import os import json import math import numpy as np from PIL import Image import cv2 import torch import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader, IterableDataset import torchvision.transforms.functional as TF import pytorch_lightning as pl import datasets from models.ray_utils import get_ortho_ray_directions_origins, get_ortho_rays, get_ray_directions from utils.misc import get_rank from glob import glob import PIL.Image def camNormal2worldNormal(rot_c2w, camNormal): H,W,_ = camNormal.shape normal_img = np.matmul(rot_c2w[None, :, :], camNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3]) return normal_img def worldNormal2camNormal(rot_w2c, worldNormal): H,W,_ = worldNormal.shape normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3]) return normal_img def trans_normal(normal, RT_w2c, RT_w2c_target): normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal) normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world) return normal_target_cam def img2normal(img): return (img/255.)*2-1 def normal2img(normal): return np.uint8((normal*0.5+0.5)*255) def norm_normalize(normal, dim=-1): normal = normal/(np.linalg.norm(normal, axis=dim, keepdims=True)+1e-6) return normal def RT_opengl2opencv(RT): # Build the coordinate transform matrix from world to computer vision camera # R_world2cv = R_bcam2cv@R_world2bcam # T_world2cv = R_bcam2cv@T_world2bcam R = RT[:3, :3] t = RT[:3, 3] R_bcam2cv = np.asarray([[1, 0, 0], [0, -1, 0], [0, 0, -1]], np.float32) R_world2cv = R_bcam2cv @ R t_world2cv = R_bcam2cv @ t RT = np.concatenate([R_world2cv,t_world2cv[:,None]],1) return RT def normal_opengl2opencv(normal): H,W,C = np.shape(normal) # normal_img = np.reshape(normal, (H*W,C)) R_bcam2cv = np.array([1, -1, -1], np.float32) normal_cv = normal * R_bcam2cv[None, None, :] print(np.shape(normal_cv)) return normal_cv def inv_RT(RT): RT_h = np.concatenate([RT, np.array([[0,0,0,1]])], axis=0) RT_inv = np.linalg.inv(RT_h) return RT_inv[:3, :] def load_a_prediction(root_dir, test_object, imSize, view_types, load_color=False, cam_pose_dir=None, normal_system='front', erode_mask=True, camera_type='ortho', cam_params=None): all_images = [] all_normals = [] all_normals_world = [] all_masks = [] all_color_masks = [] all_poses = [] all_w2cs = [] directions = [] ray_origins = [] RT_front = np.loadtxt(glob(os.path.join(cam_pose_dir, '*_%s_RT.txt'%( 'front')))[0]) # world2cam matrix RT_front_cv = RT_opengl2opencv(RT_front) # convert normal from opengl to opencv for idx, view in enumerate(view_types): print(os.path.join(root_dir,test_object)) normal_filepath = os.path.join(root_dir, test_object, 'normals_000_%s.png'%( view)) # Load key frame if load_color: # use bgr image =np.array(PIL.Image.open(normal_filepath.replace("normals", "rgb")).resize(imSize))[:, :, :3] normal = np.array(PIL.Image.open(normal_filepath).resize(imSize)) mask = normal[:, :, 3] normal = normal[:, :, :3] color_mask = np.array(PIL.Image.open(os.path.join(root_dir,test_object, 'masked_colors/rgb_000_%s.png'%( view))).resize(imSize))[:, :, 3] invalid_color_mask = color_mask < 255*0.5 threshold = np.ones_like(image[:, :, 0]) * 250 invalid_white_mask = (image[:, :, 0] > threshold) & (image[:, :, 1] > threshold) & (image[:, :, 2] > threshold) invalid_color_mask_final = invalid_color_mask & invalid_white_mask color_mask = (1 - invalid_color_mask_final) > 0 # if erode_mask: # kernel = np.ones((3, 3), np.uint8) # mask = cv2.erode(mask, kernel, iterations=1) RT = np.loadtxt(os.path.join(cam_pose_dir, '000_%s_RT.txt'%( view))) # world2cam matrix normal = img2normal(normal) normal[mask==0] = [0,0,0] mask = mask> (0.5*255) if load_color: all_images.append(image) all_masks.append(mask) all_color_masks.append(color_mask) RT_cv = RT_opengl2opencv(RT) # convert normal from opengl to opencv all_poses.append(inv_RT(RT_cv)) # cam2world all_w2cs.append(RT_cv) # whether to normal_cam_cv = normal_opengl2opencv(normal) if normal_system == 'front': print("the loaded normals are defined in the system of front view") normal_world = camNormal2worldNormal(inv_RT(RT_front_cv)[:3, :3], normal_cam_cv) elif normal_system == 'self': print("the loaded normals are in their independent camera systems") normal_world = camNormal2worldNormal(inv_RT(RT_cv)[:3, :3], normal_cam_cv) all_normals.append(normal_cam_cv) all_normals_world.append(normal_world) if