import copy
import logging
from typing import List
import numpy as np
import tensorflow as tf
import streamlit as st
from transformers import BertTokenizer, TFAutoModelForMaskedLM
from rhyme_with_ai.utils import color_new_words, pairwise, sanitize
from rhyme_with_ai.token_weighter import TokenWeighter
from rhyme_with_ai.rhyme import query_rhyme_words
DEFAULT_QUERY = "Machines will take over the world soon"
N_RHYMES = 10
ITER_FACTOR = 5
LANGUAGE = st.sidebar.radio("Language", ["english", "dutch"],0)
if LANGUAGE == "english":
MODEL_PATH = "bert-large-cased-whole-word-masking"
elif LANGUAGE == "dutch":
MODEL_PATH = "GroNLP/bert-base-dutch-cased"
else:
raise NotImplementedError(f"Unsupported language ({LANGUAGE}) expected 'english' or 'dutch'.")
def main():
st.markdown(
"Created with "
"[Datamuse](https://www.datamuse.com/api/), "
"[Mick's rijmwoordenboek](https://rijmwoordenboek.nl), "
"[Hugging Face](https://huggingface.co/), "
"[Streamlit](https://streamlit.io/) and "
"[App Engine](https://cloud.google.com/appengine/)."
" Read our [blog](https://blog.godatadriven.com/rhyme-with-ai) "
"or check the "
"[source](https://github.com/godatadriven/rhyme-with-ai).",
unsafe_allow_html=True,
)
st.title("Rhyme with AI")
query = get_query()
if not query:
query = DEFAULT_QUERY
rhyme_words_options = query_rhyme_words(query, n_rhymes=N_RHYMES,language=LANGUAGE)
if rhyme_words_options:
logging.getLogger(__name__).info("Got rhyme words: %s", rhyme_words_options)
start_rhyming(query, rhyme_words_options)
else:
st.write("No rhyme words found")
def get_query():
q = sanitize(
st.text_input("Write your first line and press ENTER to rhyme:", DEFAULT_QUERY)
)
if not q:
return DEFAULT_QUERY
return q
def start_rhyming(query, rhyme_words_options):
st.markdown("## My Suggestions:")
progress_bar = st.progress(0)
status_text = st.empty()
max_iter = len(query.split()) * ITER_FACTOR
rhyme_words = rhyme_words_options[:N_RHYMES]
model, tokenizer = load_model(MODEL_PATH)
sentence_generator = RhymeGenerator(model, tokenizer)
sentence_generator.start(query, rhyme_words)
current_sentences = [" " for _ in range(N_RHYMES)]
for i in range(max_iter):
previous_sentences = copy.deepcopy(current_sentences)
current_sentences = sentence_generator.mutate()
display_output(status_text, query, current_sentences, previous_sentences)
progress_bar.progress(i / (max_iter - 1))
st.balloons()
@st.cache(allow_output_mutation=True)
def load_model(model_path):
return (
TFAutoModelForMaskedLM.from_pretrained(model_path),
BertTokenizer.from_pretrained(model_path),
)
def display_output(status_text, query, current_sentences, previous_sentences):
print_sentences = []
for new, old in zip(current_sentences, previous_sentences):
formatted = color_new_words(new, old)
after_comma = "
" + formatted.split(",")[1][:-2] + ""
print_sentences.append(after_comma)
status_text.markdown(
query + ",
" + "".join(print_sentences), unsafe_allow_html=True
)
class RhymeGenerator:
def __init__(
self,
model: TFAutoModelForMaskedLM,
tokenizer: BertTokenizer,
token_weighter: TokenWeighter = None,
):
"""Generate rhymes.
Parameters
----------
model : Model for masked language modelling
tokenizer : Tokenizer for model
token_weighter : Class that weighs tokens
"""
self.model = model
self.tokenizer = tokenizer
if token_weighter is None:
token_weighter = TokenWeighter(tokenizer)
self.token_weighter = token_weighter
self._logger = logging.getLogger(__name__)
self.tokenized_rhymes_ = None
self.position_probas_ = None
# Easy access.
self.comma_token_id = self.tokenizer.encode(",", add_special_tokens=False)[0]
self.period_token_id = self.tokenizer.encode(".", add_special_tokens=False)[0]
self.mask_token_id = self.tokenizer.mask_token_id
def start(self, query: str, rhyme_words: List[str]) -> None:
"""Start the sentence generator.
