import html # Added for escaping HTML import json import logging # Added for status check logging import os # Added for environment variables import gradio as gr import numpy as np from sentence_transformers import SentenceTransformer # Added HfApi for endpoint check from huggingface_hub import InferenceClient from dotenv import load_dotenv # Added for .env loading import utils.interface_utils as interface_utils import utils.llm_utils as llm_utils # Load environment variables from .env file load_dotenv() # REMOVED Endpoint name constant (will be in llm_utils) # LLM_ENDPOINT_NAME = "phi-4-max" # REMOVED Endpoint Status Check Function # --- Load Data and Models --- # These should be loaded once when the app starts. print("Loading data and models...") # Load data from files processed_docs = json.load( open("docs_passages_storage/processed_docs.json", encoding="utf-8") ) passages = json.load(open("docs_passages_storage/passages.json", encoding="utf-8")) doc_embeds = np.load("docs_passages_storage/passage_embeddings.npy") # Load the embedding model - Force CPU print("Loading embedding model on CPU...") model_name = "Snowflake/snowflake-arctic-embed-l-v2.0" embed_model = SentenceTransformer(model_name, device="cpu") print("Embedding model loaded.") # Initialize HF Client globally using env vars hf_api_token = os.getenv("HF_TOKEN") if not hf_api_token: print( "Warning: HF_TOKEN environment variable not set. Inference client might fail." ) hf_client = InferenceClient(token=hf_api_token) print("Data and models loaded.") # --- Main Gradio Function --- def get_results(query: str, progress=gr.Progress(track_tqdm=True)) -> list: """Processes query, retrieves passages, processes each, formats output, tracks progress.""" # Define placeholders for 10 outputs (9 results + 1 summary) if not query: # Return default values for all 10 output slots return ["-"] * 9 + ["### Summary\n-"] # --- Check Endpoint Status FIRST --- # Use token loaded previously for the client endpoint_status = llm_utils.check_endpoint_status( token=hf_api_token ) # Call function from llm_utils if endpoint_status["status"] == "error": error_message = endpoint_status["ui_message"] logging.error(f"Endpoint status error: {error_message}") progress(1, desc="Endpoint Error") # Display error in first result slot and summary slot return [ "### Endpoint Error", f"

{html.escape(error_message)}

", "_", "-", "-", "-", "-", "-", "-", "### Summary\n_Endpoint not ready._", ] print(f"Processing query: {query}") try: progress(0, desc="Retrieving relevant documents...") # Step 1: Retrieve top excerpts retrieved_excerpts = llm_utils.retrieve_passages( query=query, doc_embeds=doc_embeds, passages=passages, processed_docs=processed_docs, embed_model=embed_model, max_docs=3, ) progress(0.1, desc="Retrieved documents.") # Update progress after retrieval if not retrieved_excerpts: print("No passages retrieved.") progress(1, desc="No relevant passages found.") # Update progress return [ "### Document:\n-", "

No relevant passages found.

", "_", ] * 3 + [ "### Summary\n_No passages found._" ] # Add summary placeholder # Step 2: Process each excerpt individually processed_data = [] num_excerpts = len(retrieved_excerpts) for i, excerpt in enumerate(retrieved_excerpts): # Update progress description before processing each excerpt progress( 0.1 + (i * 0.8 / num_excerpts), desc=f"Processing excerpt {i + 1}/{num_excerpts}...", ) # Pass the globally initialized hf_client processed_result = llm_utils.process_single_excerpt( i, excerpt, query, hf_client ) processed_data.append({"excerpt": excerpt, **processed_result}) progress( 0.9, desc="Formatting results..." ) # Mark processing complete, start formatting # Step 3: Format results for Gradio output components final_outputs = [ "### Document:\n-", "

No result

", "_No passage text_", ] * 3 + [ "### Summary\n_Generating..._" ] # Reset outputs + summary placeholder global_quote_counter = 0 # Initialize global counter snippets_for_llm_summary = [] # List to store formatted snippets for the LLM all_spans_with_hover_info = ( {} ) # Dict to store spans per passage index: {0: [(s, e, info), ...], 1: ...} for i in range(min(len(processed_data), 3)): result = processed_data[i] excerpt = result["excerpt"] citations = result["citations"] parse_successful = result["parse_successful"] raw_error_response = result["raw_error_response"] passage_text = excerpt.get("passage_text", "") doc_url = excerpt.get("document_url", "#") # 1. Format Document URL Markdown doc_url_md = ( f"### Document {i+1}:\n[{html.escape(doc_url)}]({html.escape(doc_url)})" ) # 2. Format Quotes HTML quotes_html_parts = [] if parse_successful and citations: quotes_html_parts.append( "

Relevant Quotes: (hover for details)

" ) quotes_html_parts.append( "") elif not parse_successful and raw_error_response: quotes_html_parts.append( "

Error parsing citations:

" ) # Limit error display length error_display = html.escape(raw_error_response[:1000]) + ( "..." if len(raw_error_response) > 1000 else "" ) quotes_html_parts.append( f"
{error_display}
" ) else: quotes_html_parts.append("

No specific quotes identified.

") quotes_html = "".join(quotes_html_parts) if not quotes_html: quotes_html = "

No quotes processed.

