//OEP+ebLX3N4eOxrtZwBv/rlL3jx0cfEWPjxT36Hx8dX4D2H90eGYeCcM6115+NvxJhzqRSTiL2dXo6MAlkXuXZSORcyr+GtipSm3cTx8ahLuvWM3sq5bxrjpM+BWnTFhKJdhnwVaxqUIgdwTNRcWFPCWs+yiAM3z6OQD74SU3tyZNekKfzls2YNEp9RQiClTMmJEBxxiV20LYQwaNLvvEoeqsRhay+isDhur7/7VkgBZ4nrWaKHt6xb7MKW6TFweLi/I6Wspl0nt3xMkaE7kx2KyoiXi9AJRi4yaxQRrLZhjZwUeVt7VNbhnWP0hrzqHETfK9OWdLGwchp531spKTijVmFjxFcsWX8WYxmCF74Ater6zuDC6eJxPq1gLCFYrJNgoaCOXidjndZ2a8TG7ULxBY1Ca+Tcm4HRZ+9yE7BcIj498l0bUBn8zPMXgd240/s+D3z79XecVw0Gd7sduUe6YxKrFqvGaX3uJV40a6CIpzjPMyVl4lJoRg5TapE46Aeca71ZVnzq1l/aWhWR0prhWWMkljOjdxpmGcNiGm/++ucAfPf2FdsaCSFwdaPyjLRVak54659arWuPqB/OZ66ff8xuP2LOlRi1nnmr2O5unsmx8PhwoJnMskUGP+D7Je7Xv/yVRMEqLtb9/UGXQTtwPCWm0bOez9xcSTgzPkBUbHOcJjAZcmGL4jK21nqxilIrzlxKhOSwyVlphVIqp0sxV9U/F4DzecFZfZbGoWNvcsGNA1vclBLq6IyG2IYp6zO25kusNPXGecfNfsfNsxvu7+41qHKO7bz2opsRaDp39FX7dDqwLoHchPL42U//nIplGCcOxyO7eYfznridtH/VyrSX2/m4yrU5zNf80//0v+SXP/8ZvzrcEQbPumx9HbfsdjM7t8MY4QB+9aufYd2H4jlvHXlduN5fUXPm+e2tONuxcDyfqE0i6DSoKXmNUU3ZVriaq/1MjI3zsuGM0iwpa4gaswwH3lhOhyO5J3fcoMIr48SxNrURjOG6Q/TXYDktjWwuF3MNckJw4qhb4W+cszSj86ZNVbiSpjIjPwTGUQzSbS1gVaLQEJKmtIYxcpg592H9Mhc8RZPosW0rrUT++i/+lOGP/ogf/OBT/u5nD+TONb0MYbSn95FdR6209iEaSP/bhyFgjOkO6O48t2Jtv/j4M/74j/+E6+uZV998QfCVP/u3/4plXTmeFl69+pIYI//Ff/m/4Sc/+QP+wU/+Hs9vX/J//+//byzv3nJcEtEZzI3lVDM//erXvH7j+ZN/+HuUvFDPiZef/T2Oj4k//bf/WmmhYGjFcjqtvHt7wO+vePHiBd+9fcvz58/Y7ffspj0PD/fElBjCnjBM1JZ4++6BZizrErl79x2ffvSS26s9X37zisPhgSF4mrF8+tn3+Pqrb5hHLwdrSgzDiAs7wmgwPvDs9pZpGvjqyy+JKfL8+SeklIhp0/15beRGT5BJYMMY5mlP8Jk1Rdat4HA9haCC0mEYsN6yHDdKMWoET0LFzLsd+aAEXHLlacDWasUO4ig67zktK9aIuzuOswYOORJLJsWCcQO7q5lmGsezWu+91R04BKfBd9dnrOmt09ZIRBsUU22pM2A7g7w5yzSP1NyI/SxAvbTZ6rPZrExQOWqYkfJGzJWYVQYocVxJvOAheLFvl/Mqhmzfh5q1FKOBda4acrYmDqHxTm5ZK5Eyl4IfAi01XDHEUp6ee9cdiLTuorTat+h7fCq6m1trGEOgUtlSJTWIBYxVU7F1VcO6riE047jeD8TY7+RJ2AzrJCz6QcaGLSZiL+myfc1+EvFal/r62fkyXP9tf/3WAt/DecXuKt8+3lNs4Hw+08yZLWVirdyOI5N3PNs5Xs4D1/OEbZVkHNtruUPu1413jwuDC4JzbxWqYgTrsmEH2A0DzgdKSTjE+UkNMJoa2tY4xcpf/PLX/PK7B7ZcsN1N+Gz0fPJi0iSzFI6p8MV39zwcV5xz7EbFOfdjYAqONRe+fXXHcZVA0qouErZf6nbTLKhmUQnIMKjNCOM5LyslJYbba2zWpjXtJ+IWKa0yjDMxa/NYzisZmMcAuXI9ea6v9pyXhbev3otlYgw1FjFkmg7RJRdqyQxewN5n88jVyxe0Jsv5umzEUjlvkUJgSY+sW8I4w9WzGRcGDsejOBalRzT6JfBwOKnxkEY6SaiLNgpa7Qpx2zClOzpcP8Ciw3susgxfbPKXDSTGDbjkzXsMx1oxc7pFOudMLUXRVIMqqKvaglPP0udtAe9ppfZWICfXZMqKLwXfJ+cSBby3LHHrxR8S+GKMzPOuW2fFgmyt8vbtvZxyaOKbYnpS+y+NdTfPnrEsC+umg/onn36KqQ1nnSrETyddinpzUIyRbdueuFKmf4jd5XLS/72vOeJgFF18rvc7vA3cv/s5j+9/SYmWT3/yJ4RJzr2UIjHq8zMNajMzRk4BZww0uUit0SGglMY8O9Z1VQtQ1aTCDJbD46M29lppVFqBwTu5KD3c3M4c7s7s9oFUVuxgaU2V8DlJ/Fq3TCva3GrR7w+jImsxRqbREZwlbUXFJyXiB8fkYTAqYqjVUBaJezEJyj2PowokqoHNUo3Tpag3jMVScMFJqNlfk89dEBgy4+yYbAAb+MH3rnh//xa/wpYN4xhY4soYBNnHNIZRjpEwiOlwXjbmq4l92LOeV0ZvefPNFx3KG3G2qrU7V8ZBLXjzbsJnGGdN4a52z9hfj/jT2g/+kbStujSTMSbg3YzHittBYlszaSvs55ndteN0v2iNe+KRVcIQ8Kax1dI5TpqKXd9c06zBeUNwBhcCyzkxTSNpS+x3OlRaHKfjQnMNFwIOKDUTl4z3AzGt0Az73Y51SzTj2M1X4AzL+ci6rczjxOAlVpzv7zC1ECZDqyvruUBtDEbg9rQljAvkY2Wa9pjBiy3WL5Hz/prgQncPKIpPb0O+uFcvh9CUYQ5BToDRM+93vD8daRTGMNNKYR5GbK34EFgej9iqgchud8U87aj5SMlRDMc1U5O+3zWemYYJ58VWpBat98tCzpEUuxtxUBvv4+GINYZxmtjWhXU9i6kZBvwwEYaRmDKlqs3MQC+i0ZplnWXwA7t5IleIcSXGldon6LfPXjBOM7TCeT2JbxsTmEpLVeVH0AcgGhrVXHCz9iZ7idd1N1RM8ek/yzBgSUUCAdAd8K3jAoAnoa+bh7o7SJ7lD+69C0Kgtd7ILAYHwNOz22rnntg+QW1GAkG5uBUkUyiiJFHw4iDu6QtdTvraWXKVU9UandOM7/wruZ5efvSSw/2RuMoNXC8OsFbJNTI4sVhiSnjbmAfHsq7c3z30+Ib4kdV152+rxAgvP/o+f/mnf8OaHjgcTyxrwTq5XF3QTzKPg7hCTYJL7YK27SUjKdceVfVYkOBOZZgmxnlkXSLHw1n6TU6kXHCjJ7fGEqOKOpyGjjFuWHOJ08tBVvTmqeXZ6RBvrPbA/X5HLoXT6SSnlgHrgkqYrHniHT67ecbhpM+J8RDCyDyPrMtJsm+BeRxoKVG9IWUJgykqIllbeYqCxqRI7DiN1BYxrbHbTwJ3nxYVYXgv0Pc4KlZEF/Ay3ZHvCd5q2t4uTjK5aOTureJwZYnMJWdcUAw2RTm6nA8Y53He02IiDJ6SN4yVg0JfKfezntbaUhoVz/XVxDD02B2QSufCOY8zikdv29qP5YrllX7IXs4rOZfurOjP+lMxBmA/FGRYa2jl4sTsTXxGP5MJXsVjzXR3pdxCuV6GfN1Bhj63H336Md988yXfPrx6cul03w6ml26dz6sGxc5CztSLa7Y7BWNSM/vFCLSuEduawPFVwnDN4K3H9DRITAXjYDcPnJetMxBN/1ls5/j2YWLtBUoGYpaLyuAoxyg3e4FU9MykBKYjdqxxTPPIum2kErHbyutXX3G9nzgdH7G2Mo0D1/uJ+8OB8+mRtC5M88zV1S3f311T8pnD4x2GTNlOlGZ48fyK0zFyOkcxwRGuZlkLrVkeD0eur28YwsS26rU7HM84Y8R66ovVpRl1GrzuEVnRyfTEVjRKbjin+0STMO2s4s80yBcedG3M445qCqfzmSkEWlXssgHNws00sZzPhDAyjYHzaRWv0Lh+mWy8ef32IilTt9Q5YgVj1V6bY2MaA61FxtGTiz5/D+cFVy8uopWcNw7HhDeOUjaMD2zLyuG86VzaxNA1YeKLL77AYZnGmTUu3TEqZ/5xUbvm9dUVfkAJhibniwplHKMZ2E8ql6q5ssUTW1JJ0343SzQpVSzdcWKYJgyNbTkT40KMGqyXWmjG4bzp6RWJbykmRfNqxbVCTfXJ3VSb9tcLtqS1yuwcbgrEWogpq/k7SMi1FtZt1aN9cdt2kH5phpy1jko835gmFQDUzsu7OKaFvWiylTRDTJXyNEiTYt6M4fbZDSmtHB7v+Y9/87f86Mc/YPfqa7HNjYaOagZ1jNPEuqqM7WKmaB+2ad31UiSX+PR9YxrWe37yk3/I/+F//3/EO8uf/vm/5M2bb0nbmfv7e6ZpZLcf+Qd/+I/4o3/0J9xe32Bo3L17zx/94T/m6uo5/+7f/Rv++q/+gsNy5PjlN8Rt43RayM9fcKoDX/zsr/mdH/8Of/nXf0Y5F4xNlOr59KNPuXt45M3dA641Pn52w+Pde0qBLRfytnF8/y3LcmRwgenqmofjytXNDc0vrClztRt58+0viedP2N/c8oPPv8evfv4IrTDPO1qKclytZ55f33J/UBleTBslb9RcOJ8e+Oar91jnmffXvHz5KV999Uta2ggGtmoY54lx8GznM5sWKsr9Pc4aak1yE7dKxcrlbxUPTVFnsnGYqFUlddZ51rPQVs4FfPBP5gdrDfEcmYMn5Uw14EyVm7m/n9M8UpdGc8JRHFYVzyjdUFnzJoGzCbcVS4LacAaw4tHK2SecVs6Z0hq5mL5+G2I3BukcIt6wtfapHMZawEqkVwxVZYu1ZLLR/mSaHHYpbZK3owYUmvsaavMsW6GuKgs1KCEGGuzkNRHsh6RYM0btvRcsh73g0nSeo6hYcXYeZwtX1yPbuva788iaKttWmEYNYJZkyEUt2bZlvBuopbBuFUWDxdCbd5aYi/aLJG6vyXpt0pZxrguHY1CSoUW8h5waKUvY1S+5dfvh+/8HBe7/+6/fWuB7fY58+9WDDqHNMfgGTrbzXAp3ywlvPdOD42o88+LqxI+eXfPJbqa+KHzx+h3H48KvvnrDP/q9z/jy1cwYBLhuRm/YfLXDGjidIm40lKjp6rPrPTVlQhj4m2/v+fNfveL+tOGdJzjL853n+x89x+XMbh5593BiiYktKw6KDzgs+3lkcoHgDKdt4fX7e0qStblZbdbVKMe9nhbObtOEGsNpuWO/G3h2dUOKavZaOmxasVA1lBlrmIPU+tyFFFltBWD+9Pk1Frh/PJE7eBGnsg5Nq8X4aTkz2cp+H7iePKbz6E7HI6npQUlVduFcA2vWxhe804TJVO7v3rOum+roY+oHSx3Acil4I+is75DcluVIKFkCp2K2OviUIidMTvFpsVHBgVSr2ll8ICB6LbpkTeMoEHnrYm2Wg0f8wtabWfX61dpYTqd+cBVkeXQD1jlKzt11FzoTUc2NqV/clvMiwbJHUUIIclnlzLwbnlp+vHfMU5CA6Wzn9hmCd6zLSkqJ16++Y7ffiR9oGlMYOR2PnI6nrrrLGbOtm+bfnUFo7QVKLBv+lqLiMEknZt8ryVuzNKdLv7XQ6krLJ3LZMDZgWybHrbv+KtReolglnI6TLkbO+ieYdW1iMrbaGMaqinJrCOOAxYJzlKYNIjirQ5kR6jNuG3ErvH71iDGW/HZlt4dx0HR8WbTIujUTemGJNa63CxlybgzO4fA8HtbOl7QsW2LcebatQtGhpubMMTWeTQOmyEFmvVdsOyeu5omhGojQbMVWCLNlCnseDwfGceDhdOZqvmJXIsbqtTe+0Wrk/mGRK+96R0iWw+NBnBgL3lWmeWBdxIbAGHJU6+hpXSjLSo6F7CMYiWtX8zVbj0WO00iKBYzDjJaXH3+PtC7U1hgMcuHEjdI81/uX3NcHRpMYrxzGB1589jmuOs73X5O3E2EwXO2ekWLldM6kWJmsJRhZ0m0XNGmFMXhMqcSYNP3LBXLU+1EsuWWMgxozpgsLsTa2FNkNI6G7AtYkd5p1tsPDLbvdjlQK47zHGsfx8IALih56J1bacj5jvKUYuRFzqrSsi43zllwivWvxQzvqMFBiJK1nHHIzYD3DMLEuZwxGIhiaprouOoVxYulweofKkWqKnB4fu0jRWyrHgLOuRwUNNIkbzjmsHzifTwRv1BxpYT0fsd53gaCjCYJcEqUUnMnE7UxDsehsFJmPKTMOA7Vz40bvWYviiM5PjNNMjBGa2vaC9+x2e3E8F60Z63JmCEIYjPOOdVvFvxzkCgxB4PCUJQrHuGlCWzI5KuYwjgMpFYzNbFsBKstJLkHF+02f0CZ9LyXjnZer3OiiKdfiZaJ4Yf5cYgNy9Ske2Z6ikZcDyG/GiRTt7ftEb+KT2mSe9pjaXegfnMftKTZhmt4Ho+EttTVF3brQKEdYw5hMQY3OrSJnjAVRZKA1w/u3759GpIbSRS6LQfiCVBrvH48429iPHu9Xti3y7bdHNatZxxgapSS++fpbhmHk7t17MLCs71iWRRyyvOKqwbZANVnN0KXiMJT+Ok2TRDvb91GMBjrTENQYXRK1Zlp1pFVx3D7Q7QU04Grr+5xEXPSyKK7vjYaMl4hz+/A+xZTAGIJxtJLxXmJJLWo4rxW8DQyDYkO7Hlc7Hrozv/HEyFGba2EQfIycI7sej7fGsGyR1hseVXLgxIAzRpHlbe2uFEs8r31a3sufmugz8xDYtsYWNzCtXzTkfKI2Si6dqeuozWAvkXBj6bNDqAKQF+P12eYCvJeznW1jMMJQGCscSKiJVgumSTQsWK3pJTHa9uSYPMdEMReXodZP4zTAcwZN/2tj60O0XOQkLfXDNC/XRmvliX9kO16E7vAagqJGl6KSLaan9945j7eWGCPjNBCC7XH5S0qgYKrOdIfDPY+HOxqGXC+Cc30Co19aEmvT6zo5CUziXl72ZrVYOw/kSquWWCLO94hRVXzedsdYrobWHDVXBg9X80hKpTvWHJj2xNo1BlJHJ+iSqjXAWF0enTUq50B7CkZuPH9hgeao9+xyLk0bj48SbG1fu86nM9KZC7VBypaPPvpDPvn4+/zVX/3XxHSipISznlgMV3ZgngPn4yZGYYfCC/QmTldujbhuXbyRa0Xx9A8Ce+2FBeniVjESfVuD1Buaa0wdvE5fSwuuQU2xR8cKrWjfz7kQBk8IE0sv0drPE9aYXkglnnJJBe8tN/ud/h5j8H4gJQ2pclHhTOnrZGsGU/TsjGPQC1cdrTmVr5XE+e6e4Dz3DwvDbmTdCh9//BJbDd9995WGdc0Q/KD4Y6vUFInnR774+X+AGjT0zltft3VRNy1jcdy/v8N5x/VuIkaLHx0hKBlzfXNNaYnlcKTFRCNTc+u8c7H9tlyeXGo+eGovzkq5ErO4yr617v4X9gZn2JaNkvswMgTmeZC7FYMbAuSMbQh5YxoBpQ6qLTjjmJze6yWmjl4IhBBIHWMiI7XWwS01StZnzXueAP6D7+VTVaJia5Xgne5YBd2FkRkjBN1LWqlQKqdlJcdV7DRn+O71PdZMeB/JecM024tfKnGT8SIMAaMmDbY1dpHPgJWLfhgG5mkkrYkXL5/zz//5P+Wjjz/npz/9M/727/4jcTvx7u2bzu8O/JN/8p9zf39kWxv/6r//1/zzfwpff/EL/sNf/hn/4r/4X/H7//BP+N9+8mOsdfzVX/+ZsC9EObSXM//Xf/U/8PGzWz6ye97f/ZqbcWYYd+Qlcff2jsftwMcvXjD6gfPhoHjr6JV+yytLPJJyItWKy3seDgc+/93fp/prnA28uAksf/mn7HcDQwgcj4/s9xOPDw84e8Xx+Nhdz5nz8Z7W3aXrcqbGRBh2bMsJWsHi2e2u+ObVVxgDg1d3wDwPxFwpyKjiu5O+lJVtTZhLHLM7mdWannRnTIXSDCZqHZsZsC0Ss3ib1mjgE7vYZrGY1tNfWBWm1fTU0B3CwHJaWWKUY7yjcHJ391ojjm5LiYIhTB6PpfWCRWsN0zQTxonzeqasK63JhBFLwdiKNxIbm7GYghItTq3tqbs/sY5UssR5Y0mPjxpEekeoji1FIV8cpKQm4B4aYesGkS1dPhM6izproZcpiVdvP+C6TBN3tLfVOiOh0NvK1eT56PaK5XwmZdhypprKljdyyzjrOK8LGI/3RvzZWnE2ULIBCo3E/mpmORtaxzA5Z58SXNrToVXhT0rr938ntnPXUGkYhsHy4vnMMATevjlxXCMl9+EQSh5dzrK/za/fWuA7xcy9SdhS2E2BabCssccTDTgfeiOc4T7C8pC4PzxyMz7ww49umHZ7aJXjsrAbPD/85BPePT6yla1HIRyH48LgtZl5D4ccmeaR1uCcDP/2Z7/ib787iH1nG8E0bueBT57vMa2wtsrrVw+s2wZ0jhKV68Hy0fVEa5ZaM28eTqo9p2FqfWo2bbVSTeV4quLO0To0e8BbPVy6KMDtdNVbWjPWjizbicEPzPuJq/2sXLax3SauS3FweqqPp4VskIjbL2XOwugKk3EMrjFcBfxlQ98y5wRLV6xpjXkeMUYfiGWL2B4jGZ0huMByXpVHp4kfVeQs0JRSCj+9Ia/1jdp731lxYAfPdlwVncIS49YnthsxRT1QTbGFvrX0i17H15uGHZxeoxif2DWtXg7AcjYcDyemuTPjtsQ8j8rVl8w0DrQKOW6KPvToUil63S6YgstqUVLGeN8jIo2cE0MY+iIpN5wPnuPxSKM+udJKFncvDIFpnqi1kFNiniZsd0XUUthWOR1TTL0VrfTIUDe/97FKihFMnyoUxVeCD71cRAdH65z4eqbxeHzLd998yZYX5rFxd/cd188/x1rXIc1OU8beDIax1KKm4uDUrKTXa9QBP6XujFFELkyB87ICjS3JIdp61EIhEcPuyvPx9/fkLUPTtHZbFRMIzpCqoTY1YzrrNJHKEvpqNmx92u6M1wYcLONs+hQVrBNPEmcZgHmy5FgFrzaZ3X5iCJVgDTfPdmxnXVZrM2zN4lHBTSlR7CQqU7B4v6e0ylpWWluxtepgxkxL8OxmptpCqRsfvZy4e4iEWWBs5yaGAXIr7IaRWg3bErnZzwQcJVwxDgP+4RvwgWF8jr82fPaDH2GLJTGy+2QGZ3j36s84Hx44nSLjMPJsesnvffb3+Zu//G+Zvccz4ZhwzfL4uACWOXiM9Vo7pkaYHTbSmVGWavV6pdwjnCEIYj3IEeTQQft4SuAa8+ioKbHFyrPbZxjvqOelC3KKFF5i7GFwHZCtSdg47ck5s8QjzukZqdKywRj2+x3NVK2XwVJLb03tlxxvx87EUazZuUA+3/cWbsvV/ppcCsGoAGCaR3JOxKgYYelOCGsMOC9Ba7h8lg1DGLDoeS+1K94NjHekJPi5dQ5vIW6R1p3MfgzQCtu2kuMZUz3jOLNscpvUTUMRFfEkTHC4dokbOK3hpTyJYLapWdw6iRy3++eM447aUQYlRZxprOum1ucesaAkYsmEq1H3qpLx40xOihtsy5lhFPy79giXGxyxXwBtb1VV6qbzg3KmmiyR1TnGMFKKnn9F9xQ9tl0ANf0gZFADmpx4cghZdOmkoQvL07867LuhiSNIZDWms4kUOaqtKrbZPgiNlwiCWkrly6T1NYOGVDFNgD/EFejCYGMcFJ2qRiIG3elnumPMGOElUndyD8Moh0SBUgwW7f+1FYKX0HbeMhXFFufR8XyvyFdBr8fr9/dc3dySl0feP7zCecPpvBHCgPcDNctRIV+jJcXMODrGaezM2EAtEYPFOV36jDXkUvueMhCM6y4VvffG67JlbC9AGCeMtRxPJ7F3mybFY//PqVS1EsdMKpFp8Bh6WZIxH1x9qYjj6dVIbY1RcVF3d5r+3jR6oUbTVaKUSMEy73YcD4/aq53lHDdaUznM4GxvCDbiZMYNYzSko1WudiPeyIFWSyO3TBgkzKk8TQ3gGhzqIuT8qAstOnT7acDTSymMZb/bE0tiW1dyUhzIN9P3ukKJoAIKh20wOGimETr4P7VKTTrzWZpaNXPB+BFn+5nItJ4kz4y7mVjFbi3d5VObirKmccA5Q1wT3imKU1tmmj11lVt52TI0292mWbGr7nAYOp4AA8M46EyRY3/9xXCyGYpVQ98l6tVqhVzBSbCtRSLG4XRgiwnjnVwIWIILmM702qLcOhcX7mU9EKup9QsJrFtkHEdq57Iaa9i2yDAOtNrdEx1hU2rFW7m0lk3nBGcMV3sxrlKMFOtITa333jtK0Z5eW3ebNjGrjfHEnGnNPhV9XVpSvZPI6mujJiEVtiS21jC4ftZTedPsR3Jd2WrCj3JxnU5Hcm7cPLvh9HjivIpl/Xg8sxsDz18MbGviHLWezLvA/cORWHLnU1amyVNWrZfeNWqzGnJVDYHB4qxTQQN9L7MOU3/zfFgpTSV2dEC+3L+9UaxZjNXeb6zlvES5mW3Fu8zgnfBE6Gy73+0JPhDTJueeMZzXVc3bpruumyK0codXjsczuVVKi+x2EzFnvnvziHF6LmsxXO89027k4XDC+8DrN28ZwoDzA1tcxfO2S3cXWpybiKmynu7AeCxekeFqGMIoYbplStFF31qt5/t5B1h28w6s5eHuntoSKaogzzlHs4XaGqfjIrHfOrGG99cIi6CB6/m8kKrckd75pyIjY6pEwjBTnfbGLSe1eat1A4Phar8nbxLvLmy8i0AqQcFAUesuWXuUNZZg1Ha6bQmHmjz94ClOz4B42f3ynzU4K11sbQg1IQNgxYee9ql6DkW8lhDgXONxEcpp+yoyDROm6vxsgthoEg0spRcLqYiyO/NN7fxX8cP/4A//Af/ZP/8XPLu+5fTwQM4rX33zC/7V/+NfEnYTaVt4eHhkWdY+0Ascj4nD45lqTvzNX/8177/9kuV85O3je+7+L/8nPv+Lv+C/+q/+13z22ff5q7/898IzWdefy41TzozDzF/8zd+S48pPfjTy8Poekyq3s8NYrWPu5iVrzgQKtYAPhiVvDLmxpIX9zTU5Jj7/5CWPd+9IEXYvnnH97Dk3ty+5ur1m2j1nGgdevfo1tTUeHu7xw8S2bVjnuLq+YciZuGivNl1oTSlyvZ9xdoKsoqrbZzfUnFnWjZQLwY1MUyDHhZYqKYqfe3t7y/G4EoKE6UubcQiBMAxsdcXkxm6aeimL1pq6JEr+UMAEYLymsKav/cY5tjURnMd6K2az0TBADfYytwzDKGRTv5WnLAartYbTcmIIA8EONF1F2UohnU9yt1nFUGUuq5gq13Frcr2FjvWJaUMcGfGal+Xch3Jy1stIo8GyyUlM1VTZUiZlaRbeaajUcMRUu1j3wZFee0zZdfavdUIw7MaBnBK5NsI0cjk1em9pJfHsZuZ0fGSLheaChEnriGtlS8qv5ATO6/x6NTnm2XM4bmrUNY5aLe/eH0mbhli1NkKwhKCCVRmTJJSWjjYahtD3Mks1QqtZJ9fy43HD+ZVpNoxTwDr3xPIzrTEO/xOEuP8Pv35rgS9WwxGLq4V13XjYKqO1jNZxHTS1vbSj0AwlVk4eHiosrx4Z/cBgK3Vw3C8Lf/j7P+QvfvpzTE08LpW0nVjdxGcfX1FqIeCYh4Fx8Lw5ZP7bv/w5rx/PYAPONMZhx2fXEx/djtw9nHm7CoJec8PageBg7+H25hk7Z3HB8/rNw1PTK6iJ0VxYUNawxkRaNkLnvIUGu3FSaYG1eA9LzCxrBs4YqlR4p4XbOolMpRRiUmygnVbm0XdXk+N4Wii1MowDNTfc6AlkXu4Hdl5ugIeHM4/JKc5oDDEL1JqrAeOwphHmPYeHA6fTImeWK4zjiHGB86KL80WcMqa7Z/r43CBW29Ol1bmnSJbtDpgYI7lGthg7AF2V0qaCa9p8aZWa5Xa6xHKdgXkaoHnEgFqpfSrpfNDBMGduXtwqzlwzmpep5bS29vRaGWMoTc69RsOjy+o0TZxOJ+YrRaKDEx8K29i2hXGadBE0F8bEyLIulKLF9nq/Z11W1rgRow7vW//g+kGHtHEYujvJczw8sG2R8/msKUkHhdd6cZG0J8uyDAaatjjfXYpdOFULtCZ/JWeVtpjK8f47SjxwPh3xTCzLjs8+/xHnRZOdZvxTaUjJlcGqwdlbMaNKytg+MSqlKs4cE5VKbpWcI7XItVbSRs0brWQuPC1N8CPTHMm2UVLFhcbpXLDeMEy98a8YHF4/kzGEufOaqkSA4OmChuH6aqTm9NQYXAFjKvs5sK2ZnKMi797iA7SaCIPieO/uH7nazex2V5TS2D17yftXrzmvkeAMwxBY10jDY4bOXmsZwsC0G7lqI5bAVlcyjeuXz1iXB1LJTNOIGRzHQ+TqeuKTj36H+/vXbCWxLZAmx263Z/bX2PkZbpp5HBzDYHEESm1s68Lh/jVLjNgK18+eU+JKWWEeZ4YR3r76NfO4Z3AV5zI1R7blPQ+v35PyBs1wWDNkCWpTKLi9I6eBfM5UGq1U7GgE8bWG4PVMrylDg4QRS3ONfPTyhkAlORQVtpDXxOwd1jameSTmqBhiNWoCD4K/S5iFWFZK3thyVqSwb+6GDvceJ7ZcWQ8Lw2DZz56WG6YUKImUGo1CLr3JdFMsuOF0UMmFnDdSiuKuZbneSpNLyRhoVFpTdPMSx8slE8YBrGMYHKY2Yoz4MMg16+XY860RlzO2ydlQmhwkAvfK8bYuJ027je2vsQ5AWMOSitAK28YwDp2vpslr8OHJTr9sC43CfnfNfn9NSroUL+cTt8+e8fD4+MQftdaRY2W4FksKCtu26KAUo14DoOZM6QVI4zATwkQqiXm3fxLwatFE1QVHjhqCWGuptjL6CVrj5vqK+7s7HdCMJUxDZ9zVPkiSO+7CyLpcUJ0zPRbb+usud55xuvnrmtH3EGSYc1brUu0CHgicbOgRVeN6RLd1UVBQ/4amrq07xE2Ps5aqr1Fbw8KT+Gl621jt30WjUmvW12iXy2xjiQtjCHiviJSenUqj4Jpc8sXAskXG4Nly43BOHI9nrFdD3eBG4pJIqbLGxDzN3SndhaIgUa9SCUYC2bpVfNaFPuelvxJyTpQK65ZUtIVlSxJ6fD8QrlH7VyniQl0iQ7odaW/RZ197uaa9ird75xnsiHVqjMPQXXQWb6BauV3keCs9uib3f8lJURtj2FIhFdiP48UIiXNq77s4ZLGahltjxXXtDYy1iqkj0H+hdg5xKUUOV+fEXM6FlC9CmSLT07jrri4UtTFFyYUpkHIjpsy83+vg3GBZjmrdvbgWjUpbSupMHWfxIbCfVWRQiyKh4zAoEr9FjBEsvBqJL9Zqz045MQ4DqVa2lFhzIRiHqUpZ5CoeVmoVrCeV1GOoPTZM7UJcYRoMPkwYu3FaNAgxtu9b2yqhrBqJWjFByvggp2Lrw0kfXG9mhRAGsc9aVYty1eteiqLGpRkNfLycjsKNdM5gzDDIUTIMQmmU0p7wHpcWTvpnSL8tUStXMfDEHhMOIW1qBTZWkTDrDMF4lT1US7NVbhhrmIcBnOPhuAovYCA4Of4thnZZHwCaxHhr3FM8sTRDTUXFef1c6r2i2cUIm9G6gFVKL2TK4GxgNxh8K/z8p39KCCNbWmGJOvs3C7WyrQlvClezYx4dHGGNrRfnaT2qWX+/dUYsyjX2mKZlaPosqHyrR667oFobYjf3dQ+6k7OnJub9SCuNlJvcqe7C66oYU4iL3tvadA7wnc1ljBW6I0hYdWHkvCaWdSEMY98PJAZb7xU93zIxlp6MEbPUNvtU5FeM0xC8yP3/eNoYQ6CkRlwXNYHW3OOrvpeHVCKXC7su2M4G8QGb4ulKZmW2rXVhKQjk38SlXLckzl4RGzOmjSkMnenv2HoiyDl6TF/P+X5/hfVGEcCScEZnapAA7L2nps5FTYlpnFnOi+KD1mE7uzsEDckoKj+MMXVTiIq5hD7R83g6rRT658roXGCA1DRICrYw+IDxEEvCGttj34YhBMZp4u3bI6XRI5YSAGPnM9K6O7VUaP3O19fr0mA3eB4NNGeptbDEVWxzZ5hGjzWFirjHF0SFhglWIihyXzkL/8t//s/4B//wD9hNe15+8gnffvsN37z+Fb/4+V/z5u4N43mi5sgwTGw4nAtM4zUPDwd+9ouf87s//gHzzvOzX/8dzgzE2mjv7knnEz/9m8/45OVLPvn4JV9/8zWDU5x9HAdaCHx7d0euhck6lvVLWq082488u7kh58K6rJTyngAczzp3uZopxbLmyjxP7OaJFBslLhwe7gBLPL3h/jvPxy+f8+bdW9rbR3JK1CLOHdZytZ8pvfznzbt3DF64iq0XgGEMz28/ptFYz2fK+qgSCGd4/+5Bw1IrMbm11HUE1FDrvVInQGtFrczeY/saa9DA8pg2MPDJp5/w/u07tjUzTzNpW9V63zElV/udirNaY5imJ8SICueChvfdoR2MJSWV6eQsp7gLVsm52PoATOe/XDJjEL7HjUNPTQ0yHFnHPARYNqwfenpRMWDrRz7//o84nw68e/sKazqCxfVyRRrTEFTu1M8ty7Kw5UjDUKqKicTppZeFCimTi4a+1pm+p6kQxPbCTWtNT2AZPZdeUX1sb2+nscUKtXF3lxmCnNcXZ+F62qDZfp9pYBxbFIP1jAwea6ri9xshSR6PGiBdWL9aryq1asMaB49zsMVEKuZJBzBA8B03YyrGJOarHTEXzuuGNbAbLKOvXQR17K/G/ylS3P/bX7+1wFebJgK1VWiO66tJTUVh4B99/owb14jVUU3j7qQf+n5Zac2ytN4k6h337498d33i0xfP+cGnL/kGWMuRMO5o1bCcN4wxPH/2EruceX1M/Dd/+lNen5Ia1Vri5mbH777YQWt88+bAcd2wxmOdodbIVTA83w+8eDYz+MCbd488HN5SsuJJtsddTJ/GOmc5nU8cz2fGQSLSfnZ8/PIWb6tYULsd3//8E778+hV3jydyzZRWSefMbQhdZHNQFEF993gmbiu70TMExcRSVNwILtPPwu0QGFtjZxqPDyfFiq3KTOoFbGw70LMoTz+EwOl0Zo1qbKodTn51fc3j46OmA1rj9d7V2iOwvfU291OVgcEHxuA4nk7QYAihq+ZaXGqVdTg4z7YumjDUTDXdEZQ7O6RVWYK9E2HJ0H/e+hR1tV0ErK0RU5Tyb40u4rn0/L5caqFzpnIpnb2kiHIY1SKYUhJHzXtiisQtcl7OhBAwfVo9jQM5SeBsTVHQnDOn01mXqap2WlB1u0Fq/TzNsvjGxDC1frk4U/riVfsB1FhFX0qV40CiJHjjaFwWE0UJxhC4ub5iOS9M48CK+H3BwsObb7nv8NjWEuP+xMObL3HDLWHYaUJdKoP1eA+tKjLog2M9p37wkWjh7KWKW85Rg+IspmXBraoaAZ3RYp/WhB1GqrE8PERac7QqJgvdIp5TYdx5cnGkRbzCWiuqdtDP3kwTELtKOH84aqqTa4NmGLx9EtF1qQ9s4sjTkgYDxqhWPjhtuue391hrOZwjU49wOa/DdaoQm5gN1hUcRXFhKrfTxHpeOC6LmlXfP+B85fGk9uYw3vD89mM+/vhzpvE57pQZwnv280Spla9fved1ObDfvScnbRzD6Nm2hW2rjGHk+tqBjby/X1niPVTDulZ8KPhwQ8pn1sd3ODsQS8SalWN8IOeFViLPnl1xPC3gLDUZjBnBZLZ4oLmZli6MnB6BROsVFHEl0YVn3Vam/UjKG6Vb+CdvidvSnVi2CyjafJzVYcBZ0x3IjZurZxzPj1gaPgQaitM571nWyDztWdcTyxL71E0H+mVJhCFIcKHD9HPBT53BaBwGxxAG8pp6BCFjnT7f1WuqbfrXbOiibaouorqwSmSm/yzQaP1iaaxjmK+4vbohp5XD3ZnWMs7BupxpThcTR8NSOS1qpN2wTPsrjLNPscRU9LoKJr4Rc2J/fc26rAQ/YLqLcTkvGG+Zhplntx/J0bwuinHXinMC5I/DhPMjKSWubq7JtbLGhXa2DGGHD4odpZRpVUy2dhkYALv9jvPpQI2VuKy43U6vGY6rZzcc7t9roGP1/kpoa5yOR30em1x2IXwQJp+Uuv63yDlj+4Gs8+4uAop2Dqy9CEv9tcf0M0B7ehYuTbhcBA/T3XpPPw19L9GhEFq/hGi4UMoFKt4Pw738Q6MBDQzEeZUr2XpdcowzPdIp13lwgVQywTmcbRQKxtQu5kJMcv7lzkzZYubVGnHB086F6IvcrcGzpZWYVADT9V+GweBr1SWrORXH1e7Sw/aWWrojstKKXu9S5MCzfRrfGk8MWUXlK7mJxThPI2rorf310gtbOwNNgtuHA3spcj1dWvNsL/AJgwcqp+WoS4JXtFKN1a3zcTWtn4aRQmPrTXopJryXW3Y3DWy9qKU0S64ZTxM/q5peymwpOeFsH/x4xSx9UIuncxKr4nZBVugsGLets4YsqWRsUZSvrRowGAw56VJ3Pi9dDDLdiWJwPTYbLjHX2lRGQ6PUzDB4HA1T5XwLTrB15x1b3BidRD5axXnfiw8Uty5Ng4sLy44mXIGwGbqkX1yt2s8MwQtP4I2EoUvDq7GOaRgwaA9rRiJSqeWp8CRGFXGYpjU6+CBXYsn62Z2+z3EcdLnNhYaGGLXWpxhzzrqgOCN2XrCDno2mIatiWRO+Vmx3b1qvaPQlUpZSxg+OvIrlp1ZrRcixEjsVl9b5JwRHq9rrazXYqtKzmButJy+GXsSV+x2ioHivbSriuBh49floWFQ6lVLGhj4YqILEi3Us5xWXy+LoKLERs0QMa5uatfPCOHgoljA6rp9fsRwSy5LZjQFLo2TDsxd7YjmxnDcezyddSkslNbWT59x6Wsc+xeljL0J5wl042+H6Em4avSjI1C7sqfm71aKBclO7J6UJkm/obt8P5UTNSNTS70lElktGg4rTEolZDqDcVDg3BmEwcgNr5aSrNVOL3Cxy20gYzSXL5erE/mql9Gd2Yp53T9zD2iOEVJ4cqBadRZ2zislhKSnhgwXjwagYxzQNaHIpfT34YDgouVATuKDzTYqNwavt2noH1rHGRLCeqzDhsDze32GCedqvrA9c7fcclkIksSznHsGTKzRui5iJVU3D4zhicNAKw+x196iFZmWooML11RWGxrKtxCK++rYlcAZTFHd3zmFdeXIRuhA6y0zv/yV6b3tJ1jx6liSxzakaSkNAB8YEcioSTBFyR4MzIX3+6I//kPVfr6xrVlGiKbTqyKUxNBi9iuMU09UHSaaND4M5JR/gV1/+nL/75U8ZhpnnH7/k17/8NaVGclIpis8Va0aMCVTO5M6Ou3v/luV85Oe//AXdUE+tug/kHDmeNv727/6Km/k/5Wp/TWty5kLhtJ0UB3UqrllbxawZA+yuAm9PibQmBucpxuFdJWfLbh6xdWXbELM7Zk6nxLwL3L074J0ROiJvzMPAq1ff8O79kVg13L3cI71z3N/fU0vpfFiv9bUqCVUMXO32WBe4f3jHfhw4bZEhjCrrER9EArylD407XgOjfSfnp0Fcawbr6dxkQ9wiFQlVMa68f/8aYwO3z254f/eO3IUqY4XfiTH1JJZhWzeWrQ8nuhvS2sZuUEP1adkoReIZrVLRAHwIexyBmMTWFUImY5qMCK3fDbY14pynYHVXb5mSDc57TKus5zM+ZH71y5/KqlErx86zq31/9M6ypfSEkVpTP71Z1+93nTsbHHLo05NJ/dzUT5yhpwsd9MguvZRPAqH3ViJcKzgkYpbWqMYSN309cSt1Z4+lUIqMA7Zon8cYck1yODYoC9Titd/k/OTONcbg+8+m4jBLLVAxLFvpd9+O8YnSGbw3VJMZglyvwzTx/NZz//6RiqcVx3rWeSzlzJoCMf7PIKJbMcz7kRorrsFsZSMtaeO8RD66mRimAVPh4yFgBscXbyvfnCuHmDnUSiyOl89mrq8lvMxh4NOXtzyeNl69f2AeAhHPxy+e8eJ2z7el8l//m7/k/TmSW2MYA7//2UtuB888W371zXvOBZpRk13A8ux64rPbPVf7ibv7E68O7zmfNimxNFqu4CzBWsbBk2LC5EJwjevdiDGWYRDnbdsSw/UOspoO79/fkfoCTS8LqK2yLCveOfa7GYtcIIfDN3ITAKfz+hSHMK0xOsfzqxFTNkaTWJaNJWa2VFWvnNFEtfYjQpNN/2Y3Me2u+O67N2p9chLWxnFgv9/zcP/wYVpz+X+tj79t6x9etS5dLLJ0++zFgbetG3FbyVWNuCVFyLYDyzOgS7jH9yYaCUt+0GSvVTluUuqHQ6fDmbWKUqzLqijfsvWW5MJ2XvBBPEXndFDe1hXvgw4iWGKOEidi6lHXpohSn2w7q5/HWNsdc455nllaj9Mtqw6uIeDmSQfqJpuvs455mkhxY7gA7IumrXGNOnT1P9+aXsdL1M1aK/HSabH0octetW/kxjGMA7vd3C+vnauVkrgEtRBcJaeN3ejYzYFyvufNNz/jsx/9Y6YxsKyK16be4CUsX+/Xs93VaS3TNLIsi9qAi0S8WlTVLSZXEdS/SpRMSbFr1zznx8b56BlGtNEnAEsNhmHwmB55wsO6qGFwi0VMmR4DKKmRWsUFsdVSzmqB3CBnyE0ir0GL8LplhqlzDHJmDDKWl6TDiLH0CW0jdhhzKQaHSgdKg90UqLUyTCOpyFWzbSsxR8IA8xQoLbLFQjWO0gJ/8Pf+CVcvPuObL37BR5/M/OwXR/yucDqf2O2uGeaZdFw5Ph5pRU1M7WzwZHKEdUlsm2W/G5iGkcfjA8FNmL4BHA+RcZg5ng6Uajivhf2ucXz3yM55jBkYKZihsKRMMyNLCuyuZvxs8G0ku8I4BFp3ilDlCGpNl7KKoyYBeJuRg2SJld24w+XKliLVODVNYfrUXYLv0BlP3otbtbu+obZCTHJj2JuZeZ4IPrAukU8/+pj7hztyScQYqXmllBNDsDhXWE4J20VHYxy19PKcYhicJ26ajOtMbygkuVqo1Hq5AATCMBPjCrUQjME2iFWtwt5ZWtE6vG0R6wK7OWCs5e7+HaYkWolYGuu6av0InuY8YRpZ0yqBrDVaj6t4qyhNaWKWjPPE4/0duZcFxcVhrddFZ1n7Bdmy398oxlYTaT1hmg7qzXj8OHLz7BnTMPJwfE9cz5QcO8LC0HJl3E8YCymvfUIp0TpHDbesd5SSyCmyLmsv5RH3BwwP9/fQGrurKyiNZg2xr5fbFik9LpyymJw26AJaq4S3SwOucRehSFGS2nlc2jbkdrhsH0+ckB67lDynA6WxVu79i7DXnv6ofq+7FUw/NGkdlRBYO4dVAylFNFqFgg7QF6C5uGWXf5drqdLLqfrFNydxRXMTB1UkiCr2aZP72XasxTzLQX+OTfD5prVlTQmaeL/1cu5qErJSquwnOTFN0z4zX+27a06CNEZ7Rc1qh4tVB8ZCfXKF11q5jPpaM4pvlSyBo+oAXXv5xBAGao9chTBo364anBkaV1c7jFEjbKkF47sY0GqHe5ce33E0Y/HOY1J+Yq9ZZ7FejYrLuoqV2Zm5wQecM5zP5UmMNk1ChsGDs5RWu4O8t/I1FcsIqK29eYlyNV76X+VMAdejsflSoGQEIHe29ViS6a70hg8DKUZqzQwh6LNcNOGvFblce2GBQSJPjBsGg7MatF24kTklSkpUYOhOoWYbN/OONW3UddX64CUgTkGti/WCNGkw+sClkdB5392+YnQZY7vgCMZe2il7vLV9cJ065zHW9vKDHqXrIkPKiZzl0rTe9yinno1hHihLocRLrMuSsgRsWeksNVf2z54xzzseHu/YzishqAjDJKO48EWG70JlCK4X4RgNKYeBfGFANjlIhkEOumo0MKjWdNeUw/rK1h1E3ineX3q5zgUJ453D+5Fly8Qi0Z/++S89FuY7MifnSkXlEH5QrB3LUyt0TpGYEmqSvohoev9z0qU+o9jUOMildv/uyBgc0xjwDm6fP+PduzvuDipJ886R1ZLWz8TQTEN4H13oU2mKQ1vtebVoiBC3hLVy5NXaOvZAn9vWGiVXti2LiZh0lnbNiKtqrISey33LXAD0cuTkXKCzr168fMH79/dqqa3lCQNgK31YVtjtJrbT+ekzXtH6ZarcJSHo7G1RuZySIIUQVMDjgyHnwjgN7P2O+7tHfU+2dlyMmqQLsMbM4IXmcaPTc28UszZ4hsET162X6Bla0Vkgpw1jPbYZoVtcoJbGGhesC4TmmMaxfxYKy7ayGwY9LyZ0FEHnu+ZC2ZIizDESgsHiaVWpjZQatukz7K3e41aVVjFGw63R6nxgPZS8knOUazkMcoGh+0UYrsS6S4l125imGehn3hgxJmJN0vZoVG64rZFhHGlA8RJyUs4d4aQTXatN7HKjz2Xrg/RSKr/4u2/Uem4y+x1suZKTOHu1nwurUYJCAz/bmZYfxIpuOOO7775jGAPr+pZvXn0tR3o/Dxoj5Mnn3/uc81nDoZQTr19/q/tYa2yLcAzOhCc3taV1tjPcPH/Gy49e8tnjpzQDX3/9HVTYlsjoR6FmTGWeBm5f3LKcV16/O+KD55/9L/4xviTidiYfIvPtNW9efcnxuDJPiRdXV9zcfo93b7/S4Mk5rq72PN7f87BkDsuKa41xHjkcN2qsTKNnWc60JubpMOj9PBweSSVhbGM37tjv9ry7e02plYXGuiRcEN7AWpUExU2lJaXImXlOGuIoUtoNHlaOPu89rcSnc4m1nsHJtZW2hTAYSqtKPUJPzmnQk3ppVsmZED4MRUPfV2tr1AKxRp0ThkDoJp5cSh+CqFCvtaJnxamgS8aTyugM5xQpNIyRENiqinhSK6TchagSUWCvr1XWkltfd5oErtRbad0F02VtL+3ozMxKd+vVp0EtXIa6yMlcDdlURsAFRy1ZqbUix2t14hu2pmGHpw9XaN2ZrXNlrpYtVawL2OrBSvPQQEqvo+2lrWKWd7SIsbSiJCNeZwVrJQ72TRBj+/9EJdcPKRh9zUrwI7/zo8/BFsDw9Rd3vFl7WZqVi28MDhscn3/vI968fuDDQfP//1+/tcBXWuV0OPC92x3LBrFUogu0VDjg+JtXd9ibPW3NXHuHdZXPns0Uu3F6V6hYYql8ebfx9vHIZ8+vqJ3h872Pbtg2NbxWYzE1sa6Zf/vTX/F4OENOfLYf+E9+/3Ne7Ce+u3/k169OnFYRCgYa+9Hx2fNrJmewDr745i2Hw5GK4kDe2n6B0eEmWB0QrBU0PUwjbhy5fzz0qZBVu1ZV++c0GJ6/uOXtw1nvhwHnrezkwPX1Fa1mdtc7AembXFTnbQXbm5daYx4CO9eYXOXhuLGaDqQPguHmXmqRs2D4+/1ALo3bmyu+99kL/vJvfq0Wl5QxWcKNt45lWYjdDRKColOt9A+hUQGDd/o+NCG2xJjELwq6/JecyVkcKEzrjJyECQLnqvuiR3xbgVax3fYdvOluvPo0faitQUqUUph2ex2GnQMrR+dgFeMNzjw5KWmXGm9Nh3JONEPffC4WebniJFQ6HZCdY3d1xTxNXD+75rtvv6X2C2563CSIGh3GxnHGu6DJSy0MQQD0VguWAWss27o9iZLLsnSnoirvj/EITRe6aR44nc/4EAhuwDijtuIq4dU7x/Pnt+x3O969fyumVM4Mow7tOa8Y2whz4LQmUiv4bcWalfn2W/wwdQ6FxzaPt5B6G/HFLaMNI5KTZT9PHB7OlLTpwJ7XJwdYKYoFCyya8BYuce1WIC19I+iCQK7i49CseHw9iley7WKjFvR5N0oAjvqaOsTpuaxCXSryZHWhNVYRhNygZS3ODqjO0pI4DkMYMKaxbDD5EWsag7fEsyb605Xh4WFlHDyt9AhIUNR7yxu1ZnbzjrJFkvXElDHescaVv/6bP+PTz3+CTYUvf/4rdlPg8XzPGBwP9/ecj5mPbm95//Ytj4vE+WkcuZp3nHImIwfR4ykzOIdhFPelVDAD3u2Yx+fsbgxvvjgpTtws+3HEBzlgfEskU5h2MyYb1mXlfC/QebGV3TiStpXgNEGyQUt4a5Zl3Zi8uHrWNoyXA2Lez3jETMrodS4pE6aJUgq73Y7YgfrOyyGznyYeHw6M04wfJIw34wnjRM4wX11RjeXTTz5nWRbCMPD48A2vXj3I5t4J0i3LRWKM+IA5V4YwAq5fJuS43Ta1KrfWWNcz0zBqcmnoQtqJSiO40Nlt3VWTC1S1LOba2E8TN1e3ijvnRXb741FQ7aY1cJhGia750q6n34+5ElPGDZpoDqFb7PuhwzqP90HvaZNoud9fUVKkOU9Fbql1OVHSCq0x+BFjPCnKmXw6vifGhVojg1W0o+ZEYSMlCQjH4wPjMEG/BMckN5k1hvPp2B24VU3TxgsenlZSWvv0HD7+5DM5hXKipO1p2m6NSjkMurhfhLOnqWrr8QMrN9LFWWaQUNeXerH6uARrdZinXdpML4JeH3j02K1KVy74gsolQnsZisDl67eniJ6z7oknI+Gru99onavkerKuPrWrgsM4CShD8KRYO99VcSTrxLZqNdOsI2ZYk/gwb96du3iv/XCLl9IhiTM5xy7GFMYwYJ2BqqZDnCFHPY/bSdFO21vrnO+uEvnYGYZATGIEqlGvt9OV2osibI/lKYam5ngxpOQSkQB0QVQoriuGVwVK3Hr82fSDenu6EOgckXFuwM3+acI++JGtVDBFrgNjePHyU+ZdYQiO9fRI3FZqs9hi2M07li3iqL2Rr5L7pVQJAr1uKTUGL/HVVENKSVFiaz6A+ZOg9bk1MSrHQDxnvLFytp/PilJ1ZjAGuVyxWOcZx0klZFVOg+CELLkUjYTO4NEH+5gAAQAASURBVDXdadXoRWGl9detUY24h67vnYVGNa6XU9SnZ9wbS209tmcDrTMSc1Y0EYP4m1UFZ7RGqYr1pSSnd2srw2BpVVB2Kj2mKHcapjsDu1Ddusu1dEubxOveLt3FoNo0mBuCpRR0kdpiZyy3zsA03L0/cGceMVZfd93i0+uRkVvz8nlvVTHYXFqPMtV+Xu6XGFO7E0xCQM6X9t3eIlwKIcjZnapYc/tJzgbvPD5onYmlUZviTx1Cre+p5u7MpOMDPrynFydyrYWY5WC6rPGlKa6qWGxmHC9raaE2fY7SlrnaTXLCxMy6JoZBIvWa4HjObHHhajf2waKj9nh6RdF51wvZSsnQhCDYis6dwQVqj9dfONS+N3cP4eLo6etjfx9bs53peBmw6Iw2jgFrDWsvSrg4pse+L0Dl7Zt3T1E4awSvr008KEMlGcPxuPQoaGYYBjm0vX3ijbZUmQavYhWroqswqjkyF733qWQ0CxLGqFQVEV2K3XJMtIrE1qzSmjAEhmlkWzc5oxoqEXS+C6X0tbSIKWp6K3w1gEX6naE1j7WBIcwSeI32r4fjmWZgrJbdfk/KEjkHL85g2TJ+GFiXRaU+RvFyb0fo5QHbFmklPyFhWm06p2KYett2rZnaMmH0NOv56KPP8d5z9/aNkkwNBu/x3jIGFW0ty8bNzS3TOHA6PrLGlTVvpCIjiXUDj6eFlOifsR7lTooqg4X+WdWKKmHWWsP3f/w594/f0lJiP4/4aDkcNnIuFFQUN1rLeDWwxdKjwLKYe2+eUAsyXXgN3FOjdjcVyA1PawRvefHiBeu6QHNdOGpqgO4it3UqsaJ1B31TudHN1TXffvs1P/7R77KeD3z99a/kLkzaD2ONWGdxTTHy716/gZIYreeHP/whVy++x7dffcX1zSfk8si7NvDrdws1nvls95xTarw5HFlikWPROL57OKnoqaycY+FqNxFzIQS11a6rhmchBFJSyuZxObD0s2iwjttnV5xO94zOsmE5nFfGQeU1lztWTVqvVDKkiKepMA2DBmnGsm5R7xmKbzqj9zqmgrMqeJnGAWsGWmc2ztPEtirWnrL2my0lcabp2A1re7mYIYyjkFlFwyXbCxht8H0ILPbytp3pM8eOhdDfUW1jjSspboShGyxKwvT1x3lPTIV1E57AWI9ObjrPHM+RYgy52M6VbYDt+5cOjraf02prHcuhf7fdjGIUzKBEgfTFateeb43tDE0vfcEZUnGoJK5H17vhqEXd4Y2UOGrJbOde/lHF+70kPLRfdbGwyoGrnoT8JFRrgK2tqbZGsRIua78fOHuJ30KLpaci+xnZGJY18/btiWVVOmHbEsY6djsvl3tRi/37h8SWHrC2cOFl/za/fvuSjdJ4neF0jMQlchUqYZi4wfD16zMmR8zSWFfB8V9cjezCQNsqH+0n7tbMkhr1lPh3v37P9z6+5Qe3V8SHM9ZYPvv4I4rJpK2QaubPf/0tv3z9qDY4Z/jxpy8JIfBXX77h7f0dKVumMTDayn4aGHpc45u7A+sm1Xz0DmektJcse7gml7BsK6OzjMETnBg7y3Hp8dYeS+hshBcvP+LHP/yMx/NJh1Jv5QIcB0pM7GZFsSY/cv+w8ObdvSqc09YdbDA5i/eB4CzbdmKNkdjrnkHTt/OydaeLYiQew24aOG+ZnDK//vI7Hg4nYoGSCsPguL6+Zl2WPs3SQ9nozS498mQvE5be1ps7v6fVLMU/d1tuKpS4Xea65E0tsblWWsnQM+wGbepucE8x2ZyjJubGCuhftTGFEJ4Og8Zo8yj9VqdYqyJTofNVtijun0ETbdcPuwLdKuffaNR6gW/TD52OwQ/i9aSk6GzRFDUEh7ceFz7w7y7cI1olriughbAUFRpssW9EXbix1ouVYvxT6UqpFR9Gpkmbx/Nnt5zOR44p4b0nBIG4592ki3UXl+1FbKNx9/69hOZSGS0C+Y4CqS6H71jGHdcvfkBqWuDU2NMYpxFo7HdzB+FWSk7UlqEmrKlqTm6lX1Y6z+wSG+oibasNEwaJQbVhsyU3h/cwjk7cpHSxpGdKkkAA0LCUajmfE1AZR8t+J76BcZZlKwxOhRpUD6XQMkzBQTVsUS1WDrW6BhOYB7FVDLAfJtZT4ng+s5+nPvVOaq0sjavriVIL00CPtCVO58QwDwzjSMawrAvPP/2YMQ08Hg48v70i+MrXX/w13//sJ5Qy8uXr9xhXuZm1Cc125ni3Yk1g3DnO64nmLGbsgth9IsVKa4W1RGprjMOI9/QJveG8wNuH18QEFs8WGy+eT9S6YkzjlDZSMZyPRwY3yU2cLH7a45p+lgYY69hyodaIM5bgPJNTvNM6GEaPc57TacXUSLMGYwJQWc4rz652urilos8wAtyaSS3TrniMGwjzjvW0shyOhMFj2grGs20NUzOOmffvv8N7w+nwXgUZm9YEHzzeKfpnbSBn8bVCGMmpiknhFMe5rAPLcuigdzTd843j8QHnDaapvCOX/ORKw7r+WR5wwXP78cdsKVHiismJ0+Ggz7UfVP7gJAoGb6gdCl9rxwUUxfp2u5ltXaGKR0ZTRE2T0hnbnXM5aT3yzmGrXD81RQlqRa2MYRw4H09s25lUIutyfBInjHUMZuB0OvcSoYXjFhmHCR+GfnHSQTL4QIxiZJZ+8Jimmf31DYfHA77naW0HJ+cU8d49CWY+uH5ZkIOPLNeu6ftMa1ovG2DKhza1S2suF6B4dwVcfl1YY9ZYsilQe5PuRRg0OgCZzgqlaIJpkZvA9EOV3IPoQv4bk8tpHjif1g8CXV9fTD+USYTU3iPercoBUtVlWiKa6X9OwrAzFdCgYvR679bYy546D6bWqvKr1g+VxmCtMBC5qBgAVHIkHEPrzgrDugnqXmpkGlVy1ZbYXYfiv1aMCjRao1YB9UsVosIYh0eCzzSOLOez+FGlMjgVkeTU37vW47hOh9DdbnpivuYUe9lOofWLszeKxU3TREoauolXl0nbih+CJuqb4j2vvv2CLRX2uytN6wFvJMJZ75imgNsi+93MuimeE3+jfCYXuWJzborAGct53di2QvaW4ByTDdSWu3tHwztvTBc9K3FdGELA1Kbvv5/dDGJsbttGKWqJNk2OBGP0/jdrekSJziI2LNuqy0J3R9Iazuqfm4IX07E1Ls3TxzVivX0S3ejO3Epliwmso2LIhS7+NprJ+nxOV6zLiqO783uES2UwSo54YzCD6eeJDkD3rjv+5Dq7COYqQZFQG5NacelDm5wKrUl0sl2kNwYJNl6fs1roz68GuUNQYRmtKhpse0lH08C29jVFIpsuxS70gpDucKI7E4OzZPRsy/Ehl7uJKlWrnZu0xsw8+P5eAWPg/pSJMYNxvXyhx1H7z6A23YzpgpZD63JKukyJRdr6WWYFxNuUWUBsRUxlP44sWyHlzDRN4lNVg6mOBuIp5YJxC7kNnI8SaRty8XrriD2y7kMvpHIOqpUw6h1xSyp7cSr8UZGd8AD+EmFFRJzSjQDOiV+dabi+FijRoCVzi10odRJpc9bQvlQNFmouGFu6G1WXWNsNBJeCG9cbkmsVzyqn1AcuF/5mj/H1YU/uHEZr6Cifynk5Pz1zjw8Lzg3dFdz/Poz2mSonbG3irJXa2E6JMAy0rLWwJOF3xlH3rBwrfjTdEaafsbSGsQFq090Exf3jlrBVZYO1FaZRJXymFc6nI2EMEnNjYp4nsehKUVmekRvWWosPnvWkQeA4Os65cVqV6glOe+ZgPc41FWZ4FcYZ54mlcF4O3N5+zLOXH/PN178mlzMYlXvFZaOUDd/P7ed1YVkf2OJCrpXzlolJAnepvovEcHFwNzwxaa1x1mIHGRnOl6K52virv/gLzuczpTVSXiilMo5jj+R7sHKum5IZR71+T23eQG2FVORWb01Yh1oubGwJfznr3N0q/Omf/plSAKkzN6W0c3t7qyLKw6k/Xxp2VzJDtXz91bc8298Sr66xybJzMz/53o7v3r5jq5Vz3LT2N9iiFb/Oqs30uzdveP3f/Tect8Lty5ccjo+0omf8+e0LDqeV4cpyONyTuwEjl8oaVzXa5wi9tMkYx/H8qNb4oP2cZlm3rRtDxNRsDW5urng83olLXvXMiVCkHgBQSYofR4zdKGljN4+cHh8lCPdGVxXOab8xTiWO3tvO3BVfuZpGNA1voZbEtkTmSUPwZYlyzYcgVnptzNNAaY24xs6VVmlMyVojDfR4vxz2IPRSLBVnG7afV5xzOCPjBubiCLbU1O+9qXSWaRKLDtPdgBJwi1Xk2Q8SalvTs9pqfeLt2l4eZpD7N9eK9wEXDC0maoTKBWkhh7VxEvYdBoT1l3aChhXBa53T3cE8sTa99/1P6PxRc1JLtXWkpMXssuZbRSAZx0GNwO1D78AH05f+e6ypD51Md9Je9murc18zSoO1+hvIFA0EW9P6/e03b1GqTj9bK43TQclFb4LKeEzh8WGlmcqW/sfUt//xX7+1wJcNnGzj8bwI0LoV9jUSrOH3nnte+GuMd/z81SNn53hYM188RF7sDJ9PI/sx8Bff3rFVxy/fO/7l337D/+5Pfo8QBsKcacuZdYsYU3lzTPwP//GXbFnsr49un2HHkT//u1+xrrFzhwq+BYbmyFsltcT7x0dN26wuYwY1vqWYJMY4WUlbzuzGkat5JNhGTIVUCmssnSmji8IUPK5Frq5GYt64fzjRGsxz4NnNNTlXTr010Y2Bx+PCukVizIqANCn88zDKzt4Kp/Mqa6cxYFz/fh1xW0m5MjtxsQZrefHyhuPxyCk27u7ObCmT0VR+8IaPX7zgdD51BVpOE1ljC6VfTpw1/fKR2ba1s7vlzqtV0GbF6uSKyCnpsJE/CIS9aJHWquLLRdZ9WsUZI5dda6w94mp7e1LKibIu7K/2PbYkOLlpEPzI4B3blvoC34g19ShcZhrVZjsMEtiMMx+gptYyDp1hFdNTpMihg1+rigyVUjT98zPzvAeavocOW7fO0nJfuHpTLSliLy4T88EtaKxeSyrM0yzXjoF5nnv7sC7Z4zCQB5Vg6L7cuL+7U8NaSgxBU/P1HIn5yDjLiRKmK/L5kVI2OT8f6XHWkf3Lz/GmO7gwWILKTbozR4vTQE6Rw/ksx0rJWARh/cBh0yHOWKNGr6LPivgpgrGKk9Zr0lPmEqtLUYemRCalIq5V7m2cpmgCUxop6lJtnNiVVIGmS4NpclzdTMSTuEvTOIhL0RpjGPne9z7j/s3XwMVSXfBe3JBhsOR1ZQgCda+pkrKeZ98FBWMv8FMtqo1KLIWvvn1NMIbzmti1huHEeqq8vXuN3+3ZFk1kixsx1hDmmR/96O/xy5//ktPd17gGpmZS0UXk+bUFd8Pd20c5QoNi3c5Zrq4GTqcDtR8mljVhW2X0lvW4UJaN5mFycD057GQ5b5XQXVVlk1hKP79nxLPQhbcRSyWEwJYzzXpyNazbhjFiI61R3JFpUhxQb3hj3o0qyvCOgiHGrDh6yeAsp/v3xO3Mtm0sq5rqQtjx8ns/ZN5N3L3+hppW1pioZeO8rGIx9YjVum7cXD3n6uqahgS6JSamaYeatxYskJJitrYX99AC4eJ66iJzrdBsxfpBhzVrGYIECevEnTnc3zHuOyNoWYFKShtjsFDVFIdR+7exatZLXXiZpwmMYZpnuZVzI7fGEhPWeSYn/lWKWQyf1hjHqV+aNIltZaNcCkMuF5cScb6xrJFpvmJdFmhFsWNjublWnPPw8B4/TuyvbhQnco55GtgiT5EYRQK7m85epqOF1OTepRimaSbGjboUUtzIKeHDQEyJed6xc5a0rb0N80NDmxZzCXD6v/bBMWMuJRw9uHtpzu3ina4l3dHXIwpgn7ik5M5bqU3Dq9rHoX3AAdpHftNJSKtsm94nupvAWq0t7eL1qRe+XevOI+EumkEclyQX8KWNsllx7rwT5KiUytX+hm07SJEsjtyFTt8xCzEnHdiqop9a+9RcaWyPP5UuVhbbGw6bXFQXV+ElDlUQC8kafa3urFKrsfbqi+hqTXe0By8XX49NT/PIeV20z1r7dKBuBuK69Gg5TONEyYJL04eDcYt9El7BanDlrS4OBkhJ31/wQZfwnPG2cj4/9GIax0rjah6oOWO8pdZITJZt20gdrO18oOXGblZUOK4Lpci2XbJuDzmjN3bbcMaw3034EKjLGTXu6b303jOPg8pTuvhrunMnbZHgvFg/29ZHkHq2xMHR9B4MMepy0YylUp6ePeOcXP39EmT6GUGs0oqxcjM527CDYwyelJxcjiHQrJMbuyoqarpjMsXImlfUpnfhhMrRNQSH66UHzjtK0/AB5CzIRZylaZyIJqpxOBdKUZxR+Ts6nLxzGH13ktJFOScRfd0iu3kmpdov36a7yhUD7x9j3OUs5fuzqo8yeUv4aSTFJKEf0wsg+I3Bt1o65bgwF5UCZxy1CwXToFTF2iq1ZXaj0Bsp1v5+mj7wbJ2JqUEfl5NXXxdyrX1ALrarNZczYP970RpZY8E7uWxOZ7EgM0kRej/gHJxOK84GtqTERs5yI5nTwnoubLGRVtPFEcca5Wa1xpA3cYVrKZ0nKRHt4miWA6NPObgMQuTWaOgzf+Fz1laxXRymyVn1/3LP6lw/Z4VQMNYw+EAtv8nllCgegpINF84bVoVQucoVaZ2hZcRiDL7H68ToLLnRjMS9GsUNd8bgjAZYfvTkWkipMU0TzjicM1irf67knlAJTvuRaXLuLwu7edLwoDXiKoexdyoKE3YjE6ulVSMOZFYpQKkw767kqh8Hak7dSenlchvGp898KhvDqJI9Z2AMA+Mw8Hg+iZM8TmDExjPWq1nUStxoLeO9J60SIFLJlBQlWrdCodBiZvABVwqtJl5/98B3330jbAWJnFa2uDFNE7ZBXh6xXmmsWg3Gac3bltjFbAebkg7WiJ3ZmgQ229nt3hqc1xnFeoe1qT83lTVGlq23TLtLLL9/JlpjWXXWb7ViUpIL1tgu1DR9HQOtXqLmukloz+pIBDQgUWS89EfaglFD/fc+/x7eG75784pW1UgchpHSCrtZ9zEofPP6K/Dw+U9+TG0rpkQcibd3D5Rsu5Hi4obuzEdj2N68V8S6Nk7rQloX9tNIsIaSPftpINiKpxBr5vrZDaU17h/ObFGFhKUWUqzs9kLmWGeIvYwo9YbkMQzM80TthYS5RH22h5l1lXP2+vqa1hypFAbXOB5OGDdwdXXN8SFpCFvBj5Z10ZA/x6j9bAg6v1utrbZpiFgaDMERrMwW+6udWok7O1bOVaNoRhOb0RqdiWV06apwP2ukS8laF2dDxyA01LLdenzVeT0jwYlDel4WGVyy4ritiWlrvHvCa1inltiWG83IHZyzHJ/TNLOlREqpo6kua5nlwugTGsMSU8I5uVMrtbvcWx/q6WfLVciTy/kuF6X6plEt8LnIVa2kC3ivZ23dooZZXRO4vtnxeFjIHd9U6sUdrgLUuGVqkZvRGEWuL8NgoRguLF4671B7W6v0NvXLAFkubEXT9V7aPozGXDAX9L2386X7EKu2pmnPRZzswuBv++u3FviaKYpDVZS79p5bV/nHn+z4Bx87Rhu4fnbD9WT5l18fecyOnx0qwzHyfNz4eHQ8v5p5fYwcYuU/fvvI77x4zT/64Scc7g8M40BsA+c18tMv3pCto5XEzfwCEws//8XX5Kr8++gCszOQE8UatpSJKWKdxArbLKZUTPCkLMt5cP6prMB1iP8WLLvrHbgiNl9eNKmzltyV3e9//j3maeJvf/ZrzlvG+oD1A/cPR67miRcvnmOs4Zvv3rKcV1w/nFhjcNbjg2WYAvePB4KVELB0+79zmnibwXDxrGqR1EHmcDixxsKW4Xze5EJxkOLGs2c3HA4HYlSUSPBiRWB7OKpHzBKlZFKK3cE4kGN+igfUUgTYXleoffPpUalSVKARgu+QcG0uqV+7YkxkY4lx7fgkRZ1o4AffL3eFmpLENytXwW4MT9Z0tS6jBtnBd4uu64KZDjPeBbCWiC7cz26vOR2PnM9nnHcqe9nv8cDa+TnWWPmkbeswfR02nOuX3CYXweXAWDtkmuapRhub7d+v957WkEuruxjlPrSYWp5qyE0reNOYRk3p5nnWBaJmHQqtuB3OBkpJvPnq73AejMkMAaLVB/542tjPM/PsefnRSyiJnDdKa7hxghrk8BoHcm3cPH/B8eGOuEZa3hiC47QmglfrLciJocuQBFBnIPdLdumwoGGasK2RNoFJrXcY2xgGx7pltu1Dg+HlYJBbwXVRvBm1IRp6CUmfKsdowTVSKRzPC1MIvLi+4u79idIag3HsRs/dd6+wrqrwwDqW7cwwD4RgcS2y2wVs03vhTcIP2tByyuyGUQySmmk9otOsJ0YdvmuwxNQoB8FVa2ocDnccv/0G0xprNLzLK7fPAzHf88VXX+L8qGr2ecYMME4NR2U5rjx/NnO9/5jTaeO7bx84HrZ+0VwJwXF8/52i624glUQucDwmJmtIqTL4gcdzdw9VTeVqUzGNa4bRO/yoKNrgrazyfpSDsurZdD3Kk7IuXDTFu4Kz0OPrFUOuhrKlHimBVhreNQYfaFjWTTB3rCEiWLnfe9ww8vD+Pa++esC5SkuRghh41egQ64wuM4q8w3o+4cLMuL+h0nBhIJ0P1KKSm3EIT7D11sWjnLKEmgzDMHE6r5Qqrkjpon7JhXEXiCl1V91KXI+MYaRaXd6HccR5Q04S7XNedbnFicXm+rNOY5737HY7Dg/3pC1hnMN5rzaydRH8ujvPhnEkeCeR3qihPK2LItRDIATHNE3kPLKeN0LwYD3761sOhwdSPNHa8TI2oNbC9XQrzl4t2NZY1oWKLvRDkLtyixs+DBjnWc5n8YOMgOlyIqcOuVcxUrUqckhJbNLBjf2fEQxfsVyeLtGXhdB2596lCONySb2Aj9V4+YE/+vTL0A9ppUfT+n2//xGrP9APMB8Odal04He/QDzB9LvbQmcpCRmXPycd2Tyt1bogy11UW+2Cop7/1kUHkNDWmhJgN87jrOuuyt5k2BQtNcbgCJ2d17lF/bBamr6I9xKXfXfX+f4allZZt01Ry5bAeLGU0BaUU2TqIrBpfY00Tq1yXSxoPcIuvqBEvEpTEU7VhF3PoP5Z5z0OuWfXVZdIP8xM88zj/YNcsUGDj9pfp33YUfMADUrTXp1KInjPPKid8Hw+c86L1gMqW2zshpG8aSizbZvi7q0+iUxd59RntVZdeOuFA2QYp5n1fJIYHgaWZQFrCNaRWsH1s1lrjdQyqVRcH0p5p2fX2EvBhRyRqXORWhfo1piwrUe5qd0x5fA+UI3cVHFdqVRirjhvsUU8HYeagBmE5hiDkwG11V7xIkdV7BB1i9auXCrezuSc2NLK4IMEXmeZLg7MnGhNwmtPwAmPYHji9LYuCJbutPVODohWJYwYK4eaGyxhGOTGvMTq0RB2627SmCvLeZPTex4VJy6F87IyjbNEraZzpgrTxFTL/UZZc2UMgZx1fqVjDEAXudKHp/tp4rxm+tUGayC17p5yA0NQbLNUWEtnZZbG4DyL7ZeeXKjNqkn54irG9ouUSpsUa/qAdoHSz1A6I4plbIRNKK0vawasZU0aYqVYqUgQSbURkNs4NXCxYdA5pxmlDhTFcmQMYfBYl/G2Rx6bAO+llC64090eWjNr00XeNDCucwPRenZZs0rNnYmruJnY1d3d3r9Gre1pOGq7GaDmorN91eV52+Qs319NOOtYNjn1Usxkk5/WXhe8BgSmYrtVr1kN8+fdzLZFNdo6w9U0MFo1GuM6dL5UnAukrTDNA6WzcHNRfJnWWFPC+UiqCRtLZ2EH9julWCjonDxaOFWhjaqcdcYrHl6rClesKeQtsptHDsczGUew9EKc1gdtGgy1WhimGSRlaZ6Jnt3dPFNOJ+K2qryh89aWVWsGTqmAbt1m3l2xxZWaNZCR2708OXlPy/lJKHIOKpbjWSVM86ghSYwS+WLHBg1GJYBhaIQQmCevUsEeK0x93bdWcc0tVuI50RAv2VgvZ7KV8cPZi+BQdF4panOV81L3yDVuYl06iQ0XFMBlb3bWqcyh8zZ5Epzp++mHocJFUJ3mwHfffSMGcz8ZeO9V+NIs87QjxZX7xwdSSrx6/ZpPPv6Ul9cTr9+85fNPP+b22cyvvvqWYzaczhvnWEDUV8XvS4SmFff8cMA0OOXK9dXMw+OBqxc3zMNATRvNBqqbkGJz5GY3saVEbnDeEsNYGcc9u3ng4e49fhzEiJ4m9te3jMGTt5V1OeODZTfPvH88ysjRB/an88LN9Q3r6T0lq8GWVmkl9hIdudHkltQaY6xl1CFb5+msIQVJWJzSKoO2YzEuZzn/cxPXPG1FBRLO6L9XYTRq40kUHrx49zrLGVpVYVPMFeegNIMfdGcfh6ABYW14U0jb1t87CfopZUof9AZngYDB6pxkHMY3cuslmd1BOAThYlpr3N4+492bd9RcwNKFRg+livVNd+jm7oYvrbdG695tm8HUSyS3G0yqBHia7nF04dN2gaz0tuuLKxmjAfO2lX52lIbRrSbQz622F3fZ7ty7mLnyb6AoDL1AC546BaSpymhQS+viuelCann6z74Lt82Iv1y6q/xJQ2tCbuSi4WvrgyD+5yDw1axDk2rsC746/tknz/nHn13zmFfe3N3hDomHmEjOUlrgUAEC9+fCt+vK9RhwY2CtmccV/u2vXvO73/uYm2fPeHN/4LQkfv7Fa16/uWPcz1xfXUOMvD8ftek6XV5dLYotPBkKtHhpqeCJrZJS1qTV9sNZCF24kh112TK7WROEx+MZ6wIlKmIny2vi8bTy7v5ITB0KHTzn05nnz3Y47zicN+4eHvvEXBMUOaPAWc/cG29TbcQt4oOmJopkeYlkhT5RoTPcCq4Z3t+dyfAkKDkLrjZ2IXQWS9ECXWXDD6PvarrOFTEmaknUYno8VK6ZlKLce0VTzLhVUoo9HqQpuDEwTUOPBYY+SUikKLBsSq5vAoqCaXpEh4O7HhPR78ccdfgeBgYnrs22dgGiCToee930OGqzbrVDxr3HOlnQt1UX9nVZSFsEZCHftsgwjDRryaXx+KgmyRCGPmWHmsUHqTkJim9ch0E7RYJ/4zB22dy8DxgD3msDdE52X2PFzKEVWqk4p/ipeA1ymDj64aFv5sMQiE1TlpISJS48PLzCmMK6JrZNUzNrrdobQ+Tu3T1heodznm2L7K4/wbZZX88rJtha43Q4sJ6PULJitLnoMF4qoxfLrPayBi2SuozVIt6bp5FTYVuiDp4dgl6LFsvrZzfw+EgpEJNuc4riNUany2wtcmaOo0VJTIkNtcNTh1GLozGQt8LJbEzB06yhxIh34lrYYHE2qAUpRSDTmmcewHo1Je3nK25vPyKWjfPDA6AG48fj+am11zrPYS0s2WFrZeiOjGoa61ZYlo27xzO3z27ZcmKJiTU3Uou8uL1iPT9wdfWMm6srDuuBsTcWl5KoVO7fP7CslWUt5Gyo2ZI7521HoPXPZisVHxy70fLidgcpaT3I6em52k0zx/OqBk8XKKlRcQzjHlokrmdNOFMi2IFxlE192RZy2pjmUc9ipTMqK6VfNJw1rGtU4cwWCYOjxdIHEZrCLksGF3pUH+ZxpOYqJ2IpbNuJS2v0MAa2VCkFjLesJdOywxlHzBFjCpMfmcdrfDBMs+PV/VttdkWstFobwTUyvYHU6MhoezOiNYZmHCGMHJYTteoQfDyfxAaKK1iYhhnjVIjknGV2kz5DF/csOginnHBoYJNTwg+Bm+tnvHv9mlrk6DEWWqlPl+yLYzAZRWXHYaIURe/OWxQvr5cA5JR4uH/P4aCW5FILWDmmrvbXrEYHhJIK4zhi/Yh3oyKXtTBf7VmXs0qTSqWYrAi/s3inAqDT8SgsQJZvbNs2tUdb34UfSza9ra0qwtcaXZCRu6S2imtq1HzibJWq5kDozj4JDhf+Va+moi9lEuXsBQDfhcHam2K7QNf6BFdfU47l2oWrywGr9XCFUAwdCN0uxtX2xOyTuxv9bhfuLqVGrRVd+rrb8XJBKd3xBrqUt/49v31/r0NWq+IKFe2rtV4oWHo/LboAu474UPRO6xcNMh2a7Tw08+RuEmDadmamRHkpAO1JYG4UYik0jXN1qKXSOpib3KhNAtK2nqmAd2I8BV9xprdM5sq8m8kx6qBraj/oTlzfXHM+qPnPegsx4dzAlgunGLtjW/wo5wOlZE7LkS0l9vtdj1DlzmpTw3wtlUTpF2yPreZJkLVhYDfv2NYzNngqhdRP7ClmYjpRayEESzHgrWMIgS2uDE5uy5i6QNVjqqO3hM6mvES5m22kdWMIA9M4qFiHCq1gSWA91ToNovqB21SVOg2DJVlDweKD8BTeOnbB4wxsZRPs3qgsoCA2La0yDZaCZXBeF5ais2epEl6W9cQw6GypgaueVw1dkQipW8ETZ65huoNVz0d6cnDoGR7GgVw0iNUdXMJQi1UOvSbXW+v8n+A946Cmz1YN1VYVMPzG176IUrYPLaXpOWwrpCR3GrWSOgcwpoz1Vp93xHurfW7aSsUb2Pr3gXOYnHEmkGKSYGp0GVqjRBJPI1jHNDhiaeQmJ7mwMpdmVdPf71605Ux3YWiP0JmxYloVJsDodRyC6+faLqIOSjdssQvNaA2Yu7N9nEZyyqz/T9b+pFe2LE3PxJ7V7r3N7JxzO3dPD4+MyKhMkpksNoBYMwFqgIIE1FQD/TTNCtCf0ECASixIEKUiWSpSRTL6CO+uX7/dacxsN6vV4PvMbnDK4AUSGRF+/bR7r/U17/u8qVIa0j3ovROjI+VETo01ywJzHKRp7dqIi0ukgULZRcwo/+wSnCLJ103EA0gaZM5FBg29CzYFqSONlyTbWpsspIwM17oRfrb8XFBbmKqOuyhqjDH84hf/BT/88Jb68QNN7XS1y4J13UQR7hBOp/XC1HPG0vXcBiMM6FoYQmD0wo10FrbSKV36G7I08IdhxNDZjGHLqxBHmyF6UfR5a+TnpSphnCXlxD6K6m/ZMtVUcs4MMTDawDhGSpIlfM2Ndcnc3dzJ3VAqxnqCt5QqCu8YB8ZBOcNDIKXMfrfnPK+MwygK+laF4+WlrhZ7uAy3amtM406WjbVzOq9AkfTvUmQwsW1M44DHYXqitsJu51k3qRskXVhq1tF3TJd6wKna3TtZfroYeXhcyKUSx0FVnAXjOtZ1Pf8ategiQxcnrUoAhgy0pY13wVFSvTLXQQJpQrAiKnGVIciz1kpTlR/X21z+k9rz9f7uesHLkEO4aqbrcoGqQSdFOY/CIHPGycJZlzAhBpZ14ePjEWNkWb3diWvhxw/vuBktw2h4vr/jfN747t0TD8eEseKAaqViuiwGLz2EaY7bw57YK8Pgqc1cfz7j/oa2reJgaiBhTIFaV2racMayLMLMd06C5W72N3z+6nPev33DMs9ApZsAOeERKzPNQXeiAnQRF/eQj3g6vYgiNcTIed5wXbTHoufVd9P06wLF20vgXJbhWxFBSO8Qvdhvq4HeBSk1jlGUbop3OM+LqE1VVZ9SJpERk7yo4rrp4nCjCz6miwvG6UIy54L3iMvBy78pA31VguaCi05nLLJQ7k3s2pezvqtSuLbG8fh07SEfHh61DkT6n95oOV1Ze94asBCdDNTc4OUd7OCoInAwBlMv9aAlxCBqTF3O9i5Ln1LlXTNG7ia0rpZ3UBBnvckXHYLeG4rTMBZCsGytgW2YdlHW/Qmjj091rAxtpXwzRqy/l/P3MiYwWjNbIwPq2jrjEDQ8p2glq8NBdUleaux6+d/6pbr+8/782QO+yyXQukx077yhucT/7817nowTCXyA+zlx7AOuV1Zr5RM7w9Ic82ljmkZG55jPM69d549vH/h8F/j48ZGtdJaUeH7YYYPj8ekoserWMjgr27icxD4oXlNsVx6cEdWeD04LLbHlirtbf5nKNuldbCy5FAFtqip2yxvOeqJ3qqRwPD6dya0Tx1Fh0ZUvv/gMZzpff/cjyyasNoDWLoexJURP2YR1Mc8LuXd8N8Rxx/p0JoTImjZyq5iKWAM6bGuC1qkdUikQAi0nDBIHn1JlcI3z6Z447qRJQOyjBgnyuFhLYzAC25evjtYq67JdQbm1ZLGJ6CVo+4V/IY24NcIdEiB4pfRNk5jERhb9cE37u/Bi6AYXrPC9Lil0sWOqFH/GwLoIX6B02aSJ9UEkyAJrdmqrC8qGq8qdgVoyyYiyz2AkBdnJdrwito5c8rVBH3d7jDXkttG7pE4NMcpEH7AK5cYoYwvZbrvLf9fnrBbhNkiDKgeB9ejHkSbEO7FHX/tlVbb0/kkP4wxYWxgDYDzzshE9hH1k3oR90xvMc2Y3OX74/veU5QPjdGB3eAXIpexcxFk5cL2Vr8l2GSRSkmx3uhH2Rpb0QQkrs5iuUmzlPYFhN43SgFbZyVsn2wjTDe/f3F+3JJckYIzwgJo2KMGJ3WNNYiF1rtNbJliIHobQ6VjW3KGKhWCMUjR7J8ERxkLeKqU3tgJjGMB0Uml4K2EzdzcHeof7j4/4ICB35x3j6NmWxmEUK+XTkjlEsYAnLEuWy6RWQ7AWN+zYbOd83hiCYRcsuYHBMc+J/QCnU8K4xjRErOn4MFCdZ+uFp6eN81yxNohF2IGpMmQruXCzcwxDYF1XKQrDHq9MztnJ5t4ScUMgrZnJR/zk2XJjrYluG/v9wPkol5a8B5JIGaLVAY8lDJ5p8NRshNHTpQhzw4DrRpTR6cyWV9k2FjRm3uANlG7w48jN7XNOj0+s61lUcWpTxEh6oreG4GUKIwyZTrCeMQy0ZtjWjDWOYZRk3bSeqMbzuCwCgzdBFb0qzc9JmpiccKq+o3eM8pvEWNeByugttWwsOTOvi6QLIxv/GIR/Ok0j1CLcE4M0YtbQhWt/taFPg/BYHj5+oNPY7fcsyHC26cAtRlXiGAdUtbjIML82VR2bThzG62CpZlE7l3SxqCaqEc7TNB10iymNdmsIwNoYQhwI3rPqYEzUeI6UVBFW5dxureKMpRkJzyi1ss4r03ThYWqhXcWqkjbhoYYQ8F7A0AA+OGq52MqMDvouFh2j93y/KnC7/mcuZ7z5FLjRQX+ncE3m0O2mJKbV691r0H9mpYi+BCh02nWYd5nRdf14FsEGdNN1Uy0TQJkrSvqwqJ+6Dg316+zQW7sqyKQ5FjWVLL/kdxC8Z6uyBNSF8p/8n6aeXgMQZNEm947cCTnL7XoZgEgytagOcxUAvQ+eGAcMcreKYlpHm9YQnFHLb6WYTgwRa6OEYxiLNw7nLds646yEfZQmDa1zBhM9GMFZWGs4Hh8JzquN8xObzFoHVbl1XQeCHfa7HfO6sNZEqZlZmx5vxPY3DQO9FEorNETx3fRZub29xXkvC6r1KFZ0hPU7DgPzlsRC2IoA2G/2oo5LGWdhP8oCrtbOYZioCjeXYa6kzNoO1jRVzwUJhamJra6MwTKMwj4zdFIpuG5RGrm+mw3rHbk1uhWbkruor6ogKEoDrKeWooB0SYUexqhpuw3fDX4YpGn2Xu+oxpYWhF8lw9TLoFKCGGTpmZSn6qyjY7FdgiemcSJEz/HpSR0BgaRK29Jk2NL7JXRA+XytAsIDkrpNh9saBlGyWO9r69Qiya3OOP3dybBd0JTy8ezFOWIV76Ln4OQG+pXNqTxUZ6+1Ru+Vm8NAO8lgwtmADQNb2lSh0WWZW6RRa97RXCe1whA9pjRKqtKodlEI02X4IgsfPbOv55Lyo5zB2qCKODDWSuXZBXbukECqlMWCHYJjiJ51Ezu7BEGIrc2KiEvOAwyldeEWR0M1jlz16+mN3hNBthoa4CEDW+8lMKz3LgoWXZA7I+9cq2q5VCam4DxECOA0qdZZCchqtZC62HRxemZ3Q1DHkTEWi5yrc8ui+sJy/7Dy7//9b2ldAiRC9PjgaLmqClL6iaLnZ68SYudClHOAoqo4seEZCtsm5491/grnN2jS57LRld6fqg54W1NlWiM4rmpkvAQGVlUkytVpRLXcjYYJWbodmFfhrZO7DHh6Y05Zfr+t0VMhhD3rmsVaW4SRmHOhRS/3rrv0f6ty+4QRlnLWYIyAj4E1JfI8s24L3Qgnu2xZ3GBVFuTGyuK6tcY0eLqJrClxsx/pdaGlJu9IVwZlL0yDpVlPbvJzfnaQPmpJUje0LiFo4+jpVb5224sOQzxVw3pEFcr1vW8aUBCiBHmZLpzQdqnLG2p1l5u6dlGMNX2nvA+i7swZYz4FFdBlEI4+zxc50dWlg6iuzudVlU9yN9oudeTlfDrsbzmdT+zGPcuSwIhC9PHxidt9oGxnnhLMKbOVI1sq1F5FndstwQ4y+L+Ey3R5b252I3e7idgrN/uJl3d31O3MsCxiE04ZcJzXlXE3QS74ELQmkfrCBemt7549YwiBp4cPpLRIMFdDHC614+IgIVd+z+2L57TeeTyeefUXX/Hmm98TAyzrQi6FGJ30SFqjRm+vwXjOyjPTqqj8e1kwQHQy0ANd4JSN1h3DNICppCVTW2YMgar9rfeDYIys1Z7r4ia4cBabcj29iHmQ5YfpnZ7Bx4HcO60YQogybHJeERLmingwQCqymDFdGIFjDCyaOeCMIRcN2QIWtd5nZQQbZ8UKrZiG1iTl3XtZpMbooBd8gKg157qJ6zJ4i29Qq5zLpsswTxj8Eq5ZiqAVQJ0COosS95k8k7k1ue+8ZRwktK3rPKRp3oDzRpAOwTMMgW3L1NKuanqrLpPeFZXSL/Uougi+WGAUjcBl6CehSvOaLzM8/TnoWP06YFeGodbW5jIt/DP//NkDPowcYjJVszy2zn//wyOuWaZpxGwJ462k1VWxjC3W84pOaiKhT83iS2W8TEy74dsfP+Jf3fJwXnk4zpzXjXmbyaeCccLTsqJLZ13X/+gHI81Sx1p5oIaotogkjZRIYrs0jqrW8s6RSmNNkhpzXhIWy5objcreWTyRHjzjboet+ZoItzsEbnY75mXhhx/fkTfhqvRW6aUwDY6myUg5y8d/PBfm5UyIHoyn18bDxx95/uwVDafbZYETJ+X3URdac1jnyOtCbYVWkrKYCh/v33E8fuCrv/wbvBt1cClqKgFGBnI19C4hC6U2eqnkvF3lsgbZsOFks1iLbNKsyqW7rbo5vAzWNnLZMGEQRZzG2V/SiS/sP336tcY2RNew25nz6Ue6PXB48RMuSX8SCa9qwWEUVZCz+OjEBq6KFIym2Fya9q7bdWO1kfOs68KgMFXnHCEEbm9uaKWwrIsUi87KRkzTfHuVhi04e210rZOLFjQ5SYs8H1XizyUJrRCM7G1aEzl9702g+15/hqVKclPJLE2GIi7A19/+hsFbfvLTX/D73/ySVDa9W6XwCYPDGLGqjqMjZ4mlLyVBKqrSdFgrSbxjHHjM8ru2uh2wOsxe10WVh0abaNk6AmpJBujMy0rVy7FmDZmhaMCJuZ4BF5ZP751eJTXPBrFX+ovdtxqwhdubKJuj2kib4bB3pG0TZYyTQtmppZCWsVYCIKxulmL0103gMO3ZTTtKzZzmkzw3pTJEzzBGHo6zvN/G0lvldj/w9n7hZgrcz5UpBp4/m3j8eGbbJMynN7Fy99wZQ2DwBuOkCJ2TDrEGGR6a1si9cnM7YGdDCxk7OU7nRDUi/ZYAn4y1iRgmBmcIe9mIhRAZ95HjKXF7txPVxtrkYiiNZip5bYBnGAY6jZzO0DPWi52vXxpuVTi4YKnVkHJiXTPTFHC+EezEbn+HHz0fP7wD0xmniW1rkpRbM2EILEvG4NlSxs+rJPOFQNwfqCmJ5WQ+s9+NujCBGB3jOJFnYYZaJ+/gOEax/JZG3mbo7+hEsbjQ5fmIXlRaRplQ+j3txpFcpKE1LkCXdyrnlVwSqYriOJc/ZY7IMHXbVpwXZo1zlpQ3TJNmNwwDu0F4QOv5id41FbGKwk2aWWGoTbuJh+WMMbIJDtFxd3fH4+MDBLXNtgS9EawBG3B2kIEJ8oy7YiFWljyTc8YPigqgSWJfr8zLzDBMYiXH0mtlPh6FqxqHqwo8OFGRQGc+i72xGstuHJkXsfvGIYrCrSk0Pek51BrzthGGgLVapDcZojnnKXnVoYDs66U+uoQGmOuVL8W7KHEuxf7FZibn1YXTJ83IZYiof0U/sg4LuagSuqg4lXFy4fEZA8E4YYNevpZuaKrAt7odufB65Axznz6Xka/18nklXKHr9tRy2bp0/V5LlYYUK4OXijwPOB1Aq8LrYhE3Xf995dVcCzz9OVgnxbIMBgXWbawUzeDYjYPaSrrYVLyVtHthnhBikKFRXiUQoVsqopIvSZRqtYqdcvCiQEtpoSts3eqw3Brh0/ZaWdPG/nDD+TQTQ2TbFpw1it00pJyZl0UxJp0QoLbM4KyA1a3F0WgOAh6joSFbzhhjOZ5P9Cq2GOsAo8ohXZi1WtnvJMlwv7/D2k5OCzknUNvgfrcn+kDNibkkZRV3aJ3dKKnaxsHolVdsLgMvsTDP60Jjo2JxdlBEQaB3SFuidlE7nZeZVgpjjEwh4GwVrpUtWpw3GeIizVLwhrwlqcGK8PAu6JXWuiYrd5xrlCq2vZyz2uJUHYM4FIwRq48zUn8YJ0EW5/mE39z1mcYYxRd0gcvr0vSiWKlVzluxyQoywHKxNWmIkabUX2qkawqv/v+Ss0A7rsP0RumFVgvex6uaoLTKNIysKWHoBK1pvBc+qXWOWhK7MZKb2BMvFuTLcNw4c627LYbojCJOAGNxNwda68xLVjuTcgKRej54YR+3VPQd/6Ria1xs3Gqxyh1nrH4BwnHyRsJLUqr0blmz9Ai1NGou0MRVQmnUIpbr2iT9MoRwPTOsk+8dp0rfbuiITVSG+4of0J97qzLsLVnSHI3pdNPUCSoDcAmAa/jgNUyigGlXRII4WERNTDdEZUP13tXCrwEcVjhTT7PcCa1JInEITmtVdf84GQ4VVYR1RCHonCF4Zd8aWLbMlo2o1rxXW7IOdRGG7hQDa8kY4wgxcD5vMpQyl7WPqIsKVQacpmsjb64uEo+okS5p7lveWOaFYQhMw0QYoyAq6PhBEAHiRpLgGGvl7q9eanBR20gwEqbRemYYoihTdUnSTGddhE02DJ6UIJeNrNbx4A2tO1JrrFsSxI3xbKnhemMIkqa9nmdhu6MoC2tYUmXrlSE2SrVghfH6dN7YRVlExcFSVlGGtyK/393kVF3YJancGwKCbpJlmgwdOvWq4G1FFOW96f1tHCaIsjiXosOIehVHSBCG/Ky997rwMaxrVhSD8Brp+vwZfQaNgSa/S7lu1RnUxI4pOCXY7wacEbeOCwOvXjzndH5iXY8sXRRTt7sonwfL03GWhUgX50dvqtBEFrwheEmWp7FtRx4fLF88P2B65+nhAcpCN5BnUY/5AN164uA5zzP7ccKHUe/6SNoyMQbW5cR8rBgH61rY7SdSKuS04fzI6B3bush97+UufHg8Sz3bKttWMM6RaiK0jLeNEOX7KmuVc6p1Si9gpccNTlTy87yxKeuy09hKUUZ8J3fHECwxODkjnOXFq894++6e03mmdAlz/OzFZ6Rt5nw6kqr2ALr4by2JAKXDGAK9ymDL9EKwGmomM3a8k7oL45SBKH2XD5EYPPN5pTv5erwKnmShLtvPVMVRM8ZILaIQNOp8kACPS83URB2rZ5a3Yr+tRWoyp4PDqniG3uQMbheH3WWrILwM6RuMVcHRhXssf6V1sN2LI1BFNrVVkmJRHJZqZJnYVEiwrQkfAvudl/qgynov50umgdX+/oKlutyZXft9qZe7DqRloGx0Ya2DPK2FPt1f0vNd5hjG8Klw/jP+/PkMvib+c+s8eEe2lu/TRjCW8bRy48GmxOgia83suuer0fBltHzcKj9W+UYcohyxvVLOK+/fP3J8euT167fCyChVHwCwpmCBKQbZDiEDJFnMVuHlAKY74iCT5Vq6FB80YSlYiEPgME3kVK6y5Wo6Dkil02rCOo+n0MqJ1iIVy/3TmWf7gKNzsxv4/OULfv/Nax5OZ7HWdEmydDSGaeCrrz7nm29eSzSyWm4TlvV8AjMRx4Hj/QNf//Jfk778ii9++g/J3bI2sVXZbugUfvz6PzBOt9y9+hm1bNSa+PDm9zx79QtCjHx890fevv6aV89fEu6+pAPTFKEaGUaWjW2bAdhyphcBgNaW6Bpy4X3E+igvUzN044GmtqVZFDbdgvWirEoz5/mJu+dfAIYhRub5jNGNWU5iK+vIRs5acDHS1oXj47ds6ZF1/p5WZuxwwMc9Id5g6Xivdp8YlPlRriqirKBulAtQNV3SGElbbVVSKoNG1ls7SmOiFgGr2wgTBHxatZmUoszKheK9DPhM45IyZBHrVGnlGqDRalLViMjrxY9fhVGibCc6skXvYk1t9eLD72qHzszzPe+f7nnxxc/46i9/jvOGr3/3e4yBVGZkUSFD2GAtx8d7hl0mfviOu1cjIYiVeukVCzw+3oPyR1oVdZFVxdJFT7ylFee9WEBLvR6oshkH5y0YR97kHSs5M06W2/2eeZ6Jg7tu1bZU6FWYIobGOFhijPQmm8paC7vJCxchg7edabCkTcG9VaDP3RpySVwA/dF4xmHAB0i1XFkMuTdKynyY7wUSXao2Xhl2nm5WTsvK7W4k50x0lnxclFXXePVixPTGUhJxMOyLDhhKJ3jD6DwBRw9gh8a2ZWiiMCypkIHg5TJdTyv7OOJGw2I6vYilvuo5+fL5LdY6Pnt+y4uXd7x/+544ehkmD5bPd3tKOfH4KGm1DosdR7E4+cB23Oi1EneOnE5S9BhRXKoTCtuhm6oMqCB/xwNBilhq4un4kfnDxn4aCWFg2Ro//enfcl5n5scfKCnhreOUF5HoWzjc7BnGEWdHliJF8lqKFIcWbG6Uugrc11i8kyH66XgSfEJ0GONlo10TvSVaddgo6cEWT9NFQCmSGjvEqEM1sZsaq5dfETVda411FTWw9QPjtMc5eSeckfCOOO5YtpW2LXirEF8faR22+SyXbMtM48B5OcvGfpw4no58/PgRH/bM5zOlFCYtDpuxHJ+e5BlUQLiksWW62nhK0aKmNeXeFU0CtMoAFI6ZbVXfHUkKvySACSzd4r0lF1RtF5m1WQvei6IgCcC/tnZl7p1OGxdrBHThiaqKOCdR7BZNAu/aJNJF8dyutgNzVQD9RwM84CJlk4WAqH/k7yqY2NjLsv9axFwttkY24tZaVdrI2STLMCncQ3A6NJGm4tL0tlplmKbFUtcPeuE1SqKf2Idq/RPl31Wp167fhwxZLA0Z5JnOp0Kt69hEB53mYi025spprBer8eVr6Y2GMOYuqpxuuiq6RYHnuvy8hcMl/27TO6FkGfaEIHdq743cJM1uP0ZMbSzLDEFCMS6FdKuF0XtqrYw7OctyzppgLx9v0UAX7z3DMBK9pz49XC0syzxTkWdUrEyiPg9ehjdJ09X300QwXbmqVZQ5ysBz3ov9s8sQQbiZgiK4hFYZJxxLa8UGaow4IXrJ5JrJdWMYI0WH0kstmCCKmtqLpA46yzpnUkrUKiiSwXuwYhXGXthskhZrwiAhOkmVtu3ToKnUjtGwltota2oyRKyJDHIue481YlmUtHF5HrwNpCI82m4gF1FlhhBImwwyrbPc3kysWwI7cnN7y+P9E8d5YRxkOGCbYYg7ahZ7XknCTbXmwoNUq1HOusTVoCGk+fEalOWd1dAdWeK5iwq2d8ZxJ2qv4K6DwEtCoDWyAKF3JGgpykCqdXKThNNxGuSdKfW6YMulEJ0jXWDquhgMIcpgUJl3Bq41x0W955yqIKOA/sdgMF2+5+A8rcn3HaeRw2HHx/tHxP4sCo7BR0pZRY1jdGim9rOq77h1qlAFbBDu8cVa3DGsSRRsqRVlSxu23sEIS7HUSkmFUrpYI429DjhpssgpTRTCRsNrmi6WLkO2WiQkplVVG3e19l+V0TL4r0UWCMIVvSwxhEPo7aVpFVWes57aRKSwG0fohvOyytLbGgLK1u1FVdI6JMbI/SvXjrxPzuKc2PAx+fpMSPqj2Oo+8aKkti0NtlyFEVgrwYtKMgYJ0BPWmKhRrKrEl00XdOj5eQmFqbo0x2KCZc2J3qVOcBYGF9kNIx+fnuhGhlwNx65HnHGid9G06WDV6US7igyCc9ggWBlnwXWYzwu7/QHTEFUccm4Y6whRhqW9F273B5acWddELYLpCd6zncXeWRvkLnbb3qDlClawGdaA2ztOW6IaQ14N1gc5z1vjvGSsH1iPhTR0jBPVp3NdlXCy5OnIMyoqZ7nLnVM+p6rr9GYDCiEcMFYsjF4XvylLKE4M+ux3wShIoyMBL2KXb/zFl1/yd3/3X/L69Q+8ffeG0+metMlidTdNnOazJLd3r++18Edvbgbu7g58+PCg9bcs08boubs9gJUU0md3d/z13/xD/ud/9/9l206yzOuV85yYPDjT+NmXr1jOM+8+LKzekpoBJyFlN6PlH//Df8Trd/eEAcr6yH4aMBRsK2wlMwYJLISNpK49FxQN4JwERnnlLCIs5l4lqtTYRtka1k/4MGBzJkTDfreTs8RBySs1OZopBFtZnh7ZT55cOrUatV83bg4jS+qi4EXrKe19UXVj1c8raeGVlmR564Oj0qkqFKm5aE0GrWbSulKL8EW9Lqw+vPuRaYwyDzLCcg3e6bAIrOv0ImpcnCwanQ/CVlXHwsWF0C61XDN4TZA1xknQqevq4OoSDmON9ESI5d45URE7RY7Y0vFYPb/rVfHrnGAgWlF3CSBmZlloFIy8m70ra1ZDfLq5LmslXKRClaVP6xdWqYZa6IKYhrgxtF7LyMcxFVE1Wjm70TBSuOA/MjWLO0GrWVlONmHJizCm69K4X/mTYHDGSZ/eKz5YmnyZ8rtHWLpN626sBno1mWVc6k99OPhz//z5Cj6V9TfRAmPHgcvP09TK3jTs8oS/eU7JmZmO2wx9bXx2GPm4ZZwB14te9h3bM29+fMOyrcLF61dyD+MUiV7UVAYNROiaoKfbTrTxCCrPboBxwsDoVS7lZ3c7OhYfJRjDqqS5qgRzikHTVCrr43tef/sbfvrz/5JXX/0XkijbLb/4+V/y8PGJX//+ax6OCy6KR30/RMYpQk4YY3n3/iPzslCrFH2tFj6+e8frb3/Nbr/nsy//mrLdsz39wLfLew63z9jd/ZRiZKNCrWzLAz98/UvGcccw7SmlsM6PvP/+lzjjePbiK073P2LyI48fvmN/+4rgJSK8ZmlCSsvUUgDHspwkIAMD6suPMWhf2OhVi77o8baxnB5Z1vesy8I43uGmW5qBh/ev2bYjN/s7nJ80klusfk38sYh02KmCrVBLoucjx6eP1No4n44cT/+eOEy8+ou/z/TqhryeSDWz20kDjbF4TYOqRSHUrWOMsHS2tBFDkC2kkSLYYrg5HMRKhDAGQ4yUkpR/Iw2bTPbl8LBWbWRFLMYyRJcKwSqAtpYCTdgBVW1UtWmioREVRW+yMbhA0uVz6ECvNiTVoCMrsAY58dnzl3w73/P29e/IpYndyktS4N3NxC56Pj6e2ErB+1U22cbhqPT0hI8vCE4A5RJU0vDRUeZVVH5WByZO5fu5Yq1s2cMF+mmEKyAHmME0YRR0JxeT87LxmNdVWD7rigsWb2A3QslSKLfWSQXm9SyNiJOi4zzLZdqBIToOeznQ3CC2K2Mdx9OJOASGKGEAzsgmJ6kS1DRH2RL7MZBLwrqBm8MLrDV8/PAOWyy2CjfIWc+axXqStsbN6Mneitqpghkc+TxT10brnttnB56eFmJ0BAe7IYrEm8rdsz0lLdw/HhmHgXSqdBo3t4FSE9TI7e0dz+yOH97eE33n4WFmf3PLy89+wi/++h/w+P3vefPuO1rPOCNBEC8++wVf/+aXFJ4YvaPlxpI2HF7ZJp5SM7vg2U0DNaviJhVi8BjnGKMnbytS93e19yVah3lNEkxRsthisKypEL0lTiO7/QuIB8ryBM3ydFoYp5E4Wl4+u+W8iu2+ZOUBObn8l1lSb5s+0955hiHSMZyOT6RciCbyNJ+IIeJMhCIphDF6wjgxtywXtdHBqRlYVlGSLev2SSXaIQSPEH4kVMJZIwqoMOF8pJvGMA44a9Qq4IjO4zCkJAmfozG41rG9kVshWHc9T/b7Aze3d5SayfnMYT+yrLMMsZyFJsniYRjoTQZmAN1aSUiz0GslKKx3LZI8HoZAcJHWk6QGG0cYdqzzzOH2Bmctp9ORGAaM89QmqIMQB/29VeIg7+OyrsQYubm5wTjLMs/S5IcAeIxZKEW4SJNaBy/KOu8tXTlOVgtvnVJJ6vWf2gW6LtOsJmLrH9mM9k/O2y5nvbH2Cg6+cILQf1+GWaIYuCw4vEfvGxn04aSwKi3ju5OGE6uWIRkSUWW3VHXI0Zt8HmMvLKGrGVdVKrLRNbqh/vS12atdQoafF8Wf7mGV7deQ5vwy/LtYNMRarM2dufBf9CFtUjg6Zcg4/dhi6eqiLu9i0dlPe7kjdLM7ThPzcpbfH/L5Hs/KElIr+zhOkLLcd94zDiODd+RUccEyDKOm1EJKoizd7yeM9Rx2E71VLaXhsNtTcmHZFppu8zvSEJScGceBwctCJnhRRlsjjF7rvSS/dqm3WpH7sTe5o+MQ6V0CFrYqQ8xw+TnXgjde028hDJHzklnWVdWTjtYNx+MJZyz7w0SoYLyjT45qOziLywIAgYoPUpx3ZOC2242iZqpNA3YatSsqRdNHW80EB+Mwsa0CYqc7SisyfFGVjzFw2N+QcxFbZFqpTYIg1lWGRs5a8lZU4SiBN3F0tObwceBmGjmMUV0Elnk+0XGM4wHrA8flxPfffy+qSW2UrRX+bKvCqqtV0k5R91HVZuPC7TFGaGrCpZPG6ryspJTlnO6dw7Sj5ETKmRgFU5PzhndeBwaX0YH8kcWBhNBYVUvWVhiCKn4Q+3nvnTUlHeDpcL+LKss5hzEVmthKa/+k5CxO6q9qLNk1sB3TEt561nXjMA3c3t7y7sMHllWGKn6IGGuFV+3EGq5CCQyX5gl6M6TcrmForYtCFT27nHP4YDFWLFyNLgoha2lNQj5KqVirKmcj1vkYR+Yl6fCb67l5wQo0ZRUKHkF0a26I8v1elHL90vxbrbV1+GnlXGtNGIBD8CyXMxyw1mNMZZpGgg9saRNlJ5cwIYftBlsviAKnCw2pl3MTRpw1YLqcPRYdBqADPnU+0VQYULMe9kbPXllgyYLHMa8bwQfBoayrLr6N4EG6xTWn6s3Kac6MQ5T3p3SMKWypsRsD0csQcxdGhjhRayfaoOgQaKVQrSicjQ4kjVXFoQ/k80zvhnEcORwOHB+P5N4YY8T7SIgV5wZxoSiT2g9BbH7jQE2b8k8drUiYh6h0BF9wd9hTWuW0rhS64H0aUosYx5I3DmMgmMyzvWctnc106YdaYZw8NngwlqXLoLWXC98M5jnJ+VVlgL/lqneXYRyl/wneMi+FkoXtSeu8fP6KYbxhN+z4/vU3zGkheK9hZPI7HkIUbI+XoU5pjW7bVT20rDO/+8Nv+Pjhg6j7jIRllFo5nZ6w1jJET6syBDW28sWXn/OTn/yEP379LaV2CRv0gWWeKbmRs4FSWeaZD/fv+Piv/wXbNrPmxDhZdruJ9bRgh4HgC6f5nn/w839IMG9wjzPEgc++eMZnL+8IFe6mW37205/w87/3C95//y2//c2v2A2GYAThdUwF38W5MgxRBDVW7pwQLFOM0usEx7IsOG/JqQor0Ygow2EYwsRsV6iNZVnZtsThMJKdWItt9DjjMS6D7YpMEMfXOI2UIqGBKUuCdK8Zr2iSpoIL6yTo02nd0/Vd6hUZrFor7O0Ytf9fJdk3LbSaBA9QBYs0Bs8UDN46UpJBcC4JpwKXXqvik+SMts6x5KI1mxGsD5cEbhmgWe+wTsMtMSy1Cqe7yVBsHALzssqZa52k2OeMd4Z1ma+zqXG/I22JksRZh9ZcVt06BhiHQc9EKL2QSpVgRAylKC4BDVrrVZfpFy631QWtZcvpGqBxCbKQM0LrWWSIJzxlLge3oKku6romCBCx70tWwEUh3Zvh6j7RZQJyLOrQ21yX21olX5fZpgk6SGo5ERsYK6nyXEaDuvQOuuj/E9PMf/Kf/wwpujpUUwCkaf5qmwyt4FJmSidCGtm3SN4qq3eY2hjmjQOGyXv2zhBrppTMeVlZk2wfTGuSPjZEpjESoljHliS21UuqmlxURpIKuwwQxAetFgtjMDXz5ctnVAxxDHy8P3GehR+XW8X2RtVizXQYomcriTdf/3u28z0f393y6sufSvKpM/z+69fc3z9RTAVnOOwmgqtQwbTG03mVLdi5sKWCc4H56cTj8S1//NX/yPnxR84fIvvDM95882uoC9s288ff/o/87T95hhv21LphWmc9P7Ae33P8WLl98RdYFynbI3V94vUf/ydoMD995Onjj7z57rfcvvwpu/2N/Gpq43h6pPeM9zfUamhlZQiTJmeKCsM0+bn1XqVpl06Hss605S2PP/6etSTW8SV3L39Gbo35+JZtPbOeH9nfDZS0kEoixlG3xaLCkCk/kjpWVup6xDnD+ekoChDA28bpw3c4Y1lPH1lzgld/RYiTPGtdYbiqepMo6XplK+RS8JqI6H1jGCaCtaIOapqkbNQ20irWCfhWEmuUmdT1WbGi1jO6kZXkTPXWt4rpjZqTNLWtUEEKfKfwYFUUWv266f26HW2tYBukVLHeYj3cf3xDN4U1NW53gffvH1iXkzS4WEzuzOcTg49YL3D6MN6w29+StkfOrx/5i7/8R3QnW5+Lysn3Stk2OqI4EKm0FMrWB2wLzGeJk79YLlotuDhgkMMoRGVylcyL57dsKxyX5WrTaxW2bDFRGlkfjciu9QBOCbqV7Y1Vm6M1DQpsW1fVi2F3E5ifVhwySN16IQ5OLFyyepZnNI7CSPQGemNNG/XhA1mH8xZPrVIEjtGR2oZzno8PK1ttDKNchLRKm+U59y5gmuH0NBOcJDD7w8RxOTGEibvnf0Eq0ErGMlKbsI5SbtwycrtzHM8rwVV+/lc/42//yf+Gf/sv/zm3Y2D/8gum6TOev3zFj999DcDtzYEf395ze3PL/HTPfpqofU/KlUzFuMqWE+vWYU48mzy3h0iwlceacCbgw8D+Zk/OlWFnKE0K0SFajqdCiJG6rXgfWeZCNU1sS1h2gxfQdN/47pt/Sy6dwVe8k8JuHCc5E0phCpGtG5ZlwZjO4XDDvCRub5+xphVDJ1Vh7W05IanBgf3hM2xv+CjMp947d3eiKDmeFm53L5lPhV4LIY5ikSqZ6GXbOqiNNq1JmGRhoOQTVeG40TuchZY3ysXODtgQcVUGJNuyCGOxCXPLBUdaFoGvl35V1nof6Egi3rzMeG8ltCet9FplqG8lBKJkFNKtnC/r9azoYo8ywi+pOTPt91SQjWCthDgChv1ujzGWmpNYN/TPtqwY54nDIEsGK6iHSwCU+5MhWk7C8Aoh0rsRVEXvBB/EzqmFQ2+yYRWrm7A0t2XDx6jsWbU5aHMpRZw2gRZM+KQ4a1VtE/0yRlOLrS7SLltkjJZCXW1q/dLwGl2iiBpNcAeNppBsrEWOeOXLNDkvL4o8Y//EvtHklu/9UgnZT4pDDAbBLWAvpFPlc6nyDuDC8FNhF5fvSj+I1jL9qpIxWqR++tyqAgRlI+qYwRiqDoQvA0FrZEMuP67OvCy03tlNI84Fpt2ObV1wIagyU1h9qVZsa6IUSI0i2aZXxZL3gmlYkwSwDFFSpccx4qK72ip7LczziWF0bKmC8Tx78ZLth9dM0ZK72HOtESi+MwZvujCVSlJwiMLBjdgqs4YqOCs2q6JbbWcMLgTKsohyDg1LsVYWTa2yppWUZSBwSaWTJkCaDO8C3cJp3oguSKr5lsl5ZjdERmd0YVGloMfhTRCmoZFAAxmWywCgt04zsvwah1EGN61Ri3BeUxae3zAIt4heiTEK11Z/D+dtpVbBI/QswH3jxCaZtlWHYYYxDpRiGOJAb4Xvvv8W46Ju+mWoHOLA+48POG+Y54V1Tv8RP+jSIFyaD6spzq1LsvTlz8WOdUn7uwylL89d7YKiEStu0vdThkw+Wlqu8s8RZjW2a9NTripea+3VCu60rhsGL/xKIzb4UjR+GLF+5iyq0K6f2wfLtmVKk4WvpAsaKoacKrVlohcesVlWuvWsW2J7fy9DMydDN1FOqdtA2w/DJXFVB1vWIhw5QyriEIhefoYyc+nYAM52smlstdCNNI3OWkECNHNlenfEMlprk8bWCHrD0tly1l/E5SyRM0mUv/ILKbmgYmM95+Rj2atqriuCweOip1QdnNdGsF54n12V4Tgen07yo0aXMKqG7r3KGVs/KZOdquqqEavZRYFyed0uiAvo2GHg5z//S779+mtqSXBRcesAorVO7RJUs5/2srjPhWVZYd24JFUP0zNi7Dw+Pchz60XFW3PRewEux3ZthnmTYelhckCW/sF6up2Y15U4TFAk7G2KEWMkrC+6yBj20EXVXVtlXRZOADRVC0tgXkPerWGM5G1lNw6YEAi+03IRbp4OB6K3olLq4v6aUxbOpRH1Va6VMI6kvEH35ALLKtZ805vYmpdC7rIEDTqo3bYm6v8g+JZtbdSaSUWY0mhwQO+WlGUQ4aylLWBtZpo8tzeBeS5Y07i9u2PZEl/+5CueP3vGd6+/ga4MPytYhnldVIAkDpyGDvi6DCaHYeKrr36OMZYP7++ZRo81jg8fjhLS1aC0zItnd/zkiy8peWFZToxT5He/+R3zvGrgX2HZCjeHG/7qF7/gZnfDDz98g3984PHpSazqgMXJ4DJn9uOAtYG/+4f/jJvbHc9uv+Lzr87c3D3n2cvPmJ/es85P3Own3r35luPTIx9f/xFv4W///i8Yh4H18Yn+7oMEp60zJW2MGGrpjLuBUjMlJXrXlGN1gxnv1K7c2Q0TbTkTnCweog/KK5V3uZQuz1Cr5NSxtrEbI7VLYFLwHocIWo5Pgk7yQfoTwZVYumk4I4PXkmVQ5b1j3I3kVDjsJ9ZZFnfdyOJ4S5VddIqsMGwpsd8PDIOwsLcsn3/LRWsYUdvhoGZR8wavIUTqhklZbPQonqWXyhgFK5PqxjCOxDgxTiP3Hz9irbA7ay3Y3sHJc3RxOch70wnesg8j65ZZ0kppjePpqDgTq7xRrmfKZaGasiiIpbbUcBB9BzCC/pAFhDg8erPXxGzjZLHclLdcm9TpXBauSL2pzmVqbfJ71Zr3sojuTecdHYwL6kboVwVfl+JT7xopci84nz/FzFyMLpeQp091qtTPuciwVVA0upA2RtV96NfrJLDr6pr5T//zn4XBRwdKFtlvk+CESMauC0ObGZ7e4XFYcyAEj8+JGws7K4quG++xOZM3sSjQBGpM63jTGIbI/mZHSoXlrFB462hYepGL3TpJgGq6cVxTAuMYY2DdEr11nt3ueX534Pv3DxznlS0Lt0CagC6T0ybFUKmZnhvHp3d8+OFroFDbHzncvWS3v2Xrt6S5EL2w0YYQeHbY8XS853g8E6yXRFsypVaClXCB0/EDv/k3/5zH99/SujyoDz9+zYcffk9LJ5wLLI8/8v23v+bzn/59xnGk5sKHH77ndHzEGFie3oIJLKf3tLSynk8c3/+Bsh3xpnF6eMvx/g1UBV6ejszrEyXNDPsvuHn2GaUmwjCqJFeGXt2KtajRoQpMm96Yj/fMxx+Yj48czyemnTTT03TDerrHmMp8fEcYJtb5JPs9r9aOJnJekfVaghHf/cPjo2xMgjCyTsczmzXEQ+Ld97/EIHHvp6cfGQ93Cjq1l5YV6xwly8t1sadJWpGRAVKVAiwrK4ZeMFbk0LWki/xEpP6Xy06lw8agRZEUR82gIHaRgnQNH6klYWOQoVgpktKsw25RhsjQ1BoroG9jdCsh6roLt45SGXcTP7x+wzQ4TudF4MOqFmld0ozH6NlNnv3+lnVdSWnjmD/Qe2Lc3VDzKkN2VbTWVjC50i4gdOcJwZC3fD2kSk74EEl5Yz+M1JqorTJYA84w7iwuFGo33D6b+OwvXvGHX70Waz6CQbC24610cd46erZSwHbZaEt3J4Woc5aWOz5IMZw2cL7hbefhaeZmkIumWpVym0rOHR8aXoutzaxQDbbq81QrYZDDzKqNIaVKQVIX9zd3tFwYp8aHx5UpNbod2U4q7XaeWe2lrokatHfD6bRig8H5yno+sqwredtks1MNzovt6cP9kc9eHLidBlrOHD9+5On+yOn0wO2N4/z4lvu3b7h/+D2+WYbB8ePbD7x89oyHx3vW9T0dQxg7gxO+RS8G70UdUbZKcNBbohSDNYPwg8gcMKznhZqELwQG48Qys26yHfY+ktYNYz3RdYY4iiw9OAm6KDOxd5zxnE/ysebW8cOIm4TpOHlHXsV6NJ8XxmmHD55QNrGYDp6TNh0hOIybePXZzzifH+h95nQ8g0mc5iPRDmJdXzeKFijeN7ZtwRqjvMdKWhcwwkIreaPXJqo5hcKLPa7iQlSmXWf0krIrHEgnVgjT6bkzRMe2bngnGqZaKphGyolxGrCDw9mobCLPti54b3RBUHXx03Fdgo6M7fS00fqGwNzrdWteinC3JOAjs5WV5RKg4QPLsmCtDE2duygzRNVmvQxoYpCwjmEcrtdt0GXGs2fPef/hIzllbm6fkVZRz4zjQG+dm8OtFE5dKptraq61snQqM15TyS5KCLqo240Fo6oVr1ww5yT91QSv1rV2qY2QYkdh//ZS7Mg5Lc291+b78rl0QKaWXdl2IucdMvzrVc5l4eBdFHTotkQsx6VfbMbXXex1yHvhiaIfl64f4/q/dVXyyJABI0tJaa76lYVy3cgarvYJSVNDhymiFLTeSV1phWmDEfaXfEyrS0ZlMqpbIGlTvm4LY2w8fPwAXdL0DJYlJdwY1CrviEOkNiip07qGPDiBqg9joFwt1jJ4LKWwH6MMFkuhhkwqmw7ElFfXOj54epXkxVKkuRU2myh1L/dUjBIcNIwD53kmuojplXGQoVptErrVmsDwSxXbcrRO3QKS1BriQM6rqMiNpqtrAyq8XFiXxDSMDMHRVf1XeqWkjZwLqVdi8Gx5Jas1fPBwuJHgmlwyuWRqd7RmKGvWoZJAyLuqs5x3eGsZLyl+CGvTYAneatNTqOtKUbuyhAFlBhcIe0myb71T1aZHK5S8YW0khIF5W9i2jbUKVsSqsrD1I6N3WNtYt43ePDY4BN8kXKxaG84LoqCWhg8B54VTFqIT1qhVFpYO8eMwyCClyXLSeVHkD0Ok5o1aK1ijKgmYdjtaLpjC1cpe9V31TtQEtSmzuYtCLmcJF9PZj1rCZdAWg4a7DYF8zuTcVEkn72tuIgYYg6hSe4WsNUq0g6TEUumSpELeZFDY1P5urHIFkYXkMA70Jgsxb4wurLkO0i8LjEtTaREngrFwmhOpGHLVn7WzJE2ep9srWzEE+eeNi5PBEbyjJqnrLj8zb50M51AMAdIYdv35GW1yDRrapgsbYRk26JWiSpQYA0GVP6WKtbDq8+eckURe5B3Gmusy2V4GiJfzFqkhBb4v99jlnDPaTMoA1bCsC7/+9W81glDOM6u2vlbkazBGmt/H4+lPngFFOtCpJXP/cH8NfKE3XO3CVaOTSsI6Gbh6Y4mKV+iIyk+O7M6axLZ/c7Mj+oG8rpquG9WqLJy9GB3H8wMgsP/gA0P05DVzcziIy8uI68P3JsinWtiFA2vK5IuN2hhccJhq8N1pvS81YnCOhCylnLNEXZT3LozbIXqCk9qn1Mj5LMnNFa/nT9Vz1LFshroJkkJ+l175rFKXXFACxshwv1ax8xusqFPJekfB+XQi18qvfvkfcFb6FKvDEUlKluRSeQ6RO1dDRuRtNfz1L/6G/+a/+T/w3bff8PL5ZxxPj4xjx5jfcTw+4bsjN8vusOPLr77g/ulE+mBYNun57+5eMu0mdmPk5Ref8/nnP+Fmf8tvf/1rXaTpoqGIWi4GT68oV7fwVz//+/zv/3f/R+Kw493HN7x9/TWTNZTze96/+ZoffviWtJzFVWOhzA+U3pnPK7e7HU/HJ+x0w7PPXrE+3dN64fHxyDTsOOwmHo+rsGhbwzRR0fpoRRG/G5iXwjiMGGTJs8yPYnE3sLsdmT/MlGaZpj20hUpXHJG8O5egn2kc2LKwnyGwrSshRl48f8F8OqnjQELZWhVlaPRiRT/mM9uy0pFEWylRZLHXi2GIgSEiadJ4MB0/Bnz0PD6ewQ8iLNJhYxc/t7LPLbUUcUK1zqCYmgsCyXtR6gVvleEqj8r5vIjq2bTrYM50CRELMUCXs6zXggse7+Tda62RsmCBgqQV6c/TXNXn6lsDZMHQLtiTy261XzRwF66zDBJzrvLeG0830jugi+nLoqnB9VwV/qt83b1/ur+0OpWh3PUZlXNHLL/6fmgNeBGRdWXYo2enUeXhhV2tH1hrxz8JeNPlcW3yRQmb9RMu5qpu7LIw6k1Ufn/un/88Az6DbDdcUJaOgVqxpRKWD5int5ie8Lc/h3jHVAtTbcQg/Iq6LSQNe0D2X8Jy8p7duMd5eDjOCnPUX1IVVYOrkjDYelHPsij+vHOSous83WRKa6RSefP+kS1VlnWVwy4L+DoOwv+oWQrbLQm74vjxNdv6SK+ZUhpvvvst4/45L9pP8SZys3vBq+d7kcsvG/Np5v2b73j+7BbMjqJT2NYyxhrev/2GMr+nJuEb9Lbw9vtfY+oZ7zznJdFtZfr4Pc8/+5JoG2Ur1Pwg1lJjePvmjzx7/hnr+SgNEYX3b35LzZtK2c/cv/2avM7s9zvWx488Pb2htUxaVmLwPHx8g/scvN9dX3aLynlBLl4NM+jlzLYu5GxIm8GFjdPjG2iZ3jPn8wn8G6bpFttEGRCsJZWuG6/CNASca9ieyOs7Qqg8PSxY23Cm4Z1cRs57YSqkhA0DxTwwPn3kcPcZMUYpsrrA6W33V9upgI25bmDdJWmyVz3YmvJMZBPcqmwxWi3QN1r3MjD0AxZRzVzS9oSxIlsEYeuJirDTmZdZ2DFdGFFFiyirc/1SqjA0eruysi6Nbq9d+Es9Me3uuL15QV0+kh18+dUrnh6OPD6eNfRDeCzzvLJuhdYKuWbGuBPFxbiTM6JXckliAaarTN1SU8a0DWMDlxS/XCSkwDj5fkvZrnblLWUOk2XcOQ63gYePG7VZfvjhHcONIR1RtW7D+o4zneChVGnuaLLhwIgKJSex6JXciFE5JlT2weK7u1r5nLc8u5k4zwu1F3L+ZNXzMUhhGCw1d8pWscESdYjVmgSleCuXijGiDjg/nSi5cvPsOce5s62V1Aq1QsqNGMBUAffXkonBEtWq5Q3kdMb0Tb4WO+jZYjBdIMExTqS58eLLF5jSKW1lTR+4vYt0WzmfTgKW74GHj0eecqYuhdNwxoZAN401J4KL0CvrKoyjGGThYJ0C4kthrYZqJNHaxcCyVEIYCYMlnVasNTw9FYIXuXn0wqByLnD37I51O4M+h36IlK1SszA/CJ66ZaYw4eIAw0APlvl0ZFsWZft5Us0UY+lFBufzvDLYHY1KaYZeMt40vv3ml9w9uyWlhf3hhmF/x/H+A2WV/XrvRRSsxrBsM96iNndLag3sJ+WTM43aE951xinSWgYi3VievficVAof3r3BWchpYdsy2Tuil6THEBy2A8oBaU0WOsEL8H43TaokKmr1R3loHR8iwzSynM+iDg4ObOB8OkIXO8O2JuIQcE4CbIR5qQOnLqm54ziQctH0UwlYcsrgsK6xpZUhTle1TdMBl1P7q3NOFgu5sS0L5+OjqPdq0yZfmy9dV6a0SsJ79Myz8LKmcSfnk7vuHWm65DCAc0btpaL2y0WUis52xjFgjNgSWwPT+9UeZy5W3Cbsm166bGAtl4DPT4M0LVxMlytbAqA+KY5aq2Qj1twGV2WhqIugq2Xx8jOqWiR13c6YbrjKZQCMnrcKRb4w9rp+bFSdw58OC7Vp1Z4IEDbrNVDBybMkzZSqbVoHI78LsYNcVJNiUe5dmnBZnNnrkqlWeR9F7ShD2qphXGVNTHFgWTYgkXKBK+8Vcss8nVesteQqxpUwRsbgtfjumOjIpfBwPNIvvw9joVS2+YnDLnB+KvQqz0VWPmzvlSE4Sku0bjlvGxbYqihjbBVMwmXwUItwIbEOGyL0Rhw84PBVmu9t24RrZQ1rknTMEBxpzYyDcKG2nOkdtiw2+9040Sp4OxB9xbqCoxHHwJo3GaB2efa3dBRIuSpARZMVacpE9FaG2b114hhkKaLKzBiDqAiswVppumuT4AXn4W4/sswyZDDOEKJnXhbG6ASb0WEcAiV1bg876DqIM54YRqqpMuxq9aouLLmxGy3TMFI1yTxGf23Sp/2eLReejkd6b2zbKrbUVsmbBE4IRy6Tq0yR65rFKmpgy+n6XrQLH6nL2TTudgS1+btuLg/mJ3WFkbpQ1CYXJJCDKuFixkrD1pshbZnDYWBLi5wNqj4cBse2dRpeVG1IsIRYpaqI7BBmdS1y6Bpr2XKVsBIbME42hN45UZHaDv4TxyinxDB4QpcUyBhR3pYqYboO6/8kDGQYgiwqapXvqZnrUPxi/eo6gA4CQZOADicDL28MQVWsBgncyGr7tBfbcDdql1YSr7H/UTN5CZW6ORxYlhlRdga2bdPPV2jVCke6G1ovqlg01yRysVFelPmyDGu9Y2y72vybnnXYy0LjwitsUEXhGazVM08wCc2ig2RRm1nrVI154TfKs1I0xdo6j0EHpDXTaid3GWg3kOWNHNtYL2dwq01UVMZgldHbcTg/Ms8SNjA5T04rdVvFLu2jqJSnPVvaSMuMz+Y6PG61s6UV72Q5v84zcRjo5aLqFJWy2OMKT09PGO+J4yD3XRJLa4yyrC05E4PDOIdtjeMpqfJJeKTDMGKpxNA4GEmnzSlLMJsfWJU9ba1RxulIPWdSkTPH2E7PmSZ47utyTCyAFmcbxjRhQ2aoCVq3NBq1Wb74yVeklPnjH77BGFFElZq54iR0IdW6KJS61j50qxxeKK3wL//1v6CUxl/+5V/y/MU/5uHhgfcfPvB0vMc5z+ef/Yz/6p/9L3j12ee4sCfGkRg966Yoh0kY4M7D09MT3/32G7wNfPHl53x494bULb0n3eQUMAPNOKKDtz9+x3/7f/4/8erzl9hWZPC/JE7pgWe3B6bQefP6LcY7Xh4EGVN6w48D57wRph3dBV6+/Jwfjo+kNYEzuCmwbgvbsgij0jlsb+I2MIYYJEG41cz5dKT2TmkG45vaQA3z0wMN6TlP503nEoFgPLY1druRLQuyItciSmBrhBPbGqZUTqcZb6VnoMmd5CdZJNOaXsjy+zHOUZN8jd5JUAma5ptTYdoNbGtl571YaH1nt28Y65nnBadnUQie25c3vHv3Aa+c1lYr027EGOGMggyzpjFQcsYNFl8DeSsYI6xmesc0eU7iMErtpe9z8J6yJelVvFf2umEIgTZ2DSytmHBhLusytyM80ZJ04aFLGCsf13tPyhLcIjWeuS5Gaq/iQOwXBmohV0W/6IJBhnw6oLswFDQMJ2doBro1ItZB+kv0zMfI8E2CPq0OADviKqjXRXLXRY98HToI02WvXJ2iarwsvq3VGrVJrRmjld/lltg2wTFc0A61ytltdej35/z58wd8WPFedGmSHeC3RCiJ3cMPHOoPmPpIev09Q490PzB5z+B1a1EqpTdayVCFD9M9GNfZDZHWYFmSFtFgdRrbeqMZOWhzaThTsVZYB7VVaUQ3YSSlLdEwzIthXbJst3Ij2kaqCjXuyGXhAo3G/HDP7vY5P3zzW9blTHSO5fzA+vAjNa8EX9kf/oJ68wxjO+s28+H9Pdv8yPz+a+Z3jZsXf4WbJsIw8PR0jx88j+9fa/NXlI/UMOFISqvYMOjkBHn+wI9/+He8+uwrSu28+f4PYvNqjeX4kf00kPIsSVe1AhlvIfVOK4nTxx8wNVGXHWU9s50e6UZsXeNu5PzhW6I3vPj8F9osOeiVWjasCxgnlOScZtJ25HSecUGArtsqANi8LuS00UphOx95/+YPHG6f0bDkYQKzY5pEFUZtUM88Pbzm4f03rClRssRhlwIhDtiKDKIcak2DXlZMF7io95aSV0rZ8P4F3dirzSF4j/VGJ99ijShZtm0XJWFvjVQa3huit2xboqYn1uUJFw9M9pbe4/VCtNrYCTNANirCJ5RD3KLPI1pINYFlGmuxqgwoaVNop9jtrLJjrIGUNpw3vPvxW8IwcHPzjPevPdSFx4/3GGM4HCacMVI410ypugmzhnUrWJsY/SDb0VrZlpmiDb7AUyVh2BlhQxnj6GRqybo0kELFGeUb1i4BKU6UPsu58fhQKM1y/3HGuYYLllyF0zjEIIq52qEZdvvAulXSJtZ4ay25d2oHd2EZdGm0atGN0uDYauMSvnBOmcfzhnGW3TSwrhuuQcrSeD6dxC7WjaFXmMYoajttnB1i917njnUN5yoxGLZ1xtnOUgrOR7aaWJOkPQ7OUXMlGDBNbYBV7UtjIJXOVju7XWcfvVx6tdC7NG+vnj1jPSW8rdRyIteND8tR4LJbZ7+b+Ob1O57fPScWeEyZH98d8d5y2A3sp5G8zLjgwFbu5xPPDje4ANF6sW/XxnFNxDDifCAMe5H0B8e6Fc7LRkc25Rc7je1yiTsfOC+LWlEzbgz4KAOt7jrRWZHy3+6ozdKo9G3meLxnXhImRPb7O0YXsSVR0gJNmvUpONJyZD4emaZ4ZZzUKlyZdV05nx9xp5nbacfWGgZR0ASrKlpnZfhdwTtJ1nK6qCkNjDP0NcmgszVqztSScGHg8cN75u1E2mZR6IXAMEzCcdo2GTRYvfSNWpKQjauzluIdNWVolvP8SMmFMESWZWPbFp69eMk6LwJwDmLj7TrcqbVQswDRaY3lfFbOS1QFtyEOgywv3IXh5qh1xZRGjCOTH9jS9idnQpO0ty72/Fob3ai6KgSCt6Rto+TMbpTzIZfCzWHP02Ni2g2knMg56wB2xljDtq5c7KxGJ1fGII2B1CfXrSLSKwBGIqxsh5LZTyNudHgnFtLWOlnDeZxuWp0x4CGXfm0oLww80+w1SEL1pvKfLTx/fsdyXllWscw750hZNuSXdD7nRHl0SZUEgdfL9lftoS7QmlhWin5t3vurxdlaI2EUurl+9dkrSRFuhbev30pIT+9ii7uk5Vr53L0Z3SqL2r3TruDni6JO4MtS6BVNpr+mlV8KL68MHuvUktF0ZdQ5rxuDs+x3O2nGlQfbMYzjxLxKqJM1nW4sPsiAudTKMA6M0TMNwq3dijDw5nWVonwcCGEgnVemGHCovc5ZRhuwTdPzMML/WhcBtjcF61u5G2OPBGvppWKCIZVO9B56FIYOnaLP7263I6VEKZlCUVuUrHKtlQR1AcwbUsmkKor8VAtlLaTSeHZ7yxAHcm+clxO1FNZVUn1lmSHF/1YbvVe2LLwpg2OIE8Mwcp7PlNbYH/asZ0lcjFOgNwmZ6QrCN9ZijMd4GWx42wjWQe7c7HYYazmdT2zljLedVKqmqzbO5xPWGJ7OMujajUEUjmWhLIIv0FmTvD+1EVzXhY4EV/TWMd4J0mWe6V0UqyhrsnUNcNClpXEyzLS+a0MmLCmnjV0ITgLkSiOMHueiNGsG0pbFtlSb2JZVsXYZ8nlv6dbgvZwxBqQx6gZnA5Wmy0dpyC6Mod04sq6bDJqNhAuApso7r1ZkeRuqynPF1isWXLEVS6NVWiOoerTXgmIIiSFAE9ZkLknUUF6G7d4H4jAx7Ufm05GUNnmOFQHR1N7mgqcUtWM1DTxy/hoWI4nZimgwoqyNzkMriuqR97m0onwtc1X5XRlMGOUOOlGxGhnW1ZahdB7uH1TBVjHGy9Kh9UtoKSllXfTIOeetgP2lWRJFeMtJwpucNIVO7zttqeVMV56k1TPXK1PRat+hRB5hLdaLYAIdBlis1XTvrgslU0W146QxlrpW8B4xeI6nVRYKDYLtDF54coI9gFYtqUnIxhA9vRS1pRaMNvDn45FBVchpWZgGw9pg53bUlKXut528bOQqjpLghVm8JFHBuxBIKV9ZhMMQad5Ri/AAky7yTZPBjvPhGpQT8Pr+yV0yBI8ZPE/zUe94YYdOk2MYIyltWG/pdYXmGQbhKKckQ7ysSfW9WXoX26agKy4hUV05aB3vOvtpoJckSIvRczp1SlYZTDfcfzzx1V/+lJ93z3fffsM4eUoTEcJ5XugYQQtZCUu4pCcbc0lTrvzxD7/j6fHI//p/+18z7va8f3fP//xv/y0f3n/k5nDDqxef8b/8X/3X3Ny9YhwD7z/c83T8iLWdly8+49ndc569fIGoE0/UXPnZz77i/uNb3n94x8tnt7x5+57dGNntB5wRd8PT8czzl3eEAN/98Dtg5fNnL3j1+V/w+ul77j888OH9G57v97y6e0muG9Y1HtKJYZiYl42vnn3G3/3t3/HNH7/h7Xc/sq0ru12krYm8bOz2k6jCTcbTGAbHbrzl8XwmadJrHAKtyeAoTju2tNGqKFGNWqnP50UWRCHgsKSceH53YCuJddnIbRGsS8rynltJgzUGck36XgxylxvDljbolZ3azZ03GGdJKbMbd5gGuQjr1flI9AGq2FldlDskxEheE7bBuq3EIRCsnJfUwvt37+lGOKouehXbVLppGujWGYdIS4lSMy1JwriE/2wYKtHJWZmbnF+yN22qohUVfe1NlKM6GOsYxiGqSEae7zBEUkqqCPZsRRj43aDsUa1zkWPHGnMVtcidJPecqI871lS608V0v7BPtQ7loqiTOkyGjnK/2t6oqSpuRZctl/vGyflvrIFUFbcgZ6BCXFQ1rHVxu/DzjA7UL8NCFXX9RwI888m90rv0sltmS4XalL+oi+JPn+/P//PnD/iqyMqdytB7yRg2btqJ/fEb1tMPuFbxvWLXt9T0EqylMhLptPkDYbphrRar6j9nPNMwkrPAd5tu4EytVNPpVYcrTn6R0Ukja1uizo/U8QBhAhrH80l+Nd2wrZ0wDKKe63A+faT7kRD2mA7rOrN/9oLl+I7XX/8HfvKzv8P1gukyDKmpcXp6YLSW/M097quN1/M9o/9rDJ6czhwf3rA9vCalhb7NuNsvmG5vWO/f0nrh9PCGWjLTOLIsG6XAuswysQ8e46RhOT7cg5EL1XhH3mb1jBvSlni8/yAWjtyZpollFl6bYougbcxP76nlAK3ijGxtO4316SNpeeT84Q/c3d1h7IAzA76DMwXjI1YZV+vxzOnp4cplmg4j67KxrgvWeKii1EjrSh5PmD5RtsJ23nF4dsCZAg4MieXhR5b5kWl/Q5xgPp9kAGU802h5fHjC+aaS8iy8j7WwnD8Sw4GcLKWs5HWmTzdgJUmttoaLAWs6Oc8Mw8CybmJtuQz3VKUifbg8V71ntvmekheshbx5gh9FVVEE/h/CIAdGzSKBr7JqSykzDoGtiDXOqDIiWNmQl5RA0yHLhX1W7HWoJhw8CM5yONzwm9/8G24OtxzuRpa376UxGSbWJGmlRRWkVQeIeWscdiPTMEqDWRPz+YmJSFe4qjMGM3jytl3Ty0yRw7rRCcZSkOYmhCAKDu+pRVLkeqvMp8b8KGEidAXp20qMClZNoubpzZKzYUmFMUoyXUc2pvbKx2kKpZXPH4NYtzqG0RvGEBmmgfMiHLPgZbPkraObQtFE6ZI6mc7NbSQiA9dxtJSUqTUxTFEsj1mCDrZW6ERcWchbxg+TAlPFIkI3dCN8n6ANQlWm2LZ1qr7/uXU4S+z8GCUh+Hb/kvHmlryeOT695e5WuHFlTdhquJ1GjnXm+JQYBvj4+Mh6XslF3q/PX73gzbv3rE2e3/MxcbOfGKMMFcdo6CXRiDytlfPWmXrhYAPz01EvNY/XBCgbgiRj1y68ud6IU2CeV2ruCrbuTJNnWRq7OEqwR298eH9PMRasJ3rHZA15mfEhct4KcQSryhF6p+ZK6ZZSssTdu8iybtQKeZPwhW1bGUeP6ZnT6USeBozxjN7TUoIOWRuI2oTjIVY9sdyv64IJYikwzrLlwhBH4hAxrpHSwpbPjLuJmu01rUuG1ZvaJCHGKI2ONpJe1RfbunKRbY3jJEpmK4Nj7zxbb+S0ceFQ9S6K4y2tMmBpWdhCOjTuHWIYZOfnHLXDGAemSfwTzgks3+lBnTYBBoPwPw1dkqc7bNvKMFoCnZKTwMutJ6VE6+XKh8o5qfokE2PAOUlPLa2SNi0SjRP77lW9IUEel8le8I5Lqm3TgZwxTjeolVKEoXruG7tpIGCxpYK3xCgFrTSCTfEDFldVxVIubNd+dTEY09QCLBYlAxyfjhTlEPVuKB1602AGPiVUOmuIUQZkppmroqS1SjddFCjt0tpKzVRqxbZKMeb6PRZVqr3/8FHtkFWCGLoMoIP3mKBJlw1JGVfFoQxfu6owjNharLsuy5xT7pa18v2rZfBSrKaWr82X2Ee4pjDWWtmaALnHEPTduoQuZIXgN33uOqlLw4e7FKoyQEGDnrZSVMXUyFnetTBESm3EOGBCp27yca0ux3a7kVSSLOKQpNkYoip8OqaI9cvSqKVTq4VoZXBEFedClzN1XjfWdRX1e+9Y3WRb5HuVQbOoui+Dlpzl559zxthCyol1XWSxYQ1uHFS5Kr/b3mWgiBbY3osCWpZrC4/HWWyeGFwSdElTy20uldvDDWndroOm2rsy2SzP7p6xrivLsjAwMOwkVRI6VW04JWUwAtFuVWyWWy4UVWCVIkEgF7spRlRcsqj2rDlTy0bvMFhPyXJeeFUTounilottVtSyl+dYFKb6HKkKOjgJhdgNkR6hFRiGgA+W42kml0wMg37PllYy3TsJGUDOlJQSPoglTJhkoliIgzSvrXamKQq318hi05hGbYXcOr3K3TkORp89Oecane7kvaGjgXZQlbt0CQXpTZStuTQqDWwjqkK3lET04H2H7iRRXa1VIQRKKTw+PNK7fG1hcKRSaL2SqigpsV6ZTKLScQQuQRmyXJIzwgc548chimWtQ7hiDeQ8CGrvNVVqvG4u9iYAcX9AU47oRcmsQzhrMV0a2t4q0yAM5FQK3YnFttbCEKMokay4J8RW7LkJO9ZtxaD2bzpeFynWWVwTbrOgAvqnUBUrZz9N3qVuuiAylIvpNUlbvh9ZjDnnriiU1sH5wG63Y11n5mVjMpZpdPQeWeYk72K0DMExLxKgsuVKrpDWymoLN4dLoF0jm8wQPM5bnA+spbGLkcM+iuulVrZ1Q/AHXYISrKWV8mnZ0uTrKqUItsdaHdZbtm0lhKjJoJ4ATJo6/vi0ikikd9acuTlMlCRnlzEda4T7BUbQT91SiiMVx/K40lpnnBytWWrvbEsi93ZNey5dnAmNBk2S3BsN0y6J9KrsNAZ6FQVgbsRgCL7jfKXnikHuq6fjA+vvFh3UFx4fz8QYr4iKSwCOBC/JcvFiV78onryDv/f3/opx8Lx79yO/+Plf8+vwK1LJHHaRzz/7jNYS/8O/+n/whz/8Ugb9Bv7pP/kH/Mv/93v+3t/8M/7xP/mntFb5d7/6D/zud7+kbmeeHgULRYeb2x37vdhIP/+Lr5hPZ06nTdSndeXFbsC1yotXr/in/+y/0hCEmeX4SO1J7s9miMOeaS/LxC+/eMmbt2/5/zw+MJ+PBBfZjV6ex1FwELSKaQ3nxdqZC2LDbkUxH5XWHOuaGccdu0ncQxI2Azk3QohUW9mNUWrh8yZhXzTh6BqpQYboxTFTG+ctUUuj9Mo0SiAOvcq90kQdduGIpiJcyONpkRqzFUY/0KrYXlMW1vI0yDObddlQWZjGiDMDU3XkWjUcFM7npGnKyhj3orCteZMzokl/nNeKMxCsLDrWLupPbx2Syiy5BiWt4uAxkofQNYfAVj3/uLgqO857WmuM00hKws/OOaMsGpYkPYJTdl/rWrMbroq3xmXJLGq2roOxEGSZFIJgT0yzCBKrXtWq3ht6MmAlsdbqKXz5OYqazmjpK8pfY5o6AdufKPJ02NY+IR4udeZlWStl3aca7srVu/yT3tUlIl+/zHA6pcD5lHSPLgo/tB641Ir/OUZ8/xkUfIjyzhtiWgiPr7mJmZv7H7AP3zN4I0374wP29BF/cyT4gVo2KjPnH37F/rO/xB6+lKbHqnRWhxm9V2KAtMl6yVpp9BzSgFctkltJLKdvOb37gbuv/gHURisbZtxRtk2m512koik1Qjvx4et/xc0Xf4u/HWjrzLtvf8lh/Efk8xP19JZ3f2yk+Z5SshRXxhJdoi/3PDx+4Pjhe26ffcYUGsN4S00zDz/8nrI8YYHl6TVuO8J2Rz4+sqYNahabmLKRUAuXD2IvqLVSFpE9l23l6cMbUstceQ1WJKy9SaRgKo3Buk9qBW3mtm1mGg1pPeMt5LzJ1NoZ1vkRg+V0fM/r3/9P3D3/Gc9ffMYuwOOWcG4gxkGGgnVmXVdyLjotd1L4FLnwGlWamZJYl4W0bvRaaWWm1URJsqXa0iPHx7ccT0eZvrcuQEy6sBiSpZQNamddM8MQ0G6K9fzENByxtpG3mVo3SacdArpmpXdJ5/3w4+948fJzjPGc7md2+2cYJ8OubqUhgY6pG6YcaWWl5IVWCzlJ+p91t1KYmkbvwkDKeSNVsbtarHLe5Hre0soYR7USys9antYIdPK2gvGUlgnBsd/tOGuDsCwLYbjj5Rd/xY+vf8fHB2XbFMjbEy56TsvGsop9w5iCMaJ6cw6Ct4xhoNeEqWeseU53HnohbR28DtTUWrasmTgKHDuOgfP9iRAd0Qe23lmXjf3hIHHsVRvUC9vNKpunWXKHFoQd1mqWA996eoN1bVc5dm2VwTtCMDRXaThl9IgkeyuFunTuDp79NJBb4Hw8CQjYwKS2LWu1OG2V3S6yLHIxeSuDxd3OipolWlE3FBhClOFR89Rkaa6BCTx+FHt+dw5r5NmgN4KBlA0+Ok3z7kQcphhM6AzWkHNhKxLCg0/cHz+ya2fW5UxuK+fUmSoc9iNmdeTWWRs8Pq3s9o7cKlEqaeFtppltK6K+GTw9N1JsjGPEtAwt8uLFC+bzQnl8IOWsrChRUQ3O0FLCDIOA4rcVr0OM3Rh5PJ4pXBSssj2MQwQDLk7YYWDZFkqpbEUs1Z0Nb3eMz15x3D6IfJ9OSzNb72xVINK7feTp44NYniZPWYVJGr0wVqyNPHt1S1lnjuczQzRApa4NpoANsqyhd3qvKj5okgDmnJ51Dh8kfVJSJIU9Iyl4GQlgMOSS6cbw8uUrWRw0KZpbr0zjIGDsDnEYuKStd2Ow3hFc0Au1s81nQpz0uWjsdztaaxIsUGTLv5zPtF41cEfSiulQ1Hbjg6e1zjAGTmcpjFqprHkjTjtKUms8nRgtzshG0RpDjIMMPpChZByinIO9sb+5YRh2nE9HTqdHbfoqrSbWZSZtjnE34N0ozZkzbFroO+euaqmqP+8QI5fAC+eMhhN5hePrO9xleCCFkKjyTueE8Ya8Vbqp13vpkrzrg6e2qioRj3NiHautqdXY6scVTIcxRgD9Rvl/xijkvutAUgqy1hupCF9UFNNSWPbaqTpwuwwRL8wUeaC7/B2jDa+1V9aYsZ2cz7oVVg5L18GdUROzufD4VIXXL1eTvMeC1mk4OsFZ2WIbScqTf10tKBhNMvQCdW6fgqJAfkZipSky2OmirvaTZ1k3UWuhamu1Y9VeKVu+JuaNw4APgbytlFywQ6RkSXoVvEWW4fU04oJnSYVSxP7jg9F0vs7peMYHhwuDKIP0dxB8IDphMzqRLVJrFttobVjnubvbczyfySljW4eWMb3KYq2J9cw7r0MUC3ju7m45HY+Kj+h4Fwg+YkzAmsaiTZdT5UGtHSc6FoKTQW5togJwVhTiOWlTS1bFgiGlwqahPb13apIwn20VPMVOw4Wc8zQjmJdcCktaabax5BVfIyEOMiwq8h57K0nPqTRZpmkzEkKgFlGjBetIZHEtGLFIShq4LEmCFzVEzrJAEzVnEsu3caSUxNWgsH+0IYKuYQ0Gb60gQYwoVYdh4HxypJxkCZE63cjgQ0p3GY4e9jvG1qRJU/2Ad14CIlq52uGtMYRBmH45F7pRFICTn1NthRgs3st5ell6tJYVgyMugVb0fQKs6TgrIWQ5VUrmuqDEi4rusmCoBao21M4acpZGtXer75aE7oXBYUqjrEWQCkWWFCDPhjUweGHEmdok2AukJu3uk+JWoexR0z9aSZjgCE4Gu9E7tQ7LOfXssGdeM6l1Shdb734/Mp8XGSBeoPC9Uetl24EyL0WN5rxTBYrU1l0Vd6XIchrn2E07ck40J6qeVAtg8MHhvZU04NpksKBnZ6miHLmokXMuMuhulSlGSac1nXEaOc8btzcHTIN53VjmhW5kmVu4cHMF6dOBly+/4LvX3zEEuceX80oYAnaS57j2znlZMe3TPWFoqvrVc9AachJm7bopUKwvhDgQzMVuLSrl2quE5vXONI7cxJGPj0+U0vFe6m5vDT5KOM/gvbKJHal1rQ0arotTbL/35LzgHawpXwdkuVTmLdGK2DFDDxhvuTns+fjwRJXGEOMcp9OC8ZYyd2yPdN8xJuNboLsoCdm16t3SqChrXkcQTXZbbKnoO2GRKsNxWhvWFGJw7CYrIXFaP8znR+FiloVci3LhHMZYShbLuL2wNBXBhOk6SBBF5np+4v/1//zv5OdnGtZVeoVtSfz2t/+BX/3m35NrIZekOBnHv/wX/4paOm/ffuS//+f/V+LgOJ6P1Jq5OYzinKsIP7VVnAeTCm1+zvt376EV1jnzxbOfMt7t+d0ff8sf/rsf+MMf/sDNNEDbxMk3Hnj//p6b6Y7oJl7ejtS6cnx8YD0/Mbg9fZshbHR/J0sXJ+nPDs/h7patL8J0Lh1TZ3x0bFtiiF4WHDZg6MzzkVwycy6Cy5gmVZ8X1rWzVxzTui2Mg6Hkjd3NndzLvbBs6XomX5Kya22ctjPGSEiRBC0g6kwbOG9JFGO1kZuo+l0MDF56mS2fsQbm88x5XXVgLguHrTf2446UHX1euBkPbFvG7jxby9TecdFziAO1Fgqq0KbibafkjbDbM+z2LPOi3O6A90EcDtYpYzLSjaAJqmKmpjGKGtgIV96HgNH6x0exP6Oq0XEY6WzXc8o5ZRV3qWEAVdTJWQiSBoye9eZa14nrI2VZDNqu+C1FB0AXUYgTNE9B1MxFE4fpXQND2p+gSBoXZEtXpp7Uj4KVQp18ms50He4p0IKLOu+ivhPloB7sOrCnd51Y6TfR5Z/rd6w1dtdeVO7v627oz/jzZw/4rLH43ulb4+7xO25e/w/sx5F2PlHzRncTvVRRoqUZk5froVKXD9jlLfOPC892z1kJOONls2okzjvIculSz0ijsOVrsmmuckzWbWF+8xvS6SM3z55R/UFkzzFQ13u5HP2tFtOR9fiW9eMfab2zu/kJ2+kty8ffcH54zvp0oteV+ze/ovUkYF99KebTA82opYuGrTPb8T3z6cToG2V5kILXWGrecCWR16NyrzIWSVyVRlpUe06luU65d94HMIa0rpzrEyklrFXIqvr1SynEYcA5iOPIshyRl0Kh3ypjLWnGxSCBEN4RbKPWmaL8tbQ8cLaBZ7tIWcQmHO0LnOnM5yc+vPuOcTcyn8VuGL3DDgOmFOEU6GZxHCK3+z3OdHCNkp7IyyPT7pZiCqentzRWWstYb7i525NT4nw8EnxTu4ZwVva7yJoS3g0Ke6/UvFDWTtnOQKHmBawTDosxhCGQ80otZ5b5QRrh4xsMMO6eXdUVnarS4YXj03tySixzYoiFXBrrvMP7A6WspHXm9i4IPyOv5PWJ3eEW8DgFD0cXSE0+Zu+ddV1xttCL7uZakWdOlTPWanx8a5J8ZgEqd4dn1Bef8d0P37GajjeeGDzWe1I6Y5BLchgcznR2UVQQvTWRbdvIsj4S9q8YbGBbjng3YYzHx0hOGzltBD8RvGc5FZY1M45B0ktbpWZRI+ai0FQvEOPr2aUbjIvlruUKFOFjWfm7wFUxhO0qcxZQuQ2ysc8lYyICMnYGbGctlcd5A1Np1tKbZctgXcOGJg1Ub2p5qPhBuHFbE27evkaxOPaKyQXbxPI5Rsdumnj/fiElCZ6wGHJuDM7hBk/LVX5HRi7YpTRG27V5NxrHLQV/a2KvSQac69i6cTxuDIOyemrntHSelo3cMmmF05ZZa4XN05vBDoZuYVkTplciA7lKIu8YHc9efsHP//Lv+P6Pv1MAu5XNcrdMoyibg26FrA1EK0WEsTBGzxA96zxz03fYIgP2gETWL9tKDIGXn31OXmfWLZFyB039un98YhhH3LbxdDzhpoE0F/a7wHpa6L1xuL2BDvN5Zb/bU/NGrpn9YWDdNo7LSvQjz1+84PbuJff5B7pZmOdF0i/HAT8Ke5DeGYLgGqwWFLVISAUKG3bKBxqngXae6XklbTPWSOjE4AO5NHKTRj+OkbwlOf+7KAOWnPBhuKbd7vYjZdtkQGjFVmSsxceIMY7SmvABmWio7adlafB6xRtZROWcSUm3k6Zf08VC8ORtxVFxNkqiMZ3gPBuNcbfDIbwpMAxOWCS1FCnQ4sAw7GnVaKykpILudhcYu5z7YRhFPaTnME0aY2cAK/aHC49H0jhlc7qtiUtRgRHe0zQKUuF8XuhdVHBFGzhBOMiAv7aG6065Z8o/aR3nZStdS6U2sMbpckAGijIYU8u4bizXTZYeHWi1aqpuliQ/J0y0psNXeqO1TivQjTSAKUu4jDFOj5+mw1rhkV3qKTDXgV+phUvIEA1VgjQtTlE8gSVrQy3DTeWh9IuRVj6m2JyQnyWKlaBDkaZW/h1UkdHFhqGf26ga5rKltgZu9juSPpeCzEiUKtzGm2HPsq50a5nXouFVwoh1xjB6x7ObA8v5LGcVkNeMMzowcJ7D/kYYdWkj90bHEsIg6hErA9zWPw2rGhLa0+uG6ZWSMs1ICqwA7T3kzhCiJPWVxvHpkRAH9tPE1GVZcTxBbo15S1f1mveeaRpISYb1wqNUDqe1PLu7I1dLb4lhEIX/uibAkLaN4CzeCoeMKsoobzvGdsVUKKYjOkHB5I7tEiCSW5MBhPF4F9nvD9TaNOCksy4L5/mEwTCMAQyq8hhoBWpuhCFiHTgr9db5vOG6YRoCtWVS6kQjizBolHXlbh/JpdGRVN5auzovpKC3RvjPzkrSda2FrXesccK31WRtowMo06RxsU6UoV3DYUrKlFI4z4l52WQg6y0uBLZNGIfm+k5Ar5XdbiJtK8dlk8ZH33tj5X0ShiEMwYsl11lsFxtvdI7SRMndcGr59aQsg3jrwhWm3mQuLMM1YzUIRBTW+C5IBrWYltYIOG5u9izbClujN0s1wtENToa+rTQdbmiQx1I47HeELAPjcXJ6DsF+HOhGQPkxjvgw8cPrDxznhKR3owPoprB2GdxbGxl0mSylUVMrqQw6uw7ODvuB47KSN1GV5LQxRA1CMdCpWFWQd7Vsi/I8y6FtrPQ5VRZ/wXtiCBI40xreShqw90EGkrkxxUF45tch+if+a65yblonynyxEiYuAkNrrA4eVlqrrCnhrOPx4YHdbpJlJXA47DnPM/Ny0gCnjvWBZUv8/g9/FKUxTVTyrZPmTC2S+Cy2vyqsP+SZDQG8CZRW2dJG0aAzbwPGSsCNhHtkzosMl+9udlKHWk9XRdS2ZVKqgu1oBmMyOWcOu/01EdPqYCJd8DrG4X1gNw48v5mYt/eUumhPLqr0bZV3RwRXElQ06s/YaFhSrlkHPo7cHL47unHM20bZGjHKAipVUXRuW9eETAt/MhS4DBVqrTSjvb13UDu5V7VlycDRaxJ9CJZkDWuaMcYjyFsHXZbdqBDBdhnmxxBwunxsygKrTb6G3/zmV7Jgw/B//7/9X2hUxtGxGyMf7x9YcwGEAwyWNVXOLWGxzPN7UTldUAG6CL8sCW9uJs5zYpnPjNZz//CBMVpu98/Ylsy33/7Ay/6KNUlS7W9++ys+e/mMm8lzMw0c9jcYE/mbn/+CH777DlqWPrJX7m73OHUIjdMING4Ot8zrE8000jYzjnuOj6twNo3gTWrL3NxMOGOZ50SI8sylLK4GsUzbazDO82fPyOsqg+5WmYaItxLiaVQF7oK5Boi4BsY0aHCeZxxwOEzkInWp844lFabdgZc3L/jw7rWybBtbKdw/PdL0/PUG6nWxb7E2iGK+N5ZtoxcJUnLOkxS9tJsG+qws1lqoecVYKVN9CKxbo3ZDGCK9VtayMoye0gsxesIw8PB4lIWzBYtnd7hhm2c5N1ola41ciqTz0oVBm6um+nZVKOvgOoRIwWCy1JDGGky9qOkufE+nfY3aXo0M1pw6H2qR0ZqI9c0Vk2K0R3BewkWsddjar4sNwXkpL8/KUlo7qD9ZDMvs5FIXX5Pqr8se+TuSQ66jvcs/0z4Z/Wf8SZUniAZBIVz/Xm/07nSxj9a94nAwF/zMdWD4n/7nzx7w7Y3jphXYTty8+TeE9YGePNFaMo2eZobdgXRutLzg0xm/PWLrhktnWpnp6cz6428oh88J+4P4v+NA7RGD2H9sT3KAV0/rFtM2/f4Nrjfy6R3zhx9wJM4//prMxM3zz5iCJx/f8/jxG+5e/Yw6PmfYv2B9ekPohfb0HfnDb3l680vGvvLw9hvIFW8KpiVa2XDW4oOR9EwjWy7jLMFatnXm6cN3OBvJrlNWgdgbJ6rC1hwhXJhB0tDmIo2MtdK0dVUTWGt1mOdkw+8k5bRk+V7HOFCLhIVMgyOlisVCtzjraSZjTZfkKiMWr9Y60RsFyAu0UjgTFt+spCr2lfPDd4yTZYp7gknkpXJ8eMPx6QOtymXSqIQpss4JmhQGVtNqsEY806YxBM+6rbT8QN46xnXycqRsCRcHrHec10pJldovA7SEdVKApZTkRW7COAnW0OvM+XjCWWkWy/akYRKRGEdM7aynR5bzCdMtdSqUdKbnR3qbsG6SRMwiqoHz05GyzWzbzLodcXZH7Zl1eWS/f0FNM9vySDvcUHNnOX/k+Pgj6/rI/vC5NBV6INW0Uaj0bslpwQULrTCfzgzjTgbal8azQd6kWQrOs9tPPD7ds5w+UEvm9nBgnWdSyTylxq3dS8qtgGLwNqq023KzH8ilCsgbK5Ht/p5Xz3fkmkmmExnkkrCGrkWRgEwtOW1479lSwiSxNU1eGhCMYdvy9VkSO4lTpowGkFzscVYOUlkuW92oyyFqPYjOVpQhOIN1osCI0Uq6rm5olmKwNhNGiyk6zK+dbpEwEm8oTg4+62Vj3o0U31hP12FjiB5j5fIzLeCN5+bGkqo+lzpcXVPhMClHCOEvDEGazKt3qGvilXy7koKENC3z1jEUbseJQ3AMB8+H+yNLEyuRs7ClxjTI9n/dkqTilY6fNC0Nyzh5YVsptN6UzB9++1viIFvrcRdYflw5r0kaq24pgyW6gMEy7QeWbYNaCN7gHNzc7GktM45O1CKtEceBYbhh2k2kZWFZZg7TTlhx3bBtlXF3YM0J2kZ5eE9zjlzhdF7IGiSd2xFa4XC4E8VW7KzHlfvzWe6E2wPROz5++J4f332PtbKUuNkPeCvWkvM8M40Dz549Zz3J5l3CWcTiuRuiwMYVdm5aYZnFlrNuEu5jjcU7teEYgzWNljbWTYqQlKQ52rIgd60qbZw1bOczOW80DOsmDe00RBli1YT1EWOspFvisEZUvN4anKpFZNFmMA4FaVtNIK1sy0ZpXQYCqtztJhBjYDaCWRjHERciaVnBdYYQKFWtfFWswrfP7pjnWQYy68oaTpK86x2DETt41UVRWhcZ+KckA8ZlA6QZqKVgkeZEFHRwCfGYQqS0yrok5vMs7LmGNApaaDTddn5qHHXLWTvNNIKmuWJlu9qq2JCcM8QgfJFUNFUbsRoaYwjRUIverVZ+rs45urWkJCE7pUoy52EfGb2RkCNjqMaypcayfMIE1GZEQYU8qxJMYjSlVHemTZekBt1m6wAOo3apqsgF3da2Bl2HKlYUV7VeGC1oN2aEpaIBCFIMgqETrID424VX1rqo/GT2KeeZM9ek4mEcKEV4s5J+bnUIkBiGwHndpFlTtdsYBzwweMfx4UFTAiPDMFA3YeN4F2TwmgtbLjKc09CL3RioWQZurTZZ/pVG7Sj0u+KN0/RpCNokpqL3ALKgLEbZha2z85O8ZznhKeyjw7jIbpD75bxt5FpIWc7Z4/EJ7x0uGDzSJN7f35OqLMmG4NR2KUrAcZxA2T/bkoSBCVpniZ3UWoS7gyGOoyjjEVucNTCNowz4vMcZy5oXzqf1ekYMTiyt3TRBKoQIWMYxMsbAWgq5QGoJKIzDgDQH9ZqgHT1UIzwevx9ZktyLaWsyYNUFRLskt2pSZskXq7LiMZA72ah11eqw2lnBRTgravqtFGFfeo/zEsZSijC5xmkgpywD7MuiTnm9tRZaE7Zy652KKP8le8NKkEcTq2arGaoMd3rPOOuZdgPnc8YFr++w0Y9n2KoMu8WGfbHQOnqT8LveDWtWvpn+7lOu4LqidRqlnrFOagYVFYMRrEPOOnz08t+jBje53nl2d2BdN4ytvHh+w+PDEe8iv/jrv+L3v/8NpRXWbeHmbtR3smtvVfEGbBD0gEcY39FHxjjSlReLNmc5F5oueGttZMC4zmAMQzBqrzfCmUXr8S61zSWIJ+tQujcJSrDW6MBZggCC8xhnKDVRcgNjiXHkZn8rg7ySVZGJNJCt4UIg1yJnOl3LmiYcwm7EAgzXgbhBzqBKI4bAeZ75+PGecdzhN0+MgZKjDpzEDizL+URvnRhk2ZhLFuuvqnV66wQroQAdME0+V+2yGN+SBF8Mw4DDMKiyO/ioCbPy+yU3mjOctlkGnjVDcNzuJHH+OK9al4uyutRGVoRCSQXrA2sW5VwumVItp+NKaidJ6a4O56I+XzJ8jzFAbwzR4g0sJ3Hz2GAhr4zBkqqgHZa10qIXBmkRe+eyJXXRSHBOb015jU5dAJfwJx0I9IYxlwAYWUgDdLVw5yaLCOhM4w1/9fM7Hj9+IJfCmhK1yMBBRCGO2oWdmWtRp43wHF2IjGHk+avP+OLLL3j/9gfev30tOCJvGUfP87s99M537x6pmj7srbsOWhpWQ62E9WaMw4fA6byowtVzXBamYeTly895fP9ArpVla5zXjZ9++Rm9Jp7tBtJhzxOG4+nEu/sz52Nj/MkXnM8Lz2/ueP3ttzw9fcRRaFbCz1w1LMsqTLctc7OLlJaY1zNGFyenxydRDDsvvNQhsJ0rtTpyLSxbpbSuIY4SxGO7BPwcbg4s81lqCR2Q3gbtb3r7/zP3J82WZWl6Hvasdjfn3Mbdo82IbCq76jKrgAKqCigBpAmAERqQJtNM4kRmMtNAE430kzSiiWYciBJJUDKyCBQIoimgUG1W9pkRHhHufpvT7L1Xr8G3zvWUmSay1EA+qUgv9+v3nrPPWl/zvs9L7aprcW44FJktFwlsVBrVmbxyqEjNs4XIoGSI9cWbe673ievrG+ld0ZRUaIOEcazLyugt1osQyBQZ4GpjiFvudYtw91Kt6FxQDcoW8c5ijGHtqj+l4LSs7HaW/TyybpHSCkoJO24LUvfomllPB3IKhBiQMJ8R6wZidyGK8k0/KZJRkFOlmPZkM6Y2DJ0B24fKzhiSMb3GzR3RIeI44cNz+RTQDQKUdFmACcu0VTn7aMJvvYRQGiNBYyVVdE4AeGd7Yr0iJ8FoiNMAQYzRF2PwZM3V+hJM9NbR0ZocCRKkJrMPpSSArvR6uGsAuYTCvf0KPf29q/MUSjifXT2PktAkrVQX1RTpOf9/IOH7pQd8Tg+Mw46b5TPm9XNirmhXhIegLdY7KV5KlM1dOFHSLcYUcjiTFlGT5fwX7D+GeW/ZTq8pKPTufYy5QTdFOr8ing/s9++Cdiz3P8INM8bfkFomPH5GTWuHPX5B0wNnKtbvyOc3hMef8+r0hvnFr2BVJp0+I8eVvJ549bM/hvhICSvb42fs5xu2KoljuUda01PpSk9mhYazDtUyp/vPmHc7CgaasMu0sV3umakdrl67x5sm0NWUM6ZDLFtT+NGTS6FWUfJJEyEqr1KFmWCtI9aIso5hGHnnnRfc3d29tSMp4RPFVLoVQaSm2gkvzQ2OFgtOSwMs10fh7v4VJMfkjwxYYvOc77/AWcNpE3h/yY3zsStUvCeVzGXI7YyhtUwuFhBI5/Hxc3al9AQjBdajWmM3jtw/PHB1tWfwhsPjI0o5zkuU4t17Sg00JbZPYUsFDI2wrFhnWI6v2V09w+gKMRNSZTvdk2Ii2YWrqz20wt2bz3hhduxuhqdhlSgYTizrgtV96JpEjfj48Jp5es5yemDbTmznI8ZaDvefU2tkPT1wNcszGVIUNWCJkrDagJYJxVDDhtGFlhZK7gyEltFNEVNkGBStGWiKZzdXxOWOnCzbCuNsqUslhcLDwwnXbSCjM0xeVDPTOEiBkgXS2RJMTmPKGaVKt6k4IEtv0KSptA65DJUMmGIsOD88KWumHpBgne8BJkArT5vBWguoIswY5HupFBoVowRIK2BYKaoamqbAeUOMrVvxwBhL6Kl0S8wUFKYknAVnYdx7NHA4JHQyNES9GENk9oYKxCRbFucchzUxOUdcE8eacKZRtVwUOWRazjijGJ3mRFdf5USpwqsyWhoH1TfNsTYcYJUiI4e4auCUNE2i84DcMonClhsP60ZujUxlMhODh3SzYUxl6HwkaiNvkuJ3XjIhJabrmWc3z1AtE9eV43JH2F5jjASvnA+viD24AV07WyqK5RBJyd22DZpAzlOKeOtEjWY0LTX218+5udlzeFi4v39NQwIeSlPMu2uOh0dqEUvV6IT7F2LC2gsMXQb4wzAwX80sjw8cT2/Y73dY5Zj8SKXIYPrhEVrl+mqSbWtXAoW4cXvzDropSk2kGIkuyHmqxXbe0Dg/QU7y7Gkl6c41PqEChnFimjzn81EUFaVgB884WU6HBW8NyjqM8VitKSlinWIcPdZoYufnGdVThnOixoidhftmre4sU0nU0sZSiixPFDLs1VqDsaLCKhrfQ2m0VsS8CUJAa1qW9yIXGULGsCLWXCcMkyoM29qgdou5KGJFVbesi7DzSmZwlrCulJJwzuM7fgIlm03d//1cMrtxJIRVFEzdMisDLUlKlcbU8uGX3ufV65ekJRM7X7SpblOAPsBXventxUtrnZvYCxbdC6v1srWVgVTrasFUZOChdN9O9uFCo5ESKO+wVphwNRZaT1l0zhFTlPukwOEYSKNhHLQMa0LAAUaqZZwbOBwCsYgKqJQi7Jc+pLxY3S7eB2mE3/KOBGwuSh9Nwzj9pHSqTWyFNVeavnDCdLe+C6D5cgXbDnVv/XxTna10ERWmJzWEqDeNFsuN6RaSuCVqy5LMGTexp9dGa1EKT/XW5meNQVVJlY95paSCH4ZuLTvhB1EiOCu8U1B46zHWUZtwiFLamOfpKbBqt9sJ/7ZKuq/3omCjyRJo8KLUtVbSW50BmqFUURUq5DNrrMc5LVbCUjA0ZutYcsErUdrSFWvCCrPyHEkVLJwqClaDtRdOjqhRWi3Mw0gbdpzXU2+4YPIjqXOrGAyDF+5WzY3Beub9nlwVMW0oGi1nUqnkFKGJOmocLNoothYpNbIGAfhbO2Ot5Xw+ABJkYTXCilSWpUiAl7yHG4M1YCVUKyRhFy5b7qpTyE1UcNY5YUCH0nmCilzWbnNXKCW25FoL2jYGo6EWnBVsge6hLikWUZgj4TAxV7yRgZl3ThQ7WdSSWmtqkppSGznPTLcbWmdpSRiQtUGKSVR6znK1n6glE7coz18/K2NYuzW/B9+V3sioyjgadOrJuamSe9GolcE5I4rGJE02PamwtdKB5hpt1aX7ojTBQbRYaVl4TwWpn2uVMC8nRxDn84I1lmkYKBW2LZNqxeaNx4c3El6WgyicamXwFWPlM2207cOWhlVSe/nRkmPjfNpwzoryo0DWrQ9vxE7rnJNBSi3svWM/T2wxEDMENEpbGXa2Sk49eVdr4eg2GT4bIzbgUiXJWfdnHi32eOslCGJdz9SmGIeReZ4ZWyOGJNgUJxgUjSMWyLX1ZU8fvjVRHVale5+hn9QlwkSMWNPTpWvh8XBEBtCCB9KIKk0a38JuGLjeT5yXhTVrSusqxc61zTmjizxjpYgLSVwu7a2KuGl280AtmRw20BpjTT9rC8u6oq1lnEbmeUIVCeQIMVKahLG01lX8OTHudiilOB2Xp0C42golXsQOhUxBGc9yOhOiDN6cHei4PGquDINjXc+SwCupdJRY2V+LJVKWQOKyKrngvKHkijEO7yEtUc4kLQrNVqVqvtwZfdOD0ZV5spiuEerB2H0pxBPWwFqLNZpv/uZvc/viln/1z/+Qw+MdkAhkuf+6QtZrBwi/NvUab7665rvf/V1+87u/y82L95h3O159/mP+q//yP+OTn/+AUjJv7jcOpzOj9XitCUiadioNLf6Dvuis6Cf1niy1FBJIlVKD2jgdjry5O/D85gpFI8RGqpW//OHPaW3j+dUObz0xrNA0YYtopxmmGz54932Oj284nu4I24lpNpimOLy5pyoDVuEGYTvjHOcUWUOUAV8zDE4s6ymkJ/7hNO5Z1khKAa0d2kiiem3QcpE7sMDheCaEVVJiO0IjhUQj9wmIYvCjBKmkzPl8ZomiYs5F1PWqq89qlTTkoUqgn/aOWiphXTBUnBvJdSMjDPJ5njoftBCzOAkNmmlwgtPR4K3nEoo2jXvGYeB4uBMMTDEoJ3XKFoTb3GisSxD8Bf3M0sKly6XKYM42ZmexZiA3SZ3e1oVFgdPgB4fwWZM4RFDUKrbynALKOFHMIo7CLUY5p2tX2VvpuYSPSR98Ggp0Pq3mKSX3UoP239NN0bR+WhTLUkYW0rlKL18qKNWwRpG6urJ2N5bqCt1WFQV5DWVOc5HN9uFexwZcAjcvve5lSVz7Z7eqjnHpz4J8ht+m+EqYXOXC8LuI8pQStmF8UjrK9++UuCeUks/UL/vrl7fohhP7TTMefoJBcOG6Vax1hCgQ7HjapFCuGRPvMdsOjGc7PZDCijIG086Ux0+os6cc7jg9vmH3wbcx+msYawkPn3B+8ynjuyvoge3V96nDjt3tl8mtUbZ7GUQoqLmhdcLkA+H+J7TlDkqj5IV6fsn6xUJc7kUZ0ip1fYNVIi23dWM7JpmoAlRRxFygu/Ttb+4yU900w+jQtaG1KGVAWB7WdYnv5WGskvBmrEJXjXUjgFxaSuCcbhihmic+h0IuSYHpN/zoSKtwc+w8cjyspBTZ7WfOx0otGY0UxKXIpDtn2do4N+L9jnWVZnXeDdSiWcOG1ZY1SvqoOr8iqYnz8ZGqHC1Hck0oZRnmGWs158MBpepbGHGWDfBFkWAUGF2grKimyOHMlqIkVdnCYGA5Hzkfkgw9leF6tyOGjZAyzlpqU1jnGAex02lFB9tXLIF4foW1I1TFWhNxOWFIhKVQb2+lgGmJHI+cTx7nZcun0sLp+EgIgaxbh0jLxqCUzOHxNSGc2ZYDD+ozdld7wnYml8puN7MuB9wg1rx5NzM4z5YCunXYZ42UtNCQtNtpvCKmREqF2e9pNUtDUTeWspJTIoaE85bnN1cclxPXH1xx9+bIukmoQ6lwe3vDbuc4Pt5xOi8y8DU9dhyH8Zab21lS//zItkWUlkN2DRE3eiiFlCoxVWYvViGFQhknyac5UXPGjiOtD8icd7Ixrm95XMLjk9ALJdlwXap82UJXlJECPpZCbqCbKHcuyUy1CU/NVEmnq6px3hLTYKQ462mdSlVy9tTUwBROa2T0GuctLTVaytTU2JJcGgoJIzCqoXTlHAtNa9IqaVa1Ghm+VOG9SAicbNhSVzLU5qhN4YwjZ+Fq6M6XcF73c0AA6DFnTkEYj8oq5rHzf5pmd2XJpZBSFJm5UdhRhh4FaAVOS+KwfiFDTKPRRs6Xq8GxHo48HB5lMErpDahDVWiqyXZPN/bzwBIjKJ7CE1RIzPtb/OyJMXN/f0fZMoNtoDUpZex8xbYkco7CtoyXwYuc4bkrvVLK+NGQQ+A+JnKJqJbQ1jGPjlYNLWtqfMvyezwFUikM2gIFbRVv3tzx1S9/lbAFUlg5HO4Zne6SdWFaxbgCsn2vtWGqDJqd7dYaVYk5Mg1OUkutkkTjnJkmh3ET09Utxg4yCN9Wjod7rCqy8S8XTIJGlUpJhcHrPvzSxHUTVY+1Urh7BAweV4x3T8yIetlYG4swFb2oi9ul+JLnzCDPunUywPBe1BNWC+NLtqEAAj8/rWeMG4SKX/twrIm0fzkeKaWwLpXrZ3vCds+6nNld7UFLCuC02zMMAs+3Tja3wuYylCxDJecctVZ+/tNPOJ9XeRa7K0AhvE1qpdEZcx0ZK9fbhVPSC5ZKRxZ0iL5ST4VMLaqn4SYUEiRx4XnV2nmK9PCH1pP+SiU1GfqMk8K7gRiyqBeS8Fpsd/df7QZpdLdEzhvDqLgedxwOK6dFCmXZrl62qjx9b1qpt/YL9baYuyizBZwsyxmrLaElyJdCrfa54UXReGEJZrSRJDqleUJq1PLWuKG0EfWGluY4lYKtMkDxg6VdlooIbyuVSm6i8LkopsWervFWkCaCW/Ck3FiDDDKMUeQobK8Qowz/3MBut2MYRw6PD6QY0NXgpplUS1dFV3bznmULGGOhXYI6qgRYxdB/TsfgLFb1j0TVuD4QNsYwzDMpR3LuqIVuZxyNxk0TqchZYRSMo6fUjG4Np8VG1ZSo5eIWUCD2d+T+L7lhJljWjRQE+zGNA846tG6UGiklsZWE0wanPRhp1mvJxLASambyA97YvhAZOS3CO6pJ1A1riIRUUdrQkgRvaUMf+mdCTozec1pWueO0FPytaXLVmJwJKcqSxCi0s5IoqhS1aXJngW2hdq6WNBqpXBpIec5rVxeIKsvIgkBXYhQupTZK4PFRFA9Ki8rg0nCgECUbsjiw1uKcIwQZoNvOXzMXRwYXHIc0I7UH6pxPi+CBrIaurG21SCDUfofYzcWiX6LqiayNaRSrZKmamvp9YjW5SICG8JokaKu2Aj1B/YIJGL3FD6L0RYmzo+WusrVdgdbAKkOscqZrFKOyfPn99zkdjjwe7yhktDOcD/cy/NeO9188J4bIcThjTOO4BM7LymCFS2eaYDnOp8wai6jNFUzWylC1SNJ1zAntPbNz+CaBM1oJONA0GIaBVETNWbKkBUuib+u4IWmyFUrwIarhnX2yq+ZcCElwPa1IorqaepNeKsvpTGmiTL19/pymVA9ZqpzOK+dtoZXMbhywRjOMM6FUSYS+nDlabJ0K2dDUUhm1IGnS1hnUqmCdoEBk6NZDcroCUrXSm35QpivFvUYVSLmiTVf2KUepMI6GGDOtCAYpx0SOgWkaoDNtBfSiyUFqm1wq2xaYB0tJGWtVtyiKhd9oRaqZ4+FAqwVjLJMV9Y4kPsPgRlE1azgeArkJIsRZh6YxOscaM6mW7nSR8CBJTIZWKm/uT1RtibEHDSko1dASKOVYzon99USIWTiS/R4C1QUBsngC+rDUEJPUDqUKB05Tubly1FxQynUlVkLR+NlP/po/+bevaKZSCQyjDKLvHxYR1vRltLOyQPLjjt/87d/j9//gP+D66hkhV16/ecXdX3+Pb/zq1/nH/6v/Df/k//p/4fGLH1FTIuXEaVlIVRbml6TlWsVKXC9Lv363K1VpVRBauUoie0y5Dz8r9/rMPM3kWslF6mqF5fG0setswd/89q9zuze8/+yG2XvC8Yg3kq48Dp5pmqXX04I8Utpg1UBVHm88x8cv+hnY8EOPbGgS4Gb8KOpCK1ieYZhYU+X58xekuBHjmZgKp/OZLQjDNedAUIarecf1zRXL4VGC5YQdgnVeUm9joiqHsoUUErUphPTTukpVrO/OGAbnuH12y+Hxjmn0tFwEt+Ul3KKiuHs84YTgQWuacRhZSmDbotw1Pa23dpa9d+J6UYqeZi7n5TQOaGckofriy1dVlpVNY7XBGYgxEFOhVcXYaxuDOAPMJGFG4pSROu8SztNoghcb5TPS6Eq9mFFO0DWC85LhmlUaVEMPA7HIa3xeNp7SJX5B9aZVF5mgUL32LEXq9NrtE7XX4+riPOnDwIruSwTNZfh2GQxeAuVUuygvLsPEXgMrYYc2eFK7y4KUXiMqEbwUGQTy9Kcvcx75fqQXvmzLL6tluYONlte+9IApTQ+UaxnV7+5f9tcvPeCzp895dgxw+IQYxbqZmsIPFt0iKSTmeZJhGo1wfoXxE2b3nJoXKZJrZds2cn3Fs3c+JJzuCYeXQGGeZpqbiMdXbPc/47Elnr/7NeL5nrw+CJ7IzaTlIJuTnq5idaGWwOnhc2oOAkNWUNYjSV3YNv34KwHlBtCWmjMxL9SqnsDnMSdGN6I1hE2inpVqxBAYd3uUkmZZa4gpCnAc1ae98rCIeq/JBiQl/DiwrQFtBDhdCk/svaqEAaIUpKRo1eCsWLG0kcLs+Tvvs5v2PN5/TimJWgfGaUfYVlHSZZGjauvw40wtiWEQJpu2HlrAeI8q0oAKo0WRVZGQDB0Z9zMxwLSfiXFl3eRys2okxoBz0pzmdElZlCbUGsW25f56naSAUU1YCX7gvBbcMPPOzTOUapwOD4SwYpQ0JaPxWOeoVeyStcqwoRSxiGw9YtwYSzVyuIVaOG4LpYLToozSWjZB2/LA7HZoP4p0Pq0oDc474rZhrKgqcm04XwjhJDwQo0nxxP2b5ekSDttGsIvYULQhbguoTMqFaRqpKVNSlk1RzoQtUHJF676tCRXTEsvxThI1q5a03LCwpTO2VgZrOT+e8L4x7GZOh5X9ONBa4bPPHzFWc94i0+ilgTeirLq9mSV1ij22qC5lVjQlRb8bFCFmpt3Etp05PN4xz9eUqpn2AoqNMTL0tE3dFSW0ihu0QNOVbFRLuTCTxDKKls19e7Ie6G51LXijxCJsG7F2Kxti15EQRUttMBjB3aFEJVW6VUSrwrQbBQafC84JUL7VRlbCEVFWbEqqXg7eJhzJWMi1cL0b0bmhVMbaSmmFcbYoVYSF2DfECknZirVgrCGpJAN5Y4STcLHadyXT4JwUoVa4QGsorFuWYXS2+ATjIIlyRo9M+x1urLx59cC2FOFpVJl+OicJVaL4SNipMLgdW2g0ZRiceeIfWQVhy4Qh0ZSoH0quVGNR2uHGK549f5eUMjEKM+f6ek9sQQYuMUBL5LihlcEbjdnPLFvF+QmlK7v5CmUtKfVL2w8s65Hz4z3bdma0muPjI1tI3Fxfsx+e4VZDPR4ofWPp/cD1/ortdCSUiFaJn3/6Q4Zhx8fvf4X1dKKVzDTLsuN0fEAZg1IWY0ac0xxPj0zeMzovC44QxMZfCnaoDN5jmsWNE1tRDG6HU3A+31OiZTfOTKOnhIVcE9apzoMSGPC0m6W5qsLhVMpQ6Zc3TYZyVjaMsVSssehuAXpSeLYm6sLBim2YgjWDNEENFIWaAsbA4CWxrClRi1jn8dY+bfl053JoBTkHts1inWFdF7GD1Yzrlg26GnD0ltPpjDaS1rasi2yMtSXErdsBSrevKmqBnKvwRDqzia5AkTKMLtDrTVtv9ltFYMU95EHpzkYp6qkQ0khRVGslp9qtbFo+P611RaeoUiRcShK1hUcGDSN8S9M6U2pjng3TOLGcQy/WDTlVTkvEO4/VDus1qIq1PVDAOU6L2GXKxdaHDDBBbJFKi5JG0m0V9G1uq0KcQMmzYnTf3PYiTesLYvkSyCHnglHCXBIpg4DelRI1qKjuugKyVVznwto+8EwpsWpJXS2lYpUszy5BIsp6CfwCvNUM1pJTElsxsMXchbYap8Sa7I0kyW/bwuC9KLGsJW0L42AZ/B5VMyFsXF/fYoxmXRceHh5Jl5+z83r3u51sygskFKpbX5SX1OAW5b13xogNUQmaoKQESoYXfvCs61kGVLEiNAuxcedYGawm1YbTii1KOA0YUtYC/m4r2oJTSgK7DEyzJoTEulaileCd1oq8Rt7L4qZW5skTc0SVyH4Qi05thZhW1rWw313jjGNbVkmsBFAG5y1Vi2o+bCvLeaNVhR0HxtHhtcXoKMOoJIO5XEE7cGhyEj5laYo1bMIZ7Im0uUBMhZxFYaVUo1WFqGDbk239kuQHmhQbWctgVCklw24jtVNs4pyRswUkbbv0obSkCCslC4lxHiVJMWzUlGFwong0oKtGkTFWUntTH1JaL+FeOVVJaKyFyTl0rehWKDmJHUxDtZCpNCVDPGVgmi0uVmqVQIkYZSmK0TQMpSpiFkV3qReFviyQJfC3cnNzRVw3NtMIoUhfSH1SVXjkfG40Yk588fo177/zjHU7ilrfGezg0CkzaEk6v7reM82zhJJsgZQL6fjAFgOHo9xvLVa200m+hjXEXIQHbPvypNVutYcWK+EsuJZYO1g/uW5JMz2USAZNxhrmaSSlxBYuvDxJwB6dRxtL7ew1a31/vmUoKipIsZnHlDkvK6UG1vUMxhK2ld1ux/V+ZjeNMoixhritWKMpWTiGgdTt2GCUoWXx9hijCTFJWqcGawr72aFQbHET5Tii3solcj5HpsGL8qwJU7aS8WqQfqppWpGwP2U1y1kG6d45qSe7bdZah3eOUio5JOzghAfp5Ew2iMq9xE2s400TchH1kHxHgh/JkQL9eytyrjovy7aesBtzoV2Y79ZLeneMwnk3F4thkgCZwaPxhBhxXmESbCGzxULtq+5SKjmKO0vTuL976By/rsJU9IVdYRwtJb5VvLYmwSwlZ7RtEkzToe1KQ+gBIJLsrDk83nE63aN7SmrqQ5tBUm764kqQFdpqvvObv8nv/d0/oDTFJ5//mJ/99Md89vIV19cv+K3f/i4fvPsB7z5/DxtOjNOO+8cjsSTu7+6oOZGqKOTrxdVT6bWwDEvEBlwwxlP6QlA1MJKeRc6i0jJOOH4KxTTt+M6vfYff/rVf5/H1S779ra+xnt7w+vNPOT1ukoJrDCkVNI3TEmhVc3X1AmUtrx6/YJw8JTUe7t+wrhsJCdFRyrBuCa0U8zgQkgzk7WBJqZGL5vrqBe+9+wE/+fH3pSYxsG3CrLPG4e1ILoXzIqGMhSLoBwNeO8K2gdEU5HOeirBta8uXXTAi4JfPqtawLYHPP3tJbUXSzK3pOADpZ+O6PgVDKWU4r5HW5Mz1dub51S0hyFJ+2o2sy0KtG6VEnNcY5TmeFwmLaRJYUULF+qEr2DoH01qMghAqwzSz5ZM4WjoPX9eG0prRSR3rrJGBogJtOjKiP3OSL6UEx6DleY19MSg3FyKkoltTyWgjP9M8GAqamMTi3JpidIaSU0+0F1V9a5JAflmMNVRXXQvTlT7QVohY5zKMe+L5NdV5faUP6dSTPV6i7fr3qkxHY7wdOErFewmQvCzCVP8T4ulq/R6Su/ptsIdS7em/W5Xn44nXrISZfXl/ndV9bvT/BwM+ff4U9ckPIBwlddIZQirEKGmfrU+RlRIwLHElPr5kUIW0PEpqWxNbRtsOPLz6GevxQI6F+vA56xd/iR/3tPUBlQvp9IbHGsjrCdAE9RlNa1TentRd6AgYaoqY7pXOrXR2QJLo7pqk6aqgje+leoKuaPJeS5rZIA92KbWzTMRGMDjH1X5H67YWZS8HmerKHiWWp4tvXIHzlnAKkqCVC/M8P/EqjLVoY9lC4Go3d0ApPQUUoNF0wSjNNE2ELbCb90zTKMXsuMNbK6l6MWObBSVQ5d3VDafjG6z3fcMnip7eTbGGxOAcuoIyojQ4LQtJSQJaTLCGQsnCOGvWYZ0T63DO+J7GOE0Dvqf2KWXEEmzBestyjgzjnv3ummEayalweHhAGdlo+XFHqwlXK2tI5CS2NWNkY7V1C0iuoobIuskKt0khYaxCVbGAtVZYDo9oI7yuerij6klg99PIeT1JEmbfMpaYiTFj3UBJhWwzxlhSWIlhwdpBLrFUyHQbH9KQpdiY9s/Q2vRnXBrN9RwpWWy/tQgDozSFLWe27YEUV6bZikWjBML5DecQeuNd+uXiydsqlvKtEFZ5HpyZmMYBq+R7mCfHth54uI+yofEr1uxoVJYlMYxSuFlVUaMnbgslryznR7ZtYb9/geoJbykJGNk62TgLB6igihxq1okaC2QrYcTLKAVEH2zXbq/RSlNipahG0RZLRdOoRXV1i3wlpSphE9WnpvYhdlfeNClcjlvEKpHQxwquK2u0hpSaJHo6g1KGJWYckrznNAyjJ22JoqRAfPHCSAhAt4qkUnFesyyFVjVONfn8GYHyllqE94gipcI4OKiI5SPDBx99hdevPyVkAVfHXEFVVEpoN7BVkY3fvLPncLeylk2CGVBoK0OWkEWRc142VIVhmIlJczrd9TS+IgV9a+xG2Xw3K0lhw2AFdt7Teb0bGdyOGCrbeqS2wH6/5/7uEaqkseUsyc4+LWyhMYyeVhrOCe9Jq8a2HlHGUhqk2ng2TRga7777ghuek5czJTdKicTtLOlzFG5udqQQWEMgrAtHEuNoMWvlvG2M3rOd73n9xvPi5oZ1zaSUmedZEiZbwdmJ/fVzYjgxeLHa5ZwpTbEsolp2ziGqt4ap3QoKpOVIIqN0o1bF4/lISJmr2QFQW2WaRmjmCRa+v77GaU3JlWkeCVG4VMYYKZKqNLoascLmbpXx3lGXDAg7r5YkCZhbwXrTiz0Z8hgFdMi89h5lPd44lvUkSqwqzW4tuQ+SYR5GcpIBi7EXCLTwbnJOxBAkuCaFrshJzDtRj827mRQepaCoFdFlKKZh5LQFxp4EeSlh5BMug6uLvecCmu9LVC5pspK+q574QReAsKiGVLcOShFT+1cvSDObcpSiSmtiVE/Jp7pbRVKuIl5Uhd0s9sRcNQ8HQUUYDYYq4VpZLCylFGpsDL6yazC5yjQaRGjk2GJlWbKwAfuUTnXJom7tLVvlUoo29Qsg5z4UbeKXakrUfxcgs9NKlB9OFGfn09rTEt8qWEpnlGot6cgpijpTaRjswNDTxOKWyCrjjAxSU+fPSGK4xdiGQkIY4pZINcr7ZjS0zGAt1iiME2h4DsJMGgaH77Yu7w25SgJ7jhVtDc/3Vxjnudp/yOHxkVwbTfckuZrww4DVhm1bWdeVmPrizXmsH8nbIjkzWrElGaIbLaqxXBI5JbxzhBjQ1vJ4krOjQk/3jBgFg7EyrF4Cg9UYZ3C7PdoMPDzcE3PEOU2zlqoKjYxqVbiATRGj8AlR8lyFWBi8R2mkQasVR2VEhlDbFtHOgfGctgVlNIPt77WqOC0BKzlnBjXSjMHtryilUSjEFEmqYqxY0rSyGC2WsGoN67rhrHymLsPRXBRbliapdTs5iDuk9kU4vdmXZ65Dxzs/rWkld64WtTc6o5QoXp2XBitHqVetht1uYlk2UWTnnjZdeUpKnuYB7yU9u3rNOBm2VhknWVBs29qVxuKgkO+ndcWWEn6VspLyS0MpubNrSeQmWBkFkCrKVqZx4LwElDIMo0E7w9qVcLlcLKkSeBRSJLfC6OU9VabycAgMTqx2dNux93J+hiTq38EaabZqYV1P3N8l/GAIwXI4J4wrzPuZHBPnwz26TCgzsXt+y3sf3PL8g/f49Mc/4tOf/JjT8obPX52EQ+lct6cbUXD3M9BazaAcWjVCCNJraEPMFTcOWCO4GaWTLI6TBPHRBJC/rqsoOoymXNhvg2V3tWc7Sb2gUKCFz6a1RnUV9NJD+Jx3zPPAOE6kVV6jrQTSWgkxEVLBWIezwrOsOTM6Q4iixql0e7LS2EHOE6MhdEZURc6ENWZhJxtRfVrfn9PaqNVAK+xGw5YLtqk+JFFkDEmJEjn1IW6l0poldbaeMQZlRdwQO+/NaIMfRubB45SIKFqKqJrQqjA6jRsGymmhqbeL6ZiTiBBqYzQDKQRomRjkbI6h4JzDdW5gKQ1N6Wm+CZQsz62W79lZwQ8sx0WGOSXirMUFqE6eXaUNxipct8jmIsof7wzNFTnPe4K30XJWZ62gn6foxuCMhKU5BG3UDOsm6mqjLdTa1Z7w0ZffJ8YDMWSccaQWqLUxTP6JWZqKUKafvfMRf+9//h8x7Hb803/6P3D35lOev7jmoy/d8NWv/irkQjhtfPc7f4fpb/9drm5vqU2zbmd+9oMfMJnEv/vX/4YfvvyMuzev0cbQVOmfeXlGLsrNJGkGMshEemixfleWvmySYDhLSY3PfvRDbvXGlz96l1cvf4xVit0w8tPPf87ts2fUkrnaXVHbRkjy/uUa2dZIqYbPXt/j3chuEkfFedu4mqd+nsiCJaVMyZX9bs9uvyfGwLy7ZouFH/7o+3jTWDt6wDhN7UGSqgecWa1QRpNTxWtLjBvDNNJS7UNiKZKur644raG7NJQMdRE+aCkF1TmhITUZhJZKcwrjRmos5JKFvVkKaItGFN25M++Mk3PIOsPdmxPHw0YpWYIIlfRCawmykDGGVgrKWkEoXD5TtnMiGyhnKVuipcrgRqZBkVIUvlyTELNGZvIy+EYbvPciRdYa1UoXzmR85/SmLGnONQuX3VlLSYlcEt7Ja6Jaf92aDLd8Fzj4mEgpMw6QtSRJL1vpA0TdXReyWJDX/CIsEhyA6ncUSpTNMlgXZyM95Ofy64mbpy411GU4h9h661vHR2tv/163UNHL4l49y78rLgswSgbBSsmyUSEOnVwKpSlClCWNNQ5jGujytDyOsXTl4i/365ce8LWwoNKj+PFNh3hrTVwWcgNntEzSOytJ7A8L2/EVNW9iKdVOBn1UynaiplWsTrlwfPOSaX9NjEGa8U3+TusS5207c5Fk655I95YDpJ42Jlp1Hh6GhoXaxHZRpREpRexvkkwqjUzrNsLBO2LMAkTvPvZSMqVk9uMkBY/pP98ThPsy/TUYO5DiitIKPw7oLNuinOXP1yLBFNZaWpC0nFJLV3EoYkndsmqER4Xmy1/9mGfP3uF7f3mHMhbjZrHNKcV+t6OELElkpRK3pSv3Zva373B6+AKl+hANeaBq6TtQLVufVOWCnXfXmJKwxjF4z7psLMuRaZ5QrVKso5aIMUaGcWgpHoojxIv3XLHbX4tVaFt4/eYLnLXcXO+Yx5HH44mcK8fjUbafVabaCkWOmc0GlNLE3FDay5/phaUy8r6ftxXrBrbTIiEBKnB1ewXtEasVcXug7m8JSySEM7UWCgatDTFFbE8Xa6WK+sN6UcMgMeNGS9rsze01rTVyimIdSzIwdsOMAKeNBEIYMGhq1L1ZTwzjjsPDFyzhAQek1NUZoueFpggxSfJWg20NDKPFasdWa09HcmQBTFE1UpQ1+f8dzyec97T1yDQ9F3uJsag+kKilsiwb8zwSzgspCbQ9p41tPWPdwLomBie8whSSDC4vO5GqKLGhnTRyT1bdJKwyOZx6BHqu1CoWHauEV1JNxU+9yVDCXMtJ4P9WCbhdmUbTDbSwA0sVGHUpDW1FWWOGDjbN3RKuNFTZDqJFoZBTQbueUtmthluR1KcaowyuFPL+tUZaV+F5aPlMoBupRnKV4s5ojVcaZY2oQ5UmZhn0//STn+J0g1JpqhKr2JAHK++jnyYeHs88nE6EEohJhjXGZjSWabhib2RIGxOSYuU1Na+gG9aAM7YP04SbCUp+BhqnNWC0xQ0jo3fkCtt2YIlHao4Mg+V8OlFzoqnKFiPjIMl8OXfmSZJiZtsi3o/EKLH3OzezbpHBzlCzpCwuqTezMmCv+cxpzaimsFbxuCns6FhzkqbtlDlvmtud5Xq3w/U0v5bPvLk/4dzMZCex2SK2zd3VXoq/JhvfhkbpBjnKQKvfpxeYurdQ+/Y0lyabslaBLIMN1ahRBtUFUc3Y3mBbZ2lFYbynxSTqOycLCtME1o/pTUTKYmerYrm4MHWs0WwpQU40I5e8KDPFctlaI6VNBqxuxI8j83zF3d0DKcnyZD9PpB6yAAY/zjg3iLorR5QZxBqk5O4oOaOUFGN2sHLfoXn+4hmaxueffyoMu16g2I49QPUwnIvSvP1i8SKfc9UVRL9ot73sEy93ozEOWu5DPfqfvaiN5Pe0Mk8KwVbp8GnTd6xi6xK+XENVGCfHbpClwm6aRY1eMhmpB2g9XLAIEkBpTcipW9iFY6iUwmvD5DRlFPi09ZV51uSsORwiOcngRr6G6dvgiyLv8lL0RNIsalS6JYT2C7aQft7Jz1c780+KzNoapslgxuoLq0WUO9aoXrdIUVlK4/333mULwqb0Fhmwa4MyipoiVaV+PwKqMwKzJSRJzpumEYrYH5cYsd5DLjRr8T34KOfIFldyiTLo7AEIMZ8Yx4GNs0CotSQh1irnQiqCMxEerGYa94QgFt6UpDB13nUQe6Wqwv3jnSAfmqhTUgiEklBW7rBaGlUJs7XWzgPbJABEGm0tSmOt+dJ777OcTrQmPMqlJKmRtCQDynIIBidBNo1GDLGrwWSZaYsEzEilCY/LCWXGJyWrUlBLFFA4ku59tR8Ja2LQwkTDeaqSZd7xfOjcUvmcpCIL0EsjqZVHK8XgPbVVYuhBGkpD0+SSaLV1lceFx6Xokk/pF2rnqGmxZtue2qtUlSat1n5GXj6D4FzFG8M4QCuOeix90N6bl4tyoDVykoAclAyicq0Mg8FsG6JLKML2tZqQhStUW8FZRdkK3ntZuCpFLk3qlcFT1gWvDfMwSgJna/hBcb2b2WLE+p5UrjVGNSYlw50UMzoaatX9uZKaPMRM64uFljI58XZIhiLnKlY3ovCgjMJbx5ahqUZRDaqcIfM0czgszPPQE00r7+/3fPb5G84h8eHHiucffpV3P/4mn39xT6uvWUPGGeEJCpOuL8KgDzSlEZQzH3KrohaiihvAWJYYOp/YPNnLlFK4frhelje6B3CgYDkvGDSjE3vDudsGda0MVs65pUjd2frA7xiP4m6oicFoWkoM1tKQtGWjKzmsvfYVWbYCVKvSP3FRu4iyTL4fUWXn0ge7pTFoS+uvgTGSEE/VpKrIJWGUxjmFd4qaZeBojWLUlmUR9W91hpQbxqk+oBXr4zT4X2B/wraeqWEVrjgNqyoGi9Xy4qWYJS1cOr9+p1SsGyQNdxF27TiOOG3IWazLNRaUGqAhTM2uptZaMU6TLHdLfHIj5JIlSERBjUrqtFYxRZNrESWtGFpYU2GLDW8l3VWU6gCiSFNKsW2RabTsZ3FxVUT13VpjC5WlyRJ92woxSUK4s703SmJnniYvnG9nmNRARfGrv/YN/vLP/pxaRGSh/MTv/92/j7Iz968f+eLlp9zfv+Rmv+PxfOCn5Ye8c/sOatzx7PaW+eaKab9nt9uTaua9Dz6gnY88f/Zl/tFuzz/77/6Qh8NnfPHmM+7v30DpgXxaHGvqckci9Yak0Uv9ak3HAmkZNJtWMDXzfD/hge9///tcX01c7Ue0adw/vkbVhNGtDz9WjPfcPx4IqbFlCWlp3f5ZS8X34XmqUndY42goxnFkGHcdPwGvXr/s51qD0ZNbk56ldVWVVsQsn+nSqqTUosQtU+XcEWWWDO1RinVd2dYgIoJe61gjil+p5WRxbLQhlio4MCOBbmuIlJKZR9fVs5dATkMuosimnlnNQEwBRWdnNt1Z/UWStZv8u8JEr1LXpiTZAB0XE3Nk3u2IKaCVWFmdN6xLkD4KQXy1i2NDiaghN9jtryTcZNuAijNWznkrOLPWpGfJJWOVxnZcTK3CjZ93I+cVzhehg5agLvnMSthWK1EWKKUrRPt5SRMBQkWWzRelu1JQa9fRNbEJG+Gn0LTUiq3Je9Ya/2+13mWZfeElNmTGoPrfV1rqYvpyrCF3ZuOCpKn9PJc7+NIHy7JcEZL8Xu2Bk4NvjIMiZag145wlV00IlRhzf69/+QnfL6/go5G3gNES59y6Xa8Z+W/nnGzJ+4dFoVC10vLWHyCFVqIYaKVxfHzgwsKxSot9IGc5dFV3OdcL164SY2dRNE3NBaN5giRqJO02RmG6Xaw9GtWBsxJ5H3MWpsUwSNgCUtrUWruNUGT1ShlKjmIDcvZpENx6k3CxQSjTG5jW+kMll39OpVt8eSpWQBovo+Xfu72+IoaA85acJN3RGENTwiSZphGU4ec/+wmHw4Hdfubx4Z5pN3N8CMy7HZREzf0iVo0YI0ob5t0tyxZp2tC0A1XIqTCOI2RwvuIGIxd0rmjjeTgFdLNsQZiCErAxCWS4VAFOtyxS82oYjCNsi0z2ldicW66saRMenDYyWCiV4/HMeloJWXgF19c3xJywricQN2HmxAzTPHF984xtPZNDE+uOlg3DOAyU5cTLV/cM40gFTIMbNzLNE6VEiCdOh1doOwjLR8vWTgN+HGSoWmS7rLQFJQqwkgQ2nKuAUx8eT6IKcxZvRfmZU8QPu67Uky08HZJrepJYKUWYaHYgJUlfzlqaYqXgvMp7YY3FGoghkXKkhdyHBTDPIylkkRerRqqKaXS0XIULUxteG0oJeO9RurGtST5vrZL6IU/zYnMyRpoulZnnHVYPT1azcXACCM9SiOnehJvarb8Ib8QaJZvbVslFmDLOKHI/eFuWRDltoGkrSaxo2WIZjR2cNDe1SLLuqLstvjF5ja8QosZbYfF4Y2lJVAwxJUbvBPTtLlYRhVeiSi1GUZU8y9aIOiTkRO3QWZDPasmZnAQ2mxrUVPCDIfch+yWBWpaQPR1LqW6zaazrmRXNOOlexEh63ZYyNWdOIVNaY42PeA9KN2Kx5BqxFYyJvHPzjJbPklaqGtsmKX2XTIAQpMFxxtCqvM45F84xMY9Dfy8zpUrITk0bsVaxmjcvX9fA1X5mOWdS3GglYKwMc1VuhBjkzMsC4j+tkW2LOOPJ64ktyEYqPD7I+1mFDTYMhnl3TU6F65uRuC6EsGGVZqtS9JimMdaRokBlGzIUGwaPMp4QhKU1jq5f3IkYF5yT580ZCfHYwgmtmlgdlIYioQRRF6wfuupOmvwSkxQHtQoLiZ42icj3lRWldsyJmxdXtCqhDNN0JcBeI6leJUdGbzHWs9XabQdNlEIlYw2kEEkh9KJGCoZWm9hGtTTKpyjKEj84QqosmzSiV7uB5XRmmiZ0dE8K9Hk3k2IURav1gCwhaqEPyF1Pc+9WptJk6xwDD4dHwhbQ1kihmgRIbI0hrpv0TfWtUoje/GtNv2ulUKMz5lpP/JT/IZ8JGaIC6m1amCjc5P41Wr8tolp7GvSofnZcoMOSMCZfOsXMsB8YRieDkipqd200pYPda60MXgpk2dgW4c3VQs2NDUXSldRit8xJWqS3lsmLEvO0NMIm3CRBqKgnW98vvh6q/QIL5VLndns2fSCYSy+yjaRfXmy7WktRrPrPas3bgfXl65cGVVuUNRwOp77MEPUkSouKL+duJU4InkzOgRhEsT0NYm9vRdhebvTy3FzwDCURWmIaRrSB4+Eg1hUF87ST5730QV4K0uijMc6ynVeKhsl7tjWyhYpThpwWGWrVJDBtJISrNYXCYDA9LEYLJ9RZzscTqkAtSZhspbGFjXkeRCVXhSEZUsJ7J6+BbmzrgU8++RHPnj/j4T5xPAkIPJUCReMR/tx+NxM3SUnPPdgqlUKIEd0kjMVosa/VmtBmQBsZ1rUmKqdSKuPgMd5IemqJaHOZcCdqaoQsSrUQE6WCbfK6l1zQ1gh0PfV6wllyjKJWQRQYfecsy5GewFi7YwMuM76ukEXu41JEwdAQtSjIYDSmIkPg1huUXlsaLYNBe2FJdvuv7BG7Sssp5nlAIeqjLcvwZNo7bl7s2IIM5hQWZRsxdGuylfptmgZyFgTGNPRE1VJYto1awbiBaXfLzTBzfX3Fz37y1zycY1dLiLWr9uK4IRzP4crzjp95/ebIFlKHqysZYIyWEJOoJKxFYZ6G7d5ZwXcYQ1U9UbLI/9ZGcX9YGZzFIM3Ye+99wHpeeefFnrs3j7z67AHrDNQjb15+j09+/mPCWnn15vEpHEEbJVZDJJRN6cZkLTnL0C4XCearfTBdLot/JAm6trcCAJrqFltYQ8DbC3JBkZKkrotgs0gDaGWA3EUmGK0kPKZmxsEK0qYhluV2GdrJYOD22S0hJnQIlCJD2TWFtwri0THOM8u6cTovwhVOEuLSqtjGLrZXRUNbqCaTa8QbKwzCIkgFoyopypJVarTCGqMMcUcjDMvWk9IzDNa9Hf7U2vsmxNlirYQPGRFUqJrJVeGN7vf8QGmNLWdK2WjaYIzBOkuNolpvuRJDpFIlbKpV1nWRIZRSOKcYJkdT8jrXEkHJM1OrsNhzK8QY0MrQyPgBclOEXKk14p1ii1Ln1NaYBsd2DDLcd40QVujuCq3kPjJanCvjYCml9RReSFlqTqU0IVwYYAW6CEVVGXiA1Pyv7xbe3B0IKWD0irAQ4U//9M8xVJ4/37NuG8/e/5hvfevXuH3+Pu88e4d/9A//Yz752U/43d/9fX74w5/yeHjDF69/yMPdHbv9Nd+Yf5uweKw68PLzn/HP//C/Z3KNn/zoU/6D/+gf8wf/4O+xv5o4nxZe/uQHfPHpj/nLv/5rXj/ecT5vb+sFeCuB4rIcBKsd86xIceN63vO1j9/l5cuX/Mmf3+HngTUupLjjdD6TFVgKLUdq81Q7EtbK62N80mK1rugqnVO7mxyqNEy/G2LOFAwfvvshad1IcaEasf8/nldCKjgzELYEWotimEIohVoqViuMdgzOUHpdP40j3g00pdhOJ7QyxBIl+b0vkVRX3xtjqSFSiyAynDXEtZBTloVtysQQ5K4yhtMa2c8juqeSK6CkjO7P6zx74sMiopz6lp16cVMopyXMLifQjRhEPanROKuIIUjtlyMqS2hIKxIEmnIW5bVpgoaqggLIqcmzHxOnw70oadFUZZjGUZbrtWK9pQQJ4lQRtK7kHAVXc0E75UrYIjVfnCVyJzojHMxti0QRPvbBqX6akVwW06r22kvJElU4rlKjWSOLqMuQrVXVw+DkzhHLvL7Mn58GehfG7wVZc3lNQRT9Rsn9Ql9QX2Y7rT/b8vXkN0oPbZShY0+zt8JNzDVLZoOSb7iUxrZCU8I8NupiNP7lfv3SA77apCjLOff0U3kDvPfoqvq1IEljSpsn7kGKshW5BFAoJWofkd5KEm2qhdoqzl6261UYQEaMNKWrBVrr/ATvZZjTN1lVFaz2DMPAMA5sQQ6eUrJs23JlGCaM1pIkSsNanmx5SmucthIZvr8mxQCLTJW1NqKE6PaDbQ19AHZ5IOgPiKQrimVEEsKsFbUFlyGgMk8DQoEei0KjNpHBmyaFXUNxPK0Mw8jHX/kKKRfu7z7DGM39mzvG0ZFDwCiJQE8tyVRfaZ4/f4/d1RX5cEAPI8t5IZfKeQl4PwsDwxaU9YQt46cZP99gkhwIy3Kitcw0X1Fb5XRecMbi3IAxHklMnrm+fcbhoXI+ha4MlMNpmvzT9ia3ijIjzg1Y3Rg0rCFzOB+ZxkGUiEYGqM9e3GKcZ4sF7WZ2znP/+YI2Yv2NsRJKY95ds99AW4fRjeNh4bP0Eq1qHyQbYjjitTTt3g+cH8/y3hvDNO6Ef6BlKF1qxTnTJfGFVjLGTzx7/g7UwunwhlAEBN60sDpiCJKqFyUZjdpB5zUz7kaWc0S1KvBQ7SjUy2Kkv99aNjpNmtBhrIzOE3NBaeERWaXoSCuu5pEYG0sPI/DOsW2BF89esJzu+oDxShJtrSNHaRTl32qELfaAkUpOK7Wqp0bdGMMWUt9wXFSxYl3ySgv3rtHB+pdnXja7sZanP39hdudaGZSjpQxGDsSUZWPsnMKPCmJ/ParIws85YLSXBkPB6DUh5P51Wx+wS5M/jBbdU35lEyUJpzXLpicgaZOqadKWe9KRFqscUmTmKkmHAsyV4dVu8pTYuSkytyX2T6OzBt2EVVGbcM1KLczWYvvH31oNGExpNC3bOqN1T48yMsyugeX0QC0F76wsA1rfJqmGHUQlq7WSoaukleC0Zo2KJSamYcIZxdq3P6YJdFdp1e38A8oojkfhcoRSsNaxrbEnwonVYhw9JctAZx4ncla8ePE+qVaO64obPMMUqWRKiZhWyFVTlo2r6z2v7x7IcUXrKvZUY9F94H08SoJsJuGvLVspjPsb5nHgVCJpW6BJ4E1Sm1yo/S4xzhGWpad6epQHrR3butGoTFcTylrYKlobwppF+m4dW1gYnGOaR0qQIJI1JGJf5rhxx7qsXO12OCCczpTOrqlNsd9fczodcNb3oWZ9whLENaOspXZWT0nCetVGQ8m06mnaio2hCesztZXmNFYrUm4onVCtcHg4YNzI6AdqLcK0bVKMGTfxwYcf8ebNK7Z1wWjDtq5PZ6ymNw3WEMK5cxkvCyqxYebc00r71dMlQvKf6pKG1g8kRJ0G3Xp/mXG0y+CrB6BoQxEAT/87+qmJpsOl5S+LVan/lyzf+kDxKcm2f64u/EB5fjXGecZpx7plbE3kzgG63c8cjydpLrUSlWvf5hrnSTX1WqDijGcNBa0LWhVubzXgePN6IwTh3FyKw3YZPtb29Bq0zj3CNGpHb9Qm0OnSi8bWRE2GknZY6r3WU9g0FbExaSWMxdbZLJKwDJHaWcGKKB9LYsrdsi6N9DQNWK3IOcnf6wNcq7UcUL3QHf2IdxY3DKQk/J5aKyEH4XilSCqFM1rUSc6SY8AZxTSPWDuQwiZfY5pQSjM/G4WplaQ+s50jV1rDWo8qEect21qw3pFLJMUNUuJ4iqJUpTwpz0bvBU7fm68LQ9AaQ0gykC1JUUompxPHY8Zbx9U0s9UowPwm1qeU8lNicu2qrJRkmIGyeCOsIdeVfjRFQZIulS5UVZmmiXWNXY3Z+oJXeLop9qFjq6IecoZYxJ1wSUc0XWEqXJ3GYKWBiFHsW6KmkXTFi71ba9MdI5dtcYOuyufpNpZFkiRTata1czq7UriVJEtl7agFtlRB5a6+alLHBEVToqAa5hHVGrEEWhPFh5s9bidK1mwKVjdGJYEYNI1ySgaoscjiQgszTWmxWuoGU+cE15JJpZFqgOWASwHrLPv9La9e3UtQ2HroaithYLpufatNU9vC1d4xTJplSZTSg36UwjpRMxmEMZlLxvbE28tr6IwlVQmkMMYyjQOGSkyxWxc9X/rwIz779BPWnLh555Y3n3/BPAxY50il4r3i/HrDNsWaxUYF4ggoHcFxUZ0qo9iCpFymnChZPtfW2s75BmWlSbRabPI5FGmcjUVb22H5csZobZnGiW09o1B4q7olz0LIhJixChmoq8puP7OeN7RxjN71QaLBW81uHtnWR0ISO6l3inEAiiLG9rSILTnSSmXwg5zjSOBJKonSeXSykBD/gHcSAtJyeXLp5FqwTkkN01mKuUnKrfcSAIQaOS+JnCpGWWFh94Am118HUYHLUNTbidoK824gLasst1Bo4zlt8mdkqQJ+NKRYgNgHoI3cP7ephI5VkHvKD6aHxGTO51csIQHdutykPo5ReJ7aNlILsvRczlgGQmoUZSkxcHU1sauFwyGRDWyhUZoXlbKCYZIwGG0EEWW0JsZKaUbStTPdfq9Emd6ahBIpLez21vDeIoLs1nsGqU8mf4MfdtjRkmPBKo0aZKmjte3qJsvHH32FT376KQ3Llz/6Cn/rd36f3/mdv4NSlvtD5tu/8Zu0cuazlz/l3/7xP+NHP/wxv/t7/4jj2Pgv/vP/M59/9nN208jhvPBf/9f/BV/+8tf4D/7BP+Tjr36Fr33lI0r8fb7zk5/wxatX/PX3v8ePvv+XvLl7zbqlJxGDKP0LioLWsnTNbQM78sndS0ospKrwIbNuQXimtVC14AvCElGqMO895yWAGdkNAzEHwrbRKDg7IuzbJkEbVOZ5IFWNH69RynM8vSHEyH4/9xRgsH5gnGbePN7jvGVJkcGJsAEtoTYpS7iPNd3TpBTzPFEb3D8+Ct6kJ0eXKjWgViJEsEYwGSC1Qul1lLWW0hPRrRIefyxFntlcoDWctcxuIIXYl67w+WefSuo4ldFLGI3zI6eTcEZVtz8rJWlEFw4y8KTu5WmYJMsYZzXrKguY3SAhYPPoOC0LMWUqioL0bFRxZ5amSVEY/MZYyTbIiZBiX95KmSlBOXJvaq0JMUqgB1pmJAq8VbQcGK0joqGrzo11Um9oCEVQB7UZjDMYVdBG7tTabfYo6Z9zLqRueRHHRT+zuxCE3tvKfduezh512aLo2qdX/U6HpzqPX1D/XX4prbhQrGmCZZI04NLddL4va4VzKnkRwqhtKOkVdUMNneNM4Zf99ctbdC/coAalXUCIl9dOorlb64yD9lYZYIzuSiBFbo1LzL3q09PLYUiTbQ1KPV2CT0KC0qWZWuGHgRgS0zSzrYtA+6dJLmOkIKbLnTU8NUZKCShSinMrEHql0H0Il2vF2hGFxzvLMAjI8nIwtNYVBaPA8a1zGG0pWmGc7ls8Ua1JUtb5Mu59SuVsyKDEjWIXoTb84IALI0qsaNY5StxowPm8MgweazTjNBKSYvADNS6UqrDDDuIZ7wdqKeTmwXjW5czD/X3fJCrmeU+pFT86lDJoO9LqmS3D6HbUbWVNmRfvfsjrLz7htK4Yo5mHCWMVqQSmaWQcJ25un3N4PHWAvQytvBMlQm0aO1ieXd3y8vOX1Ca8onk3spxOGK34yle+yes3n7OlVd4jpTkdT1zd3GKdoxlRuqCtNOmbMC8wAw/3R85roOYV7xXXNzfM8577N69l1t60qBpcZdvEBmutx3nLbp45n2XrnJNwOJz3VG3Ygqgw56srzqeVx7s7QIrmJjJVUikcj2dqyzQn8deltCeuR62KRBBuX4kY7djvRZJcSybnwrObmXVLmLBxydXSxrFEAf+L5Liim6SJOuuJayEUGRDXEjHzyIe3z6AW7u5/Cnrk+fOJpozIn6tsyWuJQppUUHLCew01k/IZ42exjueLnECabtkQaWjSeK+bfD1tlfCH0P3zKD+v1aI6tMbI1reB1oXci/laqjAVlDAea2loY4i5YfsAQlJsNesWiUUxT8JQ8xpUqqLKTQWsJNnWCpO32CqhGeNsiTFRspLQCmuJRRKEp8GhWsFbRUyVYXbE0tjCW3ZaDIVlSXhnxbZtFJTGaA0oAbtrI8uASmNLhcFajFJsTZgdV7PFGsPjcaP0CzzkxDhqSpZNltOZ/ViI2rJusnF7/myPAe7uFrYg1jxjRHFcKyxblkKvowlyKZ0/Y9nvRo6PC6XBOHlSjYSUaMkwjZ7lfKYUUVJqpzgv56cCJKeMapbnL16g7cTp8cTxcM+aIvePB5yxqM74yqWSYiTVytUwcDy8JqdIqkkakJoBSa5OqUoB4yyj85gmw+bttEraohlwXlh3zujON3FSWNRGWBdaDhiE6Ra6AtN7hybh5AWSIVUpGDviByeJ11aRQ6Q4S8NSkigTa2uM00DJ8r7FbZNkMCSFOqZKrI11XeU51sJBaz2xcT0vYulprTcWjZgSu8n3e66KJddqnHJ4I0B7a7uEn4RRok4IcWF/sxfofY4SnqAK0ziJ2tE5Hh4eZPjVURen46NsM2tlvtqznBfGaWIYZqZpTyqK82mVRtxclMQSVBRiwE3zLyzX+/2rJa2sdO0Qja6Skz+lje4J1AI0bq1i+t/VWpQ2YpfQorBRyC77okiqGT+qbruWAkZr3cOmNPv9jPUerUcUlt3VFd/81rf43d/7Az799Av++R/+3/j00x8QUubN40LtqbqmIZyXKjxVXTKDdbQqFglawxlJxi6lMnjL4DW88Hz+xUZKl6ZJSVBGdwF0gEtvDJuwt5RYSrW6lH/9vOpKZq3E6mWU7vURwtYqXdmHhEmIgquhaqEVxZYTVht289TVJAKAMUoGon7wPFmzkpxLjSqqaaufrCHaWDSatCXM4OSOxIBW1K5Kvr7aczyfaapScyRUcT+UVtjWAEpSTqfJEeIqVj5txA5uZDAbY2O3G6kpcd4y0wDxGMhFwiS062eA0aDFdlNyE/W0tix9UB1LE9VArV1NVtkNTrAIVoIXxNpTQQ3c3F5jV1Fl5yTLjpoTYQtc3CIaCdBJKUkoVE0yrDXCMM6p0aIssNw4iK1qkxCbwYvC++L+aIj74szGPO7QOaONESaYF9VpqVUYmx25ElJCOwnOsV54iMSEbo1tS0/DqKfhneo9hdbS2Cs5T7SWJlCeY1lwy7EirdE49jCyehkA9pCYZikV0haEe6iF9TY4SwhB7mstoTEouUfs4Kk5yBmh5D28vbridn9LNoacTtRquXt1z7ZGQhCr17yb2XqDrbQ0rhdQuCWRwsbLnx/Q2jLPAx9+8AFfvvoW25rYznfc3d+xrgtaG87LhveW0QqH95139jw+nPEeBgdgUU1UbtqLotn7mTWs5C4emLwVPIgR9ct525icY7fbkbMoDP/Nv/lXIk6oup9plRs7sSwrj4eN62fX+AFcbILekJ+OVgrCfhbBQS4NClI7Gzn/lNYYY8k9HVEpGVLrvvBTStxICiQwyxhub295fHjs6dmKLWRJZe/D4oYseJ3TlCLLnGn2omLtSxRVK7kJj5AmitJtFZSDVpWSN7z3nM8nUioMw4BumjV0zqMSFt+83/N4eKA2uZ8GJ/W2VoqcZcDktME7BYNwyyar0ery/Rasq2inqUWeg5rlM6+o6CYp7qnIyAAtTTBNzl7nLDlHuYdHR8uKtG3CDk1FcCJGYUrDW8Xej7JorhJCWFLGjp5hlIG3M4qyRhQyWGlUYozsxkEwMUU+f7FUWimUHGi14vuwT5bYhdxC53ZmllC6IqpwPQdeXBnmwfJ4Xqk1i62xZUn7NpfU68bWm/6qFDEWUuxvX8eK6K56L6WTrpu4pkLs9yrCdNfIM/bVX/k6Mb4Bzjw8HOX79hbnJpZTYA0bKVU+ffmS7/zO/4wX777DpYEWJfuZb37zV7i+vuF0OPLjH36fV68+5+tf/01KPvLJTz9jWx+o9czVzQuuX7zL3/wbv8vV9TWD1fz4r/+CL33pa7z3/gd8zYx89Wvf4jd+/bv85Iff46/+6t/zJ//+T3k8Hig5MwwjusGzveP22TV+uuHh4Q3eZHKr3IcTL26eMzjPw/0brq9mnj2/xWjPD374A1opzJN/UsRuKbKlDW8HjDa9PjHsxpFpdLx586b3zr13qZrHh0calZAyZsnoQURHGVkIxFwoSHr1IWVGb2XppoUfvKWEU4p5HFlDxBwOhCh239okwKbQIF2svIKHEJyAhLLpPtDOpaCMxRrLNI4Y1VDdWtqqqDoljTZQtWIYB5YtcDgtKOTzW4o45OarHdY6Yhbeu1IwWFGN7XcznIOIFxCVa80ZTXdaWGG+eYPURMjcQmGIoVGLZvAS+FGbMMuhMV/tqUGWVqoWRmcJJZOqoCpyqcyTRakqvW5fMl4Ub+jGaEQZfakl8ZqSN653DnNOCPBEBA/OW2KRJTnKSOp2e6v6VVpj9cUiLN9XKcJPRJmnf1c1+uSx9ryEXxjayVMkf6hbni8LP3ldL5ZcKZyf7vGu3LvgG/LF9t1AaysOu5aelr1ZvmVRJBr9pO4enRFeq1WMo/n/PHT7/+LXLz3gU4ru7TbkLCDlhuqXXL/EWpdYG0mTNX1C+jQVLY15nkGpHv7QYZ1KvZ2wW9sPWikg/DDICw0SPW2Fu1WrQMyt/oXpuXPyQcnxyQ4B4Jyo+1rrzQqIMq9LN+fJiyXAGN559zmHw4F93XF4SFgnceoyGOwT4XYZckgSWc2iFKsXXpNSOOueHvJL+p5WUtillAhBVAetObko+qtUW2NwHjuJVWvezRwe7iXyXaYhpBRlmFfkcp121/hx5L133wMzsW6B69sdKa08Ph7JJfPs2XNUFlWLtp41QDOW6/0tmJln716Tto2WA9q+xiglCpNSsDi8H6RZrnDyB5HhVss4DSxnsVjobukoqXJcAlfXz1lWGZQeDhutZGKMfPrpGT9MfPj+xxweH9jWFTdZhtGxbEkYNM4RlGGaZ0YgK8+z99/j7rDhzSoNXCycl8Szd67Z58zx4Y51C9jdhPcO/+yGLR4ZxoZSjm1LODeQWhaV4SwsodKZijFXiGLLzjkw72au9jOnxzPj4MTK02RANY6OFIQN1JSoTVtuaKMIpeB3I2UVu6k1mtTEM7jFhLaaSXtiTMQoEnxlDM5KY0Wr7K72oBIlJARt05h3A++/eM552zitjyxrYZon2exZx3z1jJol1MTqSo5BVD5NGvZhHHg83DNP17Rk8V54a8YO/STmqVBtSklqUpdPqz70m0eF0/JMD27muKzEkkUhpGXba30jh9YvUChFLHC2K1lDzD2ZGZQpUtDlnmpk5LISppGD2nBG473uqi6xJtRa8EoRM4SlqwuMwSvZ8ozWo2rDabEJWycDH6U1KiUJWqgyBB6HQSylknWPUY7paqTGRMjCObLOdCWxyKqNEkm20potZUrduB41tzeeLVa2CF45GbYqz9VuZD811uWRojSYzNXO4cxGjorWeV7j5CTZqZS+lQVvJYG31sYaE87A/movmzJrJPRia4y2Kxz0gNYOo1dpRml4p9Dz2LkUAve2VnF39wVm2Im9JRceTzIA1162hjlljNVoZ8hb47xtfOndF9w9fEHTVb63XIVLo60UtcDxvFLGKq/lsMdaz7vvf0SMC68//5GEbYweZTTL+UBrVl7LuFKSKLA17Yl9ZpzGKkvLmRhXaiugHOPsWA73whhUArmuWVAFuWQG5/GTJ+XC/uaaUqVxayT8OLOGIEMf59HOoahs68rts3ewuVLSJpv4EBkmSeM0WmEGR9WGyQ+czwuq7z3XbRWFsIFx9OQmHCSjYVmLJHnHA+fjAe28WO5ag3ESxVgTi1yOqXNbxYqLNX2YJqnd1Vk++NJX+PGPvsdyPMnAR4nKCWTpIAWNLC4udgXaW5ttUxfOSC+OmxRNSl2aE0kbc9b0xGNFTglrGs4pxsERQ+qJorovyRTX1zMffvQVQjzz5u4egJubK65vnvPeBx+zn6748kdfZpqf8+K9LzNNO7GXxMASzrz34Tv8r/+3/3t+9L0fUmthf/Ocf/Ov/oi//It/xXJ+QFdHw8r2NBfWHPvnsxFTxurCYBzWOM7LRswOY0b8cLGHyS/v5f1MMfVF4GXbizC7at8iU3vBrIWt0i5cPi3NppXG/5KCKsWewiqYvQzTxcZjcF4sMM5Jmn1cpCH1zkgjn4IkmeJQ3e7r7YDSUgzmLDBx1xEJYYtPbOGGFOVNNZyShnuwFrXbscVEMzKQHUdHSQHnvCRnV0kbt1b3YYgMCpx1gkKwlm1de0pqTzy1FmnjIcSAUpUt1D6U6FxkLQuS1poMDo3CDQ4HMrQskZYTJUWqkuFlrgLWHkZNjGdiT/BEiSIArfHDQM1FFDBaFJjjOBK3SDO1n1+CAzA0psESqyaGzpHUFaNFzUTNGOUERQBY76gKUfYaI4uHJniAS9qd6p+XWKQZH0bHFnNXYhScURjg5mrg8RRJRVAxrau1pZ7WT3XHpdYtpXbmk6gTFB0uXjUpQe1DAKsrxjRMa9Qmz6Bw0yrjOLOFwClL89HITLPDDzJ0062JivnKs4bIeYmkXDjnxN/6td/h1//G32M5r+RU+Cf/1X/Gj37wV5SmyKGyxYWr/SQp5CmLYqJJWAB9GVObwnqFtY0PvvQh3/rNP2DyO6ZJ873v/Qn/7X/zX5JygGlE1Sp3fyuUmri6Gbm5vuV4OInFdGjc35+IseCc4Zvf+BYvP/05r+9ey1CrZYZBFvmD95y3lZwau1mxrBuqam5vZpYlsiwJ47UoqzjhJjCj5pOXdxhjGdyAMQljFLM3VBrei72WZjuaRJo5rwy5SZMewoazDoOcHa1eQhrknO37lqf3uWRJz9RdEBGCDNKNUhQji0eDenIFybKm0oqoikYrIVTeaqxq5N43pVhEsWINKVdK7MMr63syeCWrRspyTyuj+OY3f5Wf/fgHHB7fkHLGmh7cUlJH88hwv9JwruGdlqVQgVg0xgNZrG6axjhZrBebnBSSnb93acSd7SEpMuRqtVvLleJ0PslAsN9hwzSgh0pYVwbnUFXCE6nSKckOVhZSKWXm3Z51OxGzWANbXzRJMNWGt14+t1rQLzEKF0WWcHKeNy3IE6Md0+w5v1mkHtRa3AVWQdt47/nMbvQcQmbdKg5F2CCk1nvgSinCMNUaxgFxsjUZqsiC6DI46GdK64rGpvrwt3vZlNRTv/v3/gFNZf7i3/13WNsVwRRePHvONASOpwXvHe9/+B6qiaKx2vy0VNvPE97NxJh4PHxOLEe+/s1v8ZWPf4Xb6z20F/zWb/0ud28+59e+/R1ubj+QPj0t/Kt//od89vIlf+cP/kPWuPDRlz5mHEY+/OhDPnz/A67mHTf7PT/68Q/IqfDs3Q8YvcfmM1/6+EO+8xt/m5/88Gfsrkd+/JMf8Wd//idcT44vXn2CahmlHVe37/Pypz/DoHj27jtPIYQ5Z+H3K8N+2mNU42ruSc9Ws21nrq6vSLni/IDOjS0FUknUltEa1rTi1Sgc2Zg4nO5F5W0sqipKkeX/ZI2EbRhRYcaYMEmCGEMPFjLWEJb0pMSSwM8iCjqtub25Qakm4Y79vHDWChKIyrptEiY3eUJIEjSkZTjlrPxMpcrwzhrFNExybqTSgy2FgdiNEIImUJVLGBr9HCqlkfKGt6ovCxLeeUmipYd66n6XtdRzE/ri1hgG77BOE2OUIIxppObG6XTGWscwDKyHIA6pIi67bVs7u1D3YZdgHbQxWKN6jSAICmUNBjAlsZsdh1XuWWsUhsroDGuTpW2pMoBSpfXhnSxHlKIvWCtWiZBJrLli65X5dkfFUBm8OLhavUhrLmrlLAuDvlBXRpyipdQndJLY/OUwTzFRiix/QRYiutdWKQliiSYDS4Vw+VqFQYlyvnbER2mKQb89A36ZX7+8gg8pSiTgQhQ7F+C12E/FAy0hDJaq5HCt3dfdK+KnyGzrHWFJaFV7EfP2wBPQqev22iy2wyypnyn2RNU+LKBJ0euclSm105ioZcPWL4Hr/U6GhbY3Y8pI0myRYlAaE7H9vPz0ExqNwSp2O5GNG+cExD7Kp6r1KXIuEvOslcYaGejVCjGulCZW4tzBt8iiB2MsrYqywGjTw0c0JRQ0ssWtVT4IV/uJ2nkcpTes1grIWVuLM6IItNYRYuSzN498+1c/4P7155zXyOP9gZATrRbWdeF2P1Obwo87CgrVBg6nwGwi98cHbm7fAW1Q2mKaPMDWdBWNEkvrPM9cXe+xWg4NWpaNQgoMRlKhDqczYSvc3N50Lz3s93uOx0fyuqGM5XjcOB7fME9XWCeH6boFdrtr8raQ40ZVivnmiuW8cP/6nsP5zLKdcd6iR0ezAx99+WuELZGKJAlrpdHOEWNAlch5CcR1w0879tfPOB6OYp9J0oxpY7sSRT6kOSZyClSEkeSdRJ7HGOXr94HDuq54IyxHazqws1ViUpIOeF5QuUjYQyki1a+yIbZak1KTwlCLwkrpPuTRoyhQVZPtYdFsJTM4TcqRL1696YeJKDmvbvZYJmElccXD3Wux9lFoGuZ5opSFEAKns/ybtUSsm7BGsa0LahB+mCgwRU2idAfLKkmxK1kSjHNpvPP8mpTAeoNez2gtxay3EIoMErwRm+9+58ixUpqm5G5T0wZdxfZv0GDkeNIayIBVoCxbEJvcYHVnljQpbpQwYoadpZwlCTjlgkYirn1XAFo1UEtmGAes9yhlefN4RjXZUEvmmJxnrbbOmKnUUthSZj+PGItAs0uCppjGgZIS1ipSqpSUZSBSDVuyhJp4vrfMg+H1/cqkB4ZR8cE7I8t6JqoeMNIgbhU/NNbNsHVlUUySmoqq7IZB7MW1SZOjkUGP1uQQWXOTdKpaoRnQlnkUdaC1mqpaH5iKDPxy1oQgahUBbCdMjYwagla9WDK88967fPHZZ4TzgbIWdpPjejf0cIgrvH+UZMjSmMZRGtyUqLVRisMoKwKIrKg+czh8QUobxopEP8XKFjPWWkISi3qOidYyfvC0nCEXahJm47rJZ2DQAuR2SgmgdgtQqhQUtT4NO5TuXLJWWbfAFiLOz+z2nhgDtXZ7SFEYY/HjwHnLDEZBKSzHg8DflYQ9aC2djR8cKUVU58nGUhjHQXiKy0msTVaKCtWxFlVpCRMogfP5wLqduJqvoSi0HQRf0RVXTuJggdbxFkIuSTGitSHnyDz7zqaCh/sHUMITiyGKejWlzoSVBZPR5mmAd2kddA/hEGuH3KMdJXyZ9XNh05XSeiADXT0m1ielM9MsDYtzAzFkmlLs956wHpivZ4x/h9tnt0zzFV/92m/wne/+LuO854d//QN2z55z/eyGwY9s4cS//Nf/lD//03/Js9s9ipGvf+O3WI4bHz/b8x//J/8J3/jGr/Df/N//CS1HzL5wXhYJF1EZ5z23+1u++vWvcz4uHB8PxJR58+qBvBaUqVhr+NKHN5xOkdN5eRqwiJW0Dzkv/DLog1Gx6T4FiygZrl0s0K0PGS/SR2ONcOCMYtAW+rBMaSkkc25dLZ1Z1jO1VqxRzLNniyshJLz3lFZQFaZxZJw859OJLcpZY4x7alas7ao/JzZw7SwhCQfser/DasW6xSfVYo6ZZjS6yc9xPi5c7WcBPuf21l6mhLMWYkNPmtJUT9/WVIT56a0scq2FkARGbo1lGGSgbpR8Bp038hpR8Ea+D60aqVXsIJZIWiVHYZLllEjpDNoRcxLLHw3djPCAF1H5tFaFo+oMugoLchwsxkpNl2JgdBJa5IdJtvBFPdmERq+JqjL6hrKGLWWWTRZsxgirrylFaYVUArtpQreGb56KosYADeIGKcvw2HYLeYob+3FgiYXtXJ5YiJfhuliAWldbSFq2KAj657LRGaWtD3BEhVBVA9NwXpqmnEQ4WbUR69YW2LbwtGwxGqhZkBUxoZsik9kpOUdbqzjn0a3yF3/5L9jqyvm48snPPuf+7g1blLMhpog1lsdTEqdNX74MzrEGsU5eXV3zeD4RS8Qkzb//0z/mBz/5EV/6+Ot8+5u/zscffYtvfuM7/OBHf8poKzkIAkIpxTB6rq/2GDzDi3exzrDFhZAS07zjzes7/vJ7f0apwjBrDWKSREZl5d6kgp8GSoV1lcVtqStXVxN1EZXVYAbePGzc2okXz2548+o1x2Ok1cA4OrSWpWSMsCYJgQrnhZRLFwYotBYsiKSMy6LQXpSMTtJrUxSL5jwLv6xVUbIfjo/CeGv1KQxJa3FCWCvAe2UEsl8alKrJW0TXRk3CAESrntrYw4w0hFr7clK4mJomtWcVN0lDM3iD9Y5SFGjD9//qz0hhRalKvQyXmqI2TSqyBDQa6GrDkouEv3Rmcw6idFatUZpmS4qLFXAaDN7CGmu30druSNE9RKlhzcUCKPXg4Jwk2aZIjBFrFYMBXUXFtLu6EuJ1ihJKYnVnmTnWLYg7RGmMUWwxYqwT1jaZZTuzhUxTTvArqUqYFw3vGlZ7Qs4ylFMShOIHjakV7zXn88bxpNjNjXZc2WJjjYbHI+huV55sI3Y8TolS4+UejDTOIoQoRV5n2bu+VQhdhgjtMsA0RgZ8VWrgP/4f/5BXn72kVI8xCjtqrDV88eaBkhshyL/z19//IV/68q+RquG7v/XbjPNMrYm7N3e8/ORP2JYD//aP/4jPv/gJ//h/8b8kbpXPX36ONYZ3bt7n4/e/grGWUgP/4n/8p2AqH33wHt/6xq/w7/7tv8S5f8dv/Y2/yQdf+hiqYz2d+ez1S+4f77m+2nF3/8jLT39KTIHJWw7LmfVwZD9fc3XzEc+ub/it3/guRm88PnzK1bBnnjyqwVe/9k3219ecz0dC2njx4j38dI2+e8243/HNr36Dhy9ekvLKedsY/RXe7zBuIpxXrt55n9eff06IZ7G3OwtGY+ToFYu/Kv291zStcW5gPR0pGYqpWN+DZqoM8GvOeO8IKXZxjpwDrRY0mtF7cpYeruTCsgS8FXamaoqKLK4HbdlCYAmRkGXo2prcU6rJ4tYhAqd1k4WlaDwFQaG66l43YTvSlz8FGAy0IP26sYIjUkoxWIvtqjXvhHlnbBVbaxJcjFEinrDG9kF1QFFQylKiCCF0bYQ1oGhI1EImZIUbPZYGKhGXlZQTsYjiXtGYd44UpZfLOVKboGO8syijCVsQTqx1gqcymoa4KYXHbZ4cI8aK2jEnCSO53D+1pKcFdkPqLtOPLFl4v1UtK2o/g4TnnpKoV0KS3hylUD2RWqEkOE5VUWo2hAnfFfS5i3mMaV1s1nrIHr/glpHSRga9ota+MP/OZ1kmrSukpPhlf/3SAz5jZELdmsgZQweNSxptA9u671nA5qV/AC5KO7EkSMqn71vt9nSoyb9xsTAIMBEZ8pVMTFGCMbb4BEasOYu9FmHRWH1h3zUG74kpdC6cIvUo4r6A7YBOuezE/l+oORNCYhhGGsJDstbRenOj+sUe+8ZbIZudmIsUSE+pTBatLbVebEnC3KsNuXAvqhRkE9eUXHAi+ZTEX6U1g/OM08w0DZwP91jrKRWurme2dRX5bWtin5kHpqsrch14fDjx8PDI1fXE/vqK/PgA3SpZRQZJ05BzZUuK65tbrq4m7t98ys8Odzx//i7vf/gRP/vpDySgYRy5Hnas68owWGga64UTkEsjrLHzIyQBcltWlDbsr3aoVpnnmcfHB87nlXHyNCzzdM311YD1cPfmnlgC03hFbZZcFVe7mdYK2jgeDhvOe+b9hFINb6/44tUrjC60Fvjkkx/x/gdf4tu/+mt876/+lJYXzueIvVFc70cOITLO0sTFmNjtdsTtEWtEkUG3E65hJRdhTT178RxnPXd3r7m7u+d6d9UvZFFPylBAk5qwgPo+AecMMRWMkoAMRSGEQlENN0zc7nacDkdyjozO05rinDeaKpimsVrs2k1VYlhYl4L2Du08WtUntah1wriIKfLZy9fk+AX76xt218/QKjEOhfs3d7hpZj0eaE3UBVpbnBZJtaOxLicait0ggG7hZKonm0ZpTTah7TIcUGwx8/mrA0b3gxjFOHhKKoSS8V4sCZWucsgSQDBPlvUxoHNXL1QB1GptKFm2sFobaag6UFU2ZAZdu0VwkMIYXQWqXhRJlR6ya0ip2+lTBA0axTR5BmtoJfPuzcSgDSFH3hwSqSj8YAhZ1FJSBEgj5IxiWc4457jeeR7PqQ9uMtPUg1lawQ8SKGKacFOMMtwfMvsZdpPG6MQ7t571dM+WlQS7dC7J4BytKlJsUMVWp7RYV60XW34KhdiXItc3V1Bl8Lzkhd3uGjN4jJbh5OPxyHq+YH8nvDNi0VWaWvvPqK1wDZUmJmHmmRrR2tOUNI3ruvHm1T2tDVztrik1Qd8YD173BscwOc95CwIFb43cKq0VSpEh92wt17uBmDPzqNB6pWRDw4hKMVeBB6MY5gFXrECujRauRS+4t1zQVqwDaEdTjmGY8EWG8sZPOK0YW8FoCdCgdDWVahhr0UmxxQ2f98QYCGFhHCwpg7U83RUgqkzrNePgyTkRw4Y1ssVflgVVM5OThFA/epbjCa888yiFYM1iU76aBuKykeLKFjas16hVzv2wruyufA+lkgJFaSkGLVoYSbWQUxT1FBXrFTFEQR5MIzVGWs6oUggxyZ1mDOu6cmHLaWPhwhfp9oTL+rfVp1EeF5V94+1nr128DlV1JIcoD1qSRVqMMnS1puHMxu27ex4fNl6/vsMPjvrmjt3NLePs+Fu/+/f4/b/z99li5H/64z/iX/yz/57Rj/yn/+n/TlioObEtR87LHTE+8PD4wI9++udsIfDn3/+AVgx/9/f+If+H/+P/iW05ktM9pcLD3SPn00EwEhm+9Z3voqzjpz/+Hn/1p3/CN7/9G3gzcHVzy88++YRaMy8/+Yzlpz+mFfqSTiwtjV/YpvZQhIZC92GLUsIOrT2c4hKmoFqTZEGQYJZacBeMCTJYdFbjf2FpImcssiA0imVbiaXRlCfErudvFZWSvO7I3Ne7/sy02lE7hXm3o+RGbdIIXO13ksZbI2tMpFxYi+KdF9ecHx4pObIbHVZ11IKCq2fPuL9/kEagDcQoysCsIkn8b4zGkoLwIHMprFEGO6IE6AqmVlC9OA/bJltsY0RhXaWBLS1LGIB2lCh2K63lZ/RN491AKhEZhA1AT1Wttd85FXIfpnmLarUPBCTwiNS6BV+RUOKUWBcUMDstttqmKaUSSiZsEpqwJc15y1zNlsfHBwY3gXJ4N9ImUQvELRC2TOrnhK6i2mtV3g/nLIN3eFM5J0lzfcLN9M9ZuchmUW//r2rSwPVn7qnkV5eamD54FOXXulYu4TW5KxxOJ4HI666c1LpwtffMO03OG62JIqypyt39ScD0WjAj25JQLwoPx0+4u/uCH/3sc/IqS5SLWyfmQqnC0bwE3KUU8E6xbBvQuN5fsSwLt9c7psnx+Rc/5fXhDX/yJ/+ab3/rN9jtdqRU2NaNq3ng/Q/fZRwdn/38C1pOxJa5evYe3/q170IzXP3V9yk8sixHzstKTlCLluCJIgqP2XmWLVLRnM4bgx8Eq4KWgCO9cXW14+G4clwLKWXCZwuvvlhYYhH1FLVznzTHJaKMIeRCOp7ZTwM65744MaSSEVCv7UOYQioieqA1TudNmMwxYLRidBasfH5jH9RqB42EMYV5mnBa02qSn6+ji6xpxCLuJlMvgVUDuYmz4Gr0+EFYzSkHQsno1hi8I8UkAWpG7H9KaXLqVjQUJcsz1yiMowyslyiLfNWTda2V59MY25XvPYCwSQ3ahcy9NryshzQpVbSu7CbHbnQsawLVGJyWRYTqgYPGopXtKe0NCZkAYyQ92mnDbjdhUCzLwqEUqgLX1VutNrYow8+r62vCWsmlozeshJGczivW1O5YEBeNdR7OiVIT4+RxXnE6L5zXQtONGgrbJmEbpmNR/CB86DVWjgWxO2tJiF3WwrL1hGKl8U4zjo0Q8lMoiyoZY2W5JgtheihO73t1Z/r2pRG6oivipGmVf/2v/wdyOnPagogYNqkDW5HFwm43YodrfuM7v8PXvv513nv/I0qOnE5vePnZT/h//j/+W374vb9AqcLx8EDOhT/65/8T3/mNv8nnn7/EeqAW/uyP/gSlNR98+B4/+cn3wFp+/+/8fX7923+TN/d3PDzccff6c/7on/3nPN4/0hS8+941f/lXf0nOid/67d/h088+4/XnL5mmgS1EPnv5CR+/9w7TNfzpn/0ZX/nKr/Dhhx/x3gdfZZ523L16SXr5U7QZ+du/9/v8+Z/+Gd88XUA3AAEAAElEQVT4tS/zyaef8eWvfyzhFmHl1atP8brhxh3P5h1f//JXuHv1mlwSk3d88fIzTseD3A9GU7RmHHe0JEw/pfqzX8TWX0vjnFecETdCSuL8UMBoHKnJ8qW0wvX1LarB3eFEbhlNJXe3ngziZWi4hlW4a0axbQltHRXY7fbELGd33yOKOEbJMtcYg8IQYhXkeJPaxFhHjIINikn6yoYgnGKp0DJ1EE5qXDdyleGiMI8T3g+kBMsWnjjDfrBoRkrsA0ZtWVMCZTBWFLUppqdbyBjhsBtj0aURUmZbNxEJaZldhE3cHkYLl1QbUf/VKgEr7TL3MBarDVpDNjJkK2sQMVYXwIioRPiBSgsKiW7Rtc5g9SV9vKG0k5+rL8gvF6dGsCHOmCfniu58DLFRW+ZpwPmB+4dHcmd6X0LTUrwEQ10SdrsgqPMNUe2pTq5Fej+4LPDaU81N/94vll2FLN5rUU/YtnTBZP0Sv37pAV/pEOuLQqIaTdUF3WSaarSSBq8DZeV3nyQDoEQ+PlmBXC7HI7QiVl5lunpJy4Cwy1ZlmEdnTVRcT3cdx4mYFsIa0INHO08MG/ry5mqNc55QQ09ztZQijKdSK4P3KG3JFQYv0ebbtjBMnmmecHbg+HiHMcLPskYUXDnLh18cFA1lFFaJfL/kJNaaLAql3De0gEyK1UXlVbBmkE11kYunmbdslWkcCCnj1MB8tRcOg9Xk3BjHHTlWwrrJh3cYURpSqZgQOW8rz57d8uzFuxwfX0nISK047xChlCRE1iZhIXqYOZ1WAG5vb/nss0/44uVP+crXvs2zZx+wLY+kKKlYYChFsdvNGDeitOXWwaFtnI9iYzPAsJt6QRI5Hk7UpskN3vvoSzw8PrK7usH7iVdfvKJRmceB66trjJnY7a+JVaD6fpopaxDW1Diy29/yxWcvOT6sXO+eEYvwbVRNPNx9wY/++gc4C9dXIzkFrm6fEc53jKPn/u6MNYV33r2l5CQFcG9ptboA54WjMO4Gtpj44tVrnDWMg7BnUgjC2bHCGbJWmA2lSKS66XJqk0V1s9/tKSVgkgyoY+p2R63ADzg3kGNBBdhd7QS2HxLbKpsQpRpVW0bdE8Cs8FZSgVSy2NAR1tj+emZ/fc3V1XOU0hyPdziz4Fomk9iKyJIFwi4Dj1bEVteabCyNgsGZp8+s7gE3F+YAXblYqrDJjPMUJBXIGY3TjcMqm2CrK1VZrDLU0kgV4iZpTkq5rviTLbDKipQ7dFpWY1ht5OctDacaw2BZU2MNBecBGrarV401bFsViHGVivN68lglYR3jeFHJKrHP07i+GnFW8+pupdJIXUbutFh9VJdQCx+j4lTDe0PMCad054FWtGlYJCX4o/dnPn9YRO3UDKe1oKn4nWfbKqclUbUVthcwTiOlFgbnqKpQWsF1Noa3VpYWxlCNJE25riJ2RpTN3htOpxMxVcbZYhU4pygx4UeLM7KJd6aRc8SNolpV1vDO+1ds5zPLcWUtEFVhHjSEjFea653lcDzg/MRHH3/M4XCgpkwMR7ZtlXTMYeJ4XmhFODEA0+AA+d4HoxlGabxCqoyjxRtNzl21TcE515t7yziM5JzYlrOEh2hoRhoM18SubZTm5vYZtSm2ZZPNmBq4unlOChtGNWI4iQVJPA7kIIoT5yXUo9XM6XgE0xgobCGy0zNaKW5vrwjLEWM0ORbG3SAD6FJpLVFalkCNJvytwVuW0wGAnCPGeLy1xKzRLUJNlFRE5VkSh+WR87rw/2Luv5pty9L0POwZdpq11jbn7GMzs9JVVVd1l2nfaIAREEAEIIiMEBSkqAuE/oB0pb+iW0XoQmJQIkBSYEhUU+hownWj0WhbpiurKm2lOX67ZaYZVhff3DuLtype6ERUV0V2urPXmmN+4/3e93lBs+obEb3HiG09FWj7nq7vhfNZZKnUNo0UUWWBiHernjBP5JI47LcoBc4axnGiKKhK2HveCbzZWI337bLhlFX2l8UQi1uv1gWDUSTyYG5g/8KIlcZZKY5AaZrG0FhNXQY05w3dqgNEcHG5AgYyeN0z7yOt8ozbHR9++iF//u/+FYprnCu896M/5uMPPuHenfu0rufO+nU+f/JjYh5Jc6BWw6unTzm9c8y//jf/Lx699jX+3t/7R7z1lW+hleHDD37MD37wpxzmK2pRfPbJe1xeX/Lh+z/m6vIFm+Njvv2d3+DhgxNePn/OyelrfPdb3+W//q/+cy4vdkt0sgIJhbAdaxX+o4howmCQz0OGVHcrLhRizYIBQBx/WmnKwnTJaKyTAXMKSZaAVVoxayrYVuMMqCLDtTCLZdmSbxoncyKQMcYJYzUl2sZIZL8K1F5i+w7nvTQSRxmML7YDN22rWht2uwPWyqXVty3aaI6O14yzRC5zCuQaZKvfONqug91WvscZgjY4I0uDkjUgg3rjHIGJVCI5plvsSOsNN6VhXd8zjxNKK2K5mfccTsn/f5onmf9y5uS4wxnNMAqUPC/uOClYWZwtWRHychmugjcgC0upcW458+XZtU6KN0qW36dvHLEkuTC5hpwqwxCISZGLYpjnxYVpODu7y/nFlpwCXhtxKBm5yFPAt144wkbi0b1T1HRYIoKWddcS80RMEvE05ga/IJt8EUZvBF8plKiLwKKqOIf7TkoKchahMEW5IGizuDhKlXepkveS0hVtEn1vMC4TYiLGQuPlGUdlVEzYZclYasEZy8X5jutdRNuZo3XL+bCICUskO6VM00gMieW5kbZGT9c6utYzTXtqzjx5+or1es1wMAyXB5pG8d57f8mmX5MrhKjZ7gIpveLO2YaUC/vDhO8cYd7xk/d+ym//zv+M3/iNM4bDOcerM3760485v7jgcDjIzw/NHCQ+ehOnirkS80xOauEYaq5SQg8HKXEJizBXhJdXlERfndYiuNRKVhLhzLViouZAwCiICTovSRrjpOU+pyyfkwKDcDSTVhJDW/jfrbegFXPInBw3zOO0PBeGpu1JcSRO0rRaaiUnhVnYi07JJVzrirGQ80yOcVnaWzprl/ZaRaOdNK5TiHpp4/WGelNKVuWzjEFYaLrxWL/wgCm0Ru5fGIOzSlyss7D9lBJ30JyX8jNEpKPIsicvCxBqQVuZ6YKSBsm2lzixQXhZ1Coss5KJuYLW5JTwzkipx1Ju4KxCkRlnmd9UiZScyc5StJS1rPoelESvc4pLIYtwnb33rNcrttsrcfAocemknNA6UVVdzvWGkIRGG4IAGTAtKMOUEqbI8qQWcUWCYopQVKQxhnXvGEZBUM1ZkjdGS8Sy8RoVyuIMFKf1TbSvLBxNtSRnRNwXFprSmlSXYjsAldkedqQirizD0mAMKJ2pxfDd7/4G3/3Or/Po7D5aay5eveSn7/0ln3zw1/zgr/+aw2G37PZEyHjvBz/gg5/8eIlIb9msO0KYiTnz8sUzjG9x2vDxh0/55W/+DR7efY2vv/XLlBp48fI5X3z6EeM00jaPcY3n/PKCP/3zP+edr32DO3fvCRe9VlaNILKefvQZ737lbfCWojR/9+/9x3z4wQd8+MH7aJ056o/44Md/xXB9wWeHHRnDhU74xpKSpmk8R90RJ2cPqTlxefGCy6tzwSct3FNr5HkxSnM47FFV44ySeV0J3iBmhTHNMstJQUezJACVklh+6wzHfs1hGgCJpnpr5V5WFUebNfMYOQRB2lAVXdOw6js0mXGYME5mda1g2O4wKLSyy45V2OStdxgrxqkYJHXVuiUx4Twh3pRcfVly6Jx8x53SWCc8umwqKSas1hh/Uzonm6HOGYbDRC5ZWoMXsdtqS5lnWYKj8NZwmALOWUDeVVIaoRmm+dZcIcWkdcGFVYZxxuiM8w5Tlib4FCm5YKzDN1qKS5SR9J1WjONMChWlLG3nUCGI7uGcPKNppnGi0cxBYvcopJEd0UtuHMfGSpdCTjfps0VzooK6KZeTBIU1MpPMoTJPE7keSEUR4g1XPt6KkbqKICuh5uU1vSRYhKmnbvUmkjhz643gtYiJNyWU8uvncHV1WfpVlnfZL/brFxb4bn5prcjLBk9piUQab+UDT0v84OecATfxFpRs1MZxWmIoDqc8U5aNsFlatkJI3LQJ5SW+ILGojG86FFqgl8bQ9Su6foPWEhVxRtqtqFCrljgr3Kq3U0g434opIWfQnjv3H/Hy5XOJY6DJ14nKlhhnrNV0bUOMSazuMWGX+mNhG8iLW5WKNo55nhnnWS6uSphhVIFL3sSSRWH/uby3tSIaKUUpIqKUuSwxHMd+e3H7JcmlMk8joBbLKTRtI3GFEHn3a2/xs09+RtP2uKan35xwvd2Lawi5jPVrQ66W4zt32Q8j/XrFYYqcHN3l2995jZevXlCrgDKdk88gpULTtDivxfk3io1Xk7HWSsxuDmhrmaYZFHgjYOiKZUoF6xz7YY+icHa/59Hrb3B1ccE4XlGnymbtMNbglWW/P9B0Dq0dj994zBefP6XEwMPHD3j18hmmdXzl9a/KRlNZtodr+n7D9fUFwxh56913mcaZ56/OKVSKkphjKYlVvyLOB/QysDq/XNTS0nhXChWDs162IAszI91CMqtEiHLh7PSMMO0wShyM4jwVV+Y4jaQUUEsDUq2FOB2oJYhrq2q0ypwcr9gPEVSGKoNWqZVN6zjpWnKZiCEQaoOgKQu6SFS+NSKWa6PpfM/26iWX11vCtCfEiZiWDUFcmEe10nq3iF07+u5EojsxSQw3i2W51CqNqFpENCnOsMvvTWIaaZiwzoprMSWxSiObHteKqBWXjbKzjpplc3Fjo7VWCRvTC1PTWYPKWRiaMaCXdsSiFBmB4qbF8detDOR663SoVYTFrnM4qznuG0qIaAPGGdlO5bT8bAt5LxDrB/dahilTER6CdwZKpmmNvFhyEqbDKIuGgiZlfXsp6JSwHdq1YZhGvCnCZlucBd5qnHEcQiIUQy0F6xROK1SWISQEcZv0raOkgPMarYuUMpQkcQIj27xpCujW4l0j8Z/O4twiOjjF6apnv79E6SrRRRxt36NwxGnEWE3Klf1uZDgciDGTciWpiEoab71E00sl5oAtmk8/+Yiju4+EYzfvUaowTltW62OUhv2wo+SEd5oYpLRiDhNN18i/Q67MJRMOgRUtWln6VbewpiTm7LpGLtbDJG47pSRm1hhySPi2FdZHymyvr8hVo9FIWZC4qpt2TdtY1A5KmlAKpjlLi56KVAyro2NqCRiztOfNIrZZ71BG0zaO/fXENAe6Tjav4zhialkYZpWmc8QxCFsk1wWoLu7rulxYaqkoq8kIZmEYIrSKOWWsW+JEJXB1dYGzR1ijUcYuBU2GeXm/TVMmlrSgJGTTqxF3efCWKezJRdxIWhusb8Rlggx7znvabr3gM+R9/HPeoEW4+3L8MDcifs4LMUNTyeKm1halNGbhAsLi1E+V/R6GwwFtFre8sfR9yxtvv8Gv/Np3OVqf8Oj11/FtQ5oTpno0LZ9/+Dmf/PRDQtxzcnLKb/7632ezvse7bysut+cc9juomuOTnmHaU+qBzz7/C37vvzvnb/+tf8Qbb7/J7/3eP+Xzz99Hq0LMsDk65vzVJfvtFU1vmV5OfPTR+zz77DPu3rvDbv8czcjXvvY2f/6n35dtsZJ3qzGSBlBVGJsoce6Vmm+FP1Ul/mGNXja6iixLWizLJl+xwMAXjlKWxjathd0bYqJrhRWpFxE3FYVRcYn8WylBqRprDF0rW3w5PzROCwsx5GVb7BRhGunbnrunR+x2B6Z5XobUglUCca4pko3BeyvOLFUpMbHuGzBqcZ8qvHNSStU6cmi43g9oJYkKaxoapRkH4fmu1i273bV8Ryq3P8ubJsUpBHFtzZFhXuYno2i7nhQy6KXtHRE9tUE4PqVIPBrhr81BXJOyTNbLzlg4qKVktJZn0zpDQRbHTSvOoJAKs134kovDKC1t6tqISGWdxzjLOEsLcOMUKU3sr89JIUEV7IGxCkJZWjst1lnCOEuyJRV0J0P9tDB6vJLYfYgS7y8L6F/cswtjj3qbXhEjpKKS0UbROCmGyCVjnZV20YUXVOtSMqIhLEtx78A10opY64w1drkciUuy8V6SGCoR5xtekLhDjNeM+x3Wi+uy6zwpy4I6L0xt59zSlJqE/6glwv/Ou+9yfv6KkAZUtszTxHBxSQwSeStFMAFhvCIkEXWmmJhC5tV2R+el3O6ObzFVsbt8yv/wB/8tv/5rv0OcMr/yjd/iwf2v872/+hN++KPvE3KU73TW7A4TorsIJziFitGOOQsygiLqnAJqEVGkLG5Jo8UNeONay1VKVGpZmKWIcCu+GdiP88K1leWw9w2qJGHc1iVaWRAXWxGhL0RpG3beolXBW4lWYxwaTw4BBUtbpixdioJakiyrqjjf3MLg7Dq7FEwVYknYxuC1FV5eKeJmb9zyz11OoSJGita1PHj7lGmYOb8+SHFYEZdxb604V7TG6MqqdRAnYgWWn4DzhjAFCouIWTLr3onDKEtszSqoudJ5YTLP057jTgQV4xxd23K9DVTlxRkYZ7w10iK8iG7OKmrJzFnSGnJDFDdcqeK0tNYKo7YIT01aTdXtNXoKM2UnrPKYKopy20jdtZaYKtY1HIZArlKKUquhKk2I0tgtwqZc4kuplLliLaw6j1GVEgPaV2qxHA5B3pi5gLLkjAjQRtjkId0sz5diLsQoAjfpGU1ON9+DxeVbRTAQ1r3HGLM0h87MacJoI+8E77h//xHXl1t+OvyYn/3sE169fMqTzz5Em8I0zaR84xAU/mBMEaa6cHsVZXtYIuoOrRz/6H/1j7HGcXXxgt//vX/Cul/z27/zH3D/3hn/4O//PVYryx/8/v/A558+4eLykloVMQR2Vxd0Tc9lNbRtx9ndOzx6/AZffeMtvvejH/CTjz7k7Tff5Nd/7Ve5d/eI09M7XF1fEFLhs2dPCcOENxNdtyKXgVoNJldICVULm7YnpYGLeUvMI9NuT86afrXi+PiYmCTdNE0T2hpaL7HmtN/Tth5Xtbimlnd161q8a5hiZppntNYcpoHjkxPmYJYiikX8qaIF5MXZ5YzgjWqW/+0NTGOQZw9JM3nnSXlCYThan2CVZRz3WGOpNZOiiOdKVVqv6dqWYZ9JRRAOmsKqFWd/qFBniT9L67h8tr5xzPOE1sis38Lje/e5urygpJlVK39ujolhmuQcaR1KO05PTwj7kWGeRGiMmb5vbudEYxVdK/0HIWSSlkKKeZoJ8+K6dU6WAVWSnNZqjLNQhInYeL9gBST5qBaObMpZ8BNaHNBS2hEXjq84671dFky54huLbzy73SCJBxQlZnmu683CT5rNjdbL7kwt7GVhmqfF+ZuSLLZTkQhtXZ7JWoRtvpzE8uxXSd5olbFGgalLQqoS0zIr13Lr37uZ/W7rPG5e7vXLOVzdCIH/E/z6hQU+yRHL5b9fr0ghiTPDeFQut9tFib8uOqaWSIZ1Xrh8tUqrVM2kCE3raFUlLttbCihdWbWtOGlgAXiLiJRKlQfUyDZ3Hg+Mh4PAq53Ft57pesSYRjLugDUO1zTEGJYNlTDzjNJMoTAM060ImVKm6aSZ5zDAPE0Yo9FOo5OiX3WirLNwXFxDqUjltLc07RrrO3FhhQmFpulatPHcDHHj4YA98hIPiyPWNQvrwpIpwoqydmFiLG2HSjLo/XrFanPM9dULSgxyKCDg3JPTI65evuRwvWW1OmYOEd90onZnieI5p0kxsNsFjk899+7f58WLV8Rp4MU48vDRm2yO73F9+QxrMlU7aiysj1ZopZnGA6nIkN44y267X2qwZ3JJjFOmYJZWM4e1ipQVd083XLw6p/UN677h4tU5p3fv8ejRI559kdgOW7SzxJg4e3hGyZXt7hrnNK+ePGHaXfDs6RdMYcI5w9XlnsP+GtedsOo3vP76Y64uX7FarwmHAy+ePaOUwmp9xBQCYb/HGcN+f8BZcTk4K4NA5x0mOdbrNdeXV4QoLj5bnIBHjWOcw3KJh4rBWE3jGna7A/MS2fZGU2JBKYtxHu8SSneompnnQSJKJFKUeOp82IEOGNOSkyIW2UDWqsXxETNVy4VrygqjJrTK1GqwVLqmxWlHCjPbkFBuZnOv50HrefKzS07vnxCmgfF6h3cSoOgaj1aVw2HParViGkdWm2PhFaJRWprJxGxd0VXGKpBIAYBShqoBlHApE0Ql3CWtErUo5lHs1FrLtpSaMEr4eAKtF2GnxHTbbBZLoXeWOYt7bkwZ1djbdlIoxLlQp0LrHc4oxpBQSpqhrReHojMNKUVsY0hjooaMikWa8VTFekVJmiEktKqsVnI2XVzNhCAxqVQrm6M1w9WMcsJxo1TUIvCqLBfEVWvQViJ6+73CLMUUXatwytF1msN+Ai3NtdZqrMnomoXbYeXC77TiMI1oK+2iu+0VFUvTKDQiksdYOF73dM7Rtytenl/x4PF95nmkpMh0GNinEddYDsNI6xzrvpXzWHuSXnimKlKjCDjVGJwSjg5FGhWVuXGVGEKaBeSeZ2x3zMmdU7747JIcAvqoISRFLKCURRtL02Rizpyertju9iKEVHEfeddgXc/x0Sn73bXEIBqPUpnGGcbDnlqynIXGykJIWVBF3EpZeCClJNCeWmHVdaQkCyClndjkq7iuu05Ei5QDu91E11q2F88JKWBMxVuDMoXeebS1rDanOOfoVit5b+jCPA00zuCtRhOY5omgZaOnlVrgypoco0CJraZrHCEgYk0peJ2ZdGa/37M/zFjfLm1khbaz+Kalpoz2ihwjyUZhv1LJNXLYXouIt6AsnDUymKIomKWQpt46blNMtwNNydLK16/c8hb/cqOob9qBlnIXY2VplJJ8NyRKIM8l3GzAZTjyjWUYhJOLEleMMpYSK1pZTo/v8p3vfocX56/42Sef8L//3/0f8G6N9w3f+tZ3uPf4hP/7/+X/yr2zBzx9+jHOQOs0f/zHv8fje1/nt373N3n//fd4/+I99sM5q97x4tlLtKqc3jnm5bNP+L/9F/9HXn/jTZ48fcL51Tmt87ilZe8/+9/8b/kX/+JfcfniGc4FPv7JRzTe8eSJZbudMMaz6lcSfS311l3hGgtzXFrbJOaipepFLkXLkJYTFFVwVs7HQpVZB3GlGCWoB281pooTk7o4crwmzBVixTQ37FU5B4yu1CwLCwm95eXyJZ+tsIyLuEWVofcaraMIksYSk4h53mrqcm43bUfnGg7bA6ksvDUyORemmIghMsaZpuuIWcolvLfoGpj355Q044yRQo7pwIyj6zqalWe/3TLPwiqqWdzO2nhQDuscOQdAirXmmMi1oqo07IaYBPtS5LLrrZUZUsmFMy2LXmMEr2ARp+BmsyLGyG5/QKtM23jASRt1jExZCrTapdHWsBSmGMdhCsK5XGCSIUVaY5ljBOWZwwiq4oxC14wzlpwnbFMooYg7Qmm6xgMTBmEAzktLr3US2x3TgopxhqZ1bGNZZmhx2sFyzlZuv1c3FxG1/O9SlxIqDWj5OZDLbXRIa/m+OCuRwKEWjMmcrHvGMNK5St94lDNsd+Mt9maME4dxWZpUgcdr69AU4pxwjbSvpgJWS2mddY7tLjLPSeZaXbFeineMUrSt53p34Hp7TQoT66O7jEG4TVWJLFtyYbcPwmOzir7xxCglLTEhDg8yh31iOFxSybz1zhGff/o9vvj8kuOzR3izIuaRtjMMw4KcqZBTxTZGlpRFnIzy3avopcQhLYw5uW/JXUaERznXjBXeZirCoTRK4re5SltuSkkEfsMiusnltMaA01AXgLrE78TdnVOS5IzR9GtHyonDMGGNou1bnG95443X+MmPfsp+ipgqJVnGqOXM8eA6rHdYb2m8pbPmtniwWTAzrm3ZDoEcM1brW6ODropBKzFPRJktnbFStuNGVn1HQ2V0k0jKccLYhDGaEEeoIigJf1RYlForlBFchjagjOJo1VBTWHjbhk1jKClSa5Am0nVDYxRJFXKZheeoHWlp2/Re423FmUIOkgbTC8PZojDaMU2ZYRixywJwve4IWcRJ7xzOWdp1y+5QyQdJysSY2O12S9pEztiaMkrLQllrzapzzLMsMIrWVGT+DTHJGVoUJYnzVVNovBGxw0gDN8pQUqakKA5dK+2vEr9VzBmmunDjF8FYi9Ve0hy1EFNanNFFWucXsP/NuVAr7PaBVBbDSYjkXPHOk3NkmgPWtfzrf/n7THPi9GjNYb/ncLiGmlDGktMMpWB9I27+Is9kVQqjlrmglCWCXjg+WfNL73xNFsxq4g//6F/x1lfe4r/8J/9n3n3rXd54/S1+9zf+DvuLgnKZ3/+D/57dbkdJlSeffSbGDy1lBZ99/hmXz17y+D99i1/+zq/xxasLxmHHpx+8h9Geq4stU5mlINEJO/vNt7/BvQcP+P73/4wSBt59fJ9aZrqmMFw/4/LyJfM8UJVimANKGXoNc4zstwd5lrO8Y0JJxGEmlUJWEnXf9J1EdVUlDIl5DHhnb5Edzmlx7Nebu7mUXMw50TjBy8wxo7CkEDDOSnR+THjjSF5RUqaqsiySpFxrnEa883T9msYbwnCg6Mo072m8wjtFTrLQKbWgiswSpRQpj1MO67zExq2SGLiRua/xRrQJ4xeRtkIOUqDlHb0zxDlQTb3lQ6dqubq4xulK1WAXvFnMSZzwpQhP1CiGaSZlWWrqXDhetYw2SjpBaboWhjlIeWEClQveOJRxTEH+uPQ2CNfdOE/r5Weec5ZmYCVu+LrcA3KV+Wi8XUYVSV1Q8NYgfzspKbrxz+kFXyYJPUkFyKJMFthTSkw1A4ZS9Zfv3IXjq62maQSzFoI4lmUPJw2/gq8xC35jmb2rLN9vRcKfE/LKzzXwyvitbmdxvXBAf9Ffv7iDb2GD1CValxaVM2XhJJVSbn5XS9RiGWzR0haoLXmeWa3XGC1RrZjKAsyXFxrKLABFAcE3bYNrJBLiG8u8QBG7tmGaZ9CWXAudk3/+4TDSd/1ySRHX1XrVS/bbSjX6TRzTGEO/aoCK1eKeoGaWFnbiHMTJsLCccsqM40TfdqQkbAWqYp5njHPCRdfyhakqEkLEekOMCVPl9zVO48JtkI1pXZxRRlsOSxwCraFq1uvN8s8uzNOM7zccDiNdv0IVYfnEmLFObMHbqz1N23J29pDjo1O0KXz+2Sd0rWMcAquVNCg561mvTnj9jXd5/vwJzlv8rBhjpKiMQ1NTZhpnuq7Hmsxut6ekwmrVcLxaLy2zgZQzIcqGrFS5gFjb0K16UkoMh8D9+/dJpdCvVoTriPMtjU+0XcMcEsM8s15tuHd2n2GMhHmGxV7fNJbry8tliLTMIZJixFlDyTOXF8+Yxi21DjjluHh1yZ2Tju3VNa7refj4Tc4ePEbVwI9++EPmeSTmsBRPJFIRwKdeBjiUZpgmQqk8uHeP3Xa3xDqF25Gr4vGD1/ni+ecYJW6RrCbKmKWcIweqKgzDTgSTCtRETDNaSRyx3xxx/vIctDS6xhioRWNUvW1Ac0ZiACUXQk6snMa3LYdxhzOGxjcSU4yKzrU8PDuiPTrB6JbnTz4SF6U1jIeJ/TigjabvpPBlDBKVTQsMNYVAWS6gJcogIsyDL+Mq0uq2HFws51Ouy7ZC+CEhFBnKMsIXWC7AumoptcgZqkQPtIeQClbJqH3TsmaWBqUCZAo5Brx14kCqmra1xJQEZGxFmIpF/lyllHxfvUaXiAI2rRMWqF2e6Zjo1g27GIXFojW7QyCEREyQijDdclTkIBtTaxUxi43f2GXbXwNzVlIOoqSB6yYuNYcA1UjMJ2pCKOA1rVWyCa4aazWpJOYcaJzB2MrxXcc4ZkIcaRvLFCpDSMxDxSgZEIZxoCZp+mobx9X5JUoJTN4YlobWRM2KZCvDOLDpW3aDuPnQUmMfU0DbBrLwRZxSqCIV9cZUGq047ntSSZiSaa3Glshuv8U3nlwivjGkMJDDKGJSsmLn15owTQt7UrFaGTKKVKE3nqbt2W7PSaUSB8EZ5GnAmIZS5dy+3u9pm44aIqUkdBVBLyWJutQkLes1CshflUzfLIN125BTwDUth90B56oAy0tiDAd2U6Kxhjubhmks2EZzd73mK2++xccff0SIwo+12qC0J6SJcZqW+IcixYxGmkNlK+koQThcIWSsl0YxUxPjfKAUKSc4DNcSXZgGdNHkGLjevqLfGBq/wpsNp5tOop0WQsrivjIa4z05Z1Z9j7Gyse+ahmkvTW3KLVHIJUKQkzQ5amuWOOHNlvDmiZXmw5tBwxhxstw0g9Xlb/Tz7V4KERO0FidqihIftTeRySRLgUwmpsCP3vsB4zTytW/+CkYZDvsdwQ58+MGP+N73/4ycBtreLzFFw9XldtlkF374ox9w+eI5u/0lTdNRMfzSu79CmGfht80Dqex4+uJTckm8/ugNzl+9wnnNbnjFD3/0ff7hf/SfojK8evYFf/lXf8EP//ovCK8GOr/GkLi62gsTN2UKRZhbc0Swg3WBWosAo5RaMCLiIKsFCuIakzbMJaaBODKsMbdokJrTMsjJGZviIgwuOZLGCwg+58SwTxQrh6xdhEDnJL6WisSGLVKosu5WWG84DFLMkXOm6zpiVYSYb4fckhbOUO+xWdF0PdYqwrxnDDMxVZxzhEmcgwnBjQwhkLzB+46VEaxAVppaspTUjBJZS3NYeHeVVBVaO+7evU9KMxeXL3FW/hprWSIv5Tb+bK0nxQxKynpqlUvnOEv5ToqRxik265ZpkovXOOzFeW/l55dTlhmmMbdOqKaR71WpEG+KMOYol+hSJDpkhPWXSgWlGWNinCObVYdBMDPVGOY04pyhcYqcJqzypCC4jrbx4rZ1grewteLJzFrh+p7dPjKMgWGUCzkLpxEkpm2svmUW3cysuWbhcylFKeIAKovoU1LBOk/MCW8F5yAFK+KkPOwrqYz0a03jNcYVhnkiL0KX0RVbM826ZUyKkJLweDW0bcP17oDJhVoUNVWJCGpZrnS9JXtFnCVqnLIi58j6aM3JUcuTzz9ms+nou7UI1FVhjUQcRRyS0ycvYhsq8OjBAx6//oA//7PvMc2ZmDIxXXF03KG05fkXW77+9Tfo1wOXF5/yzlvfoIYT4uOHDIcDz17sUYujRpiDCt8oVJHzq0EzHBK16iWmBZQvmck3dotcM7os4nIW1xbFUKpBaTlbc61YZJmVssZqYWmVWhmjtIf3nVvKVCohDJJ6WEDtIcryzWe5e8y5MFzvmA/v0yENj2hH0pbTx2/y1je/xfHdR7SrDc63eN9gjcUageVrrW/PZ2MsamluvImyqSX2pZEyhpQiVSNMsFpIMVJjoqZEKSKGhDAxjgeGceSw3TLtLzk/f8H55StiGAnzSC2J7MXQQU14qxjHDNVRkyGi2JaMriIaa2dQNWGQi3DfGtq5UvqGy31d/g0VYRb3srVGREqvCWNGFSnkUhXcImz0bcs8ZcEXLfFF55dlYxXsDGiazi9MLc12PxKRaJxTkqDw3rIfJopGGuVVQdmCVxrVW4ZRik5UFaSA1pm+d6QQ2G5BLcuBzis2aw8a9kPGWon85pxRVRp968LJlKXSwqcO5eY0EIFbywJHLeLel+E+jdOGMWYOeZQmey3vHecbSIZ5mJnH56SUuL54jraWGCPOWtbe0/nCVGdyzBjnSbXelh7Yn3ObVwraGg7Dlj/703/DF8+e8flnH3N27w5/8sf/luvLcz54/yd8+1u/SSkNX//qL6Fc5NHDRxx2A7XCOAW0jjTO0XQNd0/PaIxCWTHdPH7wiMZmPvrsOd/+7m/yt/7u/4KPP/4RYdjy5mv3+eLZJd/87nd482vfZXVyDxMO7F98xvXVE84vLlivRsZpz9V2S1UaZaTEqVLZrHrG7SAMbi3nbAhBxH+EH9d6gyIR58Bm3TLXEW0c2jpaZ8gpcOfomBQGGm9QxhHVl/gSlKbUBLJrpWn9raM6lrIkrdTiYlfkqmRhoBK78YCPE/70jKY7QlfNGK6oKhOKwURoG8PmxJFmQWEY57C2LouqwjCPwuxUGtsY2q5lngI1JEEBTBmtEzEdqLpQiiZnTVYJ7xymaYhTEUaoVQzjQHd8SmMUl5c7uqYTPNGcOTk+4nA4MI2RbMBYJ/NPqtQECoPVimkM3DndME9pMXblpYAoLy5hhakCH6yLOJ1yYU4juUpaQqPoWln6xxRFvFuWnXLbFFZqLYXWN8RYsV5+LkpV0SViWe4KiDlAFwx1EXOFl6eQItGUxDlYb1qtF7esNpZpjouJ1pKW+K4x8tdP8eYdDcpUWlc4OWqYpplaJf47TpIEFGf+z1N1b2bqJelhwOj/PxD4jFq2Pwt40C3CiPwGBIpulqEnpCK8N60IOS+tSbKpGKb51vFwU44hTmSJ7IHEAmvJ+OKo2iyOQIV1DdZ55nmia1tilW2s94rDMJBT4qYVs2lb8phJsdD4jmmclu2hYQriUcJJBl6Tce4OpRQuz68kCmcMJQbGeeb05IQ4i2POWrc4SmSDZ50T0VNp1qsTDuPIdrej7ddoLQOoMTIo+KbhcLWllErTS5wq10zXrmC7k+haScRQmefAer1inqZFlfYo13L33n1SnChVNhIxJmy7wvcNrmnYHB8R0kSZZtJ0uFWmUxKoNargfeUnP/oew7hlteo4f/GK1958a7m4BnY74ahsjk6Zx4GcNbaprI821FK4vLzmzsmGKYgDy7iO1q2X+Ja0Pmll8F1PKoVxHHj48DHjNFGrYQ6Rzz79jJM7Z7zz1a/x+Wef8OriHGc6drstznV0q45pPHB5eU3FoHXLuj/hMOwYx8AUElVb7p/dpcTA5WHHYdjjPZzcPeNqu+PDj3/CsxdP8cagtYC4qStALZ+JfPeMbRjDlUSDtCbHmf1+z/HpKZcX5+RSGOfA6dljzh68xqdffEbjPIdhlFY+DL5dLP5zIs0zq3UDOZJCIRQpoCi5kuadbIaKCLuhSjxWK413HV0H0xypNVNL4le/810++fhDSjpw5DuaVtpgm8ZzGCOnd9Zo0zPPe7bXz6l1IubMulRUjXT9mhATh71suYQNIxdXsYfP4IX907Ziy04xiX+kStRq6QAFpWTbrdVS2nFzqRUQvUVEAoP8NSXJoSgHWV3glYma5TD3jZCnMzK8UaF4GdisUzRLuUeKUdglOS8FI1CUZuUsfjJ0TUuqgSVsSyrilNRWhrY5iwPKKInR6FLw3mB1RadC30l0Naa6RN8tq6M18XzgME64RhiWMWZCVdKAbTTTIdJ3TrZOrpBSpRYt0HMyRiu8tRKFMkYA2iAg97XFL6DqlIUX2DtFUZqu6+lCYhgzcSqUVAlxot30NO2aUjSr1TFn9+/z6vlTSt4SY0Ds5JamMaw3Eh0KMWKtx7iGaQz0fc9hVHJGa9mA5VKwaJw3YpxTwgAzRkp1jjcnzIdzWl/ofEcOheH6QNt1hDTSWHE0NB4OhxGn3a37ZM6ZeYx4lzlwThivhQFZqsTmrcJr5LtlpH26IC9rcibFTGIRixewtjWaHAspBtCydRv2W2GVqIJfN8watClUhAMEGoohx5khZRor0cgw7hivn/PTH/0FqRhSnJfhuZDDCCWQUwBtxL3Te2KWczsXWW60rSNFufTnUrDGE+aMAomJhYnT1dKsaxSN8zipyaQ3mVWTOPWJe20hAPqQOIRANBnVOspciVrROMu02y7OYnHQ+MaRk6zeytLyK6wQub06o1lQhrcXW3Xz34tz5eadW254dErdxlJBnt+uFUdpTpkYKnrh1QlHdlnsKbnwDsPAPI+4pmEaR/7Zf/tP+PzTn7Fed3z00Ydcbq/w3vLGm98mp8z5i4+FTdc6Li+fc/mzK4zRnJwec7nf8q1f/W3eeetd/tW/+Nd897vfxvvKn/7ZH1N1xVnL6298hb/+3ntcb19xfPeYz7/4nHH/z/nd3/1tzu6d8O3vfpOf/vT7lFlLi6wyshRASgbk9yuuTLRCaEzCQLtx7d2UbGikpKoiLJ2qJZItzj2FvXEM5SJ8xcVpZa0nRGmxVkp4xNrANIfbJnbtrMT0tcS6TLu0vc2zcGOX5aC3DeMUcQsbpulaUqjM08C2hNuCL0rGym2fcRzp2hXed2x3B8oc6dqWOR0YplmKIVzF+I7eWkrSjLEQAqicFnFXS3Q2CSunZGm4loifxVuFto5pHJnng7htqfR9g7aa3U7YdCVlTo7Wwo7LRdrpFhHUGOGgSmEaS7wuyM/ReBbMqrD5qrzMpimIoGoQZ74SNmxmcV3nROs92himeWYcB2EXmaXgqRjGORCS4jBGNr2l5sz+MNM2hhALMWSJvTKxWTtx2CnDPE9QMuvOE4YDVEkuTNPEMCuuR8hZytZyXYp/FuxHDgmjhZ2qlMSQVM6kKpdFYfpAnaEiBSrWCF6i8RKBnqM4MWsJ9D2suoaSZ6iRYdZMcyVnhOHpDKdHPd5q4naW0h+E89SebhiGWZZDuVDKEhUsVfh0qnJy1JDmwv4QqFqhXcPx8Yrj4xVKFY7vHNP4jpevXhHLRFWFtjVSIrUofGVphy458+TZU662lyJElyxIDmfoZse9Oyuutxd87wfXHB8fEeNMjIG/+3f/5/zT/8d/SUhXOFdEM1WQirQ6a7WINbVinaHJinGMgLAnlRG3IAgv88ZhWBf3hlILboEsC5NqiDEKHl0rGoe0VBcR/bzXaCUJmTFGKVQwRhzdRt6Lpcgm09tKqzUug65yuTzymsZ4VH9Me+81Hn3jN1g/+hrK90vRhsQqpbVXTBTCfQ7EJG7VGAJpDoyDlDnNc1hEvIxKWVzdRlO1omhxZ7dOItGdcbSrDtd2dEcbuv6Y46bDGUfTWBGWS0LXTE2RkhOhJOEX5kScZ4bxQAwz0zAQQiBOAznMTOOOHGZqmil5ojCjaqLOIyEUmpqxSdonS45YWyl1BuuIGaYYqUXm64KgTLQSRI5SkuzIKdKuVjirKTTs8o5cksQfU6XrWokjNhaTM7EIa1t7S1WKq92ebLQIEwWJNCtparZW0VktDm8cpWjhpFVDrhGvYdV6jK2EIhzomBWqZhGcqpQ3USS5Jg74G9QAP4eykve1SPn155Zrwnu7ucOFOcoddJmva6143xLjwGuvv8nzZ8+lBLJWEW+rOKF2ZY93hrYRU0XNeXEk5UW4MAuiQtN1LcdHx7z95tvsrs7pmsrZnTUXL58x7C95/OgB+2Hij//kD0kJPvzoPY43a1mA6iWOn2RZE3NhdzjQusJXf/mX+OGP/hQq7PcHai289sZXePurX+PR46/yd//OP2R3/YKH90/46IOfcnx0xIunn/Mf/I2/wcc//j4/u3oqbsqcGYYDOUvb/NV+j/ci5IYQ2F/vhbXnNIex0jrPkDNjjGhnuQGp7ccZaw3DOKKd3EtKqJwdrdB6RWs0h0nwQloZtHMoXem8Z5gSKYlGMMVIv9pQYqGWwGGaFryTOIR94xmnQMoiYimEre0sHIZrnIo4G2mV3BtiTjALKmq1OsW5Da+99oj3338Pax0KYWsKp1VhneewH6Ao+qaFWlCNvE/HURbdaQykmOm8aDM1B1AW27aUsmDLlGY3TmD9Er/PaA2mcczbJO+uXGi9ZxonXGMZx0CpLMxKzWGeKMu7V6mlVDUJSsFaR62KUqSYrFZJiyizFK5WmetTlpIuYxyxzBJbbjzjrJYZXs7cnAUBBQsOzCiUKXKfLMLlSwu2zSolTO8qSa4QkyDdlHxf67KkVYu5KkXBM9SlaM1ZcebnJIkdYxUlCBfUWU3fG5SKSK/XYuDIkRhFnOxbSwxRHOdL6rIqWd5aDc5pftFfv7DAVxG+CmWpIEYcMUob2t5T5hnrllaU5bCQF6Vcmo0TUHAIQSJ5Sf7alBLWOUIUzluplTBNcvlXisMw0fctXb/B+o799ppSZZCkBqzrGee9WKyrxNEkapTo+hVtt8G5FqUPS/tVXeLCGm8blLK06yMuL665ungu/65LuYZZbNNTiKzapYwjRJqmIYaAUvKAjeNIXSzhWltef+NNrl49Yxx2ixNE451nGAdWqxXNwmJJWSLBcQEel1xp25Z53LHebJimSaqXgdVmQ9sfcb07gLZMQezHfedpmhZrJIP/5PPPiDFxfLyWzUbWSzMwWOtBKcZx4P79My4vI7vtnuOjE3bXB05PX+fO3TXj/ortlWxUT+7cZXN0wpMnz7Cu4friFTkrxtnR9musNmyvLtgdBsgJazVt37JeHdF3a549fyovpxBwvmGYA+16w4vnLzDX5xz3LTllNJX1ekXT94RYFzhnx4NHj4lp5vwiMcWZiqHrj/CNYppnajXErPHNmq5I5HqzOebBg/uEOXN295gXz5/Tdz05wWGY0FUalaxryCmxOjrBXZ1D18nCoATm6cBVrfSrjUA2laFfrXn+/CU5ifX/+PiYIRTQTi5p3uFayDWxGxI5jlIZri26ZKpKhOX5QFnZKSkRjY1pMcoyxwPrdYuiME8jz598ii0H2lXLHEUookTmOVJy5eXLl1R1Tama4yoR7M4b5nlPyRO6FilpaDy5JGpOtK6DUslxqSlXnoJmCrNYqpdoml4cQSX9j88BkIhByWoBP0vhjDREsrhaFlfbEkfQRlG0iDqtEcciCtojD6WQ5kokUlPFO4vXWmI8oaCN8HKoUmNOlZIJY5XAr2PA2EhmYcotm3fXWLQuZCPOF60dlczRuqHUxPVhomkbFJV1r8F65rlw2AeePn1C62V7NgV5SWkk1jnNBW8LRivGMVAVmKVZuVSJm3ljWErbWLWe6hQ5ylCvjZJmyQWK3hikrMJachHRr2870jRR0gGKprGOdb9ic3TCfjdSSuDF8ycM+wNN6zk53XB1dUFMEWcVwyGgEf5HiEjLba7EEEFpYkri1vNyxsWaidPAZrOhakW/6dG+IU6JELbM06UA/aPwhmDHPO7RVoaBvu0Y5pGMZohl4UKKkOi8k4uQhqOjDdvdxDgvooaCouttCVK/WpELVN2QcqLbtMQQqIhr5Gi9RuVMRCIMJSW0S8Qw4OwKZy26KnbDgTAPDNPIPI+k2ND3G6YkLKG29eScOD7ZiMgdJu4+eJ3ry0KcB7aXe7w3HJ2uGfeKOQwkKkOYvmyfLFkadnWDscJhaawRTUgb1s2GlLds55FDmNiNIngoNdA5z3G3os4zx3eOee2octaMGFt4UEdyr3i5K4yxooxnN2Sqm0kq0WqHU4WixBXUNR5lLIdh+pIVukTNmq4VaLJs0cRdv9QfOitlCGVZR0qqQLbOctEAVYVbNs+RGG4GH4nZyUIoQr1xIxka69AYYkjEOPLpxx/y7IuPBKkRJR47zYl7D97it3/nH/Dv/92/5PmzjwlBotPHHk6O15xfvKJfN3zzG9/hjcdfIybFnQf32R4GfvuXf4uz07c4vnPKD77377n/8C77y5n15tu89bVv8trrv8w0TFzuf8Z//8/+a14+f0FMAzfkk1KVXBbkGi9RMKVuL/FfxiuWBbJefnYoak3yc6rCFLuJ9BgFThsMMttIhE2ecWPETYCq+Fb4vLUo2s4wzZEUMzlJDHrVO0qQjXQuhRALXdcuEVDZOu/GkZwyTXE0zskCoSjWfcud0w2vXl0zhsBm1XBns+Hicnvbzti0Kx4d3+XJRz+RQh5t2U6jxNaphDGyV4muydScmFPFmYpJcoFzbYP3nnmaQSm6zYrWe2pJpJy43k9SJpbjghqBXDTzmChVy7tPK4ZxphYwxnHv7JgYwvLDFjZUWRpjSw5Y00icLWXZugPH645M5fxyK+IgFacrulbmUDCugUUgw2hhaNYAVbAcziiSkgvaMCdSNoRUJa5WEORGNeQiLkClrOBTnKXEJEVizkhxRaooFcmqUNKENo4SWBwDGUpGKXvrLCu3eC1xGcqFSD5/+e6ZLxf99UumtaKiDVi1iCK1iDtNWVarTAkKjWGcNNUJ2DxnswC9C9orSoTDGFBVGGPWeEIoXF7u8M4xjpFqFNpqbBR3kTwXwgg+3jQcHa3JVTNPA+Mw8HQcODrZ0PkjvvNrv8lP3/s+1ipeXowoJCJ9fb2jpMVRkwMxicB+PUtZnEb2f9NceHk1MM5ZHPuHAzEltDX86Cc/4uHDe9g6stuOzHFGaysXaiVxTeGfySySclkuZDLPgwiBLExSvbhgGm/ouobD/nAb15Kmw3w7A3mvxQxgpNFT2JxS9rJuHN5KLNhbS1FGzkilWXvHZrVi3a847RvutB132xX3jo45PtuwObtDvfOYcvoG7b3X0e0abfxt5Eyz8Lb1cnopfYMxXmYSOVcKIgrflJ+I+J7IIZFSYoyBKQSmaWQcBsJuYD/sGPZ79ocD25eXDJ9NhDkKU7kU0BrjzGLWMBjl8F238Gq9OPatwdmednNCf6KFra7NwljWi2gq7walzO2ZK9vcBKVQFrGwxMQ8zUzDgcP2kouLFwyHPftxz+HqknF7TZ32+Eazaq2UipVC26+ASo47rImCpKlSNHR9vUVpTdc3qDHgnSYVQ9Wa7e4gpSxJjAo5K0JUxFplmVFlLvFe+IfUhDOW/ZRpGr+wP4247Zf8napQk4iSdQHpg6Cl+r5lu90TY7n9LMuC+QDBWYn4UUlZilX4OYEPJK7Z+Zama9nurpnnmZQSn3/+mYjyteKtRFaWNCRUiDFijDhPpzTLvb1thNmWIquuBRSNXfHbv/a3ePDgPp99+jGffPQhu90VVEXf9IL9mBOH/UAFPvnZh0v8X5ZkN3eAUsS5NIfIi/M9n3xiWVnPMI185fWv8PjRQ44az8d/9YdcffEB1jZQNJvVr3I4bDlcP+Hpp5/z8V//G3YXz9kNB3LUrNYrpvnAPEeU0kuhkpxll5fXdE0j9+taaBt5ppu+JaSIdDAUxjnfcu+VNhgF8xxobCPbmCwNrNaJ2LVe91xcXEhyLCVqyayalkMMrLqeb379O1xdXfDZpx+I8I+kPXKQRJQzkt5TSsoSO+8Ztpci4G9aVJHFFDHjrRgjUIo5zKTacL4dyKpFWWGvNusNEr02hFJRzot4ZRxWLe5tY0g5UijY1uKdpYj5kKZtOT05JkdFszrCdieYbo1vV8S8IAuMmBP69YpxkuLH1jfCnUxZ2nlDIqa0MA8j0zSQS2KaJmKIhHlingfCPBHniTCPUjgZpHhSmSVBgl2WWpq4iGg1Fdq+xxrFMIbbZ0mpJcauFHXB+6y9YeUMCVC6MM+J1smM1Tc3Tdji1A9zpHOatm3YH4K0FhfBRGmtKCktiQ0NRhyDuVSUaIfksqBFlCyQlClLuuBmIVflPqGkpAtAq0rbONE5nMZoeSdqJYWMPxeU+f/51y8u8C0WRtd4QEDfUjhhsMYtnIqCNZZcE433AqHWCm0c0xRo2xZrm1vRTx5QcUxZq2i7FeM4oq0TK/ZqhXGdZKFjoekczjekpACLcy2r1YZXh2uoGd80wm+p4iCMMXPnwTFtu2Ga94zDTi7VaJxvOTo+YTyMHJ99hZhkW37+4qlsSq1hHAvOOZzzWCftMxId7rFWWsN2+0G2srrgneKLTz7DOondqCVmWUPG2UrjG8Y5Cc9sUeCnYeL45ITWNwKnp2G1XhPDzNnZHabhmrbr6VzDfNhhnBOwdxZBtOs6YVcpuXTtdzuOT8947Y13oCT+/E//lDAPS9toQGvD+miNUh6tGtq+gOq4c+eM1brj/PkTLi/PuXfvHrVWri8v2O/2VKVZbTZst5fompfYSMOYdgLMBKoRBTwnTSma7W5LyYn1es3hcKDv1oRy4N79h1xfXTMetjx9mnhw74E0PmpFTBFrG46Pj3n+7CnTfODVi6fEGNlutxhryNXwtW/8Chfn16xWjvPrLW+//RZ/+ed/Jn/ebsfxyZrxMDPMla+8+8tM+z1X28/wTSvtl4ct1kgP7XB9eQv4jCVgFqCnMQ5jLWd37xJD4uLigrfffhfnJJoXJylvkD5B4TUUqvC/xpmsmkVQVsxTwC/CsF0+vwpLGYRltfKopXlxGA5sVhajEnm6om8dszIondhf7+l7J5dvsY6RUmJzdMJ6c0J/csZw/glXFy8XMHklFyhTpG0MR6enzFOQ66t2xFQEfqoVSgl/o2oBmZeSadsOoyMlLCrfMvwarZeFsrwQYsxyCTUG7S0Kc8sbSjmjHNLABISY6bwAkscp03cO1xZUFtZLCZnYFHZTxFaLcRpbK1SNtxLpCvNwC/BWppD2FWUNm5UljpEYAoNOOCegeec0q64wDqBbxeEQaL2m0ZqqCrFkDtuRoRjGpe1YqwVmrTTONsxBGgk1lZo1zim61jGHCV0VYU70nZPSkiiNcc4u94kkdnUWpscwzFKU0ngxnqfK6ckKg+bi4prLcYdSVjZPGLxriXMmzIm7d++i8syz588ATeM919dXKK1x2rJZd+z3B8Y5MAVF0x7R9xsRfauS5mNrqKoSogDpIdP7FhUzyihqPFDCDhWzvAS1IiTZoM44WpvpOo3KhmEYub6epOmzVPaTYBfiLMSBVAtVCWdNe4frEnkUQHTTeBTiXimlsh8OtO2KcZpovCGFkRKDtLQqyzCOMmiVIs2BrfCIjFGykTYdJk6YPGOUtFIbrxjDgSlMPDi7z263pXGQjePFyyuMNby2eYBvOpxbU3Kk7RwlzxLLtI48F1RKeNvg247hsKPmSNu0Ig5pI+J16xn2e2nWto5aNJvjFcN5oO8s+3HGKY3ToGti3RkandE1ouqEsobOjKiUsU1FNQVrK3OruBxHijUkt+aqOCKK477FOo9rV1jXEOZASYk5yMZ63Xm8Fxfe8iLHaLW0uC9b/iXexdKYecsMQeDPVCVCxxIdrLWQU1gKAiRumlPFt9LOF+aE0grZlyascYzjyBwiTaf5xje+wd//B/9r1kf32W1HxiBb/1wKT56+4OHDB3jXMA4zpnouXu757Mkn/OUP/pA3Hp6RwsD+svLWO2/ywfsf8u//9I/5rd/5dT7++FM2x3d5/bVf4o2vvMVZWvNXr/0Fz1++pN/0lFCJsyAEJIxUsDeFVyiMFtaeWdrpNCLap5SoJcmFQMlFdRrEPaOUtElqxO0k2AdLRTHnhLaW1kisuWvFRea9xxtNLjMGYT8VFM5Ia6btvVwajVz45jhjrCZOQVoBfYNrPArDNANaFpahWKZkmbND+5aM4eoQ8d2GOQyEVHn54hVvvvOWvKuX9sm+k1bxNBdCzJhWkCPeNYyHiKoC+V63HVPJjKOwsPq+JcXAlDMhTOQKznqM0sScl4tzZk5JnKTWEeeAqjL8FlVJJXFxeUUtFeeF+GqVprE3jLGWzlkOu5FcpC1PoZnTTfmDRhsZmvuupeRIyrMs1lRZeGFG4uQKUp5YrToqCZXBa01UEHJAq0LbtlArQ4gYDa2+iVkJ36xQMKaQa8SYHpVmeqdIcyRVJc5nJY60zUpiSGnl2R0yQ65QlxjezcsUEbaEVVFv37FqwWTAl0U4xhis1Qi5TqLgVkuZ0/WV8JHmGNG2wfrKdrdbnJ+yaVK14B2MsdA2Bq2Fe1RZLk05kyloZXDGE4I4N0JJ6ALOODIV7ytpmiRapDW5ZoZp5M1332W9vsvDB6+zWa3o2nOePv8EKW50HPZSRofOWG1JRZjTIY/i4FUWUwxxqlyGGb2fJXodZ9DiwviDP/h/4nUrkfEs0ceaxfEv59vSAq6h5iqObmdJ4nGmsjj4CtQsjLxaCmEebl1hdTnvpEGYW6EqxkBNCu8NzhrmEBZenlwSO6u50695+PA13nn8Bu+8/Q53795nc3RC16/pfY/TdonrWZIzRGsJ1pC0I2GoIZKNLH714myvSqGrQdcbZ/YSL+ampIXbxSpGzuRqFLZaaORPWFdpWy5FPm+dxUVSqLffM7Vw2ErJpChM6FwKaWF15pSYQmKcZ4Zx4HA4sNvt2F9f8XIKhCiuwlIyKaX/EQcLJaWExjus8dLS3TQ0rccbK2ea67C2xx3f4+TOWxy/LYw+ZTSNs4TDjusXX/Ds05/w6sn7xLiDGolzxK/Eaam0YrVeC1JpmjFGs1n30qrdGmKuhByX9FSV9lwlRQkhCH/WWUstmqplqUiQxErbWLKW9u44CT5AFhIS0T45cqBm5rmIY4tye88bx8hwmLl5EZcqDlFu3PV1Qd4UKQKwTtybZXH/sXAJc0mkkjEl0XYdw7jHeycRbKBpDH1nCbOUIBmnQGW8NTROynF80wlixMmCNc6JeSoobXnn7W/wjV/6Dh988D7PXj5fnLWJMGdiyAzDbhGBHLkuDtKUxc1e620Rjwh9UnbgVGW/m3j8ziP+w299iw/e/4DzF8/5+PySk+Mjvnj2hOOjDa89fsgf/v4/ZRojJ2cnDPtL4izus7Zt2Tw44eXzC0JIIggpuetrbcFahmmipESpCuc1uSbGFEgzKOOk3E4rUkz03jPNM7Eizbe+EIo4MTtdl5lYCoTGcS+Cjm8xc2VzdATOcvH8GdSZP//LP1/K7grK6gWJ1FLiSFieIee0CLA5M82BTSd3lWEc8YuhwhaFUw2u7+jXa+5/5au8/tY3Bb/kPVYJmsVat3hAhRNclVo6EuDmcS5VFh03BW05RUqKxBgoVOI8E2MkxqXETRmykpZopeV8itZxnRTKdRRbmbQ0YNtGUxSYTtEoTSseDhGqtEZbi/UG6yyNN3hjUaXAUoaYs5wvwzAw7HZcX11xcfGK3e6aq+0Fh8OW8bCl1iSFi9qh9XL/LOLoq6UI8oNM6xu8tczTTE7CF268o+86OifR5LYzxCjL8HlOVK1p/Iqr7QFpM29uUVHDMC0IArnvVAT/II5EWSRJWkdm5hgT2sprtlQRHxsvGsI8V8Ygs4O8tBaHrpI24ZyWUp5f8NcvLPDFlKAqsatbK7ywXEBJ1O+GmWK9pyqBPOeaMdbSrTYYL4KdM4Z5njkMAyHOchDUAtqiXcPGN+x3W3KKpFTkIGo81jekmOi6lhgt/eaYaqW5db1ZcfFqELXcmgVqqTm5c4eiPHPK5Apt2zIMoziLUpXhdNwTw4xvGjbrhwy7K2KcJGpoRaRwzqO0RDp8t8JYz2G/p2s9lcrJ6YYvXryi6decHK+5uLjAIoO+pmKcR2klQGNtODrakHLk6vKCpjuiX60YhgFQkv1eeE/zPDGHRNuvCWFmHic6p7BGItM5ilreevl97/Z7jo6PuHv3PienZ3z4/k/x3hGClJAUNHMoqEOgWzUcxshqveLqeqLbbPjkZ58wHq54+6tvcX1+Ra3ivtlsjuj6NS9fvMQax9mD+1xc7jg5PuZw/QKF5OBzLnSdRAu6tuPVxUs2x0e0zYau27A7XGOt5+pqy/0HDxi3lt12y7NnT7lz9z7TNOG7Ndoq9vsDqUT222vmFLjaXtO2DX3XEubEF599we6ww10UxhDJQQTnaczsrg+8P37M6ckRL54+5cWLF9w5PZbIkHI0zYo4jxxt1oxDpGkM6iC2eK0U/eqEtluhlOIwDlxcXeJdS9d3xFxoViu6riUMgabtUGkgK4PRcNhPZFOY40gp4rKjyuW1LJBRayT6UEvFGYOqsLveCftFG5SyjEOkbxu0SuAcrbIM0yhhsSx8SaXk++mbFt923Ln/OmjLe5/+CGtluCql0DcCaIshcbHd0TpLazqGUQYOnxI1axrf0Lqew+GCqmTgCPO8bLGl6EXVIrXsiFgnur/EXaS9UJqwV5uWkoOU0igEXK7lP7FWQllEtFTZbUdcI5vekjPkSkoKryrGy+bDt/LzOoyVUCroiqoJR6VxFu8LulbCnAhzJeZKamSb6b1iNwwCws6OMAWc87RNwSs5ZN2JwU6V6UpE/ZsNqzeZKUGqURxRxeCdxHlzqcxRmn21Wlg3USrijdbiWKkaqZUTwXS97iixUlTFWbVcSCutb9ntRqDQdi3aes4v97hGM+4L+2FA0zAcBobdyFHXcP/sASFEjM5LjFqRQuLqcisNiHGBY2eYx5m0iHl1GcZuXsp6GaC9keisRoGOUCJJWeYon5tnxCK81JgdRSWmYcApi/aVeYq0naeEyjgXUhWHZ63yeeh15cnzp6zanr5pZNBOkd53MpgBfduKI1MV4jyTZln+pDhTy4zW7rYNTmsFJVCpjKnilcLUlqqVtGTVxNnZMa8uLhmmgePjI1AJ5yxznMXF6BVvvP6Qk5M111c7urbj6uoLfKPQuuXFy8+hWDZrRxgzRcnFSBuDcgrXNALuXhiawziTchD3rGnpNke8fLlFlUTnHSlIhDOWwpgmtrOnHx05b0gV1BIDQmsMlcMYuPfaPdL+QDdd06DZJ005esQcM/b0iJDr4oKXsqWw2zNNM9o5Vk7cJ8CymQXnhM9DvZEKWNwHN+fPElm4uTxq2WCKh0QvcSKJjMk9U87Om2iYtQJ/32x6VhthkxQlG2UdC/vdNUfHHbvtE157/YyPPmqYUoaqcK5hvT7lzsld3nvvr/n44w/4/g/eo5TIFLboPPPRx58zDTPdn4i7qNQAdWa727I9XPHd3/h11r1iVe7zn/wn/5ivfeOb/OiHf8WP//L7XFzsmdOe9arB2obdFIk3bbNGLdvcgkI2tatuhTFrrq7PF66PFli5hVLUUtpwk2xYLuZKGobr4mgYybSNobWe7mglDOJxFDDzwgmaQ0EtF6SQJc7Rdy3WwDyNGJWx2hGyJldPt7nHvXtf4d6Dx9w5OWO9OqFxnqIrVYnQmnLAKhFjZTCV8znmzMlr32Qe9qQ0ydAfZ+ZplOVEzhAmEejcHo2wfcZSKKngWnG655SwWrAOpVjmGLh3t8MouLwYCGGSc8MZQhDAeeOkPC1GaV3PKVOqJkUIIeG9xrWOrrEMw0QEdJRFUSigyyJU6UxOlZrl0m4bzTAXiR82HbXewMGdNE0aS4wTpRquDzPWZLzXrJpK6xwnx46r7YDVlf0Y8V7hjXwvtKoSu7TiuO68YZoi1kdcyRInDDPKGYji9DFaGuHvHWnmKo7aKcgMbY20rFK+fJZult43F32llp69JaqntGBwQoCIWhbKUg4TU2a9atjvW8IsESWmQmMc2ovTWCuHrixIFWEkdd7ReIkY1SUC6JU0kaZcZDEoOXVqUUyxkvcjzSg/16qEvRxSpO1bfvBXf8bzZy/Z73e8ePoFv/k3/yb3Hx3xgx/+FcZovv2tt/jWd36L6/2BP/mjf8vFxSWrtiXEQkmZkIOUcaEgSxtzINM6B1WxO0RCAMoOllbvssxWqYB3hprFtmSNXHm0FuZZNRLpMlqjnRE2apGSAZmTMs6bpWBIXJVGG6wut5FliewmvJbFklEFZxQrY/jW62/xt379N/iVd36Fs/UZTa6UuRBzIV1nyvVALnvmWihVCSduKf0wCmnZVpWoK0E0JepyAGeF3KmUgPCLUlQtTHSJW1jQDoxd/rgRBxkIUiFFWcrkRM6ROc+kFIgp3zb3am7KhqRl22qNs8IRdVZMDq33rPsNxp5ijcY5g3XCA8Q6WD67kAohRkIUZ08IgTDPpLiIgCEwz9PtHw/TTNxvGeNWWNYkMpk5RqYQaPr1csnWrNqG5vEv80tv/jJ+fslP//LfcrzSlBIZamU/RWHEpozThscPHzKlxMXlBSFJCVhKmZCyMOKVGFOcV7StoWQ548MsiBpnJZrnrCEXzX5biFFQIbMSEcs7i9KFkmfunlhS0VxexS+5k7kS402ZjryLa735PzeOUbVEakXkU1qwVGoRpdvWE4JHoUkhEHcR66W4cpoCbhH5cq2ECG3v6HtovCycjfPM40SOWQ7RCihBXHRNw5wEW/XpZ5/wB//ynws26fz5cg+QNJu2lhgyCzjgluOrjSWEBYNjFCcnx7z7zi9xdXGBUpk4XPL4wR0Uiu//8K/YHa443hwB8ZZdt72+ROeJME6cnDzg1ZNnTMOe3X5PQYp8rHUcH5+wu76g8eIGHUZhJBctfO9U4JAnJK1ZBVliDCd3HrI+OeaTD99HlcIwzlJWkYS9aowix4BZdaxWPdOwF26ra5aYaeUwTAzjgKtaXNmLG30MI1UburahzpEyR2Z1gJpZdQ47S1oxzlJg8+juKY/v3uH+nTt0/YauX7PebHDdmnZzyvr4lLZf49fHsDCPAXHSercIcGbBoqvFtCRzmLFWSoK0XZzfSxJDsUzugj3KJcHCsxP2tUSqY7opvIjizAuRmCIhTMQpMMcgbrwQiHNYnHsz4zQSZmkPDjETagGzOI/rMjkqhGOopVHcWUvTNvQnZ7z14DW6vrstN9GC6+Ow37O9vOKwvWa73TIc9ozTnnG/Jc0D03QAJkmnGURgbDRzXZi+FdZdLwWWSjOGSNN2wnyNEbvg0xpv2RxtOBz26KUj4XAIsuBXSsoVWe4cLHcnhAsuZrVlZkbJ/KgQc0eFOQFkMpWaLTVLGD9pTUqC+flFf/3CAp82Rl44VeIEZbk41kXhn+cZpTRzlPY+pST6EmPCzAnnPDlXmq7nZHMKFxcctlekNEpMq8jl4rA/sF4foZXi+lp4bOv1esn3ixI9jTMxw/r4lOvzF/iupV+v0VWst2mWGK04iCxN16OMo+bC6mgjB6duKEUaGNM0EIK0dPqmJYaZxREtFvNSKTGjGql4TynRNA1KSSFICAXnV/j+mJcffkJJkWYj1p1pmkSIcI1kvNFySFjDuu/RCBS9ZuH1KRRN43FaMw8jORa6/hhtPTplPv3Z5zROs+pbYsp4Lw6E/WHH3bM7vDy/4NHjxzz94jNKiYRZmuP6viWFyGZzxNtffYfN5g5XV08YhgNGacJ8wNvK06sLIMil3Rq2hwNGO2pRHK03XF1dMQ0Rbx0vX74iJtlInN495Xq7J5RM5xpenr/iMOzkgfMWnStGGda94Xo3c//xYz4fD6Ryha3CCLQLsycvpQZaG/bjgbZb0cVK4z3DeODhw4dcXlzzlTfuYZTiydNn5Djy4OwOhMAUZ8Y5ks8D98/O2Bw1bHev6Pte4izrI64vXwGao6MNT1+8wlhLGQdSLuz3V8Q0Y53D+xbnOx69/jq77YRrWvbDII2WGOI8U/MgUY1VhzaZcZowCEeSUikZKgJrlw22xnoRmnzTkZUlZ6nlVkqxWh+hCaQ0M00JkxJKBWEtZeEBOGPFDp6kGKZb3cEa+Pxn74kDqW253MtLrG09MSnCuKVtDFYppilgXbPYgwtnD1/nN//Of0hMhT/4b/5z9sOevMREVBHnQqnyGUpcDFia5bQR517JywuFwn53WNoKZWARgQtiEVeAc1ZEuJsVZgalEq6KkBhKJVoQbLNiriKskcHVSoyFpESg2O9mVk1l03qJfXnFPCiUssQoLVuYhsZ6prlANVzvM30Hs5EIhk5w/9gxDIFXY0Ybi7aWzkHcVRwaa6AaQ9FyeadqrLYoVeXCp6XMxDsvn32VuMx+KmiVaL0iJrh7ep/7Dx/x/MknXFxfYbRjuxtprKFftVxdB3xjWa/XzFMmmCRtmG3D2dldLl5cMc6J1UlLGiVyW3E0fkW1AcVMyjPGOkoxNO2KaRpIRUo2rNGsNy3jLJHorjWUFBb8gKPtPCEWxiAbWmfEPTCEhGsMrc54L9tIVQtVWSoa1zna1jBMI75RrHtPmBLTLJeL3Vg5PW7lnVFkGJQYXsH6dsEhzIQQBNKLQhlNVIYSoObIqjNQFFpbalHEkug6J4VDCvI8MIzX2Nawu8woDnjvaEvPPBWuyh6jZajJYeLk9A7XV9fsdpU7Z19ltwsUZTiMB7wVd0wad8SxMM0RbVtKmURkr7DuOoYQcaZh1TjmEGkbS60tIVScmvFkriNsp0RKIkgonem8YUwjqsL94xNOWkudZlSuhATaOY5OO5qqKEYTvcOQ6Zue65rwCmpNEuvIB45txeWJ3hdS42msRcdRFgpKXHtaC75CtpMSw1LqhjGnqTUvQ6AI2Lkugi8CKa7chvS5yf9orVBV2sFBhsl79064c++Ez794wnrVU4vGGyBVLl5d8s/+m/+CnGfOXzyn1AljxVXz8OEZX3z2BWFOHIbI/vBs4ccK8++wnYWFmWc593yPUp4nXzxhs3KE4cAf/es/YPjWNXdOH3Fx/pI6V/7mb/1tvvrwTZ49/Zgfv/cex8drvv6Nb3B5PfDsi8+wGs7OzpimREmJcd7y7OULqIqzs3uM45ZpFjG5VHG+lCLg8FIzbbO0NCKb6lpFFNKLA6dpOhrvscoIhgArMSAsSjs2reW0FXaPtoZUFNZ7Gc6PoG1avGvoj+/xK9/9bU7uvkHbrcEZaoI8JXaHA7tRnvMMVNOjrMZ0DqscShsRprUISDeuRauUuC28lmddCyOs3AyyOVNipMTAfNgT0yyX72EgzjOHcc88Dex3W6yGYb+Ddk8z7aUxfhzQdQaSxHpyom/WpBAxpUiUxRQg0RgRSKdRgNXCrgNtLARBSjhjqGXm9HhFroEWhVFR4jXaMCUpTsOK62W9WVOrZr8TB4NEGmEImTEU5llYRftRSi6oDjUn6lpBuxjgcmGuAecMhyXiVSnSAJsF4F6LvL8bJy4yWdgXpjkzjQrvhM9nrOZwCMzyikBRsMtfc+PA0FrfOgVkSSPA/hTTrWO5aGgaJzHBMTHOmf1uJsZK34koRoHWt8zzzBgqZT+x6Rucs+wOs7SzGoVxClMNVcEwCS7BWshoyEvDdi4UiiyDnCA/rnYH5pCpjMzjzGdPn/L222/ju8p7P/w+//H/8j/j8Ve+wR/90e8TQuT+2Wv87t/8FWpI/PP/z/+beXGP3cyxpSQUViL0VYD1wxi4e2cjDspaxSVZpbU4hIyqGo0wbrWxjCFilSwfvDeLcJ+XAgxxlNUq8wwodJVLp9WaEAspVynLw4CueC2FBKmKQc5ozTiNnDjDP3j32/zDX/ldHrtj0jgz/ftPeTL+kFgTtoCv0FThE1ul8DfnprYoLeUYGs0tbM9qioGqDWgvF3ZnofEUbyneUbwjek9uPLXx8seqoRRhCOLkP7rxGGeXvzdglcROF5dezhI3DDmSQmAKM9M0cTgcGIYD2+uJaZqYZon2zuNETolaRNhSSuEaT9P1+LbFWS9lIG1L23a0bU/T9rRNw6pp8Ou1NE4avTBItTxcSzqsFkiLIHm53zGlBMvSnYXNBYVUZFnRqLc5e/gVPvz+v+PVpz+RYq+iSFMilUK3ajkcRi6vtoxhZkxFCnOaFrSIFbUKS8toeXeXAjXI2V0WN533Cq0lmhqjvRXHav2y2CqGStIaVJLPTEu7s7HC6WoawzgKm08tTih5lcrv/waJcRvGrwhDUYssM83yOTRNu0TQMzncOIkSaRRDitFStGYMNE4zTeLcVrM4m0pVi9BkCEH41jEWeZdpxfX1Jf/uT/6IlGfB9BhBazlXuXPnDimIKeTFi3NOuiOmeSYkYb7GGMi5cn7+isN+YL1e8fD+EcZXzs+fEqeJ03VH0xkurl5x1LWc3T/mzr03iCEx7s4ZDxMvX37Ka6895DJkBlNZbdaAJ9SOq+2Bs7OH5BC4ur6mdR3OWbIx7Md5Ka80hBgXXm6hJHF2Xl9dk4nEkskh42oU04G1aFXZrDd4K2zTG9FF2mwzaYlnTjHSbjTX+z1VS+mfpmCrYR4CRjtBYVlQdaaphtdO7vL6wzd467U3eeetN3l89wF9u6axLViDMhZlDUVr0I6iFBlJ2tS5cNv8qQpFTVKEpYXnGEsmL890LlI8k1OWRuRab51zdTlbc5F3unBD5C6pzEJm1vZ2SWCco3MN665FmZWwH5WRdE/lFmVyswSui44xx0RISc6MsAh/UxCRcHEQphDIWWK6MUYO+wPXl9dyHimFWpKhjXVSEtOfcHrnobSJNy3GWnm/q0WyLPIcD4cD42FgjkGKQeaJNE/Mhz3TeGAMgd1uyzQdGF6dk2vAWpjniX06MC49DsooQpxxTsmzsxSsyNJI4ryCZ4iLBmQEOQe3Ld8pRbpWc3bSk9NM1ZqQLK8uJuIs2kbMsLxRfiFtDv6nEPi0DLK1VMp0s9UrVGMwzi6uF0RgQyKuNYr7LaZIVQVHZretzE3HvfsP8dZxfv6UWmb6rpconHOUCm3Xc6/paNqO7fUluRSa1jHuB5qm5c13v8kcC33Xs99v2edrKhldZCgsVfPmm+/y+jvf4vnzJ4TpAZ99/D593xCiDOrrR3fItXB5eUXf9+wOAw8fvM5Pr69kkMiFVe/p2mZpUMkYFsaFkUutb3tCTvimZQ6J9eZoOTQ083hAac2qX0GtHB+tmWdpYCm1sjvsOT29S9u2aGO4e3aXw26/iB0Wbwt3T+9y7/49PvroU+Z55Je/+Q0O2wtevXy+QHg1oRT2w4jeOX7pa99gv91xeXHOYb+laRqaxpKTiGfDYeDpkyeoxxZvNa920l6Yp3uoHGmc5mhzzLDbsd3u6fueqsC1jtWqk8u31nhjQBf2W3EtXO8OGGNoXcfpySkX5y/xrmGeJ17brLi62jKP1/jJ0voOlOLOvUdsd1tykkHx0epIHox+JRuaEHnt8Vs8ePQGjW/43l/9Beuu5/nTpxhrefXynOPNCW+/9VWePH/Bg9ffZHN8xk9//GPQEasUry6uuffgMcfHd7m82nJ5taPtOpwXu/r6+A5HR4Enz76QivBwwDuJjseUOHt0F21anG2ZhkvGZoemcnZ2yu5ix/r4mHmUhuWQIrmKiOMav/AT0+2grrRsAlKUQcM1a4xtcLZjvT7l4tU5tQ6Lu0G4JCEmaop0TUMtlW4tTo2rqy3rTY/Lma6/x2p1xtXLz9ldf844zkzjjFWVkgPjAYxf0XQb1puOYX9AW0vISVphqUxx4A//8L/j4nJLiCOJAsvMSRJhT5qppRXPLqDUXDMxSwxYlQKaW45IkaUlVVXmkFBojLFYUwgh0zeGUmXjS1Q0zkjxBAqnEqkiIGujpaVZK05WHde7iRAmvLPiLqyGmsUK7ZeWJ2eNAL3VwplLlRQWe3RV1FgZq6ZrNcpUrHbEUOgamY9TiqRkUSrTtoaqCn1vOezLAvXN0uSWy63jqijFPBWMkwuyUgZlDeM80TeKUqRxtBZ49eKKKeblpeGJIXHUtYxT5TCKI2Gz6dldXGCNFUi+92x3e1bHa07vHLO9vmA/7ji7d48jf8RXv/YtPv3kJ3z++Qd4r4khcXrnlEePv8JHH/4ElPA3NJUQEn3XsdtPsr8vFWONMIbCgZyF0aetkUYqpHGtJCi6sJ/2rDaOw8GSs2yhY8oMozD6QkzkkOm7ZgHZikNzDhlnwDgr36kk8d+boojGiVASkrRd1yIw7JSScFmRMghjLUX+xQS6XSslBXRNlDwxp0AqYWG+avqu5/pqJ3BmC85bWt8wHiascyifsY1jvXH4JnL+YgZVqFkTcyFMs/B+TKDkmZIrWnmG/Y5SFaU2hDATU5SIW+sl0jJfM4RARMvQqTVdI8DrmhKt1uSYUdagjBagfdvQaYu2PW27Ii4CY2c9tkr0t9EGPwc2LVSTbxurTck4oFowFFRIzM0SmS1VWneXEhGJd9UF2S3xXLgpzhK33o2YdavCc1PSAShhFeUszDmlbvh+heOTDddXW3KsS8tjhqLRpnLYXfP5x3/N6Z01zsOKluao4fjolPff/4jDmKjZYLSXmQNZJgKkYRJHPQ21SBTZmEqZhLvy9IsnPH/2kh/85V/y2huvc/X8CedXr2hth7GV4XBJ2woz7sMf/xlnD89om4GSElb31By4d/aQe/e/wY8/+gk/+fF7XF6eY7zGZBFdynLBQ98IoGCsYd231JQATyqGXDKNMpyuNrz18BGvnd7j3sldun6Fc56uaySu5jusa/HOYxsnTmkrF3TtHco7dNMId3hxC+ssn0cxihILxUfurhRhaohzZCyJfUni9pgDMSQZsEO4HazTHEghyuY+J8Li0JuVOMaMsViWaKgxtxt33zT0/Qrj7tCsGzorbh+9pBwUdYmkSMFYXS5J0+HAFGZimAnzzLDfMRwG4YKFgXG4JseJOO3JaSZMA1CJSZY8jbfipAmzxFti4nSzYpoD1sq6fH+YlmbnjDUN0xyYwzld2y2gexF2YhbnWUHav8dxlvhrleG81MwcpTW99xqlkxQ8adgNcWnBzcRaiUUa2HOSKE420qweI6CtlDJQAENKS4GLVii9CExGIkA551s4e1mcVbkILkMaNpGoLZVa88LQlBKFGAvTmKX5VYndzFtHzpnDKEuTtrFsVj2mKra7INFpFMUWVkurYUExJSkFWbeWMSRGAbJgtbwnchHXS+M9fd8R0iDO5SCfwYsXT2gay3pluXo1c2dzhi2K7f4V//S/+j/x2pvvcLi6ZnPUUncTeSm/8F5KT7SW2FNJUpZAZXF9zTRtQ1WaaRammDeQy3JBrZUUk7jKkM8xZb0IoiIs5Sw/v7w4M1EVq2Sbf1POshQ3ksgYoHceahXHtDZ0Gr5zfId//O2/zVt1TfzxOUM/wp0jsrMYOoYwMYSJksIiLsLywSIsdovWFqM0RitMEqG9qQqPwaDx1cBSYqNyFZdxgbKI4EXJArUYR1VOInnWEBtD0jBoTbSGwWlmqwnWLukRh/cG5S26c+i+wzYNXSef+cP+LsY9WpJabnGrqGVRK++RnMTZM8WZcRiF5bffMwwHpu2W62lmDpE5SswuliKlONahncM1gj3ynUTp1n3PerOh79fMVfFvv/cjVscbQSQZjVMiMhsNVougizbU3OMefotV7lmPe/on7zPEc6bGknYHRttw3PWUkKhORLvhMGKsom89PhnGEBmmWcQCs7BZFzBWiBlvCyvvhFudKqmIo1UtIt0UAoKPEfbibl/IUQoFYhETjKRILbWKU847uUdWhOO6oPdF0NRmecN+KX56J6UtIRVikDvFzV3XWgfLmUKVu4W3dhFUZnHfLSxYYzXWN+SYSVlcljLbq58zVmhMdbfPTVkaVc9fXUItxBgpWXioznpi2NE4jTcN+Sa+mANX1zPj4ZL7JythlWrFYU6kWjkMe6auYYqVok9447Wv8OFPfsw4XNA5zfalNDfHkmkVWBxNv0GZa+aQGIYR13UwT5RaaPqeoVrefvsBw/WOYT/irGaKO2m6Hgd2h5EQCyhLVUVSLgmOjo7p+pY8TaADKccvF5lKkgohFlzToJTmartjewhUbSml0Fhht9WqhDdt4a3NHX718df51Te/xt32hL5pcRU4RPLLLyhhYszirFVKHNU3Tm6l1RJRWeL5xooIaLy4aY0T9IRxVGep1oIzaGfRjac6K27GKmdHWs6KrMqCkZBosyxUIilKMWScRXQLcSbESIry14ZamHMhhUBanHFoTTUSjTZaOJ2ZStUW52SBZK2h7Tx909CsWlxzgvUNxnqJ6y8zgzYGjKEuBThhmjgc9lxfX3J9fs542PPZy+eM8yiLfWNQtqEmEcrcsjTTCqyTQq/2+JTOKGFCa4vzHqMsfnkGQ4zsd3uuLy94/uwLPv/sU558/gnjuAMyx2swTu40Kc1y7jikKLEKj0+jybGSUsVWhTKgtcT1ddWseg9qpvMV0yh2+yQLEiS+y1KSdtOG/ov8+oUFPhAbMVotJRXSvmO0xWiP0YGcA2GaqGiUdzjr6bq1qNEVdttrurZh2J5zff6M45MT+m7FeBBhbL3eYI3DWMXFixcyxHjPgwcPGcawfDEmlFZ88v6P2B32uHbFV7/+da5fPV+EFMOqb0EZ9sPMT3/613zx2ec0jeLRo/vsrq6oMdKfHNO1PeevnkMpXF0OvPuN73Dx6hXd6ogwVHKMnJyc4puGWvLyIMqhfmPt1KZQszSPPjy9Q0miTl++fEoME841UCRCFUOgaz3THGm8NFWFmFDO0q9WWKcZxpHjzR264xOOjla8enXOZ59+xlHfMVpNLIakLNp5ckw47ZnyyNm9BzhnWZ+cYIzh+YtP+epXv8owHLi6Ouf8xQtyThwdbXjn7beIMbPb7agFHj9+naZZ0biOfn3K0ckJr14840imLXJKdG3D9cWWk5MThnHCm8rV+RXeWHS3RinDZnMMVJ6/eI7TkEIC4wghoEms+oYSYNN3XJ0/Y3P6gF//zd/lJz/6a6YgQ2nfthhjBPrsW+7eu8t+jPzgB9+jcQrjHd47xmHENStpLF4fsdnc4eWrHa+ev6RoR5wnmqMVThl+9rMX3H9wxmp9xNX1lovLV7RtR8wBlKbtO6zxlBrZHN9Bq8o4zZQKL16cs16dkFNh3TdYXZnHiVcvX3Ln5C5XV89x1eJ1xWmJF6AD19tZrMla0fUd40F4Xc4ZaVtd3Ak1F6bxkjhd0FqN1QsjRWtSqlAMSjcY5yUOqNasT46J2bM+ORLHwpi4ujonTdfEecZoaYr2xpAxzHFmCBNKeVzjKUpaAo2WeFkKgf18zWcffigsHGNQVjbdZone1pipRYZvpdXtRYUb+HMW63ddIOW3EZGytIxmcfZmxC1iluFFU5dojJwRIUXZEDlFjYWsNNVITGaaFGvvmcMkAwaGasAaJe2OWRNrgVQgVeJcaawM9VXBHGe80fR9I62uc2UcEp21lCrbua5tuHcHwlR4tZ2oVGxjcY3hkApKJzaNZ5czyUJKVT5nJUKHx2CKMOWmWZrrqlIY44V5lxPjfMXh+iVzyjTWcmezIg6F4+MNL15cMk+BkgpkpNnXIpBcKkUrpjCx3Se8ha7VHPZXaN3wJ//+X9N5T982Eo8GrrZ7rL9YmuUEst52npyFXWMq6JppfEMuGm+FYxWy8IWcM5wcrxgOB2mwamSYtEbEzK7vqaWSUhJeXmXh6mn5bwtNOy8Q8iquGm+XZ0AA25SMbYSBSV6i29aRlVjYa83SsqcMygizrxYZlMNSgOKMo8RILJBLZJpGco5igV+ER724BY6O12gq26uRoisn/Yr10V26/ojzl0+oeaDxzbLFA2N7rreZaZLhb7NqUdYs1v9825yKqsQ44+yKmuUCcT0ptocRdKXrNGGSiGRTQanM2emG185OqGki5RVFazZHd6hGtpcmJVCZu0ct1kjb4Kg15yFzslL0RZqurTN4rfDaUuMo296SKTZz0LK5zUVcLXVpOSuqLv0RctEtVaI74jqri7NAtqTAl7HcJRp30xp8c7lmiRk6Z7m4uGQOQVrVk2K/G3HW0q/WrI4e8fWvvka7MnzwwWcMU+D61RXTLDwj0sL8S+m21bqwcD8R25OIHg5qppRAa2C9anCpst3vefrsZzx99il3NxtqjkRTOD29QyqeKUT6lSOVyLPnz7HKsl4Vnr38mJAcY55pjk55+Ogr/MVffJ+Ly5G4sI+csSikyETfXDoVlAz7URYzXasxJfCdB1/hP/rW3+DdR29y0vSslcNWRRHLsxSWoMUBqy21WmpCzs+iUQnUXMQClABXqSotP2dx4WWzoPhtQzYO/LJIMppy49xZljE3mLel1JNaREhKpUpzcE3UXEg1U9INeykyRRHKpxAYg1zcx3FmnLakLJGessTtpZhALwUaUmJgjUUZI8KwsYszfoU/OeHsgcd7g2/sEt/R4tapWZhwKTIOB/a7LeM8Mo8H9tdX5HkixcAwDtRpgBqk2dAOaF1oGs0YZkJCLrIhQs3SiKeE1yMlZBWlMt5J+ZMIa4aYRKQsBcYgLtlaBFLvGymTSzGDMbKIWt5rXSNnW0h1Ocdg3UG/anl2HtjvC9rKxVmbvAz3ihSLLMxALngszndVyTov75gvgfveiwNqmoJc0pcol9Xy/VLG8u7Xv8qHH/6EmjJOibiz3c10TYu3svSIWbhLc5C4ZiripJ1TxCj1/2Xtz55lS8/0Puz3jWutzNzzmc+pGQUUUIWBQE8Eu8luskk22SRF2qRMKcJhhyVd+NL/gu8cjrBD4QjJFw5HKGxFyJJFWdbA5tDi2OxuNLsxAwUUCjWd+Zx99pCZa/hGX7wrd4G3BndEoapQ++whc61vvcPz/B4OV45ukuuUKsm6lcqYpAneWx5I03uxvTopTFVsN1sWbsk3/uB3Obt8xvMXzzFN5ZWXb/L48Uc0vuMv/vav8+Mfvc/3v/M+cUaZoA1QaVpLpzw5JRaLRpRdWTNcTLStKG5UFQ6hUUXCM6qi0YamERxJUbK4kD2Q2GHrFV9Uy9qiCl7GWkOq0pzFWDBK/pLE6oA1BqrCxcqvX7vH//ozX8Y/TOhXFqRXjvnR+z/mk+/+azbrNQ2wZwzOOqzTKKupRlM0cl7VLIat3X2HcJv0vDwRBXBG1YTKc8K9MnTGs3CezjeilLMOa2ZGuHV0StElw0FusNbj8Bgs2i3ASr0SfCa5iF6LIi5hSaUyVktUhaALoUxMJZJ1lp9ZzYMH4zDOYfwC5SzKWVaLJcfdCtftY+/cwDQtxjcSCKCFWZeBUKKEUtXdECEQp2nGEAWmGNmcXvLsk8c86Ueerzc8HSawAsk38wIJpTHIwE+pCjlTxoA5fJmXr1n+7r0vcjCcc2Edm+cP+HgqbMOa9/UDfnr5nMu8JVjHYtUxTFumGHFW43LFOnnOVBT9kMkJjLEy7CiF1dLgG83FRqzizltR8WYwSv7cZZ/JZVZ+OsixUhSkpChVlLHOarrOifJLK+H1adDKEWKdFXVQinx/jabmLMtvZUljgFlBjgJVRWxTchaxppFFqCQg67nniIgoB4x2GG/p+4hReu41hC1traVmSQo1ZlarFxmkSC0m9tZSKnG9ueL11prEsm3MHLoggUbaNYxjnd1JVkLOjGa1f0CNExfrS95999tcvniMMzAgCshSLkkx4a3j6bNn5HTOux/fp/OWszPBMVUFfYish4iPiTFkPvhgg9Ga1i0ZUsA1ctZbo1guW7SqbMaRpmtQ1pBz5unpC8y5RuXEzcMWbRWlZqyXs8hpS4hbXOPxTcPldiKUgiqBvcaxt+wYQqSWzHXd8Rdf/lP86Vuf5cA11OcDcfiEUCJ9lBqiVuHrzuBVdunJu8CcWgt1DlZVcuxSS6WmDCmjC5gyh+9gqEbNAgNJXS62Q+sG3XTUriF3HuUtbtlilktU22GcxziPtR61aFAHFoUlm9mSSqUqTVHC55YE+EKumRwjKcpwv09BLLrDwGbs2U5r+vUZZ8PENC+8U4gSCrULilFGLP+Llm61wLcdNC24lrZbsH+wx3K15M6ta9y9fYNpiqzHS7bbDWkMEhRYCpoqy7jYsx4GxmlgqJVpGgghEpDzM80CkTJW8iS/i/Ee5RzdssM1LZ//ytf45T/za5ydveA73/wDHtz/EaomdC0y47KWcYrUYmZBRMY3BuNEnOC9o+RA6w3WNmyGQTjrShOcZmU1eUoYJAxkfnfn/1U/72ju38aAT0mzaRRN6yghUrIES8QcmVLEaiNbmpph3oJMKdK0C3Ku+G7BdnuJd5Z+u2bb99y6dYtusUIbx8XlJft7e1CyMEGiqCaU1vimoVAxzrBdXxLn1N6zZ/d5N/Uc7R1w+mKk1sT+0QF1Zze4PGXYnrG9zJiTfVrf0I+BUhWpFNaXF4z9BusaHj96zJ17d/C28v6PTtnbW0nBWSv7B/v0254C+K4lxjynrgjr5ex8zb1XFUPfE8NA17QQpyv7UwgTBWEidMbMii7DcrEk9CMpJ9AW6x2mEQn35dkFcQqcnp5x/fo1jk+usTo8Ik0D4zBKyl6OWOfZX+1z76V7nJ2d8ejRQ2pKfOfb32J//xBrYblaiFR2tkj245bD4xMqhlc+8xagWS1XPH/6lLZd8tbbX6akxMNH94lBWICliqT3+NoJTx9+Ij55rTg5uU4Mla7tePjgPtZbcop0ywXna2GfrfYPyGnLJgZerLekPIHdkkLkxu17HB1dJ4yXWNdgrOO11+6xXW948PhjnLMcHy15cXpGqzzHJzdQJ4aL9SUpJS7XZxwcXRM4fz/y6usv8+CT9zncX3F2dol1mtMXz6j1gMWiZbFoeHz2gsZBSRHXNCyXLRfno6SwhkjTCAj42o3rtM2CaRqYUqXB0rSeEIRf11gHJeFXe9QKNmjcCJ0xxCJMDG0arl2/xjBlVntLQhzZrC/QKtK1BqMiqVT2VvvUbNAU+u0GZRTdsqPSsjq4RsmV5d4+YRpoFg2lKEpOVJVw3pKTn4fphSlXNtOIVlb4d8hSKA8D3hlSGqlVEXNhsdyj9ooUNZnZQmsMWhlCTjM7TwDfZR6sGDMP8GqWXaNR1CLcTVUkETbWRNs6kIDaOZSjysAvJsaY6RrNsvGkVBhDkgbKW1ItFI1IpHXBexkAppJY7XXUrVj1alZMCYwrqARDKqwWHmcVzmcBsZOJoULrRYSkC8uVIlRNoxSxwsUQJPU2JkwFpbNEwceMypm0zVQNVmfqJmG9o7OGnBXeQ02ZnA3ea5G160BVkepEETWFSNs6nFuxHQvbAGHK4DW927BsNYum4drqgM1a5O8lK5aLA0qUrf/h6pBFuyRsRsJlYqgjxglrY4ojS99SqyRxTQmcbql4Vnt7bLYvmMTzzMWmR2mLdwajhVdTlZ6TvYssJVLEOk2NhcuztQyIMGzHhEazXAhyQOVCUVpgziwZg4QOpVwZxkLTadmYVk3rLduQmSaxr2stvBBlCrapTFOGahinkZAzymS6zjMMI8Y52q4jhSSKPcvMXvQYbebETmnWSk7y4C8Ja6UxvkqiVJrT5z2rhcU1jnU/EXNm2094J/iFoe/xxtCHRE0D0zBQkNTZWgr9UKgpoorC6or3RgIkvDxma80YvyCWTKyJ1UpsvSlVfGfICF9vComHT88ZtgPX9z0niwbTHoI2lOppm44xnkvQhW5Q3uCMYQwalQxLpzhQHk3G6EItCUsCJ+E9qlSKroSZCfIp/6dcDdd3je8V70sx23VnNliZIf9ql0Grr7bOO1SHBO2IjalpGrpFx+nzC/lsbTg7fcFqtWCx2ue3fvuv8+obn2O1WLDsWh49fsY3v/Ov+KNv/E8YlfmFX/oyH/30MQ8ePGWchP1WSr0aYBhrmJIgIhovttN+2LJc7ZPKiMJxeLiiv+z5ha98mfPTcy62az56+Ak5J958+R73Hzzh/sNTGuvYDBlVEm995hoowwcfPcQ2Z7z/0SNUNVxsRox2smxRipgzi6XwSytVUnRVRYDcwtrrsuYvvPZF/s7nf5G7WTF+8JB+s+Hsck3f98QUhOOnNE4M0Rg0VmmMkb+sdTgtyi65crUkbxtLcprYOKqxZKWoxlCtQ1kLzlG9FdXf/JfxFmcbTGOxjaO2ntI04Buq9VTbkK1QorWxws7pNNloUXdYgzJmVgbIGCdXaf7mme9sD5JgjTAFGRgFseTEMEmKYQzz3yV9ryRBuIzrnvAiUXKUJdJ8rclrIQoVe3CTQ+dRCrwV1d3umZZyIgVJ6tuuz0nTSEo9Z+cvePb0KS+ePab2p1QlQzQoLDrBTuRxIs2qe5XEchOz1K6KTNdYShZlT5wSRFFAUCqNF7RGSEGSOq0sgHPKNN4yjLIU2FtoMGkOcdGSRm3ndL5Z2XfldWIevM6qWSUPWRnUVqnD1RwUNwxZbJkYtqGnj5Gj/Y5hSLSt5/s/eA9roV10bNYD236ia6SpPVgZDGLRP9+M7K0WVMr8e4PRilwVl5uI04XVvqOEzBAkyKPzHVrBMG3YXx4wjokQetquY29/n/MHW95ff0y3OGMMkVIKYUh88METmrbl6ZNLpmHgy7/wDvsHC/7lv/gO4yD2Oq1m/YySwcUUB6w1xCjW93GMrBaerluyGXrizAJTWhbvXddS6yC8ugIll1kdKXgRM6e3M6ceFi2MxxqrOJBSxWtZRCur2aZCTXCjKv7OG2/zV66/QZtXXH52yT/77je5ePAxn1se8pf2b3Hy8ls4qzG2YTKaiDyHKMLPs0qUmzor+eGUQhdRQgOSrGjm5roUYk1X/LxQI1MJjDWzzYmLMDJtLwgpMuTItsjfJQwLltVzq1tw9/A6n7l5i+N2RZMtRI1Exygq5gqzAYK/QHuqaWZwl1yXBagJUqyUdSSXiVwrqbwgRBleTFV+7uo0xRmKb6DpUN5hGkvbePb3Fth2gekabHeAPrxOaj1ptiomrTidNnz09BGPzs857UfO+8A2JqZcmYrwm0sBgyLpSKmBPGa+++Ahf3Z1l3def5lbxmCX1/lqqfQKprcKfQ08PXvM9x9+yLcfvMcn/Vq+pha1XJwSWSusUyxaw7Zmqso4pRkmhFNXEl1rgNm6mTLeeaiZmKAUeQ2NyewvPUop+qEwjlXUo16QLinlmfWqcBaqVpIuOhZiUnI9KE3Kci84Z6mqY73uMcagqpmDAOT63gWaJCBlNdeBBmcbYkyALC9qgXGcQIk4B2QRaA0suiW1wGYYICEoEZRwTI2TuqokhnGa7yVZZOecBR+xaHC+4cX5BaaI0m+qmT4HYp9oG40qEOIWzYKV8xQybZtIwwsWixWHh4e0XnPx4iFds2IKgfPNyBAGNlPkeH+PhUnCjMOy3gb6mNiEyys02Gq1pE+Fg5MVOQWmEFlvz/ALz2YcZKivNS82A7WI4pGS2escfmbfKxQlSXildxZjYNP3orb3Dp3nII4qix+tNG8f3uTvfuZr3A17PPvgp3zr8RP6YYt2ak6VFlUbBuHFWU1VkLUMgasSadhV+nJVKGl6IBdUKpg5IKiUIlb7NOOCjEY5KzKzrqMuJKzjqG+4YTsOcZiQpK9CU4wlYQiqkufldEFTlJEaovGotqW0LbSe2jXYrsMtFyzbDuOX6OWROE9mLp2qkFUh6EpSXA33azGULC6cWCam0DP0A5v1mu1mw9QP9OfnbPqBZ+MIjePX/uKfxyux+6axx4aAT5kcA7kfePrkMSkM2FK411ruhoEGYWVSK8krRmWJGCZjZEhIz1AE4TVOhaFWto8D65B4nCsZzZglpZ4ogSuVSi6KqQ/CUQwZt3OvpUzjKm2nQGdJPtcQ0yRvmdKMsbAwhs1mwvoW31am7ZW1bXbC/Bxjufnj5x7whUlk/s470hRovGMqEzVndIWSMs2qlQtutrHumoO+Hzk8PubZZk0IEQW0jTSIYZo4PDxksVqhUIxDTwoTTeNYLlo5yJXBt6Ky+eTRGWEaGPsth0cHHO0vGYae5ynPDAjLFAp3777Es+cvuDx/Rtd4XpxdkIrGOs/xjRXHJ7cwVuGbjtu3b3J2eo73mvPTZxgF3WLFwWrBwfEx3lpiCNRSadpm5lDkq2Jkb9ExjLK9br0nDhdQJVFRayNWSZH5Efstrm2wWmFqZtFYhu0GcqLUIgVdrXSNk+Sl9SVHByvGvqdvOrTdYuZizxlheCzahr3lHpfrNS/OTlksFuTU8ouf+RzPHj/myaNPuHbtBErFuJZFu+LRw4ecXLsuk36luHX7Fs+ePqSUngefPGbv8JiD/X32VkuG0aKAW7fvcnZ2RqkFY8TGuHe4L++RM5y+eE4pmVosTdOSYmS1WnF8dML5+TPGELHLFcPmktBvuHbjLiVGUdOFwGJ1xMHxCTVnnj59StWOgubpo/tihZ0m7ty5zdNnp9y9+xKL1SWbiwtSHHj80QfceeU1vvTFdzh9/pgUJp483XJweMQ4DuztLXFOYUzLOMi/Wy2FU9WOG7duU2vh8vJSmDtzWmLrJO1rnEbu3rtLyZGjgyMUEMdBwKwEQoLFsiF1DQsWdJ0m5pFxTKQwobsF3lXOXzzBO0XJI/2UUTixNKnCxeUFIRb2lguabh/tJRlsChVdK7F8ys5KOTFMFzTe8fjpGe3FhpdfeZWhPyOHcxZtA9mzGSa0a9AJ2nbJ0Z5l6DfkVEghsmgr2ibMvEEGjcoIU6sKb6UoiRyvpqCMAHeN1eQoUO5qzJUSoTVOrv1VyxAk1SoEKaqNrRAV/TajjShyUMLOqJJDDFqGjlMshJxonCgPGpPxWjbB/SAhF947cqnEMZE1dM6SY8ai2VsZxlyIo8K3lqkWLrcTq4Ul9plaFI3r0CqxGSaBb89g4zFG2rbhpFF88iQSskWrgiIT88zUypWao8jKa6VmsWRlZYBI0ya6VcU2UoyFIFyPZxdbxl62nUaJImKMEVfh0fOnONVgnCH0iayMSM0XLWm4YKqJpkaKLmQKBoNVWlKQW0tImv2TA54/eYJvHWWqoCyqVFSVzZPSmrZp0UrjDJQaaL0w95T37C0bLs4vmaaRGi0HqxUxFTKRMsgW3jeWaRrwjaOzlj6M5GxIVc/MJnA20zotlr8QMV0jvYNxtM7jbEASOBxWWVSWje8QgvxuWon6MkXUzE0KITGNE41vfsaSFXGdI5fMGALOmzm1zKKMBCuVCtt1LwVwEij2FAK+cSxaTZx6jBt4/vxjLtfPZNCrPVY1jLOtGtNycuMa2/MLQhixRuOtp2ksKINvFnKWx15CZPpJ7N1dw+nZKamK0i7lSswF2yr29pdSnHtDd3ggqX/HlkYZ2elOo6jRO80UEn65wuXIhMb1BVsGjI5SqKeInot1TcVcKfCQf6bMgzlRtQhOt17NFdTPAMDLzENiZxtihx1S/Js4YNk672DwUgxFNuvZDg9YnVAKFssDvvKnvsjduy/z6ptvEseINwsOS8sv/tKv89rrL/OP/8F/x+nZJV/66hc5u/znjGOYk83UrFZQEkqIFFHbKbG3bPHO0bULSp44v1xz884tTk7u8vDxY7b9GusaDlaH5Ag/+smHnF9s2VvsMw6BFCuLpuWj+xd477h2fMLpestmuxalvlVUiUuDKs3MGCJOm3kpZ6gkiio0zvDa/iG/8dKbfJkVj//wD/i4WdEcLsXK5jJ5v5IDlCiDaDWzcrQSe6spYDKoarHK4LXwZpxxmKpxReFjxRSHVwZXFE4ZLA6Nk4G51WIXmS2BFOHvpCwJcBUB9QcKAYjakl1HalqK1+TOg7dMS1Gs567BNh7Vekwrm2/lPMY36KaRgYC1aOcw1rM0hr1Fh1kZjJOfZZcKuxsEltl6Ns+xRC2uZfBcqyhYckoyvEtJFOB1Hnyp+RlkLN45YY0idpoxjITtwLbfstluGcaB5w8/5JPv/yHD9hlpOoW8peRIUY5V4wkxc9ELm2g7FXLRZKXIsZBJeC2D765xjCFS5+FjqZBCQZV5kmSg8w6nxc657CxWg9KGzTZ/GoAhSLH53puR9XW+xpibJeaXR4laWms1M27nNL9YKFWWwlUZtHWUolkPgqnY9APDGOjalqYqTk5WbDbj3AQrxlB58+1X+ejDj2U5ERI5iQWz9Y5UEpshoFASeLJNtM5QEe70FMUiW1KmlOd87vVXeXZ6TlIIuxJRD/XDQIpVeGvVsQ2Vy8stORWG4QUX6z9mufRyhtUiyyFmt1BlVsbPLG89BzpU2PQZVKDGSgpyTVtriDWx2fZX4WLjFAl5VsoCORdqNWIZzAnvHLkYahVeYpxENXx0vCJNkWEMUBSvZ89/9MbbvOXusNy/xR999CHf+1e/y1evXee3X/sCxSrePdvw37//CR9szniRE+e5MtVKEn2nsJOrVDoWjVcKqwyt0XTW0jnLyloWxtBZT6sMjTF0RrOshpUxrJzFO8uJW9B0jmahabTDVoNWViZx2hKpbMLAo3DGh9vn/Ktvv89Xjm/z66++KdxgM0uE6syDU3VmwIkaSCbKyNmu9FwbglNXgAZ2ALrqG/AdRUnabzWCWSlVk6OhRGATyXUi51NiDIQ8sUmBUCJRzRZ278ldy6gy13XmxBpoV6huj7RsGJ1jrStbCptsiBNsaiJNLTmOnLz8Ereu3SZkULajNivaJCqcVYwcT4Y7yyM+/4rlL5+c8PFHD/lXP/mQb4VzflK3rK04VoYh4Jzm6NCic6LqlqfnkRpEsW60oGhqET4xVKwTph2zItM7izWQcsA7jbOWzSaizGzxy1kS2oukMNs5nMl7WQhn5BykyOJtGAL92DPN92nbtRAl8CJlSXi3MzdwGObQCJPR1jBFeWrvlNUxzTZaJY4c4X0mUpq5q0WwGAqDs57V3j6f+cxn+MH3v0+dRlLN8+tg6LqOg/0Vz549Y2/GJcQQMNqSldQhTiVODlY01nLv5h0ePnyAtQVjFN56Fl3LOEyUoZLpefx0QwgJZbUwupXHO+iK4cX5ltBoDveWPLnoxUGjIaEYx8TBQcd2HCgpg0lcXmxIxTKGRL24xBiD07JQSVnUm3uLFm8KNw6W6NSjtWMYElobpmlEU/DOoYqIm+oYhGk8s/baEvibBy/xWzff4cVPnvD7j7/J/uERr7/2Eo0zFA1jTMRayEos9vNjTDJyqLLos2ZG42ksFVXlWtg5BT5dspp5qVhQVTjYJUZSSExTZEiJbUpsz0eehHO+M2yhwK++/DpfuXYXWzXFSG8tx2ydVbryDBKFv6KMQUJDLiCpylQg1MREIVGFgW41xcjZVnUDzqC8gsajfItpOrxbYP2S4h2109RmhVrsw9FNcbIVgy0Way2l0QymcJlHhjihK3RNS2MtXdcwppazU81+OeL5C8WDB09IQ8+1J0+4NvSYEEglXaUIYy26adHakW0FZ2cXmuN8ysRSaJW4KegWnBnFuZ74pj/m/XTGMx05T4VpKnjrUBVR8tVC6yzL1rLoHJtNJIZK7TT9FBlHGbpqZ9n0mZoKWUnWA/PZqGa3278Fh+7PP+BTRmDHpMxqucS3raRuObHUosQKkcv8MFPC6bp+ckxIcHJyzKMHn9C1Da1z9P1GfNhtw97ekr29JTkllq3l4vwMouLy4gUn129w4/ox1nnOz57TWANZszo+oG0tp8/PCRl0yly7e4dr128IoLFt2V8tCdOG87Mzaq2slis+efCQw6NrwhhZ7bFdb6kp8Lm33mQcMo8e3qfkiVfu3uLG9evCrNDw5OGjuXFSxBRofIN3hka3lFI46hzXFppu33EeKotlS5wmQOM7R0qKoanYmf3mLeSV48aeAHKnqDi/XLPnK15Fli2Ml1sO9x2r5YqLs0u8irQ2cbY+R5Ow2rBqDEdHhxwuF7Sd4/knH/DwyTM+//ZX8MqxbDp0hWXX8eCjT/jMW5+nhIlp22OuX+Odz3+eJ4+e8vThfab+krOnj+j7SZQaIXPt1g3atuPJ48d8/OFHHB4ecXZ6xsXFJWAY+zTDixVFKfaPj1ifn6NKZhwH1puB7WbNs6fPMKZwfP2Y9XkihMjz58/Y61p868XOgyTu3X/8kOfPz/hzv/kXee9HijBt+Oxbb1Gq5tq1I06fv+DR00ecHB1z69ZtrKn8+L0f8fjRE5RyHB/t8c6Xvsi3vvkdNtthHhJs6Tcb2qbl8PAIYzTTOLFYwmaz4fDoiNXeMc+en0qSoknosXJ6ds695QE5V87PLrm8fMHZxRmNa7hx7YhpHbA6UeJEXJ+xubxkmNMkqVoiudGUsxd03RJlYDuKei4X2GzDzJFLtN0C5zpSEb6Iq5aqNN3CYr3lcruh30a65R5J9RQi283AS3df4vjaMY8fPmR90TNFgQ2XlGi8pXEW4yCniWHsiTmSUPQRlI6o9YZSV9RahJeVFTVXfKspWQD6VTPLtKVJ0zOLoaSK1TAFsezY2YoV1ltKrWidqBiBF8eKUzLA843CFGHeWGtnW0IlRGn8ckZCAqpIoPWczOm9bFqnAszcI6UUi66RVKzNlvUm0hgZ0lbFLqyOOMGoKtYpiq7EoRcorvakGqlGz6nKikIkxcr+omEKCa0LY9bEJLy0aZq5Z3YWWDjQFZRVjGmi3yS6hcYrScWuVJpFQ9yK4jJXxTQFaqpQ4OaNI5yGYT3y0o1DOtXi3R62PebGrRPe/fY3WOwt6JQmpMzN67epY8/SGY6WC2qKLJcrGfIc3MP6hpgrsWqGpHnj+HMEa+izDCxCBtKALkF4OiUSpoTSMJWGNA7yPmpPu3SENGDyRKagnKGGgFGyobYajG9w3nH74C7nZ1u6DuKwkW2vbUg50rQrXr/3Kvc/+QilRWo/xYLXFbuU4tR3LYuFZ+iDsEFyRs1WOd8Jorz1nlXTkcYR5z0pi5VjtVoyxUBIlT5E+mniUFkoFec90zghkO4JjSAEDg5WxJjZrC+BB6wvztnbW5CNxznDeiPWhGnY8DwIrNkYw2q5AGC7lSTtXCZSiAzDgLWZk5Mb9OstOVuMbjm7vJAht9LEVJmiYm/RSFLpNLK9XKOPDohKoboOXyumQh8nWi8NqVuuYLMmpAldFY0xs8Vmbl8raO1QKsmiSMu9ZCpcv3nMw8ePpLuoOwXBHJoxs/h2KsddvbErJ5mHgbuBoFL6Z+DKc/rurJKMIYOSZDytoFRNiImYCh9+8FMuLge+/+N3WXQHvHTvNv/6G7/Pg/sf8/prL3Pz2hscHK549Pg+N27dYH32iagR5qapADUX2jmQwGrHOAjX8HK9hZJZtiteufs57r30Gr/zO/9vzl5c4BtP6xxvv/MFfvTue+QSeXE+YZ1lGAMpiaKrkmXpM4mdpG0bDveXbNeRF+cDJckgIYQEpdA6CcW4dnzAgcq8fnTIGwcn7J0bPgwDd3/pTxGHyDf/6A8p63PutPtcW6zobItt91BWstVSlaTMVIoU0CWLXS6PDFNkSpkxJ6aUGFMkJ8ElUAqmKBoUK+1YWE9nPK11+K6hcZ7Ge3wndpjFqmHVNCycBA4dKIub2Wo2F1TZ2XQTZTsRNgOlFEYFgUKqEHQm6kpkhvUryFqTqMRSiXXm+2hLUYrkDNoalBP2lmqs8ATbFuvl703TYqwEAsg5L9wcpTXKKhqlaJWeuXVmDkmYAyciqEbR7K1oO8ui7qOO1Jx2Vyi1sO3/FE++/BV+8K0/4pMf/xG5f0gez4jjyHaIdJ0hx0zRisYrhiGDUQyqoLWEZqhSmWIh5Z2pSlNyYf+gRW9laNm2ijFFUoRUK12jSVWxHStjUiQFVTOzu6S7E2C3XFfSaAtsUilRhVQlz3CtFKGmeZFWMBZJNK/zMD/L/T+OkbEmCezQEFLi7Hxib+WZYkDoZZrD6zdZHNzj4LjnchSlfAjCE8o+4Rp3lbpsdKWkSvaacQ6DM8YKnsDJ6Ods/YK33/kS33v3e6y3g6TUVnmNcqmoXK9U/zFVcoIYEXV03cyvg/QOzltAbIO7ZYNA3eXcEsZ2ZTtMaCq1il2+5EKoApu31oAynFzb58WLSxjzvKQQFZHVGust4xhxTSvPqfkMNEZxeTkRSma/KH7ZrPj3vvAlXlq9Qt3v+B//8J+wDBP/3mc+i91v+G8//pj/7sEjPvSG5vZ1bn3xqxzeuMbdw320mV1NsxMop0wueU5PTMQYiTmzKUUG2iFSxkAcJ9IwkvqRHAdUiKgQ0SFjU8LlQlMLSyorYzlwDXu25cQ13HQdd7oFLy8P+IK7ztcWt3hxOPJPP/kxP378nC/cvDEf8rP8dqcgqfL6oHfD5h2iAeZkHoHgz4o3+TM7W7EsZ1EWneqMrFCiRp8nGVVDtdJ0KwyohQwt5mdL1RCd1JkqVkqopLEQXpwz5UzQlaBFjTkaha6ZqDxMmVonDBObj97npy8u0Mmg2xVL55gLVPI0CRMxZ2oI3B57/p12xV/imH+Wzvmv0ymXdSICuQobMyfF+eXEMNQ5UE2sqkrPnHmQwC2kjjNGUkBr1QxBnGyNg5gU1llR/1bB43gLWs0hQ7XiTKVtLW0nNt2c68ykLFcLjJKlTh6HCWMs7dIzjjsGrizcSil44zhYdaw3wnSPebZHalH8qqquWGpqVvCHMKG0xhrhOSolv1+YJt5994dM00Ap+aoGqLXS9z1tY4gp8OLiQlTVekY0aIOqkeuHe5wc7qFrxZnMslFUMijYbCZiiGhncES26x6UY5Mr5DgvvoS9er7eSMqr84L1GCasNpRYWCwXGBMYxkGYqiGgLnviqBhiwnhRV1ttODo64fjwmHG6ZL2+QFeIoWe7lcAMkzRxjmx3ToI0SjX0Q88UAtttIBRF6wzHpuF/9saX+Fq5xe9/69v4xR7v/Llf5dkY+Hvvvcu7p094Mg0MzAOnKmeZrpIoqxQYpfDaYKiS0G0MjVJ4Y+kaUfIvvKcxls46WutZeFmuL5ym1YqWSutg2XpO1JK71eKjxiRZjj4KW/7gpz+iiZovXL8NNUkGk54t3kBV4pbUNWPm60iB1IzA6uqYmBXP2sg/Vw2qUBipo/DpSpY6IM0s9liy1Di6UHSRoJ2dY0A7qvNE30DbUb2jW3qazlN8S9SGpCqhBPQ0EIeJOHMYF2Hi/HLDjS9/mdu1wukZ2ydPSM9PcUOipoQqF0CmaE01RsIf24afdpqPLs75zfPKYR8w3pK957IxvL1csG72+H4J/AtO+bEemLQhq9n9RsU1msYbLs56YpH75WItTGOlHDlxNYA31eCMwraKfqzUWKhV/1tR78G/hQFfqQWrK8vGsLAKwkhrKvutYWkKpYHWZfatoXGGw5Wkde4veglwyvf55Vc8tUQab9DsY7Rm0Xj2jiNds53B5RBWBpU7oGPRLfD+Oc47tvmCt95eotVSHugxkV5dUJDkNN95/KJwsdmyaC3LVSRfJPCF6g16PGdRN9xYHjM9+Yg2HfPSoeelm8e8fq1BxZGwf8j+0ooVxF0KEwr4zL2Ksp0wx8pClBESRSCpOfkIZU/RXcXfPSKXhFYGa4XzAg5jWyqGGBPaGqxZiTe9gtKOlI/AWGIqGHuKWlYKFq1H9EuLOQXnKeVN0J+9LQ9NpVFuS1Yf4/B0NwL9qmWveQjhEbcXhc9//pC2S3zp4AZNO6L0Q26+tmDvMNP3H9KuKsqMPL045c6+ZVoaDq7v0TRLWgtxioTLZ9y+c5fl0jJcDJAnlp2nXe5hnOficsNhe8DZ6SmHBwdcnj9ns15zdHSCMYaT40PW2zWHB/s8/PinvPLKqzw7vWAks1wu8c7RNJ5nDz+hvzhlGi54+OGPePTBe1yuT3nv3XeJ48APf/iYm7fustg7IEyRTz78kM989rN89u0v8t6P3+P02SM+fO+HXLt2zKuvfIb15SVnp89JU2Z/b8nNk+tMSUCiMUdJh66JMPbsHRzx6huf5fnTx8QYufvSS5xcu8XZ2QUv3X2JcZrmDVXE+ZaYgoRVxAmqQ2mFVh6tM2GKbPuJVBSpwGppOdnbI55dUktgnKJs8lXFGcWiW6CM5ejkRFIpUSjtGKfAYrEkhIGuWXBx+YJ2dUNSgfoNGkXOAx+8/yP29w+w3lOImKCpjUWT0CWKVbUUGqehZoYhM00FQ6VbSnOZq6QuiXVIMYzgjKb1CqMUwxCpMBckYs8rpTBMUQDWKYEqNF6jrabEhLaWnERxptBoJQ/OkqFtNFOQh4E2woMKYccXEi6R0hVfIRVNUxWNVrTHS/T5SC6SAtn3hWGMrC8TpWg0hSlkrDPEHFHRUrIkAqaihc8XjSRDarHFOGPph0DKBdtYclSo6tG60nUGYz3T2SApmEXN2y9NzUlSBq3YsKaccUaKrSkk0OC8wc6Z6cZA21hJRzaiEm20Y3+qvHa0z0Ifsd8dsX94E/QCuzrCWsM7f/q30F0nVkVlcI1DzZwgsVAXjPh6oWRJu8piaap+QXN8m7w8ITdLVNVY4zFWgM6RGdBdMyEILiAhbK2KZpxGtv2aaRwZwkSJgdBvSGFkChuGvmcYBnKqhBA58BOrVcPm4hxXxZqXg2ARHr4IBLWkJEPIWXiQVqFtSxoHrJWBoSILB8ZKUe2tJeUg1vgKXltWywWX6y0Fiauf4pqqJVxknJIEIIUyp2vKPVZqJaXAYtWwuRwZhoJSltu3XiajefLkYwo9uSasbVmuWi7PLlm0Gq3zvPkNxKhJStM0HTkVsWG1lq5paHwj6kXvyBJDyrIVu3vTeuoU0aaScuD6wZJGV966e5tbhytaIoQzsQYZAevrJEOB8SLRzttn7yzOJ5yWIAQpuJEwC0RZo7Rsgx2W23fvkHLkx+++RwqiHmjalhDCDFveWUPmoZ60zqIiUFwxBpWSxq/CVWNQ54UeuyEgP6NFUnDt6BarxREffPAJT58947vf+xb9mPnaV7/C84f3eXb6hIf3f4pWjjc+9yaH+55x27J30HL2YkDv7CvzGWKMwXvDctHx4mzNMAaWy5ZSKpuLDT/68Y958Og55y8GSnVy1ubMD7//Yy7WA5frOfAnMltxFDnLINJ1hq7T5K1BFcV2MxCS8CsToLKcU7lKkMyyMdzrlvzq22/x4OmWn17COzdf5tWbt/joe99Gf/gRf+XaIS9dv4FPmr5UeiwBQ41JimMj9lujKg4wVuDrOAUrK0sXIwMLZQ21MRRtyUmCwFLOZF1INZDjJMmISUIUQh7pt2tebBJTypQQIc0BBlWujdY3LLqO/eWCa8s9bh5cY881HJVZnek01VqUNlStPlX6MCt45sRSWWNoUdlpRdFKtvxVQg3SJKzitA5M5QUhJzbIEGrMiTEpYk70MTOWIjzN1mEaj1l0NMsV1nus9zjn8G3LZpz4x//8X1Jbz2/81l/lna/+AhklQWWUefmzz6tvfJE7997i8f1f4x/+t/8Pnr33J7gsyscaArUqtn3BN3q2b8LB0lGLNN39ukfN52QMop/OSgt7CVEcDmPGaE2pmjEEUSZlMNZSI1eW4p0qdmcRVVVfqZSrkmAoq+dBipJzp5SCdTLk2lnGNLIYM2anTKsYI2E+FQlgE3C+YrPNGK85ub7P3buv85f+0l9j2l7w43e/Tx8y05jQSjNHLLLZBlnuzQrd7ZRQpkFXCRxJZVZbxkTjGtYXA89Pn3Pj2g2enV7SjwGlC6pYjK7UGikVvGuw2rJdy7O27l6NKmoxrRQxJpyzoqqnzjyqeiV1KFXOqhgL3gkXsRS5l8VmLqEkKVcuztfUUq62FtpockmiiG4ascHGiEJjnQSA1VyhaI4D/KXlLf72y+9w48ZrPN085/1/8k/4ys0F119/mT94ccZ/9ofv80Pruf0LX+bP/dqv8NIbr1ydrVVVYZFpPX8PriyvVTGn+M4/F9L07/65ImplNate08zuoxTpe2KcEyK3jNue533PJ9ueab1le3rO+fMnpGc/5SvO87+7/hpvB/il6zf5w4cf8Natm5iZJY6aa4arn2Vm4c6OjJ3Cts4/85Vtd7aJ735OEGs9V88JMQFXrrSAogc387ZVyVKoGj3XuvKJOpv5+8i5WJ2ceygDzIB9tKSUqkI1jqrlh9S6ABlqQiVRy06bnqIt2i8oIaMuLsjPn5FOnzNst7wIPQ/HLX2dOFx5Jl8oprAZKk+eCTqHotFV+HVSJ3GlepQzRoD71sv5pnfhYUqxWjVMUyCkMqdNi43czXgU78SaW6sYGkpJGCFy4ObQn4M9y/n5p6ovrTQ7C+l2HcSp0Hlqkr6yFs3+ouWv/+Zv8gff+CN+8OH9+W1U5Fzmc2i3jBebsLWyvDaII6VpHHt7y7mP6SnT/H2NWMdzLldiiZwmvPfE3XWZE1Z7rIbGe0JKrM/PWLSW+w+es1g2WOOE8ZomhjiyXCwpsZCSYSyZVAVZMYZIjJc4b7FOwhy8d6SccVc3taKWxKqzxCSuoqy9hCZ1kFQiqyy9u1Vshy2bbU/VhRAGTA3cvtERayIPhc612NZCDWil6YMmzCzQWmalecncapb8h5/7FV57mvjuT36f2197m+vXb/Nf/snv8z88uM/2YJ+Xv/J5jm5e42azYLVc4Y3HaI11joqgIGKW3izHIAOpnIlRUmjPQxTcTC7zgDpSYiaMPWWcyNNETvJMt1RaDBbDSmuObMNXF3v8VnPAqwXsvdf5gw9/wmvH12hyoWrNbl01F3Pyoeaar6orF4icAfUqg0BVuZ+LFlv07r5n5rb/7HJ4HpbMNaQW1fl8xpWiUCWRp0BM50w5YaKEV4lKEKwz1MZJmrh1vKotBUteXid99hopjezXim889uiEvZfuUc8vSWdnxO2a/OKSenE5f4/CGAeejz2/PymeOs+rMfBW1ZQQBPUxOC62A+saueYcv7lY8tr+Id8KZ3yYAl2ribmyWErYojUN1UQqmRjnZ43KtFbjWk00ah68V4wkMLK+jHNY28+87j/Hx8894HvlyHHy5h5LbzlYeIyuLNsVmkjnMk7vYVXEOY2dY8CNAa23srzKGX0NlDKYWVlQa8bqHq0eUbP40K3W6JlxULVGqTUpZUzRHJtMQYCfxhhoi7xw87YBdU6uF5RVpdYXpIXiy5/V5HJEVfNG8ZXrQMB5jdGP+NVfPIA4wPQuVgFtQWWRH9dBLn+zK2qjND5aVTJASVfg5UolBo9f7MFwLhsZa7BZo+cUrkrBaKhNBhJKJ5RBbuwqsGOFQnnIdQAKNRexRhkjqrBS5/2xwiixNaYxCp9oNOx3oJYOo04p8wZEayvP61ZReUYV1BXl7GOO1Ax2VpZXD7RExyhN4ROxQ0QpvN75jAL9mJALr18L1GsNsRqqyVxuLwg3NNrDYyxPnl1gW8vBzWNySNy9fo33Th+i04jLkiz4/PSC1XLFl770BR59/BBNYdV64nmgxsB+61k/f4ROI4d7HapEyjgQhpH7H3+CtU9ZrfYIYeDB/ftMIXFxcc6d23dYNlY2740htI5f+vovMQw9U78llcLRwREvXpySiCINL3B2ccmtOwcsYksYA9ponj5+Bji882yHDXurJV3jqPv7xBAoOdG0DdorpmELVtEsWlHYaI0zToD1tTD0E48ePcVb+dnaxslgxllyLGgDOUUuXpxhjByAWWn29w55+vwSVObg4IiThaj7fNNKkm1JnL54jnEdVVte+8xbnJ0+4uLFM2neZ5uMcxrfiLR7O0RCRMC5RbaLAo2XzVtFimhdDTnDNDcuSssmrepKjFHS/2zFOU3IYsMVdVBFFbm2KYXGyP0Zo0j/vZWv0zpFzpFQZJBojQzqFRrnNNsolp0QMqmBZAohF0zO7LfQrvZ4cXaJMZpxTMI7tDI4StUy9SMZ2ZrvatYUC413jBNiHVGBxinQwlpqW0/OMAS4XI/yNbWhWRiOjlecn/ekNINajeXksCMHRVSJiCRka1U5OmrYXAZSqhQSSiliSqAM0Rba/ZabtuXztuOr117hldtvcXDvDfZu3MGfHNLsH4pKwmmqN6C0hE5ojYD51VUNrtgBd/mZh7T6tCDXs7WxFMiRmuZNri6cPX1O//wpUwjEFGZLeCAVge1X46hK451lr11hlseYtkE7i+oanPdY4yT5rUqhW7UkUKecyKUQk6RHhRwlqTBM9Os1KQbiNBLGLdN4yeNHDxj6S8g9zThACdSciSFglSKOW7R2bIaAmRLeeVKpktQ+RZSZDQzWQ5gIUyDWKqy+1tFPEykUKYjm7ilVuHZ8jcuLC0LOEmxhLKrC9es3uTw/Jy1HvHW4pqVpOl48fUJK0rDlGQ2xXO1z4+QaDx5+TEiFs7OBYRjxPoCe2URVhuAHi4aaJgxK+Hxp4Gx9xvVloKMjpxaUZrRibauqUooh94XaLSl5Ra0e5xqs7ygl4jWUnCQplEKOA8aIXZnsOHt2ymZ7ye17N7n/4QNyivR9/rR5q3NTtruodiOcWaghQ7bZqFV3eW/MjbNcdOpKDaiuGH6QSSXw0UcfEuPE+uJylroq/vD3/iVd05Jr4vBowdn5GT/+4XfpFoZl1+Bay8nNfdbbLWHMqCKhPSnJfdz3YXagKl6cbnFe453j/v37ZB5QYmK1WIIS1dDZxYCQm8SyJEgNxe2b+1xcbAU+buHNN25y/8GGx0/PGYOmpkxKzMsDUY+1xmO85Qt/6su88fLrfPcnTxjONF//yhe5ReD+P/oHvJIL79y9x9IU3h22/KOHz/lev+VpLiStRHU1K1h0rbQKvFK0WtEYR7tLr1VaUpONxVmL94bWejrj8NbSaYt3ntZ5ltbTtS0rZTjRlkYpOm1xWpYJRs1N8LxZTjEyjiNDGrmMPR89/ITf/9H36WzH119/h1eODjFA3VlK1WwtgU9VPbMqrc4Nv7lq9KFBlAE7bajaXTtqHiJrQ3USDlLmP1/mM6QqTayKsRaGUthejmziJX2c6OPENmU2OfJLRwuqc7gP3qMcn6CWe+C82KeNXLylGkzR3Dq5y9/4G/9Lxo//NGlzzv0Hn/D++9+kXD5jDFv6YaKfCkMueFtpvWJKCY0hTsKANkYTQqFtNNttlsGGkTAHq2TwoDTEUMhVfqcdGFyGBPKsLbMldQfZFpi9xhr5GlrXWRkB1gmOIs2LOqVkGKpmtEXOs+2nGsH1FakSjVazcCTT+AXvfOUX+fO//ld47Y0vcHH6nM9/cJ9n/+Kf0G/PKRS6pqXfBkKpuDlQz2hLLRJsdXJ8yOnpKSlEfOPwVosiisT52RO+8M6XGYcNH97/hFILYU6e9b4lZ+hHSUL0TaUMc4Ne5rOiiKJEF800xrkhlEvJeQcgqehXCwVZ7HRdI2EGtaCNomsbSomiSFIAGuckGCyXijUaZ2TJWIvCqErVhmFMWCUooOMMf/fa6/yVl75Gd9zy7e/+HqzP+MVXXmU4avmPf/gd/v7FFvXKa/zm3/irvPKFz6J1leRI3wCKYRpp2gXDOCIJrWYGzQtb8Gc7uzqroMWeKffT1QBQiy1Pzc947T0GaNhnQf03hoMUwYWoUtiutzz4yU/5P/zTb/CfXHuJa1pxGnq208C+2Z31Vf5MRQZlSmQ9lynxuO95GkYuayHOahtnLI2xNFrTGMPCzFZiZWiAdrZlWiR8SCHfR9AKCqosKOX2l9AygZDK8E/hUVaBTlSjoVR0kYE9aIpSMy9Qy0PJGqqXFNGsRbWqEfSLMgp/eML2yRPGDx9y0CwZf/wu09kznoQz/pjAt1LgQ1W58I7oHZdDACXDY5QsUYwGayGXOlsmNcZqjBZmsbwv8nntUpbJUwi0bYMzjk1IhCiL2FQqIUqdmIwmJK4S4l3VNF5TVaHs4ldqQQLJZSTSNlKf5jnJWJl5yZazCAy0/BnrNAfLPQ5Xe8ztKyIUVBgKXdPI/ZPn0Cat8dbO4S2WlBOb9foqMT7EQK1gtaVxHtXIufL5z79FCon3fvwDtv0aUFy7foRWipRGWq+oeSQqQz8lcTsVT6qZEEUlP06RcZxIWlRlqWSGSVSudr5n0hQ4WC7kdZsVYocH+2yGQRxKWs1hegrjoMMQ4ohtPZ3STBGyUozTRN8PMp81hsZrrNekMImrK2q2YQKjWEjBwXrGGiy0o99OeGN5Y3XIf/TFX2X10yd88Ml9vvgrv8LDOvK//x//P3yrRA4+9xZ/8S/9Bu5gCdbhjBfMhtaQJaUe5uvVzqPKWqTOmsPFnLfoObxvmuTn01oG6zkmqBCnSTi3MTBNgTQG+mEgjBOPpom/9/gJ8cUz/u7ymGNnuAxbXozn3PCrKwwLCIe0UNByQcm8Q0ktWGtFzfx0XUCV3SK3yrVaZXaTXUWUuZJiLnThIkPkupv06Xk5sGtNpOF0GLzWLJWGxsipNi/AaoUSDEyaogu1rEklk0sg5cQUI6RISJlNqOydHGIbQ3O0j3Wa9XakWo9L81CyMbQl8sowES/OuV8ML3QmUJhqJqXEZAy9g/NpQk0T00XljZMFvVdstCalSM1wMdtxD5aGw0PH4CaoEmwTsiSH1yyBcSVrpikyTmWukT91y/y8Hz/3gO+1Q0OX5uSiuhWZ8Tzs0rMcV5eCycKcqqWSowAcFXIWY7QML7S8/caY2aqYpJCowj0R3E6lJFE51cqsiCtXk9AaRS3ELDPeNSq75kLVglNaGk+xQ8/cl3mrlGZ5bJVUyFoyVau5qVFXARIiqS5XoPFasqjR9c4GMktWa5ZBYC2UKgMTdiloMYKSi4I8zTyvOj+j5p999yLNB2rdFQE7lcQslxX8nrra4milcX6BQlRCFUlmUzlRzKfPcCiSzDm/SgKwlom8q5VSRnSRw0fPzVm5AoiDNRIJ7ub0tMq8scuKIzVvoKLj5WWBPQeqJQZAeUpzyfVXHM4eMMan3Ptci6oNdrlkmU85PIjEeo4bBvZWEyc1UbRG6Q0Hx5V1yExxYLXSLF1L0+3x9OkLUolca1t0yXjneJ4nSuw5WHbknLh89pB1P/HDy1OunRxz/cZ1Dg72uTg/hxrRKrO3bCAHjFmg8kQY1zRersujwwNOjo9w1mO0IsWJixenHB8fE5QmjiOtg7b1pNCT4sjlxVqsZFVS8lIteKtnRajAjbVtZZCtItshUKvDyPpOCvZq0W3HctGxaByJhjsvvyYNQlZcu3GNi4tzUgr060sOTgKrvSPOT59y/+MPWF+es92c71aurFonD5QC/RSISWy0Y0qEDF1VoqqrCVO9hHGQ5+K4zpsWOWhDzlQtKZIly3bFGA2x4I25Sv+qVZocoyTtr5RM21hCyNQizdB2DKAy3ljhFyiwzsuWqCTM/LqlnJlCxemEdvIAMrXi44AmETNXNvFcCs5oYs6EVEizvcdoUXH1U6YoDUWREmhbKMqQq4RqhJgIqTJGRSjz/jlCiYWpyiCemZvQOSMhIgvFol2glOHJ8wtyCnhlsVpCVhZuH1MyZikBC94o3mHJX3/pTd689hbdvS/QvvIZ1GpBMpWkMn0cSVmjlRN+nrFiC0PJoEUrkbnPXI4d00p6a+mKlBJFQ01VrBWlzAs0LU1orRxfO+DkaG9O9PxUgQWKlIUbOKUkKZpDYBh7+nHDsAlsHk8Mw8g0BeFV1UyaAqGCqmVeuhhoHEYbfOOwzmKMxllH23pW3RLjb+Lbhi/+gifPKWMpBlTJxLEnTIGSImO/Zdhu2WwvmbZb8tTTXlww9j1qHMgpgIYSMsUEtBGoubUiDyglY70XWzfQto5xGnn27BHaNowhME4jpS5odGZzfk7oe3IWBolLhcuhp1ZPrtC5iveKkCYuzp9ToliuqBHTeZQ2WCPPjBwSbk7NlmWO42wz0rgtJQ9shi3X9m+wbB0qRhqrKMlQckHXjK6GohNjgO3UAB15HNn0iaoUQQVJxbYGq2eGV4pi3S2RfhyEzYbmpddf4cHHD5kGCQpSSPG2S8RTM+juUy7f/O/M5eBV4zYnae9USfOzQs/PUSlaqyA3rgaBClXkCssl06ce6yzLbkHfr3He0DQL7r56D/fkkpsnRyyOj/jhd3/KJz/9kbBs8swmYn4mYyhFFL8lBwGdq4pWopaXhiWSVEbrMivO9JXCfhgHrt844PnpJY+f9oSpcvP2dU5Pz+mHetU4VEBbQ6ctrXeEAh+/95D7n6x57dp1/tYvfY0bHz3m6Tf+Jb98fMDx3j4PVea//PATfm8aWb39BW5+/nU+f3BI23UyEJ8VbrUWaslz0ESh5CKdXxIl7TZn1iVTUqIEuc5SGJmmiTIF4nRBWss/ExPEjEkZkzNthU5pOmXYt46FNuw7z751nPiWG37BnWbFveV1uv1KqYEP1i/43R/8MX/2K1/jc91ClrKAwu7cpVKJaE3Vu8JehgS7M6ReyX+khlJzvSb/bW5w6u562l0fuxruasQstsBqJHNQKYpfwGKP4jy1a0lU+jCyPb+g/0e/w7poBqWYlCaL8IdeOUIspFp4+uw5f+XX/gK3Pvs24U3F8Gd+m4+ffMy3f/ht/uTdf80npw+oaSLnLBZxpWmdg1oYpjxf2ZqUJIgCZDnnjaJpHNM0YZ2jzKEEdb7umhZyUYyBK/ZRnQeeV0l6RRIUfSPcV5kDWWLMxCQNWIiVXERhUeqcbFtkYFVK/nQ8X2XQ160sd27d4K23v8rq8B5HJ7extmX/4Dp/+bf+F7z3ox+zPl8Tc6GfJnKuGOuATMWQQ2HRNOQUCTFz7dpNXpy9oJTEjVvXUDXy4vwcpRTPnzzhK1/8CjFNUAObIUmKOBnnHHvWyNDxoOX5055p0GRVZXCuZm73PJTbXRG1VsIkKlqrDWkGGGol6IZ+DCxaT4kysBiGjPeabuEk3M9qnNWEkBlGAbE3ShYzeqlpmsp6kwnKoFDcKZ5//96r/O2XvsIQK3/4e7/Dnf2G195+mz8ZL/hPv/ENfuw8n//tv8Yv/Oav4pctGk1rJQmaUhnGgW61nJPEyzwo1VeppFfW1F2DVeun59lu7ll257HU43peoLLrOuavs7uCYFZYG2mi9w4OefOrX+Pbp+c8+WTkVit15uU0sd80s8gCmd4jPNAxJ/7R2QX/1dkFDxpP6RqKsdKwh4Ciona1RK2YqnAVOhSdUiyxLFF0WrFQ0GnFEsMBnpX1rJRnYa1wB42mU9Bo8KZglQgrRNGsZ/uoLFTk0SL1M3OwkyiNZtHE/PnVWFkazAvOojRdyVx8+B6nHz+ixolv5J4ftZWn3vHYt0xNwzoPTH0QK+YYiaWw6OZ6tiqaRuG0ZhoCtShUVTTewFRxzqGUhLNQFdZB2xpKyVyupXd0utAsnDy/t4mclFhwa4Gq5rCgSqyJhQdvtaRRJ8MUK9paGZhPAWWMuELs/Dvn3ZK34K28fo11LBdLvDd0jcajUUoQSDEF2kbJkl6DNpZaZGls0OwtF5ydXZBzlcEEVfoTFNZaGUQjasNvffuPefXlN7l16w7PnjxA6cThCm4c77G9UBIooQolFkqNxAjGZLbDQMqzDVgpwpxmnou4C6wRdqC3jkaJ2msKCW8sU0yMIaJjvnIfRCM9d8yVzTBSk7z3202YnzSiaNZGEUuce2xZ8tmFBC6NWXExVoaY6VqDb/WVKtE4z3YzMaXIO8fX+N+++XXG73zA4zFy68/+GX7ng5/w//rRd/nYat74xV/ka7/+dbSzhJRYLTqs0nTeAYqsxL0TYsAai7VyTRvrSCFQNCzaRn7WFNn0l3RtR+O9hBWFOOOSKliLMxrfdixWshQ4VkhyrVGM+W0e//3fJRSLo9I4xzYMFNfO91SVYB2VqCZzVgzvjSPvbS44zROhSA3tlKFFaojFvFRcWsPSGjptaFTFR0kWNqViFVilsfOwb5YlzOpRUadLe7qz88+Dv/k+r0oWfczvnlIi/NBVVN1eaeEiWTMnOIoVeDxf8/Eff5vDu9fxCrYPHhHHUfANaC6A05I5rxVrW26Yhp90kW2WBXKqULMsirIq9K0mOUvMiu484vczmxwopbCeBnKU2UfbKmJIEiA7RvJowDgZjBeLqbJkg0DXiWBjGCspzcudn/Pj5x7w5ZRISVJh7Qyk11qSDNUsmbfWfPqAUiI010pjrcF5e6V4CFMkl/nzZ9mztTNbo4jkueaCtnMzb2XjU3ZFfRUrby5lfkDVqwefzPus/LsqUhwiVhaltVi+UJ/WkiXJ4eh+ppGpzIM8GeKJCk7Nw8Fd8wwpxnm49+mgTpUiF2ORx66gD+S1umIVaS2/g7GUqsCY+YGmJPkwSyqbMfWKiyaqqk8lsnOwjky6tSXXDEOPZcJoRCa7085XGVbWKiqLmhNhmhvNmQ2yS0JEzUWi1vLglEqSVNI8fJwftvNmtVRhU+RaqVqxaFvhZtVM42VTX11ib1+hUqA6YM9Rc5TbLZ2xbCqlWFR1VO8Y2yDsCVMpbWFysinQzhNrR66WcHhENg7wYDtSjLx59BqtbxkuzqldxR61TENlb7UnSqLhObaccaI1pqsk5zlyiWUHSScO9iCtE3lpQFk+98Y9jk9uEKZI23k2/ZY8bjg5uEd7fMj55QWrVnNx9hxdKjVVrLGstxtCmNDacnSwIsXCZjugDRwcHM/BK5nnz5/PIRIti64hWsMUZKjltJaho9Nom9isZZh1eX6KMonteoOznqZdYPMCZxtWqwXr84SzheWyZRojrbcoKv0wClOnVJw8UWi1kU1QzDT7hm7lSBFKYIa2w5yfRipJmAnKzEmKQmJIpZCjFCkpc5UGJ6wkuZZCzqSc6Rov29EyYpVsaNpmViZMmabRpJRBVfb2GvJllCFTgYJjmGZ4cBZZeWYCregaseWOg6Qh6sZRc6FxnjRmSlL4thELnjPkBEaVORU4oquRRoyAsZ5GZ5YLw7Uji/Md52e9xL3nwv6eJ04Z7xsWHUzTFmXAqpZVt+TmwQrfNGitaUxkub/PK69+gcvzM5bNGv+sp3l0yTvpOvfe+Q3i196Gg44pBDi9xJqKWnWk1oFuKEHOSY9s1Ary+uRcqIG5R54HJ1zpZD5V783/Bb2TzEsDVShXShKlRQVSd/99Zm5oY2mqxs/fo8h6XIZ2u3OwyvcyWRKYqWLfKmEijhPTENgMW4ahZ1ivWa/XbC829OtLnm639CEwReEPVRTFGrTzkpxptCg9m4bGe7puwWJxzMHhHYx3kqBrHUo7UMimM09shy1DmJjGnpIS43ZLnEbWl2f02wumfkvoL9A1U/sNcduzWq6I6YymsXhrGIctewcL2kZzeHyNEALkzHLVYO0eZ2fPxRJUitg3c6QfLrBW7DlKB/YPOtbrS5S1HB05UkpsNiMXm3HeOlvOLrYs2srxtRWd86gQcX5+5igZLlSlsEbhlFgGbSk0qlBiQNcoachEGmtQJHbmqFyiiCOU5+zFBY+ePsC3Lavl3pzClucllbrayKp5OHeluarzwmc37P83apF5UKyuHjO7kYy0nHMTvvvaV584f24pwqbKKXH//n2mOEqCcsy8afb4y3/1NzBaseiOeOuNX+L73/vX/It//o+ET6WEv1lKvfodchGbUUWeSdZKQZxymQMrRb3rrGUaK0YZSYdfF/rxFN+0xGR4dprZDI/JRZKlS5UiNysw3nL71k2ePH4EY8E1mVe6hr/5+iscfv+7hG+9y5+5cRtWK/5p3PJ//8EPuLh7h6//tb/NrddfJqmKxshCVEnTpbRGGSUMslrR8wNWVVHXlDnNbTcNU+w0iLutplAKpcjN1Dk1NMZICIKUSDEQxonTfuDhdqRfrxkuL5nO1sTTpyw3I29bz7/7hTf45ap5a69j8/Id/slPvsdrX/4FfNlt84PUFVnOioIia2kuMemqrKpXV0Gd+f2f1mhS15d5slfnukR2/fNG89MhhwKVKyqJVk1Td3sr4XutNV5rFlpxzRpwZmYDSSperBLE0ysIJRMK5KMDbn38U7pnT6BtCd5ztDjm87/22/zGr/5l/pt/+Pf4xnf+MUMaMV5qzxAjuQhOo2094yjqtKKktvK2IcXIphYa3yGOjnGGsWuWXpNNx4NpkHN4/v3V1e8qClqpN5Ukm1fm4caOaWmkptZ6XjbP1wlKVMKUq9dSaxmYKVP53Juf4Ve//jXQK974xT9Duzii8Z4Xz57yx3/0L9huz8hVoPJai4Mk7GyriBVPBHSF9WXP6s4xvgn02ws+/ugZXadxvuX8YgvlEYdHR3z9l3+Vn/z0R2w+eJ/DTmNtQ8iKzSB2MKMLx9c6Tp8GhkHSjWUHsFMOy+9ZrlSuagbq13lQJvgIqqKkQj+MWOeunnXC4fPSuBLpuo79vQalNK2Hg9UeOWfO12tiyEzTwDAWbhXLf3D7c/yNl36J8/OP+P73vsXn795m795d/t6T+/znH73H5sYdfuvv/m3uvvUGGIUzDq+1BJVpxTAMrPb3mEIUHI+WZN9+kATPT/+S+ogqzqUy1+BlVolprT8dACsZ1l61LlVeE631rMCTG2Y3FGQ+I5Q22IMl2wdropH7oswD913fpGoSQUb1/P2np/yf+g3ltXssXQshkmMm1kJxdQ7nkF5CsI/yfXYhHLUqVCrUmtElo0tC5RGdt6gho2vG1oQvhSZX2gLLAssKS604sJojbTg0hkPXcNh0HLkFe9axsJaFddidlZ2CzuLqmpscsceqTxXmNWZqzqysY02gO1jwbDsSly2rUezZ768vid5w+841hotn1CJL+Zol+brkQpjA+UrbGqyxpJilofeelOQZQ4GkQQV5H6w1WC33f9MKa+xyvWU3vC6zKgolr2HJGUKlWbZ0jWIaImmCnGDVWmLjSBlhnGZhpTZdi3WekpMsWFPg6OCQ1gt6aIoT3lmazpPzfD5XCatpW4czjjBVusU+e3sHrFZLco50zYoX5xds+q0Ml7WmbTvGcaLWyjD2GA3jMPDj937InTu3abqWcbjAWEc/rlktG0KMpPmc08pxEbdsxhGrHSDquVAKl9tAKuJY0LqwaFu0LVhnCVOkpHS1QJxiZjsGrDc0jSOmRC1giwyBpphRaHlfighvjCnULLgg10g4ptYWchbFJVWUc8bSGU/XGdbbrdRPWpNDxarKV27e5D/84p9m+8/eYwJOvvQW/88/+SN+9/EjLlYrbrz2MtdevkfREtzgfYNVgsHIWRiKzsp8whmLt06wC14WQ5TMatGhUYQY6LdbFm2HMZaUEuM4XamXC7szRAb9pRZiyXIt6UpOiYwlNIbYy1JEZgiFWhIUhVZVwpqq4qOY+S8ef8gfl8TQNCgraBCrDAaFyplSAvQDtWRUiuiScaXQlEoHdEaxpzQrrVkpw8p4VqZh5QxLq1lYTacVrYJWQ6uEsWsAoyxGWVCWsuM8z4KnoiQJWnaEcy2iCqrI32spqAymwtFyjw+/933u3LxBCJEHKfL+OPCDFHmQE9uU6QG0wlhDaR3WGLS30n8ojbEO17YkMn2OxH7i5KBBpy3vbyaK1sIXLMxqesN2sgzDyHbKkCPeVXJNeK9pW8u+b0jBklHiqiyRbdrV4D/fx8894DN6ViBpsWDo3QaqZBGelUKKBW20WEGsTG5rzuQQqUlTZsmlthZnRdXBvHFkHhkoICWxdqmcxJqQRAYag9yAzsrjy5jZ760Qe9ZuyHalNdh93R07iFl1MFdVSl3JVDWzGkZLQqi+AktoYYEo2RqlIpa9gtgKJXKmzBehJbsG6kIss0ahjbqS2SolCsZ0paZx8mb7Rm7KmqklYLQoN3ZEpJzzbGmRG1QZizIelAPt0Fb4byqPlG0hV0l52Q3gRNayoyUhoQkIzLaUnWJPignqLPGv9apj0/OhgBJIvNjG5JDZNVcyRpKNUqMMOSvRtZuO4htS7/HGEsIowQzGYX2DQlNSJGsN1hGrJCtFwhyQUK6GrSVVjIJcInGcwIFtPN4aap3oULSqcLCAbqlYeIU6sHQuYe08IMmDDECvabR15DKg520o6ox62GJUh7YOVA/mPqPOMrBaKV7/+suYzqBt4YGLLBcLzrpDLsbI09OM1RmlM+fngQozDyxSq9hrNi8uWVhDdnDz5EQguNoRponlakHVhb4fMC7jXEcIEWc9znvCGIip5/mTj9icnwrwv2k5PDym9QeoPLLoHLGveG8oMbEdB7zzHB8fst1uqEWCcbZDEtmztRjfkErBOI3vDMN6glhnlUwBrVitFqSY5wKyztZ15s2LpMXGlEglziocTc6VlCUZzM8jw6wqU1I03tE2FnQlponlwgKJpvFYo4gx4NSsECFTinCm+iiDxsZZhlGWAhJ8IEzAWjMhTuii5ful+UEYMqlW0lwMLBrNyVGL1Q01RfpQaFrLTmhkdKXmSGs1q2UWNkgy7O83bDdbDvYsWhdyaTDWsnQObxRTDhjV8fK913GLPTabxHg6ce3aPnt9z3ffP+Xdi8R/NT7g3rf/Ga9dfsJrxze5d/2Eu8cH3Dg4ZElLfnLJ+MkjlnZB9ZnsJrCVYmUhoE1FVdmAltmuorRGWwtW0nJnH4y8R1rUdGZ+v+ZZProo4SrtFDVGUYwS1tb8NXbDwqJlOVG0ne2au1GSQlU5M+t8FmjbYFYtaql3HYn0E/PX2cnvcymkmMVO249sx4F+2rIZNvTbDZvthmGzpd9sefH4Ceuxp58CU8rElIhVBo8JJXwy53Bdh2s6rG9pu45Fe8jisOPw9hdm1nmlRCmQN5tzQn/JsH5Be/6UcXNGTYF+e0koimmz5vLygsVKzhlnK+vtmkVrOD/fYI2XgBktdoMUBNI+9CPaWU7PR56djdhGc7zfsFo2DCHjHCxah6PgdSFOA2ebnlYtsI1H0o+tKBUoWLsApYlKE02LN4pF6/GqUsuENYZaM0bvnnVZFkR5biYjTJvI1CfG9UiMkVolHXt+B+fByq6J3A1jFLWqWd336TP1U86S/LuaBxNXQRyzAlA+yq4km69Z+f9lmyufkVPGasuiW6CV5sHDB9x87VVirKT1J3z+8+/wta//Cvcf/oT3f/BD4pVaFRls1ToXuVIVllqlHtGVqiZA7FF5mDjeW+GWimEMhByJUdFUyCpinaXvI9sXaV5Uyva4bb0UfCnz6OPH+M6xd2PJL1y7zb/70ufg979PfPYRn/3cq1x2S/7zD37K/3e94eYv/wL/zl/9TWznUVrRKLGAo4TLYq3FOEtl5nWVglFcDUarqhhThb+FPM+vzC+7Bl2bT+ucIsW4AUzONHpuHn/mHtTKyMJTKWmAY2LcbPjo29/m//iNP+b/+rnPc71UXj/c4589+JAXoeeWdlTMPJiT4UoyGkhEpXmeej667Hk+JZIC5yytk6Z8qSUN1CuNR9Eo8FXsyHq+VnSZnduz0kTqFFECMKvCd6EZMgTa2YTnwafRwveak9mV0ngMHqnpjuZzrBoPVMywgX4LqtBqQ3QteW+PfHid3/76b/H8+fv84OMfUBCnSpwTM7WS8CpKpGs1pWimUJlKJmVZ5OYcWTYe1UrqrLaGcZzYDCNj2C1hqiic67wQ1kZCm5QRFXOSxOtCFeunkXtFz/eoKACl3tLKzE1fuRruGa3wjeHLX3qbO3dvcR4Kv/wLn2exXPHxh+/zfn/G97//J7z/k3dJaUPrPVOQ+rhUUUWFUKAWzi8nFm3Dcq9D28Tz06cslkuGURwy1jlyrVw7OeD4wHF2ep/PvPEWf+brv0UI/4A4PadbLXDO8Z3vvsd6k9nf93in2D9S5FoI445xJitFqwqr/Y6+n0Tdj2BDyJWihWP26TpBgOUp7VhyCuOFRYgqaKcZpkQIlZgl4K5UTS4D3dJzcLjHEC3tZuB/9Zkv8DevvcX9T37Ko2c/4Kufe4OLxQH/8Q++yT/se/a/+BX+1t/9WyxO9sm10JgWbxx2fq4M/cDe/p5A5UtGG83eaiU/C3IW5xmzQ52HtCXLkgoRLSiEhwufDoC4auR3bYmw6nKUkDEZhs5NfJE6v9Qq92uYcChIgVoSZr6GVK0zsxVIimdo/ssXzwlvv83+/hJVE4e3b+K8+5nzaLd80ldhCrUISqgWSXFP6VMVcsmFEjN5DoeIJRNrZpzV4rVW+ZyQhRubIj4FXJzwY4/bXLJImaVSHFjLTWV4te14c2+fe67jWCtsClcKaLWbcMtxIUKLlHCpipo/J3Tn+TGJd8dLnhmFcZ5F0+C7PWx/TlM0TeMlybuI1T5lmYnGGNEtqHkRqnWh6yrbTREkgNLCsK7Cas5VFg39ZSSGRI6aauZe11RaXenaDk3EW4PRmhALl8VRo2GaJlLMeFtZto4SoRro9vZ4cXomCBiThFtcJKhh2o7sa0c789+3w0hCeJU5iSU3JRn2OSPKonuv3ubw8IjT52ekUOhWC9pxwLeO87NzYW33G4ZhlDRoa0X9PvSkPPHxxx/Res/hqkEnsRX3UUQFY4iEHLDWcbi3J+q9KqPhVCIpyZI5pUTJBe8s55c9UIgpoyu0TcMwjuQacc7RVCdnvVZiewVClDRhbTQxR6pSeCcoJEpCk9Aus79csOxahqEXl0+urJM43Bqj2WsNbaO5GAXJoYpc+1+9eZf/4HNf5fE//SbZL/CffZX/y7/+Pb5xuWbjHHfu3eXw1jE3b19n0bQYJ5bckjJ9GnDG4pxjN6FovDhahn4gZHH1LdtOBEa1MA0jTdNSqQzzYFWBYIOMIU2TcAxn+3RIUUKqrCUBWllZ0AKqZGrKlDhznEsRvidSZ25y4e89fMy/WjSMzSHWWJntIKm6CkU1bhYKfPoh4486q/Cr1AYlo0rGhIRJGR0u0L2czTZnnKp4KgutWWrDvjEcaseBtRxbx7HzHNiGPW1ZWUEBONXIeVUCdU4OZp5RFAzkQo2FEqfZbQjPT1/wpFT+68sXPHIG4wyL1Ypj5zg0hmgg1spFzfQ5M6TA5RBJRXN08wanZ88I00Cez+Bhsvzy6oB9veW0MtfW4mDY9Jl+KKRUrhAEOQcanzk6FNdQihNDQEQ8Oggn3jZofv6Pn1/BNw8olFLk2QK02zjuFHXGSNoYWlQ9dbaP1avCEmnYa0aVSpovTKVlKFhrnlMBZ15FLeSQxGZnHdq181DDoyhioUVhrYIcKVk2UUbtmlvmByPzwEu2/vI9d2ojaYJ38nldsgwUZ3hqBcxs2d1tvdQ8nZdOyFyxMorWYsMqek4UrriiBUiMDMmyCrK1zgXUJI1yHDFazQNM2U5ppUlVtgfSGBtJljMi/e4vLoVFqBQ0hjLb8ES2bWRUOktfc61zETgfECkJ80LLwExYTbvtThZF4fz/yxk6T/13W7Gd6q8UUk7Uuhv2aVSRAUopBl20RKrXh5RwTtGZWkTxWbJiSgN1hvHqoijF0bR7DCVglPAttNK0jZPXW2ummWXTGJHvKqXxBrabEa0yYwzstZZVY/A1Y72Vw2aWBUsBLUWOLsI+KlR0zWJP1lb61xypdU0tGVdntSiGA2+pJaCy4dWVxreFuwcdY9njd58/4MmlJIcaY2UzHCe8bzGq0K8HmpXDthrtWjbrnhwzNNJMXmwzpt3j2p078/VVGIYtz1+csrrYcPPmNcI0Ecae/a4jhi06T1ye3uf5g/eFB9Y0UGWw7K1B6w5lFOvtRjZHxdIPifV2ompHLYkpFsJY2G6DDDKNZm9/ydRPhEG4Nf0oIHLFDPueN8VVFXxrOT7uyHVktfKkCFVnlguH1QucX5ISPH3wmClEDMIm2E4jzsrgXFsJq+mHRE+mdfYqQdEpRyVhvAad6RaWoZdzoVFZ+FxKUv/yPFjHarHyqSrDIJSkAQpwks2UUecTrbesWvBGBsipRlIpWG9x2nOxiSwXDSUV9JSweeTlG0tSKsQKeaoM/cTi0PFsfYqq0JiWZ4+es9gD7TR5fMH77/d88METLoJluH6Acw2nZs3lJ9/jj378xwxTpN0/4HbX8D9/6S5v9x2v33qb2j/jrH9Mv16TtxMhDrO6QxoBbWTIXq2co1pXDAIotswK5JlZamdYv9UOoxuccihlqerT7lHBp4M9rSga0AblPLppsL6ldF7g1zMgG6tR1qCdRnlLMZoyfz29YwbOxRhay/liHcqK9VhieB1qr6Ec7gtaYOYiVm0pdRb310rOmRxHpjASh5F+GuhH4YiNfc962LAZNmy2l1xeXLJ9ccZ6M/BsCgzTRFFaxEdtS9MuqVrRdAv2ljd5+drrc5ESGIc124sXvHjyIZuLp2w3A082a/YP97Aa3EKzWs28mrMBbTQ3Tg4IU2KcehrvWV9cUMqEtWKjOT8bhdvZWEgFpwqd1bTeUsg8fbFl1XYcVE1WlkXTYZH7pTtc4YxiPYyk8526r2C9g5LRO81dFcVZLaLk01rCIpgXRLVUsTwXeX7vVCG7j912WOy5ip0g5NNh3e65x7yV1z+jHplVWlo+p1bhk2kly7crXcU8CETt0BdmVu7Cxfka6yzbfsPli2eEuan6/d//n/iVX/uzgkswFVUdSouqlirIgR2vSJrOSsqZtpPALGuEN4qCVJIgBnRCMQcaGM3Qi+pCG00thlIV1jq0qhjneHF+TqqKg/0T7h0f8ivXbvLbt1/j8ve+yR7wypd+iY9Kz3/6ve/wx9rwp/7mX+OLf/pr4kSgYu0OlVCvkBfeS3BDyhGrJWyDIgMsM1vxqxLu4G7ZVuZwAqvNfAZLs7kLZcilCMjbCoMx5R3LSOyllYI28wLTa7K27LUnfPnX/zz/7PEF39wG/tzC01JoveVZv+HGciX8ThlZUYlA4bxW/sHDZ/zO5SXP2ga6Vob4QxUuVM24WrC10NRKg5qtPlosfdqwNJaVtuwZw8o6FsaxUIalMiznRqDRikZVrLy5Vyw/uRw1xciQb4cn0GhKdRgUyVR8noeqZisD0dnGN8dN4/UGLp8yfucHpBvXefvVNzm9/Ih1kiYw10pJYu8sqdJ4w3JhiRlSlsRLZ6HxoObFVj8JfxRj5b1FArBQUotapYlZGmx2CdQz8Nwag7EKlQvOKhaNwSgZladcGUOeB7VynUNB6YLVs4qNyp3bt9k7sHz/u/+adv+AN1/7Cqv9wrf+8B/z3nvf5fT8KV3boHUAnYmlyjNShLU0XhGDDM5TrvOwbeRgX2FNwRpDzqJ6TyFx8eKCRi9pvOe9H32Hg5O7/Nk/+xf4B//0f+C73/sp2mnGMaKqx+LpmlnpWRxPnwxX7h+lKqVohn5k/2CP0+eXUl8y27WZd+q74J25z2Cn7pgbZGs0rvFstwNDFpWK9dJrbDYblFHCn+y3LNea/81nvsRfvfUlPvrxd7nYPOadz32JH05r/pPv/Cu+q+HNP//n+bW//lvURnqa1vuZbSlnSpgS+6s9Uq6EmKilcLjcw2hDyBOqcrVgYz6xlZF73MznAlrJsGzuTK7skFXSNus8wNwFh8j5O7MclZ57EXX151XN2H5gpRW6ZGIpOCPD4CtrWDZQIj8dzvjJasHi8JiqK3feeB1rrQQ6aRFs7PqqnToxJ7l2pTH4dCmk52d/UYJYyTlLgnCKxBhEURwCYYpMMRKDqKxDLIwpU3JGzyo1VTK6ij1d14LPgdWLF9wpha+3nr+yPOB2mmZRws7V9an6kfnPF1VJceBh3PDHKjI1XoZczqGMxVrH3mpBylvCJPVlrUgAEhVnNUnJWd61mq5TOJNpOs+Zq5y+kOGZLAIg58yUZIkph7fBOEml1gq6rsGqgsoR7zRHhx6c4/2fnhOyDE0Thlw1d2/e4bJdElNlffGCadjKkrRUpjwx1sTh8oCb1465mJ1BjfMwK9oigX3d0bUdKQSmkNDWsRl2KdKRi4/uc352xuV6g/OOkrP82RAw8/BRsDmyUI8hopUVV00phBhYryMv377F0hfWmzXoysI4wjowxYzWEWMaYgyEnAhRZgtjTLI0yplc5FnorWUMM2uuBJxzpJzwrtDoSjUIFkhBzAGlJAgoJamLyqzgU6nSes1i4Slz4GBfJ0KMoj41Gqb5mVwrQ5gYciQnWX02WvGnX36Vf/+zv8zTf/jHFLdg+/Id/s9/8Ht8d72ldAsObpyQKKzPz/nR977H0bUbLPf2uffSPdqmRSuNn1n8MKMGQkShcM6JatT7eUkKQ99LCjFKLLlZ7nGjNSEMoiqNInDQVfpg5yWFvtSKmkOQVIVFAV2k5wq10hgLZZcqrlC58uHY8/slsl2cYI3B7x9wcuMG1lppB5CaSlUZmpci4XUppTksJcz/HGY+njz7Qq3UJOFAucjsIc+OT1Ol/1ZFQJRlHFDpElsSXSnsV8WxNtxyDW8uT/jsap9XnWFZIqpIGFKlQtKCN0mJEiJ1GvHWsJkGsJ6uc7x8fICpiotceZwCl+PAWRwZi6Iul9RSaLwnWemTtuNEyhKmpWcE3JOUOJsm3lh0PL/cyMJFzzbzIoIpPSdPQ8YbxdFyRQ0j3oGyimUnXHutDVMEiqLxO9X1//8fP/eAr86DECnq1XyeK6iSZCnSb8ipUmu8ujh3wzTnNIZKiVm4b7vpNmBMwzhGaeIaJwWo1nSdxxiEM1BkU2tqYBzPUcZRq+Xk5i2GfmRcT5QsisJYEiXXeSgDMAdeWC2qPy3SfpnvzVus2e6Q5+pG6dkHXjIaS0zM23wjW8QqG/irLfLcVE0Xp/KQKVE4NVWk+7vmxlRNKUnk+DBvcSGlStUIs6nOA8pSoAjMvcZIArGkMW97tRIqV1EYZ+fQDaTgRWSuYMjK4r1nHHtKHKlJGIVGV6I2hFyvFIfMP1fJGeVlK6iUSKdzFehyLiJ7n0UB7KxdJSe5LhBrhVF1/udBkoHTiNEdyu+4VOVqyKqMETtGntVaeX6/tfwOMUVKjjgjsF+lZFvprCb2G9p50FydppZIv+5JNWFVlpmC5mrTU6vw5bSZgaL1UyWIWF/KrJi0V42wFrkTVWXWlxuca9BotmvZaqYc2Fs0LDuHdo7LdY9bNSyWK0qGi/UF3mj8XsNqtcSgaaymdUu2uXKxiTTNAdduv8p22PDxT3+Cd3ByvIc1GWsjIfVMKVBS5c6911l0DednZzx9+pjOe3Ja0296msawHSLee1w1XGzWdK0lpcgYMilbtO0o2vPSa5/hq7/y5/jvf/cfQxWWVU6Fs3AhtnMl97ccZNLwL5Ydw9RjjRfZhYasCu2yYT0OaDw5VKoKdF2l5MjLr9zl+vFbXJwlPvn4J1QKwyBx4xk122azKBeVcCViiqRZGaqcpTpZFGyHJO+XyVhvMK7l7GKS4IcsbJMxVnSVDawz0ghVpclzEMaVijFXxF5cWSwbKkWsf7mimkI1sO4HvLbcPGpZth0dgdJ5+qTITeH8MjCNAynB0X6H8zCmc+rUo6JjvVnzvY8v2GbL4c3rvHr9EI8hToXVao/Tx09RjSEuNU/WT1htb3NjbfiTP/ov+Oj5hwzbEZs8vs6DL6tEjarEJjOvD8hK1A0RSGiiVkxWk/VsL0QaAqvVrIQ2dNbTesvCNyyblkUjDXanHQssCyyt1jj16dDQWIutFqxBaw+qQRUlRbRJKF3k3jegkI1WMXonuAAlrByMoVpDdRZlGqq1VG9RzoG3KN+gmg7VdmjfUFsPjUd5Ow8jO2rbURpN3ZdzpHxKWpAFUU2ULIXImCaGsef5s2d8//vv8sHpY17EnnHr2Jwb7hdFTsKD9dbTNp69O++wd23N6Qff4viw0raOUgLjIClYYRjYXwmWoCRJV6VpWA8DUxxZLRUpW8aQcUbPSkBZUNSaCSHTjxNH+y1HnePwYMnBomG/dagykdNETlvyZlZOZUXNBzQLQ+vAIFwkUSfLAEZr4eWoWcHxqaFzbvvmc26n8FYz2VU+1NWgUBqk+YisktCJmpUkiPqqzIuzq8/9WS4tcm2KRbNcfe06S3WkERQrofyH2YoXEsTKi+dnMrwyGnTl2bOnvPnmF+i3F9z/+AnaC3z/4nyLQhK9jZUCKs/WvpwLe4ulKHerqHdyyWyHiNOVvabl+GCftm14+nzD5XYtm2ZjCaXKMF1lGCveeI72T7jbNfydW6/zK+qE9//Bn3DnpWNOXrrHv3z4iP/bd7/J09u3+Y2/87d45TMvIaEUAl3eWd+Z6wrvPcYYScmb1TlWyfu0q58Egi6M43muSplZdtqI2gu1UzTJ+Wj0p0vSq0GB1qQSZ5aqKKNzEZu+NA9A1tibxzz65CFZNZS5btqGQOnm9zwzQ+ADQ4H/5tEz/rNx5OLwmNY4VC6oGRauG4tWMM4b8N11ouZhxRVhpxZ0TdQYqGHL/4+5Pwu2LDvvO7HfmvbeZ7pj3ptTZWVVZRWIkZhIcAQJyVSThNiipJZkqiXa3VaP0WqHn/xgO9x2hB/85LAdDrcluRWypCajZbtltUQNoRYFShREEiBIgEABNVflPNzp3DPsYU1++NY5WQy/CS9ORjGzCpk3773n7LW+7z9qL/Y+ExJVTEyUYqw0EwUzrdmzlh1j2LWWqbE0GKZaMdYwVpIFVmEwGCJZCINYixuDIKpAkjSNGydnUU5kBg4WK7p24MaNMURD1wZcU1E7zboV61dlDX1MqN6jMozGFtUFmtriQ2LdR0Y5Sxi9Lgt+TvS+F+VVcUsoI8rFzb9vnjYhz8trnTJGWUJIDGmj4hSQSkB0UXRaaxmNmu2ymHJivbrgt377AS/fusLnPvMDXJyfslxccP/u69y4PmWxOMH7nt3dGfPLJ1iTSFnUWUaDMbm0Ahpyhr6TM2+5biX3Lwb80LGYe2azXV65/QqL1QVPzs5APePtd97n+Mu/xJ/9pb/Mf/V/+d+zXJ+hdIP38ORkzWiicQaGLmIthKGoe5W8R4cBLuer7TmT2BDVHwICi8KyHD6i1lGKvb0Rk0nF5XxJ34n4IORI9opVCnTrjTsocy03/E9e+yF+dvcl3vr2G7RpyZ2PfoavPHnA//2tP+CD6ZQf/Xf+NJ/+4hcIWWRdtpSSKSQfPEbPbDKWyJLSSrs33aE2liF4SBFTZkw0291ow4dYBcpqIUmsEaFEERiI0iY/L9aixPUUwj6XHMhtfq56TtTkweMuFzSmkYKHBJXWRe1Wjv0sE8TDoSdOZtgUObp6zN7+AUeHh1gUFhn1spLP5eLinNVqvcX1xHIsIEQAEiIsiDmDM5LXJ9sAdU7l1+VsymobpeCjlCv4EuU09AN929KtVnSLjm7dcpkyz/SIB1bz7fWKr53e5y8f7/PxLEKBXEqEJCapfIIp460B33EFi9WJXpDAkslm6P1QwHdppTa2KlZGIfe1kj3Fe7lHQNMPimUbWXfFcZXkfA7kQngplI5lxxDQvnKOOEize5cS0StSm1i2HTF3DIOQSxthSEqJZ48f0K/XTPb3OTq6QoiGEy5YLM7EkhwV3bpnvljx6c98lmF5UcQcg2SgRejWA7PJlBAy+7v7XDm6zq1bL3H91su8dPsj/Ouv/kt+45//YwY/lHw4jcqyM+cUSVky3PphoGtl/rfGiYxLQ8gRr+Hp5YIbR2O6vgdj8CFCIR6WXU+MEhPbhlx2T2kfNVZt50NjhYApMfagFP0gOac5RyYjy6pPDMGTsmT125Lvmb0mBSWAUgJnZIfwMQOmRFRqVIn9SToyso7aOoZhoO0DRlt0TFR1zRdvf5RfvvFZ7v/T32EYjTl78Qp/5etf5Y22g6bh+gs3aJOnD540aKqQsNritKVfdYxcg3OWVPICa1ejk7jYjBZQs6oqARhJtOtW4Iic8b4jI2UaZOjDwDB05ezXrLpFifvSBU+Ai8WSzkvjruojN5crnJpymRJJacEJiiNPxUjOim/OL7gYVeKuHNVcfekWrmqk2GM7GVLy9NT2mfpDcWdkco5SHkXJb9wIpkIghiQty0PAD4OU+Q1DAQo9fpCykCFFOuCMxPshkoceTj5g8rDnJ5td/uKN27yg5azJUaGCZBeTPDkECAGDWJwrDLdmM74RAu+0PXOtWQdPTLHEp0VevHLI0A+Mxg0XZ2fUTc3Z2TkxbmZWERoFDB+EgR+cTPmDvGJRcB1F2jom67qR+VZpUJFVJ66Q2CcG75nUiuk44WxCq4irDeOx4fv98X0DfEkp+gQ5JFACBJADlVFYnXFWYbUtQIhYQIVxk8vIhyBqO61ROoMxmLoWljrD4XhMRnLLVIYQepJvyVGyTMhJHl6tUCkRoiclzcP33hG7CYauk1BxY+RBt1bR1JL9p428C43ZqM8o2YEBZaVoQ8oxhPVOMaGTQRuxGae0GVJliagK0y4ZQE6ajsQMUy5ht8EMCVEO6Q0wKpeHBiOV65vBPyeF36gaENubzwKk6RJ2HoMAbs6ogoQrIlXh1UEhjX/aWYbStmSMBLuSFD4YrJLCiMpkiBCVprI1MQ5oZcUOpEQBFUMoKj/5vHyWHDQ26o1iqcki+dsqu6x1KOVJQdjloY+Y6KkriyrtHyrLYqEVJB9IGCIrlJI2SJQhxUhIHhDp+waAJUOMPbGVw9qqgEbaUqP3RDxeZWnk2qB4WdROSktgbS4MqAQVpzJQKVENxYTKolg1xf4ol02xXRsZMFXOZB9EMtx7ctQEn8jZsVxHJrOadnlJDGLJiCGxWK6Z2BqVMufrFaOdfazJjGZj3nv3TXSlMQb8MDC/uECjmV9csLN7wNVrt4h+oG3XnJw8I+bM/vF1bly/wZOHd1nMn5H6tdisbRLZe8osOlh1Yn03iAL16gsv8+kf/Rnu3X0gAb8hokzJb8zPlwef5LVRKJTOrLuWpqlIKfDqR34ArTRnZw9YLZY0zZjRuGG9bum7Fq0Uo9GYR48esFwmptNdPvnZz3Dl6A6/+Rt/n8Gfk7Om8x5lLKNGhht0ZFQ5FsuO0chhiPhelHVtG7FW1HiNcxATO+OKvo2ETSZm1tS1xXvJ3ly3HT4Iy52jPHMJhTKOVdeL5bf1RCVdjs5KIYe2EWcFys/JMwyGgz0pBbno+rJgJAk+Vgrfe0Kf6EJL0494tqw5Xa4x1ZQXb13DjWaczzu6RYtfrVl3LWjHyy/epn7/Lv/RJ27z4h+8w3feeINLM3C7OeDFvVvM6hF6BKoyRFfsshtQL8tQmZRkfnoySQlZ4YvqzZPoU6KPiTZn1imxioFuWDHvMpdRLDIpSFlGKoyfLsBL1IpshSFUlcNVjompOa4ajuspV6sdrtdT9quKKngBo0DIBg1ZmfJPuVB03ojKtio/igV4o+oFLfeHEdsd1oCzpNqhnZX2TVdB1aBsBa7CulrUgc5BU8GoBmdRzpDqKbEZc3vngE8dHdOeP+Ps7Cn3n51yfzHncduyyJouRdq2pV/BCktSmR/5sZ/n/ttfZX15wqrv0FZhtWIyksyQyd4eVjtWq4GL+YIcemSczBzsSNOttQofI84Zkk8s12Lpb0aazg8MqeJiPudGbeh8XyA3j1OBfrXAqMhKT2gDTFYLQlyBkUgAYpDhSqVyHipi6CEnQlkGBUQoWavlo0vEwnNwoXj/YLOAqueL5oax3CjyKOehAIabj4X8u6SlFWV+yVsrxN1mSQXwxVYmY6M04YlaMNF2A64RoOZL/9YvcnztJraPvPbqp2ma91ivLlmvFvRdBIQ4G43H9J1ntW6LLUwxDFGA8KLwGbzYd1xVsbd7xKuvvIarNIfXF/z2b38N6cTKYsPKm1KFit3xlI+4Mb/8iY9y83Hkrdd/jzuv3WJ6dIW/+8Z3+NUP7mM+/gl+4c/8CXau7JIUzwnFzdu+fJ6uqnDWEqM0TKscyyIl96ci44N/btFD4jFyAQ90ifHYqHCKWJ+cRZFojagaY4wYbXDG0OVINqqAspoI2wzDJMwttlJEkrTVFcun32RFZSnAyUqjIrzlE//t4pKz46vMDg8Yu4pJXYmTI8uCXeT8co8HaagLpYym95sFoPw2kPgRJ0pHo9TzBSOrMi8kVIoQI2q9RqWADZFRSIxCZJZhN2kOrebYao6s5lBZDu2Mw6ZhqkQ7lQyyzIvMFY0jxIxqe5x/zNXjV6jziGV3jgoRW/KgQwKbpWE3ZMhBkUg4p8hR5oHKaRJhC1zEkBg1mnFjuFxEKYUq5GcmoNAYowTEJW9bcqWdFvm+IQuwMZbYPy+ZsKYE9KfMuu+pU8ZpQ+UMh7tTvvCDr7K7oxnmj3njyROePLng2cUFp5eKGkPnE+dnFxwdjrG252KRSDFIfpQz7Mwcl4sg6huEFGj7SD+0GK2YTcZUTmFtxSc+8xl+56tfZb3saHfg+o1bTMc7vHz9Dj/1xS/xW7/zz1B2xbpfQdasl5Kx1YwaumGFYCnPQXAB+QpYoz4Um8PGqpwK+UxRtJnyfoaz0zXzixXGiU3axyQK9qzxfWQIUA2Z27bmL73yKf7I+Dbf/dY30Hrg4698kv/uve/w1x68z8nhFf7Yv/s/5PYnfwCfJN/SaKgqyYiNIRBTZjyaSKPj0OOcY3cyYWQriSiKQTLTtp+7LvnEqRDkAuALOSPHjUQOCbmssrTSJiVsnirZfDE9z57LueTy5uffv5Qyoe8Zny/Rk5pBy3peqc2CLj/n8jHWSuZ2hsDuaMRIG6ZVLcRgEtI/qcx6tcIqw+0bL4h4Yft8B0KM+BhEvRNCATxzIdtk8Vc5I3b7TTU3snthqLKVrLKcSWksP3/ovgg+0fYd88dnnN1/yiIGfjsE+kcP+d8evcCtLFZHcY09/1kalg2XIXJgLOMsuZwpJXLwVKlhteoLWOLIasAHz6Q2Au73Ue6NLNFM0T8n9/tewBKnDInncRGV0Wir8NHjXIX3icEnYpSGYaeEjPZZEXymD6J2pGQrivhDNmlnLW30LM9PSChCttiq4eXbt4gZFpeyY3TrNa+//haf/OgrNKMd9nYPOdw7ZblaYo3m4uyMnDNOV0xHDbPdXUKInM/nzGYzdndn5EUvmcNoUAljIEW573PMGBQog7ViAU0xboGfYcg8ebpkveiZjR0EOUu89yitCVGzbANoUeelnLGuwmrJSjWCgtN7T13Xsr9qjQ9BAEctO1pSht1ZzdlqRTfEklOvsZVBW0/XR5lfreyNaMW6LTniQNutqSuN01nAPOOYL9aQE411mCiK8p/9xOf4E9c/ztN/+FvEccOjm3v8ld/9Ld7rBux4ynR/jy4EfIq88vIdjm5e5WD/kNlsF6U1dVPTuJphGIgpsjOZ4qwrRIYQP6OqFoU94mpqh54UIkMBonKOmAL2nT55xNmzJ8zPL6TN3RfBibE4J5mEWMswJGxTw6JjbwDTwNLL16azKuIsjcoJj+LtoSdNpiiV2d3bo65cOSMilXVl5oPNMJg2IpjSkBXThlzQWyKyqjbSPwrpxPNzBwp2IL9KMZTc4IHQD7TrNcvlgtVySegG8iRy2a34B2dzLt/9Dv+zlz/GUfQyD0WJd0jF4p2i3Bd92d/f7AK/bzLLnBn6voByzx2c9+/exVpLfFYA9cv5Nks+b6cxwQ9OQiSmzLHVtDGDgbq2aJXLrh2I8XkDegiRERXdKqJwzIckjioLIRmWF55rNz50wP0b/vi+Ab71kAhrkVQanTAq0ThwVtM4jTUaq8sUrUTlJ5YTkWnXoxGVaWTJ8a3kyqUBqzV91zG0pQwjg8oapWKRBFsyhphgCKn4vSVMOyXPpoq5corxyOAMpaFUFQm/sNYCxipS6NHGoJGPTQasqBx0qkSBUdrJlNHFZx0wOqGMlT8H5NhtlQhgxEaWi3Iga2LW9EkRlSVnCEkRilKo1hUNCpeK5TmmrTouJTBF/YA2WyY/pSxqF8SDZJUs3x6R5efgcUSUlkk59qEMEpYUpH3I5w6nEklZqGq873HaEHFEI8CYsOlCLUYlAz4lV3HT4iWHTibFXi4jVQ7elMvQZUjZk/KAT0CVQNeoUUM/JBrEEhXJRXYs1ukhZpQxhFgRQyCVAVYZTYrCjHbeY6wiJvmemCwKxkSCFEgRdBkmtJU21RATroTYyJcmgyEqi+qzfL262HvY/FQWK8lFEZAbJTmTpqlBW5IWBtYoxRUTuDSW9uFjnOmJJuH9GlcrIg5jKkLyLIfAK4OlMYr36hHL5YJuyHQnJ3Trllmzh3OGkDUxScnMzs6Mtu/xfU/0a1LsqKwm+EDvNM9OT9DNmM985Kd567uvM1+8xTBI1oW2kk+Rogy7ASnaUBl+45/+A2azsSwTOSPvcGGFU7mAtFYoA5W17O/vsl4PvPjyHU5OLtg7eJU7r7zCvfsPuFyfooYz6klFpa/gbOTtN7/BtNoh9GDHDcv+EYvuIQex5nOf+gEenzyjXXWczOdU1RqyYrXyGKsZjxRXR2PazrPqIj4q6rI4qSw2iEUbcCT2JzUmi9K395KN0vUt3mfqUYWrDI4sVhAlqqEYDZetp6k0Jkvrd+UsTS1tfDGAdTLIhyQtW4t2RQya2ahBqYRTmcluxWUBGYZB4arI4dEVzhaWp+drzGTK3uERtXacPXnGw0cLhmULaYk2itnedcy9J/znL3+EG1/9NqvHA1M15pOHLzM0hrfbOW8tLnl41rJKgcucGcrJ5wCjKHZctkpLqzSV0owwNBgaU1EbRa00lbbMVM2BstRKUyvNxGRqA1UlAd+uWCrlftZ4lRlUImTPoCOdSqyDYjlE3pk/5Wv+fS5C5AeOX+RPH95gz3clu08yKiQX63nGYd4+Y1aeKf08R7AcfvKTKgrOTUtnkbfIMJFFVcs2XZSkdAErRLabnS7AoIFKFIC5qqmUodGWQzvh1StT0jVNrzTLGJh3S571K54u1zxc9JysOz750uf42S/9HF/57//ffHD3G4yryPlijtORqm5YzpdkrbBugjGZpjIMbcIHTQwD1mV89PQtdK1kUMYwoC3EIYHTXMwH5qOBRZ/JVoJ/rZKc0GRr6tjRDzWrAXbswKpfopNHGyD2hbgKsvQqSDGAinSb76kSgGlbpLENZM9bUC8V6/cmX08VtlbeB0mU7gWAU0XBkikgbclVeq6w2eS6yp8VxaCokLQSkiRGSm5eUTWpDZAoo4TDcrB3lePDF4g+0w+ez/zwD/HZL/w4i+Wc/+ev/G16fyEFYMC6ncsXmhBgOiXazpevUu4B5yy+6/Eh8vDZQx6fnkGOxNjjQ4JcFXAlMHI12tbs7u3zA9rxH776A9jvnPDwYs5nP3+HZW35P3z9t/iNVcvNP/IlfuTnvkQ9rUSxUhRFm+Vb3reiCqicE9VKCGxsy3yI7IsplWfkObub8kZyI8BRKiw8RS2yZdg38Qnl+0mODJ0sU+hNdlZCpbKsFUXmEDz9qqUmbQHhmCSSJKdCeJEIWWFi5huXc04mE/Z2d7myv8/Bwb68B4uq02zeQ5vlIG8UO0Au2VtlnkiFYIhR8jiDHwjeMww90QdCkByvkLMUjCkDlStPvS5WcL39+8kZEzMmBJquZXf1gOunkZ+u9/iR2YzDouwXrCPilUNFjQ2RdPYU/XjC1dEO97pTuhSIRJxTqJRxBsZ1xenlQJvktaitZMF6D1qJrTYUso8sGV6aSOUQN4OW2VJeziwKzI1KTRd1bNqc5wIIGWUImxm4xFwYWxUQSMAZY8XdcfPoiC/+5BeYXzzm/fvvgm249/iUoQv0feRGM2O249irZ1ycPCUry42jiov2VILgVU3vYWcMh4eWi7kX0tBkKjeiXXUELbOSdZpVd8av/drfZbVagrV88PAhKk9QdcPf+a//Kq7y3Hn5JR48eUjvM5cnPb1PdIOn74uClKJ8YJOnKQSjQghHlGRRbgp7xKGuySRG45q+22SfJYYoNnQjox05STmBzmC1IyvDizj+01c+y482x3zzm19nsmd45bU7/K3vfJu/ce9d2pu3+Jm/+EvcuHOLlCQWw1pLXcv3vB9EOTRuni/wxhjGTcWsaSBtshn99s7SWm9VdjpDNhm9qZHOfIgAKXE421igYuEFAQ2LxU6Uc1FyF3medroJ3p/PLzgaImokBG6jNDZRGjLkYwuhpsu3PmFSotKKYb3k5JkQN1YJ6Z0V9P3AeNyQwrDNUje2QjXPbfNS5CXgVEyboiNR9KUYGHzHEH0B8ApJmTYFIDJ5iEhImmZ9CPjg8TpgnWFyZ8SNW9d5fO8Rj956l9/zPf/N6VP+0yuHjJOoXOV5Ku6sFKmU5jwm9o2hDoWESqICzSkJoNdUzFcicIgxlQgouLoz5tlZxzBIy7WrE9OJnOFGR4xzLBaD5PIpiQKSoqcM3qG1Ywg93kcGxHlkdBA3hZa8sxByeT+LE0BvIWHJqCUHptMZ61WgbZcMw5LYXWJMhXaW/d0Z0+mLBC/lIDlFnLG8dOs2k8mYs8sFl5cLQt/i/Zr3Pvge33v7TY6uX+fk5JymrrhYnOE7URpbbajHE/q+JWk5V7XROGq6ruPoaJflYik220IUkTIhOZZrKVqpK/neDzFhdMWyj3RBkRlonGJ3OubkYgVZsTN2VFZajPsQCV5mhZgFwKudYdwY+n5g1UeWq5aklQhjimI/peIgsaKmjCkRlaL3mWHwaC2gqXWGqBQ2KyqliCFjtZNSFBJ71vJnPvdH+dLkNnf/wT+jPZhx98YRf+1rv80936MnI/avH6FGFVeuXyPFyHh3RG0Vi/kJl4sLlNHs7OwyGo8xVsRPqzbSdZ1Yh7Xi+tENxsaRc6L3Lev1suw3kRQGfBxYLOYsLy64vDjl5OED0tAz9F4K06Y77O3uYo2cS2SwdU1KmWo6YnV5lxfUCBUVp23PuKqwhQgQcgla4ESDtoYQA7s7O4ytlVgAo7lx9RinSqNwEAB/8PJPTGlLNMQcJe98604sd74SUkJvZpwCE8Fzb0nKmzI5i61HjPf2ODIaHwYuLy44efyMaj1hrRxfffwBP3z6jF/Y3cOERI6RnC0qZkhyBqkkpJdRmcvoWaPoS/6k3vLbJUdasd3x5Qks5LVSHzqL5PPvcuDC99waj7h7uZK72srZ3A9SMmhtvSUVZM7LEp2moBlJ2ePZaSShiFHjh/8/APgqA5MGaqeptMEpkdcL5pEEjM4RbWTB3LCLYoGFfrmiV0sRCORSahA3L77YVDUixbfKojTCAg2REKXpNiGyVm1h1NgyQJaSiJLrl3MmBFH7SYBxwmottlslfnu5aMVKnFMme1lW1gnW3tEwQPagQmlCErYpDQGtKoISFj6jhM1WAY0hJMMQFVEbsX0oGVCyAuMkE2BUSTacRgJ4xb4sAJUt0v1EtR0WhLWXwSqHINl9pmJQtgwJCZ09MRp6ioIyR8KQ5O93krGlMBK6qRIpirIEUxGU5GvlnMjZYkzCAGRdAumFNfdDKGq3woyVPB9r5Q2ck9rmEhqlyRiSGkv5gTbMJg3KJrJLuMoydAMQaEY1sjYMjFwiKI82lp5M8IG1V6gcpPQgFwVE8IQoYao5Z3zoZHCKm+9hwiiFVQIeWmMLkyf2AlEebo6WojzJ8lpsltJtGzQI+JcllFRrQ+OsZPaljE6i/AxKcfrsGYvzJV3bEdHs7kzpupZ2GORi9wvqccW1CJ9uYdVk7h9OUCpT1RY7njCaTlmuWqwxTPb3mI4n9P3A+dkF13f3sEqxDC3T3StcLi4YjSZ06wWhO0crzfvtGps7ZiNHPRpxer5EKQlXrqpaANScee2VVwjJ0p6taOcerRwqq7JUlEY3a+X7pzPGaZpmzGx3yro95977D/nERz/Jj/3wT/HG669z8+oxT79xn+neLp//wS/y6u0f5O13v8G9e9+h85lPvvZTfO7zP8V33vg9Ts7e4JVXbtCdR15+5Qc5mO7y+MklPt7jW9/9Lc7dmuW6k/BYawgBok846yTfJCn6Tga+UeUkRDsKgDCbjUiLQQAFa8ghyrAQE9NxBUAcpGErhkBW0GVR2VbO0g9lMHGZ6cjSh4RXkGLiPA2oHNGmJufAaFJjiMQh0GjL0c0dzleX1Ds7fO+9jmWXmezsMdufkJTi7qNnnD67IPWR3WbCqh1zuH/M1Tjwn718lZu//zb52YqD/R2al1/g7z16yt97es7Twz2qm9ew4xGmqkSRpoQQIediaU/kkokRSjZODEEWZx+IPhKjJ/mB7APEhM4Jm8GUny3SQiU5WYpKaRplGGMYKc0Uzb6yHGjHAYZdZbmqHJ+zO+w1jou84h+dnPM3Ltb8j1+6zW7fgYasPlQSpBQoC8oQtZABAuyZssxunjld8pY0ZJG7q3KGq1KkIIHaUe6UpEpSQlE1bH5oBNgv1q28KRBRWhSF2kJRWY2tZVTVXGlGvDxp4OqE9HJDnI5QVypUVfPLf+4v8cHDn+F3f/O/JYfv0XVnrJcLlIHlsmO6U4L2c4UjMl9fsOxlYJaLWBNSpPKBUSUZbyEmASwMZFcR9AzjapTqxCYUFbUdU5mavnXUlWFcFSBHG3L2oMTsLslO8n1VhVDK1XMmEqW2INLz4ilZMDfnXWYD0rBBVGX5YxNrIfe2MfL6xPLsUe6qXD7GVnlV7mlZRDcKQDmH0ZBD3ipPytyFQlG5iugDvut4+ug+v/mvfoNr14+pqh9nGAyf/exn+eN//M/ya7/2qzy6f5+chGzbkIxbYizL2qmVou8p0RYGnzRt34FKWCR/J0TEOmEkjmNnuo8xI36wGvPvfeQl+t95l8qN+fTHX+NRSvwff+f3+aayfPpP/nE+/iOfQdcSlm+dFYV/yZHVZcDVxlA5aTEP0eNT2BKiPga5a7TEYAjjHdi03W/aLzfA6mZo3qgwnxejCL5N+S9W622oeizL7gaMzZntJK4y9Ks1E61QxPKeyNuc5Q0OnJMiErnrV+jJAXUz4tqNq0zqsTD/xa1gNmDG9j1FUeak8r0OogQo70WdBSTeAs9/6P2YxeITvOR5RTnTQh/wg6f3HcMw0HUdfhgIIdKRiFjOJzucqhlPHbx+PucrD97lL+1e4VVnMVbucaUCORtUVNgQiR/cY3+msCFTO7jsEk3l0FYxhAS9hLObssF0fSRniXZpnJDbaUhMarG4Vc4xxMjOTDMkOd9SElWZj0GyoATdlpmrOAtsOfPkmdPEkLauDwERhAQeN5bdccNHXnuVl28fof2Sp4/e5Wx9xsn5BRfLDLoi9JJpVZvMFz7/KXYPb/PO61/n9GLO2fycFw4nPHjaYQ10feJiFZiNDYf7hhAzjdM8PQsI36IKKJHBZE5P51ibONid8fTkCfcevcvf+3u/SggdJ6dn3Hn1ZYypGFYrIiVOJgmxlrPCOPn6Y0xCpJevGxBLKXJ2mJLbm3MRjCjFEKRFVGG2Z05MkqtcV47go6g8MmQid0zNf/7qZ/j86GV+9/Wvcn1cc+2lj/DXX/9d/h8P7sOrd/j5P/9nOXjh2hZkc85uHT4hyn3UVBV936PRWGOZTkX5pmIikghZcrHHlDmZzWxZFh42gNB269yq3fQmC7eARhuiZdO0K1+/KkrA57uGLgS6j4n7i0uua4uJUjDSGIf2ERUFeIZMuU6prcL3A3HoCSFgg2G1uJTiQW1LDI+8Du0q0rdr+dwLIbS5nzdup0wha5SUKGxIvJyS2Dc3XF6W4kZTCDxZqdVW3ZdzJrlKSgFjEHtdCPgqMPuBl6md4f3f/y7/8NE9/ljY4weVLs3Tm7uIolqT6KCZhlEupVDKEHMgBi855Npui6lAiBlXjZnPe3EhlYwz5wxET60V1USzHgIHu4bpeMxkOubZ2YrHTxakTkozoCehCvCYC7FlqK1i3Q3EGNHaolGkJKqzXM56gN4PdCFj2sh0Mi5ZZhK7kn1PTp5l7Lk4PSUmRe4O8TnR9ysePb6Hq2qMrdnd3+Nw90URtGhFP0RCiiz0BaFbc+P4Gk+ePKLtW5b9khB7ZpMRbmxYrVaEkg85KfFAMeeSGykxT6NaMZlY2rYlZ8mdC6En+kgaBlSJ9IoRppNRISoyIStx1FiDjwMxq/I90cjWJq/nuB6JQksrVoPcespIWVhKGd8ldLH6xkiZryLDIGp+rYCkyUHeZ+OdEX3b4kOg0gYbYb+e8hd+6o/xI/YKH/x3v85wuMebxzP++u/8ax4OPdPdPa7cuo4ZjWhmY0bjMeTEulsyv3tKNaowlWN//4Bnpyv0hWO1WjOejOTsIqPRvHbnI4wmY1SCZbfm6fkzYhyIPrBcLEBJoVu7XPH00WN83zEeT5keXyNlRVU3jJuRkAJBgH2Poh4ZxhPNYrFGBc91dsgxsRx6ppVDlwxflAiqBpXpsiqxJqko8EunfQanFePKkZ3ASDGLC2IIEncUUhS1blHhxRSLgCsXZbXkCMvdLw+kLRm4m8qOrAXYNsayKe7MOQlhcn3M4ZUj3n7zHbKCi+UFXzl5xBdn+xzEItopxaU5xnJGCcFgc8ShCD6UuVNwoa2TaDMEbeZf9aH/tDl/AKUiMWe8VjzpBz66O6NWK9ohiUUcEFRlI0goDcWFlLRWYw1UKpO0Zd0KUYDSf0ih/G/64/sG+KYVTBvxays8VilSKrLyctFakf6Qs8KnEoCdVHmB2XqzVbFYqiRDQiaUViixF8UY6aOVymoH9bjG6oKwJkl4kLpntsNQ3FxYG+Y4F3uHyiUksgzJ5c0nH0WBcsWLnZg7zYDC6h6TIraqyNHT9gVhBowOKKVwRi4CpcX/PmSF0ZbKKnqtCTEwdRJMGv2AKlYklwHlZQlLCrIrbXERZYRVsiiIHpOkpUwKR0DrKLlbMVKhUUYxoMEYrDVUVQMkwtCRlcEnyeMxzhGyIcUetbGtZi2gj0oSWG4RJWPOGFuaf1NEZY1zYhMQ1UDGOotxE0KyWKfJJSDcGEfbDZJ1YxRjBd4nstVE38EQcMYRhyAZL05DCiXXC5K2pAB1ZQhDj9GZYBwpWTlMlEbbwtDXY5JryHFAm5409GgUlY2MXEVTSTkHSqyuRhcrcJTgdwWC9itRyCkli3fKUm1vVCZv2rkKIJETYAxx8Pg+Svuvl8SPIYExY4yNaFqMcZh6yt7EEU5PZd3NhiuTMVeV4WTX8e6wYu0czjasLlrWcclk74jKBaY7u/TdwP37jzk+PsJqRb9asFguGLLmzsc/wY+/8lEeP3jEBx+8ySsvvcijR/dYn95Dhzn9sETZCdePppxd9qy7C9CJajThkx//EW6/dIdnjx/RTE/JMXB271EJ7RWreSYT/cBkb8pk6lgu18wXc/p+TUqw9Au+/dbvs3fzCl/9Z/+EvavH7B3c4Ge+/OcZLjuenD7k3fc/YDK7xt6VCU+ePeaDD97n5s07pPaE5bOa4+s3CemSpA2f/+KPc/54wa07P8Sv/dpfoet7clAs1gL4ZqUYvFjlXbHDGufEPps0bRfF8jAEVMp0MchAqpIMFYVxDyFQNTU5KXqVi3JAQKQQJXNLW8u00fS9JNsbawgp0IdMUxsCijYnZlaL6tVWTJoxQ+pppvu8/6jlolVolxjvWmIeOHm2Zn7ZU7kJfVygSFy7fp2jXPOfXLvFR7/5LsPTU0ZXrnLxiev8b779Pb493eWlX/pTfPLFF6ink+eLsJLLw3zowkLJebqJAZAbrhgvs9j5JdMzldwNycpIWQm7HjOxAINhCPRdS98uWbYtZ21Ht14xrNcMbYfve8LQE/uA6gamlwM/li3/890X+AVb8yvrS/7Js8f8yf09qigFMlFLbqCcul7aeJMo+Fau4oO+5VnqWSex5Zosbbw1mrEyjLSmUYpGyWtvldqqF41WGBSWEtoL22Vw06qnBEUpv37eEq5yUfoZyEYswNk4dGVJpTjENg1x+pi4s4Pa3+Plqze49qVf5jd+6+/z7bf+OSEs8ICyihg8KMf8oiUqj6stTVEOW6XwPtH1gQHoBsWokkF75QeqZsJlrrnc+RjTa6+h8poYAzZcYlNLn9as45K01ljb4PRMlFZ+iUVDjqTQA5JPglXY7FDx+aJUxhW5S8u/b/K8niv1oATflIW0zD2qxBNoWTpTko05bZRiBex4nslXQvHLnzfaoHQuKkH9XKGjNp+L2v49IDEgKcPp2Sn/+Nf+LsG3XJze5/GTJ3z28z/Gi2c3uTx7xsHumIojTp7OWXUQciifu5Lsm5S3tgkfIK3KIKpLjmyKWyAYpWTwMprd3V12xo7Pzmr+5Pg6y6+8zs3rhxwfHPCt1Rn/5+99wDt7e/zUL/48t197kWzVVn0l2WqSk2eUaGu0UhIpkBIhJXo/sDVHa1GpGy330CYsPpdFPqa4/T0UZf0mtkPwvee2kw2IsAEMhhJktMnw2iiENjaSjChnYwj0yxW7VVG/ZF2Co9X2rpREwETUMGAw9Yi6bphNpqKzFRmxPJ9FLSgRGBlj3fPPTRWbT4k0iVGIR/lvG/VgKmSwKH9iithYb98vG8emfBmpZIrlcq4leh9ZrpacnJwwf3TGyfkcV+/w7Ss1/+WD+/zlw+u87CLKGoz3W3h0pA1uPmdWjzk82OPB2TOiT3Tl+x5CacodKSqtiFmz6DK9l+UoJFHlWiPNzc4hc44KTCrH3EozJ2S0UZhkRB1XyhbSxk1QnkMpTWFrecxZyE3J/2tkHvOwMx7zp//0v8/52fv87tf+Pus4cPLsjNWiLzOUJ/mArWrW68j5Yg3VnNn0iPHuEfHeCT68x3oaWHURqywhRtous7sjAMxkkpn2ER8tQysKz6EPJCdkggoRdXFJCJn5Ys7rsEUy4gABAABJREFUb36b0WjKsl2z/vYb7MxgOmtoU0KFKM9puYOVyuztz7i8XJB8ksD4VHaCIF835bqurJL3SxZlo5wVvqxXkkEqNkKx7RqtiQFUDtypR/xPf+ALfKY65ve/9Tscj8Zce/Fl/m+v/x6/8vgBk499lD/2F/4szf5MAPWsikNJ2qeTkl3CGc3Q99LUmRX1qKbWlqpkXKUYISRsFieTEFqbDVIABsrnpj9kz0+buJjNvZXlOVBQwP2N7ZRCDljJvlQQkgCDGyJleX7GLeOwKbHoWvasQYfn5LZCgPWkFIemwvVrvB9o2w43cpCylKrpLNEmeYO7PacThAg2pR2cAtyLO4mNIlFtimoEwF+tF2ilmO3OAEMoiuTNvZKFDShA5uaftL27rQJj5X544cUbPLn3kJPFGV+9OOPjB8dCwMupQ84lpxQNCUYkZjGBKSRpiiU2IKGUY9RY+t4zGllUDqxXHX0veaRycClW60SnIxAxTjMd1ais6X1gFAZu3djj/oNL+qGAsZtzr4DPOSvaPuFLYY9ITSN1ZUlR0faFtBUID63AaUO/7uXZKGe+KAgdh1eOUCpx8uQpvutB7ZOzlDdBou879sZjHj+6xxtvLGjqEVf29jk6Pub4+Bqf+cyPs16tOTt/SsqwbtcMwwqVAjuzCYeHB5ydnTH0Lc5qLi9bgpeWW4CmkjKD2dTSd1Io46NisQyMJhXWBqbjhsU6EtYRnw3zyx5TCnW0luidthNrN4Ug0kpTVY6UPZUN7IwVi3Vm2QeytuQoqtrgPTErKdZLGuN0sYsPOCvkr9WSbWktaBU42t8hBE+lNaaSy+242eOXv/gn+GhuePMf/3O4dsjbRzP++tf/NQ/iwO6VPW7euIVuKvSoYTKdsl4v8b00Bhun6bse3Xa88+ARXdejrWX3cJ/x5AY+SxzWq7df4/DgiBgCq3bNk9OnzNeXdJcXrC7OePzgEVrLE+qMRfvAbDRmNp3iqk1JlOZydclkNOba8RVW8wVWKVZDz2qInD58ykvzlr0m41XkbLXg1s4uOgRymcdVhqQFmwk+4FyNsbrEf8kp0YdBMjMVSBFKYtV1oIwAP8bgFNhKhFrSFMwG5iqERbHphyhuspSKGj0JIReL49CWqAqlMNoxbhpSSrSq5cbtm9x/12N3d3nr/IzHbcu+LoVCKaDSZq5JW7Y6plycnJthQcj9ytnS9r2ZXQUQ3GQKPp+PSyYuGUpnxFlO2GzYNYq1V0QvwgKtS9lbEvLamAqtA7u7I9q2I4TIoKxEkqjMZOzQKlFXzyNc/k1/fP8tuinjgygDNDCULDRrSn9fEvZbEhDk/5O9WOnK0AvPZbwSDFzUfqZEIttyaTWH3PrkT9DUFQ9/75+i+ktiCmQiFl0yolRRkYkaoEQFoXXGWmn5yWWBjVGsmEAJ9N5uLJLJhyhBSAniwNAnUsiofkAjbGJWUtRgnYBXlozWGW2L2ikVxieBw2FyoDEWZxN9GPC5JEMUhs0pAymQtSxk2igy9nlxBmKf0Yinm5i2QbUqJ1I2RGp8AmHbI9lLFpO1gVo7cjSYHHCpp/dQ1waCJ0XJulJWURuRN9t6Iqi7At00cpHGgHV1eaMXRlkJyGDqEaEdiES0k4ynSKaaIjkxStgyXWmoRjLMqSjZfD7ARqGAWF+V7zE5kK0iYhjP9qkz2CHhfcZYaKMiuokM2VjGdUVeP0YpS9KRcWU52LVUSok9w0ougel7qQ/XGkq7LaoUrihF6DtigtHeVZKdkIcOl1u6+Sk6tBgtrICpHNoYhn5N8IOwDZWCDE3OhJMllc4cXjlkMV/Qz5d4V2G0ZWdngu8GZrMd5uuB/75dUU3GDKueOx97jWfzd8hR8nt2J0cMKXC5uODajRe5cnhATp69vSnWGebLFd3qgof33uWN773J7uEBppow3bmCUZ7Tuxfs7ExpqpoYetarlvF4xHzpuXX7NY6v3uL8ouXG7df49A/9GO+//Sav338C6NLSCGgw2rJYrAlBo41hOhoV5WUpLbGRr/32VwhmoAtLbhwfsD65xPuWb7/3LT752R/i7NdXPLr3Ll3/Ht97+7e58/KrvHb7E9x94wOSesZ3vvU1sjHsHexxtPcCx3uvcOvGNWI6Z+ghesO6VRgiO9MxXR8IQ6SeGlofaKxl5CykQPSByinJRdIG74tOM4VilTMY4whJqtyrqkgEsiLFRN9HjBG1svcKHzVD8riRsM91ZSFLADQZzi5W7E/HNI0A3ZdhwnfeWXO+9lSm4srxDush8+zZBak3TG2FURBXBjXe52q7y5+/Muaz9+6yePiEyZ0jnr2yx//q69/i5OMf5dM/+z+g3plKMU9RAVEsLcpIGywxPVfwaEUsaqWsNsuAqONyAVJUzjiVJbtJTuQtWyVnqN4CBykHQo4MaaAbPDmIlSXHJL8eItEH5vMFv/GVf8no7gP+lwdX+KM7M371yVN+6nDClWKdkKZPyQ+NcgXQW8PX/Yq/c/IBb9c13WYwKOnIKgZMTOgQ0SFiQ8KRGatMA4wyVEpT48R+bDVjq5kaLc2crmJiK6bGMjGasVY0RjNSBqfFxmxjxqSMDsIyMgSwPWowZCehw7kL5HZAXS7h6TPy3XvUh0f81Ms/wYN77/Hk9Fu0Q88QI0M3UFcWbTqcU+ggbO2iiyxDYmgjKSvGNdROse4S47GhdjWLNnG2SnTNEcuDj3Ll6hG6XVFp0FaTl2eMHr7DdSpMOGM4/RYmLSAZQvKitDWGFFVRgCksFqhRakHZtzacqYA9bKIsZEiRf38unVGl8W+jlEkpSU4eH8pkURul18ZeJ8tQLurSzTIosJ4u80T8ENSot5kn5JKVlxM+yaUu9/2C2lV0w8D8yUO+8S/+EafvfxOjFA8ffkAzqXjtoy/x7jv3WSwCIckzYZwhDVFe2yTxFb5IfySLRj6/VKIlrJGZ4OqVY8wQ+Ykrh/xEBfHr3+UTNz+K3jN8o+v4P733gIdXrvDFf/uPcuvVF8hGIjZUkrNTqU1GrdiSrTGMrEWnRFLIMlDAOLKA9daWMa2AGjJWlUuygGSbYP/N8L0tqSrqPlkkZSbZLNlpCxzI67UhuDRqq5zUWUnJxXrNdLovrx2UzKWSR5MpS0EmKU1jyvOaNWNdgxHrU1NVjJxjVNf4QWxrPkp2XyjvB8ocoZQtluFcAJzyXswbs5+czSGG8jWJ8jHGVAhjUVfnlLfgHlE+lqss+80+e0cH+DuBpycnvPudtzltLd+7csDfnT/lP9w7ZpYtmbCdAZ2yqHWPPVe0XSAnTVVlUiFVbCWKYh8Vq7XkoCqVqSoBDPyQWPrEpDE4I4vmbCRlQz5K9UcyCpPLe0Q/Vx0brYSoQaONRJhkZYrCM0Ep2JBIlCiAeYoMIXNxOedX/tZfJesli9UpqzBAhGkzwq86NAbrKno/cLEIPHjwAV/9199gMj7A2szR8RFxCGiN3KNFyZSSou/kvbRYZ2oXmTSWtUGseEE+L7H/S1NubUdbYKNfL6i1RsfA5cXA0dUdnIWn/pIhFPAOATTmF5flbCnK1FwIBVMWJy2AoKsayBnvPSnInWi1JcRAVuJ+2S5qUb4GmxKvjnf5jz72BT4ZDvn2d77BcV1z9cXX+C/f/gZ/+8k9Rnde5cu//OfQU/n4ToNWpjwrkmfsnJP5PEkLdkwJN2qonRX7qwGfE62XAiRdImQ272j9ofiL7XMABfhJpaX6+UKqSmRQLstrKmrGzTmqShSASaKeC0nm+HU3cPn4KS/UDSpmLnzPnrOSjblRsWd5X5PhWFVMesnS67qBaRJLdFZINuaGINKyD0lMtqi7jdM4Z+n6Dm2UBPQXBf6mkX3jiY8xsFhckFEcHh5R2aacT6L42UTmbM6BFJOIMqInBk+IYt/3fmAIAWMUV69f4eHlJV+9e49fOrrBbhalq1IJhahvdCpnfoocQgEMM6KmlXzzmBJNbRg3HldptHIMvaIZO7xPXC4GEuIC0ZVFa4MfIovYU7kKpQ3vfrCgC5eEKLb7beGJ8Cxypm/jgaSkpa41RkUqmzG1LYp5TdtKBvRYjxnaNT5GKV5Icp7YymFsxa3br/Dgg3exRtNUVvLqlCL6nuwHhpBYLRYMqzXt0NOHQOx67j+8x2y2g/3a1zk83Ofo6jGf/tznqUdj+nbNw7vv0PZrnp2fsTcb4fYa2vWSvpOZeMJzEr2uYGjXKKXYm43Q2lM5K5mpSor/1gPiiolCrk9GlujFmaa3F6cpBJZho8EcOcPujsWHzKr1DCUrWNTpovRy1hBDxybfoHG2tPJmyc00mp2dEcpoVoslF5cr0Jk6a6ytub5/xF/8sS/z4jPPe7/5FdyLt3h9v+JvfuNf82Bo2Ts+Yv/aMRex5/bxMRfnC/r1mlEt5XvjXXFb3X/wgMXpGcNyiUJKP9tuhTaKqy/c4vatVzjcu0JOmWeXJ7z3/nv06zV1bXl07wFhtaQ2ivPTuezcztKMRlyen9NenotIKQkGc3h0iE5rPnjvlOgTi2WHaRzrPtCeXvJipxg1iQHN2XrFp68cFZV4OV6yEFwOiDHgVCWFHUZvcRJrHJVzUvaTM4OP9EMgq1Qa5APRD9SjWjAENmWg4JzFWUvKAnTbqqKqKiEMC2k3+Iqz0zMhFWNgNGo2FgSZhRRU1nG4v8fFbMKqqTlXcLdf8gOjGSrCNk90Q1rHtAXpRsZIkWoWnEIVJ0UK/kNkRTmPPzRvyU+bIqNN3IhmBVwOniNreTz08jF1AfmUQqmI1ps4GFNiWBQhKVSUMz5ED7lCkcS++33++P5bdFMmZo0uIBYoopdsCRSoLOyGLl+ssxI8aLQoYLRSZUkQJl8uuSCKAEAFjzGaPtfMXvlhrn7sJzh571v4YUCFQCAVBFkErookRQepNN7mWJpzM8kHci8tk5tQWlG+bLI+EKVBOTxyWXBslK/NoLCVwZmMtRZFwlnk0OR55TNoUpC8QJvl76msQmmPUhrr5NJKKlNZeWG1EnbWachJycCrxCacVSZrjU9SMqK1eMZTLKwx0kZcpCeI2s+ABm1lgFdWWi1BYZsKbawsVjGCrTDOooZIVY/IroEoFR1aSUYaMYocP0uzn86hBBr7wpBvGKmeWsmgkZUVWbh21PUYnUqjTVkmY+xFPivfeEaVFbm7koIPN5pi9S79+pIKYeuNNQx9T20t3ZDoydgEySbCEGkHxbJdMVGJrDW6cTjVEdZiudIY6trQFxt5ksRzdNDk4AVhTwbfe3KUwTqePyZpjU6ekCK2vFliNPI9NBVJW7QbMZvsEGIoA2Zi6Afc2JJ9z+7YMal2Wa4zqzZQjRtW7YqE59nFBRlDl8Gte3IYuHfvEc45XNPQLs4I1Yxrt27xuc//KG+9+SbaGWHdu46YAi/dfoHF+VPW81OqOnJ8bY/lcs7B1SPy4ZRH9+8K0Hcxp3EGVzmUrhkHz/J8zne//Xuczed85KMf43vfSyWDRVQCZMUmpFg5ja0c45miHSK2yRAV/RAkzDV5lhcLcobLszO+/vXfYjY6oh2WvP3uO3Qh8enP/AjL5Ut84/f+IaeLSx48eRftJpwtHvBbf+9NkjGsfeDq1Rm1uctnPr7mct3ShgrrPJ94+ZjT08y9hydy9kSPc5qsA0olBt+Tkqe2xZ5SOw7HEx4/npN1JhIl7yyGMowFkpgByGWJcgYMhsUqo00mZGn7DoSSmeRL+3UuBTOafoiMqwmmHjFvF8Sh4o37Sy7biKktL9y4wWU/58nJkhyECV92lxgFR7eO2afhT4WGn3w85+Ld+4xvX+XRnWP+F7/zXdY/+iP8yM/9ND2SgWEzkhmSRMI+DL0grDmhrVxPYtXbLNCbQxtRXBuxv0qLrmJSa0bOSJtkVtIAm/KmDLy0cSdSdqArBhymbcUe5mNRS4saKMTM8dExJsNX/tb/i/9AGV7SiVkeeL/r2HdSJpNLJlpCwna9gX+xXvN/PXvGyc3r1M1EADdjBZgsysSN8i4jYd0+BVZBLDUqxK0kP6eAirnkFkdIHt12kikaojQfhkiVEk2GBsXEOA6s44pruFo1XKtqXhg5DkZjJlFhUkCFIIVIfiD3A8nJ8s9lS312zh959fO8//hNVmlJ7xN1YwgqYSrNetUxhMzag0/FzqYzE6c42jXs7FQ8e9oyHyIxW9p24PiK4+nDd/FpxvziVW5dP2T/xg6ubsgHR9w6epU+QGUhnPwowZ+RulPy+hn9sMQPLSaJcixmibXo1omc/xlaJ+pK4hhSFIJua2HNAhBvrV5sr3aeS6WKAqGc4xJl8Pw+2ioEE6IIZ7O0lnNF660K3BhHygFKJmDOsQBaorzZbEQakV6nlMSGF0UxdBEWXM6/x8HRLpiGs4uWUXXC4ZWa5bqTz0FB3/ds2gxFXagRK7NCZU0uhCRZlstxM+LwcIb2l3z5tVf43KlmdO8pn3rlDkul+ep6xX91/xFPjw/58Z/7Escv3SA5Q23kAt4AfFEhKp4kivGmdmVB3oCJMvySJebBaiP2v5zYNBZqvckwzFtlXsoba7p8/7XaWHfL97+w0UOQyq8/ZH0u/x4QoGrjSck5oZKmX68xfceutRA9qTzjlVKFxI0lnzWTdGbPWpT3op7PCWvFdum9Z9KMqOoGa0xpX1aEIMqklClWngJ7ZMoZVBaPvH1LbQEQrSUvOaZIVVmsdWxC9GPJjw3bcH6JdZGmPLEP5dpwcPWQZtzwnW+9yVJbvrJY8BO+5wsuiXp3MxzmTK0Uo6XEtOhG41TCOk3bJaxJDEmxWEFItryWiWmlaKwmOc0oZmpbCl6iYTkkumQ4W0RQtkSOSBzEplihdlZy1LLMrtZofBoo1PV2vtXo7SxdO4ezllE94tLVvHX/LcZjg7MQu0wz3uHw6CaTScfDR/foQ894JMUY33r9EfNFZDQ+QxG4/+ycV27tMl8P4MCaSBUVqwXEADszy/nFAEZTVZGmUbhKQL7gE+BIQZNK022KEaUl1gSl8UHyGx8/WzCdjNENqE6qRpRWQlSEWMBaxA6YRVmujcI4UXhqDN26lxlYS1vr5j1ujC3va3mmU2nUtmg+sXfEf/y5n+Rj55bHb/wuTODKpz7DX3nzD/gbzx4S9w/5xV/6U6SRlQxxI24iZZRk+iXFeDTFGin3GnxgGDyT8YTayAJMgj54VrGXjEQFekNmKMl60kqUV+VRlXk6UhB0+Uq2Vl4Q0rU8FGnz33PZh3Imx4hHtF4oyTzPaPq+x54tuVLvYsLA+eC5WdegNrN4UbcIWsxVZ9lPnqcx0K7XhLi7zasSO3kpL9RWbHzlDJPdSnAVKTGUryVvvpKS8am0PF8+eCHMDXRdx6DD1oqqlMZomWXEfq7RbnMWCOmQckCRoDzfKXjmT894cu8ZbyrFEz+wW+4olcSSnpU4zbTSRB+4lhQ2aQKZoERJLC30Gm0bNANd5+VjKEO/ElLBuMykach+o0QHsqbrpYhGqYHeQ9tt7jNhyxWmvLzlO5/Eorchy/yQiVqiHZZLT9uLpTwrUcEbo0r8kIgSAFovkQ6VMzx69IgcI5UxkitnLP3Q0vtAVVdMJyOwjjkLattsLd4hJi7mc3Q+JXbPOHvyDt/5pmY03eHo8ApXD4/44R/+MVIytMtnnJ09Zj4/Y++gY35+htWGlCJ932J04jxF6toxaWRvtlXm5LSl9zBkabd1JZdZ5YQ1Evs1+GKfz4msElYrxi5K+WCdGDnFTmOYr3u0c7gNialhVI+IIROCpxnJ+zFEyXo0RktxXMxgNZNJw7OTixJzkKiQvMSXd1/kL/74L6BOzvjNb3yVG3eu8tbxAX/j6/+SR/2S3eNDDq4dsVaRveMDgoLJ/pSj/SsoNOvVGq0dicDewRUmuzOGdoVLciaM9qbcuHOHF2/dZupGDL7j9OKE+08fcLm6pJuvUdGDDwzrxPnJGX1oGbqhKOgjxiq6rme6u8tkNmFoe+69cxeA8XiM0gZbVSyfnOKsJcw7XnNXMERaBesQmGkp6tpyaSpjQsKFKE7DPBJ8w2+AOjmTQ4mxEe5X9iBVns+oFOswkFMihMi169epq4oYw3YR6bpBIte6DmctOYkwIfgBDUwmI5bLpajbckF4NvexKn0JAYwbYZQluoq7fUce7WFyLvhUmY02pCUCAo8oLtONuylD3/Vs5Mjb53j72Zbf+6Eom4zcOzknBuDUe665igc7meS21CkxZJyTGAkydL1nufRSXqQUwXvq2mGdZWfXolMUTOn7/PF9A3whZvohikJOGzaDuVKpSGk3jWcFwDJKmt6y5NdlNgoRYfGdgRgUYVB0IaOrKc41KFVBe8Z3fu2vsj59QPYLYsngq0eO0XhCytKGEoOodmIO5ePKJWM3udSyj8iwiCo218LqKZHGm9Igp5WiQkDIXSNXk9F5myehy0WasuTiids9FoWDLApFpIiKAa0tvu2ISgO2LNClOUor1kPe5iyYjaVJeay2+KhxxpUMPIp/W+OTl6+vaohJk80I04zAiMS5Hs0ARde25BDQSnppfYRmlPF+QRflQbHDhVgVEStEBKIPWB0xYcCnoWTdZWxZyrNSODciDUGsbClCEgAheGm0UaaWGKQcyDFKMHSSQTaGhHGaVUygtDBsGGnmNCWLK8l+J8G7sliYLJkZlXLgewZV4esx521GU7McFH7wTEpm2I5NNMrT+IGqMlROlYU3o4yVRrIYRV2SU7lENToO6CyZDwFNtDPs5ArKFVYDhdIZczmXIcoPaO1xlSfX0LSnYNekqqHzA5OjfUzbs3e0x+NHDzg/P6HrBrH+JoWe1tz6yB0uns7JAS4vFsScmO7UKKV5/fXvMAwdrt7lxZfvcHb2lPXJGTuHt7hyY8JqtaRfLnjv9bfk+ZiMaGrLK6/c4e5779AHsR5qoQ3Z29/BmcRifkJtLN3qnPPTM1YhYCtoZmXIygrjEqOZprKJUSPKIOsU/dRxeiZtaavlCoIhobEWunbBd7/7r4gp8eDJfZJZ8PKtHyDFhpOTJwSfePLwlNX69zg+2kPZMd16DSkzf9zSVD1f//rvsHvQUNlE2yfuPj7n9rUrnJxGQpQMg02eQQqJlAPWOslnQTNfrBlVAVtD38pw1/cDrhJ2KcVAM60gioXGakOOEe2gqhWVlTMhpkRdVziT8aHHVg5NLvZxiKnifLmiHjuGdMgbdy/pfcQ4w/HVK5wtF5xettR6REgdy/UlKcLR1Vc4XNT8XG35Ut0xf/gW09u3OXtlh//173yX+ec+z0/+ws+AUjTGSHexUoxqh4pJWqjHlspKsYszoqp1xcZ8tlrTF91xRuzLQr4IG+VUYm9kqcp7QmtNREpEdBmycxLyQLZITZcHLJLXsWHocpYQ2xRlOTE3r/H1vQkPTeRaNrxY1bzXtvzgqMGEDHEQ62PS6JhZVolfffCQ85s3uXLzJtduXOfwyhU0hhQGMmqb4+FjILAZmBMxQFSpKHcSKiTIEXwk9J6+HwjBE7wMFcEPeO/lv4VQpPmS2UEYILTkdom+DEyGxCGZzzUTfuzgiE9dOeKgdkX9FVHREIceXA1+4PqVCa8cXOfZ8hmTxrDsPG2vaNuBlCUHKZRs0J1dQ2UdIQSWazhf9UyrzJWZpe8Tyiku2zXPnjxld3/NjeMpk3EFKB49fMLl2YLl5YKcFS9+9A7XX/vIdtDa5NoG3xOD2NpVBO876otz1K/8OjkbBh8FuCsKma17QW2uTFXIow2JuQHuhMDbFHiIa7Oo9csdtWnLFWb3Q/a7vBmsnufhibXIfIgwlc+nqjTex63iQQKb5RkwVrJTxXKrGDI8enouKm2lubi4ZDqtqCfQzweMsoDZqpwELMwQi3pjkxuFIkbP2DYc7OyRL3v+rU9+nI+uWnbvPuQTtz7BibL8k9WcX3n2hMujPX78577IlVtHUkCVZWkdfCCHvG1mlZkkM5uORPmoDKgsgFOWc1aXQVKVvbj3XoCmDEWEVDDT58hX3tpO5H/cMNWCwUnQdYq5DKgbRV8sGWACuIQCim1R3JxoVyumMTIWJAKQIogqC7SwkdxnMioGrlUOFzzDEFgOnkpFrLUYrZkvlwzDUAA+s50RNyGOWhuxtDyXlJaBrXytG9C5WI2zHFd0XUs/DNRNXV63WEDDYlczG5XQJoNLQvpBvjdtL8/G7//m78LeLv/42RmfODpiNz+Pa1Ba4WrNpA1Msub+OjGeGSqjWMdIM67JfRCSlghZl/erKBCGAcBgKsV45OToUIbkMyNXkw0MfUBhsOXzzTlTGQmA73uPzwmnHNZaEhBypiqgismKyslsbbUixwg6olRgNrI0teNytUZT84tf/nP89E//Uf7lv/hn/M2//dfofCTnnraF4CEnx9BFhtizbiNvtc+oKk0nLjmcU8x2NN4n0EICdp1YLUPU1C4xbjSp0axXAwpLCKo0Qst5PcTM4e4el+eXhJhETbTu2dvbo64Tl/MlRltyUluAOGuJ1UhZnCFixd08UQLqiqVZyCjIGCXLfcoy1xktZXcmJX5o7xp/6Uf/KK8+vKB99h7ftPDyn/l3+Vtvfptfvfc2na34kR/7Ucb7u7R+oK4q+TwiKKOZ7IxEKaeUNCpnyZk2laN2NSoGUdQrxZA8666Vs0trcV8+h3bYoNx6s1yqD6mhC/Agy5I8m6moU8uTICB/yRgnC6kQ9YZsUSXvVrNcLDlcDzS1gKjzoeXV6XhLnG0gOJVEyTYzlptacXfoOT875eDaIZUVZY8IqypiklyzzRIsog75OXovS7Uu8QF5c85uKCP56lMWleDmklGmNP6GsHUSbMgNZ13Z34TTPDs/Y7GYc/X4CqPKyeusNPv7e+TKsRyPeGe95NXxtNxtRs7LAvpqxLF0RWtcyvRWo2L5+6OAdE5VrDohU9t+QKuIwWFdRYiZrhOnSN96yQ5Wcm6EKGrjrpMlJueEMqYUCmyVJdufBCwVIDnnREyKvkuEkEmBbUZZjJH10G7PQR8Cs+mIunG0nac2iovTx9QKpIpadvQhRPwQaNcdawbG010OD6+wqzXtqqNfLwQUjonKKBorBTHrkAjdisXTjvOH7/HwyQfs7B6zv3PIrRde5ZOfPJJ7rFuRQ8/5/IzHj+/RLp9x9bBjtZgTo2QsLtYDunakMKBS5HBPLJeXK7FnxixFmTGmYs9MTMaGaW3Z3ZlwfnFJlzIxKUxwnK8jmBqrEiYpOh/o+16snyExm47QKkkhRJTzWCvZ3YzTzOeXGCdCjJF1HOzs88L+Df7C536GePeSv/mN38a+dIP46kv8+te+xtPlBaOdXXauX6c63Of2jWvU2lC7iiEGjHUYpZlqed/b6YyrV67T6x5bi/LSqUzS0OztFVC1472HD3j//gc4qxjajtXFBSp6Th8/xbcB5ypGzZj1fI3JCoj0rcxVa9bEXggsVzl2ZlO891xcXBAy9L2nNo49n3nl5i10UrQxklXGqc35IpEuWUlMRFPu9OADwWekJDMx9Al1diZ7kSrZsjHR9eJgM8YWsqEo9KyldpbGVZi6KUSiIo4Fi7m4uNjmjaaUaKoaFIyaBj8MoswPgdFoVM4KyUoH6XTY3Znw1CiytTzu1xJnwEb1+zyCJOeETkBKTLRBxeeOgA1dorZP5OZXm3njD8/Em9l1G3OiFBcxcsPWTF1gmQe0kwiovs8M3pQMXQrBJLFExkqOqFWZ3VkFoaOLGh82s9y/+Y/vG+AzBpqqWDtU2jaQKVWWUDJaFSQyI7L5otrLSkldvY+0g1g1tSoDqK6wRuNMYnVxRo6B1dl9KufEblpp6lyJLSxH2rZlGPxzn/Xm4NYGqyyU/ApVMiiKBEEk7FvprxZ/u5Kw7ZSlfGNAlC46iypMaTBq48vORQovPnPxiUvWz2bjVYXdSlE0QhEpt1BZ5uUUipWkSERLjZbY70zG2Cwe+GQwFJuOrkgaTD3FqTE+gHYOoygDniF6qZfmskPrnuwXpJjpfRD7hKuIOrO4bOm8tLtNdyr2JharFOQAQ4sJHmOEVY9BXiNX1yIrj6BSol3O0doy+BZrEpqEVSOxhdUVQYEOLX4IRDRVpfChAyTmKHQDShmyFnYMDHFQUoleGH5dLsWcDcqJ9aNre6pxQwyejAVbcXTrGqvTh8zsQKcu0aph0kR2lYBalkFeBW0F3MkZ33spzNBIU1WxCeUgNqCsNVlF0A57eJPDH/wZcrMnzF/JLquWFxAHrBIzdd+2wqyePSW/8V3m8wtms4o0qekfP+Z7330DHwZCCAxZkbVmNqmZjWsevHeXboj4YMhGy2KuFZeLS/q+5fBgjxQiJ8/mzOcLXFXTDpnRzoSJdZyfPOMHP/9xnjx4zLPTU4Y282R9Qd8HKldz4/oxjx+dsrxcs1iv0Kbj+Oo1PvGpT/L2W+/j1y37swlD9FRNoBkZspLhuR5r2nUkDg5tEnk9kHyirhVjW2OVoVtFVutAH1vC0PLGe39APyhGkzGL+Sn/8B/917xw6w6JjNMW02hWy0veXqxpbEVlLK6Grk20KdCGFeeLNbszQ1UbHj3tID3m+pHj7CJTZWHtEwlnFKauMEAIkkvU9ZF+GAoQpTAaYhKGtXKKqnKYZFBVkED4II1l3kesUThrmTZjBh/RJqLJHB5eAzKTcUPKHYvUYbRhHdacLDP3n1zSx0DdWK5eu8liNWe5GjDREgdhw5VSXL95k5224uftmF/oPM/efI9b125w8sIR/8Xv/QGXP/h5fv4v/CKjkSENgQpF4wyVEcuUVY4cokQFaEUOsVj7M6qA8DvVZiESO6y0ecJWwZQVY5MlQ1WJ5an1EnnutFzgPg44I6rDQCQFadWLCcJW+FNiECj5WOMGtzNl3Wd0CFyva769WhGuHKLSJmtMzmud4f56xbuNZfrCTfZefIHm+hFeGSbKYrAoI4v/1gqq2OZS5azwKhKCZNioWPLgtpoB+X0bixhFAZGK3WeIAd+LdX1YLQmLNevlivZiSbtY81675u225f/zwZt86v57/PJLd/jhKwdU1qKSSIJTiCgf0Lnn83s3+b2Hb9INC2zlWLUBn6EfAtpq6trSdgMXrajCndFYDbGPrHNkt1Ls7TXEGJmNAy/dOeYTn/sMhy9eY2QqdFLMJhGTLNO6Zrlc0J6d0Y4apvu7aGMFXEoKrWuonCgsyHRBAqvhecv7VhkWZTB7btfYMJaU/FoKSLQB9yikXSzsrORmyby2Qeo0RostYRsSr2SB2nxsuYMlPxEtIcMxxa0F0jnIUYb6mBLyN2nS4DHaAlFC7pVCZ0P0mUAgRlitI30AaytSsUY8L6XIWwVaRhGRITCrxGjccPXKIaZf8+VP3eEzTzum95/wqRsv86Ry/Denj/kH53Pam9f44S/9EAcvHDEQUF1i7SVzzFgnC2kQYrCpK0ajuqhKE0FLW7yo9pXkrmWxDkWgb1v6MGxz61R6niWzAfG0Lnl2RjJk5FtoNi8gFJVQTHE7+2xAWLHyUxQ1z9UkKoFXifOLM64pQ5VSUdzLEuaS5BrJgllyFTO8YC2zdsV5u2IYBtCWUEL1tQ+EmKmdAHybZV2cHCVqQEI4hXz90HC9sRVvZuxNZl9OovRDQT8Mongs93rfD+U3b17fTSahYtM+rHPC6MSN40PePdyhz57fTYH7KTGTk0YIVeWwOCa553o2vJ0svU+0g8dYgx88BtgZCzEYombdebpOgROljTFiBZ9YUd7VTcNObfBe4i58H0skh6PrPcoaSBAGUQmvBy/2zyA5fjFnosn4LFmegnoodPQ0TtP6IAV4tZQ5NG7E4CPr5RLtAycnp6BrmXuCoi0gMynjg9jLh5i4CJm6kvejdZKN3NTQVGBNZjYzxAwpadIAHkPOA6ORZnfmWLURH2DwQQpCkrz/2tWK2hnSJmvQanSO3HjhKv3BmEcPTlmuAnVdMZs2LJdrQkglRkLe2znK52uULJt586bIks+XCxJkq4qDKwe0S0++XPMTV67zH/yRn0Z9+wE74ZK/c3ZC9Z/8Z7z12sf49d/6Ot7UqNizXi54+vAxs4NdghVScDzdwWZF7z3yXYkkUxPKuaaMYTUIWiqAuWaIgcvLS2pntyB6ys9nfzZPX96IDAS0lOKN8trmzbnKVqGryusFSFEUlHuvWOWU2Bpjknf/6ZOn3IoaVxTBl3FgZk1Z7OW9LvdZJquITQOfmtb8y67j9PF9tM3MZmMe3n3Iyx/7CPOLC3zX4eqa1z7+USaTiVgjtUFbW3KnNDqDMRuV4CYrVG2Lrjafty822xA8ZMUweJq6xnvJSRa1t5yFCbkLFqsV2Rg6L0BWigGNpqpqsjUwmfDeqiPmWSkLLAOLkjIQqxRdTOxrTZ0jS8xW2ROixK/UoxEhWrqhp2lcyfU1DIOUPiqtAIfSRbhRdgiKUlGjRYmOQTIDS55qAW03MQu6vIf6UMgTLXumwLElc1JppKzCEXtD4xxd1xFzYmc0xihNU1u6viWpzM7ehL71TKZTUhZwuHaWGKFr1yz7dXGCVewe7HFUvQCxZ+haDnYnBN8xHnra5YJknEQjLc5YnD7lXlK8/d2vM2pGaNegdMWtl+9w5fgmn/n8p1i1a+Yn7/Hgve+wbk8xLtI+O0P7nr2ppet6Ghu2Z32KllUX6Xwv6jMrDrWRs/jB8/j0glXnSQFGtcP3Las+oZ1YMJ0Vx4fY5kUVHb2UpVTWMKpr+qFDVxqrDFf2GioViX2kHtXcmB0w3r3On/yJn8V88wN+5/5TvnJ5wnG+wd1HJ7x/OsdneOGFG1x75Ta7hweoGBlpJ1m5eUNyiruuXa+FkB483kaGZWCqWia1ISbP+++9Q1NPSN7z9PQpF5dzmtoRvef00Qk5DIyrir7vuLyYI/Z8AZCtdVgCVVWJ6nUYSCS0MSwWqwKiS8Zk6gb0yHJDOY6VhThwPnQ01mBzIudALmQjMWFUYqoS+MSwXuOHDpcsUcHgPetqTaeeZybHWIqgyk4RY8AAdd2glOKtd96nqiucsdTOyUxXOYyxnF+cM2oamqaGnKnqGmPsNh9RFyKncU6gu5RIWhTGqIrZeCKEpVLMfU+MwIdKufKG9MiifI4pMclgNuquUta5mTPkyiiete1/l3/kQ23mr82eJc/sZZIzYRwzXWUwTopxks0MgxC22hiUSlhnZdrMglPt7IxIuSd4j7GNuAu/zx/fN8AnM1YWVrm0HuVNNkRKKKMglMOuLH6kRPLC5PddECstkMrw74wipYGkNOtFXwYsyXgKyWOtIgXDEDPETMigdEQnaabakF5aS0qM0gmjc1luCggH8oZAhjurzNYyJL+peLLJ6CCLQy4MlNkgtqkUgygJm01RsnyMUtsSDJ88ShmiskQtjT3DUKSbyoiN1ImtxFSOujZoHbC2IitHTIpkapRzOGcJ/UAOgRg0IQ7otSIOc5QSWbpBlF5ZOQgJv17RhUCIEhbtg1iWGwNxGFiliPcRpR0jp8nrlmVYAUqANVNC8KNYFpuS1xe6gLHQBWFCQlQoNRCHREgD1oBRAzGKlsBZBQUMkJDpQZoEzSZbCcl3w5CUPFTaWXRVEbpWlgPX4IOEkxrrSMOA1RnSgNbQ6MieumCYe1b1IbtXpoyevUO3mDM24PCYDbabNYMfhOn1H67Jft76q0p1ekg9KkuQptaZ9OxtHv7rOanew9Q1aFfyzOTqlkw/Qw4DXVDolNmbjYkpcnE+5+n7d3n4+BnLdkXImcY6AVSGAdM0ZK0Y1TUh9Owc7rN35ZBnz56xXq/wjx6wt7vD4nLO1eOrTCYjxlPDydPHnD65y/2775G8JyXPulvKa4ujGTfYesS12ZS7b73J+WVkcnCN4BZ0p+dU4xF9GPiDb7/J7sERV6zi8GifJ2++RdeBq63YG52hawPjWopPujZCVKSgQCdqHYk20Mw01djQdwZnHDkpJiNFCB3LZcveuOXNtx+IeqwwdKkP1LXl1q2rXMwDaThh6FeEaGlcxg+Zi7OBRGRcGc7PB1SUHIadPces1nRdZJgYLtcBHzJaG9pBBteYZYmxRgalEAOVUYwqQ1M5rMmEqOTPIepkHxKVs1hneOn2C5ydXFCNFc7UXHvhOvfef5/D3WOqGk6bB1yuMot5wzv3O7SFZtJw/dpVTs8vWXfyPupXS8IwoJPl6vU7XGXCT9aX/Ey9YP4Hb3H72k0Wh/v8F3/wBvdffZU/+Us/x/5EUxtFUzcl2yjKMzMErLVSyV4uGm2LbF4rAVSUYqe0eApwvQFyNg3YtoRYe2mzLZk9KYYS4D9IrgtZbPZKYbIs+7YoBXLJNlPF1uMVElJfV9jK4n0AlZkZzcqv2RQrpZJHplQi68gHbU9sGprplPHejtwhGiIajJzHauND00XZowUc0MDEVmw6OjetfP0QCAi4shlGtvZTJQpv4xQuJ9R4zO7evgT5pyTEQYh0yzWXTy84e3rCyf37/KvHT3nn29/kP375Jf7Ezds4izSkR8n1SevIi/t7zKoDlusVbb/JaBSAwSiFNZEre5bVusdZh1KayzYSUqbPmrhOTP2aHDXkOR+8/nu4sMdH1l8kDHDnEx/n8OiAoxuNfD1GFFkS0SBUUu3EbmSMwVWW0LUsnz2mfXSfsF7Cdt0qAEj511jsCWrzf1rIkcqVOA4v8SabwoOcKPYsWV4VGmuNZKQFsV2kBMaYovLbAC2FVS1Zfs4aKmvoS+Cy0QWMiSUvUwEqIo47sbXFlInFcqWULHw5yp/LWpoMK1eRk+TGZW2LnTxuwU1TlE95I11UmVFVc3BwQO5b/u2PvsTHzi/Yf+uU1+58kgeTK/y1e9/l14eW0Ssv8eJLL3D11lX6EFh1HSprRvWI6WyMypmu7THWMi1qagtoMj5JfqUfhm2GJjFRWUtSii56Wt8LsBXiFrjbAHsbYrmIlcSensv/hsittgUVPAdrdbFQbTJvhKtUBfBOaCUzUlKZs6dnfMxY3EYNiJZM4WK/VuVZSgg1fU037HvP+RBYzpdM9LQA87qAbLoAfhLvodVAVVXb98b2c1Ra4knK5y0KTQGgtsB9/vA7uOR1bZ5xkADr4CFLZqPe2PwR9WYupEeIgRQzN25c5YPLNSd1zTfbNXfqHZwuGYYpoTNMVOKg1YxqR5sHRrUphUWZhESMKJVwLqO6SAoWVTmyGsjaY5UQi41zOLIsUk2FcxVqJM+J1bJIxSjKveQ0xhn6IASNHxQpKZSROSZmUTeF0ko4qjUja3i4HkAlLhdrei8AvDMVfojkCEO7EuVWTIQMla0IMTBkUbbaZHFGSvNSUlid0VGxXiW6NjAdayqjMCYw3dVcXgjR2vcR5zR+EECvrgxtPzwH/LNGaxi6gdF4RNNoWr+msqBy4OzZM168eYhftyTfUhsjTa+uxseekEWRalDUxTHkSNjKMWrGxJA4zQPLmHCjEePZlMlsj/OLJfVixZcPXubf/8kv8eAPvsdH1Jqv3n+fxZd/kZ2PfoLz+Yr9Gy8Sfv9rDH7ge9/8Difnp7z46qu8+Mptjq5fY5VW1FVFHzzj2lEbTeg8ptHM12v6GMhhIPkeVc7DmDNh8PQbMNvKnRxKeUAmY7SAneNRgydsn92Nmu//B4SnOKCykC6bkHwhsWQfieV+FYBPc/n0GTe1QWdpcpx7L/b7nIsOQtQ1UhOXUSnz8fGU6skJCwL3Ft9ldvWIy6cnQGJxMUfliG7GHF09Fut0KdLBCGCoC3FkncVWol7dqHqdk3l+GAb8MGCd4fzkmbxNSjSnrxtiCNi22u5Wppwpg/f4KH/n5XJFr3U5VxRk+TW24u5wTkQyLje+6ZyUFCyUpu6dbBjnzKnaqMrztp0bDJXNjGpRIvWdJ2bPuJECDh8ioZRL5Civd1IBa8BVEk3VdpGQBXjStWXdDs/3aCXgXwil8b5oiHKSrMGqcrjS/EwSJeort1/jg/feghCJgyeExGK1ltgKH6iNpo+B1bqnaztyToShRalIM2o4eXbBaDalcRXrrmcIHeeDZzZeY1WkqRuaytEjCqp6VMvnaSXjTiuNNjD0LYMfaIcTLjvPfPmUyhl2JzMWqx5tkPz5iWNoWwYf6XykUoamauiHKJ24QTK+jTE0VVE4x4hRlrbtZXbXispWDNGjsmYYpFBEgH9D14uwxRVhRE6eSitGdcX+3oSDcYNLgaoeYc2I3VrjRjXaTah2p9hHl/zoZ3+C8Zv3WXYDv7s6oQsDF/NLvIL5usP7SNcN1Lbi8nRO1Tj0SDOpLXrIdOuenCLzi3OC7zHG8sHZGZODHUaTEUPf8rtvfJfl6SmhG5jtHjDemfL4/l20U+zt73Owf0iF5eLsnI5FIcIkPsVVlq7t6AbJ6BJLvC5ztryX6mZM17b0fUtlnAhafOQVWzOVS5QL39NYjd3MCMX+DXKv7yoDQ087n/P+974rghYt5NLx8VWmsxnZGDJyP8Usec2bOzuXjFwQcZUaRAily+yuy/IvYirZt41WWOdwVYWlNN0aTQpS0oMSkhklER1aa+qmJiYB8VZJmqQpzzYpSURKuXq0knLBadZUObPeAEZbCQBFn5UKoaK2eq0tu5jL01nEERsCca0yy+DZ0ZlLqwlhYDatcXs15+cDq/VAKE6L2aTieLcmxcCqHQi+J2npXOhWPZt8v+/nx/cN8G2+6pgkZy94Ua+lLE2tkhOcC9OWC9u/UWHkrcrNGKhrJ4BLjM//jAJjFMY4yaCJGR/ERqK0QSsJvzdGSWtUFrWc1H3HctEIUqr0c1WCLhJ+XexDkohginIgQYgEFDEqLqO8iUbaQWl0o1weOcsFKu+MSpYSK+q87DNK1RI+naME4mlRn2WkiMMYqcxQCdzI4LQlxJqBCnIkxIHUt0jWitjBQFhe7yM6K5KSz1WpGqsy/aDp+5ah78hhoG17gg/0ydD5RGMNvq6onBYkuSxXxoAzhj5A9JITklPGjg05DiiviUo8/1Yp/CDD9pAgq0rYhAZsCigGgs8onYlKWI3YDXRRoXWmKc2CNmvCIJkJNlmcLQMKBhMjvm9RORGjQgUp0QCDsQ2x7+Xwj76AyitcXqIj7JlzWI+Y0DGqA7auUHpGCj1OGbFFE8FaUif5DWgg9hLmX5o1s1IYW4EWxWBMWhbIy0fk+BiMogthy9jlmNGlNpwcOV8OnC08K+Vojm/jjWW8s8PBqmPSNKz7Fluy0A52d9jd2SlAoeHFWzvcun2TdQgcHsxYrAeMqXBVw+X8kma6I8y30RxddWhXMZ7t0HcDTTMmxIS2FaWomel0wtD17B5c5+HdB3zqMx/jn//Tf8rB0RWGIbB3cMiNmzd5+OiCi+WaebvA95HYKy4vAtOxIYeMGxmGTmzYI2OxtQxzZ/OWEBLDEMlIwG3dGHIMtKFjfzZl3OywHgLjsWN9tsbYmvFMM6orqlHF4qIj+sidWy9z94MzdnbAR0tOA2HQRJVxRrId0Y7zZc/eTpRDvU2kPlE3jv2ppguKFES5lhPynNWaIWXWnaeqBAoavKL3A7YypKBQWXKERGGkiUmxXLe8d+8+zimGNeS0wKeO+XKO1YGQIl3oWcURT856soZqXHHrhducnp4SUoagWC/XRC/ao8PDY664A354seKPjzSL79zlI1fucLE35n/3zpu8dfWYL/+5L2NsFEBQSUEMSWyoSUkDWB8LaRJlYd+olKWpKm4BMV1UAdsaDVUK3FXEKlXya7PkoChZ3DKhEBZJGvOQQN2UEu26Y9FnfGLbriXsMwxak5LGh56UpMlY5URdAvHFMphKIYjcBVpluhwBIypFI2U/TiEZfEi+4h9ab4pySZUhQitD7aSFypiK3dmUy9WS88WynP3qQ6oyPsTQ5S2gpctzHzToyqErRzVpaHZn6KM9xnduM3/vHg++8XX+2jtvcr2q+MLRASp5lLFlMbDUbeaju9d4cvkEQwIvAcS7uzWrdmCxDnTOsmwVfiVZP2hHzjCqNX4VSBVMRloCt23H8WzJ8N5vkpLiwfp9Rru7mGrM0PU0TYWxBmedFMDWY0Y7exhXEVHEkYDDjU6YvRqtxN6j1PabIWdYGWI24JEoooIsqF7AOGnrzGidgBJ4vwEvjS7KB8m3jEpInI3KrK5rYgwEH4tyRwqqnDVUlWU8aciXS/KQisI+I3n9ClQU+7lzkrGYJVuXooTRyqI3BVoZKWVBMfQeowRYEiw6o0sgd86iJJzORixXLUklXF1x9eYNbL/iT330Fh9/tGR074SPvPIJHuzs81c/+B5fyZnrn/wkWSVe/NhtFqEXG0nd4JoROmnJpsyRyXRMZWQxTTHic8LnTESRlCz5SmtcljOp63sGP6DQ+Bj+UO6LLuRpLvORLnNNLiUcor4sWW6UpuwNy8xG9RP48OOwyfRT5fkWlF++P2fPTnmpcuiiRJFdPePy5vcUHW6y6KTZ04mbCt7pPZfzS6q9CRYZ9lVRLQ1BIkiUlgE5dN1mxi6zIcVuuBHbPFfy6ZL5kzdWcKWLkk/+sDGlJCCKDdCUSBiTDVUpxJIvXZQBWFF96QzTesrDDx7RT2Z87fyUn693JaMrJVTJjh4py27fM65hGUA3hnUfGELGVYYhyNdoDNQji/fQR8+k2Tg9FKYyVJUUAJks9qXKid1PQFmFcxXBS6RJDAG0pu0FBFEjh6sbBh+Igy8tyoqgMkOQC382aaibiuViwCgthW+ZUnRS0XYtwxDwXop3stIMKaGyxqpiewdsAmsNgx9wlZaBNxqU1SzWCecU01mN7nqGKjEMkssWfUAnyR2N3jNylhhludE60WiNjuBColaWXeeYoqnbhFt2qLNHvJAyr2bLLGgq32GIjMcOpSpylrmj0gmTM9Y7jBuTdCYeT3nDOL5zvqKtGk7Pzzm/eMahMvw7x6/xP/rCF+nP3mf/7DEnOvHP92/w8o99icFnUtsJSZXk/bq6PGd4p6VddTy9/4AhJz71hR/ixZdfBmeZr3r0eIIzFV3vuZzPuX/vA165fZsUIto46lpyrLFVKWzcEMgQS4kUG0Ani5UyZ7EnboAmo4rarUT46A+rR0p+5zYLOwv5oshQQAGV5M+2z0550Ui0h0+RLgSajOxdRQEpHy9LRA2RV0cjrobAuYP52RltSMT1gtV6RfKRFHvceMzvf/VfcXz1KvsHB9iqwlQVVV3LrK8l+qAajUAp2lbuFik+UfS+x+dITopV38nX4CWva911aDR5tcbZSmaAjOwKJTdWqdJ6q4oKPIui1MilxEPvSVlUgyrlraBDZbDlnJxlmEHJ5ZO4kZwzwzCQaSRiybf0XYurpGBNbMSxBOcPEu+gI6Y4taTkKnFwWNO2kdXKi100BgGxyn0VkexyUVQ/j69goybakpLy78ZofvZP/3m+9fu/y3f+1T8h+I6olOyM4iGHlEpjtGQGV9ah4kBKnraVz3XTbrwpWaqNZmQTfdcRDJyePGbogiQOqIjVDo2m3zTNInbDkAaGKLnj5xeXTCc1EHny7AxlDE5rzByM8viUGIK0CzstmaGiAIN2CPRB7melSg6699S1oXZKrKIpUmuNigmdEhMrBRCVkzt0PKmYjifsjByNNcxqKVbbsSOOnMPEgdhMSNriZiPCziHf/OAh7/zWff69n/0yV9aeR9/8A9IXvsAbv39azn8P2ROSJ3nP/XfeZzTb4fjWdYwdsepb1r6nqke88977vP/69whtS601zloW/RozHnP99m3OHjygu1jQWIsKidx2nJxfMKxbtFacryMuGob1ktgPoCRLUClDVY/Yv3LAxdk568uVZMt6uc9Diri6oq5rurbFD5IF3w89RmmsSXxsPKEaZC45Dz0Ta1ApsqF0c7lziYGrlSGvAiEHHt+9xxDEUbG4uOTuqGE0GTGa7mDrmulsxmgyxo4aXFHgGa2F7FcapeT7kMigxf0RSllGzkhWtoLBZ1SMmMFL/E0SlXYXAqui6gxhwFqLc46YI5cXc1H8KsU6C+krhMWGAXzOBOoMpMyoxIzAc1Jxo5gWV2eJdSh/cDMXP/+F2s5UunzfvIJFIQpClDkyKcVyvcIoy7iWea82hutXJ6zna1xTE9TAejFgKkcMieSTAJbf54/vH+BTiDS/DNIyyGthR3PGltdyE7gqA12SjCAlFhulJJ8np1By9cqiVXT4OSeC19uMGa0yxmSMiSWrJBeAaiOE3rDKhowhpmLHSZsXTNQnoIsnWgmTA3JZZVluxDqjGJIEql7GTEqBylkJfIXt15ETYqc1RgZH5GuVg1YGQ6VEjSJtKYk0JIasCcmQk0avk5Sfq4RxFk0GVdopFaQkSgalgKQIPqFMlqyhEElDz2i3IbaBk2drOgxp6AqbhzwUOjOuMpPa4GzEmrKUZ18Ay4gzoKyStket5PWr9VaFKUBCROtIZSr6UDG+eofp0W0g4i+f0j97REiero8yWIaI0hVVkByKZndKCEEKAirJ0FOmJtWGMMjgSR/RapBFwGhcCEU9kEmXZxJankTmq3NguFyCaVDG0bT3pfjCOnLwjA5uo9oVOgVy9iir0STiEFEqkpJYTIZYldfPoOKAziXQnUwOA9ZodDaEVBqHtUYlyQQz1pSMQJE3t31kFR33zlaouuL6YY2zmmo05ejoFo+enlBXDp0Crpbh/unTU5rxhBA1k+OrpNEejdK8cFixd3CI1hX1aMx0MiVmRVVJDqCrajAW6yqMc1RG2B50RqnSHJczwQ8slwuePHrMvQ/e4+DaLW5dO+K7336d6c4hXXTceukVmgfQrk+Zd5qj44mEPye4XHTM5x5bWYyJTKearILkYZEFGNaGkCASacmMnEWrisWyFRBwyHRTaTLu+0wMPZeqYzyt2TuoOT1/xMnTeyhr0aZivRowRIxOjBrN7qxCR894CuuVZtXKQHrmwWpwMYr8nUzWifr/y9x//tqapul92O9Jb1phx5PqVA7dVd3VeXp6hqTEGVJDigRlUZYtAZZJ0QIsAQb8ZxgWZBvwRwmQLRuQDFuEZVGUhqRHZhhO7iZnOoeqrlwn7rzCG57kD/ez1qmBv7H1wQvorlPn7Npn7fU+4b6v+wrWcnq7pd+OjBGu1oFZW5O1pu8HUvT7dZWzMHN9yjS1pnYwTiL/CmnCJsUwxCJ/7KmripvhBq1nrKZDPnh8AVqzXCw5OT7hydMz/CTGzH0/knPCVpb5wV3uHd7njSc3/I9OKs6/9zO+dHyPlTvgP/rgPX6nafir/+ZfwpjE6mbFMFhyDCKXtbpMuor3UqGYCziVZQKqdbELKG2D2oFXil0ari6XmNUarzK10agcC3NKTIYpsrsUituXEnbfOGWGmJkSjD7gYyAlDSkTk2cqTek0BsJ2S2tmqJxoshTSkVSyGXKR2Mr3b5QlTxJi0TjLnYMlKIWzLdOwJRLKhHEHWZSfv7AftBH5tcpKhDAxsJx15Jy53g7CsItlUpd3oNSzyZ0k2SlKrB3GiDSkdhVmrrl9+4SfP3rMhue5YwIf/fbv8H99/yd8bvEVDm1Ddgrw5JBIW3hrecqPDubMjxe8+8EDPjm7RmgVmVQGRDvJq9VgdUYZw7KFSjuU9mImXWXW22sef/hjutiCgeH8Y9rGEiZPXVk2JqONxroajaKqWkLbYbsDouswdUvdtuiUyWliul7vQc5n13m5z9hJGCHHwA4N8kGGNk1tJXzHC9gX42cNgaUBlT1TTLsKw0RpxTh5MbKunDBQnRXf3JQYJ880eaxzaJNpakdTGbb9SFIy3fdTZBxFhmqNwVnLMHrapsZPcS85jeWOt0ZSNCPswShTkikpe0I8Z4VVVJma09MT2K7562+8wFvXW5qfn/P5197i05Pn+D+/+z1+N8PRW18gpMjx7WNybUgK5rM5zlakBMF7nLEsZnN02q25LKbsCkwWNkLMkpxrldm/vxQF6E6p+PIpta8Dss57bznYKVHEXw8VSz0jn38qjX7MiRji3uzeoIpyIu/XvRD5iik1BUDzif7iivtVjUkiB9z5Otpd4UNh/aVIzooqZV5van53HLi6vMDMaymCtRJZbspYa/Y1ktEGa3Vhgwg4nMvfxe6ZZfahaCH63TITPFAVSTlAljRnKCnBBajeF+JaSypx2eI2QTJKgCwUXTejW85ZNzU/DZ7LlOg0ZZoesEpTo5iFwIGyfBIsWWvaDvxmKqwWQ8oij7cFdPRe0vKMSnSVRulREs9TxKKpG4s2FltBVXdo13Hnzj226y0X5+fUtYCSMQT8FAijR6nI5CdScuSY6bcDxhWwZJLv20+KjKFpDHVTMfkgjCUDTW05mFU0FnCOfswSmFTYuFor5KQ25OBBJYy2DFMQGVESttF5CriqozMWd2h4ejEyDAGjxEMrJU+TFZZMlTXLSnPaVBwaAfTmVjOPiSZXtEHjUkCngM0ZE3OR5ZfAFJm9E2LGpAk0OEQVourITQXfsR0/Wm35dBjZTgmVNmTjmCvLv316yt966yvodMMPvvtDfvnwhP/044/Z/CvfYEweN/Rok8GpQi7QEs43BXy/ZXNjefLwIWcff8K3/uJf4P7nX8M0FU9D5KhdSPLrFPnwZ+/Atufl114nKmGS18airZG9idqz5XYet6rIRZPIXoTBmpMwv5UMOFTZz8JslbszfgacySkW7++EihGMKozSwlxNkJ5ecq9qIAVkzCZ7OZcgrqx0CRqKZCVkiUV0fKmt+SmJEBIuBlIMAjynDMnTX13zaLXm8QcfCkgNKGPomgalNPWso65bSWetK5q2o+lauvkM4xxRiWWGq5yAw9bI8aI1hcBfZK7FWiNJ/5eV3OG7pt6XwBI5NGzpETXnSRiLu1CoHXsP8j7EpoqZAyMVvy4hjeIFJ2Bn03SQwY8TxjkurnpytCU1eMBZaFuDmhmmMTGMEWscjdNCLrCKptZUlaPvPZNS+JSISoIwNBC9sPy01sVfUmFNApWEyZQSJAMkPvjhuzBEXn/jdT744FMuNwNuuGZWWQnfiYnJ+33okqtqtr2ASJW1TEbSOmMSdYS1lspZdE50VSXp1/0oXphKQIeUPSFMxBTI1pGQvWKtAW1pnQzMpimUtPTEdvJYbWgM1E7UYU5JEMMQMsMYcNaI9NInakSCbJWm1hpDojGGNipmVUU7rzhoG24tZxw1LQeuYmYsrbXU2tAgjDCTBXxRhWWWoiEHw3Y244PasN5eMzs54Q9/8C7j03P+nW98jVdU5L3f/gNee/nz/P52Qz9sCDGy3m5ZTdKDWjR6Crz3gx/ho+e5l+4Tk3zWYz9y9eScsBlQPhRm94jOnjB5nvh3mTY9rigJxjGg2IoE1YiVV54mnjx4IJa3GSpXoSvNpu+JceThJ4/JUViaCsRbVwlOkZMSm5lhFMa6lv5Zo6hC5HOzOURh+p/3Ay90TkA0Mnk/+NOolHihtlQxchU9tu2oa8N2vUGlRPKeOGhutk9Yb7e4yklVrg3tbEbd1MzmS5bzOfODAwGvZh3W1ZIWbyw5l6Hdbuj2GcBN/CcjwXu0USSfcVG0KSlMLNoWT2ToR6ZxKuFlmTFlIjtZoCpYkCrfv9AbcqJJmTbvzgn2w08tTIeCm5SBf/lnaRtKTbIvUGTQUogB6xy5bRzee6YMU5hIMdKYzPO3Zhwsa1arCT9OTMpyfjUwTYkU8n4o7rMWUsgv+PqFAb4hwDAarBIvE1tMBOvKYMjFZDsXiY4UsspoAU4K7TwVmYo2Rs7exH7Su5v8G2OoqpKwK27VhQkiE5mYd9NrsCoTYpa0LSWpY0ZLOEYsMl4KqJeyIuweVjGZ1Vpi0w1QNwoC9F4Wj3IWZaSgcCU8xGhZDCFEUDI1TuyYNFKsxpRJuTRK2pFKzP0UAj54YgFGa6exeio0dC3oqZLUPT9ENn3EVoZpDAIaavGGaRuDXVq0jsQp0ZmEiYlqVmTIKJy2uMYVn8NYJuHS1KgynY/OUVmoYiQiSW0qlokZoRwkRgA7o0k5UBuFv3iXm/UDTNVhtcEaRTPr6BYZUmTYDBhTAwZdOepuRooJ72W6HCaL0gZXV3jv2A49WteM/RbvB4zV2KqYs0+JSgfBzUs6Wk6RujJEIs6qEgYSyTlgTRTmTxxRaSuX+WjR2mOyIqkyPUoeXdUEe0isbxG1IvkBa8DiiRdPhM20+zS8xxSpoUxKkfRnV0H0oCIETyTjZkvcfMGy9jx8/ARz6w7Pv/YWALHvCX7ierXBze7y8ptv8eobb3H73n2Ojo6xzknaTpnq5RIjuPeR0jsAvRxiZV8JMWfXBVEmYvJ1b7z2BaZfnvgLv/6X+NF3v83NasvyYI6tlrz9S7/KJ+89z4+++x3S5Y+4uR7wY0QVX0rRTCqmETY54o7EN7JpHQeLAy4urqiNFD3TODH6CdC42uCDIobA5SphrCRFGqMwNjH4nsNlRzerODubyGEUNmCQtGJsZuojIYoEWa98AakS1kGYIlZLwIRPiaY1rNY9NjvCastiYdncRLQ2jCERxsCim6NUYrOe0Frho3hN2jLhbpqKyUv6tQ8Zq6MwFzZbbKWFsWwsU4RPzq5QVlN3FafHt1mtrtls1/g+QjbkspcPjk5546W3aB98zL97x7D5/Xd4++QlkoL/9Ppn/Fac+NW//tehs1xvViiVaVKNKWCtgsLqyFhnJcFXHnGRoBVgJkkK3Q6U23nW7EAcXQIFUhK5YE6UtOydV4ywMFMpBgCUkUTeHUNApI6liMoBn4QVkFEoUxGngdxPdIuFsDkQECOS9mBa1pmiJuKW0djtwNRvyDGxaBqU0VjX0GdPO1uwQ+PUZ36WXIICpuCl6C9NVFYybGmqin6SQjdoKcSeARnl0xMERna3jPdpnOXe6QlOCcvap0Dz0l1GlTjP95m/+gp/8OMf83uPn/CX7twtjZaS4BAPzzUzXnnhOT5+/ITVZkRpSiqfFDHr7cR83uBcluCBHBmjZrUJdJ0UquMEjVNyJpqB+6eHGAWuSmjVsxm2+OuBat6wvtlQWQ0krrFobVjMW6w1WFcxFPlSXRkG7/agEzsJ2H7SqfYS6P3D350/UcIAqlq+vzDLC/NAgbHSIAggKFK63Zg2AynIkG2apNmKIUrgQM6Y0ph5L+BqnCJRK9qq5mq9wZPFL1CJz5qPAWMM86ZDF++ZyU+44t2yY3/t0K7GWColwFrWpSlUClNrRu+pFx2L+QFz7/k3v/ACvzJpHvzwQ77x2lusD5b83z78MX/kKvSdu8zbiuurFYvjQxn2WYuzIr8kZNrKCdOwyORzAd5UkrokaGFu5Bg5mC847BZcrq4Zo5eGEYV1urBJFMmkPYttv1TLv6Q93C3AdMrCvopIHaSASU3knIpViSrMTAH/dIYpxL3nofhcJfx6JN+suHPvPipFUSOkVPYyUO4/YkIpGZLpEHmj1rQ3G548ecLp/XsoJ5I655wU7QWIVTnjrAFVoZUUuXJ3CcC0By7KND4XdiKw9+PbUU1FKp72w4wdACrFtzS4PgjbejfUV0qhw87MXvyD2sUc5WrOjObDaeReXRX2oiSJm5xYZjgKFmcD0zCRs9RK1mkMhuAzOWvGCUDLEGXymFqA1Zgik08YE9GVZkoTNhnwjsXxAfdffINudsgLdc2TJ09IycuAp5LUve16Q7++IefA9fVKbBimAIXFhLK0p/fwP/k5N2vPGCNNU4nFjDZY48g5MWyueen5Ix4+uWG1EcZoVuJDOa9FNpmiRzuFs5WA47v9FKWh3A6BB4833D2tmLnMrbnBaMth1hzqGSfWsQjQhkwTNdWQcKuECRMqyNpTKGxhmtusSUbeR0Zq7U5rGqOoLDRoGgVtylhn6Bc1D+uaf9rO+UeXl/z47Jyo1D6d1boZR4sF/+P5Mf/Bi69j5y3/9Hd+i891t3j34RN+cDBnDFv+6d//Tb74tW9QzRpS7JEnR6mdFVPfY5uKo6Mjzh4+4tv/8J8QUuTWS89ju47gIyfzYwyGg8NTfvzjd/ARXnj1ZUYy25yp6wrrnNhaZETxUXxlhTUjd1LlHLr4ByqjUaT9ns+AT+lPsXljTGI8H0U9sdms8eNIEpNNVFbkCM4rOL/g8PQFkd6lkdZqAQP3B8vuPEEIBmTspPgzB3N+8+waUmbcbMmIV9Z2vZGBhVaEacRaiw+h2ABMjFHCMy7PzzHaCiCR8x7cN1bM53VlaWcdy4Ml1jlMXVPXNVXTsFguqOqGqqoxVYUyMsA1pRY2epfKLg9tJ26TsEP54FY5EdKzD1GBKB6S1AhJQZUiR64QKUxZk6jCBjZkHFdXvYAmPuJsQ1IJVKRpDXVtUMmLL+WxYZos65Wcx5WVusK7zBAy7awmrAMmwqK2tLXGaBgnuZNqJ35oUrshQ+WpJAsrTTcz1HPDYXvC0Fm+eu8NNtuBn3zntwlhxeXVhpwRKfkw4ZylblpCEqVd17Zse4mp1UBT1xzMD6RP7lc4I6Cw1zIAM9ZQa0sqxAxrjPhnJnmPo09laKkJPjNmX1ilBmeEsNLVmqNlSz9MrLZbcoRZgDrCiXPcO5xzWLcsuxanNZ1xNEru7NZY5hhmrqauWwn4SwK+OGNR1mJ3YU1oQgm0UjljMHKf1PJ7708Df/zTn3P75Rf5g+/8iNXjc/7GN36FL8yP+eid96mGTB01w9kFWmX8MGL6gWpRM1krJCAy02bNg/c+IITA9mrN9uqSYdvTzuY0VSVyanZDO6QuGSO1seSq5tUvfgkbDR/89Ads1lfFR1VqrFQsRMRSR4bszjhiCGglXo8xeSESIXY3dTcTufvY4yqFnyY0mrZtSePEaYbb1sLgSWSuhoEvLRsZ4upd3Sx+6+TEHaO5qzVnQbHZbqhthcrQ1Q0xBfoi+7ZkYSNqw2az4aYfUFqxqi95EDPKWJLKNF1D13W0sxnzwyNmBwvqtqFtOgH8CilB+gnBfpQ1ohZRir4f6DdrZl1HrhvyGDAxMg09OYvyM1EsSXPeKwyelfZZ9lSGKmY6di1yLsNAxS6NXEBB+d8uFEjqhh0doNQWfAaYVIptTrTaEIfMTanlZGSQ8DGxur5h8IqbbWaMhhhBY/FpRJRWSqTN4f8fGHwpU6tA44wc1sVcW8AtkUGmLJNBYyQuWBdwTuXiE2HEcHSXnryLRjfaUDkjDatCJjxBoZJ4oYUkHjHKGNpZx2a12R/cRosRsNZaWC2IX55RguSHpMhZEr1QCEPIyiTZOkNGphAKibdPKDQBh8UVC6hdUxKjeKVAKuivPMwYNKkw+naMUVJGqSQshCmJnt1PNNbgVKKxmsZBShN+hClSmlHDuo9cbTNj8DibWHQOP3g2Y+L0wFFPYlgRfaDuHM7L1NPZCqL496hYGusMgYw2CaxIE3WOGCQtJ8QCIMlsTL4OmWJJ0EZEpyBSMC2ov/YrxrWhzxltDHpd/EG0pEYJjKDJIwwjGFehsyKUcbpKkThqVDQ0OhNtjTPgdC5TcY2fBsqsSRD2GKGWIlBXFrIk8Omqo64cymTIEa1bdF2hsxGPriAeNFkbcn1Ac+sF/NVTWJ9j4oYwRlQ7Q4UAaWQMAbwHxDMRVbyQShKTtoYwZdCGFCFhya5COc/p7Tnu+B6uW1Jbx2un92lnc6xzpeGC64trvvqt13n181+kWx6JnFup/ROQdboDZtS+0TOAjvIzZlmIkuocg3gWRE8aJ6KfSH4iDQNh25NzQDtDNT/ia1/4Oq++9iZ//x/8l3z8wU/46NMPAEN3sCRFQz8ktFFYIIdIO2vwo5fmfQvGRA6Oagl5cMIss8YKUG8F8FxtRxpdYXVmVKCiQhjYci5UlRhsn531zGcSAX9141FI+EDKYDFYmxkHvz+IrZU96GOR/ieoG4P3iX6YcNbSNFJwbIYobLNkSxgNrDc9TVNJc5oSTesYBk/ymVASsBaLinGUptQrIATxHxw8lWsYU8ODiw3GOmbzObfv3Ob84orNsGUaAsknEiOVUsyOnuPzr3+FxTsf8DdOK/idH/L60QnWjPwnmxv+8+2GL/y132B+e0nvB4xRRC/yD9IuuVoV5nMujDsBYowt1gS5MHhMMelOqvjv7Dyz2LOc2Ml1cy7DCo3VqjB95GtsYc4IOBMYY2CcsqR3BYhZ42PEB0/IuZj5g0qaftXD6KlnFFbCM/Bhx9SRl/z+vaqiHW+Y+oFxuyXGyDT2aOtLsJEMDNR+b7Bn2KLEamHnP5hQ6CxDjDwOIkO2GofBe18me+z/fpV3QIH8n9HCfrAIGKrLsKi1DV978T7/8HzF6Zuf58OPPuY3Hz/iz5zeYll8z3RK5GSYb1uqqWLdr2XPaUU/SVPXNBYboR89MShStliraWsZkKw2kWphqCrDejtQLxwhTzTLBYv2gNo5lNYcHE8oLd3N8TTiN6vic9MzTSOri5V8FkaTvISx1DazMnO5b3fAXAFBUmkeBStKxfdOmskdKJJSZihNQ4py7+kSmjBNAaN38iaRYYUQCwMLhF2lyjpm778SQ5A1uwdwMlMUKVrwAzorrDIC6ilhW5gsw6gGYQoLqG0wGLIVVpRRmsYadFvRzOZcXW54OgWuc2Abtty6u8QnRY6KqGCx2fI33/w83zw44NO/83t886VXqO88xz8IgX/WOezBkjT0bNZbtDE8+vgBfdhwcHxItcigRW6pVCmwlQZrhamREjNtyTtD+6I8OJgvZXBlKgY/CVspRlRUJTxAU4xn2IVNkCnKAJmK5lIEswNGtDCCTEk/royVkI3ystqgLIQim7faE4GQd6FoinGIzH3gqLZoL555sQxOd0m/OylMtHJkqJR4xRpu43k0btmsbljcOmZnFRBKUv1u2KQUmJiKIX9Zc8j9HFHFV68UagiQt7NbkWRvtT/bpH5kD3aKxY8MJ3M5Y7LasRdluOxSGRIrsWuRfQW91fwsDXwzVzjkXFNKgU7MtWE2SthR7xNOVyiEbWVtRBNFkuZEcu1DoKkMs8bgbMKHRPICcAcUWnmih9msZrE8IkXFZrWm6xpJle06wuSJRPwwoVTN/OgW9154kejBVBWLgyUPPvyABx99xJtf/gre1PxX/+i3i+deph/Ej++w6TCu4aaP4i11s6IykbaGKSZIu7tFmtikRbrZVpZpytSVYyqtjVIKFzLzTWY5JV4ycMtrToNlGTJ1TnR6pFaa2hgqIwM9WzlMbQtLT2RTSomnXhVVGTxrbFbYLDWzJqJyxGZhHF27mv9PhN/cDGgMT68ueHfYkJUEmmhT4ZqWw7ri3759l//F6fMsqkN+/90fctD3dDnyh8awvnubsLnh7PENY5iYLWeM6xtJ2c5JlADIYDVZxent26xWN2wvLvjuP/mnfOHP/SpHLz3PDZnKiTJh2GyplObdP/kuB21DM5vR9wNxMaOZzcQP0lpiSFgn9DQfE7GEkEyhwqBJSth6pnjMksuAV5asWBEUkD7ntA+NwtnyDD+rrFJMqw2nY6Qt0rdV8CzKMASSsPdAFFXl+aPAEvhi13E3XvKobYgp4bolfppoFguGzUaolcqK3DtJ86vLGRhTpmkaxlG8SFUB1mKMKMQCqb9e49dr+otLtpuN9C7OEpKim7doY2lmM7qDA158/TUOb90Sfqkxxdeq2EuUIChd1pApd9eQE0NO7D7IVM4PlNwj4iOaOMJhciQqIXtEIj4Hphg56GYsY8t6tRV7IJPEQ9pKzZADoCV8J+tEV4NWFWcXgUE72lrRukSOkXGQOrdxmrqiyOwNQmYSb+op+DKQEZBnGqQ3a9qEUomnn7xL0y64+/Kb3L3/Ik/PnvLz73+H9eZC7gJjCF6CXmIoXmYpFg/gIvKOkbau8UHWkE6JMQTiJIzB2tUM00Qc/d6inpSxzjGNkckHktaMsSjQciLmiPLyfbNRHFaWWe0IMeDHwCwk7njLXVtz92DOSTvjsO2oMWLCpIoFiFcoDFrtgjAzjIFpsxH/+pTZwSe7YZAANTIgKHIOdJQhdMwSmhKU4mvVjPd/8A7PTz3feutLfHV+Slrf8OBH7/EvP/cim+sL1vVENKAIxPWKoC1NXbFRAoEbU9G2M5TR9OsN43qDSpHx5oq6m1F3Lf04UbUVYS29d5o8lbUsT29zeHoP7R1Hd7esP/wpOQ6CaWglSelJFHzT5IWYk8E4kYVPwwQpIkQXTdV1HNy6jXjdBtbnFyK/Vplx8pgQeL6umWtIYSIqCYhZGofKmbgzVlaFvYtiHuHN2vLznLgcB+IUcU3DweEx/XbN9uZKzp2UWG3WpS6HxWIuFk11zTgMrNdSy6+2G1bqHGscCbGXatuW2WJJ0804un2b2eEBTdvinENZS5wmKAQonRPtbEbVNPTeY5LspSmI8kMJH4tU+uTdEF+VOkVOchkSmpjonNp1IoWIpgu4V7AolLxPdjyZkkmQVUH1VJkdC+6VMqyy3BsusSeg+RTwEd5/uqVzEk6Ys2UYxEkWEKZ8VoReguHSZ4DEf9HXLwzwtZWma4TerdHlkBCzV220eAAomYPtJBNMXi4fig+bkgZesytiZYMmRE6SQ5kiOWkQlEUOZS3eTInI1K/RBGwlP5LJO4NuOdSgyAWKRCwrYfXVtTDxBKxLoCTWOIUobJRQcTlVGJPQWnwSxsHjrMFocE5hjRQUIIyxlAqNnoyKrshfcqEJK/I4okm0TsthXgWcEUZeDJEhaTZ9ZDPKVCt78DEQlWLWwNKKgbLTCte14j8YMrHEKmcU+CjgiBVvCrQ0URlw1khhoJC0uQJ2xbRz5M1URUqwo73nkNH2WeKc1uxlyrkkF04joAQMzF6XNSDm5gmZMCoMWRm0dUwjpTGVv9dUSygbylQG0xxRuRkpbVE4lKvxPgrSHz1KecZhwlYNOXtqK5M3oxy5rB+VoxwUsxk+NuRpLZ9L4xj7iZwiarrGnwWsdjBbFg1IYPQjYQpoFdBWwlysdigkWU6ZlhGLWsxws0Oadolql8wOTtF1h26XvGxbTD3HVjVRlzRmYzCAH7YorZi85/T0Lk3TykHiPSqUMJVxxPc9aewJw4ZpsyJu16R1T9psyCGQJ0+aRsI04kcJVCEmVEjEaSQPI4yD0Op9pPZBvNnqiqqek9oO8/ab/NLbX+G9D97j/Okn+H6NbTr8OOGs5vCow/eBMQilPEcFSVE1lmEbCcFzcOS4vBxIyTBf3mG+mPPzn/+QPIlUbbsN1NYU7xhhyBornoZBXMJBGa6uJrRRVNrui1hrRSo7+UTjFCEIS7cfJM7dWkVTGWyl8V5M6ocxMHqYzSwqBXzKHC4POD19gXfffY8URkxW+LFMJJ0c7lVlyJP4XRiVIU0YA5NPjD6xnM2wTtjLI46za2n03azm7nMvcn7+hG2/YhwCYEl5JBM4Pn6Jtz7/LeLDj/hr7gr3e2e8VN9DacPfHs74Ty4vePHX/yzPv/kiN8Na/NSyEf+XXJKpy75r64acRN6o9SQSca1oKktVOZTK6CiDEh/lXNsn9mUprLUxYmiQkxRTFPYyuZj2ClBoeCbtzQpuxolhDAzBME6RnAyjT0w5k/QudS5hsmZ7taIKiU5IW8I2TSKvIctlmVPay5SOleF+go+vLhg3W6YcyUqYc7mwB1XO+waUXVG3u7iRYmYn/9O7pK0ypRPW4M7sv5yWOzrP7rULWqBYce4mgOVsVWQOXcWrd0/58eUN8xfu88c/+Rk/32z5SmfROoDSwh4YehZjxZMLAaXrEuYQYsIH+UzDlAjRMAWPMuJBczQztLVhtR3ZDCOHnSFqw6PLK55bPqC9BXE0aNdI6JCqqJuWdmHJhx7rapFcxUAYVwzbNZubFcNmLQOmcYstgwppxITprbQq8tUd80kVUsQunID9lDRnhUzZBPBpq444BXwcC8NTmFO5NL4hREjl3igFvEkJpxN1lEbe5YwjUWVwStEojes9DnAKHBmnHLWSMC5HpgXxFQRs01LZihqFjpHgDI/rmp/1Pe9crnny+JKtc4Qk/r2nd0+ZzysePL0CDK9mzb//6pv8+Tsv8p3f+x1e7g6YnT7PH1rLz+/fZ7Va8/STh9Rtg/IC3vVrxc9++D2cVTx3/zkWt+7SHS85WMyoTMWsm6G6luRkoBiyfM4qsQdNV5sts6YlxIjFlLtSWGpJJQn4SoWpWoBppTJ+v/4/s3zVzpdS6ilVppFGaUR1L4C4QwaeISem4GXYtavXsqz01XrNSdZ0KHSRuqQkYLfeyVtKc6zKOsrRM/eZL9YN39/0XDx6RLdcgjPYtmbWdfv3rArDFsRjSCwungF1qP1fIXfjbtoe2YPQavc1KRUgkAIUUt7b7ngoMhsjzXQuFXkqn6WwFqFtWoyxUNW8u90y1QdUaSdhBotlrgIL71lqxSp4qlbRGphC5mhR44NnDIm2MeQU8AHGmBh8wCdTJNIKn6S+3TBRLSzGJc4ef8D52QPm8wNSvObo6IjN1Zq+95zcf45Z05EWifrgkMXhMX6MzJZHVO2M7uAOr7z1DebLA55enPPX/o1/i+9995/xwc9+ys3qnKREEj5vNYtWPJuuBk9rFKeHczaD53orYRghSKBAV/yJnbEM08RUzsbjFHk5aV41lvsY7kTFwaSYaUNtNdgko9gsDbtW5XmnjCbKGkKjc5Fna4pPrNwJaZrwKTEWv2SVpf7OEW6U5sfDhnebhpOseHt+wD/frPiQkcODOd18Rnd4yPOHB/zl+TF/lZZ5D0/iGe/88Pv89Xuv8ZMnl/wTm7iZBtTVQI497//k+8xmM5EwOss4lrOwDK6atmUTRk5feo5Pf/wO/eU1P/6j7/Cm1nQHcy4qh3MVWUVmdc349Iw//Hu/RdaGMQa62Yz5fEFS0B0uMKbCtg7bVZjKkmOi0o6uaSErPKLYUUrqdmOlh1BWY7XBKPH7DjHtGdgxSyK3j172SlELqWSYVhteNzWNNDxcThMn2qJiLIOccrarJKy/cp5A5iQavl7X/DS2XK1uePsrXyNbSQ7drG6g+ECur68lbdVP1I2ocEKIpBiF1e8nQir7T0EMiTFOWCsDomHb769gjSJ7T38dUFqxvb7h7NOHnH3yKbODQ9r5jG4xp25bZssF84MD6qYSn9WiUMo5o1NiItPnUNg8qlzxUoeYJCzHqDLHWWPSLoBMADHpc6QfinGkrjJD9GSti8VEFC9BA6ttRCvDOBkmn6hrAWDXN7BxmaaSYapWlUjus6ipKgtaJazWhBS4Xg84p6mKX9kwRrZ9wntFDBI69+l7P+Xo+ITjo3us60sefPBzou9pnBH/15T2ISxaSbDJ0A/YwooyWhGzyK3nsznHR7dYPX0MMVI5x2K+YCwKjhim0k9SggqgrlqsjfTTRGWUDLaGEde2NBbqxlGbDH5g2Tly1LTbxJcOb/Pl11/n3vEJs/kxrltSdS1YAXsNes+oEmRv55uanqlP0M/uhDLUeUZKKTdGIUFlVS6FLFZfOiW+pTOTH8i9pxkD12dn/NFPf8wb8wWsrvlgs+EnHXgf5DuOAzYlQozia5vlHV2fndMeLqgXM/rVJQ4hO0WfaGYtSin6cURbJ3LTFPE+EKJmtd0ybCeee/01XnzjFX76x7/PzeU5yU+gFNM4FGLHDnijhG1pjNX4IPdwTjJIHYeBSGbcbEjRY5uKaZxKvZF4qWmps4cc8OWebZTgNAL2ZgH3tOz/2sM3Zwv+4foJN0o+woPFDOcsl2ebZ0PFMtzVWlSYk4+YlBlG6V1QGVdbrHXEEKnrimEYUVnh11uu+4Enk+fDd96hW8xoupa6aanaDuMqjk4OqFxFKH1LqGphwgNp8qyuV0ybDWESMpZKu2o9kbMuzyoXdqCsGZdhnouEF1GZ7va7VFW7ercUI/si5Fm/sBtYf/Y1opgSzDE8TbF4GityVkyDYppgViu6xoDyeC8ksRR3Pqrle6o//X3/RV6/MMCXBFAvbzCKiWnxybM6YoxiKrJarUQSZnRhX2hNRjH5wl7QSNGLIhsJfTBKkc2uMFWFwZGJO4l1kYMZJLUvp4gzBmcMyiiRqCRJazVWoWOi0qYk+oKPkWlKhbEGKNl8GZlIhBRYD5FFawk2YpPGqUhjM1YlrBE/AZ8UWRkJvtCKEIQun5KXw9tpKhXEp4C0990B8c4JUYo9ZSyDD6SsmNWZukrYRgpRvZPoKZGvxCTsOjGrror8SyKXjdZ7NqMwK0SWEmI5oGIS78QM0QszjySgaWUtk5dkOWXEJDYnSXtzGklMLpxUrc2+MaRM0RRGJucJQhKKao5RQke0RZmAM1F8vQorU9slU1BUtmGME3EMHM4N05BJSZiVwhYJxNBjVRTJBEJ7TkDYrGRNaS9TvCBN0jgZnHlK9hvSNKKomKa+UD1FZua3K7J1BNOifAbTYJPGmJqMkwvm4Ih4cIJbnnJwcIvu6C71/AjTLqnbBaZqSFouPvJnWAXlQMiIAfqOttJ0M2LKLJ1lFgKbd37K6sFHbD56yNWDh2wuL5jWGwHthpHJD2zHnilOeB2ZyAxZMSYYQqT3nsEnfPGzmqIYKE9ZqMFTlrlMLPIrneHEVbxdd7z9s3c5+tW3uXfrFtPmhqseedBaEXxkdd0zbOS/TyGK56SF7cbLPtwmpj7h6olZV/Ppp48kpIXM5BNoAf6DDdStZugTR8cV2+3EMGkql6kbMVzW2rJZe1mbUfyVtNHEIaAM6FbAbb8p37PIp5KD7RAElNIBaxTzrmK9mZi1luwT15s1D55+X0I6rGNWN9QG1v2GdmZZLjoB2ceJWD6jylVsxhFtDE01x5qEMh19qnl6vQXtaOeH3L57h6dnT8RAeUwiVZkCScGd597mq1/6KvqTj/jS5pqjH33KS8fHhF7zj0Lgf//kHPfma7z9q1/ibHvNlCLj2tNWFcMwoJGJXgweqzWV6ZnPW8gTzirazlGhSFkz9D1N27IeJ4ZhLJ41AnblGEuoi/gqpSLf0wXM04X1o/oJsiS1OWNprENp4cE8vbxhmCa0qxgH8QN5+OAMH62kkSnQtqIyjnCxpc3QpPL9ZdxVCoki+cw7by+oga/Umncur9jc3OC9GOeG7EnZUNkdk2E3INL7RK4di2l/T5DZWXHsGWmxDJlSOfwoezN/Bugrf57VM/AC9cyvL5V/vnx6yI9tpn7uOR787F3+2eUZX6znOA9GBZg8ySnuVY66gpsx4bOSoVKAzSDn5rwz9KOiqR3bUVjRqz6jVWDmNPOuousMq43ngb/hhe4xzk8YDJVzOCd+m23XiQTPWurZHNfMUKahXt5mfnyHg3GQz64Uzhe9Rv3Wfyfr4jOTTWFwSIGhBDkhE9EyWXs2vCyyL60MKmv6fixMHC0ydy1hRjZlZgZh45BoQqIBFhoWWjNXihkKl8ElAfZszthSoBjAJoUpoVimNGlKawEsgBhkPZg+YePANGv5rtF823seDYlQtYTaYbSAhbNZjU+JzWogTgGnaj4XFf/rV1/lV557gZ+8/z7mfM1zn/8G38mZ9198kSufmfqR7WrFOPRUdS1rwUBMnu3TFQwjq5+8Q1KKw4MlB8fHHB2fyOfYWF588UVm8zkhe1SQSXM3nxFi4vpmhVIUW5MCVJUQLhCpYKJIalEl+ToVaXQZjCLAKkBWIrdFKZH+JRm8Kl18E3NEZU9EAGeR3Jcpdylyr87PuKMULu/uMlFOGAUqC2OcvedXQGWxzLBT4Jfaiv/uZsXF08e88MbrWFux79cyUpNkiEUSs9/PShWAU5UmfzdjB3QhDMYSIFCA0B0QqAoqmFLef4Yp7e5gRdQBrS0ZGW6qVNgmWu1Ttk3lUM6Sbc0nfk2vMl1BChUJpyw1ikWYOFQNj5RiNtPk4HHWcXWzxccsaaG9WIa4SpODgPqDz7TWCoiVM5XRxc1jYLMObK7P6dqK/rLj8hMJ05jP5jjXodINJyd3UKpGh5rLRx/Tzg4IvqPpGmbzOdo15Wy95PjgkH/vb/0HPD274r33fsY//2d/xNPHD8mqIkRJQ2yMNIfDzv9SC+iiEH/iGBTGJDa9+Em9pjX/km15W1mOmxbbVKi6wVQV1liRqmuFNU6SUo0RO5gyPNC7+j/v0g0N5NLQl7NWvrakKsuKEYa5kUb3RMOLTPylnMg+4a+3vLXY8Mum4ulqxfl64MBE/vxzJ3y9XdI+fEquOv7+Oz/g1fmStNX8JEx8pCc2D7acnBySc+b67ClVuU5q55hUGRvFSJoiF+cXNIuO7uiA2a1jxseXjOdXfPDtP+H1r36R8+gJCoah5+rJOddPnqC8l0GcdSRtefjkjGEaJE0zRnyOAu6FQPYCyGgrQWI7qwiU+HtrY1DWYCuLM5bKVRhjxfbImmLZoXG1E3siJ3e91pbaNqSzS57TxUIhwaWPLLQtIHjas4p3QzGUsPFUhnY0/NXDBb+1XbGylg/eeZfP/9IvoWzF7OSWpMgrxV0UlTW4vaQtE70nxYCfRgH4JrFuCcEzbnv6fkuYJoahJ/qJHCK+gANmJgmu+8Gkgn67ZZw89vKcdrFgcXiItpajW6clrEF8JlOY5KxI4GNmLHGKu2ZdFW9pXc6kkcQSRZUzQxkGGiX2KjFkvAelLVWdsdmwLf63fZSAJ2OFkd0PYjuxGaWMHkcIGVIQby2tJJymH2W4WTcGV0XmjWPbj7SuZtuLpYCflITpRAF6KpsxWGKEcXvDKo780T/8r/DRcL5Zo/0NZGi7jrEfsEnRNpaUI03VsO1XUgdajVGZpqkx1nHr5Jjz8wsO5h0uDULKSAWYLXuzclZ85BHPz2kYScjP5GMon7uha2pMmPDridmyoveQfeY1o/lX3/oGr5++gnNLqSuyEnbgUMAgLRJkqTXkwhB/OS1yRyU9rjKVAFdKSf9aAlPk0aZnydJZPBvl93XpTSPECRM8aTMQe8/F6pwnDx7z1fsvE7Y95yGxWc7F4CpLYJYf1kXSbaQ+JhPDxPXjp1RNx+L4mNXjM3ay0O2wRXdzHIYqedThEf31JXnw1E1Nzoqr62uqusWZjEe8wK021FWF0VrYkyWsJ6VYQl0CtnaoYqFDivTbDf2wJRamvbGGpmlIWu45FzNvLObYJAOcbfQ4o6iU4CIZBOQmopIixwmTNV9oLC8ow4WVo+jm4hIfPWSxRElZPuuUUmHf570dTkbYiKn0cbHI1GMSFUs3nwsJzFlmMTGNIzkm/KbHbweyuqL3E1fnR9y6cwdy5vL8kmkcadsGV1WEEBg2A2Hoi8R41x/satcdEPysH09Z/HdnO8Su1A4pSUisDEg/AzCXr9mrdvevHfgqdgNaG5KKrDMca8cHeHkvSoa7CQVZ6v1xmmTAkURlpZUpTuSlGdrRCH+B1y/uwTdFpm1pDHWZlij2sh+Qj8taAX4UQqPegSBaaVLMZbog6Yc6P/t+u2lu9ImURbZLFsmZiDZkMg0JlSNV4wQUTIkUEklJoq8wPwDE1yekSFIKtCGEXIo7KTpTFL8xrTW1zdxbKmrnqUzGKXG20UYLC8OLaXgIkFJZ0EiKmLGKikRTCThWuJyQSpNaZCq2hINkl7EmM6tUYRiWTiqXyXgq8emuAkAnSd5T6AKwJZSVFajYAaKqgHupSGuFxSgA1M6IWuS51sqlE/0EESqdyXnEoDFGY5UckuMUCztSTDnJijDlksJZnngqhbbWkIWdGFJEpYBKismXTyprUm7AduhpZBrXGFcTtxvYGuJ6SwoBVdVstlfiARQjykixGLMSZkhGPM7IhFQ8ChQEL6aorXP4jcW4GvFDkwTjkA0BR24suWrBzdBVB90hdbugmh3QLE5o50tMe4jpFtiqI6lCq02BnBVRawKFkUGGorvXqtDglQDfzy4gMbE3WcHNNX/0X/znfPo7v8P108esfWKdAusQ6VPi2o+sY2CbYItl0IZoDVMCKodtWjAGY2dQW9ysorKOzbYHo1BZPAg3221JcQzEkMgp8lRF3vMDnzx+wre+/0Pu/St/lsoqrq+vuA6JDx9eMPksQEsSBhXlMMpxfxwBinFQe5q/UokcPVoLg0yGGBkVJZhmeTxjnEaSkkASlGIYPeSR2azCWvGEyskQ0Xgf5c5PIjeJQaZWzllZh1G6ZR8jJitcZTE2UXeZYa24vpGAFKUMrlK0VmLlrRX/lNgHtoPI8X0IdHUtoLpVGGtYVHP69YjLibabsfEVF6sBZWtsW3P7zh1W1zds+hXZJ5bLY1arFUYFXnz+8/z5b/1lzp68yxv5Ka997z2+kV9h+zTy20vPf3j1iLPDA/7Cr/05Pl1dE9JEVVIIk5Opl58msp8QX65K5FpToG0qKqeotKIqz9payzRNrG8GfBApUIgi03DWiF2CjaVv2JlaFxPzwgJ2thKGVs5YBSmCQQt4nMGHSZJe/UAicHV5jt/KBGoYRTKVU+K4PeJWzjRJoWJxChMUgnJIiaH37jJNkW80lv/68ob1kzO21yvmRwfCVkBhVAkf2q+6AjSUcx7AGV2kImWfFfZSTjvALu3Biv1rx4ri2X2+kwDvT9TPUIk0kqZ5vOh4cFVhlku+fXHDv3UrYwkiH1ERpshpVZO9yJuryrHeBEJMNF2NyokxAk4zDRIeoMuEetY6jEoMY0CpQOskIXjb9zzaboRxaTTOiA9O7SxaK5qmYT6bUbczcrZUTUvbNaSc0dpRNTOSMgypLUWZFGGKZzKnHUvMFHN2YUnlUszt3Q/L56EhSsCNzQEdI61SHOTEQYJjBYdRMYuZNiqamHEobJL0S7OTaspykEK+FO6qgJFSZwkrUpWG12ZJG7dK4wySvFzVfNA0/N31mu9qR2hbZnWDczLUuzm/whiNHyf80GMN1LbiV+qaf//V13h7fpvzYc1PfvQj/uLtl3gYI//FRx+ybSw3E2y2G4IfUUSRsirwubDgJ0+/3srKjIExBZ70W3y/5frskqdnj/nw5Rd46Ytf4of//DsQM91iztHxMQrLYjGnjxO2dnR1g1EaZ50MCJuaymgx21bCGjHWSqiKsQVIseV5iRRWGUXSBTwrXjSxpFfnsthzlElcSsLoN0pqNIo0+ub8gi9WFpt254Vi9MXnMoifoAgDA8SiFiBjcuLzleElpXm67Tl/9Jju+JDOtzR1gypWJruaIeedTIV9si7lPhUZ3e7rcrGG3IGYpYkrdim7RGHKMKEYi5QTI5NCxihKsrAMHgFyLOVZTETkzDRVw+MUuYyBk7gLbhMZqVWKw6xZBktOhqvriHOaKSb6MZGzxSaNNQb6hDHCOjZGQwj0PqGCYlYbaqeZGY1TEEIJYNsm3EJxc32GcxXTtsZqzfb8A64PDhmj5uj2HXLSHB7d4eDOc2wXd5idPMfR6V20aSFn/pu//X9Bo3jt7W/yxa99k7/19W+xnM/ZPv0QlWDeHnGyvMMYApMNJLZ0u5p5zJyezDi/2nB04NBk3p6f8u/ce5vPLZ+jOjxGzxaYxhZZpJJ6xipQkb1mWxd5frYiY9KpUKOV+D6Z3ZdZYVKRQRmyKTVDVhCVDIWKt6oSlLec5Rqi587k+bWYUVZk/NlvcZs18fFDKqN5FK75+cNH/JXnPo9/cMPHbJmqGhUjT56c0S4XWDLry0swhrqAsCDEAxM0B+2C7abHd4H7r7zMB09XjOstjzcfMA0jx6++yJAyft1ju5akNMN6g8pwcvcux3dus+l7sqo5evklBu/Z3KxKnZ6Ztj1htSbHgK1rUkjEYSRGjy8eeynLvlW7baFVsZoSSe7Oizkj69wZsU9o2hl3Dxa83txFJQG3ViFwWGwRJJVbsd9dOxBMthMazxdnjm+ZivMOzj/5kHcU3HnlZRYHxyhT4ZpGQAeyMIQKYJgAXVU4V+GEAsai3F9kUWHszv5dz62C+JaHMkjQKZaAEYQwoMUb0ZR+CKX2Se2xWBJZV8mQIyeSymKxsutSdmVEAWMM4hPfAk3K3CQ5i+q6Eu/O4InZSe+iM1ZFnNWMoZAsyEyTwXvxUPQhkkKm7wWQskbqHKs10zQRgwQb6mKHMo2KTY74oPGDZ9bMaGzNat2Tk1gcaauYNZZ543AqM02eNGzxIXDdRzaTxxJoXE2cIpWDxaJlHAfGkGnrmpvrc+rKcXp6wtXNDTEGDHB19gQTFTbDvHUMwaNSYugHsk5UGprKstkO+BjEaiEivY5SOG2I00TbNLSIBRQGcghUWu7/v3D/yzy30lx8/F3IZi+lxuiSqCxeekZbjBHfcVWIBspYtDOk0teyY5prnvVVu2nPs8IOhfQ6u1T4HGIh1YjCQYXEkOF7j97jtcURB31gjJpzPZLcIbbpiOkK/MTm8qKEiAZMuQ8JCX+zEXbiQYs1FnzApwk1KI5O7zI/PuHJ+++TYuT2nXucf/Qx559+Aqbi7r0XOL19G5UDm4u7bM7PiMlzc3MD2mBcx3P3nyeGxDBs2K5v8H4g+kxVNUxDj3WWafL7Z0mpe1f9gHMVKMPSOl7qWnQ/oqPiJng6rakzolpDk4vkNxNROZEiHOvEt2YdP1qvWQ8b0BpdOYytpDbbQRtRiCOxZCrk0qvnKDLqnMX7MeWE8h6lDeO2L8rJkqitTbE9kzu4m804PDygqhumbU/tLON6zXq1YnAVWsE0jYWApEjBf2Z4lNiJjXfM/z9VP+TMvKj8jDPlz9mrS/faiN3CUjtf0iLxLYMrtPT5XTcDoN+sWcXEka3Q9JREhr0fuEbvFZS22AnsbCAUBSf4/1nH/2KvXxjgU4DRBdxRGWXlMDVK44zMXhWGFOVQj1ntPQBqK5IlXe+AkgExak7Fk2jXUBT/KBRKCVVflym0VgKKWSOIv4qBkBURSS1LmRJwsSvzgCTvI2ZAxyJNk8mLJWKLp5tVSgyGtdw4MgWCjGbwocCVkdoqWiuLShthteXC0JMNIECW0oUKamVH7CihqqjIFALAqWRIaneB5336oLElzaxMqLQW4FMhyWkxCWouDu8igzOmhJHkEm6ioaoMFQKsZp6lpsmGLO/RaVKO4vGWEzmJBV1WMtlLKLIxAviUePccVIm8j6gkgSMkUDh8hnH08nObTGUrpjCBMWhX0R4fMV1fMGwSLib6CAss1jVMYVsMsPN+KiPpboqEpnadJEZpTQgBoy1kzTR5KteSVc0wJnJ7i1i10BygqhnN4gjbHtEeHGLaA2zTYVyLrdoifXNSnGRpHnYT98iuPlUYXX0G5S9MKGCnG9oZvD+DJHYWINIoKJX50e9/m7/z//gveTBuONeOvuvwrmUoRqzJWXAWjBVJVYp0VcUX799jYSXt995zz/HJx59g6ppb9+7y4x/8mLPH53Tzhudff4nHZ5e8/9FD6tkcIxlQ6Ayb6BnGnp8+eJ87Zxc0jy8Z2oZueZvH730oc/Mk6yTnnReBSK513oEoPAMIkiJOgcpphimglEVpC1nS3ZwzkOH6/AZw4nepBFwjy16+uhpBK7QWaW5KCe8jzlqRafQTzlimkoxZOS2peiGx6CRJUyZH0I+JfhSjWfFiFL+wWeuYCg1ewH5K42zwKWOsI4aJIUxso+GWOuDFyXH88vP8eN1ztrkG7Tjojrhz9zYXq2v6sScBtq64WD/FYXn+ta/wK1/6s+SLJ7zqV7S/8w5fbuaM3vMP3cj/5vKKd8PA21/7Gs3xnODXWC+FR1NVGKVwTlO7lpwSTe0wGWwrXqBtnZl1Fc7KWlLFYiAESTPOxbfLGUsm4Yykyim9s/FROONEBpiF1YJKVE7GdUYpGuswSsxgRdqRxCx4M2H6jJrAKs0UemF+hEjKkpqmQuRAKeqUIZSzVkkaeVKWQMYk6fBS8Up51c24NV7y9OFjnj54wvxgKc8nRnIVZMqVBVw2RR6gsrACq6rae67u01TRECjy3DLfTbtJfv7M3iz+hQXgAvYG0pHiYVr2M4CKmdPZnI9ixB4d8t76Ey6Ggbkr1hLKEX3miDnzPONxumYzJtZDYtFqGgs6G46XDTHD1U2iH1JJSU70k+doUWEUMu2LgcFGsmpYb0XGLt2XTHVJmdpJI1E7R+MsWjtqJ9IuSdtu0FrjKsu1Oio99i6BXrFLXNd/aqcXUC8LGLuX8KqMy4kuek6AOzFzTxsOo2aOYhGzGOGTUVru6EopXG2LfFrYeSrJCSky8eKXm0UFoMp70erZO5LZofxTp1iAV81UWb4fI//38wse1jXWOk7qmhgGwnpE1RVMnnGSlO3bizl3yfy5wyP+p5//PPeaOWFI/OEf/4A32gVu1vG3Lx7wOxdP8f98S3twwjD0qCTs8ylNxJCEOVM5UltYM0rWG4PHx8CTsad2DTZEzt7/CFfPsFmxur7BTJ7tlKFbYLTjk3ffJatIVTmatkMrQz8OJAd+GFBIWrR4alJSZyWV1jmLNZa6aqiaBusqVCXgX13V1M6JhEpLU2ms+AQ6ZWTvI40pSjiDFYbzR094rqqKPFJhU2bwnsoYkWZHGSpmhD0hifKQs2Y2TvzZg5bvna04+/RTvnD/OVzdPJPHFtn3TqqZ1TOpfi57TRfgY+cFKcnIcran/d0qFByd2YcJlVv2MxfUs/s4BlFZaGvY+QCG4guqtaaOlTCuUNxoeJQir5a1mXf3PpqF0XQeKmUZksZ78d/MiOXM5KWwr4yS0IGCKDgj3tLBRwkYi8IciglIGmMyzhmmbcRoR1NXUpfljKfn6umaTGa8/pBp8jxx4gNl5neYnz7P8y99gYPTV9n4QB8TT558xHsPP+T3/+i/543PfYnT5TG/9OWv0LULXvvir/KFX/oNKq2ZzefcrK64ePgxT2/OuTg7h7zhzumAySteOFzyv3ztm7w8HDJlTRpH7Pq8HKnpTzXc2ITKYkmCFm+xnaRO7/SCJXAvmzKgzpq9uRzqGTsHAQOVNsXCR4z8c/Gq0lqAgl0AXsbgUKhcoZoZ7tZzcHHBb//kO3xlfkTnK3oHnXbktWc9rnG1ZnU54lAM6xX1bM7gJ5HUQUk7joRxgOAZLs+plnOOjo/49KOPSCnx5OOP0VXFrZdeZKoS280NrTFQ1VhtCMPIg48+pZnNWC7m1PMlKkZ0LcOXpmtgClw/eczFgydoa2iXSzY3N9w6Peb0zh2R4OWI347E4EnBs91s8H4i+aKsMBL0k/1USBeQomfetLgh8OJhS556SJk+eu7VMmiSe+/Z0EaYvJlUBhlJJdoJ/icnR/zBg0ds2oonH7zLxacfYpuarB1V22Gdo20amrrCuRrjapQzVMZinJOa38qAwpRBhbEWawzaObEOKSokrR21roqVWtrvr8yOYZ+xWrGTCuaUyjAoywA6AYVZJDZBhXFcuBPwrNk35f7rUqYrfePh8SFvfeFN/uRP/gSfAjGbEsin9vVEHz1H3QxtNcOQIVumMTPFQFO3OCLDMJUQSPHoVgkJD9CZKXrMpIlRsRkC5ERjK/5Xf/Nvcv/553h8fsV/+H/8j7naTCgt6bub3nN0Kuyk0UeODg6J4QqVIkGLiiKME2hDZWVAe3rnDto5YvQoEt4HbOWYNp7aAXGkwogFQGxQvchTjU40TU2toCmMeaUUqqqIJjNGT06Bed0wBkfMis2mp6o1t0467hy03Fyt+Gpa0D445+JmQOUigd6FxxSmaEKLV76Ws8KqXUKxkpRx69BawCXtCqNVa7Q2kKOcEeV76ALKSOrpM7Amh1juCulpjIfrPPHw4pxfvvt5YlI8qhLv3qzZPlQcNS3rrmEaRumctKGZzbDK4CpRAlRti207kkrMjk/J/ciUI7qqGNYrVJjAWbKP9JstpnYMw5r+6UN6p/nk+jFd2zJtVqQQhZlvLFEb5sfHHN6+Q/CRRZo4e6S5ePoQlRLLwyU+iCPqfNGxuhKGodISZpiSeEGiNHfrjntVjVqPZBRXKtEZhYtF1ZWTECVk94gcVkmv/SuLBX+vH3l6eMT51Rlh06OVDFizMmVgJxJdrbXYv2RRW+0sQXYMv0IXlvMmCdhakDWMdRJEVFXMFwc0bUM76xhGIYts+wHXtLQJ+r4neyFuZDLTOKIL+9EoCckQYK8oBbOsA5VU6SEyXRaPTpTI4stsQQZOu7FgAdy0MnsFpVIFjyn1coyJ9XqFtcKqvPETL1YVVkPYBdBlvQeixZ5IcKpUGH6pKA4EDn2GF/wir18c4CsPD6WKGTsiwyxeDmLRIx+UNkLdrq1GqQBKUlR3CiutDeMIOSqUTuIDUcC1XYpJJW6m0hDwzBvJ+5JMF4vpfhKfvZwEXJGU2oIQh4RzBmcizoJ1SoIzEINRpSClEaUqKaBzEi8upahqARltAS+1kkYlp1QOKKlzdgyyQgXBIIitJMchDzgjxpaqNKNZEYJHEeQh60JRhkIlD2KYH4QyHZMg7CkljBWALyaF0W4PNMUpCm08e9zuw3q2n8omSyS1i6wuBVpZZGQrkdNKwhASQdiKUREm8XPRRiOOd9IQgkizY5KDJceJKRYvAyXmsVK4B3KQxoKtwbYnGDsxU1uGi4lpmnDFFDejiN6j0fgYqJwkEIZkqb3GJ8WQOrAWqo5qfkA1P8bOj5kf3KY5uE27PEbXc2wzx7imyHmlmHy2kuQzSDkTcn4m1UPAS6tKmaoQXL6MOvP+oy2/3iX4ZZFHqgIY5FzWAVJgpDDye7//+3y/PWT4M3+e0RpyPxK8JBrGJJLbcgsWoYoiMTKqyOnJkmmAj88fEKqEqg2Pzp5w56U7zE7n+Kx5/9ElLGbUL7xAzBLNrjPEyRNSTTs/Ynt9wdhVbC432KNb3D054vryCj4UEEhpU/ax2k91ZQ2ViTuJqqqoass49Iwy2isTDvHozEoxxcQ0BrlgY2BKIrvZpZ1NIWGNxmkBA7VWbLeDAKtTwDrxnknlEsuIebjRmeBFzp10YhoyIIwmbTRdVXP78IA33/gCQ+/53k+/R0iJ5Ec8ka6xeK/YbHtykRtCxtmGF/WSb1XPs5ol/umjDWexJ4RI3S25d/95NsM1Uxg5OjlmGj3nZ1ek5Di9+zK//s3f4ObpE+7oc+I//l3+SrzNwZD4x8sr/qNxw8eV5ag75MVXnuP6es3hQcviYEHyvRg1k1FZvPZCSqX4AatlHxljJPUyK6Lf+U9ZqkoYIZRCdXfGGCMAjVWS7KiysKKnXXNahhSVk5CUFDy2+BGllETS5Qzea7q2JacRt15L0Wc0TiniNIl0SCmIkVvaYmJCxd05QmFfiAk2MYByktKpYJk0X60q/p8PH3P16DHXtw9QzRxHECATYR3twHNjXZGearwpiXc5ybSseL1572WqX9aiSAufgXs73K7ka8pJliQpux96AcW0xpVpc86ZwU9USuNCwrUznqbIx9ue57sWnSNKe2nStp7PHd7ik/ExISasVkxTpp+EgR0vxaPIOog5U2tT2JSKTR+prNwzdS0g3c3VFYeuwmBkSln64gw4DQnPOHlyEoNzpWQq7qw0wilEmtoxzcY9mBljLmE3jmnyBRfRxayY4nsoIKBOmXnMvJATb2R4Ds1SSVNkgoCkUSd0ynIhlpRkn5NEHXjQWb6xKYCY3JkSamKyBBftUiL3wKoqgG6GpHcNvgVriMqwsYaVNXxtseSrJXVcZ2GOzBYzJgJns4rsFcdW87n5Ib98/yVeOTyg05Y4BN49+zn92Rmfu/sSn4SJP9xsQFtqrTE6QZj24GKOUlhIoZY5vH+H5ANjPwjjxkdU06C0IqhI3TSkYeTsw484vneXzeU1vh+wtwyXwwo3VMR+S39zRa8Ua+eo6pZtGNHOQCxDOyuG4zGWQVzxxNvLT1LG1rWc2WUtV3UlTRDl3tIKUzlcXbPzJTI7FqCVaXadDP2Tp9y7fbdItWWzDCHQaFsCu0otkxQphzKUNBg0bgr8alfxX5N498kTLh8/YXF6KoMWK028LnYqxshZLaEhpTiR0lzOtNKwqXI/R6XZCcuzLvKicr/u1vQeHCSz890EYTWJckIkjTpDbbQkc8ZIWzW0TcNaa0ZleZgnkqqKX6IAggbFTEMdPAet48b3OKdw1pFtAfvIWJXRJIyVs9ZZYSiFknrajwMoi6otxilqp6itKD60klRCp20ZiMCUM7UW5nQI8nNMcWK67kk3l5w//CmPfvr7dIt7sLgv514GTWLa3PCzH/4B72fNN956HY3nd//R3+W6nzhdnHD79n0+97Wv0h4/z6+8/cu88tJz5KRJk2car2mvr5n/1j9h8/BdCBmdgwTpoGTwqxEJuJIGG12ID2UvC7F09+cylN4BdvJree4ysNbl6zVlai7qHW2EMaSN4IlKlW7MkLUlqZ28D1QKJVhsot9c8+7Dx/zPXvoczWCwsxl/gZof2MzvPniPYbuVZFpj8D5QVxV3jo5RywPGYZS1ai1ETbM4ESP8m4HbJ8fMm45pmuj7nrTZcv7Bh0zR02/X6KkMopWiH3qGMGE3Dre6YXV2hq4rktG4qireWhmToG0bKutwlYXasLxzwvG926Sc0FaTgqSaDiuRtxpr6fsBpQ3DdoAM26trFo1jLP53R7OG048ec1gC2RKZbQzMVFvq1dJr5F2TEEsvnuX5ejDa8pWu49fblv/XFJi2vTDrJg/Ks96uAbgSzd7eAy1pGdqoIr/UescyNhjrJODQGGmQC0CgCljQNA3W2lJf1lhXYZxFVxbnHNYYnK2E0WwLu9mYcqerImsM5abfjTWlZi3XCQILy1lZx8CBVZAyh0eH1FVLWzf4HKidY1AwTQFMZlZ3tEoRVUc9O+bwsJF7e7Wl9iNjv0abSZQzKYlCrHiSqyQqJLIRmyitiseywxqHy1vYPOXWouX4aMHV6jHjGAqtJDP5SOUyXhVfQJOwrWVShlpntsnTVoboR8LQM6w3wvgat9SVxapIY0A5Iag4lalyJvZryAYTPOjMopXwI6sUxiraWY3ynuSDDBkDOK2ZNY5bXcfV5Q1TCBjjmPqerY7cx/LVqLHn19LPIMMco8GZAugrSSC3WaFJhcwjaaIpQVKGWJ6cNVpKi91+1+VOU1aGkEYXYNDsbZiUlnNHI7+WlG4ZHr13/ZR7Vc1BCqyOlug/86v86/eOCZue7z484//0d/4OD548pjOae11H66wMyIxh0ob24IB6fkDVin9nIuOquiSPS588ThNhDEzjyBBGxnFkHD3b62vGaeBhvxV1gFEYVe2VC9vLC965vkEZzeQHsT1xom7crFcSYEYmrHucduQcCSmUvSwLvLaWtw8OOFIIWUdprlVmVtWY3T0ek4Q07nrYvPvcI8/HiT970PHfbrYcLg9YrTeAIqQgPtqFORcI+x4anp337PpFo4o1GSgj4Snayt3s6pr5YsF8saSZzWRvO4erHK7xaG2YzROL5UgIgTBNrK+v6DdrtqsbecY5UIHgNXvv7VQk2oWhV35PpcQsaywZX35uta8k5JSgMHNNAZKNEfxoD4CWGiOXtZiiKKGuc6abNbS9oc9xj9bthue7v2EXlrYH8wpmtFMa/6KvXxjgM0ZRVQ6Q6U+MWZKEVCnUkM1oddHOZ18Yc6ZQsg0xRHbYpRz6O/wyoCkXO3p/GGttCWWKsmN2aauJYafZTzSVoansHi3e+TIZtaNp+iIxjaVpkAszaY1KBYRSocgCKZLjnXxAHmooaXLCnJGiO8ckhrXmMx5sSpUpGmgjkpBYmh/ZV0o8RNOumE0iMw7pT/33FJaR2BQI0BNCIqtICJqUDJoiR0YREMqsTZrKQA7PzOkTuQCi0tKaYogurB8kjVBbdml+KWRy1sRdQxie+daoBMYZtBFK/egDWWl8yChtiHEovlWqsEmepQOhEslqtslw5+6rTKtrtuNjtLkhDSumrOm3nvmiQTvH5COpXsJ8QdMuoF5SH91mdnCbdnmKqZdUyyNsPcfWHar4glCAsR2qmQptducbmPdAXdotQ3ZJrTtAi530IefCantWHMjj2bENdr/L/k9zYQIF0VcUz4/Mx+/8iJR69O053d1bpKGX5NvkJQDEKLqmRaGYhp5WC8hnXcNsaTHzhD1cMnhQNFBVTNuB6+3Ex5tLhtEzbCbS6MnKCKgexc/EFRnlmAbsfM7ZuOXzxvD659/g5nKFrhbsfIzKcVeaJbX/+VUBSYwWxuQ4jTKcN8KGs1YTfKS2BjRMKWGUwVYwDOKTl0HAf2PQOhF2QR4JOTPQWKeJMYoJvTaovPOky8WHLVM1jhhTgUEVwyBfr5NCR8WDacX11U/4/CsvctA0rNc9yQNWobTDIhLKTZ+wybHE8cZmyRvuFlfNjG83PedhYLzcMp8vuXv/PlebS9bba27fukNKkavzG7Tt+Nrnv87rL79FvlxzNw1c/b3f5V+fWhY9/PNZ5n+7WnF2eMK//PaXqOYNMWX8wxWXT65onjvm1q0DcqOYwoTKExgtDYjOaCNDiVTo5spIg1Ng87LEBQgIMdA0lSSjIgMGayToxCoBB5TO1KaclcWLU6ViFGylMA1BAI0QE07XVDYRc2Y99qxWWxmsoAl+IgGTH5m1c8LouY1GeTFqVUou1BzLgaiSyKCUeIQFFCZnvjWf8Xcvr3ny8DHd6SGn9x05B0YjTOmcCgvHVPgp4Ix4ougiuZuSMG1dkSiu+5Hee6Hux8T25gZTNyhr98UeKe96TGEnZZkKXl8GnHXMuw5b1eQc2QxbHpw9pZ9kUq2tZdCa96c132pqSen2HjUBvePleonWDuJEU1vIido5+lEY0HUtd5lWimmMKJWxRom3ypBKmm9m6QRgnM8r5nWNCoEQJDQnxFgMyyS1PkbxYNoVgOM0Cms4K8YM0QxIV/4MCEl6J3cse7tURLsUvzZ6vpoUfwbNcynSJLF88EYTsoDN2WSscdSVpbYO49y+KTOVQ1eWylSSWF9YDftEcqNFimOE/aOMlXRVI4WgtgZrGrSr0OXPjDLYpJDk0kzWEh4SUtrfc0qJL2LWYndhk0h8URLkk/qR1c0Z3/7ZT/jqnecwUfHjzcCDkBiGEasN2ntSkgIuhYTVVmw+gOQDXd0Q1IDrlmx1ZvP4ApuMMMqVoe5q+mFk2m6YphFlrQQjEZnNW9rKcffVF/jwe9fCEhwjWz+SgLRN5ElYKEEVT9JiSYEScF2lXWmtSGbag1pKQTYaXTtsVQlLV4NqG8IYWJ6c0M3mhYlYoYDNdsvVhw+ZDSMndSVG3kGGmJsQmGktsmSiPAetxEIgyzmtUZiUed5P/NpBzcdXPe/+4Pu8+oUv0r3wPOM0sLnZCAu0gKDOCdvQWQH+yOy92xTsWZy7sJcEFGSTnYcfufg250zh+u6BTcp/a3d1TZDgJa2U+Df7sFcxLA+XnNc1UWkeTAOxblAhyLmVpRGYa4MbRmZdQyh1bz96EonGJmZtA1nhnARtWJWxKBpnGbWnzwFtZBgbI7h5TWUsXWMF3HENKSqOj4+kkVmtsDYzhITRlqo2wtJCAqeq4pnKdMPm/IY0FVuKpHCVI+fE5fWWZduSk2KzXROHK66ePOLi0w/46MMf88c/+j2u1hO3jm/zyr173H/lC7zy6ht84eUjXjZQPT0nX15hQiAnj09RGimlyYjc9hnTAamZlYBxqjThqjTl6jPsG1WkTjsPRfSuzcrCqlbi1Sh4YJT6WSuUqVGuQllNViXEDl2Gp4HsR0zWfHBzhg2ZO80MFyNaNdxKkfrqnGUzl0bYj4zeo7Ji2m4xWfGCq0Vt1LYo7ciuAt0wGYNKTgIyTjuqrqFqa2nytCIXFYmPmc04MvmJaRoYhwEfhBno/cQ4Towx4Fc9V2eXxCQSXJ0zw82KabvFasXZex8Rb7aYusJWjtlijrDOHCYaqrrm4NaS/uaGi0/eZ3V5JfD4soP5jJNbd7g4e8RfMpY2iDw0KksfAgujysDsM8Pu5J81eSmVmjkAI3NX8TfunvK9Dwf8yS0unj7BqkDwgarrMFrRb9Yiv84yjFNJniGloRUKg7zi7tSSolv2uS4p17kEQKWiod+B/Gp3Nuhyb8jwyxiDdlakwHXN4fEJw0bYjjqDKrVjLgBfRggOqgB8CdAhcmKFjbpZr5nyQO+nPXED1aKsw9YzFqcvs7h9l/nhHZSpadqFMKFyJvuJYbjkw3d+wPj+O1QEVEzoKlHVHUM/MvmwP9t2fuYhRGYp0eQVahMZvWHcejmvfCApQ+VkGNPUmnkzYxwnKiuD2oO2YtxuaK2mcQaVIouTA6r5ITpLuN2923dx9ZLL6xvyNFEBB12LH4ZSl8G8a+inUZJ3o3hS+mmkHz2DlzADNBzOZwx9jyVBGqnrjNOGSonUeK0Tv343cnJ5xeXg6EdJ6XaFKZ70zsZIetCoDdoUTzMld4HRVhichTCgECa0Ll+rjBZ/5RQheXKCOOY9KWEfyKaKdRJahsxaE+uWjx4/5uvHt1HR4y6u4Xe/T/v8Xca64urjh1SbwEJXHI1b/qVuwRt6xvF8IenOXYdbLAndjLFt6LViEwLraWKcJq79yHbqmUIiBE/QkDuLXhyRXUW2FuNMYYRKjT0ME8MwME4D0zQyDiPbcWTb93g/ClgYIz6U0MmUJClWCTFKQCRF1uBcw92q5tdvn2IHkXsHbbgZJk67Bh3FFiKHQE6RqViDacRiS2dF1Q/8xZdu8Z33r3hsOkJMTH5CU8lOMiLFzfveV9K9C1LI7ljPMRGiEFbytJPECiDr/ch2fcPF2VOUkzTuqq6Yz2ZUdUM3m9G0LSC+6JWtaNuWcRh4+MH7bNc3qAxzKxjKs1Om9OrFe1GjZMBMos6JCtiWHlbSw8ViLWeFsprK7JLBk/gdKkrPYtl5fmuliBiauqNrZ5AC56dH6G2A1aWoNwuBYae+dNYKtpKEPe2cI+VELPZFu/PxF3n94iEbKRGSAEW7NyRmg2C1bFLxpFNlAicMiriTFRFFipuyTO6V2vv+VK7a4XPEBCFlYg5olQgp4qwwqtARaxKNyVTOlGJeGpOshJ6uC9xitLCFVE5y2GvxD9KmIpOwpUoOu8lvFPaVJPkGeUBJaNrCdisTBJVwxpCzRnggxW9KG1QuaVemRN4bSaRLsZg91tIw+CBJUT5mYc3lIpct066d4a5WslAjFNNHRYxRggOyNNrIx1aYY5KQZbMAmjKUK0bWWqZpCVVSonaMSwEJdoBVSs/YQcRUDsokylEtqWg5SWiJT1EkfyhUnArdWOEUWAc5TsSsUNpSVS3MD7n0G+I00i1O0KcLNl4R04SbzTm452i6A2ZHd4AKukNce4RqFtjFIdXiGFvP0MaVn61c3wVh26vpCyuAorEvsPu+kJSv1fviMmc+k84kE4F9iuFn9sDu79x/bvv3UOR9UQC+mOTzlwIukuPIb/6//z73DubUXYfXhqP5Ug7PpmaWJQhFG03XzNj0WwHDk7AeP5kqPvx4LesqaZypUJVmdXXN9dk1CoVPBdSNCa0CqIgpUkl0IugiPawcFzcjjz/+iOVHH9N0c158/WXUH/1e2efCGzRGDIdT2exCK86oJPJvJSg0KSumMUhSsoKQFcYiictivEFTOUIqUk4KA60AjyEl/BjlHHGmMM3EhyftmCohi/Q0C6CvgoDRxkKa5AyIk3j0TDowpcTGn6GuNiyODW02bMaJ4DPLRUtjNbdPT7gZa9K659Zl5NXQ8dHc8m21IjaK+GSDq1vu3HuV1eqczbRluTyiH3o+/eATXHPI21/+Ml9586tsVxsUTxm+932+fnbDK+slH7Qr/g/9JT+p5nz9C1/mN/6Nvwq1JaHQBdS9Xt3wgx/+gJdevkvlNMfzE1xT0YcRP/UoLcEiMQdcZYhZ5OOmgFyqeJcmMspofAnWyEkY0cEHmTIq+TybumYcRa6sjSYGadp2TVrOibEAhK5yuFwTNivAEqbItBnxm1EuQCAqSVxMKROD51QbdPFzkaakTPfLICgVz0YVdWH9Zl6vG17IV7z30cfcfuk5rt1T6tpg8gQhFOBJY02FJtOniGlEBqlilKCiyrJZrUlxIqLYToHzp+cSlLDekFAslgtmiyV128raRpjToRR/Yl6uCNFj+h5rLFopLp484enjJ2QUzlrxPqlr3t1siLMTmYQqX7T8PfcXmhwMfT8h1syZRmX8FIlRMWvFfzbniDKabR+oGynOjco0VtE5TZ0Si7qmMRYVFU3TcrO+gQLYoiEUs2tfQoa0UTKkSmKKXFeOnBVbH1C6NKXFhmHcmSNnsSPQyEBIK1imyG8Yza/qzGL0xKjwWGzbcXh0RLs8ZLZc0C4WtNVMAleaCld3WGuloVeSNChDXVsK78LmKGDOjgmE0pLsWpofyIVJtpMLi32HyllqBl3O7DJ8sDmVJhBIgeRHVAhyf5UGT+VIHkfSzYr3zh7AFLhzMicNnkdTIBkrButRwN4Uwp4JupObpCBWGGHwwvZOcjFnZBASvMdZ8c8btCJ4z/rygq6dsx5Hzp9e0y4Mur8hmEjSRmQ6wOLggH7Tk0NAOykws3p2t5GLVKwEFuya2J0zfgqJrBXZgCMSxi3KFFuCMVDP5yzbhdg2ZEX2YI2kbZoYWOTEUV2jwyTy7ZhZ+ZHOGFLwGJ1JPqGsJk4TNksNlMqtWW8T/+rREf/4essPLs/40R/+Po8+uIPPGT/0YCxtNytG8zV1U+OcpW5brHNUdY2rKpTWVNaJWkBLQ58p9/eOhV+aiwDPfMiUsCeLw2NpJMvlVQCFmJNYneyGf0n8MdHC7ngyTtCYIhdN++F1g6ILgUaBxrBLC9RZsZzNQSXGKRKGSOsszx013Jl3hGgIVrGeep5crjBWkVNg3Q/otqbOFkWF0Qvqbg5uBo3CKkectiJxzZkci2TbgNUG7z22qvFjJviIVUGO2YyAfVaxnHcs6watDLbumKbMOHhCMvTxBjtsGabARRhZP/qYd959hz+wlr/59RlvdPeoHz0lDIMA+an4UKZMVoG886DeAXhllyldwDgE3NOClOzZ/Wq39xGmnqjppBGXO0kJaxrxrNYajKsYZx3hYInSFn3xlPpms2duaqWlaUiBSRm+8+Qhb53cQk+5gEOGhTO8ROZRu+CpUqxGw4YtmUw1jbw5TvwaLbOq4ujolPmtY6q7t+D2Mer4CDObl8FOYusH+jEwDoFhCozbns1my6YfWRvNEBWDtUx1hTeG5BphMpoKspFBQwkNkmoafA4lEdczTgOjn5i2nmnlefrkjGEY8XEqgFISFqzKqGzoFodMGszRku70mKubSxbXK/7y4T0J0PKRYDVDSCzUjggh7Phc5PKq9BM7iokmwziSteL1kyP+vefv8r978IDx8Ihps8I6g6sbOZtVsdX5zMCczF6J9ZlvuyeCqATOGaqqpu8HGThlYcDanYXQZ5iGibivdbRWxS8x7wf5OWcef/CRKJqy4jaJrgwEZDqw289yhzjEK1DlxB1l0SlwdXPNd//4u/TRM6s6jJvxwitf5/T2fVb9yK3n3oC24r13f8qtk4oUPIFEN2t5dHHO4vCQL//qb3B+7yV+/v3fI/ZrUg5IsEDx4iJTV0o83UMQO6tsMMkQVp6my9S1EEicVYxJGNcxJiqjsTqxuR5EHecUJgeySjTLDmUdrVZMfiTFCeuEDbxdX7M8rHn1lVfpby7JfiRMPa52DMNUiC81hoSzhmwNVmv8FFEknBHvtZ16q1KiyBn7iNECq7icsdZRx8SrtyZoA08/BnwHwWNzorFS82mEzQ9SA+udrRUQi/pEAVkL2KcLsKtKYKbSYi1htMFo8QiX2WUBvopXfU6elIslT44QMpc6sJkGDpTCM2K95/jpE+rrC352c046e8Kb/ZprP3GUEvMHj5jSI8a2pVsecHh4zNEtz/xeQ3O8xB4foxYzojNEZ/C6hBMCIUd8mIQMse1Z9RtWw8imH+inwHYY6SdPnzODUUxNQ6wr8mJZrGgUSlmiMfTWMqrEEALbYWA7DEzB008TfpDevbKWmbF8o7/hS90Ms+khG6KGm2ngc4eHqKnIZrXsCJuLX97hId1Xv0q8vkC99x4v34z8a3df4j/76EPaWcd4NUqtmRRVU+NmTnCMSYJtTJFapyTegKUxFvkuEMLIjlKX4p5jR4oREx3GWqaN57rvZVeXsCBtLZVz1JVDaUmG3m434mmvYGlKEnuOpQ7T5WwQdWEJWyAQaANURtipVSW1fPZFEUbCVpbkPdsAKe/IZ1KzinWcEIequuP09nO88tqbHC5PMFWNCgNffq3nk08/5NHHP+fm6eNywogFiyoKpx15Rikl9dqOdMQv/vrFAT6lCDGXiavCGaHxVlahUsYqQ6YwkrLCTzuQpBSBRmNy3suHdJn6hJgJxfMr5VQSdRNOlymeEVkKhXQin4ZiGrPERycEfMtCw47lrrIZqkIRjTGgDfLevKTrSCIecsDqkg6HKr54AAmzswopzA/nCpKrNRYFPKMDU+4TmWQJc8oHSFFYfzlLOldCJpgpZwHMlASJKFVkCXJ34aPIXK0tbMKgiuk9e1QqZZFHOivAiTWS2hRzIEZhXOQsxq8pSIFIlOeitTRQKT3zZbJKSVO2m48WL0H5c1mYMRYAlryXvRoLpIDSu+JXWA8ajcoabRQxBuazO0wjZCvMC729oFseoOZHdNUcZRfouqI6uccUHXZ5zPz0Hq4TUC+VJmcHdMj9riVxrewSYVP+ad6rMOvkV38KAMzP2HcUIHRnyv+Mviz/Jz6RlD+TNZjzM8mQ0hqnJelXKcXNuieEwHp9w+/89/+Aq4cPWB7cZsrQuZrjyjGmwKjh8mbF6AN+8lyPl4BiDAGNJHOtr0dSipLIrAyoCZ8TYz+IVFUppiQeMiopFHqfciT+JvJ8G+fQsWVQimW34Pn7LzJbzvn08aPidZn360WhCIl9MwSqMGtLMaafeWXJgyiAaKR4d4g/UfLiy6WURicpHGrnZL9iMEoSu2qtxUvMZNpKDPVbZ7ExUytFg6a2hkplCIHoRcabUkYnaTF0zlQOGisSsIDBZsOmPsS3hivX4g4OWK97Ls8S51vPorJ8gCe8eMA7RNbBM7z7AI3j+VfeZJgmhmniYHaACpqz8wua6piXXn+b4/kh/dmK7eqS9vIjTr/zY75pDnhaj/zH0yW/6yz3n3+JL37hDS5WV/jrgPejyNy1gEwX55e89coRl5dXfPsHN7z22udpThfMlrfoXCvJbkoYcNM4lHWb9kX1FCbQqgxSIjrJIemUIymZGqUiiZNBQ/Hq9KGwICMpDhgj4Q/OWmpXMcWEH0ZSiEQjYSZDv8VZsU6IUUDC2jlc0qjNwJGyZO/Fz2c3aYwCFuTiS5XIZC+XXUieZdb8StfxzmrD5eOnnB4dMncdc2PKXosEgBwxCtZ+ImnNFBJxGBgnzxAj2+2GcbPhZr1ifbPi448ecnLvLhqR/Kux59HP36dfb8oFYWnahrprWZ6ccnCwRJ0ckCvLzTCJAXSEi/Mzzh8/xjVNMfYW24ePtiOjh4ZQGAmarAeeVxUHZsGqGuhmmuubiVXvmbw0xjGNuFrT94nWKuoK0hRYLjQkxczB6Vxzf1HR6kgOI4Pv8cHgg6SiCTNek7OAlJXWhBhKWIMlhEAmMyUBW7MtkqFyuexA+52UjlSmwDnRpshf0ZpfC4ngA4N2HN65zZ0XXmFxdBtbd9i6EYmnqTAOebYqo4IRD0QVUUVkk5XUAzvARVg+qjB5ZPK8Y/fs5TWFEUSxs5CGEUgJn3dtn6zzqEuKXpne6xxRaUJFDz6QfUDFSJxGUj+yWV/xJx9+xJdvHeN8JObAUfK8ulzy42FkVAljHJkeZaxIU8rwSym5P43K9DFRGTF7ni86AY9SIvYjydVYa+Xzu15x+/QOcRowxnB8sGB1taJbNNRtxxglLddWFYdNS+Us5w8eEXPEGqk3dCUJduM4FvuMvE9oFC8qAUdmB3OmYSSGIAm9USR7KSbatuPm0RMurlaM214au7qitprDecuR08xsBdNYpO2Z3k8cVDMZeBUD7aQBJfIVvWfJZ3ROPL/t+ddun/DoUeaT8wu2N5fklHF1hU/C0M6FqbO7N7QRkMhYs2d6VVYkq7YkRxsr5asuqgDnhC1qjKFpBBi0VbVnkGorslBVQgd0kYRoI8CSLpP4lDJnT8+4efqElBNXMZewkt3QTtaazYkZUEeFy4ohF3a1rhmTIcSENi05J/pJztVZqzg46nh0lTDO0vcTY0oiMw+ixOjHSF075vMjusUdXLegO3mRcRyEqRsiOmyYHv8QP2zxPjOzToYPBiprpGTUGWvF11YpQ4yZzWaAUlv7IGmLna3wOWMcxGlCK82wvmatNKkfeeWw5ZuH18TvvI9/1DEEjy9mBhlKUjOFGSV1VFa7fS17XKkdp8RIka2eMT32oTA7qW4hXColzOhkNKptqBuRZzptuQoZ99bbbOZL4qSo+onmwwcQvQw1dmywnOkrx0frG77+wsvoEIryxjDD8D+/d5c3N2s+Nppr43gSM+M40gTNW8PI4c0TGmNoV2tmT0843gx0PtJoaTJ1ZYizllwvwDiysSRT6n6kbJ8Q4C5ksX0JPjCNnr4fWG8n+s3AZrOl7wdhR40TfT+yHQZ6D5OPBKMJyTCRmRQEZ4jdEbkyJKcJSrzRcBa0ISrFCIzjxOXTTzFXD/l3u2PeHBN2mOSs0IEQJxrjyDvOT47kLIM9IYNnkorCykylvxhGzM2av3znmCdx4D87u+HjqNlcnaH1tgRxFXYOn+Gh7Ng9pXbOn6mZdwX35H2x8ilKA62lZwkR4yy5DFNKY1gGz1BVtQxgYgn5scUnNgSSzmhtWQILpcl4soaUCghdVCi6vFefI3cydFpxtR3ljNEGrWvuvvAaX/7iV/h7/+1vMjs+YLW5YbyZ2GzWHJ0cY1XE5Ewat6TQk3rLhKY7vMvB6Ut8+JPvFoZVonLir5zISOkbqLW40rkUsdNWAqR0xeHCcHRUc7XakqaIVY6chNCS/UhXO5zR2EozDCOmMiznDRFF3GzRKeAskCasSdTKM1w/JigZDBwvZ/g84H3CWU1TV6KUsGBqK8FsOuEMNNqhtGIzeqpKbEJCTtSVK11PRHXiMZojHGu43XqCD3y7h+lqogmBBuiMpjYGaxRN+XWrFM5kakSBocm4lFAxo1Uk6UjM0msK6zGLOsmIJYc1VvoS49CFHOBUVXqT4vlHJiqxozoPPTMUDSXgKIMhMI+WN2ziYNHwNHsejKOkJccRAwzrkcvtGv/0Kf7hI6ZPH9F9eEpz65T65JC8mKO6jrqxmLZGVw2qrgXUbxpUdyCDCzF0J6mCOycZUnqV8UnSiadpZD1ODJuRftPT92uu/cB6XLOaPL21bOuaIbV4nyEasnLolDnya/76q89zcHlDNB3JjSQiYw4sKicsZ62JWYgaKEUAmvsvoN/8HG7qSbM55qN3+I15zaOX7vPffPQJR4fHXF2tGZIEYfbB472nchVJwXw5p61rrs7PMcU/PSW5Q/0khILd/n1mTqdIMZBSxE9yH2e7k9trrHXkaLi6uSrYQ8GTCjNYx8htN4Mc2AUwZbIMoXJiR7zSgCfTRJHpXilorIEsISW1ylSVkIyUSsxry/noiakml7uMnMFolse3eP3NL9LMj6jrjtnygD5MXK8nojI03SFvfOGbnD/8kKcPP2La3EgATwwFrxAF4ThOnzkq/4eA9/4HAPjqZs785D7WOlLYMm2uUcpD8Q/bRb0LwCKFvLDEhM3mlFyDKYJP4t1mrULbvN+QWitSlims3gEomWIIrkqkc2QnIyKFItJDwA+j0DnhnCUm2MbizwIkH9E6o4who8EL609nBUlkhpEoibbAnn5QpoBKGcgFlAxJPEByLtp00V5rXf69TBJSzMXbz2OVxicB+izigxPzju0lYFqYBJhSOhVJnUZjiTEzxoQPBQVWibZWGOUgOYI2NPM54/qSHAc5vFIkK4M1ckGAEi8hSsJbViJZtlqMtEklDEKYlwov8qkCFsUi7wo57ROqLPozKccyoauso3ZQW6FGKy3ATI9j/f9l7c+eLcmy9D7st/bg7me4U9yYI8fKrKyq7irU1IUeABBNEjMboAkiKVCgyAcazfSkF5n+FU0mk5E0kTKJFI00EiRAgJi6ge5GT9U1ZlVWjpExx53P4O570sPafm40xRepdNMiY7px7j3uvvde61vfMCbabk7jPenqJTZsSes1TYiYpcffvU9uD2lvv8PB4W3ENUg1Et7JlGqFYOy1T8/EqKNM6voMGKYUTbOT4NYtv5Tdv2X3GtUHrT4vlTymf54nuE///SQdMtbWwlYZBCVG4vqCpw8/Z//OAxppCOL47d/+bf7M17/MsydnXEnhwGfevn+Ms7f5ne//SIsKcm3oYBgHnNEghBi1ALOiEe79MGiKUYEUNNnYUOhE5dAGTY3FC5WrjKkScMmBPT9jiPD0csVPP3vCn/raL+LbZaUglyr10xS3UvRrlsKumZu8FlKJKkWvzZIpk8RKyGPSiRqWmbPMjWXPOw4XLfu+Yb/x7DnHvm803UkMPmVcgTKCGcCNBfpACQGbU02N03SiRlqczPDBYY2axBsjeMm4WLAFrE1sncXlRONv8Hy25Dfnx/zk9ISHn39OaIWLiw2LNx/w6fCSpy9f8M4vfoXzD35EHxIP3vgym+EchpFZe4NufpO5X3LzxnscHR2zWC4IkjFj5kut49E/+B1+fWyZt47/0J3y32A5vv0m9+/dI3v4/Nkjpd2nUddXgdlsznq75vHDj1nMLaFf8//6z/4Lvv6tr/P2V7/IjRv36XyLdY7GCYtuiXeazF0V5QqSCNVcWhlOOSedDtXC2lgDSYulmDOb7YYkmdW2J5XMxfkp52dnrLdbrHPsL+aUlOnHgcuLC0IMbNZbYgbfqYzPmFaZe2OAqN4ch9IgKezYrwIK8OUphVntDqxo+m1MGtTxLx3s8XdOXvD4w0+5ffc+i3aGn1k0Cbwml2bL5Tbw/OQc1zbs7e/RecfSGcbVChkGfvzHP+DzTz/f+Q69fPx0930479nf3+fs5amCZNMAyVlmiwW379zlF779dWSxYKwSzTQM/PiPvqeFmbG44yMab0lFeF4KVzGwX5kKiAVXmK0LvzBb8mx8BqnQiNCTmDWGnByHC0vjC6mPjL3OdOYzS+chjIWusYzDyKXLdKJhQo0V7BgqwK7bUImp4l/auFijxVFMyprXplv9N0eXVd5dPc+Ula0s2NqzI2JpiuHbufAdCushYZ3ny++8x+HN2zjTYIaIjCu4WlFIBCmMBmXacS2pgqmhB2qhPe2/MtGmpQ7mdt8PVQJR5XvWgNjdflNSqNIUmU6biv3pVFpKQVL9eiVCUhmKxKSJWTFQUuFx3jJuet66/QAfMsbM+QaG752fMCw9j4ctl1fnWDHc3DsAhCDKsJzNOoxrmLV7dNKQTaa5dxOKSndLVq9hcqJtjzkU9YVy3ZKb9+a6dzUe64SLk1PFmZsGb4T+co044aoGa3njyKlaTIiyVnzT6NmZ8u7MSzHRzjUJnJTIMdLOZwwpkkLSsByxmAKzpmH/+Ab+phD6LTJvaXIhrS95s5sxMzqsJRetn2JU6XtWU/NcCtJ1ylQsyuwqaJNiBLr1yF89OuAH8z3+aRGevHimA8wKBhqrVgExBbz3uk7HoEz3xhOSglqburkpDu904BnG3bMlNSW9lFoHVIBd2aHC/tERTdeql65ztG2Ls74mN1p82+rXp/Dso08Z12tKjKyNmSBwBcMFEItNhQPjmMVCK5ax69g/OqBb3mL/6C7z+R57Bwdcnb+kDFtsuuLT/iXlkyeEoPYqR4dLbh7f5e0vfo0f/NHvcXbxiG0fmXcjq80lprvFvbtv0DSW1dUl1kBIgReff0RKEYcOVnMesM6omX/SbadkDYBbdp4wQl8y4LCmobOQxp6x6KAmp0JrLW+/c4enTy5Yb9fV2yvwzo053fYlV5dzUgiEEjUQqZ43VOCnFJQtKlWOaa6tS0zW2qRItZWoMrDJUkCrLZUrShISdfgQdICaLwob6jovhuRb8hhpDw+ZdTPk+RMKeXffM+j5UuA8DQzbnhupEPoV0SiYk4znjiT+EjA6z9YXXsiWiwqsabOX6aKhvUjI5Zrx6QnNR59T7t0k3b1BPt6DvQWynCPdDDObI10LbQNtC13LvPHkxmujai20C9ivaiajHpClqiwm5n3OIEnXW64Al1q3FA3ZGEZCP7IdejbbLevNWgHDoWczbBn7yLANDE6YLW7xrn2Db5yusc9eUlpIJEZXME2Hv3FLBwJFLXZytkgK5BiVWZOt9gqSVKlRIK82dMbwb997QHEz/pMXz3nob7G6vKSkVBNpy2691gr5T/5fpNbWpj4Xcj1cL8rkSTFSoHrq1VTOiQVYDz1l9cpugF/Q3iymSC5Fm9ySuGc9S+8pY1R2fbWnyFJqjaTYcqBwnBI3jOVSLIKl7ea8/d6XefPuff7ZP/zvOT97jHhws1POry5pmwZyZrPZ0DWenAwpZoZxIIuwvrpicXiTZjmj84k4KFOtZGWZUzJHB57NEOn7pHVO6+gWS7JRMoq1sL9oCS2EEbw3pBDwObOct3hnmVjp3jmcgdXlFTZn5vMO8S3WevaWS473Z5yfrAlxwDaOsr7ElUTTWYYhM2sMcQiIEyiR5bxjs92w6DwmaM3YOZX7lphYeotpBSMOK55tv1E1jffcWgoLZ1gFHTy6IdMYtQvqgSFGUlJf1SRgqxLXm6KhH+KZW2EuhpkIs6rAo9prTTLcYgomT729VNBv6pPayvRTiyBjRcMYvOfluOW2bwjrtdYe3pBLIPSZod/SDhuOUbziIupzo8hEUrl/GojnZ4xDwK9XuPMzzJMlpfWYtgVnMW2DaRukbbDdrAJ8CvgZ7ymNp7Q6tDJWU8mb6dftHOZLEEOuQzBJkZIyJia1zsuRkAMp6HAvD7GSOwYWQ6I5OSVsRqSN6oecR5z3LBZLsuh6lwwSE5IjpmTCixfkP/5D5od7zO4eYpp3kaef87987RbeC3/3syfYgyV9aLm8uiRVH58UByiwvTxji6k2alp3GqNyXGMMpvPY/IqstybwKusv473mGKSq2Nm/cVB97pTRG8ex+vDXkM+cmCG8s5hr2Ay7mYLWhNP+IKoWHUWxiiWCN4Y0RtQSPNF4T4dhmwOtFZYGZnsznqwifSoYsRTnuPfGF7hx7zVMt0SMxzjPduw5Oz8jxsAwjoRhSzbCMCZu3X2d85dPWJ2/1HCR6aNiD5Pn8KQ4+Hk/fm6ALw1btpdPKQZMGZESkGKIpSgIsPOZ0/hlBcZAJNWwDZULihRsA1PhT1F5l4ghZVP9H3P16lPpi54c1ZATnaCL6JvKJlf/PtmFeISkprHKckgK8BghlYKtG4NYs5NFxqA+RqUUhjyoL0TSpsl7BeVKVrP2WLXZpppEp1h2cpIYFVhKqShIksHkOv3PSnkuJTMi2BRxxmNTwTWi8fSVsOCsIxIoxdCHwraPVc5Q8AYab2n8jKEPOA8Ww3h1pYe1QMFpAZQtpkhludkd2KWRzeqPoIdtqIk09SB2lpJUfpmBmEydpMCY9UdOapQ+9y2NNRSiMv2k0HrHvGsplVpvSodrX+dp30O3YLZcki4fEjcXWGAhhebdb2Pf/irzdoHp5vWZF2WjTMAS+nOuReaURjN9FCb5jlR2o9SE47roKxtE6rUEqmRtAq4mtoi+fqo+TKXU5tPsKKT11/o6BeHq0WPe/4d/l5ff/y5lzLz3F/8qR2+8iznc12bx4JiffviYYBq8CI04ctRJtyXSWmWOxnFAclLvpqiFT04ZkwVSwsZBPb+yenVRjzn7ynsXCzHr+kxF0yetCLHAeYi40JOt48Gd47rhZQUF0eeQrIVTLlA0hqqux8oWEdkB4RanYFMpuFJoLBx3cx4cHPLW/oI3ZsINY2mSmkqbqOwa1w+0eaTB0RiDs56uUS+/5lB99xpZKOXe1cAIdB/A6bu2JaEjWlH5fQia7igZkxOhZCQH+hz4zUefcfs3vs3zH6xoXrvLJ6sVZycrDg8OWF5ecnl5xeOffczqYsPd+2/TeEvoE4Lj6PgufZ/Yjht8M2fWzZjPOlZjxp99ypMffJdvna65Pd/j92XD/30YCQc3+c63vsHv/+QnlLklSFJWBrl6wClN/PzlKX948pghZox4Tp+c8Me/8/vcvHeTebMPc4cJhWANrXfkqInippqRF1EJrnMqYaWo31ku6uuIltUgkUICiWB0wnVxec73v/s9PvzgZ6RRDbkRUeC4rjUxGmbRtC1N12JihdCD0qrCEJiJTgf37F49vLWQdrpIoRrNJ/RQtc6RiyEMASvw+mbgG87y97drHj1+SrOYc+uwIceI5EQrsB4H/vv/9h/w8NHTas7tmHUdzlq2243KmMa4a/igkEquUg5D7nvWKZHDqHteTdhKIXB8fMTFyXPe//73ef3dd5h5y2p1yYtHjzh/9pQiRhMxyXSzhjXCyginoedBsbWHEbAeuYI/c7zH5VHHervlwgsXIzTOsN7AnYVhs+65udQzpB90cuuLVUleyvjGMsbC1ahhOlqoKABvilGQwlsttESHEEOIGLGkYdCm2kJOiXFIRJdwxjBrPaXAGCNT6uI0VZWSuZsTv45lGANjKXzjxi0WKbN59DlmZ8w8nd0ZMQnBo0x2bcCsGPVqE6q5sqaCl8p0L/WZEqH67FRbirqz7iSpdXKqGGEkhV79i6ylTF6Kgp4JpVSQUX+vCck64JCSIRUka9DPT9aXfOn4Fm2fiGEg5cLr3vGXC7x2uuG0bfldifzhxTmbizNs05HEMC+RN27e4ubBEa6ZY7IjGotpWk2MnMIGyLt6oFiVFfnO7+wxjG9Ib2ZCCoShp9+uGcPIZruhrz/HzZYwjurFlAJjDJSUd/YZzpTKRik417C3v8/Yq4Rvsd/iG09TVDLcdh3DGMF7Vv2WmAt+PsO2nsvLK2wYObaWr+4f0KL3mFiIxbBNiVbUK7OEQGksvnEU60jjsPNSEz00IWRunl3w79y5w9OnieH4Ji9fvsSZKfVzSpCTXWr1xBZPKes5V2+9qWqAqejffQ2oaV0VLMpTeSg1va9wut3quTyd22JwTodn1llyEZx3zJcLLl6eUWrDEktWQEtEGf9FByUWmFvwMXBw6w43vvRVbDdHXMeYBT/fI88O6Ow+XWsoMbG9POHq8z9kuPgYyQNukwnDwNXFJZv+EikBbwybzQX95orbx7c5//zHPH70Y66uTrEkZraQ+w0zG9TzNAhDU3ClDrYNlR0QaWcNpURms5awjohUZYpxyuIsmdYb5t5hyWzOznE+894XXmN9eoqxli/eXxPn8CMPqQUJIxShi4VZ0oR0V1UnkisT0tRGvQ5tLLqv2QJC0rO57ltF8vWQlQKpqgvE1ddSFo4UBQRLHRiUp59SXn5OLjoIGIqG2U22OQpYCS9i4tAYytWaTSgEAZMhiUEk7+pFGwN7JWHJbEtmoGAwNAgO8AVkO5CevCCs1tiTU9yNJbI3w85mZOug9dA16l/tHKXx5LaBrjb73kPbIM5jfEvxLeKcSjKM6B5mDaUC08U4fS/TIMTpgMM0HbKvezQomE7Ws62UrLVarsSImDFDgD4g2xF7eUFcXXH14iFHQ0/7znu4lDGlQFEQkZLU1iUGiJkyDkgMMEbKGBRhCoHFyQv+3fv3uLu34D/97CEfLg5YD5HN0NP3G2JNWC2TlUsle0w93tTCKmBX6l59/ev6u2pGXwHD6e9qzZ5zYrvZ1PBBqT5WWrMYo4PNRoSv7R3QiHqV5qJBFUXy7jzQnBjDAHQh855veJItzWzJV775Ld587TXe/xe/xacffcji/gNiVgDv8vSUW3fvM2y2ykpKml46hkEZ1/1Iv12zaD1f/fqX2bx8yOefP2cbtOab1GhSEvud2k4tly2LmccJjNGy3hbOLkcapwx9rA4xulkLo54DFJgvOrrWsr5aEbKhaxqcJIyxHNy6pyEOISLOcXz3Na4uL2jyJX0eyaV606JDVOuFkupQLQ/MvKFYR+Mtq82gqcqNBykavnHQsV0POwun2azBOuH+ckNXChsMt1tPtzC0MWJtR27mzG8c0R4c4DoNPsxZCHFgO2zohzX9OnAyrHgWR8wwMAuBhQj7GGaiZAJXZeWa+VqZwigruZDVSsAomcgVD7YwVIbweRy5O9tjdXVBSpAkVgsO7XtjVquVzjitl4seNRGDxdAYqwOMvieJMA4Ddr3Beo/xSqyw3oOvbNGm0f3XWaQybrNzlKbTJHBv1cvKak0n3mm6tG+RRsFCsZNvsa4RK7pPYXRoJ6lAEkoU3bP6RDENsWt0HSbhqGk5unGTxZHmBkwWOiUraEYMpCcv4dkJQQTXtewvb+E3gX/v7Xf54r3X+S++/30eGct8dochFrbDQEqjhkJVVaCrA7wCO+VAKVl9/dEzYmfLUIN1SoG79+9z8uIFMUQN4jG2Sn+F7aav1k5TXa9WascIX+g68pgI9bpUJ5Ud0Yw6V0okingaUVKTbrGaYL9sHGUMdMUQKAxRA/VuCJyXyCgwWxxwcOMmKRf6YWS5PGTWzXlx8oyz01OM0R6436xYX11BjmxCwrqW2XzJdnXJZIM2nX+y2/V2f/RzffzcAB85Qup1Al8q9TmkCqrohqu+RqhhvqUitBrQkZKmmhkzyfaqfDZe65shV/CmTv2NqNcE4KrXHwWcnSQBejMT6tUzBpUBKJAFtoKIqSQkK2gQItULqtaLlTFIBmvLTk8OGtRKidqwlopAVyNy2WmzS5XLmQoKZcZaIBdM9URzZMAZZR9SF0KWpLHOWKxr6OZzVuuVUt9jIcRAqYChb5StJOj0pO+rp2GKSIp4WxBX9H2IRcThrOCcoW3bepiqXM3ZWkgYXYjGdMhEXK+GgTEH5bPVQI6UlR0So4I7jQfvLMt5R2OLsr2MoWk9vsrbcs5Vnt1iF3dp4gkGB5fPGE8eU7ZbusUBdnaX/dffY5wtsVYp1uYVcO9aDqrXdzcrnH6qdf90Xyd6sKs6+okefJ3apx+Tn97EyKOUSbZPqAnGauwrO1aSna7d7nkAUubv/t/+Iy5/+EfE9SV73R5/8F/9P1lJQzw+Zv3iKSUkxvUVzZCR5yc8Orvk5OSM9eqSq6tL4tAzDj0pBGIcdZIbtMEgahqutZry440+76TKyHEWY131qVDfr2wKjWvAW0zWBEucIUphaB3buOXZ+z/k9KMPGaBOTCHHjBSdeIpq3nQiliskX2V9UotiU1Qad+Adv/TgdX7x4Jh30kCzDbTjFo9j7qDzlm7Z0tlDrG8wU7GV8k5KZ8ZIGQKyicgQkTGw0+VXgEh9lSroXxQsKGLqj2nmVhOvnQMrZB/59vGMlx/+lEfrDUOGvBm4d+uYvF7z5uExv//spzyPTzm4cURjWy6fviSNkYzh2Wd/yO17d5CYePT8jI9/9lPu3LnFr7z1NrNHD9l8/yf8WneTkzLyn4QVJ7Mlv/qNb/Hs4gppHGfPTnALTyJXs/LaJAEpjLw4vyKkwnzWUkrh5cszfviH3+Xk7RM++fQ586bDOkPXtXTzGa1v6LoGPyXRdS1No79vfMNsNsdaNeRuvMOiqebFWTZj5vnJJT/88Q/5oz/4fdJ6gxRlixadcuhSgMqIUR+U7XrL5emFeupVCW6pssS9O3fJIXBgZTetTilhTVaWTtR9PeRUQxXUlLkUTbVqV5l/bdnwz/rI888f4ZuWPQbuHM+QlGm85ac//oBnT1+SRg2miH1kc7nRYiDHKq/XZTyRvOzkMZcU4B/HcddwTGwDZy39OtBvLinAm2/cY+gzF+cXfPbhJ4RepTvWO15+9BE333gTKGwpPE8D5FblA5IVYCuG17PjT91ZsBoGxrWmPqaYWQXIZaDMFPwpZFbbwJgE1+TKiC1ICTo0SRpmNcbqc2vRyV9W4+lxGHdJfWqfUaG3WCgxgxjGpL//5V/5czw/O2FYbTh/+YzLzRWrzZZxvSGMWyKF+0C3ybwo8MZ8wcwatheXVJ6MMnmq8bVkKJJrCthIQaWyoVDPSNh5dBnRvUmkGmlbHTDZapxegzcmRp8akddCzGiT36iZX2XtlN0ghqKBKa8WdblIBfymLD5db6EVXjw+5yuvvUm/GcnDQBwHxjhytx+wMbEaBjoDmxB4KJkswl5O/Orekv/FV36BO2+8iTnao/UNwVndk7LaGYSswUZjHIkps42RfhiIw8g4RPoYGEJiDIFtDAxZgb5EIRlDmc0xiwMwhmiELEZ9+kRIIpRkKotL180YR/pxYAwD/bhVY+8YdGCaAkYU1GqajpQS5xeXxJy53Kxomob5/h4Hs469Tz7nV772LqxWmpKXMiFntjExA5U5AwyJ8ckpjAlitQRwaqsgVYJiY+RL44r/4I17/O9/9hk/Or7F2fkpUhKhshxBh7B6dOogrkwJwQBZqgG1gsbyynk/uW9RpvCsXGsx3bXUti7rOQ0qgyKTSyTGAE1DSpk0wPbykkna7Y16y9I6ZKsARSzo85sjC2txQ8AV6CPY7Ejbkc1G/TpXxuB9w3ozEnOmj5a+fZ0yO2e/nClLLfVcvXxE7nQ4ul5vcNZwuL9gffqEtLlgc/oxJfZqueD03I2lYFvDJLIPg7LefGOJWfe59foKJON94uiwqWwstXZIUWuKvh/YX3reefs+T5+cMHOG8WrF0WzOdrvl/mIkMeLfKGxu7PPs0zWnpxlPJvcDPosGfEihrSnDTqABWrE6qDNCawzzYmmsWvk0YmlxiNWOy4IOKjC7OrwgJJvAGCyCzcrUEaMSaYm17itGAUEK5FTtALS2fbFdcbNpyP2GsQgZlalHXLUsCcrkKmCz0IpXCWV9pmwF+NT1LRNSxvWR+OSEbtVj5zP8co5pGqTzFK/DHWMFvKg0vHqGYQ3FmSoJd+A82TvEeZXXeq8KFePAGa1VnFcA0DvwDvFew+PsNECobOapOa41j4jFFv119g3FZegSsrfApMLaFfYWP1GmjG6Weu1zrmAISC5IvpbbKghQWULjSNms4WLNX7txxDfffJd/+PxTfufpMx5tGq7yEcE6IsJYG/uY9eeUUw1Ni6Q0UlLUUJSszzATUFkH6frNoIClKC6mzX2poNpkYJ+RIjrkog7fCxyL4dfuPtDh4qRgkEIU3ScKRZORi2EkYQp8zTrct74JD95m3Jzzvb/3dyiXJ6Ttlu0wYkqPWV8Rxl4xsKhkD7JoAEI/gEs771Rnl1yebNhcbZWhaawSDnLG2IarTWDWCdZbvMB23eOX1Y4BECzbIUCxu57nYH8PEw3b1RpvhRJ7xn7UUB/f0s1a+vVG79+44fEHf8j28jmxWXLr+BhbZmxOTohDr6C8EWadZ0iFpu2geqrHVOhmHZtNz6JVVur51SWzmZ5JzlqalDG20HYNqdHAHe/hQVeQmDgfMsYLi8bT+DlHb3+Jt37p2+w9eICdtWrnJZkkBpvVzqqkQOwHxqs166tLVmcnnD97wsuHj9m+fEFJW2ZUv92ictcsYLIq/4rivIgocFUNPCpBKDEgjFlwcWQbal+dNaCKYklEIqo6ciJ0Vv33U3lF7lvqgKJkSorEvjBk7cms04FKsgbTtBhvwSvBxVqpRameT1gF+5yzVGNVtdkxVbloLcUKyVomBqxOTBTYwzSa9jpZXeRMCok8Rko/YPse4gAhctFvmIlgN2tyfkWxge4f1liksTRCPQsLJRZYBfa9oz3b8Bf39/iVf/Wv8L2T5/z+40/5yek5p03DUDqyU2wjo4GcKSkrOWVV66QcCTEqyzbpGtDhnt6bXOCzTz6rBO9MyYGTZ8/roEN77GiMSm/rv5uL5Wt7Cx44T9lESjH1tRKZqD28nhAVn6rEMlGsxjoDUnQdZfWvz8aoNdGwZRYyX2TB7NYBv706x9+8w3rbk/uR5Z5jGAb67TMefvYpi8UC5wpnp6cMmxVSIjFs6ddrxn7DcrmHcVtSSExkIBHZ1SsTIPnzfvzcAF8pqr8vY9CNFssYqtGxLXS20Dp2MrqSIzEJYBlzDWIAUpye9SkBRt+gNZNX1/QA6v+c1ZunDUOuDYFc+7FlBQ5zVG8kK/o6O1kmegCmXBgCjEFBmtYD1V/EVGPXkjLGFUhKj68eqerzAHqAVhQ5Y+phoyy5AsRUGJNKAsaYOdifsd0qSyCkQrZKEV1YIYumWmYKqSK+qwj9JiggGqnFLYr8i1PWkoEQEsZZGi80hh0l2TinKS5jpHNKVY4pUSpQKHIt7zPV9LhUoCrnUa9FNTx0TpuwiV1qUqFznv2FV5mgKwq6ukaBAWsRCkURVDXgdy2BhuznBD9H/AnZWNLVKWZcIUXoXEv7xtdp9o8xxuKdHnExpl2hrs8f1TNMi/3J1aOOBHbMgGnBGHM9HVQGoLmeLsorr1cbx1cTcUOqqXy1wSi5sjJ21WgtiirWJAVerLZ8st0ytnO+/M2vMjz5nIefPuLZz35INo7ZYkGOG2brNZ/87m/xYciMfU8smTT0mJwQa2mMZeYEaxua+QLnGqVzA2MNMokhYLIWYtaJyqiSpp06I4BOkmzbUESBsk7FKowuc7kQxrHnd//uf8OzNDC/dbuy8GpDPQGf1QZL6mV2xlEmbm3R595L5ltHx/yV26/xxphZ9iPHraHZ66B4YhhhGJGrCOmCMURMAVNZGbY+i/pkGp2woNMebKtgoLNY57WZ9A6c1Qm3M/rcGb3vSrpQr0qs1OmZx1jL172jWOFrtuETk/i/XK04bxsODo45dDM+ffGShycvmPUdF08z3d4NXnv3LZyb0/iOZtny/OGn3DJzYkq0lyu++PwxP/jj7/NXkqeRlt+S5/wDidx766tsxsTTk2esri5ZxcLtB7er3E6f3mQmHypDLobZcoFtDYv9kYvTM376ow9YHMw5efQZH51cACqPR8yOSSpoEmSuoLM1tdjfJZo6GmdZzOYslku+8UvfwbUzfuuf/CanL54Q+h7JhVQlrVRAX2+8muFTMsNqo/KhrFM1QQOWEMsYAo1VGd1st5fosziFbKiEBsI40sxmpKiNQ0zqT2GM8Au946vW81tXPVfnV3xvu+LG0rKctSy88Fu/+fusVtvd/jSt1hDCjr1jq5xvOq/0LLn2hsqlyu5qM1HqgTRu1qQQuTw54/HPHrK/cCqFHwbtMLJO9koYuHz8BNc1jEPP4zhQinoFSmm1uBBheWm48eAYwxlSPIVIzJlFUAb4fN5CqZ5DC0efEt5boGHdq9RHWQuFRhRwn85DKeCdpx9GZWZhSKJG3GRtYKeCwTpl2Bvjubq4xIrnzoM3efvNt3FeaOdztqstKUU+++Rj9j54n48ePqZNjrvzA0rIiDhlqVB0M6h7sam+eamxu3si+nC/sm9oMczE5NhNjrNOVdM0yZT67Alld78q20OuJR9irK59o2CgkSpVqp+re7E+C+S8Uwwo2AunYljOFjy4+wAXEmkI5HFkHNbY9Sn0a7ph4FvrkTvF8sNieBoCt43jW0Nm+UffZ+98zdHbbzA/PkQOF5TlHDebI01X9yL9/iaWYalHhsoWbQUYkoJ61Wx9iIGhJieOo3pzrWNkMwys+551v+Wq7wnbgSEGYsgKYBhLWizJdo/iVKEg1ureIoZQWfcha6p5HyNjTCSE5bwhblaERx/zt7/xi3zh7n340Y8USHklUG1BDTDJooOmKsHPUhDLLm3YIiAqbW3OT/nVpoMvf4n/84c/431zh5OLM0LomWR3E0vHYKqEX/dCqYdwrmd3ilGZaBM7fVrgyI7V8Kp9xvW5XBsinUnVmsbhnSfFfmdbYmRijRb2rMU31S5Gvx2tHbIwS7CXMnaz5urynFlRH7FhGLk8NwzbLYjBegWyh82aFIX57Ca2v8DXYVaMI+MW5t6z13ZgEo0kTp5/qkFvdsRPz7sUZl1DHxKNBfLImBwpRHxjSH2s9ZGw6DxDa3EkZfZRWMxndEaI44gzhsVyTiLzwUdPCRlKGunWjpc03Og8rx94Zj7gSkdKG+a3WvyB4Mct6cohK8FFjzUOW6ahqIZ5paS+lDlniFVOX6p0HvAIxhSMM8ywtKJMc2v0Zy8GjzacVgxOpA7bNdxN975qBVL39ilcT0TIxtHHwJFt1F82q3onUwfppf6+KoTIufbMTr3UUN9SU0+XycUpjGpDlEPGXG7x3Ypm1iJiNCyvdbSHS0ynjByxZsdMlhoYVKCCc/pwFpHrcKHK4NuxmZUZUX9Ysqne3FVhUYxR5oH3Ox8+sBSxiHHVikGtEGwpFCNsz89YjCPy6UNdJRVoZQIiK3OwGGVH63Ka9mSD+AZz0GFKpoSRNy5O+ffuv82/+Yvf5LmBh5eXPNpc8mJ1xel6xfl24Grbs+5HNkEHWCFbcm5JRVlR6v4LqWjTrkohtXvKRRNmcz0rSh2c5Aqs7IbrRaEXay1SEkdk/vqde3z7zj3ck1MKCkKr36DuFckpYGZLDUAsiWZ1RfzsYz55+CHDxQULk9nEHuMaUoHGOtYXp0oYKGgCrRW8s5qW3G9xXceYAzFmjo+PefiTNWenK3LIUDQ1ftY6YsgMCYYwkgscNolhhJenA+3eTOX4FlLRr9UYQYpek7HXUINUhBjVg1IMGKdMJyFT0sD6/Dm2wMyOlLzh5LOfEYcemwc6p8+aM4Ubh0tenF7ivaWbN4whEoswP9jHnZyrIq0UDmYe6y1RIraoZHd/sUccRm4dHzOWkSSZG4srxhh5MQqysezNbvD2N7/Dra9/E7u3wIpXv79YBYoOijhltLoZfu5obwl7JRGHgTyOxGHD5aPPePy977H64Ke4foMp1ZqoKECfjZJobGXt19EB2UwAirAtet8ljir1lEniX32eU1TQMAeMnfoSV6XA6oErtQATV0NaciaMg6bdG6M9jRSs8RpCU9fxpDwQr2oMqQNOZZYaMhnrPDQOqH7EtU8w6GsWmazPqj2Z1BrDWvUCrUoVSlZbi6ZBMAwEutgoy7ri+XqC1l461T2pFIqB4uogNicYMj7AwXDK/jBw9+gmv/5Lb3HVGE5j4Pn6ipdbXfNnqy3nm4HLbc9qO7AZAtuUGXHEYoigg8qqpIw5EVMghsB20IFWjFHB86lgqud7jpPkVsHS+8byl+/fZjYGSAYpWgeWKftgb8HqrTtcmMLLRy8wz19CyewVowE7RfAFIsJlH3FZcCZzkBNHLHDF4GPhk9Mz+kVHCpmYt3TzPQ4Pj8g58ezpUxZdiyuwXV2Sxg0ljZQ4aD/Rb2idMIwD7WzBNoxaN09M8kqSsVVJ+fN+/NwA35gzeagpiOLYjsqcswJ7TuWzU+OkM9mKfIumiVpn/8Q0HcBZbVCNkUmpgxbspvYCpRb5EKI2ZzkXbBbd2NCAB1/RZ2v0AEfUSyUnyBj9t6jyWc9R3WCmmGKK6r1FoKS8Y+ZZMcQsXDt7VwYXQoihBotocqieO4aQ9EEWY+k3A7moD07bqCmyLSpTiwhE9SMIAWISmqZQoqgEQTQlyFWDfGsyrbc63TQNvgKfxmRyKmp4btUTr9gqrwxaXKS68UhthgCljGbR92Mr26LWyTq5gJQ1ACSJNitSMq1XaaGgjXkJqV4rnaob57F2QTK6eYs0RJmB9eQAzcLRv/yMfddQzBx34z6Lt97FGEvrXL136r2lxWt9pmoKzTUMN31co+DG6OR/agYmxFw/azJdrftHLtevMoF7FSQKMe9YjpN3hrz6eZTdtUIfN774zW/x/OVz0sUln336nDQWzGtvcn5+yZ3W0w8bLtYXtNZBjYQ3naexnradsZwtdcNwlsvVBWG1IgH9GOn7gVgCebulaxwlJbzVSXfnZzTWsugc+7OOxXLJzDQsu06fB9GUK9N1iBeKyYym8PlPHxPJvDx/RGPS7iCc3q+1VKN3PdwoUpOqKihaCgfF8Dfu3ucvLg85LIa9Thj7ge3pBevNUNkayrgSA9ZbnFEDdIvBWwfOUZoG03ZI48E4ShFiAnEqFcDaCkxbnWg7vX44g1jHJMOiSoZapbEC7IrEMUEehG6beDNn/u3j13nZzekaz2LecXp4RH9+yhd8y2sHN7jMAs9fMm+XdO2McgFHzRL3YEnjG37x/JT+45+xd3rCl8oBz7ngv0pr1t0Ck+HHzz7j9Qf3yAaefvaQOB4RS9wNMEptcvM4st1uuBwG/Kxj4QzeWeIQ+OyDT7h7fMjl85NKXdfrHkNEbJWRxYSJKhVJoutjTNQ0wgqiGos0ntv3H/DjH73P1cUZEoI2MakWRNYqUGiV8TlfLOi3W64ur8AYlgc3mHlPLpHOedaXlwyrtV7jEJgjLOqkrUZ3YEplT9dDfUwBXzoFfSsAk3MhILRj5t848PzxJrC9uuTl0ys+W79kHApf+uKbtE2HNT2vJluXuhbt1OQUWO7tsVmtawNwvQtMqZjX20cFpQRu37vD00ePiSlyfnrK4cE9NicrvDeEjX6fISZyMWwuVhjfEnPiaQpENNzFlEx2WoD7VYcf7+D3ntKmkWicypwNuh/mrHYGvqUIdGFEjGCNZ+kVOBBryVmqF6bKTpvWQzGM/UaZMFaLU3Ke+j9tenKp/17fZ8qZH37/e3zy8FOSSJXQaSLaYrFgb2/Jr3/7axzsf5X83us0P/qY22YPNwSSsVhbU9JE/Y8sKgtLaJp5MmhYBlV+q9WAhmmJXhsN+tFnohjZDZikLoipGVNW/STh0nu1GyrUXxUKJSVNoJ/AQOoeYJQxaK1KPXDKrHHe8fLyhBvLRWUrZDAW6Wa0TYtbzlnESM6ajvnW2QXvnJ3z+OqC3Ae67cjV5Yry5DnrH/yYw/t3WNw9xh8fkBdzXDdDmuqz4zz4RgduXocS4huojJ3sp8GEh3ZGmS+0sZ4kh4J68Ewg9E5BUM+tXXiG+i3GlAhRv+/N2LMeBlZ9zyaMbEdlbl3lyDaM5KBDVlLPjRt7/PJ3foOvHe5jPvyU0m+RpGyIER2gNkaQXCUw1ZVCnLKopA5PCIk0jDqcKZkyJMyz5/zymzNuf/ub/Ec/+Sm/3zpOwsDJ+QWp73fnqNQwqFdBP+qzkIueG3rGl8roqY0WCnZTwTnZVQVahxRF565xvwyI0G+3WjdZW//KYFCvzC/sLfHeEIvWNKVQmQOZmRGOcqEde4arcwUhKYQxktqOULT2so1KMEO/oYwDSZYgjhlB/fIaS0NAcsAWzfMssaYPSvXaslpX55ywknEiSCo4NF0Y53eDz1wHfUWMMn1nauGw6QdmXYszshuoSE5qCxAyaYSxGEaTsLLlLI7stRnTC3s2MLszcLU25DLjRtiHecfeWw84vP0Ws+NbtMt9MIaSlZGVxkDaDsTtyNCv2awvGC4uGC7OWa0uGDZXlM1AGiObHFkXPX8c2pw0Ymiy1gUIUH2/VEZYQX6ZPDoV1LMVMLNVubBOA7eBdUiaQlkB/pKVmaMOLZqYLBlKtRxQ8w/dS69hYvX5U6sTlboJQtwOlDHUwCWQ6EjeUYrHJAUrxKgiyZi6zutmNvUy9dvWOrLW3ZN/qaS8q1cn4O/6ea+ECKNgXnYKSWpojaNkS7aoisNaYtFApdX6lKVk0upSlQ2m1geu0a81JZdPagnQr1uu+7i6EevZEQUeP8JfnLF/dMg7yz3S8TGp9aTGk6wjWEsqMJbMmCPbEOjDyDbqnrQZR7b9lvUwsBkGrvqe1XrL5WbNarthtdmyHka2KdMnHWgUrMro6xRJB0iQ+p5lGPjrb77Gv//Nb7N8eaHNnzFqkSQTcCokK0QUZI3FMIjQZmH89BNWrcUCo7UEK9h2RkgK4lxeXTDfO2Lot8q+qmSSFMbqEa5y9BAixli62ZIYgCRYKQpiO8MwBO3R6tlXxBDEMO/muMZXj9KIt3CwP6exsJg35BAwORGNYVNVWClEZq0SLLwU5nPHEBLORCSCt5aYE+urc7qZV9DKa500c55h2LLoPN28JYcBbyEMke3VSgMpk3rr3zw+YhwHMkJrDTYJobIwx3XPMA5scYTG0ifHRbzB8eyY937hl7n5hbewsRDOVur1mLe7Z9w0E2PVYxqPVNDati1mOSeZGSbNuXFzj6N33ubqRz/h43/8j4gvn2FqbxEJlOxpxBBzUOk+RtO/KxCWgSEnTMmQtL9VsEj3mkhS8C1qImyUpCyvqICZrTJvK2ohJNZQjN7DlFNVHBhSUCuvWBIxBGVoukZDCTMV/NdeO9cpqDjtYxI9xhlSEciaJWAcjK1ncKLheVnwItiir1NqvVCM03rDGsQlMI6QDKU4Xmyu2BdPObsiWQGpCq9Kepl808XW/i5pf1XqgMlkgXUgnF+Rn58xu3HE8vCIu/tLvrR3RL5xm2ItyRqScyRjahhoYjuMrAb1C70aei7WV5xuV5xvNpxvtlxsdHC5ijOGpD3aQGGDOoWkTLV4EDrnMDlwY1zzb9065Jealma1qmqNorVggXPf8o/eus3v2pEPX5zRHRzw50vh5ssTbsXCkWTWQGcMs1zYF8tRadjLFhsKwxg5Tz2rzvMzr7J9sUbvpxGGYauWONs1yRga79huN6QwklOkX28gZ7r5jDAMxLFXSbqtNZRkLKbapGlfZMz1qfP/68fPDfDFpKmwbeMwkmm9Jrw2VrBMSbd6FFhTKhCox4OtxeLUmIWU8M7U9FiIOVGS2ckf1cev+rSUKjuqnztFczsx1YBTiFrlkNQ0DOp0aAi5xivb6i81AUWGlECM+hjJBB7lTONMZadACPn6eyj6fm2u4RTFEY1U6WplKBqjnjuozxRZTUwbX8NBSq7Aktv1mnEshOSJKXJ0ANkBYmhMoWu1ANRhn1HJRZ3skBMGq2mGFfgsUf88l1SbKIM1DqUqg3GVqWgs1mpoiDFOJ7457jx+CnVyZitwhnpeaW3pgYIpXpOfS6mNjJ8gVLKbYZsZOQwgnmhnXK3OKBlmkpDNOcxarN/H33mX9vh2lWspSh/CyGRxJ4hOV8o1vKcVUQXuSrn2bSrT/66n/LVjrAP964W0K+Bl8gsBlQCwaybEKIhi5JoVM32d+k93X/Yv/NW/xM07t3j44UcMYU0q8Pt//IfMJdAMiW2I3Hjjy3zr9QfE1RrB0ACcXfDi4oKTyzPkbORkuKLvtzxYzrl585Cj+T439g5x3rPdXjFGjal1KMA3s62+R6+AWds1zFyLrRsjztUo8ILrPLPWsk0jcb/jk0cr7neeL713n7/zRw93zaVu/AVX3O5qOmsIWQtgSXBLCv/u7WN+3Tqayxdsr9ach4Dzgm8M3cJqGl7b4KzDGqe3I+pcKpcC2WGyr42jw0oDTQdNi2kbbNeiWnBffbzqVJk6WRYB7E7KxgQGOrNj0oixiGvwXpsAs2gYwprb//wD/pVf/ZdJZ6eEvufd+1/mJZG9nNiLWadiVnAlUcaB2AdyH0lXF5QnK9zqKf+HTz7irxsPY+aPmw3flZY3X/uyMpfdjJ998jldUu9RL8I4Ji2wKbUJyGoeHBLilLWaigIjYxh59uQFt45vMJu3rFYbJuppzuBtQzvzDNtBPXWs2U2pxzhSohaVEzDdGsf3/uCPWG/XmFJBAqnPiHW4CgjnlNisr9iuVloge8/9L7yDaRasViucRLaXKzK670pllB4ZQyc1obdoCJHJMMaM2dvTJPNxwBpLjCMlB20YUNZvBr7ZZ/5cMfz9iy17R0e8OHtBjJGTqw2/9Cvf4cMPPuL9Dz6YsDltO0rNy6r74+bqiqPjYy7PLwgp/IlRgNTPn8CAUpT2//jzz7XoSomXL1+yf7RHLjokiTliqSl/uQ6QqrzwIivIlLKCmHnMFJPJYjl7kXh6+z3e2vxEE+K8q+4HhZQTzjtNyTSCE5UHhqwp2U7YeZ6WqF4hktXXKqaINbqX56yeVLlYctLXFavGFKmykBtrSEZZySHp9xlSoc+RfuzZrFZ0ZeD1hWE9ZHjtNfzz51y9WLG+uCCHopYMYkAc4nT6X4wDO9Pv3zqM83ircnCZ2OFSIWbzCkRXu9084a2q9a2euJV9YnQYKKWmvXNth6FAHjrh3bG0y67WoFp05PrckzUBNqFp5ff2byG5XDO0pJBEyKnF2gYxhU4y5taSrluwBM7PzkilQE6U3DOcjpxenrN9uODg1g1mB0uY6V6Hb8A7ivN6jYwhioZC4KBUZg7WKxPHTkML9So0dR+zTgE08U6HGF69fJg8CCeW0MT+aVvoOpA9HYQKFZBVADo50X02C6UYKAGbIz72mNWa/uQMN8YdJpZEr1G32NMgslhh26QDRSzYrkOH61kHVgip32JLIo8D7rOPeae8zv/uW9/gN18847//6BEfu46zlLkKPdthqxK7VL27soJ3U6UoFfgoEwBSSuX4vVIQiwIf9ema/iVQdim84xiYHge12tAgiOm5EzI3cuZXXn+TvNlq8AMqV5oYVz4XbhTDLEbSdoPMFwz9oIywccDblhgjSR9nhvWazlpK6/HtHg/mXtnWKZFKD0XwpmEdtiAJ54RiC6FYTNFGU7IhhqJrBE2lt9bgG1ttW1pCiFqPiCo+1pvIjaOOIw+ts8znc9YXV4Rc9N8Yg3WNJutmTXBuvWex8BzYDePpnNUmcP/WSDd2rC9uc3PxNV7/la/T3L4NzazWjsr4UFoCO+Dq1RRDSkByJKdA3KxZn5yzfvaC008/4eKzj4nn50i/xeSEA+wrcFLMyrxChFRBMFUHqSBMBBI6wCxAMLAWaK0jxrF+voUcFaAzjiJV2lotJkSoomfRPWb3/OjeOYQeq0YkyvZKST2dcgHvMM4iRehfnusAs/WItdiu1fPIqWpg8rKVOkDTDVx0/yLvHufJTF9LVvU5TdYzgPILq9zVWEMqGlgh1iBtw5w5LgmYXOcEuu9nDKuzU/Zm+5jFUofw6N5nbEsxWfecHJFU6u0sO9UU1eZAfU6zsq7HAmTsekV++ZLkHbZrsbMZzObQzZCuQ7yneFf3Kn2/+JbSdOoVLkKugyOM2f26GDVXCDmziYFNGFkPgfUY2PZbtmNP348Mw0iKiYVzfOXGIV/qDphdrIhXzzDU16Xuj5WZdDmf85NFw2ksmJAZLy8xxbJPwUbtm3ojBCzJqE0SeUPYDnQ3lLkPhhQtOTrGvldfPGAcxjpYcqSQkEQN84m0jVE7pWn7quxNZx3GG2Z7cx1TGGE+axnHntYl0qispLF0dPv7LOcdpw8/xpkB16gk3Ars7zvt/bLBZJXJZeMR1Ddz3GzxtmCcMHMGK5oyHVNm2ATiGIkZxlSQcUBLSjW86RqLiZmEpfMW31g26y1jSVyNG27utxzKghcnJ1xtPC8vO379F7/I/uE+4eScbWXJmzBSYq/rLKeanO5Uqt42mEWHaTtsM0OWc+zejGZvQZrNKF3HzW/8KdrlPu//nf+G8OIJgkpOcxJGIoJ6DQfnwQpt9ZtTKJBdfTox6BB0r7fmFeUS+rxYtSsyUO2+JlWCgoOxeptL0qrEZK1Bcw2RExHiqHssGd2D5HroLjIFOulwHahp0lIHWYWL5YK/vznnIxOZYTiyDYdZWGbDwnlaKyycZYllvxRcHpA8an1lHcl4np0859b+MdvLpwgaYqPscGUFi1NwP4u+QWdfUUg4q4opo0rBtFpTri7pHz6ktA1lPsfM59iuw3cdpmuRplUbAlftonxDaVuyHJLlLsVM/ZpRH8OcWaeR1bZn1W+52K442Wy43PRcDgN93ytjPRfuNQ2/uGx5dz1in50RSzNV8rUfL/wgD/xfP/wZ0jXcvn2bJ6vHfLcp/PJ8wb1h4Ndsw1Up2AStGEzMjCkQysga2IoQRLg0htE4bCqkvsfahsVsRo6R05OXkAJNM6dxjrPtmpQiOQZKyRzfucNf/5t/kz/6F7/HH/7e7yDG0HZzQr+qRa9KhEMOCP6aePBzfPzcAJ81sgvH0MGU1OJbi6ExqUQs5UQqZgeKiEya6wLGElPBWSEUAzUAIxdl4ZSolFWq/LZkmfQVNM7udNoTqGam/VukTnapy0d9eEpxmKJTVlNT16xRv5wUJ6NwD6bgrD4kMRed4E7swdo0WK8AYIiZZKbCWf1PbG1onFFkthS9DooT6gTVVXmOMueUkmudQPUAmfmGRSMKlIlQSlQAwKg/2rQhiahx/M63SKCYjDfKJizS4FE6rzVep8BGwQNrPYWJoeU1DdgUYgy7wtc1mvDjsVinoFiugSN6DQuUCNbSWE0Crk8IKat02zqHkUI/bglpS5ovCOPAdr2mFZiPka1vmXUt3Y03sL5T2QKQk3p8GTdNqPPOf0M/Xm3ZJ0yvKBi3+9M/+bmTme9UhFaSiH7GjpV3/dKFSQJw/SrXn/UqzDg9cYJtO779q7/Mt371O0hJrFcr/ugH3+W9997BfvaUtzrPnS//Ar7fYhcF6SxN59m7sc823ucs9sxKpI8jcYjI5QW2DLAdaM5e6noyBd94rG81VXa+YM8vsTHSkyhFcDHgY9TJS5muaSIaQRZLlbamkbDZcOosb9+8RzlbK8tOyjUIXFBJS1EPxFSSGtxS2EP4G82Sb64DKZyyHq7ws8zicFkDbdSXp6xWhK1jtA7nlhg3w81nuP0FzdE+zeIIN9/HtDNoW4xr1GS28XrwWPWbKfXQmaSjpU6/tK+rXpc7ekmlPNe1q0y56imTAtZZfut3f4/7BzexR/vkwznzwfJODLxddIOmVNZbLuSoqZgFkPWAPPwc9+yn/MdPP2G22fKN7hanIfI/hMBV43n9YMbDJ49pFnM677FiGI1wcXZOMkXNj0veTc9i9aIzRX3Thupr6pwnhsynn3yOWKeU/qwySAPEMRJGNco2iDJAQMNR6nMtNXk6EWgKDKs1zogyxEpR83+U5h9CYLseNGAj5CovsDx4+y0Oj29yseqZ7y25On/BsF4hSffupumwwC1jcYnqg6FpvWILKUQkZrxz9CET57AtCmx679QYPI+UMeNi4t86bPmDTc9mOWd+eIv+8owXz0/45JN/SuM0HVwm0+EK2qeccM6pB15MnJye0HUzwjZeg/f17FCWwgQ36YYw1th6EZ3An5ycc/P2MTlFQjcQ+qiTXGNJtWEVYJ0TiYlJJZQAWXSPWGyW/IMfw9/+xbfYv/pcwbkCpColJlFSZBwVoOw6jzcKfCmA63FSMFbISVlGFsH5luJ0AptL2HXWxUOImsruncFbUVY4QmptNSSPGjhh1AMko6nbb926iduOvHnrJj/52WfcanrWy8SzjWO93eBSZDkqXw6jz+Boq9/ZBLiIwWKVmWgMztr6w+G9Tjpb19BYh3cOT2XayQTZG00RRFkjUOp71h132tHFyCv3ru6/Eyq129h1yKesH2VAjdZx+vKcrxzcJq7OlbUjtq4OJXyoXF1lIykkZAwsXYtp5oyDsvF3fJqY6S9XEAJps2F2sMC1HucctmkQ14DomTl5Zym7h13ol06xpL4Xs/shtSkttemlNr0q6xNtSKYC2iroJ85WXy/9oXYGvoKDnsZpoZ6n74XKak0jnFzA+RrpFqQ5uFJwFJrnj5jdOMZlUWZfTTPPoabgOadgTk5IspSkTVCJASmNNldPXjIXz19+/QF/9rUv8LP1Cd89O+Vnz895ttpymQpDTMSiAHfKSVUDpf7ImVgl/wqwl10w1uTjlSe/sJq4UbE7uuU+9+8/YHV1SSTx4tkpZUwUSXW4qTXTTIQ/c/sWXz+6Qzn5sSaa1usjRsjicASOimGRIG+39KsrDVFzvvrXRqQkUtDQtRITw7DBMaNnzqK1+JyxkgnREUXtR7oRSok03qlvmdRhsAg5qLQ/ZQWqMYLzQhqTMjyzJacItan3BsTCdhuYz1vatsWUTOw3+Dok7reRtnXcPu64uMx4MRwf7vPa0rCfLjgZHPcPt5R8hJy8zTe+8Bc5uvsmQiFcbCBekHJQuSZZn0EjiNewCfHKUjWu0RAJ59Veo20xR0fsvfs2r//aL5E3l7z84Gc8+Rd/wPqjj5F+rcBmUYWPKUKblHWXbKm2Htf+fdnqfphF052jMTqMSZGYU5WiKZBQSsZkwKrst4gyfIwp5FSHhWW3gTDd/To6oqDPoQhauxtb7V0qcFfBr7Qe9KypDbJ4q6waM61X0WG4NRq44S2mcUhT+5+UVVVUdE+7Evivz5/xUUkKquZIjpnGGMaojEwxlsEk/mf3v8Q7xWNSxJSEr2B5co6rYcuNdoHOhh2u6DlQUiRZtUfScJ1YAfZc66i6L6l8QivdCaCafE6z4MaEjFvKxZZsT3YJy7kOIUplVRdTrlnK1iBOQQSsDjGy9xUArbWf89yoAw6MI89bmO/Vb6AyKFNExhG7WsHDZ4TPn+HOLjB1M0ooPi4YzuYz/sMQ+YdDz2VWz+C/PGs43ia8sSwFtT0Q9T8dEbxYwthXj2tl8ogxpByI0TD2PSIw9D0xRrqZY9a1LGYdxtQ9qyS1lKpKMjuZjeaMK+yYmRqQqAOsmOsQzemZ/tav/g3u3n+d2f6Sz374+zz6/m8h6ydISqy2AbEZbwVTLDkk2kXLMKgH8rw1hD7inCFbwzgmsi2UVBhiBg85qzellEzbOFLKdI3HFovNgZgHZsslJhW22x5nDbf29ilRcEOhBHix2efFsxVfv3tAOwqXDz/n8uKKy8szhu2aYQyagGvBNY6Z9zTGsvCOxnlc2+Jnc9rZHLM3QxZz3GIPe+MQe3SALDoW77zJe3/pr/Dd//q/Qi5ONGgzJx1ICWTj+FAy5ynx5Ww4FCEVQ5818TmWxOSrLhVQLUXTX613Wku2LWUMFCISdM9RLEJryVzx6jhGbNahUY7VzwtNa1bySw2OquFjGEGKfj0DuzNMvemoHuMZLCRj+ZFJ/Kfbcz42jtZ3zNuiHuUp4HOhFdgTeMs5fuP+G7y7OKa7WtOtrjDbnrX0nA8b0rDHdghKthLRvVTqYWFUwYdVwK8YKqNMrm1RjPZTxmpYpxcom5FyttnVbEkg7TwFdTCJt3Wfu2ZoGt/ifIPxDeIc4hw3nNXB5+KAsn+jkjkcwRhMypSYKGPErq+QFy8YT58SSoOVqhCVCAZCY3k/rjgLW27sdbQH+4SnL/hUIl9ezlmGnsXQ4+s9jKLBk5FCLEIvib4UsnjOU8F5lVkXCtZXL/LtiovzM44ODzBWODl5wdhvd8Css55vfOvbHB7f5s//hb9GHxI//OM/oLGOUM/MIlLPOWXA78CIn+Pj5wb4TAX0TJ3aFQoh1AOg+qgYo8BYDjoVSpnKWFGppzFSwTvZhRlYq4hmjFMDITs2oEojM6LPv6LtUlDlZi20a5FvjNVFZa49WUo1jnV28p4r2oDkjLMTTRttFIsu4iI1vWjSSUt930XBJiNKXTfGqkxSdKaciyaIlqyG8qYehoJgshYCxmp6W+NRjxFRFowxRgvjkiogE6q/EFAMjVdJhgJPVe5U9NLnon58uQKSgqZJ+cYj4khj0UmW1TQZK0YBPdTXQjKEEHRKbgyhF7y3zLsKSGbwVplcCBhridhqKK/svZyTMhKqHDOHDXETKDkQx0RqCv1mS9s6yrAhDoHZnX3k5m3m997W50dv5o4NM30o4xImlF5vuewQuclcXf2fKiuPSdJz/TrXnzO9SAVByuSTdM3aU6l5hfRyrsyxVz4KOzZVeeW1pr9T6XPLUbfgT3/z15jde0bz+AV3796ncZaUG6JNBJfpbEeTDX5suHz8An9e6HyDmBtI7pktItYZgtGCzY2jgsNzq+DCsKZNhb1GsMWSQ6QRi7WeMVqsNBQTKXUHsM5xe7ngK9s17798gVuN2KQAxgTWC7r3l6ybEHWqLigb96vZ8uZ5zzNZESQz9xlSYXVxjjcGL5bSLZG7b7H35a/T3X2d7vAmdu9QN3oaxGQkCaaMZANC0Ej4nLR4jlml8TmSVVQBuYIKdb1SS/AJyGT3dzob27GGM5hcKHGkz/C9f/ZHfPVX/hr2k08xnQfd8qnbCgVIRZCUkRIVkCsZe7XGXFxwcvk5//jyjH/PzbBry+N54PdWmRwTf/wHv0NMGiZhrcWh9P40Dty4e5d23pKSFtI5g1sU5gc3cI2maVG0cFeWU5VvxYA/nGkyd0y6V+ZISgHMxEZQ/7mSqq8D+kbEGjUlHtVAGatcBTEGkpBRk2jb+prKqxPPnMHahsObx8Sxp23h4nLD5vIKYiIOI8TM4f4R26sL3m46ZND7lylEkgI0m55wNYCzClrOGvKywTUNqU/EF+f4sEWyDnXeOwv8rWPD//H8jOWNQ7YXF5icOD4+4PLijAnJKcXsnspSZWo6atXnpF+vd2cD9dnVIUKpwOD/eFQAs8WMbd/z8uUJB4f7vPeVL/D5xw95+MkjrNREatHrbTA7T6CYM0UsZazDDzHcHzKfP9nw927c5Nv7A6+bS0xc07hMLDoIwc3Vt9YVMgET7U6WGFMF3I2BYjVV2jpCTNqY5oi1jnFQVmjTNoCwaFuwQtgOzFvLGCO9Qxsn0bVtxaoyLGv7uuj2uXRLbr3+BjcvnvOgXPBiHfixa7icG0zwvJUMyxSrj0s9v0WNzhXUTRQCEpj6r+vxhw4s6/mkQ7tGLN5YvHM01uCtwRuLE4uT6s2FqWe9AasMGJ2ma1HqjMoexOzQ3mp2p/uzWK0lEsJVCPQx0p8+5yKPer5KQymJxEjJZtffa0hMJoZECpHWO3yqQTS5aOFPfU+hEFZbxBR89ESrTasYV7+3qfYwGOMxTotkBfvq4KJMYKXZ3aPrc0p2Z57I5EA7HUL1LNz9QEGVegMq/4BsKqQt6ttnrIIMpl5PyYmuaXFLqwV+hjxu2KthWYghW6nnQx0SJqEUQdQ7Giv63oq14Bv1VhKLM4a4HimPn3J8cMTNGzf41v23CN9quUyRk6Hnqt9wtd1yte1Z9T3rbc9qW+V7MdCHpDK9kDRcJBXGXAi5EIp66URRjyVNPSw1UTfz+OHjCvgJ3nfgtAY1IpickXHga0cL/v3vfIvlo6eM24FSE1+TKCvAVIXInliOsqbX99stxTgasaQwMg49oSaEe2eJthD6wGYrbLuGprPM04ZUMt7NSRJJOdDMOmJM+LbVIKIU8Z0lpcRYejqrfkwpRTIJJ4UUPdFo6FIce2IKNEboDJiuo2ToVz1zMyfHrP6hViAbsgQ240DbwvFiAcD6ak0zHxhz4sqtkT3H8OirfO31X2Uxu0k8P0M2a0pYqyl+jrVeVZkaBooTtYZxDdTkWFpHaR3StNjWK+PIqqdnWh5z69uH3HrvK5z/0Q94/Fu/yebZY4gBW5R1NMlTfVE4p5iMoMFek/LCVKZzNKIMYDQgQwdfClQVajIy6oGYXynjMLWGLNcWLlO9WCFere8xmlxLURabkd37F5n6lMnrOeq6HHSxGjcNKKl+XGYHimYr2K7VQc6odYFYrS0/MPD/WJ1xcfMWpRRCTCTRfXI06uFZQqKkkXcNjHtzPjp7wb6zfOGq5+bzZzDrOCtrvmwccbPBGk8vKlE3Rm05Sm1OJV/vHNNYRXbsO93EVT0x/Zj2p2noouElqkcUVDfC7u8mruQ1EF//Vso1CCiTz6AmjuJqaIlob2Z2u5/WguREGQPjeiCfb5CrDQwDWfT9lZhIMRJj5Lfx/BOEYltcEsZZw/vpil8aDTGPeOu02Y9J61QxCpCPA97PCSFqIFn15HbWMA599UXXHng+m9G1Dce3jvnoA4gx4n19hrISLRqvwQShSjrHEAg5U0Ttd5wrNN4y9gMpRoxzvP2nfo1uNiOmxOtf+3OkUnj+098lXp1i04auE8JmxRj0mXQhMqw2ar1SHM43OG/p+60OEyKkkAljIcZM2ymTy7kG3zbc2D9gc3WFdTCEgPcds6bj/PScsQ8suw6JDfeOv8Ttwzts11seP3zIWj7mZx+fsZUfYSKcrVeYhcN0jtgaIoU0jrDeqDlsyviU8TGzaAz73YyjxYKDwwPmx8csDw4pqyvy1Qp/fITpWvbffou3/uyf4+N/8HeRcUAcu/O/5MI9b1gWgy9qEVNKoU8Z7zyRVM+vghNXdaDVWqL22ClHxAnSCFW9rsMro6+fTNLhnb3eSNTf/fr51qD3rKgtRUPYdp9byBXk3a0jU8ktE7FEEgtveKubw96cOJuTsIR6Bm5y5qoUTkrm0bDi3hfu8j88PeFo3PJvdjOO1y9Ye0tEcDkzhoCbCEvTHEOuh4a21lKpAnnTuhaZlBNUZYb6jJpqkyTVkkAEyjit0/ra06/NZPM1zQVkt6eob6iHplEg0LoK8nuM87oH5QJRgVyGQa3iKiC9U/FmiFZ4mAZyCIQw8sMf/DExBDY58Iw5M98oYaPUMNeJNFV9CCOiZ6CHCwoetbcxBeazGTEErq4uabyl5Mzq6opxHGi8KjK3655m1vHmu++SSqFpHb/w7e/w0YfvY0NP8lYDWaUOnoyq6ya14s/z8XMDfCFBSYYcS00npDaWWvA6a4hJJh9tZaSgrAaxINUjKdVnXplBOvV1zuAbpyw/EajMIWEq4q+FG4WiPh21QTFGyJWtpADi9WTNVi8TS1LG4e5QMqrdNplZLbBzzowmYkVwIiBuJwMUo43QLq66biTT70uNiZ5YcqaClKa6UXlvaBqnpsJiSGmoxrHolB5l2RWo8l91ErBOF2MmglhyNcQXDGFUEEGlyzrlrXsMBWhHcL56QyhsWL0PNUlXRvUmMhRCTazLYyDlyBh0Kt9Yh3OtTtRzxHlRwEWMFjnO7+RxaRwpKahJrtEDPGUB8djZHl1cM55vla3UNDjbYPduIPO960YEfaau/WXyjk123e+8AqzVN1uuu57dR84ZYyZvFQX7cskVsNJCK5fEbnDLBKS/EvddadfXYKHs9l9235OyJV9FDpWDZfjW/k3efrGiTw22D6Rt4HK7QSQjDZgGkIQJif3iOLpxG3uoqa/Wlt1zWVJSgATBjBHxkE1E+hV4U4eiAZ8cRhZshoxp9tjfBsbTc52oz2ecXz2n37xgIYZ20xOePePuv/IdXrs147/9+9/TRlwKXWs5PNzj4uKSIal/j80KnN0S4ZsjpKDpbLcbhzGRLLmu58K4d8j+r/2r3PnaL+Gyg22kvNiSH10QxxEZCxI3kANiQjWeFW3kd95J02p/ZWpcAXO9f6IId732E2uD+jt9pYkho0OoEhMxZ+49PeX2T39K+exTmHmMn1cmjP57A1A9eogB4gghki+v4PySH2yfsDdmvjY7RNol/6R/ybpzfO3td7ncrDi7utjJ+4fNlqB0SPKzZxygyZu28crGdHV6P1SZu/PYmcc1jb536/C+w3mvwwVjKxNHp2a5MntSUm++OI7EvifGgRS3xLBVf4icCCkSqmdSLuoFqv4tlhK1KbYI1ntNPM/w8U8/xlnHMA702wETIzYWZQDkQuc9V+PILx7fhdUWiqY+5op8m1gwsZBjoswF8shcPKsXK2IuzA4W5M0VZSwkTY7hN7Y9HzHw986Eg5t3ePn8c9bnp8RRpSelTHdc19/E4ptCIJDJEuKaZZ0KuGaGsULor9h5c9a9owB9CDjvGYeRh598zq0bR+wf7LFczFhfqXeXrQlwpkALEKtk0VRmUN3HFtsVb80K71+2bNIXud2uyQ3c3RMeDCse8JK5N4yjgl7OBXIsWsDljPcN/TDs5FjGWtpmgWwHKBEJIyUPzFxgDFGbESnkKJSkm8o8cHIAAQAASURBVJQRaG2VJ1VmjLeeKVhJEBrx3O72WAwbXj58n2X5jDePex6t4Y0SSYcR8YUPfmq5v7EsY67vsK4sqb5ZRq0tjHPXSeOCgkBZG5mcEyQ1WO4lMqQEYdS9I0Ob1XrASMaLVdmemJ2kTIx6ctliyTbjpOCruXyRAkzndd55AYroa7zwjmgyaThjS8aaQi4Tm0IoQQg5IlXzNw0lU0660OpgDTHXTQFAjKQRhnWm0OBbhxSj7DZjMNlQFVyoq1hiYsdIPTunBtbUX09A6FTH6B5Yr2mp38ME/NX/pklTMqpMcFV+mqtMmsqMF9Xu6hlJgWLI3hKdUQZB44jWcnF1zp73mHEkiwXxysjLKgmVFOvUVZk/uabcqdS2gAkKChj1EZbtlnxyCc/ntAcHdAd77C867rctzPZIe8dV2myrB1D9HiuoGasv65ASQ06MKTGEUX29xpHN0LPue67G8TqcpPp7bYaePkTGVOukos3KovF86cYR//pbr/Puy0s2L19S+khJ1we8zYXgLJfO4PYXfMFF5iWzHrcYZxmygkiYWlNSCGT6zZaw7Vk4RyqGIQYWVs+kzrWatps0Cde1muxrDNhaYMzajpLAew06yjIgthCHoAy0Ur1Yi1oxHLVCt/AMCNthYD73HO/NabqZyoZzpHUgWRhi4fxsRTAeYxzLdo+39i2zZoSS+OmTu/zG3T/NMjg4ecJ4eYrtN5jcq0RUhFg0NXsKjMhCBYN0v0nOQdvArKO0HaVrMTOVcZpuhpnNya2Hm8cc/7lfYe/BPR7+/X/Ii5/8iBx7BRGtwUVNzkxGCNIQmhmWjEsjZUKMRBisqIIkZw0WErTeo9RhTq2jJjC8rp6cs0qBa00h1Q5ggp8yCeWB1bpSR0U6tK+Dpoo0QVEv6t3Que6BylLWxt+IgbH6TlYWG2MgVX+wUgpVPUfuHNZa7t+9QwmBIcFqHMli8Glg2Cp7LAwjj5bw25/8kM9K4vD4Fv/6ouWb20tMjrwsW5y5oh8jVrzaZ0jBoBLiIpMnapVl7hQSdQhhbbXQqXuemaxcKqlAahiI1KZdCpr2ya5mvq7MFC3Z7VllAhRLPb7LdQhJ/bqlyptzZdGVqt6YgBG8xe91FOdIswbOzinnG/XxipFUIiknPk2B9rjjwcEtPvvsIf3Qs41aNwwidFavy+MhMKK+8z4O5BxxUnay9pwTbdeRYlVHpZGc9Dz1Rln27XyPMaoVVdPYXT2kT6L6nwtqfWOsxTtLP6raLKdC6y1jSMQIY8jKdBRl97548YLgj3jw7d8gbM65fPYZTb5k/PQDHBsQ8M6yf9QxVNmgQQdYqThiMoioNyJerahs0mGbCKRU2PQjYxI6Xwgh0zjH5fkVYQh0jcdkx1fe/Zd4571fYyae3G/5xXcD21+74uHzj/nkd36f09ML0v03+L3TE350+oxVlQF751n6lr3Gc3Nvxp224a5z7K1GXl5t2D55RvP5I+62Ha/dusn9L7zGYXxNA52W+7iu494Xv8TFzz7h7Kc/xBZVr5Q6uDwcM4dF1RTaX0MPHOao+1OudyElzPQcifrBmsoeFysYL4qclIIxuhZTrD2pZGUNJsEGJYpIroQgmWrLGvhVtw+JaSpP9dxHqjqNeqbXbtVqT3d7HPnXvOGDTc9JhtVsxrjoGNuOsfVE4ygZ3v/hd3m4PePHpyfw/AVfn+/xlc2K85lK4W0cCSnouq+tlQZXiQJsORPT5G9MzUSoNiFGe7OUq7JOMjkWNIBYbdWMcxirNknyCkZCVQqYSblQ95gyrfFJDchGa7CisacT+Db11Tmrv6WUSk4oautDtfUwKWFSIhjhtN9SknBxviIx4LyhO1ySYwN9QCYbITEs2pZNHOhDpDewVSSGSxFGI7RoSrfxDWEcMeLotxtVMSTNCDAUcorkECkhce/t+0QMmcLZ+QmHB/u8+dY7fPrT72OsZh6EpHWat5GZM3jzP6Ya/H//8XMDfCkbtoPoQhBtIpxD5RlAzOCs082dCXExjDGqf1Cdpltrqp5daJuWxnqapiEXg2sdw3YDaajToqKFNRObgZqYIhUhVjQUq/4ZqpE3WHEK+FlBalBAqdScmJS9J6JNaBjUFBUpNK5Ki2pjYqzQzeZKSTZSzWzzjtWVsxq+mop+e6cILUWByblXibA1qBmrKDypKVKlQs+G0keyVdlsQqq8p6jELQVNws2GcYwUMaSk6HVIEVBZWi5q9Kne4QZbAm0XlCYeC84CUg3pK7Ny8pIaY6GILixnlCUyjAPFZmIBa/JuiqlrV+m9pUAe1KPDipDSSEhJDWCLLtA+Dni0CBiGwsyPuJnVJipqQVkmllipARkViP2fio/+/8Tyyg7wm/aVyZNv8tsCbYQmz61pAqnXK+9Agwks8M7SDyMpJ7x3pFQlEv8T38sOIZRXvjdj8K3j7Qdv4TaRo5sLth98QHexYbmcMRBxodBdDHTVA9KmgegTo4/43uOkYXQWYsEPCRu35KgyThNG3BgoY1QGjRsRn4h+iVla9vKW9fe/z6PTZ1zcv41b3ODgsxMO793jxtd/mbOf/pDFizP+1IM7vPMr3+H8o48Ri8rQKVjnWSxnXFxeTgp5RCyWxJ9OjjdDYl2B0+K1MfTWkLwlMOftr/5pZmeR/F/+I1IUiskaeFsnQiLVR0og2yp0fuVWF1OnPHXKtLuxoo0ZooyNHSNoun9T05uvfRmNgBRl+pWcWabM33zjbeyLj4ho0qt6VSmwuPPkMbp/KXMwIbWB7WPmt9aX/EU/Y9YdkOeZ1+2S/7l1xJcviDGwzYnTxvPUd7zfKyPBhpHfePNN/tZb70EMZNeo/NhVOVPXkRtHdIWNgT5DHzKXIdBvezarakgbBrYpMuRCKIWxqETUZJXVSS2OixVtlpsOM1sok8ioZ6cxBmf9rrjEVj+QykYOBYZqjD3EgTSGaoFQFEQSoW07Zss9Lp4/5Y1+w9eP7mEf//SVQlY940y+XoPFCCPQvDjDFEtrDS7mGgiRIKkv39F55H9d5jx3A3/YZ+7eeZ2Xz55x1Z9d3/PdGqwH/vR1sq5CEeHgYJ/11RoxhtdffwPf7rHZXPDks9Wux5uSxAVN+W0XC0IRtque7/7+93nr3de4/+A+P33/Q71GE4s0Zw6Lp6QqsyiJ/IpfnDu/5Ne/+hb/8eWK590DfvIw8mITWR7dpPG3+Wuvv8O/8dqK8eKcVBY6FnCGPeuJqeDnh1ASIWSMa8je0ezdYHW2gRhxNtFfnRI2L2jjBXnc0Ia++sUKQxhoFx3ETJIlKW11QGS0EUnTAM1bFnsLjroFl88/Y2/ziGXTczyzyLLBDpHj48LvfeZYrAsHxmFNAuuYzRbMjm9z89Y9Fnfvslju0czmOOfrZLcu7JK10QoKPo+rDevVJZuLE4bzC4bLC4bVFWUYlCVZJfXKulTQNxdwyQCRaNVEvKRCMAlj9NoLrrJT1dtwSrfPxnCWEs4bKIMSa4rKJcdcyMVgm5aQAjbXZyhXBYARxJkKYCVK3JkCUPtR8qjMzihAyQoAe/0MN0nSjPrrSX3mptS9qfgv07NcbTcm/FrkFRlv3euoE3BlDr0qL9RrdeU97xvh/U3PZU5QoDWWBbBfDEcYbgfhRj/iY8ZI0j25sZoCO2t5sb1gIZa83lQpq60SJJXM5Jh3IRclRiRnlW2ma3aOpv5Ra8bK0DkVknuiwQSth9ZjmrYyvjps2yCtx3pXZcd1ol9ZkZOHoYhFEHKjHj/sHygDo7ITJwuHjBpwp5SUgVWkXi+DK4l2dY7//Dn9x58RL3tKyLUO0SAGEcePzMDjhfDV1475ZuM4/uBzniCYbNW0PgZC39c6plSv5VwbJgUVt2PE7jmoXj05Ja2ZQlSZa8nYYhGULe4Q9UXLjm7WMvaRlBKuaTBen/35bE4cRmzXcmsWmS2OeHa1Ze1U5D5H69MwRDrryWnAGMOya7lx6yazKIR1z812yVfntxjPbrHcdnzHfwH/9CWr52eUfsPq8gWbs3PG2BOLSg69AVfDBpxv8N7jbYNvlJ2tqfcNTLLdxmOahrJYYPf2kcMD5OiAtOhwyznNl97lnW6B7zoef+8PtObKWVllFoIznNqGu9/5NdJyH/JAefqY8OGPISbWOe8CW5JUVknWvadADQqbyogJFC8VK78u3kop2KIMjet4C5VW5VdWon76BOz9yYp0atSnPzVGC5FJXm6mmrXaDIXNVu919QjMKYNk7mTLv1JGfvDHP2Aoeu6ILeSmZbCCS+qhOIuZDz/4KethZAyFp67lg9OeL2eQMdATcCGQQtz1K6k219nWRruSI1JVHzEBesZUiaxUFt8EYujebnYAn65LMyEmpq7DChIi12ftdM1KvTe8MrCTXS1d6pWfZho14bfWgruBrqnM5iqzFqAYq0m3ExhDYSTxvL9kODdcnJyxv96wFyP3bIOTQjGWRRZmbcNlzvQxk31W1UTSu53HCDapZU3UoRoFYlBGkHcO13TkYum6Tof0kslFKvPeqtoqT0ZSBSFremhOjDVAdAyFhIJPvnE0jQZdNd5RSuTuG2/y5jvvUYxlHEbOXjzGpp777z7l5aMP6S+fkzZXHO4vOX38GWV7oSzBBEmEuAlYL9i2wWCJMdKPOsCadZ62s8w6jyuBnDI5QXSlBtppkqkvnv1hxsvf+z4mZbabC8b1mri+4jJc8vLlCWeHh/zjZ4/57vNnDKlc1+kpQb9lqrBNEVoj3G5nvD2f8/UbD3g9Gk5On/Pw4SfcffGEb7z1krtf+TLN62+osYh3vPWtb3Px6BPM6mxadpVYxLWsvA4yt2K4pQIZSsrYRnt9KNV6AkrUWl9VE/rcYAo4qThDpjiVNltrwBVIQtwmbKj4QNYGRttYqSQgHTLoDGB65qdgw7ougKx+XFrLCHQUfiFG7gQ4vVhxTuG5ZF5aYSWWlbGcOMOtfsuL3/4u9wu8ERPzEFiFxLn3WmOEwJh0MOfEaGhIrH7qMeIbT0q6vzlnyTFinDLQ1UpEwXpVHlRLMtj55qeUiKWQRIF7qdePWv6ZHSBfFO8o7CyXpBKPZPpk+BMD6JITJQQMalGU6jNTcq6gXz1vC1zOWq6s8Pbbb3F6esbzsw3ROVozB6tyXihEC/Mbh7hRh81rCVxJZiMFsS3DNGC1yhosWdVI2/WK2PfMF3NySvQbDY4pZEIYcdby3ntf5uzklJILpy9f8Nabr/HFL32Zzz9+n7jNNL5UrMixNzMMITLrfm547v8fAF8hoeDQJLW24ohJNfXGNDqpLknTHuuh2TQqWXCiB4dxhsYZckxYivqG5ETbGMLY48gYP91AfdBtNar1RshRp0Mi2jDuJmVFKfve6oEkGSDrwYCCXKnoAR1zPaCLwZhUGVCWxluVlEpSSbJ4hm2vaV05X6PLUxPiDK7q1ZXRWOp1ASu6kMeMFo0VfBSjVP9UE0sbVIbljMe6RpuZnEEK621ijCqtiyURIowpU4q7TpMrudb8au6ZU8bWyWrcJqxXllOq98MkNXg3Raofk6LlOam0Lkum8Val1ZKJccC2QkkQs0pwJEVEMs42FDLkQBRPTBlQ0GC77bFiCGNkHAqLowcc3Xqb8PwnxJNHDPOefPoxcX2OXxzX4VZ+5YnTMmrCfXbgWQUAd3+4+yh6TyrCN208agiNssQqs2faUIxRmdGrQOLE1msaTwxBG7EKBJqJS7ubPlwXcdPmJAVa2zBenLN3a4/0+Az78BHziwvixQs2pxcs9+fs37lHvhgxo6ZVIYAvWEmYoZCLrUDesCvOWI2wLrhtxMREICGm0LSCbSyDsdAIl/GCD0RIf+Gv8/jtL/Lmu1/i5OVTXvyX/xl3/rt/zJ3vfItNdNxcP2dWIB8d0nqLs1CcpQ8Dn372BGscVqR6BsBXxfO3797jSf85L4sg+5Zn+4X5OdwuhkuTeOP4BsvvfUq3KjgxYBzBCdFp0ZjqZJjauFIBOCn6zJfdPZedpFqQ6wPb1OaWejBOBZ+8Kq/X+6CA4DXjqBjBFIctjtAt62FTyDloslcNc5mGGNNTiLUqO0mZs5J40Sd+Yb5EbGbmLf/O/S8QY2QzBi5yZJsGngxb/vnFGa8ZQVLm0Hb8y1c9bz5+wWz/CLunzAZpZ5jlAeXgCNnfp+zNKDOPNBVkNOrXgOgzXIpOGHMppCrZTTExJI2ZH8bAGCNDHBnDyDj2DGNPP/Zs+y39tmc7DGz7nnGz1b/PUVm8GSQmAjrRDoimYwnkWuRnrwxCLgLjs5e8udnyt77yde4NnrBriIqyY3OV3Jfqd3b7JpfLGcunF2zHDVaE8UyYp4TNOr0bkjB6Ye9yzf92r+P/NPb8tsncevN1bgx3OD89o99cEZPKbiivMofM9VoUCP2IoHvBi+cvODgubK6upru6a+yq+QEGIYwBZx0hjWy2G97/0QccHuwTi5bjk7zIlsK7xdbi32DVwEaftJLhqmd4csHl5Us+/snPcO2MmAyL8Yqjd77Ah9sj1kff5tB9hBlPEAvrdU/OsOw68C2m63DNnCJzcruPtHOObjv6PuAbzwJLWl2Q8gBpQzz5lPXlS5ytg5thiySD7Y4R+S4FDbSazmYLpDSSZOSq39KZlqMEfms4uXDkVeb+TcuLPtIPFjGJgmHvtdf54jd/ifsP3qI7uo3xXteMM7XRqvt1TkoWk+vCTYMTqHL4TI6BcX3F9uSU008/4eSjj7h6/IS8WVFIlU2jslybddCXjYJLkhWATyXqQK8EEHC5ynaNEFEPt6sU8G2V2Rkt6qNE9VizokChs4wxIAVcLZmmROLSsGP3XctozO4sKCETykDKI6ZV830xQqDaHIieI1JMxefMzmtsYsZc7zlSB6WizAuZwLxX9s5aT0w+cpSCSOKqafnPzy/4z9crTpwl1sl4yQmbIi5n5pL5s6bjP7j1Ot0QMHGkCyPh/BJrLIN3PAwX3J/PiRfnKkdHfSO1ztLrMKk1JBcNbCDVvbdabvwJ6n0dthjBGE2kY3096NELYEiVBRbMNKgwdc/XP1epuTIFsGbnFSr1B1XiY+rf6fkN3orKj4vWctrtJlitWD96yfrJc8K2J6REMCjDSTJRLO/3PUd9Jv3wfU5nC1oLxnTqDSSBFAas8yBOJYG5KKtX1JtrK4aQAWPpvENSokkNhkwqEFOi846YAiUGsIWUtE5uLDWFWmVRBaEPI/PGV7sKfb6yCOcXG+JmxFu1WbG5UHLESqQpgVQHOa143mpn/JnXHvDlO+9yo1hmUcAvsU2kf/8nfPr57/Ly/DmbOJAJOAzBGrL3LJtOlTWNI+ZIiZEQBvIYKUOAlGk6z6JpOZzNWDQdM+fxriE2LX4+wx0eYO7cgls3SfN9OD6kffMBb/zVv0TMhcff+0MCPZii/owhI/R8+t3fo+wd0B4ectxZghjIkZUzeIScosZCpKTS3l2aZj0aquqIOhgS9DkTwy7RMMRYR9nT3mN3tWit9ncw33WVUAcnTHuDngOCyjTJCj5OSeHTI59zrgPEShoAhRIFZrnwFzF8rWwIJXFF5iqpdPzKGMaiYUlzDMtT6J0hlsD5xUvea5dIhDzvcAPI0JOGAcOgCZ5i9Oyawu1qGiXUAJOsRAZTAT3qOnNNU9d43QemXo/q52WmDd7tGLxiXLUoMtdgnzF1fqunr57j1wyn8kotjgiiMSO7MySXsrv+JanHeym1Fx0COYadXUNJkSspnMQRdxGY94E2Q3HCa67Ve1sirWRKMRwe3eQ8qMoqhlG/xgSKFAO22jA5Wy1UVGKPEXJRFnYcA60TTdu1hj4mUtT0ZV8HRuSCFei3PSkmxjFVGxEhxrJTguWsrDDrHXO/rFZvWot4C/1yyY2D10gPvsCdr3yHNGzYvPicJx/8AaY5YTuMrHOpdliVRWe9SvyDrpHZXkOJhZASM3GsrtaIwLAOjCmxCSMHyznee/X8I/GTf/7PabYGbCHksSZgZ55ur/h8sc8//Pxz3j9/uUuMLRPCTh38VJgzFWVPfdqv+KS/5J+ePefOfMGfu33E1+Umzx494rd/8hO+MY68GQ3Ld94lN57uxk3u/MI3ePl7v4UrGQi41Khvp6uJ2AIBoTcwm9Bk59RHtKoAFXeSCurJtAz0uzMowGeF4gRJUEIimAxGrXHEAL3WoRT1rFem/HT2VWuNev5pqje1pq/Pu2j9bQCbkg6ynGEmcI/MDWsZS+GqCFc5s46RKwIXJuEK7I+BPWs5LIW9mAnGMZTE3HpcZcRhDNY3lDEQg4JWUgppW89tEfUSJJPGCrlXnz5jDMlqUKlxldFbU4FzLpjGaYBGTR2e1meh1DqhGh7I9HdaA5UyTTjreq49Wcn6ewPkoJ6qOmipNjZ1eEWmKpuE09KxjY6y7Xlw7x4vXpzAUBhP12Rv69xBcKXgW8v56RmXeWQUQ6DQ50xywioHbNORc9TBLJBTZBx6ZePGQBwHUhgpJRGTpiZ3i4bD4yPOV2uefP6IGCPGWo5v3eHw8CYvrl6SS8Y3qgLZjomQDSHyc3/8/BBhlZB6q2CdSggLs9bWgzJjm7KTQUoG7x05FrwVXJ24QsabQrGg7jg9Bei3+jUM1JubcU4NIb21CiTV/UEmGnwFt0oF95pGgStxCg6kkCl6/r9y6Nbmxpiqr59YafqweGd2B5DB7JpqVQ5qsWCcNna5etSZ6gvorNEJVi4MY6a3WcMipoVMIYfALh1ELKkYrK1eE04LkDH05FLYDIVt0CTKiBBqbLkG3wiNLXinsl49OATjNXxDH/oZm1DIaaSxmn5ojDIdm2YKLSmUGvYxgV7eiFLIxWEs5Bx1qeWoD30RrO3Ud6r0FSCzNXBDCEHBB7ENrlki3T4h1+Z3HHGpZ3t5wWzfEbYXuNoMlFc98nYF1UTrv5ZrvhqMoQVAvUd115SpVpkKgmk3lanumiiMOpVIKdXXrAUBmhyJ0/AB32hCcExpx6iYerwKUwETqCSYPvDs7/4P2B/+HuMP3ufpYHh50BKM4dbzNW89DgyffMxe3iOfDtgYKTkQhgEpEIhgRlrbcXJ0m/72HVqXCOszZs9OaTa9FjmifNDBJhocqSSyK3yybPjwz/+rnFjD227FcPUpJ6kwe+9rbP7F79CtT2kPj+jzwPf/u3+ExFWdGmuhu1szUTdlmy2dFP5Xr7/Jm2PDxwJPFw3f+fd/jeXtkdPf/JBP//gRyyiYj15yfpp55BLZCMd2wZ7xNKkQK4iHaKMlyO7nXedfJdSTJJrdATjd68oE4RWkQKiN7yRnk11TXBCQ/IoUW5+lKpKpk2ah2LIrQEw9DKfgDgUaMlIMn5aBbgjc6CAOa8YxU+SKIUbO0oqVDPSpMBvgz2P4zlggC1kS7vPP+cHjR7imwbdzusWS/b2bLA5u0h7eoDk4xOy12EUHrdNUPufAKdNFvNW0TeeZdDzFOsS94l0zFeRTQzOx+bzU0BLRvcxQZchQksqJY4ykoSeOIyGOxBiIIapUJCRNXYsZMwTaGOlEOGwMN2IkffKY1HYUVigLJSGVBTURlWzXMFsc0C722A7qlSH5OlhBQaFMGQyDCMefnfG/OTrk9VL4B8NDzpqOoxs34MZt8J6YU5U6GFJRi4JSCikEUg7kEmnSiCT14bk6P6fkxHy+p9emniEpZU24K4kQdJprpqYlwtmJFrvG6G5ks/AAy1eTTlydGAT1LJWs+9bGGd6/2nBxuVEzdAqt86wuz7i4uKK1ns3+TW60Pemzx3ixzHzBNQ7jCjRWZX37Szh+i/mNe2z7QMgRF6JOYrsZm3aJsUKKPe2Dd1muLjC5Z1hfIUSQGaeDwfnv453dFa/Tzrq/mPHgtZvcv3eTj3/4u8xtxl55Vpcdt/KGph/5zScLblJ44+YdvvPtP8u9r30Z3+1h0GZP2VyBPNQGjes1rebqXK9pURBwKt/EdXRHM2Y3bnP4zru8/afXXHz6GS9++H2e/+wn5NUlNmWM5IprCW0SkqVKWrUecEBDpjhLaYTiLXEbyFkYBDY5cyhCQCVWxmp6nbK5CzEHMhnTGqTR4ZAU9UySnCGCyf9v5v7s2bIkO+/Efsvd997nnHvOHSLixpQZGZmVlZWVVYUaCIAASKIJgGiCIJsEqDa2rEUTm9RDP+gP0aseZCaZTKYHmUlkqwWjNQlO3WySTYAEawAKVZU1ZA05Z8xxxzPtwd2XHpbvc6NaemK99AWyMiLyxrnn7L3dfa1vfUNJn28FiXYhdTxUxiLe+QICl41LgGIsXsb7ds3KLHq0IhnlOuOvdyBCKbyvfu1s03uBvSwywhHKuzj+9ZA43TuysAaKHCaZd89WM+cu8+1+4J90K/709Dmy1/Dr+0f8mofJ+ZIuRy5Sx6diw7Ba4/BkCSY8Kee/ciWhkVwk22UIsyu25Oq+i+2iBZi1ayuqkIzNqG6c5pfr6sahjey8e8Yzf9c6jOe8jE/z7uEbfzCjx9EY4iXjN2Ul95FhtSFuW3Jv9g0xJ1Q9CauT2iCcpsTxAG2KDNpC9GQ8WUvquQuEOpI0EdNgg6ecyGmgz0KaNCR1VFWDpoHZbM8Ck7J5qtFFvIeq8maNUntSGjB2z4B3EGNrzafAdrMhVhVeBc2D7W1bkBjIQ0/XJ7atcnx7H6mmJM3Ewjs9qjJ/+fgN/sbrX+Ha3hSnNdpHQghEbXn7nW/y7JOfsG23uD1B45R6Mof5nCfNHs9ne2zXLaerS9RBTA7vAiFlDueeo8OK41nNgSaGVUuXBrg8oV93eODGdMJBs8dissfkyQnV/btUt28TY4/cOKa+dYv7f+kv0W4Gzt79Nk4HnApBoe4HJsNTuDxBHztWgCejBFbFp1qSFO/Ecb3Zc5hLjSw572pFA5nGITfWT7gxDE8LY8+ZVFUduhtAj2PIndHD+PTtGDoGzBeZb1kzgg2xoMiByzDEjetYjQ2OL4MkEgc+U8fMIMrghF4NiByisVGzBJzC0cE+H52fMldl5oSpRoILnKHMURj6EvigIL5sS7awxiWrKFlL0IZiQ1dnn59MIURkUh9LsICdV7aP2d7kXRnqjTpj5/BFXipFwmfXfATr2dVcMr6Rsq5392kcfEghfqiBCmgBAGIkDRHNEU0Rl7SUhTaYzzlxWTkuJHO9U27mYJLoHJgMnuHGMfPQs2xb2hsHnMQI0cNqTUwJMz1QUAMaYlQkQO4zqd8aSaCylGZfVeQc2W6XTCeBlDOVd7hJRUyRELwRVbBQrCo4uq7DO0fOAzFmYrSQBsHRdwYgupKwnpPtkUZm9GyHgcl0D1dNkKDm763wvIX69uf5zGtfYb28pOtaQvCkoeP8wUeszh7RzPe5desu52cXVPXAxaMnLCZK7i/phzX9pqURpQ6Cb/YK6aUhSwVDIBaZfOU9HguUiBN4VCn/8uljfnx5VnzO3NWZALa/l15e+Z/3bzaEeLhZ8Xsfr/hmPeFv3LyLnD7n2x9/ROMDL9cTZq/eBxHufvpznP34HdLFI4JzuFyG8cZVNWDWQ58TQWzoZrZfvjDWzIfXeCG24k0mb+tzZIJbJ1SSblVNZaRqMt2JWIBMOYUlgUQgqSXxihjbLJvUl2zArZYzHRmZvaWP8YY7UHrXKphfbENmpsq1ZGSKTTZAOqgQRM3ehPJsiNCmgWlVs6OGFoZ9UmMup2R2VCMhxiyxwDktpYqUzIVsIF0yUC/2/Y5N64p8nq5HQsB5z+AKYiVWo2XNu0FtHvdJTAmUxikhZfCM7X1jpoBTsdCuZBiTiLN6RKPd32JxJkm5jLCOG55+8jF3dKCpK46Oj9mcX5Bjj3irN145POBpuyE6pRehFaGNRrpaSiIKNG7MlSiq7pwYupYqVOA9PniG8hxryQnYOzrEV567t475+MMHVIXx6KqaOy+/zsfvfo/ghX4wVu9M7TmM8coC4j/262cG+Jpmj9mtV9G0oT1/Tu0TtXclyWRkN40JtRZX7XFUlbcEXCl0R+cYcomCF3vgXDZ/FcWmDB6lCd6SaMcHCUeMkVD5IkNi549mfXowmxmnxLa3iRF2eFrirzeTXrGJiE3RbYFpzjb58eVwKTE5OeVCDS2MAWeAl6oBa1I8fKQAh40PxJgM6PJGzSUm86DxQhos7dHScqSwIc1/MKVE7Ozg3LSWtDLERE5KKk2wE5hNKxqfmTS2mIMPRfYsVFWFOCs+KcBJ2PbE5JhNa4KzKb8rxYSM00Qx1mVWCrCh4Ay0zDkTMwwx4p1JGr1vCFWFF0sxU+fQNNiG5Mu0LjSIn9p9HjbkCLXOGLaXaDB5Xs6J1fKU6TipY4fCcHUY6O4Z1LHpuULwdp9TsyVOjoxOA5plx+LbSQBeKB7MeFmtaUuW0GevaYWZc0Yn7rueqq5BZLcJXhUjV95+iqWDbh58yAf/n3+AP33O6tYdXvqdv8bBKzdJqsQPPubtf/zPOP7wfV698DR9IOUOExGYnEgZGPzAxk95eHSAaxzdt77JtWbCVC5w+tyaQDW68TpHZhqYqT0rH1c3+bBdsXm+4rVbmZ988i5bd417R9c4nc95/ekJ8eycD/cC33vyhC++cpeqGpgvhD5W+JiJ0pVJk8nbj0JF8/SMH1x0PJFM8/IBh59esL18j7u/9hLv9hf4tzv6deYnecV5FnzOnHVr9lR4WSoaDaPNHWM+5hhGMyJ5I10dGf+cn2raRNyu2SuafCu2d8zAFxrrnTmzvtAgjod/Kb7xILnYUqkVvHolHbYitTQB1LwrAy9XQshKlmgyMOegCSzcnIVOiFlZVz2Xm5aoPTlCT6QfP07f41ZbNifPWfEhUwJzP+Ho6JjJ4RymDVRWLOI8Gix1z41pU76kU/kCRBYw2qRsociixiQrSzeksnQrrcp/D96kN6FCXADvmYRi/h8qtK6tOBvRGbXnwMWMxB5NLaQOt10imxYWM9JsYt5LJdWyzuCqgM9WsHTvfgjVY2LbssCk2uKscN4NGNRA2ajWDu2dnPL3tgt++6WbfPWo4r0wsLw4Z9Mpyz6zSZmojoiU5HQhaTYA1+oqsyyoAq6ui09UAFchrrbiXYrN2uil5TIxDeZdGKP5B6oNaxyJ9PwJ/1mqudtmPBHVyi6TgkvQ7k348Z0537o02Z7XZNM+yeR1zyff/w6r45t87VvHvPzlG7i9Ga6ucJoQV+GqmhTm1CmjVUM13YfpAfMpRM1o15KGHjeZsZjMUAK+DvhQMcvmCbiXBprKoS4QTk4J/v9Z/F3lyveNzO2bN8mbjo/f+5Bnq5aTVrm1VULrECJff1DzeNXwl+/f5pd+/jdo9q+TuwFWJ2YHoRGJkRQHS/TkygJh9JlShzGsZEx29Zb0WgVceR6pK1xTw17DjRsHXPv0fV764It88o0/5vRHP4JhhRYVgGQFCaXINj/ELMJ5XfP8xgH3fvmLXNuf8+yPvk373kcMWrPVxG1v6c5JzGR7rMlzKdSc5GKdYRIc8aBlgKbFczLHjA8KnaJJrFlWrCB3kHJhjmTwBGyUYGbtO2lgOXOyZggUVo9Nr8chRC5Tfilgg1Mp8nO3O3dMQ4KB/OV1+zRw/fY15jdvo5ppU6KL5lfXpWRKBhFks+bfPn/KRz5yOD/gP9Sew8uet2LLxldsUqLJiSH2BoZpwGsuRXawfSlfSR1d2WdFBPEVY/jA2MSMnnq7vV7VUr5Fy/3M5QgojKBc1mJp8LX8NxnrrQISG34zDny1SIS1DAzLHq+2r1utZ3+eUyZ2A8NgvsMyjMboAmpptoPChSidRnKq2Gog947oIEsii7G+02DDuWSokQ15oSTcKikGhuKnJ6Eix8Rsdggo88PrtF3Gu8Tq8hTU453S5R51CS/egAWBGHtUhCZAkEyoKmIO4OCosdTdtAhcbHrUeaYTj8aOHCOVD7hpzf6kou8C3//a29yuHAfTKYvFAVUt+L19fvHLX6B74yUebla8/8H7XLaZj44X/IsPPuYHjx7Re2NQpFwC9UqDJoW26zBGxcR5rlcNtyYNr88mfOnObV5ReH624dH5c9yzRxw/ecC1J4+49pnXmbz+GkPMVNev0Rxf4/5v/hqbi8fERw+x5Hizl2kEe26yWuqoCMkL25yZhEAVA+ospCOos8wllDKptnpg7B12dQTgjBWPy7ta0XACS2k24G+sRq/ACqtJc/nVCEQLyXiEV8/nbvWXunscfuQCfMsIURdVCYAYO3PWTBnygDohEulyLK9oLt9+WjOdTWkunElNXU3jK4aUOcsDjYiByTrOG3Q3JB/ZcE4MxMqayvq0OjhRmGqqkDK5T6QhFZmcktqhDEqc2Ro4G024wpJMWYs3lxSSiLwwCKDUACZf9kXOqGX/0zzW7HYFxx5zLP3RK7sM0UyKQwkoo/hhFlBVM8+c0ObIjSxUOVM56CQxLGbs//Ivc10Guief8MH5CU83S4Z+sF6qj1YPJQNegZ0PpagS+x4fAnkY0JRomhrNiYuzM4ZhABH6ITIMtmcHcSUt3Lz1cI7gA0bk1F0PEoryKKnsnjYnRuAojxXihNl8RjObWkqr2LDWO+HTX/gyk2YCAl27pdv2qCptu+LWZ/4Mk6ZmPp/RRbNdSTGyPX3Ox9/+n9g8/TEub6iCsLfYJw3C3tERsd8Q2w3zacUk71E/bgmDErwnB2M4XujAn6w3vHt5ZrC3k+KaUp7/smlbTS67/s0+0Y7ytusD3u07/u+PP+BvXbvF6xfw7ocfMZ/OqZqGye1bDJOGW2+8xYPvnpPE/GQtSdqbnZdkBhIugta6Y7NHFO/cLnAsFgKRL17nuZg7qMsWUpkzjMODsU8t9aIGA/FBceJRXyw6VNDBNsU8JCR7FPMhttwm/wLQZz33LgiunG2UH+1c2BFhajGFQTN0lj9Q9iJfEkFcHMB5NjlyraxbyrHYxe1u3TjMX3FkMo9qgKwFOxEpCgYpIFaCWPZA53DBwlG1TNlUxCw+Rs9O53ZWMFDyAwqDVwtYp+U5Rozd54K3Pc35HekqxwERWxuSUyFdlWR0p7aXescmZwbDK3n69ITFfJ+mbhgqYRIq8joSqorNkNk6gaYhd5lWI0PxIO53e7kB1qGyz9u2W4ahx/uA5ky37uwpKIMG7z23X3qJB588YFo3iCZ88LTbln67YX+xD+oYhr7sTwYE+6pCxx7rZ/j62Rl8Q4euniIuMp9mM7p1tpHHJAzRWrRcvAaqqkFEqCvPMPSlsU6k3vyKwgi6lIlS7Yyq60SpinzFmhFPLAbEUnkGtdSfcT9wBVyzSbiSCvMsOEdMGZ9gUKWpBDBUVrLRxZ0PBjCGvAOHFPBO6GNvDyP2IIsEwFNVZijpsnmpOMkmIVZnhpsCSDbvHU2EUOEUusHMekWkGIfLLhUw9oOxY7Lh20M0a19U8F7ZbxyVV+rgLQq9sCkNYS9Ftzq8GtBWuSIhFWFSAY3Dy4CgpdHQQkk28DNF86ex4tZktjENDBJLYliwQpNUiuyAryc4MlmCTZud4qoGF6Z456kmnqCwOd8wm81hucStHjORFqqaUCvDMDAsTxjZeU7sGRgBthdTcEfwzz63vvDHhaav7D7zeBiOOv5RXnuFydnzkik0YfipYI9dgSPsDOOHfjCg0NszpOU1Y/Gg9GXqkTTx9Cc/4fWFcOYXyH/+OzyZNEzbM5rju+ibrxO/9Aan7/yA623PiorCzyQR6UksnfIgOLYCfvmQ7psfs1hd4GdzTranJDdQoQQvfByEXpVrKXJzSKh4Lg8O2T9csHCXdM8eMXdTXrnnWXdLYj1h23s2Seg1IjPPdOF4+fAO/8lv/zm+/fUf8YNvvsPrX7nHt7/1XVbLgZwz+9lzcbniYex5r3a8GjLu6SWNzlCXmB43uBBZZ+U0CC/nwCQnA1CBTiMmnhk5mWWKXA79EdwZy7KxFR5/53aMFXYgnhb2njO0fmf0reXfY6z9jt1nY2m7z2MxLakU7iPTU6+KbX3x5ynJCY+6zGfqwKoABZozyaVSDiT7vVp+XNUEZurokpnQ28+0XSYAFWa771BialldnJGd4tvW/BC90d6tCHbkcHV4jp44bidXZqwCAXZG1BTWsRTvPC1NKKVxxpXmxzuTIDhngIsX8+/IyZhxeOwYCTgxrx0XSmqiOKTvmb/yMsN0it9u2d8840CUg5svMU2WpheIOHFEMYsBYmZQm77nwSQsmhRiRGOGaLJC32957YNHfKY7pnrrFXTmyb6iC4HOCYOMUkwlSqbXSEyJLUqn5qfTxYFN37ONg/0+KV1saXNmkxLrlFjnyCYn2hzpUTqE6BzqKrKvwFXkoecvHB7zv7mI1P3ZruHLmgkK7d6Urx3P+JYOSHeJa7vivWrm20PfIWnJEPf55ne/w2+99Ab+8YfkpjEQJFRMpg2DNMTNFvae050+Ji1uMZntmU1CVpCa2e17NEfH4CY24ffG5kjZJrPeGWAUppmhGyztKwSCeCYK88bz1p2bzKuKioZn25qvP81sKkXrjm8vAz/WKX/lpdv88v1fQJcdefmUJB25NclX7jqzbNDih1ueudErc0xhdN5AIQnmW+ZcwNcNvmlwsykymcJsik4nuOmE6vCIw88tmN9+iWdvf4+P/+jf0J+f4LSEqWTdkeRyARouKs931i3/5o++y2w24/jpY34OC6RZF6Z9SgX4dTYM8cGTC1uiYGsG5KGWvJ0T+AJUhgTBJMFV7ZFs3pEeVzxtpBBr7fsTsQyREjFHRhqxFCsNUWtak1yx9cgUgMgASIcrrCArskdZso3WBzzOCuCC+90GXnvvjB/88D0ugJVA11hCt03YA3VV0+eBi9Zk8ofThovTS5bDhp6ewRk4MEOtaVaTRROtOTIvG8H5yprdrDtPLsGBG1ARXAhXUp4ypHZl38qCNQ75CiwxRd0o07MNbWRq75h6YsEhI/vKwAU7J0b1hJVgOs5rbN8v/r65MIp1BB3Le8uCASuFfac5k8kstbEmO0Kvjm1yLFXJLhXMsHgy52ShLR5Q82JOgxrjKdoQwIlDU8KJZzKdIa7m4Og21+sZm8slwU9J82vEvmO+yAxDi2hmu75EKoEQ6FKPiCcQCK6mkp7sPPv7U5ZbwQXhwM3oc0C9xzll6jKLPY+vA9X1l3n+ub/Cv1ie0z1/TP3kMfvnj5herrjWRug7nmvPs3bFnYM9PjrY4x9+9/usO/P3lJ2HlO4YbXb9bYhTnlSiRlZ95MNuwx9fCr/3+ClHVc1nZjN+86X7fCkJp08/5MHDD7h2fspnYs/RG45BBX+wYH79Op/+1V/lh//sn9FfXpZ7ejW7Qy0QCoEBpXfCdR/wPqFEfCU49ZBiaSqLLBLd1XzGAi2y/2Lnk4QyuDZwPadksjyx+lh1rEjGqtSawZ38sCzEsZ7YfefoXY4NhIML1vzKVWWrsGOoGaPP3gPelCYZCxXywdmgTywxOsz2yENi7is6NZsdlQFEWUXHJNmzn3KRto1edeO7UwMxrPa9Wm8yNvgp74Y2tumWU0+s5s0xFnDB2Nw5lyGS8wYCJvMoVXcVWOdKMW7tny8Bi+PxYWvYOfM0897tTP53723cNfLVmYOapYOFJwVMqZEZgCeaSTkxS1CLpYL3CAsP12aej1dbPjp9ztnygrZvLUwrXcmyc044zaTSe3rvaLcbNGcqsH3SBSpnzLCcDGTJOFI/3lthsxkMOVZI6gh1g8mlbZiiKLFcryrUSBk2jXufWNFsbE/b9fBSgLECXE/35uW/2f0NVcNkL3F2espk74Cja9cKWKrUavvesL3kwUcfMr1+E68t2iYmjSJVBVJx9/5LLE9OOD99ihdlb+8O4ScP8JUwpC2DmmrjwyHy7eWa/IIthxvfWzniQgjl2kBdV/T9gBOh7wuTsQCoYz93ifKPTh/xv75+n4NnJ7z74QdMF3P8bIKfNRzff5XN8oI7X/kcQ+NIqw35fEVcb+m2ay6WF4SHj9BpjYuJPPR4BfHK6PFrPVxRGRY/VA2CSi7DK7GzTdTOKBEcvvSVitbeZLllX8xOkSS4elQVmW0HWW0vj7YWtTBjrePI8GLgggpJ7VmzoBQpQWaeBiNWxVRARc3kwZh24oQkyjrDvaxmRaFXTH87TLUsnXH0oPbM7p6bq1BSHdKON2GEFnu+XWHICpiXtxopSgsjzd53Wdcygte2f4xDhREsHNUeEgwU9CEUr0ogpQLiKyO7Gs0lddiufww1Z6GBqka6AU1wcbnk5OKMaxLYOzigogcnnGkm3rnLjf1DTr75LZp+YCWZbeXpy2DAybhX2Znd9/3uPsS+eOg6V0LHlFA13L7zEn3fWyDhZsvxzds8eviQg70ZTeWtz0rOwjbITLxjIP8vhMEXhF3uewHSch6xZpvoiTMmXHCgOpifS9cTUwRHEQmUB0Vz8eoL9uvg8aWI9d6XYsyixG3NjXIYTy4br/dSkHDMa04SOdqDte3s+30Bs5JGQ/RVCA56TRamUTwEifYAaTnYETPpVcnGLtSeWVPjxsmzJnxIjG7+WRW8IE6pFCpvFPaUOmLGFrjkAkglcjKauUZLjY1qho/GerB22otFqntnEmdNGU0DcRyylQIBtelXisZcHJurlEpjEu2ANCmxUFXFDFQ8/TAA5XudmM1OlrKJebyrAPMWlCw4V4GvUPH0cWvnKpVRmsmYaKLES4d9wnxGNdlj9fQp0j4lJMguo0QznO42jFTkcao3FgEvwnu7rx3bj11DBlKYmbqbnu8MfXcgh14VTlijMYIuY4Pw0yAfO+BRRAglbEOHkVUqxbjZ0PvV6pJvf/tb1GTurtbQZqbBcbnesn72HifDhqZrSactPicmladnYEPLhmS0e1VWleMd5zkPDfMhcnz2iL1+oJfM880lFcraG0DUVYH3JXMwKHsjy1MTPH3EZw+u8ZE/YOUGXn/tPif9Gt32TC4vLD3Le35+tuD1VxdchsDZ+Zp//Hv/lHWKdG7NT378Y2I0A9BE5CUJvOQ877rMOiecUy6WG47vHKLnJyxPNyy6yIcIP5wKyzZyjUyjSqOwsuMRGPeBtDtIDOSi/NpYfY4SylH+HbSw/dR8qUb/NC1TbjJGGzfNfKGEl4lyoXJpwcVskuxK0zgCeULCaPLG8SsykjEMBIgus9aExsgH3RkI1B6CbwiF+ZUE1DuyM//NKGLM31U2nz8g2avZeyihOxFhM/SEYaAJzlJlGVDxdgVkZF7JVdNcQLqdsfXY5GJ7gHuhK0pjSWwnarkTpVj3weQz3ppusyfIhBxBzZ9QoqLZ/EWymiFvCsYYMKBUUFfjbt1g7mv2ziomCse/+RvIek2Oidy36GaL63q02yL9wCSbl4/TMr/NrjAcxrsB9APSbvFtR3rnfXIaCA5q55mHqtwnMWlTNbJ8HLn4deHs86mfwaTsX74qhvyBHDw5OKKHwTvzbFFvPoRZGfJQzOUHZpp5aZXw/+6P2JrwuFxSey4/OvB89fwxfz0PfHEY+H8Q+GbxB3QuEFOHD45aBtbDhq5ZMK326CSyWq1xriIUM++mrthut8jFRwzPn7D0jhQHJvsHuIN7NOmY7fICV5WEX28hKlkh1DW9gviaGDvCZMLhfE7Iypv37vCl45vs6cDh3ox8fsa2i7wywHfjnK/mNccNPKTmTd3jS3svc/nxU/pti6RMyluGdmM+JNEMjnU8O8UXYq1YLVDCiSrvqetA3TRUTUNde7SqyFWFTCpkOkVme8h8DnsLWOzjpnvUN69z65f/LHtH1/jRv/wX9M8+IpPtqis7UN+pcqNr+SvTfZ5qz4+erTjso0mqUKIowYnxRJ15tGlW4gA5CcGFUmTaeskILhepnVpqKKo2EKi1eFDZOa4+WMpYsnuw4wZLuDqjHLjCADHwSG1pZlMVWIhTYaoUdkguTRNljQgGpGkyQ37bLa3+SCX5db9b89tR+UofOUsDFymxXAk9ytY5es24bBKYhDJ1jsXygpcbz1tSM3NCH+x8m5S9xNgllu5IGcJmNSZQ1sJsLPL0F1zEcGJ2JFJUGOPWM8puxVtargSTsphlgnvhTB+L+cKuKue0MiI945lOeV9iu3dJqBz/XAtYoqWhUgyoSdGS8FRAq8IkGgTtDMxJZNaUAYIqrSq9ZLIr/nmjWb6mktYJaCYESw0np8Jsrc03NVnyn4rSdxtEOs6efkKopwxRmU4nVIsFzgVyjmwuz6ibwPL0MZv1JV23YVILNQ2SKw6PjkmPPiRXAcjIFPoo3Dmc8/zsktpbuFXCwEntlZf9jNlmhXOO5tp1wtER6hyX6rhMPe9/93vIOz/gF473+HY/8M/f/j6tjvUrVzXVCF7pCLoUsG/3RL5Qh5Xr96zveN63fP3yjFemM37nzl1+yQUu3v0Rb3/jT/hCChy9GRjaxGRvyv7dV3n5F/487/3hvyqe0+CKP7UbV4sKgyQ2OGrsnBuVF0kV5wt4R5HR7TpV3R2BWQq4rNZrZCdIpSTn8FlI/dVDZtJ8CvuofFq5eq0dC0lGPL+AeGLP7Qhg9dn8fn1hpf1UsStijMjyLjUbiy6p2RQYS1AR76mcQ1MPKty6vo+TgPY9aejBwRKYO1OojHZDrqyHTAnKKT8rje8vjwClrQ1X9i4tPQoKqiWgTiGnbL7lZXAuJchvROXts7ir61Kukham/y5woNj4WAK6IEO0axF/+lmzfaEQFdBdgi2UWsJ5FFdUY5noHc+S+Ug6p8xG8DULrusZzk84z5mT9RrvlYPFhMvLLX1vP9J8hA3IH+LAdDphNCBVcTtrogqhCRWQabfnNMEICylZH9ENyQz2XWVPX8pU3jMMkazOGJbeQixisp9pvq3W25j0WX7qmbHH5gUGULk+Y/80EmBC8Ny6dcsA5px23oquAKRuMuOtL/8S4v4sw/aSs4cPSNsT2tUTzh5+wNnygtXZCXvTwGQqpBBITW0+n9TEwfwKv/r8hPM07AZvUn6+1WgV+0dHvPzKfW7cvMt0NoUY6WNPu11zenbK5cUZjx8+MPuW3dISTsj8/sVDbly7gb8459l7P6GZH1Dfv8dkPuPw6ID1s1MOfu4t9FZFcJ6heNHk9SWcPOet49uk7QbdbtBNS+xbUrchbbek7YrUtqTthtRt7OeTIPdmTUEJ7cH2Bedkt+yRbIqYpCYTR0GC4QmRco7b+TTah9mdK8Pacm5c3Tt3xYpTC70T53a1S9K4G7B7l6mnE4a2w8iB0bATr7SaaaBYFmTIxUNyV5SMMLDuwLyrIYbu9p6xE99ZY4kxMIMrFiOZ4kUdS/aBAXMju3BM0c0573o181wvVgiaGJ1HyBZiEAcb9hc82xKsRZHsi3WAgrOd3aunU/hweUGfEhMX8ALOWSiid1A5mFaB6BynQyIurrF37x7bd37MwZAYUJ5lpS9DajWkFLABhqaEDwEtrHxyIpV/csrU08Dh0XWePH7EdDZleXHBYj4nB7h9/TrPHz0hkwmSqYOxS2NWxCfQ/wUAfCkN5NiXCVQB1fC4oAiRyot5wYkWenYy2aklb5jhvhQQJdsEO2dFXMSXd5eykElGh8YmCynZ4RajPRxJB/sz5wjlwW2qgHf2/ZPKkmSzF/qSmFs7SNEOraRKXyZEeSjeJ+WgHhebOAMPFcE5JYhSecW73lDwjC1qNeALssk1CqPQKWhU4vgsKAYqqKW55fL3vS8otXgoUeze2wnox4QfjQUp96RkaV7Ou90EZ/RO0yx4V2reoYBgzhpCY93YNXbOJtSCEDXtZCwjq8D5YIvdeVugOduUXLOxF8PIZilG1zHatSpApxodgpAd23ZDH6aE9RJxnuAimnujmjczUh9tU8kZLazNnex6BPJ2tZgiu23nha9ykI2kPh3ZI1rMp7UYe6bxuo2F11WhAG5XUI3TspTGRTeWq2LNW1ZSYSS5Arhk4B/9/j/l9/7B3+fmxPNfvfUFXtpYApb85H30QKmd0Dx+ysn7D/lMVRE2AxWJLQNLsU0zOcfTEDhVmHWR45g5pKdC2aphNVkx6SMgKfKaCNcT7AMzbCJ6dH7G43/6j9j/T34Lf/8WZycX7PWnLP/1v+fo6QPiYoZm4e5K+MLidf7+g2ecTDo+fPAANzHG6eXJCs2w1zjms5qbbabKsHIOnVYsjhdMJp6q8XzwwQM2beAlH3jgNjwUUC9sKHJvhVnS0WWtXG/7DEHNvr3kNOJe+Gc8WEawb+SQGeBnxbfR7A0QDNnjst1L7x0kA+iyB/Ul5Me5Yvdgr22G1v7quSpS6x0YKLpjCm4103WRGYXkFoocSzK9ZqKaf0PE1mMik6pM9qXtXSsuXvnD2BURrp60xGZ5gfYTO8zGQpeAd4W5M/oAuVIMFMmauFFuXwC+cfr2QiNTKgj76aUJ8uXvSmGfiLcJk4hjKEDfznPLBUykLyQVZHCoz5RJiSVVacuQPEMfbSL4/Mzup4dUeWR/D3Ru6021qHMVSREt4ClZkRiRYSBFhVpgz4MuqNQKppwiuYvkFG1iqIV10w/GeMqW/kaKlhZeQP7R/2tkKluTVkBN72mcZ+IDC2dTZi+uAKrm1ehSIm4T236gKvuRilCFQJXh1GXW7ZZq2XIrCC/VmT8ODXvNnFBNqRsrdCQLUz+j3r9Ldd+Ru0v2Fitit2F6dJ2+g/nd+9QyRaXCTSbE9TnDxTNWZ2fs5Y71s4e46ZoUI33c0q63TPZm1NMFoZ7h6wlVMyV2PTf395lL4pXac6ye248vmImS5YxN6jic1Oxte3w95yQ2DLplIh1724ofP/uAYTvQppZt7onaG1syC0mMf6w4Ylk0VjpakeBLIdgg1ApT9Xgc0+BYTCcczKcc7s+Z7S0IkyUym8B8n3ywxu8f4ff3CU3N4s03ebN2/OSf/yO2T55AThbaUyRdXsClAf/slGNxzJoacsZrpi1+O6KZzoGIFb5QvGbEGqoQ7Psoa9+aXTu7vbPprQRb76M8UarilxPAqZTBgJ0a0eVyFhVYqthG7ORmJWUypUTCJENkO9OdmozGj2b0hWDvnZ2EpsYp3jqlBZHSdBzWlhC8v010GYaYGHKmL/KSsJMgK1XO7DvPfAjUgd29q51J2VQh+1Am1ZkxLGBkwzlxRIrMtshfRcZ1lezzMzZ7lsa3S9mTYSezJDiQMlAp+xduDGx5odkoIOmL/mpXjQi7tS/upxn5DqtlxqZJ1WwZzCpJrUErZbKOr4M1SdF7tqr4YhsQXQnR0OKDlrMhrOJeMOYvXmTF4sVXDSDUjSMQSCkyxBYZIu32hJyUblUzmcwIzR5CYG//GhmoJmtmzjFbzMnZVBSrTYf4PY6u3aat50i9JjZw4+5LkAY+ddjA/IBtty7BIw1nmy2L6Zy+XSG1pw4gePqkDG3k/Q8+5OL99/nLIfDjyyX//PkZbTmBckGsRgkl431mBPhKnfQCg83JFWp1ZZFh0uf31iv+zx/8mG8c3uDvfuot0vs/5J1vf4MvNRXzl15n2HbU04obb36evJix6bbE9ZJueUm7XpE3a1zb4qPZm7RknM9oXVrC4rWXnJ17I99J0dIgUoZ/ZTBRFAWZbJY8rgyiE1gcfDlnsXUpO6StMHhIO/BzN6Au57eOSEsB7Y01aIOPdLVblvLD1D0jBjC6xuSYjMlXBZyX8jqmLNIUySSIBkKkaIBZChXLHLkd3A6cH9dvHu9d6YVGv8Cxlla5AthFhTjkq/us9vyP/rq2HA1EzWrp00q+Yj2V/U6x2noXVld+/rgfqhjLMDhLa005joYE5XvtngYfSj1fwLdxE8DupQ8GPMQhlX0XSxOvKm5/9k1euX8fho7LJ0+4fPCERpRu2DKbwS/8mV9i2Ub+6Ot/QtuuUXGEkZ2YrF9JyeqUlFKpoyxII2Og6/ZySe62aDlTfDCZbuOFKmRmk8C6jUQytRfzPs5q6aXoLt3VkRmSEtMLXvMFtBS56nmkDEVGksTVutNyidUG3GMJiAW/mFc7JcCjRiohi6OeLLi1fwchoamlX59z+uEP2bv5LsuTD7ncPqepGvysob28IFeOISV+1A98b7Ms73GEjgTEUU/n3Hr5Zd74zGd48OAhH338Pn3XmyfydEIVKm4c3+T2nbvcvfcKp8+f8cl779Nvt3gnKJ4HMfI/bJf8nRB4cn7B9N2fcHu+hz84YH7tGs++8zarh8+pjq/RHx3CYoE/us4mJyb7B1THxzQxUamWs9pqbrN1SAbexJ7c9+ZFvW3pNkvS8oJhc0m3WTJslki3KZZURa8qHZKNGiDOCDlmpanGNvdWb0pSnJaJi45rxACHMUSLAnSrYKx7rB4YFW4xp1K22lpBLEl56KOdmd726VgUPD6bckdEbCBJ3pEjxsW+s0UqdiejmmG3p5fjWrlSy4kIKZW9cncOlCGMXBEICuxuOAWFCKCFpVw+r72fTC6p10TKwFxskICWPdl26F04h2ZEzAt345XH25Zp5TiKyv2q4sg5Vi7wWDNVHNAYaWcNR/dew731aVbrgbaxoNWZVuypcqnJ2Ihl/cRhKPYMO4DB7rOIZROUc2Y6W7DeGLv+/OycdtuyWS85u1zRrzZ4H2jqipAGgre6s42ZEF7cD//jv35mgC+Xf7yYp5z3ZorsneBKgIZ3zth6FDP2sYYth6pk82RQsQYxRyvEJEIIjpQM9LIHqaREFhR/ND4eCxyAlEwKm1Roe0NzQ3A4sSj6vYmlwgxJUQm0XbZJvHPm9aSJxaxGgSGZ1Narma17NeQ5BKHxYyy6+ULklHHBJMmxNzNPEW8HUjSmgHOm43c+mIl7jrY81BuQ6T05JSqxhNJQCvkxZUujkLIZ0WbU2HtqhYbuEHBbHKNkjrHp2J3dBooV7N8YfMGXxtoMOl0BXgXBl5Q2YByW4b0nuJp60tgm5ANazTCvGUPbh1QcR9RROYcTC9zYLrc09+6hIsxcghTxlScNA3074MSaj1w8EFWtyTGPi/E9iBUfL+AUu3QtyufkioU3FiRWWBVQsIB+OZXnDdl9/86vb2wq9GqqGtNQfu4Lc2mxKPFUgD5UqULFo0dPaNuOvDfjwaOPuNOteblp2P7gh6Rf/jM8Wi6Ztyu+NFtw9s//B272W/oi2qzGw0Yz1/qeWxkWCvMX1p8yTrPYSVrrFzbdgQIsIRxqpvr4h8Tfe8DhS6+xaQLDww+4Hj3pxm0+3q5ppOK6BC4fPGN4fobe3yM5saQ1cVS+AsmkPDCpAkcZGBJ9SBAq9vYgbJZcfrykihuG7ZqFHnBZaMyvxYo3JlO+njacq0nHJqWRjSiDWnGrCD3GlCk42v/P13gWBbvDlCPDZOkpQTKuV4UjWEuFE0+NEESsQK9MGUE5wAqVj0zx2HBWZEolZG+AvddQGHy29i7rij4rUw8hZ2SwAzo5yN6TXJGK+szYdGcnxBTRmRo4sMxIL7snKhd+gX1C88uKsTP5rg8GA4qgUjw9S+MA7Jik4z6we0DFTK2d2j46HqDjl5S9XGT09rRGmpJWnn3g4uiIdyvHKme6nMmSSNqTkpA0IRI4DA0354cc7M1wz09ZuED99JTYJZbpnEES3Z9+F19P0GlAa2Mzig+oF9vLnLdGZWwUC8vChRrnKyQnnOQinSuSIDMxxal5j8qIFhd2xiiXGkMAdvuDjgDpyAxiB0xQWAuaEyrR0lZzYd2kZMV9ijBEdE/wr76EHzJse1K0JzL1mcfbFZddz4CdWYcx42tLVb+8OKcqDDYJU/7a3/wvuf7Wn6HSZGbyqSW1axKW4o2fGQBUziI0st2suZZbs8JoZkjdkFOm22w4uGEFZr23R0zKpJmCCKt1x735jNnlKTeWW2b9BdommqYhTODmYo9rR9eZvXrEa8ESgjvp+Gh5wZN3HvFJ3zNoZNMn1HkqmZKzEH3NuSjn3rPxsBXoUKJIMbV3VM4TJFDhmYiwFwfqzZb5essbdcWjh08IHz5gUgnH129w5+Yxi6M1YbOG9Ya83uKPrhFmFYtP3eON3/yrvPP7/4z+4rE1x9ngB3XG1oxekRyZ9P1YRxf5vFJppna+SPit+XNS0lg1o3kwya13eAz0d0UqokMu4JKgXhDvd420jsx8xaRhKObbOZ7BBghoqX1M1HfVpI1nX5by93ZS0QI0lUGDeJOnOleSrMUAJlcK5ZE0453nYFYxnVT0babtB2JO9AIkwSd29iBBPLX3BG+G8EhkcJEaY9DkrCQXEVFycMb4QNA4gpyp1GfllBxZdwUI0WiDtUJ+MErLeJiXhlzLWV2Mjg3wczZkHNeueey9MLgogzt2Q7wiqSngi2q010HKgMaRY9rVD1nL4GY3KE1oNn+ckemkVaBDWHnPOygHGjjyzoIxMKsZA2QTLpT9ItvntZrK/rvmjEqgmi2ovRK0oe83+DClaSZs4yVOBjRHus3a7mtWcu6omz28b8huIGlgNq1JqWM289RNg5MjBhounzxDcuDkyTPbTzUzq2/wymIPDRA14gWqLEVSzO46R808ffgE+dEP+c2h42nI/MNn52wz5TQdlSeunL0vHNRuDKuxhnVkPYznbCrDl6uaayxiPD3KV8+e86Tb8r+/ew8efMSP3v5TvlLvkQ+vkbuKJgSOX7mHf+UO4oXcZ2SwYVCKA3HbshzWfPXf/gFvfOEL7OcOui1sN2jbEruO1LZo15OHnjxENPZm0h5TQSJGhUcBLcd1nkuybV0WajIrH1eA3lF+6CSUM3ZUnkh5tosRyPgcSlkXMipNZKdMGsGbcb3ruF522JUxZFMy/zaFItUcyoBciWRSjrvPEp1wMWTm2OuaZ6rs9hNGJlwxlB/ZfYwVVrYaIxWmnhYmpIH3Y5rlCOinsq9hQNzujVt1swvqK69/pdApbEHbjUFg6AcY6x7GYaTiguxUVUkjORkr0o9DWbVerO87uzgxExCiCCsZmE2m/PZv/zXqmeMkZaY3jvmjP/hXnCw7Vucbgqt4/PgZz84uaduukB8KvJjV6khVhr7fASBDtl5QsL09NBV5vWIiCb83YcjKtGnIsSImpQ4wm1WcidIOnvm0IWfHkOy17Hol5tNgA/0uliUlO0KBlXP23mxYWPzLClCgBQS5CicZ90+sz3GCczVDHMpCdi9YGSS8NaKAR92c+nDOnf07+PiL9OtzLs+eMKxbHr/736Pna1yX6Yj8h9U5l2TbS8WeE+cCrprwxpuf49qNa/zw+98nxo71erXrt7Yr60mfPHrE4bVrvPqpV1nMFhwdXOed73+XzfKyWIB4/nRY89bskN/YJk6fPWP67ntcf+sNposZTVMjjx4jl0vi5CEqwmUz5TtxyaUTFq99htdu3LQgrmaKm0xMhuttzYtvoJmgc+s1GpRZYahlVTRFNA3krqPfrOmW5/TLc9LqlHR5Sdwuyf0WjT1hiIhPZt2UMIxkHDY5bx6T6A48snRvw1Gy5GLBoZDzbqiSyv0rfwyCkU3K9ERLH6DR7GXISu3NwssMi4vqpwwrNWM2GcILLNhx/3rhfN4xzIp1mojZ+hU8QnZdKMUuJZmUuAw0GElIZCSNZ4GUfaL8pBFwKHuFL/L+sYZP+Yp5nJyYrHms70VZk1jlyN0W/lc3j/nynVvMvXmJ/zhHzp8+YXtywYfVlP7gOteqGZPhgr6HkzL0VV+Re0sXVs2GYyQL0cs5odkTy15oRCm7Zt47bhzf5PDoGpenJ4b3qPL977/DK6/f5+GDR0ybgOZEHRx7e4Fu6InJ8J4QKn7Wr58Z4PNOaepx0mV6bVfYZqo2+U4pAqkw/MpNccbHiaWJipoZ7CkribBl045Gua6zErwWL7/inwagDh8ssUuwAAiTwBjLL6lN22JJ3AsBUmf9XD9Y45hyAffK4eKdUIcKciSWE9U5pRJoKik+elo85kqBnguaXJJ5R6mAL5uv9waaGdoOMWt5j9bIZ81otqI8BGd+BAXRdqK7pJ0YbYpPMtah9+WBloy4TAiuNA1jyZSKxNTvDmqT6Bozx4sjhDJZFymMgbJI1eF8ZWxLtSmhB6pQoyom083OTPv9hFDNaNuV+WVl2xi1pE3hAtttz8WmZ9MmdBhYkEir57ihh+DwKsT1imZ/YcU/hQFQ5IGa0g5gdE6IaYR4XvjaAXtjIWFFFbDz3AN2U0i1Sms3laAAh+P35NFHqHiaOScEPEN8geU4/uDy7HgJBcVPVMGTUuTk4ozNZMppVPTJKbe3HX234cbNl9k+/YTNj97hxmpL0kiL0gAzDKyoEaqUaF6QikbGLdfTA335vStgXotBSSNYJkUidicnDtsl+u53WEoNoeLdAO9Gz2oKrhE+lQcOHj/hpSbwvSBU3uPUWQGZMvPGMfWefU0ElA5jO2gcuH7zgG69Ym/quHm04J0PVygbXEzcTcprruKeT/xpUoYEdRZm5cqbXavuGnBEzG+ugDoumM8lxRNDkq0Dn4qsW+0fW4/Rnk3smbZMPaFWIWJsr0rFpCxqZsLOKaKlEdcMJRfCezu8xnUsiqXrFo+TrvyV8AJbJJfCLkm0SVkN4hMpR7IT853xpYEIoINDk0ldbURigKcnIeV/HeYPihaGGG70Bwcp4QDoLmkqj6zVguyLyybnKf/303KCMjWjCDvGgxc7h1WF9azm//TsIX8QlLU60njwYp8jkuklMg+Be6un/M7P/zxVnPHplHj96XPCtmVTtbhJxfDBR+ACuXJo7UoISE0KDmkqcl0hVU12gquDhZ2IFKmNMUAdAs7t2M7CuBfaqiz90+75RyCLWuFmG+vVZ8f8mOx1PWO6ITu/RRglC+rKcETHAtmaPMnZmsMuohcXDOuWPAz0245uUM6Bkww31IIaRhZHGiLiA95XxrhsOxSPVg048HKAVi11FUqBZ+9JY9oV8LPJofklju9FzBy43pdSDIJ4TxiGUoRkXGiYTBbMjm5wbXPJUQvTRtgLgZsv3WZydEic1Ghlade+z6werzj/7ic06tjPE/YaIU0ym6Hnwxz5w67nR13Ped+zjgODmo/rCK6WrrTstLb+vNiZOq8bbi/mPHvpDnen+7wWpiwff8Tjp0/53pOHvHZ8zBt373F4bYvvW1IacNeOcY1n/7VP8cav/To//pf/lG57afdcrQh12Uy1LYzDno0kSu+UCqGKsbAsFPUAroRXlAQ7dThngwYK4yU77KzHziayAWwp5zIQK49NAZfGs0KzloGCnSv5hYZ1ZO2Zv95Y2EopKgvwPw7w3FgMj/dXTNqRgRxRktVExeNLxM5TvBIaqBrPRMaBlULMpH6wBsGZRKtSh+bBdk+BTY4snLd0ymShLYCB8WWCrWL1nIgrNcTuOL0CJ8qjkFPJDhXzqhtrEMa5ww4xykUaU0CE8nftc/lyItoA1IBYb81LNplP3vn0lOvndnpGdsnrLzQSo4RaC1NRsuyuu0MYsmOTIps6MOjAtT1lrZnUjRP+Uv2pkkv9U4XKBgaOXR2TU6auJoSqQXJiMt/Hx6bUjRW42lL+HMQh4mvP5vKU4Cu8mzKINQZtTPSxI3ZrwBG7Lc1sBr3HV1MItfntTRr6bgVpjY9btN/yC1/6HO+994DD6SHPhwZz+C6gVko8evwBf2l1xhDgvzm7oMW8olORrcpOEmlnlg8Vs8Wc6zducO3GDeb7B4SqItQ1aGa73bBeLknDwKMHD1ldXtJtt+X+2z1SEbJzvNuu+b+ePuK/Pj6GZ895+qPvceMLXyb1FVXd4M56UhwI929T+YqggUxA6gnMD6kc3D7+AZ/68peZNiXtNsdSn9pakfJM5CGSu57YtcTNmmG9IW6WpPWKuF4Tt2uGdkPuWogG+OuQ0N487bK3XoXScJqbS9o9Y7YJ5KvjptSlO4mxo1RsFCXN1ZlTplB2dpXnVAogozvmpC0wldI3oTtlSirNs5axYSSxdspMpLC+bKDpcKYySsn6/pTL+zCAzkD3so8lCviw+yhmSyBDYQWVvZKRmTgWGi+wZ8dp/YhKcrXOKLCg4q6uwWh7RPHCSplM2rEbUwEMnMm2DHwZ6x0tgLtmUOu5uuRYBeVwOmNC4vH5Kc9SJrjEqTgm0bFZKc+2PU/e+SE5K30/lHsm5XaWgUYcXmAZ256fYsQJ+Lqhriteu3ODsx81SJqy2Ub2GvPSO7/YcuPGEWjPRGDbK3u1eRhbW+KZVpZYPp0EtuuW2aSy1N2cyz0s9VwBkl2Q3XDDBpR2ImXJBF9UIqXnsVtlQYCQCcUKS69uGTa4KD1RuZ7jJp3DgupwwY3De6xOn/Oda99g8VqLfPiUh8vMu22PuGDAh1jNE6ZTPv3Wz3F8+xbff/s7tOtLvBfq4AiV+e+N55qQ2K6X/OC73+PGzWMmkxk//8u/xPs/+TEP3n+flBOdCv+qW/P56RHTrmX+8BPq/Rn1nWMO7tzi7Nlzhsse3VZW9tUN56tnVJ9+mTDNPPvh2xyKI/sAzQSpK6S2/sjVFVQ1bjrBVw1SVYRQfLC9B1+j1QQmc6rD6+zxig3jxkHw0BHbNWl1Yay/9QVxdUleLsnrDbHfGkMwJogJl8SAS0yNcIXmm52LJrWBXwHuctlXnA/Wy5BMVSIOjVqOx0BG2HoLvwy5rA/Ms89JuPLaNPomtoNlduE/pZYZzzh9gV2Yd0wbKX2RlkCbAtTvQLpyppbg0sJKsm1Ar0g249rVcuZav1IYs1pkC+LKkFDx2JofJcyjdccmZWJO/MrREb/2qTeRT32aZW7pP3nO51+7w1cfPafXwNA0pEqQypH7DRnhLFT03jHEiMp4vUoho8VfNyWys56TIk1O2ST3IrDYmxA3a24e3+Di8owQAsF79qYzDvfmPH7wCSkns5PotOz91oP4UZXwM3z97Aw+hW4A2+gcKVdIGuV0JtP1vjynuOJpYSBTVgu6sIsmJZXFTHJFFV9kvZPamU9OzhY/Lc7SIcUOGQfUhR3X1BVZTYYbe5OJuqrQWCMMvZgnUzLHKyfWlHugchZeEZxnPqno+4j3juCKUqQAKDlSJMLOAIniOeiwxVQ5b5IZyYgzKZKI0Z9tsmwl0SgTrb3JWu0BjnisGe1jxDkDA50TnA6W1Fco/hVlYC9j1WwAIhlD+zFmDGqHnytpOt47LCjTU4UKjYmUlZitWM95ZKt5cBWSIz4Eqqpi9DtLUPyrAkkCoZqa94e3hEC7r0LbG2V9qARXNcwWEyaNEpdnDEGpayEP3lIty4TJ+boAL+xmADt/PR0LnrLp7fC7KyDvp5eF/dnorac6Ngr8tFQ360/9LSlN9Pj3LNHPwEEnjiqIJSOPvnxSJhaFkuDEKPGTxiQ4N11NfvcT9qcznvaR10PDy08f8ZO332boN9R4WhwdNv2dIzRkavuJ9DiWeKITupJAqcCAmQKrF5qmYlJXxLqhdY6hF9a9Mqhj6zPN9pJfajcQMz3Z/PKC4yfTOa/+nb/D53/9V7iImT/4P/5fePDOB3z+tVvkfGkpy+mKIarDwJ733Aqe2tfkGtKwYa8R3H7k9S+8yemDB6RnK6YhMHhhGjP3JjWLI8f5coMkZVp8KBIjqCXgapr5AYcvv8zBq/eob9+gOjqgWczx0ykuFP80dYY8DQlpW3Tbk7db8nbDsF4zXC7plyuGy3PWz09ozy/QoSXGlqhQiTGSstEErUAa2TQK4sz7MAQPLu9897Jk1KmlaJUSdMvoWeMsPRpQzOi2d8pQZPpRBfVKDrpL7ha1BNQ0UwPQ1w7pys012KHIdazYjwJVXRX/K5PB5tibH14WY7qNuqcdfuWLTM+AFl8YMOMUQEpzXKx2LcdYr0A0xSZm78fIH2rkyXRBllCmsXadNBurU0mc9AProeWVp4/QleMJA9fbJcc5ssnmRZq3WwYJqKvJIni3QYOQvUPF2zQ1eLTy5ODREGwv8wayas47YMSKCxNyC2X6SSl23Qju2b6PL4nDUjz5RqljmUBaLzFOAcuvR0CtgLZjoWwHYCmKcjZvkJRh2xGXa2g78tATox34Fy7wk5BYZKUu8gstjOcQAs6ZpOf0k3e5ePc6oapomsD+9ev0FMaoWEiGC+YNpxjbORTA0EAcX+5nIaJ4z2ggL6E2CUW0JL/565/ldvV5jn/4fW6tzpC2Z9EEDhYHRAI5C1WvsGw5e/iEzcNn/Nxkj+VlS16t0eB4XDn+x4slfxC3PJDIMMqdrzbTUgi+OBABpKRuiiIJzoeWB6sLvv3kEROnXKtrfmFxyF+89xrXLy959/kzPjg74edeuc9rsWfSDTBk/LVruGnD0euv89rpr/De1/+Aod2aj5uAS97AbRlZ3I4kid4H8+yTRPIeR0LjQKDaeciNkjhRkFwSM3Vk6dg61VgA9ZhQZ9IXJwZyKeNyHM8rVxpMq388FAbaVRNmjCdKfXLVaNtzaLWEYIMEC+UawSqHpXuOO1DagfQOV5p/+zBSUIVxD6nqCt+Uuka8AYVdLI2KVXKXKhwU9C0DKecdECaCDXbHj1maDh3ZIqUeYJxwl+Le2CFX+9Xu98LVnzMya0vxHtPV0T/eixHALyhiLixKx9is6k6eOZ7vxjQqwI/mYt6vO28s+wTZZGzi0MJy6lEuU0Jq4S/OM3/3sz1PtOKPvmny/xGGgFKwy+gdnfGF4eTK3qFxoF+eol5IdUOMhoj2ZHxV4+opOJi6ititSekx3XaJOkfXbvD0iCrtdo2Zq0dCHEhxjYYjpo0nt57F0Q1y31F5YXA13bYna+D2S5/lzV/8Fbp//z0Oo9BJBdEkXFysOb44x+8H/punp5ylRFBvz5VcjRPt0PBMZzNee/3T3H/tVU6fn7DdbHny8BFDPzCZTfHeszebcv3oBov9Ba9/+k1Wy0s++vADPnr/fdrN+gqILSyId9sN/zQE/rfNHh8/fsjB8V3q68cMQ4Z+y/DgPYb35zDZw/uABAd1g/iaPJ8yXW5xT8+or++jdbAAmHGA6xyoL8OjwlYvAMTo1zLuA6PXWu4GUrslthviak1aLYmbrQGBy5U17ps12rZI30FMSEzFLqKcFWrrgR2rL++GhZZOebW2X8Cd7e/utKnWUKoOZR1cgTu77aYw166Er1bjZO+o1FOb4SU6ehUDcfQbtMewDCHyDny/Sp62oUfe+eSxk7+P0Nx4buYrPW1ZwsXCRrkapOW022htz8yoFsBcEqppt3dL0QZa2Z8L0OaugME8DjtHv8UyBFQp/aelTbeibAQmIdBOKtqmIZ6eUq8TpIHJ/h7h42fMmpqeDlxguTY7pnHgCzYsQ8c+pexhWSGMoHJmr64IDq5Pa4gVMx+YBmHaNExRJjkyX0x4njsWoSJg53ocEqrCrBaauibnSBJPch6PBWcZi6n4n1KkuI5yU8rJUQY9Ou7DlERi7P0aYClX7x8x31m1AVMcrYlK7+ll1NVoAZqtTuyHnpWHfOeQZl7z4291rHdPn9VTPjTcufsqr7xyn++//W1iv6FpKkZWu8m87fn1YsORoduSsrJdz9ib7xH7SHAVi/1rbJbnaBx42HX80aTnvgQ2qw0XH3zMkSbCbEacTEgXF7ghMoiyXK7BJZargYcfP+Pa5oIJ5tEowWpQnC+DUSxczldIqBAfbGDRWBiYrxvcpEGqGq1rKL28OvOgd9Ue1WyOXrtlz6dmIyDEARcHcrslb9bE1SVpsyattsTVkn51Se625L43lmAcyjB7VJ8Ubl2R9Y+1hoi3YYNmnDOQLKspV3rJVE4gOZIbB56UActVjasjy2LXh/DCf3cGCjL24x715Z9ge7DZELiyh74w/E6FHZ2L3UixNLPuuUib1ZV92Ni55mVZYD4FnCkprN7NBUyz9a+5fFZxSM6kDJHEYVUzcYFN7EnthnR+zuVZYPCKTmpcU3Hj2oImKI9yywWRawdHxOB5+OQpTrVYL13tptkkQ4X5PtY0Vg9lZ5uoD57DgzlPHj8lJuXw6JhX77/MdDFl2PQ8fPAJwZtVwmarxft3QHxgiJGf9etnBvhiVFJh9I5yCbLpzEXKdFotWEIKgGNNlKcKgifiXJFUIcW3zSYflbcCrQpWYA4pkwtFNeUyoQpCJVD70syJ0neJpEpTB5wqZcBOKpuyTYMzVTAgS3ygCQ7vrJ0O3hHbNSFYKIalzWAFcTm8cEJXKJeItcY++AJ8591BPKRs9PcrDI6R3i2uhAYYNcCoumKvmccDFcqD5Khqb/4N3pGSaeuDYXagjpwFxe8KeEv/8WRxiEQDBWtDkH05nHP5DCaF8ThXlWK5ULvVQbAGOKZMCDXeBUJpStUFIgE/2WO7vkRjYugTXR+JWtNMD4tROeS4QYfIet1xdLxg2F7SXZxQuYRmM62fVHtEFdq2Z4jGbLE2/n8GwIlcEUKAq1+VDWucTunVoXv1b3nhdYohaJEj/P/7Gk2CTbZw9fNDCBAtmXMcd5lHk4FEmUw9rZlNav7S9QM+9dHbVGdPOLh+kwfbC8L5JfOc2YqwDY5PnKetZywWeyTv6EKFd0JysBFjvA2qrAWiC/SaWItp9lftwDJ2pF6JfUcko9mTcHQCpI4/Pwz8EhOErV1TCTyt5nzl7/5dDn71l5D9GQup2P/cz/He0yf00zl0l+SYzYOsEaqs3Jh67i8CTRuZzDxpm0mD42A2540vfpl1zpy0Fzx/8h7eeQaXGLzwiy8tuLkHJ5drnAZmxN0BI77i8N5L3PqlX+H4c5/HXT8y5l4BaZwUqayTspmP6Za26UvEJtfZmITESGq3sFqhyxa33tKennH++EPO3n+X1clTdOhtcl2AvSEmS2tKiYCjEceQhc2kgtpRYam4wdnE00QTjrULBBJpSLS9ScyzYPnHDoZJwlfgA0SHMfb0qt53tRneapXISfHZQzRAdSyUbVYNnUQDz6MNOlwyw/3gzCgaB5lE9opVuUqoAzGmFwYixnZztR2aORY7AbXiUJPgsnnmlDYdzXCpnjRf8OqbnyXs7eNDbZK8bFYDUTN5u+HdH3wfdfDx8+dcP+14OnQ0KTIQWQXPcTabhStWntp16dXCEcRM9gsyYSBbkRerlx1jKInumooExoqE3fRyx/gpzb84MapEAWuRwr4aQUDsZzt/ZUkg479/aqbgypTRCuCs2SSJgMREXK6QrTE9Ukx4JzRO2Qr8iVdWvuJBMSfP5dqVH2aAKVu68x+z3m5pNPPMH3Hvl/4cqDUM621HPZ1Z6rpz5DwY+z1FUs6EUBX5VAEsc2FbOht0pX7N44cfG9tsMaddr7n86BP6jx7inFALBB+oQiBUheXa9TRDYiHw6PE5a18x25vyx3ngvz074V1NZkSsBibhRhlF2YfL7Xxh5y2NqO6u8bh7D5oZEqw2LQ/ax/zbk6f8cnPAf3bnVabLU772wfusupafu6dMip+iv3ETX9fc/MKXWV2c8fx736LXzuSWzuQV9v+5eM9AFyNV5cwyRLQUrCXVblfMljMhemKpJcY0bfW6O2tlHAyU0AHzEBkHSCNsV5htMoILV1KT0XjapGVSGi5L3i4HV2FYlJ9T6gnz8Ro/WypyLb9jX0hh++YCYBu7dwQKCnNRAoMksk+WgE3xqXWO3BkwoVRcpMQtMYd4a+gNUFZ0Zz2SS7KmAROuMNZ2u4itnSI9tpCLAknoeDbbehwHeePrI+wam7Gx1CKXZ6wORlAjG1CCuiKrhVELLM7trg1oYQKOtWuRPGXjx5slZyoDVylMVBtubnMCdSw0M1sPhKy4ocIooOU95cIKfXGz3+0s9kmqAKEa0DgQ+wqhpm879g4XdP0W5ys0CxFP7FakYc2QI37wdJsLvBSLlxL4Y8OPlqaq0DQwn3tip1TBcb7OzKZT+hiJZT0sNy13ju4j+iP2zk+NMZx7qm1PbpWbKH8YOz6KmaAGRo1g2Hhuivdcv3GDz3/pi5xfnPP2t7+NqtK3bfGXdDx/9sSG1M5R1Q31pOGley8z31vw6uuv8/qn3+CPv/Y1nj95aKb0BcCJOP7Dcsnnr9+lPjvh8dNPuFNPcHtTJEckRkKEPkI6ecbm+QmazbR8WwdYnrP86tfw8wVMKlztoGqg8mgVcK5GQo00pe4NlYW7ePOFdH78tT0PrqkIk5pGDsr+UHyYdjRVa2DTEGGzJW5b8npJWq+JqxXDak1cLUnrjTX2Q4/GHomDrZOUUY22xoYXntvCFtvtomLrffSntPNplP/H3fobZfFaFFOala0oB1r2rGKDIUVhZJJdG1hazqGieZRX25PrfbDAVy05weLMniCVvyeCukBqAjQNOmlwkymuru1sHZvgYYCuh75DhwGGHokRxmTxImVWMdsVW5MGDth45Up+mjUXNq55A+c81vu2F2jOVK4i55L2idKK0DrYSwN0a2rpOJzA/vUZ/UcO1+yhac1skpHsDVjLEdVQmJ/FS7Mw9ay/s6LFuWxMebWAJVdVXF4858D11FPHUAuBSB0Gpoc1jVSEGvx+QGXC3rRiiAP9MJCGgRt7E2LMTCYzPukvWcaEw4YsFgpI8X0uO0uy5+XKr9yunfW/WuS4UkDmAsyW51iT0vddkfqXXqf0hCJCisnIJ978KV259iLCoAkqoRuU5zHxvYsVMSWSxjI5FvYPrvPmZz/Ph++9T2zXTCrzNW673qy4suBDTYqd1TZ9X7zWHNvNioef9Lx072WOb99i//CA93/0DpdnZ2QVvrZe8ht7N9nretYX57hPYO/eXfauHXJ+fmkMTG/w0AGZ5XZDqlcstxsOm6kBl73tP+LCWL0wprxbsnO2dGixutH5Eq4RKlzdlMFMDVWDq2u0agh1jYYKqUPZUxwaaqgq/KTB7R8Q9LY9RAUAQ8GlSO5bIy1s1sT1mm61ZFjaICH3ra2bNNgwoQDwii/TXRtQeYsBZ4Uyl5IGPipYsu4YgewGaUX1I7wAuKUy1LFzILmATGaEa0cs7txlcvMm1bUDqukEV9XWKyfz/sz9QO42pM2W4XJJd3lJd35GvDwnrddG1NCIxSEZ1xhRXG1BLX4cFHp7lm07zLxQ6BizsdQLWhDJLiViVt45u+DB5SU3P4HDfiBL5sknHyMx0TQBqRwbrbk+O6LTgS0DbVRm04Oy3Y6M2DKEUVNElUrQBjJqdYgpLoyQIC6w3m5JqgxdZHpzDxcC02ZKbpXtam0Ykx2rTOpAThTy0E9jHv8xXz8zwFd7Qb0BHyIw5ISqGbLnZIVZLtMdAxUyIQjBK+OUs1SLRRJj8lzLkbTGvhKT+Tox4MzYmdbkeRFwQoyZYbCDKgPBYzmU6nAaiidMZFKFAh7WQKao75CcCoHdEhCtQLTaWcTIQkRLddHS3KkaqLdDloEUs6VlqmPoU2lOC9VYnBlqOi0MlNH0NVsSS7RJtC8+OFqagxCCPbARggu4HMoiU4beilYnNn333gAs7ypC2ThNgRx2k3YRRz8YvRRx4IyN432A7IjJ0GqRQFU1xML28L5GpGxQxe9HRMhD5Pz0uU3kfAWhYlI7NpsN7XZF5QV8QNUSMBfHd8lVILQtKQ/QTPBeydJZgdVMcd4zbDfUk+luz3kRqAN2YO0L9fqukRx/Px7yV1/2d3ahHeOVfMFzZFy0u/a0bIYmuXnh0MRSqBAYBmvSTYZefi5CM50wm9T8nI/kgwX+t36HOz//a2yfPaL/vf8X+29/kyNqnk0X/KAO/Pu+ZZGErt+y1TVx3MwwUClq+RniEV+MfsUmr1lAa6EiU0nAY15lQZWowkEXmGWb2jhsyhldxcHLt1muVnzj+2/zq3/pN7jxmVd49w+U/GzF/pHw0tRxNIG9AK7z3DiYUG8HZnWN9h1bH8nag2/48fsVx3f3mB9seZiFbrshTaacVMqfPsz8ualQicd5YZqVOkG1f437f/EvcPfnv4RfzO34WF+aR0XKhaptklRGJooY1Vych8qmalJ5XKhwswqppohfgN5AYyZvNoSLFdPn97j7hS+x+fhjPn77W5w/+RCXBoIaQ8N8ADMeh2bh+Wyf1V/8C7SLOSF1dBcnXPvBN5hsht2DtYpKrRaUY1IQ84bLleAnQqwSOsHuXbYegEKQHVXmMUBUpWoyFQMuBrS7AiUUS/xMlaKpw1cmIwwOXCy+EACVEEOEypiGOOh1gKYc2WrenlLCJ6xrEQtGEo84M3onu12xPi7A/SFyq93w4ccfIpMZ4mtQjwtmzyAOVstzNqtLJtOaan+f+mLLra5nhtKLsHFW512xl+yw1dxYoSk2QrFFXqQHVilY21yKEikAQQZLBEdxVZEZiH336MWFMy8Z2YH7ZShTClzQAvBZE+GcK+bfumM1jlvICPt5O8ltSKL2jKayOCVniEPx2BJcFdgrjId444hPRFglRdrRryyS0kCgJubMerXm/OKMtFyz/fgBL//CLxD7lkEHZosF3ofCGs9UzlsPGKNJJ3Ni01lxHorXXuyGUqAVXw8XuHH7Zc5OzxlO1+SLc4anJ8z7npSUASWmRCdifmII4jyVq7jsOg78lLqZ8D/pwP/79DmPScboHgG9kYVRhlyyu4pjr6EFjGE35R03W5Gri62F5XGSlX+xPePtR0v+1tEd/uzBLd57+BAXlZ9zDRO1slAOr+OmNXe//GXi0LFOG5hUpE2L27a4YbCQJM147dli8m/fzKmyyfeQbIErQU2KrWrNZXCoJGui88i2K9BSoUvuwqyKR4xShkPlYXdj8aBX4LAba+kRwMomY9mxassUa/z3VUF7dZ1ySZVDxgAHoVAgdhfVvKhGQNvtAAnnrWCNqbd1IxCqiiFlwsTkrzZodLRdZkIub8HOfluZ2YJNSrrlKMGjJKJrGYLaXyvvtTC1RtDX2D4FjCzDE/Pvss8lRf6iOe+kriNrRnMqqoiyUtUXgDSRNDGmNooYoDeyfXbG4tgem8YBUamRtFzDXF4nYQ2eSsU6d2SFqgookc0QildWGUSU5z1ntT1tBCNHNm22uq2qBrTf4jL07YXdi3bDOp1ZKIcXxKkRH4aEaE+Myur8GUPf4bziK0/wnna5wQVPJYE01AypZrvZctBM6bstTSO03dbAqtTh4gbXZrrTJ6TLFfvPl0xqh9OIGzq8Cu2s5hsPN8Z8MviEjBDKiq6ahvtvfIaXX3mFdrthMp0w9D1t2xYAuwxGVVE1Zku7WdO2JtWd7c155f6rzBf7/Pwv/Qpvf/tPefTJR2hnUaUJZaPK71885a2D6zx9/owbhzeRvsVXQtdHcuyZHFxn9TzCkNEU6fNAEhj6SL9eMgBuWbhlbrz/CmLqmVFGKyEgIUAISG1yX1fVaFOZFU3VmFyvMha11bvWsGfvbfhUBXxdI3tTfJGUj2TUjO0pZHBDNOP+bUvuWtLWmDzDZk3arInLlTEDCyNQu958hYZi/F/WT8aaTWtEC5sWDxrQkMqwoRynqpxp5kBMFWVG/zb8HyV64kYShCDBF6ayMeA02SAr5lTsLgSvNhRM3iOTKc3xMfP7r9K8ep/61m3CwQFMpjbhLGtDsrGYpB9guyVttwaALpcM5+f0Z+dsT54xnJ+i6xW67QuAUcA0yr6aR2aZK/udFIVCuqpdChvUfOALe7AAnYMo592Gr3/vu3z6C5/DkTg97zg737K45mkzbDtjTrVx2PW0Iy0yF5aZFlDE9n4zxvFlm/Penq90/pi7+4EqOPqUmVeNvW7XGTCPsYidr8iitGlgGHocyvW9BpcSAUEOa1bJcTSbEHOmT2ZbJckIKxa8Vs7QcSAy7p0KyTuCdy/4KtqeboCk/Z0Qqt1rOFdgnfL9vq7wOdMPNghJADHjvWObzC96UTd0vuNs0xa4xpjhs+k+b37uLU5On3N+eWrvHQNBj67f4u5L9zk6us52tebRJx9ydvaM7XZpp0xKbNdrXOh4/uQpe4s5cei5ffclAJbnZzzJiW/JwP0mMAyZ7mKNq06ZzCa4ukJTJDKg4tkLgT71eBeZNJ5ee4K6KxAr2XlmoHd5bp0vdWVRv5S09fii36EzsHy0xxEnOB+Q4PF1jWsmxjJuprimwTUeV5ceJtj3qYTCDHPItKFeHFKV4eCiYCWasrGJVyt0s2RYLenXS+J2Q79ewTCg7RbpEgyR1Pdcdi0LZ3Jdl4v0Vq6AWtLY/0ppVMxjWHNR+ChoENzeAQevvsb1Nz/L9P493HwBzYRU8JXsRna3KQ2tpC8MvtSj/WBeqBdL2icnrB4+ZPXJQ+LpCXQrU1OoMHRabJIMLypbmIWJefPPRczuRJ0WC5URdzHGoqpyliP/6J1v8dr8GjdmC1Zxw3ZI9PMFqRZ8VrYXSzabNVXw1gM6hxbbm1zUTy8ShMxX1+9qQSvP7HsM9PXUdcXp6Rk3rl3n6ZOnhMoIVpoUJbG+PCVoxAVn4UCxMIRTsRX5Gb9+ZoDPUl/ZAVKVHwsu8OFqMg2jhYIBd0NBmy2J1Q6XEMz7xfxshSqYgbwPRls3iwUrnp0XctSSPusYEja9ziPoZxfbl7Rb5zJN5aiDNbNBRmmX8XDwniTOinnVsT615nuUXYiA2lTeF7+FlMv7zCPlWQpwXg7LYpxrbAvZIUZDQYI0medBJSBVCcYg2+S3bIqjT4z3HucocttAjJE6GPPEObFgDvGEqrJCW5QYc5GiVIyJYEMepxFVQYkdLtSIN5lYEGfFLEqfoZ7MiFnJ2TauPlmxGpN57+E84jOp3xA3K1IaSHkwZoo4oirN0X0IE2gjs/khm4sn1JLITkipI7emlYwxGptyccRQplPW24xo3Qs9zoj0/RTCBzElAytf/NKrbxsn+leMgPLfR7mujolC5QDUEaAtjUYeF/pYUDikqhiGWPwly+sDdW0stNBv4Mt/nsnf/q/JuuLZrQV36v8d6//DxxwsT3lFPF+6dsy/fPwhl90KoYB5jCxPS/MMhS1qwSau0IAdsxAgZVqBJpciRz1DVNywZaIDs6xchkiXwafANCWa7oL+9JTpjZt8+tar1DFz9+AaL/c1Nxm491rF9UGY+YrVqkMFZqvE9ZlJh9xS2SYhimN2c86bv/wW8xB59uA5H10X6g+NSZpzxzezokPmtcOGSduhWZndvMPn/+pf5/D+HWKf0CenkLOth7JZjgDKju2BmIS0HCFjao/6CqrAUAVkMkEmjYF/TQ3zOeHgkOYlQU/PcdOGt/Zvcv7jd/jJD79BaleQBUlihvhqgNwZ8NVHpyzPW2Z1zfXJDSbNEVw+M9ZPTmwdlpyaCsijBcQI414gxF53jTyFGZe5AvgY97dGyY01c0zLc1b58WizzT/nMjECFwLaK7nrwXl0AkOIaAMJYw5q2R+cmm+NSxmXwKl57khSik0qsVdCYdGD/dkoZ7u7SfwXWvPPPnnOGVggiiYGlxnIdp8kc6gw20Suf3TKF7aRO30mMNCJsMbhY2Fn6OjtMRbIo3Ewu+JgB7PL6HtjhbCUIt8manY109CPG4MNYWSc3pRCayx2C2vMsE0p4L6gBeSVUcLICP+XvT9TGKda5oxWHFtSr73NpOmquC7MwRSTGdmnzKtHEw58z3u9oo9KMIJ6Qt3gfSAEz3a95MkHG7Znax7++D36umZx+9NUx3cZhsR0NsfVU1LxrQrAZr2CnGmaCT5MAGOm5ziw3W6pQoWra4akhLohVA31NDI7WrDnMlUIZLHkOEWpXbAGLpslxVoTJ6sL7syvIVXFN4Y1/2B9xhPJ2GFbnugC5ORy7QwE2qF5uz3cWLhFViTeBnDeGiTHCO2WdYQN7T5Kkf/bycc83Dvkd4+OefD0MYvJlDerNxmePTVv3NkcN51y+yu/iB5OyYsJiqBDwveJGK0hynHLew/e5biZ89KNG2gcCotmQFN/tcb6AZcyKfWk1EPs0D6S4kCO9r2aIlkHyKk0wFdsMDAmx2jf4CisvsIgHQMgRh+a8XH3ZYBpSe8FpCoMt9FU2p6/Eby6qrNG6asrspWx7lLGwWLxzJPyc8cHFgdJdkEyvVpt4gK0WVinzNTBoKVRjsnwSm/7CqWxHD1AbW2We17WkAsmB8xqDJS8A+nKpxF2vmK2YksQR9mQpCg4zKpr3BvGfdUYgk6Nhb0bFIjJk3aA03jdXQFadz5mxRtaKSoK2yes/hqfRei8ssqZiffsiRDUE5MwqNVXOsqTy4BWy693zCX7QGhOuNwieQ0pM/SdBT2kRLdZGdApjipAt404dQwSCaEwIUnEaAy+IWoJOAGtlHa7Qf2Ui/OBxID6RDWxxPkpkc3DnxDPn7LdzM1/LmeQFqcNTUwMWUkqfHez5SQWJlUBYUcv6Yxw57VXuff6p/GV8OzjD3j28KEZvGPAhiUP+gKUZoahp66rHfCxWS354Q/e4c7L93jjM2/wxmc/T1bl2YNPGHaBBvDxMPDVIXIjKc+fP+H41l26fsBlpTu9pGuNDTbuPQlHHxNJYRsz1XqDy5kwPmNlTZiPk9XcVp6X2lhSseWocMH+zDmH+gA+2HPsg0n2KvPokrqGpsY1Na4KBRAMhvwHbwqgkQmFWVCIn9JMJuy+Rk8AjD2cs0CyFPi4bcltS1yvyctL4npJWl+Q1pfkdgNth3aWCpmHXJRHGVFf5HBCcp6LFNl3dcnccqC+gOaF3TWee94RFZya0Hf0vUwaLQzLjmU7Zw8P2f/sZ9n/ys8zefVVwv7CPjsW7GJgnO0/Ml57raEBXRzggaAwxQZkkhQZIsN6Q/vsKdtPPmT53k9oHzwgLpf4FHGFibwbbpBKL2kvn0sS4zjnoAyrnHVYtCW05tMy4dFX/5QPP37IZn/B84cPOH7tLY6qGd4Ll8s1x8dHbC837BQ/vNgbBMartmP4uJKmqZZKW1WBpnvGoo6lf4U0DHipaASgQ1xgXtf02Xw++66n7XpQmNcNHmXWeJqgbKMy35+QKeCS4btEp4U9aDoNxvKHq34nq5KSEVF2gxYpEl2KPVNRGEi5VYy3zDY4UOhbGyRWVV0Sm7GgCDxDymwjTBdztu2K1Ea8b7j32htM5guefvQe/XpFqDyT2YK/8Bd+nS9++c9ST/eoQmAxbUhx4OGDD/nqV/8d3/yTP2G7viTFSNf1dNuWw2s3WCym7M0XHN24yeX5OX2KfH1zwX+yd5vaDcSY2J6coP0cXwVyB12KJBJ1aNhsOvppw2odcRmmKRP0Snloa/XqaKWcH6PHmpSAJleYkXa9i2JE9YVz3MBAxFjBpibxxWpF8HUNvsLXDVIH/KSxfnwywU0ndl0lF0WTDY6jc1TTGWF2YOCsjNJdIEU0RmK7Rgt4vlpekv/kj7kxP4KuhW4wFu2gyNAV5qCWgLlsw4kCDEsB/mU2ZXHvVa5/8cs09+9RLRZI1ZDFBmraDhZ0o5itwUiGEY/33gjuVYVrJoT5If7GHepXI/vdlny5ZPPxQy5+8mOWH7xPvjhHSrjZgAFewdloKRe/zSxiM/zaM3SFSapXD21nVQPXfSBUgT84f4y7eMK14Pns4iaXfcd64tloYHEwo2oalpcdi71DDq7fYDKf8fCjj3a12u4cp6yZ8nspRKqUDFx0xfNenOPW7ZvWR4lhBV5MkrtuW9r2ksPGFFWDDnQ5EzxMZ4Em7Aqz/+ivnx3gy5CzIybzBzJfFyVJ8ZBIhhArlmDrnCcVzxq0AEklycthNkmVd+Zhp9E2o74w87JtXEOM1ohk81iQQgJwaoy/lE1S6NQKa+dfSBwCnMsMyWKPh5isocMonpYnMXq6eFJvxYL3JmUzX6SavustcMHZ382qhBB2h2AIIwgx4g/W3acYyZqoKzv3XWWfdUyydbuNVUB8SeYyUO/KqDYbWy+MtGmHL80kIiQRYj8aTTpUAlWwKANbHLZxO+/QaLIcJ4EQavNU7LeIN2aJOE8bTWqcYoV4k1iAI+uWdvmcftviAzhvdNyrELJsjY9mmnrGZO8QN1mzPHmEG5Z0Q2sb4TCgw0A1aSAn+u2WJifqprKmybsd2JYLa3ME+a4w7vFXYhvJiOiNXZOwM3m98qK42rd3j/PYVOWxcaKAf2XjFHbyqt3Es7xmVVVFshtLMwaTyRRyhasC297ktl//w3/CS1/8VcJrX0D2jqi2PVUK3K/m3KoqHvYbazaKVDEBo5TLF3mhDxVSpNbeeyaTKbUPHAVhtrfPpKpQHCHAPCUOB+XmquerqeXd997lr24i14Y1TXfJw699g8PqiNAEHr/7zzn5g2/wnwq4zSmTfER/WbF2CVd79qvMUV8zY4JOAhPvqBiYujXXDic0bHjw/od88KN3iKmncUrMkVcXgZNNz4VkHqXEbc1Mrt/my7/zu+xdOyCeLXEJPAOivTV5SSCBy3ZYGkXRQJ8RABi907LVkraovLfCu64I9QQmM7RuyM0EnU6Qo0OaX/wyPDzhxmTC3vw6P/zuH3J+/oTR49my3ZTjs1O++B/+iCxQu4rKe/alJ1RC8lYUtx7mzu3Ym1boKSQhb9RM23MmVxn1iq8ANXN7o8qDqPkCVjUGlofR1w/UJWPhioU7eByxjzYJ1p5iOWfPdQV9ldFGzaawsASrqgQUSVFKDDZMoYPKBbxRD42BWCSWMprnqJSJX+RX1mve8I5nKOsMGxJbn2nL9C958+7bl4FPbZ6ylxLnlZhvE4GYlKAvSO/GpljGZuRFMb67OmS0QBSjt6jyAhjodsWVorvhzshas1uSyxZisj0pz04szbhhUC/I9/WFvcFO83JtMOayKtkZI12ycVp2u3MB/7MCvipolyMAftWzP802PcX2kCp4HBC8Z9JM+Nff+D7/PrVM3voKl6/+Ml89H/jdb3+Pv/k7n0KaGS40pYgwlpETx/xwAlgz48tzYxPGmoNmb/e+KHvnuG5C1+I2S7v/TogkNEcULWb6So/yPA9UIXDYTPhm7vj7y1OeODvbM8Z+x43ef+YPNDaKYzEb6ppQVVShQnCWnF722b5tkSC066UBBDHtwijG++DEs1blH28uGBT+9v4NHj58nxuLQ67feoXtw0/Ye+kVNGamVc3Fw+fsvfoy7O2RXEamFuYRXCCJ4JdnvPHK61y/dZNdkqVaOnEZOePw9sxpRrT4yGSbRGsx0M6xR4cOHTpSuyV1LbFt7d/dFu17ct+RBgMQ01A8dXLEjMTt+SbbWncjXiq5ABBSVkO+Mr6HYl3wQgM9eosVGruBz+NQxBWwqUjCXwQERXeJvYoVqXBlZRKwM2jImakzeY+drcZqtGk0do1sUy574QjcSwEcKd5ABSR3ha1YfAFtqUmR/HmiD2hVQWOySWPZihUXKcOQIfUQB5MHpmS+qpqKnMg+r+B3A74sBs/DyFgq+zUG4OUCTf9Uep+qeatme4drIktJ1L6mIJx0Ct1uflA29dLwIyXVsviz5hfSB5sqkJ3JxCWZQkARYo7EIVPXkxfA8IhIoB/6EuSFsaido5o6Bm2xbLaBlDdIc52snuV6Sxs7Jq7HVxM0LWkuOoboWaUlp8+fcniwT3NyRtpuGLC6OjrPH52eG3fayQ58CmL36MbdO9y5/xpxaHn7m9+h26wxG5jaZJzOgTi8s1q0HwZi35GTeZLGocc5R1M7zp8/5aMQuPfKK9y5eRdi4uHHH5UJGAwo/6Y959eO7nB+csJi/4BmWtuetd3gNRIVhjwYS1MT5ECnAzlbai4KuVh8jDUgCDkVB2CxRo3Rr1YEx2CNOQaYqwv4MQBubDxEynIq9905G3pXHkLAVRXUJseT2mR7vq5wo0RvfLaDDSpHmX92ZQcVtSCqaoIuJnDjENGX7Jwug4icLPAj9T2p2xoDcLMlb80vMK3XxMtzhs2a5+envH5wSE6DJf4VQBZV85DN9noEh68Dad3BYGtnlxKZy/m8t8f8s5/nxp//VZpXX0NnE2PYxQSbDQwD0g1IP+y86rQMfhBXwsaK/KvYZahtbkjwVNf2CdcPmL/xKa7/yp+je/yEi+9/j9PvvE0+eYrLnfV5KogL+GDDBinIVNEA2N5X9vhyDJK8p1H41GbLQY58/MlD/ru4ZWga3nr5DpUIt6tAuHnM6eqSvo/EnHb7qCseulrAHso1HMEhLWoCqSqSOtxwQcwD3lc4zaTS/2z7jhACTeVIbU/KQhcyq3VLOww0Kux5Ry0Jl5RJqGmmHvFCHQJVMBbRaPCfshhAzejHJzsQavRtU6H4z44jcxvUubG3Kg1WYgR4jIE+DpOst2lwziPFv1SAaT1BRVhuOs7W2521UQgV9WTGvdc/xY9+9H1WZ8/xqty4fszv/q3/glt3Xub0csneZEHtHM20JkXH4uCQv/o3fpef++LP809+/x/y4OMPiNnYwauLM4ZuSz3ZEELDbLLHdnPJB7Hjfe+4lRzJY377F0uoArtTQQdqrWj7yA+fnsHJEz51cMT9yQyXrY7V4gu5Y4KW5x9sMO0K2OmcDSDHoZZ3I6BtCdUjviDFUzKVxPidZZlz9LvXt7XgS8imqwKubnBNg4YKX1WEpkaqxv48BAMJnSv7hcnlVcS8AvePcPvXaG47gmY+7St+8Su/AOtL0nrDsNnQr7bk1ZK43tCv18T1Cu06dNuhXWHb5YHJ4RG3vvILLF57HT9f4CYVkjLx8oLc9aShM5/AMrwSlR2pQZ1DXWP7WF2ZR2oIth9WFW6xwB8ccHDrNvuffZPuwUOefetbnP34+8TtEikKBFXZsSNHtU5UNfWAYoQF2PX7MRuhbK+P3HAVT11N7R1fnB9yoI5nfUv2e7QKxwfXkDCxhOq25/LkGQ8fbHc1qMhVjVRohYyBiAWdsPdUBqRSBeq6ptt2VCFwdO2Q2WzGMPQEH9hsVhxXkf2X55xebGijR5nY0nOeveZnh+d+5lcI3luR70wSNoIbvtC8bRqbCTIy49IONbE93abEnmw+eoURYYFUhQbrzFjZGhRDktOQccES+BwZ7wWRiA+eSkufr2IeBak8bGqeGcNQKMPJJBUpJ6Ro0C0BWEtIhmfIglYm16obK1oq76hqAY3gCmOrEjT1VFXZSBFC5e3BY0zHUwMyHS/470kB/xTSQM42KVPnEE0gfvcga8rmO1gSiZSSLCPG1uiGRDT7DlLCjED9hP3Du0b7jls0eGqNtJeXFqpBYmgj3me6bmMbkxPIEdUaCXv4MCkMyi19uyFfnpFzpPLmGTb0kZgCPngrUHMiZs98/xrt+pxJUxKf4sCwOkGGFSLZvG5ChddMSkIawOeEth15fUHOaYea59EXKZuH0u5rXHBQGvHSKPwUvXUcPXEF/GGvhbtqdMYiJ+8mWja5HmWBowG4FF8mAwLzFcMPoQoWqRpjBFWqqiFLTZ5OmH38ExaffMLrn/11ptNbDN//Frp8TjNc0oYajc/5e7/6eS4OF6yHzLbL9Bm2CGfR0fkpn//8W6Scmc5mlnaWBlyoWC5XSI5MxfPVP/lTPn70wIJlho6J98zqGe+GwMP1GX235D+t9pEhsXCe9//tv+LyD/6Q+7MZ1yeBV5spi8kh32/XTIYjjiZz+twRDufcme5RywHny0uuv3qD1fNPyFVm1UbanPjo/Y+Ip2fIoISl43C6x7UbU27NEnmoSanDLVum4Rqf+fW/TtXMic/Okd4OktxtbOLUbohxIPaJ1GckjkUlqAu4KhDqClcHXFPjG0u3Inh8PSEHwQXPIB4XGgvomE7JsynszUjzGdw6ojr4HHla8ZYTvvudf8Oz8+cEFWsUUfZi5i1GBkMqnleOFARXO3IFaxKHiZJ07YvnpvlKut4aYldBnoCblkmfKkFkt+9U3lEHR+UNzM8y4kLGVFZ9AbQq+0GmgEwK0ghosgLGuR2l3EAD64VLv0VKVnSMSVmKAQpFNUgu9CBLSLS9WlVJCoHMjSEzx65Pj7JJkTiaG+SRm5hxZE6C0HpPIQgaQJ90d0W1JA2Oh2ge1yiCcmUyewW2lQKLkcVkTIWrod24Rl9gLolcgYG75a6jj7qdReU97H5YWetjN3A1DjC5QnR5/AE2mVMtzO6RlWVAQUyRIB6wIIxrTeDNgwOeLHvq6hw7yw2ot6lp5GS94bLr8GlCfesznGbl+80B//n0kOArVNzY9xrwb+jMrhCVsif64kmYC73QjZBbaUCcc7SDMIuFHe4dzaQhRV+Oo8SQM4OA5Mz12T6f5MQ/vDjhE1+8e8Rk815DuUbl56ijmkw4Or7BzVu3WOwfIE4IVcBhDOPFYk7XduwtpiyXS1brJQ8fPsQ3Nc8eP2W7XNIul4wj0xGAbRX++805173nt6dzPvnox8yP7iCS2H78CeHwiJQT7vyC7psXMJ2DgxwwA+1mii72yA8ec7A4osoZaWqkNua7eo86k5mwM9sW1Hlo/O46F3jAivrx+EGvfK1G3yi1M1FTIsdIHgZy7Ml9i/Zb0tCRus7YOf2W1K/JXU8eOvIQ0cEARAOy4s7wX7KU8zAWefQYWrE74gr+UAA0O8yMkeaiFafJgN68sxEBh9U7Jpe3+5tEqMQRSnpuJprFSB5RLQOAclmjOp6vYgXw6IE4sguzjGnfptZQcSZ9XBwwOT5mducuzc2b1Ptz8nyP0BTppNg+qymRe5M1xuWa/uKC9uSE/vkJw8U5ebVG2p6QxmCNvLN2GRuAnK9AnnEXGFl6497gMLDLWJcestBmY6zPXea9rHx9CHzsjBE0DiJsJ/Nl77RG2+aCeXxQ8B6aSvC+gtyTUQsFCN6sN3Lxhh1S8UMzOxQnAfGCF2G6t2cSQlWmhwu65dKsXnQg14kv/LX/itBdsD79mLN3vs3q8ow2tfgcqauKRhPzeqCemDdiDkJMUCM87Ft+0nVlPyzvucjMm/0Fr332c2y2G370k5+Qhs7Cx6rKkt5FCHXNfL6gqmv6fqDrelbLcyR24IQ8GEvEVDiJB48+Ym8x5Y3PfobL5QXHd+5w8vixWQ+o8qAf+Hddxx2Es5NTbt+5ZfVXVrptZ0Ca2rasBZCNONohUeOQnFDvce5qwGP7d1GJ5GT7dmannEkjaK1XvUwuXqaj/5uVBH53Po8gSlYFZ6Fz4mzPlgJmeW9gofn+mSxPSnK8K6oDaRpcVdvAchfEV6SVYr2DCOCU7CBXgbwXUGYoN0gEs53xtvZcSsQh8vIff52v/NxXmG+WsN2UxOAVqe/R9dZS3IfBau/Uo/6c3HbQFxafd2gTqF+6x40//xvsvfkZwnSC4JDLFdpuod2i7QraLTIMhN06k7LOCpDvnF0j50qQlvWT6m3/VRcsyTRU+DowvXeH6e1jrn3+8zz9469x9va38cu1jdfKvTM2sTegv0wjxorDQijMw32TB9vDhoxG5XrueMklni0a5nsNq4sVbrsk0dFUU9JwYeQBlZ2FB2XNVr4yRm4hkqRs9U/Okdo7Zk1gz/XUdUCyGMARO5yDo+mcPvU03pOyZxZq2myARsoWFJBTJgfH0Efm8ymrdmt9R5EIFyP3XX+TseFJVoVYnu+RTYWxLmMeQwNKiOPoJztaaggFxLZa037euG6M0DCGH2np6SfThvl8n5aE+iVt19INPeKEW3fvslxekts1kgbm+wf8jd/9m1y7dYdnZxccH1/jW9/4OpvVit/6rd+CDF//2tf407e/yV/+zd/iv/zbf4/f/+/+W374zvfIcSCnSLvd0A0Dd+/uc3zrmI8/WrPUgW91F3zFTfEJau/o+t6eB6xvTkAg4bot+0H49P171J2dzR0G8NueUAL2MDuNrGkH6Btj0RX/5SLPFcgx7c5SlWz+gWLQh51fo3wcMgnnrbG58lJ0pH5AczSptGsNpPXBBrrBvPUVU/D4EFBvfZB5/9VIqPDBahovDq0C23bLyweH7E8acnMdrh2SGeXH5crkhPYRHRK5iwx9S9psiOcrDg6uUR9dw1cVLkbSyYrUd+jQ42JEYmefvdQ8jJ/HG1HFQjg8UpvvqToBH8jBfAr9ZGqA33yfyRsz7t2+ydHrr/Hgq/+B9vEDMgOx+FVXoSTd2waOiJQQtbLPqO0fUSgsv0BKSpWUe9WE237CSd9xSaLr7PnfPnnO5tkztp98SLW8YHWZiVr2FawuQv6/pP3Xk21Zft+JfZbZ5th09+b1dW/d8lXdXe3QDTQaaHiPBkkMCRoNR9KDQqEIPilCf4NGEwq5UOiFoSEnRtSQQ4AcckgChAcaaFftqsu7613ak8dus4wefmufzOZIL6rTUX3zZubJe3Kftdf6/b6/rzll+JvYDe70KaifwG6jDS7CYrEkyzOs0dRVRfCe0XCTtmk4PjliZBquDiw7g6FgPc6xtzej6A0YlTkf9/GxAb5s+3lK5WmmD2mW+/R1xLsaoiMkmr9setL0GSXmniYBWFoJe60zihV/VTko25CmCcEkQEu0zSYEcpt8+hJ1XusUF52mst4H2sTGi8lEMoa4bsC0Jr15DmslaUopsOvDO4By9AbiP9RJxJRSEBqilhu9G/SGlD4l4JpHG01TuXXjqlUq3oz4w9AGggYfFEbLBt7JRrxDGAc6gYgK2UCMwQaDSlJZtF6HidZ1i9RiUszbUg7LzZ1zlMMxtQs4JRvX7GSKd4l9Fh0hWpxX+AA660FWYlWODw11NcNPJ7TVHKWjNJNBJuZOafK8RxscuXJYU7JsKoJviBj6529Sh1uYItLb2KRZtrh6RnQrVFZI0x1atNU0Xg5mm1msVVQn+2ySNoiuAE83luqoUjGupRYdOLc24VsX2t0jFe6BH3msTcG770pNfhc9H5JPWcfSg7huXLqk3JDk2Z3PZGbEk8y5ljwraIPijo98wR1z8F/97+HpT3Gy2ufk9de42i4x/SHf6wV+73CPZ4/7XDCOwljmWEyIjGJgFjOeTCqiilirOTw8pFeWjIcDQlQcHBxgVOCZK9eYTac83j9ITb6hP+zzZLEHIbCqVpQWJpmmXMKGyeibyE8Mt7iuxjg/Z3p0wqPmMW6Us73To1QDiniRcuMCxeaQo8mckd0gi4re+XPce3IfFwOzO4c8+d57HOztc/fOHl86d4HzvQHFRol2FrNytMsZhkN2Pvkl8t6Q+qMHVMf7LGYHzGYTqpM589qx9IHKBYKOhNRgqxDFJwLIQqSIijyCTYWIthZdWmwvp1/2GG9t0huPGPSGmP6ImPVgMCCMBqjRCDbGtNsD8lefRUV4IayYfOfPWS6nJHEJHf+lc3oUmatGx4COnjaKLCJHCysr+TZpdRaIEkBOW0U0kZhYMFEnFm1it6gQcREpdrOwBnG0VclzWu6HmJRnGI3O5JhTPiZz+eQxpGUv6syfU7+OX3UpuYrghfXsWo8KyZsm+YaQJHAKhI2awkxcal47tXGBSnwtg0ueW3TFBxEbNSfe41SkQae07LQvd2yZdQd59m5N9+saYgRx5jptyJPw8Ueep1KhH9aAfvqs6n6uJF8Fkqxi/S903901fQmgSPvpWraPFGUhBhqteby7zeTSBXbmjt3DY/ouCpvLt+nEi0StaYyske2g2bZ9dCsSipimtSGC0pZ+b5jYnIpstUI1DVppVk1NGwXMlYFHB9yk37srcoKYK3RSQx8C3oc12BdjELY3Ch8i/c0NdoaWrMjkjE2Me2NFnuWCMLe2dI4uCv5gNuEjdWpu7lNBZTrPMqWwRc7upStcvvoUG1ubvPnGmxwcHhJjpMwziqJgvDHm+GTCtWuX2RgNuXzhAoPxiPl8ya2PbpN7y3Fvzmo05+RwH1dVZ/wQFUsMvzs75vL2Lp+vFhw8uMWlmy+y3HvC2EhjZF1NODoBfSAplgSaKAOiVZGx2ruHzzPqLF/L6KI1YrKf5SIxyyzKFMKWX3vpWAEKuu81aX8yyTZAJ4ZQKgg7AABjUEUp74OKsgEkEPB0emGSNUEQ9rpziSF4BhCsl8IUXFX4eklTLYgdW7BtCE0DbY1yLSq45FsXUiEs3Z/SksIsdZeAHiB1E1pqtuA9Jmp8gKWO9GNyTNSn3nw6yrAxEMRLM4p8tDt/AyKhiT7g0/3fBbBokrfLaMjo2lU2X3iR3s2bZFtbqDxZfyBMpo6LEzoPP52k9BFhMXlJQI7LivZkymrvCfM791nef0i7v4+qlxiXWMaJzas7ADa1/wJEGgFyEvtAaUOH5QsZRlFb+f1ujCwnWcY/fiRAQU1N4PSeTH3GmX2oC0QQkNUoRWGgqSvKoiTvZeRFT4Yp7QqlRU5dNy1Ka2yeYa3Y24gNjqeqVriVWKIwB6PFs8hFadQ3r77I9mhECC3TZ3+ckyf3aJop/Szy8NExl2xElRs0Y8vCfcDIGkymMEvH3eWKmfPr30GnRkbnJS988lM0iwX79+7hqhVZZsUaBkXZ6/PqZz/HF37ii+xsn2M0GgOGu48f842/+gtef+3rzCbH2DzHNa14RSmpb2/fusXO9g6vfOJl7ty9y+ToSGRPKNoQ+PPZEb85Pk8zXzE7mVGOyrWcOrZ+vUfHEAhG40OgjeIpGl0LmQwJOsZRwi+SaT7rYYLHpeSmuH7POkK5d+E0bEelez+xNGMIWGsTeUGLz1w6vXyqKY1W0nsoJV6xOgU8JfYOirVXpjD7TJIDJ0lw8ggky9FJCqSslf3HiDezMRptWkKeJZ9xhcJBpjjfH3Dh0i4qnEsDCmETeRL7rY2ExhEbj6tWhKoi1KuU8lnh25bR7iXGzzyLGvTJFLBY4pcL1GxOWM6hXULbEF1AJ+83ubACCIUEYMm8Lg1PrBVZYqbRVqNsIanvxhKsxRtDLHJMr6C8vMO1X/pFhtdv8PDPv0b7+D42OpwTNn2IcX22R9XVQskKAghGUXf3Z1Q4bWgDbOnIMmq2yj7TmaNoI+dD4AmRqmk4lVDLI4SA7kCcKPt8N+hTWggevf6IYa/AZD1Mz1DqHKNzFijyXGOiZ2z7eAdZnrNoDZYBxjpC09IQCNbQhsjW9pDReMDy3omwFbvd5czvC8KyVdas+yMhwyeLgtid2x7lRYouhHVZm7rbwlS3HE/lvet6UOnkZ5rGWmnoXJQ9rt54nu9+62tExPIJDCaz3Hj2GW7dvk9oW4wxfPZzn2c43uDgcMKFCxfQUTGfnvDw4QPapoaoGA56zE6O+L3f/X/zN37rb/PLv/xrTI6O2d97SF05iD4BunD+8hUe3L9PaB3v1gsmgwFZ02CiIShF41uZqniPVpYiKobKslgsUE1BbBwuKvHejBJYFZUiuojRFpfsV6yVAajW+tR7T0HH3CJdL61Uuue70apPFhmi7osIIzAk+aZK94O0sdJr+xDQ6XxVSsAtV3cWHolosmbFiid5FzantdQimTaQF9xbThkMN1hgsEWJLpPfn8mIhRVFmDJEI4Eg2QBRYC1rfDYlyyymaQXw8y2xqVBVhaoawqqmrea4xomak2StpFNugCENMSy66Mn5bmWQEfMMTIHXBRQlql9i+z3UeIPRy5/kuc3z3Purv+T4g3cg1EQkCKsDXm3KXVCJ4acS7hNUoAohgdMGFzTBw9gp/HTJMgvMdWTlA7Za8Ohrf4F3DtMuCfWKaFJabwKH1r793YA3AduKRFRM2JYMXVRirgfO757j9oe3GPR7kpUQPCEEHn30IU9v5JzbLjiaOA4PZly5dJGNwZBYB0KZ8XEfHxvgu/HFX+OFm/+IerlHffARTz54jYP3v0E4voUJtch1o5jYhST5Mrq7GBm+TSltUSaHKi1OHyLOS/y3UT4ZH4skVmtFprvpq2w6zidkPnngSMR310oiU7k0rbAWYpLoKoV49Cno/HDEZy0QlaQ56ZS05hEj0ehb+ZmJSScdt8Y70V+jAqEOaPSaEUj6+XgvzVbqHY3pzJyl2cenDdiBycQwVSthPBijk/TBolOSbogRFwPOG4K2GCWJTSqzGFvgnOJg/5DFakWmItFLCmddefIsJ8t7oAts3iPULatmRjt7LJ54uqFNprrWGFwNWaZolkuKLJPE0SiTlFXbokxGcC15kRGDIRabDHevYXxNiDluuY9bLqX4cU4O3kTJzzIJNlGZJugephhJYAnp+oVuirS+nKeH1/qTCQo4A+L9pwBAXP/f6dfPTvHXP4tTL77ONFylYgRkU03ba6Jtd/r7blovbL5Rv0/WL3ijWvFj5ZBLJ7dpX7tLb3UMtcH0x7w3HPBfH9znjTzj9fePOL9XUfZzpj4SV0t+7ceeo5zXaCVMEFvkYspvB7JWQmRVtYz7GpMbLl7a5f7jJyyrhitP30QpeO+N7xNcKxOmvOAPfM2lwSZtL+d2NeNFV2EnRxwhwPyGUuzsbDDc6jMcbtIc9ilin7bKUcUA5RtGRZ/e5YJytMm5gxlm1fLorTl+oHF3aoaMGV6/Rm08Smc0rkWbAfl4g4P79/ngW99lOp1w1C6YBUfEMCxzylFJWVryoqDSmgqN05FoM1ZNjVIa4z09qymVoh8jQ+foLWt845g2S+5PZ1QPH9HEQFloRsMBV0Y7XNu+wnj3Ivr8NvFkgV9uoTZG5M8+jW4bPj2b89rrX6PyNeLWcvo4df1Lh64XGWsEeggTRSvxAdUmgfRWWHtqqPGFJ1qRu8awbn/Xa1Bo56qr11IjGxOwEOnaUWGSCHzkEzPNlKwB76jTLRDSxDrK3mPTHhr9KZCN1QSETRuNFmO9YFHBpL2okyLIby9uRQFLmmDS0dM1Zn2lZAZsgF609GOLioFWScFkYwp5o5uBn5bMp8AerJH69ddOgfj/BL4787d45r8z9/ma0Xsq+RRj/tO/d69c0FC1fo46RQdT4eCJLnJ3c8Bf3rjO3RC42Mv5G5dL7NEJOQNUUyeT5ohThkVsyLxiOwTO5YHtTUt+YqlJ9g1RCsd+UdK2LSgDroHQEnRG3dQCMicfVykMT4dO3VlozZkEVS0Md5UkOp2ERL4oAUHzecNkMWOrbikgDTQijZfpZRsirXNsZCXv+5rX2hqvjRj/B2EQaCXG1EFresMhz7/yCpHAm2+/QRaiSBKyDGMMi+MaiDzUmmgzbn/4Aee3N9k+d468P+SFF1/ixgsvcuPmDb71zdd4svcEVzcsI0lml1aLgkkM/IvJEVfPbVMcPmJ79xpZr8f08UOWiznD8VDCI1phdjjnaINLAEpBXNWwXNKalVwjq0QumVh8JKBcaSN9aVohnYyva8Cl4TYYmxG1NOHaWHRqzNESLoA2yRdS2FKizZep/ykoJAnOMRWUogTIUXmJGmzIvRJJIHYKePEpOdZ78XBzLb6pCdUSX81x1RS3muOqmQCETSWpla4h4IRpHICgMAq8ikCD1Tk2WJyCaRMZJK9FYcRqfGc8mSRKKJ0A6O5iCQASEbsAOVO9hAxoC4MRO88/z86nP0N+4xqq36eTT+KVSKEj6MavByequwcgSb/lfdDKoIoMegPs1hbl1atsfPKTtIsZq8ePmLzzPrP3PyQcHaG9SKxd578X1I8w+X3oAooM3rUJiNAprAyW0WFzRQyO3vaAG+cy7t5zBJpuk/gR8L1jGHR7jdypgSK3WKWwWYHVJcvFgiwfkhklPyt4sIoiK2hDS1PV2MzSL0sWs4V49MWaGFraxlOWfWJs0SaijGXROPKyIFhLiIaNGy+zcf0ltI5UyyXjFxuUX9LYnGn1Ic58n2XbYiKUFl6fTOha+KjSMB3FU8+/wM6Vy7z1l39B09SYzGCMxWQF1595lt/+7d/m0sUrtK7haP+Ax/cfsXvpKlujLX7n7/3P+eKP/xT/47/+57z31g8hsUCLIgMfmS+nfPj+e9y48Qz1qmW4scmJcyL9ipE7ruF73vELKmM+EZADrQU00AIuK2OIzuOCx2tY+sjIydBdW4mwD6lBo/NL60ZT+swppiUZWicrlq5OjyEI+wRFJ/fuBipd43eW+d1Z6Ai7Q6TV3UA4Ro9W6Sp3wB5KpPtn9u0O+CMxx2SQrxMY38mCxdg9ai3DB6WJWS7BY1b6h+NYM5guMPceyR6VaWHX6ChAYVIEkWui1RTDngDogfVwtZOmGmMxVQt1jV8uiasZoaqgqXBNhVvU+EVNNV1QVRV100BICi+ryMoMmxuytI+a5EkSrcHanFwJgKkHPexggCp7hKzAZTm+KND9ks1nnqY/3ODun/8pq1vvimF9YhD7JDnt1AwC9mX4JMVvjQEv3muOiFNpOGMsPWBZr9gKinMUTJqQ6iZZF93evK4zEqNbTNITa1iBUppebjCq5VM/9RvgajQG3zaYvfuUfc3yZI/cWqwynCxmlHaIPWkIh0eEGBn1++jzF+gVQ+azfbSxDHtb6N4A770QStLQoGOGdUzpmPYik9YK3XpK9YyPIiMNRAk+8aRJRvJ6pSOoqDM/P6JV+E/WZkxTEM3Lr34OD0y//nW2dnc4OtynKPv0hiOmswnaOcYb23ziM5/j4f4RFy5d4tHD+/R7JTsXzvHOe2+zXC0AxWw6Ydwr2T/Y54//9A/4+3/vv+DlT36Kv/yzvTWb1XnHgzt3uHrtJlvb20z293jkWvYt7DiogxNczwmYGcV8FRU0I5Ozv1xS9TV5iASl0c6lZGCxVQhRScJ8er9VIoUImasjEPGj9RgQUNLTI+w8nbyfQwJXZYCcdY3seqAsPoY++TN3gGF3rVMXkmT5XQBOOPvcdP4apeTc9QGXW54cHfKJSxn16g6tFpassgbyHFUW4sOvNSbLZA/R8u9U0xnDwTaxbmgJGDyhmrN8vMfJ4yfsHxwwn6+YtxVt7Mgvso/5VOagZWhd6IxBkdHv9dnaGDPa2KTYGpENBphySGhLQpXj5j102Yciw+zucP1LP0mmFUcfvEvwtdSfMRBisrdQCYaJ8g+Kqs6IA0HqMBqlaXIoPOQ+4HJhIhcxQFXT81KbnnhHZRHsB5LV29kegjWeY5RYMwXEK9l7j7F2DQbmmaVtWubzBcNBX0K5QmQ6PaY5esLujRHjS89y5fmLPLpzn0tXz3P39vs0ixUMt/i4j48N8IXQYnLLoLxGf/spdl/5GcLsCfe/82+4/Y1/hZnelSmwD+SZwfuYkoYCzitc6kTXVkjd5uzlgNTWivdMlDAPFZL0JQoDIShJ0O2MTTvAxySWiwAuXWvYeQlA0ALyiYWKwQU55H2MMulLwRZ4ocTKZinEXqM7wE4SXOR3cHRyWoVsdM4FlNfrDTImJo9BpoJRCxtNp3GJopPwGqy15NaS5yYxMoSiLylvSgIFlKFtvTBFdI5NabQRQ4iaVRWYLSc456lrh8kyMJGi12c5cwy3dphPj/DtCYvliWwItDjvURhU1ITOENY5TFCEVAQ4p8hyQ+talPegJOm3yCx5lqF0gTEFariJWi0JTU1o56ko1+mAzcmLDN1U4kmR0oWLC88yePpVgkrsgBDBiD/N2mw8IXVylqWGPjV/68OcjuHHKVaguj2zAwS7ydYpk69rltfswHjK4OkOtXVARxSpT+o5xdw7AckKGA566LLHa0dTnnc9PpdnjKKCok+tFfeM5R9Pj3jT5Fhd4GzBQwqsHnO4v0cv1Dw6mlD0xuArmtrjfE30keAcCzfH2pydrU3aas5itWAw6LExGuL9lJOjI86fPy/el0qMzas28EfR8RaR/sKxpQyvlj0YtfiQUdmM24M+T3ZGDJuGZnpEr7SYk0PMNKeMQhCPVU3WBkqbceXKVUxU6N3zzO4/ZMtMufv2R9x55xYmBqwPGC+m4DMVib7FGWkYVkUmILPJeZxnPM41H7iGR/MJU+c58QEffQJ3ExierrclkivDwBi2i4yLRvFCL+NTWwMuoNkK4KqGg1XLm7N7vH7nI84Phrx8/XmuPvcKxnuYV4TNTbIbT3G+gedmx3zwwQ9oiAgnQdPZKOszK0xHRZMO3VKBQSZwNjMYq9DW48uA7wW8kWY8eKThtxIWccpii4nR1zUIadnqbjKV6nkj+5BsQYoQpdAgeWitZWCCLUkzjUiCAIKRr6WZhLDuUiGoW49qJOnb+PQ9a/N/kR6irBRHaep/OjXumtcOiNR4FCG06EZsCholnECTDsQ0DyYZM6Rn/yjcdvZxFuA7hQZlX5c/9Y9894/+xLNAYfiRVyyPDr71631Doc88s3uFMiX0KO5py7ce3SfvlXidMVEZ24VBqwxjLZpI8I5WwUHVYkKgjGAqT7uU1NJMS4MTiYS2YdArcM4R8pwQHNa7tM+3yUpCSeGhdEoLjGcQ0m7fO3sJNSZ216XzBpLzS6M4d2WXwRGoLBdWk1UiIYpR9jUtSd2+yPn6as7RmsUs74DSNoHThqdu3GAwHPDo/n3xp6srfPIkab0jZFasKbR4k0SlWC3m3FvMuf9kj/HOeZ5Mptx49mm2BgNeefUVwg9E2jraGHP05Amr2VTekSjJrh+5lj+pVvxDk3H06C475y+jomF1dIiqK2IQr68sK2lci/ctKE2bexolAGaVAB3tJdRLaVAmeSylNd5NZuN6naXGvTsLVKouErNerW/eDtCzrL25tJyhZxk3pPMdI+FJ6/O+8/RK3yONezKsthYyA7lN51skxjzJ7f06dCEkT9y15UVoBQhsaoJf4uo5oa6JTUVbL2mbhtg0qFVFaCrUcslstSDXJa2WStoEh9IZUrsFNCYBjzGxD7pzs7sDtexFUUOes3HjaS596SfpPfscsd+XBexbdNMK86f10LaQwB3OmvOnplJpASGwNjXmwsCMWsuAsyigzDEbG4xuPEP72QP2Xn+dyetvwfERkTYNKWSwF7XGRZ98PoX9ZTREH9f/rtOGCse5nkb7ismTwG5PkwQdMiCO3TpJfOPUDKiurggebSy9wrI53qSPJjpFnsN4+zzV7JgYBZCWmjmkWYEmeEejljLsq8HbgLZIndkbEHxLaJfEpkHbQFn2GYw3CN6xXCxZLZdooyj6I0wv0LZDhrklXFpw3DOUVkDaJtR80DQJoDJ0uEE5GvHq5z7PD9/5ASYztMuWIs8p84LP/dRP8ku/8ZuURY+33n2Hr/3Jn/Lg7l0uXX6Kv/mf/X3e+c43eP/Wu3zll36Fv/sP/xf8yb//9/zVn/wxPjY0jXh85nnGbD6jaite+uRLuOhom5r58bH4b/vAH1Zzfnp0EVNVzCdT8kEpwTDOEYKmiV5k1V7uvUUQB9gQIrGq0gA2hSVoBT4B3Ai4rTowI8qfUak1ftExpU7dXdQ6OMV7j4SenVomyIDfi+8mUYbzuktot8To8aFJgB1rdqcw5gVQl2CLdFpqs97uE2aeAAPOnH9qDV52ihaxt9N81MwZ2JzFa6+JPU5mUVlGtEq8sWwm3l55gc4KyEpkNpFS4FsHJqMoerBqYFXjF1NUvSQu5lR7h0wfP+HkcMJ8VnPiGmojDDSdC9CISoCqD+g2oL0j6EhmAkNj2Rz16BcFgywnz2xilGfYwRA9GpGNN6DXx5clpj+g2Bxw/Stf4W6WcfL+25R1C0GUEo4ETHtPjA1B21QteBbBs9SKlQHlxN6kigHKAcH0OHlyRO6jqJu0E9Yl6V5WOt3bnTQzDWZPjZglaRgN+ZimVsxXBp1vkPfGYAy7lz5B68C6itF4A2sKtpwny0qe/P6/wBYVF178IudGQ3RoOdo/YnzpGro6ZmB2qcpzGJ1SuRH/c50oqbqTleozo9MzgJ9KzFSr9amipPNIjLKmQvIsh+R1n9YmdPV31/eE9b+hlKjsXv3cj3Hp6RtcuHqJ/34yYWNri8V8Sk4Ao7n21HV0VjDesCxOJvzbf/V7jEZDfvXXfpXZ8RH/w+/+S375136Vpl7SNit2dra4ffcOr//wB7zyqU/xzde+Te0lUEaAPrCZZjgacXJ4wBzH+23N08pQmIjVAma2bQXW4rR4zI8zzdvLipO8ZCMKI18YisICJSlifCsgvNhuWrSWyl2UEUH89tf9ZLreKoF+mtPwmoRJCOglQGNHEuqGQt05HYLkA7BeZyr563SgskqYxOn3OOe6TUHqVC3YyjxGmihBNm1VYekCKuT7lFGybwEu/R7Oe9rg2bp4nTBfYY1CNQvmjx/y5NYdHu0dcxgibG8wvnKJwXhAnhsabYl4qV+JmNaRE7FtQ1hWrOYVj6Yn3Hu0Tx4CG4OMS7u77F6+SnF+Fz0YQFaJ1L83gKIgH29w6TOfxfmG6Z1b4Ku16rJxXsJF040XTPIlDZo2ClFBWVj6ip6CcdHDK81MtYRMWL1aR/E0r1u0N5QRmgiNTp1G7BREp2zV9TniUrjaGWafD1CWJVkmEmnnPWiNsZb5csHDR/fI3YRNXWKMZeUNL3z28wwGY4rBBfrbF7h/eMjHfXx8gA9YNR6Uw2iD94qit8POp36TWRN5/Of/mOiX+JDMEJ14uCRcGpBDNPiQDFyTYWc6lFRChMVIvUNqA23yR3MhJnlulEAKBSApSRrxzejor75TXLUgqWrSDsm+FtJmlRB23W10mtB6WdwJLHReNgvxdVKpXcxISmCihiYZ1hsFVouJptYCcKqUTqOCSvJiQXszbVKarUFrS1YWsjFYs6bvBzzRiEyjqQNBWVxQaJuxWlVYY2hbJ0EX0qqSWUOvzMjyjMa3xHqOryc8unsM0dG4msp5cmPR0RC1IXpHpm3SyffAt3jVon1NZiWPN8utTA5yLQnEqiUvS7TKpLFdTfB+xigvUWUptFVjIHrQUFpNaCoJTQkR2+ujbAHDC4TRJawtIApTBKXEmyyckUqnRjOETkC57nTTyjwF8LrH2Y86fw5gPfXoWIDrv595nvc+TWoTwLNmkcpjLYvzLnlagLWWDM9J2eefLGf8Ox/JFjNsjPi6ZT9Mecs5KHtcvnyB7avXWETHoq6JVZ/p/pRbB3M2NnLm8yXvv/8+TdOKv4YP+LYlK3IBFqPm7XfeZXJ0xHw+p2kbqsM9DvceE6N4Xfb6Q5SC4FqWvYLecIMazT9rVjQxZ4pi4h3zZkWx6vGPAMqcNm/RC8gf1Zg6YPOCXl7SM5Z81CNXBaBo92aMVZ+bP/aTuOMJYTYjuEDV1DjnyKzFn0ywzZK3ifz14pgPXMOiPyD0+9xvag4OTqiDS0lJcm3lcDwFcFQy/G1QLIGTEHhct7wVA3+mGrJFjXGOizrjktL8eK/HZ4Z9dgPcWc75o3e+zYuP7/HZz/00/ctPEVxADUrMhS1ufu7HmZ8cs79/G4G6O7YddBmfEfHUCUH8QfOgZapkFLELdDDgc4hWwJQYBKj3iBE8hnVxKKlmneRUigNN8tlBicTEKmHrdNNiIqFV4MEaRbRxff4nIrEAfyGKH1EH7BSsDeNRsi/GNDBRSta4V/EMXJYOzhiIoTkDIcn+LZ5dsuvGBNidvkKB5QxKouejCHrDmZ8b1999+oz/X4+4BvS6u7L77/TaKX70fu/+OwPNplcuz1P/CVCo1q8rnAF05GOPJSKMpSLChfGQ4e4uWROo9w4EMA0alHjRBW1oLBxVUnxbm5HlfXpFJLcrWliDPiFGqrphnSzqXGKWB1wUWZdYB9j1VnXKODy9nmevnmxPp59XSoOR39oYS9ErGO5skW2MaQ+eSHHiPT7EpKaS8KjHVvH2rCZ2HmZRJE/d1ds5d55ekbP3+DGL+Vwm662Tyb8xAngmQNJ5T6grjM0pyx5Gydqa7j9mOZ/S1Es2t85x7dplrj19k61z53j3zbfJyx7NakVM0qAYoSHyF7M5P3/5Mv2TAwabG8S2pdcf0FQV2pQ0dZWCEpKnVojUzuGip/U1DQJU4iUQSmsNTqViXHzUtO6sRhCPsShT9Tb69V5Ed62VXg/tpNkO68aoA8N1Av/iGrBK/9a6AejYfYlVY5I/lTUoLcbaKhPZNHkuiZ02E0mpFRBB5VmSSHXAY1zXECGmXO6oEvgh0uUQxcoj1A7nW+HrNjWzP/1DPvPMS4ydIzSVsAPrFqoKVwtYGOtW/nQOnPiZRe+lyUmAcLa5xaVPf4Gtz30Ws7UpAGfrYLUiLhfExZJYLYm+lc8nlugpUzUt/K5x1UqUAxa8NSgt6oWQG2JWQl6ibAa2h714mcs759h59gUe/NXXmb3/PjQrumiNGFP4iNaoQPLcSZKqxPpogSZ6vnAh4/PnIo8PKvA93p43hCDspyDR48LYWjfCcp9YpWgR5cbm1g7DC88zCHPx6qxWOA16pLF5ycBOyIrISVOxsXuB1ckUmFMl+ZrJ8tSY5ZgQMVlJb2Mb36yYH+2hc2HN5nkJMVD2+jRNQ11XuLalqSuwGau6JZYFi16f3C9RTct+63jcpnA6QfKJSvGpH/six8cTVpNjFlVNrjKKvM/nvvwlfuU3fwOlFI8ePuRP/uMfUS0mZCby7PM3mS+XZDryg2/9MR++8x1+/Kd/ka/+rd/GGsuf/+HvE0KLczKEns8XfPDB+3z+x77I5tY2e0+eCBPWO4LSvNlU3FGeZ33ArVYEHTFljnd+XX+FlPSstWLmWrwSgLnzHtUdO5vERk3WPuLTqBJQIzWenMP2TLPd+WSr9Wyps7yJMRLqzoNLbDu6vUH8HaXxBWmgO1DYGKkBtIoQ5AxVsfOpTH2SUuDSUDCK3VC3sUv7coZhF7oheAL5Y8ABR/MTdje2ifMZaBnCKaPFDzvt1VEbtEoJyJ3Hh7F4axlceYr+5i7haEGsVqjZjDA5YPrwHo/u3+dk1ZL1+/itLWbXRxzlJfO+xUVY1kvatsG7BmszrM3oZzll69jpF+SVZzWbM5vPCYcznD8hB3YHJRf6Q0aLFfr4CNUr0eMxajTG9QaY8ZjcGq5//rN8qBtm73xA2bSyz6XhiyYmR4Tk/qugtYZ9PG9YzflgJY1eWwaDHq6ucPuHEgAYIi6spI5KBMuO1L+27zkj31OJVUUURv1wkFHMbnP3/e/R648wweGjwuiMEI00/0rT6/UI1uDUkNnkBIWmpwqC6qOLDDvuU/b7DPs9dss+x/PZGgyCBOoloDF0ctEEGuuOEa66OiBVOR0rs2t/dBcY0rH9EzCo9OlwEAFOz/ZhXcWUnglas72xzVd/7au88uzLvPHeO/z1178tFjQ+sHvxAkfHE4peybvvvsnh/iMmR4rVYsa5nW2ODg442ttnZ2eHpnFcuXKVVTS88cYbvPqZz7J79SYeqCd7oBXOtYw2xmxtb3P31i1cjLxbVXzRDhkRsVr2y2W1QkeRzfvo6dmMoxoOvUNFKGIkixFjMvGcjR1jVe6nEAK1b0CD9pZM6wToy+8te0XStcRUNbrOZ1ru85Due5321BhSKAXC+JOk5sQWXg8K9LrmiKj0/Qk4TGuuc9JTSiwGVKrLfYRZXVFmGcq1MjxK0nwfEiisFaEFEuEo+oDzgcG58+LH6RpW1YyTWx9w795DJkUP/dzTHA+GPFA19yYT7t0/YrmqWbiWNgXddLV/P8sYZhkXipybZcmzW2Mu6oxh1VBPFrx9+zEf3H7AlZ1zXH7mGcaXL+EHDXhPWBX4zGKHIy5+8lVi8Ezv3gJfg45J8hwIoU23XQq/MFAR8Q5mStIajcp5j4Z9PPvB08/PoesVJkLPyyA9pqGPZDymZmpdu6WuYa3qialkkPekIxlZK0SI+XQuNYxKLFmlWCwW3L11i+28oVmeEB98j2oVUAcXaWOJp2CjfpplfZaw8P/f4+PHdMSYEmXB5I7l8T4ffvgGD374F1SP30avpBgJPq7T22Ji23UHj0n9lQB4+oy/kBLGX/dPpYCNNYqaqNJ1YnlZ+SaM0TjvJO1KVIkyvdNqzbAzRhL8NGIc712QkIgIPpi135NWAasTDdNH0OJTI+kp6Tla48//BPH4PWxzIGCATs1855eEpnWixw9A9J0PoaRZahUxQdM2gZgpTKGomkBwoHQgs5qAo6lbIoo2MYGc88I+jCvEWknASGsVmY34tsa1LavKM2trAd6conIajyUEmTp67zE92bCNMsRMTNetsWT9Er8MaCsmskWWJSPJmLyLCrQWvbjROUZleFpwSzQtVdVSbGyn+HXwrcL5gAoNNtGWVZ5jjEGVQ8xgE5sXRAIuJBNZAm03negMwRHwby23OAPwxfXHZ1h8Z74jprUb1s/jRyZcHfW6Q++7r7tkoNoxl9Z09/Xf5ZBtfUtmLKbsQabo5bA/bXgULKE3IMtL6hYGpaG9/yEqrDiY7jO9taCpllSrVoCcoPjeR0cYc0RG4Pbt2yIdiqQAmUC/32drcwNtLHtPHlPXNZ0FsPMpnRRFURbS4EVhSp6/cBGiZhYjt4PjOETQYuJvlCbvfBOCRasW1bf4tqVZrVju7zGcrMgbuR4+0wSjWVopEgtVoNtA8MIIjdZgYmTDefAtb8Saf+MabuWWC09dwZmC2/duM2sDwfk0IdHrfWL9/nYsygSuCvNSp/tV5G4uOFxo0cBdIndi4BuLJf2o+KzO+Du9Ma9mY+4fHfAXf/UHfPkLP0/v+k1C60VudH6HZ7/y61T/8V+wmh6vy5YOzurCBYzWoD24iMktgVMA2+uIMhFLJuxDJfdx1AqlAlGn/atjCGWnSVwhGTRrpZM/B6AC0ScwrQt5QQYOIShap8ksKBVwLqV/Ok+0KQTIRynkXSrotBIWaEhpr0rsSQLiUQWS1qvTUEMgsQSsxbPMtiQpTEBYB+9195hO10skMJAT1wBl7N6zNTTHmZ979m49/XsHtPI/+UrXoCm8zVG9EjMcYUdDzGCA7gkjQdLRtRQOrcPXNX5V4VZL/FL8g/RKAg109ImpKAVax+FLYyAu1A2X9ufE3hbbGeyWBawWQEjXVApdryMz77DaMNQZy/1jFq1f40EhMUZ2zp3D5DnGWgHBXJtMngPOaykE45krFNc71+n6XF+UJE2KXQHYwZnyjJDAwvF4wEZPMwGyLMO3EZT4lxCjFLh5yQ+blqnq3vfTyb7Shq3tHbbObfP40ePknRMIaLKiYDwey76dBibOOfH3a1sat0JrKYZyYxkWBdVqxcHtu8yPjrEKds+fI89ynn/+eR4NBkw3xty/fStNTMErxV7w/OlszrWsx2IxoRcseVGyXM7JlKN1jRRqxqSJecA1sn+2rcMjCawiQzTJaoGEi3W/sxbvtqhQul3XJ5EgthmqOwtkbQjjJk0pYxTA6MyAwsfExkyNEyjEc+3U7617q3XyJI6xUwJ0XZoU5lGbJBfupMJ58uwqhZ1jNCbPElvQQKbFS9CIB4+xhjwxAqORVMtpOJH7y2S4vCDf3OHpL3+ZgdYQ/RrKj3VNaD04Yd3FpiW2Dl+JVDi4mtCKz5rWhs2rT5Of3wVjxZj7+Bh/ckycnxAXS/EZdC2xZU09VGntdOu4A/iiOf39o1FJmqhRmch1Vd4n5n3o9eS/zBKznPz6da5v7XDw9W/z+LVvElYn6Z4VdQRRvAdl6CtTkm6wQhQfx2eLmptqweVB5JHLmbTJwyx4kTmnvZwIyugUlJaYungMsL15gd3nfpJSSyhGNTtGFz1Zq4sTVkeP8M0J5BNG5y9R9CdUJ3fRdkXRHzBfOjCWPO+zkZW4tiZaRVGWVNMJtZd1ZUwKQ4mQZzllIXVA24rs1TuPGm/z5KlnWb7zDv3M8rh1VEl6Lyil4vzuRXYvXuWb3/gatC2rasVGOeLmyy/zlV//NXQIrOoa1Xp2Nka8/tE7FNZw8dwOw37Gm/sPMCEQVyv+4j/8G3Cer/723+Hhgwe89+brKJ3CfmSD4mD/AB8iO7sXaKqK1ckEpQ2z4PhaO+PpYoQJLU3VUCaLl5CMa73zYMSLrFLQek+uZSARQlgzyWSfjImlmUA4L+eZNvL7yyCvXVeWupOAJYKAeFimQVwI60FwDC5lCnaAPUgScifpPfU39EliF9Lyln077UPpvNTJJ7AjQbQ+ef12/RJqzfyJxORVLZ/TMRKsYVE7VAi0badnIw0vVBpMJ2siuoARj/Ye76G8/iy5HdIeTVCrBqZzFo/v8/6ddziYzRg+fRP/7At80LT81e07vHnwkEeTYxb1isq1ch1JvxsyAM+A0mhGeclWXnK1HPHy1jmeu3qea86gjyY8PN7n1v4DhiZweTzm0vY2ed1gTmbY4ZgwXeJ7BSHTXHnxRe4FWN17RKxXhAjGeXQm104HCTt0RHLXUuSWd/Ocj4LnvMloi4wN43n/a39K2D+gpxShbWmNE+sT1Z2xHdglPatCJT9ds77XYoxoNDZa+m7FsADf1NAssVqjM02pDXVTS6Bj7cgGGSVDVvefoI3i5KNv8GQl4QXLxrFqWnqFJWqLG17kp59+IQHFp2Abae8Rxh3p1I8pXTqda6m+Nsb8iByc9fvTHTHrj9brq6s4Ol/8bn2unysNNzFGjNE8//zzLJuWP/7zvxQOlDYMhiO8c/R6JZPjY5xrCQGOjg752Z/5OaaTE4ajDZbLFZcuPcVLL73Kl3/mEkVWUK9qLly4xIN7H6K0ZrlcEEPgyZM9nn3uRfqjEfPZlA/dkkkxoHSeZSuVe5YVtMFhoiYPgVH0+Oh5fVVzk5YNa+kpTREhV4pSaYyTWlxrDV4YodFLL+iVRznJErDJV9XaU1snNOv3RqVBPumeDrD2hHRd8nMQv+QOZIVkm6IUwSffOaUSuzL1SEoJSSmdlTrJ9rtwUa8M+23DeNCXpNsgtZCOMgzpBloxeQV6l9h3WZ+8GBDaSDie8PDWW7w/OWH53A2+FwLfOXrMRx9NmLeN2N10e1BaE6ZjSQOqrdMCEeykNJbNzPJUVvKl/phXr10jXzbc2d/nw8NvcenSRW6+9AIb5y+gexEVcxmYlX22X/4EvtdntfeYtlpgXEN0UmsrlwK9cKA9OkCpLRZNFuA4er7dnLAqc8Z5xqhd4VYVRTToZEnkQsBFCDpFjEVRZxFgTUbQCVNycv1iqs86uxzvHOVgQN3UgKLXHxBjpKlWnBwfsTre58q5Ems9brKHbhpm7gCPoW4088dvUW+/xMd9fGyAb3n8iL3mhGo+pVo84d4b36Q5vkOv3cMoR926ziYFF/X6AKaTVabdJgSh0YqFQeeJR2rYw3oDwQnI532URLwgdEhtDK2TjVX7SOMU6Lg2/xYTyiS7iSLhDUGRWUXbRiIZvg5EJSbk0UOeJbaZUjReXoNvPJlN8mBkx3dRM+2/TDy6z7nEcPAh0rTgvCKzMkl0bcQoKbhsasjyTGONwRqNtaKf9xFqF4R5ECI2ofo+KHx6/XUrbL9eWQKKXmYg1LT1jGY1RStYtp61v3ZamK13RJXT+EAbPLkWVpVJKLSxil5RUlcLNAGrPGHRUuTpemIoe5L2orWRJiKxPBRS3ChdkBmx369qJ/4qywVuNQfXEpIBrdGgfCtyk+QFYbdvoLJxCsSSRaCiHE5t65JB/GlCZJeS/KOgAKn5PW3J19/QTVPXIEPkzJPXbECVgOiOydd9rpuskIqws88VJqZLE5GIdxVaa8peyWx6TJYblotkuqoVUbVkecHGeMRiNSfGlkVVEbwD17JyjtxaLpeWq1s9ltry0ZMpQWmsUpTlkNl0yqA0DHo5i/mSjY0R87nCtS1ZlhMjFEXOfD5je2ebw+OJNKSZ5drTN+iPN7l27Rpaaf7pP/2nVHWNzizeOayCop+TJZlfPYgclJGsztjOoGcDrBb4pqbFs8IxF44pLZGVBodaCyi3oyGzGd/UgX9L4DgruPHcTZau5e1bd/FNK+yUNK0iFc06eeScbbhDAvt07KR0SorzkISvUYrf1rXy3qBoI/ypd/ygXfHVbMjfOr/L4uSQ1177I36s92v0zt8g1g6dR3oXz/Hiz/8qT95/G2fAqCjNsdFkxuCNJuLplRF16y4XX3qVgWuFdNO9Ft15RnmCcmnq1qbpaiAGh48NMXpCdLKOoyN4J1O/6MXs1yhCbFGYNSVfhzSsUKeNrwoR71u0MsJyUl1wUVwXpsoqdJACpWtojdXiGwNEo/EZcj9qTR410SfQIch2iPNrUK8DPyMdr/HsNPeUHeeI1Eo8E7vbJpz5+ilISHdX/ugNu/6ZHejXyZxSIdXrU165zODGU5RPXcXsbsPGGDXoQVaAyQUcUZqIPi3KZaJDbB2sKsJ8ijs+pnr0iNX9+6zu3cXt72PbWt6P9etTnFvVfLVRxMMFpXPk9RLvWoqslMQz1YHShqVrKAno2JDnOau6AkQm03pHWeYsl4u03yUQ07X4tpFmzikxFlad7Ealc61r7mRYpukKjbjenzrpAERm8znj4YhOzr08PmHhapTN8J2HDMKod4kF4PKMt0/muDOsMzlHFf2NMdu7Ozx69Ii6rsQjNMsYDoYCvIcEiivFeGODvOgBsFhMmc+meNdKWnbryLKMPM+o64bZyTEfvfcO05OLnD9/nu2tbc5duEDrWrKipK2W8num6/fX0xN+8eImg9mSrNcnJON+79rUMQdUNKi0YkDcsxovAF/X5ASXWNpa3mVjhbIROjm6NpJqpYT5IkMiCVkgJnmvUgkwEGmtTlN6AQPELw5kr5KBkFwfFZLpviABMpBkTbyT9zKpHERW3wEH3c9SyX8ztWpK5L5BcUYirIXpp+QMxgrwoGwBNhcmo7YEUiDKaMREBS6VPUZtI69LRZQKycMyEDMDppQkb6XQXnw2UUgqX0zMBpths0Ig/+kcf3wEJxOYS0hIWFWE2hHaBtfWtG1D6zzeeVxwxMQ8lNvfSN2U5ViTS7KfMcnMO2KtwWYlZjAgDgbE/gjVHxDKHiHP0MM+l3/iC+SDgjt//Zf42Qng182SR84PHwNBGdBSLEcF3ihGpsU3ERtEPjl1oZs/CWNIiZS6C2EgNXidZbPNMzbLwN573yJPrN6AA1tQ9vqEpiUUY/JyiO3tYnoDRrtPc/xwk1w5XF5wYXQR52pmT+7h6inL6QmuWWIQabMpE/fcpxWfwP6Y9j2b5cLQNQFdFLz4y7/KXz96wEXnCG2NdjHdL4qizHnplU9StzWKSLVcYLxnvL3Jz/zyL+JtxnR2Qr834NLli0QfWS4WnLiW2jvyfsnkZEJuLNF7XOP5sz/4fW6+8Ap/4+/+A/7v/9VdqsWJsH6NYblY8uD+A1793Gd5440Vxmb4gNgZRM23V0v+5nCDvgso7/DzgM0yYkwS7cRiy7XmqK1pkIF+DB6rNXm6n7QWL7kQkr+2UokBF06D75RKQFoUkI4kp/PdsCxAIieIjJ51s0fyfwte1q5KUtfoPMakwUt3fycApWNiyX5x5nyN4h+qtMI3sk91nVE3fuzkvetDtgMJYmQePU4JI9YFj3j7ijegc3I+eJfuryDnEFG8wuzoHL2dS7SzBVQrmEzZu3eL92+/T3Nlh60vfo4fVCv+2Xe/xQdH+0zrJaenJaypY+njmOpCr2AV4bheca9a8sb0mD98coe+zbhUjvj0+Bw/eeMKz7Yed7DPO/uP+fDgCdc3t7m8c44sK8iub5JfukJWWnICz734AnFV084WrKYL2tmUZjnHL5eE2Qy3WMJ8yvPAr+cFRybHGcXURlweaPaOiAtHHqEMhja3TKMMb1UQz0WDrJWQegmUALBaZcnBIaIwBBTleINhvqIserjlStiawRGDWLXIWe0h0wy3NqlOPK7yLLQnDAb0i5JmNkHriHEVm8WIVbMkFmId1LFPQQZA3V6jAMKpTLeTnndlVQCCc3IfJEZSV1uceoieYaCuPRgT4GfOvKddTxVPGaMgfbACZtMZrhWWnCLS7/W5+cxNateuZedt2/Lm62/w6qufoSz6xAjPPP0c165c59zFSxzOTujnJavpjO3xCN80ALSupVeUNPUKHxx5nqO1Zs+33HeBrdqT93rS9wQPqsX5FmsNPe+5kBneq1dkG5vMfcS4hqxaUWhDzxhKayitxbSQG4N1HhORXtQHMiVgde0c1hq0l2uqAmSZRRt1Wosl4o8wv9IQP5FUhG0f10q1qLqhoAR0ku797meI3y1pKJX2+RglrTcB/EprKh3Yb1oubRQyzISkJAxrWbYkS4fT2q/x7O5sUjeednHM8Yfv8SCPPHj1k/zzW+/z7v4+ThY9HgGSu31MI+GfnXJBXmOqa5TcE6sYWdUNj+qG784n7NiMH+9v8YtXLrCzrLhz/z57xwe88tInuPrs89RFiTm3Tb59lTw3jD73GUK1xM3nNJMpq5Mp7XyGW8wJqxW+WlAu57yyamhO5lyzBbnRnGRwG5jEyLVBQVi2OG9QhWa1WuFiCm6RRUym5PzzyXars3aIIYg6Ku28WqWAQtRaQd2GwGy+AK24cvUyx8fHzGcnPLh3G7eaMDaGGCyKGm0sjQ9J+Qi5Qc7xj/n42ADfR9/6Q9598F1cW6NjRU4joJnyNAnJlVgv8L5jOEkoRpfYI54WmjaADtK6dftLSOCcTwkpEAUh99KkCgCYPo4C4kFIgR4KlLSdCjGQNmlDslpMKKs2pBo3INYZgUyL7xxKJlfzJtH6U8511USsyVAomlZQdWN7LM0mbfsQH5IngHJkFoyRxnfYsxgtgJ+1MuFDazQWH6FaySSHmNEmEnQgGaFGgy3GRCxKaYaDgG9W+HoPQsNq1qAJAiy6xEQzZu3LEGLHlgHvGnJVpoIbrDKYAlTMKLMMax22l2Ezj9KQGSkEDeIJYrUWfxtdorTFtxWKiDYFMXh8gKKwZHlGbBxV5bBqkVhL4udigiNTGVXlcTrDKoMdnKO89CLlhadEVpKKlhAkCTLGUzPRjk8jm2HX+MtDAL24nl52nzxl9ckn4vpQiqcgoCKxmtLmG08ndd2z14zB05rvtHhOP0gaBS9sT62pWs+yarn81FPsPXqM0oa6njMJDmtyWb8+4oDrN25wcu8B4WRKL9dsbpS4tmF/Mad1kTbIASJpbprZbMFstpDY+gR8Ou9p3QphjnpWdc1sNudzn/kMn/385/mTP/5j7ty7x82bOS8+/xx10zIcjZhMZ0QtaZFVIzKrjUGP+XxJqyb8GZbvHRzzkjL80mDA9aohNjUOkgFrJEuedTF53/gkcdxQlkeZ5c/Civ2yxwvP3uTx8Qm3HzxMrBUB47VJU1DFmnWSGSuFizXkeYHNc5S1tKslKipctcL5GuVln1Bd+l9qrmPH+oiKAyL/TZhxb9Lwv+udo1qc8MNv/gmf/dKvETe2Uc6T9SPjp67Rf/k5/NAQok9NssUATgshfxoDo//+v+Ppn/9FsiwIdR+LsJi8sHOj7C8C2ImXlEpsrE5uI4BfIKaCOgZH9CKTi16YkKFpwdV451C+wbma0FRSOAUnbElXEdoAvhEf0+jEa9SLwJTQrGU+IXgx2Jc3L3nniW+QybtpXkjJXkpYSGnyEuOpb2p3X5l1m3EW9jsF8BYaBqEDTLqvhPXXu/vr9G47vZ/T0Zk4fwpwGDRmuMHoUy+z+WOfwdx4CkYjYgI1UAgYopK9Q0jP7ZhUKq4ZS+QZDAeY3S1MuE7/1U8RG0ecnuDu3OPwO99l9dabsJgmXzFhHwwOD3EnkgjZEiF4Kr2iGI/kZ3pPpQNzH7hIgLamXjasGukPg/JkVqR0yhhWlTCubZ7jW4+vGzAZdRsTEw6iT+tZpWscFV1VcTphl6Y0nvmcUop+r3em74uYTGTEdjAEm9EsW7lG2uB8INOaQyKPgrC2BHiX5NX+cMT2znkOD47IchkilGVJr+yhlMG5wKUrV/jCF7/Is8+9wGg0xmQ5IUDT1hzt7/PWW6/z5uvfZ+/JA5qmwXtPr99HVTWr6YxDpSmLnMV8zsbmFr3hmJc/83neeO1buKaS9aI0j4PntWrBVWNpihIVIllRsDqZE4i4uhbGeWK7hUSNDUrTBof3TmR46/9BiB7TsU2SvLgzmpe15RK5SRGUIDc6yoAvhiTvTrIN8RDWCSzwdGzjEJOMWQFK2KWduXn0ac8CuX9j7CgwiQGU0mMTWK2jNOgxycUU7lTKqlqpsxLgrFVMrGIt4CbJF1AJCy1GsVRxWc6tdsV2tLRvvInNCrBibG2MJWZaUveUEYNyYxLQkWQtKiYrC01hC/K6xU0mhMNj1HwKyxW+qljMZ5wcHXI4nXK8mDMJgQpok5IgWvHYMVpjdQJXvIRv6NYTg6MXYZTnbPV6bJV9Rr0S2yvQ/T52NILxBmY0xozGhLxEDQp2PvlJMBkf/NWfE2cHEMAmUEskNRGlAypY8FCpwLLxxNrgo8ZERdCWKrYCLHWNsAJiB4hzCuIqUMpgjWUrWxKP38brjDZomhhQoaXKC5q6pigKUJZIwWBzB1/n6KLP7GRCaS3OtUyPHrI4vMv0ZJ8YHdVqhTGRoujjldRQaxZOjOt6pUvBhg4cipx/5hk+9Xf+Ad/59/+GjcEGP94ovvP+uyxXFb3ekAtXr/OD73+HCNTVksLmPPfiC+zuXqJ2io2Nbdq2Zf/gkBvPPcP3v/8awyJndO4Cjw6O+ejOXdoAo9GQnUtb/J3f+ftsXbpMNtzixVc/zXe+9mdYo8jznMY56nrBarnEZJbt3V3q+QJfr/DAvbbhoYm8EIVh19QNPkYZbumkTCHSC4YHyQe1SuoLEzyrtiG3mXQGKoh3ntZkmRhI6ASQyKBM2KGdjZDqWLlRGDg6NeqnrBupPUVySwLiOgYnKWVS6lhpj2JSxJgUnJLOPe/JMiu7uVapzk3/RhBQKKbXIKEP6dRNYIHyUVjLUeR/T+qWzGREBFiLPplzpn3dmmRHgMjNnHNSw2rDpStP4ZuGsGhoT465e+s93ju4x+YnnuGjnS3+2be+yfuTE2aua0plf9Oqq7e7cyiBfqpjnJ9lnsm19SFwEjzT1RHvLQ749/uGp8sNfnP7Er905XO0jx5x++gBD+qKr/zUT5OdP4cHbBPQmcUWGWowID9/nr5X6xpDpUGe956wWnJzOuWF4xMeHU44nEy43855NJ9w2Zd84VPP89H+Ez48eMIhgdkiQFRYJQQDnRr/rkzpWJUx9RUC3LTYwjLow+4zz2OX5/H1kmp6RH2wR5Y5WlcxGA9o6gZjoDk5wDUFkZZhlmMbmEym7GyMWS5XbJzbpChytF9QZ6WwiOKpSkla5LDea6R/Yn3+/3/9T5+amvg06D373nQefx1LtaudOlBv/dk1IEUCck4rucVqBSlRWfmIr2VwOewPuH79Bt//9rfY3jrH8y88z4P793nm2ecZDAYUZU5WZtTVgnde/x53b9/mpRdfZNwvscagyhKzMGgNs9mUrFcwHA2ZHu9Ta827vuG5oBn0hvS2xmIllCkqV9NWFazmfEFH9vcf8cbRIT1tGdqc7aJgrBQ9pbEuoJdzTIyUxlJaS99mFGmAkLmQJP8RHbxgC4DyMdUNiHzTiF+bTZcohAal9Fpq3zQtWZ7LKZ3quy55OzTCytVW07YtVqVaJRVznfLHJga0hHOKQmdpYRE9PWVwThLZYxDfuBgDPhElunXjGs+wPyKYgjidcXzvPR5sDPiPRcm/+/632XcuMdT1mXXGugZVqbYMsJaGC6u4Ww2pJ0rrqwmKR67l386e8M3lPr86OM8vXL6OOzjku699h6OjCa/8wi+ghn2apkY3iVXe65H1BmTnrzBQCMPet8TgRQVW19xYLvmpyYTj/T0O9g94uP+Yajblus54Xo8IJRw7z4O44MTPyK1FtQ4dIVcCXlZReqeQFJ904Hk6U+XXjWs2ZYxCdAohcHh0yGK+oD8aUeQLDvYf83jvEQO1EqxLZag8RwcZVM8bT14UaAvVquLjPj42wOeqKfVsv/OPlghgJMlPxFvClAPwQaWDyJ+yOOLpohDVbRQjedlPcR6sTRJZqaHJzuA5PkTxvIpS6Es0TJKlpamcKKWSl4bpPu4SekW7bowc9CqmJF6jadt0/mmE7mo0bRvFly+GNB0RAKhpW4IaUppAVmjyTIAFrQxtG0USE1kz5bwT43EBlAKojKgNzhcY2yfLSsqioKkjURtaJzHUKqzwrqFVkeBb8f3yoKMjJJ/BNTMlSZel3lbkVkDJmClCyKhcoG/B4CjLHk3lUXFFpsT/T+sCba14jBUWFWQCgRYPGZRJMqMcrctUhDRY00dZRdU6HEpkQr6ilxuWK4fGoYyhqWuaIB6BOh9jd1+if/4Gur9J0HbtARaJKVnyVJbZramQqOAdYNd9f/ogFbVnwb4zwMEZcK+bsHQHdIxR0PzE5Fs3zlKtrxvEUxZfXK/pdSETA1XjUDYXeaCtOZosKAcbVG1DMd6E0PIbv/xbfOebX+dofw+jDYf3HqK9p+yNqHzgzf1WCsBYErXH6rNbpWy0AE0rhV5W9ugPx2xvbXHx0iW2t3bY2JS/bwwHXH3qGi+99BKZzWiahkF/QGYdZdknK3oMRmOMNfT7hYB0umXz0gX08RGtVUyLhm+tljwMM36rV/BStUoAkrwqRSTHEsTpAQcMUKjM8jUch/0BL7/4PI8P9rnz8DHEjv14+nsZazGZQZmM4dYmW1tbjEZjzu+eJ4TI48dP2L24i1Ka8XjM0eERTWh5ePs289kJi5MpbbUiJkq8vK+nsmofNH8aa+Jqj//tYJP2ZMqH3/lTnv/yr0npHTxm3Kc+nBMOV2Tbm4SeolVNaoQTmwdD2TT0FwsB8q0mKgvREZLkTss4S/aKVBR2TA95cSJr7gBJUvKkAFFnZGmcrkGlTkHpCJDAOh+R0JvghQnqRebpfUC1AWJL8C2xbfDOEdpW2E5Vg28bQlUR6hZftVA1hKYhNK2wK1uPb1tUG2VjdgHl4jrFc50euIbrOmBOvH4WKjCMp8526Wr8yD17uobU+vPd17pgDoVIqUef/BTbX/kZ9PM3MKV4QAYPygV0cOjgxMerceAcOGFlSL2fin6lhG1nDcEUqExDlqGtJeYFXDiHvXCeK598mebDDzn4wz9h8c7b6KZO+4QDp9cscxU9jWoJBnIzxgJ19NQxsmXB6oJeb4xXS8o2sGwbmeAmz9bVosKYXCS6RPIQcVVF1SxZnBwRx+fkgikDMaWS0jFz4lo6SYydv/q6AVBKJq5N69DJx3XeSuG+kRdEJelfwXkB3I3GmIz73rGKnXeRFJXRGJ57+WWq1ZzpdMLJ5ISi7DEcDGmahrJf8Cu/8St8/gtfIstzqmqFc4GqXpDnfcpiyFPXxzx18yZf+dmf5Tvf/iZ/9kd/yMnRAdVyJVN4HPVsysO7d9m9epXWt5jCojEMNzeYHNYp9U9TxcDXphN+/uJFelVDPzOAJRpFcJ2VQ4siCvPMyY20ci39GIhKgDmxyfJrLVYnt9NRmjhjhR1krEneTHLVJQhLE4Jbr12lOmsST5ZlSDCY+AKngfDaC091NVB060AclfaDkIrGbh+QUAuI3iXGZgKSUqMfol+fSSrq9evqziulTuVBRpt1Udol93nXyvvvHUEveTQ54hPjHZoP3sfbfH1HKm0JWuoTbCagcgoKiV0qptbQHzK+9BSmXeEmJ8TZCSyXxNmS6dEhdx7f5eHxPnPnUVsXyG8+Rf/CRdCWk6MJg/GQebWk8Q3aiMddZixaGcoso8zlrKgVLKYz7h0eEg4n9PefcNFkXByN2BiPyDdGZBsbmM0t9OYOoexhbMbO8y/S4nnvL/+YuKrxyctHd+BuCMJE1Io2V+xH+L3HhvO2xEXFh7Vnz5GCWeS8k/c4pqmJXr/BAgQoBmWf8aAkGEe1lOGa8oHlfIEtc4yKtKsFRa9PQONdg6sbiuGI0eYmpjck2gHnr72IzcaMLtUoDUd7DzEh0t86h/UFIN7BHYDSMcQi0oxrpZIvmdQ5Nz7xSTZ3L/DaN/6aC85zebXg4PCI6zevs2oqjvf3MZkFHyj7Ja986lWm0yXnL+ySqYBrHdPFgp/8yld4+803ODo65vLV6zw5mjKvaxpl0HmPv/07/4BPffozZL0Bf/bX3+IrP//zvPnd7zKb7KOMZdVUeAUHx8dcu36d99/qUoNljc+d4wfNkld6Q9pZDUZRNw1ZnqOjwqWU5MKLLGuBFuUDCt06XAgQWnpBoWkJRtQZA1+gjQxHdBQGh3Sj6T1skYpGqXUjLbYtYR144IOXMBzUelgsCaQ6hYUlFl4Q1o2Afj4B/9JThLRO6lrWfAfShsT8OR1xJ6lYcOleThZCQWRlrXMYoRfyuFkxzAtc00qfZc2PAIfdOok6JUI6j/OR8aVLRDR+scQdz/nwwze5e3Kf/hdf5b95cMB/eONdTpqadTBQPGUerrv/BBQpo1N6r0Ubg29qqcfaNoEPiQRChCiJp/MAP1yc8O78mN/rjfi755/m57e2iSePWbz1LtnGE2xvQMgUOs9RvT6hl0GWy+uxCpXLAAISuD0o6A0v8NTFC1xxDlfVhKrBLZe4qkYP+1y6+SzPHRyi3nmbb0w/YhZqua+NQgRiKu2dOjH2EzMPL+dMEM+votxg9OznMY0HV7OtPdP7H6FioDco8MtjDu/fIdOe1k2oJguKXs5kVbGoKzbPbbE53mAyu4XVmo2NTdqjVuqorsdL1/nUEzx2aN/p2d/1SJ0vfVddJjBJpzXeBXTIzwu4FB/sk9x87fWXzqw1qNmtpdRTqTT8UsbQBgm+iUnG2tY1mTEYbbh54ya9csCzzz7PC8+/jH5RWLXf+c5rlEXGpz/7Wf7wD3+f73/v20xPTphM9/m5n/11iixnejKRdd606Czn+OiIk5OTdS38EQ2LrM/TZY8iK+n1x2T9krGVgKboHVebhpeffoGPTo65Pzni/vyYh6sZ94IoxnIswyxnnBUMUBQoLAHtWjIiBZq+1vSNoYdBuUBuNdpEvHfYIB5+FlBB1CzaIPuuEnwkdnJWnxizSakm/TUYZRJoFNFCHROWcQBtLC4EfPC0ziebA7GBUAr264ZCWVTbSh0U4plkcLEPAQGovA+0TUu53SO2S072HrA/6PGvaPjdt9+n9Q5tM1TnM47qMPsEBIPJM/KiIMsLxhsb2CxDKyVy1RiZHB/TVhXL5UKkr6m18UHxOEb+X9MnfHs54T/fvMLNVcHjO7cZfvu7XHr5FbKyIBv08bkl2MRG1wavIj4qlE4SZRtRWUkxGHHu/AW2bt7g6VVFO13STmfMHj/GuMAyeAiWO6sJ948nVD7SxoSZqDR00wlITb2WCCZiCs3q6rawxgk6co/WmqZuePLkCdcHAwhw/6NbLE4mPL9VAguaOmK1SIKNEWKYhKtkZPbjO+h9/J+gUpJj6JgeQOvoEFyQmVDjUoiGkyLIWkXTpBYvLRSfJlm4QGEVbatwWqEaKYELK3buyZIG7yVEzmiQRJmAtZrWQb+QF2N11zQGlBHGoFbIwZqKZ+86QFCJn1WA2oPWFhfaVJQJI0GpQJFp8sxgkvQomIImNyxNj6LIKY2hait6WYZzNkEc8pyq9sRoRN5rcnzU9MebtMFggmagDat6zmoxZTZ1WO1o20pkugTxzFGB1okkwTWOpvWid/dBJmCx2xQgsxpjlPjBKQhRkP4yk6K/LAy5TbKaniFouS7aaFQ0hLqVpoaANhabWdnEdU7UGSYviG1DDFo2nqIgywcCRlqNcgUq72PrCfVqKUCpNjRNQKuMvLDorKT/1KfY+NQv0Dv/FCYrRUqnBIh1Tg6YU7lCtxn5JKHtgI/4I0tz7Q/xI1/vDrrTz3WgnLAuTll/Mh3rJq1hDfxJ/9wZ3nego/zs0Jk1dxtw21AQ6WWKFQGlDdVygS0LTqYrysxy7ennePa5l4kxsHCOh3du8/q3v83RyQlNtcI5mbRERMrsg1/7cXU+Px1EotL0NQTLclVxcHhEQEuyr7I0jaNqPRcvXkRsaBTL5Qof4Pz5XR7tHRBCIEdTVy2LVc2yqLG+psx69PuB7bKgVvBkseLPw5KrvYLevMGSoWiTVBMsioZACQxUwVvB8W6ece7msxzPVty6+0iuoZabtEuX1EYz2tlhvLPL9ZtP8eT+I/LM8PDBfe7c+ghtFFVVc/DoAbsXz1MtNlnWDTu7F/j057+IsZbJ8R7vvPFDpgf7rOaLtPmm6xTS/qE0fx5btps5/ygfMHnwmL23f8DF5z4pXimZJIgu336L6bzBbA5hmGEKiypylC1Y5ZbqZMrx179J3weU1ZAZwV9M8oQyFpSWRD0jIlZtjVD3lTDmVGInogwYkRmlaUQCALuiKkFnOqXtqQR6paIsU6mothnYHEIX0BOTkfIpkBgTxBYjIusJAgB2941QzIKAeaEVtmBTEZsaX53+F6oGVzXrv8eqJq5aYt1C06BbB22LoiLzRjznIpym8NKtXE4B+LD+vOY0FEPjMaNttn/p5+n/xOdRG0NMAD2rifUKvVpCvYSqIjaVsB5DSBLkmMzHU0UiUyGikWuulCVmhlhaYlGg8hFqMCD0S0y/JH/leS5dvszRn3yNoz//M1jOsVqhg0seryL/DHjatiFrGozNqFSG856NPKfUhoe+5a1lDVoxLHIWdUOuFJuDHq+++grBN9y5c4uoAsXxY7Llko3pPd74H/tc+i+uyIQvnvFmIVCvVmRFjrWS99wZd5+ydVKKZABr5NgPUTGZByYnE1420nBpbVFW07YKXze0g5z3V0vqKMwwAcEUuxcvs1jMWS2FZZMZzWgwpG4duxev8Hf+3t/nwqXLRKXYP9jn1vvvcXSwz53bt3nqqRv85m/9Nm30WKUZDkd8+Ss/x83nnuff/u6/5PZH7+N8wCiN945mtWJ2dMxwOERFxXDQ41Of+Szf/9bXOTmeJAad5k5w3AI2mxVlOSK2EVMUNK4lKAXRi2eKEv9ZT2QVwTlJi8u6pMgE0uXJq6w7B0Jw+KCw1uCD+DIqs+Y0SBOUgDgZWLBumIIPklSYpvM+2Uqo1LQbLTKX4D0xqNO9PBWM4h152iwHJ+ybgBYGUkwhUJw2ezJdjrjk3dPtsWsZIKdePp2MOziHb1pcklbVJrJcrMiHgWa