import torch from torch import nn class Residual_block(nn.Module): """Residual block Architecture: https://arxiv.org/pdf/1610.02915.pdf """ def __init__(self, channel): super(Residual_block, self).__init__() self.conv_1 = nn.Conv2d(in_channels=channel, out_channels=channel, padding='same', kernel_size=3, stride=1) self.inst1 = nn.InstanceNorm2d(channel, affine=True) self.conv_2 = nn.Conv2d(in_channels=channel, out_channels=channel, padding='same', kernel_size=3, stride=1) self.inst2 = nn.InstanceNorm2d(channel, affine=True) self.relu = nn.ReLU() def forward(self, x): residual = x out = self.relu(self.inst1(self.conv_1(x))) out = self.inst2(self.conv_2(out)) return self.relu(out + residual) class TransformerNet(nn.Module): def __init__(self): super(TransformerNet, self).__init__() # Downsampling self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=9, stride=1, padding = 9//2) self.BN_1 = nn.InstanceNorm2d(num_features=32, affine=True) self.down_1 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding = 1) self.BN_2 = nn.InstanceNorm2d(num_features=64, affine=True) self.down_2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding = 1) self.BN_3 = nn.InstanceNorm2d(num_features=128, affine=True) # Residual connect self.res_1 = Residual_block(128) self.res_2 = Residual_block(128) self.res_3 = Residual_block(128) self.res_4 = Residual_block(128) self.res_5 = Residual_block(128) # Upsampling self.up_1 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2, padding=1, output_padding= 1) self.BN_4 = nn.InstanceNorm2d(num_features=64, affine=True) self.up_2 = nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=3, stride=2, padding = 1, output_padding= 1) self.BN_5 = nn.InstanceNorm2d(num_features=32, affine=True) self.conv2 = nn.Conv2d(in_channels=32, out_channels=3, kernel_size=9, stride=1, padding = 9//2) self.relu = nn.ReLU() def forward(self, x): y = self.relu(self.BN_1(self.conv1(x))) # print(y.shape) y = self.relu(self.BN_2(self.down_1(y))) # print(y.shape) y = self.relu(self.BN_3(self.down_2(y))) # print(y.shape) # print() y = self.res_1(y) # print(y.shape) y = self.res_2(y) # print(y.shape) y = self.res_3(y) # print(y.shape) y = self.res_4(y) # print(y.shape) y = self.res_5(y) # print(y.shape) # print() y = self.relu(self.BN_4(self.up_1(y))) # print(y.shape) y = self.relu(self.BN_5(self.up_2(y))) # print(y.shape) y = self.conv2(y) # print(y.shape) return y