Parameters
----------
query : Seed sentence
rhyme_words : Rhyme words for next sentence
"""
# TODO: What if no content?
self._logger.info("Got sentence %s", query)
tokenized_rhymes = [
self._initialize_rhymes(query, rhyme_word) for rhyme_word in rhyme_words
]
# Make same length.
self.tokenized_rhymes_ = tf.keras.preprocessing.sequence.pad_sequences(
tokenized_rhymes, padding="post", value=self.tokenizer.pad_token_id
)
p = self.tokenized_rhymes_ == self.tokenizer.mask_token_id
self.position_probas_ = p / p.sum(1).reshape(-1, 1)
def _initialize_rhymes(self, query: str, rhyme_word: str) -> List[int]:
"""Initialize the rhymes.
* Tokenize input
* Append a comma if the sentence does not end in it (might add better predictions as it
shows the two sentence parts are related)
* Make second line as long as the original
* Add a period
Parameters
----------
query : First line
rhyme_word : Last word for second line
Returns
-------
Tokenized rhyme lines
"""
query_token_ids = self.tokenizer.encode(query, add_special_tokens=False)
rhyme_word_token_ids = self.tokenizer.encode(
rhyme_word, add_special_tokens=False
)
if query_token_ids[-1] != self.comma_token_id:
query_token_ids.append(self.comma_token_id)
magic_correction = len(rhyme_word_token_ids) + 1 # 1 for comma
return (
query_token_ids
+ [self.tokenizer.mask_token_id] * (len(query_token_ids) - magic_correction)
+ rhyme_word_token_ids
+ [self.period_token_id]
)
def mutate(self):
"""Mutate the current rhymes.
Returns
-------
Mutated rhymes
"""
self.tokenized_rhymes_ = self._mutate(
self.tokenized_rhymes_, self.position_probas_, self.token_weighter.proba
)
rhymes = []
for i in range(len(self.tokenized_rhymes_)):
rhymes.append(
self.tokenizer.convert_tokens_to_string(
self.tokenizer.convert_ids_to_tokens(
self.tokenized_rhymes_[i], skip_special_tokens=True
)
)
)
return rhymes
def _mutate(
self,
tokenized_rhymes: np.ndarray,
position_probas: np.ndarray,
token_id_probas: np.ndarray,
) -> np.ndarray:
replacements = []
for i in range(tokenized_rhymes.shape[0]):
mask_idx, masked_token_ids = self._mask_token(
tokenized_rhymes[i], position_probas[i]
)
tokenized_rhymes[i] = masked_token_ids
replacements.append(mask_idx)
predictions = self._predict_masked_tokens(tokenized_rhymes)
for i, token_ids in enumerate(tokenized_rhymes):
replace_ix = replacements[i]
token_ids[replace_ix] = self._draw_replacement(
predictions[i], token_id_probas, replace_ix
)
tokenized_rhymes[i] = token_ids
return tokenized_rhymes
def _mask_token(self, token_ids, position_probas):
"""Mask line and return index to update."""
token_ids = self._mask_repeats(token_ids, position_probas)
ix = self._locate_mask(token_ids, position_probas)
token_ids[ix] = self.mask_token_id
return ix, token_ids
def _locate_mask(self, token_ids, position_probas):
"""Update masks or a random token."""
if self.mask_token_id in token_ids:
# Already masks present, just return the last.
# We used to return thee first but this returns worse predictions.
return np.where(token_ids == self.tokenizer.mask_token_id)[0][-1]
return np.random.choice(range(len(position_probas)), p=position_probas)
def _mask_repeats(self, token_ids, position_probas):
"""Repeated tokens are generally of less quality."""
repeats = [
ii for ii, ids in enumerate(pairwise(token_ids[:-2])) if ids[0] == ids[1]
]
for ii in repeats:
if position_probas[ii] > 0:
token_ids[ii] = self.mask_token_id
if position_probas[ii + 1] > 0:
token_ids[ii + 1] = self.mask_token_id
return token_ids
def _predict_masked_tokens(self, tokenized_rhymes):
return self.model(tf.constant(tokenized_rhymes))[0]
def _draw_replacement(self, predictions, token_probas, replace_ix):
"""Get probability, weigh and draw."""
# TODO (HG): Can't we softmax when calling the model?
probas = tf.nn.softmax(predictions[replace_ix]).numpy() * token_probas
probas /= probas.sum()
return np.random.choice(range(len(probas)), p=probas)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
main()