import cv2 import mediapipe as mp import numpy as np import streamlit as st from PIL import Image # Initialize Mediapipe Pose mp_pose = mp.solutions.pose mp_drawing = mp.solutions.drawing_utils # Function to calculate the angle between three points def calculate_angle(a, b, c): a = np.array(a) # First point b = np.array(b) # Middle point c = np.array(c) # Last point radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0]) angle = np.abs(radians * 180.0 / np.pi) if angle > 180.0: angle = 360 - angle return angle # Function to check shoulder press posture def is_shoulder_press_correct(landmarks, mp_pose): # Get coordinates of shoulder, elbow, and wrist (left arm as example) shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x, landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y] elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x, landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y] wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x, landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y] # Calculate angle at the elbow (shoulder, elbow, wrist) elbow_angle = calculate_angle(shoulder, elbow, wrist) # Check if the motion is vertical (wrist higher than elbow) if wrist[1] < elbow[1] and elbow[1] < shoulder[1]: # Ensure proper angle range for a shoulder press if 160 <= elbow_angle <= 180: return "Shoulder Press: Correct", (0, 255, 0) # Green for correct else: return "Shoulder Press: Incorrect - Elbow angle", (0, 255, 255) # Yellow for improper angle else: return "Shoulder Press: Incorrect - Alignment", (255, 0, 0) # Red for alignment issue # Streamlit App st.title("Shoulder Press Detection Web App") # Upload video file uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi"]) if uploaded_file is not None: # Save uploaded video to a temporary location temp_video_path = "uploaded_video.mp4" with open(temp_video_path, "wb") as f: f.write(uploaded_file.read()) # Open video with OpenCV cap = cv2.VideoCapture(temp_video_path) stframe = st.empty() with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose: while cap.isOpened(): ret, frame = cap.read() if not ret: break # Convert the frame to RGB image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image.flags.writeable = False # Process the image for pose detection results = pose.process(image) # Convert back to BGR for rendering image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Extract landmarks if results.pose_landmarks: landmarks = results.pose_landmarks.landmark # Check shoulder press posture feedback, color = is_shoulder_press_correct(landmarks, mp_pose) # Display feedback cv2.putText(image, feedback, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2, cv2.LINE_AA) # Draw landmarks mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS) else: # Warn if no landmarks are detected cv2.putText(image, "No body detected", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA) # Resize frame for Streamlit resized_frame = cv2.resize(image, (640, 480)) frame_rgb = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2RGB) stframe.image(frame_rgb, channels="RGB") cap.release()