import torch from scipy import integrate from ...util import append_dims def linear_multistep_coeff(order, t, i, j, epsrel=1e-4): if order - 1 > i: raise ValueError(f"Order {order} too high for step {i}") def fn(tau): prod = 1.0 for k in range(order): if j == k: continue prod *= (tau - t[i - k]) / (t[i - j] - t[i - k]) return prod return integrate.quad(fn, t[i], t[i + 1], epsrel=epsrel)[0] def get_ancestral_step(sigma_from, sigma_to, eta=1.0): if not eta: return sigma_to, 0.0 sigma_up = torch.minimum( sigma_to, eta * (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5, ) sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5 return sigma_down, sigma_up def to_d(x, sigma, denoised): return (x - denoised) / append_dims(sigma, x.ndim) def to_neg_log_sigma(sigma): return sigma.log().neg() def to_sigma(neg_log_sigma): return neg_log_sigma.neg().exp()