5QutGvHuQFFB0xwTsklalltKILULIMkY3z2GrlnZxiJovUauK+cEhH93+iPcPntBkUFy6TLh4mfn5i9xdTvjhRx/y4ZPHHM7nmMxSdxLHqBI4JfuFUQprFJnJ6BnDznjMpfGYa1ef4vqLQxaTBbfvPWbw4R2ulgWXds8zPDclm0yx53YJgw2UtYwvX+GFX/8q1XxGOzuhXVbUi4pmtcBXFaFqUW2NVYrLRnNnf8WHLjIPgRmebatpVKRGYRPoapN1REhSbJSAk0obityy0RdViVYN0Rqa5Yr+cIzSGcqCjw3eiZyyn5dSL5sS5yK2HNPvjwlo+leG0HhsOWBwec7s8JDdGy+jJycoEtMyGSJIgyf7hseLN6s2iXkuQ/SN3Qv8zG98lS/8zM/x4e1b/OCHrzM5mfLh/SdgC0BCxIajAefPX0TlJfsPH/IH//Zf81M/+1Nsb+8ym874m3/rd7h37wGWjM3RmKefe4n7H33Ir371tzh/9WkOVi1bJYw2R2yMxly7+SwfvVMx3tggTI6JIXL39m1G422yss/m9jYHj5ZoRDL1RrPCmSG2yGjaBhUjdV2T58kowmq28oLVouGWNQyqFTkKgscoRaYylLWEWvy/olK0oSbXOtn0BApt1oBaZrOuekxWLYm1IWUFCofRCh88xlmstYQUuNYpl3Rq3L3zWGPO1JuyPtrWoXSS2nVqdFh7BGqTAjTS/kBMdiRaJY9qkt1BkUBBDSHSmMheU/Opsk/0kUZ7jAe8gDhGnw4TvReZYBsCJu9RbGzhVjWx9jy49S73j/dY/din+b+8c4tvPN6Tc0abVHOzZoRJPacpe33O7V5gOBqTlyWD0Yi6aRhsbFEvFxADzrUsF3OmkymzkwmrxVzM/dOwMipNHSNvr6b8H+79gL/obfC/OneZwb17ZLcfUGyOKcZDYUkFB1kGWSGya6PE4zvP0XmWAolEhRRVDlbeK9Xr0yt6hBioY8RkOc+WQ4q5Y9/BP3n0Lk0anmh0Kh/EtxUUWufJJsZLr6sUyuaikIqKotfDt5LOanefkefnOYPLBfrqZ9FElosZw5N93nrrv8b5ikvXnqGuTqicDFdHA0tmOtaownmHc27tV33KiOzAYHlTur6lO606kL+rt5SCkLzNQ2dBkc6F7mevkZwosthOGaa1BHa1zq2ruA4IFHuAgLUWHzxV09AjMp3NIEaaumY4HPHyJz/Nl778JZTNOX9uh1W1YrGY8+GHD3n1s5/m/t07NNUShWc6OaZpK6HJ6SR5T3VC27TceOFFHt26xcO9A+5ZeD0EwsFDXrCX6BstfU/IgQxlc/o9y46P3CiHtLtXqaNiFjyTesWj+TGPVwv2qjn7ywWP21W63orSim9w30AeIj08pm1QraPUmp5W9Iyl1AaroG8iuYqo4DAouvmPMIPlvalrsfDJrJxt4mMoyb4SIpr6364PMKzrWqvtuiduvcOkPv7BcsW5fCBeuCHgtREv1A6hSYBiDIHVcsmgHBCiZrW/x14I/EFQ/Js7t2lRYpUQpYZZe9EbGextbm2zff4cWZaTF32WiwUBYbbubG9KHeUDl69cYXpygvMth3t7zGczXFPjU81Xo/ihq/m/Ht3mf7ZzlR+z59n/4EPGmzsURc6srtBFhsolXVsVBqwFnRGzAqzCZwAaF8QeLWqNVpqiV0rQo9EspzOKVYNqA+dcn/OjDR5OjnBJ2eNCys1VMvARXsCZ3/0srpDqqK4LF0/JQFEUvPf+O4y2tnjz9dd5sveIuFpy6WrBsCjxdU1dO/Jc9gWVpM117WDEx358fIAPsMlryvtOPgvQaa+1DMQTe89Fj1UGHyRowSth6DnnKXJFdBJXrFUkM5BbJRHURHLTNYOBzCrI0wGolejNIygbiZkClRyeInSKCQHAOrmvXpvL66DxjlR4x1QAR1QI9AopXHNjMMqmw1rQVkkpMjQhYlXDiiEVBl/VGG2pmhYXC9AZbTBEXWDHpXi6tMhEr6mZHk8JwRGaFp1p8DWd348PXgoFJ5JmFVXy1YusllWaAEoBsW7UY8RYgwphDYr2exbfepyLZIXBakvtAkVuKTJDbgta76laiU53bUteWoyxEOXwyuyAst+jdR7nWqx0Fal5VkRtGQzGrGYnKNdQLZdYIt43hNm++O1FR3SS+kvwKNOnuP55dn/8b1BeeJoYhRmB7uiuUgwp3UmuTw+pjjEkuE13XKU39T/9/Bl2UQfocfbPIFDD2nMvPf80wOMU1OsepwAg6+eFKOtGNgMBJgdlLuxKpQirGVo52spxbnubYb+PdwFVZLTOM53OaKNm+8IFdJYxOzmhbmpCEMqvPgOGO9+m1xpOvQG71+k9y+UK5wNVVTOdinyuLEuGwyEffHiLwaDPcDggz3OyPGdr5xw+BFxVURQbZMaAylmtoK0fo2zOtIFFvQI0lfe8Hxpu2YyXgBZSHIE0soGIAQbkHOUlP7AV4dIuDs/7H36wbl5luitJkdlgyI0XnkdZS7VY8Mb3vke7XAIymS6LgqLXR2vL1uY2ue1DNOBh/8FD7ixWtD6wtbvJF3/qJzg8OOCN7/+Q2eERoW5lI9Zd1aMIaP5ju+LZPOOXipx777/O1uZ59MZYzN9Vxv6dB/SLPsv9PVRdYYkEpYne86GFpa5YPXqIrqs0MbaijDEClqhkBo8SoI6ucNKKLolbpQlqSJT2VF2lyTBoq9HarmV1KoVFaGtEoqe71Lvk6aXF/ytE8YMiHUryPNZSxe65YqYu/65O4CG5TcyFKFJBpcg18nc6KccpwO6jkobRB3ACqgUvVHnftDx+/y0GU80GmlDXxLomrip81RKbmtC0xKZJe4r4D0apDzExYk3E7u5y/td/A/PKMwQDZraE5RJ3MiWeHBMWC6hrYttKKqoX+ZWPMlcPMa5ljuskPBVT0W/Jynx9rY3O8UVJHI7xgz5qa4wpS7Z/6afItkY8/ve/j5lPISA+ZCHJXXTn1yPg6KIOEBw7cUA2W/HdpuHYWDID66lYEPnK3/rqb/KLv/wrfOd73+HJwR6P944Z7OQ8/fAhz9+4QFQR71pJaq9r8l4p51oCaNqmEZlkGkqgLN1QBFh7mIZUTKlcYzb61KWlKAxKg2ulSIzGUJeWO0fN2rdOKc1gvMHTL77Ee+++w/zkmLap2RiOaRvPhaee4m///X/I7rnzVMsFd+/c4fHDhxgNvUFJJJD3cmrf0AaPioZvfvMvOTo+5Cs/98v8zn/+v+Tf/et/yZs/fB3X1FJ4+sBiOqWaLynKksnhMZcuXKAo+8AUEBn2LHi+OZvxfNYnq2uyIO95F/IhctaUXB8VShumIbIbRfope7sAIMbaZGshoIhGWAVdqE9UwszDS+NjlIaUgt15d8nEN913pKRakmF3B6qls6x1DvEslD+tseIDmBp4nwY6OsnoZKIsbLyuWVufh96vp+I6CIyuY0xsRCMsvZAAdKVkgp+KWBJLvzPyPmgahjYjeI8DVAhYbXBR+LT4DtQLa6VAbOXcczEy3L6IKQrqyQSWM/xUGJnv3r7NMkbG16/jrl3k6yczvv7R+7z/2jep2pa6bejS/WLdJjaqSr9zGgWkQY0OEd9UECJ3Z3Nef/gIo2Bgcp7a3ObzVy7y2Zeu8uDRPg/ufsTuXsHV3YsMZ1OKS9eo8pL+1av0rl3CJYsE7SE4BZ3PZRBfOxYLPr1qaBYz6vmMZb2gWi6Ztg3//PCI/3DwRAZ56LU6BeSaamOIrUNZy2hgKYLH19KI1YspoVnS6oEMRKKTM915XFhx+OghG7sXaKuaotdjvv+YJY9R5RC9uUNZ9hmONzg+rtCZpa4d3qfky3gqllOCOMte0F3feMr+RScJqVL0RmNeeeWTvPzyJ7h7/wH/5f/5/4bRGaqVcJzNnW02hkMOTpZ88N67fP97r/GD17/Niy+8zK/8ym9w8fI1di9fpVotmR8d89Vf+y2qasnl3avUjcMbx2aEF565wb0PbvPlr3yFD95+k0cPH2OT0qaNcPBkj+FoxN06GbUrqdXv+pqV1lzb2mV/7zExNqxcKwxKbYlNQxYaNrLIXxF4eWvIcLWiXjXYqMmbmsI16BixGDJtIDr6yqBaj1aKIoLyAe0DvQTGGZ18eH2LN9K06iigs0tAexbBx5iM8SGzIqmLbZt8+BR1I/tSWMs7WZu1m9RwR6JYcKTyl5DAkgScdI1m24ofr7VWrHkS2ycGRVQwN4o2RPpRvr/xnjJJAzsVTLenxBDwKRRjtLMDbSQ0FceP7nP35CHus5/g//jeR7y591jYu8RkBaAwSZKYlz02tre4cPkKly5d5smTfVzw+Kg4ODwmyyzT+QNhiHmHAvr9AVee2mE0HFEtF9y69RGzySHTwz1525WCaJjHyJ8uJtyrFvyvN67xlczCwREhKuygR2iWhLbB2B5OgbitaoIWsC/GJJC2mSgxjJWBa1bgU50TlIYsJ9Qt1eM9rvQG4Ds5otgjKN2NHkOqkxQmy6AVuaNXmqzM2D0/xNVNkisqFpMTisJS9geECHmvz2xZEYJjuLnLyWJFVIqNQcn86BhtI7PFlKtXrzE7fsj8+JC8yFGDfprDSnAPnfeakvXVDXHkmElEgCSt7Xz71gQB1T33VDrdfV2lVPB1iFT6OBITe0nOHL8O8ZB9WhsDMaCtZTAYkBW5qPJC4MGTR9IlxEhR9vj5X/pFyixHBcfX/+qv2Nza5ObNmzjnICqef/ElHty/S7UUS5rlao4t8nQ2psFWDGxsjBk+9TT79x9RakXICvbO7/LdR49548H7XLUbXOsPuTQesjUa08tLirLAGkNmLVYpBlGzheF6r+QTW9tiP6QUVYhUoWW6WnBULTiYTdmfn3C4nHOymrMXA9EadJaRF4Y+mkKB9Q3KObLk19dDMzSW3Bh61lBoi/FeVAAq9aIhYJClFTrmf2L9Gx8x2uKjF0yg+18Em2ylhEkLK6XZbz03+obGC7AYvcelIB6xD1J4kt9y48k2CnxbMZnP+EGv4F/cfp9lELaynBESDqqUoigKLl6+wqUrV5icTKmqFSG2OL8UkhGa/YODtD9HMmPZ3d3FZhllr0eelWitODo84PGjB6IUinJO3Sfw/zy6i998hi8Fw/7de1x+5lncbEHcn6OVlF8+reGgpOcxxqKsgPg6l/1QWRnga059iW1ds5gcczw9Yn+1QjcVBMiiEe9xktrTaMT7XPbHgJAEThnTniyTvivdKGKV4iW89fadu1RNw/Rgn2Y5ZUfPGORi3eYSCatr3gf9kqry9HolXazTx3l8bIAvxCBeT6GzWNdrVk5MRt0JhaNpPdYgCDqBMhd/uSyLYKNID60StNrEZCQNKjP4VlxRrBFWjVKSVGfXRXB6PSFpv0PEGiV+RYgZalCWxsc1i09r8cOJSiUbI0+vtKioKDK5NFG5tZSho2laowlOdkWRamp0DDTlOSbTc4xYUFhLngWKsk+oW2zUNM7TrE5o3QqtPKENBBUTo9ESrHjtGWWS5CcQg0iSat3SeIdrFCH55hAjPkhoh0eaVIcni5HSyMLplxm5leCCoBSNVqjMkBdipN3L+hR5jmsrrDX0VV8KfFtQ5CUxeJEy64KgCmoKjKrJbCv+HFGkuiFGaFesJivQChUdWRaICEMvRvET80GkwtGLz6Hu79C78UX0xhWIyZRdm1QviIxsDU50/yXacseu+xEQ7wyyLg3WmT9Zf+uP/HnK4mPtt9eFbUjvLd6LHcB3FiAMiRlEPPOcEJKc3Mv1M1kCAzXBJUZmVnBydEB0mywXSxazBaum5vH+HovphLZpKPIMxmPsakmTQD6XprSaSJYk0rE7sCPrpk16A0+9WlEtV5xMphRlgdYmNfmRPJc0ZPFNUuRFiXdOPFCOJ+xsb2M3rqCcI3dP8ErjlZODR0GZGdpguFs5bipFg0NH4VkJZ1VTYMiKAa8VDbd7A0Ybl3jzre8LKzNNVZQxBGvZvXYVZXu0BPZvfUCoKozVZFbYRVVdY8scZTSZNkSjqVzgeH/C9s4GwTUUvcj58Yj79+5QTY8JKD73xS/z4NYtPnr7Ldq6BmLyjxNW0iwq/nk755Vil2uzfZ68/0MufOKL+NDgl0vUcsXRk0P657ZwbYO1OSF46rqhUpq5b2mblpaARRKpfAJt8JFAK2w9wFizXl/iaZLYHfHUl6srtGLHEFWdF1Ty0kzG/GsQUHcJvKepw2LGa9IhlbwyElNDps2JHZhYk/JzLBHxglNaC6MwsZq0tcJyMwmw7NiInVxDa7TO5OcqJfKYQliIHdvgCrCxdZFBWSQLgYCqW2EnuFQgNi2+rgjLGqoGXEv0DThP7huKV19FX7mEDg47XRAPjmgPD1DTOWqxQjc1rhZpy7xZMW1q5t6x8pHGOZZRzhzfmYdHAVZzBX2rGNqMcVky7g/Y6I+wm2MYL4m9PmE5Jx+OsYM+/edvcqH6Ck/++I/wcyeFbBT5lAtJ7hIi0dfUBK5Yw1Mo9KLhgVMcBk9Rlow3NxjnOUTP7vldzm3tcKk34srFayijaJxndfiYN//Z/4nxpUsSHJAKCKmuRWphk9zEuXY9LTfGorRL3yIgkUlWESEGgm8wuWFRRWbDHk1uKFPRGJ0AyfuZZZq8MbuQgK2LV3iy/5jMgKtXlL2SoDQb2+f59d/+24y2tmnalte//31M9Dy+e4vZ/IQrly/x1OVLXL96hda31G2LIvCdb/w1H956j0cPHvA3f+cf8Jv/2W8zPTnh9q2PpFHTiugdbV2LBYE11G3DhcvXmBxPcNUKpQwuen6wWvKb/TFl22C0TEW11fjWi9VFEL9KFQzWaqY+gJbBnUGKutKYJGuNyUYtgX9eBoyydwn/VaeiTmRuSfZNB+yRwOWwHi7RsbpSI90190ohha3qmHVh7bsnRvip3vBhvS8ELzb2AjzK2RcSoCOewYkjGztplgwBvQ9pH4HO2FuhhDUfxZybBIjfW604nxLgWp8SnYPUdFpLsh9EMRZHgik0iHl7b0h/c5tmOkGtWqrJhA/ffZs7h48oxmMuvfAsf922/N73vs+tkwmu8x9TwhSICGjiEdZpdy0I8tplECgNi0bk6ihRZbTe04SaycEj3jl6zL/LC37h+g1+8QtfZHl/n7dufcTm8T7ncFz8/JcJeU48mVLEFopc1k6RIcCAgPbRWMw5KHyAtoGmpnU1jWvxvsE/3uPdP/5jbsUVlQtEJYEqnb+hVpomBMpewW6/wDYrPEsaD/2RIYaKprGYGPBuSVb0WK5WZHlGhmL25BZRadrklxsoKS9dp1CO+eSAcpAT/RI3P2AeW6qQEeKn1kBjSGsozQjX0szOBkF8bxOrPNVVIZ1Fj/YO8MGzMS44eCxhD+e2z9HWLbnWPHn8mMIaquWMyd4e/91/+0/45a/+Nv3NbczkkOnjA5q6YREcTz33PPv37vLdP/xT9h7do1ouefrpZ/ncz/0S5cYGmQEVHU1T4+tKpEvG4GPnIi31/olS3G5rtk4U43II7YpcG5w2eGUIypAr+OleyR8sj3htPsFoy+bmiI3M0leWXkh7qG9RdQutwzY1NkZ6ylCiKFI9auqK3GjyoMhdmnM5aWJVsgMCGf7X3pNHtWY9C/aR5HGxs1EIEgqjVLonIRBonSfPc1Ri72gr1kcd49a34qur0r4R42nz3bQOq2U4EZwDYwhe8cR7sqjAe5p4RqafQoWCT16ZXuwiXOvJixF5JoEvq+mUu4/uM/vUS/w/PvqAN/b20Mr+KFtPGbKiRzEc8fRzz9Pv99nf3+f9D28xHI/RSlGtlqxWS6rVSn6PGCh6PcqyoFEK3zQ8enSf4WDAzu55nnrmGd783mssTo7xTZOSrBUew7u+5b88vsVk8zJfzQrc/ERCC5WhbT0xtmhrhDzhIRpDUN1gPmKMx/lGAI7Um4cIddOwWqzkGqpIbzSi2LmA7g3ALVK/kMCR5CPfnbmZsrjOU9HkDHoF440BupBBadO0lP3e2oifCMv5DKJj2CtZLRcUFprGEaJjdH6Xuq7p4zD9gsyfJxtu09Y1DvFGV+keXlPGiWsWZqeQ6EC/sww/SAOZ1CR1Z15qIU77re4TyUyiAww7w5TT4QFrAkZEmOMAqm3YHo8YDwY8ST///v374juYZWirGY9GTA73+OM/+H1e+/Y3ef6Fl/ilX/4VfuVXf4X+YMiPffHHOT4+5LuvfRuT9ZivVrROghdjOjOUzcnzkunBhOPjI7H4WMz4q+h4ejjgQm15f3mEmuxTzHLOZ32uFj3O9fpsDQZsDoaMyz4jW1AojfXyuxgFhYJ+qrWvDYaY0SZx9ymcUdQElq5hMp9ztJhxMJ+xNzvhYDbn0K2otYI8F9mq0gyiogiKUNVo78iBnrEMTEapNZmRhN9MKXKt0I2Eq0UnZCjvArnWVFHCPjow1pzx8/NIDXrkxE9uECVgM0QBw7SOaG0JETKjICpW1Yo8y1BEjg/3eZgX/O7jB5wQsUZ8TaPR6/5hMBzx3AsvEKIwMuumJsbIfDZjuVwRguxjxIhzAuKvqoYP3/8QpRVlmTPe2KTs9bh4+Sq9/pCj40OOnzyREAul2QuB//boFsXO03zp5IT58QSbl7SzCTZGgkmqGR8IKhBcIuDoDvOR9RqVQmd5ChYR7CWZMxBwbNiMT1+8yp1H91gs5qAzvAqsNLSJsdjVcJ00V/TVWvZ1L/YtMiiVPk0GwPJtD+/dFc/gZsEz1wq0r2lqsUJzdSX3bxAFWNSRxvmUSvzxHh+fwRejsMIyg29hVQdhR2v5miJiMi1Jq4UidqiznG9kWpHORVJAZAre6OLrUyGqBFiTRkU26KBS4q6W0A6UwqLX+vuYpu9y+ERibMmMxhrxAYjdoaxAW4NRio71FxC0WSVvHucCRGmaUDLxaQPYXp9eOcBZQ+MV5y6/SDG9S4wts8lD4nQqQEhV4WPAGLmhnGuxeSHsrcRSUUr8XlwUbx+NwbUekINQpel/pkigTCDii7WMAAEAAElEQVTqgDGBPLdC07UZGsitxihDZjTGCC0Yo8i0pJjp6IkEdAaeGpTDZgNCLgWpNpn0I8rIx1qJuC9KBLR4McXkbdWi0XLIRQjBohMDxweDZU6WWVaNwQVPQJNlGaoYcvGTP0N5/XnyopD3NTEMFMIi8fG0AQK5RkYbvHfrg6mbSnXg3ungPJ5hUqw/xdrVqwP30tf/p7Jd1owB71ODRifXleedMvw68C+uk7W8D9R1neb5Ebdaspwv6ZUW71tyY2hWC779zb+mbRzT+YKTkyM0gaLI1z2hDwJ+rNmCoXMxA+Xl9VljExuu829S5Omj1jm8DzSVNMhaa2xmhZmi9Tq9sm1ann3uWYwW6vN4PObG536VrdJzdPsbnDz6gM9+coPR9pKTyZy2qqlWC9zJnIMnR+hFTT+kBhBPEQNDXbJHy1sx0L/+FB89+IimbUSRkg5MZTKuPn1TIux9zZMPP5SyQSE+T8D21hbBB1b1isVshjWWo6ZO9yVUiwk2swxHI5qq5tK5XbTV7B8dMT8+ZjAY8oWf/DI/+M63mZ9M5fqpU6e4BwT+dXPC/6Ycc7T3gK2DA2JZMnvwAF/V6BCYHh8yHA05mUwxGIIRHwiLpDe20SYmlkvNtEMQAllHQqXvHLfSFFklH8+uGErrT86TmAC72JEu1ntuF0TS/R5dwdYVXt06OVvQrQszRZo4J1mO6kBBkZqQwALVXaMoQECE9aQeJTJjARZSdZzYg+iU8qXFb8dYi84yVgdHjM8vcGWByfI1aIjJILPkRQmDPoENlM4Sq1MJCa1aomOL2dmBpiIeTnD7+6jZjGy5oj2Zc7x3wIfH+3xYTXmgYFbmLPIcvTEk2xxjbMB5oGq5fO4czz57nbCc4ELDZL5i1kZuH8xoTqaE6R7m7h2uKsvl3pjz1y6z+fRT+Cbily15kTG+foPjmzdY3rrL/4e1/wq2LDvvO8HfMtsdc33etJWmqrKyLIBCoYBCFQhHgABBAqARZdhit0ZSjKbnYaJDPREzEfM2r/M2IY000+qWa6pbIiWhSUgkCAIggAIBAiiUd5lZ6d319x67915uHtY652ah56kxB4GovO6cfc7ee63v+39/Y9oGmRZyicDKyIbTUlApeLbfY9E4VCZYzjV6bBkPx1igynPKTPHRjz5HXnZjQI6xFFlJlgkoC7pFhkspuyGBVrZxmOGUrCzwztNMx1FiqqJ9gVQarRXBO0zToHROWVXUdUvAY21NCB7jBX/00ut8ef0BykGNaQYYKRBIbgZBHVwcagFZVbFy7ARX332DYOv4HnVMaP2lz36WtbV1cqW58t67vPX6q2zfucl4uE9TT7h+6R1ynaOl5NwjjyLKkoO7t9jYuE1wlisX3+IPf/+f87d+7+/ypa/+Jv/yX/z3DLc24lpsLVsb93j0g08zHg0wwVEu9FhZX2Pz5s0INgXJHWu44SxLjaMo0xQ2y7HtdH7dGjy+bZG5ZrupsVVBcKBFlHsaH5MmI0if5BnBRRafFFgbATKd6fm9OlO7zBILZwCeiCjV3K4kZnEk9oSM67WfDWbS96NvsJjvSbPE+nkQD9G8e5b2Gb2z4u4kEwTiQ2QYzr27nI33ryex4dMe50lG+AHrojeyIPp31SKwN55ybqWMdZh8/z6JTyyzGXDpbQIJYdw0PPDgeWzbEKYTJvsHXHr3XbZHA5ZOnWJ/fYX/x6V3+fH2QQpjIw2Iw6EXVFZQlgW67LB29Ch5nrGwtBiB0VTI15MpTT0l4Ll76xbNZIyzNkK1aR9uHGxMp/zBO2/z4tUr/OaDT/CFjz7PzsVXKJzlpFa4uiUzgp3XX8dOh0hdoIoSnWXoMoeyRBQVuuyBimFWIlOIrCDvdrFVwQfPnuT/1Cn44x/+FS9tbbJLDE5wsyYs1ZVlrji9XKKki57P7ZjpsMV5R3+pTzOepPvTobWimY6wpsG5OOywXqExOFkQdhTjjdvUTYOZ3MKMRtjxDtNd2PddHnj2C7OyZc7q0lonm5tk05CGk6PxhE63G1lVPjUyKl4bw9EIYw2DpkGVFYwHrC6t0O11CI1lb3MDlc6gbWvGdctwtMfyiXUwhlsbN3jg5AlOnTzD1r2b/PG//x+58fbrNNNhMiPf4pnPfo68v8h0uBfTr5N37Pb2Jg89+ihFVWAPZAS2BUyc40ZoeUJ1KJaWqHLNQlkiul10txMTpb3hgabmKe+5Nt7j7dEOV/f22B6PuRFcAtR89NrSOWWVUeqS3EIlBIUUaOFx0xqcRwtF4QK583SlpHCQS0EhJdrHlN/ogRsogkMFHQdJEL2mRWIEy7gOiLSfK6XS/RrvzNZF/oZMEjdmLD8RLSBccMjEvCWEw2bQB6xN7FdPrKOF5OZ0ykpeIKzHC4nwDhNiuJAkMs7xyQvPWXCCzsIiQoq4dt+7gz15lD/Y3OYnG5sIEa02pMzI0sBRlxVL60d5/AMf5Nq1q4zGY6pORfCerc0N6skIZyxR7WUj+cI5msmI0bxukPQXFvFlicOwt73Dg488jjMNb736Mqaexnvbg0BxD8//a/82evEkX8g8YTpGlBUoRdNOycgS6E+8f1Ktf+j9HocmUiiscwgRARTnI7tMZBmq6JFXXdaOrTOajBjs7RGCnA9SRPCYpkZmCm+jRU4QkkJrVjtdVnpdptMJlc7RWY61jrKqYsIqsLe7R1mVNHVk8dm2RStJ3QZk1QehEWZI1ltlaeEER06d4+rbb6Gr7rweYF49zlb2Wa3IvC9ybmbKMqsJmas1ojTbH5aRgfnnE8u+1FeIma1WqjvDfGfjsMtyh98TEdBeXlhAK4XSGlNPGQ4HvHf5Mg+eP08QioODXb727/8dVy5fxHvLvbu3efON19ja2uKhh8/T6Xb4yld/kzOnz3Ljzh1G02lkIDuHCAHrHXml6PR6aGHIqgrsJLKrlpeoLlzgnZdfwy726QqFa1ouuQmimSDH23T3FKXO6euMlaxgRecsFSUrRZflsuJIp8tiUdIVgjIElKkheejrLGNRa5aXl3loeRXvLK2N1lmjpmV/MmR7OmR7OGBzNOaOnXDXO4KIQZS5VmQIOoAKFlqD8h4toKs0HWSU/AqFNAGhJNo7sixHuLhEh+BQPsp4nQhxqCQ810zDetZBODdnFyuhwbl4PwiBdBErmdYtvV4PUzfsGsOPguGdyXhe84cUQqbQ9BcWeOa5j3Ht2lWUVgyHQ6bTyXxYMcNwTBsB9JlCYg4Yh+irv3HvLlIpOp0u6+vrUT0VBNubG4lcFAPUfn/vCkeWH6HcvMfyqVN4oWnMOAJsInkd45jTHGesx9ngSgmypPQ0TRNxFyGxCExaa10mcEVBLgWT4Bg5w9gl+53Z1S0kMswGYj55KScP44QV+BAH6XU9pddfiMqm1jOdjjjalTxyYoWubsm0xNRDMl3QWosxLa1rsD4Fur2v6fvf9viFAT4JFDpKNPIqFWiEmFgXjZaQ0qciOURZWIjmkHFNiOBNyixIrDqit43yCH3YnAohcCFGPEslsTY2OrMUQSEkjYusthAEwsW03ExFzzkpFZnUqOSPI1Q6lhDXKaEkShA3fK2wLjbYSmpknuG9QFZd8iJnoddnNBrTeolpp5jdK6jiEa7dustZfwPvDJmOG3JwhjzPsNYmhphCCh1lwSFErXdj0+fho6Q5SISNyVYRAHWQzDMzHYFRKaMpZp5liCCQKDIdAcksi4CPNSZegAS8j9P+PK8g71HYKQJNVXVwpiaoInowOYMSEqkLhMpSoxLwssQT0NrROh99F70hiEAQEmtqZF6hsuij2DYtKq/IwiQ2KjJH5tHAvFxZp3P2Y1QXPkm1ehzvBEifDEIhhCiB0OkiT5hDMqKMcgMgbTKzCdZ933of0Hff4/59aFb5iiRPELPvzEXAzOz+Y40VDidUIW52qeVhnqLrI3QTCLgQfYOUlBEctZayKDBtbLCzTKAzwf7eLkVRkinBUq+HF4G8LFlcWKTT6VIUBVmeo3VGlsemPcuytGGq+P0sI9N5TOTUEWyVyXfpcPtPhZyIjAilI5svyzPyPEdn8XmKvCTLNMa2hKbl5JnTnHr4w2zcuc673/hTjp9oWF6cIJMfw+7Va3yTgBhO6LgIAudSckQqTnYq6irj3Noql/d22d/aARFNY5GSrN/nxIVHCdYy3N1md3srvpcso99bQCrNZDRmb2ePZhqnqiEk5ooQCKGitL5pyPOM0f4eWmcIIfjcF36F09bw4x/+kCPH1sm7HZ77pU/y4x+8GL27SKwmIWml4vu+4bNZjyeMYuvGRdbOPE7e7XFgDVqAay3NcEJW5Ni6IQTBvvG0eZQne+sIIiZES6nSvDOBZCJdTy5uLErNpqVRyiZD9F9gBgzM5FOzey/GM0b2XJhJ9u5zsEvSkhAii2YGTM98OYUSeOsTY0cQcAid6rlA2qQSOzRtzjgbUwkTm2cm9IweQCLhJWkg4nwy9Y1AkExAwWwCGqRid3OT7uI9jNTROFWClzKqHLVG6SJen5lGZTp6f+ZFbIqPrtB56CHEpMZtbuF29/DtBDGp2blzl5euX+HHowG3VpZZePwxeseOsvbACTbfu8or777LwfY1RqMhxjpq71hd7JP95Ke0U4PQijIvOL2+Qqlyzq4f5+iFJ1jo9rg2mfDGW5dYfesij7xxibOPn2f9Ix/GZCuIosOJL32FpXaKmU4jq8IZvJmlRwcK73ncBU4aj3WGkZnyhJf89brlz976MWMR2eKrK2t89Nnn0DqjnUzJq5zaGXKtkGWOEp56PMCFkIzdDUWRJ3P4WKjneUFW5PHa857goyzQtDVSebKyIghFXlYQAuPRhH6hWHvgBG8dO8O/eOVHPLe4xMOtQY2GZGiuWWhm1AYhWD16nEk7YmGhz507BzGV0cLxB09x4bHHkV6CDRxbP8YTTzzFj3Z2mAyHsSH0gbpt6S8tMdgf0F1a4srlS0xHYzCWZjzi2qV3+fp//EP+1u/973j2w8/w4rf/PDIwvKdtmghWpmHFkaUVDhYW2cnv4ZoGEEy8492m5kmKZEGRIb2eD2xiKQ0NjgrNLedogkMrjQmBtnVzI/9Yb0TzfGdMXMflTIYWwMS1aLZBKa3QiTkXCPMEdSXU/H6cyUvnjMAECJLKJR8nOrOd6XDPcTN7iFT4eTfjUyRj5nTD+TQYCCLJA8Vc/hcbOwU+GijE/SACe3pujp/WpeDYl6BFDDWzPjL7pJp5jh1K3iNwGFmKSnjMtGHlxPEYrjWZYgYjLl+6yP50RPfECV7t5vzzV17jZt0kp80IvHogKEXR7bKytsrC2jpVWaK1pmlaTNtw+9Zt8kxTT2vKoqQoChZWV+n3enzwI88ynYy5cukSN69eYTIYpOPygMQIuGFa/tm7L/PG8gr/+4cfp9na5t7LP2PlwcfwRUV+9DjTV25B00YrFQFkkmAjiOJ1hg/Rg9ArHdfjMkN2CsRSlw8ur3Ds2Y9xbneLf/7jn2BTDTFDV7WUrFY5J3ueEAymrlEy4G2DcYaDnTuIIGnrEULV9JfXGByMQOYUVYlpGrwNTMZxnR/v3kZpSd1OsYM+QueRSeAMo1GWFDZ+DuRJGeWbh+mY8Vr0IalIfEqalbNE0HiVVZ0qgh4+DtNFllN1O9y9e5s6wM3b15k0NVlR0Vta4ZPPfpQL5x/l7uYWCvjIR5/mysXLVHs53V7DjUsXcbYhUxonHIOdLfY277C4vszkznWCJ4JAHvb39rCtoVdWjBM44bzDCsWmt4hM0FlfZWFpGZ1nkFcxmEYKyCSLUnLEOx40DZ9sPbWxjK1j39Qc1GP2mjEHpmWzHrPZ1GybCbuyoXEG23p8kOR5Rtkv6eiMLEgyBIUHZS3KxpCqkoDyFh0CykNmAoX0ZHg6SlF6TxaidVj0bvUor8EHtPfRM8ul2ijERnF2DmY+Xc67ZPMRvbZDWkO8m/kCxnozkiJif9Bowe264fxiD+ECQcVwndk+rtK9b72L3nsByrxA6RzbtuztbDOQlp/2c77z6jsRFEh2IlJCkBJVdlh/4CxnHzzD66+/xvLaGnmRc/PaFYKzeBvtUfAxZEQCXkTrkejTFsBFduLe9ib7u/sUZYcz507R7Zbc2xzy9HPPc/XiO+zcuws4Zt6F2yHwjwf36C+f4LlmGkkQOqNtGoS1SbkQ63gfIjNoNmJ1zs39hyOzPVY6WmuMsWRZRRAF48ayvztAVR10fw3rpihjmIWKINP6bpOEOgTKLOP82bMs5CX79zZhaZHe4jK9bg/v43BCKMnC0iIHe3u00wl5rpHSQbB4LwgUHDt5jHvXp0wnUyQTtm8aQrPD/nifxXR93M/Kmw02Zr3K+x7hvl8L0bYhpPCM++W5s+CN2V8fBjeln9/3w3mAx/0D5/te3xGouj1WVleouj32p1MU8JOXfsKZhx/Gjid895t/zs3r1+f2FsPhgN29HapOl36/R14UdDsdfumTn+bKzWt88y++g23r2IMmsCUvSqyB46eO0Ot12DrYocgyji2v8rt/479g+4VPs727xda9e7zxs1c4efIkD5w4STOt2dvb5datW9wbDuh1CoKxKDtGuSlq6OllitLBsspYKzss65JjVZ8jVcmK13QtqPEYLRxllpMXOVWvZMX3edAcIbiA8S0mOMbCMTAtO3XDznjM1njAncmAvcmYkW3xIl5/SkVP7TwICgHKNMjGkgVJKQNdbciFIBPQzTJ0gExGEo2UgXGWseFaXqji0EaEaPEVQgz4lCqqBQWeqYuEH6UzGmPYzHK+t3OHJoX5hYSvyKBYWT/Ckx/6ALfv3GI8GTMLiVNaEVyIHncukpniz2YAWSSX5GXag4i1bPCBZjph4949jhw9yvqx45TdDndvXMdZC1Jx3Vv+YHCH9eoMxcGArOpSj/cTVqQQMote9bhENJ3tE8kCIEjMaBLtS1LNolKuQghx6DEUnlvTmq3QMnGWlghVe2b3kyBqItLQNNliySDn2QJa6UTGCbi2YTIe0V9eZjBuUX7Ksw+eYLFXUARF3u+Tt4vUgz2kbnDGUxQVZmKpJy3dLOMXffzCAJ/WIgbXSlAiTQikmDevUka/MCdmJSaHPi8hMvCMF6lQDbQ+Ah/KCYxNmzQAITaKxI0sS+lvbRtQGpwNsaUKMeUo05Iqz9AiRmjnRfQiciZNMRO4B9EzR2qND3HTVGWHIDRl2UFnBUJEolqkmI8YtQcMdu6hlKSuTaToqwOMFox8TosmyzzWRMZU46KvzkxGOSvgIy1zBiGJxFAU5Dq+ZyXjAiykIM+i70OuM4IHlUU5jRJxCqS0oMiz+Jk6B8JHWnpKNZZKopUiL7ooVZJVXSQ5nV4XrQsakaEzgW09IisARVZWcepjTGTnOEtWgm892rd4AjbEojUQmZYuCApZ4pmQSxdBMAttkHjhyLQiXzjF4oe+wMpjLxDK5QiKpQJzdraNm0kRDxlNMpkfO+fTpsZ8QiVgTj6K35pJdcWclUD6zOMilxatGTgIkRlFnO7J+0DD2c9j0/x+5l6eZ1gzY1/NYgLiZujLAt/t8Mu//FmefOpJiiJPTVtKgxMCpTKKIoJ3UukoR800WRYZTEqrVGwn1inESWd6P4fsrPhfOQN8xIwynzzduA+4nG3e4hA4R9w/pYuf+2QcGPsxloBwAisqnO5w8uwDmOmUqtdl884dvv1H/5n9aR3lHUmOJoieYgwgrwou9Be4fP0qETqKU5es6nD6kQu0xnL32nsEZ8kyzZGjR/HOMTwYMp2MybSOrEKpYwOdrhOfWG8hMVisibJx7wxZUfD1P/46J08cJ6QG9ua1a/T6fX7ps5/hxe98h8HeQRwuEA3hd3B8vR1wXvcY7e+wuLqH0zqeT6kja8QYyDqgsihRFwLlAtsHQxazDJlFFl/k25IoMtFzayYvgpRqOwP9fKSAh1mYDHE9jRK9BNDFlS/SvFMNZZ27z3w/XaUqDjJkYv9FQMEjkhfXrEoLwcdiPwEPsyAPgsDNWEkiSobeFyiTAMNYWqfwgMQw8j7aDSRYM95PMq57U+UxRPZvQ0z6ivOd+PsuCFB13EyTxx9O0FiDWl1h+bHHEAdT3PYBYbxPZhzN9gEvv/0m39i8y53Vo6z+yi9z+ugal27d4y/ffYfb3/0O4+mU2jaJ7ZCuPqUYTGvatk2SJBBiyO29XUJKFgVBmWecOXKc8ydWeOaTT3HlrXtsvP4qZ3b3ufCJz1AsLOEBtVARegsInSRLQaMIWBVB6DJoTiIJucImEPcj/QUef/k0//Trf0xrHRcefZLjx47jrONgcIDTmrzToW0MiowgYiqpDgbjDifuWmsUikAMQZqxKFWSKBACOiuiB5TO4zqCpDVNlGtYT9ZR/Pbf+l1+fOYEL736ElfNhAfFAmc9bA/2IyAkQBU5Zx95mBs3b7C/uxun5joWVhcefwpVVggrMM6ysLTEC5/8FI9eeIQ/+J/+NTevXaPf77F+9Bgra+sY43DW88Ybb2DbFuk93lhqN+a1n/2Ex5/6AJ/4pRf4yV++yGg0nAMO19+7wulHH2L37ibnz5zlXllSlSUTE71bvPdcbGvqbg9hGmSbQGcl8ebQ3Fr4QM8G9q3hXlnQaaJzmnCO1ll6RZ6koBEEw0U5t0fiRQTqfZotkhpD6R2ZylKBI9I9LtDeM7M0l6kITFd4tLe8r54KPslOXJp43rduK62SD2usXWa9WnBxgws+xFnnDOBPYFzcb2ZwYJg3ujEIRCJC3G8jU1hFewc816dTloqc4FINgYhFtJix/iCmCcWjlAKMaUApiqqHNAE3rbl14yrjyZDq+HF+IAP/7K232Dcu+oDOsWNJ1V9g/eQpOmWJzAuqqmRvZ5vxOLLFvXcURU49iMbyE38QE1034xq4tLxMp6p46JFH+dCzH+WVn/6EG+9dYjw8SLLjuMdNCHxvd5uDV1/iHzzwEFx6G9O2rD74GGr5CHLxCPW9W0BMzhVWgA14EZsH7yPzCaniEO8g1hNT1zJ1llF/iSMfeCythRG0FErSti25Vjx6YpljfYlwHodAFyVmdIBtG2wb2fbeG1SmGe2BMy3dboU1jnoyigmnbsJMBj7Yn0Sv1nZKudjDNNAOD/D6KPY+iXiAw/U5RLBoDtAmUGNeCs2GOWk/UkKA87R1m2wYNEZA1e9ysLHNdDwlL7p86OkP89Xf+E0WFxcZjSbs7x7w9muvc7dT0l/sceLMGbZ29qiWV5lsTZHe49roMzc62KHIosQxUwqtOwyGIwoJS52KftXh3uy4hACtuZNLLg+32XpjQNHpkndLOr0evf4CZW8RVXXIipI8z8iqLmUBHe9ZAU6lxEhjInvCEXBCYpWgDZ6pNQzqEaMw5sA33JsM2R6O2ZhOGTYN96YtRgis1ORVQa/I6QlF5aK8N/ppeVxTgzUI59BCkBlPDhQKCiyFj3tEBuQq1nCZFzHUIwRUAtJzGdkz3jiQAktk9MqQAg1CZM44a3EqApMhwJZsMUDh4jAxejR7tI4ppnFYGP1yvXfRS70bWeGtmbA7HLJ35ii/f/Ft6pCStkU0+ldCocqKZz/xAhtbu7zz9lucOnmCja0tppMRrm3wLqq2lFZkukh2ThCS9UEQYJM1hxCxxpbCYushVy6+S9nrc/TEcTyweuwk3d4CNy5fJrg2DUVgwzv+P/v3OHr0AR5uawISITPqpiHLBVJoAhHEhJAUSIfrokw96aGsVcQ6WOfRT8tr1tfPYHsVRzLP6YWSrVdf5854itGCnpBMAevayOEXkrXlVZ7/zGdYP3GaZrQXB99Fh7yoGA+HSCmpqgpvDa6eYCdD3ERS7+wRnCfLJd4c0E4lVe7ZunmV6cFeJFU4T9M7wcx/LZIZDodI8/0kHPbdh3SFwz5JzvqkBAr62b5yH9jH7OtEGJgRGu7HDmeswMBsfQmp1geESOSajKqqmJQltm25+t573L55g5PHT1KVJcdOnKLf77K7vc3u7g5379wlzyquXLnCgw8+hJSK4WjEO+9eoqkbhoMDnDNxsCQ1varD8lKP7e2t2N/onKWj6zzy2JOUecmxU6djWM/CGo89/gQrJ06xkFc09QTjA6Zp+elLP+Wln/4MXzh2UmK4ACqtyIqMGx7yYDCjId32gM5YU3hYygrWsoqjnZKTOmfdwrKARS0o80BHBCpRUnroWccRWXFaO0JnBb8ucRm00jO0LQfNhO3xgI3BAZvDA7bGI7aaFisVQUvyTKNDzCpQ1pEFT9fHoI/CSnIZ65277YgFrVB1ixWBLJ13qeP9K4Kn0DmucbFGFoKmNuy2NW8VcLWpD1U5qSHoL6/ykRc+zq0bV9ne2kQIQZ7n1E3seZVOCkCZVAYqsv6897Rti3MWHyLpiABaqbnaYTIZc+/OHdbW11laXuVgb4/h/kHqKSU/q/f5znSR30CyuHoEJxTW1QjnYk0mw5yZ7tP1F0Tik85sPdL/lNJIpfGmiYz1ALLI2W1r9oUhiGjVpomYQBASS1Tn+eBSyZOYe16QpbUUGUFF56KH6+hgl6ZpwE154VSXh1YVRSZoh2P6a8fJujmT4Zju0gqdlYKmniDrDaTwNPWUX/TxCwN8ghhI4VyIlPggYvqTiCCESMbrUs0+ELBWgJQ4RJTWEheXTKsojWkDWS4jS8sJhPTxolYCYw39XhXlBi76wsxiwrWKApVOmVHmEiVncfJJbiAgzzKclwSpQWqyLI9sJpXR6ZaYxmOncaOx0zH1cAvvW3zwVIUGm0yyEXin0DIm2uVhxGJuEvDmqKctwZpo0JgacEGcPIoEVM28AIWfLcwhTZsFiOirpNOGr6VAqyyaZKbPXqrYyEkpMMbgk85dIrCto6yKOM310edM6YysWKaoFnCupegIVFFhrUPonCzPILQ4ASqAqRuEDECN8QItBJjoASNtjUOjiQ2KkCo1+9EfoEURrEVlDjOt4yTMOsqFo6x++MssPvEpdLVI8JbWRWnxLMnLOBvtwZInUEiIvE5gxuwzFLPNhvvYerOCNcyhDJh/PbvWZhvffY+QTKb5uZ+Fw+eYA373bXJKZXOJVELLEDLElK14JllfW+XCo49GQDkcFs73vTTz0doMeOQQoJx5X9x/bDPQc0bcuH8bPzzw+zbn2bGlpmA2nptt8IcTwMQAE/GaE4mCb6wBFZDK0ys1xfIxbu8e8O3vvch4ZoavI2vUW4czDTZ4qqLikUcf4+69u5h25qcIsupw7vEnGNcte3dvkQsBWYYqS6aTCYPdfaRUdKo+C0tLnHrgLBceu8DK6hpF0UU6z2Q0Ymt7i+vXrnD9ykVG40HyjzFkWUanytnZ3KCum+iLpkBliknd8Nzzn+AHf/EXjEbD1KAHrJD8zBtuCngkwN7mLRZPP4iqutjpNPojWItpLEJGdsTQtbFQxeGzHGOjp5wQPspPUyFpk0dXZPTJ2HCKOIwIPkQ/Oxs3oehhmiQis0GpCIfsvMQsml1HYXZRCqLnX4gbG465f2gSBeLwSd5LpJr7FNIj5VyqEp8u+SWk858CvAgygoOxwIuphTG5NR6P91F6o2QCBFyk2Q98Q65Vmn9FdpNApuIyhu4451JwUTSoNc6z3Yz54HPPI6eGcLCFqxuEr9m5dZM/fe0t/gKL+vwL9JeP8r2LF7ny4vcYjybUto6AdWD+3oOIyWTeWqYp8U0mb5pZ+RuEwgQQeEZty1u3rvH23Rt8Q0g+ur7OF86dIdzaZfD1P+bJL32RpaMP4G5vUZQFTa4IUqFUhk/7Yatk9Db0IqYja2KYR2346oUPceboCf7H//x1Pv3xF8gzTesdS0uLtImdjVQoaxAetje2OGE9KIkzNq7JOg48rLfkWRTlzwy0pVTRCyQkWwXj0bkGpdF5hs5zemWJVpJRY3jymY/x3POfZOf2HW6+/QY/fe0lTp5/iPb2Le7cvoFXijZ4huMx1hhKnUeGsi44/8hjaJWTJZaJtTENThU5v/d3/x7/5l/+S+7ducODD5/n9OnTOKnY3rrH7Zs36C8ucO70Kd5+612MNdSTKd/61jf5h//X/xvHzj3ExTdeQ7joQzMdj7h7dysaVK8ewSmFyksE4xRwAre95cC05AIG9YRKZQidxYFACGipKHWghyWIwI9t4APGEYxh4h1SKybGUgmJFB7lDdKHmDnjHdp5tIjXtpr5oCLiPe4d1tto5QEEomWBnK/fBiljrRJ9kdR8sBTSniJnQUCzFLDkATMjC6LiPiSIddSM5WOtRYUYsBOBmZAK6LSzSRUZfvM9MIZ7SKGwrUl+qNHf1SrYnEz5YKcfm2jh8TYVt0qSK0XE5uP+5Ilm59Npw5Hjx1FSQ2vY27rL1v42xdoqf6UD/+ryexz4ENfGAAGJzAv6q6scO3Gc6dSyuLLMzuYm2/duY42h2+2iyoLJZMzg4AApFXmexwTJOgaS6Sxj59499oRg6949VtfXOffwec6dP8/rL/+MuzeuY6bTeWdrhOKVesw/uvEu/8fjZwkX30W6wMr5x+idOctgewPtLMInlkuyPVYSWh9Tl7VQEGQ0eVfx39JCv6rY0JLgHZmMQUgIideao0uKJ9cDtHvI4BG5Is81E1PHVUoqtMqwNrIGrZ8iJYwmY3RexXUFcNbgEeR5AUhEUARn2d/YRGkVQ0cWjkRmlp1dODOmZ6oUfJhLyu+vF+ZBYmKWABwlpKZtI1Mmz7AyY9q2ZGVBpgs++MzHef755zl58jhlpnn37XcoypJMah44cZIjx9foLi3SXVpGFBX/9T/8P/Ot/+UPufT6awx3dikWl+itrmNefgshJdNJQ5ZF5lxoDdO6RVYLIDRSWvBxsPxj5ZhUDRd8y0lvUFPJqLlH2Ax0pYyD/rLDcrnAUrfPUqdPR5eUZUEnL8izHN3pUNGJQ13rCTYmxgcpMVWFFxUgUb0Md8Jhc2ibmoPaMAqG/XbCzrRmYzrl3nTClm25bSfUdUPwkYxQaB2VGEiyQqCDQKpYG4TWIJxBBygdyNSsV2KKFlBJRakUhQhkqbLMQgTpCyURNloKRGacQEtJYx1KRT/k68HT0xprWiZ4XCuQwVEURfTwijp9jDHRuzPLkFmB8Ybd4YC2V/HH27vcGU8QIiUyi2itoboLXPjQs9y+s4F3lsWlZe7d2+BgfxslY1hQ2e1ijEkDYObrXp1qB6kUXkU5rAgqWcqYxO4RjA72aKdjOgsLHDt5ml53ESE1Ny69gzdRAuhRvGsN/25/m/965QhL1qJl9EB0pIEMKUme6I8pIDGSkwrBR/unyM6JTT1C4DJFtd7nC49+AFn2OBcUFy7dZmthyBtnS/Y7FWf7Of/2p6+wGTz95QU6RZcvfvHznH/kYaqqw8LSIoTEVxaQFznNdBJZqm3DwkKH7WZCb3EZM96hqWtCrjCTAXutRbRTdFnQ7kYfPxAomR3Wf/ehbbP7d1478v6eI7YVscfwYQZ5hMMe4bBlOvQYn/UR9/Wfc3/o+e+L+TIiEvgx60mkEDz2yHnefONVOt0uB22Dd4bvfutb/PXf/V2eff45zj/xGGVRsLe9zd7uDu++9S47u3u8+P0XOXvuQSbTKa21XLl6lcl4EgNrQphfT8eOHEGJwLH1dR5+8CGOHz2OE3D0xEneu/we48mE4KEoC3IU165dox5NUv3vybKM5aNHee7Tn2Q4HLO9eReA7a0dxsMB07oh4FFVRt16pArohS5tkBwEx91M8Ep9gBrv4FtLx8NKkXMkLzilNSeqJdaqHstZzmIBuYhS29y1YGty4+m6wLqueGSlD8fPEFQMx9gfj9mbjtgYD7g7PODmeMx2UzNpLbWN7DEpBTrTgGbSTjkq4EPlArKxeAmNjQOGkHIRggpMbY13BmMNpcgI3rEjPD8eD6mTX/jskZcVz7zwHHc3Nti6t8XK8jKj0YjpdEqWRWZ7nuUsLS9z7sGHeeyxx1lZWSPTGmNaDg72uXX7Ju++/Ra3bt9iNBoQUiJxkNGzmuDZ293j+MmK46fOUHZ32LpzB4iJ9X+ye5enj/e4MBkiul3q/WnMdBDQGjvHImZBOp6o+iMkJnTyD1Z5JNB40eBEtBoYescEg0LQ15JjquSoKFgoOlxsBlxvh3gBxscBkEQglMKGGKbkBOgsR2tN2zbRgkhKOh146ugSTy4H6v09XKaRvmVn4yb1tEWG2BmaMIVg8MGhuiV51eEXffz/wYMPnPVkucDYWDXG6W4sMo2NRZwxJFZLTM8NwaN1nOBEaYBHCWIwBpHCnlep+QoqMgW9QwiNd2DaKFHplBofLGWZoaXC2MgOaa1EFxU6zwlB4L2kqroURTQpb2uDqeNUzTQttR0y3GkQeAgx7j5iK5HRURYlpOmWS86JcZIb2V7NaIhc7DIxGQ5HcIEiz3EuFc4yevkILVEqBWM4g9YK4SQIP2cSqdS0KSnTNR+llRHAFHgZm9HoCyeSdU9k4UilyHWGcwKd5WQqphp7BCLvIPIOqruIxOHqMSHkZHlsL6xvIURStQixAVd5Hp+7jX47pmmj95ZtkcLHBE5d4U383DtFhgxRElZogfMpAS8rycplVp/9MouPvIALino6RWWaLM8TayaxD4kNUDTaFAgVpcVCSIyJenmdWETMN7h0Od63ic3YfzPgaoapzX9n9ouHlzLz6dRsw5z9XNz/t4dAn9Ia7xPzTR6KeyP0PX/BQzAmbb73HdYcrLv/2O876oiq3H+UPwdWHv7kEOYD5nKw2fH8/EQu/SNJeRNAxDyAff6ejG3jdFeVbOyNmLY3WOj3+KuXXuXqlSuJhm0IM/YX0XstIOivrXIwabhz506SmcTC8PhDFyg6PW5cewvfNOAdVaeDaQxTM6UsOywfWecjz/0Szz73cdZW1wi2pfEGbwW5AyEcD4VH+djzL3Cwv8Urr/yMH734PQ4OdhmPx/jBkCLL8QH293YB6C0ucHCwz+lTp3jm2Y/wg+9/D2cj8zcI2BCe7/spF1SHyWBAvndA3ltmNByRa00dDM40FIXCC0sjI3g+mtaIAAsifpY+pOJxFmCRWDVxNUxsVxMHAAQQmU6m+amYmgFTIrEhlUoTZjdnWM6nsTNAgJCM7/386yDjKyJmSZvgTGSP4gPepWsvSdk8NhV6KdTDRckKqQAOIZnrh+jxNQPRYhJeBCtFmIUeJU9MrdgZ16zmBSFE1goChDz0CQypUI9WDp42OLbMmKPnztLNwG5sgp0iUdy6fIl/+8arXDp1irWPfpgf3bjDW9/9Xxg3TQq48en9xrRTiUDnGUJqqn6X1rSYpo4DkSDeP8WOH2ic8EMczniYBsd379zmNb3Fl48c4zOt440//zMe+9yvsrB+nP03X0Hu78XwCxmDAawQuLSPOHySH+d4leHLkpAXnFhd4h8+9wlsWeLaGqcVBhclz1Im8DSDosSbOgIyFAiZ7BiEQmki23cmrxSHcplA9IjRWX6onJmtCyFwan2V5bV1JqbBGIt3hv3hPh//lc9hP/VRfvDKW+Qry5w4eYzd8YjWGEyIz6+FoLWG/toayysrZDLw2o9/ysrKEkePHycrCpqmoVpe5Lf/5t/kO9/8JoODQQQnhOUH3/02SghWjp3k+PmHuXp7E920aJ2xu7PL7Vu3ePzJD3DlnbfnSarGNNTDCeVij3ubu7RConONLoookSaw5yx3CFTGUOo4MLLGEdCoFNKjdGA5eD6kBN8b7bGwskanjcnOBM+gbWIASwgUSqGDJ7OKXCtKLaL1h1DowNxrT6TzDNFyBO67z3xA6XTdOz+XsUvAy5mvXtyHhUtcizBLyI3y2JBCeZRPE3UfU8pRMoH/khAiCh9CSltOHntRZhJtNSAOBZ2JHmQuAd8hRImelpID65E2UKXBnRPRX0wSWXfW2hh2RtzTXHAYE2V4hS6QAQbDA27fvoXuLfBOr+K/e/sdNufyfhHB66zkxOkz5P0FOp2KTE557+IlgrcURYF3jr3dvegLFqL3aFlVEeDL4vm2rWFxeYG2bmJg1WDAZDLizq1bPPzoYzzz0Y9zqb/Eu2+9hplMSEsjBskbbc2/uHebv99fxVy5hMwUq6fPovodzPZuHADoJPHG45LvoFAq+qH5mW+Vj7VOIQn9DCcjKBZ3ZA0aTvUEv3y+x6LbRogO48Eg1nrWAh6hNDpTaY0tqccDWmOI858ME9pkhB8BO5fWukAEjY1zaC0QEpqQPBPDYXM+Y0oEIqNCANLHtUAKQdO2CTCM18qMgS6lYHF5kd5Cl42tzWgpkSl2tncIwfPwhUc58/CjjAZDDg4GXL5zjd//1/+SX/uN32b92CkuvneV/toyt959j6eXltnY3GT9+HF+7bd+h9GnPsute5uIqmL95Gna0SgFanikB+MdUkBWdVk4coyZkkFlBYuLq5x/9hmMbfjOe+/R3L0DjUPniuVej05WRFCt24vs/sku2WADXVukdRTJJ63KCpbKDovdDmvdBY50u6xVOUsio6sqqlyjnUO2DY1QBAOlyCnKgjUrCWoNUVr8scj+s1LSEhg3hnEzZVhP2JkM2J2O2J2MGTUNI9PQNIE2CLySkMW1PHqiybk8T4tA6RyqNWTthFLEkJk8RJw/rk2Qy2g+oPBkxMAcZT2N8LwxGvOxsksjBBhLlto+Y230GZ3NEdL3et0KqRRtaxi1ho3VDj+8fD2ubUJCkNHHS+WcOP0gWsBwb5/jx49x994trGnQUlHNEt5DZPmvrq6yvLzCiZMnWVtdiwyX4YiL711ma2uD0eAA5yxlnuOdo5nWaX4QKIqc0WDAQbnN4tIKx44fJzjDjffeIzgTaxAk35kMebbT59O5JmRZXBu9J6hUsxDuu2eTiisQPXhSvWKMjSoeFX3Zp7nm5viA25cv89SjT/Kozil7FY/8w/8Djzz5aFxjd++xufon3Lh9i2c+9DgPPPwwJ89foCgKSH6umc4IzuKsxTtHr9/HGUdrPE3jWFg+QlZWZFkZh8BKk/XWWH3wPM1gn4fWV7lx+T2Wej0mkxHTeV8gUp+c7vd583O4188kte8nQry/Y7i/j+K+pxEkgMQn86FkjxTrrFltO/+zw6eYsSPT6vnwQ+cp8oLhaEhZVQRruX3rBq+8/DOefe45dF5grWX5iGR17QhNY3njzTcZTSaMxxOKsuTVV18l0xk7GxsJHDoMAMuLMh6XEBw5eZLpjVsslBkbd+5ws7VJpq1mbQ+tqQkByk5F2zTgo3eaM4bJaIQInra1rCwu0Uym3Nq+hSewvbOThkwFu/tTrDExXEprMi3pdSuyPGco4V5wUE/xkwmFuEvhHF3gWFmxXvU4WfV4oNtnPS9ZqgQVHuUcwvsoQRYSpTLWF1c4unyER1pDsJambalNy7BpOWhq9qcT9usxO3bKrpliveKhrEM5rVO9JpEusmWNc9HnP5psoIiWH0XRp7GOuzjeGY4IOt0TgJaa8+cv0DSGzc3N6HFpHU1rojpECJYWF/ilT36ajzz7LFnRmVuCeedQAo4eP8bjTz7OZz7zaS5feo8//dP/xLUrl7HJp0+kusKGwGg05vjJkwilmI4nDHd3QUhuu5Y/H26zrhQrS8sEIWP/FqskjHexVhJRsRRTlqO6QAlw3qKz6MvZWIcNAqlz0Iqpb3l0aZHHFpdZz3uMQsvN/QFXx3tsu5pekWG9pfaCXOYEF8i7XbYHA4JpsdbStNHXMNcZa0vLPPTAEc6ULaf7BuFraKMFmTUBUU8w0yYChT6eT601mcqZOoGdtvyij18Y4HMePMmvTkTwziEwNhaKQogYyRximMYsEr0s4lTLeksEOlOkdkqdiqJESXARMMzSJCZqtyVS5YSgkHlOUZRImZEXOZkXFLmmmY7RUsamx1msbRnubrBnDVIGBI4QYoMaElDmfEiRxXEx9C5QZJHtUtcG7+JEtrYm+YRJlIyoddnXVKXDIFABdC5RGnIdG3OtdTKadImFA14pQojyYGtDlB8mSXOu87lXSiwsA2WRYRsDKoJ7nhgSEi8Qhc6yFGCiKHKNEtFHQmU5UhWofJHeynGMleAbtMqRRYltp9jpGKkicygYh1dxocSr6NGgNdIFvKmRQWGdQBQKL3OKvIMJ0bA9zwuapsV5jZ0ayAOq7NI/82H65z6CPPowWdkH61BZ9H6LTT1zk1edzPvn0tLka2STfn4m1xIJtJvBaqmUPWzUYQ6uHSJ0cSObe+bdx4jjvq/nf879bLr3/SClUqqZkgoQ7/t3evnkpZZAvpkv3tzF9j4MUcwCFe57vZCmZGJWlIv3baJznC69/1kDPwPsZsc+Z+3NDn4GssD8syBN8e737Qg+essJAt0sR8mMt6/cYbC7y80r16KsVMbi1Idozk6IVG0jauq6ZuPuncQWiIEaxx+6QLl2lCuX3sa3NUoKmtbT2ugB0e13+MDTH+bXvvwbrJ84FRvIyYirl9/lxs1rFJ0+R1fXo6RIl/gQaD380md+mSefeJI/+tofcuP6dZqmJnhPnuW01qIzxb2bd8mrivFowsc+8ix3721w5fIlfNsC0VfmR7T8llhktTWMtjbprSxHv04TN8PGN0xqi6g6GA1lmWM8DMeTCPgSfTNj/EY8FzPwKwSPhLlPnk/sz8a4BMB4sjwnUthjU09IRrFpQk+YTVbjGhWltVHC71MYjA/pnkiyaR+N2hBZ5NyGMDPgn10D0etvzrrTai5rm0nTD+8yed/3wNko9SJE4D16J+l50zANjlHdcjQrU0MRBwOSaNEwmzTLxDZx3nOgLGOlOHv8DH5/iGktWSa5ees9/unrr3Lt0UepHn2Uf/Ot77C9vR3pNSKxpUVcC6uFBfpLK3SLnNXVFUajKXmnQ9bpROkaAddM2N/YYLi7x2QwQoWYfD2zT5ivHinEYddZ/ud7N9joLfM39CLXv/0NTnz5txHrx7CvvUJwliCjqXcrNCKBubWUc6+jiW0hz3FS4qucquowHe+y9PSTiKzDvGD3DussuRJUvT7Ce6oiJ6g8DlbuW2u89/GWT2C9kDNJXmSK+eTreCjTCSAkUgQKJcmzag5u+gsPU2U5/bLk9BMfYLh/wPadO1y9fo2v/dmfEYzFz0Be51hcXKDqxAHY3tYGb7z8VwxG+3z0uY/z+BMfACnoLC3y2c//CrsbmwTnqcqST37s43zll79AyCTFQpennvoYzjoKnWNsw/LiEg8/HEGPZhqi15zzYBuaoSPXgpWlFfx4wHTvgNZH+bhXOZec4YzMqNuagphMh9D0u126nS5SeNYDHMkyFvs139/bZLOeoqWMoSdKsZgXdLVG2uitWATIQkC3LTL4yMYRMb1YIVLipYxeWsJH5lNsj1CCGKYVotWI9qTQKhNZc0KifATZZBAxfTUkNrsQSekfwRtr7fyeMYHoexjiYEzpDGEjU1zKWCfYEAcYc4BeiOhxPNsDRFJBhOgtZ5XivabhaF6A8xFIgnnSZHCJ1e0ciCj79CEwnk5Y6y2hhcTUDXfu3qXNcg6OHOFfXXqb7RAHPCEBl7IoefDJD3Kwf0C/Krh5/SoCWF8/wubGPQaDAc5ZlFBzg3aAummYTKYURRHBn0wzOBiC95RVyXg8AeI6dO3yZfYPBpw+e4bF5SXeevVn7G9txXtECIxX/Kwe8cc64ytlh+ziZYSUdJaW2d/eSYOPtA4zc+ARCCTWOqSK8j98IDiJKktapdmbTCMzADCuYbmCXz7X5aFqjBaWZjKiLDTTuo5SKyVxSLxpsC6yEZQUCBfrYdNOo7+XipJKoTIInmbSINEIqTCtRWtPJiQ+ZORZiUvn77AeCbPef17DEGcYaK3ngxqXmvMQPMF6qrJKw5zAtK4pAty8cZPg4WA4wOuMrFvw+stv850//U9MJmOGwxFPfvQ0Xz13luuX3uYbX/8aK6uLrJw4xcFgSJVp+keP84HjJ5Ei58rtK3ghcCZ6FJPA1eUj6xw/eZTG3GJxZZnJ8IC8rFg/fpJKVDzyyOMsf+QTXL1+lZ+99Jds37nD4898nJUTp7lx5SpXrr1HO53Q7VQsLa9TlF2qqkvtDcY2KO9xbYMzY9qtLfzNBtUYeipjQWes5B1Wi5KjZcXRXp/VTo/+Qp8lH8i8JhMKnAFvyX28fwkCj8VlBeglxNJJZJFBmeOVprWGetowbSeMpmMGkxHbTc12PWS3HrPXTBgZz4HxbHiHExKpRNwLirguVVKifFyXcifQFjIfyFN94XTGNe3InGJdqMg+TgQA35hYVyXwJXiBFyEy75WirmuM9ZBrfjQcc2ANJJBYSonQmtPnH0FWFRsb9zh77gGuX7pM3aahvc6xrYVgObJ+ks9//lf5wNPPsLK2Ftl83kVigpc4b9nd3+JnL7/ED1/8AXdu30TlGZ0sZzoeR4DMRyD/zo0bDA4OOHn6DI9/4Cma6YR7t29GFlkQ7Af4+mCXJ1ZyltEUQkTFkY9s+MAM9A7Jc4/5AMX5aKdi3Qz0i154W5Mxb5l9rm5LnvnIp9jauEfxwBryoXMsB0XhLXL9GH/tH/xdppMxlQCdF/gsj6qj5JccB7Tx9ZWSNNMan0gUeSJiBDRt42LQktSsrh/n+LkLOBPBtCP0qaqS9aLkzq3b2MTIcu6wd7hfsTMnFMzn+YcKnvgxzLycD5umwx5jpp46/N5s+EtaA0OIzO0wqxPnvQTz9SYk5qIuc174xAv84b//g9mzUxY53/nWn9Ppdrnw2OOAoCzjavXx51/g8aeeom1bsqLgnXff5b3LV1BaMBoMMG2b8h8EZVXxyGOP0On16C4vYnPBMDTcffMdRrs7oBTWBwKSZtqipKAsM5CBad1g2tjT55mO6y6RuCSkxI6HIBxlt0NTTxHpPU3rKXXbxLCYFLhQlDnj8cF8oKKznH5/gYBHVh3ybpcRnnebhou+xu0dUG40VCawoCVHqh4nsy7HiwVW8pJFKalUoGqmFJmiozQqzymLggXrONoGcGCMxVlHbVpaZziYDBmODjDFlNZMI1AjxTygyCdbD++j/1wwDl1m1DJws22pRSJrSJBBsHJknfOPPspLr72KaQ1LS4vs7e5FJWYInH/wQX77t3+HpdVVNra28H7A8uoRGpMGgVrx9utv8N7ld3nqA09w+uxZ/qu/8/f47l98mxe/+12m03H6XON9vnnvHgFJp9vj/GOP8eYrL1OPBhgP3x9s83x/iW7doPKSZnQQvcKTRHYGXfvU08/CL6yL9bTQitYZ2tbE6sx5vJQMMk9XSfZ3d9gzOyBhqSrZqjIqL8ikZ9x6XFKqq7xiVDfJYiwmmUudkRXRNubC6aM890CJHhygVEzVDsJjW0MIihA0WQbGtHil6FWLTMYxJGxhqc9Y/hzm8L/h8YsDfAFqA8rHqHXnU+WJwFnQOjaPWsWpVJ5nc2mqVrHJmCEymYrJg85HX6QiE3hynBc4XYFQlJ2KIsvJc4X3gnoyjnHwOEbjAc5brKspdMC2LZlWQEApERczD87Gf0ejWhdNIa2LclpvkyeTiig68fCkjPJfa1vyLE3xM4UUCmM80kwoaTjIKnKhybwjzwS5zmlMCyL6UznvkVmGMRZm0maRElggFWSBEOKiqZQkyzRlnkf/K1Loh4iU4tgIxs0rEgB8lAfKgC40GE1QHfL+Knm+gG3byBSxDSIYlJsSbEOwLrKOco2UIjYmQuJtpJr6po6pNkoTjEEpGX0Ki5IsxImXlzGdLUcwFZGio/vHWHj4oxx96jOEYikGingoqw5CqQRY+Lln46wJnk2GhJDzpsbPGH2zi292+bxvNBW/nAXrzkCs+YRpvj/NJloJSLmP0fa/gvjS+ee+jTCI6EEWwbiZd136i8B8Ez3cNcX8B4FweHzMbpdEaU8HOyd8pacIiek0Y4GJ2ffve2qIk4qfl/Eesvbmr5YSgGRq8O774BIgOvuetw3ORLlMr9tnZaHD5rjH9Tt3Ud0uvSRH9sFjncOZFlfX2LYBa9nd2oxMlQTQ95dXOPXwo0zqAeZgDxEsXgiKqiBTirzI+eVf/wqf+dVfZbnXZzycMBkNuPLm6/yL/+6fMhofoPKMj73wAkeOP8DS6hEeOHGGU8dOM52OWDqyxl//3b/Nf/rPX+e1V15mOpkgvEWKuHEEWqpOgZaCjY27fPTZZ7l1/RqmNfNzcdVbflZafqVVuLZF6ZiiaIcDAtH7JpqVezbrBlNoZNkj7/QJWYaZ1FDXSAfM5NuzjioivvH+dklWl+R6MTXQ4ouAyGKhLdQM/YoJe04QBxI+BRchCDbEpOwEgHjvI3swMYe5b22JKfeH8l/iPp9khkQpoBTY1qLkoT/G/EIJILyLU/Hkkzl7bzMDd+cDQgkaYxBastXWFAnYdoG5ZM246Odl2jbdX55gA14K7k7HfPDCkwgTaIZjdJBs72/yr959mVtPXaA8epQ/+fofMWpiYqBTEIQkK0v6S0ucPHOO4WDI6QcfIgOqquSxI0cYjsYEKdnfO2BhaZGmbjl+/DSCgAiOa5evcPPKZZrJiHmAwgx4T0Vui+Tb4318Ifg9+rjvf5uzn/oSzcIK2XA3yhhTo+QSGAKJkZnIV4VWOAKtc4Rg6Pd6CB2B3UJlOHwabERwSOqc8eiA4H20XZgV8Ol+nRUxpCJp9pneP8SI11r0cYuJmnHd9SGdGBEXyOOra/F3rCMXiuXlZZaXluguLfFvvva1GJ6kZGLdS46trlLmOdPhiLXFJbbuKLY37/KNP/kj3nr9dT77pS9x4txZNna26ZUVRVngnGFpcQGJ5MjxE2QLffpHjgHQyQpk26b3f4dMa8bEYkUQMM2UqujQLTUrC32uvzNIXkpROua854q01HRZ7XdYPHaEcmGRordMWVXRj9E5slyzJAXHFXyqmXBjZ4PNgz1GbcN+2zBylmHbMG6jjYTB4wUgJbnIqJSmkALpMwopyaVAeIPwPiZpEqW3eB9ldD4gvEdnEoWg0CqueVaTSxDSR5ZcCCiibxUhIJxHE0E8EQLSgxZxDfEikKVmKw5Ao6G9DDFoLIKCEZLyNt6bQaRrS0Y/RkgeiyiUgImGrbrhof5SNOaO7v5YF0HLOASKLGIXbBzOWRdDzbIchOLgYJ/xeATHj/Pv7t3h3ek0Po+EgCIvexw9dZrRYEAnL7h143oclFYVdV0zmUxT0xSbg2hpIsmLyPKop9GfxodAbQxtXaMENG2TElE1PgRM27C3vUVZFnS7XU6dexgpFPubm4Qk+66D4LvjPU6rkspMcJevs7ywhDWRPRaEIGiFF9H3NQIDcU2MeSSxfvNpPW4TUPrEA0sslRIzOeADZ1c40YvWJoIAxiGrDlopbFvjE7NE5gUIOHLkODsb9/C+RWcSgkLpAkdsNJx1kJjaeVHEAagQUZWSCTItqKcN3ocEWMxUBLGxlkJEsed9sqX5ehLi5zrzMcIHsiyn2+nh22ifUnQ7DPYOuHnjBkdPncXWDfvTCd//3vc5dvQInVxz9tw5drZ3UNby7muvsXX3Fn/0H/6QT37uC3zwox9jsLfHbjvk9LGTZEHz0k9+RmscbTtBEMjznLyo6PW6aCQHm/dwxtLpL3Lq4YdYPrJG3s3pLHUYt4bVE6f47Uf+Dvfu3SUrOvQ6fVYW1zj70EN8+5vf4O7mJrfv3I6DjsSQKsqCbqeiyAuqsqLoHaFar8h0rNE3jOVWW9NOJ9itPcTNhswHMi9ZliX9MueBfpfTi8sc7/VZzjR9oOs8nTymWmbEvY2mxjcNSmqqPONI3oF+P8nsPV4GHMmLtLaM24ZxM2ZUT9ivJ2xPJ+zUE7amE3amU263LQNrMd5hRVT+SBEluiJIWuNYwvPFzjKytpjgaUMghFhbe+HJVFxvrIsgdiZzlCpxHhpnqRc0P7m9GYf9QSK1JFM5/aPrrJ87y80rV/HtlPcubtPpVbg8MnactWil+fAzz/G3/6u/Q9UpGQ0nXL16jb3dbXa2NtnZ2UNnBb/yK7/C6vIqX/z8F/nEs8/zwx//kG9++0/Z2x+QlSXB2cjgynNWVpfZ3tzh2qWLTEZjPvLx5/nWn/4J0+EgAdCeN9qaV6zhBWniUEAKWhMtZoRKEkUvCSKSPAhxyBGQWGtTzyDj/SFgWwd2zYhbN+/wV6/+kEtlh9WO5EOTKT0vKQpFUIpSK7LFRWht8l0+9EaMafZRieG8SxYOglwrgolqLqUVVa+DEFHyh8sIukCKjCwP7Oxuk2easlOipEaotGYkdcZsSO8Ti29W1s/IAXO2WyJIxJ9JEo/icAhEYunNWiKSA7QP9/2en/cfafGI91Xq5ULw8xTTEIiD7OB56KHz9HsL7O5uAzCdTuj3F/jzb/4ZznmeePIpOikETElB2akw1nDx4iVefuVlOp0O7128SDMZ4Z1JTGrBytoRiqJDt9dDSI0MklvvXmTvzl2CjwGV3nuyLE8e7vHz0VoilZx7qjMHMmMghM403kVP0KWFBWynSgGf8ZpsGxMbShH79sXlFYx1jMbDFDZh2dvdxgfP9lYkrWilqKqKquyQVxXZygKhU7LRGG6Zlp/UB6jxNkXrKa1jSeSs5wVrRcaJbpfjVZdlndPLM3pC0ck0pY4kpy4QtGIV8MFiQ8tkNKAZT5lOJkzG+xjTIqbTuc2D8bHWcM4y0RlXncMlvEQiEULx2JNPcuX6NZy3VJ2SyXiMNzEE7qGHHuS/+L2/jVAZFy9dZGNzg4tvX+RXfu3LLCwux/srePCen/z4R/zwhy9y/vx5vvirv87nPv8FyqLkG9/4E5rpJFYyIqBEYH93i6WlBeq6YfXIUe5OpgQf2PaWF8c7nBQ5i3kkV8jgQMQ1TCmF9TZ5iQvyLHrfG+9iRoCKganex2RtG4BMsTkZ8mQDn+iucmx5gSWbM1rs83+/9yb1QsWknkQLpiDRQqBKTT0cMbNKkTpDKU3V7bG6ukKv0iz4CVo1hHyBtjVMJzVlUWBlS6EVrW9phaQsu1jbRMNAGdDeRPLML/j4hQE+HwTGxXRbKcGGZP4o49daAkFFLzkRJbjOBqwnTrilIPi4WOW9LkJqrIW86NLpdGLyrDXYpsa0Dc7vUfs2FmcyIISlNZ48i2CRFpDJuEkWWsXJtlQ4GwENKcB6C4h5mm4QgqzUERxDJDBSQjo+SUBoCdLT1UWc2ofZ5CuZfAYLzmFkjshyOjIwGY8IISZ6zmQuIGhnXmSEOYMqIDAuAlwuOLTQFFlGv9fFtg2SEDXeRZaYgIHgLRCnZXFRdjFBlAiuBUQsqIPDNlMEEtOMUMIgsLjW460iBBN/zwSyoONzZzneTEEqiqpCOIupW6wNKF0gs+jVIJJ+33lF2enGi9IFst4qneNPcPTpz6NXzsaNSipyEX0CVNpVfAAXZiDaLMlPzEEHSOCeu59BdAiKzR7RNPc+kvkMyDvcpZgt34cAXvQ9nMnxSOdCzF8hgjFiBprN2G1JAjfzrxGpOBaQPGvun3jNwLcw/2JOmw+kSfWhD97sd9//X+a/k54pelsmlHD+/MwK+Ps+hAQSzoCA+zd956Nh8txZ4+dBRQJbl16iN71LZ/kU+apmpV9RbBWcPPkAO2qT6Sijno4xTYsRAStIbKcIqAmStCyA0jnnH/8AG5sbHNy5QbCGLM+p25ZuVaC15rNf/DV+6XNfQKicrZ092taQK03Z69Mm9q52niuvv86PXvw+ZDmnTp7hH/43/xe6ZUXW7XDPer74q19FovnpT3+MdS1lllFPo8/R/u4BeVFx+b0rrH38KI9/4Cl+9uOfRCBLClqh+ItQ84msR2amTHYPULrCMUlyzhaDxwBbAqrWYgf77GQCqSWLVrAIh+w9ka5tE1k2UsbNLliHdy5NYZMPl/N4AyGBaypXZLlC5jIli8egi2BdSsuLgIaXAYhFHCKusVILggnJ2iAxCIWN97oQiCT9ZzZ9JUSzWSmi/CzMrqeZV14y6LdRQupTWpSUsfl26QJ0PiVsBzAIbk2nnMsrjIvHbI2NzX4CDF26VK21ECQDPEXV52RvFTuISbm1qfmDK29x8YFT2GPr/Nm3/oKpjWzoACA1Zb/HA2fOsLp2lG5vkfOPLtE2NZt3bvHexbtYZ2nbNk47nSPLcvr9PgsrKyyvrSEzzdlHz/PwB57gxuXLXHrjNcx4fFgsC+Y3SBvgu/UOS5nib+5ssf/Ki6gzp2jfPIhhUylUySU7hZC8DJESL4isdqUICJzQZEeP0wpNa0wE4jIdpxcJ3y3Kip2tezhrUfksOCjM7+vZeZx56eRFMgdPrPjYaCRgF4FMaeR+XoTPinoBNgWrpEmGSIONg3pK6zyl1mANtTFkCKosss2npgEZwwTKLCcIwVJ/gbdfeY2r713FGMOp48fQueQH3/suD55/mBtXb/Bf/p2/Q6YElgiQGGPIPFhr4pArL0FrrIlNUNO0tCZne2+fQGBheYm97V2kkwQXWSm3vGVHBY4vLvHgxz6O7i8gyi5ZkRHaeN+JTEIWG8CltuHMdEx9b4d2OMD6mIDuvMeYmqZtGDdTBqZlYBv2nGfDGvbahmHbsl031BOL9R4kidklyYFcaqpKkUkdmXoiJkvrEEE/aR3KWLSMCZsYiwqxyNVSohHkUoEI5FqhvCBP7DApIbOG2ZxL25ja6xNT2NoQU+4TQI1UaSAlI1M3scWNIGqGkbzX1qxkGTlp4CgOB0UzACjKXRw2OJy3tGNDKRRKxBS5rY0Nym6fb02GvLi1SVCauc+rlBw5dRJVZAy2d2ikYnlpmYWFBd599515kqvUkeHvjCXYeF5b35BpTbfTndcQRVEwnY6pJ+MYnJOGDXGfBu8Md2/dZHF1laWlZT783Mf56V++yP7m5gzT5iAI/my4y+nFVc7WU1okljiYyoiAV5AysWXSZDF5GjrnMESZspLQ+IayhL/7lQ+TH9xhsJPFWrJaoMyWqYcHUTVBgVYCj6PqLNGMR5SdDmYwZjLaJ8/A1CCkpOx1aI2n0+vgxgNs0yJkIKtK2tZjmyl4E83GlYzG5z5gnI3S6VT5zAYyNlnRMLvnU3XgU5PvwiEbZ8YyP3P6AS699Rb1ZBJZ887zwx/+iL/xuw8x2t/jzTff5pOf+ww//u5f0F9Z4eTpU3T7y4z2drn49tvI4Llz/Spf+7e/j3SO5z72HHUIrB45yuUbl7l7b4vg4jFJIdE6w1pPWRYsLy9RVSVPffApprWh7C8wHk+oR0NerydomaEyxcrKMtY6tra2aKY1UmqcC3zow8/w4x++GBNYBWR5Hi2CnGU8mTCpp+wf7Ke9KTJosyyjLCuKIrKsO/0euY7m7MHD2Ad22prL9Ri2D/C3pihnKFTOos5YyQrWZMZ6XnIkK1nWOQta03WBoobMevJcx6TMPNbxKs/JhaaTVSzmGaLbiaxwHC6FczXG0DSOqbdMW8PYtOyamn1Ts1dPGU4bxqYhA84GSb+uo8820IZAHRwagQ8tUik0cRAYLFRVB5ckpca03LaeG/UkDsbjdoTKCh5/6lm2drbpVxkHo31cO0WrBdaXV9i4fRutMz7/q1/mC7/2FSbTMZfee4N7t29y8c032Lh7h8loSGsdnd4iH332w6yuHUEg6C8v8dnPf54PfugD/OEf/CGvvv4q1ghU2oMHewe0bUNVFgz2thmPT/DkBz/Ez370Q4KN8rhREHxnvM/TukCbqKKKDPbI1JsNQ7yNiiUh5aGlRRr2B6DMOzROs1+UTGpwwfDaqz8iWHj66ec49sBD6FPHaX1OSU6hM7Jcp2C8GAKplKZNNZGWMnm0eprWUhTRt8wbg5mM8UGhpca1Ld4FyjyPJA0pYkCBB9MY1Khm3BiC0mk9DvOaHcFhABKHa7YUcdATXJhL/O8nMsyG/1LO1mjeB/bNWH6zfmSmBgjez1O4AzMWX7KpIK6N1kRwLxDQRclHPvox/vwbfxL7+RR0trx2hD/7s29w8eJFnv/485w4fhykYGNzg5++/DKbG1v0F/rU9ZjB3g4zLYILUHV6PPjYo3R6C+RZzt3NLX72kx+xdfU6Mq2Bs2N3xsRBRwp6kUKmYAjmn8nc8kYQbbGExISQwo/cvJ8XIVDkCohsLB8Cw8EAneesrq6hdIZ3jul0Gj/zNCx3zjEejaMMWCRSkQgIndHr9ciz2Av55QqjFQPvuCMlrq0pphPK/VtU1rOiC47nJcd1xaquWM27LOUZZabJdBE993XJyloX1hRCgXEtZCV1PeVg+x6DwS7jg33czg6hdWx7x1Vj0HkRz08IHDlyhKXVI1y9eYuqKplMa8aTCYVSrC6v8Fu/89dQec7lK9e4cf063/32t9g/2GdpfY2vfOW38MYTvCPPNHjH8mKPG9eu8N//s3/Kb/zGb/H8888znYz5i29/C5fSfZ1zmLbm5vVrnDl3jqWlZQa724wO9jBe8qPBAZ8s1ugIRdAZtrXzYEHrHC5EdZDKVFQw+IgzCBX37WA9MoANHmMNwhcM2ynPFOs8Mpa00uPGI97yE7Z6OXRXcL0FwvYmTId0e10G0yb1HjHfoNPvsbq+Tl3X7Ny7wy27iHz0I7TDBYpCE4ZDlo4uMdzbodvJqadTpFbkVUXdWIJpYuK4lzG4I0nOf5HHLwzwxeYiToEzpdHSorOZF1BseIPLcSEmu+TdPlpq+nmBCBEhz5RkMhwjHNBahG0w7QG7B/dwto6G7CoGWgTfomasBiHjoq0VmQAlJNaB9VAVBYKYcGKcSYEUcbLQrXRa9EjslDiNyDJJcCLFO1uKUuNtDEqOTIrY9XoZJ8umtTiXgkVMS+YbHBlTA9I2iY1GMkYOsUj1Lkl2Y1M8K76z9LWSgjz57WkpME2kBOssi/KMMNukQOV5nDQkw1ifWGlKJslG3aZJkoUWjDcQHBaD9PGij2wdg8DgpUbqgDOO6KAmUFmJrduY6CklZSki2m8cPmhCUUR6r8xwISdbOYpcOMGRR56hd+JRXNbFRXAdpWLRnmh376N3y8QgIoFjs43JOjufHM2ZbfPRUXj/xTgD0NJyHX6OJieIg9Q5hXyOwN1/Nd8HCIZDSHHOjkk/FMwAv9nXYn58/z+ObH54fjZGJ72P94FwHG7WaUOaN1U/94yeGHs+x+N+7gXnYOD8M+F9AMCs2J/5ZCTDnvheYl8PQLPxLleufpve0XM0oUfHWzCeE+trrJQdDkYHjKYjBsMxe7t7TEcDvLCoLCNzDm9NfGEpOPngg+RZzu6dS+xvb6G8w9R1vLfznGee+Rgf+6VPogkE01K3hmndYDPFAw89yMOPP8q7r73OhUfO4Yxl+2AfGwLrx44jtaRtWjoLCzxw8hR3b93iS1/6CuPhmHffeZ3xpEYpGf0epGLaWuoQ2B4NeOTJJ3jj9ddoxtPU6wjeclNulX3OOU07nZD3e7RSUqoM2U4xzkIGVubxnjIWdEUvK+kFhxlPsLPzEGLDgg8pgCgWEUrImLY0m6gmCXa0NAjxHDSWNhPITJB3C7I8w9QWZwxKRIAvEO8fBAiRfL8k0Lp4/uUM7AZpYwLfTMYRgzVi5e6T+a5zyRss2PuA4XQdOpck27P7JjKFrI8BIs46kJLaN8gAw0xiTUDrgHWOoKNsJN6LKRAkpTl6B14EdsyUp4+eR04NzXCICo4fb17lxbKic/ph/vy7P2BibATOJMgs54Gzpzl+9hx53uX4sWPcuHqV9y69y3Cwj7MmnvcZ0B2izMiYwP5Oze7ONtevvEeQkvMXHmbxyFHOnH+EB8+f56Uf/oA7167GGPVweG8JoEXwjdE257OS569fpf/Eh2OavBfRdFdGE96ZXEAnbz6hMnySEwgZMELQXz8GWqNlZDiGVDTXdUOVZZT9BTIF2DaenODnPodz1u3s2IRIzCdBLD7DnHF0uO4c/vdwMj9fPNJalCQcPso6BnsDzLSObL+QBtcyNuJSCrTOMS4yhqRQ6DxjeXmFg+GI2zdv8+SHPkTVW2A0mVDmBcePH0dJxZuvv0LTGrqLiywsr7LUXSKrOjQ2BokgFTrLsdZgrUeq+L3WS6pOFxsUeafD1BikVuhcs29r3qOlunMdvvXnrPeX0EVFDET1FHlGUVZkZQdZVWSdMqY8VhVZrii8j+uWiCAcrSEYjzUmSs+8x7h4PEGAkR6rBXWwjI2LQKBp2G9rDhrDQVMzbGpGTcOwMTRAVF1F4F4KgfKCTEmyIqeQglJISiHInCW3njwEchtfmyQF1Ai0c2QysncKIclkZPFkya/r/nOtZQxOUCrangQfgcAgJNY7tlTg3qTlw4sLNN6jZ/sBPikE4ol3RDaiDVGq30xrOlWPXEv293eZWocpO3z91iXG8x1TIKVmcXEZITT1eEqn6qLygk63y+XLFxFET+bgfPT2CYKTJ09y4fwFzp07x/LKEt1OhbWG0WjExsYm165f5+aNGwykpG6mTJuGxrVkMqbCmrohhBopFctLi2xsb/HoBz7Iz/7yLzHTCSIIbAhcdTUvmTHr1tPRipBpXBsZcYJ4T1oXnZLjfh7AR0uVIJM/VQjIxQWMEDTGkuHJVUDkJbroUVQdhO7iTUtWLSB8jQ+WTGc4UzPe38EZg5068jxDa0WWR3C70AX1wT6mnUZpjPM0tQVVkFUFvh3ijEGrgrZuoJrZi8Qhb2TrWg5dsQ7rI+8d993+BGYefyEO2YPn3LkHUXmGGTuEd6gi59Jb73D54kWOnTuL7GS0UvDxz32Gjdt30HlJ00wZDvdpzJRjR9cZT8bQtnz3m/+Jpx5/jHJ1jeFgwI+++wNCgI179xDekRV5HCKFwOLiCllRcOTkA6yu9Nnd2WM0GvHuG69x7Ng6TdPiS2iGU+5s3CPTGXlRUpQlewcDgvPsHLQsLK+itGJ3Z5vWtLRTG4dhPqphMhX/r5WOLB3vmNRT6nrK7k70G/QhILVGKY3SmqrqkGc53eUlsjwjT/7ZO3XLvRQW0Y73kdbgm4Yc6EvNotSsiYyloFmUgoVMsCgC/UywkGUslx06VUU3yymUIlORDZZnmizL6HU1rcrwjUcYRzAu7u3BQ3B419LahulkxLCpGdcTxs2EUd0walqir2/09EVEBm6m4uDdWUPrPKpQ/Gw0YYKPHpgCMpFx4sRxfLC4xjHd26NtG5aWlqgnE3Z3timU5itf+S0+8bkv0LY1165e4nvf+iY3r14B12LaOgaQCM3a+nHyMnnOJYBp2rQcO36Cv/d3/z5/8O//gB/84Pt46yLgkFhxbdsymda89fqbfOpzn+f27dvcuXYl9lQ+8Foz4UpwPEEcZAol8cbgg8CJ6IXunEN5HZNYiVZIM6sgrTOsdxxMG+7KKVuD6Ls2Ho+ZThtkt8/mYEg16FF2j2BtSLBhlN9mOtbXrU3XmHMEGc+NlJKy10cR65DJZECWK5xLbDIfmblCgdZ59KwHsiInU4GFhR7hYIBp010cZgEZh/WNmLEHvZ/XOzO/45mH81xSK8V875/ZQhFIQHdkXfuZ1UsiOsxZgiIRHkL8W5/0ij71di5NiaOyI9a1Tz71Aa5evsSld9/BWUM9mbC1cQ9dlGzvbvOd7/8FZZ5TTyZMxxP6CwssdLts3L7F7Vs3kSFKYlWmISt4+MnHefixx+gu9PHOcu/aFS6+9hq+mcYAg+QV6ENA2kTuiVIWPFG2GXxIqpdDP2YpBSZEMs6sBvbzoJS4j868TEWSfzf1lLZtaacNWZ5TdrpUVY+qE+0kRIg+l0JExpxSmrquY6hKCLTjKU2YYr1nk0Mv705RkitFpjQL/QVGQnEgBNdCwLUjymZAZz+Q146eCKwozaLKWMsKVjodFqqShbKgLLuUqkCVfdbOLHC0zJju7nDrlZ8yurfBhggcBEcIMlmJKS48+SR37m3S1obRcIjKMmSIAV6f/Oxn6S4scfvOXfZ29/jpj3/CdBolwe+8/hqf/dRnYviaigO36XQMGJ76wAe4evU6/+5//n3+7t//B3zhS1/i1s3bXLz4NjNPRVzAm5bhwQEnz5zBC8fF19/ANzUb1vBSfcC6iP6AzjdkKXwuSIHQCkIkNTTWYfGRcZhl0XeYOGCfNlO8AIdjYi1KGOqQsT2tyWrP1RKKo+scHBjOfOBx3joYkwVJf3mVuwfXcEiU1pTdHkdPnGK0t8tosM/y0iqf/8rv8PCHnyYnUOSwu7nB4kKXwc4mB9ubCG8Yj/eRSlGUOft3bjDc3yGTGrWwQnftIX7Rxy8u0SXKFCQKkZV0+wt4BJ2qRAVFCJa820U5k/TFjmANpplibIs1NVLE2T0z+ZFP4J30ZDr659SNw8tAlkm0gNa4NIHzCCytFSA8rQ0UmUQIzUwOKYE8i4uYDII8V9Hrpyxom5pDX4L4/CGum4n1JxLVNiZeNrWhFfG1MhkBNx8CwRmEm4ASWBMXW59SYWYLpQ9QZCXIEGV2abHMdU4QGmctuc7JkZFpYGJhFYHFFHqRPhetclwIKK1xto3ls4yn0yXze5UpnI+Gu0JYXDOKeQ0uGpYjo+WozsAbiXJg6hYtAiFEI0o7GSAIMe46CHTZAeeRwaNkhjMOqXLE4hmOPP0FFs48CcUiFolNpu8qj8kyKq6MkBZK65LRczKIjUOkCFY67yIDJZ6WQ+jtf4WcifcVqvFXwiEAIe77/hw8m4F4Ca4Th83tbJI1960Ls58fvoAQKZ0nMUDvG5jNj2kGDHLfv34ehLv/eN/3FsLh7/qZCfB972H2/u73DQzzP5wfwvsAiRkI9L4krRlgOgdLw/v+NvjA3s4+JzqBve13CKOG1U7BB6uzvLw1RFULrB87yhG7Sj2t8Q9YnG0ZTRqmkwnN+IB3X3sNgkNkGecefZy7N2+wWOaMZ2muCPKyQ39hhU9+/nNID8ON2/zoxz/h01/8KlOmmLolq5b4yld/m/9hY4P1E8d49aWfUeUlncUVPvWpT7M9HLLY75N7z3Aw4Pj6Crdu3eav/85f55/8k202N+9SlRkja1EEQlvTNvDum2/xq1/8Ao8++hiv/ezl+L6F4CB4fiYM51QVmYYoXKYwxlDJCuvHeO/QXjFqDa0UlKZlujGJflw2FU6CCOyFxOhjJqFIAFuwqHRfz0ygEdwH3gqkEygXG0lfBtrGoGRiOuWx0NAphCN4H9OwRWT7WeeQs4ZURp8XAXOGhspUbPpkCu5I0r+ZZP1+kBmgbVuU0NELLcLceNMeptH5gBDRh9UFz63W0NcyTthSkeWDRzh5GO5CTIw1xtGUEoxgLSsY7+/imoZdO+U/7+7QeeF5Xnz5p0zqaRpsxCnX6tlzPPL00yiZM9jd4nvf/hb1aIQ1bbzmvYtpfYkRpKRkOq2Tb1yIaYIqo64nbN+5x507Wzxw7gwnTh7nhc9+lotvv8mbL72EGU9jMTdbFFCMQuA/Hmzx4NGziNs3WFpaxO/uRIYAEFJgh/UOhMTLGISkpMYSpZGiU5CtLEamuIiDGqGSry0ZIlk7tPWE6WRMqJp5Qq5KQKGzNrKWiAwcMb/WkpyPyNYUcialSWvO7HzMmJDz9SHMGwCf5DpVWVIWRTRrR0RvlSCYtE2UjoZA0e2wuLLMzZuXaUcDLl+7wqc//VmOHDlKZ2mZi1eucPfqdUIQ3Lh6gwfOnOaPv/YfuH71PbJMk5cVK+vHeObZj/LCC5+mKjJyJZDEol5rTVZkmLalW0mMqdF5RlAZC0fWaOoGWzc0xvJjPWVJdNi9eY0lpenrCkeg0YFaCUqnyVUeffO0oux28Jmks9Sh0Bl9nbNYlnS7FaXKyXLIypwslNA6OiEC2spH6ab3DuMNvlD4XKQmJ+DReBELSqcETkUT/ql1DNuG3XbKbjNhb9qw30wZ11NGtuGgtmxYi3UWF6I8WMkI4HWynE6ek0mJDoLMR3/AzDsyAnkAbSyZ9yjrYzMpAvgY0lNkMQVXIyh0BlrS5JpLzYgHez2qtJXMmbxpv5lZMQgpUAkDtS6yRIOQGOMY7Q3R/UW+NRlwtWmiL46IQ47e0hKPfPCDXLp0iZXFRYRQdHp9Lr37Dt4byhSs4ZXk+IljfPazv8Kjjz9Ot9MFInNZCp/8iiUPP3yeZz7yUfYP9nn7zbf5yV/9kM2dTcZ1jXdJ0ZCGfvVwyI0rV1k/cYy81+VDH/84L7/4Irauk1Q38Ff1lGe7FcVkSrdT4q3FphoyiISfEPDBgZO4ZOeCEyA0vsjZC4EbOwc89PRncMUa460X6YgpWX+Zloy1B04y3h+ytbXP+lqf0d4O04N9hFB4G8ikpDHRI8g7j60tzkLjGhAOnWeoLKOZGqRU9Jb60c8rCKwTtNZSFCWtiD6Es8ZeJm8payNgM2Pz3u/B5RJbx89qEh+wweOD4+SpUzxw+gH2D/aYTCcsrazQNi3/+Y/+iN/8L3+PBy88wqUrV9g9GPPkBz/MsG5pmoYrl6+ws70NroEQZdxbW9ts7+1yZv0oG/ducO3iO7STMcE2KC2jn3SmWV9b54knn6IoKtbWj1EWGc29XbY2txkf7LNhDEWng209rWsjKJIC2ZyPNgRaaYo8pyhzVtce5Nipkxzs7zM82I+hbUpxsLPHZDqeV28yMbB0FlNetZRJzqdiaIQztM2U8fAg1mhpICClivtMUZJXXfr9JXrrx+l0KlQenys4T+08t7zn8mRCPRjFkClr0S0UraEaTSjQLCvF0UywJhSLUrGaa/pFzqLQdHVFlRcUeYUsqzQ8j6FehRbR0D/AESXANQjTYEyLCRZTT6jHY9pxTWtqGmcx0xpZm7mHYKsVbw7rqBpLYPtif5FPffbTfO9HP8F5wWA4oKhKOkvLDO/cQgnP089+jI9+8tO0zjCdjPjaH/wht69foVDR8sU6gwuCqtfh2Y9/jP7SEiTW6GQ45v/5j/8RZx88yxe/8Kv89m//DsY6fvDi98E5QvBkKoaRhNDS1GOu37zBMy98go07t8E0BCEZ4PiryYhHOgtoFIXKqBsTGWUpfCY4j8jk3GNUyMi+00nSN2knjJ1j0EomdQ1IpuMJ3dUjlCfXsZlg2jQJfCvJM5VsFQ69Rl0I5EontrWAEFVkgpiE3TQNUmkm05ayt0jZrZAyEkzaxjKcGNRwwvJSn7puaFrHcDhhob/AcBAljeI+j+9ZKxIltXG4c0homDHyiL7eiUgRe9ME/s30umngG4KYDzQj2y3uBd57PMl8TAokkVFuPQkw80nlMbMDCbgQ70ehMz79+S8wrafcunYVT8A2DbYx3B5PyKuSqqqQQtDtVmxt3KOuJxzs78eQEu+RmSYozZmHHubEA2eQKmcwGnP18iX+6sXvE+p6HtgGszTw2WcRPw83V6AkabE75HuI9DczD0EpFZ6ATEE4M0ZotEGZ1Urpkw+O1jisbainI6RUdDpdqm6HqtMly7N0fcShZVGVdLo9sizDGIPOIj4xnU5p2riGugDDaVQxbu/vxt5ZCgoda4B+v08ny+PaoxWuMUgM2WSEOriLbloWhOY4GRcWVliu+pRB0JeSyfYek9EuxjquOktNZD2KEGvjkw88wF/+1U8jbuICeQJ019bXeeTxJ9k5mLB3MOaNV9/A2haThtCD3V0Ge3ssrKyACngJLjh2drZ55eVXOHHiBJPRmP/wh/+O/+a//W/59d/4Mv/0H99iPEpyexFw1rJx+w4hCNaOHqPXX2RgWoz3/HC0x8e6S5wQGS0RsFYzPMCmGiWtFcJZKAqU1lhjcT7Q+EAjovHOlnU0jWOiDDfthJH3TITgL6eCcecUxtR426K05oEHH6O/sMhrV+/gvWW502N1bYXx5ga7OxucPH2Gr/7mX+PpZ59FZBVGxPpn8ewqzhiqap3eGRVtbpyPA33nOWVaRLBkMtCScePuPX7Rxy8M8C0vLbJ66uR8YbDTBmsNk8kIATSmxgZDoSLYldaD+YKXhKSxCZYypRp6rPXkxSGi7pIZpPARXAkIWhPZAnkWY7JnC2OuorxnJqGcATHWupiEWbcQwNOiZPIk8AJrA17HoiZTSSInJXWbplxtkpMFgZKKxrhoboog14I8BES2yLhWFMaSq8SMcaC1ACTOx78lBIoyev85B52lNdqmJa9yXD2NhqDORwPr9BnlZRWZIUky4V30DYvGtxotqyhxkA7rbUzTch5VlAQffTGyTpX8mhzOx0ZTKoWthygJzoLTEuVr8IJMZ1gnkFUO3mAbg07Jn0opsu4a3Yc/zpEPfR7fOUJr/XwjUUpQ5QUk4DGRTVLRGebeQAHmstxZA5H2JuaptfN/v/8xB+1+DoR7P5h36K/w/r/9+W+l352jjff9XjzIOUuGdMx+Jr17H/IYZlf1vHi+Dz6bA3M//7gPkzt8zp8H92YN+P3veQ7wcTjNO/zG/D8zedXs6OKPfv5VZ7BkPC+5cuxcv0bQOSuLR3DTCZ3BazxKn7p/nre3hpjhHnnRI1MlH3z6KWy2QNs6du5e4r233yB4wdoD5+guLLOz+RPqg4Po4yYESmUUecHTH/0YebmIs4E/+drX+MlLP2F/b5/Pf/k3Y+NsDOceucCHn3+Bt956iT1b0y17PP9Ln6DbW6SqOiz0e9SDAf/vf/KPeODsGX7t177EdFzz1a9+lX/9r/8Vo2n0SwjOMT4YkBUV04MRl9++xNrqcUR4JX42UtCGwEvS8aU8o5NAkrLTZbC/SUmGQjGxBh3gTrDs6IqlSTSKbYJA++iVNfssCzRx9Yift4C59DEjoEPAEqVTelYokKbaSISBYBzGhDmjCsCLKGmyJsrtpFK0kwZdFSgkKdIjMjVdZC3jDhldIdHndRYldMK/P8hlJs84nGxGXxqX5BtCRC+GCAQ5go/NgZSSOi/YbFoeyzUuMSXkzB8wmlul+yruHS4V5scXlpjujwhtQwjwg70NDh55hItbm+wOBvG6l6CLDovrJ3n6Y8/TNJbrF9/m7rUrmLalKgtkFtdwoXKyIqdaWGC4f0BTt/PiOs90NLm1jqKMDX2nv8BkMOCudywu9Hjm2WdZX13n+9/8M+rxiDA/r3EvuuIa/ny8zd9SLeP+OSqxEwGdAIEcgkpppUCITUoIKn6WQaJ6i9BfwrYGtIAUNGVtTNyTSuJQWNNEUC8a2+KTlFZ6ibFtNEhPxefsppcq+pfFddWihWYG5s9kK/f7bsX9KsqvXfLpdCH6LXarirKs2IMoLU1A4XA4BGvoVCVZUVB2uyAkRVkhpKLbX+To0ZNsDw44e+ZBHjl9ll6npG0bJpNJ3Ne8o6kNpmmYTifcu3ubTGV86INP402LlpKGyCbUIhCcZbK/T9u2rK0uM93fZTgY0E5G2LrBO8/VUPNqUXC2LLkxjfLifeGYuMBESqQX2EwjVYkQJYtLq8gshpdIW6OaCfkgkFlHV0q6UrFalCznmhWZs1aUdBF0taJUnjwDQdpTPZE54mLT5JPVgw8CYR0iRH83qhzRLxHZKkEqgtY4L2g8NLVhZFumbcvE1AzbloGpGZiGQWsY1A1D0zJuWprW0lpDG7l1oGLKcqk0VanJEeRSoIKnVDr+OxoEIoNgbC12OuZCt8saMZFVCUnrPIeenWn4IFSy1YhN3bQxZEJgCRxMpnghmXZKvnv9Lm0cLcW1RuesnDzF9u4uq8srbG5u0On0mIxHiOSFHLynKDTPfPQ5fv3XvkS3txh9Ro3jO3/+5+xtb0VwLcTEw4XFRR4+f4GHHn6E1ZUjnD9/nr/43nd4/c3Xo0F/2tKifFZi6wl7W9sU3R6GjCMnH+DOlYvMGIZ3jOFdZ1nFU/oCiIMXbDTgj7IzS5ZlEbgPHhdiirIX4DJNo0tu3LjNn37nx5w91mW1PEfRU4RuD+ckTiwTehWLoo/uWJi2lJliWgtk3oKrUVlk/vZ6FaPhBIREaQ8iKUdMTOLUWc5ob4fgojeeRJBnEvAoFddcmxpZN2v4if6skiQvdmZuFB7wEOJwJqSm1YXYzBtr6FcVihh0Mh6P0WXBwe4e3/yP/5Ff/xt/i4fOP8StmzcpihJdlHSqHndu3SbPKvJuH4+grhuyvKJTdagEfP1rf4zSGYPNO1RKgswTIKlxQXDk6HF6vT4PncnZHx1QdXOa6YAy15i2jmFaxOOUQtAmAGUGbFghcE0c+A/295FKUuQF60eO0ulUECR7C9tcvnhp3tC7FK7ibBvN6b1DZYqyiCnDRREDTISIihaRgDuVaXSuowS7GdGOdqmbOJAJQFl2UCqjKjsQoKgqZKbJO4sIAbrQWO8YOsNUZQw9XG8bMi9pJw1ZO4IDQdcEOh5ySQT+dMZqrlgvS1bykgWV0dUFHZXT6XWQmYbOAp3ETPQSFoNEtiCEoXaGwe3b3Lv4Dq01OOu5VSqu1+PYC0nwJrB29BR3NvZwAUxbpzpec+/uPZxpOX7qDL/6m7+DIdoNLC4uc+Hxx9i4dRPvmjkr9OELj9BbXieogv2DCWsLizT1kH/9L/8Hbl67xObGbXZ2dvibf/N3+fJXvsrdjQ3ee/tNbFMT8HOGkW9bhns7nL9wgeMnT0UWnxR4J/jpdMSX+4tx8BGi4sk1TVR9BUFQsS7xM9/vAHVjKIuYIDx1jlrCVEXWt/WxB7vwoY8AOkoV8wmbWzuRabrQo8iz5AEWlRGz/VNLgWnb1LsF8ixDC4FtpkilKXpLlJ0e4+GUto1BN1mmUMKRa0VrWpTOKDpdqqqaA7lzaw1IdiUJnppN7mfKozBLaU89Aocqqdkgb25PlO4blexeQhoGk+qFxA1J4W4BEQJOxLpOI/Eh9bU2suOaFlprCTYy+QLQXVziC7/+Vb79zT/l6uXLCGOSPY2ldmOmw1EM7dJqXi8GH8P+pFagNCfPnOHh8+c5dmSNvXt3efuNN7n23qX/L3P/FWRJdt55gr8jXFwdOrXOyqrM0kAVCoqQBEg20CRBgM1utjLrnrUxW9sx27bZ1zXrfdjXfdkdmzGb5kzP9nSTHLIJNpsKBAEQWhVQAqWyKit1ZIaOuNLVEftw3G9EofdpMQ8bBlRmRsS9169f93O+7//9Bc6UJHE099VztTzazd/HYbhKw+xrfAqBGsv4uXNW/9c6E2o3waGHORBFCcYEuy7raklyWEqxxjA2FdPphCiKSdKUdqdNu9MlTdMadAqBITLW9doThgatNKXX65LNQhihjqIwCI3jwFTPMkajIXvjEdu2wtpQk0ulSZIWkdR0eguUekYrUrw2PODH+zN6W5bTFZyrBIkFoTxtlfBAhEAfhMcJx/KxlRCaE2n2tw8Q0uIIViiPPv44FsXeaMjW9h7bO9vs7++R5RmDfo/BoMt0MmTlxDGslMgkRkYRdgbD0ZCDgyGdtM3i0hJ7OzucPX2Wp555hu9959tz0pXzHiE9ZZHRGfQ5dvYco4M9nDXcK3PerKYs+TZOSpwtcTTq0UAUc4hwvoTG+mDNUGY5lfNMjaV0BqE1m8Jyz1b8D5NtXKRIHFRxxANn4J3XafeX2H0YMKhWu832g006acK0qlg7doKrj15gsjVk69jxYJFSWDbvrbO6doyo3ePhw/s8+eTjjEcj4iRFxxFa65C66yxaJ7gkJUkSjDXIyuPFDr/o1y8M8E2GY2ZbG3gECosUoTHwzpPoAGhFStYFhEcrWctaHVENsEglCDTfsCgqpefpXrY0lE5QWhmKKBeMqPGgagZD06RYF6Q33luUCgbSuQmFT0gdlJTGEtWeDADGSrzxyNqryJqGIeVQMhjVGusCa8Da0FkisFWdPIfEeUGeZfjpLrgupVFoGSOw9cSyHRa/KEJ4QRwLZuMRZRXYe01QhsJiizyEGsQaJ9xcThfSaixYE9gCFmQtT/YmwosUqRMQFZXLUDJ4Bsia3SFQQfpiTGj5vcMi8VWFcdSR0g4ho5DGlkY4L2t5raOcFSRRUjPKNKiE9qUXOPbc34P+aZxKyPMcj0fHMXGcotRcuBo2AReAW2gAPQEiNAneeyrbFJX/34G8o9Opw+8d+tY1eNhRkt5RgJCfe/yRJ3zP9+fsuOZ7P3c4Rxf+8O9DFuBR7M4fPvEhONe8tyNMmcP3c/iEhyDgof/FXHoMc7D8549r/pwN0Fc/r6ylWQ0q4Y+89ybxqTklh5MoH65D5WpW7AwXdYndBpd1RRQ9xPiYG7MR97Z2mYymLK4uk3QzJtMxP/3BDwCwUnDm8qM8fLhBVU++pQwpTXErpt3t8uTTzyC8YHPjHq+/8RqRFrz20o/Jiglf/K0vkU0njKcFH/rIp3n51VfotBZ56omnePr9L6BVi8Vun+2NTf70D/4Dt++8y/2Ne+Rlzpe+8AWeuPYYx06d5s7d23hr8c4QRYo01WTZlIdbG3zoAx/iO3+XhrRCIfBC80Y54w4dzllPYitaccqWEkQ2sGlj4TirIn5qSr5jK55RMakJ8pdYBI8OEGghibwJxQkSBUg8mlAEl3jiEKtQfwYBZAtzZVl7ptSfZWlDgVpfp8GQOUgQpJRIZymqAl1WxEmEkGIeNGTxSB/Vhcmh76RzYfihjkjngbmM17uj15rAO4GQjcHz4YR3fv8ohTGWdS2RhUOUklI0bEGP8gQPDEHtVRfWBhsrRvmUR1vLTA8O0CiGruClVkK+uMD17/8AZISWHiclvdVjXPvICzzc3mXzxptsb24G6WWSBPab1iwsLjDo99jf2cWUYUo7WFgkm84wZY6pqiB3lpJsOg1s6zjGYznY3aVYXcY5x/FjJ/jM536dv/2LP2c2HtEAZELUfnyjAz7d6nCmmFB1OjAahoHUXAYfJuDGmtr/MFg9OKWR3R56sICIVEiv9MEQuJk4G2uIWy2Uq6iyydysW2pVa/4FcZzUn064Moo8I46T8C8ZkuL1nGXZ+NGK2mfOzyU7zf+h9h2zdl4ot1ptFheXuX/nNgo/L4R3d3coZlMGSysIGRJ/47RDf9Dnlz/zq0RJGycFo719Nh4+5NzZM3g94Eff+SGnTq1x5coj3LlxnSKforUMLC4ki4M++wcHFMaR5Xk9xAsFXJKkdNtdHu49IIoEvnRUVfCJlXXzkjnP98oDdgYrrHRajPKcWaIpBJQCcmuY5jlmMsS5PVrTfZZW1khbLZyHtC64Wr2ERGvKPANvEUWJLw8CgGccCYoWnjaCnhJ0taKtoaNj+lFKTyr6WtKLFO0oppNoUqHRzgeprTVgfFgTpAqefSrCxxFLSYxLLcb0greMtVTWUpnw9+AnDMaFQWBpDVVZMDGOkS0ZuzKkWJuSWTZjVlRsFwWhhRQILJ1IcTrWXOh16RqL8+E5bZOxKVTN+HBIHzyDtJThtZ3HlyWiTq09GB4QpSnXZxNumxKvdFgjhGLx2GkGJ09z963rpEqSpm2m2YRiEgz0pRT0el2++MUv8sz7nkNHOtQwCKxy7O3v8OKPf0RZ5qFRdCHFPm13+OSnf5nP/sqvcebMOb70xd/hzJlz/O1Xv8pwNCRKFHkeTMUFMBke8ODWbXR3iYtPPsvW+j1skYEQFN7zk2LGU2mP2JSkMkiqIilAOlydKWSMxfi6UnShOVQR5F6Qq4QZEeefepatjQe89WBKOd7h8cttrl27SvviJboypiwq0sQhd7fxZU7XFcw271FNN8nH29hsTGlKnA5euUqEP70V4A3BkRayPA/2My4w13QUkc0mOB0YM7Zp4AkDG+eqQ1l+vV7Y2jurkZ01zXBgbYamtSwq9rf3iTzh2i0rZNKitJbte/f5yh//EZ/5/G9wZnGJ1cUlEJJWErF64iT/4r/5P7O8sIgAKqkZT/Y5dfoUX/mLP+fu3bs4D+ODIa1IE9VMlLWTp3j6fe+n3e8yOhjhpWdnZ4+H99e5d/MGyttaQijn+6Or90Gt9dwPTMjgD6uUoqyTN6s8Q0oVAL/aF7bVblOVVQDztEZHmjiO6PS6RElCp9um3+sAkiiKUUqTTWekrRD7ub21iYoSLly+TFVZltdWaaVtTpw6wWj/gEhL7t25w8HwgP3dPR7ev8/eg43A1DQ1aIwniiKwhGZexyghwvqva8l2knDgbWDgyjCUw5Zo41CjMdI6Ug9drelVjhNC0LWGxaTFoNVmOYnpJS36rQ6DzkLwF8cz3TugLO2cvflGUTG2JsjwlUCJmEeeeJqbd+/SXlrh9ttvIQS0Wy32RgdorfnN3/wSQqdUziCjBOfhi7/528RO8O1vfJXZLJjarx0/yYnzl3jk6lVKE4YSP3vpFV596acYa6iKitdffZW/HvT53Od+gy998Uv8P/8ftxlVZQiUqUwAl6Ti7q3bXLp6jcefeZaN+3fBGrz03HcVb2c5i2lnLi0VSoUQIxWCvpJ+DxlHjA+G2CIANGVZYawnt46hEOyWhsHyMToLqxy/eJnj5x7BGo8rKoZ7e2STMevr66RpjHeGEyeOcePtt1leWuK5555HqxDIqGobC2dD3zqbjHGmIOkOagA/rvdfg/cGU5UIEcKgvAtBlcLHzGYFabtVp2kf7QkaoMrXNh418+7o0K+u65qCrqnfGqSqITAc9g5+7s3bAIjOH+mJfKg5ohrADvWkI4okRBHOO9qtwGQ3laGsSqbZjNIaegsDPvcbX+D1V17hxvW3sFVFlmVMJlOctZR5ThxHlFUZ9qOqQinF0uISFx99lLTTpyorvv+tbzPc3aHMMmIlUVF7DlR6oKqquoZxh++1GVoTjqt5M7YOD2kUfQ0I2AyAhPDBi1KEkxUnMYmOA4DpbAivcjq8Vr2OOlsPUp2lLHLKMmc6HaPUTmAIS00caTrdDkppvAelJb1Bl6ge5kbS12u7pqoMUnqSWONcjNYRlTF0OgNAzAHRoigpfMl4OObU6dNcvnKFl1/8CfemMxI8B0LyYH/ISeM5aQVCOXZFhVY6hGFaz8nT59jZPaAoQ4q2jhKsNcRJzKOPXyMzwb//1ddeZjgeYq0lSVLGowmR0ExGo9AvC0272yeKW0Rx8ELv9bt85EMf5uOf+DhLS8sURckLH/wgP3nxx5T5LATR2ECrnIxGHBwMWTx+nOjtlMpWZDh+MDng6X6Xjo4oa8KTJygAPVA6F3xRhQrgaVGBUMxMQWZtnRSs2LAlZa/HA50Qt9ok7RathUUutoL/M0kbdMTCiTNMZxOipQUe6z/F/Ru3+PQvf4YPPvUMXR2TdBJm0wNEr082s9zfHDEpHtBNY27euYM3lrW1FWKZBJl2nU4ea4lwIRTM1J65tav5L/T1CwN8gUbZ6O4tkRbBW09QJz2GCGcIARvG1D4WQpAbjxcC7WwwnVYCY6GyjrLylA5QwfvES8m0cKSJxHqBEhIpPZXzOCOJNcQ6RojQoNgawYij+gbRCit8sK/xPvzcga2CZ4LzNkxZnKSyhlYSKPpVZVBaU1V10+2bxNfArWm1UkxlSeMWRhqQbaxv4+V2mJQqRavbRUqNMxWuzChmweBdRQmuqlBxQpXNQAQvO4THGYPSoV0Lki4ZpCvO4KUOrAwLQiboWOMqT2VKtA6SI22noTCnmUAEw25jAyPEGRXeg3Jh8YijOUIlVS2p06pm/hAkIcbROXaG9ulnSNausHTxSSrZprIWV2XBTzFOEbUfEBxOhU1N055Pl5r/E4plV3v5NGVn89hD9K32JDvEzOpvHwJkjRMe85/93GbFoRfd4b8Pf9Ys/F74+YbpOZwEw6FvRdNoNhtG81r1TTEHBg+BvcNX4SiA+J4/D2GS+esfQQ0bEI6acXP0PDSjtf+CxVg/Z71vhffrf/59H56nw3dQeyAah608QhpUOSYRcHylz87+FD3d59lE8UuPL/PipuMHdw0//cF3KFzK2YtnOXjwgFYcI9M2C8srvPzDH3H65CneOTgIW6dS6KTFmXPnGCyv4vOC73/rG+RlHhgmwvHWqy/z1TTmN3/jt5lZyaC/yLNPvp9yOOTXPv85ou6Ag4Mx0+mEL//h73Pz1g1+93f/Ke/evMmrr7zE6ePHePZ9z/OJj/0Sf/afdjgoZngUeZaTtFpUxjIajZBasnxshY31+/NzcYDhVT3jpIzJTUVbtYOv0GxGjCaxBU9Yw0vtDg/xTKqCdilpCU3LGyIvSJ0gIbD1hAXtQNXy3AjCZBmPdnUIkQim+qrObJXUjOd6zatknaJZJ1tWla2vAk/kFdKC9yIYG9vAXJH1+mYltNrtIBMS9Qomw32lnQqT/RroR4XX83XwkBK1n0vN8INgQFyHXwdv0RrwEib4kd2tCk6JAD54BMK6enAS1hrrHQaDECFNeCoiROEodkdINF4KXhnt4D70fn746ssY5zDeIrUmTlqcuXgRlZfcePlFpsN94jgOnqNxTH/Qx1SGXq9HPsvp9xdYXFykt7hIFLcpjWE6mTHc22ZvZ5sim1LVgN9wfw+lFbGO2NmwbG1us7+7x5NPP8NHP/Vp/u5vvlInftX3uBBse8dfTkb8M5lAaxHl90KBaU34dLwL55bANg8hGxK0QPY7IeAgzHnm/rKWECKihKTd7RFHgqrID5PWqd3AhJh7OTapzFEchVT45n6WQQ4QwO0oHLfzGGPnwR5NY3tUthcGyYEBlLRSTp8/y1vX38DOpvOE5uHwgI2HD1hcXiGOI55+5mlOHl9j7dhxBv0FNja3eHj/Dv/h3/6P7O3tcO78JT7/pS9hqVhaXuT8udNcf+t13n37OqvHjqF1go5TLl9+hB/9+CdoGbxVhA/+jsZ6OnFM3G7T6vZ58OAOaa/DqcUONydjnAlsAqUEFY7Xhzt0WiGUoZwV+CD4xYvQzDXhWtNZzvThA1ZW11BKMZtlOB/8JuMowhmLjuMQ8KAi2p0UrRSlUhilmAjBQ+uwxmCKDF9muNkw+DdWgbUXI+gISU9oFpOUlXabpShmKdYsa8GC9PSEJ/WGRESIpItQXaK4hZYqsGVF7SHjXQi8yUuY5ZDN8FWJL7IQwOUd0tpgSVADN0YJKqWpUFQOiizDFjlVPqEqs2AILwgMax8Gf83O4QHpAlO38mWwCTCOylikOtzTiDQvT0cUPjDMnHN0un0euXKFhw83Ec4ynIzo9fvzsCApBe1Wh9/9R/+Ep595H6bMg/efDzKvIi84c/YM9+/eOWy+nGM2nTGdzep0W4fzhuWVJT7+8Y/T6/X58pf/hOl0EoI4ppNQl7gw+Lz2+CMMd0ecOHuW+zdugA9BHrdMwQ5dOqUhbkWEAMgQACR8YM5U7jCtMuwXASSZOMvN/SHJIGFpacAsqzh/5TH+6k/+mL/42rd5Z2MP2V/lkUuX6C6mAaBpr1IVM6RSLJ19FlMVmHJCtreJK4ZMx3soX5GP96lmY/RsD2uGqNLgq5K0laBEIC2UlUeqFioqiNOIsjLooqyHeGGdng+LXMPeqVks1LWxseGeF8GY3NbJ7EjB+z/yYe4/XMdPJ5hsxtLqGtvjIRWe+7du8h//7f/MJz77K5xcO0HpShyW849dodfr0kpbmHxGt9VhYdDiG9/4Jt/8/g/pDxa4/rOX8cLiopjSO9ZWVmj1Fjh/6Qpx0iLuWu7du8fDh+vcu3GdMpshvcfLOoG+qVkILPUQsiLmQ5ImUbwZEsDhAEuqUAsvLa8EIECE4BbrHN5aut0ueVYwG2WYPFghDAYDoliEwDnVQkeKR68eQyiNx5Mkml6nT2cwwCLoLS/S7/Y4ee4CxhjSJMEWFdl0ymg0Yntrk72dbbY3N9jf22N4MCTLMnyVU+YF7mAPoaMAUgsZeAaAFBqtFFGkSXVMFEUkSiPxRC6Ec7xcGZQQRNOMeLxDqyhpC0nHOI47xarzDISgbcM2lEQR7STijWxI5QLAJ4VCpxFpr8u0yDDFlCKbkWjJ8OAAWxmuXHmcR648xcZwn+WVPkJJZllOVyr+3q/8KmdPH+evv/KX3Lx1g9def51jZ8+zu7uLc9BKFH/9N3/BLJuhlGT12Am2dnZ55cUXufLIo1x65FGefvb9fPvb36SsitojONRHWknu31vnmWefZbC8zHBrC4Qgc/CTYsqzUYuWCowzJeI6ORisA5MbtJDEcUJeBfuCylryOjW81BEXn32OE+fO4qQM3ubOM+h2+JWPfZTR3jZ5kVMUBcPhkK3tTaSE//xnf8az738/zz3/PAJPlc1QUmCqmlhiBJPhLmkaMd7fp6wKur1FVBTAPCFACU82nVDkGa12SjbL8FUYLBiXhNTuOiziKGNV1FL8pr+aD+18M5Rravwjw1x5CHoJ0fQodfKukkd6M+rADln3FY2M9ZCAoWTD/PPBfkYGlp+IYzwtFvtdILCfjTVcPHeWsvhsIHlUhsl4wsH+Pu++/TbvvvM2GxsPaLfb2LpG6fYGbKxv0V8s2NraZjYeoQBVE3fCwBuUVCGZOIqDjLj2nA1gm8PWKeqNhUGQErvDvi1UCaFu8g3bMXhRekD4YNmV+7JeU4JU2tkwnJVKEskorKfW1H3WETakC56+QkAhYDw6mK9PSkehhquvzSSJiWONNWGoFamgAtTS0+kmTMaBOJHlRQA0TVDaWRdeZ+NeSTE5oJPELPZW6fS7CO949dW3uB4b1nLDMW3ZrAzGM5dsHztxklt37uNNWd9rEUVZsrS2xuLiMkZITJnRThKiOGbQPxmCTtbXQzK3CIEZAkO/16fT6ZHGMZceucKTTz3Fs08+WXv6G7RWHF9b49y5C7xz/c2akhASmCOtyMYjlrqnGCwusT2bAIIbZcZdZbniRF23HIbDCKlCiIa1VN5ifVCweA9T68h86HWkcKxeOM0vXTof1nOdkDvBcDJjsdVGpS280mSzMXdv3GD9/m0ee/4Z4hw+8/wHuTjJuPHf/x6njp/hyq9/DjOI0EnEoNOnu7jAv/k3/4bXXn2V0+dO8fxzz/OZz/xyzab3pElS1+YGJWA6nQX1hG6UNr/Y1y8esuHDhlrZOiHSK4wxxJHEGYGXAu/CpMk4kCIwPzITGhKcRSl56A9WFyJS1Qm3xuOkojQhzCOOdAjikAovQyJtVQmUDhezCG4KWOtRGpwPiLKpTGB1iGAKr5UODZF3VBaSNMFaT2Vt8JuTEmuCh4vSgrwIM29kMD2OogjnPL2FHvl0ijCGVE6JXYGRMVHSIlUi+N1VM0pbT8Cp5bRRhNaSrLAIVyEoAoOw8oBBywgdx+A8KooCfdl7VBIH9p5Oaqp5BFIhI08QyTgiHVOZaa3zj4hkMOX3QqPTNqbK8T5QjSsng5mzKanKqn5MeJ/eCmSri2n16Z95FNU9Tv/8k7TPXMV4xcQYvAhFfNKKg/8ERxhsvjZqrjeXAO7JuamrqdM44RDWeg+o16ykR1C997Ld5lsbhz+pf/WIJ8VcrusbKOTwsXOGXk1da572KIupeXiTMCdryfdRwI3564iauXUIPs4hSM+8IfDN7zev3byH+j0e/Zn3R1/jPS9ZM2+aA2QOSDZTtmazZv6ZvBdYPDqxew9zsgYL88IQC1nT62OyacHMOESkKcqSPDP0Wi0eHShOP3+GH97cYSdaQqcxlSkwVcHiwiIryytEEu7evB1YGUrhZUTa7nDpymPgFcPtLd587WfkWUZncSmAPqMJP/3hj+klHT7zud/EmoyPfvhDIem622XsHFUs+M4Pvsmbb77C2upxPvrRj/Gxj32Cf/2v/69885vf4oln3sel8+eR1pHEcfBgsJbJZIaKNKP9A8pswtrKElsP1kMTVMvQfqYEH4liYlPhLKytnOTuvbcQHhIZc9xHfKRMeZBKXCvBd0KR4ipH5hxDa6l8YKEkqQoTRu+JgDaSlpMoXJD0CodxYWASpn6eRg+qBHhpkfXfY0IIj/YOLSFSCi08Go/0Fu0hqn3LpJdhQICnyovA1FNBPiJksCHQjpDeqcMk1luHq6V5UkqcCOE7si6UnA3gj5IC5y2yLjpsBY6KvTRlNM245uv1PEkRHLn2ZDD2llIEWwYVsZfN6CFxRYlINAflmAcnVnl7MmR/PEaIwJwwCE5euUS6sMCPv/sd8vGYfrdLu9ul9B6RppTW0W21abc6fOIjv8QzTz5FkqQgFIZg71AYizUFVZlz59ZNXn35RW7depfZbAIeyjzHlBVpp8Puzi4/e+01Hn/8cZ549hle/uEPgx1Cfb9Z4HvTKb82WOW8sRilA+DZTNUJ7HGECAwCKTFYhJJEx05ghEAGajtFVSFqSU9VlLRiDVJjq+BdG4y4A9vrMCE1XDNChAI8ywuUrgEWX/tDCYmQzM2urXNU1lCU5XzC700d8OKDFPHQc8xROcfi4hKdfp9hNpuvK9ZafvrST7ly7XEGCwOss1y4/CjGhuu512vz5f/t9xkebIE37Gze5/orP+EjH/sYx46fwnrPiTOXuHVnHR+1mZUVH/vQc3gEb731RrhGxCEAAZZOq0W/32VpcYGlY33u3L5LMZ0GawcFlx59lKeffp7NjQ1++oPvMqsTzwLoaXAmMJskh9N47x2+Ktnf2iRKUqI4DowPJbG1wsCMZ4zG+1Cz14RQyEgH0FoE/6YkSRkM+qg4odVOgu+jqD1XnKOqSraLkvvZjKqcUQ730D6w6iPr6EpFT0Ysq5gFrVnwjoFS9CS0IkknjmlHEd1WTKvdIopSol4bOVjAxwnS1ak6guBbZS2iKvFZHsBjGZpdVJA6uZp9YUxFWZaYYkaV18BCVVHZIkzMs1lgOHmLmU3BGqpqiquv/6qqSOOUGYIb0xmV92AqhBBcuPoorUGX7O5trDOkrZRsOqGc5aStlChO+dQv/woXL1/l7Rvv8Md/8Pt89ld/hWuPPw6EQJALZ87wUpKwtb1JlmXh+rSOJEk5c/oUX/7ylzl58hSf/uXPkKYpzz33HCD4j3/8RxiTY+MEayqccwz393hw9w5nzp1hsf8+tu7do8gyQHBgLe9UJWdUSlXUqbJSzJOKKxtsHJSUKCcoXYXAYUzFUGne3d1j5cIKP/nR9zl++hTjvYLHrl7hxz864O13bvB7/9Pv8d/+t/8XTp88CVLR7i+Q5wlCKZTSRM5TlTmttfNIGXyIzGxKmc3QWGb7m7jqADsdMtxaR0UGM50ifUVRWXqLaxxs36SKO6Fhl80AsmGGH9ZmppbSNf6KwZKhDuSRYl6LNH6Sx8+c4kOf+Djf/upXyKYT9ne3OHX6DHs722ilONjf4z/+0R/x/MYDPvyhjxIvKBaXF0JARBrRS/vs7m7zrb/7Oq/+7HX6C8us37kF3qKEoN1uU3lJ2unz3Ac/RLs3YDyZsb9/wPr6fe7dfJvp6IBetxvYrJWp2TlN/RWM6V3dvDe1zVH1Q8NqEoAXoSdRdc0fAL/QcDW14cFBFZpupXF5AAgmtfxbKh2a8Sii1WqhdBgstNsJG/dvkaYJcZKQJjH9Xp+k1UVFCa1On35/gFaa1bXjHDt+girP0LoGYJynyEom4wmzbMJoeMAsLxkOh+wfDNk/2KfIp+yPhuAsWTZiUpUh7EpIMGGPESoon5SufeCEIpICbyzaO9oeukDXOgbW0wH6RvC0GnCrykAEhRQqYvXkKaaTMVmZU2QZykMURdiqIoojPvzRj7N3MCKSkm/+7dc4fuIEF86dx8URVZHx/PMf4Oq1a/xvf/yHvPHGa7SimKtXH8V6ePuN17h17xYGy9WrjxHplFk2ZXd3m298/W+5cvUav/TxT/LjF3/C2FQI5evwH0+eZexuPMSapzl/4TKvbG0h6pzVV8sZ286QGEmkgwWUqS2XhIeyKDDT4JcLYWAxKQsyPEhN4WAsJVVVhT4Vg4wMMV1OLPc5uzYgKwrwgv3RiK3tTf7qL/8z4/E+lcnBW2xRMtx8gFaKTq+H8z4AVlVBa3GBfDxia/shrTRBR6E/i7XA24qd9fv0jl1E4DFFRSQ9sk6/roxHxHXvXA8cGpBtHq5XX+fN9S7qiz7InJse4AixoF4j5n1DfdM06bpN39KsEUIwBw0bAkwzOGh6F9nYsRAsBGQNTimhSbQO6q4onts2LS0scOHcWZ568nFMWVKVweO5IQpVpqKqAoO9LEtmsykH+/scHBwEcHx4wGQ2q2WvoU61zXBaU7PkwiAOIWprGTf30ZNC1ArCEIbZ+BB7Fwakrg4TsU3v6g+lwNZ5tNbBQ976ACL6o4GGTXMFvgnwcOH6C713eF9FWSAyNV+7dBQGFlEUQL8oiojjCC8gjVO6x7v4+j7Pspw8KzjY38dWJaUp6QwWOX7mLHhHnudBQl15Tl26QlXlvHP3Jq9nk8BoQ4B1RHHCYHEJf+d+SJwWEGlNjmD1+Am0itBCcuXCJS7+09OUeYYpS7YebrC+8ZDKGi5feZRXX3qZheVlzpw/xz/8x/+YCGgN+rRaXUorSAhkH6003U7Es08/w7vvvkORFWgVQNmqKtnbfMjJs+c5duoUexsP8NYyMpbvjXY53lkCCb4yaKGQBFBaSYkTYERg5OIKMlNRSIGVAluTxLadZ3NvD5m2QEckaRuDYW9ygJzss721xa1336HKc5I0Yv/+XR49d5JHVwc8+KM/4UyZId58l9tJyvHf+AjVZAMTt5D9PosLXfYOtllY7nPu4oVgDaQ1VVnNB0xNineSxEhjyLNinl7/i3z94gBfbTLcXORlGSbHfi7HEnipKIwgjcA4R1UbRKaRwJmajSKCn57zQTftvArUZulx1tOLIYojtAQVyfoGBS3BKBDSY32FFArnQvFlPFgrQHpsWRfjWtNup1RVgcCRtjSNH8HUlHgCFdnVcphI6HpDCCNSpSVpkgbDeuPY399DyYhIRpR5iWpprGyF1L88I44UzgSj4wDy135IVYk1YfHTymOFoKwcuk7LIo6x1qCjhKpyRNoHk34vUFFg5Hg8whYIFxboMCEClXYRuo0wOTKKcV6A1BgRo4xBmAqhIvACrSVxpChMMCeWIqLynrjTw8g+a8/8CsuPfxTRXUOoiKIoyCqHUhCnHVQUz+Wp4UvM2Tn2iLRPiGbSGlLZji6O82vpCBBHA4sdBZ2O/t6Rl5sjd+8B+cL3/NGDmwN5Rx57+ND5l2tYSkcYcc30Wx6VMTZg2ZFjEkf+fSiLOXxvhw/z7wESD5+zOZTa++LnzHMbY+zm3bqmWp+/j/o1m8ZfBHkmjiMF75GT+fPAXvO+XdjUVp78OGrvPJuv/5RuS5H2euysb9KLwGUF2gjShQXG4yHdfJdPHpO8Ph7znbf3mWUFYIlaXUSdsBni54OxcX/Qx1nLydNnUFrzxmuvzpOlkoVFHjl7hp3NHa5cPM+Fy5d4953rSKXY2trm0rXHMFGEkBHaVrz47W9jq4rJeMT1629y8eJlFpeWeeONn3F//SEnT5yg0+2QFTNW1pZ5cHedVqddS1ANe7u7dPt9fN0giPrae1saXpUTXohjjHKsrZ7F9zpU0hP1Fzl98TyPlCV5NmE6mTLOgxSuGs8oq5KxLZhax7SyTIxhagy5N1S1z86+8BgRWH2eMMSQkSZKVWgWRJOIKdE6NJmxEygRGH/GW5yHrHKUxtT+aRKsRViHkQ4wIU+mvk6UF8iqTuCUglRqEiVRKLQNaeECH2QXzhIJH5h+DpR1RISIeaUUeIsAkkRRViH8Y4zjNeFYEICBUoOqpTVS1CGsKuwLQirwCqMsw8kWa3GPdhIhneNOVVI99jSv/fC7tQl2GM7E3QFLqye4/doblFlOpEOTtbW/z2BpiTRJwRg+9bGP8+EXXqBVe5DGUUJUT+qrypFYx+ggp7KGcxcucOXxq9y9fYev/c1fs373VmAJGAvG4krD5oOH6Cjm2Rde4P6dO2w/eFDfx6Gw3vOG72cHnI5TpErB5FgZ7qXKW4RQpPLIZM4LjIrQJ04ihMSZ4PMkpaYyhiSJibRGekfSG+CdZ7q3hSmL0Gw6P0/czWZTEII4TjHeheLPe4Szc8a09762tHDzot0YO2dXBzZAnbDtD71Sfb3WGGc5c/oMS4tLjLa2DgED53jj9dfZ2thkaWWZrd09vNK04whnKzZ2d7n17tshUdtZZpMhd95+k8/92ucYjsZYFE8/+zw3b95mPJnwyOVH+cALH+XuvbtsbGxiquCZ2wzYVJRwbO0Yg+6ApUFIcDtz4Sxv/vRlkk6L8xcuce7yZQ5GE4qqoru4hNnbC3uucyRpikpVAG5M42NbJ9wTWGulKYM0qG74kyThyqOPcvXa40itsZUhzwuyrKQ0FfksYzwaMZ2MyPKM0fowhJscmVEpFWwy0lZKKwmNf6u/SGc1QcngzeudwQs4cJ6dosCXBsoK8gLtDFFuaeHpeknLOdoKuhJ6StHVio6O6UZdWlFMHEd0OwmJhEGrhUocWiYgo+D3JxRCRoH1KhVpu09HhjAGpAs/9wHAR9gQ0GEtrqyoJhPGkwNu3niLvXsP0d5TGYNKE7aSmJ3aU1lqhZAxpy48wq1bN3HWUJYlSRyTFTlpu00cx1y79gQvfPBDFGXBj3/8Irfv3OUPf//3+eSnPskHPvABThw7BmaFhcGA+/fvkedZuP6F5OnHrzHLS973/vdz8eLlUGshiOOYJ596kr29Pf7mq39N2mozHB4EdoyHO++8Q9xuc+LESQYra2zeuw0+pFpftzkfjdrgPLEQFNZgvQcXAA/tFdL5kFQsgudWEWmGUcxkMqK4v8W4KLl1b50zp87Q7XX55V/9VbqdDj958Uf87NVXWFtZAe9JlSJt9zCVIdJhHY3iMBAJ4kVNb7VHVRb4MsPKGKXOUEwmRCuPI2VQYRTTXcbb9yizfZLuMpVrh1rcHmGiEHxDnXWHxvNS1F7QFmsDUGlsHQrka0/HetCjdcS1J5/g1ttvcePNNyhHE7bsXfrLa1RZjosTrLO8/PLLvPXKz1g5tkZ/aRGtQyO7u7XBw/V14iSl3elw79YNssmYQa9LVZRUWcmpR67w9PMfYPnYCfLKsL5+n/U7d9i4e5Nb199CyxAqpZVGx0l4T85jqqr2pw0V0lFWeT3jmM9Sbc3yEXWtFFKEm9ABMfc4Fs2QVIQaVtZWP40MWEgDRU6BIJ+N66GZJE5jhIQ4joiiGIEgTXZCKqqxSKFI0hZxktLpdIkiTafdotfrkqRJkOai6fYHLCwtcvzESbQOLOKiKvjud7/LaDrk0cFV7t28w9mzZ3DOkxUZRRGa+xtvvY0pSqwNAVcSSZTGQdrpRW1XUg+FCAb1sYCWFNx0MXeLabCMIJzvy489Rl5UHF9dZePBAyqlUDrCm5KF5RWeePpp7m8eUJQlX/mLv0K6ig++8Dxf+Pu/ztJgARnF/NWff5lYJzz+xJO0Wx2KSUbSStnb2kTjUa0Wu/sHbD3YIM9znPdcf/s6m1sbrJ48wenT53nnnTG2rGpCgUBLqKZj8tmU0+cv8uqLP8aZwIzadJZ3jGFVCpSPSUQIjfFSYPHMqpzKEYIIpcIrSaEUpQs+4PvtLrOoRZXlaCVoJymdpMcj58/WqjNJt91CCEWSxPzt3/w1r7/6MrYsUT6w2ZTWJElC0m4Txymz6QxTGdrtNuODA1w+Bes52Nqi3esxG48DSSaBThpk5AvLS5i8ZOfhbZSStL2mLEtiHc/l9kfL+qbEaAb4vgb7GqC/CTb0NOy9sMfL2v6qbg2ARgHlD3uceiDW2CM1A0HqIVxgz8v3vLajqS9qBmCYH8xBdCVl8Jt3IVRSeNBSEbXbtFptGjuUcK83AW91/+XqxF5rKcsQ5rm1ucnGxgaj0ZDxaERVBf9DU1Vzj+EG5Gz6zHkKMOBMCLZq8AB8ACfDoDTUU4GgEpj0TaCPtUGnUZXlnC3trA01otDhvAuwlQn3ZTjDYYBiLaKxTw5HERiUOKwJr1nmBVpLchkUhF4EwFJJjY4SWmmKVJKFwRKLiyvhvYnQ209Gs1oSHNPpDfDWY/KCOF6g119gVuRMxiNmoxGj4RChNTKKmU5nTKczklZCURR47zlx+gwINbd5EUrR6XRoLSxyfGWNR65eZVpkuKriB9/5NqfPnqXd6XLj7RucOr7K17/5bb7wO7+L1AlSeibTKS+/8gMuXrjE+fMX0DqmUFnYy4UI64x39Be6DCcLyLiFyydY4LV8yGdPnOHs4oD92Qw9zokqi/GGzJRIoShrdr6xnpkMuIDQIVF3ImB/lpPFEptl6LhFMZkxG0/Z29lma3MLayzdToc0Daz71uYej04E8fURXreZrvRJ1rfobLyNvnUaWzj2Eo2+8gjnz51Fa8HO9iaz6YQ4iSnyLFitGUu/38NaR16UtFopWkd0uhq5dci2/f/1638HgC+gq86H5q1ZdKNIIQhG0kWlKCtIonBTxUlIgksUQXLiPKVxdTy9BysxVoAOxYjUYVFQPjStVR1jrpVARI3JcTAGll4jRIS1JmykUmGqMNVyQBolQY5kA21dKEkrSRhPC9AJzhm0ColzUmqE80RJhKlK4jgY0Rvj6pQXSW+wCD4YWhfe0tKe0muqwqGtwwXCYvCk08F8V6vA8pIqeMyUThCrJKRMuQIhJEpFKAXGBz0+QoESgepbNb6FEq10kBGJMOGIJEhX4ZyYyzKiKMH6DKQOfjRlhrMeLQJLsXQFpvSouI/srdJfvsDxpz5BcuIyLuoyrTzaKZwPxvYtqecUbQi4wSFrLzSCwZ+Q+VTU+5Cu5Opicw5uNRVXPRWa+9/Nga7aZ2/+WuHF5jidc0c2m8NdzTesNj8/zPoAj/y9fmzzvTkjr/lVf/ggW4PSTaN8FExrjusoC24O8NUbagD6mnd05L3Ux9RM38LEvP6tI8fjjvxunXH3nmNspLf+8Jfe+xr4+esfIrLv9Ro86s3RFAtnn/4EF06dohztBNBQKcrJFOUqhrvbjDce0EpLFh7eRM8OsPmER7Xloe1x/+Eyk2zI4PhJtvf2iDotGMWhYRAheUuhWFweIDD87LVXwvWtJOnCCsZGfPEf/ENOHjuG846trW3WTp7krdt3OG0Ltu7u0On2iSrLmZXj7DxcZzKb8Pt/8O/49d/4Le7euwPO4cociWBhdY276/fJH2whhaTMcnoLCxyMS/azitXTF8F/HyGawgHsyiLf3dyHbIK0MezvsnrmHOLEKqLXRfZ69OMYm81AeFTNUA76DwNFEZLdqiKwiMvgrVIUOUVV1Ob5BdOyZGIqZqZiUlVkZUFelRRlmMqX3jHzYPF1KlPzmQuUkmipQzMdR8QipGMrKYhVSHDSjVzJh7RTAfX5F3hLkH1YT157fFobYuWdJ3iNhY8MGZw7w9rpIPaBESTzikQIVKwZr61we2uLT6gOlqa5EIE5Vld2zgVvJFev6SNhEEDbazSazfE+906t8J37N8mqAh3HVFWJ1gknz1+gKA0725uBDalDcmHa6xHFCav9Ab/9m7/FY489ynA/JCUmccxbb7/FpUuPInVocjrthEH3BGWVMZpmbG0fsLi8yu/843/O177yl/zspz/GW0+R53RbLfI8Z/PhQ1ZWVvjYpz/Nn/7hH2LLMtw9InhKfn864Vc6nqVSUtRTYKSqkwlDI2pF4w0VUbb7qGMngnxIMpdURErNH+udJUrbaK2QtkAKT1kUxGk69xAMja3CmOAnGDxYClppEq4RrahMzeQmTJmddVTGkBXlfO1wzs+HLw171IvwfeE9J9ZWuXz5Iht3b1PMZmgRmKGT6Yy//fo3+Pu/8QV6nV4w2feS0gu++91vk82myDkYahmPx4zHYzIn6C6scO78RZ56+n0IKfnoRz6K0pKvfe1rSCUZDke1dEiGNMdIc/WZx1k5dhxnLUVRUU5nWClZO3OW0ll+9uqr2MoENqY1RJFGR6ou7g1VPb1HCKI4Cg2JCCmZcZLgjGF4MAJncVUJSqLwVFnB4uqAeJCCqNM6bQ1myVpOEmlmswzvLbPplMlkzGwaUgDHo30mkxG7e8Oald/cBwF8pZY/aR0H0K3VJk1byG4HpRMsAq0ksQJhKrQEV5QoZ/FFhawqomyPSApiD4lQRMaRRpK2EvQjzSCO6KiIFoKeTmlHLVoqphPFxEKEGiIOAIYkMEslAulBumAZEqVtBiri0nnwBwUH+3uIOEGlkteLA8bCBpYVnieefZ7BYMDB3j7jgyFKqeAbF8XoOKbV7vBLH/841lpu33qXd65fpypLJsMR3/v2d8imM86dPcfTTz/JY489xjs33iHPM4Rw9AdLXLl6jSeeeJp+f4Crgw+KPGM8HpO223zghRd48823eLhxn1anw2Q8REuJ8I47N9/l2OlTXH7qSfa2HgbJs3XcsY5N51gTECUKX8EwLxBe1AChJ3YeIzxKRzghKBRs4zjz9NNEyrOzs4t3nguXLqGkIpvO2NzYwhkTDPhVCF4pipwoTogSTZlXoaY2RahN2x2MCiw1Fad4rRnECaPdzeDQE9eMamfxSY/+uaeDtUs5Y2tnH6117Uvt8DowWazzgXHpbQ2Sgq69nryv/cnqQBFXBZlqWQawu6xKsmzG48+9wPb2Drt37zLd3WN6MGRhcZl4oQdesnTiOCormE4meC05GI9ZXlwkzyta7R5lmbN+9y6uLJHGUsxmpO0OUZxw/sJFLl2+jDEVDx+uc+fWTTbv3+Pd136Gq3IQEiNMDbAFWZ7UiiiO52ubtRZds5IDYyfUVYIwRDO1DNnVhvYB6KqD3pwP7EUXhuZh4FsPAYStzxNA7YVa+5kyFagoKIPULNjoKBUAniiKmEVRSHUWAWhR0zFaRXgPi4sLrKyusLW9wWw2oywret0+aZKiZFAutbsd4jhGa821p56of6+k3+tjqpJOu83ezi5KSjr9Dg8ebpCPxxinwDniKKE0FZ1+j3a3h9ARwgb7jGw8wTuLN4bWYp9bRR5sJAhGIc54ut0eW5OM0XDEeP8AZyuESDHGcPbceVQUE6ctbt9bp8pm+HLKKy/+iJ0H63z207/CI088ybGTJ/nhj7+PdQUf/9QxWmmEdgWPX7nC95aPk3tHLjy5qRBSB9ukwvCzn73Gp//eeS48cpk7N98ic7OgDqv3qLwo2BlPuHDpCq1Ol9noAISk8PCKKXmakN6s0QgdrmnvHTKOqPKCrKzwacK0yCkrifWSg0Rwe3lAhoHC4pUgE56e63Dh1Emk1vU+LlBK4AvDqz/9EdODXaIoYm11DecgEpr2YCV87iL0k5PJBG8KvIS022dRxVBLNq01zIoSkXqs1qycXK1l+2O27lxn5dQldHsBGU0aSt4cmKvNUOqa/lB+2vQmh0SDuqare4Sjidpz53QhOaomEnLe5NU9BDXR9xCIaCyMqPuYhkGshcS7OnTSBRPwOVO4flqpFEI6jnR34fyKhklc379C1f1K6C2FAkQUAjfjhF6vz+LSEhcuXaQsS6bjCUVRMB6PcdaQJmkYpJiK4fCAe/fuMTw4qIF/W3NGaqsqGyw6bK36aTzigwoprCta1Sm8td+ptTYMSUwYkBpra998Owf7moDB0Je52t+wkZfWA1gBzpv5eQyfdZAohH8HwokzjkpU+CxjPA5MwCSOg/92FIX1D0+atijy0PYO90dESVhLtFUBvOqkYc9eW0UpyXA0JtIJw/EElcSk7ZRqFoJ1FpeWmc0ykihCpXqe5JzleQi3ENBKW2T13rG9uYn0nrgmHJ09fYZqNmV3PMLZgq/+zV9z/c03uXT5EX7jN3+bbn9AWc6osow0TamsxxvH9voGZW5IOl2yYoIQkh3n+bvJLv/N8mWWkgQzCIxpqRR7o322dvcop2MyaShjmKEwKAqdkLUSDtopw15nHua1t7fBwf4Bw+EQU1mEjuh0+8gkAmPQ0nOiM+CESRlnU8bnzlMlJa6b0n7sFDcmBxSug+t2OR636Hb7KKnIsyn7u1sYUyKspZzNwDoyqUhaEThLVZZQX2/Be/0X+/rFAT6Y39AC0ApadUFhvQgNnQh+WkpCJCVC1BMkJ+a5klIrjHUgFRZJ6TzaS6IaXPHK45F4L3AuSF20AOEFvW5gaHgRowBq/5AkDo2ckiokjilVTyuDSbRUChuoIWGx956WdMRRjEpa2LIC60Kj3GqBD35SQkV0FpbABB+aIsuYTgqirqQlDUWcIqIU4Uuk1OArvKso8zx4WdXgonMQt1uYssJWJVGShMRaHRErReUl0skgy61KFI4ojjFWIGSg8DtjQSmkipBRnXSbzVASRJ1eKxDBU4Rgyi6lREuFkmHa6mSEWjvBiSc/yfLVj2FVB4tiZEBbFRJfoiBXEvUzNp95DTPMGW7/JbAXJCb2CLAXrpsGVQv/ajT/jUdCs6gfBdHm19wR5lzzlzloiK9Zpcwnts2m916m2nsu4CPXcQ0WiqaIqxf9eozbMPcagK/54zCKvgHjjgB8MKfgNsd/FNwLG+6R91lvuBx5jcP3+d5z0OyOh2m+RwDXnwMKm2NsJmBwhKnYnDOOnDfvA9gjFdHSifpHnrgXfi0+cYm1xwXCO45VOflwH8SM7p3rvP5nX+WZSydY328zaHcZbm9TZQVFEdhHItJ0uj1SFdHp9djf3mA2y1lZWiXudDl//hJPX7vG2soqUkpe+skreK04cekSV598AlsUSByz6RhzMOF3fvcfcfbFC/zoxR+xu7PL//q//juKvKSVtFhdWgLv6Xa74fN0FqVDAuhkPEErzXA05tSxk7Vpe0pVVZRFwTRz7K+t8Z/evcH9Cj4+q3j03YzF3R1krwWRCGEHQoZNuy7ik5rZKpSqWVmCOEnxiZgzAgKlV4ZwXQ/CeHAG74MvWFMwlM5QWENeFJRVQW5LCmuovKXynsI5CmPInCO3jqIsKUtLaUqq0lBZR+4thXNk3mGwdZhDfc/I4NWmRGAf6DqtS0tJpBQxBF/AZvKqJJEIzVUpVT39lqBh1xve3N7kyaQNuadQIJxBewXYEJRUVmGKTs0U85J1aVmSESvdLpGOuTcqmZxf47Uf/ZjMBsZxFLdJOz3SpMP6O++ysLhENpuRJAlSx3SjiNWFJX7ni1/k3JmzZNMZZVXw/e//gO999zvs7u3yr/9v/3cWFlcCS0YJfvjj73Lp8iUWl4+hT6Rs7ewwK3M+9WufAyF49Sc/Js8zysoghaKYzbh98xZPPfUUF69c4d033sT7EKbkheBuWfK2KHiuVJhIAcF7T4kwoVVKU7jgbxppgVheQq8dJyuKEF6gdS1JZT5xd86GZkvAcG87gGU6pqpT26QQpK12uO/raXwz2Tg4OKDT7WKqYGthjAksk9rQ1DuPtyFIyjYJmsbW939g1NtmuuwD06XISlrtDlk2w9RLkHOGl195iQsXLvH4E09CHfZSGcfd23dJWx1wYbJtTMVwNKbIg8G4rtOfP/mZXw4TYWP5q7/8C+7dX2dhoY+xFVoHnywvJCvHj3Hi1CnavTYbWzscP3WM1372KkmS8nB7B1MVCBfWcVOVgRVXr+FhuKBqbC/UJs6Ewj2K4sACKIIsyAPUsnAZxbx94yZ37q2TxEkNBKZhCCglg0Ef8Og4IUnb9Lo9Ot0OEkGn02Pt2IngrxlJKlPwve98h73dbaqyrI8jhFQ46/FViS2DMfhkMp4zBqRQQc5BYBnKunkKwWSKJNKkkQ5AcC3HFniEDiMyrEVbQ1zkpEmMMw7lhyy22pAZuiqiqxSRgFRaes4TO+iMp3Qt9ISgVYG0BqEivHFMZmOGZUEVx7TamlI6vjceM7EGMZmgopjjx09w9+YtqjJHCkErTZjlWZAZJTFXrjzK8eMnmU1GfP1vv8ru7hZVWdDvtFBS8KEPfhBPaNDPXrjACx/+MN/4+t+CEHz0Ex9jYWmVVq9HVqdhP1i/x5//2ZfZ29vjv/qv/4+k7R6f+cxn+V/+3e8RJQkyC3J36T3ZaMTGvXXOX7hIqzdgdrCPkJ6xcIw7LZbHI0ZVjHIepzSlDQzLyvpgqi0E3lSAZxpHVO2Ux649Tq/fxVjH/v4+KyvLDLpdbly/zl/+xX9maaHLuQsXGI0mpHEUEnCVpNfrk2cz8ukElKK/uIy1gaWfpmnwYK1KjBe0F44xWJLgLdbkmHxGXFZMpyUijRHxAontUlgbQtbqBlIQFDNaSuLGs8p7rPEYJUNzak1dzzmcUngHVZpAzfTrdjpEacxnfv3v89L3v8fN62+RT6YM97awu1u02i0mwlJVFUWeEx+0kFqzVxW4smLj/n1MldNKUyIlafe7Yc9ylsuPXeF9z7+f3c0NXvzRj3BVyXi0z83rbwdriihG1PY9dXreHGQT9WADIUK9KgSq9vAOVjCh1un1emGwXUukvClrf2s3l9HburnyzmFNFZp77+ZBfw3aYCuDFdRMFo8oa6/KIyynAFwEMDeKgk9esP5RSKmCd6yvqKqM6WyGiiIEErO3RxwFj+3GCzyKYnQUrAC0DoSDVrtfh+AIjp/tE0eavCzoDFa4d+sWUqkghy8MOg7P0en3WTt1ml6nR9rqsL2xQ9xK2Hr4kPWbb3N/a5tG2dTpdjHGM1hY4c7mO6F3MSVFWdD1XZRQPPboNbK8IImTsHZaA7Yim4549+aMPzg44PPWsry6ym9+4Qt885vfYGlpiR9/9/tsbz7gH/z2b/PP/vm/5KdvvcHOdJfVpWV67R5Li8t00zYLi8topTl7/lwN6sj6IxBh3QTGB/t02i3WTp/l5htDtFY443i1HLPZXkHlU2SrjXLhGp8Zy9QaMgRT5xlPZ0ylY6QjHnrFLS2g06GdhyEeWlLaipbwvPLij7l/7yQLvTZnVvu02n2G05zprKDd7nDl6jU+8KGPEmuBzYLlQbfbxvuKWTYjiTU6UfhIMT4YU5YFg8UlptMJzodhp7OO4X7O9saQEyePoYQloaLf6VMVFc5YRFKz6Jw/7FGazqAG8ubX45Ee4D1hE1LUrLray7cG7Bo2LE29Om9FQo0hapBP1C8WhgNy3oT4eT9Wg1bhigp7kxJIH0BJ1/xO409X90MCgurLM98DG3sX74/2RuH4IxVkngCRVrTTFtZZFgYL8+ONoghBHSRUs/6eeHzEnTu3uXfvHnt7ewH4txalA0u4KApUu/YVrJUO1oYauipLmkANay26Pn7nQqBkI/1VSmKdYToNASIh+MPhjwwaA4jqwMs5s1Bw1PIp9MbGhf1CIHDiEBwM7ONAvCnzEPhRFkUdiCeYTmaAJ4ojhFSkNkUpzXQWkrKTJKHX69Z+zrpeu8I+kXYSqqoMCiMhaqDO8dqbb2KFpZ0muDzDlhW2sOyPR1y4fIkLF8/xyU99mijSdFstPvD8+xmPhly5eJE///Mv8+rLr9BqtxmOxywvL7OxuYHFMhgM2Nt5GEDW2jLJGEfSSlju9NgY9MmHO1D3SN/d3eYxvcCTU4tUMbFSTPIZ15mw3k3Jky6ZFMyEZ4KgFIoKKJ0ln47J9/eoqgJbh5SZqgy1X5KgkhYyimr7JMOg22FPK15cbrE5c/QeOUNqDWZhjQfdPl7HpN0FlleX2MsNw+kE4wxprOl2WlRFRhpFuKogTRKqKkNKi60MEj/3NQ9g3y/29QsDfFEtI3NeEMUSLcOEsCwsUova8NKjk1qfjyAkhQdKePifBxfi5q2lTjahnixKhAXwgWY6rbAECWgrUUFGZh1CaDqdFrPpBI9DRxFxEgWjWgFSR3S7rdBUaIXwLtwoCGyZoYUj1rpm2gmMMSHGnKBrdzb49URxgo5bgYUz2SOOAkDncPhyRqqhNI5KSiIZh5vLVvXiF6O1QngTzB0VdYIviEgCIQpdqQgvFDJqYaYjhAoePqKa4oTGiZBM7GxGlEiUsNgyQ0UaU1niVGDRgCaSEiU1eV4RtRS2LLEuQqR99PJ5BkunaZ96jP6FZ/CtAeMybABRnNBphSkkUIMBh3Ktw6/wWTjr59OcxrjUODM3LQ1P4Y9sFGGDOaRIHwLF8PNsOj8Hwhr0qmHy/TyLLnwdeq/MN4zGePM9G9zh4+agWL1BNmy3n5+ANYfwXhaemANizfs4KtE9BASPAHlH3p5r7ugG8/Tvfe6jYOEhIlj/UU/BDn/38DXmxyQO98KjEt0jT/+ec9a8ivMB3CzrBmF+GdTPo4SY+3kplZKsng7sjsVLfKp/hY8UEzY3t9g4mPE3f/cNitq3CW8BTZwkCBc2sVYc8y/+5f+BQasFaQvRSklEaCY3Hj7k3RvvsHhslThNuProI+zcv81PfvhDTl64QIpiOJ3xhS/+Nh/88Me4e+sOs2zK3379qxigt7iAzQOILpQ8TMHyQRJvsGhRsbzY4YVf+hizwmB8SGrNp5aTxwa8NTzg2+MDbmSOx1XGxckGK7RoR5pOorA6DsMKGcA8RQDhY+GJVUhQS6IA/MVpCx2laJ0Q6wildZj01+E0QcoeZA5KBRlYR6aIbjcUZB6ED/IaL0VIDhRN0xOBbD57iUfV3pFBklVhqExJYUsyGwyCZ94y85bCEybIZUFe5ORlybQsycqKrDLkxlKYEoxFhvSFEPGOwCLJIs2BcFzQLS5NBNIUmASwHu0kXlQorcJnQPAtSuMI0U15/c5trgwG2KpkYnL21gb84GAHKz1axkitcTjOPnqFSV6Sjw8CW9w5Tj32GJt3N1hIOvzuP/wdTpw+RVFkvPnG6/zZn/0n1tfXEVLRarXRSmFsRVFm+GrGv/9f/meQjs//xhd57gMf4fixFXaGI/ZHIz752c+RzwrefO0VJuMxx06dYvPhQyTbPNx4yHMf/gh33r1Jmc/mwFrhPd892OfJeBUhY7yoKG0ZAhLwFC7YMSgl8FrTOraGSOKQOlez4POiZDKdEscxSZJQZNMg+YkUwpVYUyLqNL48z0jiCF17wuLrNGWpaLXbJGlSr80BtEWE5K5GUlIZQ1GDSZZgh4FrUnSD0Xjl3OH0Gbjy6GN457h78wa3b78b0tmtpSoyvvqVv6bfG3D2/Nna83HKF77020RKYMqCbDplb3eXN994g8ksY3VhGfAYU81NsL/znW/xve9+i5MnT7L5cL3GwhXWOVrtNucuXkSjKfOcjfV1tjY3UV6w8/AhxWSCq+rgDCEQErSOkHFSs+Jk3byHtS7SUfDRUoo0SfE+MLhM3QRqAXEzKIySmlUSbrDKhGl6t9ellSYBaClnjIsQ3hLAOyjKgkhHtNIWOkk42N9n/e4dlAyNamgAVGj6lQAfjPPn6af13uWswXgTCt66qWk+a28l3lRk+ZF9xzkcwfAbG/ZmHWmEgyjSc1PypCjDmqQ1caKxxqNVSpJEuLIMjx2P6JYViyWsljnLKPpFBVmG844CiygqNrTg3VlgewnhibRgeWWBh9ubFNkUKUJBXRlLlCTEUcxzLzyPlJKH9++xvfGA6WifJBZEEXhnmUzH9HoDPJAmHT74gY/Q7Q5YWV1ldfU4lbVoJclnOT/+4ff53re+ycH+LkIIfvj9b/PJz/wa58+f48yps9y8d5sobVGNhngnEcax9/AhTz71DN2FRfLxCAAbR+wfO8EF75kVBcL5wKQ2DqeCvG9UVUTaIxFooXigu4wHK6jdAxZXl0iimKTTCZ7IeBZWVpFKcf7yo5y9dAUlQLkKVzhGBwco76msoztYxNa+pFIIXF1jWWPq4DqFjtPAtPUK3UrJK4lqOVYXIqy3jIczjCjq/fpwMHk43DtsCKUAnQiSI4NHO2ejhMbVkdTetAKcZ3lxgbMnT3L16jU2H6xz951giP/gwTr5NGPz3jpegjVVqBOsI4oDI1TL4AmmRRhIlMZgheDaE0/y0Y9/nFd/+hN++N3vcrC3C86FRMleJ8jLlIba7kXWqpwgOVQICc762tO78a8KIIHWel6zySbUpb63bNUkF3Lox2VtSN0tSmSrVbNyTFirSlPbF7h5093IDwPzR9VVaDNodZgyhC1VRfkeMFLV4OTOVg1AJAlxKyVJUmwRApEcEiclaZwG+W+swQf2YFWZEDoVxcRJYP0KoNNpk6YpFy5eptPr1knBjlarjfMBBIjjKLBEvGNxoUsUJyz1r3D65EmuXXuc7a1Ndvb3WVk7jlICpWOmw33yyQgN+Dgmn2XEQrK2skKiFCUVC4tdgnVHYNd7pThx5jQe2Njc5Nn3PcU//Kf/GJRgf7TP+vpdSmM4c/E8a+fPEXXSkFjuFApFIl0ISCwrjh8/hopiyCRwCAhVpqLIZrQSxSNXHuHe9dcDa8p5dnzJi6Xhc86zbWZk3jKzlhkwNBUHSjBWmi0idiPJgRbManVZ52CLLDsI3q1SIJVgHCl2Nu7jhWKp3+Xpsyu4KmbtzDn+1b/6V0Qyobe4QLuTMhuPEbbCi8CoxxZhvZyV7B5sk/QXmAzrWkYsUmYThnu74TrHEwnH8bUV9na2GN9/h+HOQ+LkFbrZjOm4Im6fq1uHwz4nDAZDcS9Vg4bVTYA47FeO9kKBVXr459EgmnmfUvc/DXA9T+YVovaZowbSwrCzeWRQm4kjvaCfe/s294lUkqONyXsUUNTBGDUA2PSYyAAYhjrFh3tChuGdFAKhAtvda4VzYIzBVBWyZuUG2yzFwuISC4tLPPHk00wmE0bDIXt7uwyHQ8aTMfv7+/P30oByUaSJfBg4NGC/czYoMOqBaFlW9XGHNUU6zUKdQpvneWD5VRXUwxRfD1AheN157ynzYk6coe4pQk3gaCgdlsMwIS99UNwgApFKCjyGIw10GIAiyKejEEYEGKkoi5zpZBQGEghanR5KKooi+FQrGaTTUgp8WdDvtukt9vnBj37E7XdeZ7T5MNRLrS6DlTVa/R7LKys8dvXxedipq1Ukr7z0Im+88jJlPiNJY06dPkm/3+fevftUZcHi8gK33q19760NASPOUZaWTl+zurrCwYN7oacTgklV8j9tv8OK0PQLwcBLzsqE9lKPn2QTdlFhQOWCt6rHH4aqhCtyfu2bMqTYRq0WOkmROgrnzln67S6XHrlKVhruLvXY3dccsyV7D/fIb23RTlrESiLbLVQao33Jxq23MFXJwsoiJ1bXMNMZu5MRSRyzP56wurLA5GDKdJozWFoORBAR9r1f9OsXBvicFyEpxRkEiqoCqRw6DubUeR4uzigKF2FlPd4LtA43vqksQjWTaIW3IRkmjRVq7ocFSVJ7eGFppTESQydNsKVDxjEIH3wSpERELeI4wVZloMCjaHdaWFcF+EYE2ryvHJEKrMB2p1UHS9jg76DCzCGKgy9OQK88eEs+HSFEFAwcXWOUqEnaLTQGjwKpkfXkUMqIdrdLVTl0EuOrKTYvkJFFCo+VHhVprCnAg0Ig0w5+Nka4HF9GOCvQcTdMLKsZVCVKeJRK8F4E8M5B3I1CgjGg4zhIyIRHyyAnorXEytWn6F/5GIOz16icoPKSDAVeEich/ANxuLg3n0GzkHkaU1c33xQao9Vm+vkeYK/57yF+Vz+vPfI7R365WU1rRt98k2lq00Na3Bxsqh9QP6wByOonnIdPHPkeh8De4b/FkeNo6Oz15Kj5/eZnR45VzH92SGef8/WOAH1HAcyjwGbz1RzLocw3vGnvm034CDInxLy4ZP5+D4v3w+f07/2er+dCDZjp37uJHwUVqRuOrAz+FfjgxaK0nieBhs/R450JYF8Zrocz5y9TWcOZi5ZplvHXX/sqg0EfMx1SWTt/21VlcVXFYNAnSRK6aUq7vxA2RGOQwrG0NGBhacD1G7e5d+se77zyExJpWDu+wsraKt04pTAVb711gyuPPkqctOh225w8e46sytFxSpWVHOwfzKXbzWdlnKXd69HuL7KzN+W1V18nShRxFNPpL7LS6+BkxOPPv8DLP/4xb80mvO0rTvZ6HGu3Ed4hrEHpitJbFArhgvw9lRERkFhLZCxxBdJYpLUkXqCdI/Xheo2BWAtirWgrRT9OaWlNS0e0dEyqNbEKjX+sYyIVQH4IDCIvVPDzqP11gpRM4gnBHF4CWpLoBEkI6LGRxEfBbN+rwAISSMQRwNsLwIZABmscZVFQmYqyChYIRWWwRVWzHHJMVRBlBmVLrAoJVt4KhNNULgAeTghUFHyGSuFxwvP4sVOs721zc5qxKiTV5Ud5+c13qFxoZKxxxIMBMmqTbdwhimOm4xG9QZ8HD7Ypi4q//9Ff4vjJUzjn+PM//RO++3dfp6pKWnGMjmKWV1aJkwRjLLGO2XpwnzybUeQT/uMf/nu+9+1v8U/++b/k7KXLeGc5mGR8+vOfZ3MrpMBmsyIwua3lwd17nFw7zrnzF3jn+ht1YRsKxzfLGcO+ojfNsEkI85CxxkqH8wVRLSHLlWLxzHGyKqcdt+b3YRxFdDptTBVY5zNj0CrGVY58OqaV6pAYJoI8JNIaLyTOm3ljKuv1ocxzrPWkrXYA6JwB68irDO+Cb6MwJrCsa28+W4XJvfE1u8eHNdTVje/S8jJRFLG4uMS9u3eQhIbZVCUHoz3+7M++zOc//+ucOHWK3f09ZByhtGR5ZYVIBoPtpdVjzMpyHmaB8BRVzte/9jW+9fWv0YoTXJmxt7NJVCeKaa3pd3ucO32WXqcTGIcYytmM9dvvMtnfDwBIs8p6Xxf2FumCF5lQDTCm0HVzTV0wV2Vg5EspaWmN8zqwWkVgW3oczpb4OglZEZJxi6mlyqckcULSSvBlQZpqVCsmTRO8JwzBjKWsSvrdlPjiOcbjCVVZkuc5eI8tijqUyhMpHWT4UhInMWmtILDOzYtTYG5FUpbF4RovarmTEIFBrCNUVLPpXZAFuzrp11qDN65mwgS/rTpOIhiNK1HLN4PsJhISgSWyjp6wLEaG40iWveCki3jTTMlkeH2kZGF5haTbY3NjE+EcKorJZzOEjkiSNv3egFMnTqAk/PTFFzGmJLCZSkZjj1Ka9fv3uHf/R3zhC79FVRTs7e3zxLXH0XHMOzfvc+HiWW68/Tbf+dbfcffmDWxVEvpzwc9efon3P/8BlhaXeeED7+fO+h36C4vsjsc4UxFLmOztUBnD6cuPsLP+AC1VYJG++waDhUVWc4FKEqKygEhTmpxEKkoklTMkMsXrGHfyFL3TJ0mjhI2HO5w4dZJ20kYqga0KqmqKzWecOX6CJI7xxjIbHyCFp7e0TNpqo11ojmMlqKqcooA0TcjGkxCA5ML9KbVCR5JISso8D7YD1lEY8F6R9hZoV45pLR/1dQGktJyrLDx+3uBI5Nx7zrt6XVESmt7GHfoBO+uwHhwRrpWy1O9y7coVhAhBQqPhkJ3NTdbX74cUzAf3mQ7H5MUs+G7ZUDcGa4BQs7zvuee5cOkyX/nzv+Ddt99GeB8GHK2UOInRcRTY8SrU3XV5EgZqDWuI4B8ZzQcZtm7iAijQBEJBnbhZ1Y1znFCWIeSuMlWQo9MMc8dUZRHkv6J5DQUkmDqwBR/8/+Z+Yw3wwRE1y5EmXBA8voSUeOuQDYHHe6qiYDoa1SEuOtx7AlSkKVSQnSmpw5osQ8KmjjU2TsjzHEGQa48OhsGCI9b4jeDBpethRpKkNdPpkPnTbrepijLUD8Dyyiqrx9Yw3uOF5GBni163zexgn73dbawt0WkHVQ9QtIRYeFxV0uu2ESpYI+Um1Af9Xp+V1RVGyYTvff97TIuMj3/641x98klef/1nfO1rX+PpZ96PQ3CsexYrFNYLtPfEUhCJEA6TJgkqjoP2pB6Mh7LaU5YZRZmxsrpIpCRFnVhbesE3piNW4jbOVmwJmArFVMfsxy2GUlKqEAiJEDgR9gOPYH+4Dyp4ugtX4b0hTiLyNEULxyNPXyOtdpiNFW4UMWhfoN3rM5pl9BPDbLTFdDJlaW2Zve0JvijoLC0yne0yG23S7vXwxYTCWqZ7CcVkRDY6QEmNICSU7u1skCYRW7MprcWTjMZT9g5+iu+fQIjzc+ns3IKHZgNkLikF5qBd021JmHuUN4P/QAKU9YA/DPHDrVUzycTR9qwhH7y372igvWbo2UhuG1a5840v5qHVUHOsR49TzoHKhq3JvOfEc4QZyJwF7+oaZt4qNf2jIARmELzFVd3HCORc/RQpxeLiIouLi5w+e6b29nNkWUaWBXZtnmWMJxOm4wmT8Yi8yCjyPCgjhETpUANGsSBti3qPtpRlXnv2GZQN96IxppbxutoHuZH/B+aft544EfNkc2rVS1hfXN0/N9d/+Fxd3VuJegDorT/8/BoCCIaGnesp63OtjlwfYb0vigrqFPGyzIm0JJvMEAIOdnZIpWRtYYml/oAb04xiOqW/skzaTnj0kUscO77KT158kcevPcbe7g6ry8v83d99g8989tN14Eyf0XTKLMuI0oSyyOu6pKDdaoegU1F7ggsf8gLShIXBgAdeEscx0zKvCRWaQifs93tsjiYI59kxGR+bxFxe6LFTTChMM5Bp2JHMyUKqXg+zItRicZog4gRUsFSw3iKMYXDiFJseWktL7B/sM9nbZefuO9isRHjBRlmEAbkU6DT4w9qqJJaa5cVlssmU2e4uyhcsLCwwOxhyf3yAEZKWtsz2MnLdwgtFkef8ol+/OMDnPFUVzKSb9EclQ2JsWUmMjzDGoiPqhJmwqamakiqVrrXsIKKYTjfGlGXt+WFQUhJFugYYRCicFXS63TCh9gZMFW4sa+sodIEpqrmHiassVZ4H0M57HIHC770Lcl4IZspxhK3ZdQBxpMMHZFzQqktFZS2CeoqqJcIHGmdRldiipK0lyKSewAoipUlSHT4sofCmqhc6WUdIF+hIIq1AqU6QQsXdIJl0Oe1OBxElFLMZUiS4KieKBd6pwNqwQboSKMyeNO1SZjNwltwa4laPKurTPX6S3qVnka2TtE89Qu4140qi4zQwh6QKgGXjRgzzJNZmQ2jYBK7+XpiiHhqENsXOIUTk5yBYswnTPA8cAoZHQSWgSVya/36drjR/viO/7t6zudS7QPP4Q0SQhqF2BG5874YIh8fiqdNDxZHHNYd0CModhc4OqejN7xwChP/F9zjEKBtwsDnf8+ebg33NZvVefz/RnMP6QOaMxfmba5YwgT/yi8Ewu/55U2weBVF57zmZswFlYJjpmnFiTJhKzuX57nBKJwlgUGVMYOIiOHl8jeujIZWzOGewBsqqwpQVw719oqVVOu0+lfccDEd4W0/UqxxtDf20xbXHrrI1m3Lv3l3aacSVp9/HsbUTUBXMZhn9pQXGs5BuN5nOOH/uPM5UPNzexuHZGw4Pj1FLVBRRVRW+qOjgkeWI4fZ6OPlS4ahBL6k5ceoYjzz/HNPdHd54403eHU14YzgK00mCn6aq5XpSKpRQLC63WVpeoN9fwBRFoLYnMVpGJComjhQJwVesmM4wpoKqQpYZIs+w+Qw3m+DyjKgsiZxHeY/2ngSIhKCtFF0p6WhFS0ckOqEtJYnSxDocU0Tw6tQqCol/IqSDyVghtERrGdJ5UeEzlhKpa48oKUGHcyBqT7CWCL8tUPiQHIQnhAh55fFa4HSQJAkb2Nheht93lSVcKhq8xDiBKisurd/hnbde4uXNdb6P4Y0HD5iZCq0jSu8QQrF4/BQPHj4kG+4inCNpJ7QXFphkFZcuX+bZ554h0jF/9Af/nm/9zVeRot64nWM2mXL6XAfnBIFUrrl/J3zWSkiK2YybN9/hjTdfZrDQY63bR3rBJCv5xGc+x5/+wf+bg/0DFleXGe7t4eKMjYMDnn3hg9y++Q6uMqH4VZqtouAdX/I+Y3GxxCtFZgwi1lTeUHnBQawZLi8wfvdd9q/f5Z/8s3/EwvJiXcAKkjgmUgGs6nY7OCVQaYIoxuxvbJCunKGVaARgjUFGikhHGFMe8ZER6KiFikJAgvcV09EQbz2dfo9RmVOWFXY2wwOm9pjBQ2UMTlAXlwGcOiwuPafPX2SS5Zw5e5712zfn6cp5kbO1u8mf/umf8OEPfYhrTz5BUZXMphOyrEC0Wugo4vLVq+RlSafbwlrDg/X7fOVv/pq3Xn89AHER3LyxHgD0GtBqd7s89b6nOHfuDB7Bg81ttnd3ufnudYb7e8G/k4akENY+KQjS4tp7T9qGmSCp6um1kOH+QISmIlI6SGF9rT5QEVJHIQSDenJuXH3NK1xZ4FzOsG7MnQs2H1EcB8aSkqStFOdskKWmLTqDAcura2itgxTDh0K2qiqKoqAsSrJ8Rl4GxkdZ5bWEt5YDOo9U4f1FOnj2qRqstA0wa20IFpGhiPcuMCWEF3glKKuKq9euolSErQxFUVIVOUVezBuXpolwNVu2MBXOh+eYRJr73vBqVbGC4FSZc8PlGAKgKlH0lleYFjnTbBpYVD7sZVrHRFHM0uIy7XbK7tY2t2/fJMtyEHFgLxMzHU0oZhmT0ZCNhw8o8oLrb13n5KmTbG5scfXqNe688wZ/+sd/TFnOQkhT04R6mI5HXH/jdT74kY9y5sxp2mlCbgxxkpBPxhgVYYuSze1dFldWQw1kPeiI+6bkK9MJ/0C3WHAutEVe4n2MRON0TO4KhkKyrzWjThdZBTlUuzfAWYGzPoQ/jfb4zte/RiQ8i52YnYd3iKRiNtxHKsXysRO4GrQypqLIQ3Kk956qlmEL52qZlEYJjzcOo4OsLk40xoQm2lsTLBBEA2aHx1tXm7ZLPx8aSiHrOih4WDeDXXGkDhAEgCP4vnpQEkeNBsi6BnDhORPn6bbbHD+2xlPPPI0Un6fIZ2xvbLG7u8Pu1iZvX38Li+PRa9cY7Q/52Ssvs7Ozx/0H38IBJ06fodvtBibDvD6qWUcyAANBqi7qe1bNPV2jONynzvu5jK3xuApKowBUzpNHbfDgCwb7nrIqscbgTZBJxkmKqZOgp9PJXIpnjUFH0ZzVJ2opMPV95xuZb32eQ0DbHMkL9Zqrw0BqhUjAKOrC0ILBUBThE6Dey5TW4TNVYagzIwDwcRTCPLSKADBaE8UaR/DHMnMstVEIBFKFEJKysjWbz4Rmd64k8AHskQpTFDz9vuc5c/YUnXbKxvYW01mGaiVIrcjyjEgHYKiVdGh1+gyLGVHa5czacT74wodZWVrBWMuXfue3+eM/+TKv/exNnnvf+3n/Bz7E9oMNJtMJm5s7HD93KtTeSuCrwJr1rsITmHo6DRYJykPlqvmaGymFs4bl1VWkjhEUpO0epfcMWy2+HnVIwnyJmfPk0uPjBJTEV6b25K7rdRmAcEkAtpSZcXmlg5aaThpz8eQq5cEuq3YXv59y7MRZBq2c2f1XmYmI4XDCbj5hsvuASVnSb3fpHj9NNas4fv4iBzv32Lj9NlJqdh/cpdvrsjMbkucziulBYH8JwWh/rw5lNHiRsHrlKRaX1hgf3Gd9/cHc8y7cyw1Cx/x6ava6Q/abmANs1rnaDuQwidfj64FAGObPewDf9AiNV3fdTdTX7mHrcIQY0fQrzVoyPx4xP66jPeAho/CIKqlukmqMDi3Ve/qgnwfV1c+DgzUryzZMrXqtEvW65WpWcgO8N6MPJXUAdoE4SegPFubH05AdqjJYDk0mY0bjEbu7uwxHI6bTKUVRBh9r59A6hGuBx9fKAGctlQmBU6YycxuBJrSjAeqsqQkztX99o5gKn6eb92/e2boHPfQ3tEf61qY3Fk1IJGEdbD4aJ5tAzMPvWTvClDnnzp0NKhgcYzMmjjXbO5vEkaTXabGyuDi/T7LphFaSsnHnHo888hiLywO8FLx76zbnzp0lSVLyPOexq9dYWV3lr/76rzgYDtnY2GJpcQEpFHEt84/iuPbaFSFQJklQUcTC4hKDxUU6nV6w6ElbXHzkMlVeIpRmLBOyquD2dIQtx5TTglI4qHEX4cXhOQwXYiB7VCWmqtBJgkg7KBWHAS8g6kC7EshmU3Z39zHjEflkB+UzOjoKSqU4rCHdTkqiI/K8oPQWHbd44QPPgc0Z761jioxIODZuv0vaG7By/BgHD+8zG005dvY8Iu5TFv9/4MGH8PPC0jkRfH5ckLZ6Q9BNR4pEOQQRQnhUFKZpwWS6ATVCkTodZygtsNYTJRJ55CIVwqGEJNYSk+dIGSEEJImmyEusd7TTJIB1UYxKFKbM8DZsvDrSSOFppWmYXNfTUqU13ol52pgnpEt6B6JG/b0P7MMw8ReoSOFcSRxprK0wRUGr28KVs0DpjFooMau1/ILIgjU5GI0lAJ7IFBXVoJlOSRIN2RShJdIWOOHJS4+2ZS3bdNiqAB9ilZM0sDK8rXBCgdc4HyHTBXyUMjh1hfaJx+mdehSRLECrF5g4SpGoCK10zdIJG7OtPRfcHCDyh/f7EUCpgcwaUG8OnDXAl/eHGJs/BPfeI8VtCh3naeQ8zZTmcEs4hNAab77m6z2LPw2oeLjxHF4zP8fSm7+n8OccFIMaMPb14xrPmp9n1B0ek6AB6vz8HDSF8+H7PhKwIQ6fqwkeaV57/pgjOGdzAr0/BPeaHx8Wvodfzr1XlhxeZ37g+CMfSnPX+boZfu9zHZ79ylTMsrxmaFb1hhIm/JPZjNksQ0dh+pGmCUIIqrLC2SDPCFJ0jZQRo0nwlykmkxoMKFBSsbO9TafTJtIx1luUM9x99x2+84PvsbOxTlUUtKKEweoxPvbrX+SpT/wyvSTh9KnTfO/rX+MnP/wuj127yvMf/gjOQztKyYuCOK6wlUEguf9gg+F4XDfzgeOj44iyyIljzcmTJ7l1412aBGVRSwhKYUmFYPvBJpvr93ni8cf55c/+Mut3bnP7zl2kVuyPhlRlgXUlXgicCMnUaiKZZGOi6CGj/SFlloVivNVGRQleKJIoDj4PUpG0W7RbXZRqkywOaKUJrSQJ/ksI4igK0lzjKUzFLM/Ymc2wRYYtcqwtwVRgwkblsizExhuLMBbtPJF1xFi0D34h0nkSD4mQpB66StKWmlRJWlEcjksq4ighjQPrLk0S4jip/YQ0kVahiInroA+tEbXHoa99koSU4CQuywOr2DiqPDRTripxWcaq0zyyuEr1vqf46je/hlaaKEmxZUna6dFfWeXB9XcwWYYTHtXqYp0kxvGpj30YjaDIct547TrGCQQ2eGnicFLyyJXLGFtRVhbhHffv3cR7W8uXLDqKWFtZ4ff//b/DVI5/8V//n4hjRXzlIqfOX+Td628g6vu7Kkse3l/n2ic/yZmLF7jz9jvhnhMCJyWvVDOe1gJXOEykGJmCsfKse89QwWbSQeken7hwmRceOQ+uxLqKZiJrXZCCZEVBK67PYayQ2pOXObEzWBPkKNPpiFY3yClEXcRbY4JJPB7vDZWpcNYgbMbB1h7eLDMdTQIjV4XkTmss1oVU3TzPaxZf03AGCS9ChKAOrVg+foxZPsXdu0tV5nN/m6LMGY0P+OY3v8H1t97kuQ+8wNlz5+h3O3Uj6bDO0KPFvXu3+NGLL/LST15kVEth4ihie3s7HK8UVMYwGCxw6cpVrjx2jThJ2dzf5/btO7zx05fYe7gV4GYVzRdIL/x8gCNEnYAnwh7RrJ2NNxnWYY2tBzpQ1g1Ms4Y2vkLNWimEqr19GxyxbpKUmkv0nTHMZlOcdUQ6QigVQHMRlAtJFCF8qD201kT1BDmqm4EkTRksDdA6MA2sDUCCrD2AKmPCgMQ4yrKomwGLqQxFWVLZCiPCebClCbXWEW8xWXvk3rxxg0jFyCgK4QAqQsURnXaLlrVUVc0MdOFzLasqMBtKS1aF9VsnmlFR4FuKrIpokZBXOd5LTpw4zWhnSJUXgMCaEmcNWgpMVXH8+Bpp3OLB/XuoSHPp8iMMFgcM2h1WFpeYTqbEOuHYyhqx1hA7Ll+5zNbWFkVVIrXk+LHjfPbXfo2vffUrTKcjqiqwZKmL+Hfevs6HPvpLdLpdlhYWWd96SJQmFLMJOIvwiq2NTU6fO4eMY1yWAYFBdddaXusoLlYgdQvnJePEkOuIA+vYcS32kcxUxPSNm6gbd0k7CclCjyRO8WXJZLjHaGcTaad85IVn0GQ8uP0mS4Mek/0hg5VVpsO90OiiMNN9rMkCqC4ErtvHWk+SpkynBWmng/eCVquFqyzjgx2sdbQGy0yHO0z2HtDqLDPMLfHisfkQsZHVNc108G4KgB0CtGjCKPw8XXVemzR3Tk3rlqKuQtxho+9FCHYKkuCApAhAt7u0z7c5d/4cQsDf+/zfD/J9G9Ldf+tLv81sNsXaMHS0NaBvK4utA5+qsiTLc2xtRF6ZAMg5HzzDZC2bl7VvqbGGqiYKlEWJNSEh07lwrzdsmSbUaB5CgK9D+Cw4j3OBIeudo9UdgHeURV7v9wFABx+OszJzMCaklPoQMuIbD0DmrKU568ozl+VJKWugNNRvUiiECIxa7xzGhnoGggxTqTr0T0iyGuAUCOI4CuuaDICF1LpmF0UoFdQJENYhrTXGWWxRAyNCktdeU85aXA0GpknC3v6IonTcX3+AToI00UtFd3GZ+w83eeYZgXUlJ08d58Tpk6ys9Hnq6af59Kc+w413bnLnJy9x6/ZtTpw5zdWrTxDFmpdefIlnnn2WrZX7jEYHbG3e59/+j/89ZWUpZhVnTp/lfe97hlMn16hsIIlIFRiMsr6Gnadm+VsEgbSQLq4SLa5ghECUBbEQPCymxM5y5cJ5TnZbHOzuMskMPlJMhSMvqqAYiGKEU9imCnYjPnFlhZXqgLWTS+RZybElKCINbp9ybCnMDvvrng0XQkmGoynlbEqvGzEzGhfDaGuZLIfh5tvgDWayz+b1VwCLTUq27zzEWs/0YJfSVKhUMZ6M8bZgNi2JWp3gvStiksUzLBThvgwhO4ep2AgfbBsaNlttSSPr0IwGzJJ1uJMQtTVH81XvabXW5wiTLpA6XA2Qz3s5DkE75kBZQ1gQ89dseoogjQ3H0gwUmpc9cgCHZJOjfVoDjtfvh7nl32Hv0yjIGkBTKlXLTuterfFD9+BqQN26Q6XUe/unQ1ZbY28cxRqcJ4o0rXab/sKA0/V7sNaRZTmzLOPgYMj29hZ7+zuMhsPA8hWBAewjj7KGJAkMf1cPDQLYF9agAObVjGkb2H5NmAciAFLWWFTdlzaKNFeDf75+fHPOmvPUfK7MPxFqK7XmW75ej6Aqp7Wtyk6d0BuUAQ83HjKdTonjFmdOnmQwWCAf75PnM7a3txksrtHudPi7b3yLz3/hNzh38SKbu7s8+exTrB47xmJ/geVjx+gtLfPf/Xf/L7q9Ae3ugEhp0naHg4ODup4LWFGk4xCks7vHmbPn0EnMsVOnaLUSTpw8hUpT1m/epDKWyltSnSCSHjfcEFNN6z3r6HUFglCzaRVhbElVzIKCI00QcYQSEknoXayv6HUS1GyPVrHPscUFFhcGtJIldCtisDBAxxHtTpeirNDOk0hNUZQoX1A6OD1oMXl4Fzsdsr+9RWILfDniYHMHme8wGR6wubVNXhkuPfEcVT7jF/363yVkwxqDFRIpA7QStxaxtsS7DKQl7UX4qp4EW4/WUJkwNVe4ummqo9qlRXhBuxUjqZC1ftw4h1QCVfvIhKQrSRy3Q5OmBMIrIhHSDHUEzuQIb4ljiRABDBTO14l5Md5ZkjgKCalRUtP2S+I4xhQ54NBeoWUwra4qg6slAHGsSOI+SigqYwPDL5KkMphHOycDrVsJTFkhCLIKZFgUTD4D4dBxC1dmQaZsKnQc433w1HM2TBZUI7epachFXtHudiiyDCUUSbuHsQLdXaZ9+ipLZx9HDM6Rrp0hs5JSUKfyKqLkMAE32OZ5cIEdOYfV5gtCXdgdmdg0Mp4GCGlArXAtHNkk3OFzUQ9z5lTu8I/3TG0acOrnk2znaJc4fPx75apHQLJmw2hWKu8POXzzRfDn8bPme80UTL5nofPNY/3Rdxc20rnQxR+CiIdJuRz+7OiB1sDmoYzjiN9g05w2j/HzZznyDucd7M9NyepzxCGDsjmvwHzza4x4m89GzB/Me89rfezGhuvEVaHQRtQbtAi+m1LHFMZQ5AWTLKeqDO1WK/hKVSEl1UnFybPnSF59laTXpxyPUFJSZDMWlpa4efNdzlw4E4AIW3H71k3+w+/9D8ymY7wJNGWtI4Z7Wwz0byFEgooUVTnjjZd+wLtvvsKdm29z/e23+eCHP8rTTz5NFMdBnueh3e3y8ksvYas6LVQEdllVGbyKSJdXWDl3gVdee53OwoBWkrLQHyB0MI1vJR1aUQLeEqcp09zwqV/7HMP9fY6fWOPOvbv82X/6z8xmGZGKgl9SVTDZ36uZp7WsR8qQENxJiaIkTIukBRMWcuNmDMf7uKOf1RFQVqkYpeNaZhMTRYokiYhSTdJfJI4jkqRFpOTcWyxKEiAEBWipA6vBGoQL8kIhwRcBCJsVhklVIoocO8uweYHNC3xREpUVuizR+YR4OkQZg3KG2FlS71G2IkGE9E4lSbQi0QlaqJBcZx0iUsQoZFOI1Kl9ztV+fsYyTD322CqjbEppQwJyZS0Xz54NzAJTYqsKowW9ThdbGE6srvHkk9fIZhlJpPn1L32J3/+3v8d0vE+cxpw+d4ql1VVWTx7jlZ/8lCeefRwpBFvb63UhCNYDleVb3/gWDx8+YO34cUajPdqdLoN2zEc++lHuvvsW+WxKkqRUWUY+GnGws8viwjJ3/Nt1YxtCNV4rxtzWS6y5GetI1uOEzW6Hvd4CZvEYxy9cYIDhhScvESlPtX+Xwg+BCBelFBakmdKNUzZv38cKTTnLkAZ8MUTagsqWFNmU2++8yZkzZyFKiOIUZ0rG4xHemmAZYUpm2QyFoswNxpVB+lEX6lHT+CUh0bMyQcJRlAXOGKqqoirMXDJqao+7frtHu9Xm2lNP8tYrrwR5pQhpq9lsjPCOe3fvcP/+fbqDBY4fX2V5YUC70ybPczYePuDh+j0mkyl5WSIIMpnxaBQaECHQUUJvaYnF5TUef9/7SNtdNjY2WF9f54ff+RbbD9aRzjXWQnPvLankfD11zmJqGWqQDR2mA9eLJs0gpVnD5byhqFkiIng+NfsUBO9LIahZ7XXTIUXNdg6gn0BS+gypakaskuAdk7qJ0TqEYggRkjIFATVUcTQHTKWUKK1IkhgtJBJBmqS0Wp3aaD+A2NTSYVs3UJWpyIoiBFxZOwc8vK/TuCvD6soSk/EYaz15UdVLTWAeBSuGlHbaQusAAhtnSVspWkhGWYab5pgsY3t0wFiAriK6SFLXojCWpNUObCvnQk3gGk/bAFosLC6gpeSxRx/jwr+6TLvTopXEwdezMpSFoaiqGkl1vHX9LVZWVmh3Oiwsjuh0urzy8ktce+IxPvv3fo2vf/Vv2NnaDAAAHuEc4/EIW9nAGFxYZHN7k7jbY3KwHwZQ3pEPhyytrEDawhc5UioiEVM4x18OxyxFcUhJFp5pGUJYrAssV4RAOYXNHQKHHkrMXYOKIlrC0xKGR08u8/iVRzh7epl+z6KKbcrdPcpRTpnGdJIUX7UZj6fkO7c52LmPRJH2Bsw6HYpZQXdpFZUOUP0uUmqq/w9r/xVsW5Led2K/zFxuu+Ovd3XL++4y7ao9mhiAMASb5JAYStSII03EPEmhkCL0NArpXaEISQ+aUEijUUAaDMUZcECCBAg02lR1A+2qy3T5W3W9O+fc47ZZPjP1kJlr7VPg0zRPR/W9d5+9114m8zP/7//9v6pEtzX1Ype6blk9cZr7+3fYv3WFk5efJ4qH9KGQ3yBiObxxrxnrmEp93BcAYAf4mDCQCR+DdSwwn5wLV+yV/siBPRcQQmsMeH1N9x3CFx98+2kEa6uJG4hhQ9eC6HTtAmu4adsepNPWdxK0nwIi+/jVGuNkJKqKqqlYFAWz6YyqqpwGVtN6kM6xYrQ2aOu0AvGft9aQ+Dip9UONssGAuqpdnG5ce7z1XQ0d09kzA0UUu6JomKJpTAdaaj+h0y5N83V8ZS+V4OV/hOi1ztCOfSS00+S01j+rpWfRNEWnw2b96w7QCW14ntWpnN1BOpkH6Ys9QkCUpBhrXLszBmMasmHG5Uce4+r1m8SpGz7QGoNWMddu3cYiWB+PMG3JhYsXOXtyk+eef46z585z+/4u6/GAR599mrrURCJiNl/w2vf/muFkxK2Pr7KzfYt33v4Fuq2YDEbo1vLRu2/xVz/9Lv/pP/1PeejyE93Apwhnx3udRYGuG6QxbG2tsTpZYWdvj2IxReqK3GgwNb/x9S/y93/zGxzc+YT5rYoqn5MMhuyXmkWdMS9qZjri1v0jDhtNriseOTXgoRNDslpjdYWo5+zdXeDrxO4+tAmDLGE+L4hlBFWNkpJFaciyhOmiYCWtWcli6t2boARFMXdFnnSAUguqvVvsPTh0HWdaMIlihBHs37tHVVZcuHSZenFANBgzPZrRtoYogMcitLb6IpzRnsmqu3yoa8f3YHg/mE+CWJ6+a720lNv7nQ6731uy23Acy5dCnhLymcAE7AZkmB6YW841QrsuHoAMS90NAPQ5jhBd11L4XChWhZ8wSTiSbuhdn5vZvh3Y22vp2YPCH1sR2Ir9dZrAkLP0RJaQFvv7LKV0w0L8HRBCMpmMGY9HnDyxxROPP0JVV0ynU3a2t7l//x4HhwcURUFkIs/2tVhl0ZEmSVzG6ph8/lm2DvxzOaqhbmsC+7Auvc6f0R4AdPGOMW2XY4dBH4HpGLRDAxAbvkcE0k2Im1rNmz9/ncnaCWd3/He22rK/t8/9+9s88viTbGxs8sVXvsKPXq3Y39sliRM++/JLXHzoEv/of/wfIZAcHhzwwx/9kNFgSFHkPPLwo6gkI52s8oVXvkZRL3j7zV/y8gvPUXhwtG01tnU20QiI4ojNzU1GoxXSNCMbjXmwt8eiKKkODzBBqqFpyYsj8sXcDadzl+fjNeF8nY/VJBajG+ra6RJGcYaKUqSMOlu8ElsePzXm2XNrxMphBBdPnUYvctY31inahlYqoqHLS8Uo4ujggMkoopSGWEauCLN7h/FknRt3FwzGE2azOegWGSW0DdRVQZJYhqurJJNV4tmS7Mr/wJ9/DwCfc/Yqcu1eSTZk4+Q692/eRAmNUBAbgRGOoqpi4UdMKwarKwirWcxmCBEhkgwJNEWBbRqGg4i60kSRRMXCaQ0ZSAcjmqZyItZSoqwDsLIsxjQt48mIpq2QokVK64SrwWsvubambJCx0C0WQxxnJOkqdTNzzL3WBctKufqDbg02csFdGgkSZbF1g0kiysUMow3JwLUMD1NJnA5oc4OMIIlxAFqcIoxwCW1rgBiFRpcLksQ7Ud2ATEgTQSMsSDfe3hiNkBG2NWTpCqVosGqCmGySbp1mdPIyK6ceY3DqCcRwkxZBbaE1kUv6IzfFC29UjdeXENY6LSfjqMPWG2FXPRQ47QPTGwX3wOmBqx54CsBdV2XxfwJLoFev/RKMt/tkb4gDs80Zy+NB5zEAcQlwC/omXZXamt4v4ESql1truyqTddpI7iWfdCwVNnpW2/I3BaPY3wd3OgG0dO9cnmrbVVC8IwvX2WlRdMfg+Ge6v9ru27tpwwHk637fV8r6qtrx+xjeuwz0ffozn27XbZqGsqz8sGOXyAZHEjS86qam1b4dxRgnJixcC0CrW5CCcxcuoJSkKi0qTpBGU06ntJMx165+wrf+1q/RlAVl3XL146tU+Zw2n6N9ZbrVlpXVBNoWYxWj0RjVtty9dcedf9tw+9on/JudB3zwy3f49t//BwyGI0pt2Nvf48qVK85cG00au6E5i6Jg7cwp0ixjfW2Dr/7Gb/Hrf+fvszHOOH1yi1ZbytawsrqBwk3tTqMIidO0KUvXNvfs85/hK1/7Gn/0R/8d77zxDrPZFBLFqVOniBOnB2StE29tm5q61bRlRVWW1CEosxYVxd3EPaON1ztUqNhrYNka0zaYFvLSoKQXD7eBleBo+cGhHwPnjdt1VniFLekmjqk4JkkS3+KZkCQxwzQlTQeMNjbJhiNilbjhIHHP0IsQRDgRfds6HdW8ralnTkOmnk1p8oJ6NqfOS0xTUbZTkrpF5yVtVWBMQ9S0jIxiLYoZNTXRpbNcvX2L2rjp5VEUIZMhQiYsDvYQGNIsA2mRcQy14bOfeQFhFcbCoih54qkn+d/+5/85b/3853z4/rtMVkbESYbVlrd/8QZnLpzk7Nlz3N/eRRvLqTPneOixJ7h2/QalNnzlG7/GF7/0ZbLhBCEhixSXzp9lZTzhYD4lHoxoyoKmqdnZ3ycbn0TFA6fP5m3A/UXBz59cZ2vyCOXZsxR2QCEijIDZgzukV37Gt3/nC+irf0Xb5DTVjOTkFnUpqUSERiJpmNUN+zvXuXF9GzXf5cz5szz46Jds39th89w5knhIvZhz4/3XOfHQE2SjMbqcU85KJmubKKmoF3OGKxOEihlYSzHd5f61T7DxEDs62dsnY1wxK3YAcZamNLqlqivKoiIvSvI8Jy9y6qpCASvjCeX0kDNnz1KUOQ8ePHDtytaw0JooThgOR0znR+y+u01sNZGKsFGEaVuqxRzdNmQDx1QtFoUTHEcSZxkySRltnODrf/s3kVHC/tERd69d5cc/eo2j3V1k8CCiZxdYrBf9dvsuSRLX+oazv8rNO1kaIEU3JdPZ2VDUcYmTI0IYDzqGxMGBfcHnAM7PaJ9sdq7GtT+J1ttq4bRwpB+6UockQUoKGYqCqkvYpJREShHFjoGgIj8dVEYe+JMY45iIceSm3SupiJOYNEnIogQROZutkIzGKwhjiFN3HBkp0sQxcqMopq4bFouF8xvW0jau7bltWzfoRSloNI1pSIQiXV2lGY3ZuPwQGIOu6l6PDMH61gmnbRjHWG1oS93bJSxxFIMxrK+uUrQ1Te3A1DiKSZMBUdxSz2dcu36d3e17vPr97/HlL3+Zr3zjm2yerGlbzQcffsAHH73H3/qNb/F73/42P/rha3z00RXGkxVmsynzxYKm1SSB8dS6idKdzwZo5iSRYPPUKe7NDjHWEkWKRldYIdmpKwyljx0ECMOTF9Y4t5UhdU0kE8pqQZZIMjUglgIpWrZWhqTSsrY+RsqK5ug+dbNwoMraGqmKyXfvkj/YZuXcJY7mDaNmD1McYeIxxrTke9vMp9uUs3ukKyfR1SFxOvCTlg33rn2IIUVmJ9i7t83s6JBzg4id7QdsrZzqYj88cNbFNh7sE11SS8diFR74s2GQAW7KOh5MCkyYEC8o2YMAQbfLhDhPuvZgFUW+MOzYaR0Q5uMQrV3cFoBC5Vmm1k9MTZOkAw90YMQFf+dbb/vCNN2/Qwzb6payqqm87uVsPqcoCvK8YD6fOwDR9MXX0KEiAGPcFFthAT/N1tgADDpGoNHaa2N6TT4sWTPuGYEeUKibprO5dVU5tpxvwwvAwnJSrrXubJq/sVhhCOyqEJcF4yXwMX33RFxhQ+umawc+9qylpBL0MaF1YKDyzKcodoziGx99wPkz59zglCQiihPatqVuW3aOpty4c5dzZ05zd2eHr37965w+sUldVRhjefqpJ7l67Sqv/9VrvP3G61R5wd/7J/+UX/87v0WcDXj5la/yz/7f/w+EcQDNeDzmYP+QttE0uWAwHHOUFxweTTFVCcazMH2RJklSxuMJVdVSlDVoA9UCpQuaumRja5OvfvY5nt0Y8cl3/4TJWFIe7ZLnc8xcsJKmjKzlzEhi5YBHYkslMkQ0ZBJr5Ow2Vd36gYuWqqoxxpKlCqMti2lJVVmaWkMmKWvNeGVIVVXoak7dwPTokCRSroW+rWgtWBkRNwuquaZezIhTkLEkSTMWhUFM91nsb9M0mhtXazZPneDgKGeYRezvPeDk6omuRmWtiwmt3zsB4DW+JVV4cCsAV8H3dfmNDNmN+Bt6bNb2E3KN6Se4B1viNN9kb1eWSCGBSNAz+Zb4YyEf8eBcyE+d7xTd77rCg+hBP9f2ShdfmyUCgnuL8UU371NDzmqXtPyWC3z+zBwo6TeTvy1KRUvXwfGcztsYWNY5lB0zN00STmxtsbW5xZNPPckiz5nP5+w/eMCDBw+YzmYs5gvKsnRgvzZOFzvkZCqCLHGMPiyRjjtdviRxAG7bOBsSQDwb/h667LyNNMZ2A4KM6e1WB2CGXFA4O3Tv7l2+/JVvcuPmDRcHVhVx7LoOfvzTn3H5sScZDIY89dzzzIoFv/j5TzmxucnzL7yIEoqt9Q0+/PB9/ts//P+iaUmimN3tO4zGE06dvUCcpPwHv/Eb3Ll7i9m05AtffIWb16761uWKOJYIC1GUuGeoIT+ccf/GXYytefqZZ4kiyWvf/z5YN6ytriqMbjyW2+uzhmKW8P8ypsX6ScoWN4hV+qEaVkgiqzk3Urx0esJqu0BtX+OoKNBxSlwccPhgj8nmJo3WKD/oyBqL1RoVScT6Gve2d1ndWMeqiFpLhDUMBzHJ6gr5wSGmbqnLEqqW1gqkSmnykqP7u0wPD/lVf371Fl0L1jPc4mhElg052L5PEoGKMrTRrtJpNRZJkgwYximmdRemm5phGlFWrRtTXLtpehJDkqRuOo6MWVtbJ18corULApu2RmBJYkVVNoyHI5qm9pRXRztWKkUKaOsarOiq3bqtXMArwLYWEwuslKg4wZraBeXeMKlIkcQgIoXQAqUcy6Cxrj9eSVdZr+qGOImJ9AIlJk7aXkbouiROY5LhiDrPIXagYaRAyMjpBWpNHEtMa0ikoMoLhLAIK2laVzFsRIYaTBifeZzV1VOsnn0MMdhATbYQ8ZBGW2rlpm9GccQochPYXN3bdMYe33dvcdXKEKiJ8D8PHrVtewzQgx7UOvb3JeAK0RvsYwtk6Q/jK8Ahi7LWOqFX/3OM2bb09x5iOwbzeRQr6AJ2J9YDbaYPUJenRpngWOgDHn+of8c1hK9agijt8e8KjuzYly+DdO5kCOFnZ7wDNdp6o2MDO3D5HI633S7fl/7resBV+PYQ97o41robaPretXX3o/szAKX+nrRa9ywQ/Ih4Y2iaxq8RS9s6R1ZVNVVVO40JY4nTmPl8QV1VREi2Nk9wv3V2QOsGIyxVXjCzgo8++JCnnn4a0VrOnDvPqXPn2b5zi7KqaJqWQRRz5sxZkjRjYGA0GDDd3qauK5IoxgrQdcWs3eetN1/nmWeeYXPrJFj44Q9/yGwxQ9u2a43RbcNoMiYbDDl98jSiabj6wQesbqwzHQ3YPtxHoIhkxGT/kCxLGWSpA918CqK1wVpNHEeMBhN+8z/4LSKruH/vLn/n7/4ejzzyKGmWupYSrSmLyoGhTcN8PufDD69w+85tDqaH7O7sMJ8tKBcLpycTx9RlQdBOqavKM2okUeLZyELQ1HXXnhEA8y7oCsGHD/CUZzdZ7eyjEKoLxvqAx3brVOAm/bmBHfiJfwIV+fZ+qYjTDBXFJIMhUZqSJilxHBMrRTLeQKydJPJspEGqwDNh2nmFVBH5/IiPr7zHzpWPSK3kc6tjDospYUoiRjFZ2WTzxEmuXL1C1bjrtTIiy1JaGp757PNM5wVplmGkoCgKpFT8+m/+Bt/6W9/iu9/5S27du8PRbM6pc6c5ODgkGwy5/Mij/NP/5J+ydeoUa2fOc7TIiaVAGcdcNRZXdLFu0MtgOODBwT4rm2NmO3ep8pyjgwd8/otf5c2ffJ9q5lrQjTFUxvDdW9f45t9+nna4zt79bd796BPWxCEvnpJ88+mTrOy9T7oypJgdAobiQY0SiuLgkES0FLqiKRuEtUzvXmeWV0QrA4bmYwa6JX3oKcZbFzgrxhxc/TH10YJYDlhdP02jpywWmjMXzpKNVigXOasbm1gpWUzGzgda0GlGlmVeE6ZBS8eKMdZNtZcCYikZJCnj0Yi8GDJfzJnOZ0wPj6h1i41T7m/vsrI6YWNjk8OdXdfy4xPWJo7doJNhBk1DpBS1EAySIWuTEVq7WKAuC7I0IclWODg8QsQJTz33PA8/8QQSONrd5sr773Hll2/TFLkrXEURVjoNyUjGqEj4CrRj8UkpSeLEJ+8hKRa+SBGYetYLYGvH3vdDR4xxASPKgQ7BV2Lx0zs57idCouVBRlcsO14wCUx8a/tkxeUSfduUlLI7dxmYUmHyt9fKDSChVE4HN4qC7pjqWBJxknjgT7kAVkkSY0iSmLquHCuvrjqmVV25AD7LUtIkQUUOaAueItyzpq6xwMILZMtIYuuK2WzqNIeUCyujKGKQxo6pIl18I4Tw4ubuqEVeOJ9m3SCwdJii4ojWGFIlMWiuX7vKmbNnWVmbcPfefS4+9DBFWRGlKUWz4OVXvsg7b7+FkBF5nvNbv/P3+PXGkKYpH77/Sz66cgXhNcvq1k0dbXWLY1YDUjGd5iwWDZMkY19GjLOEc1trXDhzmTSJ+dMfvo0SyhdQWi5tpXz7CydZNYegHYunLhuatmE0jDCtpm0KZD0lylLiRpOM1pAYaHLGa2vkh/tEwxW0rUkHq0hdk9iW3bt3Ee0BNmqII8nh/TtgCprFlGJ6QD3bo6pb9ne2Hasz0iTDDRa7n6CrfUaZZff6+8wWgs2Hnu5AuNABsdwSZ/3as9br0tmePSN8TNCxWUN85z7i1trS+g86c6FrANEn9SHxjSLVnYO1IBJ3Xs6fei1vz2bD76WuldiEveD0r92pC4RvRewBhGVoqwcKvNPE+FjGrWknSVDXNWVZcXBwwNHRlLzIqaqKvCgo8hxjImcf9dK5GhcTSiExRiLixPlia0iSzBXejGM/Os0zTV1WpB4E7FuGW0zjBlW1XUKu/UAc27VL67ZxOl3GAQpauxhd+iIC9FOSg8yO21sGbZbtjQNnjA6tlsYXMZbiWdFi2j7ank0Fb/7iJ/zO7/6HRBJM2xDFMXVZ+eGGEb98910uXbzAIw8/jMZg6oZooJgv5swXC/7y3/4bfvHTV6mrHIHite/9W/6z/+X/htHKOtP9A4aDMW1TIaVj3Rp/bY9ffoqTmyc5yA0H29uOSYQ7X+mL+0JFFGXLeG2NKE7QpqRtXBFOW8tkZZVUWKbbN1lRFbfvTFldHTFeTWnrirxqXHFEJRwdHjHIUmQzRzYONIujiEUjqaumWz/WwnThwVdAtIbWQKOhagxmXhJLi0E7NrIumdaGKEmQ0no9sIaD3SlxFhOZmvlMUzaWRWNYHC3Yeril2L+NTEYYW3Bv9wYHC8Pq1piyiTjx+Ge9zzEEXT0hXBdbgNECEBfAX2OMY5IHrxRiRWO63KHbW0u2QvvOHdGBaOLYMSy291fe3igPrDlNc9mx+DoGxpI9sr6VTynVsw3De8Mx/QLtSCLdgrUd69gGkM2G4jkd+OXiXcesl6q/Pz3Tz3b50TLIKT1wigfQ6K7dOnayZ/EFEgbgCxraxdl+vSgRsbaSsDpZ5dzpsxhjqduGsiiZ+4m9+3t7TKdTjqZHVFWFstZPCHetucLLhzmQz+VhWi+17xrb6f9ZyxKA5xjNTkPQ2Sk3iKjt7InWzvYE+1HWFca0DNKMw+mR0/PULUYI3r/yETdv3+b0mbNIFfPsiy9jVIStStJsQJEvsNby/jvvUJdzJ3eAQArNB++/y7kLl6jKEgVcvPAQ/+gfnECJiD9++5cYAWWRkygJUlBWDSvrY86eO02WRZy7cIqrn3yMUsIRQ2ZHTg9VBgA5aFC6NWZxhSwRNoH3LeFZOQmDBBUnjMYjzpxY40xmOVXts2kOabTGRDG1LYkFzOdzqral3NsjTd0MhEq6qeYWSxwrjqYH5EXJfH5EFLkhqNODBxgRcyp6mPJgF93MGK6tMN2/D3495kd7zLPbtDW/8s+vDPAJIahbQyYVSRJR5Tnoms2tFQ4OFsRCuiESUUYUx8QyYjGfkkiDEJIsTYmkJoktwmqiRFLVxoNxAqUS0mxA01bopvFtutprOzkHNMhiwI1SjmJBW5eummwNWhiiSGK019KxGiVjkII0jSgXc9c6JxRt07o2uOEqYjFFob1B0MTKUmNAJNQWjNXESmBkQqSgrFqUEsQUxG0OUpBkElEnCBnRlA1SJBgpyEYpbVkQJRFt7aYCWwwiS0hI0E1LoyLkeJW1U48wOfcYk5MPYycniSdOi8Ii0cZipELJmDj1Gjqid8rBCS3/3QUcwZn7SoxwFdKuYik+lbiwBCLZoKvQ/zsAdUGfKoBH/REsXVTIUtWG3mAT3h9+t8w686+LoBmxtEkDiNZ9l3ccnz5uAC5DUhYATQQdJblvAQ4AWu/AusMFVkeX3NkQiy4FSOF66e7PcutxuJedk7ThFrkP6dD+/CmMMTy7MOZdiKXBHMIBMSCOaU+FqlMf7HmnuvwcloPiDpt0J9U0DXlRuMTOT9p0E5bqThdCawcKVHXt3hOqzzOYTqdY45gaTz75DHkxJ0sucufjK6RxRDGfo5Tkh3/1Q5546glWJyPaM6d46StfY2tjjZ2dHV79y+9ysLvD2YvnUYMBQ2NIMOxu36duGlRIQqVCRQlPPfscn/nsi+iqZufuHd58/Q2Mbp1eRRRhGk3bWsbjMWsb6zzy2GO8+cbrfPj2G6RZRpymyDhidXWFLMtIopjBcEzsdWeSOGM8WXFJdByhm5osTRmkCd/41t9Cty2DQcrh0RQ1U0xWVkBIjIHJZBUpBadPn+KRRx7m8GjKdLZASijKiu172+SLBbvbu4wmQ2bTI4zRPHiwy97BPkdHRxzuH4LWriq/1MYUBs5IIT1joK+kunWuuymJSrmpq1IpkiRB4UCF4Sjr9k+RFzRN61iYQlC3jWf/Vd06lp4FZYRr+YkCgGycULAQnkErFLErhWLimDhyQwgmgwwrYXc4Iltf43uzArm47drCjcYIzdaJk5RFgXEj2qnbCjkYYA1MsiEnTpykzmsGWQpSMBxkiMA8RpCOJ6xtnuTCxcs8/9QzHM2P2N874Df+9m9x6fx5isawnzfYZEhbVZh84fVJJVGcIKRBaMvKZEKcpNhuD1lm+4dEbcnXn7uAnA84WDS0tqEoa+qq4OZb3+f86Q2en0i+8HzNFnBxM6Mpb2MOBIfVCjJbY7G3j97fp2pats6dp5q79oLdBwcUtQN19UFNoiLm00PuHf2S0SMvkg0myLal3L+NWRxgqhPoxQnSzbO0Bw8wesrscI9URUzvHzDbv0ueT6nnNblNGD58kcRPUU7iuEtWtA9kW91ivN5V3bYM05TJaMjqyoTF6iqHsyOkFIxXVjnae4ANbTMC2qZGGNfSuzg6dFqTQnDu/FlWT2yxfe8+B/v71PmCuq49S9hNfx+vrPLEM89w7txZFocHXH3vXa5ducLR3gMH5sWOXaLi2CVMfiKuEE7GQ0VxF0MYY1CJl+ZAdBNog26Tblun5+Xb55Io7gA663VprdHkiwXatHQWVIIUjtVzXFrC+y9JP8ip8zG9T9B+L4qlFjttdAdCLjMdpBKecSi73ML5NfdZpzPkhgIpFbsEZZH7AQsCoRwAqKRyOn+JYwu7yaxB00uSJgmtL5ZkaYKJtet8SBLH3FCKLBuQxDHDwRCNRcWRazVTirZ1E3DLvKCqaqTVbKytOY1BZTAeFFIC4jjiwd4e4AachRaa+9vb/NVf/ZC97V3W1lf5N3/yr3n6mef4nW9/m9/79t9j++49Pv74E2Qa8+gjj/LMc8/xwosvkMQJO/d3WVvfIEkyvv/dH5CNVvmN3/pdBoMRbesKK0JKdKU9EIqv9muEaJmMBN945UlOi5qn1xVpbEiGCTdvrPH2tR1spBgPFd964RLx4ohaGGSkvL6yIZaS2dEeQliSGKqiwVhNoxuyaoFQCcQp+7NdB05EKTLNWNiYw51PHIBQHFHkR8TpmMM7H2N1QRQBSjFcO0EyXKMhxkQRVVWAtli9yyf37tIKzeooJb97g4Vc9fGCZ935JLWL2UTfkSCXknkfLbo1KUM7XRdQdJpc2tt3oGOaHut6CCweby9dEglYBzAJRHcOiMCoFUhlu3XfxVjWemAFr0fZ743Qxh5YbcWUBwABAABJREFUGlj88ZdCGn99AQQP8ZBKFIm1ZGnK2soKp06c6Nkt1jrgtnZsPAeAlxwdHfHgwYOOzZymKUpJdnce9CCgH+iXCJcQA0Q2Jk3SziYZ6wql1hikt0uBgVMWbmAM1iX21gbNwAD6aTf8A0FTVa4QaCzCusEJNsR6YdKs6RmP7nXAumnIwoiuuB2eBVZiCOvE3a6D/Qesrq9y/sJ59vb3EcD86IjpwT6j0Zifv/ELXnrpRU6fPom1DmTU2jA/3Oef/eH/h9vXrmC1JvbDyHZuXmN65zoH9+8wWT/Fk08/xXvv/pyqnFPrOZPxGs+/8Bm++s1fw0hFrCw3b1yjaWqsbgGDULFbn1Jw8aHzbKyscuv6VXbu30cbQzqY0JqWu3e2+dPbt3n88imGoiaymtXZIWmiiNuWJJGwKEmjmjJvgIg4irxfEuS50xB1awja1i7ljQ2tbt2ApsSxoLGGMq8orCsiRJHowBWhFXnRMEwjDnf3kCqmzGsGkcTUNdYqZqXLC83RAx4UBWI0IIkUhw92ne5xucIiPukAHBNa6IWL64ztnqP0xSDhAeBjbLnQPeL3R4jpAhjV2QQPjncTdenBv448IZdyJbOUV/g/gwRAAP2DdpIMQ3pCRubX7jIZI3x/d0xfHOgLF70PdXlQn/8KEa69t0UmDFfwF+y3FkFiQ4mo2wghRwpM3nBuYsl2upvVg4HC9rqFQW5He+AwaHEKV7FDSEuaZqRJytraGucvXPQafE5zNDD9dh/sMJvPmM/mNE0NyuWDUaRIwQO8dECeMTg9P+v0NLVnF7eN9sN/nERA2zZdocEsAXxWG1rToo3lk+uf8PRzz7D/V4eY3MVITV2DkHznO3/BP/r9/4jBaETRNDz55FMo7XIyFSmKfMHdO7e9fqFFYFnM5rzz1ls898LLnNg8SVWVpGnC6mSNd997hwcPHtDWDVg37E0qR3SSSYI2LSpR3Lt/l43NNR566DJ/8t//EU7XMayd5Rw8BF59ft2tDRswADfocDCZ8NwLL/D1r36VMyc30fMjzNEexcEDZns7mGpOsX0PqpJFWSGiIXVV0RQFaeS1l60mSmN04/ZQLGOauiVfFFRNy6BuaRqDqUp0W1GVU2ZHGVVZ0xrBZG2MbRbUxR5sPsav+vPvhcGXDhLWNlaQ1un1Gh2xmM1dcJxGjFcmYCTz+QFWCdJEkcqIpqkQOI2VKE4YjYYU+RxsS6IG6FY7LT5hsW1NooSr7raOkZekCXEUuQBNCNIkQ7clcZI4jQ7dEvnNKJUgTmJM68CsyLe/KuVYKjJSHd29KZ3YZZwpRJQihERXuROlVYKiNi7xM9pPWRGkkSKRigbLSmyI6wiMQkWQjkaAR/KVQrcGZIpBOfZjklHbiPGJc0STs6yvnWZ0+mHkcMO13IqYqmlBRWijfPKiSGTkAeseKDNdQASh0mFM/1pflREe1OtbAVzKGj5Ll5SYDviyHlT6VPupXwdde2sID8PvwqtLVZ9Q8Ql/X1pO/e8/5SQIYFUA6vg0BMfxAJbjjiK0H4czDGw2lqffLp9x17uyVHAK12qW2I9CdL+zwZgsfd8yQ66/VLtUkXL/F0Ryu2sSga7uHRVOEyA8x86IhWm/7sToK+T22PX3d0gcey7L19zR1v09ruoaW5ZOa0U7nYdFnnctMU1ducDFaGYelNDaUNd1p4dlhaCsax6+dIn3Pvgle/fukY7HmLrCak2eL7h37w7/9s/+jN//9j/i3NkzSCGZHs544cXHOdyd8oPv/SVrmyfItSGJFLHW7N6/T2MM8XDCmTNnefThR3n22ee5eOkh4iShKQr++F/9MUVxRFNVLvHHsd5OnzmHSSLOb53mkUce4b/4o3/O9PABCEWWDokTycH9iOFo5ICJyFVp4jhCyghwDJkoUgwGA9I0YzweMRhktK1zgE3tJh5GUUzrpQMQ0g+zgeFoyNFsxv6DB+TzGbpxhY2VySr5Ys6FC2c4f+YUTz/zlKtqWjfIaHv7ATeuXedodoSVgqeffQaM4fr1a9y+dZs4TqnKgrpyAuBVVdE2LXXtGCZVVbrJq34SoQDKsmA+c7ouQSBcSsVg6MbEt01L2TRI03bBFhasdkwDK0C3TpcMvCZT2DfCIqKIVipsW9NWOSUCqzV7vh1BRZK2bTgSElPmCARRkpKMx+TFApUpJJCmQ+qqduxnFXFi002+HKSC//v/9f/MPJ/xxFNP84UvfonzFy4go4SHHnuS5pPrIBLGoxFCaKzR/OAHr/Ktr3+dS48+w739PUozZyNNWRmOaKqCsigYZytuOqXyQ0bi2CV0UUQ+z6lWKuZHe/zGZ7Z4SJQczA2xEtSNRqaCKjeM1ZHLBQYDFne3qQ6HDDY2QESYxlDnd5kf7lM2lihN2b9X0MxzykYx2Nzk9CTj9TenFHmJbmbYKiah5PYbf8li4ywrWxvMbr6HXhzRoNg49zRP/q2/y+0bH1I8uImscw63d1gfWfa3P+FwWvDwi1+jlY5lcrw1tQ/mlZTEKoF4yY7ifEZrGuqmpWpriiLn+Uce5ca1a9y9d4eD/X3mR0dUZUGcuYloR4dOZLrRLbev3+DW9etYhGuZT1MeufwwbdtS5AWbJ06ytr5OOhzx+s9eZ2d3m7rIiaUkThOiKHItgcIJyAspybIB0k9pdYy2uGvBVUp1elfSMwsiP1SiqZvONgaAL+iM4Rl8jrVWdaLk1tqufVAI4adqhjZBH0wHlvWS7Q/Fq2DhlyUout97tm3w2eBBQA2tbDunFyQupE8UQg6D7UF35dmAFvxUYPcWKQVI0bErhHRAnxCSKFJkwyFZnDCfzfzUXMEgG6LiCCUUSeZiH+NtiEqcjViZjFG4lsrxeMjmxjqTyZAknZBlAx8Tmg7gsAju379L3dTEKqXRDW+9/Rb//L/5Q7bv3SWNI1YmE0xb8smVD/lX//Jf8u1v/wMMlpW1FX7wve/y1z/4Ht/6tW9x8dJDNNJw+tw5lIxQkeLshTNsbKyxsbFBvsgpi4K9g0OUjKjLcsmnW6xukFXBb372EufsA/Y/fg+RN2yde4j9wxv83vNrXFhXHFWS81tDzg9KRFVjhaKtNUXhBq45xi9YBMl4wKKeUc5K0tSJeBsiZBSBNVgtiFI35bSqNSJS1EWDkBFlXpBkcxqtKfKG4SAhzRRNA4MTT3Dhsc+wMX+EtpxRz46o65KnHr/EtGwZD138W5O4+MPLXISihPCi/CFfF36NhWTo3xWjhSJheHY9Ky8UTYPasUD4dvnug751z1q1ZGdCzGO6uHM5ZhEifF/PjHFyFLYH7Cwdm81hWbrHK3rZwG5fBCZTACutWdbUdLqUPd4hiQREgyGjgdf7moyx1nLh/PmOFROAOm0cQ7+qa8dwPppyNHMTNY+ODikLpyXstLXwk2otUZS4Ccc+2ZbCgfSTlRUP8AnKsnBDPazTOdRtuzT4AJq6cUxj4Z5DVdc941j71jztisPhnPF2vxtk4AFdJ7doQLjhJcrbPI1BtzV3bl3n/NmzfPje+2xsbhIJgS4K6mIBWcaff+cv+P1/9B8SyRgrLLv7+/w//4v/G9eufMgwkQjdg7H1IufB/bucOHeWlfGAh596ktMXLnHj6hW0tTRW8rVf+xaXH32Eo2nB7t4Ot+/eIV84ZlAUxyRpStu2rK6vI+OUbDyhUQnf/Pbv02jLxmSFbDJkkiqK+ZyirVkc7pMpye0rV3j66UfI9/eYbKySRTEbKxk7d+9w++rHlEeHREQMTISuGrKIbn9LoSgb1xGisMRJ6jTaG0tTt0SJn5qqNbYVSA1xLLFIirJGCJiXTictiiESmkZLLJGTvakqpIxZLArGtqWuDlmgqKuK6axFtgXNysDnC6IDsEOnjcDrZ/rhGcrv1cBKc5qofR4XSAPWuNbXMJnYWNMBfa7Q5RludulYIXcMNkAEPxvWkmfpStduGYD28PNpuSKxbJhEGOBpe/Cv+5Xq7JVZshXLxzDGeEZgb8ekVJ0tswRNcfzfHVuuAyl9IUJJ6Zl+7hih4yV0RQUJq4584i9PCqfDr4ybah5A/FbrzjCJcEzT59lKRYzHYyaTCWfOnMYaN1irKkvmixkHh0eu2H94SJ4vKIuCAGTp1hXy49h0wL5utWftGj+kqO6m+GrTejkDbw88q7hpG+q64ZNPPuaVr3yDWMUUZoHE0pQFRhuuXrnCz3/yUz73pVeYrKw4/WYhEEqiZMT97Wvcv3+PpmmIlNMCtwKOFnM+ufoxD1+6jNaaNEkoi5xXX3sNIWAxn6IiiZKKVhsGwwFnzp5lc2OL+/fvkQ6HfOMbX+eD997j/v17WAGyn7hyLEdxzz3k/hY/fajzI3GacuGhy7z0hS/x9FNPcWrrJFk6IJqcIrqgkFiUtOi2oFnMqWdT5vt7tNWCuzeugi45un+XxfSAppgT29YPPnNxnLGuIF23AqFdocge7aOiiKNpjbA5aeKG+hwdtRy2liQ9YDXe5Ff9+ffC4JNSIjTUzRw0IBXj1TFpK1jfXGX3/h1MbRiNQnAuUAKiGKrGkg4GoLUTBVeS8ShBaIuIFEhBrARN24DQDmwzliRKGGYjrG0hyTBBdBZB1VhUkjFcSamO9hEIkliRxDFGSoqiIE5jbxRjN8lOKUysENpgaRHK638YA1YjVEycDkDXxK0DJmSc0BqFyGLiKCIeDBkpzdmRRosxSdpANaMqGiaTlEbHSDK0FMiRIt44xcbpJxlunmNw6jJWTSAeuX7tJtDvnU7WaOiq98obGY/f+ULc39R766el0Rn/YEA7Yc/QBmG7XdCDYB7EQgRGWKD+2+79y+BaD1T5hESExIZQyO0TGf8T2Gfde/q/dGvrWIIUvnVp4m7X3usTJ7sMPtK3swqPnIUEMDipEDAGYG6Zdh6AunCOHZCJPWY8lq+ruyb/91C5Ol6RXn5c4VqXwUhcpLX0zGx3g3swsXN6y04xOJil6++p5t7R+qCgawdevv/908RaS1k3VHnu9GvKksOjKWBQKqKpXbupFIIiL6gaJ7qMsZRN7dhadYWxkOcLiv0DXvjsS0zvbdMKKIuCQZq6KVGt5u233uLUiRN8/Zu/xvmL57kfb3N4dMTq5ibnLlzi8qNPkkQJUhjSOOPwaMrnvvQVvvSNb3D2zBkyFaOEa6er8wX/v3/xL7h58wa0NbKjWQrS0ZBWWE6c3OIbX/sKn7z3HskgZSM+4cS365amFq5FJ3fTRKPI2QvlNWki5QLsKIoRHshUkdMGDOK/aZo4fTup3PS3XceuSTPH0k3TmEjFpOmQbDAikoKmcTp761sr3N++gwU+vPIBKysrmNZy/sJFtk6c4omnnmBlZeICBekqt5cvXyIvawajMaZtGQwHPpEQKN8mLKUAY9xUVaCsHUPLGkNVN1RlwXx2xPa9u9y8eZ0bN25SFCWH+/tMkghlWy498gi60pw6fYYzZ864ltw4YpHn6FazurpCHCVYa6mbmulsyk9+/jPee/89F3z4LEvGEuGdeKQikIIsjjFJzNHBIY89+Rybp86wv32H+XzOYDCgbFtiJdFCMBiNWD+xxXCQ8vrrP+X9t39BXZd8cuU9vvedP+X8xcu88tVv8fhzL/LMU89gyxyFYH97h8P5nC+88jlOnTkJVJjpHvfu3uDK7g6HOztcv3mTUydO80/+8T+GOGM0cKLjSZYQZ6l7pk1DmsXkreDO3pxTgyNObp7l7u1bTFbGGKOZTDLqRU6ea1ZXJhgJR/MZldDEaLQ1tEZRNS1lbUiFJG4kh0czspUN8rykLQ9RdYsUCXu7U9bGI5rZEfcPXmMxjpDJiKhcMD9cEGWWQrbc+GlKM8/Zf+8Oo8Ry58YtZmsZjWmZHZXsfvRT9OolNs6/RBrHXm/LLtmaZSkAVzgQXn8uUpJYpQyTFMsIubqOOX2OZ559lsYHhqZxulMiUmAsRVHQ1DX5fM704MAXBhqOplOEUmyd2GJvb5/9/X2apuHwcAqHMybjFSYrq2Ad+C2V6IxxU9ddRV8I0Q3fiuMASruhEVIIkjhhc2MDYzRHR0eUHuSOQvuq93Na+2mSyu2bpm38HRh3yQ3W6d9Y/6cO2lnaIKRvofMsIO1bg7XR3o962YylY1lv9I0XhLaepeNct0RGIWlZCly9U7UYMA6c6NgNAURjOZnyA0C8s3EFrnDvPPtJODuymM19+5/sbZsMbYDuPzfdVyKFm/rb+FbHLHWyKEI4EOPOrTt84zd/FyscwIgxiEjR6BYZKXYfPGB7Z5fV0YD9gyNe++4P2dvZxbY1RZWzmB0hpWI4zPjG17/G7s4uZVXy9DNPUlc51z7+kD+8fY3TZy7y+a98hceeeIZ0NETqmMuPP4YwjvGVZRnvv/8eRZkzGGRoz36ywuk3txZEM2dNzBjaKdUk5uSp86goYVyPiBvNZ7cUSbbGvHpAZgVkQ4SKkRia2j3nOEsxQFU3CKsYDEbMyprDQjOwTppCm4ZYuGK1iWJMVVNVBhkZqqolSmNUJMnzkrpu0I3gqLCo1LAmJAc3PyDOhsTpmAd3b4FoGY03qbRkvLJBmg2IsjH7h1NCMa9LQIXo9ClFR27oWXkWxxgLQ2pC50MoNi632/oArIsdunBtORbxa1z4uC0wyh3bwiW3LgBZGtqx1CbnWIJ0cWEX2ti+8BzYepLQ/tvHm50NE24CqwDHahOhJT7I0vA3QPXlUCrEz4ERFdiQXTwIjMcr/j4EoMG16LZNQ9M0zGczjo6OOJpOmc1mTKczFou5Y/FZC2QeADRY66bkRnHCcDLxrCODaVvm0xllXqAiN0hHpSnZeMxoNERr4wYl+aKe9MN+Wp94l2XpbI12w0m0dtN5JYGx7LSptAdLjXUMPikUwsC7b73Ol7/6La5du8p8NidNY8pFzuHOfTbPnOejD6/w1ptv85nnnydLM5qi5Pz5C6yMhuzev8dsekDdFLR1g4lj7u7s8vTLn0PGMVunT7N1+hx3795jsjLhN//2b3Hy1FmscX7nRz/6MbPpoQO/hGBj4wTTo31UnBDHKWfPnKVF8MmNW1ghUWmKiCVxEiHSlCxKWcsGbD77MmVZ8tRLX2N9dYw1LVmcOB9nDSc+G/H4YoauCqyuaeuCm1c+gGbOzp1b5Ef71PMjIiuwpescyxctg0FC2bYYJEWhyRJJHEk3NHKUOWkpbWhcvzRt2xIJRaMNSSSwVlC1brDQyiClFjAzUC9KTKsZDhOapqGoWmZRTjxqO78dBkwEnxHaMwMQF5ib1mq3hqXzdzK06lrvmXoimvedfTFAiKUcqdvzotsD/cbz+ptC4Lh7wrexLpEhupwzFAXof+dfd0CaA9Ckst15HgMNlz6/LEHgjiOWup2Evzc9uBj8brg/QVfwWH7n178DROm+y/+tYy6qMLX903bHLhFrrO20EVUUOZKIsR3o5/7ru8cCcBoGoMRRTDyJGY3HnDx9BmsFbVO74ntVUhYFs9mcvb09Fvnc5XielFEWhS9gumFbbavRVlM3NXXTuAm+bYtuGwd2ak1rNHVVM5tO+ejDD3j+s8/z4x/9iLJyOV/bVBir+clf/4goinj+pc9xcmuLtlx4G2O49slVNjdP8NDFh7h39y7T2RFIiCXcvX7DYwWSptW8+sPXuHXrNtPDQ6TVRL41vmlL4jhBa8N4NGbn/i4XHnoUmY34+PpN4uGExLSgncyKs+VhUjpLHXahqOXWYxQnbJ44yeXHHufchUusrKxxsD+lqjTj8YjJeEwcu44HKSPXhTQ5SbJyis2zj5DGMedfbokl1PmMJs95sHOPo91bXH/nDdr8gKOdHQxt1w48m+Vu/akWW9SUZUOWWLSNyMsaW2qMlYwwJGXBr/rzKwN8SglObowoc4dClnlNHCUoGTEaZxzt7TLKIozQjEZDL8xribMEqyVllWM1JDJCN44SOsoS6rJlbXWFqiiIlEUkEbQwHA+py5IsTd0FSDfdTguLJWI4HDKfL5zQtxkghMRKgYxTqqoljqQTk65KJzIvHYsAGpRSNE1FGjeIRGJkTKJUxxCUusVYJ4CqIoW1guFgCFJgjaSxCmk0cT0jG40xEUiZYOQYvXGSbP0C6eppVk5eQGRrMDkBImUxWxAPVljkOVJYsjgmG2Yg3cQ8RM+Ea32bJvQgX0h4jO1X83Ig5lojTGd0OnDMg1rB3B0DrXw1gSUxUmt7vTjEUltSh1n1rLljgN4ScPZpkK8Lqewy2CU6oNK/4M/JvTsEdMFA9+dgu2tyn4O+nbh7qQfjlkC+DiDz19aDmIFC3oOB4TrCsbr7E+6nWPr90uc6TQyfhPmv8o6X/h4fO89w3wJzb9k3BucKx9qKlwBboHP2Ui45OLvUIi2WwVYf/PpDtLqFtmW+WFAUuZvCKCz1fEHrR7vXRYGuKt/KCcLCvCxJhxn1Yk5Z1RSLnEN9j7XJGo8+9QzTxYx333mTtipJvQD7oij43quvoq3h177xa2yd3CAeRKxuvcTW2ZOsnjyLVRLdlLRK8rkvfoHhcIUoSUnj1FctDYvZIf/tf//HvPPBh+imoq3qbr2UbcNDjzyCEZJXvvRljBX82z/5lxRFTqREd9MCW8AY7UMUXxXFYpqWugEVKaqmwBjt2DBCMDs4QEWKxjvtLIkBJ9LrhhFFRLEiit30bqUihIwYjYaEPEZKyWgwBCE6YGCeF0gE125c5fqtG+47qprBaOicqbWsrK4RZxm60axMxui2ZXV1JSxYBsMBAsdejmPFZHWNNMqojWF1fQNjLEWe8/hjl4nUiyipyIuSg4Mj7t25x8rGKoM0Yrw64XDvkPFkhc2NTYTE6Zw1bpoyWLI0oyorNyZeSZ568mn+9/+H/x17R67luDcZ7m9KuJYg4Vu9sIJYQtVKFnlFURXEkaJtKrCaSAiKskTYFiU0e7u7jqXY1I69geHKR++RjEc8/MSTvPnzt1kZprz0wpPMFzk/fO01ptMj/un/7D/hh6/9kNd/8tfkixnCOsA0W93ka9/6TVoUwyghiQR5VaDitGNIWSx7e3uUdUu6ehqtt5keHtCWOTkWVIyODMY6HdqD3W3ypqE2lki3IKEoG4oqJ0mzThMpn5UUZcVwTbM42qMSjt0RK8PhXJMkDdNZRWUi4kiRWRfEra5maFlz8OAe+fw7SJlQLRZUEeimZlFYJqMRpdLs3bzC4JSfquaT86CfEwLjYDu6Qld4ZAQQqU+kJRYpIjd10Wb45gd6EyZ6wMAssQIIfqgvTIH1rBTX2jZdzDnYP6DIC2ovCyCspamqDjRoW01RlESRE4TPUtcKFynFqdMnuXjhIoNsAFiqsuL2ndu88cYv2N/fd0LxVeUD9DBpztn8KIocG8+jIUuex9lH3/4CTtA6TMQMbOxw39z0OZ80L7N/fCt7XyDyhTRfoLNLxwqi3dYasM5XhNtrbX8f8b7Gil47EAvGLH2mKyj1CYhLqkTXNhVYX6HQ51qg3RpRfiKnDc8PV/wo53PCJGmJ4MHuLl9uGs6cP8fR0SGiKhFKYaXzQ3lR8uGVK7z04mdZX1vnlS98mWvXPmZhWoyENI4oi5rVtTWee+45hIy5c/sOW+sbVHlOFklObEy4feMjrt/4hEuPPMFv/97fZ3Vri7puUVIQK3cXfv6L12mMQdUVdVkSZjZK07K5uckTTz7LsL5DvgeqMuhkxM1btxgPBqg05cy5TWrdshpfoGkzOPUQ0XBMvnOHyNxivn+PYpFj25Y4iZkvGqpKQ5wgGkNjJOlklc31LQ53HiBkhdaCYlExGE7cs40qFrOc8TAliWNWNzc52J1RFTXGCoTR5Nsfc2e6QzIac7h/SDYaMBcD8hNn2ThzgUM7ZHLiNHnekJ043QNyXSxHCO16sLgD+QDl1ljoaAlJswrxJB7E+lRA0q0j+ngo/EsGikz3kSUmkOhbhzt7AF1reXe+PglfjtmWG3FD/GuDYeL4xE+3dMO/ex1moAexhdO0NIEVaHptWmudJrEIOyzEpSx9B7IDGJSMUBIHHgHrq6ucP3e+u1anJd4ym005PDjg8OiQI/9fUZSue2JpP2MlUZSysTVwzwdo2qaL/4w2KOOGUDm9M2e726bxk9GhbRqqsnLMLKVodUtd1S6u8cUKCHqIzp7Udd3ZqI+vXedbvzFkPBqxfe8OsXIDOuo8Z3F4wGR9iz/7t3/O2toqj1x+mIcuXuIf/sPfZzGfsb19j9df/xnXr33CweEB5aLiys07fH5eklg3IOgLX/oyBwcHfPvb3+b8ufMM0oy21bzx+pvcvXeXne1ttGnJBgPSLENMJRsbG0Qq4ty582zfu8f+gz2SOGE0HrCbT1nMhgwnEwZJRlPktEXOPJ8zmUyo8mlXiA1MqkGWMRyMySZrXaFi/dJTJLGiLnIEmnx6xN6ta+zcucViust05x6z6T6RdAQRhKaVirpxHSf704ZISjQRSNetYI1AZQnShgEzjvlPLBkOY5Q21EVJiyaOpHsOrSYVUJSaVMXePlu01d1+CM+9Sw27Pdz767BmhP2bAF1ovQ/gYCgGLIOFy9O1pZJdvig88BZiCSvwQz2W2n0R3XHDYJ3Or+EAypAfdfqb3h85myKP6YwvE1n6BLUHPTsHKfohC123mQjnFbZwz6ZfLh6GoUzBFoT3dnmr6Icn9hhS0N7rCRoyFN683RCR9JOr3eecTJb7TKvb46xkITuGv8Br9CYZSQLD4RizZjlzNrQEe73cpgYLVVEynU65v32P7fvb5Hnu5I3imES759jUNa1unB5zXRNZNwdhMBhycLjPxolTjNY2yO/f9cRKzXx2iIxj/vwv/4Kd7R2+/vWvMRpm6FYTKcVwssITzzzPc888y+3rNxivDMmLBXu7D1BRTBrF1Frz7i9/yauvvsZiPkM3JVVZMsxSqroiTTLiOOHUqbPs7R1y7uxFHrp8mft373Hj2o3uvisVo1TkdYy9FIsIWsaKMDBKqYgky1hd22A0mWCMYGd7l+nRnGw4Ym1tlclkzODoiDSWpGlKmmYMsgFp1nb+tGkdmzdWEdFwlcHKBme2TnNJvcTTr/w6bTHj/o2rzA92uPH+O2zfukaRz1Bey7+xlihOXV7aQGudxFFTV8yMZnKcq/Q/6OdXBviyLKIoZsRJhJSG8SQhSmKGg5SmyBllGVEsaWTFYDCgrVvKonKobWNIlENmVSSoWsva+hqmKogTi7KGWFmscQGTkAqJJEszpIyI0xTbVDgNDtBCodIhqqqJrcCWJWmSIaMEoxusbjHxAJUIUuW0odpWI5REt15TzEisSdAG0sEaRpeIRJGmA2xdUhQVg2EKwhJJSVkbhpMJUQOLKmFw4jSjk5fYvPg0o0RRFgtOPfkCIlvByMwxZmLF4mjGSjKmrRvS8RiVuOpS0Miy3ijpgMbB3wCx+qoMfYWio2C7hEN3ScES6kVv6IMxCr8PgFxo6+i0B7oWDDqDQ3cMsXR8uiRi+T3hz+Ng1xKA1Z3I8qX69y7hfMuvB6PZBZNiSROC0NLaB5TLLcgd8CiXg8TeaPcOodcs7K7ROykT3vupm+ISM9s9B3cOPftxOUA9fp+CpoR3iqJvi16uHAU2ZR+cL51CAPWs7ZeNXa6OfarqtnwCwQEvA5m+bQ3htLEScNNjraVqGvLFAtM2SN16Nh+Onmwhn1Y0ZUFdN56dZnj//bd5/PGn2d65xyOXH+HG9U+gbWhrDZFhPp/z/R+8xs69XX77t3+H1bVVyrbh8qMDtBQID0gclQWjjU2kdsLdkXKB7OvvvMX3Xn2Vnb0DqqKgyucIG9gqiouXH6IoKl75+jd54smn+Wf/1X/J/va2X1tLCRCW2E/psripudLvh266ZRx1CY3yGli6dboYTlS+pawrlIqo7PLnHNOgaTWRnyx4pKJu4m5ok5VSMhgMSJKYI9/G4wAZVzFUkfKf1wyyjJ2dezS1q8atrK6gpHJTtNMU3bqqlNYNZVGwurqKMRalYq9VM6SqnU7HaDQgiSI2NjbASgbDMStrK2BaytJweHSX4WjIYrFgejRjMMyQwgnMxrELOov8vhu4ETkZgbOnTvPNb3yLP/lXf0xd5H5fmQ6L7gAjo2lax9Q+2t3l8Yc+y/V336Csc4ZbmxStRmBpygVSCCear2BtY400TbCUaNMySCOiZMDlhy5y785t1tfHjAYps6Lh+Zc/z8ap07z26qvUteG5Z57hr777HbdWMGxsbXHp8mXOPXQRmWREUURZ5hwdHZKNVr1TthgDg0HGINJsji3ZXFAayfqZc6SJYj5b+ADL2/GmRmsock2kLEYa6sZpsCzmmmyQMD9cYIRmfXVMdXiAQLGoKqSA85dWaCJFlc9AQ11qykwzTPywFTSjTDCMUpSpkZFFZjGmblkbjZkvKvbyEmNSklhi29rbtaW2/05WQHb20xsLAptHCrBKeTa581WftufC28ugOYNwun4uEFOdnRRCEOZyOgTdAUdpnHambW11lYtnzzmb1rUXCqf35214SEzc/vL6e58C44xvi0nSjMcefYwLFy4ym06pm5oidy2ci8WC+WLOYpFTlgWL+ZyiLL2vNWjfstt6JmqWpseZP7hEO1TldcfIsURBJ6s7n35wkfXV9VCBdv69TwWc7wiTQk3XSqdDldr2YEqYwKm9jljvZ1xyIH0i5BIv6R2s6Px4EPDuJ9E5FpA2FiE8YCnCedrOD3Wf9+1YLklS3Ltzh6effIq7d+5wuH2PRLpJ3iGu+Pkvfs7TzzzJMEp57InHeOnlL/Czn/2QulJ+OnNNXjfUbcvm1gaPP/k4e7vbTA/2OXjwgPnRPghJa+DdN39BU7f8/j/5nxKnKcPBAKkkH3zwHnd39kClzBcz7zclIopYPXWSS489xslz5xhHlxAPvYAuZqysjRi+kNPkhQNYlWIx22e+fZ9k7RybjzyHiIco09Ac3OPBzQ8opvcp9rYxRw+QCgajNeaNYnW0Qra6wamLDxPHGbt37yL1AtNqoshS1i3UBfMH95gISEcT6lKTDhLGp0ryowOa/IhycUSkNEockucH6EJTFTO0lcxnOxxuX2OwegZl5+Q2Y9081YFmAZASwdf7JLgHgJeSVB8v9B0dfWAWnm2XCAcgUPR7umfZ2GNgk8XpUYEH8JaYRyE263GALoLrwL1gTHoWDR3oLGwAwk1fVAhrEntsyidCoGyIhftCtEZjvD0LQ6VCC2TQqurlUXpQ5FiM679e+/Ow/v1hwqnw55+lKVmaMhmPOHf2bLdv29YBctPp1P03c//NZjPm8zlFUTpwQLjOAqncs3LDzmwHTAbAI8lilLctCIWMEr+fNYk1pJlG4gqL2g8cAcfyM9qQ+j+N0RRlxXf/8jt8+Utf5ub1qyghyLKUosjJZ0dEWYqVI/7oT/6Yf/IP/0ecO3uO4XDIZGXC6uYGW2dOUecFD7Z32d/b46AsmVc1CTkra+s8+9kXeOqZZ0hjNwjocLrg/Q/f5ydv/ILbN6/TljlRHHHm7HmOjqbINAUBlx66zIlTp/nL734HWxdUVUGRz4iimGxRks5yEj/cJ00TkjRhsVg4TdE0c+9LUrI0IStKFpkbFDYaDknixA2GanQXD6yP1hhvneXSi74A0lR88u5bUE2ZHhxidMV4c8u1Nc6maF2ye+c2hzv3MHXJ+ukxbWuoiholNFo32Nbpi2WtYWUUMV8UNAZiFWNxceHK6gpV3XBwOGdQh2nlvZsLjLIe9JB9PkGfh+DzoTA0JjDKgM5O9PGu9xc+FwyF5yBxJLxNCPsMepAwFAKC7ETHmPV7pmeF0+dn0GnqdemvcGw04YHB8NMXqpZy3FA49DYqFKKOtQEvtbgHA9TFIx7Y82leD+yJPtYI54voi6BBviD82GM5XH/Nzqb6Yxp/j4xxWZ0URL6QlhCjj03qXiqCCldE81/kbJWQPmZwBRghIE0yAIaDIevrG1x66DJ1XbH7YJdbt24zn8+YzWaUZcFgOKCpG8d61A11XdM0tW8Ln3Plyge8/LmXefUv/5K6Ll2HQ1lxeHTAiRMn+fGPXuPOzev87u/9XbZObqKl5AuvvELdevsRRaRJxMbKGCUlutU0Tc277/ySP/rv/wVFWZGlEfm8YTAcOCJAYHMLweNPPslsUXD+4UsgLD//yV9TTA+JpEAKFyNpa1y3VusIPJESDMdjN4VXOoKFFE67vG4b7HwBi4IozRgMBwyrgjxfkA0GRHHC6sqYQeb2fJIkbgBZmiJx9juOY8aDISZfIJTzFVmWEccDVDLkzNObWGu48PwrfPzWL5g9uIttF5RlxelLFygLyLKEg4MDoOVg9w53Pv4A27Y07a+O8P3KAJ+UgiyLMNYlxALFymhEWcwAiRVugmwUxZ1otYoUSRRDkqJxgqRaN4xXVsnSlFmRMxqvULcNsZI0betGYvv+8GCo4ljRkLiJTsIgpaIsK9JsSGQr2qoClTkhVmGJVUqcRQhjaIoSGUUMh2NknDqquhUIoZAiJhkPWFkdMz9okJETjwbJYLTijPJwgBGKNopoR+cYrJ3l3NnnmJx/nGz1NMQexc4XzIQiwY1QlnGEUBGrJ04ATr8Q8IGP/lTAsGSsbW9oQrAuhTMEocphjIbGHtf/OY7ydNX4ELCFFt8uLVv6jPYMCoLBC6CVtT4pC0CRB5wC8EgPpvlT7ZgJ4VyCae2qN4HxEBIbfx/c7/sgzyUmHsQLiUu4ltCO6oO7YNDx+Vdg7HWJ6BKw2SWwy/fdLLPmbJ90Ld2/5Wv8dwJ3wlGzjzEX/XcFxxAcX7iG7ngEMHL53Oi1+pYcmxNtXTqfcM+gv07RH8clY0v33x5/Lku3FYmjh1sLrXSDKpTWyKYhHaS0FTRVS2s12tO968a1hKg4IsEJviZJQl3mvPfmL/jMiy/zzttv0VQaYw1xpFBCUswXtE3L62++wZVrV3np5c/xuc99kROnTmCswLQtrXDOOktSIiHIi5z3P3yHn/z4r3mwt8d8kTM7OsSWhQv6pcRIwUNPPEaSZDz+yOO8/PLnefV73+XtX/wEgXHtLMoNmggsFrF0c7RuMdonKNrdx7oOwyaM17jqk6Pu2RjTa2FZB0YKIdG67RIeF1TILtFQXi8L+sm11rrWQ4SbnhknScccdC33hkGaOPAviVksZiCd5kWWZgipSI+mqEihTcu8qv3ydKyFNF0QRTEGS1HOyOcLBncHrioWRc7+4lhaURyTJAkguyTM7T2FFG74Qd20pFnGcDSkaVqGwyHf+PXf5MTps/z5n/1rblz9mKau+r3VJWQOqFACBIatEyeZrK2iFpLxcEA5i6krUFiKxYKD2ZTWWJ7/zHOcPHGC6cwwW8wZDQYk6ZBnH3+S4cYpvvMXr/K5l19ExSlCxSzmFb/9O3+H3d0dXv7CF/irH73Iu2/+gjyfopTi9NYJVgcDRsMRkYCdnR2EUqTZkCqvwDqdkaI2yDhBKUXd1gyyEVVtOKot08OKLBFoFC2KyeqYRTFFDiWNiimkIMpiovV1RjpluLJKJAWL2T4mP2IwMsiyYfPRMySDMRElD/YOSKgp85rd7TmJqElEhElSbK2ZFg26tSRphK0sSkSkScysyFGRIFYJbWOJhaKYtx507ivNQVcr2DbhgyG5FAAHu+WHXvpg2NleK3rbIoVrwQ62WgZ7ah0bTfqW36XGOz+Fs6/kL+vjCL8XvWw4Ioo9G9DtL5IekNCN813LrYedK8TSNIY4itlY3zxmx41PhFvjJtO1TctiseDw8JDFYkFZuVaXpm0py4KyLFnMFx2Tr/UtvfhAPOxp7cET7VvlrHEC+8vvRYgOEDReO8su3SuDxeqQTHiWjU+8wj3rW4ptBwYKeqF+5QsKutXY0C6/bO+FE5F3vkE5P4NnmXf+ygQnRsck7JIlD754+2d0zZs/+zHf+NZvkqgIi6DxLFbd1ggJO9vbvPmLX/D5l79Akqb8xm//Nmsb67z37tsIKVk/OeLg8IhWW+q6QgCL+cwNPbEG2xhkFJOkA85fvMxDj1zmJz/5CS+++AKrK2PyPOcHr71KWZdIYSnzBcL6eCtOkCrhyUceZr6/TxXHGARRNEY3I1S2Shu1CGNRQjFYfZTRBYv290k0LS0WtX6Oc6cuE0cSvThkdv8GRkVsnr2AiseoJHNtg3FEJCTnnndxkxIOuKqbirYsMXVFOh47maBWu6E/uqacT8n3ttm9fY29m5+wOLxPuThEJjDLC8q6pJoVIGZcvKhoFgV28yLnZdi/ottf3fqwBhsE4QMAKPpWNtsl5qbTerSYDtwLbX4C/AC0XmM5MHSWWXIBCFbLcVsXbx2fwBns0TIjJvw4n7HE3VsGwjtNvQAC9mBgSLARdN0gdvme+BgogCQ6rHNCO6BvN1wCEnpWU3jJax2KpVY/6Nrug30KTER32v1QHaUiIhWRprCystIBFcZ34WijWczn7O3vc3h0yM7OTidrIPBsPr/3hfATgy3EUdw9Ux30vKoKJ6VjnX6cMQjPqlHSDd1pmxbjWdPWWrKmYWdnm7IqufzY4/zyrTdIVIySCtNUHD7YZkOc5lBZ/uAP/oC//3f/Ho89/hitNsTpgNNnziPbhnMnzmCBX968we50ypkTIzeUw7iiQIsAEfH2O+/wVz/5Cbvb95gePGBjdQUjLCpOODyaMVgZEmcjXnj5c9y+c5t333kXIV0xCQuj0Yj5rGY2PaJpWqI4YjJZYTIeIawlyRJG4wlGuyFMSeSS+PX1VdIooqobJ78URwzSlCxLuzzD4kFlpZDJmCe+8DUHDAunRS/i2A0X8vuiLhYsDna5d+1j8qLg1MXzHD44cFOJjaGYH7J37xbb165g6ikyU5hFjlSKvKwwWlPVUyyS1saAIrDiwr7rQLiwI+yyfe/JDUqKbh1yzOcug2fCs/OcrVCuBajPUaQItaEuPxIChFLHvzvoxPoOouC3gp8Qgp7EsQQAhvw1sP+kXMr94FgeGP4M5xFsULg3FrqBPl2vU5dvhhvUxwH2b9yL4zn58j3tCyI+lpey0/zrUr6lc5VS9NJK4T1LebADDduQXiOQRJEfphXiGWu9n3aTcV3+qXt8YMlGhfwg5JoIyYlTpzh50mn71Y3TUW6bltl8xmw+JV/MWSzmzKZT5vMpURJzOJtzcLjH8y++yOs/+Wvaxu2Npshp8pzBIGXnwS7/5X/1/+LzL7/MF175Etl47Keex5w6dw7ahghLHAmOipxXX/0+r732KmVZIVXE/v4haersz8HhIVk2wBrLpYceJl8UjFfHbG6s8e6bb/LxB+8grMZqJ1Fi6LsMhBTEkZPIEIROA+evojDgyVg/GCclGWSsTFZQkfKdWTVFVdNqzWjoujuTNGHUjpB5gcAxs5WSTAduAE4SO93nsq6J4xjpwWKpFNFklce++HVs26DrkqZtSYdDosTJ/VjtsK39+zf5afbnKBqGa6f4VX9+ZYAvUhaZCDdNTkQMhyu0dclwkGCtIMpGRCoibwpkLEmyARESbTVKSWSqGKdD165RtpRlTTqYMF6ZUJYLpNDY0gKKlY0NinyB1BoD1I0mjhUyElRlg4gipG4RrUZI7fr+NahEkCUp5bzEVJVvNZCoJCMva4YqQjcaIWMm45i8aEgiwfxoj9oIUhuhG4vIVmnIaCcRqw8/QbZymmhymtWzj5CubGFURt22VEJB6wL2bGWVMMY+BEUOeHFV7I5pFQyl6TeoE71097kDdITsEh6XCOhjwFsPMvkHtIRnsTT0IbynA64IIsW9Q+iCeSG6aVzBEgUNof57emYh0FUXlgE1a3VnvIXX0VsGA62hFzINhrkz0LYLysJ3ms4yeucSJjm5G9h9Phi9ZZaDoA8Eu+TOmGPnGY7j/NnSZ21/7uH7+srw8QrysXHy4RkTWr3onOLyPQ+X1QemxyfuhkC8WxjL99EuDQ/xzyW8P1TYuvve34xPua3+ZzgYIgdj6tZVdGKvVxlJRSQlRSHImwatHGvNTYt190rrlqZqsUbT1g1aa5R1rJ533nmbEydPs7axxvsffkC+t+eYdtbSFCVow6G1fO8H3+evf/IT1tbWuHDuPBtbGy7IqiqKomR/f5+r16/TNC0SONjfY7GYIY0GY7DCMQQuP/ooqIjLjz3BN37tW7zx85/y3X/zr1AYUBIhYheH+CQksBCEBw860C6ArNYB6q5StgzWejFrv7+EBSNN97ybpunAw0D1FkKgrZ9gLYWb5u0deUMfvNVl2SXoDkBxAVgSx+i2pVoIn2jRH1+4Kr9j1tElXQBpmhInrsDg2oUdCzFJok6Y2AV3kA0ypJKetTZwAsdWdJXQLEsoqxJhBZFn8ZVV7UBh3SKlA5oEcPnyZaQU3Lh2lWpJZ6KfaWNptWFe5IzXRmydOsGtGwVlXRMliQM9mpp8MccIwbsffcyLTz3K17/yDX7w6l+graSsWta21lhZXWdtfZ3f/d3fpilz/vl//QdMVif82je/ySBNSZKEjz6+yq//7d/hykcfcTg9QsiEp55+zg89cRINn1y9QqUNW2trHF69hsEQx4pIGVY3N6miIQsZY1YnnLzwMMnaGRaHcwayYV4UHN69znhjk60vb5GM14iSMcP1LVScEmVjrFWoKKJtG4rZAaacu+m9KNRoxOxgj4NbHzIc36POp7TzKRtrJeRT5nnLo5/9PPFgHRlJpjt32d+9z8XHLqO1pDqasSkMRhjqcs7R/VvU0ykmO+mDRgC5ZB/7wkHHnBHBB8lj4tx42yy98JpLZF0CpJdbdaz1QCI+WYg6v+Nssezt5dL3961G1otq0ycG4FpnsF4cms6mhs9YPzE3/LuzwdaidZ+Ah0KZEG79xjLpfre2vsHps+c8EOf2vLX9cCpjDGVZkC9yFos589mMvCjI85yyLGmaxg0m8po21uquIiyVpK0bysq15LVt29kfbdxQjcYzaDxtL1xAJywe/GPbuonXHWBh3LkFW2Ks8TIkDW3T0mrtkwPHEMADi107dud/jJ9MGHyzbzUOSaFUx5gL4TPgEpnbd27T6oaLZ88SWc29e3eRGEzTMBwNKfKCv/7pT7l0+VHOnj1HnKS88PLneOLJJ7l56yb3t3cYDlcYDIc+SG9x4tUCrSVWSZTKuPjQo/zjf/I/YbS+xXe+832yOCGygu+/9io7+4eufV/XmKZ2EyGlxAjBYDBh68xD7OwfdutkMBhwOJ2ipCRNE6SALMkQZY5UEYkP7mV4HAJoGywxarjOxmMnHGPAazohJbFU3X5wLO7IAzuSLM6wwzXf/u/lILqErE/WL7Y1plww37vP3r3rHNy9yf79e8yOHrB77w51PedoXnDq/HlsNukAr8B87Z+PbyELMYD3DXT74XiLnmOe+LgoxF/6+NC0vsXfW/EQi/hWz6BJTEjoRV8U7o/Tx1UB6HN7vWfA0NkLt86C3eqS5yVg8dPvFx24R8dmXQZBEP25KK+z625W5G+VPd6u559/SLyXuyPcM/Sxg4q6+7lsN8JxtPH729sirEtYA6AopBsykgg3vfrEiZOAkwhoWidnUFWV1+2LnFZbkXOwt8/ugz2m0yPm85zaa3aF1mdjtfu80ejWST20TeuGZ7WGKMk6ANMKFw/UdcOPf/E2X/7a1ziYzrl38xZxOkSXObpuyA8OSdqGOBP8N//1f8PLn3uJL335y6ysrxInMVGsGGQDitJNn7x7+w7PPP4kQkagQTeG3e0d/u2f/Sl3795ldnjE7t3bbG1sooQrqI3WV9k8dZJkMOAzL32Rs2fP88//2T9jMT0kUjGuTdQyb0psIEJ4sK1czKjyOWmaMGGVKHJdDIPBEJXEJGlG0xqapqI1ljQxNIsFWZIwHAzI0oQ0jkniyIN5EoxFKBfzSaVct1lYR7HTYU6yAZONE5x55GnfpeWmbuq210xtm4rFzl2uvvcOkWx5sLuDbQru3r7F7OiASDQ82N4BJJWRzl7HHLMR2udJyu8J4de6R60Q1jPwQvy5tN/DJllKDXqGvn+9X8M9Q63fC8LngnR/St9yG4Cvnp1nu+/Xph/CEZj4wR4FX2KX7IQQHLdNXY4XJgf3k2+74MV3xi3H9iFPFIAJEkam16b3Kd2STTzOcg55ufG6nmG4SF+k8AOuzHFbGb7D2NBK7N4vlexsyPJ5uINKD476qeVSgJUkcR+rhGm5xthu+F3Q3lVSeVa/bwX216KiiJWVNVSkOH36DMZqB5JrTVkW7Gzf5869u1y/cZPtnV3iOGO4tsbswS7WGBIhOHqwi4xizl26SG0Ef/3TH/P2u+9w7tIlHn/iCc6eP+9A9aZhd3eHjz/5kDfefJPt+/dRUhFHEYcH+wgMZe5yxSRJSNKUlfVNnn3+OQZZzMXTpznae8APv/vnrnNM9dOKFQIlpPehAikjdKsx0oIx3eC1ptUoJRiNx1jcACUhBdPplCiKGI7HtMYVgNu6plYKpRwpw/oii1TKd44psqJgMBgwSBOyNEVJQVW7brYkdrmX62pQiDglTockNsTTbn3JSGGFYOvSY/yt//A8Fsv+9j1+1Z9fGeDTrUYZw2CQIKMhbW0Zj8c0TYG0AtsY2qZA1xUVihhBmo1Y5DUrw5QyNzStxsqIZDhhOF7DtCVlPmM4zKiaCmQMcUrVWrRVbmR6rMC22KbBCgc0ClqkH09vjCJOIleBakvqxqCNRVeGJBGYrk0kRqqMRVWixuvU0YBmktImGdnKgHS0RhK5abqbl58lHq4hBxPUcA2sIq9byiwD6XSH4iQ9Zjg7ACYAAx1i1zPKtF1i6BGAMuHb9HpjawPoF0CE0NYWAK0lsCoEMe4nVPQ8+h8AQQJIZvvEgT446Yym9kkNttda8Ec2S8cK19wZfH9ufcsGXWWxw5+8pkDvTVhK0Mwxg9sne30Q6JJFN4wlgIx9QGr+xrQm68/edtccTsV2Bj1cVwjolkHQYw6N/jxC0hiaSgIjEfpnH34fKuJ9A8oSEGj7zyzHna56tXSnredNhnuxdE/ClOPlNRcYgoHtt3xN2P659Uif+8tokDFYW/U6H4714LTWSqqqZJ7nzBYzFnnOfD5zrW5lTl04HYXGt3JFSYyttHdkknl+yPTGlGef/wxnz5/nAYLp0QF17SbJ1W0BRUGUJbRNRV2X7O7cR/qWVJrGteLFCW1dk88XFIs5tm1JhMAa4aZUo3jk6SeQIubp5z7DM898htd/9Bp/+i//hWv3CIxPJbr7HEA9G1pslp639ICCEiCt6har9slPYNVqrft1bftAXgDaOt1PF6D099pt6qX1jvgUCCuwZbUUXLhgoKpqnzy475O++u4CCR/sKYVrO4r8xExBUxZ+iqjpghAVqZ6NiCBJU5RSPGhaENbrornjCCTW+iqvbX07gauMxbFLaJqmYbGYu4RcO4BEG2eLIyURWeaSMa/9Y5eutSwLlK154qlnyIuKnXt3UBIaY5BYqiKnbBp+9sabPPvkI3z1G1+n1g0fXfuIxWLB8y+8xGQ8JhGAMnznR9/lZz/+HtlgQD474Ktf+zVW1jf44KOPeO4zz/JP/9P/jP/L/+n/yKXLj/HQw49SmaATo/nFL96gtU7D8XB/FyUhTV0V/dyFy3zpS19ihKG1IH3ANfZUqFWlOKtbP00rBQ+uCyyhTdmBvAKZxqyOJl3A6ESmYbhxgVOPfNazcQwCjV4saMqcxggGk3VUMnBV3dagdU2cJmhr0HXjnpUQNOWCw/u3qcsck0Ts5dp/v7dDthekDgFr72R8uOynrwaDHYS4CUBfN81s2ZZZwuClvuLdi2S7w9l/d9Id7F9gpRgLLBVOlt7fJTTg2QAOjHOv9RqDQT8o7BGBC2iDNEYXrHfHdCBJFEn/a9XZYSGcFu/mxtaxxB1s10IbAm+ttRv6kYbAz71nsVhw9epVrl69yqLIadrWDejQftjWv8MeCfBT6+Sxc8GDrFovAQhd4O80umxoT/Qi3+E5tR4sCAmSxU3tDPepn8LpEgXjNcnca7YTV8e/zyIoq4o33n6TL73yFW7/0S2UlCRJDG1NVUhaYyiqmn/1J3/CP/yHv8/m5iaD4YhIKZ5ZWeGxJxqKovRTIbXvLBCk4xU2kiFbJ0/x/Gc+yyOPPkytJRc2T/A7v/u7jJKY7736A9565wOKqsK0mvxo2rEklIxZ39jipRdeYHt7l929+wyyIVEcMy9LlJIIJGkakyYpSsxJk5TRaESrLUL6ScVCEBlFbC117bpNlFJuIJNyLedCGlqhnWSBcsPcXDFGIISLW9zkcUuklNeusr2EiH+2WTZEZEMGq5tsXX6Kti5pyhzbVuzfu8Pi4D7bd7dZOXWWweapbm+49k1CdOIKSV0i7SalKtG3mWn/XEOyLR1y0Sfv4JnmdikWW2LdidBp0O/xZR2+EGII27NZ3P5diqeCD+TTA8Fkdx7OB/bF1xAL4+OnZRbO8TguxEdiyQb5DprwXpZixmBqQlBr7ZJ9OGaqjtk1/N4IsUDYJ0K49skuFnOfJAzosd7OdbpkxtnAFg8aepBEKTdNXmYCJn3cqo1mZTzm7Okz3d7VWjOdzTg4OORwOmV/f5+DwwOM1U5o3xf5wuWUZY22hihywx20dbnVWCiiOGV3/4iXX/kGP7XfZ/fePdLhiGI+o65yWgmm0ERZwvd+9APe+/BdPvPM87z40ktsnjlJGidkoyEvPf0UT5y/yFAp8jqnWsz45Vtv8Z2/+C7JYMjs8IA7N66yub5GksTs3r/PhfMXuXN3BzEY8PDjT/PCy1/gl7/8JVevfEBTLCBOHFtLCSQRaRx3SX+cOCajVILBIMNayyLPSdMBWlvyoqBpGtc6PRp52wlSxggV0xqYLUrKqGE8zIgiRYx0Ez+12xOBeS1t5PI8a33G0beaq0j5lS2xEWjr2ItpkjB66DE2zl1261xYhNF+KFXN/s497lz9hLqpabo8yRXNpQeel6dbdzbZrx8pwvCcPsYNn7GWLi611n2v83t9gSD4bvddQV/WsR/5FADmsfk+L1li5od8o2cKy87vB5mp8NO1Agecruus6kH1Ln7pqsRiKedxmrWIZXugjuVnocAHttMaPaZLTv/ZboK1EL4AHvyxO8FgWzqQr2uX99/s26aDL+9yN/9alx8uyWmE/NQGnMC39FprEVp08YpSsgMZEe5+1FXt83a3vlxhxxVj21ajjaVtanTb+j3ufJM1hiROuXjxMhcuPMSLL36BW7fv8OMf/4SjgwOqJMU2NU1dMxgOsFJw99YtxutrRHFCmqWuFfjuHSyW0WhAdXjE7MgX27BEcURdVTRVhbXaT8ZOXBFCSipjePSppyCKOHnmNLZt+f53/pzt+/cJw2ICsQQ8LqJdPuMwC5+vt1471VoQEhlFqCimbhpEqynmbvhFkiauGzVNUVJSVgVVXTq5pCyjKAqklCSp08htEF4727Hw6rohiiKyNPEEC4m2EGvtii++mCCFcPkPQbah9xvJcOj2WBTzq/786lN0ER3SioyJ04zW1NS1SxbHI8nsKEdmI1oUWSSpF0duqIa1DMariGiETAduMmVbU82mpJFBNy1CxkRZQhJHNMWCYeToq6atyLKEqpEuMZISYSzGaowVtNq1ceGNqzYWjSKVhraFwXhM24KJR3DmM5x+/gnWzj1KPFwnm6xSFzkPdnbZOnuepszZuXefwbknEXHqGDKx05fKIuUYXQEwCgZ9KVAICyuEIV1y0SFg7o8QYEnPggqJge0AAuispjnOmLPWdhTkTzPLOtaOr7wvG5MelOp4E93vln+ChkNAhEKc1lcX+o+G6xdL1xsCtXBc6+9Jd+5Lhi6AdC5xsAEj7a4nnEFozXKn2yeE2k8j7NcoS79dfmEJrAvPKzzHcB3HbkQQcg53QISbSMcw9DdJdM+i+6gPWm3nHAPjrlsrPqkPayYkl13gtxRABwHZ5WqSWapKLTvj4ByWbvzSfQj3M4AJIdh1r0dSMkgSj1P56xyAGY8cO80aWqNptKGqS/IiZzafM59OOTo65PBgn6PDA/LFAozFtC1WWBKpKKuSN17/OWfPnOHU2fMM19Z4cP8etqlp65q2rWlyTVVWzO2hY5hFHlzQ7h4Z67VlrDOautVOT65pkFnKE088jrGK05cucf7SQ7z2vT/n3TdeR7Qt6SDt7nfk9VmEACEVsYqXnqXs2mEDgCaVRDduUpPWrp3PLgXvEX6qVtgffr25IMe1RvX7p99TTi+wD/q7Z24dQWm5ncjopttH0rchd9VMvxTDWtEyJPFlB3q7gEB1lVUpBaYwPvlwweJsOvUJiquMOTZQaB10izq85ph6Ts7A2j6gU8qNuu8CQr+vlBJEKvFDinSXFAnhpnQaJHt3rrO5dZKiyEEIsuEQGSXItgbT8mB/n7X1da58+DHPPf443/zWr5H8bMSNGzd56aWXUEJg2pqqmPGTv3oNaTW2bXj/3bdZW9/gH/zD/4jT587w05//nM888yz/i//V/9q1NCNZGU+w2vDxx1e4v7PLeDhC15qmLNxaSFImkxW2VlYcW1FJFAJhnYYS1rVk27btAJXWuGDBhbjmGCgbhKPbJiSaS3pPCGwAkKVCEBONM8Rok8Tb1dYPe7BKokUMxmtHppEHCw02miDWTnNqfYXFbMbBzevOZnrgKSQAYZGFZxjA6J5hJ7qkNayxcJ506y4ULtzaD6BhOHYwRS4QD9lA+E7R2aee9R3eRw9qhc0QzJkxmGOGd7n1yK07KV01OyRBURSy9+VA2h7bS3j73trl63HnHNhtxuoOEBU+4A6sxSTpK/7hnoVTjLFkqQMIP/vZF6mqiqIsWCzm5HnObDplkS+Yz+dOE6dpXCXemB500y5ewtquuGCF0yV1PsLZkrZ1+6z1GoEBNA3PThvjAXqXEAdNrrZtUVL5NRDE+AVV6aYRa912A4G07yzwM00x1vLh++/x1DOf4eTZ8zx48ICqLH3c6O5Bvsh5YPf4wz/8Q7797W9z6eIlN91ZazKrGY8n3gdqrLZEacp/8Du/y8nTZ1DZiJOnziCNRtrWDfxRNf/yX/9LXn/nfVCSYjqDtgE/dbzWmsEg48zFh3n8sce5cu0KZWNodYFUFRZL7AepZV6DB2MZZBlrTUsaO4mEOFLuOuKYNDNIJFHjJWWEG2gkpSuCxFFE3GriOKKVDqQJEgxSKoy11FVF4jUkw3pF0HWBGL9frC+URdkQlbgBTdnaaYQUPO67QHbub3O4yPt1F3aEjy0DazYwNpeZM6FIHQDd8HGppNfcEt26El0C3u9tIQSO3uh/lhPXbp8dBwACeN/JBHT7qgfMQuGqAwWPJfrBCHjz8am9tlwwEz7ZdwB7X9jtQIYlUNL6YLcD6uiT/GDjWPq8iPq0qi9IBIZRAA2Cnl8vXdMxB6OoP3n/fFyh2SWw2rh2rnD/xNJnA1gThPuNj5MkLmHc3Nhkc32zIxe0bUOe5xxNp86maO3Yx1XJbDanbTR7BwcgBLEQ1HVDrTVGN8z3H7AymfD5r36dn/3oh9y9+jEqcQnyMEmYbG2Qtw3zomJx8zbb23u89f57nDp/lkuXLnLh9GnWRxNs3XLz5nXe/eg93v3lO+RlzcraOvdu3+HB/TucOHmS0SDj+o1rpGlG2TTIOOWp5z7DN776TfZ3dviLP/9T174vQGs3PMCtNccubhoXm4Q23ZWVCdPZzDFxYhcHamNQtWKQOXmlJI7dZPa67u5rKKrWreFoURIp4bW5MpJYEAun4yiDnwx5jHVFViWlH8LX+zhrHT9BqJCDCKIkIl8UqFgRRzFRlBALwdmVLbYuPYkSgu07N6gtnQam1trHbUtsOe+HwlpvvTRMWCt93hNOJ/gp0Q2bCYQShAMSg5Zkz1oNdqVnl/1NJpzo9o5Zkgwg7GXtJk5LpZxfDfvNL/BwXg5MVF1c3cXQ0HUOWGt9t4nxw0D8V/Hpzyx35YQ8aClWCLFNkD/y9yuQZbrvwyJDG+hy4tkbAX8v/XV1eoihhTgwEftBJXh7tcySDvchTD4OxJCQixprQIulmMnd9zRJCPEL1rF+g41Uvmg5SGMCwaNtnR9vTUtdVzRt44gXUrG5vsbnX/osZ05v8ss33+TOjZsIrVnkud97hrJYYBEcZEOS4YA4zYjSlCqf0y4WtLWT5mibirIo0VozHAyIowhjDYNsyLSeYa3i8cef4PzFy6ysr2OF4Kd//de8/847Ll8TPr4WkqapETiGvJFukIZUzqcqz1RXUvg95gq/i8XCPxvliRt0uWRdlpRFTpqkRH6KbmlBRTFJ6mSChBAM/ECjIi8ohSDN3PurpiGJYlrtYqlKSiLZEEXO/kRSYo0CYYiEcD39Ya2o4DN+9Z9ffYpupJAqRtsUIWJGWUQxnyOERaVD5kXr0F1/I5uqxJqWKE1pbcpw5SRSROhqxuH+vmvJbSusUYzHsW8HstRFDtZSG4dIS6kwlct6hXKLUipIooi2rhAyxhhB00q0ShAGGgOj1YiiUojVs0xOPc7k3POMLj5NKwcIGSHjBBPHSDlg66F10mzIaF2yef5htLYEPYGQnRgT2leWApUlgMRa3ysfQJYQfLiozRswDxIZx3Cxlr5Nht5ohCDdW5Le6BBOZ9l49VWFHlD0AUBo4TQeQAhVD3qQy52D7Qws1jMNg1NaAqP8SQbr+CnAqjdky/dkubK63MbasdgC7hEOvXSejoItOoArvMcsHb+7mgAa0B8zBEp2uVrcgWrHmXzB6HXPwthjz7+7fkFX9Qhf20+v9QM5wjcEyjmBkeIDRxEo270GRRc8+kAhrJdu+3d+MlTsHMuj12roA9ljF4J1b11yHssOe/n1EGwLf6OFCM8ALJIIRWoF4yxjY2UVe0p0wFvdVFRlyWw25cHuLrdv32J/74CiyEmLlPliwZ3rNynLmnMXL3Du/AUOD/Y5eLDLYDh2wI4VoJ1OZ13k2FYjhQuWhKQDebEwHo8deD+bd2DQi5//AsPBgL/8s3/NvZvXyFREMhkh4ggjJbFyjAu0E66NohiJZyWJECRJPzk7rA/fpmcNQlg31bN27XfOSbgnFKZXKym71yzGv9cNwglgRaDM++3WL/7wfLF9y6F/ziEUsDg2dWg9X372y4yi8FC7PeiP4apKain48wCx7MHGcDoWVy0Oe7pvl1r6jqWgqm0bH1yJLhnsiyDuPKUzKmgEUuB1Di0fvfc2f/8f/8dcuvQQb73xcwwp2SDD5Ia2bTm6f4/twYC/+N6rXDx9gY2VTT7/8ivE8Yi1tQ3qqiFKJLfv3GV3dwesoK5q8rzke9/9Dg898pj779Jlrl27xSOPPw0YirxmEifUVcl3vvs9itpwcnOdG9c+QZgGjXC6hipifTSknM8plXJi5Z5h4Z67o/fj924cRT6RdvtYhj3Z9tpq0ifYgmA3Qr7nba7uE8YQEHYyVMK1KkilfEUWr5XjPhMpyZkzJ7BWkM/n3UMNVWUbQIXO1vT+LAS/dvl8uudOBwp0T96KAIOhlLfX9NVy2dkgnJyGMSClb5PvbW0A1I75riV/EfJ6loLkZQfSD0pyfrU9ptPVbSL/bx9EC4nnPngmYDiHnhUHvX8V2GPggAMOlttywqbwiYU7HAG8BK8HE8UkccJkPEGvb8JSouSmMWua2sklVHVNXdfUtQuUi6KkriryfEFZV1R1TVPVjr3nQbhQiLL97UEI4UAO6QAf7duvwveOuv3sEry2bWiNAxOTNKOu6z6BbBuMtU4LsOs00FRVwztv/oKvfv2b7Ny9zbUrH4HXHD5x7hzz2ZyiLNjbf8Af/MEf8OVXvsznPvc5xuMJQYc9uF4ZKZLBgMnqKqvrGyTZkPW1dbJEkQjLJ1c/5F/8d/+C7aMpqIT7t28i2opyMUVYd21ZmnLq1Cm+/pVXmM6mPHhwQG1dshMpB84NBxlRHHVJsW5amqYmzwvW1lYZDYcopaj8AJC8rkniBIkgid1EaSWdhmQcx47xaCyt6adIR1HUtZWGNVmURQfSOO00aK1GeSDQ+tnIYY8ELctuyrHqn2uIGUMc0u1rAivWsVuc9my/l0NMJqU8vqega+9bLkSFRR4kVrRvyQvf1yX1IZ6gtwVdF8KSXXE2Jnxe0bPiunC026/di0vruSvMin7/93FQv5chtNH6WH25W8T28ixYOn2w8BOABim7kTGf2uv9d0DQIFNLz6T3lYEtpO0yA7h/Vo51Fi212y+zefTSuQu09gUmfxf6+y46+62k00KUUUy2ts762oY/L1eoQ7jJ5HmeU5QlZVUzXyyYzxcczucczqYUVc18tqCuKz77pVcQQnD72scordFFyYN7O4w3N1kdr7O6vkZZ5ty6t82dvT1ub++SRorZ4RH5fNqtvSzNUELyybvv0LYtZ8+epzUtt27egNZy4uIZBmtrXHr4cT7/uVc42NnlT/74v2N6dOR875KEiUE4G+ntdBQnZJkbupMXBaGwK6WiKktMZIiThFoqTGRY5AUWN9whyzKSFIQ27jNCoH2O1JQVVdM6kD+JSZLI6xm3RD6273y6cMXTKHLPMvwXiuc+rUEgGA4yqroObt3pQHsNMRPySmM6hlinOdeB9CFfFHT1MNsXifu11wPvPaPUou2SfxWAkAhpu7bSY3mcpfPr3drtGGgcsxOdnfG/c+zDXlsunF2wHyEm6fNa/sb+6PZ9iH09QOLYaP3rguMEHHdZPSNPWNu108pur5nO5rj9c/w8jWe+Bvceig+hkO3T++4cwjCMrljq7Xh3S7rwZSku6/I324F+AWAMjjwwOOkKq8skE1c079MKZ2O11pi2QYc3Ct/lE0symWGHI4zXXW1aJ+0xmYw5c/YMDz/yCFfe/4Dr166S5znWaKZHR0wPjyirkjqf0xS5GzKEY+sJBK0fPAeWOE5YWZnQ1A1xllEsCuazORrBhQsXeeXrX3fyQnXND7/3fV7/8V9h8R1hxqI9/hMphRCKNEldfK1UB5O473X7R0hJ5KftInx3W+TySOuHo1Vl6Wykl8xx+6ulbhrSNPXDO1x3oNGWQlUIhJNK8jYlToxvk7aoCi/rESFVS1RHxN4GRHHkpukqr4UtNKL1a+/fA8j37wHgc1oyrZVkcUq5mBLFTj/C+DY6FBTzOdkgBakoW1fcSyPF7GAfJVpMPUNoi0ozamKsiKgsjv2gwTkut5GMzBiMhtiqdn3zUqKA1hgqLRHxGJmsoVZOceKhZxhtnaEtK5oiJx0kxKtnsOk6arzFYDwhTjNicG1lvnVSJDEENhQuVu2Chs4QCS8q3gcon67+Y5eSiWMBljMkgfZuPVAoEMeO5b/QB0nu7yHgWE4mgtEMYJH7atNvcJ+Id4CfO5Nw+O6v3ZSwZfBJ9OekfTW30w4MRkuK7nv6Y9su+QqtwMvVo+7z3dfbvqXWGztje0ZTxy4LrINwH4CePUd/fLn0QnhGS6e3DA525xicTv/X7l53t8p2T4jOetvuG5YCVG+8u0dmlr/8WLALXtNGunXer5M+qT52bd2Reoca2ECfnsBr6VvN/AHDhXT3vve/ITB1LygpiePeTASNyGWwtgs4cYCFtTiNLRWRpSmMVzixdZJHLj/C5z/3ebRuyRcFRV4wn0052N/nxu3b3Lp5k6ax/ON/8h/z/i/f5Rc//ykqybhw+SGQEVc/+oi2LtBNi1IxcRyRz+du1PtgQNM0GKG4/OTT1K3lyaefJMsG7Ny9zatvvQlGs7q6RqTc9FsVKawP0lWXsHjdPX+t2rpx78ASu0mg4qBR53WxrCEbBKftgDsnZt8eS26M1q66GCbiekaNY0po92jMEogQ7m+o4pt+rRnPtgntkVb1ALMkBBnm2DoHb9bCM+4Ph7a6W0+iS6jDayEh88cVy8Fd263PUKnsNVTCkvOAiQjbpoNluvvsqPbuM65NUHL7xifcvH6TE2urnDp1grmxTNbWOShyhNaIsqCczXkwnPFv/vK7/P7v/h6TyQqvvPJ5QJGmE4gjXn/jLRZlSeyZDXVd0c4W/Omf/hn/8//sYc6eO8/W1ik++uADyqLkM5/5DEJI/vy73+X+/gEtwrWh791HWQNGMB5kPPXiC5g4oWqcXESSpECLNAKEoKmdplHkmadR5FgBUkqfsHtu81KC7/AuZx/6oD0woJeqzqJn1fW7V4RuFDcZzycBhj5Y154V3T9X+mLO0p7uAmZvM/oYUPT21h+nD7R7XyWwHSuxS8a9LdWB1S1E50OCbT1eXAhHDQH7MjvaF8WWXnM/DhYNwa8UEukBRiOOt8tAf/86lnq4Rr8xQvtSAExcst4/twC+h73K0roPPiL4r0/bzSWX8zeKOSwBN9a6gSmRSsiS4TF2ufDnG9pjrbclxpgOAGzqhqoqKavKDQZZLFzynueOldO0NF7DzxiLUJIwFCCwuAK4GZO5ISRti0pTUpfp+kmbprM51hcWddtSVzX379/jww/f59nnP8vB3h7Wukl2WhtOnDrLfD6nqhuIMv7iBz/kZ6+/yXPPP8MLn/ksmxsbRFmGtK61ZXW0wtOPP8loOGY0HIIwfHLlQ773ve/xwdWPGU/WSIYjbl6/ToRmNj/C+AEnEsHm1hYvvPgSkYp5++23aKxGECGEYjBISZIUiSBKFEns9CLjzMuvWEFVVo7JmA0c0COd1pI2kHjmgDaWNE6QSqDriqhVaBUhlSAOLD2jkdaDfcqxEqRU3b87Jp9fE8YY2kZ3Wk2CUBiiay1bTsqt7aejGmM7II+w9wO7zH5qT1jXsht8i5Ky07ULNsmwVLzyiaoQEiscqLm8zZZjj3AM4f2XVF7DTDjdJLA+BrJ9bNrFM8IzlvoOiM4G4bTFAnCIj0sloS2x94FhPy/HOsugRRc7hd+p47+DXoOwj9Nkl5gvHzcwjwJLx2jbgRbh3AMzMfLX7+xBb/OMNUgjaXRDAOo6IMdLboS4MLTmI5wUSLCRIR9wFybRwsk/GN1rK7p151rD4tRNlg22yfg4pNWGoq5ZVAW7D/b46ONP+ODKFVY215kcrDPd2cGaBl03bB8dkg1H6Ookp8+eRWpBYxu2r7tW/VMXz5COR0TCMt3b4/7dWxSLnCRJWFlfp6hyprMprRCsrG1RacWFc5f53Be/zI3r13jjpz+hqirSJO0AbGMNUkVe3D/yMZXtkn7dGlTi9uF4PGZ1dY18UbiCdF2jvI9u2pb5InfrXUXYxYIkiYkjp8EZR8oV8KTECklrLLZuMEBKaL/W0Bq/t916aVunfap8Uq+k6Nh93tlicDHjIMvoVosH7RACafrYYDnvsoDQGht+5/eX1n3+FXK3HuRym6N/nT5fDP7ZLYJ+nfs1IT0TOeyNDkwPgwyCP/c+UYjjnShCOk1f7e1IMBkB5A7H7sC+4GOX7Iq1x+Wqutgy+MgQzwT7GP5ug+1ckp0SoTjwqRjI9kzFvlsBD4ippX8vx1L9cULM23U9+EKmJQCcffzXtznLJZDQx2bdNfr4LdiXpXxaeHsdfLAPv/CmvrsmgQPE+/3tQKm2dYOjhOw7EKSUJMmANIHhcISwm5w9e55nn3rOA89OvzOfz7h75w5vvP46H334IffvbyNxBCwhFXVT0eiaLEndmvL4TTocMFldAyGp65ozZ87xuS9+iQd7e5w/c4a3Xn+dd375tgPHfftr112i3ERwJZ1sEFL3nX0hpg6SbL4Tqe+GCd1IeN/r7n/k/bMK+pG+uOLso7cr3t8YGwYgSlrtWdlVg8B1SkRSIpX3lSqiES06jpFNS9QGoF8s4RVuTTWezPH/Z+5PmmXbkvNA7PO1dsQ5t3n9e9kAmUi0megSDQk2JpJVJsKqJKOZrKqsJJNxppFME5lpUDNppt+hgUz/oEydSaKKZIklFhuAADsAmUB2QDavuf0995yIvZZr4P65+4r7KDPmywEDeHnPiROx99prefN5/1len9nBd9isxwHmAadXL3CUMzZ5gLMM9KY43d5CN2s6et7VBOTVFXpvuL15gTF2HI4dOqyxeldBR0c/HnF3GjhKx4vnL3G8OuJq63jx7CUevv0uoAc8ubkF7r2Fh9cP0I8P0O49xIN3PsDbX/xFXL3zZdx/9wvo997EbqEIHA5HYAKzW1nFdsheU3Rh0XkhqsV5V4RhMYgVRhx79PPxPyCZKLOLNHrCVcNd3VBLAT2Ls4WghELNRY8Gp5b+OdmcfLqDKN03DrziHhQ48O9qXIMCR9gcGog07TDsPKMh+syJgZE1+8OWaMZkPhCFNZ1CXOIyjAJ8ZricpqD3A3ChXSf7LU4wN+rC8Yl87uap1aIuTOdq8FXlkZESjefh9Zg3okijswI6o6NyPQEEXupJmvC9BXwvGyclXVxL8yRJT+yFSFCWj861IJQYFYz/smYJgvu8AvBQKBf7wusvJXK+I/U3y9aC38+AvMAnCvUNh36Ft958G/jiFyCt4a/5Paz5K/C1X/pl/O7v/i72uWOq4NXtLT766GM8efwJHn3yCZ6/fInT7S1evXyJVzc3+K2//Jfw6JPH+Pjjj3A83EOTgT/9k2/ihz/8Ic63NzgeNrz17vt444038ODBA1uvqk1Lur3Ftm3QOXG6uwUgPu3Wo/vI8oPN+yJYGvWMiaDmxIvNMl4aaWgDtu9WvkqvStIvM4G9s0b0QILfe1pKm2cH+r4OZtq4PEE6FtOQSSMhHIUX2cHVyRCRQsloJpDZH+THJKnVIKKDnsN5RJr3GhJANgvSbARrJnM6gOFVIL2JlR8BgCj2u1v83j/5h/hP/s5/jm9++AN874+/iQdHwdUbb+Lm0WN03fHs449x/ebb+MNvfhNv/oN/gN/9G/8DXG/XkC5QOeL53S3+7DvfxdvvfwH3Hz7E5z//Bfzsz/4cfvqnfhrb1RH/8B/8ffyX/9P/OXrr+Plf+AUctgOurq/x3/yDv49/+i/+AEOBN954iB9+77vQMbE34LpvaLvi13/t13DnE0pFADmf0bcOSoret6AhheLudIeTl3Mfjwcz7rZmUwhnAlkRial17K1CPZT9YkbyvrhohGJIwNXk6ZkynMYvJzlXmULnYTgW/fskKBoGrTNL1OguwDBSX2qVz0gZn24pp5fQwfw2nOZSZ8U6aPTDAa6UjIQA8eolbDXKfimb83eC2C4lcFV5oXyeAY7FHeI8EeW5Lpd5dpSxDOzxvmao14Agys/FoBArt6XTQDVWFXo0MgF837bNBtpcHa8g8mbsD1pBOy679n3g7nSH21d3eHnzEs+eP8fT58/x7PlzvHp1g7FPnE531jtTp+tRxx6+Gezxdt53m3Q+duznszftP0HaBjmd8Ad/8C/wt//27+K3fud38Pu//8/x6uYGL16+xE/9zM/heHUP3/qTb2DiBm+8+y5OUPx3v/d7+Mf//J/h3bfexuc/+ACfe/8D/NQXv4g333gI1YknT57g29/7Dv7s29/C46ePce/+Qzx4+wM8e/4SH3/4A1w34OnTx1AfPiJiw9W+9OWfw6/9+tfxj//pP8eHjx97kFjw4MF9vJxnvFDgsB1xvHeF+16GY1k3m2fjTdzd3sGCQx1owOF4BZ3AuVk57jgeMIYNVLGBPNafa+4WjN7mQBeL/G99w2wZEBXV6K9ovbPg8tRO/nzevQwTiSVnz0AA+J769FV36ivS8HZDgjLCeNR015qNm7xOA9FhYMgOOq/3fQ+HuDkAJMp6qXaYnRC4jc6vab3nKJPIL9SPKxa5wCme0d69Ry5oPBOjgkEJL5crzsPEihKMXYOrZB2pvI0UAjTGQwi7w5YtBwHNYStwXcqsd5bYTQZm3RaQ7NXVBVD1cmrN9cB1v86UUTx/ZoBvWw+5Sf3P7xs2oTBNp0/KJsTetdYt47p3HDcbWvjmw4f44nsf4Ne/+lU8ff638Kd/9k38k3vX+Oaf/DGePXuKw9bx6vlLjHGHj773HTz54fc9s9B6GO/7jk++/y2cx264UASH62u8/8H7aH3D408+wfn2Bm+88y60Nbzx9vv4+m//Dn71V38d//IP/wB/+C/+OXQo5HC0flbSLCuxC1QatuMBXSxDju1EiJeb6+hdgUdPnmHsE4eDTRBmad/N3R2OR8sqPO+7ycm7OxyPBxyPZ9y7vsZBjhC1jPzj4YCrwwEKG5hxHgM62bZBYz97LUklz7cdrfv6IzDFABigYasQ0yNk/yiT1enMF++LV7PXmjTX+YbJxj7SfgiHmuMDMXrd9xHVOii8FnYwivxxIKk64RFFk0Ss5EIObYxggabdAxSMsNjO/N7Kl2mr0R62vbH9yAE3KPpO3YirWY+CttiStHHy8bTIGrdruBdzLjyj6kFs35dVvvHeHtSwX1ZH7YIP1pZJ3N/eJTC7qvdiD5GU6MTowQeb+fMPb9NlOA+lTUROArdPW2/gse9QSJR/116Fojade3N+OR4VD+4/xPsfWE/cp0+f4Lvf+S5++MMf4sMPP8TL58/x3e9+Bz/60Q8x5sC2HXBzc4ttO6JvHd/99ncg24avfu2X8Yu/9FUAwOHQ8X/9P//XePTRR9bv8miZ8N2DYBDLgp++nglg88oZaS2ef58DOuZC34dtM0e7bJBug1/V/QO6D7S+4dXNSxwOR9z3YYSq07J9j1bFJGzH4TbTQXz/eoOcAGmCcxMcD3DMz8xUCxKzOmDbevTnbWKOwfEfgoNv7AMvbwe2B0cIdpx2xel2Yrs64u7mJY7372PuZ8w5cWgNY1gds6pi854DY5/Y73ZoO0Baw+3Ll2jHA66P9/DsxQl3/U1s996CvPEmtnev8ObP/ALeePfz+On7b+L4xju49+ANHB++Czk+xIunT3EagvtvvmFe1tZwxYMWCUeR2ZGW28SGxgAQXiXRLHtyxs3JXOnSCINJikLUBFe70uDWMJ7IguqOKBo5i+GBmkqcDprJmqYA9nADTlOwgNl69tXpAhnO1JQGvK/LGTeQpBjxuqaJCiICQSOu1opXobjvCUAvIyEBMmxnQYeUZWTMxUhay0A0lERk2xWDTSh8WzEiKdSB8t1MjQYQwHKN2oYJFaUsYTT7nqIoGYK/OU3AR3RLUjg3ySizIHve1eB5lhlTENhaGoV5Nbq5K1rPoCVxuWJLg5O7kIaqNc/ONQagCIWDdEjx+ih0F3SdCp8+WAMugqYthlio72PbSjYLeQkA+oYNwKF1HK8+iPMVafi5X/h5AAaQ5sgMEZ1WVnJ7e4ubmxs8evwYY0zcne8ssqLWt+NwOOD66mjOFAVubm6swf2rG8wxcT5ZVoZFU613y6tXr/DuO+/iwYP7YSy8ePECTx59gqdPnng6uI+idwcbfF8ZGd/389JLM8rwvQ/W5lG08+kEFct4Id10NyxpKDNl3IyxGY4XNsIH2Khbl78HEPCIFPt3Ubwwg7AfNmCyn1tQFVStv1vIKfLiRUlkDUSsJfP2mc2bMWfEskMVOOBgAyH2gbZ1dBpwTfDn3/lTfPM738LP/fRX8Og738NoHW997k087Qe8+ORjnG9f4cmjT6BfOOIf/t4/w9h3/I/+h38LbQD7eIWXz5/iN//SX8aXfuYr6NuGq+MVXrx4jpsXz/HoBz/AH//bf425nyDbhuvjEYDg//X//nv4f/z9/wZX9+/h/OKMF08e4+7l88hUfuuDD/Abv/M7uHfvPp48eYbrqyuIKu7fsxKg5v3KRK0Uik5O00PNHWTGLPs+MRtwd3fC9bVlTPS+ubPWzohlPSaj6YRyneO/teq8wSqP8xyN47JthEflq0wJw8IUQ2SxlLLs13WglL/NyEIiHY85EFM2C9ivkXnqUkad1XVTncQrEJvhQXlE2ot127utb+FYj3tSJwoQydTlscNJ5690MNKhgMiaQbyPyIyK9SEDclNzTcODO1PVHS0aRoYfZOEXhK6sDr+cVCqxj8xACByhKRuq/m2tQfe5PJ9Iw+HQcXV1hTceKj7A+/ZUrtvv7m5xd3eHm5sb3N2d8OpsGYD73Rk3t69wPp1sKu+wCP7pbOX4w6d67uczXt29ws3NK2ynM3Bzg3/++7+Hr//61/HVr/0K/s2/+de4e/UK3//ut6DS8IWffh8/+v4P8PiH30W/usbVu+8D/QqPbm/x8be/jX/1rW9bSaL3mxRpJi/6hntvfw5TBH/+/R/g9vkzXGHgyZOPQ+fMOSGHK/zS138Tv/Abfxl/9Kffwkcf/RDb4dpaPcwJ0R03N2dI67i7O2M72/N1lpW7I+f6+hr3rq+wj4GrqysobMDGuDdxfTzGRHBcmf6bUyw7qHd0caPSsY4NOBhR1srBHNOzv3uzXsOtZT+tJjZcyfoDuUNNB2RKOHlGyOpiDE6LpNQhTI36W1iux7YhWbbLidjZ/6lk0qj1vqYz0nBK9gFT3T07G4kpnXZpLJuzfjqkK3gEyLUUwzkY19lfpIc8cgJ2no8vISpyKPMcX0V5ZJFDKRvy++FEnysGiymzypYsWfIX1wTL/st9wGev9+X3ivOeAFFnZCEx3matRP2c3TnLDNrGdkJA4umWTg/IFmcxnJ9yiA5CBxDH1Zc0oLPFS9vw/ltv4d3f/kv4nd/4LTx6/Bjf+Yvv4Y/+6I/wZ9/4Bn70g+/j+bOnuLl5ARkDmIodgGwb2pzYFOiwrNa33nwTH3/0iXs1Gx6+9TbGPvHm2+/gV3/l6/iVr/0y/uUf/Av84KMPcby+D3i2DcRwpzATbNvQDxvUm9uPfUDdqLfsPjfkoThuR9y7toyd4/UVVIGTO9f7nIGFNjfAu/cKO+02eKS3juPB+m21NjHvTtin9fADrLe6Yg/9Y3JcnKfd8dcEfUjQnKA6MVx3Wbqlt1DwabmS/FaDetGjUsSrIQDx4LqS5nX6xGFmwRvua5MlqqmbYtgObRqXG9OUDYB0KqOx/1/yAKYFxZehMsVJBr8W7UomVhjeYU/OlA2UCYlNspx369Zzrdrd1OPmNFydeJHAQd4ojj7av3n9zKyl/q/Xpy1Uz6D1FmsXEahk2W+0t3FdljYY8ZTJFcrFSAaQEjCQC/vNt3Z6yy/akSLNew/zSNaBYBy8wufY+iEmUhOP6ZzY3Q4A0pmawV3KWcHbb7+Hd997P+TrGANPnzzFxx9+iCfPn+LJk8f4Z//kn+HjTz7Cy5c3eOPNt/ELv/RLePDgIb777e/i6dMn+OjDH+HQO66ujtgOB3TPlIvpw/Cy/PMZfbPS1+Etku7du4fDdsDt3QkbbC+3gznj2H/cWkTYMJJ9UmeN8Bfdf/gmpDdg2yy4PyY2abjzdhwbkxU8G916WQPoDWPuaNKxYfM9Yq9zeLWW9fhl8sQ+JmQ6dl7o7Md/iVbvwI/x+t//L//HkB/9a7z1wQc4P3+OF7e3aH3Dg/sH7AO4fnAf/XzCy5sTru/fw83L23AoHJqVW/TWcDrt2PWIqzfewe0OvPG5n8Ib734Bb33pq3j4zudwdf8tXD98E/3efUx0SDuY8nHHW2sbpHdrsNq6p56mguXEqzSHXJioRnTcev/QO5GC04azuJPGhZh5WhG+lGlWsjHD1GAaGmHU92GOOPO2uE9GKqvzBG7kUGHPOdJHJxbVuUwZNoWvYexx3eaY0gAU/DyFQSxS07nDZ1jfQ6zLnm8tPeIz2+UvnGB+DpnGrHE5QLOMuRiA6kKeRovtVfZNqZHVauDG0iNKudIuH0HjFz+rqfH1+J8ixPn3HGjBz9uZZnp0fb+s2Z+9OnZ59vW6yxoujL94ICMiy6iIDBlZPrdGu/Kr9UBfA6QiuL25wUdPPsLbH3wh9jq3qtBZrHcFw9k3x6yHLA1lT6zM+IyMEr+BnSNi37XSZtnb+HYIfKe/lueVJWa29/tuPHTed8y5W1P+6Q42mJPpdDqj94arq+sohyIYbv4M5/0cWVBjDJzPZ9ze3uJ8d4fbu1u8ePY8Glefzqdw+o2x4/bVq8jmZBkvjXg6A5ltJ80z9zh0ITL3pje/b1FCJ1pLdNIPoSj9HMv+JY3Z/rbesZ/PmHs28QcQTujIvi1DMfjdMUaA0jlmkMO+787zVrJsXylO/shmUB/UkZM7TZkD9999H/+T/+zv4tvf/GM8efkCT548x82zp7h98QSnuztsDx7i6t338eDhm7h3OOLnf/qL+Dv/6X+Kd958C0Mn/vt/8k/w5Nlz7ENxdX2Ne/fv4c2HD3DvuOH9997F5z73ebx4aeWKf+/v/33897//+zjcv4fz+YTzs2f40Xe/DdflOB6v8IUvfRn/s7/7d/HuB5/DVOB4PJrhLoLbm1e4vncPx+MVtt5w4CRNSYdc3xzsO2iGmtzi9E0a8pFhg2JwhXGcjrXIdoEkz7keI39E2MOv8fTRI/z59/8cb7z1jn23BCQoHHk9nl8aiFj4MYxVYaaBcWfKDU6lVbD5NeU6dahh41wngAwoaRoU6WBLAzx6RhZ5UTOFFvlXZN3yCgOCQaZ8Ru5ByBxfNHtK5hnk89ZnWXVdBrVSYqYDgRP0QkBriuqagUMHRmR6hN6VkA/8zqV+DvwT5+10wZLqcvYhs6XZAA2d8FboULW+NfvYo0R33wduTye8fPkSz549xaPHj/H42VPcvLrF8xcv8PzFCwiAX/na1/CP/7//Hf78O98xo2rruD4eMcbAF7/8JTz65DEeP3mO+w8f4Or+Q8jhgLMCx2ubfolpU2l1DHQIXj5/jv10B51n7Dcvcbq9sWaeCshhw3Z1H+//9Jfx1/7mf4SHb7yFf/T/+YeY5zMO3Xr0HA+bPaNYnz+dinsP7uPhw4eAt2PY2mbR9oNNQd6OG66urrxEsPkEvStsraNv5pS/ujraVD33QmzdsgAP7pzbumcbwBxkKQOyRJvlQd0dZXQq7WOPrDWW1NFx9vGPfogXt3e4//At0GZc8BGIhldkTMN+jBH0lBTjdFGcf4ldiAUAGomVTjPQ6UakY2mW19EhGPKqVAmwb2m0ySCPOa3mJG+y7CUuUVQRwM/FswVWqzhnrSq5zB66xLbGawX3g8+e5XIhD8rAgWq0k0dfD84UuVGqZcLxpiiYB8HPw2UxbRLrHcesMc8kcb5nZQkdLjXAQH0eWeZSAseU3QIrtVaBNuvrqTLx9MkTM9YfP8b3vv1tfMtL9z780Y9we/MSc1oblH1YlqbCelb2w4Z+OODhe+/iN//yX8Px6j6+8+3v4ryfc3q1O3OiCkon7l3fsxLX3vHwjTehCrx6dYvjdsDhcMS2dcPK3f7t0nDoBxwPByuV25pXKTUvzeuRrbr1huPx6PfezOnQN/Te7Nrdyu1s+I5lUdP50Uqrl95t42zvfSKyO/Hp0KI8AJjxlrlaIoLHH/4QUzquru85D6RTD8p+tUYM1ucvdSSzQ0NnusOsNYmqDdIlg5OhO2gHF4OWffw47b7SBR0WVe7kdNhK23C9yyQIo1GrbpIIPIRuvuDLy59pPE3/fp1CX3FNfVZ+m22uUPi88jwd7fU7qw0e/4T0jCo3/qHuSOhl2mLEPLzPQHWOhnOvpfNwte2TDuRT95pYUkI2hejQGWXHlDFrn23EfjCIP6KXeD4T7xrOUtLm9EolAc6nM54/f44XL15AIXj58iX+8A//EI8fP8abbz3E+XTCo0ef4MXLGwCmlw6OEXrfoh0VW1B0H1YFILJ6RcSm1yoyY1Eo971M2f9tveRASkNM6HXZedisv6YqsbrJh22zllF949AsC1gcrw5ojVVrW+hWswG8j7zAkwKayxq7782jD/Ff/a//V/gsr8+cwQd0zL1h3J1we3OH589v8c5bb+Du0UtcvfEQOhRPXgK4/gD3P/dzePPem9juv4Pj1QF3Tz+BnJ7h7tUN7j/8AJ//ua/j3Z/6WcztGlM2HA9XOL7xZhySiuAM4PbuDne3z/Dmm29aVKHbIYg0HI7XAVirQIkMPQTMzv/1CIQ56QgE/PNeG21Cypsb+zeHZxGFQy88RjR47HPKxlN0YACujDxythgGjFiKM40ECGLGxSJcJNOdq+FjkVkAbgDEGhN1hCCnIEMBD1yPCYABIIVBZImVNVPIhxFLIaYr+KnluvUZlshOUWLqZ6f77sexTmxcSkkuzjzWV2ylxbGkdO7mmcw4ez8TpNCM0sZyXrFXYaBl37MAc6FMFO7biheVqyKNWbthGpqkKSoLKgk7+8S7BBJUtsv51FeQYwWna3QoNiv+rvGZatSvBixZgDSQpZgBurkfPQ1LgmBRYJO1HCfuWfa7KtygOz5rZMw4iFAHMx2pmJWl0QmIFsWoUvpIrQ7FLEt3A8PJgUBElcMqqATtOvvZ+lSM/WxlXOc77Lv1sbq9u8Pd3R3ubl/h7vYW+37G+Wyj7ff9bNOET3c43d1h389BM6bUrOm+OoAgN9T+Pcx0DGWrGnKHdB39VqAYfYuM1nAoFFDCSF8YG9wrAOIRKWlWAiLiDktYlqHtr++JR9qOV1ewCZLWL2x4OR3PZ86J07On+P3f+8f4rb/81/H0934Px9bxeA5cPXjDHKivXuD00Rn76RXmW2/jz/78jP/D/+n/iL/9t/5j/MrXvobf/q3fNFCwHXH2ktoxdkAntt7w9NlT/Nm3v4P/+//z7+Gjp09x/fC+ZSa9eokP/+K7aGOHagMOG7729a/j67/127i69wA3r26xnwcUL3B1PKJJs9K6vmF38Ndbx+GweQYQAb4rdJ+YSB6+Oq6TJPs0sCUud6qRyZJDCYPXJVF1UGlKKL4om9Iol5RpjIyHmFByIdhYK5xsNUu5OJGiJ08VOGojK5q0yCwJWeI6I4JSqmHYLLqVzs4i0xgEyrJA42Hh/7nd1zxjA4rQn3U/AERWJTMtEvynUyH79SToheZnEtAiM2/gmXQuLWuUHeV3yqWpAxg1SMasHUE/HFyuFP1M8KyzrFliD1mCw2eNgEdsQMoFjePSvC7U5cdEF+DQNpd7TjN9QuTaHarWYkFdv6hO3J1OeP7yBT55/BgfffIIT54/x0cff4x/+W/+Nd545x38DIBvf+MbOL18iZMxCP7sT24s63oC8uoGd3d3OO0DaB378eg6DngpwDyfcGgdYz9DGnD78gXmbkNAej+gb1foV/fxq7/52/iZr/w83nv4Fv7gX/4r9H5Ec/1AXpqx5x3X9464d3XPDGWZOF5fY+51oEEG8wCN6betmTx56+13sMFafZxOO7bj5tk8nikDAN36VTcA6kblHCOHL4n3eOpuSDmRCQ3/OTHEe06GQW9nc3a5G34uBSZyuqcZaNljVuI9jexylhNVY5MZEtGLT2fsH68ztbQTIRYSluemU4t2qCANVePR1XnG7OXIVFIb3GNZKgptpb0B4K0uXsc/zDDkFExmxcV9AQzH6jWYsQQVy3s1UMu/1QCtfW4G/1IgBfbhugqmtr0hzln7/BFMpRyxPnsAIMNpg5gRCBlQB690kkMY6RMy4CWbdlacwnvgRF+XDYYXKBsQfT/pgIBnFFr5XgfQ8f57H+D99z7Az82Jv/aX/gqgAy9f3uDjxx/j448+xg+/9xf4wQ+/j08++QTPnjzFD77/fbx48QKnm1ts14KvfOnn8J0//iZubl/hrXfetQxZaTgerizggAyeCwT96hpdxCZgdhuSc+/6Gtf37ls535yWOXg4+LPBjO/esEnDduzxfL0bPzfJnrmYaj1Koc65PgBjTEzvzWcHsdvAHrgjZpohj5JFNjxrR6AYzXtGNnPIDQzIpOMOoTNXh42dhQXM4i2wR1nYXppOOWYLiyAyuhSKrsD0EfQsw6TTvXXacO78c7tKh2eHu/02pkamL3vLARq92zOgmbYTctnL+5wODDFcooW/q7PtslqK/fySR50nXL723t1hLQsubouez9YYaxmurUDAZBnaZ4j7qGMdluqncxCU9IREYT9RnybeQtgqPIeU8Y6TvFIn9LXSRnOsQbohlbjMqfiOpc98iGq38fvK5AGumXTYmk2AhWW3rn6XlEvRI1wBPmET64d5ODa8994V3n3/A09iEPzKL/9KlPKf9rNVTD15go8+/hiPPnmEV69e4cWLFzYQ486qmuRKoGrZqlsnLyhs8Ig9X+82wbq1HhUxDIyNWnUCYDsc3I6znn29d+cz8zkQU22tx++WWGbDGJtYawrrfzqw+z52frZ36HlispJpdmytY25AF4VMK+H/rK/PXqI7JrCfcHr1CucdUBzx4m7D1u5Dtnfxzud/AV/+j/4K3vipn8f1m+/hcLzCVGOkLgodu3l0+xFT0tHz8ccf497WcPT6aILmJoIHDw94+PCNYHI7FFc6tWKMChNV0btTAKmUSZQ1+ileYkUjXr3UwMrb3LAwCyqUuqKk04dSTIDMzLMoLQxAowG4CTTqdE32L6MjhEA8UnP5DEU4Mtsv1uECKJ6dL1Vk1BFhOCQQ4pnwC1liClCAUrCkUZ7XR96bTN7qtNkWe0SHQZqVyGilFEGoacDVRwkHY3kOuNKvkYc4H6zAjVIvoknl/hCJ8woDmaUeInHuNaqbW6xxeWvYySyonFQagBeI/haMuNa1EpAA6Rzl2+LPVfsPohjkwQeku9inXGtdv9Z9RA5QiEaxfv0U7Ij7LAdTri3kpwuAmwASMFpKZbEC6zSOraEq0NEubleccpL8EUAJVKyu1PzcuTaIoEsPcLGyC9Pj+R1f41QzwrR5ujYBfTelctULLUjsZ+wNHIwHLeYAjeFZf5N9GcR48JWXFt/e3kJ14ubmBV7d3OD29hZ3t7c4nU6Ynlk4xsA4n3B7e2O0F1mC7uwrD3o8tFijgoZTu9hiRUZtU9ZwX8cY8GpXQDWckUHCbiiM6aXBEGzb0aZUqTW7vrs7QccIp9m3/uhfoeOAL3zhp/EX+/fw1vvv4Yff+57JYgBtnDFvb/D0fMLd9X3cu7rGf/1/+7/gv/1H/wi/9fXfwJe+9CW88cabaNuG08n26OXLF/j2d7+Df/tHf4zHz5+jH6+tLPd0ws3Tp/jkz7+L7vLucLzCGx98Hr/9V/863n3vPby8tX6NY59AI00rrq+vcXPzMqbtAcDV9RUOhyN0qmXuTMvcOdNB5TR35xNJaWClPDanEyOlzColKGVEMvShFmd4ckWRozWrK0uypirg5TiLzCzgVRCM6iUJJqNa8KjL0BLlJx8TQGrIkcoDDk5Dltq7dArQAACNuSIzU6yvAQH7oP2xt5yCnVynBdinAyBkTqH3eo3kZWRghnJEOKwHizOF5xP7U9cJM8o6Uu5Qb9Xsfq6Dzxk62jMcgo2pv1z3134uIg3bodAX9xDU43kigWEoiz3AwcBAlMr4vZtPkrZJL7bWq8MBD+/dx+feex+/+LM7Xtze4unz5/j+D76Pb3zjG/iz58/xztvv4NEnH5sEFsH59hbDafp8e4N9KjafUHt6VQJR3SfgHY+4ffUK57NNnTz0DdvhCG0dD99+D1/7ta/jp3/mK3jzrbfwjW9+Ezd3r3Dv3hWgx+jRtTk4761bFtCcOBy66fpmpfbXD+5FLx/2YdV9x75Zfz3y5Xvvv+9OgR76fowJ0YYpNgd3hHE1sDWxEkOWxanxKGB9s1S7VS1Cgm849ICl1mjVyGOPVmA/eyaeWJYWAy5WrkceEliGuNEu+39mZkTDgGG37Jm1Btz2YRnpzWUX9Up1NlS6Txq24DWrSLKPYAaLJ4NQnDsuDBh7T6rgKVjQk1mCkplK5AWgBDfACb8t8JxlUFSbwXixlSFW9RXTs+mQUE3yd37MyhSyp0CdDhgQsa96AEHs2Vvr69C1wFct9q0OB6EgCowFgU29b2ZnVZvJM4Up38njlBtzDOwhM+w7NlQhB5fkI/YLIJlBxtAX4llY2vDGwzfw4OEDfOXLP4v2l34HCmvjcHd7ixdPn+P58+f4+OOPcXN7C5WGly9v8NQn9445jZeaZfejCbbDAef9bL1H3eYRxyXbZlkx+36CFsyuOnFoByvxbz2cUZRp22HDwbP+qF+ZYdvE2s703qEj+xSbLWTZzhPWn916g01MbehQK4H1rNyQm22zkyIuVneCKFurUC6nfppTgc05caaj3XAWM/8z2UQ1eabqHma629+t1Yw5JtP+YNUSM7sUiB7lVScp1PuMTg9+FD7x8knjN6flosMZQKANHDT9WhsoWc6RTsjpcmuxYag7R+lXDPjQLUfvagEN4lcbSlJ7Fq8ZfHTANw94ho1S7BM6SCF2NmxJkzKoZiwT61SMUCu6LvaE9le00+J31+sH8/kZMQhajiz4YHUcl2f1BUTPdtplmlU8lK+8HuWUDQzKF/0TlunvfKLwgWse+FU7lsPhCAHMJjjew7tvvYsvf+kr3grkjFevbrGP3QaEne486esON7c3uLu9w+l0whgjynRvbl7h9u4OL168tMEXW892BzEkRSyIrVbK2/uGrR8881adT5tn7LG3tslwDjrq0cKC52VzKpgUQad+HM9uPIWpmLJjmxt2MXvgJ9GD7zOX6P5v/xf/OY6PvoHrY8fxva/gnZ//Tbz3la/h6v6bGKr4+KPH+PzPfxXteM+dZqvyIoPyP8BpsmUJJlCJjStPhQlkTwrEu+Fa86y89TFzHSRsGtb8eqbUghEr71vWhd705XaFcXit1RAwZi/pzyxjc4GZAGgt/Wzl4ehYEgIc3wspz5yfsX0eI3vORYaDFGBHQwSEefXviBJAPpJcnAHXxetWI57f+bTBEeUwwrHXCtgJ4RNpyARutseLnYbcR8Qn6rlUg8qfk8Zq/Xy5dt1T/g8Nbhq8edQl8iQJaO0+nrZ3oXhq9mEI8wWs+TovnZzlDKpTdQVqXN8lbeV7UF3fJ5B2IXf76gYfPf4I73zui68bvOX8gxaLIlxp9lPOvFqhy0vjecLh64yfQCWVFQ8g3YolBV4QhoE53+2Z0/DnBS0Wy79N30fyB2WQqiJSJpGyqcqkBjpX/O8F5BPQUKbE8yrp2nmT9OFnS7nCr4wK0oMPFLQowvHvUdrdQZXowM3NS1eA1gB/jIHzbs2gb29vcPPyJU6nO3Ouefnd+Xy2LEG1Xofn89n2w0uEAWYMl+bJzQzTrXfLSFF3JBYweTjaNOP9bNdgr8J97NCpOO9n7OczxvnkZcvAaZ/4zb/6H+P+g/fw4Uc/wLe/9Q08ffQR7h037Hd3QAMO9+7h+sEb2K7vox0OEMlsBEbt5hjmNBrTegH17vwJ7Kc7PH30MZ5++CNszKjajvipr/w8/s5/8Z+ho+PufLLmwD79rvXuEToDJV0atq17NK/hcDyEkj/0DYeDTeK7O51wPFrmz6FvIe96RAbX3lth6Ba9aYZHC9ohzRhJtpRVFxz37Mkj/OhHP8Cb77wXeoROSiDBMx1/pEtydW/pPKzfWcrGKt9LvldfnwagWQ4cU+RaRtKrbDU9TJBt10sdYlHZqhf42ZAtly/KS+Q6KS8oLgikcy2pl2oZVQZnXOYHb6/XruC6aBwXUTWI5+tYgFBduoZyo2Ox7jE/QyxLrJHrz7Nd+iCWa1SsFIEz8RIilEmM+QCBPaieAJOtQ01+PH/6FJ88foQ//96f44c//AEePX6EZ0+f4dmzZ2bwP3uKG5/+K/Zl3H/wAL11vLy5MceSO9gOm4HyORVX9x/iC1/6Mr70la/g/sM38Oz5c4yx4+r6CufzDohNl7ShP1ZWpzpxdbDqkbY1m5TZbWIes9mspNDKcXq3kt3WG66OR5u+K5KZPzAHDhoW3reMNHPYds8o4H9bybjMnnfWepLOvPnvogWekSqefvIRhjZcP3gYtCStBPr8394yQE0eYNkmiYW6rrfN+mk2Tre0z6xZu+LGNrMe1tIyroP3TwcDeSExY8U2leIjcEAns6y4aQkmuKWVvfKot9e94J5XZ2TlUVzev/Ddp8ow1/80yhP/MgAgBVvaD7H+WdZXMA1xfdwTcJt7lWW5337ugcelrEHjfABdsCfp6lP3wq8bOIp7y/c0e7pR1lVnrqMWkhoSV6dcD4eGk/cY6QRmr08bDnTCq7s73J6sT+jpfMLd6YTT6WwYZE5gKrpPvTxeXeF4MPlw506A83lYxk7v4ZyGFLqQFlmu6vqodR9o47aXqPW13LYNh6M5NuioFhHPXOfQJUQ5LOVp/E3oSMxer0lrEjpaRPDi0Yc4Xl2jH47heAyHNfkcqVV47iy75bNFj/GQ10nftU9uVBIs1wswvOoYuPgXky3NeZHD4kiPvCb1PHt3hmOReJ2809qyvmpTQi/wP2pVWW0RoqGWafeg0Ddfl5VyIggfAO/J3uzchjpsks9yaTvSWVbtJtR1AbkmEXekrvsekIp7hExQusRbmfjicrnbQLfqW0kd8nrgsdqYXIdhQjqqPl1Who0J8eqN1edC3la3y5jMQBssM1AtU3aGLS5RhUDbZh90Ns7IUGVCBBOKpipubm7w+PETPHv+DM9fvIxgmbogbc0SMrhXUIkMPvI38XfvDZv0GGZD/S0M2NM2kBZttHgsIcNj1/PY+Rovn+J/91/9b/BZXp85g+/zv/m38Nbxb+LJ976NX/ydv4U3vvxV7HKMZsLv/qx6uVdGDQB/yJalMPGgQSgzmKACmFCIVCD+fh1OUCPO4biSbBhKRg8hMEfcNybQRiQtASo99qIo353LM2QURV1heV26r7eWEJnTIUFwAmEKjXzu4enOybzVFLAHryDKQHf29WJkKJ6TvQwEiwFUrhAKxjzONUJYBEmApMwmq/X8i8HHs7oADZSxFcyFEoCkIIYu58bzXxxH1Cw0dlN2pzBVDYBcYVEFL1CNTMfFcAlgqblXDpyoPNUbTtfS23qfNJSQQp3vLUCKjWeZsZjnYw06M/MiHXBinmdmZYp4xiM3LPccSyp2UaJqu8d9WwW9KynJ869KSqQYi4ooD6pNgMOADYFd9lUXcyUj31UgimRvLf5tZlkywUY4UQstGv9fOGoZjXaNE27Xlpk9mpsR3wvFXX5usL3XAhwk1uuXAKDtdUARgPJiz6crYjpNu0hkKjOL0fiZINspoZt83STTy6/uP0SAfMobroo9h/x5TdHOKL+k0jzd3eH21Svc3LzE06dP8OrmBq9evcLt7S1Od7e4fXWLfT/h7u4W59MdAImSCYhlsECtM4Iyq8/li/W2sulWh8MBp36CHo+Rhahywu//0/8WX/ml38DPfPEruHfc8Kff2vDxj76Phw/v4e7FDV48eYpXL17h3htv4Prtt7Fd3YP0DRPAUAPP7dBs7otnMJ5O7tA8nfDJD76PuxfPcfBofN82vPvlL+Nv/ie/i/3ujEfPH2G7usbh4E7YaeVIY5qj4Xic2FqD3CH6bZ3OO8R784ztgDEP5ihV2P5e5eTkbdtwPp9tauf0Ca+l4TV7McrwHkQ00sSzT1x2crJp3zqqA4dyjNmAlZ5NN6ZxH/LY+aFV41Qyih8yTTXKX6pOJw80Nq5FLAccNkR6pzxMAKTlbzmw5DLbu/cWOo/Oq8JcGVDRsqYL2WZ7mDwQfws9twZbahlfTMHkq+hyiMnV0IeqYUBQ1tvna4YTZZTL8N4T11R9QcBMGS55dpQfVc7kRGwD7lY9YFldGZgRE3+lDLliirKx9ml3PHF+tPG39b8jYBbfA8AaoW+y4Wo74P69e/jg85/H1772yxYImBPn8xl3pxPmnDj7oI/nL17idHcCoHjw4D4Axbe/9W1857vfxeOnT/Di+XPs5zPOY8eDh2/giz/9JZMxonj06GO8/dabuH/vTZuSORUDgpcvbwEAY05cHa0v3r3raxy3A7aDldDTsWcRez93aZAukfHX6JjrVmrDBt7d5TMcA3SWtY5hZbquYwxP2LCvfWTJWR8CCA1ehex7nFvFEYYniaUMLYwxMIlxFOaYg03qpFOIPbNE1iwxy+T1DLmgr4nBctCKX4AInnGInYj4MIAJbUmv4exTxDVNvyR/J28C2R6GeBShl6xqwgVXkq19bhacpeTF1ZleDQ+95Hekwy941GXAXOgfYbBffiflhvN3Q+nPHctd1sB7EcMa3REDFJsg2Jw/IPAO/6UDIm5AbKa5Tw10gKbOTxmkF+ehkaVo8FGQUh6BdUCHjt+Tz0wj228W9BpnT0cvYFhEibV9b1129qNl+vs2APCsMc2egcwUm1NtIJs/NJ0H6tmMqhOn0xkvX93g9u6E8z6wR7a47QGDRZCGdEwPCIznmdXdJHtsq04feNOWrDdm6K6OKma+aQSHc8Ai6VJW2sX0IRtJc5ysTV3Ka3C4E0klggbCzNsZ5+l/iPteJiGk0zG/v+BWXx1LGXkmlnVvBoENMSiBaH9mhcYQqgksjmsGUHnm1cG9TBsu/GVTlY2+w95tn4ZLTG8Pz0iLfp6T7ThSpxWR4bo9bRueJyXy1uqgLzoBGfzPQC15oLUcJMQ9gTqucZkZ++sl0HxR5vutA1tVxx/5nTKBzlezI6vMpXxKBzRfvH8O+kD5Lh39GriW58Kc7+gDzqs6TiNfsHKFGZnqDn0OlqEd3qShbRsOPvCG1U5x1sDynfO+Q3Xi6uoKb731Fs77GXd3jjG896fN1bDsTcqPMSwQyYElsW/NSvZ769EXd/OgXsXh0R4NWs44ZSsx4YLhHC/NiiV/zNdndvA9/PzP4Su/+Mv40tdf4DwHXt0NbEfvS3c44Dy9dU+IWBh4B0o2WwqxlRkANh8HEAQfThASXzBDyWwRRkTYoyi/u6ulIYcgDvBut2SUtDpcDAibQcS6dTr6hs4gShPUCKeOEYXG4lch7Y+oNA4Q92J5Sxjr/I5QWfLvVVnWaGeLyUez9BUkE9fI5uK88vtn5MSvO7X0fUlnRXOhmspoxh7RWFgakQIhbCrMWfpG+WfIEEE4WrPQUljECfk1BboIqYw8IM4bbsRq6cVAsETDsqgCA3EEKv5/OSqeQrqAZPvBr7uCRz4DJxBBWnHqSBrQIZwdgC6fsX9nuW7QUy3ddTpM/kKWSEcZbIJn4t5QuQoHdWtpCp3I3JtM/S8KwmkDVD6BxZ2ned6VOBSAlCi4LzAc6bG3KQ+4TxSisT7nDSo4Rqx0FlrR5aEBsBQ5nV2xv4GQ/DmkOAmqbpW4UGYJ9UK7QWMS6+TzRiYnNzpFogl9Ahj2FPT9sGwJPlfps7QoYpQziF0q/Tl7MbSMPJjEoVBsLlPvPzT+yEbNLsPGBLy33X66w8uXL/Ho8SO8fP7cerP0hm07WLbNHLi7vcPdnU0+fvXqlfcY3HHez3h1c4O70y2uzifsZ8vku7s7oW0H9NMZf/5n/xbz7ga//Ku/jttxwu3pFjdPnuJwdY3r4xG3L2/w7OOP8PzxY1zdf4D7b7yF4/37wPUV4I2wBYCOgf10wu3LF3j57BluX75AV0XTgaFAv7rCT/3iV/Hbf+Nv4Hy346MnzyCtQ718BqroaJDZMWBlRnNqZOpAJnQf2CDQYVHaMWxybu8dx8MGtmdo3TL3hsvX0/mM66trz14TQBiUMSAE5XRaoPs0voFSNkP1eM6I6OFwdNA+MYYG/5JvYnKdFudTS3lLZwf5lRmEEC+DcSdk6AOQ5rG0DljK4fw+7M2T8j77eKUe5o+aOh4syxNvsmyZe5xozfuj3KcCzXA8BDDVyM5wpgInrUvZq1yPxrNUHrMePpo9LktGQJT1VWAXvFdlmcvOML6QskxThvL33HeEAd6FAYxVL4bsYP8cX/oI/VGMfS37VPvo+nE11KCL70elFUobF/h0O6QzRQAViGd+HQ9H3L//wL5TssN5/gxq/fwvftX4wKf4Qr00lbQPk30B2OfAed8xdgP3z16+xKubW9y8egUONOIBWv+xMhFVvCQPiGxga6DdPbLvWbXeg7X1hg3d9Fkvzi3xqetTw/GnSqea9zpyHTVVbLckWzpUnJalYK7jkJ/bxwRkFAMaGPuEumFiGMam+oUz2I2kMJpVl3527J9JGqYRz6y+MdOhbYYPy9DodDRjko3Gl8mR0CWQnf3/EPhagCh5pg7t5C1irWLkh34NZzocC4rzBPsqX2CowuTUhxwekCWxALGYJVAn1kpHiGNmA/lxjkx4oBwMB1C1fapRLHzfs+16bU+Qjr1cb/ILJ783ZNZeRQACJD/GbQuP83cCUZclUmwzUDa6o9r+vwQrmlh/XqRsqudk7Qckz4You9o20JS/QnyugDZsfH6WVm+5p1AN3MTMn4qrIIL38Q7mmBhqw9f2fcc+Bk7nc8ksQugOVbVhHUNxPu/OC46FmEFH+aeIv9lypveuQyadlOATf6gyWcVPanl2f3xNh9v5fPYMYAnd0D0wFHSldjY6MpOPEz5VvRxfZ2QtAoKYLOrrb1KGdjg+SIxpvDUjSae2DEJgmMh+bxL2T2RuuX3G0vllCI3zAy/H/n5ACQRc7KHxx0xnMXWq63bL3vLgi86gTzuWtc1R5S1pDZ1yB0UmlNJbab3gej8XVhnAZD1tZWKboHmeLwTSKEKKLUHeggdLgrXToRQUFZmIZZhR8BZe8wPw3iZDZ9AyBQVlHbHY5SuyevPB8iXJggq2kyC9i1/THWfbFo6q4dVw5McY0NSb0zKxk/3HzN/j4WhrnuolwcSNFkw8nSwwCGTLBXN+D+znHfs+sM9sj0O+WwazSPE7gcEEJI+2iqn8fRGw1dtlRYniYs9+jNdndvA19re5/wY28fJVty9iunuxAnnYi8FM5vBriqyGOh1MobKdK2gsM804CF6M2K3MmxH9Wb6boJ9AAyhlpE7UjCxCS8r53F3QZrTBlH8OVlAorHnFGgELpaqAKpvcU29qCEKuk8/DCMG+71G2QOHFtXN3KEjm2B1IJmBK514By0CuORia50DhgQCiFAC1b0hieFvX2hdJ/ZybK3kq2tybMCq5V6VUOzKfigJJ52aCNe6h/ZdRkbDt4rmdHhXQQQE701D15+Pn0xC0z0b/CKSAI/hM2uMZ+qLD8df8DNvy+bGPkp1p/Q6sUWwPMCZCo7hkoMbppxMz5Cj3LOg592q60Ava4d4j95UXsWcb3h8h1wxoATsI5RenUeU9Jbm/L2XlVVGpZCNvLQrl0wBsfLcAvupo434Tzi5r52d5spqRplCe5Tt1jdygEF1TreFyZPJmZPFSzi2GvG8LDaQEavVM57KXIt4o9v+v4BfMmc+C7uX+y/Mm2msi7izMTBLSG5wmTJ5nJgj3aD97oEMASIO2bhkibcPhcI2Hb76DL/z0lxMUXaxUkdkPYVyqgQmWBr969QqPHz/Ghx/+ED/4wV/gh9//AX7w/b8Anr/A9771TfzoRz/AL/zKr+FXf+038Gff+BN8/OEPIaJ453Mf4O7mBi9fvMCrZ09w8+Sxlcv2zQzcnoYqez+1BnQaMNsB77z/Hv7KX/3rABpuPnmEqWbgHw5HnO9ucbpDpOFDrffP4Xj0zEDLdrTrClQtvd+a83b0wwEHT+nP82XqvzkMrPfidENKIJ3BK4S8Fte5ACP3c6GhIGOxyX3qpZHQdEamLPIMBAJaPyMpg2vMsLMy8WhkDViGWc1mczAUa2WDcb9G7WUXziRo0DzVCmVu6B0qA7gBORPIphxi2XKPdVd5A+c7A/CtgOPVsVcdg+IOVRFz2knsa16bWx6y2NeZTfzz3vY7o/s8/5QR8Sx+I2bS1b5AJs7jYD6Fxwo20LxH5UDim/o++xgR2xgQLVO4eR1F6ceGGEEWga8LeUxAmFhF4/kvZcM67Ik4QNbnpE4SYGsdx+3gslnT+BAJeg7gPTlV3VxX1gvUeOG8n80ByNKffVrAQmf0ZWL5KRzMdwYuPJvHpmGa3I0aFaeT6XhnVwDdnl8EnpWaZ8YNUZ2RATk0TzR0ldOA8D0xp6Dt2UQ7bItesmoho2sLyACziQfhXWpI9rFiXyvyGGUmABuUNel8bKmruHaoy47ELyLWW2zqxNARfETDs7U0zgxXk1bsg+rvBQ4jLCmy5NKhnzziuEJKFtrCc25Il++TFo1nddkb25NyZsQ2UoJ1Rf5o+XvIAt83OvQjSOwXs5Yp3n911pI/ZokgkaBklcpUpz1BrFWxZmTForH28av4P3CO5ntGb7kHpjE0nA+BpRzzRYsav50qgFHtDIkJswjefT2DMqu0yr+S2ILOeSG2XUVdnqfrv+l8z2upl/EqruKBh+pyv7FbCxFef9+nB0TqQBa7oQUUsnl/86yfsA9om5afiXmFex12F3VkfSZb/wZvkdKsLQhQZGvQLel8+t6aA22OGRhEPXPYzi7v11sLeTenZdwa5GOmG+L57F9iuXXzab9wL8UTA5pKYE1RzYxHhbU2KJU5Cjq5siUMr0cfQCTgIHnbZH/iD8viTB9C1TVxjih90oE8Iz6rEzN5tNpbRVIDtA1cjzN5gI6ky4zgFSswoGj7E+X0DrzpG+C6QnRJ9miFZrsD2hp2CzJ4C70qeP2VtIPEN9FkNIMzca6StiTlHZ8wdDLltT8H18ytGNOSBWJv/B8GDYgaGLwgTnQyAe1H+7sLSVVI7zFkiHrxuB1w/55db8yBfR84n6164FquzEZzZ//ptKdfy//neDzi4Jn+Vmm0Y+zWzoiVDeSLWtG5BISx/qgKzNbxWV+f2cHHkgtHGmY8BFDhFiboXRjcgTWWT/Jlf7dU3QSKKURcGEsSVjXWYloY7+NKjJFJjoufU6EzmxnSIzxVI70XiowaqKJvHRr13YxK2troUONnV4UpIcxNiBqZVSFljh1nRjoNnZFBgEql48w8PHWU5QxxNn5PRuS5r2NkX4UqDHmPWsJMAcQGtKy5ZLQ7InA1OlKckHxuCi32S8nUZYSQXQdK5KMEiZW+JVSwRlszhIOEI0ogksoZ8TwlEuRKBpBM/1b4taYr2gLUNIU/e2FBEzzHuajG/vkDOiDN0huRBCrhnKYicYVE0OcaFJzuCJFIX9dYtJ24HU9xkFO5ld+FoKg8T25RcUaLvUkBrkjQpaoXmZsuNLV8FQk+NZF8CNf4EElFETRVS90SMErSXJJX4Pdw8APl3LmO1cEtbhSlHMr9XHBh0dciiM+aMvC9LJH0stUoiL5cT+NXkwXB1mDgAL7f4ezkfhejhN+vwJmK25qnO4h0ucwokUAc51SFnNm82lbaoRxr3GjJwQ4BfEs/DwZqFFkiGgq8LHTZJ5fPIhzkIZC24Xh9wPX9N/Due5/DL371q2aY7ztevniJTx59gg8//BGePnuGZ89eYNeJ9/7K7+BP/+RP8KMf/AVu705494tfxP1Xr3Dz/DkwdtzdnbC1hru7W+yDPFACDRPWG+/ePfzsL/wifuGXfhmfe//z+NGPfoQzJg7Nmnrf3L7CnIp7965hwyo6WrcsyjYH2miYMqG7Yts27Oezg96G5r31TK4oZnOHSinZIUiN0htOEFfvySdGW4b/bdqeomb4+D5LlkYsMlMBES/NaZU201lfwT2Q08UtktzQsUaRIeFusHW1hFHhUFjKMxzkMJjjBBHN8X291NWBEGYCRBF4uWUG7xIg5doyOKDZ2BwKMIuzOvhJmBSBFYx6poKti0uiDnO6FQO+lBG+GPto4QP7OGVckbHOj9UOJ//zPrEm580FNfG5mT0fgL5INX6v6A3SRdyRYggpO1f6sX3LRvoS+7rqpHpvftbPnNk2+SjxbL3KTVXDeQoH10XPhoittMI98zWqAqXkh1lT7PvEXpYK49f7zFilI8BxGc9hOPZL/EhsaH/f9wHBsKw9ZA9NEAdNK2vpyN49zFaxj7XMzKuKjnvB/eYnNPUW9ZgtR73UKfVHlsjXwUrEobNcmTRn+LROpWzSsI896LZFeZv3BGXWy5yATi8n0xhAEoMqTGgF3hYkpgjMSxryDM/6murOASXVGf6Jfn4LEHG+oENNNDG+by/lBHtnZTkY5Wr29iRGYrAa8EwpMFss95C8HbRZdA55jzJFtUzw1tUhx6ztiRy6NMu1EtshsGnwceFlxN+Lc4H/ht0SBIdMvfD7FZBEuUdMFoEnF6AKtnPxz8Pl41zlVlyMeOMCMwEI2S0tAyyKGWtXr+sMm6QEEFgyB2Gpb0fvwCYH0E40+8v7d7me6RPe6sRp4OpqaU/DZzedXfhVgaED59MZ+xzYfeBN9L7zqhj7SgnMON4U6sAmwQ9javQcY6BAXG5lf1Cjz7Vnr9jmuO6omdV98wFAu/cwK5h0d1uWNjGmyQEt+tzWmE6L4b3Qtm0DJzKHE9OOZ6VbWI9o4Z40kxWeKGyyVBCZ01BYX+ea1SflHoX3FRrZbdWWhrrdF9UHlScdD3A90AWL1QxvfjZap7gcahG8dLpgVraTuGU/poLttboHVXZgwSApPygfMvkk+qVeYIKY8i6CavumDerf9z0AP1/2A+qONUhUN2jR+7FnF5UC1c4OpFErICh/KjYJUSCBaZeACnGLb07o92SfkKvVxpjKtg65DmnNg+P88sTWBFfbAXp1BHv77fuOXQX37t3D9ZXiPCzDV9XnG7h+PWwbro5HQIHz6WR+mWLDTfXJuL4fY4zQ3U6Gi5P80/bl3/f1mR18VUzPAnSCaUL1+qsCZhQI4wdNZ0QqKokpuiHIdWKPCkONXmfGQAWpNstuiLpw2J/G3IO4yDicnGSOC7vHkAtCdcfY+XQO5mjQUgsvocyYMQgCUaxR6TRUsiSCapElsJ8WiUhnnfWWmKBwMqU9mG0V74dmXwBTRtUcNXvu/JzWCN/+JpE6fJldyGeoDqPFQPLPca0sF7Z15EQjEcneG2Ra7lvpD5IGhKSCIBGFOah59ppOtpX9yz9qkYh6LoyIcEoSAVEScTpNquOrTnkkHYYzSksUamHnjFD7Q0JdYGbvOQSwXZ1W+WARxZjTjacU9q3SXWA4risZLRzGca+Muib4zIiWrTFXcymLSFqJLjWyPuuHquEYZ1KuUXs6VNrjd+F7VTNbUqFo3oN8VwICEQDwPhRNslF0ADrSNBW6A6+IDPmZV6co5RnPsNJXgCvSVOUTrY54c+jG/QgCg4TpbEl5uoB4e9j4gsBBfZ4YDwgAM6/L/l58jHQcjlrKcJHIzOK1gm+43qLESHKRURPgY3U02r6xj5cGWBTpePDmW3j49tv42Z/7+ZD7TSyQcTrd4dXLl3j0+DFevHqF5y9e4MWzp3jy6DEePfoEt69u0JrgeLzC9fUVPv7wYzx+9Ai3d7cQERwOHfcfPMSxdTx//Bj3rq/xzvvv+Bot6+W0n3F7d7LJxrta7w4ccDgc8OD+fdy//wBHL4Vlti71GLP4RJj94Q6HafLO6KFMxtQ0eElXGYhBAdsjytdJFwbM8pyrDjZZr6hiIHgKzHCbIGhNni/6u+jyClCrbA/a4TmVDLm47iqkQdmqqqy9LSVM+UGySp2CG/oSGUyjyzkGd/llWmNZse8v++FKRsa5nyFSoQtfUn7y9rXvbhoTnokdpXbkZd9H7rVI7E/FSFVuUs4sMIffR54f971in+q0oI5C+XzlaQiWAE68qu6kXC08nGeTz5i6AOtzJ0X6eV1kfTio55laq1QpR73Kvgjw8mZN0KS7rzO1ipGV8VmU7nl2XmslS9LPt/u5BGbbehhZ9XmIC4iTuE/UzdEfEpbNGrmP6n9v7pDXCXTrZmhDduj8zyPIXfBnc/2du2pZshMuG4LJW+DedIqSRrjnCnUno8D2Y6jxUe9rsJmLIoZLPexOIkkHfpUDFvD0zECxsxdkj7N4zsjQW/FPBgbsQ2yFM2fZU1HrORW8TOxYHCAFb/C63BuWDSa4IR/lNG4Rz6ovvxvvV8xMftA8N8dZSz9wwiDeG6uWtnMxegwqL7KHzd2ZtQNowQ3qx1XLmxNXZPAQQcsZMBVLmBBK1iKuKeMkMU26c/gRfxpJHBETh8vFome1bXI6gsFEkAwicU+zp2AKRD7PZbKiDdby8tRgHXPAd2mQ3nBoHQfJa9BhxsDAdMd+yF7H+XQchzhsQBfrEQYoxmSbAMsQGs6Tps8z85I4ozoxYkeLIJWyRp2K2RRQVmtRAhTbFdkiY06FeKbsnImPKWcsMODXVhtuwF5hs+i3vuil5vrCdLFN6tYYFrbastQfxAgS/JGOunTuiJQKuViDLMQa9IR8njmn9V+MNSfNkr6JMejIhGMc7l8jvg0apXlsB02bQbToSimUqhrVIlBmwZPRyx6A8i173xoJUCfyM7Z+qbLAP7eAAkU5T2c/oa0VjJr0RX53/qwZwEzIEeHeUZak4w183pn2b7XJeI9wbPI5kLbCYhsWvEvZH6q+CaJTukrsfWTwsY2ZP8Ogw1a6n6rR59gHiNNaE8+89/J2tT69W5vY+2ZZ/QrsuhtNH1z/IeXn7d1d9KRmth6D9yH7cosxxo7z6RTnTv8On1GLv+bHfX1mBx/gzAc/t4lgPAKu3rwZuEipA5eg8wDo/mLWO5kdThgZrSkMUSwUKrvWWxClqmI/nz21f14YyrUBKKIkNzLF3IPb6CRUtfTLOXHcDpjThD1LgWoGBBV1Bd4UYAGg+XM8xmCbjlRjTtzRqwOrMKEyNSCWWT8UxNmYlIyVNzBPPIJpVbX08ioHLEztTeVC5mX/tbin/90EaqY0kx7o0JMQLBqGpG2FP4vCQKI/cxUCVXE5qQQAiEgMIw3ls0tjUP/cKEZsXs+EbAgXAjMq3qJAwnFGoGMWAgIoa3FsUUl6Snf0oPA1yXLo9QCQdNkaEuzwb2moU35n5CwVCBl0FkUcF+ePwr0hxLwQrkHbDkp4/dAtGVFuhUbLQ4RBW7MBeY5hq/haue8i4sN6CohG9oMK53zhL6n0oP5cVETkAdRr8jMoe5MLC3BJ3eg/1wmEtS9jArL6Wo1zKttPMwjiX36WvAvrp8O9rbwQ5e5UzlVWooCauqKifD4N4HMvQ6cWGRzboM6lqhZ84dbFxyT2GijZuv6BoAWqfJUF4OVUT3dZsbcjgQDM0Lp3b8O96/t4+9337f4F+MFlC1S8P4yVm9g4eqPxJgXw9g0K60+kw3p37IPTu3aMfcTz9GZA0FR+LXHTpBfKI9hZN/9XoqQPwU/hrI4zkvVfniuDasE3/qQlmyBIOY8zzkw9+21qRnt12EYYX1R6LPzEe1+8omwf3qPRian1Zr3UUCfP+aQ5ad7nS4rsKbSqBsii51eNxgOBEbgvCZSbdQ+jUz8Cgd4QHVk2nMRK47fQt9MEe3PGgYaeo6yvJC0BiLku9mSKSHpxWrJfTYBafx9BF6sz37K5M5ARzssQUetkUe5lOB3DqODD53MaMLYhEhkIwXL/2IIQpliwQMgMYgupEoMy2XU28pli9VoALnt9UX+qB0DLe/y3YivSK7FeilEH9dLRux2abvW5JtjTcTEwij7kFVXpKOfnYjuKXDZdVsJO9mwRgPHggeb1yVt7YBbysQR9QSpmMFKzoMLF9GtpLLwoOllch2drGZHae29in3w/HbkjDBhzWrM3JRxrNO506A9F9yFPFW5Yr9EReJP7UtRF4PGqs1ednhiL+224r4EOw+ADJIZeHOhFzsa1ApNXnZklX7FWZ/bQwU5nFYtECwp/qLpLNG4rnSVGl+DHeGb/M4PP5MFFFpZ7ZoBcU08GULTAA7M2rd1Q7o8Ujqny0OFhnla5dwzQuHhl4kfSP/Vc5YkMFiQeifs7LUUJMgBmpdWJwymTk9h4Tt0rG6pTwZxrE4oJPWfJ+DLtVhpkY1ZNCwzCYR3U8xxClvDKnpTYbusN6A2H7QARYEwfBjIsM2+MgRn7XnbG6aJvLdonCIBTmewLL6UPJ6zrquF9aLe+LXTyaT3lwlap7YPmQBfBVKB5RnIM95Os7KpDJUVh2XG+t+yRR13LLD8NWYa4X+1dV/mv6pWQxyx1bRd4gTvf2uJvIK9wzzr3D9l3dnW2WYl2YvO5XIeBwej12wpWF1iZs1BPBmBYnO4Vi1ccH1hXaG+z+o0yB2lrFF3LCrnIZJYMANYM5Bb8LnHuwS+eXc5ptUNGkU1Jkvzf6MGo1YpGXLsG80PGk7eX89Q432AiyogiG6ijq1wEOGRNFzqwW5mfw2Sh7d3WXX+53J1zWqVMAdFJDyY7TH8S35ru79FaIOVZyIRpfXY1soI9iFsS1ixYNNGiHDfXv1fm+DFfnz2DbyHShMUigrZtFSYbk7cSbbcroGYLAcZUdm37O6WuMVPpQXPxH0CBAgwZWT7hSt76fqQBsdTsIwGsCRlzBh42m+gIKkZhQ3sNSqUQ7Y0ZQOmYgFjWR43MB2N5mWsqTbhyy7+B13OmnvtA71YKHJkekEgpp8En4M++hS2dq3Fu3tSlgkQgP18OOcAikKUtIPDy6/ViwMSe8uEKWCGDogpUF2LctvhXYxuLA5F7mw5Uyp/qEKnCPAG4O8ckswANZNHhtjY+JuNWh14a7VUZ1fshBVj8mE4yAJm2nVjOS2EI9jOjzBFHZNeFoCW4wQpqlAIyBEQgwQQ3RbCSN9J4Xw07u/6qPAHPIEI+a0GyuX8iOQ1LJNdZFDivbwovAV2uVQIA5hNJ0rbzocR1Sz+oIpNiP0IGpAP00rHGvc0sTJ7kOinKtigdalwdrxelWdwP/zTKmglegVJOqAagvL/5ovzX/V2BkBTaqGfAZ49ncVAggqCHOpkYQDqP4nKfvgYDWc7XRTlWx0vVEOkwTqM5X/w+lrXw+buXfoYBn6sNXjDarA5qALXESzyajQbpwHZAfI6mDdeggE0GbXYnNpQII7Y8W9mVkBuUEwRWk88u3AvfYvbpIBH787K8FZDgibofwRNyscdl74PmHGAl36lPFrYz3ItuJWPvQ9G7BUJqiYgT7lI+G7IinKrmNFBI0FaV4VyjCj9b6TRpwM7KMAJ1UE6WMxqqwAvgJDaX496fqKhk08sz20yI7w9/b8XgzSyXXHsEgIJWPMtL2R+shWwN+cASXyl9F4FwkNSytHCoh+wkr6U+M7VQnT8oNFHkdZGzGXAkBkLQhsCDNm60JT8gouJcsxQnRpD8wghF3lSatJs7eXE/KKvTSRpylm+EbmCvKseR3A/yeqVD7sVre1ToWAFO8gbSAdqcbqrcv3weV84+sMfLB12OBi2qc5mfCY1RyyZwgzyMK2YWpnyMSbSgCi+yfuFz24OpirFPALsZLP3oJXCXkkoD99EAVMIEaATg6LQdauRYg3J2fGsWHM9yDMOpArFeRCJLry5iv0msTYekn4UF1XsEX9h/jhqBvN28xJfb0DxjgsYsM4fIiymqMtBY+SOcc8QGZc9x8XPSbZFnvhNR7jtzn6hDifuqIxDUd1o1IoeXrdikd6e9BguaNNJCygajMUBVIlhDXW3O1bVnePACeaDgA/Jp5bMqq+N7SLlCnZd87xxe99L/Z3EwUTYQSyb7B8Yib4R0akW3jek6J2WOkAfre75+BtkUyH0scpPOm5XvrDVE96nZKy2ko9OGc3BAx3SbrZ4usDkvbFvDnBv2ObEz6UC12Fz23rDeIlEmHCWMUzF0RIUIB3307jY4+U4Vp9PJewGnY2zOaQOBwEw701OdeidkDJCloYJ91yg75vkqACkDrpg5bgkBrqE9C3bsaTtXJxP5w0px/eqRRc27GV3mAAvSlQUVYjgNM9k09QGHrVw69Ygl+HtW9VkwN8rjL2iWmEkg4cCEIn0KbnNUZ2UdbhY823IARsVCUS5M/E45oZQLxquRgRy8kp+tQ5qSDDXksX2OmkJyjUHfhQckq88MN1TsmDppdf7HLQ2K094PWOAn6JUVVf7SRhKk7cXajLDLy2dXm6gBjUHdDDhyui2EwWgPQHvGLvmP07/jGdyzGjhFGtrWQXSemXeHWAcHUY0xIhgApaPRHPfWd9t7A5cEmM/y+uw9+MAHtQOYi5GYApnAlJ8kaKZyDmzrG2+XbNEfjzXJmQ5PjzRiGikPOowRv5ZdrESnRELgcrrOnNPaksC8svSYx71B8GhGS0YyPWOO2QElY86eLRVoVRwcC11BG4VAAAwHmKswYfTF90fL/pf9zfORNfNGbCvI8FRGfBYazvx8+TX7RJW/C6R48OHnksLRPjdLE114c1elXubOpqAlo5HIKRyZys29oBPSFXWW7abhMEaWLFdBbjJUvcQtnXdjWA/EyQcX5Fn4flUHlF2P/SgkwRqMLlsvjsM5oj9alD63dMqasrLvNy89cBLK5/I95H3pbAoDh33hFsFK4Sr5T4CvLN0urjBfTgrACkQJLFaoggCpABZjVZ12uGgDjrWps+bnXHnw9+h3giq0EQCIoJl/oNA1I0FKhl+JDhagwEEAiCAzedEzUoqyrHxhANEVJy5KjwFk2VPyY4LXPAP3FCQgVe7XRTQTBNVYPxMCgHRnP1e5EsZd3CfXUL9fQarR/SpJ6rO/5hD1PWooChvyWtZYAqrcL734gfIyDR4NHsnJqPZJKWuoQx5Q+bO50vU/2baKR1WpueDcYCAUy1kJpgOX1cGmSYMUFwRPhWSYsSzlXsGVBaiFPqx8Csn3CIyQAGPOIvPqPeNfKdcj/ThPSPzFySOjvCxDI14LcOnPzQy46EUqyT/hIJvs0WNr56RNoETxVaN0wnRDOhtIQ2m4lGeNx5EAajEoSXLqXdBCyS4Lp5sUJwlpDhKGRXUSO4cUed38bCSeG/BeQTQsPFOUe2GR9cLXpANm5PC5SE+v8RgKHmBynyDdHvxivuIciu6rA4vo3ON9rJzIwa/mMCbKoEv+NwyR+oJnxnuRXhgs4fsm65zeiqShhOJX16xmWyqdi5ktjfW6SGdyzYSv6w8GIrO2lBcxxRUMKrqOj9LUxBoxkZD6sugY9swtECpwoMlwN+THvsgPc1JJ6EnLxLrI8HPDjQRjZ5KymBigGqQAdb09H/trjn3HhPWjm84Tzel4eoXH9Off3JFJfUL5y3Pa9z1kfGSauQwKR2XNeCGdTAXUvwvbmybbklHIIFJ9DuK81MlWikncRbombXHy66onEBUV1LOEyoFFtLSecHmosZY08itv8N7E2VUmxb+U76TtwDAhcYreUiSV2hFUI1AEYZfEpy6cg+FgbjyTxFCS2xuYy7aeQyRM2lSsmTomX+R75/zYROpyYnsuemmvEg+DkMd82Or6jGvycKifJRRRwZVUrvkz6aU6HuzZakWPJP2KRAb4nBP7+Qycz3YeNXtaTCY2D+L01kqWePIvh/rQ2QBVSAM2pKOb+sXkUcc+JsYw58DuToexD7SuqWPHLDLfsoN661FirKo+/Zv3STvWepU67gWAoq+DXkrWvjQ6evL80sG0yitB7jnPfw322R7Qtqhgyfp7CjBKaX6T5bqkCYFnWWlx4NOR43K+0mcGClZnZ9W56RinbY74bOjR4niM0lg+hlcoiHjpK1sqFZ5hUHRqXodUWW0ayosJJjGkvqFOqO1MFn6YbCNl2ZRTi0O1VII4AAAFUyQAad4n8DkSe4UjX17HCcjjDAeaYSTuORYleSlLI1BSaArc4/KMl3aT0TSTV1bcB9SAKeK9Jg3aVudk4kTLarWWHo6R1HRoONSlBflSjjVVc+YdMgAzxvAefyPWdTxuJiZUI0P3s7x+Ahl8M3rQcQPWnmYJZunVViCsCyNK+3Zk91AeywhHCIDwgBLgjRKZrF5yA2LeV8tC1OEsUlUMPYfRcj6fI/OMoMiubSPEmV5MBT/nXHpuVC++7UchbIIHVxDLvs1khMUgCuViimIUEGXPwAaeBDUJGkMhF6bavfddrLGA4hA2LgDJtKYc05HWWw9HUVzZ19kgLgvSucWeCtMVBO/L/WE11ogmrsVhQvAEF9TeCJ4p1DXSEcI2ALMJdWZ55kSxWkpWmqYW5yxfTSQA+6UXPXoSOaiJXhB+xtlAtDgsCxDvW45Lh8KjCDPkWu3ZRwEbxlJYUfWcV4EXEXddx8pXkKjULJKO4ozopGCsNBQ9xIRGB9Jg4777/9U9IiiiwrW1lM8ndgsjBfEp/p7RonSaUTib0dDK+s3IqWCVNEOgqQHo41ydDyjEjY5sgzdPoU7ekACKIo3eothH7nHsh5a+MuWZ6TzMVaZypeJenJ1ap+hp7A3vTS9+5fNovEvmC3nkJBa7yb/7OorsSqpYaW151oVeaARVEJB7E708COycBoMMKo0pjSopN6orWheoql7q6R+nQXhBaFS8VTZw/1maB+5u/Ox7EmuWyMiqKyoYBeVIAU1aIB3ElENUR/brr9j/UCF5NqlWNGiTwQZ7V8t+FzmCPMvkfaOOcABNdQe5lRddNqqm1hcaTTw/d36FHKSukNKsvFkmCQdk1Cmx1hC90JgDqeAfVXBqIJBAk2ftFBMy0ZVDOAlB/mzp6OA6Y9X+BskunEJaIvjkIk4KLWfGc68TSAMr8NCdv6Un4OSZcA9Dvvn7pMHmMmjRCyKLPuV/bP4f/EiMAryW1V+Jlw5OBRbnRK4xAyCXGCgoSk0no13Qtm9QMZcA1MlyF7LJ+TmoVPLnvDfpw/eyYjLf4XT2pCHgRGbtViQN1HQC2c+9ZUlc83+nquPBzHDleinDc1vVnzGlsC23Ug5L/9aqFp558FfR/VLog2uKQDP74sXn7J4xxMMxm6hjdcfUsuXUTOLt3npgFq6zt+Z9oDiFOjP0I5tLUbC4pjNtqpsBLlepruA9YWmQAlbCVGisnlO0I5ASENKsTCAeNDViuCpos5xz8HDBCdSD3Fdbiz8HUi0txn6R46oKawtYHMvcIN979i5LPcyy/5Sb0GwfwbUQH4SDxeXQolsXPWv3DFkSGIOyaZUPfH5+tmJE2weJNQZ2qtjB17LYSAFFinOC66J+KvsO4DWHC3wZS0CBvFCyoqqjNob0IMVlfNfvoXKJxfM+lYda7z6njHtZyvQdQ6g7q3nUxr903HsGbzO9trQ18KCNDRRR6IRntU53hli2USPtttTXbImVLYDsuud9t+9F9UNi9dynigd8T1ShY/g5k68F6nYdnUIWoLI/W+YueZX77Hou6I6XygnsNTgy/Xxp+2f5IoLOmqe3V9uN6wOcjtolNtC0T/y5mXBR9Vd1hvP92ku5yt7EqGnTzGnMSh0BoGQPc2hldVRmBWEQFO8TehtLVV3IraJbqh5oTRa9kvpSlr6mfIbEuUAgO+5JVWvJnv5G4qBYqJ8S9xBI/LC0aPP35xjO7x70KzKDcj1pJx1k4RiuwzQ130/np5eLl8o88mtzGykSPQI34zXaYrBp2w6Ybbqd7T4g3z2jY+ruxIqtZ5CfwcHeGg7bhnmAtfzRgf08wi7/d9kD/z6vn4CDD9EYkExE50d8JsBMAnS40ifR+ZYiDC06u6i0lE4Ti9CNOX3KbV5jBVBYjHiLdpwBpAOy94bD4RBUG4MggKwZd6KlEJ/MFrgAFFATxjkcwSOYieXiviFQyloirdevNcaA9u5MYcIKXoZUJxvZ/pCecr1cQwXAwVhOYGawSYIxzYghy5oylRkBqAP4FVAdQyl4ps2iWCljCBAcZCGNeAAXzgiuP766GMBpWCCeIwTGWJ15dpYO9BgxYuZkYeDqmKVhyNII6gcIP5cwh0qJSoQOSfjnKWymKmQirg2/f2QjAKF8ahQilVOQ0fJKgLk6K3PiY26F5o/L/oYgoYO1KIb4tQDDoAXN9VHBQfieAA76p/NoROYobAXJH/6QBEkGWLkK0niWzlVlnKW0+XSheJNog97qI9YMKPbvCXBCOmRmkPM6FVUcCoDLttj8HKXbYhyH6nFDRcoeBo0VrSoE951oFVR0fKYS+17OFpIAP84wLmsgsn6H55/lumnA11fS3co7JjuwAIMKIJOojNZystUqDwKzcz0Xz7gC/rx/E2aelQUGSMrz4DJy+I3dtJN+kUZk6JdYTqbzixTwoute1k21W6fBm8uPmaJFBvJ7tg/suUp6LCLSAU3umX8BBBsEGqv8TQeYBXL4zAId07KZpKHFdDdE9h6pPBw+KjFBE+JRZZ1RtpOgE0FrnGhIGWDLpEMC0K75OMogBDPts7VGwZNx7nALi/eNqfaATyxLOVUzCnlDOtdaTx2UYqhMaS1nPtWwyDQl74ZByh+hHog9SyyTuLQYwMJ3EPtU9yyNaeKNzBICSp+wEHZJ/4sTrsqZyk9OM7Zmv3bBZjVgRD6Xkikn5LsSKIv38XpWIZ/Z+u5R/qeTA9Ac7hOHcqkJ/RqkOdd9EQxdPpgO5ZDYmmVjfBJijMjm50lpeZaQBSWziWfO/2tVt7e8VtWFzoPVKRMAB+5AmGo6tZwR97UadyIC6Vb2s8/sL4V4tjV4tEmLDMZ4yqmAWKVDU4AOBAbTeu+WGeHlZOzXiLrnHmjspVcYm/FXOhHUSZrdcSmrcCSu96nZNpUPxzooK3CE42WeQeTlEjMSh81ZpnLDev5GFnIG0LiPWs4w6E91OUcSWfTwomMEBSelEvd9W8+V2FpUYg9718Cq6bSufJM4Nq5HIFF4p9oGWp4rcFUQKoJRVt4s14hKHg1nrcQ2r/JBoT7UqDj6TIHEdWOqc+xPkcncrtBzGlg67qFFptZ7aw5doNztvS8OgAUkK4Luje1I33Aa41lZdiuxYTrdjL937En3xIWtlum7w8qzg9hjFACkdWsFMKc7ED1Tb+RkTgvw57MzE7nicp7HmMOn0a6OjOHZ87VVBSBhG7cmkNbDUQkA6GkPqiKyePNZFWNoyETDFfByag9KjdSb1H3TbeJGLFfkMNtrLAkYqpGpeKlj5IKvVCeG+hlwfy54puK0rDhI/ULyyCE+9pxVOGQWcyZK8D6XvAdIqeaiHjA7NHiCDjK8nmkIZMsO+ikYTMxgU2i8eLZ0/rlMnfNT5YT9mna/a6ySYBEftrW6rOR7Wu4VjlMRoFPmF1vD19GKfK1Yuw5IJZaqjvIIFC/3uhyGhKAJZZaoLI+QssH1XGSTKoLfwi+knJTd43kpA9R7c/Zug5DQWrZxac4TOAQvzjnx6j+EEl3W1lPgp5KfnhmHAGxjnkGn077vtkGcMINkovDguuG+ANYCsi+biFrkcjfBNYcd9GDvDmdEaZmePDJ7ozILS37HsOeyASFGZxatBSCCMbIcIYcfZAS2RlYWheGMN3yCH59t9/56CuvxUJWUCSH1/UYIJK4zyop8HaZkuXdZajRdGaCxVwmwlLGoRubdCAVv61ZmT9a+HwGk4oNxxvy9MlU1jOFNSKEozrbi3Z8rI0ZfOhccBGnplLHvDo86RTN9f3Zm51UnJh1DqrqU82YEgQIgBS+QZd3m/CkOhpYlTjwjuFKgQrbrpbFHIbQOiihGtNPMIvjcSRnnBgrHXGYtwTblkesj3dfoFR8xkKt/1RzVVREh6KuW4VBJZBaOn085w4Jjne/SGGfWTigZ7g+vUfaTCstAVd0JuxfBDZ+z0lZkG5S1pdOQz7fuK9+gcmutx/5RoVP5S404FmVeI4JUEqF4kRlOE6tBHC6meAyjQWEwBQSsSt9O7EM1SOB8ko7B5C+RUmZeDUCVZS31FWCB14jnQ5xdAmLuP8GxfS6bvud+L28UMJIOtDSMVkVdQH38bFfMkvJioBcEt+xF3bvyXYn3CI4ImVH4GEHb/v9mKCZFoOCjoEw644SHEZvsbOjAF+W7PBcCiQqACb6qHM5/nO/LJ6vjakzbt5qRNLU46Ot+CSDSY2/Yb6zKCdIS++QNcWzghoQ/iPMIIvBRHUPpaEXIhqUnII3EJhB3MBuo43fUDdA0Lq2cAhFVbpI6vJxWkaf57NUR0yk3SFegcyPXEbTrNJe0VJ4v5FX5niv7LAldgyD1+4mTUgeYmCn9Uv1FXLD0H55FF2jSDqeOUnZrudLiyCjnzVYRqtmbODAWaaeyeuzF5X4Yn0f4pOwTn/0SldMZSdlM+V35v/bkyj3kXmRGXkyG5PPFNTTXQx0RfK9ZFqbrOWUz+pTt5CMrVXfOLd+/lMchi/zTlwGYauhOXQ3KrfYM8/duxxlb7z4tuAVmSCc/4h7TvxuVLQKoQ4rsmZhSiGVtaYhrwakhxC6wT+4N8ZKprtSVUM8g7B00rsPc0EpT6UAKPE5MVmQPz53OXJLn0rdq2lAm7dnLqWITeAA3y6vt/Tlm4gtmG5L6JJYZCQGpa1M+VOxc388zjx9Bp0Dl7zyXxKlVRnMf6vCF1el74exDPisHfoVOomOp4KJcm+tzJ5JqpHPTBZTVGbThJNcYHsjrIxBC2lncQ/+Zz84FZb/WDOLF+qgbAxM7CC5ntrS90fUcOGSDyQGW7ZnO05A/Toc22feCjiA+0CJ7xY2RU7gXfEAd4WeXPdySFiA8HGZ4m04Jxz/UHfEbjodDKVu2fRveJkuQjrquHMaYA32AdLwlQSTuYhDELu/3VUWD9wMkZlTukyndMREZUBQ6Yw5gZP+4VveP5+6ym7iEMi/PHsvaSJ8xqE64zgxKVbsrb1WeXS4Ci5IBnIpXg2YqBuV9ig7lCmvLnyp3LrEDKbUV/BQ6htq78L2qB0xJvxFA0uAFrpW+hfxu1f25XwyoLAEa/1vFPOEA5L5UbIQy9K3gO77sciV4vPxt3RuRT1vvxfPA7W2tesb5dKY/hzIhqz4FrbmdoRK+n/TbFF8OTD7sc0L3PVabLTmArXkSR+8+gfuzvT67g29OnM4nAK6IwFIGA9NT3fPtY7npZGieLlyNStZZi7RIaaWymB5d06nYwYhFD2DOXinSGk7nszF8KcHk2GIjfOtvQOUbShYpeLs0bFuP36kUmQLdN2uyWpllqqKVplM87KVXVpT7qQM5gJmL29ZDOJPBx2TvEYIYFzQoZY8k5Fai/S2fh1VK1pukp7oSCnsDPOaAGmFcMaoEVzSqHg2GBPAEkL2FnKgvm4dWYFa96Kbc08Frz+AKWTUrbSJ1mfcsRpPvq+lcK82u/ZbSSC9lykIjEQvNFfju5+KAQwAtwrlmUXQyLoVxWbN6FI7f2xkFmgZSJvtjhPJPAc1pSAQbdFhVsBxgV0oPQgIZnRgzoyvWyicFtjnT85kB7jOfgULZ+VwViIxDBHBKB0s2UaggnJ9n9LoHzRXQ6Z+P9Rc8tRjBFQjxMcveCemgPFMaDrNcN5sUS6w3G7rzujyQ5XwKeAsAQADFawZeFgPJUbKePCUQVtWGDLM91JBjALyMKR1ErmqXvc8stAQBAAMka+aB7UndvzzjdG5j2dN6DnwZXskSPl4szY/yfXX2LZHzLO8u1yzg/PJ+tr7aW40GT32G5WoJhBVQoXKXMjCAMqLI0GrQaUbh8rmcmfxvEsYE5RKwbsIFQdefg92kwOAkp3RpyeuXCjBcnplGTdn3+noNLGnK58HtUuoMA2djjqDH4U6P1lrwCDNmCPSph8dghi5pX60Eyvd19yb8gGGEhhbyrgIvyoa4lypatyyYWjZaHUu5HRLnhDAsCn2xHxngRpLGHibpaMlmrUC37qN6sCzlAvdoWrpF6qTY5BXkfyrwV02dCV3/fiEo6QCagw5WPkr5DNbfiSfiRXWgWVocDnm/QHVsKDO6Cn0tzomIoCP3baZez+dxfSvmZEunW2bZ1OoHyu/aDzeB/LqWyobm+BGsTfh5jq/v2aWeS+Nal7XTgOd9g13dwCHtpSMFQdNAlXVjlcnO5zR5qMKglllXZX0sPmghnUyt6IAxZxhOdLSJ+tA2AMok8Sa2X5ExsvIig3itNZz3ga0Y+cu//C4YtFOXD44zHZNyTaQx4s1acknjOntnW88/BhMZE6zr5XOvzjjKhWzXQkcTCaWePQC7OMxY43elnnc48xPzFNLKPr0u3FUR8tJkgfe4a5J99CSdN3QYhJFasNmlqlzoFZ+SMVvWXYNZtJkicw4IR32Uhcf2CVrX0K15Yayln+QVZGAmzwWhY4HETQpYJjnpCB6wZWUAdH3++vAhPjXPr77H74qEc76ugfgQwZ+JS/jL5f6GvcJ9bA1zVAc94lk07mmXayKYtM/Yl8//bnRs591ae83epOwdUSIr2N1xwHPl2auaM/y8j0g+OMgB04dHWBbdQKvPHnrE+PF08kBA7zEkAAL0qgudZsac2LYeR0KbctGdIsU+qTLDZUDBrAx4SM3UFwbufNo48RdSBtbKuEVnF56i3uF+sVieso/yDihZYlCkxYO4Jp9JhDauBwka3FFra7EzlcytEQSvS/k59rTQY8WmPKuFtxdyLRVj8OnlZQAKsGaqNykhhEs9Xe4fiyb/OAb6tLLv+tnqkOTll4xa+kuK/U78WO1vOuk5ECwXK7Hv6azMjxDPoWG5B1DW41eTuJbLYNXI6K7VnnxeaYIuDXB9MjwgZE5Du0ZvHZsk7TJbfT+P5XkuHfU/7usnMkU3FKoh+oj4mnMPnpnGz88gqJpJ01rLaJlvs+rAHMyW0lAQ0/vjUTid9zMOhy1FjNIbOzy90sECNH7WIGpn7OIAEohPP8rsPxHxhqaZ/cf0ZUCxj31hnnTsAfO8+zP2IKYxJra+2fO44KNRBCCiDL2TaRJU29+HC+GWho2mAhSksRVKofzM6E1tilqNDvHz2P2Z42/O6FT6flKZkeaEi1hHKvpkmBSy7HeXAjk95cJr28Kj8bNigokWjFqZIURBnaVM8Ptb5qM5dq38GsFMoQggxSGXpdNk5DodCf78o/QZpD6KfjOwvehdFh4hSEohxcbyBCXV5HdXogvQBc3x3JDqNZxWBKrgmQpU3bENRMRAy5mHAL+4XuXz+N1p1j4sizIy8ES6WPmr5GnGwIAEYStqm7BISS0hWA26dDDxWXjefK6qFO3fBmC+9jx1DzKKTbCR+9GkKB1eIxyPCJBRlZvRZBkA8e96FUA73RAraUOxHmY4VdWWe+PXUUNezF6hLCp6epHd4E6K9z/yeyb9LEfjZaPlzMrz1tYIkpsGK79KQ1xVw9EH4R5fXBeIdaOsNR1YUkgvFT3lvSKNosVJUu4RwQnPKiOYqoAx1sDrlbXw7CqdxLagOOjrH8rnFseiaamkv2Vr/Q4FqC5AKv5JcJmPWe/rhkfQfgvQ0j1bnfpgGVDk98qJlhJZCFO811schrpBUrJRpZwdOFVvuJEy0bcshc9G0YizoJ5IYz3Pw/7FwnvJTaYny+kUI9PxR8gHz/quurB8N98D/YMlc7XyviyfJ52S3mubgZRfdGTmWYVTIu0KkCi41trrDOU5LiPw0Axo2T25XoQMZmA1+sC4vqz90KJnIbPBwthY15xL9r3jkCximWKcSASfakZN0vVKD6hFB278pfwTPyAt6yKWoKOW9J06MI5s6dPEV+CJKod5rsYo/jniMF73wrnHPQfKuRHv5vcXJvQFiphTQtzQT743vboEzsBsgjRsjc4NFxJvpFxTSOtQWEa47hMKd561hiY28VMcW3W2PXHVbA77LXSXZXZZlYtqZkFnM3bbOZbkkv7hZ8vPRaBWcu9ohHJ4UcrYkjQg2QPLAvspH6hbo6LBZYgja6fhiyCq35t9q6knBHIRxEdidM2s/BzsJWXPS28uX6tOib2iPibWTuBZdGUI1fzzUgLt9F35IHBk4fvFGPdnM8dEYvbL9Yd8KTo3dJlgMVAVCPwOPtvF/kZFjOuaoAlc6EBBZvNxH8K5wGem+4W6v+yxr7NWeRCLVF0SeArr58KJdxnURwlm8fNI+wXBG9m/Lq7Jj/i+8sRs2OMAdu94ELLDs/sg2JoxDSVbyt9qN0wvQW/mbBqpl80OFAjS8c8ppyxPFGnYtqpn/OmGXZdTeW1dY5ly35u1auqeXILYP/LJBEZmFza2DCi6lue6jz0ccHScxXMs9Gifb3GdxDrBCyUJpsoGrqu3dKhSn1COsgUR5XKljaBUMnnoAn7W5U1c2+mH58YzKzRbqxkCS+llgCu//5ozULOqaSnbF4CRPSEujEPm9ymDJB2tlEMXSRexT8S1QHmOxGd1zRWLmhzQlGWaznByRm1lM8M3wrdos/iRa7wTwQoIZTEQA84g8X3TnanDW+9LRUM5MseBXoq/++R5J6wmDegCG8Q1FseqwPryWUWoD7UKXG40OHXgs75+IlN0A4eJQocZ9bv/bestIrfTM1T4BZYLqHpEP6J4AvjDjWlRAyMA72Mhazr7djgs62HTY7u2Kfv9fA4hVIH01rdgHipbTj8lEQ2fylXkrhk6Ywck04PrBDF+RuAZjcUQYwYjs4pExASXGOAZ+4heFPvZs+50giEDDaFZmFlTgJpAGJ7RR8IsDsKyxugBWCJ86o6sWQSGXyJq/IG2CAIK1DCkqeDEzoDlqQQrUy0LES5UmT0Qjj1XeuzPQIVWAYQAYJtWnYohVOYTND5NTxXB7Mph6oRMN2zd8ZdKfi7PRMaEIgyR+LNi6QdgzEwA0bC1LfY5J1Fp0oNLkWoA817Lj2oO7wA4BRBhzjSOeNYwMB/9MVENivUWSj4JIJMLUWhcgyrH9O3qtF0tqdUxRKMAuBDuvDfBpCoQz5COzQC1dds1gTzfXAwzyWdiZMr2fPpZZVSbghWAO9pHrNXelJi4CiCdUvE8TuPScmqs5L60lsKbNGj3yib1PDMBIL1FxkB1UseaWIpXAF2CBXHnay3Fcl5pLKnOK0ewhfQTDpnYRANksX8eaW9JI0EPBQQz24LyKN+XYoAgtH6CudXpms6v4gxY3kfsnZNP7C9lxJKdW/iq7mtBCCnmJc84nzQdS3HN8lt1qsRztNKgufA4+54ufF+f5ZKWLtYZayvvhbu7ABICU5J5IUEPfKRcndDIPKbKa65viX9yPXbP3jcAGoCeBpq1PLBrRg9VkdDf1quPpe4WyRyeFUZnEJ0SmYGZ0VkaqgzCpfElUW4KIHT50v/qYj+NpD+tr81K5wuAL6VI4dybekE3spwjwaxQ7keGEoNm1YFMQyBbU1waz+lUdBAOWda/lphdZOxBwYbqCpjR7LqTPL1kcRX8g6BPySnvKPSPpBHq9AUkS3429A/bDIS8J16SpL0mAIOZxBrB576XyYxlwjDBcz57YBZJBwADQMksiWx8x1KOF7kW+KEYVPZHAXSlqep4rLqXe5LXtO8vvYzsUJdHqPKSz5AYxbJwG89JihxU6lH1flwK6IjnaGWoyFTFaVpgvUuzwTCTzecH1IcI7c6/zduvMGOn8kc4FCRxUZXnOieGP0/2gbYF99LSJ0/GZAyrUdivMg1d6o4GthSJUunCLxE4C5wM12sAhAEJQEvGpoguDn7Kp0s9xffSwSVBW8TeUdrmcs1ogteoetTX5dmw5LXIQKxxYMm/LRl0lR4BHyg4Yp+gWbnEZ5EmYVOQdjKYnfRLWdS9vLteK+6viN7D4ZBpuX/JGxpLJU1TZVYHZuAlKfLV15L9Yqmh7YMc1BQ0UloUJK8CzNWqGGUJOtORKQhbhZC4ahLje/Up0rLwfTjnmcTCpBTXCRBvBaFGL8N77/XtkLZkuQ/X2JrxDGmK58vBhaaDANUG0RG8I2IBdu4/3+PZ8T4Qc06MOb2v37ZUGEHVW1mt/cSilxz5ZObgg30OdDVdkPLDn8vxvDkhLatRJCsNmBCznA80nHXBA0kskWRCka9KnaOLng2HVeC4yp+vO9eAy+zZ1Z6utMc1Ka9PelEGLuZr115t4fX+dT28ZLRAK2vOcyiDw4oe40skM0FJ6/GvkiQuKJ56tYDZ2mOO36c+pPwMvY4MMMeQTwUuA3CJs9zxi7xmrO9ChgIIh9+IZC0+dwZ4FZr9F7F+X7QE5WA4WJWZewqID6ySi2Qqlw9jXNrEbD3T0LYWQ70+y+snUKKry8HXDehuLEdU1jeYDbiZjszv0XvOjdi2Def9jBlCRwJcMcMNMGBeiXeOPa5DALId7FEVyViCFDTmMU0FlI4BRMp98wyPGc257TN7KWulIA0hAnPeCYC+bQGo1J0ym0dIOFFw7HQu2GpbZ1TS903NYGEpbTA2dHGicK3GfBVOlr5XFTQuzGyCi44RlhGwlpzZSIsyJCP5ucRZFDBQe6CoqpfKYemhB2cQZg1M7zmTDjK/FYWKZFQsgJy/z8wCAghjxBnp7uxr0b3WnVl8fCSeZwjOIlhCZrngJmgcYy8RARpnFG4aADsieUX4xVQqMjyb18f9VlBWf2d2aBUUNcWcgCjpHeHoCaUvAOYF2HYAFunOAVaTRoFUMLOAZl43seaqgKphMgeBRqAHd2wbiMSUyFqz563ZD4h7Qc28jL9JlowzQsVVL31/XKmwiarJqdL8VfIedV8jw5dR/bp31aCeWMrYubfZA0ZiXXOkQV1ZlHtVnX41Ws/eUdJ78khcoDiNeH6ovddIhv5cbhhHxoUjHwEiI68q99XRkAraRMkajTQl5vdCXCZ+q6CY1zC1bQZcpZtLQM5NJFgI+sa6zrXhceXlWOgClPJtnv3rDY6BzHxKZ4b/b3v9s+qBheWc43xKAAAeNb20GOI6pZxDgbUnZWxD7CUznug4WAwCMOgxM7rJBuQFkHPq43DjHv6d7rRn9lpmXZnjkAGelJkA9VP29YJUYzTlXH4PUPRwGpqR2Utph2SGst9fVTFKj1tuBuUiXFZLpfvQSTwfAXSGcR7Gp8LXUORedx3AYM5MUJ/PwmUEEy36PBxlla6qs61eh5jjIkOQmIFSeoXiidJt2q05VhcyM+Hmt8jslTy55K3AHH4D2xtZ7gtIiI+aCZB6qN4cRTe6vJn1bQl8k7LAr4U8O26AlItnJnHBakVmJF+01KflWev5kIFzNxF6nAiXfyMdCVI2Z4uZ7PlFIwDl2RDXSJ2ns8jPkDtOP3Q8OP+lfDX6Yf8qEcS5j2lO+R7ZVk6PrlD2fWDKxOaYyRzt3e5YcKe19PAG4s10wJijZKJksJ0DRPq2ZTk8M7B0opbPMYi+ZAQ6xqKuWXCtSOzldMyNSR4sNen8yTOIavadhs5xLOyB6lboKwPfF7xdMvAVKC0zEA5DBhXD+A7S1qJfk2641lrRsQaF0nla19Pc+RG0MokLEfsbulJz7XHXuGbiq5qJFbqOtKs1gIHQMamQqPv8DHxhTbJccFR651oCe6z8o4rAZtwl6g/ye4GAIfdTIVx81s+XtmDZYL92K3j6go58jbx8OCGQsp3ydBZHn7ouMXk4FydA2kopy1Qtg77aVnTmtp49zCIzDoje8cxAUzX5P8eEYMfWt+jJyfuw135vLTBEVDwUrHM+n6wVT+ueNO/PHbRdgvZgtRdSz6u3kHE6jv0tdoU0QVdzfnBKdmSezwxGCxA2tWxJdZGF5rxIjEs8bTKpOKg/ha8XG0Y1zpiYJGXbDBlXsXA4G+NaCojJgR5y2TnvUzAu+V/pTIJAkXMPQq9Rnmi2OEgVnXtgWd1sn5YVa0l7Lt97TkBPDCSVHWOBsQ+FwdiftGZvkg9jcCE0kh+oY5kxW22rxMf2nagcpLwTieSUcB7KKo/48XSeFqRUzpjVlYQdIRP8RV0Q+xEVO+lUhmomUgnb12QbLtI/5wbMZUN/vNdn7+InVoJLRcm+eHDgrRDMYdNre1+HTrAPWhpR9sAcNjGGRQQoa62/QJnsM0dk4pgBZMCkpgsDFax7bXTJtDPi15j0BaRAtIMdcZ19N4Cy9e59/lrsAQpDMRsxPbvmIOQ4aGb7EPQAcEPJMaymM29Oyx5MZwTQIbHP3EPASw96D8xC5hEgpoMtzFqUc+3VRcFo+JwDBVJoVMM3jRxZGJngREAALXFOvXUoSyCAKPesUZ0w4ptAB51kwiunYJhZ6hplHVTGqpG6r/7zGBPqe2oCq5dMrsroCKFCVKBgz5YOYUSXGX/OwxkJcLpWM3y35hFyV/CRsQb2o6nGM5UEI3PFScW9qciMxoRm5F0JKOM5Zgg2grd0jlBR5TWrEuBeEwAbf6eTQyCeYUN9ziisQjB9WhpBBoEMhamvw43zMF4d9LIvDBXd9H/phIaDjeRxxHVb64vSiFQTB1Hcz3TF594aiMkeU8t0q0YgEmmnca1wZUmCbp5R0NS4KM8r9E55CA1sFMgkDUIJHqeSp8ylQwBlLQmnJK5Jpa+5jbE+yoFWzqTSBD9XjdfiVg36qAsgSOutKDSuletzAJggmoCobAb5JsAFBwUhjAkFhwL4UzcCJcSzBWCSXIUBtOwDR13A4wt6kVw3RDK7U2rskS+9oIMCBOs5q7rjNAFHuUQCk/L3ercAI36o6QT1S4Sxn9TA73FiZhPrIRLl4QAmcsovAZ6otcsmSImetgQzXqYwRkbLxXV7Go32Cicj/Blh/6FkrHHfBx2EoOyx8oahCnp+wthnUM7lBLPFLzFTlZsVfFe9nyTJgEUGkbh2C7pNMJll4ZviTKoBxcQn3WmNoDWIKyqLhddsRW8i6SAbW6+A2u7D58oG9ZS5Itnzi1/L4UxJL9Rnr8nCYkBUvMHz5B7R8EwIbedY5VrQdZWHRS0tLBGy/nUwvnwG9UMI3fS6Pl2DBXXtIWCU6EMIL5ATq7nhLpsunCs1KGHnosuzq+skCuforxx/S/1Q10G6Mf3q9Myp7KreO9i/KiwNJI257NN81s37XJtxV/o3OYYiDhtjFL1iGPSwbSYrRHEeAxMTbQr61gE1Xd62DdFrTPfUm95Xk3o8cGzZMwDZh8z123TsFNg4aNqzkZiJE2vPM08niJOGO7hNZmRLEfsa+/QVZ5KsvSAvZe6CrQqN8jOVXtnOIHAJcSuIq9ZgcGACZDI9M6DIe3XfMrs6kyv4Cue51FZFK09Vo9zwazoC2KrFqrR0uadMxwbLniDWmXjTfy/PGM5G/xzdsZGNyPX7AVqQHSEsQs4VfWfPvuKvdMj4rcnTpRyRtiw07c/VQUNdwmdIZ2jl3eoYiT0AgqYob1kwXh0bhpvoyLSfjf7NRqbNSYfx2Ef8bGfkGbitQ+fwfbWjt7ZX3Z0q4oO2UvQRl6vvH/xs6KTgGYYdCYUOXc57FFxh+2xtrywQ1UOuEZEnFq+0Z1nZtP2BzPK1rGGxHmjlXmbbS+jQCP74Kyaj+ropYwb1qW8UZQb/vmD4oMVC+0X3dLbrCgdPpXGJ74qUxJpJx2/K80t9BZHMznR8LEAJliJaiVRorcEjGRwOx7DLLTsnC6yvjmz7c+3vSPua+0sYQ52WzlAEvlYo2mR7rZKpp6Szii8YOC+VTeL7HPZYOtpzDWyl9OkYoToN68vYND9n36ND3O9QeHn684e8QvpGou0A1KrBkPb6nHsMM5Um4aj+lHyAH+v1ExmyIQEWxEdbG2HMwaaBttqxe9no8EEWdK40U8gTrOUvqepgNBCRGcUXlU44RDqFmcTamvfFs2uNAPxkEIU54PZ9X5qYpsMIGD7xl4DYgET2KnIIvBA272mCqYUS4cqtR2ACD9aVU6GPkc6FzCTrwSSxLyjAX/mzZwxQKLQWe99EfNhDaQSMVDiOfgGUvjdAPHcwsq+1FeMhGNneQBpUeaMYslFOMpQGSjo96as6Q+rzViOJ+8FsK+5lBXItzyAdk3mAPP98VmfAsVsPGs+WrP0LooeHopy1CZhsZu2RhIjQW+beKPTN+16WnHIt+UbAoCVrJ0Bj5Y3XDIsEYVmiEqdvAqYYdryiKmLQi05dlRv3vktmtbnBwCazJmAnlpyPC16OgABygjOUwCqBc+fZleeqkz1DeRVei0ExxUiiS8e2JJ3kVGzVCGuS/FUNMN5HpDrB8nzE+ygSISmBm2qRI8ZvUzMyxol0LJULI4crX3jKQa+kwRf9u4pxRLBEwExHUsW9la65r9zH6bzcUnsF+Ip9dyMxHI2uE2qvsepAjayVCnT4/szs7KBD0ViuCp9L4rkzoJDgSere0xHoEDHeN2so6D+MCtW6PcEri6HOPSUwyu3J7y1fzmdKekjAd5ktolCwGQgzdcxw4FrWwQOvl5dqyuzYq9xrUs3uOnNOxWFLY5MZ9ieXXWyXoApoM6M8s2oLQalGpgjmdPr2jDvHBOzxOitduhzKiepIOam5ZwLPWK5le35fGl88k1FkfhIvQv9n398838sgE9lQgk5K31q+B0msI6/TT5UrlBLtgvaDv/mNYHaFeskyaOy4wdWEwZzUxeEM9vWxWoAZziYyE6hWmqk6tjUxYynQenUWUafRA5n6Z17QexOJXqqRzY7cP94vo97lmApdJYC3V2bhojh5bL8ia1iL3ClXDud/wQJVr5Dn+BDLfrrcDuwheR2efb127m3qeIUFpGnwmKxlAKbqQ31dj4ggJ5VQDptTIO9p3x9j5nnMHZtXkQDJW8TsVtVgZZo0uKe3pzH6biGD1J9HoRG0OZ3P2Jr1u9uoz6L3nIkyQKP0iE5p9v4cY0Cq80VtD2ufuspzcNxMXTJnlhf7KYPDL5obVtzvCj7TaatOv4hARMgcwh3iX2b6IPEGzzUxMY24tRKkEPeqTyCBKWnA0l0e7ylx2utBwlrqXKTdItPyeZE6L5YjgfWYuXpp/LKfm7UAavkctZIAETJLDOGO5dDTrUUGO+9tdkupBivPUM+JlVbw70UAWvNZuSeh4pE8XAd8MVhahwc64aE1m+AqIh6kTicNQHsjWwjURILaIoJyhQgxdJkCtR1Qto+YiyzSvEi8T5kRmH0OzJn2SROBeJat2S72+X0fnlUraQtrZnc17tWcGNDIlGM2XgySCpvIWxz5PpCOBdQPnqHqDkUdqVdYassBNLT9iEeip5+38qCOCJnouyMc0KWlFB3VeZP0Ahg2kZ5yPAZKBb5OnJSyIvebMoGJTVUPUPeEIyoy6tXPQuJewfst11yDAjWzO+3CDCpcvopIQ01bgGQCRPRZVvoMQkoYLQcuJ/+ko9nukEHCmhxEvrXMu7X8WLW0uQqIWPiAmCf21+7BvUp5VSxc4iX/XxXzFcxpw110lu/5udQkosQJKeer7jB9lfKLn1VnxmhbJdkz1FrbAFFmUOQ5lyw9naC2toZto3wwWp+7Z/CN/wB68AHAft5NsQXxAtsmOO87emvYti2i73PMEKDsQUfnSvNsqCYNEzPS8buXqZ7Pe0QkOM77cDgAJDbnZUatGSWsh3j2fgDsi9dEsPt12TB8AZJU0qpQjzbcne8ss9BBQ4wRlzTQVielONgahbjsZc7FgU3YPy+jlNkzi45LI9adJXxAMGlEiyjACOZbGhw61Bs79iBUY1QNhrYyiTWTjlkZ4ZajYRQM6oYNEmBMfd2J59sZ5zRKWRNfAg1FV7OJ7LotgEUwoyKmYjIyAGT5N6f0UuBaZpEm2NbiyJg5qZkCiN736APoafMGqLK/DI00Aw3dp9oWRpe1iXB16sU+FdqoDhQDDWUjxQUoFZjbgTRyWBYfgLQacCglzVHuVKZQOw2BIIlro43g2bdDjOabSHgc5phFIbrD3/cUQCn5QfBU9uZyYUnkJVVAryCMRqloZvQ5NYeTjoEHshob8iagRhgeEYkq+x1gv4AE7jlBWmQNtuLaKefwWnP+8rc4FxrgWkoaxQ33kpVqR+LAUwBVwkUNABB7H3gmr08DwEApyzUKXSzgBbE2aMqGmHJMZef8ShqsvG58YNlefKY6JQ+avGoKmqdNI4FnRT6nPFqd4MzMyijojHPiRrz2XH7PBH2+psJPlPuUr3SQhPN/1nPN7KQwrFwu8jnMwU7olXgwp0ynTlicEXEGKV9RaYcgtHyX9JLnSlmUZp+6GlauAQbiz/sesru3Zsk+bgyELBBz0Mx9xPWpv0kFpssFrdOJl+VGUKB5YI/yWSTvwaWKCPY5wN5YiyOGOgvmNFSBZx8qOIkSfGI/S+pUOG0y280p57VMboLwdPiXTNmCKcLgDpoqjicpe640vk0GRukG4FmgEkbOamggaJn3JrYYOlImOr1EmRK/xnNJ9R3PwSyBNeDCqoMiB8cMp2ySZjr8bH+KI8GvRlpaDPeCEeCGDJpdr3EBzEBQeB/flNd2pi5QSAPBM35WPI8if6fOcKpFCZAWwF+uMUNX1f6mvp8moONZFsd6Yd3FwC97U518uR8IOcAtZeZ7fS8cBaQJrlXUDQw+ty04HEsur8gXw0uytk0Cg3G9NThG/UxDvLbJsCF6rofUK16mnU3bWsgV8hLxPbNg6NyjHGvdnf5DC67KrpBcH2mT2ZJjDisJ7IUYeXYz5SUHnkjBbMQ609uhELNt6AjJ6p+L8uEIGGcggn0yDadkRlDlB3+jBOEzQG3D2gQSmcbF4YsLPUL+iV7hWNaXPJOOEBFx476BjvpFlxQdlP1RL6bvCnLNHkSPzEinRwaSq07kPpvcY3AtS31rqxTqTNJ6dVhSPqJgNy3vX36Pf4ssJb8+94XyyR++4Ju15dMYAxxmRF7KwIg50WsLjhnZ3xI4Ar5H2fIlHZL27wzZvGQngsz+eqZo8pVPkR7JW82jsY02kwAAHTECdHFb1+3uodHPDtDomwsx+1x3a5nVXWdyjen4KW2kaEP4mdMRKiIRKKcc6n0L/koWkTwDpzvL/q/Zf4gs3SnWZml6cIK222wz5bFP625igUm+soQzKzZIq1BgaA5RrA516Az7nxgbysWaDTuB6CVcz7Nm2afPgdnVVb4mHmFw7HK6rj1almhTNpEea8UA94KVhEZDM9YEnRhFplHeNE/AivNBkZ/Od0zKyJZcq5OaepsymXZhPmuV0y2wUbRhgcZgGPJ/ZiN7wLMJekxZ1vxbWW/tZ5utERDX4nMrv+PZ7NU5yO/yXKqfQZyGeG/2aw19P2k3e0l5TWByA4kyPS2qH//12afoTsu6MaboIYTGGOF8O53PsMk6G7pH/aNMVycOhyP287n0Ejjb4rZtEYSHwwGqXkYAz4xi3zTPUjMwZYKr+2SSWnLEoRoxnh4AKMjOZ2fmBpFMCWYZJoXA8XAERLDvZ/S+RSnAGDbhdU3hrmnadtDhTHIFzklFthQJARV4kz+o9wagQVYEjqoJ4AAjhSkouNMRRVCWApq9Ryph0YjoxXilwtKa8eMMQR3H9GDubUQhCTR9DZEKrOlkrHtQDd0EoMwi8XIxqeUsEmnpi2e+OJms10Be0/5tYXDR2RLOWV+jMNihiCh4a4J9L5EXad54cy7r5jpYDhy/R1QXkN6i1E/Vs1svojcsvSFJVD6q5xVGpStFGgMLWAohmHtgR5H0Go5aCkYgMvGqsE6aRygkOmk5OGcRkl4yWY1FnYopBA3FWIqPrEaWP1GW5waY0IUvCOxiuqE9RN4XKewpKzgpm9kpRhsan2e0Oeir8BQz8SQs6aQDRRouoXSRypHXNgMgv7OcOffArykQm3rIP5a9MQ3iaeW+Vg5lWXZV1z2MvY37ptOBYDOOIgzbMn24KOVwxpJ/3Xjnd9zeTnkRL3c6OOCKgSTC7IIiGwJQ5nlXUFXLs/jM/PbqqDFoW0EZZZhtb2YLFHsB6mfNO3BfXneup3Fo553BhfI4CDRU9t8PysFuOsXjnP17dTL94iAKIy6vqZpGAWnJgLMH47g/Y2IIsumvwLJwRSLzxvqZInT61rsBOC0SQ7JnFu9XJ4uhtXDw0KHXSQMub8k3bJYPMZlUzzeGCrgcDQBe9mjM1P+UmZap5DTjDn9V9YnRgioXKRPjroUPtLwVOENWfQ2kIyUDQXym1eFUHcso341IftCKxH2r3JhOu+p6tmb6NA7LQhoSPCdekVMUVRU7HW9AtLng2iI7LwBt1bF0BuY5kQ/gcjwCMPHcAgZtppr+qwOqRNKAkHLG5rCo0iSft3A1jyuv47+QtwFFSRhMHgzD3X6MIFWRQ8t5Ff0A6vPC36RvZXZEkb31WovDkCV9KfDD8EnHoWOZocVh67SPEsBV6zcFx2fxPo1U3r/Z95hh03sNLiMc9EMVczdhMKcHeppCPbNfoNDdnYYeWKfhr76uukU0xIy25nKWrw3UCMHschlpADYPKOT5ZtDVBgUhPs+hHSaDWsGQxX0aMsF4XJsH1D34Rp5j77slS0fLlQTe0mBAIxnZ9ivagCyYXMLmKeSYmWmlFH/MNP7NWZXB++rYrgNGDCNl5m7y2Ir5IZxUTJjsmT0xobX0J550lKe2p8iszgPSAx2JHI6QVVjc/PifoJNLeVMN/eqM4LmESg1dnntccYGtKydXs0KqymPK/aqXNfga6RSmU3qwrUU+D3VyXMtleO1jjkrr6j29pgJNosTWdLqtbetMZDE6mk7PgKC5c22M6TQ7gvdCxqrZzDwrVtjQ9qgZUeLP38QSRXrJXjJZZPRijmNNp6jkflLeR0aD3zhwAnGE0wbPaXhgklU+pA86mqCKue/mfxA6kZKm9rE7Du5eYYMo2a96rwb14zz8LAM/aAaG6cgJp37hSfJ9xcbTkzMQjyBxvYo5PrXUt/x8+Tv3pBWn2OoLMJpjchFp0VpRpayzqoi5yBQKIFZMosmSfSb+XKDznxiWtolWG2flqXDoq4Z8s+/MTFTxz1Yc7MQY2LomBpDfeS/DN+nvqbxsNED82cq+IBJWdE5Mocydcf/ISpdi+4H6ZcZyu7jfjL6RmjDyGV+f3cEXKZw96v+5sWMMX7Cge8bbnJaZdzgcTFCoOKNldKf3LYA8S1UBcypB1cpuROIeUwEMu2fvzUtMFTkxM5stwhWb9cnrPuRsYqKFYcHMwXxJMIIBfwr9hn0/m7LVFsAinBk60bC5geoK3LWKAaj8mXuoLrRba5BSBkDADEH0BiCTtyZQsX1k9qJI9jVgRDEaOTMmyoxLSQFAo9zWOwNsJ0jFwtyhKBG8hx4lCvDzYi+DmQznAIgCTZxpa2+4iD64oBxeLhtAxiMec6Rjax2MkAokJhw781XDgIqJDqt0wjL7ZcRzT53oMGBFZxXvwT1AgC0XIHx+VxJZMkx6RBgn9dmd9IpiLxttda7xDMu/dCDQWGPp+UzgQ+WxOAEArJGMUjbdrJQHjWXWxQka16gCKhWHlOsyA6BmDMaDuuRdIqRTvQ+kPxPX7t8JX+BUK+MMI5NTmjVpS3gNWyvLxmZxOITiVkBR0sq5P1jbB8Tz+3Fn2nqJcF0aaK4gqsNdy15wLbYHzQw/3j3JKs8mFH1V7G5EdGazpcqIxtd56NHTJByFSNBOh5zRTBoclY5aoSUC/0CFmrRkxgOfe6UdGh11raQD1ZQ7WZKTRhQdQCGE4mHdKU0aWIz73MjYX/+39hlT5Z6tPGr7XYhjuZrGOpbpoEsmWo1wV4CC2N8FuDhQhPi5UzQXg56fy9YZFcykrOPnIyDAZyxZjOLPz5NTD55U/zt5gdmhQ6fpVXjk36fkVueciGTpLfnOjU+rhGrQaZn2r0/fNT4+bBLlOpQ25rASQDQcfJUHQx1QPrG3DUw2Uu9Rp7WygXQooT6zkK40jUxmeoAkUBzeWjJeyl6EgzrIqDqG82/1OXSaXjUel/jckr0XV0i9HXdQjelxQRMOSqfSweSDBuTCUR+6CqEHFVmaSKcEaa4azCZTUogFm65LBoCQSYGHIFA2u526XGfJeqkCknzEA3J9ugQzqMfd6MtCNQtaznL+NBaCVZleeCGYL2kv1+AZ+1p1b8qK6sQzPZn4i68IEsYz2HnFgCg/c4VgwgfmFBllZwybyunv747VFYB4tsi2lVKuYozVFhPisr8F3mGQwTPh+hZyS123W2m/oGnSC2lXxILzHLRmz6sh/3uhVzOKRmC1LG9F8DWzhzrbC5RyNREB2wM5qYQsIh7JEn6v4qBTO8h4PfO5p/6nPM2gcwvVlA6nJHwa/byfYf0RLU0ol2sblamUdXTSEB4azx22zeR0wU1VZxqGMr0UuNN5fA36DN+SxHHR31inB+/TedgCW8EcUMAyydTU9BoEm3N6+6CUq1PZh9mfUapcp0M895//RolgYBka2auuDr3IUvJPuRaKjUB5VhM+4uyDV6tjKc+be5iOhZJZyPs6ZicGjsQP5Popi6YqOiEPGITWwHeqE7tneTJ5Jhy/6jSSiAcMOHKYVy0vhNO7gI5iS6aJ8tZiaymA8/kMltkiWvvAsYlbmUOz1VXz5AjUPpcasfjoSwej93B4lSC5qGIf+xqI9L2Rovt8pxP39IbIJfO9n360obcu6IJ/I81PzSFemf3NhBLX37M6iV7HvWZ/kEfs743oS2p7Cll0edieVdcgaT77al78jXxEvpAylAKIgWSJQxHBihzAkXJQhNWMqWyJk2vLjCYN2uhg1wLZqVd45q/jfBdHSW+kY2kZWJzZ4ocL1KIPssqPpcivJyvVPeJniZEDU/hztkafw4ifobCEFad38Yzamr1P8XQ+nx3fJt6cWlprfIbXZ3bwjWkLkTmjfwcJlhl3+3mPbD4AOGwHCLI0N4hlWk27ZZw197YnuGSGFaM8jIJYRtWM6DNBTxgtKIAL8Kmpdr3eO8ZUbDRAxojnYmPMMQa2bR3cwbJeiESP4uk9aejlbV4GTOBmWSjm7KGnnKmqY+ymNBzETJ/aYsbSKhCq8jLFkim8YVxgHYsN0BnBk5MFXBAUAAgBvihgSQPNnk1COWVGihMzKERsf0IUSUmld4ZDCCEH2LWMWchMVoLSKLjLM1SjjC/eQwPqeg8gAmIX4ib0p697Rt+86TTNiVGAR5e998P5fDIndAArAE1dWLizZGZkJvpDuPOxlh7zXwotRvAjO7XQnDhtsweJ+B6TPnjWM8DHamiAILpsYZYZ+1mUCH5GOs2gUlh2zxQHEqDDSZeSCSoEAdahGP7zYrTUzD/f9+wlhVDk5BUD5eW8nQYjuuPUVyecmeOvpFh7lCUnOCU90vinmK8lxGbctCW1nOuok7uCryN6VBUzecpplaWk/igms2homkxMuvB0+lb4wt5BKtGAuw7WErxGGamXQgfIBiDSg2eqE9zAkQSgycEyK1iZXD+qcyzLQgmC4m3Xj5fO6dUhU5wftrGRzRO0KUkvwf8LjzkgcIp9TWUu4L1kEks1YgsQC+Mo1zznKoPq5GwKOyXal/X2tfE04gTUHBhIg80fP3+Xla7ypRCwHDij/2EYcS3OKzUbbtJxUcA99RZggQK4vmkC15+cjmn031xftbZBNDNLpyY9BYWWLAgrFWohQ2nA7Vqy1Ry46RwmN4bzZmvR2y+uKybzmTGYvcxqCVo3nqrlk+TNOqiEzvwLIE1aI93bZ9zgpNwguPNr0hFC2ZgnJ4jhB7qWmGbghnzYoG2GIUZ6WBpGB11Tbq3GtMmRAuBhjvBJYegXriU7BMuhn7UOL5CksTD0S5Tf5XQ4tQHPWNfACWYY2b016Na3ZGbGGnVl0NHyXGag1rLaoDvNcyLgR7kG+VR4T9DQktjnOK0wuHTRd9z7akiBK2OAbSaf1Wm+qTMKn1KmavJKBHWUGiH3gMalpx1AVRyjI4LiqpbZozqChgxXmME+5ghMCRE0pTGGwOJjZvC89459d6wC9WuQBjToBq4/DVOzx7QC1PuNgdPMHjRbgBRLQ6vwhGTFjZX9eRYO+aKRd5pnvqWxpqrLQD6WCweVFN3fW8dQd4LyP6TjjXKNMoTPQadc0ipZxQgg5HjQqesYKXK8rc5i6n7iSiYAiOM36uYaSMmJ44gYXR2stzq+kqb4ouyndJijZHvZ4vNaoIwl3QQ3xXtmt+Rk18ATdRUFg0rhwSXgZ0S56EKR5H/KkfosEUwpZyOpVGMHQsarRr/0Sx5XpLyzPbXebFUOwx1pqol903HnuhF5Buxfu07BNh4Jp6A7vflYg1VNzbLgTc8wG81lFZMX8CmyUyRwAHUs+76KNDS3oay0f0RlDmBYoPZzo3OXdsHScoq05nYKShYd5cNlJUjIey66pR0Z9+J5afJxBuGACOYEH2WbBq6V17KNrU6gNZhh92MCgeMe570Z/JfYkQ4dBg+03JOtmip/G38wI8zpdR9FRnCI3ELRfqppA4RfxaLtOXij0LfpS4nkCBuUk4M2yKOcwh6ZyE7v1KFha/v7kwoj2MXsYvGsZKo2oosRiUnI/RupR0PAOiZJvYqU2YG1acd5Bn45D0u00cAbDPIo6a+8T1kfjyFc63CaTF3NljSz4CXzWzRMHdDdK1Aay/y9SqYGzkJGU8p+9tdndvCZx9oYqnuNO/wBqAS2bcN+PkOhPj7bMqqgE1dXV8FYh8MhyvemOwxr/TsjRufzju2wgdPnWEdt/dPoNTXA0TTBYYxoHgkk97FjqmUVKozhxr47MDAFG9GoMYNQe0lbVlWMyQwxgOnFNnbcXmfPWhSYctQgwImmDYftEDgowI6wfCeZKUoyJSN+KVDgYAoZXXOCZ4o2lSsddDMapDLdn2gkjXjeb7pTrDII/HmqgyOMC9NMxgCSQiwjqC0cWdMFTOvdnUkZXajCnf3liNhrNJJRs8WxNtMIaQ6cxu4ZeeoN5v2+mz+rNKAjjYAoK/UD75ITjKVlmfDY14nHVPiqiBLhMEwoHDVLrhllg3o/i80bywJxr5olm4M6UhikETyLck+neC0TSLCKpB8kGCLIoOFlmTiMYNtz0HCfdEQxkq9wMEEgk8qdTbmZ5l+jMTmlUjzDJBVzVY58xftOk6JUNZnxxX1BKHGN55lOZ53NTxlBTWzl55bvzbGWgUvhBaO/y0EuLnfo8EAaduxZkpkjBq7SEW0KgH0+e9kz5X4tyqFky1RHcgCd8lSh7TWUZJ08XAFW7AkVLarytX0XZAZAOE5FgicbEsjzPBZc7eupWbj1+gF2XCakg5FKEgG2LFiTe8FUfynrzj1D/K31DHtECQDlcgF7hqUc1CMDH6SVMWb2ikLSTsirOQEvBcmJrbqsrToKeUtV5YiQdKpznb7yywyfqFbU4vjwa021kpExi3zrDToRhosODaPUQDkAb7xPnQCn+92bOIfTQ/K6FSQHSXpmFtdtUz9XRGVGrGereyY0y71CdtTSVv8OJ4HGGmhMOw1xeJbRMvfEW35ESaP5Eivwk8I3UUZeHcMofXFQHDJQQCkjk/4AYhMP1iBlPESi5I0Z5DrSOU9HqyIDHwq4Qep0XTIzWTJskCLlF7QYsGVdNSvWHKUjnJgzKgNQXhr/hrMJyePRvgAJ7pPuUwiknPZ7z/W8VUlPWMB60L1IZLnyvGK/BfR/pQzkfQVrBjmF5lxpkpmkYbjOKss0ZNsqcfOG7AeYTpD8bjVqGDClDI+MkeJYpj5mySv7W4Uh6ThjFAFFxwQNdbaZIa80z4iAWsVMd2zNAUd2GftODvEwWcAsEHUaZJYoMXzggN4tG9jp2Dyg3Xmu52edZqgD6VisVQ+QHA6Ue88gBHsA0ynXcnK073P0zZM8X1b+GD5UNPFsI8nSXbtuOigrFVeHTsU4rZmDO50Fav0NXbapYzOI62EgHKOUXbxeLRsD1DMj3aHDIA+NSGaFkXecprJXHveMAVFLoHDRGfqXND+mTS4F9y2wGB3Y1Nsz34djzSmApCMoZI6avMoy35QNWs6VzCbljPi5ZUKwcu/zu4IWutVofJa2+PlioJ9YN6RL6ArbT2IP46nE+JQDldaCv4s8rDwflWbUY/FjYnXK6kisCae37eeuE4etW4DLZRgzkeecnrmbwbSYnkrnA5L/2PsdIhikQ2SAmtegvKdsChnWrFoOAu+PlnuxbZbdb+LVA42aNibt2yqi6TQcMcTPb4PEF1wjF2g8lU7isP8Ct5gsgzJA50GMUl0mcR3xaqaJ4SXNaFgcY5ktmHI6M1oVia1n2J/EDVmV58MMm7XRYMCvcEDQYnMcqTNxoXhFpM4ZepqZbYvzGRJnMhls1sTVOhU7SjJTxXSy2jSJYxNXZKAyM3jJW/xMreSwQUnAvs8okSY/MCGjt+b7lmcVOFw1bFDr8YzQo6n+iHO9hFaTLxsyYJOZ+4mfKs0lkEq/Cvx+ic2T1hTWb1H4TadtaT71OpKbYBJH61n/eK+fwBRdXQytfSIURqTTU3g0HnSDbFs4mejZ3r1Gvr44qEMclYk0bIfNsbIR8/l8wnbYINMcdcejOct0jBDcxjAGSscc5lDz7A8WMKRR6hGWKM2URWnY3s+Imli5cedVCqOms05awz72xXDvvYcRyNR0i5U406EtTo4mLVKaAcSIcUaNOIzEBAh7DPRw6lSwYYSroNechBXN45uYMYL0SgeDSgHqgpXB3GyInmdcq2dYZPkQlUIBzsFIdi2m3kZk1fcyyhJ8ny0LskVWHoVtKNo5MVtblBj3Ydu2VEgF8UfjXK3ZLNkPZjv0iKCSubftYDQKicEfjOLWsmE6ORy6LREkChr2ZYy9LGueF5l9BBfi5x4AUDzS2vK7AI1c54sAtG5YMqIaChJFcY9YExvVRs8IApBRjXqFernCRPa2I/A1xeJ049eVIAVxI91BYXfwq7pk0MXzcP9mZm9lL8h0vKfhaufYXS5VkMW+GQTp9WzSqM3+iKSBNf2+RO/5u28oS0XpGOJ+cc8i27BEu8IpVs4RyL53URpYsh+dBR3k8izq8wCWPMMgTYNSSTvNhWOC9NKYhSrIYJWDXGApwVZFGBHkkaT/qiwF0QBd1rPgWoyX3bAre07HiJXzFWANBP8WCbOsgQZITDHzbaX/m3TBR6yAIv4W5yvB+7ZPCL6iw7HyHSOM6gYNZR0Pjs8xsTokSe/hqJCUNeTB4AkjZkCxADG+pssnRRr37GWzeSDOaMDIIYwPmLNARIBhRp4tzR0NDmIYNIj2CH4+jCx352OKNxpMDYUnp9EugVTvPQJ1ZphYWU51TiSIVYxpeg6xHRLZPFGyzWcRAaVQRNgLT8cEOiTGsSEkGXmm0ymNhwxK0Dk4q4zkmU5zYgb+cP0TWRxB/5ntYPxPHs1gjl3XAz9Kl6F9h7w/IoiQzx+crjTgJOiXNF75cArLZjWuTU4jlrDouGJ6CxXRPB9x+o9MMck9Iz9WZ1cN5i0ZujQSyDMEyEg9JvE3LdjC96011IoF+zyN/2IYlHUQAxqPJ08F//nPVYYoGMjxzy46BikXXWiFI7TIrPibpHPCcJctInvVxV28ZE3jWqZHG1rLADL7KnFoC9xQZFYtdW/NOLFMOw9SKdA6S7wyKBsO6HJml5nf5DHxCg1m9xFH08fMyhs+l4osdB3tQ6DLWVoGI4eKbJFlM8bAZAIBEH33tm1LveuOzbOXMFs7gpbOEFXQWUK9CC1VCpLtK8g7NF7RSnmpCWlbexXTbiwWCOi2UtomPA9en/In+jqJQOfwnqgMfifORWNwIDNzIKnLlXTju38Z5K2VP3aOHpygXOWjuJ61Sao96DodrrYPtUqAGIabweedU7Hve8ksTHuARjOAcGpqrGWlCyk0xFfN/qOOMYemxt7Y50orIH+/9pStjvjXSnaZvR6qrT5lOuOV/MDzDDyi4M6kPWPfFrVe5LIJ5tgBsVLtVnTVebekGOvRlw6IfR+AmP5nJV301px7lplSbzYL3NZeY7Vl0pgz9oADb9jSgy2WDGM02FHSbhqh76amfmCVAaup4DqSdnI95zFG2HzGXkwOSQdO5CPoMOcdsj2T0ZlVJ4Tsn5m0kzaBO55YJqoum5w+qu0X2I54z1/cvxzW5vZUBD3XIBad2lESTLoaZQaA24khH8rPynVWuSxG42mvGD5gGXatCORnqIuM/i6u7+8ziSIkAfVe+SyfifSsqoGBELqRvgAs/Bv2qesyZqHv591+76z8K0LU79P7tjj7l6Fb4Nfse1l6vdrRtXLUYTnSbk7bmHbD9PL2kEVjBx+KXM8gzGd9/UQcfKfTOaIuh8MBJzrqVN3hdsTmQwPYTBkwBrOMlFRWdarWwYds0LglsDLBYemevTccr66CgA7HwwK07bqcJNTMMSFZ7rNrMTaEjUM1ynusl8BWiJeOqmYZVqBit8PYx57OGxfsY6JOljsAAJjcSURBVGQJKkF+aC6CFxfgY2YZsojayOdF+RiRsdzC1pRMSqIx28EZ06PuwOtgmMppzImtm+CuBuXULH2qzMUz4LNSiQJwAb9GBeN3OFiMKINLWNAQyswHy4IRL23N91trnn1he8nI7QImUJxGwqh0MiejKSzzZobhnJmFN3WWLCCP6uwzBQ18j/m3YSXnJtBm3DN6CDkd99aDHq0PVhqmgIHKABn+XhoeWIW2P1Nv3Z3EBQIzs0ezsWs6MhzEQ2L9qEKFIGYmsLPn5ftp1XTRnGRHQ8Svw/4pAma0utOg5TlEerjmM+3YESPIgYigZPYigawZL9VIiwb6LZ2JpANbVgKBqeqpJBpnkCPQ18+x4ar9LY0UApGI8iDpOZ1NjEoCAJ1g5szLjE8aYUVxFcO9vmhws41Aon/Qrq+fNo7g3+Isi9IKwNaCPMJx5d+lcVguad8JOk2HlcAMSKUQ0HTO2+doAJpxmTLEHoU9fipQgGqU2QfO9f+js1ygoT+4Ifn1SslYFH4YnYz0NYD9tTI7I2V2nbLuJG0gcqa84F6oOi/GmV/QhllTiHJtl4lV7hAo+sHFrasSCae8f0anNZaWxoznBJ3UpRDPYtbmxrbJnn0MdG9N0Bkh9mgq5WjIIr+3ASaTxdbqYgWw3Uvn7L9STui9Lskj2rBkX0rrEREdc1qmEATaW+hhqtRKi9Ode2ybYY+8Zq2T1gxUJb+VjQQN3+7DvQBEea36WTEjx4zCzLJdAXEFbenUCWcfeSd0UdJ+dRzx4MIAJU/t3FeFyNrLKuS3Z1xFZj4yky7W4reo8jPkecgbeHSdAkViXUZ+ku0XHAuF8S35/NUQJpYCZMlyrGVdfJ7hRiNC3lbST3nB+/P7jcsMfl6NkdWRZt8R5Xo16FBE3Fm5fj8yyWmIRVYD1rXAsCFoFLjQDYdAMVy0XqfyOXXTLJlsNBTCoc9MlMSZNM7GcLnMAWQ7y+Ws/Js4KJ7dZZAFpXOfwxje9+i/GfxlmxrrzPYS9iEGaI33d7SWA+FEYDKoyPTA8Y7PxxhlCqVCNg9U+HvG487fMpZhDb1WVfgamD1OJ4H9nTWtEjowjPrmbWiaGfjhaCPNTOvnlTrLssQXjMS+Tc4/VUdA2QeTyRT2PhMhlHSwONUa0sHovFoCt0bfyXsKRLVV1e9a1sE1zbKm0FWVb1zm2sc8m99p03iw+V4n7VLPxX4DUbmwZh+v/Foz/RUpb6GlmkaYrde8rHy1Ey5xVTxnZPwUXuH+TQbTxXV+qUpiQG1mHzCeewbb1/NnZqltWuKz6c5X03sjeI60svCk39+GWLrT08+weRadOaE866rsd+hhl6cC+/xGXeBPng6ozLwUVUx/n1jaIJ+krCQOUDrMU6cIZtw6ggmKqPQjNjIc5ufoTsvwC0gOz6FNlwkQZotRRvVOez1lE8+LwZURiUYphwJmOX8p2Lu7RURYeZbkd5cx9tVEJswOtuEzifcrP1OUK0wuh43m8kiErRQ05dfS6mJ9qfNUPLczmjhfEH9bJjfLk0fwHafWkv4DbKFUyhRMmP2qAdSkizGAQbnX4jLU5wElgBjiZfLfryXmoyAOYeZ19Gv2YI40wda2cCr7xi3YO2QP9TzlUQlAVVzAva0yRDVLve138rLvTdgwzhPlc+TbQbnuFwz767VT/Pd/fWYHn4s8NGk4HA9gZJ3G+PF4tJJXSWN/H7v3tbPR1sP7zW3eELaBRLJGwqHAeT+hb1s4rJilU7OzMs3VBMDpdMa2bRj7bhwOAIIQCmMMIwwHHOfzGdo39A2RHcdX9gx0r68bl4wmJRDXKPk7HI9B8IMOQEmHkIhYM1QXlOAkGzgh0Lsfz2dCZIxpvQEvyvQyMmCE1aO/Vgp0evmzDJr6pRKqiyYhYE+lD02DJr4zFX3L7AsSOA17OyeP+hSgCTe6FChp89l/hYS+7zsABHCDIEp30skpUUYSKfb+cExpjz1SDYDGacx18jJgaeRBMP6PoPQzcLlNg4aClFNwwzngGZkE+JU+KczzdxPWVAQKllCvSrnyBo0naDpBWJosraExM9PPjFGqoBsHVGGY8j6uMJVG67TJlhHdVY0UfBqasR+qmAK0mSWSzS0slq/TaUuaq88yhD11nO7V+14g5ULy1UTtCxIGBZWOsJTDDJgoSSRdKqPaZY9LDznHlk7zuQ7KkaX0TMu5sU9OKFE3vlBAtybASlAkoYynvxdDMFCcAJo8QydXlEvHfy3Wb2CogAyk0UwJMWZO3ibgrMY/AxHVOOd9uFdOiotitPNORy4NBOtlAitFmMxiqr1GawaEX5e598UQ/zRDn/ciyAonjp8FnO5Jf3BAR0pI/oU/+wyBxFYBOQE8WyUETZcIcrznvyzP5n+J5uW+9tRlaXDWyGErNK8ODFur0VuJe8X3CDh8V1oBOaT5agQZaDW6oYE5dsvSCyPZdywyboTGRUvdhcRa5ijY4r6c7Debl5T487YwZN2hXwJVaQQjdIc9j93Dvvt68MICiTMyC6lPVO18F9rXPJPQJUIea+4HtoyJgcy8hmTpGPmVAJhyo8oLlqIsziA/cuorA5/5nAj6IOhPg450H3qChjKqvDA+kslzXXVm6MqyLi37GD/Hs6RuWQIfNArioZyuSr8a8nbtr1p7XmV2rkf5S2S/4PcFYCtWR+ayH/xMwU38TKWvNTikQet1D+JiWAN1dMBWhwrRUi0pNJmZWErQ4sJjZpkY7xKOv+DpDMBQHibOyJYX1NeLMxNF5wQOsmy5MSZ0nkPX54TFPLPQoZ4KE7qOckztzJo7z7h+Gj3MKAKyfydUoZ4dOmLPLRBhTqSBvnVsW4+2QKTDmmUSziiqatef0avPs79EBFKmR1anF2koHFpx9q43/XNjqO/R5s9l/NZ60jszN3oY4jx7D9ozk6ZRj88IgG6euRw9VVEDT9RNWZLdIjMqgw5RDUE6jDIyLXy3BgRqb6w4b6cZ3rfSoslpOk+qgz+ABLRliTTpgbQe2AYAmNWMsoe+Z7kPayaVnXPuPwcKMss9ndIly8xphhk3Sp6kDacZjCAvvdbqYmYpPLkaIplB6HvMEkSUa0Eker9X2cfgUeU59rnP/WZAWnOIiSqYe0m9to/dbOCxI1/e5sfxTosKLbtv6EfHRObIQAZucwNirdxT8vScFuzrG3Vq9vSN4KBqyC7KcABWGcBsfc/uVSiaducblxX+PkQyg9f3X+C2SlQ5OK9MlqNSx6dMFMmgRThkoZahBw2MpMoVaUwqj1LMOSIQkHtCRxyxp12r+itqxhfpgXtAPGvrG4udFjiyJZ43e+0iMSDub3omv49IUsgBMgWDNjo6HWcT9zYU3pHQ78TxvXfMSD4qiUiLHEu7oEkmFSWfVblTBtyo05iqB4daYvlJGwsLjqb8D1qISpvE9awsu2xF5tIuIAzP35WvJ6rUeyHkJtdADJiyVHLfgqdlwUaf5fUTcfB1KkCFGWbdh0SoRQwPh4P1+QmA3XA8HMNQtEEXHlX36Nx5P0cCwFBzMhyPR7TePevPBFBvlpVH54+IDfc4n08OKjbQk988HVkdANHZRmXNqM22HSL11RojSgputczCfezYp038DeeSViDMHgLZs646xyCCrW+EhWjNCWAiDAyW4G4OjM5nc1Q2L4nYDlthSJqkqYwYadU5IT7C25jGewRJi0m7GoLL1t77mjlIB1jg8zBsi2HSUjCqKwKuwT8ELjPuNxnlkGwPGuB2Lte3YSpF8Dlz7GNHTHbVIlSRTjPbjx5KnNzMqKiBOAngYT2fWjEW3FhzAZfGpUZWakSN6dQZswDYzGYxXk6nJsH4vu8BzNx6iuEFkRngYCEMSdTmv7m/VMz2jGyIzTOVAG7Rn0Gtt1edwLgISC+xndMmcwkz6KisFNClN01O0BrRFFZ9eEyCuMiWK5FN9gRhavjSiJz9INT3zRmz9bZGwjSfgYCV2aZjWoaC9eUgXUrwTRp5cWIGEEp2hjksNZxSVK61NNzuXxzgqpFCn04hLP07EM9ZMq1QjMOZQIiHU0tNwhiXdOLFHkg6/CzjWIsRmkqHspwGUm5EutDMWJyw8qQLA7nI2Hzf5p+pUjamnAQY7c3oufAmZe3wc9TyPspZVQOcvB3OB18Xe8vwXKwfj11neY7gVVobWsAGlTVlUMrdOHM1WEj+i2uBrO2ONM09zQynBBWUX/t+6VC179TG8NyTMdYswewBJ6kriiExHHj0ItMs6j/R4L13nN6sBB/er5QGfYJQYI/lsP0EZVMtaapBF0e7YJ9UbC6fp3oPE3vmjZlGZW+4hoyUu+4pNFL3n2BcQOdh7ml1nPLz4geWJXkpv9U/ExnaLnx3L7kQ8VJml1MB9LkfAfiyFD9KZ+Gg1yPnNADsPDMTuoXzMQFstGloDd2DcjS+WYVnZz+BkU5U4wGgltogzdDgbfIWKxkqTqj7p6qYMonD3eBAZAgshgEQa6fcqOeRwSw3gFhKFLI7230QiwgkHBG6nKEWOmzLvSh/EmB7hnGyTOAX/t3o2P/Av0vKgwTvSZND08FaW4pAgb2U8VIn8nvhQI3gXItn1wvDMPa0GCbku8QT1ZlfjBfKGIEHv2n4mO4LfCjxwNyNnJip6hnBKPjGguLM5k3jtuwdfGjAhRxU32Hpm9kLZ+tTbHiDPVCTlsI5SppU4wn2p+J7efYtnr+JoLF6hvI/Airu7JgTM3jOznlnFYfj68nqHdCB4nw6KbfWsrZRdICIxJA94iTihir7Ko+kc90dik4vQ9OBNNnFVemAr/rcsQOK3J61BC75lLQZWbeCUklRHKIgr9EJjbS3sO4Pr8WKHXNMjqChijdDnhf5w+qe4Hl3ytQJucyu0+BZynLvcUoZyaPn2hcHIDxzK+mNej/klbLUFPl5IPEDVl4PfU2ZRbrlGrVifeJGeNlow5y724qZUU5ZtI+BMWcMu1SdVoHmskuMSSKAl9jSWre03mIi774PxHCZ8vzdJ2aj4JPemydR5H5O708MpVOXNtC0Mmgg+6zBPtd0Rp9soyN4wNEGWXKyazhwB7PxgV6wrUDQix0Zzhi34UKu0sE0EndxreRBkZpVOwuGcIdo73HOYx+R+EKes6mrqdu5j27chI6Knun+MgcVwF7F1BvUqyx3Z6uhqu9I8qT92H+R0J8rAs5kCgYI8n50ws2QIXYWmRG4ewVJJgGkLsxp9GXAkSLwP2X1HDNQiJmJWTVI/cVybLjso3xm4LS1FmsJX4Bm/0sGAaBA9swsyTCOi+nzqPMhopoPBQupy6KLkv2wdy51teuZUezxn8TrJ1CiOyOdlwimudMt0qJhEf/tsIXAOu9nqKYRUDMRmNmWTVm7K0L7++7OJmbM7btlAxJgx4Q8ZUSPhg83O5ugE8zu0esvhRAEGLsxizUPb1EKScfe+XyO8l5AwzlHGUmHE52gAa49yinIHkV0jNLYr6WbqlqmEp+xHQ6I4SFUGIolUkJGjwa9YkwVzkdIGMHkZ5YGZ5SVRgaHi3RXVB6V6ukcacJeWA1SyqyyBNHuwXMOAeQSRx1c8JB6MZ6i0XinkaOAp2yLC4jmjd8DsDoYVXg2gH9v7OcssXaDCaoYkGCwJRomLbK0CPytD5xDZ3d8bZuxE8v8SJ85WckzRn1vt75BoHEGG0tz3QDIrB0X5P4TR6kbOGI4zf6bExGNohCnISMCTDZo94g7/4YQ0pJnC5+a64qfkQ+XsW6QMhsI1rxXmPUwMc4adOxVsFnCgMxuCKeO2P2Zrs1oJUQKSMjsFEGWTtJhTaU7PcqvobQcGJUMpep4q4afnZUpZwLwnDDmZ8EU8UhPXxt3h1EhqSCZuk7ZXY1bKqQGOgFYqoPgr6A9GvCARU5RjHKuzzYz1DQHuZDX+MpImAIxBUqcbuwuIkl9AYqlGP1+55AlE8mDfn4JjIuiC5Gg8VHg0vkXlw9aMMdlZlDSyAhw5xE+Ky8tsg/wrBKN6HHso23GYjTlmmaApwBMdiNYXxfyaUbpauSWz1ozXJW3CzpAXJPOgdayfcXqBGEpgcBS5fLc+TBRVuG9bpT0UGhcXUewIXs61afNiBNxQwFhuKAAngaJdQaA13S2TbUSYRpqLLFhP8197t4fjHvn2cKwIFrfetBVOLZq02VmfIBnkpnBsm0x+GUt98z2EEBmUbNdSDp4NYwJUQYkDLi21jKrj87oQsOZcUUnVGanMlMuSsqczmbhbY3n06RJX09kqUPDCWNrosGcGZqRoe3006QFiCUvAvAKCwmjnfxBQz6y+pzA0rBbnY1Bgjwifzbu8acZHBX42r/rsBp+vzq9wzHKDyCzpgnKVclD1NLF0esXt89kX9coT0Rx9otnFXiwbvqE2drrVpG0heBbD+woMttJUi/EM/sYqqqPYo00nhZ5VOWTxEQ/iESSFOJsMkOEJ87AJ+kmMxQRfY2ro0unZ4s0QetbOnvmdIxi3xJJ+q0xSpYGrjhQ85yFwc3hk31pQ4hVHhR5G/2moPGeVeVkpljrieG700UGp1tmVCHpr06IZdA0MkrYRkYyWxmFp6q+t6XXzDv7jLUs6vEdOquIDyIAgJTzhlcRWJylc61RTnI4Re2ntw4PABAGLZ+Fg4fobNSyloohWHEgItkSJpzKWOguMzsVcFuBco4tcIAMQgYWtvhvYGzaXHwG6hzaIBGsB51dnkk1Z054r3uqiPYfQNH//v0Y2uLPthjggf0de80Z+G0JJGgG0FxcgPZmTSawrckBM5HZ7PQ+w5bz+7ldFPo++DizrAnFqBM4+IQ8trktKs2q4wSAqNGZ9u42jTsq/OyGY7jeLOu7I4NqxCey7FlmUJ7O55AHU9syhMZURMPch1+rx/c6bSkrLUl55gF5ccfbzv6gK7QMnk4H0toegBmOgMS9atYyaSBbFCDOKybCuxzY+gZgBA0Aa6a+YXQFwDLVtJ8zoDSLYxBpp860TYi5w3FckmmMrxlcK/TI7FB/7orJyMtWjVgmG0v2diTtA0m/6SvAooMrDlWkLT/HSL6JXV95ha8sbfX3iPHhAbNSucjyen6wOqF5TVunY1rHvxyuMon5/XPU1eHcw2pDUB/rsjeJSQxfMYBE/hxpKy0yAGCCzyJjiGPoQJ1jvX/Zqx/39ZkdfOZ822w0OAwMnfYzDttmWShzQj29/O7uziIITkS9u4OpmbGQmyRo5dDO51O5n3tNfahEpMVyM4rgZkRrj34caQzTQWdGvAmx3VOJ2UOOwkRaw1XfQCeBZVRYSW469ApYZMms3y8zdhjN8f/16YS2F+5Q2DrGblNlg4gLuJcapSPolhSmvgkBGiugDkXA6Y50dsD6ghhoyPRS8BpwoFuyFBSWIcjebjonRjFC2WiVitT4dsY5zMhaah5pBPrGniqe1el/P5/Zb0+scaZkNJogXEJYJhDgWprkgBNpgsPhuOwRzxuw7E1qDpYy0TkYhkrx6KsiethU4xCooAFhKFEYRmP/2E2/l5fW5b14FiYU7L7p5Wc/DSo2E7LWu4PQc8zpE4QdeAFQpJMghJDCDED7mj2Fp+Wbw0/DsOLkLvbJm2Nmc90mcBTr9NtcSbNk2WhueKZElOcxmk+jCbLQ+tKLxfnqslQUPrq+bx20qvK7qWiGyyp+P5LI1aOCThss54GkE5ICOoxxuPiOqLoJbvaODGNT8qzWNStEzNFBhciJiFR4VPwAln6KAbaKcUgRQ4OZ1w2abHRaTlNtIq7kyPPciwQxVKq2Ziz8Z7TjstIRbi2VSvmYK8l70QGFXAP5yJ+hGsVQBL3QQKlBCNvf5sAzo5LcFKMtGte+d5Hy7zwNyvBSjqJpdIXMEQEo65GGaJM0RpW8U7LAxdBB0LjE/idoZ+9Wbj/3gHQPSRCazj/EeYNXUx6oWQ2Xcj0j8Q7iXSaY3HaH3LaW5pnTfFqpGYGPyyyLeo8whiKLmGkRrUTF1Ut9fRBUTmmfOJ13dLUm2KRlubhfnGoBYHQk8owIsFUZbGiYzfhZYdnIQYfAYpBFr0HujV/DBloxc9/ko4d6nC9KlJ9Bw0LToLxGGruZNRjMG7KKvMpnC8le9F84QSgvZwanYv2F5wKHikCUIH+GfGB5LgnQsXPwC//EwE910jFQEBmHJYoN3ru8or0AwXNwazEi9MKZNlm8Ry5G6H/iJj53WDphMDmwpxEIlBK5soJqQAixXE+dwHN1Y5wyQkfRp2CQlJmMRSYiW8yof3admj3j53B+1nN3eue5hQ5QRfQvBXGv3S+yhJtg7GcIaPx7T2UPpDNWI0IHzkgHqPr3I3MBVjruWLt7kIrCTMQrUgZLMCUMXGjyArirqtiHRluRzJChHMj94rXU5XKb2SfQjHk6qvNYSUvEGTv7ORfDbMzS1J20C8SQn9Cndf2ezKCa/Tqt2mIDedqqBxwDFMMZQDjteu/hoFhUsNOwfS2N0sA4Wp14TmuF3vdh/GL75X3MxIcoMEBQn0dKFj9SVtWgAfE63//UbB9ip3LIkbUaOGrFLzxPLoROnvwsh5cA8HPKVkXMGPJ7cb+BKCXl84Xzj1h6KnLgl+tYP1eZJTNRMygDqCdmMDBsvMuEB5R7kMZGzexDTk1lNv0Ye8gIyj/qjijdha01HRT29xq0YpCrVT3UqJPtO9ZXvgdO4Oeq0yrPfgLSMYeBIguMsU2HRjBRwNZSjuOR1S0ctmf2mOsrUcgsOrHgRmZNNeI8f17yp2EuRhV8uycKpqQ+9zZPApOLjlWdSBwTZBWTuJOTWGDOiV33aDHlpwE6k1VdvkVAMZOS0gYx7NpLYkzoTk7OdRyLwDG1PVfKYPYur/IAvh7SPddHG7B59jJ1NvEKeXUWrNq3LQZdZCZp3bOUXa58nZZpeaaMCKe+J5PMqebjAGV6ytS26IuKSwvWxkVljH8/nL3E1UW31D3JVkipu9NOyWDgJbbMnn95baOPVtoAIDAC7feKYbiY6HHscpe0m9j1s78+s4NP1TLKjNAs7ZFpwCLpVDCi7qmoW0Y8zqeTTaLtDaLZ2HfxqLqlRaeV9fLjpB3rgbdxMq8DOWYn0NBiFtD0bC+C4My2QAAe1RkKyMAks656ZpXNLB1pEEDSUchyIp3ubHHDJbz4sEPt0i2Fej+jQluRDggVacPUgZgS5MCoFyETujCAbP5KR2N8IiJQpd/N1OLwWHu00Qlqgj+jEhQwfrE4L2kpuEkjNlgiowRkKg1jJo34cM74s6XzUiLtmUY9/n/tvduSJTeuLOhgrCz1+f9fHTunVRkk5gHuDkRqj81Yqx9GZsFtvSVVZa4VQYKAw3FDZyzAwAyOoqqn3loXS3A34ur9imBkNhgBvetiV3Zfva+b+er/sp3M+75JzDLtO3Nk7rVhDHpUVgpHZED0uywM0AcbVJ2NnJdZPt0lGXJiFzmu7ssY2Vr8TDIjiuwQ4FA2pIhsEbUMJQ+wwwcMsHyn/l3j3rNeBYf/y33o9NT53fceBiuRnG6lvRCBV5iWpLqcBbQTv7ea5Q8SaXfWXN3d3UYfAjBBEj1M1vpc0BOUdV89RTng8g1FkSFAqbMX0MBU6owsHZXMJvWQAKIyekV+tGxCdzvwiJhqzc+WQRUQkK4xKID0LokxpWb1iXsfztBxktskgBPxIKJMIMWfIwdqGjcBj+GcGsDHDxJPwDYPG9zbDJeMQ05oR901rbNe53jS7rwj0hXWkdyTLpmQ6xD9MwKYq7WzgX+qWTX8l4HuA6U9VMTQf4YhIyp7sl6ZwI9vfWCZmXfQjYyHc1+/1/pNDmA7aR09PqeJANB+VwsX2oFVNvJ7TMHtbKzLYGexsX71GeU7abprXPy+hKZuLhTYrkmSoK3ercdpD5Dqz7Lo9GzrLZF1Aqne/ehp77r21ZOQ2Uy7deiUQfVKPNxE6SGBXf1Z9+M7vvdnOLNFiHQQS5nRHRxrvaDfmRldArwTZKqpdqxA7vS0XWGhupeUPWOmaPmhI6W7bt0vUAllBQNnHdqiLhsOAWLu7yRCpEdEHPRdiCHP8MoZOddeHnaN5Q8uOxR0QFYFARE/ot7WPfVawmWtQAGVjk55mDrSZKCJURImyp5EOzEC+9p38L9lf0FHMCm3ckyTMi0do73rbOl2mCa+0H2e3/GXgNcaunI40dYjPDcHB5z9zUmWlBBlPJzc/TPB9jAJAColC75bD8YJqO9XvYqH20g3U4eqmfuHmbkakKUMO5OhlLmhtozDg/qpezYpC6hbwZhYHg6gMo4fZFK0rZICz+zscOlG49dMnPNtR9W9djMtdyKdXO0QAZXSTTtsfYIm0XSPyqdpclHZdr7TxKVqLePg5eo7tE8FTkP4BnBway21/wG2BhydoQst82odJH14PEytfu45BNC2KZtsLNh22qbwLijTLrXPOqdzkDge2ObMNeGP+dmUqVmaLNmbxKTtuHHlwDjEa3WlF/JK7+ehnr9Wtw14lPVxj+oeXsDZOPM+MQRxaHMn3nF29vxcBldsD5AuT/yL/KCwbk1B1gDCxu2uPNkbF1p+EIHbgcImkg96v0So5wlWnqF6VI4Au88SVbpbrbL0PWldU++2qxKAwX+RL85otP8t4qwD3XMojvWsdGYwGB++UoOkDYCZ8tIBGHhfmaCqbJE+F4adZM8MqEjvYugagHcvL2Mgy+tRNUmbpQfOw3HmqnSc7r98aSVG2B5RAhSssf2gj6BJw6p8Kz3R1XrK4di7fKC/BE3UZ++0L3LkH/YPDuzKvZBdROuS2goO3EOXZJd9YRm7fnb4EeeUDHegoCtK7F9gkOypLP4FnGc2XN3R04kh0RnHk8PR8JTZ2kpnLH31TB4Srht6T7K/OlAcoT1q3CXsZV8qE8ru9B6MPfxP13+hB1+9gLIKerrk4SSuAvj3XSSeLvH39+/KwFsXS0/hiynHH+AFZ/r1BKUlABfybA/O2Hvj+/uYLPThBTOMIllWVQf7+XzwWZ2i6jK5q9njRH2PymjPOUzThQHJ2WUmpyOpXhyeUDZ6LShDbV0L97fqwpcjpGUMtwmTeqbr2eOtRcbAUCDnjH2cDPYU5vpMNcCeqcExhFRlitfju0r4jseCz4tgUDeceUVa2onpKEwTtNvKXxlKAI8daMUhkkSKDB29UU1/k2pNGJ29kUuOfKfX6tzrfBc+n4tydNv47XtDJVzlSGhC4apMVUYYBOJllOdEttTWOTQOlw9mHveDSpPK8GX/fNg3LAehlyK+GBmlo1V7lgDakdd5+74uKvQjYnREwAJIlfGiwPz3NyP7KegNRKQJe5x2FFZU095DOW4DFAYva8i0PrcI9X7WcmjTOmGWBSr3SWSZy1mWImmJOCKAMJzBCi4IGEuc8yQ2gYnvFrMFKpOKUblxJipJmlG1CIz+W+qB2JktcjKBrD5g0c5vFjp5GOzt8enDUQ45Mooc1ie6vHA8jwnuAU5kPACdf2eK6nf6eeF9l7yp3L8BQHifSod3ZNBTYdGgrnTYM3KpfVRZjiVmOExyqJqIHb2o0E5+BMlgOkx5Ziln9/aZZGX+eI4CHa13ylGeJUz2DSnjnbE4nh6KpKrRt/6sgWM78CrrLOdwm7Ccxn+zr0z1sFptGxyoKcBoMgZDtgTeItAESu2Vp05HE2cQVhP40bPQcb2xGdRKfKKz8r4+nEaPBDJwH5KDKRmg/GcCW4Bpm2ApO8jshmhC0baMZ1WBg21ZXaFSO+kPWL+XeQs7zTqnaR8NXKUTQL2c6/Fziszq/AT6ZHdMWNDuzPK5SSTYOcSzdFT2V/dF51efvXybsJ5/N/emZVmkVZFj/vxoIskYxs8gsM9BRLxDEdKv2dPaI4w1dB/VQ7AzKc/4zHZwLZfRZF0HBKSXNjYbQJaePi3VyX1Av+t1tUNoRyw0dKWDInNQzs878rDVj73sYAYZd+sq45mAQfnznun+8TMtZU8iE/x9nyE9A9v1M/pM8T67BYWAUqjcq+Rq58Lv++ZOdWYMsjGbnmXqZTmPGjB3rcD3fTObt969plfXWS0c6vzOdFXLkulsiWjpCajdv1ZZGnKQ6/lG+w7rg229aX+DZ71PNfXXwL4AmlyJ4+ybc46iho1Z1wJy/jsYdKtEAnDbytmrM1frnibp0Xd5YFg5rQqcu1JJ+6/vEvZRD+hTw/8KH2zLWmFqlq1F4IoiOvQd0ge+I/IlRlBRT5rUWRO/CxfLwXYwICqBQe94i0x43OkhQ064GGQEP2fuC/C0h7d7Bp75w5D1v9njfVY5pL6HZEDGqCQAnvcmW+8lOkvMZMfp71OWmN7PPtS8q3tXz8hxJsjKGEt0lpsqX4RReto1P+/e6Amk3EvhC1Q/ULUZEebep9tA4YcMWtcygYCGFRqsdV2XfbidpSdUZRUoXI2TVVHHfcloYqOIVu0NB7cROMkOi6yVjZy6QPfE1Tur20ioDPneuwhEkn8lx9vB8FjVUqn0F30S/v7P7NAZ1JHtDfYDtFHIdAa6Wxsd/dllGTlMAkKig7BQckHLVH1v6azPmPKtHqEQPqNxa1lRsEVgDPYzAckxoGxR6VERdLp/0+yW7qp3UmJL+auwDpI+cKuR4fcd9QgO+YHEy6dlVjpkVhDIdprcRbYeERYiOSs/4Pvexsu1Z00ozinx0iHCpdda3RudPvDmHsvf1DNq31zpcO+hU+Dz05nV2Uum8oE3EPI3SiA0XCrpMHSQau5J33Ht35PI/3vr7xN8VHj3Zg+7CHx/3x5df10Xvn79wofknl7guj54lNihsw3u75qy+8evP3Dy4M9//4nrcw1mNfH5+nCSX+LP37/tmCxmVQnQJhWpQf9SHX1lJnRW4cEHAi+c1no1sfL19cvAxeTYzkcPOoG162pDqemeuhQrAnnReSeAVop8XJ8apMEU/Uo7DxruMd0PeIBeZamp556dUhk+ApYpRHJMARhgn5Od2WhQxWNWSj2V93V1f7POJJxi0cA/T0cURf5tZXucgxwsOF8ObSC6H9phCYmMpMuf0CXBC90XYDoDi02dQcWnz7s+F8neLypdZhESgBaxeg/F3kDfjhHPVY2QC/CsBzjS3k4AJcLHmZQp1r4zWYDelyaJZnQ++0UTNo6TPPLvEox7wiaV+yx30xAMAQhof/kM12qib9+7HE0q2ysWMoC9kwNtuhmpSpeQWQNfqPi2embxDkwHWFE27WFFK5t0OugMSD17ooGRCOwzSCWRwwIpfk/umeQU0dNkz97Ytwa3tOMu8CcHTcZLwFX3QQTkBDFt+JU7B+6fiCfdA2UA8jN3R7v73NNykmiwrcEj+owZVet7qrKitEGaAEJ76iyq087xzJSQAyZHSAGacn4awDZxf6yXdL4+9x///iTFmgCRrJ7T5MlPYkTG8zDjuPyLbOcA+Uj/lwGen6lnke6o5/Lx6IINR7VdeGWEKFI95Vq/KjuIM4Ik3rPx+yqlSbC8vX7m9v6nAfz8XSorQHdonj8666t6ZSbOfTuq/vVV5XsXydR63hgtAECnoCLyVQaWVaYTYwjDZqZtpYRAXp5tk+xMnnE/Wl7tdFKvOYtVRCWAMzINA8D5/naW09fnC7oyD1JMcsLzVKmF8AvocIKZfD+DZJWFyODccGwN+B5yW0RJTUztPbDjS9Dn0rWhl5sAnhOs689FGnif6l/QFQC6z3r/jorrHkpEHrKQOUqiCvzqHRuHiAxYzlAu3dyEoRwR8HvWFXaApSVbP3XAwPpPkiZQTB1kXZfASfVZC39POxot63IGANmcH5l7fM5y4Iaz4kBdB9b0fj9lVMRnfVsygx62HX1rWo47oKy/Xn6GWRqrPZOzZGIP4SbiLTQlBtpJtxtB3ctYge/vbzv+17pM2tfnsIwNAUQ5S9Ui5WlL1mIvJzpnKnfVz0i+pMdwU+YcgKx2HQGgkGxaF25OoyyZvICot9FnOyOEdjNTQ9taPVfAuHpnx5kDPdr2r6sz5qQrJW/u752JXIVZFmSz/uqQKXMO6HcOVFmeAgMaGPe4m7Q3R33yovtxalgEfxDOLrsuEn09ZPAKVq0gnNGEUFZpZ8kX5unLocD0dNIlo88smyHLupN42r8I6uTd+EN73gHINHndpNl4vvqbB1427hn4e+6jsaZkMVpXS2KFz6STpe+U3a4zqvvfpcdOUjiNwR76ne1Y9H3IwsHf9zcDzkOnMcvexAjGHlJ/7NPEi/ZGWYv17IV9NEjSmaAAMrsfpX2K0+8t/3FvTfXFw+5m6vfYxkWZ1+VkNHY+MtyULfaj1x6Z+KU8yiZWVZIylhbWp1uk6IVFvlbJehNVbvXDaqVM2i0mGsgnWPXD1OfDSZrQmfhPZaSfz6dtE5/noHUYiFfUa854HuMs5V8o4SYT6/rQvzsAB3Q9ys2XdPk8x052UXBSPkjjSpGZ+2HPgndf+1UyfPlM1HeerjZUJVikaZGKM7Da9+san9d2YPbh1N85hSd7v0U4un+dMM3upJn03oM4M+oOoTM2hRUWKzmF55Vhq8/Xn12jBUFnePo6uoS5MVsnZdn2oGcC9LBDEn8//Ae9296bQ2SbyE/0QJagMLr8FwrsY8jsf77+/pCNzCL0zgE+pdDXtfD5+jL5ISV/n2PDNstUgAIX+9weJGHG/6QHR8xpdfd9W4F+mIG1kkb1urDvG+tTJODn88HXLw34qJ+d4OMm0Scjtrea2sqAqvfCSBmmQP3555/4fNQ/72MCUK8WAUe8F1AsPY10gZ66bFdeVtwq8TUhFq1AZlZYfX44u7Cd3Ak2VW6g960oxJMpTit5ga66ZG2Ir5FaPc9PRrIdIerpoRzMlHNDYi0kn1nTYEU49v6lFdicFKnhKLqABo14Eih7C7D3OwA91AVRBlAKy5ll3jP26zoa5IGHA7PG2WQmJ+1NAy3iTxkgpYhvTm6WblEKdVKeLhmy6D1tolSAK2xc6kxhR84AQwY5wkpdQGGty+BBii7HBykbQSXszCdhL8Xk+RUxd4WatVIxnmBG3F2RMe7DdKZPosg+qPS4AH6dLSWSWUxqrJ/o8lc9d8tgN+PW+Vt+PTiCQI87rwlz+LFv0jO6FyLZAw1s9R4NgPlnI7pmfXGOHQ0R6TXQp8tc6s9PAwR0yVwBhCY69WGSV52bsoC1D/qgIJiYzogI85CzbnKhHfwkUESESXNlA6jkYDo2TXqGwXWR6E0TW86oAySQP8sw9HNuqhtNrAhknTzM+KXRlw7DyEJU6SD/XSOpe38Uh0M70bo71KXzeSQEAkOBJkh0p5XJJqB9EswO1es+7ycI1nS8dT8IHiRrfLeMQRAIDEeQZOnMbemKxPzultcG2XQgxt4rUzlW9UC9FERI7XXYwfTXC5TIZg/SQ032y+4dlB+a9t8un11HbrXVGHftEdiS7dKdFcCW0+afV79ZBofiqh63u0iDbRvXpKGj8C7h5dCr7HYYj2nAJOtU7q5+YM7MiUEBJZ4gHf2c2gNE4IrP47+Djtw54TsrEXBGqnBCRGVdjPsluw7Kg4coZBNhQrseKtDQbKDzJ+i0rctTGfi8Yv6VsFDXP0mEPrNdqSsD1dfJJLX0siatV2l+Y8MA7AAPsKUzsIWlDdHzkkwO4lJl1+qnedvgdAruTM5/oUPUTb8xwL2wU+PLfsahe8bvwTIA21L1LQ7pm9MtY2bvZpFhEaqWaeyUfOiQncIga6Kfqe8vv2drknOXY17RWf4u7bW8R01pjQpun5tB7WjCQDbmCmWs9WYaJ57NftmdJbGoi2bplHoRyrHu56jPzasyC3UXZe9bplRSW4+gntTzbJyZcUYLH8qqB1blhoZYTMxdziLPJ4RrrpZb/gxSrQLqQRqjquVB6+gTXU4oObtIGojsr5YAiZtkX2IE6fkzK9QHS/h/2ckHZjVMY+qUfVaLIMyqBRH6JFhZ+RBJku0KDNPaOi0Ci9RzEmfBWLS/u7FZ/NCx6YQ03bGZDddD8Ybt4P1XVq3+XL5C0A4Yo2Y6cHAUBKSv0MERmPyTY05RL7LiqHSedv1UO4Kf5Y0lo4dYpwfMSb+KmADlft9lwy7tGe/zJEfn9NUAEMP3kRzK5ksHmriOIuREeqsvZJXhF0HZQxRJy2dl86V6TYPZt+yx/80+6Ao8ijiv742WIVCfrTCW2MzYPPIDWgESd23jwIMa+GezpixS7sfiXYLOJJMDvf4H35n76qxwVEXXgDitK/xs9RmzD/XULY+7pZt6OjBp/5FrZt3OfnbIlhHd6R4oNEi5q1qOEYJRniQXIrTaxzB+dfat7IW3nPZoIj38RSfUr2UnSpQxR2DZPxKpbr5H2F7VCjxfJeg0bngSxfv8uH9rPfoHznMBRmDokC86msKLtnF878r21hwBBkJSiWqX8TAeWAqNace+zICAcJZ0jr5PGP6/kcn3XynRVf+7fd+4Pp8Csufgjz/+QOYpUoOGReVgmWnD6ik68TGBA6DKV6WEla4qoMSIyDlVknt9PoP8kYmoRpFlQCoLq6eSlQCKvJOhjQC+Pl8AtOkNBuU0CmgF2C8uqhzhZKWO9zAP2DDwj7Dv7UwuveecTiVCqPRSs/qXsjxQz+PJPQHuedL5KOG5IrDxjMZNJ1qKdoJ5PUNhjzaA9X21ZwXEJIgj84ugTaWHUogCqu5dGJ3VlSRvACqMfWq6k/oFcOmiA0ECo/4dkCJ5gmYN1FBEGQiXUVRDZWbjIfry8cCKnNLkZfQF5V7cDzLicIpsWIEgfpTrRQMVR0TGpe+sFr3HyFByBIZkxSo5VP+LR8SP4EEOpb7HZTAxSPKRIgx0JpFlHg0+pERPyEEEkhPvoHTkCPy+N64VuBaV3JIMLZYjKH2/e96Vca1vkkJGwLK+4hrlh7Ur5z5jSEz3O9zpIzLQlfOQ/Z9dlsyzOiLwVoN83ZUm6ep3Zln4dS3vv+6voof1Z9P5a+Xu86cd8HcyxV8R7WksdRYCt3Yo+PnK4InVmV3u9Ve78IjG9W/2/VGD4wdpHCqPasMpSz/3acqOI4oiKzMfz2HZD/CdO1ghWS+AHNzfjnR1Kc/4zuEYCQxrT2QwM9PMg4gv7al8m6Q8gDIpECpHdmZz7dAUtW1nd2ba6N7E+GeQlNd9ESHobM14ZgodldSMZ5ZjriBIBBD5nOK2z7G+mOX7CDSQd3CNmSCns2gdCOBZ34xsJg718tAvciwzsejUKKtSWeulD1gCw33V/UGw6bXkI8ohXPzeqVdnYGlm0alkz46r918aY2Sf7s1sKpUdlw4VcNz7YIMR86sj1V2qIlKBziZEdh9PwNwkBPOwLMugD3RMR+ZqApkdvJIulMyFn63vqjCsgOG8O91wXKRNA3jhkKkLhBkyw6U5j7/3Pe/zNnEFBhyVccoHipy63MBCYGjol/RfAW1vW/b6fqtM/xnUmsQZLMuPuwp4v8dGtvxE788k5HSP5hAmBbi65EZnkd4L3gzoCtk28+/Us3g6WBjfq+eUttT+ORieI8MJIiHolKzOPEDMIBUsE7KHl7CF9NtJY8hYvR8uZeU5INQDuW1M7asGeaTfteJ327qvcabOJzjZO6wHwZ/l69i2BjNYMjuwpe/qlkBtA6SX6nxE4C/bVgnaw7aO3wVaZ/Q91xC6m+9w0WeYRKfu9cxI4XnfhyXLnaFRtrWxoQgC3VUQ389Az1xqPTFvS2eSJDn+LpVVlmXE6COHIuXcoiMbw2hPHiQQM+HloygTKAFnZ2cBZyAOMqf+acxt6ZR/ghq41Ppef/3jbvKOxJSbaELESQF6rpxZZJKzet7vuwmnwBicJ80pEp+6qYhvUGb7mXqQxvNsdVeNQ+zT9F2G7iJ1CbKrQhKdVVmlqyxNnxgmWQKvrDp/tu5Z0g7HCJImW8kMf5PvfoaveHiHIjSIZlV1GmCsPvuZ1V5kVRkgGuOe44EXiMAavgi4c0n5vPOQj1OlTJP4Jt0w9Lbv7bMUt31lngX1hu6SCZmp7yzrjWFN9KD1+RyQ2KTNsW+jg5nYFDEDEnXuMwPO8mDfo87/Wj05eiaWiLzyveCz4CRuTXP1+/UAqfrdkTk9iOSuPPwreeeKkqGnpm4AZUsJDY9MYepOJw6hM2Wf1Rpl8zQYCZke+iiZmz2RJ0eBCLc7U7WJqmIiwm0OtN2t+2Wz+ATBPxsDodxKy+khMwA8kpyMzTvzXtipEhK6vVEPBBr6efXcg+k//p31XyjRZebR58LygIwSiNtZWh+odjszcTPCp7TzQJCUEVOrvjwl1J/Phfv37QiEG+FmO3JSQOqlBvTF07rv36XwV/VaMxAA7Qayo5t1ExFRIF2CNmv6m7AJTnyNdii5LmYTHgny+PutqaMI2+mHMRslufPC+eJnWgFYMSwqND1rNtM8e890g30SD0sg9jCTbHX/Q36rjLvQeCxFVtIKDNzz+3Smj5zAw6aeykys51RvPni4hi7qvMBqdqvIpydfolPLpawuNo8VWbB3TaS81kJcStlV2W+neysjSBd7pk0/iOixd2t1eW6yNFUZkjLGdq4EaG34qXSZ9aoeO13+zEu/y2E8OH7OR3SOgEcGXGSpfZoUUTMuLTVSYe5JsrRa17ltEjILVWaCtTjMgrtFwCwnVE6Hyub33VOtddkUndtZ7x6794i+DPZ9Y0c45T5C59mRMZXjl7wKdMgIJtjasGT/dKZVZn2+wOjiOwgQzuhxACU3itxCGSt0NOzYqcfgatJ+WaKGEedv/YgqJbIM0upMraQTbaefOms6piqH3I6odmmGskGUpSGQ7+8VSZDwHZrGW2TijDh3JegPkIYG64hBntO5PHkATjFThkzfA32otY3lsYiE4ZxTP8t5mIZSS0MQeogEHSrI4NrSPwiP2YvH9wDRpDHfy8aYYDtZ0pv1kPCNCGaLHukVGADp00VgQwCMADBHzxGgAz4ueT41vKIIRtqvMx1GWHcJmczpfV1mqHM4yCjiGtwrT8V7gJO+F/qAzLZRks2Wq/4Z/f6TcBYa5dlLN3EvJtFQTsb1kM19Evt8VwY9dfY+z2ztwwEdkSoL6t5Aknu9y703PgBmptv39x7665i0iGrMWUQo//5a19MJwJB/vq+zMbhH07iHMphoQzZBdZfjHg7aGP1qeZbK4lohh0ski3qbwXI2CVQTZtSB3WtUjlSX6yu8oDviCofoc5Mum/JCY+N716/c98rZUg5O6ZnaifF9QT+f9TVax7ocdS32UYOdCvVBA0agVTIdTdI5c4OflTQezjqQX+JgAMm8M3Vg9L9b3/Y72TZza36Wej31aDutvif1stxHOOO9npskviBmXL3vqcy62otFG5VI3o3WPTGwpImCQOFNEiQ7NxZ0pxaqtdU4N8qWbGfpRg1JkLNa530LV6LwxYl+/2OZA3DBWC2CBBQd6yrSm+QiHdTDzDXeSTvUE2MnSwr5TAqqivRRgEUr1qqstcRoecMqBw1dK+PQshNd3mV5uFD4ingbUBZUxW/PUb/mp08gPapBJg+54r9jtaIRjq2gU/W61FCMRx9L6ZWBQXQuvn+lUKhTSo6VMQk5s9RHh9mX8l+e7Qh4LwCTZkGd4pYZP+x83ZPGao+gOG2aCPIZ8FdlTpEmTVJJVjJHViEaG059gyEfJgpi2r5JKqTPNBbLrec75CwPjiJpoKBLnYlkRX3+lJmrYVgz8FWVL52IkFj4BHVKHvp1aR/PvXch8msSMMSkp3rx6fhr0BYDduvCuhq7Tt/t+/sb1/Wp4TqDIEKqbdEaviCsYxVs0v1cyvQmqSudayyBieVqz2VLVwzbEVH6BYkLTRi61+WQayVEzOBRjr3Ru87BQvxAZxo+/Fjdz6DNFZZ0ljk4kbn+G2q/lT0lulyW5UCiCeBsn7HkonTtpR6DERxcUUTxHJSUWZWY8mlmlY/laejSBAlv+mc7uwpO5yJCt94rTbROfD2HA6paQu+3T1aWL39e/fN25ggmgFzRVS0Q0DZK+sOkqBI1Uv8T1k8T8iWTHCzFmQ1zGvLFfRdvcE18ENFk8gjQ6L7YHyT2UPJQ9ZNs+axs6ZGl+jfW3yb4SobDY8J//1nDM1Sa88evX/j+/jYb/rkuk01n3zgncWd2WjoSv3//7pr4rypXOSex92/8+vWFz6XBBsWpfn//CUDgv2voDd4pRK6vH6vKcesgZOz32c7o2+xrohTi7/tuVn2w+/MC612ALp8FBHb0712eK2AS0aSIwV9LR/e6I3hEjvTdUETrmamnZ1Nz8IdySZGl03nu50vgodjiCisR+DPhVN4zLtzn+rQyloGmonYkPotQ/VwXYo0eA2tmZ7SD0Huf/hnttxrNymifLMDqPRjvg3iWwHxY119KvhXQ9/ddz8a/0/TECzpf+IySxgo66WEM5Ii6ifL6kUkBlZyVst28K/pOfx4nGcvBV1Ree5wJR0qk3HSn3JeNRnISyY8GyXoDGXKCKsnvzTNfGVhXjN+pJtyxygn9KIqyjxXZdOoQ3UzbA2YycZLGgc9+RYPOYBq7CCj379PNojFX+a0iSgLu6okBAsH53gaNmTWMxc4X76f6By5Fe2p/uowebVguRQrl1HbmhY19iOidBkK92J6ZcQJRDS54/flemtaJYEP5bId92+lgBOwzSLG1aMDCcqy7D5JMOMcDU7Q/KnkVcO2edaPZ+AThmXYO3DdkgJLkz8Q4D302+N3qPzSjpIHW2dITmr51zqk2DTrL9Ik85HyCcqk2bYKjbiggNnWUsrHWqgFQB7D+iwkmoWBL+LszGzBZQHRm/IAVdXYFUC7bO5Oy1OPlhFQGdfC+lo4rUKI7UhBf2UcdpZ3kicElDj4CiXaemzgRcEGGWwpUqwUOc4i+U5N4tVM/dGIjejpEIoV0pqsJD52ry+sAO7QXbbuBlt4vswIoa2RGQSTpsW7vcu4OvkSUbC5mF0i+BDjncBIkKrNlrerNK8IFDV4RgXNvk22xFps/p/8baJsu2yAd76ENemawub7uruQhqxT3utSDqmRVwLk/u+17n80A8mh7KfwjrKKjU3mb2ozYiQ05pyPw9NCHsmG0hcr8VCnPERnajvS8rzV0RoO5Rsau9ck4lyxypd59lPGNViXCAro/U/90AEaYLanaRXjwPAq7w61DFFyo3xyfNUr+iMGA7rOp39WdaL3IfXMm0POeSf6PeoHJzlHuTx7s39XjGVDW1rh7g8SYhLpUv3s4Xej3InP4jarS2bkRxOe+S7QRzhAJyvASCXKwmWkhZ2/K6M+VOYd0yP7QoQOwv0ngX2E8qqBbRNREUOr0zMTv+zc+18fZSffeJeNX399A403ppymPLv+zM9lytlk++Lgb1O06s0WH9WTi3Df7qonIPQiwrQp/5osDTHRf7/3MZpz32JlzE+cEMUomLpbwSb5nr9gH6eMzmVlLzyBbsiVKD0yEHejyiw4ie8pwArhPB4CV4S/9K31b4qwy2TSgXyQvFNzUZ8pez+wi9Ymdd7fec5t07fsoUrN1JIJExqP9T7TOgRIZzsMnAuAgN0KDYNqvcu/0JYK6kz+MyZKVJEm/BU0mhH4fwtf50HUekrg3zip7IBKvfks+4hiGg76PvP1IbNy3fDQO3WEQzG1W7lEWveqJruvLxIsGFQJosnKl1ZD19u67BxHVgWZLeC4qtZw9LQOBuMKJEYh0IE2kWn12VRc5YSg6kBMLnXGW/Sw2C7QDc7ii/YKR1PEZmV7WJUt8SZN2liHa4SuXfbdMOIlE9kAnFwtPf2jgzrY59dClJyrQiYlRswNbCN1N+LkbD+md6V/zORY6qQJR31F++QKOMEQ90uzVhwAHdfakbPutmXAf4MEz+DxEcusZaL/qHWs4oQK8XfkjG9llzMLPay1WdyjYG6MPcwfvy59sMl4zHJT8ZL+K+FyBjizlUK0sdEvdO7AzwbXHoN//d9ff78F3Et+/v4GvjxXE3vsxXZS6BxGLU4U6e8bEniI+dMq+fn01YUMFvfftSHtPxgK+fv3C/f0NoJsV14GEIwWx6rsXCcbKMPzmhSulJ0W4bwmAHBw1WK1HVD+CfWrirgUFndqv0isJtEpSEc0yKwvA46XtfKEBoAAtm0lO5yYCbfC4nPqJdhgF0uRYqu9RX7Y2DXp2OfVh0IJRSlzqLIDRdLIi5JUl96EineUySVtYyuNhTKiAfjLhbgBOUkrNg3+mSJvE8d7SQcQPoJL9HRfJsrqE7YCcfXB9Lv5MycWtKbIQ6Xjacbl6eAnQAH6C1CaLCO5HGffmhCjLCEa5hM++ezAqmy3z2bekz0mAqCPFneEo4NKEjpxWZb7M59Xe5L1LzkkVVI+uKoUWKKwI3mUjet977AuJnT2A07i/UqhV7lV/9s1S9vN9+3MtF+vg7IpvKtNjf3+zz416eIyo/OrouiZfSWFPwyvHrgh+RhhJ8AgYBv9XF+yUgw6RdSO6WK+NcMNyKnuRM6l9bsJoxcjq6ovhJSA4wdgcXDF7Zxpk+QxkvDpbU8NW7MxRlhC66x09Q6Zd7QLQP6KSbp8A/5nIhdYlXUI75Ru+H12eWu8i50dAox3i6tFRBn3f1X/joGRdIKYc+E6rPyPrlWJpEuYhA+iMQE/tBpD76dAAPcFO70e77j3NbB0nmVPG8DOLr0su+Gjck4RKLExWSOem+o9oH+t0QpF1Pgsiyqk6A7gE4SgzgQQK7dBHO9/I7oelIJWCU0kuUX/uOyWZOd2/KoEq4eQeHgArJ/nXYFcZiAlF3QHwPQV0ER3Vh+56wHrPuiyEaWnTsdxCAKg7dOEZPLBNtdyHgbaEqLpIjXITBOJUeaEz/QWuVTIt4j7kdI8AnZ254dygA0GdlUoAHPoZSVHLoOwgxt9mjgEdlEM5DHZYdCeEIVAAXtlwAB6lQT35M/y+hV864zHWslxINib5pqdscnuSEY0J/B36bn3GuDEPe6vm16fxUJO4M3ORn3Dyxx3MfkY+m0mlURIbIcKyda1IwGfQIvsOrEkANrFcVs07YrIE45ynjZdeV5DRf7ai7hcCykCIWEDFIzBJDO2b9n02f1fZ9xULsQovVEyfDjHK7uwz7tNR4K312H3fOIfYO1sfrtDvV0aqz9LPooB3E2baA2Wx4IgsCYLitDMm3a3m9gXPO8MyAvhaX3XuMYIPGgQDm0TL8BoZMU3W6d/rZ2eAzjIyiGQHf0tcHqRAVbIk2+L0HlY7l2oFJMdfZzflVeeqvz/DbtlfSPbHS2CfKlVdK1pmE11Jwofc7B9tbDswIyAdoXJS6c/21ey7jbO0zg88eonLBsXYP6DxrexP2X6+PfHddV2sqiBhGZ3k8cQAs6w/rC8daPXOy8e7KV/9vgB7mu+uBFpXV1Xp3XzfRdxTHtSiSLhMmcXCkZlJ3Ny6pQjxDeX4BG05ckxDpi02sU3/xmT/3k6UmfdVehK0LRUgqKqVBZ1JGDcc3gclqBS5DOAcfK3qsbeGz7b3wKsRSBIk8mtlo3tgoSqzjjF9tfeon7vWx7/TmGzjisskq+6GAwi8c7O904bOgkRR0kch4XqtzgY+zNpPDHsO4RvwGT/ORlMwwUMhd/1ut0p66gseUX3Hafv5SLbh+zd3JhumxCM9kZ/M9pQA4fH35lPqLW1fpu1RiaqeHZQVBSkRgRg+noi1/GELlQwgUwXKUaQCccNn0XnEz6oPgOnj/H0+m8naJttnQAbCMbwz62q/VIEo2Xz3dDxKoFFiSA/vcO/NIX8Td/hsGXBWBnGdpTDNIEG1/z7Dv7f+KwRfNVku5bw4lGKSBKBC2OxhIKCzxojuDwdUJAHqn3/+Rmb117vp5CtqAYyGiNnRgykA+2ysXPjz/o2vT03s/Xw++P6+DWK+vn5BEeLNPoGJdDQAiRoUgGH0SLQln3mfjYz0xCKgyEuBZkSYxZVRWrGwPJlrGmgRPleD4KXPVXbOSBmNZpndIyOGU8XP0L78TLvvQRhgCQuBvchIPlSiMkE+nyJxZcgh48yz3Gc7quFLmPDFy/0ERCbdkAbXUtQRzA5AO9Qi7EQudN+rGCVTAFBprzWcZXl6mb835LzCQ1hKaQVwVUmpop4I9lnEINAo1yL9ut9NAFAZ5yjNXf3M+jFlGkWITLzs1M5MKC33MOCGVqYI71MMABud0bem8zX27CQ8DMekKMH5BNE6exmhBqnKxJqEIJ0nHbgALwEEBB5XO2+1x22si4CQbPceAaWsNzM4IwOaGqU08e6JxmgIEj3hKx8Oh+RO0ah11Z22WZlOooAW77vLJ0Uah8DOQbA0vLeADsM4S2WeSJ4ARXk6Q0bnJblSFLCMIKoclERM6BnptMkY6vwiOpugn4GZJlklFyZcpBsk/0Nf6PxVDlzAfXzuMHAtPqnt9zmYpMgmlf+SRYfEOW0nUiBGRnx+wxHg/6Hbcj7BCPwg/N8iz/v3lg2zhu04KMP70pm27bjP75s9uwwOLIbtmO1BBCfY84RZLM4SiWUclo+NbJ2T+Gtwo7jW499/TOGkjk86o4hJKDSRIwfC08cIUpWF06ROy2CC4NXg+yJ4SVwXdz7aiS65Vz+e7cDTeFjbgh+Cxe9VJFl9PgdA1UcI1K8mtYJ/J6K8HouZRSgSAFHTiR3FRffQCToiakVQZnpmb7MsXoQDd3gBdgiS97Wn15X9+5nB71fmRjvbA3WHHcvX52pnUiTbcJhXWAfKgS3CKz1pXCRFZhZJtI/v/E+Andl2e96DUg/xePYiqo57popsm2ft+7xUOqd9SMu/AmuTUHn0pZOTTllz5cI0YhDJ0A/c5HDr97IVcFAi5IhwL9pGF9n1U8/+TwTh1M1dar858R0QQWeSXHY8ZaO1p3XOzugM2KGgoAPJEjPqHcl8k+lNeETWoLCyn4N0V6+mPLhiuRfzFepbTSdGzxoBBO0U0o7xyZI/yRxo73MF9q1MI+2N7Hr99NxTyehJSfrAhwOHWZYpN+od6N50xOIaBgJ9XogYoY0beK+yEtNDJ+bAtMJX+cMBpyPNnhauZKAuFea62DamApkkTkYAGw99S7LsSCmg+82h9VDptfRZC6dABBM6U7GzDoUNEpkDSxE7alCIye5ZwhrBipmjC8/7J1KP95JHrO/ccvbpd2xn5vBsIb+mdN0MrLUO6cBEZuvIqdsVhHSP41Jyvj/7wAPVhPda9hoHSlvJP0ywdyvLHnE1JhVwnuSJ94S2SQFCZe0c6A733vE/3SIh+Zng7y3a9KddVbIFZeooY7IDIyo7L0KuPsM9zNDZ6fLPFgPlMiIfJ0kEciVURn2thfvcvh+BwAd4DvkBM8VoKU7wzMffB/VSXBcA9a/r959Es3SKdERvnFRCnUUHUTBavTR2rh9V5U/rm1u9uq2/BzkU6p9GAn8Ef0rO6i6LSFVSzGEiQQ+9UW+89ONLV0ivNKYWJmdbnWs9/BptQIT63ykTN/3JbUOf/z2xvPQbdBeFDx6b23so3atnUxWMCG+1VPJUZv6c+uxW1qnuLDNrV+/77MOtJJbKFrz8zPKFFTTPM1uJ8fl0dwaWsT0tZEmCV0kO3E+EM091x1OtSyhb52zrgBh7edFf3MxwlA0uce2kDfk6/431X+jBl/j19VXGIhN51yTc379/41oL39/1chrEcV0L39/fNlRrLXx9feH7+3ZK5dfnCxGMP8bC9fngw7JeCeTFgRnqQSOFrQm61+fC5/OFz9fHBvNaF76++MpRpF45+AufzxcUSShha+FXc/3JAlcZMqfv7l0TDg08lwHBFeHS1BKC2ey3/jEZYjeZHWSLa70hYoZGj9EFKb0kkBAIlvA20TdBLPpypx6myT5aWE/AWWuxXDkA7c3pTJIJ2PW+e9+I1PsvG08rmay0c/e6S+BEy8paF76/f2OtL4OKWYKMcwxCVKp1SApPmau08pr2NCPw6m0kxfXNacram9oVKUuVZ2HsZYyf7YgKBLZRWRZO2Y9RQvsA+IlzbgM0ERsySCLDFIVcq5VElR6UonDkRWBTfj2/S5Gddjz5/DBWtDw+ysRJbtxWQOwRQmN+TvWkk1CvdQFrlJZGuO9O7jr7FUXUXZ8gkFgGS3VWy0BC/SjmiPTMktPP5+O9loMkha9MS/jvJDvr8Z7K4GwD1kRTRDAqxwzgpT6VkgE5LMv3a8WIWpO4CE46DWVjoY2zHXAaTv2ZHAKRbyDYCQ4AcDA6+84dNk+m1wZVVQJwVpL2S+/a2bRBGTnDcaIcKsIdDVans7+3hjHw1lin8HtHhFzN41XiCJ6NBTFa9oN/l+hMwTo3lKzLceX3uHfn6uELE4r0kJIGah2l7DszCXYRZDU9TX8m4pMRfP7u1NlykE3c+z1H5G7spb5XTs2j+XYocEVigjIm0l99FoFEVa3MLOiZFVx7ue/b+26CMJugBNCZV/z32isgmcljJyyT5HRHln2eh3HfjYpqK5BGm/V9qw2CsoVG1g4SGFNid8C9eyXjYVFvWyisr/IdB7iUCU494nJbhIF4ZUTCeqfsGlz2fzFjW5lN9JX4HWB0NzoqfCrFMUksLMqoQLBAY02b5DkO+waCX11pZYZB35367r6zJkP4T/fhQdu0st+oHm/+Hd3flsc1gLPAvTBERFRf5HOgkueygwoa4fF9TzK9QLRebMpgTeOsZuEzK/nIduHpHPb9Hjbb+gwF9qknztRtlP+LTsCDhIh2zvtzdSzsoBVhB9sl97YfjaeS9uOcLeoMWt4X61ZlOASzzvs56zpJX/kjfD7CKsI4et7v+7sz9RBYPePVTqcGTUnH8FRq0iWAjFXN2XU3U+0f0p+zViCJn5sEPtb7eXbJW0lW3Rv2485k5cxaUwprj4EqyUICu3shl1xNu+7feqzK5K59rT2/oJIsDZ2YjvG6NGlYPsDpYBuDvQqmPwNn0XsaLWPyFwLtGyQcyiRZnK4ciFSgJhoTKGgP3nmSk8Io4L7NBv7ai0QHtGiKTVrLd5p9jd2KAN3GxrZcd/f0f8veluyVHMsmy15eoex9kdLtMwQxq0r1ZsugWAx8HnjwkoKDdvYBgNlQZ5/Cnrt9HZf+8u4oW87k6d7V4gHyR2DdfhLGB9NWIuUHVMnxtS7cZ4/MtmMb08EPyles+lkkFOCGMM5uHTozsO+9H5nrOpEKfG8EOnnBaQ5ZAVz4fqTt7kWcp7uxzxnBdBJSyFHOWjbtGvdMuNTVP+j7oszhTbuKWAX7hj5zVpNk5FqdDLNUycG+fdnEufxX6blrLYD920tljOFA9oGOyTrdX31PYaPLd03kj4hxUM/I9yOsQcHXeO7RsC/gZ5W4+OGsZ3XGK5StebBHLzbf/3FvlNzzwOAmF3sAYdDnWsYaI/BEPKisOf9dwD3ghcckixGw/BWZ1j3vVfWhNgbSGaow656l3DsFyUP7dIw1pb0n0YYcuJo+/038eq1V3MsPHSYf0zrd2KOySCWHaoPT1VG00yJFo3vx176pUokBkTWwcWZjdaDlKXWPh24A7f4+uO0nrxGw+2nF/rP1X8jgO/i+b/z5559Ya+Ff//oXfv/+jTwHqjYuMASTEmr8/L/+1/8aYKgZ6e/7G19fXw8S45tZcV+fq0p1xfhHT2W9mBVnwMCsnEnWBErwP8zu+vqj+7DYaEzDEJXBxcnz8IQ8l/PeBgOexqko8lomnvY5Bgcy/HL4gkJk4ifLyCmqL+UKKYpUsiwVVcCp3vxDKEoxHegEGwfTAVIqaV/8jh7NrD9Fq5VeKsOp5fTpIRdqvL33duTm+35ObrrtgKXP6+vrw54gAluXDYLAiEHwWlaom2TPQthIZsIZm9f1Vd+fKj2ASSAKRwOctfDnn3/i6+uXlfbHvYGybvU4u4dTdS2/u5UZ5bT7kixmi4AgMlGTpwYIGOSO1sWSQxGRAo1/jRw1iHE0eZF8Wn12CbhcQ4fn6Gw2qHFJdHZp82dd2Cc7kgE4I88RvyCJMRSvSI8FyZXu5OhVmWAvsM5oK9BJg6L7QiCutHTIUednlCwTbK4ehqJLkgOMd3NX2GEV4LE+oNGEQBSBixvi8v9/DyD0V8KwMx8dzSKoVD9QlTwIHN7fd+kOGU3pzFM9TTMThyXKAnDtjjYR4Mb5+ttsclKR6iKxgGREWn2SIpVV2vdEelPgGfzZZKkDVZaBjGVZzyiZddYN5YwRWWXRyL+o7CuBGDqMqRIvGt0RtQeiJ9wNJ6SCIaDuobHVc6H1QR1xUu8G74vuVcva7Oc5SZACNn0ene3xLPVVX8Im+dKA3UEFPvczswPONpyyJtmWSE7yTjZBQHkSvBd7oeq76ucDK4HIVf0wswJvuUC5vXhGFLJSBFCJhgJo2nf1PUOQELTuTAeA/D+SK+3A1504aLu+1kIclasCTd6n7ZL6JMLv3A2OgcDOzcFMtf/Koq/nYfae2w+MjK7oDPqIHhQAoJ0R/mzJe1iXOJPQQF8O/CVB9A2W/ZvlXVoqjerpgs/fWbGYIZTt7QBd2jzkZgJk2QYPyFA2qa4GcUEQrLuVgS49f7KdOVgeRQaudfl5HiTVAMbnCLC3vOvzO4gDAvaSFztC0UR565tlXT+DExVEpQ3Z6iW5mO2+B9kyzCWfo8vJ+l3mXZ7A/4yMwhwOd5/lIDd8n4XN+IbKfKbOxlHWVT6cA9nyR0YZlOFQZNVjeJC+I/v5PGVR2SFoMQo5JtfCCtf+cuAMdTjv+VpFWNa9BcsFA7Eu32XZFn2/SUPah6qAUZCm7dlaywSYskSRqAAzulx1XVfhioEBLKrRwcpz0r3CEh00Qqqn8IWTsjMqhxzlkeqJdar9yiY57Zo06uh6XzqOvKP3fbt/dZ7KqjRmtN/ADMVHoLj+1/7EbNeSxvCxFjLmsJ7OztPSd0qde1ov7fD8XgWND9tkAFF9tdC96gIoJ1y961AtXD7XVSSShgpI9wQ6MwpNCNRd5fDF8yMLnzZYd2dWWDhDzuZpPeTcBAn0+wyApl+ZPke3iChCi7aGPyvd46FIq3t923dxZiNxJzbPh9N4iR2kN0xm6X7zPM5JfCgPSTlUFvFzYEZhiTr/lk/Jkdv2SBeeg/v+xheTcaTXHBSS/3nab5VdLJN93Ddb+164O30PMfBQ+B7U3Xcvv5Qu6DJRZ1EOPK87sYcd8kCW8sBK/8RlnF6PQJnYic/1aTxxXSTBuddqHUY5DqR9I5VT86/9DsDE/QcRz4mrWsJCHpQ1lnyoiSkR0e8g7PmThNudzds4Lh8BHGezWi9k9+v94SM1NiCByAnJe9/243ROxqZrsSVD+cEXk1DOPlURaVzfQyR1VqXDfvYT7D0r/6UDTUdDxADkktyRe9Aegrg1Ksi7c1s3ljR0xaLaj12fawwK6oCYklyACh7+HEhkCBwKcrbv52GRGUV8c9rxbEmiKqEzhkz9nfX3CT4ebJFXTQRUX5tOGb/vG+tTIPrXr1/YZ9fUllUlKpUBVMRb2dLKAFQE+daABRJ537+/SyjXwvq0A1GZeiM6+Olo3+/fRRxWJuHVwE+/uxPXp7IMul+ZHBWWbFwFjDVmPNbC12rji1Qk7gNFdO2gnjZiElkNRJDjZKIgOPHmKI26wPrn85F33pcVYdBnoolGBAGXr3VkASXsMzpPIHxOvfOziXE4M7IuCcGvDAZUFtAEgPZUjocVN3ovVEK61scEnQCvnCP3Komww6HP0uRk7Y0BuCZwOWLTZWHXdZlAQaCBzjnuSQEAf/zxB5U6o4tDKVl587wN1hFNeGX3iJkZmtMAOFPOn6PJSDxTCo4j5izlUYRKUUM3+jSAAD5fXzzzdi6VneMyBPg4vL96NhPviW7en4nv7+8ix09Y7vj4wAHiAktoz6O8fLsBfznuO9WPbvkeXvzeOzuqL29qQ+nrsKz1/dxFQLA3TjDDUdEoE19oB6aybNLARZ+jzF2TSAQjyESuauavDBM1y5UDFDar8F7nyernA9QZ0MFL9d9Q9qAArCLgSJNOaxUZeF26+wQiZzv9Pgwa8TA4T8JpZGfSEVLGZEx5OMwUBHUGaq+AkTUm3TkAS5N4dTfckF6Oq/QC//ug/k67ZlL5KDKs3hUNBgQmpVuS/yfwZ52YcopQjn48m0hLB0pP6eXVQmESDbq70/Gke/oXcs1B9wTcd2Xx3EXEhxx26gEBdZGN8/5xv4ozpbN5+q5HAArmyFEIZwIdOuZN7BXBsh/PS5jNLFuW9tST1Dsiq7fKqsmYcnTdIxYVOhKREZQRgxz3OHn2prvIyolcrj+nQ5jKevzr/uvs5EQ06b9QmkJAsKPUuhNdjta5VGVTh10cZCLoqOlnRS6IHND5llweNrsfwYyo+9PkjzLFws8psm/aW5F/WhUs6TJcR5ihu8DDjfmsk8yA7Qt412SrNBipyxL7vI5lVAOsDrOw4Xfy8BXaAzvnQ6coai19BvSzTwzW77OgTF/tE91MgvUfgSo7hCSOqe/a7nR502yor/0vmW49VVnHsMNdJAUeNrLx47OEUu857Y0ufmduSuRG5uIA9NLb7hmWAGK5dPWwWXfbKKmw6MBg0g4NZ3CSfR6SNlRi7c1yhpgJLgUaojNoOtO07vxFbNyD2qjj6KSvIFEegUoz7j7I+hdnTtOOScYCKDxB8mQ6P9I7lb3Vel6EnWXjdMC8/ozPZ53LYCxaJhLAGsHzKVu1D9ltK6Dyu67w2FNGD1DE9kKTucy8k+6nflKF0tK1OSpvb7tb5I1uRfg9N7O9hEOViSS8rztcprH1nm0CsWXbO2Kg0D62vAgHFwZqeSxyFy0HJGlUASRnWXYpQkSlMIbal+h94fcIy0nbEuR4ptPEl/yjta5OxsD0UYoIlt2VfM9hSzM799D21WNvlxYe7muJaU8qlW+n8vCsFzQmUOZ9+XoDN/IzbSOIZ4VL1UO35KvkfqlHIe/Dkk0NOBBV2K4TMOQP7Ez3GK7EhtZHsqXgM4XkICsAAxSRpcDspp11lj/lQX7AHCwhm+oKIdr6g5YjEdwK5mQmVnZlRqJxtIjQImcV1K2flN+jHqjIxKP1wTnFWUQlKhx0O4yIat0E2Uk9h6o3gPa3h66YLLEzm0kCC9O61xuf41rsT4cmh651PSoJxUsEuYHKNeiqH52b9vl7b3z43gqIlC2+sFZdwP9piMfsJbvWZ/hP7bc9SE20zFz0p/Wu0jvSS0cYEsDZt3006f/ay8YsJT/VMgTo4PxjYKLIS97VmcCjoS/nNNmWwy+PqMGalvmogatpEnVhKdtQnEAKdx/7RpXVv3gHl6skMtHD+MAM0OxsxtLnw68advk/XX+b4JMyu66L5ZDfvozIxCERE4jqYbUP7ryB4IUgsaMy0Mr0+sbeFCQScV9fX1D2H1DCnKgJTNe68Pv37/ocEXJonX9OpR9fvxbUeP37+7suB/oiXOpXAFRpr6KvefD5+kCTnxpYHxqILl1MwNGwR3roIQkwlGPQaLXjKYXeoKW+ZyjU3YZ2q+xRYCH7fXMNgz36KUypsbOfzNRYP8m4AbjQWQxAWggVXZNjr2lZEYH7+7bRd1NOGTk0sFKm5nVdJu1sbMXkozPB5NALhHhUNRpU6bOrLOw5DWzfikrXfmTyzPR9JEtrcmCXRlS0G238iw2tl8lulKszF1BQRqLf46iXBvfBoFnR4c7668iJHNOOxuj3J3mqe6FJZBm9z2dLAXV/Lq2n09GOTKLKAwCYSLx3IjUpmWfvcm1HdOBehvqc+nwq3bWAnY8U/eS+3ZyuLZkAAXBEqysZ9yKFOlp58hiQL05A7qlu/Y733QMvmjxYlkdlINhI8naq3BtAR1nimaUIGtLNKWOtRzqDKeTZ0FHdp7JEJdsmkjIHqatMMQC7MySVrm4iWPckS0eVc6SejAPgpqLMx9mhIm0VCdZzq01AE9YwcPEE3ezBLgBlL9rRjaFP3KeTGRpyBvVsazwD0CTRLAmBqKWHwS+dWn9PQ3o3uZxD0CVDGMAkEy4NnISl5HSCQWIwLIL15P3r/QkSB/3syuDs54Cdf9lRRR1nppgcLPdu4q/fygTQ5/Hj3FPGICfsaMnJEHjUGWlfqzn9ck+sAlyJXMBOBlo+XZZQ/cPoPGtPdUd1Jyjn1UYivTcrKhuQD8E//msgrANTsA2C7Kjk2ntQ/9zKMlAPKtryKovC47P17y1zVCt00uouCMS1/S+ZKidd5ZzWTQabdCLXZRvcTnk+/ue7Azr1sSoLCn03IhbWRZDskqD6LUWBJR9yjpGwjGtXlXWX52AnsdxpErxBMwkUldrQbqrP2pOYq/fXXVF5kfFNtgOvezAj2C5Bcpv8Lp9u3FD/L/VsfEfphNoX+ggkAR7tScK7CWdTDl2HlB09DczzWLwyT01aV3AimqCfQ4usq/19sn+DqKZubf1DWYAf0QRwlXvT+eUGzECECaWkIwMFWIMy3LWHIrAuZaaqgfrZVU1APfj5XNY5Kk+STD6ydJfkr87AvR99iszcOlllTXERp1dvP/kLJg1T5Buc5ZHEZrpbmowt+VNgB0D11SX+SAyMxDPR7/sujPPyQC1i400b4KSAXcrDASdIjmt/igxK+hTE/kBlmJx8yMfhZ1NjDAEXSZa2k9rfIgl4R3i+0wl24J6yFWi7qDtY/tdmn9TsSePCBO7ht3qIgv48Rb4O/RWd7ZTxsyqoNnbaRukA31/ABI/IL1VA1QcBwaoXZdBpda899jcO/fnxGah3OChPwkxqDSOipFuciFxvQviQtEvf2/YF5H9Jdk4mzi0cl0h0tZLwgoMm57hCzXtmXfFMQtnyQc4pYr1egnJMXElMvjM97ER+sVuGZCJQpcnal4MqpRbekR6MfTx0LhNIBrNt45aCqZQt2aW1Kvt/9aT0QNiHT2eupQm6icWO+qhFIAZ5ar9Ti895EkzESSAKr16gzV/DJkL8STiLzQFBEki6ByJAAZYQH7WKaJ8wFuinqsxSWK2TEuwv7xvBXs/CTzovYfDKPA50ZU3jVnMr8nmy9UlstP78cfeqR/5RfYD9aiWYnPtm8lI4SK0sx0D/nHRdovWyMIN0vKbUnnwGpJ+9t2Edlb6HJHT5PXs3ltH7uz1LMptuTT0DgJhKOFQ+kuyw8IYyvvX9kCybm9HZrx7+I32/iz9SZYoxIbFtEdj0v8d+CW+sSz0ej21I6W/er2Gj/u762wRfJvDvf/+JP/71B37/+Ruxwj1uBPR+/foFAPj3v/9dPT2oDO/7xtfXp7OY6ORUSVo9mrIKEqiBG4zCfN83fn19VX+rFe7vV5G70atrOPba4CbpZISr/HLPv0v4sM85bMBajsH39zeUrvrr15ejIRiCocP5EED198GHnFnAX383ewcIYCCPgUa7JMG+OpcVeoOGzjLxhcJQMqiLi+gUZ35dXayh8Npw1NnkAMnnJK7PxTLoBjwLXcd/jZJkfUzmwefzhZsTkddSRDS5Xx+cs3Hv7Qiso978DGco6fLwd//88zd793WEQySojNi9SUzxLPa++Rk1GfacmhoVdHbWupwZ1ecIWojZHykIEusye+JxdqZeve8l7w8ic4C/lkzpM6/P9QCFnuiZkoSwIfJU3SHr6v03AdGcgGSZGf8tDdPHJkdvRGws4/EgW0VIXlcBJ5BUxAArAUb32JB4j3fOaLDQmWlKqWbElASRwBdQmSZna9AP5SUPbqgUoCImEYH73M7WtLJ1Ona9/5FTNByO728N8/EPYrHESOjBe0iSuWQ0rN9EluX3t4FPLKXHL4SivVn9XL6+PjhbjjzayJCU74lZ6EyUc5gJ3aAh9zPyOt9VxtgOKgnCLfniHm+et85eJJRlJ+CSW33P7Hej71XWYQK4f98GQSIJ5czmyQKT0fqJ/jvg7xZpzu8PNT5Gl8Ly3igTQQa0Qcexo6b2AQL3cv7rARezmNlrjWBUWVv5kIEYRloyegD3YGyHba1g9Hw5Cqw0CT2LgNZ0kiqjamPhepBJCiCUXVCWRDsrOOWc2DnTPQ7BkGqqX1nNazgNpYtn6UPw8hUAAv88nU1rnYbOkHBWtoIueRCns6+mHS25kdyhptQy+BTjC54guHTIqDprcK+NyRGAsx5por2z9kpHHToEOl/3xFwdETaRTae7A32FFYpI73deoaEd4f2Y0fcSuZlRsrr0TPoRqwmyJFlLR6fBAZxlCDqyJjW1bwmccxs7ZMJ2t0nJPk+V7c2gYRPvM1uss4kduCgQ5O9Wxod7FVuFJv2YNPg3zZfPTB9dqUnyly4cZcfZPXAPhWE61XbwMtlCIq07tEfCtZ5EnVl6G03y+fwyHTD0+0iXsj2KHIzOFu0BIyIrWr/q+UiaYjolvOvUPWdgI/1PQUeof2Q9CP9OQc62d/p59eyTnGv6KgWN5GcMXHGAXCyjgx1DgBlup4ciCT+tCA/o0hRRtQM557RNOacmZ1LudF6f64PrsyyvIn2KuYaxluUvS29nFvmx+QzS/yIGz8y64wXoMq3WRWcfbNz2JSRbdu5SZNnH99lBGRJ6CkTvTGdo+v35Yy6JjDIRLlELCQp8VxCB8tlbfsMkgsoV22Ylf0c+CgLY929m+QT276dsAyJ3qetXlbUdVpXovHPc9ZMHX+x3PssLAThrsc6QfVdPZ0Qr+2viTp1LnSsD6tH92oHyM6336Tsl90l2tu+m9O7C/v4mOSAdwbt/FLQAlFWrv4PuGyRzxNLWC+XTTnms4Em6VFnPI5IpFQi/rurFpz511qmJwyCQMKWwnJ4zeS/jDJ9lLVbONUYO+qFly+ruX1Hy3djoQKhGdkX/VJahcTvPXVUBCfZww7wj3NvsUnJhrDoLYK0P/wwIDTWSTeRZHk45joCDLxuNH7q3deCcJs90b3iRbMdVtaJBGKVahRebO6jvrztVMnk98MAM3MXQkdaXMWwM6v0Sw2/3fo/g4QA08r8BQL3oLvtOI1g6fEdl8alaDMKZwpaUHbemikCSJD/YtlvPoGR6X2JdA89E22aetZIxqhKsgrHmJUgYB7YHWKR80WibJ4LNveGt5xKp9lXCYyE9kOYIpBHU/xYI7430hVq8xDhPRFVyzirHJmqBzLbt0pfC+WXDklxgWi9IOXTGOayL/s76r0zR/fW/fvmgr1XDJzSJVqSeAEYi8fv7N67rU+TedXUDfiqaP/71L0cMzlFpSOL397edA5GGAGxkFBHfTPfshpOLU3DWI5NLBMJzPHvd9mKPL6jkqQBoHYDIRzt+9RQUlvE9PGBdGjcxPcfE08Xv0J8H38clt2tG+Qv0bA73UKaRSmem82DQPRwFAcW9a2KZyLn1WRUR5AVxlIQGWJELZfqIRKl36mEGKmMGYCXj9NxBGt73bcOp/mmfz6edhrUq0pDpy6EIgZXGBMr83D/++KPlLDuzSOfQzkeXGnuoxthvDxowmEgr3UckGM9sQZVTyylwlDKz3xfpKPM1wLwcDNf0l0A0EAEM/nNoPJPQOWUoPNm5nav099eK/vloGdPfBQkQpW3PnmNS4jtZqhhdTs2rQEN/2ZCItNEk6QpoKjrUBJLAapfXzIyZes97f+OSw4w2LlVev91zgo9azYE98U/E7nZEWn00EEqZX5T1EXHOfBphORgEQZlNJuv+8Bdx4li25lnamaWs3d/3M/PB/mNwv5pYiyDI3+OzHXqrJtOEo333Tpcx2ClAg+kEI3m8P7q/zs7kXdVAAwc2ZPy2+slJ/vtuOgCBltlu1C193IQGBKZtOAV+MGRYPS7KOKtsAP5b/OXug4CvM/F2y6jAtsD40L1rdQPodiboxGfiyHDTMayLWzLi/lAEUkj2XYki+2+Se8i0A1N64UIPE4g6b2YfJxJVHTOJRZHD/c5rUbfzM+6tCX5DH/LdLwPqDlY4Qq+d1zbqMNB9Du08yInWISZariOKEAkMp6f7Uvo9iXJEsymgdk5PthWQ1521MEEAX3cW2Bg9YkJOTkuTgo5zcnH9XRpUt1ylba3ssjOX+c6bJIW+T7a+dB4epIkIBP6wbUGJ5/Z91ZarR9xhaRmENbJO+dEPh4DZU9hPn/vJ7iUsoai/ClyXMljlzHaGhsE0Yca0IXLYH4FCPrl0pnCIyj5NvCNNFivrukqxKEQBKUSoPEh6vIMKwg3H+9gESfz4meEwyeEYRASmzKf0QUtNZ2qotGm55M775gyDtl+Byi7vDMBAZQHODKdnma0ymTOJH6JtQZ3blgjAmYdgThjvcKqH7VL7BWJkOdV8/1UXwfe79SizB7/3o0LEWRUhH7mb/YvILLXAkieUapzZ0EFsTPXYcimHHMqyuWxa6x4Fjuxi1HslsVm983Egz1qMZ68ekE121xsqMAcUQQmofL11q0iuzN5H6Ujdm04UEI7kEA2AZIkIsPS7Cg+W3wOX/1ZLkc07x1NfAXIhvsI725dyGxp97gjsCnv6Z64FZUsRWELDzuSfuEokKN8J/11EOMterT+EX5QKXRgkPJCt5Er9LzVdW7i9M2ikS4DExvbdMVnLMzeRc7blH97a8N3ru92y/bO9yf6+jeGUJfUMOg1MEjFsdvciF/E3P6feRcMH6uf26X6F3jRihDj8tBTWqefQkCdjQgbRrSIDxGm8D8y2utYCFrN76R/Jd6byQFcQtf8cqOdWeaQIIFUxzQoWWmDIH7c9h9RKPeDhWQTUN19ydj3krczbAQ5wIgDQ78UgXfjzjW0XAxLUM8RuhfcDl1rdRv+ubIUwq3CvZKN0nfal8aG4BMlCDJsoH11LuiDPAa5xfmBiwmndn3EaXyslHbR/tq2lz0teOotQcuXz56+qvY4xEAUmRao62C5cviEMG+NMHEDB8x4kf1lBmcnN+C7d9zNotposr89OALf38jFE0SRqk3CyNcJiwsBzaMwjOOvWZaOMdwCsvo9POyRfqwKz/Y7dSsxXdbRean9CyUpHPIH9nuWAXm1J+0Z/d/39KbroSNXiZNnJampYhkg+RDe735n41+cDrMp02wTvRQRUSe7XV0W8vjnBEpn4+vWF+7sy+NpxGdP4RqaZSp6u68LN+uq9N379+oUZDV2M8t13s99ia+9749cf1+Ot9fn3LcWfz7+kmjPJhDYSSovXj9WlaUBZjt1dEa0Bkk0E8b9FvGW0Mm0iLCyE9SCwMdQldkSXF7ydYKWX93M3IG5Q0I6IwP3T2O/czJjjgID7rjJfFMn29fWrlNB9+C71bHJCJ0s+m1kqitW9FNOO3XQufjbxFmApfb/HHmz7D+49IpXQRwlFbHTGmbVPJpJHBoP+v8p6M3sEtgha7fZ9i7BtMlSOjxzZGriC1rzRCmsSQjaUA0DU5OZ0tKYjX/mQqUm8JB093eN9dwPgMkbdO0L9YRxZGcZOQxvkpIPAwJkVmYAHc7DPzDjvevdKWb/4d+4pGXXvV7DPGbN9gWxCn++lyKDKx08manheR6y0b7NvTjvKlf3hMv6xdzebpSoauI/6m8ABCvVtaBBdQOYQuBQPc5DsaXJdnES8B8hbqHu5OKSEzu1PY5EEUS3nLSvILIKEZTw1OOR2FugMWsxMBQ0sGvwZYjgMNvhXO6IC2WmSkBOvf4LBVE+5KrHSPtfvKnMjCTql51gyIOJHnyGX/QjM82IPp0uBpMPoYL1/99RjlZky7g3euw+MwKgyphQJVk8cZhf4z/m5ygQGUJm9YyovMxfu812ZzwJ6cl5QeyObVNlccvj5kSIA9N4QqVDPlPq+qDPRYBIks8e0f8Q7K5TlDWhggfSMSh41mADRzZbX1bJRgoJ2cvhOJeMfk96aZJgkHlIOtW5iCHiWrXwS7XKcVM5TBYdrRX0O33dGUjUd3sDTwL4Ba3/+eQB69zoavye5C8wSJO7jxUmAAANyV+sGRqvd82voleS5LMs8KJvhd5F91jY3eTEDW+AdntmBpTesPyPGnsK4pjIPN/LcjmT3XvUz6tlt8/iMs8+b9tfEAG2J9cuwaSatQ8ffVQxyDFQ6OMv8ZK6NV+yg6nNrQ/QzGAGcsChzaE/254ooVzmt5M7ZsgAWW6HIQTYekv4FHmW8sx1J2Zo5tVQEiFq8HGgYWU1HV8UG7JwpKCkVaF1wmIVH3XN2V3/ISZkyVyklRRAgRPZL95IsQALq/7qC+yjCr2UJfpNw/8DQfdQZGGt3Cwm+Au9YPnCvS5ZlP3jw3RB/2CZQt+56x2tdNbjBZy89rExe9cTrPk3xOMt8yKt0rYI73Qt0YMGsAQelM78aZ+n90VjclT68pxVIAns69T2SXneZGYVl3u3kcysofI87nIAJbd1pYyDq0zlErf+uyXANWLrVgoKYbvkMGovXOzY5BhIaKqMV1pCvNu2EdSJ1y767r9f0P2WrO5hLksWku/CIiK9uA+PSVfqgInF6gBpt6Sn88vHwvwMR90D6TktHaeDAbEPAK/zQD2tVEsq0K7oE+3TARo0Nde/POcB1eciHfBbjwQi2QVHfryz9gYMVVyWk4PLd0jnqol6rJv4uhM/Adkb366iCof78E5czr9RjTX761At5Du57449fX7ADlqxGl3Mc7Et9plZIXEksmbp3ZScXBpHtmwTrGMmy7lYTyNt+Hn742YgRNFsLyG0b+Lk+3utZZtpy25ijZOm0vT8daK9nqKdWoHqeycw4q2Sb6U8e21IHCJL7QBgmAnkfVqxxv5w8s5rg18AXV8KNPpg/+0Q70xxNTLrCwvrrtN8guwzYRwJll1tdvtY51b6Q/lhXysFlu7E6WCDOZlYEzlJpcJ+VBJIH2MYk/ayy1den5gIYv4xe6+rbKAK4eJb+DhG7VRW6mZksXC5sIuK2dJlsLHhnkNlZmn9j/ReGbCT+/P0be2/8648/XJMN1IF/vqoH2u/fv9nwftkh+/r8Mkj98/fvJhuoFO59G4RooIaaTS71pKAi0TRJgIZ6dbZcOUHKrKn+eoDq+RczAiqb4l9/VPmmUtg1Pj3pbGS28CsV3UKiTckBT2SEVteiG7wmsNYEklIIjDackS2mC6XotUCtjLOVAaPB2eUpRopQRE4R20Rc6hkwDX07+urHJKH9XDXYQRHIw6zCpHH2GVzhzKlYKj0rMkEpstUHsSbyrOuXzytQk7zUzLuBUv3z8/l0SWv5X95ug1SEexlUKbE0TANzZCLY29ERXylIT+WSA9gEY0QbzKdjFI6MTmLW5V46w+sHWYwCPfpdTbe7scel9wvayEqpyNFaImRTGaNsiopWylZAp5WZwOjcO5lHg28Erk8bhTIY6b4Nv3mWegeTUFlZn9dSL5qwkRIxmWr6X9CaZPx3O2rZTkGCzt16lgYL7IGiLiJin+O7WYRsBQIessJ3rBR7pd23U3HsvCiaq/KsaK0M2KgKbAt0bhzg7oje51NTuxrQpUHiRYAvA1EirmylesN9byxORd6jVL+db2aFrVHSF50pcxLYzIbGupDRGbczU3GSDXIapBsrEtgS5GiVwEbuLknkHm/fIfgOzvuj71Nm5V+MezZgi1DEvAICnth1MUvkjEwIAtO0hMSD+AxFz1a95zOCFiavj4mbEfBIkQ8EFNQjsboJsuUdPxbBTPf6o85VRnuqbHf0C3KWUesf2dvew/4mBUv2UV/JJmXDjkBin5rUXCCk9vzm3Q09LNIZIiXw3bqgbI6CSYE7jodbOLOFciCnrLJ5CGYygR+lb333GHlGO1wK9lXiYztzJo5PlbA/HegnIXtmw2+0k10k5cXv6UwFdl2E+gtJ1m0zlfnAd65M8fWQ772zeg5CGdvHvW2VrfoYSFW/+AD73qNYmFjiIWCWz+R+9+/54BG4fkz4057r4wTe5VC6wfXWNHEQgz0BrhzcJpqaxGymgrKPdmqd2azswbueXeenwGgmEGcEUKN6xj1tWvfQU1a8+wk6cDMdW5J8gAdLya64z5cypVmOPm2L+nCqVLlkCf6M0IUPuBxTNk7PKTvw4yg72w1p8pXahrpVGX8k/k5WNggS6yNdclkftb7quyV77O8FHbpYLAllpgltgYMslVyFw553h3hb2Wp27CO8v/p3BRxxwuckR1K4X/rjiVngoM6KwGP4OQXEf8fJjyKSSh4DiRFss3z2gK+NdCm2sE1Sv38w+YAFXB1ME2Z+YH3ipzrb+rN9P7H21HcxzrReZwR/cRr72WGc5El/r7C/ssEdpMQIXlKXKShKgfa7uczW9rfOqvrYPTEiUveoM7tL3g7Ols4SIdiYFhFua2MHmrqig09PudWdiZX8XpJYmf654rvDOirQAdzCGsv2d088YpIeuM8xoadgn1wOt5DiPY9FQo5l0CCJFQCD4kX4CQv9/r55J+RvUT5JUt33zR7YqpK56JuougfOoouAWzfJ582LBL1IJrUAod1csaoUdRVOPkPPBe920s/TxPuyiyULJsGpF5dlR35T6fy8SJxnJUSsLD3/9evjc9UdVQ7tqVIQB/WFj3XGloENZIxKE5s5aov1tPET2+vnhNtS9n915qrveLQuuzQY43SS0MnN5KXbdkC6q044bA91RoVnnglFwn2BxrvPFl31WTPrEAFzAw9cnfQdg78dq4aIYgNX20TpG7WC0Xfd96bvexkrTn8SOQi9BU/EnThOerju4/KOSJ/J9yh/bd7tNL7Ceg4BqwB3495TlwexhEGKX4C+qw7a3y2/QJUjs5dhVdHsh5xkUKcObCY4I9/IgSfjXMoL33WzB2X5p2n8AISrWM85rvCbyRT/6fr7PfhOZ8X8/q4ptV+fD76/f+NzXUUEfRZ+rYspqAefry+oIer3/c3Db6Lo+/sbh038RUYtBGJdbpjafd46M/DDCZf3vRGZnjir6TLHBj0ezvU1yEEDBMBA2MImA1pyh8/n66GM5Ty0YJZCu64Li0TDvm9cn88oIUz/bkWHmOX3eKa0YB904145ruCFrNHVVGQCyZEebnJyo+7KIkGCopTtpKiPWn2GMhwEiqVe1BtF+6UhGTN9V6VOMoLnVNbkBCICwnJwFEkAYMO798Y35ar2iJGFqxzfvVkiwcnKEbA8diQVo1diGbki0Z4Rh/v79yjLZobURYdlJ0vPvwbIYHlYLIOx+3SZaUcra33/KAVXpDBE6vo51OergLn7250zPrfOxIZmKEM5PK3o0doi4N4SFcWkQSHZncnoXZZonFPArxvMJgn60f8oRyoz2hiqyep939gomQ6Ct+4R1wRSpS0p6pNI9dTj/oJDPgp0EiSTHFSfvu6nBRPOGtMO7qGGhnxIPss584jyUX4ip+K6aJwlG3lwbvWR5HRm7vUE186CzTn9agBMOmiZWf3dWNase1SGHJDDqixUfY7IqXPSUSwRjVGecem6u3uf1N1Qr8tu7iyCYU6Qk4H7/v7uYMZwRk0IDNASWO7hhuQ9532ZZLjLxplWv6jbSwcvTKDSAOhZ7lvl2B1tb/1NJR2B39+/GzBJ3kP7efmc9GxzOqZA3HwOnVcPXWhQsgiyewiOQJwyCfRdvcf+p1IfkMO5U3836UtGLUNAs8GG9On397Zcl++bzth0GUAmcmR0KaPoYr8lgW3ZWe2dzk1BNDtz+7b8fW/14JSzlwaRkaiSDJ9FWmcJeOlsb9pnIHCxqNWOnghpR07hM0gCLVAfg7IJOmLKHloROKs8mEdvw6XBA902wKVX3PcqvzoI9hrTWXe2FvsmoTPcADSZnJ2djd3OpKZMCkzv/W1bVgHOZZsrYFlOx65MH5GUgAlW6bSL9gXZ9nzqTj2f9q53X6vL510Stqp37UIP6Jj2SWdSpGjrigfO4r/r/hfxUc9a2ZZF2POX/Kz3IMLr6cIkRMnVNp6Qzp9EZr2PssoGdpEzx8fTdF3JVmV/52MvmjyG8ZOe/+RpgiGq8bx0wjmnv8jyzWwk6z1/XMG14bDezDxRxtMjYGLM1o5lXanEWeqZ15lMGqxT8t24CGOPD2V+OnTsNFDOI23wzqrMqITb4zuiDDc58LZ1DKLVj4uty26vQTxrYQw54+VuVtCYv4bOXrJbTFn13TDGqT1S4OIctaLpO6slAkqElzDP8OeaXGK/YC33zrMNrEBSvWoHFOadqH1hpUmsh14uO39cAo1hIzVA4vP5GNPkwG2eoCr9mYlHj04Fp/nfnRQg7FA2yvvJfaqWHsL+CpiWnH8+VaG1eSdlV7qlRPK8NzHLbTsDvqN7pEcnbyhgqP5akCMtTLNFF+FR+aE9oEqpP/edaOJ9s6Lse2ToAI3NulJq90AQ6pPFZNoPh7N0oDhHYKMzt3TW9fyNNZRNpBJ3+Ylf2bbS2AWAWwagEiUUuAOKZAYxomxUZf91FdIqQYZ6aG7JFjDsWwdQ1lrIuzMOP6N6RZhh3z0BOPepJGHtXTaJncgqLVaW6HURvwcieQeyAy+c0OW7us+2bnXGqHsys60JWsdIhlquJYrp+yYSCpj3vNsmuFLsca50uViZs79Lv3w+n8ap/MBE0j+vZ/pcH+tr2fgfqmgE3vsvpm2TjMsXd+sYdDuBqXt1T/Pk6N9KH+Ckg5tAlwALIqdelti69Hr7gybQ8iBvBVdm9Riz3hHMduU5R9st+LvkW3U2bayFRb29kgk9d+GjNd5bXFJElanLdhJyO2mkgKZeUN/Xell66NBnu0i6RywcVl0hqvpB9r/OsQejSpZm710Zki38+jQF/9H6r2TwfVO5XuvC2Qff93eB/bWcnrjvG8oXvb97KsneB3Fd1VMvKuqn8tkV7FXx9QUA7jsXEfjjj38ZmExQvwkmvj71O4gCiOe7ok2aoqsL7T4Dqwz4N4GBSDFcy4Mf4ocRbmekjNNm+ZwIoaoBr1ifjOZsHAwA9/2Nr89XOarjeR4lKyTqCiC1EzNTz0tJiTAALNzZpQshpQw0IBCwEmHAM51EhEs/ojNrBJIqm2jZGZqptKByqMtKY85LpvTZz/Whs9fp7S4LomP269cXStEq62GX47suhCZl7o2vr89QigFF65R6rwECBVquBxC5rsWpq1KQIyuJz3Gh/3sC750VxdHwAMRyFKCI688zqsL9h41mO9kiWpsgVUZF+p3Any8wvA2ac2z8YqPhBDgYgMA64d8v2aVuznYGejhB72UZIJLFfE4mR0P9WGx0VvfkExG3lr6NhB2b+0LKm3dVE5/VP0GOuKOIaIVvcJE9WTRXPLJ59axffG59aBl7EVs/o9P1Wep/VkNZ4M9T5LJJrQoqfD5X9fwgsS/y/+vTGQRW6HDSgVPRf/36xaDH7QjidS0DYMnzCpF63XMjCNYklMkMKukKlxYfjOxTMKPwCzOIINlVKYF6cc6SwDgkK+7bZ9+R9U2C4tgpFTB3K4Az9MtPeRwOk5bKaO0EUF4CgR3He6Wm0bEW+3UkIliyQz2RqNJSOQYCzp4oKLHMvrNN1GKeXN1/6cSs6DMIKifgkn10AAjU63yys0+VYjPKLlBkfzZHX7cBngHJbpVV6u+3+5wKe039w+fOJikE9px9NDIYKnDR/SVFVi6o9133DnRprkrslYgmvSMQFcpUbX0LzKw0Oo3Xp8mF006E9yc6g0rPGvVBJvinDsfQoyJ/lLHpQSnaOCTU2kL71jgsvI9yEmYGiMr9Std0sYWyICw+WQSsCFCgM49K3kXIwRO8dbeeQzDaUW070lmAel45BWV+ZTG6/CqpBxt78NmjHTqfZ3bQyWXJObLdfpBNm43ahZcsYAL4Gy4lWiQLlBX3IBbHec/9l/6a9luTIwGwpYGc+mHnkiVakOjuH/s6siuOMrgZPERCA4HMMKErQDSsS9iscE6XPAWDV7p3fi/K9c0MsgRw7hyOn0iq9L3Kk7a3tS+JEweRx/2q7Cjtg1wkbEYJs0qeXDGAtnnAKBUbctZBNAW44IBaE1a13+qFObPIJqk1e9yt0cZknscjQMaMsO/7Rl7L31X6AV2Om9n2kDKngMO0NZdtfcuneMVMWK/X/zaxQN3zCkTe4z7BnyU8tXin9Q4ixZODIEQ2mIC3t6mjTritEAON0g8ih9V8vu5cT8MF6j6va2btYuC7EUAe5W2J2iRl8ghPgz8LYh7d0VlqKpJ4E7sf3hffV2ERdJBFuG4tyfpoNTRkJNFtRGYJsZ5Hd8wZ6VtDOuo8TApiYP1oHef7yDuiYHcHNeFAx870nnRv4ST2ka0uvG6yY/PsUj97XG4pW68sH+nlWQro/VvLJJx1/jib+z74LNl8BloAVuJ3y6wChKXHPlEJIEV8owdBgHuqbCQHN8KtivYP7OO/07NLb9LMK2hYj132oZIBVmcSJn2hR8sH9tUsBwoisTuQufD5XLaz2o/Zi7LvKIORurEpP6MTAr6+KttQgYPWSWmb7H7FlNuqWlqVIZnwvsimzUF7V1yU82QSRnpvIlTRMGwTcYoCLYfDHYo0ZVCP+EmBVvut0Yk5ypovOddeVFBqXRewpr+xAHQ58kLPMKi9mZUXDAzRHpdPV8898UJEt8lqDE5dVhOSkKHs685eB3oGQIaOOXF/d/LWOcs20/9D99iTPBYRm97XROGG4IBEJx6gZa30xsUz4HMODOwsW35vBxbrnfWOQHjAjs4nJfR/c/1Xpuj+n//zZ2VI3d/4179q4Ma///wTzI+GSCc1bXc/CkZfIhN//Prli/j9+zcya4KkI8oEZCJAvr9/O6OkMvc6+23f270cZKxMgAUcAVVWg57LxpXGStlZcyqUwICM0FE5WBRzLBAnBRZ4gjIBGoGh6/rIfAMcC95j7uWWwiBCRruc5QRiXBB02qzBHNdURGqWX39hObdPo2wF4gmTSgtRGWqhqG+92/f9/cjqM1kY7JGWBBSL2YyacDMAtkiIQP1OnsSHhF1m9a3TdMM4HcHT7y6WYVyMEh1GYVcEft834nPhsN9Q9RSoEkWXEWNm1rEpM6OaOtOgk4NUz5AGXxHsxwA5WofPowxTGqjsNPOACKg+o5KznojbGbIiF4+dQYOasYc6VPfoOR0Bl0hoT3m8BZgOrNx9Z/hpIk882TQL1Goame7E/q7+YeVMhEGW7vl9ayLajL42eFVU/7ouTu1qxbmC/Vqinrock+6jYed2HySNj5S1olkyBgIJbZCBIFEHpJMdK4W7s/n0+RGoJuNoAxVLIPce2rHk5b4JCjYj0nz2hMptawPv3SVmAQHvZxZKfXdnJZrc5M9C+o067PoINKDL44HOlI1VWdRyhlGfXyRO3cMeB3/6eylMjhaezuKdZLSyW5o00nCfbT0B7aMjs0VQicysu9h9bQTwP2NaOggspcj23th+vnZMRVJWKUsHLU4m7rvaREjXu9zcgLSdq9I50mGMTNsB61R9OSjS6xR0gpzOlHAZ0u6s0ZNdMr4IaEGQqvPdm6DWOr1j7CIK9X2ZJEDWYpR//n0BGk39dD9Rg5kRzWWkfcIPBRxkTwzwDsvs5DimMi7rEz62q+G90BmLEMZwAIC0Hu2SWmVSx+N9CRxaptz7sVpFCiw7M0Z6KGBiqwFl/d62EzAy1RJ2pBXEtL1XDytGzVv/5oN0yXleKAo5Tmf6lc5K7NMkxzlgJjT8e8k7fV2hDfCzuOUHFlb095bjqFynBp8edHF1j6YYn0elW3KoQN5jXzpbSJnH2pNy9kZPTAdaeXdbsICB0fIcdIAt/ffKaBSwn4E6ZdiINFFDeO3NLAc3GTQyiP1z1N3Cs75piaoOOZ0RO39P90BnT4/0QRbUrxp1NbHygHFC/nKgHn/Dva//vu+b79EOCxDOJJMOSRSpgcTjLu77cKBB4+bprChzykEXEzXCGIUnFPRc0Zkj+nmAPoHPQ8+boF9H2BK+mI9MxdqoOovofo8Pu0LbOisdpM8nIZIKHo7gpp1MnhfNT9nmpf5RDNImM6VHgB7DoavEtCbOgo7upUwX62jeSAf8da5jf4aOEQaQ7E9S/d63AzIP+8tSav1+ETLHgfVI4bBFx/lH8Eb3Eh1ABVABUz0v0L3Qs0vf2g96Bl90DrK58yxNxKSCHG2j9W0KbGW2LtM5KHOxW68c29F5XjNo4H2RrFGdTh13Tp3TzT7T3Te6qtmQcEXQJOW7H9/uViBRoixRr59diKv2Qlhb+3tOVXMhFPApn3pWk2xMQh6+r9JzKmfVW4vELE25x9BG6k0KurCpMPeTeA/bTC0FNSQ2W7oBfAYPPVjW1yZE/P0M8Az5S2VBZz/TGTp4ko26YmVvZgKDnrEEbA5n0DN8fVRGXD+T/IX+nQ4KLWYZiniUul/r0z7Z0A+LBJs+q8lj6h7hXg0n4s9fQ3dt+gWdocvhW9F+KKhT5uA4Xim2IShC/RygSo1X62Kepe4EAMSqe5QIE4Rlm8/APBfVc1Jmi1yTT5GpigdihdOBwYt9JTWUqY9qJMmg7ZF8h/JnT9/96AFsaRmxtfSdrrtceuE+N8QD6HemXpW+LOzY/IvuNtBl+k7U0R1JZRTr+/gesvvEGXNY4N9Zf3/IBh+w2Ed+6HXh8/kqpXdqpLKz70geXV8X1rpwXR/sfbNUt0He19eHzkRHfAJwWmwBpIp8SrFuOrAaa13lBDCrr9+TEeiMMWY2rQI9n09P8Smy6VjYQ6TeAJKZRSpUtL+Eq4D3YcYHSylb5z0MZl2OBtvJMeoiWurflboNf2eDjtF/gN8/m9Ijqz+AAIfKd5U2rvp3pcT3iG9efja1VER9XWxouurnZrNyvZvA4DQEahLd/SMKuHepTUeC9jnMPNPlKFKt6KMYzlqwDLTq7T+fD0yMEMQKWMmhB8G0eg8KzLVrrL0WwFI/j37GL2aVygkI3QUaM51FGBwWaC3A2gSpSYIVLospYBY2dBO4yaE0wBC4HsB7Om6tQdJnDCgay6ydaOcW3gEaonMY3WOEOlP+SROw+rVrIYOpz/wUEZZyDGcJsxvNrjYmKtnNcxAs64A+wYB0G3SJRI6l/n8Etlc3hw1UP0BFoa7rgiZLxoHlBRiTrhm92nvjRDrNXRm65WyLIOmgQMTyBOCaBF5/v+UsDxlyc3tMpxnlyGQTGHpfZQtmcojIKH2NtZjx0GeH6HIVncXenIQmophZw3KQRfYKaGEYRPdYo8MKOR0ITjXu1gmbhET1VqIuyR/TQiEwN7Ii6NHGkg5PnFHaPvduNp/2HaHklfFd4251BFLZT3uPZt0BOwDf7E94DwCiEiGdvQai1P63XUvtU3QWq+5IZThkp+yjy75g0BW2gYGFz6fe7fs+iHiCVzVRdgSTdkHnZYemLEQ/n8pBEg1soDY8ATgDtcCkdT3LN4IZynLO6grIGRQRsoYTmEAkM/4k28w4Ut+lU+c2nYadlSUorVzgvGXPLQvWmNL2IFlKVmcmW/J5M0TUNDkknbtp29fjHZ4BCeAgswGinC5/h3TrUkltOz0FxlX+SHIwge6V0xglYrHkTmQVbCPru8r+44iY63KQYAZMZyDCZ205kv7Q/YJsmhxM2Zpt+USm+1JKH3S2TWdvADCp/bOUcH04xrC28kGmefhQjuccdrBxV0LOgfYVvGvToVZP2A8+xlIutRyfW3ZcNpNlxdmBtO+7y/JKJjrAtdb1aKZPLWRGSEEJT/0dJT8m93Xm3NMc7yajKyID6OwvncHhvfD3W5/KKT2Aw3YKinZWkHsrA1VGH2HHU3ukslrdI92vJz7h/UZ0yaDvYf++ZNObFJ0tGFsBtqzelrpLdjjjGai290/yzmck7KyM5i6pVxN0D+KyrWwH0ndi3F8I76XuUJEtmm6sO//ITpyO3AEyet+X9Rexvnow8f89sqpzyPR4Dg1GkH5wYOAkwCCgB4D8yM7Ucxy2kCg/oStqDu+9skSnTOV4Hjm5XcqroKH6rbJH5cQ8xH0lh10KmbQzdUel0xd74RHzilj0DQjra/kNGoiVYIVVSxtM/KfIi+3n8ZRanT99kcYQ2QHikSzxqNQZOsq99Yix9ExFTG/aiN1yksoaSsu0n+VU2XAGy6B5V9enA1wJEhcq4+U5VeSE+2456r0AzyWJpWNuWEswZAqWMCP/UINm/NOUTQXLQ7gsNRAQnrJb9Q8KhClI2iSOExsieNeG3Ec8sjn1Z7rDLpHngz971ZUUtU5SJVrf5RlMtHYIfib/vlpRHURcSBycG52BSFmVfO9kAsXQhdrk1o8kJ7XXLC09JI8q+3hZ5GVjbD/Rf5/Z7QdaNzBZIQ8yKstWpNOcKD/9zzWypOtsj/GUEqkab0m/FnkI69iqXFyuaKlXrOowBgWOssOFPyY+IO/BykJVGVnqJAPCUfXD9XdrVDbK7m3pVfExGBnMVW1ibK57dSqTMXm2TeDxEVZgHQ1L6bkH9nuFT9DtPXT+4szm3Nb/dP39DD7/Wwn7/f2NX7++vIHKGrnvG3kCX7++sGLh6/MBovqodfaXXjTx/X2zMT+nsORhj592hkQKKHq/vr6o1ImETwHM+76x7xu//qgecIpgXbwIyiqKCOTqTBUNafBQBCqUWKscD4IBpVIHnfN5MWBHsycmnl2ZNU3GqUcJhYpRyRT5ATkzcEZTRNeCV6+N65G1ta5ZDkbjcKqWPoejYtCU9X15tWHxZc1u/qreaQYuAvuPFN6OoinDQArWE0qzCTORYcr0SBmLa7kM4XN9HGUrmfnYiJ+TVd7Ipr/3fVdZ5TAM19fVe8Poq/tcoZtP/3TkRFjoXYP/FMBQD0hfXhKJsxFwDCewP6dAlBw30OBLzmmNmJGYSPVZ+yi7U7LSmQVa5zADMdthQwSngraDo/2YkdmprIAi0Qq8llK+CGaCBhqhPkNVhr/WwhUdxdIU3cU7mQlHb845wFpYJyu9fAC0hKKqhyWyIi+oPNdiH6zOUpBBkKypzFRl6dLxAq4lY+qPksyyuHDFc28SVdqAO60bIjRx+eCwXwxA3IQ2UD8HVwA9JGexObT6dAJ9P5ZI92SGYFSfMxPNR5NmqWPQIKJ7A43o6kwxB9wf56NJakyfv++b4Kq+Q5PJlcqvaLUaH18fPXed38Hh0AsZs9vOi9oj6AzmROLuQcE9kJ7ASMPnz1V2p5y7dMaiieUUgK89OFv3swS3+v50dPhiZPLpvLMXk5ohf38bLHQZla7zcU8uE4gRbkGR2QSH+8aNvnTKftma5qs/M7gTUFXZOPVFMuAVBSy+798dHT0dfCogX/dXAQc7jZNEyIpIAmp8IL0EzOl9yuCWjARtJVL9T9FZgkgD+crybMAZ/NjKWCwbpXvibC+TwsxwM5EkDUUbjO47KZmfxHHtX7Rzf1qHOiiSFb12EAxyxLgVoz3Fpb1NZq4ggXi2tZCT95dAzUnkot0bGRyy62pFoHsvoKp/etAW4LLDwk5yvkpu992T4vX+ugdywgEGbtj3STZVNthBqoFrEJp0T1IR/a4icxxoUBBh2NR6hraPs7wWGc52k1Dmru+Rvev70Zf97Hr/qT/LxvDzfR+k/7YJE00SdokiOoAIVIWCZQoJ7H5uOSPjmtrentM2zRUhxgZ1bmprYhnld5TOeOLA0QbJelQEjQgRZacrwNcE/HRw+zknUVdN7cvJhmR3DSKNcpMMLkFDllYgsgcatWNOMjKqVUemnMG+CwtN9jyIoWwC55I9571QYDQzEeeZXaFm8HJU18CjasWQ2XdKwWSRTkGdKxwrPeezT/5bUvvQB/HwlejhEvq7M/ZYOmOWmv8chqesD1cLHH5HhDPJkvpLIqHsJ/UMdVbT4t091MnSmNb57VCrb5bORtUw8ksMIPjukotn5vzxz5iYwci2Pqd6q/Kcm/gYmVYrgEMS4HN54I2ypIooGL2DB6nmjGD6TG7nwcduooZEAc9V+kxBOOkrZ/EQZ8zzVS/ORJ1Ht+A4Y7Bf+4H2S3m3lRTj4E/Q9zodEAx+XyZ7Kw6cD6Rbg4lkuzjc8HNdXW1DTPFNUmWF9EDJwjkkYMYeObDNn5n6se7ewd6BEzAeljxJwygTSUEZtZKRErbuyU4EKV6F2GgRW8mfWMOu8B6lv6f5gJnVL1/qKB4dur995xH+fxBprnPxTtvGauBd90bOfYo4or8KPSMf0EkKvONKRtB7lCy2zyHCs3S+KkTaZugZzjk1uR1W17bDT73a7+FnHkG8uufdYkoyrOobt1MYOKoCUV2WDWIwJ94Q57qvXXbGa/lvl5/NAZGt71Rpegd5imdJV3KJmzi721tYtLJ4DvlK/TNAKKnnNK5R+ylQ11f/aCX1ND/SQwI7OJPMMNTn63wdEMramZ/VWeqNWolJIdVPLmuhb9HfW3+b4Fv7T/z6APhGKa7vxPddWTvg/5eBOhH4/V2G8N8RUMmRnGIQ/H6+Po6GKq1fitf9I8BsGxvcbMOZSo3WpMTkBWj2Fuhx7ALaKpVTeZAvasJ/py/3YAL4x/r3T2eqTOfVjjOfyqUE/Ohp5GFjIJ3eIMY/Ox7o0bh9hF7kBCpa1OCoFNAEl/rCmSnzM61XBKO/WYoVTerNPW5KgYr4jH5F6AwHE53RzkBmmiCheMDRwj0UNDAIgpI1Ea5zmvLMpvF7G7Dg+d6ppsQCWT6IYai1h8yc8IX2Y/TbTxAf8T8+03x+R+IeAHPKyUBbP+Uj8Pwdex99D6Yh1i/JIMlfPfsb17//L3ytP0vxTWcBBM8s1wsAX2s9Pjt7y3CiMzm39jEqW0axl5mdofMGlFETJGBgxa29nVmo2peY54uxp9BnGac+5Hk+f8sxN3GcTQ7jpbOqMwD3JsbdAKSjFK13Xz39nJ75x58pWu52Bvy452f348330B2f2Pz/y2rSvX93gt65/NlDvv4fP9PvNz6He62pWD0cIh6f5cliE5xGR+HkaMxGydx130OBhwla9FmAssNhx1/3z2VQfKYYv2enjyIgMnc8Qp9FNrgNfqYncc6zH8Dcb6Hfrw986jr9O583EyY0nOo/9XxWID/Ojets5PdvnuX4/HFXDtKT7SJWNaoe8tZyF9gBfDO6rqs39apBjjOUW2/G/Nk1fhaS936PBkGtMwq/64vxUECPP/fhwvhD3zOXbI37owHOJ/TPPxR9n8uDVIwm1J4/PvVSv/u0y/MetF3qPxO4BkYbj/F3jR06u2var/j50lD2hBWN+9vUzlEvjffr+9jPb93FvZ+2SU7KvODTFuv8/dzZ5/7QM3XhWvf63+f7x0MUGpf0/j9t7//w90MXaO+MN21nJonL76HO/FnqK33pXqj9jc/9e8hSOHOVO8DnGv3JhpLPTOD+DVwf5L//9+MsZCdFVvfZyibWPkiXPoiXn3ZHdjnqE4xhh9ExjnzY9b4ySJh41188vwGWp/nMfnafWz/jfLqfuiOGbfPPWU/Mx3/Kdau5v+7DAzuOd5vv7TWB4Xh2nW/v+1DD+lXa83kfhvp3th38c/q6p46ZH/rTZD/sPnfl571PpIk3l50ZN3U/b991pEnHx/dmMpt62LfHc45gxLD9JlwwZHTaQ/QhJNKBlCDZf5gtNksYMZ7BGH3sJxLOvhOha2IXwJ1DbiKwcpSio3UCMvGLG3Ey8VFQZLy/A3xoLJ38EP3UV974+v7fVT2m11WniG8Y89Tf9f3xn9hAU41yjx1ajeUKtF2bMu6AAmOJG08ffuJsnfT/qBemHXJSQ//az0/xPRr3TDrWPz9s8U9dNx5dH9g2QnrXz68Dm/c6rRcnBk3tr3T7/GyeoAJ1j7v/83kQRlp6Pv3d4+4MWyKcMPdJSuOJA6Zh9P/zv9Z9O4991eNq7x/vLD3wwAH6/KdvKY6j97VfXHyIAsVA60Eg0WXrDyVoWZXyaxuooGO/90+f5fHsMV+y//Hj61pDjHebn39+fE/7Fdnbrft1+PMFdmpPud9137gr3//G312RP9/+Xe9617ve9a53vetd73rXu971rne9613vetc/Zq3/9x9517ve9a53vetd73rXu971rne9613vete73vX/1/USfO9617ve9a53vetd73rXu971rne9613vetc/eL0E37ve9a53vetd73rXu971rne9613vete73vUPXi/B9653vetd73rXu971rne9613vete73vWud/2D10vwvetd73rXu971rne9613vete73vWud73rXf/g9RJ873rXu971rne9613vete73vWud73rXe961z94vQTfu971rne9613vete73vWud73rXe9617ve9Q9eL8H3rne9613vete73vWud73rXe9617ve9a53/YPXS/C9613vete73vWud73rXe9617ve9a53vetd/+D1Enzvete73vWud73rXe9617ve9a53vetd73rXP3i9BN+73vWud73rXe9617ve9a53vetd73rXu971D14vwfeud73rXe9617ve9a53vetd73rXu971rnf9g9dL8L3rXe9617ve9a53vetd73rXu971rne9613/4PUSfO9617ve9a53vetd73rXu971rne9613vetc/eL0E37ve9a53vetd73rXu971rne9613vete73vUPXv83GpQe1g6nLI0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "run with FRESCO\n", + "\"\"\"\n", + "batch_ind = 0\n", + "propagation_mode = batch_ind > 0\n", + "imgs = []\n", + "record_latents = []\n", + "video_cap = cv2.VideoCapture(config['file_path'])\n", + "for i in range(frame_num):\n", + " # prepare a batch of frame based on sublists\n", + " success, frame = video_cap.read()\n", + " frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n", + " img = resize_image(frame, 512)\n", + " H, W, C = img.shape\n", + " Image.fromarray(img).save(os.path.join(config['save_path'], 'video/%04d.png'%(i)))\n", + " if i not in sublists[batch_ind]:\n", + " continue\n", + " \n", + " imgs += [img]\n", + " if i != sublists[batch_ind][-1]:\n", + " continue\n", + " \n", + " print('processing batch [%d/%d] with %d frames'%(batch_ind+1, len(sublists), len(sublists[batch_ind])))\n", + " \n", + " # prepare input\n", + " batch_size = len(imgs)\n", + " n_prompts = [n_prompt] * len(imgs)\n", + " prompts = [base_prompt + a_prompt + extra_prompts[ind] for ind in sublists[batch_ind]]\n", + " if propagation_mode: # restore the extra_prompts from previous batch\n", + " assert len(imgs) == len(sublists[batch_ind]) + 2\n", + " prompts = ref_prompt + prompts\n", + " \n", + " prompt_embeds = pipe._encode_prompt(\n", + " prompts,\n", + " device,\n", + " 1,\n", + " do_classifier_free_guidance,\n", + " n_prompts,\n", + " ) \n", + " \n", + " imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0)\n", + "\n", + " print('input of current batch:')\n", + " viz = torchvision.utils.make_grid(imgs_torch, len(imgs_torch), 1)\n", + " visualize(viz.cpu(), 160)\n", + " \n", + " edges = torch.cat([numpy2tensor(apply_control(img, detector, config)[:, :, None]) for img in imgs], dim=0)\n", + " edges = edges.repeat(1,3,1,1).cuda() * 0.5 + 0.5\n", + " if do_classifier_free_guidance:\n", + " edges = torch.cat([edges.to(pipe.unet.dtype)] * 2)\n", + " \n", + " if config['use_salinecy']:\n", + " saliency = get_saliency(imgs, sod_model, dilate) \n", + " else:\n", + " saliency = None\n", + " \n", + " # prepare parameters for inter-frame and intra-frame consistency\n", + " flows, occs, attn_mask, interattn_paras = get_flow_and_interframe_paras(flow_model, imgs)\n", + " correlation_matrix = get_intraframe_paras(pipe, imgs_torch, frescoProc, \n", + " prompt_embeds, seed = config['seed'])\n", + "\n", + " '''\n", + " Flexible settings for attention:\n", + " * Turn off FRESCO-guided attention: frescoProc.controller.disable_controller() \n", + " Then you can turn on one specific attention submodule\n", + " * Turn on Cross-frame attention: frescoProc.controller.enable_cfattn(attn_mask) \n", + " * Turn on Spatial-guided attention: frescoProc.controller.enable_intraattn() \n", + " * Turn on Temporal-guided attention: frescoProc.controller.enable_interattn(interattn_paras)\n", + "\n", + " Flexible settings for optimization:\n", + " * Turn off Spatial-guided optimization: set optimize_temporal = False in apply_FRESCO_opt()\n", + " * Turn off Temporal-guided optimization: set correlation_matrix = [] in apply_FRESCO_opt()\n", + " * Turn off FRESCO-guided optimization: disable_FRESCO_opt(pipe)\n", + "\n", + " Flexible settings for background smoothing:\n", + " * Turn off background smoothing: set saliency = None in apply_FRESCO_opt()\n", + " ''' \n", + " # Turn on all FRESCO support\n", + " frescoProc.controller.enable_controller(interattn_paras=interattn_paras, attn_mask=attn_mask)\n", + " apply_FRESCO_opt(pipe, steps = timesteps[:config['end_opt_step']],\n", + " flows = flows, occs = occs, correlation_matrix=correlation_matrix, \n", + " saliency=saliency, optimize_temporal = True)\n", + " \n", + " gc.collect()\n", + " torch.cuda.empty_cache() \n", + " \n", + " # run!\n", + " latents = inference(pipe, controlnet, frescoProc, \n", + " imgs_torch, prompt_embeds, edges, timesteps,\n", + " cond_scale, config['num_inference_steps'], config['num_warmup_steps'], \n", + " do_classifier_free_guidance, config['seed'], guidance_scale, config['use_controlnet'], \n", + " record_latents, propagation_mode,\n", + " flows = flows, occs = occs, saliency=saliency, repeat_noise=True)\n", + " \n", + " with torch.no_grad():\n", + " image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]\n", + " image = torch.clamp(image, -1 , 1)\n", + " save_imgs = tensor2numpy(image)\n", + " bias = 2 if propagation_mode else 0\n", + " for ind, num in enumerate(sublists[batch_ind]):\n", + " Image.fromarray(save_imgs[ind+bias]).save(os.path.join(config['save_path'], 'keys/%04d.png'%(num)))\n", + " print('results of current batch:')\n", + " viz = torchvision.utils.make_grid(image, len(image), 1)\n", + " visualize(viz.cpu(), 160)\n", + " \n", + " batch_ind += 1\n", + " # current batch uses the last frame of the previous batch as ref\n", + " ref_prompt= [prompts[0], prompts[-1]]\n", + " imgs = [imgs[0], imgs[-1]]\n", + " propagation_mode = batch_ind > 0\n", + " if batch_ind == len(sublists):\n", + " gc.collect()\n", + " torch.cuda.empty_cache()\n", + " break " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5) full video translation (optional)\n", + "- need to use ebsynth" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "translating full video with:\n", + "\n", + "```\n", + "python video_blend.py ./output/example/ --key keys --key_ind 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 --output ./output/example/blend.mp4 --fps 10 --n_proc 4 -ps\n", + "```\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/yangs/miniconda3/envs/diffuser/lib/python3.8/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3526.)\n", + " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n", + "/home/yangs/miniconda3/envs/diffuser/lib/python3.8/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3526.)\n", + " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n", + "/home/yangs/miniconda3/envs/diffuser/lib/python3.8/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3526.)\n", + " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n", + "/home/yangs/miniconda3/envs/diffuser/lib/python3.8/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3526.)\n", + " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n", + "/home/yangs/miniconda3/envs/diffuser/lib/python3.8/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3526.)\n", + " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ebsynth: 250.20923686027527\n", + "others: 11.88279914855957\n", + "others: 11.051883220672607\n", + "others: 9.8752121925354\n", + "others: 8.247264623641968\n", + "others: 8.729929208755493\n", + "others: 9.78529977798462\n", + "others: 13.975972175598145\n", + "others: 18.42204761505127\n", + "others: 11.400739192962646\n", + "others: 8.62275505065918\n", + "others: 7.620319128036499\n", + "others: 7.649445295333862\n", + "others: 7.817574977874756\n", + "others: 19.51055335998535\n", + "others: 18.241430282592773\n", + "Done\n" + ] + } + ], + "source": [ + "if not config['run_ebsynth']:\n", + " print('to translate full video with ebsynth, install ebsynth and run:')\n", + "else:\n", + " print('translating full video with:')\n", + " \n", + "video_cap = cv2.VideoCapture(config['file_path']) \n", + "fps = int(video_cap.get(cv2.CAP_PROP_FPS))\n", + "o_video = os.path.join(config['save_path'], 'blend.mp4')\n", + "max_process = config['max_process']\n", + "save_path = config['save_path']\n", + "key_ind = io.StringIO()\n", + "for k in keys:\n", + " print('%d'%(k), end=' ', file=key_ind)\n", + "cmd = (\n", + " f'python video_blend.py {save_path} --key keys '\n", + " f'--key_ind {key_ind.getvalue()} --output {o_video} --fps {fps} '\n", + " f'--n_proc {max_process} -ps')\n", + "\n", + "print('\\n```')\n", + "print(cmd)\n", + "print('```')\n", + "\n", + "if config['run_ebsynth']:\n", + " os.system(cmd)\n", + "\n", + "print('Done') " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "diffuser", + "language": "python", + "name": "diffuser" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.18" + }, + "toc-autonumbering": true, + "toc-showcode": false + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/run_fresco.py b/run_fresco.py new file mode 100644 index 0000000000000000000000000000000000000000..7b08ead9abce4a625d1e9ef5f2090955883457fe --- /dev/null +++ b/run_fresco.py @@ -0,0 +1,318 @@ +import os +#os.environ['CUDA_VISIBLE_DEVICES'] = "6" + +# In China, set this to use huggingface +# os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' + +import cv2 +import io +import gc +import yaml +import argparse +import torch +import torchvision +import diffusers +from diffusers import StableDiffusionPipeline, AutoencoderKL, DDPMScheduler, ControlNetModel + +from src.utils import * +from src.keyframe_selection import get_keyframe_ind +from src.diffusion_hacked import apply_FRESCO_attn, apply_FRESCO_opt, disable_FRESCO_opt +from src.diffusion_hacked import get_flow_and_interframe_paras, get_intraframe_paras +from src.pipe_FRESCO import inference + +def get_models(config): + print('\n' + '=' * 100) + print('creating models...') + import sys + sys.path.append("./src/ebsynth/deps/gmflow/") + sys.path.append("./src/EGNet/") + sys.path.append("./src/ControlNet/") + + from gmflow.gmflow import GMFlow + from model import build_model + from annotator.hed import HEDdetector + from annotator.canny import CannyDetector + from annotator.midas import MidasDetector + + # optical flow + flow_model = GMFlow(feature_channels=128, + num_scales=1, + upsample_factor=8, + num_head=1, + attention_type='swin', + ffn_dim_expansion=4, + num_transformer_layers=6, + ).to('cuda') + + checkpoint = torch.load(config['gmflow_path'], map_location=lambda storage, loc: storage) + weights = checkpoint['model'] if 'model' in checkpoint else checkpoint + flow_model.load_state_dict(weights, strict=False) + flow_model.eval() + print('create optical flow estimation model successfully!') + + # saliency detection + sod_model = build_model('resnet') + sod_model.load_state_dict(torch.load(config['sod_path'])) + sod_model.to("cuda").eval() + print('create saliency detection model successfully!') + + # controlnet + if config['controlnet_type'] not in ['hed', 'depth', 'canny']: + print('unsupported control type, set to hed') + config['controlnet_type'] = 'hed' + controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-"+config['controlnet_type'], + torch_dtype=torch.float16) + controlnet.to("cuda") + if config['controlnet_type'] == 'depth': + detector = MidasDetector() + elif config['controlnet_type'] == 'canny': + detector = CannyDetector() + else: + detector = HEDdetector() + print('create controlnet model-' + config['controlnet_type'] + ' successfully!') + + # diffusion model + vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) + pipe = StableDiffusionPipeline.from_pretrained(config['sd_path'], vae=vae, torch_dtype=torch.float16) + pipe.scheduler = DDPMScheduler.from_config(pipe.scheduler.config) + #noise_scheduler = DDPMScheduler.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="scheduler") + pipe.to("cuda") + pipe.scheduler.set_timesteps(config['num_inference_steps'], device=pipe._execution_device) + + if config['use_freeu']: + from src.free_lunch_utils import apply_freeu + apply_freeu(pipe, b1=1.2, b2=1.5, s1=1.0, s2=1.0) + + frescoProc = apply_FRESCO_attn(pipe) + frescoProc.controller.disable_controller() + apply_FRESCO_opt(pipe) + print('create diffusion model ' + config['sd_path'] + ' successfully!') + + for param in flow_model.parameters(): + param.requires_grad = False + for param in sod_model.parameters(): + param.requires_grad = False + for param in controlnet.parameters(): + param.requires_grad = False + for param in pipe.unet.parameters(): + param.requires_grad = False + + return pipe, frescoProc, controlnet, detector, flow_model, sod_model + +def apply_control(x, detector, config): + if config['controlnet_type'] == 'depth': + detected_map, _ = detector(x) + elif config['controlnet_type'] == 'canny': + detected_map = detector(x, 50, 100) + else: + detected_map = detector(x) + return detected_map + +def run_keyframe_translation(config): + pipe, frescoProc, controlnet, detector, flow_model, sod_model = get_models(config) + device = pipe._execution_device + guidance_scale = 7.5 + do_classifier_free_guidance = guidance_scale > 1 + assert(do_classifier_free_guidance) + timesteps = pipe.scheduler.timesteps + cond_scale = [config['cond_scale']] * config['num_inference_steps'] + dilate = Dilate(device=device) + + base_prompt = config['prompt'] + if 'Realistic' in config['sd_path'] or 'realistic' in config['sd_path']: + a_prompt = ', RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3, ' + n_prompt = '(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation' + else: + a_prompt = ', best quality, extremely detailed, ' + n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing finger, extra digit, fewer digits, cropped, worst quality, low quality' + + print('\n' + '=' * 100) + print('key frame selection for \"%s\"...'%(config['file_path'])) + + video_cap = cv2.VideoCapture(config['file_path']) + frame_num = int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT)) + + # you can set extra_prompts for individual keyframe + # for example, extra_prompts[38] = ', closed eyes' to specify the person frame38 closes the eyes + extra_prompts = [''] * frame_num + + keys = get_keyframe_ind(config['file_path'], frame_num, config['mininterv'], config['maxinterv']) + + os.makedirs(config['save_path'], exist_ok=True) + os.makedirs(config['save_path']+'keys', exist_ok=True) + os.makedirs(config['save_path']+'video', exist_ok=True) + + sublists = [keys[i:i+config['batch_size']-2] for i in range(2, len(keys), config['batch_size']-2)] + sublists[0].insert(0, keys[0]) + sublists[0].insert(1, keys[1]) + if len(sublists) > 1 and len(sublists[-1]) < 3: + add_num = 3 - len(sublists[-1]) + sublists[-1] = sublists[-2][-add_num:] + sublists[-1] + sublists[-2] = sublists[-2][:-add_num] + + if not sublists[-2]: + del sublists[-2] + + print('processing %d batches:\nkeyframe indexes'%(len(sublists)), sublists) + + print('\n' + '=' * 100) + print('video to video translation...') + + batch_ind = 0 + propagation_mode = batch_ind > 0 + imgs = [] + record_latents = [] + video_cap = cv2.VideoCapture(config['file_path']) + for i in range(frame_num): + # prepare a batch of frame based on sublists + success, frame = video_cap.read() + frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) + img = resize_image(frame, 512) + H, W, C = img.shape + Image.fromarray(img).save(os.path.join(config['save_path'], 'video/%04d.png'%(i))) + if i not in sublists[batch_ind]: + continue + + imgs += [img] + if i != sublists[batch_ind][-1]: + continue + + print('processing batch [%d/%d] with %d frames'%(batch_ind+1, len(sublists), len(sublists[batch_ind]))) + + # prepare input + batch_size = len(imgs) + n_prompts = [n_prompt] * len(imgs) + prompts = [base_prompt + a_prompt + extra_prompts[ind] for ind in sublists[batch_ind]] + if propagation_mode: # restore the extra_prompts from previous batch + assert len(imgs) == len(sublists[batch_ind]) + 2 + prompts = ref_prompt + prompts + + prompt_embeds = pipe._encode_prompt( + prompts, + device, + 1, + do_classifier_free_guidance, + n_prompts, + ) + + imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0) + edges = torch.cat([numpy2tensor(apply_control(img, detector, config)[:, :, None]) for img in imgs], dim=0) + edges = edges.repeat(1,3,1,1).cuda() * 0.5 + 0.5 + if do_classifier_free_guidance: + edges = torch.cat([edges.to(pipe.unet.dtype)] * 2) + + if config['use_salinecy']: + saliency = get_saliency(imgs, sod_model, dilate) + else: + saliency = None + + # prepare parameters for inter-frame and intra-frame consistency + flows, occs, attn_mask, interattn_paras = get_flow_and_interframe_paras(flow_model, imgs) + correlation_matrix = get_intraframe_paras(pipe, imgs_torch, frescoProc, + prompt_embeds, seed = config['seed']) + + ''' + Flexible settings for attention: + * Turn off FRESCO-guided attention: frescoProc.controller.disable_controller() + Then you can turn on one specific attention submodule + * Turn on Cross-frame attention: frescoProc.controller.enable_cfattn(attn_mask) + * Turn on Spatial-guided attention: frescoProc.controller.enable_intraattn() + * Turn on Temporal-guided attention: frescoProc.controller.enable_interattn(interattn_paras) + + Flexible settings for optimization: + * Turn off Spatial-guided optimization: set optimize_temporal = False in apply_FRESCO_opt() + * Turn off Temporal-guided optimization: set correlation_matrix = [] in apply_FRESCO_opt() + * Turn off FRESCO-guided optimization: disable_FRESCO_opt(pipe) + + Flexible settings for background smoothing: + * Turn off background smoothing: set saliency = None in apply_FRESCO_opt() + ''' + # Turn on all FRESCO support + frescoProc.controller.enable_controller(interattn_paras=interattn_paras, attn_mask=attn_mask) + apply_FRESCO_opt(pipe, steps = timesteps[:config['end_opt_step']], + flows = flows, occs = occs, correlation_matrix=correlation_matrix, + saliency=saliency, optimize_temporal = True) + + gc.collect() + torch.cuda.empty_cache() + + # run! + latents = inference(pipe, controlnet, frescoProc, + imgs_torch, prompt_embeds, edges, timesteps, + cond_scale, config['num_inference_steps'], config['num_warmup_steps'], + do_classifier_free_guidance, config['seed'], guidance_scale, config['use_controlnet'], + record_latents, propagation_mode, + flows = flows, occs = occs, saliency=saliency, repeat_noise=True) + + gc.collect() + torch.cuda.empty_cache() + + with torch.no_grad(): + image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] + image = torch.clamp(image, -1 , 1) + save_imgs = tensor2numpy(image) + bias = 2 if propagation_mode else 0 + for ind, num in enumerate(sublists[batch_ind]): + Image.fromarray(save_imgs[ind+bias]).save(os.path.join(config['save_path'], 'keys/%04d.png'%(num))) + + gc.collect() + torch.cuda.empty_cache() + + batch_ind += 1 + # current batch uses the last frame of the previous batch as ref + ref_prompt= [prompts[0], prompts[-1]] + imgs = [imgs[0], imgs[-1]] + propagation_mode = batch_ind > 0 + if batch_ind == len(sublists): + gc.collect() + torch.cuda.empty_cache() + break + return keys + +def run_full_video_translation(config, keys): + print('\n' + '=' * 100) + if not config['run_ebsynth']: + print('to translate full video with ebsynth, install ebsynth and run:') + else: + print('translating full video with:') + + video_cap = cv2.VideoCapture(config['file_path']) + fps = int(video_cap.get(cv2.CAP_PROP_FPS)) + o_video = os.path.join(config['save_path'], 'blend.mp4') + max_process = config['max_process'] + save_path = config['save_path'] + key_ind = io.StringIO() + for k in keys: + print('%d'%(k), end=' ', file=key_ind) + cmd = ( + f'python video_blend.py {save_path} --key keys ' + f'--key_ind {key_ind.getvalue()} --output {o_video} --fps {fps} ' + f'--n_proc {max_process} -ps') + + print('\n```') + print(cmd) + print('```') + + if config['run_ebsynth']: + os.system(cmd) + + print('\n' + '=' * 100) + print('Done') + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('config_path', type=str, + default='./config/config_carturn.yaml', + help='The configuration file.') + opt = parser.parse_args() + + print('=' * 100) + print('loading configuration...') + with open(opt.config_path, "r") as f: + config = yaml.safe_load(f) + + for name, value in sorted(config.items()): + print('%s: %s' % (str(name), str(value))) + + keys = run_keyframe_translation(config) + run_full_video_translation(config, keys) diff --git a/src/ControlNet/annotator/__pycache__/util.cpython-310.pyc b/src/ControlNet/annotator/__pycache__/util.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..240e046094ee6ae3654d81f24c57413259d52731 Binary files /dev/null and b/src/ControlNet/annotator/__pycache__/util.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/canny/__init__.py b/src/ControlNet/annotator/canny/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..cb0da951dc838ec9dec2131007e036113281800b --- /dev/null +++ b/src/ControlNet/annotator/canny/__init__.py @@ -0,0 +1,6 @@ +import cv2 + + +class CannyDetector: + def __call__(self, img, low_threshold, high_threshold): + return cv2.Canny(img, low_threshold, high_threshold) diff --git a/src/ControlNet/annotator/canny/__pycache__/__init__.cpython-310.pyc b/src/ControlNet/annotator/canny/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4497c7cde5084c6780272af69509ec0f2eec2277 Binary files /dev/null and b/src/ControlNet/annotator/canny/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/canny/__pycache__/__init__.cpython-38.pyc b/src/ControlNet/annotator/canny/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..accca8bdb34edbba766fda997cf6d803c0b41b93 Binary files /dev/null and b/src/ControlNet/annotator/canny/__pycache__/__init__.cpython-38.pyc differ diff --git a/src/ControlNet/annotator/ckpts/ControlNetHED.pth b/src/ControlNet/annotator/ckpts/ControlNetHED.pth new file mode 100644 index 0000000000000000000000000000000000000000..e0edbff99b09b7241441fb1f9f25187e0f1ff5c9 --- /dev/null +++ b/src/ControlNet/annotator/ckpts/ControlNetHED.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5ca93762ffd68a29fee1af9d495bf6aab80ae86f08905fb35472a083a4c7a8fa +size 29444406 diff --git a/src/ControlNet/annotator/ckpts/ckpts.txt b/src/ControlNet/annotator/ckpts/ckpts.txt new file mode 100644 index 0000000000000000000000000000000000000000..1978551fb2a9226814eaf58459f414fcfac4e69b --- /dev/null +++ b/src/ControlNet/annotator/ckpts/ckpts.txt @@ -0,0 +1 @@ +Weights here. \ No newline at end of file diff --git a/src/ControlNet/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt b/src/ControlNet/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt new file mode 100644 index 0000000000000000000000000000000000000000..a54fd8ca8d59181d9343d79eb3f6deb6c5319eba --- /dev/null +++ b/src/ControlNet/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:501f0c75b3bca7daec6b3682c5054c09b366765aef6fa3a09d03a5cb4b230853 +size 492757791 diff --git a/src/ControlNet/annotator/hed/__init__.py b/src/ControlNet/annotator/hed/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a6a8fc712fba02b033dea13bfe33204b8d3c9139 --- /dev/null +++ b/src/ControlNet/annotator/hed/__init__.py @@ -0,0 +1,96 @@ +# This is an improved version and model of HED edge detection with Apache License, Version 2.0. +# Please use this implementation in your products +# This implementation may produce slightly different results from Saining Xie's official implementations, +# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations. +# Different from official models and other implementations, this is an RGB-input model (rather than BGR) +# and in this way it works better for gradio's RGB protocol + +import os +import cv2 +import torch +import numpy as np + +from einops import rearrange +from annotator.util import annotator_ckpts_path + + +class DoubleConvBlock(torch.nn.Module): + def __init__(self, input_channel, output_channel, layer_number): + super().__init__() + self.convs = torch.nn.Sequential() + self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) + for i in range(1, layer_number): + self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) + self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) + + def __call__(self, x, down_sampling=False): + h = x + if down_sampling: + h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) + for conv in self.convs: + h = conv(h) + h = torch.nn.functional.relu(h) + return h, self.projection(h) + + +class ControlNetHED_Apache2(torch.nn.Module): + def __init__(self): + super().__init__() + self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) + self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) + self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) + self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) + self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) + self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) + + def __call__(self, x): + h = x - self.norm + h, projection1 = self.block1(h) + h, projection2 = self.block2(h, down_sampling=True) + h, projection3 = self.block3(h, down_sampling=True) + h, projection4 = self.block4(h, down_sampling=True) + h, projection5 = self.block5(h, down_sampling=True) + return projection1, projection2, projection3, projection4, projection5 + + +class HEDdetector: + def __init__(self): + remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth" + modelpath = os.path.join(annotator_ckpts_path, "ControlNetHED.pth") + if not os.path.exists(modelpath): + from basicsr.utils.download_util import load_file_from_url + load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) + self.netNetwork = ControlNetHED_Apache2().float().cuda().eval() + self.netNetwork.load_state_dict(torch.load(modelpath)) + + def __call__(self, input_image): + assert input_image.ndim == 3 + H, W, C = input_image.shape + with torch.no_grad(): + image_hed = torch.from_numpy(input_image.copy()).float().cuda() + image_hed = rearrange(image_hed, 'h w c -> 1 c h w') + edges = self.netNetwork(image_hed) + edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] + edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges] + edges = np.stack(edges, axis=2) + edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) + edge = (edge * 255.0).clip(0, 255).astype(np.uint8) + return edge + + +def nms(x, t, s): + x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) + + f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) + f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) + f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) + f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) + + y = np.zeros_like(x) + + for f in [f1, f2, f3, f4]: + np.putmask(y, cv2.dilate(x, kernel=f) == x, x) + + z = np.zeros_like(y, dtype=np.uint8) + z[y > t] = 255 + return z diff --git a/src/ControlNet/annotator/hed/__pycache__/__init__.cpython-310.pyc b/src/ControlNet/annotator/hed/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..10dc31893b28e5399d44a6a62f84b1412942b72c Binary files /dev/null and b/src/ControlNet/annotator/hed/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/hed/__pycache__/__init__.cpython-38.pyc b/src/ControlNet/annotator/hed/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..91c404d9430347739fcf2a65766e2053c0bad49c Binary files /dev/null and b/src/ControlNet/annotator/hed/__pycache__/__init__.cpython-38.pyc differ diff --git a/src/ControlNet/annotator/midas/LICENSE b/src/ControlNet/annotator/midas/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..277b5c11be103f028a8d10985139f1da10c2f08e --- /dev/null +++ b/src/ControlNet/annotator/midas/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab) + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/src/ControlNet/annotator/midas/__init__.py b/src/ControlNet/annotator/midas/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..36789767f35bcc169c2cbf096e2747539df4f14d --- /dev/null +++ b/src/ControlNet/annotator/midas/__init__.py @@ -0,0 +1,42 @@ +# Midas Depth Estimation +# From https://github.com/isl-org/MiDaS +# MIT LICENSE + +import cv2 +import numpy as np +import torch + +from einops import rearrange +from .api import MiDaSInference + + +class MidasDetector: + def __init__(self): + self.model = MiDaSInference(model_type="dpt_hybrid").cuda() + + def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1): + assert input_image.ndim == 3 + image_depth = input_image + with torch.no_grad(): + image_depth = torch.from_numpy(image_depth).float().cuda() + image_depth = image_depth / 127.5 - 1.0 + image_depth = rearrange(image_depth, 'h w c -> 1 c h w') + depth = self.model(image_depth)[0] + + depth_pt = depth.clone() + depth_pt -= torch.min(depth_pt) + depth_pt /= torch.max(depth_pt) + depth_pt = depth_pt.cpu().numpy() + depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) + + depth_np = depth.cpu().numpy() + x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3) + y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3) + z = np.ones_like(x) * a + x[depth_pt < bg_th] = 0 + y[depth_pt < bg_th] = 0 + normal = np.stack([x, y, z], axis=2) + normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5 + normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8) + + return depth_image, normal_image diff --git a/src/ControlNet/annotator/midas/__pycache__/__init__.cpython-310.pyc b/src/ControlNet/annotator/midas/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0e1c1c45e0122f48a79e8a9ffa6d8a27fb83f0bb Binary files /dev/null and b/src/ControlNet/annotator/midas/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/midas/__pycache__/__init__.cpython-38.pyc b/src/ControlNet/annotator/midas/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea8464c8b14bbf6c9d11c787cd40d20e1fd7eb22 Binary files /dev/null and b/src/ControlNet/annotator/midas/__pycache__/__init__.cpython-38.pyc differ diff --git a/src/ControlNet/annotator/midas/__pycache__/api.cpython-310.pyc b/src/ControlNet/annotator/midas/__pycache__/api.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a81361bc8cba9b0cee66d309cb41daf1802676ee Binary files /dev/null and b/src/ControlNet/annotator/midas/__pycache__/api.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/midas/__pycache__/api.cpython-38.pyc b/src/ControlNet/annotator/midas/__pycache__/api.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..904146bd3b5d76aa3fc3d94b061f8411acbf57b4 Binary files /dev/null and b/src/ControlNet/annotator/midas/__pycache__/api.cpython-38.pyc differ diff --git a/src/ControlNet/annotator/midas/api.py b/src/ControlNet/annotator/midas/api.py new file mode 100644 index 0000000000000000000000000000000000000000..1ab9f15bf96bbaffcee0e3e29fc9d3979d6c32e8 --- /dev/null +++ b/src/ControlNet/annotator/midas/api.py @@ -0,0 +1,169 @@ +# based on https://github.com/isl-org/MiDaS + +import cv2 +import os +import torch +import torch.nn as nn +from torchvision.transforms import Compose + +from .midas.dpt_depth import DPTDepthModel +from .midas.midas_net import MidasNet +from .midas.midas_net_custom import MidasNet_small +from .midas.transforms import Resize, NormalizeImage, PrepareForNet +from annotator.util import annotator_ckpts_path + + +ISL_PATHS = { + "dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"), + "dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"), + "midas_v21": "", + "midas_v21_small": "", +} + +remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt" + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +def load_midas_transform(model_type): + # https://github.com/isl-org/MiDaS/blob/master/run.py + # load transform only + if model_type == "dpt_large": # DPT-Large + net_w, net_h = 384, 384 + resize_mode = "minimal" + normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) + + elif model_type == "dpt_hybrid": # DPT-Hybrid + net_w, net_h = 384, 384 + resize_mode = "minimal" + normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) + + elif model_type == "midas_v21": + net_w, net_h = 384, 384 + resize_mode = "upper_bound" + normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + + elif model_type == "midas_v21_small": + net_w, net_h = 256, 256 + resize_mode = "upper_bound" + normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + + else: + assert False, f"model_type '{model_type}' not implemented, use: --model_type large" + + transform = Compose( + [ + Resize( + net_w, + net_h, + resize_target=None, + keep_aspect_ratio=True, + ensure_multiple_of=32, + resize_method=resize_mode, + image_interpolation_method=cv2.INTER_CUBIC, + ), + normalization, + PrepareForNet(), + ] + ) + + return transform + + +def load_model(model_type): + # https://github.com/isl-org/MiDaS/blob/master/run.py + # load network + model_path = ISL_PATHS[model_type] + if model_type == "dpt_large": # DPT-Large + model = DPTDepthModel( + path=model_path, + backbone="vitl16_384", + non_negative=True, + ) + net_w, net_h = 384, 384 + resize_mode = "minimal" + normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) + + elif model_type == "dpt_hybrid": # DPT-Hybrid + if not os.path.exists(model_path): + from basicsr.utils.download_util import load_file_from_url + load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) + + model = DPTDepthModel( + path=model_path, + backbone="vitb_rn50_384", + non_negative=True, + ) + net_w, net_h = 384, 384 + resize_mode = "minimal" + normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) + + elif model_type == "midas_v21": + model = MidasNet(model_path, non_negative=True) + net_w, net_h = 384, 384 + resize_mode = "upper_bound" + normalization = NormalizeImage( + mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] + ) + + elif model_type == "midas_v21_small": + model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, + non_negative=True, blocks={'expand': True}) + net_w, net_h = 256, 256 + resize_mode = "upper_bound" + normalization = NormalizeImage( + mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] + ) + + else: + print(f"model_type '{model_type}' not implemented, use: --model_type large") + assert False + + transform = Compose( + [ + Resize( + net_w, + net_h, + resize_target=None, + keep_aspect_ratio=True, + ensure_multiple_of=32, + resize_method=resize_mode, + image_interpolation_method=cv2.INTER_CUBIC, + ), + normalization, + PrepareForNet(), + ] + ) + + return model.eval(), transform + + +class MiDaSInference(nn.Module): + MODEL_TYPES_TORCH_HUB = [ + "DPT_Large", + "DPT_Hybrid", + "MiDaS_small" + ] + MODEL_TYPES_ISL = [ + "dpt_large", + "dpt_hybrid", + "midas_v21", + "midas_v21_small", + ] + + def __init__(self, model_type): + super().__init__() + assert (model_type in self.MODEL_TYPES_ISL) + model, _ = load_model(model_type) + self.model = model + self.model.train = disabled_train + + def forward(self, x): + with torch.no_grad(): + prediction = self.model(x) + return prediction + diff --git a/src/ControlNet/annotator/midas/midas/__init__.py b/src/ControlNet/annotator/midas/midas/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/__init__.cpython-310.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c831188f9af1f21ba33deca4d173c61497e8cad7 Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/__init__.cpython-38.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a85bb5b2110997b54cc3a0014e2ac6ba20e7538f Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/__init__.cpython-38.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/base_model.cpython-310.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/base_model.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..37896415c7b7373ecff352bf0ab8ed113d44e23b Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/base_model.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/base_model.cpython-38.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/base_model.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ae4382e2809e25a63773a27b9ffa405ae195422a Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/base_model.cpython-38.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/blocks.cpython-310.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/blocks.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..33b1159f23b7e3853aafe10f0aeca7f280b2329c Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/blocks.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/blocks.cpython-38.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/blocks.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d442b3e619b4189e738971f64e64d3f70757f006 Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/blocks.cpython-38.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/dpt_depth.cpython-310.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/dpt_depth.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1808e2e2f2d9531eaae106e8bacf200a0ee61e3a Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/dpt_depth.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/dpt_depth.cpython-38.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/dpt_depth.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f2ad95539f397045580d8247bf0458b79e5a958f Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/dpt_depth.cpython-38.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/midas_net.cpython-310.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/midas_net.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b78faa49a024ff281ecb4e66e5c24fa4cdff58a4 Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/midas_net.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/midas_net.cpython-38.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/midas_net.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b840e050c9ead36405f2c57a1c9359f2435ff8b1 Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/midas_net.cpython-38.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4a4de32104deb4a3db7ba6d20fdb2eef0087335a Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/midas_net_custom.cpython-38.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/midas_net_custom.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e85c3fc3cd162f7ae570775eb547117381674f0e Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/midas_net_custom.cpython-38.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/transforms.cpython-310.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/transforms.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fbd6a18564f52a8b8605685d0b7bcad66d24dc6f Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/transforms.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/transforms.cpython-38.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/transforms.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8ec7172c3f1bbb1b2108de2e8d47001ee58d776f Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/transforms.cpython-38.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/vit.cpython-310.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/vit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3a1fbb76068eb842999b745d5bac6d746925b166 Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/vit.cpython-310.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/__pycache__/vit.cpython-38.pyc b/src/ControlNet/annotator/midas/midas/__pycache__/vit.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f17e6e7b33dea7c35f70ee25ac90b91ddc1fd14b Binary files /dev/null and b/src/ControlNet/annotator/midas/midas/__pycache__/vit.cpython-38.pyc differ diff --git a/src/ControlNet/annotator/midas/midas/base_model.py b/src/ControlNet/annotator/midas/midas/base_model.py new file mode 100644 index 0000000000000000000000000000000000000000..5cf430239b47ec5ec07531263f26f5c24a2311cd --- /dev/null +++ b/src/ControlNet/annotator/midas/midas/base_model.py @@ -0,0 +1,16 @@ +import torch + + +class BaseModel(torch.nn.Module): + def load(self, path): + """Load model from file. + + Args: + path (str): file path + """ + parameters = torch.load(path, map_location=torch.device('cpu')) + + if "optimizer" in parameters: + parameters = parameters["model"] + + self.load_state_dict(parameters) diff --git a/src/ControlNet/annotator/midas/midas/blocks.py b/src/ControlNet/annotator/midas/midas/blocks.py new file mode 100644 index 0000000000000000000000000000000000000000..2145d18fa98060a618536d9a64fe6589e9be4f78 --- /dev/null +++ b/src/ControlNet/annotator/midas/midas/blocks.py @@ -0,0 +1,342 @@ +import torch +import torch.nn as nn + +from .vit import ( + _make_pretrained_vitb_rn50_384, + _make_pretrained_vitl16_384, + _make_pretrained_vitb16_384, + forward_vit, +) + +def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",): + if backbone == "vitl16_384": + pretrained = _make_pretrained_vitl16_384( + use_pretrained, hooks=hooks, use_readout=use_readout + ) + scratch = _make_scratch( + [256, 512, 1024, 1024], features, groups=groups, expand=expand + ) # ViT-L/16 - 85.0% Top1 (backbone) + elif backbone == "vitb_rn50_384": + pretrained = _make_pretrained_vitb_rn50_384( + use_pretrained, + hooks=hooks, + use_vit_only=use_vit_only, + use_readout=use_readout, + ) + scratch = _make_scratch( + [256, 512, 768, 768], features, groups=groups, expand=expand + ) # ViT-H/16 - 85.0% Top1 (backbone) + elif backbone == "vitb16_384": + pretrained = _make_pretrained_vitb16_384( + use_pretrained, hooks=hooks, use_readout=use_readout + ) + scratch = _make_scratch( + [96, 192, 384, 768], features, groups=groups, expand=expand + ) # ViT-B/16 - 84.6% Top1 (backbone) + elif backbone == "resnext101_wsl": + pretrained = _make_pretrained_resnext101_wsl(use_pretrained) + scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3 + elif backbone == "efficientnet_lite3": + pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable) + scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3 + else: + print(f"Backbone '{backbone}' not implemented") + assert False + + return pretrained, scratch + + +def _make_scratch(in_shape, out_shape, groups=1, expand=False): + scratch = nn.Module() + + out_shape1 = out_shape + out_shape2 = out_shape + out_shape3 = out_shape + out_shape4 = out_shape + if expand==True: + out_shape1 = out_shape + out_shape2 = out_shape*2 + out_shape3 = out_shape*4 + out_shape4 = out_shape*8 + + scratch.layer1_rn = nn.Conv2d( + in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups + ) + scratch.layer2_rn = nn.Conv2d( + in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups + ) + scratch.layer3_rn = nn.Conv2d( + in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups + ) + scratch.layer4_rn = nn.Conv2d( + in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups + ) + + return scratch + + +def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False): + efficientnet = torch.hub.load( + "rwightman/gen-efficientnet-pytorch", + "tf_efficientnet_lite3", + pretrained=use_pretrained, + exportable=exportable + ) + return _make_efficientnet_backbone(efficientnet) + + +def _make_efficientnet_backbone(effnet): + pretrained = nn.Module() + + pretrained.layer1 = nn.Sequential( + effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2] + ) + pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3]) + pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5]) + pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9]) + + return pretrained + + +def _make_resnet_backbone(resnet): + pretrained = nn.Module() + pretrained.layer1 = nn.Sequential( + resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1 + ) + + pretrained.layer2 = resnet.layer2 + pretrained.layer3 = resnet.layer3 + pretrained.layer4 = resnet.layer4 + + return pretrained + + +def _make_pretrained_resnext101_wsl(use_pretrained): + resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl") + return _make_resnet_backbone(resnet) + + + +class Interpolate(nn.Module): + """Interpolation module. + """ + + def __init__(self, scale_factor, mode, align_corners=False): + """Init. + + Args: + scale_factor (float): scaling + mode (str): interpolation mode + """ + super(Interpolate, self).__init__() + + self.interp = nn.functional.interpolate + self.scale_factor = scale_factor + self.mode = mode + self.align_corners = align_corners + + def forward(self, x): + """Forward pass. + + Args: + x (tensor): input + + Returns: + tensor: interpolated data + """ + + x = self.interp( + x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners + ) + + return x + + +class ResidualConvUnit(nn.Module): + """Residual convolution module. + """ + + def __init__(self, features): + """Init. + + Args: + features (int): number of features + """ + super().__init__() + + self.conv1 = nn.Conv2d( + features, features, kernel_size=3, stride=1, padding=1, bias=True + ) + + self.conv2 = nn.Conv2d( + features, features, kernel_size=3, stride=1, padding=1, bias=True + ) + + self.relu = nn.ReLU(inplace=True) + + def forward(self, x): + """Forward pass. + + Args: + x (tensor): input + + Returns: + tensor: output + """ + out = self.relu(x) + out = self.conv1(out) + out = self.relu(out) + out = self.conv2(out) + + return out + x + + +class FeatureFusionBlock(nn.Module): + """Feature fusion block. + """ + + def __init__(self, features): + """Init. + + Args: + features (int): number of features + """ + super(FeatureFusionBlock, self).__init__() + + self.resConfUnit1 = ResidualConvUnit(features) + self.resConfUnit2 = ResidualConvUnit(features) + + def forward(self, *xs): + """Forward pass. + + Returns: + tensor: output + """ + output = xs[0] + + if len(xs) == 2: + output += self.resConfUnit1(xs[1]) + + output = self.resConfUnit2(output) + + output = nn.functional.interpolate( + output, scale_factor=2, mode="bilinear", align_corners=True + ) + + return output + + + + +class ResidualConvUnit_custom(nn.Module): + """Residual convolution module. + """ + + def __init__(self, features, activation, bn): + """Init. + + Args: + features (int): number of features + """ + super().__init__() + + self.bn = bn + + self.groups=1 + + self.conv1 = nn.Conv2d( + features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups + ) + + self.conv2 = nn.Conv2d( + features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups + ) + + if self.bn==True: + self.bn1 = nn.BatchNorm2d(features) + self.bn2 = nn.BatchNorm2d(features) + + self.activation = activation + + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, x): + """Forward pass. + + Args: + x (tensor): input + + Returns: + tensor: output + """ + + out = self.activation(x) + out = self.conv1(out) + if self.bn==True: + out = self.bn1(out) + + out = self.activation(out) + out = self.conv2(out) + if self.bn==True: + out = self.bn2(out) + + if self.groups > 1: + out = self.conv_merge(out) + + return self.skip_add.add(out, x) + + # return out + x + + +class FeatureFusionBlock_custom(nn.Module): + """Feature fusion block. + """ + + def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True): + """Init. + + Args: + features (int): number of features + """ + super(FeatureFusionBlock_custom, self).__init__() + + self.deconv = deconv + self.align_corners = align_corners + + self.groups=1 + + self.expand = expand + out_features = features + if self.expand==True: + out_features = features//2 + + self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) + + self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) + self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) + + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, *xs): + """Forward pass. + + Returns: + tensor: output + """ + output = xs[0] + + if len(xs) == 2: + res = self.resConfUnit1(xs[1]) + output = self.skip_add.add(output, res) + # output += res + + output = self.resConfUnit2(output) + + output = nn.functional.interpolate( + output, scale_factor=2, mode="bilinear", align_corners=self.align_corners + ) + + output = self.out_conv(output) + + return output + diff --git a/src/ControlNet/annotator/midas/midas/dpt_depth.py b/src/ControlNet/annotator/midas/midas/dpt_depth.py new file mode 100644 index 0000000000000000000000000000000000000000..4e9aab5d2767dffea39da5b3f30e2798688216f1 --- /dev/null +++ b/src/ControlNet/annotator/midas/midas/dpt_depth.py @@ -0,0 +1,109 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .base_model import BaseModel +from .blocks import ( + FeatureFusionBlock, + FeatureFusionBlock_custom, + Interpolate, + _make_encoder, + forward_vit, +) + + +def _make_fusion_block(features, use_bn): + return FeatureFusionBlock_custom( + features, + nn.ReLU(False), + deconv=False, + bn=use_bn, + expand=False, + align_corners=True, + ) + + +class DPT(BaseModel): + def __init__( + self, + head, + features=256, + backbone="vitb_rn50_384", + readout="project", + channels_last=False, + use_bn=False, + ): + + super(DPT, self).__init__() + + self.channels_last = channels_last + + hooks = { + "vitb_rn50_384": [0, 1, 8, 11], + "vitb16_384": [2, 5, 8, 11], + "vitl16_384": [5, 11, 17, 23], + } + + # Instantiate backbone and reassemble blocks + self.pretrained, self.scratch = _make_encoder( + backbone, + features, + False, # Set to true of you want to train from scratch, uses ImageNet weights + groups=1, + expand=False, + exportable=False, + hooks=hooks[backbone], + use_readout=readout, + ) + + self.scratch.refinenet1 = _make_fusion_block(features, use_bn) + self.scratch.refinenet2 = _make_fusion_block(features, use_bn) + self.scratch.refinenet3 = _make_fusion_block(features, use_bn) + self.scratch.refinenet4 = _make_fusion_block(features, use_bn) + + self.scratch.output_conv = head + + + def forward(self, x): + if self.channels_last == True: + x.contiguous(memory_format=torch.channels_last) + + layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x) + + layer_1_rn = self.scratch.layer1_rn(layer_1) + layer_2_rn = self.scratch.layer2_rn(layer_2) + layer_3_rn = self.scratch.layer3_rn(layer_3) + layer_4_rn = self.scratch.layer4_rn(layer_4) + + path_4 = self.scratch.refinenet4(layer_4_rn) + path_3 = self.scratch.refinenet3(path_4, layer_3_rn) + path_2 = self.scratch.refinenet2(path_3, layer_2_rn) + path_1 = self.scratch.refinenet1(path_2, layer_1_rn) + + out = self.scratch.output_conv(path_1) + + return out + + +class DPTDepthModel(DPT): + def __init__(self, path=None, non_negative=True, **kwargs): + features = kwargs["features"] if "features" in kwargs else 256 + + head = nn.Sequential( + nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), + Interpolate(scale_factor=2, mode="bilinear", align_corners=True), + nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), + nn.ReLU(True), + nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), + nn.ReLU(True) if non_negative else nn.Identity(), + nn.Identity(), + ) + + super().__init__(head, **kwargs) + + if path is not None: + self.load(path) + + def forward(self, x): + return super().forward(x).squeeze(dim=1) + diff --git a/src/ControlNet/annotator/midas/midas/midas_net.py b/src/ControlNet/annotator/midas/midas/midas_net.py new file mode 100644 index 0000000000000000000000000000000000000000..8a954977800b0a0f48807e80fa63041910e33c1f --- /dev/null +++ b/src/ControlNet/annotator/midas/midas/midas_net.py @@ -0,0 +1,76 @@ +"""MidashNet: Network for monocular depth estimation trained by mixing several datasets. +This file contains code that is adapted from +https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py +""" +import torch +import torch.nn as nn + +from .base_model import BaseModel +from .blocks import FeatureFusionBlock, Interpolate, _make_encoder + + +class MidasNet(BaseModel): + """Network for monocular depth estimation. + """ + + def __init__(self, path=None, features=256, non_negative=True): + """Init. + + Args: + path (str, optional): Path to saved model. Defaults to None. + features (int, optional): Number of features. Defaults to 256. + backbone (str, optional): Backbone network for encoder. Defaults to resnet50 + """ + print("Loading weights: ", path) + + super(MidasNet, self).__init__() + + use_pretrained = False if path is None else True + + self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained) + + self.scratch.refinenet4 = FeatureFusionBlock(features) + self.scratch.refinenet3 = FeatureFusionBlock(features) + self.scratch.refinenet2 = FeatureFusionBlock(features) + self.scratch.refinenet1 = FeatureFusionBlock(features) + + self.scratch.output_conv = nn.Sequential( + nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1), + Interpolate(scale_factor=2, mode="bilinear"), + nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1), + nn.ReLU(True), + nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), + nn.ReLU(True) if non_negative else nn.Identity(), + ) + + if path: + self.load(path) + + def forward(self, x): + """Forward pass. + + Args: + x (tensor): input data (image) + + Returns: + tensor: depth + """ + + layer_1 = self.pretrained.layer1(x) + layer_2 = self.pretrained.layer2(layer_1) + layer_3 = self.pretrained.layer3(layer_2) + layer_4 = self.pretrained.layer4(layer_3) + + layer_1_rn = self.scratch.layer1_rn(layer_1) + layer_2_rn = self.scratch.layer2_rn(layer_2) + layer_3_rn = self.scratch.layer3_rn(layer_3) + layer_4_rn = self.scratch.layer4_rn(layer_4) + + path_4 = self.scratch.refinenet4(layer_4_rn) + path_3 = self.scratch.refinenet3(path_4, layer_3_rn) + path_2 = self.scratch.refinenet2(path_3, layer_2_rn) + path_1 = self.scratch.refinenet1(path_2, layer_1_rn) + + out = self.scratch.output_conv(path_1) + + return torch.squeeze(out, dim=1) diff --git a/src/ControlNet/annotator/midas/midas/midas_net_custom.py b/src/ControlNet/annotator/midas/midas/midas_net_custom.py new file mode 100644 index 0000000000000000000000000000000000000000..50e4acb5e53d5fabefe3dde16ab49c33c2b7797c --- /dev/null +++ b/src/ControlNet/annotator/midas/midas/midas_net_custom.py @@ -0,0 +1,128 @@ +"""MidashNet: Network for monocular depth estimation trained by mixing several datasets. +This file contains code that is adapted from +https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py +""" +import torch +import torch.nn as nn + +from .base_model import BaseModel +from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder + + +class MidasNet_small(BaseModel): + """Network for monocular depth estimation. + """ + + def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True, + blocks={'expand': True}): + """Init. + + Args: + path (str, optional): Path to saved model. Defaults to None. + features (int, optional): Number of features. Defaults to 256. + backbone (str, optional): Backbone network for encoder. Defaults to resnet50 + """ + print("Loading weights: ", path) + + super(MidasNet_small, self).__init__() + + use_pretrained = False if path else True + + self.channels_last = channels_last + self.blocks = blocks + self.backbone = backbone + + self.groups = 1 + + features1=features + features2=features + features3=features + features4=features + self.expand = False + if "expand" in self.blocks and self.blocks['expand'] == True: + self.expand = True + features1=features + features2=features*2 + features3=features*4 + features4=features*8 + + self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable) + + self.scratch.activation = nn.ReLU(False) + + self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) + self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) + self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) + self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners) + + + self.scratch.output_conv = nn.Sequential( + nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups), + Interpolate(scale_factor=2, mode="bilinear"), + nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1), + self.scratch.activation, + nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), + nn.ReLU(True) if non_negative else nn.Identity(), + nn.Identity(), + ) + + if path: + self.load(path) + + + def forward(self, x): + """Forward pass. + + Args: + x (tensor): input data (image) + + Returns: + tensor: depth + """ + if self.channels_last==True: + print("self.channels_last = ", self.channels_last) + x.contiguous(memory_format=torch.channels_last) + + + layer_1 = self.pretrained.layer1(x) + layer_2 = self.pretrained.layer2(layer_1) + layer_3 = self.pretrained.layer3(layer_2) + layer_4 = self.pretrained.layer4(layer_3) + + layer_1_rn = self.scratch.layer1_rn(layer_1) + layer_2_rn = self.scratch.layer2_rn(layer_2) + layer_3_rn = self.scratch.layer3_rn(layer_3) + layer_4_rn = self.scratch.layer4_rn(layer_4) + + + path_4 = self.scratch.refinenet4(layer_4_rn) + path_3 = self.scratch.refinenet3(path_4, layer_3_rn) + path_2 = self.scratch.refinenet2(path_3, layer_2_rn) + path_1 = self.scratch.refinenet1(path_2, layer_1_rn) + + out = self.scratch.output_conv(path_1) + + return torch.squeeze(out, dim=1) + + + +def fuse_model(m): + prev_previous_type = nn.Identity() + prev_previous_name = '' + previous_type = nn.Identity() + previous_name = '' + for name, module in m.named_modules(): + if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU: + # print("FUSED ", prev_previous_name, previous_name, name) + torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True) + elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d: + # print("FUSED ", prev_previous_name, previous_name) + torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True) + # elif previous_type == nn.Conv2d and type(module) == nn.ReLU: + # print("FUSED ", previous_name, name) + # torch.quantization.fuse_modules(m, [previous_name, name], inplace=True) + + prev_previous_type = previous_type + prev_previous_name = previous_name + previous_type = type(module) + previous_name = name \ No newline at end of file diff --git a/src/ControlNet/annotator/midas/midas/transforms.py b/src/ControlNet/annotator/midas/midas/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..350cbc11662633ad7f8968eb10be2e7de6e384e9 --- /dev/null +++ b/src/ControlNet/annotator/midas/midas/transforms.py @@ -0,0 +1,234 @@ +import numpy as np +import cv2 +import math + + +def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA): + """Rezise the sample to ensure the given size. Keeps aspect ratio. + + Args: + sample (dict): sample + size (tuple): image size + + Returns: + tuple: new size + """ + shape = list(sample["disparity"].shape) + + if shape[0] >= size[0] and shape[1] >= size[1]: + return sample + + scale = [0, 0] + scale[0] = size[0] / shape[0] + scale[1] = size[1] / shape[1] + + scale = max(scale) + + shape[0] = math.ceil(scale * shape[0]) + shape[1] = math.ceil(scale * shape[1]) + + # resize + sample["image"] = cv2.resize( + sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method + ) + + sample["disparity"] = cv2.resize( + sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST + ) + sample["mask"] = cv2.resize( + sample["mask"].astype(np.float32), + tuple(shape[::-1]), + interpolation=cv2.INTER_NEAREST, + ) + sample["mask"] = sample["mask"].astype(bool) + + return tuple(shape) + + +class Resize(object): + """Resize sample to given size (width, height). + """ + + def __init__( + self, + width, + height, + resize_target=True, + keep_aspect_ratio=False, + ensure_multiple_of=1, + resize_method="lower_bound", + image_interpolation_method=cv2.INTER_AREA, + ): + """Init. + + Args: + width (int): desired output width + height (int): desired output height + resize_target (bool, optional): + True: Resize the full sample (image, mask, target). + False: Resize image only. + Defaults to True. + keep_aspect_ratio (bool, optional): + True: Keep the aspect ratio of the input sample. + Output sample might not have the given width and height, and + resize behaviour depends on the parameter 'resize_method'. + Defaults to False. + ensure_multiple_of (int, optional): + Output width and height is constrained to be multiple of this parameter. + Defaults to 1. + resize_method (str, optional): + "lower_bound": Output will be at least as large as the given size. + "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) + "minimal": Scale as least as possible. (Output size might be smaller than given size.) + Defaults to "lower_bound". + """ + self.__width = width + self.__height = height + + self.__resize_target = resize_target + self.__keep_aspect_ratio = keep_aspect_ratio + self.__multiple_of = ensure_multiple_of + self.__resize_method = resize_method + self.__image_interpolation_method = image_interpolation_method + + def constrain_to_multiple_of(self, x, min_val=0, max_val=None): + y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int) + + if max_val is not None and y > max_val: + y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int) + + if y < min_val: + y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int) + + return y + + def get_size(self, width, height): + # determine new height and width + scale_height = self.__height / height + scale_width = self.__width / width + + if self.__keep_aspect_ratio: + if self.__resize_method == "lower_bound": + # scale such that output size is lower bound + if scale_width > scale_height: + # fit width + scale_height = scale_width + else: + # fit height + scale_width = scale_height + elif self.__resize_method == "upper_bound": + # scale such that output size is upper bound + if scale_width < scale_height: + # fit width + scale_height = scale_width + else: + # fit height + scale_width = scale_height + elif self.__resize_method == "minimal": + # scale as least as possbile + if abs(1 - scale_width) < abs(1 - scale_height): + # fit width + scale_height = scale_width + else: + # fit height + scale_width = scale_height + else: + raise ValueError( + f"resize_method {self.__resize_method} not implemented" + ) + + if self.__resize_method == "lower_bound": + new_height = self.constrain_to_multiple_of( + scale_height * height, min_val=self.__height + ) + new_width = self.constrain_to_multiple_of( + scale_width * width, min_val=self.__width + ) + elif self.__resize_method == "upper_bound": + new_height = self.constrain_to_multiple_of( + scale_height * height, max_val=self.__height + ) + new_width = self.constrain_to_multiple_of( + scale_width * width, max_val=self.__width + ) + elif self.__resize_method == "minimal": + new_height = self.constrain_to_multiple_of(scale_height * height) + new_width = self.constrain_to_multiple_of(scale_width * width) + else: + raise ValueError(f"resize_method {self.__resize_method} not implemented") + + return (new_width, new_height) + + def __call__(self, sample): + width, height = self.get_size( + sample["image"].shape[1], sample["image"].shape[0] + ) + + # resize sample + sample["image"] = cv2.resize( + sample["image"], + (width, height), + interpolation=self.__image_interpolation_method, + ) + + if self.__resize_target: + if "disparity" in sample: + sample["disparity"] = cv2.resize( + sample["disparity"], + (width, height), + interpolation=cv2.INTER_NEAREST, + ) + + if "depth" in sample: + sample["depth"] = cv2.resize( + sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST + ) + + sample["mask"] = cv2.resize( + sample["mask"].astype(np.float32), + (width, height), + interpolation=cv2.INTER_NEAREST, + ) + sample["mask"] = sample["mask"].astype(bool) + + return sample + + +class NormalizeImage(object): + """Normlize image by given mean and std. + """ + + def __init__(self, mean, std): + self.__mean = mean + self.__std = std + + def __call__(self, sample): + sample["image"] = (sample["image"] - self.__mean) / self.__std + + return sample + + +class PrepareForNet(object): + """Prepare sample for usage as network input. + """ + + def __init__(self): + pass + + def __call__(self, sample): + image = np.transpose(sample["image"], (2, 0, 1)) + sample["image"] = np.ascontiguousarray(image).astype(np.float32) + + if "mask" in sample: + sample["mask"] = sample["mask"].astype(np.float32) + sample["mask"] = np.ascontiguousarray(sample["mask"]) + + if "disparity" in sample: + disparity = sample["disparity"].astype(np.float32) + sample["disparity"] = np.ascontiguousarray(disparity) + + if "depth" in sample: + depth = sample["depth"].astype(np.float32) + sample["depth"] = np.ascontiguousarray(depth) + + return sample diff --git a/src/ControlNet/annotator/midas/midas/vit.py b/src/ControlNet/annotator/midas/midas/vit.py new file mode 100644 index 0000000000000000000000000000000000000000..ea46b1be88b261b0dec04f3da0256f5f66f88a74 --- /dev/null +++ b/src/ControlNet/annotator/midas/midas/vit.py @@ -0,0 +1,491 @@ +import torch +import torch.nn as nn +import timm +import types +import math +import torch.nn.functional as F + + +class Slice(nn.Module): + def __init__(self, start_index=1): + super(Slice, self).__init__() + self.start_index = start_index + + def forward(self, x): + return x[:, self.start_index :] + + +class AddReadout(nn.Module): + def __init__(self, start_index=1): + super(AddReadout, self).__init__() + self.start_index = start_index + + def forward(self, x): + if self.start_index == 2: + readout = (x[:, 0] + x[:, 1]) / 2 + else: + readout = x[:, 0] + return x[:, self.start_index :] + readout.unsqueeze(1) + + +class ProjectReadout(nn.Module): + def __init__(self, in_features, start_index=1): + super(ProjectReadout, self).__init__() + self.start_index = start_index + + self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU()) + + def forward(self, x): + readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :]) + features = torch.cat((x[:, self.start_index :], readout), -1) + + return self.project(features) + + +class Transpose(nn.Module): + def __init__(self, dim0, dim1): + super(Transpose, self).__init__() + self.dim0 = dim0 + self.dim1 = dim1 + + def forward(self, x): + x = x.transpose(self.dim0, self.dim1) + return x + + +def forward_vit(pretrained, x): + b, c, h, w = x.shape + + glob = pretrained.model.forward_flex(x) + + layer_1 = pretrained.activations["1"] + layer_2 = pretrained.activations["2"] + layer_3 = pretrained.activations["3"] + layer_4 = pretrained.activations["4"] + + layer_1 = pretrained.act_postprocess1[0:2](layer_1) + layer_2 = pretrained.act_postprocess2[0:2](layer_2) + layer_3 = pretrained.act_postprocess3[0:2](layer_3) + layer_4 = pretrained.act_postprocess4[0:2](layer_4) + + unflatten = nn.Sequential( + nn.Unflatten( + 2, + torch.Size( + [ + h // pretrained.model.patch_size[1], + w // pretrained.model.patch_size[0], + ] + ), + ) + ) + + if layer_1.ndim == 3: + layer_1 = unflatten(layer_1) + if layer_2.ndim == 3: + layer_2 = unflatten(layer_2) + if layer_3.ndim == 3: + layer_3 = unflatten(layer_3) + if layer_4.ndim == 3: + layer_4 = unflatten(layer_4) + + layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1) + layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2) + layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3) + layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4) + + return layer_1, layer_2, layer_3, layer_4 + + +def _resize_pos_embed(self, posemb, gs_h, gs_w): + posemb_tok, posemb_grid = ( + posemb[:, : self.start_index], + posemb[0, self.start_index :], + ) + + gs_old = int(math.sqrt(len(posemb_grid))) + + posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) + posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") + posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) + + posemb = torch.cat([posemb_tok, posemb_grid], dim=1) + + return posemb + + +def forward_flex(self, x): + b, c, h, w = x.shape + + pos_embed = self._resize_pos_embed( + self.pos_embed, h // self.patch_size[1], w // self.patch_size[0] + ) + + B = x.shape[0] + + if hasattr(self.patch_embed, "backbone"): + x = self.patch_embed.backbone(x) + if isinstance(x, (list, tuple)): + x = x[-1] # last feature if backbone outputs list/tuple of features + + x = self.patch_embed.proj(x).flatten(2).transpose(1, 2) + + if getattr(self, "dist_token", None) is not None: + cls_tokens = self.cls_token.expand( + B, -1, -1 + ) # stole cls_tokens impl from Phil Wang, thanks + dist_token = self.dist_token.expand(B, -1, -1) + x = torch.cat((cls_tokens, dist_token, x), dim=1) + else: + cls_tokens = self.cls_token.expand( + B, -1, -1 + ) # stole cls_tokens impl from Phil Wang, thanks + x = torch.cat((cls_tokens, x), dim=1) + + x = x + pos_embed + x = self.pos_drop(x) + + for blk in self.blocks: + x = blk(x) + + x = self.norm(x) + + return x + + +activations = {} + + +def get_activation(name): + def hook(model, input, output): + activations[name] = output + + return hook + + +def get_readout_oper(vit_features, features, use_readout, start_index=1): + if use_readout == "ignore": + readout_oper = [Slice(start_index)] * len(features) + elif use_readout == "add": + readout_oper = [AddReadout(start_index)] * len(features) + elif use_readout == "project": + readout_oper = [ + ProjectReadout(vit_features, start_index) for out_feat in features + ] + else: + assert ( + False + ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'" + + return readout_oper + + +def _make_vit_b16_backbone( + model, + features=[96, 192, 384, 768], + size=[384, 384], + hooks=[2, 5, 8, 11], + vit_features=768, + use_readout="ignore", + start_index=1, +): + pretrained = nn.Module() + + pretrained.model = model + pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) + pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) + pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) + pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) + + pretrained.activations = activations + + readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) + + # 32, 48, 136, 384 + pretrained.act_postprocess1 = nn.Sequential( + readout_oper[0], + Transpose(1, 2), + nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), + nn.Conv2d( + in_channels=vit_features, + out_channels=features[0], + kernel_size=1, + stride=1, + padding=0, + ), + nn.ConvTranspose2d( + in_channels=features[0], + out_channels=features[0], + kernel_size=4, + stride=4, + padding=0, + bias=True, + dilation=1, + groups=1, + ), + ) + + pretrained.act_postprocess2 = nn.Sequential( + readout_oper[1], + Transpose(1, 2), + nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), + nn.Conv2d( + in_channels=vit_features, + out_channels=features[1], + kernel_size=1, + stride=1, + padding=0, + ), + nn.ConvTranspose2d( + in_channels=features[1], + out_channels=features[1], + kernel_size=2, + stride=2, + padding=0, + bias=True, + dilation=1, + groups=1, + ), + ) + + pretrained.act_postprocess3 = nn.Sequential( + readout_oper[2], + Transpose(1, 2), + nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), + nn.Conv2d( + in_channels=vit_features, + out_channels=features[2], + kernel_size=1, + stride=1, + padding=0, + ), + ) + + pretrained.act_postprocess4 = nn.Sequential( + readout_oper[3], + Transpose(1, 2), + nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), + nn.Conv2d( + in_channels=vit_features, + out_channels=features[3], + kernel_size=1, + stride=1, + padding=0, + ), + nn.Conv2d( + in_channels=features[3], + out_channels=features[3], + kernel_size=3, + stride=2, + padding=1, + ), + ) + + pretrained.model.start_index = start_index + pretrained.model.patch_size = [16, 16] + + # We inject this function into the VisionTransformer instances so that + # we can use it with interpolated position embeddings without modifying the library source. + pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) + pretrained.model._resize_pos_embed = types.MethodType( + _resize_pos_embed, pretrained.model + ) + + return pretrained + + +def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None): + model = timm.create_model("vit_large_patch16_384", pretrained=pretrained) + + hooks = [5, 11, 17, 23] if hooks == None else hooks + return _make_vit_b16_backbone( + model, + features=[256, 512, 1024, 1024], + hooks=hooks, + vit_features=1024, + use_readout=use_readout, + ) + + +def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None): + model = timm.create_model("vit_base_patch16_384", pretrained=pretrained) + + hooks = [2, 5, 8, 11] if hooks == None else hooks + return _make_vit_b16_backbone( + model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout + ) + + +def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None): + model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained) + + hooks = [2, 5, 8, 11] if hooks == None else hooks + return _make_vit_b16_backbone( + model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout + ) + + +def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None): + model = timm.create_model( + "vit_deit_base_distilled_patch16_384", pretrained=pretrained + ) + + hooks = [2, 5, 8, 11] if hooks == None else hooks + return _make_vit_b16_backbone( + model, + features=[96, 192, 384, 768], + hooks=hooks, + use_readout=use_readout, + start_index=2, + ) + + +def _make_vit_b_rn50_backbone( + model, + features=[256, 512, 768, 768], + size=[384, 384], + hooks=[0, 1, 8, 11], + vit_features=768, + use_vit_only=False, + use_readout="ignore", + start_index=1, +): + pretrained = nn.Module() + + pretrained.model = model + + if use_vit_only == True: + pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) + pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) + else: + pretrained.model.patch_embed.backbone.stages[0].register_forward_hook( + get_activation("1") + ) + pretrained.model.patch_embed.backbone.stages[1].register_forward_hook( + get_activation("2") + ) + + pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) + pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) + + pretrained.activations = activations + + readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) + + if use_vit_only == True: + pretrained.act_postprocess1 = nn.Sequential( + readout_oper[0], + Transpose(1, 2), + nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), + nn.Conv2d( + in_channels=vit_features, + out_channels=features[0], + kernel_size=1, + stride=1, + padding=0, + ), + nn.ConvTranspose2d( + in_channels=features[0], + out_channels=features[0], + kernel_size=4, + stride=4, + padding=0, + bias=True, + dilation=1, + groups=1, + ), + ) + + pretrained.act_postprocess2 = nn.Sequential( + readout_oper[1], + Transpose(1, 2), + nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), + nn.Conv2d( + in_channels=vit_features, + out_channels=features[1], + kernel_size=1, + stride=1, + padding=0, + ), + nn.ConvTranspose2d( + in_channels=features[1], + out_channels=features[1], + kernel_size=2, + stride=2, + padding=0, + bias=True, + dilation=1, + groups=1, + ), + ) + else: + pretrained.act_postprocess1 = nn.Sequential( + nn.Identity(), nn.Identity(), nn.Identity() + ) + pretrained.act_postprocess2 = nn.Sequential( + nn.Identity(), nn.Identity(), nn.Identity() + ) + + pretrained.act_postprocess3 = nn.Sequential( + readout_oper[2], + Transpose(1, 2), + nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), + nn.Conv2d( + in_channels=vit_features, + out_channels=features[2], + kernel_size=1, + stride=1, + padding=0, + ), + ) + + pretrained.act_postprocess4 = nn.Sequential( + readout_oper[3], + Transpose(1, 2), + nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), + nn.Conv2d( + in_channels=vit_features, + out_channels=features[3], + kernel_size=1, + stride=1, + padding=0, + ), + nn.Conv2d( + in_channels=features[3], + out_channels=features[3], + kernel_size=3, + stride=2, + padding=1, + ), + ) + + pretrained.model.start_index = start_index + pretrained.model.patch_size = [16, 16] + + # We inject this function into the VisionTransformer instances so that + # we can use it with interpolated position embeddings without modifying the library source. + pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) + + # We inject this function into the VisionTransformer instances so that + # we can use it with interpolated position embeddings without modifying the library source. + pretrained.model._resize_pos_embed = types.MethodType( + _resize_pos_embed, pretrained.model + ) + + return pretrained + + +def _make_pretrained_vitb_rn50_384( + pretrained, use_readout="ignore", hooks=None, use_vit_only=False +): + model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained) + + hooks = [0, 1, 8, 11] if hooks == None else hooks + return _make_vit_b_rn50_backbone( + model, + features=[256, 512, 768, 768], + size=[384, 384], + hooks=hooks, + use_vit_only=use_vit_only, + use_readout=use_readout, + ) diff --git a/src/ControlNet/annotator/midas/utils.py b/src/ControlNet/annotator/midas/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..9a9d3b5b66370fa98da9e067ba53ead848ea9a59 --- /dev/null +++ b/src/ControlNet/annotator/midas/utils.py @@ -0,0 +1,189 @@ +"""Utils for monoDepth.""" +import sys +import re +import numpy as np +import cv2 +import torch + + +def read_pfm(path): + """Read pfm file. + + Args: + path (str): path to file + + Returns: + tuple: (data, scale) + """ + with open(path, "rb") as file: + + color = None + width = None + height = None + scale = None + endian = None + + header = file.readline().rstrip() + if header.decode("ascii") == "PF": + color = True + elif header.decode("ascii") == "Pf": + color = False + else: + raise Exception("Not a PFM file: " + path) + + dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii")) + if dim_match: + width, height = list(map(int, dim_match.groups())) + else: + raise Exception("Malformed PFM header.") + + scale = float(file.readline().decode("ascii").rstrip()) + if scale < 0: + # little-endian + endian = "<" + scale = -scale + else: + # big-endian + endian = ">" + + data = np.fromfile(file, endian + "f") + shape = (height, width, 3) if color else (height, width) + + data = np.reshape(data, shape) + data = np.flipud(data) + + return data, scale + + +def write_pfm(path, image, scale=1): + """Write pfm file. + + Args: + path (str): pathto file + image (array): data + scale (int, optional): Scale. Defaults to 1. + """ + + with open(path, "wb") as file: + color = None + + if image.dtype.name != "float32": + raise Exception("Image dtype must be float32.") + + image = np.flipud(image) + + if len(image.shape) == 3 and image.shape[2] == 3: # color image + color = True + elif ( + len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1 + ): # greyscale + color = False + else: + raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.") + + file.write("PF\n" if color else "Pf\n".encode()) + file.write("%d %d\n".encode() % (image.shape[1], image.shape[0])) + + endian = image.dtype.byteorder + + if endian == "<" or endian == "=" and sys.byteorder == "little": + scale = -scale + + file.write("%f\n".encode() % scale) + + image.tofile(file) + + +def read_image(path): + """Read image and output RGB image (0-1). + + Args: + path (str): path to file + + Returns: + array: RGB image (0-1) + """ + img = cv2.imread(path) + + if img.ndim == 2: + img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) + + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0 + + return img + + +def resize_image(img): + """Resize image and make it fit for network. + + Args: + img (array): image + + Returns: + tensor: data ready for network + """ + height_orig = img.shape[0] + width_orig = img.shape[1] + + if width_orig > height_orig: + scale = width_orig / 384 + else: + scale = height_orig / 384 + + height = (np.ceil(height_orig / scale / 32) * 32).astype(int) + width = (np.ceil(width_orig / scale / 32) * 32).astype(int) + + img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA) + + img_resized = ( + torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float() + ) + img_resized = img_resized.unsqueeze(0) + + return img_resized + + +def resize_depth(depth, width, height): + """Resize depth map and bring to CPU (numpy). + + Args: + depth (tensor): depth + width (int): image width + height (int): image height + + Returns: + array: processed depth + """ + depth = torch.squeeze(depth[0, :, :, :]).to("cpu") + + depth_resized = cv2.resize( + depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC + ) + + return depth_resized + +def write_depth(path, depth, bits=1): + """Write depth map to pfm and png file. + + Args: + path (str): filepath without extension + depth (array): depth + """ + write_pfm(path + ".pfm", depth.astype(np.float32)) + + depth_min = depth.min() + depth_max = depth.max() + + max_val = (2**(8*bits))-1 + + if depth_max - depth_min > np.finfo("float").eps: + out = max_val * (depth - depth_min) / (depth_max - depth_min) + else: + out = np.zeros(depth.shape, dtype=depth.type) + + if bits == 1: + cv2.imwrite(path + ".png", out.astype("uint8")) + elif bits == 2: + cv2.imwrite(path + ".png", out.astype("uint16")) + + return diff --git a/src/ControlNet/annotator/mlsd/LICENSE b/src/ControlNet/annotator/mlsd/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..d855c6db44b4e873eedd750d34fa2eaf22e22363 --- /dev/null +++ b/src/ControlNet/annotator/mlsd/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "{}" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2021-present NAVER Corp. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. \ No newline at end of file diff --git a/src/ControlNet/annotator/mlsd/__init__.py b/src/ControlNet/annotator/mlsd/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c1860702df6150c5a93c9bb6bf34906a77048c7c --- /dev/null +++ b/src/ControlNet/annotator/mlsd/__init__.py @@ -0,0 +1,43 @@ +# MLSD Line Detection +# From https://github.com/navervision/mlsd +# Apache-2.0 license + +import cv2 +import numpy as np +import torch +import os + +from einops import rearrange +from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny +from .models.mbv2_mlsd_large import MobileV2_MLSD_Large +from .utils import pred_lines + +from annotator.util import annotator_ckpts_path + + +remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/mlsd_large_512_fp32.pth" + + +class MLSDdetector: + def __init__(self): + model_path = os.path.join(annotator_ckpts_path, "mlsd_large_512_fp32.pth") + if not os.path.exists(model_path): + from basicsr.utils.download_util import load_file_from_url + load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) + model = MobileV2_MLSD_Large() + model.load_state_dict(torch.load(model_path), strict=True) + self.model = model.cuda().eval() + + def __call__(self, input_image, thr_v, thr_d): + assert input_image.ndim == 3 + img = input_image + img_output = np.zeros_like(img) + try: + with torch.no_grad(): + lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d) + for line in lines: + x_start, y_start, x_end, y_end = [int(val) for val in line] + cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) + except Exception as e: + pass + return img_output[:, :, 0] diff --git a/src/ControlNet/annotator/mlsd/models/mbv2_mlsd_large.py b/src/ControlNet/annotator/mlsd/models/mbv2_mlsd_large.py new file mode 100644 index 0000000000000000000000000000000000000000..5b9799e7573ca41549b3c3b13ac47b906b369603 --- /dev/null +++ b/src/ControlNet/annotator/mlsd/models/mbv2_mlsd_large.py @@ -0,0 +1,292 @@ +import os +import sys +import torch +import torch.nn as nn +import torch.utils.model_zoo as model_zoo +from torch.nn import functional as F + + +class BlockTypeA(nn.Module): + def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True): + super(BlockTypeA, self).__init__() + self.conv1 = nn.Sequential( + nn.Conv2d(in_c2, out_c2, kernel_size=1), + nn.BatchNorm2d(out_c2), + nn.ReLU(inplace=True) + ) + self.conv2 = nn.Sequential( + nn.Conv2d(in_c1, out_c1, kernel_size=1), + nn.BatchNorm2d(out_c1), + nn.ReLU(inplace=True) + ) + self.upscale = upscale + + def forward(self, a, b): + b = self.conv1(b) + a = self.conv2(a) + if self.upscale: + b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True) + return torch.cat((a, b), dim=1) + + +class BlockTypeB(nn.Module): + def __init__(self, in_c, out_c): + super(BlockTypeB, self).__init__() + self.conv1 = nn.Sequential( + nn.Conv2d(in_c, in_c, kernel_size=3, padding=1), + nn.BatchNorm2d(in_c), + nn.ReLU() + ) + self.conv2 = nn.Sequential( + nn.Conv2d(in_c, out_c, kernel_size=3, padding=1), + nn.BatchNorm2d(out_c), + nn.ReLU() + ) + + def forward(self, x): + x = self.conv1(x) + x + x = self.conv2(x) + return x + +class BlockTypeC(nn.Module): + def __init__(self, in_c, out_c): + super(BlockTypeC, self).__init__() + self.conv1 = nn.Sequential( + nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5), + nn.BatchNorm2d(in_c), + nn.ReLU() + ) + self.conv2 = nn.Sequential( + nn.Conv2d(in_c, in_c, kernel_size=3, padding=1), + nn.BatchNorm2d(in_c), + nn.ReLU() + ) + self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1) + + def forward(self, x): + x = self.conv1(x) + x = self.conv2(x) + x = self.conv3(x) + return x + +def _make_divisible(v, divisor, min_value=None): + """ + This function is taken from the original tf repo. + It ensures that all layers have a channel number that is divisible by 8 + It can be seen here: + https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py + :param v: + :param divisor: + :param min_value: + :return: + """ + if min_value is None: + min_value = divisor + new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) + # Make sure that round down does not go down by more than 10%. + if new_v < 0.9 * v: + new_v += divisor + return new_v + + +class ConvBNReLU(nn.Sequential): + def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): + self.channel_pad = out_planes - in_planes + self.stride = stride + #padding = (kernel_size - 1) // 2 + + # TFLite uses slightly different padding than PyTorch + if stride == 2: + padding = 0 + else: + padding = (kernel_size - 1) // 2 + + super(ConvBNReLU, self).__init__( + nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), + nn.BatchNorm2d(out_planes), + nn.ReLU6(inplace=True) + ) + self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride) + + + def forward(self, x): + # TFLite uses different padding + if self.stride == 2: + x = F.pad(x, (0, 1, 0, 1), "constant", 0) + #print(x.shape) + + for module in self: + if not isinstance(module, nn.MaxPool2d): + x = module(x) + return x + + +class InvertedResidual(nn.Module): + def __init__(self, inp, oup, stride, expand_ratio): + super(InvertedResidual, self).__init__() + self.stride = stride + assert stride in [1, 2] + + hidden_dim = int(round(inp * expand_ratio)) + self.use_res_connect = self.stride == 1 and inp == oup + + layers = [] + if expand_ratio != 1: + # pw + layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) + layers.extend([ + # dw + ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), + # pw-linear + nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), + nn.BatchNorm2d(oup), + ]) + self.conv = nn.Sequential(*layers) + + def forward(self, x): + if self.use_res_connect: + return x + self.conv(x) + else: + return self.conv(x) + + +class MobileNetV2(nn.Module): + def __init__(self, pretrained=True): + """ + MobileNet V2 main class + Args: + num_classes (int): Number of classes + width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount + inverted_residual_setting: Network structure + round_nearest (int): Round the number of channels in each layer to be a multiple of this number + Set to 1 to turn off rounding + block: Module specifying inverted residual building block for mobilenet + """ + super(MobileNetV2, self).__init__() + + block = InvertedResidual + input_channel = 32 + last_channel = 1280 + width_mult = 1.0 + round_nearest = 8 + + inverted_residual_setting = [ + # t, c, n, s + [1, 16, 1, 1], + [6, 24, 2, 2], + [6, 32, 3, 2], + [6, 64, 4, 2], + [6, 96, 3, 1], + #[6, 160, 3, 2], + #[6, 320, 1, 1], + ] + + # only check the first element, assuming user knows t,c,n,s are required + if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: + raise ValueError("inverted_residual_setting should be non-empty " + "or a 4-element list, got {}".format(inverted_residual_setting)) + + # building first layer + input_channel = _make_divisible(input_channel * width_mult, round_nearest) + self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) + features = [ConvBNReLU(4, input_channel, stride=2)] + # building inverted residual blocks + for t, c, n, s in inverted_residual_setting: + output_channel = _make_divisible(c * width_mult, round_nearest) + for i in range(n): + stride = s if i == 0 else 1 + features.append(block(input_channel, output_channel, stride, expand_ratio=t)) + input_channel = output_channel + + self.features = nn.Sequential(*features) + self.fpn_selected = [1, 3, 6, 10, 13] + # weight initialization + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out') + if m.bias is not None: + nn.init.zeros_(m.bias) + elif isinstance(m, nn.BatchNorm2d): + nn.init.ones_(m.weight) + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Linear): + nn.init.normal_(m.weight, 0, 0.01) + nn.init.zeros_(m.bias) + if pretrained: + self._load_pretrained_model() + + def _forward_impl(self, x): + # This exists since TorchScript doesn't support inheritance, so the superclass method + # (this one) needs to have a name other than `forward` that can be accessed in a subclass + fpn_features = [] + for i, f in enumerate(self.features): + if i > self.fpn_selected[-1]: + break + x = f(x) + if i in self.fpn_selected: + fpn_features.append(x) + + c1, c2, c3, c4, c5 = fpn_features + return c1, c2, c3, c4, c5 + + + def forward(self, x): + return self._forward_impl(x) + + def _load_pretrained_model(self): + pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth') + model_dict = {} + state_dict = self.state_dict() + for k, v in pretrain_dict.items(): + if k in state_dict: + model_dict[k] = v + state_dict.update(model_dict) + self.load_state_dict(state_dict) + + +class MobileV2_MLSD_Large(nn.Module): + def __init__(self): + super(MobileV2_MLSD_Large, self).__init__() + + self.backbone = MobileNetV2(pretrained=False) + ## A, B + self.block15 = BlockTypeA(in_c1= 64, in_c2= 96, + out_c1= 64, out_c2=64, + upscale=False) + self.block16 = BlockTypeB(128, 64) + + ## A, B + self.block17 = BlockTypeA(in_c1 = 32, in_c2 = 64, + out_c1= 64, out_c2= 64) + self.block18 = BlockTypeB(128, 64) + + ## A, B + self.block19 = BlockTypeA(in_c1=24, in_c2=64, + out_c1=64, out_c2=64) + self.block20 = BlockTypeB(128, 64) + + ## A, B, C + self.block21 = BlockTypeA(in_c1=16, in_c2=64, + out_c1=64, out_c2=64) + self.block22 = BlockTypeB(128, 64) + + self.block23 = BlockTypeC(64, 16) + + def forward(self, x): + c1, c2, c3, c4, c5 = self.backbone(x) + + x = self.block15(c4, c5) + x = self.block16(x) + + x = self.block17(c3, x) + x = self.block18(x) + + x = self.block19(c2, x) + x = self.block20(x) + + x = self.block21(c1, x) + x = self.block22(x) + x = self.block23(x) + x = x[:, 7:, :, :] + + return x \ No newline at end of file diff --git a/src/ControlNet/annotator/mlsd/models/mbv2_mlsd_tiny.py b/src/ControlNet/annotator/mlsd/models/mbv2_mlsd_tiny.py new file mode 100644 index 0000000000000000000000000000000000000000..e3ed633f2cc23ea1829a627fdb879ab39f641f83 --- /dev/null +++ b/src/ControlNet/annotator/mlsd/models/mbv2_mlsd_tiny.py @@ -0,0 +1,275 @@ +import os +import sys +import torch +import torch.nn as nn +import torch.utils.model_zoo as model_zoo +from torch.nn import functional as F + + +class BlockTypeA(nn.Module): + def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True): + super(BlockTypeA, self).__init__() + self.conv1 = nn.Sequential( + nn.Conv2d(in_c2, out_c2, kernel_size=1), + nn.BatchNorm2d(out_c2), + nn.ReLU(inplace=True) + ) + self.conv2 = nn.Sequential( + nn.Conv2d(in_c1, out_c1, kernel_size=1), + nn.BatchNorm2d(out_c1), + nn.ReLU(inplace=True) + ) + self.upscale = upscale + + def forward(self, a, b): + b = self.conv1(b) + a = self.conv2(a) + b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True) + return torch.cat((a, b), dim=1) + + +class BlockTypeB(nn.Module): + def __init__(self, in_c, out_c): + super(BlockTypeB, self).__init__() + self.conv1 = nn.Sequential( + nn.Conv2d(in_c, in_c, kernel_size=3, padding=1), + nn.BatchNorm2d(in_c), + nn.ReLU() + ) + self.conv2 = nn.Sequential( + nn.Conv2d(in_c, out_c, kernel_size=3, padding=1), + nn.BatchNorm2d(out_c), + nn.ReLU() + ) + + def forward(self, x): + x = self.conv1(x) + x + x = self.conv2(x) + return x + +class BlockTypeC(nn.Module): + def __init__(self, in_c, out_c): + super(BlockTypeC, self).__init__() + self.conv1 = nn.Sequential( + nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5), + nn.BatchNorm2d(in_c), + nn.ReLU() + ) + self.conv2 = nn.Sequential( + nn.Conv2d(in_c, in_c, kernel_size=3, padding=1), + nn.BatchNorm2d(in_c), + nn.ReLU() + ) + self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1) + + def forward(self, x): + x = self.conv1(x) + x = self.conv2(x) + x = self.conv3(x) + return x + +def _make_divisible(v, divisor, min_value=None): + """ + This function is taken from the original tf repo. + It ensures that all layers have a channel number that is divisible by 8 + It can be seen here: + https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py + :param v: + :param divisor: + :param min_value: + :return: + """ + if min_value is None: + min_value = divisor + new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) + # Make sure that round down does not go down by more than 10%. + if new_v < 0.9 * v: + new_v += divisor + return new_v + + +class ConvBNReLU(nn.Sequential): + def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): + self.channel_pad = out_planes - in_planes + self.stride = stride + #padding = (kernel_size - 1) // 2 + + # TFLite uses slightly different padding than PyTorch + if stride == 2: + padding = 0 + else: + padding = (kernel_size - 1) // 2 + + super(ConvBNReLU, self).__init__( + nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), + nn.BatchNorm2d(out_planes), + nn.ReLU6(inplace=True) + ) + self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride) + + + def forward(self, x): + # TFLite uses different padding + if self.stride == 2: + x = F.pad(x, (0, 1, 0, 1), "constant", 0) + #print(x.shape) + + for module in self: + if not isinstance(module, nn.MaxPool2d): + x = module(x) + return x + + +class InvertedResidual(nn.Module): + def __init__(self, inp, oup, stride, expand_ratio): + super(InvertedResidual, self).__init__() + self.stride = stride + assert stride in [1, 2] + + hidden_dim = int(round(inp * expand_ratio)) + self.use_res_connect = self.stride == 1 and inp == oup + + layers = [] + if expand_ratio != 1: + # pw + layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) + layers.extend([ + # dw + ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), + # pw-linear + nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), + nn.BatchNorm2d(oup), + ]) + self.conv = nn.Sequential(*layers) + + def forward(self, x): + if self.use_res_connect: + return x + self.conv(x) + else: + return self.conv(x) + + +class MobileNetV2(nn.Module): + def __init__(self, pretrained=True): + """ + MobileNet V2 main class + Args: + num_classes (int): Number of classes + width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount + inverted_residual_setting: Network structure + round_nearest (int): Round the number of channels in each layer to be a multiple of this number + Set to 1 to turn off rounding + block: Module specifying inverted residual building block for mobilenet + """ + super(MobileNetV2, self).__init__() + + block = InvertedResidual + input_channel = 32 + last_channel = 1280 + width_mult = 1.0 + round_nearest = 8 + + inverted_residual_setting = [ + # t, c, n, s + [1, 16, 1, 1], + [6, 24, 2, 2], + [6, 32, 3, 2], + [6, 64, 4, 2], + #[6, 96, 3, 1], + #[6, 160, 3, 2], + #[6, 320, 1, 1], + ] + + # only check the first element, assuming user knows t,c,n,s are required + if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: + raise ValueError("inverted_residual_setting should be non-empty " + "or a 4-element list, got {}".format(inverted_residual_setting)) + + # building first layer + input_channel = _make_divisible(input_channel * width_mult, round_nearest) + self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) + features = [ConvBNReLU(4, input_channel, stride=2)] + # building inverted residual blocks + for t, c, n, s in inverted_residual_setting: + output_channel = _make_divisible(c * width_mult, round_nearest) + for i in range(n): + stride = s if i == 0 else 1 + features.append(block(input_channel, output_channel, stride, expand_ratio=t)) + input_channel = output_channel + self.features = nn.Sequential(*features) + + self.fpn_selected = [3, 6, 10] + # weight initialization + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out') + if m.bias is not None: + nn.init.zeros_(m.bias) + elif isinstance(m, nn.BatchNorm2d): + nn.init.ones_(m.weight) + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Linear): + nn.init.normal_(m.weight, 0, 0.01) + nn.init.zeros_(m.bias) + + #if pretrained: + # self._load_pretrained_model() + + def _forward_impl(self, x): + # This exists since TorchScript doesn't support inheritance, so the superclass method + # (this one) needs to have a name other than `forward` that can be accessed in a subclass + fpn_features = [] + for i, f in enumerate(self.features): + if i > self.fpn_selected[-1]: + break + x = f(x) + if i in self.fpn_selected: + fpn_features.append(x) + + c2, c3, c4 = fpn_features + return c2, c3, c4 + + + def forward(self, x): + return self._forward_impl(x) + + def _load_pretrained_model(self): + pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth') + model_dict = {} + state_dict = self.state_dict() + for k, v in pretrain_dict.items(): + if k in state_dict: + model_dict[k] = v + state_dict.update(model_dict) + self.load_state_dict(state_dict) + + +class MobileV2_MLSD_Tiny(nn.Module): + def __init__(self): + super(MobileV2_MLSD_Tiny, self).__init__() + + self.backbone = MobileNetV2(pretrained=True) + + self.block12 = BlockTypeA(in_c1= 32, in_c2= 64, + out_c1= 64, out_c2=64) + self.block13 = BlockTypeB(128, 64) + + self.block14 = BlockTypeA(in_c1 = 24, in_c2 = 64, + out_c1= 32, out_c2= 32) + self.block15 = BlockTypeB(64, 64) + + self.block16 = BlockTypeC(64, 16) + + def forward(self, x): + c2, c3, c4 = self.backbone(x) + + x = self.block12(c3, c4) + x = self.block13(x) + x = self.block14(c2, x) + x = self.block15(x) + x = self.block16(x) + x = x[:, 7:, :, :] + #print(x.shape) + x = F.interpolate(x, scale_factor=2.0, mode='bilinear', align_corners=True) + + return x \ No newline at end of file diff --git a/src/ControlNet/annotator/mlsd/utils.py b/src/ControlNet/annotator/mlsd/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..ae3cf9420a33a4abae27c48ac4b90938c7d63cc3 --- /dev/null +++ b/src/ControlNet/annotator/mlsd/utils.py @@ -0,0 +1,580 @@ +''' +modified by lihaoweicv +pytorch version +''' + +''' +M-LSD +Copyright 2021-present NAVER Corp. +Apache License v2.0 +''' + +import os +import numpy as np +import cv2 +import torch +from torch.nn import functional as F + + +def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5): + ''' + tpMap: + center: tpMap[1, 0, :, :] + displacement: tpMap[1, 1:5, :, :] + ''' + b, c, h, w = tpMap.shape + assert b==1, 'only support bsize==1' + displacement = tpMap[:, 1:5, :, :][0] + center = tpMap[:, 0, :, :] + heat = torch.sigmoid(center) + hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2) + keep = (hmax == heat).float() + heat = heat * keep + heat = heat.reshape(-1, ) + + scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True) + yy = torch.floor_divide(indices, w).unsqueeze(-1) + xx = torch.fmod(indices, w).unsqueeze(-1) + ptss = torch.cat((yy, xx),dim=-1) + + ptss = ptss.detach().cpu().numpy() + scores = scores.detach().cpu().numpy() + displacement = displacement.detach().cpu().numpy() + displacement = displacement.transpose((1,2,0)) + return ptss, scores, displacement + + +def pred_lines(image, model, + input_shape=[512, 512], + score_thr=0.10, + dist_thr=20.0): + h, w, _ = image.shape + h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]] + + resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA), + np.ones([input_shape[0], input_shape[1], 1])], axis=-1) + + resized_image = resized_image.transpose((2,0,1)) + batch_image = np.expand_dims(resized_image, axis=0).astype('float32') + batch_image = (batch_image / 127.5) - 1.0 + + batch_image = torch.from_numpy(batch_image).float().cuda() + outputs = model(batch_image) + pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3) + start = vmap[:, :, :2] + end = vmap[:, :, 2:] + dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1)) + + segments_list = [] + for center, score in zip(pts, pts_score): + y, x = center + distance = dist_map[y, x] + if score > score_thr and distance > dist_thr: + disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :] + x_start = x + disp_x_start + y_start = y + disp_y_start + x_end = x + disp_x_end + y_end = y + disp_y_end + segments_list.append([x_start, y_start, x_end, y_end]) + + lines = 2 * np.array(segments_list) # 256 > 512 + lines[:, 0] = lines[:, 0] * w_ratio + lines[:, 1] = lines[:, 1] * h_ratio + lines[:, 2] = lines[:, 2] * w_ratio + lines[:, 3] = lines[:, 3] * h_ratio + + return lines + + +def pred_squares(image, + model, + input_shape=[512, 512], + params={'score': 0.06, + 'outside_ratio': 0.28, + 'inside_ratio': 0.45, + 'w_overlap': 0.0, + 'w_degree': 1.95, + 'w_length': 0.0, + 'w_area': 1.86, + 'w_center': 0.14}): + ''' + shape = [height, width] + ''' + h, w, _ = image.shape + original_shape = [h, w] + + resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA), + np.ones([input_shape[0], input_shape[1], 1])], axis=-1) + resized_image = resized_image.transpose((2, 0, 1)) + batch_image = np.expand_dims(resized_image, axis=0).astype('float32') + batch_image = (batch_image / 127.5) - 1.0 + + batch_image = torch.from_numpy(batch_image).float().cuda() + outputs = model(batch_image) + + pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3) + start = vmap[:, :, :2] # (x, y) + end = vmap[:, :, 2:] # (x, y) + dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1)) + + junc_list = [] + segments_list = [] + for junc, score in zip(pts, pts_score): + y, x = junc + distance = dist_map[y, x] + if score > params['score'] and distance > 20.0: + junc_list.append([x, y]) + disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :] + d_arrow = 1.0 + x_start = x + d_arrow * disp_x_start + y_start = y + d_arrow * disp_y_start + x_end = x + d_arrow * disp_x_end + y_end = y + d_arrow * disp_y_end + segments_list.append([x_start, y_start, x_end, y_end]) + + segments = np.array(segments_list) + + ####### post processing for squares + # 1. get unique lines + point = np.array([[0, 0]]) + point = point[0] + start = segments[:, :2] + end = segments[:, 2:] + diff = start - end + a = diff[:, 1] + b = -diff[:, 0] + c = a * start[:, 0] + b * start[:, 1] + + d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10) + theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi + theta[theta < 0.0] += 180 + hough = np.concatenate([d[:, None], theta[:, None]], axis=-1) + + d_quant = 1 + theta_quant = 2 + hough[:, 0] //= d_quant + hough[:, 1] //= theta_quant + _, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True) + + acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32') + idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1 + yx_indices = hough[indices, :].astype('int32') + acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts + idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices + + acc_map_np = acc_map + # acc_map = acc_map[None, :, :, None] + # + # ### fast suppression using tensorflow op + # acc_map = tf.constant(acc_map, dtype=tf.float32) + # max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map) + # acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32) + # flatten_acc_map = tf.reshape(acc_map, [1, -1]) + # topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts)) + # _, h, w, _ = acc_map.shape + # y = tf.expand_dims(topk_indices // w, axis=-1) + # x = tf.expand_dims(topk_indices % w, axis=-1) + # yx = tf.concat([y, x], axis=-1) + + ### fast suppression using pytorch op + acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0) + _,_, h, w = acc_map.shape + max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2) + acc_map = acc_map * ( (acc_map == max_acc_map).float() ) + flatten_acc_map = acc_map.reshape([-1, ]) + + scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True) + yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1) + xx = torch.fmod(indices, w).unsqueeze(-1) + yx = torch.cat((yy, xx), dim=-1) + + yx = yx.detach().cpu().numpy() + + topk_values = scores.detach().cpu().numpy() + indices = idx_map[yx[:, 0], yx[:, 1]] + basis = 5 // 2 + + merged_segments = [] + for yx_pt, max_indice, value in zip(yx, indices, topk_values): + y, x = yx_pt + if max_indice == -1 or value == 0: + continue + segment_list = [] + for y_offset in range(-basis, basis + 1): + for x_offset in range(-basis, basis + 1): + indice = idx_map[y + y_offset, x + x_offset] + cnt = int(acc_map_np[y + y_offset, x + x_offset]) + if indice != -1: + segment_list.append(segments[indice]) + if cnt > 1: + check_cnt = 1 + current_hough = hough[indice] + for new_indice, new_hough in enumerate(hough): + if (current_hough == new_hough).all() and indice != new_indice: + segment_list.append(segments[new_indice]) + check_cnt += 1 + if check_cnt == cnt: + break + group_segments = np.array(segment_list).reshape([-1, 2]) + sorted_group_segments = np.sort(group_segments, axis=0) + x_min, y_min = sorted_group_segments[0, :] + x_max, y_max = sorted_group_segments[-1, :] + + deg = theta[max_indice] + if deg >= 90: + merged_segments.append([x_min, y_max, x_max, y_min]) + else: + merged_segments.append([x_min, y_min, x_max, y_max]) + + # 2. get intersections + new_segments = np.array(merged_segments) # (x1, y1, x2, y2) + start = new_segments[:, :2] # (x1, y1) + end = new_segments[:, 2:] # (x2, y2) + new_centers = (start + end) / 2.0 + diff = start - end + dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1)) + + # ax + by = c + a = diff[:, 1] + b = -diff[:, 0] + c = a * start[:, 0] + b * start[:, 1] + pre_det = a[:, None] * b[None, :] + det = pre_det - np.transpose(pre_det) + + pre_inter_y = a[:, None] * c[None, :] + inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10) + pre_inter_x = c[:, None] * b[None, :] + inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10) + inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32') + + # 3. get corner information + # 3.1 get distance + ''' + dist_segments: + | dist(0), dist(1), dist(2), ...| + dist_inter_to_segment1: + | dist(inter,0), dist(inter,0), dist(inter,0), ... | + | dist(inter,1), dist(inter,1), dist(inter,1), ... | + ... + dist_inter_to_semgnet2: + | dist(inter,0), dist(inter,1), dist(inter,2), ... | + | dist(inter,0), dist(inter,1), dist(inter,2), ... | + ... + ''' + + dist_inter_to_segment1_start = np.sqrt( + np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] + dist_inter_to_segment1_end = np.sqrt( + np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] + dist_inter_to_segment2_start = np.sqrt( + np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] + dist_inter_to_segment2_end = np.sqrt( + np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] + + # sort ascending + dist_inter_to_segment1 = np.sort( + np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1), + axis=-1) # [n_batch, n_batch, 2] + dist_inter_to_segment2 = np.sort( + np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1), + axis=-1) # [n_batch, n_batch, 2] + + # 3.2 get degree + inter_to_start = new_centers[:, None, :] - inter_pts + deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi + deg_inter_to_start[deg_inter_to_start < 0.0] += 360 + inter_to_end = new_centers[None, :, :] - inter_pts + deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi + deg_inter_to_end[deg_inter_to_end < 0.0] += 360 + + ''' + B -- G + | | + C -- R + B : blue / G: green / C: cyan / R: red + + 0 -- 1 + | | + 3 -- 2 + ''' + # rename variables + deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end + # sort deg ascending + deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1) + + deg_diff_map = np.abs(deg1_map - deg2_map) + # we only consider the smallest degree of intersect + deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180] + + # define available degree range + deg_range = [60, 120] + + corner_dict = {corner_info: [] for corner_info in range(4)} + inter_points = [] + for i in range(inter_pts.shape[0]): + for j in range(i + 1, inter_pts.shape[1]): + # i, j > line index, always i < j + x, y = inter_pts[i, j, :] + deg1, deg2 = deg_sort[i, j, :] + deg_diff = deg_diff_map[i, j] + + check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1] + + outside_ratio = params['outside_ratio'] # over ratio >>> drop it! + inside_ratio = params['inside_ratio'] # over ratio >>> drop it! + check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \ + dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \ + (dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \ + dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \ + ((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \ + dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \ + (dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \ + dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio)) + + if check_degree and check_distance: + corner_info = None + + if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \ + (deg2 >= 315 and deg1 >= 45 and deg1 <= 120): + corner_info, color_info = 0, 'blue' + elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225): + corner_info, color_info = 1, 'green' + elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315): + corner_info, color_info = 2, 'black' + elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \ + (deg2 >= 315 and deg1 >= 225 and deg1 <= 315): + corner_info, color_info = 3, 'cyan' + else: + corner_info, color_info = 4, 'red' # we don't use it + continue + + corner_dict[corner_info].append([x, y, i, j]) + inter_points.append([x, y]) + + square_list = [] + connect_list = [] + segments_list = [] + for corner0 in corner_dict[0]: + for corner1 in corner_dict[1]: + connect01 = False + for corner0_line in corner0[2:]: + if corner0_line in corner1[2:]: + connect01 = True + break + if connect01: + for corner2 in corner_dict[2]: + connect12 = False + for corner1_line in corner1[2:]: + if corner1_line in corner2[2:]: + connect12 = True + break + if connect12: + for corner3 in corner_dict[3]: + connect23 = False + for corner2_line in corner2[2:]: + if corner2_line in corner3[2:]: + connect23 = True + break + if connect23: + for corner3_line in corner3[2:]: + if corner3_line in corner0[2:]: + # SQUARE!!! + ''' + 0 -- 1 + | | + 3 -- 2 + square_list: + order: 0 > 1 > 2 > 3 + | x0, y0, x1, y1, x2, y2, x3, y3 | + | x0, y0, x1, y1, x2, y2, x3, y3 | + ... + connect_list: + order: 01 > 12 > 23 > 30 + | line_idx01, line_idx12, line_idx23, line_idx30 | + | line_idx01, line_idx12, line_idx23, line_idx30 | + ... + segments_list: + order: 0 > 1 > 2 > 3 + | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j | + | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j | + ... + ''' + square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2]) + connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line]) + segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:]) + + def check_outside_inside(segments_info, connect_idx): + # return 'outside or inside', min distance, cover_param, peri_param + if connect_idx == segments_info[0]: + check_dist_mat = dist_inter_to_segment1 + else: + check_dist_mat = dist_inter_to_segment2 + + i, j = segments_info + min_dist, max_dist = check_dist_mat[i, j, :] + connect_dist = dist_segments[connect_idx] + if max_dist > connect_dist: + return 'outside', min_dist, 0, 1 + else: + return 'inside', min_dist, -1, -1 + + top_square = None + + try: + map_size = input_shape[0] / 2 + squares = np.array(square_list).reshape([-1, 4, 2]) + score_array = [] + connect_array = np.array(connect_list) + segments_array = np.array(segments_list).reshape([-1, 4, 2]) + + # get degree of corners: + squares_rollup = np.roll(squares, 1, axis=1) + squares_rolldown = np.roll(squares, -1, axis=1) + vec1 = squares_rollup - squares + normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10) + vec2 = squares_rolldown - squares + normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10) + inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4] + squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4] + + # get square score + overlap_scores = [] + degree_scores = [] + length_scores = [] + + for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree): + ''' + 0 -- 1 + | | + 3 -- 2 + + # segments: [4, 2] + # connects: [4] + ''' + + ###################################### OVERLAP SCORES + cover = 0 + perimeter = 0 + # check 0 > 1 > 2 > 3 + square_length = [] + + for start_idx in range(4): + end_idx = (start_idx + 1) % 4 + + connect_idx = connects[start_idx] # segment idx of segment01 + start_segments = segments[start_idx] + end_segments = segments[end_idx] + + start_point = square[start_idx] + end_point = square[end_idx] + + # check whether outside or inside + start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments, + connect_idx) + end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx) + + cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min + perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min + + square_length.append( + dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min) + + overlap_scores.append(cover / perimeter) + ###################################### + ###################################### DEGREE SCORES + ''' + deg0 vs deg2 + deg1 vs deg3 + ''' + deg0, deg1, deg2, deg3 = degree + deg_ratio1 = deg0 / deg2 + if deg_ratio1 > 1.0: + deg_ratio1 = 1 / deg_ratio1 + deg_ratio2 = deg1 / deg3 + if deg_ratio2 > 1.0: + deg_ratio2 = 1 / deg_ratio2 + degree_scores.append((deg_ratio1 + deg_ratio2) / 2) + ###################################### + ###################################### LENGTH SCORES + ''' + len0 vs len2 + len1 vs len3 + ''' + len0, len1, len2, len3 = square_length + len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0 + len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1 + length_scores.append((len_ratio1 + len_ratio2) / 2) + + ###################################### + + overlap_scores = np.array(overlap_scores) + overlap_scores /= np.max(overlap_scores) + + degree_scores = np.array(degree_scores) + # degree_scores /= np.max(degree_scores) + + length_scores = np.array(length_scores) + + ###################################### AREA SCORES + area_scores = np.reshape(squares, [-1, 4, 2]) + area_x = area_scores[:, :, 0] + area_y = area_scores[:, :, 1] + correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0] + area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1) + area_scores = 0.5 * np.abs(area_scores + correction) + area_scores /= (map_size * map_size) # np.max(area_scores) + ###################################### + + ###################################### CENTER SCORES + centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2] + # squares: [n, 4, 2] + square_centers = np.mean(squares, axis=1) # [n, 2] + center2center = np.sqrt(np.sum((centers - square_centers) ** 2)) + center_scores = center2center / (map_size / np.sqrt(2.0)) + + ''' + score_w = [overlap, degree, area, center, length] + ''' + score_w = [0.0, 1.0, 10.0, 0.5, 1.0] + score_array = params['w_overlap'] * overlap_scores \ + + params['w_degree'] * degree_scores \ + + params['w_area'] * area_scores \ + - params['w_center'] * center_scores \ + + params['w_length'] * length_scores + + best_square = [] + + sorted_idx = np.argsort(score_array)[::-1] + score_array = score_array[sorted_idx] + squares = squares[sorted_idx] + + except Exception as e: + pass + + '''return list + merged_lines, squares, scores + ''' + + try: + new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1] + new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0] + new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1] + new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0] + except: + new_segments = [] + + try: + squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1] + squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0] + except: + squares = [] + score_array = [] + + try: + inter_points = np.array(inter_points) + inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1] + inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0] + except: + inter_points = [] + + return new_segments, squares, score_array, inter_points diff --git a/src/ControlNet/annotator/openpose/LICENSE b/src/ControlNet/annotator/openpose/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..6f60b76d35fa1012809985780964a5068adce4fd --- /dev/null +++ b/src/ControlNet/annotator/openpose/LICENSE @@ -0,0 +1,108 @@ +OPENPOSE: MULTIPERSON KEYPOINT DETECTION +SOFTWARE LICENSE AGREEMENT +ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY + +BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE. + +This is a license agreement ("Agreement") between your academic institution or non-profit organization or self (called "Licensee" or "You" in this Agreement) and Carnegie Mellon University (called "Licensor" in this Agreement). All rights not specifically granted to you in this Agreement are reserved for Licensor. + +RESERVATION OF OWNERSHIP AND GRANT OF LICENSE: +Licensor retains exclusive ownership of any copy of the Software (as defined below) licensed under this Agreement and hereby grants to Licensee a personal, non-exclusive, +non-transferable license to use the Software for noncommercial research purposes, without the right to sublicense, pursuant to the terms and conditions of this Agreement. As used in this Agreement, the term "Software" means (i) the actual copy of all or any portion of code for program routines made accessible to Licensee by Licensor pursuant to this Agreement, inclusive of backups, updates, and/or merged copies permitted hereunder or subsequently supplied by Licensor, including all or any file structures, programming instructions, user interfaces and screen formats and sequences as well as any and all documentation and instructions related to it, and (ii) all or any derivatives and/or modifications created or made by You to any of the items specified in (i). + +CONFIDENTIALITY: Licensee acknowledges that the Software is proprietary to Licensor, and as such, Licensee agrees to receive all such materials in confidence and use the Software only in accordance with the terms of this Agreement. Licensee agrees to use reasonable effort to protect the Software from unauthorized use, reproduction, distribution, or publication. + +COPYRIGHT: The Software is owned by Licensor and is protected by United +States copyright laws and applicable international treaties and/or conventions. + +PERMITTED USES: The Software may be used for your own noncommercial internal research purposes. You understand and agree that Licensor is not obligated to implement any suggestions and/or feedback you might provide regarding the Software, but to the extent Licensor does so, you are not entitled to any compensation related thereto. + +DERIVATIVES: You may create derivatives of or make modifications to the Software, however, You agree that all and any such derivatives and modifications will be owned by Licensor and become a part of the Software licensed to You under this Agreement. You may only use such derivatives and modifications for your own noncommercial internal research purposes, and you may not otherwise use, distribute or copy such derivatives and modifications in violation of this Agreement. + +BACKUPS: If Licensee is an organization, it may make that number of copies of the Software necessary for internal noncommercial use at a single site within its organization provided that all information appearing in or on the original labels, including the copyright and trademark notices are copied onto the labels of the copies. + +USES NOT PERMITTED: You may not distribute, copy or use the Software except as explicitly permitted herein. Licensee has not been granted any trademark license as part of this Agreement and may not use the name or mark “OpenPose", "Carnegie Mellon" or any renditions thereof without the prior written permission of Licensor. + +You may not sell, rent, lease, sublicense, lend, time-share or transfer, in whole or in part, or provide third parties access to prior or present versions (or any parts thereof) of the Software. + +ASSIGNMENT: You may not assign this Agreement or your rights hereunder without the prior written consent of Licensor. Any attempted assignment without such consent shall be null and void. + +TERM: The term of the license granted by this Agreement is from Licensee's acceptance of this Agreement by downloading the Software or by using the Software until terminated as provided below. + +The Agreement automatically terminates without notice if you fail to comply with any provision of this Agreement. Licensee may terminate this Agreement by ceasing using the Software. Upon any termination of this Agreement, Licensee will delete any and all copies of the Software. You agree that all provisions which operate to protect the proprietary rights of Licensor shall remain in force should breach occur and that the obligation of confidentiality described in this Agreement is binding in perpetuity and, as such, survives the term of the Agreement. + +FEE: Provided Licensee abides completely by the terms and conditions of this Agreement, there is no fee due to Licensor for Licensee's use of the Software in accordance with this Agreement. + +DISCLAIMER OF WARRANTIES: THE SOFTWARE IS PROVIDED "AS-IS" WITHOUT WARRANTY OF ANY KIND INCLUDING ANY WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE OR OF NON-INFRINGEMENT. LICENSEE BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE SOFTWARE AND RELATED MATERIALS. + +SUPPORT AND MAINTENANCE: No Software support or training by the Licensor is provided as part of this Agreement. + +EXCLUSIVE REMEDY AND LIMITATION OF LIABILITY: To the maximum extent permitted under applicable law, Licensor shall not be liable for direct, indirect, special, incidental, or consequential damages or lost profits related to Licensee's use of and/or inability to use the Software, even if Licensor is advised of the possibility of such damage. + +EXPORT REGULATION: Licensee agrees to comply with any and all applicable +U.S. export control laws, regulations, and/or other laws related to embargoes and sanction programs administered by the Office of Foreign Assets Control. + +SEVERABILITY: If any provision(s) of this Agreement shall be held to be invalid, illegal, or unenforceable by a court or other tribunal of competent jurisdiction, the validity, legality and enforceability of the remaining provisions shall not in any way be affected or impaired thereby. + +NO IMPLIED WAIVERS: No failure or delay by Licensor in enforcing any right or remedy under this Agreement shall be construed as a waiver of any future or other exercise of such right or remedy by Licensor. + +GOVERNING LAW: This Agreement shall be construed and enforced in accordance with the laws of the Commonwealth of Pennsylvania without reference to conflict of laws principles. You consent to the personal jurisdiction of the courts of this County and waive their rights to venue outside of Allegheny County, Pennsylvania. + +ENTIRE AGREEMENT AND AMENDMENTS: This Agreement constitutes the sole and entire agreement between Licensee and Licensor as to the matter set forth herein and supersedes any previous agreements, understandings, and arrangements between the parties relating hereto. + + + +************************************************************************ + +THIRD-PARTY SOFTWARE NOTICES AND INFORMATION + +This project incorporates material from the project(s) listed below (collectively, "Third Party Code"). This Third Party Code is licensed to you under their original license terms set forth below. We reserves all other rights not expressly granted, whether by implication, estoppel or otherwise. + +1. Caffe, version 1.0.0, (https://github.com/BVLC/caffe/) + +COPYRIGHT + +All contributions by the University of California: +Copyright (c) 2014-2017 The Regents of the University of California (Regents) +All rights reserved. + +All other contributions: +Copyright (c) 2014-2017, the respective contributors +All rights reserved. + +Caffe uses a shared copyright model: each contributor holds copyright over +their contributions to Caffe. The project versioning records all such +contribution and copyright details. If a contributor wants to further mark +their specific copyright on a particular contribution, they should indicate +their copyright solely in the commit message of the change when it is +committed. + +LICENSE + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +CONTRIBUTION AGREEMENT + +By contributing to the BVLC/caffe repository through pull-request, comment, +or otherwise, the contributor releases their content to the +license and copyright terms herein. + +************END OF THIRD-PARTY SOFTWARE NOTICES AND INFORMATION********** \ No newline at end of file diff --git a/src/ControlNet/annotator/openpose/__init__.py b/src/ControlNet/annotator/openpose/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..92e530fd6913a92b1e624d3e334252bcfdba902f --- /dev/null +++ b/src/ControlNet/annotator/openpose/__init__.py @@ -0,0 +1,49 @@ +# Openpose +# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose +# 2nd Edited by https://github.com/Hzzone/pytorch-openpose +# 3rd Edited by ControlNet + +import os +os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" + +import torch +import numpy as np +from . import util +from .body import Body +from .hand import Hand +from annotator.util import annotator_ckpts_path + + +body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth" +hand_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/hand_pose_model.pth" + + +class OpenposeDetector: + def __init__(self): + body_modelpath = os.path.join(annotator_ckpts_path, "body_pose_model.pth") + hand_modelpath = os.path.join(annotator_ckpts_path, "hand_pose_model.pth") + + if not os.path.exists(hand_modelpath): + from basicsr.utils.download_util import load_file_from_url + load_file_from_url(body_model_path, model_dir=annotator_ckpts_path) + load_file_from_url(hand_model_path, model_dir=annotator_ckpts_path) + + self.body_estimation = Body(body_modelpath) + self.hand_estimation = Hand(hand_modelpath) + + def __call__(self, oriImg, hand=False): + oriImg = oriImg[:, :, ::-1].copy() + with torch.no_grad(): + candidate, subset = self.body_estimation(oriImg) + canvas = np.zeros_like(oriImg) + canvas = util.draw_bodypose(canvas, candidate, subset) + if hand: + hands_list = util.handDetect(candidate, subset, oriImg) + all_hand_peaks = [] + for x, y, w, is_left in hands_list: + peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :]) + peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x) + peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y) + all_hand_peaks.append(peaks) + canvas = util.draw_handpose(canvas, all_hand_peaks) + return canvas, dict(candidate=candidate.tolist(), subset=subset.tolist()) diff --git a/src/ControlNet/annotator/openpose/body.py b/src/ControlNet/annotator/openpose/body.py new file mode 100644 index 0000000000000000000000000000000000000000..7c3cf7a388b4ac81004524e64125e383bdd455bd --- /dev/null +++ b/src/ControlNet/annotator/openpose/body.py @@ -0,0 +1,219 @@ +import cv2 +import numpy as np +import math +import time +from scipy.ndimage.filters import gaussian_filter +import matplotlib.pyplot as plt +import matplotlib +import torch +from torchvision import transforms + +from . import util +from .model import bodypose_model + +class Body(object): + def __init__(self, model_path): + self.model = bodypose_model() + if torch.cuda.is_available(): + self.model = self.model.cuda() + print('cuda') + model_dict = util.transfer(self.model, torch.load(model_path)) + self.model.load_state_dict(model_dict) + self.model.eval() + + def __call__(self, oriImg): + # scale_search = [0.5, 1.0, 1.5, 2.0] + scale_search = [0.5] + boxsize = 368 + stride = 8 + padValue = 128 + thre1 = 0.1 + thre2 = 0.05 + multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] + heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19)) + paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) + + for m in range(len(multiplier)): + scale = multiplier[m] + imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) + imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) + im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 + im = np.ascontiguousarray(im) + + data = torch.from_numpy(im).float() + if torch.cuda.is_available(): + data = data.cuda() + # data = data.permute([2, 0, 1]).unsqueeze(0).float() + with torch.no_grad(): + Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data) + Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy() + Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy() + + # extract outputs, resize, and remove padding + # heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps + heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps + heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) + heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] + heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) + + # paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs + paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs + paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) + paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] + paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) + + heatmap_avg += heatmap_avg + heatmap / len(multiplier) + paf_avg += + paf / len(multiplier) + + all_peaks = [] + peak_counter = 0 + + for part in range(18): + map_ori = heatmap_avg[:, :, part] + one_heatmap = gaussian_filter(map_ori, sigma=3) + + map_left = np.zeros(one_heatmap.shape) + map_left[1:, :] = one_heatmap[:-1, :] + map_right = np.zeros(one_heatmap.shape) + map_right[:-1, :] = one_heatmap[1:, :] + map_up = np.zeros(one_heatmap.shape) + map_up[:, 1:] = one_heatmap[:, :-1] + map_down = np.zeros(one_heatmap.shape) + map_down[:, :-1] = one_heatmap[:, 1:] + + peaks_binary = np.logical_and.reduce( + (one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1)) + peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse + peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] + peak_id = range(peak_counter, peak_counter + len(peaks)) + peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))] + + all_peaks.append(peaks_with_score_and_id) + peak_counter += len(peaks) + + # find connection in the specified sequence, center 29 is in the position 15 + limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ + [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ + [1, 16], [16, 18], [3, 17], [6, 18]] + # the middle joints heatmap correpondence + mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \ + [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \ + [55, 56], [37, 38], [45, 46]] + + connection_all = [] + special_k = [] + mid_num = 10 + + for k in range(len(mapIdx)): + score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]] + candA = all_peaks[limbSeq[k][0] - 1] + candB = all_peaks[limbSeq[k][1] - 1] + nA = len(candA) + nB = len(candB) + indexA, indexB = limbSeq[k] + if (nA != 0 and nB != 0): + connection_candidate = [] + for i in range(nA): + for j in range(nB): + vec = np.subtract(candB[j][:2], candA[i][:2]) + norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) + norm = max(0.001, norm) + vec = np.divide(vec, norm) + + startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \ + np.linspace(candA[i][1], candB[j][1], num=mid_num))) + + vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \ + for I in range(len(startend))]) + vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \ + for I in range(len(startend))]) + + score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1]) + score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min( + 0.5 * oriImg.shape[0] / norm - 1, 0) + criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts) + criterion2 = score_with_dist_prior > 0 + if criterion1 and criterion2: + connection_candidate.append( + [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]) + + connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) + connection = np.zeros((0, 5)) + for c in range(len(connection_candidate)): + i, j, s = connection_candidate[c][0:3] + if (i not in connection[:, 3] and j not in connection[:, 4]): + connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) + if (len(connection) >= min(nA, nB)): + break + + connection_all.append(connection) + else: + special_k.append(k) + connection_all.append([]) + + # last number in each row is the total parts number of that person + # the second last number in each row is the score of the overall configuration + subset = -1 * np.ones((0, 20)) + candidate = np.array([item for sublist in all_peaks for item in sublist]) + + for k in range(len(mapIdx)): + if k not in special_k: + partAs = connection_all[k][:, 0] + partBs = connection_all[k][:, 1] + indexA, indexB = np.array(limbSeq[k]) - 1 + + for i in range(len(connection_all[k])): # = 1:size(temp,1) + found = 0 + subset_idx = [-1, -1] + for j in range(len(subset)): # 1:size(subset,1): + if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]: + subset_idx[found] = j + found += 1 + + if found == 1: + j = subset_idx[0] + if subset[j][indexB] != partBs[i]: + subset[j][indexB] = partBs[i] + subset[j][-1] += 1 + subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] + elif found == 2: # if found 2 and disjoint, merge them + j1, j2 = subset_idx + membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] + if len(np.nonzero(membership == 2)[0]) == 0: # merge + subset[j1][:-2] += (subset[j2][:-2] + 1) + subset[j1][-2:] += subset[j2][-2:] + subset[j1][-2] += connection_all[k][i][2] + subset = np.delete(subset, j2, 0) + else: # as like found == 1 + subset[j1][indexB] = partBs[i] + subset[j1][-1] += 1 + subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] + + # if find no partA in the subset, create a new subset + elif not found and k < 17: + row = -1 * np.ones(20) + row[indexA] = partAs[i] + row[indexB] = partBs[i] + row[-1] = 2 + row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] + subset = np.vstack([subset, row]) + # delete some rows of subset which has few parts occur + deleteIdx = [] + for i in range(len(subset)): + if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4: + deleteIdx.append(i) + subset = np.delete(subset, deleteIdx, axis=0) + + # subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts + # candidate: x, y, score, id + return candidate, subset + +if __name__ == "__main__": + body_estimation = Body('../model/body_pose_model.pth') + + test_image = '../images/ski.jpg' + oriImg = cv2.imread(test_image) # B,G,R order + candidate, subset = body_estimation(oriImg) + canvas = util.draw_bodypose(oriImg, candidate, subset) + plt.imshow(canvas[:, :, [2, 1, 0]]) + plt.show() diff --git a/src/ControlNet/annotator/openpose/hand.py b/src/ControlNet/annotator/openpose/hand.py new file mode 100644 index 0000000000000000000000000000000000000000..3d0bf17165ad7eb225332b51f4a2aa16718664b2 --- /dev/null +++ b/src/ControlNet/annotator/openpose/hand.py @@ -0,0 +1,86 @@ +import cv2 +import json +import numpy as np +import math +import time +from scipy.ndimage.filters import gaussian_filter +import matplotlib.pyplot as plt +import matplotlib +import torch +from skimage.measure import label + +from .model import handpose_model +from . import util + +class Hand(object): + def __init__(self, model_path): + self.model = handpose_model() + if torch.cuda.is_available(): + self.model = self.model.cuda() + print('cuda') + model_dict = util.transfer(self.model, torch.load(model_path)) + self.model.load_state_dict(model_dict) + self.model.eval() + + def __call__(self, oriImg): + scale_search = [0.5, 1.0, 1.5, 2.0] + # scale_search = [0.5] + boxsize = 368 + stride = 8 + padValue = 128 + thre = 0.05 + multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] + heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22)) + # paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) + + for m in range(len(multiplier)): + scale = multiplier[m] + imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) + imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) + im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 + im = np.ascontiguousarray(im) + + data = torch.from_numpy(im).float() + if torch.cuda.is_available(): + data = data.cuda() + # data = data.permute([2, 0, 1]).unsqueeze(0).float() + with torch.no_grad(): + output = self.model(data).cpu().numpy() + # output = self.model(data).numpy()q + + # extract outputs, resize, and remove padding + heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps + heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) + heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] + heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) + + heatmap_avg += heatmap / len(multiplier) + + all_peaks = [] + for part in range(21): + map_ori = heatmap_avg[:, :, part] + one_heatmap = gaussian_filter(map_ori, sigma=3) + binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8) + # 全部小于阈值 + if np.sum(binary) == 0: + all_peaks.append([0, 0]) + continue + label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim) + max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1 + label_img[label_img != max_index] = 0 + map_ori[label_img == 0] = 0 + + y, x = util.npmax(map_ori) + all_peaks.append([x, y]) + return np.array(all_peaks) + +if __name__ == "__main__": + hand_estimation = Hand('../model/hand_pose_model.pth') + + # test_image = '../images/hand.jpg' + test_image = '../images/hand.jpg' + oriImg = cv2.imread(test_image) # B,G,R order + peaks = hand_estimation(oriImg) + canvas = util.draw_handpose(oriImg, peaks, True) + cv2.imshow('', canvas) + cv2.waitKey(0) \ No newline at end of file diff --git a/src/ControlNet/annotator/openpose/model.py b/src/ControlNet/annotator/openpose/model.py new file mode 100644 index 0000000000000000000000000000000000000000..5dfc80de827a17beccb9b0f3f7588545be78c9de --- /dev/null +++ b/src/ControlNet/annotator/openpose/model.py @@ -0,0 +1,219 @@ +import torch +from collections import OrderedDict + +import torch +import torch.nn as nn + +def make_layers(block, no_relu_layers): + layers = [] + for layer_name, v in block.items(): + if 'pool' in layer_name: + layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], + padding=v[2]) + layers.append((layer_name, layer)) + else: + conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], + kernel_size=v[2], stride=v[3], + padding=v[4]) + layers.append((layer_name, conv2d)) + if layer_name not in no_relu_layers: + layers.append(('relu_'+layer_name, nn.ReLU(inplace=True))) + + return nn.Sequential(OrderedDict(layers)) + +class bodypose_model(nn.Module): + def __init__(self): + super(bodypose_model, self).