import gradio as gr from datasets import load_dataset import os from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig import torch from threading import Thread from sentence_transformers import SentenceTransformer from datasets import load_dataset import time token = os.environ["HF_TOKEN"] ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") art_dataset= load_dataset("hichri-mo/arxiver-1000",revision="embedded") data = art_dataset["train"] data = data.add_faiss_index("embeddings") model_id= "Qwen/Qwen2.5-3B-Instruct" # use quantization to lower GPU usage bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", quantization_config=bnb_config ) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] SYS_PROMPT = """You are an assistant for answering questions. You are given the extracted parts of a long document and a question. Provide a conversational answer. If you don't know the answer, just say "I do not know." Don't make up an answer.""" def format_prompt(prompt,retrieved_documents,k): """using the retrieved documents we will prompt the model to generate our responses""" PROMPT = f"Question: {prompt}\nContext: \n" for idx in range(k) : PROMPT+= f"{retrieved_documents['markdown'][idx]}\n" return PROMPT def generate(formatted_prompt): formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}] # tell the model to generate input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) # Check if terminators contain None and replace with tokenizer.eos_token_id eos_token_id = terminators[0] # Default to tokenizer.eos_token_id if terminators[1] is not None: eos_token_id = terminators[1] # Use "<|eot_id|>" if it exists outputs = model.generate( input_ids, max_new_tokens=1024, eos_token_id=eos_token_id, # Pass a single integer value do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] return tokenizer.decode(response, skip_special_tokens=True) def rag_chatbot(prompt:str,k:int=2): scores , retrieved_documents = search(prompt, k) formatted_prompt = format_prompt(prompt,retrieved_documents,k) return generate(formatted_prompt) def rag_chatbot_interface(prompt, k): return rag_chatbot(prompt, k) iface = gr.Interface( fn=rag_chatbot_interface, inputs=[ gr.Textbox(label="Enter your question"), gr.Slider(minimum=1, maximum=10, step=1, value=2, label="Number of documents to retrieve") ], outputs=gr.Textbox(label="Response"), title="Chatbot with RAG", description="Ask questions and get answers based on retrieved documents." ) iface.launch()