# https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py from scipy.signal import get_window from torch.nn import Conv1d, ConvTranspose1d from torch.nn.utils import weight_norm, remove_weight_norm import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) LRELU_SLOPE = 0.1 class AdaIN1d(nn.Module): def __init__(self, style_dim, num_features): super().__init__() self.norm = nn.InstanceNorm1d(num_features, affine=False) self.fc = nn.Linear(style_dim, num_features*2) def forward(self, x, s): h = self.fc(s) h = h.view(h.size(0), h.size(1), 1) gamma, beta = torch.chunk(h, chunks=2, dim=1) return (1 + gamma) * self.norm(x) + beta class AdaINResBlock1(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64): super(AdaINResBlock1, self).__init__() self.convs1 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]))) ]) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))) ]) self.convs2.apply(init_weights) self.adain1 = nn.ModuleList([ AdaIN1d(style_dim, channels), AdaIN1d(style_dim, channels), AdaIN1d(style_dim, channels), ]) self.adain2 = nn.ModuleList([ AdaIN1d(style_dim, channels), AdaIN1d(style_dim, channels), AdaIN1d(style_dim, channels), ]) self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))]) self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))]) def forward(self, x, s): for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2): xt = n1(x, s) xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D xt = c1(xt) xt = n2(xt, s) xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class TorchSTFT(torch.nn.Module): def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'): super().__init__() self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32)) def transform(self, input_data): forward_transform = torch.stft( input_data, self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device), return_complex=True) return torch.abs(forward_transform), torch.angle(forward_transform) def inverse(self, magnitude, phase): inverse_transform = torch.istft( magnitude * torch.exp(phase * 1j), self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device)) return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation def forward(self, input_data): self.magnitude, self.phase = self.transform(input_data) reconstruction = self.inverse(self.magnitude, self.phase) return reconstruction class SineGen(torch.nn.Module): """ Definition of sine generator SineGen(samp_rate, harmonic_num = 0, sine_amp = 0.1, noise_std = 0.003, voiced_threshold = 0, flag_for_pulse=False) samp_rate: sampling rate in Hz harmonic_num: number of harmonic overtones (default 0) sine_amp: amplitude of sine-wavefrom (default 0.1) noise_std: std of Gaussian noise (default 0.003) voiced_thoreshold: F0 threshold for U/V classification (default 0) flag_for_pulse: this SinGen is used inside PulseGen (default False) Note: when flag_for_pulse is True, the first time step of a voiced segment is always sin(np.pi) or cos(0) """ def __init__(self, samp_rate, upsample_scale, harmonic_num=0, sine_amp=0.1, noise_std=0.003, voiced_threshold=0, flag_for_pulse=False): super(SineGen, self).__init__() self.sine_amp = sine_amp self.noise_std = noise_std self.harmonic_num = harmonic_num self.dim = self.harmonic_num + 1 self.sampling_rate = samp_rate self.voiced_threshold = voiced_threshold self.flag_for_pulse = flag_for_pulse self.upsample_scale = upsample_scale def _f02uv(self, f0): # generate uv signal uv = (f0 > self.voiced_threshold).type(torch.float32) return uv def _f02sine(self, f0_values): """ f0_values: (batchsize, length, dim) where dim indicates fundamental tone and overtones """ # convert to F0 in rad. The interger part n can be ignored # because 2 * np.pi * n doesn't affect phase rad_values = (f0_values / self.sampling_rate) % 1 # initial phase noise (no noise for fundamental component) rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \ device=f0_values.device) rand_ini[:, 0] = 0 rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) if not self.flag_for_pulse: # # for normal case # # To prevent torch.cumsum numerical overflow, # # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1. # # Buffer tmp_over_one_idx indicates the time step to add -1. # # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi # tmp_over_one = torch.cumsum(rad_values, 1) % 1 # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0 # cumsum_shift = torch.zeros_like(rad_values) # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2), scale_factor=1/self.upsample_scale, mode="linear").transpose(1, 2) # tmp_over_one = torch.cumsum(rad_values, 