__init__() + + # these layers have no relu layer + no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\ + 'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\ + 'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\ + 'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1'] + blocks = {} + block0 = OrderedDict([ + ('conv1_1', [3, 64, 3, 1, 1]), + ('conv1_2', [64, 64, 3, 1, 1]), + ('pool1_stage1', [2, 2, 0]), + ('conv2_1', [64, 128, 3, 1, 1]), + ('conv2_2', [128, 128, 3, 1, 1]), + ('pool2_stage1', [2, 2, 0]), + ('conv3_1', [128, 256, 3, 1, 1]), + ('conv3_2', [256, 256, 3, 1, 1]), + ('conv3_3', [256, 256, 3, 1, 1]), + ('conv3_4', [256, 256, 3, 1, 1]), + ('pool3_stage1', [2, 2, 0]), + ('conv4_1', [256, 512, 3, 1, 1]), + ('conv4_2', [512, 512, 3, 1, 1]), + ('conv4_3_CPM', [512, 256, 3, 1, 1]), + ('conv4_4_CPM', [256, 128, 3, 1, 1]) + ]) + + + # Stage 1 + block1_1 = OrderedDict([ + ('conv5_1_CPM_L1', [128, 128, 3, 1, 1]), + ('conv5_2_CPM_L1', [128, 128, 3, 1, 1]), + ('conv5_3_CPM_L1', [128, 128, 3, 1, 1]), + ('conv5_4_CPM_L1', [128, 512, 1, 1, 0]), + ('conv5_5_CPM_L1', [512, 38, 1, 1, 0]) + ]) + + block1_2 = OrderedDict([ + ('conv5_1_CPM_L2', [128, 128, 3, 1, 1]), + ('conv5_2_CPM_L2', [128, 128, 3, 1, 1]), + ('conv5_3_CPM_L2', [128, 128, 3, 1, 1]), + ('conv5_4_CPM_L2', [128, 512, 1, 1, 0]), + ('conv5_5_CPM_L2', [512, 19, 1, 1, 0]) + ]) + blocks['block1_1'] = block1_1 + blocks['block1_2'] = block1_2 + + self.model0 = make_layers(block0, no_relu_layers) + + # Stages 2 - 6 + for i in range(2, 7): + blocks['block%d_1' % i] = OrderedDict([ + ('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]), + ('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]), + ('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]), + ('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]), + ('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]), + ('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]), + ('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0]) + ]) + + blocks['block%d_2' % i] = OrderedDict([ + ('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]), + ('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]), + ('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]), + ('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]), + ('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]), + ('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]), + ('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0]) + ]) + + for k in blocks.keys(): + blocks[k] = make_layers(blocks[k], no_relu_layers) + + self.model1_1 = blocks['block1_1'] + self.model2_1 = blocks['block2_1'] + self.model3_1 = blocks['block3_1'] + self.model4_1 = blocks['block4_1'] + self.model5_1 = blocks['block5_1'] + self.model6_1 = blocks['block6_1'] + + self.model1_2 = blocks['block1_2'] + self.model2_2 = blocks['block2_2'] + self.model3_2 = blocks['block3_2'] + self.model4_2 = blocks['block4_2'] + self.model5_2 = blocks['block5_2'] + self.model6_2 = blocks['block6_2'] + + + def forward(self, x): + + out1 = self.model0(x) + + out1_1 = self.model1_1(out1) + out1_2 = self.model1_2(out1) + out2 = torch.cat([out1_1, out1_2, out1], 1) + + out2_1 = self.model2_1(out2) + out2_2 = self.model2_2(out2) + out3 = torch.cat([out2_1, out2_2, out1], 1) + + out3_1 = self.model3_1(out3) + out3_2 = self.model3_2(out3) + out4 = torch.cat([out3_1, out3_2, out1], 1) + + out4_1 = self.model4_1(out4) + out4_2 = self.model4_2(out4) + out5 = torch.cat([out4_1, out4_2, out1], 1) + + out5_1 = self.model5_1(out5) + out5_2 = self.model5_2(out5) + out6 = torch.cat([out5_1, out5_2, out1], 1) + + out6_1 = self.model6_1(out6) + out6_2 = self.model6_2(out6) + + return out6_1, out6_2 + +class handpose_model(nn.Module): + def __init__(self): + super(handpose_model, self).__init__() + + # these layers have no relu layer + no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\ + 'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6'] + # stage 1 + block1_0 = OrderedDict([ + ('conv1_1', [3, 64, 3, 1, 1]), + ('conv1_2', [64, 64, 3, 1, 1]), + ('pool1_stage1', [2, 2, 0]), + ('conv2_1', [64, 128, 3, 1, 1]), + ('conv2_2', [128, 128, 3, 1, 1]), + ('pool2_stage1', [2, 2, 0]), + ('conv3_1', [128, 256, 3, 1, 1]), + ('conv3_2', [256, 256, 3, 1, 1]), + ('conv3_3', [256, 256, 3, 1, 1]), + ('conv3_4', [256, 256, 3, 1, 1]), + ('pool3_stage1', [2, 2, 0]), + ('conv4_1', [256, 512, 3, 1, 1]), + ('conv4_2', [512, 512, 3, 1, 1]), + ('conv4_3', [512, 512, 3, 1, 1]), + ('conv4_4', [512, 512, 3, 1, 1]), + ('conv5_1', [512, 512, 3, 1, 1]), + ('conv5_2', [512, 512, 3, 1, 1]), + ('conv5_3_CPM', [512, 128, 3, 1, 1]) + ]) + + block1_1 = OrderedDict([ + ('conv6_1_CPM', [128, 512, 1, 1, 0]), + ('conv6_2_CPM', [512, 22, 1, 1, 0]) + ]) + + blocks = {} + blocks['block1_0'] = block1_0 + blocks['block1_1'] = block1_1 + + # stage 2-6 + for i in range(2, 7): + blocks['block%d' % i] = OrderedDict([ + ('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]), + ('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]), + ('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]), + ('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]), + ('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]), + ('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]), + ('Mconv7_stage%d' % i, [128, 22, 1, 1, 0]) + ]) + + for k in blocks.keys(): + blocks[k] = make_layers(blocks[k], no_relu_layers) + + self.model1_0 = blocks['block1_0'] + self.model1_1 = blocks['block1_1'] + self.model2 = blocks['block2'] + self.model3 = blocks['block3'] + self.model4 = blocks['block4'] + self.model5 = blocks['block5'] + self.model6 = blocks['block6'] + + def forward(self, x): + out1_0 = self.model1_0(x) + out1_1 = self.model1_1(out1_0) + concat_stage2 = torch.cat([out1_1, out1_0], 1) + out_stage2 = self.model2(concat_stage2) + concat_stage3 = torch.cat([out_stage2, out1_0], 1) + out_stage3 = self.model3(concat_stage3) + concat_stage4 = torch.cat([out_stage3, out1_0], 1) + out_stage4 = self.model4(concat_stage4) + concat_stage5 = torch.cat([out_stage4, out1_0], 1) + out_stage5 = self.model5(concat_stage5) + concat_stage6 = torch.cat([out_stage5, out1_0], 1) + out_stage6 = self.model6(concat_stage6) + return out_stage6 + + diff --git a/src/ControlNet/annotator/openpose/util.py b/src/ControlNet/annotator/openpose/util.py new file mode 100644 index 0000000000000000000000000000000000000000..6f91ae0e65abaf0cbd62d803f56498991141e61b --- /dev/null +++ b/src/ControlNet/annotator/openpose/util.py @@ -0,0 +1,164 @@ +import math +import numpy as np +import matplotlib +import cv2 + + +def padRightDownCorner(img, stride, padValue): + h = img.shape[0] + w = img.shape[1] + + pad = 4 * [None] + pad[0] = 0 # up + pad[1] = 0 # left + pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down + pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right + + img_padded = img + pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1)) + img_padded = np.concatenate((pad_up, img_padded), axis=0) + pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1)) + img_padded = np.concatenate((pad_left, img_padded), axis=1) + pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1)) + img_padded = np.concatenate((img_padded, pad_down), axis=0) + pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1)) + img_padded = np.concatenate((img_padded, pad_right), axis=1) + + return img_padded, pad + +# transfer caffe model to pytorch which will match the layer name +def transfer(model, model_weights): + transfered_model_weights = {} + for weights_name in model.state_dict().keys(): + transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])] + return transfered_model_weights + +# draw the body keypoint and lims +def draw_bodypose(canvas, candidate, subset): + stickwidth = 4 + limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ + [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ + [1, 16], [16, 18], [3, 17], [6, 18]] + + colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ + [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ + [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] + for i in range(18): + for n in range(len(subset)): + index = int(subset[n][i]) + if index == -1: + continue + x, y = candidate[index][0:2] + cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) + for i in range(17): + for n in range(len(subset)): + index = subset[n][np.array(limbSeq[i]) - 1] + if -1 in index: + continue + cur_canvas = canvas.copy() + Y = candidate[index.astype(int), 0] + X = candidate[index.astype(int), 1] + mX = np.mean(X) + mY = np.mean(Y) + length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 + angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) + polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) + cv2.fillConvexPoly(cur_canvas, polygon, colors[i]) + canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) + # plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]]) + # plt.imshow(canvas[:, :, [2, 1, 0]]) + return canvas + + +# image drawed by opencv is not good. +def draw_handpose(canvas, all_hand_peaks, show_number=False): + edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ + [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] + + for peaks in all_hand_peaks: + for ie, e in enumerate(edges): + if np.sum(np.all(peaks[e], axis=1)==0)==0: + x1, y1 = peaks[e[0]] + x2, y2 = peaks[e[1]] + cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2) + + for i, keyponit in enumerate(peaks): + x, y = keyponit + cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) + if show_number: + cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA) + return canvas + +# detect hand according to body pose keypoints +# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp +def handDetect(candidate, subset, oriImg): + # right hand: wrist 4, elbow 3, shoulder 2 + # left hand: wrist 7, elbow 6, shoulder 5 + ratioWristElbow = 0.33 + detect_result = [] + image_height, image_width = oriImg.shape[0:2] + for person in subset.astype(int): + # if any of three not detected + has_left = np.sum(person[[5, 6, 7]] == -1) == 0 + has_right = np.sum(person[[2, 3, 4]] == -1) == 0 + if not (has_left or has_right): + continue + hands = [] + #left hand + if has_left: + left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]] + x1, y1 = candidate[left_shoulder_index][:2] + x2, y2 = candidate[left_elbow_index][:2] + x3, y3 = candidate[left_wrist_index][:2] + hands.append([x1, y1, x2, y2, x3, y3, True]) + # right hand + if has_right: + right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]] + x1, y1 = candidate[right_shoulder_index][:2] + x2, y2 = candidate[right_elbow_index][:2] + x3, y3 = candidate[right_wrist_index][:2] + hands.append([x1, y1, x2, y2, x3, y3, False]) + + for x1, y1, x2, y2, x3, y3, is_left in hands: + # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox + # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]); + # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]); + # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow); + # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder); + # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder); + x = x3 + ratioWristElbow * (x3 - x2) + y = y3 + ratioWristElbow * (y3 - y2) + distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2) + distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) + width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) + # x-y refers to the center --> offset to topLeft point + # handRectangle.x -= handRectangle.width / 2.f; + # handRectangle.y -= handRectangle.height / 2.f; + x -= width / 2 + y -= width / 2 # width = height + # overflow the image + if x < 0: x = 0 + if y < 0: y = 0 + width1 = width + width2 = width + if x + width > image_width: width1 = image_width - x + if y + width > image_height: width2 = image_height - y + width = min(width1, width2) + # the max hand box value is 20 pixels + if width >= 20: + detect_result.append([int(x), int(y), int(width), is_left]) + + ''' + return value: [[x, y, w, True if left hand else False]]. + width=height since the network require squared input. + x, y is the coordinate of top left + ''' + return detect_result + +# get max index of 2d array +def npmax(array): + arrayindex = array.argmax(1) + arrayvalue = array.max(1) + i = arrayvalue.argmax() + j = arrayindex[i] + return i, j diff --git a/src/ControlNet/annotator/util.py b/src/ControlNet/annotator/util.py new file mode 100644 index 0000000000000000000000000000000000000000..90831643d19cc1b9b0940df3d4fd4d846ba74a05 --- /dev/null +++ b/src/ControlNet/annotator/util.py @@ -0,0 +1,38 @@ +import numpy as np +import cv2 +import os + + +annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts') + + +def HWC3(x): + assert x.dtype == np.uint8 + if x.ndim == 2: + x = x[:, :, None] + assert x.ndim == 3 + H, W, C = x.shape + assert C == 1 or C == 3 or C == 4 + if C == 3: + return x + if C == 1: + return np.concatenate([x, x, x], axis=2) + if C == 4: + color = x[:, :, 0:3].astype(np.float32) + alpha = x[:, :, 3:4].astype(np.float32) / 255.0 + y = color * alpha + 255.0 * (1.0 - alpha) + y = y.clip(0, 255).astype(np.uint8) + return y + + +def resize_image(input_image, resolution): + H, W, C = input_image.shape + H = float(H) + W = float(W) + k = float(resolution) / min(H, W) + H *= k + W *= k + H = int(np.round(H / 64.0)) * 64 + W = int(np.round(W / 64.0)) * 64 + img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) + return img diff --git a/src/EGNet/README.md b/src/EGNet/README.md new file mode 100644 index 0000000000000000000000000000000000000000..a22de43058bb73f1a50164c68f5be9b14f65dbc2 --- /dev/null +++ b/src/EGNet/README.md @@ -0,0 +1,49 @@ +# EGNet +EGNet:Edge Guidance Network for Salient Object Detection (ICCV 2019) + +We use the sal2edge.m to generate the edge label for training. +### For training: +1. Clone this code by `git clone https://github.com/JXingZhao/EGNet.git --recursive`, assume your source code directory is`$EGNet`; + +2. Download [training data](https://pan.baidu.com/s/1LaQoNRS8-11V7grAfFiHCg) (fsex) ([google drive](https://drive.google.com/open?id=1wduPbFMkxB_3W72LvJckD7N0hWbXsKsj)); + +3. Download [initial model](https://pan.baidu.com/s/1dD2JOY_FBSLzjp5tUPBDBQ) (8ir7) ([google_drive](https://drive.google.com/open?id=1q7FtHWoarRzGNQQXTn9t7QSR8jJL8vk6)); + +4. Change the image path and intial model path in run.py and dataset.py; + +5. Start to train with `python3 run.py --mode train`. + +### For testing: +1. Download [pretrained model](https://pan.baidu.com/s/1s35ZyGDSNVzVIeVd7Aot0Q) (2cf5) ([google drive](https://drive.google.com/open?id=17Ffc6V5EiujtcFKupsJXhtlQ3cLK5OGp)); + +2. Change the test image path in dataset.py + +3. Generate saliency maps for SOD dataset by `python3 run.py --mode test --sal_mode s`, PASCALS by `python3 run.py --mode test --sal_mode p` and so on; + +4. Testing code we use is the public open source code. (https://github.com/Andrew-Qibin/SalMetric) + + + +### Pretrained models, datasets and results: +| [Page](https://mmcheng.net/jxzhao/) | +| [Training Set](https://pan.baidu.com/s/1LaQoNRS8-11V7grAfFiHCg) (fsex) ([google drive](https://drive.google.com/open?id=1wduPbFMkxB_3W72LvJckD7N0hWbXsKsj)) | +| [Pretrained models](https://pan.baidu.com/s/1s35ZyGDSNVzVIeVd7Aot0Q) (2cf5) | +| [Saliency maps](https://pan.baidu.com/s/1M_dqPJ08oaYWge_zZnHSTQ) (54gi) ([google drive VGG](https://drive.google.com/open?id=1WEuEqNmqMePyxD8anGo0KA4rWK9Nyb9I)) ([google drive resnet](https://drive.google.com/open?id=1h5R8tT3Jq_2S3pLfXREpuWaKvFphQ4K9)) | + + +### If you think this work is helpful, please cite +```latex +@inproceedings{zhao2019EGNet, + title={EGNet:Edge Guidance Network for Salient Object Detection}, + author={Zhao, Jia-Xing and Liu, Jiang-Jiang and Fan, Deng-Ping and Cao, Yang and Yang, Jufeng and Cheng, Ming-Ming}, + booktitle={The IEEE International Conference on Computer Vision (ICCV)}, + month={Oct}, + year={2019}, +} +``` + +### Other related work +Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection. (CVPR2019) [page](https://mmcheng.net/rgbdsalpyr/) + + + diff --git a/src/EGNet/__pycache__/model.cpython-310.pyc b/src/EGNet/__pycache__/model.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1d5036dd33ebb187227daf70c6dc80ba349f4576 Binary files /dev/null and b/src/EGNet/__pycache__/model.cpython-310.pyc differ diff --git a/src/EGNet/__pycache__/model.cpython-38.pyc b/src/EGNet/__pycache__/model.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..346040d25009bb5074df8f74800770ca8391a45d Binary files /dev/null and b/src/EGNet/__pycache__/model.cpython-38.pyc differ diff --git a/src/EGNet/__pycache__/resnet.cpython-310.pyc b/src/EGNet/__pycache__/resnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..221c7855f431251f0661afcaa809ee8dcb7c39a7 Binary files /dev/null and b/src/EGNet/__pycache__/resnet.cpython-310.pyc differ diff --git a/src/EGNet/__pycache__/resnet.cpython-38.pyc b/src/EGNet/__pycache__/resnet.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f4fca88916ecbc5a6abc1173ba88a5bf2aa462ab Binary files /dev/null and b/src/EGNet/__pycache__/resnet.cpython-38.pyc differ diff --git a/src/EGNet/__pycache__/vgg.cpython-310.pyc b/src/EGNet/__pycache__/vgg.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7a1306d3fdde0f8c77935953d409560d711a428c Binary files /dev/null and b/src/EGNet/__pycache__/vgg.cpython-310.pyc differ diff --git a/src/EGNet/__pycache__/vgg.cpython-38.pyc b/src/EGNet/__pycache__/vgg.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a9ff159b972e2d8d066cd2d07c6720bda55a6c8e Binary files /dev/null and b/src/EGNet/__pycache__/vgg.cpython-38.pyc differ diff --git a/src/EGNet/dataset.py b/src/EGNet/dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..486a556b7ffd96fdc75815c1b26187ab948cf9f1 --- /dev/null +++ b/src/EGNet/dataset.py @@ -0,0 +1,283 @@ +import os +from PIL import Image +import cv2 +import torch +from torch.utils import data +from torchvision import transforms +from torchvision.transforms import functional as F +import numbers +import numpy as np +import random + +#re_size = (256, 256) +#cr_size = (224, 224) + +class ImageDataTrain(data.Dataset): + def __init__(self): + + self.sal_root = '/home/liuj/dataset/DUTS/DUTS-TR' + self.sal_source = '/home/liuj/dataset/DUTS/DUTS-TR/train_pair_edge.lst' + + with open(self.sal_source, 'r') as f: + self.sal_list = [x.strip() for x in f.readlines()] + + self.sal_num = len(self.sal_list) + + + def __getitem__(self, item): + + + sal_image = load_image(os.path.join(self.sal_root, self.sal_list[item%self.sal_num].split()[0])) + sal_label = load_sal_label(os.path.join(self.sal_root, self.sal_list[item%self.sal_num].split()[1])) + sal_edge = load_edge_label(os.path.join(self.sal_root, self.sal_list[item%self.sal_num].split()[2])) + sal_image, sal_label, sal_edge = cv_random_flip(sal_image, sal_label, sal_edge) + sal_image = torch.Tensor(sal_image) + sal_label = torch.Tensor(sal_label) + sal_edge = torch.Tensor(sal_edge) + + sample = {'sal_image': sal_image, 'sal_label': sal_label, 'sal_edge': sal_edge} + return sample + + def __len__(self): + # return max(max(self.edge_num, self.sal_num), self.skel_num) + return self.sal_num + +class ImageDataTest(data.Dataset): + def __init__(self, test_mode=1, sal_mode='e'): + if test_mode == 0: + # self.image_root = '/home/liuj/dataset/saliency_test/ECSSD/Imgs/' + # self.image_source = '/home/liuj/dataset/saliency_test/ECSSD/test.lst' + self.image_root = '/home/liuj/dataset/HED-BSDS_PASCAL/HED-BSDS/test/' + self.image_source = '/home/liuj/dataset/HED-BSDS_PASCAL/HED-BSDS/test.lst' + + + elif test_mode == 1: + if sal_mode == 'e': + self.image_root = '/home/liuj/dataset/saliency_test/ECSSD/Imgs/' + self.image_source = '/home/liuj/dataset/saliency_test/ECSSD/test.lst' + self.test_fold = '/media/ubuntu/disk/Result/saliency/ECSSD/' + elif sal_mode == 'p': + self.image_root = '/home/liuj/dataset/saliency_test/PASCALS/Imgs/' + self.image_source = '/home/liuj/dataset/saliency_test/PASCALS/test.lst' + self.test_fold = '/media/ubuntu/disk/Result/saliency/PASCALS/' + elif sal_mode == 'd': + self.image_root = '/home/liuj/dataset/saliency_test/DUTOMRON/Imgs/' + self.image_source = '/home/liuj/dataset/saliency_test/DUTOMRON/test.lst' + self.test_fold = '/media/ubuntu/disk/Result/saliency/DUTOMRON/' + elif sal_mode == 'h': + self.image_root = '/home/liuj/dataset/saliency_test/HKU-IS/Imgs/' + self.image_source = '/home/liuj/dataset/saliency_test/HKU-IS/test.lst' + self.test_fold = '/media/ubuntu/disk/Result/saliency/HKU-IS/' + elif sal_mode == 's': + self.image_root = '/home/liuj/dataset/saliency_test/SOD/Imgs/' + self.image_source = '/home/liuj/dataset/saliency_test/SOD/test.lst' + self.test_fold = '/media/ubuntu/disk/Result/saliency/SOD/' + elif sal_mode == 'm': + self.image_root = '/home/liuj/dataset/saliency_test/MSRA/Imgs/' + self.image_source = '/home/liuj/dataset/saliency_test/MSRA/test.lst' + elif sal_mode == 'o': + self.image_root = '/home/liuj/dataset/saliency_test/SOC/TestSet/Imgs/' + self.image_source = '/home/liuj/dataset/saliency_test/SOC/TestSet/test.lst' + self.test_fold = '/media/ubuntu/disk/Result/saliency/SOC/' + elif sal_mode == 't': + self.image_root = '/home/liuj/dataset/DUTS/DUTS-TE/DUTS-TE-Image/' + self.image_source = '/home/liuj/dataset/DUTS/DUTS-TE/test.lst' + self.test_fold = '/media/ubuntu/disk/Result/saliency/DUTS/' + elif test_mode == 2: + + self.image_root = '/home/liuj/dataset/SK-LARGE/images/test/' + self.image_source = '/home/liuj/dataset/SK-LARGE/test.lst' + + with open(self.image_source, 'r') as f: + self.image_list = [x.strip() for x in f.readlines()] + + self.image_num = len(self.image_list) + + def __getitem__(self, item): + image, im_size = load_image_test(os.path.join(self.image_root, self.image_list[item])) + image = torch.Tensor(image) + + return {'image': image, 'name': self.image_list[item%self.image_num], 'size': im_size} + def save_folder(self): + return self.test_fold + + def __len__(self): + # return max(max(self.edge_num, self.skel_num), self.sal_num) + return self.image_num + + +# get the dataloader (Note: without data augmentation, except saliency with random flip) +def get_loader(batch_size, mode='train', num_thread=1, test_mode=0, sal_mode='e'): + shuffle = False + if mode == 'train': + shuffle = True + dataset = ImageDataTrain() + else: + dataset = ImageDataTest(test_mode=test_mode, sal_mode=sal_mode) + + data_loader = data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_thread) + return data_loader, dataset + +def load_image(pah): + if not os.path.exists(pah): + print('File Not Exists') + im = cv2.imread(pah) + in_ = np.array(im, dtype=np.float32) + # in_ = cv2.resize(in_, im_sz, interpolation=cv2.INTER_CUBIC) + # in_ = in_[:,:,::-1] # only if use PIL to load image + in_ -= np.array((104.00699, 116.66877, 122.67892)) + in_ = in_.transpose((2,0,1)) + return in_ + +def load_image_test(pah): + if not os.path.exists(pah): + print('File Not Exists') + im = cv2.imread(pah) + in_ = np.array(im, dtype=np.float32) + im_size = tuple(in_.shape[:2]) + # in_ = cv2.resize(in_, (cr_size[1], cr_size[0]), interpolation=cv2.INTER_LINEAR) + # in_ = in_[:,:,::-1] # only if use PIL to load image + in_ -= np.array((104.00699, 116.66877, 122.67892)) + in_ = in_.transpose((2,0,1)) + return in_, im_size + +def load_edge_label(pah): + """ + pixels > 0.5 -> 1 + Load label image as 1 x height x width integer array of label indices. + The leading singleton dimension is required by the loss. + """ + if not os.path.exists(pah): + print('File Not Exists') + im = Image.open(pah) + label = np.array(im, dtype=np.float32) + if len(label.shape) == 3: + label = label[:,:,0] + # label = cv2.resize(label, im_sz, interpolation=cv2.INTER_NEAREST) + label = label / 255. + label[np.where(label > 0.5)] = 1. + label = label[np.newaxis, ...] + return label + +def load_skel_label(pah): + """ + pixels > 0 -> 1 + Load label image as 1 x height x width integer array of label indices. + The leading singleton dimension is required by the loss. + """ + if not os.path.exists(pah): + print('File Not Exists') + im = Image.open(pah) + label = np.array(im, dtype=np.float32) + if len(label.shape) == 3: + label = label[:,:,0] + # label = cv2.resize(label, im_sz, interpolation=cv2.INTER_NEAREST) + label = label / 255. + label[np.where(label > 0.)] = 1. + label = label[np.newaxis, ...] + return label + +def load_sal_label(pah): + """ + Load label image as 1 x height x width integer array of label indices. + The leading singleton dimension is required by the loss. + """ + if not os.path.exists(pah): + print('File Not Exists') + im = Image.open(pah) + label = np.array(im, dtype=np.float32) + if len(label.shape) == 3: + label = label[:,:,0] + # label = cv2.resize(label, im_sz, interpolation=cv2.INTER_NEAREST) + label = label / 255. + label = label[np.newaxis, ...] + return label + +def load_sem_label(pah): + """ + Load label image as 1 x height x width integer array of label indices. + The leading singleton dimension is required by the loss. + """ + if not os.path.exists(pah): + print('File Not Exists') + im = Image.open(pah) + label = np.array(im, dtype=np.float32) + if len(label.shape) == 3: + label = label[:,:,0] + # label = cv2.resize(label, im_sz, interpolation=cv2.INTER_NEAREST) + # label = label / 255. + label = label[np.newaxis, ...] + return label + +def edge_thres_transform(x, thres): + # y0 = torch.zeros(x.size()) + y1 = torch.ones(x.size()) + x = torch.where(x >= thres, y1, x) + return x + +def skel_thres_transform(x, thres): + y0 = torch.zeros(x.size()) + y1 = torch.ones(x.size()) + x = torch.where(x > thres, y1, y0) + return x + +def cv_random_flip(img, label, edge): + flip_flag = random.randint(0, 1) + if flip_flag == 1: + img = img[:,:,::-1].copy() + label = label[:,:,::-1].copy() + edge = edge[:,:,::-1].copy() + return img, label, edge + +def cv_random_crop_flip(img, label, resize_size, crop_size, random_flip=True): + def get_params(img_size, output_size): + h, w = img_size + th, tw = output_size + if w == tw and h == th: + return 0, 0, h, w + i = random.randint(0, h - th) + j = random.randint(0, w - tw) + return i, j, th, tw + if random_flip: + flip_flag = random.randint(0, 1) + img = img.transpose((1,2,0)) # H, W, C + label = label[0,:,:] # H, W + img = cv2.resize(img, (resize_size[1], resize_size[0]), interpolation=cv2.INTER_LINEAR) + label = cv2.resize(label, (resize_size[1], resize_size[0]), interpolation=cv2.INTER_NEAREST) + i, j, h, w = get_params(resize_size, crop_size) + img = img[i:i+h, j:j+w, :].transpose((2,0,1)) # C, H, W + label = label[i:i+h, j:j+w][np.newaxis, ...] # 1, H, W + if flip_flag == 1: + img = img[:,:,::-1].copy() + label = label[:,:,::-1].copy() + return img, label + +def random_crop(img, label, size, padding=None, pad_if_needed=True, fill_img=(123, 116, 103), fill_label=0, padding_mode='constant'): + + def get_params(img, output_size): + w, h = img.size + th, tw = output_size + if w == tw and h == th: + return 0, 0, h, w + + i = random.randint(0, h - th) + j = random.randint(0, w - tw) + return i, j, th, tw + + if isinstance(size, numbers.Number): + size = (int(size), int(size)) + if padding is not None: + img = F.pad(img, padding, fill_img, padding_mode) + label = F.pad(label, padding, fill_label, padding_mode) + + # pad the width if needed + if pad_if_needed and img.size[0] < size[1]: + img = F.pad(img, (int((1 + size[1] - img.size[0]) / 2), 0), fill_img, padding_mode) + label = F.pad(label, (int((1 + size[1] - label.size[0]) / 2), 0), fill_label, padding_mode) + # pad the height if needed + if pad_if_needed and img.size[1] < size[0]: + img = F.pad(img, (0, int((1 + size[0] - img.size[1]) / 2)), fill_img, padding_mode) + label = F.pad(label, (0, int((1 + size[0] - label.size[1]) / 2)), fill_label, padding_mode) + + i, j, h, w = get_params(img, size) + return [F.crop(img, i, j, h, w), F.crop(label, i, j, h, w)] diff --git a/src/EGNet/model.py b/src/EGNet/model.py new file mode 100644 index 0000000000000000000000000000000000000000..edaa2741aead7bb44dd9f639bb807fe5f171e9b7 --- /dev/null +++ b/src/EGNet/model.py @@ -0,0 +1,208 @@ +import torch +from torch import nn +from torch.nn import init +import torch.nn.functional as F +import math +from torch.autograd import Variable +import numpy as np + +from resnet import resnet50 +from vgg import vgg16 + + +config_vgg = {'convert': [[128,256,512,512,512],[64,128,256,512,512]], 'merge1': [[128, 256, 128, 3,1], [256, 512, 256, 3, 1], [512, 0, 512, 5, 2], [512, 0, 512, 5, 2],[512, 0, 512, 7, 3]], 'merge2': [[128], [256, 512, 512, 512]]} # no convert layer, no conv6 + +config_resnet = {'convert': [[64,256,512,1024,2048],[128,256,512,512,512]], 'deep_pool': [[512, 512, 256, 256, 128], [512, 256, 256, 128, 128], [False, True, True, True, False], [True, True, True, True, False]], 'score': 256, 'edgeinfo':[[16, 16, 16, 16], 128, [16,8,4,2]],'edgeinfoc':[64,128], 'block': [[512, [16]], [256, [16]], [256, [16]], [128, [16]]], 'fuse': [[16, 16, 16, 16], True], 'fuse_ratio': [[16,1], [8,1], [4,1], [2,1]], 'merge1': [[128, 256, 128, 3,1], [256, 512, 256, 3, 1], [512, 0, 512, 5, 2], [512, 0, 512, 5, 2],[512, 0, 512, 7, 3]], 'merge2': [[128], [256, 512, 512, 512]]} + + +class ConvertLayer(nn.Module): + def __init__(self, list_k): + super(ConvertLayer, self).__init__() + up0, up1, up2 = [], [], [] + for i in range(len(list_k[0])): + + up0.append(nn.Sequential(nn.Conv2d(list_k[0][i], list_k[1][i], 1, 1, bias=False), nn.ReLU(inplace=True))) + + + self.convert0 = nn.ModuleList(up0) + + + def forward(self, list_x): + resl = [] + for i in range(len(list_x)): + resl.append(self.convert0[i](list_x[i])) + return resl + + + + +class MergeLayer1(nn.Module): # list_k: [[64, 512, 64], [128, 512, 128], [256, 0, 256] ... ] + def __init__(self, list_k): + super(MergeLayer1, self).__init__() + self.list_k = list_k + trans, up, score = [], [], [] + for ik in list_k: + if ik[1] > 0: + trans.append(nn.Sequential(nn.Conv2d(ik[1], ik[0], 1, 1, bias=False), nn.ReLU(inplace=True))) + + + up.append(nn.Sequential(nn.Conv2d(ik[0], ik[2], ik[3], 1, ik[4]), nn.ReLU(inplace=True), nn.Conv2d(ik[2], ik[2], ik[3], 1, ik[4]), nn.ReLU(inplace=True), nn.Conv2d(ik[2], ik[2], ik[3], 1, ik[4]), nn.ReLU(inplace=True))) + score.append(nn.Conv2d(ik[2], 1, 3, 1, 1)) + trans.append(nn.Sequential(nn.Conv2d(512, 128, 1, 1, bias=False), nn.ReLU(inplace=True))) + self.trans, self.up, self.score = nn.ModuleList(trans), nn.ModuleList(up), nn.ModuleList(score) + self.relu =nn.ReLU() + + def forward(self, list_x, x_size): + up_edge, up_sal, edge_feature, sal_feature = [], [], [], [] + + + num_f = len(list_x) + tmp = self.up[num_f - 1](list_x[num_f-1]) + sal_feature.append(tmp) + U_tmp = tmp + up_sal.append(F.interpolate(self.score[num_f - 1](tmp), x_size, mode='bilinear', align_corners=True)) + + for j in range(2, num_f ): + i = num_f - j + + if list_x[i].size()[1] < U_tmp.size()[1]: + U_tmp = list_x[i] + F.interpolate((self.trans[i](U_tmp)), list_x[i].size()[2:], mode='bilinear', align_corners=True) + else: + U_tmp = list_x[i] + F.interpolate((U_tmp), list_x[i].size()[2:], mode='bilinear', align_corners=True) + + + + + + tmp = self.up[i](U_tmp) + U_tmp = tmp + sal_feature.append(tmp) + up_sal.append(F.interpolate(self.score[i](tmp), x_size, mode='bilinear', align_corners=True)) + + U_tmp = list_x[0] + F.interpolate((self.trans[-1](sal_feature[0])), list_x[0].size()[2:], mode='bilinear', align_corners=True) + tmp = self.up[0](U_tmp) + edge_feature.append(tmp) + + up_edge.append(F.interpolate(self.score[0](tmp), x_size, mode='bilinear', align_corners=True)) + return up_edge, edge_feature, up_sal, sal_feature + +class MergeLayer2(nn.Module): + def __init__(self, list_k): + super(MergeLayer2, self).__init__() + self.list_k = list_k + trans, up, score = [], [], [] + for i in list_k[0]: + tmp = [] + tmp_up = [] + tmp_score = [] + feature_k = [[3,1],[5,2], [5,2], [7,3]] + for idx, j in enumerate(list_k[1]): + tmp.append(nn.Sequential(nn.Conv2d(j, i, 1, 1, bias=False), nn.ReLU(inplace=True))) + + tmp_up.append(nn.Sequential(nn.Conv2d(i , i, feature_k[idx][0], 1, feature_k[idx][1]), nn.ReLU(inplace=True), nn.Conv2d(i, i, feature_k[idx][0],1 , feature_k[idx][1]), nn.ReLU(inplace=True), nn.Conv2d(i, i, feature_k[idx][0], 1, feature_k[idx][1]), nn.ReLU(inplace=True))) + tmp_score.append(nn.Conv2d(i, 1, 3, 1, 1)) + trans.append(nn.ModuleList(tmp)) + + up.append(nn.ModuleList(tmp_up)) + score.append(nn.ModuleList(tmp_score)) + + + self.trans, self.up, self.score = nn.ModuleList(trans), nn.ModuleList(up), nn.ModuleList(score) + self.final_score = nn.Sequential(nn.Conv2d(list_k[0][0], list_k[0][0], 5, 1, 2), nn.ReLU(inplace=True), nn.Conv2d(list_k[0][0], 1, 3, 1, 1)) + self.relu =nn.ReLU() + + def forward(self, list_x, list_y, x_size): + up_score, tmp_feature = [], [] + list_y = list_y[::-1] + + + for i, i_x in enumerate(list_x): + for j, j_x in enumerate(list_y): + tmp = F.interpolate(self.trans[i][j](j_x), i_x.size()[2:], mode='bilinear', align_corners=True) + i_x + tmp_f = self.up[i][j](tmp) + up_score.append(F.interpolate(self.score[i][j](tmp_f), x_size, mode='bilinear', align_corners=True)) + tmp_feature.append(tmp_f) + + tmp_fea = tmp_feature[0] + for i_fea in range(len(tmp_feature) - 1): + tmp_fea = self.relu(torch.add(tmp_fea, F.interpolate((tmp_feature[i_fea+1]), tmp_feature[0].size()[2:], mode='bilinear', align_corners=True))) + up_score.append(F.interpolate(self.final_score(tmp_fea), x_size, mode='bilinear', align_corners=True)) + + + + return up_score + + + +# extra part +def extra_layer(base_model_cfg, vgg): + if base_model_cfg == 'vgg': + config = config_vgg + elif base_model_cfg == 'resnet': + config = config_resnet + merge1_layers = MergeLayer1(config['merge1']) + merge2_layers = MergeLayer2(config['merge2']) + + return vgg, merge1_layers, merge2_layers + + +# TUN network +class TUN_bone(nn.Module): + def __init__(self, base_model_cfg, base, merge1_layers, merge2_layers): + super(TUN_bone, self).__init__() + self.base_model_cfg = base_model_cfg + if self.base_model_cfg == 'vgg': + + self.base = base + # self.base_ex = nn.ModuleList(base_ex) + self.merge1 = merge1_layers + self.merge2 = merge2_layers + + elif self.base_model_cfg == 'resnet': + self.convert = ConvertLayer(config_resnet['convert']) + self.base = base + self.merge1 = merge1_layers + self.merge2 = merge2_layers + + def forward(self, x): + x_size = x.size()[2:] + conv2merge = self.base(x) + if self.base_model_cfg == 'resnet': + conv2merge = self.convert(conv2merge) + up_edge, edge_feature, up_sal, sal_feature = self.merge1(conv2merge, x_size) + up_sal_final = self.merge2(edge_feature, sal_feature, x_size) + return up_edge, up_sal, up_sal_final + + +# build the whole network +def build_model(base_model_cfg='vgg'): + if base_model_cfg == 'vgg': + return TUN_bone(base_model_cfg, *extra_layer(base_model_cfg, vgg16())) + elif base_model_cfg == 'resnet': + return TUN_bone(base_model_cfg, *extra_layer(base_model_cfg, resnet50())) + + +# weight init +def xavier(param): + # init.xavier_uniform(param) + init.xavier_uniform_(param) + + +def weights_init(m): + if isinstance(m, nn.Conv2d): + # xavier(m.weight.data) + m.weight.data.normal_(0, 0.01) + if m.bias is not None: + m.bias.data.zero_() + +if __name__ == '__main__': + from torch.autograd import Variable + net = TUN(*extra_layer(vgg(base['tun'], 3), vgg(base['tun_ex'], 512), config['merge_block'], config['fuse'])).cuda() + img = Variable(torch.randn((1, 3, 256, 256))).cuda() + out = net(img, mode = 2) + print(len(out)) + print(len(out[0])) + print(out[0].shape) + print(len(out[1])) + # print(net) + input('Press Any to Continue...') diff --git a/src/EGNet/resnet.py b/src/EGNet/resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..a2c7ba0a9da2703c23de5a01480f28ec9e405d8e --- /dev/null +++ b/src/EGNet/resnet.py @@ -0,0 +1,301 @@ +import torch.nn as nn +import math +# import torch.utils.model_zoo as model_zoo +import torch +import numpy as np +import torch.nn.functional as F +affine_par = True + + +# def outS(i): +# i = int(i) +# i = (i+1)/2 +# i = int(np.ceil((i+1)/2.0)) +# i = (i+1)/2 +# return i +def conv3x3(in_planes, out_planes, stride=1): + "3x3 convolution with padding" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=1, bias=False) + + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(inplanes, planes, stride) + self.bn1 = nn.BatchNorm2d(planes, affine = affine_par) + self.relu = nn.ReLU(inplace=True) + self.conv2 = conv3x3(planes, planes) + self.bn2 = nn.BatchNorm2d(planes, affine = affine_par) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, dilation_ = 1, downsample=None): + super(Bottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change + self.bn1 = nn.BatchNorm2d(planes,affine = affine_par) + for i in self.bn1.parameters(): + i.requires_grad = False + padding = 1 + if dilation_ == 2: + padding = 2 + elif dilation_ == 4: + padding = 4 + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change + padding=padding, bias=False, dilation = dilation_) + self.bn2 = nn.BatchNorm2d(planes,affine = affine_par) + for i in self.bn2.parameters(): + i.requires_grad = False + self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4, affine = affine_par) + for i in self.bn3.parameters(): + i.requires_grad = False + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + + + + +class ResNet(nn.Module): + def __init__(self, block, layers): + self.inplanes = 64 + super(ResNet, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64,affine = affine_par) + for i in self.bn1.parameters(): + i.requires_grad = False + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + # self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation__ = 2) + # self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation__ = 4) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation__ = 2) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, 0.01) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + # for i in m.parameters(): + # i.requires_grad = False + + def _make_layer(self, block, planes, blocks, stride=1,dilation__ = 1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion or dilation__ == 2 or dilation__ == 4: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion,affine = affine_par), + ) + for i in downsample._modules['1'].parameters(): + i.requires_grad = False + layers = [] + layers.append(block(self.inplanes, planes, stride,dilation_=dilation__, downsample = downsample )) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes,dilation_=dilation__)) + + return nn.Sequential(*layers) + # def _make_pred_layer(self,block, dilation_series, padding_series,NoLabels): + # return block(dilation_series,padding_series,NoLabels) + + def forward(self, x): + tmp_x = [] + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + tmp_x.append(x) + x = self.maxpool(x) + + x = self.layer1(x) + tmp_x.append(x) + x = self.layer2(x) + tmp_x.append(x) + x = self.layer3(x) + tmp_x.append(x) + x = self.layer4(x) + tmp_x.append(x) + + return tmp_x + + + +class ResNet_locate(nn.Module): + def __init__(self, block, layers): + super(ResNet_locate,self).__init__() + self.resnet = ResNet(block, layers) + self.in_planes = 512 + self.out_planes = [512, 256, 256, 128] + + self.ppms_pre = nn.Conv2d(2048, self.in_planes, 1, 1, bias=False) + ppms, infos = [], [] + for ii in [1, 3, 5]: + ppms.append(nn.Sequential(nn.AdaptiveAvgPool2d(ii), nn.Conv2d(self.in_planes, self.in_planes, 1, 1, bias=False), nn.ReLU(inplace=True))) + self.ppms = nn.ModuleList(ppms) + + self.ppm_cat = nn.Sequential(nn.Conv2d(self.in_planes * 4, self.in_planes, 3, 1, 1, bias=False), nn.ReLU(inplace=True)) + # self.ppm_score = nn.Conv2d(self.in_planes, 1, 1, 1) + for ii in self.out_planes: + infos.append(nn.Sequential(nn.Conv2d(self.in_planes, ii, 3, 1, 1, bias=False), nn.ReLU(inplace=True))) + self.infos = nn.ModuleList(infos) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, 0.01) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def load_pretrained_model(self, model): + self.resnet.load_state_dict(model) + + def forward(self, x): + x_size = x.size()[2:] + xs = self.resnet(x) + + xs_1 = self.ppms_pre(xs[-1]) + xls = [xs_1] + for k in range(len(self.ppms)): + xls.append(F.interpolate(self.ppms[k](xs_1), xs_1.size()[2:], mode='bilinear', align_corners=True)) + xls = self.ppm_cat(torch.cat(xls, dim=1)) + top_score = None + # top_score = F.interpolate(self.ppm_score(xls), x_size, mode='bilinear', align_corners=True) + + infos = [] + for k in range(len(self.infos)): + infos.append(self.infos[k](F.interpolate(xls, xs[len(self.infos) - 1 - k].size()[2:], mode='bilinear', align_corners=True))) + + return xs, top_score, infos + +class BottleneckEZ(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, dilation_ = 1, downsample=None): + super(BottleneckEZ, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change + # self.bn1 = nn.BatchNorm2d(planes,affine = affine_par) + # for i in self.bn1.parameters(): + # i.requires_grad = False + padding = 1 + if dilation_ == 2: + padding = 2 + elif dilation_ == 4: + padding = 4 + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change + padding=padding, bias=False, dilation = dilation_) + # self.bn2 = nn.BatchNorm2d(planes,affine = affine_par) + # for i in self.bn2.parameters(): + # i.requires_grad = False + self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) + # self.bn3 = nn.BatchNorm2d(planes * 4, affine = affine_par) + # for i in self.bn3.parameters(): + # i.requires_grad = False + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + + + def forward(self, x): + residual = x + + out = self.conv1(x) + # out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + # out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + # out = self.bn3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + + +def resnet50(pretrained=False): + """Constructs a ResNet-50 model. + + Args: + pretrained (bool): If True, returns a model pre-trained on Places + """ + # model = ResNet(Bottleneck, [3, 4, 6, 3]) + model = ResNet(Bottleneck, [3, 4, 6, 3]) + if pretrained: + model.load_state_dict(load_url(model_urls['resnet50']), strict=False) + return model + +def resnet101(pretrained=False): + """Constructs a ResNet-101 model. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + # model = ResNet(Bottleneck, [3, 4, 23, 3]) + model = ResNet_locate(Bottleneck, [3, 4, 23, 3]) + if pretrained: + model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) + return model diff --git a/src/EGNet/run.py b/src/EGNet/run.py new file mode 100644 index 0000000000000000000000000000000000000000..cad75486cc9e6065268e148435dc04a56002a932 --- /dev/null +++ b/src/EGNet/run.py @@ -0,0 +1,68 @@ +import argparse +import os +from dataset import get_loader +from solver import Solver + + +def main(config): + if config.mode == 'train': + train_loader, dataset = get_loader(config.batch_size, num_thread=config.num_thread) + run = "nnet" + if not os.path.exists("%s/run-%s" % (config.save_fold, run)): + os.mkdir("%s/run-%s" % (config.save_fold, run)) + os.mkdir("%s/run-%s/logs" % (config.save_fold, run)) + os.mkdir("%s/run-%s/models" % (config.save_fold, run)) + config.save_fold = "%s/run-%s" % (config.save_fold, run) + train = Solver(train_loader, None, config) + train.train() + elif config.mode == 'test': + test_loader, dataset = get_loader(config.test_batch_size, mode='test',num_thread=config.num_thread, test_mode=config.test_mode, sal_mode=config.sal_mode) + + test = Solver(None, test_loader, config, dataset.save_folder()) + test.test(test_mode=config.test_mode) + else: + raise IOError("illegal input!!!") + + + +if __name__ == '__main__': + + vgg_path = '/home/liuj/code/Messal/weights/vgg16_20M.pth' + resnet_path = '/home/liuj/code/Messal/weights/resnet50_caffe.pth' + + parser = argparse.ArgumentParser() + + # Hyper-parameters + parser.add_argument('--n_color', type=int, default=3) + + parser.add_argument('--cuda', type=bool, default=True) + + # Training settings + parser.add_argument('--vgg', type=str, default=vgg_path) + parser.add_argument('--resnet', type=str, default=resnet_path) + parser.add_argument('--epoch', type=int, default=30) # 12, now x3 + parser.add_argument('--batch_size', type=int, default=1) + parser.add_argument('--test_batch_size', type=int, default=1) + parser.add_argument('--num_thread', type=int, default=4) + parser.add_argument('--load_bone', type=str, default='') + # parser.add_argument('--load_branch', type=str, default='') + parser.add_argument('--save_fold', type=str, default='./EGNet') + # parser.add_argument('--epoch_val', type=int, default=20) + parser.add_argument('--epoch_save', type=int, default=1) # 2, now x3 + parser.add_argument('--epoch_show', type=int, default=1) + parser.add_argument('--pre_trained', type=str, default=None) + + # Testing settings + parser.add_argument('--model', type=str, default='./epoch_resnet.pth') + parser.add_argument('--test_fold', type=str, default='./results/test') + parser.add_argument('--test_mode', type=int, default=1) + parser.add_argument('--sal_mode', type=str, default='t') + + # Misc + parser.add_argument('--mode', type=str, default='train', choices=['train', 'test']) + parser.add_argument('--visdom', type=bool, default=False) + + config = parser.parse_args() + + if not os.path.exists(config.save_fold): os.mkdir(config.save_fold) + main(config) diff --git a/src/EGNet/sal2edge.m b/src/EGNet/sal2edge.m new file mode 100644 index 0000000000000000000000000000000000000000..8ecf42b1d15a917f3557aee4af1fb2d470e81bdb --- /dev/null +++ b/src/EGNet/sal2edge.m @@ -0,0 +1,34 @@ +data_root = '/home/liuj/dataset/DUTS/DUTS-TR/DUTS-TR-Mask'; +out_root = '/home/liuj/dataset/DUTS/DUTS-TR/DUTS-TR-Mask'; +lst_set = '/home/liuj/dataset/DUTS/DUTS-TR/train' +index_file = fullfile([lst_set '.lst']); + +fileID = fopen(index_file); +im_ids = textscan(fileID, '%s'); +im_ids = im_ids{1}; +fclose(fileID); + + +num_images = length(im_ids); + +for im_id = 1:10 + + id = im_ids{im_id}; + id = id(1:end-4); + +% img_path = fullfile(data_root, [id '.jpg']); +% image = imread(img_path); + + gt = imread(fullfile(data_root, [id '.png'])); + gt = (gt > 128); + gt = double(gt); + + [gy, gx] = gradient(gt); + temp_edge = gy.*gy + gx.*gx; + temp_edge(temp_edge~=0)=1; + bound = uint8(temp_edge*255); + + save_path = fullfile(out_root, [id '_edge.png']); + imwrite(bound, save_path); + +end diff --git a/src/EGNet/solver.py b/src/EGNet/solver.py new file mode 100644 index 0000000000000000000000000000000000000000..5794223133397b4c13cfe02421162d97ce0746de --- /dev/null +++ b/src/EGNet/solver.py @@ -0,0 +1,230 @@ +import torch +from collections import OrderedDict +from torch.nn import utils, functional as F +from torch.optim import Adam, SGD +from torch.autograd import Variable +from torch.backends import cudnn +from model import build_model, weights_init +import scipy.misc as sm +import numpy as np +import os +import torchvision.utils as vutils +import cv2 +import torch.nn.functional as F +import math +import time +import sys +import PIL.Image +import scipy.io +import os +import logging +EPSILON = 1e-8 +p = OrderedDict() + +from dataset import get_loader +base_model_cfg = 'resnet' +p['lr_bone'] = 5e-5 # Learning rate resnet:5e-5, vgg:2e-5 +p['lr_branch'] = 0.025 # Learning rate +p['wd'] = 0.0005 # Weight decay +p['momentum'] = 0.90 # Momentum +lr_decay_epoch = [15, 24] # [6, 9], now x3 #15 +nAveGrad = 10 # Update the weights once in 'nAveGrad' forward passes +showEvery = 50 +tmp_path = 'tmp_see' + + +class Solver(object): + def __init__(self, train_loader, test_loader, config, save_fold=None): + self.train_loader = train_loader + self.test_loader = test_loader + self.config = config + self.save_fold = save_fold + self.mean = torch.Tensor([123.68, 116.779, 103.939]).view(3, 1, 1) / 255. + # inference: choose the side map (see paper) + if config.visdom: + self.visual = Viz_visdom("trueUnify", 1) + self.build_model() + if self.config.pre_trained: self.net.load_state_dict(torch.load(self.config.pre_trained)) + if config.mode == 'train': + self.log_output = open("%s/logs/log.txt" % config.save_fold, 'w') + else: + print('Loading pre-trained model from %s...' % self.config.model) + self.net_bone.load_state_dict(torch.load(self.config.model)) + self.net_bone.eval() + + def print_network(self, model, name): + num_params = 0 + for p in model.parameters(): + num_params += p.numel() + print(name) + print(model) + print("The number of parameters: {}".format(num_params)) + + def get_params(self, base_lr): + ml = [] + for name, module in self.net_bone.named_children(): + print(name) + if name == 'loss_weight': + ml.append({'params': module.parameters(), 'lr': p['lr_branch']}) + else: + ml.append({'params': module.parameters()}) + return ml + + # build the network + def build_model(self): + self.net_bone = build_model(base_model_cfg) + if self.config.cuda: + self.net_bone = self.net_bone.cuda() + + self.net_bone.eval() # use_global_stats = True + self.net_bone.apply(weights_init) + if self.config.mode == 'train': + if self.config.load_bone == '': + if base_model_cfg == 'vgg': + self.net_bone.base.load_pretrained_model(torch.load(self.config.vgg)) + elif base_model_cfg == 'resnet': + self.net_bone.base.load_state_dict(torch.load(self.config.resnet)) + if self.config.load_bone != '': self.net_bone.load_state_dict(torch.load(self.config.load_bone)) + + self.lr_bone = p['lr_bone'] + self.lr_branch = p['lr_branch'] + self.optimizer_bone = Adam(filter(lambda p: p.requires_grad, self.net_bone.parameters()), lr=self.lr_bone, weight_decay=p['wd']) + + self.print_network(self.net_bone, 'trueUnify bone part') + + # update the learning rate + def update_lr(self, rate): + for param_group in self.optimizer.param_groups: + param_group['lr'] = param_group['lr'] * rate + + + def test(self, test_mode=0): + EPSILON = 1e-8 + img_num = len(self.test_loader) + time_t = 0.0 + name_t = 'EGNet_ResNet50/' + + if not os.path.exists(os.path.join(self.save_fold, name_t)): + os.mkdir(os.path.join(self.save_fold, name_t)) + for i, data_batch in enumerate(self.test_loader): + self.config.test_fold = self.save_fold + print(self.config.test_fold) + images_, name, im_size = data_batch['image'], data_batch['name'][0], np.asarray(data_batch['size']) + + with torch.no_grad(): + + images = Variable(images_) + if self.config.cuda: + images = images.cuda() + print(images.size()) + time_start = time.time() + up_edge, up_sal, up_sal_f = self.net_bone(images) + torch.cuda.synchronize() + time_end = time.time() + print(time_end - time_start) + time_t = time_t + time_end - time_start + pred = np.squeeze(torch.sigmoid(up_sal_f[-1]).cpu().data.numpy()) + multi_fuse = 255 * pred + + + + cv2.imwrite(os.path.join(self.config.test_fold,name_t, name[:-4] + '.png'), multi_fuse) + + print("--- %s seconds ---" % (time_t)) + print('Test Done!') + + + # training phase + def train(self): + iter_num = len(self.train_loader.dataset) // self.config.batch_size + aveGrad = 0 + F_v = 0 + if not os.path.exists(tmp_path): + os.mkdir(tmp_path) + for epoch in range(self.config.epoch): + r_edge_loss, r_sal_loss, r_sum_loss= 0,0,0 + self.net_bone.zero_grad() + for i, data_batch in enumerate(self.train_loader): + sal_image, sal_label, sal_edge = data_batch['sal_image'], data_batch['sal_label'], data_batch['sal_edge'] + if sal_image.size()[2:] != sal_label.size()[2:]: + print("Skip this batch") + continue + sal_image, sal_label, sal_edge = Variable(sal_image), Variable(sal_label), Variable(sal_edge) + if self.config.cuda: + sal_image, sal_label, sal_edge = sal_image.cuda(), sal_label.cuda(), sal_edge.cuda() + + up_edge, up_sal, up_sal_f = self.net_bone(sal_image) + # edge part + edge_loss = [] + for ix in up_edge: + edge_loss.append(bce2d_new(ix, sal_edge, reduction='sum')) + edge_loss = sum(edge_loss) / (nAveGrad * self.config.batch_size) + r_edge_loss += edge_loss.data + # sal part + sal_loss1= [] + sal_loss2 = [] + for ix in up_sal: + sal_loss1.append(F.binary_cross_entropy_with_logits(ix, sal_label, reduction='sum')) + + for ix in up_sal_f: + sal_loss2.append(F.binary_cross_entropy_with_logits(ix, sal_label, reduction='sum')) + sal_loss = (sum(sal_loss1) + sum(sal_loss2)) / (nAveGrad * self.config.batch_size) + + r_sal_loss += sal_loss.data + loss = sal_loss + edge_loss + r_sum_loss += loss.data + loss.backward() + aveGrad += 1 + + if aveGrad % nAveGrad == 0: + + self.optimizer_bone.step() + self.optimizer_bone.zero_grad() + aveGrad = 0 + + + if i % showEvery == 0: + + print('epoch: [%2d/%2d], iter: [%5d/%5d] || Edge : %10.4f || Sal : %10.4f || Sum : %10.4f' % ( + epoch, self.config.epoch, i, iter_num, r_edge_loss*(nAveGrad * self.config.batch_size)/showEvery, + r_sal_loss*(nAveGrad * self.config.batch_size)/showEvery, + r_sum_loss*(nAveGrad * self.config.batch_size)/showEvery)) + + print('Learning rate: ' + str(self.lr_bone)) + r_edge_loss, r_sal_loss, r_sum_loss= 0,0,0 + + if i % 200 == 0: + + vutils.save_image(torch.sigmoid(up_sal_f[-1].data), tmp_path+'/iter%d-sal-0.jpg' % i, normalize=True, padding = 0) + + vutils.save_image(sal_image.data, tmp_path+'/iter%d-sal-data.jpg' % i, padding = 0) + vutils.save_image(sal_label.data, tmp_path+'/iter%d-sal-target.jpg' % i, padding = 0) + + if (epoch + 1) % self.config.epoch_save == 0: + torch.save(self.net_bone.state_dict(), '%s/models/epoch_%d_bone.pth' % (self.config.save_fold, epoch + 1)) + + if epoch in lr_decay_epoch: + self.lr_bone = self.lr_bone * 0.1 + self.optimizer_bone = Adam(filter(lambda p: p.requires_grad, self.net_bone.parameters()), lr=self.lr_bone, weight_decay=p['wd']) + + + torch.save(self.net_bone.state_dict(), '%s/models/final_bone.pth' % self.config.save_fold) + +def bce2d_new(input, target, reduction=None): + assert(input.size() == target.size()) + pos = torch.eq(target, 1).float() + neg = torch.eq(target, 0).float() + # ing = ((torch.gt(target, 0) & torch.lt(target, 1))).float() + + num_pos = torch.sum(pos) + num_neg = torch.sum(neg) + num_total = num_pos + num_neg + + alpha = num_neg / num_total + beta = 1.1 * num_pos / num_total + # target pixel = 1 -> weight beta + # target pixel = 0 -> weight 1-beta + weights = alpha * pos + beta * neg + + return F.binary_cross_entropy_with_logits(input, target, weights, reduction=reduction) + diff --git a/src/EGNet/vgg.py b/src/EGNet/vgg.py new file mode 100644 index 0000000000000000000000000000000000000000..581ccdcb0a410b818fdfa884b0e4c0752e116299 --- /dev/null +++ b/src/EGNet/vgg.py @@ -0,0 +1,273 @@ +import torch.nn as nn +import math +# import torch.utils.model_zoo as model_zoo +import torch +import numpy as np +import torch.nn.functional as F + +# vgg16 +def vgg(cfg, i, batch_norm=False): + layers = [] + in_channels = i + stage = 1 + for v in cfg: + if v == 'M': + stage += 1 + if stage == 6: + layers += [nn.MaxPool2d(kernel_size=3, stride=2, padding=1)] + else: + layers += [nn.MaxPool2d(kernel_size=3, stride=2, padding=1)] + else: + if stage == 6: + # conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=4, dilation=4, bias=False) + conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) + else: + conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) + if batch_norm: + layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] + else: + layers += [conv2d, nn.ReLU(inplace=True)] + in_channels = v + return layers + +class vgg16(nn.Module): + def __init__(self): + super(vgg16, self).__init__() + self.cfg = {'tun': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'tun_ex': [512, 512, 512]} + self.extract = [8, 15, 22, 29] # [3, 8, 15, 22, 29] + self.extract_ex = [5] + self.base = nn.ModuleList(vgg(self.cfg['tun'], 3)) + self.base_ex = vgg_ex(self.cfg['tun_ex'], 512) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, 0.01) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def load_pretrained_model(self, model): + self.base.load_state_dict(model) + + def forward(self, x, multi=0): + tmp_x = [] + for k in range(len(self.base)): + x = self.base[k](x) + if k in self.extract: + tmp_x.append(x) + x = self.base_ex(x) + tmp_x.append(x) + if multi == 1: + tmp_y = [] + tmp_y.append(tmp_x[0]) + return tmp_y + else: + return tmp_x + +class vgg_ex(nn.Module): + def __init__(self, cfg, incs=512, padding=1, dilation=1): + super(vgg_ex, self).__init__() + self.cfg = cfg + layers = [] + for v in self.cfg: + # conv2d = nn.Conv2d(incs, v, kernel_size=3, padding=4, dilation=4, bias=False) + conv2d = nn.Conv2d(incs, v, kernel_size=3, padding=padding, dilation=dilation, bias=False) + layers += [conv2d, nn.ReLU(inplace=True)] + incs = v + self.ex = nn.Sequential(*layers) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, 0.01) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def forward(self, x): + x = self.ex(x) + return x + +# class vgg16_locate(nn.Module): +# def __init__(self): +# super(vgg16_locate,self).__init__() +# self.cfg = [512, 512, 512] +# self.vgg16 = vgg16() +# # self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) +# # self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=3, padding=1) +# self.layer61 = vgg_ex(self.cfg, 512, 3, 3) +# self.layer62 = vgg_ex(self.cfg, 512, 6, 6) +# self.layer63 = vgg_ex(self.cfg, 512, 9, 9) +# self.layer64 = vgg_ex(self.cfg, 512, 12, 12) +# +# +# # self.layer6_convert, self.layer6_trans, self.layer6_score = [],[],[] +# # for ii in range(3): +# # self.layer6_convert.append(nn.Conv2d(1024, 512, 3, 1, 1, bias=False)) +# # self.layer6_trans.append(nn.Conv2d(512, 512, 1, 1, bias=False)) +# # self.layer6_score.append(nn.Conv2d(512, 1, 1, 1)) +# # self.layer6_convert, self.layer6_trans, self.layer6_score = nn.ModuleList(self.layer6_convert), nn.ModuleList(self.layer6_trans), nn.ModuleList(self.layer6_score) +# self.trans = nn.Conv2d(512*5, 512, 3, 1, 1, bias=False) +# # self.score = nn.Conv2d(3, 1, 1, 1) +# # self.score = nn.Conv2d(1, 1, 1, 1) +# self.relu = nn.ReLU(inplace=True) +# +# for m in self.modules(): +# if isinstance(m, nn.Conv2d): +# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels +# m.weight.data.normal_(0, 0.01) +# elif isinstance(m, nn.BatchNorm2d): +# m.weight.data.fill_(1) +# m.bias.data.zero_() +# +# def load_pretrained_model(self, model): +# self.vgg16.load_pretrained_model(model) +# +# def forward(self, x): +# x_size = x.size()[2:] +# xs = self.vgg16(x) +# +# xls = [xs[-1]] +# xls.append(self.layer61(xs[-2])) +# xls.append(self.layer62(xs[-2])) +# xls.append(self.layer63(xs[-2])) +# xls.append(self.layer64(xs[-2])) +# +# # xls_tmp = [self.layer6_convert[0](xls[0])] +# # for ii in range(1, 3): +# # xls_tmp.append(F.interpolate(self.layer6_convert[ii](xls[ii]), xls_tmp[0].size()[2:], mode='bilinear', align_corners=True)) +# # +# # xls_trans = self.layer6_trans[0](xls_tmp[0]) +# # for ii in range(1, 3): +# # xls_trans = torch.add(xls_trans, self.layer6_trans[ii](xls_tmp[ii])) +# score, score_fuse = [], None +# # for ii in range(3): +# # score.append(self.layer6_score[ii](xls_tmp[ii])) +# +# xls_trans = self.trans(self.relu(torch.cat(xls, dim=1))) +# xs[-1] = xls_trans +# # score_fuse = F.interpolate(self.score(torch.cat(score, dim=1)), x_size, mode='bilinear', align_corners=True) +# # score_fuse = F.interpolate(self.score(torch.add(torch.add(score[0], score[1]), score[2])), x_size, mode='bilinear', align_corners=True) +# +# # score = [F.interpolate(ss, x_size, mode='bilinear', align_corners=True) for ss in score] +# +# return xs, score_fuse, score + +class vgg16_locate(nn.Module): + def __init__(self): + super(vgg16_locate,self).__init__() + self.vgg16 = vgg16() + self.in_planes = 512 + # self.out_planes = [512, 256, 128, 64] # with convert layer, with conv6 + # self.out_planes = [512, 512, 256, 128] # no convert layer, with conv6 + self.out_planes = [512, 256, 128] # no convert layer, no conv6 + + ppms, infos = [], [] + # for ii in [3, 6, 12]: + # if ii <= 8: + # ppms.append(nn.Sequential(nn.AvgPool2d(kernel_size=ii, stride=ii), nn.Conv2d(self.in_planes, self.in_planes, 1, 1, bias=False), nn.ReLU(inplace=True))) + # else: + # ppms.append(nn.Sequential(nn.AdaptiveAvgPool2d(1), nn.Conv2d(self.in_planes, self.in_planes, 1, 1, bias=False), nn.ReLU(inplace=True))) + for ii in [1, 3, 5]: + ppms.append(nn.Sequential(nn.AdaptiveAvgPool2d(ii), nn.Conv2d(self.in_planes, self.in_planes, 1, 1, bias=False), nn.ReLU(inplace=True))) + self.ppms = nn.ModuleList(ppms) + + self.ppm_cat = nn.Sequential(nn.Conv2d(self.in_planes * 4, self.in_planes, 3, 1, 1, bias=False), nn.ReLU(inplace=True)) + #self.ppm_cat = nn.Sequential(nn.Conv2d(self.in_planes, self.in_planes, 3, 1, 1, bias=False), nn.ReLU(inplace=True)) + # self.ppm_score = nn.Conv2d(self.in_planes, 1, 1, 1) + for ii in self.out_planes: + infos.append(nn.Sequential(nn.Conv2d(self.in_planes, ii, 3, 1, 1, bias=False), nn.ReLU(inplace=True))) + self.infos = nn.ModuleList(infos) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, 0.01) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def load_pretrained_model(self, model): + self.vgg16.load_pretrained_model(model) + + def forward(self, x): + x_size = x.size()[2:] + xs = self.vgg16(x) + + xls = [xs[-1]] + #xls = xs[-1] + for k in range(len(self.ppms)): + xls.append(F.interpolate(self.ppms[k](xs[-1]), xs[-1].size()[2:], mode='bilinear', align_corners=True)) + #xls = torch.add(xls, F.interpolate(self.ppms[k](xs[-1]), xs[-1].size()[2:], mode='bilinear', align_corners=True)) + xls = self.ppm_cat(torch.cat(xls, dim=1)) + #xls = self.ppm_cat(xls) + top_score = None + # top_score = F.interpolate(self.ppm_score(xls), x_size, mode='bilinear', align_corners=True) + + infos = [] + for k in range(len(self.infos)): + infos.append(self.infos[k](F.interpolate(xls, xs[len(self.infos) - 1 - k].size()[2:], mode='bilinear', align_corners=True))) + + return xs, top_score, infos + +# class vgg16_locate(nn.Module): +# def __init__(self): +# super(vgg16_locate,self).__init__() +# self.cfg = [1024, 1024, 1024] +# self.vgg16 = vgg16() +# self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) +# self.maxpool5 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) +# self.maxpool6 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) +# +# self.layer5 = vgg_ex(self.cfg, 1024) +# self.layer6 = vgg_ex(self.cfg, 1024) +# self.layer7 = vgg_ex(self.cfg, 1024) +# +# self.layer71 = nn.Conv2d(1024, 512, 1, 1, bias=False) +# self.layer61 = nn.Conv2d(1024, 512, 1, 1, bias=False) +# self.layer51 = nn.Conv2d(1024, 512, 1, 1, bias=False) +# self.layer41 = nn.Conv2d(1024, 512, 1, 1, bias=False) +# +# self.layer76 = nn.Conv2d(512, 512, 3, 1, 1, bias=False) +# self.layer65 = nn.Conv2d(512, 512, 3, 1, 1, bias=False) +# self.layer54 = nn.Sequential(nn.Conv2d(512, 512, 3, 1, 1, bias=False), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 1, 1, bias=False)) +# # self.layer54 = nn.Conv2d(512, 512, 3, 1, 1, bias=False) +# # self.layer54_ = nn.Sequential(nn.ReLU(inplace=True), nn.Conv2d(512, 512, 1, 1, bias=False)) +# # self.score = nn.Conv2d(512, 1, 1, 1) +# +# self.relu = nn.ReLU(inplace=True) +# +# for m in self.modules(): +# if isinstance(m, nn.Conv2d): +# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels +# m.weight.data.normal_(0, 0.01) +# elif isinstance(m, nn.BatchNorm2d): +# m.weight.data.fill_(1) +# m.bias.data.zero_() +# +# def load_pretrained_model(self, model): +# self.vgg16.load_pretrained_model(model) +# +# def forward(self, x): +# x_size = x.size()[2:] +# score_fuse, score = None, None +# xs = self.vgg16(x) +# +# x5 = self.layer5(self.maxpool4(xs[-1])) +# x6 = self.layer6(self.maxpool5(x5)) +# x7 = self.layer7(self.maxpool6(x6)) +# +# x8 = self.layer76(self.relu(torch.add(F.interpolate(self.layer71(x7) , x6.size()[2:], mode='bilinear', align_corners=True), self.layer61(x6)))) +# x8 = self.layer65(self.relu(torch.add(F.interpolate(x8 , x5.size()[2:], mode='bilinear', align_corners=True), self.layer51(x5)))) +# x8 = self.layer54(self.relu(torch.add(F.interpolate(x8 , xs[-1].size()[2:], mode='bilinear', align_corners=True), self.layer41(xs[-1])))) +# xs[-1] = x8 +# +# # x8 = self.layer76(self.relu(torch.add(F.interpolate(self.layer71(x7) , x6.size()[2:], mode='bilinear', align_corners=True), self.layer61(x6)))) +# # x9 = self.layer65(self.relu(torch.add(F.interpolate(x8 , x5.size()[2:], mode='bilinear', align_corners=True), self.layer51(x5)))) +# # x10 = self.layer54(self.relu(torch.add(F.interpolate(x9 , xs[-1].size()[2:], mode='bilinear', align_corners=True), self.layer41(xs[-1])))) +# # score_fuse = F.interpolate(self.score(self.relu(torch.add(torch.add(F.interpolate(x8 , x10.size()[2:], mode='bilinear', align_corners=True), +# # F.interpolate(x9 , x10.size()[2:], mode='bilinear', align_corners=True)), x10))), x_size, mode='bilinear', align_corners=True) +# # xs[-1] = self.layer54_(x10) +# +# return xs, score_fuse, score diff --git a/src/__pycache__/diffusion_hacked.cpython-310.pyc b/src/__pycache__/diffusion_hacked.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..00222866e82845d628bc5ef0db0417e89a4d1fcc Binary files /dev/null and b/src/__pycache__/diffusion_hacked.cpython-310.pyc differ diff --git a/src/__pycache__/flow_utils.cpython-310.pyc b/src/__pycache__/flow_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..42cb48d3c98135e31155ede0a3cc226ecbbbf5aa Binary files /dev/null and b/src/__pycache__/flow_utils.cpython-310.pyc differ diff --git a/src/__pycache__/free_lunch_utils.cpython-310.pyc b/src/__pycache__/free_lunch_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9695d2bbb4dfcd1ba01e5409b4405b6213d8a6e6 Binary files /dev/null and b/src/__pycache__/free_lunch_utils.cpython-310.pyc differ diff --git a/src/__pycache__/keyframe_selection.cpython-310.pyc b/src/__pycache__/keyframe_selection.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9d421867d2671b734d6f2db5367f7be04464b79d Binary files /dev/null and b/src/__pycache__/keyframe_selection.cpython-310.pyc differ diff --git a/src/__pycache__/pipe_FRESCO.cpython-310.pyc b/src/__pycache__/pipe_FRESCO.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d8234936253081af383a1c31d55e967454e437fb Binary files /dev/null and b/src/__pycache__/pipe_FRESCO.cpython-310.pyc differ diff --git a/src/__pycache__/utils.cpython-310.pyc b/src/__pycache__/utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..28083f02fb678e4c9cbd58f1ea3afb05020ca279 Binary files /dev/null and b/src/__pycache__/utils.cpython-310.pyc differ diff --git a/src/diffusion_hacked.py b/src/diffusion_hacked.py new file mode 100644 index 0000000000000000000000000000000000000000..44511f62426aac0df9b61ed9e42576d36d37228b --- /dev/null +++ b/src/diffusion_hacked.py @@ -0,0 +1,957 @@ +from einops import rearrange, reduce, repeat +import torch.nn.functional as F +import torch +import gc +from src.utils import * +from src.flow_utils import get_mapping_ind, warp_tensor +from diffusers.models.unet_2d_condition import UNet2DConditionOutput +from diffusers.models.attention_processor import AttnProcessor2_0 +from typing import Any, Dict, List, Optional, Tuple, Union +import sys +sys.path.append("./src/ebsynth/deps/gmflow/") +from gmflow.geometry import flow_warp, forward_backward_consistency_check + +""" +========================================================================== +PART I - FRESCO-based attention +* Class AttentionControl: Control the function of FRESCO-based attention +* Class FRESCOAttnProcessor2_0: FRESCO-based attention +* apply_FRESCO_attn(): Apply FRESCO-based attention to a StableDiffusionPipeline +========================================================================== +""" + +class AttentionControl(): + """ + Control FRESCO-based attention + * enable/diable spatial-guided attention + * enable/diable temporal-guided attention + * enable/diable cross-frame attention + * collect intermediate attention feature (for spatial-guided attention) + """ + def __init__(self): + self.stored_attn = self.get_empty_store() + self.store = False + self.index = 0 + self.attn_mask = None + self.interattn_paras = None + self.use_interattn = False + self.use_cfattn = False + self.use_intraattn = False + self.intraattn_bias = 0 + self.intraattn_scale_factor = 0.2 + self.interattn_scale_factor = 0.2 + + @staticmethod + def get_empty_store(): + return { + 'decoder_attn': [], + } + + def clear_store(self): + del self.stored_attn + torch.cuda.empty_cache() + gc.collect() + self.stored_attn = self.get_empty_store() + self.disable_intraattn() + + # store attention feature of the input frame for spatial-guided attention + def enable_store(self): + self.store = True + + def disable_store(self): + self.store = False + + # spatial-guided attention + def enable_intraattn(self): + self.index = 0 + self.use_intraattn = True + self.disable_store() + if len(self.stored_attn['decoder_attn']) == 0: + self.use_intraattn = False + + def disable_intraattn(self): + self.index = 0 + self.use_intraattn = False + self.disable_store() + + def disable_cfattn(self): + self.use_cfattn = False + + # cross frame attention + def enable_cfattn(self, attn_mask=None): + if attn_mask: + if self.attn_mask: + del self.attn_mask + torch.cuda.empty_cache() + self.attn_mask = attn_mask + self.use_cfattn = True + else: + if self.attn_mask: + self.use_cfattn = True + else: + print('Warning: no valid cross-frame attention parameters available!') + self.disable_cfattn() + + def disable_interattn(self): + self.use_interattn = False + + # temporal-guided attention + def enable_interattn(self, interattn_paras=None): + if interattn_paras: + if self.interattn_paras: + del self.interattn_paras + torch.cuda.empty_cache() + self.interattn_paras = interattn_paras + self.use_interattn = True + else: + if self.interattn_paras: + self.use_interattn = True + else: + print('Warning: no valid temporal-guided attention parameters available!') + self.disable_interattn() + + def disable_controller(self): + self.disable_intraattn() + self.disable_interattn() + self.disable_cfattn() + + def enable_controller(self, interattn_paras=None, attn_mask=None): + self.enable_intraattn() + self.enable_interattn(interattn_paras) + self.enable_cfattn(attn_mask) + + def forward(self, context): + if self.store: + self.stored_attn['decoder_attn'].append(context.detach()) + if self.use_intraattn and len(self.stored_attn['decoder_attn']) > 0: + tmp = self.stored_attn['decoder_attn'][self.index] + self.index = self.index + 1 + if self.index >= len(self.stored_attn['decoder_attn']): + self.index = 0 + self.disable_store() + return tmp + return context + + def __call__(self, context): + context = self.forward(context) + return context + + +#import xformers +#import importlib +class FRESCOAttnProcessor2_0: + """ + Hack self attention to FRESCO-based attention + * adding spatial-guided attention + * adding temporal-guided attention + * adding cross-frame attention + + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). + Usage + frescoProc = FRESCOAttnProcessor2_0(2, attn_mask) + attnProc = AttnProcessor2_0() + + attn_processor_dict = {} + for k in pipe.unet.attn_processors.keys(): + if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): + attn_processor_dict[k] = frescoProc + else: + attn_processor_dict[k] = attnProc + pipe.unet.set_attn_processor(attn_processor_dict) + """ + + def __init__(self, unet_chunk_size=2, controller=None): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + self.unet_chunk_size = unet_chunk_size + self.controller = controller + + def __call__( + self, + attn, + hidden_states, + encoder_hidden_states=None, + attention_mask=None, + temb=None, + ): + residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + crossattn = False + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + if self.controller and self.controller.store: + self.controller(hidden_states.detach().clone()) + else: + crossattn = True + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + # BC * HW * 8D + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + query_raw, key_raw = None, None + if self.controller and self.controller.use_interattn and (not crossattn): + query_raw, key_raw = query.clone(), key.clone() + + inner_dim = key.shape[-1] # 8D + head_dim = inner_dim // attn.heads # D + + '''for efficient cross-frame attention''' + if self.controller and self.controller.use_cfattn and (not crossattn): + video_length = key.size()[0] // self.unet_chunk_size + former_frame_index = [0] * video_length + attn_mask = None + if self.controller.attn_mask is not None: + for m in self.controller.attn_mask: + if m.shape[1] == key.shape[1]: + attn_mask = m + # BC * HW * 8D --> B * C * HW * 8D + key = rearrange(key, "(b f) d c -> b f d c", f=video_length) + # B * C * HW * 8D --> B * C * HW * 8D + if attn_mask is None: + key = key[:, former_frame_index] + else: + key = repeat(key[:, attn_mask], "b d c -> b f d c", f=video_length) + # B * C * HW * 8D --> BC * HW * 8D + key = rearrange(key, "b f d c -> (b f) d c").detach() + value = rearrange(value, "(b f) d c -> b f d c", f=video_length) + if attn_mask is None: + value = value[:, former_frame_index] + else: + value = repeat(value[:, attn_mask], "b d c -> b f d c", f=video_length) + value = rearrange(value, "b f d c -> (b f) d c").detach() + + # BC * HW * 8D --> BC * HW * 8 * D --> BC * 8 * HW * D + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + # BC * 8 * HW2 * D + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + # BC * 8 * HW2 * D2 + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + '''for spatial-guided intra-frame attention''' + if self.controller and self.controller.use_intraattn and (not crossattn): + ref_hidden_states = self.controller(None) + assert ref_hidden_states.shape == encoder_hidden_states.shape + query_ = attn.to_q(ref_hidden_states) + key_ = attn.to_k(ref_hidden_states) + + ''' + # for xformers implementation + if importlib.util.find_spec("xformers") is not None: + # BC * HW * 8D --> BC * HW * 8 * D + query_ = rearrange(query_, "b d (h c) -> b d h c", h=attn.heads) + key_ = rearrange(key_, "b d (h c) -> b d h c", h=attn.heads) + # BC * 8 * HW * D --> 8BC * HW * D + query = rearrange(query, "b h d c -> b d h c") + query = xformers.ops.memory_efficient_attention( + query_, key_ * self.sattn_scale_factor, query, + attn_bias=torch.eye(query_.size(1), key_.size(1), + dtype=query.dtype, device=query.device) * self.bias_weight, op=None + ) + query = rearrange(query, "b d h c -> b h d c").detach() + ''' + # BC * 8 * HW * D + query_ = query_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key_ = key_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + query = F.scaled_dot_product_attention( + query_, key_ * self.controller.intraattn_scale_factor, query, + attn_mask = torch.eye(query_.size(-2), key_.size(-2), + dtype=query.dtype, device=query.device) * self.controller.intraattn_bias, + ).detach() + #print('intra: ', GPU.getGPUs()[1].memoryUsed) + del query_, key_ + torch.cuda.empty_cache() + + ''' + # for xformers implementation + if importlib.util.find_spec("xformers") is not None: + hidden_states = xformers.ops.memory_efficient_attention( + rearrange(query, "b h d c -> b d h c"), rearrange(key, "b h d c -> b d h c"), + rearrange(value, "b h d c -> b d h c"), + attn_bias=attention_mask, op=None + ) + hidden_states = rearrange(hidden_states, "b d h c -> b h d c", h=attn.heads) + ''' + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + # output: BC * 8 * HW * D2 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + #print('cross: ', GPU.getGPUs()[1].memoryUsed) + + '''for temporal-guided inter-frame attention (FLATTEN)''' + if self.controller and self.controller.use_interattn and (not crossattn): + del query, key, value + torch.cuda.empty_cache() + bwd_mapping = None + fwd_mapping = None + flattn_mask = None + for i, f in enumerate(self.controller.interattn_paras['fwd_mappings']): + if f.shape[2] == hidden_states.shape[2]: + fwd_mapping = f + bwd_mapping = self.controller.interattn_paras['bwd_mappings'][i] + interattn_mask = self.controller.interattn_paras['interattn_masks'][i] + video_length = key_raw.size()[0] // self.unet_chunk_size + # BC * HW * 8D --> C * 8BD * HW + key = rearrange(key_raw, "(b f) d c -> f (b c) d", f=video_length) + query = rearrange(query_raw, "(b f) d c -> f (b c) d", f=video_length) + # BC * 8 * HW * D --> C * 8BD * HW + #key = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) ######## + #query = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) ####### + + value = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) + key = torch.gather(key, 2, fwd_mapping.expand(-1,key.shape[1],-1)) + query = torch.gather(query, 2, fwd_mapping.expand(-1,query.shape[1],-1)) + value = torch.gather(value, 2, fwd_mapping.expand(-1,value.shape[1],-1)) + # C * 8BD * HW --> BHW, C, 8D + key = rearrange(key, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) + query = rearrange(query, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) + value = rearrange(value, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) + ''' + # for xformers implementation + if importlib.util.find_spec("xformers") is not None: + # BHW * C * 8D --> BHW * C * 8 * D + query = rearrange(query, "b d (h c) -> b d h c", h=attn.heads) + key = rearrange(key, "b d (h c) -> b d h c", h=attn.heads) + value = rearrange(value, "b d (h c) -> b d h c", h=attn.heads) + B, D, C, _ = flattn_mask.shape + C1 = int(np.ceil(C / 4) * 4) + attn_bias = torch.zeros(B, D, C, C1, dtype=value.dtype, device=value.device) # HW * 1 * C * C + attn_bias[:,:,:,:C].masked_fill_(interattn_mask.logical_not(), float("-inf")) # BHW * C * C + hidden_states_ = xformers.ops.memory_efficient_attention( + query, key * self.controller.interattn_scale_factor, value, + attn_bias=attn_bias.squeeze(1).repeat(self.unet_chunk_size*attn.heads,1,1)[:,:,:C], op=None + ) + hidden_states_ = rearrange(hidden_states_, "b d h c -> b h d c", h=attn.heads).detach() + ''' + # BHW * C * 8D --> BHW * C * 8 * D--> BHW * 8 * C * D + query = query.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() + key = key.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() + value = value.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() + hidden_states_ = F.scaled_dot_product_attention( + query, key * self.controller.interattn_scale_factor, value, + attn_mask = (interattn_mask.repeat(self.unet_chunk_size,1,1,1))#.to(query.dtype)-1.0) * 1e6 - + #torch.eye(interattn_mask.shape[2]).to(query.device).to(query.dtype) * 1e4, + ) + + # BHW * 8 * C * D --> C * 8BD * HW + hidden_states_ = rearrange(hidden_states_, "(b d) h f c -> f (b h c) d", b=self.unet_chunk_size) + hidden_states_ = torch.gather(hidden_states_, 2, bwd_mapping.expand(-1,hidden_states_.shape[1],-1)).detach() + # C * 8BD * HW --> BC * 8 * HW * D + hidden_states = rearrange(hidden_states_, "f (b h c) d -> (b f) h d c", b=self.unet_chunk_size, h=attn.heads) + #print('inter: ', GPU.getGPUs()[1].memoryUsed) + + # BC * 8 * HW * D --> BC * HW * 8D + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +def apply_FRESCO_attn(pipe): + """ + Apply FRESCO-guided attention to a StableDiffusionPipeline + """ + frescoProc = FRESCOAttnProcessor2_0(2, AttentionControl()) + attnProc = AttnProcessor2_0() + attn_processor_dict = {} + for k in pipe.unet.attn_processors.keys(): + if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): + attn_processor_dict[k] = frescoProc + else: + attn_processor_dict[k] = attnProc + pipe.unet.set_attn_processor(attn_processor_dict) + return frescoProc + + +""" +========================================================================== +PART II - FRESCO-based optimization +* optimize_feature(): function to optimze latent feature +* my_forward(): hacked pipe.unet.forward(), adding feature optimization +* apply_FRESCO_opt(): function to apply FRESCO-based optimization to a StableDiffusionPipeline +* disable_FRESCO_opt(): function to disable the FRESCO-based optimization +========================================================================== +""" + +def optimize_feature(sample, flows, occs, correlation_matrix=[], + intra_weight = 1e2, iters=20, unet_chunk_size=2, optimize_temporal = True): + """ + FRESO-guided latent feature optimization + * optimize spatial correspondence (match correlation_matrix) + * optimize temporal correspondence (match warped_image) + """ + if (flows is None or occs is None or (not optimize_temporal)) and (intra_weight == 0 or len(correlation_matrix) == 0): + return sample + # flows=[fwd_flows, bwd_flows]: (N-1)*2*H1*W1 + # occs=[fwd_occs, bwd_occs]: (N-1)*H1*W1 + # sample: 2N*C*H*W + torch.cuda.empty_cache() + video_length = sample.shape[0] // unet_chunk_size + latent = rearrange(sample.to(torch.float32), "(b f) c h w -> b f c h w", f=video_length) + + cs = torch.nn.Parameter((latent.detach().clone())) + optimizer = torch.optim.Adam([cs], lr=0.2) + + # unify resolution + if flows is not None and occs is not None: + scale = sample.shape[2] * 1.0 / flows[0].shape[2] + kernel = int(1 / scale) + bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode='bilinear').repeat(unet_chunk_size,1,1,1) + bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel).repeat(unet_chunk_size,1,1,1) # 2(N-1)*1*H1*W1 + fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode='bilinear').repeat(unet_chunk_size,1,1,1) + fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel).repeat(unet_chunk_size,1,1,1) # 2(N-1)*1*H1*W1 + # match frame 0,1,2,3 and frame 1,2,3,0 + reshuffle_list = list(range(1,video_length))+[0] + + # attention_probs is the GRAM matrix of the normalized feature + attention_probs = None + for tmp in correlation_matrix: + if sample.shape[2] * sample.shape[3] == tmp.shape[1]: + attention_probs = tmp # 2N*HW*HW + break + + n_iter=[0] + while n_iter[0] < iters: + def closure(): + optimizer.zero_grad() + + loss = 0 + + # temporal consistency loss + if optimize_temporal and flows is not None and occs is not None: + c1 = rearrange(cs[:,:], "b f c h w -> (b f) c h w") + c2 = rearrange(cs[:,reshuffle_list], "b f c h w -> (b f) c h w") + warped_image1 = flow_warp(c1, bwd_flow_) + warped_image2 = flow_warp(c2, fwd_flow_) + loss = (abs((c2-warped_image1)*(1-bwd_occ_)) + abs((c1-warped_image2)*(1-fwd_occ_))).mean() * 2 + + # spatial consistency loss + if attention_probs is not None and intra_weight > 0: + cs_vector = rearrange(cs, "b f c h w -> (b f) (h w) c") + #attention_scores = torch.bmm(cs_vector, cs_vector.transpose(-1, -2)) + #cs_attention_probs = attention_scores.softmax(dim=-1) + cs_vector = cs_vector / ((cs_vector ** 2).sum(dim=2, keepdims=True) ** 0.5) + cs_attention_probs = torch.bmm(cs_vector, cs_vector.transpose(-1, -2)) + tmp = F.l1_loss(cs_attention_probs, attention_probs) * intra_weight + loss = tmp + loss + + loss.backward() + n_iter[0]+=1 + + + if False: # for debug + print('Iteration: %d, loss: %f'%(n_iter[0]+1, loss.data.mean())) + return loss + optimizer.step(closure) + + torch.cuda.empty_cache() + return adaptive_instance_normalization(rearrange(cs.data.to(sample.dtype), "b f c h w -> (b f) c h w"), sample) + + +def my_forward(self, steps = [], layers = [0,1,2,3], flows = None, occs = None, + correlation_matrix=[], intra_weight = 1e2, iters=20, optimize_temporal = True, saliency = None): + """ + Hacked pipe.unet.forward() + copied from https://github.com/huggingface/diffusers/blob/v0.19.3/src/diffusers/models/unet_2d_condition.py#L700 + if you are using a new version of diffusers, please copy the source code and modify it accordingly (find [HACK] in the code) + * restore and return the decoder features + * optimize the decoder features + * perform background smoothing + """ + def forward( + sample: torch.FloatTensor, + timestep: Union[torch.Tensor, float, int], + encoder_hidden_states: torch.Tensor, + class_labels: Optional[torch.Tensor] = None, + timestep_cond: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, + down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, + mid_block_additional_residual: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + return_dict: bool = True, + ) -> Union[UNet2DConditionOutput, Tuple]: + r""" + The [`UNet2DConditionModel`] forward method. + + Args: + sample (`torch.FloatTensor`): + The noisy input tensor with the following shape `(batch, channel, height, width)`. + timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. + encoder_hidden_states (`torch.FloatTensor`): + The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. + encoder_attention_mask (`torch.Tensor`): + A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If + `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, + which adds large negative values to the attention scores corresponding to "discard" tokens. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain + tuple. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. + added_cond_kwargs: (`dict`, *optional*): + A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that + are passed along to the UNet blocks. + + Returns: + [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: + If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise + a `tuple` is returned where the first element is the sample tensor. + """ + # By default samples have to be AT least a multiple of the overall upsampling factor. + # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). + # However, the upsampling interpolation output size can be forced to fit any upsampling size + # on the fly if necessary. + default_overall_up_factor = 2**self.num_upsamplers + + # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` + forward_upsample_size = False + upsample_size = None + + if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): + logger.info("Forward upsample size to force interpolation output size.") + forward_upsample_size = True + + # ensure attention_mask is a bias, and give it a singleton query_tokens dimension + # expects mask of shape: + # [batch, key_tokens] + # adds singleton query_tokens dimension: + # [batch, 1, key_tokens] + # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: + # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) + # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) + if attention_mask is not None: + # assume that mask is expressed as: + # (1 = keep, 0 = discard) + # convert mask into a bias that can be added to attention scores: + # (keep = +0, discard = -10000.0) + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + # convert encoder_attention_mask to a bias the same way we do for attention_mask + if encoder_attention_mask is not None: + encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + + # 0. center input if necessary + if self.config.center_input_sample: + sample = 2 * sample - 1.0 + + # 1. time + timesteps = timestep + if not torch.is_tensor(timesteps): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = self.time_proj(timesteps) + + # `Timesteps` does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=sample.dtype) + + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + + if self.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if self.config.class_embed_type == "timestep": + class_labels = self.time_proj(class_labels) + + # `Timesteps` does not contain any weights and will always return f32 tensors + # there might be better ways to encapsulate this. + class_labels = class_labels.to(dtype=sample.dtype) + + class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) + + if self.config.class_embeddings_concat: + emb = torch.cat([emb, class_emb], dim=-1) + else: + emb = emb + class_emb + + if self.config.addition_embed_type == "text": + aug_emb = self.add_embedding(encoder_hidden_states) + elif self.config.addition_embed_type == "text_image": + # Kandinsky 2.1 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" + ) + + image_embs = added_cond_kwargs.get("image_embeds") + text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) + aug_emb = self.add_embedding(text_embs, image_embs) + elif self.config.addition_embed_type == "text_time": + # SDXL - style + if "text_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" + ) + text_embeds = added_cond_kwargs.get("text_embeds") + if "time_ids" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" + ) + time_ids = added_cond_kwargs.get("time_ids") + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + elif self.config.addition_embed_type == "image": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" + ) + image_embs = added_cond_kwargs.get("image_embeds") + aug_emb = self.add_embedding(image_embs) + elif self.config.addition_embed_type == "image_hint": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" + ) + image_embs = added_cond_kwargs.get("image_embeds") + hint = added_cond_kwargs.get("hint") + aug_emb, hint = self.add_embedding(image_embs, hint) + sample = torch.cat([sample, hint], dim=1) + + emb = emb + aug_emb if aug_emb is not None else emb + + if self.time_embed_act is not None: + emb = self.time_embed_act(emb) + + if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": + # Kadinsky 2.1 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + + image_embeds = added_cond_kwargs.get("image_embeds") + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + image_embeds = added_cond_kwargs.get("image_embeds") + encoder_hidden_states = self.encoder_hid_proj(image_embeds) + # 2. pre-process + sample = self.conv_in(sample) + + # 3. down + + is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None + is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None + + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: + # For t2i-adapter CrossAttnDownBlock2D + additional_residuals = {} + if is_adapter and len(down_block_additional_residuals) > 0: + additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0) + + sample, res_samples = downsample_block( + hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + **additional_residuals, + ) + else: + sample, res_samples = downsample_block(hidden_states=sample, temb=emb) + + if is_adapter and len(down_block_additional_residuals) > 0: + sample += down_block_additional_residuals.pop(0) + down_block_res_samples += res_samples + + if is_controlnet: + new_down_block_res_samples = () + + for down_block_res_sample, down_block_additional_residual in zip( + down_block_res_samples, down_block_additional_residuals + ): + down_block_res_sample = down_block_res_sample + down_block_additional_residual + new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) + + down_block_res_samples = new_down_block_res_samples + + # 4. mid + if self.mid_block is not None: + sample = self.mid_block( + sample, + emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + ) + + if is_controlnet: + sample = sample + mid_block_additional_residual + + # 5. up + ''' + [HACK] restore the decoder features in up_samples + ''' + up_samples = () + #down_samples = () + for i, upsample_block in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + + res_samples = down_block_res_samples[-len(upsample_block.resnets) :] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + ''' + [HACK] restore the decoder features in up_samples + [HACK] optimize the decoder features + [HACK] perform background smoothing + ''' + if i in layers: + up_samples += (sample, ) + if timestep in steps and i in layers: + sample = optimize_feature(sample, flows, occs, correlation_matrix, + intra_weight, iters, optimize_temporal = optimize_temporal) + if saliency is not None: + sample = warp_tensor(sample, flows, occs, saliency, 2) + + # if we have not reached the final block and need to forward the + # upsample size, we do it here + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + upsample_size=upsample_size, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + ) + else: + sample = upsample_block( + hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size + ) + + # 6. post-process + if self.conv_norm_out: + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + + ''' + [HACK] return the output feature as well as the decoder features + ''' + if not return_dict: + return (sample, ) + up_samples + + return UNet2DConditionOutput(sample=sample) + + return forward + + +def apply_FRESCO_opt(pipe, steps = [], layers = [0,1,2,3], flows = None, occs = None, + correlation_matrix=[], intra_weight = 1e2, iters=20, optimize_temporal = True, saliency = None): + """ + Apply FRESCO-based optimization to a StableDiffusionPipeline + """ + pipe.unet.forward = my_forward(pipe.unet, steps, layers, flows, occs, + correlation_matrix, intra_weight, iters, optimize_temporal, saliency) + +def disable_FRESCO_opt(pipe): + """ + Disable the FRESCO-based optimization + """ + apply_FRESCO_opt(pipe) + + +""" +===================================================================================== +PART III - Prepare parameters for FRESCO-guided attention/optimization +* get_intraframe_paras(): get parameters for spatial-guided attention/optimization +* get_flow_and_interframe_paras(): get parameters for temporal-guided attention/optimization +===================================================================================== +""" + +@torch.no_grad() +def get_intraframe_paras(pipe, imgs, frescoProc, + prompt_embeds, do_classifier_free_guidance=True, seed=0): + """ + Get parameters for spatial-guided attention and optimization + * perform one step denoising + * collect attention feature, stored in frescoProc.controller.stored_attn['decoder_attn'] + * compute the gram matrix of the normalized feature for spatial consistency loss + """ + + noise_scheduler = pipe.scheduler + timestep = noise_scheduler.timesteps[-1] + device = pipe._execution_device + generator = torch.Generator(device=device).manual_seed(seed) + B, C, H, W = imgs.shape + + frescoProc.controller.disable_controller() + disable_FRESCO_opt(pipe) + frescoProc.controller.clear_store() + frescoProc.controller.enable_store() + + latents = pipe.prepare_latents( + B, + pipe.unet.config.in_channels, + H, + W, + prompt_embeds.dtype, + device, + generator, + latents = None, + ) + + latent_x0 = pipe.vae.config.scaling_factor * pipe.vae.encode(imgs.to(pipe.unet.dtype)).latent_dist.sample() + latents = noise_scheduler.add_noise(latent_x0, latents, timestep).detach() + + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + model_output = pipe.unet( + latent_model_input, + timestep, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=None, + return_dict=False, + ) + + frescoProc.controller.disable_store() + + # gram matrix of the normalized feature for spatial consistency loss + correlation_matrix = [] + for tmp in model_output[1:]: + latent_vector = rearrange(tmp, "b c h w -> b (h w) c") + latent_vector = latent_vector / ((latent_vector ** 2).sum(dim=2, keepdims=True) ** 0.5) + attention_probs = torch.bmm(latent_vector, latent_vector.transpose(-1, -2)) + correlation_matrix += [attention_probs.detach().clone().to(torch.float32)] + del attention_probs, latent_vector, tmp + del model_output + + gc.collect() + torch.cuda.empty_cache() + + return correlation_matrix + + +@torch.no_grad() +def get_flow_and_interframe_paras(flow_model, imgs, visualize_pipeline=False): + """ + Get parameters for temporal-guided attention and optimization + * predict optical flow and occlusion mask + * compute pixel index correspondence for FLATTEN + """ + images = torch.stack([torch.from_numpy(img).permute(2, 0, 1).float() for img in imgs], dim=0).cuda() + imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0) + + reshuffle_list = list(range(1,len(images)))+[0] + + results_dict = flow_model(images, images[reshuffle_list], attn_splits_list=[2], + corr_radius_list=[-1], prop_radius_list=[-1], pred_bidir_flow=True) + flow_pr = results_dict['flow_preds'][-1] # [2*B, 2, H, W] + fwd_flows, bwd_flows = flow_pr.chunk(2) # [B, 2, H, W] + fwd_occs, bwd_occs = forward_backward_consistency_check(fwd_flows, bwd_flows) # [B, H, W] + + warped_image1 = flow_warp(images, bwd_flows) + bwd_occs = torch.clamp(bwd_occs + (abs(images[reshuffle_list]-warped_image1).mean(dim=1)>255*0.25).float(), 0 ,1) + + warped_image2 = flow_warp(images[reshuffle_list], fwd_flows) + fwd_occs = torch.clamp(fwd_occs + (abs(images-warped_image2).mean(dim=1)>255*0.25).float(), 0 ,1) + + if visualize_pipeline: + print('visualized occlusion masks based on optical flows') + viz = torchvision.utils.make_grid(imgs_torch * (1-fwd_occs.unsqueeze(1)), len(images), 1) + visualize(viz.cpu(), 90) + viz = torchvision.utils.make_grid(imgs_torch[reshuffle_list] * (1-bwd_occs.unsqueeze(1)), len(images), 1) + visualize(viz.cpu(), 90) + + attn_mask = [] + for scale in [8.0, 16.0, 32.0]: + bwd_occs_ = F.interpolate(bwd_occs[:-1].unsqueeze(1), scale_factor=1./scale, mode='bilinear') + attn_mask += [torch.cat((bwd_occs_[0:1].reshape(1,-1)>-1, bwd_occs_.reshape(bwd_occs_.shape[0],-1)>0.5), dim=0)] + + fwd_mappings = [] + bwd_mappings = [] + interattn_masks = [] + for scale in [8.0, 16.0]: + fwd_mapping, bwd_mapping, interattn_mask = get_mapping_ind(bwd_flows, bwd_occs, imgs_torch, scale=scale) + fwd_mappings += [fwd_mapping] + bwd_mappings += [bwd_mapping] + interattn_masks += [interattn_mask] + + interattn_paras = {} + interattn_paras['fwd_mappings'] = fwd_mappings + interattn_paras['bwd_mappings'] = bwd_mappings + interattn_paras['interattn_masks'] = interattn_masks + + gc.collect() + torch.cuda.empty_cache() + + return [fwd_flows, bwd_flows], [fwd_occs, bwd_occs], attn_mask, interattn_paras diff --git a/src/ebsynth/blender/guide.py b/src/ebsynth/blender/guide.py new file mode 100644 index 0000000000000000000000000000000000000000..daefb2e1b41987a577269d043c0be87c47c40c7e --- /dev/null +++ b/src/ebsynth/blender/guide.py @@ -0,0 +1,104 @@ +import os + +import cv2 +import numpy as np + +from flow.flow_utils import flow_calc, read_flow, read_mask + + +class BaseGuide: + + def __init__(self): + ... + + def get_cmd(self, i, weight) -> str: + return (f'-guide {os.path.abspath(self.imgs[0])} ' + f'{os.path.abspath(self.imgs[i])} -weight {weight}') + + +class ColorGuide(BaseGuide): + + def __init__(self, imgs): + super().__init__() + self.imgs = imgs + + +class PositionalGuide(BaseGuide): + + def __init__(self, flow_paths, save_paths): + super().__init__() + flows = [read_flow(f) for f in flow_paths] + masks = [read_mask(f) for f in flow_paths] + # TODO: modify the format of flow to numpy + H, W = flows[0].shape[2:] + first_img = PositionalGuide.__generate_first_img(H, W) + prev_img = first_img + imgs = [first_img] + cid = 0 + for flow, mask in zip(flows, masks): + cur_img = flow_calc.warp(prev_img, flow, + 'nearest').astype(np.uint8) + cur_img = cv2.inpaint(cur_img, mask, 30, cv2.INPAINT_TELEA) + prev_img = cur_img + imgs.append(cur_img) + cid += 1 + cv2.imwrite(f'guide/{cid}.jpg', mask) + + for path, img in zip(save_paths, imgs): + cv2.imwrite(path, img) + self.imgs = save_paths + + @staticmethod + def __generate_first_img(H, W): + Hs = np.linspace(0, 1, H) + Ws = np.linspace(0, 1, W) + i, j = np.meshgrid(Hs, Ws, indexing='ij') + r = (i * 255).astype(np.uint8) + g = (j * 255).astype(np.uint8) + b = np.zeros(r.shape) + res = np.stack((b, g, r), 2) + return res + + +class EdgeGuide(BaseGuide): + + def __init__(self, imgs, save_paths): + super().__init__() + edges = [EdgeGuide.__generate_edge(cv2.imread(img)) for img in imgs] + for path, img in zip(save_paths, edges): + cv2.imwrite(path, img) + self.imgs = save_paths + + @staticmethod + def __generate_edge(img): + filter = np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]]) + res = cv2.filter2D(img, -1, filter) + return res + + +class TemporalGuide(BaseGuide): + + def __init__(self, key_img, stylized_imgs, flow_paths, save_paths): + super().__init__() + self.flows = [read_flow(f) for f in flow_paths] + self.masks = [read_mask(f) for f in flow_paths] + self.stylized_imgs = stylized_imgs + self.imgs = save_paths + + first_img = cv2.imread(key_img) + cv2.imwrite(self.imgs[0], first_img) + + def get_cmd(self, i, weight) -> str: + if i == 0: + warped_img = self.stylized_imgs[0] + else: + prev_img = cv2.imread(self.stylized_imgs[i - 1]) + warped_img = flow_calc.warp(prev_img, self.flows[i - 1], + 'nearest').astype(np.uint8) + + warped_img = cv2.inpaint(warped_img, self.masks[i - 1], 30, + cv2.INPAINT_TELEA) + + cv2.imwrite(self.imgs[i], warped_img) + + return super().get_cmd(i, weight) diff --git a/src/ebsynth/blender/histogram_blend.py b/src/ebsynth/blender/histogram_blend.py new file mode 100644 index 0000000000000000000000000000000000000000..a3ccb3bff85dbab5e0f4b2e795c3ce0a1af9f519 --- /dev/null +++ b/src/ebsynth/blender/histogram_blend.py @@ -0,0 +1,50 @@ +import cv2 +import numpy as np + + +def histogram_transform(img: np.ndarray, means: np.ndarray, stds: np.ndarray, + target_means: np.ndarray, target_stds: np.ndarray): + means = means.reshape((1, 1, 3)) + stds = stds.reshape((1, 1, 3)) + target_means = target_means.reshape((1, 1, 3)) + target_stds = target_stds.reshape((1, 1, 3)) + x = img.astype(np.float32) + x = (x - means) * target_stds / stds + target_means + # x = np.round(x) + # x = np.clip(x, 0, 255) + # x = x.astype(np.uint8) + return x + + +def blend(a: np.ndarray, + b: np.ndarray, + min_error: np.ndarray, + weight1=0.5, + weight2=0.5): + a = cv2.cvtColor(a, cv2.COLOR_BGR2Lab) + b = cv2.cvtColor(b, cv2.COLOR_BGR2Lab) + min_error = cv2.cvtColor(min_error, cv2.COLOR_BGR2Lab) + a_mean = np.mean(a, axis=(0, 1)) + a_std = np.std(a, axis=(0, 1)) + b_mean = np.mean(b, axis=(0, 1)) + b_std = np.std(b, axis=(0, 1)) + min_error_mean = np.mean(min_error, axis=(0, 1)) + min_error_std = np.std(min_error, axis=(0, 1)) + + t_mean_val = 0.5 * 256 + t_std_val = (1 / 36) * 256 + t_mean = np.ones([3], dtype=np.float32) * t_mean_val + t_std = np.ones([3], dtype=np.float32) * t_std_val + a = histogram_transform(a, a_mean, a_std, t_mean, t_std) + + b = histogram_transform(b, b_mean, b_std, t_mean, t_std) + ab = (a * weight1 + b * weight2 - t_mean_val) / 0.5 + t_mean_val + ab_mean = np.mean(ab, axis=(0, 1)) + ab_std = np.std(ab, axis=(0, 1)) + ab = histogram_transform(ab, ab_mean, ab_std, min_error_mean, + min_error_std) + ab = np.round(ab) + ab = np.clip(ab, 0, 255) + ab = ab.astype(np.uint8) + ab = cv2.cvtColor(ab, cv2.COLOR_Lab2BGR) + return ab diff --git a/src/ebsynth/blender/poisson_fusion.py b/src/ebsynth/blender/poisson_fusion.py new file mode 100644 index 0000000000000000000000000000000000000000..257a274d4cfdd626bf001315b185cb26e8b9d187 --- /dev/null +++ b/src/ebsynth/blender/poisson_fusion.py @@ -0,0 +1,93 @@ +import cv2 +import numpy as np +import scipy + +As = None +prev_states = None + + +def construct_A(h, w, grad_weight): + indgx_x = [] + indgx_y = [] + indgy_x = [] + indgy_y = [] + vdx = [] + vdy = [] + for i in range(h): + for j in range(w): + if i < h - 1: + indgx_x += [i * w + j] + indgx_y += [i * w + j] + vdx += [1] + indgx_x += [i * w + j] + indgx_y += [(i + 1) * w + j] + vdx += [-1] + if j < w - 1: + indgy_x += [i * w + j] + indgy_y += [i * w + j] + vdy += [1] + indgy_x += [i * w + j] + indgy_y += [i * w + j + 1] + vdy += [-1] + Ix = scipy.sparse.coo_array( + (np.ones(h * w), (np.arange(h * w), np.arange(h * w))), + shape=(h * w, h * w)).tocsc() + Gx = scipy.sparse.coo_array( + (np.array(vdx), (np.array(indgx_x), np.array(indgx_y))), + shape=(h * w, h * w)).tocsc() + Gy = scipy.sparse.coo_array( + (np.array(vdy), (np.array(indgy_x), np.array(indgy_y))), + shape=(h * w, h * w)).tocsc() + As = [] + for i in range(3): + As += [ + scipy.sparse.vstack([Gx * grad_weight[i], Gy * grad_weight[i], Ix]) + ] + return As + + +# blendI, I1, I2, mask should be RGB unit8 type +# return poissson fusion result (RGB unit8 type) +# I1 and I2: propagated results from previous and subsequent key frames +# mask: pixel selection mask +# blendI: contrastive-preserving blending results of I1 and I2 +def poisson_fusion(blendI, I1, I2, mask, grad_weight=[2.5, 0.5, 0.5]): + global As + global prev_states + + Iab = cv2.cvtColor(blendI, cv2.COLOR_BGR2LAB).astype(float) + Ia = cv2.cvtColor(I1, cv2.COLOR_BGR2LAB).astype(float) + Ib = cv2.cvtColor(I2, cv2.COLOR_BGR2LAB).astype(float) + m = (mask > 0).astype(float)[:, :, np.newaxis] + h, w, c = Iab.shape + + # fuse the gradient of I1 and I2 with mask + gx = np.zeros_like(Ia) + gy = np.zeros_like(Ia) + gx[:-1, :, :] = (Ia[:-1, :, :] - Ia[1:, :, :]) * (1 - m[:-1, :, :]) + ( + Ib[:-1, :, :] - Ib[1:, :, :]) * m[:-1, :, :] + gy[:, :-1, :] = (Ia[:, :-1, :] - Ia[:, 1:, :]) * (1 - m[:, :-1, :]) + ( + Ib[:, :-1, :] - Ib[:, 1:, :]) * m[:, :-1, :] + + # construct A for solving Ax=b + crt_states = (h, w, grad_weight) + if As is None or crt_states != prev_states: + As = construct_A(*crt_states) + prev_states = crt_states + + final = [] + for i in range(3): + weight = grad_weight[i] + im_dx = np.clip(gx[:, :, i].reshape(h * w, 1), -100, 100) + im_dy = np.clip(gy[:, :, i].reshape(h * w, 1), -100, 100) + im = Iab[:, :, i].reshape(h * w, 1) + im_mean = im.mean() + im = im - im_mean + A = As[i] + b = np.vstack([im_dx * weight, im_dy * weight, im]) + out = scipy.sparse.linalg.lsqr(A, b) + out_im = (out[0] + im_mean).reshape(h, w, 1) + final += [out_im] + + final = np.clip(np.concatenate(final, axis=2), 0, 255) + return cv2.cvtColor(final.astype(np.uint8), cv2.COLOR_LAB2BGR) diff --git a/src/ebsynth/blender/video_sequence.py b/src/ebsynth/blender/video_sequence.py new file mode 100644 index 0000000000000000000000000000000000000000..4c2f663990602b084a671c1d038238ac1d749642 --- /dev/null +++ b/src/ebsynth/blender/video_sequence.py @@ -0,0 +1,187 @@ +import os +import shutil + + +class VideoSequence: + + def __init__(self, + base_dir, + key_ind, + input_subdir='videos', + key_subdir='keys0', + tmp_subdir='tmp', + input_format='frame%04d.jpg', + key_format='%04d.jpg', + out_subdir_format='out_%d', + blending_out_subdir='blend', + output_format='%04d.jpg'): + #if (end_frame - beg_frame) % interval != 0: + # end_frame -= (end_frame - beg_frame) % interval + + self.__base_dir = base_dir + self.__input_dir = os.path.join(base_dir, input_subdir) + self.__key_dir = os.path.join(base_dir, key_subdir) + self.__tmp_dir = os.path.join(base_dir, tmp_subdir) + self.__input_format = input_format + self.__blending_out_dir = os.path.join(base_dir, blending_out_subdir) + self.__key_format = key_format + self.__out_subdir_format = out_subdir_format + self.__output_format = output_format + self.__key_ind = key_ind + #self.__beg_frame = beg_frame + #self.__end_frame = end_frame + #self.__interval = interval + self.__n_seq = len(key_ind)-1#(end_frame - beg_frame) // interval + self.__make_out_dirs() + os.makedirs(self.__tmp_dir, exist_ok=True) + + @property + def beg_frame(self): + return self.__key_ind[0]#self.__beg_frame + + @property + def end_frame(self): + return self.__key_ind[-1]#self.__end_frame + + @property + def n_seq(self): + return self.__n_seq + + @property + def blending_dir(self): + return os.path.abspath(self.__blending_out_dir) + + def interval(self, i): + return self.get_sequence_beg_id(i + 1) - self.get_sequence_beg_id(i) + + def remove_out_and_tmp(self): + for i in range(self.n_seq + 1): + out_dir = self.__get_out_subdir(i) + shutil.rmtree(out_dir) + shutil.rmtree(self.__tmp_dir) + + def get_input_sequence(self, i, is_forward=True): + beg_id = self.get_sequence_beg_id(i) + end_id = self.get_sequence_beg_id(i + 1) + if is_forward: + id_list = list(range(beg_id, end_id)) + else: + id_list = list(range(end_id, beg_id, -1)) + path_dir = [ + os.path.join(self.__input_dir, self.__input_format % id) + for id in id_list + ] + return path_dir + + def get_output_sequence(self, i, is_forward=True): + beg_id = self.get_sequence_beg_id(i) + end_id = self.get_sequence_beg_id(i + 1) + if is_forward: + id_list = list(range(beg_id, end_id)) + else: + i += 1 + id_list = list(range(end_id, beg_id, -1)) + out_subdir = self.__get_out_subdir(i) + path_dir = [ + os.path.join(out_subdir, self.__output_format % id) + for id in id_list + ] + return path_dir + + def get_temporal_sequence(self, i, is_forward=True): + beg_id = self.get_sequence_beg_id(i) + end_id = self.get_sequence_beg_id(i + 1) + if is_forward: + id_list = list(range(beg_id, end_id)) + else: + i += 1 + id_list = list(range(end_id, beg_id, -1)) + tmp_dir = self.__get_tmp_out_subdir(i) + path_dir = [ + os.path.join(tmp_dir, 'temporal_' + self.__output_format % id) + for id in id_list + ] + return path_dir + + def get_edge_sequence(self, i, is_forward=True): + beg_id = self.get_sequence_beg_id(i) + end_id = self.get_sequence_beg_id(i + 1) + if is_forward: + id_list = list(range(beg_id, end_id)) + else: + i += 1 + id_list = list(range(end_id, beg_id, -1)) + tmp_dir = self.__get_tmp_out_subdir(i) + path_dir = [ + os.path.join(tmp_dir, 'edge_' + self.__output_format % id) + for id in id_list + ] + return path_dir + + def get_pos_sequence(self, i, is_forward=True): + beg_id = self.get_sequence_beg_id(i) + end_id = self.get_sequence_beg_id(i + 1) + if is_forward: + id_list = list(range(beg_id, end_id)) + else: + i += 1 + id_list = list(range(end_id, beg_id, -1)) + tmp_dir = self.__get_tmp_out_subdir(i) + path_dir = [ + os.path.join(tmp_dir, 'pos_' + self.__output_format % id) + for id in id_list + ] + return path_dir + + def get_flow_sequence(self, i, is_forward=True): + beg_id = self.get_sequence_beg_id(i) + end_id = self.get_sequence_beg_id(i + 1) + if is_forward: + id_list = list(range(beg_id, end_id - 1)) + path_dir = [ + os.path.join(self.__tmp_dir, 'flow_f_%04d.npy' % id) + for id in id_list + ] + else: + id_list = list(range(end_id, beg_id + 1, -1)) + path_dir = [ + os.path.join(self.__tmp_dir, 'flow_b_%04d.npy' % id) + for id in id_list + ] + + return path_dir + + def get_input_img(self, i): + return os.path.join(self.__input_dir, self.__input_format % i) + + def get_key_img(self, i): + sequence_beg_id = self.get_sequence_beg_id(i) + return os.path.join(self.__key_dir, + self.__key_format % sequence_beg_id) + + def get_blending_img(self, i): + return os.path.join(self.__blending_out_dir, self.__output_format % i) + + def get_sequence_beg_id(self, i): + return self.__key_ind[i]#i * self.__interval + self.__beg_frame + + def __get_out_subdir(self, i): + dir_id = self.get_sequence_beg_id(i) + out_subdir = os.path.join(self.__base_dir, + self.__out_subdir_format % dir_id) + return out_subdir + + def __get_tmp_out_subdir(self, i): + dir_id = self.get_sequence_beg_id(i) + tmp_out_subdir = os.path.join(self.__tmp_dir, + self.__out_subdir_format % dir_id) + return tmp_out_subdir + + def __make_out_dirs(self): + os.makedirs(self.__base_dir, exist_ok=True) + os.makedirs(self.__blending_out_dir, exist_ok=True) + for i in range(self.__n_seq + 1): + out_subdir = self.__get_out_subdir(i) + tmp_subdir = self.__get_tmp_out_subdir(i) + os.makedirs(out_subdir, exist_ok=True) + os.makedirs(tmp_subdir, exist_ok=True) diff --git a/src/ebsynth/deps/ebsynth/README.md b/src/ebsynth/deps/ebsynth/README.md new file mode 100644 index 0000000000000000000000000000000000000000..88e6b505a0c9dd158c962d4d6055ca4e1c4ec6d3 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/README.md @@ -0,0 +1,180 @@ +# Ebsynth: A Fast Example-based Image Synthesizer + +`ebsynth` is a versatile tool for by-example synthesis of images. +It can be used for a variety of image synthesis tasks, including guided +texture synthesis, artistic style transfer, content-aware inpainting +and super-resolution. + +The focus of `ebsynth` is on preserving the fidelity of the source material. +Unlike other recent approaches, `ebsynth` doesn't rely on neural networks. +Instead, it uses a state-of-the-art implementation of non-parametric +texture synthesis algorithms. Thanks to its patch-based nature, `ebsynth` +produces crisp results, which preserve all the fine detail present in the +original image. + +## Basic usage + +``` +ebsynth -style -guide -output +``` + +## Options +``` +-style +-guide +-weight +-uniformity +-patchsize +-pyramidlevels +-searchvoteiters +-patchmatchiters +-extrapass3x3 +-backend [cpu|cuda] +``` + +## Download + +Pre-built Windows binary can be downloaded from here: [http://jamriska.cz/ebsynth/ebsynth-win64.zip](http://jamriska.cz/ebsynth/ebsynth-win64.zip). + +# Examples + +## Texture-by-numbers + +The first example shows how to perform a basic guided texture synthesis with `ebsynth`. +This use-case was first proposed in the original Image Analogies paper [1], where they +called it 'texture-by-numbers'. We start with a photograph of a natural scene together +with its segmentation (e.g., rock is painted green, sky with blue): + +

+ +

+ +``` +ebsynth -style source_photo.png -guide source_segment.png target_segment.png -output output.png +``` + +Next, we paint a target segmentation by hand, and we ask `ebsynth` to produce +a new 'photograph' that would match it. In the language of style transfer: we want +to transfer the *style* of the source photograph onto the target segmentation in +a way that would respect the individual segments. The segmentation acts as a *guide* +for the synthesis. + +## StyLit: Illumination-Guided Stylization of 3D Renderings +

+ +

+ +This example shows how to achieve a non-photorealistic rendering with `ebsynth`. +It is based on the work of Fišer et al. [7]. The goal is to render a 3D model like +an artist would do. Specifically, we want to capture the way how an artist conveys +the different illumination effects, like highlights, contact shadows, and indirect +bounces. To that end, we set up a simple reference scene with an illuminated ball, +and let the artist draw it in her/his style. We use an off-the-shelf path tracer +to produce the separate render passes, e.g., full global illumination, just the +direct diffuse component, just the indirect bounce, etc. Next, we render the same +set of passes for the target 3D model and use them as guides for `ebsynth`. + +

+ +

+ +``` +ebsynth -style source_style.png + -guide source_fullgi.png target_fullgi.png -weight 0.66 + -guide source_dirdif.png target_dirdif.png -weight 0.66 + -guide source_indirb.png target_indirb.png -weight 0.66 + -output output.png +``` + +Compared to texture-by-numbers, the main difference here is we now have *multiple* +guiding channels. Note the guides always come in pairs: source guide first, target +guide second. For better results, we might want to boost the contribution of guides +relative to the style. In the example above, the style has a default weight of 1.0, +while the guide channels have weight of 0.66 each. In sum, the total guide weight +is 2.0, resulting in 2:1 guide-to-style ratio. + +## FaceStyle: Example-based Stylization of Face Portraits + +

+ +

+ +This example demonstrates how one can use `ebsynth` to transfer the style of +a portrait painting onto another person's photograph. It is based on the work +of Fišer et al. [8]. The goal is to reproduce the fine nuances of the source +painting, while preserving the identity of the target person. I.e., we want +the person to still be recognizable after the synthesis. + +Unlike with StyLit, in this setting we don't have the reference 3D geometry +to use as a guide. However, we can exploit the fact that both the source painting +and the target photo contain a human face, which has a well-defined structure. +We will use this structure to infer the necessary guiding information. + +

+ +

+ +``` +ebsynth -style source_painting.png + -guide source_Gapp.png target_Gapp.png -weight 2.0 + -guide source_Gseg.png target_Gseg.png -weight 1.5 + -guide source_Gpos.png target_Gpos.png -weight 1.5 + -output output.png +``` + +Specifically, we detect the facial landmarks in both the target and source images, +and use them to produce a soft segmentation guide `Gseg`, and a positional guide +`Gpos`, which is essentially a dense warp field that maps every target pixel to its +corresponding position in source. To preserve the person's identity, we use the +appearance guide `Gapp`, which is a grayscale version of the target photo that was +equalized to match the luminance of the source painting. + +-------------------------------------------------------------------------- + +## License + +The code is released into the public domain. You can do anything you want with it. + +However, you should be aware that the code implements the PatchMatch algorithm, which is patented by Adobe (U.S. Patent 8,861,869). Other techniques might be patented as well. It is your responsibility to make sure you're not infringing any patent holders' rights by using this code. + +## Citation + +If you find this code useful for your research, please cite: + +``` +@misc{Jamriska2018, + author = {Jamriska, Ondrej}, + title = {Ebsynth: Fast Example-based Image Synthesis and Style Transfer}, + year = {2018}, + publisher = {GitHub}, + journal = {GitHub repository}, + howpublished = {\url{https://github.com/jamriska/ebsynth}}, +} +``` + +## References + +1. Image Analogies + Aaron Hertzmann, Chuck Jacobs, Nuria Oliver, Brian Curless, David H. Salesin + In SIGGRAPH 2001 Conference Proceedings, 327–340. +2. Texture optimization for example-based synthesis + Vivek Kwatra, Irfan A. Essa, Aaron F. Bobick, Nipun Kwatra + ACM Transactions on Graphics 24, 3 (2005), 795–802. +3. Space-Time Completion of Video + Yonatan Wexler, Eli Shechtman, Michal Irani + IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 3 (2007), 463–476. +4. PatchMatch: A randomized correspondence algorithm for structural image editing + Connelly Barnes, Eli Shechtman, Adam Finkelstein, Dan B. Goldman + ACM Transactions on Graphics 28, 3 (2009), 24. +5. Self Tuning Texture Optimization + Alexandre Kaspar, Boris Neubert, Dani Lischinski, Mark Pauly, Johannes Kopf + Computer Graphics Forum 34, 2 (2015), 349–360. +6. LazyFluids: Appearance Transfer for Fluid Animations + Ondřej Jamriška, Jakub Fišer, Paul Asente, Jingwan Lu, Eli Shechtman, Daniel Sýkora + ACM Transactions on Graphics 34, 4 (2015), 92. +7. StyLit: Illumination-Guided Example-Based Stylization of 3D Renderings + Jakub Fišer, Ondřej Jamriška, Michal Lukáč, Eli Shechtman, Paul Asente, Jingwan Lu, Daniel Sýkora + ACM Transactions on Graphics 35, 4 (2016), 92. +8. Example-Based Synthesis of Stylized Facial Animations + Jakub Fišer, Ondřej Jamriška, David Simons, Eli Shechtman, Jingwan Lu, Paul Asente, Michal Lukáč, Daniel Sýkora + ACM Transactions on Graphics 36, 4 (2017), 155. diff --git a/src/ebsynth/deps/ebsynth/bin/ebsynth b/src/ebsynth/deps/ebsynth/bin/ebsynth new file mode 100644 index 0000000000000000000000000000000000000000..1253e7c9e0572cf40a43e2057df17ab1d72b1ab0 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/bin/ebsynth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4b8dd9fb73356f15b6450a3c565766cc3b3a0cc5424c6e109e93d0cc99b190ed +size 22698520 diff --git a/src/ebsynth/deps/ebsynth/build-linux-cpu+cuda.sh b/src/ebsynth/deps/ebsynth/build-linux-cpu+cuda.sh new file mode 100644 index 0000000000000000000000000000000000000000..a5455e475f3782b514017a2577fc9ef05e565fd9 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/build-linux-cpu+cuda.sh @@ -0,0 +1,3 @@ +#!/bin/sh +nvcc -arch compute_50 src/ebsynth.cpp src/ebsynth_cpu.cpp src/ebsynth_cuda.cu -I"include" -DNDEBUG -D__CORRECT_ISO_CPP11_MATH_H_PROTO -O6 -std=c++11 -w -Xcompiler -fopenmp -o bin/ebsynth +chmod +x bin/ebsynth diff --git a/src/ebsynth/deps/ebsynth/build-linux-cpu_only.sh b/src/ebsynth/deps/ebsynth/build-linux-cpu_only.sh new file mode 100644 index 0000000000000000000000000000000000000000..01d419b11181f24d7bf390a2ee6801394ea59111 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/build-linux-cpu_only.sh @@ -0,0 +1,2 @@ +#!/bin/sh +g++ src/ebsynth.cpp src/ebsynth_cpu.cpp src/ebsynth_nocuda.cpp -DNDEBUG -O6 -fopenmp -I"include" -std=c++11 -o bin/ebsynth diff --git a/src/ebsynth/deps/ebsynth/build-macos-cpu_only.sh b/src/ebsynth/deps/ebsynth/build-macos-cpu_only.sh new file mode 100644 index 0000000000000000000000000000000000000000..0cf6c9d3e9e353fad6fbfb5998d2a00190c8080c --- /dev/null +++ b/src/ebsynth/deps/ebsynth/build-macos-cpu_only.sh @@ -0,0 +1,2 @@ +#!/bin/sh +clang++ src/ebsynth.cpp src/ebsynth_cpu.cpp src/ebsynth_nocuda.cpp -DNDEBUG -O3 -I"include" -std=c++11 -o bin/ebsynth diff --git a/src/ebsynth/deps/ebsynth/build-win32-cpu+cuda.bat b/src/ebsynth/deps/ebsynth/build-win32-cpu+cuda.bat new file mode 100644 index 0000000000000000000000000000000000000000..da85105f7cdd00f2cd293e8e8e7babd65fd57480 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/build-win32-cpu+cuda.bat @@ -0,0 +1,13 @@ +@echo off +setlocal ENABLEDELAYEDEXPANSION + +call "vcvarsall.bat" x86 + +nvcc -m32 -arch compute_50 src\ebsynth.cpp src\ebsynth_cpu.cpp src\ebsynth_cuda.cu -DNDEBUG -O6 -I "include" -o "bin\ebsynth.exe" -Xcompiler "/openmp /fp:fast" -Xlinker "/IMPLIB:dummy.lib" -w || goto error +nvcc -m32 -arch compute_50 src\ebsynth.cpp src\ebsynth_cpu.cpp src\ebsynth_cuda.cu -DNDEBUG -O6 -I "include" -o "bin\ebsynth.dll" -Xcompiler "/openmp /fp:fast" -Xlinker "/IMPLIB:lib\ebsynth.lib" -shared -DEBSYNTH_API=__declspec(dllexport) -w || goto error +del dummy.lib;dummy.exp 2> NUL +goto :EOF + +:error +echo FAILED +@%COMSPEC% /C exit 1 >nul diff --git a/src/ebsynth/deps/ebsynth/build-win32-cpu_only.bat b/src/ebsynth/deps/ebsynth/build-win32-cpu_only.bat new file mode 100644 index 0000000000000000000000000000000000000000..328d1f1bf8f250781ce51537d8b1b7deed8d5a42 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/build-win32-cpu_only.bat @@ -0,0 +1,13 @@ +@echo off +setlocal ENABLEDELAYEDEXPANSION + +call "vcvarsall.bat" x86 + +cl src\ebsynth.cpp src\ebsynth_cpu.cpp src\ebsynth_nocuda.cpp /DNDEBUG /O2 /openmp /EHsc /nologo /I"include" /Fe"bin\ebsynth.exe" || goto error +cl src\ebsynth.cpp src\ebsynth_cpu.cpp src\ebsynth_nocuda.cpp /DNDEBUG /O2 /openmp /EHsc /nologo /I"include" /Fe"bin\ebsynth.dll" /DEBSYNTH_API="__declspec(dllexport)" /link /IMPLIB:"lib\ebsynth.lib" || goto error +del ebsynth.obj;ebsynth_cpu.obj;ebsynth_nocuda.obj 2> NUL +goto :EOF + +:error +echo FAILED +@%COMSPEC% /C exit 1 >nul diff --git a/src/ebsynth/deps/ebsynth/build-win64-cpu+cuda.bat b/src/ebsynth/deps/ebsynth/build-win64-cpu+cuda.bat new file mode 100644 index 0000000000000000000000000000000000000000..e8734e65a128212f1c9ccce9f408ea18fbf1b464 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/build-win64-cpu+cuda.bat @@ -0,0 +1,13 @@ +@echo off +setlocal ENABLEDELAYEDEXPANSION + +call "vcvarsall.bat" amd64 + +nvcc -arch compute_50 src\ebsynth.cpp src\ebsynth_cpu.cpp src\ebsynth_cuda.cu -DNDEBUG -O6 -I "include" -o "bin\ebsynth.exe" -Xcompiler "/openmp /fp:fast" -Xlinker "/IMPLIB:dummy.lib" -w || goto error +nvcc -arch compute_50 src\ebsynth.cpp src\ebsynth_cpu.cpp src\ebsynth_cuda.cu -DNDEBUG -O6 -I "include" -o "bin\ebsynth.dll" -Xcompiler "/openmp /fp:fast" -Xlinker "/IMPLIB:lib\ebsynth.lib" -shared -DEBSYNTH_API=__declspec(dllexport) -w || goto error +del dummy.lib;dummy.exp 2> NUL +goto :EOF + +:error +echo FAILED +@%COMSPEC% /C exit 1 >nul diff --git a/src/ebsynth/deps/ebsynth/build-win64-cpu_only.bat b/src/ebsynth/deps/ebsynth/build-win64-cpu_only.bat new file mode 100644 index 0000000000000000000000000000000000000000..5a9fd5ee2edef75354da6cb2da091bdce64cd159 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/build-win64-cpu_only.bat @@ -0,0 +1,13 @@ +@echo off +setlocal ENABLEDELAYEDEXPANSION + +call "vcvarsall.bat" amd64 + +cl src\ebsynth.cpp src\ebsynth_cpu.cpp src\ebsynth_nocuda.cpp /DNDEBUG /O2 /openmp /EHsc /nologo /I"include" /Fe"bin\ebsynth.exe" || goto error +cl src\ebsynth.cpp src\ebsynth_cpu.cpp src\ebsynth_nocuda.cpp /DNDEBUG /O2 /openmp /EHsc /nologo /I"include" /Fe"bin\ebsynth.dll" /DEBSYNTH_API="__declspec(dllexport)" /link /IMPLIB:"lib\ebsynth.lib" || goto error +del ebsynth.obj;ebsynth_cpu.obj;ebsynth_nocuda.obj 2> NUL +goto :EOF + +:error +echo FAILED +@%COMSPEC% /C exit 1 >nul diff --git a/src/ebsynth/deps/ebsynth/include/ebsynth.h b/src/ebsynth/deps/ebsynth/include/ebsynth.h new file mode 100644 index 0000000000000000000000000000000000000000..cdbc995558b847f3e1e8f4a2a8cdd2f314b8c16b --- /dev/null +++ b/src/ebsynth/deps/ebsynth/include/ebsynth.h @@ -0,0 +1,77 @@ +// This software is in the public domain. Where that dedication is not +// recognized, you are granted a perpetual, irrevocable license to copy +// and modify this file as you see fit. + +#ifndef EBSYNTH_H +#define EBSYNTH_H + +#ifndef EBSYNTH_API + #ifdef WIN32 + #define EBSYNTH_API __declspec(dllimport) + #else + #define EBSYNTH_API + #endif +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#define EBSYNTH_BACKEND_CPU 0x0001 +#define EBSYNTH_BACKEND_CUDA 0x0002 +#define EBSYNTH_BACKEND_AUTO 0x0000 + +#define EBSYNTH_MAX_STYLE_CHANNELS 8 +#define EBSYNTH_MAX_GUIDE_CHANNELS 24 + +#define EBSYNTH_VOTEMODE_PLAIN 0x0001 // weight = 1 +#define EBSYNTH_VOTEMODE_WEIGHTED 0x0002 // weight = 1/(1+error) + +EBSYNTH_API +int ebsynthBackendAvailable(int ebsynthBackend); // returns non-zero if the specified backend is available + +EBSYNTH_API +void ebsynthRun(int ebsynthBackend, // use BACKEND_CUDA for maximum speed, BACKEND_CPU for compatibility, or BACKEND_AUTO to auto-select + + int numStyleChannels, + int numGuideChannels, + + int sourceWidth, + int sourceHeight, + void* sourceStyleData, // (width * height * numStyleChannels) bytes, scan-line order + void* sourceGuideData, // (width * height * numGuideChannels) bytes, scan-line order + + int targetWidth, + int targetHeight, + void* targetGuideData, // (width * height * numGuideChannels) bytes, scan-line order + void* targetModulationData, // (width * height * numGuideChannels) bytes, scan-line order; pass NULL to switch off the modulation + + float* styleWeights, // (numStyleChannels) floats + float* guideWeights, // (numGuideChannels) floats + + // guideError(txy,sxy,ch) = guideWeights[ch] * (targetModulation[txy][ch]/255) * (targetGuide[txy][ch]-sourceGuide[sxy][ch])^2 + + float uniformityWeight, // reasonable values are between 500-15000, 3500 is a good default + + int patchSize, // odd sizes only, use 5 for 5x5 patch, 7 for 7x7, etc. + int voteMode, // use VOTEMODE_WEIGHTED for sharper result + + int numPyramidLevels, + + int* numSearchVoteItersPerLevel, // how many search/vote iters to perform at each level (array of ints, coarse first, fine last) + int* numPatchMatchItersPerLevel, // how many Patch-Match iters to perform at each level (array of ints, coarse first, fine last) + + int* stopThresholdPerLevel, // stop improving pixel when its change since last iteration falls under this threshold + + int extraPass3x3, // perform additional polishing pass with 3x3 patches at the finest level, use 0 to disable + + void* outputNnfData, // (width * height * 2) ints, scan-line order; pass NULL to ignore + void* outputImageData, // (width * height * numStyleChannels) bytes, scan-line order + void* outputErrorData // (width * height) bytes + ); + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/src/ebsynth/deps/ebsynth/include/serialize.h b/src/ebsynth/deps/ebsynth/include/serialize.h new file mode 100644 index 0000000000000000000000000000000000000000..25e233a01e2be56c63f44e310e5ae22d4070a8ea --- /dev/null +++ b/src/ebsynth/deps/ebsynth/include/serialize.h @@ -0,0 +1,33 @@ +#ifndef SERIALIZE_H +#define SERIALIZE_H +#include +#include +#include + +template +std::ostream& serialize(std::ostream& os, std::vector const& v) +{ + // this only works on built in data types (PODs) + static_assert(std::is_trivial::value && std::is_standard_layout::value, + "Can only serialize POD types with this function"); + + auto size = v.size(); + os.write(reinterpret_cast(&size), sizeof(size)); + os.write(reinterpret_cast(v.data()), v.size() * sizeof(POD)); + return os; +} + +template +std::istream& deserialize(std::istream& is, std::vector& v) +{ + static_assert(std::is_trivial::value && std::is_standard_layout::value, + "Can only deserialize POD types with this function"); + + decltype(v.size()) size; + is.read(reinterpret_cast(&size), sizeof(size)); + v.resize(size); + is.read(reinterpret_cast(v.data()), v.size() * sizeof(POD)); + return is; +} + +#endif diff --git a/src/ebsynth/deps/ebsynth/src/ebsynth.cpp b/src/ebsynth/deps/ebsynth/src/ebsynth.cpp new file mode 100644 index 0000000000000000000000000000000000000000..1b24d7914544162f30b829b3dfb6c1a41305844a --- /dev/null +++ b/src/ebsynth/deps/ebsynth/src/ebsynth.cpp @@ -0,0 +1,763 @@ +// This software is in the public domain. Where that dedication is not +// recognized, you are granted a perpetual, irrevocable license to copy +// and modify this file as you see fit. + +#include "ebsynth.h" +#include "ebsynth_cpu.h" +#include "ebsynth_cuda.h" +#include "serialize.h" + +#include +#include +#include +#include + +EBSYNTH_API +void ebsynthRun(int ebsynthBackend, + int numStyleChannels, + int numGuideChannels, + int sourceWidth, + int sourceHeight, + void *sourceStyleData, + void *sourceGuideData, + int targetWidth, + int targetHeight, + void *targetGuideData, + void *targetModulationData, + float *styleWeights, + float *guideWeights, + float uniformityWeight, + int patchSize, + int voteMode, + int numPyramidLevels, + int *numSearchVoteItersPerLevel, + int *numPatchMatchItersPerLevel, + int *stopThresholdPerLevel, + int extraPass3x3, + void *outputNnfData, + void *outputImageData, + void *outputErrorData) +{ + void (*backendDispatch)(int, int, int, int, void *, void *, int, int, void *, void *, float *, float *, float, int, int, int, int *, int *, int *, int, void *, void *, void *) = ebsynthRunCpu; + + if (ebsynthBackend == EBSYNTH_BACKEND_CPU) + { + backendDispatch = ebsynthRunCpu; + } + else if (ebsynthBackend == EBSYNTH_BACKEND_CUDA) + { + backendDispatch = ebsynthRunCuda; + } + else if (ebsynthBackend == EBSYNTH_BACKEND_AUTO) + { + backendDispatch = ebsynthBackendAvailableCuda() ? ebsynthRunCuda : ebsynthRunCpu; + } + + if (backendDispatch != 0) + { + backendDispatch(numStyleChannels, + numGuideChannels, + sourceWidth, + sourceHeight, + sourceStyleData, + sourceGuideData, + targetWidth, + targetHeight, + targetGuideData, + targetModulationData, + styleWeights, + guideWeights, + uniformityWeight, + patchSize, + voteMode, + numPyramidLevels, + numSearchVoteItersPerLevel, + numPatchMatchItersPerLevel, + stopThresholdPerLevel, + extraPass3x3, + outputNnfData, + outputImageData, + outputErrorData); + } +} + +EBSYNTH_API +int ebsynthBackendAvailable(int ebsynthBackend) +{ + if (ebsynthBackend == EBSYNTH_BACKEND_CPU) + { + return ebsynthBackendAvailableCpu(); + } + else if (ebsynthBackend == EBSYNTH_BACKEND_CUDA) + { + return ebsynthBackendAvailableCuda(); + } + else if (ebsynthBackend == EBSYNTH_BACKEND_AUTO) + { + return ebsynthBackendAvailableCpu() || ebsynthBackendAvailableCuda(); + } + + return 0; +} + +////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +#include +#include + +#include +#include +#include + +#include "jzq.h" + +template +bool tryToParseArg(const std::vector &args, int *inout_argi, const char *name, bool *out_fail, FUNC handler) +{ + int &argi = *inout_argi; + bool &fail = *out_fail; + + if (argi < 0 || argi >= args.size()) + { + fail = true; + return false; + } + + if (args[argi] == name) + { + argi++; + fail = !handler(); + return true; + } + + fail = false; + return false; +} + +bool tryToParseIntArg(const std::vector &args, int *inout_argi, const char *name, int *out_value, bool *out_fail) +{ + return tryToParseArg(args, inout_argi, name, out_fail, [&] { + int &argi = *inout_argi; + if (argi < args.size()) + { + const std::string &arg = args[argi]; + try + { + std::size_t pos = 0; + *out_value = std::stoi(arg, &pos); + if (pos != arg.size()) + { + printf("error: bad %s argument '%s'\n", name, arg.c_str()); + return false; + } + return true; + } + catch (...) + { + printf("error: bad %s argument '%s'\n", name, arg.c_str()); + return false; + } + } + printf("error: missing argument for the %s option\n", name); + return false; + }); +} + +bool tryToParseFloatArg(const std::vector &args, int *inout_argi, const char *name, float *out_value, bool *out_fail) +{ + return tryToParseArg(args, inout_argi, name, out_fail, [&] { + int &argi = *inout_argi; + if (argi < args.size()) + { + const std::string &arg = args[argi]; + try + { + std::size_t pos = 0; + *out_value = std::stof(arg, &pos); + if (pos != arg.size()) + { + printf("error: bad %s argument '%s'\n", name, arg.c_str()); + return false; + } + return true; + } + catch (...) + { + printf("error: bad %s argument '%s'\n", name, args[argi].c_str()); + return false; + } + } + printf("error: missing argument for the %s option\n", name); + return false; + }); +} + +bool tryToParseStringArg(const std::vector &args, int *inout_argi, const char *name, std::string *out_value, bool *out_fail) +{ + return tryToParseArg(args, inout_argi, name, out_fail, [&] { + int &argi = *inout_argi; + if (argi < args.size()) + { + *out_value = args[argi]; + return true; + } + printf("error: missing argument for the %s option\n", name); + return false; + }); +} + +bool tryToParseStringPairArg(const std::vector &args, int *inout_argi, const char *name, std::pair *out_value, bool *out_fail) +{ + return tryToParseArg(args, inout_argi, name, out_fail, [&] { + int &argi = *inout_argi; + if ((argi + 1) < args.size()) + { + *out_value = std::make_pair(args[argi], args[argi + 1]); + argi++; + return true; + } + printf("error: missing argument for the %s option\n", name); + return false; + }); +} + +#define STB_IMAGE_IMPLEMENTATION +#include "stb_image.h" + +#define STB_IMAGE_WRITE_IMPLEMENTATION +#include "stb_image_write.h" + +unsigned char *tryLoad(const std::string &fileName, int *width, int *height) +{ + unsigned char *data = stbi_load(fileName.c_str(), width, height, NULL, 4); + if (data == NULL) + { + printf("error: failed to load '%s'\n", fileName.c_str()); + printf("%s\n", stbi_failure_reason()); + exit(1); + } + return data; +} + +int evalNumChannels(const unsigned char *data, const int numPixels) +{ + bool isGray = true; + bool hasAlpha = false; + + for (int xy = 0; xy < numPixels; xy++) + { + const unsigned char r = data[xy * 4 + 0]; + const unsigned char g = data[xy * 4 + 1]; + const unsigned char b = data[xy * 4 + 2]; + const unsigned char a = data[xy * 4 + 3]; + + if (!(r == g && g == b)) + { + isGray = false; + } + if (a < 255) + { + hasAlpha = true; + } + } + + const int numChannels = (isGray ? 1 : 3) + (hasAlpha ? 1 : 0); + + return numChannels; +} + +V2i pyramidLevelSize(const V2i &sizeBase, const int level) +{ + return V2i(V2f(sizeBase) * std::pow(2.0f, -float(level))); +} + +std::string backendToString(const int ebsynthBackend) +{ + if (ebsynthBackend == EBSYNTH_BACKEND_CPU) + { + return "cpu"; + } + else if (ebsynthBackend == EBSYNTH_BACKEND_CUDA) + { + return "cuda"; + } + else if (ebsynthBackend == EBSYNTH_BACKEND_AUTO) + { + return "auto"; + } + return "unknown"; +} + +int main(int argc, char **argv) +{ + if (argc < 2) + { + printf("usage: %s [options]\n", argv[0]); + printf("\n"); + printf("options:\n"); + printf(" -style \n"); + printf(" -guide \n"); + printf(" -output \n"); + printf(" -weight \n"); + printf(" -uniformity \n"); + printf(" -patchsize \n"); + printf(" -pyramidlevels \n"); + printf(" -searchvoteiters \n"); + printf(" -patchmatchiters \n"); + printf(" -stopthreshold \n"); + printf(" -extrapass3x3\n"); + printf(" -backend [cpu|cuda]\n"); + printf("\n"); + return 1; + } + + std::string styleFileName; + float styleWeight = -1; + std::string outputFileName = "output.png"; + + struct Guide + { + std::string sourceFileName; + std::string targetFileName; + float weight; + + int sourceWidth; + int sourceHeight; + unsigned char *sourceData; + + int targetWidth; + int targetHeight; + unsigned char *targetData; + + int numChannels; + }; + + std::vector guides; + + float uniformityWeight = 3500; + int patchSize = 5; + int numPyramidLevels = -1; + int numSearchVoteIters = 6; + int numPatchMatchIters = 4; + int stopThreshold = 5; + int extraPass3x3 = 0; + int backend = ebsynthBackendAvailable(EBSYNTH_BACKEND_CUDA) ? EBSYNTH_BACKEND_CUDA : EBSYNTH_BACKEND_CPU; + + { + std::vector args(argc); + for (int i = 0; i < argc; i++) + { + args[i] = argv[i]; + } + + bool fail = false; + int argi = 1; + + float *precedingStyleOrGuideWeight = 0; + while (argi < argc && !fail) + { + float weight; + std::pair guidePair; + std::string backendName; + + if (tryToParseStringArg(args, &argi, "-style", &styleFileName, &fail)) + { + styleWeight = -1; + precedingStyleOrGuideWeight = &styleWeight; + argi++; + } + else if (tryToParseStringPairArg(args, &argi, "-guide", &guidePair, &fail)) + { + Guide guide; + guide.sourceFileName = guidePair.first; + guide.targetFileName = guidePair.second; + guide.weight = -1; + guides.push_back(guide); + precedingStyleOrGuideWeight = &guides[guides.size() - 1].weight; + argi++; + } + else if (tryToParseStringArg(args, &argi, "-output", &outputFileName, &fail)) + { + argi++; + } + else if (tryToParseFloatArg(args, &argi, "-weight", &weight, &fail)) + { + if (precedingStyleOrGuideWeight != 0) + { + if (weight >= 0) + { + *precedingStyleOrGuideWeight = weight; + } + else + { + printf("error: weights must be non-negaitve!\n"); + return 1; + } + } + else + { + printf("error: at least one -style or -guide option must precede the -weight option!\n"); + return 1; + } + argi++; + } + else if (tryToParseFloatArg(args, &argi, "-uniformity", &uniformityWeight, &fail)) + { + argi++; + } + else if (tryToParseIntArg(args, &argi, "-patchsize", &patchSize, &fail)) + { + if (patchSize < 3) + { + printf("error: patchsize is too small!\n"); + return 1; + } + if (patchSize % 2 == 0) + { + printf("error: patchsize must be an odd number!\n"); + return 1; + } + argi++; + } + else if (tryToParseIntArg(args, &argi, "-pyramidlevels", &numPyramidLevels, &fail)) + { + if (numPyramidLevels < 1) + { + printf("error: bad argument for -pyramidlevels!\n"); + return 1; + } + argi++; + } + else if (tryToParseIntArg(args, &argi, "-searchvoteiters", &numSearchVoteIters, &fail)) + { + if (numSearchVoteIters < 0) + { + printf("error: bad argument for -searchvoteiters!\n"); + return 1; + } + argi++; + } + else if (tryToParseIntArg(args, &argi, "-patchmatchiters", &numPatchMatchIters, &fail)) + { + if (numPatchMatchIters < 0) + { + printf("error: bad argument for -patchmatchiters!\n"); + return 1; + } + argi++; + } + else if (tryToParseIntArg(args, &argi, "-stopthreshold", &stopThreshold, &fail)) + { + if (stopThreshold < 0) + { + printf("error: bad argument for -stopthreshold!\n"); + return 1; + } + argi++; + } + else if (tryToParseStringArg(args, &argi, "-backend", &backendName, &fail)) + { + if (backendName == "cpu") + { + backend = EBSYNTH_BACKEND_CPU; + } + else if (backendName == "cuda") + { + backend = EBSYNTH_BACKEND_CUDA; + } + else + { + printf("error: unrecognized backend '%s'\n", backendName.c_str()); + return 1; + } + + if (!ebsynthBackendAvailable(backend)) + { + printf("error: the %s backend is not available!\n", backendToString(backend).c_str()); + return 1; + } + + argi++; + } + else if (argi < args.size() && args[argi] == "-extrapass3x3") + { + extraPass3x3 = 1; + argi++; + } + else + { + printf("error: unrecognized option '%s'\n", args[argi].c_str()); + fail = true; + } + } + + if (fail) + { + return 1; + } + } + + const int numGuides = guides.size(); + + int sourceWidth = 0; + int sourceHeight = 0; + unsigned char *sourceStyleData = tryLoad(styleFileName, &sourceWidth, &sourceHeight); + const int numStyleChannelsTotal = evalNumChannels(sourceStyleData, sourceWidth * sourceHeight); + + std::vector sourceStyle(sourceWidth * sourceHeight * numStyleChannelsTotal); + for (int xy = 0; xy < sourceWidth * sourceHeight; xy++) + { + if (numStyleChannelsTotal > 0) + { + sourceStyle[xy * numStyleChannelsTotal + 0] = sourceStyleData[xy * 4 + 0]; + } + if (numStyleChannelsTotal == 2) + { + sourceStyle[xy * numStyleChannelsTotal + 1] = sourceStyleData[xy * 4 + 3]; + } + else if (numStyleChannelsTotal > 1) + { + sourceStyle[xy * numStyleChannelsTotal + 1] = sourceStyleData[xy * 4 + 1]; + } + if (numStyleChannelsTotal > 2) + { + sourceStyle[xy * numStyleChannelsTotal + 2] = sourceStyleData[xy * 4 + 2]; + } + if (numStyleChannelsTotal > 3) + { + sourceStyle[xy * numStyleChannelsTotal + 3] = sourceStyleData[xy * 4 + 3]; + } + } + + int targetWidth = 0; + int targetHeight = 0; + int numGuideChannelsTotal = 0; + + for (int i = 0; i < numGuides; i++) + { + Guide &guide = guides[i]; + + guide.sourceData = tryLoad(guide.sourceFileName, &guide.sourceWidth, &guide.sourceHeight); + guide.targetData = tryLoad(guide.targetFileName, &guide.targetWidth, &guide.targetHeight); + + if (guide.sourceWidth != sourceWidth || guide.sourceHeight != sourceHeight) + { + printf("error: source guide '%s' doesn't match the resolution of '%s'\n", guide.sourceFileName.c_str(), styleFileName.c_str()); + return 1; + } + if (i > 0 && (guide.targetWidth != targetWidth || guide.targetHeight != targetHeight)) + { + printf("error: target guide '%s' doesn't match the resolution of '%s'\n", guide.targetFileName.c_str(), guides[0].targetFileName.c_str()); + return 1; + } + else if (i == 0) + { + targetWidth = guide.targetWidth; + targetHeight = guide.targetHeight; + } + + guide.numChannels = std::max(evalNumChannels(guide.sourceData, sourceWidth * sourceHeight), + evalNumChannels(guide.targetData, targetWidth * targetHeight)); + + numGuideChannelsTotal += guide.numChannels; + } + + if (numStyleChannelsTotal > EBSYNTH_MAX_STYLE_CHANNELS) + { + printf("error: too many style channels (%d), maximum number is %d\n", numStyleChannelsTotal, EBSYNTH_MAX_STYLE_CHANNELS); + return 1; + } + if (numGuideChannelsTotal > EBSYNTH_MAX_GUIDE_CHANNELS) + { + printf("error: too many guide channels (%d), maximum number is %d\n", numGuideChannelsTotal, EBSYNTH_MAX_GUIDE_CHANNELS); + return 1; + } + + std::vector sourceGuides(sourceWidth * sourceHeight * numGuideChannelsTotal); + for (int xy = 0; xy < sourceWidth * sourceHeight; xy++) + { + int c = 0; + for (int i = 0; i < numGuides; i++) + { + const int numChannels = guides[i].numChannels; + + if (numChannels > 0) + { + sourceGuides[xy * numGuideChannelsTotal + c + 0] = guides[i].sourceData[xy * 4 + 0]; + } + if (numChannels == 2) + { + sourceGuides[xy * numGuideChannelsTotal + c + 1] = guides[i].sourceData[xy * 4 + 3]; + } + else if (numChannels > 1) + { + sourceGuides[xy * numGuideChannelsTotal + c + 1] = guides[i].sourceData[xy * 4 + 1]; + } + if (numChannels > 2) + { + sourceGuides[xy * numGuideChannelsTotal + c + 2] = guides[i].sourceData[xy * 4 + 2]; + } + if (numChannels > 3) + { + sourceGuides[xy * numGuideChannelsTotal + c + 3] = guides[i].sourceData[xy * 4 + 3]; + } + + c += numChannels; + } + } + + std::vector targetGuides(targetWidth * targetHeight * numGuideChannelsTotal); + for (int xy = 0; xy < targetWidth * targetHeight; xy++) + { + int c = 0; + for (int i = 0; i < numGuides; i++) + { + const int numChannels = guides[i].numChannels; + + if (numChannels > 0) + { + targetGuides[xy * numGuideChannelsTotal + c + 0] = guides[i].targetData[xy * 4 + 0]; + } + if (numChannels == 2) + { + targetGuides[xy * numGuideChannelsTotal + c + 1] = guides[i].targetData[xy * 4 + 3]; + } + else if (numChannels > 1) + { + targetGuides[xy * numGuideChannelsTotal + c + 1] = guides[i].targetData[xy * 4 + 1]; + } + if (numChannels > 2) + { + targetGuides[xy * numGuideChannelsTotal + c + 2] = guides[i].targetData[xy * 4 + 2]; + } + if (numChannels > 3) + { + targetGuides[xy * numGuideChannelsTotal + c + 3] = guides[i].targetData[xy * 4 + 3]; + } + + c += numChannels; + } + } + + std::vector styleWeights(numStyleChannelsTotal); + if (styleWeight < 0) + { + styleWeight = 1.0f; + } + for (int i = 0; i < numStyleChannelsTotal; i++) + { + styleWeights[i] = styleWeight / float(numStyleChannelsTotal); + } + + for (int i = 0; i < numGuides; i++) + { + if (guides[i].weight < 0) + { + guides[i].weight = 1.0f / float(numGuides); + } + } + + std::vector guideWeights(numGuideChannelsTotal); + { + int c = 0; + for (int i = 0; i < numGuides; i++) + { + const int numChannels = guides[i].numChannels; + + for (int j = 0; j < numChannels; j++) + { + guideWeights[c + j] = guides[i].weight / float(numChannels); + } + + c += numChannels; + } + } + + int maxPyramidLevels = 0; + for (int level = 32; level >= 0; level--) + { + if (min(pyramidLevelSize(std::min(V2i(sourceWidth, sourceHeight), V2i(targetWidth, targetHeight)), level)) >= (2 * patchSize + 1)) + { + maxPyramidLevels = level + 1; + break; + } + } + + if (numPyramidLevels == -1) + { + numPyramidLevels = maxPyramidLevels; + } + numPyramidLevels = std::min(numPyramidLevels, maxPyramidLevels); + + std::vector numSearchVoteItersPerLevel(numPyramidLevels); + std::vector numPatchMatchItersPerLevel(numPyramidLevels); + std::vector stopThresholdPerLevel(numPyramidLevels); + for (int i = 0; i < numPyramidLevels; i++) + { + numSearchVoteItersPerLevel[i] = numSearchVoteIters; + numPatchMatchItersPerLevel[i] = numPatchMatchIters; + stopThresholdPerLevel[i] = stopThreshold; + } + + std::vector output(targetWidth * targetHeight * numStyleChannelsTotal); + std::vector out_error(targetWidth * targetHeight); + printf("uniformity: %.0f\n", uniformityWeight); + printf("patchsize: %d\n", patchSize); + printf("pyramidlevels: %d\n", numPyramidLevels); + printf("searchvoteiters: %d\n", numSearchVoteIters); + printf("patchmatchiters: %d\n", numPatchMatchIters); + printf("stopthreshold: %d\n", stopThreshold); + printf("extrapass3x3: %s\n", extraPass3x3 != 0 ? "yes" : "no"); + printf("backend: %s\n", backendToString(backend).c_str()); + + ebsynthRun(backend, + numStyleChannelsTotal, + numGuideChannelsTotal, + sourceWidth, + sourceHeight, + sourceStyle.data(), + sourceGuides.data(), + targetWidth, + targetHeight, + targetGuides.data(), + NULL, + styleWeights.data(), + guideWeights.data(), + uniformityWeight, + patchSize, + EBSYNTH_VOTEMODE_PLAIN, + numPyramidLevels, + numSearchVoteItersPerLevel.data(), + numPatchMatchItersPerLevel.data(), + stopThresholdPerLevel.data(), + extraPass3x3, + NULL, + output.data(), + out_error.data()); + + stbi_write_png(outputFileName.c_str(), targetWidth, targetHeight, numStyleChannelsTotal, output.data(), numStyleChannelsTotal * targetWidth); + // printf("error out size: %lu\n", out_error.size()); + size_t last_index = outputFileName.find_last_of("."); + std::string rawFileName = outputFileName.substr(0, last_index); + std::ofstream error_bin = std::ofstream(rawFileName + ".bin", std::ofstream::binary); + + serialize(error_bin, out_error); + + std::ifstream error_in = std::ifstream(rawFileName + ".bin", std::ifstream::binary); + // std::vector in_error(out_error.size()); + + // deserialize(error_in, in_error); + // printf("error in size: %lu\n", in_error.size()); + // printf("error 0: %f", in_error.at(0)); + printf("image result was written to %s\n", outputFileName.c_str()); + printf("binary result was written to %s.bin\n", rawFileName.c_str()); + stbi_image_free(sourceStyleData); + + for (int i = 0; i < numGuides; i++) + { + stbi_image_free(guides[i].sourceData); + stbi_image_free(guides[i].targetData); + } + + return 0; +} diff --git a/src/ebsynth/deps/ebsynth/src/ebsynth_cpu.cpp b/src/ebsynth/deps/ebsynth/src/ebsynth_cpu.cpp new file mode 100644 index 0000000000000000000000000000000000000000..31acdf4f77ca0b8508b853852e723b1803a73aef --- /dev/null +++ b/src/ebsynth/deps/ebsynth/src/ebsynth_cpu.cpp @@ -0,0 +1,1079 @@ +// This software is in the public domain. Where that dedication is not +// recognized, you are granted a perpetual, irrevocable license to copy +// and modify this file as you see fit. + +#include "ebsynth.h" +#include "jzq.h" + +#include +#include +#include + +#ifdef __APPLE__ + #include +#else + #include +#endif + +#define FOR(A,X,Y) for(int Y=0;Y +A2f nnfError(const A2V2i& NNF, + const int patchWidth, + FUNC patchError) +{ + A2f E(size(NNF)); + + #pragma omp parallel for schedule(static) + for(int y=0;y +void krnlVotePlain( Array2>& target, + const Array2>& source, + const Array2>& NNF, + const int patchSize) +{ + for(int y=0;y sumColor = zero>::value(); + float sumWeight = 0; + + for (int py = -r; py <= +r; py++) + for (int px = -r; px <= +r; px++) + { + if + ( + x+px >= 0 && x+px < NNF.width () && + y+py >= 0 && y+py < NNF.height() + ) + { + const V2i n = NNF(x+px,y+py)-V2i(px,py); + + if + ( + n[0] >= 0 && n[0] < source.width () && + n[1] >= 0 && n[1] < source.height() + ) + { + const float weight = 1.0f; + sumColor += weight*Vec(source(n(0),n(1))); + sumWeight += weight; + } + } + } + + const Vec v = Vec(sumColor/sumWeight); + target(x,y) = v; + } +} + +#if 0 +template +__global__ void krnlVoteWeighted( TexArray2 target, + const TexArray2 source, + const TexArray2<2,int> NNF, + const TexArray2<1,float> E, + const int patchSize) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x sumColor = zero>::value(); + float sumWeight = 0; + + for (int py = -r; py <= +r; py++) + for (int px = -r; px <= +r; px++) + { + /* + if + ( + x+px >= 0 && x+px < NNF.width () && + y+py >= 0 && y+py < NNF.height() + ) + */ + { + const V2i n = NNF(x+px,y+py)-V2i(px,py); + + /*if + ( + n[0] >= 0 && n[0] < S.width () && + n[1] >= 0 && n[1] < S.height() + )*/ + { + const float error = E(x+px,y+py)(0)/(patchSize*patchSize*N); + const float weight = 1.0f/(1.0f+error); + sumColor += weight*Vec(source(n(0),n(1))); + sumWeight += weight; + } + } + } + + const Vec v = Vec(sumColor/sumWeight); + target.write(x,y,v); + } +} +#endif + +template +Vec sampleBilinear(const Array2>& I,float x,float y) +{ + const int ix = x; + const int iy = y; + + const float s = x-ix; + const float t = y-iy; + + return Vec((1.0f-s)*(1.0f-t)*Vec(I(clamp(ix ,0,I.width()-1),clamp(iy ,0,I.height()-1)))+ + ( s)*(1.0f-t)*Vec(I(clamp(ix+1,0,I.width()-1),clamp(iy ,0,I.height()-1)))+ + (1.0f-s)*( t)*Vec(I(clamp(ix ,0,I.width()-1),clamp(iy+1,0,I.height()-1)))+ + ( s)*( t)*Vec(I(clamp(ix+1,0,I.width()-1),clamp(iy+1,0,I.height()-1)))); +}; + +/* +template +__global__ void krnlEvalMask( TexArray2<1,unsigned char> mask, + const TexArray2 style, + const TexArray2 style2, + const int stopThreshold) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x s = style(x,y); + const Vec s2 = style2(x,y); + + int maxDiff = 0; + for(int c=0;cmaxDiff ? diff:maxDiff; + } + + const Vec<1,unsigned char> msk = maxDiff < stopThreshold ? Vec<1,unsigned char>(0) : Vec<1,unsigned char>(255); + + mask.write(x,y,msk); + } +} + +__global__ void krnlDilateMask(TexArray2<1,unsigned char> mask2, + const TexArray2<1,unsigned char> mask, + const int patchSize) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x msk = Vec<1,unsigned char>(0); + + for (int py = -r; py <= +r; py++) + for (int px = -r; px <= +r; px++) + { + if (mask(x+px,y+py)[0]==255) { msk = Vec<1,unsigned char>(255); } + } + + mask2.write(x,y,msk); + } +} +*/ + +template +void resampleCPU( Array2>& O, + const Array2>& I) +{ + const float s = float(I.width())/float(O.width()); + + for(int y=0;y +struct PatchSSD_Split +{ + const Array2>& targetStyle; + const Array2>& sourceStyle; + + const Array2>& targetGuide; + const Array2>& sourceGuide; + + const Vec& styleWeights; + const Vec& guideWeights; + + PatchSSD_Split(const Array2>& targetStyle, + const Array2>& sourceStyle, + + const Array2>& targetGuide, + const Array2>& sourceGuide, + + const Vec& styleWeights, + const Vec& guideWeights) + + : targetStyle(targetStyle),sourceStyle(sourceStyle), + targetGuide(targetGuide),sourceGuide(sourceGuide), + styleWeights(styleWeights),guideWeights(guideWeights) {} + + float operator()(const int patchSize, + const V2i txy, + const V2i sxy, + const float ebest) + { + const int tx = txy(0); + const int ty = txy(1); + const int sx = sxy(0); + const int sy = sxy(1); + + const int r = patchSize/2; + float error = 0; + + if(tx-r>=0 && tx+r=0 && ty+rebest) { break; } + } + } + else + { + for(int py=-r;py<=+r;py++) + for(int px=-r;px<=+r;px++) + { + { + const Vec pixTs = targetStyle(clamp(tx + px,0,targetStyle.width()-1),clamp(ty + py,0,targetStyle.height()-1)); + const Vec pixSs = sourceStyle(clamp(sx + px,0,sourceStyle.width()-1),clamp(sy + py,0,sourceStyle.height()-1)); + for(int i=0;i pixTg = targetGuide(clamp(tx + px,0,targetGuide.width()-1),clamp(ty + py,0,targetGuide.height()-1)); + const Vec pixSg = sourceGuide(clamp(sx + px,0,sourceGuide.width()-1),clamp(sy + py,0,sourceGuide.height()-1)); + for(int i=0;i +struct PatchSSD_Split_Modulation +{ + const TexArray2 targetStyle; + const TexArray2 sourceStyle; + + const TexArray2 targetGuide; + const TexArray2 sourceGuide; + + const TexArray2 targetModulation; + + const Vec styleWeights; + const Vec guideWeights; + + PatchSSD_Split_Modulation(const TexArray2& targetStyle, + const TexArray2& sourceStyle, + + const TexArray2& targetGuide, + const TexArray2& sourceGuide, + + const TexArray2& targetModulation, + + const Vec& styleWeights, + const Vec& guideWeights) + + : targetStyle(targetStyle),sourceStyle(sourceStyle), + targetGuide(targetGuide),sourceGuide(sourceGuide), + targetModulation(targetModulation), + styleWeights(styleWeights),guideWeights(guideWeights) {} + + __device__ float operator()(const int patchSize, + const int tx, + const int ty, + const int sx, + const int sy, + const float ebest) + { + const int r = patchSize/2; + float error = 0; + + for(int py=-r;py<=+r;py++) + { + for(int px=-r;px<=+r;px++) + { + { + const Vec pixTs = targetStyle(tx + px,ty + py); + const Vec pixSs = sourceStyle(sx + px,sy + py); + for(int i=0;i pixTg = targetGuide(tx + px,ty + py); + const Vec pixSg = sourceGuide(sx + px,sy + py); + const Vec mult = Vec(targetModulation(tx,ty))/255.0f; + + for(int i=0;iebest) { return error; } + } + + return error; + } +}; +*/ + +static V2i pyramidLevelSize(const V2i& sizeBase,const int numLevels,const int level) +{ + return V2i(V2f(sizeBase)*std::pow(2.0f,-float(numLevels-1-level))); +} + +template +void copy(Array2* out_dst,void* src) +{ + Array2& dst = *out_dst; + memcpy(dst.data(),src,numel(dst)*sizeof(T)); +} + +template +void copy(void** out_dst,const Array2& src) +{ + void*& dst = *out_dst; + memcpy(dst,src.data(),numel(src)*sizeof(T)); +} + +void updateOmega(A2i& Omega,const V2i& sizeA,const int patchWidth,const V2i& axy,const V2i& bxy,const int incdec) +{ + const int r = patchWidth/2; + + int* ptr = (int*)&Omega(bxy(0)-r,bxy(1)-r); + const int ofs = (Omega.width()-patchWidth); + + for(int j=0;j +bool tryPatch(FUNC patchError,const V2i& sizeA,int patchWidth,const V2i& axy,const V2i& bxy,A2V2i& N,A2f& E,A2i& Omega,float omegaBest,float lambda) +{ + const float curOcc = (float(patchOmega(patchWidth,N(axy),Omega))/float(patchWidth*patchWidth))/omegaBest; + const float newOcc = (float(patchOmega(patchWidth, bxy,Omega))/float(patchWidth*patchWidth))/omegaBest; + + const float curErr = E(axy); + const float newErr = patchError(patchWidth,axy,bxy,curErr+lambda*curOcc); + + if ((newErr+lambda*newOcc) < (curErr+lambda*curOcc)) + { + updateOmega(Omega,sizeA,patchWidth,axy,bxy ,+1); + updateOmega(Omega,sizeA,patchWidth,axy,N(axy),-1); + N(axy) = bxy; + E(axy) = newErr; + } + + return true; +} + +template +void patchmatch(const V2i& sizeA, + const V2i& sizeB, + const int patchWidth, + FUNC patchError, + const float lambda, + const int numIters, + const int numThreads, + A2V2i& N, + A2f& E, + A2i& Omega) +{ + const int w = patchWidth; + + E = nnfError(N,patchWidth,patchError); + + const float sra = 0.5f; + + std::vector irad; + + irad.push_back((sizeB(0) > sizeB(1) ? sizeB(0) : sizeB(1))); + + while (irad.back() != 1) irad.push_back(int(std::pow(sra, int(irad.size())) * irad[0])); + + const int nir = int(irad.size()); + +#ifdef __APPLE__ + dispatch_queue_t gcdq = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH,0); + const int numThreads_ = 8; +#else + const int numThreads_ = numThreads<1 ? omp_get_max_threads() : numThreads; +#endif + + const int minTileHeight = 8; + const int numTiles = int(ceil(float(sizeA(1))/float(numThreads_))) > minTileHeight ? numThreads_ : std::max(int(ceil(float(sizeA(1))/float(minTileHeight))),1); + const int tileHeight = sizeA(1)/numTiles; + + const float omegaBest = (float(sizeA(0)*sizeA(1)) / + float(sizeB(0)*sizeB(1))) * float(patchWidth*patchWidth); + + fill(&Omega,(int)0); + for(int y=0;y 0) : (x < sizeA(0)-1)) + { + V2i n = N(x-q,y); n[0] += q; + + if (odd ? (n[0] < sizeB(0)-w/2) : (n[0] >= w/2)) + { + tryPatch(patchError,sizeA,w,V2i(x,y),n,N,E,Omega,omegaBest,lambda); + } + } + + if (odd ? (y > 0) : (y = w/2)) + { + tryPatch(patchError,sizeA,w,V2i(x,y),n,N,E,Omega,omegaBest,lambda); + } + } + + #define RANDI(u) (18000 * ((u) & 65535) + ((u) >> 16)) + + unsigned int seed = (x | (y<<11)) ^ iter_seed; + seed = RANDI(seed); + + const V2i pix0 = N(x,y); + //for (int i = 0; i < nir; i++) + for (int i = nir-1; i >=0; i--) + { + V2i tl = pix0 - V2i(irad[i], irad[i]); + V2i br = pix0 + V2i(irad[i], irad[i]); + + tl = std::max(tl,V2i(w/2,w/2)); + br = std::min(br,sizeB-V2i(w/2,w/2)); + + const int _rndX = RANDI(seed); + const int _rndY = RANDI(_rndX); + seed=_rndY; + + const V2i n = V2i + ( + tl[0] + (_rndX % (br[0]-tl[0])), + tl[1] + (_rndY % (br[1]-tl[1])) + ); + + tryPatch(patchError,sizeA,w,V2i(x,y),n,N,E,Omega,omegaBest,lambda); + } + + #undef RANDI + } + } +#ifdef __APPLE__ + ); +#endif + } +} + +template +void ebsynthCpu(int numStyleChannels, + int numGuideChannels, + int sourceWidth, + int sourceHeight, + void* sourceStyleData, + void* sourceGuideData, + int targetWidth, + int targetHeight, + void* targetGuideData, + void* targetModulationData, + float* styleWeights, + float* guideWeights, + float uniformityWeight, + int patchSize, + int voteMode, + int numPyramidLevels, + int* numSearchVoteItersPerLevel, + int* numPatchMatchItersPerLevel, + int* stopThresholdPerLevel, + int extraPass3x3, + void* outputNnfData, + void* outputImageData, + void* outputErrorData) +{ + const int levelCount = numPyramidLevels; + + struct PyramidLevel + { + PyramidLevel() { } + + int sourceWidth; + int sourceHeight; + int targetWidth; + int targetHeight; + + Array2> sourceStyle; + Array2> sourceGuide; + Array2> targetStyle; + Array2> targetStyle2; + //Array2 mask; + //Array2 mask2; + Array2> targetGuide; + Array2> targetModulation; + Array2> NNF; + //Array2> NNF2; + Array2 E; + Array2 Omega; + }; + + std::vector pyramid(levelCount); + for(int level=0;level>(V2i(pyramid[levelCount-1].sourceWidth,pyramid[levelCount-1].sourceHeight)); + pyramid[levelCount-1].sourceGuide = Array2>(V2i(pyramid[levelCount-1].sourceWidth,pyramid[levelCount-1].sourceHeight)); + pyramid[levelCount-1].targetGuide = Array2>(V2i(pyramid[levelCount-1].targetWidth,pyramid[levelCount-1].targetHeight)); + + copy(&pyramid[levelCount-1].sourceStyle,sourceStyleData); + copy(&pyramid[levelCount-1].sourceGuide,sourceGuideData); + copy(&pyramid[levelCount-1].targetGuide,targetGuideData); + + if (targetModulationData) + { + pyramid[levelCount-1].targetModulation = Array2>(V2i(pyramid[levelCount-1].targetWidth,pyramid[levelCount-1].targetHeight)); + copy(&pyramid[levelCount-1].targetModulation,targetModulationData); + } + + ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + + bool inExtraPass = false; + + for (int level=0;level>(levelTargetSize); + pyramid[level].targetStyle2 = Array2>(levelTargetSize); + //pyramid[level].mask = Array2(levelTargetSize); + //pyramid[level].mask2 = Array2(levelTargetSize); + pyramid[level].NNF = Array2>(levelTargetSize); + //pyramid[level].NNF2 = Array2>(levelTargetSize); + pyramid[level].Omega = Array2(levelSourceSize); + pyramid[level].E = Array2(levelTargetSize); + + if (level>(levelSourceSize); + pyramid[level].sourceGuide = Array2>(levelSourceSize); + pyramid[level].targetGuide = Array2>(levelTargetSize); + + resampleCPU(pyramid[level].sourceStyle,pyramid[levelCount-1].sourceStyle); + resampleCPU(pyramid[level].sourceGuide,pyramid[levelCount-1].sourceGuide); + resampleCPU(pyramid[level].targetGuide,pyramid[levelCount-1].targetGuide); + + if (targetModulationData) + { + resampleCPU(pyramid[level].targetModulation,pyramid[levelCount-1].targetModulation); + pyramid[level].targetModulation = Array2>(levelTargetSize); + } + } + + A2V2i cpu_NNF; + if (level>0) + { + pyramid[level].NNF = nnfUpscale(pyramid[level-1].NNF, + patchSize, + V2i(pyramid[level].targetWidth,pyramid[level].targetHeight), + V2i(pyramid[level].sourceWidth,pyramid[level].sourceHeight)); + + pyramid[level-1].NNF = A2V2i(); + } + else + { + pyramid[level].NNF = nnfInitRandom(V2i(pyramid[level].targetWidth,pyramid[level].targetHeight), + V2i(pyramid[level].sourceWidth,pyramid[level].sourceHeight), + patchSize); + } + + ///////////////////////////////////////////////////////////////////////// + /* + Array2 cpu_Omega(pyramid[level].sourceWidth,pyramid[level].sourceHeight); + + fill(&cpu_Omega,(int)0); + for(int ay=0;ay> cpu_mask(V2i(pyramid[level].targetWidth,pyramid[level].targetHeight)); + //fill(&cpu_mask,Vec<1,unsigned char>(255)); + //copy(&pyramid[level].mask,cpu_mask); + + //////////////////////////////////////////////////////////////////////////// + + for (int voteIter=0;voteIter styleWeightsVec; + for(int i=0;i guideWeightsVec; + for(int i=0;i0) + { + /*if (targetModulationData) + { + patchmatchGPU(V2i(pyramid[level].targetWidth,pyramid[level].targetHeight), + V2i(pyramid[level].sourceWidth,pyramid[level].sourceHeight), + pyramid[level].Omega, + patchSize, + PatchSSD_Split_Modulation(pyramid[level].targetStyle, + pyramid[level].sourceStyle, + pyramid[level].targetGuide, + pyramid[level].sourceGuide, + pyramid[level].targetModulation, + styleWeightsVec, + guideWeightsVec), + uniformityWeight, + numPatchMatchItersPerLevel[level], + numGpuThreadsPerBlock, + pyramid[level].NNF, + pyramid[level].NNF2, + pyramid[level].E, + pyramid[level].mask, + rngStates); + } + else*/ + { + patchmatch(V2i(pyramid[level].targetWidth,pyramid[level].targetHeight), + V2i(pyramid[level].sourceWidth,pyramid[level].sourceHeight), + patchSize, + PatchSSD_Split(pyramid[level].targetStyle, + pyramid[level].sourceStyle, + pyramid[level].targetGuide, + pyramid[level].sourceGuide, + styleWeightsVec, + guideWeightsVec), + uniformityWeight, + numPatchMatchItersPerLevel[level], + -1, + pyramid[level].NNF, + pyramid[level].E, + pyramid[level].Omega); + } + } + /* + else + { + if (targetModulationData) + { + krnlEvalErrorPass<<>>(patchSize, + PatchSSD_Split_Modulation(pyramid[level].targetStyle, + pyramid[level].sourceStyle, + pyramid[level].targetGuide, + pyramid[level].sourceGuide, + pyramid[level].targetModulation, + styleWeightsVec, + guideWeightsVec), + pyramid[level].NNF, + pyramid[level].E); + } + else + { + krnlEvalErrorPass<<>>(patchSize, + PatchSSD_Split(pyramid[level].targetStyle, + pyramid[level].sourceStyle, + pyramid[level].targetGuide, + pyramid[level].sourceGuide, + styleWeightsVec, + guideWeightsVec), + pyramid[level].NNF, + pyramid[level].E); + } + checkCudaError( cudaDeviceSynchronize() ); + } + */ + { + //if (voteMode==EBSYNTH_VOTEMODE_PLAIN) + { + krnlVotePlain(pyramid[level].targetStyle2, + pyramid[level].sourceStyle, + pyramid[level].NNF, + patchSize); + } + /*else if (voteMode==EBSYNTH_VOTEMODE_WEIGHTED) + { + krnlVoteWeighted<<>>(pyramid[level].targetStyle2, + pyramid[level].sourceStyle, + pyramid[level].NNF, + pyramid[level].E, + patchSize); + }*/ + + std::swap(pyramid[level].targetStyle2,pyramid[level].targetStyle); + + /* + if (voteIter>>(pyramid[level].mask, + pyramid[level].targetStyle, + pyramid[level].targetStyle2, + stopThresholdPerLevel[level]); + checkCudaError( cudaDeviceSynchronize() ); + + krnlDilateMask<<>>(pyramid[level].mask2, + pyramid[level].mask, + patchSize); + std::swap(pyramid[level].mask2,pyramid[level].mask); + checkCudaError( cudaDeviceSynchronize() ); + } + */ + } + } + + if (level==levelCount-1 && (extraPass3x3==0 || (extraPass3x3!=0 && inExtraPass))) + { + if (outputNnfData!=NULL) { copy(&outputNnfData,pyramid[level].NNF); } + copy(&outputImageData,pyramid[level].targetStyle); + copy(&outputErrorData,pyramid[level].E); + } + + if ((level>(); + pyramid[level].sourceGuide = Array2>(); + pyramid[level].targetGuide = Array2>(); + pyramid[level].targetStyle = Array2>(); + pyramid[level].targetStyle2 = Array2>(); + //pyramid[level].mask = Array2(); + //pyramid[level].mask2 = Array2(); + //pyramid[level].NNF2 = Array2>(); + pyramid[level].Omega = Array2(); + pyramid[level].E = Array2(); + if (targetModulationData) { pyramid[level].targetModulation = Array2>(); } + } + + if (level==levelCount-1 && (extraPass3x3!