import matplotlib.pyplot as plt import os import json import math import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import commons import utils from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate import sys from subprocess import call def run_cmd(command): try: print(command) call(command, shell=True) except KeyboardInterrupt: print("Process interrupted") sys.exit(1) current = os.getcwd() print(current) full = current + "/monotonic_align" print(full) os.chdir(full) print(os.getcwd()) run_cmd("python3 setup.py build_ext --inplace") run_cmd("apt-get install espeak -y") os.chdir("..") print(os.getcwd()) from models import SynthesizerTrn from text.symbols import symbols from text.cleaners import japanese_phrase_cleaners from text import cleaned_text_to_sequence from scipy.io.wavfile import write import gradio as gr import scipy.io.wavfile import numpy as np import re jp_match = re.compile(r'.*?[ぁ|あ|ぃ|い|ぅ|う|ぇ|え|ぉ|お|か|が|き|ぎ|く|ぐ|け|げ|こ|ご|さ|ざ|し|じ|す|ず|せ|ぜ|そ|ぞ|た|だ|ち|ぢ|っ|つ|づ|て|で|と|ど|な|に|ぬ|ね|の|は|ば|ぱ|ひ|び|ぴ|ふ|ぶ|ぷ|へ|べ|ぺ|ほ|ぼ|ぽ|ま|み|む|め|も|ゃ|や|ゅ|ゆ|ょ|よ|ら|り|る|れ|ろ|ゎ|わ|ゐ|ゑ|を|ん|ゔ|ゕ|ゖ|ゝ|ゞ|ゟ|゠|ァ|ア|ィ|イ|ゥ|ウ|ェ|エ|ォ|オ|カ|ガ|キ|ギ|ク|グ|ケ|ゲ|コ|ゴ|サ|ザ|シ|ジ|ス|ズ|セ|ゼ|ソ|ゾ|タ|ダ|チ|ヂ|ッ|ツ|ヅ|テ|デ|ト|ド|ナ|ニ|ヌ|ネ|ノ|ハ|バ|パ|ヒ|ビ|ピ|フ|ブ|プ|ヘ|ベ|ペ|ホ|ボ|ポ|マ|ミ|ム|メ|モ|ャ|ヤ|ュ|ユ|ョ|ヨ|ラ|リ|ル|レ|ロ|ヮ|ワ|ヰ|ヱ|ヲ|ン|ヴ|ヵ|ヶ|ヷ|ヸ|ヹ|ヺ]+') title = "VITS" description = "demo for VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "
Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech | Github Repo
" examples = [ ["原因不明の海面上昇によって、地表の多くが海に沈んだ近未来。"], ["幼い頃の事故によって片足を失った少年・斑鳩夏生は、都市での暮らしに見切りを付け、海辺の田舎町へと移り住んだ。"], ["身よりのない彼に遺されたのは、海洋地質学者だった祖母の船と潜水艇、そして借金。"], ["nanika acltara itsudemo hanashIte kudasai. gakuiNno kotojanaku, shijini kaNsuru kotodemo nanidemo."] ] hps = utils.get_hparams_from_file("./configs/ATR.json") net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, **hps.model) _ = net_g.eval() _ = utils.load_checkpoint("./G_85000.pth", net_g, None) def get_text(text, hps): text_norm = cleaned_text_to_sequence(text) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) return text_norm def jtts(text): if jp_match.match(text): stn_tst = get_text(japanese_phrase_cleaners(text), hps) else: stn_tst = get_text(text, hps) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.float().numpy() scipy.io.wavfile.write("out.wav", hps.data.sampling_rate, audio) return "./out.wav" if __name__ == '__main__': inputs = gr.inputs.Textbox(lines=5, label="Input Text") outputs = gr.outputs.Audio(label="Output Audio") gr.Interface(jtts, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()