camera_type == 'ortho': origins, dirs = get_ortho_ray_directions_origins(W=imSize[0], H=imSize[1]) elif camera_type == 'pinhole': dirs = get_ray_directions(W=imSize[0], H=imSize[1], fx=cam_params[0], fy=cam_params[1], cx=cam_params[2], cy=cam_params[3]) origins = dirs # occupy a position else: raise Exception("not support camera type") ray_origins.append(origins) directions.append(dirs) if not load_color: all_images = [normal2img(x) for x in all_normals_world] return np.stack(all_images), np.stack(all_masks), np.stack(all_normals), \ np.stack(all_normals_world), np.stack(all_poses), np.stack(all_w2cs), np.stack(ray_origins), np.stack(directions), np.stack(all_color_masks) class OrthoDatasetBase(): def setup(self, config, split): self.config = config self.split = split self.rank = get_rank() self.data_dir = self.config.root_dir self.object_name = self.config.scene self.scene = self.config.scene self.imSize = self.config.imSize self.load_color = True self.img_wh = [self.imSize[0], self.imSize[1]] self.w = self.img_wh[0] self.h = self.img_wh[1] self.camera_type = self.config.camera_type self.camera_params = self.config.camera_params # [fx, fy, cx, cy] self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left'] self.view_weights = torch.from_numpy(np.array(self.config.view_weights)).float().to(self.rank).view(-1) self.view_weights = self.view_weights.view(-1,1,1).repeat(1, self.h, self.w) if self.config.cam_pose_dir is None: self.cam_pose_dir = "./datasets/fixed_poses" else: self.cam_pose_dir = self.config.cam_pose_dir self.images_np, self.masks_np, self.normals_cam_np, self.normals_world_np, \ self.pose_all_np, self.w2c_all_np, self.origins_np, self.directions_np, self.rgb_masks_np = load_a_prediction( self.data_dir, self.object_name, self.imSize, self.view_types, self.load_color, self.cam_pose_dir, normal_system='front', camera_type=self.camera_type, cam_params=self.camera_params) self.has_mask = True self.apply_mask = self.config.apply_mask self.all_c2w = torch.from_numpy(self.pose_all_np) self.all_images = torch.from_numpy(self.images_np) / 255. self.all_fg_masks = torch.from_numpy(self.masks_np) self.all_rgb_masks = torch.from_numpy(self.rgb_masks_np) self.all_normals_world = torch.from_numpy(self.normals_world_np) self.origins = torch.from_numpy(self.origins_np) self.directions = torch.from_numpy(self.directions_np) self.directions = self.directions.float().to(self.rank) self.origins = self.origins.float().to(self.rank) self.all_rgb_masks = self.all_rgb_masks.float().to(self.rank) self.all_c2w, self.all_images, self.all_fg_masks, self.all_normals_world = \ self.all_c2w.float().to(self.rank), \ self.all_images.float().to(self.rank), \ self.all_fg_masks.float().to(self.rank), \ self.all_normals_world.float().to(self.rank) class OrthoDataset(Dataset, OrthoDatasetBase): def __init__(self, config, split): self.setup(config, split) def __len__(self): return len(self.all_images) def __getitem__(self, index): return { 'index': index } class OrthoIterableDataset(IterableDataset, OrthoDatasetBase): def __init__(self, config, split): self.setup(config, split) def __iter__(self): while True: yield {} @datasets.register('ortho') class OrthoDataModule(pl.LightningDataModule): def __init__(self, config): super().__init__() self.config = config def setup(self, stage=None): if stage in [None, 'fit']: self.train_dataset = OrthoIterableDataset(self.config, 'train') if stage in [None, 'fit', 'validate']: self.val_dataset = OrthoDataset(self.config, self.config.get('val_split', 'train')) if stage in [None, 'test']: self.test_dataset = OrthoDataset(self.config, self.config.get('test_split', 'test')) if stage in [None, 'predict']: self.predict_dataset = OrthoDataset(self.config, 'train') def prepare_data(self): pass def general_loader(self, dataset, batch_size): sampler = None return DataLoader( dataset, num_workers=os.cpu_count(), batch_size=batch_size, pin_memory=True, sampler=sampler ) def train_dataloader(self): return self.general_loader(self.train_dataset, batch_size=1) def val_dataloader(self): return self.general_loader(self.val_dataset, batch_size=1) def test_dataloader(self): return self.general_loader(self.test_dataset, batch_size=1) def predict_dataloader(self): return self.general_loader(self.predict_dataset, batch_size=1)