=0) && !inExtraPass) + { + inExtraPass = true; + level--; + patchSize = 3; + uniformityWeight = 0; + } + } + + pyramid[levelCount-1].NNF = Array2>(); +} + +void ebsynthRunCpu(int numStyleChannels, + int numGuideChannels, + int sourceWidth, + int sourceHeight, + void* sourceStyleData, + void* sourceGuideData, + int targetWidth, + int targetHeight, + void* targetGuideData, + void* targetModulationData, + float* styleWeights, + float* guideWeights, + float uniformityWeight, + int patchSize, + int voteMode, + int numPyramidLevels, + int* numSearchVoteItersPerLevel, + int* numPatchMatchItersPerLevel, + int* stopThresholdPerLevel, + int extraPass3x3, + void* outputNnfData, + void* outputImageData, + void* outputErrorData) +{ + void (*const dispatchEbsynth[EBSYNTH_MAX_GUIDE_CHANNELS][EBSYNTH_MAX_STYLE_CHANNELS])(int,int,int,int,void*,void*,int,int,void*,void*,float*,float*,float,int,int,int,int*,int*,int*,int,void*,void*,void*) = + { + { ebsynthCpu<1, 1>, ebsynthCpu<2, 1>, ebsynthCpu<3, 1>, ebsynthCpu<4, 1>, ebsynthCpu<5, 1>, ebsynthCpu<6, 1>, ebsynthCpu<7, 1>, ebsynthCpu<8, 1> }, + { ebsynthCpu<1, 2>, ebsynthCpu<2, 2>, ebsynthCpu<3, 2>, ebsynthCpu<4, 2>, ebsynthCpu<5, 2>, ebsynthCpu<6, 2>, ebsynthCpu<7, 2>, ebsynthCpu<8, 2> }, + { ebsynthCpu<1, 3>, ebsynthCpu<2, 3>, ebsynthCpu<3, 3>, ebsynthCpu<4, 3>, ebsynthCpu<5, 3>, ebsynthCpu<6, 3>, ebsynthCpu<7, 3>, ebsynthCpu<8, 3> }, + { ebsynthCpu<1, 4>, ebsynthCpu<2, 4>, ebsynthCpu<3, 4>, ebsynthCpu<4, 4>, ebsynthCpu<5, 4>, ebsynthCpu<6, 4>, ebsynthCpu<7, 4>, ebsynthCpu<8, 4> }, + { ebsynthCpu<1, 5>, ebsynthCpu<2, 5>, ebsynthCpu<3, 5>, ebsynthCpu<4, 5>, ebsynthCpu<5, 5>, ebsynthCpu<6, 5>, ebsynthCpu<7, 5>, ebsynthCpu<8, 5> }, + { ebsynthCpu<1, 6>, ebsynthCpu<2, 6>, ebsynthCpu<3, 6>, ebsynthCpu<4, 6>, ebsynthCpu<5, 6>, ebsynthCpu<6, 6>, ebsynthCpu<7, 6>, ebsynthCpu<8, 6> }, + { ebsynthCpu<1, 7>, ebsynthCpu<2, 7>, ebsynthCpu<3, 7>, ebsynthCpu<4, 7>, ebsynthCpu<5, 7>, ebsynthCpu<6, 7>, ebsynthCpu<7, 7>, ebsynthCpu<8, 7> }, + { ebsynthCpu<1, 8>, ebsynthCpu<2, 8>, ebsynthCpu<3, 8>, ebsynthCpu<4, 8>, ebsynthCpu<5, 8>, ebsynthCpu<6, 8>, ebsynthCpu<7, 8>, ebsynthCpu<8, 8> }, + { ebsynthCpu<1, 9>, ebsynthCpu<2, 9>, ebsynthCpu<3, 9>, ebsynthCpu<4, 9>, ebsynthCpu<5, 9>, ebsynthCpu<6, 9>, ebsynthCpu<7, 9>, ebsynthCpu<8, 9> }, + { ebsynthCpu<1,10>, ebsynthCpu<2,10>, ebsynthCpu<3,10>, ebsynthCpu<4,10>, ebsynthCpu<5,10>, ebsynthCpu<6,10>, ebsynthCpu<7,10>, ebsynthCpu<8,10> }, + { ebsynthCpu<1,11>, ebsynthCpu<2,11>, ebsynthCpu<3,11>, ebsynthCpu<4,11>, ebsynthCpu<5,11>, ebsynthCpu<6,11>, ebsynthCpu<7,11>, ebsynthCpu<8,11> }, + { ebsynthCpu<1,12>, ebsynthCpu<2,12>, ebsynthCpu<3,12>, ebsynthCpu<4,12>, ebsynthCpu<5,12>, ebsynthCpu<6,12>, ebsynthCpu<7,12>, ebsynthCpu<8,12> }, + { ebsynthCpu<1,13>, ebsynthCpu<2,13>, ebsynthCpu<3,13>, ebsynthCpu<4,13>, ebsynthCpu<5,13>, ebsynthCpu<6,13>, ebsynthCpu<7,13>, ebsynthCpu<8,13> }, + { ebsynthCpu<1,14>, ebsynthCpu<2,14>, ebsynthCpu<3,14>, ebsynthCpu<4,14>, ebsynthCpu<5,14>, ebsynthCpu<6,14>, ebsynthCpu<7,14>, ebsynthCpu<8,14> }, + { ebsynthCpu<1,15>, ebsynthCpu<2,15>, ebsynthCpu<3,15>, ebsynthCpu<4,15>, ebsynthCpu<5,15>, ebsynthCpu<6,15>, ebsynthCpu<7,15>, ebsynthCpu<8,15> }, + { ebsynthCpu<1,16>, ebsynthCpu<2,16>, ebsynthCpu<3,16>, ebsynthCpu<4,16>, ebsynthCpu<5,16>, ebsynthCpu<6,16>, ebsynthCpu<7,16>, ebsynthCpu<8,16> }, + { ebsynthCpu<1,17>, ebsynthCpu<2,17>, ebsynthCpu<3,17>, ebsynthCpu<4,17>, ebsynthCpu<5,17>, ebsynthCpu<6,17>, ebsynthCpu<7,17>, ebsynthCpu<8,17> }, + { ebsynthCpu<1,18>, ebsynthCpu<2,18>, ebsynthCpu<3,18>, ebsynthCpu<4,18>, ebsynthCpu<5,18>, ebsynthCpu<6,18>, ebsynthCpu<7,18>, ebsynthCpu<8,18> }, + { ebsynthCpu<1,19>, ebsynthCpu<2,19>, ebsynthCpu<3,19>, ebsynthCpu<4,19>, ebsynthCpu<5,19>, ebsynthCpu<6,19>, ebsynthCpu<7,19>, ebsynthCpu<8,19> }, + { ebsynthCpu<1,20>, ebsynthCpu<2,20>, ebsynthCpu<3,20>, ebsynthCpu<4,20>, ebsynthCpu<5,20>, ebsynthCpu<6,20>, ebsynthCpu<7,20>, ebsynthCpu<8,20> }, + { ebsynthCpu<1,21>, ebsynthCpu<2,21>, ebsynthCpu<3,21>, ebsynthCpu<4,21>, ebsynthCpu<5,21>, ebsynthCpu<6,21>, ebsynthCpu<7,21>, ebsynthCpu<8,21> }, + { ebsynthCpu<1,22>, ebsynthCpu<2,22>, ebsynthCpu<3,22>, ebsynthCpu<4,22>, ebsynthCpu<5,22>, ebsynthCpu<6,22>, ebsynthCpu<7,22>, ebsynthCpu<8,22> }, + { ebsynthCpu<1,23>, ebsynthCpu<2,23>, ebsynthCpu<3,23>, ebsynthCpu<4,23>, ebsynthCpu<5,23>, ebsynthCpu<6,23>, ebsynthCpu<7,23>, ebsynthCpu<8,23> }, + { ebsynthCpu<1,24>, ebsynthCpu<2,24>, ebsynthCpu<3,24>, ebsynthCpu<4,24>, ebsynthCpu<5,24>, ebsynthCpu<6,24>, ebsynthCpu<7,24>, ebsynthCpu<8,24> } + }; + + if (numStyleChannels>=1 && numStyleChannels<=EBSYNTH_MAX_STYLE_CHANNELS && + numGuideChannels>=1 && numGuideChannels<=EBSYNTH_MAX_GUIDE_CHANNELS) + { + dispatchEbsynth[numGuideChannels-1][numStyleChannels-1](numStyleChannels, + numGuideChannels, + sourceWidth, + sourceHeight, + sourceStyleData, + sourceGuideData, + targetWidth, + targetHeight, + targetGuideData, + targetModulationData, + styleWeights, + guideWeights, + uniformityWeight, + patchSize, + voteMode, + numPyramidLevels, + numSearchVoteItersPerLevel, + numPatchMatchItersPerLevel, + stopThresholdPerLevel, + extraPass3x3, + outputNnfData, + outputImageData, + outputErrorData); + } +} + +int ebsynthBackendAvailableCpu() +{ + return 1; +} diff --git a/src/ebsynth/deps/ebsynth/src/ebsynth_cpu.h b/src/ebsynth/deps/ebsynth/src/ebsynth_cpu.h new file mode 100644 index 0000000000000000000000000000000000000000..615607473501ecba70274eea2449f317bc77e925 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/src/ebsynth_cpu.h @@ -0,0 +1,34 @@ +// This software is in the public domain. Where that dedication is not +// recognized, you are granted a perpetual, irrevocable license to copy +// and modify this file as you see fit. + +#ifndef EBSYNTH_CPU_H_ +#define EBSYNTH_CPU_H_ + +void ebsynthRunCpu(int numStyleChannels, + int numGuideChannels, + int sourceWidth, + int sourceHeight, + void* sourceStyleData, + void* sourceGuideData, + int targetWidth, + int targetHeight, + void* targetGuideData, + void* targetModulationData, + float* styleWeights, + float* guideWeights, + float uniformityWeight, + int patchSize, + int voteMode, + int numPyramidLevels, + int* numSearchVoteItersPerLevel, + int* numPatchMatchItersPerLevel, + int* stopThresholdPerLevel, + int extraPass3x3, + void* outputNnfData, + void* outputImageData, + void* outputErrorData); + +int ebsynthBackendAvailableCpu(); + +#endif diff --git a/src/ebsynth/deps/ebsynth/src/ebsynth_cuda.cu b/src/ebsynth/deps/ebsynth/src/ebsynth_cuda.cu new file mode 100644 index 0000000000000000000000000000000000000000..f17b56784e2b4bf3eddf5455b33ee0971adfa669 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/src/ebsynth_cuda.cu @@ -0,0 +1,1204 @@ +// This software is in the public domain. Where that dedication is not +// recognized, you are granted a perpetual, irrevocable license to copy +// and modify this file as you see fit. + +#include "ebsynth.h" +#include "ebsynth_cuda_texarray2.h" +#include "ebsynth_cuda_memarray2.h" + +#include +#include +#include + +#define FOR(A,X,Y) for(int Y=0;Y V1f; +typedef Array2> A2V1f; + +struct pcgState +{ + uint64_t state; + uint64_t increment; +}; + +__device__ void pcgAdvance(pcgState* rng) +{ + rng->state = rng->state * 6364136223846793005ULL + rng->increment; +} + +__device__ uint32_t pcgOutput(uint64_t state) +{ + return (uint32_t)(((state >> 22u) ^ state) >> ((state >> 61u) + 22u)); +} + +__device__ uint32_t pcgRand(pcgState* rng) +{ + uint64_t oldstate = rng->state; + pcgAdvance(rng); + return pcgOutput(oldstate); +} + +__device__ void pcgInit(pcgState* rng,uint64_t seed,uint64_t stream) +{ + rng->state = 0U; + rng->increment = (stream << 1u) | 1u; + pcgAdvance(rng); + rng->state += seed; + pcgAdvance(rng); +} + +__global__ void krnlInitRngStates(const int width, + const int height, + pcgState* rngStates) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x>>(width,height,gpuRngStates); + + return gpuRngStates; +} + +template +__global__ void krnlEvalErrorPass(const int patchWidth, + FUNC patchError, + const TexArray2<2,int> NNF, + TexArray2<1,float> E) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x& Omega,const int patchWidth,const int bx,const int by,const int incdec) +{ + const int r = patchWidth/2; + + for(int oy=-r;oy<=+r;oy++) + for(int ox=-r;ox<=+r;ox++) + { + const int x = bx+ox; + const int y = by+oy; + atomicAdd(&Omega.data[x+y*Omega.width],incdec); + //Omega.data[x+y*Omega.width] += incdec; + } +} + +int __device__ patchOmega(const int patchWidth,const int bx,const int by,const MemArray2& Omega) +{ + const int r = patchWidth/2; + + int sum = 0; + + for(int oy=-r;oy<=+r;oy++) + for(int ox=-r;ox<=+r;ox++) + { + const int x = bx+ox; + const int y = by+oy; + sum += Omega.data[x+y*Omega.width]; /// XXX: atomic read instead ?? + } + + return sum; +} + +template +__device__ void tryPatch(const V2i& sizeA, + const V2i& sizeB, + MemArray2& Omega, + const int patchWidth, + FUNC patchError, + const float lambda, + const int ax, + const int ay, + const int bx, + const int by, + V2i& nbest, + float& ebest) +{ + const float omegaBest = (float(sizeA(0)*sizeA(1)) / + float(sizeB(0)*sizeB(1))) * float(patchWidth*patchWidth); + + const float curOcc = (float(patchOmega(patchWidth,nbest(0),nbest(1),Omega))/float(patchWidth*patchWidth))/omegaBest; + const float newOcc = (float(patchOmega(patchWidth, bx, by,Omega))/float(patchWidth*patchWidth))/omegaBest; + + const float curErr = ebest; + const float newErr = patchError(patchWidth,ax,ay,bx,by,curErr+lambda*curOcc); + + if ((newErr+lambda*newOcc) < (curErr+lambda*curOcc)) + { + updateOmega(Omega,patchWidth, bx, by,+1); + updateOmega(Omega,patchWidth,nbest(0),nbest(1),-1); + nbest = V2i(bx,by); + ebest = newErr; + } +} + +template +__device__ void tryNeighborsOffset(const int x, + const int y, + const int ox, + const int oy, + V2i& nbest, + float& ebest, + const V2i& sizeA, + const V2i& sizeB, + MemArray2& Omega, + const int patchWidth, + FUNC patchError, + const float lambda, + const TexArray2<2,int>& NNF) +{ + const int hpw = patchWidth/2; + + const V2i on = NNF(x+ox,y+oy); + const int nx = on(0)-ox; + const int ny = on(1)-oy; + + if (nx>=hpw && nx=hpw && ny +__global__ void krnlPropagationPass(const V2i sizeA, + const V2i sizeB, + MemArray2 Omega, + const int patchWidth, + FUNC patchError, + const float lambda, + const int r, + const TexArray2<2,int> NNF, + TexArray2<2,int> NNF2, + TexArray2<1,float> E, + TexArray2<1,unsigned char> mask) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x +__device__ void tryRandomOffsetInRadius(const int r, + const V2i& sizeA, + const V2i& sizeB, + MemArray2& Omega, + const int patchWidth, + FUNC patchError, + const float lambda, + const int x, + const int y, + const V2i& norg, + V2i& nbest, + float& ebest, + pcgState* rngState) +{ + const int hpw = patchWidth/2; + + const int xmin = max(norg(0)-r,hpw); + const int xmax = min(norg(0)+r,sizeB(0)-1-hpw); + const int ymin = max(norg(1)-r,hpw); + const int ymax = min(norg(1)+r,sizeB(1)-1-hpw); + + const int nx = xmin+(pcgRand(rngState)%(xmax-xmin+1)); + const int ny = ymin+(pcgRand(rngState)%(ymax-ymin+1)); + + tryPatch(sizeA,sizeB,Omega,patchWidth,patchError,lambda,x,y,nx,ny,nbest,ebest); +} + +/* +template +__global__ void krnlRandomSearchPass(const V2i sizeA, + const V2i sizeB, + MemArray2 Omega, + const int patchWidth, + FUNC patchError, + const float lambda, + TexArray2<2,int> NNF, + TexArray2<1,float> E, + TexArray2<1,unsigned char> mask, + pcgState* rngStates) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x +__global__ void krnlRandomSearchPass(const V2i sizeA, + const V2i sizeB, + MemArray2 Omega, + const int patchWidth, + FUNC patchError, + const float lambda, + const int radius, + TexArray2<2,int> NNF, + TexArray2<1,float> E, + TexArray2<1,unsigned char> mask, + pcgState* rngStates) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x +void patchmatchGPU(const V2i sizeA, + const V2i sizeB, + MemArray2& Omega, + const int patchWidth, + FUNC patchError, + const float lambda, + const int numIters, + const int numThreadsPerBlock, + TexArray2<2,int>& NNF, + TexArray2<2,int>& NNF2, + TexArray2<1,float>& E, + TexArray2<1,unsigned char>& mask, + pcgState* rngStates) +{ + const dim3 threadsPerBlock = dim3(numThreadsPerBlock,numThreadsPerBlock); + const dim3 numBlocks = dim3((NNF.width+threadsPerBlock.x)/threadsPerBlock.x, + (NNF.height+threadsPerBlock.y)/threadsPerBlock.y); + + krnlEvalErrorPass<<>>(patchWidth,patchError,NNF,E); + + checkCudaError(cudaDeviceSynchronize()); + + for(int i=0;i>>(sizeA,sizeB,Omega,patchWidth,patchError,lambda,4,NNF,NNF2,E,mask); std::swap(NNF,NNF2); + + checkCudaError(cudaDeviceSynchronize()); + + krnlPropagationPass<<>>(sizeA,sizeB,Omega,patchWidth,patchError,lambda,2,NNF,NNF2,E,mask); std::swap(NNF,NNF2); + + checkCudaError(cudaDeviceSynchronize()); + + krnlPropagationPass<<>>(sizeA,sizeB,Omega,patchWidth,patchError,lambda,1,NNF,NNF2,E,mask); std::swap(NNF,NNF2); + + checkCudaError(cudaDeviceSynchronize()); + + for(int r=1;r>>(sizeA,sizeB,Omega,patchWidth,patchError,lambda,r,NNF,E,mask,rngStates); + } + + checkCudaError(cudaDeviceSynchronize()); + } + + krnlEvalErrorPass<<>>(patchWidth,patchError,NNF,E); + + checkCudaError(cudaDeviceSynchronize()); +} + +static A2V2i nnfInitRandom(const V2i& targetSize, + const V2i& sourceSize, + const int patchSize) +{ + A2V2i NNF(targetSize); + const int r = patchSize/2; + + for (int i = 0; i < NNF.numel(); i++) + { + NNF[i] = V2i + ( + r+(rand()%(sourceSize[0]-2*r)), + r+(rand()%(sourceSize[1]-2*r)) + ); + } + + return NNF; +} + +static A2V2i nnfUpscale(const A2V2i& NNF, + const int patchSize, + const V2i& targetSize, + const V2i& sourceSize) +{ + A2V2i NNF2x(targetSize); + + FOR(NNF2x,x,y) + { + NNF2x(x,y) = NNF(clamp(x/2,0,NNF.width()-1), + clamp(y/2,0,NNF.height()-1))*2+V2i(x%2,y%2); + } + + FOR(NNF2x,x,y) + { + const V2i nn = NNF2x(x,y); + + NNF2x(x,y) = V2i(clamp(nn(0),patchSize,sourceSize(0)-patchSize-1), + clamp(nn(1),patchSize,sourceSize(1)-patchSize-1)); + } + + return NNF2x; +} + +template +__global__ void krnlVotePlain( TexArray2 target, + const TexArray2 source, + const TexArray2<2,int> NNF, + const int patchSize) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x sumColor = zero>::value(); + float sumWeight = 0; + + for (int py = -r; py <= +r; py++) + for (int px = -r; px <= +r; px++) + { + /* + if + ( + x+px >= 0 && x+px < NNF.width () && + y+py >= 0 && y+py < NNF.height() + ) + */ + { + const V2i n = NNF(x+px,y+py)-V2i(px,py); + + /*if + ( + n[0] >= 0 && n[0] < S.width () && + n[1] >= 0 && n[1] < S.height() + )*/ + { + const float weight = 1.0f; + sumColor += weight*Vec(source(n(0),n(1))); + sumWeight += weight; + } + } + } + + const Vec v = Vec(sumColor/sumWeight); + target.write(x,y,v); + } +} + +template +__global__ void krnlVoteWeighted( TexArray2 target, + const TexArray2 source, + const TexArray2<2,int> NNF, + const TexArray2<1,float> E, + const int patchSize) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x sumColor = zero>::value(); + float sumWeight = 0; + + for (int py = -r; py <= +r; py++) + for (int px = -r; px <= +r; px++) + { + /* + if + ( + x+px >= 0 && x+px < NNF.width () && + y+py >= 0 && y+py < NNF.height() + ) + */ + { + const V2i n = NNF(x+px,y+py)-V2i(px,py); + + /*if + ( + n[0] >= 0 && n[0] < S.width () && + n[1] >= 0 && n[1] < S.height() + )*/ + { + const float error = E(x+px,y+py)(0)/(patchSize*patchSize*N); + const float weight = 1.0f/(1.0f+error); + sumColor += weight*Vec(source(n(0),n(1))); + sumWeight += weight; + } + } + } + + const Vec v = Vec(sumColor/sumWeight); + target.write(x,y,v); + } +} + +template +__device__ Vec sampleBilinear(const TexArray2& I,float x,float y) +{ + const int ix = x; + const int iy = y; + + const float s = x-ix; + const float t = y-iy; + + // XXX: clamp!!! + return Vec((1.0f-s)*(1.0f-t)*Vec(I(ix ,iy ))+ + ( s)*(1.0f-t)*Vec(I(ix+1,iy ))+ + (1.0f-s)*( t)*Vec(I(ix ,iy+1))+ + ( s)*( t)*Vec(I(ix+1,iy+1))); +}; + +template +__global__ void krnlResampleBilinear(TexArray2 O, + const TexArray2 I) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x +__global__ void krnlEvalMask( TexArray2<1,unsigned char> mask, + const TexArray2 style, + const TexArray2 style2, + const int stopThreshold) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x s = style(x,y); + const Vec s2 = style2(x,y); + + int maxDiff = 0; + for(int c=0;cmaxDiff ? diff:maxDiff; + } + + const Vec<1,unsigned char> msk = maxDiff < stopThreshold ? Vec<1,unsigned char>(0) : Vec<1,unsigned char>(255); + + mask.write(x,y,msk); + } +} + +__global__ void krnlDilateMask(TexArray2<1,unsigned char> mask2, + const TexArray2<1,unsigned char> mask, + const int patchSize) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x msk = Vec<1,unsigned char>(0); + + for (int py = -r; py <= +r; py++) + for (int px = -r; px <= +r; px++) + { + if (mask(x+px,y+py)[0]==255) { msk = Vec<1,unsigned char>(255); } + } + + mask2.write(x,y,msk); + } +} + +template +void resampleGPU( TexArray2& O, + const TexArray2& I) +{ + const int numThreadsPerBlock = 24; + const dim3 threadsPerBlock = dim3(numThreadsPerBlock,numThreadsPerBlock); + const dim3 numBlocks = dim3((O.width+threadsPerBlock.x)/threadsPerBlock.x, + (O.height+threadsPerBlock.y)/threadsPerBlock.y); + + krnlResampleBilinear<<>>(O,I); + + checkCudaError(cudaDeviceSynchronize()); +} + +template +struct PatchSSD_Split +{ + const TexArray2 targetStyle; + const TexArray2 sourceStyle; + + const TexArray2 targetGuide; + const TexArray2 sourceGuide; + + const Vec styleWeights; + const Vec guideWeights; + + PatchSSD_Split(const TexArray2& targetStyle, + const TexArray2& sourceStyle, + + const TexArray2& targetGuide, + const TexArray2& sourceGuide, + + const Vec& styleWeights, + const Vec& guideWeights) + + : targetStyle(targetStyle),sourceStyle(sourceStyle), + targetGuide(targetGuide),sourceGuide(sourceGuide), + styleWeights(styleWeights),guideWeights(guideWeights) {} + + __device__ float operator()(const int patchSize, + const int tx, + const int ty, + const int sx, + const int sy, + const float ebest) + { + const int r = patchSize/2; + float error = 0; + + for(int py=-r;py<=+r;py++) + { + for(int px=-r;px<=+r;px++) + { + { + const Vec pixTs = targetStyle(tx + px,ty + py); + const Vec pixSs = sourceStyle(sx + px,sy + py); + for(int i=0;i pixTg = targetGuide(tx + px,ty + py); + const Vec pixSg = sourceGuide(sx + px,sy + py); + for(int i=0;iebest) { return error; } + } + + return error; + } +}; + +template +struct PatchSSD_Split_Modulation +{ + const TexArray2 targetStyle; + const TexArray2 sourceStyle; + + const TexArray2 targetGuide; + const TexArray2 sourceGuide; + + const TexArray2 targetModulation; + + const Vec styleWeights; + const Vec guideWeights; + + PatchSSD_Split_Modulation(const TexArray2& targetStyle, + const TexArray2& sourceStyle, + + const TexArray2& targetGuide, + const TexArray2& sourceGuide, + + const TexArray2& targetModulation, + + const Vec& styleWeights, + const Vec& guideWeights) + + : targetStyle(targetStyle),sourceStyle(sourceStyle), + targetGuide(targetGuide),sourceGuide(sourceGuide), + targetModulation(targetModulation), + styleWeights(styleWeights),guideWeights(guideWeights) {} + + __device__ float operator()(const int patchSize, + const int tx, + const int ty, + const int sx, + const int sy, + const float ebest) + { + const int r = patchSize/2; + float error = 0; + + for(int py=-r;py<=+r;py++) + { + for(int px=-r;px<=+r;px++) + { + { + const Vec pixTs = targetStyle(tx + px,ty + py); + const Vec pixSs = sourceStyle(sx + px,sy + py); + for(int i=0;i pixTg = targetGuide(tx + px,ty + py); + const Vec pixSg = sourceGuide(sx + px,sy + py); + const Vec mult = Vec(targetModulation(tx + px,ty + py))/255.0f; + + for(int i=0;iebest) { return error; } + } + + return error; + } +}; + +static V2i pyramidLevelSize(const V2i& sizeBase,const int numLevels,const int level) +{ + return V2i(V2f(sizeBase)*std::pow(2.0f,-float(numLevels-1-level))); +} + +template +void ebsynthCuda(int numStyleChannels, + int numGuideChannels, + int sourceWidth, + int sourceHeight, + void* sourceStyleData, + void* sourceGuideData, + int targetWidth, + int targetHeight, + void* targetGuideData, + void* targetModulationData, + float* styleWeights, + float* guideWeights, + float uniformityWeight, + int patchSize, + int voteMode, + int numPyramidLevels, + int* numSearchVoteItersPerLevel, + int* numPatchMatchItersPerLevel, + int* stopThresholdPerLevel, + int extraPass3x3, + void* outputNnfData, + void* outputImageData, + void* outputErrorData) +{ + const int levelCount = numPyramidLevels; + + struct PyramidLevel + { + PyramidLevel() { } + + int sourceWidth; + int sourceHeight; + int targetWidth; + int targetHeight; + + TexArray2 sourceStyle; + TexArray2 sourceGuide; + TexArray2 targetStyle; + TexArray2 targetStyle2; + TexArray2<1,unsigned char> mask; + TexArray2<1,unsigned char> mask2; + TexArray2 targetGuide; + TexArray2 targetModulation; + TexArray2<2,int> NNF; + TexArray2<2,int> NNF2; + TexArray2<1,float> E; + MemArray2 Omega; + }; + + std::vector pyramid(levelCount); + for(int level=0;level(V2i(pyramid[levelCount-1].sourceWidth,pyramid[levelCount-1].sourceHeight)); + pyramid[levelCount-1].sourceGuide = TexArray2(V2i(pyramid[levelCount-1].sourceWidth,pyramid[levelCount-1].sourceHeight)); + pyramid[levelCount-1].targetGuide = TexArray2(V2i(pyramid[levelCount-1].targetWidth,pyramid[levelCount-1].targetHeight)); + + copy(&pyramid[levelCount-1].sourceStyle,sourceStyleData); + copy(&pyramid[levelCount-1].sourceGuide,sourceGuideData); + copy(&pyramid[levelCount-1].targetGuide,targetGuideData); + + if (targetModulationData) + { + pyramid[levelCount-1].targetModulation = TexArray2(V2i(pyramid[levelCount-1].targetWidth,pyramid[levelCount-1].targetHeight)); + copy(&pyramid[levelCount-1].targetModulation,targetModulationData); + } + + ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + + bool inExtraPass = false; + + pcgState* rngStates = initGpuRng(targetWidth,targetHeight); + + for (int level=0;level(levelTargetSize); + pyramid[level].targetStyle2 = TexArray2(levelTargetSize); + pyramid[level].mask = TexArray2<1,unsigned char>(levelTargetSize); + pyramid[level].mask2 = TexArray2<1,unsigned char>(levelTargetSize); + pyramid[level].NNF = TexArray2<2,int>(levelTargetSize); + pyramid[level].NNF2 = TexArray2<2,int>(levelTargetSize); + pyramid[level].Omega = MemArray2(levelSourceSize); + pyramid[level].E = TexArray2<1,float>(levelTargetSize); + + if (level(levelSourceSize); + pyramid[level].sourceGuide = TexArray2(levelSourceSize); + pyramid[level].targetGuide = TexArray2(levelTargetSize); + + resampleGPU(pyramid[level].sourceStyle,pyramid[levelCount-1].sourceStyle); + resampleGPU(pyramid[level].sourceGuide,pyramid[levelCount-1].sourceGuide); + resampleGPU(pyramid[level].targetGuide,pyramid[levelCount-1].targetGuide); + + if (targetModulationData) + { + pyramid[level].targetModulation = TexArray2(levelTargetSize); + resampleGPU(pyramid[level].targetModulation,pyramid[levelCount-1].targetModulation); + } + } + + A2V2i cpu_NNF; + if (level>0) + { + A2V2i prevLevelNNF(pyramid[level-1].targetWidth, + pyramid[level-1].targetHeight); + + copy(&prevLevelNNF,pyramid[level-1].NNF); + + cpu_NNF = nnfUpscale(prevLevelNNF, + patchSize, + V2i(pyramid[level].targetWidth,pyramid[level].targetHeight), + V2i(pyramid[level].sourceWidth,pyramid[level].sourceHeight)); + + pyramid[level-1].NNF.destroy(); + } + else + { + cpu_NNF = nnfInitRandom(V2i(pyramid[level].targetWidth,pyramid[level].targetHeight), + V2i(pyramid[level].sourceWidth,pyramid[level].sourceHeight), + patchSize); + } + copy(&pyramid[level].NNF,cpu_NNF); + + ///////////////////////////////////////////////////////////////////////// + Array2 cpu_Omega(pyramid[level].sourceWidth,pyramid[level].sourceHeight); + + fill(&cpu_Omega,(int)0); + for(int ay=0;ay>>(pyramid[level].targetStyle2, + pyramid[level].sourceStyle, + pyramid[level].NNF, + patchSize); + + std::swap(pyramid[level].targetStyle2,pyramid[level].targetStyle); + checkCudaError( cudaDeviceSynchronize() ); + } + //////////////////////////////////////////////////////////////////////////// + + Array2> cpu_mask(V2i(pyramid[level].targetWidth,pyramid[level].targetHeight)); + fill(&cpu_mask,Vec<1,unsigned char>(255)); + copy(&pyramid[level].mask,cpu_mask); + + //////////////////////////////////////////////////////////////////////////// + + for (int voteIter=0;voteIter styleWeightsVec; + for(int i=0;i guideWeightsVec; + for(int i=0;i0) + { + if (targetModulationData) + { + patchmatchGPU(V2i(pyramid[level].targetWidth,pyramid[level].targetHeight), + V2i(pyramid[level].sourceWidth,pyramid[level].sourceHeight), + pyramid[level].Omega, + patchSize, + PatchSSD_Split_Modulation(pyramid[level].targetStyle, + pyramid[level].sourceStyle, + pyramid[level].targetGuide, + pyramid[level].sourceGuide, + pyramid[level].targetModulation, + styleWeightsVec, + guideWeightsVec), + uniformityWeight, + numPatchMatchItersPerLevel[level], + numGpuThreadsPerBlock, + pyramid[level].NNF, + pyramid[level].NNF2, + pyramid[level].E, + pyramid[level].mask, + rngStates); + } + else + { + patchmatchGPU(V2i(pyramid[level].targetWidth,pyramid[level].targetHeight), + V2i(pyramid[level].sourceWidth,pyramid[level].sourceHeight), + pyramid[level].Omega, + patchSize, + PatchSSD_Split(pyramid[level].targetStyle, + pyramid[level].sourceStyle, + pyramid[level].targetGuide, + pyramid[level].sourceGuide, + styleWeightsVec, + guideWeightsVec), + uniformityWeight, + numPatchMatchItersPerLevel[level], + numGpuThreadsPerBlock, + pyramid[level].NNF, + pyramid[level].NNF2, + pyramid[level].E, + pyramid[level].mask, + rngStates); + } + } + else + { + const int numThreadsPerBlock = 24; + const dim3 threadsPerBlock = dim3(numThreadsPerBlock,numThreadsPerBlock); + const dim3 numBlocks = dim3((pyramid[level].targetWidth+threadsPerBlock.x)/threadsPerBlock.x, + (pyramid[level].targetHeight+threadsPerBlock.y)/threadsPerBlock.y); + + if (targetModulationData) + { + krnlEvalErrorPass<<>>(patchSize, + PatchSSD_Split_Modulation(pyramid[level].targetStyle, + pyramid[level].sourceStyle, + pyramid[level].targetGuide, + pyramid[level].sourceGuide, + pyramid[level].targetModulation, + styleWeightsVec, + guideWeightsVec), + pyramid[level].NNF, + pyramid[level].E); + } + else + { + krnlEvalErrorPass<<>>(patchSize, + PatchSSD_Split(pyramid[level].targetStyle, + pyramid[level].sourceStyle, + pyramid[level].targetGuide, + pyramid[level].sourceGuide, + styleWeightsVec, + guideWeightsVec), + pyramid[level].NNF, + pyramid[level].E); + } + checkCudaError( cudaDeviceSynchronize() ); + } + + { + const int numThreadsPerBlock = 24; + const dim3 threadsPerBlock = dim3(numThreadsPerBlock,numThreadsPerBlock); + const dim3 numBlocks = dim3((pyramid[level].targetWidth+threadsPerBlock.x)/threadsPerBlock.x, + (pyramid[level].targetHeight+threadsPerBlock.y)/threadsPerBlock.y); + + if (voteMode==EBSYNTH_VOTEMODE_PLAIN) + { + krnlVotePlain<<>>(pyramid[level].targetStyle2, + pyramid[level].sourceStyle, + pyramid[level].NNF, + patchSize); + } + else if (voteMode==EBSYNTH_VOTEMODE_WEIGHTED) + { + krnlVoteWeighted<<>>(pyramid[level].targetStyle2, + pyramid[level].sourceStyle, + pyramid[level].NNF, + pyramid[level].E, + patchSize); + } + + std::swap(pyramid[level].targetStyle2,pyramid[level].targetStyle); + checkCudaError( cudaDeviceSynchronize() ); + + if (voteIter>>(pyramid[level].mask, + pyramid[level].targetStyle, + pyramid[level].targetStyle2, + stopThresholdPerLevel[level]); + checkCudaError( cudaDeviceSynchronize() ); + + krnlDilateMask<<>>(pyramid[level].mask2, + pyramid[level].mask, + patchSize); + std::swap(pyramid[level].mask2,pyramid[level].mask); + checkCudaError( cudaDeviceSynchronize() ); + } + } + } + + if (level==levelCount-1 && (extraPass3x3==0 || (extraPass3x3!=0 && inExtraPass))) + { + if (outputNnfData!=NULL) { copy(&outputNnfData,pyramid[level].NNF); } + copy(&outputImageData,pyramid[level].targetStyle); + copy(&outputErrorData,pyramid[level].E); + } + + if ((level, ebsynthCuda<2, 1>, ebsynthCuda<3, 1>, ebsynthCuda<4, 1>, ebsynthCuda<5, 1>, ebsynthCuda<6, 1>, ebsynthCuda<7, 1>, ebsynthCuda<8, 1> }, + { ebsynthCuda<1, 2>, ebsynthCuda<2, 2>, ebsynthCuda<3, 2>, ebsynthCuda<4, 2>, ebsynthCuda<5, 2>, ebsynthCuda<6, 2>, ebsynthCuda<7, 2>, ebsynthCuda<8, 2> }, + { ebsynthCuda<1, 3>, ebsynthCuda<2, 3>, ebsynthCuda<3, 3>, ebsynthCuda<4, 3>, ebsynthCuda<5, 3>, ebsynthCuda<6, 3>, ebsynthCuda<7, 3>, ebsynthCuda<8, 3> }, + { ebsynthCuda<1, 4>, ebsynthCuda<2, 4>, ebsynthCuda<3, 4>, ebsynthCuda<4, 4>, ebsynthCuda<5, 4>, ebsynthCuda<6, 4>, ebsynthCuda<7, 4>, ebsynthCuda<8, 4> }, + { ebsynthCuda<1, 5>, ebsynthCuda<2, 5>, ebsynthCuda<3, 5>, ebsynthCuda<4, 5>, ebsynthCuda<5, 5>, ebsynthCuda<6, 5>, ebsynthCuda<7, 5>, ebsynthCuda<8, 5> }, + { ebsynthCuda<1, 6>, ebsynthCuda<2, 6>, ebsynthCuda<3, 6>, ebsynthCuda<4, 6>, ebsynthCuda<5, 6>, ebsynthCuda<6, 6>, ebsynthCuda<7, 6>, ebsynthCuda<8, 6> }, + { ebsynthCuda<1, 7>, ebsynthCuda<2, 7>, ebsynthCuda<3, 7>, ebsynthCuda<4, 7>, ebsynthCuda<5, 7>, ebsynthCuda<6, 7>, ebsynthCuda<7, 7>, ebsynthCuda<8, 7> }, + { ebsynthCuda<1, 8>, ebsynthCuda<2, 8>, ebsynthCuda<3, 8>, ebsynthCuda<4, 8>, ebsynthCuda<5, 8>, ebsynthCuda<6, 8>, ebsynthCuda<7, 8>, ebsynthCuda<8, 8> }, + { ebsynthCuda<1, 9>, ebsynthCuda<2, 9>, ebsynthCuda<3, 9>, ebsynthCuda<4, 9>, ebsynthCuda<5, 9>, ebsynthCuda<6, 9>, ebsynthCuda<7, 9>, ebsynthCuda<8, 9> }, + { ebsynthCuda<1,10>, ebsynthCuda<2,10>, ebsynthCuda<3,10>, ebsynthCuda<4,10>, ebsynthCuda<5,10>, ebsynthCuda<6,10>, ebsynthCuda<7,10>, ebsynthCuda<8,10> }, + { ebsynthCuda<1,11>, ebsynthCuda<2,11>, ebsynthCuda<3,11>, ebsynthCuda<4,11>, ebsynthCuda<5,11>, ebsynthCuda<6,11>, ebsynthCuda<7,11>, ebsynthCuda<8,11> }, + { ebsynthCuda<1,12>, ebsynthCuda<2,12>, ebsynthCuda<3,12>, ebsynthCuda<4,12>, ebsynthCuda<5,12>, ebsynthCuda<6,12>, ebsynthCuda<7,12>, ebsynthCuda<8,12> }, + { ebsynthCuda<1,13>, ebsynthCuda<2,13>, ebsynthCuda<3,13>, ebsynthCuda<4,13>, ebsynthCuda<5,13>, ebsynthCuda<6,13>, ebsynthCuda<7,13>, ebsynthCuda<8,13> }, + { ebsynthCuda<1,14>, ebsynthCuda<2,14>, ebsynthCuda<3,14>, ebsynthCuda<4,14>, ebsynthCuda<5,14>, ebsynthCuda<6,14>, ebsynthCuda<7,14>, ebsynthCuda<8,14> }, + { ebsynthCuda<1,15>, ebsynthCuda<2,15>, ebsynthCuda<3,15>, ebsynthCuda<4,15>, ebsynthCuda<5,15>, ebsynthCuda<6,15>, ebsynthCuda<7,15>, ebsynthCuda<8,15> }, + { ebsynthCuda<1,16>, ebsynthCuda<2,16>, ebsynthCuda<3,16>, ebsynthCuda<4,16>, ebsynthCuda<5,16>, ebsynthCuda<6,16>, ebsynthCuda<7,16>, ebsynthCuda<8,16> }, + { ebsynthCuda<1,17>, ebsynthCuda<2,17>, ebsynthCuda<3,17>, ebsynthCuda<4,17>, ebsynthCuda<5,17>, ebsynthCuda<6,17>, ebsynthCuda<7,17>, ebsynthCuda<8,17> }, + { ebsynthCuda<1,18>, ebsynthCuda<2,18>, ebsynthCuda<3,18>, ebsynthCuda<4,18>, ebsynthCuda<5,18>, ebsynthCuda<6,18>, ebsynthCuda<7,18>, ebsynthCuda<8,18> }, + { ebsynthCuda<1,19>, ebsynthCuda<2,19>, ebsynthCuda<3,19>, ebsynthCuda<4,19>, ebsynthCuda<5,19>, ebsynthCuda<6,19>, ebsynthCuda<7,19>, ebsynthCuda<8,19> }, + { ebsynthCuda<1,20>, ebsynthCuda<2,20>, ebsynthCuda<3,20>, ebsynthCuda<4,20>, ebsynthCuda<5,20>, ebsynthCuda<6,20>, ebsynthCuda<7,20>, ebsynthCuda<8,20> }, + { ebsynthCuda<1,21>, ebsynthCuda<2,21>, ebsynthCuda<3,21>, ebsynthCuda<4,21>, ebsynthCuda<5,21>, ebsynthCuda<6,21>, ebsynthCuda<7,21>, ebsynthCuda<8,21> }, + { ebsynthCuda<1,22>, ebsynthCuda<2,22>, ebsynthCuda<3,22>, ebsynthCuda<4,22>, ebsynthCuda<5,22>, ebsynthCuda<6,22>, ebsynthCuda<7,22>, ebsynthCuda<8,22> }, + { ebsynthCuda<1,23>, ebsynthCuda<2,23>, ebsynthCuda<3,23>, ebsynthCuda<4,23>, ebsynthCuda<5,23>, ebsynthCuda<6,23>, ebsynthCuda<7,23>, ebsynthCuda<8,23> }, + { ebsynthCuda<1,24>, ebsynthCuda<2,24>, ebsynthCuda<3,24>, ebsynthCuda<4,24>, ebsynthCuda<5,24>, ebsynthCuda<6,24>, ebsynthCuda<7,24>, ebsynthCuda<8,24> } + }; + + if (numStyleChannels>=1 && numStyleChannels<=EBSYNTH_MAX_STYLE_CHANNELS && + numGuideChannels>=1 && numGuideChannels<=EBSYNTH_MAX_GUIDE_CHANNELS) + { + dispatchEbsynth[numGuideChannels-1][numStyleChannels-1](numStyleChannels, + numGuideChannels, + sourceWidth, + sourceHeight, + sourceStyleData, + sourceGuideData, + targetWidth, + targetHeight, + targetGuideData, + targetModulationData, + styleWeights, + guideWeights, + uniformityWeight, + patchSize, + voteMode, + numPyramidLevels, + numSearchVoteItersPerLevel, + numPatchMatchItersPerLevel, + stopThresholdPerLevel, + extraPass3x3, + outputNnfData, + outputImageData, + outputErrorData); + } +} + +int ebsynthBackendAvailableCuda() +{ + int deviceCount = -1; + if (cudaGetDeviceCount(&deviceCount)!=cudaSuccess) { return 0; } + + for (int device=0;device=3) + { + return 1; + } + } + } + + return 0; +} diff --git a/src/ebsynth/deps/ebsynth/src/ebsynth_cuda.h b/src/ebsynth/deps/ebsynth/src/ebsynth_cuda.h new file mode 100644 index 0000000000000000000000000000000000000000..5544a62052f72ab95fd2c718b3d93c7ea6c990e8 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/src/ebsynth_cuda.h @@ -0,0 +1,34 @@ +// This software is in the public domain. Where that dedication is not +// recognized, you are granted a perpetual, irrevocable license to copy +// and modify this file as you see fit. + +#ifndef EBSYNTH_CUDA_H_ +#define EBSYNTH_CUDA_H_ + +void ebsynthRunCuda(int numStyleChannels, + int numGuideChannels, + int sourceWidth, + int sourceHeight, + void* sourceStyleData, + void* sourceGuideData, + int targetWidth, + int targetHeight, + void* targetGuideData, + void* targetModulationData, + float* styleWeights, + float* guideWeights, + float uniformityWeight, + int patchSize, + int voteMode, + int numPyramidLevels, + int* numSearchVoteItersPerLevel, + int* numPatchMatchItersPerLevel, + int* stopThresholdPerLevel, + int extraPass3x3, + void* outputNnfData, + void* outputImageData, + void* outputErrorData); + +int ebsynthBackendAvailableCuda(); + +#endif diff --git a/src/ebsynth/deps/ebsynth/src/ebsynth_cuda_check.h b/src/ebsynth/deps/ebsynth/src/ebsynth_cuda_check.h new file mode 100644 index 0000000000000000000000000000000000000000..9d83ed828832eb094b15b23a40993de6904a12dd --- /dev/null +++ b/src/ebsynth/deps/ebsynth/src/ebsynth_cuda_check.h @@ -0,0 +1,20 @@ +#ifndef EBSYNTH_CUDA_CHECK_H_ +#define EBSYNTH_CUDA_CHECK_H_ + +template +bool checkCudaError_(T result,char const* const func,const char* const file,int const line) +{ + if (result) + { + printf("CUDA error at %s:%d code=%d \"%s\"\n",file,line,static_cast(result),func); + return true; + } + else + { + return false; + } +} + +#define checkCudaError(val) checkCudaError_((val),#val,__FILE__,__LINE__) + +#endif diff --git a/src/ebsynth/deps/ebsynth/src/ebsynth_cuda_memarray2.h b/src/ebsynth/deps/ebsynth/src/ebsynth_cuda_memarray2.h new file mode 100644 index 0000000000000000000000000000000000000000..8de0319a6f38c99a11cb31cf289c57e99bf466ef --- /dev/null +++ b/src/ebsynth/deps/ebsynth/src/ebsynth_cuda_memarray2.h @@ -0,0 +1,73 @@ +// This software is in the public domain. Where that dedication is not +// recognized, you are granted a perpetual, irrevocable license to copy +// and modify this file as you see fit. + +#ifndef EBSYNTH_CUDA_MEMARRAY2_H_ +#define EBSYNTH_CUDA_MEMARRAY2_H_ + +#include "jzq.h" +#include "ebsynth_cuda_check.h" + +template +struct MemArray2 +{ + T* data; + int width; + int height; + + MemArray2() : width(0),height(0),data(0) {}; + + MemArray2(const V2i& size) + { + width = size(0); + height = size(1); + checkCudaError(cudaMalloc(&data,width*height*sizeof(T))); + } + + MemArray2(int _width,int _height) + { + width = _width; + height = _height; + checkCudaError(cudaMalloc(&data,width*height*sizeof(T))); + } + /* + int __device__ operator()(int i,int j) + { + return data[i+j*width]; + } + + const int& __device__ operator()(int i,int j) const + { + return data[i+j*width]; + } + */ + + void destroy() + { + checkCudaError( cudaFree(data) ); + } +}; + +template +void copy(MemArray2* out_dst,const Array2& src) +{ + assert(out_dst != 0); + MemArray2& dst = *out_dst; + assert(dst.width == src.width()); + assert(dst.height == src.height()); + + checkCudaError(cudaMemcpy(dst.data, src.data(), src.width()*src.height()*sizeof(T), cudaMemcpyHostToDevice)); +} + +template +void copy(Array2* out_dst,const MemArray2& src) +{ + assert(out_dst != 0); + const Array2& dst = *out_dst; + assert(dst.width() == src.width); + assert(dst.height() == src.height); + + checkCudaError(cudaMemcpy((void*)dst.data(),src.data, src.width*src.height*sizeof(T), cudaMemcpyDeviceToHost)); +} + +#endif diff --git a/src/ebsynth/deps/ebsynth/src/ebsynth_cuda_texarray2.h b/src/ebsynth/deps/ebsynth/src/ebsynth_cuda_texarray2.h new file mode 100644 index 0000000000000000000000000000000000000000..0427f778ce530e6ee798afa3f90143b6e0686ed5 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/src/ebsynth_cuda_texarray2.h @@ -0,0 +1,300 @@ +// This software is in the public domain. Where that dedication is not +// recognized, you are granted a perpetual, irrevocable license to copy +// and modify this file as you see fit. + +#ifndef EBSYNTH_CUDA_TEXARRAY2_H_ +#define EBSYNTH_CUDA_TEXARRAY2_H_ + +#include "jzq.h" +#include "ebsynth_cuda_check.h" + +#include + +template +struct CudaVec { }; + +template<> struct CudaVec<1, unsigned char> { typedef uchar1 type; }; +template<> struct CudaVec<2, unsigned char> { typedef uchar2 type; }; +template<> struct CudaVec<4, unsigned char> { typedef uchar4 type; }; + +template<> struct CudaVec<1, int> { typedef int1 type; }; +template<> struct CudaVec<2, int> { typedef int2 type; }; +template<> struct CudaVec<4, int> { typedef int4 type; }; + +template<> struct CudaVec<1, float> { typedef float1 type; }; +template<> struct CudaVec<2, float> { typedef float2 type; }; +template<> struct CudaVec<4, float> { typedef float4 type; }; + +template +struct CudaKind { }; + +template<> struct CudaKind { static const cudaChannelFormatKind kind = cudaChannelFormatKindUnsigned; }; +template<> struct CudaKind { static const cudaChannelFormatKind kind = cudaChannelFormatKindSigned; }; +template<> struct CudaKind { static const cudaChannelFormatKind kind = cudaChannelFormatKindFloat; }; + +__device__ Vec<1, unsigned char> cuda2jzq(const uchar1& vec) { return Vec<1, unsigned char>(vec.x); } +__device__ Vec<2, unsigned char> cuda2jzq(const uchar2& vec) { return Vec<2, unsigned char>(vec.x, vec.y); } +__device__ Vec<4, unsigned char> cuda2jzq(const uchar4& vec) { return Vec<4, unsigned char>(vec.x, vec.y, vec.z, vec.w); } + +__device__ Vec<1, int> cuda2jzq(const int1& vec) { return Vec<1, int>(vec.x); } +__device__ Vec<2, int> cuda2jzq(const int2& vec) { return Vec<2, int>(vec.x, vec.y); } +__device__ Vec<4, int> cuda2jzq(const int4& vec) { return Vec<4, int>(vec.x, vec.y, vec.z, vec.w); } + +__device__ Vec<1, float> cuda2jzq(const float1& vec) { return Vec<1, float>(vec.x); } +__device__ Vec<2, float> cuda2jzq(const float2& vec) { return Vec<2, float>(vec.x, vec.y); } +__device__ Vec<4, float> cuda2jzq(const float4& vec) { return Vec<4, float>(vec.x, vec.y, vec.z, vec.w); } + +#define N_LAYERS(N,M) 1+(N-1)/M + +template +struct TexLayer2 +{ + size_t pitch; + void* data; + cudaTextureObject_t texObj; + + TexLayer2(){}; + + TexLayer2(int width, int height) + { + checkCudaError(cudaMallocPitch(&data, &pitch, width*N*sizeof(T), height)); + + const int bits = 8 * sizeof(T); + + const int bitsTable[4][4] = { { bits, 0, 0, 0 }, + { bits, bits, 0, 0 }, + { -1, -1, -1, -1 }, + { bits, bits, bits, bits } }; + + cudaResourceDesc resDesc; + memset(&resDesc, 0, sizeof(resDesc)); + resDesc.resType = cudaResourceTypePitch2D; + resDesc.res.pitch2D.devPtr = data; + resDesc.res.pitch2D.pitchInBytes = pitch; + resDesc.res.pitch2D.width = width; + resDesc.res.pitch2D.height = height; + resDesc.res.pitch2D.desc = cudaCreateChannelDesc(bitsTable[N - 1][0], + bitsTable[N - 1][1], + bitsTable[N - 1][2], + bitsTable[N - 1][3], + CudaKind::kind); + + cudaTextureDesc texDesc; + memset(&texDesc, 0, sizeof(texDesc)); + texDesc.addressMode[0] = cudaAddressModeClamp; + texDesc.addressMode[1] = cudaAddressModeClamp; + texDesc.filterMode = cudaFilterModePoint; + texDesc.readMode = cudaReadModeElementType; + texDesc.normalizedCoords = 0; + + texObj = 0; + checkCudaError(cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL)); + } + + Vec __device__ operator()(int x, int y) const + { + return cuda2jzq(tex2D::type>(texObj, x, y)); + } + + void __device__ write(int x, int y, const Vec& value) + { + Vec* ptr = (Vec*)&((unsigned char*)data)[x*sizeof(Vec) + y*pitch]; + *ptr = value; + } + + void destroy() + { + checkCudaError( cudaDestroyTextureObject(texObj) ); + checkCudaError( cudaFree(data) ); + } +}; + +template +struct TexArray2 +{ + int width; + int height; + + TexLayer2 texLayers[N_LAYERS(N, M)]; + + size_t tmp_pitch; + void* tmp_data; + + TexArray2() : width(0),height(0),tmp_pitch(0),tmp_data(0) { } + + TexArray2(const V2i& size) + { + width = size(0); + height = size(1); + + checkCudaError(cudaMallocPitch(&tmp_data, &tmp_pitch, width*N*sizeof(T), height)); + + for (int i = 0; i < N_LAYERS(N, M); ++i) + texLayers[i] = TexLayer2(width, height); + } + + TexArray2(int width, int height) + { + this->width = width; + this->height = height; + + checkCudaError(cudaMallocPitch(&tmp_data, &tmp_pitch, width*N*sizeof(T), height)); + + for (int i = 0; i < N_LAYERS(N, M); ++i) + texLayers[i] = TexLayer2(width, height); + } + + Vec __device__ operator()(int x, int y) const + { + Vec ret; + Vec tmp; + + for (int i = 0; i < N / M; ++i){ + tmp = texLayers[i](x, y); + for (int j = 0; j < M; ++j) + ret[i*M + j] = tmp[j]; + } + + if (N % M != 0){ + tmp = texLayers[N / M](x, y); + for (int j = 0; j < N % M; ++j) + ret[(N / M)*M + j] = tmp[j]; + } + + return ret; + } + + void __device__ write(int x, int y, const Vec& value) + { + Vec tmp; + + for (int i = 0; i < N / M; ++i){ + for (int j = 0; j < M; ++j) + tmp[j] = value[i*M + j]; + texLayers[i].write(x, y, tmp); + } + + if (N % M != 0){ + for (int j = 0; j < N % M; ++j) + tmp[j] = value[(N / M)*M + j]; + texLayers[N / M].write(x, y, tmp); + } + } + + V2i size() const + { + return V2i(width,height); + } + + void destroy() + { + for (int i = 0; i < N_LAYERS(N, M); ++i) + { + texLayers[i].destroy(); + } + + checkCudaError( cudaFree(tmp_data) ); + } +}; + +template +__global__ void tmpToLayers(TexArray2 A) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x* ptr = (Vec*)&((unsigned char*)A.tmp_data)[x*sizeof(Vec) + y*A.tmp_pitch]; + A.write(x, y, *ptr); + } +} + +template +__global__ void layersToTmp(const TexArray2 A) +{ + const int x = blockDim.x*blockIdx.x + threadIdx.x; + const int y = blockDim.y*blockIdx.y + threadIdx.y; + + if (x value = A(x, y); + Vec* ptr = (Vec*)&((unsigned char*)A.tmp_data)[x*sizeof(Vec) + y*A.tmp_pitch]; + *ptr = value; + } +} + +template +void copy(TexArray2* out_dst,const Array2>& src) +{ + assert(out_dst != 0); + const TexArray2& dst = *out_dst; + assert(dst.width == src.width()); + assert(dst.height == src.height()); + + const int srcWidthInBytes = src.width()*sizeof(Vec); + const int srcPitchInBytes = srcWidthInBytes; + + checkCudaError(cudaMemcpy2D(dst.tmp_data, dst.tmp_pitch, src.data(), srcPitchInBytes, srcWidthInBytes, src.height(), cudaMemcpyHostToDevice)); + + const int numThreadsPerBlock = 16; + const dim3 threadsPerBlock = dim3(numThreadsPerBlock, numThreadsPerBlock); + const dim3 numBlocks = dim3((src.width() + threadsPerBlock.x) / threadsPerBlock.x, + (src.height() + threadsPerBlock.y) / threadsPerBlock.y); + + tmpToLayers << > >(dst); +} + +template +void copy(TexArray2* out_dst,void* src_data) +{ + assert(out_dst != 0); + const TexArray2& dst = *out_dst; + + const int srcWidthInBytes = dst.width*sizeof(Vec); + const int srcPitchInBytes = srcWidthInBytes; + + checkCudaError(cudaMemcpy2D(dst.tmp_data, dst.tmp_pitch, src_data, srcPitchInBytes, srcWidthInBytes, dst.height, cudaMemcpyHostToDevice)); + + const int numThreadsPerBlock = 16; + const dim3 threadsPerBlock = dim3(numThreadsPerBlock, numThreadsPerBlock); + const dim3 numBlocks = dim3((dst.width + threadsPerBlock.x) / threadsPerBlock.x, + (dst.height + threadsPerBlock.y) / threadsPerBlock.y); + + tmpToLayers << > >(dst); +} + +template +void copy(Array2>* out_dst, const TexArray2& src) +{ + assert(out_dst != 0); + const Array2>& dst = *out_dst; + assert(dst.width() == src.width); + assert(dst.height() == src.height); + + const int numThreadsPerBlock = 16; + const dim3 threadsPerBlock = dim3(numThreadsPerBlock, numThreadsPerBlock); + const dim3 numBlocks = dim3((dst.width() + threadsPerBlock.x) / threadsPerBlock.x, + (dst.height() + threadsPerBlock.y) / threadsPerBlock.y); + + layersToTmp << > >(src); + + const int dstPitchInBytes = dst.width()*sizeof(Vec); + checkCudaError(cudaMemcpy2D((void*)dst.data(), dstPitchInBytes, src.tmp_data, src.tmp_pitch, src.width*N*sizeof(T), src.height, cudaMemcpyDeviceToHost)); +} + +template +void copy(void** out_dst_data, const TexArray2& src) +{ + const int numThreadsPerBlock = 16; + const dim3 threadsPerBlock = dim3(numThreadsPerBlock, numThreadsPerBlock); + const dim3 numBlocks = dim3((src.width + threadsPerBlock.x) / threadsPerBlock.x, + (src.height + threadsPerBlock.y) / threadsPerBlock.y); + + layersToTmp << > >(src); + + const int dstPitchInBytes = src.width*sizeof(Vec); + checkCudaError(cudaMemcpy2D((void*)*out_dst_data, dstPitchInBytes, src.tmp_data, src.tmp_pitch, src.width*N*sizeof(T), src.height, cudaMemcpyDeviceToHost)); +} + +#endif diff --git a/src/ebsynth/deps/ebsynth/src/ebsynth_nocuda.cpp b/src/ebsynth/deps/ebsynth/src/ebsynth_nocuda.cpp new file mode 100644 index 0000000000000000000000000000000000000000..558a50ca476b0f66577a651beac616de4d859e36 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/src/ebsynth_nocuda.cpp @@ -0,0 +1,34 @@ +// This software is in the public domain. Where that dedication is not +// recognized, you are granted a perpetual, irrevocable license to copy +// and modify this file as you see fit. + +void ebsynthRunCuda(int numStyleChannels, + int numGuideChannels, + int sourceWidth, + int sourceHeight, + void* sourceStyleData, + void* sourceGuideData, + int targetWidth, + int targetHeight, + void* targetGuideData, + void* targetModulationData, + float* styleWeights, + float* guideWeights, + float uniformityWeight, + int patchSize, + int voteMode, + int numPyramidLevels, + int* numSearchVoteItersPerLevel, + int* numPatchMatchItersPerLevel, + int* stopThresholdPerLevel, + int extraPass3x3, + void* outputNnfData, + void* outputImageData) +{ + +} + +int ebsynthBackendAvailableCuda() +{ + return 0; +} diff --git a/src/ebsynth/deps/ebsynth/src/jzq.h b/src/ebsynth/deps/ebsynth/src/jzq.h new file mode 100644 index 0000000000000000000000000000000000000000..a1957319b596176e3ea174dd1daf33b8bcab9860 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/src/jzq.h @@ -0,0 +1,1994 @@ +// This software is in the public domain. Where that dedication is not +// recognized, you are granted a perpetual, irrevocable license to copy +// and modify this file as you see fit. + +#ifndef JZQ_H_ +#define JZQ_H_ + +#include +#include +#include +#include +#include +#include +#include + +#ifdef __CUDACC__ + #define JZQ_DECORATOR __host__ __device__ +#else + #define JZQ_DECORATOR +#endif + +template struct zero { static JZQ_DECORATOR T value(); }; + +template JZQ_DECORATOR inline T clamp(const T& x,const T& xmin,const T& xmax); +template JZQ_DECORATOR inline T lerp(const T& a,const T& b,float t); + +inline std::string spf(const std::string fmt,...); + +template +struct Vec +{ + T v[N]; + + JZQ_DECORATOR Vec(); + template JZQ_DECORATOR explicit Vec(const Vec& u); + explicit JZQ_DECORATOR Vec(T v0); + + JZQ_DECORATOR Vec(T v0,T v1); + JZQ_DECORATOR Vec(T v0,T v1,T v2); + JZQ_DECORATOR Vec(T v0,T v1,T v2,T v3); + JZQ_DECORATOR Vec(T v0,T v1,T v2,T v3,T v4); + JZQ_DECORATOR Vec(T v0,T v1,T v2,T v3,T v4,T v5); + + JZQ_DECORATOR T& operator()(int i); + JZQ_DECORATOR const T& operator()(int i) const; + JZQ_DECORATOR T& operator[](int i); + JZQ_DECORATOR const T& operator[](int i) const; + + JZQ_DECORATOR Vec operator*=(const Vec& u); + JZQ_DECORATOR Vec operator+=(const Vec& u); + + JZQ_DECORATOR Vec operator*=(T s); + JZQ_DECORATOR Vec operator+=(T s); +}; + +template Vec JZQ_DECORATOR operator-(const Vec& u); +template Vec JZQ_DECORATOR operator+(const Vec& u,const Vec& v); +template Vec JZQ_DECORATOR operator-(const Vec& u,const Vec& v); +template Vec JZQ_DECORATOR operator-(const Vec& u,const T v); +template Vec JZQ_DECORATOR operator*(const Vec& u,const Vec& v); +template Vec JZQ_DECORATOR operator/(const Vec& u,const Vec& v); +template Vec JZQ_DECORATOR operator*(const T s,const Vec& u); +template Vec JZQ_DECORATOR operator*(const Vec& u,const T s); +template Vec JZQ_DECORATOR operator/(const Vec& u,const T s); + +template Vec JZQ_DECORATOR operator<(const Vec& u,const Vec& v); +template Vec JZQ_DECORATOR operator>(const Vec& u,const Vec& v); +template Vec JZQ_DECORATOR operator<=(const Vec& u,const Vec& v); +template Vec JZQ_DECORATOR operator>=(const Vec& u,const Vec& v); +template Vec JZQ_DECORATOR operator==(const Vec& u,const Vec& v); +template Vec JZQ_DECORATOR operator!=(const Vec& u,const Vec& v); + +template JZQ_DECORATOR inline T dot(const Vec& u,const Vec& v); +template JZQ_DECORATOR inline T cross(const Vec<2,T> &a,const Vec<2,T> &b); +template JZQ_DECORATOR inline Vec<3,T> cross(const Vec<3,T> &a,const Vec<3,T> &b); +template JZQ_DECORATOR inline T norm(const Vec& u); +template JZQ_DECORATOR inline Vec normalize(const Vec& u); +template JZQ_DECORATOR inline T min(const Vec& u); +template JZQ_DECORATOR inline T max(const Vec& u); +template JZQ_DECORATOR inline T sum(const Vec& u); +namespace std +{ +template inline Vec min(const Vec& u,const Vec& v); +template inline Vec max(const Vec& u,const Vec& v); +} +template inline Vec abs(const Vec& x); + +template inline bool any(const Vec& u); +template inline bool all(const Vec& u); + +template +struct Mat +{ + T m[M][N]; + + Mat(); + + Mat(T a00,T a01, + T a10,T a11); + + Mat(T a00,T a01,T a02, + T a10,T a11,T a12, + T a20,T a21,T a22); + + Mat(T a00,T a01,T a02,T a03, + T a10,T a11,T a12,T a13, + T a20,T a21,T a22,T a23, + T a30,T a31,T a32,T a33); + + T& operator()(int i,int j); + const T& operator()(int i,int j) const; + + T* data(); + const T* data() const; +}; + +template Mat operator*(const Mat& A,const Mat& B); + +template Vec operator*(const Mat& A,const Vec& u); +template Vec operator*(const Vec& u,const Mat& A); + +template Mat transpose(const Mat& A); +template T trace(const Mat& A); +template Mat inverse(const Mat& A); + +template +class Array2 +{ +public: + Array2(); + Array2(int width,int height); + explicit Array2(const Vec<2,int>& size); + Array2(const Array2& a); + ~Array2(); + + Array2& operator=(const Array2& a); + + inline T& operator[](int i); + inline const T& operator[](int i) const; + inline T& operator()(int i,int j); + inline const T& operator()(int i,int j) const; + inline T& operator()(const Vec<2,int>& ij); + inline const T& operator()(const Vec<2,int>& ij) const; + + Vec<2,int> size() const; + int size(int dim) const; + int width() const; + int height() const; + int numel() const; + T* data(); + const T* data() const; + void clear(); + void swap(Array2& b); + bool empty() const; + +private: + Vec<2,int> s; + T* d; +}; + +template Vec<2,int> size(const Array2& a); +template int size(const Array2& a,int dim); +template int numel(const Array2& a); +template void clear(Array2* a); +template void swap(Array2& a,Array2& b); +template T min(const Array2& a); +template T max(const Array2& a); +template Vec<2,T> minmax(const Array2& a); +template Vec<2,int> argmin(const Array2& a); +template Vec<2,int> argmax(const Array2& a); +template T sum(const Array2& a); +template void fill(Array2* a,const T& value); + +template Array2 apply(const Array2& a,F fun); + +template +class Array3 +{ +public: + Array3(); + explicit Array3(const Vec<3,int>& size); + Array3(int width,int height,int depth); + Array3(const Array3& a); + ~Array3(); + + Array3& operator=(const Array3& a); + + inline T& operator[](int i); + inline const T& operator[](int i) const; + inline T& operator()(int i,int j,int k); + inline const T& operator()(int i,int j,int k) const; + inline T& operator()(const Vec<3,int>& ijk); + inline const T& operator()(const Vec<3,int>& ijk) const; + + Vec<3,int> size() const; + int size(int dim) const; + int width() const; + int height() const; + int depth() const; + int numel() const; + T* data(); + const T* data() const; + void clear(); + void swap(Array3& b); + bool empty() const; + +private: + Vec<3,int> s; + T* d; +}; + +template Vec<3,int> size(const Array3& a); +template int size(const Array3& a,int dim); +template int numel(const Array3& a); +template void clear(Array3* a); +template void swap(Array3& a,Array3& b); + +typedef Vec<2,double> Vec2d; +typedef Vec<2,float> Vec2f; +typedef Vec<2,int> Vec2i; +typedef Vec<2,unsigned int> Vec2ui; +typedef Vec<2,short> Vec2s; +typedef Vec<2,unsigned short> Vec2us; +typedef Vec<2,char> Vec2c; +typedef Vec<2,unsigned char> Vec2uc; + +typedef Vec<3,double> Vec3d; +typedef Vec<3,float> Vec3f; +typedef Vec<3,int> Vec3i; +typedef Vec<3,unsigned int> Vec3ui; +typedef Vec<3,short> Vec3s; +typedef Vec<3,unsigned short> Vec3us; +typedef Vec<3,char> Vec3c; +typedef Vec<3,unsigned char> Vec3uc; + +typedef Vec<4,double> Vec4d; +typedef Vec<4,float> Vec4f; +typedef Vec<4,int> Vec4i; +typedef Vec<4,unsigned int> Vec4ui; +typedef Vec<4,short> Vec4s; +typedef Vec<4,unsigned short> Vec4us; +typedef Vec<4,char> Vec4c; +typedef Vec<4,unsigned char> Vec4uc; + +typedef Vec<5,double> Vec5d; +typedef Vec<5,float> Vec5f; +typedef Vec<5,int> Vec5i; +typedef Vec<5,unsigned int> Vec5ui; +typedef Vec<5,short> Vec5s; +typedef Vec<5,unsigned short> Vec5us; +typedef Vec<5,char> Vec5c; +typedef Vec<5,unsigned char> Vec5uc; + +typedef Vec<6,double> Vec6d; +typedef Vec<6,float> Vec6f; +typedef Vec<6,int> Vec6i; +typedef Vec<6,unsigned int> Vec6ui; +typedef Vec<6,short> Vec6s; +typedef Vec<6,unsigned short> Vec6us; +typedef Vec<6,char> Vec6c; +typedef Vec<6,unsigned char> Vec6uc; + +typedef Vec<2,double> V2d; +typedef Vec<2,float> V2f; +typedef Vec<2,int> V2i; +typedef Vec<2,unsigned int> V2ui; +typedef Vec<2,short> V2s; +typedef Vec<2,unsigned short> V2us; +typedef Vec<2,char> V2c; +typedef Vec<2,unsigned char> V2uc; + +typedef Vec<3,double> V3d; +typedef Vec<3,float> V3f; +typedef Vec<3,int> V3i; +typedef Vec<3,unsigned int> V3ui; +typedef Vec<3,short> V3s; +typedef Vec<3,unsigned short> V3us; +typedef Vec<3,char> V3c; +typedef Vec<3,unsigned char> V3uc; + +typedef Vec<4,double> V4d; +typedef Vec<4,float> V4f; +typedef Vec<4,int> V4i; +typedef Vec<4,unsigned int> V4ui; +typedef Vec<4,short> V4s; +typedef Vec<4,unsigned short> V4us; +typedef Vec<4,char> V4c; +typedef Vec<4,unsigned char> V4uc; + +typedef Vec<5,double> V5d; +typedef Vec<5,float> V5f; +typedef Vec<5,int> V5i; +typedef Vec<5,unsigned int> V5ui; +typedef Vec<5,short> V5s; +typedef Vec<5,unsigned short> V5us; +typedef Vec<5,char> V5c; +typedef Vec<5,unsigned char> V5uc; + +typedef Vec<6,double> V6d; +typedef Vec<6,float> V6f; +typedef Vec<6,int> V6i; +typedef Vec<6,unsigned int> V6ui; +typedef Vec<6,short> V6s; +typedef Vec<6,unsigned short> V6us; +typedef Vec<6,char> V6c; +typedef Vec<6,unsigned char> V6uc; + +typedef Mat<2,2,float> Mat2x2f; +typedef Mat<2,3,float> Mat2x3f; +typedef Mat<2,4,float> Mat2x4f; +typedef Mat<2,5,float> Mat2x5f; +typedef Mat<2,6,float> Mat2x6f; +typedef Mat<2,7,float> Mat2x7f; +typedef Mat<2,8,float> Mat2x8f; +typedef Mat<3,2,float> Mat3x2f; +typedef Mat<3,3,float> Mat3x3f; +typedef Mat<3,4,float> Mat3x4f; +typedef Mat<3,5,float> Mat3x5f; +typedef Mat<3,6,float> Mat3x6f; +typedef Mat<3,7,float> Mat3x7f; +typedef Mat<3,8,float> Mat3x8f; +typedef Mat<4,2,float> Mat4x2f; +typedef Mat<4,3,float> Mat4x3f; +typedef Mat<4,4,float> Mat4x4f; +typedef Mat<4,5,float> Mat4x5f; +typedef Mat<4,6,float> Mat4x6f; +typedef Mat<4,7,float> Mat4x7f; +typedef Mat<4,8,float> Mat4x8f; +typedef Mat<5,2,float> Mat5x2f; +typedef Mat<5,3,float> Mat5x3f; +typedef Mat<5,4,float> Mat5x4f; +typedef Mat<5,5,float> Mat5x5f; +typedef Mat<5,6,float> Mat5x6f; +typedef Mat<5,7,float> Mat5x7f; +typedef Mat<5,8,float> Mat5x8f; +typedef Mat<6,2,float> Mat6x2f; +typedef Mat<6,3,float> Mat6x3f; +typedef Mat<6,4,float> Mat6x4f; +typedef Mat<6,5,float> Mat6x5f; +typedef Mat<6,6,float> Mat6x6f; +typedef Mat<6,7,float> Mat6x7f; +typedef Mat<6,8,float> Mat6x8f; +typedef Mat<7,2,float> Mat7x2f; +typedef Mat<7,3,float> Mat7x3f; +typedef Mat<7,4,float> Mat7x4f; +typedef Mat<7,5,float> Mat7x5f; +typedef Mat<7,6,float> Mat7x6f; +typedef Mat<7,7,float> Mat7x7f; +typedef Mat<7,8,float> Mat7x8f; +typedef Mat<8,2,float> Mat8x2f; +typedef Mat<8,3,float> Mat8x3f; +typedef Mat<8,4,float> Mat8x4f; +typedef Mat<8,5,float> Mat8x5f; +typedef Mat<8,6,float> Mat8x6f; +typedef Mat<8,7,float> Mat8x7f; +typedef Mat<8,8,float> Mat8x8f; + +typedef Mat<2,2,double> Mat2x2d; +typedef Mat<2,3,double> Mat2x3d; +typedef Mat<2,4,double> Mat2x4d; +typedef Mat<2,5,double> Mat2x5d; +typedef Mat<2,6,double> Mat2x6d; +typedef Mat<2,7,double> Mat2x7d; +typedef Mat<2,8,double> Mat2x8d; +typedef Mat<3,2,double> Mat3x2d; +typedef Mat<3,3,double> Mat3x3d; +typedef Mat<3,4,double> Mat3x4d; +typedef Mat<3,5,double> Mat3x5d; +typedef Mat<3,6,double> Mat3x6d; +typedef Mat<3,7,double> Mat3x7d; +typedef Mat<3,8,double> Mat3x8d; +typedef Mat<4,2,double> Mat4x2d; +typedef Mat<4,3,double> Mat4x3d; +typedef Mat<4,4,double> Mat4x4d; +typedef Mat<4,5,double> Mat4x5d; +typedef Mat<4,6,double> Mat4x6d; +typedef Mat<4,7,double> Mat4x7d; +typedef Mat<4,8,double> Mat4x8d; +typedef Mat<5,2,double> Mat5x2d; +typedef Mat<5,3,double> Mat5x3d; +typedef Mat<5,4,double> Mat5x4d; +typedef Mat<5,5,double> Mat5x5d; +typedef Mat<5,6,double> Mat5x6d; +typedef Mat<5,7,double> Mat5x7d; +typedef Mat<5,8,double> Mat5x8d; +typedef Mat<6,2,double> Mat6x2d; +typedef Mat<6,3,double> Mat6x3d; +typedef Mat<6,4,double> Mat6x4d; +typedef Mat<6,5,double> Mat6x5d; +typedef Mat<6,6,double> Mat6x6d; +typedef Mat<6,7,double> Mat6x7d; +typedef Mat<6,8,double> Mat6x8d; +typedef Mat<7,2,double> Mat7x2d; +typedef Mat<7,3,double> Mat7x3d; +typedef Mat<7,4,double> Mat7x4d; +typedef Mat<7,5,double> Mat7x5d; +typedef Mat<7,6,double> Mat7x6d; +typedef Mat<7,7,double> Mat7x7d; +typedef Mat<7,8,double> Mat7x8d; +typedef Mat<8,2,double> Mat8x2d; +typedef Mat<8,3,double> Mat8x3d; +typedef Mat<8,4,double> Mat8x4d; +typedef Mat<8,5,double> Mat8x5d; +typedef Mat<8,6,double> Mat8x6d; +typedef Mat<8,7,double> Mat8x7d; +typedef Mat<8,8,double> Mat8x8d; + +typedef Array2 Array2d; +typedef Array2 Array2f; +typedef Array2 Array2i; +typedef Array2 Array2ui; +typedef Array2 Array2s; +typedef Array2 Array2us; +typedef Array2 Array2c; +typedef Array2 Array2uc; + +typedef Array2< Vec<2,double> > Array2V2d; +typedef Array2< Vec<2,float> > Array2V2f; +typedef Array2< Vec<2,int> > Array2V2i; +typedef Array2< Vec<2,unsigned int> > Array2V2ui; +typedef Array2< Vec<2,short> > Array2V2s; +typedef Array2< Vec<2,unsigned short> > Array2V2us; +typedef Array2< Vec<2,char> > Array2V2c; +typedef Array2< Vec<2,unsigned char> > Array2V2uc; + +typedef Array2< Vec<3,double> > Array2V3d; +typedef Array2< Vec<3,float> > Array2V3f; +typedef Array2< Vec<3,int> > Array2V3i; +typedef Array2< Vec<3,unsigned int> > Array2V3ui; +typedef Array2< Vec<3,short> > Array2V3s; +typedef Array2< Vec<3,unsigned short> > Array2V3us; +typedef Array2< Vec<3,char> > Array2V3c; +typedef Array2< Vec<3,unsigned char> > Array2V3uc; + +typedef Array2< Vec<4,double> > Array2V4d; +typedef Array2< Vec<4,float> > Array2V4f; +typedef Array2< Vec<4,int> > Array2V4i; +typedef Array2< Vec<4,unsigned int> > Array2V4ui; +typedef Array2< Vec<4,short> > Array2V4s; +typedef Array2< Vec<4,unsigned short> > Array2V4us; +typedef Array2< Vec<4,char> > Array2V4c; +typedef Array2< Vec<4,unsigned char> > Array2V4uc; + +typedef Array2 A2d; +typedef Array2 A2f; +typedef Array2 A2i; +typedef Array2 A2ui; +typedef Array2 A2s; +typedef Array2 A2us; +typedef Array2 A2c; +typedef Array2 A2uc; + +typedef Array2< Vec<2,double> > A2V2d; +typedef Array2< Vec<2,float> > A2V2f; +typedef Array2< Vec<2,int> > A2V2i; +typedef Array2< Vec<2,unsigned int> > A2V2ui; +typedef Array2< Vec<2,short> > A2V2s; +typedef Array2< Vec<2,unsigned short> > A2V2us; +typedef Array2< Vec<2,char> > A2V2c; +typedef Array2< Vec<2,unsigned char> > A2V2uc; + +typedef Array2< Vec<3,double> > A2V3d; +typedef Array2< Vec<3,float> > A2V3f; +typedef Array2< Vec<3,int> > A2V3i; +typedef Array2< Vec<3,unsigned int> > A2V3ui; +typedef Array2< Vec<3,short> > A2V3s; +typedef Array2< Vec<3,unsigned short> > A2V3us; +typedef Array2< Vec<3,char> > A2V3c; +typedef Array2< Vec<3,unsigned char> > A2V3uc; + +typedef Array2< Vec<4,double> > A2V4d; +typedef Array2< Vec<4,float> > A2V4f; +typedef Array2< Vec<4,int> > A2V4i; +typedef Array2< Vec<4,unsigned int> > A2V4ui; +typedef Array2< Vec<4,short> > A2V4s; +typedef Array2< Vec<4,unsigned short> > A2V4us; +typedef Array2< Vec<4,char> > A2V4c; +typedef Array2< Vec<4,unsigned char> > A2V4uc; + +typedef Array3 Array3d; +typedef Array3 Array3f; +typedef Array3 Array3i; +typedef Array3 Array3ui; +typedef Array3 Array3s; +typedef Array3 Array3us; +typedef Array3 Array3c; +typedef Array3 Array3uc; + +typedef Array3< Vec<2,double> > Array3V2d; +typedef Array3< Vec<2,float> > Array3V2f; +typedef Array3< Vec<2,int> > Array3V2i; +typedef Array3< Vec<2,unsigned int> > Array3V2ui; +typedef Array3< Vec<2,short> > Array3V2s; +typedef Array3< Vec<2,unsigned short> > Array3V2us; +typedef Array3< Vec<2,char> > Array3V2c; +typedef Array3< Vec<2,unsigned char> > Array3V2uc; + +typedef Array3< Vec<3,double> > Array3V3d; +typedef Array3< Vec<3,float> > Array3V3f; +typedef Array3< Vec<3,int> > Array3V3i; +typedef Array3< Vec<3,unsigned int> > Array3V3ui; +typedef Array3< Vec<3,short> > Array3V3s; +typedef Array3< Vec<3,unsigned short> > Array3V3us; +typedef Array3< Vec<3,char> > Array3V3c; +typedef Array3< Vec<3,unsigned char> > Array3V3uc; + +typedef Array3< Vec<4,double> > Array3V4d; +typedef Array3< Vec<4,float> > Array3V4f; +typedef Array3< Vec<4,int> > Array3V4i; +typedef Array3< Vec<4,unsigned int> > Array3V4ui; +typedef Array3< Vec<4,short> > Array3V4s; +typedef Array3< Vec<4,unsigned short> > Array3V4us; +typedef Array3< Vec<4,char> > Array3V4c; +typedef Array3< Vec<4,unsigned char> > Array3V4uc; + +typedef Array3 A3d; +typedef Array3 A3f; +typedef Array3 A3i; +typedef Array3 A3ui; +typedef Array3 A3s; +typedef Array3 A3us; +typedef Array3 A3c; +typedef Array3 A3uc; + +typedef Array3< Vec<2,double> > A3V2d; +typedef Array3< Vec<2,float> > A3V2f; +typedef Array3< Vec<2,int> > A3V2i; +typedef Array3< Vec<2,unsigned int> > A3V2ui; +typedef Array3< Vec<2,short> > A3V2s; +typedef Array3< Vec<2,unsigned short> > A3V2us; +typedef Array3< Vec<2,char> > A3V2c; +typedef Array3< Vec<2,unsigned char> > A3V2uc; + +typedef Array3< Vec<3,double> > A3V3d; +typedef Array3< Vec<3,float> > A3V3f; +typedef Array3< Vec<3,int> > A3V3i; +typedef Array3< Vec<3,unsigned int> > A3V3ui; +typedef Array3< Vec<3,short> > A3V3s; +typedef Array3< Vec<3,unsigned short> > A3V3us; +typedef Array3< Vec<3,char> > A3V3c; +typedef Array3< Vec<3,unsigned char> > A3V3uc; + +typedef Array3< Vec<4,double> > A3V4d; +typedef Array3< Vec<4,float> > A3V4f; +typedef Array3< Vec<4,int> > A3V4i; +typedef Array3< Vec<4,unsigned int> > A3V4ui; +typedef Array3< Vec<4,short> > A3V4s; +typedef Array3< Vec<4,unsigned short> > A3V4us; +typedef Array3< Vec<4,char> > A3V4c; +typedef Array3< Vec<4,unsigned char> > A3V4uc; + +template<> struct zero { static JZQ_DECORATOR char value() { return 0; } }; +template<> struct zero { static JZQ_DECORATOR unsigned char value() { return 0; } }; +template<> struct zero { static JZQ_DECORATOR short value() { return 0; } }; +template<> struct zero { static JZQ_DECORATOR unsigned short value() { return 0; } }; +template<> struct zero { static JZQ_DECORATOR int value() { return 0; } }; +template<> struct zero { static JZQ_DECORATOR unsigned int value() { return 0; } }; +template<> struct zero { static JZQ_DECORATOR float value() { return 0.0f; } }; +template<> struct zero { static JZQ_DECORATOR double value() { return 0.0; } }; + +template +struct zero> +{ + static JZQ_DECORATOR Vec value() + { + Vec z; + for(int i=0;i::value(); } + return z; + } +}; + +template +struct zero> +{ + static JZQ_DECORATOR Mat value() + { + Mat z; + for(int i=0;i::value(); + } + return z; + } +}; + +template JZQ_DECORATOR inline +T clamp(const T& x,const T& xmin,const T& xmax) +{ + return std::min(std::max(x,xmin),xmax); +} + +template JZQ_DECORATOR inline +T lerp(const T& a,const T& b,float t) +{ + return (1.0f-t)*a+t*b; +} + +inline std::string spf(const std::string fmt,...) +{ + int size = 1024; + std::vector buf; + va_list ap; + + while(1) + { + if(size>16*1024*1024) { return std::string(""); } + + buf.resize(size); + + va_start(ap,fmt); + const int n = vsnprintf(&buf[0],size-1,fmt.c_str(),ap); + va_end(ap); + + if(n>-1 && n < size) + { + break; + } + else if(n>-1) + { + size = n + 1; + } + else + { + size = 2*size; + } + } + + return std::string(&buf[0]); +} + +template +JZQ_DECORATOR +Vec::Vec() +{ +} + +template +JZQ_DECORATOR +Vec::Vec(T v0) +{ + assert(N==1); + v[0]=v0; +} + +template +JZQ_DECORATOR +Vec::Vec(T v0,T v1) +{ + assert(N==2); + v[0]=v0; v[1]=v1; +} + +template +JZQ_DECORATOR +Vec::Vec(T v0,T v1,T v2) +{ + assert(N==3); + v[0]=v0; v[1]=v1; v[2]=v2; +} + +template +JZQ_DECORATOR +Vec::Vec(T v0,T v1,T v2,T v3) +{ + assert(N==4); + v[0]=v0; v[1]=v1; v[2]=v2; v[3]=v3; +} + +template +JZQ_DECORATOR +Vec::Vec(T v0,T v1,T v2,T v3,T v4) +{ + assert(N==5); + v[0]=v0; v[1]=v1; v[2]=v2; v[3]=v3; v[4]=v4; +} + +template +JZQ_DECORATOR +Vec::Vec(T v0,T v1,T v2,T v3,T v4,T v5) +{ + assert(N==6); + v[0]=v0; v[1]=v1; v[2]=v2; v[3]=v3; v[4]=v4; v[5]=v5; +} + +template template +JZQ_DECORATOR +Vec::Vec(const Vec& u) +{ + for(int i=0;i(u.v[i]); + } +} + +template +JZQ_DECORATOR +T& Vec::operator()(int i) +{ + assert(i>=0 && i +JZQ_DECORATOR +const T& Vec::operator()(int i) const +{ + assert(i>=0 && i +JZQ_DECORATOR +T& Vec::operator[](int i) +{ + assert(i>=0 && i +JZQ_DECORATOR +const T& Vec::operator[](int i) const +{ + assert(i>=0 && i +JZQ_DECORATOR +Vec Vec::operator*=(const Vec& u) +{ + for(int i=0;i +JZQ_DECORATOR +Vec Vec::operator+=(const Vec& u) +{ + for(int i=0;i +JZQ_DECORATOR +Vec Vec::operator*=(T s) +{ + for(int i=0;i +JZQ_DECORATOR +Vec Vec::operator+=(T s) +{ + for(int i=0;i +JZQ_DECORATOR +Vec operator-(const Vec& u) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR +Vec operator+(const Vec& u,const Vec& v) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR +Vec operator-(const Vec& u,const Vec& v) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR +Vec operator-(const Vec& u,const T v) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR +Vec operator*(const Vec& u,const Vec& v) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR +Vec operator/(const Vec& u,const Vec& v) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR +Vec operator*(const T s,const Vec& u) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR +Vec operator*(const Vec& u,const T s) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR +Vec operator/(const Vec& u,const T s) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR +Vec operator<(const Vec& u,const Vec& v) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR +Vec operator>(const Vec& u,const Vec& v) +{ + Vec r; + for(int i=0;iv(i); + return r; +} + +template +JZQ_DECORATOR +Vec operator<=(const Vec& u,const Vec& v) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR +Vec operator>=(const Vec& u,const Vec& v) +{ + Vec r; + for(int i=0;i=v(i); + return r; +} + +template +JZQ_DECORATOR +Vec operator==(const Vec& u,const Vec& v) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR +Vec operator!=(const Vec& u,const Vec& v) +{ + Vec r; + for(int i=0;i +JZQ_DECORATOR inline T dot(const Vec& u,const Vec& v) +{ + assert(N>0); + T sumprod = u(0)*v(0); + for(int i=1;i +JZQ_DECORATOR inline T cross(const Vec<2,T> &a,const Vec<2,T> &b) +{ + return a[0]*b[1]-a[1]*b[0]; +} + +template +JZQ_DECORATOR inline Vec<3,T> cross(const Vec<3,T> &a,const Vec<3,T> &b) +{ + return Vec<3,T>(a[1]*b[2]-a[2]*b[1], + a[2]*b[0]-a[0]*b[2], + a[0]*b[1]-a[1]*b[0]); +} + +template +JZQ_DECORATOR inline T norm(const Vec& u) +{ + return std::sqrt(dot(u,u)); +} + +template +JZQ_DECORATOR inline Vec normalize(const Vec& u) +{ + return u/norm(u); +} + +template +JZQ_DECORATOR inline bool any(const Vec& u) +{ + for(int i=0;i +JZQ_DECORATOR inline bool all(const Vec& u) +{ + for(int i=0;i +JZQ_DECORATOR inline T min(const Vec& u) +{ + assert(N>0); + + T minval = u(0); + + for(int i=1;i +JZQ_DECORATOR inline T max(const Vec& u) +{ + assert(N>0); + + T maxval = u(0); + + for(int i=1;i maxval) + { + maxval = u(i); + } + } + + return maxval; +} + +template +JZQ_DECORATOR inline T sum(const Vec& u) +{ + assert(N>0); + + T sumval = u(0); + + for(int i=1;i Vec +inline min(const Vec& u,const Vec& v) +{ + assert(N>0); + + Vec w; + + for(int i=0;i Vec +inline max(const Vec& u,const Vec& v) +{ + assert(N>0); + + Vec w; + + for(int i=0;i Vec +inline abs(const Vec& x) +{ + Vec out; + for(int i=0;i +Mat::Mat() {} + +template +Mat::Mat(T a00,T a01, + T a10,T a11) +{ + assert(M==2 && N==2); + + m[0][0] = a00; m[0][1] = a01; + m[1][0] = a10; m[1][1] = a11; +} + +template +Mat::Mat(T a00,T a01,T a02, + T a10,T a11,T a12, + T a20,T a21,T a22) +{ + assert(M==3 && N==3); + + m[0][0] = a00; m[0][1] = a01; m[0][2] = a02; + m[1][0] = a10; m[1][1] = a11; m[1][2] = a12; + m[2][0] = a20; m[2][1] = a21; m[2][2] = a22; +} + +template +Mat::Mat(T a00,T a01,T a02,T a03, + T a10,T a11,T a12,T a13, + T a20,T a21,T a22,T a23, + T a30,T a31,T a32,T a33) +{ + assert(M==4 && N==4); + + m[0][0] = a00; m[0][1] = a01; m[0][2] = a02; m[0][3] = a03; + m[1][0] = a10; m[1][1] = a11; m[1][2] = a12; m[1][3] = a13; + m[2][0] = a20; m[2][1] = a21; m[2][2] = a22; m[2][3] = a23; + m[3][0] = a30; m[3][1] = a31; m[3][2] = a32; m[3][3] = a33; +} + +template +T& Mat::operator()(int i,int j) +{ + assert(0<=i && i +const T& Mat::operator()(int i,int j) const +{ + assert(0<=i && i +T* Mat::data() +{ + return (T*)(&m[0][0]); +} + +template +const T* Mat::data() const +{ + return (T*)(&m[0][0]); +} + +template +Mat operator*(const Mat& A,const Mat& B) +{ + assert(N1==M2); + Mat C; + + fori(M1) + forj(N2) + { + T dot = 0; + fork(N1) dot += A(i,k) * B(k,j); + C(i,j) = dot; + } + + return C; +} + +template +Vec operator*(const Mat& A,const Vec& u) +{ + Vec v; + + fori(M) + { + T dot = 0; + forj(N) dot += A(i,j) * u(j); + v(i) = dot; + } + + return v; +} + +template +Vec operator*(const Vec& u,const Mat& A) +{ + Vec v; + + forj(N) + { + T dot = 0; + fori(M) dot += A(i,j) * u(i); + v(j) = dot; + } + + return v; +} + +/* +template +Mat identity() +{ + Mat A; + forij(N,N) A(i,j) = ((i==j) ? 1 : 0); + return A; +} +*/ + +template +Mat transpose(const Mat& A) +{ + Mat At; + + forij(N,M) At(i,j) = A(j,i); + + return At; +} + +template +T trace(const Mat& A) +{ + T sum = 0; + + fori(N) sum += A(i,i); + + return sum; +} + +template +Mat inverse(const Mat& A) +{ + Mat invA; + + invA = A; + + Vec colIndex; + Vec rowIndex; + Vec pivoted; + + fori(N) pivoted(i) = false; + + int i1, i2, row = 0, col = 0; + T save; + + for (int i0 = 0; i0 < N; i0++) + { + T fMax = 0.0f; + for (i1 = 0; i1 < N; i1++) + { + if (!pivoted(i1)) + { + for (i2 = 0; i2 < N; i2++) + { + if (!pivoted(i2)) + { + T fs = abs(invA(i1,i2)); + if (fs > fMax) + { + fMax = fs; + row = i1; + col = i2; + } + } + } + } + } + + //assert(fmax > eps) + + pivoted(col) = true; + + if (row != col) + { + forj(N) { T tmp = invA(row,j); invA(row,j) = invA(col,j); invA(col,j) = tmp; } + } + + rowIndex(i0) = row; + colIndex(i0) = col; + + T inv = ((T)1.0)/invA(col,col); + invA(col,col) = (T)1.0; + for (i2 = 0; i2 < N; i2++) + { + invA(col,i2) *= inv; + } + + for (i1 = 0; i1 < N; i1++) + { + if (i1 != col) + { + save = invA(i1,col); + invA(i1,col) = (T)0.0; + for (i2 = 0; i2 < N; i2++) + { + invA(i1,i2) -= invA(col,i2)*save; + } + } + } + } + + for (i1 = N-1; i1 >= 0; i1--) + { + if (rowIndex(i1) != colIndex(i1)) + { + for (i2 = 0; i2 < N; i2++) + { + save = invA(i2,rowIndex(i1)); + invA(i2,rowIndex(i1)) = invA(i2,colIndex(i1)); + invA(i2,colIndex(i1)) = save; + } + } + } + + return invA; +} + +#undef fori +#undef forj +#undef fork + +template +Array2::Array2() : s(0,0),d(0) {} + +template +Array2::Array2(int width,int height) +{ + assert(width>0 && height>0); + s = Vec2i(width,height); + d = new T[s(0)*s(1)]; +} + +template +Array2::Array2(const Vec2i& size) +{ + // XXX: predelat na neco jako assert(all(s>0)); + assert(size(0)>0 && size(1)>0); + s = size; + d = new T[s(0)*s(1)]; +} + +template +Array2::Array2(const Array2& a) +{ + // printf("COPY CONSTRUCTOR\n"); + s = a.s; + + if (s(0)>0 && s(1)>0) + { + d = new T[s(0)*s(1)]; + + // XXX: optimize this: + for(int i=0;i +Array2& Array2::operator=(const Array2& a) +{ + // printf("ASSIGNMENT\n"); + // printf("slow copy\n"); + if (this!=&a) + { + if (s(0)==a.s(0) && s(1)==a.s(1)) + { + // XXX: optimize this: + for(int i=0;i0 && a.s(1)>0) + { + d = new T[s(0)*s(1)]; + //memcpy(d,a.d,numel()*sizeof(T)); //XXX this will break down when T is not POD !!! + // XXX: optimize this: + for(int i=0;i +Array2::~Array2() +{ + delete[] d; +} + +template +inline T& Array2::operator[](int i) +{ + assert(i>=0 && i +inline const T& Array2::operator[](int i) const +{ + assert(i>=0 && i +inline T& Array2::operator()(int i,int j) +{ + assert(d!=0); + assert(i>=0 && i=0 && j +inline const T& Array2::operator()(int i,int j) const +{ + assert(d!=0); + assert(i>=0 && i=0 && j +inline T& Array2::operator()(const Vec<2,int>& ij) +{ + assert(d!=0); + assert(ij(0)>=0 && ij(0)=0 && ij(1) +inline const T& Array2::operator()(const Vec<2,int>& ij) const +{ + assert(d!=0); + assert(ij(0)>=0 && ij(0)=0 && ij(1) +Vec2i Array2::size() const +{ + return s; +} + +template +int Array2::size(int dim) const +{ + assert(dim==0 || dim==1); + return size()(dim); +} + +template +int Array2::width() const +{ + return size(0); +} + +template +int Array2::height() const +{ + return size(1); +} + +template +int Array2::numel() const +{ + return size(0)*size(1); +} + +template +T* Array2::data() +{ + return d; +} + +template +const T* Array2::data() const +{ + return d; +} + +template +bool Array2::empty() const +{ + return (numel()==0); +} + +template +void Array2::clear() +{ + delete[] d; + s = Vec2i(0,0); + d = 0; +} + +template +void Array2::swap(Array2& b) +{ + Vec2i tmp_s = s; + s = b.s; + b.s = tmp_s; + + T* tmp_d = d; + d = b.d; + b.d = tmp_d; +} + +template +Vec2i size(const Array2& a) +{ + return a.size(); +} + +template +int size(const Array2& a,int dim) +{ + return a.size(dim); +} + +template +int numel(const Array2& a) +{ + return a.numel(); +} + +template +void clear(Array2* a) +{ + a->clear(); +} + +template +void swap(Array2& a,Array2& b) +{ + a.swap(b); +} + +template +T min(const Array2& a) +{ + assert(numel(a)>0); + + const int n = numel(a); + + const T* d = a.data(); + + T minval = d[0]; + + for(int i=1;i +T max(const Array2& a) +{ + assert(numel(a)>0); + + const int n = numel(a); + + const T* d = a.data(); + + T maxval = d[0]; + + for(int i=1;i +Vec<2,T> minmax(const Array2& a) +{ + assert(numel(a)>0); + + const int n = numel(a); + + const T* d = a.data(); + + T minval = d[0]; + T maxval = d[0]; + + for(int i=1;i(minval,maxval); +} + +template +Vec2i argmin(const Array2& a) +{ + assert(numel(a)>0); + + T minValue = a(0,0); + Vec2i minIndex = Vec2i(0,0); + + for(int j=0;j +Vec2i argmax(const Array2& a) +{ + assert(numel(a)>0); + + T maxValue = a(0,0); + Vec2i maxIndex = Vec2i(0,0); + + for(int j=0;j +T sum(const Array2& a) +{ + assert(numel(a)>0); + + const int n = numel(a); + + const T* d = a.data(); + + T sumval = d[0]; + + for(int i=1;i +void fill(Array2* a,const T& value) +{ + assert(a!=0); + assert(a->numel()>0); + + const int n = a->numel(); + T* d = a->data(); + + for(int i=0;i +Array2 apply(const Array2& a,F fun) +{ + assert(numel(a) > 0); + + Array2 fun_a(size(a)); + + const int n = numel(a); + + for(int i=0;i +Array3::Array3() : s(0,0,0),d(0) {} + +template +Array3::Array3(int width,int height,int depth) +{ + assert(width>0 && height>0 && depth>0); + s = Vec3i(width,height,depth); + d = new T[s(0)*s(1)*s(2)]; +} + +template +Array3::Array3(const Vec3i& size) +{ + // XXX: predelat na neco jako assert(all(s>0)); + assert(size(0)>0 && size(1)>0 && size(2)>0); + s = size; + d = new T[s(0)*s(1)*s(2)]; +} + +template +Array3::Array3(const Array3& a) +{ + // printf("COPY CONSTRUCTOR\n"); + s = a.s; + + if (s(0)>0 && s(1)>0 && s(2)>0) + { + d = new T[s(0)*s(1)*s(2)]; + + // XXX: optimize this: + for(int i=0;i +Array3& Array3::operator=(const Array3& a) +{ + // printf("ASSIGNMENT\n"); + // printf("slow copy\n"); + if (this!=&a) + { + if (s(0)==a.s(0) && s(1)==a.s(1) && s(2)==a.s(2)) + { + // XXX: optimize this: + for(int i=0;i0 && a.s(1)>0 && a.s(2)>0) + { + d = new T[s(0)*s(1)*s(2)]; + // XXX: optimize this: + for(int i=0;i +Array3::~Array3() +{ + delete[] d; +} + +template +inline T& Array3::operator[](int i) +{ + assert(i>=0 && i +inline const T& Array3::operator[](int i) const +{ + assert(i>=0 && i +inline T& Array3::operator()(int i,int j,int k) +{ + assert(d!=0); + assert(i>=0 && i=0 && j=0 && k +inline const T& Array3::operator()(int i,int j,int k) const +{ + assert(d!=0); + assert(i>=0 && i=0 && j=0 && k +inline T& Array3::operator()(const Vec<3,int>& ijk) +{ + assert(d!=0); + assert(ijk(0)>=0 && ijk(0)=0 && ijk(1)=0 && ijk(2) +inline const T& Array3::operator()(const Vec<3,int>& ijk) const +{ + assert(d!=0); + assert(ijk(0)>=0 && ijk(0)=0 && ijk(1)=0 && ijk(2) +Vec3i Array3::size() const +{ + return s; +} + +template +int Array3::size(int dim) const +{ + assert(dim==0 || dim==1 || dim==2); + return size()(dim); +} + +template +int Array3::width() const +{ + return size(0); +} + +template +int Array3::height() const +{ + return size(1); +} + +template +int Array3::depth() const +{ + return size(2); +} + +template +int Array3::numel() const +{ + return size(0)*size(1)*size(2); +} + +template +T* Array3::data() +{ + return d; +} + +template +const T* Array3::data() const +{ + return d; +} + +template +void Array3::clear() +{ + delete[] d; + s = Vec3i(0,0,0); + d = 0; +} + +template +void Array3::swap(Array3& b) +{ + Vec3i tmp_s = s; + s = b.s; + b.s = tmp_s; + + T* tmp_d = d; + d = b.d; + b.d = tmp_d; +} + +template +bool Array3::empty() const +{ + return (numel()==0); +} + +template +Vec3i size(const Array3& a) +{ + return a.size(); +} + +template +int size(const Array3& a,int dim) +{ + return a.size(dim); +} + +template +int numel(const Array3& a) +{ + return a.numel(); +} + +template +void clear(Array3* a) +{ + a->clear(); +} + +template +void swap(Array3& a,Array3& b) +{ + a.swap(b); +} + +template +void fill(Array3* a,const T& value) +{ + assert(a!=0); + assert(a->numel()>0); + + const int n = a->numel(); + T* d = a->data(); + + for(int i=0;i +Array3 a3read(const std::string& fileName) +{ + Array3 A; + if(!a3read(&A,fileName)) { return Array3(); } + return A; +} + +template +bool a3read(Array3* out_A,const std::string& fileName) +{ + FILE* f = fopen(fileName.c_str(),"rb"); + + if(!f) { return false; } + + int w,h,d,s; + + if(fread(&w,sizeof(w),1,f)!=1 || + fread(&h,sizeof(h),1,f)!=1 || + fread(&d,sizeof(d),1,f)!=1 || + fread(&s,sizeof(s),1,f)!=1 || + ((w*h*d)<1) || s!=sizeof(T)) + { + fclose(f); + return false; + } + + Array3 A(w,h,d); + + if(fread(A.data(),sizeof(T)*w*h*d,1,f)!=1) + { + fclose(f); + return false; + } + + if(out_A!=0) { *out_A = A; } + + fclose(f); + return true; +} + +template +bool a3write(const Array3& A,const std::string& fileName) +{ + if(A.numel()==0) { return false; } + + FILE* f = fopen(fileName.c_str(),"wb"); + + if(!f) { return false; } + + const int w = A.width(); + const int h = A.height(); + const int d = A.depth(); + const int s = sizeof(T); + + if(fwrite(&w,sizeof(w),1,f)!=1 || + fwrite(&h,sizeof(h),1,f)!=1 || + fwrite(&d,sizeof(d),1,f)!=1 || + fwrite(&s,sizeof(s),1,f)!=1 || + fwrite(A.data(),sizeof(T)*w*h*d,1,f)!=1) + { + fclose(f); + return false; + } + + fclose(f); + return true; +} +#endif diff --git a/src/ebsynth/deps/ebsynth/src/stb_image.h b/src/ebsynth/deps/ebsynth/src/stb_image.h new file mode 100644 index 0000000000000000000000000000000000000000..a48cbaec78995de0ad294733d54492dc38c15d99 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/src/stb_image.h @@ -0,0 +1,6755 @@ +/* stb_image - v2.12 - public domain image loader - http://nothings.org/stb_image.h + no warranty implied; use at your own risk + + Do this: + #define STB_IMAGE_IMPLEMENTATION + before you include this file in *one* C or C++ file to create the implementation. + + // i.e. it should look like this: + #include ... + #include ... + #include ... + #define STB_IMAGE_IMPLEMENTATION + #include "stb_image.h" + + You can #define STBI_ASSERT(x) before the #include to avoid using assert.h. + And #define STBI_MALLOC, STBI_REALLOC, and STBI_FREE to avoid using malloc,realloc,free + + + QUICK NOTES: + Primarily of interest to game developers and other people who can + avoid problematic images and only need the trivial interface + + JPEG baseline & progressive (12 bpc/arithmetic not supported, same as stock IJG lib) + PNG 1/2/4/8-bit-per-channel (16 bpc not supported) + + TGA (not sure what subset, if a subset) + BMP non-1bpp, non-RLE + PSD (composited view only, no extra channels, 8/16 bit-per-channel) + + GIF (*comp always reports as 4-channel) + HDR (radiance rgbE format) + PIC (Softimage PIC) + PNM (PPM and PGM binary only) + + Animated GIF still needs a proper API, but here's one way to do it: + http://gist.github.com/urraka/685d9a6340b26b830d49 + + - decode from memory or through FILE (define STBI_NO_STDIO to remove code) + - decode from arbitrary I/O callbacks + - SIMD acceleration on x86/x64 (SSE2) and ARM (NEON) + + Full documentation under "DOCUMENTATION" below. + + + Revision 2.00 release notes: + + - Progressive JPEG is now supported. + + - PPM and PGM binary formats are now supported, thanks to Ken Miller. + + - x86 platforms now make use of SSE2 SIMD instructions for + JPEG decoding, and ARM platforms can use NEON SIMD if requested. + This work was done by Fabian "ryg" Giesen. SSE2 is used by + default, but NEON must be enabled explicitly; see docs. + + With other JPEG optimizations included in this version, we see + 2x speedup on a JPEG on an x86 machine, and a 1.5x speedup + on a JPEG on an ARM machine, relative to previous versions of this + library. The same results will not obtain for all JPGs and for all + x86/ARM machines. (Note that progressive JPEGs are significantly + slower to decode than regular JPEGs.) This doesn't mean that this + is the fastest JPEG decoder in the land; rather, it brings it + closer to parity with standard libraries. If you want the fastest + decode, look elsewhere. (See "Philosophy" section of docs below.) + + See final bullet items below for more info on SIMD. + + - Added STBI_MALLOC, STBI_REALLOC, and STBI_FREE macros for replacing + the memory allocator. Unlike other STBI libraries, these macros don't + support a context parameter, so if you need to pass a context in to + the allocator, you'll have to store it in a global or a thread-local + variable. + + - Split existing STBI_NO_HDR flag into two flags, STBI_NO_HDR and + STBI_NO_LINEAR. + STBI_NO_HDR: suppress implementation of .hdr reader format + STBI_NO_LINEAR: suppress high-dynamic-range light-linear float API + + - You can suppress implementation of any of the decoders to reduce + your code footprint by #defining one or more of the following + symbols before creating the implementation. + + STBI_NO_JPEG + STBI_NO_PNG + STBI_NO_BMP + STBI_NO_PSD + STBI_NO_TGA + STBI_NO_GIF + STBI_NO_HDR + STBI_NO_PIC + STBI_NO_PNM (.ppm and .pgm) + + - You can request *only* certain decoders and suppress all other ones + (this will be more forward-compatible, as addition of new decoders + doesn't require you to disable them explicitly): + + STBI_ONLY_JPEG + STBI_ONLY_PNG + STBI_ONLY_BMP + STBI_ONLY_PSD + STBI_ONLY_TGA + STBI_ONLY_GIF + STBI_ONLY_HDR + STBI_ONLY_PIC + STBI_ONLY_PNM (.ppm and .pgm) + + Note that you can define multiples of these, and you will get all + of them ("only x" and "only y" is interpreted to mean "only x&y"). + + - If you use STBI_NO_PNG (or _ONLY_ without PNG), and you still + want the zlib decoder to be available, #define STBI_SUPPORT_ZLIB + + - Compilation of all SIMD code can be suppressed with + #define STBI_NO_SIMD + It should not be necessary to disable SIMD unless you have issues + compiling (e.g. using an x86 compiler which doesn't support SSE + intrinsics or that doesn't support the method used to detect + SSE2 support at run-time), and even those can be reported as + bugs so I can refine the built-in compile-time checking to be + smarter. + + - The old STBI_SIMD system which allowed installing a user-defined + IDCT etc. has been removed. If you need this, don't upgrade. My + assumption is that almost nobody was doing this, and those who + were will find the built-in SIMD more satisfactory anyway. + + - RGB values computed for JPEG images are slightly different from + previous versions of stb_image. (This is due to using less + integer precision in SIMD.) The C code has been adjusted so + that the same RGB values will be computed regardless of whether + SIMD support is available, so your app should always produce + consistent results. But these results are slightly different from + previous versions. (Specifically, about 3% of available YCbCr values + will compute different RGB results from pre-1.49 versions by +-1; + most of the deviating values are one smaller in the G channel.) + + - If you must produce consistent results with previous versions of + stb_image, #define STBI_JPEG_OLD and you will get the same results + you used to; however, you will not get the SIMD speedups for + the YCbCr-to-RGB conversion step (although you should still see + significant JPEG speedup from the other changes). + + Please note that STBI_JPEG_OLD is a temporary feature; it will be + removed in future versions of the library. It is only intended for + near-term back-compatibility use. + + + Latest revision history: + 2.12 (2016-04-02) fix typo in 2.11 PSD fix that caused crashes + 2.11 (2016-04-02) 16-bit PNGS; enable SSE2 in non-gcc x64 + RGB-format JPEG; remove white matting in PSD; + allocate large structures on the stack; + correct channel count for PNG & BMP + 2.10 (2016-01-22) avoid warning introduced in 2.09 + 2.09 (2016-01-16) 16-bit TGA; comments in PNM files; STBI_REALLOC_SIZED + 2.08 (2015-09-13) fix to 2.07 cleanup, reading RGB PSD as RGBA + 2.07 (2015-09-13) partial animated GIF support + limited 16-bit PSD support + minor bugs, code cleanup, and compiler warnings + 2.06 (2015-04-19) fix bug where PSD returns wrong '*comp' value + 2.05 (2015-04-19) fix bug in progressive JPEG handling, fix warning + 2.04 (2015-04-15) try to re-enable SIMD on MinGW 64-bit + 2.03 (2015-04-12) additional corruption checking + stbi_set_flip_vertically_on_load + fix NEON support; fix mingw support + 2.02 (2015-01-19) fix incorrect assert, fix warning + 2.01 (2015-01-17) fix various warnings + 2.00b (2014-12-25) fix STBI_MALLOC in progressive JPEG + 2.00 (2014-12-25) optimize JPEG, including x86 SSE2 & ARM NEON SIMD + progressive JPEG + PGM/PPM support + STBI_MALLOC,STBI_REALLOC,STBI_FREE + STBI_NO_*, STBI_ONLY_* + GIF bugfix + + See end of file for full revision history. + + + ============================ Contributors ========================= + + Image formats Extensions, features + Sean Barrett (jpeg, png, bmp) Jetro Lauha (stbi_info) + Nicolas Schulz (hdr, psd) Martin "SpartanJ" Golini (stbi_info) + Jonathan Dummer (tga) James "moose2000" Brown (iPhone PNG) + Jean-Marc Lienher (gif) Ben "Disch" Wenger (io callbacks) + Tom Seddon (pic) Omar Cornut (1/2/4-bit PNG) + Thatcher Ulrich (psd) Nicolas Guillemot (vertical flip) + Ken Miller (pgm, ppm) Richard Mitton (16-bit PSD) + urraka@github (animated gif) Junggon Kim (PNM comments) + Daniel Gibson (16-bit TGA) + + Optimizations & bugfixes + Fabian "ryg" Giesen + Arseny Kapoulkine + + Bug & warning fixes + Marc LeBlanc David Woo Guillaume George Martins Mozeiko + Christpher Lloyd Martin Golini Jerry Jansson Joseph Thomson + Dave Moore Roy Eltham Hayaki Saito Phil Jordan + Won Chun Luke Graham Johan Duparc Nathan Reed + the Horde3D community Thomas Ruf Ronny Chevalier Nick Verigakis + Janez Zemva John Bartholomew Michal Cichon svdijk@github + Jonathan Blow Ken Hamada Tero Hanninen Baldur Karlsson + Laurent Gomila Cort Stratton Sergio Gonzalez romigrou@github + Aruelien Pocheville Thibault Reuille Cass Everitt Matthew Gregan + Ryamond Barbiero Paul Du Bois Engin Manap snagar@github + Michaelangel007@github Oriol Ferrer Mesia socks-the-fox + Blazej Dariusz Roszkowski + + +LICENSE + +This software is dual-licensed to the public domain and under the following +license: you are granted a perpetual, irrevocable license to copy, modify, +publish, and distribute this file as you see fit. + +*/ + +#ifndef STBI_INCLUDE_STB_IMAGE_H +#define STBI_INCLUDE_STB_IMAGE_H + +// DOCUMENTATION +// +// Limitations: +// - no 16-bit-per-channel PNG +// - no 12-bit-per-channel JPEG +// - no JPEGs with arithmetic coding +// - no 1-bit BMP +// - GIF always returns *comp=4 +// +// Basic usage (see HDR discussion below for HDR usage): +// int x,y,n; +// unsigned char *data = stbi_load(filename, &x, &y, &n, 0); +// // ... process data if not NULL ... +// // ... x = width, y = height, n = # 8-bit components per pixel ... +// // ... replace '0' with '1'..'4' to force that many components per pixel +// // ... but 'n' will always be the number that it would have been if you said 0 +// stbi_image_free(data) +// +// Standard parameters: +// int *x -- outputs image width in pixels +// int *y -- outputs image height in pixels +// int *comp -- outputs # of image components in image file +// int req_comp -- if non-zero, # of image components requested in result +// +// The return value from an image loader is an 'unsigned char *' which points +// to the pixel data, or NULL on an allocation failure or if the image is +// corrupt or invalid. The pixel data consists of *y scanlines of *x pixels, +// with each pixel consisting of N interleaved 8-bit components; the first +// pixel pointed to is top-left-most in the image. There is no padding between +// image scanlines or between pixels, regardless of format. The number of +// components N is 'req_comp' if req_comp is non-zero, or *comp otherwise. +// If req_comp is non-zero, *comp has the number of components that _would_ +// have been output otherwise. E.g. if you set req_comp to 4, you will always +// get RGBA output, but you can check *comp to see if it's trivially opaque +// because e.g. there were only 3 channels in the source image. +// +// An output image with N components has the following components interleaved +// in this order in each pixel: +// +// N=#comp components +// 1 grey +// 2 grey, alpha +// 3 red, green, blue +// 4 red, green, blue, alpha +// +// If image loading fails for any reason, the return value will be NULL, +// and *x, *y, *comp will be unchanged. The function stbi_failure_reason() +// can be queried for an extremely brief, end-user unfriendly explanation +// of why the load failed. Define STBI_NO_FAILURE_STRINGS to avoid +// compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly +// more user-friendly ones. +// +// Paletted PNG, BMP, GIF, and PIC images are automatically depalettized. +// +// =========================================================================== +// +// Philosophy +// +// stb libraries are designed with the following priorities: +// +// 1. easy to use +// 2. easy to maintain +// 3. good performance +// +// Sometimes I let "good performance" creep up in priority over "easy to maintain", +// and for best performance I may provide less-easy-to-use APIs that give higher +// performance, in addition to the easy to use ones. Nevertheless, it's important +// to keep in mind that from the standpoint of you, a client of this library, +// all you care about is #1 and #3, and stb libraries do not emphasize #3 above all. +// +// Some secondary priorities arise directly from the first two, some of which +// make more explicit reasons why performance can't be emphasized. +// +// - Portable ("ease of use") +// - Small footprint ("easy to maintain") +// - No dependencies ("ease of use") +// +// =========================================================================== +// +// I/O callbacks +// +// I/O callbacks allow you to read from arbitrary sources, like packaged +// files or some other source. Data read from callbacks are processed +// through a small internal buffer (currently 128 bytes) to try to reduce +// overhead. +// +// The three functions you must define are "read" (reads some bytes of data), +// "skip" (skips some bytes of data), "eof" (reports if the stream is at the end). +// +// =========================================================================== +// +// SIMD support +// +// The JPEG decoder will try to automatically use SIMD kernels on x86 when +// supported by the compiler. For ARM Neon support, you must explicitly +// request it. +// +// (The old do-it-yourself SIMD API is no longer supported in the current +// code.) +// +// On x86, SSE2 will automatically be used when available based on a run-time +// test; if not, the generic C versions are used as a fall-back. On ARM targets, +// the typical path is to have separate builds for NEON and non-NEON devices +// (at least this is true for iOS and Android). Therefore, the NEON support is +// toggled by a build flag: define STBI_NEON to get NEON loops. +// +// The output of the JPEG decoder is slightly different from versions where +// SIMD support was introduced (that is, for versions before 1.49). The +// difference is only +-1 in the 8-bit RGB channels, and only on a small +// fraction of pixels. You can force the pre-1.49 behavior by defining +// STBI_JPEG_OLD, but this will disable some of the SIMD decoding path +// and hence cost some performance. +// +// If for some reason you do not want to use any of SIMD code, or if +// you have issues compiling it, you can disable it entirely by +// defining STBI_NO_SIMD. +// +// =========================================================================== +// +// HDR image support (disable by defining STBI_NO_HDR) +// +// stb_image now supports loading HDR images in general, and currently +// the Radiance .HDR file format, although the support is provided +// generically. You can still load any file through the existing interface; +// if you attempt to load an HDR file, it will be automatically remapped to +// LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1; +// both of these constants can be reconfigured through this interface: +// +// stbi_hdr_to_ldr_gamma(2.2f); +// stbi_hdr_to_ldr_scale(1.0f); +// +// (note, do not use _inverse_ constants; stbi_image will invert them +// appropriately). +// +// Additionally, there is a new, parallel interface for loading files as +// (linear) floats to preserve the full dynamic range: +// +// float *data = stbi_loadf(filename, &x, &y, &n, 0); +// +// If you load LDR images through this interface, those images will +// be promoted to floating point values, run through the inverse of +// constants corresponding to the above: +// +// stbi_ldr_to_hdr_scale(1.0f); +// stbi_ldr_to_hdr_gamma(2.2f); +// +// Finally, given a filename (or an open file or memory block--see header +// file for details) containing image data, you can query for the "most +// appropriate" interface to use (that is, whether the image is HDR or +// not), using: +// +// stbi_is_hdr(char *filename); +// +// =========================================================================== +// +// iPhone PNG support: +// +// By default we convert iphone-formatted PNGs back to RGB, even though +// they are internally encoded differently. You can disable this conversion +// by by calling stbi_convert_iphone_png_to_rgb(0), in which case +// you will always just get the native iphone "format" through (which +// is BGR stored in RGB). +// +// Call stbi_set_unpremultiply_on_load(1) as well to force a divide per +// pixel to remove any premultiplied alpha *only* if the image file explicitly +// says there's premultiplied data (currently only happens in iPhone images, +// and only if iPhone convert-to-rgb processing is on). +// + + +#ifndef STBI_NO_STDIO +#include +#endif // STBI_NO_STDIO + +#define STBI_VERSION 1 + +enum +{ + STBI_default = 0, // only used for req_comp + + STBI_grey = 1, + STBI_grey_alpha = 2, + STBI_rgb = 3, + STBI_rgb_alpha = 4 +}; + +typedef unsigned char stbi_uc; + +#ifdef __cplusplus +extern "C" { +#endif + +#ifdef STB_IMAGE_STATIC +#define STBIDEF static +#else +#define STBIDEF extern +#endif + +////////////////////////////////////////////////////////////////////////////// +// +// PRIMARY API - works on images of any type +// + +// +// load image by filename, open file, or memory buffer +// + +typedef struct +{ + int (*read) (void *user,char *data,int size); // fill 'data' with 'size' bytes. return number of bytes actually read + void (*skip) (void *user,int n); // skip the next 'n' bytes, or 'unget' the last -n bytes if negative + int (*eof) (void *user); // returns nonzero if we are at end of file/data +} stbi_io_callbacks; + +STBIDEF stbi_uc *stbi_load (char const *filename, int *x, int *y, int *comp, int req_comp); +STBIDEF stbi_uc *stbi_load_from_memory (stbi_uc const *buffer, int len , int *x, int *y, int *comp, int req_comp); +STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk , void *user, int *x, int *y, int *comp, int req_comp); + +#ifndef STBI_NO_STDIO +STBIDEF stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); +// for stbi_load_from_file, file pointer is left pointing immediately after image +#endif + +#ifndef STBI_NO_LINEAR + STBIDEF float *stbi_loadf (char const *filename, int *x, int *y, int *comp, int req_comp); + STBIDEF float *stbi_loadf_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); + STBIDEF float *stbi_loadf_from_callbacks (stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp); + + #ifndef STBI_NO_STDIO + STBIDEF float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); + #endif +#endif + +#ifndef STBI_NO_HDR + STBIDEF void stbi_hdr_to_ldr_gamma(float gamma); + STBIDEF void stbi_hdr_to_ldr_scale(float scale); +#endif // STBI_NO_HDR + +#ifndef STBI_NO_LINEAR + STBIDEF void stbi_ldr_to_hdr_gamma(float gamma); + STBIDEF void stbi_ldr_to_hdr_scale(float scale); +#endif // STBI_NO_LINEAR + +// stbi_is_hdr is always defined, but always returns false if STBI_NO_HDR +STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user); +STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len); +#ifndef STBI_NO_STDIO +STBIDEF int stbi_is_hdr (char const *filename); +STBIDEF int stbi_is_hdr_from_file(FILE *f); +#endif // STBI_NO_STDIO + + +// get a VERY brief reason for failure +// NOT THREADSAFE +STBIDEF const char *stbi_failure_reason (void); + +// free the loaded image -- this is just free() +STBIDEF void stbi_image_free (void *retval_from_stbi_load); + +// get image dimensions & components without fully decoding +STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); +STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp); + +#ifndef STBI_NO_STDIO +STBIDEF int stbi_info (char const *filename, int *x, int *y, int *comp); +STBIDEF int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); + +#endif + + + +// for image formats that explicitly notate that they have premultiplied alpha, +// we just return the colors as stored in the file. set this flag to force +// unpremultiplication. results are undefined if the unpremultiply overflow. +STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply); + +// indicate whether we should process iphone images back to canonical format, +// or just pass them through "as-is" +STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert); + +// flip the image vertically, so the first pixel in the output array is the bottom left +STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip); + +// ZLIB client - used by PNG, available for other purposes + +STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen); +STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header); +STBIDEF char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen); +STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); + +STBIDEF char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen); +STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); + + +#ifdef __cplusplus +} +#endif + +// +// +//// end header file ///////////////////////////////////////////////////// +#endif // STBI_INCLUDE_STB_IMAGE_H + +#ifdef STB_IMAGE_IMPLEMENTATION + +#if defined(STBI_ONLY_JPEG) || defined(STBI_ONLY_PNG) || defined(STBI_ONLY_BMP) \ + || defined(STBI_ONLY_TGA) || defined(STBI_ONLY_GIF) || defined(STBI_ONLY_PSD) \ + || defined(STBI_ONLY_HDR) || defined(STBI_ONLY_PIC) || defined(STBI_ONLY_PNM) \ + || defined(STBI_ONLY_ZLIB) + #ifndef STBI_ONLY_JPEG + #define STBI_NO_JPEG + #endif + #ifndef STBI_ONLY_PNG + #define STBI_NO_PNG + #endif + #ifndef STBI_ONLY_BMP + #define STBI_NO_BMP + #endif + #ifndef STBI_ONLY_PSD + #define STBI_NO_PSD + #endif + #ifndef STBI_ONLY_TGA + #define STBI_NO_TGA + #endif + #ifndef STBI_ONLY_GIF + #define STBI_NO_GIF + #endif + #ifndef STBI_ONLY_HDR + #define STBI_NO_HDR + #endif + #ifndef STBI_ONLY_PIC + #define STBI_NO_PIC + #endif + #ifndef STBI_ONLY_PNM + #define STBI_NO_PNM + #endif +#endif + +#if defined(STBI_NO_PNG) && !defined(STBI_SUPPORT_ZLIB) && !defined(STBI_NO_ZLIB) +#define STBI_NO_ZLIB +#endif + + +#include +#include // ptrdiff_t on osx +#include +#include + +#if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) +#include // ldexp +#endif + +#ifndef STBI_NO_STDIO +#include +#endif + +#ifndef STBI_ASSERT +#include +#define STBI_ASSERT(x) assert(x) +#endif + + +#ifndef _MSC_VER + #ifdef __cplusplus + #define stbi_inline inline + #else + #define stbi_inline + #endif +#else + #define stbi_inline __forceinline +#endif + + +#ifdef _MSC_VER +typedef unsigned short stbi__uint16; +typedef signed short stbi__int16; +typedef unsigned int stbi__uint32; +typedef signed int stbi__int32; +#else +#include +typedef uint16_t stbi__uint16; +typedef int16_t stbi__int16; +typedef uint32_t stbi__uint32; +typedef int32_t stbi__int32; +#endif + +// should produce compiler error if size is wrong +typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1]; + +#ifdef _MSC_VER +#define STBI_NOTUSED(v) (void)(v) +#else +#define STBI_NOTUSED(v) (void)sizeof(v) +#endif + +#ifdef _MSC_VER +#define STBI_HAS_LROTL +#endif + +#ifdef STBI_HAS_LROTL + #define stbi_lrot(x,y) _lrotl(x,y) +#else + #define stbi_lrot(x,y) (((x) << (y)) | ((x) >> (32 - (y)))) +#endif + +#if defined(STBI_MALLOC) && defined(STBI_FREE) && (defined(STBI_REALLOC) || defined(STBI_REALLOC_SIZED)) +// ok +#elif !defined(STBI_MALLOC) && !defined(STBI_FREE) && !defined(STBI_REALLOC) && !defined(STBI_REALLOC_SIZED) +// ok +#else +#error "Must define all or none of STBI_MALLOC, STBI_FREE, and STBI_REALLOC (or STBI_REALLOC_SIZED)." +#endif + +#ifndef STBI_MALLOC +#define STBI_MALLOC(sz) malloc(sz) +#define STBI_REALLOC(p,newsz) realloc(p,newsz) +#define STBI_FREE(p) free(p) +#endif + +#ifndef STBI_REALLOC_SIZED +#define STBI_REALLOC_SIZED(p,oldsz,newsz) STBI_REALLOC(p,newsz) +#endif + +// x86/x64 detection +#if defined(__x86_64__) || defined(_M_X64) +#define STBI__X64_TARGET +#elif defined(__i386) || defined(_M_IX86) +#define STBI__X86_TARGET +#endif + +#if defined(__GNUC__) && (defined(STBI__X86_TARGET) || defined(STBI__X64_TARGET)) && !defined(__SSE2__) && !defined(STBI_NO_SIMD) +// NOTE: not clear do we actually need this for the 64-bit path? +// gcc doesn't support sse2 intrinsics unless you compile with -msse2, +// (but compiling with -msse2 allows the compiler to use SSE2 everywhere; +// this is just broken and gcc are jerks for not fixing it properly +// http://www.virtualdub.org/blog/pivot/entry.php?id=363 ) +#define STBI_NO_SIMD +#endif + +#if defined(__MINGW32__) && defined(STBI__X86_TARGET) && !defined(STBI_MINGW_ENABLE_SSE2) && !defined(STBI_NO_SIMD) +// Note that __MINGW32__ doesn't actually mean 32-bit, so we have to avoid STBI__X64_TARGET +// +// 32-bit MinGW wants ESP to be 16-byte aligned, but this is not in the +// Windows ABI and VC++ as well as Windows DLLs don't maintain that invariant. +// As a result, enabling SSE2 on 32-bit MinGW is dangerous when not +// simultaneously enabling "-mstackrealign". +// +// See https://github.com/nothings/stb/issues/81 for more information. +// +// So default to no SSE2 on 32-bit MinGW. If you've read this far and added +// -mstackrealign to your build settings, feel free to #define STBI_MINGW_ENABLE_SSE2. +#define STBI_NO_SIMD +#endif + +#if !defined(STBI_NO_SIMD) && (defined(STBI__X86_TARGET) || defined(STBI__X64_TARGET)) +#define STBI_SSE2 +#include + +#ifdef _MSC_VER + +#if _MSC_VER >= 1400 // not VC6 +#include // __cpuid +static int stbi__cpuid3(void) +{ + int info[4]; + __cpuid(info,1); + return info[3]; +} +#else +static int stbi__cpuid3(void) +{ + int res; + __asm { + mov eax,1 + cpuid + mov res,edx + } + return res; +} +#endif + +#define STBI_SIMD_ALIGN(type, name) __declspec(align(16)) type name + +static int stbi__sse2_available() +{ + int info3 = stbi__cpuid3(); + return ((info3 >> 26) & 1) != 0; +} +#else // assume GCC-style if not VC++ +#define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16))) + +static int stbi__sse2_available() +{ +#if defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__) >= 408 // GCC 4.8 or later + // GCC 4.8+ has a nice way to do this + return __builtin_cpu_supports("sse2"); +#else + // portable way to do this, preferably without using GCC inline ASM? + // just bail for now. + return 0; +#endif +} +#endif +#endif + +// ARM NEON +#if defined(STBI_NO_SIMD) && defined(STBI_NEON) +#undef STBI_NEON +#endif + +#ifdef STBI_NEON +#include +// assume GCC or Clang on ARM targets +#define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16))) +#endif + +#ifndef STBI_SIMD_ALIGN +#define STBI_SIMD_ALIGN(type, name) type name +#endif + +/////////////////////////////////////////////// +// +// stbi__context struct and start_xxx functions + +// stbi__context structure is our basic context used by all images, so it +// contains all the IO context, plus some basic image information +typedef struct +{ + stbi__uint32 img_x, img_y; + int img_n, img_out_n; + + stbi_io_callbacks io; + void *io_user_data; + + int read_from_callbacks; + int buflen; + stbi_uc buffer_start[128]; + + stbi_uc *img_buffer, *img_buffer_end; + stbi_uc *img_buffer_original, *img_buffer_original_end; +} stbi__context; + + +static void stbi__refill_buffer(stbi__context *s); + +// initialize a memory-decode context +static void stbi__start_mem(stbi__context *s, stbi_uc const *buffer, int len) +{ + s->io.read = NULL; + s->read_from_callbacks = 0; + s->img_buffer = s->img_buffer_original = (stbi_uc *) buffer; + s->img_buffer_end = s->img_buffer_original_end = (stbi_uc *) buffer+len; +} + +// initialize a callback-based context +static void stbi__start_callbacks(stbi__context *s, stbi_io_callbacks *c, void *user) +{ + s->io = *c; + s->io_user_data = user; + s->buflen = sizeof(s->buffer_start); + s->read_from_callbacks = 1; + s->img_buffer_original = s->buffer_start; + stbi__refill_buffer(s); + s->img_buffer_original_end = s->img_buffer_end; +} + +#ifndef STBI_NO_STDIO + +static int stbi__stdio_read(void *user, char *data, int size) +{ + return (int) fread(data,1,size,(FILE*) user); +} + +static void stbi__stdio_skip(void *user, int n) +{ + fseek((FILE*) user, n, SEEK_CUR); +} + +static int stbi__stdio_eof(void *user) +{ + return feof((FILE*) user); +} + +static stbi_io_callbacks stbi__stdio_callbacks = +{ + stbi__stdio_read, + stbi__stdio_skip, + stbi__stdio_eof, +}; + +static void stbi__start_file(stbi__context *s, FILE *f) +{ + stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *) f); +} + +//static void stop_file(stbi__context *s) { } + +#endif // !STBI_NO_STDIO + +static void stbi__rewind(stbi__context *s) +{ + // conceptually rewind SHOULD rewind to the beginning of the stream, + // but we just rewind to the beginning of the initial buffer, because + // we only use it after doing 'test', which only ever looks at at most 92 bytes + s->img_buffer = s->img_buffer_original; + s->img_buffer_end = s->img_buffer_original_end; +} + +#ifndef STBI_NO_JPEG +static int stbi__jpeg_test(stbi__context *s); +static stbi_uc *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); +static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_PNG +static int stbi__png_test(stbi__context *s); +static stbi_uc *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); +static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_BMP +static int stbi__bmp_test(stbi__context *s); +static stbi_uc *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); +static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_TGA +static int stbi__tga_test(stbi__context *s); +static stbi_uc *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); +static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_PSD +static int stbi__psd_test(stbi__context *s); +static stbi_uc *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); +static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_HDR +static int stbi__hdr_test(stbi__context *s); +static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); +static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_PIC +static int stbi__pic_test(stbi__context *s); +static stbi_uc *stbi__pic_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); +static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_GIF +static int stbi__gif_test(stbi__context *s); +static stbi_uc *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); +static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_PNM +static int stbi__pnm_test(stbi__context *s); +static stbi_uc *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp); +static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +// this is not threadsafe +static const char *stbi__g_failure_reason; + +STBIDEF const char *stbi_failure_reason(void) +{ + return stbi__g_failure_reason; +} + +static int stbi__err(const char *str) +{ + stbi__g_failure_reason = str; + return 0; +} + +static void *stbi__malloc(size_t size) +{ + return STBI_MALLOC(size); +} + +// stbi__err - error +// stbi__errpf - error returning pointer to float +// stbi__errpuc - error returning pointer to unsigned char + +#ifdef STBI_NO_FAILURE_STRINGS + #define stbi__err(x,y) 0 +#elif defined(STBI_FAILURE_USERMSG) + #define stbi__err(x,y) stbi__err(y) +#else + #define stbi__err(x,y) stbi__err(x) +#endif + +#define stbi__errpf(x,y) ((float *)(size_t) (stbi__err(x,y)?NULL:NULL)) +#define stbi__errpuc(x,y) ((unsigned char *)(size_t) (stbi__err(x,y)?NULL:NULL)) + +STBIDEF void stbi_image_free(void *retval_from_stbi_load) +{ + STBI_FREE(retval_from_stbi_load); +} + +#ifndef STBI_NO_LINEAR +static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp); +#endif + +#ifndef STBI_NO_HDR +static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp); +#endif + +static int stbi__vertically_flip_on_load = 0; + +STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip) +{ + stbi__vertically_flip_on_load = flag_true_if_should_flip; +} + +static unsigned char *stbi__load_main(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + #ifndef STBI_NO_JPEG + if (stbi__jpeg_test(s)) return stbi__jpeg_load(s,x,y,comp,req_comp); + #endif + #ifndef STBI_NO_PNG + if (stbi__png_test(s)) return stbi__png_load(s,x,y,comp,req_comp); + #endif + #ifndef STBI_NO_BMP + if (stbi__bmp_test(s)) return stbi__bmp_load(s,x,y,comp,req_comp); + #endif + #ifndef STBI_NO_GIF + if (stbi__gif_test(s)) return stbi__gif_load(s,x,y,comp,req_comp); + #endif + #ifndef STBI_NO_PSD + if (stbi__psd_test(s)) return stbi__psd_load(s,x,y,comp,req_comp); + #endif + #ifndef STBI_NO_PIC + if (stbi__pic_test(s)) return stbi__pic_load(s,x,y,comp,req_comp); + #endif + #ifndef STBI_NO_PNM + if (stbi__pnm_test(s)) return stbi__pnm_load(s,x,y,comp,req_comp); + #endif + + #ifndef STBI_NO_HDR + if (stbi__hdr_test(s)) { + float *hdr = stbi__hdr_load(s, x,y,comp,req_comp); + return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); + } + #endif + + #ifndef STBI_NO_TGA + // test tga last because it's a crappy test! + if (stbi__tga_test(s)) + return stbi__tga_load(s,x,y,comp,req_comp); + #endif + + return stbi__errpuc("unknown image type", "Image not of any known type, or corrupt"); +} + +static unsigned char *stbi__load_flip(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + unsigned char *result = stbi__load_main(s, x, y, comp, req_comp); + + if (stbi__vertically_flip_on_load && result != NULL) { + int w = *x, h = *y; + int depth = req_comp ? req_comp : *comp; + int row,col,z; + stbi_uc temp; + + // @OPTIMIZE: use a bigger temp buffer and memcpy multiple pixels at once + for (row = 0; row < (h>>1); row++) { + for (col = 0; col < w; col++) { + for (z = 0; z < depth; z++) { + temp = result[(row * w + col) * depth + z]; + result[(row * w + col) * depth + z] = result[((h - row - 1) * w + col) * depth + z]; + result[((h - row - 1) * w + col) * depth + z] = temp; + } + } + } + } + + return result; +} + +#ifndef STBI_NO_HDR +static void stbi__float_postprocess(float *result, int *x, int *y, int *comp, int req_comp) +{ + if (stbi__vertically_flip_on_load && result != NULL) { + int w = *x, h = *y; + int depth = req_comp ? req_comp : *comp; + int row,col,z; + float temp; + + // @OPTIMIZE: use a bigger temp buffer and memcpy multiple pixels at once + for (row = 0; row < (h>>1); row++) { + for (col = 0; col < w; col++) { + for (z = 0; z < depth; z++) { + temp = result[(row * w + col) * depth + z]; + result[(row * w + col) * depth + z] = result[((h - row - 1) * w + col) * depth + z]; + result[((h - row - 1) * w + col) * depth + z] = temp; + } + } + } + } +} +#endif + +#ifndef STBI_NO_STDIO + +static FILE *stbi__fopen(char const *filename, char const *mode) +{ + FILE *f; +#if defined(_MSC_VER) && _MSC_VER >= 1400 + if (0 != fopen_s(&f, filename, mode)) + f=0; +#else + f = fopen(filename, mode); +#endif + return f; +} + + +STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp) +{ + FILE *f = stbi__fopen(filename, "rb"); + unsigned char *result; + if (!f) return stbi__errpuc("can't fopen", "Unable to open file"); + result = stbi_load_from_file(f,x,y,comp,req_comp); + fclose(f); + return result; +} + +STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) +{ + unsigned char *result; + stbi__context s; + stbi__start_file(&s,f); + result = stbi__load_flip(&s,x,y,comp,req_comp); + if (result) { + // need to 'unget' all the characters in the IO buffer + fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR); + } + return result; +} +#endif //!STBI_NO_STDIO + +STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_mem(&s,buffer,len); + return stbi__load_flip(&s,x,y,comp,req_comp); +} + +STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); + return stbi__load_flip(&s,x,y,comp,req_comp); +} + +#ifndef STBI_NO_LINEAR +static float *stbi__loadf_main(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + unsigned char *data; + #ifndef STBI_NO_HDR + if (stbi__hdr_test(s)) { + float *hdr_data = stbi__hdr_load(s,x,y,comp,req_comp); + if (hdr_data) + stbi__float_postprocess(hdr_data,x,y,comp,req_comp); + return hdr_data; + } + #endif + data = stbi__load_flip(s, x, y, comp, req_comp); + if (data) + return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); + return stbi__errpf("unknown image type", "Image not of any known type, or corrupt"); +} + +STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_mem(&s,buffer,len); + return stbi__loadf_main(&s,x,y,comp,req_comp); +} + +STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); + return stbi__loadf_main(&s,x,y,comp,req_comp); +} + +#ifndef STBI_NO_STDIO +STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp) +{ + float *result; + FILE *f = stbi__fopen(filename, "rb"); + if (!f) return stbi__errpf("can't fopen", "Unable to open file"); + result = stbi_loadf_from_file(f,x,y,comp,req_comp); + fclose(f); + return result; +} + +STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_file(&s,f); + return stbi__loadf_main(&s,x,y,comp,req_comp); +} +#endif // !STBI_NO_STDIO + +#endif // !STBI_NO_LINEAR + +// these is-hdr-or-not is defined independent of whether STBI_NO_LINEAR is +// defined, for API simplicity; if STBI_NO_LINEAR is defined, it always +// reports false! + +STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) +{ + #ifndef STBI_NO_HDR + stbi__context s; + stbi__start_mem(&s,buffer,len); + return stbi__hdr_test(&s); + #else + STBI_NOTUSED(buffer); + STBI_NOTUSED(len); + return 0; + #endif +} + +#ifndef STBI_NO_STDIO +STBIDEF int stbi_is_hdr (char const *filename) +{ + FILE *f = stbi__fopen(filename, "rb"); + int result=0; + if (f) { + result = stbi_is_hdr_from_file(f); + fclose(f); + } + return result; +} + +STBIDEF int stbi_is_hdr_from_file(FILE *f) +{ + #ifndef STBI_NO_HDR + stbi__context s; + stbi__start_file(&s,f); + return stbi__hdr_test(&s); + #else + STBI_NOTUSED(f); + return 0; + #endif +} +#endif // !STBI_NO_STDIO + +STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user) +{ + #ifndef STBI_NO_HDR + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); + return stbi__hdr_test(&s); + #else + STBI_NOTUSED(clbk); + STBI_NOTUSED(user); + return 0; + #endif +} + +#ifndef STBI_NO_LINEAR +static float stbi__l2h_gamma=2.2f, stbi__l2h_scale=1.0f; + +STBIDEF void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; } +STBIDEF void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; } +#endif + +static float stbi__h2l_gamma_i=1.0f/2.2f, stbi__h2l_scale_i=1.0f; + +STBIDEF void stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1/gamma; } +STBIDEF void stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1/scale; } + + +////////////////////////////////////////////////////////////////////////////// +// +// Common code used by all image loaders +// + +enum +{ + STBI__SCAN_load=0, + STBI__SCAN_type, + STBI__SCAN_header +}; + +static void stbi__refill_buffer(stbi__context *s) +{ + int n = (s->io.read)(s->io_user_data,(char*)s->buffer_start,s->buflen); + if (n == 0) { + // at end of file, treat same as if from memory, but need to handle case + // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file + s->read_from_callbacks = 0; + s->img_buffer = s->buffer_start; + s->img_buffer_end = s->buffer_start+1; + *s->img_buffer = 0; + } else { + s->img_buffer = s->buffer_start; + s->img_buffer_end = s->buffer_start + n; + } +} + +stbi_inline static stbi_uc stbi__get8(stbi__context *s) +{ + if (s->img_buffer < s->img_buffer_end) + return *s->img_buffer++; + if (s->read_from_callbacks) { + stbi__refill_buffer(s); + return *s->img_buffer++; + } + return 0; +} + +stbi_inline static int stbi__at_eof(stbi__context *s) +{ + if (s->io.read) { + if (!(s->io.eof)(s->io_user_data)) return 0; + // if feof() is true, check if buffer = end + // special case: we've only got the special 0 character at the end + if (s->read_from_callbacks == 0) return 1; + } + + return s->img_buffer >= s->img_buffer_end; +} + +static void stbi__skip(stbi__context *s, int n) +{ + if (n < 0) { + s->img_buffer = s->img_buffer_end; + return; + } + if (s->io.read) { + int blen = (int) (s->img_buffer_end - s->img_buffer); + if (blen < n) { + s->img_buffer = s->img_buffer_end; + (s->io.skip)(s->io_user_data, n - blen); + return; + } + } + s->img_buffer += n; +} + +static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n) +{ + if (s->io.read) { + int blen = (int) (s->img_buffer_end - s->img_buffer); + if (blen < n) { + int res, count; + + memcpy(buffer, s->img_buffer, blen); + + count = (s->io.read)(s->io_user_data, (char*) buffer + blen, n - blen); + res = (count == (n-blen)); + s->img_buffer = s->img_buffer_end; + return res; + } + } + + if (s->img_buffer+n <= s->img_buffer_end) { + memcpy(buffer, s->img_buffer, n); + s->img_buffer += n; + return 1; + } else + return 0; +} + +static int stbi__get16be(stbi__context *s) +{ + int z = stbi__get8(s); + return (z << 8) + stbi__get8(s); +} + +static stbi__uint32 stbi__get32be(stbi__context *s) +{ + stbi__uint32 z = stbi__get16be(s); + return (z << 16) + stbi__get16be(s); +} + +#if defined(STBI_NO_BMP) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) +// nothing +#else +static int stbi__get16le(stbi__context *s) +{ + int z = stbi__get8(s); + return z + (stbi__get8(s) << 8); +} +#endif + +#ifndef STBI_NO_BMP +static stbi__uint32 stbi__get32le(stbi__context *s) +{ + stbi__uint32 z = stbi__get16le(s); + return z + (stbi__get16le(s) << 16); +} +#endif + +#define STBI__BYTECAST(x) ((stbi_uc) ((x) & 255)) // truncate int to byte without warnings + + +////////////////////////////////////////////////////////////////////////////// +// +// generic converter from built-in img_n to req_comp +// individual types do this automatically as much as possible (e.g. jpeg +// does all cases internally since it needs to colorspace convert anyway, +// and it never has alpha, so very few cases ). png can automatically +// interleave an alpha=255 channel, but falls back to this for other cases +// +// assume data buffer is malloced, so malloc a new one and free that one +// only failure mode is malloc failing + +static stbi_uc stbi__compute_y(int r, int g, int b) +{ + return (stbi_uc) (((r*77) + (g*150) + (29*b)) >> 8); +} + +static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y) +{ + int i,j; + unsigned char *good; + + if (req_comp == img_n) return data; + STBI_ASSERT(req_comp >= 1 && req_comp <= 4); + + good = (unsigned char *) stbi__malloc(req_comp * x * y); + if (good == NULL) { + STBI_FREE(data); + return stbi__errpuc("outofmem", "Out of memory"); + } + + for (j=0; j < (int) y; ++j) { + unsigned char *src = data + j * x * img_n ; + unsigned char *dest = good + j * x * req_comp; + + #define COMBO(a,b) ((a)*8+(b)) + #define CASE(a,b) case COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) + // convert source image with img_n components to one with req_comp components; + // avoid switch per pixel, so use switch per scanline and massive macros + switch (COMBO(img_n, req_comp)) { + CASE(1,2) dest[0]=src[0], dest[1]=255; break; + CASE(1,3) dest[0]=dest[1]=dest[2]=src[0]; break; + CASE(1,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; break; + CASE(2,1) dest[0]=src[0]; break; + CASE(2,3) dest[0]=dest[1]=dest[2]=src[0]; break; + CASE(2,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; break; + CASE(3,4) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; break; + CASE(3,1) dest[0]=stbi__compute_y(src[0],src[1],src[2]); break; + CASE(3,2) dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = 255; break; + CASE(4,1) dest[0]=stbi__compute_y(src[0],src[1],src[2]); break; + CASE(4,2) dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = src[3]; break; + CASE(4,3) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; break; + default: STBI_ASSERT(0); + } + #undef CASE + } + + STBI_FREE(data); + return good; +} + +#ifndef STBI_NO_LINEAR +static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp) +{ + int i,k,n; + float *output = (float *) stbi__malloc(x * y * comp * sizeof(float)); + if (output == NULL) { STBI_FREE(data); return stbi__errpf("outofmem", "Out of memory"); } + // compute number of non-alpha components + if (comp & 1) n = comp; else n = comp-1; + for (i=0; i < x*y; ++i) { + for (k=0; k < n; ++k) { + output[i*comp + k] = (float) (pow(data[i*comp+k]/255.0f, stbi__l2h_gamma) * stbi__l2h_scale); + } + if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f; + } + STBI_FREE(data); + return output; +} +#endif + +#ifndef STBI_NO_HDR +#define stbi__float2int(x) ((int) (x)) +static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp) +{ + int i,k,n; + stbi_uc *output = (stbi_uc *) stbi__malloc(x * y * comp); + if (output == NULL) { STBI_FREE(data); return stbi__errpuc("outofmem", "Out of memory"); } + // compute number of non-alpha components + if (comp & 1) n = comp; else n = comp-1; + for (i=0; i < x*y; ++i) { + for (k=0; k < n; ++k) { + float z = (float) pow(data[i*comp+k]*stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f; + if (z < 0) z = 0; + if (z > 255) z = 255; + output[i*comp + k] = (stbi_uc) stbi__float2int(z); + } + if (k < comp) { + float z = data[i*comp+k] * 255 + 0.5f; + if (z < 0) z = 0; + if (z > 255) z = 255; + output[i*comp + k] = (stbi_uc) stbi__float2int(z); + } + } + STBI_FREE(data); + return output; +} +#endif + +////////////////////////////////////////////////////////////////////////////// +// +// "baseline" JPEG/JFIF decoder +// +// simple implementation +// - doesn't support delayed output of y-dimension +// - simple interface (only one output format: 8-bit interleaved RGB) +// - doesn't try to recover corrupt jpegs +// - doesn't allow partial loading, loading multiple at once +// - still fast on x86 (copying globals into locals doesn't help x86) +// - allocates lots of intermediate memory (full size of all components) +// - non-interleaved case requires this anyway +// - allows good upsampling (see next) +// high-quality +// - upsampled channels are bilinearly interpolated, even across blocks +// - quality integer IDCT derived from IJG's 'slow' +// performance +// - fast huffman; reasonable integer IDCT +// - some SIMD kernels for common paths on targets with SSE2/NEON +// - uses a lot of intermediate memory, could cache poorly + +#ifndef STBI_NO_JPEG + +// huffman decoding acceleration +#define FAST_BITS 9 // larger handles more cases; smaller stomps less cache + +typedef struct +{ + stbi_uc fast[1 << FAST_BITS]; + // weirdly, repacking this into AoS is a 10% speed loss, instead of a win + stbi__uint16 code[256]; + stbi_uc values[256]; + stbi_uc size[257]; + unsigned int maxcode[18]; + int delta[17]; // old 'firstsymbol' - old 'firstcode' +} stbi__huffman; + +typedef struct +{ + stbi__context *s; + stbi__huffman huff_dc[4]; + stbi__huffman huff_ac[4]; + stbi_uc dequant[4][64]; + stbi__int16 fast_ac[4][1 << FAST_BITS]; + +// sizes for components, interleaved MCUs + int img_h_max, img_v_max; + int img_mcu_x, img_mcu_y; + int img_mcu_w, img_mcu_h; + +// definition of jpeg image component + struct + { + int id; + int h,v; + int tq; + int hd,ha; + int dc_pred; + + int x,y,w2,h2; + stbi_uc *data; + void *raw_data, *raw_coeff; + stbi_uc *linebuf; + short *coeff; // progressive only + int coeff_w, coeff_h; // number of 8x8 coefficient blocks + } img_comp[4]; + + stbi__uint32 code_buffer; // jpeg entropy-coded buffer + int code_bits; // number of valid bits + unsigned char marker; // marker seen while filling entropy buffer + int nomore; // flag if we saw a marker so must stop + + int progressive; + int spec_start; + int spec_end; + int succ_high; + int succ_low; + int eob_run; + int rgb; + + int scan_n, order[4]; + int restart_interval, todo; + +// kernels + void (*idct_block_kernel)(stbi_uc *out, int out_stride, short data[64]); + void (*YCbCr_to_RGB_kernel)(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step); + stbi_uc *(*resample_row_hv_2_kernel)(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs); +} stbi__jpeg; + +static int stbi__build_huffman(stbi__huffman *h, int *count) +{ + int i,j,k=0,code; + // build size list for each symbol (from JPEG spec) + for (i=0; i < 16; ++i) + for (j=0; j < count[i]; ++j) + h->size[k++] = (stbi_uc) (i+1); + h->size[k] = 0; + + // compute actual symbols (from jpeg spec) + code = 0; + k = 0; + for(j=1; j <= 16; ++j) { + // compute delta to add to code to compute symbol id + h->delta[j] = k - code; + if (h->size[k] == j) { + while (h->size[k] == j) + h->code[k++] = (stbi__uint16) (code++); + if (code-1 >= (1 << j)) return stbi__err("bad code lengths","Corrupt JPEG"); + } + // compute largest code + 1 for this size, preshifted as needed later + h->maxcode[j] = code << (16-j); + code <<= 1; + } + h->maxcode[j] = 0xffffffff; + + // build non-spec acceleration table; 255 is flag for not-accelerated + memset(h->fast, 255, 1 << FAST_BITS); + for (i=0; i < k; ++i) { + int s = h->size[i]; + if (s <= FAST_BITS) { + int c = h->code[i] << (FAST_BITS-s); + int m = 1 << (FAST_BITS-s); + for (j=0; j < m; ++j) { + h->fast[c+j] = (stbi_uc) i; + } + } + } + return 1; +} + +// build a table that decodes both magnitude and value of small ACs in +// one go. +static void stbi__build_fast_ac(stbi__int16 *fast_ac, stbi__huffman *h) +{ + int i; + for (i=0; i < (1 << FAST_BITS); ++i) { + stbi_uc fast = h->fast[i]; + fast_ac[i] = 0; + if (fast < 255) { + int rs = h->values[fast]; + int run = (rs >> 4) & 15; + int magbits = rs & 15; + int len = h->size[fast]; + + if (magbits && len + magbits <= FAST_BITS) { + // magnitude code followed by receive_extend code + int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits); + int m = 1 << (magbits - 1); + if (k < m) k += (-1 << magbits) + 1; + // if the result is small enough, we can fit it in fast_ac table + if (k >= -128 && k <= 127) + fast_ac[i] = (stbi__int16) ((k << 8) + (run << 4) + (len + magbits)); + } + } + } +} + +static void stbi__grow_buffer_unsafe(stbi__jpeg *j) +{ + do { + int b = j->nomore ? 0 : stbi__get8(j->s); + if (b == 0xff) { + int c = stbi__get8(j->s); + if (c != 0) { + j->marker = (unsigned char) c; + j->nomore = 1; + return; + } + } + j->code_buffer |= b << (24 - j->code_bits); + j->code_bits += 8; + } while (j->code_bits <= 24); +} + +// (1 << n) - 1 +static stbi__uint32 stbi__bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535}; + +// decode a jpeg huffman value from the bitstream +stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg *j, stbi__huffman *h) +{ + unsigned int temp; + int c,k; + + if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); + + // look at the top FAST_BITS and determine what symbol ID it is, + // if the code is <= FAST_BITS + c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); + k = h->fast[c]; + if (k < 255) { + int s = h->size[k]; + if (s > j->code_bits) + return -1; + j->code_buffer <<= s; + j->code_bits -= s; + return h->values[k]; + } + + // naive test is to shift the code_buffer down so k bits are + // valid, then test against maxcode. To speed this up, we've + // preshifted maxcode left so that it has (16-k) 0s at the + // end; in other words, regardless of the number of bits, it + // wants to be compared against something shifted to have 16; + // that way we don't need to shift inside the loop. + temp = j->code_buffer >> 16; + for (k=FAST_BITS+1 ; ; ++k) + if (temp < h->maxcode[k]) + break; + if (k == 17) { + // error! code not found + j->code_bits -= 16; + return -1; + } + + if (k > j->code_bits) + return -1; + + // convert the huffman code to the symbol id + c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k]; + STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]); + + // convert the id to a symbol + j->code_bits -= k; + j->code_buffer <<= k; + return h->values[c]; +} + +// bias[n] = (-1<code_bits < n) stbi__grow_buffer_unsafe(j); + + sgn = (stbi__int32)j->code_buffer >> 31; // sign bit is always in MSB + k = stbi_lrot(j->code_buffer, n); + STBI_ASSERT(n >= 0 && n < (int) (sizeof(stbi__bmask)/sizeof(*stbi__bmask))); + j->code_buffer = k & ~stbi__bmask[n]; + k &= stbi__bmask[n]; + j->code_bits -= n; + return k + (stbi__jbias[n] & ~sgn); +} + +// get some unsigned bits +stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg *j, int n) +{ + unsigned int k; + if (j->code_bits < n) stbi__grow_buffer_unsafe(j); + k = stbi_lrot(j->code_buffer, n); + j->code_buffer = k & ~stbi__bmask[n]; + k &= stbi__bmask[n]; + j->code_bits -= n; + return k; +} + +stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg *j) +{ + unsigned int k; + if (j->code_bits < 1) stbi__grow_buffer_unsafe(j); + k = j->code_buffer; + j->code_buffer <<= 1; + --j->code_bits; + return k & 0x80000000; +} + +// given a value that's at position X in the zigzag stream, +// where does it appear in the 8x8 matrix coded as row-major? +static stbi_uc stbi__jpeg_dezigzag[64+15] = +{ + 0, 1, 8, 16, 9, 2, 3, 10, + 17, 24, 32, 25, 18, 11, 4, 5, + 12, 19, 26, 33, 40, 48, 41, 34, + 27, 20, 13, 6, 7, 14, 21, 28, + 35, 42, 49, 56, 57, 50, 43, 36, + 29, 22, 15, 23, 30, 37, 44, 51, + 58, 59, 52, 45, 38, 31, 39, 46, + 53, 60, 61, 54, 47, 55, 62, 63, + // let corrupt input sample past end + 63, 63, 63, 63, 63, 63, 63, 63, + 63, 63, 63, 63, 63, 63, 63 +}; + +// decode one 64-entry block-- +static int stbi__jpeg_decode_block(stbi__jpeg *j, short data[64], stbi__huffman *hdc, stbi__huffman *hac, stbi__int16 *fac, int b, stbi_uc *dequant) +{ + int diff,dc,k; + int t; + + if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); + t = stbi__jpeg_huff_decode(j, hdc); + if (t < 0) return stbi__err("bad huffman code","Corrupt JPEG"); + + // 0 all the ac values now so we can do it 32-bits at a time + memset(data,0,64*sizeof(data[0])); + + diff = t ? stbi__extend_receive(j, t) : 0; + dc = j->img_comp[b].dc_pred + diff; + j->img_comp[b].dc_pred = dc; + data[0] = (short) (dc * dequant[0]); + + // decode AC components, see JPEG spec + k = 1; + do { + unsigned int zig; + int c,r,s; + if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); + c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); + r = fac[c]; + if (r) { // fast-AC path + k += (r >> 4) & 15; // run + s = r & 15; // combined length + j->code_buffer <<= s; + j->code_bits -= s; + // decode into unzigzag'd location + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short) ((r >> 8) * dequant[zig]); + } else { + int rs = stbi__jpeg_huff_decode(j, hac); + if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); + s = rs & 15; + r = rs >> 4; + if (s == 0) { + if (rs != 0xf0) break; // end block + k += 16; + } else { + k += r; + // decode into unzigzag'd location + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short) (stbi__extend_receive(j,s) * dequant[zig]); + } + } + } while (k < 64); + return 1; +} + +static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg *j, short data[64], stbi__huffman *hdc, int b) +{ + int diff,dc; + int t; + if (j->spec_end != 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); + + if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); + + if (j->succ_high == 0) { + // first scan for DC coefficient, must be first + memset(data,0,64*sizeof(data[0])); // 0 all the ac values now + t = stbi__jpeg_huff_decode(j, hdc); + diff = t ? stbi__extend_receive(j, t) : 0; + + dc = j->img_comp[b].dc_pred + diff; + j->img_comp[b].dc_pred = dc; + data[0] = (short) (dc << j->succ_low); + } else { + // refinement scan for DC coefficient + if (stbi__jpeg_get_bit(j)) + data[0] += (short) (1 << j->succ_low); + } + return 1; +} + +// @OPTIMIZE: store non-zigzagged during the decode passes, +// and only de-zigzag when dequantizing +static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg *j, short data[64], stbi__huffman *hac, stbi__int16 *fac) +{ + int k; + if (j->spec_start == 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); + + if (j->succ_high == 0) { + int shift = j->succ_low; + + if (j->eob_run) { + --j->eob_run; + return 1; + } + + k = j->spec_start; + do { + unsigned int zig; + int c,r,s; + if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); + c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); + r = fac[c]; + if (r) { // fast-AC path + k += (r >> 4) & 15; // run + s = r & 15; // combined length + j->code_buffer <<= s; + j->code_bits -= s; + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short) ((r >> 8) << shift); + } else { + int rs = stbi__jpeg_huff_decode(j, hac); + if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); + s = rs & 15; + r = rs >> 4; + if (s == 0) { + if (r < 15) { + j->eob_run = (1 << r); + if (r) + j->eob_run += stbi__jpeg_get_bits(j, r); + --j->eob_run; + break; + } + k += 16; + } else { + k += r; + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short) (stbi__extend_receive(j,s) << shift); + } + } + } while (k <= j->spec_end); + } else { + // refinement scan for these AC coefficients + + short bit = (short) (1 << j->succ_low); + + if (j->eob_run) { + --j->eob_run; + for (k = j->spec_start; k <= j->spec_end; ++k) { + short *p = &data[stbi__jpeg_dezigzag[k]]; + if (*p != 0) + if (stbi__jpeg_get_bit(j)) + if ((*p & bit)==0) { + if (*p > 0) + *p += bit; + else + *p -= bit; + } + } + } else { + k = j->spec_start; + do { + int r,s; + int rs = stbi__jpeg_huff_decode(j, hac); // @OPTIMIZE see if we can use the fast path here, advance-by-r is so slow, eh + if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); + s = rs & 15; + r = rs >> 4; + if (s == 0) { + if (r < 15) { + j->eob_run = (1 << r) - 1; + if (r) + j->eob_run += stbi__jpeg_get_bits(j, r); + r = 64; // force end of block + } else { + // r=15 s=0 should write 16 0s, so we just do + // a run of 15 0s and then write s (which is 0), + // so we don't have to do anything special here + } + } else { + if (s != 1) return stbi__err("bad huffman code", "Corrupt JPEG"); + // sign bit + if (stbi__jpeg_get_bit(j)) + s = bit; + else + s = -bit; + } + + // advance by r + while (k <= j->spec_end) { + short *p = &data[stbi__jpeg_dezigzag[k++]]; + if (*p != 0) { + if (stbi__jpeg_get_bit(j)) + if ((*p & bit)==0) { + if (*p > 0) + *p += bit; + else + *p -= bit; + } + } else { + if (r == 0) { + *p = (short) s; + break; + } + --r; + } + } + } while (k <= j->spec_end); + } + } + return 1; +} + +// take a -128..127 value and stbi__clamp it and convert to 0..255 +stbi_inline static stbi_uc stbi__clamp(int x) +{ + // trick to use a single test to catch both cases + if ((unsigned int) x > 255) { + if (x < 0) return 0; + if (x > 255) return 255; + } + return (stbi_uc) x; +} + +#define stbi__f2f(x) ((int) (((x) * 4096 + 0.5))) +#define stbi__fsh(x) ((x) << 12) + +// derived from jidctint -- DCT_ISLOW +#define STBI__IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \ + int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \ + p2 = s2; \ + p3 = s6; \ + p1 = (p2+p3) * stbi__f2f(0.5411961f); \ + t2 = p1 + p3*stbi__f2f(-1.847759065f); \ + t3 = p1 + p2*stbi__f2f( 0.765366865f); \ + p2 = s0; \ + p3 = s4; \ + t0 = stbi__fsh(p2+p3); \ + t1 = stbi__fsh(p2-p3); \ + x0 = t0+t3; \ + x3 = t0-t3; \ + x1 = t1+t2; \ + x2 = t1-t2; \ + t0 = s7; \ + t1 = s5; \ + t2 = s3; \ + t3 = s1; \ + p3 = t0+t2; \ + p4 = t1+t3; \ + p1 = t0+t3; \ + p2 = t1+t2; \ + p5 = (p3+p4)*stbi__f2f( 1.175875602f); \ + t0 = t0*stbi__f2f( 0.298631336f); \ + t1 = t1*stbi__f2f( 2.053119869f); \ + t2 = t2*stbi__f2f( 3.072711026f); \ + t3 = t3*stbi__f2f( 1.501321110f); \ + p1 = p5 + p1*stbi__f2f(-0.899976223f); \ + p2 = p5 + p2*stbi__f2f(-2.562915447f); \ + p3 = p3*stbi__f2f(-1.961570560f); \ + p4 = p4*stbi__f2f(-0.390180644f); \ + t3 += p1+p4; \ + t2 += p2+p3; \ + t1 += p2+p4; \ + t0 += p1+p3; + +static void stbi__idct_block(stbi_uc *out, int out_stride, short data[64]) +{ + int i,val[64],*v=val; + stbi_uc *o; + short *d = data; + + // columns + for (i=0; i < 8; ++i,++d, ++v) { + // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing + if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 + && d[40]==0 && d[48]==0 && d[56]==0) { + // no shortcut 0 seconds + // (1|2|3|4|5|6|7)==0 0 seconds + // all separate -0.047 seconds + // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds + int dcterm = d[0] << 2; + v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; + } else { + STBI__IDCT_1D(d[ 0],d[ 8],d[16],d[24],d[32],d[40],d[48],d[56]) + // constants scaled things up by 1<<12; let's bring them back + // down, but keep 2 extra bits of precision + x0 += 512; x1 += 512; x2 += 512; x3 += 512; + v[ 0] = (x0+t3) >> 10; + v[56] = (x0-t3) >> 10; + v[ 8] = (x1+t2) >> 10; + v[48] = (x1-t2) >> 10; + v[16] = (x2+t1) >> 10; + v[40] = (x2-t1) >> 10; + v[24] = (x3+t0) >> 10; + v[32] = (x3-t0) >> 10; + } + } + + for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { + // no fast case since the first 1D IDCT spread components out + STBI__IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) + // constants scaled things up by 1<<12, plus we had 1<<2 from first + // loop, plus horizontal and vertical each scale by sqrt(8) so together + // we've got an extra 1<<3, so 1<<17 total we need to remove. + // so we want to round that, which means adding 0.5 * 1<<17, + // aka 65536. Also, we'll end up with -128 to 127 that we want + // to encode as 0..255 by adding 128, so we'll add that before the shift + x0 += 65536 + (128<<17); + x1 += 65536 + (128<<17); + x2 += 65536 + (128<<17); + x3 += 65536 + (128<<17); + // tried computing the shifts into temps, or'ing the temps to see + // if any were out of range, but that was slower + o[0] = stbi__clamp((x0+t3) >> 17); + o[7] = stbi__clamp((x0-t3) >> 17); + o[1] = stbi__clamp((x1+t2) >> 17); + o[6] = stbi__clamp((x1-t2) >> 17); + o[2] = stbi__clamp((x2+t1) >> 17); + o[5] = stbi__clamp((x2-t1) >> 17); + o[3] = stbi__clamp((x3+t0) >> 17); + o[4] = stbi__clamp((x3-t0) >> 17); + } +} + +#ifdef STBI_SSE2 +// sse2 integer IDCT. not the fastest possible implementation but it +// produces bit-identical results to the generic C version so it's +// fully "transparent". +static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) +{ + // This is constructed to match our regular (generic) integer IDCT exactly. + __m128i row0, row1, row2, row3, row4, row5, row6, row7; + __m128i tmp; + + // dot product constant: even elems=x, odd elems=y + #define dct_const(x,y) _mm_setr_epi16((x),(y),(x),(y),(x),(y),(x),(y)) + + // out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit) + // out(1) = c1[even]*x + c1[odd]*y + #define dct_rot(out0,out1, x,y,c0,c1) \ + __m128i c0##lo = _mm_unpacklo_epi16((x),(y)); \ + __m128i c0##hi = _mm_unpackhi_epi16((x),(y)); \ + __m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \ + __m128i out0##_h = _mm_madd_epi16(c0##hi, c0); \ + __m128i out1##_l = _mm_madd_epi16(c0##lo, c1); \ + __m128i out1##_h = _mm_madd_epi16(c0##hi, c1) + + // out = in << 12 (in 16-bit, out 32-bit) + #define dct_widen(out, in) \ + __m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \ + __m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4) + + // wide add + #define dct_wadd(out, a, b) \ + __m128i out##_l = _mm_add_epi32(a##_l, b##_l); \ + __m128i out##_h = _mm_add_epi32(a##_h, b##_h) + + // wide sub + #define dct_wsub(out, a, b) \ + __m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \ + __m128i out##_h = _mm_sub_epi32(a##_h, b##_h) + + // butterfly a/b, add bias, then shift by "s" and pack + #define dct_bfly32o(out0, out1, a,b,bias,s) \ + { \ + __m128i abiased_l = _mm_add_epi32(a##_l, bias); \ + __m128i abiased_h = _mm_add_epi32(a##_h, bias); \ + dct_wadd(sum, abiased, b); \ + dct_wsub(dif, abiased, b); \ + out0 = _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); \ + out1 = _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); \ + } + + // 8-bit interleave step (for transposes) + #define dct_interleave8(a, b) \ + tmp = a; \ + a = _mm_unpacklo_epi8(a, b); \ + b = _mm_unpackhi_epi8(tmp, b) + + // 16-bit interleave step (for transposes) + #define dct_interleave16(a, b) \ + tmp = a; \ + a = _mm_unpacklo_epi16(a, b); \ + b = _mm_unpackhi_epi16(tmp, b) + + #define dct_pass(bias,shift) \ + { \ + /* even part */ \ + dct_rot(t2e,t3e, row2,row6, rot0_0,rot0_1); \ + __m128i sum04 = _mm_add_epi16(row0, row4); \ + __m128i dif04 = _mm_sub_epi16(row0, row4); \ + dct_widen(t0e, sum04); \ + dct_widen(t1e, dif04); \ + dct_wadd(x0, t0e, t3e); \ + dct_wsub(x3, t0e, t3e); \ + dct_wadd(x1, t1e, t2e); \ + dct_wsub(x2, t1e, t2e); \ + /* odd part */ \ + dct_rot(y0o,y2o, row7,row3, rot2_0,rot2_1); \ + dct_rot(y1o,y3o, row5,row1, rot3_0,rot3_1); \ + __m128i sum17 = _mm_add_epi16(row1, row7); \ + __m128i sum35 = _mm_add_epi16(row3, row5); \ + dct_rot(y4o,y5o, sum17,sum35, rot1_0,rot1_1); \ + dct_wadd(x4, y0o, y4o); \ + dct_wadd(x5, y1o, y5o); \ + dct_wadd(x6, y2o, y5o); \ + dct_wadd(x7, y3o, y4o); \ + dct_bfly32o(row0,row7, x0,x7,bias,shift); \ + dct_bfly32o(row1,row6, x1,x6,bias,shift); \ + dct_bfly32o(row2,row5, x2,x5,bias,shift); \ + dct_bfly32o(row3,row4, x3,x4,bias,shift); \ + } + + __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f)); + __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f( 0.765366865f), stbi__f2f(0.5411961f)); + __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), stbi__f2f(1.175875602f)); + __m128i rot1_1 = dct_const(stbi__f2f(1.175875602f), stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f)); + __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f( 0.298631336f), stbi__f2f(-1.961570560f)); + __m128i rot2_1 = dct_const(stbi__f2f(-1.961570560f), stbi__f2f(-1.961570560f) + stbi__f2f( 3.072711026f)); + __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f( 2.053119869f), stbi__f2f(-0.390180644f)); + __m128i rot3_1 = dct_const(stbi__f2f(-0.390180644f), stbi__f2f(-0.390180644f) + stbi__f2f( 1.501321110f)); + + // rounding biases in column/row passes, see stbi__idct_block for explanation. + __m128i bias_0 = _mm_set1_epi32(512); + __m128i bias_1 = _mm_set1_epi32(65536 + (128<<17)); + + // load + row0 = _mm_load_si128((const __m128i *) (data + 0*8)); + row1 = _mm_load_si128((const __m128i *) (data + 1*8)); + row2 = _mm_load_si128((const __m128i *) (data + 2*8)); + row3 = _mm_load_si128((const __m128i *) (data + 3*8)); + row4 = _mm_load_si128((const __m128i *) (data + 4*8)); + row5 = _mm_load_si128((const __m128i *) (data + 5*8)); + row6 = _mm_load_si128((const __m128i *) (data + 6*8)); + row7 = _mm_load_si128((const __m128i *) (data + 7*8)); + + // column pass + dct_pass(bias_0, 10); + + { + // 16bit 8x8 transpose pass 1 + dct_interleave16(row0, row4); + dct_interleave16(row1, row5); + dct_interleave16(row2, row6); + dct_interleave16(row3, row7); + + // transpose pass 2 + dct_interleave16(row0, row2); + dct_interleave16(row1, row3); + dct_interleave16(row4, row6); + dct_interleave16(row5, row7); + + // transpose pass 3 + dct_interleave16(row0, row1); + dct_interleave16(row2, row3); + dct_interleave16(row4, row5); + dct_interleave16(row6, row7); + } + + // row pass + dct_pass(bias_1, 17); + + { + // pack + __m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3...a7b0b1b2b3...b7 + __m128i p1 = _mm_packus_epi16(row2, row3); + __m128i p2 = _mm_packus_epi16(row4, row5); + __m128i p3 = _mm_packus_epi16(row6, row7); + + // 8bit 8x8 transpose pass 1 + dct_interleave8(p0, p2); // a0e0a1e1... + dct_interleave8(p1, p3); // c0g0c1g1... + + // transpose pass 2 + dct_interleave8(p0, p1); // a0c0e0g0... + dct_interleave8(p2, p3); // b0d0f0h0... + + // transpose pass 3 + dct_interleave8(p0, p2); // a0b0c0d0... + dct_interleave8(p1, p3); // a4b4c4d4... + + // store + _mm_storel_epi64((__m128i *) out, p0); out += out_stride; + _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p0, 0x4e)); out += out_stride; + _mm_storel_epi64((__m128i *) out, p2); out += out_stride; + _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p2, 0x4e)); out += out_stride; + _mm_storel_epi64((__m128i *) out, p1); out += out_stride; + _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p1, 0x4e)); out += out_stride; + _mm_storel_epi64((__m128i *) out, p3); out += out_stride; + _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p3, 0x4e)); + } + +#undef dct_const +#undef dct_rot +#undef dct_widen +#undef dct_wadd +#undef dct_wsub +#undef dct_bfly32o +#undef dct_interleave8 +#undef dct_interleave16 +#undef dct_pass +} + +#endif // STBI_SSE2 + +#ifdef STBI_NEON + +// NEON integer IDCT. should produce bit-identical +// results to the generic C version. +static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) +{ + int16x8_t row0, row1, row2, row3, row4, row5, row6, row7; + + int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f)); + int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f)); + int16x4_t rot0_2 = vdup_n_s16(stbi__f2f( 0.765366865f)); + int16x4_t rot1_0 = vdup_n_s16(stbi__f2f( 1.175875602f)); + int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f)); + int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f)); + int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f)); + int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f)); + int16x4_t rot3_0 = vdup_n_s16(stbi__f2f( 0.298631336f)); + int16x4_t rot3_1 = vdup_n_s16(stbi__f2f( 2.053119869f)); + int16x4_t rot3_2 = vdup_n_s16(stbi__f2f( 3.072711026f)); + int16x4_t rot3_3 = vdup_n_s16(stbi__f2f( 1.501321110f)); + +#define dct_long_mul(out, inq, coeff) \ + int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \ + int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff) + +#define dct_long_mac(out, acc, inq, coeff) \ + int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); \ + int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff) + +#define dct_widen(out, inq) \ + int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \ + int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12) + +// wide add +#define dct_wadd(out, a, b) \ + int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \ + int32x4_t out##_h = vaddq_s32(a##_h, b##_h) + +// wide sub +#define dct_wsub(out, a, b) \ + int32x4_t out##_l = vsubq_s32(a##_l, b##_l); \ + int32x4_t out##_h = vsubq_s32(a##_h, b##_h) + +// butterfly a/b, then shift using "shiftop" by "s" and pack +#define dct_bfly32o(out0,out1, a,b,shiftop,s) \ + { \ + dct_wadd(sum, a, b); \ + dct_wsub(dif, a, b); \ + out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); \ + out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); \ + } + +#define dct_pass(shiftop, shift) \ + { \ + /* even part */ \ + int16x8_t sum26 = vaddq_s16(row2, row6); \ + dct_long_mul(p1e, sum26, rot0_0); \ + dct_long_mac(t2e, p1e, row6, rot0_1); \ + dct_long_mac(t3e, p1e, row2, rot0_2); \ + int16x8_t sum04 = vaddq_s16(row0, row4); \ + int16x8_t dif04 = vsubq_s16(row0, row4); \ + dct_widen(t0e, sum04); \ + dct_widen(t1e, dif04); \ + dct_wadd(x0, t0e, t3e); \ + dct_wsub(x3, t0e, t3e); \ + dct_wadd(x1, t1e, t2e); \ + dct_wsub(x2, t1e, t2e); \ + /* odd part */ \ + int16x8_t sum15 = vaddq_s16(row1, row5); \ + int16x8_t sum17 = vaddq_s16(row1, row7); \ + int16x8_t sum35 = vaddq_s16(row3, row5); \ + int16x8_t sum37 = vaddq_s16(row3, row7); \ + int16x8_t sumodd = vaddq_s16(sum17, sum35); \ + dct_long_mul(p5o, sumodd, rot1_0); \ + dct_long_mac(p1o, p5o, sum17, rot1_1); \ + dct_long_mac(p2o, p5o, sum35, rot1_2); \ + dct_long_mul(p3o, sum37, rot2_0); \ + dct_long_mul(p4o, sum15, rot2_1); \ + dct_wadd(sump13o, p1o, p3o); \ + dct_wadd(sump24o, p2o, p4o); \ + dct_wadd(sump23o, p2o, p3o); \ + dct_wadd(sump14o, p1o, p4o); \ + dct_long_mac(x4, sump13o, row7, rot3_0); \ + dct_long_mac(x5, sump24o, row5, rot3_1); \ + dct_long_mac(x6, sump23o, row3, rot3_2); \ + dct_long_mac(x7, sump14o, row1, rot3_3); \ + dct_bfly32o(row0,row7, x0,x7,shiftop,shift); \ + dct_bfly32o(row1,row6, x1,x6,shiftop,shift); \ + dct_bfly32o(row2,row5, x2,x5,shiftop,shift); \ + dct_bfly32o(row3,row4, x3,x4,shiftop,shift); \ + } + + // load + row0 = vld1q_s16(data + 0*8); + row1 = vld1q_s16(data + 1*8); + row2 = vld1q_s16(data + 2*8); + row3 = vld1q_s16(data + 3*8); + row4 = vld1q_s16(data + 4*8); + row5 = vld1q_s16(data + 5*8); + row6 = vld1q_s16(data + 6*8); + row7 = vld1q_s16(data + 7*8); + + // add DC bias + row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0)); + + // column pass + dct_pass(vrshrn_n_s32, 10); + + // 16bit 8x8 transpose + { +// these three map to a single VTRN.16, VTRN.32, and VSWP, respectively. +// whether compilers actually get this is another story, sadly. +#define dct_trn16(x, y) { int16x8x2_t t = vtrnq_s16(x, y); x = t.val[0]; y = t.val[1]; } +#define dct_trn32(x, y) { int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); x = vreinterpretq_s16_s32(t.val[0]); y = vreinterpretq_s16_s32(t.val[1]); } +#define dct_trn64(x, y) { int16x8_t x0 = x; int16x8_t y0 = y; x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); } + + // pass 1 + dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6 + dct_trn16(row2, row3); + dct_trn16(row4, row5); + dct_trn16(row6, row7); + + // pass 2 + dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4 + dct_trn32(row1, row3); + dct_trn32(row4, row6); + dct_trn32(row5, row7); + + // pass 3 + dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0 + dct_trn64(row1, row5); + dct_trn64(row2, row6); + dct_trn64(row3, row7); + +#undef dct_trn16 +#undef dct_trn32 +#undef dct_trn64 + } + + // row pass + // vrshrn_n_s32 only supports shifts up to 16, we need + // 17. so do a non-rounding shift of 16 first then follow + // up with a rounding shift by 1. + dct_pass(vshrn_n_s32, 16); + + { + // pack and round + uint8x8_t p0 = vqrshrun_n_s16(row0, 1); + uint8x8_t p1 = vqrshrun_n_s16(row1, 1); + uint8x8_t p2 = vqrshrun_n_s16(row2, 1); + uint8x8_t p3 = vqrshrun_n_s16(row3, 1); + uint8x8_t p4 = vqrshrun_n_s16(row4, 1); + uint8x8_t p5 = vqrshrun_n_s16(row5, 1); + uint8x8_t p6 = vqrshrun_n_s16(row6, 1); + uint8x8_t p7 = vqrshrun_n_s16(row7, 1); + + // again, these can translate into one instruction, but often don't. +#define dct_trn8_8(x, y) { uint8x8x2_t t = vtrn_u8(x, y); x = t.val[0]; y = t.val[1]; } +#define dct_trn8_16(x, y) { uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); x = vreinterpret_u8_u16(t.val[0]); y = vreinterpret_u8_u16(t.val[1]); } +#define dct_trn8_32(x, y) { uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); x = vreinterpret_u8_u32(t.val[0]); y = vreinterpret_u8_u32(t.val[1]); } + + // sadly can't use interleaved stores here since we only write + // 8 bytes to each scan line! + + // 8x8 8-bit transpose pass 1 + dct_trn8_8(p0, p1); + dct_trn8_8(p2, p3); + dct_trn8_8(p4, p5); + dct_trn8_8(p6, p7); + + // pass 2 + dct_trn8_16(p0, p2); + dct_trn8_16(p1, p3); + dct_trn8_16(p4, p6); + dct_trn8_16(p5, p7); + + // pass 3 + dct_trn8_32(p0, p4); + dct_trn8_32(p1, p5); + dct_trn8_32(p2, p6); + dct_trn8_32(p3, p7); + + // store + vst1_u8(out, p0); out += out_stride; + vst1_u8(out, p1); out += out_stride; + vst1_u8(out, p2); out += out_stride; + vst1_u8(out, p3); out += out_stride; + vst1_u8(out, p4); out += out_stride; + vst1_u8(out, p5); out += out_stride; + vst1_u8(out, p6); out += out_stride; + vst1_u8(out, p7); + +#undef dct_trn8_8 +#undef dct_trn8_16 +#undef dct_trn8_32 + } + +#undef dct_long_mul +#undef dct_long_mac +#undef dct_widen +#undef dct_wadd +#undef dct_wsub +#undef dct_bfly32o +#undef dct_pass +} + +#endif // STBI_NEON + +#define STBI__MARKER_none 0xff +// if there's a pending marker from the entropy stream, return that +// otherwise, fetch from the stream and get a marker. if there's no +// marker, return 0xff, which is never a valid marker value +static stbi_uc stbi__get_marker(stbi__jpeg *j) +{ + stbi_uc x; + if (j->marker != STBI__MARKER_none) { x = j->marker; j->marker = STBI__MARKER_none; return x; } + x = stbi__get8(j->s); + if (x != 0xff) return STBI__MARKER_none; + while (x == 0xff) + x = stbi__get8(j->s); + return x; +} + +// in each scan, we'll have scan_n components, and the order +// of the components is specified by order[] +#define STBI__RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) + +// after a restart interval, stbi__jpeg_reset the entropy decoder and +// the dc prediction +static void stbi__jpeg_reset(stbi__jpeg *j) +{ + j->code_bits = 0; + j->code_buffer = 0; + j->nomore = 0; + j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = 0; + j->marker = STBI__MARKER_none; + j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; + j->eob_run = 0; + // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, + // since we don't even allow 1<<30 pixels +} + +static int stbi__parse_entropy_coded_data(stbi__jpeg *z) +{ + stbi__jpeg_reset(z); + if (!z->progressive) { + if (z->scan_n == 1) { + int i,j; + STBI_SIMD_ALIGN(short, data[64]); + int n = z->order[0]; + // non-interleaved data, we just need to process one block at a time, + // in trivial scanline order + // number of blocks to do just depends on how many actual "pixels" this + // component has, independent of interleaved MCU blocking and such + int w = (z->img_comp[n].x+7) >> 3; + int h = (z->img_comp[n].y+7) >> 3; + for (j=0; j < h; ++j) { + for (i=0; i < w; ++i) { + int ha = z->img_comp[n].ha; + if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0; + z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data); + // every data block is an MCU, so countdown the restart interval + if (--z->todo <= 0) { + if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); + // if it's NOT a restart, then just bail, so we get corrupt data + // rather than no data + if (!STBI__RESTART(z->marker)) return 1; + stbi__jpeg_reset(z); + } + } + } + return 1; + } else { // interleaved + int i,j,k,x,y; + STBI_SIMD_ALIGN(short, data[64]); + for (j=0; j < z->img_mcu_y; ++j) { + for (i=0; i < z->img_mcu_x; ++i) { + // scan an interleaved mcu... process scan_n components in order + for (k=0; k < z->scan_n; ++k) { + int n = z->order[k]; + // scan out an mcu's worth of this component; that's just determined + // by the basic H and V specified for the component + for (y=0; y < z->img_comp[n].v; ++y) { + for (x=0; x < z->img_comp[n].h; ++x) { + int x2 = (i*z->img_comp[n].h + x)*8; + int y2 = (j*z->img_comp[n].v + y)*8; + int ha = z->img_comp[n].ha; + if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0; + z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data); + } + } + } + // after all interleaved components, that's an interleaved MCU, + // so now count down the restart interval + if (--z->todo <= 0) { + if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); + if (!STBI__RESTART(z->marker)) return 1; + stbi__jpeg_reset(z); + } + } + } + return 1; + } + } else { + if (z->scan_n == 1) { + int i,j; + int n = z->order[0]; + // non-interleaved data, we just need to process one block at a time, + // in trivial scanline order + // number of blocks to do just depends on how many actual "pixels" this + // component has, independent of interleaved MCU blocking and such + int w = (z->img_comp[n].x+7) >> 3; + int h = (z->img_comp[n].y+7) >> 3; + for (j=0; j < h; ++j) { + for (i=0; i < w; ++i) { + short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); + if (z->spec_start == 0) { + if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) + return 0; + } else { + int ha = z->img_comp[n].ha; + if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha])) + return 0; + } + // every data block is an MCU, so countdown the restart interval + if (--z->todo <= 0) { + if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); + if (!STBI__RESTART(z->marker)) return 1; + stbi__jpeg_reset(z); + } + } + } + return 1; + } else { // interleaved + int i,j,k,x,y; + for (j=0; j < z->img_mcu_y; ++j) { + for (i=0; i < z->img_mcu_x; ++i) { + // scan an interleaved mcu... process scan_n components in order + for (k=0; k < z->scan_n; ++k) { + int n = z->order[k]; + // scan out an mcu's worth of this component; that's just determined + // by the basic H and V specified for the component + for (y=0; y < z->img_comp[n].v; ++y) { + for (x=0; x < z->img_comp[n].h; ++x) { + int x2 = (i*z->img_comp[n].h + x); + int y2 = (j*z->img_comp[n].v + y); + short *data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w); + if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) + return 0; + } + } + } + // after all interleaved components, that's an interleaved MCU, + // so now count down the restart interval + if (--z->todo <= 0) { + if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); + if (!STBI__RESTART(z->marker)) return 1; + stbi__jpeg_reset(z); + } + } + } + return 1; + } + } +} + +static void stbi__jpeg_dequantize(short *data, stbi_uc *dequant) +{ + int i; + for (i=0; i < 64; ++i) + data[i] *= dequant[i]; +} + +static void stbi__jpeg_finish(stbi__jpeg *z) +{ + if (z->progressive) { + // dequantize and idct the data + int i,j,n; + for (n=0; n < z->s->img_n; ++n) { + int w = (z->img_comp[n].x+7) >> 3; + int h = (z->img_comp[n].y+7) >> 3; + for (j=0; j < h; ++j) { + for (i=0; i < w; ++i) { + short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); + stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]); + z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data); + } + } + } + } +} + +static int stbi__process_marker(stbi__jpeg *z, int m) +{ + int L; + switch (m) { + case STBI__MARKER_none: // no marker found + return stbi__err("expected marker","Corrupt JPEG"); + + case 0xDD: // DRI - specify restart interval + if (stbi__get16be(z->s) != 4) return stbi__err("bad DRI len","Corrupt JPEG"); + z->restart_interval = stbi__get16be(z->s); + return 1; + + case 0xDB: // DQT - define quantization table + L = stbi__get16be(z->s)-2; + while (L > 0) { + int q = stbi__get8(z->s); + int p = q >> 4; + int t = q & 15,i; + if (p != 0) return stbi__err("bad DQT type","Corrupt JPEG"); + if (t > 3) return stbi__err("bad DQT table","Corrupt JPEG"); + for (i=0; i < 64; ++i) + z->dequant[t][stbi__jpeg_dezigzag[i]] = stbi__get8(z->s); + L -= 65; + } + return L==0; + + case 0xC4: // DHT - define huffman table + L = stbi__get16be(z->s)-2; + while (L > 0) { + stbi_uc *v; + int sizes[16],i,n=0; + int q = stbi__get8(z->s); + int tc = q >> 4; + int th = q & 15; + if (tc > 1 || th > 3) return stbi__err("bad DHT header","Corrupt JPEG"); + for (i=0; i < 16; ++i) { + sizes[i] = stbi__get8(z->s); + n += sizes[i]; + } + L -= 17; + if (tc == 0) { + if (!stbi__build_huffman(z->huff_dc+th, sizes)) return 0; + v = z->huff_dc[th].values; + } else { + if (!stbi__build_huffman(z->huff_ac+th, sizes)) return 0; + v = z->huff_ac[th].values; + } + for (i=0; i < n; ++i) + v[i] = stbi__get8(z->s); + if (tc != 0) + stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th); + L -= n; + } + return L==0; + } + // check for comment block or APP blocks + if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { + stbi__skip(z->s, stbi__get16be(z->s)-2); + return 1; + } + return 0; +} + +// after we see SOS +static int stbi__process_scan_header(stbi__jpeg *z) +{ + int i; + int Ls = stbi__get16be(z->s); + z->scan_n = stbi__get8(z->s); + if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s->img_n) return stbi__err("bad SOS component count","Corrupt JPEG"); + if (Ls != 6+2*z->scan_n) return stbi__err("bad SOS len","Corrupt JPEG"); + for (i=0; i < z->scan_n; ++i) { + int id = stbi__get8(z->s), which; + int q = stbi__get8(z->s); + for (which = 0; which < z->s->img_n; ++which) + if (z->img_comp[which].id == id) + break; + if (which == z->s->img_n) return 0; // no match + z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return stbi__err("bad DC huff","Corrupt JPEG"); + z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return stbi__err("bad AC huff","Corrupt JPEG"); + z->order[i] = which; + } + + { + int aa; + z->spec_start = stbi__get8(z->s); + z->spec_end = stbi__get8(z->s); // should be 63, but might be 0 + aa = stbi__get8(z->s); + z->succ_high = (aa >> 4); + z->succ_low = (aa & 15); + if (z->progressive) { + if (z->spec_start > 63 || z->spec_end > 63 || z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13) + return stbi__err("bad SOS", "Corrupt JPEG"); + } else { + if (z->spec_start != 0) return stbi__err("bad SOS","Corrupt JPEG"); + if (z->succ_high != 0 || z->succ_low != 0) return stbi__err("bad SOS","Corrupt JPEG"); + z->spec_end = 63; + } + } + + return 1; +} + +static int stbi__process_frame_header(stbi__jpeg *z, int scan) +{ + stbi__context *s = z->s; + int Lf,p,i,q, h_max=1,v_max=1,c; + Lf = stbi__get16be(s); if (Lf < 11) return stbi__err("bad SOF len","Corrupt JPEG"); // JPEG + p = stbi__get8(s); if (p != 8) return stbi__err("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline + s->img_y = stbi__get16be(s); if (s->img_y == 0) return stbi__err("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG + s->img_x = stbi__get16be(s); if (s->img_x == 0) return stbi__err("0 width","Corrupt JPEG"); // JPEG requires + c = stbi__get8(s); + if (c != 3 && c != 1) return stbi__err("bad component count","Corrupt JPEG"); // JFIF requires + s->img_n = c; + for (i=0; i < c; ++i) { + z->img_comp[i].data = NULL; + z->img_comp[i].linebuf = NULL; + } + + if (Lf != 8+3*s->img_n) return stbi__err("bad SOF len","Corrupt JPEG"); + + z->rgb = 0; + for (i=0; i < s->img_n; ++i) { + static unsigned char rgb[3] = { 'R', 'G', 'B' }; + z->img_comp[i].id = stbi__get8(s); + if (z->img_comp[i].id != i+1) // JFIF requires + if (z->img_comp[i].id != i) { // some version of jpegtran outputs non-JFIF-compliant files! + // somethings output this (see http://fileformats.archiveteam.org/wiki/JPEG#Color_format) + if (z->img_comp[i].id != rgb[i]) + return stbi__err("bad component ID","Corrupt JPEG"); + ++z->rgb; + } + q = stbi__get8(s); + z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return stbi__err("bad H","Corrupt JPEG"); + z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return stbi__err("bad V","Corrupt JPEG"); + z->img_comp[i].tq = stbi__get8(s); if (z->img_comp[i].tq > 3) return stbi__err("bad TQ","Corrupt JPEG"); + } + + if (scan != STBI__SCAN_load) return 1; + + if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode"); + + for (i=0; i < s->img_n; ++i) { + if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h; + if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v; + } + + // compute interleaved mcu info + z->img_h_max = h_max; + z->img_v_max = v_max; + z->img_mcu_w = h_max * 8; + z->img_mcu_h = v_max * 8; + z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w; + z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h; + + for (i=0; i < s->img_n; ++i) { + // number of effective pixels (e.g. for non-interleaved MCU) + z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max; + z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max; + // to simplify generation, we'll allocate enough memory to decode + // the bogus oversized data from using interleaved MCUs and their + // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't + // discard the extra data until colorspace conversion + z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; + z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; + z->img_comp[i].raw_data = stbi__malloc(z->img_comp[i].w2 * z->img_comp[i].h2+15); + + if (z->img_comp[i].raw_data == NULL) { + for(--i; i >= 0; --i) { + STBI_FREE(z->img_comp[i].raw_data); + z->img_comp[i].raw_data = NULL; + } + return stbi__err("outofmem", "Out of memory"); + } + // align blocks for idct using mmx/sse + z->img_comp[i].data = (stbi_uc*) (((size_t) z->img_comp[i].raw_data + 15) & ~15); + z->img_comp[i].linebuf = NULL; + if (z->progressive) { + z->img_comp[i].coeff_w = (z->img_comp[i].w2 + 7) >> 3; + z->img_comp[i].coeff_h = (z->img_comp[i].h2 + 7) >> 3; + z->img_comp[i].raw_coeff = STBI_MALLOC(z->img_comp[i].coeff_w * z->img_comp[i].coeff_h * 64 * sizeof(short) + 15); + z->img_comp[i].coeff = (short*) (((size_t) z->img_comp[i].raw_coeff + 15) & ~15); + } else { + z->img_comp[i].coeff = 0; + z->img_comp[i].raw_coeff = 0; + } + } + + return 1; +} + +// use comparisons since in some cases we handle more than one case (e.g. SOF) +#define stbi__DNL(x) ((x) == 0xdc) +#define stbi__SOI(x) ((x) == 0xd8) +#define stbi__EOI(x) ((x) == 0xd9) +#define stbi__SOF(x) ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2) +#define stbi__SOS(x) ((x) == 0xda) + +#define stbi__SOF_progressive(x) ((x) == 0xc2) + +static int stbi__decode_jpeg_header(stbi__jpeg *z, int scan) +{ + int m; + z->marker = STBI__MARKER_none; // initialize cached marker to empty + m = stbi__get_marker(z); + if (!stbi__SOI(m)) return stbi__err("no SOI","Corrupt JPEG"); + if (scan == STBI__SCAN_type) return 1; + m = stbi__get_marker(z); + while (!stbi__SOF(m)) { + if (!stbi__process_marker(z,m)) return 0; + m = stbi__get_marker(z); + while (m == STBI__MARKER_none) { + // some files have extra padding after their blocks, so ok, we'll scan + if (stbi__at_eof(z->s)) return stbi__err("no SOF", "Corrupt JPEG"); + m = stbi__get_marker(z); + } + } + z->progressive = stbi__SOF_progressive(m); + if (!stbi__process_frame_header(z, scan)) return 0; + return 1; +} + +// decode image to YCbCr format +static int stbi__decode_jpeg_image(stbi__jpeg *j) +{ + int m; + for (m = 0; m < 4; m++) { + j->img_comp[m].raw_data = NULL; + j->img_comp[m].raw_coeff = NULL; + } + j->restart_interval = 0; + if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) return 0; + m = stbi__get_marker(j); + while (!stbi__EOI(m)) { + if (stbi__SOS(m)) { + if (!stbi__process_scan_header(j)) return 0; + if (!stbi__parse_entropy_coded_data(j)) return 0; + if (j->marker == STBI__MARKER_none ) { + // handle 0s at the end of image data from IP Kamera 9060 + while (!stbi__at_eof(j->s)) { + int x = stbi__get8(j->s); + if (x == 255) { + j->marker = stbi__get8(j->s); + break; + } else if (x != 0) { + return stbi__err("junk before marker", "Corrupt JPEG"); + } + } + // if we reach eof without hitting a marker, stbi__get_marker() below will fail and we'll eventually return 0 + } + } else { + if (!stbi__process_marker(j, m)) return 0; + } + m = stbi__get_marker(j); + } + if (j->progressive) + stbi__jpeg_finish(j); + return 1; +} + +// static jfif-centered resampling (across block boundaries) + +typedef stbi_uc *(*resample_row_func)(stbi_uc *out, stbi_uc *in0, stbi_uc *in1, + int w, int hs); + +#define stbi__div4(x) ((stbi_uc) ((x) >> 2)) + +static stbi_uc *resample_row_1(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + STBI_NOTUSED(out); + STBI_NOTUSED(in_far); + STBI_NOTUSED(w); + STBI_NOTUSED(hs); + return in_near; +} + +static stbi_uc* stbi__resample_row_v_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // need to generate two samples vertically for every one in input + int i; + STBI_NOTUSED(hs); + for (i=0; i < w; ++i) + out[i] = stbi__div4(3*in_near[i] + in_far[i] + 2); + return out; +} + +static stbi_uc* stbi__resample_row_h_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // need to generate two samples horizontally for every one in input + int i; + stbi_uc *input = in_near; + + if (w == 1) { + // if only one sample, can't do any interpolation + out[0] = out[1] = input[0]; + return out; + } + + out[0] = input[0]; + out[1] = stbi__div4(input[0]*3 + input[1] + 2); + for (i=1; i < w-1; ++i) { + int n = 3*input[i]+2; + out[i*2+0] = stbi__div4(n+input[i-1]); + out[i*2+1] = stbi__div4(n+input[i+1]); + } + out[i*2+0] = stbi__div4(input[w-2]*3 + input[w-1] + 2); + out[i*2+1] = input[w-1]; + + STBI_NOTUSED(in_far); + STBI_NOTUSED(hs); + + return out; +} + +#define stbi__div16(x) ((stbi_uc) ((x) >> 4)) + +static stbi_uc *stbi__resample_row_hv_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // need to generate 2x2 samples for every one in input + int i,t0,t1; + if (w == 1) { + out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2); + return out; + } + + t1 = 3*in_near[0] + in_far[0]; + out[0] = stbi__div4(t1+2); + for (i=1; i < w; ++i) { + t0 = t1; + t1 = 3*in_near[i]+in_far[i]; + out[i*2-1] = stbi__div16(3*t0 + t1 + 8); + out[i*2 ] = stbi__div16(3*t1 + t0 + 8); + } + out[w*2-1] = stbi__div4(t1+2); + + STBI_NOTUSED(hs); + + return out; +} + +#if defined(STBI_SSE2) || defined(STBI_NEON) +static stbi_uc *stbi__resample_row_hv_2_simd(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // need to generate 2x2 samples for every one in input + int i=0,t0,t1; + + if (w == 1) { + out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2); + return out; + } + + t1 = 3*in_near[0] + in_far[0]; + // process groups of 8 pixels for as long as we can. + // note we can't handle the last pixel in a row in this loop + // because we need to handle the filter boundary conditions. + for (; i < ((w-1) & ~7); i += 8) { +#if defined(STBI_SSE2) + // load and perform the vertical filtering pass + // this uses 3*x + y = 4*x + (y - x) + __m128i zero = _mm_setzero_si128(); + __m128i farb = _mm_loadl_epi64((__m128i *) (in_far + i)); + __m128i nearb = _mm_loadl_epi64((__m128i *) (in_near + i)); + __m128i farw = _mm_unpacklo_epi8(farb, zero); + __m128i nearw = _mm_unpacklo_epi8(nearb, zero); + __m128i diff = _mm_sub_epi16(farw, nearw); + __m128i nears = _mm_slli_epi16(nearw, 2); + __m128i curr = _mm_add_epi16(nears, diff); // current row + + // horizontal filter works the same based on shifted vers of current + // row. "prev" is current row shifted right by 1 pixel; we need to + // insert the previous pixel value (from t1). + // "next" is current row shifted left by 1 pixel, with first pixel + // of next block of 8 pixels added in. + __m128i prv0 = _mm_slli_si128(curr, 2); + __m128i nxt0 = _mm_srli_si128(curr, 2); + __m128i prev = _mm_insert_epi16(prv0, t1, 0); + __m128i next = _mm_insert_epi16(nxt0, 3*in_near[i+8] + in_far[i+8], 7); + + // horizontal filter, polyphase implementation since it's convenient: + // even pixels = 3*cur + prev = cur*4 + (prev - cur) + // odd pixels = 3*cur + next = cur*4 + (next - cur) + // note the shared term. + __m128i bias = _mm_set1_epi16(8); + __m128i curs = _mm_slli_epi16(curr, 2); + __m128i prvd = _mm_sub_epi16(prev, curr); + __m128i nxtd = _mm_sub_epi16(next, curr); + __m128i curb = _mm_add_epi16(curs, bias); + __m128i even = _mm_add_epi16(prvd, curb); + __m128i odd = _mm_add_epi16(nxtd, curb); + + // interleave even and odd pixels, then undo scaling. + __m128i int0 = _mm_unpacklo_epi16(even, odd); + __m128i int1 = _mm_unpackhi_epi16(even, odd); + __m128i de0 = _mm_srli_epi16(int0, 4); + __m128i de1 = _mm_srli_epi16(int1, 4); + + // pack and write output + __m128i outv = _mm_packus_epi16(de0, de1); + _mm_storeu_si128((__m128i *) (out + i*2), outv); +#elif defined(STBI_NEON) + // load and perform the vertical filtering pass + // this uses 3*x + y = 4*x + (y - x) + uint8x8_t farb = vld1_u8(in_far + i); + uint8x8_t nearb = vld1_u8(in_near + i); + int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(farb, nearb)); + int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2)); + int16x8_t curr = vaddq_s16(nears, diff); // current row + + // horizontal filter works the same based on shifted vers of current + // row. "prev" is current row shifted right by 1 pixel; we need to + // insert the previous pixel value (from t1). + // "next" is current row shifted left by 1 pixel, with first pixel + // of next block of 8 pixels added in. + int16x8_t prv0 = vextq_s16(curr, curr, 7); + int16x8_t nxt0 = vextq_s16(curr, curr, 1); + int16x8_t prev = vsetq_lane_s16(t1, prv0, 0); + int16x8_t next = vsetq_lane_s16(3*in_near[i+8] + in_far[i+8], nxt0, 7); + + // horizontal filter, polyphase implementation since it's convenient: + // even pixels = 3*cur + prev = cur*4 + (prev - cur) + // odd pixels = 3*cur + next = cur*4 + (next - cur) + // note the shared term. + int16x8_t curs = vshlq_n_s16(curr, 2); + int16x8_t prvd = vsubq_s16(prev, curr); + int16x8_t nxtd = vsubq_s16(next, curr); + int16x8_t even = vaddq_s16(curs, prvd); + int16x8_t odd = vaddq_s16(curs, nxtd); + + // undo scaling and round, then store with even/odd phases interleaved + uint8x8x2_t o; + o.val[0] = vqrshrun_n_s16(even, 4); + o.val[1] = vqrshrun_n_s16(odd, 4); + vst2_u8(out + i*2, o); +#endif + + // "previous" value for next iter + t1 = 3*in_near[i+7] + in_far[i+7]; + } + + t0 = t1; + t1 = 3*in_near[i] + in_far[i]; + out[i*2] = stbi__div16(3*t1 + t0 + 8); + + for (++i; i < w; ++i) { + t0 = t1; + t1 = 3*in_near[i]+in_far[i]; + out[i*2-1] = stbi__div16(3*t0 + t1 + 8); + out[i*2 ] = stbi__div16(3*t1 + t0 + 8); + } + out[w*2-1] = stbi__div4(t1+2); + + STBI_NOTUSED(hs); + + return out; +} +#endif + +static stbi_uc *stbi__resample_row_generic(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // resample with nearest-neighbor + int i,j; + STBI_NOTUSED(in_far); + for (i=0; i < w; ++i) + for (j=0; j < hs; ++j) + out[i*hs+j] = in_near[i]; + return out; +} + +#ifdef STBI_JPEG_OLD +// this is the same YCbCr-to-RGB calculation that stb_image has used +// historically before the algorithm changes in 1.49 +#define float2fixed(x) ((int) ((x) * 65536 + 0.5)) +static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step) +{ + int i; + for (i=0; i < count; ++i) { + int y_fixed = (y[i] << 16) + 32768; // rounding + int r,g,b; + int cr = pcr[i] - 128; + int cb = pcb[i] - 128; + r = y_fixed + cr*float2fixed(1.40200f); + g = y_fixed - cr*float2fixed(0.71414f) - cb*float2fixed(0.34414f); + b = y_fixed + cb*float2fixed(1.77200f); + r >>= 16; + g >>= 16; + b >>= 16; + if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } + if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } + if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } + out[0] = (stbi_uc)r; + out[1] = (stbi_uc)g; + out[2] = (stbi_uc)b; + out[3] = 255; + out += step; + } +} +#else +// this is a reduced-precision calculation of YCbCr-to-RGB introduced +// to make sure the code produces the same results in both SIMD and scalar +#define float2fixed(x) (((int) ((x) * 4096.0f + 0.5f)) << 8) +static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step) +{ + int i; + for (i=0; i < count; ++i) { + int y_fixed = (y[i] << 20) + (1<<19); // rounding + int r,g,b; + int cr = pcr[i] - 128; + int cb = pcb[i] - 128; + r = y_fixed + cr* float2fixed(1.40200f); + g = y_fixed + (cr*-float2fixed(0.71414f)) + ((cb*-float2fixed(0.34414f)) & 0xffff0000); + b = y_fixed + cb* float2fixed(1.77200f); + r >>= 20; + g >>= 20; + b >>= 20; + if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } + if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } + if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } + out[0] = (stbi_uc)r; + out[1] = (stbi_uc)g; + out[2] = (stbi_uc)b; + out[3] = 255; + out += step; + } +} +#endif + +#if defined(STBI_SSE2) || defined(STBI_NEON) +static void stbi__YCbCr_to_RGB_simd(stbi_uc *out, stbi_uc const *y, stbi_uc const *pcb, stbi_uc const *pcr, int count, int step) +{ + int i = 0; + +#ifdef STBI_SSE2 + // step == 3 is pretty ugly on the final interleave, and i'm not convinced + // it's useful in practice (you wouldn't use it for textures, for example). + // so just accelerate step == 4 case. + if (step == 4) { + // this is a fairly straightforward implementation and not super-optimized. + __m128i signflip = _mm_set1_epi8(-0x80); + __m128i cr_const0 = _mm_set1_epi16( (short) ( 1.40200f*4096.0f+0.5f)); + __m128i cr_const1 = _mm_set1_epi16( - (short) ( 0.71414f*4096.0f+0.5f)); + __m128i cb_const0 = _mm_set1_epi16( - (short) ( 0.34414f*4096.0f+0.5f)); + __m128i cb_const1 = _mm_set1_epi16( (short) ( 1.77200f*4096.0f+0.5f)); + __m128i y_bias = _mm_set1_epi8((char) (unsigned char) 128); + __m128i xw = _mm_set1_epi16(255); // alpha channel + + for (; i+7 < count; i += 8) { + // load + __m128i y_bytes = _mm_loadl_epi64((__m128i *) (y+i)); + __m128i cr_bytes = _mm_loadl_epi64((__m128i *) (pcr+i)); + __m128i cb_bytes = _mm_loadl_epi64((__m128i *) (pcb+i)); + __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128 + __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128 + + // unpack to short (and left-shift cr, cb by 8) + __m128i yw = _mm_unpacklo_epi8(y_bias, y_bytes); + __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased); + __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased); + + // color transform + __m128i yws = _mm_srli_epi16(yw, 4); + __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw); + __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw); + __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1); + __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1); + __m128i rws = _mm_add_epi16(cr0, yws); + __m128i gwt = _mm_add_epi16(cb0, yws); + __m128i bws = _mm_add_epi16(yws, cb1); + __m128i gws = _mm_add_epi16(gwt, cr1); + + // descale + __m128i rw = _mm_srai_epi16(rws, 4); + __m128i bw = _mm_srai_epi16(bws, 4); + __m128i gw = _mm_srai_epi16(gws, 4); + + // back to byte, set up for transpose + __m128i brb = _mm_packus_epi16(rw, bw); + __m128i gxb = _mm_packus_epi16(gw, xw); + + // transpose to interleave channels + __m128i t0 = _mm_unpacklo_epi8(brb, gxb); + __m128i t1 = _mm_unpackhi_epi8(brb, gxb); + __m128i o0 = _mm_unpacklo_epi16(t0, t1); + __m128i o1 = _mm_unpackhi_epi16(t0, t1); + + // store + _mm_storeu_si128((__m128i *) (out + 0), o0); + _mm_storeu_si128((__m128i *) (out + 16), o1); + out += 32; + } + } +#endif + +#ifdef STBI_NEON + // in this version, step=3 support would be easy to add. but is there demand? + if (step == 4) { + // this is a fairly straightforward implementation and not super-optimized. + uint8x8_t signflip = vdup_n_u8(0x80); + int16x8_t cr_const0 = vdupq_n_s16( (short) ( 1.40200f*4096.0f+0.5f)); + int16x8_t cr_const1 = vdupq_n_s16( - (short) ( 0.71414f*4096.0f+0.5f)); + int16x8_t cb_const0 = vdupq_n_s16( - (short) ( 0.34414f*4096.0f+0.5f)); + int16x8_t cb_const1 = vdupq_n_s16( (short) ( 1.77200f*4096.0f+0.5f)); + + for (; i+7 < count; i += 8) { + // load + uint8x8_t y_bytes = vld1_u8(y + i); + uint8x8_t cr_bytes = vld1_u8(pcr + i); + uint8x8_t cb_bytes = vld1_u8(pcb + i); + int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip)); + int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip)); + + // expand to s16 + int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4)); + int16x8_t crw = vshll_n_s8(cr_biased, 7); + int16x8_t cbw = vshll_n_s8(cb_biased, 7); + + // color transform + int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0); + int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0); + int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1); + int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1); + int16x8_t rws = vaddq_s16(yws, cr0); + int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1); + int16x8_t bws = vaddq_s16(yws, cb1); + + // undo scaling, round, convert to byte + uint8x8x4_t o; + o.val[0] = vqrshrun_n_s16(rws, 4); + o.val[1] = vqrshrun_n_s16(gws, 4); + o.val[2] = vqrshrun_n_s16(bws, 4); + o.val[3] = vdup_n_u8(255); + + // store, interleaving r/g/b/a + vst4_u8(out, o); + out += 8*4; + } + } +#endif + + for (; i < count; ++i) { + int y_fixed = (y[i] << 20) + (1<<19); // rounding + int r,g,b; + int cr = pcr[i] - 128; + int cb = pcb[i] - 128; + r = y_fixed + cr* float2fixed(1.40200f); + g = y_fixed + cr*-float2fixed(0.71414f) + ((cb*-float2fixed(0.34414f)) & 0xffff0000); + b = y_fixed + cb* float2fixed(1.77200f); + r >>= 20; + g >>= 20; + b >>= 20; + if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } + if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } + if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } + out[0] = (stbi_uc)r; + out[1] = (stbi_uc)g; + out[2] = (stbi_uc)b; + out[3] = 255; + out += step; + } +} +#endif + +// set up the kernels +static void stbi__setup_jpeg(stbi__jpeg *j) +{ + j->idct_block_kernel = stbi__idct_block; + j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row; + j->resample_row_hv_2_kernel = stbi__resample_row_hv_2; + +#ifdef STBI_SSE2 + if (stbi__sse2_available()) { + j->idct_block_kernel = stbi__idct_simd; + #ifndef STBI_JPEG_OLD + j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; + #endif + j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; + } +#endif + +#ifdef STBI_NEON + j->idct_block_kernel = stbi__idct_simd; + #ifndef STBI_JPEG_OLD + j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; + #endif + j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; +#endif +} + +// clean up the temporary component buffers +static void stbi__cleanup_jpeg(stbi__jpeg *j) +{ + int i; + for (i=0; i < j->s->img_n; ++i) { + if (j->img_comp[i].raw_data) { + STBI_FREE(j->img_comp[i].raw_data); + j->img_comp[i].raw_data = NULL; + j->img_comp[i].data = NULL; + } + if (j->img_comp[i].raw_coeff) { + STBI_FREE(j->img_comp[i].raw_coeff); + j->img_comp[i].raw_coeff = 0; + j->img_comp[i].coeff = 0; + } + if (j->img_comp[i].linebuf) { + STBI_FREE(j->img_comp[i].linebuf); + j->img_comp[i].linebuf = NULL; + } + } +} + +typedef struct +{ + resample_row_func resample; + stbi_uc *line0,*line1; + int hs,vs; // expansion factor in each axis + int w_lores; // horizontal pixels pre-expansion + int ystep; // how far through vertical expansion we are + int ypos; // which pre-expansion row we're on +} stbi__resample; + +static stbi_uc *load_jpeg_image(stbi__jpeg *z, int *out_x, int *out_y, int *comp, int req_comp) +{ + int n, decode_n; + z->s->img_n = 0; // make stbi__cleanup_jpeg safe + + // validate req_comp + if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error"); + + // load a jpeg image from whichever source, but leave in YCbCr format + if (!stbi__decode_jpeg_image(z)) { stbi__cleanup_jpeg(z); return NULL; } + + // determine actual number of components to generate + n = req_comp ? req_comp : z->s->img_n; + + if (z->s->img_n == 3 && n < 3) + decode_n = 1; + else + decode_n = z->s->img_n; + + // resample and color-convert + { + int k; + unsigned int i,j; + stbi_uc *output; + stbi_uc *coutput[4]; + + stbi__resample res_comp[4]; + + for (k=0; k < decode_n; ++k) { + stbi__resample *r = &res_comp[k]; + + // allocate line buffer big enough for upsampling off the edges + // with upsample factor of 4 + z->img_comp[k].linebuf = (stbi_uc *) stbi__malloc(z->s->img_x + 3); + if (!z->img_comp[k].linebuf) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); } + + r->hs = z->img_h_max / z->img_comp[k].h; + r->vs = z->img_v_max / z->img_comp[k].v; + r->ystep = r->vs >> 1; + r->w_lores = (z->s->img_x + r->hs-1) / r->hs; + r->ypos = 0; + r->line0 = r->line1 = z->img_comp[k].data; + + if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1; + else if (r->hs == 1 && r->vs == 2) r->resample = stbi__resample_row_v_2; + else if (r->hs == 2 && r->vs == 1) r->resample = stbi__resample_row_h_2; + else if (r->hs == 2 && r->vs == 2) r->resample = z->resample_row_hv_2_kernel; + else r->resample = stbi__resample_row_generic; + } + + // can't error after this so, this is safe + output = (stbi_uc *) stbi__malloc(n * z->s->img_x * z->s->img_y + 1); + if (!output) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); } + + // now go ahead and resample + for (j=0; j < z->s->img_y; ++j) { + stbi_uc *out = output + n * z->s->img_x * j; + for (k=0; k < decode_n; ++k) { + stbi__resample *r = &res_comp[k]; + int y_bot = r->ystep >= (r->vs >> 1); + coutput[k] = r->resample(z->img_comp[k].linebuf, + y_bot ? r->line1 : r->line0, + y_bot ? r->line0 : r->line1, + r->w_lores, r->hs); + if (++r->ystep >= r->vs) { + r->ystep = 0; + r->line0 = r->line1; + if (++r->ypos < z->img_comp[k].y) + r->line1 += z->img_comp[k].w2; + } + } + if (n >= 3) { + stbi_uc *y = coutput[0]; + if (z->s->img_n == 3) { + if (z->rgb == 3) { + for (i=0; i < z->s->img_x; ++i) { + out[0] = y[i]; + out[1] = coutput[1][i]; + out[2] = coutput[2][i]; + out[3] = 255; + out += n; + } + } else { + z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); + } + } else + for (i=0; i < z->s->img_x; ++i) { + out[0] = out[1] = out[2] = y[i]; + out[3] = 255; // not used if n==3 + out += n; + } + } else { + stbi_uc *y = coutput[0]; + if (n == 1) + for (i=0; i < z->s->img_x; ++i) out[i] = y[i]; + else + for (i=0; i < z->s->img_x; ++i) *out++ = y[i], *out++ = 255; + } + } + stbi__cleanup_jpeg(z); + *out_x = z->s->img_x; + *out_y = z->s->img_y; + if (comp) *comp = z->s->img_n; // report original components, not output + return output; + } +} + +static unsigned char *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + unsigned char* result; + stbi__jpeg* j = (stbi__jpeg*) stbi__malloc(sizeof(stbi__jpeg)); + j->s = s; + stbi__setup_jpeg(j); + result = load_jpeg_image(j, x,y,comp,req_comp); + STBI_FREE(j); + return result; +} + +static int stbi__jpeg_test(stbi__context *s) +{ + int r; + stbi__jpeg j; + j.s = s; + stbi__setup_jpeg(&j); + r = stbi__decode_jpeg_header(&j, STBI__SCAN_type); + stbi__rewind(s); + return r; +} + +static int stbi__jpeg_info_raw(stbi__jpeg *j, int *x, int *y, int *comp) +{ + if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) { + stbi__rewind( j->s ); + return 0; + } + if (x) *x = j->s->img_x; + if (y) *y = j->s->img_y; + if (comp) *comp = j->s->img_n; + return 1; +} + +static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp) +{ + int result; + stbi__jpeg* j = (stbi__jpeg*) (stbi__malloc(sizeof(stbi__jpeg))); + j->s = s; + result = stbi__jpeg_info_raw(j, x, y, comp); + STBI_FREE(j); + return result; +} +#endif + +// public domain zlib decode v0.2 Sean Barrett 2006-11-18 +// simple implementation +// - all input must be provided in an upfront buffer +// - all output is written to a single output buffer (can malloc/realloc) +// performance +// - fast huffman + +#ifndef STBI_NO_ZLIB + +// fast-way is faster to check than jpeg huffman, but slow way is slower +#define STBI__ZFAST_BITS 9 // accelerate all cases in default tables +#define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1) + +// zlib-style huffman encoding +// (jpegs packs from left, zlib from right, so can't share code) +typedef struct +{ + stbi__uint16 fast[1 << STBI__ZFAST_BITS]; + stbi__uint16 firstcode[16]; + int maxcode[17]; + stbi__uint16 firstsymbol[16]; + stbi_uc size[288]; + stbi__uint16 value[288]; +} stbi__zhuffman; + +stbi_inline static int stbi__bitreverse16(int n) +{ + n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); + n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); + n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); + n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); + return n; +} + +stbi_inline static int stbi__bit_reverse(int v, int bits) +{ + STBI_ASSERT(bits <= 16); + // to bit reverse n bits, reverse 16 and shift + // e.g. 11 bits, bit reverse and shift away 5 + return stbi__bitreverse16(v) >> (16-bits); +} + +static int stbi__zbuild_huffman(stbi__zhuffman *z, stbi_uc *sizelist, int num) +{ + int i,k=0; + int code, next_code[16], sizes[17]; + + // DEFLATE spec for generating codes + memset(sizes, 0, sizeof(sizes)); + memset(z->fast, 0, sizeof(z->fast)); + for (i=0; i < num; ++i) + ++sizes[sizelist[i]]; + sizes[0] = 0; + for (i=1; i < 16; ++i) + if (sizes[i] > (1 << i)) + return stbi__err("bad sizes", "Corrupt PNG"); + code = 0; + for (i=1; i < 16; ++i) { + next_code[i] = code; + z->firstcode[i] = (stbi__uint16) code; + z->firstsymbol[i] = (stbi__uint16) k; + code = (code + sizes[i]); + if (sizes[i]) + if (code-1 >= (1 << i)) return stbi__err("bad codelengths","Corrupt PNG"); + z->maxcode[i] = code << (16-i); // preshift for inner loop + code <<= 1; + k += sizes[i]; + } + z->maxcode[16] = 0x10000; // sentinel + for (i=0; i < num; ++i) { + int s = sizelist[i]; + if (s) { + int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; + stbi__uint16 fastv = (stbi__uint16) ((s << 9) | i); + z->size [c] = (stbi_uc ) s; + z->value[c] = (stbi__uint16) i; + if (s <= STBI__ZFAST_BITS) { + int j = stbi__bit_reverse(next_code[s],s); + while (j < (1 << STBI__ZFAST_BITS)) { + z->fast[j] = fastv; + j += (1 << s); + } + } + ++next_code[s]; + } + } + return 1; +} + +// zlib-from-memory implementation for PNG reading +// because PNG allows splitting the zlib stream arbitrarily, +// and it's annoying structurally to have PNG call ZLIB call PNG, +// we require PNG read all the IDATs and combine them into a single +// memory buffer + +typedef struct +{ + stbi_uc *zbuffer, *zbuffer_end; + int num_bits; + stbi__uint32 code_buffer; + + char *zout; + char *zout_start; + char *zout_end; + int z_expandable; + + stbi__zhuffman z_length, z_distance; +} stbi__zbuf; + +stbi_inline static stbi_uc stbi__zget8(stbi__zbuf *z) +{ + if (z->zbuffer >= z->zbuffer_end) return 0; + return *z->zbuffer++; +} + +static void stbi__fill_bits(stbi__zbuf *z) +{ + do { + STBI_ASSERT(z->code_buffer < (1U << z->num_bits)); + z->code_buffer |= (unsigned int) stbi__zget8(z) << z->num_bits; + z->num_bits += 8; + } while (z->num_bits <= 24); +} + +stbi_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n) +{ + unsigned int k; + if (z->num_bits < n) stbi__fill_bits(z); + k = z->code_buffer & ((1 << n) - 1); + z->code_buffer >>= n; + z->num_bits -= n; + return k; +} + +static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z) +{ + int b,s,k; + // not resolved by fast table, so compute it the slow way + // use jpeg approach, which requires MSbits at top + k = stbi__bit_reverse(a->code_buffer, 16); + for (s=STBI__ZFAST_BITS+1; ; ++s) + if (k < z->maxcode[s]) + break; + if (s == 16) return -1; // invalid code! + // code size is s, so: + b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s]; + STBI_ASSERT(z->size[b] == s); + a->code_buffer >>= s; + a->num_bits -= s; + return z->value[b]; +} + +stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z) +{ + int b,s; + if (a->num_bits < 16) stbi__fill_bits(a); + b = z->fast[a->code_buffer & STBI__ZFAST_MASK]; + if (b) { + s = b >> 9; + a->code_buffer >>= s; + a->num_bits -= s; + return b & 511; + } + return stbi__zhuffman_decode_slowpath(a, z); +} + +static int stbi__zexpand(stbi__zbuf *z, char *zout, int n) // need to make room for n bytes +{ + char *q; + int cur, limit, old_limit; + z->zout = zout; + if (!z->z_expandable) return stbi__err("output buffer limit","Corrupt PNG"); + cur = (int) (z->zout - z->zout_start); + limit = old_limit = (int) (z->zout_end - z->zout_start); + while (cur + n > limit) + limit *= 2; + q = (char *) STBI_REALLOC_SIZED(z->zout_start, old_limit, limit); + STBI_NOTUSED(old_limit); + if (q == NULL) return stbi__err("outofmem", "Out of memory"); + z->zout_start = q; + z->zout = q + cur; + z->zout_end = q + limit; + return 1; +} + +static int stbi__zlength_base[31] = { + 3,4,5,6,7,8,9,10,11,13, + 15,17,19,23,27,31,35,43,51,59, + 67,83,99,115,131,163,195,227,258,0,0 }; + +static int stbi__zlength_extra[31]= +{ 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; + +static int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, +257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; + +static int stbi__zdist_extra[32] = +{ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; + +static int stbi__parse_huffman_block(stbi__zbuf *a) +{ + char *zout = a->zout; + for(;;) { + int z = stbi__zhuffman_decode(a, &a->z_length); + if (z < 256) { + if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); // error in huffman codes + if (zout >= a->zout_end) { + if (!stbi__zexpand(a, zout, 1)) return 0; + zout = a->zout; + } + *zout++ = (char) z; + } else { + stbi_uc *p; + int len,dist; + if (z == 256) { + a->zout = zout; + return 1; + } + z -= 257; + len = stbi__zlength_base[z]; + if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]); + z = stbi__zhuffman_decode(a, &a->z_distance); + if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); + dist = stbi__zdist_base[z]; + if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]); + if (zout - a->zout_start < dist) return stbi__err("bad dist","Corrupt PNG"); + if (zout + len > a->zout_end) { + if (!stbi__zexpand(a, zout, len)) return 0; + zout = a->zout; + } + p = (stbi_uc *) (zout - dist); + if (dist == 1) { // run of one byte; common in images. + stbi_uc v = *p; + if (len) { do *zout++ = v; while (--len); } + } else { + if (len) { do *zout++ = *p++; while (--len); } + } + } + } +} + +static int stbi__compute_huffman_codes(stbi__zbuf *a) +{ + static stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; + stbi__zhuffman z_codelength; + stbi_uc lencodes[286+32+137];//padding for maximum single op + stbi_uc codelength_sizes[19]; + int i,n; + + int hlit = stbi__zreceive(a,5) + 257; + int hdist = stbi__zreceive(a,5) + 1; + int hclen = stbi__zreceive(a,4) + 4; + + memset(codelength_sizes, 0, sizeof(codelength_sizes)); + for (i=0; i < hclen; ++i) { + int s = stbi__zreceive(a,3); + codelength_sizes[length_dezigzag[i]] = (stbi_uc) s; + } + if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; + + n = 0; + while (n < hlit + hdist) { + int c = stbi__zhuffman_decode(a, &z_codelength); + if (c < 0 || c >= 19) return stbi__err("bad codelengths", "Corrupt PNG"); + if (c < 16) + lencodes[n++] = (stbi_uc) c; + else if (c == 16) { + c = stbi__zreceive(a,2)+3; + memset(lencodes+n, lencodes[n-1], c); + n += c; + } else if (c == 17) { + c = stbi__zreceive(a,3)+3; + memset(lencodes+n, 0, c); + n += c; + } else { + STBI_ASSERT(c == 18); + c = stbi__zreceive(a,7)+11; + memset(lencodes+n, 0, c); + n += c; + } + } + if (n != hlit+hdist) return stbi__err("bad codelengths","Corrupt PNG"); + if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0; + if (!stbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0; + return 1; +} + +static int stbi__parse_uncompressed_block(stbi__zbuf *a) +{ + stbi_uc header[4]; + int len,nlen,k; + if (a->num_bits & 7) + stbi__zreceive(a, a->num_bits & 7); // discard + // drain the bit-packed data into header + k = 0; + while (a->num_bits > 0) { + header[k++] = (stbi_uc) (a->code_buffer & 255); // suppress MSVC run-time check + a->code_buffer >>= 8; + a->num_bits -= 8; + } + STBI_ASSERT(a->num_bits == 0); + // now fill header the normal way + while (k < 4) + header[k++] = stbi__zget8(a); + len = header[1] * 256 + header[0]; + nlen = header[3] * 256 + header[2]; + if (nlen != (len ^ 0xffff)) return stbi__err("zlib corrupt","Corrupt PNG"); + if (a->zbuffer + len > a->zbuffer_end) return stbi__err("read past buffer","Corrupt PNG"); + if (a->zout + len > a->zout_end) + if (!stbi__zexpand(a, a->zout, len)) return 0; + memcpy(a->zout, a->zbuffer, len); + a->zbuffer += len; + a->zout += len; + return 1; +} + +static int stbi__parse_zlib_header(stbi__zbuf *a) +{ + int cmf = stbi__zget8(a); + int cm = cmf & 15; + /* int cinfo = cmf >> 4; */ + int flg = stbi__zget8(a); + if ((cmf*256+flg) % 31 != 0) return stbi__err("bad zlib header","Corrupt PNG"); // zlib spec + if (flg & 32) return stbi__err("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png + if (cm != 8) return stbi__err("bad compression","Corrupt PNG"); // DEFLATE required for png + // window = 1 << (8 + cinfo)... but who cares, we fully buffer output + return 1; +} + +// @TODO: should statically initialize these for optimal thread safety +static stbi_uc stbi__zdefault_length[288], stbi__zdefault_distance[32]; +static void stbi__init_zdefaults(void) +{ + int i; // use <= to match clearly with spec + for (i=0; i <= 143; ++i) stbi__zdefault_length[i] = 8; + for ( ; i <= 255; ++i) stbi__zdefault_length[i] = 9; + for ( ; i <= 279; ++i) stbi__zdefault_length[i] = 7; + for ( ; i <= 287; ++i) stbi__zdefault_length[i] = 8; + + for (i=0; i <= 31; ++i) stbi__zdefault_distance[i] = 5; +} + +static int stbi__parse_zlib(stbi__zbuf *a, int parse_header) +{ + int final, type; + if (parse_header) + if (!stbi__parse_zlib_header(a)) return 0; + a->num_bits = 0; + a->code_buffer = 0; + do { + final = stbi__zreceive(a,1); + type = stbi__zreceive(a,2); + if (type == 0) { + if (!stbi__parse_uncompressed_block(a)) return 0; + } else if (type == 3) { + return 0; + } else { + if (type == 1) { + // use fixed code lengths + if (!stbi__zdefault_distance[31]) stbi__init_zdefaults(); + if (!stbi__zbuild_huffman(&a->z_length , stbi__zdefault_length , 288)) return 0; + if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) return 0; + } else { + if (!stbi__compute_huffman_codes(a)) return 0; + } + if (!stbi__parse_huffman_block(a)) return 0; + } + } while (!final); + return 1; +} + +static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header) +{ + a->zout_start = obuf; + a->zout = obuf; + a->zout_end = obuf + olen; + a->z_expandable = exp; + + return stbi__parse_zlib(a, parse_header); +} + +STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen) +{ + stbi__zbuf a; + char *p = (char *) stbi__malloc(initial_size); + if (p == NULL) return NULL; + a.zbuffer = (stbi_uc *) buffer; + a.zbuffer_end = (stbi_uc *) buffer + len; + if (stbi__do_zlib(&a, p, initial_size, 1, 1)) { + if (outlen) *outlen = (int) (a.zout - a.zout_start); + return a.zout_start; + } else { + STBI_FREE(a.zout_start); + return NULL; + } +} + +STBIDEF char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen) +{ + return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); +} + +STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header) +{ + stbi__zbuf a; + char *p = (char *) stbi__malloc(initial_size); + if (p == NULL) return NULL; + a.zbuffer = (stbi_uc *) buffer; + a.zbuffer_end = (stbi_uc *) buffer + len; + if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) { + if (outlen) *outlen = (int) (a.zout - a.zout_start); + return a.zout_start; + } else { + STBI_FREE(a.zout_start); + return NULL; + } +} + +STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen) +{ + stbi__zbuf a; + a.zbuffer = (stbi_uc *) ibuffer; + a.zbuffer_end = (stbi_uc *) ibuffer + ilen; + if (stbi__do_zlib(&a, obuffer, olen, 0, 1)) + return (int) (a.zout - a.zout_start); + else + return -1; +} + +STBIDEF char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen) +{ + stbi__zbuf a; + char *p = (char *) stbi__malloc(16384); + if (p == NULL) return NULL; + a.zbuffer = (stbi_uc *) buffer; + a.zbuffer_end = (stbi_uc *) buffer+len; + if (stbi__do_zlib(&a, p, 16384, 1, 0)) { + if (outlen) *outlen = (int) (a.zout - a.zout_start); + return a.zout_start; + } else { + STBI_FREE(a.zout_start); + return NULL; + } +} + +STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen) +{ + stbi__zbuf a; + a.zbuffer = (stbi_uc *) ibuffer; + a.zbuffer_end = (stbi_uc *) ibuffer + ilen; + if (stbi__do_zlib(&a, obuffer, olen, 0, 0)) + return (int) (a.zout - a.zout_start); + else + return -1; +} +#endif + +// public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18 +// simple implementation +// - only 8-bit samples +// - no CRC checking +// - allocates lots of intermediate memory +// - avoids problem of streaming data between subsystems +// - avoids explicit window management +// performance +// - uses stb_zlib, a PD zlib implementation with fast huffman decoding + +#ifndef STBI_NO_PNG +typedef struct +{ + stbi__uint32 length; + stbi__uint32 type; +} stbi__pngchunk; + +static stbi__pngchunk stbi__get_chunk_header(stbi__context *s) +{ + stbi__pngchunk c; + c.length = stbi__get32be(s); + c.type = stbi__get32be(s); + return c; +} + +static int stbi__check_png_header(stbi__context *s) +{ + static stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 }; + int i; + for (i=0; i < 8; ++i) + if (stbi__get8(s) != png_sig[i]) return stbi__err("bad png sig","Not a PNG"); + return 1; +} + +typedef struct +{ + stbi__context *s; + stbi_uc *idata, *expanded, *out; + int depth; +} stbi__png; + + +enum { + STBI__F_none=0, + STBI__F_sub=1, + STBI__F_up=2, + STBI__F_avg=3, + STBI__F_paeth=4, + // synthetic filters used for first scanline to avoid needing a dummy row of 0s + STBI__F_avg_first, + STBI__F_paeth_first +}; + +static stbi_uc first_row_filter[5] = +{ + STBI__F_none, + STBI__F_sub, + STBI__F_none, + STBI__F_avg_first, + STBI__F_paeth_first +}; + +static int stbi__paeth(int a, int b, int c) +{ + int p = a + b - c; + int pa = abs(p-a); + int pb = abs(p-b); + int pc = abs(p-c); + if (pa <= pb && pa <= pc) return a; + if (pb <= pc) return b; + return c; +} + +static stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 }; + +// create the png data from post-deflated data +static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color) +{ + int bytes = (depth == 16? 