1) % 1 # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0 # cumsum_shift = torch.zeros_like(rad_values) # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale, scale_factor=self.upsample_scale, mode="linear").transpose(1, 2) sines = torch.sin(phase) else: # If necessary, make sure that the first time step of every # voiced segments is sin(pi) or cos(0) # This is used for pulse-train generation # identify the last time step in unvoiced segments uv = self._f02uv(f0_values) uv_1 = torch.roll(uv, shifts=-1, dims=1) uv_1[:, -1, :] = 1 u_loc = (uv < 1) * (uv_1 > 0) # get the instantanouse phase tmp_cumsum = torch.cumsum(rad_values, dim=1) # different batch needs to be processed differently for idx in range(f0_values.shape[0]): temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] # stores the accumulation of i.phase within # each voiced segments tmp_cumsum[idx, :, :] = 0 tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum # rad_values - tmp_cumsum: remove the accumulation of i.phase # within the previous voiced segment. i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) # get the sines sines = torch.cos(i_phase * 2 * np.pi) return sines def forward(self, f0): """ sine_tensor, uv = forward(f0) input F0: tensor(batchsize=1, length, dim=1) f0 for unvoiced steps should be 0 output sine_tensor: tensor(batchsize=1, length, dim) output uv: tensor(batchsize=1, length, 1) """ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) # fundamental component fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device)) # generate sine waveforms sine_waves = self._f02sine(fn) * self.sine_amp # generate uv signal # uv = torch.ones(f0.shape) # uv = uv * (f0 > self.voiced_threshold) uv = self._f02uv(f0) # noise: for unvoiced should be similar to sine_amp # std = self.sine_amp/3 -> max value ~ self.sine_amp # . for voiced regions is self.noise_std noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 noise = noise_amp * torch.randn_like(sine_waves) # first: set the unvoiced part to 0 by uv # then: additive noise sine_waves = sine_waves * uv + noise return sine_waves, uv, noise class SourceModuleHnNSF(torch.nn.Module): """ SourceModule for hn-nsf SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, add_noise_std=0.003, voiced_threshod=0) sampling_rate: sampling_rate in Hz harmonic_num: number of harmonic above F0 (default: 0) sine_amp: amplitude of sine source signal (default: 0.1) add_noise_std: std of additive Gaussian noise (default: 0.003) note that amplitude of noise in unvoiced is decided by sine_amp voiced_threshold: threhold to set U/V given F0 (default: 0) Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) F0_sampled (batchsize, length, 1) Sine_source (batchsize, length, 1) noise_source (batchsize, length 1) uv (batchsize, length, 1) """ def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1, add_noise_std=0.003, voiced_threshod=0): super(SourceModuleHnNSF, self).__init__() self.sine_amp = sine_amp self.noise_std = add_noise_std # to produce sine waveforms self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num, sine_amp, add_noise_std, voiced_threshod) # to merge source harmonics into a single excitation self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) self.l_tanh = torch.nn.Tanh() def forward(self, x): """ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) F0_sampled (batchsize, length, 1) Sine_source (batchsize, length, 1) noise_source (batchsize, length 1) """ # source for harmonic branch with torch.no_grad(): sine_wavs, uv, _ = self.l_sin_gen(x) sine_merge = self.l_tanh(self.l_linear(sine_wavs)) # source for noise branch, in the same shape as uv noise = torch.randn_like(uv) * self.sine_amp / 3 return sine_merge, noise, uv def padDiff(x): return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0) class Generator(torch.nn.Module): def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size): super(Generator, self).