import torch from transformers import AutoTokenizer, AutoModel tokenizer_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" model_name = tokenizer_name # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) tokenizer.add_special_tokens({'pad_token': '[PAD]'}) # Load the pre-trained model model = AutoModel.from_pretrained(model_name) # Extract the embeddings layer embeddings = model.get_input_embeddings() # Print out the embeddings print(f"Extracted Embeddings Layer for {model_name}: {embeddings}") # Save the embeddings layer torch.save(embeddings.state_dict(), r"python\code\files\embeddings_qwen.pth")