" # 3. Format Passage Markdown using the collected spans with hover info spans_for_this_passage = all_spans_with_hover_info.get( i, [] ) # Get spans for index i passage_md = interface_utils.generate_highlighted_markdown( passage_text, spans_for_this_passage ) if not passage_md: passage_md = "_Passage text unavailable._" # Update the final_outputs list final_outputs[i * 3 + 0] = doc_url_md final_outputs[i * 3 + 1] = quotes_html final_outputs[i * 3 + 2] = passage_md # Step 4: Generate LLM summary progress(0.95, desc="Generating summary...") # New progress step summary_text = "### Summary\n_Error generating summary._" # Default error text if snippets_for_llm_summary: # Create a lookup for quote details by ID snippet_lookup = {s["id"]: s for s in snippets_for_llm_summary} # Pass the globally initialized hf_client summary_result = llm_utils.generate_summary_answer( snippets=snippets_for_llm_summary, query=query, hf_client=hf_client ) if summary_result["parse_successful"]: summary_items = [] for sentence_data in summary_result["answer_sentences"]: sentence = sentence_data.get("sentence", "") citation_ids = sentence_data.get("citations", []) # Generate HTML links for citations citation_links = [] for c_id in citation_ids: # Look up snippet details snippet_info = snippet_lookup.get(c_id) if snippet_info: url = snippet_info.get("document_url", "#") quote_text = snippet_info.get("quote", "") escaped_quote = html.escape(quote_text, quote=True) link = f"[{c_id}]" citation_links.append(link) else: citation_links.append( f"[{c_id}]" ) # Fallback if ID not found # Format citation string like [link1, link2] citation_str = ( f" [{', '.join(citation_links)}]" if citation_links else "" ) if sentence: # Append sentence and linked citations summary_items.append(f"{html.escape(sentence)}{citation_str}") if summary_items: summary_text = "### Generated Answer\n" + " ".join(summary_items) else: summary_text = ( "### Generated Answer\n_LLM did not generate any sentences._" ) else: # Display parsing error from summary LLM summary_text = ( "### Summary Generation Error\n" + f"

Could not generate summary:

{html.escape(summary_result['raw_error_response'])}
" ) else: summary_text = "### Summary\n_No valid quotes found to generate summary._" final_outputs[9] = summary_text # Add summary to the 10th slot progress(1, desc="Done!") # Final progress update return final_outputs except Exception as e: print(f"Error in get_results: {e}") # Display error in the first result slot, update summary slot error_outputs = ( [ "### Error Processing Query", f"

An unexpected error occurred: {html.escape(str(e))}

", "_Error details above._", ] + ["-"] * 6 + ["### Summary\n_Error occurred._"] ) # Add summary placeholder for error progress(1, desc="Error!") return error_outputs # --- Gradio Interface --- # Define custom CSS for scrollable accordion content custom_css = """ .scrollable-passage-content { max-height: 25vh; /* Or a fixed height like 200px */ overflow-y: auto !important; /* Add !important to override potential conflicts */ display: block; /* Ensure it behaves like a block element */ padding: 10px; /* Add some padding */ background-color: #f9f9f9; /* Match previous background */ border: 1px solid #ddd; /* Match previous border */ border-radius: 5px; /* Match previous radius */ white-space: pre-wrap; /* Preserve whitespace */ word-wrap: break-word; /* Wrap long words */ } """ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="🤗 Policy Docs QA") as demo: gr.Markdown("# 🤗 Policy Docs QA") gr.Markdown( "Ask a question about the loaded policy documents to retrieve relevant passages and quotes." ) # Added description with gr.Row(): # Column 1: Input (scale=1) with gr.Column(scale=1): question_input = gr.Textbox( label="Question", placeholder="Enter your question...", lines=5, ) # Add example questions example_questions = [ "What role does replicable evaluation play in AI regulation?", "How does dataset transparency help address risks of accidents and abuse of AI systems?", ] gr.Examples( examples=example_questions, inputs=question_input, label="Example Questions", # Optional label ) submit_button = gr.Button("Get Answer") # Column 2: Results (scale=3) with gr.Column(scale=3): gr.Markdown("## Retrieved Passages") # Changed heading result_outputs = [] # Rename list for clarity for i in range(3): # Create 3 result sections with gr.Group(): gr.Markdown(f"**Result {i+1}**") doc_url_md = gr.Markdown( value="### Document:\n-", label=f"Document URL {i+1}" ) quotes_html = gr.HTML( value="

Quotes will appear here...

", label=f"Quotes {i+1}", ) with gr.Accordion(f"Full Passage Context {i+1}", open=False): passage_md = gr.Markdown( value="_Passage text will appear here..._", label=f"Passage {i+1}", elem_classes="scrollable-passage-content", # Assign the class ) result_outputs.extend([doc_url_md, quotes_html, passage_md]) # Column 3: Summary (scale=2) with gr.Column(scale=2): gr.Markdown("## Summary") gr.Markdown("***⚠️ Warning:** The text below is generated by an LLM and might not accurately reflect the policy documents. Citation links are determined by the same LLM and provided for conveninece only. For reliable information, go directly to the Retrieved Passages left.*") summary_output = gr.Markdown( value="_Summary will appear here..._", label="Summary" ) # Combine all output components for the click function all_outputs = result_outputs + [summary_output] assert ( len(all_outputs) == 10 ), "Incorrect number of total output components created." submit_button.click( fn=get_results, inputs=question_input, outputs=all_outputs, # Pass the list of 10 components ) # --- Launch App --- if __name__ == "__main__": demo.launch() # share=True for public link