__init__() self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) resblock = AdaINResBlock1 self.m_source = SourceModuleHnNSF( sampling_rate=24000, upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size, harmonic_num=8, voiced_threshod=10) self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size) self.noise_convs = nn.ModuleList() self.noise_res = nn.ModuleList() self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append(weight_norm( ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)), k, u, padding=(k-u)//2))) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel//(2**(i+1)) for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)): self.resblocks.append(resblock(ch, k, d, style_dim)) c_cur = upsample_initial_channel // (2 ** (i + 1)) if i + 1 < len(upsample_rates): # stride_f0 = np.prod(upsample_rates[i + 1:]) self.noise_convs.append(Conv1d( gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2)) self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim)) else: self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1)) self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim)) self.post_n_fft = gen_istft_n_fft self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) self.reflection_pad = torch.nn.ReflectionPad1d((1, 0)) self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft) def forward(self, x, s, f0): with torch.no_grad(): f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t har_source, noi_source, uv = self.m_source(f0) har_source = har_source.transpose(1, 2).squeeze(1) har_spec, har_phase = self.stft.transform(har_source) har = torch.cat([har_spec, har_phase], dim=1) for i in range(self.num_upsamples): x = F.leaky_relu(x, LRELU_SLOPE) x_source = self.noise_convs[i](har) x_source = self.noise_res[i](x_source, s) x = self.ups[i](x) if i == self.num_upsamples - 1: x = self.reflection_pad(x) x = x + x_source xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i*self.num_kernels+j](x, s) else: xs += self.resblocks[i*self.num_kernels+j](x, s) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :]) phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :]) return self.stft.inverse(spec, phase) def fw_phase(self, x, s): for i in range(self.num_upsamples): x = F.leaky_relu(x, LRELU_SLOPE) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i*self.num_kernels+j](x, s) else: xs += self.resblocks[i*self.num_kernels+j](x, s) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.reflection_pad(x) x = self.conv_post(x) spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :]) phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :]) return spec, phase def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class AdainResBlk1d(nn.Module): def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2), upsample='none', dropout_p=0.0): super().__init__() self.actv = actv self.upsample_type = upsample self.upsample = UpSample1d(upsample) self.learned_sc = dim_in != dim_out self._build_weights(dim_in, dim_out, style_dim) self.dropout = nn.Dropout(dropout_p) if upsample == 'none': self.pool = nn.Identity() else: self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1)) def _build_weights(self, dim_in, dim_out, style_dim): self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1)) self.norm1 = AdaIN1d(style_dim, dim_in) self.norm2 = AdaIN1d(style_dim, dim_out) if self.learned_sc: self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) def _shortcut(self, x): x = self.upsample(x) if self.learned_sc: x = self.conv1x1(x) return x def _residual(self, x, s): x = self.norm1(x, s) x = self.actv(x) x = self.pool(x) x = self.conv1(self.dropout(x)) x = self.norm2(x, s) x = self.actv(x) x = self.conv2(self.dropout(x)) return x def forward(self, x, s): out = self._residual(x, s) out = (out + self._shortcut(x)) / np.sqrt(2) return out class UpSample1d(nn.Module): def __init__(self, layer_type): super().__init__() self.layer_type = layer_type def forward(self, x): if self.layer_type == 'none': return x else: return F.interpolate(x, scale_factor=2, mode='nearest') class Decoder(nn.Module): def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80, resblock_kernel_sizes = [3,7,11], upsample_rates = [10, 6], upsample_initial_channel=512, resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]], upsample_kernel_sizes=[20, 12], gen_istft_n_fft=20, gen_istft_hop_size=5): super().__init__() self.decode = nn.ModuleList() self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim) self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True)) self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)) self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)) self.asr_res = nn.Sequential( weight_norm(nn.Conv1d(512, 64, kernel_size=1)), ) self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size) def forward(self, asr, F0_curve, N, s): F0 = self.F0_conv(F0_curve.unsqueeze(1)) N = self.N_conv(N.unsqueeze(1)) x = torch.cat([asr, F0, N], axis=1) x = self.encode(x, s) asr_res = self.asr_res(asr) res = True for block in self.decode: if res: x = torch.cat([x, asr_res, F0, N], axis=1) x = block(x, s) if block.upsample_type != "none": res = False x = self.generator(x, s, F0_curve) return x