import matplotlib.pyplot as plt import os import json import math import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import commons import utils from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate import sys from subprocess import call def run_cmd(command): try: print(command) call(command, shell=True) except KeyboardInterrupt: print("Process interrupted") sys.exit(1) current = os.getcwd() print(current) full = current + "/monotonic_align" print(full) os.chdir(full) print(os.getcwd()) run_cmd("python3 setup.py build_ext --inplace") run_cmd("apt-get install espeak -y") os.chdir("..") print(os.getcwd()) from models import SynthesizerTrn from text.symbols import symbols from text.cleaners import japanese_phrase_cleaners from text import cleaned_text_to_sequence from scipy.io.wavfile import write import gradio as gr import scipy.io.wavfile import numpy as np import torchtext def get_text(text, hps): text_norm = cleaned_text_to_sequence(text) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) return text_norm hps = utils.get_hparams_from_file("./configs/ATR.json") net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, **hps.model) _ = net_g.eval() _ = utils.load_checkpoint("./logs/ATR/G_74000.pth", net_g, None) def jtts(text): stn_tst = get_text(japanese_phrase_cleaners(text), hps) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.float().numpy() scipy.io.wavfile.write("out.wav", hps.data.sampling_rate, audio) return "./out.wav" inputs = gr.inputs.Textbox(lines=5, label="Input Text") outputs = gr.outputs.Audio(label="Output Audio") title = "VITS" description = "demo for VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "
Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech | Github Repo
" examples = [ ["吾輩は猫である。名前はまだない"], ["試験勉強頑張ってくださいね"]] gr.Interface(jtts, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()