2 : 1); + stbi__context *s = a->s; + stbi__uint32 i,j,stride = x*out_n*bytes; + stbi__uint32 img_len, img_width_bytes; + int k; + int img_n = s->img_n; // copy it into a local for later + + int output_bytes = out_n*bytes; + int filter_bytes = img_n*bytes; + int width = x; + + STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1); + a->out = (stbi_uc *) stbi__malloc(x * y * output_bytes); // extra bytes to write off the end into + if (!a->out) return stbi__err("outofmem", "Out of memory"); + + img_width_bytes = (((img_n * x * depth) + 7) >> 3); + img_len = (img_width_bytes + 1) * y; + if (s->img_x == x && s->img_y == y) { + if (raw_len != img_len) return stbi__err("not enough pixels","Corrupt PNG"); + } else { // interlaced: + if (raw_len < img_len) return stbi__err("not enough pixels","Corrupt PNG"); + } + + for (j=0; j < y; ++j) { + stbi_uc *cur = a->out + stride*j; + stbi_uc *prior = cur - stride; + int filter = *raw++; + + if (filter > 4) + return stbi__err("invalid filter","Corrupt PNG"); + + if (depth < 8) { + STBI_ASSERT(img_width_bytes <= x); + cur += x*out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place + filter_bytes = 1; + width = img_width_bytes; + } + + // if first row, use special filter that doesn't sample previous row + if (j == 0) filter = first_row_filter[filter]; + + // handle first byte explicitly + for (k=0; k < filter_bytes; ++k) { + switch (filter) { + case STBI__F_none : cur[k] = raw[k]; break; + case STBI__F_sub : cur[k] = raw[k]; break; + case STBI__F_up : cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break; + case STBI__F_avg : cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); break; + case STBI__F_paeth : cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0,prior[k],0)); break; + case STBI__F_avg_first : cur[k] = raw[k]; break; + case STBI__F_paeth_first: cur[k] = raw[k]; break; + } + } + + if (depth == 8) { + if (img_n != out_n) + cur[img_n] = 255; // first pixel + raw += img_n; + cur += out_n; + prior += out_n; + } else if (depth == 16) { + if (img_n != out_n) { + cur[filter_bytes] = 255; // first pixel top byte + cur[filter_bytes+1] = 255; // first pixel bottom byte + } + raw += filter_bytes; + cur += output_bytes; + prior += output_bytes; + } else { + raw += 1; + cur += 1; + prior += 1; + } + + // this is a little gross, so that we don't switch per-pixel or per-component + if (depth < 8 || img_n == out_n) { + int nk = (width - 1)*filter_bytes; + #define CASE(f) \ + case f: \ + for (k=0; k < nk; ++k) + switch (filter) { + // "none" filter turns into a memcpy here; make that explicit. + case STBI__F_none: memcpy(cur, raw, nk); break; + CASE(STBI__F_sub) cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); break; + CASE(STBI__F_up) cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break; + CASE(STBI__F_avg) cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); break; + CASE(STBI__F_paeth) cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],prior[k],prior[k-filter_bytes])); break; + CASE(STBI__F_avg_first) cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); break; + CASE(STBI__F_paeth_first) cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],0,0)); break; + } + #undef CASE + raw += nk; + } else { + STBI_ASSERT(img_n+1 == out_n); + #define CASE(f) \ + case f: \ + for (i=x-1; i >= 1; --i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes) \ + for (k=0; k < filter_bytes; ++k) + switch (filter) { + CASE(STBI__F_none) cur[k] = raw[k]; break; + CASE(STBI__F_sub) cur[k] = STBI__BYTECAST(raw[k] + cur[k- output_bytes]); break; + CASE(STBI__F_up) cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break; + CASE(STBI__F_avg) cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k- output_bytes])>>1)); break; + CASE(STBI__F_paeth) cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],prior[k],prior[k- output_bytes])); break; + CASE(STBI__F_avg_first) cur[k] = STBI__BYTECAST(raw[k] + (cur[k- output_bytes] >> 1)); break; + CASE(STBI__F_paeth_first) cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],0,0)); break; + } + #undef CASE + + // the loop above sets the high byte of the pixels' alpha, but for + // 16 bit png files we also need the low byte set. we'll do that here. + if (depth == 16) { + cur = a->out + stride*j; // start at the beginning of the row again + for (i=0; i < x; ++i,cur+=output_bytes) { + cur[filter_bytes+1] = 255; + } + } + } + } + + // we make a separate pass to expand bits to pixels; for performance, + // this could run two scanlines behind the above code, so it won't + // intefere with filtering but will still be in the cache. + if (depth < 8) { + for (j=0; j < y; ++j) { + stbi_uc *cur = a->out + stride*j; + stbi_uc *in = a->out + stride*j + x*out_n - img_width_bytes; + // unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit + // png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that will be skipped in the later loop + stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range + + // note that the final byte might overshoot and write more data than desired. + // we can allocate enough data that this never writes out of memory, but it + // could also overwrite the next scanline. can it overwrite non-empty data + // on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel. + // so we need to explicitly clamp the final ones + + if (depth == 4) { + for (k=x*img_n; k >= 2; k-=2, ++in) { + *cur++ = scale * ((*in >> 4) ); + *cur++ = scale * ((*in ) & 0x0f); + } + if (k > 0) *cur++ = scale * ((*in >> 4) ); + } else if (depth == 2) { + for (k=x*img_n; k >= 4; k-=4, ++in) { + *cur++ = scale * ((*in >> 6) ); + *cur++ = scale * ((*in >> 4) & 0x03); + *cur++ = scale * ((*in >> 2) & 0x03); + *cur++ = scale * ((*in ) & 0x03); + } + if (k > 0) *cur++ = scale * ((*in >> 6) ); + if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03); + if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03); + } else if (depth == 1) { + for (k=x*img_n; k >= 8; k-=8, ++in) { + *cur++ = scale * ((*in >> 7) ); + *cur++ = scale * ((*in >> 6) & 0x01); + *cur++ = scale * ((*in >> 5) & 0x01); + *cur++ = scale * ((*in >> 4) & 0x01); + *cur++ = scale * ((*in >> 3) & 0x01); + *cur++ = scale * ((*in >> 2) & 0x01); + *cur++ = scale * ((*in >> 1) & 0x01); + *cur++ = scale * ((*in ) & 0x01); + } + if (k > 0) *cur++ = scale * ((*in >> 7) ); + if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01); + if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01); + if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01); + if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01); + if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01); + if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01); + } + if (img_n != out_n) { + int q; + // insert alpha = 255 + cur = a->out + stride*j; + if (img_n == 1) { + for (q=x-1; q >= 0; --q) { + cur[q*2+1] = 255; + cur[q*2+0] = cur[q]; + } + } else { + STBI_ASSERT(img_n == 3); + for (q=x-1; q >= 0; --q) { + cur[q*4+3] = 255; + cur[q*4+2] = cur[q*3+2]; + cur[q*4+1] = cur[q*3+1]; + cur[q*4+0] = cur[q*3+0]; + } + } + } + } + } else if (depth == 16) { + // force the image data from big-endian to platform-native. + // this is done in a separate pass due to the decoding relying + // on the data being untouched, but could probably be done + // per-line during decode if care is taken. + stbi_uc *cur = a->out; + stbi__uint16 *cur16 = (stbi__uint16*)cur; + + for(i=0; i < x*y*out_n; ++i,cur16++,cur+=2) { + *cur16 = (cur[0] << 8) | cur[1]; + } + } + + return 1; +} + +static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced) +{ + stbi_uc *final; + int p; + if (!interlaced) + return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color); + + // de-interlacing + final = (stbi_uc *) stbi__malloc(a->s->img_x * a->s->img_y * out_n); + for (p=0; p < 7; ++p) { + int xorig[] = { 0,4,0,2,0,1,0 }; + int yorig[] = { 0,0,4,0,2,0,1 }; + int xspc[] = { 8,8,4,4,2,2,1 }; + int yspc[] = { 8,8,8,4,4,2,2 }; + int i,j,x,y; + // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1 + x = (a->s->img_x - xorig[p] + xspc[p]-1) / xspc[p]; + y = (a->s->img_y - yorig[p] + yspc[p]-1) / yspc[p]; + if (x && y) { + stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y; + if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) { + STBI_FREE(final); + return 0; + } + for (j=0; j < y; ++j) { + for (i=0; i < x; ++i) { + int out_y = j*yspc[p]+yorig[p]; + int out_x = i*xspc[p]+xorig[p]; + memcpy(final + out_y*a->s->img_x*out_n + out_x*out_n, + a->out + (j*x+i)*out_n, out_n); + } + } + STBI_FREE(a->out); + image_data += img_len; + image_data_len -= img_len; + } + } + a->out = final; + + return 1; +} + +static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n) +{ + stbi__context *s = z->s; + stbi__uint32 i, pixel_count = s->img_x * s->img_y; + stbi_uc *p = z->out; + + // compute color-based transparency, assuming we've + // already got 255 as the alpha value in the output + STBI_ASSERT(out_n == 2 || out_n == 4); + + if (out_n == 2) { + for (i=0; i < pixel_count; ++i) { + p[1] = (p[0] == tc[0] ? 0 : 255); + p += 2; + } + } else { + for (i=0; i < pixel_count; ++i) { + if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) + p[3] = 0; + p += 4; + } + } + return 1; +} + +static int stbi__compute_transparency16(stbi__png *z, stbi__uint16 tc[3], int out_n) +{ + stbi__context *s = z->s; + stbi__uint32 i, pixel_count = s->img_x * s->img_y; + stbi__uint16 *p = (stbi__uint16*) z->out; + + // compute color-based transparency, assuming we've + // already got 65535 as the alpha value in the output + STBI_ASSERT(out_n == 2 || out_n == 4); + + if (out_n == 2) { + for (i = 0; i < pixel_count; ++i) { + p[1] = (p[0] == tc[0] ? 0 : 65535); + p += 2; + } + } else { + for (i = 0; i < pixel_count; ++i) { + if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) + p[3] = 0; + p += 4; + } + } + return 1; +} + +static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n) +{ + stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y; + stbi_uc *p, *temp_out, *orig = a->out; + + p = (stbi_uc *) stbi__malloc(pixel_count * pal_img_n); + if (p == NULL) return stbi__err("outofmem", "Out of memory"); + + // between here and free(out) below, exitting would leak + temp_out = p; + + if (pal_img_n == 3) { + for (i=0; i < pixel_count; ++i) { + int n = orig[i]*4; + p[0] = palette[n ]; + p[1] = palette[n+1]; + p[2] = palette[n+2]; + p += 3; + } + } else { + for (i=0; i < pixel_count; ++i) { + int n = orig[i]*4; + p[0] = palette[n ]; + p[1] = palette[n+1]; + p[2] = palette[n+2]; + p[3] = palette[n+3]; + p += 4; + } + } + STBI_FREE(a->out); + a->out = temp_out; + + STBI_NOTUSED(len); + + return 1; +} + +static int stbi__reduce_png(stbi__png *p) +{ + int i; + int img_len = p->s->img_x * p->s->img_y * p->s->img_out_n; + stbi_uc *reduced; + stbi__uint16 *orig = (stbi__uint16*)p->out; + + if (p->depth != 16) return 1; // don't need to do anything if not 16-bit data + + reduced = (stbi_uc *)stbi__malloc(img_len); + if (p == NULL) return stbi__err("outofmem", "Out of memory"); + + for (i = 0; i < img_len; ++i) reduced[i] = (stbi_uc)((orig[i] >> 8) & 0xFF); // top half of each byte is a decent approx of 16->8 bit scaling + + p->out = reduced; + STBI_FREE(orig); + + return 1; +} + +static int stbi__unpremultiply_on_load = 0; +static int stbi__de_iphone_flag = 0; + +STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply) +{ + stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply; +} + +STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert) +{ + stbi__de_iphone_flag = flag_true_if_should_convert; +} + +static void stbi__de_iphone(stbi__png *z) +{ + stbi__context *s = z->s; + stbi__uint32 i, pixel_count = s->img_x * s->img_y; + stbi_uc *p = z->out; + + if (s->img_out_n == 3) { // convert bgr to rgb + for (i=0; i < pixel_count; ++i) { + stbi_uc t = p[0]; + p[0] = p[2]; + p[2] = t; + p += 3; + } + } else { + STBI_ASSERT(s->img_out_n == 4); + if (stbi__unpremultiply_on_load) { + // convert bgr to rgb and unpremultiply + for (i=0; i < pixel_count; ++i) { + stbi_uc a = p[3]; + stbi_uc t = p[0]; + if (a) { + p[0] = p[2] * 255 / a; + p[1] = p[1] * 255 / a; + p[2] = t * 255 / a; + } else { + p[0] = p[2]; + p[2] = t; + } + p += 4; + } + } else { + // convert bgr to rgb + for (i=0; i < pixel_count; ++i) { + stbi_uc t = p[0]; + p[0] = p[2]; + p[2] = t; + p += 4; + } + } + } +} + +#define STBI__PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) + +static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp) +{ + stbi_uc palette[1024], pal_img_n=0; + stbi_uc has_trans=0, tc[3]; + stbi__uint16 tc16[3]; + stbi__uint32 ioff=0, idata_limit=0, i, pal_len=0; + int first=1,k,interlace=0, color=0, is_iphone=0; + stbi__context *s = z->s; + + z->expanded = NULL; + z->idata = NULL; + z->out = NULL; + + if (!stbi__check_png_header(s)) return 0; + + if (scan == STBI__SCAN_type) return 1; + + for (;;) { + stbi__pngchunk c = stbi__get_chunk_header(s); + switch (c.type) { + case STBI__PNG_TYPE('C','g','B','I'): + is_iphone = 1; + stbi__skip(s, c.length); + break; + case STBI__PNG_TYPE('I','H','D','R'): { + int comp,filter; + if (!first) return stbi__err("multiple IHDR","Corrupt PNG"); + first = 0; + if (c.length != 13) return stbi__err("bad IHDR len","Corrupt PNG"); + s->img_x = stbi__get32be(s); if (s->img_x > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)"); + s->img_y = stbi__get32be(s); if (s->img_y > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)"); + z->depth = stbi__get8(s); if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16) return stbi__err("1/2/4/8/16-bit only","PNG not supported: 1/2/4/8/16-bit only"); + color = stbi__get8(s); if (color > 6) return stbi__err("bad ctype","Corrupt PNG"); + if (color == 3 && z->depth == 16) return stbi__err("bad ctype","Corrupt PNG"); + if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err("bad ctype","Corrupt PNG"); + comp = stbi__get8(s); if (comp) return stbi__err("bad comp method","Corrupt PNG"); + filter= stbi__get8(s); if (filter) return stbi__err("bad filter method","Corrupt PNG"); + interlace = stbi__get8(s); if (interlace>1) return stbi__err("bad interlace method","Corrupt PNG"); + if (!s->img_x || !s->img_y) return stbi__err("0-pixel image","Corrupt PNG"); + if (!pal_img_n) { + s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); + if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode"); + if (scan == STBI__SCAN_header) return 1; + } else { + // if paletted, then pal_n is our final components, and + // img_n is # components to decompress/filter. + s->img_n = 1; + if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err("too large","Corrupt PNG"); + // if SCAN_header, have to scan to see if we have a tRNS + } + break; + } + + case STBI__PNG_TYPE('P','L','T','E'): { + if (first) return stbi__err("first not IHDR", "Corrupt PNG"); + if (c.length > 256*3) return stbi__err("invalid PLTE","Corrupt PNG"); + pal_len = c.length / 3; + if (pal_len * 3 != c.length) return stbi__err("invalid PLTE","Corrupt PNG"); + for (i=0; i < pal_len; ++i) { + palette[i*4+0] = stbi__get8(s); + palette[i*4+1] = stbi__get8(s); + palette[i*4+2] = stbi__get8(s); + palette[i*4+3] = 255; + } + break; + } + + case STBI__PNG_TYPE('t','R','N','S'): { + if (first) return stbi__err("first not IHDR", "Corrupt PNG"); + if (z->idata) return stbi__err("tRNS after IDAT","Corrupt PNG"); + if (pal_img_n) { + if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; } + if (pal_len == 0) return stbi__err("tRNS before PLTE","Corrupt PNG"); + if (c.length > pal_len) return stbi__err("bad tRNS len","Corrupt PNG"); + pal_img_n = 4; + for (i=0; i < c.length; ++i) + palette[i*4+3] = stbi__get8(s); + } else { + if (!(s->img_n & 1)) return stbi__err("tRNS with alpha","Corrupt PNG"); + if (c.length != (stbi__uint32) s->img_n*2) return stbi__err("bad tRNS len","Corrupt PNG"); + has_trans = 1; + if (z->depth == 16) { + for (k = 0; k < s->img_n; ++k) tc16[k] = stbi__get16be(s); // copy the values as-is + } else { + for (k = 0; k < s->img_n; ++k) tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * stbi__depth_scale_table[z->depth]; // non 8-bit images will be larger + } + } + break; + } + + case STBI__PNG_TYPE('I','D','A','T'): { + if (first) return stbi__err("first not IHDR", "Corrupt PNG"); + if (pal_img_n && !pal_len) return stbi__err("no PLTE","Corrupt PNG"); + if (scan == STBI__SCAN_header) { s->img_n = pal_img_n; return 1; } + if ((int)(ioff + c.length) < (int)ioff) return 0; + if (ioff + c.length > idata_limit) { + stbi__uint32 idata_limit_old = idata_limit; + stbi_uc *p; + if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096; + while (ioff + c.length > idata_limit) + idata_limit *= 2; + STBI_NOTUSED(idata_limit_old); + p = (stbi_uc *) STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return stbi__err("outofmem", "Out of memory"); + z->idata = p; + } + if (!stbi__getn(s, z->idata+ioff,c.length)) return stbi__err("outofdata","Corrupt PNG"); + ioff += c.length; + break; + } + + case STBI__PNG_TYPE('I','E','N','D'): { + stbi__uint32 raw_len, bpl; + if (first) return stbi__err("first not IHDR", "Corrupt PNG"); + if (scan != STBI__SCAN_load) return 1; + if (z->idata == NULL) return stbi__err("no IDAT","Corrupt PNG"); + // initial guess for decoded data size to avoid unnecessary reallocs + bpl = (s->img_x * z->depth + 7) / 8; // bytes per line, per component + raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */; + z->expanded = (stbi_uc *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, raw_len, (int *) &raw_len, !is_iphone); + if (z->expanded == NULL) return 0; // zlib should set error + STBI_FREE(z->idata); z->idata = NULL; + if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans) + s->img_out_n = s->img_n+1; + else + s->img_out_n = s->img_n; + if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) return 0; + if (has_trans) { + if (z->depth == 16) { + if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) return 0; + } else { + if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0; + } + } + if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2) + stbi__de_iphone(z); + if (pal_img_n) { + // pal_img_n == 3 or 4 + s->img_n = pal_img_n; // record the actual colors we had + s->img_out_n = pal_img_n; + if (req_comp >= 3) s->img_out_n = req_comp; + if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n)) + return 0; + } + STBI_FREE(z->expanded); z->expanded = NULL; + return 1; + } + + default: + // if critical, fail + if (first) return stbi__err("first not IHDR", "Corrupt PNG"); + if ((c.type & (1 << 29)) == 0) { + #ifndef STBI_NO_FAILURE_STRINGS + // not threadsafe + static char invalid_chunk[] = "XXXX PNG chunk not known"; + invalid_chunk[0] = STBI__BYTECAST(c.type >> 24); + invalid_chunk[1] = STBI__BYTECAST(c.type >> 16); + invalid_chunk[2] = STBI__BYTECAST(c.type >> 8); + invalid_chunk[3] = STBI__BYTECAST(c.type >> 0); + #endif + return stbi__err(invalid_chunk, "PNG not supported: unknown PNG chunk type"); + } + stbi__skip(s, c.length); + break; + } + // end of PNG chunk, read and skip CRC + stbi__get32be(s); + } +} + +static unsigned char *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp) +{ + unsigned char *result=NULL; + if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error"); + if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) { + if (p->depth == 16) { + if (!stbi__reduce_png(p)) { + return result; + } + } + result = p->out; + p->out = NULL; + if (req_comp && req_comp != p->s->img_out_n) { + result = stbi__convert_format(result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); + p->s->img_out_n = req_comp; + if (result == NULL) return result; + } + *x = p->s->img_x; + *y = p->s->img_y; + if (n) *n = p->s->img_n; + } + STBI_FREE(p->out); p->out = NULL; + STBI_FREE(p->expanded); p->expanded = NULL; + STBI_FREE(p->idata); p->idata = NULL; + + return result; +} + +static unsigned char *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + stbi__png p; + p.s = s; + return stbi__do_png(&p, x,y,comp,req_comp); +} + +static int stbi__png_test(stbi__context *s) +{ + int r; + r = stbi__check_png_header(s); + stbi__rewind(s); + return r; +} + +static int stbi__png_info_raw(stbi__png *p, int *x, int *y, int *comp) +{ + if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) { + stbi__rewind( p->s ); + return 0; + } + if (x) *x = p->s->img_x; + if (y) *y = p->s->img_y; + if (comp) *comp = p->s->img_n; + return 1; +} + +static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp) +{ + stbi__png p; + p.s = s; + return stbi__png_info_raw(&p, x, y, comp); +} +#endif + +// Microsoft/Windows BMP image + +#ifndef STBI_NO_BMP +static int stbi__bmp_test_raw(stbi__context *s) +{ + int r; + int sz; + if (stbi__get8(s) != 'B') return 0; + if (stbi__get8(s) != 'M') return 0; + stbi__get32le(s); // discard filesize + stbi__get16le(s); // discard reserved + stbi__get16le(s); // discard reserved + stbi__get32le(s); // discard data offset + sz = stbi__get32le(s); + r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124); + return r; +} + +static int stbi__bmp_test(stbi__context *s) +{ + int r = stbi__bmp_test_raw(s); + stbi__rewind(s); + return r; +} + + +// returns 0..31 for the highest set bit +static int stbi__high_bit(unsigned int z) +{ + int n=0; + if (z == 0) return -1; + if (z >= 0x10000) n += 16, z >>= 16; + if (z >= 0x00100) n += 8, z >>= 8; + if (z >= 0x00010) n += 4, z >>= 4; + if (z >= 0x00004) n += 2, z >>= 2; + if (z >= 0x00002) n += 1, z >>= 1; + return n; +} + +static int stbi__bitcount(unsigned int a) +{ + a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 + a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 + a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits + a = (a + (a >> 8)); // max 16 per 8 bits + a = (a + (a >> 16)); // max 32 per 8 bits + return a & 0xff; +} + +static int stbi__shiftsigned(int v, int shift, int bits) +{ + int result; + int z=0; + + if (shift < 0) v <<= -shift; + else v >>= shift; + result = v; + + z = bits; + while (z < 8) { + result += v >> z; + z += bits; + } + return result; +} + +typedef struct +{ + int bpp, offset, hsz; + unsigned int mr,mg,mb,ma, all_a; +} stbi__bmp_data; + +static void *stbi__bmp_parse_header(stbi__context *s, stbi__bmp_data *info) +{ + int hsz; + if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') return stbi__errpuc("not BMP", "Corrupt BMP"); + stbi__get32le(s); // discard filesize + stbi__get16le(s); // discard reserved + stbi__get16le(s); // discard reserved + info->offset = stbi__get32le(s); + info->hsz = hsz = stbi__get32le(s); + info->mr = info->mg = info->mb = info->ma = 0; + + if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) return stbi__errpuc("unknown BMP", "BMP type not supported: unknown"); + if (hsz == 12) { + s->img_x = stbi__get16le(s); + s->img_y = stbi__get16le(s); + } else { + s->img_x = stbi__get32le(s); + s->img_y = stbi__get32le(s); + } + if (stbi__get16le(s) != 1) return stbi__errpuc("bad BMP", "bad BMP"); + info->bpp = stbi__get16le(s); + if (info->bpp == 1) return stbi__errpuc("monochrome", "BMP type not supported: 1-bit"); + if (hsz != 12) { + int compress = stbi__get32le(s); + if (compress == 1 || compress == 2) return stbi__errpuc("BMP RLE", "BMP type not supported: RLE"); + stbi__get32le(s); // discard sizeof + stbi__get32le(s); // discard hres + stbi__get32le(s); // discard vres + stbi__get32le(s); // discard colorsused + stbi__get32le(s); // discard max important + if (hsz == 40 || hsz == 56) { + if (hsz == 56) { + stbi__get32le(s); + stbi__get32le(s); + stbi__get32le(s); + stbi__get32le(s); + } + if (info->bpp == 16 || info->bpp == 32) { + if (compress == 0) { + if (info->bpp == 32) { + info->mr = 0xffu << 16; + info->mg = 0xffu << 8; + info->mb = 0xffu << 0; + info->ma = 0xffu << 24; + info->all_a = 0; // if all_a is 0 at end, then we loaded alpha channel but it was all 0 + } else { + info->mr = 31u << 10; + info->mg = 31u << 5; + info->mb = 31u << 0; + } + } else if (compress == 3) { + info->mr = stbi__get32le(s); + info->mg = stbi__get32le(s); + info->mb = stbi__get32le(s); + // not documented, but generated by photoshop and handled by mspaint + if (info->mr == info->mg && info->mg == info->mb) { + // ?!?!? + return stbi__errpuc("bad BMP", "bad BMP"); + } + } else + return stbi__errpuc("bad BMP", "bad BMP"); + } + } else { + int i; + if (hsz != 108 && hsz != 124) + return stbi__errpuc("bad BMP", "bad BMP"); + info->mr = stbi__get32le(s); + info->mg = stbi__get32le(s); + info->mb = stbi__get32le(s); + info->ma = stbi__get32le(s); + stbi__get32le(s); // discard color space + for (i=0; i < 12; ++i) + stbi__get32le(s); // discard color space parameters + if (hsz == 124) { + stbi__get32le(s); // discard rendering intent + stbi__get32le(s); // discard offset of profile data + stbi__get32le(s); // discard size of profile data + stbi__get32le(s); // discard reserved + } + } + } + return (void *) 1; +} + + +static stbi_uc *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + stbi_uc *out; + unsigned int mr=0,mg=0,mb=0,ma=0, all_a; + stbi_uc pal[256][4]; + int psize=0,i,j,width; + int flip_vertically, pad, target; + stbi__bmp_data info; + + info.all_a = 255; + if (stbi__bmp_parse_header(s, &info) == NULL) + return NULL; // error code already set + + flip_vertically = ((int) s->img_y) > 0; + s->img_y = abs((int) s->img_y); + + mr = info.mr; + mg = info.mg; + mb = info.mb; + ma = info.ma; + all_a = info.all_a; + + if (info.hsz == 12) { + if (info.bpp < 24) + psize = (info.offset - 14 - 24) / 3; + } else { + if (info.bpp < 16) + psize = (info.offset - 14 - info.hsz) >> 2; + } + + s->img_n = ma ? 4 : 3; + if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 + target = req_comp; + else + target = s->img_n; // if they want monochrome, we'll post-convert + + out = (stbi_uc *) stbi__malloc(target * s->img_x * s->img_y); + if (!out) return stbi__errpuc("outofmem", "Out of memory"); + if (info.bpp < 16) { + int z=0; + if (psize == 0 || psize > 256) { STBI_FREE(out); return stbi__errpuc("invalid", "Corrupt BMP"); } + for (i=0; i < psize; ++i) { + pal[i][2] = stbi__get8(s); + pal[i][1] = stbi__get8(s); + pal[i][0] = stbi__get8(s); + if (info.hsz != 12) stbi__get8(s); + pal[i][3] = 255; + } + stbi__skip(s, info.offset - 14 - info.hsz - psize * (info.hsz == 12 ? 3 : 4)); + if (info.bpp == 4) width = (s->img_x + 1) >> 1; + else if (info.bpp == 8) width = s->img_x; + else { STBI_FREE(out); return stbi__errpuc("bad bpp", "Corrupt BMP"); } + pad = (-width)&3; + for (j=0; j < (int) s->img_y; ++j) { + for (i=0; i < (int) s->img_x; i += 2) { + int v=stbi__get8(s),v2=0; + if (info.bpp == 4) { + v2 = v & 15; + v >>= 4; + } + out[z++] = pal[v][0]; + out[z++] = pal[v][1]; + out[z++] = pal[v][2]; + if (target == 4) out[z++] = 255; + if (i+1 == (int) s->img_x) break; + v = (info.bpp == 8) ? stbi__get8(s) : v2; + out[z++] = pal[v][0]; + out[z++] = pal[v][1]; + out[z++] = pal[v][2]; + if (target == 4) out[z++] = 255; + } + stbi__skip(s, pad); + } + } else { + int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0; + int z = 0; + int easy=0; + stbi__skip(s, info.offset - 14 - info.hsz); + if (info.bpp == 24) width = 3 * s->img_x; + else if (info.bpp == 16) width = 2*s->img_x; + else /* bpp = 32 and pad = 0 */ width=0; + pad = (-width) & 3; + if (info.bpp == 24) { + easy = 1; + } else if (info.bpp == 32) { + if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000) + easy = 2; + } + if (!easy) { + if (!mr || !mg || !mb) { STBI_FREE(out); return stbi__errpuc("bad masks", "Corrupt BMP"); } + // right shift amt to put high bit in position #7 + rshift = stbi__high_bit(mr)-7; rcount = stbi__bitcount(mr); + gshift = stbi__high_bit(mg)-7; gcount = stbi__bitcount(mg); + bshift = stbi__high_bit(mb)-7; bcount = stbi__bitcount(mb); + ashift = stbi__high_bit(ma)-7; acount = stbi__bitcount(ma); + } + for (j=0; j < (int) s->img_y; ++j) { + if (easy) { + for (i=0; i < (int) s->img_x; ++i) { + unsigned char a; + out[z+2] = stbi__get8(s); + out[z+1] = stbi__get8(s); + out[z+0] = stbi__get8(s); + z += 3; + a = (easy == 2 ? stbi__get8(s) : 255); + all_a |= a; + if (target == 4) out[z++] = a; + } + } else { + int bpp = info.bpp; + for (i=0; i < (int) s->img_x; ++i) { + stbi__uint32 v = (bpp == 16 ? (stbi__uint32) stbi__get16le(s) : stbi__get32le(s)); + int a; + out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount)); + out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount)); + out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount)); + a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255); + all_a |= a; + if (target == 4) out[z++] = STBI__BYTECAST(a); + } + } + stbi__skip(s, pad); + } + } + + // if alpha channel is all 0s, replace with all 255s + if (target == 4 && all_a == 0) + for (i=4*s->img_x*s->img_y-1; i >= 0; i -= 4) + out[i] = 255; + + if (flip_vertically) { + stbi_uc t; + for (j=0; j < (int) s->img_y>>1; ++j) { + stbi_uc *p1 = out + j *s->img_x*target; + stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target; + for (i=0; i < (int) s->img_x*target; ++i) { + t = p1[i], p1[i] = p2[i], p2[i] = t; + } + } + } + + if (req_comp && req_comp != target) { + out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y); + if (out == NULL) return out; // stbi__convert_format frees input on failure + } + + *x = s->img_x; + *y = s->img_y; + if (comp) *comp = s->img_n; + return out; +} +#endif + +// Targa Truevision - TGA +// by Jonathan Dummer +#ifndef STBI_NO_TGA +// returns STBI_rgb or whatever, 0 on error +static int stbi__tga_get_comp(int bits_per_pixel, int is_grey, int* is_rgb16) +{ + // only RGB or RGBA (incl. 16bit) or grey allowed + if(is_rgb16) *is_rgb16 = 0; + switch(bits_per_pixel) { + case 8: return STBI_grey; + case 16: if(is_grey) return STBI_grey_alpha; + // else: fall-through + case 15: if(is_rgb16) *is_rgb16 = 1; + return STBI_rgb; + case 24: // fall-through + case 32: return bits_per_pixel/8; + default: return 0; + } +} + +static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp) +{ + int tga_w, tga_h, tga_comp, tga_image_type, tga_bits_per_pixel, tga_colormap_bpp; + int sz, tga_colormap_type; + stbi__get8(s); // discard Offset + tga_colormap_type = stbi__get8(s); // colormap type + if( tga_colormap_type > 1 ) { + stbi__rewind(s); + return 0; // only RGB or indexed allowed + } + tga_image_type = stbi__get8(s); // image type + if ( tga_colormap_type == 1 ) { // colormapped (paletted) image + if (tga_image_type != 1 && tga_image_type != 9) { + stbi__rewind(s); + return 0; + } + stbi__skip(s,4); // skip index of first colormap entry and number of entries + sz = stbi__get8(s); // check bits per palette color entry + if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) { + stbi__rewind(s); + return 0; + } + stbi__skip(s,4); // skip image x and y origin + tga_colormap_bpp = sz; + } else { // "normal" image w/o colormap - only RGB or grey allowed, +/- RLE + if ( (tga_image_type != 2) && (tga_image_type != 3) && (tga_image_type != 10) && (tga_image_type != 11) ) { + stbi__rewind(s); + return 0; // only RGB or grey allowed, +/- RLE + } + stbi__skip(s,9); // skip colormap specification and image x/y origin + tga_colormap_bpp = 0; + } + tga_w = stbi__get16le(s); + if( tga_w < 1 ) { + stbi__rewind(s); + return 0; // test width + } + tga_h = stbi__get16le(s); + if( tga_h < 1 ) { + stbi__rewind(s); + return 0; // test height + } + tga_bits_per_pixel = stbi__get8(s); // bits per pixel + stbi__get8(s); // ignore alpha bits + if (tga_colormap_bpp != 0) { + if((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16)) { + // when using a colormap, tga_bits_per_pixel is the size of the indexes + // I don't think anything but 8 or 16bit indexes makes sense + stbi__rewind(s); + return 0; + } + tga_comp = stbi__tga_get_comp(tga_colormap_bpp, 0, NULL); + } else { + tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3) || (tga_image_type == 11), NULL); + } + if(!tga_comp) { + stbi__rewind(s); + return 0; + } + if (x) *x = tga_w; + if (y) *y = tga_h; + if (comp) *comp = tga_comp; + return 1; // seems to have passed everything +} + +static int stbi__tga_test(stbi__context *s) +{ + int res = 0; + int sz, tga_color_type; + stbi__get8(s); // discard Offset + tga_color_type = stbi__get8(s); // color type + if ( tga_color_type > 1 ) goto errorEnd; // only RGB or indexed allowed + sz = stbi__get8(s); // image type + if ( tga_color_type == 1 ) { // colormapped (paletted) image + if (sz != 1 && sz != 9) goto errorEnd; // colortype 1 demands image type 1 or 9 + stbi__skip(s,4); // skip index of first colormap entry and number of entries + sz = stbi__get8(s); // check bits per palette color entry + if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; + stbi__skip(s,4); // skip image x and y origin + } else { // "normal" image w/o colormap + if ( (sz != 2) && (sz != 3) && (sz != 10) && (sz != 11) ) goto errorEnd; // only RGB or grey allowed, +/- RLE + stbi__skip(s,9); // skip colormap specification and image x/y origin + } + if ( stbi__get16le(s) < 1 ) goto errorEnd; // test width + if ( stbi__get16le(s) < 1 ) goto errorEnd; // test height + sz = stbi__get8(s); // bits per pixel + if ( (tga_color_type == 1) && (sz != 8) && (sz != 16) ) goto errorEnd; // for colormapped images, bpp is size of an index + if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; + + res = 1; // if we got this far, everything's good and we can return 1 instead of 0 + +errorEnd: + stbi__rewind(s); + return res; +} + +// read 16bit value and convert to 24bit RGB +void stbi__tga_read_rgb16(stbi__context *s, stbi_uc* out) +{ + stbi__uint16 px = stbi__get16le(s); + stbi__uint16 fiveBitMask = 31; + // we have 3 channels with 5bits each + int r = (px >> 10) & fiveBitMask; + int g = (px >> 5) & fiveBitMask; + int b = px & fiveBitMask; + // Note that this saves the data in RGB(A) order, so it doesn't need to be swapped later + out[0] = (r * 255)/31; + out[1] = (g * 255)/31; + out[2] = (b * 255)/31; + + // some people claim that the most significant bit might be used for alpha + // (possibly if an alpha-bit is set in the "image descriptor byte") + // but that only made 16bit test images completely translucent.. + // so let's treat all 15 and 16bit TGAs as RGB with no alpha. +} + +static stbi_uc *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + // read in the TGA header stuff + int tga_offset = stbi__get8(s); + int tga_indexed = stbi__get8(s); + int tga_image_type = stbi__get8(s); + int tga_is_RLE = 0; + int tga_palette_start = stbi__get16le(s); + int tga_palette_len = stbi__get16le(s); + int tga_palette_bits = stbi__get8(s); + int tga_x_origin = stbi__get16le(s); + int tga_y_origin = stbi__get16le(s); + int tga_width = stbi__get16le(s); + int tga_height = stbi__get16le(s); + int tga_bits_per_pixel = stbi__get8(s); + int tga_comp, tga_rgb16=0; + int tga_inverted = stbi__get8(s); + // int tga_alpha_bits = tga_inverted & 15; // the 4 lowest bits - unused (useless?) + // image data + unsigned char *tga_data; + unsigned char *tga_palette = NULL; + int i, j; + unsigned char raw_data[4]; + int RLE_count = 0; + int RLE_repeating = 0; + int read_next_pixel = 1; + + // do a tiny bit of precessing + if ( tga_image_type >= 8 ) + { + tga_image_type -= 8; + tga_is_RLE = 1; + } + tga_inverted = 1 - ((tga_inverted >> 5) & 1); + + // If I'm paletted, then I'll use the number of bits from the palette + if ( tga_indexed ) tga_comp = stbi__tga_get_comp(tga_palette_bits, 0, &tga_rgb16); + else tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3), &tga_rgb16); + + if(!tga_comp) // shouldn't really happen, stbi__tga_test() should have ensured basic consistency + return stbi__errpuc("bad format", "Can't find out TGA pixelformat"); + + // tga info + *x = tga_width; + *y = tga_height; + if (comp) *comp = tga_comp; + + tga_data = (unsigned char*)stbi__malloc( (size_t)tga_width * tga_height * tga_comp ); + if (!tga_data) return stbi__errpuc("outofmem", "Out of memory"); + + // skip to the data's starting position (offset usually = 0) + stbi__skip(s, tga_offset ); + + if ( !tga_indexed && !tga_is_RLE && !tga_rgb16 ) { + for (i=0; i < tga_height; ++i) { + int row = tga_inverted ? tga_height -i - 1 : i; + stbi_uc *tga_row = tga_data + row*tga_width*tga_comp; + stbi__getn(s, tga_row, tga_width * tga_comp); + } + } else { + // do I need to load a palette? + if ( tga_indexed) + { + // any data to skip? (offset usually = 0) + stbi__skip(s, tga_palette_start ); + // load the palette + tga_palette = (unsigned char*)stbi__malloc( tga_palette_len * tga_comp ); + if (!tga_palette) { + STBI_FREE(tga_data); + return stbi__errpuc("outofmem", "Out of memory"); + } + if (tga_rgb16) { + stbi_uc *pal_entry = tga_palette; + STBI_ASSERT(tga_comp == STBI_rgb); + for (i=0; i < tga_palette_len; ++i) { + stbi__tga_read_rgb16(s, pal_entry); + pal_entry += tga_comp; + } + } else if (!stbi__getn(s, tga_palette, tga_palette_len * tga_comp)) { + STBI_FREE(tga_data); + STBI_FREE(tga_palette); + return stbi__errpuc("bad palette", "Corrupt TGA"); + } + } + // load the data + for (i=0; i < tga_width * tga_height; ++i) + { + // if I'm in RLE mode, do I need to get a RLE stbi__pngchunk? + if ( tga_is_RLE ) + { + if ( RLE_count == 0 ) + { + // yep, get the next byte as a RLE command + int RLE_cmd = stbi__get8(s); + RLE_count = 1 + (RLE_cmd & 127); + RLE_repeating = RLE_cmd >> 7; + read_next_pixel = 1; + } else if ( !RLE_repeating ) + { + read_next_pixel = 1; + } + } else + { + read_next_pixel = 1; + } + // OK, if I need to read a pixel, do it now + if ( read_next_pixel ) + { + // load however much data we did have + if ( tga_indexed ) + { + // read in index, then perform the lookup + int pal_idx = (tga_bits_per_pixel == 8) ? stbi__get8(s) : stbi__get16le(s); + if ( pal_idx >= tga_palette_len ) { + // invalid index + pal_idx = 0; + } + pal_idx *= tga_comp; + for (j = 0; j < tga_comp; ++j) { + raw_data[j] = tga_palette[pal_idx+j]; + } + } else if(tga_rgb16) { + STBI_ASSERT(tga_comp == STBI_rgb); + stbi__tga_read_rgb16(s, raw_data); + } else { + // read in the data raw + for (j = 0; j < tga_comp; ++j) { + raw_data[j] = stbi__get8(s); + } + } + // clear the reading flag for the next pixel + read_next_pixel = 0; + } // end of reading a pixel + + // copy data + for (j = 0; j < tga_comp; ++j) + tga_data[i*tga_comp+j] = raw_data[j]; + + // in case we're in RLE mode, keep counting down + --RLE_count; + } + // do I need to invert the image? + if ( tga_inverted ) + { + for (j = 0; j*2 < tga_height; ++j) + { + int index1 = j * tga_width * tga_comp; + int index2 = (tga_height - 1 - j) * tga_width * tga_comp; + for (i = tga_width * tga_comp; i > 0; --i) + { + unsigned char temp = tga_data[index1]; + tga_data[index1] = tga_data[index2]; + tga_data[index2] = temp; + ++index1; + ++index2; + } + } + } + // clear my palette, if I had one + if ( tga_palette != NULL ) + { + STBI_FREE( tga_palette ); + } + } + + // swap RGB - if the source data was RGB16, it already is in the right order + if (tga_comp >= 3 && !tga_rgb16) + { + unsigned char* tga_pixel = tga_data; + for (i=0; i < tga_width * tga_height; ++i) + { + unsigned char temp = tga_pixel[0]; + tga_pixel[0] = tga_pixel[2]; + tga_pixel[2] = temp; + tga_pixel += tga_comp; + } + } + + // convert to target component count + if (req_comp && req_comp != tga_comp) + tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height); + + // the things I do to get rid of an error message, and yet keep + // Microsoft's C compilers happy... [8^( + tga_palette_start = tga_palette_len = tga_palette_bits = + tga_x_origin = tga_y_origin = 0; + // OK, done + return tga_data; +} +#endif + +// ************************************************************************************************* +// Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB + +#ifndef STBI_NO_PSD +static int stbi__psd_test(stbi__context *s) +{ + int r = (stbi__get32be(s) == 0x38425053); + stbi__rewind(s); + return r; +} + +static stbi_uc *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + int pixelCount; + int channelCount, compression; + int channel, i, count, len; + int bitdepth; + int w,h; + stbi_uc *out; + + // Check identifier + if (stbi__get32be(s) != 0x38425053) // "8BPS" + return stbi__errpuc("not PSD", "Corrupt PSD image"); + + // Check file type version. + if (stbi__get16be(s) != 1) + return stbi__errpuc("wrong version", "Unsupported version of PSD image"); + + // Skip 6 reserved bytes. + stbi__skip(s, 6 ); + + // Read the number of channels (R, G, B, A, etc). + channelCount = stbi__get16be(s); + if (channelCount < 0 || channelCount > 16) + return stbi__errpuc("wrong channel count", "Unsupported number of channels in PSD image"); + + // Read the rows and columns of the image. + h = stbi__get32be(s); + w = stbi__get32be(s); + + // Make sure the depth is 8 bits. + bitdepth = stbi__get16be(s); + if (bitdepth != 8 && bitdepth != 16) + return stbi__errpuc("unsupported bit depth", "PSD bit depth is not 8 or 16 bit"); + + // Make sure the color mode is RGB. + // Valid options are: + // 0: Bitmap + // 1: Grayscale + // 2: Indexed color + // 3: RGB color + // 4: CMYK color + // 7: Multichannel + // 8: Duotone + // 9: Lab color + if (stbi__get16be(s) != 3) + return stbi__errpuc("wrong color format", "PSD is not in RGB color format"); + + // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) + stbi__skip(s,stbi__get32be(s) ); + + // Skip the image resources. (resolution, pen tool paths, etc) + stbi__skip(s, stbi__get32be(s) ); + + // Skip the reserved data. + stbi__skip(s, stbi__get32be(s) ); + + // Find out if the data is compressed. + // Known values: + // 0: no compression + // 1: RLE compressed + compression = stbi__get16be(s); + if (compression > 1) + return stbi__errpuc("bad compression", "PSD has an unknown compression format"); + + // Create the destination image. + out = (stbi_uc *) stbi__malloc(4 * w*h); + if (!out) return stbi__errpuc("outofmem", "Out of memory"); + pixelCount = w*h; + + // Initialize the data to zero. + //memset( out, 0, pixelCount * 4 ); + + // Finally, the image data. + if (compression) { + // RLE as used by .PSD and .TIFF + // Loop until you get the number of unpacked bytes you are expecting: + // Read the next source byte into n. + // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. + // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. + // Else if n is 128, noop. + // Endloop + + // The RLE-compressed data is preceeded by a 2-byte data count for each row in the data, + // which we're going to just skip. + stbi__skip(s, h * channelCount * 2 ); + + // Read the RLE data by channel. + for (channel = 0; channel < 4; channel++) { + stbi_uc *p; + + p = out+channel; + if (channel >= channelCount) { + // Fill this channel with default data. + for (i = 0; i < pixelCount; i++, p += 4) + *p = (channel == 3 ? 255 : 0); + } else { + // Read the RLE data. + count = 0; + while (count < pixelCount) { + len = stbi__get8(s); + if (len == 128) { + // No-op. + } else if (len < 128) { + // Copy next len+1 bytes literally. + len++; + count += len; + while (len) { + *p = stbi__get8(s); + p += 4; + len--; + } + } else if (len > 128) { + stbi_uc val; + // Next -len+1 bytes in the dest are replicated from next source byte. + // (Interpret len as a negative 8-bit int.) + len ^= 0x0FF; + len += 2; + val = stbi__get8(s); + count += len; + while (len) { + *p = val; + p += 4; + len--; + } + } + } + } + } + + } else { + // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) + // where each channel consists of an 8-bit value for each pixel in the image. + + // Read the data by channel. + for (channel = 0; channel < 4; channel++) { + stbi_uc *p; + + p = out + channel; + if (channel >= channelCount) { + // Fill this channel with default data. + stbi_uc val = channel == 3 ? 255 : 0; + for (i = 0; i < pixelCount; i++, p += 4) + *p = val; + } else { + // Read the data. + if (bitdepth == 16) { + for (i = 0; i < pixelCount; i++, p += 4) + *p = (stbi_uc) (stbi__get16be(s) >> 8); + } else { + for (i = 0; i < pixelCount; i++, p += 4) + *p = stbi__get8(s); + } + } + } + } + + if (channelCount >= 4) { + for (i=0; i < w*h; ++i) { + unsigned char *pixel = out + 4*i; + if (pixel[3] != 0 && pixel[3] != 255) { + // remove weird white matte from PSD + float a = pixel[3] / 255.0f; + float ra = 1.0f / a; + float inv_a = 255.0f * (1 - ra); + pixel[0] = (unsigned char) (pixel[0]*ra + inv_a); + pixel[1] = (unsigned char) (pixel[1]*ra + inv_a); + pixel[2] = (unsigned char) (pixel[2]*ra + inv_a); + } + } + } + + if (req_comp && req_comp != 4) { + out = stbi__convert_format(out, 4, req_comp, w, h); + if (out == NULL) return out; // stbi__convert_format frees input on failure + } + + if (comp) *comp = 4; + *y = h; + *x = w; + + return out; +} +#endif + +// ************************************************************************************************* +// Softimage PIC loader +// by Tom Seddon +// +// See http://softimage.wiki.softimage.com/index.php/INFO:_PIC_file_format +// See http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/softimagepic/ + +#ifndef STBI_NO_PIC +static int stbi__pic_is4(stbi__context *s,const char *str) +{ + int i; + for (i=0; i<4; ++i) + if (stbi__get8(s) != (stbi_uc)str[i]) + return 0; + + return 1; +} + +static int stbi__pic_test_core(stbi__context *s) +{ + int i; + + if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) + return 0; + + for(i=0;i<84;++i) + stbi__get8(s); + + if (!stbi__pic_is4(s,"PICT")) + return 0; + + return 1; +} + +typedef struct +{ + stbi_uc size,type,channel; +} stbi__pic_packet; + +static stbi_uc *stbi__readval(stbi__context *s, int channel, stbi_uc *dest) +{ + int mask=0x80, i; + + for (i=0; i<4; ++i, mask>>=1) { + if (channel & mask) { + if (stbi__at_eof(s)) return stbi__errpuc("bad file","PIC file too short"); + dest[i]=stbi__get8(s); + } + } + + return dest; +} + +static void stbi__copyval(int channel,stbi_uc *dest,const stbi_uc *src) +{ + int mask=0x80,i; + + for (i=0;i<4; ++i, mask>>=1) + if (channel&mask) + dest[i]=src[i]; +} + +static stbi_uc *stbi__pic_load_core(stbi__context *s,int width,int height,int *comp, stbi_uc *result) +{ + int act_comp=0,num_packets=0,y,chained; + stbi__pic_packet packets[10]; + + // this will (should...) cater for even some bizarre stuff like having data + // for the same channel in multiple packets. + do { + stbi__pic_packet *packet; + + if (num_packets==sizeof(packets)/sizeof(packets[0])) + return stbi__errpuc("bad format","too many packets"); + + packet = &packets[num_packets++]; + + chained = stbi__get8(s); + packet->size = stbi__get8(s); + packet->type = stbi__get8(s); + packet->channel = stbi__get8(s); + + act_comp |= packet->channel; + + if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (reading packets)"); + if (packet->size != 8) return stbi__errpuc("bad format","packet isn't 8bpp"); + } while (chained); + + *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel? + + for(y=0; ytype) { + default: + return stbi__errpuc("bad format","packet has bad compression type"); + + case 0: {//uncompressed + int x; + + for(x=0;xchannel,dest)) + return 0; + break; + } + + case 1://Pure RLE + { + int left=width, i; + + while (left>0) { + stbi_uc count,value[4]; + + count=stbi__get8(s); + if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pure read count)"); + + if (count > left) + count = (stbi_uc) left; + + if (!stbi__readval(s,packet->channel,value)) return 0; + + for(i=0; ichannel,dest,value); + left -= count; + } + } + break; + + case 2: {//Mixed RLE + int left=width; + while (left>0) { + int count = stbi__get8(s), i; + if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (mixed read count)"); + + if (count >= 128) { // Repeated + stbi_uc value[4]; + + if (count==128) + count = stbi__get16be(s); + else + count -= 127; + if (count > left) + return stbi__errpuc("bad file","scanline overrun"); + + if (!stbi__readval(s,packet->channel,value)) + return 0; + + for(i=0;ichannel,dest,value); + } else { // Raw + ++count; + if (count>left) return stbi__errpuc("bad file","scanline overrun"); + + for(i=0;ichannel,dest)) + return 0; + } + left-=count; + } + break; + } + } + } + } + + return result; +} + +static stbi_uc *stbi__pic_load(stbi__context *s,int *px,int *py,int *comp,int req_comp) +{ + stbi_uc *result; + int i, x,y; + + for (i=0; i<92; ++i) + stbi__get8(s); + + x = stbi__get16be(s); + y = stbi__get16be(s); + if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pic header)"); + if ((1 << 28) / x < y) return stbi__errpuc("too large", "Image too large to decode"); + + stbi__get32be(s); //skip `ratio' + stbi__get16be(s); //skip `fields' + stbi__get16be(s); //skip `pad' + + // intermediate buffer is RGBA + result = (stbi_uc *) stbi__malloc(x*y*4); + memset(result, 0xff, x*y*4); + + if (!stbi__pic_load_core(s,x,y,comp, result)) { + STBI_FREE(result); + result=0; + } + *px = x; + *py = y; + if (req_comp == 0) req_comp = *comp; + result=stbi__convert_format(result,4,req_comp,x,y); + + return result; +} + +static int stbi__pic_test(stbi__context *s) +{ + int r = stbi__pic_test_core(s); + stbi__rewind(s); + return r; +} +#endif + +// ************************************************************************************************* +// GIF loader -- public domain by Jean-Marc Lienher -- simplified/shrunk by stb + +#ifndef STBI_NO_GIF +typedef struct +{ + stbi__int16 prefix; + stbi_uc first; + stbi_uc suffix; +} stbi__gif_lzw; + +typedef struct +{ + int w,h; + stbi_uc *out, *old_out; // output buffer (always 4 components) + int flags, bgindex, ratio, transparent, eflags, delay; + stbi_uc pal[256][4]; + stbi_uc lpal[256][4]; + stbi__gif_lzw codes[4096]; + stbi_uc *color_table; + int parse, step; + int lflags; + int start_x, start_y; + int max_x, max_y; + int cur_x, cur_y; + int line_size; +} stbi__gif; + +static int stbi__gif_test_raw(stbi__context *s) +{ + int sz; + if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') return 0; + sz = stbi__get8(s); + if (sz != '9' && sz != '7') return 0; + if (stbi__get8(s) != 'a') return 0; + return 1; +} + +static int stbi__gif_test(stbi__context *s) +{ + int r = stbi__gif_test_raw(s); + stbi__rewind(s); + return r; +} + +static void stbi__gif_parse_colortable(stbi__context *s, stbi_uc pal[256][4], int num_entries, int transp) +{ + int i; + for (i=0; i < num_entries; ++i) { + pal[i][2] = stbi__get8(s); + pal[i][1] = stbi__get8(s); + pal[i][0] = stbi__get8(s); + pal[i][3] = transp == i ? 0 : 255; + } +} + +static int stbi__gif_header(stbi__context *s, stbi__gif *g, int *comp, int is_info) +{ + stbi_uc version; + if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') + return stbi__err("not GIF", "Corrupt GIF"); + + version = stbi__get8(s); + if (version != '7' && version != '9') return stbi__err("not GIF", "Corrupt GIF"); + if (stbi__get8(s) != 'a') return stbi__err("not GIF", "Corrupt GIF"); + + stbi__g_failure_reason = ""; + g->w = stbi__get16le(s); + g->h = stbi__get16le(s); + g->flags = stbi__get8(s); + g->bgindex = stbi__get8(s); + g->ratio = stbi__get8(s); + g->transparent = -1; + + if (comp != 0) *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the comments + + if (is_info) return 1; + + if (g->flags & 0x80) + stbi__gif_parse_colortable(s,g->pal, 2 << (g->flags & 7), -1); + + return 1; +} + +static int stbi__gif_info_raw(stbi__context *s, int *x, int *y, int *comp) +{ + stbi__gif* g = (stbi__gif*) stbi__malloc(sizeof(stbi__gif)); + if (!stbi__gif_header(s, g, comp, 1)) { + STBI_FREE(g); + stbi__rewind( s ); + return 0; + } + if (x) *x = g->w; + if (y) *y = g->h; + STBI_FREE(g); + return 1; +} + +static void stbi__out_gif_code(stbi__gif *g, stbi__uint16 code) +{ + stbi_uc *p, *c; + + // recurse to decode the prefixes, since the linked-list is backwards, + // and working backwards through an interleaved image would be nasty + if (g->codes[code].prefix >= 0) + stbi__out_gif_code(g, g->codes[code].prefix); + + if (g->cur_y >= g->max_y) return; + + p = &g->out[g->cur_x + g->cur_y]; + c = &g->color_table[g->codes[code].suffix * 4]; + + if (c[3] >= 128) { + p[0] = c[2]; + p[1] = c[1]; + p[2] = c[0]; + p[3] = c[3]; + } + g->cur_x += 4; + + if (g->cur_x >= g->max_x) { + g->cur_x = g->start_x; + g->cur_y += g->step; + + while (g->cur_y >= g->max_y && g->parse > 0) { + g->step = (1 << g->parse) * g->line_size; + g->cur_y = g->start_y + (g->step >> 1); + --g->parse; + } + } +} + +static stbi_uc *stbi__process_gif_raster(stbi__context *s, stbi__gif *g) +{ + stbi_uc lzw_cs; + stbi__int32 len, init_code; + stbi__uint32 first; + stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear; + stbi__gif_lzw *p; + + lzw_cs = stbi__get8(s); + if (lzw_cs > 12) return NULL; + clear = 1 << lzw_cs; + first = 1; + codesize = lzw_cs + 1; + codemask = (1 << codesize) - 1; + bits = 0; + valid_bits = 0; + for (init_code = 0; init_code < clear; init_code++) { + g->codes[init_code].prefix = -1; + g->codes[init_code].first = (stbi_uc) init_code; + g->codes[init_code].suffix = (stbi_uc) init_code; + } + + // support no starting clear code + avail = clear+2; + oldcode = -1; + + len = 0; + for(;;) { + if (valid_bits < codesize) { + if (len == 0) { + len = stbi__get8(s); // start new block + if (len == 0) + return g->out; + } + --len; + bits |= (stbi__int32) stbi__get8(s) << valid_bits; + valid_bits += 8; + } else { + stbi__int32 code = bits & codemask; + bits >>= codesize; + valid_bits -= codesize; + // @OPTIMIZE: is there some way we can accelerate the non-clear path? + if (code == clear) { // clear code + codesize = lzw_cs + 1; + codemask = (1 << codesize) - 1; + avail = clear + 2; + oldcode = -1; + first = 0; + } else if (code == clear + 1) { // end of stream code + stbi__skip(s, len); + while ((len = stbi__get8(s)) > 0) + stbi__skip(s,len); + return g->out; + } else if (code <= avail) { + if (first) return stbi__errpuc("no clear code", "Corrupt GIF"); + + if (oldcode >= 0) { + p = &g->codes[avail++]; + if (avail > 4096) return stbi__errpuc("too many codes", "Corrupt GIF"); + p->prefix = (stbi__int16) oldcode; + p->first = g->codes[oldcode].first; + p->suffix = (code == avail) ? p->first : g->codes[code].first; + } else if (code == avail) + return stbi__errpuc("illegal code in raster", "Corrupt GIF"); + + stbi__out_gif_code(g, (stbi__uint16) code); + + if ((avail & codemask) == 0 && avail <= 0x0FFF) { + codesize++; + codemask = (1 << codesize) - 1; + } + + oldcode = code; + } else { + return stbi__errpuc("illegal code in raster", "Corrupt GIF"); + } + } + } +} + +static void stbi__fill_gif_background(stbi__gif *g, int x0, int y0, int x1, int y1) +{ + int x, y; + stbi_uc *c = g->pal[g->bgindex]; + for (y = y0; y < y1; y += 4 * g->w) { + for (x = x0; x < x1; x += 4) { + stbi_uc *p = &g->out[y + x]; + p[0] = c[2]; + p[1] = c[1]; + p[2] = c[0]; + p[3] = 0; + } + } +} + +// this function is designed to support animated gifs, although stb_image doesn't support it +static stbi_uc *stbi__gif_load_next(stbi__context *s, stbi__gif *g, int *comp, int req_comp) +{ + int i; + stbi_uc *prev_out = 0; + + if (g->out == 0 && !stbi__gif_header(s, g, comp,0)) + return 0; // stbi__g_failure_reason set by stbi__gif_header + + prev_out = g->out; + g->out = (stbi_uc *) stbi__malloc(4 * g->w * g->h); + if (g->out == 0) return stbi__errpuc("outofmem", "Out of memory"); + + switch ((g->eflags & 0x1C) >> 2) { + case 0: // unspecified (also always used on 1st frame) + stbi__fill_gif_background(g, 0, 0, 4 * g->w, 4 * g->w * g->h); + break; + case 1: // do not dispose + if (prev_out) memcpy(g->out, prev_out, 4 * g->w * g->h); + g->old_out = prev_out; + break; + case 2: // dispose to background + if (prev_out) memcpy(g->out, prev_out, 4 * g->w * g->h); + stbi__fill_gif_background(g, g->start_x, g->start_y, g->max_x, g->max_y); + break; + case 3: // dispose to previous + if (g->old_out) { + for (i = g->start_y; i < g->max_y; i += 4 * g->w) + memcpy(&g->out[i + g->start_x], &g->old_out[i + g->start_x], g->max_x - g->start_x); + } + break; + } + + for (;;) { + switch (stbi__get8(s)) { + case 0x2C: /* Image Descriptor */ + { + int prev_trans = -1; + stbi__int32 x, y, w, h; + stbi_uc *o; + + x = stbi__get16le(s); + y = stbi__get16le(s); + w = stbi__get16le(s); + h = stbi__get16le(s); + if (((x + w) > (g->w)) || ((y + h) > (g->h))) + return stbi__errpuc("bad Image Descriptor", "Corrupt GIF"); + + g->line_size = g->w * 4; + g->start_x = x * 4; + g->start_y = y * g->line_size; + g->max_x = g->start_x + w * 4; + g->max_y = g->start_y + h * g->line_size; + g->cur_x = g->start_x; + g->cur_y = g->start_y; + + g->lflags = stbi__get8(s); + + if (g->lflags & 0x40) { + g->step = 8 * g->line_size; // first interlaced spacing + g->parse = 3; + } else { + g->step = g->line_size; + g->parse = 0; + } + + if (g->lflags & 0x80) { + stbi__gif_parse_colortable(s,g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1); + g->color_table = (stbi_uc *) g->lpal; + } else if (g->flags & 0x80) { + if (g->transparent >= 0 && (g->eflags & 0x01)) { + prev_trans = g->pal[g->transparent][3]; + g->pal[g->transparent][3] = 0; + } + g->color_table = (stbi_uc *) g->pal; + } else + return stbi__errpuc("missing color table", "Corrupt GIF"); + + o = stbi__process_gif_raster(s, g); + if (o == NULL) return NULL; + + if (prev_trans != -1) + g->pal[g->transparent][3] = (stbi_uc) prev_trans; + + return o; + } + + case 0x21: // Comment Extension. + { + int len; + if (stbi__get8(s) == 0xF9) { // Graphic Control Extension. + len = stbi__get8(s); + if (len == 4) { + g->eflags = stbi__get8(s); + g->delay = stbi__get16le(s); + g->transparent = stbi__get8(s); + } else { + stbi__skip(s, len); + break; + } + } + while ((len = stbi__get8(s)) != 0) + stbi__skip(s, len); + break; + } + + case 0x3B: // gif stream termination code + return (stbi_uc *) s; // using '1' causes warning on some compilers + + default: + return stbi__errpuc("unknown code", "Corrupt GIF"); + } + } + + STBI_NOTUSED(req_comp); +} + +static stbi_uc *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + stbi_uc *u = 0; + stbi__gif* g = (stbi__gif*) stbi__malloc(sizeof(stbi__gif)); + memset(g, 0, sizeof(*g)); + + u = stbi__gif_load_next(s, g, comp, req_comp); + if (u == (stbi_uc *) s) u = 0; // end of animated gif marker + if (u) { + *x = g->w; + *y = g->h; + if (req_comp && req_comp != 4) + u = stbi__convert_format(u, 4, req_comp, g->w, g->h); + } + else if (g->out) + STBI_FREE(g->out); + STBI_FREE(g); + return u; +} + +static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp) +{ + return stbi__gif_info_raw(s,x,y,comp); +} +#endif + +// ************************************************************************************************* +// Radiance RGBE HDR loader +// originally by Nicolas Schulz +#ifndef STBI_NO_HDR +static int stbi__hdr_test_core(stbi__context *s) +{ + const char *signature = "#?RADIANCE\n"; + int i; + for (i=0; signature[i]; ++i) + if (stbi__get8(s) != signature[i]) + return 0; + return 1; +} + +static int stbi__hdr_test(stbi__context* s) +{ + int r = stbi__hdr_test_core(s); + stbi__rewind(s); + return r; +} + +#define STBI__HDR_BUFLEN 1024 +static char *stbi__hdr_gettoken(stbi__context *z, char *buffer) +{ + int len=0; + char c = '\0'; + + c = (char) stbi__get8(z); + + while (!stbi__at_eof(z) && c != '\n') { + buffer[len++] = c; + if (len == STBI__HDR_BUFLEN-1) { + // flush to end of line + while (!stbi__at_eof(z) && stbi__get8(z) != '\n') + ; + break; + } + c = (char) stbi__get8(z); + } + + buffer[len] = 0; + return buffer; +} + +static void stbi__hdr_convert(float *output, stbi_uc *input, int req_comp) +{ + if ( input[3] != 0 ) { + float f1; + // Exponent + f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8)); + if (req_comp <= 2) + output[0] = (input[0] + input[1] + input[2]) * f1 / 3; + else { + output[0] = input[0] * f1; + output[1] = input[1] * f1; + output[2] = input[2] * f1; + } + if (req_comp == 2) output[1] = 1; + if (req_comp == 4) output[3] = 1; + } else { + switch (req_comp) { + case 4: output[3] = 1; /* fallthrough */ + case 3: output[0] = output[1] = output[2] = 0; + break; + case 2: output[1] = 1; /* fallthrough */ + case 1: output[0] = 0; + break; + } + } +} + +static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + char buffer[STBI__HDR_BUFLEN]; + char *token; + int valid = 0; + int width, height; + stbi_uc *scanline; + float *hdr_data; + int len; + unsigned char count, value; + int i, j, k, c1,c2, z; + + + // Check identifier + if (strcmp(stbi__hdr_gettoken(s,buffer), "#?RADIANCE") != 0) + return stbi__errpf("not HDR", "Corrupt HDR image"); + + // Parse header + for(;;) { + token = stbi__hdr_gettoken(s,buffer); + if (token[0] == 0) break; + if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; + } + + if (!valid) return stbi__errpf("unsupported format", "Unsupported HDR format"); + + // Parse width and height + // can't use sscanf() if we're not using stdio! + token = stbi__hdr_gettoken(s,buffer); + if (strncmp(token, "-Y ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format"); + token += 3; + height = (int) strtol(token, &token, 10); + while (*token == ' ') ++token; + if (strncmp(token, "+X ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format"); + token += 3; + width = (int) strtol(token, NULL, 10); + + *x = width; + *y = height; + + if (comp) *comp = 3; + if (req_comp == 0) req_comp = 3; + + // Read data + hdr_data = (float *) stbi__malloc(height * width * req_comp * sizeof(float)); + + // Load image data + // image data is stored as some number of sca + if ( width < 8 || width >= 32768) { + // Read flat data + for (j=0; j < height; ++j) { + for (i=0; i < width; ++i) { + stbi_uc rgbe[4]; + main_decode_loop: + stbi__getn(s, rgbe, 4); + stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); + } + } + } else { + // Read RLE-encoded data + scanline = NULL; + + for (j = 0; j < height; ++j) { + c1 = stbi__get8(s); + c2 = stbi__get8(s); + len = stbi__get8(s); + if (c1 != 2 || c2 != 2 || (len & 0x80)) { + // not run-length encoded, so we have to actually use THIS data as a decoded + // pixel (note this can't be a valid pixel--one of RGB must be >= 128) + stbi_uc rgbe[4]; + rgbe[0] = (stbi_uc) c1; + rgbe[1] = (stbi_uc) c2; + rgbe[2] = (stbi_uc) len; + rgbe[3] = (stbi_uc) stbi__get8(s); + stbi__hdr_convert(hdr_data, rgbe, req_comp); + i = 1; + j = 0; + STBI_FREE(scanline); + goto main_decode_loop; // yes, this makes no sense + } + len <<= 8; + len |= stbi__get8(s); + if (len != width) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); } + if (scanline == NULL) scanline = (stbi_uc *) stbi__malloc(width * 4); + + for (k = 0; k < 4; ++k) { + i = 0; + while (i < width) { + count = stbi__get8(s); + if (count > 128) { + // Run + value = stbi__get8(s); + count -= 128; + for (z = 0; z < count; ++z) + scanline[i++ * 4 + k] = value; + } else { + // Dump + for (z = 0; z < count; ++z) + scanline[i++ * 4 + k] = stbi__get8(s); + } + } + } + for (i=0; i < width; ++i) + stbi__hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp); + } + STBI_FREE(scanline); + } + + return hdr_data; +} + +static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp) +{ + char buffer[STBI__HDR_BUFLEN]; + char *token; + int valid = 0; + + if (stbi__hdr_test(s) == 0) { + stbi__rewind( s ); + return 0; + } + + for(;;) { + token = stbi__hdr_gettoken(s,buffer); + if (token[0] == 0) break; + if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; + } + + if (!valid) { + stbi__rewind( s ); + return 0; + } + token = stbi__hdr_gettoken(s,buffer); + if (strncmp(token, "-Y ", 3)) { + stbi__rewind( s ); + return 0; + } + token += 3; + *y = (int) strtol(token, &token, 10); + while (*token == ' ') ++token; + if (strncmp(token, "+X ", 3)) { + stbi__rewind( s ); + return 0; + } + token += 3; + *x = (int) strtol(token, NULL, 10); + *comp = 3; + return 1; +} +#endif // STBI_NO_HDR + +#ifndef STBI_NO_BMP +static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp) +{ + void *p; + stbi__bmp_data info; + + info.all_a = 255; + p = stbi__bmp_parse_header(s, &info); + stbi__rewind( s ); + if (p == NULL) + return 0; + *x = s->img_x; + *y = s->img_y; + *comp = info.ma ? 4 : 3; + return 1; +} +#endif + +#ifndef STBI_NO_PSD +static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp) +{ + int channelCount; + if (stbi__get32be(s) != 0x38425053) { + stbi__rewind( s ); + return 0; + } + if (stbi__get16be(s) != 1) { + stbi__rewind( s ); + return 0; + } + stbi__skip(s, 6); + channelCount = stbi__get16be(s); + if (channelCount < 0 || channelCount > 16) { + stbi__rewind( s ); + return 0; + } + *y = stbi__get32be(s); + *x = stbi__get32be(s); + if (stbi__get16be(s) != 8) { + stbi__rewind( s ); + return 0; + } + if (stbi__get16be(s) != 3) { + stbi__rewind( s ); + return 0; + } + *comp = 4; + return 1; +} +#endif + +#ifndef STBI_NO_PIC +static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp) +{ + int act_comp=0,num_packets=0,chained; + stbi__pic_packet packets[10]; + + if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) { + stbi__rewind(s); + return 0; + } + + stbi__skip(s, 88); + + *x = stbi__get16be(s); + *y = stbi__get16be(s); + if (stbi__at_eof(s)) { + stbi__rewind( s); + return 0; + } + if ( (*x) != 0 && (1 << 28) / (*x) < (*y)) { + stbi__rewind( s ); + return 0; + } + + stbi__skip(s, 8); + + do { + stbi__pic_packet *packet; + + if (num_packets==sizeof(packets)/sizeof(packets[0])) + return 0; + + packet = &packets[num_packets++]; + chained = stbi__get8(s); + packet->size = stbi__get8(s); + packet->type = stbi__get8(s); + packet->channel = stbi__get8(s); + act_comp |= packet->channel; + + if (stbi__at_eof(s)) { + stbi__rewind( s ); + return 0; + } + if (packet->size != 8) { + stbi__rewind( s ); + return 0; + } + } while (chained); + + *comp = (act_comp & 0x10 ? 4 : 3); + + return 1; +} +#endif + +// ************************************************************************************************* +// Portable Gray Map and Portable Pixel Map loader +// by Ken Miller +// +// PGM: http://netpbm.sourceforge.net/doc/pgm.html +// PPM: http://netpbm.sourceforge.net/doc/ppm.html +// +// Known limitations: +// Does not support comments in the header section +// Does not support ASCII image data (formats P2 and P3) +// Does not support 16-bit-per-channel + +#ifndef STBI_NO_PNM + +static int stbi__pnm_test(stbi__context *s) +{ + char p, t; + p = (char) stbi__get8(s); + t = (char) stbi__get8(s); + if (p != 'P' || (t != '5' && t != '6')) { + stbi__rewind( s ); + return 0; + } + return 1; +} + +static stbi_uc *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + stbi_uc *out; + if (!stbi__pnm_info(s, (int *)&s->img_x, (int *)&s->img_y, (int *)&s->img_n)) + return 0; + *x = s->img_x; + *y = s->img_y; + *comp = s->img_n; + + out = (stbi_uc *) stbi__malloc(s->img_n * s->img_x * s->img_y); + if (!out) return stbi__errpuc("outofmem", "Out of memory"); + stbi__getn(s, out, s->img_n * s->img_x * s->img_y); + + if (req_comp && req_comp != s->img_n) { + out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y); + if (out == NULL) return out; // stbi__convert_format frees input on failure + } + return out; +} + +static int stbi__pnm_isspace(char c) +{ + return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r'; +} + +static void stbi__pnm_skip_whitespace(stbi__context *s, char *c) +{ + for (;;) { + while (!stbi__at_eof(s) && stbi__pnm_isspace(*c)) + *c = (char) stbi__get8(s); + + if (stbi__at_eof(s) || *c != '#') + break; + + while (!stbi__at_eof(s) && *c != '\n' && *c != '\r' ) + *c = (char) stbi__get8(s); + } +} + +static int stbi__pnm_isdigit(char c) +{ + return c >= '0' && c <= '9'; +} + +static int stbi__pnm_getinteger(stbi__context *s, char *c) +{ + int value = 0; + + while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) { + value = value*10 + (*c - '0'); + *c = (char) stbi__get8(s); + } + + return value; +} + +static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp) +{ + int maxv; + char c, p, t; + + stbi__rewind( s ); + + // Get identifier + p = (char) stbi__get8(s); + t = (char) stbi__get8(s); + if (p != 'P' || (t != '5' && t != '6')) { + stbi__rewind( s ); + return 0; + } + + *comp = (t == '6') ? 3 : 1; // '5' is 1-component .pgm; '6' is 3-component .ppm + + c = (char) stbi__get8(s); + stbi__pnm_skip_whitespace(s, &c); + + *x = stbi__pnm_getinteger(s, &c); // read width + stbi__pnm_skip_whitespace(s, &c); + + *y = stbi__pnm_getinteger(s, &c); // read height + stbi__pnm_skip_whitespace(s, &c); + + maxv = stbi__pnm_getinteger(s, &c); // read max value + + if (maxv > 255) + return stbi__err("max value > 255", "PPM image not 8-bit"); + else + return 1; +} +#endif + +static int stbi__info_main(stbi__context *s, int *x, int *y, int *comp) +{ + #ifndef STBI_NO_JPEG + if (stbi__jpeg_info(s, x, y, comp)) return 1; + #endif + + #ifndef STBI_NO_PNG + if (stbi__png_info(s, x, y, comp)) return 1; + #endif + + #ifndef STBI_NO_GIF + if (stbi__gif_info(s, x, y, comp)) return 1; + #endif + + #ifndef STBI_NO_BMP + if (stbi__bmp_info(s, x, y, comp)) return 1; + #endif + + #ifndef STBI_NO_PSD + if (stbi__psd_info(s, x, y, comp)) return 1; + #endif + + #ifndef STBI_NO_PIC + if (stbi__pic_info(s, x, y, comp)) return 1; + #endif + + #ifndef STBI_NO_PNM + if (stbi__pnm_info(s, x, y, comp)) return 1; + #endif + + #ifndef STBI_NO_HDR + if (stbi__hdr_info(s, x, y, comp)) return 1; + #endif + + // test tga last because it's a crappy test! + #ifndef STBI_NO_TGA + if (stbi__tga_info(s, x, y, comp)) + return 1; + #endif + return stbi__err("unknown image type", "Image not of any known type, or corrupt"); +} + +#ifndef STBI_NO_STDIO +STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp) +{ + FILE *f = stbi__fopen(filename, "rb"); + int result; + if (!f) return stbi__err("can't fopen", "Unable to open file"); + result = stbi_info_from_file(f, x, y, comp); + fclose(f); + return result; +} + +STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp) +{ + int r; + stbi__context s; + long pos = ftell(f); + stbi__start_file(&s, f); + r = stbi__info_main(&s,x,y,comp); + fseek(f,pos,SEEK_SET); + return r; +} +#endif // !STBI_NO_STDIO + +STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp) +{ + stbi__context s; + stbi__start_mem(&s,buffer,len); + return stbi__info_main(&s,x,y,comp); +} + +STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, int *x, int *y, int *comp) +{ + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user); + return stbi__info_main(&s,x,y,comp); +} + +#endif // STB_IMAGE_IMPLEMENTATION + +/* + revision history: + 2.12 (2016-04-02) fix typo in 2.11 PSD fix that caused crashes + 2.11 (2016-04-02) allocate large structures on the stack + remove white matting for transparent PSD + fix reported channel count for PNG & BMP + re-enable SSE2 in non-gcc 64-bit + support RGB-formatted JPEG + read 16-bit PNGs (only as 8-bit) + 2.10 (2016-01-22) avoid warning introduced in 2.09 by STBI_REALLOC_SIZED + 2.09 (2016-01-16) allow comments in PNM files + 16-bit-per-pixel TGA (not bit-per-component) + info() for TGA could break due to .hdr handling + info() for BMP to shares code instead of sloppy parse + can use STBI_REALLOC_SIZED if allocator doesn't support realloc + code cleanup + 2.08 (2015-09-13) fix to 2.07 cleanup, reading RGB PSD as RGBA + 2.07 (2015-09-13) fix compiler warnings + partial animated GIF support + limited 16-bpc PSD support + #ifdef unused functions + bug with < 92 byte PIC,PNM,HDR,TGA + 2.06 (2015-04-19) fix bug where PSD returns wrong '*comp' value + 2.05 (2015-04-19) fix bug in progressive JPEG handling, fix warning + 2.04 (2015-04-15) try to re-enable SIMD on MinGW 64-bit + 2.03 (2015-04-12) extra corruption checking (mmozeiko) + stbi_set_flip_vertically_on_load (nguillemot) + fix NEON support; fix mingw support + 2.02 (2015-01-19) fix incorrect assert, fix warning + 2.01 (2015-01-17) fix various warnings; suppress SIMD on gcc 32-bit without -msse2 + 2.00b (2014-12-25) fix STBI_MALLOC in progressive JPEG + 2.00 (2014-12-25) optimize JPG, including x86 SSE2 & NEON SIMD (ryg) + progressive JPEG (stb) + PGM/PPM support (Ken Miller) + STBI_MALLOC,STBI_REALLOC,STBI_FREE + GIF bugfix -- seemingly never worked + STBI_NO_*, STBI_ONLY_* + 1.48 (2014-12-14) fix incorrectly-named assert() + 1.47 (2014-12-14) 1/2/4-bit PNG support, both direct and paletted (Omar Cornut & stb) + optimize PNG (ryg) + fix bug in interlaced PNG with user-specified channel count (stb) + 1.46 (2014-08-26) + fix broken tRNS chunk (colorkey-style transparency) in non-paletted PNG + 1.45 (2014-08-16) + fix MSVC-ARM internal compiler error by wrapping malloc + 1.44 (2014-08-07) + various warning fixes from Ronny Chevalier + 1.43 (2014-07-15) + fix MSVC-only compiler problem in code changed in 1.42 + 1.42 (2014-07-09) + don't define _CRT_SECURE_NO_WARNINGS (affects user code) + fixes to stbi__cleanup_jpeg path + added STBI_ASSERT to avoid requiring assert.h + 1.41 (2014-06-25) + fix search&replace from 1.36 that messed up comments/error messages + 1.40 (2014-06-22) + fix gcc struct-initialization warning + 1.39 (2014-06-15) + fix to TGA optimization when req_comp != number of components in TGA; + fix to GIF loading because BMP wasn't rewinding (whoops, no GIFs in my test suite) + add support for BMP version 5 (more ignored fields) + 1.38 (2014-06-06) + suppress MSVC warnings on integer casts truncating values + fix accidental rename of 'skip' field of I/O + 1.37 (2014-06-04) + remove duplicate typedef + 1.36 (2014-06-03) + convert to header file single-file library + if de-iphone isn't set, load iphone images color-swapped instead of returning NULL + 1.35 (2014-05-27) + various warnings + fix broken STBI_SIMD path + fix bug where stbi_load_from_file no longer left file pointer in correct place + fix broken non-easy path for 32-bit BMP (possibly never used) + TGA optimization by Arseny Kapoulkine + 1.34 (unknown) + use STBI_NOTUSED in stbi__resample_row_generic(), fix one more leak in tga failure case + 1.33 (2011-07-14) + make stbi_is_hdr work in STBI_NO_HDR (as specified), minor compiler-friendly improvements + 1.32 (2011-07-13) + support for "info" function for all supported filetypes (SpartanJ) + 1.31 (2011-06-20) + a few more leak fixes, bug in PNG handling (SpartanJ) + 1.30 (2011-06-11) + added ability to load files via callbacks to accomidate custom input streams (Ben Wenger) + removed deprecated format-specific test/load functions + removed support for installable file formats (stbi_loader) -- would have been broken for IO callbacks anyway + error cases in bmp and tga give messages and don't leak (Raymond Barbiero, grisha) + fix inefficiency in decoding 32-bit BMP (David Woo) + 1.29 (2010-08-16) + various warning fixes from Aurelien Pocheville + 1.28 (2010-08-01) + fix bug in GIF palette transparency (SpartanJ) + 1.27 (2010-08-01) + cast-to-stbi_uc to fix warnings + 1.26 (2010-07-24) + fix bug in file buffering for PNG reported by SpartanJ + 1.25 (2010-07-17) + refix trans_data warning (Won Chun) + 1.24 (2010-07-12) + perf improvements reading from files on platforms with lock-heavy fgetc() + minor perf improvements for jpeg + deprecated type-specific functions so we'll get feedback if they're needed + attempt to fix trans_data warning (Won Chun) + 1.23 fixed bug in iPhone support + 1.22 (2010-07-10) + removed image *writing* support + stbi_info support from Jetro Lauha + GIF support from Jean-Marc Lienher + iPhone PNG-extensions from James Brown + warning-fixes from Nicolas Schulz and Janez Zemva (i.stbi__err. Janez (U+017D)emva) + 1.21 fix use of 'stbi_uc' in header (reported by jon blow) + 1.20 added support for Softimage PIC, by Tom Seddon + 1.19 bug in interlaced PNG corruption check (found by ryg) + 1.18 (2008-08-02) + fix a threading bug (local mutable static) + 1.17 support interlaced PNG + 1.16 major bugfix - stbi__convert_format converted one too many pixels + 1.15 initialize some fields for thread safety + 1.14 fix threadsafe conversion bug + header-file-only version (#define STBI_HEADER_FILE_ONLY before including) + 1.13 threadsafe + 1.12 const qualifiers in the API + 1.11 Support installable IDCT, colorspace conversion routines + 1.10 Fixes for 64-bit (don't use "unsigned long") + optimized upsampling by Fabian "ryg" Giesen + 1.09 Fix format-conversion for PSD code (bad global variables!) + 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz + 1.07 attempt to fix C++ warning/errors again + 1.06 attempt to fix C++ warning/errors again + 1.05 fix TGA loading to return correct *comp and use good luminance calc + 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free + 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR + 1.02 support for (subset of) HDR files, float interface for preferred access to them + 1.01 fix bug: possible bug in handling right-side up bmps... not sure + fix bug: the stbi__bmp_load() and stbi__tga_load() functions didn't work at all + 1.00 interface to zlib that skips zlib header + 0.99 correct handling of alpha in palette + 0.98 TGA loader by lonesock; dynamically add loaders (untested) + 0.97 jpeg errors on too large a file; also catch another malloc failure + 0.96 fix detection of invalid v value - particleman@mollyrocket forum + 0.95 during header scan, seek to markers in case of padding + 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same + 0.93 handle jpegtran output; verbose errors + 0.92 read 4,8,16,24,32-bit BMP files of several formats + 0.91 output 24-bit Windows 3.0 BMP files + 0.90 fix a few more warnings; bump version number to approach 1.0 + 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd + 0.60 fix compiling as c++ + 0.59 fix warnings: merge Dave Moore's -Wall fixes + 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian + 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available + 0.56 fix bug: zlib uncompressed mode len vs. nlen + 0.55 fix bug: restart_interval not initialized to 0 + 0.54 allow NULL for 'int *comp' + 0.53 fix bug in png 3->4; speedup png decoding + 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments + 0.51 obey req_comp requests, 1-component jpegs return as 1-component, + on 'test' only check type, not whether we support this variant + 0.50 (2006-11-19) + first released version +*/ diff --git a/src/ebsynth/deps/ebsynth/src/stb_image_write.h b/src/ebsynth/deps/ebsynth/src/stb_image_write.h new file mode 100644 index 0000000000000000000000000000000000000000..022e41641e83cfd3fd5bc1fc70835a2522de34be --- /dev/null +++ b/src/ebsynth/deps/ebsynth/src/stb_image_write.h @@ -0,0 +1,1048 @@ +/* stb_image_write - v1.02 - public domain - http://nothings.org/stb/stb_image_write.h + writes out PNG/BMP/TGA images to C stdio - Sean Barrett 2010-2015 + no warranty implied; use at your own risk + + Before #including, + + #define STB_IMAGE_WRITE_IMPLEMENTATION + + in the file that you want to have the implementation. + + Will probably not work correctly with strict-aliasing optimizations. + +ABOUT: + + This header file is a library for writing images to C stdio. It could be + adapted to write to memory or a general streaming interface; let me know. + + The PNG output is not optimal; it is 20-50% larger than the file + written by a decent optimizing implementation. This library is designed + for source code compactness and simplicity, not optimal image file size + or run-time performance. + +BUILDING: + + You can #define STBIW_ASSERT(x) before the #include to avoid using assert.h. + You can #define STBIW_MALLOC(), STBIW_REALLOC(), and STBIW_FREE() to replace + malloc,realloc,free. + You can define STBIW_MEMMOVE() to replace memmove() + +USAGE: + + There are four functions, one for each image file format: + + int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes); + int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data); + int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data); + int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data); + + There are also four equivalent functions that use an arbitrary write function. You are + expected to open/close your file-equivalent before and after calling these: + + int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes); + int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); + int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); + int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data); + + where the callback is: + void stbi_write_func(void *context, void *data, int size); + + You can define STBI_WRITE_NO_STDIO to disable the file variant of these + functions, so the library will not use stdio.h at all. However, this will + also disable HDR writing, because it requires stdio for formatted output. + + Each function returns 0 on failure and non-0 on success. + + The functions create an image file defined by the parameters. The image + is a rectangle of pixels stored from left-to-right, top-to-bottom. + Each pixel contains 'comp' channels of data stored interleaved with 8-bits + per channel, in the following order: 1=Y, 2=YA, 3=RGB, 4=RGBA. (Y is + monochrome color.) The rectangle is 'w' pixels wide and 'h' pixels tall. + The *data pointer points to the first byte of the top-left-most pixel. + For PNG, "stride_in_bytes" is the distance in bytes from the first byte of + a row of pixels to the first byte of the next row of pixels. + + PNG creates output files with the same number of components as the input. + The BMP format expands Y to RGB in the file format and does not + output alpha. + + PNG supports writing rectangles of data even when the bytes storing rows of + data are not consecutive in memory (e.g. sub-rectangles of a larger image), + by supplying the stride between the beginning of adjacent rows. The other + formats do not. (Thus you cannot write a native-format BMP through the BMP + writer, both because it is in BGR order and because it may have padding + at the end of the line.) + + HDR expects linear float data. Since the format is always 32-bit rgb(e) + data, alpha (if provided) is discarded, and for monochrome data it is + replicated across all three channels. + + TGA supports RLE or non-RLE compressed data. To use non-RLE-compressed + data, set the global variable 'stbi_write_tga_with_rle' to 0. + +CREDITS: + + PNG/BMP/TGA + Sean Barrett + HDR + Baldur Karlsson + TGA monochrome: + Jean-Sebastien Guay + misc enhancements: + Tim Kelsey + TGA RLE + Alan Hickman + initial file IO callback implementation + Emmanuel Julien + bugfixes: + github:Chribba + Guillaume Chereau + github:jry2 + github:romigrou + Sergio Gonzalez + Jonas Karlsson + Filip Wasil + Thatcher Ulrich + +LICENSE + +This software is dual-licensed to the public domain and under the following +license: you are granted a perpetual, irrevocable license to copy, modify, +publish, and distribute this file as you see fit. + +*/ + +#ifndef INCLUDE_STB_IMAGE_WRITE_H +#define INCLUDE_STB_IMAGE_WRITE_H + +#ifdef __cplusplus +extern "C" { +#endif + +#ifdef STB_IMAGE_WRITE_STATIC +#define STBIWDEF static +#else +#define STBIWDEF extern +extern int stbi_write_tga_with_rle; +#endif + +#ifndef STBI_WRITE_NO_STDIO +STBIWDEF int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes); +STBIWDEF int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data); +STBIWDEF int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data); +STBIWDEF int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data); +#endif + +typedef void stbi_write_func(void *context, void *data, int size); + +STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes); +STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); +STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); +STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data); + +#ifdef __cplusplus +} +#endif + +#endif//INCLUDE_STB_IMAGE_WRITE_H + +#ifdef STB_IMAGE_WRITE_IMPLEMENTATION + +#ifdef _WIN32 + #ifndef _CRT_SECURE_NO_WARNINGS + #define _CRT_SECURE_NO_WARNINGS + #endif + #ifndef _CRT_NONSTDC_NO_DEPRECATE + #define _CRT_NONSTDC_NO_DEPRECATE + #endif +#endif + +#ifndef STBI_WRITE_NO_STDIO +#include +#endif // STBI_WRITE_NO_STDIO + +#include +#include +#include +#include + +#if defined(STBIW_MALLOC) && defined(STBIW_FREE) && (defined(STBIW_REALLOC) || defined(STBIW_REALLOC_SIZED)) +// ok +#elif !defined(STBIW_MALLOC) && !defined(STBIW_FREE) && !defined(STBIW_REALLOC) && !defined(STBIW_REALLOC_SIZED) +// ok +#else +#error "Must define all or none of STBIW_MALLOC, STBIW_FREE, and STBIW_REALLOC (or STBIW_REALLOC_SIZED)." +#endif + +#ifndef STBIW_MALLOC +#define STBIW_MALLOC(sz) malloc(sz) +#define STBIW_REALLOC(p,newsz) realloc(p,newsz) +#define STBIW_FREE(p) free(p) +#endif + +#ifndef STBIW_REALLOC_SIZED +#define STBIW_REALLOC_SIZED(p,oldsz,newsz) STBIW_REALLOC(p,newsz) +#endif + + +#ifndef STBIW_MEMMOVE +#define STBIW_MEMMOVE(a,b,sz) memmove(a,b,sz) +#endif + + +#ifndef STBIW_ASSERT +#include +#define STBIW_ASSERT(x) assert(x) +#endif + +#define STBIW_UCHAR(x) (unsigned char) ((x) & 0xff) + +typedef struct +{ + stbi_write_func *func; + void *context; +} stbi__write_context; + +// initialize a callback-based context +static void stbi__start_write_callbacks(stbi__write_context *s, stbi_write_func *c, void *context) +{ + s->func = c; + s->context = context; +} + +#ifndef STBI_WRITE_NO_STDIO + +static void stbi__stdio_write(void *context, void *data, int size) +{ + fwrite(data,1,size,(FILE*) context); +} + +static int stbi__start_write_file(stbi__write_context *s, const char *filename) +{ + FILE *f = fopen(filename, "wb"); + stbi__start_write_callbacks(s, stbi__stdio_write, (void *) f); + return f != NULL; +} + +static void stbi__end_write_file(stbi__write_context *s) +{ + fclose((FILE *)s->context); +} + +#endif // !STBI_WRITE_NO_STDIO + +typedef unsigned int stbiw_uint32; +typedef int stb_image_write_test[sizeof(stbiw_uint32)==4 ? 1 : -1]; + +#ifdef STB_IMAGE_WRITE_STATIC +static int stbi_write_tga_with_rle = 1; +#else +int stbi_write_tga_with_rle = 1; +#endif + +static void stbiw__writefv(stbi__write_context *s, const char *fmt, va_list v) +{ + while (*fmt) { + switch (*fmt++) { + case ' ': break; + case '1': { unsigned char x = STBIW_UCHAR(va_arg(v, int)); + s->func(s->context,&x,1); + break; } + case '2': { int x = va_arg(v,int); + unsigned char b[2]; + b[0] = STBIW_UCHAR(x); + b[1] = STBIW_UCHAR(x>>8); + s->func(s->context,b,2); + break; } + case '4': { stbiw_uint32 x = va_arg(v,int); + unsigned char b[4]; + b[0]=STBIW_UCHAR(x); + b[1]=STBIW_UCHAR(x>>8); + b[2]=STBIW_UCHAR(x>>16); + b[3]=STBIW_UCHAR(x>>24); + s->func(s->context,b,4); + break; } + default: + STBIW_ASSERT(0); + return; + } + } +} + +static void stbiw__writef(stbi__write_context *s, const char *fmt, ...) +{ + va_list v; + va_start(v, fmt); + stbiw__writefv(s, fmt, v); + va_end(v); +} + +static void stbiw__write3(stbi__write_context *s, unsigned char a, unsigned char b, unsigned char c) +{ + unsigned char arr[3]; + arr[0] = a, arr[1] = b, arr[2] = c; + s->func(s->context, arr, 3); +} + +static void stbiw__write_pixel(stbi__write_context *s, int rgb_dir, int comp, int write_alpha, int expand_mono, unsigned char *d) +{ + unsigned char bg[3] = { 255, 0, 255}, px[3]; + int k; + + if (write_alpha < 0) + s->func(s->context, &d[comp - 1], 1); + + switch (comp) { + case 1: + s->func(s->context,d,1); + break; + case 2: + if (expand_mono) + stbiw__write3(s, d[0], d[0], d[0]); // monochrome bmp + else + s->func(s->context, d, 1); // monochrome TGA + break; + case 4: + if (!write_alpha) { + // composite against pink background + for (k = 0; k < 3; ++k) + px[k] = bg[k] + ((d[k] - bg[k]) * d[3]) / 255; + stbiw__write3(s, px[1 - rgb_dir], px[1], px[1 + rgb_dir]); + break; + } + /* FALLTHROUGH */ + case 3: + stbiw__write3(s, d[1 - rgb_dir], d[1], d[1 + rgb_dir]); + break; + } + if (write_alpha > 0) + s->func(s->context, &d[comp - 1], 1); +} + +static void stbiw__write_pixels(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad, int expand_mono) +{ + stbiw_uint32 zero = 0; + int i,j, j_end; + + if (y <= 0) + return; + + if (vdir < 0) + j_end = -1, j = y-1; + else + j_end = y, j = 0; + + for (; j != j_end; j += vdir) { + for (i=0; i < x; ++i) { + unsigned char *d = (unsigned char *) data + (j*x+i)*comp; + stbiw__write_pixel(s, rgb_dir, comp, write_alpha, expand_mono, d); + } + s->func(s->context, &zero, scanline_pad); + } +} + +static int stbiw__outfile(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, int expand_mono, void *data, int alpha, int pad, const char *fmt, ...) +{ + if (y < 0 || x < 0) { + return 0; + } else { + va_list v; + va_start(v, fmt); + stbiw__writefv(s, fmt, v); + va_end(v); + stbiw__write_pixels(s,rgb_dir,vdir,x,y,comp,data,alpha,pad, expand_mono); + return 1; + } +} + +static int stbi_write_bmp_core(stbi__write_context *s, int x, int y, int comp, const void *data) +{ + int pad = (-x*3) & 3; + return stbiw__outfile(s,-1,-1,x,y,comp,1,(void *) data,0,pad, + "11 4 22 4" "4 44 22 444444", + 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header + 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header +} + +STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data) +{ + stbi__write_context s; + stbi__start_write_callbacks(&s, func, context); + return stbi_write_bmp_core(&s, x, y, comp, data); +} + +#ifndef STBI_WRITE_NO_STDIO +STBIWDEF int stbi_write_bmp(char const *filename, int x, int y, int comp, const void *data) +{ + stbi__write_context s; + if (stbi__start_write_file(&s,filename)) { + int r = stbi_write_bmp_core(&s, x, y, comp, data); + stbi__end_write_file(&s); + return r; + } else + return 0; +} +#endif //!STBI_WRITE_NO_STDIO + +static int stbi_write_tga_core(stbi__write_context *s, int x, int y, int comp, void *data) +{ + int has_alpha = (comp == 2 || comp == 4); + int colorbytes = has_alpha ? comp-1 : comp; + int format = colorbytes < 2 ? 3 : 2; // 3 color channels (RGB/RGBA) = 2, 1 color channel (Y/YA) = 3 + + if (y < 0 || x < 0) + return 0; + + if (!stbi_write_tga_with_rle) { + return stbiw__outfile(s, -1, -1, x, y, comp, 0, (void *) data, has_alpha, 0, + "111 221 2222 11", 0, 0, format, 0, 0, 0, 0, 0, x, y, (colorbytes + has_alpha) * 8, has_alpha * 8); + } else { + int i,j,k; + + stbiw__writef(s, "111 221 2222 11", 0,0,format+8, 0,0,0, 0,0,x,y, (colorbytes + has_alpha) * 8, has_alpha * 8); + + for (j = y - 1; j >= 0; --j) { + unsigned char *row = (unsigned char *) data + j * x * comp; + int len; + + for (i = 0; i < x; i += len) { + unsigned char *begin = row + i * comp; + int diff = 1; + len = 1; + + if (i < x - 1) { + ++len; + diff = memcmp(begin, row + (i + 1) * comp, comp); + if (diff) { + const unsigned char *prev = begin; + for (k = i + 2; k < x && len < 128; ++k) { + if (memcmp(prev, row + k * comp, comp)) { + prev += comp; + ++len; + } else { + --len; + break; + } + } + } else { + for (k = i + 2; k < x && len < 128; ++k) { + if (!memcmp(begin, row + k * comp, comp)) { + ++len; + } else { + break; + } + } + } + } + + if (diff) { + unsigned char header = STBIW_UCHAR(len - 1); + s->func(s->context, &header, 1); + for (k = 0; k < len; ++k) { + stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin + k * comp); + } + } else { + unsigned char header = STBIW_UCHAR(len - 129); + s->func(s->context, &header, 1); + stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin); + } + } + } + } + return 1; +} + +int stbi_write_tga_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data) +{ + stbi__write_context s; + stbi__start_write_callbacks(&s, func, context); + return stbi_write_tga_core(&s, x, y, comp, (void *) data); +} + +#ifndef STBI_WRITE_NO_STDIO +int stbi_write_tga(char const *filename, int x, int y, int comp, const void *data) +{ + stbi__write_context s; + if (stbi__start_write_file(&s,filename)) { + int r = stbi_write_tga_core(&s, x, y, comp, (void *) data); + stbi__end_write_file(&s); + return r; + } else + return 0; +} +#endif + +// ************************************************************************************************* +// Radiance RGBE HDR writer +// by Baldur Karlsson +#ifndef STBI_WRITE_NO_STDIO + +#define stbiw__max(a, b) ((a) > (b) ? (a) : (b)) + +void stbiw__linear_to_rgbe(unsigned char *rgbe, float *linear) +{ + int exponent; + float maxcomp = stbiw__max(linear[0], stbiw__max(linear[1], linear[2])); + + if (maxcomp < 1e-32f) { + rgbe[0] = rgbe[1] = rgbe[2] = rgbe[3] = 0; + } else { + float normalize = (float) frexp(maxcomp, &exponent) * 256.0f/maxcomp; + + rgbe[0] = (unsigned char)(linear[0] * normalize); + rgbe[1] = (unsigned char)(linear[1] * normalize); + rgbe[2] = (unsigned char)(linear[2] * normalize); + rgbe[3] = (unsigned char)(exponent + 128); + } +} + +void stbiw__write_run_data(stbi__write_context *s, int length, unsigned char databyte) +{ + unsigned char lengthbyte = STBIW_UCHAR(length+128); + STBIW_ASSERT(length+128 <= 255); + s->func(s->context, &lengthbyte, 1); + s->func(s->context, &databyte, 1); +} + +void stbiw__write_dump_data(stbi__write_context *s, int length, unsigned char *data) +{ + unsigned char lengthbyte = STBIW_UCHAR(length); + STBIW_ASSERT(length <= 128); // inconsistent with spec but consistent with official code + s->func(s->context, &lengthbyte, 1); + s->func(s->context, data, length); +} + +void stbiw__write_hdr_scanline(stbi__write_context *s, int width, int ncomp, unsigned char *scratch, float *scanline) +{ + unsigned char scanlineheader[4] = { 2, 2, 0, 0 }; + unsigned char rgbe[4]; + float linear[3]; + int x; + + scanlineheader[2] = (width&0xff00)>>8; + scanlineheader[3] = (width&0x00ff); + + /* skip RLE for images too small or large */ + if (width < 8 || width >= 32768) { + for (x=0; x < width; x++) { + switch (ncomp) { + case 4: /* fallthrough */ + case 3: linear[2] = scanline[x*ncomp + 2]; + linear[1] = scanline[x*ncomp + 1]; + linear[0] = scanline[x*ncomp + 0]; + break; + default: + linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0]; + break; + } + stbiw__linear_to_rgbe(rgbe, linear); + s->func(s->context, rgbe, 4); + } + } else { + int c,r; + /* encode into scratch buffer */ + for (x=0; x < width; x++) { + switch(ncomp) { + case 4: /* fallthrough */ + case 3: linear[2] = scanline[x*ncomp + 2]; + linear[1] = scanline[x*ncomp + 1]; + linear[0] = scanline[x*ncomp + 0]; + break; + default: + linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0]; + break; + } + stbiw__linear_to_rgbe(rgbe, linear); + scratch[x + width*0] = rgbe[0]; + scratch[x + width*1] = rgbe[1]; + scratch[x + width*2] = rgbe[2]; + scratch[x + width*3] = rgbe[3]; + } + + s->func(s->context, scanlineheader, 4); + + /* RLE each component separately */ + for (c=0; c < 4; c++) { + unsigned char *comp = &scratch[width*c]; + + x = 0; + while (x < width) { + // find first run + r = x; + while (r+2 < width) { + if (comp[r] == comp[r+1] && comp[r] == comp[r+2]) + break; + ++r; + } + if (r+2 >= width) + r = width; + // dump up to first run + while (x < r) { + int len = r-x; + if (len > 128) len = 128; + stbiw__write_dump_data(s, len, &comp[x]); + x += len; + } + // if there's a run, output it + if (r+2 < width) { // same test as what we break out of in search loop, so only true if we break'd + // find next byte after run + while (r < width && comp[r] == comp[x]) + ++r; + // output run up to r + while (x < r) { + int len = r-x; + if (len > 127) len = 127; + stbiw__write_run_data(s, len, comp[x]); + x += len; + } + } + } + } + } +} + +static int stbi_write_hdr_core(stbi__write_context *s, int x, int y, int comp, float *data) +{ + if (y <= 0 || x <= 0 || data == NULL) + return 0; + else { + // Each component is stored separately. Allocate scratch space for full output scanline. + unsigned char *scratch = (unsigned char *) STBIW_MALLOC(x*4); + int i, len; + char buffer[128]; + char header[] = "#?RADIANCE\n# Written by stb_image_write.h\nFORMAT=32-bit_rle_rgbe\n"; + s->func(s->context, header, sizeof(header)-1); + + len = sprintf(buffer, "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x); + s->func(s->context, buffer, len); + + for(i=0; i < y; i++) + stbiw__write_hdr_scanline(s, x, comp, scratch, data + comp*i*x); + STBIW_FREE(scratch); + return 1; + } +} + +int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const float *data) +{ + stbi__write_context s; + stbi__start_write_callbacks(&s, func, context); + return stbi_write_hdr_core(&s, x, y, comp, (float *) data); +} + +int stbi_write_hdr(char const *filename, int x, int y, int comp, const float *data) +{ + stbi__write_context s; + if (stbi__start_write_file(&s,filename)) { + int r = stbi_write_hdr_core(&s, x, y, comp, (float *) data); + stbi__end_write_file(&s); + return r; + } else + return 0; +} +#endif // STBI_WRITE_NO_STDIO + + +////////////////////////////////////////////////////////////////////////////// +// +// PNG writer +// + +// stretchy buffer; stbiw__sbpush() == vector<>::push_back() -- stbiw__sbcount() == vector<>::size() +#define stbiw__sbraw(a) ((int *) (a) - 2) +#define stbiw__sbm(a) stbiw__sbraw(a)[0] +#define stbiw__sbn(a) stbiw__sbraw(a)[1] + +#define stbiw__sbneedgrow(a,n) ((a)==0 || stbiw__sbn(a)+n >= stbiw__sbm(a)) +#define stbiw__sbmaybegrow(a,n) (stbiw__sbneedgrow(a,(n)) ? stbiw__sbgrow(a,n) : 0) +#define stbiw__sbgrow(a,n) stbiw__sbgrowf((void **) &(a), (n), sizeof(*(a))) + +#define stbiw__sbpush(a, v) (stbiw__sbmaybegrow(a,1), (a)[stbiw__sbn(a)++] = (v)) +#define stbiw__sbcount(a) ((a) ? stbiw__sbn(a) : 0) +#define stbiw__sbfree(a) ((a) ? STBIW_FREE(stbiw__sbraw(a)),0 : 0) + +static void *stbiw__sbgrowf(void **arr, int increment, int itemsize) +{ + int m = *arr ? 2*stbiw__sbm(*arr)+increment : increment+1; + void *p = STBIW_REALLOC_SIZED(*arr ? stbiw__sbraw(*arr) : 0, *arr ? (stbiw__sbm(*arr)*itemsize + sizeof(int)*2) : 0, itemsize * m + sizeof(int)*2); + STBIW_ASSERT(p); + if (p) { + if (!*arr) ((int *) p)[1] = 0; + *arr = (void *) ((int *) p + 2); + stbiw__sbm(*arr) = m; + } + return *arr; +} + +static unsigned char *stbiw__zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount) +{ + while (*bitcount >= 8) { + stbiw__sbpush(data, STBIW_UCHAR(*bitbuffer)); + *bitbuffer >>= 8; + *bitcount -= 8; + } + return data; +} + +static int stbiw__zlib_bitrev(int code, int codebits) +{ + int res=0; + while (codebits--) { + res = (res << 1) | (code & 1); + code >>= 1; + } + return res; +} + +static unsigned int stbiw__zlib_countm(unsigned char *a, unsigned char *b, int limit) +{ + int i; + for (i=0; i < limit && i < 258; ++i) + if (a[i] != b[i]) break; + return i; +} + +static unsigned int stbiw__zhash(unsigned char *data) +{ + stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16); + hash ^= hash << 3; + hash += hash >> 5; + hash ^= hash << 4; + hash += hash >> 17; + hash ^= hash << 25; + hash += hash >> 6; + return hash; +} + +#define stbiw__zlib_flush() (out = stbiw__zlib_flushf(out, &bitbuf, &bitcount)) +#define stbiw__zlib_add(code,codebits) \ + (bitbuf |= (code) << bitcount, bitcount += (codebits), stbiw__zlib_flush()) +#define stbiw__zlib_huffa(b,c) stbiw__zlib_add(stbiw__zlib_bitrev(b,c),c) +// default huffman tables +#define stbiw__zlib_huff1(n) stbiw__zlib_huffa(0x30 + (n), 8) +#define stbiw__zlib_huff2(n) stbiw__zlib_huffa(0x190 + (n)-144, 9) +#define stbiw__zlib_huff3(n) stbiw__zlib_huffa(0 + (n)-256,7) +#define stbiw__zlib_huff4(n) stbiw__zlib_huffa(0xc0 + (n)-280,8) +#define stbiw__zlib_huff(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : (n) <= 255 ? stbiw__zlib_huff2(n) : (n) <= 279 ? stbiw__zlib_huff3(n) : stbiw__zlib_huff4(n)) +#define stbiw__zlib_huffb(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : stbiw__zlib_huff2(n)) + +#define stbiw__ZHASH 16384 + +unsigned char * stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality) +{ + static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 }; + static unsigned char lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 }; + static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 }; + static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 }; + unsigned int bitbuf=0; + int i,j, bitcount=0; + unsigned char *out = NULL; + unsigned char ***hash_table = (unsigned char***) STBIW_MALLOC(stbiw__ZHASH * sizeof(char**)); + if (quality < 5) quality = 5; + + stbiw__sbpush(out, 0x78); // DEFLATE 32K window + stbiw__sbpush(out, 0x5e); // FLEVEL = 1 + stbiw__zlib_add(1,1); // BFINAL = 1 + stbiw__zlib_add(1,2); // BTYPE = 1 -- fixed huffman + + for (i=0; i < stbiw__ZHASH; ++i) + hash_table[i] = NULL; + + i=0; + while (i < data_len-3) { + // hash next 3 bytes of data to be compressed + int h = stbiw__zhash(data+i)&(stbiw__ZHASH-1), best=3; + unsigned char *bestloc = 0; + unsigned char **hlist = hash_table[h]; + int n = stbiw__sbcount(hlist); + for (j=0; j < n; ++j) { + if (hlist[j]-data > i-32768) { // if entry lies within window + int d = stbiw__zlib_countm(hlist[j], data+i, data_len-i); + if (d >= best) best=d,bestloc=hlist[j]; + } + } + // when hash table entry is too long, delete half the entries + if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2*quality) { + STBIW_MEMMOVE(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality); + stbiw__sbn(hash_table[h]) = quality; + } + stbiw__sbpush(hash_table[h],data+i); + + if (bestloc) { + // "lazy matching" - check match at *next* byte, and if it's better, do cur byte as literal + h = stbiw__zhash(data+i+1)&(stbiw__ZHASH-1); + hlist = hash_table[h]; + n = stbiw__sbcount(hlist); + for (j=0; j < n; ++j) { + if (hlist[j]-data > i-32767) { + int e = stbiw__zlib_countm(hlist[j], data+i+1, data_len-i-1); + if (e > best) { // if next match is better, bail on current match + bestloc = NULL; + break; + } + } + } + } + + if (bestloc) { + int d = (int) (data+i - bestloc); // distance back + STBIW_ASSERT(d <= 32767 && best <= 258); + for (j=0; best > lengthc[j+1]-1; ++j); + stbiw__zlib_huff(j+257); + if (lengtheb[j]) stbiw__zlib_add(best - lengthc[j], lengtheb[j]); + for (j=0; d > distc[j+1]-1; ++j); + stbiw__zlib_add(stbiw__zlib_bitrev(j,5),5); + if (disteb[j]) stbiw__zlib_add(d - distc[j], disteb[j]); + i += best; + } else { + stbiw__zlib_huffb(data[i]); + ++i; + } + } + // write out final bytes + for (;i < data_len; ++i) + stbiw__zlib_huffb(data[i]); + stbiw__zlib_huff(256); // end of block + // pad with 0 bits to byte boundary + while (bitcount) + stbiw__zlib_add(0,1); + + for (i=0; i < stbiw__ZHASH; ++i) + (void) stbiw__sbfree(hash_table[i]); + STBIW_FREE(hash_table); + + { + // compute adler32 on input + unsigned int s1=1, s2=0; + int blocklen = (int) (data_len % 5552); + j=0; + while (j < data_len) { + for (i=0; i < blocklen; ++i) s1 += data[j+i], s2 += s1; + s1 %= 65521, s2 %= 65521; + j += blocklen; + blocklen = 5552; + } + stbiw__sbpush(out, STBIW_UCHAR(s2 >> 8)); + stbiw__sbpush(out, STBIW_UCHAR(s2)); + stbiw__sbpush(out, STBIW_UCHAR(s1 >> 8)); + stbiw__sbpush(out, STBIW_UCHAR(s1)); + } + *out_len = stbiw__sbn(out); + // make returned pointer freeable + STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len); + return (unsigned char *) stbiw__sbraw(out); +} + +static unsigned int stbiw__crc32(unsigned char *buffer, int len) +{ + static unsigned int crc_table[256] = + { + 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, + 0x0eDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, + 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, + 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, + 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, + 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, + 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, + 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, + 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, + 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, + 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, + 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, + 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, + 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, + 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, + 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, + 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, + 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, + 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, + 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, + 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, + 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, + 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, + 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, + 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, + 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, + 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, + 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, + 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, + 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, + 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, + 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D + }; + + unsigned int crc = ~0u; + int i; + for (i=0; i < len; ++i) + crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)]; + return ~crc; +} + +#define stbiw__wpng4(o,a,b,c,d) ((o)[0]=STBIW_UCHAR(a),(o)[1]=STBIW_UCHAR(b),(o)[2]=STBIW_UCHAR(c),(o)[3]=STBIW_UCHAR(d),(o)+=4) +#define stbiw__wp32(data,v) stbiw__wpng4(data, (v)>>24,(v)>>16,(v)>>8,(v)); +#define stbiw__wptag(data,s) stbiw__wpng4(data, s[0],s[1],s[2],s[3]) + +static void stbiw__wpcrc(unsigned char **data, int len) +{ + unsigned int crc = stbiw__crc32(*data - len - 4, len+4); + stbiw__wp32(*data, crc); +} + +static unsigned char stbiw__paeth(int a, int b, int c) +{ + int p = a + b - c, pa = abs(p-a), pb = abs(p-b), pc = abs(p-c); + if (pa <= pb && pa <= pc) return STBIW_UCHAR(a); + if (pb <= pc) return STBIW_UCHAR(b); + return STBIW_UCHAR(c); +} + +unsigned char *stbi_write_png_to_mem(unsigned char *pixels, int stride_bytes, int x, int y, int n, int *out_len) +{ + int ctype[5] = { -1, 0, 4, 2, 6 }; + unsigned char sig[8] = { 137,80,78,71,13,10,26,10 }; + unsigned char *out,*o, *filt, *zlib; + signed char *line_buffer; + int i,j,k,p,zlen; + + if (stride_bytes == 0) + stride_bytes = x * n; + + filt = (unsigned char *) STBIW_MALLOC((x*n+1) * y); if (!filt) return 0; + line_buffer = (signed char *) STBIW_MALLOC(x * n); if (!line_buffer) { STBIW_FREE(filt); return 0; } + for (j=0; j < y; ++j) { + static int mapping[] = { 0,1,2,3,4 }; + static int firstmap[] = { 0,1,0,5,6 }; + int *mymap = j ? mapping : firstmap; + int best = 0, bestval = 0x7fffffff; + for (p=0; p < 2; ++p) { + for (k= p?best:0; k < 5; ++k) { + int type = mymap[k],est=0; + unsigned char *z = pixels + stride_bytes*j; + for (i=0; i < n; ++i) + switch (type) { + case 0: line_buffer[i] = z[i]; break; + case 1: line_buffer[i] = z[i]; break; + case 2: line_buffer[i] = z[i] - z[i-stride_bytes]; break; + case 3: line_buffer[i] = z[i] - (z[i-stride_bytes]>>1); break; + case 4: line_buffer[i] = (signed char) (z[i] - stbiw__paeth(0,z[i-stride_bytes],0)); break; + case 5: line_buffer[i] = z[i]; break; + case 6: line_buffer[i] = z[i]; break; + } + for (i=n; i < x*n; ++i) { + switch (type) { + case 0: line_buffer[i] = z[i]; break; + case 1: line_buffer[i] = z[i] - z[i-n]; break; + case 2: line_buffer[i] = z[i] - z[i-stride_bytes]; break; + case 3: line_buffer[i] = z[i] - ((z[i-n] + z[i-stride_bytes])>>1); break; + case 4: line_buffer[i] = z[i] - stbiw__paeth(z[i-n], z[i-stride_bytes], z[i-stride_bytes-n]); break; + case 5: line_buffer[i] = z[i] - (z[i-n]>>1); break; + case 6: line_buffer[i] = z[i] - stbiw__paeth(z[i-n], 0,0); break; + } + } + if (p) break; + for (i=0; i < x*n; ++i) + est += abs((signed char) line_buffer[i]); + if (est < bestval) { bestval = est; best = k; } + } + } + // when we get here, best contains the filter type, and line_buffer contains the data + filt[j*(x*n+1)] = (unsigned char) best; + STBIW_MEMMOVE(filt+j*(x*n+1)+1, line_buffer, x*n); + } + STBIW_FREE(line_buffer); + zlib = stbi_zlib_compress(filt, y*( x*n+1), &zlen, 8); // increase 8 to get smaller but use more memory + STBIW_FREE(filt); + if (!zlib) return 0; + + // each tag requires 12 bytes of overhead + out = (unsigned char *) STBIW_MALLOC(8 + 12+13 + 12+zlen + 12); + if (!out) return 0; + *out_len = 8 + 12+13 + 12+zlen + 12; + + o=out; + STBIW_MEMMOVE(o,sig,8); o+= 8; + stbiw__wp32(o, 13); // header length + stbiw__wptag(o, "IHDR"); + stbiw__wp32(o, x); + stbiw__wp32(o, y); + *o++ = 8; + *o++ = STBIW_UCHAR(ctype[n]); + *o++ = 0; + *o++ = 0; + *o++ = 0; + stbiw__wpcrc(&o,13); + + stbiw__wp32(o, zlen); + stbiw__wptag(o, "IDAT"); + STBIW_MEMMOVE(o, zlib, zlen); + o += zlen; + STBIW_FREE(zlib); + stbiw__wpcrc(&o, zlen); + + stbiw__wp32(o,0); + stbiw__wptag(o, "IEND"); + stbiw__wpcrc(&o,0); + + STBIW_ASSERT(o == out + *out_len); + + return out; +} + +#ifndef STBI_WRITE_NO_STDIO +STBIWDEF int stbi_write_png(char const *filename, int x, int y, int comp, const void *data, int stride_bytes) +{ + FILE *f; + int len; + unsigned char *png = stbi_write_png_to_mem((unsigned char *) data, stride_bytes, x, y, comp, &len); + if (png == NULL) return 0; + f = fopen(filename, "wb"); + if (!f) { STBIW_FREE(png); return 0; } + fwrite(png, 1, len, f); + fclose(f); + STBIW_FREE(png); + return 1; +} +#endif + +STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int stride_bytes) +{ + int len; + unsigned char *png = stbi_write_png_to_mem((unsigned char *) data, stride_bytes, x, y, comp, &len); + if (png == NULL) return 0; + func(context, png, len); + STBIW_FREE(png); + return 1; +} + +#endif // STB_IMAGE_WRITE_IMPLEMENTATION + +/* Revision history + 1.02 (2016-04-02) + avoid allocating large structures on the stack + 1.01 (2016-01-16) + STBIW_REALLOC_SIZED: support allocators with no realloc support + avoid race-condition in crc initialization + minor compile issues + 1.00 (2015-09-14) + installable file IO function + 0.99 (2015-09-13) + warning fixes; TGA rle support + 0.98 (2015-04-08) + added STBIW_MALLOC, STBIW_ASSERT etc + 0.97 (2015-01-18) + fixed HDR asserts, rewrote HDR rle logic + 0.96 (2015-01-17) + add HDR output + fix monochrome BMP + 0.95 (2014-08-17) + add monochrome TGA output + 0.94 (2014-05-31) + rename private functions to avoid conflicts with stb_image.h + 0.93 (2014-05-27) + warning fixes + 0.92 (2010-08-01) + casts to unsigned char to fix warnings + 0.91 (2010-07-17) + first public release + 0.90 first internal release +*/ diff --git a/src/ebsynth/deps/ebsynth/vcvarsall.bat b/src/ebsynth/deps/ebsynth/vcvarsall.bat new file mode 100644 index 0000000000000000000000000000000000000000..e5597fbb2b8e4bea7a3eb35c4a4ebd1f3ac3ec92 --- /dev/null +++ b/src/ebsynth/deps/ebsynth/vcvarsall.bat @@ -0,0 +1,16 @@ +@echo off + +for /f "usebackq tokens=*" %%i in (`vswhere -latest -legacy -property installationPath`) do (set vsdir=%%i) +for /f "usebackq tokens=*" %%i in (`vswhere -latest -legacy -property installationVersion`) do (set vsver=%%i) + +if %vsver% geq 15 ( + set vcvarsall="%vsdir%\VC\Auxiliary\Build\vcvarsall.bat" +) else ( + set vcvarsall="%vsdir%\VC\vcvarsall.bat" +) + +echo %vcvarsall% + +if exist %vcvarsall% ( + call %vcvarsall% %* +) diff --git a/src/ebsynth/deps/ebsynth/vswhere.exe b/src/ebsynth/deps/ebsynth/vswhere.exe new file mode 100644 index 0000000000000000000000000000000000000000..ecfb3bfb2f5f6cea19c28d56f67c22c94073031f Binary files /dev/null and b/src/ebsynth/deps/ebsynth/vswhere.exe differ diff --git a/src/ebsynth/deps/gmflow/LICENSE b/src/ebsynth/deps/gmflow/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..8ba17c78e378819527e65ef7d1a767f035a792ac --- /dev/null +++ b/src/ebsynth/deps/gmflow/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2022, Haofei Xu + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/src/ebsynth/deps/gmflow/README.md b/src/ebsynth/deps/gmflow/README.md new file mode 100644 index 0000000000000000000000000000000000000000..17449970f8861dec7fef8d8835fc7e92abeb2332 --- /dev/null +++ b/src/ebsynth/deps/gmflow/README.md @@ -0,0 +1,239 @@ +# GMFlow + + +Official PyTorch implementation of paper: + +[**GMFlow: Learning Optical Flow via Global Matching**](https://arxiv.org/abs/2111.13680), **CVPR 2022, Oral** + +Authors: [Haofei Xu](https://haofeixu.github.io/), [Jing Zhang](https://scholar.google.com.hk/citations?user=9jH5v74AAAAJ), [Jianfei Cai](https://jianfei-cai.github.io/), [Hamid Rezatofighi](https://scholar.google.com/citations?user=VxAuxMwAAAAJ), [Dacheng Tao](https://scholar.google.com/citations?user=RwlJNLcAAAAJ) + + +**11/15/2022 Update: Check out our new work: [Unifying Flow, Stereo and Depth Estimation](https://haofeixu.github.io/unimatch/) and code: [unimatch](https://github.com/autonomousvision/unimatch) for extending GMFlow to stereo and depth tasks. [More pretrained GMFlow models](https://github.com/autonomousvision/unimatch/blob/master/MODEL_ZOO.md) with different speed-accuracy trade-offs are also released. Check out our [Colab](https://colab.research.google.com/drive/1r5m-xVy3Kw60U-m5VB-aQ98oqqg_6cab?usp=sharing) and [HuggingFace](https://huggingface.co/spaces/haofeixu/unimatch) demo to play with GMFlow in your browser!** + + + +**A [video introduction](https://www.bilibili.com/video/BV18A4y1R7PL) (in Chinese) of GMFlow is available at bilibili!** + + + +https://user-images.githubusercontent.com/19343475/174446408-520b8a6c-9714-4ff3-978c-98e23ab29c1f.mp4 + + + + + +We streamline the optical flow estimation pipeline by reformulating optical flow as a **global matching** problem. + + + + +

+ + + + + +## Highlights + +- **Flexible & Modular design** + + We decompose the end-to-end optical flow framework into five components: + + feature extraction, feature enhancement, feature matching, flow propagation and flow refinement. + + One can easily construct a customized optical flow model by combining different components. + +- **High accuracy** + + With only one refinement, GMFlow outperforms 31-refinements RAFT on the challenging Sintel benchmark. + +- **High efficiency** + + A basic GMFlow model (without refinement) runs at 57ms (V100) or 26ms (A100) for Sintel data (436x1024). + + GMFlow gains more speedup than RAFT on high-end GPUs (e.g., A100) since GMFlow doesn't require a large number of sequential computation. + + GMFlow also simplifies backward flow computation without requiring to forward the network twice. The bidirectional flow can be used for occlusion detection with forward-backward consistency check. + +

+ + + + +## Installation + +Our code is based on pytorch 1.9.0, CUDA 10.2 and python 3.8. Higher version pytorch should also work well. + +We recommend using [conda](https://www.anaconda.com/distribution/) for installation: + +``` +conda env create -f environment.yml +conda activate gmflow +``` + +## Demos + +All pretrained models can be downloaded from [google drive](https://drive.google.com/file/d/1d5C5cgHIxWGsFR1vYs5XrQbbUiZl9TX2/view?usp=sharing). + + + +You can run a trained model on a sequence of images and visualize the results: + +``` +CUDA_VISIBLE_DEVICES=0 python main.py \ +--inference_dir demo/sintel_market_1 \ +--output_path output/gmflow-norefine-sintel_market_1 \ +--resume pretrained/gmflow_sintel-0c07dcb3.pth +``` + +You can also predict bidirectional flow with `--pred_bidir_flow` enabled and use `--fwd_bwd_consistency_check` for forward-backward consistency check. More examples can be found in [scripts/demo.sh](scripts/demo.sh). + + + +## Datasets + +The datasets used to train and evaluate GMFlow are as follows: + +* [FlyingChairs](https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html#flyingchairs) +* [FlyingThings3D](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html) +* [Sintel](http://sintel.is.tue.mpg.de/) +* [KITTI](http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow) +* [HD1K](http://hci-benchmark.iwr.uni-heidelberg.de/) + +By default the dataloader [datasets.py](data/datasets.py) assumes the datasets are located in folder `datasets` and are organized as follows: + +``` +datasets +├── FlyingChairs_release +│   └── data +├── FlyingThings3D +│   ├── frames_cleanpass +│   ├── frames_finalpass +│   └── optical_flow +├── HD1K +│   ├── hd1k_challenge +│   ├── hd1k_flow_gt +│   ├── hd1k_flow_uncertainty +│   └── hd1k_input +├── KITTI +│   ├── testing +│   └── training +├── Sintel +│   ├── test +│   └── training +``` + +It is recommended to symlink your dataset root to `datasets`: + +```shell +ln -s $YOUR_DATASET_ROOT datasets +``` + +Otherwise, you may need to change the corresponding paths in [datasets.py](data/datasets.py). + + + +## Evaluation + +You can evaluate a trained GMFlow model by running: + +``` +CUDA_VISIBLE_DEVICES=0 python main.py --eval --val_dataset things sintel --resume pretrained/gmflow_things-e9887eda.pth +``` + +More evaluation scripts can be found in [scripts/evaluate.sh](scripts/evaluate.sh). + + + +For submission to Sintel and KITTI online test sets, you can run [scripts/submission.sh](scripts/submission.sh). + + + +## Training + +All training scripts on FlyingChairs, FlyingThings3D, Sintel and KITTI datasets can be found in [scripts/train_gmflow.sh](scripts/train_gmflow.sh) and [scripts/train_gmflow_with_refine.sh](scripts/train_gmflow_with_refine.sh). + +Note that the basic GMFlow model (without refinement) can be trained on 4x 16GB V100 GPUs. For training GMFlow with refinement, 8x 16GB V100 or 4x 32GB V100 or 4x 40GB A100 GPUs are required by default. You may need to tune the batch size and training iterations according to your hardware. + + + +We support using tensorboard to monitor and visualize the training process. You can first start a tensorboard session with + +```shell +tensorboard --logdir checkpoints +``` + +and then access [http://localhost:6006](http://localhost:6006) in your browser. + + + +## Citation + +If you find our work useful in your research, please consider citing our paper: + +``` +@inproceedings{xu2022gmflow, + title={GMFlow: Learning Optical Flow via Global Matching}, + author={Xu, Haofei and Zhang, Jing and Cai, Jianfei and Rezatofighi, Hamid and Tao, Dacheng}, + booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + pages={8121-8130}, + year={2022} +} +``` + + + +## Acknowledgements + +This project would not have been possible without relying on some awesome repos : [RAFT](https://github.com/princeton-vl/RAFT), [LoFTR](https://github.com/zju3dv/LoFTR), [DETR](https://github.com/facebookresearch/detr), [Swin](https://github.com/microsoft/Swin-Transformer), [mmdetection](https://github.com/open-mmlab/mmdetection) and [Detectron2](https://github.com/facebookresearch/detectron2/blob/main/projects/TridentNet/tridentnet/trident_conv.py). We thank the original authors for their excellent work. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/ebsynth/deps/gmflow/data/__init__.py b/src/ebsynth/deps/gmflow/data/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..eb5d32bae9278af29b0fb106c92b02225ab76453 --- /dev/null +++ b/src/ebsynth/deps/gmflow/data/__init__.py @@ -0,0 +1,7 @@ +from .datasets import build_train_dataset +from .datasets import (FlyingChairs, + FlyingThings3D, + MpiSintel, + KITTI, + HD1K, + ) diff --git a/src/ebsynth/deps/gmflow/data/chairs_split.txt b/src/ebsynth/deps/gmflow/data/chairs_split.txt new file mode 100644 index 0000000000000000000000000000000000000000..6ae8f0b72a22fc061552604c94664e3a0287914e --- /dev/null +++ b/src/ebsynth/deps/gmflow/data/chairs_split.txt @@ -0,0 +1,22872 @@ +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +2 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 +1 +1 \ No newline at end of file diff --git a/src/ebsynth/deps/gmflow/data/datasets.py b/src/ebsynth/deps/gmflow/data/datasets.py new file mode 100644 index 0000000000000000000000000000000000000000..084e0478ec4de91167068ff770458ce777747762 --- /dev/null +++ b/src/ebsynth/deps/gmflow/data/datasets.py @@ -0,0 +1,312 @@ +# Data loading based on https://github.com/NVIDIA/flownet2-pytorch + +import numpy as np +import torch +import torch.utils.data as data + +import os +import random +from glob import glob +import os.path as osp + +from utils import frame_utils +from data.transforms import FlowAugmentor, SparseFlowAugmentor + + +class FlowDataset(data.Dataset): + def __init__(self, aug_params=None, sparse=False, + load_occlusion=False, + ): + self.augmentor = None + self.sparse = sparse + + if aug_params is not None: + if sparse: + self.augmentor = SparseFlowAugmentor(**aug_params) + else: + self.augmentor = FlowAugmentor(**aug_params) + + self.is_test = False + self.init_seed = False + self.flow_list = [] + self.image_list = [] + self.extra_info = [] + + self.load_occlusion = load_occlusion + self.occ_list = [] + + def __getitem__(self, index): + + if self.is_test: + img1 = frame_utils.read_gen(self.image_list[index][0]) + img2 = frame_utils.read_gen(self.image_list[index][1]) + + img1 = np.array(img1).astype(np.uint8)[..., :3] + img2 = np.array(img2).astype(np.uint8)[..., :3] + + img1 = torch.from_numpy(img1).permute(2, 0, 1).float() + img2 = torch.from_numpy(img2).permute(2, 0, 1).float() + + return img1, img2, self.extra_info[index] + + if not self.init_seed: + worker_info = torch.utils.data.get_worker_info() + if worker_info is not None: + torch.manual_seed(worker_info.id) + np.random.seed(worker_info.id) + random.seed(worker_info.id) + self.init_seed = True + + index = index % len(self.image_list) + valid = None + + if self.sparse: + flow, valid = frame_utils.readFlowKITTI(self.flow_list[index]) # [H, W, 2], [H, W] + else: + flow = frame_utils.read_gen(self.flow_list[index]) + + if self.load_occlusion: + occlusion = frame_utils.read_gen(self.occ_list[index]) # [H, W], 0 or 255 (occluded) + + img1 = frame_utils.read_gen(self.image_list[index][0]) + img2 = frame_utils.read_gen(self.image_list[index][1]) + + flow = np.array(flow).astype(np.float32) + img1 = np.array(img1).astype(np.uint8) + img2 = np.array(img2).astype(np.uint8) + + if self.load_occlusion: + occlusion = np.array(occlusion).astype(np.float32) + + # grayscale images + if len(img1.shape) == 2: + img1 = np.tile(img1[..., None], (1, 1, 3)) + img2 = np.tile(img2[..., None], (1, 1, 3)) + else: + img1 = img1[..., :3] + img2 = img2[..., :3] + + if self.augmentor is not None: + if self.sparse: + img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid) + else: + if self.load_occlusion: + img1, img2, flow, occlusion = self.augmentor(img1, img2, flow, occlusion=occlusion) + else: + img1, img2, flow = self.augmentor(img1, img2, flow) + + img1 = torch.from_numpy(img1).permute(2, 0, 1).float() + img2 = torch.from_numpy(img2).permute(2, 0, 1).float() + flow = torch.from_numpy(flow).permute(2, 0, 1).float() + + if self.load_occlusion: + occlusion = torch.from_numpy(occlusion) # [H, W] + + if valid is not None: + valid = torch.from_numpy(valid) + else: + valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000) + + # mask out occluded pixels + if self.load_occlusion: + # non-occlusion: 0, occlusion: 255 + noc_valid = 1 - occlusion / 255. # 0 or 1 + + return img1, img2, flow, valid.float(), noc_valid.float() + + return img1, img2, flow, valid.float() + + def __rmul__(self, v): + self.flow_list = v * self.flow_list + self.image_list = v * self.image_list + + return self + + def __len__(self): + return len(self.image_list) + + +class MpiSintel(FlowDataset): + def __init__(self, aug_params=None, split='training', + root='datasets/Sintel', + dstype='clean', + load_occlusion=False, + ): + super(MpiSintel, self).__init__(aug_params, + load_occlusion=load_occlusion, + ) + + flow_root = osp.join(root, split, 'flow') + image_root = osp.join(root, split, dstype) + + if load_occlusion: + occlusion_root = osp.join(root, split, 'occlusions') + + if split == 'test': + self.is_test = True + + for scene in os.listdir(image_root): + image_list = sorted(glob(osp.join(image_root, scene, '*.png'))) + for i in range(len(image_list) - 1): + self.image_list += [[image_list[i], image_list[i + 1]]] + self.extra_info += [(scene, i)] # scene and frame_id + + if split != 'test': + self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo'))) + + if load_occlusion: + self.occ_list += sorted(glob(osp.join(occlusion_root, scene, '*.png'))) + + +class FlyingChairs(FlowDataset): + def __init__(self, aug_params=None, split='train', + root='datasets/FlyingChairs_release/data', + ): + super(FlyingChairs, self).__init__(aug_params) + + images = sorted(glob(osp.join(root, '*.ppm'))) + flows = sorted(glob(osp.join(root, '*.flo'))) + assert (len(images) // 2 == len(flows)) + + split_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'chairs_split.txt') + split_list = np.loadtxt(split_file, dtype=np.int32) + for i in range(len(flows)): + xid = split_list[i] + if (split == 'training' and xid == 1) or (split == 'validation' and xid == 2): + self.flow_list += [flows[i]] + self.image_list += [[images[2 * i], images[2 * i + 1]]] + + +class FlyingThings3D(FlowDataset): + def __init__(self, aug_params=None, + root='datasets/FlyingThings3D', + dstype='frames_cleanpass', + test_set=False, + validate_subset=True, + ): + super(FlyingThings3D, self).__init__(aug_params) + + img_dir = root + flow_dir = root + + for cam in ['left']: + for direction in ['into_future', 'into_past']: + if test_set: + image_dirs = sorted(glob(osp.join(img_dir, dstype, 'TEST/*/*'))) + else: + image_dirs = sorted(glob(osp.join(img_dir, dstype, 'TRAIN/*/*'))) + image_dirs = sorted([osp.join(f, cam) for f in image_dirs]) + + if test_set: + flow_dirs = sorted(glob(osp.join(flow_dir, 'optical_flow/TEST/*/*'))) + else: + flow_dirs = sorted(glob(osp.join(flow_dir, 'optical_flow/TRAIN/*/*'))) + flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs]) + + for idir, fdir in zip(image_dirs, flow_dirs): + images = sorted(glob(osp.join(idir, '*.png'))) + flows = sorted(glob(osp.join(fdir, '*.pfm'))) + for i in range(len(flows) - 1): + if direction == 'into_future': + self.image_list += [[images[i], images[i + 1]]] + self.flow_list += [flows[i]] + elif direction == 'into_past': + self.image_list += [[images[i + 1], images[i]]] + self.flow_list += [flows[i + 1]] + + # validate on 1024 subset of test set for fast speed + if test_set and validate_subset: + num_val_samples = 1024 + all_test_samples = len(self.image_list) # 7866 + + stride = all_test_samples // num_val_samples + remove = all_test_samples % num_val_samples + + # uniformly sample a subset + self.image_list = self.image_list[:-remove][::stride] + self.flow_list = self.flow_list[:-remove][::stride] + + +class KITTI(FlowDataset): + def __init__(self, aug_params=None, split='training', + root='datasets/KITTI', + ): + super(KITTI, self).__init__(aug_params, sparse=True, + ) + if split == 'testing': + self.is_test = True + + root = osp.join(root, split) + images1 = sorted(glob(osp.join(root, 'image_2/*_10.png'))) + images2 = sorted(glob(osp.join(root, 'image_2/*_11.png'))) + + for img1, img2 in zip(images1, images2): + frame_id = img1.split('/')[-1] + self.extra_info += [[frame_id]] + self.image_list += [[img1, img2]] + + if split == 'training': + self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png'))) + + +class HD1K(FlowDataset): + def __init__(self, aug_params=None, root='datasets/HD1K'): + super(HD1K, self).__init__(aug_params, sparse=True) + + seq_ix = 0 + while 1: + flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix))) + images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix))) + + if len(flows) == 0: + break + + for i in range(len(flows) - 1): + self.flow_list += [flows[i]] + self.image_list += [[images[i], images[i + 1]]] + + seq_ix += 1 + + +def build_train_dataset(args): + """ Create the data loader for the corresponding training set """ + if args.stage == 'chairs': + aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True} + + train_dataset = FlyingChairs(aug_params, split='training') + + elif args.stage == 'things': + aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True} + + clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass') + final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass') + train_dataset = clean_dataset + final_dataset + + elif args.stage == 'sintel': + # 1041 pairs for clean and final each + aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True} + + things = FlyingThings3D(aug_params, dstype='frames_cleanpass') # 40302 + + sintel_clean = MpiSintel(aug_params, split='training', dstype='clean') + sintel_final = MpiSintel(aug_params, split='training', dstype='final') + + aug_params = {'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True} + + kitti = KITTI(aug_params=aug_params) # 200 + + aug_params = {'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True} + + hd1k = HD1K(aug_params=aug_params) # 1047 + + train_dataset = 100 * sintel_clean + 100 * sintel_final + 200 * kitti + 5 * hd1k + things + + elif args.stage == 'kitti': + aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False} + + train_dataset = KITTI(aug_params, split='training', + ) + else: + raise ValueError(f'stage {args.stage} is not supported') + + return train_dataset diff --git a/src/ebsynth/deps/gmflow/data/transforms.py b/src/ebsynth/deps/gmflow/data/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..c97152e212570fe5e26f07fbe2c0edc3315856dd --- /dev/null +++ b/src/ebsynth/deps/gmflow/data/transforms.py @@ -0,0 +1,284 @@ +import numpy as np +import cv2 +from PIL import Image +from torchvision.transforms import ColorJitter + + +class FlowAugmentor: + def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=True, + no_eraser_aug=True, + ): + # spatial augmentation params + self.crop_size = crop_size + self.min_scale = min_scale + self.max_scale = max_scale + self.spatial_aug_prob = 0.8 + self.stretch_prob = 0.8 + self.max_stretch = 0.2 + + # flip augmentation params + self.do_flip = do_flip + self.h_flip_prob = 0.5 + self.v_flip_prob = 0.1 + + # photometric augmentation params + self.photo_aug = ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5 / 3.14) + + self.asymmetric_color_aug_prob = 0.2 + + if no_eraser_aug: + # we disable eraser aug since no obvious improvement is observed in our experiments + self.eraser_aug_prob = -1 + else: + self.eraser_aug_prob = 0.5 + + def color_transform(self, img1, img2): + """ Photometric augmentation """ + + # asymmetric + if np.random.rand() < self.asymmetric_color_aug_prob: + img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8) + img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8) + + # symmetric + else: + image_stack = np.concatenate([img1, img2], axis=0) + image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) + img1, img2 = np.split(image_stack, 2, axis=0) + + return img1, img2 + + def eraser_transform(self, img1, img2, bounds=[50, 100]): + """ Occlusion augmentation """ + + ht, wd = img1.shape[:2] + if np.random.rand() < self.eraser_aug_prob: + mean_color = np.mean(img2.reshape(-1, 3), axis=0) + for _ in range(np.random.randint(1, 3)): + x0 = np.random.randint(0, wd) + y0 = np.random.randint(0, ht) + dx = np.random.randint(bounds[0], bounds[1]) + dy = np.random.randint(bounds[0], bounds[1]) + img2[y0:y0 + dy, x0:x0 + dx, :] = mean_color + + return img1, img2 + + def spatial_transform(self, img1, img2, flow, occlusion=None): + # randomly sample scale + ht, wd = img1.shape[:2] + + min_scale = np.maximum( + (self.crop_size[0] + 8) / float(ht), + (self.crop_size[1] + 8) / float(wd)) + + scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) + scale_x = scale + scale_y = scale + if np.random.rand() < self.stretch_prob: + scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) + scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) + + scale_x = np.clip(scale_x, min_scale, None) + scale_y = np.clip(scale_y, min_scale, None) + + if np.random.rand() < self.spatial_aug_prob: + # rescale the images + img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + flow = flow * [scale_x, scale_y] + + if occlusion is not None: + occlusion = cv2.resize(occlusion, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + + if self.do_flip: + if np.random.rand() < self.h_flip_prob: # h-flip + img1 = img1[:, ::-1] + img2 = img2[:, ::-1] + flow = flow[:, ::-1] * [-1.0, 1.0] + + if occlusion is not None: + occlusion = occlusion[:, ::-1] + + if np.random.rand() < self.v_flip_prob: # v-flip + img1 = img1[::-1, :] + img2 = img2[::-1, :] + flow = flow[::-1, :] * [1.0, -1.0] + + if occlusion is not None: + occlusion = occlusion[::-1, :] + + # In case no cropping + if img1.shape[0] - self.crop_size[0] > 0: + y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0]) + else: + y0 = 0 + if img1.shape[1] - self.crop_size[1] > 0: + x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1]) + else: + x0 = 0 + + img1 = img1[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + img2 = img2[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + flow = flow[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + + if occlusion is not None: + occlusion = occlusion[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + return img1, img2, flow, occlusion + + return img1, img2, flow + + def __call__(self, img1, img2, flow, occlusion=None): + img1, img2 = self.color_transform(img1, img2) + img1, img2 = self.eraser_transform(img1, img2) + + if occlusion is not None: + img1, img2, flow, occlusion = self.spatial_transform( + img1, img2, flow, occlusion) + else: + img1, img2, flow = self.spatial_transform(img1, img2, flow) + + img1 = np.ascontiguousarray(img1) + img2 = np.ascontiguousarray(img2) + flow = np.ascontiguousarray(flow) + + if occlusion is not None: + occlusion = np.ascontiguousarray(occlusion) + return img1, img2, flow, occlusion + + return img1, img2, flow + + +class SparseFlowAugmentor: + def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=False, + no_eraser_aug=True, + ): + # spatial augmentation params + self.crop_size = crop_size + self.min_scale = min_scale + self.max_scale = max_scale + self.spatial_aug_prob = 0.8 + self.stretch_prob = 0.8 + self.max_stretch = 0.2 + + # flip augmentation params + self.do_flip = do_flip + self.h_flip_prob = 0.5 + self.v_flip_prob = 0.1 + + # photometric augmentation params + self.photo_aug = ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3 / 3.14) + self.asymmetric_color_aug_prob = 0.2 + + if no_eraser_aug: + # we disable eraser aug since no obvious improvement is observed in our experiments + self.eraser_aug_prob = -1 + else: + self.eraser_aug_prob = 0.5 + + def color_transform(self, img1, img2): + image_stack = np.concatenate([img1, img2], axis=0) + image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) + img1, img2 = np.split(image_stack, 2, axis=0) + return img1, img2 + + def eraser_transform(self, img1, img2): + ht, wd = img1.shape[:2] + if np.random.rand() < self.eraser_aug_prob: + mean_color = np.mean(img2.reshape(-1, 3), axis=0) + for _ in range(np.random.randint(1, 3)): + x0 = np.random.randint(0, wd) + y0 = np.random.randint(0, ht) + dx = np.random.randint(50, 100) + dy = np.random.randint(50, 100) + img2[y0:y0 + dy, x0:x0 + dx, :] = mean_color + + return img1, img2 + + def resize_sparse_flow_map(self, flow, valid, fx=1.0, fy=1.0): + ht, wd = flow.shape[:2] + coords = np.meshgrid(np.arange(wd), np.arange(ht)) + coords = np.stack(coords, axis=-1) + + coords = coords.reshape(-1, 2).astype(np.float32) + flow = flow.reshape(-1, 2).astype(np.float32) + valid = valid.reshape(-1).astype(np.float32) + + coords0 = coords[valid >= 1] + flow0 = flow[valid >= 1] + + ht1 = int(round(ht * fy)) + wd1 = int(round(wd * fx)) + + coords1 = coords0 * [fx, fy] + flow1 = flow0 * [fx, fy] + + xx = np.round(coords1[:, 0]).astype(np.int32) + yy = np.round(coords1[:, 1]).astype(np.int32) + + v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1) + xx = xx[v] + yy = yy[v] + flow1 = flow1[v] + + flow_img = np.zeros([ht1, wd1, 2], dtype=np.float32) + valid_img = np.zeros([ht1, wd1], dtype=np.int32) + + flow_img[yy, xx] = flow1 + valid_img[yy, xx] = 1 + + return flow_img, valid_img + + def spatial_transform(self, img1, img2, flow, valid): + # randomly sample scale + + ht, wd = img1.shape[:2] + min_scale = np.maximum( + (self.crop_size[0] + 1) / float(ht), + (self.crop_size[1] + 1) / float(wd)) + + scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) + scale_x = np.clip(scale, min_scale, None) + scale_y = np.clip(scale, min_scale, None) + + if np.random.rand() < self.spatial_aug_prob: + # rescale the images + img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + + flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y) + + if self.do_flip: + if np.random.rand() < 0.5: # h-flip + img1 = img1[:, ::-1] + img2 = img2[:, ::-1] + flow = flow[:, ::-1] * [-1.0, 1.0] + valid = valid[:, ::-1] + + margin_y = 20 + margin_x = 50 + + y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0] + margin_y) + x0 = np.random.randint(-margin_x, img1.shape[1] - self.crop_size[1] + margin_x) + + y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0]) + x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1]) + + img1 = img1[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + img2 = img2[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + flow = flow[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + valid = valid[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + return img1, img2, flow, valid + + def __call__(self, img1, img2, flow, valid): + img1, img2 = self.color_transform(img1, img2) + img1, img2 = self.eraser_transform(img1, img2) + + img1, img2, flow, valid = self.spatial_transform(img1, img2, flow, valid) + + img1 = np.ascontiguousarray(img1) + img2 = np.ascontiguousarray(img2) + flow = np.ascontiguousarray(flow) + valid = np.ascontiguousarray(valid) + + return img1, img2, flow, valid diff --git a/src/ebsynth/deps/gmflow/environment.yml b/src/ebsynth/deps/gmflow/environment.yml new file mode 100644 index 0000000000000000000000000000000000000000..f7e6fd86e66d7b5fad3a38aeb8c6ae02528ca439 --- /dev/null +++ b/src/ebsynth/deps/gmflow/environment.yml @@ -0,0 +1,162 @@ +name: gmflow +channels: + - pytorch + - defaults +dependencies: + - _libgcc_mutex=0.1=main + - _openmp_mutex=4.5=1_gnu + - blas=1.0=mkl + - bottleneck=1.3.2=py38heb32a55_1 + - brotli=1.0.9=he6710b0_2 + - bzip2=1.0.8=h7b6447c_0 + - ca-certificates=2021.10.26=h06a4308_2 + - certifi=2021.10.8=py38h06a4308_2 + - cudatoolkit=10.2.89=hfd86e86_1 + - cycler=0.10.0=py38_0 + - dbus=1.13.18=hb2f20db_0 + - expat=2.4.1=h2531618_2 + - ffmpeg=4.3=hf484d3e_0 + - fontconfig=2.13.1=h6c09931_0 + - fonttools=4.25.0=pyhd3eb1b0_0 + - freetype=2.10.4=h5ab3b9f_0 + - glib=2.69.0=h5202010_0 + - gmp=6.2.1=h2531618_2 + - gnutls=3.6.15=he1e5248_0 + - gst-plugins-base=1.14.0=h8213a91_2 + - gstreamer=1.14.0=h28cd5cc_2 + - icu=58.2=he6710b0_3 + - imageio=2.9.0=pyhd3eb1b0_0 + - intel-openmp=2021.3.0=h06a4308_3350 + - jpeg=9b=h024ee3a_2 + - kiwisolver=1.3.1=py38h2531618_0 + - lame=3.100=h7b6447c_0 + - lcms2=2.12=h3be6417_0 + - ld_impl_linux-64=2.35.1=h7274673_9 + - libffi=3.3=he6710b0_2 + - libgcc-ng=9.3.0=h5101ec6_17 + - libgfortran-ng=7.5.0=ha8ba4b0_17 + - libgfortran4=7.5.0=ha8ba4b0_17 + - libgomp=9.3.0=h5101ec6_17 + - libiconv=1.15=h63c8f33_5 + - libidn2=2.3.2=h7f8727e_0 + - libpng=1.6.37=hbc83047_0 + - libstdcxx-ng=9.3.0=hd4cf53a_17 + - libtasn1=4.16.0=h27cfd23_0 + - libtiff=4.2.0=h85742a9_0 + - libunistring=0.9.10=h27cfd23_0 + - libuuid=1.0.3=h1bed415_2 + - libuv=1.40.0=h7b6447c_0 + - libwebp-base=1.2.0=h27cfd23_0 + - libxcb=1.14=h7b6447c_0 + - libxml2=2.9.12=h03d6c58_0 + - lz4-c=1.9.3=h2531618_0 + - matplotlib=3.4.2=py38h06a4308_0 + - matplotlib-base=3.4.2=py38hab158f2_0 + - mkl=2021.3.0=h06a4308_520 + - mkl-service=2.4.0=py38h7f8727e_0 + - mkl_fft=1.3.0=py38h42c9631_2 + - mkl_random=1.2.2=py38h51133e4_0 + - munkres=1.1.4=py_0 + - ncurses=6.2=he6710b0_1 + - nettle=3.7.3=hbbd107a_1 + - ninja=1.10.2=hff7bd54_1 + - numexpr=2.7.3=py38h22e1b3c_1 + - numpy=1.20.3=py38hf144106_0 + - numpy-base=1.20.3=py38h74d4b33_0 + - olefile=0.46=py_0 + - openh264=2.1.0=hd408876_0 + - openjpeg=2.3.0=h05c96fa_1 + - openssl=1.1.1m=h7f8727e_0 + - pandas=1.3.2=py38h8c16a72_0 + - pcre=8.45=h295c915_0 + - pillow=8.3.1=py38h2c7a002_0 + - pip=21.2.2=py38h06a4308_0 + - pyparsing=2.4.7=pyhd3eb1b0_0 + - pyqt=5.9.2=py38h05f1152_4 + - python=3.8.11=h12debd9_0_cpython + - python-dateutil=2.8.2=pyhd3eb1b0_0 + - pytorch=1.9.0=py3.8_cuda10.2_cudnn7.6.5_0 + - pytz=2021.1=pyhd3eb1b0_0 + - qt=5.9.7=h5867ecd_1 + - readline=8.1=h27cfd23_0 + - scipy=1.6.2=py38had2a1c9_1 + - seaborn=0.11.2=pyhd3eb1b0_0 + - setuptools=52.0.0=py38h06a4308_0 + - sip=4.19.13=py38he6710b0_0 + - six=1.16.0=pyhd3eb1b0_0 + - sqlite=3.36.0=hc218d9a_0 + - tk=8.6.10=hbc83047_0 + - torchaudio=0.9.0=py38 + - torchvision=0.10.0=py38_cu102 + - tornado=6.1=py38h27cfd23_0 + - typing_extensions=3.10.0.0=pyh06a4308_0 + - wheel=0.36.2=pyhd3eb1b0_0 + - xz=5.2.5=h7b6447c_0 + - zlib=1.2.11=h7b6447c_3 + - zstd=1.4.9=haebb681_0 + - pip: + - absl-py==0.13.0 + - argon2-cffi==21.1.0 + - attrs==21.2.0 + - backcall==0.2.0 + - bleach==4.1.0 + - cachetools==4.2.2 + - cffi==1.14.6 + - charset-normalizer==2.0.4 + - debugpy==1.4.3 + - decorator==5.1.0 + - defusedxml==0.7.1 + - einops==0.3.2 + - entrypoints==0.3 + - google-auth==1.34.0 + - google-auth-oauthlib==0.4.5 + - grpcio==1.39.0 + - idna==3.2 + - ipykernel==6.4.1 + - ipython==7.27.0 + - ipython-genutils==0.2.0 + - jedi==0.18.0 + - jinja2==3.0.1 + - jsonschema==3.2.0 + - jupyter-client==7.0.3 + - jupyter-core==4.8.1 + - jupyterlab-pygments==0.1.2 + - markdown==3.3.4 + - markupsafe==2.0.1 + - matplotlib-inline==0.1.3 + - mistune==0.8.4 + - nbclient==0.5.4 + - nbconvert==6.1.0 + - nbformat==5.1.3 + - nest-asyncio==1.5.1 + - oauthlib==3.1.1 + - opencv-python==4.5.3.56 + - packaging==21.0 + - pandocfilters==1.5.0 + - parso==0.8.2 + - pexpect==4.8.0 + - pickleshare==0.7.5 + - prometheus-client==0.11.0 + - prompt-toolkit==3.0.20 + - protobuf==3.17.3 + - ptyprocess==0.7.0 + - pyasn1==0.4.8 + - pyasn1-modules==0.2.8 + - pycparser==2.20 + - pygments==2.10.0 + - pyrsistent==0.18.0 + - pyzmq==22.3.0 + - requests==2.26.0 + - requests-oauthlib==1.3.0 + - rsa==4.7.2 + - send2trash==1.8.0 + - tensorboard==2.5.0 + - tensorboard-data-server==0.6.1 + - tensorboard-plugin-wit==1.8.0 + - terminado==0.12.1 + - testpath==0.5.0 + - traitlets==5.1.0 + - urllib3==1.26.6 + - wcwidth==0.2.5 + - webencodings==0.5.1 + - werkzeug==2.0.1 diff --git a/src/ebsynth/deps/gmflow/evaluate.py b/src/ebsynth/deps/gmflow/evaluate.py new file mode 100644 index 0000000000000000000000000000000000000000..e2aac7735a86f7f6c8a3f32d62fdc2b55ee75f23 --- /dev/null +++ b/src/ebsynth/deps/gmflow/evaluate.py @@ -0,0 +1,689 @@ +from PIL import Image +import os +import time +import numpy as np +import torch +import torch.nn.functional as F + +import data +from utils import frame_utils +from utils.flow_viz import save_vis_flow_tofile + +from utils.utils import InputPadder, compute_out_of_boundary_mask +from glob import glob +from gmflow.geometry import forward_backward_consistency_check + + +@torch.no_grad() +def create_sintel_submission(model, + output_path='sintel_submission', + padding_factor=8, + save_vis_flow=False, + no_save_flo=False, + attn_splits_list=None, + corr_radius_list=None, + prop_radius_list=None, + ): + """ Create submission for the Sintel leaderboard """ + model.eval() + for dstype in ['clean', 'final']: + test_dataset = data.MpiSintel(split='test', aug_params=None, dstype=dstype) + + flow_prev, sequence_prev = None, None + for test_id in range(len(test_dataset)): + image1, image2, (sequence, frame) = test_dataset[test_id] + if sequence != sequence_prev: + flow_prev = None + + padder = InputPadder(image1.shape, padding_factor=padding_factor) + image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) + + results_dict = model(image1, image2, + attn_splits_list=attn_splits_list, + corr_radius_list=corr_radius_list, + prop_radius_list=prop_radius_list, + ) + + flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W] + + flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() + + output_dir = os.path.join(output_path, dstype, sequence) + output_file = os.path.join(output_dir, 'frame%04d.flo' % (frame + 1)) + + if not os.path.exists(output_dir): + os.makedirs(output_dir) + + if not no_save_flo: + frame_utils.writeFlow(output_file, flow) + sequence_prev = sequence + + # Save vis flow + if save_vis_flow: + vis_flow_file = output_file.replace('.flo', '.png') + save_vis_flow_tofile(flow, vis_flow_file) + + +@torch.no_grad() +def create_kitti_submission(model, + output_path='kitti_submission', + padding_factor=8, + save_vis_flow=False, + attn_splits_list=None, + corr_radius_list=None, + prop_radius_list=None, + ): + """ Create submission for the Sintel leaderboard """ + model.eval() + test_dataset = data.KITTI(split='testing', aug_params=None) + + if not os.path.exists(output_path): + os.makedirs(output_path) + + for test_id in range(len(test_dataset)): + image1, image2, (frame_id,) = test_dataset[test_id] + padder = InputPadder(image1.shape, mode='kitti', padding_factor=padding_factor) + image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) + + results_dict = model(image1, image2, + attn_splits_list=attn_splits_list, + corr_radius_list=corr_radius_list, + prop_radius_list=prop_radius_list, + ) + + flow_pr = results_dict['flow_preds'][-1] + + flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() + + output_filename = os.path.join(output_path, frame_id) + + if save_vis_flow: + vis_flow_file = output_filename + save_vis_flow_tofile(flow, vis_flow_file) + else: + frame_utils.writeFlowKITTI(output_filename, flow) + + +@torch.no_grad() +def validate_chairs(model, + with_speed_metric=False, + attn_splits_list=False, + corr_radius_list=False, + prop_radius_list=False, + ): + """ Perform evaluation on the FlyingChairs (test) split """ + model.eval() + epe_list = [] + results = {} + + if with_speed_metric: + s0_10_list = [] + s10_40_list = [] + s40plus_list = [] + + val_dataset = data.FlyingChairs(split='validation') + + print('Number of validation image pairs: %d' % len(val_dataset)) + + for val_id in range(len(val_dataset)): + image1, image2, flow_gt, _ = val_dataset[val_id] + + image1 = image1[None].cuda() + image2 = image2[None].cuda() + + results_dict = model(image1, image2, + attn_splits_list=attn_splits_list, + corr_radius_list=corr_radius_list, + prop_radius_list=prop_radius_list, + ) + + flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W] + + assert flow_pr.size()[-2:] == flow_gt.size()[-2:] + + epe = torch.sum((flow_pr[0].cpu() - flow_gt) ** 2, dim=0).sqrt() + epe_list.append(epe.view(-1).numpy()) + + if with_speed_metric: + flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt() + valid_mask = (flow_gt_speed < 10) + if valid_mask.max() > 0: + s0_10_list.append(epe[valid_mask].cpu().numpy()) + + valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) + if valid_mask.max() > 0: + s10_40_list.append(epe[valid_mask].cpu().numpy()) + + valid_mask = (flow_gt_speed > 40) + if valid_mask.max() > 0: + s40plus_list.append(epe[valid_mask].cpu().numpy()) + + epe_all = np.concatenate(epe_list) + epe = np.mean(epe_all) + px1 = np.mean(epe_all > 1) + px3 = np.mean(epe_all > 3) + px5 = np.mean(epe_all > 5) + print("Validation Chairs EPE: %.3f, 1px: %.3f, 3px: %.3f, 5px: %.3f" % (epe, px1, px3, px5)) + results['chairs_epe'] = epe + results['chairs_1px'] = px1 + results['chairs_3px'] = px3 + results['chairs_5px'] = px5 + + if with_speed_metric: + s0_10 = np.mean(np.concatenate(s0_10_list)) + s10_40 = np.mean(np.concatenate(s10_40_list)) + s40plus = np.mean(np.concatenate(s40plus_list)) + + print("Validation Chairs s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % ( + s0_10, + s10_40, + s40plus)) + + results['chairs_s0_10'] = s0_10 + results['chairs_s10_40'] = s10_40 + results['chairs_s40+'] = s40plus + + return results + + +@torch.no_grad() +def validate_things(model, + padding_factor=8, + with_speed_metric=False, + max_val_flow=400, + val_things_clean_only=True, + attn_splits_list=False, + corr_radius_list=False, + prop_radius_list=False, + ): + """ Peform validation using the Things (test) split """ + model.eval() + results = {} + + for dstype in ['frames_cleanpass', 'frames_finalpass']: + if val_things_clean_only: + if dstype == 'frames_finalpass': + continue + + val_dataset = data.FlyingThings3D(dstype=dstype, test_set=True, validate_subset=True, + ) + print('Number of validation image pairs: %d' % len(val_dataset)) + epe_list = [] + + if with_speed_metric: + s0_10_list = [] + s10_40_list = [] + s40plus_list = [] + + for val_id in range(len(val_dataset)): + image1, image2, flow_gt, valid_gt = val_dataset[val_id] + image1 = image1[None].cuda() + image2 = image2[None].cuda() + + padder = InputPadder(image1.shape, padding_factor=padding_factor) + image1, image2 = padder.pad(image1, image2) + + results_dict = model(image1, image2, + attn_splits_list=attn_splits_list, + corr_radius_list=corr_radius_list, + prop_radius_list=prop_radius_list, + ) + flow_pr = results_dict['flow_preds'][-1] + + flow = padder.unpad(flow_pr[0]).cpu() + + # Evaluation on flow <= max_val_flow + flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt() + valid_gt = valid_gt * (flow_gt_speed < max_val_flow) + valid_gt = valid_gt.contiguous() + + epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt() + val = valid_gt >= 0.5 + epe_list.append(epe[val].cpu().numpy()) + + if with_speed_metric: + valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5) + if valid_mask.max() > 0: + s0_10_list.append(epe[valid_mask].cpu().numpy()) + + valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5) + if valid_mask.max() > 0: + s10_40_list.append(epe[valid_mask].cpu().numpy()) + + valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5) + if valid_mask.max() > 0: + s40plus_list.append(epe[valid_mask].cpu().numpy()) + + epe_list = np.mean(np.concatenate(epe_list)) + + epe = np.mean(epe_list) + + if dstype == 'frames_cleanpass': + dstype = 'things_clean' + if dstype == 'frames_finalpass': + dstype = 'things_final' + + print("Validation Things test set (%s) EPE: %.3f" % (dstype, epe)) + results[dstype + '_epe'] = epe + + if with_speed_metric: + s0_10 = np.mean(np.concatenate(s0_10_list)) + s10_40 = np.mean(np.concatenate(s10_40_list)) + s40plus = np.mean(np.concatenate(s40plus_list)) + + print("Validation Things test (%s) s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % ( + dstype, s0_10, + s10_40, + s40plus)) + + results[dstype + '_s0_10'] = s0_10 + results[dstype + '_s10_40'] = s10_40 + results[dstype + '_s40+'] = s40plus + + return results + + +@torch.no_grad() +def validate_sintel(model, + count_time=False, + padding_factor=8, + with_speed_metric=False, + evaluate_matched_unmatched=False, + attn_splits_list=False, + corr_radius_list=False, + prop_radius_list=False, + ): + """ Peform validation using the Sintel (train) split """ + model.eval() + results = {} + + if count_time: + total_time = 0 + num_runs = 100 + + for dstype in ['clean', 'final']: + val_dataset = data.MpiSintel(split='training', dstype=dstype, + load_occlusion=evaluate_matched_unmatched, + ) + + print('Number of validation image pairs: %d' % len(val_dataset)) + epe_list = [] + + if evaluate_matched_unmatched: + matched_epe_list = [] + unmatched_epe_list = [] + + if with_speed_metric: + s0_10_list = [] + s10_40_list = [] + s40plus_list = [] + + for val_id in range(len(val_dataset)): + if evaluate_matched_unmatched: + image1, image2, flow_gt, valid, noc_valid = val_dataset[val_id] + + # compuate in-image-plane valid mask + in_image_valid = compute_out_of_boundary_mask(flow_gt.unsqueeze(0)).squeeze(0) # [H, W] + + else: + image1, image2, flow_gt, _ = val_dataset[val_id] + + image1 = image1[None].cuda() + image2 = image2[None].cuda() + + padder = InputPadder(image1.shape, padding_factor=padding_factor) + image1, image2 = padder.pad(image1, image2) + + if count_time and val_id >= 5: # 5 warmup + torch.cuda.synchronize() + time_start = time.perf_counter() + + results_dict = model(image1, image2, + attn_splits_list=attn_splits_list, + corr_radius_list=corr_radius_list, + prop_radius_list=prop_radius_list, + ) + + # useful when using parallel branches + flow_pr = results_dict['flow_preds'][-1] + + if count_time and val_id >= 5: + torch.cuda.synchronize() + total_time += time.perf_counter() - time_start + + if val_id >= num_runs + 4: + break + + flow = padder.unpad(flow_pr[0]).cpu() + + epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt() + epe_list.append(epe.view(-1).numpy()) + + if evaluate_matched_unmatched: + matched_valid_mask = (noc_valid > 0.5) & (in_image_valid > 0.5) + + if matched_valid_mask.max() > 0: + matched_epe_list.append(epe[matched_valid_mask].cpu().numpy()) + unmatched_epe_list.append(epe[~matched_valid_mask].cpu().numpy()) + + if with_speed_metric: + flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt() + valid_mask = (flow_gt_speed < 10) + if valid_mask.max() > 0: + s0_10_list.append(epe[valid_mask].cpu().numpy()) + + valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) + if valid_mask.max() > 0: + s10_40_list.append(epe[valid_mask].cpu().numpy()) + + valid_mask = (flow_gt_speed > 40) + if valid_mask.max() > 0: + s40plus_list.append(epe[valid_mask].cpu().numpy()) + + epe_all = np.concatenate(epe_list) + epe = np.mean(epe_all) + px1 = np.mean(epe_all > 1) + px3 = np.mean(epe_all > 3) + px5 = np.mean(epe_all > 5) + + dstype_ori = dstype + + print("Validation Sintel (%s) EPE: %.3f, 1px: %.3f, 3px: %.3f, 5px: %.3f" % (dstype_ori, epe, px1, px3, px5)) + + dstype = 'sintel_' + dstype + + results[dstype + '_epe'] = np.mean(epe_list) + results[dstype + '_1px'] = px1 + results[dstype + '_3px'] = px3 + results[dstype + '_5px'] = px5 + + if with_speed_metric: + s0_10 = np.mean(np.concatenate(s0_10_list)) + s10_40 = np.mean(np.concatenate(s10_40_list)) + s40plus = np.mean(np.concatenate(s40plus_list)) + + print("Validation Sintel (%s) s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % ( + dstype_ori, s0_10, + s10_40, + s40plus)) + + results[dstype + '_s0_10'] = s0_10 + results[dstype + '_s10_40'] = s10_40 + results[dstype + '_s40+'] = s40plus + + if count_time: + print('Time: %.6fs' % (total_time / num_runs)) + break # only the clean pass when counting time + + if evaluate_matched_unmatched: + matched_epe = np.mean(np.concatenate(matched_epe_list)) + unmatched_epe = np.mean(np.concatenate(unmatched_epe_list)) + + print('Validatation Sintel (%s) matched epe: %.3f, unmatched epe: %.3f' % ( + dstype_ori, matched_epe, unmatched_epe)) + + results[dstype + '_matched'] = matched_epe + results[dstype + '_unmatched'] = unmatched_epe + + return results + + +@torch.no_grad() +def validate_kitti(model, + padding_factor=8, + with_speed_metric=False, + average_over_pixels=True, + attn_splits_list=False, + corr_radius_list=False, + prop_radius_list=False, + ): + """ Peform validation using the KITTI-2015 (train) split """ + model.eval() + + val_dataset = data.KITTI(split='training') + print('Number of validation image pairs: %d' % len(val_dataset)) + + out_list, epe_list = [], [] + results = {} + + if with_speed_metric: + if average_over_pixels: + s0_10_list = [] + s10_40_list = [] + s40plus_list = [] + else: + s0_10_epe_sum = 0 + s0_10_valid_samples = 0 + s10_40_epe_sum = 0 + s10_40_valid_samples = 0 + s40plus_epe_sum = 0 + s40plus_valid_samples = 0 + + for val_id in range(len(val_dataset)): + image1, image2, flow_gt, valid_gt = val_dataset[val_id] + image1 = image1[None].cuda() + image2 = image2[None].cuda() + + padder = InputPadder(image1.shape, mode='kitti', padding_factor=padding_factor) + image1, image2 = padder.pad(image1, image2) + + results_dict = model(image1, image2, + attn_splits_list=attn_splits_list, + corr_radius_list=corr_radius_list, + prop_radius_list=prop_radius_list, + ) + + # useful when using parallel branches + flow_pr = results_dict['flow_preds'][-1] + + flow = padder.unpad(flow_pr[0]).cpu() + + epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt() + mag = torch.sum(flow_gt ** 2, dim=0).sqrt() + + if with_speed_metric: + # flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt() + flow_gt_speed = mag + + if average_over_pixels: + valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5) # note KITTI GT is sparse + if valid_mask.max() > 0: + s0_10_list.append(epe[valid_mask].cpu().numpy()) + + valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5) + if valid_mask.max() > 0: + s10_40_list.append(epe[valid_mask].cpu().numpy()) + + valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5) + if valid_mask.max() > 0: + s40plus_list.append(epe[valid_mask].cpu().numpy()) + + else: + valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5) # note KITTI GT is sparse + if valid_mask.max() > 0: + s0_10_epe_sum += (epe * valid_mask).sum() / valid_mask.sum() + s0_10_valid_samples += 1 + + valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5) + if valid_mask.max() > 0: + s10_40_epe_sum += (epe * valid_mask).sum() / valid_mask.sum() + s10_40_valid_samples += 1 + + valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5) + if valid_mask.max() > 0: + s40plus_epe_sum += (epe * valid_mask).sum() / valid_mask.sum() + s40plus_valid_samples += 1 + + epe = epe.view(-1) + mag = mag.view(-1) + val = valid_gt.view(-1) >= 0.5 + + out = ((epe > 3.0) & ((epe / mag) > 0.05)).float() + + if average_over_pixels: + epe_list.append(epe[val].cpu().numpy()) + else: + epe_list.append(epe[val].mean().item()) + + out_list.append(out[val].cpu().numpy()) + + if average_over_pixels: + epe_list = np.concatenate(epe_list) + else: + epe_list = np.array(epe_list) + out_list = np.concatenate(out_list) + + epe = np.mean(epe_list) + f1 = 100 * np.mean(out_list) + + print("Validation KITTI EPE: %.3f, F1-all: %.3f" % (epe, f1)) + results['kitti_epe'] = epe + results['kitti_f1'] = f1 + + if with_speed_metric: + if average_over_pixels: + s0_10 = np.mean(np.concatenate(s0_10_list)) + s10_40 = np.mean(np.concatenate(s10_40_list)) + s40plus = np.mean(np.concatenate(s40plus_list)) + else: + s0_10 = s0_10_epe_sum / s0_10_valid_samples + s10_40 = s10_40_epe_sum / s10_40_valid_samples + s40plus = s40plus_epe_sum / s40plus_valid_samples + + print("Validation KITTI s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % ( + s0_10, + s10_40, + s40plus)) + + results['kitti_s0_10'] = s0_10 + results['kitti_s10_40'] = s10_40 + results['kitti_s40+'] = s40plus + + return results + + +@torch.no_grad() +def inference_on_dir(model, + inference_dir, + output_path='output', + padding_factor=8, + inference_size=None, + paired_data=False, # dir of paired testdata instead of a sequence + save_flo_flow=False, # save as .flo for quantative evaluation + attn_splits_list=None, + corr_radius_list=None, + prop_radius_list=None, + pred_bidir_flow=False, + fwd_bwd_consistency_check=False, + ): + """ Inference on a directory """ + model.eval() + + if fwd_bwd_consistency_check: + assert pred_bidir_flow + + if not os.path.exists(output_path): + os.makedirs(output_path) + + filenames = sorted(glob(inference_dir + '/*')) + print('%d images found' % len(filenames)) + + stride = 2 if paired_data else 1 + + if paired_data: + assert len(filenames) % 2 == 0 + + for test_id in range(0, len(filenames) - 1, stride): + + image1 = frame_utils.read_gen(filenames[test_id]) + image2 = frame_utils.read_gen(filenames[test_id + 1]) + + image1 = np.array(image1).astype(np.uint8) + image2 = np.array(image2).astype(np.uint8) + + if len(image1.shape) == 2: # gray image, for example, HD1K + image1 = np.tile(image1[..., None], (1, 1, 3)) + image2 = np.tile(image2[..., None], (1, 1, 3)) + else: + image1 = image1[..., :3] + image2 = image2[..., :3] + + image1 = torch.from_numpy(image1).permute(2, 0, 1).float() + image2 = torch.from_numpy(image2).permute(2, 0, 1).float() + + if inference_size is None: + padder = InputPadder(image1.shape, padding_factor=padding_factor) + image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) + else: + image1, image2 = image1[None].cuda(), image2[None].cuda() + + # resize before inference + if inference_size is not None: + assert isinstance(inference_size, list) or isinstance(inference_size, tuple) + ori_size = image1.shape[-2:] + image1 = F.interpolate(image1, size=inference_size, mode='bilinear', + align_corners=True) + image2 = F.interpolate(image2, size=inference_size, mode='bilinear', + align_corners=True) + + results_dict = model(image1, image2, + attn_splits_list=attn_splits_list, + corr_radius_list=corr_radius_list, + prop_radius_list=prop_radius_list, + pred_bidir_flow=pred_bidir_flow, + ) + + flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W] + + # resize back + if inference_size is not None: + flow_pr = F.interpolate(flow_pr, size=ori_size, mode='bilinear', + align_corners=True) + flow_pr[:, 0] = flow_pr[:, 0] * ori_size[-1] / inference_size[-1] + flow_pr[:, 1] = flow_pr[:, 1] * ori_size[-2] / inference_size[-2] + + if inference_size is None: + flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() # [H, W, 2] + else: + flow = flow_pr[0].permute(1, 2, 0).cpu().numpy() # [H, W, 2] + + output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_flow.png') + + # save vis flow + save_vis_flow_tofile(flow, output_file) + + # also predict backward flow + if pred_bidir_flow: + assert flow_pr.size(0) == 2 # [2, H, W, 2] + + if inference_size is None: + flow_bwd = padder.unpad(flow_pr[1]).permute(1, 2, 0).cpu().numpy() # [H, W, 2] + else: + flow_bwd = flow_pr[1].permute(1, 2, 0).cpu().numpy() # [H, W, 2] + + output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_flow_bwd.png') + + # save vis flow + save_vis_flow_tofile(flow_bwd, output_file) + + # forward-backward consistency check + # occlusion is 1 + if fwd_bwd_consistency_check: + if inference_size is None: + fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) # [1, 2, H, W] + bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) # [1, 2, H, W] + else: + fwd_flow = flow_pr[0].unsqueeze(0) + bwd_flow = flow_pr[1].unsqueeze(0) + + fwd_occ, bwd_occ = forward_backward_consistency_check(fwd_flow, bwd_flow) # [1, H, W] float + + fwd_occ_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_occ.png') + bwd_occ_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_occ_bwd.png') + + Image.fromarray((fwd_occ[0].cpu().numpy() * 255.).astype(np.uint8)).save(fwd_occ_file) + Image.fromarray((bwd_occ[0].cpu().numpy() * 255.).astype(np.uint8)).save(bwd_occ_file) + + if save_flo_flow: + output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_pred.flo') + frame_utils.writeFlow(output_file, flow) diff --git a/src/ebsynth/deps/gmflow/gmflow/__init__.py b/src/ebsynth/deps/gmflow/gmflow/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/ebsynth/deps/gmflow/gmflow/__pycache__/__init__.cpython-310.pyc b/src/ebsynth/deps/gmflow/gmflow/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c36ae7634ac571918a8859171360014eb224d640 Binary files /dev/null and b/src/ebsynth/deps/gmflow/gmflow/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/ebsynth/deps/gmflow/gmflow/__pycache__/backbone.cpython-310.pyc b/src/ebsynth/deps/gmflow/gmflow/__pycache__/backbone.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d6a9de78a917685ae1b21bb9494c9776e2cd0b9a Binary files /dev/null and b/src/ebsynth/deps/gmflow/gmflow/__pycache__/backbone.cpython-310.pyc differ diff --git a/src/ebsynth/deps/gmflow/gmflow/__pycache__/geometry.cpython-310.pyc b/src/ebsynth/deps/gmflow/gmflow/__pycache__/geometry.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c8563fb8e6e2ed5760582757c5e39076f5ccbf71 Binary files /dev/null and b/src/ebsynth/deps/gmflow/gmflow/__pycache__/geometry.cpython-310.pyc differ diff --git a/src/ebsynth/deps/gmflow/gmflow/__pycache__/gmflow.cpython-310.pyc b/src/ebsynth/deps/gmflow/gmflow/__pycache__/gmflow.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3e4c7bd75cb6a626e74d56b2477c4d4ddb0ba669 Binary files /dev/null and b/src/ebsynth/deps/gmflow/gmflow/__pycache__/gmflow.cpython-310.pyc differ diff --git a/src/ebsynth/deps/gmflow/gmflow/__pycache__/matching.cpython-310.pyc b/src/ebsynth/deps/gmflow/gmflow/__pycache__/matching.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3dac67ec16b882fcad1b90734c49ae5420859e22 Binary files /dev/null and b/src/ebsynth/deps/gmflow/gmflow/__pycache__/matching.cpython-310.pyc differ diff --git a/src/ebsynth/deps/gmflow/gmflow/__pycache__/position.cpython-310.pyc b/src/ebsynth/deps/gmflow/gmflow/__pycache__/position.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a9847503d17ee6dc1f13f4fc6f5fb229d25c81e7 Binary files /dev/null and b/src/ebsynth/deps/gmflow/gmflow/__pycache__/position.cpython-310.pyc differ diff --git a/src/ebsynth/deps/gmflow/gmflow/__pycache__/transformer.cpython-310.pyc b/src/ebsynth/deps/gmflow/gmflow/__pycache__/transformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a7fb62dc6ddebf5de74899cb789fd73aefe30a45 Binary files /dev/null and b/src/ebsynth/deps/gmflow/gmflow/__pycache__/transformer.cpython-310.pyc differ diff --git a/src/ebsynth/deps/gmflow/gmflow/__pycache__/trident_conv.cpython-310.pyc b/src/ebsynth/deps/gmflow/gmflow/__pycache__/trident_conv.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c203d720ea34098f7301b978e021cc4813c7204f Binary files /dev/null and b/src/ebsynth/deps/gmflow/gmflow/__pycache__/trident_conv.cpython-310.pyc differ diff --git a/src/ebsynth/deps/gmflow/gmflow/__pycache__/utils.cpython-310.pyc b/src/ebsynth/deps/gmflow/gmflow/__pycache__/utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7874f6383dffc02cfa93e0fa15c4f209bd2bd71b Binary files /dev/null and b/src/ebsynth/deps/gmflow/gmflow/__pycache__/utils.cpython-310.pyc differ diff --git a/src/ebsynth/deps/gmflow/gmflow/backbone.py b/src/ebsynth/deps/gmflow/gmflow/backbone.py new file mode 100644 index 0000000000000000000000000000000000000000..a30942eca9cad56e75252c3026dca95bf1021df7 --- /dev/null +++ b/src/ebsynth/deps/gmflow/gmflow/backbone.py @@ -0,0 +1,117 @@ +import torch.nn as nn + +from .trident_conv import MultiScaleTridentConv + + +class ResidualBlock(nn.Module): + def __init__(self, in_planes, planes, norm_layer=nn.InstanceNorm2d, stride=1, dilation=1, + ): + super(ResidualBlock, self).__init__() + + self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, + dilation=dilation, padding=dilation, stride=stride, bias=False) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, + dilation=dilation, padding=dilation, bias=False) + self.relu = nn.ReLU(inplace=True) + + self.norm1 = norm_layer(planes) + self.norm2 = norm_layer(planes) + if not stride == 1 or in_planes != planes: + self.norm3 = norm_layer(planes) + + if stride == 1 and in_planes == planes: + self.downsample = None + else: + self.downsample = nn.Sequential( + nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3) + + def forward(self, x): + y = x + y = self.relu(self.norm1(self.conv1(y))) + y = self.relu(self.norm2(self.conv2(y))) + + if self.downsample is not None: + x = self.downsample(x) + + return self.relu(x + y) + + +class CNNEncoder(nn.Module): + def __init__(self, output_dim=128, + norm_layer=nn.InstanceNorm2d, + num_output_scales=1, + **kwargs, + ): + super(CNNEncoder, self).