import pandas as pd import matplotlib.pyplot as plt import sys sys.path.append("../") from model import Kronos, KronosTokenizer, KronosPredictor def plot_prediction(kline_df, pred_df): pred_df.index = kline_df.index[-pred_df.shape[0]:] sr_close = kline_df['close'] sr_pred_close = pred_df['close'] sr_close.name = 'Ground Truth' sr_pred_close.name = "Prediction" sr_volume = kline_df['volume'] sr_pred_volume = pred_df['volume'] sr_volume.name = 'Ground Truth' sr_pred_volume.name = "Prediction" close_df = pd.concat([sr_close, sr_pred_close], axis=1) volume_df = pd.concat([sr_volume, sr_pred_volume], axis=1) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 6), sharex=True) ax1.plot(close_df['Ground Truth'], label='Ground Truth', color='blue', linewidth=1.5) ax1.plot(close_df['Prediction'], label='Prediction', color='red', linewidth=1.5) ax1.set_ylabel('Close Price', fontsize=14) ax1.legend(loc='lower left', fontsize=12) ax1.grid(True) ax2.plot(volume_df['Ground Truth'], label='Ground Truth', color='blue', linewidth=1.5) ax2.plot(volume_df['Prediction'], label='Prediction', color='red', linewidth=1.5) ax2.set_ylabel('Volume', fontsize=14) ax2.legend(loc='upper left', fontsize=12) ax2.grid(True) plt.tight_layout() plt.show() # 1. Load Model and Tokenizer tokenizer = KronosTokenizer.from_pretrained('/home/csc/huggingface/Kronos-Tokenizer-base/') model = Kronos.from_pretrained("/home/csc/huggingface/Kronos-base/") # 2. Instantiate Predictor predictor = KronosPredictor(model, tokenizer, device="cuda:0", max_context=512) # 3. Prepare Data df = pd.read_csv("./data/XSHG_5min_600977.csv") df['timestamps'] = pd.to_datetime(df['timestamps']) lookback = 400 pred_len = 120 dfs = [] xtsp = [] ytsp = [] for i in range(5): idf = df.loc[(i*400):(i*400+lookback-1), ['open', 'high', 'low', 'close', 'volume', 'amount']] i_x_timestamp = df.loc[(i*400):(i*400+lookback-1), 'timestamps'] i_y_timestamp = df.loc[(i*400+lookback):(i*400+lookback+pred_len-1), 'timestamps'] dfs.append(idf) xtsp.append(i_x_timestamp) ytsp.append(i_y_timestamp) pred_df = predictor.predict_batch( df_list=dfs, x_timestamp_list=xtsp, y_timestamp_list=ytsp, pred_len=pred_len, )