# mostly borrowed from TheStinger/Ilaria_Upscaler spaces. import gradio as gr import cv2 import numpy import os import random from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.utils.download_util import load_file_from_url from realesrgan import RealESRGANer from realesrgan.archs.srvgg_arch import SRVGGNetCompact def model_params(model_name): if model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) netscale = 4 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'] elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) netscale = 4 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth'] elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) netscale = 4 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth'] elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) netscale = 2 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth'] elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size) model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') netscale = 4 file_url = [ 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth', 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth' ] return model, netscale, file_url def upscale(image, model_name, tile, denoise, face_enhance, scale): if not image: return model, netscale, file_url = model_params(model_name) model_path = os.path.join('weights', model_name + '.pth') if not os.path.isfile(model_path): ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) for url in file_url: # model_path will be updated model_path = load_file_from_url( url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None) dni_weight = None if model_name == 'realesr-general-x4v3' and denoise_strength != 1: wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3') model_path = [model_path, wdn_model_path] dni_weight = [denoise_strength, 1 - denoise_strength] upsampler = RealESRGANer( scale=netscale, model_path=model_path, dni_weight=dni_weight, model=model, tile=tile, tile_pad=10, pre_pad=10, half=False, gpu_id=None ) if face_enhance: from gfpgan import GFPGANer face_enhancer = GFPGANer( model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth', upscale=outscale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) ################ cv_img = numpy.array(image) img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA) try: if face_enhance: _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) else: output, _ = upsampler.enhance(img, outscale=scale) except RuntimeError as error: print('Error', error) print('If you encounter CUDA out of memory, try to set --tile with a smaller number.') return output app = gr.Interface( title='Real-ESRGAN Upscaler', description='Yet another Real-ESRGAN upscaler that uses gradio `Interface`, because why not? It’s not like there are any other options for simplicity and backward compatibility. Oh wait, there are. Never mind.', fn=upscale, inputs=[ gr.Image(label='Source Image', type='pil', image_mode='RGBA'), gr.Dropdown( label='Model', choices=["RealESRGAN_x4plus", "RealESRNet_x4plus", "RealESRGAN_x4plus_anime_6B","RealESRGAN_x2plus", "realesr-general-x4v3"], show_label=True, value='RealESRGAN_x4plus_anime_6B' ), gr.Slider( label='Tile', minimum=0, maximum=1024, step=32, value=64 ), gr.Slider( label='Denoise Strength', minimum=0, maximum=1, step=0.1, value=0.5 ), gr.Checkbox( label='Face Enhancement (GFPGAN)', value=False, show_label=True ), gr.Slider( label='Upscale Size', minimum=1, maximum=4, step=1, value=2, show_label=True ) ], outputs=[ gr.Image(label='Upscaled Image', image_mode='RGBA') ] ) app.launch(show_api=True)