__init__() + self.num_branch = num_output_scales + + feature_dims = [64, 96, 128] + + self.conv1 = nn.Conv2d(3, feature_dims[0], kernel_size=7, stride=2, padding=3, bias=False) # 1/2 + self.norm1 = norm_layer(feature_dims[0]) + self.relu1 = nn.ReLU(inplace=True) + + self.in_planes = feature_dims[0] + self.layer1 = self._make_layer(feature_dims[0], stride=1, norm_layer=norm_layer) # 1/2 + self.layer2 = self._make_layer(feature_dims[1], stride=2, norm_layer=norm_layer) # 1/4 + + # highest resolution 1/4 or 1/8 + stride = 2 if num_output_scales == 1 else 1 + self.layer3 = self._make_layer(feature_dims[2], stride=stride, + norm_layer=norm_layer, + ) # 1/4 or 1/8 + + self.conv2 = nn.Conv2d(feature_dims[2], output_dim, 1, 1, 0) + + if self.num_branch > 1: + if self.num_branch == 4: + strides = (1, 2, 4, 8) + elif self.num_branch == 3: + strides = (1, 2, 4) + elif self.num_branch == 2: + strides = (1, 2) + else: + raise ValueError + + self.trident_conv = MultiScaleTridentConv(output_dim, output_dim, + kernel_size=3, + strides=strides, + paddings=1, + num_branch=self.num_branch, + ) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): + if m.weight is not None: + nn.init.constant_(m.weight, 1) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + def _make_layer(self, dim, stride=1, dilation=1, norm_layer=nn.InstanceNorm2d): + layer1 = ResidualBlock(self.in_planes, dim, norm_layer=norm_layer, stride=stride, dilation=dilation) + layer2 = ResidualBlock(dim, dim, norm_layer=norm_layer, stride=1, dilation=dilation) + + layers = (layer1, layer2) + + self.in_planes = dim + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.norm1(x) + x = self.relu1(x) + + x = self.layer1(x) # 1/2 + x = self.layer2(x) # 1/4 + x = self.layer3(x) # 1/8 or 1/4 + + x = self.conv2(x) + + if self.num_branch > 1: + out = self.trident_conv([x] * self.num_branch) # high to low res + else: + out = [x] + + return out diff --git a/src/ebsynth/deps/gmflow/gmflow/geometry.py b/src/ebsynth/deps/gmflow/gmflow/geometry.py new file mode 100644 index 0000000000000000000000000000000000000000..207e98fded56c0e7e63d63626ddace65b910bf9c --- /dev/null +++ b/src/ebsynth/deps/gmflow/gmflow/geometry.py @@ -0,0 +1,96 @@ +import torch +import torch.nn.functional as F + + +def coords_grid(b, h, w, homogeneous=False, device=None): + y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) # [H, W] + + stacks = [x, y] + + if homogeneous: + ones = torch.ones_like(x) # [H, W] + stacks.append(ones) + + grid = torch.stack(stacks, dim=0).float() # [2, H, W] or [3, H, W] + + grid = grid[None].repeat(b, 1, 1, 1) # [B, 2, H, W] or [B, 3, H, W] + + if device is not None: + grid = grid.to(device) + + return grid + + +def generate_window_grid(h_min, h_max, w_min, w_max, len_h, len_w, device=None): + assert device is not None + + x, y = torch.meshgrid([torch.linspace(w_min, w_max, len_w, device=device), + torch.linspace(h_min, h_max, len_h, device=device)], + ) + grid = torch.stack((x, y), -1).transpose(0, 1).float() # [H, W, 2] + + return grid + + +def normalize_coords(coords, h, w): + # coords: [B, H, W, 2] + c = torch.Tensor([(w - 1) / 2., (h - 1) / 2.]).float().to(coords.device) + return (coords - c) / c # [-1, 1] + + +def bilinear_sample(img, sample_coords, mode='bilinear', padding_mode='zeros', return_mask=False): + # img: [B, C, H, W] + # sample_coords: [B, 2, H, W] in image scale + if sample_coords.size(1) != 2: # [B, H, W, 2] + sample_coords = sample_coords.permute(0, 3, 1, 2) + + b, _, h, w = sample_coords.shape + + # Normalize to [-1, 1] + x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1 + y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1 + + grid = torch.stack([x_grid, y_grid], dim=-1) # [B, H, W, 2] + + img = F.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True) + + if return_mask: + mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1) # [B, H, W] + + return img, mask + + return img + + +def flow_warp(feature, flow, mask=False, padding_mode='zeros'): + b, c, h, w = feature.size() + assert flow.size(1) == 2 + + grid = coords_grid(b, h, w).to(flow.device) + flow # [B, 2, H, W] + + return bilinear_sample(feature, grid, padding_mode=padding_mode, + return_mask=mask) + + +def forward_backward_consistency_check(fwd_flow, bwd_flow, + alpha=0.01, + beta=0.5 + ): + # fwd_flow, bwd_flow: [B, 2, H, W] + # alpha and beta values are following UnFlow (https://arxiv.org/abs/1711.07837) + assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4 + assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2 + flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1) # [B, H, W] + + warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) # [B, 2, H, W] + warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) # [B, 2, H, W] + + diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) # [B, H, W] + diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1) + + threshold = alpha * flow_mag + beta + + fwd_occ = (diff_fwd > threshold).float() # [B, H, W] + bwd_occ = (diff_bwd > threshold).float() + + return fwd_occ, bwd_occ diff --git a/src/ebsynth/deps/gmflow/gmflow/gmflow.py b/src/ebsynth/deps/gmflow/gmflow/gmflow.py new file mode 100644 index 0000000000000000000000000000000000000000..cd4138332571254631ad361fd94146706713cf1e --- /dev/null +++ b/src/ebsynth/deps/gmflow/gmflow/gmflow.py @@ -0,0 +1,170 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .backbone import CNNEncoder +from .transformer import FeatureTransformer, FeatureFlowAttention +from .matching import global_correlation_softmax, local_correlation_softmax +from .geometry import flow_warp +from .utils import normalize_img, feature_add_position + + +class GMFlow(nn.Module): + def __init__(self, + num_scales=1, + upsample_factor=8, + feature_channels=128, + attention_type='swin', + num_transformer_layers=6, + ffn_dim_expansion=4, + num_head=1, + **kwargs, + ): + super(GMFlow, self).__init__() + + self.num_scales = num_scales + self.feature_channels = feature_channels + self.upsample_factor = upsample_factor + self.attention_type = attention_type + self.num_transformer_layers = num_transformer_layers + + # CNN backbone + self.backbone = CNNEncoder(output_dim=feature_channels, num_output_scales=num_scales) + + # Transformer + self.transformer = FeatureTransformer(num_layers=num_transformer_layers, + d_model=feature_channels, + nhead=num_head, + attention_type=attention_type, + ffn_dim_expansion=ffn_dim_expansion, + ) + + # flow propagation with self-attn + self.feature_flow_attn = FeatureFlowAttention(in_channels=feature_channels) + + # convex upsampling: concat feature0 and flow as input + self.upsampler = nn.Sequential(nn.Conv2d(2 + feature_channels, 256, 3, 1, 1), + nn.ReLU(inplace=True), + nn.Conv2d(256, upsample_factor ** 2 * 9, 1, 1, 0)) + + def extract_feature(self, img0, img1): + concat = torch.cat((img0, img1), dim=0) # [2B, C, H, W] + features = self.backbone(concat) # list of [2B, C, H, W], resolution from high to low + + # reverse: resolution from low to high + features = features[::-1] + + feature0, feature1 = [], [] + + for i in range(len(features)): + feature = features[i] + chunks = torch.chunk(feature, 2, 0) # tuple + feature0.append(chunks[0]) + feature1.append(chunks[1]) + + return feature0, feature1 + + def upsample_flow(self, flow, feature, bilinear=False, upsample_factor=8, + ): + if bilinear: + up_flow = F.interpolate(flow, scale_factor=upsample_factor, + mode='bilinear', align_corners=True) * upsample_factor + + else: + # convex upsampling + concat = torch.cat((flow, feature), dim=1) + + mask = self.upsampler(concat) + b, flow_channel, h, w = flow.shape + mask = mask.view(b, 1, 9, self.upsample_factor, self.upsample_factor, h, w) # [B, 1, 9, K, K, H, W] + mask = torch.softmax(mask, dim=2) + + up_flow = F.unfold(self.upsample_factor * flow, [3, 3], padding=1) + up_flow = up_flow.view(b, flow_channel, 9, 1, 1, h, w) # [B, 2, 9, 1, 1, H, W] + + up_flow = torch.sum(mask * up_flow, dim=2) # [B, 2, K, K, H, W] + up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) # [B, 2, K, H, K, W] + up_flow = up_flow.reshape(b, flow_channel, self.upsample_factor * h, + self.upsample_factor * w) # [B, 2, K*H, K*W] + + return up_flow + + def forward(self, img0, img1, + attn_splits_list=None, + corr_radius_list=None, + prop_radius_list=None, + pred_bidir_flow=False, + **kwargs, + ): + + results_dict = {} + flow_preds = [] + + img0, img1 = normalize_img(img0, img1) # [B, 3, H, W] + + # resolution low to high + feature0_list, feature1_list = self.extract_feature(img0, img1) # list of features + + flow = None + + assert len(attn_splits_list) == len(corr_radius_list) == len(prop_radius_list) == self.num_scales + + for scale_idx in range(self.num_scales): + feature0, feature1 = feature0_list[scale_idx], feature1_list[scale_idx] + + if pred_bidir_flow and scale_idx > 0: + # predicting bidirectional flow with refinement + feature0, feature1 = torch.cat((feature0, feature1), dim=0), torch.cat((feature1, feature0), dim=0) + + upsample_factor = self.upsample_factor * (2 ** (self.num_scales - 1 - scale_idx)) + + if scale_idx > 0: + flow = F.interpolate(flow, scale_factor=2, mode='bilinear', align_corners=True) * 2 + + if flow is not None: + flow = flow.detach() + feature1 = flow_warp(feature1, flow) # [B, C, H, W] + + attn_splits = attn_splits_list[scale_idx] + corr_radius = corr_radius_list[scale_idx] + prop_radius = prop_radius_list[scale_idx] + + # add position to features + feature0, feature1 = feature_add_position(feature0, feature1, attn_splits, self.feature_channels) + + # Transformer + feature0, feature1 = self.transformer(feature0, feature1, attn_num_splits=attn_splits) + + # correlation and softmax + if corr_radius == -1: # global matching + flow_pred = global_correlation_softmax(feature0, feature1, pred_bidir_flow)[0] + else: # local matching + flow_pred = local_correlation_softmax(feature0, feature1, corr_radius)[0] + + # flow or residual flow + flow = flow + flow_pred if flow is not None else flow_pred + + # upsample to the original resolution for supervison + if self.training: # only need to upsample intermediate flow predictions at training time + flow_bilinear = self.upsample_flow(flow, None, bilinear=True, upsample_factor=upsample_factor) + flow_preds.append(flow_bilinear) + + # flow propagation with self-attn + if pred_bidir_flow and scale_idx == 0: + feature0 = torch.cat((feature0, feature1), dim=0) # [2*B, C, H, W] for propagation + flow = self.feature_flow_attn(feature0, flow.detach(), + local_window_attn=prop_radius > 0, + local_window_radius=prop_radius) + + # bilinear upsampling at training time except the last one + if self.training and scale_idx < self.num_scales - 1: + flow_up = self.upsample_flow(flow, feature0, bilinear=True, upsample_factor=upsample_factor) + flow_preds.append(flow_up) + + if scale_idx == self.num_scales - 1: + flow_up = self.upsample_flow(flow, feature0) + flow_preds.append(flow_up) + + results_dict.update({'flow_preds': flow_preds}) + + return results_dict diff --git a/src/ebsynth/deps/gmflow/gmflow/matching.py b/src/ebsynth/deps/gmflow/gmflow/matching.py new file mode 100644 index 0000000000000000000000000000000000000000..1740200905d5d291e2a1a1fd53b444e62403a64e --- /dev/null +++ b/src/ebsynth/deps/gmflow/gmflow/matching.py @@ -0,0 +1,83 @@ +import torch +import torch.nn.functional as F + +from .geometry import coords_grid, generate_window_grid, normalize_coords + + +def global_correlation_softmax(feature0, feature1, + pred_bidir_flow=False, + ): + # global correlation + b, c, h, w = feature0.shape + feature0 = feature0.view(b, c, -1).permute(0, 2, 1) # [B, H*W, C] + feature1 = feature1.view(b, c, -1) # [B, C, H*W] + + correlation = torch.matmul(feature0, feature1).view(b, h, w, h, w) / (c ** 0.5) # [B, H, W, H, W] + + # flow from softmax + init_grid = coords_grid(b, h, w).to(correlation.device) # [B, 2, H, W] + grid = init_grid.view(b, 2, -1).permute(0, 2, 1) # [B, H*W, 2] + + correlation = correlation.view(b, h * w, h * w) # [B, H*W, H*W] + + if pred_bidir_flow: + correlation = torch.cat((correlation, correlation.permute(0, 2, 1)), dim=0) # [2*B, H*W, H*W] + init_grid = init_grid.repeat(2, 1, 1, 1) # [2*B, 2, H, W] + grid = grid.repeat(2, 1, 1) # [2*B, H*W, 2] + b = b * 2 + + prob = F.softmax(correlation, dim=-1) # [B, H*W, H*W] + + correspondence = torch.matmul(prob, grid).view(b, h, w, 2).permute(0, 3, 1, 2) # [B, 2, H, W] + + # when predicting bidirectional flow, flow is the concatenation of forward flow and backward flow + flow = correspondence - init_grid + + return flow, prob + + +def local_correlation_softmax(feature0, feature1, local_radius, + padding_mode='zeros', + ): + b, c, h, w = feature0.size() + coords_init = coords_grid(b, h, w).to(feature0.device) # [B, 2, H, W] + coords = coords_init.view(b, 2, -1).permute(0, 2, 1) # [B, H*W, 2] + + local_h = 2 * local_radius + 1 + local_w = 2 * local_radius + 1 + + window_grid = generate_window_grid(-local_radius, local_radius, + -local_radius, local_radius, + local_h, local_w, device=feature0.device) # [2R+1, 2R+1, 2] + window_grid = window_grid.reshape(-1, 2).repeat(b, 1, 1, 1) # [B, 1, (2R+1)^2, 2] + sample_coords = coords.unsqueeze(-2) + window_grid # [B, H*W, (2R+1)^2, 2] + + sample_coords_softmax = sample_coords + + # exclude coords that are out of image space + valid_x = (sample_coords[:, :, :, 0] >= 0) & (sample_coords[:, :, :, 0] < w) # [B, H*W, (2R+1)^2] + valid_y = (sample_coords[:, :, :, 1] >= 0) & (sample_coords[:, :, :, 1] < h) # [B, H*W, (2R+1)^2] + + valid = valid_x & valid_y # [B, H*W, (2R+1)^2], used to mask out invalid values when softmax + + # normalize coordinates to [-1, 1] + sample_coords_norm = normalize_coords(sample_coords, h, w) # [-1, 1] + window_feature = F.grid_sample(feature1, sample_coords_norm, + padding_mode=padding_mode, align_corners=True + ).permute(0, 2, 1, 3) # [B, H*W, C, (2R+1)^2] + feature0_view = feature0.permute(0, 2, 3, 1).view(b, h * w, 1, c) # [B, H*W, 1, C] + + corr = torch.matmul(feature0_view, window_feature).view(b, h * w, -1) / (c ** 0.5) # [B, H*W, (2R+1)^2] + + # mask invalid locations + corr[~valid] = -1e9 + + prob = F.softmax(corr, -1) # [B, H*W, (2R+1)^2] + + correspondence = torch.matmul(prob.unsqueeze(-2), sample_coords_softmax).squeeze(-2).view( + b, h, w, 2).permute(0, 3, 1, 2) # [B, 2, H, W] + + flow = correspondence - coords_init + match_prob = prob + + return flow, match_prob diff --git a/src/ebsynth/deps/gmflow/gmflow/position.py b/src/ebsynth/deps/gmflow/gmflow/position.py new file mode 100644 index 0000000000000000000000000000000000000000..14a6da436c818b7c2784e92dba66f7947d34b7ce --- /dev/null +++ b/src/ebsynth/deps/gmflow/gmflow/position.py @@ -0,0 +1,46 @@ +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved +# https://github.com/facebookresearch/detr/blob/main/models/position_encoding.py + +import torch +import torch.nn as nn +import math + + +class PositionEmbeddingSine(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one + used by the Attention is all you need paper, generalized to work on images. + """ + + def __init__(self, num_pos_feats=64, temperature=10000, normalize=True, scale=None): + super().__init__() + self.num_pos_feats = num_pos_feats + self.temperature = temperature + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + def forward(self, x): + # x = tensor_list.tensors # [B, C, H, W] + # mask = tensor_list.mask # [B, H, W], input with padding, valid as 0 + b, c, h, w = x.size() + mask = torch.ones((b, h, w), device=x.device) # [B, H, W] + y_embed = mask.cumsum(1, dtype=torch.float32) + x_embed = mask.cumsum(2, dtype=torch.float32) + if self.normalize: + eps = 1e-6 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + return pos diff --git a/src/ebsynth/deps/gmflow/gmflow/transformer.py b/src/ebsynth/deps/gmflow/gmflow/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..9a8f2ceb3c4474743f1364535f1ebf7b060eb40d --- /dev/null +++ b/src/ebsynth/deps/gmflow/gmflow/transformer.py @@ -0,0 +1,409 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .utils import split_feature, merge_splits + + +def single_head_full_attention(q, k, v): + # q, k, v: [B, L, C] + assert q.dim() == k.dim() == v.dim() == 3 + + scores = torch.matmul(q, k.permute(0, 2, 1)) / (q.size(2) ** .5) # [B, L, L] + attn = torch.softmax(scores, dim=2) # [B, L, L] + out = torch.matmul(attn, v) # [B, L, C] + + return out + + +def generate_shift_window_attn_mask(input_resolution, window_size_h, window_size_w, + shift_size_h, shift_size_w, device=torch.device('cuda')): + # Ref: https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py + # calculate attention mask for SW-MSA + h, w = input_resolution + img_mask = torch.zeros((1, h, w, 1)).to(device) # 1 H W 1 + h_slices = (slice(0, -window_size_h), + slice(-window_size_h, -shift_size_h), + slice(-shift_size_h, None)) + w_slices = (slice(0, -window_size_w), + slice(-window_size_w, -shift_size_w), + slice(-shift_size_w, None)) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + mask_windows = split_feature(img_mask, num_splits=input_resolution[-1] // window_size_w, channel_last=True) + + mask_windows = mask_windows.view(-1, window_size_h * window_size_w) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + + return attn_mask + + +def single_head_split_window_attention(q, k, v, + num_splits=1, + with_shift=False, + h=None, + w=None, + attn_mask=None, + ): + # Ref: https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py + # q, k, v: [B, L, C] + assert q.dim() == k.dim() == v.dim() == 3 + + assert h is not None and w is not None + assert q.size(1) == h * w + + b, _, c = q.size() + + b_new = b * num_splits * num_splits + + window_size_h = h // num_splits + window_size_w = w // num_splits + + q = q.view(b, h, w, c) # [B, H, W, C] + k = k.view(b, h, w, c) + v = v.view(b, h, w, c) + + scale_factor = c ** 0.5 + + if with_shift: + assert attn_mask is not None # compute once + shift_size_h = window_size_h // 2 + shift_size_w = window_size_w // 2 + + q = torch.roll(q, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2)) + k = torch.roll(k, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2)) + v = torch.roll(v, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2)) + + q = split_feature(q, num_splits=num_splits, channel_last=True) # [B*K*K, H/K, W/K, C] + k = split_feature(k, num_splits=num_splits, channel_last=True) + v = split_feature(v, num_splits=num_splits, channel_last=True) + + scores = torch.matmul(q.view(b_new, -1, c), k.view(b_new, -1, c).permute(0, 2, 1) + ) / scale_factor # [B*K*K, H/K*W/K, H/K*W/K] + + if with_shift: + scores += attn_mask.repeat(b, 1, 1) + + attn = torch.softmax(scores, dim=-1) + + out = torch.matmul(attn, v.view(b_new, -1, c)) # [B*K*K, H/K*W/K, C] + + out = merge_splits(out.view(b_new, h // num_splits, w // num_splits, c), + num_splits=num_splits, channel_last=True) # [B, H, W, C] + + # shift back + if with_shift: + out = torch.roll(out, shifts=(shift_size_h, shift_size_w), dims=(1, 2)) + + out = out.view(b, -1, c) + + return out + + +class TransformerLayer(nn.Module): + def __init__(self, + d_model=256, + nhead=1, + attention_type='swin', + no_ffn=False, + ffn_dim_expansion=4, + with_shift=False, + **kwargs, + ): + super(TransformerLayer, self).__init__() + + self.dim = d_model + self.nhead = nhead + self.attention_type = attention_type + self.no_ffn = no_ffn + + self.with_shift = with_shift + + # multi-head attention + self.q_proj = nn.Linear(d_model, d_model, bias=False) + self.k_proj = nn.Linear(d_model, d_model, bias=False) + self.v_proj = nn.Linear(d_model, d_model, bias=False) + + self.merge = nn.Linear(d_model, d_model, bias=False) + + self.norm1 = nn.LayerNorm(d_model) + + # no ffn after self-attn, with ffn after cross-attn + if not self.no_ffn: + in_channels = d_model * 2 + self.mlp = nn.Sequential( + nn.Linear(in_channels, in_channels * ffn_dim_expansion, bias=False), + nn.GELU(), + nn.Linear(in_channels * ffn_dim_expansion, d_model, bias=False), + ) + + self.norm2 = nn.LayerNorm(d_model) + + def forward(self, source, target, + height=None, + width=None, + shifted_window_attn_mask=None, + attn_num_splits=None, + **kwargs, + ): + # source, target: [B, L, C] + query, key, value = source, target, target + + # single-head attention + query = self.q_proj(query) # [B, L, C] + key = self.k_proj(key) # [B, L, C] + value = self.v_proj(value) # [B, L, C] + + if self.attention_type == 'swin' and attn_num_splits > 1: + if self.nhead > 1: + # we observe that multihead attention slows down the speed and increases the memory consumption + # without bringing obvious performance gains and thus the implementation is removed + raise NotImplementedError + else: + message = single_head_split_window_attention(query, key, value, + num_splits=attn_num_splits, + with_shift=self.with_shift, + h=height, + w=width, + attn_mask=shifted_window_attn_mask, + ) + else: + message = single_head_full_attention(query, key, value) # [B, L, C] + + message = self.merge(message) # [B, L, C] + message = self.norm1(message) + + if not self.no_ffn: + message = self.mlp(torch.cat([source, message], dim=-1)) + message = self.norm2(message) + + return source + message + + +class TransformerBlock(nn.Module): + """self attention + cross attention + FFN""" + + def __init__(self, + d_model=256, + nhead=1, + attention_type='swin', + ffn_dim_expansion=4, + with_shift=False, + **kwargs, + ): + super(TransformerBlock, self).__init__() + + self.self_attn = TransformerLayer(d_model=d_model, + nhead=nhead, + attention_type=attention_type, + no_ffn=True, + ffn_dim_expansion=ffn_dim_expansion, + with_shift=with_shift, + ) + + self.cross_attn_ffn = TransformerLayer(d_model=d_model, + nhead=nhead, + attention_type=attention_type, + ffn_dim_expansion=ffn_dim_expansion, + with_shift=with_shift, + ) + + def forward(self, source, target, + height=None, + width=None, + shifted_window_attn_mask=None, + attn_num_splits=None, + **kwargs, + ): + # source, target: [B, L, C] + + # self attention + source = self.self_attn(source, source, + height=height, + width=width, + shifted_window_attn_mask=shifted_window_attn_mask, + attn_num_splits=attn_num_splits, + ) + + # cross attention and ffn + source = self.cross_attn_ffn(source, target, + height=height, + width=width, + shifted_window_attn_mask=shifted_window_attn_mask, + attn_num_splits=attn_num_splits, + ) + + return source + + +class FeatureTransformer(nn.Module): + def __init__(self, + num_layers=6, + d_model=128, + nhead=1, + attention_type='swin', + ffn_dim_expansion=4, + **kwargs, + ): + super(FeatureTransformer, self).__init__() + + self.attention_type = attention_type + + self.d_model = d_model + self.nhead = nhead + + self.layers = nn.ModuleList([ + TransformerBlock(d_model=d_model, + nhead=nhead, + attention_type=attention_type, + ffn_dim_expansion=ffn_dim_expansion, + with_shift=True if attention_type == 'swin' and i % 2 == 1 else False, + ) + for i in range(num_layers)]) + + for p in self.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + + def forward(self, feature0, feature1, + attn_num_splits=None, + **kwargs, + ): + + b, c, h, w = feature0.shape + assert self.d_model == c + + feature0 = feature0.flatten(-2).permute(0, 2, 1) # [B, H*W, C] + feature1 = feature1.flatten(-2).permute(0, 2, 1) # [B, H*W, C] + + if self.attention_type == 'swin' and attn_num_splits > 1: + # global and refine use different number of splits + window_size_h = h // attn_num_splits + window_size_w = w // attn_num_splits + + # compute attn mask once + shifted_window_attn_mask = generate_shift_window_attn_mask( + input_resolution=(h, w), + window_size_h=window_size_h, + window_size_w=window_size_w, + shift_size_h=window_size_h // 2, + shift_size_w=window_size_w // 2, + device=feature0.device, + ) # [K*K, H/K*W/K, H/K*W/K] + else: + shifted_window_attn_mask = None + + # concat feature0 and feature1 in batch dimension to compute in parallel + concat0 = torch.cat((feature0, feature1), dim=0) # [2B, H*W, C] + concat1 = torch.cat((feature1, feature0), dim=0) # [2B, H*W, C] + + for layer in self.layers: + concat0 = layer(concat0, concat1, + height=h, + width=w, + shifted_window_attn_mask=shifted_window_attn_mask, + attn_num_splits=attn_num_splits, + ) + + # update feature1 + concat1 = torch.cat(concat0.chunk(chunks=2, dim=0)[::-1], dim=0) + + feature0, feature1 = concat0.chunk(chunks=2, dim=0) # [B, H*W, C] + + # reshape back + feature0 = feature0.view(b, h, w, c).permute(0, 3, 1, 2).contiguous() # [B, C, H, W] + feature1 = feature1.view(b, h, w, c).permute(0, 3, 1, 2).contiguous() # [B, C, H, W] + + return feature0, feature1 + + +class FeatureFlowAttention(nn.Module): + """ + flow propagation with self-attention on feature + query: feature0, key: feature0, value: flow + """ + + def __init__(self, in_channels, + **kwargs, + ): + super(FeatureFlowAttention, self).__init__() + + self.q_proj = nn.Linear(in_channels, in_channels) + self.k_proj = nn.Linear(in_channels, in_channels) + + for p in self.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + + def forward(self, feature0, flow, + local_window_attn=False, + local_window_radius=1, + **kwargs, + ): + # q, k: feature [B, C, H, W], v: flow [B, 2, H, W] + if local_window_attn: + return self.forward_local_window_attn(feature0, flow, + local_window_radius=local_window_radius) + + b, c, h, w = feature0.size() + + query = feature0.view(b, c, h * w).permute(0, 2, 1) # [B, H*W, C] + + # a note: the ``correct'' implementation should be: + # ``query = self.q_proj(query), key = self.k_proj(query)'' + # this problem is observed while cleaning up the code + # however, this doesn't affect the performance since the projection is a linear operation, + # thus the two projection matrices for key can be merged + # so I just leave it as is in order to not re-train all models :) + query = self.q_proj(query) # [B, H*W, C] + key = self.k_proj(query) # [B, H*W, C] + + value = flow.view(b, flow.size(1), h * w).permute(0, 2, 1) # [B, H*W, 2] + + scores = torch.matmul(query, key.permute(0, 2, 1)) / (c ** 0.5) # [B, H*W, H*W] + prob = torch.softmax(scores, dim=-1) + + out = torch.matmul(prob, value) # [B, H*W, 2] + out = out.view(b, h, w, value.size(-1)).permute(0, 3, 1, 2) # [B, 2, H, W] + + return out + + def forward_local_window_attn(self, feature0, flow, + local_window_radius=1, + ): + assert flow.size(1) == 2 + assert local_window_radius > 0 + + b, c, h, w = feature0.size() + + feature0_reshape = self.q_proj(feature0.view(b, c, -1).permute(0, 2, 1) + ).reshape(b * h * w, 1, c) # [B*H*W, 1, C] + + kernel_size = 2 * local_window_radius + 1 + + feature0_proj = self.k_proj(feature0.view(b, c, -1).permute(0, 2, 1)).permute(0, 2, 1).reshape(b, c, h, w) + + feature0_window = F.unfold(feature0_proj, kernel_size=kernel_size, + padding=local_window_radius) # [B, C*(2R+1)^2), H*W] + + feature0_window = feature0_window.view(b, c, kernel_size ** 2, h, w).permute( + 0, 3, 4, 1, 2).reshape(b * h * w, c, kernel_size ** 2) # [B*H*W, C, (2R+1)^2] + + flow_window = F.unfold(flow, kernel_size=kernel_size, + padding=local_window_radius) # [B, 2*(2R+1)^2), H*W] + + flow_window = flow_window.view(b, 2, kernel_size ** 2, h, w).permute( + 0, 3, 4, 2, 1).reshape(b * h * w, kernel_size ** 2, 2) # [B*H*W, (2R+1)^2, 2] + + scores = torch.matmul(feature0_reshape, feature0_window) / (c ** 0.5) # [B*H*W, 1, (2R+1)^2] + + prob = torch.softmax(scores, dim=-1) + + out = torch.matmul(prob, flow_window).view(b, h, w, 2).permute(0, 3, 1, 2).contiguous() # [B, 2, H, W] + + return out diff --git a/src/ebsynth/deps/gmflow/gmflow/trident_conv.py b/src/ebsynth/deps/gmflow/gmflow/trident_conv.py new file mode 100644 index 0000000000000000000000000000000000000000..29a2a73e964a88b68bc095772d9c3cc443e3e0fe --- /dev/null +++ b/src/ebsynth/deps/gmflow/gmflow/trident_conv.py @@ -0,0 +1,90 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# https://github.com/facebookresearch/detectron2/blob/main/projects/TridentNet/tridentnet/trident_conv.py + +import torch +from torch import nn +from torch.nn import functional as F +from torch.nn.modules.utils import _pair + + +class MultiScaleTridentConv(nn.Module): + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + strides=1, + paddings=0, + dilations=1, + dilation=1, + groups=1, + num_branch=1, + test_branch_idx=-1, + bias=False, + norm=None, + activation=None, + ): + super(MultiScaleTridentConv, self).__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = _pair(kernel_size) + self.num_branch = num_branch + self.stride = _pair(stride) + self.groups = groups + self.with_bias = bias + self.dilation = dilation + if isinstance(paddings, int): + paddings = [paddings] * self.num_branch + if isinstance(dilations, int): + dilations = [dilations] * self.num_branch + if isinstance(strides, int): + strides = [strides] * self.num_branch + self.paddings = [_pair(padding) for padding in paddings] + self.dilations = [_pair(dilation) for dilation in dilations] + self.strides = [_pair(stride) for stride in strides] + self.test_branch_idx = test_branch_idx + self.norm = norm + self.activation = activation + + assert len({self.num_branch, len(self.paddings), len(self.strides)}) == 1 + + self.weight = nn.Parameter( + torch.Tensor(out_channels, in_channels // groups, *self.kernel_size) + ) + if bias: + self.bias = nn.Parameter(torch.Tensor(out_channels)) + else: + self.bias = None + + nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") + if self.bias is not None: + nn.init.constant_(self.bias, 0) + + def forward(self, inputs): + num_branch = self.num_branch if self.training or self.test_branch_idx == -1 else 1 + assert len(inputs) == num_branch + + if self.training or self.test_branch_idx == -1: + outputs = [ + F.conv2d(input, self.weight, self.bias, stride, padding, self.dilation, self.groups) + for input, stride, padding in zip(inputs, self.strides, self.paddings) + ] + else: + outputs = [ + F.conv2d( + inputs[0], + self.weight, + self.bias, + self.strides[self.test_branch_idx] if self.test_branch_idx == -1 else self.strides[-1], + self.paddings[self.test_branch_idx] if self.test_branch_idx == -1 else self.paddings[-1], + self.dilation, + self.groups, + ) + ] + + if self.norm is not None: + outputs = [self.norm(x) for x in outputs] + if self.activation is not None: + outputs = [self.activation(x) for x in outputs] + return outputs diff --git a/src/ebsynth/deps/gmflow/gmflow/utils.py b/src/ebsynth/deps/gmflow/gmflow/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..a1ae124a652553d5b7578459d92dec4b6a207409 --- /dev/null +++ b/src/ebsynth/deps/gmflow/gmflow/utils.py @@ -0,0 +1,86 @@ +import torch +from .position import PositionEmbeddingSine + + +def split_feature(feature, + num_splits=2, + channel_last=False, + ): + if channel_last: # [B, H, W, C] + b, h, w, c = feature.size() + assert h % num_splits == 0 and w % num_splits == 0 + + b_new = b * num_splits * num_splits + h_new = h // num_splits + w_new = w // num_splits + + feature = feature.view(b, num_splits, h // num_splits, num_splits, w // num_splits, c + ).permute(0, 1, 3, 2, 4, 5).reshape(b_new, h_new, w_new, c) # [B*K*K, H/K, W/K, C] + else: # [B, C, H, W] + b, c, h, w = feature.size() + assert h % num_splits == 0 and w % num_splits == 0 + + b_new = b * num_splits * num_splits + h_new = h // num_splits + w_new = w // num_splits + + feature = feature.view(b, c, num_splits, h // num_splits, num_splits, w // num_splits + ).permute(0, 2, 4, 1, 3, 5).reshape(b_new, c, h_new, w_new) # [B*K*K, C, H/K, W/K] + + return feature + + +def merge_splits(splits, + num_splits=2, + channel_last=False, + ): + if channel_last: # [B*K*K, H/K, W/K, C] + b, h, w, c = splits.size() + new_b = b // num_splits // num_splits + + splits = splits.view(new_b, num_splits, num_splits, h, w, c) + merge = splits.permute(0, 1, 3, 2, 4, 5).contiguous().view( + new_b, num_splits * h, num_splits * w, c) # [B, H, W, C] + else: # [B*K*K, C, H/K, W/K] + b, c, h, w = splits.size() + new_b = b // num_splits // num_splits + + splits = splits.view(new_b, num_splits, num_splits, c, h, w) + merge = splits.permute(0, 3, 1, 4, 2, 5).contiguous().view( + new_b, c, num_splits * h, num_splits * w) # [B, C, H, W] + + return merge + + +def normalize_img(img0, img1): + # loaded images are in [0, 255] + # normalize by ImageNet mean and std + mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(img1.device) + std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(img1.device) + img0 = (img0 / 255. - mean) / std + img1 = (img1 / 255. - mean) / std + + return img0, img1 + + +def feature_add_position(feature0, feature1, attn_splits, feature_channels): + pos_enc = PositionEmbeddingSine(num_pos_feats=feature_channels // 2) + + if attn_splits > 1: # add position in splited window + feature0_splits = split_feature(feature0, num_splits=attn_splits) + feature1_splits = split_feature(feature1, num_splits=attn_splits) + + position = pos_enc(feature0_splits) + + feature0_splits = feature0_splits + position + feature1_splits = feature1_splits + position + + feature0 = merge_splits(feature0_splits, num_splits=attn_splits) + feature1 = merge_splits(feature1_splits, num_splits=attn_splits) + else: + position = pos_enc(feature0) + + feature0 = feature0 + position + feature1 = feature1 + position + + return feature0, feature1 diff --git a/src/ebsynth/deps/gmflow/loss.py b/src/ebsynth/deps/gmflow/loss.py new file mode 100644 index 0000000000000000000000000000000000000000..991c63a02e1977716892369127a9b9194da43c82 --- /dev/null +++ b/src/ebsynth/deps/gmflow/loss.py @@ -0,0 +1,37 @@ +import torch + + +def flow_loss_func(flow_preds, flow_gt, valid, + gamma=0.9, + max_flow=400, + **kwargs, + ): + n_predictions = len(flow_preds) + flow_loss = 0.0 + + # exlude invalid pixels and extremely large diplacements + mag = torch.sum(flow_gt ** 2, dim=1).sqrt() # [B, H, W] + valid = (valid >= 0.5) & (mag < max_flow) + + for i in range(n_predictions): + i_weight = gamma ** (n_predictions - i - 1) + + i_loss = (flow_preds[i] - flow_gt).abs() + + flow_loss += i_weight * (valid[:, None] * i_loss).mean() + + epe = torch.sum((flow_preds[-1] - flow_gt) ** 2, dim=1).sqrt() + + if valid.max() < 0.5: + pass + + epe = epe.view(-1)[valid.view(-1)] + + metrics = { + 'epe': epe.mean().item(), + '1px': (epe > 1).float().mean().item(), + '3px': (epe > 3).float().mean().item(), + '5px': (epe > 5).float().mean().item(), + } + + return flow_loss, metrics diff --git a/src/ebsynth/deps/gmflow/main.py b/src/ebsynth/deps/gmflow/main.py new file mode 100644 index 0000000000000000000000000000000000000000..1b4c04adc27507ea86867d6e2bf2e0bfacc9233c --- /dev/null +++ b/src/ebsynth/deps/gmflow/main.py @@ -0,0 +1,557 @@ +import torch +from torch.utils.data import DataLoader +from torch.utils.tensorboard import SummaryWriter + +import argparse +import numpy as np +import os + +from data import build_train_dataset +from gmflow.gmflow import GMFlow +from loss import flow_loss_func +from evaluate import (validate_chairs, validate_things, validate_sintel, validate_kitti, + create_sintel_submission, create_kitti_submission, inference_on_dir) + +from utils.logger import Logger +from utils import misc +from utils.dist_utils import get_dist_info, init_dist, setup_for_distributed + + +def get_args_parser(): + parser = argparse.ArgumentParser() + + # dataset + parser.add_argument('--checkpoint_dir', default='tmp', type=str, + help='where to save the training log and models') + parser.add_argument('--stage', default='chairs', type=str, + help='training stage') + parser.add_argument('--image_size', default=[384, 512], type=int, nargs='+', + help='image size for training') + parser.add_argument('--padding_factor', default=16, type=int, + help='the input should be divisible by padding_factor, otherwise do padding') + + parser.add_argument('--max_flow', default=400, type=int, + help='exclude very large motions during training') + parser.add_argument('--val_dataset', default=['chairs'], type=str, nargs='+', + help='validation dataset') + parser.add_argument('--with_speed_metric', action='store_true', + help='with speed metric when evaluation') + + # training + parser.add_argument('--lr', default=4e-4, type=float) + parser.add_argument('--batch_size', default=12, type=int) + parser.add_argument('--num_workers', default=4, type=int) + parser.add_argument('--weight_decay', default=1e-4, type=float) + parser.add_argument('--grad_clip', default=1.0, type=float) + parser.add_argument('--num_steps', default=100000, type=int) + parser.add_argument('--seed', default=326, type=int) + parser.add_argument('--summary_freq', default=100, type=int) + parser.add_argument('--val_freq', default=10000, type=int) + parser.add_argument('--save_ckpt_freq', default=10000, type=int) + parser.add_argument('--save_latest_ckpt_freq', default=1000, type=int) + + # resume pretrained model or resume training + parser.add_argument('--resume', default=None, type=str, + help='resume from pretrain model for finetuing or resume from terminated training') + parser.add_argument('--strict_resume', action='store_true') + parser.add_argument('--no_resume_optimizer', action='store_true') + + # GMFlow model + parser.add_argument('--num_scales', default=1, type=int, + help='basic gmflow model uses a single 1/8 feature, the refinement uses 1/4 feature') + parser.add_argument('--feature_channels', default=128, type=int) + parser.add_argument('--upsample_factor', default=8, type=int) + parser.add_argument('--num_transformer_layers', default=6, type=int) + parser.add_argument('--num_head', default=1, type=int) + parser.add_argument('--attention_type', default='swin', type=str) + parser.add_argument('--ffn_dim_expansion', default=4, type=int) + + parser.add_argument('--attn_splits_list', default=[2], type=int, nargs='+', + help='number of splits in attention') + parser.add_argument('--corr_radius_list', default=[-1], type=int, nargs='+', + help='correlation radius for matching, -1 indicates global matching') + parser.add_argument('--prop_radius_list', default=[-1], type=int, nargs='+', + help='self-attention radius for flow propagation, -1 indicates global attention') + + # loss + parser.add_argument('--gamma', default=0.9, type=float, + help='loss weight') + + # evaluation + parser.add_argument('--eval', action='store_true') + parser.add_argument('--save_eval_to_file', action='store_true') + parser.add_argument('--evaluate_matched_unmatched', action='store_true') + + # inference on a directory + parser.add_argument('--inference_dir', default=None, type=str) + parser.add_argument('--inference_size', default=None, type=int, nargs='+', + help='can specify the inference size') + parser.add_argument('--dir_paired_data', action='store_true', + help='Paired data in a dir instead of a sequence') + parser.add_argument('--save_flo_flow', action='store_true') + parser.add_argument('--pred_bidir_flow', action='store_true', + help='predict bidirectional flow') + parser.add_argument('--fwd_bwd_consistency_check', action='store_true', + help='forward backward consistency check with bidirection flow') + + # predict on sintel and kitti test set for submission + parser.add_argument('--submission', action='store_true', + help='submission to sintel or kitti test sets') + parser.add_argument('--output_path', default='output', type=str, + help='where to save the prediction results') + parser.add_argument('--save_vis_flow', action='store_true', + help='visualize flow prediction as .png image') + parser.add_argument('--no_save_flo', action='store_true', + help='not save flow as .flo') + + # distributed training + parser.add_argument('--local_rank', default=0, type=int) + parser.add_argument('--distributed', action='store_true') + parser.add_argument('--launcher', default='none', type=str, choices=['none', 'pytorch']) + parser.add_argument('--gpu_ids', default=0, type=int, nargs='+') + + parser.add_argument('--count_time', action='store_true', + help='measure the inference time on sintel') + + return parser + + +def main(args): + if not args.eval and not args.submission and args.inference_dir is None: + if args.local_rank == 0: + print('pytorch version:', torch.__version__) + print(args) + misc.save_args(args) + misc.check_path(args.checkpoint_dir) + misc.save_command(args.checkpoint_dir) + + seed = args.seed + torch.manual_seed(seed) + np.random.seed(seed) + + torch.backends.cudnn.benchmark = True + + if args.launcher == 'none': + args.distributed = False + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + else: + args.distributed = True + + # adjust batch size for each gpu + assert args.batch_size % torch.cuda.device_count() == 0 + args.batch_size = args.batch_size // torch.cuda.device_count() + + dist_params = dict(backend='nccl') + init_dist(args.launcher, **dist_params) + # re-set gpu_ids with distributed training mode + _, world_size = get_dist_info() + args.gpu_ids = range(world_size) + device = torch.device('cuda:{}'.format(args.local_rank)) + + setup_for_distributed(args.local_rank == 0) + + # model + model = GMFlow(feature_channels=args.feature_channels, + num_scales=args.num_scales, + upsample_factor=args.upsample_factor, + num_head=args.num_head, + attention_type=args.attention_type, + ffn_dim_expansion=args.ffn_dim_expansion, + num_transformer_layers=args.num_transformer_layers, + ).to(device) + + if not args.eval and not args.submission and not args.inference_dir: + print('Model definition:') + print(model) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel( + model.to(device), + device_ids=[args.local_rank], + output_device=args.local_rank) + model_without_ddp = model.module + else: + if torch.cuda.device_count() > 1: + print('Use %d GPUs' % torch.cuda.device_count()) + model = torch.nn.DataParallel(model) + + model_without_ddp = model.module + else: + model_without_ddp = model + + num_params = sum(p.numel() for p in model.parameters()) + print('Number of params:', num_params) + if not args.eval and not args.submission and args.inference_dir is None: + save_name = '%d_parameters' % num_params + open(os.path.join(args.checkpoint_dir, save_name), 'a').close() + + optimizer = torch.optim.AdamW(model_without_ddp.parameters(), lr=args.lr, + weight_decay=args.weight_decay) + + start_epoch = 0 + start_step = 0 + # resume checkpoints + if args.resume: + print('Load checkpoint: %s' % args.resume) + + loc = 'cuda:{}'.format(args.local_rank) + checkpoint = torch.load(args.resume, map_location=loc) + + weights = checkpoint['model'] if 'model' in checkpoint else checkpoint + + model_without_ddp.load_state_dict(weights, strict=args.strict_resume) + + if 'optimizer' in checkpoint and 'step' in checkpoint and 'epoch' in checkpoint and not \ + args.no_resume_optimizer: + print('Load optimizer') + optimizer.load_state_dict(checkpoint['optimizer']) + start_epoch = checkpoint['epoch'] + start_step = checkpoint['step'] + + print('start_epoch: %d, start_step: %d' % (start_epoch, start_step)) + + # evaluate + if args.eval: + val_results = {} + + if 'chairs' in args.val_dataset: + results_dict = validate_chairs(model_without_ddp, + with_speed_metric=args.with_speed_metric, + attn_splits_list=args.attn_splits_list, + corr_radius_list=args.corr_radius_list, + prop_radius_list=args.prop_radius_list, + ) + + val_results.update(results_dict) + + if 'things' in args.val_dataset: + results_dict = validate_things(model_without_ddp, + padding_factor=args.padding_factor, + with_speed_metric=args.with_speed_metric, + attn_splits_list=args.attn_splits_list, + corr_radius_list=args.corr_radius_list, + prop_radius_list=args.prop_radius_list, + ) + val_results.update(results_dict) + + if 'sintel' in args.val_dataset: + results_dict = validate_sintel(model_without_ddp, + count_time=args.count_time, + padding_factor=args.padding_factor, + with_speed_metric=args.with_speed_metric, + evaluate_matched_unmatched=args.evaluate_matched_unmatched, + attn_splits_list=args.attn_splits_list, + corr_radius_list=args.corr_radius_list, + prop_radius_list=args.prop_radius_list, + ) + val_results.update(results_dict) + + if 'kitti' in args.val_dataset: + results_dict = validate_kitti(model_without_ddp, + padding_factor=args.padding_factor, + with_speed_metric=args.with_speed_metric, + attn_splits_list=args.attn_splits_list, + corr_radius_list=args.corr_radius_list, + prop_radius_list=args.prop_radius_list, + ) + val_results.update(results_dict) + + if args.save_eval_to_file: + misc.check_path(args.checkpoint_dir) + val_file = os.path.join(args.checkpoint_dir, 'val_results.txt') + with open(val_file, 'a') as f: + f.write('\neval results after training done\n\n') + metrics = ['chairs_epe', 'chairs_s0_10', 'chairs_s10_40', 'chairs_s40+', + 'things_clean_epe', 'things_clean_s0_10', 'things_clean_s10_40', 'things_clean_s40+', + 'things_final_epe', 'things_final_s0_10', 'things_final_s10_40', 'things_final_s40+', + 'sintel_clean_epe', 'sintel_clean_s0_10', 'sintel_clean_s10_40', 'sintel_clean_s40+', + 'sintel_final_epe', 'sintel_final_s0_10', 'sintel_final_s10_40', 'sintel_final_s40+', + 'kitti_epe', 'kitti_f1', 'kitti_s0_10', 'kitti_s10_40', 'kitti_s40+', + ] + eval_metrics = [] + for metric in metrics: + if metric in val_results.keys(): + eval_metrics.append(metric) + + metrics_values = [val_results[metric] for metric in eval_metrics] + + num_metrics = len(eval_metrics) + + # save as markdown format + f.write(("| {:>20} " * num_metrics + '\n').format(*eval_metrics)) + f.write(("| {:20.3f} " * num_metrics).format(*metrics_values)) + + f.write('\n\n') + + return + + # Sintel and KITTI submission + if args.submission: + # NOTE: args.val_dataset is a list + if args.val_dataset[0] == 'sintel': + create_sintel_submission(model_without_ddp, + output_path=args.output_path, + padding_factor=args.padding_factor, + save_vis_flow=args.save_vis_flow, + no_save_flo=args.no_save_flo, + attn_splits_list=args.attn_splits_list, + corr_radius_list=args.corr_radius_list, + prop_radius_list=args.prop_radius_list, + ) + elif args.val_dataset[0] == 'kitti': + create_kitti_submission(model_without_ddp, + output_path=args.output_path, + padding_factor=args.padding_factor, + save_vis_flow=args.save_vis_flow, + attn_splits_list=args.attn_splits_list, + corr_radius_list=args.corr_radius_list, + prop_radius_list=args.prop_radius_list, + ) + else: + raise ValueError(f'Not supported dataset for submission') + + return + + # inferece on a dir + if args.inference_dir is not None: + inference_on_dir(model_without_ddp, + inference_dir=args.inference_dir, + output_path=args.output_path, + padding_factor=args.padding_factor, + inference_size=args.inference_size, + paired_data=args.dir_paired_data, + save_flo_flow=args.save_flo_flow, + attn_splits_list=args.attn_splits_list, + corr_radius_list=args.corr_radius_list, + prop_radius_list=args.prop_radius_list, + pred_bidir_flow=args.pred_bidir_flow, + fwd_bwd_consistency_check=args.fwd_bwd_consistency_check, + ) + + return + + # training datset + train_dataset = build_train_dataset(args) + print('Number of training images:', len(train_dataset)) + + # Multi-processing + if args.distributed: + train_sampler = torch.utils.data.distributed.DistributedSampler( + train_dataset, + num_replicas=torch.cuda.device_count(), + rank=args.local_rank) + else: + train_sampler = None + + shuffle = False if args.distributed else True + train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, + shuffle=shuffle, num_workers=args.num_workers, + pin_memory=True, drop_last=True, + sampler=train_sampler) + + last_epoch = start_step if args.resume and start_step > 0 else -1 + lr_scheduler = torch.optim.lr_scheduler.OneCycleLR( + optimizer, args.lr, + args.num_steps + 10, + pct_start=0.05, + cycle_momentum=False, + anneal_strategy='cos', + last_epoch=last_epoch, + ) + + if args.local_rank == 0: + summary_writer = SummaryWriter(args.checkpoint_dir) + logger = Logger(lr_scheduler, summary_writer, args.summary_freq, + start_step=start_step) + + total_steps = start_step + epoch = start_epoch + print('Start training') + + while total_steps < args.num_steps: + model.train() + + # mannual change random seed for shuffling every epoch + if args.distributed: + train_sampler.set_epoch(epoch) + + for i, sample in enumerate(train_loader): + img1, img2, flow_gt, valid = [x.to(device) for x in sample] + + results_dict = model(img1, img2, + attn_splits_list=args.attn_splits_list, + corr_radius_list=args.corr_radius_list, + prop_radius_list=args.prop_radius_list, + ) + + flow_preds = results_dict['flow_preds'] + + loss, metrics = flow_loss_func(flow_preds, flow_gt, valid, + gamma=args.gamma, + max_flow=args.max_flow, + ) + + if isinstance(loss, float): + continue + + if torch.isnan(loss): + continue + + metrics.update({'total_loss': loss.item()}) + + # more efficient zero_grad + for param in model_without_ddp.parameters(): + param.grad = None + + loss.backward() + + # Gradient clipping + torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) + + optimizer.step() + + lr_scheduler.step() + + if args.local_rank == 0: + logger.push(metrics) + + logger.add_image_summary(img1, img2, flow_preds, flow_gt) + + total_steps += 1 + + if total_steps % args.save_ckpt_freq == 0 or total_steps == args.num_steps: + if args.local_rank == 0: + checkpoint_path = os.path.join(args.checkpoint_dir, 'step_%06d.pth' % total_steps) + torch.save({ + 'model': model_without_ddp.state_dict() + }, checkpoint_path) + + if total_steps % args.save_latest_ckpt_freq == 0: + checkpoint_path = os.path.join(args.checkpoint_dir, 'checkpoint_latest.pth') + + if args.local_rank == 0: + torch.save({ + 'model': model_without_ddp.state_dict(), + 'optimizer': optimizer.state_dict(), + 'step': total_steps, + 'epoch': epoch, + }, checkpoint_path) + + if total_steps % args.val_freq == 0: + print('Start validation') + + val_results = {} + # support validation on multiple datasets + if 'chairs' in args.val_dataset: + results_dict = validate_chairs(model_without_ddp, + with_speed_metric=args.with_speed_metric, + attn_splits_list=args.attn_splits_list, + corr_radius_list=args.corr_radius_list, + prop_radius_list=args.prop_radius_list, + ) + if args.local_rank == 0: + val_results.update(results_dict) + + if 'things' in args.val_dataset: + results_dict = validate_things(model_without_ddp, + padding_factor=args.padding_factor, + with_speed_metric=args.with_speed_metric, + attn_splits_list=args.attn_splits_list, + corr_radius_list=args.corr_radius_list, + prop_radius_list=args.prop_radius_list, + ) + if args.local_rank == 0: + val_results.update(results_dict) + + if 'sintel' in args.val_dataset: + results_dict = validate_sintel(model_without_ddp, + count_time=args.count_time, + padding_factor=args.padding_factor, + with_speed_metric=args.with_speed_metric, + evaluate_matched_unmatched=args.evaluate_matched_unmatched, + attn_splits_list=args.attn_splits_list, + corr_radius_list=args.corr_radius_list, + prop_radius_list=args.prop_radius_list, + ) + if args.local_rank == 0: + val_results.update(results_dict) + + if 'kitti' in args.val_dataset: + results_dict = validate_kitti(model_without_ddp, + padding_factor=args.padding_factor, + with_speed_metric=args.with_speed_metric, + attn_splits_list=args.attn_splits_list, + corr_radius_list=args.corr_radius_list, + prop_radius_list=args.prop_radius_list, + ) + if args.local_rank == 0: + val_results.update(results_dict) + + if args.local_rank == 0: + logger.write_dict(val_results) + + # Save validation results + val_file = os.path.join(args.checkpoint_dir, 'val_results.txt') + with open(val_file, 'a') as f: + f.write('step: %06d\n' % total_steps) + if args.evaluate_matched_unmatched: + metrics = ['chairs_epe', + 'chairs_s0_10', 'chairs_s10_40', 'chairs_s40+', + 'things_clean_epe', 'things_clean_s0_10', 'things_clean_s10_40', + 'things_clean_s40+', + 'sintel_clean_epe', 'sintel_clean_matched', 'sintel_clean_unmatched', + 'sintel_clean_s0_10', 'sintel_clean_s10_40', + 'sintel_clean_s40+', + 'sintel_final_epe', 'sintel_final_matched', 'sintel_final_unmatched', + 'sintel_final_s0_10', 'sintel_final_s10_40', + 'sintel_final_s40+', + 'kitti_epe', 'kitti_f1', 'kitti_s0_10', 'kitti_s10_40', 'kitti_s40+', + ] + else: + metrics = ['chairs_epe', 'chairs_s0_10', 'chairs_s10_40', 'chairs_s40+', + 'things_clean_epe', 'things_clean_s0_10', 'things_clean_s10_40', + 'things_clean_s40+', + 'sintel_clean_epe', 'sintel_clean_s0_10', 'sintel_clean_s10_40', + 'sintel_clean_s40+', + 'sintel_final_epe', 'sintel_final_s0_10', 'sintel_final_s10_40', + 'sintel_final_s40+', + 'kitti_epe', 'kitti_f1', 'kitti_s0_10', 'kitti_s10_40', 'kitti_s40+', + ] + + eval_metrics = [] + for metric in metrics: + if metric in val_results.keys(): + eval_metrics.append(metric) + + metrics_values = [val_results[metric] for metric in eval_metrics] + + num_metrics = len(eval_metrics) + + # save as markdown format + if args.evaluate_matched_unmatched: + f.write(("| {:>25} " * num_metrics + '\n').format(*eval_metrics)) + f.write(("| {:25.3f} " * num_metrics).format(*metrics_values)) + else: + f.write(("| {:>20} " * num_metrics + '\n').format(*eval_metrics)) + f.write(("| {:20.3f} " * num_metrics).format(*metrics_values)) + + f.write('\n\n') + + model.train() + + if total_steps >= args.num_steps: + print('Training done') + + return + + epoch += 1 + + +if __name__ == '__main__': + parser = get_args_parser() + args = parser.parse_args() + + if 'LOCAL_RANK' not in os.environ: + os.environ['LOCAL_RANK'] = str(args.local_rank) + + main(args) diff --git a/src/ebsynth/deps/gmflow/scripts/demo.sh b/src/ebsynth/deps/gmflow/scripts/demo.sh new file mode 100644 index 0000000000000000000000000000000000000000..ac5b2e4900ef275973d74e2c172cf3c77a504dcf --- /dev/null +++ b/src/ebsynth/deps/gmflow/scripts/demo.sh @@ -0,0 +1,63 @@ +#!/usr/bin/env bash + +# inference GMFlow without refinement + +# sintel + +# only predict forward flow +CUDA_VISIBLE_DEVICES=0 python main.py \ +--inference_dir demo/sintel_market_1 \ +--output_path output/gmflow-norefine-sintel_market_1 \ +--resume pretrained/gmflow_sintel-0c07dcb3.pth + +# predict forward & backward flow +CUDA_VISIBLE_DEVICES=0 python main.py \ +--inference_dir demo/sintel_market_1 \ +--output_path output/gmflow-norefine-sintel_market_1 \ +--pred_bidir_flow \ +--resume pretrained/gmflow_sintel-0c07dcb3.pth + + +# predict forward & backward flow with forward-backward consistency check +CUDA_VISIBLE_DEVICES=0 python main.py \ +--inference_dir demo/sintel_market_1 \ +--output_path output/gmflow-norefine-sintel_market_1 \ +--pred_bidir_flow \ +--fwd_bwd_consistency_check \ +--resume pretrained/gmflow_sintel-0c07dcb3.pth + + +# davis + +CUDA_VISIBLE_DEVICES=0 python main.py \ +--inference_dir demo/davis_breakdance-flare \ +--output_path output/gmflow-norefine-davis_breakdance-flare \ +--resume pretrained/gmflow_sintel-0c07dcb3.pth + + + + +# inference GMFlow with refinement + +CUDA_VISIBLE_DEVICES=0 python main.py \ +--inference_dir demo/davis_breakdance-flare \ +--output_path output/gmflow-withrefine-davis_breakdance-flare \ +--resume pretrained/gmflow_with_refine_sintel-3ed1cf48.pth \ +--padding_factor 32 \ +--upsample_factor 4 \ +--num_scales 2 \ +--attn_splits_list 2 8 \ +--corr_radius_list -1 4 \ +--prop_radius_list -1 1 + + + + +CUDA_VISIBLE_DEVICES=0 python main.py \ +--inference_dir demo/sintel_test_clean_market_1 \ +--output_path output/gmflow-norefine-sintel_test_clean_market_1 \ +--pred_bidir_flow \ +--fwd_bwd_consistency_check \ +--resume pretrained/gmflow_sintel-0c07dcb3.pth + + diff --git a/src/ebsynth/deps/gmflow/scripts/evaluate.sh b/src/ebsynth/deps/gmflow/scripts/evaluate.sh new file mode 100644 index 0000000000000000000000000000000000000000..e073069a9000309260973a3c8ed836056cffb011 --- /dev/null +++ b/src/ebsynth/deps/gmflow/scripts/evaluate.sh @@ -0,0 +1,83 @@ +#!/usr/bin/env bash + +# evaluate GMFlow without refinement + +# evaluate chairs & things trained model on things and sintel (Table 3 of GMFlow paper) +# the output should be: +# Number of validation image pairs: 1024 +# Validation Things test set (things_clean) EPE: 3.475 +# Validation Things test (things_clean) s0_10: 0.666, s10_40: 1.310, s40+: 8.968 +# Number of validation image pairs: 1041 +# Validation Sintel (clean) EPE: 1.495, 1px: 0.161, 3px: 0.059, 5px: 0.040 +# Validation Sintel (clean) s0_10: 0.457, s10_40: 1.770, s40+: 8.257 +# Number of validation image pairs: 1041 +# Validation Sintel (final) EPE: 2.955, 1px: 0.209, 3px: 0.098, 5px: 0.071 +# Validation Sintel (final) s0_10: 0.725, s10_40: 3.446, s40+: 17.701 + +CUDA_VISIBLE_DEVICES=0 python main.py \ +--eval \ +--resume pretrained/gmflow_things-e9887eda.pth \ +--val_dataset things sintel \ +--with_speed_metric + + + +# evaluate GMFlow with refinement + +# evaluate chairs & things trained model on things and sintel (Table 3 of GMFlow paper) +# the output should be: +# Validation Things test set (things_clean) EPE: 2.804 +# Validation Things test (things_clean) s0_10: 0.527, s10_40: 1.009, s40+: 7.314 +# Number of validation image pairs: 1041 +# Validation Sintel (clean) EPE: 1.084, 1px: 0.092, 3px: 0.040, 5px: 0.028 +# Validation Sintel (clean) s0_10: 0.303, s10_40: 1.252, s40+: 6.261 +# Number of validation image pairs: 1041 +# Validation Sintel (final) EPE: 2.475, 1px: 0.147, 3px: 0.077, 5px: 0.058 +# Validation Sintel (final) s0_10: 0.511, s10_40: 2.810, s40+: 15.669 + +CUDA_VISIBLE_DEVICES=0 python main.py \ +--eval \ +--resume pretrained/gmflow_with_refine_things-36579974.pth \ +--val_dataset things sintel \ +--with_speed_metric \ +--padding_factor 32 \ +--upsample_factor 4 \ +--num_scales 2 \ +--attn_splits_list 2 8 \ +--corr_radius_list -1 4 \ +--prop_radius_list -1 1 + + + +# evaluate matched & matched on sintel + +# evaluate GMFlow without refinement + +CUDA_VISIBLE_DEVICES=0 python main.py \ +--eval \ +--evaluate_matched_unmatched \ +--resume pretrained/gmflow_things-e9887eda.pth \ +--val_dataset sintel + +# evaluate GMFlow with refinement + +CUDA_VISIBLE_DEVICES=0 python main.py \ +--eval \ +--evaluate_matched_unmatched \ +--resume pretrained/gmflow_with_refine_things-36579974.pth \ +--val_dataset sintel \ +--with_speed_metric \ +--padding_factor 32 \ +--upsample_factor 4 \ +--num_scales 2 \ +--attn_splits_list 2 8 \ +--corr_radius_list -1 4 \ +--prop_radius_list -1 1 + + + + + + + + diff --git a/src/ebsynth/deps/gmflow/scripts/submission.sh b/src/ebsynth/deps/gmflow/scripts/submission.sh new file mode 100644 index 0000000000000000000000000000000000000000..288298d244fd6d32019c6a584372bfaeadb3857d --- /dev/null +++ b/src/ebsynth/deps/gmflow/scripts/submission.sh @@ -0,0 +1,67 @@ +#!/usr/bin/env bash + + +# generate prediction results for submission on sintel and kitti online servers + + +# GMFlow without refinement + +# submission to sintel +CUDA_VISIBLE_DEVICES=0 python main.py \ +--submission \ +--output_path submission/sintel-gmflow-norefine \ +--val_dataset sintel \ +--resume pretrained/gmflow_sintel-0c07dcb3.pth + +# submission to kitti +CUDA_VISIBLE_DEVICES=0 python main.py \ +--submission \ +--output_path submission/kitti-gmflow-norefine \ +--val_dataset kitti \ +--resume pretrained/gmflow_kitti-285701a8.pth + + +# you can also visualize the predictions before submission +# CUDA_VISIBLE_DEVICES=0 python main.py \ +# --submission \ +# --output_path submission/sintel-gmflow-norefine-vis \ +# --save_vis_flow \ +# --no_save_flo \ +# --val_dataset sintel \ +# --resume pretrained/gmflow_sintel.pth + + + + +# GMFlow with refinement + +# submission to sintel +CUDA_VISIBLE_DEVICES=0 python main.py \ +--submission \ +--output_path submission/sintel-gmflow-withrefine \ +--val_dataset sintel \ +--resume pretrained/gmflow_with_refine_sintel-3ed1cf48.pth \ +--padding_factor 32 \ +--upsample_factor 4 \ +--num_scales 2 \ +--attn_splits_list 2 8 \ +--corr_radius_list -1 4 \ +--prop_radius_list -1 1 + +# submission to kitti +CUDA_VISIBLE_DEVICES=0 python main.py \ +--submission \ +--output_path submission/kitti-gmflow-withrefine \ +--val_dataset kitti \ +--resume pretrained/gmflow_with_refine_kitti-8d3b9786.pth \ +--padding_factor 32 \ +--upsample_factor 4 \ +--num_scales 2 \ +--attn_splits_list 2 8 \ +--corr_radius_list -1 4 \ +--prop_radius_list -1 1 + + + + + diff --git a/src/ebsynth/deps/gmflow/scripts/train_gmflow.sh b/src/ebsynth/deps/gmflow/scripts/train_gmflow.sh new file mode 100644 index 0000000000000000000000000000000000000000..048c7c2ace97b9769bc040e3f5ce51f528eab02e --- /dev/null +++ b/src/ebsynth/deps/gmflow/scripts/train_gmflow.sh @@ -0,0 +1,108 @@ +#!/usr/bin/env bash + +# GMFlow without refinement + +# number of gpus for training, please set according to your hardware +# by default use all gpus on a machine +# can be trained on 4x 16GB V100 or 2x 32GB V100 or 2x 40GB A100 gpus +NUM_GPUS=4 + +# chairs +CHECKPOINT_DIR=checkpoints/chairs-gmflow && \ +mkdir -p ${CHECKPOINT_DIR} && \ +python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ +--launcher pytorch \ +--checkpoint_dir ${CHECKPOINT_DIR} \ +--batch_size 16 \ +--val_dataset chairs sintel kitti \ +--lr 4e-4 \ +--image_size 384 512 \ +--padding_factor 16 \ +--upsample_factor 8 \ +--with_speed_metric \ +--val_freq 10000 \ +--save_ckpt_freq 10000 \ +--num_steps 100000 \ +2>&1 | tee -a ${CHECKPOINT_DIR}/train.log + +# things (our final model is trained for 800K iterations, for ablation study, you can train for 200K) +CHECKPOINT_DIR=checkpoints/things-gmflow && \ +mkdir -p ${CHECKPOINT_DIR} && \ +python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ +--launcher pytorch \ +--checkpoint_dir ${CHECKPOINT_DIR} \ +--resume checkpoints/chairs-gmflow/step_100000.pth \ +--stage things \ +--batch_size 8 \ +--val_dataset things sintel kitti \ +--lr 2e-4 \ +--image_size 384 768 \ +--padding_factor 16 \ +--upsample_factor 8 \ +--with_speed_metric \ +--val_freq 40000 \ +--save_ckpt_freq 50000 \ +--num_steps 800000 \ +2>&1 | tee -a ${CHECKPOINT_DIR}/train.log + +# sintel +CHECKPOINT_DIR=checkpoints/sintel-gmflow && \ +mkdir -p ${CHECKPOINT_DIR} && \ +python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ +--launcher pytorch \ +--checkpoint_dir ${CHECKPOINT_DIR} \ +--resume checkpoints/things-gmflow/step_800000.pth \ +--stage sintel \ +--batch_size 8 \ +--val_dataset sintel kitti \ +--lr 2e-4 \ +--image_size 320 896 \ +--padding_factor 16 \ +--upsample_factor 8 \ +--with_speed_metric \ +--val_freq 20000 \ +--save_ckpt_freq 20000 \ +--num_steps 200000 \ +2>&1 | tee -a ${CHECKPOINT_DIR}/train.log + +# kitti +CHECKPOINT_DIR=checkpoints/kitti-gmflow && \ +mkdir -p ${CHECKPOINT_DIR} && \ +python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ +--launcher pytorch \ +--checkpoint_dir ${CHECKPOINT_DIR} \ +--resume checkpoints/sintel-gmflow/step_200000.pth \ +--stage kitti \ +--batch_size 8 \ +--val_dataset kitti \ +--lr 2e-4 \ +--image_size 320 1152 \ +--padding_factor 16 \ +--upsample_factor 8 \ +--with_speed_metric \ +--val_freq 10000 \ +--save_ckpt_freq 10000 \ +--num_steps 100000 \ +2>&1 | tee -a ${CHECKPOINT_DIR}/train.log + + +# a final note: if your training is terminated unexpectedly, you can resume from the latest checkpoint +# an example: resume chairs training +# CHECKPOINT_DIR=checkpoints/chairs-gmflow && \ +# mkdir -p ${CHECKPOINT_DIR} && \ +# python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ +# --launcher pytorch \ +# --checkpoint_dir ${CHECKPOINT_DIR} \ +# --resume checkpoints/chairs-gmflow/checkpoint_latest.pth \ +# --batch_size 16 \ +# --val_dataset chairs sintel kitti \ +# --lr 4e-4 \ +# --image_size 384 512 \ +# --padding_factor 16 \ +# --upsample_factor 8 \ +# --with_speed_metric \ +# --val_freq 10000 \ +# --save_ckpt_freq 10000 \ +# --num_steps 100000 \ +# 2>&1 | tee -a ${CHECKPOINT_DIR}/train.log + diff --git a/src/ebsynth/deps/gmflow/scripts/train_gmflow_with_refine.sh b/src/ebsynth/deps/gmflow/scripts/train_gmflow_with_refine.sh new file mode 100644 index 0000000000000000000000000000000000000000..88662a96f48839f84da1c4bc8c8aad45e4452b25 --- /dev/null +++ b/src/ebsynth/deps/gmflow/scripts/train_gmflow_with_refine.sh @@ -0,0 +1,128 @@ +#!/usr/bin/env bash + +# GMFlow with refinement + +# number of gpus for training, please set according to your hardware +# by default use all gpus on a machine +# can be trained on 4x 32G V100 or 4x 40GB A100 or 8x 16G V100 gpus +NUM_GPUS=4 + +# chairs +CHECKPOINT_DIR=checkpoints/chairs-gmflow_with_refine && \ +mkdir -p ${CHECKPOINT_DIR} && \ +python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ +--launcher pytorch \ +--checkpoint_dir ${CHECKPOINT_DIR} \ +--batch_size 16 \ +--val_dataset chairs sintel kitti \ +--lr 4e-4 \ +--image_size 384 512 \ +--padding_factor 32 \ +--upsample_factor 4 \ +--num_scales 2 \ +--attn_splits_list 2 8 \ +--corr_radius_list -1 4 \ +--prop_radius_list -1 1 \ +--with_speed_metric \ +--val_freq 10000 \ +--save_ckpt_freq 10000 \ +--num_steps 100000 \ +2>&1 | tee -a ${CHECKPOINT_DIR}/train.log + +# things (our final model is trained for 800K iterations, for ablation study, you can train for 200K) +CHECKPOINT_DIR=checkpoints/things-gmflow_with_refine && \ +mkdir -p ${CHECKPOINT_DIR} && \ +python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ +--launcher pytorch \ +--checkpoint_dir ${CHECKPOINT_DIR} \ +--resume checkpoints/chairs-gmflow_with_refine/step_100000.pth \ +--stage things \ +--batch_size 8 \ +--val_dataset things sintel kitti \ +--lr 2e-4 \ +--image_size 384 768 \ +--padding_factor 32 \ +--upsample_factor 4 \ +--num_scales 2 \ +--attn_splits_list 2 8 \ +--corr_radius_list -1 4 \ +--prop_radius_list -1 1 \ +--with_speed_metric \ +--val_freq 40000 \ +--save_ckpt_freq 50000 \ +--num_steps 800000 \ +2>&1 | tee -a ${CHECKPOINT_DIR}/train.log + +# sintel +CHECKPOINT_DIR=checkpoints/sintel-gmflow_with_refine && \ +mkdir -p ${CHECKPOINT_DIR} && \ +python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ +--launcher pytorch \ +--checkpoint_dir ${CHECKPOINT_DIR} \ +--resume checkpoints/things-gmflow_with_refine/step_800000.pth \ +--stage sintel \ +--batch_size 8 \ +--val_dataset sintel kitti \ +--lr 2e-4 \ +--image_size 320 896 \ +--padding_factor 32 \ +--upsample_factor 4 \ +--num_scales 2 \ +--attn_splits_list 2 8 \ +--corr_radius_list -1 4 \ +--prop_radius_list -1 1 \ +--with_speed_metric \ +--val_freq 20000 \ +--save_ckpt_freq 20000 \ +--num_steps 200000 \ +2>&1 | tee -a ${CHECKPOINT_DIR}/train.log + +# kitti +CHECKPOINT_DIR=checkpoints/kitti-gmflow_with_refine && \ +mkdir -p ${CHECKPOINT_DIR} && \ +python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ +--launcher pytorch \ +--checkpoint_dir ${CHECKPOINT_DIR} \ +--resume checkpoints/sintel-gmflow_with_refine/step_200000.pth \ +--stage kitti \ +--batch_size 8 \ +--val_dataset kitti \ +--lr 2e-4 \ +--image_size 320 1152 \ +--padding_factor 32 \ +--upsample_factor 4 \ +--num_scales 2 \ +--attn_splits_list 2 8 \ +--corr_radius_list -1 4 \ +--prop_radius_list -1 1 \ +--with_speed_metric \ +--val_freq 10000 \ +--save_ckpt_freq 10000 \ +--num_steps 100000 \ +2>&1 | tee -a ${CHECKPOINT_DIR}/train.log + + + +# a final note: if your training is terminated unexpectedly, you can resume from the latest checkpoint +# an example: resume chairs training +# CHECKPOINT_DIR=checkpoints/chairs-gmflow_with_refine && \ +# mkdir -p ${CHECKPOINT_DIR} && \ +# python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ +# --launcher pytorch \ +# --checkpoint_dir ${CHECKPOINT_DIR} \ +# --resume checkpoints/chairs-gmflow_with_refine/checkpoint_latest.pth \ +# --batch_size 16 \ +# --val_dataset chairs sintel kitti \ +# --lr 4e-4 \ +# --image_size 384 512 \ +# --padding_factor 32 \ +# --upsample_factor 4 \ +# --num_scales 2 \ +# --attn_splits_list 2 8 \ +# --corr_radius_list -1 4 \ +# --prop_radius_list -1 1 \ +# --with_speed_metric \ +# --val_freq 10000 \ +# --save_ckpt_freq 10000 \ +# --num_steps 100000 \ +# 2>&1 | tee -a ${CHECKPOINT_DIR}/train.log diff --git a/src/ebsynth/deps/gmflow/utils/dist_utils.py b/src/ebsynth/deps/gmflow/utils/dist_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..defbf939eb046e323b7a5ed94271a16758969013 --- /dev/null +++ b/src/ebsynth/deps/gmflow/utils/dist_utils.py @@ -0,0 +1,99 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# https://github.com/open-mmlab/mmcv/blob/7540cf73ac7e5d1e14d0ffbd9b6759e83929ecfc/mmcv/runner/dist_utils.py + +import os +import subprocess + +import torch +import torch.multiprocessing as mp +from torch import distributed as dist + + +def init_dist(launcher, backend='nccl', **kwargs): + if mp.get_start_method(allow_none=True) is None: + mp.set_start_method('spawn') + if launcher == 'pytorch': + _init_dist_pytorch(backend, **kwargs) + elif launcher == 'mpi': + _init_dist_mpi(backend, **kwargs) + elif launcher == 'slurm': + _init_dist_slurm(backend, **kwargs) + else: + raise ValueError(f'Invalid launcher type: {launcher}') + + +def _init_dist_pytorch(backend, **kwargs): + # TODO: use local_rank instead of rank % num_gpus + rank = int(os.environ['RANK']) + num_gpus = torch.cuda.device_count() + torch.cuda.set_device(rank % num_gpus) + dist.init_process_group(backend=backend, **kwargs) + + +def _init_dist_mpi(backend, **kwargs): + rank = int(os.environ['OMPI_COMM_WORLD_RANK']) + num_gpus = torch.cuda.device_count() + torch.cuda.set_device(rank % num_gpus) + dist.init_process_group(backend=backend, **kwargs) + + +def _init_dist_slurm(backend, port=None): + """Initialize slurm distributed training environment. + If argument ``port`` is not specified, then the master port will be system + environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system + environment variable, then a default port ``29500`` will be used. + Args: + backend (str): Backend of torch.distributed. + port (int, optional): Master port. Defaults to None. + """ + proc_id = int(os.environ['SLURM_PROCID']) + ntasks = int(os.environ['SLURM_NTASKS']) + node_list = os.environ['SLURM_NODELIST'] + num_gpus = torch.cuda.device_count() + torch.cuda.set_device(proc_id % num_gpus) + addr = subprocess.getoutput( + f'scontrol show hostname {node_list} | head -n1') + # specify master port + if port is not None: + os.environ['MASTER_PORT'] = str(port) + elif 'MASTER_PORT' in os.environ: + pass # use MASTER_PORT in the environment variable + else: + # 29500 is torch.distributed default port + os.environ['MASTER_PORT'] = '29500' + # use MASTER_ADDR in the environment variable if it already exists + if 'MASTER_ADDR' not in os.environ: + os.environ['MASTER_ADDR'] = addr + os.environ['WORLD_SIZE'] = str(ntasks) + os.environ['LOCAL_RANK'] = str(proc_id % num_gpus) + os.environ['RANK'] = str(proc_id) + dist.init_process_group(backend=backend) + + +def get_dist_info(): + if dist.is_available(): + initialized = dist.is_initialized() + else: + initialized = False + if initialized: + rank = dist.get_rank() + world_size = dist.get_world_size() + else: + rank = 0 + world_size = 1 + return rank, world_size + + +def setup_for_distributed(is_master): + """ + This function disables printing when not in master process + """ + import builtins as __builtin__ + builtin_print = __builtin__.print + + def print(*args, **kwargs): + force = kwargs.pop('force', False) + if is_master or force: + builtin_print(*args, **kwargs) + + __builtin__.print = print diff --git a/src/ebsynth/deps/gmflow/utils/flow_viz.py b/src/ebsynth/deps/gmflow/utils/flow_viz.py new file mode 100644 index 0000000000000000000000000000000000000000..9b782c07841b27526ef8c9fa070b480a01545c31 --- /dev/null +++ b/src/ebsynth/deps/gmflow/utils/flow_viz.py @@ -0,0 +1,291 @@ +# MIT License +# +# Copyright (c) 2018 Tom Runia +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to conditions. +# +# Author: Tom Runia +# Date Created: 2018-08-03 + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import numpy as np + + +def make_colorwheel(): + ''' + Generates a color wheel for optical flow visualization as presented in: + Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) + URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf + According to the C++ source code of Daniel Scharstein + According to the Matlab source code of Deqing Sun + ''' + + RY = 15 + YG = 6 + GC = 4 + CB = 11 + BM = 13 + MR = 6 + + ncols = RY + YG + GC + CB + BM + MR + colorwheel = np.zeros((ncols, 3)) + col = 0 + + # RY + colorwheel[0:RY, 0] = 255 + colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY) + col = col + RY + # YG + colorwheel[col:col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG) + colorwheel[col:col + YG, 1] = 255 + col = col + YG + # GC + colorwheel[col:col + GC, 1] = 255 + colorwheel[col:col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC) + col = col + GC + # CB + colorwheel[col:col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB) + colorwheel[col:col + CB, 2] = 255 + col = col + CB + # BM + colorwheel[col:col + BM, 2] = 255 + colorwheel[col:col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM) + col = col + BM + # MR + colorwheel[col:col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR) + colorwheel[col:col + MR, 0] = 255 + return colorwheel + + +def flow_compute_color(u, v, convert_to_bgr=False): + ''' + Applies the flow color wheel to (possibly clipped) flow components u and v. + According to the C++ source code of Daniel Scharstein + According to the Matlab source code of Deqing Sun + :param u: np.ndarray, input horizontal flow + :param v: np.ndarray, input vertical flow + :param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB + :return: + ''' + + flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) + + colorwheel = make_colorwheel() # shape [55x3] + ncols = colorwheel.shape[0] + + rad = np.sqrt(np.square(u) + np.square(v)) + a = np.arctan2(-v, -u) / np.pi + + fk = (a + 1) / 2 * (ncols - 1) + 1 + k0 = np.floor(fk).astype(np.int32) + k1 = k0 + 1 + k1[k1 == ncols] = 1 + f = fk - k0 + + for i in range(colorwheel.shape[1]): + tmp = colorwheel[:, i] + col0 = tmp[k0] / 255.0 + col1 = tmp[k1] / 255.0 + col = (1 - f) * col0 + f * col1 + + idx = (rad <= 1) + col[idx] = 1 - rad[idx] * (1 - col[idx]) + col[~idx] = col[~idx] * 0.75 # out of range? + + # Note the 2-i => BGR instead of RGB + ch_idx = 2 - i if convert_to_bgr else i + flow_image[:, :, ch_idx] = np.floor(255 * col) + + return flow_image + + +def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False): + ''' + Expects a two dimensional flow image of shape [H,W,2] + According to the C++ source code of Daniel Scharstein + According to the Matlab source code of Deqing Sun + :param flow_uv: np.ndarray of shape [H,W,2] + :param clip_flow: float, maximum clipping value for flow + :return: + ''' + + assert flow_uv.ndim == 3, 'input flow must have three dimensions' + assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' + + if clip_flow is not None: + flow_uv = np.clip(flow_uv, 0, clip_flow) + + u = flow_uv[:, :, 0] + v = flow_uv[:, :, 1] + + rad = np.sqrt(np.square(u) + np.square(v)) + rad_max = np.max(rad) + + epsilon = 1e-5 + u = u / (rad_max + epsilon) + v = v / (rad_max + epsilon) + + return flow_compute_color(u, v, convert_to_bgr) + + +UNKNOWN_FLOW_THRESH = 1e7 +SMALLFLOW = 0.0 +LARGEFLOW = 1e8 + + +def make_color_wheel(): + """ + Generate color wheel according Middlebury color code + :return: Color wheel + """ + RY = 15 + YG = 6 + GC = 4 + CB = 11 + BM = 13 + MR = 6 + + ncols = RY + YG + GC + CB + BM + MR + + colorwheel = np.zeros([ncols, 3]) + + col = 0 + + # RY + colorwheel[0:RY, 0] = 255 + colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY)) + col += RY + + # YG + colorwheel[col:col + YG, 0] = 255 - np.transpose(np.floor(255 * np.arange(0, YG) / YG)) + colorwheel[col:col + YG, 1] = 255 + col += YG + + # GC + colorwheel[col:col + GC, 1] = 255 + colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC)) + col += GC + + # CB + colorwheel[col:col + CB, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, CB) / CB)) + colorwheel[col:col + CB, 2] = 255 + col += CB + + # BM + colorwheel[col:col + BM, 2] = 255 + colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM)) + col += + BM + + # MR + colorwheel[col:col + MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) + colorwheel[col:col + MR, 0] = 255 + + return colorwheel + + +def compute_color(u, v): + """ + compute optical flow color map + :param u: optical flow horizontal map + :param v: optical flow vertical map + :return: optical flow in color code + """ + [h, w] = u.shape + img = np.zeros([h, w, 3]) + nanIdx = np.isnan(u) | np.isnan(v) + u[nanIdx] = 0 + v[nanIdx] = 0 + + colorwheel = make_color_wheel() + ncols = np.size(colorwheel, 0) + + rad = np.sqrt(u ** 2 + v ** 2) + + a = np.arctan2(-v, -u) / np.pi + + fk = (a + 1) / 2 * (ncols - 1) + 1 + + k0 = np.floor(fk).astype(int) + + k1 = k0 + 1 + k1[k1 == ncols + 1] = 1 + f = fk - k0 + + for i in range(0, np.size(colorwheel, 1)): + tmp = colorwheel[:, i] + col0 = tmp[k0 - 1] / 255 + col1 = tmp[k1 - 1] / 255 + col = (1 - f) * col0 + f * col1 + + idx = rad <= 1 + col[idx] = 1 - rad[idx] * (1 - col[idx]) + notidx = np.logical_not(idx) + + col[notidx] *= 0.75 + img[:, :, i] = np.uint8(np.floor(255 * col * (1 - nanIdx))) + + return img + + +# from https://github.com/gengshan-y/VCN +def flow_to_image(flow): + """ + Convert flow into middlebury color code image + :param flow: optical flow map + :return: optical flow image in middlebury color + """ + u = flow[:, :, 0] + v = flow[:, :, 1] + + maxu = -999. + maxv = -999. + minu = 999. + minv = 999. + + idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) + u[idxUnknow] = 0 + v[idxUnknow] = 0 + + maxu = max(maxu, np.max(u)) + minu = min(minu, np.min(u)) + + maxv = max(maxv, np.max(v)) + minv = min(minv, np.min(v)) + + rad = np.sqrt(u ** 2 + v ** 2) + maxrad = max(-1, np.max(rad)) + + u = u / (maxrad + np.finfo(float).eps) + v = v / (maxrad + np.finfo(float).eps) + + img = compute_color(u, v) + + idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) + img[idx] = 0 + + return np.uint8(img) + + +def save_vis_flow_tofile(flow, output_path): + vis_flow = flow_to_image(flow) + from PIL import Image + img = Image.fromarray(vis_flow) + img.save(output_path) + + +def flow_tensor_to_image(flow): + """Used for tensorboard visualization""" + flow = flow.permute(1, 2, 0) # [H, W, 2] + flow = flow.detach().cpu().numpy() + flow = flow_to_image(flow) # [H, W, 3] + flow = np.transpose(flow, (2, 0, 1)) # [3, H, W] + + return flow diff --git a/src/ebsynth/deps/gmflow/utils/frame_utils.py b/src/ebsynth/deps/gmflow/utils/frame_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..e2142240fd5c495149e108151abbfdcc12337d9a --- /dev/null +++ b/src/ebsynth/deps/gmflow/utils/frame_utils.py @@ -0,0 +1,131 @@ +import numpy as np +from PIL import Image +from os.path import * +import re +import cv2 + +TAG_CHAR = np.array([202021.25], np.float32) + + +def readFlow(fn): + """ Read .flo file in Middlebury format""" + # Code adapted from: + # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy + + # WARNING: this will work on little-endian architectures (eg Intel x86) only! + # print 'fn = %s'%(fn) + with open(fn, 'rb') as f: + magic = np.fromfile(f, np.float32, count=1) + if 202021.25 != magic: + print('Magic number incorrect. Invalid .flo file') + return None + else: + w = np.fromfile(f, np.int32, count=1) + h = np.fromfile(f, np.int32, count=1) + # print 'Reading %d x %d flo file\n' % (w, h) + data = np.fromfile(f, np.float32, count=2 * int(w) * int(h)) + # Reshape testdata into 3D array (columns, rows, bands) + # The reshape here is for visualization, the original code is (w,h,2) + return np.resize(data, (int(h), int(w), 2)) + + +def readPFM(file): + file = open(file, 'rb') + + color = None + width = None + height = None + scale = None + endian = None + + header = file.readline().rstrip() + if header == b'PF': + color = True + elif header == b'Pf': + color = False + else: + raise Exception('Not a PFM file.') + + dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline()) + if dim_match: + width, height = map(int, dim_match.groups()) + else: + raise Exception('Malformed PFM header.') + + scale = float(file.readline().rstrip()) + if scale < 0: # little-endian + endian = '<' + scale = -scale + else: + endian = '>' # big-endian + + data = np.fromfile(file, endian + 'f') + shape = (height, width, 3) if color else (height, width) + + data = np.reshape(data, shape) + data = np.flipud(data) + return data + + +def writeFlow(filename, uv, v=None): + """ Write optical flow to file. + + If v is None, uv is assumed to contain both u and v channels, + stacked in depth. + Original code by Deqing Sun, adapted from Daniel Scharstein. + """ + nBands = 2 + + if v is None: + assert (uv.ndim == 3) + assert (uv.shape[2] == 2) + u = uv[:, :, 0] + v = uv[:, :, 1] + else: + u = uv + + assert (u.shape == v.shape) + height, width = u.shape + f = open(filename, 'wb') + # write the header + f.write(TAG_CHAR) + np.array(width).astype(np.int32).tofile(f) + np.array(height).astype(np.int32).tofile(f) + # arrange into matrix form + tmp = np.zeros((height, width * nBands)) + tmp[:, np.arange(width) * 2] = u + tmp[:, np.arange(width) * 2 + 1] = v + tmp.astype(np.float32).tofile(f) + f.close() + + +def readFlowKITTI(filename): + flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR) + flow = flow[:, :, ::-1].astype(np.float32) + flow, valid = flow[:, :, :2], flow[:, :, 2] + flow = (flow - 2 ** 15) / 64.0 + return flow, valid + + +def writeFlowKITTI(filename, uv): + uv = 64.0 * uv + 2 ** 15 + valid = np.ones([uv.shape[0], uv.shape[1], 1]) + uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16) + cv2.imwrite(filename, uv[..., ::-1]) + + +def read_gen(file_name, pil=False): + ext = splitext(file_name)[-1] + if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg': + return Image.open(file_name) + elif ext == '.bin' or ext == '.raw': + return np.load(file_name) + elif ext == '.flo': + return readFlow(file_name).astype(np.float32) + elif ext == '.pfm': + flow = readPFM(file_name).astype(np.float32) + if len(flow.shape) == 2: + return flow + else: + return flow[:, :, :-1] + return [] diff --git a/src/ebsynth/deps/gmflow/utils/logger.py b/src/ebsynth/deps/gmflow/utils/logger.py new file mode 100644 index 0000000000000000000000000000000000000000..1b66a564e0dd0c872450fec890380240820422af --- /dev/null +++ b/src/ebsynth/deps/gmflow/utils/logger.py @@ -0,0 +1,68 @@ +import torch + +from utils.flow_viz import flow_tensor_to_image + + +class Logger: + def __init__(self, lr_scheduler, + summary_writer, + summary_freq=100, + start_step=0, + ): + self.lr_scheduler = lr_scheduler + self.total_steps = start_step + self.running_loss = {} + self.summary_writer = summary_writer + self.summary_freq = summary_freq + + def print_training_status(self, mode='train'): + + print('step: %06d \t epe: %.3f' % (self.total_steps, self.running_loss['epe'] / self.summary_freq)) + + for k in self.running_loss: + self.summary_writer.add_scalar(mode + '/' + k, + self.running_loss[k] / self.summary_freq, self.total_steps) + self.running_loss[k] = 0.0 + + def lr_summary(self): + lr = self.lr_scheduler.get_last_lr()[0] + self.summary_writer.add_scalar('lr', lr, self.total_steps) + + def add_image_summary(self, img1, img2, flow_preds, flow_gt, mode='train', + ): + if self.total_steps % self.summary_freq == 0: + img_concat = torch.cat((img1[0].detach().cpu(), img2[0].detach().cpu()), dim=-1) + img_concat = img_concat.type(torch.uint8) # convert to uint8 to visualize in tensorboard + + flow_pred = flow_tensor_to_image(flow_preds[-1][0]) + forward_flow_gt = flow_tensor_to_image(flow_gt[0]) + flow_concat = torch.cat((torch.from_numpy(flow_pred), + torch.from_numpy(forward_flow_gt)), dim=-1) + + concat = torch.cat((img_concat, flow_concat), dim=-2) + + self.summary_writer.add_image(mode + '/img_pred_gt', concat, self.total_steps) + + def push(self, metrics, mode='train'): + self.total_steps += 1 + + self.lr_summary() + + for key in metrics: + if key not in self.running_loss: + self.running_loss[key] = 0.0 + + self.running_loss[key] += metrics[key] + + if self.total_steps % self.summary_freq == 0: + self.print_training_status(mode) + self.running_loss = {} + + def write_dict(self, results): + for key in results: + tag = key.split('_')[0] + tag = tag + '/' + key + self.summary_writer.add_scalar(tag, results[key], self.total_steps) + + def close(self): + self.summary_writer.close() diff --git a/src/ebsynth/deps/gmflow/utils/misc.py b/src/ebsynth/deps/gmflow/utils/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..bcaf8b5e91ef61f256a94d919988a7a87cd90a7d --- /dev/null +++ b/src/ebsynth/deps/gmflow/utils/misc.py @@ -0,0 +1,42 @@ +import os +import numpy as np +import sys +import json + + +def read_text_lines(filepath): + with open(filepath, 'r') as f: + lines = f.readlines() + lines = [l.rstrip() for l in lines] + return lines + + +def check_path(path): + if not os.path.exists(path): + os.makedirs(path, exist_ok=True) # explicitly set exist_ok when multi-processing + + +def save_command(save_path, filename='command_train.txt'): + check_path(save_path) + command = sys.argv + save_file = os.path.join(save_path, filename) + # Save all training commands when resuming training + with open(save_file, 'a') as f: + f.write(' '.join(command)) + f.write('\n\n') + + +def save_args(args, filename='args.json'): + args_dict = vars(args) + check_path(args.checkpoint_dir) + save_path = os.path.join(args.checkpoint_dir, filename) + + # Save all training args when resuming training + with open(save_path, 'a') as f: + json.dump(args_dict, f, indent=4, sort_keys=False) + f.write('\n\n') + + +def int_list(s): + """Convert string to int list""" + return [int(x) for x in s.split(',')] diff --git a/src/ebsynth/deps/gmflow/utils/utils.py b/src/ebsynth/deps/gmflow/utils/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..76f5518b7e5b769527907b31a1c1c00ba6cfe4f1 --- /dev/null +++ b/src/ebsynth/deps/gmflow/utils/utils.py @@ -0,0 +1,58 @@ +import torch +import torch.nn.functional as F + + +class InputPadder: + """ Pads images such that dimensions are divisible by 8 """ + + def __init__(self, dims, mode='sintel', padding_factor=8): + self.ht, self.wd = dims[-2:] + pad_ht = (((self.ht // padding_factor) + 1) * padding_factor - self.ht) % padding_factor + pad_wd = (((self.wd // padding_factor) + 1) * padding_factor - self.wd) % padding_factor + if mode == 'sintel': + self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2] + else: + self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht] + + def pad(self, *inputs): + return [F.pad(x, self._pad, mode='replicate') for x in inputs] + + def unpad(self, x): + ht, wd = x.shape[-2:] + c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]] + return x[..., c[0]:c[1], c[2]:c[3]] + + +def coords_grid(batch, ht, wd, normalize=False): + if normalize: # [-1, 1] + coords = torch.meshgrid(2 * torch.arange(ht) / (ht - 1) - 1, + 2 * torch.arange(wd) / (wd - 1) - 1) + else: + coords = torch.meshgrid(torch.arange(ht), torch.arange(wd)) + coords = torch.stack(coords[::-1], dim=0).float() + return coords[None].repeat(batch, 1, 1, 1) # [B, 2, H, W] + + +def compute_out_of_boundary_mask(flow): + # flow: [B, 2, H, W] + assert flow.dim() == 4 and flow.size(1) == 2 + b, _, h, w = flow.shape + init_coords = coords_grid(b, h, w).to(flow.device) + corres = init_coords + flow # [B, 2, H, W] + + max_w = w - 1 + max_h = h - 1 + + valid_mask = (corres[:, 0] >= 0) & (corres[:, 0] <= max_w) & (corres[:, 1] >= 0) & (corres[:, 1] <= max_h) + + # in case very large flow + flow_mask = (flow[:, 0].abs() <= max_w) & (flow[:, 1].abs() <= max_h) + + valid_mask = valid_mask & flow_mask + + return valid_mask # [B, H, W] + + +def count_parameters(model): + num = sum(p.numel() for p in model.parameters() if p.requires_grad) + return num diff --git a/src/ebsynth/example.txt b/src/ebsynth/example.txt new file mode 100644 index 0000000000000000000000000000000000000000..c05731fa3c709e2ea55a08117e376a54e28e4105 --- /dev/null +++ b/src/ebsynth/example.txt @@ -0,0 +1,14 @@ +CUDA_VISIBLE_DEVICES=1 python video_blend.py ../diffusers/output/pexels-koolshooters-7322716 \ + --key_ind 0 5 33 46 58 69 75 81 87 95 102 108 115 130 139 167 184 190 195 204 211 224 230 \ + --key keys \ + --output ../diffusers/output/pexels-koolshooters-7322716/blend.mp4 \ + --fps 25.0 \ + -ps + + +CUDA_VISIBLE_DEVICES=7 python ./video_blend.py ../../output/car-turn \ + --key_ind 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 \ + --key keys \ + --output ../../output/car-turn/blend.mp4 \ + --fps 10.0 \ + -ps diff --git a/src/ebsynth/flow/flow_utils.py b/src/ebsynth/flow/flow_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..9b1ab91645935f786199c8ef422a18e63ae8eecc --- /dev/null +++ b/src/ebsynth/flow/flow_utils.py @@ -0,0 +1,258 @@ +import os +import sys + +import cv2 +import numpy as np +import torch +import torch.nn.functional as F + +parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) +gmflow_dir = os.path.join(parent_dir, 'deps/gmflow') +sys.path.insert(0, gmflow_dir) + +from gmflow.gmflow import GMFlow # noqa: E702 E402 F401 +from utils.utils import InputPadder # noqa: E702 E402 + + +def coords_grid(b, h, w, homogeneous=False, device=None): + y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) # [H, W] + + stacks = [x, y] + + if homogeneous: + ones = torch.ones_like(x) # [H, W] + stacks.append(ones) + + grid = torch.stack(stacks, dim=0).float() # [2, H, W] or [3, H, W] + + grid = grid[None].repeat(b, 1, 1, 1) # [B, 2, H, W] or [B, 3, H, W] + + if device is not None: + grid = grid.to(device) + + return grid + + +def bilinear_sample(img, + sample_coords, + mode='bilinear', + padding_mode='zeros', + return_mask=False): + # img: [B, C, H, W] + # sample_coords: [B, 2, H, W] in image scale + if sample_coords.size(1) != 2: # [B, H, W, 2] + sample_coords = sample_coords.permute(0, 3, 1, 2) + + b, _, h, w = sample_coords.shape + + # Normalize to [-1, 1] + x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1 + y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1 + + grid = torch.stack([x_grid, y_grid], dim=-1) # [B, H, W, 2] + + img = F.grid_sample(img, + grid, + mode=mode, + padding_mode=padding_mode, + align_corners=True) + + if return_mask: + mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & ( + y_grid <= 1) # [B, H, W] + + return img, mask + + return img + + +def flow_warp(feature, + flow, + mask=False, + mode='bilinear', + padding_mode='zeros'): + b, c, h, w = feature.size() + assert flow.size(1) == 2 + + grid = coords_grid(b, h, w).to(flow.device) + flow # [B, 2, H, W] + + return bilinear_sample(feature, + grid, + mode=mode, + padding_mode=padding_mode, + return_mask=mask) + + +def forward_backward_consistency_check(fwd_flow, + bwd_flow, + alpha=0.01, + beta=0.5): + # fwd_flow, bwd_flow: [B, 2, H, W] + # alpha and beta values are following UnFlow + # (https://arxiv.org/abs/1711.07837) + assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4 + assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2 + flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, + dim=1) # [B, H, W] + + warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) # [B, 2, H, W] + warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) # [B, 2, H, W] + + diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) # [B, H, W] + diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1) + + threshold = alpha * flow_mag + beta + + fwd_occ = (diff_fwd > threshold).float() # [B, H, W] + bwd_occ = (diff_bwd > threshold).float() + + return fwd_occ, bwd_occ + + +@torch.no_grad() +def get_warped_and_mask(flow_model, + image1, + image2, + image3=None, + pixel_consistency=False): + if image3 is None: + image3 = image1 + padder = InputPadder(image1.shape, padding_factor=8) + image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) + results_dict = flow_model(image1, + image2, + attn_splits_list=[2], + corr_radius_list=[-1], + prop_radius_list=[-1], + pred_bidir_flow=True) + flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W] + fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) # [1, 2, H, W] + bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) # [1, 2, H, W] + fwd_occ, bwd_occ = forward_backward_consistency_check( + fwd_flow, bwd_flow) # [1, H, W] float + if pixel_consistency: + warped_image1 = flow_warp(image1, bwd_flow) + bwd_occ = torch.clamp( + bwd_occ + + (abs(image2 - warped_image1).mean(dim=1) > 255 * 0.25).float(), 0, + 1).unsqueeze(0) + warped_results = flow_warp(image3, bwd_flow) + return warped_results, bwd_occ, bwd_flow + + +class FlowCalc(): + + def __init__(self, model_path='./model/gmflow_sintel-0c07dcb3.pth'): + flow_model = GMFlow( + feature_channels=128, + num_scales=1, + upsample_factor=8, + num_head=1, + attention_type='swin', + ffn_dim_expansion=4, + num_transformer_layers=6, + ).to('cuda') + + checkpoint = torch.load(model_path, + map_location=lambda storage, loc: storage) + weights = checkpoint['model'] if 'model' in checkpoint else checkpoint + flow_model.load_state_dict(weights, strict=False) + flow_model.eval() + self.model = flow_model + + @torch.no_grad() + def get_flow(self, image1, image2, save_path=None): + + if save_path is not None and os.path.exists(save_path): + bwd_flow = read_flow(save_path) + return bwd_flow + + image1 = torch.from_numpy(image1).permute(2, 0, 1).float() + image2 = torch.from_numpy(image2).permute(2, 0, 1).float() + padder = InputPadder(image1.shape, padding_factor=8) + image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) + results_dict = self.model(image1, + image2, + attn_splits_list=[2], + corr_radius_list=[-1], + prop_radius_list=[-1], + pred_bidir_flow=True) + flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W] + fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) # [1, 2, H, W] + bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) # [1, 2, H, W] + fwd_occ, bwd_occ = forward_backward_consistency_check( + fwd_flow, bwd_flow) # [1, H, W] float + if save_path is not None: + flow_np = bwd_flow.cpu().numpy() + np.save(save_path, flow_np) + mask_path = os.path.splitext(save_path)[0] + '.png' + bwd_occ = bwd_occ.cpu().permute(1, 2, 0).to( + torch.long).numpy() * 255 + cv2.imwrite(mask_path, bwd_occ) + + return bwd_flow + + @torch.no_grad() + def get_mask(self, image1, image2, save_path=None): + + if save_path is not None: + mask_path = os.path.splitext(save_path)[0] + '.png' + if os.path.exists(mask_path): + return read_mask(mask_path) + + image1 = torch.from_numpy(image1).permute(2, 0, 1).float() + image2 = torch.from_numpy(image2).permute(2, 0, 1).float() + padder = InputPadder(image1.shape, padding_factor=8) + image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) + results_dict = self.model(image1, + image2, + attn_splits_list=[2], + corr_radius_list=[-1], + prop_radius_list=[-1], + pred_bidir_flow=True) + flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W] + fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) # [1, 2, H, W] + bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) # [1, 2, H, W] + fwd_occ, bwd_occ = forward_backward_consistency_check( + fwd_flow, bwd_flow) # [1, H, W] float + if save_path is not None: + flow_np = bwd_flow.cpu().numpy() + np.save(save_path, flow_np) + mask_path = os.path.splitext(save_path)[0] + '.png' + bwd_occ = bwd_occ.cpu().permute(1, 2, 0).to( + torch.long).numpy() * 255 + cv2.imwrite(mask_path, bwd_occ) + + return bwd_occ + + def warp(self, img, flow, mode='bilinear'): + expand = False + if len(img.shape) == 2: + expand = True + img = np.expand_dims(img, 2) + + img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0) + dtype = img.dtype + img = img.to(torch.float) + res = flow_warp(img, flow, mode=mode) + res = res.to(dtype) + res = res[0].cpu().permute(1, 2, 0).numpy() + if expand: + res = res[:, :, 0] + return res + + +def read_flow(save_path): + flow_np = np.load(save_path) + bwd_flow = torch.from_numpy(flow_np) + return bwd_flow + + +def read_mask(save_path): + mask_path = os.path.splitext(save_path)[0] + '.png' + mask = cv2.imread(mask_path) + mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) + return mask + + +flow_calc = FlowCalc() diff --git a/src/ebsynth/src/config.py b/src/ebsynth/src/config.py new file mode 100644 index 0000000000000000000000000000000000000000..50b42691f61fd2fec27455da4a9490cecc83b5e2 --- /dev/null +++ b/src/ebsynth/src/config.py @@ -0,0 +1,150 @@ +import json +import os +from typing import Optional, Sequence, Tuple + +from src.video_util import get_frame_count + + +class RerenderConfig: + + def __init__(self): + ... + + def create_from_parameters(self, + input_path: str, + output_path: str, + prompt: str, + work_dir: Optional[str] = None, + key_subdir: str = 'keys', + frame_count: Optional[int] = None, + interval: int = 10, + crop: Sequence[int] = (0, 0, 0, 0), + sd_model: Optional[str] = None, + a_prompt: str = '', + n_prompt: str = '', + ddim_steps=20, + scale=7.5, + control_type: str = 'HED', + control_strength=1, + seed: int = -1, + image_resolution: int = 512, + x0_strength: float = -1, + style_update_freq: int = 10, + cross_period: Tuple[float, float] = (0, 1), + warp_period: Tuple[float, float] = (0, 0.1), + mask_period: Tuple[float, float] = (0.5, 0.8), + ada_period: Tuple[float, float] = (1.0, 1.0), + mask_strength: float = 0.5, + inner_strength: float = 0.9, + smooth_boundary: bool = True, + color_preserve: bool = True, + loose_cfattn: bool = False, + freeu_args: Tuple[int] = (1, 1, 1, 1), + **kwargs): + self.input_path = input_path + self.output_path = output_path + self.prompt = prompt + self.work_dir = work_dir + if work_dir is None: + self.work_dir = os.path.dirname(output_path) + self.key_dir = os.path.join(self.work_dir, key_subdir) + self.first_dir = os.path.join(self.work_dir, 'first') + + # Split video into frames + if not os.path.isfile(input_path): + raise FileNotFoundError(f'Cannot find video file {input_path}') + self.input_dir = os.path.join(self.work_dir, 'video') + + self.frame_count = frame_count + if frame_count is None: + self.frame_count = get_frame_count(self.input_path) + self.interval = interval + self.crop = crop + self.sd_model = sd_model + self.a_prompt = a_prompt + self.n_prompt = n_prompt + self.ddim_steps = ddim_steps + self.scale = scale + self.control_type = control_type + if self.control_type == 'canny': + self.canny_low = kwargs.get('canny_low', 100) + self.canny_high = kwargs.get('canny_high', 200) + else: + self.canny_low = None + self.canny_high = None + self.control_strength = control_strength + self.seed = seed + self.image_resolution = image_resolution + self.x0_strength = x0_strength + self.style_update_freq = style_update_freq + self.cross_period = cross_period + self.mask_period = mask_period + self.warp_period = warp_period + self.ada_period = ada_period + self.mask_strength = mask_strength + self.inner_strength = inner_strength + self.smooth_boundary = smooth_boundary + self.color_preserve = color_preserve + self.loose_cfattn = loose_cfattn + self.freeu_args = freeu_args + + os.makedirs(self.input_dir, exist_ok=True) + os.makedirs(self.work_dir, exist_ok=True) + os.makedirs(self.key_dir, exist_ok=True) + os.makedirs(self.first_dir, exist_ok=True) + + def create_from_path(self, cfg_path: str): + with open(cfg_path, 'r') as fp: + cfg = json.load(fp) + kwargs = dict() + + def append_if_not_none(key): + value = cfg.get(key, None) + if value is not None: + kwargs[key] = value + + kwargs['input_path'] = cfg['input'] + kwargs['output_path'] = cfg['output'] + kwargs['prompt'] = cfg['prompt'] + append_if_not_none('work_dir') + append_if_not_none('key_subdir') + append_if_not_none('frame_count') + append_if_not_none('interval') + append_if_not_none('crop') + append_if_not_none('sd_model') + append_if_not_none('a_prompt') + append_if_not_none('n_prompt') + append_if_not_none('ddim_steps') + append_if_not_none('scale') + append_if_not_none('control_type') + if kwargs.get('control_type', '') == 'canny': + append_if_not_none('canny_low') + append_if_not_none('canny_high') + append_if_not_none('control_strength') + append_if_not_none('seed') + append_if_not_none('image_resolution') + append_if_not_none('x0_strength') + append_if_not_none('style_update_freq') + append_if_not_none('cross_period') + append_if_not_none('warp_period') + append_if_not_none('mask_period') + append_if_not_none('ada_period') + append_if_not_none('mask_strength') + append_if_not_none('inner_strength') + append_if_not_none('smooth_boundary') + append_if_not_none('color_perserve') + append_if_not_none('loose_cfattn') + append_if_not_none('freeu_args') + self.create_from_parameters(**kwargs) + + @property + def use_warp(self): + return self.warp_period[0] <= self.warp_period[1] + + @property + def use_mask(self): + return self.mask_period[0] <= self.mask_period[1] + + @property + def use_ada(self): + return self.ada_period[0] <= self.ada_period[1] diff --git a/src/ebsynth/src/controller.py b/src/ebsynth/src/controller.py new file mode 100644 index 0000000000000000000000000000000000000000..858748ea57aa22a853c287b345ca2219c97d7c1b --- /dev/null +++ b/src/ebsynth/src/controller.py @@ -0,0 +1,143 @@ +import gc + +import torch +import torch.nn.functional as F + +from flow.flow_utils import flow_warp + +# AdaIn + + +def calc_mean_std(feat, eps=1e-5): + # eps is a small value added to the variance to avoid divide-by-zero. + size = feat.size() + assert (len(size) == 4) + N, C = size[:2] + feat_var = feat.view(N, C, -1).var(dim=2) + eps + feat_std = feat_var.sqrt().view(N, C, 1, 1) + feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1) + return feat_mean, feat_std + + +class AttentionControl(): + + def __init__(self, + inner_strength, + mask_period, + cross_period, + ada_period, + warp_period, + loose_cfatnn=False): + self.step_store = self.get_empty_store() + self.cur_step = 0 + self.total_step = 0 + self.cur_index = 0 + self.init_store = False + self.restore = False + self.update = False + self.flow = None + self.mask = None + self.restorex0 = False + self.updatex0 = False + self.inner_strength = inner_strength + self.cross_period = cross_period + self.mask_period = mask_period + self.ada_period = ada_period + self.warp_period = warp_period + self.up_resolution = 1280 if loose_cfatnn else 1281 + + @staticmethod + def get_empty_store(): + return { + 'first': [], + 'previous': [], + 'x0_previous': [], + 'first_ada': [] + } + + def forward(self, context, is_cross: bool, place_in_unet: str): + cross_period = (self.total_step * self.cross_period[0], + self.total_step * self.cross_period[1]) + if not is_cross and place_in_unet == 'up' and context.shape[ + 2] < self.up_resolution: + if self.init_store: + self.step_store['first'].append(context.detach()) + self.step_store['previous'].append(context.detach()) + if self.update: + tmp = context.clone().detach() + if self.restore and self.cur_step >= cross_period[0] and \ + self.cur_step <= cross_period[1]: + context = torch.cat( + (self.step_store['first'][self.cur_index], + self.step_store['previous'][self.cur_index]), + dim=1).clone() + if self.update: + self.step_store['previous'][self.cur_index] = tmp + self.cur_index += 1 + return context + + def update_x0(self, x0): + if self.init_store: + self.step_store['x0_previous'].append(x0.detach()) + style_mean, style_std = calc_mean_std(x0.detach()) + self.step_store['first_ada'].append(style_mean.detach()) + self.step_store['first_ada'].append(style_std.detach()) + if self.updatex0: + tmp = x0.clone().detach() + if self.restorex0: + if self.cur_step >= self.total_step * self.ada_period[ + 0] and self.cur_step <= self.total_step * self.ada_period[ + 1]: + x0 = F.instance_norm(x0) * self.step_store['first_ada'][ + 2 * self.cur_step + + 1] + self.step_store['first_ada'][2 * self.cur_step] + if self.cur_step >= self.total_step * self.warp_period[ + 0] and self.cur_step <= self.total_step * self.warp_period[ + 1]: + pre = self.step_store['x0_previous'][self.cur_step] + x0 = flow_warp(pre, self.flow, mode='nearest') * self.mask + ( + 1 - self.mask) * x0 + if self.updatex0: + self.step_store['x0_previous'][self.cur_step] = tmp + return x0 + + def set_warp(self, flow, mask): + self.flow = flow.clone() + self.mask = mask.clone() + + def __call__(self, context, is_cross: bool, place_in_unet: str): + context = self.forward(context, is_cross, place_in_unet) + return context + + def set_step(self, step): + self.cur_step = step + + def set_total_step(self, total_step): + self.total_step = total_step + self.cur_index = 0 + + def clear_store(self): + del self.step_store + torch.cuda.empty_cache() + gc.collect() + self.step_store = self.get_empty_store() + + def set_task(self, task, restore_step=1.0): + self.init_store = False + self.restore = False + self.update = False + self.cur_index = 0 + self.restore_step = restore_step + self.updatex0 = False + self.restorex0 = False + if 'initfirst' in task: + self.init_store = True + self.clear_store() + if 'updatestyle' in task: + self.update = True + if 'keepstyle' in task: + self.restore = True + if 'updatex0' in task: + self.updatex0 = True + if 'keepx0' in task: + self.restorex0 = True diff --git a/src/ebsynth/src/ddim_v_hacked.py b/src/ebsynth/src/ddim_v_hacked.py new file mode 100644 index 0000000000000000000000000000000000000000..3172899476cbdf32f837b05f1bed5738ba92fa67 --- /dev/null +++ b/src/ebsynth/src/ddim_v_hacked.py @@ -0,0 +1,587 @@ +"""SAMPLING ONLY.""" + +# CrossAttn precision handling +import os + +import einops +import numpy as np +import torch +from tqdm import tqdm + +from deps.ControlNet.ldm.modules.diffusionmodules.util import ( + extract_into_tensor, make_ddim_sampling_parameters, make_ddim_timesteps, + noise_like) + +_ATTN_PRECISION = os.environ.get('ATTN_PRECISION', 'fp32') + + +def register_attention_control(model, controller=None): + + def ca_forward(self, place_in_unet): + + def forward(x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + is_cross = context is not None + context = context if is_cross else x + context = controller(context, is_cross, place_in_unet) + + k = self.to_k(context) + v = self.to_v(context) + + q, k, v = map( + lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), + (q, k, v)) + + # force cast to fp32 to avoid overflowing + if _ATTN_PRECISION == 'fp32': + with torch.autocast(enabled=False, device_type='cuda'): + q, k = q.float(), k.float() + sim = torch.einsum('b i d, b j d -> b i j', q, + k) * self.scale + else: + sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale + + del q, k + + if mask is not None: + mask = einops.rearrange(mask, 'b ... -> b (...)') + max_neg_value = -torch.finfo(sim.dtype).max + mask = einops.repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + sim = sim.softmax(dim=-1) + + out = torch.einsum('b i j, b j d -> b i d', sim, v) + out = einops.rearrange(out, '(b h) n d -> b n (h d)', h=h) + return self.to_out(out) + + return forward + + class DummyController: + + def __call__(self, *args): + return args[0] + + def __init__(self): + self.cur_step = 0 + + if controller is None: + controller = DummyController() + + def register_recr(net_, place_in_unet): + if net_.__class__.__name__ == 'CrossAttention': + net_.forward = ca_forward(net_, place_in_unet) + elif hasattr(net_, 'children'): + for net__ in net_.children(): + register_recr(net__, place_in_unet) + + sub_nets = model.named_children() + for net in sub_nets: + if 'input_blocks' in net[0]: + register_recr(net[1], 'down') + elif 'output_blocks' in net[0]: + register_recr(net[1], 'up') + elif 'middle_block' in net[0]: + register_recr(net[1], 'mid') + + +class DDIMVSampler(object): + + def __init__(self, model, schedule='linear', **kwargs): + super().__init__() + self.model = model + self.ddpm_num_timesteps = model.num_timesteps + self.schedule = schedule + + def register_buffer(self, name, attr): + if type(attr) == torch.Tensor: + if attr.device != torch.device('cuda'): + attr = attr.to(torch.device('cuda')) + setattr(self, name, attr) + + def make_schedule(self, + ddim_num_steps, + ddim_discretize='uniform', + ddim_eta=0., + verbose=True): + self.ddim_timesteps = make_ddim_timesteps( + ddim_discr_method=ddim_discretize, + num_ddim_timesteps=ddim_num_steps, + num_ddpm_timesteps=self.ddpm_num_timesteps, + verbose=verbose) + alphas_cumprod = self.model.alphas_cumprod + assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, \ + 'alphas have to be defined for each timestep' + + def to_torch(x): + return x.clone().detach().to(torch.float32).to(self.model.device) + + self.register_buffer('betas', to_torch(self.model.betas)) + self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) + self.register_buffer('alphas_cumprod_prev', + to_torch(self.model.alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer('sqrt_alphas_cumprod', + to_torch(np.sqrt(alphas_cumprod.cpu()))) + self.register_buffer('sqrt_one_minus_alphas_cumprod', + to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) + self.register_buffer('log_one_minus_alphas_cumprod', + to_torch(np.log(1. - alphas_cumprod.cpu()))) + self.register_buffer('sqrt_recip_alphas_cumprod', + to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) + self.register_buffer('sqrt_recipm1_alphas_cumprod', + to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) + + # ddim sampling parameters + ddim_sigmas, ddim_alphas, ddim_alphas_prev = \ + make_ddim_sampling_parameters( + alphacums=alphas_cumprod.cpu(), + ddim_timesteps=self.ddim_timesteps, + eta=ddim_eta, + verbose=verbose) + self.register_buffer('ddim_sigmas', ddim_sigmas) + self.register_buffer('ddim_alphas', ddim_alphas) + self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) + self.register_buffer('ddim_sqrt_one_minus_alphas', + np.sqrt(1. - ddim_alphas)) + sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( + (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * + (1 - self.alphas_cumprod / self.alphas_cumprod_prev)) + self.register_buffer('ddim_sigmas_for_original_num_steps', + sigmas_for_original_sampling_steps) + + @torch.no_grad() + def sample(self, + S, + batch_size, + shape, + conditioning=None, + callback=None, + img_callback=None, + quantize_x0=False, + eta=0., + mask=None, + x0=None, + xtrg=None, + noise_rescale=None, + temperature=1., + noise_dropout=0., + score_corrector=None, + corrector_kwargs=None, + verbose=True, + x_T=None, + log_every_t=100, + unconditional_guidance_scale=1., + unconditional_conditioning=None, + dynamic_threshold=None, + ucg_schedule=None, + controller=None, + strength=0.0, + **kwargs): + if conditioning is not None: + if isinstance(conditioning, dict): + ctmp = conditioning[list(conditioning.keys())[0]] + while isinstance(ctmp, list): + ctmp = ctmp[0] + cbs = ctmp.shape[0] + if cbs != batch_size: + print(f'Warning: Got {cbs} conditionings' + f'but batch-size is {batch_size}') + + elif isinstance(conditioning, list): + for ctmp in conditioning: + if ctmp.shape[0] != batch_size: + print(f'Warning: Got {cbs} conditionings' + f'but batch-size is {batch_size}') + + else: + if conditioning.shape[0] != batch_size: + print(f'Warning: Got {conditioning.shape[0]}' + f'conditionings but batch-size is {batch_size}') + + self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) + # sampling + C, H, W = shape + size = (batch_size, C, H, W) + print(f'Data shape for DDIM sampling is {size}, eta {eta}') + + samples, intermediates = self.ddim_sampling( + conditioning, + size, + callback=callback, + img_callback=img_callback, + quantize_denoised=quantize_x0, + mask=mask, + x0=x0, + xtrg=xtrg, + noise_rescale=noise_rescale, + ddim_use_original_steps=False, + noise_dropout=noise_dropout, + temperature=temperature, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + x_T=x_T, + log_every_t=log_every_t, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + dynamic_threshold=dynamic_threshold, + ucg_schedule=ucg_schedule, + controller=controller, + strength=strength, + ) + return samples, intermediates + + @torch.no_grad() + def ddim_sampling(self, + cond, + shape, + x_T=None, + ddim_use_original_steps=False, + callback=None, + timesteps=None, + quantize_denoised=False, + mask=None, + x0=None, + xtrg=None, + noise_rescale=None, + img_callback=None, + log_every_t=100, + temperature=1., + noise_dropout=0., + score_corrector=None, + corrector_kwargs=None, + unconditional_guidance_scale=1., + unconditional_conditioning=None, + dynamic_threshold=None, + ucg_schedule=None, + controller=None, + strength=0.0): + + if strength == 1 and x0 is not None: + return x0, None + + register_attention_control(self.model.model.diffusion_model, + controller) + + device = self.model.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + if timesteps is None: + timesteps = self.ddpm_num_timesteps if ddim_use_original_steps \ + else self.ddim_timesteps + elif timesteps is not None and not ddim_use_original_steps: + subset_end = int( + min(timesteps / self.ddim_timesteps.shape[0], 1) * + self.ddim_timesteps.shape[0]) - 1 + timesteps = self.ddim_timesteps[:subset_end] + + intermediates = {'x_inter': [img], 'pred_x0': [img]} + time_range = reversed(range( + 0, timesteps)) if ddim_use_original_steps else np.flip(timesteps) + total_steps = timesteps if ddim_use_original_steps \ + else timesteps.shape[0] + print(f'Running DDIM Sampling with {total_steps} timesteps') + + iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) + if controller is not None: + controller.set_total_step(total_steps) + if mask is None: + mask = [None] * total_steps + + dir_xt = 0 + for i, step in enumerate(iterator): + if controller is not None: + controller.set_step(i) + index = total_steps - i - 1 + ts = torch.full((b, ), step, device=device, dtype=torch.long) + + if strength >= 0 and i == int( + total_steps * strength) and x0 is not None: + img = self.model.q_sample(x0, ts) + if mask is not None and xtrg is not None: + # TODO: deterministic forward pass? + if type(mask) == list: + weight = mask[i] + else: + weight = mask + if weight is not None: + rescale = torch.maximum(1. - weight, (1 - weight**2)**0.5 * + controller.inner_strength) + if noise_rescale is not None: + rescale = (1. - weight) * ( + 1 - noise_rescale) + rescale * noise_rescale + img_ref = self.model.q_sample(xtrg, ts) + img = img_ref * weight + (1. - weight) * ( + img - dir_xt) + rescale * dir_xt + + if ucg_schedule is not None: + assert len(ucg_schedule) == len(time_range) + unconditional_guidance_scale = ucg_schedule[i] + + outs = self.p_sample_ddim( + img, + cond, + ts, + index=index, + use_original_steps=ddim_use_original_steps, + quantize_denoised=quantize_denoised, + temperature=temperature, + noise_dropout=noise_dropout, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + dynamic_threshold=dynamic_threshold, + controller=controller, + return_dir=True) + img, pred_x0, dir_xt = outs + if callback: + callback(i) + if img_callback: + img_callback(pred_x0, i) + + if index % log_every_t == 0 or index == total_steps - 1: + intermediates['x_inter'].append(img) + intermediates['pred_x0'].append(pred_x0) + + return img, intermediates + + @torch.no_grad() + def p_sample_ddim(self, + x, + c, + t, + index, + repeat_noise=False, + use_original_steps=False, + quantize_denoised=False, + temperature=1., + noise_dropout=0., + score_corrector=None, + corrector_kwargs=None, + unconditional_guidance_scale=1., + unconditional_conditioning=None, + dynamic_threshold=None, + controller=None, + return_dir=False): + b, *_, device = *x.shape, x.device + + if unconditional_conditioning is None or \ + unconditional_guidance_scale == 1.: + model_output = self.model.apply_model(x, t, c) + else: + model_t = self.model.apply_model(x, t, c) + model_uncond = self.model.apply_model(x, t, + unconditional_conditioning) + model_output = model_uncond + unconditional_guidance_scale * ( + model_t - model_uncond) + + if self.model.parameterization == 'v': + e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) + else: + e_t = model_output + + if score_corrector is not None: + assert self.model.parameterization == 'eps', 'not implemented' + e_t = score_corrector.modify_score(self.model, e_t, x, t, c, + **corrector_kwargs) + + if use_original_steps: + alphas = self.model.alphas_cumprod + alphas_prev = self.model.alphas_cumprod_prev + sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod + sigmas = self.model.ddim_sigmas_for_original_num_steps + else: + alphas = self.ddim_alphas + alphas_prev = self.ddim_alphas_prev + sqrt_one_minus_alphas = self.ddim_sqrt_one_minus_alphas + sigmas = self.ddim_sigmas + + # select parameters corresponding to the currently considered timestep + a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) + a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) + sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) + sqrt_one_minus_at = torch.full((b, 1, 1, 1), + sqrt_one_minus_alphas[index], + device=device) + + # current prediction for x_0 + if self.model.parameterization != 'v': + pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() + else: + pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) + + if quantize_denoised: + pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) + + if dynamic_threshold is not None: + raise NotImplementedError() + ''' + if mask is not None and xtrg is not None: + pred_x0 = xtrg * mask + (1. - mask) * pred_x0 + ''' + + if controller is not None: + pred_x0 = controller.update_x0(pred_x0) + + # direction pointing to x_t + dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t + noise = sigma_t * noise_like(x.shape, device, + repeat_noise) * temperature + if noise_dropout > 0.: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise + + if return_dir: + return x_prev, pred_x0, dir_xt + return x_prev, pred_x0 + + @torch.no_grad() + def encode(self, + x0, + c, + t_enc, + use_original_steps=False, + return_intermediates=None, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + callback=None): + timesteps = np.arange(self.ddpm_num_timesteps + ) if use_original_steps else self.ddim_timesteps + num_reference_steps = timesteps.shape[0] + + assert t_enc <= num_reference_steps + num_steps = t_enc + + if use_original_steps: + alphas_next = self.alphas_cumprod[:num_steps] + alphas = self.alphas_cumprod_prev[:num_steps] + else: + alphas_next = self.ddim_alphas[:num_steps] + alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) + + x_next = x0 + intermediates = [] + inter_steps = [] + for i in tqdm(range(num_steps), desc='Encoding Image'): + t = torch.full((x0.shape[0], ), + timesteps[i], + device=self.model.device, + dtype=torch.long) + if unconditional_guidance_scale == 1.: + noise_pred = self.model.apply_model(x_next, t, c) + else: + assert unconditional_conditioning is not None + e_t_uncond, noise_pred = torch.chunk( + self.model.apply_model( + torch.cat((x_next, x_next)), torch.cat((t, t)), + torch.cat((unconditional_conditioning, c))), 2) + noise_pred = e_t_uncond + unconditional_guidance_scale * ( + noise_pred - e_t_uncond) + xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next + weighted_noise_pred = alphas_next[i].sqrt() * ( + (1 / alphas_next[i] - 1).sqrt() - + (1 / alphas[i] - 1).sqrt()) * noise_pred + x_next = xt_weighted + weighted_noise_pred + if return_intermediates and i % (num_steps // return_intermediates + ) == 0 and i < num_steps - 1: + intermediates.append(x_next) + inter_steps.append(i) + elif return_intermediates and i >= num_steps - 2: + intermediates.append(x_next) + inter_steps.append(i) + if callback: + callback(i) + + out = {'x_encoded': x_next, 'intermediate_steps': inter_steps} + if return_intermediates: + out.update({'intermediates': intermediates}) + return x_next, out + + @torch.no_grad() + def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): + # fast, but does not allow for exact reconstruction + # t serves as an index to gather the correct alphas + if use_original_steps: + sqrt_alphas_cumprod = self.sqrt_alphas_cumprod + sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod + else: + sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) + sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas + + if noise is None: + noise = torch.randn_like(x0) + if t >= len(sqrt_alphas_cumprod): + return noise + return ( + extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * + noise) + + @torch.no_grad() + def decode(self, + x_latent, + cond, + t_start, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + use_original_steps=False, + callback=None): + + timesteps = np.arange(self.ddpm_num_timesteps + ) if use_original_steps else self.ddim_timesteps + timesteps = timesteps[:t_start] + + time_range = np.flip(timesteps) + total_steps = timesteps.shape[0] + print(f'Running DDIM Sampling with {total_steps} timesteps') + + iterator = tqdm(time_range, desc='Decoding image', total=total_steps) + x_dec = x_latent + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full((x_latent.shape[0], ), + step, + device=x_latent.device, + dtype=torch.long) + x_dec, _ = self.p_sample_ddim( + x_dec, + cond, + ts, + index=index, + use_original_steps=use_original_steps, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning) + if callback: + callback(i) + return x_dec + + +def calc_mean_std(feat, eps=1e-5): + # eps is a small value added to the variance to avoid divide-by-zero. + size = feat.size() + assert (len(size) == 4) + N, C = size[:2] + feat_var = feat.view(N, C, -1).var(dim=2) + eps + feat_std = feat_var.sqrt().view(N, C, 1, 1) + feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1) + return feat_mean, feat_std + + +def adaptive_instance_normalization(content_feat, style_feat): + assert (content_feat.size()[:2] == style_feat.size()[:2]) + size = content_feat.size() + style_mean, style_std = calc_mean_std(style_feat) + content_mean, content_std = calc_mean_std(content_feat) + + normalized_feat = (content_feat - + content_mean.expand(size)) / content_std.expand(size) + return normalized_feat * style_std.expand(size) + style_mean.expand(size) diff --git a/src/ebsynth/src/freeu.py b/src/ebsynth/src/freeu.py new file mode 100644 index 0000000000000000000000000000000000000000..718e50241bb75eda2341608b1dbb397aec2f91d5 --- /dev/null +++ b/src/ebsynth/src/freeu.py @@ -0,0 +1,94 @@ +import torch +import torch.fft as fft + + +def Fourier_filter(x, threshold, scale): + + x_freq = fft.fftn(x, dim=(-2, -1)) + x_freq = fft.fftshift(x_freq, dim=(-2, -1)) + + B, C, H, W = x_freq.shape + mask = torch.ones((B, C, H, W)).cuda() + + crow, ccol = H // 2, W // 2 + mask[..., crow - threshold:crow + threshold, + ccol - threshold:ccol + threshold] = scale + x_freq = x_freq * mask + + x_freq = fft.ifftshift(x_freq, dim=(-2, -1)) + + x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real + + return x_filtered + +from deps.ControlNet.ldm.modules.diffusionmodules.util import \ + timestep_embedding # noqa:E501 + + +# backbone_scale1=1.1, backbone_scale2=1.2, skip_scale1=1.0, skip_scale2=0.2 +def freeu_forward(self, + backbone_scale1=1., + backbone_scale2=1., + skip_scale1=1., + skip_scale2=1.): + + def forward(x, + timesteps=None, + context=None, + control=None, + only_mid_control=False, + **kwargs): + hs = [] + with torch.no_grad(): + t_emb = timestep_embedding(timesteps, + self.model_channels, + repeat_only=False) + emb = self.time_embed(t_emb) + h = x.type(self.dtype) + for module in self.input_blocks: + h = module(h, emb, context) + hs.append(h) + h = self.middle_block(h, emb, context) + + if control is not None: + h += control.pop() + ''' + for i, module in enumerate(self.output_blocks): + if only_mid_control or control is None: + h = torch.cat([h, hs.pop()], dim=1) + else: + h = torch.cat([h, hs.pop() + control.pop()], dim=1) + h = module(h, emb, context) + ''' + for i, module in enumerate(self.output_blocks): + hs_ = hs.pop() + + if h.shape[1] == 1280: + hidden_mean = h.mean(1).unsqueeze(1) + B = hidden_mean.shape[0] + hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) + h[:, :640] = h[:, :640] * ((backbone_scale1 - 1) * hidden_mean + 1) + # h[:, :640] = h[:, :640] * backbone_scale1 + hs_ = Fourier_filter(hs_, threshold=1, scale=skip_scale1) + if h.shape[1] == 640: + hidden_mean = h.mean(1).unsqueeze(1) + B = hidden_mean.shape[0] + hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) + h[:, :320] = h[:, :320] * ((backbone_scale2 - 1) * hidden_mean + 1) + # h[:, :320] = h[:, :320] * backbone_scale2 + hs_ = Fourier_filter(hs_, threshold=1, scale=skip_scale2) + + if only_mid_control or control is None: + h = torch.cat([h, hs_], dim=1) + else: + h = torch.cat([h, hs_ + control.pop()], dim=1) + h = module(h, emb, context) + + h = h.type(x.dtype) + return self.out(h) + + return forward diff --git a/src/ebsynth/src/img_util.py b/src/ebsynth/src/img_util.py new file mode 100644 index 0000000000000000000000000000000000000000..4a7a0c8923a376e70030969a9d5dbe4d3edbdb38 --- /dev/null +++ b/src/ebsynth/src/img_util.py @@ -0,0 +1,23 @@ +import einops +import torch +import torch.nn.functional as F + + +@torch.no_grad() +def find_flat_region(mask): + device = mask.device + kernel_x = torch.Tensor([[-1, 0, 1], [-1, 0, 1], + [-1, 0, 1]]).unsqueeze(0).unsqueeze(0).to(device) + kernel_y = torch.Tensor([[-1, -1, -1], [0, 0, 0], + [1, 1, 1]]).unsqueeze(0).unsqueeze(0).to(device) + mask_ = F.pad(mask.unsqueeze(0), (1, 1, 1, 1), mode='replicate') + + grad_x = torch.nn.functional.conv2d(mask_, kernel_x) + grad_y = torch.nn.functional.conv2d(mask_, kernel_y) + return ((abs(grad_x) + abs(grad_y)) == 0).float()[0] + + +def numpy2tensor(img): + x0 = torch.from_numpy(img.copy()).float().cuda() / 255.0 * 2.0 - 1. + x0 = torch.stack([x0], dim=0) + return einops.rearrange(x0, 'b h w c -> b c h w').clone() diff --git a/src/ebsynth/src/import_util.py b/src/ebsynth/src/import_util.py new file mode 100644 index 0000000000000000000000000000000000000000..0660a435e0d7addbf2caf24e2d2b8063d646897f --- /dev/null +++ b/src/ebsynth/src/import_util.py @@ -0,0 +1,10 @@ +import os +import sys + +cur_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) +gmflow_dir = os.path.join(cur_dir, 'deps/gmflow') +controlnet_dir = os.path.join(cur_dir, 'deps/ControlNet') +sys.path.insert(0, gmflow_dir) +sys.path.insert(0, controlnet_dir) + +import deps.ControlNet.share # noqa: F401 E402 diff --git a/src/ebsynth/src/video_util.py b/src/ebsynth/src/video_util.py new file mode 100644 index 0000000000000000000000000000000000000000..e35b72869f14d1f712165d38f5fd97a0ab823a91 --- /dev/null +++ b/src/ebsynth/src/video_util.py @@ -0,0 +1,100 @@ +import os + +import cv2 +import imageio +import numpy as np + + +def video_to_frame(video_path: str, + frame_dir: str, + filename_pattern: str = 'frame%03d.jpg', + log: bool = True, + frame_edit_func=None): + os.makedirs(frame_dir, exist_ok=True) + + vidcap = cv2.VideoCapture(video_path) + success, image = vidcap.read() + + if log: + print('img shape: ', image.shape[0:2]) + + count = 0 + while success: + if frame_edit_func is not None: + image = frame_edit_func(image) + + cv2.imwrite(os.path.join(frame_dir, filename_pattern % count), image) + success, image = vidcap.read() + if log: + print('Read a new frame: ', success, count) + count += 1 + + vidcap.release() + + +def frame_to_video(video_path: str, frame_dir: str, fps=30, log=True): + + first_img = True + writer = imageio.get_writer(video_path, fps=fps) + + file_list = sorted(os.listdir(frame_dir)) + for file_name in file_list: + if not (file_name.endswith('jpg') or file_name.endswith('png')): + continue + + fn = os.path.join(frame_dir, file_name) + curImg = imageio.imread(fn) + + if first_img: + H, W = curImg.shape[0:2] + if log: + print('img shape', (H, W)) + first_img = False + + writer.append_data(curImg) + + writer.close() + + +def get_fps(video_path: str): + video = cv2.VideoCapture(video_path) + fps = video.get(cv2.CAP_PROP_FPS) + video.release() + return fps + + +def get_frame_count(video_path: str): + video = cv2.VideoCapture(video_path) + frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + video.release() + return frame_count + + +def resize_image(input_image, resolution): + H, W, C = input_image.shape + H = float(H) + W = float(W) + k = float(resolution) / min(H, W) + H *= k + W *= k + H = int(np.round(H / 64.0)) * 64 + W = int(np.round(W / 64.0)) * 64 + img = cv2.resize( + input_image, (W, H), + interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) + return img + + +def prepare_frames(input_path: str, output_dir: str, resolution: int, crop): + l, r, t, b = crop + + def crop_func(frame): + H, W, C = frame.shape + left = np.clip(l, 0, W) + right = np.clip(W - r, left, W) + top = np.clip(t, 0, H) + bottom = np.clip(H - b, top, H) + frame = frame[top:bottom, left:right] + return resize_image(frame, resolution) + + video_to_frame(input_path, output_dir, '%04d.png', False, crop_func) diff --git a/src/flow_utils.py b/src/flow_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..3192541f8adba9615bc4b8a6cb08f727ff6aa366 --- /dev/null +++ b/src/flow_utils.py @@ -0,0 +1,139 @@ +import torch +import numpy as np +import cv2 +import torch.nn.functional as F +from src.utils import * +import sys +sys.path.append("./src/ebsynth/deps/gmflow/") +from gmflow.geometry import flow_warp + +""" +========================================================================== +* warp_tensor(): warp and fuse tensors based on optical flow and mask +* get_single_mapping_ind(): get pixel index correspondence between two frames +* get_mapping_ind(): get pixel index correspondence between consecutive frames within a batch +========================================================================== +""" + +@torch.no_grad() +def warp_tensor(sample, flows, occs, saliency, unet_chunk_size): + """ + Warp images or features based on optical flow + Fuse the warped imges or features based on occusion masks and saliency map + """ + scale = sample.shape[2] * 1.0 / flows[0].shape[2] + kernel = int(1 / scale) + bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode='bilinear') + bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel) # (N-1)*1*H1*W1 + if scale == 1: + bwd_occ_ = Dilate(kernel_size=13, device=sample.device)(bwd_occ_) + fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode='bilinear') + fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel) # (N-1)*1*H1*W1 + if scale == 1: + fwd_occ_ = Dilate(kernel_size=13, device=sample.device)(fwd_occ_) + scale2 = sample.shape[2] * 1.0 / saliency.shape[2] + saliency = F.interpolate(saliency, scale_factor=scale2, mode='bilinear') + latent = sample.to(torch.float32) + video_length = sample.shape[0] // unet_chunk_size + warp_saliency = flow_warp(saliency, bwd_flow_) + warp_saliency_ = flow_warp(saliency[0:1], fwd_flow_[video_length-1:video_length]) + + for j in range(unet_chunk_size): + for ii in range(video_length-1): + i = video_length * j + ii + warped_image = flow_warp(latent[i:i+1], bwd_flow_[ii:ii+1]) + mask = (1 - bwd_occ_[ii:ii+1]) * saliency[ii+1:ii+2] * warp_saliency[ii:ii+1] + latent[i+1:i+2] = latent[i+1:i+2] * (1-mask) + warped_image * mask + i = video_length * j + ii = video_length - 1 + warped_image = flow_warp(latent[i:i+1], fwd_flow_[ii:ii+1]) + mask = (1 - fwd_occ_[ii:ii+1]) * saliency[ii:ii+1] * warp_saliency_ + latent[ii+i:ii+i+1] = latent[ii+i:ii+i+1] * (1-mask) + warped_image * mask + + return latent.to(sample.dtype) + + +@torch.no_grad() +def get_single_mapping_ind(bwd_flow, bwd_occ, imgs, scale=1.0): + """ + FLATTEN: Optical fLow-guided attention (Temoporal-guided attention) + Find the correspondence between every pixels in a pair of frames + + [input] + bwd_flow: 1*2*H*W + bwd_occ: 1*H*W i.e., f2 = warp(f1, bwd_flow) * bwd_occ + imgs: 2*3*H*W i.e., [f1,f2] + + [output] + mapping_ind: pixel index correspondence + unlinkedmask: indicate whether a pixel has no correspondence + i.e., f2 = f1[mapping_ind] * unlinkedmask + """ + flows = F.interpolate(bwd_flow, scale_factor=1./scale, mode='bilinear')[0][[1,0]] / scale # 2*H*W + _, H, W = flows.shape + masks = torch.logical_not(F.interpolate(bwd_occ[None], scale_factor=1./scale, mode='bilinear') > 0.5)[0] # 1*H*W + frames = F.interpolate(imgs, scale_factor=1./scale, mode='bilinear').view(2, 3, -1) # 2*3*HW + grid = torch.stack(torch.meshgrid([torch.arange(H), torch.arange(W)]), dim=0).to(flows.device) # 2*H*W + warp_grid = torch.round(grid + flows) + mask = torch.logical_and(torch.logical_and(torch.logical_and(torch.logical_and(warp_grid[0] >= 0, warp_grid[0] < H), + warp_grid[1] >= 0), warp_grid[1] < W), masks[0]).view(-1) # HW + warp_grid = warp_grid.view(2, -1) # 2*HW + warp_ind = (warp_grid[0] * W + warp_grid[1]).to(torch.long) # HW + mapping_ind = torch.zeros_like(warp_ind) - 1 # HW + + for f0ind, f1ind in enumerate(warp_ind): + if mask[f0ind]: + if mapping_ind[f1ind] == -1: + mapping_ind[f1ind] = f0ind + else: + targetv = frames[0,:,f1ind] + pref0ind = mapping_ind[f1ind] + prev = frames[1,:,pref0ind] + v = frames[1,:,f0ind] + if ((prev - targetv)**2).mean() > ((v - targetv)**2).mean(): + mask[pref0ind] = False + mapping_ind[f1ind] = f0ind + else: + mask[f0ind] = False + + unusedind = torch.arange(len(mask)).to(mask.device)[~mask] + unlinkedmask = mapping_ind == -1 + mapping_ind[unlinkedmask] = unusedind + return mapping_ind, unlinkedmask + + +@torch.no_grad() +def get_mapping_ind(bwd_flows, bwd_occs, imgs, scale=1.0): + """ + FLATTEN: Optical fLow-guided attention (Temoporal-guided attention) + Find pixel correspondence between every consecutive frames in a batch + + [input] + bwd_flow: (N-1)*2*H*W + bwd_occ: (N-1)*H*W + imgs: N*3*H*W + + [output] + fwd_mappings: N*1*HW + bwd_mappings: N*1*HW + flattn_mask: HW*1*N*N + i.e., imgs[i,:,fwd_mappings[i]] corresponds to imgs[0] + i.e., imgs[i,:,fwd_mappings[i]][:,bwd_mappings[i]] restore the original imgs[i] + """ + N, H, W = imgs.shape[0], int(imgs.shape[2] // scale), int(imgs.shape[3] // scale) + iterattn_mask = torch.ones(H*W, N, N, dtype=torch.bool).to(imgs.device) + for i in range(len(imgs)-1): + one_mask = torch.ones(N, N, dtype=torch.bool).to(imgs.device) + one_mask[:i+1,i+1:] = False + one_mask[i+1:,:i+1] = False + mapping_ind, unlinkedmask = get_single_mapping_ind(bwd_flows[i:i+1], bwd_occs[i:i+1], imgs[i:i+2], scale) + if i == 0: + fwd_mapping = [torch.arange(len(mapping_ind)).to(mapping_ind.device)] + bwd_mapping = [torch.arange(len(mapping_ind)).to(mapping_ind.device)] + iterattn_mask[unlinkedmask[fwd_mapping[-1]]] = torch.logical_and(iterattn_mask[unlinkedmask[fwd_mapping[-1]]], one_mask) + fwd_mapping += [mapping_ind[fwd_mapping[-1]]] + bwd_mapping += [torch.sort(fwd_mapping[-1])[1]] + fwd_mappings = torch.stack(fwd_mapping, dim=0).unsqueeze(1) + bwd_mappings = torch.stack(bwd_mapping, dim=0).unsqueeze(1) + return fwd_mappings, bwd_mappings, iterattn_mask.unsqueeze(1) + diff --git a/src/free_lunch_utils.py b/src/free_lunch_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..2631ef8ff5ac5a3dfec036d55e45194273b5a130 --- /dev/null +++ b/src/free_lunch_utils.py @@ -0,0 +1,373 @@ +from typing import Any, Dict, Optional, Tuple + +import torch +import torch.fft as fft +from diffusers.utils import is_torch_version +from diffusers.models.unet_2d_condition import logger as logger2d +from diffusers.models.unet_3d_condition import logger as logger3d + + +def isinstance_str(x: object, cls_name: str): + """ + Checks whether x has any class *named* cls_name in its ancestry. + Doesn't require access to the class's implementation. + + Useful for patching! + """ + + for _cls in x.__class__.__mro__: + if _cls.__name__ == cls_name: + return True + + return False + + +def Fourier_filter(x_in, threshold, scale): + """ + Updated Fourier filter based on: + https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706 + """ + x = x_in + B, C, H, W = x.shape + + # Non-power of 2 images must be float32 + if (W & (W - 1)) != 0 or (H & (H - 1)) != 0: + x = x.to(dtype=torch.float32) + + # FFT + x_freq = fft.fftn(x, dim=(-2, -1)) + x_freq = fft.fftshift(x_freq, dim=(-2, -1)) + + B, C, H, W = x_freq.shape + mask = torch.ones((B, C, H, W), device=x.device) + + crow, ccol = H // 2, W // 2 + mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale + x_freq = x_freq * mask + + # IFFT + x_freq = fft.ifftshift(x_freq, dim=(-2, -1)) + x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real + + return x_filtered.to(dtype=x_in.dtype) + + +def register_upblock2d(model): + """ + Register UpBlock2D for UNet2DCondition. + """ + + def up_forward(self): + def forward( + hidden_states, + res_hidden_states_tuple, + temb=None, + upsample_size=None + ): + logger2d.debug(f"in upblock2d, hidden states shape: {hidden_states.shape}") + + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + + return hidden_states + + return forward + + for i, upsample_block in enumerate(model.unet.up_blocks): + if isinstance_str(upsample_block, "UpBlock2D"): + upsample_block.forward = up_forward(upsample_block) + + +def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2): + """ + Register UpBlock2D with FreeU for UNet2DCondition. + """ + + def up_forward(self): + def forward( + hidden_states, + res_hidden_states_tuple, + temb=None, + upsample_size=None + ): + logger2d.debug(f"in free upblock2d, hidden states shape: {hidden_states.shape}") + + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + + # --------------- FreeU code ----------------------- + # Only operate on the first two stages + if hidden_states.shape[1] == 1280: + hidden_mean = hidden_states.mean(1).unsqueeze(1) + B = hidden_mean.shape[0] + hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) + hidden_states[:,:640] = hidden_states[:,:640] * ((self.b1 - 1 ) * hidden_mean + 1) + #hidden_states[:,:640] = hidden_states[:,:640] * self.b1 + res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1) + if hidden_states.shape[1] == 640: + hidden_mean = hidden_states.mean(1).unsqueeze(1) + B = hidden_mean.shape[0] + hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) + hidden_states[:,:320] = hidden_states[:,:320] * ((self.b2 - 1 ) * hidden_mean + 1) + #hidden_states[:,:320] = hidden_states[:,:320] * self.b2 + res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2) + # --------------------------------------------------------- + + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + + return hidden_states + + return forward + + for i, upsample_block in enumerate(model.unet.up_blocks): + if isinstance_str(upsample_block, "UpBlock2D"): + upsample_block.forward = up_forward(upsample_block) + setattr(upsample_block, 'b1', b1) + setattr(upsample_block, 'b2', b2) + setattr(upsample_block, 's1', s1) + setattr(upsample_block, 's2', s2) + + +def register_crossattn_upblock2d(model): + """ + Register CrossAttn UpBlock2D for UNet2DCondition. + """ + + def up_forward(self): + def forward( + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + upsample_size: Optional[int] = None, + attention_mask: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ): + logger2d.debug(f"in crossatten upblock2d, hidden states shape: {hidden_states.shape}") + + #lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 + + for resnet, attn in zip(self.resnets, self.attentions): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(attn, return_dict=False), + hidden_states, + encoder_hidden_states, + None, # timestep + None, # class_labels + cross_attention_kwargs, + attention_mask, + encoder_attention_mask, + **ckpt_kwargs, + )[0] + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + + return hidden_states + + return forward + + for i, upsample_block in enumerate(model.unet.up_blocks): + if isinstance_str(upsample_block, "CrossAttnUpBlock2D"): + upsample_block.forward = up_forward(upsample_block) + + +def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2): + """ + Register CrossAttn UpBlock2D with FreeU for UNet2DCondition. + """ + + def up_forward(self): + def forward( + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + upsample_size: Optional[int] = None, + attention_mask: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ): + logger2d.debug(f"in free crossatten upblock2d, hidden states shape: {hidden_states.shape}") + + #lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 + + for resnet, attn in zip(self.resnets, self.attentions): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + + # --------------- FreeU code ----------------------- + # Only operate on the first two stages + if hidden_states.shape[1] == 1280: + hidden_mean = hidden_states.mean(1).unsqueeze(1) + B = hidden_mean.shape[0] + hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) + hidden_states[:,:640] = hidden_states[:,:640] * ((self.b1 - 1 ) * hidden_mean + 1) + #hidden_states[:,:640] = hidden_states[:,:640] * self.b1 + res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1) + if hidden_states.shape[1] == 640: + hidden_mean = hidden_states.mean(1).unsqueeze(1) + B = hidden_mean.shape[0] + hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) + hidden_states[:,:320] = hidden_states[:,:320] * ((self.b2 - 1 ) * hidden_mean + 1) + #hidden_states[:,:320] = hidden_states[:,:320] * self.b2 + res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2) + # --------------------------------------------------------- + + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(attn, return_dict=False), + hidden_states, + encoder_hidden_states, + None, # timestep + None, # class_labels + cross_attention_kwargs, + attention_mask, + encoder_attention_mask, + **ckpt_kwargs, + )[0] + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + + return hidden_states + + return forward + + for i, upsample_block in enumerate(model.unet.up_blocks): + if isinstance_str(upsample_block, "CrossAttnUpBlock2D"): + upsample_block.forward = up_forward(upsample_block) + setattr(upsample_block, 'b1', b1) + setattr(upsample_block, 'b2', b2) + setattr(upsample_block, 's1', s1) + setattr(upsample_block, 's2', s2) + +def apply_freeu(pipe, b1=1.0, b2=1.0, s1=1.0, s2=1.0): + register_free_upblock2d(pipe, b1, b2, s1, s2) + register_free_crossattn_upblock2d(pipe, b1, b2, s1, s2) \ No newline at end of file diff --git a/src/keyframe_selection.py b/src/keyframe_selection.py new file mode 100644 index 0000000000000000000000000000000000000000..480ce0f8033965a1b4627b21a561c1447e4a415d --- /dev/null +++ b/src/keyframe_selection.py @@ -0,0 +1,60 @@ +import cv2 +import torch.nn.functional as F +import numpy as np +from src.utils import * + +def insert_key(keys, ind): + for i, k in enumerate(keys): + if ind < k: + keys.insert(i, ind) + break + +def get_maxinterv(keys): + maxinterv = 1 + for i in range(len(keys)-1): + tmp = keys[i+1]-keys[i] + if tmp > maxinterv: + maxinterv = tmp + return maxinterv + +def get_keyframe_ind(filename, lastframen = 1e10, mininterv = 5, maxinterv = 20, viz = False): + if maxinterv == mininterv: + return list(range(0,lastframen,mininterv)) + video_cap = cv2.VideoCapture(filename) + n_frames = max(1, min(int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT)), lastframen)) + err = [0] + preframe = None + for i in range(n_frames): + success, frame = video_cap.read() + if not success: + break + frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) + img = resize_image(frame, 512) + img = cv2.GaussianBlur(img, (9, 9), 0.0) + if i == 0: + preframe = numpy2tensor(img) + else: + curframe = numpy2tensor(img) + err += [float(F.mse_loss(preframe, curframe).cpu().numpy())] + preframe = curframe + err = np.array(err) + err1 = np.array(err) + + n_frames = len(err) + keys = [0, n_frames-1] + err[0:mininterv] = -1 + err[-mininterv:] = -1 + + while get_maxinterv(keys) > maxinterv: + ind = np.argmax(err) + if err[ind] == -1: + break + err[ind-mininterv:ind+mininterv] = -1 + insert_key(keys, ind) + + if viz: + plt.plot(err1) + plt.plot(keys, err1[keys], 'bo') + plt.show() + + return keys \ No newline at end of file diff --git a/src/pipe_FRESCO.py b/src/pipe_FRESCO.py new file mode 100644 index 0000000000000000000000000000000000000000..76503d96f5dd77d0459c04a02e65995b64dc338c --- /dev/null +++ b/src/pipe_FRESCO.py @@ -0,0 +1,234 @@ +from src.utils import * +from src.flow_utils import warp_tensor +import torch +import torchvision +import gc + +""" +========================================================================== +* step(): one DDPM step with background smoothing +* inference(): translate one batch with FRESCO and background smoothing +========================================================================== +""" + +def step(pipe, model_output, timestep, sample, generator, repeat_noise=False, + visualize_pipeline=False, flows=None, occs=None, saliency=None): + """ + DDPM step with background smoothing + * background smoothing: warp the background region of the previous frame to the current frame + """ + scheduler = pipe.scheduler + # 1. get previous step value (=t-1) + prev_timestep = scheduler.previous_timestep(timestep) + + # 2. compute alphas, betas + alpha_prod_t = scheduler.alphas_cumprod[timestep] + alpha_prod_t_prev = scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.one + + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + current_alpha_t = alpha_prod_t / alpha_prod_t_prev + current_beta_t = 1 - current_alpha_t + + # 3. compute predicted original sample from predicted noise also called + # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf + pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) + + """ + [HACK] add background smoothing + decode the feature + warp the feature of f_{i-1} + fuse the warped f_{i-1} with f_{i} in the non-salient region (i.e., background) + encode the fused feature + """ + if saliency is not None and flows is not None and occs is not None: + image = pipe.vae.decode(pred_original_sample / pipe.vae.config.scaling_factor).sample + image = warp_tensor(image, flows, occs, saliency, unet_chunk_size=1) + pred_original_sample = pipe.vae.config.scaling_factor * pipe.vae.encode(image).latent_dist.sample() + + # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t + # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf + pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t + current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t + + # 5. Compute predicted previous sample µ_t + # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf + pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample + + + variance = beta_prod_t_prev / beta_prod_t * current_beta_t + variance = torch.clamp(variance, min=1e-20) + variance = (variance ** 0.5) * torch.randn(model_output.shape, generator=generator, + device=model_output.device, dtype=model_output.dtype) + """ + [HACK] background smoothing + applying the same noise could be good for static background + """ + if repeat_noise: + variance = variance[0:1].repeat(model_output.shape[0],1,1,1) + + if visualize_pipeline: # for debug + image = pipe.vae.decode(pred_original_sample / pipe.vae.config.scaling_factor).sample + viz = torchvision.utils.make_grid(torch.clamp(image, -1, 1), image.shape[0], 1) + visualize(viz.cpu(), 90) + + pred_prev_sample = pred_prev_sample + variance + + return (pred_prev_sample, pred_original_sample) + + +@torch.no_grad() +def inference(pipe, controlnet, frescoProc, + imgs, prompt_embeds, edges, timesteps, + cond_scale=[0.7]*20, num_inference_steps=20, num_warmup_steps=6, + do_classifier_free_guidance=True, seed=0, guidance_scale=7.5, use_controlnet=True, + record_latents=[], propagation_mode=False, visualize_pipeline=False, + flows = None, occs = None, saliency=None, repeat_noise=False, + num_intraattn_steps = 1, step_interattn_end = 350, bg_smoothing_steps = [16,17]): + """ + video-to-video translation inference pipeline with FRESCO + * add controlnet and SDEdit + * add FRESCO-guided attention + * add FRESCO-guided optimization + * add background smoothing + * add support for inter-batch long video translation + + [input of the original pipe] + pipe: base diffusion model + imgs: a batch of the input frames + prompt_embeds: prompts + num_inference_steps: number of DDPM steps + timesteps: generated by pipe.scheduler.set_timesteps(num_inference_steps) + do_classifier_free_guidance: cfg, should be always true + guidance_scale: cfg scale + seed + + [input of SDEdit] + num_warmup_steps: skip the first num_warmup_steps DDPM steps + + [input of controlnet] + use_controlnet: bool, whether using controlnet + controlnet: controlnet model + edges: input for controlnet (edge/stroke/depth, etc.) + cond_scale: controlnet scale + + [input of FRESCO] + frescoProc: FRESCO attention controller + flows: optical flows + occs: occlusion mask + num_intraattn_steps: apply num_interattn_steps steps of spatial-guided attention + step_interattn_end: apply temporal-guided attention in [step_interattn_end, 1000] steps + + [input for background smoothing] + saliency: saliency mask + repeat_noise: bool, use the same noise for all frames + bg_smoothing_steps: apply background smoothing in bg_smoothing_steps + + [input for long video translation] + record_latents: recorded latents in the last batch + propagation_mode: bool, whether this is not the first batch + + [output] + latents: a batch of latents of the translated frames + """ + gc.collect() + torch.cuda.empty_cache() + + device = pipe._execution_device + noise_scheduler = pipe.scheduler + generator = torch.Generator(device=device).manual_seed(seed) + B, C, H, W = imgs.shape + latents = pipe.prepare_latents( + B, + pipe.unet.config.in_channels, + H, + W, + prompt_embeds.dtype, + device, + generator, + latents = None, + ) + + if repeat_noise: + latents = latents[0:1].repeat(B,1,1,1).detach() + + if num_warmup_steps < 0: + latents_init = latents.detach() + num_warmup_steps = 0 + else: + # SDEdit, use the noisy latent of imges as the input rather than a pure gausssian noise + latent_x0 = pipe.vae.config.scaling_factor * pipe.vae.encode(imgs.to(pipe.unet.dtype)).latent_dist.sample() + latents_init = noise_scheduler.add_noise(latent_x0, latents, timesteps[num_warmup_steps]).detach() + + # SDEdit, run num_inference_steps-num_warmup_steps steps + with pipe.progress_bar(total=num_inference_steps-num_warmup_steps) as progress_bar: + latents = latents_init + for i, t in enumerate(timesteps[num_warmup_steps:]): + """ + [HACK] control the steps to apply spatial/temporal-guided attention + [HACK] record and restore latents from previous batch + """ + if i >= num_intraattn_steps: + frescoProc.controller.disable_intraattn() + if t < step_interattn_end: + frescoProc.controller.disable_interattn() + if propagation_mode: # restore latent from previous batch and record latent of the current batch + latents[0:2] = record_latents[i].detach().clone() + record_latents[i] = latents[[0,len(latents)-1]].detach().clone() + else: # frist batch, record_latents[0][t] = [x_1,t, x_{N,t}] + record_latents += [latents[[0,len(latents)-1]].detach().clone()] + + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + + if use_controlnet: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + + down_block_res_samples, mid_block_res_sample = controlnet( + control_model_input, + t, + encoder_hidden_states=controlnet_prompt_embeds, + controlnet_cond=edges, + conditioning_scale=cond_scale[i+num_warmup_steps], + guess_mode=False, + return_dict=False, + ) + else: + down_block_res_samples, mid_block_res_sample = None, None + + # predict the noise residual + noise_pred = pipe.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=None, + down_block_additional_residuals=down_block_res_samples, + mid_block_additional_residual=mid_block_res_sample, + return_dict=False, + )[0] + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + """ + [HACK] background smoothing + Note: bg_smoothing_steps should be rescaled based on num_inference_steps + current [16,17] is based on num_inference_steps=20 + """ + if i + num_warmup_steps in bg_smoothing_steps: + latents = step(pipe, noise_pred, t, latents, generator, + visualize_pipeline=visualize_pipeline, + flows = flows, occs = occs, saliency=saliency)[0] + else: + latents = step(pipe, noise_pred, t, latents, generator, + visualize_pipeline=visualize_pipeline)[0] + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > 0 and (i + 1) % pipe.scheduler.order == 0): + progress_bar.update() + + return latents \ No newline at end of file diff --git a/src/utils.py b/src/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..c2e8bff6576f471585742d7da0eda05ce93f841d --- /dev/null +++ b/src/utils.py @@ -0,0 +1,96 @@ +import torch +import numpy as np +from PIL import Image +import cv2 +import matplotlib.pyplot as plt +import torch.nn.functional as F + +def numpy2tensor(img): + x0 = torch.from_numpy(img.copy()).float().cuda() / 255.0 * 2.0 - 1. + x0 = torch.stack([x0], dim=0) + # einops.rearrange(x0, 'b h w c -> b c h w').clone() + return x0.permute(0, 3, 1, 2) + +def pil2tensor(img): + return numpy2tensor(np.array(img)) + +def tensor2numpy(img): + image = (img / 2 + 0.5).clamp(0, 1) + image = image.detach().cpu().permute(0, 2, 3, 1).numpy() + images = (image * 255).round().astype("uint8") + return images + +def tensor2pil(img): + return Image.fromarray(tensor2numpy(img)[0]) + +def cv2sod(img): + in_ = np.array(img, dtype=np.float32) + in_ -= np.array((104.00699, 116.66877, 122.67892)) + in_ = in_.transpose((2,0,1)) + image = torch.Tensor(in_) + return F.interpolate(image.unsqueeze(0), scale_factor=0.5, mode='bilinear') + +def resize_image(input_image, resolution): + H, W, C = input_image.shape + H = float(H) + W = float(W) + k = float(resolution) / min(H, W) + H *= k + W *= k + H = int(np.round(H / 64.0)) * 64 + W = int(np.round(W / 64.0)) * 64 + img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) + return img + +def visualize(img_arr, dpi): + plt.figure(figsize=(10,10),dpi=dpi) + plt.imshow(((img_arr.detach().cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8)) + plt.axis('off') + plt.show() + + +def calc_mean_std(feat, eps=1e-5, chunk=1): + size = feat.size() + assert (len(size) == 4) + if chunk == 2: + feat = torch.cat(feat.chunk(2), dim=3) + N, C = size[:2] + feat_var = feat.view(N//chunk, C, -1).var(dim=2) + eps + feat_std = feat_var.sqrt().view(N, C, 1, 1) + feat_mean = feat.view(N//chunk, C, -1).mean(dim=2).view(N//chunk, C, 1, 1) + return feat_mean.repeat(chunk,1,1,1), feat_std.repeat(chunk,1,1,1) + + +def adaptive_instance_normalization(content_feat, style_feat, chunk=1): + assert (content_feat.size()[:2] == style_feat.size()[:2]) + size = content_feat.size() + style_mean, style_std = calc_mean_std(style_feat, chunk) + content_mean, content_std = calc_mean_std(content_feat) + + normalized_feat = (content_feat - content_mean.expand( + size)) / content_std.expand(size) + return normalized_feat * style_std.expand(size) + style_mean.expand(size) + + +class Dilate(): + def __init__(self, kernel_size=7, channels=1, device='cpu'): + self.kernel_size=kernel_size + self.channels = channels + gaussian_kernel = torch.ones(1, 1, self.kernel_size, self.kernel_size) + gaussian_kernel = gaussian_kernel.repeat(self.channels, 1, 1, 1) + self.mean = (self.kernel_size - 1)//2 + gaussian_kernel = gaussian_kernel.to(device) + self.gaussian_filter = gaussian_kernel + + def __call__(self, x): + x = F.pad(x, (self.mean,self.mean,self.mean,self.mean), "replicate") + return torch.clamp(F.conv2d(x, self.gaussian_filter, bias=None), 0, 1) + +@torch.no_grad() +def get_saliency(imgs, sod_model, dilate): + imgs_sod = torch.cat([cv2sod(img) for img in imgs], dim=0).cuda() + _, _, up_sal_f = sod_model(imgs_sod) + saliency = 1-dilate(np.squeeze(torch.sigmoid(up_sal_f[-1])).unsqueeze(1)) + del up_sal_f + torch.cuda.empty_cache() + return saliency diff --git a/video_blend.py b/video_blend.py new file mode 100644 index 0000000000000000000000000000000000000000..2705f0ac98ac9d8b904ac1b0f752d07770934f34 --- /dev/null +++ b/video_blend.py @@ -0,0 +1,308 @@ +import argparse +import os +import platform +import struct +import subprocess +import time +from typing import List + +import cv2 +import numpy as np +import torch.multiprocessing as mp +from numba import njit + +import sys +sys.path.append("./src/ebsynth/") +import blender.histogram_blend as histogram_blend +from blender.guide import (BaseGuide, ColorGuide, EdgeGuide, PositionalGuide, + TemporalGuide) +from blender.poisson_fusion import poisson_fusion +from blender.video_sequence import VideoSequence +from flow.flow_utils import flow_calc +from src.video_util import frame_to_video + +OPEN_EBSYNTH_LOG = False +MAX_PROCESS = 8 + +os_str = platform.system() + +if os_str == 'Windows': + ebsynth_bin = '.\\src\\ebsynth\\deps\\ebsynth\\bin\\ebsynth.exe' +elif os_str == 'Linux': + ebsynth_bin = './src/ebsynth/deps/ebsynth/bin/ebsynth' +elif os_str == 'Darwin': + ebsynth_bin = './src/ebsynth/deps/ebsynth/bin/ebsynth.app' +else: + print('Cannot recognize OS. Run Ebsynth failed.') + exit(0) + + +@njit +def g_error_mask_loop(H, W, dist1, dist2, output, weight1, weight2): + for i in range(H): + for j in range(W): + if weight1 * dist1[i, j] < weight2 * dist2[i, j]: + output[i, j] = 0 + else: + output[i, j] = 1 + if weight1 == 0: + output[i, j] = 0 + elif weight2 == 0: + output[i, j] = 1 + + +def g_error_mask(dist1, dist2, weight1=1, weight2=1): + H, W = dist1.shape + output = np.empty_like(dist1, dtype=np.byte) + g_error_mask_loop(H, W, dist1, dist2, output, weight1, weight2) + return output + + +def create_sequence(base_dir, key_ind, key_dir): + sequence = VideoSequence(base_dir, key_ind, 'video', key_dir, + 'tmp', '%04d.png', '%04d.png') + return sequence + + +def process_one_sequence(i, video_sequence: VideoSequence): + interval = video_sequence.interval(i) + for is_forward in [True, False]: + input_seq = video_sequence.get_input_sequence(i, is_forward) + output_seq = video_sequence.get_output_sequence(i, is_forward) + flow_seq = video_sequence.get_flow_sequence(i, is_forward) + key_img_id = i if is_forward else i + 1 + key_img = video_sequence.get_key_img(key_img_id) + for j in range(interval - 1): + i1 = cv2.imread(input_seq[j]) + i2 = cv2.imread(input_seq[j + 1]) + flow_calc.get_flow(i1, i2, flow_seq[j]) + + guides: List[BaseGuide] = [ + ColorGuide(input_seq), + EdgeGuide(input_seq, + video_sequence.get_edge_sequence(i, is_forward)), + TemporalGuide(key_img, output_seq, flow_seq, + video_sequence.get_temporal_sequence(i, is_forward)), + PositionalGuide(flow_seq, + video_sequence.get_pos_sequence(i, is_forward)) + ] + weights = [6, 0.5, 0.5, 2] + for j in range(interval): + # key frame + if j == 0: + img = cv2.imread(key_img) + cv2.imwrite(output_seq[0], img) + else: + cmd = f'{ebsynth_bin} -style {os.path.abspath(key_img)}' + for g, w in zip(guides, weights): + cmd += ' ' + g.get_cmd(j, w) + + cmd += (f' -output {os.path.abspath(output_seq[j])}' + ' -searchvoteiters 12 -patchmatchiters 6') + if OPEN_EBSYNTH_LOG: + print(cmd) + subprocess.run(cmd, + shell=True, + capture_output=not OPEN_EBSYNTH_LOG) + + +def process_sequences(i_arr, video_sequence: VideoSequence): + for i in i_arr: + process_one_sequence(i, video_sequence) + + +def run_ebsynth(video_sequence: VideoSequence): + + beg = time.time() + + processes = [] + mp.set_start_method('spawn') + + n_process = min(MAX_PROCESS, video_sequence.n_seq) + cnt = video_sequence.n_seq // n_process + remainder = video_sequence.n_seq % n_process + + prev_idx = 0 + + for i in range(n_process): + task_cnt = cnt + 1 if i < remainder else cnt + i_arr = list(range(prev_idx, prev_idx + task_cnt)) + prev_idx += task_cnt + p = mp.Process(target=process_sequences, args=(i_arr, video_sequence)) + p.start() + processes.append(p) + for p in processes: + p.join() + + end = time.time() + + print(f'ebsynth: {end-beg}') + + +@njit +def assemble_min_error_img_loop(H, W, a, b, error_mask, out): + for i in range(H): + for j in range(W): + if error_mask[i, j] == 0: + out[i, j] = a[i, j] + else: + out[i, j] = b[i, j] + + +def assemble_min_error_img(a, b, error_mask): + H, W = a.shape[0:2] + out = np.empty_like(a) + assemble_min_error_img_loop(H, W, a, b, error_mask, out) + return out + + +def load_error(bin_path, img_shape): + img_size = img_shape[0] * img_shape[1] + with open(bin_path, 'rb') as fp: + bytes = fp.read() + + read_size = struct.unpack('q', bytes[:8]) + assert read_size[0] == img_size + float_res = struct.unpack('f' * img_size, bytes[8:]) + res = np.array(float_res, + dtype=np.float32).reshape(img_shape[0], img_shape[1]) + return res + + +def process_seq(video_sequence: VideoSequence, + i, + blend_histogram=True, + blend_gradient=True): + + key1_img = cv2.imread(video_sequence.get_key_img(i)) + img_shape = key1_img.shape + interval = video_sequence.interval(i) + beg_id = video_sequence.get_sequence_beg_id(i) + + oas = video_sequence.get_output_sequence(i) + obs = video_sequence.get_output_sequence(i, False) + + binas = [x.replace('jpg', 'bin') for x in oas] + binbs = [x.replace('jpg', 'bin') for x in obs] + + obs = [obs[0]] + list(reversed(obs[1:])) + inputs = video_sequence.get_input_sequence(i) + oas = [cv2.imread(x) for x in oas] + obs = [cv2.imread(x) for x in obs] + inputs = [cv2.imread(x) for x in inputs] + flow_seq = video_sequence.get_flow_sequence(i) + + dist1s = [] + dist2s = [] + for i in range(interval - 1): + bin_a = binas[i + 1] + bin_b = binbs[i + 1] + dist1s.append(load_error(bin_a, img_shape)) + dist2s.append(load_error(bin_b, img_shape)) + + lb = 0 + ub = 1 + beg = time.time() + p_mask = None + + # write key img + blend_out_path = video_sequence.get_blending_img(beg_id) + cv2.imwrite(blend_out_path, key1_img) + + for i in range(interval - 1): + c_id = beg_id + i + 1 + blend_out_path = video_sequence.get_blending_img(c_id) + + dist1 = dist1s[i] + dist2 = dist2s[i] + oa = oas[i + 1] + ob = obs[i + 1] + weight1 = i / (interval - 1) * (ub - lb) + lb + weight2 = 1 - weight1 + mask = g_error_mask(dist1, dist2, weight1, weight2) + if p_mask is not None: + flow_path = flow_seq[i] + flow = flow_calc.get_flow(inputs[i], inputs[i + 1], flow_path) + p_mask = flow_calc.warp(p_mask, flow, 'nearest') + mask = p_mask | mask + p_mask = mask + + # Save tmp mask + # out_mask = np.expand_dims(mask, 2) + # cv2.imwrite(f'mask/mask_{c_id:04d}.jpg', out_mask * 255) + + min_error_img = assemble_min_error_img(oa, ob, mask) + if blend_histogram: + hb_res = histogram_blend.blend(oa, ob, min_error_img, + (1 - weight1), (1 - weight2)) + + else: + # hb_res = min_error_img + tmpa = oa.astype(np.float32) + tmpb = ob.astype(np.float32) + hb_res = (1 - weight1) * tmpa + (1 - weight2) * tmpb + + # cv2.imwrite(blend_out_path, hb_res) + + # gradient blend + if blend_gradient: + res = poisson_fusion(hb_res, oa, ob, mask) + else: + res = hb_res + + cv2.imwrite(blend_out_path, res) + end = time.time() + print('others:', end - beg) + + +def main(args): + global MAX_PROCESS + MAX_PROCESS = args.n_proc + + video_sequence = create_sequence(f'{args.name}', args.key_ind, args.key) + if not args.ne: + run_ebsynth(video_sequence) + blend_histogram = True + blend_gradient = args.ps + for i in range(video_sequence.n_seq): + process_seq(video_sequence, i, blend_histogram, blend_gradient) + if args.output: + frame_to_video(args.output, video_sequence.blending_dir, args.fps, + False) + if not args.tmp: + video_sequence.remove_out_and_tmp() + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('name', type=str, help='Path to input video') + parser.add_argument('--output', + type=str, + default=None, + help='Path to output video') + parser.add_argument('--fps', + type=float, + default=30, + help='The FPS of output video') + parser.add_argument("--key_ind", type=int, nargs='+', default=[1], help="key frame index") + parser.add_argument('--key', + type=str, + default='keys0', + help='The subfolder name of stylized key frames') + parser.add_argument('--n_proc', + type=int, + default=8, + help='The max process count') + parser.add_argument('-ps', + action='store_true', + help='Use poisson gradient blending') + parser.add_argument( + '-ne', + action='store_true', + help='Do not run ebsynth (use previous ebsynth output)') + parser.add_argument('-tmp', + action='store_true', + help='Keep temporary output') + + args = parser.parse_args() + main(args) diff --git a/webUI.py b/webUI.py new file mode 100644 index 0000000000000000000000000000000000000000..36b1556256eb9b19bf058924e3c3b93c94b3cbec --- /dev/null +++ b/webUI.py @@ -0,0 +1,555 @@ +import os +#os.environ['CUDA_VISIBLE_DEVICES'] = "6" + +# uncomment the next line to use huggingface model in China +#os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' + +import cv2 +import io +import gc +import yaml +import argparse +import torch +import torchvision +import diffusers +from diffusers import StableDiffusionPipeline, AutoencoderKL, DDPMScheduler, ControlNetModel +import gradio as gr +from enum import Enum +import imageio.v2 as imageio + +from src.utils import * +from src.keyframe_selection import get_keyframe_ind +from src.diffusion_hacked import apply_FRESCO_attn, apply_FRESCO_opt, disable_FRESCO_opt +from src.diffusion_hacked import get_flow_and_interframe_paras, get_intraframe_paras +from src.pipe_FRESCO import inference +from src.free_lunch_utils import apply_freeu + +import sys +sys.path.append("./src/ebsynth/deps/gmflow/") +sys.path.append("./src/EGNet/") +sys.path.append("./src/ControlNet/") + +from gmflow.gmflow import GMFlow +from model import build_model +from annotator.hed import HEDdetector +from annotator.canny import CannyDetector +from annotator.midas import MidasDetector + + +def get_models(config): + # optical flow + flow_model = GMFlow(feature_channels=128, + num_scales=1, + upsample_factor=8, + num_head=1, + attention_type='swin', + ffn_dim_expansion=4, + num_transformer_layers=6, + ).to('cuda') + + checkpoint = torch.load(config['gmflow_path'], map_location=lambda storage, loc: storage) + weights = checkpoint['model'] if 'model' in checkpoint else checkpoint + flow_model.load_state_dict(weights, strict=False) + flow_model.eval() + + # saliency detection + sod_model = build_model('resnet') + sod_model.load_state_dict(torch.load(config['sod_path'])) + sod_model.to("cuda").eval() + + # controlnet + if config['controlnet_type'] not in ['hed', 'depth', 'canny']: + config['controlnet_type'] = 'hed' + controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-"+config['controlnet_type'], + torch_dtype=torch.float16) + controlnet.to("cuda") + if config['controlnet_type'] == 'depth': + detector = MidasDetector() + elif config['controlnet_type'] == 'canny': + detector = CannyDetector() + else: + detector = HEDdetector() + + # diffusion model + vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) + pipe = StableDiffusionPipeline.from_pretrained(config['sd_path'], vae=vae, torch_dtype=torch.float16) + pipe.scheduler = DDPMScheduler.from_config(pipe.scheduler.config) + pipe.to("cuda") + pipe.scheduler.set_timesteps(config['num_inference_steps'], device=pipe._execution_device) + + frescoProc = apply_FRESCO_attn(pipe) + frescoProc.controller.disable_controller() + apply_FRESCO_opt(pipe) + + for param in flow_model.parameters(): + param.requires_grad = False + for param in sod_model.parameters(): + param.requires_grad = False + for param in controlnet.parameters(): + param.requires_grad = False + for param in pipe.unet.parameters(): + param.requires_grad = False + + return pipe, frescoProc, controlnet, detector, flow_model, sod_model + +def apply_control(x, detector, control_type): + if control_type == 'depth': + detected_map, _ = detector(x) + elif control_type == 'canny': + detected_map = detector(x, 50, 100) + else: + detected_map = detector(x) + return detected_map + +class ProcessingState(Enum): + NULL = 0 + KEY_IMGS = 1 + +class GlobalState: + def __init__(self): + config_path = 'config/config_dog.yaml' + with open(config_path, "r") as f: + config = yaml.safe_load(f) + + self.sd_model = config['sd_path'] + self.control_type = config['controlnet_type'] + self.processing_state = ProcessingState.NULL + pipe, frescoProc, controlnet, detector, flow_model, sod_model = get_models(config) + self.pipe = pipe + self.frescoProc = frescoProc + self.controlnet = controlnet + self.detector = detector + self.flow_model = flow_model + self.sod_model = sod_model + self.keys = [] + + def update_controlnet_model(self, control_type): + if self.control_type == control_type: + return + self.control_type = control_type + self.controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-"+control_type, + torch_dtype=torch.float16) + self.controlnet.to("cuda") + if control_type == 'depth': + self.detector = MidasDetector() + elif control_type == 'canny': + self.detector = CannyDetector() + else: + self.detector = HEDdetector() + torch.cuda.empty_cache() + for param in self.controlnet.parameters(): + param.requires_grad = False + + def update_sd_model(self, sd_model): + if self.sd_model == sd_model: + return + self.sd_model = sd_model + vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) + self.pipe = StableDiffusionPipeline.from_pretrained(sd_model, vae=vae, torch_dtype=torch.float16) + self.pipe.scheduler = DDPMScheduler.from_config(self.pipe.scheduler.config) + self.pipe.to("cuda") + self.frescoProc = apply_FRESCO_attn(self.pipe) + self.frescoProc.controller.disable_controller() + torch.cuda.empty_cache() + for param in self.pipe.unet.parameters(): + param.requires_grad = False + +@torch.no_grad() +def process(*args): + keypath = process1(*args) + fullpath = process2(*args) + return keypath, fullpath + +@torch.no_grad() +def process1(input_path, prompt, sd_model, seed, image_resolution, control_strength, + x0_strength, control_type, low_threshold, high_threshold, + ddpm_steps, scale, a_prompt, n_prompt, + frame_count, batch_size, mininterv, maxinterv, + use_constraints, bg_smooth, use_poisson, max_process, + b1, b2, s1, s2): + global global_state + global_state.update_controlnet_model(control_type) + global_state.update_sd_model(sd_model) + apply_freeu(global_state.pipe, b1=b1, b2=b2, s1=s1, s2=s2) + + filename = os.path.splitext(os.path.basename(input_path))[0] + save_path = os.path.join('output', filename) + device = global_state.pipe._execution_device + guidance_scale = scale + do_classifier_free_guidance = True + global_state.pipe.scheduler.set_timesteps(ddpm_steps, device=device) + timesteps = global_state.pipe.scheduler.timesteps + cond_scale = [control_strength] * ddpm_steps + dilate = Dilate(device=device) + + base_prompt = prompt + video_cap = cv2.VideoCapture(input_path) + frame_num = min(frame_count, int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT))) + fps = int(video_cap.get(cv2.CAP_PROP_FPS)) + + keys = get_keyframe_ind(input_path, frame_num, mininterv, maxinterv) + if len(keys) < 3: + raise gr.Error('Too few (%d) keyframes detected!'%(len(keys))) + global_state.keys = keys + fps = max(int(fps * len(keys) / frame_num), 1) + os.makedirs(save_path, exist_ok=True) + os.makedirs(os.path.join(save_path, 'keys'), exist_ok=True) + os.makedirs(os.path.join(save_path, 'video'), exist_ok=True) + + sublists = [keys[i:i+batch_size-2] for i in range(2, len(keys), batch_size-2)] + sublists[0].insert(0, keys[0]) + sublists[0].insert(1, keys[1]) + if len(sublists) > 1 and len(sublists[-1]) < 3: + add_num = 3 - len(sublists[-1]) + sublists[-1] = sublists[-2][-add_num:] + sublists[-1] + sublists[-2] = sublists[-2][:-add_num] + + batch_ind = 0 + propagation_mode = batch_ind > 0 + imgs = [] + record_latents = [] + video_cap = cv2.VideoCapture(input_path) + + for i in range(frame_num): + success, frame = video_cap.read() + frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) + img = resize_image(frame, image_resolution) + H, W, C = img.shape + Image.fromarray(img).save(os.path.join(save_path, 'video/%04d.png'%(i))) + if i not in sublists[batch_ind]: + continue + + imgs += [img] + if i != sublists[batch_ind][-1]: + continue + + # prepare input + batch_size = len(imgs) + n_prompts = [n_prompt] * len(imgs) + prompts = [base_prompt + a_prompt] * len(sublists[batch_ind]) + if propagation_mode: + prompts = ref_prompt + prompts + + prompt_embeds = global_state.pipe._encode_prompt( + prompts, + device, + 1, + do_classifier_free_guidance, + n_prompts, + ) + + imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0) + + edges = torch.cat([numpy2tensor(apply_control(img, + global_state.detector, control_type)[:, :, None]) for img in imgs], dim=0) + edges = edges.repeat(1,3,1,1).cuda() * 0.5 + 0.5 + edges = torch.cat([edges.to(global_state.pipe.unet.dtype)] * 2) + + if bg_smooth: + saliency = get_saliency(imgs, global_state.sod_model, dilate) + else: + saliency = None + + # prepare parameters for inter-frame and intra-frame consistency + flows, occs, attn_mask, interattn_paras = get_flow_and_interframe_paras(global_state.flow_model, imgs) + correlation_matrix = get_intraframe_paras(global_state.pipe, imgs_torch, global_state.frescoProc, + prompt_embeds, seed = seed) + + global_state.frescoProc.controller.disable_controller() + if 'spatial-guided attention' in use_constraints: + global_state.frescoProc.controller.enable_intraattn() + if 'temporal-guided attention' in use_constraints: + global_state.frescoProc.controller.enable_interattn(interattn_paras) + if 'cross-frame attention' in use_constraints: + global_state.frescoProc.controller.enable_cfattn(attn_mask) + + global_state.frescoProc.controller.enable_controller(interattn_paras=interattn_paras, attn_mask=attn_mask) + optimize_temporal = True + if 'temporal-guided optimization' not in use_constraints: + correlation_matrix = [] + if 'spatial-guided optimization' not in use_constraints: + optimize_temporal = False + apply_FRESCO_opt(global_state.pipe, steps = timesteps[:int(ddpm_steps*0.75)], + flows = flows, occs = occs, correlation_matrix=correlation_matrix, + saliency=saliency, optimize_temporal = optimize_temporal) + + gc.collect() + torch.cuda.empty_cache() + + # run! + latents = inference(global_state.pipe, global_state.controlnet, global_state.frescoProc, + imgs_torch, prompt_embeds, edges, timesteps, + cond_scale, ddpm_steps, int(ddpm_steps*(1-x0_strength)), + True, seed, guidance_scale, True, + record_latents, propagation_mode, + flows = flows, occs = occs, saliency=saliency, repeat_noise=True) + + with torch.no_grad(): + image = global_state.pipe.vae.decode(latents / global_state.pipe.vae.config.scaling_factor, return_dict=False)[0] + image = torch.clamp(image, -1 , 1) + save_imgs = tensor2numpy(image) + bias = 2 if propagation_mode else 0 + for ind, num in enumerate(sublists[batch_ind]): + Image.fromarray(save_imgs[ind+bias]).save(os.path.join(save_path, 'keys/%04d.png'%(num))) + + batch_ind += 1 + # current batch uses the last frame of the previous batch as ref + ref_prompt= [prompts[0], prompts[-1]] + imgs = [imgs[0], imgs[-1]] + propagation_mode = batch_ind > 0 + if batch_ind == len(sublists): + gc.collect() + torch.cuda.empty_cache() + break + + writer = imageio.get_writer(os.path.join(save_path, 'key.mp4'), fps=fps) + file_list = sorted(os.listdir(os.path.join(save_path, 'keys'))) + for file_name in file_list: + if not (file_name.endswith('jpg') or file_name.endswith('png')): + continue + fn = os.path.join(os.path.join(save_path, 'keys'), file_name) + curImg = imageio.imread(fn) + writer.append_data(curImg) + writer.close() + + global_state.processing_state = ProcessingState.KEY_IMGS + return os.path.join(save_path, 'key.mp4') + +@torch.no_grad() +def process2(input_path, prompt, sd_model, seed, image_resolution, control_strength, + x0_strength, control_type, low_threshold, high_threshold, + ddpm_steps, scale, a_prompt, n_prompt, + frame_count, batch_size, mininterv, maxinterv, + use_constraints, bg_smooth, use_poisson, max_process, + b1, b2, s1, s2): + + global global_state + if global_state.processing_state != ProcessingState.KEY_IMGS: + raise gr.Error('Please generate key images before propagation') + + # reset blend dir + filename = os.path.splitext(os.path.basename(input_path))[0] + blend_dir = os.path.join('output', filename) + os.makedirs(blend_dir, exist_ok=True) + + video_cap = cv2.VideoCapture(input_path) + fps = int(video_cap.get(cv2.CAP_PROP_FPS)) + o_video = os.path.join(blend_dir, 'blend.mp4') + key_ind = io.StringIO() + for k in global_state.keys: + print('%d'%(k), end=' ', file=key_ind) + ps = '-ps' if use_poisson else '' + cmd = ( + f'python video_blend.py {blend_dir} --key keys ' + f'--key_ind {key_ind.getvalue()} --output {o_video} --fps {fps} ' + f'--n_proc {max_process} {ps}') + print(cmd) + os.system(cmd) + return o_video + +global_state = GlobalState() +block = gr.Blocks().queue() +with block: + with gr.Row(): + gr.Markdown('## FRESCO Video-to-Video Translation') + with gr.Row(): + with gr.Column(): + input_path = gr.Video(label='Input Video', + source='upload', + format='mp4', + visible=True) + prompt = gr.Textbox(label='Prompt') + sd_model = gr.Dropdown(['SG161222/Realistic_Vision_V2.0', + 'runwayml/stable-diffusion-v1-5', + 'stablediffusionapi/rev-animated', + 'stablediffusionapi/flat-2d-animerge'], + label='Base model', + value='SG161222/Realistic_Vision_V2.0') + seed = gr.Slider(label='Seed', + minimum=0, + maximum=2147483647, + step=1, + value=0, + randomize=True) + run_button = gr.Button(value='Run All') + with gr.Row(): + run_button1 = gr.Button(value='Run Key Frames') + run_button2 = gr.Button(value='Run Propagation (Ebsynth)') + with gr.Accordion('Advanced options for single frame processing', + open=False): + image_resolution = gr.Slider(label='Frame resolution', + minimum=256, + maximum=512, + value=512, + step=64) + control_strength = gr.Slider(label='ControlNet strength', + minimum=0.0, + maximum=2.0, + value=1.0, + step=0.01) + x0_strength = gr.Slider( + label='Denoising strength', + minimum=0.00, + maximum=1.05, + value=0.75, + step=0.05, + info=('0: fully recover the input.' + '1.05: fully redraw the input.')) + with gr.Row(): + control_type = gr.Dropdown(['hed', 'canny', 'depth'], + label='Control type', + value='hed') + low_threshold = gr.Slider(label='Canny low threshold', + minimum=1, + maximum=255, + value=50, + step=1) + high_threshold = gr.Slider(label='Canny high threshold', + minimum=1, + maximum=255, + value=100, + step=1) + ddpm_steps = gr.Slider(label='Steps', + minimum=20, + maximum=100, + value=20, + step=20) + scale = gr.Slider(label='CFG scale', + minimum=1.1, + maximum=30.0, + value=7.5, + step=0.1) + a_prompt = gr.Textbox(label='Added prompt', + value='best quality, extremely detailed') + n_prompt = gr.Textbox( + label='Negative prompt', + value=('longbody, lowres, bad anatomy, bad hands, ' + 'missing fingers, extra digit, fewer digits, ' + 'cropped, worst quality, low quality')) + with gr.Row(): + b1 = gr.Slider(label='FreeU first-stage backbone factor', + minimum=1, + maximum=1.6, + value=1, + step=0.01, + info='FreeU to enhance texture and color') + b2 = gr.Slider(label='FreeU second-stage backbone factor', + minimum=1, + maximum=1.6, + value=1, + step=0.01) + with gr.Row(): + s1 = gr.Slider(label='FreeU first-stage skip factor', + minimum=0, + maximum=1, + value=1, + step=0.01) + s2 = gr.Slider(label='FreeU second-stage skip factor', + minimum=0, + maximum=1, + value=1, + step=0.01) + with gr.Accordion('Advanced options for FRESCO constraints', + open=False): + frame_count = gr.Slider( + label='Number of frames', + minimum=8, + maximum=300, + value=100, + step=1) + batch_size = gr.Slider( + label='Number of frames in a batch', + minimum=3, + maximum=8, + value=8, + step=1) + mininterv = gr.Slider(label='Min keyframe interval', + minimum=1, + maximum=20, + value=5, + step=1) + maxinterv = gr.Slider(label='Max keyframe interval', + minimum=1, + maximum=50, + value=20, + step=1) + use_constraints = gr.CheckboxGroup( + [ + 'spatial-guided attention', + 'cross-frame attention', + 'temporal-guided attention', + 'spatial-guided optimization', + 'temporal-guided optimization', + ], + label='Select the FRESCO contraints to be used', + value=[ + 'spatial-guided attention', + 'cross-frame attention', + 'temporal-guided attention', + 'spatial-guided optimization', + 'temporal-guided optimization', + ]), + bg_smooth = gr.Checkbox( + label='Background smoothing', + value=True, + info='Select to smooth background') + + with gr.Accordion( + 'Advanced options for the full video translation', + open=False): + use_poisson = gr.Checkbox( + label='Gradient blending', + value=True, + info=('Blend the output video in gradient, to reduce' + ' ghosting artifacts (but may increase flickers)')) + max_process = gr.Slider(label='Number of parallel processes', + minimum=1, + maximum=16, + value=4, + step=1) + + with gr.Accordion('Example configs', open=True): + exs = ['./data/dog.mp4', + 'greetings from a fox by shaking front paws', + 'SG161222/Realistic_Vision_V2.0', + 0, 512, 1.0, 0.6, 'hed', 50, 100, 20, 7.5, + 'RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3', + '(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation', + 100, 8, 10, 30, + ['spatial-guided attention', + 'cross-frame attention', + 'temporal-guided attention', + 'spatial-guided optimization', + 'temporal-guided optimization'], + True, True, 4, 1, 1, 1, 1 + ] + + ips = [ + input_path, prompt, sd_model, seed, image_resolution, control_strength, + x0_strength, control_type, low_threshold, high_threshold, + ddpm_steps, scale, a_prompt, n_prompt, + frame_count, batch_size, mininterv, maxinterv, + use_constraints[0], bg_smooth, use_poisson, max_process, + b1, b2, s1, s2 + ] + + gr.Examples( + examples=[exs], + inputs=[*ips], + ) + + with gr.Column(): + result_keyframe = gr.Video(label='Output key frame video', + format='mp4', + interactive=False) + result_video = gr.Video(label='Output full video', + format='mp4', + interactive=False) + + run_button.click(fn=process, + inputs=ips, + outputs=[result_keyframe, result_video]) + run_button1.click(fn=process1, inputs=ips, outputs=[result_keyframe]) + run_button2.click(fn=process2, inputs=ips, outputs=[result_video]) + +block.launch(share=True)